1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/thread.h> 28 #include <sys/proc.h> 29 #include <sys/debug.h> 30 #include <sys/cmn_err.h> 31 #include <sys/systm.h> 32 #include <sys/sobject.h> 33 #include <sys/sleepq.h> 34 #include <sys/cpuvar.h> 35 #include <sys/condvar.h> 36 #include <sys/condvar_impl.h> 37 #include <sys/schedctl.h> 38 #include <sys/procfs.h> 39 #include <sys/sdt.h> 40 41 /* 42 * CV_MAX_WAITERS is the maximum number of waiters we track; once 43 * the number becomes higher than that, we look at the sleepq to 44 * see whether there are *really* any waiters. 45 */ 46 #define CV_MAX_WAITERS 1024 /* must be power of 2 */ 47 #define CV_WAITERS_MASK (CV_MAX_WAITERS - 1) 48 49 /* 50 * Threads don't "own" condition variables. 51 */ 52 /* ARGSUSED */ 53 static kthread_t * 54 cv_owner(void *cvp) 55 { 56 return (NULL); 57 } 58 59 /* 60 * Unsleep a thread that's blocked on a condition variable. 61 */ 62 static void 63 cv_unsleep(kthread_t *t) 64 { 65 condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan; 66 sleepq_head_t *sqh = SQHASH(cvp); 67 68 ASSERT(THREAD_LOCK_HELD(t)); 69 70 if (cvp == NULL) 71 panic("cv_unsleep: thread %p not on sleepq %p", 72 (void *)t, (void *)sqh); 73 DTRACE_SCHED1(wakeup, kthread_t *, t); 74 sleepq_unsleep(t); 75 if (cvp->cv_waiters != CV_MAX_WAITERS) 76 cvp->cv_waiters--; 77 disp_lock_exit_high(&sqh->sq_lock); 78 CL_SETRUN(t); 79 } 80 81 /* 82 * Change the priority of a thread that's blocked on a condition variable. 83 */ 84 static void 85 cv_change_pri(kthread_t *t, pri_t pri, pri_t *t_prip) 86 { 87 condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan; 88 sleepq_t *sqp = t->t_sleepq; 89 90 ASSERT(THREAD_LOCK_HELD(t)); 91 ASSERT(&SQHASH(cvp)->sq_queue == sqp); 92 93 if (cvp == NULL) 94 panic("cv_change_pri: %p not on sleep queue", (void *)t); 95 sleepq_dequeue(t); 96 *t_prip = pri; 97 sleepq_insert(sqp, t); 98 } 99 100 /* 101 * The sobj_ops vector exports a set of functions needed when a thread 102 * is asleep on a synchronization object of this type. 103 */ 104 static sobj_ops_t cv_sobj_ops = { 105 SOBJ_CV, cv_owner, cv_unsleep, cv_change_pri 106 }; 107 108 /* ARGSUSED */ 109 void 110 cv_init(kcondvar_t *cvp, char *name, kcv_type_t type, void *arg) 111 { 112 ((condvar_impl_t *)cvp)->cv_waiters = 0; 113 } 114 115 /* 116 * cv_destroy is not currently needed, but is part of the DDI. 117 * This is in case cv_init ever needs to allocate something for a cv. 118 */ 119 /* ARGSUSED */ 120 void 121 cv_destroy(kcondvar_t *cvp) 122 { 123 ASSERT((((condvar_impl_t *)cvp)->cv_waiters & CV_WAITERS_MASK) == 0); 124 } 125 126 /* 127 * The cv_block() function blocks a thread on a condition variable 128 * by putting it in a hashed sleep queue associated with the 129 * synchronization object. 130 * 131 * Threads are taken off the hashed sleep queues via calls to 132 * cv_signal(), cv_broadcast(), or cv_unsleep(). 