1 /* 2 * Copyright (c) 2008 Isilon Inc http://www.isilon.com/ 3 * Authors: Doug Rabson <dfr@rabson.org> 4 * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 /* 29 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 30 * Copyright (c) 2012 by Delphix. All rights reserved. 31 */ 32 33 /* 34 * NFS LockManager, start/stop, support functions, etc. 35 * Most of the interesting code is here. 36 * 37 * Source code derived from FreeBSD nlm_prot_impl.c 38 */ 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/thread.h> 43 #include <sys/fcntl.h> 44 #include <sys/flock.h> 45 #include <sys/mount.h> 46 #include <sys/priv.h> 47 #include <sys/proc.h> 48 #include <sys/share.h> 49 #include <sys/socket.h> 50 #include <sys/syscall.h> 51 #include <sys/syslog.h> 52 #include <sys/systm.h> 53 #include <sys/class.h> 54 #include <sys/unistd.h> 55 #include <sys/vnode.h> 56 #include <sys/vfs.h> 57 #include <sys/queue.h> 58 #include <sys/bitmap.h> 59 #include <sys/sdt.h> 60 #include <netinet/in.h> 61 62 #include <rpc/rpc.h> 63 #include <rpc/xdr.h> 64 #include <rpc/pmap_prot.h> 65 #include <rpc/pmap_clnt.h> 66 #include <rpc/rpcb_prot.h> 67 68 #include <rpcsvc/nlm_prot.h> 69 #include <rpcsvc/sm_inter.h> 70 #include <rpcsvc/nsm_addr.h> 71 72 #include <nfs/nfs.h> 73 #include <nfs/nfs_clnt.h> 74 #include <nfs/export.h> 75 #include <nfs/rnode.h> 76 #include <nfs/lm.h> 77 78 #include "nlm_impl.h" 79 80 struct nlm_knc { 81 struct knetconfig n_knc; 82 const char *n_netid; 83 }; 84 85 /* 86 * Number of attempts NLM tries to obtain RPC binding 87 * of local statd. 88 */ 89 #define NLM_NSM_RPCBIND_RETRIES 10 90 91 /* 92 * Timeout (in seconds) NLM waits before making another 93 * attempt to obtain RPC binding of local statd. 94 */ 95 #define NLM_NSM_RPCBIND_TIMEOUT 5 96 97 /* 98 * Total number of sysids in NLM sysid bitmap 99 */ 100 #define NLM_BMAP_NITEMS (LM_SYSID_MAX + 1) 101 102 /* 103 * Number of ulong_t words in bitmap that is used 104 * for allocation of sysid numbers. 105 */ 106 #define NLM_BMAP_WORDS (NLM_BMAP_NITEMS / BT_NBIPUL) 107 108 /* 109 * Given an integer x, the macro returns 110 * -1 if x is negative, 111 * 0 if x is zero 112 * 1 if x is positive 113 */ 114 #define SIGN(x) (((x) > 0) - ((x) < 0)) 115 116 #define ARRSIZE(arr) (sizeof (arr) / sizeof ((arr)[0])) 117 #define NLM_KNCS ARRSIZE(nlm_netconfigs) 118 119 krwlock_t lm_lck; 120 121 /* 122 * Zero timeout for asynchronous NLM RPC operations 123 */ 124 static const struct timeval nlm_rpctv_zero = { 0, 0 }; 125 126 /* 127 * List of all Zone globals nlm_globals instences 128 * linked together. 129 */ 130 static struct nlm_globals_list nlm_zones_list; /* (g) */ 131 132 /* 133 * NLM kmem caches 134 */ 135 static struct kmem_cache *nlm_hosts_cache = NULL; 136 static struct kmem_cache *nlm_vhold_cache = NULL; 137 138 /* 139 * A bitmap for allocation of new sysids. 140 * Sysid is a unique number between LM_SYSID 141 * and LM_SYSID_MAX. Sysid represents unique remote 142 * host that does file locks on the given host. 143 */ 144 static ulong_t nlm_sysid_bmap[NLM_BMAP_WORDS]; /* (g) */ 145 static int nlm_sysid_nidx; /* (g) */ 146 147 /* 148 * RPC service registration for all transports 149 */ 150 static SVC_CALLOUT nlm_svcs[] = { 151 { NLM_PROG, 4, 4, nlm_prog_4 }, /* NLM4_VERS */ 152 { NLM_PROG, 1, 3, nlm_prog_3 } /* NLM_VERS - NLM_VERSX */ 153 }; 154 155 static SVC_CALLOUT_TABLE nlm_sct = { 156 ARRSIZE(nlm_svcs), 157 FALSE, 158 nlm_svcs 159 }; 160 161 /* 162 * Static table of all netid/knetconfig network 163 * lock manager can work with. nlm_netconfigs table 164 * is used when we need to get valid knetconfig by 165 * netid and vice versa. 166 * 167 * Knetconfigs are activated either by the call from 168 * user-space lockd daemon (server side) or by taking 169 * knetconfig from NFS mountinfo (client side) 170 */ 171 static struct nlm_knc nlm_netconfigs[] = { /* (g) */ 172 /* UDP */ 173 { 174 { NC_TPI_CLTS, NC_INET, NC_UDP, NODEV }, 175 "udp", 176 }, 177 /* TCP */ 178 { 179 { NC_TPI_COTS_ORD, NC_INET, NC_TCP, NODEV }, 180 "tcp", 181 }, 182 /* UDP over IPv6 */ 183 { 184 { NC_TPI_CLTS, NC_INET6, NC_UDP, NODEV }, 185 "udp6", 186 }, 187 /* TCP over IPv6 */ 188 { 189 { NC_TPI_COTS_ORD, NC_INET6, NC_TCP, NODEV }, 190 "tcp6", 191 }, 192 /* ticlts (loopback over UDP) */ 193 { 194 { NC_TPI_CLTS, NC_LOOPBACK, NC_NOPROTO, NODEV }, 195 "ticlts", 196 }, 197 /* ticotsord (loopback over TCP) */ 198 { 199 { NC_TPI_COTS_ORD, NC_LOOPBACK, NC_NOPROTO, NODEV }, 200 "ticotsord", 201 }, 202 }; 203 204 /* 205 * NLM misc. function 206 */ 207 static void nlm_copy_netbuf(struct netbuf *, struct netbuf *); 208 static int nlm_netbuf_addrs_cmp(struct netbuf *, struct netbuf *); 209 static void nlm_kmem_reclaim(void *); 210 static void nlm_pool_shutdown(void); 211 static void nlm_suspend_zone(struct nlm_globals *); 212 static void nlm_resume_zone(struct nlm_globals *); 213 static void nlm_nsm_clnt_init(CLIENT *, struct nlm_nsm *); 214 static void nlm_netbuf_to_netobj(struct netbuf *, int *, netobj *); 215 216 /* 217 * NLM thread functions 218 */ 219 static void nlm_gc(struct nlm_globals *); 220 static void nlm_reclaimer(struct nlm_host *); 221 222 /* 223 * NLM NSM functions 224 */ 225 static int nlm_init_local_knc(struct knetconfig *); 226 static int nlm_nsm_init_local(struct nlm_nsm *); 227 static int nlm_nsm_init(struct nlm_nsm *, struct knetconfig *, struct netbuf *); 228 static void nlm_nsm_fini(struct nlm_nsm *); 229 static enum clnt_stat nlm_nsm_simu_crash(struct nlm_nsm *); 230 static enum clnt_stat nlm_nsm_stat(struct nlm_nsm *, int32_t *); 231 static enum clnt_stat nlm_nsm_mon(struct nlm_nsm *, char *, uint16_t); 232 static enum clnt_stat nlm_nsm_unmon(struct nlm_nsm *, char *); 233 234 /* 235 * NLM host functions 236 */ 237 static int nlm_host_ctor(void *, void *, int); 238 static void nlm_host_dtor(void *, void *); 239 static void nlm_host_destroy(struct nlm_host *); 240 static struct nlm_host *nlm_host_create(char *, const char *, 241 struct knetconfig *, struct netbuf *); 242 static struct nlm_host *nlm_host_find_locked(struct nlm_globals *, 243 const char *, struct netbuf *, avl_index_t *); 244 static void nlm_host_unregister(struct nlm_globals *, struct nlm_host *); 245 static void nlm_host_gc_vholds(struct nlm_host *); 246 static bool_t nlm_host_has_srv_locks(struct nlm_host *); 247 static bool_t nlm_host_has_cli_locks(struct nlm_host *); 248 static bool_t nlm_host_has_locks(struct nlm_host *); 249 250 /* 251 * NLM vhold functions 252 */ 253 static int nlm_vhold_ctor(void *, void *, int); 254 static void nlm_vhold_dtor(void *, void *); 255 static void nlm_vhold_destroy(struct nlm_host *, 256 struct nlm_vhold *); 257 static bool_t nlm_vhold_busy(struct nlm_host *, struct nlm_vhold *); 258 static void nlm_vhold_clean(struct nlm_vhold *, int); 259 260 /* 261 * NLM client/server sleeping locks/share reservation functions 262 */ 263 struct nlm_slreq *nlm_slreq_find_locked(struct nlm_host *, 264 struct nlm_vhold *, struct flock64 *); 265 static struct nlm_shres *nlm_shres_create_item(struct shrlock *, vnode_t *); 266 static void nlm_shres_destroy_item(struct nlm_shres *); 267 static bool_t nlm_shres_equal(struct shrlock *, struct shrlock *); 268 269 /* 270 * NLM initialization functions. 271 */ 272 void 273 nlm_init(void) 274 { 275 nlm_hosts_cache = kmem_cache_create("nlm_host_cache", 276 sizeof (struct nlm_host), 0, nlm_host_ctor, nlm_host_dtor, 277 nlm_kmem_reclaim, NULL, NULL, 0); 278 279 nlm_vhold_cache = kmem_cache_create("nlm_vhold_cache", 280 sizeof (struct nlm_vhold), 0, nlm_vhold_ctor, nlm_vhold_dtor, 281 NULL, NULL, NULL, 0); 282 283 nlm_rpc_init(); 284 TAILQ_INIT(&nlm_zones_list); 285 286 /* initialize sysids bitmap */ 287 bzero(nlm_sysid_bmap, sizeof (nlm_sysid_bmap)); 288 nlm_sysid_nidx = 1; 289 290 /* 291 * Reserv the sysid #0, because it's associated 292 * with local locks only. Don't let to allocate 293 * it for remote locks. 294 */ 295 BT_SET(nlm_sysid_bmap, 0); 296 } 297 298 void 299 nlm_globals_register(struct nlm_globals *g) 300 { 301 rw_enter(&lm_lck, RW_WRITER); 302 TAILQ_INSERT_TAIL(&nlm_zones_list, g, nlm_link); 303 rw_exit(&lm_lck); 304 } 305 306 void 307 nlm_globals_unregister(struct nlm_globals *g) 308 { 309 rw_enter(&lm_lck, RW_WRITER); 310 TAILQ_REMOVE(&nlm_zones_list, g, nlm_link); 311 rw_exit(&lm_lck); 312 } 313 314 /* ARGSUSED */ 315 static void 316 nlm_kmem_reclaim(void *cdrarg) 317 { 318 struct nlm_globals *g; 319 320 rw_enter(&lm_lck, RW_READER); 321 TAILQ_FOREACH(g, &nlm_zones_list, nlm_link) 322 cv_broadcast(&g->nlm_gc_sched_cv); 323 324 rw_exit(&lm_lck); 325 } 326 327 /* 328 * NLM garbage collector thread (GC). 329 * 330 * NLM GC periodically checks whether there're any host objects 331 * that can be cleaned up. It also releases stale vnodes that 332 * live on the server side (under protection of vhold objects). 333 * 334 * NLM host objects are cleaned up from GC thread because 335 * operations helping us to determine whether given host has 336 * any locks can be quite expensive and it's not good to call 337 * them every time the very last reference to the host is dropped. 338 * Thus we use "lazy" approach for hosts cleanup. 339 * 340 * The work of GC is to release stale vnodes on the server side 341 * and destroy hosts that haven't any locks and any activity for 342 * some time (i.e. idle hosts). 