xref: /titanic_51/usr/src/uts/common/io/scsi/targets/sd.c (revision ff500535587afd3251e90e4481564113c5a70b34)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
27  */
28 
29 /*
30  * SCSI disk target driver.
31  */
32 #include <sys/scsi/scsi.h>
33 #include <sys/dkbad.h>
34 #include <sys/dklabel.h>
35 #include <sys/dkio.h>
36 #include <sys/fdio.h>
37 #include <sys/cdio.h>
38 #include <sys/mhd.h>
39 #include <sys/vtoc.h>
40 #include <sys/dktp/fdisk.h>
41 #include <sys/kstat.h>
42 #include <sys/vtrace.h>
43 #include <sys/note.h>
44 #include <sys/thread.h>
45 #include <sys/proc.h>
46 #include <sys/efi_partition.h>
47 #include <sys/var.h>
48 #include <sys/aio_req.h>
49 
50 #ifdef __lock_lint
51 #define	_LP64
52 #define	__amd64
53 #endif
54 
55 #if (defined(__fibre))
56 /* Note: is there a leadville version of the following? */
57 #include <sys/fc4/fcal_linkapp.h>
58 #endif
59 #include <sys/taskq.h>
60 #include <sys/uuid.h>
61 #include <sys/byteorder.h>
62 #include <sys/sdt.h>
63 
64 #include "sd_xbuf.h"
65 
66 #include <sys/scsi/targets/sddef.h>
67 #include <sys/cmlb.h>
68 #include <sys/sysevent/eventdefs.h>
69 #include <sys/sysevent/dev.h>
70 
71 #include <sys/fm/protocol.h>
72 
73 /*
74  * Loadable module info.
75  */
76 #if (defined(__fibre))
77 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver"
78 char _depends_on[]	= "misc/scsi misc/cmlb drv/fcp";
79 #else /* !__fibre */
80 #define	SD_MODULE_NAME	"SCSI Disk Driver"
81 char _depends_on[]	= "misc/scsi misc/cmlb";
82 #endif /* !__fibre */
83 
84 /*
85  * Define the interconnect type, to allow the driver to distinguish
86  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
87  *
88  * This is really for backward compatibility. In the future, the driver
89  * should actually check the "interconnect-type" property as reported by
90  * the HBA; however at present this property is not defined by all HBAs,
91  * so we will use this #define (1) to permit the driver to run in
92  * backward-compatibility mode; and (2) to print a notification message
93  * if an FC HBA does not support the "interconnect-type" property.  The
94  * behavior of the driver will be to assume parallel SCSI behaviors unless
95  * the "interconnect-type" property is defined by the HBA **AND** has a
96  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
97  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
98  * Channel behaviors (as per the old ssd).  (Note that the
99  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
100  * will result in the driver assuming parallel SCSI behaviors.)
101  *
102  * (see common/sys/scsi/impl/services.h)
103  *
104  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
105  * since some FC HBAs may already support that, and there is some code in
106  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
107  * default would confuse that code, and besides things should work fine
108  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
109  * "interconnect_type" property.
110  *
111  */
112 #if (defined(__fibre))
113 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
114 #else
115 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
116 #endif
117 
118 /*
119  * The name of the driver, established from the module name in _init.
120  */
121 static	char *sd_label			= NULL;
122 
123 /*
124  * Driver name is unfortunately prefixed on some driver.conf properties.
125  */
126 #if (defined(__fibre))
127 #define	sd_max_xfer_size		ssd_max_xfer_size
128 #define	sd_config_list			ssd_config_list
129 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
130 static	char *sd_config_list		= "ssd-config-list";
131 #else
132 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
133 static	char *sd_config_list		= "sd-config-list";
134 #endif
135 
136 /*
137  * Driver global variables
138  */
139 
140 #if (defined(__fibre))
141 /*
142  * These #defines are to avoid namespace collisions that occur because this
143  * code is currently used to compile two separate driver modules: sd and ssd.
144  * All global variables need to be treated this way (even if declared static)
145  * in order to allow the debugger to resolve the names properly.
146  * It is anticipated that in the near future the ssd module will be obsoleted,
147  * at which time this namespace issue should go away.
148  */
149 #define	sd_state			ssd_state
150 #define	sd_io_time			ssd_io_time
151 #define	sd_failfast_enable		ssd_failfast_enable
152 #define	sd_ua_retry_count		ssd_ua_retry_count
153 #define	sd_report_pfa			ssd_report_pfa
154 #define	sd_max_throttle			ssd_max_throttle
155 #define	sd_min_throttle			ssd_min_throttle
156 #define	sd_rot_delay			ssd_rot_delay
157 
158 #define	sd_retry_on_reservation_conflict	\
159 					ssd_retry_on_reservation_conflict
160 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
161 #define	sd_resv_conflict_name		ssd_resv_conflict_name
162 
163 #define	sd_component_mask		ssd_component_mask
164 #define	sd_level_mask			ssd_level_mask
165 #define	sd_debug_un			ssd_debug_un
166 #define	sd_error_level			ssd_error_level
167 
168 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
169 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
170 
171 #define	sd_tr				ssd_tr
172 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
173 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
174 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
175 #define	sd_check_media_time		ssd_check_media_time
176 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
177 #define	sd_label_mutex			ssd_label_mutex
178 #define	sd_detach_mutex			ssd_detach_mutex
179 #define	sd_log_buf			ssd_log_buf
180 #define	sd_log_mutex			ssd_log_mutex
181 
182 #define	sd_disk_table			ssd_disk_table
183 #define	sd_disk_table_size		ssd_disk_table_size
184 #define	sd_sense_mutex			ssd_sense_mutex
185 #define	sd_cdbtab			ssd_cdbtab
186 
187 #define	sd_cb_ops			ssd_cb_ops
188 #define	sd_ops				ssd_ops
189 #define	sd_additional_codes		ssd_additional_codes
190 #define	sd_tgops			ssd_tgops
191 
192 #define	sd_minor_data			ssd_minor_data
193 #define	sd_minor_data_efi		ssd_minor_data_efi
194 
195 #define	sd_tq				ssd_tq
196 #define	sd_wmr_tq			ssd_wmr_tq
197 #define	sd_taskq_name			ssd_taskq_name
198 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
199 #define	sd_taskq_minalloc		ssd_taskq_minalloc
200 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
201 
202 #define	sd_dump_format_string		ssd_dump_format_string
203 
204 #define	sd_iostart_chain		ssd_iostart_chain
205 #define	sd_iodone_chain			ssd_iodone_chain
206 
207 #define	sd_pm_idletime			ssd_pm_idletime
208 
209 #define	sd_force_pm_supported		ssd_force_pm_supported
210 
211 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
212 
213 #define	sd_ssc_init			ssd_ssc_init
214 #define	sd_ssc_send			ssd_ssc_send
215 #define	sd_ssc_fini			ssd_ssc_fini
216 #define	sd_ssc_assessment		ssd_ssc_assessment
217 #define	sd_ssc_post			ssd_ssc_post
218 #define	sd_ssc_print			ssd_ssc_print
219 #define	sd_ssc_ereport_post		ssd_ssc_ereport_post
220 #define	sd_ssc_set_info			ssd_ssc_set_info
221 #define	sd_ssc_extract_info		ssd_ssc_extract_info
222 
223 #endif
224 
225 #ifdef	SDDEBUG
226 int	sd_force_pm_supported		= 0;
227 #endif	/* SDDEBUG */
228 
229 void *sd_state				= NULL;
230 int sd_io_time				= SD_IO_TIME;
231 int sd_failfast_enable			= 1;
232 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
233 int sd_report_pfa			= 1;
234 int sd_max_throttle			= SD_MAX_THROTTLE;
235 int sd_min_throttle			= SD_MIN_THROTTLE;
236 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
237 int sd_qfull_throttle_enable		= TRUE;
238 
239 int sd_retry_on_reservation_conflict	= 1;
240 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
241 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
242 
243 static int sd_dtype_optical_bind	= -1;
244 
245 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
246 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
247 
248 /*
249  * Global data for debug logging. To enable debug printing, sd_component_mask
250  * and sd_level_mask should be set to the desired bit patterns as outlined in
251  * sddef.h.
252  */
253 uint_t	sd_component_mask		= 0x0;
254 uint_t	sd_level_mask			= 0x0;
255 struct	sd_lun *sd_debug_un		= NULL;
256 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
257 
258 /* Note: these may go away in the future... */
259 static uint32_t	sd_xbuf_active_limit	= 512;
260 static uint32_t sd_xbuf_reserve_limit	= 16;
261 
262 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
263 
264 /*
265  * Timer value used to reset the throttle after it has been reduced
266  * (typically in response to TRAN_BUSY or STATUS_QFULL)
267  */
268 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
269 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
270 
271 /*
272  * Interval value associated with the media change scsi watch.
273  */
274 static int sd_check_media_time		= 3000000;
275 
276 /*
277  * Wait value used for in progress operations during a DDI_SUSPEND
278  */
279 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
280 
281 /*
282  * sd_label_mutex protects a static buffer used in the disk label
283  * component of the driver
284  */
285 static kmutex_t sd_label_mutex;
286 
287 /*
288  * sd_detach_mutex protects un_layer_count, un_detach_count, and
289  * un_opens_in_progress in the sd_lun structure.
290  */
291 static kmutex_t sd_detach_mutex;
292 
293 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
294 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
295 
296 /*
297  * Global buffer and mutex for debug logging
298  */
299 static char	sd_log_buf[1024];
300 static kmutex_t	sd_log_mutex;
301 
302 /*
303  * Structs and globals for recording attached lun information.
304  * This maintains a chain. Each node in the chain represents a SCSI controller.
305  * The structure records the number of luns attached to each target connected
306  * with the controller.
307  * For parallel scsi device only.
308  */
309 struct sd_scsi_hba_tgt_lun {
310 	struct sd_scsi_hba_tgt_lun	*next;
311 	dev_info_t			*pdip;
312 	int				nlun[NTARGETS_WIDE];
313 };
314 
315 /*
316  * Flag to indicate the lun is attached or detached
317  */
318 #define	SD_SCSI_LUN_ATTACH	0
319 #define	SD_SCSI_LUN_DETACH	1
320 
321 static kmutex_t	sd_scsi_target_lun_mutex;
322 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
323 
324 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
325     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
326 
327 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
328     sd_scsi_target_lun_head))
329 
330 /*
331  * "Smart" Probe Caching structs, globals, #defines, etc.
332  * For parallel scsi and non-self-identify device only.
333  */
334 
335 /*
336  * The following resources and routines are implemented to support
337  * "smart" probing, which caches the scsi_probe() results in an array,
338  * in order to help avoid long probe times.
339  */
340 struct sd_scsi_probe_cache {
341 	struct	sd_scsi_probe_cache	*next;
342 	dev_info_t	*pdip;
343 	int		cache[NTARGETS_WIDE];
344 };
345 
346 static kmutex_t	sd_scsi_probe_cache_mutex;
347 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
348 
349 /*
350  * Really we only need protection on the head of the linked list, but
351  * better safe than sorry.
352  */
353 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
354     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
355 
356 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
357     sd_scsi_probe_cache_head))
358 
359 /*
360  * Power attribute table
361  */
362 static sd_power_attr_ss sd_pwr_ss = {
363 	{ "NAME=spindle-motor", "0=off", "1=on", NULL },
364 	{0, 100},
365 	{30, 0},
366 	{20000, 0}
367 };
368 
369 static sd_power_attr_pc sd_pwr_pc = {
370 	{ "NAME=spindle-motor", "0=stopped", "1=standby", "2=idle",
371 		"3=active", NULL },
372 	{0, 0, 0, 100},
373 	{90, 90, 20, 0},
374 	{15000, 15000, 1000, 0}
375 };
376 
377 /*
378  * Power level to power condition
379  */
380 static int sd_pl2pc[] = {
381 	SD_TARGET_START_VALID,
382 	SD_TARGET_STANDBY,
383 	SD_TARGET_IDLE,
384 	SD_TARGET_ACTIVE
385 };
386 
387 /*
388  * Vendor specific data name property declarations
389  */
390 
391 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
392 
393 static sd_tunables seagate_properties = {
394 	SEAGATE_THROTTLE_VALUE,
395 	0,
396 	0,
397 	0,
398 	0,
399 	0,
400 	0,
401 	0,
402 	0
403 };
404 
405 
406 static sd_tunables fujitsu_properties = {
407 	FUJITSU_THROTTLE_VALUE,
408 	0,
409 	0,
410 	0,
411 	0,
412 	0,
413 	0,
414 	0,
415 	0
416 };
417 
418 static sd_tunables ibm_properties = {
419 	IBM_THROTTLE_VALUE,
420 	0,
421 	0,
422 	0,
423 	0,
424 	0,
425 	0,
426 	0,
427 	0
428 };
429 
430 static sd_tunables purple_properties = {
431 	PURPLE_THROTTLE_VALUE,
432 	0,
433 	0,
434 	PURPLE_BUSY_RETRIES,
435 	PURPLE_RESET_RETRY_COUNT,
436 	PURPLE_RESERVE_RELEASE_TIME,
437 	0,
438 	0,
439 	0
440 };
441 
442 static sd_tunables sve_properties = {
443 	SVE_THROTTLE_VALUE,
444 	0,
445 	0,
446 	SVE_BUSY_RETRIES,
447 	SVE_RESET_RETRY_COUNT,
448 	SVE_RESERVE_RELEASE_TIME,
449 	SVE_MIN_THROTTLE_VALUE,
450 	SVE_DISKSORT_DISABLED_FLAG,
451 	0
452 };
453 
454 static sd_tunables maserati_properties = {
455 	0,
456 	0,
457 	0,
458 	0,
459 	0,
460 	0,
461 	0,
462 	MASERATI_DISKSORT_DISABLED_FLAG,
463 	MASERATI_LUN_RESET_ENABLED_FLAG
464 };
465 
466 static sd_tunables pirus_properties = {
467 	PIRUS_THROTTLE_VALUE,
468 	0,
469 	PIRUS_NRR_COUNT,
470 	PIRUS_BUSY_RETRIES,
471 	PIRUS_RESET_RETRY_COUNT,
472 	0,
473 	PIRUS_MIN_THROTTLE_VALUE,
474 	PIRUS_DISKSORT_DISABLED_FLAG,
475 	PIRUS_LUN_RESET_ENABLED_FLAG
476 };
477 
478 #endif
479 
480 #if (defined(__sparc) && !defined(__fibre)) || \
481 	(defined(__i386) || defined(__amd64))
482 
483 
484 static sd_tunables elite_properties = {
485 	ELITE_THROTTLE_VALUE,
486 	0,
487 	0,
488 	0,
489 	0,
490 	0,
491 	0,
492 	0,
493 	0
494 };
495 
496 static sd_tunables st31200n_properties = {
497 	ST31200N_THROTTLE_VALUE,
498 	0,
499 	0,
500 	0,
501 	0,
502 	0,
503 	0,
504 	0,
505 	0
506 };
507 
508 #endif /* Fibre or not */
509 
510 static sd_tunables lsi_properties_scsi = {
511 	LSI_THROTTLE_VALUE,
512 	0,
513 	LSI_NOTREADY_RETRIES,
514 	0,
515 	0,
516 	0,
517 	0,
518 	0,
519 	0
520 };
521 
522 static sd_tunables symbios_properties = {
523 	SYMBIOS_THROTTLE_VALUE,
524 	0,
525 	SYMBIOS_NOTREADY_RETRIES,
526 	0,
527 	0,
528 	0,
529 	0,
530 	0,
531 	0
532 };
533 
534 static sd_tunables lsi_properties = {
535 	0,
536 	0,
537 	LSI_NOTREADY_RETRIES,
538 	0,
539 	0,
540 	0,
541 	0,
542 	0,
543 	0
544 };
545 
546 static sd_tunables lsi_oem_properties = {
547 	0,
548 	0,
549 	LSI_OEM_NOTREADY_RETRIES,
550 	0,
551 	0,
552 	0,
553 	0,
554 	0,
555 	0,
556 	1
557 };
558 
559 
560 
561 #if (defined(SD_PROP_TST))
562 
563 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
564 #define	SD_TST_THROTTLE_VAL	16
565 #define	SD_TST_NOTREADY_VAL	12
566 #define	SD_TST_BUSY_VAL		60
567 #define	SD_TST_RST_RETRY_VAL	36
568 #define	SD_TST_RSV_REL_TIME	60
569 
570 static sd_tunables tst_properties = {
571 	SD_TST_THROTTLE_VAL,
572 	SD_TST_CTYPE_VAL,
573 	SD_TST_NOTREADY_VAL,
574 	SD_TST_BUSY_VAL,
575 	SD_TST_RST_RETRY_VAL,
576 	SD_TST_RSV_REL_TIME,
577 	0,
578 	0,
579 	0
580 };
581 #endif
582 
583 /* This is similar to the ANSI toupper implementation */
584 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
585 
586 /*
587  * Static Driver Configuration Table
588  *
589  * This is the table of disks which need throttle adjustment (or, perhaps
590  * something else as defined by the flags at a future time.)  device_id
591  * is a string consisting of concatenated vid (vendor), pid (product/model)
592  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
593  * the parts of the string are as defined by the sizes in the scsi_inquiry
594  * structure.  Device type is searched as far as the device_id string is
595  * defined.  Flags defines which values are to be set in the driver from the
596  * properties list.
597  *
598  * Entries below which begin and end with a "*" are a special case.
599  * These do not have a specific vendor, and the string which follows
600  * can appear anywhere in the 16 byte PID portion of the inquiry data.
601  *
602  * Entries below which begin and end with a " " (blank) are a special
603  * case. The comparison function will treat multiple consecutive blanks
604  * as equivalent to a single blank. For example, this causes a
605  * sd_disk_table entry of " NEC CDROM " to match a device's id string
606  * of  "NEC       CDROM".
607  *
608  * Note: The MD21 controller type has been obsoleted.
609  *	 ST318202F is a Legacy device
610  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
611  *	 made with an FC connection. The entries here are a legacy.
612  */
613 static sd_disk_config_t sd_disk_table[] = {
614 #if defined(__fibre) || defined(__i386) || defined(__amd64)
615 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
616 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
617 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
618 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
619 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
620 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
621 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
622 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
623 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
624 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
625 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
626 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
627 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
628 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
629 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
630 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
631 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
632 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
633 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
634 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
635 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
636 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
637 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
638 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
639 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
640 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
641 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
642 	{ "IBM     1724-100",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
643 	{ "IBM     1726-2xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
644 	{ "IBM     1726-22x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
645 	{ "IBM     1726-4xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
646 	{ "IBM     1726-42x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
647 	{ "IBM     1726-3xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
648 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
649 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
650 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
651 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
652 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
653 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
654 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
655 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
656 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
657 	{ "IBM     1818",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
658 	{ "DELL    MD3000",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
659 	{ "DELL    MD3000i",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
660 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
661 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
662 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
663 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
664 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT |
665 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
666 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT |
667 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
668 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
669 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
670 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
671 			SD_CONF_BSET_BSY_RETRY_COUNT|
672 			SD_CONF_BSET_RST_RETRIES|
673 			SD_CONF_BSET_RSV_REL_TIME,
674 		&purple_properties },
675 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
676 		SD_CONF_BSET_BSY_RETRY_COUNT|
677 		SD_CONF_BSET_RST_RETRIES|
678 		SD_CONF_BSET_RSV_REL_TIME|
679 		SD_CONF_BSET_MIN_THROTTLE|
680 		SD_CONF_BSET_DISKSORT_DISABLED,
681 		&sve_properties },
682 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
683 			SD_CONF_BSET_BSY_RETRY_COUNT|
684 			SD_CONF_BSET_RST_RETRIES|
685 			SD_CONF_BSET_RSV_REL_TIME,
686 		&purple_properties },
687 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
688 		SD_CONF_BSET_LUN_RESET_ENABLED,
689 		&maserati_properties },
690 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
691 		SD_CONF_BSET_NRR_COUNT|
692 		SD_CONF_BSET_BSY_RETRY_COUNT|
693 		SD_CONF_BSET_RST_RETRIES|
694 		SD_CONF_BSET_MIN_THROTTLE|
695 		SD_CONF_BSET_DISKSORT_DISABLED|
696 		SD_CONF_BSET_LUN_RESET_ENABLED,
697 		&pirus_properties },
698 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
699 		SD_CONF_BSET_NRR_COUNT|
700 		SD_CONF_BSET_BSY_RETRY_COUNT|
701 		SD_CONF_BSET_RST_RETRIES|
702 		SD_CONF_BSET_MIN_THROTTLE|
703 		SD_CONF_BSET_DISKSORT_DISABLED|
704 		SD_CONF_BSET_LUN_RESET_ENABLED,
705 		&pirus_properties },
706 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
707 		SD_CONF_BSET_NRR_COUNT|
708 		SD_CONF_BSET_BSY_RETRY_COUNT|
709 		SD_CONF_BSET_RST_RETRIES|
710 		SD_CONF_BSET_MIN_THROTTLE|
711 		SD_CONF_BSET_DISKSORT_DISABLED|
712 		SD_CONF_BSET_LUN_RESET_ENABLED,
713 		&pirus_properties },
714 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
715 		SD_CONF_BSET_NRR_COUNT|
716 		SD_CONF_BSET_BSY_RETRY_COUNT|
717 		SD_CONF_BSET_RST_RETRIES|
718 		SD_CONF_BSET_MIN_THROTTLE|
719 		SD_CONF_BSET_DISKSORT_DISABLED|
720 		SD_CONF_BSET_LUN_RESET_ENABLED,
721 		&pirus_properties },
722 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
723 		SD_CONF_BSET_NRR_COUNT|
724 		SD_CONF_BSET_BSY_RETRY_COUNT|
725 		SD_CONF_BSET_RST_RETRIES|
726 		SD_CONF_BSET_MIN_THROTTLE|
727 		SD_CONF_BSET_DISKSORT_DISABLED|
728 		SD_CONF_BSET_LUN_RESET_ENABLED,
729 		&pirus_properties },
730 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
731 		SD_CONF_BSET_NRR_COUNT|
732 		SD_CONF_BSET_BSY_RETRY_COUNT|
733 		SD_CONF_BSET_RST_RETRIES|
734 		SD_CONF_BSET_MIN_THROTTLE|
735 		SD_CONF_BSET_DISKSORT_DISABLED|
736 		SD_CONF_BSET_LUN_RESET_ENABLED,
737 		&pirus_properties },
738 	{ "SUN     STK6580_6780", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
739 	{ "SUN     SUN_6180", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
740 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
741 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
742 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
743 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
744 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
745 #endif /* fibre or NON-sparc platforms */
746 #if ((defined(__sparc) && !defined(__fibre)) ||\
747 	(defined(__i386) || defined(__amd64)))
748 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
749 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
750 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
751 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
752 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
753 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
754 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
755 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
756 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
757 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
758 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
759 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
760 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
761 	    &symbios_properties },
762 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
763 	    &lsi_properties_scsi },
764 #if defined(__i386) || defined(__amd64)
765 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
766 				    | SD_CONF_BSET_READSUB_BCD
767 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
768 				    | SD_CONF_BSET_NO_READ_HEADER
769 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
770 
771 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
772 				    | SD_CONF_BSET_READSUB_BCD
773 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
774 				    | SD_CONF_BSET_NO_READ_HEADER
775 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
776 #endif /* __i386 || __amd64 */
777 #endif /* sparc NON-fibre or NON-sparc platforms */
778 
779 #if (defined(SD_PROP_TST))
780 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
781 				| SD_CONF_BSET_CTYPE
782 				| SD_CONF_BSET_NRR_COUNT
783 				| SD_CONF_BSET_FAB_DEVID
784 				| SD_CONF_BSET_NOCACHE
785 				| SD_CONF_BSET_BSY_RETRY_COUNT
786 				| SD_CONF_BSET_PLAYMSF_BCD
787 				| SD_CONF_BSET_READSUB_BCD
788 				| SD_CONF_BSET_READ_TOC_TRK_BCD
789 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
790 				| SD_CONF_BSET_NO_READ_HEADER
791 				| SD_CONF_BSET_READ_CD_XD4
792 				| SD_CONF_BSET_RST_RETRIES
793 				| SD_CONF_BSET_RSV_REL_TIME
794 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
795 #endif
796 };
797 
798 static const int sd_disk_table_size =
799 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
800 
801 /*
802  * Emulation mode disk drive VID/PID table
803  */
804 static char sd_flash_dev_table[][25] = {
805 	"ATA     MARVELL SD88SA02",
806 	"MARVELL SD88SA02",
807 	"TOSHIBA THNSNV05",
808 };
809 
810 static const int sd_flash_dev_table_size =
811 	sizeof (sd_flash_dev_table) / sizeof (sd_flash_dev_table[0]);
812 
813 #define	SD_INTERCONNECT_PARALLEL	0
814 #define	SD_INTERCONNECT_FABRIC		1
815 #define	SD_INTERCONNECT_FIBRE		2
816 #define	SD_INTERCONNECT_SSA		3
817 #define	SD_INTERCONNECT_SATA		4
818 #define	SD_INTERCONNECT_SAS		5
819 
820 #define	SD_IS_PARALLEL_SCSI(un)		\
821 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
822 #define	SD_IS_SERIAL(un)		\
823 	(((un)->un_interconnect_type == SD_INTERCONNECT_SATA) ||\
824 	((un)->un_interconnect_type == SD_INTERCONNECT_SAS))
825 
826 /*
827  * Definitions used by device id registration routines
828  */
829 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
830 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
831 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
832 
833 static kmutex_t sd_sense_mutex = {0};
834 
835 /*
836  * Macros for updates of the driver state
837  */
838 #define	New_state(un, s)        \
839 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
840 #define	Restore_state(un)	\
841 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
842 
843 static struct sd_cdbinfo sd_cdbtab[] = {
844 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
845 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
846 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
847 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
848 };
849 
850 /*
851  * Specifies the number of seconds that must have elapsed since the last
852  * cmd. has completed for a device to be declared idle to the PM framework.
853  */
854 static int sd_pm_idletime = 1;
855 
856 /*
857  * Internal function prototypes
858  */
859 
860 #if (defined(__fibre))
861 /*
862  * These #defines are to avoid namespace collisions that occur because this
863  * code is currently used to compile two separate driver modules: sd and ssd.
864  * All function names need to be treated this way (even if declared static)
865  * in order to allow the debugger to resolve the names properly.
866  * It is anticipated that in the near future the ssd module will be obsoleted,
867  * at which time this ugliness should go away.
868  */
869 #define	sd_log_trace			ssd_log_trace
870 #define	sd_log_info			ssd_log_info
871 #define	sd_log_err			ssd_log_err
872 #define	sdprobe				ssdprobe
873 #define	sdinfo				ssdinfo
874 #define	sd_prop_op			ssd_prop_op
875 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
876 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
877 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
878 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
879 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
880 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
881 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
882 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
883 #define	sd_spin_up_unit			ssd_spin_up_unit
884 #define	sd_enable_descr_sense		ssd_enable_descr_sense
885 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
886 #define	sd_set_mmc_caps			ssd_set_mmc_caps
887 #define	sd_read_unit_properties		ssd_read_unit_properties
888 #define	sd_process_sdconf_file		ssd_process_sdconf_file
889 #define	sd_process_sdconf_table		ssd_process_sdconf_table
890 #define	sd_sdconf_id_match		ssd_sdconf_id_match
891 #define	sd_blank_cmp			ssd_blank_cmp
892 #define	sd_chk_vers1_data		ssd_chk_vers1_data
893 #define	sd_set_vers1_properties		ssd_set_vers1_properties
894 #define	sd_check_solid_state		ssd_check_solid_state
895 #define	sd_check_emulation_mode		ssd_check_emulation_mode
896 
897 #define	sd_get_physical_geometry	ssd_get_physical_geometry
898 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
899 #define	sd_update_block_info		ssd_update_block_info
900 #define	sd_register_devid		ssd_register_devid
901 #define	sd_get_devid			ssd_get_devid
902 #define	sd_create_devid			ssd_create_devid
903 #define	sd_write_deviceid		ssd_write_deviceid
904 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
905 #define	sd_setup_pm			ssd_setup_pm
906 #define	sd_create_pm_components		ssd_create_pm_components
907 #define	sd_ddi_suspend			ssd_ddi_suspend
908 #define	sd_ddi_resume			ssd_ddi_resume
909 #define	sd_pm_state_change		ssd_pm_state_change
910 #define	sdpower				ssdpower
911 #define	sdattach			ssdattach
912 #define	sddetach			ssddetach
913 #define	sd_unit_attach			ssd_unit_attach
914 #define	sd_unit_detach			ssd_unit_detach
915 #define	sd_set_unit_attributes		ssd_set_unit_attributes
916 #define	sd_create_errstats		ssd_create_errstats
917 #define	sd_set_errstats			ssd_set_errstats
918 #define	sd_set_pstats			ssd_set_pstats
919 #define	sddump				ssddump
920 #define	sd_scsi_poll			ssd_scsi_poll
921 #define	sd_send_polled_RQS		ssd_send_polled_RQS
922 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
923 #define	sd_init_event_callbacks		ssd_init_event_callbacks
924 #define	sd_event_callback		ssd_event_callback
925 #define	sd_cache_control		ssd_cache_control
926 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
927 #define	sd_get_nv_sup			ssd_get_nv_sup
928 #define	sd_make_device			ssd_make_device
929 #define	sdopen				ssdopen
930 #define	sdclose				ssdclose
931 #define	sd_ready_and_valid		ssd_ready_and_valid
932 #define	sdmin				ssdmin
933 #define	sdread				ssdread
934 #define	sdwrite				ssdwrite
935 #define	sdaread				ssdaread
936 #define	sdawrite			ssdawrite
937 #define	sdstrategy			ssdstrategy
938 #define	sdioctl				ssdioctl
939 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
940 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
941 #define	sd_checksum_iostart		ssd_checksum_iostart
942 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
943 #define	sd_pm_iostart			ssd_pm_iostart
944 #define	sd_core_iostart			ssd_core_iostart
945 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
946 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
947 #define	sd_checksum_iodone		ssd_checksum_iodone
948 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
949 #define	sd_pm_iodone			ssd_pm_iodone
950 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
951 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
952 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
953 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
954 #define	sd_buf_iodone			ssd_buf_iodone
955 #define	sd_uscsi_strategy		ssd_uscsi_strategy
956 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
957 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
958 #define	sd_uscsi_iodone			ssd_uscsi_iodone
959 #define	sd_xbuf_strategy		ssd_xbuf_strategy
960 #define	sd_xbuf_init			ssd_xbuf_init
961 #define	sd_pm_entry			ssd_pm_entry
962 #define	sd_pm_exit			ssd_pm_exit
963 
964 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
965 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
966 
967 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
968 #define	sdintr				ssdintr
969 #define	sd_start_cmds			ssd_start_cmds
970 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
971 #define	sd_bioclone_alloc		ssd_bioclone_alloc
972 #define	sd_bioclone_free		ssd_bioclone_free
973 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
974 #define	sd_shadow_buf_free		ssd_shadow_buf_free
975 #define	sd_print_transport_rejected_message	\
976 					ssd_print_transport_rejected_message
977 #define	sd_retry_command		ssd_retry_command
978 #define	sd_set_retry_bp			ssd_set_retry_bp
979 #define	sd_send_request_sense_command	ssd_send_request_sense_command
980 #define	sd_start_retry_command		ssd_start_retry_command
981 #define	sd_start_direct_priority_command	\
982 					ssd_start_direct_priority_command
983 #define	sd_return_failed_command	ssd_return_failed_command
984 #define	sd_return_failed_command_no_restart	\
985 					ssd_return_failed_command_no_restart
986 #define	sd_return_command		ssd_return_command
987 #define	sd_sync_with_callback		ssd_sync_with_callback
988 #define	sdrunout			ssdrunout
989 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
990 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
991 #define	sd_reduce_throttle		ssd_reduce_throttle
992 #define	sd_restore_throttle		ssd_restore_throttle
993 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
994 #define	sd_init_cdb_limits		ssd_init_cdb_limits
995 #define	sd_pkt_status_good		ssd_pkt_status_good
996 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
997 #define	sd_pkt_status_busy		ssd_pkt_status_busy
998 #define	sd_pkt_status_reservation_conflict	\
999 					ssd_pkt_status_reservation_conflict
1000 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
1001 #define	sd_handle_request_sense		ssd_handle_request_sense
1002 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
1003 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
1004 #define	sd_validate_sense_data		ssd_validate_sense_data
1005 #define	sd_decode_sense			ssd_decode_sense
1006 #define	sd_print_sense_msg		ssd_print_sense_msg
1007 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
1008 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
1009 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
1010 #define	sd_sense_key_medium_or_hardware_error	\
1011 					ssd_sense_key_medium_or_hardware_error
1012 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
1013 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
1014 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
1015 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
1016 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
1017 #define	sd_sense_key_default		ssd_sense_key_default
1018 #define	sd_print_retry_msg		ssd_print_retry_msg
1019 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
1020 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
1021 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
1022 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
1023 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
1024 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
1025 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
1026 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
1027 #define	sd_pkt_reason_default		ssd_pkt_reason_default
1028 #define	sd_reset_target			ssd_reset_target
1029 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
1030 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
1031 #define	sd_taskq_create			ssd_taskq_create
1032 #define	sd_taskq_delete			ssd_taskq_delete
1033 #define	sd_target_change_task		ssd_target_change_task
1034 #define	sd_log_dev_status_event		ssd_log_dev_status_event
1035 #define	sd_log_lun_expansion_event	ssd_log_lun_expansion_event
1036 #define	sd_log_eject_request_event	ssd_log_eject_request_event
1037 #define	sd_media_change_task		ssd_media_change_task
1038 #define	sd_handle_mchange		ssd_handle_mchange
1039 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
1040 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
1041 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
1042 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
1043 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
1044 					sd_send_scsi_feature_GET_CONFIGURATION
1045 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
1046 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
1047 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
1048 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
1049 					ssd_send_scsi_PERSISTENT_RESERVE_IN
1050 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
1051 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
1052 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
1053 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
1054 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
1055 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
1056 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
1057 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
1058 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
1059 #define	sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION	\
1060 				ssd_send_scsi_GET_EVENT_STATUS_NOTIFICATION
1061 #define	sd_gesn_media_data_valid	ssd_gesn_media_data_valid
1062 #define	sd_alloc_rqs			ssd_alloc_rqs
1063 #define	sd_free_rqs			ssd_free_rqs
1064 #define	sd_dump_memory			ssd_dump_memory
1065 #define	sd_get_media_info_com		ssd_get_media_info_com
1066 #define	sd_get_media_info		ssd_get_media_info
1067 #define	sd_get_media_info_ext		ssd_get_media_info_ext
1068 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
1069 #define	sd_nvpair_str_decode		ssd_nvpair_str_decode
1070 #define	sd_strtok_r			ssd_strtok_r
1071 #define	sd_set_properties		ssd_set_properties
1072 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
1073 #define	sd_setup_next_xfer		ssd_setup_next_xfer
1074 #define	sd_dkio_get_temp		ssd_dkio_get_temp
1075 #define	sd_check_mhd			ssd_check_mhd
1076 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1077 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1078 #define	sd_sname			ssd_sname
1079 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1080 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1081 #define	sd_take_ownership		ssd_take_ownership
1082 #define	sd_reserve_release		ssd_reserve_release
1083 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1084 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1085 #define	sd_persistent_reservation_in_read_keys	\
1086 					ssd_persistent_reservation_in_read_keys
1087 #define	sd_persistent_reservation_in_read_resv	\
1088 					ssd_persistent_reservation_in_read_resv
1089 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1090 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1091 #define	sd_mhdioc_release		ssd_mhdioc_release
1092 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1093 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1094 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1095 #define	sr_change_blkmode		ssr_change_blkmode
1096 #define	sr_change_speed			ssr_change_speed
1097 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1098 #define	sr_pause_resume			ssr_pause_resume
1099 #define	sr_play_msf			ssr_play_msf
1100 #define	sr_play_trkind			ssr_play_trkind
1101 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1102 #define	sr_read_subchannel		ssr_read_subchannel
1103 #define	sr_read_tocentry		ssr_read_tocentry
1104 #define	sr_read_tochdr			ssr_read_tochdr
1105 #define	sr_read_cdda			ssr_read_cdda
1106 #define	sr_read_cdxa			ssr_read_cdxa
1107 #define	sr_read_mode1			ssr_read_mode1
1108 #define	sr_read_mode2			ssr_read_mode2
1109 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1110 #define	sr_sector_mode			ssr_sector_mode
1111 #define	sr_eject			ssr_eject
1112 #define	sr_ejected			ssr_ejected
1113 #define	sr_check_wp			ssr_check_wp
1114 #define	sd_watch_request_submit		ssd_watch_request_submit
1115 #define	sd_check_media			ssd_check_media
1116 #define	sd_media_watch_cb		ssd_media_watch_cb
1117 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1118 #define	sr_volume_ctrl			ssr_volume_ctrl
1119 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1120 #define	sd_log_page_supported		ssd_log_page_supported
1121 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1122 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1123 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1124 #define	sd_range_lock			ssd_range_lock
1125 #define	sd_get_range			ssd_get_range
1126 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1127 #define	sd_range_unlock			ssd_range_unlock
1128 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1129 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1130 
1131 #define	sd_iostart_chain		ssd_iostart_chain
1132 #define	sd_iodone_chain			ssd_iodone_chain
1133 #define	sd_initpkt_map			ssd_initpkt_map
1134 #define	sd_destroypkt_map		ssd_destroypkt_map
1135 #define	sd_chain_type_map		ssd_chain_type_map
1136 #define	sd_chain_index_map		ssd_chain_index_map
1137 
1138 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1139 #define	sd_failfast_flushq		ssd_failfast_flushq
1140 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1141 
1142 #define	sd_is_lsi			ssd_is_lsi
1143 #define	sd_tg_rdwr			ssd_tg_rdwr
1144 #define	sd_tg_getinfo			ssd_tg_getinfo
1145 #define	sd_rmw_msg_print_handler	ssd_rmw_msg_print_handler
1146 
1147 #endif	/* #if (defined(__fibre)) */
1148 
1149 
1150 int _init(void);
1151 int _fini(void);
1152 int _info(struct modinfo *modinfop);
1153 
1154 /*PRINTFLIKE3*/
1155 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1156 /*PRINTFLIKE3*/
1157 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1158 /*PRINTFLIKE3*/
1159 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1160 
1161 static int sdprobe(dev_info_t *devi);
1162 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1163     void **result);
1164 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1165     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1166 
1167 /*
1168  * Smart probe for parallel scsi
1169  */
1170 static void sd_scsi_probe_cache_init(void);
1171 static void sd_scsi_probe_cache_fini(void);
1172 static void sd_scsi_clear_probe_cache(void);
1173 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1174 
1175 /*
1176  * Attached luns on target for parallel scsi
1177  */
1178 static void sd_scsi_target_lun_init(void);
1179 static void sd_scsi_target_lun_fini(void);
1180 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1181 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1182 
1183 static int	sd_spin_up_unit(sd_ssc_t *ssc);
1184 
1185 /*
1186  * Using sd_ssc_init to establish sd_ssc_t struct
1187  * Using sd_ssc_send to send uscsi internal command
1188  * Using sd_ssc_fini to free sd_ssc_t struct
1189  */
1190 static sd_ssc_t *sd_ssc_init(struct sd_lun *un);
1191 static int sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd,
1192     int flag, enum uio_seg dataspace, int path_flag);
1193 static void sd_ssc_fini(sd_ssc_t *ssc);
1194 
1195 /*
1196  * Using sd_ssc_assessment to set correct type-of-assessment
1197  * Using sd_ssc_post to post ereport & system log
1198  *       sd_ssc_post will call sd_ssc_print to print system log
1199  *       sd_ssc_post will call sd_ssd_ereport_post to post ereport
1200  */
1201 static void sd_ssc_assessment(sd_ssc_t *ssc,
1202     enum sd_type_assessment tp_assess);
1203 
1204 static void sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess);
1205 static void sd_ssc_print(sd_ssc_t *ssc, int sd_severity);
1206 static void sd_ssc_ereport_post(sd_ssc_t *ssc,
1207     enum sd_driver_assessment drv_assess);
1208 
1209 /*
1210  * Using sd_ssc_set_info to mark an un-decodable-data error.
1211  * Using sd_ssc_extract_info to transfer information from internal
1212  *       data structures to sd_ssc_t.
1213  */
1214 static void sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp,
1215     const char *fmt, ...);
1216 static void sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un,
1217     struct scsi_pkt *pktp, struct buf *bp, struct sd_xbuf *xp);
1218 
1219 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1220     enum uio_seg dataspace, int path_flag);
1221 
1222 #ifdef _LP64
1223 static void	sd_enable_descr_sense(sd_ssc_t *ssc);
1224 static void	sd_reenable_dsense_task(void *arg);
1225 #endif /* _LP64 */
1226 
1227 static void	sd_set_mmc_caps(sd_ssc_t *ssc);
1228 
1229 static void sd_read_unit_properties(struct sd_lun *un);
1230 static int  sd_process_sdconf_file(struct sd_lun *un);
1231 static void sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str);
1232 static char *sd_strtok_r(char *string, const char *sepset, char **lasts);
1233 static void sd_set_properties(struct sd_lun *un, char *name, char *value);
1234 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1235     int *data_list, sd_tunables *values);
1236 static void sd_process_sdconf_table(struct sd_lun *un);
1237 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1238 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1239 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1240 	int list_len, char *dataname_ptr);
1241 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1242     sd_tunables *prop_list);
1243 
1244 static void sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi,
1245     int reservation_flag);
1246 static int  sd_get_devid(sd_ssc_t *ssc);
1247 static ddi_devid_t sd_create_devid(sd_ssc_t *ssc);
1248 static int  sd_write_deviceid(sd_ssc_t *ssc);
1249 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1250 static int  sd_check_vpd_page_support(sd_ssc_t *ssc);
1251 
1252 static void sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi);
1253 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1254 
1255 static int  sd_ddi_suspend(dev_info_t *devi);
1256 static int  sd_ddi_resume(dev_info_t *devi);
1257 static int  sd_pm_state_change(struct sd_lun *un, int level, int flag);
1258 static int  sdpower(dev_info_t *devi, int component, int level);
1259 
1260 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1261 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1262 static int  sd_unit_attach(dev_info_t *devi);
1263 static int  sd_unit_detach(dev_info_t *devi);
1264 
1265 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1266 static void sd_create_errstats(struct sd_lun *un, int instance);
1267 static void sd_set_errstats(struct sd_lun *un);
1268 static void sd_set_pstats(struct sd_lun *un);
1269 
1270 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1271 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1272 static int  sd_send_polled_RQS(struct sd_lun *un);
1273 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1274 
1275 #if (defined(__fibre))
1276 /*
1277  * Event callbacks (photon)
1278  */
1279 static void sd_init_event_callbacks(struct sd_lun *un);
1280 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1281 #endif
1282 
1283 /*
1284  * Defines for sd_cache_control
1285  */
1286 
1287 #define	SD_CACHE_ENABLE		1
1288 #define	SD_CACHE_DISABLE	0
1289 #define	SD_CACHE_NOCHANGE	-1
1290 
1291 static int   sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag);
1292 static int   sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled);
1293 static void  sd_get_nv_sup(sd_ssc_t *ssc);
1294 static dev_t sd_make_device(dev_info_t *devi);
1295 static void  sd_check_solid_state(sd_ssc_t *ssc);
1296 static void  sd_check_emulation_mode(sd_ssc_t *ssc);
1297 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1298 	uint64_t capacity);
1299 
1300 /*
1301  * Driver entry point functions.
1302  */
1303 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1304 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1305 static int  sd_ready_and_valid(sd_ssc_t *ssc, int part);
1306 
1307 static void sdmin(struct buf *bp);
1308 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1309 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1310 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1311 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1312 
1313 static int sdstrategy(struct buf *bp);
1314 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1315 
1316 /*
1317  * Function prototypes for layering functions in the iostart chain.
1318  */
1319 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1320 	struct buf *bp);
1321 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1322 	struct buf *bp);
1323 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1324 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1325 	struct buf *bp);
1326 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1327 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1328 
1329 /*
1330  * Function prototypes for layering functions in the iodone chain.
1331  */
1332 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1333 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1334 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1335 	struct buf *bp);
1336 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1337 	struct buf *bp);
1338 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1339 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1340 	struct buf *bp);
1341 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1342 
1343 /*
1344  * Prototypes for functions to support buf(9S) based IO.
1345  */
1346 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1347 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1348 static void sd_destroypkt_for_buf(struct buf *);
1349 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1350 	struct buf *bp, int flags,
1351 	int (*callback)(caddr_t), caddr_t callback_arg,
1352 	diskaddr_t lba, uint32_t blockcount);
1353 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1354 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1355 
1356 /*
1357  * Prototypes for functions to support USCSI IO.
1358  */
1359 static int sd_uscsi_strategy(struct buf *bp);
1360 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1361 static void sd_destroypkt_for_uscsi(struct buf *);
1362 
1363 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1364 	uchar_t chain_type, void *pktinfop);
1365 
1366 static int  sd_pm_entry(struct sd_lun *un);
1367 static void sd_pm_exit(struct sd_lun *un);
1368 
1369 static void sd_pm_idletimeout_handler(void *arg);
1370 
1371 /*
1372  * sd_core internal functions (used at the sd_core_io layer).
1373  */
1374 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1375 static void sdintr(struct scsi_pkt *pktp);
1376 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1377 
1378 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1379 	enum uio_seg dataspace, int path_flag);
1380 
1381 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1382 	daddr_t blkno, int (*func)(struct buf *));
1383 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1384 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1385 static void sd_bioclone_free(struct buf *bp);
1386 static void sd_shadow_buf_free(struct buf *bp);
1387 
1388 static void sd_print_transport_rejected_message(struct sd_lun *un,
1389 	struct sd_xbuf *xp, int code);
1390 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1391     void *arg, int code);
1392 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1393     void *arg, int code);
1394 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1395     void *arg, int code);
1396 
1397 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1398 	int retry_check_flag,
1399 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1400 		int c),
1401 	void *user_arg, int failure_code,  clock_t retry_delay,
1402 	void (*statp)(kstat_io_t *));
1403 
1404 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1405 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1406 
1407 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1408 	struct scsi_pkt *pktp);
1409 static void sd_start_retry_command(void *arg);
1410 static void sd_start_direct_priority_command(void *arg);
1411 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1412 	int errcode);
1413 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1414 	struct buf *bp, int errcode);
1415 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1416 static void sd_sync_with_callback(struct sd_lun *un);
1417 static int sdrunout(caddr_t arg);
1418 
1419 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1420 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1421 
1422 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1423 static void sd_restore_throttle(void *arg);
1424 
1425 static void sd_init_cdb_limits(struct sd_lun *un);
1426 
1427 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1428 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1429 
1430 /*
1431  * Error handling functions
1432  */
1433 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1434 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1435 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1436 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1437 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1438 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1439 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1440 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1441 
1442 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1443 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1444 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1445 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1446 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1447 	struct sd_xbuf *xp, size_t actual_len);
1448 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1449 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1450 
1451 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1452 	void *arg, int code);
1453 
1454 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1455 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1456 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1457 	uint8_t *sense_datap,
1458 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1459 static void sd_sense_key_not_ready(struct sd_lun *un,
1460 	uint8_t *sense_datap,
1461 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1462 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1463 	uint8_t *sense_datap,
1464 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1465 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1466 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1467 static void sd_sense_key_unit_attention(struct sd_lun *un,
1468 	uint8_t *sense_datap,
1469 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1470 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1471 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1472 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1473 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1474 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1475 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1476 static void sd_sense_key_default(struct sd_lun *un,
1477 	uint8_t *sense_datap,
1478 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1479 
1480 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1481 	void *arg, int flag);
1482 
1483 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1484 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1485 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1486 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1487 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1488 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1489 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1490 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1491 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1492 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1493 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1494 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1495 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1496 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1497 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1498 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1499 
1500 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1501 
1502 static void sd_start_stop_unit_callback(void *arg);
1503 static void sd_start_stop_unit_task(void *arg);
1504 
1505 static void sd_taskq_create(void);
1506 static void sd_taskq_delete(void);
1507 static void sd_target_change_task(void *arg);
1508 static void sd_log_dev_status_event(struct sd_lun *un, char *esc, int km_flag);
1509 static void sd_log_lun_expansion_event(struct sd_lun *un, int km_flag);
1510 static void sd_log_eject_request_event(struct sd_lun *un, int km_flag);
1511 static void sd_media_change_task(void *arg);
1512 
1513 static int sd_handle_mchange(struct sd_lun *un);
1514 static int sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag);
1515 static int sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp,
1516 	uint32_t *lbap, int path_flag);
1517 static int sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp,
1518 	uint32_t *lbap, uint32_t *psp, int path_flag);
1519 static int sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag,
1520 	int flag, int path_flag);
1521 static int sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr,
1522 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1523 static int sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag);
1524 static int sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc,
1525 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1526 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc,
1527 	uchar_t usr_cmd, uchar_t *usr_bufp);
1528 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1529 	struct dk_callback *dkc);
1530 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1531 static int sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc,
1532 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1533 	uchar_t *bufaddr, uint_t buflen, int path_flag);
1534 static int sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc,
1535 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1536 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag);
1537 static int sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize,
1538 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1539 static int sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize,
1540 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1541 static int sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
1542 	size_t buflen, daddr_t start_block, int path_flag);
1543 #define	sd_send_scsi_READ(ssc, bufaddr, buflen, start_block, path_flag)	\
1544 	sd_send_scsi_RDWR(ssc, SCMD_READ, bufaddr, buflen, start_block, \
1545 	path_flag)
1546 #define	sd_send_scsi_WRITE(ssc, bufaddr, buflen, start_block, path_flag)\
1547 	sd_send_scsi_RDWR(ssc, SCMD_WRITE, bufaddr, buflen, start_block,\
1548 	path_flag)
1549 
1550 static int sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr,
1551 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1552 	uint16_t param_ptr, int path_flag);
1553 static int sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(sd_ssc_t *ssc,
1554 	uchar_t *bufaddr, size_t buflen, uchar_t class_req);
1555 static boolean_t sd_gesn_media_data_valid(uchar_t *data);
1556 
1557 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1558 static void sd_free_rqs(struct sd_lun *un);
1559 
1560 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1561 	uchar_t *data, int len, int fmt);
1562 static void sd_panic_for_res_conflict(struct sd_lun *un);
1563 
1564 /*
1565  * Disk Ioctl Function Prototypes
1566  */
1567 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1568 static int sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag);
1569 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1570 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1571 
1572 /*
1573  * Multi-host Ioctl Prototypes
1574  */
1575 static int sd_check_mhd(dev_t dev, int interval);
1576 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1577 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1578 static char *sd_sname(uchar_t status);
1579 static void sd_mhd_resvd_recover(void *arg);
1580 static void sd_resv_reclaim_thread();
1581 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1582 static int sd_reserve_release(dev_t dev, int cmd);
1583 static void sd_rmv_resv_reclaim_req(dev_t dev);
1584 static void sd_mhd_reset_notify_cb(caddr_t arg);
1585 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1586 	mhioc_inkeys_t *usrp, int flag);
1587 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1588 	mhioc_inresvs_t *usrp, int flag);
1589 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1590 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1591 static int sd_mhdioc_release(dev_t dev);
1592 static int sd_mhdioc_register_devid(dev_t dev);
1593 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1594 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1595 
1596 /*
1597  * SCSI removable prototypes
1598  */
1599 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1600 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1601 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1602 static int sr_pause_resume(dev_t dev, int mode);
1603 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1604 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1605 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1606 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1607 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1608 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1609 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1610 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1611 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1612 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1613 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1614 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1615 static int sr_eject(dev_t dev);
1616 static void sr_ejected(register struct sd_lun *un);
1617 static int sr_check_wp(dev_t dev);
1618 static opaque_t sd_watch_request_submit(struct sd_lun *un);
1619 static int sd_check_media(dev_t dev, enum dkio_state state);
1620 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1621 static void sd_delayed_cv_broadcast(void *arg);
1622 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1623 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1624 
1625 static int sd_log_page_supported(sd_ssc_t *ssc, int log_page);
1626 
1627 /*
1628  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1629  */
1630 static void sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag);
1631 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1632 static void sd_wm_cache_destructor(void *wm, void *un);
1633 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1634 	daddr_t endb, ushort_t typ);
1635 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1636 	daddr_t endb);
1637 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1638 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1639 static void sd_read_modify_write_task(void * arg);
1640 static int
1641 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1642 	struct buf **bpp);
1643 
1644 
1645 /*
1646  * Function prototypes for failfast support.
1647  */
1648 static void sd_failfast_flushq(struct sd_lun *un);
1649 static int sd_failfast_flushq_callback(struct buf *bp);
1650 
1651 /*
1652  * Function prototypes to check for lsi devices
1653  */
1654 static void sd_is_lsi(struct sd_lun *un);
1655 
1656 /*
1657  * Function prototypes for partial DMA support
1658  */
1659 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1660 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1661 
1662 
1663 /* Function prototypes for cmlb */
1664 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
1665     diskaddr_t start_block, size_t reqlength, void *tg_cookie);
1666 
1667 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie);
1668 
1669 /*
1670  * For printing RMW warning message timely
1671  */
1672 static void sd_rmw_msg_print_handler(void *arg);
1673 
1674 /*
1675  * Constants for failfast support:
1676  *
1677  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1678  * failfast processing being performed.
1679  *
1680  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1681  * failfast processing on all bufs with B_FAILFAST set.
1682  */
1683 
1684 #define	SD_FAILFAST_INACTIVE		0
1685 #define	SD_FAILFAST_ACTIVE		1
1686 
1687 /*
1688  * Bitmask to control behavior of buf(9S) flushes when a transition to
1689  * the failfast state occurs. Optional bits include:
1690  *
1691  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1692  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1693  * be flushed.
1694  *
1695  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1696  * driver, in addition to the regular wait queue. This includes the xbuf
1697  * queues. When clear, only the driver's wait queue will be flushed.
1698  */
1699 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1700 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1701 
1702 /*
1703  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1704  * to flush all queues within the driver.
1705  */
1706 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1707 
1708 
1709 /*
1710  * SD Testing Fault Injection
1711  */
1712 #ifdef SD_FAULT_INJECTION
1713 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1714 static void sd_faultinjection(struct scsi_pkt *pktp);
1715 static void sd_injection_log(char *buf, struct sd_lun *un);
1716 #endif
1717 
1718 /*
1719  * Device driver ops vector
1720  */
1721 static struct cb_ops sd_cb_ops = {
1722 	sdopen,			/* open */
1723 	sdclose,		/* close */
1724 	sdstrategy,		/* strategy */
1725 	nodev,			/* print */
1726 	sddump,			/* dump */
1727 	sdread,			/* read */
1728 	sdwrite,		/* write */
1729 	sdioctl,		/* ioctl */
1730 	nodev,			/* devmap */
1731 	nodev,			/* mmap */
1732 	nodev,			/* segmap */
1733 	nochpoll,		/* poll */
1734 	sd_prop_op,		/* cb_prop_op */
1735 	0,			/* streamtab  */
1736 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1737 	CB_REV,			/* cb_rev */
1738 	sdaread, 		/* async I/O read entry point */
1739 	sdawrite		/* async I/O write entry point */
1740 };
1741 
1742 struct dev_ops sd_ops = {
1743 	DEVO_REV,		/* devo_rev, */
1744 	0,			/* refcnt  */
1745 	sdinfo,			/* info */
1746 	nulldev,		/* identify */
1747 	sdprobe,		/* probe */
1748 	sdattach,		/* attach */
1749 	sddetach,		/* detach */
1750 	nodev,			/* reset */
1751 	&sd_cb_ops,		/* driver operations */
1752 	NULL,			/* bus operations */
1753 	sdpower,		/* power */
1754 	ddi_quiesce_not_needed,		/* quiesce */
1755 };
1756 
1757 /*
1758  * This is the loadable module wrapper.
1759  */
1760 #include <sys/modctl.h>
1761 
1762 #ifndef XPV_HVM_DRIVER
1763 static struct modldrv modldrv = {
1764 	&mod_driverops,		/* Type of module. This one is a driver */
1765 	SD_MODULE_NAME,		/* Module name. */
1766 	&sd_ops			/* driver ops */
1767 };
1768 
1769 static struct modlinkage modlinkage = {
1770 	MODREV_1, &modldrv, NULL
1771 };
1772 
1773 #else /* XPV_HVM_DRIVER */
1774 static struct modlmisc modlmisc = {
1775 	&mod_miscops,		/* Type of module. This one is a misc */
1776 	"HVM " SD_MODULE_NAME,		/* Module name. */
1777 };
1778 
1779 static struct modlinkage modlinkage = {
1780 	MODREV_1, &modlmisc, NULL
1781 };
1782 
1783 #endif /* XPV_HVM_DRIVER */
1784 
1785 static cmlb_tg_ops_t sd_tgops = {
1786 	TG_DK_OPS_VERSION_1,
1787 	sd_tg_rdwr,
1788 	sd_tg_getinfo
1789 };
1790 
1791 static struct scsi_asq_key_strings sd_additional_codes[] = {
1792 	0x81, 0, "Logical Unit is Reserved",
1793 	0x85, 0, "Audio Address Not Valid",
1794 	0xb6, 0, "Media Load Mechanism Failed",
1795 	0xB9, 0, "Audio Play Operation Aborted",
1796 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1797 	0x53, 2, "Medium removal prevented",
1798 	0x6f, 0, "Authentication failed during key exchange",
1799 	0x6f, 1, "Key not present",
1800 	0x6f, 2, "Key not established",
1801 	0x6f, 3, "Read without proper authentication",
1802 	0x6f, 4, "Mismatched region to this logical unit",
1803 	0x6f, 5, "Region reset count error",
1804 	0xffff, 0x0, NULL
1805 };
1806 
1807 
1808 /*
1809  * Struct for passing printing information for sense data messages
1810  */
1811 struct sd_sense_info {
1812 	int	ssi_severity;
1813 	int	ssi_pfa_flag;
1814 };
1815 
1816 /*
1817  * Table of function pointers for iostart-side routines. Separate "chains"
1818  * of layered function calls are formed by placing the function pointers
1819  * sequentially in the desired order. Functions are called according to an
1820  * incrementing table index ordering. The last function in each chain must
1821  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1822  * in the sd_iodone_chain[] array.
1823  *
1824  * Note: It may seem more natural to organize both the iostart and iodone
1825  * functions together, into an array of structures (or some similar
1826  * organization) with a common index, rather than two separate arrays which
1827  * must be maintained in synchronization. The purpose of this division is
1828  * to achieve improved performance: individual arrays allows for more
1829  * effective cache line utilization on certain platforms.
1830  */
1831 
1832 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1833 
1834 
1835 static sd_chain_t sd_iostart_chain[] = {
1836 
1837 	/* Chain for buf IO for disk drive targets (PM enabled) */
1838 	sd_mapblockaddr_iostart,	/* Index: 0 */
1839 	sd_pm_iostart,			/* Index: 1 */
1840 	sd_core_iostart,		/* Index: 2 */
1841 
1842 	/* Chain for buf IO for disk drive targets (PM disabled) */
1843 	sd_mapblockaddr_iostart,	/* Index: 3 */
1844 	sd_core_iostart,		/* Index: 4 */
1845 
1846 	/*
1847 	 * Chain for buf IO for removable-media or large sector size
1848 	 * disk drive targets with RMW needed (PM enabled)
1849 	 */
1850 	sd_mapblockaddr_iostart,	/* Index: 5 */
1851 	sd_mapblocksize_iostart,	/* Index: 6 */
1852 	sd_pm_iostart,			/* Index: 7 */
1853 	sd_core_iostart,		/* Index: 8 */
1854 
1855 	/*
1856 	 * Chain for buf IO for removable-media or large sector size
1857 	 * disk drive targets with RMW needed (PM disabled)
1858 	 */
1859 	sd_mapblockaddr_iostart,	/* Index: 9 */
1860 	sd_mapblocksize_iostart,	/* Index: 10 */
1861 	sd_core_iostart,		/* Index: 11 */
1862 
1863 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1864 	sd_mapblockaddr_iostart,	/* Index: 12 */
1865 	sd_checksum_iostart,		/* Index: 13 */
1866 	sd_pm_iostart,			/* Index: 14 */
1867 	sd_core_iostart,		/* Index: 15 */
1868 
1869 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1870 	sd_mapblockaddr_iostart,	/* Index: 16 */
1871 	sd_checksum_iostart,		/* Index: 17 */
1872 	sd_core_iostart,		/* Index: 18 */
1873 
1874 	/* Chain for USCSI commands (all targets) */
1875 	sd_pm_iostart,			/* Index: 19 */
1876 	sd_core_iostart,		/* Index: 20 */
1877 
1878 	/* Chain for checksumming USCSI commands (all targets) */
1879 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1880 	sd_pm_iostart,			/* Index: 22 */
1881 	sd_core_iostart,		/* Index: 23 */
1882 
1883 	/* Chain for "direct" USCSI commands (all targets) */
1884 	sd_core_iostart,		/* Index: 24 */
1885 
1886 	/* Chain for "direct priority" USCSI commands (all targets) */
1887 	sd_core_iostart,		/* Index: 25 */
1888 
1889 	/*
1890 	 * Chain for buf IO for large sector size disk drive targets
1891 	 * with RMW needed with checksumming (PM enabled)
1892 	 */
1893 	sd_mapblockaddr_iostart,	/* Index: 26 */
1894 	sd_mapblocksize_iostart,	/* Index: 27 */
1895 	sd_checksum_iostart,		/* Index: 28 */
1896 	sd_pm_iostart,			/* Index: 29 */
1897 	sd_core_iostart,		/* Index: 30 */
1898 
1899 	/*
1900 	 * Chain for buf IO for large sector size disk drive targets
1901 	 * with RMW needed with checksumming (PM disabled)
1902 	 */
1903 	sd_mapblockaddr_iostart,	/* Index: 31 */
1904 	sd_mapblocksize_iostart,	/* Index: 32 */
1905 	sd_checksum_iostart,		/* Index: 33 */
1906 	sd_core_iostart,		/* Index: 34 */
1907 
1908 };
1909 
1910 /*
1911  * Macros to locate the first function of each iostart chain in the
1912  * sd_iostart_chain[] array. These are located by the index in the array.
1913  */
1914 #define	SD_CHAIN_DISK_IOSTART			0
1915 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1916 #define	SD_CHAIN_MSS_DISK_IOSTART		5
1917 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1918 #define	SD_CHAIN_MSS_DISK_IOSTART_NO_PM		9
1919 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1920 #define	SD_CHAIN_CHKSUM_IOSTART			12
1921 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1922 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1923 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1924 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1925 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1926 #define	SD_CHAIN_MSS_CHKSUM_IOSTART		26
1927 #define	SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM	31
1928 
1929 
1930 /*
1931  * Table of function pointers for the iodone-side routines for the driver-
1932  * internal layering mechanism.  The calling sequence for iodone routines
1933  * uses a decrementing table index, so the last routine called in a chain
1934  * must be at the lowest array index location for that chain.  The last
1935  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1936  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1937  * of the functions in an iodone side chain must correspond to the ordering
1938  * of the iostart routines for that chain.  Note that there is no iodone
1939  * side routine that corresponds to sd_core_iostart(), so there is no
1940  * entry in the table for this.
1941  */
1942 
1943 static sd_chain_t sd_iodone_chain[] = {
1944 
1945 	/* Chain for buf IO for disk drive targets (PM enabled) */
1946 	sd_buf_iodone,			/* Index: 0 */
1947 	sd_mapblockaddr_iodone,		/* Index: 1 */
1948 	sd_pm_iodone,			/* Index: 2 */
1949 
1950 	/* Chain for buf IO for disk drive targets (PM disabled) */
1951 	sd_buf_iodone,			/* Index: 3 */
1952 	sd_mapblockaddr_iodone,		/* Index: 4 */
1953 
1954 	/*
1955 	 * Chain for buf IO for removable-media or large sector size
1956 	 * disk drive targets with RMW needed (PM enabled)
1957 	 */
1958 	sd_buf_iodone,			/* Index: 5 */
1959 	sd_mapblockaddr_iodone,		/* Index: 6 */
1960 	sd_mapblocksize_iodone,		/* Index: 7 */
1961 	sd_pm_iodone,			/* Index: 8 */
1962 
1963 	/*
1964 	 * Chain for buf IO for removable-media or large sector size
1965 	 * disk drive targets with RMW needed (PM disabled)
1966 	 */
1967 	sd_buf_iodone,			/* Index: 9 */
1968 	sd_mapblockaddr_iodone,		/* Index: 10 */
1969 	sd_mapblocksize_iodone,		/* Index: 11 */
1970 
1971 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1972 	sd_buf_iodone,			/* Index: 12 */
1973 	sd_mapblockaddr_iodone,		/* Index: 13 */
1974 	sd_checksum_iodone,		/* Index: 14 */
1975 	sd_pm_iodone,			/* Index: 15 */
1976 
1977 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1978 	sd_buf_iodone,			/* Index: 16 */
1979 	sd_mapblockaddr_iodone,		/* Index: 17 */
1980 	sd_checksum_iodone,		/* Index: 18 */
1981 
1982 	/* Chain for USCSI commands (non-checksum targets) */
1983 	sd_uscsi_iodone,		/* Index: 19 */
1984 	sd_pm_iodone,			/* Index: 20 */
1985 
1986 	/* Chain for USCSI commands (checksum targets) */
1987 	sd_uscsi_iodone,		/* Index: 21 */
1988 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1989 	sd_pm_iodone,			/* Index: 22 */
1990 
1991 	/* Chain for "direct" USCSI commands (all targets) */
1992 	sd_uscsi_iodone,		/* Index: 24 */
1993 
1994 	/* Chain for "direct priority" USCSI commands (all targets) */
1995 	sd_uscsi_iodone,		/* Index: 25 */
1996 
1997 	/*
1998 	 * Chain for buf IO for large sector size disk drive targets
1999 	 * with checksumming (PM enabled)
2000 	 */
2001 	sd_buf_iodone,			/* Index: 26 */
2002 	sd_mapblockaddr_iodone,		/* Index: 27 */
2003 	sd_mapblocksize_iodone,		/* Index: 28 */
2004 	sd_checksum_iodone,		/* Index: 29 */
2005 	sd_pm_iodone,			/* Index: 30 */
2006 
2007 	/*
2008 	 * Chain for buf IO for large sector size disk drive targets
2009 	 * with checksumming (PM disabled)
2010 	 */
2011 	sd_buf_iodone,			/* Index: 31 */
2012 	sd_mapblockaddr_iodone,		/* Index: 32 */
2013 	sd_mapblocksize_iodone,		/* Index: 33 */
2014 	sd_checksum_iodone,		/* Index: 34 */
2015 };
2016 
2017 
2018 /*
2019  * Macros to locate the "first" function in the sd_iodone_chain[] array for
2020  * each iodone-side chain. These are located by the array index, but as the
2021  * iodone side functions are called in a decrementing-index order, the
2022  * highest index number in each chain must be specified (as these correspond
2023  * to the first function in the iodone chain that will be called by the core
2024  * at IO completion time).
2025  */
2026 
2027 #define	SD_CHAIN_DISK_IODONE			2
2028 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
2029 #define	SD_CHAIN_RMMEDIA_IODONE			8
2030 #define	SD_CHAIN_MSS_DISK_IODONE		8
2031 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
2032 #define	SD_CHAIN_MSS_DISK_IODONE_NO_PM		11
2033 #define	SD_CHAIN_CHKSUM_IODONE			15
2034 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
2035 #define	SD_CHAIN_USCSI_CMD_IODONE		20
2036 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
2037 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
2038 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
2039 #define	SD_CHAIN_MSS_CHKSUM_IODONE		30
2040 #define	SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM	34
2041 
2042 
2043 
2044 /*
2045  * Array to map a layering chain index to the appropriate initpkt routine.
2046  * The redundant entries are present so that the index used for accessing
2047  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2048  * with this table as well.
2049  */
2050 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
2051 
2052 static sd_initpkt_t	sd_initpkt_map[] = {
2053 
2054 	/* Chain for buf IO for disk drive targets (PM enabled) */
2055 	sd_initpkt_for_buf,		/* Index: 0 */
2056 	sd_initpkt_for_buf,		/* Index: 1 */
2057 	sd_initpkt_for_buf,		/* Index: 2 */
2058 
2059 	/* Chain for buf IO for disk drive targets (PM disabled) */
2060 	sd_initpkt_for_buf,		/* Index: 3 */
2061 	sd_initpkt_for_buf,		/* Index: 4 */
2062 
2063 	/*
2064 	 * Chain for buf IO for removable-media or large sector size
2065 	 * disk drive targets (PM enabled)
2066 	 */
2067 	sd_initpkt_for_buf,		/* Index: 5 */
2068 	sd_initpkt_for_buf,		/* Index: 6 */
2069 	sd_initpkt_for_buf,		/* Index: 7 */
2070 	sd_initpkt_for_buf,		/* Index: 8 */
2071 
2072 	/*
2073 	 * Chain for buf IO for removable-media or large sector size
2074 	 * disk drive targets (PM disabled)
2075 	 */
2076 	sd_initpkt_for_buf,		/* Index: 9 */
2077 	sd_initpkt_for_buf,		/* Index: 10 */
2078 	sd_initpkt_for_buf,		/* Index: 11 */
2079 
2080 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2081 	sd_initpkt_for_buf,		/* Index: 12 */
2082 	sd_initpkt_for_buf,		/* Index: 13 */
2083 	sd_initpkt_for_buf,		/* Index: 14 */
2084 	sd_initpkt_for_buf,		/* Index: 15 */
2085 
2086 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2087 	sd_initpkt_for_buf,		/* Index: 16 */
2088 	sd_initpkt_for_buf,		/* Index: 17 */
2089 	sd_initpkt_for_buf,		/* Index: 18 */
2090 
2091 	/* Chain for USCSI commands (non-checksum targets) */
2092 	sd_initpkt_for_uscsi,		/* Index: 19 */
2093 	sd_initpkt_for_uscsi,		/* Index: 20 */
2094 
2095 	/* Chain for USCSI commands (checksum targets) */
2096 	sd_initpkt_for_uscsi,		/* Index: 21 */
2097 	sd_initpkt_for_uscsi,		/* Index: 22 */
2098 	sd_initpkt_for_uscsi,		/* Index: 22 */
2099 
2100 	/* Chain for "direct" USCSI commands (all targets) */
2101 	sd_initpkt_for_uscsi,		/* Index: 24 */
2102 
2103 	/* Chain for "direct priority" USCSI commands (all targets) */
2104 	sd_initpkt_for_uscsi,		/* Index: 25 */
2105 
2106 	/*
2107 	 * Chain for buf IO for large sector size disk drive targets
2108 	 * with checksumming (PM enabled)
2109 	 */
2110 	sd_initpkt_for_buf,		/* Index: 26 */
2111 	sd_initpkt_for_buf,		/* Index: 27 */
2112 	sd_initpkt_for_buf,		/* Index: 28 */
2113 	sd_initpkt_for_buf,		/* Index: 29 */
2114 	sd_initpkt_for_buf,		/* Index: 30 */
2115 
2116 	/*
2117 	 * Chain for buf IO for large sector size disk drive targets
2118 	 * with checksumming (PM disabled)
2119 	 */
2120 	sd_initpkt_for_buf,		/* Index: 31 */
2121 	sd_initpkt_for_buf,		/* Index: 32 */
2122 	sd_initpkt_for_buf,		/* Index: 33 */
2123 	sd_initpkt_for_buf,		/* Index: 34 */
2124 };
2125 
2126 
2127 /*
2128  * Array to map a layering chain index to the appropriate destroypktpkt routine.
2129  * The redundant entries are present so that the index used for accessing
2130  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2131  * with this table as well.
2132  */
2133 typedef void (*sd_destroypkt_t)(struct buf *);
2134 
2135 static sd_destroypkt_t	sd_destroypkt_map[] = {
2136 
2137 	/* Chain for buf IO for disk drive targets (PM enabled) */
2138 	sd_destroypkt_for_buf,		/* Index: 0 */
2139 	sd_destroypkt_for_buf,		/* Index: 1 */
2140 	sd_destroypkt_for_buf,		/* Index: 2 */
2141 
2142 	/* Chain for buf IO for disk drive targets (PM disabled) */
2143 	sd_destroypkt_for_buf,		/* Index: 3 */
2144 	sd_destroypkt_for_buf,		/* Index: 4 */
2145 
2146 	/*
2147 	 * Chain for buf IO for removable-media or large sector size
2148 	 * disk drive targets (PM enabled)
2149 	 */
2150 	sd_destroypkt_for_buf,		/* Index: 5 */
2151 	sd_destroypkt_for_buf,		/* Index: 6 */
2152 	sd_destroypkt_for_buf,		/* Index: 7 */
2153 	sd_destroypkt_for_buf,		/* Index: 8 */
2154 
2155 	/*
2156 	 * Chain for buf IO for removable-media or large sector size
2157 	 * disk drive targets (PM disabled)
2158 	 */
2159 	sd_destroypkt_for_buf,		/* Index: 9 */
2160 	sd_destroypkt_for_buf,		/* Index: 10 */
2161 	sd_destroypkt_for_buf,		/* Index: 11 */
2162 
2163 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2164 	sd_destroypkt_for_buf,		/* Index: 12 */
2165 	sd_destroypkt_for_buf,		/* Index: 13 */
2166 	sd_destroypkt_for_buf,		/* Index: 14 */
2167 	sd_destroypkt_for_buf,		/* Index: 15 */
2168 
2169 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2170 	sd_destroypkt_for_buf,		/* Index: 16 */
2171 	sd_destroypkt_for_buf,		/* Index: 17 */
2172 	sd_destroypkt_for_buf,		/* Index: 18 */
2173 
2174 	/* Chain for USCSI commands (non-checksum targets) */
2175 	sd_destroypkt_for_uscsi,	/* Index: 19 */
2176 	sd_destroypkt_for_uscsi,	/* Index: 20 */
2177 
2178 	/* Chain for USCSI commands (checksum targets) */
2179 	sd_destroypkt_for_uscsi,	/* Index: 21 */
2180 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2181 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2182 
2183 	/* Chain for "direct" USCSI commands (all targets) */
2184 	sd_destroypkt_for_uscsi,	/* Index: 24 */
2185 
2186 	/* Chain for "direct priority" USCSI commands (all targets) */
2187 	sd_destroypkt_for_uscsi,	/* Index: 25 */
2188 
2189 	/*
2190 	 * Chain for buf IO for large sector size disk drive targets
2191 	 * with checksumming (PM disabled)
2192 	 */
2193 	sd_destroypkt_for_buf,		/* Index: 26 */
2194 	sd_destroypkt_for_buf,		/* Index: 27 */
2195 	sd_destroypkt_for_buf,		/* Index: 28 */
2196 	sd_destroypkt_for_buf,		/* Index: 29 */
2197 	sd_destroypkt_for_buf,		/* Index: 30 */
2198 
2199 	/*
2200 	 * Chain for buf IO for large sector size disk drive targets
2201 	 * with checksumming (PM enabled)
2202 	 */
2203 	sd_destroypkt_for_buf,		/* Index: 31 */
2204 	sd_destroypkt_for_buf,		/* Index: 32 */
2205 	sd_destroypkt_for_buf,		/* Index: 33 */
2206 	sd_destroypkt_for_buf,		/* Index: 34 */
2207 };
2208 
2209 
2210 
2211 /*
2212  * Array to map a layering chain index to the appropriate chain "type".
2213  * The chain type indicates a specific property/usage of the chain.
2214  * The redundant entries are present so that the index used for accessing
2215  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2216  * with this table as well.
2217  */
2218 
2219 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
2220 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
2221 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
2222 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
2223 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
2224 						/* (for error recovery) */
2225 
2226 static int sd_chain_type_map[] = {
2227 
2228 	/* Chain for buf IO for disk drive targets (PM enabled) */
2229 	SD_CHAIN_BUFIO,			/* Index: 0 */
2230 	SD_CHAIN_BUFIO,			/* Index: 1 */
2231 	SD_CHAIN_BUFIO,			/* Index: 2 */
2232 
2233 	/* Chain for buf IO for disk drive targets (PM disabled) */
2234 	SD_CHAIN_BUFIO,			/* Index: 3 */
2235 	SD_CHAIN_BUFIO,			/* Index: 4 */
2236 
2237 	/*
2238 	 * Chain for buf IO for removable-media or large sector size
2239 	 * disk drive targets (PM enabled)
2240 	 */
2241 	SD_CHAIN_BUFIO,			/* Index: 5 */
2242 	SD_CHAIN_BUFIO,			/* Index: 6 */
2243 	SD_CHAIN_BUFIO,			/* Index: 7 */
2244 	SD_CHAIN_BUFIO,			/* Index: 8 */
2245 
2246 	/*
2247 	 * Chain for buf IO for removable-media or large sector size
2248 	 * disk drive targets (PM disabled)
2249 	 */
2250 	SD_CHAIN_BUFIO,			/* Index: 9 */
2251 	SD_CHAIN_BUFIO,			/* Index: 10 */
2252 	SD_CHAIN_BUFIO,			/* Index: 11 */
2253 
2254 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2255 	SD_CHAIN_BUFIO,			/* Index: 12 */
2256 	SD_CHAIN_BUFIO,			/* Index: 13 */
2257 	SD_CHAIN_BUFIO,			/* Index: 14 */
2258 	SD_CHAIN_BUFIO,			/* Index: 15 */
2259 
2260 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2261 	SD_CHAIN_BUFIO,			/* Index: 16 */
2262 	SD_CHAIN_BUFIO,			/* Index: 17 */
2263 	SD_CHAIN_BUFIO,			/* Index: 18 */
2264 
2265 	/* Chain for USCSI commands (non-checksum targets) */
2266 	SD_CHAIN_USCSI,			/* Index: 19 */
2267 	SD_CHAIN_USCSI,			/* Index: 20 */
2268 
2269 	/* Chain for USCSI commands (checksum targets) */
2270 	SD_CHAIN_USCSI,			/* Index: 21 */
2271 	SD_CHAIN_USCSI,			/* Index: 22 */
2272 	SD_CHAIN_USCSI,			/* Index: 23 */
2273 
2274 	/* Chain for "direct" USCSI commands (all targets) */
2275 	SD_CHAIN_DIRECT,		/* Index: 24 */
2276 
2277 	/* Chain for "direct priority" USCSI commands (all targets) */
2278 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2279 
2280 	/*
2281 	 * Chain for buf IO for large sector size disk drive targets
2282 	 * with checksumming (PM enabled)
2283 	 */
2284 	SD_CHAIN_BUFIO,			/* Index: 26 */
2285 	SD_CHAIN_BUFIO,			/* Index: 27 */
2286 	SD_CHAIN_BUFIO,			/* Index: 28 */
2287 	SD_CHAIN_BUFIO,			/* Index: 29 */
2288 	SD_CHAIN_BUFIO,			/* Index: 30 */
2289 
2290 	/*
2291 	 * Chain for buf IO for large sector size disk drive targets
2292 	 * with checksumming (PM disabled)
2293 	 */
2294 	SD_CHAIN_BUFIO,			/* Index: 31 */
2295 	SD_CHAIN_BUFIO,			/* Index: 32 */
2296 	SD_CHAIN_BUFIO,			/* Index: 33 */
2297 	SD_CHAIN_BUFIO,			/* Index: 34 */
2298 };
2299 
2300 
2301 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2302 #define	SD_IS_BUFIO(xp)			\
2303 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2304 
2305 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2306 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2307 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2308 
2309 
2310 
2311 /*
2312  * Struct, array, and macros to map a specific chain to the appropriate
2313  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2314  *
2315  * The sd_chain_index_map[] array is used at attach time to set the various
2316  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2317  * chain to be used with the instance. This allows different instances to use
2318  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2319  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2320  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2321  * dynamically & without the use of locking; and (2) a layer may update the
2322  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2323  * to allow for deferred processing of an IO within the same chain from a
2324  * different execution context.
2325  */
2326 
2327 struct sd_chain_index {
2328 	int	sci_iostart_index;
2329 	int	sci_iodone_index;
2330 };
2331 
2332 static struct sd_chain_index	sd_chain_index_map[] = {
2333 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2334 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2335 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2336 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2337 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2338 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2339 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2340 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2341 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2342 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2343 	{ SD_CHAIN_MSS_CHKSUM_IOSTART,		SD_CHAIN_MSS_CHKSUM_IODONE },
2344 	{ SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM, SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM },
2345 
2346 };
2347 
2348 
2349 /*
2350  * The following are indexes into the sd_chain_index_map[] array.
2351  */
2352 
2353 /* un->un_buf_chain_type must be set to one of these */
2354 #define	SD_CHAIN_INFO_DISK		0
2355 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2356 #define	SD_CHAIN_INFO_RMMEDIA		2
2357 #define	SD_CHAIN_INFO_MSS_DISK		2
2358 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2359 #define	SD_CHAIN_INFO_MSS_DSK_NO_PM	3
2360 #define	SD_CHAIN_INFO_CHKSUM		4
2361 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2362 #define	SD_CHAIN_INFO_MSS_DISK_CHKSUM	10
2363 #define	SD_CHAIN_INFO_MSS_DISK_CHKSUM_NO_PM	11
2364 
2365 /* un->un_uscsi_chain_type must be set to one of these */
2366 #define	SD_CHAIN_INFO_USCSI_CMD		6
2367 /* USCSI with PM disabled is the same as DIRECT */
2368 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2369 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2370 
2371 /* un->un_direct_chain_type must be set to one of these */
2372 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2373 
2374 /* un->un_priority_chain_type must be set to one of these */
2375 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2376 
2377 /* size for devid inquiries */
2378 #define	MAX_INQUIRY_SIZE		0xF0
2379 
2380 /*
2381  * Macros used by functions to pass a given buf(9S) struct along to the
2382  * next function in the layering chain for further processing.
2383  *
2384  * In the following macros, passing more than three arguments to the called
2385  * routines causes the optimizer for the SPARC compiler to stop doing tail
2386  * call elimination which results in significant performance degradation.
2387  */
2388 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2389 	((*(sd_iostart_chain[index]))(index, un, bp))
2390 
2391 #define	SD_BEGIN_IODONE(index, un, bp)	\
2392 	((*(sd_iodone_chain[index]))(index, un, bp))
2393 
2394 #define	SD_NEXT_IOSTART(index, un, bp)				\
2395 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2396 
2397 #define	SD_NEXT_IODONE(index, un, bp)				\
2398 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2399 
2400 /*
2401  *    Function: _init
2402  *
2403  * Description: This is the driver _init(9E) entry point.
2404  *
2405  * Return Code: Returns the value from mod_install(9F) or
2406  *		ddi_soft_state_init(9F) as appropriate.
2407  *
2408  *     Context: Called when driver module loaded.
2409  */
2410 
2411 int
2412 _init(void)
2413 {
2414 	int	err;
2415 
2416 	/* establish driver name from module name */
2417 	sd_label = (char *)mod_modname(&modlinkage);
2418 
2419 #ifndef XPV_HVM_DRIVER
2420 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2421 	    SD_MAXUNIT);
2422 	if (err != 0) {
2423 		return (err);
2424 	}
2425 
2426 #else /* XPV_HVM_DRIVER */
2427 	/* Remove the leading "hvm_" from the module name */
2428 	ASSERT(strncmp(sd_label, "hvm_", strlen("hvm_")) == 0);
2429 	sd_label += strlen("hvm_");
2430 
2431 #endif /* XPV_HVM_DRIVER */
2432 
2433 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2434 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2435 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2436 
2437 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2438 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2439 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2440 
2441 	/*
2442 	 * it's ok to init here even for fibre device
2443 	 */
2444 	sd_scsi_probe_cache_init();
2445 
2446 	sd_scsi_target_lun_init();
2447 
2448 	/*
2449 	 * Creating taskq before mod_install ensures that all callers (threads)
2450 	 * that enter the module after a successful mod_install encounter
2451 	 * a valid taskq.
2452 	 */
2453 	sd_taskq_create();
2454 
2455 	err = mod_install(&modlinkage);
2456 	if (err != 0) {
2457 		/* delete taskq if install fails */
2458 		sd_taskq_delete();
2459 
2460 		mutex_destroy(&sd_detach_mutex);
2461 		mutex_destroy(&sd_log_mutex);
2462 		mutex_destroy(&sd_label_mutex);
2463 
2464 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2465 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2466 		cv_destroy(&sd_tr.srq_inprocess_cv);
2467 
2468 		sd_scsi_probe_cache_fini();
2469 
2470 		sd_scsi_target_lun_fini();
2471 
2472 #ifndef XPV_HVM_DRIVER
2473 		ddi_soft_state_fini(&sd_state);
2474 #endif /* !XPV_HVM_DRIVER */
2475 		return (err);
2476 	}
2477 
2478 	return (err);
2479 }
2480 
2481 
2482 /*
2483  *    Function: _fini
2484  *
2485  * Description: This is the driver _fini(9E) entry point.
2486  *
2487  * Return Code: Returns the value from mod_remove(9F)
2488  *
2489  *     Context: Called when driver module is unloaded.
2490  */
2491 
2492 int
2493 _fini(void)
2494 {
2495 	int err;
2496 
2497 	if ((err = mod_remove(&modlinkage)) != 0) {
2498 		return (err);
2499 	}
2500 
2501 	sd_taskq_delete();
2502 
2503 	mutex_destroy(&sd_detach_mutex);
2504 	mutex_destroy(&sd_log_mutex);
2505 	mutex_destroy(&sd_label_mutex);
2506 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2507 
2508 	sd_scsi_probe_cache_fini();
2509 
2510 	sd_scsi_target_lun_fini();
2511 
2512 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2513 	cv_destroy(&sd_tr.srq_inprocess_cv);
2514 
2515 #ifndef XPV_HVM_DRIVER
2516 	ddi_soft_state_fini(&sd_state);
2517 #endif /* !XPV_HVM_DRIVER */
2518 
2519 	return (err);
2520 }
2521 
2522 
2523 /*
2524  *    Function: _info
2525  *
2526  * Description: This is the driver _info(9E) entry point.
2527  *
2528  *   Arguments: modinfop - pointer to the driver modinfo structure
2529  *
2530  * Return Code: Returns the value from mod_info(9F).
2531  *
2532  *     Context: Kernel thread context
2533  */
2534 
2535 int
2536 _info(struct modinfo *modinfop)
2537 {
2538 	return (mod_info(&modlinkage, modinfop));
2539 }
2540 
2541 
2542 /*
2543  * The following routines implement the driver message logging facility.
2544  * They provide component- and level- based debug output filtering.
2545  * Output may also be restricted to messages for a single instance by
2546  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2547  * to NULL, then messages for all instances are printed.
2548  *
2549  * These routines have been cloned from each other due to the language
2550  * constraints of macros and variable argument list processing.
2551  */
2552 
2553 
2554 /*
2555  *    Function: sd_log_err
2556  *
2557  * Description: This routine is called by the SD_ERROR macro for debug
2558  *		logging of error conditions.
2559  *
2560  *   Arguments: comp - driver component being logged
2561  *		dev  - pointer to driver info structure
2562  *		fmt  - error string and format to be logged
2563  */
2564 
2565 static void
2566 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2567 {
2568 	va_list		ap;
2569 	dev_info_t	*dev;
2570 
2571 	ASSERT(un != NULL);
2572 	dev = SD_DEVINFO(un);
2573 	ASSERT(dev != NULL);
2574 
2575 	/*
2576 	 * Filter messages based on the global component and level masks.
2577 	 * Also print if un matches the value of sd_debug_un, or if
2578 	 * sd_debug_un is set to NULL.
2579 	 */
2580 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2581 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2582 		mutex_enter(&sd_log_mutex);
2583 		va_start(ap, fmt);
2584 		(void) vsprintf(sd_log_buf, fmt, ap);
2585 		va_end(ap);
2586 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2587 		mutex_exit(&sd_log_mutex);
2588 	}
2589 #ifdef SD_FAULT_INJECTION
2590 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2591 	if (un->sd_injection_mask & comp) {
2592 		mutex_enter(&sd_log_mutex);
2593 		va_start(ap, fmt);
2594 		(void) vsprintf(sd_log_buf, fmt, ap);
2595 		va_end(ap);
2596 		sd_injection_log(sd_log_buf, un);
2597 		mutex_exit(&sd_log_mutex);
2598 	}
2599 #endif
2600 }
2601 
2602 
2603 /*
2604  *    Function: sd_log_info
2605  *
2606  * Description: This routine is called by the SD_INFO macro for debug
2607  *		logging of general purpose informational conditions.
2608  *
2609  *   Arguments: comp - driver component being logged
2610  *		dev  - pointer to driver info structure
2611  *		fmt  - info string and format to be logged
2612  */
2613 
2614 static void
2615 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2616 {
2617 	va_list		ap;
2618 	dev_info_t	*dev;
2619 
2620 	ASSERT(un != NULL);
2621 	dev = SD_DEVINFO(un);
2622 	ASSERT(dev != NULL);
2623 
2624 	/*
2625 	 * Filter messages based on the global component and level masks.
2626 	 * Also print if un matches the value of sd_debug_un, or if
2627 	 * sd_debug_un is set to NULL.
2628 	 */
2629 	if ((sd_component_mask & component) &&
2630 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2631 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2632 		mutex_enter(&sd_log_mutex);
2633 		va_start(ap, fmt);
2634 		(void) vsprintf(sd_log_buf, fmt, ap);
2635 		va_end(ap);
2636 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2637 		mutex_exit(&sd_log_mutex);
2638 	}
2639 #ifdef SD_FAULT_INJECTION
2640 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2641 	if (un->sd_injection_mask & component) {
2642 		mutex_enter(&sd_log_mutex);
2643 		va_start(ap, fmt);
2644 		(void) vsprintf(sd_log_buf, fmt, ap);
2645 		va_end(ap);
2646 		sd_injection_log(sd_log_buf, un);
2647 		mutex_exit(&sd_log_mutex);
2648 	}
2649 #endif
2650 }
2651 
2652 
2653 /*
2654  *    Function: sd_log_trace
2655  *
2656  * Description: This routine is called by the SD_TRACE macro for debug
2657  *		logging of trace conditions (i.e. function entry/exit).
2658  *
2659  *   Arguments: comp - driver component being logged
2660  *		dev  - pointer to driver info structure
2661  *		fmt  - trace string and format to be logged
2662  */
2663 
2664 static void
2665 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2666 {
2667 	va_list		ap;
2668 	dev_info_t	*dev;
2669 
2670 	ASSERT(un != NULL);
2671 	dev = SD_DEVINFO(un);
2672 	ASSERT(dev != NULL);
2673 
2674 	/*
2675 	 * Filter messages based on the global component and level masks.
2676 	 * Also print if un matches the value of sd_debug_un, or if
2677 	 * sd_debug_un is set to NULL.
2678 	 */
2679 	if ((sd_component_mask & component) &&
2680 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2681 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2682 		mutex_enter(&sd_log_mutex);
2683 		va_start(ap, fmt);
2684 		(void) vsprintf(sd_log_buf, fmt, ap);
2685 		va_end(ap);
2686 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2687 		mutex_exit(&sd_log_mutex);
2688 	}
2689 #ifdef SD_FAULT_INJECTION
2690 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2691 	if (un->sd_injection_mask & component) {
2692 		mutex_enter(&sd_log_mutex);
2693 		va_start(ap, fmt);
2694 		(void) vsprintf(sd_log_buf, fmt, ap);
2695 		va_end(ap);
2696 		sd_injection_log(sd_log_buf, un);
2697 		mutex_exit(&sd_log_mutex);
2698 	}
2699 #endif
2700 }
2701 
2702 
2703 /*
2704  *    Function: sdprobe
2705  *
2706  * Description: This is the driver probe(9e) entry point function.
2707  *
2708  *   Arguments: devi - opaque device info handle
2709  *
2710  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2711  *              DDI_PROBE_FAILURE: If the probe failed.
2712  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2713  *				   but may be present in the future.
2714  */
2715 
2716 static int
2717 sdprobe(dev_info_t *devi)
2718 {
2719 	struct scsi_device	*devp;
2720 	int			rval;
2721 #ifndef XPV_HVM_DRIVER
2722 	int			instance = ddi_get_instance(devi);
2723 #endif /* !XPV_HVM_DRIVER */
2724 
2725 	/*
2726 	 * if it wasn't for pln, sdprobe could actually be nulldev
2727 	 * in the "__fibre" case.
2728 	 */
2729 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2730 		return (DDI_PROBE_DONTCARE);
2731 	}
2732 
2733 	devp = ddi_get_driver_private(devi);
2734 
2735 	if (devp == NULL) {
2736 		/* Ooops... nexus driver is mis-configured... */
2737 		return (DDI_PROBE_FAILURE);
2738 	}
2739 
2740 #ifndef XPV_HVM_DRIVER
2741 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2742 		return (DDI_PROBE_PARTIAL);
2743 	}
2744 #endif /* !XPV_HVM_DRIVER */
2745 
2746 	/*
2747 	 * Call the SCSA utility probe routine to see if we actually
2748 	 * have a target at this SCSI nexus.
2749 	 */
2750 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2751 	case SCSIPROBE_EXISTS:
2752 		switch (devp->sd_inq->inq_dtype) {
2753 		case DTYPE_DIRECT:
2754 			rval = DDI_PROBE_SUCCESS;
2755 			break;
2756 		case DTYPE_RODIRECT:
2757 			/* CDs etc. Can be removable media */
2758 			rval = DDI_PROBE_SUCCESS;
2759 			break;
2760 		case DTYPE_OPTICAL:
2761 			/*
2762 			 * Rewritable optical driver HP115AA
2763 			 * Can also be removable media
2764 			 */
2765 
2766 			/*
2767 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2768 			 * pre solaris 9 sparc sd behavior is required
2769 			 *
2770 			 * If first time through and sd_dtype_optical_bind
2771 			 * has not been set in /etc/system check properties
2772 			 */
2773 
2774 			if (sd_dtype_optical_bind  < 0) {
2775 				sd_dtype_optical_bind = ddi_prop_get_int
2776 				    (DDI_DEV_T_ANY, devi, 0,
2777 				    "optical-device-bind", 1);
2778 			}
2779 
2780 			if (sd_dtype_optical_bind == 0) {
2781 				rval = DDI_PROBE_FAILURE;
2782 			} else {
2783 				rval = DDI_PROBE_SUCCESS;
2784 			}
2785 			break;
2786 
2787 		case DTYPE_NOTPRESENT:
2788 		default:
2789 			rval = DDI_PROBE_FAILURE;
2790 			break;
2791 		}
2792 		break;
2793 	default:
2794 		rval = DDI_PROBE_PARTIAL;
2795 		break;
2796 	}
2797 
2798 	/*
2799 	 * This routine checks for resource allocation prior to freeing,
2800 	 * so it will take care of the "smart probing" case where a
2801 	 * scsi_probe() may or may not have been issued and will *not*
2802 	 * free previously-freed resources.
2803 	 */
2804 	scsi_unprobe(devp);
2805 	return (rval);
2806 }
2807 
2808 
2809 /*
2810  *    Function: sdinfo
2811  *
2812  * Description: This is the driver getinfo(9e) entry point function.
2813  * 		Given the device number, return the devinfo pointer from
2814  *		the scsi_device structure or the instance number
2815  *		associated with the dev_t.
2816  *
2817  *   Arguments: dip     - pointer to device info structure
2818  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2819  *			  DDI_INFO_DEVT2INSTANCE)
2820  *		arg     - driver dev_t
2821  *		resultp - user buffer for request response
2822  *
2823  * Return Code: DDI_SUCCESS
2824  *              DDI_FAILURE
2825  */
2826 /* ARGSUSED */
2827 static int
2828 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2829 {
2830 	struct sd_lun	*un;
2831 	dev_t		dev;
2832 	int		instance;
2833 	int		error;
2834 
2835 	switch (infocmd) {
2836 	case DDI_INFO_DEVT2DEVINFO:
2837 		dev = (dev_t)arg;
2838 		instance = SDUNIT(dev);
2839 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2840 			return (DDI_FAILURE);
2841 		}
2842 		*result = (void *) SD_DEVINFO(un);
2843 		error = DDI_SUCCESS;
2844 		break;
2845 	case DDI_INFO_DEVT2INSTANCE:
2846 		dev = (dev_t)arg;
2847 		instance = SDUNIT(dev);
2848 		*result = (void *)(uintptr_t)instance;
2849 		error = DDI_SUCCESS;
2850 		break;
2851 	default:
2852 		error = DDI_FAILURE;
2853 	}
2854 	return (error);
2855 }
2856 
2857 /*
2858  *    Function: sd_prop_op
2859  *
2860  * Description: This is the driver prop_op(9e) entry point function.
2861  *		Return the number of blocks for the partition in question
2862  *		or forward the request to the property facilities.