133 */ 134 static void 135 cv_block(condvar_impl_t *cvp) 136 { 137 kthread_t *t = curthread; 138 klwp_t *lwp = ttolwp(t); 139 sleepq_head_t *sqh; 140 141 ASSERT(THREAD_LOCK_HELD(t)); 142 ASSERT(t != CPU->cpu_idle_thread); 143 ASSERT(CPU_ON_INTR(CPU) == 0); 144 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL); 145 ASSERT(t->t_state == TS_ONPROC); 146 147 t->t_schedflag &= ~TS_SIGNALLED; 148 CL_SLEEP(t); /* assign kernel priority */ 149 t->t_wchan = (caddr_t)cvp; 150 t->t_sobj_ops = &cv_sobj_ops; 151 DTRACE_SCHED(sleep); 152 153 /* 154 * The check for t_intr is to avoid doing the 155 * account for an interrupt thread on the still-pinned 156 * lwp's statistics. 157 */ 158 if (lwp != NULL && t->t_intr == NULL) { 159 lwp->lwp_ru.nvcsw++; 160 (void) new_mstate(t, LMS_SLEEP); 161 } 162 163 sqh = SQHASH(cvp); 164 disp_lock_enter_high(&sqh->sq_lock); 165 if (cvp->cv_waiters < CV_MAX_WAITERS) 166 cvp->cv_waiters++; 167 ASSERT(cvp->cv_waiters <= CV_MAX_WAITERS); 168 THREAD_SLEEP(t, &sqh->sq_lock); 169 sleepq_insert(&sqh->sq_queue, t); 170 /* 171 * THREAD_SLEEP() moves curthread->t_lockp to point to the 172 * lock sqh->sq_lock. This lock is later released by the caller 173 * when it calls thread_unlock() on curthread. 174 */ 175 } 176 177 #define cv_block_sig(t, cvp) \ 178 { (t)->t_flag |= T_WAKEABLE; cv_block(cvp); } 179 180 /* 181 * Block on the indicated condition variable and release the 182 * associated kmutex while blocked. 183 */ 184 void 185 cv_wait(kcondvar_t *cvp, kmutex_t *mp) 186 { 187 if (panicstr) 188 return; 189 190 ASSERT(curthread->t_schedflag & TS_DONT_SWAP); 191 thread_lock(curthread); /* lock the thread */ 192 cv_block((condvar_impl_t *)cvp); 193 thread_unlock_nopreempt(curthread); /* unlock the waiters field */ 194 mutex_exit(mp); 195 swtch(); 196 mutex_enter(mp); 197 } 198 199 /* 200 * Same as cv_wait except the thread will unblock at 'tim' 201 * (an absolute time) if it hasn't already unblocked. 202 * 203 * Returns the amount of time left from the original 'tim' value 204 * when it was unblocked. 205 */ 206 clock_t 207 cv_timedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim) 208 { 209 kthread_t *t = curthread; 210 timeout_id_t id; 211 clock_t timeleft; 212 int signalled; 213 214 if (panicstr) 215 return (-1); 216 217 timeleft = tim - lbolt; 218 if (timeleft <= 0) 219 return (-1); 220 id = realtime_timeout((void (*)(void *))setrun, t, timeleft); 221 thread_lock(t); /* lock the thread */ 222 cv_block((condvar_impl_t *)cvp); 223 thread_unlock_nopreempt(t); 224 mutex_exit(mp); 225 if ((tim - lbolt) <= 0) /* allow for wrap */ 226 setrun(t); 227 swtch(); 228 signalled = (t->t_schedflag & TS_SIGNALLED); 229 /* 230 * Get the time left. untimeout() returns -1 if the timeout has 231 * occured or the time remaining. If the time remaining is zero, 232 * the timeout has occured between when we were awoken and 233 * we called untimeout. We will treat this as if the timeout 234 * has occured and set timeleft to -1. 235 */ 236 timeleft = untimeout(id); 237 mutex_enter(mp); 238 if (timeleft <= 0) { 239 timeleft = -1; 240 if (signalled) /* avoid consuming the cv_signal() */ 241 cv_signal(cvp); 242 } 243 return (timeleft); 244 } 245 246 int 247 cv_wait_sig(kcondvar_t *cvp, kmutex_t *mp) 248 { 249 kthread_t *t = curthread; 250 proc_t *p = ttoproc(t); 251 klwp_t *lwp = ttolwp(t); 252 int cancel_pending; 253 int rval = 1; 254 int signalled = 0; 255 256 if (panicstr) 257 return (rval); 258 259 /* 260 * The check for t_intr is to catch an interrupt thread 261 * that has not yet unpinned the thread underneath. 