1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Kernel's linker/loader 30 */ 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/sysmacros.h> 35 #include <sys/systm.h> 36 #include <sys/user.h> 37 #include <sys/kmem.h> 38 #include <sys/reboot.h> 39 #include <sys/bootconf.h> 40 #include <sys/debug.h> 41 #include <sys/uio.h> 42 #include <sys/file.h> 43 #include <sys/vnode.h> 44 #include <sys/user.h> 45 #include <sys/mman.h> 46 #include <vm/as.h> 47 #include <vm/seg_kp.h> 48 #include <vm/seg_kmem.h> 49 #include <sys/elf.h> 50 #include <sys/elf_notes.h> 51 #include <sys/vmsystm.h> 52 #include <sys/kdi.h> 53 #include <sys/atomic.h> 54 #include <sys/kmdb.h> 55 56 #include <sys/link.h> 57 #include <sys/kobj.h> 58 #include <sys/ksyms.h> 59 #include <sys/disp.h> 60 #include <sys/modctl.h> 61 #include <sys/varargs.h> 62 #include <sys/kstat.h> 63 #include <sys/kobj_impl.h> 64 #include <sys/fs/decomp.h> 65 #include <sys/callb.h> 66 #include <sys/cmn_err.h> 67 #include <sys/tnf_probe.h> 68 #include <sys/zmod.h> 69 70 #include <krtld/reloc.h> 71 #include <krtld/kobj_kdi.h> 72 #include <sys/sha1.h> 73 #include <sys/crypto/elfsign.h> 74 75 #if !defined(_OBP) 76 #include <sys/bootvfs.h> 77 #endif 78 79 /* 80 * do_symbols() error codes 81 */ 82 #define DOSYM_UNDEF -1 /* undefined symbol */ 83 #define DOSYM_UNSAFE -2 /* MT-unsafe driver symbol */ 84 85 #if !defined(_OBP) 86 static void synthetic_bootaux(char *, val_t *); 87 #endif 88 89 static struct module *load_exec(val_t *, char *); 90 static void load_linker(val_t *); 91 static struct modctl *add_primary(const char *filename, int); 92 static int bind_primary(val_t *, int); 93 static int load_primary(struct module *, int); 94 static int load_kmdb(val_t *); 95 static int get_progbits(struct module *, struct _buf *); 96 static int get_syms(struct module *, struct _buf *); 97 static int get_ctf(struct module *, struct _buf *); 98 static void get_signature(struct module *, struct _buf *); 99 static int do_common(struct module *); 100 static void add_dependent(struct module *, struct module *); 101 static int do_dependents(struct modctl *, char *, size_t); 102 static int do_symbols(struct module *, Elf64_Addr); 103 static void module_assign(struct modctl *, struct module *); 104 static void free_module_data(struct module *); 105 static char *depends_on(struct module *); 106 static char *getmodpath(const char *); 107 static char *basename(char *); 108 static void attr_val(val_t *); 109 static char *find_libmacro(char *); 110 static char *expand_libmacro(char *, char *, char *); 111 static int read_bootflags(void); 112 static int kobj_comp_setup(struct _buf *, struct compinfo *); 113 static int kobj_uncomp_blk(struct _buf *, caddr_t, uint_t); 114 static int kobj_read_blks(struct _buf *, caddr_t, uint_t, uint_t); 115 static int kobj_boot_open(char *, int); 116 static int kobj_boot_close(int); 117 static int kobj_boot_seek(int, off_t, off_t); 118 static int kobj_boot_read(int, caddr_t, size_t); 119 static int kobj_boot_fstat(int, struct bootstat *); 120 static int kobj_boot_compinfo(int, struct compinfo *); 121 122 static Sym *lookup_one(struct module *, const char *); 123 static void sym_insert(struct module *, char *, symid_t); 124 static Sym *sym_lookup(struct module *, Sym *); 125 126 static struct kobjopen_tctl *kobjopen_alloc(char *filename); 127 static void kobjopen_free(struct kobjopen_tctl *ltp); 128 static void kobjopen_thread(struct kobjopen_tctl *ltp); 129 130 extern int kcopy(const void *, void *, size_t); 131 extern int elf_mach_ok(Ehdr *); 132 extern int alloc_gottable(struct module *, caddr_t *, caddr_t *); 133 134 #if !defined(_OBP) 135 extern int kobj_boot_mountroot(void); 136 #endif 137 138 static void tnf_unsplice_probes(uint_t, struct modctl *); 139 extern tnf_probe_control_t *__tnf_probe_list_head; 140 extern tnf_tag_data_t *__tnf_tag_list_head; 141 142 extern int modrootloaded; 143 extern int swaploaded; 144 extern int bop_io_quiesced; 145 extern int last_module_id; 146 147 extern char stubs_base[]; 148 extern char stubs_end[]; 149 150 #ifdef KOBJ_DEBUG 151 /* 152 * Values that can be or'd in to kobj_debug and their effects: 153 * 154 * D_DEBUG - misc. debugging information. 155 * D_SYMBOLS - list symbols and their values as they are entered 156 * into the hash table 157 * D_RELOCATIONS - display relocation processing information 158 * D_LOADING - display information about each module as it 159 * is loaded. 160 */ 161 int kobj_debug = 0; 162 163 #define KOBJ_MARK(s) if (kobj_debug & D_DEBUG) \ 164 (_kobj_printf(ops, "%d", __LINE__), _kobj_printf(ops, ": %s\n", s)) 165 #else 166 #define KOBJ_MARK(s) /* discard */ 167 #endif 168 169 #define MODPATH_PROPNAME "module-path" 170 171 #ifdef MODDIR_SUFFIX 172 static char slash_moddir_suffix_slash[] = MODDIR_SUFFIX "/"; 173 #else 174 #define slash_moddir_suffix_slash "" 175 #endif 176 177 #define _moddebug get_weakish_int(&moddebug) 178 #define _modrootloaded get_weakish_int(&modrootloaded) 179 #define _swaploaded get_weakish_int(&swaploaded) 180 #define _ioquiesced get_weakish_int(&bop_io_quiesced) 181 182 #define mod(X) (struct module *)((X)->modl_modp->mod_mp) 183 184 void *romp; /* rom vector (opaque to us) */ 185 struct bootops *ops; /* bootops vector */ 186 void *dbvec; /* debug vector */ 187 188 /* 189 * kobjopen thread control structure 190 */ 191 struct kobjopen_tctl { 192 ksema_t sema; 193 char *name; /* name of file */ 194 struct vnode *vp; /* vnode return from vn_open() */ 195 int Errno; /* error return from vnopen */ 196 }; 197 198 /* 199 * Structure for defining dynamically expandable library macros 200 */ 201 202 struct lib_macro_info { 203 char *lmi_list; /* ptr to list of possible choices */ 204 char *lmi_macroname; /* pointer to macro name */ 205 ushort_t lmi_ba_index; /* index into bootaux vector */ 206 ushort_t lmi_macrolen; /* macro length */ 207 } libmacros[] = { 208 { NULL, "CPU", BA_CPU, 0 }, 209 { NULL, "MMU", BA_MMU, 0 } 210 }; 211 212 #define NLIBMACROS sizeof (libmacros) / sizeof (struct lib_macro_info) 213 214 char *boot_cpu_compatible_list; /* make $CPU available */ 215 216 217 char *kobj_module_path; /* module search path */ 218 vmem_t *text_arena; /* module text arena */ 219 static vmem_t *data_arena; /* module data & bss arena */ 220 static vmem_t *ctf_arena; /* CTF debug data arena */ 221 static struct modctl *kobj_modules = NULL; /* modules loaded */ 222 int kobj_mmu_pagesize; /* system pagesize */ 223 static int lg_pagesize; /* "large" pagesize */ 224 static int kobj_last_module_id = 0; /* id assignment */ 225 static kmutex_t kobj_lock; /* protects mach memory list */ 226 227 /* 228 * The following functions have been implemented by the kernel. 229 * However, many 3rd party drivers provide their own implementations 230 * of these functions. When such drivers are loaded, messages 231 * indicating that these symbols have been multiply defined will be 232 * emitted to the console. To avoid alarming customers for no good 233 * reason, we simply suppress such warnings for the following set of 234 * functions. 235 */ 236 static char *suppress_sym_list[] = 237 { 238 "strstr", 239 "strncat", 240 "strlcat", 241 "strlcpy", 242 "strspn", 243 "memcpy", 244 "memset", 245 "memmove", 246 "memcmp", 247 "memchr", 248 "__udivdi3", 249 "__divdi3", 250 "__umoddi3", 251 "__moddi3", 252 NULL /* This entry must exist */ 253 }; 254 255 /* indexed by KOBJ_NOTIFY_* */ 256 static kobj_notify_list_t *kobj_notifiers[KOBJ_NOTIFY_MAX + 1]; 257 258 /* 259 * TNF probe management globals 260 */ 261 tnf_probe_control_t *__tnf_probe_list_head = NULL; 262 tnf_tag_data_t *__tnf_tag_list_head = NULL; 263 int tnf_changed_probe_list = 0; 264 265 /* 266 * Prefix for statically defined tracing (SDT) DTrace probes. 267 */ 268 const char *sdt_prefix = "__dtrace_probe_"; 269 270 /* 271 * Beginning and end of the kernel's dynamic text/data segments. 272 */ 273 static caddr_t _text; 274 static caddr_t _etext; 275 static caddr_t _data; 276 277 /* 278 * The sparc linker doesn't create a memory location 279 * for a variable named _edata, so _edata can only be 280 * referred to, not modified. krtld needs a static 281 * variable to modify it - within krtld, of course - 282 * outside of krtld, e_data is used in all kernels. 283 */ 284 #if defined(__sparc) 285 static caddr_t _edata; 286 #else 287 extern caddr_t _edata; 288 #endif 289 290 Addr dynseg = 0; /* load address of "dynamic" segment */ 291 size_t dynsize; /* "dynamic" segment size */ 292 293 294 int standalone = 1; /* an unwholey kernel? */ 295 int use_iflush; /* iflush after relocations */ 296 297 /* 298 * _kobj_printf() 299 * 300 * Common printf function pointer. Can handle only one conversion 301 * specification in the format string. Some of the functions invoked 302 * through this function pointer cannot handle more that one conversion 303 * specification in the format string. 304 */ 305 void (*_kobj_printf)(void *, const char *, ...); /* printf routine */ 306 307 /* 308 * Standalone function pointers for use within krtld. 309 * Many platforms implement optimized platmod versions of 310 * utilities such as bcopy and any such are not yet available 311 * until the kernel is more completely stitched together. 312 * See kobj_impl.h 313 */ 314 void (*kobj_bcopy)(const void *, void *, size_t); 315 void (*kobj_bzero)(void *, size_t); 316 size_t (*kobj_strlcat)(char *, const char *, size_t); 317 318 static kobj_stat_t kobj_stat; 319 320 #define MINALIGN 8 /* at least a double-word */ 321 322 int 323 get_weakish_int(int *ip) 324 { 325 if (standalone) 326 return (0); 327 return (ip == NULL ? 0 : *ip); 328 } 329 330 static void * 331 get_weakish_pointer(void **ptrp) 332 { 333 if (standalone) 334 return (0); 335 return (ptrp == NULL ? 0 : *ptrp); 336 } 337 338 /* 339 * XXX fix dependencies on "kernel"; this should work 340 * for other standalone binaries as well. 341 * 342 * XXX Fix hashing code to use one pointer to 343 * hash entries. 344 * |----------| 345 * | nbuckets | 346 * |----------| 347 * | nchains | 348 * |----------| 349 * | bucket[] | 350 * |----------| 351 * | chain[] | 352 * |----------| 353 */ 354 355 /* 356 * Load, bind and relocate all modules that 357 * form the primary kernel. At this point, our 358 * externals have not been relocated. 359 */ 360 void 361 kobj_init( 362 void *romvec, 363 void *dvec, 364 struct bootops *bootvec, 365 val_t *bootaux) 366 { 367 struct module *mp; 368 struct modctl *modp; 369 Addr entry; 370 char filename[MAXPATHLEN]; 371 372 /* 373 * Save these to pass on to 374 * the booted standalone. 375 */ 376 romp = romvec; 377 dbvec = dvec; 378 379 ops = bootvec; 380 kobj_setup_standalone_vectors(); 381 382 KOBJ_MARK("Entered kobj_init()"); 383 384 (void) BOP_GETPROP(ops, "whoami", filename); 385 386 /* 387 * We don't support standalone debuggers anymore. The use of kadb 388 * will interfere with the later use of kmdb. Let the user mend 389 * their ways now. Users will reach this message if they still 390 * have the kadb binary on their system (perhaps they used an old 391 * bfu, or maybe they intentionally copied it there) and have 392 * specified its use in a way that eluded our checking in the boot 393 * program. 394 */ 395 if (dvec != NULL) { 396 _kobj_printf(ops, "\nWARNING: Standalone debuggers such as " 397 "kadb are no longer supported\n\n"); 398 goto fail; 399 } 400 401 #if defined(_OBP) 402 /* 403 * OBP allows us to read both the ramdisk and 404 * the underlying root fs when root is a disk. 405 * This can lower incidences of unbootable systems 406 * when the archive is out-of-date with the /etc 407 * state files. 408 */ 409 if (BOP_MOUNTROOT() != BOOT_SVC_OK) { 410 _kobj_printf(ops, "can't mount boot fs\n"); 411 goto fail; 412 } 413 #else 414 { 415 /* on x86, we always boot with a ramdisk */ 416 (void) kobj_boot_mountroot(); 417 418 /* 419 * Now that the ramdisk is mounted, finish boot property 420 * initialization. 421 */ 422 boot_prop_finish(); 423 } 424 425 #if !defined(_UNIX_KRTLD) 426 /* 427 * 'unix' is linked together with 'krtld' into one executable and 428 * the early boot code does -not- hand us any of the dynamic metadata 429 * about the executable. In particular, it does not read in, map or 430 * otherwise look at the program headers. We fake all that up now. 431 * 432 * We do this early as DTrace static probes and tnf probes both call 433 * undefined references. We have to process those relocations before 434 * calling any of them. 435 * 436 * OBP tells kobj_start() where the ELF image is in memory, so it 437 * synthesized bootaux before kobj_init() was called 438 */ 439 if (bootaux[BA_PHDR].ba_ptr == NULL) 440 synthetic_bootaux(filename, bootaux); 441 442 #endif /* !_UNIX_KRTLD */ 443 #endif /* _OBP */ 444 445 /* 446 * Save the interesting attribute-values 447 * (scanned by kobj_boot). 448 */ 449 attr_val(bootaux); 450 451 /* 452 * Set the module search path. 453 */ 454 kobj_module_path = getmodpath(filename); 455 456 boot_cpu_compatible_list = find_libmacro("CPU"); 457 458 /* 459 * These two modules have actually been 460 * loaded by boot, but we finish the job 461 * by introducing them into the world of 462 * loadable modules. 463 */ 464 465 mp = load_exec(bootaux, filename); 466 load_linker(bootaux); 467 468 /* 469 * Load all the primary dependent modules. 470 */ 471 if (load_primary(mp, KOBJ_LM_PRIMARY) == -1) 472 goto fail; 473 474 /* 475 * Glue it together. 476 */ 477 if (bind_primary(bootaux, KOBJ_LM_PRIMARY) == -1) 478 goto fail; 479 480 entry = bootaux[BA_ENTRY].ba_val; 481 482 /* 483 * Get the boot flags 484 */ 485 bootflags(ops); 486 487 if (boothowto & RB_VERBOSE) 488 kobj_lm_dump(KOBJ_LM_PRIMARY); 489 490 kobj_kdi_init(); 491 492 if (boothowto & RB_KMDB) { 493 if (load_kmdb(bootaux) < 0) 494 goto fail; 495 } 496 497 /* 498 * Post setup. 499 */ 500 s_text = _text; 501 e_text = _etext; 502 s_data = _data; 503 e_data = _edata; 504 505 kobj_sync_instruction_memory(s_text, e_text - s_text); 506 507 #ifdef KOBJ_DEBUG 508 if (kobj_debug & D_DEBUG) 509 _kobj_printf(ops, 510 "krtld: transferring control to: 0x%p\n", entry); 511 #endif 512 513 /* 514 * Make sure the mod system knows about the modules already loaded. 515 */ 516 last_module_id = kobj_last_module_id; 517 bcopy(kobj_modules, &modules, sizeof (modules)); 518 modp = &modules; 519 do { 520 if (modp->mod_next == kobj_modules) 521 modp->mod_next = &modules; 522 if (modp->mod_prev == kobj_modules) 523 modp->mod_prev = &modules; 524 } while ((modp = modp->mod_next) != &modules); 525 526 standalone = 0; 527 528 #ifdef KOBJ_DEBUG 529 if (kobj_debug & D_DEBUG) 530 _kobj_printf(ops, 531 "krtld: really transferring control to: 0x%p\n", entry); 532 #endif 533 534 /* restore printf/bcopy/bzero vectors before returning */ 535 kobj_restore_vectors(); 536 537 #if defined(_DBOOT) 538 /* 539 * krtld was called from a dboot ELF section, the embedded 540 * dboot code contains the real entry via bootaux 541 */ 542 exitto((caddr_t)entry); 543 #else 544 /* 545 * krtld was directly called from startup 546 */ 547 return; 548 #endif 549 550 fail: 551 552 _kobj_printf(ops, "krtld: error during initial load/link phase\n"); 553 554 #if !defined(_UNIX_KRTLD) 555 _kobj_printf(ops, "\n"); 556 _kobj_printf(ops, "krtld could neither locate nor resolve symbols" 557 " for:\n"); 558 _kobj_printf(ops, " %s\n", filename); 559 _kobj_printf(ops, "in the boot archive. Please verify that this" 560 " file\n"); 561 _kobj_printf(ops, "matches what is found in the boot archive.