2863  *
2864  *   Arguments: dev       - device number
2865  *		dip       - pointer to device info structure
2866  *		prop_op   - property operator
2867  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2868  *		name      - pointer to property name
2869  *		valuep    - pointer or address of the user buffer
2870  *		lengthp   - property length
2871  *
2872  * Return Code: DDI_PROP_SUCCESS
2873  *              DDI_PROP_NOT_FOUND
2874  *              DDI_PROP_UNDEFINED
2875  *              DDI_PROP_NO_MEMORY
2876  *              DDI_PROP_BUF_TOO_SMALL
2877  */
2878 
2879 static int
2880 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2881 	char *name, caddr_t valuep, int *lengthp)
2882 {
2883 	struct sd_lun	*un;
2884 
2885 	if ((un = ddi_get_soft_state(sd_state, ddi_get_instance(dip))) == NULL)
2886 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2887 		    name, valuep, lengthp));
2888 
2889 	return (cmlb_prop_op(un->un_cmlbhandle,
2890 	    dev, dip, prop_op, mod_flags, name, valuep, lengthp,
2891 	    SDPART(dev), (void *)SD_PATH_DIRECT));
2892 }
2893 
2894 /*
2895  * The following functions are for smart probing:
2896  * sd_scsi_probe_cache_init()
2897  * sd_scsi_probe_cache_fini()
2898  * sd_scsi_clear_probe_cache()
2899  * sd_scsi_probe_with_cache()
2900  */
2901 
2902 /*
2903  *    Function: sd_scsi_probe_cache_init
2904  *
2905  * Description: Initializes the probe response cache mutex and head pointer.
2906  *
2907  *     Context: Kernel thread context
2908  */
2909 
2910 static void
2911 sd_scsi_probe_cache_init(void)
2912 {
2913 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2914 	sd_scsi_probe_cache_head = NULL;
2915 }
2916 
2917 
2918 /*
2919  *    Function: sd_scsi_probe_cache_fini
2920  *
2921  * Description: Frees all resources associated with the probe response cache.
2922  *
2923  *     Context: Kernel thread context
2924  */
2925 
2926 static void
2927 sd_scsi_probe_cache_fini(void)
2928 {
2929 	struct sd_scsi_probe_cache *cp;
2930 	struct sd_scsi_probe_cache *ncp;
2931 
2932 	/* Clean up our smart probing linked list */
2933 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2934 		ncp = cp->next;
2935 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2936 	}
2937 	sd_scsi_probe_cache_head = NULL;
2938 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2939 }
2940 
2941 
2942 /*
2943  *    Function: sd_scsi_clear_probe_cache
2944  *
2945  * Description: This routine clears the probe response cache. This is
2946  *		done when open() returns ENXIO so that when deferred
2947  *		attach is attempted (possibly after a device has been
2948  *		turned on) we will retry the probe. Since we don't know
2949  *		which target we failed to open, we just clear the
2950  *		entire cache.
2951  *
2952  *     Context: Kernel thread context
2953  */
2954 
2955 static void
2956 sd_scsi_clear_probe_cache(void)
2957 {
2958 	struct sd_scsi_probe_cache	*cp;
2959 	int				i;
2960 
2961 	mutex_enter(&sd_scsi_probe_cache_mutex);
2962 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2963 		/*
2964 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2965 		 * force probing to be performed the next time
2966 		 * sd_scsi_probe_with_cache is called.
2967 		 */
2968 		for (i = 0; i < NTARGETS_WIDE; i++) {
2969 			cp->cache[i] = SCSIPROBE_EXISTS;
2970 		}
2971 	}
2972 	mutex_exit(&sd_scsi_probe_cache_mutex);
2973 }
2974 
2975 
2976 /*
2977  *    Function: sd_scsi_probe_with_cache
2978  *
2979  * Description: This routine implements support for a scsi device probe
2980  *		with cache. The driver maintains a cache of the target
2981  *		responses to scsi probes. If we get no response from a
2982  *		target during a probe inquiry, we remember that, and we
2983  *		avoid additional calls to scsi_probe on non-zero LUNs
2984  *		on the same target until the cache is cleared. By doing
2985  *		so we avoid the 1/4 sec selection timeout for nonzero
2986  *		LUNs. lun0 of a target is always probed.
2987  *
2988  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2989  *              waitfunc - indicates what the allocator routines should
2990  *			   do when resources are not available. This value
2991  *			   is passed on to scsi_probe() when that routine
2992  *			   is called.
2993  *
2994  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2995  *		otherwise the value returned by scsi_probe(9F).
2996  *
2997  *     Context: Kernel thread context
2998  */
2999 
3000 static int
3001 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
3002 {
3003 	struct sd_scsi_probe_cache	*cp;
3004 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
3005 	int		lun, tgt;
3006 
3007 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
3008 	    SCSI_ADDR_PROP_LUN, 0);
3009 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
3010 	    SCSI_ADDR_PROP_TARGET, -1);
3011 
3012 	/* Make sure caching enabled and target in range */
3013 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
3014 		/* do it the old way (no cache) */
3015 		return (scsi_probe(devp, waitfn));
3016 	}
3017 
3018 	mutex_enter(&sd_scsi_probe_cache_mutex);
3019 
3020 	/* Find the cache for this scsi bus instance */
3021 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
3022 		if (cp->pdip == pdip) {
3023 			break;
3024 		}
3025 	}
3026 
3027 	/* If we can't find a cache for this pdip, create one */
3028 	if (cp == NULL) {
3029 		int i;
3030 
3031 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
3032 		    KM_SLEEP);
3033 		cp->pdip = pdip;
3034 		cp->next = sd_scsi_probe_cache_head;
3035 		sd_scsi_probe_cache_head = cp;
3036 		for (i = 0; i < NTARGETS_WIDE; i++) {
3037 			cp->cache[i] = SCSIPROBE_EXISTS;
3038 		}
3039 	}
3040 
3041 	mutex_exit(&sd_scsi_probe_cache_mutex);
3042 
3043 	/* Recompute the cache for this target if LUN zero */
3044 	if (lun == 0) {
3045 		cp->cache[tgt] = SCSIPROBE_EXISTS;
3046 	}
3047 
3048 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
3049 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
3050 		return (SCSIPROBE_NORESP);
3051 	}
3052 
3053 	/* Do the actual probe; save & return the result */
3054 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
3055 }
3056 
3057 
3058 /*
3059  *    Function: sd_scsi_target_lun_init
3060  *
3061  * Description: Initializes the attached lun chain mutex and head pointer.
3062  *
3063  *     Context: Kernel thread context
3064  */
3065 
3066 static void
3067 sd_scsi_target_lun_init(void)
3068 {
3069 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
3070 	sd_scsi_target_lun_head = NULL;
3071 }
3072 
3073 
3074 /*
3075  *    Function: sd_scsi_target_lun_fini
3076  *
3077  * Description: Frees all resources associated with the attached lun
3078  *              chain
3079  *
3080  *     Context: Kernel thread context
3081  */
3082 
3083 static void
3084 sd_scsi_target_lun_fini(void)
3085 {
3086 	struct sd_scsi_hba_tgt_lun	*cp;
3087 	struct sd_scsi_hba_tgt_lun	*ncp;
3088 
3089 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
3090 		ncp = cp->next;
3091 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
3092 	}
3093 	sd_scsi_target_lun_head = NULL;
3094 	mutex_destroy(&sd_scsi_target_lun_mutex);
3095 }
3096 
3097 
3098 /*
3099  *    Function: sd_scsi_get_target_lun_count
3100  *
3101  * Description: This routine will check in the attached lun chain to see
3102  * 		how many luns are attached on the required SCSI controller
3103  * 		and target. Currently, some capabilities like tagged queue
3104  *		are supported per target based by HBA. So all luns in a
3105  *		target have the same capabilities. Based on this assumption,
3106  * 		sd should only set these capabilities once per target. This
3107  *		function is called when sd needs to decide how many luns
3108  *		already attached on a target.
3109  *
3110  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
3111  *			  controller device.
3112  *              target	- The target ID on the controller's SCSI bus.
3113  *
3114  * Return Code: The number of luns attached on the required target and
3115  *		controller.
3116  *		-1 if target ID is not in parallel SCSI scope or the given
3117  * 		dip is not in the chain.
3118  *
3119  *     Context: Kernel thread context
3120  */
3121 
3122 static int
3123 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
3124 {
3125 	struct sd_scsi_hba_tgt_lun	*cp;
3126 
3127 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
3128 		return (-1);
3129 	}
3130 
3131 	mutex_enter(&sd_scsi_target_lun_mutex);
3132 
3133 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
3134 		if (cp->pdip == dip) {
3135 			break;
3136 		}
3137 	}
3138 
3139 	mutex_exit(&sd_scsi_target_lun_mutex);
3140 
3141 	if (cp == NULL) {
3142 		return (-1);
3143 	}
3144 
3145 	return (cp->nlun[target]);
3146 }
3147 
3148 
3149 /*
3150  *    Function: sd_scsi_update_lun_on_target
3151  *
3152  * Description: This routine is used to update the attached lun chain when a
3153  *		lun is attached or detached on a target.
3154  *
3155  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
3156  *                        controller device.
3157  *              target  - The target ID on the controller's SCSI bus.
3158  *		flag	- Indicate the lun is attached or detached.
3159  *
3160  *     Context: Kernel thread context
3161  */
3162 
3163 static void
3164 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
3165 {
3166 	struct sd_scsi_hba_tgt_lun	*cp;
3167 
3168 	mutex_enter(&sd_scsi_target_lun_mutex);
3169 
3170 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
3171 		if (cp->pdip == dip) {
3172 			break;
3173 		}
3174 	}
3175 
3176 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
3177 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
3178 		    KM_SLEEP);
3179 		cp->pdip = dip;
3180 		cp->next = sd_scsi_target_lun_head;
3181 		sd_scsi_target_lun_head = cp;
3182 	}
3183 
3184 	mutex_exit(&sd_scsi_target_lun_mutex);
3185 
3186 	if (cp != NULL) {
3187 		if (flag == SD_SCSI_LUN_ATTACH) {
3188 			cp->nlun[target] ++;
3189 		} else {
3190 			cp->nlun[target] --;
3191 		}
3192 	}
3193 }
3194 
3195 
3196 /*
3197  *    Function: sd_spin_up_unit
3198  *
3199  * Description: Issues the following commands to spin-up the device:
3200  *		START STOP UNIT, and INQUIRY.
3201  *
3202  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3203  *                      structure for this target.
3204  *
3205  * Return Code: 0 - success
3206  *		EIO - failure
3207  *		EACCES - reservation conflict
3208  *
3209  *     Context: Kernel thread context
3210  */
3211 
3212 static int
3213 sd_spin_up_unit(sd_ssc_t *ssc)
3214 {
3215 	size_t	resid		= 0;
3216 	int	has_conflict	= FALSE;
3217 	uchar_t *bufaddr;
3218 	int 	status;
3219 	struct sd_lun	*un;
3220 
3221 	ASSERT(ssc != NULL);
3222 	un = ssc->ssc_un;
3223 	ASSERT(un != NULL);
3224 
3225 	/*
3226 	 * Send a throwaway START UNIT command.
3227 	 *
3228 	 * If we fail on this, we don't care presently what precisely
3229 	 * is wrong.  EMC's arrays will also fail this with a check
3230 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
3231 	 * we don't want to fail the attach because it may become
3232 	 * "active" later.
3233 	 * We don't know if power condition is supported or not at
3234 	 * this stage, use START STOP bit.
3235 	 */
3236 	status = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
3237 	    SD_TARGET_START, SD_PATH_DIRECT);
3238 
3239 	if (status != 0) {
3240 		if (status == EACCES)
3241 			has_conflict = TRUE;
3242 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3243 	}
3244 
3245 	/*
3246 	 * Send another INQUIRY command to the target. This is necessary for
3247 	 * non-removable media direct access devices because their INQUIRY data
3248 	 * may not be fully qualified until they are spun up (perhaps via the
3249 	 * START command above).  Note: This seems to be needed for some
3250 	 * legacy devices only.) The INQUIRY command should succeed even if a
3251 	 * Reservation Conflict is present.
3252 	 */
3253 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
3254 
3255 	if (sd_send_scsi_INQUIRY(ssc, bufaddr, SUN_INQSIZE, 0, 0, &resid)
3256 	    != 0) {
3257 		kmem_free(bufaddr, SUN_INQSIZE);
3258 		sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
3259 		return (EIO);
3260 	}
3261 
3262 	/*
3263 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
3264 	 * Note that this routine does not return a failure here even if the
3265 	 * INQUIRY command did not return any data.  This is a legacy behavior.
3266 	 */
3267 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
3268 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
3269 	}
3270 
3271 	kmem_free(bufaddr, SUN_INQSIZE);
3272 
3273 	/* If we hit a reservation conflict above, tell the caller. */
3274 	if (has_conflict == TRUE) {
3275 		return (EACCES);
3276 	}
3277 
3278 	return (0);
3279 }
3280 
3281 #ifdef _LP64
3282 /*
3283  *    Function: sd_enable_descr_sense
3284  *
3285  * Description: This routine attempts to select descriptor sense format
3286  *		using the Control mode page.  Devices that support 64 bit
3287  *		LBAs (for >2TB luns) should also implement descriptor
3288  *		sense data so we will call this function whenever we see
3289  *		a lun larger than 2TB.  If for some reason the device
3290  *		supports 64 bit LBAs but doesn't support descriptor sense
3291  *		presumably the mode select will fail.  Everything will
3292  *		continue to work normally except that we will not get
3293  *		complete sense data for commands that fail with an LBA
3294  *		larger than 32 bits.
3295  *
3296  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3297  *                      structure for this target.
3298  *
3299  *     Context: Kernel thread context only
3300  */
3301 
3302 static void
3303 sd_enable_descr_sense(sd_ssc_t *ssc)
3304 {
3305 	uchar_t			*header;
3306 	struct mode_control_scsi3 *ctrl_bufp;
3307 	size_t			buflen;
3308 	size_t			bd_len;
3309 	int			status;
3310 	struct sd_lun		*un;
3311 
3312 	ASSERT(ssc != NULL);
3313 	un = ssc->ssc_un;
3314 	ASSERT(un != NULL);
3315 
3316 	/*
3317 	 * Read MODE SENSE page 0xA, Control Mode Page
3318 	 */
3319 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3320 	    sizeof (struct mode_control_scsi3);
3321 	header = kmem_zalloc(buflen, KM_SLEEP);
3322 
3323 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
3324 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT);
3325 
3326 	if (status != 0) {
3327 		SD_ERROR(SD_LOG_COMMON, un,
3328 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3329 		goto eds_exit;
3330 	}
3331 
3332 	/*
3333 	 * Determine size of Block Descriptors in order to locate
3334 	 * the mode page data. ATAPI devices return 0, SCSI devices
3335 	 * should return MODE_BLK_DESC_LENGTH.
3336 	 */
3337 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3338 
3339 	/* Clear the mode data length field for MODE SELECT */
3340 	((struct mode_header *)header)->length = 0;
3341 
3342 	ctrl_bufp = (struct mode_control_scsi3 *)
3343 	    (header + MODE_HEADER_LENGTH + bd_len);
3344 
3345 	/*
3346 	 * If the page length is smaller than the expected value,
3347 	 * the target device doesn't support D_SENSE. Bail out here.
3348 	 */
3349 	if (ctrl_bufp->mode_page.length <
3350 	    sizeof (struct mode_control_scsi3) - 2) {
3351 		SD_ERROR(SD_LOG_COMMON, un,
3352 		    "sd_enable_descr_sense: enable D_SENSE failed\n");
3353 		goto eds_exit;
3354 	}
3355 
3356 	/*
3357 	 * Clear PS bit for MODE SELECT
3358 	 */
3359 	ctrl_bufp->mode_page.ps = 0;
3360 
3361 	/*
3362 	 * Set D_SENSE to enable descriptor sense format.
3363 	 */
3364 	ctrl_bufp->d_sense = 1;
3365 
3366 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3367 
3368 	/*
3369 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3370 	 */
3371 	status = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header,
3372 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT);
3373 
3374 	if (status != 0) {
3375 		SD_INFO(SD_LOG_COMMON, un,
3376 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3377 	} else {
3378 		kmem_free(header, buflen);
3379 		return;
3380 	}
3381 
3382 eds_exit:
3383 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3384 	kmem_free(header, buflen);
3385 }
3386 
3387 /*
3388  *    Function: sd_reenable_dsense_task
3389  *
3390  * Description: Re-enable descriptor sense after device or bus reset
3391  *
3392  *     Context: Executes in a taskq() thread context
3393  */
3394 static void
3395 sd_reenable_dsense_task(void *arg)
3396 {
3397 	struct	sd_lun	*un = arg;
3398 	sd_ssc_t	*ssc;
3399 
3400 	ASSERT(un != NULL);
3401 
3402 	ssc = sd_ssc_init(un);
3403 	sd_enable_descr_sense(ssc);
3404 	sd_ssc_fini(ssc);
3405 }
3406 #endif /* _LP64 */
3407 
3408 /*
3409  *    Function: sd_set_mmc_caps
3410  *
3411  * Description: This routine determines if the device is MMC compliant and if
3412  *		the device supports CDDA via a mode sense of the CDVD
3413  *		capabilities mode page. Also checks if the device is a
3414  *		dvdram writable device.
3415  *
3416  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3417  *                      structure for this target.
3418  *
3419  *     Context: Kernel thread context only
3420  */
3421 
3422 static void
3423 sd_set_mmc_caps(sd_ssc_t *ssc)
3424 {
3425 	struct mode_header_grp2		*sense_mhp;
3426 	uchar_t				*sense_page;
3427 	caddr_t				buf;
3428 	int				bd_len;
3429 	int				status;
3430 	struct uscsi_cmd		com;
3431 	int				rtn;
3432 	uchar_t				*out_data_rw, *out_data_hd;
3433 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3434 	uchar_t				*out_data_gesn;
3435 	int				gesn_len;
3436 	struct sd_lun			*un;
3437 
3438 	ASSERT(ssc != NULL);
3439 	un = ssc->ssc_un;
3440 	ASSERT(un != NULL);
3441 
3442 	/*
3443 	 * The flags which will be set in this function are - mmc compliant,
3444 	 * dvdram writable device, cdda support. Initialize them to FALSE
3445 	 * and if a capability is detected - it will be set to TRUE.
3446 	 */
3447 	un->un_f_mmc_cap = FALSE;
3448 	un->un_f_dvdram_writable_device = FALSE;
3449 	un->un_f_cfg_cdda = FALSE;
3450 
3451 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3452 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3453 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3454 
3455 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3456 
3457 	if (status != 0) {
3458 		/* command failed; just return */
3459 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3460 		return;
3461 	}
3462 	/*
3463 	 * If the mode sense request for the CDROM CAPABILITIES
3464 	 * page (0x2A) succeeds the device is assumed to be MMC.
3465 	 */
3466 	un->un_f_mmc_cap = TRUE;
3467 
3468 	/* See if GET STATUS EVENT NOTIFICATION is supported */
3469 	if (un->un_f_mmc_gesn_polling) {
3470 		gesn_len = SD_GESN_HEADER_LEN + SD_GESN_MEDIA_DATA_LEN;
3471 		out_data_gesn = kmem_zalloc(gesn_len, KM_SLEEP);
3472 
3473 		rtn = sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(ssc,
3474 		    out_data_gesn, gesn_len, 1 << SD_GESN_MEDIA_CLASS);
3475 
3476 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3477 
3478 		if ((rtn != 0) || !sd_gesn_media_data_valid(out_data_gesn)) {
3479 			un->un_f_mmc_gesn_polling = FALSE;
3480 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3481 			    "sd_set_mmc_caps: gesn not supported "
3482 			    "%d %x %x %x %x\n", rtn,
3483 			    out_data_gesn[0], out_data_gesn[1],
3484 			    out_data_gesn[2], out_data_gesn[3]);
3485 		}
3486 
3487 		kmem_free(out_data_gesn, gesn_len);
3488 	}
3489 
3490 	/* Get to the page data */
3491 	sense_mhp = (struct mode_header_grp2 *)buf;
3492 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3493 	    sense_mhp->bdesc_length_lo;
3494 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3495 		/*
3496 		 * We did not get back the expected block descriptor
3497 		 * length so we cannot determine if the device supports
3498 		 * CDDA. However, we still indicate the device is MMC
3499 		 * according to the successful response to the page
3500 		 * 0x2A mode sense request.
3501 		 */
3502 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3503 		    "sd_set_mmc_caps: Mode Sense returned "
3504 		    "invalid block descriptor length\n");
3505 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3506 		return;
3507 	}
3508 
3509 	/* See if read CDDA is supported */
3510 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3511 	    bd_len);
3512 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3513 
3514 	/* See if writing DVD RAM is supported. */
3515 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3516 	if (un->un_f_dvdram_writable_device == TRUE) {
3517 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3518 		return;
3519 	}
3520 
3521 	/*
3522 	 * If the device presents DVD or CD capabilities in the mode
3523 	 * page, we can return here since a RRD will not have
3524 	 * these capabilities.
3525 	 */
3526 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3527 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3528 		return;
3529 	}
3530 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3531 
3532 	/*
3533 	 * If un->un_f_dvdram_writable_device is still FALSE,
3534 	 * check for a Removable Rigid Disk (RRD).  A RRD
3535 	 * device is identified by the features RANDOM_WRITABLE and
3536 	 * HARDWARE_DEFECT_MANAGEMENT.
3537 	 */
3538 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3539 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3540 
3541 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3542 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3543 	    RANDOM_WRITABLE, SD_PATH_STANDARD);
3544 
3545 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3546 
3547 	if (rtn != 0) {
3548 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3549 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3550 		return;
3551 	}
3552 
3553 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3554 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3555 
3556 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3557 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3558 	    HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD);
3559 
3560 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3561 
3562 	if (rtn == 0) {
3563 		/*
3564 		 * We have good information, check for random writable
3565 		 * and hardware defect features.
3566 		 */
3567 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3568 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3569 			un->un_f_dvdram_writable_device = TRUE;
3570 		}
3571 	}
3572 
3573 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3574 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3575 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3576 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3577 }
3578 
3579 /*
3580  *    Function: sd_check_for_writable_cd
3581  *
3582  * Description: This routine determines if the media in the device is
3583  *		writable or not. It uses the get configuration command (0x46)
3584  *		to determine if the media is writable
3585  *
3586  *   Arguments: un - driver soft state (unit) structure
3587  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct"
3588  *                           chain and the normal command waitq, or
3589  *                           SD_PATH_DIRECT_PRIORITY to use the USCSI
3590  *                           "direct" chain and bypass the normal command
3591  *                           waitq.
3592  *
3593  *     Context: Never called at interrupt context.
3594  */
3595 
3596 static void
3597 sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag)
3598 {
3599 	struct uscsi_cmd		com;
3600 	uchar_t				*out_data;
3601 	uchar_t				*rqbuf;
3602 	int				rtn;
3603 	uchar_t				*out_data_rw, *out_data_hd;
3604 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3605 	struct mode_header_grp2		*sense_mhp;
3606 	uchar_t				*sense_page;
3607 	caddr_t				buf;
3608 	int				bd_len;
3609 	int				status;
3610 	struct sd_lun			*un;
3611 
3612 	ASSERT(ssc != NULL);
3613 	un = ssc->ssc_un;
3614 	ASSERT(un != NULL);
3615 	ASSERT(mutex_owned(SD_MUTEX(un)));
3616 
3617 	/*
3618 	 * Initialize the writable media to false, if configuration info.
3619 	 * tells us otherwise then only we will set it.
3620 	 */
3621 	un->un_f_mmc_writable_media = FALSE;
3622 	mutex_exit(SD_MUTEX(un));
3623 
3624 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3625 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3626 
3627 	rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, SENSE_LENGTH,
3628 	    out_data, SD_PROFILE_HEADER_LEN, path_flag);
3629 
3630 	if (rtn != 0)
3631 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3632 
3633 	mutex_enter(SD_MUTEX(un));
3634 	if (rtn == 0) {
3635 		/*
3636 		 * We have good information, check for writable DVD.
3637 		 */
3638 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3639 			un->un_f_mmc_writable_media = TRUE;
3640 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3641 			kmem_free(rqbuf, SENSE_LENGTH);
3642 			return;
3643 		}
3644 	}
3645 
3646 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3647 	kmem_free(rqbuf, SENSE_LENGTH);
3648 
3649 	/*
3650 	 * Determine if this is a RRD type device.
3651 	 */
3652 	mutex_exit(SD_MUTEX(un));
3653 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3654 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3655 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag);
3656 
3657 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3658 
3659 	mutex_enter(SD_MUTEX(un));
3660 	if (status != 0) {
3661 		/* command failed; just return */
3662 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3663 		return;
3664 	}
3665 
3666 	/* Get to the page data */
3667 	sense_mhp = (struct mode_header_grp2 *)buf;
3668 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3669 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3670 		/*
3671 		 * We did not get back the expected block descriptor length so
3672 		 * we cannot check the mode page.
3673 		 */
3674 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3675 		    "sd_check_for_writable_cd: Mode Sense returned "
3676 		    "invalid block descriptor length\n");
3677 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3678 		return;
3679 	}
3680 
3681 	/*
3682 	 * If the device presents DVD or CD capabilities in the mode
3683 	 * page, we can return here since a RRD device will not have
3684 	 * these capabilities.
3685 	 */
3686 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3687 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3688 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3689 		return;
3690 	}
3691 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3692 
3693 	/*
3694 	 * If un->un_f_mmc_writable_media is still FALSE,
3695 	 * check for RRD type media.  A RRD device is identified
3696 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3697 	 */
3698 	mutex_exit(SD_MUTEX(un));
3699 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3700 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3701 
3702 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3703 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3704 	    RANDOM_WRITABLE, path_flag);
3705 
3706 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3707 	if (rtn != 0) {
3708 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3709 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3710 		mutex_enter(SD_MUTEX(un));
3711 		return;
3712 	}
3713 
3714 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3715 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3716 
3717 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3718 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3719 	    HARDWARE_DEFECT_MANAGEMENT, path_flag);
3720 
3721 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3722 	mutex_enter(SD_MUTEX(un));
3723 	if (rtn == 0) {
3724 		/*
3725 		 * We have good information, check for random writable
3726 		 * and hardware defect features as current.
3727 		 */
3728 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3729 		    (out_data_rw[10] & 0x1) &&
3730 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3731 		    (out_data_hd[10] & 0x1)) {
3732 			un->un_f_mmc_writable_media = TRUE;
3733 		}
3734 	}
3735 
3736 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3737 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3738 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3739 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3740 }
3741 
3742 /*
3743  *    Function: sd_read_unit_properties
3744  *
3745  * Description: The following implements a property lookup mechanism.
3746  *		Properties for particular disks (keyed on vendor, model
3747  *		and rev numbers) are sought in the sd.conf file via
3748  *		sd_process_sdconf_file(), and if not found there, are
3749  *		looked for in a list hardcoded in this driver via
3750  *		sd_process_sdconf_table() Once located the properties
3751  *		are used to update the driver unit structure.
3752  *
3753  *   Arguments: un - driver soft state (unit) structure
3754  */
3755 
3756 static void
3757 sd_read_unit_properties(struct sd_lun *un)
3758 {
3759 	/*
3760 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3761 	 * the "sd-config-list" property (from the sd.conf file) or if
3762 	 * there was not a match for the inquiry vid/pid. If this event
3763 	 * occurs the static driver configuration table is searched for
3764 	 * a match.
3765 	 */
3766 	ASSERT(un != NULL);
3767 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3768 		sd_process_sdconf_table(un);
3769 	}
3770 
3771 	/* check for LSI device */
3772 	sd_is_lsi(un);
3773 
3774 
3775 }
3776 
3777 
3778 /*
3779  *    Function: sd_process_sdconf_file
3780  *
3781  * Description: Use ddi_prop_lookup(9F) to obtain the properties from the
3782  *		driver's config file (ie, sd.conf) and update the driver
3783  *		soft state structure accordingly.
3784  *
3785  *   Arguments: un - driver soft state (unit) structure
3786  *
3787  * Return Code: SD_SUCCESS - The properties were successfully set according
3788  *			     to the driver configuration file.
3789  *		SD_FAILURE - The driver config list was not obtained or
3790  *			     there was no vid/pid match. This indicates that
3791  *			     the static config table should be used.
3792  *
3793  * The config file has a property, "sd-config-list". Currently we support
3794  * two kinds of formats. For both formats, the value of this property
3795  * is a list of duplets:
3796  *
3797  *  sd-config-list=
3798  *	<duplet>,
3799  *	[,<duplet>]*;
3800  *
3801  * For the improved format, where
3802  *
3803  *     <duplet>:= "<vid+pid>","<tunable-list>"
3804  *
3805  * and
3806  *
3807  *     <tunable-list>:=   <tunable> [, <tunable> ]*;
3808  *     <tunable> =        <name> : <value>
3809  *
3810  * The <vid+pid> is the string that is returned by the target device on a
3811  * SCSI inquiry command, the <tunable-list> contains one or more tunables
3812  * to apply to all target devices with the specified <vid+pid>.
3813  *
3814  * Each <tunable> is a "<name> : <value>" pair.
3815  *
3816  * For the old format, the structure of each duplet is as follows:
3817  *
3818  *  <duplet>:= "<vid+pid>","<data-property-name_list>"
3819  *
3820  * The first entry of the duplet is the device ID string (the concatenated
3821  * vid & pid; not to be confused with a device_id).  This is defined in
3822  * the same way as in the sd_disk_table.
3823  *
3824  * The second part of the duplet is a string that identifies a
3825  * data-property-name-list. The data-property-name-list is defined as
3826  * follows:
3827  *
3828  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3829  *
3830  * The syntax of <data-property-name> depends on the <version> field.
3831  *
3832  * If version = SD_CONF_VERSION_1 we have the following syntax:
3833  *
3834  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3835  *
3836  * where the prop0 value will be used to set prop0 if bit0 set in the
3837  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3838  *
3839  */
3840 
3841 static int
3842 sd_process_sdconf_file(struct sd_lun *un)
3843 {
3844 	char	**config_list = NULL;
3845 	uint_t	nelements;
3846 	char	*vidptr;
3847 	int	vidlen;
3848 	char	*dnlist_ptr;
3849 	char	*dataname_ptr;
3850 	char	*dataname_lasts;
3851 	int	*data_list = NULL;
3852 	uint_t	data_list_len;
3853 	int	rval = SD_FAILURE;
3854 	int	i;
3855 
3856 	ASSERT(un != NULL);
3857 
3858 	/* Obtain the configuration list associated with the .conf file */
3859 	if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, SD_DEVINFO(un),
3860 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, sd_config_list,
3861 	    &config_list, &nelements) != DDI_PROP_SUCCESS) {
3862 		return (SD_FAILURE);
3863 	}
3864 
3865 	/*
3866 	 * Compare vids in each duplet to the inquiry vid - if a match is
3867 	 * made, get the data value and update the soft state structure
3868 	 * accordingly.
3869 	 *
3870 	 * Each duplet should show as a pair of strings, return SD_FAILURE
3871 	 * otherwise.
3872 	 */
3873 	if (nelements & 1) {
3874 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3875 		    "sd-config-list should show as pairs of strings.\n");
3876 		if (config_list)
3877 			ddi_prop_free(config_list);
3878 		return (SD_FAILURE);
3879 	}
3880 
3881 	for (i = 0; i < nelements; i += 2) {
3882 		/*
3883 		 * Note: The assumption here is that each vid entry is on
3884 		 * a unique line from its associated duplet.
3885 		 */
3886 		vidptr = config_list[i];
3887 		vidlen = (int)strlen(vidptr);
3888 		if ((vidlen == 0) ||
3889 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3890 			continue;
3891 		}
3892 
3893 		/*
3894 		 * dnlist contains 1 or more blank separated
3895 		 * data-property-name entries
3896 		 */
3897 		dnlist_ptr = config_list[i + 1];
3898 
3899 		if (strchr(dnlist_ptr, ':') != NULL) {
3900 			/*
3901 			 * Decode the improved format sd-config-list.
3902 			 */
3903 			sd_nvpair_str_decode(un, dnlist_ptr);
3904 		} else {
3905 			/*
3906 			 * The old format sd-config-list, loop through all
3907 			 * data-property-name entries in the
3908 			 * data-property-name-list
3909 			 * setting the properties for each.
3910 			 */
3911 			for (dataname_ptr = sd_strtok_r(dnlist_ptr, " \t",
3912 			    &dataname_lasts); dataname_ptr != NULL;
3913 			    dataname_ptr = sd_strtok_r(NULL, " \t",
3914 			    &dataname_lasts)) {
3915 				int version;
3916 
3917 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3918 				    "sd_process_sdconf_file: disk:%s, "
3919 				    "data:%s\n", vidptr, dataname_ptr);
3920 
3921 				/* Get the data list */
3922 				if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY,
3923 				    SD_DEVINFO(un), 0, dataname_ptr, &data_list,
3924 				    &data_list_len) != DDI_PROP_SUCCESS) {
3925 					SD_INFO(SD_LOG_ATTACH_DETACH, un,
3926 					    "sd_process_sdconf_file: data "
3927 					    "property (%s) has no value\n",
3928 					    dataname_ptr);
3929 					continue;
3930 				}
3931 
3932 				version = data_list[0];
3933 
3934 				if (version == SD_CONF_VERSION_1) {
3935 					sd_tunables values;
3936 
3937 					/* Set the properties */
3938 					if (sd_chk_vers1_data(un, data_list[1],
3939 					    &data_list[2], data_list_len,
3940 					    dataname_ptr) == SD_SUCCESS) {
3941 						sd_get_tunables_from_conf(un,
3942 						    data_list[1], &data_list[2],
3943 						    &values);
3944 						sd_set_vers1_properties(un,
3945 						    data_list[1], &values);
3946 						rval = SD_SUCCESS;
3947 					} else {
3948 						rval = SD_FAILURE;
3949 					}
3950 				} else {
3951 					scsi_log(SD_DEVINFO(un), sd_label,
3952 					    CE_WARN, "data property %s version "
3953 					    "0x%x is invalid.",
3954 					    dataname_ptr, version);
3955 					rval = SD_FAILURE;
3956 				}
3957 				if (data_list)
3958 					ddi_prop_free(data_list);
3959 			}
3960 		}
3961 	}
3962 
3963 	/* free up the memory allocated by ddi_prop_lookup_string_array(). */
3964 	if (config_list) {
3965 		ddi_prop_free(config_list);
3966 	}
3967 
3968 	return (rval);
3969 }
3970 
3971 /*
3972  *    Function: sd_nvpair_str_decode()
3973  *
3974  * Description: Parse the improved format sd-config-list to get
3975  *    each entry of tunable, which includes a name-value pair.
3976  *    Then call sd_set_properties() to set the property.
3977  *
3978  *   Arguments: un - driver soft state (unit) structure
3979  *    nvpair_str - the tunable list
3980  */
3981 static void
3982 sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str)
3983 {
3984 	char	*nv, *name, *value, *token;
3985 	char	*nv_lasts, *v_lasts, *x_lasts;
3986 
3987 	for (nv = sd_strtok_r(nvpair_str, ",", &nv_lasts); nv != NULL;
3988 	    nv = sd_strtok_r(NULL, ",", &nv_lasts)) {
3989 		token = sd_strtok_r(nv, ":", &v_lasts);
3990 		name  = sd_strtok_r(token, " \t", &x_lasts);
3991 		token = sd_strtok_r(NULL, ":", &v_lasts);
3992 		value = sd_strtok_r(token, " \t", &x_lasts);
3993 		if (name == NULL || value == NULL) {
3994 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3995 			    "sd_nvpair_str_decode: "
3996 			    "name or value is not valid!\n");
3997 		} else {
3998 			sd_set_properties(un, name, value);
3999 		}
4000 	}
4001 }
4002 
4003 /*
4004  *    Function: sd_strtok_r()
4005  *
4006  * Description: This function uses strpbrk and strspn to break
4007  *    string into tokens on sequentially subsequent calls. Return
4008  *    NULL when no non-separator characters remain. The first
4009  *    argument is NULL for subsequent calls.
4010  */
4011 static char *
4012 sd_strtok_r(char *string, const char *sepset, char **lasts)
4013 {
4014 	char	*q, *r;
4015 
4016 	/* First or subsequent call */
4017 	if (string == NULL)
4018 		string = *lasts;
4019 
4020 	if (string == NULL)
4021 		return (NULL);
4022 
4023 	/* Skip leading separators */
4024 	q = string + strspn(string, sepset);
4025 
4026 	if (*q == '\0')
4027 		return (NULL);
4028 
4029 	if ((r = strpbrk(q, sepset)) == NULL)
4030 		*lasts = NULL;
4031 	else {
4032 		*r = '\0';
4033 		*lasts = r + 1;
4034 	}
4035 	return (q);
4036 }
4037 
4038 /*
4039  *    Function: sd_set_properties()
4040  *
4041  * Description: Set device properties based on the improved
4042  *    format sd-config-list.
4043  *
4044  *   Arguments: un - driver soft state (unit) structure
4045  *    name  - supported tunable name
4046  *    value - tunable value
4047  */
4048 static void
4049 sd_set_properties(struct sd_lun *un, char *name, char *value)
4050 {
4051 	char	*endptr = NULL;
4052 	long	val = 0;
4053 
4054 	if (strcasecmp(name, "cache-nonvolatile") == 0) {
4055 		if (strcasecmp(value, "true") == 0) {
4056 			un->un_f_suppress_cache_flush = TRUE;
4057 		} else if (strcasecmp(value, "false") == 0) {
4058 			un->un_f_suppress_cache_flush = FALSE;
4059 		} else {
4060 			goto value_invalid;
4061 		}
4062 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4063 		    "suppress_cache_flush flag set to %d\n",
4064 		    un->un_f_suppress_cache_flush);
4065 		return;
4066 	}
4067 
4068 	if (strcasecmp(name, "controller-type") == 0) {
4069 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4070 			un->un_ctype = val;
4071 		} else {
4072 			goto value_invalid;
4073 		}
4074 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4075 		    "ctype set to %d\n", un->un_ctype);
4076 		return;
4077 	}
4078 
4079 	if (strcasecmp(name, "delay-busy") == 0) {
4080 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4081 			un->un_busy_timeout = drv_usectohz(val / 1000);
4082 		} else {
4083 			goto value_invalid;
4084 		}
4085 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4086 		    "busy_timeout set to %d\n", un->un_busy_timeout);
4087 		return;
4088 	}
4089 
4090 	if (strcasecmp(name, "disksort") == 0) {
4091 		if (strcasecmp(value, "true") == 0) {
4092 			un->un_f_disksort_disabled = FALSE;
4093 		} else if (strcasecmp(value, "false") == 0) {
4094 			un->un_f_disksort_disabled = TRUE;
4095 		} else {
4096 			goto value_invalid;
4097 		}
4098 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4099 		    "disksort disabled flag set to %d\n",
4100 		    un->un_f_disksort_disabled);
4101 		return;
4102 	}
4103 
4104 	if (strcasecmp(name, "power-condition") == 0) {
4105 		if (strcasecmp(value, "true") == 0) {
4106 			un->un_f_power_condition_disabled = FALSE;
4107 		} else if (strcasecmp(value, "false") == 0) {
4108 			un->un_f_power_condition_disabled = TRUE;
4109 		} else {
4110 			goto value_invalid;
4111 		}
4112 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4113 		    "power condition disabled flag set to %d\n",
4114 		    un->un_f_power_condition_disabled);
4115 		return;
4116 	}
4117 
4118 	if (strcasecmp(name, "timeout-releasereservation") == 0) {
4119 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4120 			un->un_reserve_release_time = val;
4121 		} else {
4122 			goto value_invalid;
4123 		}
4124 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4125 		    "reservation release timeout set to %d\n",
4126 		    un->un_reserve_release_time);
4127 		return;
4128 	}
4129 
4130 	if (strcasecmp(name, "reset-lun") == 0) {
4131 		if (strcasecmp(value, "true") == 0) {
4132 			un->un_f_lun_reset_enabled = TRUE;
4133 		} else if (strcasecmp(value, "false") == 0) {
4134 			un->un_f_lun_reset_enabled = FALSE;
4135 		} else {
4136 			goto value_invalid;
4137 		}
4138 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4139 		    "lun reset enabled flag set to %d\n",
4140 		    un->un_f_lun_reset_enabled);
4141 		return;
4142 	}
4143 
4144 	if (strcasecmp(name, "retries-busy") == 0) {
4145 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4146 			un->un_busy_retry_count = val;
4147 		} else {
4148 			goto value_invalid;
4149 		}
4150 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4151 		    "busy retry count set to %d\n", un->un_busy_retry_count);
4152 		return;
4153 	}
4154 
4155 	if (strcasecmp(name, "retries-timeout") == 0) {
4156 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4157 			un->un_retry_count = val;
4158 		} else {
4159 			goto value_invalid;
4160 		}
4161 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4162 		    "timeout retry count set to %d\n", un->un_retry_count);
4163 		return;
4164 	}
4165 
4166 	if (strcasecmp(name, "retries-notready") == 0) {
4167 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4168 			un->un_notready_retry_count = val;
4169 		} else {
4170 			goto value_invalid;
4171 		}
4172 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4173 		    "notready retry count set to %d\n",
4174 		    un->un_notready_retry_count);
4175 		return;
4176 	}
4177 
4178 	if (strcasecmp(name, "retries-reset") == 0) {
4179 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4180 			un->un_reset_retry_count = val;
4181 		} else {
4182 			goto value_invalid;
4183 		}
4184 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4185 		    "reset retry count set to %d\n",
4186 		    un->un_reset_retry_count);
4187 		return;
4188 	}
4189 
4190 	if (strcasecmp(name, "throttle-max") == 0) {
4191 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4192 			un->un_saved_throttle = un->un_throttle = val;
4193 		} else {
4194 			goto value_invalid;
4195 		}
4196 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4197 		    "throttle set to %d\n", un->un_throttle);
4198 	}
4199 
4200 	if (strcasecmp(name, "throttle-min") == 0) {
4201 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4202 			un->un_min_throttle = val;
4203 		} else {
4204 			goto value_invalid;
4205 		}
4206 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4207 		    "min throttle set to %d\n", un->un_min_throttle);
4208 	}
4209 
4210 	if (strcasecmp(name, "rmw-type") == 0) {
4211 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4212 			un->un_f_rmw_type = val;
4213 		} else {
4214 			goto value_invalid;
4215 		}
4216 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4217 		    "RMW type set to %d\n", un->un_f_rmw_type);
4218 	}
4219 
4220 	/*
4221 	 * Validate the throttle values.
4222 	 * If any of the numbers are invalid, set everything to defaults.
4223 	 */
4224 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4225 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4226 	    (un->un_min_throttle > un->un_throttle)) {
4227 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4228 		un->un_min_throttle = sd_min_throttle;
4229 	}
4230 
4231 	if (strcasecmp(name, "mmc-gesn-polling") == 0) {
4232 		if (strcasecmp(value, "true") == 0) {
4233 			un->un_f_mmc_gesn_polling = TRUE;
4234 		} else if (strcasecmp(value, "false") == 0) {
4235 			un->un_f_mmc_gesn_polling = FALSE;
4236 		} else {
4237 			goto value_invalid;
4238 		}
4239 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4240 		    "mmc-gesn-polling set to %d\n",
4241 		    un->un_f_mmc_gesn_polling);
4242 	}
4243 
4244 	return;
4245 
4246 value_invalid:
4247 	SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4248 	    "value of prop %s is invalid\n", name);
4249 }
4250 
4251 /*
4252  *    Function: sd_get_tunables_from_conf()
4253  *
4254  *
4255  *    This function reads the data list from the sd.conf file and pulls
4256  *    the values that can have numeric values as arguments and places
4257  *    the values in the appropriate sd_tunables member.
4258  *    Since the order of the data list members varies across platforms
4259  *    This function reads them from the data list in a platform specific
4260  *    order and places them into the correct sd_tunable member that is
4261  *    consistent across all platforms.
4262  */
4263 static void
4264 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
4265     sd_tunables *values)
4266 {
4267 	int i;
4268 	int mask;
4269 
4270 	bzero(values, sizeof (sd_tunables));
4271 
4272 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4273 
4274 		mask = 1 << i;
4275 		if (mask > flags) {
4276 			break;
4277 		}
4278 
4279 		switch (mask & flags) {
4280 		case 0:	/* This mask bit not set in flags */
4281 			continue;
4282 		case SD_CONF_BSET_THROTTLE:
4283 			values->sdt_throttle = data_list[i];
4284 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4285 			    "sd_get_tunables_from_conf: throttle = %d\n",
4286 			    values->sdt_throttle);
4287 			break;
4288 		case SD_CONF_BSET_CTYPE:
4289 			values->sdt_ctype = data_list[i];
4290 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4291 			    "sd_get_tunables_from_conf: ctype = %d\n",
4292 			    values->sdt_ctype);
4293 			break;
4294 		case SD_CONF_BSET_NRR_COUNT:
4295 			values->sdt_not_rdy_retries = data_list[i];
4296 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4297 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
4298 			    values->sdt_not_rdy_retries);
4299 			break;
4300 		case SD_CONF_BSET_BSY_RETRY_COUNT:
4301 			values->sdt_busy_retries = data_list[i];
4302 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4303 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
4304 			    values->sdt_busy_retries);
4305 			break;
4306 		case SD_CONF_BSET_RST_RETRIES:
4307 			values->sdt_reset_retries = data_list[i];
4308 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4309 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
4310 			    values->sdt_reset_retries);
4311 			break;
4312 		case SD_CONF_BSET_RSV_REL_TIME:
4313 			values->sdt_reserv_rel_time = data_list[i];
4314 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4315 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
4316 			    values->sdt_reserv_rel_time);
4317 			break;
4318 		case SD_CONF_BSET_MIN_THROTTLE:
4319 			values->sdt_min_throttle = data_list[i];
4320 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4321 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
4322 			    values->sdt_min_throttle);
4323 			break;
4324 		case SD_CONF_BSET_DISKSORT_DISABLED:
4325 			values->sdt_disk_sort_dis = data_list[i];
4326 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4327 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
4328 			    values->sdt_disk_sort_dis);
4329 			break;
4330 		case SD_CONF_BSET_LUN_RESET_ENABLED:
4331 			values->sdt_lun_reset_enable = data_list[i];
4332 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4333 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
4334 			    "\n", values->sdt_lun_reset_enable);
4335 			break;
4336 		case SD_CONF_BSET_CACHE_IS_NV:
4337 			values->sdt_suppress_cache_flush = data_list[i];
4338 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4339 			    "sd_get_tunables_from_conf: \
4340 			    suppress_cache_flush = %d"
4341 			    "\n", values->sdt_suppress_cache_flush);
4342 			break;
4343 		case SD_CONF_BSET_PC_DISABLED:
4344 			values->sdt_disk_sort_dis = data_list[i];
4345 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4346 			    "sd_get_tunables_from_conf: power_condition_dis = "
4347 			    "%d\n", values->sdt_power_condition_dis);
4348 			break;
4349 		}
4350 	}
4351 }
4352 
4353 /*
4354  *    Function: sd_process_sdconf_table
4355  *
4356  * Description: Search the static configuration table for a match on the
4357  *		inquiry vid/pid and update the driver soft state structure
4358  *		according to the table property values for the device.
4359  *
4360  *		The form of a configuration table entry is:
4361  *		  <vid+pid>,<flags>,<property-data>
4362  *		  "SEAGATE ST42400N",1,0x40000,
4363  *		  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
4364  *
4365  *   Arguments: un - driver soft state (unit) structure
4366  */
4367 
4368 static void
4369 sd_process_sdconf_table(struct sd_lun *un)
4370 {
4371 	char	*id = NULL;
4372 	int	table_index;
4373 	int	idlen;
4374 
4375 	ASSERT(un != NULL);
4376 	for (table_index = 0; table_index < sd_disk_table_size;
4377 	    table_index++) {
4378 		id = sd_disk_table[table_index].device_id;
4379 		idlen = strlen(id);
4380 		if (idlen == 0) {
4381 			continue;
4382 		}
4383 
4384 		/*
4385 		 * The static configuration table currently does not
4386 		 * implement version 10 properties. Additionally,
4387 		 * multiple data-property-name entries are not
4388 		 * implemented in the static configuration table.
4389 		 */
4390 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4391 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4392 			    "sd_process_sdconf_table: disk %s\n", id);
4393 			sd_set_vers1_properties(un,
4394 			    sd_disk_table[table_index].flags,
4395 			    sd_disk_table[table_index].properties);
4396 			break;
4397 		}
4398 	}
4399 }
4400 
4401 
4402 /*
4403  *    Function: sd_sdconf_id_match
4404  *
4405  * Description: This local function implements a case sensitive vid/pid
4406  *		comparison as well as the boundary cases of wild card and
4407  *		multiple blanks.
4408  *
4409  *		Note: An implicit assumption made here is that the scsi
4410  *		inquiry structure will always keep the vid, pid and
4411  *		revision strings in consecutive sequence, so they can be
4412  *		read as a single string. If this assumption is not the
4413  *		case, a separate string, to be used for the check, needs
4414  *		to be built with these strings concatenated.
4415  *
4416  *   Arguments: un - driver soft state (unit) structure
4417  *		id - table or config file vid/pid
4418  *		idlen  - length of the vid/pid (bytes)
4419  *
4420  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4421  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
4422  */
4423 
4424 static int
4425 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
4426 {
4427 	struct scsi_inquiry	*sd_inq;
4428 	int 			rval = SD_SUCCESS;
4429 
4430 	ASSERT(un != NULL);
4431 	sd_inq = un->un_sd->sd_inq;
4432 	ASSERT(id != NULL);
4433 
4434 	/*
4435 	 * We use the inq_vid as a pointer to a buffer containing the
4436 	 * vid and pid and use the entire vid/pid length of the table
4437 	 * entry for the comparison. This works because the inq_pid
4438 	 * data member follows inq_vid in the scsi_inquiry structure.
4439 	 */
4440 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
4441 		/*
4442 		 * The user id string is compared to the inquiry vid/pid
4443 		 * using a case insensitive comparison and ignoring
4444 		 * multiple spaces.
4445 		 */
4446 		rval = sd_blank_cmp(un, id, idlen);
4447 		if (rval != SD_SUCCESS) {
4448 			/*
4449 			 * User id strings that start and end with a "*"
4450 			 * are a special case. These do not have a
4451 			 * specific vendor, and the product string can
4452 			 * appear anywhere in the 16 byte PID portion of
4453 			 * the inquiry data. This is a simple strstr()
4454 			 * type search for the user id in the inquiry data.
4455 			 */
4456 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
4457 				char	*pidptr = &id[1];
4458 				int	i;
4459 				int	j;
4460 				int	pidstrlen = idlen - 2;
4461 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
4462 				    pidstrlen;
4463 
4464 				if (j < 0) {
4465 					return (SD_FAILURE);
4466 				}
4467 				for (i = 0; i < j; i++) {
4468 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
4469 					    pidptr, pidstrlen) == 0) {
4470 						rval = SD_SUCCESS;
4471 						break;
4472 					}
4473 				}
4474 			}
4475 		}
4476 	}
4477 	return (rval);
4478 }
4479 
4480 
4481 /*
4482  *    Function: sd_blank_cmp
4483  *
4484  * Description: If the id string starts and ends with a space, treat
4485  *		multiple consecutive spaces as equivalent to a single
4486  *		space. For example, this causes a sd_disk_table entry
4487  *		of " NEC CDROM " to match a device's id string of
4488  *		"NEC       CDROM".
4489  *
4490  *		Note: The success exit condition for this routine is if
4491  *		the pointer to the table entry is '\0' and the cnt of
4492  *		the inquiry length is zero. This will happen if the inquiry
4493  *		string returned by the device is padded with spaces to be
4494  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
4495  *		SCSI spec states that the inquiry string is to be padded with
4496  *		spaces.
4497  *
4498  *   Arguments: un - driver soft state (unit) structure
4499  *		id - table or config file vid/pid
4500  *		idlen  - length of the vid/pid (bytes)
4501  *
4502  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4503  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
4504  */
4505 
4506 static int
4507 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
4508 {
4509 	char		*p1;
4510 	char		*p2;
4511 	int		cnt;
4512 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
4513 	    sizeof (SD_INQUIRY(un)->inq_pid);
4514 
4515 	ASSERT(un != NULL);
4516 	p2 = un->un_sd->sd_inq->inq_vid;
4517 	ASSERT(id != NULL);
4518 	p1 = id;
4519 
4520 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
4521 		/*
4522 		 * Note: string p1 is terminated by a NUL but string p2
4523 		 * isn't.  The end of p2 is determined by cnt.
4524 		 */
4525 		for (;;) {
4526 			/* skip over any extra blanks in both strings */
4527 			while ((*p1 != '\0') && (*p1 == ' ')) {
4528 				p1++;
4529 			}
4530 			while ((cnt != 0) && (*p2 == ' ')) {
4531 				p2++;
4532 				cnt--;
4533 			}
4534 
4535 			/* compare the two strings */
4536 			if ((cnt == 0) ||
4537 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
4538 				break;
4539 			}
4540 			while ((cnt > 0) &&
4541 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
4542 				p1++;
4543 				p2++;
4544 				cnt--;
4545 			}
4546 		}
4547 	}
4548 
4549 	/* return SD_SUCCESS if both strings match */
4550 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
4551 }
4552 
4553 
4554 /*
4555  *    Function: sd_chk_vers1_data
4556  *
4557  * Description: Verify the version 1 device properties provided by the
4558  *		user via the configuration file
4559  *
4560  *   Arguments: un	     - driver soft state (unit) structure
4561  *		flags	     - integer mask indicating properties to be set
4562  *		prop_list    - integer list of property values
4563  *		list_len     - number of the elements
4564  *
4565  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
4566  *		SD_FAILURE - Indicates the user provided data is invalid
4567  */
4568 
4569 static int
4570 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
4571     int list_len, char *dataname_ptr)
4572 {
4573 	int i;
4574 	int mask = 1;
4575 	int index = 0;
4576 
4577 	ASSERT(un != NULL);
4578 
4579 	/* Check for a NULL property name and list */
4580 	if (dataname_ptr == NULL) {
4581 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4582 		    "sd_chk_vers1_data: NULL data property name.");
4583 		return (SD_FAILURE);
4584 	}
4585 	if (prop_list == NULL) {
4586 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4587 		    "sd_chk_vers1_data: %s NULL data property list.",
4588 		    dataname_ptr);
4589 		return (SD_FAILURE);
4590 	}
4591 
4592 	/* Display a warning if undefined bits are set in the flags */
4593 	if (flags & ~SD_CONF_BIT_MASK) {
4594 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4595 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
4596 		    "Properties not set.",
4597 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
4598 		return (SD_FAILURE);
4599 	}
4600 
4601 	/*
4602 	 * Verify the length of the list by identifying the highest bit set
4603 	 * in the flags and validating that the property list has a length
4604 	 * up to the index of this bit.
4605 	 */
4606 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4607 		if (flags & mask) {
4608 			index++;
4609 		}
4610 		mask = 1 << i;
4611 	}
4612 	if (list_len < (index + 2)) {
4613 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4614 		    "sd_chk_vers1_data: "
4615 		    "Data property list %s size is incorrect. "
4616 		    "Properties not set.", dataname_ptr);
4617 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
4618 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
4619 		return (SD_FAILURE);
4620 	}
4621 	return (SD_SUCCESS);
4622 }
4623 
4624 
4625 /*
4626  *    Function: sd_set_vers1_properties
4627  *
4628  * Description: Set version 1 device properties based on a property list
4629  *		retrieved from the driver configuration file or static
4630  *		configuration table. Version 1 properties have the format:
4631  *
4632  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
4633  *
4634  *		where the prop0 value will be used to set prop0 if bit0
4635  *		is set in the flags
4636  *
4637  *   Arguments: un	     - driver soft state (unit) structure
4638  *		flags	     - integer mask indicating properties to be set
4639  *		prop_list    - integer list of property values
4640  */
4641 
4642 static void
4643 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
4644 {
4645 	ASSERT(un != NULL);
4646 
4647 	/*
4648 	 * Set the flag to indicate cache is to be disabled. An attempt
4649 	 * to disable the cache via sd_cache_control() will be made
4650 	 * later during attach once the basic initialization is complete.
4651 	 */
4652 	if (flags & SD_CONF_BSET_NOCACHE) {
4653 		un->un_f_opt_disable_cache = TRUE;
4654 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4655 		    "sd_set_vers1_properties: caching disabled flag set\n");
4656 	}
4657 
4658 	/* CD-specific configuration parameters */
4659 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4660 		un->un_f_cfg_playmsf_bcd = TRUE;
4661 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4662 		    "sd_set_vers1_properties: playmsf_bcd set\n");
4663 	}
4664 	if (flags & SD_CONF_BSET_READSUB_BCD) {
4665 		un->un_f_cfg_readsub_bcd = TRUE;
4666 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4667 		    "sd_set_vers1_properties: readsub_bcd set\n");
4668 	}
4669 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4670 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4671 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4672 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4673 	}
4674 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4675 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4676 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4677 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4678 	}
4679 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4680 		un->un_f_cfg_no_read_header = TRUE;
4681 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4682 		    "sd_set_vers1_properties: no_read_header set\n");
4683 	}
4684 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4685 		un->un_f_cfg_read_cd_xd4 = TRUE;
4686 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4687 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4688 	}
4689 
4690 	/* Support for devices which do not have valid/unique serial numbers */
4691 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4692 		un->un_f_opt_fab_devid = TRUE;
4693 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4694 		    "sd_set_vers1_properties: fab_devid bit set\n");
4695 	}
4696 
4697 	/* Support for user throttle configuration */
4698 	if (flags & SD_CONF_BSET_THROTTLE) {
4699 		ASSERT(prop_list != NULL);
4700 		un->un_saved_throttle = un->un_throttle =
4701 		    prop_list->sdt_throttle;
4702 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4703 		    "sd_set_vers1_properties: throttle set to %d\n",
4704 		    prop_list->sdt_throttle);
4705 	}
4706 
4707 	/* Set the per disk retry count according to the conf file or table. */
4708 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4709 		ASSERT(prop_list != NULL);
4710 		if (prop_list->sdt_not_rdy_retries) {
4711 			un->un_notready_retry_count =
4712 			    prop_list->sdt_not_rdy_retries;
4713 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4714 			    "sd_set_vers1_properties: not ready retry count"
4715 			    " set to %d\n", un->un_notready_retry_count);
4716 		}
4717 	}
4718 
4719 	/* The controller type is reported for generic disk driver ioctls */
4720 	if (flags & SD_CONF_BSET_CTYPE) {
4721 		ASSERT(prop_list != NULL);
4722 		switch (prop_list->sdt_ctype) {
4723 		case CTYPE_CDROM:
4724 			un->un_ctype = prop_list->sdt_ctype;
4725 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4726 			    "sd_set_vers1_properties: ctype set to "
4727 			    "CTYPE_CDROM\n");
4728 			break;
4729 		case CTYPE_CCS:
4730 			un->un_ctype = prop_list->sdt_ctype;
4731 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4732 			    "sd_set_vers1_properties: ctype set to "
4733 			    "CTYPE_CCS\n");
4734 			break;
4735 		case CTYPE_ROD:		/* RW optical */
4736 			un->un_ctype = prop_list->sdt_ctype;
4737 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4738 			    "sd_set_vers1_properties: ctype set to "
4739 			    "CTYPE_ROD\n");
4740 			break;
4741 		default:
4742 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4743 			    "sd_set_vers1_properties: Could not set "
4744 			    "invalid ctype value (%d)",
4745 			    prop_list->sdt_ctype);
4746 		}
4747 	}
4748 
4749 	/* Purple failover timeout */
4750 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4751 		ASSERT(prop_list != NULL);
4752 		un->un_busy_retry_count =
4753 		    prop_list->sdt_busy_retries;
4754 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4755 		    "sd_set_vers1_properties: "
4756 		    "busy retry count set to %d\n",
4757 		    un->un_busy_retry_count);
4758 	}
4759 
4760 	/* Purple reset retry count */
4761 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4762 		ASSERT(prop_list != NULL);
4763 		un->un_reset_retry_count =
4764 		    prop_list->sdt_reset_retries;
4765 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4766 		    "sd_set_vers1_properties: "
4767 		    "reset retry count set to %d\n",
4768 		    un->un_reset_retry_count);
4769 	}
4770 
4771 	/* Purple reservation release timeout */
4772 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4773 		ASSERT(prop_list != NULL);
4774 		un->un_reserve_release_time =
4775 		    prop_list->sdt_reserv_rel_time;
4776 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4777 		    "sd_set_vers1_properties: "
4778 		    "reservation release timeout set to %d\n",
4779 		    un->un_reserve_release_time);
4780 	}
4781 
4782 	/*
4783 	 * Driver flag telling the driver to verify that no commands are pending
4784 	 * for a device before issuing a Test Unit Ready. This is a workaround
4785 	 * for a firmware bug in some Seagate eliteI drives.
4786 	 */
4787 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4788 		un->un_f_cfg_tur_check = TRUE;
4789 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4790 		    "sd_set_vers1_properties: tur queue check set\n");
4791 	}
4792 
4793 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4794 		un->un_min_throttle = prop_list->sdt_min_throttle;
4795 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4796 		    "sd_set_vers1_properties: min throttle set to %d\n",
4797 		    un->un_min_throttle);
4798 	}
4799 
4800 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4801 		un->un_f_disksort_disabled =
4802 		    (prop_list->sdt_disk_sort_dis != 0) ?
4803 		    TRUE : FALSE;
4804 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4805 		    "sd_set_vers1_properties: disksort disabled "
4806 		    "flag set to %d\n",
4807 		    prop_list->sdt_disk_sort_dis);
4808 	}
4809 
4810 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4811 		un->un_f_lun_reset_enabled =
4812 		    (prop_list->sdt_lun_reset_enable != 0) ?
4813 		    TRUE : FALSE;
4814 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4815 		    "sd_set_vers1_properties: lun reset enabled "
4816 		    "flag set to %d\n",
4817 		    prop_list->sdt_lun_reset_enable);
4818 	}
4819 
4820 	if (flags & SD_CONF_BSET_CACHE_IS_NV) {
4821 		un->un_f_suppress_cache_flush =
4822 		    (prop_list->sdt_suppress_cache_flush != 0) ?
4823 		    TRUE : FALSE;
4824 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4825 		    "sd_set_vers1_properties: suppress_cache_flush "
4826 		    "flag set to %d\n",
4827 		    prop_list->sdt_suppress_cache_flush);
4828 	}
4829 
4830 	if (flags & SD_CONF_BSET_PC_DISABLED) {
4831 		un->un_f_power_condition_disabled =
4832 		    (prop_list->sdt_power_condition_dis != 0) ?
4833 		    TRUE : FALSE;
4834 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4835 		    "sd_set_vers1_properties: power_condition_disabled "
4836 		    "flag set to %d\n",
4837 		    prop_list->sdt_power_condition_dis);
4838 	}
4839 
4840 	/*
4841 	 * Validate the throttle values.
4842 	 * If any of the numbers are invalid, set everything to defaults.
4843 	 */
4844 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4845 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4846 	    (un->un_min_throttle > un->un_throttle)) {
4847 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4848 		un->un_min_throttle = sd_min_throttle;
4849 	}
4850 }
4851 
4852 /*
4853  *   Function: sd_is_lsi()
4854  *
4855  *   Description: Check for lsi devices, step through the static device
4856  *	table to match vid/pid.
4857  *
4858  *   Args: un - ptr to sd_lun
4859  *
4860  *   Notes:  When creating new LSI property, need to add the new LSI property
4861  *		to this function.
4862  */
4863 static void
4864 sd_is_lsi(struct sd_lun *un)
4865 {
4866 	char	*id = NULL;
4867 	int	table_index;
4868 	int	idlen;
4869 	void	*prop;
4870 
4871 	ASSERT(un != NULL);
4872 	for (table_index = 0; table_index < sd_disk_table_size;
4873 	    table_index++) {
4874 		id = sd_disk_table[table_index].device_id;
4875 		idlen = strlen(id);
4876 		if (idlen == 0) {
4877 			continue;
4878 		}
4879 
4880 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4881 			prop = sd_disk_table[table_index].properties;
4882 			if (prop == &lsi_properties ||
4883 			    prop == &lsi_oem_properties ||
4884 			    prop == &lsi_properties_scsi ||
4885 			    prop == &symbios_properties) {
4886 				un->un_f_cfg_is_lsi = TRUE;
4887 			}
4888 			break;
4889 		}
4890 	}
4891 }
4892 
4893 /*
4894  *    Function: sd_get_physical_geometry
4895  *
4896  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4897  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4898  *		target, and use this information to initialize the physical
4899  *		geometry cache specified by pgeom_p.
4900  *
4901  *		MODE SENSE is an optional command, so failure in this case
4902  *		does not necessarily denote an error. We want to use the
4903  *		MODE SENSE commands to derive the physical geometry of the
4904  *		device, but if either command fails, the logical geometry is
4905  *		used as the fallback for disk label geometry in cmlb.
4906  *
4907  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4908  *		have already been initialized for the current target and
4909  *		that the current values be passed as args so that we don't
4910  *		end up ever trying to use -1 as a valid value. This could
4911  *		happen if either value is reset while we're not holding
4912  *		the mutex.
4913  *
4914  *   Arguments: un - driver soft state (unit) structure
4915  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4916  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4917  *			to use the USCSI "direct" chain and bypass the normal
4918  *			command waitq.
4919  *
4920  *     Context: Kernel thread only (can sleep).
4921  */
4922 
4923 static int
4924 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p,
4925 	diskaddr_t capacity, int lbasize, int path_flag)
4926 {
4927 	struct	mode_format	*page3p;
4928 	struct	mode_geometry	*page4p;
4929 	struct	mode_header	*headerp;
4930 	int	sector_size;
4931 	int	nsect;
4932 	int	nhead;
4933 	int	ncyl;
4934 	int	intrlv;
4935 	int	spc;
4936 	diskaddr_t	modesense_capacity;
4937 	int	rpm;
4938 	int	bd_len;
4939 	int	mode_header_length;
4940 	uchar_t	*p3bufp;
4941 	uchar_t	*p4bufp;
4942 	int	cdbsize;
4943 	int 	ret = EIO;
4944 	sd_ssc_t *ssc;
4945 	int	status;
4946 
4947 	ASSERT(un != NULL);
4948 
4949 	if (lbasize == 0) {
4950 		if (ISCD(un)) {
4951 			lbasize = 2048;
4952 		} else {
4953 			lbasize = un->un_sys_blocksize;
4954 		}
4955 	}
4956 	pgeom_p->g_secsize = (unsigned short)lbasize;
4957 
4958 	/*
4959 	 * If the unit is a cd/dvd drive MODE SENSE page three
4960 	 * and MODE SENSE page four are reserved (see SBC spec
4961 	 * and MMC spec). To prevent soft errors just return
4962 	 * using the default LBA size.
4963 	 */
4964 	if (ISCD(un))
4965 		return (ret);
4966 
4967 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4968 
4969 	/*
4970 	 * Retrieve MODE SENSE page 3 - Format Device Page
4971 	 */
4972 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4973 	ssc = sd_ssc_init(un);
4974 	status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p3bufp,
4975 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag);
4976 	if (status != 0) {
4977 		SD_ERROR(SD_LOG_COMMON, un,
4978 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4979 		goto page3_exit;
4980 	}
4981 
4982 	/*
4983 	 * Determine size of Block Descriptors in order to locate the mode
4984 	 * page data.  ATAPI devices return 0, SCSI devices should return
4985 	 * MODE_BLK_DESC_LENGTH.
4986 	 */
4987 	headerp = (struct mode_header *)p3bufp;
4988 	if (un->un_f_cfg_is_atapi == TRUE) {
4989 		struct mode_header_grp2 *mhp =
4990 		    (struct mode_header_grp2 *)headerp;
4991 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4992 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4993 	} else {
4994 		mode_header_length = MODE_HEADER_LENGTH;
4995 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4996 	}
4997 
4998 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4999 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5000 		    "sd_get_physical_geometry: received unexpected bd_len "
5001 		    "of %d, page3\n", bd_len);
5002 		status = EIO;
5003 		goto page3_exit;
5004 	}
5005 
5006 	page3p = (struct mode_format *)
5007 	    ((caddr_t)headerp + mode_header_length + bd_len);
5008 
5009 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
5010 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5011 		    "sd_get_physical_geometry: mode sense pg3 code mismatch "
5012 		    "%d\n", page3p->mode_page.code);
5013 		status = EIO;
5014 		goto page3_exit;
5015 	}
5016 
5017 	/*
5018 	 * Use this physical geometry data only if BOTH MODE SENSE commands
5019 	 * complete successfully; otherwise, revert to the logical geometry.
5020 	 * So, we need to save everything in temporary variables.
5021 	 */
5022 	sector_size = BE_16(page3p->data_bytes_sect);
5023 
5024 	/*
5025 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
5026 	 */
5027 	if (sector_size == 0) {
5028 		sector_size = un->un_sys_blocksize;
5029 	} else {
5030 		sector_size &= ~(un->un_sys_blocksize - 1);
5031 	}
5032 
5033 	nsect  = BE_16(page3p->sect_track);
5034 	intrlv = BE_16(page3p->interleave);
5035 
5036 	SD_INFO(SD_LOG_COMMON, un,
5037 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
5038 	SD_INFO(SD_LOG_COMMON, un,
5039 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
5040 	    page3p->mode_page.code, nsect, sector_size);
5041 	SD_INFO(SD_LOG_COMMON, un,
5042 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
5043 	    BE_16(page3p->track_skew),
5044 	    BE_16(page3p->cylinder_skew));
5045 
5046 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
5047 
5048 	/*
5049 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
5050 	 */
5051 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
5052 	status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p4bufp,
5053 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag);
5054 	if (status != 0) {
5055 		SD_ERROR(SD_LOG_COMMON, un,
5056 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
5057 		goto page4_exit;
5058 	}
5059 
5060 	/*
5061 	 * Determine size of Block Descriptors in order to locate the mode
5062 	 * page data.  ATAPI devices return 0, SCSI devices should return
5063 	 * MODE_BLK_DESC_LENGTH.
5064 	 */
5065 	headerp = (struct mode_header *)p4bufp;
5066 	if (un->un_f_cfg_is_atapi == TRUE) {
5067 		struct mode_header_grp2 *mhp =
5068 		    (struct mode_header_grp2 *)headerp;
5069 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
5070 	} else {
5071 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
5072 	}
5073 
5074 	if (bd_len > MODE_BLK_DESC_LENGTH) {
5075 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5076 		    "sd_get_physical_geometry: received unexpected bd_len of "
5077 		    "%d, page4\n", bd_len);
5078 		status = EIO;
5079 		goto page4_exit;
5080 	}
5081 
5082 	page4p = (struct mode_geometry *)
5083 	    ((caddr_t)headerp + mode_header_length + bd_len);
5084 
5085 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
5086 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5087 		    "sd_get_physical_geometry: mode sense pg4 code mismatch "
5088 		    "%d\n", page4p->mode_page.code);
5089 		status = EIO;
5090 		goto page4_exit;
5091 	}
5092 
5093 	/*
5094 	 * Stash the data now, after we know that both commands completed.
5095 	 */
5096 
5097 
5098 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
5099 	spc   = nhead * nsect;
5100 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
5101 	rpm   = BE_16(page4p->rpm);
5102 
5103 	modesense_capacity = spc * ncyl;
5104 
5105 	SD_INFO(SD_LOG_COMMON, un,
5106 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
5107 	SD_INFO(SD_LOG_COMMON, un,
5108 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
5109 	SD_INFO(SD_LOG_COMMON, un,
5110 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
5111 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
5112 	    (void *)pgeom_p, capacity);
5113 
5114 	/*
5115 	 * Compensate if the drive's geometry is not rectangular, i.e.,
5116 	 * the product of C * H * S returned by MODE SENSE >= that returned
5117 	 * by read capacity. This is an idiosyncrasy of the original x86
5118 	 * disk subsystem.
5119 	 */
5120 	if (modesense_capacity >= capacity) {
5121 		SD_INFO(SD_LOG_COMMON, un,
5122 		    "sd_get_physical_geometry: adjusting acyl; "
5123 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
5124 		    (modesense_capacity - capacity + spc - 1) / spc);
5125 		if (sector_size != 0) {
5126 			/* 1243403: NEC D38x7 drives don't support sec size */
5127 			pgeom_p->g_secsize = (unsigned short)sector_size;
5128 		}
5129 		pgeom_p->g_nsect    = (unsigned short)nsect;
5130 		pgeom_p->g_nhead    = (unsigned short)nhead;
5131 		pgeom_p->g_capacity = capacity;
5132 		pgeom_p->g_acyl	    =
5133 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
5134 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
5135 	}
5136 
5137 	pgeom_p->g_rpm    = (unsigned short)rpm;
5138 	pgeom_p->g_intrlv = (unsigned short)intrlv;
5139 	ret = 0;
5140 
5141 	SD_INFO(SD_LOG_COMMON, un,
5142 	    "sd_get_physical_geometry: mode sense geometry:\n");
5143 	SD_INFO(SD_LOG_COMMON, un,
5144 	    "   nsect: %d; sector size: %d; interlv: %d\n",
5145 	    nsect, sector_size, intrlv);
5146 	SD_INFO(SD_LOG_COMMON, un,
5147 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
5148 	    nhead, ncyl, rpm, modesense_capacity);
5149 	SD_INFO(SD_LOG_COMMON, un,
5150 	    "sd_get_physical_geometry: (cached)\n");
5151 	SD_INFO(SD_LOG_COMMON, un,
5152 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5153 	    pgeom_p->g_ncyl,  pgeom_p->g_acyl,
5154 	    pgeom_p->g_nhead, pgeom_p->g_nsect);
5155 	SD_INFO(SD_LOG_COMMON, un,
5156 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
5157 	    pgeom_p->g_secsize, pgeom_p->g_capacity,
5158 	    pgeom_p->g_intrlv, pgeom_p->g_rpm);
5159 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
5160 
5161 page4_exit:
5162 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
5163 
5164 page3_exit:
5165 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
5166 
5167 	if (status != 0) {
5168 		if (status == EIO) {
5169 			/*
5170 			 * Some disks do not support mode sense(6), we
5171 			 * should ignore this kind of error(sense key is
5172 			 * 0x5 - illegal request).
5173 			 */
5174 			uint8_t *sensep;
5175 			int senlen;
5176 
5177 			sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
5178 			senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
5179 			    ssc->ssc_uscsi_cmd->uscsi_rqresid);
5180 
5181 			if (senlen > 0 &&
5182 			    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
5183 				sd_ssc_assessment(ssc,
5184 				    SD_FMT_IGNORE_COMPROMISE);
5185 			} else {
5186 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
5187 			}
5188 		} else {
5189 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5190 		}
5191 	}
5192 	sd_ssc_fini(ssc);
5193 	return (ret);
5194 }
5195 
5196 /*
5197  *    Function: sd_get_virtual_geometry
5198  *
5199  * Description: Ask the controller to tell us about the target device.
5200  *
5201  *   Arguments: un - pointer to softstate
5202  *		capacity - disk capacity in #blocks
5203  *		lbasize - disk block size in bytes
5204  *
5205  *     Context: Kernel thread only
5206  */
5207 
5208 static int
5209 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p,
5210     diskaddr_t capacity, int lbasize)
5211 {
5212 	uint_t	geombuf;
5213 	int	spc;
5214 
5215 	ASSERT(un != NULL);
5216 
5217 	/* Set sector size, and total number of sectors */
5218 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
5219 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
5220 
5221 	/* Let the HBA tell us its geometry */
5222 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
5223 
5224 	/* A value of -1 indicates an undefined "geometry" property */
5225 	if (geombuf == (-1)) {
5226 		return (EINVAL);
5227 	}
5228 
5229 	/* Initialize the logical geometry cache. */
5230 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
5231 	lgeom_p->g_nsect   = geombuf & 0xffff;
5232 	lgeom_p->g_secsize = un->un_sys_blocksize;
5233 
5234 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
5235 
5236 	/*
5237 	 * Note: The driver originally converted the capacity value from
5238 	 * target blocks to system blocks. However, the capacity value passed
5239 	 * to this routine is already in terms of system blocks (this scaling
5240 	 * is done when the READ CAPACITY command is issued and processed).
5241 	 * This 'error' may have gone undetected because the usage of g_ncyl
5242 	 * (which is based upon g_capacity) is very limited within the driver
5243 	 */
5244 	lgeom_p->g_capacity = capacity;
5245 
5246 	/*
5247 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
5248 	 * hba may return zero values if the device has been removed.
5249 	 */
5250 	if (spc == 0) {
5251 		lgeom_p->g_ncyl = 0;
5252 	} else {
5253 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
5254 	}
5255 	lgeom_p->g_acyl = 0;
5256 
5257 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
5258 	return (0);
5259 
5260 }
5261 /*
5262  *    Function: sd_update_block_info
5263  *
5264  * Description: Calculate a byte count to sector count bitshift value
5265  *		from sector size.
5266  *
5267  *   Arguments: un: unit struct.
5268  *		lbasize: new target sector size
5269  *		capacity: new target capacity, ie. block count
5270  *
5271  *     Context: Kernel thread context
5272  */
5273 
5274 static void
5275 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
5276 {
5277 	if (lbasize != 0) {
5278 		un->un_tgt_blocksize = lbasize;
5279 		un->un_f_tgt_blocksize_is_valid = TRUE;
5280 		if (!un->un_f_has_removable_media) {
5281 			un->un_sys_blocksize = lbasize;
5282 		}
5283 	}
5284 
5285 	if (capacity != 0) {
5286 		un->un_blockcount		= capacity;
5287 		un->un_f_blockcount_is_valid	= TRUE;
5288 	}
5289 }
5290 
5291 
5292 /*
5293  *    Function: sd_register_devid
5294  *
5295  * Description: This routine will obtain the device id information from the
5296  *		target, obtain the serial number, and register the device
5297  *		id with the ddi framework.
5298  *
5299  *   Arguments: devi - the system's dev_info_t for the device.
5300  *		un - driver soft state (unit) structure
5301  *		reservation_flag - indicates if a reservation conflict
5302  *		occurred during attach
5303  *
5304  *     Context: Kernel Thread
5305  */
5306 static void
5307 sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi, int reservation_flag)
5308 {
5309 	int		rval		= 0;
5310 	uchar_t		*inq80		= NULL;
5311 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
5312 	size_t		inq80_resid	= 0;
5313 	uchar_t		*inq83		= NULL;
5314 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
5315 	size_t		inq83_resid	= 0;
5316 	int		dlen, len;
5317 	char		*sn;
5318 	struct sd_lun	*un;
5319 
5320 	ASSERT(ssc != NULL);
5321 	un = ssc->ssc_un;
5322 	ASSERT(un != NULL);
5323 	ASSERT(mutex_owned(SD_MUTEX(un)));
5324 	ASSERT((SD_DEVINFO(un)) == devi);
5325 
5326 
5327 	/*
5328 	 * We check the availability of the World Wide Name (0x83) and Unit
5329 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
5330 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
5331 	 * 0x83 is available, that is the best choice.  Our next choice is
5332 	 * 0x80.  If neither are available, we munge the devid from the device
5333 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
5334 	 * to fabricate a devid for non-Sun qualified disks.
5335 	 */
5336 	if (sd_check_vpd_page_support(ssc) == 0) {
5337 		/* collect page 80 data if available */
5338 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
5339 
5340 			mutex_exit(SD_MUTEX(un));
5341 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
5342 
5343 			rval = sd_send_scsi_INQUIRY(ssc, inq80, inq80_len,
5344 			    0x01, 0x80, &inq80_resid);
5345 
5346 			if (rval != 0) {
5347 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5348 				kmem_free(inq80, inq80_len);
5349 				inq80 = NULL;
5350 				inq80_len = 0;
5351 			} else if (ddi_prop_exists(
5352 			    DDI_DEV_T_NONE, SD_DEVINFO(un),
5353 			    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
5354 			    INQUIRY_SERIAL_NO) == 0) {
5355 				/*
5356 				 * If we don't already have a serial number
5357 				 * property, do quick verify of data returned
5358 				 * and define property.
5359 				 */
5360 				dlen = inq80_len - inq80_resid;
5361 				len = (size_t)inq80[3];
5362 				if ((dlen >= 4) && ((len + 4) <= dlen)) {
5363 					/*
5364 					 * Ensure sn termination, skip leading
5365 					 * blanks, and create property
5366 					 * 'inquiry-serial-no'.
5367 					 */
5368 					sn = (char *)&inq80[4];
5369 					sn[len] = 0;
5370 					while (*sn && (*sn == ' '))
5371 						sn++;
5372 					if (*sn) {
5373 						(void) ddi_prop_update_string(
5374 						    DDI_DEV_T_NONE,
5375 						    SD_DEVINFO(un),
5376 						    INQUIRY_SERIAL_NO, sn);
5377 					}
5378 				}
5379 			}
5380 			mutex_enter(SD_MUTEX(un));
5381 		}
5382 
5383 		/* collect page 83 data if available */
5384 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
5385 			mutex_exit(SD_MUTEX(un));
5386 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
5387 
5388 			rval = sd_send_scsi_INQUIRY(ssc, inq83, inq83_len,
5389 			    0x01, 0x83, &inq83_resid);
5390 
5391 			if (rval != 0) {
5392 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5393 				kmem_free(inq83, inq83_len);
5394 				inq83 = NULL;
5395 				inq83_len = 0;
5396 			}
5397 			mutex_enter(SD_MUTEX(un));
5398 		}
5399 	}
5400 
5401 	/*
5402 	 * If transport has already registered a devid for this target
5403 	 * then that takes precedence over the driver's determination
5404 	 * of the devid.
5405 	 *
5406 	 * NOTE: The reason this check is done here instead of at the beginning
5407 	 * of the function is to allow the code above to create the
5408 	 * 'inquiry-serial-no' property.
5409 	 */
5410 	if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) {
5411 		ASSERT(un->un_devid);
5412 		un->un_f_devid_transport_defined = TRUE;
5413 		goto cleanup; /* use devid registered by the transport */
5414 	}
5415 
5416 	/*
5417 	 * This is the case of antiquated Sun disk drives that have the
5418 	 * FAB_DEVID property set in the disk_table.  These drives
5419 	 * manage the devid's by storing them in last 2 available sectors
5420 	 * on the drive and have them fabricated by the ddi layer by calling
5421 	 * ddi_devid_init and passing the DEVID_FAB flag.
5422 	 */
5423 	if (un->un_f_opt_fab_devid == TRUE) {
5424 		/*
5425 		 * Depending on EINVAL isn't reliable, since a reserved disk
5426 		 * may result in invalid geometry, so check to make sure a
5427 		 * reservation conflict did not occur during attach.
5428 		 */
5429 		if ((sd_get_devid(ssc) == EINVAL) &&
5430 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
5431 			/*
5432 			 * The devid is invalid AND there is no reservation
5433 			 * conflict.  Fabricate a new devid.
5434 			 */
5435 			(void) sd_create_devid(ssc);
5436 		}
5437 
5438 		/* Register the devid if it exists */
5439 		if (un->un_devid != NULL) {
5440 			(void) ddi_devid_register(SD_DEVINFO(un),
5441 			    un->un_devid);
5442 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5443 			    "sd_register_devid: Devid Fabricated\n");
5444 		}
5445 		goto cleanup;
5446 	}
5447 
5448 	/* encode best devid possible based on data available */
5449 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
5450 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
5451 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
5452 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
5453 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
5454 
5455 		/* devid successfully encoded, register devid */
5456 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
5457 
5458 	} else {
5459 		/*
5460 		 * Unable to encode a devid based on data available.
5461 		 * This is not a Sun qualified disk.  Older Sun disk
5462 		 * drives that have the SD_FAB_DEVID property
5463 		 * set in the disk_table and non Sun qualified
5464 		 * disks are treated in the same manner.  These
5465 		 * drives manage the devid's by storing them in
5466 		 * last 2 available sectors on the drive and
5467 		 * have them fabricated by the ddi layer by
5468 		 * calling ddi_devid_init and passing the
5469 		 * DEVID_FAB flag.
5470 		 * Create a fabricate devid only if there's no
5471 		 * fabricate devid existed.
5472 		 */
5473 		if (sd_get_devid(ssc) == EINVAL) {
5474 			(void) sd_create_devid(ssc);
5475 		}
5476 		un->un_f_opt_fab_devid = TRUE;
5477 
5478 		/* Register the devid if it exists */
5479 		if (un->un_devid != NULL) {
5480 			(void) ddi_devid_register(SD_DEVINFO(un),
5481 			    un->un_devid);
5482 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5483 			    "sd_register_devid: devid fabricated using "
5484 			    "ddi framework\n");
5485 		}
5486 	}
5487 
5488 cleanup:
5489 	/* clean up resources */
5490 	if (inq80 != NULL) {
5491 		kmem_free(inq80, inq80_len);
5492 	}
5493 	if (inq83 != NULL) {
5494 		kmem_free(inq83, inq83_len);
5495 	}
5496 }
5497 
5498 
5499 
5500 /*
5501  *    Function: sd_get_devid
5502  *
5503  * Description: This routine will return 0 if a valid device id has been
5504  *		obtained from the target and stored in the soft state. If a
5505  *		valid device id has not been previously read and stored, a
5506  *		read attempt will be made.
5507  *
5508  *   Arguments: un - driver soft state (unit) structure
5509  *
5510  * Return Code: 0 if we successfully get the device id
5511  *
5512  *     Context: Kernel Thread
5513  */
5514 
5515 static int
5516 sd_get_devid(sd_ssc_t *ssc)
5517 {
5518 	struct dk_devid		*dkdevid;
5519 	ddi_devid_t		tmpid;
5520 	uint_t			*ip;
5521 	size_t			sz;
5522 	diskaddr_t		blk;
5523 	int			status;
5524 	int			chksum;
5525 	int			i;
5526 	size_t			buffer_size;
5527 	struct sd_lun		*un;
5528 
5529 	ASSERT(ssc != NULL);
5530 	un = ssc->ssc_un;
5531 	ASSERT(un != NULL);
5532 	ASSERT(mutex_owned(SD_MUTEX(un)));
5533 
5534 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
5535 	    un);
5536 
5537 	if (un->un_devid != NULL) {
5538 		return (0);
5539 	}
5540 
5541 	mutex_exit(SD_MUTEX(un));
5542 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5543 	    (void *)SD_PATH_DIRECT) != 0) {
5544 		mutex_enter(SD_MUTEX(un));
5545 		return (EINVAL);
5546 	}
5547 
5548 	/*
5549 	 * Read and verify device id, stored in the reserved cylinders at the
5550 	 * end of the disk. Backup label is on the odd sectors of the last
5551 	 * track of the last cylinder. Device id will be on track of the next
5552 	 * to last cylinder.
5553 	 */
5554 	mutex_enter(SD_MUTEX(un));
5555 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
5556 	mutex_exit(SD_MUTEX(un));
5557 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
5558 	status = sd_send_scsi_READ(ssc, dkdevid, buffer_size, blk,
5559 	    SD_PATH_DIRECT);
5560 
5561 	if (status != 0) {
5562 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5563 		goto error;
5564 	}
5565 
5566 	/* Validate the revision */
5567 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
5568 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
5569 		status = EINVAL;
5570 		goto error;
5571 	}
5572 
5573 	/* Calculate the checksum */
5574 	chksum = 0;
5575 	ip = (uint_t *)dkdevid;
5576 	for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int));
5577 	    i++) {
5578 		chksum ^= ip[i];
5579 	}
5580 
5581 	/* Compare the checksums */
5582 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
5583 		status = EINVAL;
5584 		goto error;
5585 	}
5586 
5587 	/* Validate the device id */
5588 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
5589 		status = EINVAL;
5590 		goto error;
5591 	}
5592 
5593 	/*
5594 	 * Store the device id in the driver soft state
5595 	 */
5596 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
5597 	tmpid = kmem_alloc(sz, KM_SLEEP);
5598 
5599 	mutex_enter(SD_MUTEX(un));
5600 
5601 	un->un_devid = tmpid;
5602 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
5603 
5604 	kmem_free(dkdevid, buffer_size);
5605 
5606 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
5607 
5608 	return (status);
5609 error:
5610 	mutex_enter(SD_MUTEX(un));
5611 	kmem_free(dkdevid, buffer_size);
5612 	return (status);
5613 }
5614 
5615 
5616 /*
5617  *    Function: sd_create_devid
5618  *
5619  * Description: This routine will fabricate the device id and write it
5620  *		to the disk.
5621  *
5622  *   Arguments: un - driver soft state (unit) structure
5623  *
5624  * Return Code: value of the fabricated device id
5625  *
5626  *     Context: Kernel Thread
5627  */
5628 
5629 static ddi_devid_t
5630 sd_create_devid(sd_ssc_t *ssc)
5631 {
5632 	struct sd_lun	*un;
5633 
5634 	ASSERT(ssc != NULL);
5635 	un = ssc->ssc_un;
5636 	ASSERT(un != NULL);
5637 
5638 	/* Fabricate the devid */
5639 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
5640 	    == DDI_FAILURE) {
5641 		return (NULL);
5642 	}
5643 
5644 	/* Write the devid to disk */
5645 	if (sd_write_deviceid(ssc) != 0) {
5646 		ddi_devid_free(un->un_devid);
5647 		un->un_devid = NULL;
5648 	}
5649 
5650 	return (un->un_devid);
5651 }
5652 
5653 
5654 /*
5655  *    Function: sd_write_deviceid
5656  *
5657  * Description: This routine will write the device id to the disk
5658  *		reserved sector.
5659  *
5660  *   Arguments: un - driver soft state (unit) structure
5661  *
5662  * Return Code: EINVAL
5663  *		value returned by sd_send_scsi_cmd
5664  *
5665  *     Context: Kernel Thread
5666  */
5667 
5668 static int
5669 sd_write_deviceid(sd_ssc_t *ssc)
5670 {
5671 	struct dk_devid		*dkdevid;
5672 	uchar_t			*buf;
5673 	diskaddr_t		blk;
5674 	uint_t			*ip, chksum;
5675 	int			status;
5676 	int			i;
5677 	struct sd_lun		*un;
5678 
5679 	ASSERT(ssc != NULL);
5680 	un = ssc->ssc_un;
5681 	ASSERT(un != NULL);
5682 	ASSERT(mutex_owned(SD_MUTEX(un)));
5683 
5684 	mutex_exit(SD_MUTEX(un));
5685 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5686 	    (void *)SD_PATH_DIRECT) != 0) {
5687 		mutex_enter(SD_MUTEX(un));
5688 		return (-1);
5689 	}
5690 
5691 
5692 	/* Allocate the buffer */
5693 	buf = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
5694 	dkdevid = (struct dk_devid *)buf;
5695 
5696 	/* Fill in the revision */
5697 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
5698 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
5699 
5700 	/* Copy in the device id */
5701 	mutex_enter(SD_MUTEX(un));
5702 	bcopy(un->un_devid, &dkdevid->dkd_devid,
5703 	    ddi_devid_sizeof(un->un_devid));
5704 	mutex_exit(SD_MUTEX(un));
5705 
5706 	/* Calculate the checksum */
5707 	chksum = 0;
5708 	ip = (uint_t *)dkdevid;
5709 	for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int));
5710 	    i++) {
5711 		chksum ^= ip[i];
5712 	}
5713 
5714 	/* Fill-in checksum */
5715 	DKD_FORMCHKSUM(chksum, dkdevid);
5716 
5717 	/* Write the reserved sector */
5718 	status = sd_send_scsi_WRITE(ssc, buf, un->un_sys_blocksize, blk,
5719 	    SD_PATH_DIRECT);
5720 	if (status != 0)
5721 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5722 
5723 	kmem_free(buf, un->un_sys_blocksize);
5724 
5725 	mutex_enter(SD_MUTEX(un));
5726 	return (status);
5727 }
5728 
5729 
5730 /*
5731  *    Function: sd_check_vpd_page_support
5732  *
5733  * Description: This routine sends an inquiry command with the EVPD bit set and
5734  *		a page code of 0x00 to the device. It is used to determine which
5735  *		vital product pages are available to find the devid. We are
5736  *		looking for pages 0x83 0x80 or 0xB1.  If we return a negative 1,
5737  *		the device does not support that command.
5738  *
5739  *   Arguments: un  - driver soft state (unit) structure
5740  *
5741  * Return Code: 0 - success
5742  *		1 - check condition
5743  *
5744  *     Context: This routine can sleep.
5745  */
5746 
5747 static int
5748 sd_check_vpd_page_support(sd_ssc_t *ssc)
5749 {
5750 	uchar_t	*page_list	= NULL;
5751 	uchar_t	page_length	= 0xff;	/* Use max possible length */
5752 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
5753 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
5754 	int    	rval		= 0;
5755 	int	counter;
5756 	struct sd_lun		*un;
5757 
5758 	ASSERT(ssc != NULL);
5759 	un = ssc->ssc_un;
5760 	ASSERT(un != NULL);
5761 	ASSERT(mutex_owned(SD_MUTEX(un)));
5762 
5763 	mutex_exit(SD_MUTEX(un));
5764 
5765 	/*
5766 	 * We'll set the page length to the maximum to save figuring it out
5767 	 * with an additional call.
5768 	 */
5769 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
5770 
5771 	rval = sd_send_scsi_INQUIRY(ssc, page_list, page_length, evpd,
5772 	    page_code, NULL);
5773 
5774 	if (rval != 0)
5775 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5776 
5777 	mutex_enter(SD_MUTEX(un));
5778 
5779 	/*
5780 	 * Now we must validate that the device accepted the command, as some
5781 	 * drives do not support it.  If the drive does support it, we will
5782 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
5783 	 * not, we return -1.
5784 	 */
5785 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
5786 		/* Loop to find one of the 2 pages we need */
5787 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
5788 
5789 		/*
5790 		 * Pages are returned in ascending order, and 0x83 is what we
5791 		 * are hoping for.
5792 		 */
5793 		while ((page_list[counter] <= 0xB1) &&
5794 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
5795 		    VPD_HEAD_OFFSET))) {
5796 			/*
5797 			 * Add 3 because page_list[3] is the number of
5798 			 * pages minus 3
5799 			 */
5800 
5801 			switch (page_list[counter]) {
5802 			case 0x00:
5803 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
5804 				break;
5805 			case 0x80:
5806 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
5807 				break;
5808 			case 0x81:
5809 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
5810 				break;
5811 			case 0x82:
5812 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
5813 				break;
5814 			case 0x83:
5815 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
5816 				break;
5817 			case 0x86:
5818 				un->un_vpd_page_mask |= SD_VPD_EXTENDED_DATA_PG;
5819 				break;
5820 			case 0xB1:
5821 				un->un_vpd_page_mask |= SD_VPD_DEV_CHARACTER_PG;
5822 				break;
5823 			}
5824 			counter++;
5825 		}
5826 
5827 	} else {
5828 		rval = -1;
5829 
5830 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
5831 		    "sd_check_vpd_page_support: This drive does not implement "
5832 		    "VPD pages.\n");
5833 	}
5834 
5835 	kmem_free(page_list, page_length);
5836 
5837 	return (rval);
5838 }
5839 
5840 
5841 /*
5842  *    Function: sd_setup_pm
5843  *
5844  * Description: Initialize Power Management on the device
5845  *
5846  *     Context: Kernel Thread
5847  */
5848 
5849 static void
5850 sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi)
5851 {
5852 	uint_t		log_page_size;
5853 	uchar_t		*log_page_data;
5854 	int		rval = 0;
5855 	struct sd_lun	*un;
5856 
5857 	ASSERT(ssc != NULL);
5858 	un = ssc->ssc_un;
5859 	ASSERT(un != NULL);
5860 
5861 	/*
5862 	 * Since we are called from attach, holding a mutex for
5863 	 * un is unnecessary. Because some of the routines called
5864 	 * from here require SD_MUTEX to not be held, assert this
5865 	 * right up front.
5866 	 */
5867 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5868 	/*
5869 	 * Since the sd device does not have the 'reg' property,
5870 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
5871 	 * The following code is to tell cpr that this device
5872 	 * DOES need to be suspended and resumed.
5873 	 */
5874 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
5875 	    "pm-hardware-state", "needs-suspend-resume");
5876 
5877 	/*
5878 	 * This complies with the new power management framework
5879 	 * for certain desktop machines. Create the pm_components
5880 	 * property as a string array property.
5881 	 * If un_f_pm_supported is TRUE, that means the disk
5882 	 * attached HBA has set the "pm-capable" property and
5883 	 * the value of this property is bigger than 0.
5884 	 */
5885 	if (un->un_f_pm_supported) {
5886 		/*
5887 		 * not all devices have a motor, try it first.
5888 		 * some devices may return ILLEGAL REQUEST, some
5889 		 * will hang
5890 		 * The following START_STOP_UNIT is used to check if target
5891 		 * device has a motor.