343 */ 344 static void 345 nlm_gc(struct nlm_globals *g) 346 { 347 struct nlm_host *hostp; 348 clock_t now, idle_period; 349 350 idle_period = SEC_TO_TICK(g->cn_idle_tmo); 351 mutex_enter(&g->lock); 352 for (;;) { 353 /* 354 * GC thread can be explicitly scheduled from 355 * memory reclamation function. 356 */ 357 (void) cv_timedwait(&g->nlm_gc_sched_cv, &g->lock, 358 ddi_get_lbolt() + idle_period); 359 360 /* 361 * NLM is shutting down, time to die. 362 */ 363 if (g->run_status == NLM_ST_STOPPING) 364 break; 365 366 now = ddi_get_lbolt(); 367 DTRACE_PROBE2(gc__start, struct nlm_globals *, g, 368 clock_t, now); 369 370 /* 371 * Find all obviously unused vholds and destroy them. 372 */ 373 for (hostp = avl_first(&g->nlm_hosts_tree); hostp != NULL; 374 hostp = AVL_NEXT(&g->nlm_hosts_tree, hostp)) { 375 struct nlm_vhold *nvp; 376 377 mutex_enter(&hostp->nh_lock); 378 379 nvp = TAILQ_FIRST(&hostp->nh_vholds_list); 380 while (nvp != NULL) { 381 struct nlm_vhold *new_nvp; 382 383 new_nvp = TAILQ_NEXT(nvp, nv_link); 384 385 /* 386 * If these conditions are met, the vhold is 387 * obviously unused and we will destroy it. In 388 * a case either v_filocks and/or v_shrlocks is 389 * non-NULL the vhold might still be unused by 390 * the host, but it is expensive to check that. 391 * We defer such check until the host is idle. 392 * The expensive check is done below without 393 * the global lock held. 394 */ 395 if (nvp->nv_refcnt == 0 && 396 nvp->nv_vp->v_filocks == NULL && 397 nvp->nv_vp->v_shrlocks == NULL) { 398 nlm_vhold_destroy(hostp, nvp); 399 } 400 401 nvp = new_nvp; 402 } 403 404 mutex_exit(&hostp->nh_lock); 405 } 406 407 /* 408 * Handle all hosts that are unused at the moment 409 * until we meet one with idle timeout in future. 410 */ 411 while ((hostp = TAILQ_FIRST(&g->nlm_idle_hosts)) != NULL) { 412 bool_t has_locks; 413 414 if (hostp->nh_idle_timeout > now) 415 break; 416 417 /* 418 * Drop global lock while doing expensive work 419 * on this host. We'll re-check any conditions 420 * that might change after retaking the global 421 * lock. 422 */ 423 mutex_exit(&g->lock); 424 mutex_enter(&hostp->nh_lock); 425 426 /* 427 * nlm_globals lock was dropped earlier because 428 * garbage collecting of vholds and checking whether 429 * host has any locks/shares are expensive operations. 430 */ 431 nlm_host_gc_vholds(hostp); 432 has_locks = nlm_host_has_locks(hostp); 433 434 mutex_exit(&hostp->nh_lock); 435 mutex_enter(&g->lock); 436 437 /* 438 * While we were doing expensive operations 439 * outside of nlm_globals critical section, 440 * somebody could take the host and remove it 441 * from the idle list. Whether its been 442 * reinserted or not, our information about 443 * the host is outdated, and we should take no 444 * further action. 445 */ 446 if ((hostp->nh_flags & NLM_NH_INIDLE) == 0 || 447 hostp->nh_idle_timeout > now) 448 continue; 449 450 /* 451 * If the host has locks we have to renew the 452 * host's timeout and put it at the end of LRU 453 * list. 454 */ 455 if (has_locks) { 456 TAILQ_REMOVE(&g->nlm_idle_hosts, 457 hostp, nh_link); 458 hostp->nh_idle_timeout = now + idle_period; 459 TAILQ_INSERT_TAIL(&g->nlm_idle_hosts, 460 hostp, nh_link); 461 continue; 462 } 463 464 /* 465 * We're here if all the following conditions hold: 466 * 1) Host hasn't any locks or share reservations 467 * 2) Host is unused 468 * 3) Host wasn't touched by anyone at least for 469 * g->cn_idle_tmo seconds. 470 * 471 * So, now we can destroy it. 472 */ 473 nlm_host_unregister(g, hostp); 474 mutex_exit(&g->lock); 475 476 nlm_host_unmonitor(g, hostp); 477 nlm_host_destroy(hostp); 478 mutex_enter(&g->lock); 479 if (g->run_status == NLM_ST_STOPPING) 480 break; 481 482 } 483 484 DTRACE_PROBE(gc__end); 485 } 486 487 DTRACE_PROBE1(gc__exit, struct nlm_globals *, g); 488 489 /* Let others know that GC has died */ 490 g->nlm_gc_thread = NULL; 491 mutex_exit(&g->lock); 492 493 cv_broadcast(&g->nlm_gc_finish_cv); 494 zthread_exit(); 495 } 496 497 /* 498 * Thread reclaim locks/shares acquired by the client side 499 * on the given server represented by hostp. 500 */ 501 static void 502 nlm_reclaimer(struct nlm_host *hostp) 503 { 504 struct nlm_globals *g; 505 506 mutex_enter(&hostp->nh_lock); 507 hostp->nh_reclaimer = curthread; 508 mutex_exit(&hostp->nh_lock); 509 510 g = zone_getspecific(nlm_zone_key, curzone); 511 nlm_reclaim_client(g, hostp); 512 513 mutex_enter(&hostp->nh_lock); 514 hostp->nh_flags &= ~NLM_NH_RECLAIM; 515 hostp->nh_reclaimer = NULL; 516 cv_broadcast(&hostp->nh_recl_cv); 517 mutex_exit(&hostp->nh_lock); 518 519 /* 520 * Host was explicitly referenced before 521 * nlm_reclaim() was called, release it 522 * here. 523 */ 524 nlm_host_release(g, hostp); 525 zthread_exit(); 526 } 527 528 /* 529 * Copy a struct netobj. (see xdr.h) 530 */ 531 void 532 nlm_copy_netobj(struct netobj *dst, struct netobj *src) 533 { 534 dst->n_len = src->n_len; 535 dst->n_bytes = kmem_alloc(src->n_len, KM_SLEEP); 536 bcopy(src->n_bytes, dst->n_bytes, src->n_len); 537 } 538 539 /* 540 * An NLM specificw replacement for clnt_call(). 541 * nlm_clnt_call() is used by all RPC functions generated 542 * from nlm_prot.x specification. The function is aware 543 * about some pitfalls of NLM RPC procedures and has a logic 544 * that handles them properly. 545 */ 546 enum clnt_stat 547 nlm_clnt_call(CLIENT *clnt, rpcproc_t procnum, xdrproc_t xdr_args, 548 caddr_t argsp, xdrproc_t xdr_result, caddr_t resultp, struct timeval wait) 549 { 550 k_sigset_t oldmask; 551 enum clnt_stat stat; 552 bool_t sig_blocked = FALSE; 553 554 /* 555 * If NLM RPC procnum is one of the NLM _RES procedures 556 * that are used to reply to asynchronous NLM RPC 557 * (MSG calls), explicitly set RPC timeout to zero. 558 * Client doesn't send a reply to RES procedures, so 559 * we don't need to wait anything. 560 * 561 * NOTE: we ignore NLM4_*_RES procnums because they are 562 * equal to NLM_*_RES numbers. 563 */ 564 if (procnum >= NLM_TEST_RES && procnum <= NLM_GRANTED_RES) 565 wait = nlm_rpctv_zero; 566 567 /* 568 * We need to block signals in case of NLM_CANCEL RPC 569 * in order to prevent interruption of network RPC 570 * calls. 571 */ 572 if (procnum == NLM_CANCEL) { 573 k_sigset_t newmask; 574 575 sigfillset(&newmask); 576 sigreplace(&newmask, &oldmask); 577 sig_blocked = TRUE; 578 } 579 580 stat = clnt_call(clnt, procnum, xdr_args, 581 argsp, xdr_result, resultp, wait); 582 583 /* 584 * Restore signal mask back if signals were blocked 585 */ 586 if (sig_blocked) 587 sigreplace(&oldmask, (k_sigset_t *)NULL); 588 589 return (stat); 590 } 591 592 /* 593 * Suspend NLM client/server in the given zone. 594 * 595 * During suspend operation we mark those hosts 596 * that have any locks with NLM_NH_SUSPEND flags, 597 * so that they can be checked later, when resume 598 * operation occurs. 599 */ 600 static void 601 nlm_suspend_zone(struct nlm_globals *g) 602 { 603 struct nlm_host *hostp; 604 struct nlm_host_list all_hosts; 605 606 /* 607 * Note that while we're doing suspend, GC thread is active 608 * and it can destroy some hosts while we're walking through 609 * the hosts tree. To prevent that and make suspend logic 610 * a bit more simple we put all hosts to local "all_hosts" 611 * list and increment reference counter of each host. 612 * This guaranties that no hosts will be released while 613 * we're doing suspend. 614 * NOTE: reference of each host must be dropped during 615 * resume operation. 616 */ 617 TAILQ_INIT(&all_hosts); 618 mutex_enter(&g->lock); 619 for (hostp = avl_first(&g->nlm_hosts_tree); hostp != NULL; 620 hostp = AVL_NEXT(&g->nlm_hosts_tree, hostp)) { 621 /* 622 * If host is idle, remove it from idle list and 623 * clear idle flag. That is done to prevent GC 624 * from touching this host. 625 */ 626 if (hostp->nh_flags & NLM_NH_INIDLE) { 627 TAILQ_REMOVE(&g->nlm_idle_hosts, hostp, nh_link); 628 hostp->nh_flags &= ~NLM_NH_INIDLE; 629 } 630 631 hostp->nh_refs++; 632 TAILQ_INSERT_TAIL(&all_hosts, hostp, nh_link); 633 } 634 635 /* 636 * Now we can walk through all hosts on the system 637 * with zone globals lock released. The fact the 638 * we have taken a reference to each host guaranties 639 * that no hosts can be destroyed during that process. 640 */ 641 mutex_exit(&g->lock); 642 while ((hostp = TAILQ_FIRST(&all_hosts)) != NULL) { 643 mutex_enter(&hostp->nh_lock); 644 if (nlm_host_has_locks(hostp)) 645 hostp->nh_flags |= NLM_NH_SUSPEND; 646 647 mutex_exit(&hostp->nh_lock); 648 TAILQ_REMOVE(&all_hosts, hostp, nh_link); 649 } 650 } 651 652 /* 653 * Resume NLM hosts for the given zone. 654 * 655 * nlm_resume_zone() is called after hosts were suspended 656 * (see nlm_suspend_zone) and its main purpose to check 657 * whether remote locks owned by hosts are still in consistent 658 * state. If they aren't, resume function tries to reclaim 659 * locks (for client side hosts) and clean locks (for 660 * server side hosts). 661 */ 662 static void 663 nlm_resume_zone(struct nlm_globals *g) 664 { 665 struct nlm_host *hostp, *h_next; 666 667 mutex_enter(&g->lock); 668 hostp = avl_first(&g->nlm_hosts_tree); 669 670 /* 671 * In nlm_suspend_zone() the reference counter of each 672 * host was incremented, so we can safely iterate through 673 * all hosts without worrying that any host we touch will 674 * be removed at the moment. 