\n"); 562 _kobj_printf(ops, "You may need to boot using the Solaris failsafe to" 563 " fix this.\n"); 564 bop_panic("Unable to boot"); 565 #endif 566 } 567 568 #if !defined(_UNIX_KRTLD) && !defined(_OBP) 569 /* 570 * Synthesize additional metadata that describes the executable if 571 * krtld's caller didn't do it. 572 * 573 * (When the dynamic executable has an interpreter, the boot program 574 * does all this for us. Where we don't have an interpreter, (or a 575 * even a boot program, perhaps) we have to do this for ourselves.) 576 */ 577 static void 578 synthetic_bootaux(char *filename, val_t *bootaux) 579 { 580 Ehdr ehdr; 581 caddr_t phdrbase; 582 struct _buf *file; 583 int i, n; 584 585 /* 586 * Elf header 587 */ 588 KOBJ_MARK("synthetic_bootaux()"); 589 KOBJ_MARK(filename); 590 file = kobj_open_file(filename); 591 if (file == (struct _buf *)-1) { 592 _kobj_printf(ops, "krtld: failed to open '%s'\n", filename); 593 return; 594 } 595 KOBJ_MARK("reading program headers"); 596 if (kobj_read_file(file, (char *)&ehdr, sizeof (ehdr), 0) < 0) { 597 _kobj_printf(ops, "krtld: %s: failed to read ehder\n", 598 filename); 599 return; 600 } 601 602 /* 603 * Program headers 604 */ 605 bootaux[BA_PHNUM].ba_val = ehdr.e_phnum; 606 bootaux[BA_PHENT].ba_val = ehdr.e_phentsize; 607 n = ehdr.e_phentsize * ehdr.e_phnum; 608 609 phdrbase = kobj_alloc(n, KM_WAIT | KM_TMP); 610 611 if (kobj_read_file(file, phdrbase, n, ehdr.e_phoff) < 0) { 612 _kobj_printf(ops, "krtld: %s: failed to read phdrs\n", 613 filename); 614 return; 615 } 616 bootaux[BA_PHDR].ba_ptr = phdrbase; 617 kobj_close_file(file); 618 KOBJ_MARK("closed file"); 619 620 /* 621 * Find the dynamic section address 622 */ 623 for (i = 0; i < ehdr.e_phnum; i++) { 624 Phdr *phdr = (Phdr *)(phdrbase + ehdr.e_phentsize * i); 625 626 if (phdr->p_type == PT_DYNAMIC) { 627 bootaux[BA_DYNAMIC].ba_ptr = (void *)phdr->p_vaddr; 628 break; 629 } 630 } 631 KOBJ_MARK("synthetic_bootaux() done"); 632 } 633 #endif /* !_UNIX_KRTLD && !_OBP */ 634 635 /* 636 * Set up any global information derived 637 * from attribute/values in the boot or 638 * aux vector. 639 */ 640 static void 641 attr_val(val_t *bootaux) 642 { 643 Phdr *phdr; 644 int phnum, phsize; 645 int i; 646 647 KOBJ_MARK("attr_val()"); 648 kobj_mmu_pagesize = bootaux[BA_PAGESZ].ba_val; 649 lg_pagesize = bootaux[BA_LPAGESZ].ba_val; 650 use_iflush = bootaux[BA_IFLUSH].ba_val; 651 652 phdr = (Phdr *)bootaux[BA_PHDR].ba_ptr; 653 phnum = bootaux[BA_PHNUM].ba_val; 654 phsize = bootaux[BA_PHENT].ba_val; 655 for (i = 0; i < phnum; i++) { 656 phdr = (Phdr *)(bootaux[BA_PHDR].ba_val + i * phsize); 657 658 if (phdr->p_type != PT_LOAD) { 659 continue; 660 } 661 /* 662 * Bounds of the various segments. 663 */ 664 if (!(phdr->p_flags & PF_X)) { 665 #if defined(_RELSEG) 666 /* 667 * sparc kernel puts the dynamic info 668 * into a separate segment, which is 669 * free'd in bop_fini() 670 */ 671 ASSERT(phdr->p_vaddr != 0); 672 dynseg = phdr->p_vaddr; 673 dynsize = phdr->p_memsz; 674 #else 675 ASSERT(phdr->p_vaddr == 0); 676 #endif 677 } else { 678 if (phdr->p_flags & PF_W) { 679 _data = (caddr_t)phdr->p_vaddr; 680 _edata = _data + phdr->p_memsz; 681 } else { 682 _text = (caddr_t)phdr->p_vaddr; 683 _etext = _text + phdr->p_memsz; 684 } 685 } 686 } 687 688 /* To do the kobj_alloc, _edata needs to be set. */ 689 for (i = 0; i < NLIBMACROS; i++) { 690 if (bootaux[libmacros[i].lmi_ba_index].ba_ptr != NULL) { 691 libmacros[i].lmi_list = kobj_alloc( 692 strlen(bootaux[libmacros[i].lmi_ba_index].ba_ptr) + 693 1, KM_WAIT); 694 (void) strcpy(libmacros[i].lmi_list, 695 bootaux[libmacros[i].lmi_ba_index].ba_ptr); 696 } 697 libmacros[i].lmi_macrolen = strlen(libmacros[i].lmi_macroname); 698 } 699 } 700 701 /* 702 * Set up the booted executable. 703 */ 704 static struct module * 705 load_exec(val_t *bootaux, char *filename) 706 { 707 struct modctl *cp; 708 struct module *mp; 709 Dyn *dyn; 710 Sym *sp; 711 int i, lsize, osize, nsize, allocsize; 712 char *libname, *tmp; 713 char path[MAXPATHLEN]; 714 715 #ifdef KOBJ_DEBUG 716 if (kobj_debug & D_DEBUG) 717 _kobj_printf(ops, "module path '%s'\n", kobj_module_path); 718 #endif 719 720 KOBJ_MARK("add_primary"); 721 cp = add_primary(filename, KOBJ_LM_PRIMARY); 722 723 KOBJ_MARK("struct module"); 724 mp = kobj_zalloc(sizeof (struct module), KM_WAIT); 725 cp->mod_mp = mp; 726 727 /* 728 * We don't have the following information 729 * since this module is an executable and not 730 * a relocatable .o. 731 */ 732 mp->symtbl_section = 0; 733 mp->shdrs = NULL; 734 mp->strhdr = NULL; 735 736 /* 737 * Since this module is the only exception, 738 * we cons up some section headers. 739 */ 740 KOBJ_MARK("symhdr"); 741 mp->symhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT); 742 743 KOBJ_MARK("strhdr"); 744 mp->strhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT); 745 746 mp->symhdr->sh_type = SHT_SYMTAB; 747 mp->strhdr->sh_type = SHT_STRTAB; 748 /* 749 * Scan the dynamic structure. 750 */ 751 for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr; 752 dyn->d_tag != DT_NULL; dyn++) { 753 switch (dyn->d_tag) { 754 case DT_SYMTAB: 755 mp->symspace = mp->symtbl = (char *)dyn->d_un.d_ptr; 756 mp->symhdr->sh_addr = dyn->d_un.d_ptr; 757 break; 758 case DT_HASH: 759 mp->nsyms = *((uint_t *)dyn->d_un.d_ptr + 1); 760 mp->hashsize = *(uint_t *)dyn->d_un.d_ptr; 761 break; 762 case DT_STRTAB: 763 mp->strings = (char *)dyn->d_un.d_ptr; 764 mp->strhdr->sh_addr = dyn->d_un.d_ptr; 765 break; 766 case DT_STRSZ: 767 mp->strhdr->sh_size = dyn->d_un.d_val; 768 break; 769 case DT_SYMENT: 770 mp->symhdr->sh_entsize = dyn->d_un.d_val; 771 break; 772 } 773 } 774 775 /* 776 * Collapse any DT_NEEDED entries into one string. 777 */ 778 nsize = osize = 0; 779 allocsize = MAXPATHLEN; 780 781 KOBJ_MARK("depends_on"); 782 mp->depends_on = kobj_alloc(allocsize, KM_WAIT); 783 784 for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr; 785 dyn->d_tag != DT_NULL; dyn++) 786 if (dyn->d_tag == DT_NEEDED) { 787 char *_lib; 788 789 libname = mp->strings + dyn->d_un.d_val; 790 if (strchr(libname, '$') != NULL) { 791 if ((_lib = expand_libmacro(libname, 792 path, path)) != NULL) 793 libname = _lib; 794 else 795 _kobj_printf(ops, "krtld: " 796 "load_exec: fail to " 797 "expand %s\n", libname); 798 } 799 lsize = strlen(libname); 800 nsize += lsize; 801 if (nsize + 1 > allocsize) { 802 KOBJ_MARK("grow depends_on"); 803 tmp = kobj_alloc(allocsize + MAXPATHLEN, 804 KM_WAIT); 805 bcopy(mp->depends_on, tmp, osize); 806 kobj_free(mp->depends_on, allocsize); 807 mp->depends_on = tmp; 808 allocsize += MAXPATHLEN; 809 } 810 bcopy(libname, mp->depends_on + osize, lsize); 811 *(mp->depends_on + nsize) = ' '; /* separate */ 812 nsize++; 813 osize = nsize; 814 } 815 if (nsize) { 816 mp->depends_on[nsize - 1] = '\0'; /* terminate the string */ 817 /* 818 * alloc with exact size and copy whatever it got over 819 */ 820 KOBJ_MARK("realloc depends_on"); 821 tmp = kobj_alloc(nsize, KM_WAIT); 822 bcopy(mp->depends_on, tmp, nsize); 823 kobj_free(mp->depends_on, allocsize); 824 mp->depends_on = tmp; 825 } else { 826 kobj_free(mp->depends_on, allocsize); 827 mp->depends_on = NULL; 828 } 829 830 mp->flags = KOBJ_EXEC|KOBJ_PRIM; /* NOT a relocatable .o */ 831 mp->symhdr->sh_size = mp->nsyms * mp->symhdr->sh_entsize; 832 /* 833 * We allocate our own table since we don't 834 * hash undefined references. 835 */ 836 KOBJ_MARK("chains"); 837 mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT); 838 KOBJ_MARK("buckets"); 839 mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT); 840 841 mp->text = _text; 842 mp->data = _data; 843 844 mp->text_size = _etext - _text; 845 mp->data_size = _edata - _data; 846 847 cp->mod_text = mp->text; 848 cp->mod_text_size = mp->text_size; 849 850 mp->filename = cp->mod_filename; 851 852 #ifdef KOBJ_DEBUG 853 if (kobj_debug & D_LOADING) { 854 _kobj_printf(ops, "krtld: file=%s\n", mp->filename); 855 _kobj_printf(ops, "\ttext: 0x%p", mp->text); 856 _kobj_printf(ops, " size: 0x%x\n", mp->text_size); 857 _kobj_printf(ops, "\tdata: 0x%p", mp->data); 858 _kobj_printf(ops, " dsize: 0x%x\n", mp->data_size); 859 } 860 #endif /* KOBJ_DEBUG */ 861 862 /* 863 * Insert symbols into the hash table. 864 */ 865 for (i = 0; i < mp->nsyms; i++) { 866 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize); 867 868 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF) 869 continue; 870 #if defined(__sparc) 871 /* 872 * Register symbols are ignored in the kernel 873 */ 874 if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER) 875 continue; 876 #endif /* __sparc */ 877 878 sym_insert(mp, mp->strings + sp->st_name, i); 879 } 880 881 KOBJ_MARK("load_exec done"); 882 return (mp); 883 } 884 885 /* 886 * Set up the linker module (if it's compiled in, LDNAME is NULL) 887 */ 888 static void 889 load_linker(val_t *bootaux) 890 { 891 struct module *kmp = (struct module *)kobj_modules->mod_mp; 892 struct module *mp; 893 struct modctl *cp; 894 int i; 895 Shdr *shp; 896 Sym *sp; 897 int shsize; 898 char *dlname = (char *)bootaux[BA_LDNAME].ba_ptr; 899 900 /* 901 * On some architectures, krtld is compiled into the kernel. 902 */ 903 if (dlname == NULL) 904 return; 905 906 cp = add_primary(dlname, KOBJ_LM_PRIMARY); 907 908 mp = kobj_zalloc(sizeof (struct module), KM_WAIT); 909 910 cp->mod_mp = mp; 911 mp->hdr = *(Ehdr *)bootaux[BA_LDELF].ba_ptr; 912 shsize = mp->hdr.e_shentsize * mp->hdr.e_shnum; 913 mp->shdrs = kobj_alloc(shsize, KM_WAIT); 914 bcopy(bootaux[BA_LDSHDR].ba_ptr, mp->shdrs, shsize); 915 916 for (i = 1; i < (int)mp->hdr.e_shnum; i++) { 917 shp = (Shdr *)(mp->shdrs + (i * mp->hdr.e_shentsize)); 918 919 if (shp->sh_flags & SHF_ALLOC) { 920 if (shp->sh_flags & SHF_WRITE) { 921 if (mp->data == NULL) 922 mp->data = (char *)shp->sh_addr; 923 } else if (mp->text == NULL) { 924 mp->text = (char *)shp->sh_addr; 925 } 926 } 927 if (shp->sh_type == SHT_SYMTAB) { 928 mp->symtbl_section = i; 929 mp->symhdr = shp; 930 mp->symspace = mp->symtbl = (char *)shp->sh_addr; 931 } 932 } 933 mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize; 934 mp->flags = KOBJ_INTERP|KOBJ_PRIM; 935 mp->strhdr = (Shdr *) 936 (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize); 937 mp->strings = (char *)mp->strhdr->sh_addr; 938 mp->hashsize = kobj_gethashsize(mp->nsyms); 939 940 mp->symsize = mp->symhdr->sh_size + mp->strhdr->sh_size + sizeof (int) + 941 (mp->hashsize + mp->nsyms) * sizeof (symid_t); 942 943 mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT); 944 mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT); 945 946 mp->bss = bootaux[BA_BSS].ba_val; 947 mp->bss_align = 0; /* pre-aligned during allocation */ 948 mp->bss_size = (uintptr_t)_edata - mp->bss; 949 mp->text_size = _etext - mp->text; 950 mp->data_size = _edata - mp->data; 951 mp->filename = cp->mod_filename; 952 cp->mod_text = mp->text; 953 cp->mod_text_size = mp->text_size; 954 955 /* 956 * Now that we've figured out where the linker is, 957 * set the limits for the booted object. 958 */ 959 kmp->text_size = (size_t)(mp->text - kmp->text); 960 kmp->data_size = (size_t)(mp->data - kmp->data); 961 kobj_modules->mod_text_size = kmp->text_size; 962 963 #ifdef KOBJ_DEBUG 964 if (kobj_debug & D_LOADING) { 965 _kobj_printf(ops, "krtld: file=%s\n", mp->filename); 966 _kobj_printf(ops, "\ttext:0x%p", mp->text); 967 _kobj_printf(ops, " size: 0x%x\n", mp->text_size); 968 _kobj_printf(ops, "\tdata:0x%p", mp->data); 969 _kobj_printf(ops, " dsize: 0x%x\n", mp->data_size); 970 } 971 #endif /* KOBJ_DEBUG */ 972 973 /* 974 * Insert the symbols into the hash table. 975 */ 976 for (i = 0; i < mp->nsyms; i++) { 977 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize); 978 979 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF) 980 continue; 981 if (ELF_ST_BIND(sp->st_info) == STB_GLOBAL) { 982 if (sp->st_shndx == SHN_COMMON) 983 sp->st_shndx = SHN_ABS; 984 } 985 sym_insert(mp, mp->strings + sp->st_name, i); 986 } 987 988 } 989 990 static kobj_notify_list_t ** 991 kobj_notify_lookup(uint_t type) 992 { 993 ASSERT(type != 0 && type < sizeof (kobj_notifiers) / 994 sizeof (kobj_notify_list_t *)); 995 996 return (&kobj_notifiers[type]); 997 } 998 999 int 1000 kobj_notify_add(kobj_notify_list_t *knp) 1001 { 1002 kobj_notify_list_t **knl; 1003 1004 knl = kobj_notify_lookup(knp->kn_type); 1005 1006 knp->kn_next = NULL; 1007 knp->kn_prev = NULL; 1008 1009 mutex_enter(&kobj_lock); 1010 1011 if (*knl != NULL) { 1012 (*knl)->kn_prev = knp; 1013 knp->kn_next = *knl; 1014 } 1015 (*knl) = knp; 1016 1017 mutex_exit(&kobj_lock); 1018 return (0); 1019 } 1020 1021 int 1022 kobj_notify_remove(kobj_notify_list_t *knp) 1023 { 1024 kobj_notify_list_t **knl = kobj_notify_lookup(knp->kn_type); 1025 kobj_notify_list_t *tknp; 1026 1027 mutex_enter(&kobj_lock); 1028 1029 /* LINTED */ 1030 if (tknp = knp->kn_next) 1031 tknp->kn_prev = knp->kn_prev; 1032 1033 /* LINTED */ 1034 if (tknp = knp->kn_prev) 1035 tknp->kn_next = knp->kn_next; 1036 else 1037 *knl = knp->kn_next; 1038 1039 mutex_exit(&kobj_lock); 1040 1041 return (0); 1042 } 1043 1044 /* 1045 * Notify all interested callbacks of a specified change in module state. 1046 */ 1047 static void 1048 kobj_notify(int type, struct modctl *modp) 1049 { 1050 kobj_notify_list_t *knp; 1051 1052 if (modp->mod_loadflags & MOD_NONOTIFY || standalone) 1053 return; 1054 1055 mutex_enter(&kobj_lock); 1056 1057 for (knp = *(kobj_notify_lookup(type)); knp != NULL; knp = knp->kn_next) 1058 knp->kn_func(type, modp); 1059 1060 /* 1061 * KDI notification must be last (it has to allow for work done by the 1062 * other notification callbacks), so we call it manually. 1063 */ 1064 kobj_kdi_mod_notify(type, modp); 1065 1066 mutex_exit(&kobj_lock); 1067 } 1068 1069 /* 1070 * Create the module path. 1071 */ 1072 static char * 1073 getmodpath(const char *filename) 1074 { 1075 char *path = kobj_zalloc(MAXPATHLEN, KM_WAIT); 1076 1077 /* 1078 * Platform code gets first crack, then add 1079 * the default components 1080 */ 1081 mach_modpath(path, filename); 1082 if (*path != '\0') 1083 (void) strcat(path, " "); 1084 return (strcat(path, MOD_DEFPATH)); 1085 } 1086 1087 static struct modctl * 1088 add_primary(const char *filename, int lmid) 1089 { 1090 struct modctl *cp; 1091 1092 cp = kobj_zalloc(sizeof (struct modctl), KM_WAIT); 1093 1094 cp->mod_filename = kobj_alloc(strlen(filename) + 1, KM_WAIT); 1095 1096 /* 1097 * For symbol lookup, we assemble our own 1098 * modctl list of the primary modules. 1099 */ 1100 1101 (void) strcpy(cp->mod_filename, filename); 1102 cp->mod_modname = basename(cp->mod_filename); 1103 1104 /* set values for modinfo assuming that the load will work */ 1105 cp->mod_prim = 1; 1106 cp->mod_loaded = 1; 1107 cp->mod_installed = 1; 1108 cp->mod_loadcnt = 1; 1109 cp->mod_loadflags = MOD_NOAUTOUNLOAD; 1110 1111 cp->mod_id = kobj_last_module_id++; 1112 1113 /* 1114 * Link the module in. We'll pass this info on 1115 * to the mod squad later. 