5892 		 */
5893 		un->un_f_start_stop_supported = TRUE;
5894 
5895 		if (un->un_f_power_condition_supported) {
5896 			rval = sd_send_scsi_START_STOP_UNIT(ssc,
5897 			    SD_POWER_CONDITION, SD_TARGET_ACTIVE,
5898 			    SD_PATH_DIRECT);
5899 			if (rval != 0) {
5900 				un->un_f_power_condition_supported = FALSE;
5901 			}
5902 		}
5903 		if (!un->un_f_power_condition_supported) {
5904 			rval = sd_send_scsi_START_STOP_UNIT(ssc,
5905 			    SD_START_STOP, SD_TARGET_START, SD_PATH_DIRECT);
5906 		}
5907 		if (rval != 0) {
5908 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5909 			un->un_f_start_stop_supported = FALSE;
5910 		}
5911 
5912 		/*
5913 		 * create pm properties anyways otherwise the parent can't
5914 		 * go to sleep
5915 		 */
5916 		un->un_f_pm_is_enabled = TRUE;
5917 		(void) sd_create_pm_components(devi, un);
5918 
5919 		/*
5920 		 * If it claims that log sense is supported, check it out.
5921 		 */
5922 		if (un->un_f_log_sense_supported) {
5923 			rval = sd_log_page_supported(ssc,
5924 			    START_STOP_CYCLE_PAGE);
5925 			if (rval == 1) {
5926 				/* Page found, use it. */
5927 				un->un_start_stop_cycle_page =
5928 				    START_STOP_CYCLE_PAGE;
5929 			} else {
5930 				/*
5931 				 * Page not found or log sense is not
5932 				 * supported.
5933 				 * Notice we do not check the old style
5934 				 * START_STOP_CYCLE_VU_PAGE because this
5935 				 * code path does not apply to old disks.
5936 				 */
5937 				un->un_f_log_sense_supported = FALSE;
5938 				un->un_f_pm_log_sense_smart = FALSE;
5939 			}
5940 		}
5941 
5942 		return;
5943 	}
5944 
5945 	/*
5946 	 * For the disk whose attached HBA has not set the "pm-capable"
5947 	 * property, check if it supports the power management.
5948 	 */
5949 	if (!un->un_f_log_sense_supported) {
5950 		un->un_power_level = SD_SPINDLE_ON;
5951 		un->un_f_pm_is_enabled = FALSE;
5952 		return;
5953 	}
5954 
5955 	rval = sd_log_page_supported(ssc, START_STOP_CYCLE_PAGE);
5956 
5957 #ifdef	SDDEBUG
5958 	if (sd_force_pm_supported) {
5959 		/* Force a successful result */
5960 		rval = 1;
5961 	}
5962 #endif
5963 
5964 	/*
5965 	 * If the start-stop cycle counter log page is not supported
5966 	 * or if the pm-capable property is set to be false (0),
5967 	 * then we should not create the pm_components property.
5968 	 */
5969 	if (rval == -1) {
5970 		/*
5971 		 * Error.
5972 		 * Reading log sense failed, most likely this is
5973 		 * an older drive that does not support log sense.
5974 		 * If this fails auto-pm is not supported.
5975 		 */
5976 		un->un_power_level = SD_SPINDLE_ON;
5977 		un->un_f_pm_is_enabled = FALSE;
5978 
5979 	} else if (rval == 0) {
5980 		/*
5981 		 * Page not found.
5982 		 * The start stop cycle counter is implemented as page
5983 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
5984 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
5985 		 */
5986 		if (sd_log_page_supported(ssc, START_STOP_CYCLE_VU_PAGE) == 1) {
5987 			/*
5988 			 * Page found, use this one.
5989 			 */
5990 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
5991 			un->un_f_pm_is_enabled = TRUE;
5992 		} else {
5993 			/*
5994 			 * Error or page not found.
5995 			 * auto-pm is not supported for this device.
5996 			 */
5997 			un->un_power_level = SD_SPINDLE_ON;
5998 			un->un_f_pm_is_enabled = FALSE;
5999 		}
6000 	} else {
6001 		/*
6002 		 * Page found, use it.
6003 		 */
6004 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
6005 		un->un_f_pm_is_enabled = TRUE;
6006 	}
6007 
6008 
6009 	if (un->un_f_pm_is_enabled == TRUE) {
6010 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6011 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6012 
6013 		rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
6014 		    log_page_size, un->un_start_stop_cycle_page,
6015 		    0x01, 0, SD_PATH_DIRECT);
6016 
6017 		if (rval != 0) {
6018 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6019 		}
6020 
6021 #ifdef	SDDEBUG
6022 		if (sd_force_pm_supported) {
6023 			/* Force a successful result */
6024 			rval = 0;
6025 		}
6026 #endif
6027 
6028 		/*
6029 		 * If the Log sense for Page( Start/stop cycle counter page)
6030 		 * succeeds, then power management is supported and we can
6031 		 * enable auto-pm.
6032 		 */
6033 		if (rval == 0)  {
6034 			(void) sd_create_pm_components(devi, un);
6035 		} else {
6036 			un->un_power_level = SD_SPINDLE_ON;
6037 			un->un_f_pm_is_enabled = FALSE;
6038 		}
6039 
6040 		kmem_free(log_page_data, log_page_size);
6041 	}
6042 }
6043 
6044 
6045 /*
6046  *    Function: sd_create_pm_components
6047  *
6048  * Description: Initialize PM property.
6049  *
6050  *     Context: Kernel thread context
6051  */
6052 
6053 static void
6054 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
6055 {
6056 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6057 
6058 	if (un->un_f_power_condition_supported) {
6059 		if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6060 		    "pm-components", sd_pwr_pc.pm_comp, 5)
6061 		    != DDI_PROP_SUCCESS) {
6062 			un->un_power_level = SD_SPINDLE_ACTIVE;
6063 			un->un_f_pm_is_enabled = FALSE;
6064 			return;
6065 		}
6066 	} else {
6067 		if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6068 		    "pm-components", sd_pwr_ss.pm_comp, 3)
6069 		    != DDI_PROP_SUCCESS) {
6070 			un->un_power_level = SD_SPINDLE_ON;
6071 			un->un_f_pm_is_enabled = FALSE;
6072 			return;
6073 		}
6074 	}
6075 	/*
6076 	 * When components are initially created they are idle,
6077 	 * power up any non-removables.
6078 	 * Note: the return value of pm_raise_power can't be used
6079 	 * for determining if PM should be enabled for this device.
6080 	 * Even if you check the return values and remove this
6081 	 * property created above, the PM framework will not honor the
6082 	 * change after the first call to pm_raise_power. Hence,
6083 	 * removal of that property does not help if pm_raise_power
6084 	 * fails. In the case of removable media, the start/stop
6085 	 * will fail if the media is not present.
6086 	 */
6087 	if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
6088 	    SD_PM_STATE_ACTIVE(un)) == DDI_SUCCESS)) {
6089 		mutex_enter(SD_MUTEX(un));
6090 		un->un_power_level = SD_PM_STATE_ACTIVE(un);
6091 		mutex_enter(&un->un_pm_mutex);
6092 		/* Set to on and not busy. */
6093 		un->un_pm_count = 0;
6094 	} else {
6095 		mutex_enter(SD_MUTEX(un));
6096 		un->un_power_level = SD_PM_STATE_STOPPED(un);
6097 		mutex_enter(&un->un_pm_mutex);
6098 		/* Set to off. */
6099 		un->un_pm_count = -1;
6100 	}
6101 	mutex_exit(&un->un_pm_mutex);
6102 	mutex_exit(SD_MUTEX(un));
6103 }
6104 
6105 
6106 /*
6107  *    Function: sd_ddi_suspend
6108  *
6109  * Description: Performs system power-down operations. This includes
6110  *		setting the drive state to indicate its suspended so
6111  *		that no new commands will be accepted. Also, wait for
6112  *		all commands that are in transport or queued to a timer
6113  *		for retry to complete. All timeout threads are cancelled.
6114  *
6115  * Return Code: DDI_FAILURE or DDI_SUCCESS
6116  *
6117  *     Context: Kernel thread context
6118  */
6119 
6120 static int
6121 sd_ddi_suspend(dev_info_t *devi)
6122 {
6123 	struct	sd_lun	*un;
6124 	clock_t		wait_cmds_complete;
6125 
6126 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6127 	if (un == NULL) {
6128 		return (DDI_FAILURE);
6129 	}
6130 
6131 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
6132 
6133 	mutex_enter(SD_MUTEX(un));
6134 
6135 	/* Return success if the device is already suspended. */
6136 	if (un->un_state == SD_STATE_SUSPENDED) {
6137 		mutex_exit(SD_MUTEX(un));
6138 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6139 		    "device already suspended, exiting\n");
6140 		return (DDI_SUCCESS);
6141 	}
6142 
6143 	/* Return failure if the device is being used by HA */
6144 	if (un->un_resvd_status &
6145 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
6146 		mutex_exit(SD_MUTEX(un));
6147 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6148 		    "device in use by HA, exiting\n");
6149 		return (DDI_FAILURE);
6150 	}
6151 
6152 	/*
6153 	 * Return failure if the device is in a resource wait
6154 	 * or power changing state.
6155 	 */
6156 	if ((un->un_state == SD_STATE_RWAIT) ||
6157 	    (un->un_state == SD_STATE_PM_CHANGING)) {
6158 		mutex_exit(SD_MUTEX(un));
6159 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6160 		    "device in resource wait state, exiting\n");
6161 		return (DDI_FAILURE);
6162 	}
6163 
6164 
6165 	un->un_save_state = un->un_last_state;
6166 	New_state(un, SD_STATE_SUSPENDED);
6167 
6168 	/*
6169 	 * Wait for all commands that are in transport or queued to a timer
6170 	 * for retry to complete.
6171 	 *
6172 	 * While waiting, no new commands will be accepted or sent because of
6173 	 * the new state we set above.
6174 	 *
6175 	 * Wait till current operation has completed. If we are in the resource
6176 	 * wait state (with an intr outstanding) then we need to wait till the
6177 	 * intr completes and starts the next cmd. We want to wait for
6178 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
6179 	 */
6180 	wait_cmds_complete = ddi_get_lbolt() +
6181 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
6182 
6183 	while (un->un_ncmds_in_transport != 0) {
6184 		/*
6185 		 * Fail if commands do not finish in the specified time.
6186 		 */
6187 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
6188 		    wait_cmds_complete) == -1) {
6189 			/*
6190 			 * Undo the state changes made above. Everything
6191 			 * must go back to it's original value.
6192 			 */
6193 			Restore_state(un);
6194 			un->un_last_state = un->un_save_state;
6195 			/* Wake up any threads that might be waiting. */
6196 			cv_broadcast(&un->un_suspend_cv);
6197 			mutex_exit(SD_MUTEX(un));
6198 			SD_ERROR(SD_LOG_IO_PM, un,
6199 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
6200 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
6201 			return (DDI_FAILURE);
6202 		}
6203 	}
6204 
6205 	/*
6206 	 * Cancel SCSI watch thread and timeouts, if any are active
6207 	 */
6208 
6209 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
6210 		opaque_t temp_token = un->un_swr_token;
6211 		mutex_exit(SD_MUTEX(un));
6212 		scsi_watch_suspend(temp_token);
6213 		mutex_enter(SD_MUTEX(un));
6214 	}
6215 
6216 	if (un->un_reset_throttle_timeid != NULL) {
6217 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
6218 		un->un_reset_throttle_timeid = NULL;
6219 		mutex_exit(SD_MUTEX(un));
6220 		(void) untimeout(temp_id);
6221 		mutex_enter(SD_MUTEX(un));
6222 	}
6223 
6224 	if (un->un_dcvb_timeid != NULL) {
6225 		timeout_id_t temp_id = un->un_dcvb_timeid;
6226 		un->un_dcvb_timeid = NULL;
6227 		mutex_exit(SD_MUTEX(un));
6228 		(void) untimeout(temp_id);
6229 		mutex_enter(SD_MUTEX(un));
6230 	}
6231 
6232 	mutex_enter(&un->un_pm_mutex);
6233 	if (un->un_pm_timeid != NULL) {
6234 		timeout_id_t temp_id = un->un_pm_timeid;
6235 		un->un_pm_timeid = NULL;
6236 		mutex_exit(&un->un_pm_mutex);
6237 		mutex_exit(SD_MUTEX(un));
6238 		(void) untimeout(temp_id);
6239 		mutex_enter(SD_MUTEX(un));
6240 	} else {
6241 		mutex_exit(&un->un_pm_mutex);
6242 	}
6243 
6244 	if (un->un_rmw_msg_timeid != NULL) {
6245 		timeout_id_t temp_id = un->un_rmw_msg_timeid;
6246 		un->un_rmw_msg_timeid = NULL;
6247 		mutex_exit(SD_MUTEX(un));
6248 		(void) untimeout(temp_id);
6249 		mutex_enter(SD_MUTEX(un));
6250 	}
6251 
6252 	if (un->un_retry_timeid != NULL) {
6253 		timeout_id_t temp_id = un->un_retry_timeid;
6254 		un->un_retry_timeid = NULL;
6255 		mutex_exit(SD_MUTEX(un));
6256 		(void) untimeout(temp_id);
6257 		mutex_enter(SD_MUTEX(un));
6258 
6259 		if (un->un_retry_bp != NULL) {
6260 			un->un_retry_bp->av_forw = un->un_waitq_headp;
6261 			un->un_waitq_headp = un->un_retry_bp;
6262 			if (un->un_waitq_tailp == NULL) {
6263 				un->un_waitq_tailp = un->un_retry_bp;
6264 			}
6265 			un->un_retry_bp = NULL;
6266 			un->un_retry_statp = NULL;
6267 		}
6268 	}
6269 
6270 	if (un->un_direct_priority_timeid != NULL) {
6271 		timeout_id_t temp_id = un->un_direct_priority_timeid;
6272 		un->un_direct_priority_timeid = NULL;
6273 		mutex_exit(SD_MUTEX(un));
6274 		(void) untimeout(temp_id);
6275 		mutex_enter(SD_MUTEX(un));
6276 	}
6277 
6278 	if (un->un_f_is_fibre == TRUE) {
6279 		/*
6280 		 * Remove callbacks for insert and remove events
6281 		 */
6282 		if (un->un_insert_event != NULL) {
6283 			mutex_exit(SD_MUTEX(un));
6284 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
6285 			mutex_enter(SD_MUTEX(un));
6286 			un->un_insert_event = NULL;
6287 		}
6288 
6289 		if (un->un_remove_event != NULL) {
6290 			mutex_exit(SD_MUTEX(un));
6291 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
6292 			mutex_enter(SD_MUTEX(un));
6293 			un->un_remove_event = NULL;
6294 		}
6295 	}
6296 
6297 	mutex_exit(SD_MUTEX(un));
6298 
6299 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
6300 
6301 	return (DDI_SUCCESS);
6302 }
6303 
6304 
6305 /*
6306  *    Function: sd_ddi_resume
6307  *
6308  * Description: Performs system power-up operations..
6309  *
6310  * Return Code: DDI_SUCCESS
6311  *		DDI_FAILURE
6312  *
6313  *     Context: Kernel thread context
6314  */
6315 
6316 static int
6317 sd_ddi_resume(dev_info_t *devi)
6318 {
6319 	struct	sd_lun	*un;
6320 
6321 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6322 	if (un == NULL) {
6323 		return (DDI_FAILURE);
6324 	}
6325 
6326 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
6327 
6328 	mutex_enter(SD_MUTEX(un));
6329 	Restore_state(un);
6330 
6331 	/*
6332 	 * Restore the state which was saved to give the
6333 	 * the right state in un_last_state
6334 	 */
6335 	un->un_last_state = un->un_save_state;
6336 	/*
6337 	 * Note: throttle comes back at full.
6338 	 * Also note: this MUST be done before calling pm_raise_power
6339 	 * otherwise the system can get hung in biowait. The scenario where
6340 	 * this'll happen is under cpr suspend. Writing of the system
6341 	 * state goes through sddump, which writes 0 to un_throttle. If
6342 	 * writing the system state then fails, example if the partition is
6343 	 * too small, then cpr attempts a resume. If throttle isn't restored
6344 	 * from the saved value until after calling pm_raise_power then
6345 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
6346 	 * in biowait.
6347 	 */
6348 	un->un_throttle = un->un_saved_throttle;
6349 
6350 	/*
6351 	 * The chance of failure is very rare as the only command done in power
6352 	 * entry point is START command when you transition from 0->1 or
6353 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
6354 	 * which suspend was done. Ignore the return value as the resume should
6355 	 * not be failed. In the case of removable media the media need not be
6356 	 * inserted and hence there is a chance that raise power will fail with
6357 	 * media not present.
6358 	 */
6359 	if (un->un_f_attach_spinup) {
6360 		mutex_exit(SD_MUTEX(un));
6361 		(void) pm_raise_power(SD_DEVINFO(un), 0,
6362 		    SD_PM_STATE_ACTIVE(un));
6363 		mutex_enter(SD_MUTEX(un));
6364 	}
6365 
6366 	/*
6367 	 * Don't broadcast to the suspend cv and therefore possibly
6368 	 * start I/O until after power has been restored.
6369 	 */
6370 	cv_broadcast(&un->un_suspend_cv);
6371 	cv_broadcast(&un->un_state_cv);
6372 
6373 	/* restart thread */
6374 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
6375 		scsi_watch_resume(un->un_swr_token);
6376 	}
6377 
6378 #if (defined(__fibre))
6379 	if (un->un_f_is_fibre == TRUE) {
6380 		/*
6381 		 * Add callbacks for insert and remove events
6382 		 */
6383 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
6384 			sd_init_event_callbacks(un);
6385 		}
6386 	}
6387 #endif
6388 
6389 	/*
6390 	 * Transport any pending commands to the target.
6391 	 *
6392 	 * If this is a low-activity device commands in queue will have to wait
6393 	 * until new commands come in, which may take awhile. Also, we
6394 	 * specifically don't check un_ncmds_in_transport because we know that
6395 	 * there really are no commands in progress after the unit was
6396 	 * suspended and we could have reached the throttle level, been
6397 	 * suspended, and have no new commands coming in for awhile. Highly
6398 	 * unlikely, but so is the low-activity disk scenario.
6399 	 */
6400 	ddi_xbuf_dispatch(un->un_xbuf_attr);
6401 
6402 	sd_start_cmds(un, NULL);
6403 	mutex_exit(SD_MUTEX(un));
6404 
6405 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
6406 
6407 	return (DDI_SUCCESS);
6408 }
6409 
6410 
6411 /*
6412  *    Function: sd_pm_state_change
6413  *
6414  * Description: Change the driver power state.
6415  * 		Someone else is required to actually change the driver
6416  * 		power level.
6417  *
6418  *   Arguments: un - driver soft state (unit) structure
6419  *              level - the power level that is changed to
6420  *              flag - to decide how to change the power state
6421  *
6422  * Return Code: DDI_SUCCESS
6423  *
6424  *     Context: Kernel thread context
6425  */
6426 static int
6427 sd_pm_state_change(struct sd_lun *un, int level, int flag)
6428 {
6429 	ASSERT(un != NULL);
6430 	SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: entry\n");
6431 
6432 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6433 	mutex_enter(SD_MUTEX(un));
6434 
6435 	if (flag == SD_PM_STATE_ROLLBACK || SD_PM_IS_IO_CAPABLE(un, level)) {
6436 		un->un_power_level = level;
6437 		ASSERT(!mutex_owned(&un->un_pm_mutex));
6438 		mutex_enter(&un->un_pm_mutex);
6439 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
6440 			un->un_pm_count++;
6441 			ASSERT(un->un_pm_count == 0);
6442 		}
6443 		mutex_exit(&un->un_pm_mutex);
6444 	} else {
6445 		/*
6446 		 * Exit if power management is not enabled for this device,
6447 		 * or if the device is being used by HA.
6448 		 */
6449 		if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
6450 		    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
6451 			mutex_exit(SD_MUTEX(un));
6452 			SD_TRACE(SD_LOG_POWER, un,
6453 			    "sd_pm_state_change: exiting\n");
6454 			return (DDI_FAILURE);
6455 		}
6456 
6457 		SD_INFO(SD_LOG_POWER, un, "sd_pm_state_change: "
6458 		    "un_ncmds_in_driver=%ld\n", un->un_ncmds_in_driver);
6459 
6460 		/*
6461 		 * See if the device is not busy, ie.:
6462 		 *    - we have no commands in the driver for this device
6463 		 *    - not waiting for resources
6464 		 */
6465 		if ((un->un_ncmds_in_driver == 0) &&
6466 		    (un->un_state != SD_STATE_RWAIT)) {
6467 			/*
6468 			 * The device is not busy, so it is OK to go to low
6469 			 * power state. Indicate low power, but rely on someone
6470 			 * else to actually change it.
6471 			 */
6472 			mutex_enter(&un->un_pm_mutex);
6473 			un->un_pm_count = -1;
6474 			mutex_exit(&un->un_pm_mutex);
6475 			un->un_power_level = level;
6476 		}
6477 	}
6478 
6479 	mutex_exit(SD_MUTEX(un));
6480 
6481 	SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: exit\n");
6482 
6483 	return (DDI_SUCCESS);
6484 }
6485 
6486 
6487 /*
6488  *    Function: sd_pm_idletimeout_handler
6489  *
6490  * Description: A timer routine that's active only while a device is busy.
6491  *		The purpose is to extend slightly the pm framework's busy
6492  *		view of the device to prevent busy/idle thrashing for
6493  *		back-to-back commands. Do this by comparing the current time
6494  *		to the time at which the last command completed and when the
6495  *		difference is greater than sd_pm_idletime, call
6496  *		pm_idle_component. In addition to indicating idle to the pm
6497  *		framework, update the chain type to again use the internal pm
6498  *		layers of the driver.
6499  *
6500  *   Arguments: arg - driver soft state (unit) structure
6501  *
6502  *     Context: Executes in a timeout(9F) thread context
6503  */
6504 
6505 static void
6506 sd_pm_idletimeout_handler(void *arg)
6507 {
6508 	struct sd_lun *un = arg;
6509 
6510 	time_t	now;
6511 
6512 	mutex_enter(&sd_detach_mutex);
6513 	if (un->un_detach_count != 0) {
6514 		/* Abort if the instance is detaching */
6515 		mutex_exit(&sd_detach_mutex);
6516 		return;
6517 	}
6518 	mutex_exit(&sd_detach_mutex);
6519 
6520 	now = ddi_get_time();
6521 	/*
6522 	 * Grab both mutexes, in the proper order, since we're accessing
6523 	 * both PM and softstate variables.
6524 	 */
6525 	mutex_enter(SD_MUTEX(un));
6526 	mutex_enter(&un->un_pm_mutex);
6527 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
6528 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
6529 		/*
6530 		 * Update the chain types.
6531 		 * This takes affect on the next new command received.
6532 		 */
6533 		if (un->un_f_non_devbsize_supported) {
6534 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
6535 		} else {
6536 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
6537 		}
6538 		un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD;
6539 
6540 		SD_TRACE(SD_LOG_IO_PM, un,
6541 		    "sd_pm_idletimeout_handler: idling device\n");
6542 		(void) pm_idle_component(SD_DEVINFO(un), 0);
6543 		un->un_pm_idle_timeid = NULL;
6544 	} else {
6545 		un->un_pm_idle_timeid =
6546 		    timeout(sd_pm_idletimeout_handler, un,
6547 		    (drv_usectohz((clock_t)300000))); /* 300 ms. */
6548 	}
6549 	mutex_exit(&un->un_pm_mutex);
6550 	mutex_exit(SD_MUTEX(un));
6551 }
6552 
6553 
6554 /*
6555  *    Function: sd_pm_timeout_handler
6556  *
6557  * Description: Callback to tell framework we are idle.
6558  *
6559  *     Context: timeout(9f) thread context.
6560  */
6561 
6562 static void
6563 sd_pm_timeout_handler(void *arg)
6564 {
6565 	struct sd_lun *un = arg;
6566 
6567 	(void) pm_idle_component(SD_DEVINFO(un), 0);
6568 	mutex_enter(&un->un_pm_mutex);
6569 	un->un_pm_timeid = NULL;
6570 	mutex_exit(&un->un_pm_mutex);
6571 }
6572 
6573 
6574 /*
6575  *    Function: sdpower
6576  *
6577  * Description: PM entry point.
6578  *
6579  * Return Code: DDI_SUCCESS
6580  *		DDI_FAILURE
6581  *
6582  *     Context: Kernel thread context
6583  */
6584 
6585 static int
6586 sdpower(dev_info_t *devi, int component, int level)
6587 {
6588 	struct sd_lun	*un;
6589 	int		instance;
6590 	int		rval = DDI_SUCCESS;
6591 	uint_t		i, log_page_size, maxcycles, ncycles;
6592 	uchar_t		*log_page_data;
6593 	int		log_sense_page;
6594 	int		medium_present;
6595 	time_t		intvlp;
6596 	struct pm_trans_data	sd_pm_tran_data;
6597 	uchar_t		save_state;
6598 	int		sval;
6599 	uchar_t		state_before_pm;
6600 	int		got_semaphore_here;
6601 	sd_ssc_t	*ssc;
6602 	int	last_power_level;
6603 
6604 	instance = ddi_get_instance(devi);
6605 
6606 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
6607 	    !SD_PM_IS_LEVEL_VALID(un, level) || component != 0) {
6608 		return (DDI_FAILURE);
6609 	}
6610 
6611 	ssc = sd_ssc_init(un);
6612 
6613 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
6614 
6615 	/*
6616 	 * Must synchronize power down with close.
6617 	 * Attempt to decrement/acquire the open/close semaphore,
6618 	 * but do NOT wait on it. If it's not greater than zero,
6619 	 * ie. it can't be decremented without waiting, then
6620 	 * someone else, either open or close, already has it
6621 	 * and the try returns 0. Use that knowledge here to determine
6622 	 * if it's OK to change the device power level.
6623 	 * Also, only increment it on exit if it was decremented, ie. gotten,
6624 	 * here.
6625 	 */
6626 	got_semaphore_here = sema_tryp(&un->un_semoclose);
6627 
6628 	mutex_enter(SD_MUTEX(un));
6629 
6630 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
6631 	    un->un_ncmds_in_driver);
6632 
6633 	/*
6634 	 * If un_ncmds_in_driver is non-zero it indicates commands are
6635 	 * already being processed in the driver, or if the semaphore was
6636 	 * not gotten here it indicates an open or close is being processed.
6637 	 * At the same time somebody is requesting to go to a lower power
6638 	 * that can't perform I/O, which can't happen, therefore we need to
6639 	 * return failure.
6640 	 */
6641 	if ((!SD_PM_IS_IO_CAPABLE(un, level)) &&
6642 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
6643 		mutex_exit(SD_MUTEX(un));
6644 
6645 		if (got_semaphore_here != 0) {
6646 			sema_v(&un->un_semoclose);
6647 		}
6648 		SD_TRACE(SD_LOG_IO_PM, un,
6649 		    "sdpower: exit, device has queued cmds.\n");
6650 
6651 		goto sdpower_failed;
6652 	}
6653 
6654 	/*
6655 	 * if it is OFFLINE that means the disk is completely dead
6656 	 * in our case we have to put the disk in on or off by sending commands
6657 	 * Of course that will fail anyway so return back here.
6658 	 *
6659 	 * Power changes to a device that's OFFLINE or SUSPENDED
6660 	 * are not allowed.
6661 	 */
6662 	if ((un->un_state == SD_STATE_OFFLINE) ||
6663 	    (un->un_state == SD_STATE_SUSPENDED)) {
6664 		mutex_exit(SD_MUTEX(un));
6665 
6666 		if (got_semaphore_here != 0) {
6667 			sema_v(&un->un_semoclose);
6668 		}
6669 		SD_TRACE(SD_LOG_IO_PM, un,
6670 		    "sdpower: exit, device is off-line.\n");
6671 
6672 		goto sdpower_failed;
6673 	}
6674 
6675 	/*
6676 	 * Change the device's state to indicate it's power level
6677 	 * is being changed. Do this to prevent a power off in the
6678 	 * middle of commands, which is especially bad on devices
6679 	 * that are really powered off instead of just spun down.
6680 	 */
6681 	state_before_pm = un->un_state;
6682 	un->un_state = SD_STATE_PM_CHANGING;
6683 
6684 	mutex_exit(SD_MUTEX(un));
6685 
6686 	/*
6687 	 * If log sense command is not supported, bypass the
6688 	 * following checking, otherwise, check the log sense
6689 	 * information for this device.
6690 	 */
6691 	if (SD_PM_STOP_MOTOR_NEEDED(un, level) &&
6692 	    un->un_f_log_sense_supported) {
6693 		/*
6694 		 * Get the log sense information to understand whether the
6695 		 * the powercycle counts have gone beyond the threshhold.
6696 		 */
6697 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6698 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6699 
6700 		mutex_enter(SD_MUTEX(un));
6701 		log_sense_page = un->un_start_stop_cycle_page;
6702 		mutex_exit(SD_MUTEX(un));
6703 
6704 		rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
6705 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
6706 
6707 		if (rval != 0) {
6708 			if (rval == EIO)
6709 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6710 			else
6711 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6712 		}
6713 
6714 #ifdef	SDDEBUG
6715 		if (sd_force_pm_supported) {
6716 			/* Force a successful result */
6717 			rval = 0;
6718 		}
6719 #endif
6720 		if (rval != 0) {
6721 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
6722 			    "Log Sense Failed\n");
6723 
6724 			kmem_free(log_page_data, log_page_size);
6725 			/* Cannot support power management on those drives */
6726 
6727 			if (got_semaphore_here != 0) {
6728 				sema_v(&un->un_semoclose);
6729 			}
6730 			/*
6731 			 * On exit put the state back to it's original value
6732 			 * and broadcast to anyone waiting for the power
6733 			 * change completion.
6734 			 */
6735 			mutex_enter(SD_MUTEX(un));
6736 			un->un_state = state_before_pm;
6737 			cv_broadcast(&un->un_suspend_cv);
6738 			mutex_exit(SD_MUTEX(un));
6739 			SD_TRACE(SD_LOG_IO_PM, un,
6740 			    "sdpower: exit, Log Sense Failed.\n");
6741 
6742 			goto sdpower_failed;
6743 		}
6744 
6745 		/*
6746 		 * From the page data - Convert the essential information to
6747 		 * pm_trans_data
6748 		 */
6749 		maxcycles =
6750 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
6751 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
6752 
6753 		ncycles =
6754 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
6755 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
6756 
6757 		if (un->un_f_pm_log_sense_smart) {
6758 			sd_pm_tran_data.un.smart_count.allowed = maxcycles;
6759 			sd_pm_tran_data.un.smart_count.consumed = ncycles;
6760 			sd_pm_tran_data.un.smart_count.flag = 0;
6761 			sd_pm_tran_data.format = DC_SMART_FORMAT;
6762 		} else {
6763 			sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
6764 			sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
6765 			for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
6766 				sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
6767 				    log_page_data[8+i];
6768 			}
6769 			sd_pm_tran_data.un.scsi_cycles.flag = 0;
6770 			sd_pm_tran_data.format = DC_SCSI_FORMAT;
6771 		}
6772 
6773 		kmem_free(log_page_data, log_page_size);
6774 
6775 		/*
6776 		 * Call pm_trans_check routine to get the Ok from
6777 		 * the global policy
6778 		 */
6779 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
6780 #ifdef	SDDEBUG
6781 		if (sd_force_pm_supported) {
6782 			/* Force a successful result */
6783 			rval = 1;
6784 		}
6785 #endif
6786 		switch (rval) {
6787 		case 0:
6788 			/*
6789 			 * Not Ok to Power cycle or error in parameters passed
6790 			 * Would have given the advised time to consider power
6791 			 * cycle. Based on the new intvlp parameter we are
6792 			 * supposed to pretend we are busy so that pm framework
6793 			 * will never call our power entry point. Because of
6794 			 * that install a timeout handler and wait for the
6795 			 * recommended time to elapse so that power management
6796 			 * can be effective again.
6797 			 *
6798 			 * To effect this behavior, call pm_busy_component to
6799 			 * indicate to the framework this device is busy.
6800 			 * By not adjusting un_pm_count the rest of PM in
6801 			 * the driver will function normally, and independent
6802 			 * of this but because the framework is told the device
6803 			 * is busy it won't attempt powering down until it gets
6804 			 * a matching idle. The timeout handler sends this.
6805 			 * Note: sd_pm_entry can't be called here to do this
6806 			 * because sdpower may have been called as a result
6807 			 * of a call to pm_raise_power from within sd_pm_entry.
6808 			 *
6809 			 * If a timeout handler is already active then
6810 			 * don't install another.
6811 			 */
6812 			mutex_enter(&un->un_pm_mutex);
6813 			if (un->un_pm_timeid == NULL) {
6814 				un->un_pm_timeid =
6815 				    timeout(sd_pm_timeout_handler,
6816 				    un, intvlp * drv_usectohz(1000000));
6817 				mutex_exit(&un->un_pm_mutex);
6818 				(void) pm_busy_component(SD_DEVINFO(un), 0);
6819 			} else {
6820 				mutex_exit(&un->un_pm_mutex);
6821 			}
6822 			if (got_semaphore_here != 0) {
6823 				sema_v(&un->un_semoclose);
6824 			}
6825 			/*
6826 			 * On exit put the state back to it's original value
6827 			 * and broadcast to anyone waiting for the power
6828 			 * change completion.
6829 			 */
6830 			mutex_enter(SD_MUTEX(un));
6831 			un->un_state = state_before_pm;
6832 			cv_broadcast(&un->un_suspend_cv);
6833 			mutex_exit(SD_MUTEX(un));
6834 
6835 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
6836 			    "trans check Failed, not ok to power cycle.\n");
6837 
6838 			goto sdpower_failed;
6839 		case -1:
6840 			if (got_semaphore_here != 0) {
6841 				sema_v(&un->un_semoclose);
6842 			}
6843 			/*
6844 			 * On exit put the state back to it's original value
6845 			 * and broadcast to anyone waiting for the power
6846 			 * change completion.
6847 			 */
6848 			mutex_enter(SD_MUTEX(un));
6849 			un->un_state = state_before_pm;
6850 			cv_broadcast(&un->un_suspend_cv);
6851 			mutex_exit(SD_MUTEX(un));
6852 			SD_TRACE(SD_LOG_IO_PM, un,
6853 			    "sdpower: exit, trans check command Failed.\n");
6854 
6855 			goto sdpower_failed;
6856 		}
6857 	}
6858 
6859 	if (!SD_PM_IS_IO_CAPABLE(un, level)) {
6860 		/*
6861 		 * Save the last state... if the STOP FAILS we need it
6862 		 * for restoring
6863 		 */
6864 		mutex_enter(SD_MUTEX(un));
6865 		save_state = un->un_last_state;
6866 		last_power_level = un->un_power_level;
6867 		/*
6868 		 * There must not be any cmds. getting processed
6869 		 * in the driver when we get here. Power to the
6870 		 * device is potentially going off.
6871 		 */
6872 		ASSERT(un->un_ncmds_in_driver == 0);
6873 		mutex_exit(SD_MUTEX(un));
6874 
6875 		/*
6876 		 * For now PM suspend the device completely before spindle is
6877 		 * turned off
6878 		 */
6879 		if ((rval = sd_pm_state_change(un, level, SD_PM_STATE_CHANGE))
6880 		    == DDI_FAILURE) {
6881 			if (got_semaphore_here != 0) {
6882 				sema_v(&un->un_semoclose);
6883 			}
6884 			/*
6885 			 * On exit put the state back to it's original value
6886 			 * and broadcast to anyone waiting for the power
6887 			 * change completion.
6888 			 */
6889 			mutex_enter(SD_MUTEX(un));
6890 			un->un_state = state_before_pm;
6891 			un->un_power_level = last_power_level;
6892 			cv_broadcast(&un->un_suspend_cv);
6893 			mutex_exit(SD_MUTEX(un));
6894 			SD_TRACE(SD_LOG_IO_PM, un,
6895 			    "sdpower: exit, PM suspend Failed.\n");
6896 
6897 			goto sdpower_failed;
6898 		}
6899 	}
6900 
6901 	/*
6902 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
6903 	 * close, or strategy. Dump no long uses this routine, it uses it's
6904 	 * own code so it can be done in polled mode.
6905 	 */
6906 
6907 	medium_present = TRUE;
6908 
6909 	/*
6910 	 * When powering up, issue a TUR in case the device is at unit
6911 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
6912 	 * a deadlock on un_pm_busy_cv will occur.
6913 	 */
6914 	if (SD_PM_IS_IO_CAPABLE(un, level)) {
6915 		sval = sd_send_scsi_TEST_UNIT_READY(ssc,
6916 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
6917 		if (sval != 0)
6918 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6919 	}
6920 
6921 	if (un->un_f_power_condition_supported) {
6922 		char *pm_condition_name[] = {"STOPPED", "STANDBY",
6923 		    "IDLE", "ACTIVE"};
6924 		SD_TRACE(SD_LOG_IO_PM, un,
6925 		    "sdpower: sending \'%s\' power condition",
6926 		    pm_condition_name[level]);
6927 		sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION,
6928 		    sd_pl2pc[level], SD_PATH_DIRECT);
6929 	} else {
6930 		SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
6931 		    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
6932 		sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
6933 		    ((level == SD_SPINDLE_ON) ? SD_TARGET_START :
6934 		    SD_TARGET_STOP), SD_PATH_DIRECT);
6935 	}
6936 	if (sval != 0) {
6937 		if (sval == EIO)
6938 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6939 		else
6940 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6941 	}
6942 
6943 	/* Command failed, check for media present. */
6944 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
6945 		medium_present = FALSE;
6946 	}
6947 
6948 	/*
6949 	 * The conditions of interest here are:
6950 	 *   if a spindle off with media present fails,
6951 	 *	then restore the state and return an error.
6952 	 *   else if a spindle on fails,
6953 	 *	then return an error (there's no state to restore).
6954 	 * In all other cases we setup for the new state
6955 	 * and return success.
6956 	 */
6957 	if (!SD_PM_IS_IO_CAPABLE(un, level)) {
6958 		if ((medium_present == TRUE) && (sval != 0)) {
6959 			/* The stop command from above failed */
6960 			rval = DDI_FAILURE;
6961 			/*
6962 			 * The stop command failed, and we have media
6963 			 * present. Put the level back by calling the
6964 			 * sd_pm_resume() and set the state back to
6965 			 * it's previous value.
6966 			 */
6967 			(void) sd_pm_state_change(un, last_power_level,
6968 			    SD_PM_STATE_ROLLBACK);
6969 			mutex_enter(SD_MUTEX(un));
6970 			un->un_last_state = save_state;
6971 			mutex_exit(SD_MUTEX(un));
6972 		} else if (un->un_f_monitor_media_state) {
6973 			/*
6974 			 * The stop command from above succeeded.
6975 			 * Terminate watch thread in case of removable media
6976 			 * devices going into low power state. This is as per
6977 			 * the requirements of pm framework, otherwise commands
6978 			 * will be generated for the device (through watch
6979 			 * thread), even when the device is in low power state.
6980 			 */
6981 			mutex_enter(SD_MUTEX(un));
6982 			un->un_f_watcht_stopped = FALSE;
6983 			if (un->un_swr_token != NULL) {
6984 				opaque_t temp_token = un->un_swr_token;
6985 				un->un_f_watcht_stopped = TRUE;
6986 				un->un_swr_token = NULL;
6987 				mutex_exit(SD_MUTEX(un));
6988 				(void) scsi_watch_request_terminate(temp_token,
6989 				    SCSI_WATCH_TERMINATE_ALL_WAIT);
6990 			} else {
6991 				mutex_exit(SD_MUTEX(un));
6992 			}
6993 		}
6994 	} else {
6995 		/*
6996 		 * The level requested is I/O capable.
6997 		 * Legacy behavior: return success on a failed spinup
6998 		 * if there is no media in the drive.
6999 		 * Do this by looking at medium_present here.
7000 		 */
7001 		if ((sval != 0) && medium_present) {
7002 			/* The start command from above failed */
7003 			rval = DDI_FAILURE;
7004 		} else {
7005 			/*
7006 			 * The start command from above succeeded
7007 			 * PM resume the devices now that we have
7008 			 * started the disks
7009 			 */
7010 			(void) sd_pm_state_change(un, level,
7011 			    SD_PM_STATE_CHANGE);
7012 
7013 			/*
7014 			 * Resume the watch thread since it was suspended
7015 			 * when the device went into low power mode.
7016 			 */
7017 			if (un->un_f_monitor_media_state) {
7018 				mutex_enter(SD_MUTEX(un));
7019 				if (un->un_f_watcht_stopped == TRUE) {
7020 					opaque_t temp_token;
7021 
7022 					un->un_f_watcht_stopped = FALSE;
7023 					mutex_exit(SD_MUTEX(un));
7024 					temp_token =
7025 					    sd_watch_request_submit(un);
7026 					mutex_enter(SD_MUTEX(un));
7027 					un->un_swr_token = temp_token;
7028 				}
7029 				mutex_exit(SD_MUTEX(un));
7030 			}
7031 		}
7032 	}
7033 
7034 	if (got_semaphore_here != 0) {
7035 		sema_v(&un->un_semoclose);
7036 	}
7037 	/*
7038 	 * On exit put the state back to it's original value
7039 	 * and broadcast to anyone waiting for the power
7040 	 * change completion.
7041 	 */
7042 	mutex_enter(SD_MUTEX(un));
7043 	un->un_state = state_before_pm;
7044 	cv_broadcast(&un->un_suspend_cv);
7045 	mutex_exit(SD_MUTEX(un));
7046 
7047 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
7048 
7049 	sd_ssc_fini(ssc);
7050 	return (rval);
7051 
7052 sdpower_failed:
7053 
7054 	sd_ssc_fini(ssc);
7055 	return (DDI_FAILURE);
7056 }
7057 
7058 
7059 
7060 /*
7061  *    Function: sdattach
7062  *
7063  * Description: Driver's attach(9e) entry point function.
7064  *
7065  *   Arguments: devi - opaque device info handle
7066  *		cmd  - attach  type
7067  *
7068  * Return Code: DDI_SUCCESS
7069  *		DDI_FAILURE
7070  *
7071  *     Context: Kernel thread context
7072  */
7073 
7074 static int
7075 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
7076 {
7077 	switch (cmd) {
7078 	case DDI_ATTACH:
7079 		return (sd_unit_attach(devi));
7080 	case DDI_RESUME:
7081 		return (sd_ddi_resume(devi));
7082 	default:
7083 		break;
7084 	}
7085 	return (DDI_FAILURE);
7086 }
7087 
7088 
7089 /*
7090  *    Function: sddetach
7091  *
7092  * Description: Driver's detach(9E) entry point function.
7093  *
7094  *   Arguments: devi - opaque device info handle
7095  *		cmd  - detach  type
7096  *
7097  * Return Code: DDI_SUCCESS
7098  *		DDI_FAILURE
7099  *
7100  *     Context: Kernel thread context
7101  */
7102 
7103 static int
7104 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
7105 {
7106 	switch (cmd) {
7107 	case DDI_DETACH:
7108 		return (sd_unit_detach(devi));
7109 	case DDI_SUSPEND:
7110 		return (sd_ddi_suspend(devi));
7111 	default:
7112 		break;
7113 	}
7114 	return (DDI_FAILURE);
7115 }
7116 
7117 
7118 /*
7119  *     Function: sd_sync_with_callback
7120  *
7121  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
7122  *		 state while the callback routine is active.
7123  *
7124  *    Arguments: un: softstate structure for the instance
7125  *
7126  *	Context: Kernel thread context
7127  */
7128 
7129 static void
7130 sd_sync_with_callback(struct sd_lun *un)
7131 {
7132 	ASSERT(un != NULL);
7133 
7134 	mutex_enter(SD_MUTEX(un));
7135 
7136 	ASSERT(un->un_in_callback >= 0);
7137 
7138 	while (un->un_in_callback > 0) {
7139 		mutex_exit(SD_MUTEX(un));
7140 		delay(2);
7141 		mutex_enter(SD_MUTEX(un));
7142 	}
7143 
7144 	mutex_exit(SD_MUTEX(un));
7145 }
7146 
7147 /*
7148  *    Function: sd_unit_attach
7149  *
7150  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
7151  *		the soft state structure for the device and performs
7152  *		all necessary structure and device initializations.
7153  *
7154  *   Arguments: devi: the system's dev_info_t for the device.
7155  *
7156  * Return Code: DDI_SUCCESS if attach is successful.
7157  *		DDI_FAILURE if any part of the attach fails.
7158  *
7159  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
7160  *		Kernel thread context only.  Can sleep.
7161  */
7162 
7163 static int
7164 sd_unit_attach(dev_info_t *devi)
7165 {
7166 	struct	scsi_device	*devp;
7167 	struct	sd_lun		*un;
7168 	char			*variantp;
7169 	char			name_str[48];
7170 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
7171 	int	instance;
7172 	int	rval;
7173 	int	wc_enabled;
7174 	int	tgt;
7175 	uint64_t	capacity;
7176 	uint_t		lbasize = 0;
7177 	dev_info_t	*pdip = ddi_get_parent(devi);
7178 	int		offbyone = 0;
7179 	int		geom_label_valid = 0;
7180 	sd_ssc_t	*ssc;
7181 	int		status;
7182 	struct sd_fm_internal	*sfip = NULL;
7183 	int		max_xfer_size;
7184 
7185 	/*
7186 	 * Retrieve the target driver's private data area. This was set
7187 	 * up by the HBA.
7188 	 */
7189 	devp = ddi_get_driver_private(devi);
7190 
7191 	/*
7192 	 * Retrieve the target ID of the device.
7193 	 */
7194 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7195 	    SCSI_ADDR_PROP_TARGET, -1);
7196 
7197 	/*
7198 	 * Since we have no idea what state things were left in by the last
7199 	 * user of the device, set up some 'default' settings, ie. turn 'em
7200 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
7201 	 * Do this before the scsi_probe, which sends an inquiry.
7202 	 * This is a fix for bug (4430280).
7203 	 * Of special importance is wide-xfer. The drive could have been left
7204 	 * in wide transfer mode by the last driver to communicate with it,
7205 	 * this includes us. If that's the case, and if the following is not
7206 	 * setup properly or we don't re-negotiate with the drive prior to
7207 	 * transferring data to/from the drive, it causes bus parity errors,
7208 	 * data overruns, and unexpected interrupts. This first occurred when
7209 	 * the fix for bug (4378686) was made.
7210 	 */
7211 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
7212 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
7213 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
7214 
7215 	/*
7216 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
7217 	 * on a target. Setting it per lun instance actually sets the
7218 	 * capability of this target, which affects those luns already
7219 	 * attached on the same target. So during attach, we can only disable
7220 	 * this capability only when no other lun has been attached on this
7221 	 * target. By doing this, we assume a target has the same tagged-qing
7222 	 * capability for every lun. The condition can be removed when HBA
7223 	 * is changed to support per lun based tagged-qing capability.
7224 	 */
7225 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
7226 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
7227 	}
7228 
7229 	/*
7230 	 * Use scsi_probe() to issue an INQUIRY command to the device.
7231 	 * This call will allocate and fill in the scsi_inquiry structure
7232 	 * and point the sd_inq member of the scsi_device structure to it.
7233 	 * If the attach succeeds, then this memory will not be de-allocated
7234 	 * (via scsi_unprobe()) until the instance is detached.
7235 	 */
7236 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
7237 		goto probe_failed;
7238 	}
7239 
7240 	/*
7241 	 * Check the device type as specified in the inquiry data and
7242 	 * claim it if it is of a type that we support.
7243 	 */
7244 	switch (devp->sd_inq->inq_dtype) {
7245 	case DTYPE_DIRECT:
7246 		break;
7247 	case DTYPE_RODIRECT:
7248 		break;
7249 	case DTYPE_OPTICAL:
7250 		break;
7251 	case DTYPE_NOTPRESENT:
7252 	default:
7253 		/* Unsupported device type; fail the attach. */
7254 		goto probe_failed;
7255 	}
7256 
7257 	/*
7258 	 * Allocate the soft state structure for this unit.
7259 	 *
7260 	 * We rely upon this memory being set to all zeroes by
7261 	 * ddi_soft_state_zalloc().  We assume that any member of the
7262 	 * soft state structure that is not explicitly initialized by
7263 	 * this routine will have a value of zero.
7264 	 */
7265 	instance = ddi_get_instance(devp->sd_dev);
7266 #ifndef XPV_HVM_DRIVER
7267 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
7268 		goto probe_failed;
7269 	}
7270 #endif /* !XPV_HVM_DRIVER */
7271 
7272 	/*
7273 	 * Retrieve a pointer to the newly-allocated soft state.
7274 	 *
7275 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
7276 	 * was successful, unless something has gone horribly wrong and the
7277 	 * ddi's soft state internals are corrupt (in which case it is
7278 	 * probably better to halt here than just fail the attach....)
7279 	 */
7280 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
7281 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
7282 		    instance);
7283 		/*NOTREACHED*/
7284 	}
7285 
7286 	/*
7287 	 * Link the back ptr of the driver soft state to the scsi_device
7288 	 * struct for this lun.
7289 	 * Save a pointer to the softstate in the driver-private area of
7290 	 * the scsi_device struct.
7291 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
7292 	 * we first set un->un_sd below.
7293 	 */
7294 	un->un_sd = devp;
7295 	devp->sd_private = (opaque_t)un;
7296 
7297 	/*
7298 	 * The following must be after devp is stored in the soft state struct.
7299 	 */
7300 #ifdef SDDEBUG
7301 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7302 	    "%s_unit_attach: un:0x%p instance:%d\n",
7303 	    ddi_driver_name(devi), un, instance);
7304 #endif
7305 
7306 	/*
7307 	 * Set up the device type and node type (for the minor nodes).
7308 	 * By default we assume that the device can at least support the
7309 	 * Common Command Set. Call it a CD-ROM if it reports itself
7310 	 * as a RODIRECT device.
7311 	 */
7312 	switch (devp->sd_inq->inq_dtype) {
7313 	case DTYPE_RODIRECT:
7314 		un->un_node_type = DDI_NT_CD_CHAN;
7315 		un->un_ctype	 = CTYPE_CDROM;
7316 		break;
7317 	case DTYPE_OPTICAL:
7318 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7319 		un->un_ctype	 = CTYPE_ROD;
7320 		break;
7321 	default:
7322 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7323 		un->un_ctype	 = CTYPE_CCS;
7324 		break;
7325 	}
7326 
7327 	/*
7328 	 * Try to read the interconnect type from the HBA.
7329 	 *
7330 	 * Note: This driver is currently compiled as two binaries, a parallel
7331 	 * scsi version (sd) and a fibre channel version (ssd). All functional
7332 	 * differences are determined at compile time. In the future a single
7333 	 * binary will be provided and the interconnect type will be used to
7334 	 * differentiate between fibre and parallel scsi behaviors. At that time
7335 	 * it will be necessary for all fibre channel HBAs to support this
7336 	 * property.
7337 	 *
7338 	 * set un_f_is_fiber to TRUE ( default fiber )
7339 	 */
7340 	un->un_f_is_fibre = TRUE;
7341 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
7342 	case INTERCONNECT_SSA:
7343 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
7344 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7345 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
7346 		break;
7347 	case INTERCONNECT_PARALLEL:
7348 		un->un_f_is_fibre = FALSE;
7349 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7350 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7351 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
7352 		break;
7353 	case INTERCONNECT_SAS:
7354 		un->un_f_is_fibre = FALSE;
7355 		un->un_interconnect_type = SD_INTERCONNECT_SAS;
7356 		un->un_node_type = DDI_NT_BLOCK_SAS;
7357 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7358 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SAS\n", un);
7359 		break;
7360 	case INTERCONNECT_SATA:
7361 		un->un_f_is_fibre = FALSE;
7362 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
7363 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7364 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
7365 		break;
7366 	case INTERCONNECT_FIBRE:
7367 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
7368 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7369 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
7370 		break;
7371 	case INTERCONNECT_FABRIC:
7372 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
7373 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
7374 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7375 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
7376 		break;
7377 	default:
7378 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
7379 		/*
7380 		 * The HBA does not support the "interconnect-type" property
7381 		 * (or did not provide a recognized type).
7382 		 *
7383 		 * Note: This will be obsoleted when a single fibre channel
7384 		 * and parallel scsi driver is delivered. In the meantime the
7385 		 * interconnect type will be set to the platform default.If that
7386 		 * type is not parallel SCSI, it means that we should be
7387 		 * assuming "ssd" semantics. However, here this also means that
7388 		 * the FC HBA is not supporting the "interconnect-type" property
7389 		 * like we expect it to, so log this occurrence.
7390 		 */
7391 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
7392 		if (!SD_IS_PARALLEL_SCSI(un)) {
7393 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7394 			    "sd_unit_attach: un:0x%p Assuming "
7395 			    "INTERCONNECT_FIBRE\n", un);
7396 		} else {
7397 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7398 			    "sd_unit_attach: un:0x%p Assuming "
7399 			    "INTERCONNECT_PARALLEL\n", un);
7400 			un->un_f_is_fibre = FALSE;
7401 		}
7402 #else
7403 		/*
7404 		 * Note: This source will be implemented when a single fibre
7405 		 * channel and parallel scsi driver is delivered. The default
7406 		 * will be to assume that if a device does not support the
7407 		 * "interconnect-type" property it is a parallel SCSI HBA and
7408 		 * we will set the interconnect type for parallel scsi.
7409 		 */
7410 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7411 		un->un_f_is_fibre = FALSE;
7412 #endif
7413 		break;
7414 	}
7415 
7416 	if (un->un_f_is_fibre == TRUE) {
7417 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
7418 		    SCSI_VERSION_3) {
7419 			switch (un->un_interconnect_type) {
7420 			case SD_INTERCONNECT_FIBRE:
7421 			case SD_INTERCONNECT_SSA:
7422 				un->un_node_type = DDI_NT_BLOCK_WWN;
7423 				break;
7424 			default:
7425 				break;
7426 			}
7427 		}
7428 	}
7429 
7430 	/*
7431 	 * Initialize the Request Sense command for the target
7432 	 */
7433 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
7434 		goto alloc_rqs_failed;
7435 	}
7436 
7437 	/*
7438 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
7439 	 * with separate binary for sd and ssd.
7440 	 *
7441 	 * x86 has 1 binary, un_retry_count is set base on connection type.
7442 	 * The hardcoded values will go away when Sparc uses 1 binary
7443 	 * for sd and ssd.  This hardcoded values need to match
7444 	 * SD_RETRY_COUNT in sddef.h
7445 	 * The value used is base on interconnect type.
7446 	 * fibre = 3, parallel = 5
7447 	 */
7448 #if defined(__i386) || defined(__amd64)
7449 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
7450 #else
7451 	un->un_retry_count = SD_RETRY_COUNT;
7452 #endif
7453 
7454 	/*
7455 	 * Set the per disk retry count to the default number of retries
7456 	 * for disks and CDROMs. This value can be overridden by the
7457 	 * disk property list or an entry in sd.conf.
7458 	 */
7459 	un->un_notready_retry_count =
7460 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
7461 	    : DISK_NOT_READY_RETRY_COUNT(un);
7462 
7463 	/*
7464 	 * Set the busy retry count to the default value of un_retry_count.
7465 	 * This can be overridden by entries in sd.conf or the device
7466 	 * config table.
7467 	 */
7468 	un->un_busy_retry_count = un->un_retry_count;
7469 
7470 	/*
7471 	 * Init the reset threshold for retries.  This number determines
7472 	 * how many retries must be performed before a reset can be issued
7473 	 * (for certain error conditions). This can be overridden by entries
7474 	 * in sd.conf or the device config table.
7475 	 */
7476 	un->un_reset_retry_count = (un->un_retry_count / 2);
7477 
7478 	/*
7479 	 * Set the victim_retry_count to the default un_retry_count
7480 	 */
7481 	un->un_victim_retry_count = (2 * un->un_retry_count);
7482 
7483 	/*
7484 	 * Set the reservation release timeout to the default value of
7485 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
7486 	 * device config table.
7487 	 */
7488 	un->un_reserve_release_time = 5;
7489 
7490 	/*
7491 	 * Set up the default maximum transfer size. Note that this may
7492 	 * get updated later in the attach, when setting up default wide
7493 	 * operations for disks.
7494 	 */
7495 #if defined(__i386) || defined(__amd64)
7496 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
7497 	un->un_partial_dma_supported = 1;
7498 #else
7499 	un->un_max_xfer_size = (uint_t)maxphys;
7500 #endif
7501 
7502 	/*
7503 	 * Get "allow bus device reset" property (defaults to "enabled" if
7504 	 * the property was not defined). This is to disable bus resets for
7505 	 * certain kinds of error recovery. Note: In the future when a run-time
7506 	 * fibre check is available the soft state flag should default to
7507 	 * enabled.
7508 	 */
7509 	if (un->un_f_is_fibre == TRUE) {
7510 		un->un_f_allow_bus_device_reset = TRUE;
7511 	} else {
7512 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7513 		    "allow-bus-device-reset", 1) != 0) {
7514 			un->un_f_allow_bus_device_reset = TRUE;
7515 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7516 			    "sd_unit_attach: un:0x%p Bus device reset "
7517 			    "enabled\n", un);
7518 		} else {
7519 			un->un_f_allow_bus_device_reset = FALSE;
7520 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7521 			    "sd_unit_attach: un:0x%p Bus device reset "
7522 			    "disabled\n", un);
7523 		}
7524 	}
7525 
7526 	/*
7527 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
7528 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
7529 	 *
7530 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
7531 	 * property. The new "variant" property with a value of "atapi" has been
7532 	 * introduced so that future 'variants' of standard SCSI behavior (like
7533 	 * atapi) could be specified by the underlying HBA drivers by supplying
7534 	 * a new value for the "variant" property, instead of having to define a
7535 	 * new property.
7536 	 */
7537 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
7538 		un->un_f_cfg_is_atapi = TRUE;
7539 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7540 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
7541 	}
7542 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
7543 	    &variantp) == DDI_PROP_SUCCESS) {
7544 		if (strcmp(variantp, "atapi") == 0) {
7545 			un->un_f_cfg_is_atapi = TRUE;
7546 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7547 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
7548 		}
7549 		ddi_prop_free(variantp);
7550 	}
7551 
7552 	un->un_cmd_timeout	= SD_IO_TIME;
7553 
7554 	un->un_busy_timeout  = SD_BSY_TIMEOUT;
7555 
7556 	/* Info on current states, statuses, etc. (Updated frequently) */
7557 	un->un_state		= SD_STATE_NORMAL;
7558 	un->un_last_state	= SD_STATE_NORMAL;
7559 
7560 	/* Control & status info for command throttling */
7561 	un->un_throttle		= sd_max_throttle;
7562 	un->un_saved_throttle	= sd_max_throttle;
7563 	un->un_min_throttle	= sd_min_throttle;
7564 
7565 	if (un->un_f_is_fibre == TRUE) {
7566 		un->un_f_use_adaptive_throttle = TRUE;
7567 	} else {
7568 		un->un_f_use_adaptive_throttle = FALSE;
7569 	}
7570 
7571 	/* Removable media support. */
7572 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
7573 	un->un_mediastate		= DKIO_NONE;
7574 	un->un_specified_mediastate	= DKIO_NONE;
7575 
7576 	/* CVs for suspend/resume (PM or DR) */
7577 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
7578 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
7579 
7580 	/* Power management support. */
7581 	un->un_power_level = SD_SPINDLE_UNINIT;
7582 
7583 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
7584 	un->un_f_wcc_inprog = 0;
7585 
7586 	/*
7587 	 * The open/close semaphore is used to serialize threads executing
7588 	 * in the driver's open & close entry point routines for a given
7589 	 * instance.
7590 	 */
7591 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
7592 
7593 	/*
7594 	 * The conf file entry and softstate variable is a forceful override,
7595 	 * meaning a non-zero value must be entered to change the default.
7596 	 */
7597 	un->un_f_disksort_disabled = FALSE;
7598 	un->un_f_rmw_type = SD_RMW_TYPE_DEFAULT;
7599 	un->un_f_enable_rmw = FALSE;
7600 
7601 	/*
7602 	 * GET EVENT STATUS NOTIFICATION media polling enabled by default, but
7603 	 * can be overridden via [s]sd-config-list "mmc-gesn-polling" property.
7604 	 */
7605 	un->un_f_mmc_gesn_polling = TRUE;
7606 
7607 	/*
7608 	 * Retrieve the properties from the static driver table or the driver
7609 	 * configuration file (.conf) for this unit and update the soft state
7610 	 * for the device as needed for the indicated properties.
7611 	 * Note: the property configuration needs to occur here as some of the
7612 	 * following routines may have dependencies on soft state flags set
7613 	 * as part of the driver property configuration.
7614 	 */
7615 	sd_read_unit_properties(un);
7616 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7617 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
7618 
7619 	/*
7620 	 * Only if a device has "hotpluggable" property, it is
7621 	 * treated as hotpluggable device. Otherwise, it is
7622 	 * regarded as non-hotpluggable one.
7623 	 */
7624 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
7625 	    -1) != -1) {
7626 		un->un_f_is_hotpluggable = TRUE;
7627 	}
7628 
7629 	/*
7630 	 * set unit's attributes(flags) according to "hotpluggable" and
7631 	 * RMB bit in INQUIRY data.
7632 	 */
7633 	sd_set_unit_attributes(un, devi);
7634 
7635 	/*
7636 	 * By default, we mark the capacity, lbasize, and geometry
7637 	 * as invalid. Only if we successfully read a valid capacity
7638 	 * will we update the un_blockcount and un_tgt_blocksize with the
7639 	 * valid values (the geometry will be validated later).
7640 	 */
7641 	un->un_f_blockcount_is_valid	= FALSE;
7642 	un->un_f_tgt_blocksize_is_valid	= FALSE;
7643 
7644 	/*
7645 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
7646 	 * otherwise.
7647 	 */
7648 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
7649 	un->un_blockcount = 0;
7650 
7651 	/*
7652 	 * physical sector size default to DEV_BSIZE currently.
7653 	 */
7654 	un->un_phy_blocksize = DEV_BSIZE;
7655 
7656 	/*
7657 	 * Set up the per-instance info needed to determine the correct
7658 	 * CDBs and other info for issuing commands to the target.
7659 	 */
7660 	sd_init_cdb_limits(un);
7661 
7662 	/*
7663 	 * Set up the IO chains to use, based upon the target type.
7664 	 */
7665 	if (un->un_f_non_devbsize_supported) {
7666 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
7667 	} else {
7668 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
7669 	}
7670 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
7671 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
7672 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
7673 
7674 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
7675 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
7676 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
7677 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
7678 
7679 
7680 	if (ISCD(un)) {
7681 		un->un_additional_codes = sd_additional_codes;
7682 	} else {
7683 		un->un_additional_codes = NULL;
7684 	}
7685 
7686 	/*
7687 	 * Create the kstats here so they can be available for attach-time
7688 	 * routines that send commands to the unit (either polled or via
7689 	 * sd_send_scsi_cmd).
7690 	 *
7691 	 * Note: This is a critical sequence that needs to be maintained:
7692 	 *	1) Instantiate the kstats here, before any routines using the
7693 	 *	   iopath (i.e. sd_send_scsi_cmd).
7694 	 *	2) Instantiate and initialize the partition stats
7695 	 *	   (sd_set_pstats).
7696 	 *	3) Initialize the error stats (sd_set_errstats), following
7697 	 *	   sd_validate_geometry(),sd_register_devid(),
7698 	 *	   and sd_cache_control().
7699 	 */
7700 
7701 	un->un_stats = kstat_create(sd_label, instance,
7702 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
7703 	if (un->un_stats != NULL) {
7704 		un->un_stats->ks_lock = SD_MUTEX(un);
7705 		kstat_install(un->un_stats);
7706 	}
7707 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7708 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
7709 
7710 	sd_create_errstats(un, instance);
7711 	if (un->un_errstats == NULL) {
7712 		goto create_errstats_failed;
7713 	}
7714 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7715 	    "sd_unit_attach: un:0x%p errstats created\n", un);
7716 
7717 	/*
7718 	 * The following if/else code was relocated here from below as part
7719 	 * of the fix for bug (4430280). However with the default setup added
7720 	 * on entry to this routine, it's no longer absolutely necessary for
7721 	 * this to be before the call to sd_spin_up_unit.
7722 	 */
7723 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
7724 		int tq_trigger_flag = (((devp->sd_inq->inq_ansi == 4) ||
7725 		    (devp->sd_inq->inq_ansi == 5)) &&
7726 		    devp->sd_inq->inq_bque) || devp->sd_inq->inq_cmdque;
7727 
7728 		/*
7729 		 * If tagged queueing is supported by the target
7730 		 * and by the host adapter then we will enable it
7731 		 */
7732 		un->un_tagflags = 0;
7733 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && tq_trigger_flag &&
7734 		    (un->un_f_arq_enabled == TRUE)) {
7735 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
7736 			    1, 1) == 1) {
7737 				un->un_tagflags = FLAG_STAG;
7738 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7739 				    "sd_unit_attach: un:0x%p tag queueing "
7740 				    "enabled\n", un);
7741 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
7742 			    "untagged-qing", 0) == 1) {
7743 				un->un_f_opt_queueing = TRUE;
7744 				un->un_saved_throttle = un->un_throttle =
7745 				    min(un->un_throttle, 3);
7746 			} else {
7747 				un->un_f_opt_queueing = FALSE;
7748 				un->un_saved_throttle = un->un_throttle = 1;
7749 			}
7750 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
7751 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
7752 			/* The Host Adapter supports internal queueing. */
7753 			un->un_f_opt_queueing = TRUE;
7754 			un->un_saved_throttle = un->un_throttle =
7755 			    min(un->un_throttle, 3);
7756 		} else {
7757 			un->un_f_opt_queueing = FALSE;
7758 			un->un_saved_throttle = un->un_throttle = 1;
7759 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7760 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
7761 		}
7762 
7763 		/*
7764 		 * Enable large transfers for SATA/SAS drives
7765 		 */
7766 		if (SD_IS_SERIAL(un)) {
7767 			un->un_max_xfer_size =
7768 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7769 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
7770 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7771 			    "sd_unit_attach: un:0x%p max transfer "
7772 			    "size=0x%x\n", un, un->un_max_xfer_size);
7773 
7774 		}
7775 
7776 		/* Setup or tear down default wide operations for disks */
7777 
7778 		/*
7779 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
7780 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
7781 		 * system and be set to different values. In the future this
7782 		 * code may need to be updated when the ssd module is
7783 		 * obsoleted and removed from the system. (4299588)
7784 		 */
7785 		if (SD_IS_PARALLEL_SCSI(un) &&
7786 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
7787 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
7788 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7789 			    1, 1) == 1) {
7790 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7791 				    "sd_unit_attach: un:0x%p Wide Transfer "
7792 				    "enabled\n", un);
7793 			}
7794 
7795 			/*
7796 			 * If tagged queuing has also been enabled, then
7797 			 * enable large xfers
7798 			 */
7799 			if (un->un_saved_throttle == sd_max_throttle) {
7800 				un->un_max_xfer_size =
7801 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7802 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
7803 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7804 				    "sd_unit_attach: un:0x%p max transfer "
7805 				    "size=0x%x\n", un, un->un_max_xfer_size);
7806 			}
7807 		} else {
7808 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7809 			    0, 1) == 1) {
7810 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7811 				    "sd_unit_attach: un:0x%p "
7812 				    "Wide Transfer disabled\n", un);
7813 			}
7814 		}
7815 	} else {
7816 		un->un_tagflags = FLAG_STAG;
7817 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
7818 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
7819 	}
7820 
7821 	/*
7822 	 * If this target supports LUN reset, try to enable it.
7823 	 */
7824 	if (un->un_f_lun_reset_enabled) {
7825 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
7826 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7827 			    "un:0x%p lun_reset capability set\n", un);
7828 		} else {
7829 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7830 			    "un:0x%p lun-reset capability not set\n", un);
7831 		}
7832 	}
7833 
7834 	/*
7835 	 * Adjust the maximum transfer size. This is to fix
7836 	 * the problem of partial DMA support on SPARC. Some
7837 	 * HBA driver, like aac, has very small dma_attr_maxxfer
7838 	 * size, which requires partial DMA support on SPARC.
7839 	 * In the future the SPARC pci nexus driver may solve
7840 	 * the problem instead of this fix.
7841 	 */
7842 	max_xfer_size = scsi_ifgetcap(SD_ADDRESS(un), "dma-max", 1);
7843 	if ((max_xfer_size > 0) && (max_xfer_size < un->un_max_xfer_size)) {
7844 		/* We need DMA partial even on sparc to ensure sddump() works */
7845 		un->un_max_xfer_size = max_xfer_size;
7846 		if (un->un_partial_dma_supported == 0)
7847 			un->un_partial_dma_supported = 1;
7848 	}
7849 	if (ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
7850 	    DDI_PROP_DONTPASS, "buf_break", 0) == 1) {
7851 		if (ddi_xbuf_attr_setup_brk(un->un_xbuf_attr,
7852 		    un->un_max_xfer_size) == 1) {
7853 			un->un_buf_breakup_supported = 1;
7854 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7855 			    "un:0x%p Buf breakup enabled\n", un);
7856 		}
7857 	}
7858 
7859 	/*
7860 	 * Set PKT_DMA_PARTIAL flag.
7861 	 */
7862 	if (un->un_partial_dma_supported == 1) {
7863 		un->un_pkt_flags = PKT_DMA_PARTIAL;
7864 	} else {
7865 		un->un_pkt_flags = 0;
7866 	}
7867 
7868 	/* Initialize sd_ssc_t for internal uscsi commands */
7869 	ssc = sd_ssc_init(un);
7870 	scsi_fm_init(devp);
7871 
7872 	/*
7873 	 * Allocate memory for SCSI FMA stuffs.
7874 	 */
7875 	un->un_fm_private =
7876 	    kmem_zalloc(sizeof (struct sd_fm_internal), KM_SLEEP);
7877 	sfip = (struct sd_fm_internal *)un->un_fm_private;
7878 	sfip->fm_ssc.ssc_uscsi_cmd = &sfip->fm_ucmd;
7879 	sfip->fm_ssc.ssc_uscsi_info = &sfip->fm_uinfo;
7880 	sfip->fm_ssc.ssc_un = un;
7881 
7882 	if (ISCD(un) ||
7883 	    un->un_f_has_removable_media ||
7884 	    devp->sd_fm_capable == DDI_FM_NOT_CAPABLE) {
7885 		/*
7886 		 * We don't touch CDROM or the DDI_FM_NOT_CAPABLE device.
7887 		 * Their log are unchanged.
7888 		 */
7889 		sfip->fm_log_level = SD_FM_LOG_NSUP;
7890 	} else {
7891 		/*
7892 		 * If enter here, it should be non-CDROM and FM-capable
7893 		 * device, and it will not keep the old scsi_log as before
7894 		 * in /var/adm/messages. However, the property
7895 		 * "fm-scsi-log" will control whether the FM telemetry will
7896 		 * be logged in /var/adm/messages.
7897 		 */
7898 		int fm_scsi_log;
7899 		fm_scsi_log = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
7900 		    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "fm-scsi-log", 0);
7901 
7902 		if (fm_scsi_log)
7903 			sfip->fm_log_level = SD_FM_LOG_EREPORT;
7904 		else
7905 			sfip->fm_log_level = SD_FM_LOG_SILENT;
7906 	}
7907 
7908 	/*
7909 	 * At this point in the attach, we have enough info in the
7910 	 * soft state to be able to issue commands to the target.
7911 	 *
7912 	 * All command paths used below MUST issue their commands as
7913 	 * SD_PATH_DIRECT. This is important as intermediate layers
7914 	 * are not all initialized yet (such as PM).
7915 	 */
7916 
7917 	/*
7918 	 * Send a TEST UNIT READY command to the device. This should clear
7919 	 * any outstanding UNIT ATTENTION that may be present.
7920 	 *
7921 	 * Note: Don't check for success, just track if there is a reservation,
7922 	 * this is a throw away command to clear any unit attentions.
7923 	 *
7924 	 * Note: This MUST be the first command issued to the target during
7925 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
7926 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
7927 	 * with attempts at spinning up a device with no media.
7928 	 */
7929 	status = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
7930 	if (status != 0) {
7931 		if (status == EACCES)
7932 			reservation_flag = SD_TARGET_IS_RESERVED;
7933 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7934 	}
7935 
7936 	/*
7937 	 * If the device is NOT a removable media device, attempt to spin
7938 	 * it up (using the START_STOP_UNIT command) and read its capacity
7939 	 * (using the READ CAPACITY command).  Note, however, that either
7940 	 * of these could fail and in some cases we would continue with
7941 	 * the attach despite the failure (see below).
7942 	 */
7943 	if (un->un_f_descr_format_supported) {
7944 
7945 		switch (sd_spin_up_unit(ssc)) {
7946 		case 0:
7947 			/*
7948 			 * Spin-up was successful; now try to read the
7949 			 * capacity.  If successful then save the results
7950 			 * and mark the capacity & lbasize as valid.
7951 			 */
7952 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7953 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
7954 
7955 			status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
7956 			    &lbasize, SD_PATH_DIRECT);
7957 
7958 			switch (status) {
7959 			case 0: {
7960 				if (capacity > DK_MAX_BLOCKS) {
7961 #ifdef _LP64
7962 					if ((capacity + 1) >
7963 					    SD_GROUP1_MAX_ADDRESS) {
7964 						/*
7965 						 * Enable descriptor format
7966 						 * sense data so that we can
7967 						 * get 64 bit sense data
7968 						 * fields.
7969 						 */
7970 						sd_enable_descr_sense(ssc);
7971 					}
7972 #else
7973 					/* 32-bit kernels can't handle this */
7974 					scsi_log(SD_DEVINFO(un),
7975 					    sd_label, CE_WARN,
7976 					    "disk has %llu blocks, which "
7977 					    "is too large for a 32-bit "
7978 					    "kernel", capacity);
7979 
7980 #if defined(__i386) || defined(__amd64)
7981 					/*
7982 					 * 1TB disk was treated as (1T - 512)B
7983 					 * in the past, so that it might have
7984 					 * valid VTOC and solaris partitions,
7985 					 * we have to allow it to continue to
7986 					 * work.
7987 					 */
7988 					if (capacity -1 > DK_MAX_BLOCKS)
7989 #endif
7990 					goto spinup_failed;
7991 #endif
7992 				}
7993 
7994 				/*
7995 				 * Here it's not necessary to check the case:
7996 				 * the capacity of the device is bigger than
7997 				 * what the max hba cdb can support. Because
7998 				 * sd_send_scsi_READ_CAPACITY will retrieve
7999 				 * the capacity by sending USCSI command, which
8000 				 * is constrained by the max hba cdb. Actually,
8001 				 * sd_send_scsi_READ_CAPACITY will return
8002 				 * EINVAL when using bigger cdb than required
8003 				 * cdb length. Will handle this case in
8004 				 * "case EINVAL".
8005 				 */
8006 
8007 				/*
8008 				 * The following relies on
8009 				 * sd_send_scsi_READ_CAPACITY never
8010 				 * returning 0 for capacity and/or lbasize.
8011 				 */
8012 				sd_update_block_info(un, lbasize, capacity);
8013 
8014 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8015 				    "sd_unit_attach: un:0x%p capacity = %ld "
8016 				    "blocks; lbasize= %ld.\n", un,
8017 				    un->un_blockcount, un->un_tgt_blocksize);
8018 
8019 				break;
8020 			}
8021 			case EINVAL:
8022 				/*
8023 				 * In the case where the max-cdb-length property
8024 				 * is smaller than the required CDB length for
8025 				 * a SCSI device, a target driver can fail to
8026 				 * attach to that device.
8027 				 */
8028 				scsi_log(SD_DEVINFO(un),
8029 				    sd_label, CE_WARN,
8030 				    "disk capacity is too large "
8031 				    "for current cdb length");
8032 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8033 
8034 				goto spinup_failed;
8035 			case EACCES:
8036 				/*
8037 				 * Should never get here if the spin-up
8038 				 * succeeded, but code it in anyway.
8039 				 * From here, just continue with the attach...
8040 				 */
8041 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8042 				    "sd_unit_attach: un:0x%p "
8043 				    "sd_send_scsi_READ_CAPACITY "
8044 				    "returned reservation conflict\n", un);
8045 				reservation_flag = SD_TARGET_IS_RESERVED;
8046 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8047 				break;
8048 			default:
8049 				/*
8050 				 * Likewise, should never get here if the
8051 				 * spin-up succeeded. Just continue with
8052 				 * the attach...
8053 				 */
8054 				if (status == EIO)
8055 					sd_ssc_assessment(ssc,
8056 					    SD_FMT_STATUS_CHECK);
8057 				else
8058 					sd_ssc_assessment(ssc,
8059 					    SD_FMT_IGNORE);
8060 				break;
8061 			}
8062 			break;
8063 		case EACCES:
8064 			/*
8065 			 * Device is reserved by another host.  In this case
8066 			 * we could not spin it up or read the capacity, but
8067 			 * we continue with the attach anyway.
8068 			 */
8069 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8070 			    "sd_unit_attach: un:0x%p spin-up reservation "
8071 			    "conflict.\n", un);
8072 			reservation_flag = SD_TARGET_IS_RESERVED;
8073 			break;
8074 		default:
8075 			/* Fail the attach if the spin-up failed. */
8076 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8077 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
8078 			goto spinup_failed;
8079 		}
8080 
8081 	}
8082 
8083 	/*
8084 	 * Check to see if this is a MMC drive
8085 	 */
8086 	if (ISCD(un)) {
8087 		sd_set_mmc_caps(ssc);
8088 	}
8089 
8090 	/*
8091 	 * Add a zero-length attribute to tell the world we support
8092 	 * kernel ioctls (for layered drivers)
8093 	 */
8094 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8095 	    DDI_KERNEL_IOCTL, NULL, 0);
8096 
8097 	/*
8098 	 * Add a boolean property to tell the world we support
8099 	 * the B_FAILFAST flag (for layered drivers)
8100 	 */
8101 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8102 	    "ddi-failfast-supported", NULL, 0);
8103 
8104 	/*
8105 	 * Initialize power management
8106 	 */
8107 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
8108 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
8109 	sd_setup_pm(ssc, devi);
8110 	if (un->un_f_pm_is_enabled == FALSE) {
8111 		/*
8112 		 * For performance, point to a jump table that does
8113 		 * not include pm.
8114 		 * The direct and priority chains don't change with PM.
8115 		 *
8116 		 * Note: this is currently done based on individual device
8117 		 * capabilities. When an interface for determining system
8118 		 * power enabled state becomes available, or when additional
8119 		 * layers are added to the command chain, these values will
8120 		 * have to be re-evaluated for correctness.
8121 		 */
8122 		if (un->un_f_non_devbsize_supported) {
8123 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
8124 		} else {
8125 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
8126 		}
8127 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8128 	}
8129 
8130 	/*
8131 	 * This property is set to 0 by HA software to avoid retries
8132 	 * on a reserved disk. (The preferred property name is
8133 	 * "retry-on-reservation-conflict") (1189689)
8134 	 *
8135 	 * Note: The use of a global here can have unintended consequences. A
8136 	 * per instance variable is preferable to match the capabilities of
8137 	 * different underlying hba's (4402600)
8138 	 */
8139 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
8140 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
8141 	    sd_retry_on_reservation_conflict);
8142 	if (sd_retry_on_reservation_conflict != 0) {
8143 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
8144 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
8145 		    sd_retry_on_reservation_conflict);
8146 	}
8147 
8148 	/* Set up options for QFULL handling. */
8149 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8150 	    "qfull-retries", -1)) != -1) {
8151 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
8152 		    rval, 1);
8153 	}
8154 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8155 	    "qfull-retry-interval", -1)) != -1) {
8156 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
8157 		    rval, 1);
8158 	}
8159 
8160 	/*
8161 	 * This just prints a message that announces the existence of the
8162 	 * device. The message is always printed in the system logfile, but
8163 	 * only appears on the console if the system is booted with the
8164 	 * -v (verbose) argument.
8165 	 */
8166 	ddi_report_dev(devi);
8167 
8168 	un->un_mediastate = DKIO_NONE;
8169 
8170 	/*
8171 	 * Check if this is a SSD(Solid State Drive).
8172 	 */
8173 	sd_check_solid_state(ssc);
8174 
8175 	/*
8176 	 * Check whether the drive is in emulation mode.
8177 	 */
8178 	sd_check_emulation_mode(ssc);
8179 
8180 	cmlb_alloc_handle(&un->un_cmlbhandle);
8181 
8182 #if defined(__i386) || defined(__amd64)
8183 	/*
8184 	 * On x86, compensate for off-by-1 legacy error
8185 	 */
8186 	if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
8187 	    (lbasize == un->un_sys_blocksize))
8188 		offbyone = CMLB_OFF_BY_ONE;
8189 #endif
8190 
8191 	if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype,
8192 	    VOID2BOOLEAN(un->un_f_has_removable_media != 0),
8193 	    VOID2BOOLEAN(un->un_f_is_hotpluggable != 0),
8194 	    un->un_node_type, offbyone, un->un_cmlbhandle,
8195 	    (void *)SD_PATH_DIRECT) != 0) {
8196 		goto cmlb_attach_failed;
8197 	}
8198 
8199 
8200 	/*
8201 	 * Read and validate the device's geometry (ie, disk label)
8202 	 * A new unformatted drive will not have a valid geometry, but
8203 	 * the driver needs to successfully attach to this device so
8204 	 * the drive can be formatted via ioctls.
8205 	 */
8206 	geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0,
8207 	    (void *)SD_PATH_DIRECT) == 0) ? 1: 0;
8208 
8209 	mutex_enter(SD_MUTEX(un));
8210 
8211 	/*
8212 	 * Read and initialize the devid for the unit.
8213 	 */
8214 	if (un->un_f_devid_supported) {
8215 		sd_register_devid(ssc, devi, reservation_flag);
8216 	}
8217 	mutex_exit(SD_MUTEX(un));
8218 
8219 #if (defined(__fibre))
8220 	/*
8221 	 * Register callbacks for fibre only.  You can't do this solely
8222 	 * on the basis of the devid_type because this is hba specific.
8223 	 * We need to query our hba capabilities to find out whether to
8224 	 * register or not.
8225 	 */
8226 	if (un->un_f_is_fibre) {
8227 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
8228 			sd_init_event_callbacks(un);
8229 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8230 			    "sd_unit_attach: un:0x%p event callbacks inserted",
8231 			    un);
8232 		}
8233 	}
8234 #endif
8235 
8236 	if (un->un_f_opt_disable_cache == TRUE) {
8237 		/*
8238 		 * Disable both read cache and write cache.  This is
8239 		 * the historic behavior of the keywords in the config file.
8240 		 */
8241 		if (sd_cache_control(ssc, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
8242 		    0) {
8243 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8244 			    "sd_unit_attach: un:0x%p Could not disable "
8245 			    "caching", un);
8246 			goto devid_failed;
8247 		}
8248 	}
8249 
8250 	/*
8251 	 * Check the value of the WCE bit now and
8252 	 * set un_f_write_cache_enabled accordingly.
8253 	 */
8254 	(void) sd_get_write_cache_enabled(ssc, &wc_enabled);
8255 	mutex_enter(SD_MUTEX(un));
8256 	un->un_f_write_cache_enabled = (wc_enabled != 0);
8257 	mutex_exit(SD_MUTEX(un));
8258 
8259 	if ((un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR &&
8260 	    un->un_tgt_blocksize != DEV_BSIZE) ||
8261 	    un->un_f_enable_rmw) {
8262 		if (!(un->un_wm_cache)) {
8263 			(void) snprintf(name_str, sizeof (name_str),
8264 			    "%s%d_cache",
8265 			    ddi_driver_name(SD_DEVINFO(un)),
8266 			    ddi_get_instance(SD_DEVINFO(un)));
8267 			un->un_wm_cache = kmem_cache_create(
8268 			    name_str, sizeof (struct sd_w_map),
8269 			    8, sd_wm_cache_constructor,
8270 			    sd_wm_cache_destructor, NULL,
8271 			    (void *)un, NULL, 0);
8272 			if (!(un->un_wm_cache)) {
8273 				goto wm_cache_failed;
8274 			}
8275 		}
8276 	}
8277 
8278 	/*
8279 	 * Check the value of the NV_SUP bit and set
8280 	 * un_f_suppress_cache_flush accordingly.
8281 	 */
8282 	sd_get_nv_sup(ssc);
8283 
8284 	/*
8285 	 * Find out what type of reservation this disk supports.
8286 	 */
8287 	status = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS, 0, NULL);
8288 
8289 	switch (status) {
8290 	case 0:
8291 		/*
8292 		 * SCSI-3 reservations are supported.
8293 		 */
8294 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8295 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8296 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
8297 		break;
8298 	case ENOTSUP:
8299 		/*
8300 		 * The PERSISTENT RESERVE IN command would not be recognized by
8301 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
8302 		 */
8303 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8304 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
8305 		un->un_reservation_type = SD_SCSI2_RESERVATION;
8306 
8307 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8308 		break;
8309 	default:
8310 		/*
8311 		 * default to SCSI-3 reservations
8312 		 */
8313 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8314 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
8315 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8316 
8317 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8318 		break;
8319 	}
8320 
8321 	/*
8322 	 * Set the pstat and error stat values here, so data obtained during the
8323 	 * previous attach-time routines is available.
8324 	 *
8325 	 * Note: This is a critical sequence that needs to be maintained:
8326 	 *	1) Instantiate the kstats before any routines using the iopath
8327 	 *	   (i.e. sd_send_scsi_cmd).
8328 	 *	2) Initialize the error stats (sd_set_errstats) and partition
8329 	 *	   stats (sd_set_pstats)here, following
8330 	 *	   cmlb_validate_geometry(), sd_register_devid(), and
8331 	 *	   sd_cache_control().
8332 	 */
8333 
8334 	if (un->un_f_pkstats_enabled && geom_label_valid) {
8335 		sd_set_pstats(un);
8336 		SD_TRACE(SD_LOG_IO_PARTITION, un,
8337 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
8338 	}
8339 
8340 	sd_set_errstats(un);
8341 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8342 	    "sd_unit_attach: un:0x%p errstats set\n", un);
8343 
8344 
8345 	/*
8346 	 * After successfully attaching an instance, we record the information
8347 	 * of how many luns have been attached on the relative target and
8348 	 * controller for parallel SCSI. This information is used when sd tries
8349 	 * to set the tagged queuing capability in HBA.
8350 	 */
8351 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
8352 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
8353 	}
8354 
8355 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8356 	    "sd_unit_attach: un:0x%p exit success\n", un);
8357 
8358 	/* Uninitialize sd_ssc_t pointer */
8359 	sd_ssc_fini(ssc);
8360 
8361 	return (DDI_SUCCESS);
8362 
8363 	/*
8364 	 * An error occurred during the attach; clean up & return failure.
8365 	 */
8366 wm_cache_failed:
8367 devid_failed:
8368 
8369 setup_pm_failed:
8370 	ddi_remove_minor_node(devi, NULL);
8371 
8372 cmlb_attach_failed:
8373 	/*
8374 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8375 	 */
8376 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8377 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8378 
8379 	/*
8380 	 * Refer to the comments of setting tagged-qing in the beginning of
8381 	 * sd_unit_attach. We can only disable tagged queuing when there is
8382 	 * no lun attached on the target.
8383 	 */
8384 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
8385 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8386 	}
8387 
8388 	if (un->un_f_is_fibre == FALSE) {
8389 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8390 	}
8391 
8392 spinup_failed:
8393 
8394 	/* Uninitialize sd_ssc_t pointer */
8395 	sd_ssc_fini(ssc);
8396 
8397 	mutex_enter(SD_MUTEX(un));
8398 
8399 	/* Deallocate SCSI FMA memory spaces */
8400 	kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
8401 
8402 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
8403 	if (un->un_direct_priority_timeid != NULL) {
8404 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8405 		un->un_direct_priority_timeid = NULL;
8406 		mutex_exit(SD_MUTEX(un));
8407 		(void) untimeout(temp_id);
8408 		mutex_enter(SD_MUTEX(un));
8409 	}
8410 
8411 	/* Cancel any pending start/stop timeouts */
8412 	if (un->un_startstop_timeid != NULL) {
8413 		timeout_id_t temp_id = un->un_startstop_timeid;
8414 		un->un_startstop_timeid = NULL;
8415 		mutex_exit(SD_MUTEX(un));
8416 		(void) untimeout(temp_id);
8417 		mutex_enter(SD_MUTEX(un));
8418 	}
8419 
8420 	/* Cancel any pending reset-throttle timeouts */
8421 	if (un->un_reset_throttle_timeid != NULL) {
8422 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8423 		un->un_reset_throttle_timeid = NULL;
8424 		mutex_exit(SD_MUTEX(un));
8425 		(void) untimeout(temp_id);
8426 		mutex_enter(SD_MUTEX(un));
8427 	}
8428 
8429 	/* Cancel rmw warning message timeouts */
8430 	if (un->un_rmw_msg_timeid != NULL) {
8431 		timeout_id_t temp_id = un->un_rmw_msg_timeid;
8432 		un->un_rmw_msg_timeid = NULL;
8433 		mutex_exit(SD_MUTEX(un));
8434 		(void) untimeout(temp_id);
8435 		mutex_enter(SD_MUTEX(un));
8436 	}
8437 
8438 	/* Cancel any pending retry timeouts */
8439 	if (un->un_retry_timeid != NULL) {
8440 		timeout_id_t temp_id = un->un_retry_timeid;
8441 		un->un_retry_timeid = NULL;
8442 		mutex_exit(SD_MUTEX(un));
8443 		(void) untimeout(temp_id);
8444 		mutex_enter(SD_MUTEX(un));
8445 	}
8446 
8447 	/* Cancel any pending delayed cv broadcast timeouts */
8448 	if (un->un_dcvb_timeid != NULL) {
8449 		timeout_id_t temp_id = un->un_dcvb_timeid;
8450 		un->un_dcvb_timeid = NULL;
8451 		mutex_exit(SD_MUTEX(un));
8452 		(void) untimeout(temp_id);
8453 		mutex_enter(SD_MUTEX(un));
8454 	}
8455 
8456 	mutex_exit(SD_MUTEX(un));
8457 
8458 	/* There should not be any in-progress I/O so ASSERT this check */
8459 	ASSERT(un->un_ncmds_in_transport == 0);
8460 	ASSERT(un->un_ncmds_in_driver == 0);
8461 
8462 	/* Do not free the softstate if the callback routine is active */
8463 	sd_sync_with_callback(un);
8464 
8465 	/*
8466 	 * Partition stats apparently are not used with removables. These would
8467 	 * not have been created during attach, so no need to clean them up...
8468 	 */
8469 	if (un->un_errstats != NULL) {
8470 		kstat_delete(un->un_errstats);
8471 		un->un_errstats = NULL;
8472 	}
8473 
8474 create_errstats_failed:
8475 
8476 	if (un->un_stats != NULL) {
8477 		kstat_delete(un->un_stats);
8478 		un->un_stats = NULL;
8479 	}
8480 
8481 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8482 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8483 
8484 	ddi_prop_remove_all(devi);
8485 	sema_destroy(&un->un_semoclose);
8486 	cv_destroy(&un->un_state_cv);
8487 
8488 getrbuf_failed:
8489 
8490 	sd_free_rqs(un);
8491 
8492 alloc_rqs_failed:
8493 
8494 	devp->sd_private = NULL;
8495 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
8496 
8497 get_softstate_failed:
8498 	/*
8499 	 * Note: the man pages are unclear as to whether or not doing a
8500 	 * ddi_soft_state_free(sd_state, instance) is the right way to
8501 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
8502 	 * ddi_get_soft_state() fails.  The implication seems to be
8503 	 * that the get_soft_state cannot fail if the zalloc succeeds.
8504 	 */
8505 #ifndef XPV_HVM_DRIVER
8506 	ddi_soft_state_free(sd_state, instance);
8507 #endif /* !XPV_HVM_DRIVER */
8508 
8509 probe_failed:
8510 	scsi_unprobe(devp);
8511 
8512 	return (DDI_FAILURE);
8513 }
8514 
8515 
8516 /*
8517  *    Function: sd_unit_detach
8518  *
8519  * Description: Performs DDI_DETACH processing for sddetach().
8520  *
8521  * Return Code: DDI_SUCCESS
8522  *		DDI_FAILURE
8523  *
8524  *     Context: Kernel thread context
8525  */
8526 
8527 static int
8528 sd_unit_detach(dev_info_t *devi)
8529 {
8530 	struct scsi_device	*devp;
8531 	struct sd_lun		*un;
8532 	int			i;
8533 	int			tgt;
8534 	dev_t			dev;
8535 	dev_info_t		*pdip = ddi_get_parent(devi);
8536 #ifndef XPV_HVM_DRIVER
8537 	int			instance = ddi_get_instance(devi);
8538 #endif /* !XPV_HVM_DRIVER */
8539 
8540 	mutex_enter(&sd_detach_mutex);
8541 
8542 	/*
8543 	 * Fail the detach for any of the following:
8544 	 *  - Unable to get the sd_lun struct for the instance
8545 	 *  - A layered driver has an outstanding open on the instance
8546 	 *  - Another thread is already detaching this instance
8547 	 *  - Another thread is currently performing an open
8548 	 */
8549 	devp = ddi_get_driver_private(devi);
8550 	if ((devp == NULL) ||
8551 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
8552 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
8553 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
8554 		mutex_exit(&sd_detach_mutex);
8555 		return (DDI_FAILURE);
8556 	}
8557 
8558 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
8559 
8560 	/*
8561 	 * Mark this instance as currently in a detach, to inhibit any
8562 	 * opens from a layered driver.
8563 	 */
8564 	un->un_detach_count++;
8565 	mutex_exit(&sd_detach_mutex);
8566 
8567 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
8568 	    SCSI_ADDR_PROP_TARGET, -1);
8569 
8570 	dev = sd_make_device(SD_DEVINFO(un));
8571 
8572 #ifndef lint
8573 	_NOTE(COMPETING_THREADS_NOW);
8574 #endif
8575 
8576 	mutex_enter(SD_MUTEX(un));
8577 
8578 	/*
8579 	 * Fail the detach if there are any outstanding layered
8580 	 * opens on this device.
8581 	 */
8582 	for (i = 0; i < NDKMAP; i++) {
8583 		if (un->un_ocmap.lyropen[i] != 0) {
8584 			goto err_notclosed;
8585 		}
8586 	}
8587 
8588 	/*
8589 	 * Verify there are NO outstanding commands issued to this device.
8590 	 * ie, un_ncmds_in_transport == 0.
8591 	 * It's possible to have outstanding commands through the physio
8592 	 * code path, even though everything's closed.
8593 	 */
8594 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
8595 	    (un->un_direct_priority_timeid != NULL) ||
8596 	    (un->un_state == SD_STATE_RWAIT)) {
8597 		mutex_exit(SD_MUTEX(un));
8598 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8599 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
8600 		goto err_stillbusy;
8601 	}
8602 
8603 	/*
8604 	 * If we have the device reserved, release the reservation.
8605 	 */
8606 	if ((un->un_resvd_status & SD_RESERVE) &&
8607 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
8608 		mutex_exit(SD_MUTEX(un));
8609 		/*
8610 		 * Note: sd_reserve_release sends a command to the device
8611 		 * via the sd_ioctlcmd() path, and can sleep.
8612 		 */
8613 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
8614 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8615 			    "sd_dr_detach: Cannot release reservation \n");
8616 		}
8617 	} else {
8618 		mutex_exit(SD_MUTEX(un));
8619 	}
8620 
8621 	/*
8622 	 * Untimeout any reserve recover, throttle reset, restart unit
8623 	 * and delayed broadcast timeout threads. Protect the timeout pointer
8624 	 * from getting nulled by their callback functions.
8625 	 */
8626 	mutex_enter(SD_MUTEX(un));
8627 	if (un->un_resvd_timeid != NULL) {
8628 		timeout_id_t temp_id = un->un_resvd_timeid;
8629 		un->un_resvd_timeid = NULL;
8630 		mutex_exit(SD_MUTEX(un));
8631 		(void) untimeout(temp_id);
8632 		mutex_enter(SD_MUTEX(un));
8633 	}
8634 
8635 	if (un->un_reset_throttle_timeid != NULL) {
8636 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8637 		un->un_reset_throttle_timeid = NULL;
8638 		mutex_exit(SD_MUTEX(un));
8639 		(void) untimeout(temp_id);
8640 		mutex_enter(SD_MUTEX(un));
8641 	}
8642 
8643 	if (un->un_startstop_timeid != NULL) {
8644 		timeout_id_t temp_id = un->un_startstop_timeid;
8645 		un->un_startstop_timeid = NULL;
8646 		mutex_exit(SD_MUTEX(un));
8647 		(void) untimeout(temp_id);
8648 		mutex_enter(SD_MUTEX(un));
8649 	}
8650 
8651 	if (un->un_rmw_msg_timeid != NULL) {
8652 		timeout_id_t temp_id = un->un_rmw_msg_timeid;
8653 		un->un_rmw_msg_timeid = NULL;
8654 		mutex_exit(SD_MUTEX(un));
8655 		(void) untimeout(temp_id);
8656 		mutex_enter(SD_MUTEX(un));
8657 	}
8658 
8659 	if (un->un_dcvb_timeid != NULL) {
8660 		timeout_id_t temp_id = un->un_dcvb_timeid;
8661 		un->un_dcvb_timeid = NULL;
8662 		mutex_exit(SD_MUTEX(un));
8663 		(void) untimeout(temp_id);
8664 	} else {
8665 		mutex_exit(SD_MUTEX(un));
8666 	}
8667 
8668 	/* Remove any pending reservation reclaim requests for this device */
8669 	sd_rmv_resv_reclaim_req(dev);
8670 
8671 	mutex_enter(SD_MUTEX(un));
8672 
8673 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
8674 	if (un->un_direct_priority_timeid != NULL) {
8675 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8676 		un->un_direct_priority_timeid = NULL;
8677 		mutex_exit(SD_MUTEX(un));
8678 		(void) untimeout(temp_id);
8679 		mutex_enter(SD_MUTEX(un));
8680 	}
8681 
8682 	/* Cancel any active multi-host disk watch thread requests */
8683 	if (un->un_mhd_token != NULL) {
8684 		mutex_exit(SD_MUTEX(un));
8685 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
8686 		if (scsi_watch_request_terminate(un->un_mhd_token,
8687 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8688 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8689 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
8690 			/*
8691 			 * Note: We are returning here after having removed
8692 			 * some driver timeouts above. This is consistent with
8693 			 * the legacy implementation but perhaps the watch
8694 			 * terminate call should be made with the wait flag set.