262 */ 263 if (lwp == NULL || t->t_intr) { 264 cv_wait(cvp, mp); 265 return (rval); 266 } 267 268 ASSERT(curthread->t_schedflag & TS_DONT_SWAP); 269 cancel_pending = schedctl_cancel_pending(); 270 lwp->lwp_asleep = 1; 271 lwp->lwp_sysabort = 0; 272 thread_lock(t); 273 cv_block_sig(t, (condvar_impl_t *)cvp); 274 thread_unlock_nopreempt(t); 275 mutex_exit(mp); 276 if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending) 277 setrun(t); 278 /* ASSERT(no locks are held) */ 279 swtch(); 280 signalled = (t->t_schedflag & TS_SIGNALLED); 281 t->t_flag &= ~T_WAKEABLE; 282 mutex_enter(mp); 283 if (ISSIG_PENDING(t, lwp, p)) { 284 mutex_exit(mp); 285 if (issig(FORREAL)) 286 rval = 0; 287 mutex_enter(mp); 288 } 289 if (lwp->lwp_sysabort || MUSTRETURN(p, t)) 290 rval = 0; 291 if (rval != 0 && cancel_pending) { 292 schedctl_cancel_eintr(); 293 rval = 0; 294 } 295 lwp->lwp_asleep = 0; 296 lwp->lwp_sysabort = 0; 297 if (rval == 0 && signalled) /* avoid consuming the cv_signal() */ 298 cv_signal(cvp); 299 return (rval); 300 } 301 302 /* 303 * Returns: 304 * Function result in order of presidence: 305 * 0 if a signal was received 306 * -1 if timeout occured 307 * >0 if awakened via cv_signal() or cv_broadcast(). 308 * (returns time remaining) 309 * 310 * cv_timedwait_sig() is now part of the DDI. 311 */ 312 clock_t 313 cv_timedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t tim) 314 { 315 kthread_t *t = curthread; 316 proc_t *p = ttoproc(t); 317 klwp_t *lwp = ttolwp(t); 318 int cancel_pending = 0; 319 timeout_id_t id; 320 clock_t rval = 1; 321 clock_t timeleft; 322 int signalled = 0; 323 324 if (panicstr) 325 return (rval); 326 327 /* 328 * If there is no lwp, then we don't need to wait for a signal. 329 * The check for t_intr is to catch an interrupt thread 330 * that has not yet unpinned the thread underneath. 331 */ 332 if (lwp == NULL || t->t_intr) 333 return (cv_timedwait(cvp, mp, tim)); 334 335 /* 336 * If tim is less than or equal to lbolt, then the timeout 337 * has already occured. So just check to see if there is a signal 338 * pending. If so return 0 indicating that there is a signal pending. 339 * Else return -1 indicating that the timeout occured. No need to 340 * wait on anything. 341 */ 342 timeleft = tim - lbolt; 343 if (timeleft <= 0) { 344 lwp->lwp_asleep = 1; 345 lwp->lwp_sysabort = 0; 346 rval = -1; 347 goto out; 348 } 349 350 /* 351 * Set the timeout and wait. 352 */ 353 cancel_pending = schedctl_cancel_pending(); 354 id = realtime_timeout((void (*)(void *))setrun, t, timeleft); 355 lwp->lwp_asleep = 1; 356 lwp->lwp_sysabort = 0; 357 thread_lock(t); 358 cv_block_sig(t, (condvar_impl_t *)cvp); 359 thread_unlock_nopreempt(t); 360 mutex_exit(mp); 361 if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending || 362 (tim - lbolt <= 0)) 363 setrun(t); 364 /* ASSERT(no locks are held) */ 365 swtch(); 366 signalled = (t->t_schedflag & TS_SIGNALLED); 367 t->t_flag &= ~T_WAKEABLE; 368 mutex_enter(mp); 369 370 /* 371 * Untimeout the thread. untimeout() returns -1 if the timeout has 372 * occured or the time remaining. If the time remaining is zero, 373 * the timeout has occured between when we were awoken and 374 * we called untimeout. We will treat this as if the timeout 375 * has occured and set rval to -1. 