675 */ 676 while (hostp != NULL) { 677 struct nlm_nsm nsm; 678 enum clnt_stat stat; 679 int32_t sm_state; 680 int error; 681 bool_t resume_failed = FALSE; 682 683 h_next = AVL_NEXT(&g->nlm_hosts_tree, hostp); 684 mutex_exit(&g->lock); 685 686 DTRACE_PROBE1(resume__host, struct nlm_host *, hostp); 687 688 /* 689 * Suspend operation marked that the host doesn't 690 * have any locks. Skip it. 691 */ 692 if (!(hostp->nh_flags & NLM_NH_SUSPEND)) 693 goto cycle_end; 694 695 error = nlm_nsm_init(&nsm, &hostp->nh_knc, &hostp->nh_addr); 696 if (error != 0) { 697 NLM_ERR("Resume: Failed to contact to NSM of host %s " 698 "[error=%d]\n", hostp->nh_name, error); 699 resume_failed = TRUE; 700 goto cycle_end; 701 } 702 703 stat = nlm_nsm_stat(&nsm, &sm_state); 704 if (stat != RPC_SUCCESS) { 705 NLM_ERR("Resume: Failed to call SM_STAT operation for " 706 "host %s [stat=%d]\n", hostp->nh_name, stat); 707 resume_failed = TRUE; 708 nlm_nsm_fini(&nsm); 709 goto cycle_end; 710 } 711 712 if (sm_state != hostp->nh_state) { 713 /* 714 * Current SM state of the host isn't equal 715 * to the one host had when it was suspended. 716 * Probably it was rebooted. Try to reclaim 717 * locks if the host has any on its client side. 718 * Also try to clean up its server side locks 719 * (if the host has any). 720 */ 721 nlm_host_notify_client(hostp, sm_state); 722 nlm_host_notify_server(hostp, sm_state); 723 } 724 725 nlm_nsm_fini(&nsm); 726 727 cycle_end: 728 if (resume_failed) { 729 /* 730 * Resume failed for the given host. 731 * Just clean up all resources it owns. 732 */ 733 nlm_host_notify_server(hostp, 0); 734 nlm_client_cancel_all(g, hostp); 735 } 736 737 hostp->nh_flags &= ~NLM_NH_SUSPEND; 738 nlm_host_release(g, hostp); 739 hostp = h_next; 740 mutex_enter(&g->lock); 741 } 742 743 mutex_exit(&g->lock); 744 } 745 746 /* 747 * NLM functions responsible for operations on NSM handle. 748 */ 749 750 /* 751 * Initialize knetconfig that is used for communication 752 * with local statd via loopback interface. 753 */ 754 static int 755 nlm_init_local_knc(struct knetconfig *knc) 756 { 757 int error; 758 vnode_t *vp; 759 760 bzero(knc, sizeof (*knc)); 761 error = lookupname("/dev/tcp", UIO_SYSSPACE, 762 FOLLOW, NULLVPP, &vp); 763 if (error != 0) 764 return (error); 765 766 knc->knc_semantics = NC_TPI_COTS; 767 knc->knc_protofmly = NC_INET; 768 knc->knc_proto = NC_TCP; 769 knc->knc_rdev = vp->v_rdev; 770 VN_RELE(vp); 771 772 773 return (0); 774 } 775 776 /* 777 * Initialize NSM handle that will be used to talk 778 * to local statd via loopback interface. 779 */ 780 static int 781 nlm_nsm_init_local(struct nlm_nsm *nsm) 782 { 783 int error; 784 struct knetconfig knc; 785 struct sockaddr_in sin; 786 struct netbuf nb; 787 788 error = nlm_init_local_knc(&knc); 789 if (error != 0) 790 return (error); 791 792 bzero(&sin, sizeof (sin)); 793 sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK); 794 sin.sin_family = AF_INET; 795 796 nb.buf = (char *)&sin; 797 nb.len = nb.maxlen = sizeof (sin); 798 799 return (nlm_nsm_init(nsm, &knc, &nb)); 800 } 801 802 /* 803 * Initialize NSM handle used for talking to statd 804 */ 805 static int 806 nlm_nsm_init(struct nlm_nsm *nsm, struct knetconfig *knc, struct netbuf *nb) 807 { 808 enum clnt_stat stat; 809 int error, retries; 810 811 bzero(nsm, sizeof (*nsm)); 812 nsm->ns_knc = *knc; 813 nlm_copy_netbuf(&nsm->ns_addr, nb); 814 815 /* 816 * Try several times to get the port of statd service, 817 * If rpcbind_getaddr returns RPC_PROGNOTREGISTERED, 818 * retry an attempt, but wait for NLM_NSM_RPCBIND_TIMEOUT 819 * seconds berofore. 820 */ 821 for (retries = 0; retries < NLM_NSM_RPCBIND_RETRIES; retries++) { 822 stat = rpcbind_getaddr(&nsm->ns_knc, SM_PROG, 823 SM_VERS, &nsm->ns_addr); 824 if (stat != RPC_SUCCESS) { 825 if (stat == RPC_PROGNOTREGISTERED) { 826 delay(SEC_TO_TICK(NLM_NSM_RPCBIND_TIMEOUT)); 827 continue; 828 } 829 } 830 831 break; 832 } 833 834 if (stat != RPC_SUCCESS) { 835 DTRACE_PROBE2(rpcbind__error, enum clnt_stat, stat, 836 int, retries); 837 error = ENOENT; 838 goto error; 839 } 840 841 /* 842 * Create an RPC handle that'll be used for communication with local 843 * statd using the status monitor protocol. 844 */ 845 error = clnt_tli_kcreate(&nsm->ns_knc, &nsm->ns_addr, SM_PROG, SM_VERS, 846 0, NLM_RPC_RETRIES, kcred, &nsm->ns_handle); 847 if (error != 0) 848 goto error; 849 850 /* 851 * Create an RPC handle that'll be used for communication with the 852 * local statd using the address registration protocol. 853 */ 854 error = clnt_tli_kcreate(&nsm->ns_knc, &nsm->ns_addr, NSM_ADDR_PROGRAM, 855 NSM_ADDR_V1, 0, NLM_RPC_RETRIES, kcred, &nsm->ns_addr_handle); 856 if (error != 0) 857 goto error; 858 859 sema_init(&nsm->ns_sem, 1, NULL, SEMA_DEFAULT, NULL); 860 return (0); 861 862 error: 863 kmem_free(nsm->ns_addr.buf, nsm->ns_addr.maxlen); 864 if (nsm->ns_handle) 865 CLNT_DESTROY(nsm->ns_handle); 866 867 return (error); 868 } 869 870 static void 871 nlm_nsm_fini(struct nlm_nsm *nsm) 872 { 873 kmem_free(nsm->ns_addr.buf, nsm->ns_addr.maxlen); 874 CLNT_DESTROY(nsm->ns_addr_handle); 875 nsm->ns_addr_handle = NULL; 876 CLNT_DESTROY(nsm->ns_handle); 877 nsm->ns_handle = NULL; 878 sema_destroy(&nsm->ns_sem); 879 } 880 881 static enum clnt_stat 882 nlm_nsm_simu_crash(struct nlm_nsm *nsm) 883 { 884 enum clnt_stat stat; 885 886 sema_p(&nsm->ns_sem); 887 nlm_nsm_clnt_init(nsm->ns_handle, nsm); 888 stat = sm_simu_crash_1(NULL, NULL, nsm->ns_handle); 889 sema_v(&nsm->ns_sem); 890 891 return (stat); 892 } 893 894 static enum clnt_stat 895 nlm_nsm_stat(struct nlm_nsm *nsm, int32_t *out_stat) 896 { 897 struct sm_name args; 898 struct sm_stat_res res; 899 enum clnt_stat stat; 900 901 args.mon_name = uts_nodename(); 902 bzero(&res, sizeof (res)); 903 904 sema_p(&nsm->ns_sem); 905 nlm_nsm_clnt_init(nsm->ns_handle, nsm); 906 stat = sm_stat_1(&args, &res, nsm->ns_handle); 907 sema_v(&nsm->ns_sem); 908 909 if (stat == RPC_SUCCESS) 910 *out_stat = res.state; 911 912 return (stat); 913 } 914 915 static enum clnt_stat 916 nlm_nsm_mon(struct nlm_nsm *nsm, char *hostname, uint16_t priv) 917 { 918 struct mon args; 919 struct sm_stat_res res; 920 enum clnt_stat stat; 921 922 bzero(&args, sizeof (args)); 923 bzero(&res, sizeof (res)); 924 925 args.mon_id.mon_name = hostname; 926 args.mon_id.my_id.my_name = uts_nodename(); 927 args.mon_id.my_id.my_prog = NLM_PROG; 928 args.mon_id.my_id.my_vers = NLM_SM; 929 args.mon_id.my_id.my_proc = NLM_SM_NOTIFY1; 930 bcopy(&priv, args.priv, sizeof (priv)); 931 932 sema_p(&nsm->ns_sem); 933 nlm_nsm_clnt_init(nsm->ns_handle, nsm); 934 stat = sm_mon_1(&args, &res, nsm->ns_handle); 935 sema_v(&nsm->ns_sem); 936 937 return (stat); 938 } 939 940 static enum clnt_stat 941 nlm_nsm_unmon(struct nlm_nsm *nsm, char *hostname) 942 { 943 struct mon_id args; 944 struct sm_stat res; 945 enum clnt_stat stat; 946 947 bzero(&args, sizeof (args)); 948 bzero(&res, sizeof (res)); 949 950 args.mon_name = hostname; 951 args.my_id.my_name = uts_nodename(); 952 args.my_id.my_prog = NLM_PROG; 953 args.my_id.my_vers = NLM_SM; 954 args.my_id.my_proc = NLM_SM_NOTIFY1; 955 956 sema_p(&nsm->ns_sem); 957 nlm_nsm_clnt_init(nsm->ns_handle, nsm); 958 stat = sm_unmon_1(&args, &res, nsm->ns_handle); 959 sema_v(&nsm->ns_sem); 960 961 return (stat); 962 } 963 964 static enum clnt_stat 965 nlm_nsmaddr_reg(struct nlm_nsm *nsm, char *name, int family, netobj *address) 966 { 967 struct reg1args args = { 0 }; 968 struct reg1res res = { 0 }; 969 enum clnt_stat stat; 970 971 args.family = family; 972 args.name = name; 973 args.address = *address; 974 975 sema_p(&nsm->ns_sem); 976 nlm_nsm_clnt_init(nsm->ns_addr_handle, nsm); 977 stat = nsmaddrproc1_reg_1(&args, &res, nsm->ns_addr_handle); 978 sema_v(&nsm->ns_sem); 979 980 return (stat); 981 } 982 983 /* 984 * Get NLM vhold object corresponding to vnode "vp". 985 * If no such object was found, create a new one. 986 * 987 * The purpose of this function is to associate vhold 988 * object with given vnode, so that: 989 * 1) vnode is hold (VN_HOLD) while vhold object is alive. 990 * 2) host has a track of all vnodes it touched by lock 991 * or share operations. These vnodes are accessible 992 * via collection of vhold objects. 993 */ 994 struct nlm_vhold * 995 nlm_vhold_get(struct nlm_host *hostp, vnode_t *vp) 996 { 997 struct nlm_vhold *nvp, *new_nvp = NULL; 998 999 mutex_enter(&hostp->nh_lock); 1000 nvp = nlm_vhold_find_locked(hostp, vp); 1001 if (nvp != NULL) 1002 goto out; 1003 1004 /* nlm_vhold wasn't found, then create a new one */ 1005 mutex_exit(&hostp->nh_lock); 1006 new_nvp = kmem_cache_alloc(nlm_vhold_cache, KM_SLEEP); 1007 1008 /* 1009 * Check if another thread has already 1010 * created the same nlm_vhold. 1011 */ 1012 mutex_enter(&hostp->nh_lock); 1013 nvp = nlm_vhold_find_locked(hostp, vp); 1014 if (nvp == NULL) { 1015 nvp = new_nvp; 1016 new_nvp = NULL; 1017 1018 TAILQ_INIT(&nvp->nv_slreqs); 1019 nvp->nv_vp = vp; 1020 nvp->nv_refcnt = 1; 1021 VN_HOLD(nvp->nv_vp); 1022 1023 VERIFY(mod_hash_insert(hostp->nh_vholds_by_vp, 1024 (mod_hash_key_t)vp, (mod_hash_val_t)nvp) == 0); 1025 TAILQ_INSERT_TAIL(&hostp->nh_vholds_list, nvp, nv_link); 1026 } 1027 1028 out: 1029 mutex_exit(&hostp->nh_lock); 1030 if (new_nvp != NULL) 1031 kmem_cache_free(nlm_vhold_cache, new_nvp); 1032 1033 return (nvp); 1034 } 1035 1036 /* 1037 * Drop a reference to vhold object nvp. 1038 */ 1039 void 1040 nlm_vhold_release(struct nlm_host *hostp, struct nlm_vhold *nvp) 1041 { 1042 if (nvp == NULL) 1043 return; 1044 1045 mutex_enter(&hostp->nh_lock); 1046 ASSERT(nvp->nv_refcnt > 0); 1047 nvp->nv_refcnt--; 1048 1049 /* 1050 * If these conditions are met, the vhold is obviously unused and we 1051 * will destroy it. In a case either v_filocks and/or v_shrlocks is 1052 * non-NULL the vhold might still be unused by the host, but it is 1053 * expensive to check that. We defer such check until the host is 1054 * idle. The expensive check is done in the NLM garbage collector. 