8695 			 */
8696 			goto err_stillbusy;
8697 		}
8698 		mutex_enter(SD_MUTEX(un));
8699 		un->un_mhd_token = NULL;
8700 	}
8701 
8702 	if (un->un_swr_token != NULL) {
8703 		mutex_exit(SD_MUTEX(un));
8704 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
8705 		if (scsi_watch_request_terminate(un->un_swr_token,
8706 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8707 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8708 			    "sd_dr_detach: Cannot cancel swr watch request\n");
8709 			/*
8710 			 * Note: We are returning here after having removed
8711 			 * some driver timeouts above. This is consistent with
8712 			 * the legacy implementation but perhaps the watch
8713 			 * terminate call should be made with the wait flag set.
8714 			 */
8715 			goto err_stillbusy;
8716 		}
8717 		mutex_enter(SD_MUTEX(un));
8718 		un->un_swr_token = NULL;
8719 	}
8720 
8721 	mutex_exit(SD_MUTEX(un));
8722 
8723 	/*
8724 	 * Clear any scsi_reset_notifies. We clear the reset notifies
8725 	 * if we have not registered one.
8726 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
8727 	 */
8728 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
8729 	    sd_mhd_reset_notify_cb, (caddr_t)un);
8730 
8731 	/*
8732 	 * protect the timeout pointers from getting nulled by
8733 	 * their callback functions during the cancellation process.
8734 	 * In such a scenario untimeout can be invoked with a null value.
8735 	 */
8736 	_NOTE(NO_COMPETING_THREADS_NOW);
8737 
8738 	mutex_enter(&un->un_pm_mutex);
8739 	if (un->un_pm_idle_timeid != NULL) {
8740 		timeout_id_t temp_id = un->un_pm_idle_timeid;
8741 		un->un_pm_idle_timeid = NULL;
8742 		mutex_exit(&un->un_pm_mutex);
8743 
8744 		/*
8745 		 * Timeout is active; cancel it.
8746 		 * Note that it'll never be active on a device
8747 		 * that does not support PM therefore we don't
8748 		 * have to check before calling pm_idle_component.
8749 		 */
8750 		(void) untimeout(temp_id);
8751 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8752 		mutex_enter(&un->un_pm_mutex);
8753 	}
8754 
8755 	/*
8756 	 * Check whether there is already a timeout scheduled for power
8757 	 * management. If yes then don't lower the power here, that's.
8758 	 * the timeout handler's job.
8759 	 */
8760 	if (un->un_pm_timeid != NULL) {
8761 		timeout_id_t temp_id = un->un_pm_timeid;
8762 		un->un_pm_timeid = NULL;
8763 		mutex_exit(&un->un_pm_mutex);
8764 		/*
8765 		 * Timeout is active; cancel it.
8766 		 * Note that it'll never be active on a device
8767 		 * that does not support PM therefore we don't
8768 		 * have to check before calling pm_idle_component.
8769 		 */
8770 		(void) untimeout(temp_id);
8771 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8772 
8773 	} else {
8774 		mutex_exit(&un->un_pm_mutex);
8775 		if ((un->un_f_pm_is_enabled == TRUE) &&
8776 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_PM_STATE_STOPPED(un))
8777 		    != DDI_SUCCESS)) {
8778 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8779 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
8780 			/*
8781 			 * Fix for bug: 4297749, item # 13
8782 			 * The above test now includes a check to see if PM is
8783 			 * supported by this device before call
8784 			 * pm_lower_power().
8785 			 * Note, the following is not dead code. The call to
8786 			 * pm_lower_power above will generate a call back into
8787 			 * our sdpower routine which might result in a timeout
8788 			 * handler getting activated. Therefore the following
8789 			 * code is valid and necessary.
8790 			 */
8791 			mutex_enter(&un->un_pm_mutex);
8792 			if (un->un_pm_timeid != NULL) {
8793 				timeout_id_t temp_id = un->un_pm_timeid;
8794 				un->un_pm_timeid = NULL;
8795 				mutex_exit(&un->un_pm_mutex);
8796 				(void) untimeout(temp_id);
8797 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8798 			} else {
8799 				mutex_exit(&un->un_pm_mutex);
8800 			}
8801 		}
8802 	}
8803 
8804 	/*
8805 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8806 	 * Relocated here from above to be after the call to
8807 	 * pm_lower_power, which was getting errors.
8808 	 */
8809 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8810 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8811 
8812 	/*
8813 	 * Currently, tagged queuing is supported per target based by HBA.
8814 	 * Setting this per lun instance actually sets the capability of this
8815 	 * target in HBA, which affects those luns already attached on the
8816 	 * same target. So during detach, we can only disable this capability
8817 	 * only when this is the only lun left on this target. By doing
8818 	 * this, we assume a target has the same tagged queuing capability
8819 	 * for every lun. The condition can be removed when HBA is changed to
8820 	 * support per lun based tagged queuing capability.
8821 	 */
8822 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
8823 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8824 	}
8825 
8826 	if (un->un_f_is_fibre == FALSE) {
8827 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8828 	}
8829 
8830 	/*
8831 	 * Remove any event callbacks, fibre only
8832 	 */
8833 	if (un->un_f_is_fibre == TRUE) {
8834 		if ((un->un_insert_event != NULL) &&
8835 		    (ddi_remove_event_handler(un->un_insert_cb_id) !=
8836 		    DDI_SUCCESS)) {
8837 			/*
8838 			 * Note: We are returning here after having done
8839 			 * substantial cleanup above. This is consistent
8840 			 * with the legacy implementation but this may not
8841 			 * be the right thing to do.
8842 			 */
8843 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8844 			    "sd_dr_detach: Cannot cancel insert event\n");
8845 			goto err_remove_event;
8846 		}
8847 		un->un_insert_event = NULL;
8848 
8849 		if ((un->un_remove_event != NULL) &&
8850 		    (ddi_remove_event_handler(un->un_remove_cb_id) !=
8851 		    DDI_SUCCESS)) {
8852 			/*
8853 			 * Note: We are returning here after having done
8854 			 * substantial cleanup above. This is consistent
8855 			 * with the legacy implementation but this may not
8856 			 * be the right thing to do.
8857 			 */
8858 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8859 			    "sd_dr_detach: Cannot cancel remove event\n");
8860 			goto err_remove_event;
8861 		}
8862 		un->un_remove_event = NULL;
8863 	}
8864 
8865 	/* Do not free the softstate if the callback routine is active */
8866 	sd_sync_with_callback(un);
8867 
8868 	cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
8869 	cmlb_free_handle(&un->un_cmlbhandle);
8870 
8871 	/*
8872 	 * Hold the detach mutex here, to make sure that no other threads ever
8873 	 * can access a (partially) freed soft state structure.
8874 	 */
8875 	mutex_enter(&sd_detach_mutex);
8876 
8877 	/*
8878 	 * Clean up the soft state struct.
8879 	 * Cleanup is done in reverse order of allocs/inits.
8880 	 * At this point there should be no competing threads anymore.
8881 	 */
8882 
8883 	scsi_fm_fini(devp);
8884 
8885 	/*
8886 	 * Deallocate memory for SCSI FMA.
8887 	 */
8888 	kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
8889 
8890 	/*
8891 	 * Unregister and free device id if it was not registered
8892 	 * by the transport.
8893 	 */
8894 	if (un->un_f_devid_transport_defined == FALSE)
8895 		ddi_devid_unregister(devi);
8896 
8897 	/*
8898 	 * free the devid structure if allocated before (by ddi_devid_init()
8899 	 * or ddi_devid_get()).
8900 	 */
8901 	if (un->un_devid) {
8902 		ddi_devid_free(un->un_devid);
8903 		un->un_devid = NULL;
8904 	}
8905 
8906 	/*
8907 	 * Destroy wmap cache if it exists.
8908 	 */
8909 	if (un->un_wm_cache != NULL) {
8910 		kmem_cache_destroy(un->un_wm_cache);
8911 		un->un_wm_cache = NULL;
8912 	}
8913 
8914 	/*
8915 	 * kstat cleanup is done in detach for all device types (4363169).
8916 	 * We do not want to fail detach if the device kstats are not deleted
8917 	 * since there is a confusion about the devo_refcnt for the device.
8918 	 * We just delete the kstats and let detach complete successfully.
8919 	 */
8920 	if (un->un_stats != NULL) {
8921 		kstat_delete(un->un_stats);
8922 		un->un_stats = NULL;
8923 	}
8924 	if (un->un_errstats != NULL) {
8925 		kstat_delete(un->un_errstats);
8926 		un->un_errstats = NULL;
8927 	}
8928 
8929 	/* Remove partition stats */
8930 	if (un->un_f_pkstats_enabled) {
8931 		for (i = 0; i < NSDMAP; i++) {
8932 			if (un->un_pstats[i] != NULL) {
8933 				kstat_delete(un->un_pstats[i]);
8934 				un->un_pstats[i] = NULL;
8935 			}
8936 		}
8937 	}
8938 
8939 	/* Remove xbuf registration */
8940 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8941 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8942 
8943 	/* Remove driver properties */
8944 	ddi_prop_remove_all(devi);
8945 
8946 	mutex_destroy(&un->un_pm_mutex);
8947 	cv_destroy(&un->un_pm_busy_cv);
8948 
8949 	cv_destroy(&un->un_wcc_cv);
8950 
8951 	/* Open/close semaphore */
8952 	sema_destroy(&un->un_semoclose);
8953 
8954 	/* Removable media condvar. */
8955 	cv_destroy(&un->un_state_cv);
8956 
8957 	/* Suspend/resume condvar. */
8958 	cv_destroy(&un->un_suspend_cv);
8959 	cv_destroy(&un->un_disk_busy_cv);
8960 
8961 	sd_free_rqs(un);
8962 
8963 	/* Free up soft state */
8964 	devp->sd_private = NULL;
8965 
8966 	bzero(un, sizeof (struct sd_lun));
8967 #ifndef XPV_HVM_DRIVER
8968 	ddi_soft_state_free(sd_state, instance);
8969 #endif /* !XPV_HVM_DRIVER */
8970 
8971 	mutex_exit(&sd_detach_mutex);
8972 
8973 	/* This frees up the INQUIRY data associated with the device. */
8974 	scsi_unprobe(devp);
8975 
8976 	/*
8977 	 * After successfully detaching an instance, we update the information
8978 	 * of how many luns have been attached in the relative target and
8979 	 * controller for parallel SCSI. This information is used when sd tries
8980 	 * to set the tagged queuing capability in HBA.
8981 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
8982 	 * check if the device is parallel SCSI. However, we don't need to
8983 	 * check here because we've already checked during attach. No device
8984 	 * that is not parallel SCSI is in the chain.
8985 	 */
8986 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
8987 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
8988 	}
8989 
8990 	return (DDI_SUCCESS);
8991 
8992 err_notclosed:
8993 	mutex_exit(SD_MUTEX(un));
8994 
8995 err_stillbusy:
8996 	_NOTE(NO_COMPETING_THREADS_NOW);
8997 
8998 err_remove_event:
8999 	mutex_enter(&sd_detach_mutex);
9000 	un->un_detach_count--;
9001 	mutex_exit(&sd_detach_mutex);
9002 
9003 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
9004 	return (DDI_FAILURE);
9005 }
9006 
9007 
9008 /*
9009  *    Function: sd_create_errstats
9010  *
9011  * Description: This routine instantiates the device error stats.
9012  *
9013  *		Note: During attach the stats are instantiated first so they are
9014  *		available for attach-time routines that utilize the driver
9015  *		iopath to send commands to the device. The stats are initialized
9016  *		separately so data obtained during some attach-time routines is
9017  *		available. (4362483)
9018  *
9019  *   Arguments: un - driver soft state (unit) structure
9020  *		instance - driver instance
9021  *
9022  *     Context: Kernel thread context
9023  */
9024 
9025 static void
9026 sd_create_errstats(struct sd_lun *un, int instance)
9027 {
9028 	struct	sd_errstats	*stp;
9029 	char	kstatmodule_err[KSTAT_STRLEN];
9030 	char	kstatname[KSTAT_STRLEN];
9031 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
9032 
9033 	ASSERT(un != NULL);
9034 
9035 	if (un->un_errstats != NULL) {
9036 		return;
9037 	}
9038 
9039 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
9040 	    "%serr", sd_label);
9041 	(void) snprintf(kstatname, sizeof (kstatname),
9042 	    "%s%d,err", sd_label, instance);
9043 
9044 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
9045 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
9046 
9047 	if (un->un_errstats == NULL) {
9048 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9049 		    "sd_create_errstats: Failed kstat_create\n");
9050 		return;
9051 	}
9052 
9053 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9054 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
9055 	    KSTAT_DATA_UINT32);
9056 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
9057 	    KSTAT_DATA_UINT32);
9058 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
9059 	    KSTAT_DATA_UINT32);
9060 	kstat_named_init(&stp->sd_vid,		"Vendor",
9061 	    KSTAT_DATA_CHAR);
9062 	kstat_named_init(&stp->sd_pid,		"Product",
9063 	    KSTAT_DATA_CHAR);
9064 	kstat_named_init(&stp->sd_revision,	"Revision",
9065 	    KSTAT_DATA_CHAR);
9066 	kstat_named_init(&stp->sd_serial,	"Serial No",
9067 	    KSTAT_DATA_CHAR);
9068 	kstat_named_init(&stp->sd_capacity,	"Size",
9069 	    KSTAT_DATA_ULONGLONG);
9070 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
9071 	    KSTAT_DATA_UINT32);
9072 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
9073 	    KSTAT_DATA_UINT32);
9074 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
9075 	    KSTAT_DATA_UINT32);
9076 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
9077 	    KSTAT_DATA_UINT32);
9078 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
9079 	    KSTAT_DATA_UINT32);
9080 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
9081 	    KSTAT_DATA_UINT32);
9082 
9083 	un->un_errstats->ks_private = un;
9084 	un->un_errstats->ks_update  = nulldev;
9085 
9086 	kstat_install(un->un_errstats);
9087 }
9088 
9089 
9090 /*
9091  *    Function: sd_set_errstats
9092  *
9093  * Description: This routine sets the value of the vendor id, product id,
9094  *		revision, serial number, and capacity device error stats.
9095  *
9096  *		Note: During attach the stats are instantiated first so they are
9097  *		available for attach-time routines that utilize the driver
9098  *		iopath to send commands to the device. The stats are initialized
9099  *		separately so data obtained during some attach-time routines is
9100  *		available. (4362483)
9101  *
9102  *   Arguments: un - driver soft state (unit) structure
9103  *
9104  *     Context: Kernel thread context
9105  */
9106 
9107 static void
9108 sd_set_errstats(struct sd_lun *un)
9109 {
9110 	struct	sd_errstats	*stp;
9111 	char 			*sn;
9112 
9113 	ASSERT(un != NULL);
9114 	ASSERT(un->un_errstats != NULL);
9115 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9116 	ASSERT(stp != NULL);
9117 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
9118 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
9119 	(void) strncpy(stp->sd_revision.value.c,
9120 	    un->un_sd->sd_inq->inq_revision, 4);
9121 
9122 	/*
9123 	 * All the errstats are persistent across detach/attach,
9124 	 * so reset all the errstats here in case of the hot
9125 	 * replacement of disk drives, except for not changed
9126 	 * Sun qualified drives.
9127 	 */
9128 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
9129 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9130 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
9131 		stp->sd_softerrs.value.ui32 = 0;
9132 		stp->sd_harderrs.value.ui32 = 0;
9133 		stp->sd_transerrs.value.ui32 = 0;
9134 		stp->sd_rq_media_err.value.ui32 = 0;
9135 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
9136 		stp->sd_rq_nodev_err.value.ui32 = 0;
9137 		stp->sd_rq_recov_err.value.ui32 = 0;
9138 		stp->sd_rq_illrq_err.value.ui32 = 0;
9139 		stp->sd_rq_pfa_err.value.ui32 = 0;
9140 	}
9141 
9142 	/*
9143 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
9144 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
9145 	 * (4376302))
9146 	 */
9147 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
9148 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9149 		    sizeof (SD_INQUIRY(un)->inq_serial));
9150 	} else {
9151 		/*
9152 		 * Set the "Serial No" kstat for non-Sun qualified drives
9153 		 */
9154 		if (ddi_prop_lookup_string(DDI_DEV_T_ANY, SD_DEVINFO(un),
9155 		    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
9156 		    INQUIRY_SERIAL_NO, &sn) == DDI_SUCCESS) {
9157 			(void) strlcpy(stp->sd_serial.value.c, sn,
9158 			    sizeof (stp->sd_serial.value.c));
9159 			ddi_prop_free(sn);
9160 		}
9161 	}
9162 
9163 	if (un->un_f_blockcount_is_valid != TRUE) {
9164 		/*
9165 		 * Set capacity error stat to 0 for no media. This ensures
9166 		 * a valid capacity is displayed in response to 'iostat -E'
9167 		 * when no media is present in the device.
9168 		 */
9169 		stp->sd_capacity.value.ui64 = 0;
9170 	} else {
9171 		/*
9172 		 * Multiply un_blockcount by un->un_sys_blocksize to get
9173 		 * capacity.
9174 		 *
9175 		 * Note: for non-512 blocksize devices "un_blockcount" has been
9176 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
9177 		 * (un_tgt_blocksize / un->un_sys_blocksize).
9178 		 */
9179 		stp->sd_capacity.value.ui64 = (uint64_t)
9180 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
9181 	}
9182 }
9183 
9184 
9185 /*
9186  *    Function: sd_set_pstats
9187  *
9188  * Description: This routine instantiates and initializes the partition
9189  *              stats for each partition with more than zero blocks.
9190  *		(4363169)
9191  *
9192  *   Arguments: un - driver soft state (unit) structure
9193  *
9194  *     Context: Kernel thread context
9195  */
9196 
9197 static void
9198 sd_set_pstats(struct sd_lun *un)
9199 {
9200 	char	kstatname[KSTAT_STRLEN];
9201 	int	instance;
9202 	int	i;
9203 	diskaddr_t	nblks = 0;
9204 	char	*partname = NULL;
9205 
9206 	ASSERT(un != NULL);
9207 
9208 	instance = ddi_get_instance(SD_DEVINFO(un));
9209 
9210 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
9211 	for (i = 0; i < NSDMAP; i++) {
9212 
9213 		if (cmlb_partinfo(un->un_cmlbhandle, i,
9214 		    &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0)
9215 			continue;
9216 		mutex_enter(SD_MUTEX(un));
9217 
9218 		if ((un->un_pstats[i] == NULL) &&
9219 		    (nblks != 0)) {
9220 
9221 			(void) snprintf(kstatname, sizeof (kstatname),
9222 			    "%s%d,%s", sd_label, instance,
9223 			    partname);
9224 
9225 			un->un_pstats[i] = kstat_create(sd_label,
9226 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
9227 			    1, KSTAT_FLAG_PERSISTENT);
9228 			if (un->un_pstats[i] != NULL) {
9229 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
9230 				kstat_install(un->un_pstats[i]);
9231 			}
9232 		}
9233 		mutex_exit(SD_MUTEX(un));
9234 	}
9235 }
9236 
9237 
9238 #if (defined(__fibre))
9239 /*
9240  *    Function: sd_init_event_callbacks
9241  *
9242  * Description: This routine initializes the insertion and removal event
9243  *		callbacks. (fibre only)
9244  *
9245  *   Arguments: un - driver soft state (unit) structure
9246  *
9247  *     Context: Kernel thread context
9248  */
9249 
9250 static void
9251 sd_init_event_callbacks(struct sd_lun *un)
9252 {
9253 	ASSERT(un != NULL);
9254 
9255 	if ((un->un_insert_event == NULL) &&
9256 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
9257 	    &un->un_insert_event) == DDI_SUCCESS)) {
9258 		/*
9259 		 * Add the callback for an insertion event
9260 		 */
9261 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9262 		    un->un_insert_event, sd_event_callback, (void *)un,
9263 		    &(un->un_insert_cb_id));
9264 	}
9265 
9266 	if ((un->un_remove_event == NULL) &&
9267 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
9268 	    &un->un_remove_event) == DDI_SUCCESS)) {
9269 		/*
9270 		 * Add the callback for a removal event
9271 		 */
9272 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9273 		    un->un_remove_event, sd_event_callback, (void *)un,
9274 		    &(un->un_remove_cb_id));
9275 	}
9276 }
9277 
9278 
9279 /*
9280  *    Function: sd_event_callback
9281  *
9282  * Description: This routine handles insert/remove events (photon). The
9283  *		state is changed to OFFLINE which can be used to supress
9284  *		error msgs. (fibre only)
9285  *
9286  *   Arguments: un - driver soft state (unit) structure
9287  *
9288  *     Context: Callout thread context
9289  */
9290 /* ARGSUSED */
9291 static void
9292 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
9293     void *bus_impldata)
9294 {
9295 	struct sd_lun *un = (struct sd_lun *)arg;
9296 
9297 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
9298 	if (event == un->un_insert_event) {
9299 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
9300 		mutex_enter(SD_MUTEX(un));
9301 		if (un->un_state == SD_STATE_OFFLINE) {
9302 			if (un->un_last_state != SD_STATE_SUSPENDED) {
9303 				un->un_state = un->un_last_state;
9304 			} else {
9305 				/*
9306 				 * We have gone through SUSPEND/RESUME while
9307 				 * we were offline. Restore the last state
9308 				 */
9309 				un->un_state = un->un_save_state;
9310 			}
9311 		}
9312 		mutex_exit(SD_MUTEX(un));
9313 
9314 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
9315 	} else if (event == un->un_remove_event) {
9316 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
9317 		mutex_enter(SD_MUTEX(un));
9318 		/*
9319 		 * We need to handle an event callback that occurs during
9320 		 * the suspend operation, since we don't prevent it.
9321 		 */
9322 		if (un->un_state != SD_STATE_OFFLINE) {
9323 			if (un->un_state != SD_STATE_SUSPENDED) {
9324 				New_state(un, SD_STATE_OFFLINE);
9325 			} else {
9326 				un->un_last_state = SD_STATE_OFFLINE;
9327 			}
9328 		}
9329 		mutex_exit(SD_MUTEX(un));
9330 	} else {
9331 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
9332 		    "!Unknown event\n");
9333 	}
9334 
9335 }
9336 #endif
9337 
9338 /*
9339  *    Function: sd_cache_control()
9340  *
9341  * Description: This routine is the driver entry point for setting
9342  *		read and write caching by modifying the WCE (write cache
9343  *		enable) and RCD (read cache disable) bits of mode
9344  *		page 8 (MODEPAGE_CACHING).
9345  *
9346  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
9347  *                      structure for this target.
9348  *		rcd_flag - flag for controlling the read cache
9349  *		wce_flag - flag for controlling the write cache
9350  *
9351  * Return Code: EIO
9352  *		code returned by sd_send_scsi_MODE_SENSE and
9353  *		sd_send_scsi_MODE_SELECT
9354  *
9355  *     Context: Kernel Thread
9356  */
9357 
9358 static int
9359 sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag)
9360 {
9361 	struct mode_caching	*mode_caching_page;
9362 	uchar_t			*header;
9363 	size_t			buflen;
9364 	int			hdrlen;
9365 	int			bd_len;
9366 	int			rval = 0;
9367 	struct mode_header_grp2	*mhp;
9368 	struct sd_lun		*un;
9369 	int			status;
9370 
9371 	ASSERT(ssc != NULL);
9372 	un = ssc->ssc_un;
9373 	ASSERT(un != NULL);
9374 
9375 	/*
9376 	 * Do a test unit ready, otherwise a mode sense may not work if this
9377 	 * is the first command sent to the device after boot.
9378 	 */
9379 	status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
9380 	if (status != 0)
9381 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9382 
9383 	if (un->un_f_cfg_is_atapi == TRUE) {
9384 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9385 	} else {
9386 		hdrlen = MODE_HEADER_LENGTH;
9387 	}
9388 
9389 	/*
9390 	 * Allocate memory for the retrieved mode page and its headers.  Set
9391 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
9392 	 * we get all of the mode sense data otherwise, the mode select
9393 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
9394 	 */
9395 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
9396 	    sizeof (struct mode_cache_scsi3);
9397 
9398 	header = kmem_zalloc(buflen, KM_SLEEP);
9399 
9400 	/* Get the information from the device. */
9401 	if (un->un_f_cfg_is_atapi == TRUE) {
9402 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen,
9403 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9404 	} else {
9405 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
9406 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9407 	}
9408 
9409 	if (rval != 0) {
9410 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9411 		    "sd_cache_control: Mode Sense Failed\n");
9412 		goto mode_sense_failed;
9413 	}
9414 
9415 	/*
9416 	 * Determine size of Block Descriptors in order to locate
9417 	 * the mode page data. ATAPI devices return 0, SCSI devices
9418 	 * should return MODE_BLK_DESC_LENGTH.
9419 	 */
9420 	if (un->un_f_cfg_is_atapi == TRUE) {
9421 		mhp	= (struct mode_header_grp2 *)header;
9422 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9423 	} else {
9424 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9425 	}
9426 
9427 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9428 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0,
9429 		    "sd_cache_control: Mode Sense returned invalid block "
9430 		    "descriptor length\n");
9431 		rval = EIO;
9432 		goto mode_sense_failed;
9433 	}
9434 
9435 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9436 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
9437 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
9438 		    "sd_cache_control: Mode Sense caching page code mismatch "
9439 		    "%d\n", mode_caching_page->mode_page.code);
9440 		rval = EIO;
9441 		goto mode_sense_failed;
9442 	}
9443 
9444 	/* Check the relevant bits on successful mode sense. */
9445 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
9446 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
9447 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
9448 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
9449 
9450 		size_t sbuflen;
9451 		uchar_t save_pg;
9452 
9453 		/*
9454 		 * Construct select buffer length based on the
9455 		 * length of the sense data returned.
9456 		 */
9457 		sbuflen =  hdrlen + bd_len +
9458 		    sizeof (struct mode_page) +
9459 		    (int)mode_caching_page->mode_page.length;
9460 
9461 		/*
9462 		 * Set the caching bits as requested.
9463 		 */
9464 		if (rcd_flag == SD_CACHE_ENABLE)
9465 			mode_caching_page->rcd = 0;
9466 		else if (rcd_flag == SD_CACHE_DISABLE)
9467 			mode_caching_page->rcd = 1;
9468 
9469 		if (wce_flag == SD_CACHE_ENABLE)
9470 			mode_caching_page->wce = 1;
9471 		else if (wce_flag == SD_CACHE_DISABLE)
9472 			mode_caching_page->wce = 0;
9473 
9474 		/*
9475 		 * Save the page if the mode sense says the
9476 		 * drive supports it.
9477 		 */
9478 		save_pg = mode_caching_page->mode_page.ps ?
9479 		    SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
9480 
9481 		/* Clear reserved bits before mode select. */
9482 		mode_caching_page->mode_page.ps = 0;
9483 
9484 		/*
9485 		 * Clear out mode header for mode select.
9486 		 * The rest of the retrieved page will be reused.
9487 		 */
9488 		bzero(header, hdrlen);
9489 
9490 		if (un->un_f_cfg_is_atapi == TRUE) {
9491 			mhp = (struct mode_header_grp2 *)header;
9492 			mhp->bdesc_length_hi = bd_len >> 8;
9493 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
9494 		} else {
9495 			((struct mode_header *)header)->bdesc_length = bd_len;
9496 		}
9497 
9498 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9499 
9500 		/* Issue mode select to change the cache settings */
9501 		if (un->un_f_cfg_is_atapi == TRUE) {
9502 			rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, header,
9503 			    sbuflen, save_pg, SD_PATH_DIRECT);
9504 		} else {
9505 			rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header,
9506 			    sbuflen, save_pg, SD_PATH_DIRECT);
9507 		}
9508 
9509 	}
9510 
9511 
9512 mode_sense_failed:
9513 
9514 	kmem_free(header, buflen);
9515 
9516 	if (rval != 0) {
9517 		if (rval == EIO)
9518 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9519 		else
9520 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9521 	}
9522 	return (rval);
9523 }
9524 
9525 
9526 /*
9527  *    Function: sd_get_write_cache_enabled()
9528  *
9529  * Description: This routine is the driver entry point for determining if
9530  *		write caching is enabled.  It examines the WCE (write cache
9531  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
9532  *
9533  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
9534  *                      structure for this target.
9535  *		is_enabled - pointer to int where write cache enabled state
9536  *		is returned (non-zero -> write cache enabled)
9537  *
9538  *
9539  * Return Code: EIO
9540  *		code returned by sd_send_scsi_MODE_SENSE
9541  *
9542  *     Context: Kernel Thread
9543  *
9544  * NOTE: If ioctl is added to disable write cache, this sequence should
9545  * be followed so that no locking is required for accesses to
9546  * un->un_f_write_cache_enabled:
9547  * 	do mode select to clear wce
9548  * 	do synchronize cache to flush cache
9549  * 	set un->un_f_write_cache_enabled = FALSE
9550  *
9551  * Conversely, an ioctl to enable the write cache should be done
9552  * in this order:
9553  * 	set un->un_f_write_cache_enabled = TRUE
9554  * 	do mode select to set wce
9555  */
9556 
9557 static int
9558 sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled)
9559 {
9560 	struct mode_caching	*mode_caching_page;
9561 	uchar_t			*header;
9562 	size_t			buflen;
9563 	int			hdrlen;
9564 	int			bd_len;
9565 	int			rval = 0;
9566 	struct sd_lun		*un;
9567 	int			status;
9568 
9569 	ASSERT(ssc != NULL);
9570 	un = ssc->ssc_un;
9571 	ASSERT(un != NULL);
9572 	ASSERT(is_enabled != NULL);
9573 
9574 	/* in case of error, flag as enabled */
9575 	*is_enabled = TRUE;
9576 
9577 	/*
9578 	 * Do a test unit ready, otherwise a mode sense may not work if this
9579 	 * is the first command sent to the device after boot.
9580 	 */
9581 	status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
9582 
9583 	if (status != 0)
9584 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9585 
9586 	if (un->un_f_cfg_is_atapi == TRUE) {
9587 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9588 	} else {
9589 		hdrlen = MODE_HEADER_LENGTH;
9590 	}
9591 
9592 	/*
9593 	 * Allocate memory for the retrieved mode page and its headers.  Set
9594 	 * a pointer to the page itself.
9595 	 */
9596 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
9597 	header = kmem_zalloc(buflen, KM_SLEEP);
9598 
9599 	/* Get the information from the device. */
9600 	if (un->un_f_cfg_is_atapi == TRUE) {
9601 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen,
9602 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9603 	} else {
9604 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
9605 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9606 	}
9607 
9608 	if (rval != 0) {
9609 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9610 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
9611 		goto mode_sense_failed;
9612 	}
9613 
9614 	/*
9615 	 * Determine size of Block Descriptors in order to locate
9616 	 * the mode page data. ATAPI devices return 0, SCSI devices
9617 	 * should return MODE_BLK_DESC_LENGTH.
9618 	 */
9619 	if (un->un_f_cfg_is_atapi == TRUE) {
9620 		struct mode_header_grp2	*mhp;
9621 		mhp	= (struct mode_header_grp2 *)header;
9622 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9623 	} else {
9624 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9625 	}
9626 
9627 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9628 		/* FMA should make upset complain here */
9629 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0,
9630 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
9631 		    "block descriptor length\n");
9632 		rval = EIO;
9633 		goto mode_sense_failed;
9634 	}
9635 
9636 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9637 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
9638 		/* FMA could make upset complain here */
9639 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
9640 		    "sd_get_write_cache_enabled: Mode Sense caching page "
9641 		    "code mismatch %d\n", mode_caching_page->mode_page.code);
9642 		rval = EIO;
9643 		goto mode_sense_failed;
9644 	}
9645 	*is_enabled = mode_caching_page->wce;
9646 
9647 mode_sense_failed:
9648 	if (rval == 0) {
9649 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
9650 	} else if (rval == EIO) {
9651 		/*
9652 		 * Some disks do not support mode sense(6), we
9653 		 * should ignore this kind of error(sense key is
9654 		 * 0x5 - illegal request).
9655 		 */
9656 		uint8_t *sensep;
9657 		int senlen;
9658 
9659 		sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
9660 		senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
9661 		    ssc->ssc_uscsi_cmd->uscsi_rqresid);
9662 
9663 		if (senlen > 0 &&
9664 		    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
9665 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
9666 		} else {
9667 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9668 		}
9669 	} else {
9670 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9671 	}
9672 	kmem_free(header, buflen);
9673 	return (rval);
9674 }
9675 
9676 /*
9677  *    Function: sd_get_nv_sup()
9678  *
9679  * Description: This routine is the driver entry point for
9680  * determining whether non-volatile cache is supported. This
9681  * determination process works as follows:
9682  *
9683  * 1. sd first queries sd.conf on whether
9684  * suppress_cache_flush bit is set for this device.
9685  *
9686  * 2. if not there, then queries the internal disk table.
9687  *
9688  * 3. if either sd.conf or internal disk table specifies
9689  * cache flush be suppressed, we don't bother checking
9690  * NV_SUP bit.
9691  *
9692  * If SUPPRESS_CACHE_FLUSH bit is not set to 1, sd queries
9693  * the optional INQUIRY VPD page 0x86. If the device
9694  * supports VPD page 0x86, sd examines the NV_SUP
9695  * (non-volatile cache support) bit in the INQUIRY VPD page
9696  * 0x86:
9697  *   o If NV_SUP bit is set, sd assumes the device has a
9698  *   non-volatile cache and set the
9699  *   un_f_sync_nv_supported to TRUE.
9700  *   o Otherwise cache is not non-volatile,
9701  *   un_f_sync_nv_supported is set to FALSE.
9702  *
9703  * Arguments: un - driver soft state (unit) structure
9704  *
9705  * Return Code:
9706  *
9707  *     Context: Kernel Thread
9708  */
9709 
9710 static void
9711 sd_get_nv_sup(sd_ssc_t *ssc)
9712 {
9713 	int		rval		= 0;
9714 	uchar_t		*inq86		= NULL;
9715 	size_t		inq86_len	= MAX_INQUIRY_SIZE;
9716 	size_t		inq86_resid	= 0;
9717 	struct		dk_callback *dkc;
9718 	struct sd_lun	*un;
9719 
9720 	ASSERT(ssc != NULL);
9721 	un = ssc->ssc_un;
9722 	ASSERT(un != NULL);
9723 
9724 	mutex_enter(SD_MUTEX(un));
9725 
9726 	/*
9727 	 * Be conservative on the device's support of
9728 	 * SYNC_NV bit: un_f_sync_nv_supported is
9729 	 * initialized to be false.
9730 	 */
9731 	un->un_f_sync_nv_supported = FALSE;
9732 
9733 	/*
9734 	 * If either sd.conf or internal disk table
9735 	 * specifies cache flush be suppressed, then
9736 	 * we don't bother checking NV_SUP bit.
9737 	 */
9738 	if (un->un_f_suppress_cache_flush == TRUE) {
9739 		mutex_exit(SD_MUTEX(un));
9740 		return;
9741 	}
9742 
9743 	if (sd_check_vpd_page_support(ssc) == 0 &&
9744 	    un->un_vpd_page_mask & SD_VPD_EXTENDED_DATA_PG) {
9745 		mutex_exit(SD_MUTEX(un));
9746 		/* collect page 86 data if available */
9747 		inq86 = kmem_zalloc(inq86_len, KM_SLEEP);
9748 
9749 		rval = sd_send_scsi_INQUIRY(ssc, inq86, inq86_len,
9750 		    0x01, 0x86, &inq86_resid);
9751 
9752 		if (rval == 0 && (inq86_len - inq86_resid > 6)) {
9753 			SD_TRACE(SD_LOG_COMMON, un,
9754 			    "sd_get_nv_sup: \
9755 			    successfully get VPD page: %x \
9756 			    PAGE LENGTH: %x BYTE 6: %x\n",
9757 			    inq86[1], inq86[3], inq86[6]);
9758 
9759 			mutex_enter(SD_MUTEX(un));
9760 			/*
9761 			 * check the value of NV_SUP bit: only if the device
9762 			 * reports NV_SUP bit to be 1, the
9763 			 * un_f_sync_nv_supported bit will be set to true.
9764 			 */
9765 			if (inq86[6] & SD_VPD_NV_SUP) {
9766 				un->un_f_sync_nv_supported = TRUE;
9767 			}
9768 			mutex_exit(SD_MUTEX(un));
9769 		} else if (rval != 0) {
9770 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9771 		}
9772 
9773 		kmem_free(inq86, inq86_len);
9774 	} else {
9775 		mutex_exit(SD_MUTEX(un));
9776 	}
9777 
9778 	/*
9779 	 * Send a SYNC CACHE command to check whether
9780 	 * SYNC_NV bit is supported. This command should have
9781 	 * un_f_sync_nv_supported set to correct value.
9782 	 */
9783 	mutex_enter(SD_MUTEX(un));
9784 	if (un->un_f_sync_nv_supported) {
9785 		mutex_exit(SD_MUTEX(un));
9786 		dkc = kmem_zalloc(sizeof (struct dk_callback), KM_SLEEP);
9787 		dkc->dkc_flag = FLUSH_VOLATILE;
9788 		(void) sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
9789 
9790 		/*
9791 		 * Send a TEST UNIT READY command to the device. This should
9792 		 * clear any outstanding UNIT ATTENTION that may be present.
9793 		 */
9794 		rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
9795 		if (rval != 0)
9796 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9797 
9798 		kmem_free(dkc, sizeof (struct dk_callback));
9799 	} else {
9800 		mutex_exit(SD_MUTEX(un));
9801 	}
9802 
9803 	SD_TRACE(SD_LOG_COMMON, un, "sd_get_nv_sup: \
9804 	    un_f_suppress_cache_flush is set to %d\n",
9805 	    un->un_f_suppress_cache_flush);
9806 }
9807 
9808 /*
9809  *    Function: sd_make_device
9810  *
9811  * Description: Utility routine to return the Solaris device number from
9812  *		the data in the device's dev_info structure.
9813  *
9814  * Return Code: The Solaris device number
9815  *
9816  *     Context: Any
9817  */
9818 
9819 static dev_t
9820 sd_make_device(dev_info_t *devi)
9821 {
9822 	return (makedevice(ddi_driver_major(devi),
9823 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
9824 }
9825 
9826 
9827 /*
9828  *    Function: sd_pm_entry
9829  *
9830  * Description: Called at the start of a new command to manage power
9831  *		and busy status of a device. This includes determining whether
9832  *		the current power state of the device is sufficient for
9833  *		performing the command or whether it must be changed.
9834  *		The PM framework is notified appropriately.
9835  *		Only with a return status of DDI_SUCCESS will the
9836  *		component be busy to the framework.
9837  *
9838  *		All callers of sd_pm_entry must check the return status
9839  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
9840  *		of DDI_FAILURE indicates the device failed to power up.
9841  *		In this case un_pm_count has been adjusted so the result
9842  *		on exit is still powered down, ie. count is less than 0.
9843  *		Calling sd_pm_exit with this count value hits an ASSERT.
9844  *
9845  * Return Code: DDI_SUCCESS or DDI_FAILURE
9846  *
9847  *     Context: Kernel thread context.
9848  */
9849 
9850 static int
9851 sd_pm_entry(struct sd_lun *un)
9852 {
9853 	int return_status = DDI_SUCCESS;
9854 
9855 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9856 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9857 
9858 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
9859 
9860 	if (un->un_f_pm_is_enabled == FALSE) {
9861 		SD_TRACE(SD_LOG_IO_PM, un,
9862 		    "sd_pm_entry: exiting, PM not enabled\n");
9863 		return (return_status);
9864 	}
9865 
9866 	/*
9867 	 * Just increment a counter if PM is enabled. On the transition from
9868 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
9869 	 * the count with each IO and mark the device as idle when the count
9870 	 * hits 0.
9871 	 *
9872 	 * If the count is less than 0 the device is powered down. If a powered
9873 	 * down device is successfully powered up then the count must be
9874 	 * incremented to reflect the power up. Note that it'll get incremented
9875 	 * a second time to become busy.
9876 	 *
9877 	 * Because the following has the potential to change the device state
9878 	 * and must release the un_pm_mutex to do so, only one thread can be
9879 	 * allowed through at a time.
9880 	 */
9881 
9882 	mutex_enter(&un->un_pm_mutex);
9883 	while (un->un_pm_busy == TRUE) {
9884 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
9885 	}
9886 	un->un_pm_busy = TRUE;
9887 
9888 	if (un->un_pm_count < 1) {
9889 
9890 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
9891 
9892 		/*
9893 		 * Indicate we are now busy so the framework won't attempt to
9894 		 * power down the device. This call will only fail if either
9895 		 * we passed a bad component number or the device has no
9896 		 * components. Neither of these should ever happen.
9897 		 */
9898 		mutex_exit(&un->un_pm_mutex);
9899 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
9900 		ASSERT(return_status == DDI_SUCCESS);
9901 
9902 		mutex_enter(&un->un_pm_mutex);
9903 
9904 		if (un->un_pm_count < 0) {
9905 			mutex_exit(&un->un_pm_mutex);
9906 
9907 			SD_TRACE(SD_LOG_IO_PM, un,
9908 			    "sd_pm_entry: power up component\n");
9909 
9910 			/*
9911 			 * pm_raise_power will cause sdpower to be called
9912 			 * which brings the device power level to the
9913 			 * desired state, If successful, un_pm_count and
9914 			 * un_power_level will be updated appropriately.
9915 			 */
9916 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
9917 			    SD_PM_STATE_ACTIVE(un));
9918 
9919 			mutex_enter(&un->un_pm_mutex);
9920 
9921 			if (return_status != DDI_SUCCESS) {
9922 				/*
9923 				 * Power up failed.
9924 				 * Idle the device and adjust the count
9925 				 * so the result on exit is that we're
9926 				 * still powered down, ie. count is less than 0.
9927 				 */
9928 				SD_TRACE(SD_LOG_IO_PM, un,
9929 				    "sd_pm_entry: power up failed,"
9930 				    " idle the component\n");
9931 
9932 				(void) pm_idle_component(SD_DEVINFO(un), 0);
9933 				un->un_pm_count--;
9934 			} else {
9935 				/*
9936 				 * Device is powered up, verify the
9937 				 * count is non-negative.
9938 				 * This is debug only.
9939 				 */
9940 				ASSERT(un->un_pm_count == 0);
9941 			}
9942 		}
9943 
9944 		if (return_status == DDI_SUCCESS) {
9945 			/*
9946 			 * For performance, now that the device has been tagged
9947 			 * as busy, and it's known to be powered up, update the
9948 			 * chain types to use jump tables that do not include
9949 			 * pm. This significantly lowers the overhead and
9950 			 * therefore improves performance.
9951 			 */
9952 
9953 			mutex_exit(&un->un_pm_mutex);
9954 			mutex_enter(SD_MUTEX(un));
9955 			SD_TRACE(SD_LOG_IO_PM, un,
9956 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
9957 			    un->un_uscsi_chain_type);
9958 
9959 			if (un->un_f_non_devbsize_supported) {
9960 				un->un_buf_chain_type =
9961 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
9962 			} else {
9963 				un->un_buf_chain_type =
9964 				    SD_CHAIN_INFO_DISK_NO_PM;
9965 			}
9966 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
9967 
9968 			SD_TRACE(SD_LOG_IO_PM, un,
9969 			    "             changed  uscsi_chain_type to   %d\n",
9970 			    un->un_uscsi_chain_type);
9971 			mutex_exit(SD_MUTEX(un));
9972 			mutex_enter(&un->un_pm_mutex);
9973 
9974 			if (un->un_pm_idle_timeid == NULL) {
9975 				/* 300 ms. */
9976 				un->un_pm_idle_timeid =
9977 				    timeout(sd_pm_idletimeout_handler, un,
9978 				    (drv_usectohz((clock_t)300000)));
9979 				/*
9980 				 * Include an extra call to busy which keeps the
9981 				 * device busy with-respect-to the PM layer
9982 				 * until the timer fires, at which time it'll
9983 				 * get the extra idle call.
9984 				 */
9985 				(void) pm_busy_component(SD_DEVINFO(un), 0);
9986 			}
9987 		}
9988 	}
9989 	un->un_pm_busy = FALSE;
9990 	/* Next... */
9991 	cv_signal(&un->un_pm_busy_cv);
9992 
9993 	un->un_pm_count++;
9994 
9995 	SD_TRACE(SD_LOG_IO_PM, un,
9996 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
9997 
9998 	mutex_exit(&un->un_pm_mutex);
9999 
10000 	return (return_status);
10001 }
10002 
10003 
10004 /*
10005  *    Function: sd_pm_exit
10006  *
10007  * Description: Called at the completion of a command to manage busy
10008  *		status for the device. If the device becomes idle the
10009  *		PM framework is notified.
10010  *
10011  *     Context: Kernel thread context
10012  */
10013 
10014 static void
10015 sd_pm_exit(struct sd_lun *un)
10016 {
10017 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10018 	ASSERT(!mutex_owned(&un->un_pm_mutex));
10019 
10020 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
10021 
10022 	/*
10023 	 * After attach the following flag is only read, so don't
10024 	 * take the penalty of acquiring a mutex for it.
10025 	 */
10026 	if (un->un_f_pm_is_enabled == TRUE) {
10027 
10028 		mutex_enter(&un->un_pm_mutex);
10029 		un->un_pm_count--;
10030 
10031 		SD_TRACE(SD_LOG_IO_PM, un,
10032 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
10033 
10034 		ASSERT(un->un_pm_count >= 0);
10035 		if (un->un_pm_count == 0) {
10036 			mutex_exit(&un->un_pm_mutex);
10037 
10038 			SD_TRACE(SD_LOG_IO_PM, un,
10039 			    "sd_pm_exit: idle component\n");
10040 
10041 			(void) pm_idle_component(SD_DEVINFO(un), 0);
10042 
10043 		} else {
10044 			mutex_exit(&un->un_pm_mutex);
10045 		}
10046 	}
10047 
10048 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
10049 }
10050 
10051 
10052 /*
10053  *    Function: sdopen
10054  *
10055  * Description: Driver's open(9e) entry point function.
10056  *
10057  *   Arguments: dev_i   - pointer to device number
10058  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
10059  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10060  *		cred_p  - user credential pointer
10061  *
10062  * Return Code: EINVAL
10063  *		ENXIO
10064  *		EIO
10065  *		EROFS
10066  *		EBUSY
10067  *
10068  *     Context: Kernel thread context
10069  */
10070 /* ARGSUSED */
10071 static int
10072 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
10073 {
10074 	struct sd_lun	*un;
10075 	int		nodelay;
10076 	int		part;
10077 	uint64_t	partmask;
10078 	int		instance;
10079 	dev_t		dev;
10080 	int		rval = EIO;
10081 	diskaddr_t	nblks = 0;
10082 	diskaddr_t	label_cap;
10083 
10084 	/* Validate the open type */
10085 	if (otyp >= OTYPCNT) {
10086 		return (EINVAL);
10087 	}
10088 
10089 	dev = *dev_p;
10090 	instance = SDUNIT(dev);
10091 	mutex_enter(&sd_detach_mutex);
10092 
10093 	/*
10094 	 * Fail the open if there is no softstate for the instance, or
10095 	 * if another thread somewhere is trying to detach the instance.
10096 	 */
10097 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
10098 	    (un->un_detach_count != 0)) {
10099 		mutex_exit(&sd_detach_mutex);
10100 		/*
10101 		 * The probe cache only needs to be cleared when open (9e) fails
10102 		 * with ENXIO (4238046).
10103 		 */
10104 		/*
10105 		 * un-conditionally clearing probe cache is ok with
10106 		 * separate sd/ssd binaries
10107 		 * x86 platform can be an issue with both parallel
10108 		 * and fibre in 1 binary
10109 		 */
10110 		sd_scsi_clear_probe_cache();
10111 		return (ENXIO);
10112 	}
10113 
10114 	/*
10115 	 * The un_layer_count is to prevent another thread in specfs from
10116 	 * trying to detach the instance, which can happen when we are
10117 	 * called from a higher-layer driver instead of thru specfs.
10118 	 * This will not be needed when DDI provides a layered driver
10119 	 * interface that allows specfs to know that an instance is in
10120 	 * use by a layered driver & should not be detached.
10121 	 *
10122 	 * Note: the semantics for layered driver opens are exactly one
10123 	 * close for every open.
10124 	 */
10125 	if (otyp == OTYP_LYR) {
10126 		un->un_layer_count++;
10127 	}
10128 
10129 	/*
10130 	 * Keep a count of the current # of opens in progress. This is because
10131 	 * some layered drivers try to call us as a regular open. This can
10132 	 * cause problems that we cannot prevent, however by keeping this count
10133 	 * we can at least keep our open and detach routines from racing against
10134 	 * each other under such conditions.
10135 	 */
10136 	un->un_opens_in_progress++;
10137 	mutex_exit(&sd_detach_mutex);
10138 
10139 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
10140 	part	 = SDPART(dev);
10141 	partmask = 1 << part;
10142 
10143 	/*
10144 	 * We use a semaphore here in order to serialize
10145 	 * open and close requests on the device.
10146 	 */
10147 	sema_p(&un->un_semoclose);
10148 
10149 	mutex_enter(SD_MUTEX(un));
10150 
10151 	/*
10152 	 * All device accesses go thru sdstrategy() where we check
10153 	 * on suspend status but there could be a scsi_poll command,
10154 	 * which bypasses sdstrategy(), so we need to check pm
10155 	 * status.
10156 	 */
10157 
10158 	if (!nodelay) {
10159 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10160 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10161 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10162 		}
10163 
10164 		mutex_exit(SD_MUTEX(un));
10165 		if (sd_pm_entry(un) != DDI_SUCCESS) {
10166 			rval = EIO;
10167 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
10168 			    "sdopen: sd_pm_entry failed\n");
10169 			goto open_failed_with_pm;
10170 		}
10171 		mutex_enter(SD_MUTEX(un));
10172 	}
10173 
10174 	/* check for previous exclusive open */
10175 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
10176 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10177 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
10178 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
10179 
10180 	if (un->un_exclopen & (partmask)) {
10181 		goto excl_open_fail;
10182 	}
10183 
10184 	if (flag & FEXCL) {
10185 		int i;
10186 		if (un->un_ocmap.lyropen[part]) {
10187 			goto excl_open_fail;
10188 		}
10189 		for (i = 0; i < (OTYPCNT - 1); i++) {
10190 			if (un->un_ocmap.regopen[i] & (partmask)) {
10191 				goto excl_open_fail;
10192 			}
10193 		}
10194 	}
10195 
10196 	/*
10197 	 * Check the write permission if this is a removable media device,
10198 	 * NDELAY has not been set, and writable permission is requested.
10199 	 *
10200 	 * Note: If NDELAY was set and this is write-protected media the WRITE
10201 	 * attempt will fail with EIO as part of the I/O processing. This is a
10202 	 * more permissive implementation that allows the open to succeed and
10203 	 * WRITE attempts to fail when appropriate.
10204 	 */
10205 	if (un->un_f_chk_wp_open) {
10206 		if ((flag & FWRITE) && (!nodelay)) {
10207 			mutex_exit(SD_MUTEX(un));
10208 			/*
10209 			 * Defer the check for write permission on writable
10210 			 * DVD drive till sdstrategy and will not fail open even
10211 			 * if FWRITE is set as the device can be writable
10212 			 * depending upon the media and the media can change
10213 			 * after the call to open().
10214 			 */
10215 			if (un->un_f_dvdram_writable_device == FALSE) {
10216 				if (ISCD(un) || sr_check_wp(dev)) {
10217 				rval = EROFS;
10218 				mutex_enter(SD_MUTEX(un));
10219 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10220 				    "write to cd or write protected media\n");
10221 				goto open_fail;
10222 				}
10223 			}
10224 			mutex_enter(SD_MUTEX(un));
10225 		}
10226 	}
10227 
10228 	/*
10229 	 * If opening in NDELAY/NONBLOCK mode, just return.
10230 	 * Check if disk is ready and has a valid geometry later.
10231 	 */
10232 	if (!nodelay) {
10233 		sd_ssc_t	*ssc;
10234 
10235 		mutex_exit(SD_MUTEX(un));
10236 		ssc = sd_ssc_init(un);
10237 		rval = sd_ready_and_valid(ssc, part);
10238 		sd_ssc_fini(ssc);
10239 		mutex_enter(SD_MUTEX(un));
10240 		/*
10241 		 * Fail if device is not ready or if the number of disk
10242 		 * blocks is zero or negative for non CD devices.
10243 		 */
10244 
10245 		nblks = 0;
10246 
10247 		if (rval == SD_READY_VALID && (!ISCD(un))) {
10248 			/* if cmlb_partinfo fails, nblks remains 0 */
10249 			mutex_exit(SD_MUTEX(un));
10250 			(void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks,
10251 			    NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
10252 			mutex_enter(SD_MUTEX(un));
10253 		}
10254 
10255 		if ((rval != SD_READY_VALID) ||
10256 		    (!ISCD(un) && nblks <= 0)) {
10257 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
10258 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10259 			    "device not ready or invalid disk block value\n");
10260 			goto open_fail;
10261 		}
10262 #if defined(__i386) || defined(__amd64)
10263 	} else {
10264 		uchar_t *cp;
10265 		/*
10266 		 * x86 requires special nodelay handling, so that p0 is
10267 		 * always defined and accessible.
10268 		 * Invalidate geometry only if device is not already open.
10269 		 */
10270 		cp = &un->un_ocmap.chkd[0];
10271 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10272 			if (*cp != (uchar_t)0) {
10273 				break;
10274 			}
10275 			cp++;
10276 		}
10277 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10278 			mutex_exit(SD_MUTEX(un));
10279 			cmlb_invalidate(un->un_cmlbhandle,
10280 			    (void *)SD_PATH_DIRECT);
10281 			mutex_enter(SD_MUTEX(un));
10282 		}
10283 
10284 #endif
10285 	}
10286 
10287 	if (otyp == OTYP_LYR) {
10288 		un->un_ocmap.lyropen[part]++;
10289 	} else {
10290 		un->un_ocmap.regopen[otyp] |= partmask;
10291 	}
10292 
10293 	/* Set up open and exclusive open flags */
10294 	if (flag & FEXCL) {
10295 		un->un_exclopen |= (partmask);
10296 	}
10297 
10298 	/*
10299 	 * If the lun is EFI labeled and lun capacity is greater than the
10300 	 * capacity contained in the label, log a sys-event to notify the
10301 	 * interested module.
10302 	 * To avoid an infinite loop of logging sys-event, we only log the
10303 	 * event when the lun is not opened in NDELAY mode. The event handler
10304 	 * should open the lun in NDELAY mode.
10305 	 */
10306 	if (!nodelay) {
10307 		mutex_exit(SD_MUTEX(un));
10308 		if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
10309 		    (void*)SD_PATH_DIRECT) == 0) {
10310 			mutex_enter(SD_MUTEX(un));
10311 			if (un->un_f_blockcount_is_valid &&
10312 			    un->un_blockcount > label_cap &&
10313 			    un->un_f_expnevent == B_FALSE) {
10314 				un->un_f_expnevent = B_TRUE;
10315 				mutex_exit(SD_MUTEX(un));
10316 				sd_log_lun_expansion_event(un,
10317 				    (nodelay ? KM_NOSLEEP : KM_SLEEP));
10318 				mutex_enter(SD_MUTEX(un));
10319 			}
10320 		} else {
10321 			mutex_enter(SD_MUTEX(un));
10322 		}
10323 	}
10324 
10325 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10326 	    "open of part %d type %d\n", part, otyp);
10327 
10328 	mutex_exit(SD_MUTEX(un));
10329 	if (!nodelay) {
10330 		sd_pm_exit(un);
10331 	}
10332 
10333 	sema_v(&un->un_semoclose);
10334 
10335 	mutex_enter(&sd_detach_mutex);
10336 	un->un_opens_in_progress--;
10337 	mutex_exit(&sd_detach_mutex);
10338 
10339 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
10340 	return (DDI_SUCCESS);
10341 
10342 excl_open_fail:
10343 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
10344 	rval = EBUSY;
10345 
10346 open_fail:
10347 	mutex_exit(SD_MUTEX(un));
10348 
10349 	/*
10350 	 * On a failed open we must exit the pm management.
10351 	 */
10352 	if (!nodelay) {
10353 		sd_pm_exit(un);
10354 	}
10355 open_failed_with_pm:
10356 	sema_v(&un->un_semoclose);
10357 
10358 	mutex_enter(&sd_detach_mutex);
10359 	un->un_opens_in_progress--;
10360 	if (otyp == OTYP_LYR) {
10361 		un->un_layer_count--;
10362 	}
10363 	mutex_exit(&sd_detach_mutex);
10364 
10365 	return (rval);
10366 }
10367 
10368 
10369 /*
10370  *    Function: sdclose
10371  *
10372  * Description: Driver's close(9e) entry point function.
10373  *
10374  *   Arguments: dev    - device number
10375  *		flag   - file status flag, informational only
10376  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10377  *		cred_p - user credential pointer
10378  *
10379  * Return Code: ENXIO
10380  *
10381  *     Context: Kernel thread context
10382  */
10383 /* ARGSUSED */
10384 static int
10385 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
10386 {
10387 	struct sd_lun	*un;
10388 	uchar_t		*cp;
10389 	int		part;
10390 	int		nodelay;
10391 	int		rval = 0;
10392 
10393 	/* Validate the open type */
10394 	if (otyp >= OTYPCNT) {
10395 		return (ENXIO);
10396 	}
10397 
10398 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10399 		return (ENXIO);
10400 	}
10401 
10402 	part = SDPART(dev);
10403 	nodelay = flag & (FNDELAY | FNONBLOCK);
10404 
10405 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10406 	    "sdclose: close of part %d type %d\n", part, otyp);
10407 
10408 	/*
10409 	 * We use a semaphore here in order to serialize
10410 	 * open and close requests on the device.
10411 	 */
10412 	sema_p(&un->un_semoclose);
10413 
10414 	mutex_enter(SD_MUTEX(un));
10415 
10416 	/* Don't proceed if power is being changed. */
10417 	while (un->un_state == SD_STATE_PM_CHANGING) {
10418 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10419 	}
10420 
10421 	if (un->un_exclopen & (1 << part)) {
10422 		un->un_exclopen &= ~(1 << part);
10423 	}
10424 
10425 	/* Update the open partition map */
10426 	if (otyp == OTYP_LYR) {
10427 		un->un_ocmap.lyropen[part] -= 1;
10428 	} else {
10429 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
10430 	}
10431 
10432 	cp = &un->un_ocmap.chkd[0];
10433 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10434 		if (*cp != NULL) {
10435 			break;
10436 		}
10437 		cp++;
10438 	}
10439 
10440 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10441 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
10442 
10443 		/*
10444 		 * We avoid persistance upon the last close, and set
10445 		 * the throttle back to the maximum.
10446 		 */
10447 		un->un_throttle = un->un_saved_throttle;
10448 
10449 		if (un->un_state == SD_STATE_OFFLINE) {
10450 			if (un->un_f_is_fibre == FALSE) {
10451 				scsi_log(SD_DEVINFO(un), sd_label,
10452 				    CE_WARN, "offline\n");
10453 			}
10454 			mutex_exit(SD_MUTEX(un));
10455 			cmlb_invalidate(un->un_cmlbhandle,
10456 			    (void *)SD_PATH_DIRECT);
10457 			mutex_enter(SD_MUTEX(un));
10458 
10459 		} else {
10460 			/*
10461 			 * Flush any outstanding writes in NVRAM cache.
10462 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
10463 			 * cmd, it may not work for non-Pluto devices.
10464 			 * SYNCHRONIZE CACHE is not required for removables,
10465 			 * except DVD-RAM drives.
10466 			 *
10467 			 * Also note: because SYNCHRONIZE CACHE is currently
10468 			 * the only command issued here that requires the
10469 			 * drive be powered up, only do the power up before
10470 			 * sending the Sync Cache command. If additional
10471 			 * commands are added which require a powered up
10472 			 * drive, the following sequence may have to change.
10473 			 *
10474 			 * And finally, note that parallel SCSI on SPARC
10475 			 * only issues a Sync Cache to DVD-RAM, a newly
10476 			 * supported device.
10477 			 */
10478 #if defined(__i386) || defined(__amd64)
10479 			if ((un->un_f_sync_cache_supported &&
10480 			    un->un_f_sync_cache_required) ||
10481 			    un->un_f_dvdram_writable_device == TRUE) {
10482 #else
10483 			if (un->un_f_dvdram_writable_device == TRUE) {
10484 #endif
10485 				mutex_exit(SD_MUTEX(un));
10486 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10487 					rval =
10488 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
10489 					    NULL);
10490 					/* ignore error if not supported */
10491 					if (rval == ENOTSUP) {
10492 						rval = 0;
10493 					} else if (rval != 0) {
10494 						rval = EIO;
10495 					}
10496 					sd_pm_exit(un);
10497 				} else {
10498 					rval = EIO;
10499 				}
10500 				mutex_enter(SD_MUTEX(un));
10501 			}
10502 
10503 			/*
10504 			 * For devices which supports DOOR_LOCK, send an ALLOW
10505 			 * MEDIA REMOVAL command, but don't get upset if it
10506 			 * fails. We need to raise the power of the drive before
10507 			 * we can call sd_send_scsi_DOORLOCK()
10508 			 */
10509 			if (un->un_f_doorlock_supported) {
10510 				mutex_exit(SD_MUTEX(un));
10511 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10512 					sd_ssc_t	*ssc;
10513 
10514 					ssc = sd_ssc_init(un);
10515 					rval = sd_send_scsi_DOORLOCK(ssc,
10516 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
10517 					if (rval != 0)
10518 						sd_ssc_assessment(ssc,
10519 						    SD_FMT_IGNORE);
10520 					sd_ssc_fini(ssc);
10521 
10522 					sd_pm_exit(un);
10523 					if (ISCD(un) && (rval != 0) &&
10524 					    (nodelay != 0)) {
10525 						rval = ENXIO;
10526 					}
10527 				} else {
10528 					rval = EIO;
10529 				}
10530 				mutex_enter(SD_MUTEX(un));
10531 			}
10532 
10533 			/*
10534 			 * If a device has removable media, invalidate all
10535 			 * parameters related to media, such as geometry,
10536 			 * blocksize, and blockcount.
10537 			 */
10538 			if (un->un_f_has_removable_media) {
10539 				sr_ejected(un);
10540 			}
10541 
10542 			/*
10543 			 * Destroy the cache (if it exists) which was
10544 			 * allocated for the write maps since this is
10545 			 * the last close for this media.
10546 			 */
10547 			if (un->un_wm_cache) {
10548 				/*
10549 				 * Check if there are pending commands.
10550 				 * and if there are give a warning and
10551 				 * do not destroy the cache.
10552 				 */
10553 				if (un->un_ncmds_in_driver > 0) {
10554 					scsi_log(SD_DEVINFO(un),
10555 					    sd_label, CE_WARN,
10556 					    "Unable to clean up memory "
10557 					    "because of pending I/O\n");
10558 				} else {
10559 					kmem_cache_destroy(
10560 					    un->un_wm_cache);
10561 					un->un_wm_cache = NULL;
10562 				}
10563 			}
10564 		}
10565 	}
10566 
10567 	mutex_exit(SD_MUTEX(un));
10568 	sema_v(&un->un_semoclose);
10569 
10570 	if (otyp == OTYP_LYR) {
10571 		mutex_enter(&sd_detach_mutex);
10572 		/*
10573 		 * The detach routine may run when the layer count
10574 		 * drops to zero.
10575 		 */
10576 		un->un_layer_count--;
10577 		mutex_exit(&sd_detach_mutex);
10578 	}
10579 
10580 	return (rval);
10581 }
10582 
10583 
10584 /*
10585  *    Function: sd_ready_and_valid
10586  *
10587  * Description: Test if device is ready and has a valid geometry.
10588  *
10589  *   Arguments: ssc - sd_ssc_t will contain un
10590  *		un  - driver soft state (unit) structure
10591  *
10592  * Return Code: SD_READY_VALID		ready and valid label
10593  *		SD_NOT_READY_VALID	not ready, no label
10594  *		SD_RESERVED_BY_OTHERS	reservation conflict
10595  *
10596  *     Context: Never called at interrupt context.
10597  */
10598 
10599 static int
10600 sd_ready_and_valid(sd_ssc_t *ssc, int part)
10601 {
10602 	struct sd_errstats	*stp;
10603 	uint64_t		capacity;
10604 	uint_t			lbasize;
10605 	int			rval = SD_READY_VALID;
10606 	char			name_str[48];
10607 	boolean_t		is_valid;
10608 	struct sd_lun		*un;
10609 	int			status;
10610 
10611 	ASSERT(ssc != NULL);
10612 	un = ssc->ssc_un;
10613 	ASSERT(un != NULL);
10614 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10615 
10616 	mutex_enter(SD_MUTEX(un));
10617 	/*
10618 	 * If a device has removable media, we must check if media is
10619 	 * ready when checking if this device is ready and valid.
10620 	 */
10621 	if (un->un_f_has_removable_media) {
10622 		mutex_exit(SD_MUTEX(un));
10623 		status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10624 
10625 		if (status != 0) {
10626 			rval = SD_NOT_READY_VALID;
10627 			mutex_enter(SD_MUTEX(un));
10628 
10629 			/* Ignore all failed status for removalbe media */
10630 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10631 
10632 			goto done;
10633 		}
10634 
10635 		is_valid = SD_IS_VALID_LABEL(un);
10636 		mutex_enter(SD_MUTEX(un));
10637 		if (!is_valid ||
10638 		    (un->un_f_blockcount_is_valid == FALSE) ||
10639 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
10640 
10641 			/* capacity has to be read every open. */
10642 			mutex_exit(SD_MUTEX(un));
10643 			status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
10644 			    &lbasize, SD_PATH_DIRECT);
10645 
10646 			if (status != 0) {
10647 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10648 
10649 				cmlb_invalidate(un->un_cmlbhandle,
10650 				    (void *)SD_PATH_DIRECT);
10651 				mutex_enter(SD_MUTEX(un));
10652 				rval = SD_NOT_READY_VALID;
10653 
10654 				goto done;
10655 			} else {
10656 				mutex_enter(SD_MUTEX(un));
10657 				sd_update_block_info(un, lbasize, capacity);
10658 			}
10659 		}
10660 
10661 		/*
10662 		 * Check if the media in the device is writable or not.
10663 		 */
10664 		if (!is_valid && ISCD(un)) {
10665 			sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
10666 		}
10667 
10668 	} else {
10669 		/*
10670 		 * Do a test unit ready to clear any unit attention from non-cd
10671 		 * devices.
10672 		 */
10673 		mutex_exit(SD_MUTEX(un));
10674 
10675 		status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10676 		if (status != 0) {
10677 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10678 		}
10679 
10680 		mutex_enter(SD_MUTEX(un));
10681 	}
10682 
10683 
10684 	/*
10685 	 * If this is a non 512 block device, allocate space for
10686 	 * the wmap cache. This is being done here since every time
10687 	 * a media is changed this routine will be called and the
10688 	 * block size is a function of media rather than device.
10689 	 */
10690 	if (((un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR ||
10691 	    un->un_f_non_devbsize_supported) &&
10692 	    un->un_tgt_blocksize != DEV_BSIZE) ||
10693 	    un->un_f_enable_rmw) {
10694 		if (!(un->un_wm_cache)) {
10695 			(void) snprintf(name_str, sizeof (name_str),
10696 			    "%s%d_cache",
10697 			    ddi_driver_name(SD_DEVINFO(un)),
10698 			    ddi_get_instance(SD_DEVINFO(un)));
10699 			un->un_wm_cache = kmem_cache_create(
10700 			    name_str, sizeof (struct sd_w_map),
10701 			    8, sd_wm_cache_constructor,
10702 			    sd_wm_cache_destructor, NULL,
10703 			    (void *)un, NULL, 0);
10704 			if (!(un->un_wm_cache)) {
10705 				rval = ENOMEM;
10706 				goto done;
10707 			}
10708 		}
10709 	}
10710 
10711 	if (un->un_state == SD_STATE_NORMAL) {
10712 		/*
10713 		 * If the target is not yet ready here (defined by a TUR
10714 		 * failure), invalidate the geometry and print an 'offline'
10715 		 * message. This is a legacy message, as the state of the
10716 		 * target is not actually changed to SD_STATE_OFFLINE.
10717 		 *
10718 		 * If the TUR fails for EACCES (Reservation Conflict),
10719 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
10720 		 * reservation conflict. If the TUR fails for other
10721 		 * reasons, SD_NOT_READY_VALID will be returned.
10722 		 */
10723 		int err;
10724 
10725 		mutex_exit(SD_MUTEX(un));
10726 		err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10727 		mutex_enter(SD_MUTEX(un));
10728 
10729 		if (err != 0) {
10730 			mutex_exit(SD_MUTEX(un));
10731 			cmlb_invalidate(un->un_cmlbhandle,
10732 			    (void *)SD_PATH_DIRECT);
10733 			mutex_enter(SD_MUTEX(un));
10734 			if (err == EACCES) {
10735 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10736 				    "reservation conflict\n");
10737 				rval = SD_RESERVED_BY_OTHERS;
10738 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10739 			} else {
10740 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10741 				    "drive offline\n");
10742 				rval = SD_NOT_READY_VALID;
10743 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
10744 			}
10745 			goto done;
10746 		}
10747 	}
10748 
10749 	if (un->un_f_format_in_progress == FALSE) {
10750 		mutex_exit(SD_MUTEX(un));
10751 
10752 		(void) cmlb_validate(un->un_cmlbhandle, 0,
10753 		    (void *)SD_PATH_DIRECT);
10754 		if (cmlb_partinfo(un->un_cmlbhandle, part, NULL, NULL, NULL,
10755 		    NULL, (void *) SD_PATH_DIRECT) != 0) {
10756 			rval = SD_NOT_READY_VALID;
10757 			mutex_enter(SD_MUTEX(un));
10758 
10759 			goto done;
10760 		}
10761 		if (un->un_f_pkstats_enabled) {
10762 			sd_set_pstats(un);
10763 			SD_TRACE(SD_LOG_IO_PARTITION, un,
10764 			    "sd_ready_and_valid: un:0x%p pstats created and "
10765 			    "set\n", un);
10766 		}
10767 		mutex_enter(SD_MUTEX(un));
10768 	}
10769 
10770 	/*
10771 	 * If this device supports DOOR_LOCK command, try and send
10772 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
10773 	 * if it fails. For a CD, however, it is an error
10774 	 */
10775 	if (un->un_f_doorlock_supported) {
10776 		mutex_exit(SD_MUTEX(un));
10777 		status = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
10778 		    SD_PATH_DIRECT);
10779 
10780 		if ((status != 0) && ISCD(un)) {
10781 			rval = SD_NOT_READY_VALID;
10782 			mutex_enter(SD_MUTEX(un));
10783 
10784 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10785 
10786 			goto done;
10787 		} else if (status != 0)
10788 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10789 		mutex_enter(SD_MUTEX(un));
10790 	}
10791 
10792 	/* The state has changed, inform the media watch routines */
10793 	un->un_mediastate = DKIO_INSERTED;
10794 	cv_broadcast(&un->un_state_cv);
10795 	rval = SD_READY_VALID;
10796 
10797 done:
10798 
10799 	/*
10800 	 * Initialize the capacity kstat value, if no media previously
10801 	 * (capacity kstat is 0) and a media has been inserted
10802 	 * (un_blockcount > 0).
10803 	 */
10804 	if (un->un_errstats != NULL) {
10805 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
10806 		if ((stp->sd_capacity.value.ui64 == 0) &&
10807 		    (un->un_f_blockcount_is_valid == TRUE)) {
10808 			stp->sd_capacity.value.ui64 =
10809 			    (uint64_t)((uint64_t)un->un_blockcount *
10810 			    un->un_sys_blocksize);
10811 		}
10812 	}
10813 
10814 	mutex_exit(SD_MUTEX(un));
10815 	return (rval);
10816 }
10817 
10818 
10819 /*
10820  *    Function: sdmin
10821  *
10822  * Description: Routine to limit the size of a data transfer. Used in
10823  *		conjunction with physio(9F).
10824  *
10825  *   Arguments: bp - pointer to the indicated buf(9S) struct.
10826  *
10827  *     Context: Kernel thread context.
10828  */
10829 
10830 static void
10831 sdmin(struct buf *bp)
10832 {
10833 	struct sd_lun	*un;
10834 	int		instance;
10835 
10836 	instance = SDUNIT(bp->b_edev);
10837 
10838 	un = ddi_get_soft_state(sd_state, instance);
10839 	ASSERT(un != NULL);
10840 
10841 	/*
10842 	 * We depend on buf breakup to restrict
10843 	 * IO size if it is enabled.
10844 	 */
10845 	if (un->un_buf_breakup_supported) {
10846 		return;
10847 	}
10848 
10849 	if (bp->b_bcount > un->un_max_xfer_size) {
10850 		bp->b_bcount = un->un_max_xfer_size;
10851 	}
10852 }
10853 
10854 
10855 /*
10856  *    Function: sdread
10857  *
10858  * Description: Driver's read(9e) entry point function.
10859  *
10860  *   Arguments: dev   - device number
10861  *		uio   - structure pointer describing where data is to be stored
10862  *			in user's space
10863  *		cred_p  - user credential pointer
10864  *
10865  * Return Code: ENXIO
10866  *		EIO
10867  *		EINVAL
10868  *		value returned by physio
10869  *
10870  *     Context: Kernel thread context.
10871  */
10872 /* ARGSUSED */
10873 static int
10874 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
10875 {
10876 	struct sd_lun	*un = NULL;
10877 	int		secmask;
10878 	int		err = 0;
10879 	sd_ssc_t	*ssc;
10880 
10881 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10882 		return (ENXIO);
10883 	}
10884 
10885 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10886 
10887 
10888 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10889 		mutex_enter(SD_MUTEX(un));
10890 		/*
10891 		 * Because the call to sd_ready_and_valid will issue I/O we
10892 		 * must wait here if either the device is suspended or
10893 		 * if it's power level is changing.
10894 		 */
10895 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10896 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10897 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10898 		}
10899 		un->un_ncmds_in_driver++;
10900 		mutex_exit(SD_MUTEX(un));
10901 
10902 		/* Initialize sd_ssc_t for internal uscsi commands */
10903 		ssc = sd_ssc_init(un);
10904 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10905 			err = EIO;
10906 		} else {
10907 			err = 0;
10908 		}
10909 		sd_ssc_fini(ssc);
10910 
10911 		mutex_enter(SD_MUTEX(un));
10912 		un->un_ncmds_in_driver--;
10913 		ASSERT(un->un_ncmds_in_driver >= 0);
10914 		mutex_exit(SD_MUTEX(un));
10915 		if (err != 0)
10916 			return (err);
10917 	}
10918 
10919 	/*
10920 	 * Read requests are restricted to multiples of the system block size.
10921 	 */
10922 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
10923 	    !un->un_f_enable_rmw)
10924 		secmask = un->un_tgt_blocksize - 1;
10925 	else
10926 		secmask = DEV_BSIZE - 1;
10927 
10928 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10929 		SD_ERROR(SD_LOG_READ_WRITE, un,
10930 		    "sdread: file offset not modulo %d\n",
10931 		    secmask + 1);
10932 		err = EINVAL;
10933 	} else if (uio->uio_iov->iov_len & (secmask)) {
10934 		SD_ERROR(SD_LOG_READ_WRITE, un,
10935 		    "sdread: transfer length not modulo %d\n",
10936 		    secmask + 1);
10937 		err = EINVAL;
10938 	} else {
10939 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
10940 	}
10941 
10942 	return (err);
10943 }
10944 
10945 
10946 /*
10947  *    Function: sdwrite
10948  *
10949  * Description: Driver's write(9e) entry point function.
10950  *
10951  *   Arguments: dev   - device number
10952  *		uio   - structure pointer describing where data is stored in
10953  *			user's space
10954  *		cred_p  - user credential pointer
10955  *
10956  * Return Code: ENXIO
10957  *		EIO
10958  *		EINVAL
10959  *		value returned by physio
10960  *
10961  *     Context: Kernel thread context.
10962  */
10963 /* ARGSUSED */
10964 static int
10965 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
10966 {
10967 	struct sd_lun	*un = NULL;
10968 	int		secmask;
10969 	int		err = 0;
10970 	sd_ssc_t	*ssc;
10971 
10972 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10973 		return (ENXIO);
10974 	}
10975 
10976 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10977 
10978 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10979 		mutex_enter(SD_MUTEX(un));
10980 		/*
10981 		 * Because the call to sd_ready_and_valid will issue I/O we
10982 		 * must wait here if either the device is suspended or
10983 		 * if it's power level is changing.
10984 		 */
10985 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10986 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10987 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10988 		}
10989 		un->un_ncmds_in_driver++;
10990 		mutex_exit(SD_MUTEX(un));
10991 
10992 		/* Initialize sd_ssc_t for internal uscsi commands */
10993 		ssc = sd_ssc_init(un);
10994 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10995 			err = EIO;
10996 		} else {
10997 			err = 0;
10998 		}
10999 		sd_ssc_fini(ssc);
11000 
11001 		mutex_enter(SD_MUTEX(un));
11002 		un->un_ncmds_in_driver--;
11003 		ASSERT(un->un_ncmds_in_driver >= 0);
11004 		mutex_exit(SD_MUTEX(un));
11005 		if (err != 0)
11006 			return (err);
11007 	}
11008 
11009 	/*
11010 	 * Write requests are restricted to multiples of the system block size.
11011 	 */
11012 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
11013 	    !un->un_f_enable_rmw)
11014 		secmask = un->un_tgt_blocksize - 1;
11015 	else
11016 		secmask = DEV_BSIZE - 1;
11017 
11018 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11019 		SD_ERROR(SD_LOG_READ_WRITE, un,
11020 		    "sdwrite: file offset not modulo %d\n",
11021 		    secmask + 1);
11022 		err = EINVAL;
11023 	} else if (uio->uio_iov->iov_len & (secmask)) {
11024 		SD_ERROR(SD_LOG_READ_WRITE, un,
11025 		    "sdwrite: transfer length not modulo %d\n",
11026 		    secmask + 1);
11027 		err = EINVAL;
11028 	} else {
11029 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
11030 	}
11031 
11032 	return (err);
11033 }
11034 
11035 
11036 /*
11037  *    Function: sdaread
11038  *
11039  * Description: Driver's aread(9e) entry point function.
11040  *
11041  *   Arguments: dev   - device number
11042  *		aio   - structure pointer describing where data is to be stored
11043  *		cred_p  - user credential pointer
11044  *
11045  * Return Code: ENXIO
11046  *		EIO
11047  *		EINVAL
11048  *		value returned by aphysio
11049  *
11050  *     Context: Kernel thread context.
11051  */
11052 /* ARGSUSED */
11053 static int
11054 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11055 {
11056 	struct sd_lun	*un = NULL;
11057 	struct uio	*uio = aio->aio_uio;
11058 	int		secmask;
11059 	int		err = 0;
11060 	sd_ssc_t	*ssc;
11061 
11062 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11063 		return (ENXIO);
11064 	}
11065 
11066 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11067 
11068 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
11069 		mutex_enter(SD_MUTEX(un));
11070 		/*
11071 		 * Because the call to sd_ready_and_valid will issue I/O we
11072 		 * must wait here if either the device is suspended or
11073 		 * if it's power level is changing.
11074 		 */
11075 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11076 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11077 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11078 		}
11079 		un->un_ncmds_in_driver++;
11080 		mutex_exit(SD_MUTEX(un));
11081 
11082 		/* Initialize sd_ssc_t for internal uscsi commands */
11083 		ssc = sd_ssc_init(un);
11084 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
11085 			err = EIO;
11086 		} else {
11087 			err = 0;
11088 		}
11089 		sd_ssc_fini(ssc);
11090 
11091 		mutex_enter(SD_MUTEX(un));
11092 		un->un_ncmds_in_driver--;
11093 		ASSERT(un->un_ncmds_in_driver >= 0);
11094 		mutex_exit(SD_MUTEX(un));
11095 		if (err != 0)
11096 			return (err);
11097 	}
11098 
11099 	/*
11100 	 * Read requests are restricted to multiples of the system block size.
11101 	 */
11102 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
11103 	    !un->un_f_enable_rmw)
11104 		secmask = un->un_tgt_blocksize - 1;
11105 	else
11106 		secmask = DEV_BSIZE - 1;
11107 
11108 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11109 		SD_ERROR(SD_LOG_READ_WRITE, un,
11110 		    "sdaread: file offset not modulo %d\n",
11111 		    secmask + 1);
11112 		err = EINVAL;
11113 	} else if (uio->uio_iov->iov_len & (secmask)) {
11114 		SD_ERROR(SD_LOG_READ_WRITE, un,
11115 		    "sdaread: transfer length not modulo %d\n",
11116 		    secmask + 1);
11117 		err = EINVAL;
11118 	} else {
11119 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
11120 	}
11121 
11122 	return (err);
11123 }
11124 
11125 
11126 /*
11127  *    Function: sdawrite
11128  *
11129  * Description: Driver's awrite(9e) entry point function.
11130  *
11131  *   Arguments: dev   - device number
11132  *		aio   - structure pointer describing where data is stored
11133  *		cred_p  - user credential pointer
11134  *
11135  * Return Code: ENXIO
11136  *		EIO
11137  *		EINVAL
11138  *		value returned by aphysio
11139  *
11140  *     Context: Kernel thread context.
11141  */
11142 /* ARGSUSED */
11143 static int
11144 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11145 {
11146 	struct sd_lun	*un = NULL;
11147 	struct uio	*uio = aio->aio_uio;
11148 	int		secmask;
11149 	int		err = 0;
11150 	sd_ssc_t	*ssc;
11151 
11152 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11153 		return (ENXIO);
11154 	}
11155 
11156 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11157 
11158 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
11159 		mutex_enter(SD_MUTEX(un));
11160 		/*
11161 		 * Because the call to sd_ready_and_valid will issue I/O we
11162 		 * must wait here if either the device is suspended or
11163 		 * if it's power level is changing.
11164 		 */
11165 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11166 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11167 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11168 		}
11169 		un->un_ncmds_in_driver++;
11170 		mutex_exit(SD_MUTEX(un));
11171 
11172 		/* Initialize sd_ssc_t for internal uscsi commands */
11173 		ssc = sd_ssc_init(un);
11174 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
11175 			err = EIO;
11176 		} else {
11177 			err = 0;
11178 		}
11179 		sd_ssc_fini(ssc);
11180 
11181 		mutex_enter(SD_MUTEX(un));
11182 		un->un_ncmds_in_driver--;
11183 		ASSERT(un->un_ncmds_in_driver >= 0);
11184 		mutex_exit(SD_MUTEX(un));
11185 		if (err != 0)
11186 			return (err);
11187 	}
11188 
11189 	/*
11190 	 * Write requests are restricted to multiples of the system block size.
11191 	 */
11192 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
11193 	    !un->un_f_enable_rmw)
11194 		secmask = un->un_tgt_blocksize - 1;
11195 	else
11196 		secmask = DEV_BSIZE - 1;
11197 
11198 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11199 		SD_ERROR(SD_LOG_READ_WRITE, un,
11200 		    "sdawrite: file offset not modulo %d\n",
11201 		    secmask + 1);
11202 		err = EINVAL;
11203 	} else if (uio->uio_iov->iov_len & (secmask)) {
11204 		SD_ERROR(SD_LOG_READ_WRITE, un,
11205 		    "sdawrite: transfer length not modulo %d\n",
11206 		    secmask + 1);
11207 		err = EINVAL;
11208 	} else {
11209 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
11210 	}
11211 
11212 	return (err);
11213 }
11214 
11215 
11216 
11217 
11218 
11219 /*
11220  * Driver IO processing follows the following sequence:
11221  *
11222  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
11223  *         |                |                     ^
11224  *         v                v                     |
11225  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
11226  *         |                |                     |                   |
11227  *         v                |                     |                   |
11228  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
11229  *         |                |                     ^                   ^
11230  *         v                v                     |                   |
11231  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
11232  *         |                |                     |                   |
11233  *     +---+                |                     +------------+      +-------+
11234  *     |                    |                                  |              |
11235  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11236  *     |                    v                                  |              |
11237  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
11238  *     |                    |                                  ^              |
11239  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11240  *     |                    v                                  |              |
11241  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
11242  *     |                    |                                  ^              |
11243  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11244  *     |                    v                                  |              |
11245  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
11246  *     |                    |                                  ^              |
11247  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
11248  *     |                    v                                  |              |
11249  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
11250  *     |                    |                                  ^              |
11251  *     |                    |                                  |              |
11252  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
11253  *                          |                           ^
11254  *                          v                           |
11255  *                   sd_core_iostart()                  |
11256  *                          |                           |
11257  *                          |                           +------>(*destroypkt)()
11258  *                          +-> sd_start_cmds() <-+     |           |
11259  *                          |                     |     |           v
11260  *                          |                     |     |  scsi_destroy_pkt(9F)
11261  *                          |                     |     |
11262  *                          +->(*initpkt)()       +- sdintr()
11263  *                          |  |                        |  |
11264  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
11265  *                          |  +-> scsi_setup_cdb(9F)   |
11266  *                          |                           |
11267  *                          +--> scsi_transport(9F)     |
11268  *                                     |                |
11269  *                                     +----> SCSA ---->+
11270  *
11271  *
11272  * This code is based upon the following presumptions:
11273  *
11274  *   - iostart and iodone functions operate on buf(9S) structures. These
11275  *     functions perform the necessary operations on the buf(9S) and pass
11276  *     them along to the next function in the chain by using the macros
11277  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
11278  *     (for iodone side functions).
11279  *
11280  *   - The iostart side functions may sleep. The iodone side functions
11281  *     are called under interrupt context and may NOT sleep. Therefore
11282  *     iodone side functions also may not call iostart side functions.
11283  *     (NOTE: iostart side functions should NOT sleep for memory, as
11284  *     this could result in deadlock.)
11285  *
11286  *   - An iostart side function may call its corresponding iodone side
11287  *     function directly (if necessary).
11288  *
11289  *   - In the event of an error, an iostart side function can return a buf(9S)
11290  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
11291  *     b_error in the usual way of course).
11292  *
11293  *   - The taskq mechanism may be used by the iodone side functions to dispatch
11294  *     requests to the iostart side functions.  The iostart side functions in
11295  *     this case would be called under the context of a taskq thread, so it's
11296  *     OK for them to block/sleep/spin in this case.
11297  *
11298  *   - iostart side functions may allocate "shadow" buf(9S) structs and
11299  *     pass them along to the next function in the chain.  The corresponding
11300  *     iodone side functions must coalesce the "shadow" bufs and return
11301  *     the "original" buf to the next higher layer.
11302  *
11303  *   - The b_private field of the buf(9S) struct holds a pointer to
11304  *     an sd_xbuf struct, which contains information needed to
11305  *     construct the scsi_pkt for the command.
11306  *
11307  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
11308  *     layer must acquire & release the SD_MUTEX(un) as needed.
11309  */
11310 
11311 
11312 /*
11313  * Create taskq for all targets in the system. This is created at
11314  * _init(9E) and destroyed at _fini(9E).
11315  *
11316  * Note: here we set the minalloc to a reasonably high number to ensure that
11317  * we will have an adequate supply of task entries available at interrupt time.
11318  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
11319  * sd_create_taskq().  Since we do not want to sleep for allocations at
11320  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
11321  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
11322  * requests any one instant in time.
11323  */
11324 #define	SD_TASKQ_NUMTHREADS	8
11325 #define	SD_TASKQ_MINALLOC	256
11326 #define	SD_TASKQ_MAXALLOC	256
11327 
11328 static taskq_t	*sd_tq = NULL;
11329 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
11330 
11331 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
11332 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
11333 
11334 /*
11335  * The following task queue is being created for the write part of
11336  * read-modify-write of non-512 block size devices.
11337  * Limit the number of threads to 1 for now. This number has been chosen
11338  * considering the fact that it applies only to dvd ram drives/MO drives
11339  * currently. Performance for which is not main criteria at this stage.
11340  * Note: It needs to be explored if we can use a single taskq in future
11341  */
11342 #define	SD_WMR_TASKQ_NUMTHREADS	1
11343 static taskq_t	*sd_wmr_tq = NULL;
11344 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
11345 
11346 /*
11347  *    Function: sd_taskq_create
11348  *
11349  * Description: Create taskq thread(s) and preallocate task entries
11350  *
11351  * Return Code: Returns a pointer to the allocated taskq_t.
11352  *
11353  *     Context: Can sleep. Requires blockable context.
11354  *
11355  *       Notes: - The taskq() facility currently is NOT part of the DDI.
11356  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
11357  *		- taskq_create() will block for memory, also it will panic
11358  *		  if it cannot create the requested number of threads.
11359  *		- Currently taskq_create() creates threads that cannot be
11360  *		  swapped.
11361  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
11362  *		  supply of taskq entries at interrupt time (ie, so that we
11363  *		  do not have to sleep for memory)
11364  */
11365 
11366 static void
11367 sd_taskq_create(void)
11368 {
11369 	char	taskq_name[TASKQ_NAMELEN];
11370 
11371 	ASSERT(sd_tq == NULL);
11372 	ASSERT(sd_wmr_tq == NULL);
11373 
11374 	(void) snprintf(taskq_name, sizeof (taskq_name),
11375 	    "%s_drv_taskq", sd_label);
11376 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
11377 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11378 	    TASKQ_PREPOPULATE));
11379 
11380 	(void) snprintf(taskq_name, sizeof (taskq_name),
11381 	    "%s_rmw_taskq", sd_label);
11382 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
11383 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11384 	    TASKQ_PREPOPULATE));
11385 }
11386 
11387 
11388 /*
11389  *    Function: sd_taskq_delete
11390  *
11391  * Description: Complementary cleanup routine for sd_taskq_create().
11392  *
11393  *     Context: Kernel thread context.
11394  */
11395 
11396 static void
11397 sd_taskq_delete(void)
11398 {
11399 	ASSERT(sd_tq != NULL);
11400 	ASSERT(sd_wmr_tq != NULL);
11401 	taskq_destroy(sd_tq);
11402 	taskq_destroy(sd_wmr_tq);
11403 	sd_tq = NULL;
11404 	sd_wmr_tq = NULL;
11405 }
11406 
11407 
11408 /*
11409  *    Function: sdstrategy
11410  *
11411  * Description: Driver's strategy (9E) entry point function.
11412  *
11413  *   Arguments: bp - pointer to buf(9S)
11414  *
11415  * Return Code: Always returns zero
11416  *
11417  *     Context: Kernel thread context.
11418  */
11419 
11420 static int
11421 sdstrategy(struct buf *bp)
11422 {
11423 	struct sd_lun *un;
11424 
11425 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11426 	if (un == NULL) {
11427 		bioerror(bp, EIO);
11428 		bp->b_resid = bp->b_bcount;
11429 		biodone(bp);
11430 		return (0);
11431 	}
11432 
11433 	/* As was done in the past, fail new cmds. if state is dumping. */
11434 	if (un->un_state == SD_STATE_DUMPING) {
11435 		bioerror(bp, ENXIO);
11436 		bp->b_resid = bp->b_bcount;
11437 		biodone(bp);
11438 		return (0);
11439 	}
11440 
11441 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11442 
11443 	/*
11444 	 * Commands may sneak in while we released the mutex in
11445 	 * DDI_SUSPEND, we should block new commands. However, old
11446 	 * commands that are still in the driver at this point should
11447 	 * still be allowed to drain.
11448 	 */
11449 	mutex_enter(SD_MUTEX(un));
11450 	/*
11451 	 * Must wait here if either the device is suspended or
11452 	 * if it's power level is changing.
11453 	 */
11454 	while ((un->un_state == SD_STATE_SUSPENDED) ||
11455 	    (un->un_state == SD_STATE_PM_CHANGING)) {
11456 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11457 	}
11458 
11459 	un->un_ncmds_in_driver++;
11460 
11461 	/*
11462 	 * atapi: Since we are running the CD for now in PIO mode we need to
11463 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11464 	 * the HBA's init_pkt routine.
11465 	 */
11466 	if (un->un_f_cfg_is_atapi == TRUE) {
11467 		mutex_exit(SD_MUTEX(un));
11468 		bp_mapin(bp);
11469 		mutex_enter(SD_MUTEX(un));
11470 	}
11471 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
11472 	    un->un_ncmds_in_driver);
11473 
11474 	if (bp->b_flags & B_WRITE)
11475 		un->un_f_sync_cache_required = TRUE;
11476 
11477 	mutex_exit(SD_MUTEX(un));
11478 
11479 	/*
11480 	 * This will (eventually) allocate the sd_xbuf area and
11481 	 * call sd_xbuf_strategy().  We just want to return the
11482 	 * result of ddi_xbuf_qstrategy so that we have an opt-
11483 	 * imized tail call which saves us a stack frame.
11484 	 */
11485 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
11486 }
11487 
11488 
11489 /*
11490  *    Function: sd_xbuf_strategy
11491  *
11492  * Description: Function for initiating IO operations via the
11493  *		ddi_xbuf_qstrategy() mechanism.
11494  *
11495  *     Context: Kernel thread context.
11496  */
11497 
11498 static void
11499 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
11500 {
11501 	struct sd_lun *un = arg;
11502 
11503 	ASSERT(bp != NULL);
11504 	ASSERT(xp != NULL);
11505 	ASSERT(un != NULL);
11506 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11507 
11508 	/*
11509 	 * Initialize the fields in the xbuf and save a pointer to the
11510 	 * xbuf in bp->b_private.
11511 	 */
11512 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
11513 
11514 	/* Send the buf down the iostart chain */
11515 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
11516 }
11517 
11518 
11519 /*
11520  *    Function: sd_xbuf_init
11521  *
11522  * Description: Prepare the given sd_xbuf struct for use.
11523  *
11524  *   Arguments: un - ptr to softstate
11525  *		bp - ptr to associated buf(9S)
11526  *		xp - ptr to associated sd_xbuf
11527  *		chain_type - IO chain type to use:
11528  *			SD_CHAIN_NULL
11529  *			SD_CHAIN_BUFIO
11530  *			SD_CHAIN_USCSI
11531  *			SD_CHAIN_DIRECT
11532  *			SD_CHAIN_DIRECT_PRIORITY
11533  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
11534  *			initialization; may be NULL if none.
11535  *
11536  *     Context: Kernel thread context
11537  */
11538 
11539 static void
11540 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
11541 	uchar_t chain_type, void *pktinfop)
11542 {
11543 	int index;
11544 
11545 	ASSERT(un != NULL);
11546 	ASSERT(bp != NULL);
11547 	ASSERT(xp != NULL);
11548 
11549 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
11550 	    bp, chain_type);
11551 
11552 	xp->xb_un	= un;
11553 	xp->xb_pktp	= NULL;
11554 	xp->xb_pktinfo	= pktinfop;
11555 	xp->xb_private	= bp->b_private;
11556 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
11557 
11558 	/*
11559 	 * Set up the iostart and iodone chain indexes in the xbuf, based
11560 	 * upon the specified chain type to use.
11561 	 */
11562 	switch (chain_type) {
11563 	case SD_CHAIN_NULL:
11564 		/*
11565 		 * Fall thru to just use the values for the buf type, even
11566 		 * tho for the NULL chain these values will never be used.