1116 */ 1117 if (kobj_modules == NULL) { 1118 kobj_modules = cp; 1119 cp->mod_prev = cp->mod_next = cp; 1120 } else { 1121 cp->mod_prev = kobj_modules->mod_prev; 1122 cp->mod_next = kobj_modules; 1123 kobj_modules->mod_prev->mod_next = cp; 1124 kobj_modules->mod_prev = cp; 1125 } 1126 1127 kobj_lm_append(lmid, cp); 1128 1129 return (cp); 1130 } 1131 1132 static int 1133 bind_primary(val_t *bootaux, int lmid) 1134 { 1135 struct modctl_list *linkmap = kobj_lm_lookup(lmid); 1136 struct modctl_list *lp; 1137 struct module *mp; 1138 1139 /* 1140 * Do common symbols. 1141 */ 1142 for (lp = linkmap; lp; lp = lp->modl_next) { 1143 mp = mod(lp); 1144 1145 /* 1146 * Don't do common section relocations for modules that 1147 * don't need it. 1148 */ 1149 if (mp->flags & (KOBJ_EXEC|KOBJ_INTERP)) 1150 continue; 1151 1152 if (do_common(mp) < 0) 1153 return (-1); 1154 } 1155 1156 /* 1157 * Resolve symbols. 1158 */ 1159 for (lp = linkmap; lp; lp = lp->modl_next) { 1160 mp = mod(lp); 1161 1162 if (do_symbols(mp, 0) < 0) 1163 return (-1); 1164 } 1165 1166 /* 1167 * Do relocations. 1168 */ 1169 for (lp = linkmap; lp; lp = lp->modl_next) { 1170 mp = mod(lp); 1171 1172 if (mp->flags & KOBJ_EXEC) { 1173 Dyn *dyn; 1174 Word relasz = 0, relaent = 0; 1175 Word shtype; 1176 char *rela = NULL; 1177 1178 for (dyn = (Dyn *)bootaux[BA_DYNAMIC].ba_ptr; 1179 dyn->d_tag != DT_NULL; dyn++) { 1180 switch (dyn->d_tag) { 1181 case DT_RELASZ: 1182 case DT_RELSZ: 1183 relasz = dyn->d_un.d_val; 1184 break; 1185 case DT_RELAENT: 1186 case DT_RELENT: 1187 relaent = dyn->d_un.d_val; 1188 break; 1189 case DT_RELA: 1190 shtype = SHT_RELA; 1191 rela = (char *)dyn->d_un.d_ptr; 1192 break; 1193 case DT_REL: 1194 shtype = SHT_REL; 1195 rela = (char *)dyn->d_un.d_ptr; 1196 break; 1197 } 1198 } 1199 if (relasz == 0 || 1200 relaent == 0 || rela == NULL) { 1201 _kobj_printf(ops, "krtld: bind_primary(): " 1202 "no relocation information found for " 1203 "module %s\n", mp->filename); 1204 return (-1); 1205 } 1206 #ifdef KOBJ_DEBUG 1207 if (kobj_debug & D_RELOCATIONS) 1208 _kobj_printf(ops, "krtld: relocating: file=%s " 1209 "KOBJ_EXEC\n", mp->filename); 1210 #endif 1211 if (do_relocate(mp, rela, shtype, relasz/relaent, 1212 relaent, (Addr)mp->text) < 0) 1213 return (-1); 1214 } else { 1215 if (do_relocations(mp) < 0) 1216 return (-1); 1217 } 1218 1219 kobj_sync_instruction_memory(mp->text, mp->text_size); 1220 } 1221 1222 for (lp = linkmap; lp; lp = lp->modl_next) { 1223 mp = mod(lp); 1224 1225 /* 1226 * We need to re-read the full symbol table for the boot file, 1227 * since we couldn't use the full one before. We also need to 1228 * load the CTF sections of both the boot file and the 1229 * interpreter (us). 1230 */ 1231 if (mp->flags & KOBJ_EXEC) { 1232 struct _buf *file; 1233 int n; 1234 1235 file = kobj_open_file(mp->filename); 1236 if (file == (struct _buf *)-1) 1237 return (-1); 1238 if (kobj_read_file(file, (char *)&mp->hdr, 1239 sizeof (mp->hdr), 0) < 0) 1240 return (-1); 1241 n = mp->hdr.e_shentsize * mp->hdr.e_shnum; 1242 mp->shdrs = kobj_alloc(n, KM_WAIT); 1243 if (kobj_read_file(file, mp->shdrs, n, 1244 mp->hdr.e_shoff) < 0) 1245 return (-1); 1246 if (get_syms(mp, file) < 0) 1247 return (-1); 1248 if (get_ctf(mp, file) < 0) 1249 return (-1); 1250 kobj_close_file(file); 1251 mp->flags |= KOBJ_RELOCATED; 1252 1253 } else if (mp->flags & KOBJ_INTERP) { 1254 struct _buf *file; 1255 1256 /* 1257 * The interpreter path fragment in mp->filename 1258 * will already have the module directory suffix 1259 * in it (if appropriate). 1260 */ 1261 file = kobj_open_path(mp->filename, 1, 0); 1262 if (file == (struct _buf *)-1) 1263 return (-1); 1264 if (get_ctf(mp, file) < 0) 1265 return (-1); 1266 kobj_close_file(file); 1267 mp->flags |= KOBJ_RELOCATED; 1268 } 1269 } 1270 1271 return (0); 1272 } 1273 1274 static struct modctl * 1275 mod_already_loaded(char *modname) 1276 { 1277 struct modctl *mctl = kobj_modules; 1278 1279 do { 1280 if (strcmp(modname, mctl->mod_filename) == 0) 1281 return (mctl); 1282 mctl = mctl->mod_next; 1283 1284 } while (mctl != kobj_modules); 1285 1286 return (NULL); 1287 } 1288 1289 /* 1290 * Load all the primary dependent modules. 1291 */ 1292 static int 1293 load_primary(struct module *mp, int lmid) 1294 { 1295 struct modctl *cp; 1296 struct module *dmp; 1297 char *p, *q; 1298 char modname[MODMAXNAMELEN]; 1299 1300 if ((p = mp->depends_on) == NULL) 1301 return (0); 1302 1303 /* CONSTANTCONDITION */ 1304 while (1) { 1305 /* 1306 * Skip space. 1307 */ 1308 while (*p && (*p == ' ' || *p == '\t')) 1309 p++; 1310 /* 1311 * Get module name. 1312 */ 1313 q = modname; 1314 while (*p && *p != ' ' && *p != '\t') 1315 *q++ = *p++; 1316 1317 if (q == modname) 1318 break; 1319 1320 *q = '\0'; 1321 /* 1322 * Check for dup dependencies. 1323 */ 1324 if (strcmp(modname, "dtracestubs") == 0 || 1325 mod_already_loaded(modname) != NULL) 1326 continue; 1327 1328 cp = add_primary(modname, lmid); 1329 cp->mod_busy = 1; 1330 /* 1331 * Load it. 1332 */ 1333 (void) kobj_load_module(cp, 1); 1334 cp->mod_busy = 0; 1335 1336 if ((dmp = cp->mod_mp) == NULL) { 1337 cp->mod_loaded = 0; 1338 cp->mod_installed = 0; 1339 cp->mod_loadcnt = 0; 1340 return (-1); 1341 } 1342 1343 add_dependent(mp, dmp); 1344 dmp->flags |= KOBJ_PRIM; 1345 1346 /* 1347 * Recurse. 1348 */ 1349 if (load_primary(dmp, lmid) == -1) { 1350 cp->mod_loaded = 0; 1351 cp->mod_installed = 0; 1352 cp->mod_loadcnt = 0; 1353 return (-1); 1354 } 1355 } 1356 return (0); 1357 } 1358 1359 static int 1360 console_is_usb_serial(void) 1361 { 1362 char *console; 1363 int len, ret; 1364 1365 if ((len = BOP_GETPROPLEN(ops, "console")) == -1) 1366 return (0); 1367 1368 console = kobj_zalloc(len, KM_WAIT|KM_TMP); 1369 (void) BOP_GETPROP(ops, "console", console); 1370 ret = (strcmp(console, "usb-serial") == 0); 1371 kobj_free(console, len); 1372 1373 return (ret); 1374 } 1375 1376 static int 1377 load_kmdb(val_t *bootaux) 1378 { 1379 struct modctl *mctl; 1380 struct module *mp; 1381 Sym *sym; 1382 1383 if (console_is_usb_serial()) { 1384 _kobj_printf(ops, "kmdb not loaded " 1385 "(unsupported on usb serial console)\n"); 1386 return (0); 1387 } 1388 1389 _kobj_printf(ops, "Loading kmdb...\n"); 1390 1391 if ((mctl = add_primary("misc/kmdbmod", KOBJ_LM_DEBUGGER)) == NULL) 1392 return (-1); 1393 1394 mctl->mod_busy = 1; 1395 (void) kobj_load_module(mctl, 1); 1396 mctl->mod_busy = 0; 1397 1398 if ((mp = mctl->mod_mp) == NULL) 1399 return (-1); 1400 1401 mp->flags |= KOBJ_PRIM; 1402 1403 if (load_primary(mp, KOBJ_LM_DEBUGGER) < 0) 1404 return (-1); 1405 1406 if (boothowto & RB_VERBOSE) 1407 kobj_lm_dump(KOBJ_LM_DEBUGGER); 1408 1409 if (bind_primary(bootaux, KOBJ_LM_DEBUGGER) < 0) 1410 return (-1); 1411 1412 if ((sym = lookup_one(mctl->mod_mp, "kctl_boot_activate")) == NULL) 1413 return (-1); 1414 1415 #ifdef KOBJ_DEBUG 1416 if (kobj_debug & D_DEBUG) { 1417 _kobj_printf(ops, "calling kctl_boot_activate() @ 0x%lx\n", 1418 sym->st_value); 1419 _kobj_printf(ops, "\tops 0x%p\n", ops); 1420 _kobj_printf(ops, "\tromp 0x%p\n", romp); 1421 } 1422 #endif 1423 1424 if (((kctl_boot_activate_f *)sym->st_value)(ops, romp, 0, 1425 (const char **)kobj_kmdb_argv) < 0) 1426 return (-1); 1427 1428 return (0); 1429 } 1430 1431 /* 1432 * Return a string listing module dependencies. 1433 */ 1434 static char * 1435 depends_on(struct module *mp) 1436 { 1437 Sym *sp; 1438 char *depstr, *q; 1439 1440 /* 1441 * The module doesn't have a depends_on value, so let's try it the 1442 * old-fashioned way - via "_depends_on" 1443 */ 1444 if ((sp = lookup_one(mp, "_depends_on")) == NULL) 1445 return (NULL); 1446 1447 q = (char *)sp->st_value; 1448 1449 /* 1450 * Idiot checks. Make sure it's 1451 * in-bounds and NULL terminated. 1452 */ 1453 if (kobj_addrcheck(mp, q) || q[sp->st_size - 1] != '\0') { 1454 _kobj_printf(ops, "Error processing dependency for %s\n", 1455 mp->filename); 1456 return (NULL); 1457 } 1458 1459 depstr = (char *)kobj_alloc(strlen(q) + 1, KM_WAIT); 1460 (void) strcpy(depstr, q); 1461 1462 return (depstr); 1463 } 1464 1465 void 1466 kobj_getmodinfo(void *xmp, struct modinfo *modinfo) 1467 { 1468 struct module *mp; 1469 mp = (struct module *)xmp; 1470 1471 modinfo->mi_base = mp->text; 1472 modinfo->mi_size = mp->text_size + mp->data_size; 1473 } 1474 1475 /* 1476 * kobj_export_ksyms() performs the following services: 1477 * 1478 * (1) Migrates the symbol table from boot/kobj memory to the ksyms arena. 1479 * (2) Removes unneeded symbols to save space. 1480 * (3) Reduces memory footprint by using VM_BESTFIT allocations. 1481 * (4) Makes the symbol table visible to /dev/ksyms. 1482 */ 1483 static void 1484 kobj_export_ksyms(struct module *mp) 1485 { 1486 Sym *esp = (Sym *)(mp->symtbl + mp->symhdr->sh_size); 1487 Sym *sp, *osp; 1488 char *name; 1489 size_t namelen; 1490 struct module *omp; 1491 uint_t nsyms; 1492 size_t symsize = mp->symhdr->sh_entsize; 1493 size_t locals = 1; 1494 size_t strsize; 1495 1496 /* 1497 * Make a copy of the original module structure. 1498 */ 1499 omp = kobj_alloc(sizeof (struct module), KM_WAIT); 1500 bcopy(mp, omp, sizeof (struct module)); 1501 1502 /* 1503 * Compute the sizes of the new symbol table sections. 1504 */ 1505 for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) { 1506 if (osp->st_value == 0) 1507 continue; 1508 if (sym_lookup(omp, osp) == NULL) 1509 continue; 1510 name = omp->strings + osp->st_name; 1511 namelen = strlen(name); 1512 if (ELF_ST_BIND(osp->st_info) == STB_LOCAL) 1513 locals++; 1514 nsyms++; 1515 strsize += namelen + 1; 1516 } 1517 1518 mp->nsyms = nsyms; 1519 mp->hashsize = kobj_gethashsize(mp->nsyms); 1520 1521 /* 1522 * ksyms_lock must be held as writer during any operation that 1523 * modifies ksyms_arena, including allocation from same, and 1524 * must not be dropped until the arena is vmem_walk()able. 1525 */ 1526 rw_enter(&ksyms_lock, RW_WRITER); 1527 1528 /* 1529 * Allocate space for the new section headers (symtab and strtab), 1530 * symbol table, buckets, chains, and strings. 1531 */ 1532 mp->symsize = (2 * sizeof (Shdr)) + (nsyms * symsize) + 1533 (mp->hashsize + mp->nsyms) * sizeof (symid_t) + strsize; 1534 1535 if (mp->flags & KOBJ_NOKSYMS) { 1536 mp->symspace = kobj_alloc(mp->symsize, KM_WAIT); 1537 } else { 1538 mp->symspace = vmem_alloc(ksyms_arena, mp->symsize, 1539 VM_BESTFIT | VM_SLEEP); 1540 } 1541 bzero(mp->symspace, mp->symsize); 1542 1543 /* 1544 * Divvy up symspace. 1545 */ 1546 mp->shdrs = mp->symspace; 1547 mp->symhdr = (Shdr *)mp->shdrs; 1548 mp->strhdr = (Shdr *)(mp->symhdr + 1); 1549 mp->symtbl = (char *)(mp->strhdr + 1); 1550 mp->buckets = (symid_t *)(mp->symtbl + (nsyms * symsize)); 1551 mp->chains = (symid_t *)(mp->buckets + mp->hashsize); 1552 mp->strings = (char *)(mp->chains + nsyms); 1553 1554 /* 1555 * Fill in the new section headers (symtab and strtab). 1556 */ 1557 mp->hdr.e_shnum = 2; 1558 mp->symtbl_section = 0; 1559 1560 mp->symhdr->sh_type = SHT_SYMTAB; 1561 mp->symhdr->sh_addr = (Addr)mp->symtbl; 1562 mp->symhdr->sh_size = nsyms * symsize; 1563 mp->symhdr->sh_link = 1; 1564 mp->symhdr->sh_info = locals; 1565 mp->symhdr->sh_addralign = sizeof (Addr); 1566 mp->symhdr->sh_entsize = symsize; 1567 1568 mp->strhdr->sh_type = SHT_STRTAB; 1569 mp->strhdr->sh_addr = (Addr)mp->strings; 1570 mp->strhdr->sh_size = strsize; 1571 mp->strhdr->sh_addralign = 1; 1572 1573 /* 1574 * Construct the new symbol table. 1575 */ 1576 for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) { 1577 if (osp->st_value == 0) 1578 continue; 1579 if (sym_lookup(omp, osp) == NULL) 1580 continue; 1581 name = omp->strings + osp->st_name; 1582 namelen = strlen(name); 1583 sp = (Sym *)(mp->symtbl + symsize * nsyms); 1584 bcopy(osp, sp, symsize); 1585 bcopy(name, mp->strings + strsize, namelen); 1586 sp->st_name = strsize; 1587 sym_insert(mp, name, nsyms); 1588 nsyms++; 1589 strsize += namelen + 1; 1590 } 1591 1592 rw_exit(&ksyms_lock); 1593 1594 /* 1595 * Free the old section headers -- we'll never need them again. 1596 */ 1597 if (!(mp->flags & KOBJ_PRIM)) { 1598 uint_t shn; 1599 Shdr *shp; 1600 1601 for (shn = 1; shn < omp->hdr.e_shnum; shn++) { 1602 shp = (Shdr *)(omp->shdrs + shn * omp->hdr.e_shentsize); 1603 switch (shp->sh_type) { 1604 case SHT_RELA: 1605 case SHT_REL: 1606 if (shp->sh_addr != 0) { 1607 kobj_free((void *)shp->sh_addr, 1608 shp->sh_size); 1609 } 1610 break; 1611 } 1612 } 1613 kobj_free(omp->shdrs, omp->hdr.e_shentsize * omp->hdr.e_shnum); 1614 } 1615 /* 1616 * Discard the old symbol table and our copy of the module strucure. 1617 */ 1618 if (!(mp->flags & KOBJ_PRIM)) 1619 kobj_free(omp->symspace, omp->symsize); 1620 kobj_free(omp, sizeof (struct module)); 1621 } 1622 1623 static void 1624 kobj_export_ctf(struct module *mp) 1625 { 1626 char *data = mp->ctfdata; 1627 size_t size = mp->ctfsize; 1628 1629 if (data != NULL) { 1630 if (_moddebug & MODDEBUG_NOCTF) { 1631 mp->ctfdata = NULL; 1632 mp->ctfsize = 0; 1633 } else { 1634 mp->ctfdata = vmem_alloc(ctf_arena, size, 1635 VM_BESTFIT | VM_SLEEP); 1636 bcopy(data, mp->ctfdata, size); 1637 } 1638 1639 if (!