1055 */ 1056 if (nvp->nv_refcnt == 0 && 1057 nvp->nv_vp->v_filocks == NULL && 1058 nvp->nv_vp->v_shrlocks == NULL) { 1059 nlm_vhold_destroy(hostp, nvp); 1060 } 1061 1062 mutex_exit(&hostp->nh_lock); 1063 } 1064 1065 /* 1066 * Clean all locks and share reservations on the 1067 * given vhold object that were acquired by the 1068 * given sysid 1069 */ 1070 static void 1071 nlm_vhold_clean(struct nlm_vhold *nvp, int sysid) 1072 { 1073 cleanlocks(nvp->nv_vp, IGN_PID, sysid); 1074 cleanshares_by_sysid(nvp->nv_vp, sysid); 1075 } 1076 1077 static void 1078 nlm_vhold_destroy(struct nlm_host *hostp, struct nlm_vhold *nvp) 1079 { 1080 ASSERT(MUTEX_HELD(&hostp->nh_lock)); 1081 1082 ASSERT(nvp->nv_refcnt == 0); 1083 ASSERT(TAILQ_EMPTY(&nvp->nv_slreqs)); 1084 1085 VERIFY(mod_hash_remove(hostp->nh_vholds_by_vp, 1086 (mod_hash_key_t)nvp->nv_vp, 1087 (mod_hash_val_t)&nvp) == 0); 1088 1089 TAILQ_REMOVE(&hostp->nh_vholds_list, nvp, nv_link); 1090 VN_RELE(nvp->nv_vp); 1091 nvp->nv_vp = NULL; 1092 1093 kmem_cache_free(nlm_vhold_cache, nvp); 1094 } 1095 1096 /* 1097 * Return TRUE if the given vhold is busy. 1098 * Vhold object is considered to be "busy" when 1099 * all the following conditions hold: 1100 * 1) No one uses it at the moment; 1101 * 2) It hasn't any locks; 1102 * 3) It hasn't any share reservations; 1103 */ 1104 static bool_t 1105 nlm_vhold_busy(struct nlm_host *hostp, struct nlm_vhold *nvp) 1106 { 1107 vnode_t *vp; 1108 int sysid; 1109 1110 ASSERT(MUTEX_HELD(&hostp->nh_lock)); 1111 1112 if (nvp->nv_refcnt > 0) 1113 return (TRUE); 1114 1115 vp = nvp->nv_vp; 1116 sysid = hostp->nh_sysid; 1117 if (flk_has_remote_locks_for_sysid(vp, sysid) || 1118 shr_has_remote_shares(vp, sysid)) 1119 return (TRUE); 1120 1121 return (FALSE); 1122 } 1123 1124 /* ARGSUSED */ 1125 static int 1126 nlm_vhold_ctor(void *datap, void *cdrarg, int kmflags) 1127 { 1128 struct nlm_vhold *nvp = (struct nlm_vhold *)datap; 1129 1130 bzero(nvp, sizeof (*nvp)); 1131 return (0); 1132 } 1133 1134 /* ARGSUSED */ 1135 static void 1136 nlm_vhold_dtor(void *datap, void *cdrarg) 1137 { 1138 struct nlm_vhold *nvp = (struct nlm_vhold *)datap; 1139 1140 ASSERT(nvp->nv_refcnt == 0); 1141 ASSERT(TAILQ_EMPTY(&nvp->nv_slreqs)); 1142 ASSERT(nvp->nv_vp == NULL); 1143 } 1144 1145 struct nlm_vhold * 1146 nlm_vhold_find_locked(struct nlm_host *hostp, const vnode_t *vp) 1147 { 1148 struct nlm_vhold *nvp = NULL; 1149 1150 ASSERT(MUTEX_HELD(&hostp->nh_lock)); 1151 (void) mod_hash_find(hostp->nh_vholds_by_vp, 1152 (mod_hash_key_t)vp, 1153 (mod_hash_val_t)&nvp); 1154 1155 if (nvp != NULL) 1156 nvp->nv_refcnt++; 1157 1158 return (nvp); 1159 } 1160 1161 /* 1162 * NLM host functions 1163 */ 1164 static void 1165 nlm_copy_netbuf(struct netbuf *dst, struct netbuf *src) 1166 { 1167 ASSERT(src->len <= src->maxlen); 1168 1169 dst->maxlen = src->maxlen; 1170 dst->len = src->len; 1171 dst->buf = kmem_zalloc(src->maxlen, KM_SLEEP); 1172 bcopy(src->buf, dst->buf, src->len); 1173 } 1174 1175 /* ARGSUSED */ 1176 static int 1177 nlm_host_ctor(void *datap, void *cdrarg, int kmflags) 1178 { 1179 struct nlm_host *hostp = (struct nlm_host *)datap; 1180 1181 bzero(hostp, sizeof (*hostp)); 1182 return (0); 1183 } 1184 1185 /* ARGSUSED */ 1186 static void 1187 nlm_host_dtor(void *datap, void *cdrarg) 1188 { 1189 struct nlm_host *hostp = (struct nlm_host *)datap; 1190 ASSERT(hostp->nh_refs == 0); 1191 } 1192 1193 static void 1194 nlm_host_unregister(struct nlm_globals *g, struct nlm_host *hostp) 1195 { 1196 ASSERT(hostp->nh_refs == 0); 1197 ASSERT(hostp->nh_flags & NLM_NH_INIDLE); 1198 1199 avl_remove(&g->nlm_hosts_tree, hostp); 1200 VERIFY(mod_hash_remove(g->nlm_hosts_hash, 1201 (mod_hash_key_t)(uintptr_t)hostp->nh_sysid, 1202 (mod_hash_val_t)&hostp) == 0); 1203 TAILQ_REMOVE(&g->nlm_idle_hosts, hostp, nh_link); 1204 hostp->nh_flags &= ~NLM_NH_INIDLE; 1205 } 1206 1207 /* 1208 * Free resources used by a host. This is called after the reference 1209 * count has reached zero so it doesn't need to worry about locks. 1210 */ 1211 static void 1212 nlm_host_destroy(struct nlm_host *hostp) 1213 { 1214 ASSERT(hostp->nh_name != NULL); 1215 ASSERT(hostp->nh_netid != NULL); 1216 ASSERT(TAILQ_EMPTY(&hostp->nh_vholds_list)); 1217 1218 strfree(hostp->nh_name); 1219 strfree(hostp->nh_netid); 1220 kmem_free(hostp->nh_addr.buf, hostp->nh_addr.maxlen); 1221 1222 if (hostp->nh_sysid != LM_NOSYSID) 1223 nlm_sysid_free(hostp->nh_sysid); 1224 1225 nlm_rpc_cache_destroy(hostp); 1226 1227 ASSERT(TAILQ_EMPTY(&hostp->nh_vholds_list)); 1228 mod_hash_destroy_ptrhash(hostp->nh_vholds_by_vp); 1229 1230 mutex_destroy(&hostp->nh_lock); 1231 cv_destroy(&hostp->nh_rpcb_cv); 1232 cv_destroy(&hostp->nh_recl_cv); 1233 1234 kmem_cache_free(nlm_hosts_cache, hostp); 1235 } 1236 1237 /* 1238 * Cleanup SERVER-side state after a client restarts, 1239 * or becomes unresponsive, or whatever. 1240 * 1241 * We unlock any active locks owned by the host. 1242 * When rpc.lockd is shutting down, 1243 * this function is called with newstate set to zero 1244 * which allows us to cancel any pending async locks 1245 * and clear the locking state. 1246 * 1247 * When "state" is 0, we don't update host's state, 1248 * but cleanup all remote locks on the host. 1249 * It's useful to call this function for resources 1250 * cleanup. 1251 */ 1252 void 1253 nlm_host_notify_server(struct nlm_host *hostp, int32_t state) 1254 { 1255 struct nlm_vhold *nvp; 1256 struct nlm_slreq *slr; 1257 struct nlm_slreq_list slreqs2free; 1258 1259 TAILQ_INIT(&slreqs2free); 1260 mutex_enter(&hostp->nh_lock); 1261 if (state != 0) 1262 hostp->nh_state = state; 1263 1264 TAILQ_FOREACH(nvp, &hostp->nh_vholds_list, nv_link) { 1265 1266 /* cleanup sleeping requests at first */ 1267 while ((slr = TAILQ_FIRST(&nvp->nv_slreqs)) != NULL) { 1268 TAILQ_REMOVE(&nvp->nv_slreqs, slr, nsr_link); 1269 1270 /* 1271 * Instead of freeing cancelled sleeping request 1272 * here, we add it to the linked list created 1273 * on the stack in order to do all frees outside 1274 * the critical section. 1275 */ 1276 TAILQ_INSERT_TAIL(&slreqs2free, slr, nsr_link); 1277 } 1278 1279 nvp->nv_refcnt++; 1280 mutex_exit(&hostp->nh_lock); 1281 1282 nlm_vhold_clean(nvp, hostp->nh_sysid); 1283 1284 mutex_enter(&hostp->nh_lock); 1285 nvp->nv_refcnt--; 1286 } 1287 1288 mutex_exit(&hostp->nh_lock); 1289 while ((slr = TAILQ_FIRST(&slreqs2free)) != NULL) { 1290 TAILQ_REMOVE(&slreqs2free, slr, nsr_link); 1291 kmem_free(slr, sizeof (*slr)); 1292 } 1293 } 1294 1295 /* 1296 * Cleanup CLIENT-side state after a server restarts, 1297 * or becomes unresponsive, or whatever. 1298 * 1299 * This is called by the local NFS statd when we receive a 1300 * host state change notification. (also nlm_svc_stopping) 1301 * 1302 * Deal with a server restart. If we are stopping the 1303 * NLM service, we'll have newstate == 0, and will just 1304 * cancel all our client-side lock requests. Otherwise, 1305 * start the "recovery" process to reclaim any locks 1306 * we hold on this server. 1307 */ 1308 void 1309 nlm_host_notify_client(struct nlm_host *hostp, int32_t state) 1310 { 1311 mutex_enter(&hostp->nh_lock); 1312 hostp->nh_state = state; 1313 if (hostp->nh_flags & NLM_NH_RECLAIM) { 1314 /* 1315 * Either host's state is up to date or 1316 * host is already in recovery. 1317 */ 1318 mutex_exit(&hostp->nh_lock); 1319 return; 1320 } 1321 1322 hostp->nh_flags |= NLM_NH_RECLAIM; 1323 1324 /* 1325 * Host will be released by the recovery thread, 1326 * thus we need to increment refcount. 1327 */ 1328 hostp->nh_refs++; 1329 mutex_exit(&hostp->nh_lock); 1330 1331 (void) zthread_create(NULL, 0, nlm_reclaimer, 1332 hostp, 0, minclsyspri); 1333 } 1334 1335 /* 1336 * The function is called when NLM client detects that 1337 * server has entered in grace period and client needs 1338 * to wait until reclamation process (if any) does 1339 * its job. 1340 */ 1341 int 1342 nlm_host_wait_grace(struct nlm_host *hostp) 1343 { 1344 struct nlm_globals *g; 1345 int error = 0; 1346 1347 g = zone_getspecific(nlm_zone_key, curzone); 1348 mutex_enter(&hostp->nh_lock); 1349 1350 do { 1351 int rc; 1352 1353 rc = cv_timedwait_sig(&hostp->nh_recl_cv, 1354 &hostp->nh_lock, ddi_get_lbolt() + 1355 SEC_TO_TICK(g->retrans_tmo)); 1356 1357 if (rc == 0) { 1358 error = EINTR; 1359 break; 1360 } 1361 } while (hostp->nh_flags & NLM_NH_RECLAIM); 1362 1363 mutex_exit(&hostp->nh_lock); 1364 return (error); 1365 } 1366 1367 /* 1368 * Create a new NLM host. 1369 * 1370 * NOTE: The in-kernel RPC (kRPC) subsystem uses TLI/XTI, 1371 * which needs both a knetconfig and an address when creating 1372 * endpoints. Thus host object stores both knetconfig and 1373 * netid. 