11567 		 */
11568 		/* FALLTHRU */
11569 	case SD_CHAIN_BUFIO:
11570 		index = un->un_buf_chain_type;
11571 		if ((!un->un_f_has_removable_media) &&
11572 		    (un->un_tgt_blocksize != 0) &&
11573 		    (un->un_tgt_blocksize != DEV_BSIZE ||
11574 		    un->un_f_enable_rmw)) {
11575 			int secmask = 0, blknomask = 0;
11576 			if (un->un_f_enable_rmw) {
11577 				blknomask =
11578 				    (un->un_phy_blocksize / DEV_BSIZE) - 1;
11579 				secmask = un->un_phy_blocksize - 1;
11580 			} else {
11581 				blknomask =
11582 				    (un->un_tgt_blocksize / DEV_BSIZE) - 1;
11583 				secmask = un->un_tgt_blocksize - 1;
11584 			}
11585 
11586 			if ((bp->b_lblkno & (blknomask)) ||
11587 			    (bp->b_bcount & (secmask))) {
11588 				if ((un->un_f_rmw_type !=
11589 				    SD_RMW_TYPE_RETURN_ERROR) ||
11590 				    un->un_f_enable_rmw) {
11591 					if (un->un_f_pm_is_enabled == FALSE)
11592 						index =
11593 						    SD_CHAIN_INFO_MSS_DSK_NO_PM;
11594 					else
11595 						index =
11596 						    SD_CHAIN_INFO_MSS_DISK;
11597 				}
11598 			}
11599 		}
11600 		break;
11601 	case SD_CHAIN_USCSI:
11602 		index = un->un_uscsi_chain_type;
11603 		break;
11604 	case SD_CHAIN_DIRECT:
11605 		index = un->un_direct_chain_type;
11606 		break;
11607 	case SD_CHAIN_DIRECT_PRIORITY:
11608 		index = un->un_priority_chain_type;
11609 		break;
11610 	default:
11611 		/* We're really broken if we ever get here... */
11612 		panic("sd_xbuf_init: illegal chain type!");
11613 		/*NOTREACHED*/
11614 	}
11615 
11616 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
11617 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
11618 
11619 	/*
11620 	 * It might be a bit easier to simply bzero the entire xbuf above,
11621 	 * but it turns out that since we init a fair number of members anyway,
11622 	 * we save a fair number cycles by doing explicit assignment of zero.
11623 	 */
11624 	xp->xb_pkt_flags	= 0;
11625 	xp->xb_dma_resid	= 0;
11626 	xp->xb_retry_count	= 0;
11627 	xp->xb_victim_retry_count = 0;
11628 	xp->xb_ua_retry_count	= 0;
11629 	xp->xb_nr_retry_count	= 0;
11630 	xp->xb_sense_bp		= NULL;
11631 	xp->xb_sense_status	= 0;
11632 	xp->xb_sense_state	= 0;
11633 	xp->xb_sense_resid	= 0;
11634 	xp->xb_ena		= 0;
11635 
11636 	bp->b_private	= xp;
11637 	bp->b_flags	&= ~(B_DONE | B_ERROR);
11638 	bp->b_resid	= 0;
11639 	bp->av_forw	= NULL;
11640 	bp->av_back	= NULL;
11641 	bioerror(bp, 0);
11642 
11643 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
11644 }
11645 
11646 
11647 /*
11648  *    Function: sd_uscsi_strategy
11649  *
11650  * Description: Wrapper for calling into the USCSI chain via physio(9F)
11651  *
11652  *   Arguments: bp - buf struct ptr
11653  *
11654  * Return Code: Always returns 0
11655  *
11656  *     Context: Kernel thread context
11657  */
11658 
11659 static int
11660 sd_uscsi_strategy(struct buf *bp)
11661 {
11662 	struct sd_lun		*un;
11663 	struct sd_uscsi_info	*uip;
11664 	struct sd_xbuf		*xp;
11665 	uchar_t			chain_type;
11666 	uchar_t			cmd;
11667 
11668 	ASSERT(bp != NULL);
11669 
11670 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11671 	if (un == NULL) {
11672 		bioerror(bp, EIO);
11673 		bp->b_resid = bp->b_bcount;
11674 		biodone(bp);
11675 		return (0);
11676 	}
11677 
11678 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11679 
11680 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
11681 
11682 	/*
11683 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
11684 	 */
11685 	ASSERT(bp->b_private != NULL);
11686 	uip = (struct sd_uscsi_info *)bp->b_private;
11687 	cmd = ((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_cdb[0];
11688 
11689 	mutex_enter(SD_MUTEX(un));
11690 	/*
11691 	 * atapi: Since we are running the CD for now in PIO mode we need to
11692 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11693 	 * the HBA's init_pkt routine.
11694 	 */
11695 	if (un->un_f_cfg_is_atapi == TRUE) {
11696 		mutex_exit(SD_MUTEX(un));
11697 		bp_mapin(bp);
11698 		mutex_enter(SD_MUTEX(un));
11699 	}
11700 	un->un_ncmds_in_driver++;
11701 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
11702 	    un->un_ncmds_in_driver);
11703 
11704 	if ((bp->b_flags & B_WRITE) && (bp->b_bcount != 0) &&
11705 	    (cmd != SCMD_MODE_SELECT) && (cmd != SCMD_MODE_SELECT_G1))
11706 		un->un_f_sync_cache_required = TRUE;
11707 
11708 	mutex_exit(SD_MUTEX(un));
11709 
11710 	switch (uip->ui_flags) {
11711 	case SD_PATH_DIRECT:
11712 		chain_type = SD_CHAIN_DIRECT;
11713 		break;
11714 	case SD_PATH_DIRECT_PRIORITY:
11715 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
11716 		break;
11717 	default:
11718 		chain_type = SD_CHAIN_USCSI;
11719 		break;
11720 	}
11721 
11722 	/*
11723 	 * We may allocate extra buf for external USCSI commands. If the
11724 	 * application asks for bigger than 20-byte sense data via USCSI,
11725 	 * SCSA layer will allocate 252 bytes sense buf for that command.
11726 	 */
11727 	if (((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_rqlen >
11728 	    SENSE_LENGTH) {
11729 		xp = kmem_zalloc(sizeof (struct sd_xbuf) - SENSE_LENGTH +
11730 		    MAX_SENSE_LENGTH, KM_SLEEP);
11731 	} else {
11732 		xp = kmem_zalloc(sizeof (struct sd_xbuf), KM_SLEEP);
11733 	}
11734 
11735 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
11736 
11737 	/* Use the index obtained within xbuf_init */
11738 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
11739 
11740 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
11741 
11742 	return (0);
11743 }
11744 
11745 /*
11746  *    Function: sd_send_scsi_cmd
11747  *
11748  * Description: Runs a USCSI command for user (when called thru sdioctl),
11749  *		or for the driver
11750  *
11751  *   Arguments: dev - the dev_t for the device
11752  *		incmd - ptr to a valid uscsi_cmd struct
11753  *		flag - bit flag, indicating open settings, 32/64 bit type
11754  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11755  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11756  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11757  *			to use the USCSI "direct" chain and bypass the normal
11758  *			command waitq.
11759  *
11760  * Return Code: 0 -  successful completion of the given command
11761  *		EIO - scsi_uscsi_handle_command() failed
11762  *		ENXIO  - soft state not found for specified dev
11763  *		EINVAL
11764  *		EFAULT - copyin/copyout error
11765  *		return code of scsi_uscsi_handle_command():
11766  *			EIO
11767  *			ENXIO
11768  *			EACCES
11769  *
11770  *     Context: Waits for command to complete. Can sleep.
11771  */
11772 
11773 static int
11774 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
11775 	enum uio_seg dataspace, int path_flag)
11776 {
11777 	struct sd_lun	*un;
11778 	sd_ssc_t	*ssc;
11779 	int		rval;
11780 
11781 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
11782 	if (un == NULL) {
11783 		return (ENXIO);
11784 	}
11785 
11786 	/*
11787 	 * Using sd_ssc_send to handle uscsi cmd
11788 	 */
11789 	ssc = sd_ssc_init(un);
11790 	rval = sd_ssc_send(ssc, incmd, flag, dataspace, path_flag);
11791 	sd_ssc_fini(ssc);
11792 
11793 	return (rval);
11794 }
11795 
11796 /*
11797  *    Function: sd_ssc_init
11798  *
11799  * Description: Uscsi end-user call this function to initialize necessary
11800  *              fields, such as uscsi_cmd and sd_uscsi_info struct.
11801  *
11802  *              The return value of sd_send_scsi_cmd will be treated as a
11803  *              fault in various conditions. Even it is not Zero, some
11804  *              callers may ignore the return value. That is to say, we can
11805  *              not make an accurate assessment in sdintr, since if a
11806  *              command is failed in sdintr it does not mean the caller of
11807  *              sd_send_scsi_cmd will treat it as a real failure.
11808  *
11809  *              To avoid printing too many error logs for a failed uscsi
11810  *              packet that the caller may not treat it as a failure, the
11811  *              sd will keep silent for handling all uscsi commands.
11812  *
11813  *              During detach->attach and attach-open, for some types of
11814  *              problems, the driver should be providing information about
11815  *              the problem encountered. Device use USCSI_SILENT, which
11816  *              suppresses all driver information. The result is that no
11817  *              information about the problem is available. Being
11818  *              completely silent during this time is inappropriate. The
11819  *              driver needs a more selective filter than USCSI_SILENT, so
11820  *              that information related to faults is provided.
11821  *
11822  *              To make the accurate accessment, the caller  of
11823  *              sd_send_scsi_USCSI_CMD should take the ownership and
11824  *              get necessary information to print error messages.
11825  *
11826  *              If we want to print necessary info of uscsi command, we need to
11827  *              keep the uscsi_cmd and sd_uscsi_info till we can make the
11828  *              assessment. We use sd_ssc_init to alloc necessary
11829  *              structs for sending an uscsi command and we are also
11830  *              responsible for free the memory by calling
11831  *              sd_ssc_fini.
11832  *
11833  *              The calling secquences will look like:
11834  *              sd_ssc_init->
11835  *
11836  *                  ...
11837  *
11838  *                  sd_send_scsi_USCSI_CMD->
11839  *                      sd_ssc_send-> - - - sdintr
11840  *                  ...
11841  *
11842  *                  if we think the return value should be treated as a
11843  *                  failure, we make the accessment here and print out
11844  *                  necessary by retrieving uscsi_cmd and sd_uscsi_info'
11845  *
11846  *                  ...
11847  *
11848  *              sd_ssc_fini
11849  *
11850  *
11851  *   Arguments: un - pointer to driver soft state (unit) structure for this
11852  *                   target.
11853  *
11854  * Return code: sd_ssc_t - pointer to allocated sd_ssc_t struct, it contains
11855  *                         uscsi_cmd and sd_uscsi_info.
11856  *                  NULL - if can not alloc memory for sd_ssc_t struct
11857  *
11858  *     Context: Kernel Thread.
11859  */
11860 static sd_ssc_t *
11861 sd_ssc_init(struct sd_lun *un)
11862 {
11863 	sd_ssc_t		*ssc;
11864 	struct uscsi_cmd	*ucmdp;
11865 	struct sd_uscsi_info	*uip;
11866 
11867 	ASSERT(un != NULL);
11868 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11869 
11870 	/*
11871 	 * Allocate sd_ssc_t structure
11872 	 */
11873 	ssc = kmem_zalloc(sizeof (sd_ssc_t), KM_SLEEP);
11874 
11875 	/*
11876 	 * Allocate uscsi_cmd by calling scsi_uscsi_alloc common routine
11877 	 */
11878 	ucmdp = scsi_uscsi_alloc();
11879 
11880 	/*
11881 	 * Allocate sd_uscsi_info structure
11882 	 */
11883 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
11884 
11885 	ssc->ssc_uscsi_cmd = ucmdp;
11886 	ssc->ssc_uscsi_info = uip;
11887 	ssc->ssc_un = un;
11888 
11889 	return (ssc);
11890 }
11891 
11892 /*
11893  * Function: sd_ssc_fini
11894  *
11895  * Description: To free sd_ssc_t and it's hanging off
11896  *
11897  * Arguments: ssc - struct pointer of sd_ssc_t.
11898  */
11899 static void
11900 sd_ssc_fini(sd_ssc_t *ssc)
11901 {
11902 	scsi_uscsi_free(ssc->ssc_uscsi_cmd);
11903 
11904 	if (ssc->ssc_uscsi_info != NULL) {
11905 		kmem_free(ssc->ssc_uscsi_info, sizeof (struct sd_uscsi_info));
11906 		ssc->ssc_uscsi_info = NULL;
11907 	}
11908 
11909 	kmem_free(ssc, sizeof (sd_ssc_t));
11910 	ssc = NULL;
11911 }
11912 
11913 /*
11914  * Function: sd_ssc_send
11915  *
11916  * Description: Runs a USCSI command for user when called through sdioctl,
11917  *              or for the driver.
11918  *
11919  *   Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11920  *                    sd_uscsi_info in.
11921  *		incmd - ptr to a valid uscsi_cmd struct
11922  *		flag - bit flag, indicating open settings, 32/64 bit type
11923  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11924  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11925  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11926  *			to use the USCSI "direct" chain and bypass the normal
11927  *			command waitq.
11928  *
11929  * Return Code: 0 -  successful completion of the given command
11930  *		EIO - scsi_uscsi_handle_command() failed
11931  *		ENXIO  - soft state not found for specified dev
11932  *		ECANCELED - command cancelled due to low power
11933  *		EINVAL
11934  *		EFAULT - copyin/copyout error
11935  *		return code of scsi_uscsi_handle_command():
11936  *			EIO
11937  *			ENXIO
11938  *			EACCES
11939  *
11940  *     Context: Kernel Thread;
11941  *              Waits for command to complete. Can sleep.
11942  */
11943 static int
11944 sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd, int flag,
11945 	enum uio_seg dataspace, int path_flag)
11946 {
11947 	struct sd_uscsi_info	*uip;
11948 	struct uscsi_cmd	*uscmd;
11949 	struct sd_lun		*un;
11950 	dev_t			dev;
11951 
11952 	int	format = 0;
11953 	int	rval;
11954 
11955 	ASSERT(ssc != NULL);
11956 	un = ssc->ssc_un;
11957 	ASSERT(un != NULL);
11958 	uscmd = ssc->ssc_uscsi_cmd;
11959 	ASSERT(uscmd != NULL);
11960 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11961 	if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) {
11962 		/*
11963 		 * If enter here, it indicates that the previous uscsi
11964 		 * command has not been processed by sd_ssc_assessment.
11965 		 * This is violating our rules of FMA telemetry processing.
11966 		 * We should print out this message and the last undisposed
11967 		 * uscsi command.
11968 		 */
11969 		if (uscmd->uscsi_cdb != NULL) {
11970 			SD_INFO(SD_LOG_SDTEST, un,
11971 			    "sd_ssc_send is missing the alternative "
11972 			    "sd_ssc_assessment when running command 0x%x.\n",
11973 			    uscmd->uscsi_cdb[0]);
11974 		}
11975 		/*
11976 		 * Set the ssc_flags to SSC_FLAGS_UNKNOWN, which should be
11977 		 * the initial status.
11978 		 */
11979 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
11980 	}
11981 
11982 	/*
11983 	 * We need to make sure sd_ssc_send will have sd_ssc_assessment
11984 	 * followed to avoid missing FMA telemetries.
11985 	 */
11986 	ssc->ssc_flags |= SSC_FLAGS_NEED_ASSESSMENT;
11987 
11988 	/*
11989 	 * if USCSI_PMFAILFAST is set and un is in low power, fail the
11990 	 * command immediately.
11991 	 */
11992 	mutex_enter(SD_MUTEX(un));
11993 	mutex_enter(&un->un_pm_mutex);
11994 	if ((uscmd->uscsi_flags & USCSI_PMFAILFAST) &&
11995 	    SD_DEVICE_IS_IN_LOW_POWER(un)) {
11996 		SD_TRACE(SD_LOG_IO, un, "sd_ssc_send:"
11997 		    "un:0x%p is in low power\n", un);
11998 		mutex_exit(&un->un_pm_mutex);
11999 		mutex_exit(SD_MUTEX(un));
12000 		return (ECANCELED);
12001 	}
12002 	mutex_exit(&un->un_pm_mutex);
12003 	mutex_exit(SD_MUTEX(un));
12004 
12005 #ifdef SDDEBUG
12006 	switch (dataspace) {
12007 	case UIO_USERSPACE:
12008 		SD_TRACE(SD_LOG_IO, un,
12009 		    "sd_ssc_send: entry: un:0x%p UIO_USERSPACE\n", un);
12010 		break;
12011 	case UIO_SYSSPACE:
12012 		SD_TRACE(SD_LOG_IO, un,
12013 		    "sd_ssc_send: entry: un:0x%p UIO_SYSSPACE\n", un);
12014 		break;
12015 	default:
12016 		SD_TRACE(SD_LOG_IO, un,
12017 		    "sd_ssc_send: entry: un:0x%p UNEXPECTED SPACE\n", un);
12018 		break;
12019 	}
12020 #endif
12021 
12022 	rval = scsi_uscsi_copyin((intptr_t)incmd, flag,
12023 	    SD_ADDRESS(un), &uscmd);
12024 	if (rval != 0) {
12025 		SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: "
12026 		    "scsi_uscsi_alloc_and_copyin failed\n", un);
12027 		return (rval);
12028 	}
12029 
12030 	if ((uscmd->uscsi_cdb != NULL) &&
12031 	    (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) {
12032 		mutex_enter(SD_MUTEX(un));
12033 		un->un_f_format_in_progress = TRUE;
12034 		mutex_exit(SD_MUTEX(un));
12035 		format = 1;
12036 	}
12037 
12038 	/*
12039 	 * Allocate an sd_uscsi_info struct and fill it with the info
12040 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
12041 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
12042 	 * since we allocate the buf here in this function, we do not
12043 	 * need to preserve the prior contents of b_private.
12044 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
12045 	 */
12046 	uip = ssc->ssc_uscsi_info;
12047 	uip->ui_flags = path_flag;
12048 	uip->ui_cmdp = uscmd;
12049 
12050 	/*
12051 	 * Commands sent with priority are intended for error recovery
12052 	 * situations, and do not have retries performed.
12053 	 */
12054 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
12055 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
12056 	}
12057 	uscmd->uscsi_flags &= ~USCSI_NOINTR;
12058 
12059 	dev = SD_GET_DEV(un);
12060 	rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd,
12061 	    sd_uscsi_strategy, NULL, uip);
12062 
12063 	/*
12064 	 * mark ssc_flags right after handle_cmd to make sure
12065 	 * the uscsi has been sent
12066 	 */
12067 	ssc->ssc_flags |= SSC_FLAGS_CMD_ISSUED;
12068 
12069 #ifdef SDDEBUG
12070 	SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
12071 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
12072 	    uscmd->uscsi_status, uscmd->uscsi_resid);
12073 	if (uscmd->uscsi_bufaddr != NULL) {
12074 		SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
12075 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
12076 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
12077 		if (dataspace == UIO_SYSSPACE) {
12078 			SD_DUMP_MEMORY(un, SD_LOG_IO,
12079 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
12080 			    uscmd->uscsi_buflen, SD_LOG_HEX);
12081 		}
12082 	}
12083 #endif
12084 
12085 	if (format == 1) {
12086 		mutex_enter(SD_MUTEX(un));
12087 		un->un_f_format_in_progress = FALSE;
12088 		mutex_exit(SD_MUTEX(un));
12089 	}
12090 
12091 	(void) scsi_uscsi_copyout((intptr_t)incmd, uscmd);
12092 
12093 	return (rval);
12094 }
12095 
12096 /*
12097  *     Function: sd_ssc_print
12098  *
12099  * Description: Print information available to the console.
12100  *
12101  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
12102  *                    sd_uscsi_info in.
12103  *            sd_severity - log level.
12104  *     Context: Kernel thread or interrupt context.
12105  */
12106 static void
12107 sd_ssc_print(sd_ssc_t *ssc, int sd_severity)
12108 {
12109 	struct uscsi_cmd	*ucmdp;
12110 	struct scsi_device	*devp;
12111 	dev_info_t 		*devinfo;
12112 	uchar_t			*sensep;
12113 	int			senlen;
12114 	union scsi_cdb		*cdbp;
12115 	uchar_t			com;
12116 	extern struct scsi_key_strings scsi_cmds[];
12117 
12118 	ASSERT(ssc != NULL);
12119 	ASSERT(ssc->ssc_un != NULL);
12120 
12121 	if (SD_FM_LOG(ssc->ssc_un) != SD_FM_LOG_EREPORT)
12122 		return;
12123 	ucmdp = ssc->ssc_uscsi_cmd;
12124 	devp = SD_SCSI_DEVP(ssc->ssc_un);
12125 	devinfo = SD_DEVINFO(ssc->ssc_un);
12126 	ASSERT(ucmdp != NULL);
12127 	ASSERT(devp != NULL);
12128 	ASSERT(devinfo != NULL);
12129 	sensep = (uint8_t *)ucmdp->uscsi_rqbuf;
12130 	senlen = ucmdp->uscsi_rqlen - ucmdp->uscsi_rqresid;
12131 	cdbp = (union scsi_cdb *)ucmdp->uscsi_cdb;
12132 
12133 	/* In certain case (like DOORLOCK), the cdb could be NULL. */
12134 	if (cdbp == NULL)
12135 		return;
12136 	/* We don't print log if no sense data available. */
12137 	if (senlen == 0)
12138 		sensep = NULL;
12139 	com = cdbp->scc_cmd;
12140 	scsi_generic_errmsg(devp, sd_label, sd_severity, 0, 0, com,
12141 	    scsi_cmds, sensep, ssc->ssc_un->un_additional_codes, NULL);
12142 }
12143 
12144 /*
12145  *     Function: sd_ssc_assessment
12146  *
12147  * Description: We use this function to make an assessment at the point
12148  *              where SD driver may encounter a potential error.
12149  *
12150  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
12151  *                  sd_uscsi_info in.
12152  *            tp_assess - a hint of strategy for ereport posting.
12153  *            Possible values of tp_assess include:
12154  *                SD_FMT_IGNORE - we don't post any ereport because we're
12155  *                sure that it is ok to ignore the underlying problems.
12156  *                SD_FMT_IGNORE_COMPROMISE - we don't post any ereport for now
12157  *                but it might be not correct to ignore the underlying hardware
12158  *                error.
12159  *                SD_FMT_STATUS_CHECK - we will post an ereport with the
12160  *                payload driver-assessment of value "fail" or
12161  *                "fatal"(depending on what information we have here). This
12162  *                assessment value is usually set when SD driver think there
12163  *                is a potential error occurred(Typically, when return value
12164  *                of the SCSI command is EIO).
12165  *                SD_FMT_STANDARD - we will post an ereport with the payload
12166  *                driver-assessment of value "info". This assessment value is
12167  *                set when the SCSI command returned successfully and with
12168  *                sense data sent back.
12169  *
12170  *     Context: Kernel thread.
12171  */
12172 static void
12173 sd_ssc_assessment(sd_ssc_t *ssc, enum sd_type_assessment tp_assess)
12174 {
12175 	int senlen = 0;
12176 	struct uscsi_cmd *ucmdp = NULL;
12177 	struct sd_lun *un;
12178 
12179 	ASSERT(ssc != NULL);
12180 	un = ssc->ssc_un;
12181 	ASSERT(un != NULL);
12182 	ucmdp = ssc->ssc_uscsi_cmd;
12183 	ASSERT(ucmdp != NULL);
12184 
12185 	if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) {
12186 		ssc->ssc_flags &= ~SSC_FLAGS_NEED_ASSESSMENT;
12187 	} else {
12188 		/*
12189 		 * If enter here, it indicates that we have a wrong
12190 		 * calling sequence of sd_ssc_send and sd_ssc_assessment,
12191 		 * both of which should be called in a pair in case of
12192 		 * loss of FMA telemetries.
12193 		 */
12194 		if (ucmdp->uscsi_cdb != NULL) {
12195 			SD_INFO(SD_LOG_SDTEST, un,
12196 			    "sd_ssc_assessment is missing the "
12197 			    "alternative sd_ssc_send when running 0x%x, "
12198 			    "or there are superfluous sd_ssc_assessment for "
12199 			    "the same sd_ssc_send.\n",
12200 			    ucmdp->uscsi_cdb[0]);
12201 		}
12202 		/*
12203 		 * Set the ssc_flags to the initial value to avoid passing
12204 		 * down dirty flags to the following sd_ssc_send function.
12205 		 */
12206 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12207 		return;
12208 	}
12209 
12210 	/*
12211 	 * Only handle an issued command which is waiting for assessment.
12212 	 * A command which is not issued will not have
12213 	 * SSC_FLAGS_INVALID_DATA set, so it'ok we just return here.
12214 	 */
12215 	if (!(ssc->ssc_flags & SSC_FLAGS_CMD_ISSUED)) {
12216 		sd_ssc_print(ssc, SCSI_ERR_INFO);
12217 		return;
12218 	} else {
12219 		/*
12220 		 * For an issued command, we should clear this flag in
12221 		 * order to make the sd_ssc_t structure be used off
12222 		 * multiple uscsi commands.
12223 		 */
12224 		ssc->ssc_flags &= ~SSC_FLAGS_CMD_ISSUED;
12225 	}
12226 
12227 	/*
12228 	 * We will not deal with non-retryable(flag USCSI_DIAGNOSE set)
12229 	 * commands here. And we should clear the ssc_flags before return.
12230 	 */
12231 	if (ucmdp->uscsi_flags & USCSI_DIAGNOSE) {
12232 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12233 		return;
12234 	}
12235 
12236 	switch (tp_assess) {
12237 	case SD_FMT_IGNORE:
12238 	case SD_FMT_IGNORE_COMPROMISE:
12239 		break;
12240 	case SD_FMT_STATUS_CHECK:
12241 		/*
12242 		 * For a failed command(including the succeeded command
12243 		 * with invalid data sent back).
12244 		 */
12245 		sd_ssc_post(ssc, SD_FM_DRV_FATAL);
12246 		break;
12247 	case SD_FMT_STANDARD:
12248 		/*
12249 		 * Always for the succeeded commands probably with sense
12250 		 * data sent back.
12251 		 * Limitation:
12252 		 *	We can only handle a succeeded command with sense
12253 		 *	data sent back when auto-request-sense is enabled.
12254 		 */
12255 		senlen = ssc->ssc_uscsi_cmd->uscsi_rqlen -
12256 		    ssc->ssc_uscsi_cmd->uscsi_rqresid;
12257 		if ((ssc->ssc_uscsi_info->ui_pkt_state & STATE_ARQ_DONE) &&
12258 		    (un->un_f_arq_enabled == TRUE) &&
12259 		    senlen > 0 &&
12260 		    ssc->ssc_uscsi_cmd->uscsi_rqbuf != NULL) {
12261 			sd_ssc_post(ssc, SD_FM_DRV_NOTICE);
12262 		}
12263 		break;
12264 	default:
12265 		/*
12266 		 * Should not have other type of assessment.
12267 		 */
12268 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
12269 		    "sd_ssc_assessment got wrong "
12270 		    "sd_type_assessment %d.\n", tp_assess);
12271 		break;
12272 	}
12273 	/*
12274 	 * Clear up the ssc_flags before return.
12275 	 */
12276 	ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12277 }
12278 
12279 /*
12280  *    Function: sd_ssc_post
12281  *
12282  * Description: 1. read the driver property to get fm-scsi-log flag.
12283  *              2. print log if fm_log_capable is non-zero.
12284  *              3. call sd_ssc_ereport_post to post ereport if possible.
12285  *
12286  *    Context: May be called from kernel thread or interrupt context.
12287  */
12288 static void
12289 sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess)
12290 {
12291 	struct sd_lun	*un;
12292 	int		sd_severity;
12293 
12294 	ASSERT(ssc != NULL);
12295 	un = ssc->ssc_un;
12296 	ASSERT(un != NULL);
12297 
12298 	/*
12299 	 * We may enter here from sd_ssc_assessment(for USCSI command) or
12300 	 * by directly called from sdintr context.
12301 	 * We don't handle a non-disk drive(CD-ROM, removable media).
12302 	 * Clear the ssc_flags before return in case we've set
12303 	 * SSC_FLAGS_INVALID_XXX which should be skipped for a non-disk
12304 	 * driver.
12305 	 */
12306 	if (ISCD(un) || un->un_f_has_removable_media) {
12307 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12308 		return;
12309 	}
12310 
12311 	switch (sd_assess) {
12312 		case SD_FM_DRV_FATAL:
12313 			sd_severity = SCSI_ERR_FATAL;
12314 			break;
12315 		case SD_FM_DRV_RECOVERY:
12316 			sd_severity = SCSI_ERR_RECOVERED;
12317 			break;
12318 		case SD_FM_DRV_RETRY:
12319 			sd_severity = SCSI_ERR_RETRYABLE;
12320 			break;
12321 		case SD_FM_DRV_NOTICE:
12322 			sd_severity = SCSI_ERR_INFO;
12323 			break;
12324 		default:
12325 			sd_severity = SCSI_ERR_UNKNOWN;
12326 	}
12327 	/* print log */
12328 	sd_ssc_print(ssc, sd_severity);
12329 
12330 	/* always post ereport */
12331 	sd_ssc_ereport_post(ssc, sd_assess);
12332 }
12333 
12334 /*
12335  *    Function: sd_ssc_set_info
12336  *
12337  * Description: Mark ssc_flags and set ssc_info which would be the
12338  *              payload of uderr ereport. This function will cause
12339  *              sd_ssc_ereport_post to post uderr ereport only.
12340  *              Besides, when ssc_flags == SSC_FLAGS_INVALID_DATA(USCSI),
12341  *              the function will also call SD_ERROR or scsi_log for a
12342  *              CDROM/removable-media/DDI_FM_NOT_CAPABLE device.
12343  *
12344  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
12345  *                  sd_uscsi_info in.
12346  *            ssc_flags - indicate the sub-category of a uderr.
12347  *            comp - this argument is meaningful only when
12348  *                   ssc_flags == SSC_FLAGS_INVALID_DATA, and its possible
12349  *                   values include:
12350  *                   > 0, SD_ERROR is used with comp as the driver logging
12351  *                   component;
12352  *                   = 0, scsi-log is used to log error telemetries;
12353  *                   < 0, no log available for this telemetry.
12354  *
12355  *    Context: Kernel thread or interrupt context
12356  */
12357 static void
12358 sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp, const char *fmt, ...)
12359 {
12360 	va_list	ap;
12361 
12362 	ASSERT(ssc != NULL);
12363 	ASSERT(ssc->ssc_un != NULL);
12364 
12365 	ssc->ssc_flags |= ssc_flags;
12366 	va_start(ap, fmt);
12367 	(void) vsnprintf(ssc->ssc_info, sizeof (ssc->ssc_info), fmt, ap);
12368 	va_end(ap);
12369 
12370 	/*
12371 	 * If SSC_FLAGS_INVALID_DATA is set, it should be a uscsi command
12372 	 * with invalid data sent back. For non-uscsi command, the
12373 	 * following code will be bypassed.
12374 	 */
12375 	if (ssc_flags & SSC_FLAGS_INVALID_DATA) {
12376 		if (SD_FM_LOG(ssc->ssc_un) == SD_FM_LOG_NSUP) {
12377 			/*
12378 			 * If the error belong to certain component and we
12379 			 * do not want it to show up on the console, we
12380 			 * will use SD_ERROR, otherwise scsi_log is
12381 			 * preferred.
12382 			 */
12383 			if (comp > 0) {
12384 				SD_ERROR(comp, ssc->ssc_un, ssc->ssc_info);
12385 			} else if (comp == 0) {
12386 				scsi_log(SD_DEVINFO(ssc->ssc_un), sd_label,
12387 				    CE_WARN, ssc->ssc_info);
12388 			}
12389 		}
12390 	}
12391 }
12392 
12393 /*
12394  *    Function: sd_buf_iodone
12395  *
12396  * Description: Frees the sd_xbuf & returns the buf to its originator.
12397  *
12398  *     Context: May be called from interrupt context.
12399  */
12400 /* ARGSUSED */
12401 static void
12402 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
12403 {
12404 	struct sd_xbuf *xp;
12405 
12406 	ASSERT(un != NULL);
12407 	ASSERT(bp != NULL);
12408 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12409 
12410 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
12411 
12412 	xp = SD_GET_XBUF(bp);
12413 	ASSERT(xp != NULL);
12414 
12415 	/* xbuf is gone after this */
12416 	if (ddi_xbuf_done(bp, un->un_xbuf_attr)) {
12417 		mutex_enter(SD_MUTEX(un));
12418 
12419 		/*
12420 		 * Grab time when the cmd completed.
12421 		 * This is used for determining if the system has been
12422 		 * idle long enough to make it idle to the PM framework.
12423 		 * This is for lowering the overhead, and therefore improving
12424 		 * performance per I/O operation.
12425 		 */
12426 		un->un_pm_idle_time = ddi_get_time();
12427 
12428 		un->un_ncmds_in_driver--;
12429 		ASSERT(un->un_ncmds_in_driver >= 0);
12430 		SD_INFO(SD_LOG_IO, un,
12431 		    "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
12432 		    un->un_ncmds_in_driver);
12433 
12434 		mutex_exit(SD_MUTEX(un));
12435 	}
12436 
12437 	biodone(bp);				/* bp is gone after this */
12438 
12439 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
12440 }
12441 
12442 
12443 /*
12444  *    Function: sd_uscsi_iodone
12445  *
12446  * Description: Frees the sd_xbuf & returns the buf to its originator.
12447  *
12448  *     Context: May be called from interrupt context.
12449  */
12450 /* ARGSUSED */
12451 static void
12452 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12453 {
12454 	struct sd_xbuf *xp;
12455 
12456 	ASSERT(un != NULL);
12457 	ASSERT(bp != NULL);
12458 
12459 	xp = SD_GET_XBUF(bp);
12460 	ASSERT(xp != NULL);
12461 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12462 
12463 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
12464 
12465 	bp->b_private = xp->xb_private;
12466 
12467 	mutex_enter(SD_MUTEX(un));
12468 
12469 	/*
12470 	 * Grab time when the cmd completed.
12471 	 * This is used for determining if the system has been
12472 	 * idle long enough to make it idle to the PM framework.
12473 	 * This is for lowering the overhead, and therefore improving
12474 	 * performance per I/O operation.
12475 	 */
12476 	un->un_pm_idle_time = ddi_get_time();
12477 
12478 	un->un_ncmds_in_driver--;
12479 	ASSERT(un->un_ncmds_in_driver >= 0);
12480 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
12481 	    un->un_ncmds_in_driver);
12482 
12483 	mutex_exit(SD_MUTEX(un));
12484 
12485 	if (((struct uscsi_cmd *)(xp->xb_pktinfo))->uscsi_rqlen >
12486 	    SENSE_LENGTH) {
12487 		kmem_free(xp, sizeof (struct sd_xbuf) - SENSE_LENGTH +
12488 		    MAX_SENSE_LENGTH);
12489 	} else {
12490 		kmem_free(xp, sizeof (struct sd_xbuf));
12491 	}
12492 
12493 	biodone(bp);
12494 
12495 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
12496 }
12497 
12498 
12499 /*
12500  *    Function: sd_mapblockaddr_iostart
12501  *
12502  * Description: Verify request lies within the partition limits for
12503  *		the indicated minor device.  Issue "overrun" buf if
12504  *		request would exceed partition range.  Converts
12505  *		partition-relative block address to absolute.
12506  *
12507  *              Upon exit of this function:
12508  *              1.I/O is aligned
12509  *                 xp->xb_blkno represents the absolute sector address
12510  *              2.I/O is misaligned
12511  *                 xp->xb_blkno represents the absolute logical block address
12512  *                 based on DEV_BSIZE. The logical block address will be
12513  *                 converted to physical sector address in sd_mapblocksize_\
12514  *                 iostart.
12515  *              3.I/O is misaligned but is aligned in "overrun" buf
12516  *                 xp->xb_blkno represents the absolute logical block address
12517  *                 based on DEV_BSIZE. The logical block address will be
12518  *                 converted to physical sector address in sd_mapblocksize_\
12519  *                 iostart. But no RMW will be issued in this case.
12520  *
12521  *     Context: Can sleep
12522  *
12523  *      Issues: This follows what the old code did, in terms of accessing
12524  *		some of the partition info in the unit struct without holding
12525  *		the mutext.  This is a general issue, if the partition info
12526  *		can be altered while IO is in progress... as soon as we send
12527  *		a buf, its partitioning can be invalid before it gets to the
12528  *		device.  Probably the right fix is to move partitioning out
12529  *		of the driver entirely.
12530  */
12531 
12532 static void
12533 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
12534 {
12535 	diskaddr_t	nblocks;	/* #blocks in the given partition */
12536 	daddr_t	blocknum;	/* Block number specified by the buf */
12537 	size_t	requested_nblocks;
12538 	size_t	available_nblocks;
12539 	int	partition;
12540 	diskaddr_t	partition_offset;
12541 	struct sd_xbuf *xp;
12542 	int secmask = 0, blknomask = 0;
12543 	ushort_t is_aligned = TRUE;
12544 
12545 	ASSERT(un != NULL);
12546 	ASSERT(bp != NULL);
12547 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12548 
12549 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12550 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
12551 
12552 	xp = SD_GET_XBUF(bp);
12553 	ASSERT(xp != NULL);
12554 
12555 	/*
12556 	 * If the geometry is not indicated as valid, attempt to access
12557 	 * the unit & verify the geometry/label. This can be the case for
12558 	 * removable-media devices, of if the device was opened in
12559 	 * NDELAY/NONBLOCK mode.
12560 	 */
12561 	partition = SDPART(bp->b_edev);
12562 
12563 	if (!SD_IS_VALID_LABEL(un)) {
12564 		sd_ssc_t *ssc;
12565 		/*
12566 		 * Initialize sd_ssc_t for internal uscsi commands
12567 		 * In case of potential porformance issue, we need
12568 		 * to alloc memory only if there is invalid label
12569 		 */
12570 		ssc = sd_ssc_init(un);
12571 
12572 		if (sd_ready_and_valid(ssc, partition) != SD_READY_VALID) {
12573 			/*
12574 			 * For removable devices it is possible to start an
12575 			 * I/O without a media by opening the device in nodelay
12576 			 * mode. Also for writable CDs there can be many
12577 			 * scenarios where there is no geometry yet but volume
12578 			 * manager is trying to issue a read() just because
12579 			 * it can see TOC on the CD. So do not print a message
12580 			 * for removables.
12581 			 */
12582 			if (!un->un_f_has_removable_media) {
12583 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12584 				    "i/o to invalid geometry\n");
12585 			}
12586 			bioerror(bp, EIO);
12587 			bp->b_resid = bp->b_bcount;
12588 			SD_BEGIN_IODONE(index, un, bp);
12589 
12590 			sd_ssc_fini(ssc);
12591 			return;
12592 		}
12593 		sd_ssc_fini(ssc);
12594 	}
12595 
12596 	nblocks = 0;
12597 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
12598 	    &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT);
12599 
12600 	if (un->un_f_enable_rmw) {
12601 		blknomask = (un->un_phy_blocksize / DEV_BSIZE) - 1;
12602 		secmask = un->un_phy_blocksize - 1;
12603 	} else {
12604 		blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1;
12605 		secmask = un->un_tgt_blocksize - 1;
12606 	}
12607 
12608 	if ((bp->b_lblkno & (blknomask)) || (bp->b_bcount & (secmask))) {
12609 		is_aligned = FALSE;
12610 	}
12611 
12612 	if (!(NOT_DEVBSIZE(un)) || un->un_f_enable_rmw) {
12613 		/*
12614 		 * If I/O is aligned, no need to involve RMW(Read Modify Write)
12615 		 * Convert the logical block number to target's physical sector
12616 		 * number.
12617 		 */
12618 		if (is_aligned) {
12619 			xp->xb_blkno = SD_SYS2TGTBLOCK(un, xp->xb_blkno);
12620 		} else {
12621 			switch (un->un_f_rmw_type) {
12622 			case SD_RMW_TYPE_RETURN_ERROR:
12623 				if (un->un_f_enable_rmw)
12624 					break;
12625 				else {
12626 					bp->b_flags |= B_ERROR;
12627 					goto error_exit;
12628 				}
12629 
12630 			case SD_RMW_TYPE_DEFAULT:
12631 				mutex_enter(SD_MUTEX(un));
12632 				if (!un->un_f_enable_rmw &&
12633 				    un->un_rmw_msg_timeid == NULL) {
12634 					scsi_log(SD_DEVINFO(un), sd_label,
12635 					    CE_WARN, "I/O request is not "
12636 					    "aligned with %d disk sector size. "
12637 					    "It is handled through Read Modify "
12638 					    "Write but the performance is "
12639 					    "very low.\n",
12640 					    un->un_tgt_blocksize);
12641 					un->un_rmw_msg_timeid =
12642 					    timeout(sd_rmw_msg_print_handler,
12643 					    un, SD_RMW_MSG_PRINT_TIMEOUT);
12644 				} else {
12645 					un->un_rmw_incre_count ++;
12646 				}
12647 				mutex_exit(SD_MUTEX(un));
12648 				break;
12649 
12650 			case SD_RMW_TYPE_NO_WARNING:
12651 			default:
12652 				break;
12653 			}
12654 
12655 			nblocks = SD_TGT2SYSBLOCK(un, nblocks);
12656 			partition_offset = SD_TGT2SYSBLOCK(un,
12657 			    partition_offset);
12658 		}
12659 	}
12660 
12661 	/*
12662 	 * blocknum is the starting block number of the request. At this
12663 	 * point it is still relative to the start of the minor device.
12664 	 */
12665 	blocknum = xp->xb_blkno;
12666 
12667 	/*
12668 	 * Legacy: If the starting block number is one past the last block
12669 	 * in the partition, do not set B_ERROR in the buf.
12670 	 */
12671 	if (blocknum == nblocks)  {
12672 		goto error_exit;
12673 	}
12674 
12675 	/*
12676 	 * Confirm that the first block of the request lies within the
12677 	 * partition limits. Also the requested number of bytes must be
12678 	 * a multiple of the system block size.
12679 	 */
12680 	if ((blocknum < 0) || (blocknum >= nblocks) ||
12681 	    ((bp->b_bcount & (DEV_BSIZE - 1)) != 0)) {
12682 		bp->b_flags |= B_ERROR;
12683 		goto error_exit;
12684 	}
12685 
12686 	/*
12687 	 * If the requsted # blocks exceeds the available # blocks, that
12688 	 * is an overrun of the partition.
12689 	 */
12690 	if ((!NOT_DEVBSIZE(un)) && is_aligned) {
12691 		requested_nblocks = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
12692 	} else {
12693 		requested_nblocks = SD_BYTES2SYSBLOCKS(bp->b_bcount);
12694 	}
12695 
12696 	available_nblocks = (size_t)(nblocks - blocknum);
12697 	ASSERT(nblocks >= blocknum);
12698 
12699 	if (requested_nblocks > available_nblocks) {
12700 		size_t resid;
12701 
12702 		/*
12703 		 * Allocate an "overrun" buf to allow the request to proceed
12704 		 * for the amount of space available in the partition. The
12705 		 * amount not transferred will be added into the b_resid
12706 		 * when the operation is complete. The overrun buf
12707 		 * replaces the original buf here, and the original buf
12708 		 * is saved inside the overrun buf, for later use.
12709 		 */
12710 		if ((!NOT_DEVBSIZE(un)) && is_aligned) {
12711 			resid = SD_TGTBLOCKS2BYTES(un,
12712 			    (offset_t)(requested_nblocks - available_nblocks));
12713 		} else {
12714 			resid = SD_SYSBLOCKS2BYTES(
12715 			    (offset_t)(requested_nblocks - available_nblocks));
12716 		}
12717 
12718 		size_t count = bp->b_bcount - resid;
12719 		/*
12720 		 * Note: count is an unsigned entity thus it'll NEVER
12721 		 * be less than 0 so ASSERT the original values are
12722 		 * correct.
12723 		 */
12724 		ASSERT(bp->b_bcount >= resid);
12725 
12726 		bp = sd_bioclone_alloc(bp, count, blocknum,
12727 		    (int (*)(struct buf *)) sd_mapblockaddr_iodone);
12728 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
12729 		ASSERT(xp != NULL);
12730 	}
12731 
12732 	/* At this point there should be no residual for this buf. */
12733 	ASSERT(bp->b_resid == 0);
12734 
12735 	/* Convert the block number to an absolute address. */
12736 	xp->xb_blkno += partition_offset;
12737 
12738 	SD_NEXT_IOSTART(index, un, bp);
12739 
12740 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12741 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
12742 
12743 	return;
12744 
12745 error_exit:
12746 	bp->b_resid = bp->b_bcount;
12747 	SD_BEGIN_IODONE(index, un, bp);
12748 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12749 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
12750 }
12751 
12752 
12753 /*
12754  *    Function: sd_mapblockaddr_iodone
12755  *
12756  * Description: Completion-side processing for partition management.
12757  *
12758  *     Context: May be called under interrupt context
12759  */
12760 
12761 static void
12762 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
12763 {
12764 	/* int	partition; */	/* Not used, see below. */
12765 	ASSERT(un != NULL);
12766 	ASSERT(bp != NULL);
12767 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12768 
12769 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12770 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
12771 
12772 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
12773 		/*
12774 		 * We have an "overrun" buf to deal with...
12775 		 */
12776 		struct sd_xbuf	*xp;
12777 		struct buf	*obp;	/* ptr to the original buf */
12778 
12779 		xp = SD_GET_XBUF(bp);
12780 		ASSERT(xp != NULL);
12781 
12782 		/* Retrieve the pointer to the original buf */
12783 		obp = (struct buf *)xp->xb_private;
12784 		ASSERT(obp != NULL);
12785 
12786 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
12787 		bioerror(obp, bp->b_error);
12788 
12789 		sd_bioclone_free(bp);
12790 
12791 		/*
12792 		 * Get back the original buf.
12793 		 * Note that since the restoration of xb_blkno below
12794 		 * was removed, the sd_xbuf is not needed.
12795 		 */
12796 		bp = obp;
12797 		/*
12798 		 * xp = SD_GET_XBUF(bp);
12799 		 * ASSERT(xp != NULL);
12800 		 */
12801 	}
12802 
12803 	/*
12804 	 * Convert sd->xb_blkno back to a minor-device relative value.
12805 	 * Note: this has been commented out, as it is not needed in the
12806 	 * current implementation of the driver (ie, since this function
12807 	 * is at the top of the layering chains, so the info will be
12808 	 * discarded) and it is in the "hot" IO path.
12809 	 *
12810 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
12811 	 * xp->xb_blkno -= un->un_offset[partition];
12812 	 */
12813 
12814 	SD_NEXT_IODONE(index, un, bp);
12815 
12816 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12817 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
12818 }
12819 
12820 
12821 /*
12822  *    Function: sd_mapblocksize_iostart
12823  *
12824  * Description: Convert between system block size (un->un_sys_blocksize)
12825  *		and target block size (un->un_tgt_blocksize).
12826  *
12827  *     Context: Can sleep to allocate resources.
12828  *
12829  * Assumptions: A higher layer has already performed any partition validation,
12830  *		and converted the xp->xb_blkno to an absolute value relative
12831  *		to the start of the device.
12832  *
12833  *		It is also assumed that the higher layer has implemented
12834  *		an "overrun" mechanism for the case where the request would
12835  *		read/write beyond the end of a partition.  In this case we
12836  *		assume (and ASSERT) that bp->b_resid == 0.
12837  *
12838  *		Note: The implementation for this routine assumes the target
12839  *		block size remains constant between allocation and transport.
12840  */
12841 
12842 static void
12843 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
12844 {
12845 	struct sd_mapblocksize_info	*bsp;
12846 	struct sd_xbuf			*xp;
12847 	offset_t first_byte;
12848 	daddr_t	start_block, end_block;
12849 	daddr_t	request_bytes;
12850 	ushort_t is_aligned = FALSE;
12851 
12852 	ASSERT(un != NULL);
12853 	ASSERT(bp != NULL);
12854 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12855 	ASSERT(bp->b_resid == 0);
12856 
12857 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12858 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
12859 
12860 	/*
12861 	 * For a non-writable CD, a write request is an error
12862 	 */
12863 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
12864 	    (un->un_f_mmc_writable_media == FALSE)) {
12865 		bioerror(bp, EIO);
12866 		bp->b_resid = bp->b_bcount;
12867 		SD_BEGIN_IODONE(index, un, bp);
12868 		return;
12869 	}
12870 
12871 	/*
12872 	 * We do not need a shadow buf if the device is using
12873 	 * un->un_sys_blocksize as its block size or if bcount == 0.
12874 	 * In this case there is no layer-private data block allocated.
12875 	 */
12876 	if ((un->un_tgt_blocksize == DEV_BSIZE && !un->un_f_enable_rmw) ||
12877 	    (bp->b_bcount == 0)) {
12878 		goto done;
12879 	}
12880 
12881 #if defined(__i386) || defined(__amd64)
12882 	/* We do not support non-block-aligned transfers for ROD devices */
12883 	ASSERT(!ISROD(un));
12884 #endif
12885 
12886 	xp = SD_GET_XBUF(bp);
12887 	ASSERT(xp != NULL);
12888 
12889 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12890 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
12891 	    un->un_tgt_blocksize, DEV_BSIZE);
12892 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12893 	    "request start block:0x%x\n", xp->xb_blkno);
12894 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12895 	    "request len:0x%x\n", bp->b_bcount);
12896 
12897 	/*
12898 	 * Allocate the layer-private data area for the mapblocksize layer.
12899 	 * Layers are allowed to use the xp_private member of the sd_xbuf
12900 	 * struct to store the pointer to their layer-private data block, but
12901 	 * each layer also has the responsibility of restoring the prior
12902 	 * contents of xb_private before returning the buf/xbuf to the
12903 	 * higher layer that sent it.
12904 	 *
12905 	 * Here we save the prior contents of xp->xb_private into the
12906 	 * bsp->mbs_oprivate field of our layer-private data area. This value
12907 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
12908 	 * the layer-private area and returning the buf/xbuf to the layer
12909 	 * that sent it.
12910 	 *
12911 	 * Note that here we use kmem_zalloc for the allocation as there are
12912 	 * parts of the mapblocksize code that expect certain fields to be
12913 	 * zero unless explicitly set to a required value.
12914 	 */
12915 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12916 	bsp->mbs_oprivate = xp->xb_private;
12917 	xp->xb_private = bsp;
12918 
12919 	/*
12920 	 * This treats the data on the disk (target) as an array of bytes.
12921 	 * first_byte is the byte offset, from the beginning of the device,
12922 	 * to the location of the request. This is converted from a
12923 	 * un->un_sys_blocksize block address to a byte offset, and then back
12924 	 * to a block address based upon a un->un_tgt_blocksize block size.
12925 	 *
12926 	 * xp->xb_blkno should be absolute upon entry into this function,
12927 	 * but, but it is based upon partitions that use the "system"
12928 	 * block size. It must be adjusted to reflect the block size of
12929 	 * the target.
12930 	 *
12931 	 * Note that end_block is actually the block that follows the last
12932 	 * block of the request, but that's what is needed for the computation.
12933 	 */
12934 	first_byte  = SD_SYSBLOCKS2BYTES((offset_t)xp->xb_blkno);
12935 	if (un->un_f_enable_rmw) {
12936 		start_block = xp->xb_blkno =
12937 		    (first_byte / un->un_phy_blocksize) *
12938 		    (un->un_phy_blocksize / DEV_BSIZE);
12939 		end_block   = ((first_byte + bp->b_bcount +
12940 		    un->un_phy_blocksize - 1) / un->un_phy_blocksize) *
12941 		    (un->un_phy_blocksize / DEV_BSIZE);
12942 	} else {
12943 		start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
12944 		end_block   = (first_byte + bp->b_bcount +
12945 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
12946 	}
12947 
12948 	/* request_bytes is rounded up to a multiple of the target block size */
12949 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
12950 
12951 	/*
12952 	 * See if the starting address of the request and the request
12953 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
12954 	 * then we do not need to allocate a shadow buf to handle the request.
12955 	 */
12956 	if (un->un_f_enable_rmw) {
12957 		if (((first_byte % un->un_phy_blocksize) == 0) &&
12958 		    ((bp->b_bcount % un->un_phy_blocksize) == 0)) {
12959 			is_aligned = TRUE;
12960 		}
12961 	} else {
12962 		if (((first_byte % un->un_tgt_blocksize) == 0) &&
12963 		    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
12964 			is_aligned = TRUE;
12965 		}
12966 	}
12967 
12968 	if ((bp->b_flags & B_READ) == 0) {
12969 		/*
12970 		 * Lock the range for a write operation. An aligned request is
12971 		 * considered a simple write; otherwise the request must be a
12972 		 * read-modify-write.
12973 		 */
12974 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
12975 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
12976 	}
12977 
12978 	/*
12979 	 * Alloc a shadow buf if the request is not aligned. Also, this is
12980 	 * where the READ command is generated for a read-modify-write. (The
12981 	 * write phase is deferred until after the read completes.)
12982 	 */
12983 	if (is_aligned == FALSE) {
12984 
12985 		struct sd_mapblocksize_info	*shadow_bsp;
12986 		struct sd_xbuf	*shadow_xp;
12987 		struct buf	*shadow_bp;
12988 
12989 		/*
12990 		 * Allocate the shadow buf and it associated xbuf. Note that
12991 		 * after this call the xb_blkno value in both the original
12992 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
12993 		 * same: absolute relative to the start of the device, and
12994 		 * adjusted for the target block size. The b_blkno in the
12995 		 * shadow buf will also be set to this value. We should never
12996 		 * change b_blkno in the original bp however.
12997 		 *
12998 		 * Note also that the shadow buf will always need to be a
12999 		 * READ command, regardless of whether the incoming command
13000 		 * is a READ or a WRITE.
13001 		 */
13002 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
13003 		    xp->xb_blkno,
13004 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
13005 
13006 		shadow_xp = SD_GET_XBUF(shadow_bp);
13007 
13008 		/*
13009 		 * Allocate the layer-private data for the shadow buf.
13010 		 * (No need to preserve xb_private in the shadow xbuf.)
13011 		 */
13012 		shadow_xp->xb_private = shadow_bsp =
13013 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
13014 
13015 		/*
13016 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
13017 		 * to figure out where the start of the user data is (based upon
13018 		 * the system block size) in the data returned by the READ
13019 		 * command (which will be based upon the target blocksize). Note
13020 		 * that this is only really used if the request is unaligned.
13021 		 */
13022 		if (un->un_f_enable_rmw) {
13023 			bsp->mbs_copy_offset = (ssize_t)(first_byte -
13024 			    ((offset_t)xp->xb_blkno * un->un_sys_blocksize));
13025 			ASSERT((bsp->mbs_copy_offset >= 0) &&
13026 			    (bsp->mbs_copy_offset < un->un_phy_blocksize));
13027 		} else {
13028 			bsp->mbs_copy_offset = (ssize_t)(first_byte -
13029 			    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
13030 			ASSERT((bsp->mbs_copy_offset >= 0) &&
13031 			    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
13032 		}
13033 
13034 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
13035 
13036 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
13037 
13038 		/* Transfer the wmap (if any) to the shadow buf */
13039 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
13040 		bsp->mbs_wmp = NULL;
13041 
13042 		/*
13043 		 * The shadow buf goes on from here in place of the
13044 		 * original buf.
13045 		 */
13046 		shadow_bsp->mbs_orig_bp = bp;
13047 		bp = shadow_bp;
13048 	}
13049 
13050 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13051 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
13052 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13053 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
13054 	    request_bytes);
13055 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13056 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
13057 
13058 done:
13059 	SD_NEXT_IOSTART(index, un, bp);
13060 
13061 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
13062 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
13063 }
13064 
13065 
13066 /*
13067  *    Function: sd_mapblocksize_iodone
13068  *
13069  * Description: Completion side processing for block-size mapping.
13070  *
13071  *     Context: May be called under interrupt context
13072  */
13073 
13074 static void
13075 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
13076 {
13077 	struct sd_mapblocksize_info	*bsp;
13078 	struct sd_xbuf	*xp;
13079 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
13080 	struct buf	*orig_bp;	/* ptr to the original buf */
13081 	offset_t	shadow_end;
13082 	offset_t	request_end;
13083 	offset_t	shadow_start;
13084 	ssize_t		copy_offset;
13085 	size_t		copy_length;
13086 	size_t		shortfall;
13087 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
13088 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
13089 
13090 	ASSERT(un != NULL);
13091 	ASSERT(bp != NULL);
13092 
13093 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
13094 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
13095 
13096 	/*
13097 	 * There is no shadow buf or layer-private data if the target is
13098 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
13099 	 */
13100 	if ((un->un_tgt_blocksize == DEV_BSIZE && !un->un_f_enable_rmw) ||
13101 	    (bp->b_bcount == 0)) {
13102 		goto exit;
13103 	}
13104 
13105 	xp = SD_GET_XBUF(bp);
13106 	ASSERT(xp != NULL);
13107 
13108 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
13109 	bsp = xp->xb_private;
13110 
13111 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
13112 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
13113 
13114 	if (is_write) {
13115 		/*
13116 		 * For a WRITE request we must free up the block range that
13117 		 * we have locked up.  This holds regardless of whether this is
13118 		 * an aligned write request or a read-modify-write request.
13119 		 */
13120 		sd_range_unlock(un, bsp->mbs_wmp);
13121 		bsp->mbs_wmp = NULL;
13122 	}
13123 
13124 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
13125 		/*
13126 		 * An aligned read or write command will have no shadow buf;
13127 		 * there is not much else to do with it.
13128 		 */
13129 		goto done;
13130 	}
13131 
13132 	orig_bp = bsp->mbs_orig_bp;
13133 	ASSERT(orig_bp != NULL);
13134 	orig_xp = SD_GET_XBUF(orig_bp);
13135 	ASSERT(orig_xp != NULL);
13136 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13137 
13138 	if (!is_write && has_wmap) {
13139 		/*
13140 		 * A READ with a wmap means this is the READ phase of a
13141 		 * read-modify-write. If an error occurred on the READ then
13142 		 * we do not proceed with the WRITE phase or copy any data.
13143 		 * Just release the write maps and return with an error.
13144 		 */
13145 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
13146 			orig_bp->b_resid = orig_bp->b_bcount;
13147 			bioerror(orig_bp, bp->b_error);
13148 			sd_range_unlock(un, bsp->mbs_wmp);
13149 			goto freebuf_done;
13150 		}
13151 	}
13152 
13153 	/*
13154 	 * Here is where we set up to copy the data from the shadow buf
13155 	 * into the space associated with the original buf.
13156 	 *
13157 	 * To deal with the conversion between block sizes, these
13158 	 * computations treat the data as an array of bytes, with the
13159 	 * first byte (byte 0) corresponding to the first byte in the
13160 	 * first block on the disk.
13161 	 */
13162 
13163 	/*
13164 	 * shadow_start and shadow_len indicate the location and size of
13165 	 * the data returned with the shadow IO request.
13166 	 */
13167 	if (un->un_f_enable_rmw) {
13168 		shadow_start  = SD_SYSBLOCKS2BYTES((offset_t)xp->xb_blkno);
13169 	} else {
13170 		shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
13171 	}
13172 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
13173 
13174 	/*
13175 	 * copy_offset gives the offset (in bytes) from the start of the first
13176 	 * block of the READ request to the beginning of the data.  We retrieve
13177 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
13178 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
13179 	 * data to be copied (in bytes).
13180 	 */
13181 	copy_offset  = bsp->mbs_copy_offset;
13182 	if (un->un_f_enable_rmw) {
13183 		ASSERT((copy_offset >= 0) &&
13184 		    (copy_offset < un->un_phy_blocksize));
13185 	} else {
13186 		ASSERT((copy_offset >= 0) &&
13187 		    (copy_offset < un->un_tgt_blocksize));
13188 	}
13189 
13190 	copy_length  = orig_bp->b_bcount;
13191 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
13192 
13193 	/*
13194 	 * Set up the resid and error fields of orig_bp as appropriate.
13195 	 */
13196 	if (shadow_end >= request_end) {
13197 		/* We got all the requested data; set resid to zero */
13198 		orig_bp->b_resid = 0;
13199 	} else {
13200 		/*
13201 		 * We failed to get enough data to fully satisfy the original
13202 		 * request. Just copy back whatever data we got and set
13203 		 * up the residual and error code as required.
13204 		 *
13205 		 * 'shortfall' is the amount by which the data received with the
13206 		 * shadow buf has "fallen short" of the requested amount.
13207 		 */
13208 		shortfall = (size_t)(request_end - shadow_end);
13209 
13210 		if (shortfall > orig_bp->b_bcount) {
13211 			/*
13212 			 * We did not get enough data to even partially
13213 			 * fulfill the original request.  The residual is
13214 			 * equal to the amount requested.
13215 			 */
13216 			orig_bp->b_resid = orig_bp->b_bcount;
13217 		} else {
13218 			/*
13219 			 * We did not get all the data that we requested
13220 			 * from the device, but we will try to return what
13221 			 * portion we did get.
13222 			 */
13223 			orig_bp->b_resid = shortfall;
13224 		}
13225 		ASSERT(copy_length >= orig_bp->b_resid);
13226 		copy_length  -= orig_bp->b_resid;
13227 	}
13228 
13229 	/* Propagate the error code from the shadow buf to the original buf */
13230 	bioerror(orig_bp, bp->b_error);
13231 
13232 	if (is_write) {
13233 		goto freebuf_done;	/* No data copying for a WRITE */
13234 	}
13235 
13236 	if (has_wmap) {
13237 		/*
13238 		 * This is a READ command from the READ phase of a
13239 		 * read-modify-write request. We have to copy the data given
13240 		 * by the user OVER the data returned by the READ command,
13241 		 * then convert the command from a READ to a WRITE and send
13242 		 * it back to the target.
13243 		 */
13244 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
13245 		    copy_length);
13246 
13247 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
13248 
13249 		/*
13250 		 * Dispatch the WRITE command to the taskq thread, which
13251 		 * will in turn send the command to the target. When the
13252 		 * WRITE command completes, we (sd_mapblocksize_iodone())
13253 		 * will get called again as part of the iodone chain
13254 		 * processing for it. Note that we will still be dealing
13255 		 * with the shadow buf at that point.
13256 		 */
13257 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
13258 		    KM_NOSLEEP) != 0) {
13259 			/*
13260 			 * Dispatch was successful so we are done. Return
13261 			 * without going any higher up the iodone chain. Do
13262 			 * not free up any layer-private data until after the
13263 			 * WRITE completes.
13264 			 */
13265 			return;
13266 		}
13267 
13268 		/*
13269 		 * Dispatch of the WRITE command failed; set up the error
13270 		 * condition and send this IO back up the iodone chain.
13271 		 */
13272 		bioerror(orig_bp, EIO);
13273 		orig_bp->b_resid = orig_bp->b_bcount;
13274 
13275 	} else {
13276 		/*
13277 		 * This is a regular READ request (ie, not a RMW). Copy the
13278 		 * data from the shadow buf into the original buf. The
13279 		 * copy_offset compensates for any "misalignment" between the
13280 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
13281 		 * original buf (with its un->un_sys_blocksize blocks).
13282 		 */
13283 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
13284 		    copy_length);
13285 	}
13286 
13287 freebuf_done:
13288 
13289 	/*
13290 	 * At this point we still have both the shadow buf AND the original
13291 	 * buf to deal with, as well as the layer-private data area in each.
13292 	 * Local variables are as follows:
13293 	 *
13294 	 * bp -- points to shadow buf
13295 	 * xp -- points to xbuf of shadow buf
13296 	 * bsp -- points to layer-private data area of shadow buf
13297 	 * orig_bp -- points to original buf
13298 	 *
13299 	 * First free the shadow buf and its associated xbuf, then free the
13300 	 * layer-private data area from the shadow buf. There is no need to
13301 	 * restore xb_private in the shadow xbuf.
13302 	 */
13303 	sd_shadow_buf_free(bp);
13304 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
13305 
13306 	/*
13307 	 * Now update the local variables to point to the original buf, xbuf,
13308 	 * and layer-private area.
13309 	 */
13310 	bp = orig_bp;
13311 	xp = SD_GET_XBUF(bp);
13312 	ASSERT(xp != NULL);
13313 	ASSERT(xp == orig_xp);
13314 	bsp = xp->xb_private;
13315 	ASSERT(bsp != NULL);
13316 
13317 done:
13318 	/*
13319 	 * Restore xb_private to whatever it was set to by the next higher
13320 	 * layer in the chain, then free the layer-private data area.
13321 	 */
13322 	xp->xb_private = bsp->mbs_oprivate;
13323 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
13324 
13325 exit:
13326 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
13327 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
13328 
13329 	SD_NEXT_IODONE(index, un, bp);
13330 }
13331 
13332 
13333 /*
13334  *    Function: sd_checksum_iostart
13335  *
13336  * Description: A stub function for a layer that's currently not used.
13337  *		For now just a placeholder.
13338  *
13339  *     Context: Kernel thread context
13340  */
13341 
13342 static void
13343 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
13344 {
13345 	ASSERT(un != NULL);
13346 	ASSERT(bp != NULL);
13347 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13348 	SD_NEXT_IOSTART(index, un, bp);
13349 }
13350 
13351 
13352 /*
13353  *    Function: sd_checksum_iodone
13354  *
13355  * Description: A stub function for a layer that's currently not used.
13356  *		For now just a placeholder.
13357  *
13358  *     Context: May be called under interrupt context
13359  */
13360 
13361 static void
13362 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
13363 {
13364 	ASSERT(un != NULL);
13365 	ASSERT(bp != NULL);
13366 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13367 	SD_NEXT_IODONE(index, un, bp);
13368 }
13369 
13370 
13371 /*
13372  *    Function: sd_checksum_uscsi_iostart
13373  *
13374  * Description: A stub function for a layer that's currently not used.
13375  *		For now just a placeholder.
13376  *
13377  *     Context: Kernel thread context
13378  */
13379 
13380 static void
13381 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
13382 {
13383 	ASSERT(un != NULL);
13384 	ASSERT(bp != NULL);
13385 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13386 	SD_NEXT_IOSTART(index, un, bp);
13387 }
13388 
13389 
13390 /*
13391  *    Function: sd_checksum_uscsi_iodone
13392  *
13393  * Description: A stub function for a layer that's currently not used.
13394  *		For now just a placeholder.
13395  *
13396  *     Context: May be called under interrupt context
13397  */
13398 
13399 static void
13400 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
13401 {
13402 	ASSERT(un != NULL);
13403 	ASSERT(bp != NULL);
13404 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13405 	SD_NEXT_IODONE(index, un, bp);
13406 }
13407 
13408 
13409 /*
13410  *    Function: sd_pm_iostart
13411  *
13412  * Description: iostart-side routine for Power mangement.
13413  *
13414  *     Context: Kernel thread context
13415  */
13416 
13417 static void
13418 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
13419 {
13420 	ASSERT(un != NULL);
13421 	ASSERT(bp != NULL);
13422 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13423 	ASSERT(!mutex_owned(&un->un_pm_mutex));
13424 
13425 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
13426 
13427 	if (sd_pm_entry(un) != DDI_SUCCESS) {
13428 		/*
13429 		 * Set up to return the failed buf back up the 'iodone'
13430 		 * side of the calling chain.
13431 		 */
13432 		bioerror(bp, EIO);
13433 		bp->b_resid = bp->b_bcount;
13434 
13435 		SD_BEGIN_IODONE(index, un, bp);
13436 
13437 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13438 		return;
13439 	}
13440 
13441 	SD_NEXT_IOSTART(index, un, bp);
13442 
13443 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13444 }
13445 
13446 
13447 /*
13448  *    Function: sd_pm_iodone
13449  *
13450  * Description: iodone-side routine for power mangement.
13451  *
13452  *     Context: may be called from interrupt context
13453  */
13454 
13455 static void
13456 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
13457 {
13458 	ASSERT(un != NULL);
13459 	ASSERT(bp != NULL);
13460 	ASSERT(!mutex_owned(&un->un_pm_mutex));
13461 
13462 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
13463 
13464 	/*
13465 	 * After attach the following flag is only read, so don't
13466 	 * take the penalty of acquiring a mutex for it.
13467 	 */
13468 	if (un->un_f_pm_is_enabled == TRUE) {
13469 		sd_pm_exit(un);
13470 	}
13471 
13472 	SD_NEXT_IODONE(index, un, bp);
13473 
13474 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
13475 }
13476 
13477 
13478 /*
13479  *    Function: sd_core_iostart
13480  *
13481  * Description: Primary driver function for enqueuing buf(9S) structs from
13482  *		the system and initiating IO to the target device
13483  *
13484  *     Context: Kernel thread context. Can sleep.
13485  *
13486  * Assumptions:  - The given xp->xb_blkno is absolute
13487  *		   (ie, relative to the start of the device).
13488  *		 - The IO is to be done using the native blocksize of
13489  *		   the device, as specified in un->un_tgt_blocksize.
13490  */
13491 /* ARGSUSED */
13492 static void
13493 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
13494 {
13495 	struct sd_xbuf *xp;
13496 
13497 	ASSERT(un != NULL);
13498 	ASSERT(bp != NULL);
13499 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13500 	ASSERT(bp->b_resid == 0);
13501 
13502 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
13503 
13504 	xp = SD_GET_XBUF(bp);
13505 	ASSERT(xp != NULL);
13506 
13507 	mutex_enter(SD_MUTEX(un));
13508 
13509 	/*
13510 	 * If we are currently in the failfast state, fail any new IO
13511 	 * that has B_FAILFAST set, then return.
13512 	 */
13513 	if ((bp->b_flags & B_FAILFAST) &&
13514 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
13515 		mutex_exit(SD_MUTEX(un));
13516 		bioerror(bp, EIO);
13517 		bp->b_resid = bp->b_bcount;
13518 		SD_BEGIN_IODONE(index, un, bp);
13519 		return;
13520 	}
13521 
13522 	if (SD_IS_DIRECT_PRIORITY(xp)) {
13523 		/*
13524 		 * Priority command -- transport it immediately.
13525 		 *
13526 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
13527 		 * because all direct priority commands should be associated
13528 		 * with error recovery actions which we don't want to retry.
13529 		 */
13530 		sd_start_cmds(un, bp);
13531 	} else {
13532 		/*
13533 		 * Normal command -- add it to the wait queue, then start
13534 		 * transporting commands from the wait queue.
13535 		 */
13536 		sd_add_buf_to_waitq(un, bp);
13537 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
13538 		sd_start_cmds(un, NULL);
13539 	}
13540 
13541 	mutex_exit(SD_MUTEX(un));
13542 
13543 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
13544 }
13545 
13546 
13547 /*
13548  *    Function: sd_init_cdb_limits
13549  *
13550  * Description: This is to handle scsi_pkt initialization differences
13551  *		between the driver platforms.
13552  *
13553  *		Legacy behaviors:
13554  *
13555  *		If the block number or the sector count exceeds the
13556  *		capabilities of a Group 0 command, shift over to a
13557  *		Group 1 command. We don't blindly use Group 1
13558  *		commands because a) some drives (CDC Wren IVs) get a
13559  *		bit confused, and b) there is probably a fair amount
13560  *		of speed difference for a target to receive and decode
13561  *		a 10 byte command instead of a 6 byte command.
13562  *
13563  *		The xfer time difference of 6 vs 10 byte CDBs is
13564  *		still significant so this code is still worthwhile.
13565  *		10 byte CDBs are very inefficient with the fas HBA driver
13566  *		and older disks. Each CDB byte took 1 usec with some
13567  *		popular disks.
13568  *
13569  *     Context: Must be called at attach time
13570  */
13571 
13572 static void
13573 sd_init_cdb_limits(struct sd_lun *un)
13574 {
13575 	int hba_cdb_limit;
13576 
13577 	/*
13578 	 * Use CDB_GROUP1 commands for most devices except for
13579 	 * parallel SCSI fixed drives in which case we get better
13580 	 * performance using CDB_GROUP0 commands (where applicable).
13581 	 */
13582 	un->un_mincdb = SD_CDB_GROUP1;
13583 #if !defined(__fibre)
13584 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
13585 	    !un->un_f_has_removable_media) {
13586 		un->un_mincdb = SD_CDB_GROUP0;
13587 	}
13588 #endif
13589 
13590 	/*
13591 	 * Try to read the max-cdb-length supported by HBA.
13592 	 */
13593 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
13594 	if (0 >= un->un_max_hba_cdb) {
13595 		un->un_max_hba_cdb = CDB_GROUP4;
13596 		hba_cdb_limit = SD_CDB_GROUP4;
13597 	} else if (0 < un->un_max_hba_cdb &&
13598 	    un->un_max_hba_cdb < CDB_GROUP1) {
13599 		hba_cdb_limit = SD_CDB_GROUP0;
13600 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
13601 	    un->un_max_hba_cdb < CDB_GROUP5) {
13602 		hba_cdb_limit = SD_CDB_GROUP1;
13603 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
13604 	    un->un_max_hba_cdb < CDB_GROUP4) {
13605 		hba_cdb_limit = SD_CDB_GROUP5;
13606 	} else {
13607 		hba_cdb_limit = SD_CDB_GROUP4;
13608 	}
13609 
13610 	/*
13611 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
13612 	 * commands for fixed disks unless we are building for a 32 bit
13613 	 * kernel.
13614 	 */
13615 #ifdef _LP64
13616 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13617 	    min(hba_cdb_limit, SD_CDB_GROUP4);
13618 #else
13619 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13620 	    min(hba_cdb_limit, SD_CDB_GROUP1);
13621 #endif
13622 
13623 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
13624 	    ? sizeof (struct scsi_arq_status) : 1);
13625 	un->un_cmd_timeout = (ushort_t)sd_io_time;
13626 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
13627 }
13628 
13629 
13630 /*
13631  *    Function: sd_initpkt_for_buf
13632  *
13633  * Description: Allocate and initialize for transport a scsi_pkt struct,
13634  *		based upon the info specified in the given buf struct.
13635  *
13636  *		Assumes the xb_blkno in the request is absolute (ie,
13637  *		relative to the start of the device (NOT partition!).
13638  *		Also assumes that the request is using the native block
13639  *		size of the device (as returned by the READ CAPACITY
13640  *		command).
13641  *
13642  * Return Code: SD_PKT_ALLOC_SUCCESS
13643  *		SD_PKT_ALLOC_FAILURE
13644  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13645  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13646  *
13647  *     Context: Kernel thread and may be called from software interrupt context
13648  *		as part of a sdrunout callback. This function may not block or
13649  *		call routines that block
13650  */
13651 
13652 static int
13653 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
13654 {
13655 	struct sd_xbuf	*xp;
13656 	struct scsi_pkt *pktp = NULL;
13657 	struct sd_lun	*un;
13658 	size_t		blockcount;
13659 	daddr_t		startblock;
13660 	int		rval;
13661 	int		cmd_flags;
13662 
13663 	ASSERT(bp != NULL);
13664 	ASSERT(pktpp != NULL);
13665 	xp = SD_GET_XBUF(bp);
13666 	ASSERT(xp != NULL);
13667 	un = SD_GET_UN(bp);
13668 	ASSERT(un != NULL);
13669 	ASSERT(mutex_owned(SD_MUTEX(un)));
13670 	ASSERT(bp->b_resid == 0);
13671 
13672 	SD_TRACE(SD_LOG_IO_CORE, un,
13673 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
13674 
13675 	mutex_exit(SD_MUTEX(un));
13676 
13677 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13678 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
13679 		/*
13680 		 * Already have a scsi_pkt -- just need DMA resources.
13681 		 * We must recompute the CDB in case the mapping returns
13682 		 * a nonzero pkt_resid.
13683 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
13684 		 * that is being retried, the unmap/remap of the DMA resouces
13685 		 * will result in the entire transfer starting over again
13686 		 * from the very first block.
13687 		 */
13688 		ASSERT(xp->xb_pktp != NULL);
13689 		pktp = xp->xb_pktp;
13690 	} else {
13691 		pktp = NULL;
13692 	}
13693 #endif /* __i386 || __amd64 */
13694 
13695 	startblock = xp->xb_blkno;	/* Absolute block num. */
13696 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
13697 
13698 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
13699 
13700 	/*
13701 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
13702 	 * call scsi_init_pkt, and build the CDB.
13703 	 */
13704 	rval = sd_setup_rw_pkt(un, &pktp, bp,
13705 	    cmd_flags, sdrunout, (caddr_t)un,
13706 	    startblock, blockcount);
13707 
13708 	if (rval == 0) {
13709 		/*
13710 		 * Success.
13711 		 *
13712 		 * If partial DMA is being used and required for this transfer.
13713 		 * set it up here.
13714 		 */
13715 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
13716 		    (pktp->pkt_resid != 0)) {
13717 
13718 			/*
13719 			 * Save the CDB length and pkt_resid for the
13720 			 * next xfer
13721 			 */
13722 			xp->xb_dma_resid = pktp->pkt_resid;
13723 
13724 			/* rezero resid */
13725 			pktp->pkt_resid = 0;
13726 
13727 		} else {
13728 			xp->xb_dma_resid = 0;
13729 		}
13730 
13731 		pktp->pkt_flags = un->un_tagflags;
13732 		pktp->pkt_time  = un->un_cmd_timeout;
13733 		pktp->pkt_comp  = sdintr;
13734 
13735 		pktp->pkt_private = bp;
13736 		*pktpp = pktp;
13737 
13738 		SD_TRACE(SD_LOG_IO_CORE, un,
13739 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
13740 
13741 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13742 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
13743 #endif
13744 
13745 		mutex_enter(SD_MUTEX(un));
13746 		return (SD_PKT_ALLOC_SUCCESS);
13747 
13748 	}
13749 
13750 	/*
13751 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
13752 	 * from sd_setup_rw_pkt.
13753 	 */
13754 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
13755 
13756 	if (rval == SD_PKT_ALLOC_FAILURE) {
13757 		*pktpp = NULL;
13758 		/*
13759 		 * Set the driver state to RWAIT to indicate the driver
13760 		 * is waiting on resource allocations. The driver will not
13761 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13762 		 */
13763 		mutex_enter(SD_MUTEX(un));
13764 		New_state(un, SD_STATE_RWAIT);
13765 
13766 		SD_ERROR(SD_LOG_IO_CORE, un,
13767 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
13768 
13769 		if ((bp->b_flags & B_ERROR) != 0) {
13770 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13771 		}
13772 		return (SD_PKT_ALLOC_FAILURE);
13773 	} else {
13774 		/*
13775 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13776 		 *
13777 		 * This should never happen.  Maybe someone messed with the
13778 		 * kernel's minphys?
13779 		 */
13780 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13781 		    "Request rejected: too large for CDB: "
13782 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
13783 		SD_ERROR(SD_LOG_IO_CORE, un,
13784 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
13785 		mutex_enter(SD_MUTEX(un));
13786 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13787 
13788 	}
13789 }
13790 
13791 
13792 /*
13793  *    Function: sd_destroypkt_for_buf
13794  *
13795  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
13796  *
13797  *     Context: Kernel thread or interrupt context
13798  */
13799 
13800 static void
13801 sd_destroypkt_for_buf(struct buf *bp)
13802 {
13803 	ASSERT(bp != NULL);
13804 	ASSERT(SD_GET_UN(bp) != NULL);
13805 
13806 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13807 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
13808 
13809 	ASSERT(SD_GET_PKTP(bp) != NULL);
13810 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13811 
13812 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13813 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
13814 }
13815 
13816 /*
13817  *    Function: sd_setup_rw_pkt
13818  *
13819  * Description: Determines appropriate CDB group for the requested LBA
13820  *		and transfer length, calls scsi_init_pkt, and builds
13821  *		the CDB.  Do not use for partial DMA transfers except
13822  *		for the initial transfer since the CDB size must
13823  *		remain constant.
13824  *
13825  *     Context: Kernel thread and may be called from software interrupt
13826  *		context as part of a sdrunout callback. This function may not
13827  *		block or call routines that block
13828  */
13829 
13830 
13831 int
13832 sd_setup_rw_pkt(struct sd_lun *un,
13833     struct scsi_pkt **pktpp, struct buf *bp, int flags,
13834     int (*callback)(caddr_t), caddr_t callback_arg,
13835     diskaddr_t lba, uint32_t blockcount)
13836 {
13837 	struct scsi_pkt *return_pktp;
13838 	union scsi_cdb *cdbp;
13839 	struct sd_cdbinfo *cp = NULL;
13840 	int i;
13841 
13842 	/*
13843 	 * See which size CDB to use, based upon the request.
13844 	 */
13845 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
13846 
13847 		/*
13848 		 * Check lba and block count against sd_cdbtab limits.
13849 		 * In the partial DMA case, we have to use the same size
13850 		 * CDB for all the transfers.  Check lba + blockcount
13851 		 * against the max LBA so we know that segment of the
13852 		 * transfer can use the CDB we select.
13853 		 */
13854 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
13855 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
13856 
13857 			/*
13858 			 * The command will fit into the CDB type
13859 			 * specified by sd_cdbtab[i].
13860 			 */
13861 			cp = sd_cdbtab + i;
13862 
13863 			/*
13864 			 * Call scsi_init_pkt so we can fill in the
13865 			 * CDB.
13866 			 */
13867 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
13868 			    bp, cp->sc_grpcode, un->un_status_len, 0,
13869 			    flags, callback, callback_arg);
13870 
13871 			if (return_pktp != NULL) {
13872 
13873 				/*
13874 				 * Return new value of pkt
13875 				 */
13876 				*pktpp = return_pktp;
13877 
13878 				/*
13879 				 * To be safe, zero the CDB insuring there is
13880 				 * no leftover data from a previous command.
13881 				 */
13882 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
13883 
13884 				/*
13885 				 * Handle partial DMA mapping
13886 				 */
13887 				if (return_pktp->pkt_resid != 0) {
13888 
13889 					/*
13890 					 * Not going to xfer as many blocks as
13891 					 * originally expected
13892 					 */
13893 					blockcount -=
13894 					    SD_BYTES2TGTBLOCKS(un,
13895 					    return_pktp->pkt_resid);
13896 				}
13897 
13898 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
13899 
13900 				/*
13901 				 * Set command byte based on the CDB
13902 				 * type we matched.
13903 				 */
13904 				cdbp->scc_cmd = cp->sc_grpmask |
13905 				    ((bp->b_flags & B_READ) ?
13906 				    SCMD_READ : SCMD_WRITE);
13907 
13908 				SD_FILL_SCSI1_LUN(un, return_pktp);
13909 
13910 				/*
13911 				 * Fill in LBA and length
13912 				 */
13913 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
13914 				    (cp->sc_grpcode == CDB_GROUP4) ||
13915 				    (cp->sc_grpcode == CDB_GROUP0) ||
13916 				    (cp->sc_grpcode == CDB_GROUP5));
13917 
13918 				if (cp->sc_grpcode == CDB_GROUP1) {
13919 					FORMG1ADDR(cdbp, lba);
13920 					FORMG1COUNT(cdbp, blockcount);
13921 					return (0);
13922 				} else if (cp->sc_grpcode == CDB_GROUP4) {
13923 					FORMG4LONGADDR(cdbp, lba);
13924 					FORMG4COUNT(cdbp, blockcount);
13925 					return (0);
13926 				} else if (cp->sc_grpcode == CDB_GROUP0) {
13927 					FORMG0ADDR(cdbp, lba);
13928 					FORMG0COUNT(cdbp, blockcount);
13929 					return (0);
13930 				} else if (cp->sc_grpcode == CDB_GROUP5) {
13931 					FORMG5ADDR(cdbp, lba);
13932 					FORMG5COUNT(cdbp, blockcount);
13933 					return (0);
13934 				}
13935 
13936 				/*
13937 				 * It should be impossible to not match one
13938 				 * of the CDB types above, so we should never
13939 				 * reach this point.  Set the CDB command byte
13940 				 * to test-unit-ready to avoid writing
13941 				 * to somewhere we don't intend.
13942 				 */
13943 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
13944 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13945 			} else {
13946 				/*
13947 				 * Couldn't get scsi_pkt
13948 				 */
13949 				return (SD_PKT_ALLOC_FAILURE);
13950 			}
13951 		}
13952 	}
13953 
13954 	/*
13955 	 * None of the available CDB types were suitable.  This really
13956 	 * should never happen:  on a 64 bit system we support
13957 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
13958 	 * and on a 32 bit system we will refuse to bind to a device
13959 	 * larger than 2TB so addresses will never be larger than 32 bits.
13960 	 */
13961 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13962 }
13963 
13964 /*
13965  *    Function: sd_setup_next_rw_pkt
13966  *
13967  * Description: Setup packet for partial DMA transfers, except for the
13968  * 		initial transfer.  sd_setup_rw_pkt should be used for
13969  *		the initial transfer.
13970  *
13971  *     Context: Kernel thread and may be called from interrupt context.
13972  */
13973 
13974 int
13975 sd_setup_next_rw_pkt(struct sd_lun *un,
13976     struct scsi_pkt *pktp, struct buf *bp,
13977     diskaddr_t lba, uint32_t blockcount)
13978 {
13979 	uchar_t com;
13980 	union scsi_cdb *cdbp;
13981 	uchar_t cdb_group_id;
13982 
13983 	ASSERT(pktp != NULL);
13984 	ASSERT(pktp->pkt_cdbp != NULL);
13985 
13986 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
13987 	com = cdbp->scc_cmd;
13988 	cdb_group_id = CDB_GROUPID(com);
13989 
13990 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
13991 	    (cdb_group_id == CDB_GROUPID_1) ||
13992 	    (cdb_group_id == CDB_GROUPID_4) ||
13993 	    (cdb_group_id == CDB_GROUPID_5));
13994 
13995 	/*
13996 	 * Move pkt to the next portion of the xfer.
13997 	 * func is NULL_FUNC so we do not have to release
13998 	 * the disk mutex here.
13999 	 */
14000 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
14001 	    NULL_FUNC, NULL) == pktp) {
14002 		/* Success.  Handle partial DMA */
14003 		if (pktp->pkt_resid != 0) {
14004 			blockcount -=
14005 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
14006 		}
14007 
14008 		cdbp->scc_cmd = com;
14009 		SD_FILL_SCSI1_LUN(un, pktp);
14010 		if (cdb_group_id == CDB_GROUPID_1) {
14011 			FORMG1ADDR(cdbp, lba);
14012 			FORMG1COUNT(cdbp, blockcount);
14013 			return (0);
14014 		} else if (cdb_group_id == CDB_GROUPID_4) {
14015 			FORMG4LONGADDR(cdbp, lba);
14016 			FORMG4COUNT(cdbp, blockcount);
14017 			return (0);
14018 		} else if (cdb_group_id == CDB_GROUPID_0) {
14019 			FORMG0ADDR(cdbp, lba);
14020 			FORMG0COUNT(cdbp, blockcount);
14021 			return (0);
14022 		} else if (cdb_group_id == CDB_GROUPID_5) {
14023 			FORMG5ADDR(cdbp, lba);
14024 			FORMG5COUNT(cdbp, blockcount);
14025 			return (0);
14026 		}
14027 
14028 		/* Unreachable */
14029 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
14030 	}
14031 
14032 	/*
14033 	 * Error setting up next portion of cmd transfer.
14034 	 * Something is definitely very wrong and this
14035 	 * should not happen.
14036 	 */
14037 	return (SD_PKT_ALLOC_FAILURE);
14038 }
14039 
14040 /*
14041  *    Function: sd_initpkt_for_uscsi
14042  *
14043  * Description: Allocate and initialize for transport a scsi_pkt struct,
14044  *		based upon the info specified in the given uscsi_cmd struct.
14045  *
14046  * Return Code: SD_PKT_ALLOC_SUCCESS
14047  *		SD_PKT_ALLOC_FAILURE
14048  *		SD_PKT_ALLOC_FAILURE_NO_DMA
14049  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
14050  *
14051  *     Context: Kernel thread and may be called from software interrupt context
14052  *		as part of a sdrunout callback. This function may not block or
14053  *		call routines that block
14054  */
14055 
14056 static int
14057 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
14058 {
14059 	struct uscsi_cmd *uscmd;
14060 	struct sd_xbuf	*xp;
14061 	struct scsi_pkt	*pktp;
14062 	struct sd_lun	*un;
14063 	uint32_t	flags = 0;
14064 
14065 	ASSERT(bp != NULL);
14066 	ASSERT(pktpp != NULL);
14067 	xp = SD_GET_XBUF(bp);
14068 	ASSERT(xp != NULL);
14069 	un = SD_GET_UN(bp);
14070 	ASSERT(un != NULL);
14071 	ASSERT(mutex_owned(SD_MUTEX(un)));
14072 
14073 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
14074 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
14075 	ASSERT(uscmd != NULL);
14076 
14077 	SD_TRACE(SD_LOG_IO_CORE, un,
14078 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
14079 
14080 	/*
14081 	 * Allocate the scsi_pkt for the command.
14082 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
14083 	 *	 during scsi_init_pkt time and will continue to use the
14084 	 *	 same path as long as the same scsi_pkt is used without
14085 	 *	 intervening scsi_dma_free(). Since uscsi command does
14086 	 *	 not call scsi_dmafree() before retry failed command, it
14087 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
14088 	 *	 set such that scsi_vhci can use other available path for
14089 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
14090 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
14091 	 */
14092 	if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
14093 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
14094 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
14095 		    ((int)(uscmd->uscsi_rqlen) + sizeof (struct scsi_arq_status)
14096 		    - sizeof (struct scsi_extended_sense)), 0,
14097 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL) | PKT_XARQ,
14098 		    sdrunout, (caddr_t)un);
14099 	} else {
14100 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
14101 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
14102 		    sizeof (struct scsi_arq_status), 0,
14103 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
14104 		    sdrunout, (caddr_t)un);
14105 	}
14106 
14107 	if (pktp == NULL) {
14108 		*pktpp = NULL;
14109 		/*
14110 		 * Set the driver state to RWAIT to indicate the driver
14111 		 * is waiting on resource allocations. The driver will not
14112 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
14113 		 */
14114 		New_state(un, SD_STATE_RWAIT);
14115 
14116 		SD_ERROR(SD_LOG_IO_CORE, un,
14117 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
14118 
14119 		if ((bp->b_flags & B_ERROR) != 0) {
14120 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
14121 		}
14122 		return (SD_PKT_ALLOC_FAILURE);
14123 	}
14124 
14125 	/*
14126 	 * We do not do DMA breakup for USCSI commands, so return failure
14127 	 * here if all the needed DMA resources were not allocated.
14128 	 */
14129 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
14130 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
14131 		scsi_destroy_pkt(pktp);
14132 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
14133 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
14134 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
14135 	}
14136 
14137 	/* Init the cdb from the given uscsi struct */
14138 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
14139 	    uscmd->uscsi_cdb[0], 0, 0, 0);
14140 
14141 	SD_FILL_SCSI1_LUN(un, pktp);
14142 
14143 	/*
14144 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
14145 	 * for listing of the supported flags.
14146 	 */
14147 
14148 	if (uscmd->uscsi_flags & USCSI_SILENT) {
14149 		flags |= FLAG_SILENT;
14150 	}
14151 
14152 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
14153 		flags |= FLAG_DIAGNOSE;
14154 	}
14155 
14156 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
14157 		flags |= FLAG_ISOLATE;
14158 	}
14159 
14160 	if (un->un_f_is_fibre == FALSE) {
14161 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
14162 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
14163 		}
14164 	}
14165 
14166 	/*
14167 	 * Set the pkt flags here so we save time later.
14168 	 * Note: These flags are NOT in the uscsi man page!!!
14169 	 */
14170 	if (uscmd->uscsi_flags & USCSI_HEAD) {
14171 		flags |= FLAG_HEAD;
14172 	}
14173 
14174 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
14175 		flags |= FLAG_NOINTR;
14176 	}
14177 
14178 	/*
14179 	 * For tagged queueing, things get a bit complicated.
14180 	 * Check first for head of queue and last for ordered queue.
14181 	 * If neither head nor order, use the default driver tag flags.
14182 	 */
14183 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
14184 		if (uscmd->uscsi_flags & USCSI_HTAG) {
14185 			flags |= FLAG_HTAG;
14186 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
14187 			flags |= FLAG_OTAG;
14188 		} else {
14189 			flags |= un->un_tagflags & FLAG_TAGMASK;
14190 		}
14191 	}
14192 
14193 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
14194 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
14195 	}
14196 
14197 	pktp->pkt_flags = flags;
14198 
14199 	/* Transfer uscsi information to scsi_pkt */
14200 	(void) scsi_uscsi_pktinit(uscmd, pktp);
14201 
14202 	/* Copy the caller's CDB into the pkt... */
14203 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
14204 
14205 	if (uscmd->uscsi_timeout == 0) {
14206 		pktp->pkt_time = un->un_uscsi_timeout;
14207 	} else {
14208 		pktp->pkt_time = uscmd->uscsi_timeout;
14209 	}
14210 
14211 	/* need it later to identify USCSI request in sdintr */
14212 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
14213 
14214 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
14215 
14216 	pktp->pkt_private = bp;
14217 	pktp->pkt_comp = sdintr;
14218 	*pktpp = pktp;
14219 
14220 	SD_TRACE(SD_LOG_IO_CORE, un,
14221 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
14222 
14223 	return (SD_PKT_ALLOC_SUCCESS);
14224 }
14225 
14226 
14227 /*
14228  *    Function: sd_destroypkt_for_uscsi
14229  *
14230  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
14231  *		IOs.. Also saves relevant info into the associated uscsi_cmd
14232  *		struct.
14233  *
14234  *     Context: May be called under interrupt context
14235  */
14236 
14237 static void
14238 sd_destroypkt_for_uscsi(struct buf *bp)
14239 {
14240 	struct uscsi_cmd *uscmd;
14241 	struct sd_xbuf	*xp;
14242 	struct scsi_pkt	*pktp;
14243 	struct sd_lun	*un;
14244 	struct sd_uscsi_info *suip;
14245 
14246 	ASSERT(bp != NULL);
14247 	xp = SD_GET_XBUF(bp);
14248 	ASSERT(xp != NULL);
14249 	un = SD_GET_UN(bp);
14250 	ASSERT(un != NULL);
14251 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14252 	pktp = SD_GET_PKTP(bp);
14253 	ASSERT(pktp != NULL);
14254 
14255 	SD_TRACE(SD_LOG_IO_CORE, un,
14256 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
14257 
14258 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
14259 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
14260 	ASSERT(uscmd != NULL);
14261 
14262 	/* Save the status and the residual into the uscsi_cmd struct */
14263 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
14264 	uscmd->uscsi_resid  = bp->b_resid;
14265 
14266 	/* Transfer scsi_pkt information to uscsi */
14267 	(void) scsi_uscsi_pktfini(pktp, uscmd);
14268 
14269 	/*
14270 	 * If enabled, copy any saved sense data into the area specified
14271 	 * by the uscsi command.
14272 	 */
14273 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
14274 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
14275 		/*
14276 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
14277 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
14278 		 */
14279 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
14280 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
14281 		if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
14282 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
14283 			    MAX_SENSE_LENGTH);
14284 		} else {
14285 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
14286 			    SENSE_LENGTH);
14287 		}
14288 	}
14289 	/*
14290 	 * The following assignments are for SCSI FMA.
14291 	 */
14292 	ASSERT(xp->xb_private != NULL);
14293 	suip = (struct sd_uscsi_info *)xp->xb_private;
14294 	suip->ui_pkt_reason = pktp->pkt_reason;
14295 	suip->ui_pkt_state = pktp->pkt_state;
14296 	suip->ui_pkt_statistics = pktp->pkt_statistics;
14297 	suip->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
14298 
14299 	/* We are done with the scsi_pkt; free it now */
14300 	ASSERT(SD_GET_PKTP(bp) != NULL);
14301 	scsi_destroy_pkt(SD_GET_PKTP(bp));
14302 
14303 	SD_TRACE(SD_LOG_IO_CORE, un,
14304 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
14305 }
14306 
14307 
14308 /*
14309  *    Function: sd_bioclone_alloc
14310  *
14311  * Description: Allocate a buf(9S) and init it as per the given buf
14312  *		and the various arguments.  The associated sd_xbuf
14313  *		struct is (nearly) duplicated.  The struct buf *bp
14314  *		argument is saved in new_xp->xb_private.
14315  *
14316  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
14317  *		datalen - size of data area for the shadow bp
14318  *		blkno - starting LBA
14319  *		func - function pointer for b_iodone in the shadow buf. (May
14320  *			be NULL if none.)
14321  *
14322  * Return Code: Pointer to allocates buf(9S) struct
14323  *
14324  *     Context: Can sleep.
14325  */
14326 
14327 static struct buf *
14328 sd_bioclone_alloc(struct buf *bp, size_t datalen,
14329 	daddr_t blkno, int (*func)(struct buf *))
14330 {
14331 	struct	sd_lun	*un;
14332 	struct	sd_xbuf	*xp;
14333 	struct	sd_xbuf	*new_xp;
14334 	struct	buf	*new_bp;
14335 
14336 	ASSERT(bp != NULL);
14337 	xp = SD_GET_XBUF(bp);
14338 	ASSERT(xp != NULL);
14339 	un = SD_GET_UN(bp);
14340 	ASSERT(un != NULL);
14341 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14342 
14343 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
14344 	    NULL, KM_SLEEP);
14345 
14346 	new_bp->b_lblkno	= blkno;
14347 
14348 	/*
14349 	 * Allocate an xbuf for the shadow bp and copy the contents of the
14350 	 * original xbuf into it.