376 */ 377 rval = untimeout(id); 378 if (rval <= 0) 379 rval = -1; 380 381 /* 382 * Check to see if a signal is pending. If so, regardless of whether 383 * or not we were awoken due to the signal, the signal is now pending 384 * and a return of 0 has the highest priority. 385 */ 386 out: 387 if (ISSIG_PENDING(t, lwp, p)) { 388 mutex_exit(mp); 389 if (issig(FORREAL)) 390 rval = 0; 391 mutex_enter(mp); 392 } 393 if (lwp->lwp_sysabort || MUSTRETURN(p, t)) 394 rval = 0; 395 if (rval != 0 && cancel_pending) { 396 schedctl_cancel_eintr(); 397 rval = 0; 398 } 399 lwp->lwp_asleep = 0; 400 lwp->lwp_sysabort = 0; 401 if (rval <= 0 && signalled) /* avoid consuming the cv_signal() */ 402 cv_signal(cvp); 403 return (rval); 404 } 405 406 /* 407 * Like cv_wait_sig_swap but allows the caller to indicate (with a 408 * non-NULL sigret) that they will take care of signalling the cv 409 * after wakeup, if necessary. This is a vile hack that should only 410 * be used when no other option is available; almost all callers 411 * should just use cv_wait_sig_swap (which takes care of the cv_signal 412 * stuff automatically) instead. 413 */ 414 int 415 cv_wait_sig_swap_core(kcondvar_t *cvp, kmutex_t *mp, int *sigret) 416 { 417 kthread_t *t = curthread; 418 proc_t *p = ttoproc(t); 419 klwp_t *lwp = ttolwp(t); 420 int cancel_pending; 421 int rval = 1; 422 int signalled = 0; 423 424 if (panicstr) 425 return (rval); 426 427 /* 428 * The check for t_intr is to catch an interrupt thread 429 * that has not yet unpinned the thread underneath. 430 */ 431 if (lwp == NULL || t->t_intr) { 432 cv_wait(cvp, mp); 433 return (rval); 434 } 435 436 cancel_pending = schedctl_cancel_pending(); 437 lwp->lwp_asleep = 1; 438 lwp->lwp_sysabort = 0; 439 thread_lock(t); 440 t->t_kpri_req = 0; /* don't need kernel priority */ 441 cv_block_sig(t, (condvar_impl_t *)cvp); 442 /* I can be swapped now */ 443 curthread->t_schedflag &= ~TS_DONT_SWAP; 444 thread_unlock_nopreempt(t); 445 mutex_exit(mp); 446 if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending) 447 setrun(t); 448 /* ASSERT(no locks are held) */ 449 swtch(); 450 signalled = (t->t_schedflag & TS_SIGNALLED); 451 t->t_flag &= ~T_WAKEABLE; 452 /* TS_DONT_SWAP set by disp() */ 453 ASSERT(curthread->t_schedflag & TS_DONT_SWAP); 454 mutex_enter(mp); 455 if (ISSIG_PENDING(t, lwp, p)) { 456 mutex_exit(mp); 457 if (issig(FORREAL)) 458 rval = 0; 459 mutex_enter(mp); 460 } 461 if (lwp->lwp_sysabort || MUSTRETURN(p, t)) 462 rval = 0; 463 if (rval != 0 && cancel_pending) { 464 schedctl_cancel_eintr(); 465 rval = 0; 466 } 467 lwp->lwp_asleep = 0; 468 lwp->lwp_sysabort = 0; 469 if (rval == 0) { 470 if (sigret != NULL) 471 *sigret = signalled; /* just tell the caller */ 472 else if (signalled) 473 cv_signal(cvp); /* avoid consuming the cv_signal() */ 474 } 475 return (rval); 476 } 477 478 /* 479 * Same as cv_wait_sig but the thread can be swapped out while waiting. 