1374 */ 1375 static struct nlm_host * 1376 nlm_host_create(char *name, const char *netid, 1377 struct knetconfig *knc, struct netbuf *naddr) 1378 { 1379 struct nlm_host *host; 1380 1381 host = kmem_cache_alloc(nlm_hosts_cache, KM_SLEEP); 1382 1383 mutex_init(&host->nh_lock, NULL, MUTEX_DEFAULT, NULL); 1384 cv_init(&host->nh_rpcb_cv, NULL, CV_DEFAULT, NULL); 1385 cv_init(&host->nh_recl_cv, NULL, CV_DEFAULT, NULL); 1386 1387 host->nh_sysid = LM_NOSYSID; 1388 host->nh_refs = 1; 1389 host->nh_name = strdup(name); 1390 host->nh_netid = strdup(netid); 1391 host->nh_knc = *knc; 1392 nlm_copy_netbuf(&host->nh_addr, naddr); 1393 1394 host->nh_state = 0; 1395 host->nh_rpcb_state = NRPCB_NEED_UPDATE; 1396 host->nh_flags = 0; 1397 1398 host->nh_vholds_by_vp = mod_hash_create_ptrhash("nlm vholds hash", 1399 32, mod_hash_null_valdtor, sizeof (vnode_t)); 1400 1401 TAILQ_INIT(&host->nh_vholds_list); 1402 TAILQ_INIT(&host->nh_rpchc); 1403 1404 return (host); 1405 } 1406 1407 /* 1408 * Cancel all client side sleeping locks owned by given host. 1409 */ 1410 void 1411 nlm_host_cancel_slocks(struct nlm_globals *g, struct nlm_host *hostp) 1412 { 1413 struct nlm_slock *nslp; 1414 1415 mutex_enter(&g->lock); 1416 TAILQ_FOREACH(nslp, &g->nlm_slocks, nsl_link) { 1417 if (nslp->nsl_host == hostp) { 1418 nslp->nsl_state = NLM_SL_CANCELLED; 1419 cv_broadcast(&nslp->nsl_cond); 1420 } 1421 } 1422 1423 mutex_exit(&g->lock); 1424 } 1425 1426 /* 1427 * Garbage collect stale vhold objects. 1428 * 1429 * In other words check whether vnodes that are 1430 * held by vhold objects still have any locks 1431 * or shares or still in use. If they aren't, 1432 * just destroy them. 1433 */ 1434 static void 1435 nlm_host_gc_vholds(struct nlm_host *hostp) 1436 { 1437 struct nlm_vhold *nvp; 1438 1439 ASSERT(MUTEX_HELD(&hostp->nh_lock)); 1440 1441 nvp = TAILQ_FIRST(&hostp->nh_vholds_list); 1442 while (nvp != NULL) { 1443 struct nlm_vhold *nvp_tmp; 1444 1445 if (nlm_vhold_busy(hostp, nvp)) { 1446 nvp = TAILQ_NEXT(nvp, nv_link); 1447 continue; 1448 } 1449 1450 nvp_tmp = TAILQ_NEXT(nvp, nv_link); 1451 nlm_vhold_destroy(hostp, nvp); 1452 nvp = nvp_tmp; 1453 } 1454 } 1455 1456 /* 1457 * Check whether the given host has any 1458 * server side locks or share reservations. 1459 */ 1460 static bool_t 1461 nlm_host_has_srv_locks(struct nlm_host *hostp) 1462 { 1463 /* 1464 * It's cheap and simple: if server has 1465 * any locks/shares there must be vhold 1466 * object storing the affected vnode. 1467 * 1468 * NOTE: We don't need to check sleeping 1469 * locks on the server side, because if 1470 * server side sleeping lock is alive, 1471 * there must be a vhold object corresponding 1472 * to target vnode. 1473 */ 1474 ASSERT(MUTEX_HELD(&hostp->nh_lock)); 1475 if (!TAILQ_EMPTY(&hostp->nh_vholds_list)) 1476 return (TRUE); 1477 1478 return (FALSE); 1479 } 1480 1481 /* 1482 * Check whether the given host has any client side 1483 * locks or share reservations. 1484 */ 1485 static bool_t 1486 nlm_host_has_cli_locks(struct nlm_host *hostp) 1487 { 1488 ASSERT(MUTEX_HELD(&hostp->nh_lock)); 1489 1490 /* 1491 * XXX: It's not the way I'd like to do the check, 1492 * because flk_sysid_has_locks() can be very 1493 * expensive by design. Unfortunatelly it iterates 1494 * through all locks on the system, doesn't matter 1495 * were they made on remote system via NLM or 1496 * on local system via reclock. To understand the 1497 * problem, consider that there're dozens of thousands 1498 * of locks that are made on some ZFS dataset. And there's 1499 * another dataset shared by NFS where NLM client had locks 1500 * some time ago, but doesn't have them now. 1501 * In this case flk_sysid_has_locks() will iterate 1502 * thrught dozens of thousands locks until it returns us 1503 * FALSE. 1504 * Oh, I hope that in shiny future somebody will make 1505 * local lock manager (os/flock.c) better, so that 1506 * it'd be more friedly to remote locks and 1507 * flk_sysid_has_locks() wouldn't be so expensive. 1508 */ 1509 if (flk_sysid_has_locks(hostp->nh_sysid | 1510 LM_SYSID_CLIENT, FLK_QUERY_ACTIVE)) 1511 return (TRUE); 1512 1513 /* 1514 * Check whether host has any share reservations 1515 * registered on the client side. 1516 */ 1517 if (hostp->nh_shrlist != NULL) 1518 return (TRUE); 1519 1520 return (FALSE); 1521 } 1522 1523 /* 1524 * Determine whether the given host owns any 1525 * locks or share reservations. 1526 */ 1527 static bool_t 1528 nlm_host_has_locks(struct nlm_host *hostp) 1529 { 1530 if (nlm_host_has_srv_locks(hostp)) 1531 return (TRUE); 1532 1533 return (nlm_host_has_cli_locks(hostp)); 1534 } 1535 1536 /* 1537 * This function compares only addresses of two netbufs 1538 * that belong to NC_TCP[6] or NC_UDP[6] protofamily. 1539 * Port part of netbuf is ignored. 1540 * 1541 * Return values: 1542 * -1: nb1's address is "smaller" than nb2's 1543 * 0: addresses are equal 1544 * 1: nb1's address is "greater" than nb2's 1545 */ 1546 static int 1547 nlm_netbuf_addrs_cmp(struct netbuf *nb1, struct netbuf *nb2) 1548 { 1549 union nlm_addr { 1550 struct sockaddr sa; 1551 struct sockaddr_in sin; 1552 struct sockaddr_in6 sin6; 1553 } *na1, *na2; 1554 int res; 1555 1556 /* LINTED E_BAD_PTR_CAST_ALIGN */ 1557 na1 = (union nlm_addr *)nb1->buf; 1558 /* LINTED E_BAD_PTR_CAST_ALIGN */ 1559 na2 = (union nlm_addr *)nb2->buf; 1560 1561 if (na1->sa.sa_family < na2->sa.sa_family) 1562 return (-1); 1563 if (na1->sa.sa_family > na2->sa.sa_family) 1564 return (1); 1565 1566 switch (na1->sa.sa_family) { 1567 case AF_INET: 1568 res = memcmp(&na1->sin.sin_addr, &na2->sin.sin_addr, 1569 sizeof (na1->sin.sin_addr)); 1570 break; 1571 case AF_INET6: 1572 res = memcmp(&na1->sin6.sin6_addr, &na2->sin6.sin6_addr, 1573 sizeof (na1->sin6.sin6_addr)); 1574 break; 1575 default: 1576 VERIFY(0); 1577 return (0); 1578 } 1579 1580 return (SIGN(res)); 1581 } 1582 1583 /* 1584 * Compare two nlm hosts. 1585 * Return values: 1586 * -1: host1 is "smaller" than host2 1587 * 0: host1 is equal to host2 1588 * 1: host1 is "greater" than host2 1589 */ 1590 int 1591 nlm_host_cmp(const void *p1, const void *p2) 1592 { 1593 struct nlm_host *h1 = (struct nlm_host *)p1; 1594 struct nlm_host *h2 = (struct nlm_host *)p2; 1595 int res; 1596 1597 res = strcmp(h1->nh_netid, h2->nh_netid); 1598 if (res != 0) 1599 return (SIGN(res)); 1600 1601 res = nlm_netbuf_addrs_cmp(&h1->nh_addr, &h2->nh_addr); 1602 return (res); 1603 } 1604 1605 /* 1606 * Find the host specified by... (see below) 1607 * If found, increment the ref count. 1608 */ 1609 static struct nlm_host * 1610 nlm_host_find_locked(struct nlm_globals *g, const char *netid, 1611 struct netbuf *naddr, avl_index_t *wherep) 1612 { 1613 struct nlm_host *hostp, key; 1614 avl_index_t pos; 1615 1616 ASSERT(MUTEX_HELD(&g->lock)); 1617 1618 key.nh_netid = (char *)netid; 1619 key.nh_addr.buf = naddr->buf; 1620 key.nh_addr.len = naddr->len; 1621 key.nh_addr.maxlen = naddr->maxlen; 1622 1623 hostp = avl_find(&g->nlm_hosts_tree, &key, &pos); 1624 1625 if (hostp != NULL) { 1626 /* 1627 * Host is inuse now. Remove it from idle 1628 * hosts list if needed. 1629 */ 1630 if (hostp->nh_flags & NLM_NH_INIDLE) { 1631 TAILQ_REMOVE(&g->nlm_idle_hosts, hostp, nh_link); 1632 hostp->nh_flags &= ~NLM_NH_INIDLE; 1633 } 1634 1635 hostp->nh_refs++; 1636 } 1637 if (wherep != NULL) 1638 *wherep = pos; 1639 1640 return (hostp); 1641 } 1642 1643 /* 1644 * Find NLM host for the given name and address. 1645 */ 1646 struct nlm_host * 1647 nlm_host_find(struct nlm_globals *g, const char *netid, 1648 struct netbuf *addr) 1649 { 1650 struct nlm_host *hostp = NULL; 1651 1652 mutex_enter(&g->lock); 1653 if (g->run_status != NLM_ST_UP) 1654 goto out; 1655 1656 hostp = nlm_host_find_locked(g, netid, addr, NULL); 1657 1658 out: 1659 mutex_exit(&g->lock); 1660 return (hostp); 1661 } 1662 1663 1664 /* 1665 * Find or create an NLM host for the given name and address. 1666 * 1667 * The remote host is determined by all of: name, netid, address. 1668 * Note that the netid is whatever nlm_svc_add_ep() gave to 1669 * svc_tli_kcreate() for the service binding. If any of these 1670 * are different, allocate a new host (new sysid). 1671 */ 1672 struct nlm_host * 1673 nlm_host_findcreate(struct nlm_globals *g, char *name, 1674 const char *netid, struct netbuf *addr) 1675 { 1676 int err; 1677 struct nlm_host *host, *newhost = NULL; 1678 struct knetconfig knc; 1679 avl_index_t where; 1680 1681 mutex_enter(&g->lock); 1682 if (g->run_status != NLM_ST_UP) { 1683 mutex_exit(&g->lock); 1684 return (NULL); 1685 } 1686 1687 host = nlm_host_find_locked(g, netid, addr, NULL); 1688 mutex_exit(&g->lock); 1689 if (host != NULL) 1690 return (host); 1691 1692 err = nlm_knc_from_netid(netid, &knc); 1693 if (err != 0) 1694 return (NULL); 1695 /* 1696 * Do allocations (etc.) outside of mutex, 1697 * and then check again before inserting. 1698 */ 1699 newhost = nlm_host_create(name, netid, &knc, addr); 1700 newhost->nh_sysid = nlm_sysid_alloc(); 1701 if (newhost->nh_sysid == LM_NOSYSID) 1702 goto out; 1703 1704 mutex_enter(&g->lock); 1705 host = nlm_host_find_locked(g, netid, addr, &where); 1706 if (host == NULL) { 1707 host = newhost; 1708 newhost = NULL; 1709 1710 /* 1711 * Insert host to the hosts AVL tree that is 1712 * used to lookup by <netid, address> pair. 1713 */ 1714 avl_insert(&g->nlm_hosts_tree, host, where); 1715 1716 /* 1717 * Insert host to the hosts hash table that is 1718 * used to lookup host by sysid. 1719 */ 1720 VERIFY(mod_hash_insert(g->nlm_hosts_hash, 1721 (mod_hash_key_t)(uintptr_t)host->nh_sysid, 1722 (mod_hash_val_t)host) == 0); 1723 } 1724 1725 mutex_exit(&g->lock); 1726 1727 out: 1728 if (newhost != NULL) { 1729 /* 1730 * We do not need the preallocated nlm_host 1731 * so decrement the reference counter 1732 * and destroy it. 1733 */ 1734 newhost->nh_refs--; 1735 nlm_host_destroy(newhost); 1736 } 1737 1738 return (host); 1739 } 1740 1741 /* 1742 * Find the NLM host that matches the value of 'sysid'. 