14351 	 */
14352 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14353 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
14354 
14355 	/*
14356 	 * The given bp is automatically saved in the xb_private member
14357 	 * of the new xbuf.  Callers are allowed to depend on this.
14358 	 */
14359 	new_xp->xb_private = bp;
14360 
14361 	new_bp->b_private  = new_xp;
14362 
14363 	return (new_bp);
14364 }
14365 
14366 /*
14367  *    Function: sd_shadow_buf_alloc
14368  *
14369  * Description: Allocate a buf(9S) and init it as per the given buf
14370  *		and the various arguments.  The associated sd_xbuf
14371  *		struct is (nearly) duplicated.  The struct buf *bp
14372  *		argument is saved in new_xp->xb_private.
14373  *
14374  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
14375  *		datalen - size of data area for the shadow bp
14376  *		bflags - B_READ or B_WRITE (pseudo flag)
14377  *		blkno - starting LBA
14378  *		func - function pointer for b_iodone in the shadow buf. (May
14379  *			be NULL if none.)
14380  *
14381  * Return Code: Pointer to allocates buf(9S) struct
14382  *
14383  *     Context: Can sleep.
14384  */
14385 
14386 static struct buf *
14387 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
14388 	daddr_t blkno, int (*func)(struct buf *))
14389 {
14390 	struct	sd_lun	*un;
14391 	struct	sd_xbuf	*xp;
14392 	struct	sd_xbuf	*new_xp;
14393 	struct	buf	*new_bp;
14394 
14395 	ASSERT(bp != NULL);
14396 	xp = SD_GET_XBUF(bp);
14397 	ASSERT(xp != NULL);
14398 	un = SD_GET_UN(bp);
14399 	ASSERT(un != NULL);
14400 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14401 
14402 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
14403 		bp_mapin(bp);
14404 	}
14405 
14406 	bflags &= (B_READ | B_WRITE);
14407 #if defined(__i386) || defined(__amd64)
14408 	new_bp = getrbuf(KM_SLEEP);
14409 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
14410 	new_bp->b_bcount = datalen;
14411 	new_bp->b_flags = bflags |
14412 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
14413 #else
14414 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
14415 	    datalen, bflags, SLEEP_FUNC, NULL);
14416 #endif
14417 	new_bp->av_forw	= NULL;
14418 	new_bp->av_back	= NULL;
14419 	new_bp->b_dev	= bp->b_dev;
14420 	new_bp->b_blkno	= blkno;
14421 	new_bp->b_iodone = func;
14422 	new_bp->b_edev	= bp->b_edev;
14423 	new_bp->b_resid	= 0;
14424 
14425 	/* We need to preserve the B_FAILFAST flag */
14426 	if (bp->b_flags & B_FAILFAST) {
14427 		new_bp->b_flags |= B_FAILFAST;
14428 	}
14429 
14430 	/*
14431 	 * Allocate an xbuf for the shadow bp and copy the contents of the
14432 	 * original xbuf into it.
14433 	 */
14434 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14435 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
14436 
14437 	/* Need later to copy data between the shadow buf & original buf! */
14438 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
14439 
14440 	/*
14441 	 * The given bp is automatically saved in the xb_private member
14442 	 * of the new xbuf.  Callers are allowed to depend on this.
14443 	 */
14444 	new_xp->xb_private = bp;
14445 
14446 	new_bp->b_private  = new_xp;
14447 
14448 	return (new_bp);
14449 }
14450 
14451 /*
14452  *    Function: sd_bioclone_free
14453  *
14454  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
14455  *		in the larger than partition operation.
14456  *
14457  *     Context: May be called under interrupt context
14458  */
14459 
14460 static void
14461 sd_bioclone_free(struct buf *bp)
14462 {
14463 	struct sd_xbuf	*xp;
14464 
14465 	ASSERT(bp != NULL);
14466 	xp = SD_GET_XBUF(bp);
14467 	ASSERT(xp != NULL);
14468 
14469 	/*
14470 	 * Call bp_mapout() before freeing the buf,  in case a lower
14471 	 * layer or HBA  had done a bp_mapin().  we must do this here
14472 	 * as we are the "originator" of the shadow buf.
14473 	 */
14474 	bp_mapout(bp);
14475 
14476 	/*
14477 	 * Null out b_iodone before freeing the bp, to ensure that the driver
14478 	 * never gets confused by a stale value in this field. (Just a little
14479 	 * extra defensiveness here.)
14480 	 */
14481 	bp->b_iodone = NULL;
14482 
14483 	freerbuf(bp);
14484 
14485 	kmem_free(xp, sizeof (struct sd_xbuf));
14486 }
14487 
14488 /*
14489  *    Function: sd_shadow_buf_free
14490  *
14491  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
14492  *
14493  *     Context: May be called under interrupt context
14494  */
14495 
14496 static void
14497 sd_shadow_buf_free(struct buf *bp)
14498 {
14499 	struct sd_xbuf	*xp;
14500 
14501 	ASSERT(bp != NULL);
14502 	xp = SD_GET_XBUF(bp);
14503 	ASSERT(xp != NULL);
14504 
14505 #if defined(__sparc)
14506 	/*
14507 	 * Call bp_mapout() before freeing the buf,  in case a lower
14508 	 * layer or HBA  had done a bp_mapin().  we must do this here
14509 	 * as we are the "originator" of the shadow buf.
14510 	 */
14511 	bp_mapout(bp);
14512 #endif
14513 
14514 	/*
14515 	 * Null out b_iodone before freeing the bp, to ensure that the driver
14516 	 * never gets confused by a stale value in this field. (Just a little
14517 	 * extra defensiveness here.)
14518 	 */
14519 	bp->b_iodone = NULL;
14520 
14521 #if defined(__i386) || defined(__amd64)
14522 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
14523 	freerbuf(bp);
14524 #else
14525 	scsi_free_consistent_buf(bp);
14526 #endif
14527 
14528 	kmem_free(xp, sizeof (struct sd_xbuf));
14529 }
14530 
14531 
14532 /*
14533  *    Function: sd_print_transport_rejected_message
14534  *
14535  * Description: This implements the ludicrously complex rules for printing
14536  *		a "transport rejected" message.  This is to address the
14537  *		specific problem of having a flood of this error message
14538  *		produced when a failover occurs.
14539  *
14540  *     Context: Any.
14541  */
14542 
14543 static void
14544 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
14545 	int code)
14546 {
14547 	ASSERT(un != NULL);
14548 	ASSERT(mutex_owned(SD_MUTEX(un)));
14549 	ASSERT(xp != NULL);
14550 
14551 	/*
14552 	 * Print the "transport rejected" message under the following
14553 	 * conditions:
14554 	 *
14555 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
14556 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
14557 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
14558 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
14559 	 *   scsi_transport(9F) (which indicates that the target might have
14560 	 *   gone off-line).  This uses the un->un_tran_fatal_count
14561 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
14562 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
14563 	 *   from scsi_transport().
14564 	 *
14565 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
14566 	 * the preceeding cases in order for the message to be printed.
14567 	 */
14568 	if (((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) &&
14569 	    (SD_FM_LOG(un) == SD_FM_LOG_NSUP)) {
14570 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
14571 		    (code != TRAN_FATAL_ERROR) ||
14572 		    (un->un_tran_fatal_count == 1)) {
14573 			switch (code) {
14574 			case TRAN_BADPKT:
14575 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14576 				    "transport rejected bad packet\n");
14577 				break;
14578 			case TRAN_FATAL_ERROR:
14579 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14580 				    "transport rejected fatal error\n");
14581 				break;
14582 			default:
14583 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14584 				    "transport rejected (%d)\n", code);
14585 				break;
14586 			}
14587 		}
14588 	}
14589 }
14590 
14591 
14592 /*
14593  *    Function: sd_add_buf_to_waitq
14594  *
14595  * Description: Add the given buf(9S) struct to the wait queue for the
14596  *		instance.  If sorting is enabled, then the buf is added
14597  *		to the queue via an elevator sort algorithm (a la
14598  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
14599  *		If sorting is not enabled, then the buf is just added
14600  *		to the end of the wait queue.
14601  *
14602  * Return Code: void
14603  *
14604  *     Context: Does not sleep/block, therefore technically can be called
14605  *		from any context.  However if sorting is enabled then the
14606  *		execution time is indeterminate, and may take long if
14607  *		the wait queue grows large.
14608  */
14609 
14610 static void
14611 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
14612 {
14613 	struct buf *ap;
14614 
14615 	ASSERT(bp != NULL);
14616 	ASSERT(un != NULL);
14617 	ASSERT(mutex_owned(SD_MUTEX(un)));
14618 
14619 	/* If the queue is empty, add the buf as the only entry & return. */
14620 	if (un->un_waitq_headp == NULL) {
14621 		ASSERT(un->un_waitq_tailp == NULL);
14622 		un->un_waitq_headp = un->un_waitq_tailp = bp;
14623 		bp->av_forw = NULL;
14624 		return;
14625 	}
14626 
14627 	ASSERT(un->un_waitq_tailp != NULL);
14628 
14629 	/*
14630 	 * If sorting is disabled, just add the buf to the tail end of
14631 	 * the wait queue and return.
14632 	 */
14633 	if (un->un_f_disksort_disabled || un->un_f_enable_rmw) {
14634 		un->un_waitq_tailp->av_forw = bp;
14635 		un->un_waitq_tailp = bp;
14636 		bp->av_forw = NULL;
14637 		return;
14638 	}
14639 
14640 	/*
14641 	 * Sort thru the list of requests currently on the wait queue
14642 	 * and add the new buf request at the appropriate position.
14643 	 *
14644 	 * The un->un_waitq_headp is an activity chain pointer on which
14645 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
14646 	 * first queue holds those requests which are positioned after
14647 	 * the current SD_GET_BLKNO() (in the first request); the second holds
14648 	 * requests which came in after their SD_GET_BLKNO() number was passed.
14649 	 * Thus we implement a one way scan, retracting after reaching
14650 	 * the end of the drive to the first request on the second
14651 	 * queue, at which time it becomes the first queue.
14652 	 * A one-way scan is natural because of the way UNIX read-ahead
14653 	 * blocks are allocated.
14654 	 *
14655 	 * If we lie after the first request, then we must locate the
14656 	 * second request list and add ourselves to it.
14657 	 */
14658 	ap = un->un_waitq_headp;
14659 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
14660 		while (ap->av_forw != NULL) {
14661 			/*
14662 			 * Look for an "inversion" in the (normally
14663 			 * ascending) block numbers. This indicates
14664 			 * the start of the second request list.
14665 			 */
14666 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
14667 				/*
14668 				 * Search the second request list for the
14669 				 * first request at a larger block number.
14670 				 * We go before that; however if there is
14671 				 * no such request, we go at the end.
14672 				 */
14673 				do {
14674 					if (SD_GET_BLKNO(bp) <
14675 					    SD_GET_BLKNO(ap->av_forw)) {
14676 						goto insert;
14677 					}
14678 					ap = ap->av_forw;
14679 				} while (ap->av_forw != NULL);
14680 				goto insert;		/* after last */
14681 			}
14682 			ap = ap->av_forw;
14683 		}
14684 
14685 		/*
14686 		 * No inversions... we will go after the last, and
14687 		 * be the first request in the second request list.
14688 		 */
14689 		goto insert;
14690 	}
14691 
14692 	/*
14693 	 * Request is at/after the current request...
14694 	 * sort in the first request list.
14695 	 */
14696 	while (ap->av_forw != NULL) {
14697 		/*
14698 		 * We want to go after the current request (1) if
14699 		 * there is an inversion after it (i.e. it is the end
14700 		 * of the first request list), or (2) if the next
14701 		 * request is a larger block no. than our request.
14702 		 */
14703 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
14704 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
14705 			goto insert;
14706 		}
14707 		ap = ap->av_forw;
14708 	}
14709 
14710 	/*
14711 	 * Neither a second list nor a larger request, therefore
14712 	 * we go at the end of the first list (which is the same
14713 	 * as the end of the whole schebang).
14714 	 */
14715 insert:
14716 	bp->av_forw = ap->av_forw;
14717 	ap->av_forw = bp;
14718 
14719 	/*
14720 	 * If we inserted onto the tail end of the waitq, make sure the
14721 	 * tail pointer is updated.
14722 	 */
14723 	if (ap == un->un_waitq_tailp) {
14724 		un->un_waitq_tailp = bp;
14725 	}
14726 }
14727 
14728 
14729 /*
14730  *    Function: sd_start_cmds
14731  *
14732  * Description: Remove and transport cmds from the driver queues.
14733  *
14734  *   Arguments: un - pointer to the unit (soft state) struct for the target.
14735  *
14736  *		immed_bp - ptr to a buf to be transported immediately. Only
14737  *		the immed_bp is transported; bufs on the waitq are not
14738  *		processed and the un_retry_bp is not checked.  If immed_bp is
14739  *		NULL, then normal queue processing is performed.
14740  *
14741  *     Context: May be called from kernel thread context, interrupt context,
14742  *		or runout callback context. This function may not block or
14743  *		call routines that block.
14744  */
14745 
14746 static void
14747 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
14748 {
14749 	struct	sd_xbuf	*xp;
14750 	struct	buf	*bp;
14751 	void	(*statp)(kstat_io_t *);
14752 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14753 	void	(*saved_statp)(kstat_io_t *);
14754 #endif
14755 	int	rval;
14756 	struct sd_fm_internal *sfip = NULL;
14757 
14758 	ASSERT(un != NULL);
14759 	ASSERT(mutex_owned(SD_MUTEX(un)));
14760 	ASSERT(un->un_ncmds_in_transport >= 0);
14761 	ASSERT(un->un_throttle >= 0);
14762 
14763 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
14764 
14765 	do {
14766 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14767 		saved_statp = NULL;
14768 #endif
14769 
14770 		/*
14771 		 * If we are syncing or dumping, fail the command to
14772 		 * avoid recursively calling back into scsi_transport().
14773 		 * The dump I/O itself uses a separate code path so this
14774 		 * only prevents non-dump I/O from being sent while dumping.
14775 		 * File system sync takes place before dumping begins.
14776 		 * During panic, filesystem I/O is allowed provided
14777 		 * un_in_callback is <= 1.  This is to prevent recursion
14778 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
14779 		 * sd_start_cmds and so on.  See panic.c for more information
14780 		 * about the states the system can be in during panic.
14781 		 */
14782 		if ((un->un_state == SD_STATE_DUMPING) ||
14783 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
14784 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14785 			    "sd_start_cmds: panicking\n");
14786 			goto exit;
14787 		}
14788 
14789 		if ((bp = immed_bp) != NULL) {
14790 			/*
14791 			 * We have a bp that must be transported immediately.
14792 			 * It's OK to transport the immed_bp here without doing
14793 			 * the throttle limit check because the immed_bp is
14794 			 * always used in a retry/recovery case. This means
14795 			 * that we know we are not at the throttle limit by
14796 			 * virtue of the fact that to get here we must have
14797 			 * already gotten a command back via sdintr(). This also
14798 			 * relies on (1) the command on un_retry_bp preventing
14799 			 * further commands from the waitq from being issued;
14800 			 * and (2) the code in sd_retry_command checking the
14801 			 * throttle limit before issuing a delayed or immediate
14802 			 * retry. This holds even if the throttle limit is
14803 			 * currently ratcheted down from its maximum value.
14804 			 */
14805 			statp = kstat_runq_enter;
14806 			if (bp == un->un_retry_bp) {
14807 				ASSERT((un->un_retry_statp == NULL) ||
14808 				    (un->un_retry_statp == kstat_waitq_enter) ||
14809 				    (un->un_retry_statp ==
14810 				    kstat_runq_back_to_waitq));
14811 				/*
14812 				 * If the waitq kstat was incremented when
14813 				 * sd_set_retry_bp() queued this bp for a retry,
14814 				 * then we must set up statp so that the waitq
14815 				 * count will get decremented correctly below.
14816 				 * Also we must clear un->un_retry_statp to
14817 				 * ensure that we do not act on a stale value
14818 				 * in this field.
14819 				 */
14820 				if ((un->un_retry_statp == kstat_waitq_enter) ||
14821 				    (un->un_retry_statp ==
14822 				    kstat_runq_back_to_waitq)) {
14823 					statp = kstat_waitq_to_runq;
14824 				}
14825 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14826 				saved_statp = un->un_retry_statp;
14827 #endif
14828 				un->un_retry_statp = NULL;
14829 
14830 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14831 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
14832 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
14833 				    un, un->un_retry_bp, un->un_throttle,
14834 				    un->un_ncmds_in_transport);
14835 			} else {
14836 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
14837 				    "processing priority bp:0x%p\n", bp);
14838 			}
14839 
14840 		} else if ((bp = un->un_waitq_headp) != NULL) {
14841 			/*
14842 			 * A command on the waitq is ready to go, but do not
14843 			 * send it if:
14844 			 *
14845 			 * (1) the throttle limit has been reached, or
14846 			 * (2) a retry is pending, or
14847 			 * (3) a START_STOP_UNIT callback pending, or
14848 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
14849 			 *	command is pending.
14850 			 *
14851 			 * For all of these conditions, IO processing will
14852 			 * restart after the condition is cleared.
14853 			 */
14854 			if (un->un_ncmds_in_transport >= un->un_throttle) {
14855 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14856 				    "sd_start_cmds: exiting, "
14857 				    "throttle limit reached!\n");
14858 				goto exit;
14859 			}
14860 			if (un->un_retry_bp != NULL) {
14861 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14862 				    "sd_start_cmds: exiting, retry pending!\n");
14863 				goto exit;
14864 			}
14865 			if (un->un_startstop_timeid != NULL) {
14866 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14867 				    "sd_start_cmds: exiting, "
14868 				    "START_STOP pending!\n");
14869 				goto exit;
14870 			}
14871 			if (un->un_direct_priority_timeid != NULL) {
14872 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14873 				    "sd_start_cmds: exiting, "
14874 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
14875 				goto exit;
14876 			}
14877 
14878 			/* Dequeue the command */
14879 			un->un_waitq_headp = bp->av_forw;
14880 			if (un->un_waitq_headp == NULL) {
14881 				un->un_waitq_tailp = NULL;
14882 			}
14883 			bp->av_forw = NULL;
14884 			statp = kstat_waitq_to_runq;
14885 			SD_TRACE(SD_LOG_IO_CORE, un,
14886 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
14887 
14888 		} else {
14889 			/* No work to do so bail out now */
14890 			SD_TRACE(SD_LOG_IO_CORE, un,
14891 			    "sd_start_cmds: no more work, exiting!\n");
14892 			goto exit;
14893 		}
14894 
14895 		/*
14896 		 * Reset the state to normal. This is the mechanism by which
14897 		 * the state transitions from either SD_STATE_RWAIT or
14898 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
14899 		 * If state is SD_STATE_PM_CHANGING then this command is
14900 		 * part of the device power control and the state must
14901 		 * not be put back to normal. Doing so would would
14902 		 * allow new commands to proceed when they shouldn't,
14903 		 * the device may be going off.
14904 		 */
14905 		if ((un->un_state != SD_STATE_SUSPENDED) &&
14906 		    (un->un_state != SD_STATE_PM_CHANGING)) {
14907 			New_state(un, SD_STATE_NORMAL);
14908 		}
14909 
14910 		xp = SD_GET_XBUF(bp);
14911 		ASSERT(xp != NULL);
14912 
14913 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14914 		/*
14915 		 * Allocate the scsi_pkt if we need one, or attach DMA
14916 		 * resources if we have a scsi_pkt that needs them. The
14917 		 * latter should only occur for commands that are being
14918 		 * retried.
14919 		 */
14920 		if ((xp->xb_pktp == NULL) ||
14921 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
14922 #else
14923 		if (xp->xb_pktp == NULL) {
14924 #endif
14925 			/*
14926 			 * There is no scsi_pkt allocated for this buf. Call
14927 			 * the initpkt function to allocate & init one.
14928 			 *
14929 			 * The scsi_init_pkt runout callback functionality is
14930 			 * implemented as follows:
14931 			 *
14932 			 * 1) The initpkt function always calls
14933 			 *    scsi_init_pkt(9F) with sdrunout specified as the
14934 			 *    callback routine.
14935 			 * 2) A successful packet allocation is initialized and
14936 			 *    the I/O is transported.
14937 			 * 3) The I/O associated with an allocation resource
14938 			 *    failure is left on its queue to be retried via
14939 			 *    runout or the next I/O.
14940 			 * 4) The I/O associated with a DMA error is removed
14941 			 *    from the queue and failed with EIO. Processing of
14942 			 *    the transport queues is also halted to be
14943 			 *    restarted via runout or the next I/O.
14944 			 * 5) The I/O associated with a CDB size or packet
14945 			 *    size error is removed from the queue and failed
14946 			 *    with EIO. Processing of the transport queues is
14947 			 *    continued.
14948 			 *
14949 			 * Note: there is no interface for canceling a runout
14950 			 * callback. To prevent the driver from detaching or
14951 			 * suspending while a runout is pending the driver
14952 			 * state is set to SD_STATE_RWAIT
14953 			 *
14954 			 * Note: using the scsi_init_pkt callback facility can
14955 			 * result in an I/O request persisting at the head of
14956 			 * the list which cannot be satisfied even after
14957 			 * multiple retries. In the future the driver may
14958 			 * implement some kind of maximum runout count before
14959 			 * failing an I/O.
14960 			 *
14961 			 * Note: the use of funcp below may seem superfluous,
14962 			 * but it helps warlock figure out the correct
14963 			 * initpkt function calls (see [s]sd.wlcmd).
14964 			 */
14965 			struct scsi_pkt	*pktp;
14966 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
14967 
14968 			ASSERT(bp != un->un_rqs_bp);
14969 
14970 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
14971 			switch ((*funcp)(bp, &pktp)) {
14972 			case  SD_PKT_ALLOC_SUCCESS:
14973 				xp->xb_pktp = pktp;
14974 				SD_TRACE(SD_LOG_IO_CORE, un,
14975 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
14976 				    pktp);
14977 				goto got_pkt;
14978 
14979 			case SD_PKT_ALLOC_FAILURE:
14980 				/*
14981 				 * Temporary (hopefully) resource depletion.
14982 				 * Since retries and RQS commands always have a
14983 				 * scsi_pkt allocated, these cases should never
14984 				 * get here. So the only cases this needs to
14985 				 * handle is a bp from the waitq (which we put
14986 				 * back onto the waitq for sdrunout), or a bp
14987 				 * sent as an immed_bp (which we just fail).
14988 				 */
14989 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14990 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
14991 
14992 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14993 
14994 				if (bp == immed_bp) {
14995 					/*
14996 					 * If SD_XB_DMA_FREED is clear, then
14997 					 * this is a failure to allocate a
14998 					 * scsi_pkt, and we must fail the
14999 					 * command.
15000 					 */
15001 					if ((xp->xb_pkt_flags &
15002 					    SD_XB_DMA_FREED) == 0) {
15003 						break;
15004 					}
15005 
15006 					/*
15007 					 * If this immediate command is NOT our
15008 					 * un_retry_bp, then we must fail it.
15009 					 */
15010 					if (bp != un->un_retry_bp) {
15011 						break;
15012 					}
15013 
15014 					/*
15015 					 * We get here if this cmd is our
15016 					 * un_retry_bp that was DMAFREED, but
15017 					 * scsi_init_pkt() failed to reallocate
15018 					 * DMA resources when we attempted to
15019 					 * retry it. This can happen when an
15020 					 * mpxio failover is in progress, but
15021 					 * we don't want to just fail the
15022 					 * command in this case.
15023 					 *
15024 					 * Use timeout(9F) to restart it after
15025 					 * a 100ms delay.  We don't want to
15026 					 * let sdrunout() restart it, because
15027 					 * sdrunout() is just supposed to start
15028 					 * commands that are sitting on the
15029 					 * wait queue.  The un_retry_bp stays
15030 					 * set until the command completes, but
15031 					 * sdrunout can be called many times
15032 					 * before that happens.  Since sdrunout
15033 					 * cannot tell if the un_retry_bp is
15034 					 * already in the transport, it could
15035 					 * end up calling scsi_transport() for
15036 					 * the un_retry_bp multiple times.
15037 					 *
15038 					 * Also: don't schedule the callback
15039 					 * if some other callback is already
15040 					 * pending.
15041 					 */
15042 					if (un->un_retry_statp == NULL) {
15043 						/*
15044 						 * restore the kstat pointer to
15045 						 * keep kstat counts coherent
15046 						 * when we do retry the command.
15047 						 */
15048 						un->un_retry_statp =
15049 						    saved_statp;
15050 					}
15051 
15052 					if ((un->un_startstop_timeid == NULL) &&
15053 					    (un->un_retry_timeid == NULL) &&
15054 					    (un->un_direct_priority_timeid ==
15055 					    NULL)) {
15056 
15057 						un->un_retry_timeid =
15058 						    timeout(
15059 						    sd_start_retry_command,
15060 						    un, SD_RESTART_TIMEOUT);
15061 					}
15062 					goto exit;
15063 				}
15064 
15065 #else
15066 				if (bp == immed_bp) {
15067 					break;	/* Just fail the command */
15068 				}
15069 #endif
15070 
15071 				/* Add the buf back to the head of the waitq */
15072 				bp->av_forw = un->un_waitq_headp;
15073 				un->un_waitq_headp = bp;
15074 				if (un->un_waitq_tailp == NULL) {
15075 					un->un_waitq_tailp = bp;
15076 				}
15077 				goto exit;
15078 
15079 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
15080 				/*
15081 				 * HBA DMA resource failure. Fail the command
15082 				 * and continue processing of the queues.
15083 				 */
15084 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15085 				    "sd_start_cmds: "
15086 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
15087 				break;
15088 
15089 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
15090 				/*
15091 				 * Note:x86: Partial DMA mapping not supported
15092 				 * for USCSI commands, and all the needed DMA
15093 				 * resources were not allocated.
15094 				 */
15095 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15096 				    "sd_start_cmds: "
15097 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
15098 				break;
15099 
15100 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
15101 				/*
15102 				 * Note:x86: Request cannot fit into CDB based
15103 				 * on lba and len.
15104 				 */
15105 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15106 				    "sd_start_cmds: "
15107 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
15108 				break;
15109 
15110 			default:
15111 				/* Should NEVER get here! */
15112 				panic("scsi_initpkt error");
15113 				/*NOTREACHED*/
15114 			}
15115 
15116 			/*
15117 			 * Fatal error in allocating a scsi_pkt for this buf.
15118 			 * Update kstats & return the buf with an error code.
15119 			 * We must use sd_return_failed_command_no_restart() to
15120 			 * avoid a recursive call back into sd_start_cmds().
15121 			 * However this also means that we must keep processing
15122 			 * the waitq here in order to avoid stalling.
15123 			 */
15124 			if (statp == kstat_waitq_to_runq) {
15125 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
15126 			}
15127 			sd_return_failed_command_no_restart(un, bp, EIO);
15128 			if (bp == immed_bp) {
15129 				/* immed_bp is gone by now, so clear this */
15130 				immed_bp = NULL;
15131 			}
15132 			continue;
15133 		}
15134 got_pkt:
15135 		if (bp == immed_bp) {
15136 			/* goto the head of the class.... */
15137 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15138 		}
15139 
15140 		un->un_ncmds_in_transport++;
15141 		SD_UPDATE_KSTATS(un, statp, bp);
15142 
15143 		/*
15144 		 * Call scsi_transport() to send the command to the target.
15145 		 * According to SCSA architecture, we must drop the mutex here
15146 		 * before calling scsi_transport() in order to avoid deadlock.
15147 		 * Note that the scsi_pkt's completion routine can be executed
15148 		 * (from interrupt context) even before the call to
15149 		 * scsi_transport() returns.
15150 		 */
15151 		SD_TRACE(SD_LOG_IO_CORE, un,
15152 		    "sd_start_cmds: calling scsi_transport()\n");
15153 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
15154 
15155 		mutex_exit(SD_MUTEX(un));
15156 		rval = scsi_transport(xp->xb_pktp);
15157 		mutex_enter(SD_MUTEX(un));
15158 
15159 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15160 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
15161 
15162 		switch (rval) {
15163 		case TRAN_ACCEPT:
15164 			/* Clear this with every pkt accepted by the HBA */
15165 			un->un_tran_fatal_count = 0;
15166 			break;	/* Success; try the next cmd (if any) */
15167 
15168 		case TRAN_BUSY:
15169 			un->un_ncmds_in_transport--;
15170 			ASSERT(un->un_ncmds_in_transport >= 0);
15171 
15172 			/*
15173 			 * Don't retry request sense, the sense data
15174 			 * is lost when another request is sent.
15175 			 * Free up the rqs buf and retry
15176 			 * the original failed cmd.  Update kstat.
15177 			 */
15178 			if (bp == un->un_rqs_bp) {
15179 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15180 				bp = sd_mark_rqs_idle(un, xp);
15181 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15182 				    NULL, NULL, EIO, un->un_busy_timeout / 500,
15183 				    kstat_waitq_enter);
15184 				goto exit;
15185 			}
15186 
15187 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
15188 			/*
15189 			 * Free the DMA resources for the  scsi_pkt. This will
15190 			 * allow mpxio to select another path the next time
15191 			 * we call scsi_transport() with this scsi_pkt.
15192 			 * See sdintr() for the rationalization behind this.
15193 			 */
15194 			if ((un->un_f_is_fibre == TRUE) &&
15195 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
15196 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
15197 				scsi_dmafree(xp->xb_pktp);
15198 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
15199 			}
15200 #endif
15201 
15202 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
15203 				/*
15204 				 * Commands that are SD_PATH_DIRECT_PRIORITY
15205 				 * are for error recovery situations. These do
15206 				 * not use the normal command waitq, so if they
15207 				 * get a TRAN_BUSY we cannot put them back onto
15208 				 * the waitq for later retry. One possible
15209 				 * problem is that there could already be some
15210 				 * other command on un_retry_bp that is waiting
15211 				 * for this one to complete, so we would be
15212 				 * deadlocked if we put this command back onto
15213 				 * the waitq for later retry (since un_retry_bp
15214 				 * must complete before the driver gets back to
15215 				 * commands on the waitq).
15216 				 *
15217 				 * To avoid deadlock we must schedule a callback
15218 				 * that will restart this command after a set
15219 				 * interval.  This should keep retrying for as
15220 				 * long as the underlying transport keeps
15221 				 * returning TRAN_BUSY (just like for other
15222 				 * commands).  Use the same timeout interval as
15223 				 * for the ordinary TRAN_BUSY retry.
15224 				 */
15225 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15226 				    "sd_start_cmds: scsi_transport() returned "
15227 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
15228 
15229 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15230 				un->un_direct_priority_timeid =
15231 				    timeout(sd_start_direct_priority_command,
15232 				    bp, un->un_busy_timeout / 500);
15233 
15234 				goto exit;
15235 			}
15236 
15237 			/*
15238 			 * For TRAN_BUSY, we want to reduce the throttle value,
15239 			 * unless we are retrying a command.
15240 			 */
15241 			if (bp != un->un_retry_bp) {
15242 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
15243 			}
15244 
15245 			/*
15246 			 * Set up the bp to be tried again 10 ms later.
15247 			 * Note:x86: Is there a timeout value in the sd_lun
15248 			 * for this condition?
15249 			 */
15250 			sd_set_retry_bp(un, bp, un->un_busy_timeout / 500,
15251 			    kstat_runq_back_to_waitq);
15252 			goto exit;
15253 
15254 		case TRAN_FATAL_ERROR:
15255 			un->un_tran_fatal_count++;
15256 			/* FALLTHRU */
15257 
15258 		case TRAN_BADPKT:
15259 		default:
15260 			un->un_ncmds_in_transport--;
15261 			ASSERT(un->un_ncmds_in_transport >= 0);
15262 
15263 			/*
15264 			 * If this is our REQUEST SENSE command with a
15265 			 * transport error, we must get back the pointers
15266 			 * to the original buf, and mark the REQUEST
15267 			 * SENSE command as "available".
15268 			 */
15269 			if (bp == un->un_rqs_bp) {
15270 				bp = sd_mark_rqs_idle(un, xp);
15271 				xp = SD_GET_XBUF(bp);
15272 			} else {
15273 				/*
15274 				 * Legacy behavior: do not update transport
15275 				 * error count for request sense commands.
15276 				 */
15277 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
15278 			}
15279 
15280 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15281 			sd_print_transport_rejected_message(un, xp, rval);
15282 
15283 			/*
15284 			 * This command will be terminated by SD driver due
15285 			 * to a fatal transport error. We should post
15286 			 * ereport.io.scsi.cmd.disk.tran with driver-assessment
15287 			 * of "fail" for any command to indicate this
15288 			 * situation.
15289 			 */
15290 			if (xp->xb_ena > 0) {
15291 				ASSERT(un->un_fm_private != NULL);
15292 				sfip = un->un_fm_private;
15293 				sfip->fm_ssc.ssc_flags |= SSC_FLAGS_TRAN_ABORT;
15294 				sd_ssc_extract_info(&sfip->fm_ssc, un,
15295 				    xp->xb_pktp, bp, xp);
15296 				sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
15297 			}
15298 
15299 			/*
15300 			 * We must use sd_return_failed_command_no_restart() to
15301 			 * avoid a recursive call back into sd_start_cmds().
15302 			 * However this also means that we must keep processing
15303 			 * the waitq here in order to avoid stalling.
15304 			 */
15305 			sd_return_failed_command_no_restart(un, bp, EIO);
15306 
15307 			/*
15308 			 * Notify any threads waiting in sd_ddi_suspend() that
15309 			 * a command completion has occurred.
15310 			 */
15311 			if (un->un_state == SD_STATE_SUSPENDED) {
15312 				cv_broadcast(&un->un_disk_busy_cv);
15313 			}
15314 
15315 			if (bp == immed_bp) {
15316 				/* immed_bp is gone by now, so clear this */
15317 				immed_bp = NULL;
15318 			}
15319 			break;
15320 		}
15321 
15322 	} while (immed_bp == NULL);
15323 
15324 exit:
15325 	ASSERT(mutex_owned(SD_MUTEX(un)));
15326 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
15327 }
15328 
15329 
15330 /*
15331  *    Function: sd_return_command
15332  *
15333  * Description: Returns a command to its originator (with or without an
15334  *		error).  Also starts commands waiting to be transported
15335  *		to the target.
15336  *
15337  *     Context: May be called from interrupt, kernel, or timeout context
15338  */
15339 
15340 static void
15341 sd_return_command(struct sd_lun *un, struct buf *bp)
15342 {
15343 	struct sd_xbuf *xp;
15344 	struct scsi_pkt *pktp;
15345 	struct sd_fm_internal *sfip;
15346 
15347 	ASSERT(bp != NULL);
15348 	ASSERT(un != NULL);
15349 	ASSERT(mutex_owned(SD_MUTEX(un)));
15350 	ASSERT(bp != un->un_rqs_bp);
15351 	xp = SD_GET_XBUF(bp);
15352 	ASSERT(xp != NULL);
15353 
15354 	pktp = SD_GET_PKTP(bp);
15355 	sfip = (struct sd_fm_internal *)un->un_fm_private;
15356 	ASSERT(sfip != NULL);
15357 
15358 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
15359 
15360 	/*
15361 	 * Note: check for the "sdrestart failed" case.
15362 	 */
15363 	if ((un->un_partial_dma_supported == 1) &&
15364 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
15365 	    (geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
15366 	    (xp->xb_pktp->pkt_resid == 0)) {
15367 
15368 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
15369 			/*
15370 			 * Successfully set up next portion of cmd
15371 			 * transfer, try sending it
15372 			 */
15373 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15374 			    NULL, NULL, 0, (clock_t)0, NULL);
15375 			sd_start_cmds(un, NULL);
15376 			return;	/* Note:x86: need a return here? */
15377 		}
15378 	}
15379 
15380 	/*
15381 	 * If this is the failfast bp, clear it from un_failfast_bp. This
15382 	 * can happen if upon being re-tried the failfast bp either
15383 	 * succeeded or encountered another error (possibly even a different
15384 	 * error than the one that precipitated the failfast state, but in
15385 	 * that case it would have had to exhaust retries as well). Regardless,
15386 	 * this should not occur whenever the instance is in the active
15387 	 * failfast state.
15388 	 */
15389 	if (bp == un->un_failfast_bp) {
15390 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
15391 		un->un_failfast_bp = NULL;
15392 	}
15393 
15394 	/*
15395 	 * Clear the failfast state upon successful completion of ANY cmd.
15396 	 */
15397 	if (bp->b_error == 0) {
15398 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15399 		/*
15400 		 * If this is a successful command, but used to be retried,
15401 		 * we will take it as a recovered command and post an
15402 		 * ereport with driver-assessment of "recovered".
15403 		 */
15404 		if (xp->xb_ena > 0) {
15405 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15406 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RECOVERY);
15407 		}
15408 	} else {
15409 		/*
15410 		 * If this is a failed non-USCSI command we will post an
15411 		 * ereport with driver-assessment set accordingly("fail" or
15412 		 * "fatal").
15413 		 */
15414 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
15415 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15416 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
15417 		}
15418 	}
15419 
15420 	/*
15421 	 * This is used if the command was retried one or more times. Show that
15422 	 * we are done with it, and allow processing of the waitq to resume.
15423 	 */
15424 	if (bp == un->un_retry_bp) {
15425 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15426 		    "sd_return_command: un:0x%p: "
15427 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
15428 		un->un_retry_bp = NULL;
15429 		un->un_retry_statp = NULL;
15430 	}
15431 
15432 	SD_UPDATE_RDWR_STATS(un, bp);
15433 	SD_UPDATE_PARTITION_STATS(un, bp);
15434 
15435 	switch (un->un_state) {
15436 	case SD_STATE_SUSPENDED:
15437 		/*
15438 		 * Notify any threads waiting in sd_ddi_suspend() that
15439 		 * a command completion has occurred.
15440 		 */
15441 		cv_broadcast(&un->un_disk_busy_cv);
15442 		break;
15443 	default:
15444 		sd_start_cmds(un, NULL);
15445 		break;
15446 	}
15447 
15448 	/* Return this command up the iodone chain to its originator. */
15449 	mutex_exit(SD_MUTEX(un));
15450 
15451 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15452 	xp->xb_pktp = NULL;
15453 
15454 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15455 
15456 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15457 	mutex_enter(SD_MUTEX(un));
15458 
15459 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
15460 }
15461 
15462 
15463 /*
15464  *    Function: sd_return_failed_command
15465  *
15466  * Description: Command completion when an error occurred.
15467  *
15468  *     Context: May be called from interrupt context
15469  */
15470 
15471 static void
15472 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
15473 {
15474 	ASSERT(bp != NULL);
15475 	ASSERT(un != NULL);
15476 	ASSERT(mutex_owned(SD_MUTEX(un)));
15477 
15478 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15479 	    "sd_return_failed_command: entry\n");
15480 
15481 	/*
15482 	 * b_resid could already be nonzero due to a partial data
15483 	 * transfer, so do not change it here.
15484 	 */
15485 	SD_BIOERROR(bp, errcode);
15486 
15487 	sd_return_command(un, bp);
15488 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15489 	    "sd_return_failed_command: exit\n");
15490 }
15491 
15492 
15493 /*
15494  *    Function: sd_return_failed_command_no_restart
15495  *
15496  * Description: Same as sd_return_failed_command, but ensures that no
15497  *		call back into sd_start_cmds will be issued.
15498  *
15499  *     Context: May be called from interrupt context
15500  */
15501 
15502 static void
15503 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
15504 	int errcode)
15505 {
15506 	struct sd_xbuf *xp;
15507 
15508 	ASSERT(bp != NULL);
15509 	ASSERT(un != NULL);
15510 	ASSERT(mutex_owned(SD_MUTEX(un)));
15511 	xp = SD_GET_XBUF(bp);
15512 	ASSERT(xp != NULL);
15513 	ASSERT(errcode != 0);
15514 
15515 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15516 	    "sd_return_failed_command_no_restart: entry\n");
15517 
15518 	/*
15519 	 * b_resid could already be nonzero due to a partial data
15520 	 * transfer, so do not change it here.
15521 	 */
15522 	SD_BIOERROR(bp, errcode);
15523 
15524 	/*
15525 	 * If this is the failfast bp, clear it. This can happen if the
15526 	 * failfast bp encounterd a fatal error when we attempted to
15527 	 * re-try it (such as a scsi_transport(9F) failure).  However
15528 	 * we should NOT be in an active failfast state if the failfast
15529 	 * bp is not NULL.
15530 	 */
15531 	if (bp == un->un_failfast_bp) {
15532 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
15533 		un->un_failfast_bp = NULL;
15534 	}
15535 
15536 	if (bp == un->un_retry_bp) {
15537 		/*
15538 		 * This command was retried one or more times. Show that we are
15539 		 * done with it, and allow processing of the waitq to resume.
15540 		 */
15541 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15542 		    "sd_return_failed_command_no_restart: "
15543 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
15544 		un->un_retry_bp = NULL;
15545 		un->un_retry_statp = NULL;
15546 	}
15547 
15548 	SD_UPDATE_RDWR_STATS(un, bp);
15549 	SD_UPDATE_PARTITION_STATS(un, bp);
15550 
15551 	mutex_exit(SD_MUTEX(un));
15552 
15553 	if (xp->xb_pktp != NULL) {
15554 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15555 		xp->xb_pktp = NULL;
15556 	}
15557 
15558 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15559 
15560 	mutex_enter(SD_MUTEX(un));
15561 
15562 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15563 	    "sd_return_failed_command_no_restart: exit\n");
15564 }
15565 
15566 
15567 /*
15568  *    Function: sd_retry_command
15569  *
15570  * Description: queue up a command for retry, or (optionally) fail it
15571  *		if retry counts are exhausted.
15572  *
15573  *   Arguments: un - Pointer to the sd_lun struct for the target.
15574  *
15575  *		bp - Pointer to the buf for the command to be retried.
15576  *
15577  *		retry_check_flag - Flag to see which (if any) of the retry
15578  *		   counts should be decremented/checked. If the indicated
15579  *		   retry count is exhausted, then the command will not be
15580  *		   retried; it will be failed instead. This should use a
15581  *		   value equal to one of the following:
15582  *
15583  *			SD_RETRIES_NOCHECK
15584  *			SD_RESD_RETRIES_STANDARD
15585  *			SD_RETRIES_VICTIM
15586  *
15587  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
15588  *		   if the check should be made to see of FLAG_ISOLATE is set
15589  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
15590  *		   not retried, it is simply failed.
15591  *
15592  *		user_funcp - Ptr to function to call before dispatching the
15593  *		   command. May be NULL if no action needs to be performed.
15594  *		   (Primarily intended for printing messages.)
15595  *
15596  *		user_arg - Optional argument to be passed along to
15597  *		   the user_funcp call.
15598  *
15599  *		failure_code - errno return code to set in the bp if the
15600  *		   command is going to be failed.
15601  *
15602  *		retry_delay - Retry delay interval in (clock_t) units. May
15603  *		   be zero which indicates that the retry should be retried
15604  *		   immediately (ie, without an intervening delay).
15605  *
15606  *		statp - Ptr to kstat function to be updated if the command
15607  *		   is queued for a delayed retry. May be NULL if no kstat
15608  *		   update is desired.
15609  *
15610  *     Context: May be called from interrupt context.
15611  */
15612 
15613 static void
15614 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
15615 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
15616 	code), void *user_arg, int failure_code,  clock_t retry_delay,
15617 	void (*statp)(kstat_io_t *))
15618 {
15619 	struct sd_xbuf	*xp;
15620 	struct scsi_pkt	*pktp;
15621 	struct sd_fm_internal *sfip;
15622 
15623 	ASSERT(un != NULL);
15624 	ASSERT(mutex_owned(SD_MUTEX(un)));
15625 	ASSERT(bp != NULL);
15626 	xp = SD_GET_XBUF(bp);
15627 	ASSERT(xp != NULL);
15628 	pktp = SD_GET_PKTP(bp);
15629 	ASSERT(pktp != NULL);
15630 
15631 	sfip = (struct sd_fm_internal *)un->un_fm_private;
15632 	ASSERT(sfip != NULL);
15633 
15634 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15635 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
15636 
15637 	/*
15638 	 * If we are syncing or dumping, fail the command to avoid
15639 	 * recursively calling back into scsi_transport().
15640 	 */
15641 	if (ddi_in_panic()) {
15642 		goto fail_command_no_log;
15643 	}
15644 
15645 	/*
15646 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
15647 	 * log an error and fail the command.
15648 	 */
15649 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15650 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
15651 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
15652 		sd_dump_memory(un, SD_LOG_IO, "CDB",
15653 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15654 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
15655 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15656 		goto fail_command;
15657 	}
15658 
15659 	/*
15660 	 * If we are suspended, then put the command onto head of the
15661 	 * wait queue since we don't want to start more commands, and
15662 	 * clear the un_retry_bp. Next time when we are resumed, will
15663 	 * handle the command in the wait queue.
15664 	 */
15665 	switch (un->un_state) {
15666 	case SD_STATE_SUSPENDED:
15667 	case SD_STATE_DUMPING:
15668 		bp->av_forw = un->un_waitq_headp;
15669 		un->un_waitq_headp = bp;
15670 		if (un->un_waitq_tailp == NULL) {
15671 			un->un_waitq_tailp = bp;
15672 		}
15673 		if (bp == un->un_retry_bp) {
15674 			un->un_retry_bp = NULL;
15675 			un->un_retry_statp = NULL;
15676 		}
15677 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
15678 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
15679 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
15680 		return;
15681 	default:
15682 		break;
15683 	}
15684 
15685 	/*
15686 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
15687 	 * is set; if it is then we do not want to retry the command.
15688 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
15689 	 */
15690 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
15691 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
15692 			goto fail_command;
15693 		}
15694 	}
15695 
15696 
15697 	/*
15698 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
15699 	 * command timeout or a selection timeout has occurred. This means
15700 	 * that we were unable to establish an kind of communication with
15701 	 * the target, and subsequent retries and/or commands are likely
15702 	 * to encounter similar results and take a long time to complete.
15703 	 *
15704 	 * If this is a failfast error condition, we need to update the
15705 	 * failfast state, even if this bp does not have B_FAILFAST set.
15706 	 */
15707 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
15708 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
15709 			ASSERT(un->un_failfast_bp == NULL);
15710 			/*
15711 			 * If we are already in the active failfast state, and
15712 			 * another failfast error condition has been detected,
15713 			 * then fail this command if it has B_FAILFAST set.
15714 			 * If B_FAILFAST is clear, then maintain the legacy
15715 			 * behavior of retrying heroically, even tho this will
15716 			 * take a lot more time to fail the command.
15717 			 */
15718 			if (bp->b_flags & B_FAILFAST) {
15719 				goto fail_command;
15720 			}
15721 		} else {
15722 			/*
15723 			 * We're not in the active failfast state, but we
15724 			 * have a failfast error condition, so we must begin
15725 			 * transition to the next state. We do this regardless
15726 			 * of whether or not this bp has B_FAILFAST set.
15727 			 */
15728 			if (un->un_failfast_bp == NULL) {
15729 				/*
15730 				 * This is the first bp to meet a failfast
15731 				 * condition so save it on un_failfast_bp &
15732 				 * do normal retry processing. Do not enter
15733 				 * active failfast state yet. This marks
15734 				 * entry into the "failfast pending" state.
15735 				 */
15736 				un->un_failfast_bp = bp;
15737 
15738 			} else if (un->un_failfast_bp == bp) {
15739 				/*
15740 				 * This is the second time *this* bp has
15741 				 * encountered a failfast error condition,
15742 				 * so enter active failfast state & flush
15743 				 * queues as appropriate.
15744 				 */
15745 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
15746 				un->un_failfast_bp = NULL;
15747 				sd_failfast_flushq(un);
15748 
15749 				/*
15750 				 * Fail this bp now if B_FAILFAST set;
15751 				 * otherwise continue with retries. (It would
15752 				 * be pretty ironic if this bp succeeded on a
15753 				 * subsequent retry after we just flushed all
15754 				 * the queues).
15755 				 */
15756 				if (bp->b_flags & B_FAILFAST) {
15757 					goto fail_command;
15758 				}
15759 
15760 #if !defined(lint) && !defined(__lint)
15761 			} else {
15762 				/*
15763 				 * If neither of the preceeding conditionals
15764 				 * was true, it means that there is some
15765 				 * *other* bp that has met an inital failfast
15766 				 * condition and is currently either being
15767 				 * retried or is waiting to be retried. In
15768 				 * that case we should perform normal retry
15769 				 * processing on *this* bp, since there is a
15770 				 * chance that the current failfast condition
15771 				 * is transient and recoverable. If that does
15772 				 * not turn out to be the case, then retries
15773 				 * will be cleared when the wait queue is
15774 				 * flushed anyway.
15775 				 */
15776 #endif
15777 			}
15778 		}
15779 	} else {
15780 		/*
15781 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
15782 		 * likely were able to at least establish some level of
15783 		 * communication with the target and subsequent commands
15784 		 * and/or retries are likely to get through to the target,
15785 		 * In this case we want to be aggressive about clearing
15786 		 * the failfast state. Note that this does not affect
15787 		 * the "failfast pending" condition.
15788 		 */
15789 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15790 	}
15791 
15792 
15793 	/*
15794 	 * Check the specified retry count to see if we can still do
15795 	 * any retries with this pkt before we should fail it.
15796 	 */
15797 	switch (retry_check_flag & SD_RETRIES_MASK) {
15798 	case SD_RETRIES_VICTIM:
15799 		/*
15800 		 * Check the victim retry count. If exhausted, then fall
15801 		 * thru & check against the standard retry count.
15802 		 */
15803 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
15804 			/* Increment count & proceed with the retry */
15805 			xp->xb_victim_retry_count++;
15806 			break;
15807 		}
15808 		/* Victim retries exhausted, fall back to std. retries... */
15809 		/* FALLTHRU */
15810 
15811 	case SD_RETRIES_STANDARD:
15812 		if (xp->xb_retry_count >= un->un_retry_count) {
15813 			/* Retries exhausted, fail the command */
15814 			SD_TRACE(SD_LOG_IO_CORE, un,
15815 			    "sd_retry_command: retries exhausted!\n");
15816 			/*
15817 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
15818 			 * commands with nonzero pkt_resid.
15819 			 */
15820 			if ((pktp->pkt_reason == CMD_CMPLT) &&
15821 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
15822 			    (pktp->pkt_resid != 0)) {
15823 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
15824 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
15825 					SD_UPDATE_B_RESID(bp, pktp);
15826 				}
15827 			}
15828 			goto fail_command;
15829 		}
15830 		xp->xb_retry_count++;
15831 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15832 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15833 		break;
15834 
15835 	case SD_RETRIES_UA:
15836 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
15837 			/* Retries exhausted, fail the command */
15838 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15839 			    "Unit Attention retries exhausted. "
15840 			    "Check the target.\n");
15841 			goto fail_command;
15842 		}
15843 		xp->xb_ua_retry_count++;
15844 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15845 		    "sd_retry_command: retry count:%d\n",
15846 		    xp->xb_ua_retry_count);
15847 		break;
15848 
15849 	case SD_RETRIES_BUSY:
15850 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
15851 			/* Retries exhausted, fail the command */
15852 			SD_TRACE(SD_LOG_IO_CORE, un,
15853 			    "sd_retry_command: retries exhausted!\n");
15854 			goto fail_command;
15855 		}
15856 		xp->xb_retry_count++;
15857 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15858 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15859 		break;
15860 
15861 	case SD_RETRIES_NOCHECK:
15862 	default:
15863 		/* No retry count to check. Just proceed with the retry */
15864 		break;
15865 	}
15866 
15867 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15868 
15869 	/*
15870 	 * If this is a non-USCSI command being retried
15871 	 * during execution last time, we should post an ereport with
15872 	 * driver-assessment of the value "retry".
15873 	 * For partial DMA, request sense and STATUS_QFULL, there are no
15874 	 * hardware errors, we bypass ereport posting.
15875 	 */
15876 	if (failure_code != 0) {
15877 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
15878 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15879 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RETRY);
15880 		}
15881 	}
15882 
15883 	/*
15884 	 * If we were given a zero timeout, we must attempt to retry the
15885 	 * command immediately (ie, without a delay).
15886 	 */
15887 	if (retry_delay == 0) {
15888 		/*
15889 		 * Check some limiting conditions to see if we can actually
15890 		 * do the immediate retry.  If we cannot, then we must
15891 		 * fall back to queueing up a delayed retry.
15892 		 */
15893 		if (un->un_ncmds_in_transport >= un->un_throttle) {
15894 			/*
15895 			 * We are at the throttle limit for the target,
15896 			 * fall back to delayed retry.
15897 			 */
15898 			retry_delay = un->un_busy_timeout;
15899 			statp = kstat_waitq_enter;
15900 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15901 			    "sd_retry_command: immed. retry hit "
15902 			    "throttle!\n");
15903 		} else {
15904 			/*
15905 			 * We're clear to proceed with the immediate retry.
15906 			 * First call the user-provided function (if any)
15907 			 */
15908 			if (user_funcp != NULL) {
15909 				(*user_funcp)(un, bp, user_arg,
15910 				    SD_IMMEDIATE_RETRY_ISSUED);
15911 #ifdef __lock_lint
15912 				sd_print_incomplete_msg(un, bp, user_arg,
15913 				    SD_IMMEDIATE_RETRY_ISSUED);
15914 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
15915 				    SD_IMMEDIATE_RETRY_ISSUED);
15916 				sd_print_sense_failed_msg(un, bp, user_arg,
15917 				    SD_IMMEDIATE_RETRY_ISSUED);
15918 #endif
15919 			}
15920 
15921 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15922 			    "sd_retry_command: issuing immediate retry\n");
15923 
15924 			/*
15925 			 * Call sd_start_cmds() to transport the command to
15926 			 * the target.
15927 			 */
15928 			sd_start_cmds(un, bp);
15929 
15930 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15931 			    "sd_retry_command exit\n");
15932 			return;
15933 		}
15934 	}
15935 
15936 	/*
15937 	 * Set up to retry the command after a delay.
15938 	 * First call the user-provided function (if any)
15939 	 */
15940 	if (user_funcp != NULL) {
15941 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
15942 	}
15943 
15944 	sd_set_retry_bp(un, bp, retry_delay, statp);
15945 
15946 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15947 	return;
15948 
15949 fail_command:
15950 
15951 	if (user_funcp != NULL) {
15952 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
15953 	}
15954 
15955 fail_command_no_log:
15956 
15957 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15958 	    "sd_retry_command: returning failed command\n");
15959 
15960 	sd_return_failed_command(un, bp, failure_code);
15961 
15962 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15963 }
15964 
15965 
15966 /*
15967  *    Function: sd_set_retry_bp
15968  *
15969  * Description: Set up the given bp for retry.
15970  *
15971  *   Arguments: un - ptr to associated softstate
15972  *		bp - ptr to buf(9S) for the command
15973  *		retry_delay - time interval before issuing retry (may be 0)
15974  *		statp - optional pointer to kstat function
15975  *
15976  *     Context: May be called under interrupt context
15977  */
15978 
15979 static void
15980 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
15981 	void (*statp)(kstat_io_t *))
15982 {
15983 	ASSERT(un != NULL);
15984 	ASSERT(mutex_owned(SD_MUTEX(un)));
15985 	ASSERT(bp != NULL);
15986 
15987 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15988 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
15989 
15990 	/*
15991 	 * Indicate that the command is being retried. This will not allow any
15992 	 * other commands on the wait queue to be transported to the target
15993 	 * until this command has been completed (success or failure). The
15994 	 * "retry command" is not transported to the target until the given
15995 	 * time delay expires, unless the user specified a 0 retry_delay.
15996 	 *
15997 	 * Note: the timeout(9F) callback routine is what actually calls
15998 	 * sd_start_cmds() to transport the command, with the exception of a
15999 	 * zero retry_delay. The only current implementor of a zero retry delay
16000 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
16001 	 */
16002 	if (un->un_retry_bp == NULL) {
16003 		ASSERT(un->un_retry_statp == NULL);
16004 		un->un_retry_bp = bp;
16005 
16006 		/*
16007 		 * If the user has not specified a delay the command should
16008 		 * be queued and no timeout should be scheduled.
16009 		 */
16010 		if (retry_delay == 0) {
16011 			/*
16012 			 * Save the kstat pointer that will be used in the
16013 			 * call to SD_UPDATE_KSTATS() below, so that
16014 			 * sd_start_cmds() can correctly decrement the waitq
16015 			 * count when it is time to transport this command.
16016 			 */
16017 			un->un_retry_statp = statp;
16018 			goto done;
16019 		}
16020 	}
16021 
16022 	if (un->un_retry_bp == bp) {
16023 		/*
16024 		 * Save the kstat pointer that will be used in the call to
16025 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
16026 		 * correctly decrement the waitq count when it is time to
16027 		 * transport this command.
16028 		 */
16029 		un->un_retry_statp = statp;
16030 
16031 		/*
16032 		 * Schedule a timeout if:
16033 		 *   1) The user has specified a delay.
16034 		 *   2) There is not a START_STOP_UNIT callback pending.
16035 		 *
16036 		 * If no delay has been specified, then it is up to the caller
16037 		 * to ensure that IO processing continues without stalling.
16038 		 * Effectively, this means that the caller will issue the
16039 		 * required call to sd_start_cmds(). The START_STOP_UNIT
16040 		 * callback does this after the START STOP UNIT command has
16041 		 * completed. In either of these cases we should not schedule
16042 		 * a timeout callback here.  Also don't schedule the timeout if
16043 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
16044 		 */
16045 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
16046 		    (un->un_direct_priority_timeid == NULL)) {
16047 			un->un_retry_timeid =
16048 			    timeout(sd_start_retry_command, un, retry_delay);
16049 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16050 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
16051 			    " bp:0x%p un_retry_timeid:0x%p\n",
16052 			    un, bp, un->un_retry_timeid);
16053 		}
16054 	} else {
16055 		/*
16056 		 * We only get in here if there is already another command
16057 		 * waiting to be retried.  In this case, we just put the
16058 		 * given command onto the wait queue, so it can be transported
16059 		 * after the current retry command has completed.
16060 		 *
16061 		 * Also we have to make sure that if the command at the head
16062 		 * of the wait queue is the un_failfast_bp, that we do not
16063 		 * put ahead of it any other commands that are to be retried.
16064 		 */
16065 		if ((un->un_failfast_bp != NULL) &&
16066 		    (un->un_failfast_bp == un->un_waitq_headp)) {
16067 			/*
16068 			 * Enqueue this command AFTER the first command on
16069 			 * the wait queue (which is also un_failfast_bp).
16070 			 */
16071 			bp->av_forw = un->un_waitq_headp->av_forw;
16072 			un->un_waitq_headp->av_forw = bp;
16073 			if (un->un_waitq_headp == un->un_waitq_tailp) {
16074 				un->un_waitq_tailp = bp;
16075 			}
16076 		} else {
16077 			/* Enqueue this command at the head of the waitq. */
16078 			bp->av_forw = un->un_waitq_headp;
16079 			un->un_waitq_headp = bp;
16080 			if (un->un_waitq_tailp == NULL) {
16081 				un->un_waitq_tailp = bp;
16082 			}
16083 		}
16084 
16085 		if (statp == NULL) {
16086 			statp = kstat_waitq_enter;
16087 		}
16088 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16089 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
16090 	}
16091 
16092 done:
16093 	if (statp != NULL) {
16094 		SD_UPDATE_KSTATS(un, statp, bp);
16095 	}
16096 
16097 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16098 	    "sd_set_retry_bp: exit un:0x%p\n", un);
16099 }
16100 
16101 
16102 /*
16103  *    Function: sd_start_retry_command
16104  *
16105  * Description: Start the command that has been waiting on the target's
16106  *		retry queue.  Called from timeout(9F) context after the
16107  *		retry delay interval has expired.
16108  *
16109  *   Arguments: arg - pointer to associated softstate for the device.
16110  *
16111  *     Context: timeout(9F) thread context.  May not sleep.
16112  */
16113 
16114 static void
16115 sd_start_retry_command(void *arg)
16116 {
16117 	struct sd_lun *un = arg;
16118 
16119 	ASSERT(un != NULL);
16120 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16121 
16122 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16123 	    "sd_start_retry_command: entry\n");
16124 
16125 	mutex_enter(SD_MUTEX(un));
16126 
16127 	un->un_retry_timeid = NULL;
16128 
16129 	if (un->un_retry_bp != NULL) {
16130 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16131 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
16132 		    un, un->un_retry_bp);
16133 		sd_start_cmds(un, un->un_retry_bp);
16134 	}
16135 
16136 	mutex_exit(SD_MUTEX(un));
16137 
16138 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16139 	    "sd_start_retry_command: exit\n");
16140 }
16141 
16142 /*
16143  *    Function: sd_rmw_msg_print_handler
16144  *
16145  * Description: If RMW mode is enabled and warning message is triggered
16146  *              print I/O count during a fixed interval.
16147  *
16148  *   Arguments: arg - pointer to associated softstate for the device.
16149  *
16150  *     Context: timeout(9F) thread context. May not sleep.
16151  */
16152 static void
16153 sd_rmw_msg_print_handler(void *arg)
16154 {
16155 	struct sd_lun *un = arg;
16156 
16157 	ASSERT(un != NULL);
16158 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16159 
16160 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16161 	    "sd_rmw_msg_print_handler: entry\n");
16162 
16163 	mutex_enter(SD_MUTEX(un));
16164 
16165 	if (un->un_rmw_incre_count > 0) {
16166 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16167 		    "%"PRIu64" I/O requests are not aligned with %d disk "
16168 		    "sector size in %ld seconds. They are handled through "
16169 		    "Read Modify Write but the performance is very low!\n",
16170 		    un->un_rmw_incre_count, un->un_tgt_blocksize,
16171 		    drv_hztousec(SD_RMW_MSG_PRINT_TIMEOUT) / 1000000);
16172 		un->un_rmw_incre_count = 0;
16173 		un->un_rmw_msg_timeid = timeout(sd_rmw_msg_print_handler,
16174 		    un, SD_RMW_MSG_PRINT_TIMEOUT);
16175 	} else {
16176 		un->un_rmw_msg_timeid = NULL;
16177 	}
16178 
16179 	mutex_exit(SD_MUTEX(un));
16180 
16181 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16182 	    "sd_rmw_msg_print_handler: exit\n");
16183 }
16184 
16185 /*
16186  *    Function: sd_start_direct_priority_command
16187  *
16188  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
16189  *		received TRAN_BUSY when we called scsi_transport() to send it
16190  *		to the underlying HBA. This function is called from timeout(9F)
16191  *		context after the delay interval has expired.
16192  *
16193  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
16194  *
16195  *     Context: timeout(9F) thread context.  May not sleep.
16196  */
16197 
16198 static void
16199 sd_start_direct_priority_command(void *arg)
16200 {
16201 	struct buf	*priority_bp = arg;
16202 	struct sd_lun	*un;
16203 
16204 	ASSERT(priority_bp != NULL);
16205 	un = SD_GET_UN(priority_bp);
16206 	ASSERT(un != NULL);
16207 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16208 
16209 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16210 	    "sd_start_direct_priority_command: entry\n");
16211 
16212 	mutex_enter(SD_MUTEX(un));
16213 	un->un_direct_priority_timeid = NULL;
16214 	sd_start_cmds(un, priority_bp);
16215 	mutex_exit(SD_MUTEX(un));
16216 
16217 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16218 	    "sd_start_direct_priority_command: exit\n");
16219 }
16220 
16221 
16222 /*
16223  *    Function: sd_send_request_sense_command
16224  *
16225  * Description: Sends a REQUEST SENSE command to the target
16226  *
16227  *     Context: May be called from interrupt context.
16228  */
16229 
16230 static void
16231 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
16232 	struct scsi_pkt *pktp)
16233 {
16234 	ASSERT(bp != NULL);
16235 	ASSERT(un != NULL);
16236 	ASSERT(mutex_owned(SD_MUTEX(un)));
16237 
16238 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
16239 	    "entry: buf:0x%p\n", bp);
16240 
16241 	/*
16242 	 * If we are syncing or dumping, then fail the command to avoid a
16243 	 * recursive callback into scsi_transport(). Also fail the command
16244 	 * if we are suspended (legacy behavior).
16245 	 */
16246 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
16247 	    (un->un_state == SD_STATE_DUMPING)) {
16248 		sd_return_failed_command(un, bp, EIO);
16249 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16250 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
16251 		return;
16252 	}
16253 
16254 	/*
16255 	 * Retry the failed command and don't issue the request sense if:
16256 	 *    1) the sense buf is busy
16257 	 *    2) we have 1 or more outstanding commands on the target
16258 	 *    (the sense data will be cleared or invalidated any way)
16259 	 *
16260 	 * Note: There could be an issue with not checking a retry limit here,
16261 	 * the problem is determining which retry limit to check.
16262 	 */
16263 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
16264 		/* Don't retry if the command is flagged as non-retryable */
16265 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16266 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
16267 			    NULL, NULL, 0, un->un_busy_timeout,
16268 			    kstat_waitq_enter);
16269 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16270 			    "sd_send_request_sense_command: "
16271 			    "at full throttle, retrying exit\n");
16272 		} else {
16273 			sd_return_failed_command(un, bp, EIO);
16274 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16275 			    "sd_send_request_sense_command: "
16276 			    "at full throttle, non-retryable exit\n");
16277 		}
16278 		return;
16279 	}
16280 
16281 	sd_mark_rqs_busy(un, bp);
16282 	sd_start_cmds(un, un->un_rqs_bp);
16283 
16284 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16285 	    "sd_send_request_sense_command: exit\n");
16286 }
16287 
16288 
16289 /*
16290  *    Function: sd_mark_rqs_busy
16291  *
16292  * Description: Indicate that the request sense bp for this instance is
16293  *		in use.
16294  *
16295  *     Context: May be called under interrupt context
16296  */
16297 
16298 static void
16299 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
16300 {
16301 	struct sd_xbuf	*sense_xp;
16302 
16303 	ASSERT(un != NULL);
16304 	ASSERT(bp != NULL);
16305 	ASSERT(mutex_owned(SD_MUTEX(un)));
16306 	ASSERT(un->un_sense_isbusy == 0);
16307 
16308 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
16309 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
16310 
16311 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
16312 	ASSERT(sense_xp != NULL);
16313 
16314 	SD_INFO(SD_LOG_IO, un,
16315 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
16316 
16317 	ASSERT(sense_xp->xb_pktp != NULL);
16318 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
16319 	    == (FLAG_SENSING | FLAG_HEAD));
16320 
16321 	un->un_sense_isbusy = 1;
16322 	un->un_rqs_bp->b_resid = 0;
16323 	sense_xp->xb_pktp->pkt_resid  = 0;
16324 	sense_xp->xb_pktp->pkt_reason = 0;
16325 
16326 	/* So we can get back the bp at interrupt time! */
16327 	sense_xp->xb_sense_bp = bp;
16328 
16329 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
16330 
16331 	/*
16332 	 * Mark this buf as awaiting sense data. (This is already set in
16333 	 * the pkt_flags for the RQS packet.)
16334 	 */
16335 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
16336 
16337 	/* Request sense down same path */
16338 	if (scsi_pkt_allocated_correctly((SD_GET_XBUF(bp))->xb_pktp) &&
16339 	    ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance)
16340 		sense_xp->xb_pktp->pkt_path_instance =
16341 		    ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance;
16342 
16343 	sense_xp->xb_retry_count	= 0;
16344 	sense_xp->xb_victim_retry_count = 0;
16345 	sense_xp->xb_ua_retry_count	= 0;
16346 	sense_xp->xb_nr_retry_count 	= 0;
16347 	sense_xp->xb_dma_resid  = 0;
16348 
16349 	/* Clean up the fields for auto-request sense */
16350 	sense_xp->xb_sense_status = 0;
16351 	sense_xp->xb_sense_state  = 0;
16352 	sense_xp->xb_sense_resid  = 0;
16353 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
16354 
16355 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
16356 }
16357 
16358 
16359 /*
16360  *    Function: sd_mark_rqs_idle
16361  *
16362  * Description: SD_MUTEX must be held continuously through this routine
16363  *		to prevent reuse of the rqs struct before the caller can
16364  *		complete it's processing.
16365  *
16366  * Return Code: Pointer to the RQS buf
16367  *
16368  *     Context: May be called under interrupt context
16369  */
16370 
16371 static struct buf *
16372 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
16373 {
16374 	struct buf *bp;
16375 	ASSERT(un != NULL);
16376 	ASSERT(sense_xp != NULL);
16377 	ASSERT(mutex_owned(SD_MUTEX(un)));
16378 	ASSERT(un->un_sense_isbusy != 0);
16379 
16380 	un->un_sense_isbusy = 0;
16381 	bp = sense_xp->xb_sense_bp;
16382 	sense_xp->xb_sense_bp = NULL;
16383 
16384 	/* This pkt is no longer interested in getting sense data */
16385 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
16386 
16387 	return (bp);
16388 }
16389 
16390 
16391 
16392 /*
16393  *    Function: sd_alloc_rqs
16394  *
16395  * Description: Set up the unit to receive auto request sense data
16396  *
16397  * Return Code: DDI_SUCCESS or DDI_FAILURE
16398  *
16399  *     Context: Called under attach(9E) context
16400  */
16401 
16402 static int
16403 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
16404 {
16405 	struct sd_xbuf *xp;
16406 
16407 	ASSERT(un != NULL);
16408 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16409 	ASSERT(un->un_rqs_bp == NULL);
16410 	ASSERT(un->un_rqs_pktp == NULL);
16411 
16412 	/*
16413 	 * First allocate the required buf and scsi_pkt structs, then set up
16414 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
16415 	 */
16416 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
16417 	    MAX_SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
16418 	if (un->un_rqs_bp == NULL) {
16419 		return (DDI_FAILURE);
16420 	}
16421 
16422 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
16423 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
16424 
16425 	if (un->un_rqs_pktp == NULL) {
16426 		sd_free_rqs(un);
16427 		return (DDI_FAILURE);
16428 	}
16429 
16430 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
16431 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
16432 	    SCMD_REQUEST_SENSE, 0, MAX_SENSE_LENGTH, 0);
16433 
16434 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
16435 
16436 	/* Set up the other needed members in the ARQ scsi_pkt. */
16437 	un->un_rqs_pktp->pkt_comp   = sdintr;
16438 	un->un_rqs_pktp->pkt_time   = sd_io_time;
16439 	un->un_rqs_pktp->pkt_flags |=
16440 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
16441 
16442 	/*
16443 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
16444 	 * provide any intpkt, destroypkt routines as we take care of
16445 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
16446 	 */
16447 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
16448 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
16449 	xp->xb_pktp = un->un_rqs_pktp;
16450 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
16451 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
16452 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
16453 
16454 	/*
16455 	 * Save the pointer to the request sense private bp so it can
16456 	 * be retrieved in sdintr.
16457 	 */
16458 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
16459 	ASSERT(un->un_rqs_bp->b_private == xp);
16460 
16461 	/*
16462 	 * See if the HBA supports auto-request sense for the specified
16463 	 * target/lun. If it does, then try to enable it (if not already
16464 	 * enabled).
16465 	 *
16466 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
16467 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
16468 	 * return success.  However, in both of these cases ARQ is always
16469 	 * enabled and scsi_ifgetcap will always return true. The best approach
16470 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
16471 	 *
16472 	 * The 3rd case is the HBA (adp) always return enabled on
16473 	 * scsi_ifgetgetcap even when it's not enable, the best approach
16474 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
16475 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
16476 	 */
16477 
16478 	if (un->un_f_is_fibre == TRUE) {
16479 		un->un_f_arq_enabled = TRUE;
16480 	} else {
16481 #if defined(__i386) || defined(__amd64)
16482 		/*
16483 		 * Circumvent the Adaptec bug, remove this code when
16484 		 * the bug is fixed
16485 		 */
16486 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
16487 #endif
16488 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
16489 		case 0:
16490 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16491 			    "sd_alloc_rqs: HBA supports ARQ\n");
16492 			/*
16493 			 * ARQ is supported by this HBA but currently is not
16494 			 * enabled. Attempt to enable it and if successful then
16495 			 * mark this instance as ARQ enabled.
16496 			 */
16497 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
16498 			    == 1) {
16499 				/* Successfully enabled ARQ in the HBA */
16500 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
16501 				    "sd_alloc_rqs: ARQ enabled\n");
16502 				un->un_f_arq_enabled = TRUE;
16503 			} else {
16504 				/* Could not enable ARQ in the HBA */
16505 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
16506 				    "sd_alloc_rqs: failed ARQ enable\n");
16507 				un->un_f_arq_enabled = FALSE;
16508 			}
16509 			break;
16510 		case 1:
16511 			/*
16512 			 * ARQ is supported by this HBA and is already enabled.
16513 			 * Just mark ARQ as enabled for this instance.
16514 			 */
16515 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16516 			    "sd_alloc_rqs: ARQ already enabled\n");
16517 			un->un_f_arq_enabled = TRUE;
16518 			break;
16519 		default:
16520 			/*
16521 			 * ARQ is not supported by this HBA; disable it for this
16522 			 * instance.
16523 			 */
16524 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16525 			    "sd_alloc_rqs: HBA does not support ARQ\n");
16526 			un->un_f_arq_enabled = FALSE;
16527 			break;
16528 		}
16529 	}
16530 
16531 	return (DDI_SUCCESS);
16532 }
16533 
16534 
16535 /*
16536  *    Function: sd_free_rqs
16537  *
16538  * Description: Cleanup for the pre-instance RQS command.
16539  *
16540  *     Context: Kernel thread context
16541  */
16542 
16543 static void
16544 sd_free_rqs(struct sd_lun *un)
16545 {
16546 	ASSERT(un != NULL);
16547 
16548 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
16549 
16550 	/*
16551 	 * If consistent memory is bound to a scsi_pkt, the pkt
16552 	 * has to be destroyed *before* freeing the consistent memory.
16553 	 * Don't change the sequence of this operations.
16554 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
16555 	 * after it was freed in scsi_free_consistent_buf().
16556 	 */
16557 	if (un->un_rqs_pktp != NULL) {
16558 		scsi_destroy_pkt(un->un_rqs_pktp);
16559 		un->un_rqs_pktp = NULL;
16560 	}
16561 
16562 	if (un->un_rqs_bp != NULL) {
16563 		struct sd_xbuf *xp = SD_GET_XBUF(un->un_rqs_bp);
16564 		if (xp != NULL) {
16565 			kmem_free(xp, sizeof (struct sd_xbuf));
16566 		}
16567 		scsi_free_consistent_buf(un->un_rqs_bp);
16568 		un->un_rqs_bp = NULL;
16569 	}
16570 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
16571 }
16572 
16573 
16574 
16575 /*
16576  *    Function: sd_reduce_throttle
16577  *
16578  * Description: Reduces the maximum # of outstanding commands on a
16579  *		target to the current number of outstanding commands.
16580  *		Queues a tiemout(9F) callback to restore the limit
16581  *		after a specified interval has elapsed.
16582  *		Typically used when we get a TRAN_BUSY return code
16583  *		back from scsi_transport().
16584  *
16585  *   Arguments: un - ptr to the sd_lun softstate struct
16586  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
16587  *
16588  *     Context: May be called from interrupt context
16589  */
16590 
16591 static void
16592 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
16593 {
16594 	ASSERT(un != NULL);
16595 	ASSERT(mutex_owned(SD_MUTEX(un)));
16596 	ASSERT(un->un_ncmds_in_transport >= 0);
16597 
16598 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16599 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
16600 	    un, un->un_throttle, un->un_ncmds_in_transport);
16601 
16602 	if (un->un_throttle > 1) {
16603 		if (un->un_f_use_adaptive_throttle == TRUE) {
16604 			switch (throttle_type) {
16605 			case SD_THROTTLE_TRAN_BUSY:
16606 				if (un->un_busy_throttle == 0) {
16607 					un->un_busy_throttle = un->un_throttle;
16608 				}
16609 				break;
16610 			case SD_THROTTLE_QFULL:
16611 				un->un_busy_throttle = 0;
16612 				break;
16613 			default:
16614 				ASSERT(FALSE);
16615 			}
16616 
16617 			if (un->un_ncmds_in_transport > 0) {
16618 				un->un_throttle = un->un_ncmds_in_transport;
16619 			}
16620 
16621 		} else {
16622 			if (un->un_ncmds_in_transport == 0) {
16623 				un->un_throttle = 1;
16624 			} else {
16625 				un->un_throttle = un->un_ncmds_in_transport;
16626 			}
16627 		}
16628 	}
16629 
16630 	/* Reschedule the timeout if none is currently active */
16631 	if (un->un_reset_throttle_timeid == NULL) {
16632 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
16633 		    un, SD_THROTTLE_RESET_INTERVAL);
16634 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16635 		    "sd_reduce_throttle: timeout scheduled!\n");
16636 	}
16637 
16638 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16639 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16640 }
16641 
16642 
16643 
16644 /*
16645  *    Function: sd_restore_throttle
16646  *
16647  * Description: Callback function for timeout(9F).  Resets the current
16648  *		value of un->un_throttle to its default.
16649  *
16650  *   Arguments: arg - pointer to associated softstate for the device.
16651  *
16652  *     Context: May be called from interrupt context
16653  */
16654 
16655 static void
16656 sd_restore_throttle(void *arg)
16657 {
16658 	struct sd_lun	*un = arg;
16659 
16660 	ASSERT(un != NULL);
16661 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16662 
16663 	mutex_enter(SD_MUTEX(un));
16664 
16665 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16666 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16667 
16668 	un->un_reset_throttle_timeid = NULL;
16669 
16670 	if (un->un_f_use_adaptive_throttle == TRUE) {
16671 		/*
16672 		 * If un_busy_throttle is nonzero, then it contains the
16673 		 * value that un_throttle was when we got a TRAN_BUSY back
16674 		 * from scsi_transport(). We want to revert back to this
16675 		 * value.
16676 		 *
16677 		 * In the QFULL case, the throttle limit will incrementally
16678 		 * increase until it reaches max throttle.
16679 		 */
16680 		if (un->un_busy_throttle > 0) {
16681 			un->un_throttle = un->un_busy_throttle;
16682 			un->un_busy_throttle = 0;
16683 		} else {
16684 			/*
16685 			 * increase throttle by 10% open gate slowly, schedule
16686 			 * another restore if saved throttle has not been
16687 			 * reached
16688 			 */
16689 			short throttle;
16690 			if (sd_qfull_throttle_enable) {
16691 				throttle = un->un_throttle +
16692 				    max((un->un_throttle / 10), 1);
16693 				un->un_throttle =
16694 				    (throttle < un->un_saved_throttle) ?
16695 				    throttle : un->un_saved_throttle;
16696 				if (un->un_throttle < un->un_saved_throttle) {
16697 					un->un_reset_throttle_timeid =
16698 					    timeout(sd_restore_throttle,
16699 					    un,
16700 					    SD_QFULL_THROTTLE_RESET_INTERVAL);
16701 				}
16702 			}
16703 		}
16704 
16705 		/*
16706 		 * If un_throttle has fallen below the low-water mark, we
16707 		 * restore the maximum value here (and allow it to ratchet
16708 		 * down again if necessary).
16709 		 */
16710 		if (un->un_throttle < un->un_min_throttle) {
16711 			un->un_throttle = un->un_saved_throttle;
16712 		}
16713 	} else {
16714 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16715 		    "restoring limit from 0x%x to 0x%x\n",
16716 		    un->un_throttle, un->un_saved_throttle);
16717 		un->un_throttle = un->un_saved_throttle;
16718 	}
16719 
16720 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16721 	    "sd_restore_throttle: calling sd_start_cmds!\n");
16722 
16723 	sd_start_cmds(un, NULL);
16724 
16725 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16726 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
16727 	    un, un->un_throttle);
16728 
16729 	mutex_exit(SD_MUTEX(un));
16730 
16731 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
16732 }
16733 
16734 /*
16735  *    Function: sdrunout
16736  *
16737  * Description: Callback routine for scsi_init_pkt when a resource allocation
16738  *		fails.
16739  *
16740  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
16741  *		soft state instance.
16742  *
16743  * Return Code: The scsi_init_pkt routine allows for the callback function to
16744  *		return a 0 indicating the callback should be rescheduled or a 1
16745  *		indicating not to reschedule. This routine always returns 1
16746  *		because the driver always provides a callback function to
16747  *		scsi_init_pkt. This results in a callback always being scheduled
16748  *		(via the scsi_init_pkt callback implementation) if a resource
16749  *		failure occurs.
16750  *
16751  *     Context: This callback function may not block or call routines that block
16752  *
16753  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
16754  *		request persisting at the head of the list which cannot be
16755  *		satisfied even after multiple retries. In the future the driver
16756  *		may implement some time of maximum runout count before failing
16757  *		an I/O.
16758  */
16759 
16760 static int
16761 sdrunout(caddr_t arg)
16762 {
16763 	struct sd_lun	*un = (struct sd_lun *)arg;
16764 
16765 	ASSERT(un != NULL);
16766 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16767 
16768 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
16769 
16770 	mutex_enter(SD_MUTEX(un));
16771 	sd_start_cmds(un, NULL);
16772 	mutex_exit(SD_MUTEX(un));
16773 	/*
16774 	 * This callback routine always returns 1 (i.e. do not reschedule)
16775 	 * because we always specify sdrunout as the callback handler for
16776 	 * scsi_init_pkt inside the call to sd_start_cmds.
16777 	 */
16778 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
16779 	return (1);
16780 }
16781 
16782 
16783 /*
16784  *    Function: sdintr
16785  *
16786  * Description: Completion callback routine for scsi_pkt(9S) structs
16787  *		sent to the HBA driver via scsi_transport(9F).
16788  *
16789  *     Context: Interrupt context
16790  */
16791 
16792 static void
16793 sdintr(struct scsi_pkt *pktp)
16794 {
16795 	struct buf	*bp;
16796 	struct sd_xbuf	*xp;
16797 	struct sd_lun	*un;
16798 	size_t		actual_len;
16799 	sd_ssc_t	*sscp;
16800 
16801 	ASSERT(pktp != NULL);
16802 	bp = (struct buf *)pktp->pkt_private;
16803 	ASSERT(bp != NULL);
16804 	xp = SD_GET_XBUF(bp);
16805 	ASSERT(xp != NULL);
16806 	ASSERT(xp->xb_pktp != NULL);
16807 	un = SD_GET_UN(bp);
16808 	ASSERT(un != NULL);
16809 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16810 
16811 #ifdef SD_FAULT_INJECTION
16812 
16813 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
16814 	/* SD FaultInjection */
16815 	sd_faultinjection(pktp);
16816 
16817 #endif /* SD_FAULT_INJECTION */
16818 
16819 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
16820 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
16821 
16822 	mutex_enter(SD_MUTEX(un));
16823 
16824 	ASSERT(un->un_fm_private != NULL);
16825 	sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
16826 	ASSERT(sscp != NULL);
16827 
16828 	/* Reduce the count of the #commands currently in transport */
16829 	un->un_ncmds_in_transport--;
16830 	ASSERT(un->un_ncmds_in_transport >= 0);
16831 
16832 	/* Increment counter to indicate that the callback routine is active */
16833 	un->un_in_callback++;
16834 
16835 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
16836 
16837 #ifdef	SDDEBUG
16838 	if (bp == un->un_retry_bp) {
16839 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
16840 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
16841 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
16842 	}
16843 #endif
16844 
16845 	/*
16846 	 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media
16847 	 * state if needed.
16848 	 */
16849 	if (pktp->pkt_reason == CMD_DEV_GONE) {
16850 		/* Prevent multiple console messages for the same failure. */
16851 		if (un->un_last_pkt_reason != CMD_DEV_GONE) {
16852 			un->un_last_pkt_reason = CMD_DEV_GONE;
16853 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16854 			    "Command failed to complete...Device is gone\n");
16855 		}
16856 		if (un->un_mediastate != DKIO_DEV_GONE) {
16857 			un->un_mediastate = DKIO_DEV_GONE;
16858 			cv_broadcast(&un->un_state_cv);
16859 		}
16860 		/*
16861 		 * If the command happens to be the REQUEST SENSE command,
16862 		 * free up the rqs buf and fail the original command.
16863 		 */
16864 		if (bp == un->un_rqs_bp) {
16865 			bp = sd_mark_rqs_idle(un, xp);
16866 		}
16867 		sd_return_failed_command(un, bp, EIO);
16868 		goto exit;
16869 	}
16870 
16871 	if (pktp->pkt_state & STATE_XARQ_DONE) {
16872 		SD_TRACE(SD_LOG_COMMON, un,
16873 		    "sdintr: extra sense data received. pkt=%p\n", pktp);
16874 	}
16875 
16876 	/*
16877 	 * First see if the pkt has auto-request sense data with it....
16878 	 * Look at the packet state first so we don't take a performance
16879 	 * hit looking at the arq enabled flag unless absolutely necessary.
16880 	 */
16881 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
16882 	    (un->un_f_arq_enabled == TRUE)) {
16883 		/*
16884 		 * The HBA did an auto request sense for this command so check
16885 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16886 		 * driver command that should not be retried.
16887 		 */
16888 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16889 			/*
16890 			 * Save the relevant sense info into the xp for the
16891 			 * original cmd.
16892 			 */
16893 			struct scsi_arq_status *asp;
16894 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16895 			xp->xb_sense_status =
16896 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
16897 			xp->xb_sense_state  = asp->sts_rqpkt_state;
16898 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16899 			if (pktp->pkt_state & STATE_XARQ_DONE) {
16900 				actual_len = MAX_SENSE_LENGTH -
16901 				    xp->xb_sense_resid;
16902 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16903 				    MAX_SENSE_LENGTH);
16904 			} else {
16905 				if (xp->xb_sense_resid > SENSE_LENGTH) {
16906 					actual_len = MAX_SENSE_LENGTH -
16907 					    xp->xb_sense_resid;
16908 				} else {
16909 					actual_len = SENSE_LENGTH -
16910 					    xp->xb_sense_resid;
16911 				}
16912 				if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16913 					if ((((struct uscsi_cmd *)
16914 					    (xp->xb_pktinfo))->uscsi_rqlen) >
16915 					    actual_len) {
16916 						xp->xb_sense_resid =
16917 						    (((struct uscsi_cmd *)
16918 						    (xp->xb_pktinfo))->
16919 						    uscsi_rqlen) - actual_len;
16920 					} else {
16921 						xp->xb_sense_resid = 0;
16922 					}
16923 				}
16924 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16925 				    SENSE_LENGTH);
16926 			}
16927 
16928 			/* fail the command */
16929 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16930 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
16931 			sd_return_failed_command(un, bp, EIO);
16932 			goto exit;
16933 		}
16934 
16935 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16936 		/*
16937 		 * We want to either retry or fail this command, so free
16938 		 * the DMA resources here.  If we retry the command then
16939 		 * the DMA resources will be reallocated in sd_start_cmds().
16940 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
16941 		 * causes the *entire* transfer to start over again from the
16942 		 * beginning of the request, even for PARTIAL chunks that
16943 		 * have already transferred successfully.
16944 		 */
16945 		if ((un->un_f_is_fibre == TRUE) &&
16946 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16947 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16948 			scsi_dmafree(pktp);
16949 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16950 		}
16951 #endif
16952 
16953 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16954 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
16955 
16956 		sd_handle_auto_request_sense(un, bp, xp, pktp);
16957 		goto exit;
16958 	}
16959 
16960 	/* Next see if this is the REQUEST SENSE pkt for the instance */
16961 	if (pktp->pkt_flags & FLAG_SENSING)  {
16962 		/* This pktp is from the unit's REQUEST_SENSE command */
16963 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16964 		    "sdintr: sd_handle_request_sense\n");
16965 		sd_handle_request_sense(un, bp, xp, pktp);
16966 		goto exit;
16967 	}
16968 
16969 	/*
16970 	 * Check to see if the command successfully completed as requested;
16971 	 * this is the most common case (and also the hot performance path).
16972 	 *
16973 	 * Requirements for successful completion are:
16974 	 * pkt_reason is CMD_CMPLT and packet status is status good.
16975 	 * In addition:
16976 	 * - A residual of zero indicates successful completion no matter what
16977 	 *   the command is.
16978 	 * - If the residual is not zero and the command is not a read or
16979 	 *   write, then it's still defined as successful completion. In other
16980 	 *   words, if the command is a read or write the residual must be
16981 	 *   zero for successful completion.
16982 	 * - If the residual is not zero and the command is a read or
16983 	 *   write, and it's a USCSICMD, then it's still defined as
16984 	 *   successful completion.
16985 	 */
16986 	if ((pktp->pkt_reason == CMD_CMPLT) &&
16987 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
16988 
16989 		/*
16990 		 * Since this command is returned with a good status, we
16991 		 * can reset the count for Sonoma failover.
16992 		 */
16993 		un->un_sonoma_failure_count = 0;
16994 
16995 		/*
16996 		 * Return all USCSI commands on good status
16997 		 */
16998 		if (pktp->pkt_resid == 0) {
16999 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17000 			    "sdintr: returning command for resid == 0\n");
17001 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
17002 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
17003 			SD_UPDATE_B_RESID(bp, pktp);
17004 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17005 			    "sdintr: returning command for resid != 0\n");
17006 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
17007 			SD_UPDATE_B_RESID(bp, pktp);
17008 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17009 			    "sdintr: returning uscsi command\n");
17010 		} else {
17011 			goto not_successful;
17012 		}
17013 		sd_return_command(un, bp);
17014 
17015 		/*
17016 		 * Decrement counter to indicate that the callback routine
17017 		 * is done.
17018 		 */
17019 		un->un_in_callback--;
17020 		ASSERT(un->un_in_callback >= 0);
17021 		mutex_exit(SD_MUTEX(un));
17022 
17023 		return;
17024 	}
17025 
17026 not_successful:
17027 
17028 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
17029 	/*
17030 	 * The following is based upon knowledge of the underlying transport
17031 	 * and its use of DMA resources.  This code should be removed when
17032 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
17033 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
17034 	 * and sd_start_cmds().
17035 	 *
17036 	 * Free any DMA resources associated with this command if there
17037 	 * is a chance it could be retried or enqueued for later retry.
17038 	 * If we keep the DMA binding then mpxio cannot reissue the
17039 	 * command on another path whenever a path failure occurs.
17040 	 *
17041 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
17042 	 * causes the *entire* transfer to start over again from the
17043 	 * beginning of the request, even for PARTIAL chunks that
17044 	 * have already transferred successfully.
17045 	 *
17046 	 * This is only done for non-uscsi commands (and also skipped for the
17047 	 * driver's internal RQS command). Also just do this for Fibre Channel
17048 	 * devices as these are the only ones that support mpxio.
17049 	 */
17050 	if ((un->un_f_is_fibre == TRUE) &&
17051 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
17052 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
17053 		scsi_dmafree(pktp);
17054 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
17055 	}
17056 #endif
17057 
17058 	/*
17059 	 * The command did not successfully complete as requested so check
17060 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
17061 	 * driver command that should not be retried so just return. If
17062 	 * FLAG_DIAGNOSE is not set the error will be processed below.
17063 	 */
17064 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
17065 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17066 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
17067 		/*
17068 		 * Issue a request sense if a check condition caused the error
17069 		 * (we handle the auto request sense case above), otherwise
17070 		 * just fail the command.
17071 		 */
17072 		if ((pktp->pkt_reason == CMD_CMPLT) &&
17073 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
17074 			sd_send_request_sense_command(un, bp, pktp);
17075 		} else {
17076 			sd_return_failed_command(un, bp, EIO);
17077 		}
17078 		goto exit;
17079 	}
17080 
17081 	/*
17082 	 * The command did not successfully complete as requested so process
17083 	 * the error, retry, and/or attempt recovery.
17084 	 */
17085 	switch (pktp->pkt_reason) {
17086 	case CMD_CMPLT:
17087 		switch (SD_GET_PKT_STATUS(pktp)) {
17088 		case STATUS_GOOD:
17089 			/*
17090 			 * The command completed successfully with a non-zero
17091 			 * residual
17092 			 */
17093 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17094 			    "sdintr: STATUS_GOOD \n");
17095 			sd_pkt_status_good(un, bp, xp, pktp);
17096 			break;
17097 
17098 		case STATUS_CHECK:
17099 		case STATUS_TERMINATED:
17100 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17101 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
17102 			sd_pkt_status_check_condition(un, bp, xp, pktp);
17103 			break;
17104 
17105 		case STATUS_BUSY:
17106 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17107 			    "sdintr: STATUS_BUSY\n");
17108 			sd_pkt_status_busy(un, bp, xp, pktp);
17109 			break;
17110 
17111 		case STATUS_RESERVATION_CONFLICT:
17112 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17113 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
17114 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
17115 			break;
17116 
17117 		case STATUS_QFULL:
17118 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17119 			    "sdintr: STATUS_QFULL\n");
17120 			sd_pkt_status_qfull(un, bp, xp, pktp);
17121 			break;
17122 
17123 		case STATUS_MET:
17124 		case STATUS_INTERMEDIATE:
17125 		case STATUS_SCSI2:
17126 		case STATUS_INTERMEDIATE_MET:
17127 		case STATUS_ACA_ACTIVE:
17128 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17129 			    "Unexpected SCSI status received: 0x%x\n",
17130 			    SD_GET_PKT_STATUS(pktp));
17131 			/*
17132 			 * Mark the ssc_flags when detected invalid status
17133 			 * code for non-USCSI command.
17134 			 */
17135 			if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17136 				sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
17137 				    0, "stat-code");
17138 			}
17139 			sd_return_failed_command(un, bp, EIO);
17140 			break;
17141 
17142 		default:
17143 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17144 			    "Invalid SCSI status received: 0x%x\n",
17145 			    SD_GET_PKT_STATUS(pktp));
17146 			if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17147 				sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
17148 				    0, "stat-code");
17149 			}
17150 			sd_return_failed_command(un, bp, EIO);
17151 			break;
17152 
17153 		}
17154 		break;
17155 
17156 	case CMD_INCOMPLETE:
17157 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17158 		    "sdintr:  CMD_INCOMPLETE\n");
17159 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
17160 		break;
17161 	case CMD_TRAN_ERR:
17162 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17163 		    "sdintr: CMD_TRAN_ERR\n");
17164 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
17165 		break;
17166 	case CMD_RESET:
17167 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17168 		    "sdintr: CMD_RESET \n");
17169 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
17170 		break;
17171 	case CMD_ABORTED:
17172 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17173 		    "sdintr: CMD_ABORTED \n");
17174 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
17175 		break;
17176 	case CMD_TIMEOUT:
17177 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17178 		    "sdintr: CMD_TIMEOUT\n");
17179 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
17180 		break;
17181 	case CMD_UNX_BUS_FREE:
17182 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17183 		    "sdintr: CMD_UNX_BUS_FREE \n");
17184 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
17185 		break;
17186 	case CMD_TAG_REJECT:
17187 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17188 		    "sdintr: CMD_TAG_REJECT\n");
17189 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
17190 		break;
17191 	default:
17192 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17193 		    "sdintr: default\n");
17194 		/*
17195 		 * Mark the ssc_flags for detecting invliad pkt_reason.
17196 		 */
17197 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17198 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_PKT_REASON,
17199 			    0, "pkt-reason");
17200 		}
17201 		sd_pkt_reason_default(un, bp, xp, pktp);
17202 		break;
17203 	}
17204 
17205 exit:
17206 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
17207 
17208 	/* Decrement counter to indicate that the callback routine is done. */
17209 	un->un_in_callback--;
17210 	ASSERT(un->un_in_callback >= 0);
17211 
17212 	/*
17213 	 * At this point, the pkt has been dispatched, ie, it is either
17214 	 * being re-tried or has been returned to its caller and should
17215 	 * not be referenced.
17216 	 */
17217 
17218 	mutex_exit(SD_MUTEX(un));
17219 }
17220 
17221 
17222 /*
17223  *    Function: sd_print_incomplete_msg
17224  *
17225  * Description: Prints the error message for a CMD_INCOMPLETE error.
17226  *
17227  *   Arguments: un - ptr to associated softstate for the device.
17228  *		bp - ptr to the buf(9S) for the command.
17229  *		arg - message string ptr
17230  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
17231  *			or SD_NO_RETRY_ISSUED.
17232  *
17233  *     Context: May be called under interrupt context
17234  */
17235 
17236 static void
17237 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17238 {
17239 	struct scsi_pkt	*pktp;
17240 	char	*msgp;
17241 	char	*cmdp = arg;
17242 
17243 	ASSERT(un != NULL);
17244 	ASSERT(mutex_owned(SD_MUTEX(un)));
17245 	ASSERT(bp != NULL);
17246 	ASSERT(arg != NULL);
17247 	pktp = SD_GET_PKTP(bp);
17248 	ASSERT(pktp != NULL);
17249 
17250 	switch (code) {
17251 	case SD_DELAYED_RETRY_ISSUED:
17252 	case SD_IMMEDIATE_RETRY_ISSUED:
17253 		msgp = "retrying";
17254 		break;
17255 	case SD_NO_RETRY_ISSUED:
17256 	default:
17257 		msgp = "giving up";
17258 		break;
17259 	}
17260 
17261 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17262 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17263 		    "incomplete %s- %s\n", cmdp, msgp);
17264 	}
17265 }
17266 
17267 
17268 
17269 /*
17270  *    Function: sd_pkt_status_good
17271  *
17272  * Description: Processing for a STATUS_GOOD code in pkt_status.