(mp->flags & KOBJ_PRIM)) 1640 kobj_free(data, size); 1641 } 1642 } 1643 1644 void 1645 kobj_export_module(struct module *mp) 1646 { 1647 kobj_export_ksyms(mp); 1648 kobj_export_ctf(mp); 1649 1650 mp->flags |= KOBJ_EXPORTED; 1651 } 1652 1653 static int 1654 process_dynamic(struct module *mp, char *dyndata, char *strdata) 1655 { 1656 char *path = NULL, *depstr = NULL; 1657 int allocsize = 0, osize = 0, nsize = 0; 1658 char *libname, *tmp; 1659 int lsize; 1660 Dyn *dynp; 1661 1662 for (dynp = (Dyn *)dyndata; dynp && dynp->d_tag != DT_NULL; dynp++) { 1663 switch (dynp->d_tag) { 1664 case DT_NEEDED: 1665 /* 1666 * Read the DT_NEEDED entries, expanding the macros they 1667 * contain (if any), and concatenating them into a 1668 * single space-separated dependency list. 1669 */ 1670 libname = (ulong_t)dynp->d_un.d_ptr + strdata; 1671 1672 if (strchr(libname, '$') != NULL) { 1673 char *_lib; 1674 1675 if (path == NULL) 1676 path = kobj_alloc(MAXPATHLEN, KM_WAIT); 1677 if ((_lib = expand_libmacro(libname, path, 1678 path)) != NULL) 1679 libname = _lib; 1680 else { 1681 _kobj_printf(ops, "krtld: " 1682 "process_dynamic: failed to expand " 1683 "%s\n", libname); 1684 } 1685 } 1686 1687 lsize = strlen(libname); 1688 nsize += lsize; 1689 if (nsize + 1 > allocsize) { 1690 tmp = kobj_alloc(allocsize + MAXPATHLEN, 1691 KM_WAIT); 1692 if (depstr != NULL) { 1693 bcopy(depstr, tmp, osize); 1694 kobj_free(depstr, allocsize); 1695 } 1696 depstr = tmp; 1697 allocsize += MAXPATHLEN; 1698 } 1699 bcopy(libname, depstr + osize, lsize); 1700 *(depstr + nsize) = ' '; /* separator */ 1701 nsize++; 1702 osize = nsize; 1703 break; 1704 1705 case DT_FLAGS_1: 1706 if (dynp->d_un.d_val & DF_1_IGNMULDEF) 1707 mp->flags |= KOBJ_IGNMULDEF; 1708 if (dynp->d_un.d_val & DF_1_NOKSYMS) 1709 mp->flags |= KOBJ_NOKSYMS; 1710 1711 break; 1712 } 1713 } 1714 1715 /* 1716 * finish up the depends string (if any) 1717 */ 1718 if (depstr != NULL) { 1719 *(depstr + nsize - 1) = '\0'; /* overwrite separator w/term */ 1720 if (path != NULL) 1721 kobj_free(path, MAXPATHLEN); 1722 1723 tmp = kobj_alloc(nsize, KM_WAIT); 1724 bcopy(depstr, tmp, nsize); 1725 kobj_free(depstr, allocsize); 1726 depstr = tmp; 1727 1728 mp->depends_on = depstr; 1729 } 1730 1731 return (0); 1732 } 1733 1734 static int 1735 do_dynamic(struct module *mp, struct _buf *file) 1736 { 1737 Shdr *dshp, *dstrp, *shp; 1738 char *dyndata, *dstrdata; 1739 int dshn, shn, rc; 1740 1741 /* find and validate the dynamic section (if any) */ 1742 1743 for (dshp = NULL, shn = 1; shn < mp->hdr.e_shnum; shn++) { 1744 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 1745 switch (shp->sh_type) { 1746 case SHT_DYNAMIC: 1747 if (dshp != NULL) { 1748 _kobj_printf(ops, "krtld: get_dynamic: %s, ", 1749 mp->filename); 1750 _kobj_printf(ops, 1751 "multiple dynamic sections\n"); 1752 return (-1); 1753 } else { 1754 dshp = shp; 1755 dshn = shn; 1756 } 1757 break; 1758 } 1759 } 1760 1761 if (dshp == NULL) 1762 return (0); 1763 1764 if (dshp->sh_link > mp->hdr.e_shnum) { 1765 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename); 1766 _kobj_printf(ops, "no section for sh_link %d\n", dshp->sh_link); 1767 return (-1); 1768 } 1769 dstrp = (Shdr *)(mp->shdrs + dshp->sh_link * mp->hdr.e_shentsize); 1770 1771 if (dstrp->sh_type != SHT_STRTAB) { 1772 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename); 1773 _kobj_printf(ops, "sh_link not a string table for section %d\n", 1774 dshn); 1775 return (-1); 1776 } 1777 1778 /* read it from disk */ 1779 1780 dyndata = kobj_alloc(dshp->sh_size, KM_WAIT|KM_TMP); 1781 if (kobj_read_file(file, dyndata, dshp->sh_size, dshp->sh_offset) < 0) { 1782 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename); 1783 _kobj_printf(ops, "error reading section %d\n", dshn); 1784 1785 kobj_free(dyndata, dshp->sh_size); 1786 return (-1); 1787 } 1788 1789 dstrdata = kobj_alloc(dstrp->sh_size, KM_WAIT|KM_TMP); 1790 if (kobj_read_file(file, dstrdata, dstrp->sh_size, 1791 dstrp->sh_offset) < 0) { 1792 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename); 1793 _kobj_printf(ops, "error reading section %d\n", dshp->sh_link); 1794 1795 kobj_free(dyndata, dshp->sh_size); 1796 kobj_free(dstrdata, dstrp->sh_size); 1797 return (-1); 1798 } 1799 1800 /* pull the interesting pieces out */ 1801 1802 rc = process_dynamic(mp, dyndata, dstrdata); 1803 1804 kobj_free(dyndata, dshp->sh_size); 1805 kobj_free(dstrdata, dstrp->sh_size); 1806 1807 return (rc); 1808 } 1809 1810 void 1811 kobj_set_ctf(struct module *mp, caddr_t data, size_t size) 1812 { 1813 if (!standalone) { 1814 if (mp->ctfdata != NULL) { 1815 if (vmem_contains(ctf_arena, mp->ctfdata, 1816 mp->ctfsize)) { 1817 vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize); 1818 } else { 1819 kobj_free(mp->ctfdata, mp->ctfsize); 1820 } 1821 } 1822 } 1823 1824 /* 1825 * The order is very important here. We need to make sure that 1826 * consumers, at any given instant, see a consistent state. We'd 1827 * rather they see no CTF data than the address of one buffer and the 1828 * size of another. 1829 */ 1830 mp->ctfdata = NULL; 1831 membar_producer(); 1832 mp->ctfsize = size; 1833 mp->ctfdata = data; 1834 membar_producer(); 1835 } 1836 1837 int 1838 kobj_load_module(struct modctl *modp, int use_path) 1839 { 1840 char *filename = modp->mod_filename; 1841 char *modname = modp->mod_modname; 1842 int i; 1843 int n; 1844 struct _buf *file; 1845 struct module *mp = NULL; 1846 #ifdef MODDIR_SUFFIX 1847 int no_suffixdir_drv = 0; 1848 #endif 1849 1850 mp = kobj_zalloc(sizeof (struct module), KM_WAIT); 1851 1852 /* 1853 * We need to prevent kmdb's symbols from leaking into /dev/ksyms. 1854 * kmdb contains a bunch of symbols with well-known names, symbols 1855 * which will mask the real versions, thus causing no end of trouble 1856 * for mdb. 1857 */ 1858 if (strcmp(modp->mod_modname, "kmdbmod") == 0) 1859 mp->flags |= KOBJ_NOKSYMS; 1860 1861 file = kobj_open_path(filename, use_path, 1); 1862 if (file == (struct _buf *)-1) { 1863 #ifdef MODDIR_SUFFIX 1864 file = kobj_open_path(filename, use_path, 0); 1865 #endif 1866 if (file == (struct _buf *)-1) { 1867 kobj_free(mp, sizeof (*mp)); 1868 goto bad; 1869 } 1870 #ifdef MODDIR_SUFFIX 1871 /* 1872 * There is no driver module in the ISA specific (suffix) 1873 * subdirectory but there is a module in the parent directory. 1874 */ 1875 if (strncmp(filename, "drv/", 4) == 0) { 1876 no_suffixdir_drv = 1; 1877 } 1878 #endif 1879 } 1880 1881 mp->filename = kobj_alloc(strlen(file->_name) + 1, KM_WAIT); 1882 (void) strcpy(mp->filename, file->_name); 1883 1884 if (kobj_read_file(file, (char *)&mp->hdr, sizeof (mp->hdr), 0) < 0) { 1885 _kobj_printf(ops, "kobj_load_module: %s read header failed\n", 1886 modname); 1887 kobj_free(mp->filename, strlen(file->_name) + 1); 1888 kobj_free(mp, sizeof (*mp)); 1889 goto bad; 1890 } 1891 for (i = 0; i < SELFMAG; i++) { 1892 if (mp->hdr.e_ident[i] != ELFMAG[i]) { 1893 if (_moddebug & MODDEBUG_ERRMSG) 1894 _kobj_printf(ops, "%s not an elf module\n", 1895 modname); 1896 kobj_free(mp->filename, strlen(file->_name) + 1); 1897 kobj_free(mp, sizeof (*mp)); 1898 goto bad; 1899 } 1900 } 1901 /* 1902 * It's ELF, but is it our ISA? Interpreting the header 1903 * from a file for a byte-swapped ISA could cause a huge 1904 * and unsatisfiable value to be passed to kobj_alloc below 1905 * and therefore hang booting. 1906 */ 1907 if (!elf_mach_ok(&mp->hdr)) { 1908 if (_moddebug & MODDEBUG_ERRMSG) 1909 _kobj_printf(ops, "%s not an elf module for this ISA\n", 1910 modname); 1911 kobj_free(mp->filename, strlen(file->_name) + 1); 1912 kobj_free(mp, sizeof (*mp)); 1913 #ifdef MODDIR_SUFFIX 1914 /* 1915 * The driver mod is not in the ISA specific subdirectory 1916 * and the module in the parent directory is not our ISA. 1917 * If it is our ISA, for now we will silently succeed. 1918 */ 1919 if (no_suffixdir_drv == 1) { 1920 cmn_err(CE_CONT, "?NOTICE: %s: 64-bit driver module" 1921 " not found\n", modname); 1922 } 1923 #endif 1924 goto bad; 1925 } 1926 1927 /* 1928 * All modules, save for unix, should be relocatable (as opposed to 1929 * dynamic). Dynamic modules come with PLTs and GOTs, which can't 1930 * currently be processed by krtld. 1931 */ 1932 if (mp->hdr.e_type != ET_REL) { 1933 if (_moddebug & MODDEBUG_ERRMSG) 1934 _kobj_printf(ops, "%s isn't a relocatable (ET_REL) " 1935 "module\n", modname); 1936 kobj_free(mp->filename, strlen(file->_name) + 1); 1937 kobj_free(mp, sizeof (*mp)); 1938 goto bad; 1939 } 1940 1941 n = mp->hdr.e_shentsize * mp->hdr.e_shnum; 1942 mp->shdrs = kobj_alloc(n, KM_WAIT); 1943 1944 if (kobj_read_file(file, mp->shdrs, n, mp->hdr.e_shoff) < 0) { 1945 _kobj_printf(ops, "kobj_load_module: %s error reading " 1946 "section headers\n", modname); 1947 kobj_free(mp->shdrs, n); 1948 kobj_free(mp->filename, strlen(file->_name) + 1); 1949 kobj_free(mp, sizeof (*mp)); 1950 goto bad; 1951 } 1952 1953 kobj_notify(KOBJ_NOTIFY_MODLOADING, modp); 1954 module_assign(modp, mp); 1955 1956 /* read in sections */ 1957 if (get_progbits(mp, file) < 0) { 1958 _kobj_printf(ops, "%s error reading sections\n", modname); 1959 goto bad; 1960 } 1961 1962 if (do_dynamic(mp, file) < 0) { 1963 _kobj_printf(ops, "%s error reading dynamic section\n", 1964 modname); 1965 goto bad; 1966 } 1967 1968 modp->mod_text = mp->text; 1969 modp->mod_text_size = mp->text_size; 1970 1971 /* read in symbols; adjust values for each section's real address */ 1972 if (get_syms(mp, file) < 0) { 1973 _kobj_printf(ops, "%s error reading symbols\n", 1974 modname); 1975 goto bad; 1976 } 1977 1978 /* 1979 * If we didn't dependency information from the dynamic section, look 1980 * for it the old-fashioned way. 1981 */ 1982 if (mp->depends_on == NULL) 1983 mp->depends_on = depends_on(mp); 1984 1985 if (get_ctf(mp, file) < 0) { 1986 _kobj_printf(ops, "%s debug information will not " 1987 "be available\n", modname); 1988 } 1989 1990 /* primary kernel modules do not have a signature section */ 1991 if (!(mp->flags & KOBJ_PRIM)) 1992 get_signature(mp, file); 1993 1994 #ifdef KOBJ_DEBUG 1995 if (kobj_debug & D_LOADING) { 1996 _kobj_printf(ops, "krtld: file=%s\n", mp->filename); 1997 _kobj_printf(ops, "\ttext:0x%p", mp->text); 1998 _kobj_printf(ops, " size: 0x%x\n", mp->text_size); 1999 _kobj_printf(ops, "\tdata:0x%p", mp->data); 2000 _kobj_printf(ops, " dsize: 0x%x\n", mp->data_size); 2001 } 2002 #endif /* KOBJ_DEBUG */ 2003 2004 /* 2005 * For primary kernel modules, we defer 2006 * symbol resolution and relocation until 2007 * all primary objects have been loaded. 2008 */ 2009 if (!standalone) { 2010 int ddrval, dcrval; 2011 char *dependent_modname; 2012 /* load all dependents */ 2013 dependent_modname = kobj_zalloc(MODMAXNAMELEN, KM_WAIT); 2014 ddrval = do_dependents(modp, dependent_modname, MODMAXNAMELEN); 2015 2016 /* 2017 * resolve undefined and common symbols, 2018 * also allocates common space 2019 */ 2020 if ((dcrval = do_common(mp)) < 0) { 2021 switch (dcrval) { 2022 case DOSYM_UNSAFE: 2023 _kobj_printf(ops, "WARNING: mod_load: " 2024 "MT-unsafe module '%s' rejected\n", 2025 modname); 2026 break; 2027 case DOSYM_UNDEF: 2028 _kobj_printf(ops, "WARNING: mod_load: " 2029 "cannot load module '%s'\n", 2030 modname); 2031 if (ddrval == -1) { 2032 _kobj_printf(ops, "WARNING: %s: ", 2033 modname); 2034 _kobj_printf(ops, 2035 "unable to resolve dependency, " 2036 "module '%s' not found\n", 2037 dependent_modname); 2038 } 2039 break; 2040 } 2041 } 2042 kobj_free(dependent_modname, MODMAXNAMELEN); 2043 if (dcrval < 0) 2044 goto bad; 2045 2046 /* process relocation tables */ 2047 if (do_relocations(mp) < 0) { 2048 _kobj_printf(ops, "%s error doing relocations\n", 2049 modname); 2050 goto bad; 2051 } 2052 2053 if (mp->destination) { 2054 off_t off = (uintptr_t)mp->destination & PAGEOFFSET; 2055 caddr_t base = (caddr_t)mp->destination - off; 2056 size_t size = P2ROUNDUP(mp->text_size + off, PAGESIZE); 2057 2058 hat_unload(kas.a_hat, base, size, HAT_UNLOAD_UNLOCK); 2059 vmem_free(heap_arena, base, size); 2060 } 2061 2062 /* sync_instruction_memory */ 2063 kobj_sync_instruction_memory(mp->text, mp->text_size); 2064 kobj_export_module(mp); 2065 kobj_notify(KOBJ_NOTIFY_MODLOADED, modp); 2066 } 2067 kobj_close_file(file); 2068 return (0); 2069 bad: 2070 if (file != (struct _buf *)-1) 2071 kobj_close_file(file); 2072 if (modp->mod_mp != NULL) 2073 free_module_data(modp->mod_mp); 2074 2075 module_assign(modp, NULL); 2076 return ((file == (struct _buf *)-1) ? ENOENT : EINVAL); 2077 } 2078 2079 int 2080 kobj_load_primary_module(struct modctl *modp) 2081 { 2082 struct modctl *dep; 2083 struct module *mp; 2084 2085 if (kobj_load_module(modp, 0) != 0) 2086 return (-1); 2087 2088 mp = modp->mod_mp; 2089 mp->flags |= KOBJ_PRIM; 2090 2091 /* Bind new module to its dependents */ 2092 if (mp->depends_on != NULL && (dep = 2093 mod_already_loaded(mp->depends_on)) == NULL) { 2094 #ifdef KOBJ_DEBUG 2095 if (kobj_debug & D_DEBUG) { 2096 _kobj_printf(ops, "krtld: failed to resolve deps " 2097 "for primary %s\n", modp->mod_modname); 2098 } 2099 #endif 2100 return (-1); 2101 } 2102 2103 add_dependent(mp, dep->mod_mp); 2104 2105 /* 2106 * Relocate it. This module may not be part of a link map, so we 2107 * can't use bind_primary. 2108 */ 2109 if (do_common(mp) < 0 || do_symbols(mp, 0) < 0 || 2110 do_relocations(mp) < 0) { 2111 #ifdef KOBJ_DEBUG 2112 if (kobj_debug & D_DEBUG) { 2113 _kobj_printf(ops, "krtld: failed to relocate " 2114 "primary %s\n", modp->mod_modname); 2115 } 2116 #endif 2117 return (-1); 2118 } 2119 2120 return (0); 2121 } 2122 2123 static void 2124 module_assign(struct modctl *cp, struct module *mp) 2125 { 2126 if (standalone) { 2127 cp->mod_mp = mp; 2128 return; 2129 } 2130 mutex_enter(&mod_lock); 2131 cp->mod_mp = mp; 2132 cp->mod_gencount++; 2133 mutex_exit(&mod_lock); 2134 } 2135 2136 void 2137 kobj_unload_module(struct modctl *modp) 2138 { 2139 struct module *mp = modp->mod_mp; 2140 2141 if ((_moddebug & MODDEBUG_KEEPTEXT) && mp) { 2142 _kobj_printf(ops, "text for %s ", mp->filename); 2143 _kobj_printf(ops, "was at %p\n", mp->text); 2144 mp->text = NULL; /* don't actually free it */ 2145 } 2146 2147 kobj_notify(KOBJ_NOTIFY_MODUNLOADING, modp); 2148 2149 /* 2150 * Null out mod_mp first, so consumers (debuggers) know not to look 2151 * at the module structure any more. 2152 */ 2153 mutex_enter(&mod_lock); 2154 modp->mod_mp = NULL; 2155 mutex_exit(&mod_lock); 2156 2157 kobj_notify(KOBJ_NOTIFY_MODUNLOADED, modp); 2158 free_module_data(mp); 2159 } 2160 2161 static void 2162 free_module_data(struct module *mp) 2163 { 2164 struct module_list *lp, *tmp; 2165 int ksyms_exported = 0; 2166 2167 lp = mp->head; 2168 while (lp) { 2169 tmp = lp; 2170 lp = lp->next; 2171 kobj_free((char *)tmp, sizeof (*tmp)); 2172 } 2173 2174 rw_enter(&ksyms_lock, RW_WRITER); 2175 if (mp->symspace) { 2176 if (vmem_contains(ksyms_arena, mp->symspace, mp->symsize)) { 2177 vmem_free(ksyms_arena, mp->symspace, mp->symsize); 2178 ksyms_exported = 1; 2179 } else { 2180 if (mp->flags & KOBJ_NOKSYMS) 2181 ksyms_exported = 1; 2182 kobj_free(mp->symspace, mp->symsize); 2183 } 2184 } 2185 rw_exit(&ksyms_lock); 2186 2187 if (mp->ctfdata) { 2188 if (vmem_contains(ctf_arena, mp->ctfdata, mp->ctfsize)) 2189 vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize); 2190 else 2191 kobj_free(mp->ctfdata, mp->ctfsize); 2192 } 2193 2194 if (mp->sigdata) 2195 kobj_free(mp->sigdata, mp->sigsize); 2196 2197 /* 2198 * We did not get far enough into kobj_export_ksyms() to free allocated 2199 * buffers because we encounted error conditions. Free the buffers. 2200 */ 2201 if ((ksyms_exported == 0) && (mp->shdrs != NULL)) { 2202 uint_t shn; 2203 Shdr *shp; 2204 2205 for (shn = 1; shn < mp->hdr.e_shnum; shn++) { 2206 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 2207 switch (shp->sh_type) { 2208 case SHT_RELA: 2209 case SHT_REL: 2210 if (shp->sh_addr != 0) 2211 kobj_free((void *)shp->sh_addr, 2212 shp->sh_size); 2213 break; 2214 } 2215 } 2216 err_free_done: 2217 if (!(mp->flags & KOBJ_PRIM)) { 2218 kobj_free(mp->shdrs, 2219 mp->hdr.e_shentsize * mp->hdr.e_shnum); 2220 } 2221 } 2222 2223 if (mp->bss) 2224 vmem_free(data_arena, (void *)mp->bss, mp->bss_size); 2225 2226 if (mp->fbt_tab) 2227 kobj_texthole_free(mp->fbt_tab, mp->fbt_size); 2228 2229 if (mp->textwin_base) 2230 kobj_textwin_free(mp); 2231 2232 if (mp->sdt_probes != NULL) { 2233 sdt_probedesc_t *sdp = mp->sdt_probes, *next; 2234 2235 while (sdp != NULL) { 2236 next = sdp->sdpd_next; 2237 kobj_free(sdp->sdpd_name, strlen(sdp->sdpd_name) + 1); 2238 kobj_free(sdp, sizeof (sdt_probedesc_t)); 2239 sdp = next; 2240 } 2241 } 2242 2243 if (mp->sdt_tab) 2244 kobj_texthole_free(mp->sdt_tab, mp->sdt_size); 2245 if (mp->text) 2246 vmem_free(text_arena, mp->text, mp->text_size); 2247 if (mp->data) 2248 vmem_free(data_arena, mp->data, mp->data_size); 2249 if (mp->depends_on) 2250 kobj_free(mp->depends_on, strlen(mp->depends_on)+1); 2251 if (mp->filename) 2252 kobj_free(mp->filename, strlen(mp->filename)+1); 2253 2254 kobj_free((char *)mp, sizeof (*mp)); 2255 } 2256 2257 static int 2258 get_progbits(struct module *mp, struct _buf *file) 2259 { 2260 struct proginfo *tp, *dp, *sdp; 2261 Shdr *shp; 2262 reloc_dest_t dest = NULL; 2263 uintptr_t bits_ptr; 2264 uintptr_t text = 0, data, textptr; 2265 uint_t shn; 2266 int err = -1; 2267 2268 tp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP); 2269 dp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP); 2270 sdp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP); 2271 /* 2272 * loop through sections to find out how much space we need 2273 * for text, data, (also bss that is already assigned) 2274 */ 2275 if (get_progbits_size(mp, tp, dp, sdp) < 0) 2276 goto done; 2277 2278 mp->text_size = tp->size; 2279 mp->data_size = dp->size; 2280 2281 if (standalone) { 2282 caddr_t limit = _data; 2283 2284 if (lg_pagesize && _text + lg_pagesize < limit) 2285 limit = _text + lg_pagesize; 2286 2287 mp->text = kobj_segbrk(&_etext, mp->text_size, 2288 tp->align, limit); 2289 /* 2290 * If we can't grow the text segment, try the 2291 * data segment before failing. 