1743 * If found, return it with a new ref, 1744 * else return NULL. 1745 */ 1746 struct nlm_host * 1747 nlm_host_find_by_sysid(struct nlm_globals *g, sysid_t sysid) 1748 { 1749 struct nlm_host *hostp = NULL; 1750 1751 mutex_enter(&g->lock); 1752 if (g->run_status != NLM_ST_UP) 1753 goto out; 1754 1755 (void) mod_hash_find(g->nlm_hosts_hash, 1756 (mod_hash_key_t)(uintptr_t)sysid, 1757 (mod_hash_val_t)&hostp); 1758 1759 if (hostp == NULL) 1760 goto out; 1761 1762 /* 1763 * Host is inuse now. Remove it 1764 * from idle hosts list if needed. 1765 */ 1766 if (hostp->nh_flags & NLM_NH_INIDLE) { 1767 TAILQ_REMOVE(&g->nlm_idle_hosts, hostp, nh_link); 1768 hostp->nh_flags &= ~NLM_NH_INIDLE; 1769 } 1770 1771 hostp->nh_refs++; 1772 1773 out: 1774 mutex_exit(&g->lock); 1775 return (hostp); 1776 } 1777 1778 /* 1779 * Release the given host. 1780 * I.e. drop a reference that was taken earlier by one of 1781 * the following functions: nlm_host_findcreate(), nlm_host_find(), 1782 * nlm_host_find_by_sysid(). 1783 * 1784 * When the very last reference is dropped, host is moved to 1785 * so-called "idle state". All hosts that are in idle state 1786 * have an idle timeout. If timeout is expired, GC thread 1787 * checks whether hosts have any locks and if they heven't 1788 * any, it removes them. 1789 * NOTE: only unused hosts can be in idle state. 1790 */ 1791 void 1792 nlm_host_release(struct nlm_globals *g, struct nlm_host *hostp) 1793 { 1794 if (hostp == NULL) 1795 return; 1796 1797 mutex_enter(&g->lock); 1798 ASSERT(hostp->nh_refs > 0); 1799 1800 hostp->nh_refs--; 1801 if (hostp->nh_refs != 0) { 1802 mutex_exit(&g->lock); 1803 return; 1804 } 1805 1806 /* 1807 * The very last reference to the host was dropped, 1808 * thus host is unused now. Set its idle timeout 1809 * and move it to the idle hosts LRU list. 1810 */ 1811 hostp->nh_idle_timeout = ddi_get_lbolt() + 1812 SEC_TO_TICK(g->cn_idle_tmo); 1813 1814 ASSERT((hostp->nh_flags & NLM_NH_INIDLE) == 0); 1815 TAILQ_INSERT_TAIL(&g->nlm_idle_hosts, hostp, nh_link); 1816 hostp->nh_flags |= NLM_NH_INIDLE; 1817 mutex_exit(&g->lock); 1818 } 1819 1820 /* 1821 * Unregister this NLM host (NFS client) with the local statd 1822 * due to idleness (no locks held for a while). 1823 */ 1824 void 1825 nlm_host_unmonitor(struct nlm_globals *g, struct nlm_host *host) 1826 { 1827 enum clnt_stat stat; 1828 1829 VERIFY(host->nh_refs == 0); 1830 if (!(host->nh_flags & NLM_NH_MONITORED)) 1831 return; 1832 1833 host->nh_flags &= ~NLM_NH_MONITORED; 1834 stat = nlm_nsm_unmon(&g->nlm_nsm, host->nh_name); 1835 if (stat != RPC_SUCCESS) { 1836 NLM_WARN("NLM: Failed to contact statd, stat=%d\n", stat); 1837 return; 1838 } 1839 } 1840 1841 /* 1842 * Ask the local NFS statd to begin monitoring this host. 1843 * It will call us back when that host restarts, using the 1844 * prog,vers,proc specified below, i.e. NLM_SM_NOTIFY1, 1845 * which is handled in nlm_do_notify1(). 1846 */ 1847 void 1848 nlm_host_monitor(struct nlm_globals *g, struct nlm_host *host, int state) 1849 { 1850 int family; 1851 netobj obj; 1852 enum clnt_stat stat; 1853 1854 if (state != 0 && host->nh_state == 0) { 1855 /* 1856 * This is the first time we have seen an NSM state 1857 * Value for this host. We record it here to help 1858 * detect host reboots. 1859 */ 1860 host->nh_state = state; 1861 } 1862 1863 mutex_enter(&host->nh_lock); 1864 if (host->nh_flags & NLM_NH_MONITORED) { 1865 mutex_exit(&host->nh_lock); 1866 return; 1867 } 1868 1869 host->nh_flags |= NLM_NH_MONITORED; 1870 mutex_exit(&host->nh_lock); 1871 1872 /* 1873 * Before we begin monitoring the host register the network address 1874 * associated with this hostname. 1875 */ 1876 nlm_netbuf_to_netobj(&host->nh_addr, &family, &obj); 1877 stat = nlm_nsmaddr_reg(&g->nlm_nsm, host->nh_name, family, &obj); 1878 if (stat != RPC_SUCCESS) { 1879 NLM_WARN("Failed to register address, stat=%d\n", stat); 1880 mutex_enter(&g->lock); 1881 host->nh_flags &= ~NLM_NH_MONITORED; 1882 mutex_exit(&g->lock); 1883 1884 return; 1885 } 1886 1887 /* 1888 * Tell statd how to call us with status updates for 1889 * this host. Updates arrive via nlm_do_notify1(). 1890 * 1891 * We put our assigned system ID value in the priv field to 1892 * make it simpler to find the host if we are notified of a 1893 * host restart. 1894 */ 1895 stat = nlm_nsm_mon(&g->nlm_nsm, host->nh_name, host->nh_sysid); 1896 if (stat != RPC_SUCCESS) { 1897 NLM_WARN("Failed to contact local NSM, stat=%d\n", stat); 1898 mutex_enter(&g->lock); 1899 host->nh_flags &= ~NLM_NH_MONITORED; 1900 mutex_exit(&g->lock); 1901 1902 return; 1903 } 1904 } 1905 1906 int 1907 nlm_host_get_state(struct nlm_host *hostp) 1908 { 1909 1910 return (hostp->nh_state); 1911 } 1912 1913 /* 1914 * NLM client/server sleeping locks 1915 */ 1916 1917 /* 1918 * Register client side sleeping lock. 1919 * 1920 * Our client code calls this to keep information 1921 * about sleeping lock somewhere. When it receives 1922 * grant callback from server or when it just 1923 * needs to remove all sleeping locks from vnode, 1924 * it uses this information for remove/apply lock 1925 * properly. 1926 */ 1927 struct nlm_slock * 1928 nlm_slock_register( 1929 struct nlm_globals *g, 1930 struct nlm_host *host, 1931 struct nlm4_lock *lock, 1932 struct vnode *vp) 1933 { 1934 struct nlm_slock *nslp; 1935 1936 nslp = kmem_zalloc(sizeof (*nslp), KM_SLEEP); 1937 cv_init(&nslp->nsl_cond, NULL, CV_DEFAULT, NULL); 1938 nslp->nsl_lock = *lock; 1939 nlm_copy_netobj(&nslp->nsl_fh, &nslp->nsl_lock.fh); 1940 nslp->nsl_state = NLM_SL_BLOCKED; 1941 nslp->nsl_host = host; 1942 nslp->nsl_vp = vp; 1943 1944 mutex_enter(&g->lock); 1945 TAILQ_INSERT_TAIL(&g->nlm_slocks, nslp, nsl_link); 1946 mutex_exit(&g->lock); 1947 1948 return (nslp); 1949 } 1950 1951 /* 1952 * Remove this lock from the wait list and destroy it. 1953 */ 1954 void 1955 nlm_slock_unregister(struct nlm_globals *g, struct nlm_slock *nslp) 1956 { 1957 mutex_enter(&g->lock); 1958 TAILQ_REMOVE(&g->nlm_slocks, nslp, nsl_link); 1959 mutex_exit(&g->lock); 1960 1961 kmem_free(nslp->nsl_fh.n_bytes, nslp->nsl_fh.n_len); 1962 cv_destroy(&nslp->nsl_cond); 1963 kmem_free(nslp, sizeof (*nslp)); 1964 } 1965 1966 /* 1967 * Wait for a granted callback or cancellation event 1968 * for a sleeping lock. 1969 * 1970 * If a signal interrupted the wait or if the lock 1971 * was cancelled, return EINTR - the caller must arrange to send 1972 * a cancellation to the server. 1973 * 1974 * If timeout occurred, return ETIMEDOUT - the caller must 1975 * resend the lock request to the server. 1976 * 1977 * On success return 0. 1978 */ 1979 int 1980 nlm_slock_wait(struct nlm_globals *g, 1981 struct nlm_slock *nslp, uint_t timeo_secs) 1982 { 1983 clock_t timeo_ticks; 1984 int cv_res, error; 1985 1986 /* 1987 * If the granted message arrived before we got here, 1988 * nslp->nsl_state will be NLM_SL_GRANTED - in that case don't sleep. 1989 */ 1990 cv_res = 1; 1991 timeo_ticks = ddi_get_lbolt() + SEC_TO_TICK(timeo_secs); 1992 1993 mutex_enter(&g->lock); 1994 while (nslp->nsl_state == NLM_SL_BLOCKED && cv_res > 0) { 1995 cv_res = cv_timedwait_sig(&nslp->nsl_cond, 1996 &g->lock, timeo_ticks); 1997 } 1998 1999 /* 2000 * No matter why we wake up, if the lock was 2001 * cancelled, let the function caller to know 2002 * about it by returning EINTR. 2003 */ 2004 if (nslp->nsl_state == NLM_SL_CANCELLED) { 2005 error = EINTR; 2006 goto out; 2007 } 2008 2009 if (cv_res <= 0) { 2010 /* We were woken up either by timeout or by interrupt */ 2011 error = (cv_res < 0) ? ETIMEDOUT : EINTR; 2012 2013 /* 2014 * The granted message may arrive after the 2015 * interrupt/timeout but before we manage to lock the 2016 * mutex. Detect this by examining nslp. 2017 */ 2018 if (nslp->nsl_state == NLM_SL_GRANTED) 2019 error = 0; 2020 } else { /* Awaken via cv_signal()/cv_broadcast() or didn't block */ 2021 error = 0; 2022 VERIFY(nslp->nsl_state == NLM_SL_GRANTED); 2023 } 2024 2025 out: 2026 mutex_exit(&g->lock); 2027 return (error); 2028 } 2029 2030 /* 2031 * Mark client side sleeping lock as granted 2032 * and wake up a process blocked on the lock. 2033 * Called from server side NLM_GRANT handler. 2034 * 2035 * If sleeping lock is found return 0, otherwise 2036 * return ENOENT. 2037 */ 2038 int 2039 nlm_slock_grant(struct nlm_globals *g, 2040 struct nlm_host *hostp, struct nlm4_lock *alock) 2041 { 2042 struct nlm_slock *nslp; 2043 int error = ENOENT; 2044 2045 mutex_enter(&g->lock); 2046 TAILQ_FOREACH(nslp, &g->nlm_slocks, nsl_link) { 2047 if ((nslp->nsl_state != NLM_SL_BLOCKED) || 2048 (nslp->nsl_host != hostp)) 2049 continue; 2050 2051 if (alock->svid == nslp->nsl_lock.svid && 2052 alock->l_offset == nslp->nsl_lock.l_offset && 2053 alock->l_len == nslp->nsl_lock.l_len && 2054 alock->fh.n_len == nslp->nsl_lock.fh.n_len && 2055 bcmp(alock->fh.n_bytes, nslp->nsl_lock.fh.n_bytes, 2056 nslp->nsl_lock.fh.n_len) == 0) { 2057 nslp->nsl_state = NLM_SL_GRANTED; 2058 cv_broadcast(&nslp->nsl_cond); 2059 error = 0; 2060 break; 2061 } 2062 } 2063 2064 mutex_exit(&g->lock); 2065 return (error); 2066 } 2067 2068 /* 2069 * Register sleeping lock request corresponding to 2070 * flp on the given vhold object. 2071 * On success function returns 0, otherwise (if 2072 * lock request with the same flp is already 2073 * registered) function returns EEXIST. 