17273  *
17274  *     Context: May be called under interrupt context
17275  */
17276 
17277 static void
17278 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
17279 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17280 {
17281 	char	*cmdp;
17282 
17283 	ASSERT(un != NULL);
17284 	ASSERT(mutex_owned(SD_MUTEX(un)));
17285 	ASSERT(bp != NULL);
17286 	ASSERT(xp != NULL);
17287 	ASSERT(pktp != NULL);
17288 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
17289 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
17290 	ASSERT(pktp->pkt_resid != 0);
17291 
17292 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
17293 
17294 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17295 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
17296 	case SCMD_READ:
17297 		cmdp = "read";
17298 		break;
17299 	case SCMD_WRITE:
17300 		cmdp = "write";
17301 		break;
17302 	default:
17303 		SD_UPDATE_B_RESID(bp, pktp);
17304 		sd_return_command(un, bp);
17305 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
17306 		return;
17307 	}
17308 
17309 	/*
17310 	 * See if we can retry the read/write, preferrably immediately.
17311 	 * If retries are exhaused, then sd_retry_command() will update
17312 	 * the b_resid count.
17313 	 */
17314 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
17315 	    cmdp, EIO, (clock_t)0, NULL);
17316 
17317 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
17318 }
17319 
17320 
17321 
17322 
17323 
17324 /*
17325  *    Function: sd_handle_request_sense
17326  *
17327  * Description: Processing for non-auto Request Sense command.
17328  *
17329  *   Arguments: un - ptr to associated softstate
17330  *		sense_bp - ptr to buf(9S) for the RQS command
17331  *		sense_xp - ptr to the sd_xbuf for the RQS command
17332  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
17333  *
17334  *     Context: May be called under interrupt context
17335  */
17336 
17337 static void
17338 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
17339 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
17340 {
17341 	struct buf	*cmd_bp;	/* buf for the original command */
17342 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
17343 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
17344 	size_t		actual_len;	/* actual sense data length */
17345 
17346 	ASSERT(un != NULL);
17347 	ASSERT(mutex_owned(SD_MUTEX(un)));
17348 	ASSERT(sense_bp != NULL);
17349 	ASSERT(sense_xp != NULL);
17350 	ASSERT(sense_pktp != NULL);
17351 
17352 	/*
17353 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
17354 	 * RQS command and not the original command.
17355 	 */
17356 	ASSERT(sense_pktp == un->un_rqs_pktp);
17357 	ASSERT(sense_bp   == un->un_rqs_bp);
17358 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
17359 	    (FLAG_SENSING | FLAG_HEAD));
17360 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
17361 	    FLAG_SENSING) == FLAG_SENSING);
17362 
17363 	/* These are the bp, xp, and pktp for the original command */
17364 	cmd_bp = sense_xp->xb_sense_bp;
17365 	cmd_xp = SD_GET_XBUF(cmd_bp);
17366 	cmd_pktp = SD_GET_PKTP(cmd_bp);
17367 
17368 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
17369 		/*
17370 		 * The REQUEST SENSE command failed.  Release the REQUEST
17371 		 * SENSE command for re-use, get back the bp for the original
17372 		 * command, and attempt to re-try the original command if
17373 		 * FLAG_DIAGNOSE is not set in the original packet.
17374 		 */
17375 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17376 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
17377 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
17378 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
17379 			    NULL, NULL, EIO, (clock_t)0, NULL);
17380 			return;
17381 		}
17382 	}
17383 
17384 	/*
17385 	 * Save the relevant sense info into the xp for the original cmd.
17386 	 *
17387 	 * Note: if the request sense failed the state info will be zero
17388 	 * as set in sd_mark_rqs_busy()
17389 	 */
17390 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
17391 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
17392 	actual_len = MAX_SENSE_LENGTH - sense_pktp->pkt_resid;
17393 	if ((cmd_xp->xb_pkt_flags & SD_XB_USCSICMD) &&
17394 	    (((struct uscsi_cmd *)cmd_xp->xb_pktinfo)->uscsi_rqlen >
17395 	    SENSE_LENGTH)) {
17396 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
17397 		    MAX_SENSE_LENGTH);
17398 		cmd_xp->xb_sense_resid = sense_pktp->pkt_resid;
17399 	} else {
17400 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
17401 		    SENSE_LENGTH);
17402 		if (actual_len < SENSE_LENGTH) {
17403 			cmd_xp->xb_sense_resid = SENSE_LENGTH - actual_len;
17404 		} else {
17405 			cmd_xp->xb_sense_resid = 0;
17406 		}
17407 	}
17408 
17409 	/*
17410 	 *  Free up the RQS command....
17411 	 *  NOTE:
17412 	 *	Must do this BEFORE calling sd_validate_sense_data!
17413 	 *	sd_validate_sense_data may return the original command in
17414 	 *	which case the pkt will be freed and the flags can no
17415 	 *	longer be touched.
17416 	 *	SD_MUTEX is held through this process until the command
17417 	 *	is dispatched based upon the sense data, so there are
17418 	 *	no race conditions.
17419 	 */
17420 	(void) sd_mark_rqs_idle(un, sense_xp);
17421 
17422 	/*
17423 	 * For a retryable command see if we have valid sense data, if so then
17424 	 * turn it over to sd_decode_sense() to figure out the right course of
17425 	 * action. Just fail a non-retryable command.
17426 	 */
17427 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
17428 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp, actual_len) ==
17429 		    SD_SENSE_DATA_IS_VALID) {
17430 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
17431 		}
17432 	} else {
17433 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
17434 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17435 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
17436 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
17437 		sd_return_failed_command(un, cmd_bp, EIO);
17438 	}
17439 }
17440 
17441 
17442 
17443 
17444 /*
17445  *    Function: sd_handle_auto_request_sense
17446  *
17447  * Description: Processing for auto-request sense information.
17448  *
17449  *   Arguments: un - ptr to associated softstate
17450  *		bp - ptr to buf(9S) for the command
17451  *		xp - ptr to the sd_xbuf for the command
17452  *		pktp - ptr to the scsi_pkt(9S) for the command
17453  *
17454  *     Context: May be called under interrupt context
17455  */
17456 
17457 static void
17458 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
17459 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17460 {
17461 	struct scsi_arq_status *asp;
17462 	size_t actual_len;
17463 
17464 	ASSERT(un != NULL);
17465 	ASSERT(mutex_owned(SD_MUTEX(un)));
17466 	ASSERT(bp != NULL);
17467 	ASSERT(xp != NULL);
17468 	ASSERT(pktp != NULL);
17469 	ASSERT(pktp != un->un_rqs_pktp);
17470 	ASSERT(bp   != un->un_rqs_bp);
17471 
17472 	/*
17473 	 * For auto-request sense, we get a scsi_arq_status back from
17474 	 * the HBA, with the sense data in the sts_sensedata member.
17475 	 * The pkt_scbp of the packet points to this scsi_arq_status.
17476 	 */
17477 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
17478 
17479 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
17480 		/*
17481 		 * The auto REQUEST SENSE failed; see if we can re-try
17482 		 * the original command.
17483 		 */
17484 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17485 		    "auto request sense failed (reason=%s)\n",
17486 		    scsi_rname(asp->sts_rqpkt_reason));
17487 
17488 		sd_reset_target(un, pktp);
17489 
17490 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17491 		    NULL, NULL, EIO, (clock_t)0, NULL);
17492 		return;
17493 	}
17494 
17495 	/* Save the relevant sense info into the xp for the original cmd. */
17496 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
17497 	xp->xb_sense_state  = asp->sts_rqpkt_state;
17498 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
17499 	if (xp->xb_sense_state & STATE_XARQ_DONE) {
17500 		actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
17501 		bcopy(&asp->sts_sensedata, xp->xb_sense_data,
17502 		    MAX_SENSE_LENGTH);
17503 	} else {
17504 		if (xp->xb_sense_resid > SENSE_LENGTH) {
17505 			actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
17506 		} else {
17507 			actual_len = SENSE_LENGTH - xp->xb_sense_resid;
17508 		}
17509 		if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
17510 			if ((((struct uscsi_cmd *)
17511 			    (xp->xb_pktinfo))->uscsi_rqlen) > actual_len) {
17512 				xp->xb_sense_resid = (((struct uscsi_cmd *)
17513 				    (xp->xb_pktinfo))->uscsi_rqlen) -
17514 				    actual_len;
17515 			} else {
17516 				xp->xb_sense_resid = 0;
17517 			}
17518 		}
17519 		bcopy(&asp->sts_sensedata, xp->xb_sense_data, SENSE_LENGTH);
17520 	}
17521 
17522 	/*
17523 	 * See if we have valid sense data, if so then turn it over to
17524 	 * sd_decode_sense() to figure out the right course of action.
17525 	 */
17526 	if (sd_validate_sense_data(un, bp, xp, actual_len) ==
17527 	    SD_SENSE_DATA_IS_VALID) {
17528 		sd_decode_sense(un, bp, xp, pktp);
17529 	}
17530 }
17531 
17532 
17533 /*
17534  *    Function: sd_print_sense_failed_msg
17535  *
17536  * Description: Print log message when RQS has failed.
17537  *
17538  *   Arguments: un - ptr to associated softstate
17539  *		bp - ptr to buf(9S) for the command
17540  *		arg - generic message string ptr
17541  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17542  *			or SD_NO_RETRY_ISSUED
17543  *
17544  *     Context: May be called from interrupt context
17545  */
17546 
17547 static void
17548 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
17549 	int code)
17550 {
17551 	char	*msgp = arg;
17552 
17553 	ASSERT(un != NULL);
17554 	ASSERT(mutex_owned(SD_MUTEX(un)));
17555 	ASSERT(bp != NULL);
17556 
17557 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
17558 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
17559 	}
17560 }
17561 
17562 
17563 /*
17564  *    Function: sd_validate_sense_data
17565  *
17566  * Description: Check the given sense data for validity.
17567  *		If the sense data is not valid, the command will
17568  *		be either failed or retried!
17569  *
17570  * Return Code: SD_SENSE_DATA_IS_INVALID
17571  *		SD_SENSE_DATA_IS_VALID
17572  *
17573  *     Context: May be called from interrupt context
17574  */
17575 
17576 static int
17577 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17578 	size_t actual_len)
17579 {
17580 	struct scsi_extended_sense *esp;
17581 	struct	scsi_pkt *pktp;
17582 	char	*msgp = NULL;
17583 	sd_ssc_t *sscp;
17584 
17585 	ASSERT(un != NULL);
17586 	ASSERT(mutex_owned(SD_MUTEX(un)));
17587 	ASSERT(bp != NULL);
17588 	ASSERT(bp != un->un_rqs_bp);
17589 	ASSERT(xp != NULL);
17590 	ASSERT(un->un_fm_private != NULL);
17591 
17592 	pktp = SD_GET_PKTP(bp);
17593 	ASSERT(pktp != NULL);
17594 
17595 	sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
17596 	ASSERT(sscp != NULL);
17597 
17598 	/*
17599 	 * Check the status of the RQS command (auto or manual).
17600 	 */
17601 	switch (xp->xb_sense_status & STATUS_MASK) {
17602 	case STATUS_GOOD:
17603 		break;
17604 
17605 	case STATUS_RESERVATION_CONFLICT:
17606 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
17607 		return (SD_SENSE_DATA_IS_INVALID);
17608 
17609 	case STATUS_BUSY:
17610 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17611 		    "Busy Status on REQUEST SENSE\n");
17612 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
17613 		    NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
17614 		return (SD_SENSE_DATA_IS_INVALID);
17615 
17616 	case STATUS_QFULL:
17617 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17618 		    "QFULL Status on REQUEST SENSE\n");
17619 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
17620 		    NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
17621 		return (SD_SENSE_DATA_IS_INVALID);
17622 
17623 	case STATUS_CHECK:
17624 	case STATUS_TERMINATED:
17625 		msgp = "Check Condition on REQUEST SENSE\n";
17626 		goto sense_failed;
17627 
17628 	default:
17629 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
17630 		goto sense_failed;
17631 	}
17632 
17633 	/*
17634 	 * See if we got the minimum required amount of sense data.
17635 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
17636 	 * or less.
17637 	 */
17638 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
17639 	    (actual_len == 0)) {
17640 		msgp = "Request Sense couldn't get sense data\n";
17641 		goto sense_failed;
17642 	}
17643 
17644 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
17645 		msgp = "Not enough sense information\n";
17646 		/* Mark the ssc_flags for detecting invalid sense data */
17647 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17648 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17649 			    "sense-data");
17650 		}
17651 		goto sense_failed;
17652 	}
17653 
17654 	/*
17655 	 * We require the extended sense data
17656 	 */
17657 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
17658 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
17659 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17660 			static char tmp[8];
17661 			static char buf[148];
17662 			char *p = (char *)(xp->xb_sense_data);
17663 			int i;
17664 
17665 			mutex_enter(&sd_sense_mutex);
17666 			(void) strcpy(buf, "undecodable sense information:");
17667 			for (i = 0; i < actual_len; i++) {
17668 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
17669 				(void) strcpy(&buf[strlen(buf)], tmp);
17670 			}
17671 			i = strlen(buf);
17672 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
17673 
17674 			if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) {
17675 				scsi_log(SD_DEVINFO(un), sd_label,
17676 				    CE_WARN, buf);
17677 			}
17678 			mutex_exit(&sd_sense_mutex);
17679 		}
17680 
17681 		/* Mark the ssc_flags for detecting invalid sense data */
17682 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17683 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17684 			    "sense-data");
17685 		}
17686 
17687 		/* Note: Legacy behavior, fail the command with no retry */
17688 		sd_return_failed_command(un, bp, EIO);
17689 		return (SD_SENSE_DATA_IS_INVALID);
17690 	}
17691 
17692 	/*
17693 	 * Check that es_code is valid (es_class concatenated with es_code
17694 	 * make up the "response code" field.  es_class will always be 7, so
17695 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
17696 	 * format.
17697 	 */
17698 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
17699 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
17700 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
17701 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
17702 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
17703 		/* Mark the ssc_flags for detecting invalid sense data */
17704 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17705 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17706 			    "sense-data");
17707 		}
17708 		goto sense_failed;
17709 	}
17710 
17711 	return (SD_SENSE_DATA_IS_VALID);
17712 
17713 sense_failed:
17714 	/*
17715 	 * If the request sense failed (for whatever reason), attempt
17716 	 * to retry the original command.
17717 	 */
17718 #if defined(__i386) || defined(__amd64)
17719 	/*
17720 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
17721 	 * sddef.h for Sparc platform, and x86 uses 1 binary
17722 	 * for both SCSI/FC.
17723 	 * The SD_RETRY_DELAY value need to be adjusted here
17724 	 * when SD_RETRY_DELAY change in sddef.h
17725 	 */
17726 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17727 	    sd_print_sense_failed_msg, msgp, EIO,
17728 	    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
17729 #else
17730 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17731 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
17732 #endif
17733 
17734 	return (SD_SENSE_DATA_IS_INVALID);
17735 }
17736 
17737 /*
17738  *    Function: sd_decode_sense
17739  *
17740  * Description: Take recovery action(s) when SCSI Sense Data is received.
17741  *
17742  *     Context: Interrupt context.
17743  */
17744 
17745 static void
17746 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17747 	struct scsi_pkt *pktp)
17748 {
17749 	uint8_t sense_key;
17750 
17751 	ASSERT(un != NULL);
17752 	ASSERT(mutex_owned(SD_MUTEX(un)));
17753 	ASSERT(bp != NULL);
17754 	ASSERT(bp != un->un_rqs_bp);
17755 	ASSERT(xp != NULL);
17756 	ASSERT(pktp != NULL);
17757 
17758 	sense_key = scsi_sense_key(xp->xb_sense_data);
17759 
17760 	switch (sense_key) {
17761 	case KEY_NO_SENSE:
17762 		sd_sense_key_no_sense(un, bp, xp, pktp);
17763 		break;
17764 	case KEY_RECOVERABLE_ERROR:
17765 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
17766 		    bp, xp, pktp);
17767 		break;
17768 	case KEY_NOT_READY:
17769 		sd_sense_key_not_ready(un, xp->xb_sense_data,
17770 		    bp, xp, pktp);
17771 		break;
17772 	case KEY_MEDIUM_ERROR:
17773 	case KEY_HARDWARE_ERROR:
17774 		sd_sense_key_medium_or_hardware_error(un,
17775 		    xp->xb_sense_data, bp, xp, pktp);
17776 		break;
17777 	case KEY_ILLEGAL_REQUEST:
17778 		sd_sense_key_illegal_request(un, bp, xp, pktp);
17779 		break;
17780 	case KEY_UNIT_ATTENTION:
17781 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
17782 		    bp, xp, pktp);
17783 		break;
17784 	case KEY_WRITE_PROTECT:
17785 	case KEY_VOLUME_OVERFLOW:
17786 	case KEY_MISCOMPARE:
17787 		sd_sense_key_fail_command(un, bp, xp, pktp);
17788 		break;
17789 	case KEY_BLANK_CHECK:
17790 		sd_sense_key_blank_check(un, bp, xp, pktp);
17791 		break;
17792 	case KEY_ABORTED_COMMAND:
17793 		sd_sense_key_aborted_command(un, bp, xp, pktp);
17794 		break;
17795 	case KEY_VENDOR_UNIQUE:
17796 	case KEY_COPY_ABORTED:
17797 	case KEY_EQUAL:
17798 	case KEY_RESERVED:
17799 	default:
17800 		sd_sense_key_default(un, xp->xb_sense_data,
17801 		    bp, xp, pktp);
17802 		break;
17803 	}
17804 }
17805 
17806 
17807 /*
17808  *    Function: sd_dump_memory
17809  *
17810  * Description: Debug logging routine to print the contents of a user provided
17811  *		buffer. The output of the buffer is broken up into 256 byte
17812  *		segments due to a size constraint of the scsi_log.
17813  *		implementation.
17814  *
17815  *   Arguments: un - ptr to softstate
17816  *		comp - component mask
17817  *		title - "title" string to preceed data when printed
17818  *		data - ptr to data block to be printed
17819  *		len - size of data block to be printed
17820  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
17821  *
17822  *     Context: May be called from interrupt context
17823  */
17824 
17825 #define	SD_DUMP_MEMORY_BUF_SIZE	256
17826 
17827 static char *sd_dump_format_string[] = {
17828 		" 0x%02x",
17829 		" %c"
17830 };
17831 
17832 static void
17833 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
17834     int len, int fmt)
17835 {
17836 	int	i, j;
17837 	int	avail_count;
17838 	int	start_offset;
17839 	int	end_offset;
17840 	size_t	entry_len;
17841 	char	*bufp;
17842 	char	*local_buf;
17843 	char	*format_string;
17844 
17845 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
17846 
17847 	/*
17848 	 * In the debug version of the driver, this function is called from a
17849 	 * number of places which are NOPs in the release driver.
17850 	 * The debug driver therefore has additional methods of filtering
17851 	 * debug output.
17852 	 */
17853 #ifdef SDDEBUG
17854 	/*
17855 	 * In the debug version of the driver we can reduce the amount of debug
17856 	 * messages by setting sd_error_level to something other than
17857 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
17858 	 * sd_component_mask.
17859 	 */
17860 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
17861 	    (sd_error_level != SCSI_ERR_ALL)) {
17862 		return;
17863 	}
17864 	if (((sd_component_mask & comp) == 0) ||
17865 	    (sd_error_level != SCSI_ERR_ALL)) {
17866 		return;
17867 	}
17868 #else
17869 	if (sd_error_level != SCSI_ERR_ALL) {
17870 		return;
17871 	}
17872 #endif
17873 
17874 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
17875 	bufp = local_buf;
17876 	/*
17877 	 * Available length is the length of local_buf[], minus the
17878 	 * length of the title string, minus one for the ":", minus
17879 	 * one for the newline, minus one for the NULL terminator.
17880 	 * This gives the #bytes available for holding the printed
17881 	 * values from the given data buffer.
17882 	 */
17883 	if (fmt == SD_LOG_HEX) {
17884 		format_string = sd_dump_format_string[0];
17885 	} else /* SD_LOG_CHAR */ {
17886 		format_string = sd_dump_format_string[1];
17887 	}
17888 	/*
17889 	 * Available count is the number of elements from the given
17890 	 * data buffer that we can fit into the available length.
17891 	 * This is based upon the size of the format string used.
17892 	 * Make one entry and find it's size.
17893 	 */
17894 	(void) sprintf(bufp, format_string, data[0]);
17895 	entry_len = strlen(bufp);
17896 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
17897 
17898 	j = 0;
17899 	while (j < len) {
17900 		bufp = local_buf;
17901 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
17902 		start_offset = j;
17903 
17904 		end_offset = start_offset + avail_count;
17905 
17906 		(void) sprintf(bufp, "%s:", title);
17907 		bufp += strlen(bufp);
17908 		for (i = start_offset; ((i < end_offset) && (j < len));
17909 		    i++, j++) {
17910 			(void) sprintf(bufp, format_string, data[i]);
17911 			bufp += entry_len;
17912 		}
17913 		(void) sprintf(bufp, "\n");
17914 
17915 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
17916 	}
17917 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
17918 }
17919 
17920 /*
17921  *    Function: sd_print_sense_msg
17922  *
17923  * Description: Log a message based upon the given sense data.
17924  *
17925  *   Arguments: un - ptr to associated softstate
17926  *		bp - ptr to buf(9S) for the command
17927  *		arg - ptr to associate sd_sense_info struct
17928  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17929  *			or SD_NO_RETRY_ISSUED
17930  *
17931  *     Context: May be called from interrupt context
17932  */
17933 
17934 static void
17935 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17936 {
17937 	struct sd_xbuf	*xp;
17938 	struct scsi_pkt	*pktp;
17939 	uint8_t *sensep;
17940 	daddr_t request_blkno;
17941 	diskaddr_t err_blkno;
17942 	int severity;
17943 	int pfa_flag;
17944 	extern struct scsi_key_strings scsi_cmds[];
17945 
17946 	ASSERT(un != NULL);
17947 	ASSERT(mutex_owned(SD_MUTEX(un)));
17948 	ASSERT(bp != NULL);
17949 	xp = SD_GET_XBUF(bp);
17950 	ASSERT(xp != NULL);
17951 	pktp = SD_GET_PKTP(bp);
17952 	ASSERT(pktp != NULL);
17953 	ASSERT(arg != NULL);
17954 
17955 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
17956 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
17957 
17958 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
17959 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
17960 		severity = SCSI_ERR_RETRYABLE;
17961 	}
17962 
17963 	/* Use absolute block number for the request block number */
17964 	request_blkno = xp->xb_blkno;
17965 
17966 	/*
17967 	 * Now try to get the error block number from the sense data
17968 	 */
17969 	sensep = xp->xb_sense_data;
17970 
17971 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
17972 	    (uint64_t *)&err_blkno)) {
17973 		/*
17974 		 * We retrieved the error block number from the information
17975 		 * portion of the sense data.
17976 		 *
17977 		 * For USCSI commands we are better off using the error
17978 		 * block no. as the requested block no. (This is the best
17979 		 * we can estimate.)
17980 		 */
17981 		if ((SD_IS_BUFIO(xp) == FALSE) &&
17982 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
17983 			request_blkno = err_blkno;
17984 		}
17985 	} else {
17986 		/*
17987 		 * Without the es_valid bit set (for fixed format) or an
17988 		 * information descriptor (for descriptor format) we cannot
17989 		 * be certain of the error blkno, so just use the
17990 		 * request_blkno.
17991 		 */
17992 		err_blkno = (diskaddr_t)request_blkno;
17993 	}
17994 
17995 	/*
17996 	 * The following will log the buffer contents for the release driver
17997 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
17998 	 * level is set to verbose.
17999 	 */
18000 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
18001 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
18002 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
18003 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
18004 
18005 	if (pfa_flag == FALSE) {
18006 		/* This is normally only set for USCSI */
18007 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
18008 			return;
18009 		}
18010 
18011 		if ((SD_IS_BUFIO(xp) == TRUE) &&
18012 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
18013 		    (severity < sd_error_level))) {
18014 			return;
18015 		}
18016 	}
18017 	/*
18018 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
18019 	 */
18020 	if ((SD_IS_LSI(un)) &&
18021 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
18022 	    (scsi_sense_asc(sensep) == 0x94) &&
18023 	    (scsi_sense_ascq(sensep) == 0x01)) {
18024 		un->un_sonoma_failure_count++;
18025 		if (un->un_sonoma_failure_count > 1) {
18026 			return;
18027 		}
18028 	}
18029 
18030 	if (SD_FM_LOG(un) == SD_FM_LOG_NSUP ||
18031 	    ((scsi_sense_key(sensep) == KEY_RECOVERABLE_ERROR) &&
18032 	    (pktp->pkt_resid == 0))) {
18033 		scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
18034 		    request_blkno, err_blkno, scsi_cmds,
18035 		    (struct scsi_extended_sense *)sensep,
18036 		    un->un_additional_codes, NULL);
18037 	}
18038 }
18039 
18040 /*
18041  *    Function: sd_sense_key_no_sense
18042  *
18043  * Description: Recovery action when sense data was not received.
18044  *
18045  *     Context: May be called from interrupt context
18046  */
18047 
18048 static void
18049 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
18050 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18051 {
18052 	struct sd_sense_info	si;
18053 
18054 	ASSERT(un != NULL);
18055 	ASSERT(mutex_owned(SD_MUTEX(un)));
18056 	ASSERT(bp != NULL);
18057 	ASSERT(xp != NULL);
18058 	ASSERT(pktp != NULL);
18059 
18060 	si.ssi_severity = SCSI_ERR_FATAL;
18061 	si.ssi_pfa_flag = FALSE;
18062 
18063 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
18064 
18065 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18066 	    &si, EIO, (clock_t)0, NULL);
18067 }
18068 
18069 
18070 /*
18071  *    Function: sd_sense_key_recoverable_error
18072  *
18073  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
18074  *
18075  *     Context: May be called from interrupt context
18076  */
18077 
18078 static void
18079 sd_sense_key_recoverable_error(struct sd_lun *un,
18080 	uint8_t *sense_datap,
18081 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18082 {
18083 	struct sd_sense_info	si;
18084 	uint8_t asc = scsi_sense_asc(sense_datap);
18085 
18086 	ASSERT(un != NULL);
18087 	ASSERT(mutex_owned(SD_MUTEX(un)));
18088 	ASSERT(bp != NULL);
18089 	ASSERT(xp != NULL);
18090 	ASSERT(pktp != NULL);
18091 
18092 	/*
18093 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
18094 	 */
18095 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
18096 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
18097 		si.ssi_severity = SCSI_ERR_INFO;
18098 		si.ssi_pfa_flag = TRUE;
18099 	} else {
18100 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
18101 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
18102 		si.ssi_severity = SCSI_ERR_RECOVERED;
18103 		si.ssi_pfa_flag = FALSE;
18104 	}
18105 
18106 	if (pktp->pkt_resid == 0) {
18107 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18108 		sd_return_command(un, bp);
18109 		return;
18110 	}
18111 
18112 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18113 	    &si, EIO, (clock_t)0, NULL);
18114 }
18115 
18116 
18117 
18118 
18119 /*
18120  *    Function: sd_sense_key_not_ready
18121  *
18122  * Description: Recovery actions for a SCSI "Not Ready" sense key.
18123  *
18124  *     Context: May be called from interrupt context
18125  */
18126 
18127 static void
18128 sd_sense_key_not_ready(struct sd_lun *un,
18129 	uint8_t *sense_datap,
18130 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18131 {
18132 	struct sd_sense_info	si;
18133 	uint8_t asc = scsi_sense_asc(sense_datap);
18134 	uint8_t ascq = scsi_sense_ascq(sense_datap);
18135 
18136 	ASSERT(un != NULL);
18137 	ASSERT(mutex_owned(SD_MUTEX(un)));
18138 	ASSERT(bp != NULL);
18139 	ASSERT(xp != NULL);
18140 	ASSERT(pktp != NULL);
18141 
18142 	si.ssi_severity = SCSI_ERR_FATAL;
18143 	si.ssi_pfa_flag = FALSE;
18144 
18145 	/*
18146 	 * Update error stats after first NOT READY error. Disks may have
18147 	 * been powered down and may need to be restarted.  For CDROMs,
18148 	 * report NOT READY errors only if media is present.
18149 	 */
18150 	if ((ISCD(un) && (asc == 0x3A)) ||
18151 	    (xp->xb_nr_retry_count > 0)) {
18152 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18153 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
18154 	}
18155 
18156 	/*
18157 	 * Just fail if the "not ready" retry limit has been reached.
18158 	 */
18159 	if (xp->xb_nr_retry_count >= un->un_notready_retry_count) {
18160 		/* Special check for error message printing for removables. */
18161 		if (un->un_f_has_removable_media && (asc == 0x04) &&
18162 		    (ascq >= 0x04)) {
18163 			si.ssi_severity = SCSI_ERR_ALL;
18164 		}
18165 		goto fail_command;
18166 	}
18167 
18168 	/*
18169 	 * Check the ASC and ASCQ in the sense data as needed, to determine
18170 	 * what to do.
18171 	 */
18172 	switch (asc) {
18173 	case 0x04:	/* LOGICAL UNIT NOT READY */
18174 		/*
18175 		 * disk drives that don't spin up result in a very long delay
18176 		 * in format without warning messages. We will log a message
18177 		 * if the error level is set to verbose.
18178 		 */
18179 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18180 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18181 			    "logical unit not ready, resetting disk\n");
18182 		}
18183 
18184 		/*
18185 		 * There are different requirements for CDROMs and disks for
18186 		 * the number of retries.  If a CD-ROM is giving this, it is
18187 		 * probably reading TOC and is in the process of getting
18188 		 * ready, so we should keep on trying for a long time to make
18189 		 * sure that all types of media are taken in account (for
18190 		 * some media the drive takes a long time to read TOC).  For
18191 		 * disks we do not want to retry this too many times as this
18192 		 * can cause a long hang in format when the drive refuses to
18193 		 * spin up (a very common failure).
18194 		 */
18195 		switch (ascq) {
18196 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
18197 			/*
18198 			 * Disk drives frequently refuse to spin up which
18199 			 * results in a very long hang in format without
18200 			 * warning messages.
18201 			 *
18202 			 * Note: This code preserves the legacy behavior of
18203 			 * comparing xb_nr_retry_count against zero for fibre
18204 			 * channel targets instead of comparing against the
18205 			 * un_reset_retry_count value.  The reason for this
18206 			 * discrepancy has been so utterly lost beneath the
18207 			 * Sands of Time that even Indiana Jones could not
18208 			 * find it.
18209 			 */
18210 			if (un->un_f_is_fibre == TRUE) {
18211 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
18212 				    (xp->xb_nr_retry_count > 0)) &&
18213 				    (un->un_startstop_timeid == NULL)) {
18214 					scsi_log(SD_DEVINFO(un), sd_label,
18215 					    CE_WARN, "logical unit not ready, "
18216 					    "resetting disk\n");
18217 					sd_reset_target(un, pktp);
18218 				}
18219 			} else {
18220 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
18221 				    (xp->xb_nr_retry_count >
18222 				    un->un_reset_retry_count)) &&
18223 				    (un->un_startstop_timeid == NULL)) {
18224 					scsi_log(SD_DEVINFO(un), sd_label,
18225 					    CE_WARN, "logical unit not ready, "
18226 					    "resetting disk\n");
18227 					sd_reset_target(un, pktp);
18228 				}
18229 			}
18230 			break;
18231 
18232 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
18233 			/*
18234 			 * If the target is in the process of becoming
18235 			 * ready, just proceed with the retry. This can
18236 			 * happen with CD-ROMs that take a long time to
18237 			 * read TOC after a power cycle or reset.
18238 			 */
18239 			goto do_retry;
18240 
18241 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
18242 			break;
18243 
18244 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
18245 			/*
18246 			 * Retries cannot help here so just fail right away.
18247 			 */
18248 			goto fail_command;
18249 
18250 		case 0x88:
18251 			/*
18252 			 * Vendor-unique code for T3/T4: it indicates a
18253 			 * path problem in a mutipathed config, but as far as
18254 			 * the target driver is concerned it equates to a fatal
18255 			 * error, so we should just fail the command right away
18256 			 * (without printing anything to the console). If this
18257 			 * is not a T3/T4, fall thru to the default recovery
18258 			 * action.
18259 			 * T3/T4 is FC only, don't need to check is_fibre
18260 			 */
18261 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
18262 				sd_return_failed_command(un, bp, EIO);
18263 				return;
18264 			}
18265 			/* FALLTHRU */
18266 
18267 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
18268 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
18269 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
18270 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
18271 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
18272 		default:    /* Possible future codes in SCSI spec? */
18273 			/*
18274 			 * For removable-media devices, do not retry if
18275 			 * ASCQ > 2 as these result mostly from USCSI commands
18276 			 * on MMC devices issued to check status of an
18277 			 * operation initiated in immediate mode.  Also for
18278 			 * ASCQ >= 4 do not print console messages as these
18279 			 * mainly represent a user-initiated operation
18280 			 * instead of a system failure.
18281 			 */
18282 			if (un->un_f_has_removable_media) {
18283 				si.ssi_severity = SCSI_ERR_ALL;
18284 				goto fail_command;
18285 			}
18286 			break;
18287 		}
18288 
18289 		/*
18290 		 * As part of our recovery attempt for the NOT READY
18291 		 * condition, we issue a START STOP UNIT command. However
18292 		 * we want to wait for a short delay before attempting this
18293 		 * as there may still be more commands coming back from the
18294 		 * target with the check condition. To do this we use
18295 		 * timeout(9F) to call sd_start_stop_unit_callback() after
18296 		 * the delay interval expires. (sd_start_stop_unit_callback()
18297 		 * dispatches sd_start_stop_unit_task(), which will issue
18298 		 * the actual START STOP UNIT command. The delay interval
18299 		 * is one-half of the delay that we will use to retry the
18300 		 * command that generated the NOT READY condition.
18301 		 *
18302 		 * Note that we could just dispatch sd_start_stop_unit_task()
18303 		 * from here and allow it to sleep for the delay interval,
18304 		 * but then we would be tying up the taskq thread
18305 		 * uncesessarily for the duration of the delay.
18306 		 *
18307 		 * Do not issue the START STOP UNIT if the current command
18308 		 * is already a START STOP UNIT.
18309 		 */
18310 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
18311 			break;
18312 		}
18313 
18314 		/*
18315 		 * Do not schedule the timeout if one is already pending.
18316 		 */
18317 		if (un->un_startstop_timeid != NULL) {
18318 			SD_INFO(SD_LOG_ERROR, un,
18319 			    "sd_sense_key_not_ready: restart already issued to"
18320 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
18321 			    ddi_get_instance(SD_DEVINFO(un)));
18322 			break;
18323 		}
18324 
18325 		/*
18326 		 * Schedule the START STOP UNIT command, then queue the command
18327 		 * for a retry.
18328 		 *
18329 		 * Note: A timeout is not scheduled for this retry because we
18330 		 * want the retry to be serial with the START_STOP_UNIT. The
18331 		 * retry will be started when the START_STOP_UNIT is completed
18332 		 * in sd_start_stop_unit_task.
18333 		 */
18334 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
18335 		    un, un->un_busy_timeout / 2);
18336 		xp->xb_nr_retry_count++;
18337 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
18338 		return;
18339 
18340 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
18341 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18342 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18343 			    "unit does not respond to selection\n");
18344 		}
18345 		break;
18346 
18347 	case 0x3A:	/* MEDIUM NOT PRESENT */
18348 		if (sd_error_level >= SCSI_ERR_FATAL) {
18349 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18350 			    "Caddy not inserted in drive\n");
18351 		}
18352 
18353 		sr_ejected(un);
18354 		un->un_mediastate = DKIO_EJECTED;
18355 		/* The state has changed, inform the media watch routines */
18356 		cv_broadcast(&un->un_state_cv);
18357 		/* Just fail if no media is present in the drive. */
18358 		goto fail_command;
18359 
18360 	default:
18361 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18362 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
18363 			    "Unit not Ready. Additional sense code 0x%x\n",
18364 			    asc);
18365 		}
18366 		break;
18367 	}
18368 
18369 do_retry:
18370 
18371 	/*
18372 	 * Retry the command, as some targets may report NOT READY for
18373 	 * several seconds after being reset.
18374 	 */
18375 	xp->xb_nr_retry_count++;
18376 	si.ssi_severity = SCSI_ERR_RETRYABLE;
18377 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
18378 	    &si, EIO, un->un_busy_timeout, NULL);
18379 
18380 	return;
18381 
18382 fail_command:
18383 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18384 	sd_return_failed_command(un, bp, EIO);
18385 }
18386 
18387 
18388 
18389 /*
18390  *    Function: sd_sense_key_medium_or_hardware_error
18391  *
18392  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
18393  *		sense key.
18394  *
18395  *     Context: May be called from interrupt context
18396  */
18397 
18398 static void
18399 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
18400 	uint8_t *sense_datap,
18401 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18402 {
18403 	struct sd_sense_info	si;
18404 	uint8_t sense_key = scsi_sense_key(sense_datap);
18405 	uint8_t asc = scsi_sense_asc(sense_datap);
18406 
18407 	ASSERT(un != NULL);
18408 	ASSERT(mutex_owned(SD_MUTEX(un)));
18409 	ASSERT(bp != NULL);
18410 	ASSERT(xp != NULL);
18411 	ASSERT(pktp != NULL);
18412 
18413 	si.ssi_severity = SCSI_ERR_FATAL;
18414 	si.ssi_pfa_flag = FALSE;
18415 
18416 	if (sense_key == KEY_MEDIUM_ERROR) {
18417 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
18418 	}
18419 
18420 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18421 
18422 	if ((un->un_reset_retry_count != 0) &&
18423 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
18424 		mutex_exit(SD_MUTEX(un));
18425 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
18426 		if (un->un_f_allow_bus_device_reset == TRUE) {
18427 
18428 			boolean_t try_resetting_target = B_TRUE;
18429 
18430 			/*
18431 			 * We need to be able to handle specific ASC when we are
18432 			 * handling a KEY_HARDWARE_ERROR. In particular
18433 			 * taking the default action of resetting the target may
18434 			 * not be the appropriate way to attempt recovery.
18435 			 * Resetting a target because of a single LUN failure
18436 			 * victimizes all LUNs on that target.
18437 			 *
18438 			 * This is true for the LSI arrays, if an LSI
18439 			 * array controller returns an ASC of 0x84 (LUN Dead) we
18440 			 * should trust it.
18441 			 */
18442 
18443 			if (sense_key == KEY_HARDWARE_ERROR) {
18444 				switch (asc) {
18445 				case 0x84:
18446 					if (SD_IS_LSI(un)) {
18447 						try_resetting_target = B_FALSE;
18448 					}
18449 					break;
18450 				default:
18451 					break;
18452 				}
18453 			}
18454 
18455 			if (try_resetting_target == B_TRUE) {
18456 				int reset_retval = 0;
18457 				if (un->un_f_lun_reset_enabled == TRUE) {
18458 					SD_TRACE(SD_LOG_IO_CORE, un,
18459 					    "sd_sense_key_medium_or_hardware_"
18460 					    "error: issuing RESET_LUN\n");
18461 					reset_retval =
18462 					    scsi_reset(SD_ADDRESS(un),
18463 					    RESET_LUN);
18464 				}
18465 				if (reset_retval == 0) {
18466 					SD_TRACE(SD_LOG_IO_CORE, un,
18467 					    "sd_sense_key_medium_or_hardware_"
18468 					    "error: issuing RESET_TARGET\n");
18469 					(void) scsi_reset(SD_ADDRESS(un),
18470 					    RESET_TARGET);
18471 				}
18472 			}
18473 		}
18474 		mutex_enter(SD_MUTEX(un));
18475 	}
18476 
18477 	/*
18478 	 * This really ought to be a fatal error, but we will retry anyway
18479 	 * as some drives report this as a spurious error.
18480 	 */
18481 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18482 	    &si, EIO, (clock_t)0, NULL);
18483 }
18484 
18485 
18486 
18487 /*
18488  *    Function: sd_sense_key_illegal_request
18489  *
18490  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
18491  *
18492  *     Context: May be called from interrupt context
18493  */
18494 
18495 static void
18496 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
18497 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18498 {
18499 	struct sd_sense_info	si;
18500 
18501 	ASSERT(un != NULL);
18502 	ASSERT(mutex_owned(SD_MUTEX(un)));
18503 	ASSERT(bp != NULL);
18504 	ASSERT(xp != NULL);
18505 	ASSERT(pktp != NULL);
18506 
18507 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
18508 
18509 	si.ssi_severity = SCSI_ERR_INFO;
18510 	si.ssi_pfa_flag = FALSE;
18511 
18512 	/* Pointless to retry if the target thinks it's an illegal request */
18513 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18514 	sd_return_failed_command(un, bp, EIO);
18515 }
18516 
18517 
18518 
18519 
18520 /*
18521  *    Function: sd_sense_key_unit_attention
18522  *
18523  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
18524  *
18525  *     Context: May be called from interrupt context
18526  */
18527 
18528 static void
18529 sd_sense_key_unit_attention(struct sd_lun *un,
18530 	uint8_t *sense_datap,
18531 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18532 {
18533 	/*
18534 	 * For UNIT ATTENTION we allow retries for one minute. Devices
18535 	 * like Sonoma can return UNIT ATTENTION close to a minute
18536 	 * under certain conditions.
18537 	 */
18538 	int	retry_check_flag = SD_RETRIES_UA;
18539 	boolean_t	kstat_updated = B_FALSE;
18540 	struct	sd_sense_info		si;
18541 	uint8_t asc = scsi_sense_asc(sense_datap);
18542 	uint8_t	ascq = scsi_sense_ascq(sense_datap);
18543 
18544 	ASSERT(un != NULL);
18545 	ASSERT(mutex_owned(SD_MUTEX(un)));
18546 	ASSERT(bp != NULL);
18547 	ASSERT(xp != NULL);
18548 	ASSERT(pktp != NULL);
18549 
18550 	si.ssi_severity = SCSI_ERR_INFO;
18551 	si.ssi_pfa_flag = FALSE;
18552 
18553 
18554 	switch (asc) {
18555 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
18556 		if (sd_report_pfa != 0) {
18557 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
18558 			si.ssi_pfa_flag = TRUE;
18559 			retry_check_flag = SD_RETRIES_STANDARD;
18560 			goto do_retry;
18561 		}
18562 
18563 		break;
18564 
18565 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
18566 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
18567 			un->un_resvd_status |=
18568 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
18569 		}
18570 #ifdef _LP64
18571 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
18572 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
18573 			    un, KM_NOSLEEP) == 0) {
18574 				/*
18575 				 * If we can't dispatch the task we'll just
18576 				 * live without descriptor sense.  We can
18577 				 * try again on the next "unit attention"
18578 				 */
18579 				SD_ERROR(SD_LOG_ERROR, un,
18580 				    "sd_sense_key_unit_attention: "
18581 				    "Could not dispatch "
18582 				    "sd_reenable_dsense_task\n");
18583 			}
18584 		}
18585 #endif /* _LP64 */
18586 		/* FALLTHRU */
18587 
18588 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
18589 		if (!un->un_f_has_removable_media) {
18590 			break;
18591 		}
18592 
18593 		/*
18594 		 * When we get a unit attention from a removable-media device,
18595 		 * it may be in a state that will take a long time to recover
18596 		 * (e.g., from a reset).  Since we are executing in interrupt
18597 		 * context here, we cannot wait around for the device to come
18598 		 * back. So hand this command off to sd_media_change_task()
18599 		 * for deferred processing under taskq thread context. (Note
18600 		 * that the command still may be failed if a problem is
18601 		 * encountered at a later time.)
18602 		 */
18603 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
18604 		    KM_NOSLEEP) == 0) {
18605 			/*
18606 			 * Cannot dispatch the request so fail the command.
18607 			 */
18608 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
18609 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18610 			si.ssi_severity = SCSI_ERR_FATAL;
18611 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18612 			sd_return_failed_command(un, bp, EIO);
18613 		}
18614 
18615 		/*
18616 		 * If failed to dispatch sd_media_change_task(), we already
18617 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
18618 		 * we should update kstat later if it encounters an error. So,
18619 		 * we update kstat_updated flag here.
18620 		 */
18621 		kstat_updated = B_TRUE;
18622 
18623 		/*
18624 		 * Either the command has been successfully dispatched to a
18625 		 * task Q for retrying, or the dispatch failed. In either case
18626 		 * do NOT retry again by calling sd_retry_command. This sets up
18627 		 * two retries of the same command and when one completes and
18628 		 * frees the resources the other will access freed memory,
18629 		 * a bad thing.
18630 		 */
18631 		return;
18632 
18633 	default:
18634 		break;
18635 	}
18636 
18637 	/*
18638 	 * ASC  ASCQ
18639 	 *  2A   09	Capacity data has changed
18640 	 *  2A   01	Mode parameters changed
18641 	 *  3F   0E	Reported luns data has changed
18642 	 * Arrays that support logical unit expansion should report
18643 	 * capacity changes(2Ah/09). Mode parameters changed and
18644 	 * reported luns data has changed are the approximation.
18645 	 */
18646 	if (((asc == 0x2a) && (ascq == 0x09)) ||
18647 	    ((asc == 0x2a) && (ascq == 0x01)) ||
18648 	    ((asc == 0x3f) && (ascq == 0x0e))) {
18649 		if (taskq_dispatch(sd_tq, sd_target_change_task, un,
18650 		    KM_NOSLEEP) == 0) {
18651 			SD_ERROR(SD_LOG_ERROR, un,
18652 			    "sd_sense_key_unit_attention: "
18653 			    "Could not dispatch sd_target_change_task\n");
18654 		}
18655 	}
18656 
18657 	/*
18658 	 * Update kstat if we haven't done that.
18659 	 */
18660 	if (!kstat_updated) {
18661 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18662 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18663 	}
18664 
18665 do_retry:
18666 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
18667 	    EIO, SD_UA_RETRY_DELAY, NULL);
18668 }
18669 
18670 
18671 
18672 /*
18673  *    Function: sd_sense_key_fail_command
18674  *
18675  * Description: Use to fail a command when we don't like the sense key that
18676  *		was returned.
18677  *
18678  *     Context: May be called from interrupt context
18679  */
18680 
18681 static void
18682 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
18683 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18684 {
18685 	struct sd_sense_info	si;
18686 
18687 	ASSERT(un != NULL);
18688 	ASSERT(mutex_owned(SD_MUTEX(un)));
18689 	ASSERT(bp != NULL);
18690 	ASSERT(xp != NULL);
18691 	ASSERT(pktp != NULL);
18692 
18693 	si.ssi_severity = SCSI_ERR_FATAL;
18694 	si.ssi_pfa_flag = FALSE;
18695 
18696 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18697 	sd_return_failed_command(un, bp, EIO);
18698 }
18699 
18700 
18701 
18702 /*
18703  *    Function: sd_sense_key_blank_check
18704  *
18705  * Description: Recovery actions for a SCSI "Blank Check" sense key.
18706  *		Has no monetary connotation.
18707  *
18708  *     Context: May be called from interrupt context
18709  */
18710 
18711 static void
18712 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
18713 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18714 {
18715 	struct sd_sense_info	si;
18716 
18717 	ASSERT(un != NULL);
18718 	ASSERT(mutex_owned(SD_MUTEX(un)));
18719 	ASSERT(bp != NULL);
18720 	ASSERT(xp != NULL);
18721 	ASSERT(pktp != NULL);
18722 
18723 	/*
18724 	 * Blank check is not fatal for removable devices, therefore
18725 	 * it does not require a console message.
18726 	 */
18727 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
18728 	    SCSI_ERR_FATAL;
18729 	si.ssi_pfa_flag = FALSE;
18730 
18731 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18732 	sd_return_failed_command(un, bp, EIO);
18733 }
18734 
18735 
18736 
18737 
18738 /*
18739  *    Function: sd_sense_key_aborted_command
18740  *
18741  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
18742  *
18743  *     Context: May be called from interrupt context
18744  */
18745 
18746 static void
18747 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
18748 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18749 {
18750 	struct sd_sense_info	si;
18751 
18752 	ASSERT(un != NULL);
18753 	ASSERT(mutex_owned(SD_MUTEX(un)));
18754 	ASSERT(bp != NULL);
18755 	ASSERT(xp != NULL);
18756 	ASSERT(pktp != NULL);
18757 
18758 	si.ssi_severity = SCSI_ERR_FATAL;
18759 	si.ssi_pfa_flag = FALSE;
18760 
18761 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18762 
18763 	/*
18764 	 * This really ought to be a fatal error, but we will retry anyway
18765 	 * as some drives report this as a spurious error.
18766 	 */
18767 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18768 	    &si, EIO, drv_usectohz(100000), NULL);
18769 }
18770 
18771 
18772 
18773 /*
18774  *    Function: sd_sense_key_default
18775  *
18776  * Description: Default recovery action for several SCSI sense keys (basically
18777  *		attempts a retry).
18778  *
18779  *     Context: May be called from interrupt context
18780  */
18781 
18782 static void
18783 sd_sense_key_default(struct sd_lun *un,
18784 	uint8_t *sense_datap,
18785 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18786 {
18787 	struct sd_sense_info	si;
18788 	uint8_t sense_key = scsi_sense_key(sense_datap);
18789 
18790 	ASSERT(un != NULL);
18791 	ASSERT(mutex_owned(SD_MUTEX(un)));
18792 	ASSERT(bp != NULL);
18793 	ASSERT(xp != NULL);
18794 	ASSERT(pktp != NULL);
18795 
18796 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18797 
18798 	/*
18799 	 * Undecoded sense key.	Attempt retries and hope that will fix
18800 	 * the problem.  Otherwise, we're dead.
18801 	 */
18802 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
18803 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18804 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
18805 	}
18806 
18807 	si.ssi_severity = SCSI_ERR_FATAL;
18808 	si.ssi_pfa_flag = FALSE;
18809 
18810 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18811 	    &si, EIO, (clock_t)0, NULL);
18812 }
18813 
18814 
18815 
18816 /*
18817  *    Function: sd_print_retry_msg
18818  *
18819  * Description: Print a message indicating the retry action being taken.
18820  *
18821  *   Arguments: un - ptr to associated softstate
18822  *		bp - ptr to buf(9S) for the command
18823  *		arg - not used.
18824  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18825  *			or SD_NO_RETRY_ISSUED
18826  *
18827  *     Context: May be called from interrupt context
18828  */
18829 /* ARGSUSED */
18830 static void
18831 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
18832 {
18833 	struct sd_xbuf	*xp;
18834 	struct scsi_pkt *pktp;
18835 	char *reasonp;
18836 	char *msgp;
18837 
18838 	ASSERT(un != NULL);
18839 	ASSERT(mutex_owned(SD_MUTEX(un)));
18840 	ASSERT(bp != NULL);
18841 	pktp = SD_GET_PKTP(bp);
18842 	ASSERT(pktp != NULL);
18843 	xp = SD_GET_XBUF(bp);
18844 	ASSERT(xp != NULL);
18845 
18846 	ASSERT(!mutex_owned(&un->un_pm_mutex));
18847 	mutex_enter(&un->un_pm_mutex);
18848 	if ((un->un_state == SD_STATE_SUSPENDED) ||
18849 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
18850 	    (pktp->pkt_flags & FLAG_SILENT)) {
18851 		mutex_exit(&un->un_pm_mutex);
18852 		goto update_pkt_reason;
18853 	}
18854 	mutex_exit(&un->un_pm_mutex);
18855 
18856 	/*
18857 	 * Suppress messages if they are all the same pkt_reason; with
18858 	 * TQ, many (up to 256) are returned with the same pkt_reason.
18859 	 * If we are in panic, then suppress the retry messages.
18860 	 */
18861 	switch (flag) {
18862 	case SD_NO_RETRY_ISSUED:
18863 		msgp = "giving up";
18864 		break;
18865 	case SD_IMMEDIATE_RETRY_ISSUED:
18866 	case SD_DELAYED_RETRY_ISSUED:
18867 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
18868 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
18869 		    (sd_error_level != SCSI_ERR_ALL))) {
18870 			return;
18871 		}
18872 		msgp = "retrying command";
18873 		break;
18874 	default:
18875 		goto update_pkt_reason;
18876 	}
18877 
18878 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
18879 	    scsi_rname(pktp->pkt_reason));
18880 
18881 	if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) {
18882 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18883 		    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
18884 	}
18885 
18886 update_pkt_reason:
18887 	/*
18888 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
18889 	 * This is to prevent multiple console messages for the same failure
18890 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
18891 	 * when the command is retried successfully because there still may be
18892 	 * more commands coming back with the same value of pktp->pkt_reason.
18893 	 */
18894 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
18895 		un->un_last_pkt_reason = pktp->pkt_reason;
18896 	}
18897 }
18898 
18899 
18900 /*
18901  *    Function: sd_print_cmd_incomplete_msg
18902  *
18903  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
18904  *
18905  *   Arguments: un - ptr to associated softstate
18906  *		bp - ptr to buf(9S) for the command
18907  *		arg - passed to sd_print_retry_msg()
18908  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18909  *			or SD_NO_RETRY_ISSUED
18910  *
18911  *     Context: May be called from interrupt context
18912  */
18913 
18914 static void
18915 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
18916 	int code)
18917 {
18918 	dev_info_t	*dip;
18919 
18920 	ASSERT(un != NULL);
18921 	ASSERT(mutex_owned(SD_MUTEX(un)));
18922 	ASSERT(bp != NULL);
18923 
18924 	switch (code) {
18925 	case SD_NO_RETRY_ISSUED:
18926 		/* Command was failed. Someone turned off this target? */
18927 		if (un->un_state != SD_STATE_OFFLINE) {
18928 			/*
18929 			 * Suppress message if we are detaching and
18930 			 * device has been disconnected
18931 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
18932 			 * private interface and not part of the DDI
18933 			 */
18934 			dip = un->un_sd->sd_dev;
18935 			if (!(DEVI_IS_DETACHING(dip) &&
18936 			    DEVI_IS_DEVICE_REMOVED(dip))) {
18937 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18938 				"disk not responding to selection\n");
18939 			}
18940 			New_state(un, SD_STATE_OFFLINE);
18941 		}
18942 		break;
18943 
18944 	case SD_DELAYED_RETRY_ISSUED:
18945 	case SD_IMMEDIATE_RETRY_ISSUED:
18946 	default:
18947 		/* Command was successfully queued for retry */
18948 		sd_print_retry_msg(un, bp, arg, code);
18949 		break;
18950 	}
18951 }
18952 
18953 
18954 /*
18955  *    Function: sd_pkt_reason_cmd_incomplete
18956  *
18957  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
18958  *
18959  *     Context: May be called from interrupt context
18960  */
18961 
18962 static void
18963 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
18964 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18965 {
18966 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
18967 
18968 	ASSERT(un != NULL);
18969 	ASSERT(mutex_owned(SD_MUTEX(un)));
18970 	ASSERT(bp != NULL);
18971 	ASSERT(xp != NULL);
18972 	ASSERT(pktp != NULL);
18973 
18974 	/* Do not do a reset if selection did not complete */
18975 	/* Note: Should this not just check the bit? */
18976 	if (pktp->pkt_state != STATE_GOT_BUS) {
18977 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18978 		sd_reset_target(un, pktp);
18979 	}
18980 
18981 	/*
18982 	 * If the target was not successfully selected, then set
18983 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
18984 	 * with the target, and further retries and/or commands are
18985 	 * likely to take a long time.
18986 	 */
18987 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
18988 		flag |= SD_RETRIES_FAILFAST;
18989 	}
18990 
18991 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18992 
18993 	sd_retry_command(un, bp, flag,
18994 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18995 }
18996 
18997 
18998 
18999 /*
19000  *    Function: sd_pkt_reason_cmd_tran_err
19001  *
19002  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
19003  *
19004  *     Context: May be called from interrupt context
19005  */
19006 
19007 static void
19008 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
19009 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19010 {
19011 	ASSERT(un != NULL);
19012 	ASSERT(mutex_owned(SD_MUTEX(un)));
19013 	ASSERT(bp != NULL);
19014 	ASSERT(xp != NULL);
19015 	ASSERT(pktp != NULL);
19016 
19017 	/*
19018 	 * Do not reset if we got a parity error, or if
19019 	 * selection did not complete.
19020 	 */
19021 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
19022 	/* Note: Should this not just check the bit for pkt_state? */
19023 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
19024 	    (pktp->pkt_state != STATE_GOT_BUS)) {
19025 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
19026 		sd_reset_target(un, pktp);
19027 	}
19028 
19029 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19030 
19031 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
19032 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19033 }
19034 
19035 
19036 
19037 /*
19038  *    Function: sd_pkt_reason_cmd_reset
19039  *
19040  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
19041  *
19042  *     Context: May be called from interrupt context
19043  */
19044 
19045 static void
19046 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
19047 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19048 {
19049 	ASSERT(un != NULL);
19050 	ASSERT(mutex_owned(SD_MUTEX(un)));
19051 	ASSERT(bp != NULL);
19052 	ASSERT(xp != NULL);
19053 	ASSERT(pktp != NULL);
19054 
19055 	/* The target may still be running the command, so try to reset. */
19056 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19057 	sd_reset_target(un, pktp);
19058 
19059 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19060 
19061 	/*
19062 	 * If pkt_reason is CMD_RESET chances are that this pkt got
19063 	 * reset because another target on this bus caused it. The target
19064 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
19065 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
19066 	 */
19067 
19068 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
19069 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19070 }
19071 
19072 
19073 
19074 
19075 /*
19076  *    Function: sd_pkt_reason_cmd_aborted
19077  *
19078  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
19079  *
19080  *     Context: May be called from interrupt context
19081  */
19082 
19083 static void
19084 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
19085 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19086 {
19087 	ASSERT(un != NULL);
19088 	ASSERT(mutex_owned(SD_MUTEX(un)));
19089 	ASSERT(bp != NULL);
19090 	ASSERT(xp != NULL);
19091 	ASSERT(pktp != NULL);
19092 
19093 	/* The target may still be running the command, so try to reset. */
19094 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19095 	sd_reset_target(un, pktp);
19096 
19097 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19098 
19099 	/*
19100 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
19101 	 * aborted because another target on this bus caused it. The target
19102 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
19103 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
19104 	 */
19105 
19106 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
19107 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19108 }
19109 
19110 
19111 
19112 /*
19113  *    Function: sd_pkt_reason_cmd_timeout
19114  *
19115  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
19116  *
19117  *     Context: May be called from interrupt context
19118  */
19119 
19120 static void
19121 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
19122 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19123 {
19124 	ASSERT(un != NULL);
19125 	ASSERT(mutex_owned(SD_MUTEX(un)));
19126 	ASSERT(bp != NULL);
19127 	ASSERT(xp != NULL);
19128 	ASSERT(pktp != NULL);
19129 
19130 
19131 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19132 	sd_reset_target(un, pktp);
19133 
19134 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19135 
19136 	/*
19137 	 * A command timeout indicates that we could not establish
19138 	 * communication with the target, so set SD_RETRIES_FAILFAST
19139 	 * as further retries/commands are likely to take a long time.
19140 	 */
19141 	sd_retry_command(un, bp,
19142 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
19143 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19144 }
19145 
19146 
19147 
19148 /*
19149  *    Function: sd_pkt_reason_cmd_unx_bus_free
19150  *
19151  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
19152  *
19153  *     Context: May be called from interrupt context
19154  */
19155 
19156 static void
19157 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
19158 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19159 {
19160 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
19161 
19162 	ASSERT(un != NULL);
19163 	ASSERT(mutex_owned(SD_MUTEX(un)));
19164 	ASSERT(bp != NULL);
19165 	ASSERT(xp != NULL);
19166 	ASSERT(pktp != NULL);
19167 
19168 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
19169 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19170 
19171 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
19172 	    sd_print_retry_msg : NULL;
19173 
19174 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
19175 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19176 }
19177 
19178 
19179 /*
19180  *    Function: sd_pkt_reason_cmd_tag_reject
19181  *
19182  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
19183  *
19184  *     Context: May be called from interrupt context
19185  */
19186 
19187 static void
19188 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
19189 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19190 {
19191 	ASSERT(un != NULL);
19192 	ASSERT(mutex_owned(SD_MUTEX(un)));
19193 	ASSERT(bp != NULL);
19194 	ASSERT(xp != NULL);
19195 	ASSERT(pktp != NULL);
19196 
19197 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
19198 	pktp->pkt_flags = 0;
19199 	un->un_tagflags = 0;
19200 	if (un->un_f_opt_queueing == TRUE) {
19201 		un->un_throttle = min(un->un_throttle, 3);
19202 	} else {
19203 		un->un_throttle = 1;
19204 	}
19205 	mutex_exit(SD_MUTEX(un));
19206 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
19207 	mutex_enter(SD_MUTEX(un));
19208 
19209 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19210 
19211 	/* Legacy behavior not to check retry counts here. */
19212 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
19213 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19214 }
19215 
19216 
19217 /*
19218  *    Function: sd_pkt_reason_default
19219  *
19220  * Description: Default recovery actions for SCSA pkt_reason values that
19221  *		do not have more explicit recovery actions.
19222  *
19223  *     Context: May be called from interrupt context
19224  */
19225 
19226 static void
19227 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
19228 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19229 {
19230 	ASSERT(un != NULL);
19231 	ASSERT(mutex_owned(SD_MUTEX(un)));
19232 	ASSERT(bp != NULL);
19233 	ASSERT(xp != NULL);
19234 	ASSERT(pktp != NULL);
19235 
19236 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19237 	sd_reset_target(un, pktp);
19238 
19239 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19240 
19241 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
19242 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19243 }
19244 
19245 
19246 
19247 /*
19248  *    Function: sd_pkt_status_check_condition
19249  *
19250  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
19251  *
19252  *     Context: May be called from interrupt context
19253  */
19254 
19255 static void
19256 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
19257 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19258 {
19259 	ASSERT(un != NULL);
19260 	ASSERT(mutex_owned(SD_MUTEX(un)));
19261 	ASSERT(bp != NULL);
19262 	ASSERT(xp != NULL);
19263 	ASSERT(pktp != NULL);
19264 
19265 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
19266 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
19267 
19268 	/*
19269 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
19270 	 * command will be retried after the request sense). Otherwise, retry
19271 	 * the command. Note: we are issuing the request sense even though the
19272 	 * retry limit may have been reached for the failed command.
19273 	 */
19274 	if (un->un_f_arq_enabled == FALSE) {
19275 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
19276 		    "no ARQ, sending request sense command\n");
19277 		sd_send_request_sense_command(un, bp, pktp);
19278 	} else {
19279 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
19280 		    "ARQ,retrying request sense command\n");
19281 #if defined(__i386) || defined(__amd64)
19282 		/*
19283 		 * The SD_RETRY_DELAY value need to be adjusted here
19284 		 * when SD_RETRY_DELAY change in sddef.h
19285 		 */
19286 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
19287 		    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
19288 		    NULL);
19289 #else
19290 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
19291 		    EIO, SD_RETRY_DELAY, NULL);
19292 #endif
19293 	}
19294 
19295 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
19296 }
19297 
19298 
19299 /*
19300  *    Function: sd_pkt_status_busy
19301  *
19302  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
19303  *
19304  *     Context: May be called from interrupt context
19305  */
19306 
19307 static void
19308 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
19309 	struct scsi_pkt *pktp)
19310 {
19311 	ASSERT(un != NULL);
19312 	ASSERT(mutex_owned(SD_MUTEX(un)));
19313 	ASSERT(bp != NULL);
19314 	ASSERT(xp != NULL);
19315 	ASSERT(pktp != NULL);
19316 
19317 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19318 	    "sd_pkt_status_busy: entry\n");
19319 
19320 	/* If retries are exhausted, just fail the command. */
19321 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
19322 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
19323 		    "device busy too long\n");
19324 		sd_return_failed_command(un, bp, EIO);
19325 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19326 		    "sd_pkt_status_busy: exit\n");
19327 		return;
19328 	}
19329 	xp->xb_retry_count++;
19330 
19331 	/*
19332 	 * Try to reset the target. However, we do not want to perform
19333 	 * more than one reset if the device continues to fail. The reset
19334 	 * will be performed when the retry count reaches the reset
19335 	 * threshold.  This threshold should be set such that at least
19336 	 * one retry is issued before the reset is performed.
19337 	 */
19338 	if (xp->xb_retry_count ==
19339 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
19340 		int rval = 0;
19341 		mutex_exit(SD_MUTEX(un));
19342 		if (un->un_f_allow_bus_device_reset == TRUE) {
19343 			/*
19344 			 * First try to reset the LUN; if we cannot then
19345 			 * try to reset the target.
19346 			 */
19347 			if (un->un_f_lun_reset_enabled == TRUE) {
19348 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19349 				    "sd_pkt_status_busy: RESET_LUN\n");
19350 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
19351 			}
19352 			if (rval == 0) {
19353 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19354 				    "sd_pkt_status_busy: RESET_TARGET\n");
19355 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
19356 			}
19357 		}
19358 		if (rval == 0) {
19359 			/*
19360 			 * If the RESET_LUN and/or RESET_TARGET failed,
19361 			 * try RESET_ALL
19362 			 */
19363 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19364 			    "sd_pkt_status_busy: RESET_ALL\n");
19365 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
19366 		}
19367 		mutex_enter(SD_MUTEX(un));
19368 		if (rval == 0) {
19369 			/*
19370 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
19371 			 * At this point we give up & fail the command.
19372 			 */
19373 			sd_return_failed_command(un, bp, EIO);
19374 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19375 			    "sd_pkt_status_busy: exit (failed cmd)\n");
19376 			return;
19377 		}
19378 	}
19379 
19380 	/*
19381 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
19382 	 * we have already checked the retry counts above.
19383 	 */
19384 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
19385 	    EIO, un->un_busy_timeout, NULL);
19386 
19387 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19388 	    "sd_pkt_status_busy: exit\n");
19389 }
19390 
19391 
19392 /*
19393  *    Function: sd_pkt_status_reservation_conflict
19394  *
19395  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
19396  *		command status.
19397  *
19398  *     Context: May be called from interrupt context
19399  */
19400 
19401 static void
19402 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
19403 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19404 {
19405 	ASSERT(un != NULL);
19406 	ASSERT(mutex_owned(SD_MUTEX(un)));
19407 	ASSERT(bp != NULL);
19408 	ASSERT(xp != NULL);
19409 	ASSERT(pktp != NULL);
19410 
19411 	/*
19412 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
19413 	 * conflict could be due to various reasons like incorrect keys, not
19414 	 * registered or not reserved etc. So, we return EACCES to the caller.
19415 	 */
19416 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
19417 		int cmd = SD_GET_PKT_OPCODE(pktp);
19418 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
19419 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
19420 			sd_return_failed_command(un, bp, EACCES);
19421 			return;
19422 		}
19423 	}
19424 
19425 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
19426 
19427 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
19428 		if (sd_failfast_enable != 0) {
19429 			/* By definition, we must panic here.... */
19430 			sd_panic_for_res_conflict(un);
19431 			/*NOTREACHED*/
19432 		}
19433 		SD_ERROR(SD_LOG_IO, un,
19434 		    "sd_handle_resv_conflict: Disk Reserved\n");
19435 		sd_return_failed_command(un, bp, EACCES);
19436 		return;
19437 	}
19438 
19439 	/*
19440 	 * 1147670: retry only if sd_retry_on_reservation_conflict
19441 	 * property is set (default is 1). Retries will not succeed
19442 	 * on a disk reserved by another initiator. HA systems
19443 	 * may reset this via sd.conf to avoid these retries.
19444 	 *
19445 	 * Note: The legacy return code for this failure is EIO, however EACCES
19446 	 * seems more appropriate for a reservation conflict.
19447 	 */
19448 	if (sd_retry_on_reservation_conflict == 0) {
19449 		SD_ERROR(SD_LOG_IO, un,
19450 		    "sd_handle_resv_conflict: Device Reserved\n");
19451 		sd_return_failed_command(un, bp, EIO);
19452 		return;
19453 	}
19454 
19455 	/*
19456 	 * Retry the command if we can.
19457 	 *
19458 	 * Note: The legacy return code for this failure is EIO, however EACCES
19459 	 * seems more appropriate for a reservation conflict.
19460 	 */
19461 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
19462 	    (clock_t)2, NULL);
19463 }
19464 
19465 
19466 
19467 /*
19468  *    Function: sd_pkt_status_qfull
19469  *
19470  * Description: Handle a QUEUE FULL condition from the target.  This can
19471  *		occur if the HBA does not handle the queue full condition.
19472  *		(Basically this means third-party HBAs as Sun HBAs will
19473  *		handle the queue full condition.)  Note that if there are
19474  *		some commands already in the transport, then the queue full
19475  *		has occurred because the queue for this nexus is actually
19476  *		full. If there are no commands in the transport, then the
19477  *		queue full is resulting from some other initiator or lun
19478  *		consuming all the resources at the target.
19479  *
19480  *     Context: May be called from interrupt context
19481  */
19482 
19483 static void
19484 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
19485 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19486 {
19487 	ASSERT(un != NULL);
19488 	ASSERT(mutex_owned(SD_MUTEX(un)));
19489 	ASSERT(bp != NULL);
19490 	ASSERT(xp != NULL);
19491 	ASSERT(pktp != NULL);
19492 
19493 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19494 	    "sd_pkt_status_qfull: entry\n");
19495 
19496 	/*
19497 	 * Just lower the QFULL throttle and retry the command.  Note that
19498 	 * we do not limit the number of retries here.
19499 	 */
19500 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
19501 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
19502 	    SD_RESTART_TIMEOUT, NULL);
19503 
19504 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19505 	    "sd_pkt_status_qfull: exit\n");
19506 }
19507 
19508 
19509 /*
19510  *    Function: sd_reset_target
19511  *
19512  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
19513  *		RESET_TARGET, or RESET_ALL.
19514  *
19515  *     Context: May be called under interrupt context.
19516  */
19517 
19518 static void
19519 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
19520 {
19521 	int rval = 0;
19522 
19523 	ASSERT(un != NULL);
19524 	ASSERT(mutex_owned(SD_MUTEX(un)));
19525 	ASSERT(pktp != NULL);
19526 
19527 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
19528 
19529 	/*
19530 	 * No need to reset if the transport layer has already done so.
19531 	 */
19532 	if ((pktp->pkt_statistics &
19533 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
19534 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19535 		    "sd_reset_target: no reset\n");
19536 		return;
19537 	}
19538 
19539 	mutex_exit(SD_MUTEX(un));
19540 
19541 	if (un->un_f_allow_bus_device_reset == TRUE) {
19542 		if (un->un_f_lun_reset_enabled == TRUE) {
19543 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19544 			    "sd_reset_target: RESET_LUN\n");
19545 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
19546 		}
19547 		if (rval == 0) {
19548 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19549 			    "sd_reset_target: RESET_TARGET\n");
19550 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
19551 		}
19552 	}
19553 
19554 	if (rval == 0) {
19555 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19556 		    "sd_reset_target: RESET_ALL\n");
19557 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
19558 	}
19559 
19560 	mutex_enter(SD_MUTEX(un));
19561 
19562 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
19563 }
19564 
19565 /*
19566  *    Function: sd_target_change_task
19567  *
19568  * Description: Handle dynamic target change
19569  *
19570  *     Context: Executes in a taskq() thread context
19571  */
19572 static void
19573 sd_target_change_task(void *arg)
19574 {
19575 	struct sd_lun		*un = arg;
19576 	uint64_t		capacity;
19577 	diskaddr_t		label_cap;
19578 	uint_t			lbasize;
19579 	sd_ssc_t		*ssc;
19580 
19581 	ASSERT(un != NULL);
19582 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19583 
19584 	if ((un->un_f_blockcount_is_valid == FALSE) ||
19585 	    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
19586 		return;
19587 	}
19588 
19589 	ssc = sd_ssc_init(un);
19590 
19591 	if (sd_send_scsi_READ_CAPACITY(ssc, &capacity,
19592 	    &lbasize, SD_PATH_DIRECT) != 0) {
19593 		SD_ERROR(SD_LOG_ERROR, un,
19594 		    "sd_target_change_task: fail to read capacity\n");
19595 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19596 		goto task_exit;
19597 	}
19598 
19599 	mutex_enter(SD_MUTEX(un));
19600 	if (capacity <= un->un_blockcount) {
19601 		mutex_exit(SD_MUTEX(un));
19602 		goto task_exit;
19603 	}
19604 
19605 	sd_update_block_info(un, lbasize, capacity);
19606 	mutex_exit(SD_MUTEX(un));
19607 
19608 	/*
19609 	 * If lun is EFI labeled and lun capacity is greater than the
19610 	 * capacity contained in the label, log a sys event.
19611 	 */
19612 	if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
19613 	    (void*)SD_PATH_DIRECT) == 0) {
19614 		mutex_enter(SD_MUTEX(un));
19615 		if (un->un_f_blockcount_is_valid &&
19616 		    un->un_blockcount > label_cap) {
19617 			mutex_exit(SD_MUTEX(un));
19618 			sd_log_lun_expansion_event(un, KM_SLEEP);
19619 		} else {
19620 			mutex_exit(SD_MUTEX(un));
19621 		}
19622 	}
19623 
19624 task_exit:
19625 	sd_ssc_fini(ssc);
19626 }
19627 
19628 
19629 /*
19630  *    Function: sd_log_dev_status_event
19631  *
19632  * Description: Log EC_dev_status sysevent
19633  *
19634  *     Context: Never called from interrupt context
19635  */
19636 static void
19637 sd_log_dev_status_event(struct sd_lun *un, char *esc, int km_flag)
19638 {
19639 	int err;
19640 	char			*path;
19641 	nvlist_t		*attr_list;
19642 
19643 	/* Allocate and build sysevent attribute list */
19644 	err = nvlist_alloc(&attr_list, NV_UNIQUE_NAME_TYPE, km_flag);
19645 	if (err != 0) {
19646 		SD_ERROR(SD_LOG_ERROR, un,
19647 		    "sd_log_dev_status_event: fail to allocate space\n");
19648 		return;
19649 	}
19650 
19651 	path = kmem_alloc(MAXPATHLEN, km_flag);
19652 	if (path == NULL) {
19653 		nvlist_free(attr_list);
19654 		SD_ERROR(SD_LOG_ERROR, un,
19655 		    "sd_log_dev_status_event: fail to allocate space\n");
19656 		return;
19657 	}
19658 	/*
19659 	 * Add path attribute to identify the lun.
19660 	 * We are using minor node 'a' as the sysevent attribute.
19661 	 */
19662 	(void) snprintf(path, MAXPATHLEN, "/devices");
19663 	(void) ddi_pathname(SD_DEVINFO(un), path + strlen(path));
19664 	(void) snprintf(path + strlen(path), MAXPATHLEN - strlen(path),
19665 	    ":a");
19666 
19667 	err = nvlist_add_string(attr_list, DEV_PHYS_PATH, path);
19668 	if (err != 0) {
19669 		nvlist_free(attr_list);
19670 		kmem_free(path, MAXPATHLEN);
19671 		SD_ERROR(SD_LOG_ERROR, un,
19672 		    "sd_log_dev_status_event: fail to add attribute\n");
19673 		return;
19674 	}
19675 
19676 	/* Log dynamic lun expansion sysevent */
19677 	err = ddi_log_sysevent(SD_DEVINFO(un), SUNW_VENDOR, EC_DEV_STATUS,
19678 	    esc, attr_list, NULL, km_flag);
19679 	if (err != DDI_SUCCESS) {
19680 		SD_ERROR(SD_LOG_ERROR, un,
19681 		    "sd_log_dev_status_event: fail to log sysevent\n");
19682 	}
19683 
19684 	nvlist_free(attr_list);
19685 	kmem_free(path, MAXPATHLEN);
19686 }
19687 
19688 
19689 /*
19690  *    Function: sd_log_lun_expansion_event
19691  *
19692  * Description: Log lun expansion sys event
19693  *
19694  *     Context: Never called from interrupt context
19695  */
19696 static void
19697 sd_log_lun_expansion_event(struct sd_lun *un, int km_flag)
19698 {
19699 	sd_log_dev_status_event(un, ESC_DEV_DLE, km_flag);
19700 }
19701 
19702 
19703 /*
19704  *    Function: sd_log_eject_request_event
19705  *
19706  * Description: Log eject request sysevent
19707  *
19708  *     Context: Never called from interrupt context
19709  */
19710 static void
19711 sd_log_eject_request_event(struct sd_lun *un, int km_flag)
19712 {
19713 	sd_log_dev_status_event(un, ESC_DEV_EJECT_REQUEST, km_flag);
19714 }
19715 
19716 
19717 /*
19718  *    Function: sd_media_change_task
19719  *
19720  * Description: Recovery action for CDROM to become available.
19721  *
19722  *     Context: Executes in a taskq() thread context
19723  */
19724 
19725 static void
19726 sd_media_change_task(void *arg)
19727 {
19728 	struct	scsi_pkt	*pktp = arg;
19729 	struct	sd_lun		*un;
19730 	struct	buf		*bp;
19731 	struct	sd_xbuf		*xp;
19732 	int	err		= 0;
19733 	int	retry_count	= 0;
19734 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
19735 	struct	sd_sense_info	si;
19736 
19737 	ASSERT(pktp != NULL);
19738 	bp = (struct buf *)pktp->pkt_private;
19739 	ASSERT(bp != NULL);
19740 	xp = SD_GET_XBUF(bp);
19741 	ASSERT(xp != NULL);
19742 	un = SD_GET_UN(bp);
19743 	ASSERT(un != NULL);
19744 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19745 	ASSERT(un->un_f_monitor_media_state);
19746 
19747 	si.ssi_severity = SCSI_ERR_INFO;
19748 	si.ssi_pfa_flag = FALSE;
19749 
19750 	/*
19751 	 * When a reset is issued on a CDROM, it takes a long time to
19752 	 * recover. First few attempts to read capacity and other things
19753 	 * related to handling unit attention fail (with a ASC 0x4 and
19754 	 * ASCQ 0x1). In that case we want to do enough retries and we want
19755 	 * to limit the retries in other cases of genuine failures like
19756 	 * no media in drive.
19757 	 */
19758 	while (retry_count++ < retry_limit) {
19759 		if ((err = sd_handle_mchange(un)) == 0) {
19760 			break;
19761 		}
19762 		if (err == EAGAIN) {
19763 			retry_limit = SD_UNIT_ATTENTION_RETRY;
19764 		}
19765 		/* Sleep for 0.5 sec. & try again */
19766 		delay(drv_usectohz(500000));
19767 	}
19768 
19769 	/*
19770 	 * Dispatch (retry or fail) the original command here,
19771 	 * along with appropriate console messages....
19772 	 *
19773 	 * Must grab the mutex before calling sd_retry_command,
19774 	 * sd_print_sense_msg and sd_return_failed_command.
19775 	 */
19776 	mutex_enter(SD_MUTEX(un));
19777 	if (err != SD_CMD_SUCCESS) {
19778 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
19779 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
19780 		si.ssi_severity = SCSI_ERR_FATAL;
19781 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
19782 		sd_return_failed_command(un, bp, EIO);
19783 	} else {
19784 		sd_retry_command(un, bp, SD_RETRIES_UA, sd_print_sense_msg,
19785 		    &si, EIO, (clock_t)0, NULL);
19786 	}
19787 	mutex_exit(SD_MUTEX(un));
19788 }
19789 
19790 
19791 
19792 /*
19793  *    Function: sd_handle_mchange
19794  *
19795  * Description: Perform geometry validation & other recovery when CDROM
19796  *		has been removed from drive.
19797  *
19798  * Return Code: 0 for success
19799  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
19800  *		sd_send_scsi_READ_CAPACITY()
19801  *
19802  *     Context: Executes in a taskq() thread context
19803  */
19804 
19805 static int
19806 sd_handle_mchange(struct sd_lun *un)
19807 {
19808 	uint64_t	capacity;
19809 	uint32_t	lbasize;
19810 	int		rval;
19811 	sd_ssc_t	*ssc;
19812 
19813 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19814 	ASSERT(un->un_f_monitor_media_state);
19815 
19816 	ssc = sd_ssc_init(un);
19817 	rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
19818 	    SD_PATH_DIRECT_PRIORITY);
19819 
19820 	if (rval != 0)
19821 		goto failed;
19822 
19823 	mutex_enter(SD_MUTEX(un));
19824 	sd_update_block_info(un, lbasize, capacity);
19825 
19826 	if (un->un_errstats != NULL) {
19827 		struct	sd_errstats *stp =
19828 		    (struct sd_errstats *)un->un_errstats->ks_data;
19829 		stp->sd_capacity.value.ui64 = (uint64_t)
19830 		    ((uint64_t)un->un_blockcount *
19831 		    (uint64_t)un->un_tgt_blocksize);
19832 	}
19833 
19834 	/*
19835 	 * Check if the media in the device is writable or not
19836 	 */
19837 	if (ISCD(un)) {
19838 		sd_check_for_writable_cd(ssc, SD_PATH_DIRECT_PRIORITY);
19839 	}
19840 
19841 	/*
19842 	 * Note: Maybe let the strategy/partitioning chain worry about getting
19843 	 * valid geometry.
19844 	 */
19845 	mutex_exit(SD_MUTEX(un));
19846 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
19847 
19848 
19849 	if (cmlb_validate(un->un_cmlbhandle, 0,
19850 	    (void *)SD_PATH_DIRECT_PRIORITY) != 0) {
19851 		sd_ssc_fini(ssc);
19852 		return (EIO);
19853 	} else {
19854 		if (un->un_f_pkstats_enabled) {
19855 			sd_set_pstats(un);
19856 			SD_TRACE(SD_LOG_IO_PARTITION, un,
19857 			    "sd_handle_mchange: un:0x%p pstats created and "
19858 			    "set\n", un);
19859 		}
19860 	}
19861 
19862 	/*
19863 	 * Try to lock the door
19864 	 */
19865 	rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
19866 	    SD_PATH_DIRECT_PRIORITY);
19867 failed:
19868 	if (rval != 0)
19869 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19870 	sd_ssc_fini(ssc);
19871 	return (rval);
19872 }
19873 
19874 
19875 /*
19876  *    Function: sd_send_scsi_DOORLOCK
19877  *
19878  * Description: Issue the scsi DOOR LOCK command
19879  *
19880  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
19881  *                      structure for this target.
19882  *		flag  - SD_REMOVAL_ALLOW
19883  *			SD_REMOVAL_PREVENT
19884  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19885  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19886  *			to use the USCSI "direct" chain and bypass the normal
19887  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19888  *			command is issued as part of an error recovery action.
19889  *
19890  * Return Code: 0   - Success
19891  *		errno return code from sd_ssc_send()
19892  *
19893  *     Context: Can sleep.
19894  */
19895 
19896 static int
19897 sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag)
19898 {
19899 	struct scsi_extended_sense	sense_buf;
19900 	union scsi_cdb		cdb;
19901 	struct uscsi_cmd	ucmd_buf;
19902 	int			status;
19903 	struct sd_lun		*un;
19904 
19905 	ASSERT(ssc != NULL);
19906 	un = ssc->ssc_un;
19907 	ASSERT(un != NULL);
19908 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19909 
19910 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
19911 
19912 	/* already determined doorlock is not supported, fake success */
19913 	if (un->un_f_doorlock_supported == FALSE) {
19914 		return (0);
19915 	}
19916 
19917 	/*
19918 	 * If we are ejecting and see an SD_REMOVAL_PREVENT
19919 	 * ignore the command so we can complete the eject
19920 	 * operation.
19921 	 */
19922 	if (flag == SD_REMOVAL_PREVENT) {
19923 		mutex_enter(SD_MUTEX(un));
19924 		if (un->un_f_ejecting == TRUE) {
19925 			mutex_exit(SD_MUTEX(un));
19926 			return (EAGAIN);
19927 		}
19928 		mutex_exit(SD_MUTEX(un));
19929 	}
19930 
19931 	bzero(&cdb, sizeof (cdb));
19932 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19933 
19934 	cdb.scc_cmd = SCMD_DOORLOCK;
19935 	cdb.cdb_opaque[4] = (uchar_t)flag;
19936 
19937 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19938 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19939 	ucmd_buf.uscsi_bufaddr	= NULL;
19940 	ucmd_buf.uscsi_buflen	= 0;
19941 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19942 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19943 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19944 	ucmd_buf.uscsi_timeout	= 15;
19945 
19946 	SD_TRACE(SD_LOG_IO, un,
19947 	    "sd_send_scsi_DOORLOCK: returning sd_ssc_send\n");
19948 
19949 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19950 	    UIO_SYSSPACE, path_flag);
19951 
19952 	if (status == 0)
19953 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19954 
19955 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
19956 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19957 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
19958 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19959 
19960 		/* fake success and skip subsequent doorlock commands */
19961 		un->un_f_doorlock_supported = FALSE;
19962 		return (0);
19963 	}
19964 
19965 	return (status);
19966 }
19967 
19968 /*
19969  *    Function: sd_send_scsi_READ_CAPACITY
19970  *
19971  * Description: This routine uses the scsi READ CAPACITY command to determine
19972  *		the device capacity in number of blocks and the device native
19973  *		block size. If this function returns a failure, then the
19974  *		values in *capp and *lbap are undefined.  If the capacity
19975  *		returned is 0xffffffff then the lun is too large for a
19976  *		normal READ CAPACITY command and the results of a
19977  *		READ CAPACITY 16 will be used instead.
19978  *
19979  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
19980  *		capp - ptr to unsigned 64-bit variable to receive the
19981  *			capacity value from the command.
19982  *		lbap - ptr to unsigned 32-bit varaible to receive the
19983  *			block size value from the command
19984  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19985  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19986  *			to use the USCSI "direct" chain and bypass the normal
19987  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19988  *			command is issued as part of an error recovery action.
19989  *
19990  * Return Code: 0   - Success
19991  *		EIO - IO error
19992  *		EACCES - Reservation conflict detected
19993  *		EAGAIN - Device is becoming ready
19994  *		errno return code from sd_ssc_send()
19995  *
19996  *     Context: Can sleep.  Blocks until command completes.
19997  */
19998 
19999 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
20000 
20001 static int
20002 sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp, uint32_t *lbap,
20003 	int path_flag)
20004 {
20005 	struct	scsi_extended_sense	sense_buf;
20006 	struct	uscsi_cmd	ucmd_buf;
20007 	union	scsi_cdb	cdb;
20008 	uint32_t		*capacity_buf;
20009 	uint64_t		capacity;
20010 	uint32_t		lbasize;
20011 	uint32_t		pbsize;
20012 	int			status;
20013 	struct sd_lun		*un;
20014 
20015 	ASSERT(ssc != NULL);
20016 
20017 	un = ssc->ssc_un;
20018 	ASSERT(un != NULL);
20019 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20020 	ASSERT(capp != NULL);
20021 	ASSERT(lbap != NULL);
20022 
20023 	SD_TRACE(SD_LOG_IO, un,
20024 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
20025 
20026 	/*
20027 	 * First send a READ_CAPACITY command to the target.
20028 	 * (This command is mandatory under SCSI-2.)
20029 	 *
20030 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
20031 	 * Medium Indicator bit is cleared.  The address field must be
20032 	 * zero if the PMI bit is zero.
20033 	 */
20034 	bzero(&cdb, sizeof (cdb));
20035 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20036 
20037 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
20038 
20039 	cdb.scc_cmd = SCMD_READ_CAPACITY;
20040 
20041 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20042 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20043 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
20044 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
20045 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20046 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
20047 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20048 	ucmd_buf.uscsi_timeout	= 60;
20049 
20050 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20051 	    UIO_SYSSPACE, path_flag);
20052 
20053 	switch (status) {
20054 	case 0:
20055 		/* Return failure if we did not get valid capacity data. */
20056 		if (ucmd_buf.uscsi_resid != 0) {
20057 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20058 			    "sd_send_scsi_READ_CAPACITY received invalid "
20059 			    "capacity data");
20060 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20061 			return (EIO);
20062 		}
20063 		/*
20064 		 * Read capacity and block size from the READ CAPACITY 10 data.
20065 		 * This data may be adjusted later due to device specific
20066 		 * issues.
20067 		 *
20068 		 * According to the SCSI spec, the READ CAPACITY 10
20069 		 * command returns the following:
20070 		 *
20071 		 *  bytes 0-3: Maximum logical block address available.
20072 		 *		(MSB in byte:0 & LSB in byte:3)
20073 		 *
20074 		 *  bytes 4-7: Block length in bytes
20075 		 *		(MSB in byte:4 & LSB in byte:7)
20076 		 *
20077 		 */
20078 		capacity = BE_32(capacity_buf[0]);
20079 		lbasize = BE_32(capacity_buf[1]);
20080 
20081 		/*
20082 		 * Done with capacity_buf
20083 		 */
20084 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20085 
20086 		/*
20087 		 * if the reported capacity is set to all 0xf's, then
20088 		 * this disk is too large and requires SBC-2 commands.
20089 		 * Reissue the request using READ CAPACITY 16.
20090 		 */
20091 		if (capacity == 0xffffffff) {
20092 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
20093 			status = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity,
20094 			    &lbasize, &pbsize, path_flag);
20095 			if (status != 0) {
20096 				return (status);
20097 			} else {
20098 				goto rc16_done;
20099 			}
20100 		}
20101 		break;	/* Success! */
20102 	case EIO:
20103 		switch (ucmd_buf.uscsi_status) {
20104 		case STATUS_RESERVATION_CONFLICT:
20105 			status = EACCES;
20106 			break;
20107 		case STATUS_CHECK:
20108 			/*
20109 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
20110 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
20111 			 */
20112 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20113 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
20114 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
20115 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20116 				return (EAGAIN);
20117 			}
20118 			break;
20119 		default:
20120 			break;
20121 		}
20122 		/* FALLTHRU */
20123 	default:
20124 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20125 		return (status);
20126 	}
20127 
20128 	/*
20129 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
20130 	 * (2352 and 0 are common) so for these devices always force the value
20131 	 * to 2048 as required by the ATAPI specs.
20132 	 */
20133 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
20134 		lbasize = 2048;
20135 	}
20136 
20137 	/*
20138 	 * Get the maximum LBA value from the READ CAPACITY data.
20139 	 * Here we assume that the Partial Medium Indicator (PMI) bit
20140 	 * was cleared when issuing the command. This means that the LBA
20141 	 * returned from the device is the LBA of the last logical block
20142 	 * on the logical unit.  The actual logical block count will be
20143 	 * this value plus one.
20144 	 */
20145 	capacity += 1;
20146 
20147 	/*
20148 	 * Currently, for removable media, the capacity is saved in terms
20149 	 * of un->un_sys_blocksize, so scale the capacity value to reflect this.
20150 	 */
20151 	if (un->un_f_has_removable_media)
20152 		capacity *= (lbasize / un->un_sys_blocksize);
20153 
20154 rc16_done:
20155 
20156 	/*
20157 	 * Copy the values from the READ CAPACITY command into the space
20158 	 * provided by the caller.
20159 	 */
20160 	*capp = capacity;
20161 	*lbap = lbasize;
20162 
20163 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
20164 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
20165 
20166 	/*
20167 	 * Both the lbasize and capacity from the device must be nonzero,
20168 	 * otherwise we assume that the values are not valid and return
20169 	 * failure to the caller. (4203735)
20170 	 */
20171 	if ((capacity == 0) || (lbasize == 0)) {
20172 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20173 		    "sd_send_scsi_READ_CAPACITY received invalid value "
20174 		    "capacity %llu lbasize %d", capacity, lbasize);
20175 		return (EIO);
20176 	}
20177 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20178 	return (0);
20179 }
20180 
20181 /*
20182  *    Function: sd_send_scsi_READ_CAPACITY_16
20183  *
20184  * Description: This routine uses the scsi READ CAPACITY 16 command to
20185  *		determine the device capacity in number of blocks and the
20186  *		device native block size.  If this function returns a failure,
20187  *		then the values in *capp and *lbap are undefined.
20188  *		This routine should be called by sd_send_scsi_READ_CAPACITY
20189  *              which will apply any device specific adjustments to capacity
20190  *              and lbasize. One exception is it is also called by
20191  *              sd_get_media_info_ext. In that function, there is no need to
20192  *              adjust the capacity and lbasize.
20193  *
20194  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
20195  *		capp - ptr to unsigned 64-bit variable to receive the
20196  *			capacity value from the command.
20197  *		lbap - ptr to unsigned 32-bit varaible to receive the
20198  *			block size value from the command
20199  *              psp  - ptr to unsigned 32-bit variable to receive the
20200  *                      physical block size value from the command
20201  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20202  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20203  *			to use the USCSI "direct" chain and bypass the normal
20204  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
20205  *			this command is issued as part of an error recovery
20206  *			action.
20207  *
20208  * Return Code: 0   - Success
20209  *		EIO - IO error
20210  *		EACCES - Reservation conflict detected
20211  *		EAGAIN - Device is becoming ready
20212  *		errno return code from sd_ssc_send()
20213  *
20214  *     Context: Can sleep.  Blocks until command completes.
20215  */
20216 
20217 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
20218 
20219 static int
20220 sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp,
20221 	uint32_t *lbap, uint32_t *psp, int path_flag)
20222 {
20223 	struct	scsi_extended_sense	sense_buf;
20224 	struct	uscsi_cmd	ucmd_buf;
20225 	union	scsi_cdb	cdb;
20226 	uint64_t		*capacity16_buf;
20227 	uint64_t		capacity;
20228 	uint32_t		lbasize;
20229 	uint32_t		pbsize;
20230 	uint32_t		lbpb_exp;
20231 	int			status;
20232 	struct sd_lun		*un;
20233 
20234 	ASSERT(ssc != NULL);
20235 
20236 	un = ssc->ssc_un;
20237 	ASSERT(un != NULL);
20238 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20239 	ASSERT(capp != NULL);
20240 	ASSERT(lbap != NULL);
20241 
20242 	SD_TRACE(SD_LOG_IO, un,
20243 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
20244 
20245 	/*
20246 	 * First send a READ_CAPACITY_16 command to the target.
20247 	 *
20248 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
20249 	 * Medium Indicator bit is cleared.  The address field must be
20250 	 * zero if the PMI bit is zero.
20251 	 */
20252 	bzero(&cdb, sizeof (cdb));
20253 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20254 
20255 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
20256 
20257 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20258 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
20259 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
20260 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
20261 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20262 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
20263 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20264 	ucmd_buf.uscsi_timeout	= 60;
20265 
20266 	/*
20267 	 * Read Capacity (16) is a Service Action In command.  One
20268 	 * command byte (0x9E) is overloaded for multiple operations,
20269 	 * with the second CDB byte specifying the desired operation
20270 	 */
20271 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
20272 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
20273 
20274 	/*
20275 	 * Fill in allocation length field
20276 	 */
20277 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
20278 
20279 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20280 	    UIO_SYSSPACE, path_flag);
20281 
20282 	switch (status) {
20283 	case 0:
20284 		/* Return failure if we did not get valid capacity data. */
20285 		if (ucmd_buf.uscsi_resid > 20) {
20286 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20287 			    "sd_send_scsi_READ_CAPACITY_16 received invalid "
20288 			    "capacity data");
20289 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20290 			return (EIO);
20291 		}
20292 
20293 		/*
20294 		 * Read capacity and block size from the READ CAPACITY 16 data.
20295 		 * This data may be adjusted later due to device specific
20296 		 * issues.
20297 		 *
20298 		 * According to the SCSI spec, the READ CAPACITY 16
20299 		 * command returns the following:
20300 		 *
20301 		 *  bytes 0-7: Maximum logical block address available.
20302 		 *		(MSB in byte:0 & LSB in byte:7)
20303 		 *
20304 		 *  bytes 8-11: Block length in bytes
20305 		 *		(MSB in byte:8 & LSB in byte:11)
20306 		 *
20307 		 *  byte 13: LOGICAL BLOCKS PER PHYSICAL BLOCK EXPONENT
20308 		 */
20309 		capacity = BE_64(capacity16_buf[0]);
20310 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
20311 		lbpb_exp = (BE_64(capacity16_buf[1]) >> 16) & 0x0f;
20312 
20313 		pbsize = lbasize << lbpb_exp;
20314 
20315 		/*
20316 		 * Done with capacity16_buf
20317 		 */
20318 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20319 
20320 		/*
20321 		 * if the reported capacity is set to all 0xf's, then
20322 		 * this disk is too large.  This could only happen with
20323 		 * a device that supports LBAs larger than 64 bits which
20324 		 * are not defined by any current T10 standards.