2292 */ 2293 if (mp->text == NULL) { 2294 mp->text = kobj_segbrk(&_edata, mp->text_size, 2295 tp->align, 0); 2296 } 2297 2298 mp->data = kobj_segbrk(&_edata, mp->data_size, dp->align, 0); 2299 2300 if (mp->text == NULL || mp->data == NULL) 2301 goto done; 2302 2303 } else { 2304 if (text_arena == NULL) 2305 kobj_vmem_init(&text_arena, &data_arena); 2306 2307 /* 2308 * some architectures may want to load the module on a 2309 * page that is currently read only. It may not be 2310 * possible for those architectures to remap their page 2311 * on the fly. So we provide a facility for them to hang 2312 * a private hook where the memory they assign the module 2313 * is not the actual place where the module loads. 2314 * 2315 * In this case there are two addresses that deal with the 2316 * modload. 2317 * 1) the final destination of the module 2318 * 2) the address that is used to view the newly 2319 * loaded module until all the relocations relative to 1 2320 * above are completed. 2321 * 2322 * That is what dest is used for below. 2323 */ 2324 mp->text_size += tp->align; 2325 mp->data_size += dp->align; 2326 2327 mp->text = kobj_text_alloc(text_arena, mp->text_size); 2328 2329 /* 2330 * a remap is taking place. Align the text ptr relative 2331 * to the secondary mapping. That is where the bits will 2332 * be read in. 2333 */ 2334 if (kvseg.s_base != NULL && !vmem_contains(heaptext_arena, 2335 mp->text, mp->text_size)) { 2336 off_t off = (uintptr_t)mp->text & PAGEOFFSET; 2337 size_t size = P2ROUNDUP(mp->text_size + off, PAGESIZE); 2338 caddr_t map = vmem_alloc(heap_arena, size, VM_SLEEP); 2339 caddr_t orig = mp->text - off; 2340 pgcnt_t pages = size / PAGESIZE; 2341 2342 dest = (reloc_dest_t)(map + off); 2343 text = ALIGN((uintptr_t)dest, tp->align); 2344 2345 while (pages--) { 2346 hat_devload(kas.a_hat, map, PAGESIZE, 2347 hat_getpfnum(kas.a_hat, orig), 2348 PROT_READ | PROT_WRITE | PROT_EXEC, 2349 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 2350 map += PAGESIZE; 2351 orig += PAGESIZE; 2352 } 2353 /* 2354 * Since we set up a non-cacheable mapping, we need 2355 * to flush any old entries in the cache that might 2356 * be left around from the read-only mapping. 2357 */ 2358 dcache_flushall(); 2359 } 2360 if (mp->data_size) 2361 mp->data = vmem_alloc(data_arena, mp->data_size, 2362 VM_SLEEP | VM_BESTFIT); 2363 } 2364 textptr = (uintptr_t)mp->text; 2365 textptr = ALIGN(textptr, tp->align); 2366 mp->destination = dest; 2367 2368 /* 2369 * This is the case where a remap is not being done. 2370 */ 2371 if (text == 0) 2372 text = ALIGN((uintptr_t)mp->text, tp->align); 2373 data = ALIGN((uintptr_t)mp->data, dp->align); 2374 2375 /* now loop though sections assigning addresses and loading the data */ 2376 for (shn = 1; shn < mp->hdr.e_shnum; shn++) { 2377 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 2378 if (!(shp->sh_flags & SHF_ALLOC)) 2379 continue; 2380 2381 if ((shp->sh_flags & SHF_WRITE) == 0) 2382 bits_ptr = text; 2383 else 2384 bits_ptr = data; 2385 2386 bits_ptr = ALIGN(bits_ptr, shp->sh_addralign); 2387 2388 if (shp->sh_type == SHT_NOBITS) { 2389 /* 2390 * Zero bss. 2391 */ 2392 bzero((caddr_t)bits_ptr, shp->sh_size); 2393 shp->sh_type = SHT_PROGBITS; 2394 } else { 2395 if (kobj_read_file(file, (char *)bits_ptr, 2396 shp->sh_size, shp->sh_offset) < 0) 2397 goto done; 2398 } 2399 2400 if (shp->sh_flags & SHF_WRITE) { 2401 shp->sh_addr = bits_ptr; 2402 } else { 2403 textptr = ALIGN(textptr, shp->sh_addralign); 2404 shp->sh_addr = textptr; 2405 textptr += shp->sh_size; 2406 } 2407 2408 bits_ptr += shp->sh_size; 2409 if ((shp->sh_flags & SHF_WRITE) == 0) 2410 text = bits_ptr; 2411 else 2412 data = bits_ptr; 2413 } 2414 2415 err = 0; 2416 done: 2417 /* 2418 * Free and mark as freed the section headers here so that 2419 * free_module_data() does not have to worry about this buffer. 2420 * 2421 * This buffer is freed here because one of the possible reasons 2422 * for error is a section with non-zero sh_addr and in that case 2423 * free_module_data() would have no way of recognizing that this 2424 * buffer was unallocated. 2425 */ 2426 if (err != 0) { 2427 kobj_free(mp->shdrs, mp->hdr.e_shentsize * mp->hdr.e_shnum); 2428 mp->shdrs = NULL; 2429 } 2430 2431 (void) kobj_free(tp, sizeof (struct proginfo)); 2432 (void) kobj_free(dp, sizeof (struct proginfo)); 2433 (void) kobj_free(sdp, sizeof (struct proginfo)); 2434 2435 return (err); 2436 } 2437 2438 /* 2439 * Go through suppress_sym_list to see if "multiply defined" 2440 * warning of this symbol should be suppressed. Return 1 if 2441 * warning should be suppressed, 0 otherwise. 2442 */ 2443 static int 2444 kobj_suppress_warning(char *symname) 2445 { 2446 int i; 2447 2448 for (i = 0; suppress_sym_list[i] != NULL; i++) { 2449 if (strcmp(suppress_sym_list[i], symname) == 0) 2450 return (1); 2451 } 2452 2453 return (0); 2454 } 2455 2456 static int 2457 get_syms(struct module *mp, struct _buf *file) 2458 { 2459 uint_t shn; 2460 Shdr *shp; 2461 uint_t i; 2462 Sym *sp, *ksp; 2463 char *symname; 2464 int dosymtab = 0; 2465 2466 /* 2467 * Find the interesting sections. 2468 */ 2469 for (shn = 1; shn < mp->hdr.e_shnum; shn++) { 2470 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 2471 switch (shp->sh_type) { 2472 case SHT_SYMTAB: 2473 mp->symtbl_section = shn; 2474 mp->symhdr = shp; 2475 dosymtab++; 2476 break; 2477 2478 case SHT_RELA: 2479 case SHT_REL: 2480 /* 2481 * Already loaded. 2482 */ 2483 if (shp->sh_addr) 2484 continue; 2485 2486 /* KM_TMP since kobj_free'd in do_relocations */ 2487 shp->sh_addr = (Addr) 2488 kobj_alloc(shp->sh_size, KM_WAIT|KM_TMP); 2489 2490 if (kobj_read_file(file, (char *)shp->sh_addr, 2491 shp->sh_size, shp->sh_offset) < 0) { 2492 _kobj_printf(ops, "krtld: get_syms: %s, ", 2493 mp->filename); 2494 _kobj_printf(ops, "error reading section %d\n", 2495 shn); 2496 return (-1); 2497 } 2498 break; 2499 } 2500 } 2501 2502 /* 2503 * This is true for a stripped executable. In the case of 2504 * 'unix' it can be stripped but it still contains the SHT_DYNSYM, 2505 * and since that symbol information is still present everything 2506 * is just fine. 2507 */ 2508 if (!dosymtab) { 2509 if (mp->flags & KOBJ_EXEC) 2510 return (0); 2511 _kobj_printf(ops, "krtld: get_syms: %s ", 2512 mp->filename); 2513 _kobj_printf(ops, "no SHT_SYMTAB symbol table found\n"); 2514 return (-1); 2515 } 2516 2517 /* 2518 * get the associated string table header 2519 */ 2520 if ((mp->symhdr == 0) || (mp->symhdr->sh_link >= mp->hdr.e_shnum)) 2521 return (-1); 2522 mp->strhdr = (Shdr *) 2523 (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize); 2524 2525 mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize; 2526 mp->hashsize = kobj_gethashsize(mp->nsyms); 2527 2528 /* 2529 * Allocate space for the symbol table, buckets, chains, and strings. 2530 */ 2531 mp->symsize = mp->symhdr->sh_size + 2532 (mp->hashsize + mp->nsyms) * sizeof (symid_t) + mp->strhdr->sh_size; 2533 mp->symspace = kobj_zalloc(mp->symsize, KM_WAIT|KM_SCRATCH); 2534 2535 mp->symtbl = mp->symspace; 2536 mp->buckets = (symid_t *)(mp->symtbl + mp->symhdr->sh_size); 2537 mp->chains = mp->buckets + mp->hashsize; 2538 mp->strings = (char *)(mp->chains + mp->nsyms); 2539 2540 if (kobj_read_file(file, mp->symtbl, 2541 mp->symhdr->sh_size, mp->symhdr->sh_offset) < 0 || 2542 kobj_read_file(file, mp->strings, 2543 mp->strhdr->sh_size, mp->strhdr->sh_offset) < 0) 2544 return (-1); 2545 2546 /* 2547 * loop through the symbol table adjusting values to account 2548 * for where each section got loaded into memory. Also 2549 * fill in the hash table. 2550 */ 2551 for (i = 1; i < mp->nsyms; i++) { 2552 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize); 2553 if (sp->st_shndx < SHN_LORESERVE) { 2554 if (sp->st_shndx >= mp->hdr.e_shnum) { 2555 _kobj_printf(ops, "%s bad shndx ", 2556 file->_name); 2557 _kobj_printf(ops, "in symbol %d\n", i); 2558 return (-1); 2559 } 2560 shp = (Shdr *) 2561 (mp->shdrs + 2562 sp->st_shndx * mp->hdr.e_shentsize); 2563 if (!(mp->flags & KOBJ_EXEC)) 2564 sp->st_value += shp->sh_addr; 2565 } 2566 2567 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF) 2568 continue; 2569 if (sp->st_name >= mp->strhdr->sh_size) 2570 return (-1); 2571 2572 symname = mp->strings + sp->st_name; 2573 2574 if (!(mp->flags & KOBJ_EXEC) && 2575 ELF_ST_BIND(sp->st_info) == STB_GLOBAL) { 2576 ksp = kobj_lookup_all(mp, symname, 0); 2577 2578 if (ksp && ELF_ST_BIND(ksp->st_info) == STB_GLOBAL && 2579 !kobj_suppress_warning(symname) && 2580 sp->st_shndx != SHN_UNDEF && 2581 sp->st_shndx != SHN_COMMON && 2582 ksp->st_shndx != SHN_UNDEF && 2583 ksp->st_shndx != SHN_COMMON) { 2584 /* 2585 * Unless this symbol is a stub, it's multiply 2586 * defined. Multiply-defined symbols are 2587 * usually bad, but some objects (kmdb) have 2588 * a legitimate need to have their own 2589 * copies of common functions. 2590 */ 2591 if ((standalone || 2592 ksp->st_value < (uintptr_t)stubs_base || 2593 ksp->st_value >= (uintptr_t)stubs_end) && 2594 !(mp->flags & KOBJ_IGNMULDEF)) { 2595 _kobj_printf(ops, 2596 "%s symbol ", file->_name); 2597 _kobj_printf(ops, 2598 "%s multiply defined\n", symname); 2599 } 2600 } 2601 } 2602 2603 sym_insert(mp, symname, i); 2604 } 2605 2606 return (0); 2607 } 2608 2609 static int 2610 get_ctf(struct module *mp, struct _buf *file) 2611 { 2612 char *shstrtab, *ctfdata; 2613 size_t shstrlen; 2614 Shdr *shp; 2615 uint_t i; 2616 2617 if (_moddebug & MODDEBUG_NOCTF) 2618 return (0); /* do not attempt to even load CTF data */ 2619 2620 if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) { 2621 _kobj_printf(ops, "krtld: get_ctf: %s, ", 2622 mp->filename); 2623 _kobj_printf(ops, "corrupt e_shstrndx %u\n", 2624 mp->hdr.e_shstrndx); 2625 return (-1); 2626 } 2627 2628 shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize); 2629 shstrlen = shp->sh_size; 2630 shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP); 2631 2632 if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) { 2633 _kobj_printf(ops, "krtld: get_ctf: %s, ", 2634 mp->filename); 2635 _kobj_printf(ops, "error reading section %u\n", 2636 mp->hdr.e_shstrndx); 2637 kobj_free(shstrtab, shstrlen); 2638 return (-1); 2639 } 2640 2641 for (i = 0; i < mp->hdr.e_shnum; i++) { 2642 shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize); 2643 2644 if (shp->sh_size != 0 && shp->sh_name < shstrlen && 2645 strcmp(shstrtab + shp->sh_name, ".SUNW_ctf") == 0) { 2646 ctfdata = kobj_alloc(shp->sh_size, KM_WAIT|KM_SCRATCH); 2647 2648 if (kobj_read_file(file, ctfdata, shp->sh_size, 2649 shp->sh_offset) < 0) { 2650 _kobj_printf(ops, "krtld: get_ctf: %s, error " 2651 "reading .SUNW_ctf data\n", mp->filename); 2652 kobj_free(ctfdata, shp->sh_size); 2653 kobj_free(shstrtab, shstrlen); 2654 return (-1); 2655 } 2656 2657 mp->ctfdata = ctfdata; 2658 mp->ctfsize = shp->sh_size; 2659 break; 2660 } 2661 } 2662 2663 kobj_free(shstrtab, shstrlen); 2664 return (0); 2665 } 2666 2667 #define SHA1_DIGEST_LENGTH 20 /* SHA1 digest length in bytes */ 2668 2669 /* 2670 * Return the hash of the ELF sections that are memory resident. 2671 * i.e. text and data. We skip a SHT_NOBITS section since it occupies 2672 * no space in the file. We use SHA1 here since libelfsign uses 2673 * it and both places need to use the same algorithm. 2674 */ 2675 static void 2676 crypto_es_hash(struct module *mp, char *hash, char *shstrtab) 2677 { 2678 uint_t shn; 2679 Shdr *shp; 2680 SHA1_CTX ctx; 2681 2682 SHA1Init(&ctx); 2683 2684 for (shn = 1; shn < mp->hdr.e_shnum; shn++) { 2685 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 2686 if (!(shp->sh_flags & SHF_ALLOC) || shp->sh_size == 0) 2687 continue; 2688 2689 /* 2690 * The check should ideally be shp->sh_type == SHT_NOBITS. 2691 * However, we can't do that check here as get_progbits() 2692 * resets the type. 2693 */ 2694 if (strcmp(shstrtab + shp->sh_name, ".bss") == 0) 2695 continue; 2696 #ifdef KOBJ_DEBUG 2697 if (kobj_debug & D_DEBUG) 2698 _kobj_printf(ops, 2699 "krtld: crypto_es_hash: updating hash with" 2700 " %s data size=%d\n", shstrtab + shp->sh_name, 2701 shp->sh_size); 2702 #endif 2703 ASSERT(shp->sh_addr != NULL); 2704 SHA1Update(&ctx, (const uint8_t *)shp->sh_addr, shp->sh_size); 2705 } 2706 2707 SHA1Final((uchar_t *)hash, &ctx); 2708 } 2709 2710 /* 2711 * Get the .SUNW_signature section for the module, it it exists. 2712 * 2713 * This section exists only for crypto modules. None of the 2714 * primary modules have this section currently. 2715 */ 2716 static void 2717 get_signature(struct module *mp, struct _buf *file) 2718 { 2719 char *shstrtab, *sigdata = NULL; 2720 size_t shstrlen; 2721 Shdr *shp; 2722 uint_t i; 2723 2724 if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) { 2725 _kobj_printf(ops, "krtld: get_signature: %s, ", 2726 mp->filename); 2727 _kobj_printf(ops, "corrupt e_shstrndx %u\n", 2728 mp->hdr.e_shstrndx); 2729 return; 2730 } 2731 2732 shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize); 2733 shstrlen = shp->sh_size; 2734 shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP); 2735 2736 if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) { 2737 _kobj_printf(ops, "krtld: get_signature: %s, ", 2738 mp->filename); 2739 _kobj_printf(ops, "error reading section %u\n", 2740 mp->hdr.e_shstrndx); 2741 kobj_free(shstrtab, shstrlen); 2742 return; 2743 } 2744 2745 for (i = 0; i < mp->hdr.e_shnum; i++) { 2746 shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize); 2747 if (shp->sh_size != 0 && shp->sh_name < shstrlen && 2748 strcmp(shstrtab + shp->sh_name, 2749 ELF_SIGNATURE_SECTION) == 0) { 2750 filesig_vers_t filesig_version; 2751 size_t sigsize = shp->sh_size + SHA1_DIGEST_LENGTH; 2752 sigdata = kobj_alloc(sigsize, KM_WAIT|KM_SCRATCH); 2753 2754 if (kobj_read_file(file, sigdata, shp->sh_size, 2755 shp->sh_offset) < 0) { 2756 _kobj_printf(ops, "krtld: get_signature: %s," 2757 " error reading .SUNW_signature data\n", 2758 mp->filename); 2759 kobj_free(sigdata, sigsize); 2760 kobj_free(shstrtab, shstrlen); 2761 return; 2762 } 2763 filesig_version = ((struct filesignatures *)sigdata)-> 2764 filesig_sig.filesig_version; 2765 if (!