2074 */ 2075 int 2076 nlm_slreq_register(struct nlm_host *hostp, struct nlm_vhold *nvp, 2077 struct flock64 *flp) 2078 { 2079 struct nlm_slreq *slr, *new_slr = NULL; 2080 int ret = EEXIST; 2081 2082 mutex_enter(&hostp->nh_lock); 2083 slr = nlm_slreq_find_locked(hostp, nvp, flp); 2084 if (slr != NULL) 2085 goto out; 2086 2087 mutex_exit(&hostp->nh_lock); 2088 new_slr = kmem_zalloc(sizeof (*slr), KM_SLEEP); 2089 bcopy(flp, &new_slr->nsr_fl, sizeof (*flp)); 2090 2091 mutex_enter(&hostp->nh_lock); 2092 slr = nlm_slreq_find_locked(hostp, nvp, flp); 2093 if (slr == NULL) { 2094 slr = new_slr; 2095 new_slr = NULL; 2096 ret = 0; 2097 2098 TAILQ_INSERT_TAIL(&nvp->nv_slreqs, slr, nsr_link); 2099 } 2100 2101 out: 2102 mutex_exit(&hostp->nh_lock); 2103 if (new_slr != NULL) 2104 kmem_free(new_slr, sizeof (*new_slr)); 2105 2106 return (ret); 2107 } 2108 2109 /* 2110 * Unregister sleeping lock request corresponding 2111 * to flp from the given vhold object. 2112 * On success function returns 0, otherwise (if 2113 * lock request corresponding to flp isn't found 2114 * on the given vhold) function returns ENOENT. 2115 */ 2116 int 2117 nlm_slreq_unregister(struct nlm_host *hostp, struct nlm_vhold *nvp, 2118 struct flock64 *flp) 2119 { 2120 struct nlm_slreq *slr; 2121 2122 mutex_enter(&hostp->nh_lock); 2123 slr = nlm_slreq_find_locked(hostp, nvp, flp); 2124 if (slr == NULL) { 2125 mutex_exit(&hostp->nh_lock); 2126 return (ENOENT); 2127 } 2128 2129 TAILQ_REMOVE(&nvp->nv_slreqs, slr, nsr_link); 2130 mutex_exit(&hostp->nh_lock); 2131 2132 kmem_free(slr, sizeof (*slr)); 2133 return (0); 2134 } 2135 2136 /* 2137 * Find sleeping lock request on the given vhold object by flp. 2138 */ 2139 struct nlm_slreq * 2140 nlm_slreq_find_locked(struct nlm_host *hostp, struct nlm_vhold *nvp, 2141 struct flock64 *flp) 2142 { 2143 struct nlm_slreq *slr = NULL; 2144 2145 ASSERT(MUTEX_HELD(&hostp->nh_lock)); 2146 TAILQ_FOREACH(slr, &nvp->nv_slreqs, nsr_link) { 2147 if (slr->nsr_fl.l_start == flp->l_start && 2148 slr->nsr_fl.l_len == flp->l_len && 2149 slr->nsr_fl.l_pid == flp->l_pid && 2150 slr->nsr_fl.l_type == flp->l_type) 2151 break; 2152 } 2153 2154 return (slr); 2155 } 2156 2157 /* 2158 * NLM tracks active share reservations made on the client side. 2159 * It needs to have a track of share reservations for two purposes 2160 * 1) to determine if nlm_host is busy (if it has active locks and/or 2161 * share reservations, it is) 2162 * 2) to recover active share reservations when NLM server reports 2163 * that it has rebooted. 2164 * 2165 * Unfortunately Illumos local share reservations manager (see os/share.c) 2166 * doesn't have an ability to lookup all reservations on the system 2167 * by sysid (like local lock manager) or get all reservations by sysid. 2168 * It tracks reservations per vnode and is able to get/looup them 2169 * on particular vnode. It's not what NLM needs. Thus it has that ugly 2170 * share reservations tracking scheme. 2171 */ 2172 2173 void 2174 nlm_shres_track(struct nlm_host *hostp, vnode_t *vp, struct shrlock *shrp) 2175 { 2176 struct nlm_shres *nsp, *nsp_new; 2177 2178 /* 2179 * NFS code must fill the s_owner, so that 2180 * s_own_len is never 0. 2181 */ 2182 ASSERT(shrp->s_own_len > 0); 2183 nsp_new = nlm_shres_create_item(shrp, vp); 2184 2185 mutex_enter(&hostp->nh_lock); 2186 for (nsp = hostp->nh_shrlist; nsp != NULL; nsp = nsp->ns_next) 2187 if (nsp->ns_vp == vp && nlm_shres_equal(shrp, nsp->ns_shr)) 2188 break; 2189 2190 if (nsp != NULL) { 2191 /* 2192 * Found a duplicate. Do nothing. 2193 */ 2194 2195 goto out; 2196 } 2197 2198 nsp = nsp_new; 2199 nsp_new = NULL; 2200 nsp->ns_next = hostp->nh_shrlist; 2201 hostp->nh_shrlist = nsp; 2202 2203 out: 2204 mutex_exit(&hostp->nh_lock); 2205 if (nsp_new != NULL) 2206 nlm_shres_destroy_item(nsp_new); 2207 } 2208 2209 void 2210 nlm_shres_untrack(struct nlm_host *hostp, vnode_t *vp, struct shrlock *shrp) 2211 { 2212 struct nlm_shres *nsp, *nsp_prev = NULL; 2213 2214 mutex_enter(&hostp->nh_lock); 2215 nsp = hostp->nh_shrlist; 2216 while (nsp != NULL) { 2217 if (nsp->ns_vp == vp && nlm_shres_equal(shrp, nsp->ns_shr)) { 2218 struct nlm_shres *nsp_del; 2219 2220 nsp_del = nsp; 2221 nsp = nsp->ns_next; 2222 if (nsp_prev != NULL) 2223 nsp_prev->ns_next = nsp; 2224 else 2225 hostp->nh_shrlist = nsp; 2226 2227 nlm_shres_destroy_item(nsp_del); 2228 continue; 2229 } 2230 2231 nsp_prev = nsp; 2232 nsp = nsp->ns_next; 2233 } 2234 2235 mutex_exit(&hostp->nh_lock); 2236 } 2237 2238 /* 2239 * Get a _copy_ of the list of all active share reservations 2240 * made by the given host. 2241 * NOTE: the list function returns _must_ be released using 2242 * nlm_free_shrlist(). 2243 */ 2244 struct nlm_shres * 2245 nlm_get_active_shres(struct nlm_host *hostp) 2246 { 2247 struct nlm_shres *nsp, *nslist = NULL; 2248 2249 mutex_enter(&hostp->nh_lock); 2250 for (nsp = hostp->nh_shrlist; nsp != NULL; nsp = nsp->ns_next) { 2251 struct nlm_shres *nsp_new; 2252 2253 nsp_new = nlm_shres_create_item(nsp->ns_shr, nsp->ns_vp); 2254 nsp_new->ns_next = nslist; 2255 nslist = nsp_new; 2256 } 2257 2258 mutex_exit(&hostp->nh_lock); 2259 return (nslist); 2260 } 2261 2262 /* 2263 * Free memory allocated for the active share reservations 2264 * list created by nlm_get_active_shres() function. 2265 */ 2266 void 2267 nlm_free_shrlist(struct nlm_shres *nslist) 2268 { 2269 struct nlm_shres *nsp; 2270 2271 while (nslist != NULL) { 2272 nsp = nslist; 2273 nslist = nslist->ns_next; 2274 2275 nlm_shres_destroy_item(nsp); 2276 } 2277 } 2278 2279 static bool_t 2280 nlm_shres_equal(struct shrlock *shrp1, struct shrlock *shrp2) 2281 { 2282 if (shrp1->s_sysid == shrp2->s_sysid && 2283 shrp1->s_pid == shrp2->s_pid && 2284 shrp1->s_own_len == shrp2->s_own_len && 2285 bcmp(shrp1->s_owner, shrp2->s_owner, 2286 shrp1->s_own_len) == 0) 2287 return (TRUE); 2288 2289 return (FALSE); 2290 } 2291 2292 static struct nlm_shres * 2293 nlm_shres_create_item(struct shrlock *shrp, vnode_t *vp) 2294 { 2295 struct nlm_shres *nsp; 2296 2297 nsp = kmem_alloc(sizeof (*nsp), KM_SLEEP); 2298 nsp->ns_shr = kmem_alloc(sizeof (*shrp), KM_SLEEP); 2299 bcopy(shrp, nsp->ns_shr, sizeof (*shrp)); 2300 nsp->ns_shr->s_owner = kmem_alloc(shrp->s_own_len, KM_SLEEP); 2301 bcopy(shrp->s_owner, nsp->ns_shr->s_owner, shrp->s_own_len); 2302 nsp->ns_vp = vp; 2303 2304 return (nsp); 2305 } 2306 2307 static void 2308 nlm_shres_destroy_item(struct nlm_shres *nsp) 2309 { 2310 kmem_free(nsp->ns_shr->s_owner, 2311 nsp->ns_shr->s_own_len); 2312 kmem_free(nsp->ns_shr, sizeof (struct shrlock)); 2313 kmem_free(nsp, sizeof (*nsp)); 2314 } 2315 2316 /* 2317 * Called by klmmod.c when lockd adds a network endpoint 2318 * on which we should begin RPC services. 2319 */ 2320 int 2321 nlm_svc_add_ep(struct file *fp, const char *netid, struct knetconfig *knc) 2322 { 2323 SVCMASTERXPRT *xprt = NULL; 2324 int error; 2325 2326 error = svc_tli_kcreate(fp, 0, (char *)netid, NULL, &xprt, 2327 &nlm_sct, NULL, NLM_SVCPOOL_ID, FALSE); 2328 if (error != 0) 2329 return (error); 2330 2331 (void) nlm_knc_to_netid(knc); 2332 return (0); 2333 } 2334 2335 /* 2336 * Start NLM service. 2337 */ 2338 int 2339 nlm_svc_starting(struct nlm_globals *g, struct file *fp, 2340 const char *netid, struct knetconfig *knc) 2341 { 2342 int error; 2343 enum clnt_stat stat; 2344 2345 VERIFY(g->run_status == NLM_ST_STARTING); 2346 VERIFY(g->nlm_gc_thread == NULL); 2347 2348 error = nlm_nsm_init_local(&g->nlm_nsm); 2349 if (error != 0) { 2350 NLM_ERR("Failed to initialize NSM handler " 2351 "(error=%d)\n", error); 2352 g->run_status = NLM_ST_DOWN; 2353 return (error); 2354 } 2355 2356 error = EIO; 2357 2358 /* 2359 * Create an NLM garbage collector thread that will 2360 * clean up stale vholds and hosts objects. 2361 */ 2362 g->nlm_gc_thread = zthread_create(NULL, 0, nlm_gc, 2363 g, 0, minclsyspri); 2364 2365 /* 2366 * Send SIMU_CRASH to local statd to report that 2367 * NLM started, so that statd can report other hosts 2368 * about NLM state change. 2369 */ 2370 2371 stat = nlm_nsm_simu_crash(&g->nlm_nsm); 2372 if (stat != RPC_SUCCESS) { 2373 NLM_ERR("Failed to connect to local statd " 2374 "(rpcerr=%d)\n", stat); 2375 goto shutdown_lm; 2376 } 2377 2378 stat = nlm_nsm_stat(&g->nlm_nsm, &g->nsm_state); 2379 if (stat != RPC_SUCCESS) { 2380 NLM_ERR("Failed to get the status of local statd " 2381 "(rpcerr=%d)\n", stat); 2382 goto shutdown_lm; 2383 } 2384 2385 g->grace_threshold = ddi_get_lbolt() + 2386 SEC_TO_TICK(g->grace_period); 2387 2388 /* Register endpoint used for communications with local NLM */ 2389 error = nlm_svc_add_ep(fp, netid, knc); 2390 if (error != 0) 2391 goto shutdown_lm; 2392 2393 (void) svc_pool_control(NLM_SVCPOOL_ID, 2394 SVCPSET_SHUTDOWN_PROC, (void *)nlm_pool_shutdown); 2395 g->run_status = NLM_ST_UP; 2396 return (0); 2397 2398 shutdown_lm: 2399 mutex_enter(&g->lock); 2400 g->run_status = NLM_ST_STOPPING; 2401 mutex_exit(&g->lock); 2402 2403 nlm_svc_stopping(g); 2404 return (error); 2405 } 2406 2407 /* 2408 * Called when the server pool is destroyed, so that 2409 * all transports are closed and no any server threads 2410 * exist. 2411 * 2412 * Just call lm_shutdown() to shut NLM down properly. 2413 */ 2414 static void 2415 nlm_pool_shutdown(void) 2416 { 2417 (void) lm_shutdown(); 2418 } 2419 2420 /* 2421 * Stop NLM service, cleanup all resources 2422 * NLM owns at the moment. 