480 * This should only be used when we know we aren't holding any locks. 481 */ 482 int 483 cv_wait_sig_swap(kcondvar_t *cvp, kmutex_t *mp) 484 { 485 return (cv_wait_sig_swap_core(cvp, mp, NULL)); 486 } 487 488 void 489 cv_signal(kcondvar_t *cvp) 490 { 491 condvar_impl_t *cp = (condvar_impl_t *)cvp; 492 493 /* make sure the cv_waiters field looks sane */ 494 ASSERT(cp->cv_waiters <= CV_MAX_WAITERS); 495 if (cp->cv_waiters > 0) { 496 sleepq_head_t *sqh = SQHASH(cp); 497 disp_lock_enter(&sqh->sq_lock); 498 ASSERT(CPU_ON_INTR(CPU) == 0); 499 if (cp->cv_waiters & CV_WAITERS_MASK) { 500 kthread_t *t; 501 cp->cv_waiters--; 502 t = sleepq_wakeone_chan(&sqh->sq_queue, cp); 503 /* 504 * If cv_waiters is non-zero (and less than 505 * CV_MAX_WAITERS) there should be a thread 506 * in the queue. 507 */ 508 ASSERT(t != NULL); 509 } else if (sleepq_wakeone_chan(&sqh->sq_queue, cp) == NULL) { 510 cp->cv_waiters = 0; 511 } 512 disp_lock_exit(&sqh->sq_lock); 513 } 514 } 515 516 void 517 cv_broadcast(kcondvar_t *cvp) 518 { 519 condvar_impl_t *cp = (condvar_impl_t *)cvp; 520 521 /* make sure the cv_waiters field looks sane */ 522 ASSERT(cp->cv_waiters <= CV_MAX_WAITERS); 523 if (cp->cv_waiters > 0) { 524 sleepq_head_t *sqh = SQHASH(cp); 525 disp_lock_enter(&sqh->sq_lock); 526 ASSERT(CPU_ON_INTR(CPU) == 0); 527 sleepq_wakeall_chan(&sqh->sq_queue, cp); 528 cp->cv_waiters = 0; 529 disp_lock_exit(&sqh->sq_lock); 530 } 531 } 532 533 /* 534 * Same as cv_wait(), but wakes up (after wakeup_time milliseconds) to check 535 * for requests to stop, like cv_wait_sig() but without dealing with signals. 536 * This is a horrible kludge. It is evil. It is vile. It is swill. 537 * If your code has to call this function then your code is the same. 538 */ 539 void 540 cv_wait_stop(kcondvar_t *cvp, kmutex_t *mp, int wakeup_time) 541 { 542 kthread_t *t = curthread; 543 klwp_t *lwp = ttolwp(t); 544 proc_t *p = ttoproc(t); 545 timeout_id_t id; 546 clock_t tim; 547 548 if (panicstr) 549 return; 550 551 /* 552 * If there is no lwp, then we don't need to eventually stop it 553 * The check for t_intr is to catch an interrupt thread 554 * that has not yet unpinned the thread underneath. 555 */ 556 if (lwp == NULL || t->t_intr) { 557 cv_wait(cvp, mp); 558 return; 559 } 560 561 /* 562 * Wakeup in wakeup_time milliseconds, i.e., human time. 563 */ 564 tim = lbolt + MSEC_TO_TICK(wakeup_time); 565 id = realtime_timeout((void (*)(void *))setrun, t, tim - lbolt); 566 thread_lock(t); /* lock the thread */ 567 cv_block((condvar_impl_t *)cvp); 568 thread_unlock_nopreempt(t); 569 mutex_exit(mp); 570 /* ASSERT(no locks are held); */ 571 if ((tim - lbolt) <= 0) /* allow for wrap */ 572 setrun(t); 573 swtch(); 574 (void) untimeout(id); 575 576 /* 577 * Check for reasons to stop, if lwp_nostop is not true. 578 * See issig_forreal() for explanations of the various stops. 579 */ 580 mutex_enter(&p->p_lock); 581 while (lwp->lwp_nostop == 0 && !(p->p_flag & SEXITLWPS)) { 582 /* 583 * Hold the lwp here for watchpoint manipulation. 