(filesig_version == FILESIG_VERSION1 || 2766 filesig_version == FILESIG_VERSION3)) { 2767 /* skip versions we don't understand */ 2768 kobj_free(sigdata, sigsize); 2769 kobj_free(shstrtab, shstrlen); 2770 return; 2771 } 2772 2773 mp->sigdata = sigdata; 2774 mp->sigsize = sigsize; 2775 break; 2776 } 2777 } 2778 2779 if (sigdata != NULL) { 2780 crypto_es_hash(mp, sigdata + shp->sh_size, shstrtab); 2781 } 2782 2783 kobj_free(shstrtab, shstrlen); 2784 } 2785 2786 static void 2787 add_dependent(struct module *mp, struct module *dep) 2788 { 2789 struct module_list *lp; 2790 2791 for (lp = mp->head; lp; lp = lp->next) { 2792 if (lp->mp == dep) 2793 return; /* already on the list */ 2794 } 2795 2796 if (lp == NULL) { 2797 lp = kobj_zalloc(sizeof (*lp), KM_WAIT); 2798 2799 lp->mp = dep; 2800 lp->next = NULL; 2801 if (mp->tail) 2802 mp->tail->next = lp; 2803 else 2804 mp->head = lp; 2805 mp->tail = lp; 2806 } 2807 } 2808 2809 static int 2810 do_dependents(struct modctl *modp, char *modname, size_t modnamelen) 2811 { 2812 struct module *mp; 2813 struct modctl *req; 2814 char *d, *p, *q; 2815 int c; 2816 char *err_modname = NULL; 2817 2818 mp = modp->mod_mp; 2819 2820 if ((p = mp->depends_on) == NULL) 2821 return (0); 2822 2823 for (;;) { 2824 /* 2825 * Skip space. 2826 */ 2827 while (*p && (*p == ' ' || *p == '\t')) 2828 p++; 2829 /* 2830 * Get module name. 2831 */ 2832 d = p; 2833 q = modname; 2834 c = 0; 2835 while (*p && *p != ' ' && *p != '\t') { 2836 if (c < modnamelen - 1) { 2837 *q++ = *p; 2838 c++; 2839 } 2840 p++; 2841 } 2842 2843 if (q == modname) 2844 break; 2845 2846 if (c == modnamelen - 1) { 2847 char *dep = kobj_alloc(p - d + 1, KM_WAIT|KM_TMP); 2848 2849 (void) strncpy(dep, d, p - d + 1); 2850 dep[p - d] = '\0'; 2851 2852 _kobj_printf(ops, "%s: dependency ", modp->mod_modname); 2853 _kobj_printf(ops, "'%s' too long ", dep); 2854 _kobj_printf(ops, "(max %d chars)\n", modnamelen); 2855 2856 kobj_free(dep, p - d + 1); 2857 2858 return (-1); 2859 } 2860 2861 *q = '\0'; 2862 if ((req = mod_load_requisite(modp, modname)) == NULL) { 2863 #ifndef KOBJ_DEBUG 2864 if (_moddebug & MODDEBUG_LOADMSG) { 2865 #endif /* KOBJ_DEBUG */ 2866 _kobj_printf(ops, 2867 "%s: unable to resolve dependency, ", 2868 modp->mod_modname); 2869 _kobj_printf(ops, "cannot load module '%s'\n", 2870 modname); 2871 #ifndef KOBJ_DEBUG 2872 } 2873 #endif /* KOBJ_DEBUG */ 2874 if (err_modname == NULL) { 2875 /* 2876 * This must be the same size as the modname 2877 * one. 2878 */ 2879 err_modname = kobj_zalloc(MODMAXNAMELEN, 2880 KM_WAIT); 2881 2882 /* 2883 * We can use strcpy() here without fearing 2884 * the NULL terminator because the size of 2885 * err_modname is the same as one of modname, 2886 * and it's filled with zeros. 2887 */ 2888 (void) strcpy(err_modname, modname); 2889 } 2890 continue; 2891 } 2892 2893 add_dependent(mp, req->mod_mp); 2894 mod_release_mod(req); 2895 2896 } 2897 2898 if (err_modname != NULL) { 2899 /* 2900 * Copy the first module name where you detect an error to keep 2901 * its behavior the same as before. 2902 * This way keeps minimizing the memory use for error 2903 * modules, and this might be important at boot time because 2904 * the memory usage is a crucial factor for booting in most 2905 * cases. You can expect more verbose messages when using 2906 * a debug kernel or setting a bit in moddebug. 2907 */ 2908 bzero(modname, MODMAXNAMELEN); 2909 (void) strcpy(modname, err_modname); 2910 kobj_free(err_modname, MODMAXNAMELEN); 2911 return (-1); 2912 } 2913 2914 return (0); 2915 } 2916 2917 static int 2918 do_common(struct module *mp) 2919 { 2920 int err; 2921 2922 /* 2923 * first time through, assign all symbols defined in other 2924 * modules, and count up how much common space will be needed 2925 * (bss_size and bss_align) 2926 */ 2927 if ((err = do_symbols(mp, 0)) < 0) 2928 return (err); 2929 /* 2930 * increase bss_size by the maximum delta that could be 2931 * computed by the ALIGN below 2932 */ 2933 mp->bss_size += mp->bss_align; 2934 if (mp->bss_size) { 2935 if (standalone) 2936 mp->bss = (uintptr_t)kobj_segbrk(&_edata, mp->bss_size, 2937 MINALIGN, 0); 2938 else 2939 mp->bss = (uintptr_t)vmem_alloc(data_arena, 2940 mp->bss_size, VM_SLEEP | VM_BESTFIT); 2941 bzero((void *)mp->bss, mp->bss_size); 2942 /* now assign addresses to all common symbols */ 2943 if ((err = do_symbols(mp, ALIGN(mp->bss, mp->bss_align))) < 0) 2944 return (err); 2945 } 2946 return (0); 2947 } 2948 2949 static int 2950 do_symbols(struct module *mp, Elf64_Addr bss_base) 2951 { 2952 int bss_align; 2953 uintptr_t bss_ptr; 2954 int err; 2955 int i; 2956 Sym *sp, *sp1; 2957 char *name; 2958 int assign; 2959 int resolved = 1; 2960 2961 /* 2962 * Nothing left to do (optimization). 2963 */ 2964 if (mp->flags & KOBJ_RESOLVED) 2965 return (0); 2966 2967 assign = (bss_base) ? 1 : 0; 2968 bss_ptr = bss_base; 2969 bss_align = 0; 2970 err = 0; 2971 2972 for (i = 1; i < mp->nsyms; i++) { 2973 sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * i); 2974 /* 2975 * we know that st_name is in bounds, since get_sections 2976 * has already checked all of the symbols 2977 */ 2978 name = mp->strings + sp->st_name; 2979 if (sp->st_shndx != SHN_UNDEF && sp->st_shndx != SHN_COMMON) 2980 continue; 2981 #if defined(__sparc) 2982 /* 2983 * Register symbols are ignored in the kernel 2984 */ 2985 if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER) { 2986 if (*name != '\0') { 2987 _kobj_printf(ops, "%s: named REGISTER symbol ", 2988 mp->filename); 2989 _kobj_printf(ops, "not supported '%s'\n", 2990 name); 2991 err = DOSYM_UNDEF; 2992 } 2993 continue; 2994 } 2995 #endif /* __sparc */ 2996 /* 2997 * TLS symbols are ignored in the kernel 2998 */ 2999 if (ELF_ST_TYPE(sp->st_info) == STT_TLS) { 3000 _kobj_printf(ops, "%s: TLS symbol ", 3001 mp->filename); 3002 _kobj_printf(ops, "not supported '%s'\n", 3003 name); 3004 err = DOSYM_UNDEF; 3005 continue; 3006 } 3007 3008 if (ELF_ST_BIND(sp->st_info) != STB_LOCAL) { 3009 if ((sp1 = kobj_lookup_all(mp, name, 0)) != NULL) { 3010 sp->st_shndx = SHN_ABS; 3011 sp->st_value = sp1->st_value; 3012 continue; 3013 } 3014 } 3015 3016 if (sp->st_shndx == SHN_UNDEF) { 3017 resolved = 0; 3018 3019 if (strncmp(name, sdt_prefix, strlen(sdt_prefix)) == 0) 3020 continue; 3021 3022 /* 3023 * If it's not a weak reference and it's 3024 * not a primary object, it's an error. 3025 * (Primary objects may take more than 3026 * one pass to resolve) 3027 */ 3028 if (!(mp->flags & KOBJ_PRIM) && 3029 ELF_ST_BIND(sp->st_info) != STB_WEAK) { 3030 _kobj_printf(ops, "%s: undefined symbol", 3031 mp->filename); 3032 _kobj_printf(ops, " '%s'\n", name); 3033 /* 3034 * Try to determine whether this symbol 3035 * represents a dependency on obsolete 3036 * unsafe driver support. This is just 3037 * to make the warning more informative. 3038 */ 3039 if (strcmp(name, "sleep") == 0 || 3040 strcmp(name, "unsleep") == 0 || 3041 strcmp(name, "wakeup") == 0 || 3042 strcmp(name, "bsd_compat_ioctl") == 0 || 3043 strcmp(name, "unsafe_driver") == 0 || 3044 strncmp(name, "spl", 3) == 0 || 3045 strncmp(name, "i_ddi_spl", 9) == 0) 3046 err = DOSYM_UNSAFE; 3047 if (err == 0) 3048 err = DOSYM_UNDEF; 3049 } 3050 continue; 3051 } 3052 /* 3053 * It's a common symbol - st_value is the 3054 * required alignment. 3055 */ 3056 if (sp->st_value > bss_align) 3057 bss_align = sp->st_value; 3058 bss_ptr = ALIGN(bss_ptr, sp->st_value); 3059 if (assign) { 3060 sp->st_shndx = SHN_ABS; 3061 sp->st_value = bss_ptr; 3062 } 3063 bss_ptr += sp->st_size; 3064 } 3065 if (err) 3066 return (err); 3067 if (assign == 0 && mp->bss == NULL) { 3068 mp->bss_align = bss_align; 3069 mp->bss_size = bss_ptr; 3070 } else if (resolved) { 3071 mp->flags |= KOBJ_RESOLVED; 3072 } 3073 3074 return (0); 3075 } 3076 3077 uint_t 3078 kobj_hash_name(const char *p) 3079 { 3080 uint_t g; 3081 uint_t hval; 3082 3083 hval = 0; 3084 while (*p) { 3085 hval = (hval << 4) + *p++; 3086 if ((g = (hval & 0xf0000000)) != 0) 3087 hval ^= g >> 24; 3088 hval &= ~g; 3089 } 3090 return (hval); 3091 } 3092 3093 /* look for name in all modules */ 3094 uintptr_t 3095 kobj_getsymvalue(char *name, int kernelonly) 3096 { 3097 Sym *sp; 3098 struct modctl *modp; 3099 struct module *mp; 3100 uintptr_t value = 0; 3101 3102 if ((sp = kobj_lookup_kernel(name)) != NULL) 3103 return ((uintptr_t)sp->st_value); 3104 3105 if (kernelonly) 3106 return (0); /* didn't find it in the kernel so give up */ 3107 3108 mutex_enter(&mod_lock); 3109 modp = &modules; 3110 do { 3111 mp = (struct module *)modp->mod_mp; 3112 if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded && 3113 (sp = lookup_one(mp, name))) { 3114 value = (uintptr_t)sp->st_value; 3115 break; 3116 } 3117 } while ((modp = modp->mod_next) != &modules); 3118 mutex_exit(&mod_lock); 3119 return (value); 3120 } 3121 3122 /* look for a symbol near value. */ 3123 char * 3124 kobj_getsymname(uintptr_t value, ulong_t *offset) 3125 { 3126 char *name = NULL; 3127 struct modctl *modp; 3128 3129 struct modctl_list *lp; 3130 struct module *mp; 3131 3132 /* 3133 * Loop through the primary kernel modules. 3134 */ 3135 for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) { 3136 mp = mod(lp); 3137 3138 if ((name = kobj_searchsym(mp, value, offset)) != NULL) 3139 return (name); 3140 } 3141 3142 mutex_enter(&mod_lock); 3143 modp = &modules; 3144 do { 3145 mp = (struct module *)modp->mod_mp; 3146 if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded && 3147 (name = kobj_searchsym(mp, value, offset))) 3148 break; 3149 } while ((modp = modp->mod_next) != &modules); 3150 mutex_exit(&mod_lock); 3151 return (name); 3152 } 3153 3154 /* return address of symbol and size */ 3155 3156 uintptr_t 3157 kobj_getelfsym(char *name, void *mp, int *size) 3158 { 3159 Sym *sp; 3160 3161 if (mp == NULL) 3162 sp = kobj_lookup_kernel(name); 3163 else 3164 sp = lookup_one(mp, name); 3165 3166 if (sp == NULL) 3167 return (0); 3168 3169 *size = (int)sp->st_size; 3170 return ((uintptr_t)sp->st_value); 3171 } 3172 3173 uintptr_t 3174 kobj_lookup(struct module *mod, const char *name) 3175 { 3176 Sym *sp; 3177 3178 sp = lookup_one(mod, name); 3179 3180 if (sp == NULL) 3181 return (0); 3182 3183 return ((uintptr_t)sp->st_value); 3184 } 3185 3186 char * 3187 kobj_searchsym(struct module *mp, uintptr_t value, ulong_t *offset) 3188 { 3189 Sym *symtabptr; 3190 char *strtabptr; 3191 int symnum; 3192 Sym *sym; 3193 Sym *cursym; 3194 uintptr_t curval; 3195 3196 *offset = (ulong_t)-1l; /* assume not found */ 3197 cursym = NULL; 3198 3199 if (kobj_addrcheck(mp, (void *)value) != 0) 3200 return (NULL); /* not in this module */ 3201 3202 strtabptr = mp->strings; 3203 symtabptr = (Sym *)mp->symtbl; 3204 3205 /* 3206 * Scan the module's symbol table for a symbol <= value 3207 */ 3208 for (symnum = 1, sym = symtabptr + 1; 3209 symnum < mp->nsyms; symnum++, sym = (Sym *) 3210 ((uintptr_t)sym + mp->symhdr->sh_entsize)) { 3211 if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL) { 3212 if (ELF_ST_BIND(sym->st_info) != STB_LOCAL) 3213 continue; 3214 if (ELF_ST_TYPE(sym->st_info) != STT_OBJECT && 3215 ELF_ST_TYPE(sym->st_info) != STT_FUNC) 3216 continue; 3217 } 3218 3219 curval = (uintptr_t)sym->st_value; 3220 3221 if (curval > value) 3222 continue; 3223 3224 /* 3225 * If one or both are functions... 3226 */ 3227 if (ELF_ST_TYPE(sym->st_info) == STT_FUNC || (cursym != NULL && 3228 ELF_ST_TYPE(cursym->st_info) == STT_FUNC)) { 3229 /* Ignore if the address is out of the bounds */ 3230 if (value - sym->st_value >= sym->st_size) 3231 continue; 3232 3233 if (cursym != NULL && 3234 ELF_ST_TYPE(cursym->st_info) == STT_FUNC) { 3235 /* Prefer the function to the non-function */ 3236 if (ELF_ST_TYPE(sym->st_info) != STT_FUNC) 3237 continue; 3238 3239 /* Prefer the larger of the two functions */ 3240 if (sym->st_size <= cursym->st_size) 3241 continue; 3242 } 3243 } else if (value - curval >= *offset) { 3244 continue; 3245 } 3246 3247 *offset = (ulong_t)(value - curval); 3248 cursym = sym; 3249 } 3250 if (cursym == NULL) 3251 return (NULL); 3252 3253 return (strtabptr + cursym->st_name); 3254 } 3255 3256 Sym * 3257 kobj_lookup_all(struct module *mp, char *name, int include_self) 3258 { 3259 Sym *sp; 3260 struct module_list *mlp; 3261 struct modctl_list *clp; 3262 struct module *mmp; 3263 3264 if (include_self && (sp = lookup_one(mp, name)) != NULL) 3265 return (sp); 3266 3267 for (mlp = mp->head; mlp; mlp = mlp->next) { 3268 if ((sp = lookup_one(mlp->mp, name)) != NULL && 3269 ELF_ST_BIND(sp->st_info) != STB_LOCAL) 3270 return (sp); 3271 } 3272 3273 /* 3274 * Loop through the primary kernel modules. 3275 */ 3276 for (clp = kobj_lm_lookup(KOBJ_LM_PRIMARY); clp; clp = clp->modl_next) { 3277 mmp = mod(clp); 3278 3279 if (mmp == NULL || mp == mmp) 3280 continue; 3281 3282 if ((sp = lookup_one(mmp, name)) != NULL && 3283 ELF_ST_BIND(sp->st_info) != STB_LOCAL) 3284 return (sp); 3285 } 3286 return (NULL); 3287 } 3288 3289 Sym * 3290 kobj_lookup_kernel(const char *name) 3291 { 3292 struct modctl_list *lp; 3293 struct module *mp; 3294 Sym *sp; 3295 3296 /* 3297 * Loop through the primary kernel modules. 3298 */ 3299 for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) { 3300 mp = mod(lp); 3301 3302 if (mp == NULL) 3303 continue; 3304 3305 if ((sp = lookup_one(mp, name)) != NULL) 3306 return (sp); 3307 } 3308 return (NULL); 3309 } 3310 3311 static Sym * 3312 lookup_one(struct module *mp, const char *name) 3313 { 3314 symid_t *ip; 3315 char *name1; 3316 Sym *sp; 3317 3318 for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip; 3319 ip = &mp->chains[*ip]) { 3320 sp = (Sym *)(mp->symtbl + 3321 mp->symhdr->sh_entsize * *ip); 3322 name1 = mp->strings + sp->st_name; 3323 if (strcmp(name, name1) == 0 && 3324 ELF_ST_TYPE(sp->st_info) != STT_FILE && 3325 sp->st_shndx != SHN_UNDEF && 3326 sp->st_shndx != SHN_COMMON) 3327 return (sp); 3328 } 3329 return (NULL); 3330 } 3331 3332 /* 3333 * Lookup a given symbol pointer in the module's symbol hash. If the symbol 3334 * is hashed, return the symbol pointer; otherwise return NULL. 3335 */ 3336 static Sym * 3337 sym_lookup(struct module *mp, Sym *ksp) 3338 { 3339 char *name = mp->strings + ksp->st_name; 3340 symid_t *ip; 3341 Sym *sp; 3342 3343 for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip; 3344 ip = &mp->chains[*ip]) { 3345 sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * *ip); 3346 if (sp == ksp) 3347 return (ksp); 3348 } 3349 return (NULL); 3350 } 3351 3352 static void 3353 sym_insert(struct module *mp, char *name, symid_t index) 3354 { 3355 symid_t *ip; 3356 3357 #ifdef KOBJ_DEBUG 3358 if (kobj_debug & D_SYMBOLS) { 3359 static struct module *lastmp = NULL; 3360 Sym *sp; 3361 if (lastmp != mp) { 3362 _kobj_printf(ops, 3363 "krtld: symbol entry: file=%s\n", 3364 mp->filename); 3365 _kobj_printf(ops, 3366 "krtld:\tsymndx\tvalue\t\t" 3367 "symbol name\n"); 3368 lastmp = mp; 3369 } 3370 sp = (Sym *)(mp->symtbl + 3371 index * mp->symhdr->sh_entsize); 3372 _kobj_printf(ops, "krtld:\t[%3d]", index); 3373 _kobj_printf(ops, "\t0x%lx", sp->st_value); 3374 _kobj_printf(ops, "\t%s\n", name); 3375 } 3376 3377 #endif 3378 for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip; 3379 ip = &mp->chains[*ip]) { 3380 ; 3381 } 3382 *ip = index; 3383 } 3384 3385 struct modctl * 3386 kobj_boot_mod_lookup(const char *modname) 3387 { 3388 struct modctl *mctl = kobj_modules; 3389 3390 do { 3391 if (strcmp(modname, mctl->mod_modname) == 0) 3392 return (mctl); 3393 } while ((mctl = mctl->mod_next) != kobj_modules); 3394 3395 return (NULL); 3396 } 3397 3398 /* 3399 * Determine if the module exists. 