2423 * 2424 * NOTE: NFS code can call NLM while it's 2425 * stopping or even if it's shut down. Any attempt 2426 * to lock file either on client or on the server 2427 * will fail if NLM isn't in NLM_ST_UP state. 2428 */ 2429 void 2430 nlm_svc_stopping(struct nlm_globals *g) 2431 { 2432 mutex_enter(&g->lock); 2433 ASSERT(g->run_status == NLM_ST_STOPPING); 2434 2435 /* 2436 * Ask NLM GC thread to exit and wait until it dies. 2437 */ 2438 cv_signal(&g->nlm_gc_sched_cv); 2439 while (g->nlm_gc_thread != NULL) 2440 cv_wait(&g->nlm_gc_finish_cv, &g->lock); 2441 2442 mutex_exit(&g->lock); 2443 2444 /* 2445 * Cleanup locks owned by NLM hosts. 2446 * NOTE: New hosts won't be created while 2447 * NLM is stopping. 2448 */ 2449 while (!avl_is_empty(&g->nlm_hosts_tree)) { 2450 struct nlm_host *hostp; 2451 int busy_hosts = 0; 2452 2453 /* 2454 * Iterate through all NLM hosts in the system 2455 * and drop the locks they own by force. 2456 */ 2457 hostp = avl_first(&g->nlm_hosts_tree); 2458 while (hostp != NULL) { 2459 /* Cleanup all client and server side locks */ 2460 nlm_client_cancel_all(g, hostp); 2461 nlm_host_notify_server(hostp, 0); 2462 2463 mutex_enter(&hostp->nh_lock); 2464 nlm_host_gc_vholds(hostp); 2465 if (hostp->nh_refs > 0 || nlm_host_has_locks(hostp)) { 2466 /* 2467 * Oh, it seems the host is still busy, let 2468 * it some time to release and go to the 2469 * next one. 2470 */ 2471 2472 mutex_exit(&hostp->nh_lock); 2473 hostp = AVL_NEXT(&g->nlm_hosts_tree, hostp); 2474 busy_hosts++; 2475 continue; 2476 } 2477 2478 mutex_exit(&hostp->nh_lock); 2479 hostp = AVL_NEXT(&g->nlm_hosts_tree, hostp); 2480 } 2481 2482 /* 2483 * All hosts go to nlm_idle_hosts list after 2484 * all locks they own are cleaned up and last refereces 2485 * were dropped. Just destroy all hosts in nlm_idle_hosts 2486 * list, they can not be removed from there while we're 2487 * in stopping state. 2488 */ 2489 while ((hostp = TAILQ_FIRST(&g->nlm_idle_hosts)) != NULL) { 2490 nlm_host_unregister(g, hostp); 2491 nlm_host_destroy(hostp); 2492 } 2493 2494 if (busy_hosts > 0) { 2495 /* 2496 * There're some hosts that weren't cleaned 2497 * up. Probably they're in resource cleanup 2498 * process. Give them some time to do drop 2499 * references. 2500 */ 2501 delay(MSEC_TO_TICK(500)); 2502 } 2503 } 2504 2505 ASSERT(TAILQ_EMPTY(&g->nlm_slocks)); 2506 2507 nlm_nsm_fini(&g->nlm_nsm); 2508 g->lockd_pid = 0; 2509 g->run_status = NLM_ST_DOWN; 2510 } 2511 2512 /* 2513 * Returns TRUE if the given vnode has 2514 * any active or sleeping locks. 2515 */ 2516 int 2517 nlm_vp_active(const vnode_t *vp) 2518 { 2519 struct nlm_globals *g; 2520 struct nlm_host *hostp; 2521 struct nlm_vhold *nvp; 2522 int active = 0; 2523 2524 g = zone_getspecific(nlm_zone_key, curzone); 2525 2526 /* 2527 * Server side NLM has locks on the given vnode 2528 * if there exist a vhold object that holds 2529 * the given vnode "vp" in one of NLM hosts. 2530 */ 2531 mutex_enter(&g->lock); 2532 hostp = avl_first(&g->nlm_hosts_tree); 2533 while (hostp != NULL) { 2534 mutex_enter(&hostp->nh_lock); 2535 nvp = nlm_vhold_find_locked(hostp, vp); 2536 mutex_exit(&hostp->nh_lock); 2537 if (nvp != NULL) { 2538 active = 1; 2539 break; 2540 } 2541 2542 hostp = AVL_NEXT(&g->nlm_hosts_tree, hostp); 2543 } 2544 2545 mutex_exit(&g->lock); 2546 return (active); 2547 } 2548 2549 /* 2550 * Called right before NFS export is going to 2551 * dissapear. The function finds all vnodes 2552 * belonging to the given export and cleans 2553 * all remote locks and share reservations 2554 * on them. 2555 */ 2556 void 2557 nlm_unexport(struct exportinfo *exi) 2558 { 2559 struct nlm_globals *g; 2560 struct nlm_host *hostp; 2561 2562 g = zone_getspecific(nlm_zone_key, curzone); 2563 2564 mutex_enter(&g->lock); 2565 hostp = avl_first(&g->nlm_hosts_tree); 2566 while (hostp != NULL) { 2567 struct nlm_vhold *nvp; 2568 2569 mutex_enter(&hostp->nh_lock); 2570 TAILQ_FOREACH(nvp, &hostp->nh_vholds_list, nv_link) { 2571 vnode_t *vp; 2572 2573 nvp->nv_refcnt++; 2574 mutex_exit(&hostp->nh_lock); 2575 2576 vp = nvp->nv_vp; 2577 2578 if (!EQFSID(&exi->exi_fsid, &vp->v_vfsp->vfs_fsid)) 2579 goto next_iter; 2580 2581 /* 2582 * Ok, it we found out that vnode vp is under 2583 * control by the exportinfo exi, now we need 2584 * to drop all locks from this vnode, let's 2585 * do it. 2586 */ 2587 nlm_vhold_clean(nvp, hostp->nh_sysid); 2588 2589 next_iter: 2590 mutex_enter(&hostp->nh_lock); 2591 nvp->nv_refcnt--; 2592 } 2593 2594 mutex_exit(&hostp->nh_lock); 2595 hostp = AVL_NEXT(&g->nlm_hosts_tree, hostp); 2596 } 2597 2598 mutex_exit(&g->lock); 2599 } 2600 2601 /* 2602 * Allocate new unique sysid. 2603 * In case of failure (no available sysids) 2604 * return LM_NOSYSID. 2605 */ 2606 sysid_t 2607 nlm_sysid_alloc(void) 2608 { 2609 sysid_t ret_sysid = LM_NOSYSID; 2610 2611 rw_enter(&lm_lck, RW_WRITER); 2612 if (nlm_sysid_nidx > LM_SYSID_MAX) 2613 nlm_sysid_nidx = LM_SYSID; 2614 2615 if (!BT_TEST(nlm_sysid_bmap, nlm_sysid_nidx)) { 2616 BT_SET(nlm_sysid_bmap, nlm_sysid_nidx); 2617 ret_sysid = nlm_sysid_nidx++; 2618 } else { 2619 index_t id; 2620 2621 id = bt_availbit(nlm_sysid_bmap, NLM_BMAP_NITEMS); 2622 if (id > 0) { 2623 nlm_sysid_nidx = id + 1; 2624 ret_sysid = id; 2625 BT_SET(nlm_sysid_bmap, id); 2626 } 2627 } 2628 2629 rw_exit(&lm_lck); 2630 return (ret_sysid); 2631 } 2632 2633 void 2634 nlm_sysid_free(sysid_t sysid) 2635 { 2636 ASSERT(sysid >= LM_SYSID && sysid <= LM_SYSID_MAX); 2637 2638 rw_enter(&lm_lck, RW_WRITER); 2639 ASSERT(BT_TEST(nlm_sysid_bmap, sysid)); 2640 BT_CLEAR(nlm_sysid_bmap, sysid); 2641 rw_exit(&lm_lck); 2642 } 2643 2644 /* 2645 * Return true if the request came from a local caller. 2646 * By necessity, this "knows" the netid names invented 2647 * in lm_svc() and nlm_netid_from_knetconfig(). 2648 */ 2649 bool_t 2650 nlm_caller_is_local(SVCXPRT *transp) 2651 { 2652 char *netid; 2653 struct netbuf *rtaddr; 2654 2655 netid = svc_getnetid(transp); 2656 rtaddr = svc_getrpccaller(transp); 2657 2658 if (netid == NULL) 2659 return (FALSE); 2660 2661 if (strcmp(netid, "ticlts") == 0 || 2662 strcmp(netid, "ticotsord") == 0) 2663 return (TRUE); 2664 2665 if (strcmp(netid, "tcp") == 0 || strcmp(netid, "udp") == 0) { 2666 struct sockaddr_in *sin = (void *)rtaddr->buf; 2667 if (sin->sin_addr.s_addr == htonl(INADDR_LOOPBACK)) 2668 return (TRUE); 2669 } 2670 if (strcmp(netid, "tcp6") == 0 || strcmp(netid, "udp6") == 0) { 2671 struct sockaddr_in6 *sin6 = (void *)rtaddr->buf; 2672 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 2673 return (TRUE); 2674 } 2675 2676 return (FALSE); /* unknown transport */ 2677 } 2678 2679 /* 2680 * Get netid string correspondig to the given knetconfig. 2681 * If not done already, save knc->knc_rdev in our table. 2682 */ 2683 const char * 2684 nlm_knc_to_netid(struct knetconfig *knc) 2685 { 2686 int i; 2687 dev_t rdev; 2688 struct nlm_knc *nc; 2689 const char *netid = NULL; 2690 2691 rw_enter(&lm_lck, RW_READER); 2692 for (i = 0; i < NLM_KNCS; i++) { 2693 nc = &nlm_netconfigs[i]; 2694 2695 if (nc->n_knc.knc_semantics == knc->knc_semantics && 2696 strcmp(nc->n_knc.knc_protofmly, 2697 knc->knc_protofmly) == 0) { 2698 netid = nc->n_netid; 2699 rdev = nc->n_knc.knc_rdev; 2700 break; 2701 } 2702 } 2703 rw_exit(&lm_lck); 2704 2705 if (netid != NULL && rdev == NODEV) { 2706 rw_enter(&lm_lck, RW_WRITER); 2707 if (nc->n_knc.knc_rdev == NODEV) 2708 nc->n_knc.knc_rdev = knc->knc_rdev; 2709 rw_exit(&lm_lck); 2710 } 2711 2712 return (netid); 2713 } 2714 2715 /* 2716 * Get a knetconfig corresponding to the given netid. 2717 * If there's no knetconfig for this netid, ENOENT 2718 * is returned. 2719 */ 2720 int 2721 nlm_knc_from_netid(const char *netid, struct knetconfig *knc) 2722 { 2723 int i, ret; 2724 2725 ret = ENOENT; 2726 for (i = 0; i < NLM_KNCS; i++) { 2727 struct nlm_knc *nknc; 2728 2729 nknc = &nlm_netconfigs[i]; 2730 if (strcmp(netid, nknc->n_netid) == 0 && 2731 nknc->n_knc.knc_rdev != NODEV) { 2732 *knc = nknc->n_knc; 2733 ret = 0; 2734 break; 2735 } 2736 } 2737 2738 return (ret); 2739 } 2740 2741 void 2742 nlm_cprsuspend(void) 2743 { 2744 struct nlm_globals *g; 2745 2746 rw_enter(&lm_lck, RW_READER); 2747 TAILQ_FOREACH(g, &nlm_zones_list, nlm_link) 2748 nlm_suspend_zone(g); 2749 2750 rw_exit(&lm_lck); 2751 } 2752 2753 void 2754 nlm_cprresume(void) 2755 { 2756 struct nlm_globals *g; 2757 2758 rw_enter(&lm_lck, RW_READER); 2759 TAILQ_FOREACH(g, &nlm_zones_list, nlm_link) 2760 nlm_resume_zone(g); 2761 2762 rw_exit(&lm_lck); 2763 } 2764 2765 static void 2766 nlm_nsm_clnt_init(CLIENT *clnt, struct nlm_nsm *nsm) 2767 { 2768 (void) clnt_tli_kinit(clnt, &nsm->ns_knc, &nsm->ns_addr, 0, 2769 NLM_RPC_RETRIES, kcred); 2770 } 2771 2772 static void 2773 nlm_netbuf_to_netobj(struct netbuf *addr, int *family, netobj *obj) 2774 { 2775 /* LINTED pointer alignment */ 2776 struct sockaddr *sa = (struct sockaddr *)addr->buf; 2777 2778 *family = sa->sa_family; 2779 2780 switch (sa->sa_family) { 2781 case AF_INET: { 2782 /* LINTED pointer alignment */ 2783 struct sockaddr_in *sin = (struct sockaddr_in *)sa; 2784 2785 obj->n_len = sizeof (sin->sin_addr); 2786 obj->n_bytes = (char *)&sin->sin_addr; 2787 break; 2788 } 2789 2790 case AF_INET6: { 2791 /* LINTED pointer alignment */ 2792 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa; 2793 2794 obj->n_len = sizeof (sin6->sin6_addr); 2795 obj->n_bytes = (char *)&sin6->sin6_addr; 2796 break; 2797 } 2798 2799 default: 2800 VERIFY(0); 2801 break; 2802 } 2803 } 2804