584 */ 585 if (t->t_proc_flag & TP_PAUSE) { 586 stop(PR_SUSPENDED, SUSPEND_PAUSE); 587 continue; 588 } 589 /* 590 * System checkpoint. 591 */ 592 if (t->t_proc_flag & TP_CHKPT) { 593 stop(PR_CHECKPOINT, 0); 594 continue; 595 } 596 /* 597 * Honor fork1(), watchpoint activity (remapping a page), 598 * and lwp_suspend() requests. 599 */ 600 if ((p->p_flag & (SHOLDFORK1|SHOLDWATCH)) || 601 (t->t_proc_flag & TP_HOLDLWP)) { 602 stop(PR_SUSPENDED, SUSPEND_NORMAL); 603 continue; 604 } 605 /* 606 * Honor /proc requested stop. 607 */ 608 if (t->t_proc_flag & TP_PRSTOP) { 609 stop(PR_REQUESTED, 0); 610 } 611 /* 612 * If some lwp in the process has already stopped 613 * showing PR_JOBCONTROL, stop in sympathy with it. 614 */ 615 if (p->p_stopsig && t != p->p_agenttp) { 616 stop(PR_JOBCONTROL, p->p_stopsig); 617 continue; 618 } 619 break; 620 } 621 mutex_exit(&p->p_lock); 622 mutex_enter(mp); 623 } 624 625 /* 626 * Like cv_timedwait_sig(), but takes an absolute hires future time 627 * rather than a future time in clock ticks. Will not return showing 628 * that a timeout occurred until the future time is passed. 629 * If 'when' is a NULL pointer, no timeout will occur. 630 * Returns: 631 * Function result in order of presidence: 632 * 0 if a signal was received 633 * -1 if timeout occured 634 * >0 if awakened via cv_signal() or cv_broadcast() 635 * or by a spurious wakeup. 636 * (might return time remaining) 637 * As a special test, if someone abruptly resets the system time 638 * (but not through adjtime(2); drifting of the clock is allowed and 639 * expected [see timespectohz_adj()]), then we force a return of -1 640 * so the caller can return a premature timeout to the calling process 641 * so it can reevaluate the situation in light of the new system time. 642 * (The system clock has been reset if timecheck != timechanged.) 643 */ 644 int 645 cv_waituntil_sig(kcondvar_t *cvp, kmutex_t *mp, 646 timestruc_t *when, int timecheck) 647 { 648 timestruc_t now; 649 timestruc_t delta; 650 int rval; 651 652 if (when == NULL) 653 return (cv_wait_sig_swap(cvp, mp)); 654 655 gethrestime(&now); 656 delta = *when; 657 timespecsub(&delta, &now); 658 if (delta.tv_sec < 0 || (delta.tv_sec == 0 && delta.tv_nsec == 0)) { 659 /* 660 * We have already reached the absolute future time. 661 * Call cv_timedwait_sig() just to check for signals. 662 * We will return immediately with either 0 or -1. 663 */ 664 rval = cv_timedwait_sig(cvp, mp, lbolt); 665 } else { 666 gethrestime_lasttick(&now); 667 if (timecheck == timechanged) { 668 rval = cv_timedwait_sig(cvp, mp, 669 lbolt + timespectohz(when, now)); 670 671 } else { 672 /* 673 * Someone reset the system time; 674 * just force an immediate timeout. 675 */ 676 rval = -1; 677 } 678 if (rval == -1 && timecheck == timechanged) { 679 /* 680 * Even though cv_timedwait_sig() returned showing a 681 * timeout, the future time may not have passed yet. 682 * If not, change rval to indicate a normal wakeup. 683 */ 684 gethrestime(&now); 685 delta = *when; 686 timespecsub(&delta, &now); 687 if (delta.tv_sec > 0 || (delta.tv_sec == 0 && 688 delta.tv_nsec > 0)) 689 rval = 1; 690 } 691 } 692 return (rval); 693 } 694