3400 */ 3401 int 3402 kobj_path_exists(char *name, int use_path) 3403 { 3404 struct _buf *file; 3405 3406 file = kobj_open_path(name, use_path, 1); 3407 #ifdef MODDIR_SUFFIX 3408 if (file == (struct _buf *)-1) 3409 file = kobj_open_path(name, use_path, 0); 3410 #endif /* MODDIR_SUFFIX */ 3411 if (file == (struct _buf *)-1) 3412 return (0); 3413 kobj_close_file(file); 3414 return (1); 3415 } 3416 3417 /* 3418 * fullname is dynamically allocated to be able to hold the 3419 * maximum size string that can be constructed from name. 3420 * path is exactly like the shell PATH variable. 3421 */ 3422 struct _buf * 3423 kobj_open_path(char *name, int use_path, int use_moddir_suffix) 3424 { 3425 char *p, *q; 3426 char *pathp; 3427 char *pathpsave; 3428 char *fullname; 3429 int maxpathlen; 3430 struct _buf *file; 3431 3432 #if !defined(MODDIR_SUFFIX) 3433 use_moddir_suffix = B_FALSE; 3434 #endif 3435 3436 if (!use_path) 3437 pathp = ""; /* use name as specified */ 3438 else 3439 pathp = kobj_module_path; 3440 /* use configured default path */ 3441 3442 pathpsave = pathp; /* keep this for error reporting */ 3443 3444 /* 3445 * Allocate enough space for the largest possible fullname. 3446 * since path is of the form <directory> : <directory> : ... 3447 * we're potentially allocating a little more than we need to 3448 * but we'll allocate the exact amount when we find the right directory. 3449 * (The + 3 below is one for NULL terminator and one for the '/' 3450 * we might have to add at the beginning of path and one for 3451 * the '/' between path and name.) 3452 */ 3453 maxpathlen = strlen(pathp) + strlen(name) + 3; 3454 /* sizeof includes null */ 3455 maxpathlen += sizeof (slash_moddir_suffix_slash) - 1; 3456 fullname = kobj_zalloc(maxpathlen, KM_WAIT); 3457 3458 for (;;) { 3459 p = fullname; 3460 if (*pathp != '\0' && *pathp != '/') 3461 *p++ = '/'; /* path must start with '/' */ 3462 while (*pathp && *pathp != ':' && *pathp != ' ') 3463 *p++ = *pathp++; 3464 if (p != fullname && p[-1] != '/') 3465 *p++ = '/'; 3466 if (use_moddir_suffix) { 3467 char *b = basename(name); 3468 char *s; 3469 3470 /* copy everything up to the base name */ 3471 q = name; 3472 while (q != b && *q) 3473 *p++ = *q++; 3474 s = slash_moddir_suffix_slash; 3475 while (*s) 3476 *p++ = *s++; 3477 /* copy the rest */ 3478 while (*b) 3479 *p++ = *b++; 3480 } else { 3481 q = name; 3482 while (*q) 3483 *p++ = *q++; 3484 } 3485 *p = 0; 3486 if ((file = kobj_open_file(fullname)) != (struct _buf *)-1) { 3487 kobj_free(fullname, maxpathlen); 3488 return (file); 3489 } 3490 if (*pathp == 0) 3491 break; 3492 pathp++; 3493 } 3494 kobj_free(fullname, maxpathlen); 3495 if (_moddebug & MODDEBUG_ERRMSG) { 3496 _kobj_printf(ops, "can't open %s,", name); 3497 _kobj_printf(ops, " path is %s\n", pathpsave); 3498 } 3499 return ((struct _buf *)-1); 3500 } 3501 3502 intptr_t 3503 kobj_open(char *filename) 3504 { 3505 struct vnode *vp; 3506 int fd; 3507 3508 if (_modrootloaded) { 3509 struct kobjopen_tctl *ltp = kobjopen_alloc(filename); 3510 int Errno; 3511 3512 /* 3513 * Hand off the open to a thread who has a 3514 * stack size capable handling the request. 3515 */ 3516 if (curthread != &t0) { 3517 (void) thread_create(NULL, DEFAULTSTKSZ * 2, 3518 kobjopen_thread, ltp, 0, &p0, TS_RUN, maxclsyspri); 3519 sema_p(<p->sema); 3520 Errno = ltp->Errno; 3521 vp = ltp->vp; 3522 } else { 3523 /* 3524 * 1098067: module creds should not be those of the 3525 * caller 3526 */ 3527 cred_t *saved_cred = curthread->t_cred; 3528 curthread->t_cred = kcred; 3529 Errno = vn_openat(filename, UIO_SYSSPACE, FREAD, 0, &vp, 3530 0, 0, rootdir, -1); 3531 curthread->t_cred = saved_cred; 3532 } 3533 kobjopen_free(ltp); 3534 3535 if (Errno) { 3536 if (_moddebug & MODDEBUG_ERRMSG) { 3537 _kobj_printf(ops, 3538 "kobj_open: vn_open of %s fails, ", 3539 filename); 3540 _kobj_printf(ops, "Errno = %d\n", Errno); 3541 } 3542 return (-1); 3543 } else { 3544 if (_moddebug & MODDEBUG_ERRMSG) { 3545 _kobj_printf(ops, "kobj_open: '%s'", filename); 3546 _kobj_printf(ops, " vp = %p\n", vp); 3547 } 3548 return ((intptr_t)vp); 3549 } 3550 } else { 3551 fd = kobj_boot_open(filename, 0); 3552 3553 if (_moddebug & MODDEBUG_ERRMSG) { 3554 if (fd < 0) 3555 _kobj_printf(ops, 3556 "kobj_open: can't open %s\n", filename); 3557 else { 3558 _kobj_printf(ops, "kobj_open: '%s'", filename); 3559 _kobj_printf(ops, " descr = 0x%x\n", fd); 3560 } 3561 } 3562 return ((intptr_t)fd); 3563 } 3564 } 3565 3566 /* 3567 * Calls to kobj_open() are handled off to this routine as a separate thread. 3568 */ 3569 static void 3570 kobjopen_thread(struct kobjopen_tctl *ltp) 3571 { 3572 kmutex_t cpr_lk; 3573 callb_cpr_t cpr_i; 3574 3575 mutex_init(&cpr_lk, NULL, MUTEX_DEFAULT, NULL); 3576 CALLB_CPR_INIT(&cpr_i, &cpr_lk, callb_generic_cpr, "kobjopen"); 3577 ltp->Errno = vn_open(ltp->name, UIO_SYSSPACE, FREAD, 0, &(ltp->vp), 3578 0, 0); 3579 sema_v(<p->sema); 3580 mutex_enter(&cpr_lk); 3581 CALLB_CPR_EXIT(&cpr_i); 3582 mutex_destroy(&cpr_lk); 3583 thread_exit(); 3584 } 3585 3586 /* 3587 * allocate and initialize a kobjopen thread structure 3588 */ 3589 static struct kobjopen_tctl * 3590 kobjopen_alloc(char *filename) 3591 { 3592 struct kobjopen_tctl *ltp = kmem_zalloc(sizeof (*ltp), KM_SLEEP); 3593 3594 ASSERT(filename != NULL); 3595 3596 ltp->name = kmem_alloc(strlen(filename) + 1, KM_SLEEP); 3597 bcopy(filename, ltp->name, strlen(filename) + 1); 3598 sema_init(<p->sema, 0, NULL, SEMA_DEFAULT, NULL); 3599 return (ltp); 3600 } 3601 3602 /* 3603 * free a kobjopen thread control structure 3604 */ 3605 static void 3606 kobjopen_free(struct kobjopen_tctl *ltp) 3607 { 3608 sema_destroy(<p->sema); 3609 kmem_free(ltp->name, strlen(ltp->name) + 1); 3610 kmem_free(ltp, sizeof (*ltp)); 3611 } 3612 3613 int 3614 kobj_read(intptr_t descr, char *buf, uint_t size, uint_t offset) 3615 { 3616 int stat; 3617 ssize_t resid; 3618 3619 if (_modrootloaded) { 3620 if ((stat = vn_rdwr(UIO_READ, (struct vnode *)descr, buf, size, 3621 (offset_t)offset, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), 3622 &resid)) != 0) { 3623 _kobj_printf(ops, 3624 "vn_rdwr failed with error 0x%x\n", stat); 3625 return (-1); 3626 } 3627 return (size - resid); 3628 } else { 3629 int count = 0; 3630 3631 if (kobj_boot_seek((int)descr, (off_t)0, offset) != 0) { 3632 _kobj_printf(ops, 3633 "kobj_read: seek 0x%x failed\n", offset); 3634 return (-1); 3635 } 3636 3637 count = kobj_boot_read((int)descr, buf, size); 3638 if (count < size) { 3639 if (_moddebug & MODDEBUG_ERRMSG) { 3640 _kobj_printf(ops, 3641 "kobj_read: req %d bytes, ", size); 3642 _kobj_printf(ops, "got %d\n", count); 3643 } 3644 } 3645 return (count); 3646 } 3647 } 3648 3649 void 3650 kobj_close(intptr_t descr) 3651 { 3652 if (_moddebug & MODDEBUG_ERRMSG) 3653 _kobj_printf(ops, "kobj_close: 0x%lx\n", descr); 3654 3655 if (_modrootloaded) { 3656 struct vnode *vp = (struct vnode *)descr; 3657 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 3658 VN_RELE(vp); 3659 } else 3660 (void) kobj_boot_close((int)descr); 3661 } 3662 3663 int 3664 kobj_fstat(intptr_t descr, struct bootstat *buf) 3665 { 3666 if (buf == NULL) 3667 return (-1); 3668 3669 if (_modrootloaded) { 3670 vattr_t vattr; 3671 struct vnode *vp = (struct vnode *)descr; 3672 if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0) 3673 return (-1); 3674 3675 /* 3676 * The vattr and bootstat structures are similar, but not 3677 * identical. We do our best to fill in the bootstat structure 3678 * from the contents of vattr (transfering only the ones that 3679 * are obvious. 3680 */ 3681 3682 buf->st_mode = (uint32_t)vattr.va_mode; 3683 buf->st_nlink = (uint32_t)vattr.va_nlink; 3684 buf->st_uid = (int32_t)vattr.va_uid; 3685 buf->st_gid = (int32_t)vattr.va_gid; 3686 buf->st_rdev = (uint64_t)vattr.va_rdev; 3687 buf->st_size = (uint64_t)vattr.va_size; 3688 buf->st_atim.tv_sec = (int64_t)vattr.va_atime.tv_sec; 3689 buf->st_atim.tv_nsec = (int64_t)vattr.va_atime.tv_nsec; 3690 buf->st_mtim.tv_sec = (int64_t)vattr.va_mtime.tv_sec; 3691 buf->st_mtim.tv_nsec = (int64_t)vattr.va_mtime.tv_nsec; 3692 buf->st_ctim.tv_sec = (int64_t)vattr.va_ctime.tv_sec; 3693 buf->st_ctim.tv_nsec = (int64_t)vattr.va_ctime.tv_nsec; 3694 buf->st_blksize = (int32_t)vattr.va_blksize; 3695 buf->st_blocks = (int64_t)vattr.va_nblocks; 3696 3697 return (0); 3698 } 3699 3700 return (kobj_boot_fstat((int)descr, buf)); 3701 } 3702 3703 3704 struct _buf * 3705 kobj_open_file(char *name) 3706 { 3707 struct _buf *file; 3708 struct compinfo cbuf; 3709 intptr_t fd; 3710 3711 if ((fd = kobj_open(name)) == -1) { 3712 return ((struct _buf *)-1); 3713 } 3714 3715 file = kobj_zalloc(sizeof (struct _buf), KM_WAIT|KM_TMP); 3716 file->_fd = fd; 3717 file->_name = kobj_alloc(strlen(name)+1, KM_WAIT|KM_TMP); 3718 file->_cnt = file->_size = file->_off = 0; 3719 file->_ln = 1; 3720 file->_ptr = file->_base; 3721 (void) strcpy(file->_name, name); 3722 3723 /* 3724 * Before root is mounted, we must check 3725 * for a compressed file and do our own 3726 * buffering. 3727 */ 3728 if (_modrootloaded) { 3729 file->_base = kobj_zalloc(MAXBSIZE, KM_WAIT); 3730 file->_bsize = MAXBSIZE; 3731 } else { 3732 if (kobj_boot_compinfo(fd, &cbuf) != 0) { 3733 kobj_close_file(file); 3734 return ((struct _buf *)-1); 3735 } 3736 file->_iscmp = cbuf.iscmp; 3737 if (file->_iscmp) { 3738 if (kobj_comp_setup(file, &cbuf) != 0) { 3739 kobj_close_file(file); 3740 return ((struct _buf *)-1); 3741 } 3742 } else { 3743 file->_base = kobj_zalloc(cbuf.blksize, KM_WAIT|KM_TMP); 3744 file->_bsize = cbuf.blksize; 3745 } 3746 } 3747 return (file); 3748 } 3749 3750 static int 3751 kobj_comp_setup(struct _buf *file, struct compinfo *cip) 3752 { 3753 struct comphdr *hdr; 3754 3755 /* 3756 * read the compressed image into memory, 3757 * so we can deompress from there 3758 */ 3759 file->_dsize = cip->fsize; 3760 file->_dbuf = kobj_alloc(cip->fsize, KM_WAIT|KM_TMP); 3761 if (kobj_read(file->_fd, file->_dbuf, cip->fsize, 0) != cip->fsize) { 3762 kobj_free(file->_dbuf, cip->fsize); 3763 return (-1); 3764 } 3765 3766 hdr = kobj_comphdr(file); 3767 if (hdr->ch_magic != CH_MAGIC || hdr->ch_version != CH_VERSION || 3768 hdr->ch_algorithm != CH_ALG_ZLIB || hdr->ch_fsize == 0 || 3769 (hdr->ch_blksize & (hdr->ch_blksize - 1)) != 0) { 3770 kobj_free(file->_dbuf, cip->fsize); 3771 return (-1); 3772 } 3773 file->_base = kobj_alloc(hdr->ch_blksize, KM_WAIT|KM_TMP); 3774 file->_bsize = hdr->ch_blksize; 3775 return (0); 3776 } 3777 3778 void 3779 kobj_close_file(struct _buf *file) 3780 { 3781 kobj_close(file->_fd); 3782 if (file->_base != NULL) 3783 kobj_free(file->_base, file->_bsize); 3784 if (file->_dbuf != NULL) 3785 kobj_free(file->_dbuf, file->_dsize); 3786 kobj_free(file->_name, strlen(file->_name)+1); 3787 kobj_free(file, sizeof (struct _buf)); 3788 } 3789 3790 int 3791 kobj_read_file(struct _buf *file, char *buf, uint_t size, uint_t off) 3792 { 3793 int b_size, c_size; 3794 int b_off; /* Offset into buffer for start of bcopy */ 3795 int count = 0; 3796 int page_addr; 3797 3798 if (_moddebug & MODDEBUG_ERRMSG) { 3799 _kobj_printf(ops, "kobj_read_file: size=%x,", size); 3800 _kobj_printf(ops, " offset=%x at", off); 3801 _kobj_printf(ops, " buf=%x\n", buf); 3802 } 3803 3804 while (size) { 3805 page_addr = F_PAGE(file, off); 3806 b_size = file->_size; 3807 /* 3808 * If we have the filesystem page the caller's referring to 3809 * and we have something in the buffer, 3810 * satisfy as much of the request from the buffer as we can. 3811 */ 3812 if (page_addr == file->_off && b_size > 0) { 3813 b_off = B_OFFSET(file, off); 3814 c_size = b_size - b_off; 3815 /* 3816 * If there's nothing to copy, we're at EOF. 3817 */ 3818 if (c_size <= 0) 3819 break; 3820 if (c_size > size) 3821 c_size = size; 3822 if (buf) { 3823 if (_moddebug & MODDEBUG_ERRMSG) 3824 _kobj_printf(ops, "copying %x bytes\n", 3825 c_size); 3826 bcopy(file->_base+b_off, buf, c_size); 3827 size -= c_size; 3828 off += c_size; 3829 buf += c_size; 3830 count += c_size; 3831 } else { 3832 _kobj_printf(ops, "kobj_read: system error"); 3833 count = -1; 3834 break; 3835 } 3836 } else { 3837 /* 3838 * If the caller's offset is page aligned and 3839 * the caller want's at least a filesystem page and 3840 * the caller provided a buffer, 3841 * read directly into the caller's buffer. 3842 */ 3843 if (page_addr == off && 3844 (c_size = F_BLKS(file, size)) && buf) { 3845 c_size = kobj_read_blks(file, buf, c_size, 3846 page_addr); 3847 if (c_size < 0) { 3848 count = -1; 3849 break; 3850 } 3851 count += c_size; 3852 if (c_size != F_BLKS(file, size)) 3853 break; 3854 size -= c_size; 3855 off += c_size; 3856 buf += c_size; 3857 /* 3858 * Otherwise, read into our buffer and copy next time 3859 * around the loop. 3860 */ 3861 } else { 3862 file->_off = page_addr; 3863 c_size = kobj_read_blks(file, file->_base, 3864 file->_bsize, page_addr); 3865 file->_ptr = file->_base; 3866 file->_cnt = c_size; 3867 file->_size = c_size; 3868 /* 3869 * If a _filbuf call or nothing read, break. 3870 */ 3871 if (buf == NULL || c_size <= 0) { 3872 count = c_size; 3873 break; 3874 } 3875 } 3876 if (_moddebug & MODDEBUG_ERRMSG) 3877 _kobj_printf(ops, "read %x bytes\n", c_size); 3878 } 3879 } 3880 if (_moddebug & MODDEBUG_ERRMSG) 3881 _kobj_printf(ops, "count = %x\n", count); 3882 3883 return (count); 3884 } 3885 3886 static int 3887 kobj_read_blks(struct _buf *file, char *buf, uint_t size, uint_t off) 3888 { 3889 int ret; 3890 3891 ASSERT(B_OFFSET(file, size) == 0 && B_OFFSET(file, off) == 0); 3892 if (file->_iscmp) { 3893 uint_t blks; 3894 int nret; 3895 3896 ret = 0; 3897 for (blks = size / file->_bsize; blks != 0; blks--) { 3898 nret = kobj_uncomp_blk(file, buf, off); 3899 if (nret == -1) 3900 return (-1); 3901 buf += nret; 3902 off += nret; 3903 ret += nret; 3904 if (nret < file->_bsize) 3905 break; 3906 } 3907 } else 3908 ret = kobj_read(file->_fd, buf, size, off); 3909 return (ret); 3910 } 3911 3912 static int 3913 kobj_uncomp_blk(struct _buf *file, char *buf, uint_t off) 3914 { 3915 struct comphdr *hdr = kobj_comphdr(file); 3916 ulong_t dlen, slen; 3917 caddr_t src; 3918 int i; 3919 3920 dlen = file->_bsize; 3921 i = off / file->_bsize; 3922 src = file->_dbuf + hdr->ch_blkmap[i]; 3923 if (i == hdr->ch_fsize / file->_bsize) 3924 slen = file->_dsize - hdr->ch_blkmap[i]; 3925 else 3926 slen = hdr->ch_blkmap[i + 1] - hdr->ch_blkmap[i]; 3927 if (z_uncompress(buf, &dlen, src, slen) != Z_OK) 3928 return (-1); 3929 return (dlen); 3930 } 3931 3932 int 3933 kobj_filbuf(struct _buf *f) 3934 { 3935 if (kobj_read_file(f, NULL, f->_bsize, f->_off + f->_size) > 0) 3936 return (kobj_getc(f)); 3937 return (-1); 3938 } 3939 3940 void 3941 kobj_free(void *address, size_t size) 3942 { 3943 if (standalone) 3944 return; 3945 3946 kmem_free(address, size); 3947 kobj_stat.nfree_calls++; 3948 kobj_stat.nfree += size; 3949 } 3950 3951 void * 3952 kobj_zalloc(size_t size, int flag) 3953 { 3954 void *v; 3955 3956 if ((v = kobj_alloc(size, flag)) != 0) { 3957 bzero(v, size); 3958 } 3959 3960 return (v); 3961 } 3962 3963 void * 3964 kobj_alloc(size_t size, int flag) 3965 { 3966 /* 3967 * If we are running standalone in the 3968 * linker, we ask boot for memory. 3969 * Either it's temporary memory that we lose 3970 * once boot is mapped out or we allocate it 3971 * permanently using the dynamic data segment. 3972 */ 3973 if (standalone) { 3974 #if defined(_OBP) 3975 if (flag & (KM_TMP | KM_SCRATCH)) 3976 return (bop_temp_alloc(size, MINALIGN)); 3977 #else 3978 if (flag & (KM_TMP | KM_SCRATCH)) 3979 return (BOP_ALLOC(ops, 0, size, MINALIGN)); 3980 #endif 3981 return (kobj_segbrk(&_edata, size, MINALIGN, 0)); 3982 } 3983 3984 kobj_stat.nalloc_calls++; 3985 kobj_stat.nalloc += size; 3986 3987 return (kmem_alloc(size, (flag & KM_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)); 3988 } 3989 3990 /* 3991 * Allow the "mod" system to sync up with the work 3992 * already done by kobj during the initial loading 3993 * of the kernel. This also gives us a chance 3994 * to reallocate memory that belongs to boot. 3995 */ 3996 void 3997 kobj_sync(void) 3998 { 3999 struct modctl_list *lp, **lpp; 4000 4001 /* 4002 * The module path can be set in /etc/system via 'moddir' commands 4003 */ 4004 if (default_path != NULL) 4005 kobj_module_path = default_path; 4006 else 4007 default_path = kobj_module_path; 4008 4009 ksyms_arena = vmem_create("ksyms", NULL, 0, sizeof (uint64_t), 4010 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 4011 4012 ctf_arena = vmem_create("ctf", NULL, 0, sizeof (uint_t), 4013 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 4014 4015 /* 4016 * Move symbol tables from boot memory to ksyms_arena. 4017 */ 4018 for (lpp = kobj_linkmaps; *lpp != NULL; lpp++) { 4019 for (lp = *lpp; lp != NULL; lp = lp->modl_next) 4020 kobj_export_module(mod(lp)); 4021 } 4022 } 4023 4024 caddr_t 4025 kobj_segbrk(caddr_t *spp, size_t size, size_t align, caddr_t limit) 4026 { 4027 uintptr_t va, pva; 4028 size_t alloc_pgsz = kobj_mmu_pagesize; 4029 size_t alloc_align = BO_NO_ALIGN; 4030 size_t alloc_size; 4031 4032 /* 4033 * If we are using "large" mappings for the kernel, 4034 * request aligned memory from boot using the 4035 * "large" pagesize. 4036 */ 4037 if (lg_pagesize) { 4038 alloc_align = lg_pagesize; 4039 alloc_pgsz = lg_pagesize; 4040 } 4041 4042 #if defined(__sparc) 4043 /* account for redzone */ 4044 if (limit) 4045 limit -= alloc_pgsz; 4046 #endif /* __sparc */ 4047 4048 va = ALIGN((uintptr_t)*spp, align); 4049 pva = P2ROUNDUP((uintptr_t)*spp, alloc_pgsz); 4050 /* 4051 * Need more pages? 4052 */ 4053 if (va + size > pva) { 4054 uintptr_t npva; 4055 4056 alloc_size = P2ROUNDUP(size - (pva - va), alloc_pgsz); 4057 /* 4058 * Check for overlapping segments. 4059 */ 4060 if (limit && limit <= *spp + alloc_size) { 4061 return ((caddr_t)0); 4062 } 4063 4064 npva = (uintptr_t)BOP_ALLOC(ops, (caddr_t)pva, 4065 alloc_size, alloc_align); 4066 4067 if (npva == NULL) { 4068 _kobj_printf(ops, "BOP_ALLOC failed, 0x%lx bytes", 4069 alloc_size); 4070 _kobj_printf(ops, " aligned %lx", alloc_align); 4071 _kobj_printf(ops, " at 0x%lx\n", pva); 4072 return (NULL); 4073 } 4074 } 4075 *spp = (caddr_t)(va + size); 4076 4077 return ((caddr_t)va); 4078 } 4079 4080 /* 4081 * Calculate the number of output hash buckets. 4082 * We use the next prime larger than n / 4, 4083 * so the average hash chain is about 4 entries. 4084 * More buckets would just be a waste of memory. 4085 */ 4086 uint_t 4087 kobj_gethashsize(uint_t n) 4088 { 4089 int f; 4090 int hsize = MAX(n / 4, 2); 4091 4092 for (f = 2; f * f <= hsize; f++) 4093 if (hsize % f == 0) 4094 hsize += f = 1; 4095 4096 return (hsize); 4097 } 4098 4099 /* 4100 * Get the file size. 4101 * 4102 * Before root is mounted, files are compressed in the boot_archive ramdisk 4103 * (in the memory). kobj_fstat would return the compressed file size. 4104 * In order to get the uncompressed file size, read the file to the end and 4105 * count its size. 4106 */ 4107 int 4108 kobj_get_filesize(struct _buf *file, uint64_t *size) 4109 { 4110 if (_modrootloaded) { 4111 struct bootstat bst; 4112 4113 if (kobj_fstat(file->_fd, &bst) != 0) 4114 return (EIO); 4115 *size = bst.st_size; 4116 } else { 4117 4118 #if defined(_OBP) 4119 struct bootstat bsb; 4120 4121 if (file->_iscmp) { 4122 struct comphdr *hdr = kobj_comphdr(file); 4123 4124 *size = hdr->ch_fsize; 4125 } else if (kobj_boot_fstat(file->_fd, &bsb) != 0) 4126 return (EIO); 4127 else 4128 *size = bsb.st_size; 4129 #else 4130 char *buf; 4131 int count; 4132 uint64_t offset = 0; 4133 4134 buf = kmem_alloc(MAXBSIZE, KM_SLEEP); 4135 do { 4136 count = kobj_read_file(file, buf, MAXBSIZE, offset); 4137 if (count < 0) { 4138 kmem_free(buf, MAXBSIZE); 4139 return (EIO); 4140 } 4141 offset += count; 4142 } while (count == MAXBSIZE); 4143 kmem_free(buf, MAXBSIZE); 4144 4145 *size = offset; 4146 #endif 4147 } 4148 4149 return (0); 4150 } 4151 4152 static char * 4153 basename(char *s) 4154 { 4155 char *p, *q; 4156 4157 q = NULL; 4158 p = s; 4159 do { 4160 if (*p == '/') 4161 q = p; 4162 } while (*p++); 4163 return (q ? q + 1 : s); 4164 } 4165 4166 void 4167 kobj_stat_get(kobj_stat_t *kp) 4168 { 4169 *kp = kobj_stat; 4170 } 4171 4172 int 4173 kobj_getpagesize() 4174 { 4175 return (lg_pagesize); 4176 } 4177 4178 void 4179 kobj_textwin_alloc(struct module *mp) 4180 { 4181 ASSERT(MUTEX_HELD(&mod_lock)); 4182 4183 if (mp->textwin != NULL) 4184 return; 4185 4186 /* 4187 * If the text is not contained in the heap, then it is not contained 4188 * by a writable mapping. (Specifically, it's on the nucleus page.) 4189 * We allocate a read/write mapping for this module's text to allow 4190 * the text to be patched without calling hot_patch_kernel_text() 4191 * (which is quite slow). 4192 */ 4193 if (!vmem_contains(heaptext_arena, mp->text, mp->text_size)) { 4194 uintptr_t text = (uintptr_t)mp->text; 4195 uintptr_t size = (uintptr_t)mp->text_size; 4196 uintptr_t i; 4197 caddr_t va; 4198 size_t sz = ((text + size + PAGESIZE - 1) & PAGEMASK) - 4199 (text & PAGEMASK); 4200 4201 va = mp->textwin_base = vmem_alloc(heap_arena, sz, VM_SLEEP); 4202 4203 for (i = text & PAGEMASK; i < text + size; i += PAGESIZE) { 4204 hat_devload(kas.a_hat, va, PAGESIZE, 4205 hat_getpfnum(kas.a_hat, (caddr_t)i), 4206 PROT_READ | PROT_WRITE, 4207 HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 4208 va += PAGESIZE; 4209 } 4210 4211 mp->textwin = mp->textwin_base + (text & PAGEOFFSET); 4212 } else { 4213 mp->textwin = mp->text; 4214 } 4215 } 4216 4217 void 4218 kobj_textwin_free(struct module *mp) 4219 { 4220 uintptr_t text = (uintptr_t)mp->text; 4221 uintptr_t tsize = (uintptr_t)mp->text_size; 4222 size_t size = (((text + tsize + PAGESIZE - 1) & PAGEMASK) - 4223 (text & PAGEMASK)); 4224 4225 mp->textwin = NULL; 4226 4227 if (mp->textwin_base == NULL) 4228 return; 4229 4230 hat_unload(kas.a_hat, mp->textwin_base, size, HAT_UNLOAD_UNLOCK); 4231 vmem_free(heap_arena, mp->textwin_base, size); 4232 mp->textwin_base = NULL; 4233 } 4234 4235 static char * 4236 find_libmacro(char *name) 4237 { 4238 int lmi; 4239 4240 for (lmi = 0; lmi < NLIBMACROS; lmi++) { 4241 if (strcmp(name, libmacros[lmi].lmi_macroname) == 0) 4242 return (libmacros[lmi].lmi_list); 4243 } 4244 return (NULL); 4245 } 4246 4247 /* 4248 * Check for $MACRO in tail (string to expand) and expand it in path at pathend 4249 * returns path if successful, else NULL 4250 * Support multiple $MACROs expansion and the first valid path will be returned 4251 * Caller's responsibility to provide enough space in path to expand 4252 */ 4253 char * 4254 expand_libmacro(char *tail, char *path, char *pathend) 4255 { 4256 char c, *p, *p1, *p2, *path2, *endp; 4257 int diff, lmi, macrolen, valid_macro, more_macro; 4258 struct _buf *file; 4259 4260 /* 4261 * check for $MACROS between nulls or slashes 4262 */ 4263 p = strchr(tail, '$'); 4264 if (p == NULL) 4265 return (NULL); 4266 for (lmi = 0; lmi < NLIBMACROS; lmi++) { 4267 macrolen = libmacros[lmi].lmi_macrolen; 4268 if (strncmp(p + 1, libmacros[lmi].lmi_macroname, macrolen) == 0) 4269 break; 4270 } 4271 4272 valid_macro = 0; 4273 if (lmi < NLIBMACROS) { 4274 /* 4275 * The following checks are used to restrict expansion of 4276 * macros to those that form a full directory/file name 4277 * and to keep the behavior same as before. If this 4278 * restriction is removed or no longer valid in the future, 4279 * the checks below can be deleted. 4280 */ 4281 if ((p == tail) || (*(p - 1) == '/')) { 4282 c = *(p + macrolen + 1); 4283 if (c == '/' || c == '\0') 4284 valid_macro = 1; 4285 } 4286 } 4287 4288 if (!valid_macro) { 4289 p2 = strchr(p, '/'); 4290 /* 4291 * if no more macro to expand, then just copy whatever left 4292 * and check whether it exists 4293 */ 4294 if (p2 == NULL || strchr(p2, '$') == NULL) { 4295 (void) strcpy(pathend, tail); 4296 if ((file = kobj_open_path(path, 1, 1)) != 4297 (struct _buf *)-1) { 4298 kobj_close_file(file); 4299 return (path); 4300 } else 4301 return (NULL); 4302 } else { 4303 /* 4304 * copy all chars before '/' and call expand_libmacro() 4305 * again 4306 */ 4307 diff = p2 - tail; 4308 bcopy(tail, pathend, diff); 4309 pathend += diff; 4310 *(pathend) = '\0'; 4311 return (expand_libmacro(p2, path, pathend)); 4312 } 4313 } 4314 4315 more_macro = 0; 4316 if (c != '\0') { 4317 endp = p + macrolen + 1; 4318 if (strchr(endp, '$') != NULL) 4319 more_macro = 1; 4320 } else 4321 endp = NULL; 4322 4323 /* 4324 * copy lmi_list and split it into components. 4325 * then put the part of tail before $MACRO into path 4326 * at pathend 4327 */ 4328 diff = p - tail; 4329 if (diff > 0) 4330 bcopy(tail, pathend, diff); 4331 path2 = pathend + diff; 4332 p1 = libmacros[lmi].lmi_list; 4333 while (p1 && (*p1 != '\0')) { 4334 p2 = strchr(p1, ':'); 4335 if (p2) { 4336 diff = p2 - p1; 4337 bcopy(p1, path2, diff); 4338 *(path2 + diff) = '\0'; 4339 } else { 4340 diff = strlen(p1); 4341 bcopy(p1, path2, diff + 1); 4342 } 4343 /* copy endp only if there isn't any more macro to expand */ 4344 if (!more_macro && (endp != NULL)) 4345 (void) strcat(path2, endp); 4346 file = kobj_open_path(path, 1, 1); 4347 if (file != (struct _buf *)-1) { 4348 kobj_close_file(file); 4349 /* 4350 * if more macros to expand then call expand_libmacro(), 4351 * else return path which has the whole path 4352 */ 4353 if (!more_macro || (expand_libmacro(endp, path, 4354 path2 + diff) != NULL)) { 4355 return (path); 4356 } 4357 } 4358 if (p2) 4359 p1 = ++p2; 4360 else 4361 return (NULL); 4362 } 4363 return (NULL); 4364 } 4365 4366 static void 4367 tnf_add_notifyunload(kobj_notify_f *fp) 4368 { 4369 kobj_notify_list_t *entry; 4370 4371 entry = kobj_alloc(sizeof (kobj_notify_list_t), KM_WAIT); 4372 entry->kn_type = KOBJ_NOTIFY_MODUNLOADING; 4373 entry->kn_func = fp; 4374 (void) kobj_notify_add(entry); 4375 } 4376 4377 /* ARGSUSED */ 4378 static void 4379 tnf_unsplice_probes(uint_t what, struct modctl *mod) 4380 { 4381 tnf_probe_control_t **p; 4382 tnf_tag_data_t **q; 4383 struct module *mp = mod->mod_mp; 4384 4385 if (!(mp->flags & KOBJ_TNF_PROBE)) 4386 return; 4387 4388 for (p = &__tnf_probe_list_head; *p; ) 4389 if (kobj_addrcheck(mp, (char *)*p) == 0) 4390 *p = (*p)->next; 4391 else 4392 p = &(*p)->next; 4393 4394 for (q = &__tnf_tag_list_head; *q; ) 4395 if (kobj_addrcheck(mp, (char *)*q) == 0) 4396 *q = (tnf_tag_data_t *)(*q)->tag_version; 4397 else 4398 q = (tnf_tag_data_t **)&(*q)->tag_version; 4399 4400 tnf_changed_probe_list = 1; 4401 } 4402 4403 int 4404 tnf_splice_probes(int boot_load, tnf_probe_control_t *plist, 4405 tnf_tag_data_t *tlist) 4406 { 4407 int result = 0; 4408 static int add_notify = 1; 4409 4410 if (plist) { 4411 tnf_probe_control_t *pl; 4412 4413 for (pl = plist; pl->next; ) 4414 pl = pl->next; 4415 4416 if (!boot_load) 4417 mutex_enter(&mod_lock); 4418 tnf_changed_probe_list = 1; 4419 pl->next = __tnf_probe_list_head; 4420 __tnf_probe_list_head = plist; 4421 if (!boot_load) 4422 mutex_exit(&mod_lock); 4423 result = 1; 4424 } 4425 4426 if (tlist) { 4427 tnf_tag_data_t *tl; 4428 4429 for (tl = tlist; tl->tag_version; ) 4430 tl = (tnf_tag_data_t *)tl->tag_version; 4431 4432 if (!boot_load) 4433 mutex_enter(&mod_lock); 4434 tl->tag_version = (tnf_tag_version_t *)__tnf_tag_list_head; 4435 __tnf_tag_list_head = tlist; 4436 if (!boot_load) 4437 mutex_exit(&mod_lock); 4438 result = 1; 4439 } 4440 if (!boot_load && result && add_notify) { 4441 tnf_add_notifyunload(tnf_unsplice_probes); 4442 add_notify = 0; 4443 } 4444 return (result); 4445 } 4446 4447 char *kobj_file_buf; 4448 int kobj_file_bufsize; 4449 4450 /* 4451 * This code is for the purpose of manually recording which files 4452 * needs to go into the boot archive on any given system. 4453 * 4454 * To enable the code, set kobj_file_bufsize in /etc/system 4455 * and reboot the system, then use mdb to look at kobj_file_buf. 4456 */ 4457 static void 4458 kobj_record_file(char *filename) 4459 { 4460 static char *buf; 4461 static int size = 0; 4462 int n; 4463 4464 if (kobj_file_bufsize == 0) /* don't bother */ 4465 return; 4466 4467 if (kobj_file_buf == NULL) { /* allocate buffer */ 4468 size = kobj_file_bufsize; 4469 buf = kobj_file_buf = kobj_alloc(size, KM_WAIT|KM_TMP); 4470 } 4471 4472 n = snprintf(buf, size, "%s\n", filename); 4473 if (n > size) 4474 n = size; 4475 size -= n; 4476 buf += n; 4477 } 4478 4479 static int 4480 kobj_boot_fstat(int fd, struct bootstat *stp) 4481 { 4482 #if defined(_OBP) 4483 if (!standalone && _ioquiesced) 4484 return (-1); 4485 return (BOP_FSTAT(ops, fd, stp)); 4486 #else 4487 return (BRD_FSTAT(bfs_ops, fd, stp)); 4488 #endif 4489 } 4490 4491 static int 4492 kobj_boot_open(char *filename, int flags) 4493 { 4494 #if defined(_OBP) 4495 4496 /* 4497 * If io via bootops is quiesced, it means boot is no longer 4498 * available to us. We make it look as if we can't open the 4499 * named file - which is reasonably accurate. 4500 */ 4501 if (!standalone && _ioquiesced) 4502 return (-1); 4503 4504 kobj_record_file(filename); 4505 return (BOP_OPEN(filename, flags)); 4506 #else /* x86 */ 4507 kobj_record_file(filename); 4508 return (BRD_OPEN(bfs_ops, filename, flags)); 4509 #endif 4510 } 4511 4512 static int 4513 kobj_boot_close(int fd) 4514 { 4515 #if defined(_OBP) 4516 if (!standalone && _ioquiesced) 4517 return (-1); 4518 4519 return (BOP_CLOSE(fd)); 4520 #else /* x86 */ 4521 return (BRD_CLOSE(bfs_ops, fd)); 4522 #endif 4523 } 4524 4525 /*ARGSUSED*/ 4526 static int 4527 kobj_boot_seek(int fd, off_t hi, off_t lo) 4528 { 4529 #if defined(_OBP) 4530 return (BOP_SEEK(fd, lo) == -1 ? -1 : 0); 4531 #else 4532 return (BRD_SEEK(bfs_ops, fd, lo, SEEK_SET)); 4533 #endif 4534 } 4535 4536 static int 4537 kobj_boot_read(int fd, caddr_t buf, size_t size) 4538 { 4539 #if defined(_OBP) 4540 return (BOP_READ(fd, buf, size)); 4541 #else 4542 return (BRD_READ(bfs_ops, fd, buf, size)); 4543 #endif 4544 } 4545 4546 static int 4547 kobj_boot_compinfo(int fd, struct compinfo *cb) 4548 { 4549 return (boot_compinfo(fd, cb)); 4550 } 4551