20325 		 */
20326 		if (capacity == 0xffffffffffffffff) {
20327 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20328 			    "disk is too large");
20329 			return (EIO);
20330 		}
20331 		break;	/* Success! */
20332 	case EIO:
20333 		switch (ucmd_buf.uscsi_status) {
20334 		case STATUS_RESERVATION_CONFLICT:
20335 			status = EACCES;
20336 			break;
20337 		case STATUS_CHECK:
20338 			/*
20339 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
20340 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
20341 			 */
20342 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20343 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
20344 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
20345 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20346 				return (EAGAIN);
20347 			}
20348 			break;
20349 		default:
20350 			break;
20351 		}
20352 		/* FALLTHRU */
20353 	default:
20354 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20355 		return (status);
20356 	}
20357 
20358 	/*
20359 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
20360 	 * (2352 and 0 are common) so for these devices always force the value
20361 	 * to 2048 as required by the ATAPI specs.
20362 	 */
20363 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
20364 		lbasize = 2048;
20365 	}
20366 
20367 	/*
20368 	 * Get the maximum LBA value from the READ CAPACITY 16 data.
20369 	 * Here we assume that the Partial Medium Indicator (PMI) bit
20370 	 * was cleared when issuing the command. This means that the LBA
20371 	 * returned from the device is the LBA of the last logical block
20372 	 * on the logical unit.  The actual logical block count will be
20373 	 * this value plus one.
20374 	 */
20375 	capacity += 1;
20376 
20377 	/*
20378 	 * Currently, for removable media, the capacity is saved in terms
20379 	 * of un->un_sys_blocksize, so scale the capacity value to reflect this.
20380 	 */
20381 	if (un->un_f_has_removable_media)
20382 		capacity *= (lbasize / un->un_sys_blocksize);
20383 
20384 	*capp = capacity;
20385 	*lbap = lbasize;
20386 	*psp = pbsize;
20387 
20388 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
20389 	    "capacity:0x%llx  lbasize:0x%x, pbsize: 0x%x\n",
20390 	    capacity, lbasize, pbsize);
20391 
20392 	if ((capacity == 0) || (lbasize == 0) || (pbsize == 0)) {
20393 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20394 		    "sd_send_scsi_READ_CAPACITY_16 received invalid value "
20395 		    "capacity %llu lbasize %d pbsize %d", capacity, lbasize);
20396 		return (EIO);
20397 	}
20398 
20399 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20400 	return (0);
20401 }
20402 
20403 
20404 /*
20405  *    Function: sd_send_scsi_START_STOP_UNIT
20406  *
20407  * Description: Issue a scsi START STOP UNIT command to the target.
20408  *
20409  *   Arguments: ssc    - ssc contatins pointer to driver soft state (unit)
20410  *                       structure for this target.
20411  *      pc_flag - SD_POWER_CONDITION
20412  *                SD_START_STOP
20413  *		flag  - SD_TARGET_START
20414  *			SD_TARGET_STOP
20415  *			SD_TARGET_EJECT
20416  *			SD_TARGET_CLOSE
20417  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20418  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20419  *			to use the USCSI "direct" chain and bypass the normal
20420  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
20421  *			command is issued as part of an error recovery action.
20422  *
20423  * Return Code: 0   - Success
20424  *		EIO - IO error
20425  *		EACCES - Reservation conflict detected
20426  *		ENXIO  - Not Ready, medium not present
20427  *		errno return code from sd_ssc_send()
20428  *
20429  *     Context: Can sleep.
20430  */
20431 
20432 static int
20433 sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag, int flag,
20434     int path_flag)
20435 {
20436 	struct	scsi_extended_sense	sense_buf;
20437 	union scsi_cdb		cdb;
20438 	struct uscsi_cmd	ucmd_buf;
20439 	int			status;
20440 	struct sd_lun		*un;
20441 
20442 	ASSERT(ssc != NULL);
20443 	un = ssc->ssc_un;
20444 	ASSERT(un != NULL);
20445 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20446 
20447 	SD_TRACE(SD_LOG_IO, un,
20448 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
20449 
20450 	if (un->un_f_check_start_stop &&
20451 	    (pc_flag == SD_START_STOP) &&
20452 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
20453 	    (un->un_f_start_stop_supported != TRUE)) {
20454 		return (0);
20455 	}
20456 
20457 	/*
20458 	 * If we are performing an eject operation and
20459 	 * we receive any command other than SD_TARGET_EJECT
20460 	 * we should immediately return.
20461 	 */
20462 	if (flag != SD_TARGET_EJECT) {
20463 		mutex_enter(SD_MUTEX(un));
20464 		if (un->un_f_ejecting == TRUE) {
20465 			mutex_exit(SD_MUTEX(un));
20466 			return (EAGAIN);
20467 		}
20468 		mutex_exit(SD_MUTEX(un));
20469 	}
20470 
20471 	bzero(&cdb, sizeof (cdb));
20472 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20473 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20474 
20475 	cdb.scc_cmd = SCMD_START_STOP;
20476 	cdb.cdb_opaque[4] = (pc_flag == SD_POWER_CONDITION) ?
20477 	    (uchar_t)(flag << 4) : (uchar_t)flag;
20478 
20479 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20480 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20481 	ucmd_buf.uscsi_bufaddr	= NULL;
20482 	ucmd_buf.uscsi_buflen	= 0;
20483 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20484 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20485 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
20486 	ucmd_buf.uscsi_timeout	= 200;
20487 
20488 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20489 	    UIO_SYSSPACE, path_flag);
20490 
20491 	switch (status) {
20492 	case 0:
20493 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20494 		break;	/* Success! */
20495 	case EIO:
20496 		switch (ucmd_buf.uscsi_status) {
20497 		case STATUS_RESERVATION_CONFLICT:
20498 			status = EACCES;
20499 			break;
20500 		case STATUS_CHECK:
20501 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
20502 				switch (scsi_sense_key(
20503 				    (uint8_t *)&sense_buf)) {
20504 				case KEY_ILLEGAL_REQUEST:
20505 					status = ENOTSUP;
20506 					break;
20507 				case KEY_NOT_READY:
20508 					if (scsi_sense_asc(
20509 					    (uint8_t *)&sense_buf)
20510 					    == 0x3A) {
20511 						status = ENXIO;
20512 					}
20513 					break;
20514 				default:
20515 					break;
20516 				}
20517 			}
20518 			break;
20519 		default:
20520 			break;
20521 		}
20522 		break;
20523 	default:
20524 		break;
20525 	}
20526 
20527 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
20528 
20529 	return (status);
20530 }
20531 
20532 
20533 /*
20534  *    Function: sd_start_stop_unit_callback
20535  *
20536  * Description: timeout(9F) callback to begin recovery process for a
20537  *		device that has spun down.
20538  *
20539  *   Arguments: arg - pointer to associated softstate struct.
20540  *
20541  *     Context: Executes in a timeout(9F) thread context
20542  */
20543 
20544 static void
20545 sd_start_stop_unit_callback(void *arg)
20546 {
20547 	struct sd_lun	*un = arg;
20548 	ASSERT(un != NULL);
20549 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20550 
20551 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
20552 
20553 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
20554 }
20555 
20556 
20557 /*
20558  *    Function: sd_start_stop_unit_task
20559  *
20560  * Description: Recovery procedure when a drive is spun down.
20561  *
20562  *   Arguments: arg - pointer to associated softstate struct.
20563  *
20564  *     Context: Executes in a taskq() thread context
20565  */
20566 
20567 static void
20568 sd_start_stop_unit_task(void *arg)
20569 {
20570 	struct sd_lun	*un = arg;
20571 	sd_ssc_t	*ssc;
20572 	int		power_level;
20573 	int		rval;
20574 
20575 	ASSERT(un != NULL);
20576 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20577 
20578 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
20579 
20580 	/*
20581 	 * Some unformatted drives report not ready error, no need to
20582 	 * restart if format has been initiated.
20583 	 */
20584 	mutex_enter(SD_MUTEX(un));
20585 	if (un->un_f_format_in_progress == TRUE) {
20586 		mutex_exit(SD_MUTEX(un));
20587 		return;
20588 	}
20589 	mutex_exit(SD_MUTEX(un));
20590 
20591 	ssc = sd_ssc_init(un);
20592 	/*
20593 	 * When a START STOP command is issued from here, it is part of a
20594 	 * failure recovery operation and must be issued before any other
20595 	 * commands, including any pending retries. Thus it must be sent
20596 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
20597 	 * succeeds or not, we will start I/O after the attempt.
20598 	 * If power condition is supported and the current power level
20599 	 * is capable of performing I/O, we should set the power condition
20600 	 * to that level. Otherwise, set the power condition to ACTIVE.
20601 	 */
20602 	if (un->un_f_power_condition_supported) {
20603 		mutex_enter(SD_MUTEX(un));
20604 		ASSERT(SD_PM_IS_LEVEL_VALID(un, un->un_power_level));
20605 		power_level = sd_pwr_pc.ran_perf[un->un_power_level]
20606 		    > 0 ? un->un_power_level : SD_SPINDLE_ACTIVE;
20607 		mutex_exit(SD_MUTEX(un));
20608 		rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION,
20609 		    sd_pl2pc[power_level], SD_PATH_DIRECT_PRIORITY);
20610 	} else {
20611 		rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
20612 		    SD_TARGET_START, SD_PATH_DIRECT_PRIORITY);
20613 	}
20614 
20615 	if (rval != 0)
20616 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
20617 	sd_ssc_fini(ssc);
20618 	/*
20619 	 * The above call blocks until the START_STOP_UNIT command completes.
20620 	 * Now that it has completed, we must re-try the original IO that
20621 	 * received the NOT READY condition in the first place. There are
20622 	 * three possible conditions here:
20623 	 *
20624 	 *  (1) The original IO is on un_retry_bp.
20625 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
20626 	 *	is NULL.
20627 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
20628 	 *	points to some other, unrelated bp.
20629 	 *
20630 	 * For each case, we must call sd_start_cmds() with un_retry_bp
20631 	 * as the argument. If un_retry_bp is NULL, this will initiate
20632 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
20633 	 * then this will process the bp on un_retry_bp. That may or may not
20634 	 * be the original IO, but that does not matter: the important thing
20635 	 * is to keep the IO processing going at this point.
20636 	 *
20637 	 * Note: This is a very specific error recovery sequence associated
20638 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
20639 	 * serialize the I/O with completion of the spin-up.
20640 	 */
20641 	mutex_enter(SD_MUTEX(un));
20642 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
20643 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
20644 	    un, un->un_retry_bp);
20645 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
20646 	sd_start_cmds(un, un->un_retry_bp);
20647 	mutex_exit(SD_MUTEX(un));
20648 
20649 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
20650 }
20651 
20652 
20653 /*
20654  *    Function: sd_send_scsi_INQUIRY
20655  *
20656  * Description: Issue the scsi INQUIRY command.
20657  *
20658  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20659  *                      structure for this target.
20660  *		bufaddr
20661  *		buflen
20662  *		evpd
20663  *		page_code
20664  *		page_length
20665  *
20666  * Return Code: 0   - Success
20667  *		errno return code from sd_ssc_send()
20668  *
20669  *     Context: Can sleep. Does not return until command is completed.
20670  */
20671 
20672 static int
20673 sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr, size_t buflen,
20674 	uchar_t evpd, uchar_t page_code, size_t *residp)
20675 {
20676 	union scsi_cdb		cdb;
20677 	struct uscsi_cmd	ucmd_buf;
20678 	int			status;
20679 	struct sd_lun		*un;
20680 
20681 	ASSERT(ssc != NULL);
20682 	un = ssc->ssc_un;
20683 	ASSERT(un != NULL);
20684 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20685 	ASSERT(bufaddr != NULL);
20686 
20687 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
20688 
20689 	bzero(&cdb, sizeof (cdb));
20690 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20691 	bzero(bufaddr, buflen);
20692 
20693 	cdb.scc_cmd = SCMD_INQUIRY;
20694 	cdb.cdb_opaque[1] = evpd;
20695 	cdb.cdb_opaque[2] = page_code;
20696 	FORMG0COUNT(&cdb, buflen);
20697 
20698 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20699 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20700 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20701 	ucmd_buf.uscsi_buflen	= buflen;
20702 	ucmd_buf.uscsi_rqbuf	= NULL;
20703 	ucmd_buf.uscsi_rqlen	= 0;
20704 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
20705 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
20706 
20707 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20708 	    UIO_SYSSPACE, SD_PATH_DIRECT);
20709 
20710 	/*
20711 	 * Only handle status == 0, the upper-level caller
20712 	 * will put different assessment based on the context.
20713 	 */
20714 	if (status == 0)
20715 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20716 
20717 	if ((status == 0) && (residp != NULL)) {
20718 		*residp = ucmd_buf.uscsi_resid;
20719 	}
20720 
20721 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
20722 
20723 	return (status);
20724 }
20725 
20726 
20727 /*
20728  *    Function: sd_send_scsi_TEST_UNIT_READY
20729  *
20730  * Description: Issue the scsi TEST UNIT READY command.
20731  *		This routine can be told to set the flag USCSI_DIAGNOSE to
20732  *		prevent retrying failed commands. Use this when the intent
20733  *		is either to check for device readiness, to clear a Unit
20734  *		Attention, or to clear any outstanding sense data.
20735  *		However under specific conditions the expected behavior
20736  *		is for retries to bring a device ready, so use the flag
20737  *		with caution.
20738  *
20739  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20740  *                      structure for this target.
20741  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
20742  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
20743  *			0: dont check for media present, do retries on cmd.
20744  *
20745  * Return Code: 0   - Success
20746  *		EIO - IO error
20747  *		EACCES - Reservation conflict detected
20748  *		ENXIO  - Not Ready, medium not present
20749  *		errno return code from sd_ssc_send()
20750  *
20751  *     Context: Can sleep. Does not return until command is completed.
20752  */
20753 
20754 static int
20755 sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag)
20756 {
20757 	struct	scsi_extended_sense	sense_buf;
20758 	union scsi_cdb		cdb;
20759 	struct uscsi_cmd	ucmd_buf;
20760 	int			status;
20761 	struct sd_lun		*un;
20762 
20763 	ASSERT(ssc != NULL);
20764 	un = ssc->ssc_un;
20765 	ASSERT(un != NULL);
20766 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20767 
20768 	SD_TRACE(SD_LOG_IO, un,
20769 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
20770 
20771 	/*
20772 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
20773 	 * timeouts when they receive a TUR and the queue is not empty. Check
20774 	 * the configuration flag set during attach (indicating the drive has
20775 	 * this firmware bug) and un_ncmds_in_transport before issuing the
20776 	 * TUR. If there are
20777 	 * pending commands return success, this is a bit arbitrary but is ok
20778 	 * for non-removables (i.e. the eliteI disks) and non-clustering
20779 	 * configurations.
20780 	 */
20781 	if (un->un_f_cfg_tur_check == TRUE) {
20782 		mutex_enter(SD_MUTEX(un));
20783 		if (un->un_ncmds_in_transport != 0) {
20784 			mutex_exit(SD_MUTEX(un));
20785 			return (0);
20786 		}
20787 		mutex_exit(SD_MUTEX(un));
20788 	}
20789 
20790 	bzero(&cdb, sizeof (cdb));
20791 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20792 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20793 
20794 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
20795 
20796 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20797 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20798 	ucmd_buf.uscsi_bufaddr	= NULL;
20799 	ucmd_buf.uscsi_buflen	= 0;
20800 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20801 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20802 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
20803 
20804 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
20805 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
20806 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
20807 	}
20808 	ucmd_buf.uscsi_timeout	= 60;
20809 
20810 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20811 	    UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT :
20812 	    SD_PATH_STANDARD));
20813 
20814 	switch (status) {
20815 	case 0:
20816 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20817 		break;	/* Success! */
20818 	case EIO:
20819 		switch (ucmd_buf.uscsi_status) {
20820 		case STATUS_RESERVATION_CONFLICT:
20821 			status = EACCES;
20822 			break;
20823 		case STATUS_CHECK:
20824 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
20825 				break;
20826 			}
20827 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20828 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20829 			    KEY_NOT_READY) &&
20830 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
20831 				status = ENXIO;
20832 			}
20833 			break;
20834 		default:
20835 			break;
20836 		}
20837 		break;
20838 	default:
20839 		break;
20840 	}
20841 
20842 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
20843 
20844 	return (status);
20845 }
20846 
20847 /*
20848  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
20849  *
20850  * Description: Issue the scsi PERSISTENT RESERVE IN command.
20851  *
20852  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20853  *                      structure for this target.
20854  *
20855  * Return Code: 0   - Success
20856  *		EACCES
20857  *		ENOTSUP
20858  *		errno return code from sd_ssc_send()
20859  *
20860  *     Context: Can sleep. Does not return until command is completed.
20861  */
20862 
20863 static int
20864 sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc, uchar_t  usr_cmd,
20865 	uint16_t data_len, uchar_t *data_bufp)
20866 {
20867 	struct scsi_extended_sense	sense_buf;
20868 	union scsi_cdb		cdb;
20869 	struct uscsi_cmd	ucmd_buf;
20870 	int			status;
20871 	int			no_caller_buf = FALSE;
20872 	struct sd_lun		*un;
20873 
20874 	ASSERT(ssc != NULL);
20875 	un = ssc->ssc_un;
20876 	ASSERT(un != NULL);
20877 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20878 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
20879 
20880 	SD_TRACE(SD_LOG_IO, un,
20881 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
20882 
20883 	bzero(&cdb, sizeof (cdb));
20884 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20885 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20886 	if (data_bufp == NULL) {
20887 		/* Allocate a default buf if the caller did not give one */
20888 		ASSERT(data_len == 0);
20889 		data_len  = MHIOC_RESV_KEY_SIZE;
20890 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
20891 		no_caller_buf = TRUE;
20892 	}
20893 
20894 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
20895 	cdb.cdb_opaque[1] = usr_cmd;
20896 	FORMG1COUNT(&cdb, data_len);
20897 
20898 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20899 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20900 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
20901 	ucmd_buf.uscsi_buflen	= data_len;
20902 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20903 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20904 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20905 	ucmd_buf.uscsi_timeout	= 60;
20906 
20907 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20908 	    UIO_SYSSPACE, SD_PATH_STANDARD);
20909 
20910 	switch (status) {
20911 	case 0:
20912 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20913 
20914 		break;	/* Success! */
20915 	case EIO:
20916 		switch (ucmd_buf.uscsi_status) {
20917 		case STATUS_RESERVATION_CONFLICT:
20918 			status = EACCES;
20919 			break;
20920 		case STATUS_CHECK:
20921 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20922 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20923 			    KEY_ILLEGAL_REQUEST)) {
20924 				status = ENOTSUP;
20925 			}
20926 			break;
20927 		default:
20928 			break;
20929 		}
20930 		break;
20931 	default:
20932 		break;
20933 	}
20934 
20935 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
20936 
20937 	if (no_caller_buf == TRUE) {
20938 		kmem_free(data_bufp, data_len);
20939 	}
20940 
20941 	return (status);
20942 }
20943 
20944 
20945 /*
20946  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
20947  *
20948  * Description: This routine is the driver entry point for handling CD-ROM
20949  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
20950  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
20951  *		device.
20952  *
20953  *   Arguments: ssc  -  ssc contains un - pointer to soft state struct
20954  *                      for the target.
20955  *		usr_cmd SCSI-3 reservation facility command (one of
20956  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
20957  *			SD_SCSI3_PREEMPTANDABORT)
20958  *		usr_bufp - user provided pointer register, reserve descriptor or
20959  *			preempt and abort structure (mhioc_register_t,
20960  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
20961  *
20962  * Return Code: 0   - Success
20963  *		EACCES
20964  *		ENOTSUP
20965  *		errno return code from sd_ssc_send()
20966  *
20967  *     Context: Can sleep. Does not return until command is completed.
20968  */
20969 
20970 static int
20971 sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc, uchar_t usr_cmd,
20972 	uchar_t	*usr_bufp)
20973 {
20974 	struct scsi_extended_sense	sense_buf;
20975 	union scsi_cdb		cdb;
20976 	struct uscsi_cmd	ucmd_buf;
20977 	int			status;
20978 	uchar_t			data_len = sizeof (sd_prout_t);
20979 	sd_prout_t		*prp;
20980 	struct sd_lun		*un;
20981 
20982 	ASSERT(ssc != NULL);
20983 	un = ssc->ssc_un;
20984 	ASSERT(un != NULL);
20985 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20986 	ASSERT(data_len == 24);	/* required by scsi spec */
20987 
20988 	SD_TRACE(SD_LOG_IO, un,
20989 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
20990 
20991 	if (usr_bufp == NULL) {
20992 		return (EINVAL);
20993 	}
20994 
20995 	bzero(&cdb, sizeof (cdb));
20996 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20997 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20998 	prp = kmem_zalloc(data_len, KM_SLEEP);
20999 
21000 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
21001 	cdb.cdb_opaque[1] = usr_cmd;
21002 	FORMG1COUNT(&cdb, data_len);
21003 
21004 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21005 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
21006 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
21007 	ucmd_buf.uscsi_buflen	= data_len;
21008 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21009 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21010 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
21011 	ucmd_buf.uscsi_timeout	= 60;
21012 
21013 	switch (usr_cmd) {
21014 	case SD_SCSI3_REGISTER: {
21015 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
21016 
21017 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21018 		bcopy(ptr->newkey.key, prp->service_key,
21019 		    MHIOC_RESV_KEY_SIZE);
21020 		prp->aptpl = ptr->aptpl;
21021 		break;
21022 	}
21023 	case SD_SCSI3_RESERVE:
21024 	case SD_SCSI3_RELEASE: {
21025 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
21026 
21027 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21028 		prp->scope_address = BE_32(ptr->scope_specific_addr);
21029 		cdb.cdb_opaque[2] = ptr->type;
21030 		break;
21031 	}
21032 	case SD_SCSI3_PREEMPTANDABORT: {
21033 		mhioc_preemptandabort_t *ptr =
21034 		    (mhioc_preemptandabort_t *)usr_bufp;
21035 
21036 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21037 		bcopy(ptr->victim_key.key, prp->service_key,
21038 		    MHIOC_RESV_KEY_SIZE);
21039 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
21040 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
21041 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
21042 		break;
21043 	}
21044 	case SD_SCSI3_REGISTERANDIGNOREKEY:
21045 	{
21046 		mhioc_registerandignorekey_t *ptr;
21047 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
21048 		bcopy(ptr->newkey.key,
21049 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
21050 		prp->aptpl = ptr->aptpl;
21051 		break;
21052 	}
21053 	default:
21054 		ASSERT(FALSE);
21055 		break;
21056 	}
21057 
21058 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21059 	    UIO_SYSSPACE, SD_PATH_STANDARD);
21060 
21061 	switch (status) {
21062 	case 0:
21063 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21064 		break;	/* Success! */
21065 	case EIO:
21066 		switch (ucmd_buf.uscsi_status) {
21067 		case STATUS_RESERVATION_CONFLICT:
21068 			status = EACCES;
21069 			break;
21070 		case STATUS_CHECK:
21071 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
21072 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
21073 			    KEY_ILLEGAL_REQUEST)) {
21074 				status = ENOTSUP;
21075 			}
21076 			break;
21077 		default:
21078 			break;
21079 		}
21080 		break;
21081 	default:
21082 		break;
21083 	}
21084 
21085 	kmem_free(prp, data_len);
21086 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
21087 	return (status);
21088 }
21089 
21090 
21091 /*
21092  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
21093  *
21094  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
21095  *
21096  *   Arguments: un - pointer to the target's soft state struct
21097  *              dkc - pointer to the callback structure
21098  *
21099  * Return Code: 0 - success
21100  *		errno-type error code
21101  *
21102  *     Context: kernel thread context only.
21103  *
21104  *  _______________________________________________________________
21105  * | dkc_flag &   | dkc_callback | DKIOCFLUSHWRITECACHE            |
21106  * |FLUSH_VOLATILE|              | operation                       |
21107  * |______________|______________|_________________________________|
21108  * | 0            | NULL         | Synchronous flush on both       |
21109  * |              |              | volatile and non-volatile cache |
21110  * |______________|______________|_________________________________|
21111  * | 1            | NULL         | Synchronous flush on volatile   |
21112  * |              |              | cache; disk drivers may suppress|
21113  * |              |              | flush if disk table indicates   |
21114  * |              |              | non-volatile cache              |
21115  * |______________|______________|_________________________________|
21116  * | 0            | !NULL        | Asynchronous flush on both      |
21117  * |              |              | volatile and non-volatile cache;|
21118  * |______________|______________|_________________________________|
21119  * | 1            | !NULL        | Asynchronous flush on volatile  |
21120  * |              |              | cache; disk drivers may suppress|
21121  * |              |              | flush if disk table indicates   |
21122  * |              |              | non-volatile cache              |
21123  * |______________|______________|_________________________________|
21124  *
21125  */
21126 
21127 static int
21128 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
21129 {
21130 	struct sd_uscsi_info	*uip;
21131 	struct uscsi_cmd	*uscmd;
21132 	union scsi_cdb		*cdb;
21133 	struct buf		*bp;
21134 	int			rval = 0;
21135 	int			is_async;
21136 
21137 	SD_TRACE(SD_LOG_IO, un,
21138 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
21139 
21140 	ASSERT(un != NULL);
21141 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21142 
21143 	if (dkc == NULL || dkc->dkc_callback == NULL) {
21144 		is_async = FALSE;
21145 	} else {
21146 		is_async = TRUE;
21147 	}
21148 
21149 	mutex_enter(SD_MUTEX(un));
21150 	/* check whether cache flush should be suppressed */
21151 	if (un->un_f_suppress_cache_flush == TRUE) {
21152 		mutex_exit(SD_MUTEX(un));
21153 		/*
21154 		 * suppress the cache flush if the device is told to do
21155 		 * so by sd.conf or disk table
21156 		 */
21157 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: \
21158 		    skip the cache flush since suppress_cache_flush is %d!\n",
21159 		    un->un_f_suppress_cache_flush);
21160 
21161 		if (is_async == TRUE) {
21162 			/* invoke callback for asynchronous flush */
21163 			(*dkc->dkc_callback)(dkc->dkc_cookie, 0);
21164 		}
21165 		return (rval);
21166 	}
21167 	mutex_exit(SD_MUTEX(un));
21168 
21169 	/*
21170 	 * check dkc_flag & FLUSH_VOLATILE so SYNC_NV bit can be
21171 	 * set properly
21172 	 */
21173 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
21174 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
21175 
21176 	mutex_enter(SD_MUTEX(un));
21177 	if (dkc != NULL && un->un_f_sync_nv_supported &&
21178 	    (dkc->dkc_flag & FLUSH_VOLATILE)) {
21179 		/*
21180 		 * if the device supports SYNC_NV bit, turn on
21181 		 * the SYNC_NV bit to only flush volatile cache
21182 		 */
21183 		cdb->cdb_un.tag |= SD_SYNC_NV_BIT;
21184 	}
21185 	mutex_exit(SD_MUTEX(un));
21186 
21187 	/*
21188 	 * First get some memory for the uscsi_cmd struct and cdb
21189 	 * and initialize for SYNCHRONIZE_CACHE cmd.
21190 	 */
21191 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
21192 	uscmd->uscsi_cdblen = CDB_GROUP1;
21193 	uscmd->uscsi_cdb = (caddr_t)cdb;
21194 	uscmd->uscsi_bufaddr = NULL;
21195 	uscmd->uscsi_buflen = 0;
21196 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
21197 	uscmd->uscsi_rqlen = SENSE_LENGTH;
21198 	uscmd->uscsi_rqresid = SENSE_LENGTH;
21199 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
21200 	uscmd->uscsi_timeout = sd_io_time;
21201 
21202 	/*
21203 	 * Allocate an sd_uscsi_info struct and fill it with the info
21204 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
21205 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
21206 	 * since we allocate the buf here in this function, we do not
21207 	 * need to preserve the prior contents of b_private.
21208 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
21209 	 */
21210 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
21211 	uip->ui_flags = SD_PATH_DIRECT;
21212 	uip->ui_cmdp  = uscmd;
21213 
21214 	bp = getrbuf(KM_SLEEP);
21215 	bp->b_private = uip;
21216 
21217 	/*
21218 	 * Setup buffer to carry uscsi request.
21219 	 */
21220 	bp->b_flags  = B_BUSY;
21221 	bp->b_bcount = 0;
21222 	bp->b_blkno  = 0;
21223 
21224 	if (is_async == TRUE) {
21225 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
21226 		uip->ui_dkc = *dkc;
21227 	}
21228 
21229 	bp->b_edev = SD_GET_DEV(un);
21230 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
21231 
21232 	/*
21233 	 * Unset un_f_sync_cache_required flag
21234 	 */
21235 	mutex_enter(SD_MUTEX(un));
21236 	un->un_f_sync_cache_required = FALSE;
21237 	mutex_exit(SD_MUTEX(un));
21238 
21239 	(void) sd_uscsi_strategy(bp);
21240 
21241 	/*
21242 	 * If synchronous request, wait for completion
21243 	 * If async just return and let b_iodone callback
21244 	 * cleanup.
21245 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
21246 	 * but it was also incremented in sd_uscsi_strategy(), so
21247 	 * we should be ok.
21248 	 */
21249 	if (is_async == FALSE) {
21250 		(void) biowait(bp);
21251 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
21252 	}
21253 
21254 	return (rval);
21255 }
21256 
21257 
21258 static int
21259 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
21260 {
21261 	struct sd_uscsi_info *uip;
21262 	struct uscsi_cmd *uscmd;
21263 	uint8_t *sense_buf;
21264 	struct sd_lun *un;
21265 	int status;
21266 	union scsi_cdb *cdb;
21267 
21268 	uip = (struct sd_uscsi_info *)(bp->b_private);
21269 	ASSERT(uip != NULL);
21270 
21271 	uscmd = uip->ui_cmdp;
21272 	ASSERT(uscmd != NULL);
21273 
21274 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
21275 	ASSERT(sense_buf != NULL);
21276 
21277 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
21278 	ASSERT(un != NULL);
21279 
21280 	cdb = (union scsi_cdb *)uscmd->uscsi_cdb;
21281 
21282 	status = geterror(bp);
21283 	switch (status) {
21284 	case 0:
21285 		break;	/* Success! */
21286 	case EIO:
21287 		switch (uscmd->uscsi_status) {
21288 		case STATUS_RESERVATION_CONFLICT:
21289 			/* Ignore reservation conflict */
21290 			status = 0;
21291 			goto done;
21292 
21293 		case STATUS_CHECK:
21294 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
21295 			    (scsi_sense_key(sense_buf) ==
21296 			    KEY_ILLEGAL_REQUEST)) {
21297 				/* Ignore Illegal Request error */
21298 				if (cdb->cdb_un.tag&SD_SYNC_NV_BIT) {
21299 					mutex_enter(SD_MUTEX(un));
21300 					un->un_f_sync_nv_supported = FALSE;
21301 					mutex_exit(SD_MUTEX(un));
21302 					status = 0;
21303 					SD_TRACE(SD_LOG_IO, un,
21304 					    "un_f_sync_nv_supported \
21305 					    is set to false.\n");
21306 					goto done;
21307 				}
21308 
21309 				mutex_enter(SD_MUTEX(un));
21310 				un->un_f_sync_cache_supported = FALSE;
21311 				mutex_exit(SD_MUTEX(un));
21312 				SD_TRACE(SD_LOG_IO, un,
21313 				    "sd_send_scsi_SYNCHRONIZE_CACHE_biodone: \
21314 				    un_f_sync_cache_supported set to false \
21315 				    with asc = %x, ascq = %x\n",
21316 				    scsi_sense_asc(sense_buf),
21317 				    scsi_sense_ascq(sense_buf));
21318 				status = ENOTSUP;
21319 				goto done;
21320 			}
21321 			break;
21322 		default:
21323 			break;
21324 		}
21325 		/* FALLTHRU */
21326 	default:
21327 		/*
21328 		 * Turn on the un_f_sync_cache_required flag
21329 		 * since the SYNC CACHE command failed
21330 		 */
21331 		mutex_enter(SD_MUTEX(un));
21332 		un->un_f_sync_cache_required = TRUE;
21333 		mutex_exit(SD_MUTEX(un));
21334 
21335 		/*
21336 		 * Don't log an error message if this device
21337 		 * has removable media.
21338 		 */
21339 		if (!un->un_f_has_removable_media) {
21340 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
21341 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
21342 		}
21343 		break;
21344 	}
21345 
21346 done:
21347 	if (uip->ui_dkc.dkc_callback != NULL) {
21348 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
21349 	}
21350 
21351 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
21352 	freerbuf(bp);
21353 	kmem_free(uip, sizeof (struct sd_uscsi_info));
21354 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
21355 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
21356 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
21357 
21358 	return (status);
21359 }
21360 
21361 
21362 /*
21363  *    Function: sd_send_scsi_GET_CONFIGURATION
21364  *
21365  * Description: Issues the get configuration command to the device.
21366  *		Called from sd_check_for_writable_cd & sd_get_media_info
21367  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
21368  *   Arguments: ssc
21369  *		ucmdbuf
21370  *		rqbuf
21371  *		rqbuflen
21372  *		bufaddr
21373  *		buflen
21374  *		path_flag
21375  *
21376  * Return Code: 0   - Success
21377  *		errno return code from sd_ssc_send()
21378  *
21379  *     Context: Can sleep. Does not return until command is completed.
21380  *
21381  */
21382 
21383 static int
21384 sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc, struct uscsi_cmd *ucmdbuf,
21385 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen,
21386 	int path_flag)
21387 {
21388 	char	cdb[CDB_GROUP1];
21389 	int	status;
21390 	struct sd_lun	*un;
21391 
21392 	ASSERT(ssc != NULL);
21393 	un = ssc->ssc_un;
21394 	ASSERT(un != NULL);
21395 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21396 	ASSERT(bufaddr != NULL);
21397 	ASSERT(ucmdbuf != NULL);
21398 	ASSERT(rqbuf != NULL);
21399 
21400 	SD_TRACE(SD_LOG_IO, un,
21401 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
21402 
21403 	bzero(cdb, sizeof (cdb));
21404 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
21405 	bzero(rqbuf, rqbuflen);
21406 	bzero(bufaddr, buflen);
21407 
21408 	/*
21409 	 * Set up cdb field for the get configuration command.
21410 	 */
21411 	cdb[0] = SCMD_GET_CONFIGURATION;
21412 	cdb[1] = 0x02;  /* Requested Type */
21413 	cdb[8] = SD_PROFILE_HEADER_LEN;
21414 	ucmdbuf->uscsi_cdb = cdb;
21415 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
21416 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
21417 	ucmdbuf->uscsi_buflen = buflen;
21418 	ucmdbuf->uscsi_timeout = sd_io_time;
21419 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
21420 	ucmdbuf->uscsi_rqlen = rqbuflen;
21421 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
21422 
21423 	status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
21424 	    UIO_SYSSPACE, path_flag);
21425 
21426 	switch (status) {
21427 	case 0:
21428 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21429 		break;  /* Success! */
21430 	case EIO:
21431 		switch (ucmdbuf->uscsi_status) {
21432 		case STATUS_RESERVATION_CONFLICT:
21433 			status = EACCES;
21434 			break;
21435 		default:
21436 			break;
21437 		}
21438 		break;
21439 	default:
21440 		break;
21441 	}
21442 
21443 	if (status == 0) {
21444 		SD_DUMP_MEMORY(un, SD_LOG_IO,
21445 		    "sd_send_scsi_GET_CONFIGURATION: data",
21446 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
21447 	}
21448 
21449 	SD_TRACE(SD_LOG_IO, un,
21450 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
21451 
21452 	return (status);
21453 }
21454 
21455 /*
21456  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
21457  *
21458  * Description: Issues the get configuration command to the device to
21459  *              retrieve a specific feature. Called from
21460  *		sd_check_for_writable_cd & sd_set_mmc_caps.
21461  *   Arguments: ssc
21462  *              ucmdbuf
21463  *              rqbuf
21464  *              rqbuflen
21465  *              bufaddr
21466  *              buflen
21467  *		feature
21468  *
21469  * Return Code: 0   - Success
21470  *              errno return code from sd_ssc_send()
21471  *
21472  *     Context: Can sleep. Does not return until command is completed.
21473  *
21474  */
21475 static int
21476 sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc,
21477 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
21478 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag)
21479 {
21480 	char    cdb[CDB_GROUP1];
21481 	int	status;
21482 	struct sd_lun	*un;
21483 
21484 	ASSERT(ssc != NULL);
21485 	un = ssc->ssc_un;
21486 	ASSERT(un != NULL);
21487 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21488 	ASSERT(bufaddr != NULL);
21489 	ASSERT(ucmdbuf != NULL);
21490 	ASSERT(rqbuf != NULL);
21491 
21492 	SD_TRACE(SD_LOG_IO, un,
21493 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
21494 
21495 	bzero(cdb, sizeof (cdb));
21496 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
21497 	bzero(rqbuf, rqbuflen);
21498 	bzero(bufaddr, buflen);
21499 
21500 	/*
21501 	 * Set up cdb field for the get configuration command.
21502 	 */
21503 	cdb[0] = SCMD_GET_CONFIGURATION;
21504 	cdb[1] = 0x02;  /* Requested Type */
21505 	cdb[3] = feature;
21506 	cdb[8] = buflen;
21507 	ucmdbuf->uscsi_cdb = cdb;
21508 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
21509 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
21510 	ucmdbuf->uscsi_buflen = buflen;
21511 	ucmdbuf->uscsi_timeout = sd_io_time;
21512 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
21513 	ucmdbuf->uscsi_rqlen = rqbuflen;
21514 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
21515 
21516 	status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
21517 	    UIO_SYSSPACE, path_flag);
21518 
21519 	switch (status) {
21520 	case 0:
21521 
21522 		break;  /* Success! */
21523 	case EIO:
21524 		switch (ucmdbuf->uscsi_status) {
21525 		case STATUS_RESERVATION_CONFLICT:
21526 			status = EACCES;
21527 			break;
21528 		default:
21529 			break;
21530 		}
21531 		break;
21532 	default:
21533 		break;
21534 	}
21535 
21536 	if (status == 0) {
21537 		SD_DUMP_MEMORY(un, SD_LOG_IO,
21538 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
21539 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
21540 	}
21541 
21542 	SD_TRACE(SD_LOG_IO, un,
21543 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
21544 
21545 	return (status);
21546 }
21547 
21548 
21549 /*
21550  *    Function: sd_send_scsi_MODE_SENSE
21551  *
21552  * Description: Utility function for issuing a scsi MODE SENSE command.
21553  *		Note: This routine uses a consistent implementation for Group0,
21554  *		Group1, and Group2 commands across all platforms. ATAPI devices
21555  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
21556  *
21557  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21558  *                      structure for this target.
21559  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
21560  *			  CDB_GROUP[1|2] (10 byte).
21561  *		bufaddr - buffer for page data retrieved from the target.
21562  *		buflen - size of page to be retrieved.
21563  *		page_code - page code of data to be retrieved from the target.
21564  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21565  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21566  *			to use the USCSI "direct" chain and bypass the normal
21567  *			command waitq.
21568  *
21569  * Return Code: 0   - Success
21570  *		errno return code from sd_ssc_send()
21571  *
21572  *     Context: Can sleep. Does not return until command is completed.
21573  */
21574 
21575 static int
21576 sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
21577 	size_t buflen,  uchar_t page_code, int path_flag)
21578 {
21579 	struct	scsi_extended_sense	sense_buf;
21580 	union scsi_cdb		cdb;
21581 	struct uscsi_cmd	ucmd_buf;
21582 	int			status;
21583 	int			headlen;
21584 	struct sd_lun		*un;
21585 
21586 	ASSERT(ssc != NULL);
21587 	un = ssc->ssc_un;
21588 	ASSERT(un != NULL);
21589 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21590 	ASSERT(bufaddr != NULL);
21591 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
21592 	    (cdbsize == CDB_GROUP2));
21593 
21594 	SD_TRACE(SD_LOG_IO, un,
21595 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
21596 
21597 	bzero(&cdb, sizeof (cdb));
21598 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21599 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21600 	bzero(bufaddr, buflen);
21601 
21602 	if (cdbsize == CDB_GROUP0) {
21603 		cdb.scc_cmd = SCMD_MODE_SENSE;
21604 		cdb.cdb_opaque[2] = page_code;
21605 		FORMG0COUNT(&cdb, buflen);
21606 		headlen = MODE_HEADER_LENGTH;
21607 	} else {
21608 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
21609 		cdb.cdb_opaque[2] = page_code;
21610 		FORMG1COUNT(&cdb, buflen);
21611 		headlen = MODE_HEADER_LENGTH_GRP2;
21612 	}
21613 
21614 	ASSERT(headlen <= buflen);
21615 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21616 
21617 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21618 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21619 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21620 	ucmd_buf.uscsi_buflen	= buflen;
21621 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21622 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21623 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
21624 	ucmd_buf.uscsi_timeout	= 60;
21625 
21626 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21627 	    UIO_SYSSPACE, path_flag);
21628 
21629 	switch (status) {
21630 	case 0:
21631 		/*
21632 		 * sr_check_wp() uses 0x3f page code and check the header of
21633 		 * mode page to determine if target device is write-protected.
21634 		 * But some USB devices return 0 bytes for 0x3f page code. For
21635 		 * this case, make sure that mode page header is returned at
21636 		 * least.
21637 		 */
21638 		if (buflen - ucmd_buf.uscsi_resid <  headlen) {
21639 			status = EIO;
21640 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
21641 			    "mode page header is not returned");
21642 		}
21643 		break;	/* Success! */
21644 	case EIO:
21645 		switch (ucmd_buf.uscsi_status) {
21646 		case STATUS_RESERVATION_CONFLICT:
21647 			status = EACCES;
21648 			break;
21649 		default:
21650 			break;
21651 		}
21652 		break;
21653 	default:
21654 		break;
21655 	}
21656 
21657 	if (status == 0) {
21658 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
21659 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21660 	}
21661 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
21662 
21663 	return (status);
21664 }
21665 
21666 
21667 /*
21668  *    Function: sd_send_scsi_MODE_SELECT
21669  *
21670  * Description: Utility function for issuing a scsi MODE SELECT command.
21671  *		Note: This routine uses a consistent implementation for Group0,
21672  *		Group1, and Group2 commands across all platforms. ATAPI devices
21673  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
21674  *
21675  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21676  *                      structure for this target.
21677  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
21678  *			  CDB_GROUP[1|2] (10 byte).
21679  *		bufaddr - buffer for page data retrieved from the target.
21680  *		buflen - size of page to be retrieved.
21681  *		save_page - boolean to determin if SP bit should be set.
21682  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21683  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21684  *			to use the USCSI "direct" chain and bypass the normal
21685  *			command waitq.
21686  *
21687  * Return Code: 0   - Success
21688  *		errno return code from sd_ssc_send()
21689  *
21690  *     Context: Can sleep. Does not return until command is completed.
21691  */
21692 
21693 static int
21694 sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
21695 	size_t buflen,  uchar_t save_page, int path_flag)
21696 {
21697 	struct	scsi_extended_sense	sense_buf;
21698 	union scsi_cdb		cdb;
21699 	struct uscsi_cmd	ucmd_buf;
21700 	int			status;
21701 	struct sd_lun		*un;
21702 
21703 	ASSERT(ssc != NULL);
21704 	un = ssc->ssc_un;
21705 	ASSERT(un != NULL);
21706 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21707 	ASSERT(bufaddr != NULL);
21708 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
21709 	    (cdbsize == CDB_GROUP2));
21710 
21711 	SD_TRACE(SD_LOG_IO, un,
21712 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
21713 
21714 	bzero(&cdb, sizeof (cdb));
21715 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21716 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21717 
21718 	/* Set the PF bit for many third party drives */
21719 	cdb.cdb_opaque[1] = 0x10;
21720 
21721 	/* Set the savepage(SP) bit if given */
21722 	if (save_page == SD_SAVE_PAGE) {
21723 		cdb.cdb_opaque[1] |= 0x01;
21724 	}
21725 
21726 	if (cdbsize == CDB_GROUP0) {
21727 		cdb.scc_cmd = SCMD_MODE_SELECT;
21728 		FORMG0COUNT(&cdb, buflen);
21729 	} else {
21730 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
21731 		FORMG1COUNT(&cdb, buflen);
21732 	}
21733 
21734 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21735 
21736 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21737 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21738 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21739 	ucmd_buf.uscsi_buflen	= buflen;
21740 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21741 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21742 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
21743 	ucmd_buf.uscsi_timeout	= 60;
21744 
21745 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21746 	    UIO_SYSSPACE, path_flag);
21747 
21748 	switch (status) {
21749 	case 0:
21750 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21751 		break;	/* Success! */
21752 	case EIO:
21753 		switch (ucmd_buf.uscsi_status) {
21754 		case STATUS_RESERVATION_CONFLICT:
21755 			status = EACCES;
21756 			break;
21757 		default:
21758 			break;
21759 		}
21760 		break;
21761 	default:
21762 		break;
21763 	}
21764 
21765 	if (status == 0) {
21766 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
21767 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21768 	}
21769 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
21770 
21771 	return (status);
21772 }
21773 
21774 
21775 /*
21776  *    Function: sd_send_scsi_RDWR
21777  *
21778  * Description: Issue a scsi READ or WRITE command with the given parameters.
21779  *
21780  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21781  *                      structure for this target.
21782  *		cmd:	 SCMD_READ or SCMD_WRITE
21783  *		bufaddr: Address of caller's buffer to receive the RDWR data
21784  *		buflen:  Length of caller's buffer receive the RDWR data.
21785  *		start_block: Block number for the start of the RDWR operation.
21786  *			 (Assumes target-native block size.)
21787  *		residp:  Pointer to variable to receive the redisual of the
21788  *			 RDWR operation (may be NULL of no residual requested).
21789  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21790  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21791  *			to use the USCSI "direct" chain and bypass the normal
21792  *			command waitq.
21793  *
21794  * Return Code: 0   - Success
21795  *		errno return code from sd_ssc_send()
21796  *
21797  *     Context: Can sleep. Does not return until command is completed.
21798  */
21799 
21800 static int
21801 sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
21802 	size_t buflen, daddr_t start_block, int path_flag)
21803 {
21804 	struct	scsi_extended_sense	sense_buf;
21805 	union scsi_cdb		cdb;
21806 	struct uscsi_cmd	ucmd_buf;
21807 	uint32_t		block_count;
21808 	int			status;
21809 	int			cdbsize;
21810 	uchar_t			flag;
21811 	struct sd_lun		*un;
21812 
21813 	ASSERT(ssc != NULL);
21814 	un = ssc->ssc_un;
21815 	ASSERT(un != NULL);
21816 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21817 	ASSERT(bufaddr != NULL);
21818 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
21819 
21820 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
21821 
21822 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
21823 		return (EINVAL);
21824 	}
21825 
21826 	mutex_enter(SD_MUTEX(un));
21827 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
21828 	mutex_exit(SD_MUTEX(un));
21829 
21830 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
21831 
21832 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
21833 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
21834 	    bufaddr, buflen, start_block, block_count);
21835 
21836 	bzero(&cdb, sizeof (cdb));
21837 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21838 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21839 
21840 	/* Compute CDB size to use */
21841 	if (start_block > 0xffffffff)
21842 		cdbsize = CDB_GROUP4;
21843 	else if ((start_block & 0xFFE00000) ||
21844 	    (un->un_f_cfg_is_atapi == TRUE))
21845 		cdbsize = CDB_GROUP1;
21846 	else
21847 		cdbsize = CDB_GROUP0;
21848 
21849 	switch (cdbsize) {
21850 	case CDB_GROUP0:	/* 6-byte CDBs */
21851 		cdb.scc_cmd = cmd;
21852 		FORMG0ADDR(&cdb, start_block);
21853 		FORMG0COUNT(&cdb, block_count);
21854 		break;
21855 	case CDB_GROUP1:	/* 10-byte CDBs */
21856 		cdb.scc_cmd = cmd | SCMD_GROUP1;
21857 		FORMG1ADDR(&cdb, start_block);
21858 		FORMG1COUNT(&cdb, block_count);
21859 		break;
21860 	case CDB_GROUP4:	/* 16-byte CDBs */
21861 		cdb.scc_cmd = cmd | SCMD_GROUP4;
21862 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
21863 		FORMG4COUNT(&cdb, block_count);
21864 		break;
21865 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
21866 	default:
21867 		/* All others reserved */
21868 		return (EINVAL);
21869 	}
21870 
21871 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
21872 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21873 
21874 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21875 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21876 	ucmd_buf.uscsi_bufaddr	= bufaddr;
21877 	ucmd_buf.uscsi_buflen	= buflen;
21878 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21879 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21880 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
21881 	ucmd_buf.uscsi_timeout	= 60;
21882 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21883 	    UIO_SYSSPACE, path_flag);
21884 
21885 	switch (status) {
21886 	case 0:
21887 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21888 		break;	/* Success! */
21889 	case EIO:
21890 		switch (ucmd_buf.uscsi_status) {
21891 		case STATUS_RESERVATION_CONFLICT:
21892 			status = EACCES;
21893 			break;
21894 		default:
21895 			break;
21896 		}
21897 		break;
21898 	default:
21899 		break;
21900 	}
21901 
21902 	if (status == 0) {
21903 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
21904 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21905 	}
21906 
21907 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
21908 
21909 	return (status);
21910 }
21911 
21912 
21913 /*
21914  *    Function: sd_send_scsi_LOG_SENSE
21915  *
21916  * Description: Issue a scsi LOG_SENSE command with the given parameters.
21917  *
21918  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21919  *                      structure for this target.
21920  *
21921  * Return Code: 0   - Success
21922  *		errno return code from sd_ssc_send()
21923  *
21924  *     Context: Can sleep. Does not return until command is completed.
21925  */
21926 
21927 static int
21928 sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr, uint16_t buflen,
21929 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
21930 	int path_flag)
21931 
21932 {
21933 	struct scsi_extended_sense	sense_buf;
21934 	union scsi_cdb		cdb;
21935 	struct uscsi_cmd	ucmd_buf;
21936 	int			status;
21937 	struct sd_lun		*un;
21938 
21939 	ASSERT(ssc != NULL);
21940 	un = ssc->ssc_un;
21941 	ASSERT(un != NULL);
21942 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21943 
21944 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
21945 
21946 	bzero(&cdb, sizeof (cdb));
21947 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21948 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21949 
21950 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
21951 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
21952 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
21953 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
21954 	FORMG1COUNT(&cdb, buflen);
21955 
21956 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21957 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
21958 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21959 	ucmd_buf.uscsi_buflen	= buflen;
21960 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21961 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21962 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
21963 	ucmd_buf.uscsi_timeout	= 60;
21964 
21965 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21966 	    UIO_SYSSPACE, path_flag);
21967 
21968 	switch (status) {
21969 	case 0:
21970 		break;
21971 	case EIO:
21972 		switch (ucmd_buf.uscsi_status) {
21973 		case STATUS_RESERVATION_CONFLICT:
21974 			status = EACCES;
21975 			break;
21976 		case STATUS_CHECK:
21977 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
21978 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
21979 				KEY_ILLEGAL_REQUEST) &&
21980 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
21981 				/*
21982 				 * ASC 0x24: INVALID FIELD IN CDB
21983 				 */
21984 				switch (page_code) {
21985 				case START_STOP_CYCLE_PAGE:
21986 					/*
21987 					 * The start stop cycle counter is
21988 					 * implemented as page 0x31 in earlier
21989 					 * generation disks. In new generation
21990 					 * disks the start stop cycle counter is
21991 					 * implemented as page 0xE. To properly
21992 					 * handle this case if an attempt for
21993 					 * log page 0xE is made and fails we
21994 					 * will try again using page 0x31.
21995 					 *
21996 					 * Network storage BU committed to
21997 					 * maintain the page 0x31 for this
21998 					 * purpose and will not have any other
21999 					 * page implemented with page code 0x31
22000 					 * until all disks transition to the
22001 					 * standard page.
22002 					 */
22003 					mutex_enter(SD_MUTEX(un));
22004 					un->un_start_stop_cycle_page =
22005 					    START_STOP_CYCLE_VU_PAGE;
22006 					cdb.cdb_opaque[2] =
22007 					    (char)(page_control << 6) |
22008 					    un->un_start_stop_cycle_page;
22009 					mutex_exit(SD_MUTEX(un));
22010 					sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22011 					status = sd_ssc_send(
22012 					    ssc, &ucmd_buf, FKIOCTL,
22013 					    UIO_SYSSPACE, path_flag);
22014 
22015 					break;
22016 				case TEMPERATURE_PAGE:
22017 					status = ENOTTY;
22018 					break;
22019 				default:
22020 					break;
22021 				}
22022 			}
22023 			break;
22024 		default:
22025 			break;
22026 		}
22027 		break;
22028 	default:
22029 		break;
22030 	}
22031 
22032 	if (status == 0) {
22033 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
22034 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
22035 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
22036 	}
22037 
22038 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
22039 
22040 	return (status);
22041 }
22042 
22043 
22044 /*
22045  *    Function: sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION
22046  *
22047  * Description: Issue the scsi GET EVENT STATUS NOTIFICATION command.
22048  *
22049  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
22050  *                      structure for this target.
22051  *		bufaddr
22052  *		buflen
22053  *		class_req
22054  *
22055  * Return Code: 0   - Success
22056  *		errno return code from sd_ssc_send()
22057  *
22058  *     Context: Can sleep. Does not return until command is completed.
22059  */
22060 
22061 static int
22062 sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(sd_ssc_t *ssc, uchar_t *bufaddr,
22063 	size_t buflen, uchar_t class_req)
22064 {
22065 	union scsi_cdb		cdb;
22066 	struct uscsi_cmd	ucmd_buf;
22067 	int			status;
22068 	struct sd_lun		*un;
22069 
22070 	ASSERT(ssc != NULL);
22071 	un = ssc->ssc_un;
22072 	ASSERT(un != NULL);
22073 	ASSERT(!mutex_owned(SD_MUTEX(un)));
22074 	ASSERT(bufaddr != NULL);
22075 
22076 	SD_TRACE(SD_LOG_IO, un,
22077 	    "sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION: entry: un:0x%p\n", un);
22078 
22079 	bzero(&cdb, sizeof (cdb));
22080 	bzero(&ucmd_buf, sizeof (ucmd_buf));
22081 	bzero(bufaddr, buflen);
22082 
22083 	cdb.scc_cmd = SCMD_GET_EVENT_STATUS_NOTIFICATION;
22084 	cdb.cdb_opaque[1] = 1; /* polled */
22085 	cdb.cdb_opaque[4] = class_req;
22086 	FORMG1COUNT(&cdb, buflen);
22087 
22088 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
22089 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
22090 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
22091 	ucmd_buf.uscsi_buflen	= buflen;
22092 	ucmd_buf.uscsi_rqbuf	= NULL;
22093 	ucmd_buf.uscsi_rqlen	= 0;
22094 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
22095 	ucmd_buf.uscsi_timeout	= 60;
22096 
22097 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
22098 	    UIO_SYSSPACE, SD_PATH_DIRECT);
22099 
22100 	/*
22101 	 * Only handle status == 0, the upper-level caller
22102 	 * will put different assessment based on the context.
22103 	 */
22104 	if (status == 0) {
22105 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
22106 
22107 		if (ucmd_buf.uscsi_resid != 0) {
22108 			status = EIO;
22109 		}
22110 	}
22111 
22112 	SD_TRACE(SD_LOG_IO, un,
22113 	    "sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION: exit\n");
22114 
22115 	return (status);
22116 }
22117 
22118 
22119 static boolean_t
22120 sd_gesn_media_data_valid(uchar_t *data)
22121 {
22122 	uint16_t			len;
22123 
22124 	len = (data[1] << 8) | data[0];
22125 	return ((len >= 6) &&
22126 	    ((data[2] & SD_GESN_HEADER_NEA) == 0) &&
22127 	    ((data[2] & SD_GESN_HEADER_CLASS) == SD_GESN_MEDIA_CLASS) &&
22128 	    ((data[3] & (1 << SD_GESN_MEDIA_CLASS)) != 0));
22129 }
22130 
22131 
22132 /*
22133  *    Function: sdioctl
22134  *
22135  * Description: Driver's ioctl(9e) entry point function.
22136  *
22137  *   Arguments: dev     - device number
22138  *		cmd     - ioctl operation to be performed
22139  *		arg     - user argument, contains data to be set or reference
22140  *			  parameter for get
22141  *		flag    - bit flag, indicating open settings, 32/64 bit type
22142  *		cred_p  - user credential pointer
22143  *		rval_p  - calling process return value (OPT)
22144  *
22145  * Return Code: EINVAL
22146  *		ENOTTY
22147  *		ENXIO
22148  *		EIO
22149  *		EFAULT
22150  *		ENOTSUP
22151  *		EPERM
22152  *
22153  *     Context: Called from the device switch at normal priority.
22154  */
22155 
22156 static int
22157 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
22158 {
22159 	struct sd_lun	*un = NULL;
22160 	int		err = 0;
22161 	int		i = 0;
22162 	cred_t		*cr;
22163 	int		tmprval = EINVAL;
22164 	boolean_t	is_valid;
22165 	sd_ssc_t	*ssc;
22166 
22167 	/*
22168 	 * All device accesses go thru sdstrategy where we check on suspend
22169 	 * status
22170 	 */
22171 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22172 		return (ENXIO);
22173 	}
22174 
22175 	ASSERT(!mutex_owned(SD_MUTEX(un)));
22176 
22177 	/* Initialize sd_ssc_t for internal uscsi commands */
22178 	ssc = sd_ssc_init(un);
22179 
22180 	is_valid = SD_IS_VALID_LABEL(un);
22181 
22182 	/*
22183 	 * Moved this wait from sd_uscsi_strategy to here for
22184 	 * reasons of deadlock prevention. Internal driver commands,
22185 	 * specifically those to change a devices power level, result
22186 	 * in a call to sd_uscsi_strategy.
22187 	 */
22188 	mutex_enter(SD_MUTEX(un));
22189 	while ((un->un_state == SD_STATE_SUSPENDED) ||
22190 	    (un->un_state == SD_STATE_PM_CHANGING)) {
22191 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
22192 	}
22193 	/*
22194 	 * Twiddling the counter here protects commands from now
22195 	 * through to the top of sd_uscsi_strategy. Without the
22196 	 * counter inc. a power down, for example, could get in
22197 	 * after the above check for state is made and before
22198 	 * execution gets to the top of sd_uscsi_strategy.
22199 	 * That would cause problems.
22200 	 */
22201 	un->un_ncmds_in_driver++;
22202 
22203 	if (!is_valid &&
22204 	    (flag & (FNDELAY | FNONBLOCK))) {
22205 		switch (cmd) {
22206 		case DKIOCGGEOM:	/* SD_PATH_DIRECT */
22207 		case DKIOCGVTOC:
22208 		case DKIOCGEXTVTOC:
22209 		case DKIOCGAPART:
22210 		case DKIOCPARTINFO:
22211 		case DKIOCEXTPARTINFO:
22212 		case DKIOCSGEOM:
22213 		case DKIOCSAPART:
22214 		case DKIOCGETEFI:
22215 		case DKIOCPARTITION:
22216 		case DKIOCSVTOC:
22217 		case DKIOCSEXTVTOC:
22218 		case DKIOCSETEFI:
22219 		case DKIOCGMBOOT:
22220 		case DKIOCSMBOOT:
22221 		case DKIOCG_PHYGEOM:
22222 		case DKIOCG_VIRTGEOM:
22223 #if defined(__i386) || defined(__amd64)
22224 		case DKIOCSETEXTPART:
22225 #endif
22226 			/* let cmlb handle it */
22227 			goto skip_ready_valid;
22228 
22229 		case CDROMPAUSE:
22230 		case CDROMRESUME:
22231 		case CDROMPLAYMSF:
22232 		case CDROMPLAYTRKIND:
22233 		case CDROMREADTOCHDR:
22234 		case CDROMREADTOCENTRY:
22235 		case CDROMSTOP:
22236 		case CDROMSTART:
22237 		case CDROMVOLCTRL:
22238 		case CDROMSUBCHNL:
22239 		case CDROMREADMODE2:
22240 		case CDROMREADMODE1:
22241 		case CDROMREADOFFSET:
22242 		case CDROMSBLKMODE:
22243 		case CDROMGBLKMODE:
22244 		case CDROMGDRVSPEED:
22245 		case CDROMSDRVSPEED:
22246 		case CDROMCDDA:
22247 		case CDROMCDXA:
22248 		case CDROMSUBCODE:
22249 			if (!ISCD(un)) {
22250 				un->un_ncmds_in_driver--;
22251 				ASSERT(un->un_ncmds_in_driver >= 0);
22252 				mutex_exit(SD_MUTEX(un));
22253 				err = ENOTTY;
22254 				goto done_without_assess;
22255 			}
22256 			break;
22257 		case FDEJECT:
22258 		case DKIOCEJECT:
22259 		case CDROMEJECT:
22260 			if (!un->un_f_eject_media_supported) {
22261 				un->un_ncmds_in_driver--;
22262 				ASSERT(un->un_ncmds_in_driver >= 0);
22263 				mutex_exit(SD_MUTEX(un));
22264 				err = ENOTTY;
22265 				goto done_without_assess;
22266 			}
22267 			break;
22268 		case DKIOCFLUSHWRITECACHE:
22269 			mutex_exit(SD_MUTEX(un));
22270 			err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
22271 			if (err != 0) {
22272 				mutex_enter(SD_MUTEX(un));
22273 				un->un_ncmds_in_driver--;
22274 				ASSERT(un->un_ncmds_in_driver >= 0);
22275 				mutex_exit(SD_MUTEX(un));
22276 				err = EIO;
22277 				goto done_quick_assess;
22278 			}
22279 			mutex_enter(SD_MUTEX(un));
22280 			/* FALLTHROUGH */
22281 		case DKIOCREMOVABLE:
22282 		case DKIOCHOTPLUGGABLE:
22283 		case DKIOCINFO:
22284 		case DKIOCGMEDIAINFO:
22285 		case DKIOCGMEDIAINFOEXT:
22286 		case MHIOCENFAILFAST:
22287 		case MHIOCSTATUS:
22288 		case MHIOCTKOWN:
22289 		case MHIOCRELEASE:
22290 		case MHIOCGRP_INKEYS:
22291 		case MHIOCGRP_INRESV:
22292 		case MHIOCGRP_REGISTER:
22293 		case MHIOCGRP_RESERVE:
22294 		case MHIOCGRP_PREEMPTANDABORT:
22295 		case MHIOCGRP_REGISTERANDIGNOREKEY:
22296 		case CDROMCLOSETRAY:
22297 		case USCSICMD:
22298 			goto skip_ready_valid;
22299 		default:
22300 			break;
22301 		}
22302 
22303 		mutex_exit(SD_MUTEX(un));
22304 		err = sd_ready_and_valid(ssc, SDPART(dev));
22305 		mutex_enter(SD_MUTEX(un));
22306 
22307 		if (err != SD_READY_VALID) {
22308 			switch (cmd) {
22309 			case DKIOCSTATE:
22310 			case CDROMGDRVSPEED:
22311 			case CDROMSDRVSPEED:
22312 			case FDEJECT:	/* for eject command */
22313 			case DKIOCEJECT:
22314 			case CDROMEJECT:
22315 			case DKIOCREMOVABLE:
22316 			case DKIOCHOTPLUGGABLE:
22317 				break;
22318 			default:
22319 				if (un->un_f_has_removable_media) {
22320 					err = ENXIO;
22321 				} else {
22322 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
22323 					if (err == SD_RESERVED_BY_OTHERS) {
22324 						err = EACCES;
22325 					} else {
22326 						err = EIO;
22327 					}
22328 				}
22329 				un->un_ncmds_in_driver--;
22330 				ASSERT(un->un_ncmds_in_driver >= 0);
22331 				mutex_exit(SD_MUTEX(un));
22332 
22333 				goto done_without_assess;
22334 			}
22335 		}
22336 	}
22337 
22338 skip_ready_valid:
22339 	mutex_exit(SD_MUTEX(un));
22340 
22341 	switch (cmd) {
22342 	case DKIOCINFO:
22343 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
22344 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
22345 		break;
22346 
22347 	case DKIOCGMEDIAINFO:
22348 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
22349 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
22350 		break;
22351 
22352 	case DKIOCGMEDIAINFOEXT:
22353 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFOEXT\n");
22354 		err = sd_get_media_info_ext(dev, (caddr_t)arg, flag);
22355 		break;
22356 
22357 	case DKIOCGGEOM:
22358 	case DKIOCGVTOC:
22359 	case DKIOCGEXTVTOC:
22360 	case DKIOCGAPART:
22361 	case DKIOCPARTINFO:
22362 	case DKIOCEXTPARTINFO:
22363 	case DKIOCSGEOM:
22364 	case DKIOCSAPART:
22365 	case DKIOCGETEFI:
22366 	case DKIOCPARTITION:
22367 	case DKIOCSVTOC:
22368 	case DKIOCSEXTVTOC:
22369 	case DKIOCSETEFI:
22370 	case DKIOCGMBOOT:
22371 	case DKIOCSMBOOT:
22372 	case DKIOCG_PHYGEOM:
22373 	case DKIOCG_VIRTGEOM:
22374 #if defined(__i386) || defined(__amd64)
22375 	case DKIOCSETEXTPART:
22376 #endif
22377 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd);
22378 
22379 		/* TUR should spin up */
22380 
22381 		if (un->un_f_has_removable_media)
22382 			err = sd_send_scsi_TEST_UNIT_READY(ssc,
22383 			    SD_CHECK_FOR_MEDIA);
22384 
22385 		else
22386 			err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
22387 
22388 		if (err != 0)
22389 			goto done_with_assess;
22390 
22391 		err = cmlb_ioctl(un->un_cmlbhandle, dev,
22392 		    cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT);
22393 
22394 		if ((err == 0) &&
22395 		    ((cmd == DKIOCSETEFI) ||
22396 		    (un->un_f_pkstats_enabled) &&
22397 		    (cmd == DKIOCSAPART || cmd == DKIOCSVTOC ||
22398 		    cmd == DKIOCSEXTVTOC))) {
22399 
22400 			tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT,
22401 			    (void *)SD_PATH_DIRECT);
22402 			if ((tmprval == 0) && un->un_f_pkstats_enabled) {
22403 				sd_set_pstats(un);
22404 				SD_TRACE(SD_LOG_IO_PARTITION, un,
22405 				    "sd_ioctl: un:0x%p pstats created and "
22406 				    "set\n", un);
22407 			}
22408 		}
22409 
22410 		if ((cmd == DKIOCSVTOC || cmd == DKIOCSEXTVTOC) ||
22411 		    ((cmd == DKIOCSETEFI) && (tmprval == 0))) {
22412 
22413 			mutex_enter(SD_MUTEX(un));
22414 			if (un->un_f_devid_supported &&
22415 			    (un->un_f_opt_fab_devid == TRUE)) {
22416 				if (un->un_devid == NULL) {
22417 					sd_register_devid(ssc, SD_DEVINFO(un),
22418 					    SD_TARGET_IS_UNRESERVED);
22419 				} else {
22420 					/*
22421 					 * The device id for this disk
22422 					 * has been fabricated. The
22423 					 * device id must be preserved
22424 					 * by writing it back out to
22425 					 * disk.
22426 					 */
22427 					if (sd_write_deviceid(ssc) != 0) {
22428 						ddi_devid_free(un->un_devid);
22429 						un->un_devid = NULL;
22430 					}
22431 				}
22432 			}
22433 			mutex_exit(SD_MUTEX(un));
22434 		}
22435 
22436 		break;
22437 
22438 	case DKIOCLOCK:
22439 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
22440 		err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
22441 		    SD_PATH_STANDARD);
22442 		goto done_with_assess;
22443 
22444 	case DKIOCUNLOCK:
22445 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
22446 		err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
22447 		    SD_PATH_STANDARD);
22448 		goto done_with_assess;
22449 
22450 	case DKIOCSTATE: {
22451 		enum dkio_state		state;
22452 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
22453 
22454 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
22455 			err = EFAULT;
22456 		} else {
22457 			err = sd_check_media(dev, state);
22458 			if (err == 0) {
22459 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
22460 				    sizeof (int), flag) != 0)
22461 					err = EFAULT;
22462 			}
22463 		}
22464 		break;
22465 	}
22466 
22467 	case DKIOCREMOVABLE:
22468 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
22469 		i = un->un_f_has_removable_media ? 1 : 0;
22470 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22471 			err = EFAULT;
22472 		} else {
22473 			err = 0;
22474 		}
22475 		break;
22476 
22477 	case DKIOCHOTPLUGGABLE:
22478 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
22479 		i = un->un_f_is_hotpluggable ? 1 : 0;
22480 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22481 			err = EFAULT;
22482 		} else {
22483 			err = 0;
22484 		}
22485 		break;
22486 
22487 	case DKIOCREADONLY:
22488 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREADONLY\n");
22489 		i = 0;
22490 		if ((ISCD(un) && !un->un_f_mmc_writable_media) ||
22491 		    (sr_check_wp(dev) != 0)) {
22492 			i = 1;
22493 		}
22494 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22495 			err = EFAULT;
22496 		} else {
22497 			err = 0;
22498 		}
22499 		break;
22500 
22501 	case DKIOCGTEMPERATURE:
22502 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
22503 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
22504 		break;
22505 
22506 	case MHIOCENFAILFAST:
22507 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
22508 		if ((err = drv_priv(cred_p)) == 0) {
22509 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
22510 		}
22511 		break;
22512 
22513 	case MHIOCTKOWN:
22514 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
22515 		if ((err = drv_priv(cred_p)) == 0) {
22516 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
22517 		}
22518 		break;
22519 
22520 	case MHIOCRELEASE:
22521 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
22522 		if ((err = drv_priv(cred_p)) == 0) {
22523 			err = sd_mhdioc_release(dev);
22524 		}
22525 		break;
22526 
22527 	case MHIOCSTATUS:
22528 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
22529 		if ((err = drv_priv(cred_p)) == 0) {
22530 			switch (sd_send_scsi_TEST_UNIT_READY(ssc, 0)) {
22531 			case 0:
22532 				err = 0;
22533 				break;
22534 			case EACCES:
22535 				*rval_p = 1;
22536 				err = 0;
22537 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22538 				break;
22539 			default:
22540 				err = EIO;
22541 				goto done_with_assess;
22542 			}
22543 		}
22544 		break;
22545 
22546 	case MHIOCQRESERVE:
22547 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
22548 		if ((err = drv_priv(cred_p)) == 0) {
22549 			err = sd_reserve_release(dev, SD_RESERVE);
22550 		}
22551 		break;
22552 
22553 	case MHIOCREREGISTERDEVID:
22554 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
22555 		if (drv_priv(cred_p) == EPERM) {
22556 			err = EPERM;
22557 		} else if (!un->un_f_devid_supported) {
22558 			err = ENOTTY;
22559 		} else {
22560 			err = sd_mhdioc_register_devid(dev);
22561 		}
22562 		break;
22563 
22564 	case MHIOCGRP_INKEYS:
22565 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
22566 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
22567 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22568 				err = ENOTSUP;
22569 			} else {
22570 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
22571 				    flag);
22572 			}
22573 		}
22574 		break;
22575 
22576 	case MHIOCGRP_INRESV:
22577 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
22578 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
22579 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22580 				err = ENOTSUP;
22581 			} else {
22582 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
22583 			}
22584 		}
22585 		break;
22586 
22587 	case MHIOCGRP_REGISTER:
22588 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
22589 		if ((err = drv_priv(cred_p)) != EPERM) {
22590 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22591 				err = ENOTSUP;
22592 			} else if (arg != NULL) {
22593 				mhioc_register_t reg;
22594 				if (ddi_copyin((void *)arg, &reg,
22595 				    sizeof (mhioc_register_t), flag) != 0) {
22596 					err = EFAULT;
22597 				} else {
22598 					err =
22599 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22600 					    ssc, SD_SCSI3_REGISTER,
22601 					    (uchar_t *)&reg);
22602 					if (err != 0)
22603 						goto done_with_assess;
22604 				}
22605 			}
22606 		}
22607 		break;
22608 
22609 	case MHIOCGRP_RESERVE:
22610 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
22611 		if ((err = drv_priv(cred_p)) != EPERM) {
22612 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22613 				err = ENOTSUP;
22614 			} else if (arg != NULL) {
22615 				mhioc_resv_desc_t resv_desc;
22616 				if (ddi_copyin((void *)arg, &resv_desc,
22617 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
22618 					err = EFAULT;
22619 				} else {
22620 					err =
22621 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22622 					    ssc, SD_SCSI3_RESERVE,
22623 					    (uchar_t *)&resv_desc);
22624 					if (err != 0)
22625 						goto done_with_assess;
22626 				}
22627 			}
22628 		}
22629 		break;
22630 
22631 	case MHIOCGRP_PREEMPTANDABORT:
22632 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
22633 		if ((err = drv_priv(cred_p)) != EPERM) {
22634 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22635 				err = ENOTSUP;
22636 			} else if (arg != NULL) {
22637 				mhioc_preemptandabort_t preempt_abort;
22638 				if (ddi_copyin((void *)arg, &preempt_abort,
22639 				    sizeof (mhioc_preemptandabort_t),
22640 				    flag) != 0) {
22641 					err = EFAULT;
22642 				} else {
22643 					err =
22644 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22645 					    ssc, SD_SCSI3_PREEMPTANDABORT,
22646 					    (uchar_t *)&preempt_abort);
22647 					if (err != 0)
22648 						goto done_with_assess;
22649 				}
22650 			}
22651 		}
22652 		break;
22653 
22654 	case MHIOCGRP_REGISTERANDIGNOREKEY:
22655 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n");
22656 		if ((err = drv_priv(cred_p)) != EPERM) {
22657 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22658 				err = ENOTSUP;
22659 			} else if (arg != NULL) {
22660 				mhioc_registerandignorekey_t r_and_i;
22661 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
22662 				    sizeof (mhioc_registerandignorekey_t),
22663 				    flag) != 0) {
22664 					err = EFAULT;
22665 				} else {
22666 					err =
22667 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22668 					    ssc, SD_SCSI3_REGISTERANDIGNOREKEY,
22669 					    (uchar_t *)&r_and_i);
22670 					if (err != 0)
22671 						goto done_with_assess;
22672 				}
22673 			}
22674 		}
22675 		break;
22676 
22677 	case USCSICMD:
22678 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
22679 		cr = ddi_get_cred();
22680 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
22681 			err = EPERM;
22682 		} else {
22683 			enum uio_seg	uioseg;
22684 
22685 			uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE :
22686 			    UIO_USERSPACE;
22687 			if (un->un_f_format_in_progress == TRUE) {
22688 				err = EAGAIN;
22689 				break;
22690 			}
22691 
22692 			err = sd_ssc_send(ssc,
22693 			    (struct uscsi_cmd *)arg,
22694 			    flag, uioseg, SD_PATH_STANDARD);
22695 			if (err != 0)
22696 				goto done_with_assess;
22697 			else
22698 				sd_ssc_assessment(ssc, SD_FMT_STANDARD);
22699 		}
22700 		break;
22701 
22702 	case CDROMPAUSE:
22703 	case CDROMRESUME:
22704 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
22705 		if (!ISCD(un)) {
22706 			err = ENOTTY;
22707 		} else {
22708 			err = sr_pause_resume(dev, cmd);
22709 		}
22710 		break;
22711 
22712 	case CDROMPLAYMSF:
22713 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
22714 		if (!ISCD(un)) {
22715 			err = ENOTTY;
22716 		} else {
22717 			err = sr_play_msf(dev, (caddr_t)arg, flag);
22718 		}
22719 		break;
22720 
22721 	case CDROMPLAYTRKIND:
22722 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
22723 #if defined(__i386) || defined(__amd64)
22724 		/*
22725 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
22726 		 */
22727 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
22728 #else
22729 		if (!ISCD(un)) {
22730 #endif
22731 			err = ENOTTY;
22732 		} else {
22733 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
22734 		}
22735 		break;
22736 
22737 	case CDROMREADTOCHDR:
22738 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
22739 		if (!ISCD(un)) {
22740 			err = ENOTTY;
22741 		} else {
22742 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
22743 		}
22744 		break;
22745 
22746 	case CDROMREADTOCENTRY:
22747 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
22748 		if (!ISCD(un)) {
22749 			err = ENOTTY;
22750 		} else {
22751 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
22752 		}
22753 		break;
22754 
22755 	case CDROMSTOP:
22756 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
22757 		if (!ISCD(un)) {
22758 			err = ENOTTY;
22759 		} else {
22760 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
22761 			    SD_TARGET_STOP, SD_PATH_STANDARD);
22762 			goto done_with_assess;
22763 		}
22764 		break;
22765 
22766 	case CDROMSTART:
22767 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
22768 		if (!ISCD(un)) {
22769 			err = ENOTTY;
22770 		} else {
22771 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
22772 			    SD_TARGET_START, SD_PATH_STANDARD);
22773 			goto done_with_assess;
22774 		}
22775 		break;
22776 
22777 	case CDROMCLOSETRAY:
22778 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
22779 		if (!ISCD(un)) {
22780 			err = ENOTTY;
22781 		} else {
22782 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
22783 			    SD_TARGET_CLOSE, SD_PATH_STANDARD);
22784 			goto done_with_assess;
22785 		}
22786 		break;
22787 
22788 	case FDEJECT:	/* for eject command */
22789 	case DKIOCEJECT:
22790 	case CDROMEJECT:
22791 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
22792 		if (!un->un_f_eject_media_supported) {
22793 			err = ENOTTY;
22794 		} else {
22795 			err = sr_eject(dev);
22796 		}
22797 		break;
22798 
22799 	case CDROMVOLCTRL:
22800 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
22801 		if (!ISCD(un)) {
22802 			err = ENOTTY;
22803 		} else {
22804 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
22805 		}
22806 		break;
22807 
22808 	case CDROMSUBCHNL:
22809 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
22810 		if (!ISCD(un)) {
22811 			err = ENOTTY;
22812 		} else {
22813 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
22814 		}
22815 		break;
22816 
22817 	case CDROMREADMODE2:
22818 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
22819 		if (!ISCD(un)) {
22820 			err = ENOTTY;
22821 		} else if (un->un_f_cfg_is_atapi == TRUE) {
22822 			/*
22823 			 * If the drive supports READ CD, use that instead of
22824 			 * switching the LBA size via a MODE SELECT
22825 			 * Block Descriptor
22826 			 */
22827 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
22828 		} else {
22829 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
22830 		}
22831 		break;
22832 
22833 	case CDROMREADMODE1:
22834 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
22835 		if (!ISCD(un)) {
22836 			err = ENOTTY;
22837 		} else {
22838 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
22839 		}
22840 		break;
22841 
22842 	case CDROMREADOFFSET:
22843 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
22844 		if (!ISCD(un)) {
22845 			err = ENOTTY;
22846 		} else {
22847 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
22848 			    flag);
22849 		}
22850 		break;
22851 
22852 	case CDROMSBLKMODE:
22853 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
22854 		/*
22855 		 * There is no means of changing block size in case of atapi
22856 		 * drives, thus return ENOTTY if drive type is atapi
22857 		 */
22858 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
22859 			err = ENOTTY;
22860 		} else if (un->un_f_mmc_cap == TRUE) {
22861 
22862 			/*
22863 			 * MMC Devices do not support changing the
22864 			 * logical block size
22865 			 *
22866 			 * Note: EINVAL is being returned instead of ENOTTY to
22867 			 * maintain consistancy with the original mmc
22868 			 * driver update.
22869 			 */
22870 			err = EINVAL;
22871 		} else {
22872 			mutex_enter(SD_MUTEX(un));
22873 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
22874 			    (un->un_ncmds_in_transport > 0)) {
22875 				mutex_exit(SD_MUTEX(un));
22876 				err = EINVAL;
22877 			} else {
22878 				mutex_exit(SD_MUTEX(un));
22879 				err = sr_change_blkmode(dev, cmd, arg, flag);
22880 			}
22881 		}
22882 		break;
22883 
22884 	case CDROMGBLKMODE:
22885 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
22886 		if (!ISCD(un)) {
22887 			err = ENOTTY;
22888 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
22889 		    (un->un_f_blockcount_is_valid != FALSE)) {
22890 			/*
22891 			 * Drive is an ATAPI drive so return target block
22892 			 * size for ATAPI drives since we cannot change the
22893 			 * blocksize on ATAPI drives. Used primarily to detect
22894 			 * if an ATAPI cdrom is present.
22895 			 */
22896 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
22897 			    sizeof (int), flag) != 0) {
22898 				err = EFAULT;
22899 			} else {
22900 				err = 0;
22901 			}
22902 
22903 		} else {
22904 			/*
22905 			 * Drive supports changing block sizes via a Mode
22906 			 * Select.
22907 			 */
22908 			err = sr_change_blkmode(dev, cmd, arg, flag);
22909 		}
22910 		break;
22911 
22912 	case CDROMGDRVSPEED:
22913 	case CDROMSDRVSPEED:
22914 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
22915 		if (!ISCD(un)) {
22916 			err = ENOTTY;
22917 		} else if (un->un_f_mmc_cap == TRUE) {
22918 			/*
22919 			 * Note: In the future the driver implementation
22920 			 * for getting and
22921 			 * setting cd speed should entail:
22922 			 * 1) If non-mmc try the Toshiba mode page
22923 			 *    (sr_change_speed)
22924 			 * 2) If mmc but no support for Real Time Streaming try
22925 			 *    the SET CD SPEED (0xBB) command
22926 			 *   (sr_atapi_change_speed)
22927 			 * 3) If mmc and support for Real Time Streaming
22928 			 *    try the GET PERFORMANCE and SET STREAMING
22929 			 *    commands (not yet implemented, 4380808)
22930 			 */
22931 			/*
22932 			 * As per recent MMC spec, CD-ROM speed is variable
22933 			 * and changes with LBA. Since there is no such
22934 			 * things as drive speed now, fail this ioctl.
22935 			 *
22936 			 * Note: EINVAL is returned for consistancy of original
22937 			 * implementation which included support for getting
22938 			 * the drive speed of mmc devices but not setting
22939 			 * the drive speed. Thus EINVAL would be returned
22940 			 * if a set request was made for an mmc device.
22941 			 * We no longer support get or set speed for
22942 			 * mmc but need to remain consistent with regard
22943 			 * to the error code returned.
22944 			 */
22945 			err = EINVAL;
22946 		} else if (un->un_f_cfg_is_atapi == TRUE) {
22947 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
22948 		} else {
22949 			err = sr_change_speed(dev, cmd, arg, flag);
22950 		}
22951 		break;
22952 
22953 	case CDROMCDDA:
22954 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
22955 		if (!ISCD(un)) {
22956 			err = ENOTTY;
22957 		} else {
22958 			err = sr_read_cdda(dev, (void *)arg, flag);
22959 		}
22960 		break;
22961 
22962 	case CDROMCDXA:
22963 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
22964 		if (!ISCD(un)) {
22965 			err = ENOTTY;
22966 		} else {
22967 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
22968 		}
22969 		break;
22970 
22971 	case CDROMSUBCODE:
22972 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
22973 		if (!ISCD(un)) {
22974 			err = ENOTTY;
22975 		} else {
22976 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
22977 		}
22978 		break;
22979 
22980 
22981 #ifdef SDDEBUG
22982 /* RESET/ABORTS testing ioctls */
22983 	case DKIOCRESET: {
22984 		int	reset_level;
22985 
22986 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
22987 			err = EFAULT;
22988 		} else {
22989 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
22990 			    "reset_level = 0x%lx\n", reset_level);
22991 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
22992 				err = 0;
22993 			} else {
22994 				err = EIO;
22995 			}
22996 		}
22997 		break;
22998 	}
22999 
23000 	case DKIOCABORT:
23001 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
23002 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
23003 			err = 0;
23004 		} else {
23005 			err = EIO;
23006 		}
23007 		break;
23008 #endif
23009 
23010 #ifdef SD_FAULT_INJECTION
23011 /* SDIOC FaultInjection testing ioctls */
23012 	case SDIOCSTART:
23013 	case SDIOCSTOP:
23014 	case SDIOCINSERTPKT:
23015 	case SDIOCINSERTXB:
23016 	case SDIOCINSERTUN:
23017 	case SDIOCINSERTARQ:
23018 	case SDIOCPUSH:
23019 	case SDIOCRETRIEVE:
23020 	case SDIOCRUN:
23021 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
23022 		    "SDIOC detected cmd:0x%X:\n", cmd);
23023 		/* call error generator */
23024 		sd_faultinjection_ioctl(cmd, arg, un);
23025 		err = 0;
23026 		break;
23027 
23028 #endif /* SD_FAULT_INJECTION */
23029 
23030 	case DKIOCFLUSHWRITECACHE:
23031 		{
23032 			struct dk_callback *dkc = (struct dk_callback *)arg;
23033 
23034 			mutex_enter(SD_MUTEX(un));
23035 			if (!un->un_f_sync_cache_supported ||
23036 			    !un->un_f_write_cache_enabled) {
23037 				err = un->un_f_sync_cache_supported ?
23038 				    0 : ENOTSUP;
23039 				mutex_exit(SD_MUTEX(un));
23040 				if ((flag & FKIOCTL) && dkc != NULL &&
23041 				    dkc->dkc_callback != NULL) {
23042 					(*dkc->dkc_callback)(dkc->dkc_cookie,
23043 					    err);
23044 					/*
23045 					 * Did callback and reported error.
23046 					 * Since we did a callback, ioctl
23047 					 * should return 0.
23048 					 */
23049 					err = 0;
23050 				}
23051 				break;
23052 			}
23053 			mutex_exit(SD_MUTEX(un));
23054 
23055 			if ((flag & FKIOCTL) && dkc != NULL &&
23056 			    dkc->dkc_callback != NULL) {
23057 				/* async SYNC CACHE request */
23058 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
23059 			} else {
23060 				/* synchronous SYNC CACHE request */
23061 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
23062 			}
23063 		}
23064 		break;
23065 
23066 	case DKIOCGETWCE: {
23067 
23068 		int wce;
23069 
23070 		if ((err = sd_get_write_cache_enabled(ssc, &wce)) != 0) {
23071 			break;
23072 		}
23073 
23074 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
23075 			err = EFAULT;
23076 		}
23077 		break;
23078 	}
23079 
23080 	case DKIOCSETWCE: {
23081 
23082 		int wce, sync_supported;
23083 		int cur_wce = 0;
23084 
23085 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
23086 			err = EFAULT;
23087 			break;
23088 		}
23089 
23090 		/*
23091 		 * Synchronize multiple threads trying to enable
23092 		 * or disable the cache via the un_f_wcc_cv
23093 		 * condition variable.
23094 		 */
23095 		mutex_enter(SD_MUTEX(un));
23096 
23097 		/*
23098 		 * Don't allow the cache to be enabled if the
23099 		 * config file has it disabled.
23100 		 */
23101 		if (un->un_f_opt_disable_cache && wce) {
23102 			mutex_exit(SD_MUTEX(un));
23103 			err = EINVAL;
23104 			break;
23105 		}
23106 
23107 		/*
23108 		 * Wait for write cache change in progress
23109 		 * bit to be clear before proceeding.
23110 		 */
23111 		while (un->un_f_wcc_inprog)
23112 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
23113 
23114 		un->un_f_wcc_inprog = 1;
23115 
23116 		mutex_exit(SD_MUTEX(un));
23117 
23118 		/*
23119 		 * Get the current write cache state
23120 		 */
23121 		if ((err = sd_get_write_cache_enabled(ssc, &cur_wce)) != 0) {
23122 			mutex_enter(SD_MUTEX(un));
23123 			un->un_f_wcc_inprog = 0;
23124 			cv_broadcast(&un->un_wcc_cv);
23125 			mutex_exit(SD_MUTEX(un));
23126 			break;
23127 		}
23128 
23129 		mutex_enter(SD_MUTEX(un));
23130 		un->un_f_write_cache_enabled = (cur_wce != 0);
23131 
23132 		if (un->un_f_write_cache_enabled && wce == 0) {
23133 			/*
23134 			 * Disable the write cache.  Don't clear
23135 			 * un_f_write_cache_enabled until after
23136 			 * the mode select and flush are complete.
23137 			 */
23138 			sync_supported = un->un_f_sync_cache_supported;
23139 
23140 			/*
23141 			 * If cache flush is suppressed, we assume that the
23142 			 * controller firmware will take care of managing the
23143 			 * write cache for us: no need to explicitly
23144 			 * disable it.
23145 			 */
23146 			if (!un->un_f_suppress_cache_flush) {
23147 				mutex_exit(SD_MUTEX(un));
23148 				if ((err = sd_cache_control(ssc,
23149 				    SD_CACHE_NOCHANGE,
23150 				    SD_CACHE_DISABLE)) == 0 &&
23151 				    sync_supported) {
23152 					err = sd_send_scsi_SYNCHRONIZE_CACHE(un,
23153 					    NULL);
23154 				}
23155 			} else {
23156 				mutex_exit(SD_MUTEX(un));
23157 			}
23158 
23159 			mutex_enter(SD_MUTEX(un));
23160 			if (err == 0) {
23161 				un->un_f_write_cache_enabled = 0;
23162 			}
23163 
23164 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
23165 			/*
23166 			 * Set un_f_write_cache_enabled first, so there is
23167 			 * no window where the cache is enabled, but the
23168 			 * bit says it isn't.
23169 			 */
23170 			un->un_f_write_cache_enabled = 1;
23171 
23172 			/*
23173 			 * If cache flush is suppressed, we assume that the
23174 			 * controller firmware will take care of managing the
23175 			 * write cache for us: no need to explicitly
23176 			 * enable it.
23177 			 */
23178 			if (!un->un_f_suppress_cache_flush) {
23179 				mutex_exit(SD_MUTEX(un));
23180 				err = sd_cache_control(ssc, SD_CACHE_NOCHANGE,
23181 				    SD_CACHE_ENABLE);
23182 			} else {
23183 				mutex_exit(SD_MUTEX(un));
23184 			}
23185 
23186 			mutex_enter(SD_MUTEX(un));
23187 
23188 			if (err) {
23189 				un->un_f_write_cache_enabled = 0;
23190 			}
23191 		}
23192 
23193 		un->un_f_wcc_inprog = 0;
23194 		cv_broadcast(&un->un_wcc_cv);
23195 		mutex_exit(SD_MUTEX(un));
23196 		break;
23197 	}
23198 
23199 	default:
23200 		err = ENOTTY;
23201 		break;
23202 	}
23203 	mutex_enter(SD_MUTEX(un));
23204 	un->un_ncmds_in_driver--;
23205 	ASSERT(un->un_ncmds_in_driver >= 0);
23206 	mutex_exit(SD_MUTEX(un));
23207 
23208 
23209 done_without_assess:
23210 	sd_ssc_fini(ssc);
23211 
23212 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
23213 	return (err);
23214 
23215 done_with_assess:
23216 	mutex_enter(SD_MUTEX(un));
23217 	un->un_ncmds_in_driver--;
23218 	ASSERT(un->un_ncmds_in_driver >= 0);
23219 	mutex_exit(SD_MUTEX(un));
23220 
23221 done_quick_assess:
23222 	if (err != 0)
23223 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23224 	/* Uninitialize sd_ssc_t pointer */
23225 	sd_ssc_fini(ssc);
23226 
23227 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
23228 	return (err);
23229 }
23230 
23231 
23232 /*
23233  *    Function: sd_dkio_ctrl_info
23234  *
23235  * Description: This routine is the driver entry point for handling controller
23236  *		information ioctl requests (DKIOCINFO).
23237  *
23238  *   Arguments: dev  - the device number
23239  *		arg  - pointer to user provided dk_cinfo structure
23240  *		       specifying the controller type and attributes.
23241  *		flag - this argument is a pass through to ddi_copyxxx()
23242  *		       directly from the mode argument of ioctl().
23243  *
23244  * Return Code: 0
23245  *		EFAULT
23246  *		ENXIO
23247  */
23248 
23249 static int
23250 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
23251 {
23252 	struct sd_lun	*un = NULL;
23253 	struct dk_cinfo	*info;
23254 	dev_info_t	*pdip;
23255 	int		lun, tgt;
23256 
23257 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23258 		return (ENXIO);
23259 	}
23260 
23261 	info = (struct dk_cinfo *)
23262 	    kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
23263 
23264 	switch (un->un_ctype) {
23265 	case CTYPE_CDROM:
23266 		info->dki_ctype = DKC_CDROM;
23267 		break;
23268 	default:
23269 		info->dki_ctype = DKC_SCSI_CCS;
23270 		break;
23271 	}
23272 	pdip = ddi_get_parent(SD_DEVINFO(un));
23273 	info->dki_cnum = ddi_get_instance(pdip);
23274 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
23275 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
23276 	} else {
23277 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
23278 		    DK_DEVLEN - 1);
23279 	}
23280 
23281 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
23282 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
23283 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
23284 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
23285 
23286 	/* Unit Information */
23287 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
23288 	info->dki_slave = ((tgt << 3) | lun);
23289 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
23290 	    DK_DEVLEN - 1);
23291 	info->dki_flags = DKI_FMTVOL;
23292 	info->dki_partition = SDPART(dev);
23293 
23294 	/* Max Transfer size of this device in blocks */
23295 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
23296 	info->dki_addr = 0;
23297 	info->dki_space = 0;
23298 	info->dki_prio = 0;
23299 	info->dki_vec = 0;
23300 
23301 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
23302 		kmem_free(info, sizeof (struct dk_cinfo));
23303 		return (EFAULT);
23304 	} else {
23305 		kmem_free(info, sizeof (struct dk_cinfo));
23306 		return (0);
23307 	}
23308 }
23309 
23310 /*
23311  *    Function: sd_get_media_info_com
23312  *
23313  * Description: This routine returns the information required to populate
23314  *		the fields for the dk_minfo/dk_minfo_ext structures.
23315  *
23316  *   Arguments: dev		- the device number
23317  *		dki_media_type	- media_type
23318  *		dki_lbsize	- logical block size
23319  *		dki_capacity	- capacity in blocks
23320  *		dki_pbsize	- physical block size (if requested)
23321  *
23322  * Return Code: 0
23323  *		EACCESS
23324  *		EFAULT
23325  *		ENXIO
23326  *		EIO
23327  */
23328 static int
23329 sd_get_media_info_com(dev_t dev, uint_t *dki_media_type, uint_t *dki_lbsize,
23330 	diskaddr_t *dki_capacity, uint_t *dki_pbsize)
23331 {
23332 	struct sd_lun		*un = NULL;
23333 	struct uscsi_cmd	com;
23334 	struct scsi_inquiry	*sinq;
23335 	u_longlong_t		media_capacity;
23336 	uint64_t		capacity;
23337 	uint_t			lbasize;
23338 	uint_t			pbsize;
23339 	uchar_t			*out_data;
23340 	uchar_t			*rqbuf;
23341 	int			rval = 0;
23342 	int			rtn;
23343 	sd_ssc_t		*ssc;
23344 
23345 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
23346 	    (un->un_state == SD_STATE_OFFLINE)) {
23347 		return (ENXIO);
23348 	}
23349 
23350 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info_com: entry\n");
23351 
23352 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
23353 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
23354 	ssc = sd_ssc_init(un);
23355 
23356 	/* Issue a TUR to determine if the drive is ready with media present */
23357 	rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_CHECK_FOR_MEDIA);
23358 	if (rval == ENXIO) {
23359 		goto done;
23360 	} else if (rval != 0) {
23361 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23362 	}
23363 
23364 	/* Now get configuration data */
23365 	if (ISCD(un)) {
23366 		*dki_media_type = DK_CDROM;
23367 
23368 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
23369 		if (un->un_f_mmc_cap == TRUE) {
23370 			rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf,
23371 			    SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN,
23372 			    SD_PATH_STANDARD);
23373 
23374 			if (rtn) {
23375 				/*
23376 				 * We ignore all failures for CD and need to
23377 				 * put the assessment before processing code
23378 				 * to avoid missing assessment for FMA.
23379 				 */
23380 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23381 				/*
23382 				 * Failed for other than an illegal request
23383 				 * or command not supported
23384 				 */
23385 				if ((com.uscsi_status == STATUS_CHECK) &&
23386 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
23387 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
23388 					    (rqbuf[12] != 0x20)) {
23389 						rval = EIO;
23390 						goto no_assessment;
23391 					}
23392 				}
23393 			} else {
23394 				/*
23395 				 * The GET CONFIGURATION command succeeded
23396 				 * so set the media type according to the
23397 				 * returned data
23398 				 */
23399 				*dki_media_type = out_data[6];
23400 				*dki_media_type <<= 8;
23401 				*dki_media_type |= out_data[7];
23402 			}
23403 		}
23404 	} else {
23405 		/*
23406 		 * The profile list is not available, so we attempt to identify
23407 		 * the media type based on the inquiry data
23408 		 */
23409 		sinq = un->un_sd->sd_inq;
23410 		if ((sinq->inq_dtype == DTYPE_DIRECT) ||
23411 		    (sinq->inq_dtype == DTYPE_OPTICAL)) {
23412 			/* This is a direct access device  or optical disk */
23413 			*dki_media_type = DK_FIXED_DISK;
23414 
23415 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
23416 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
23417 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
23418 					*dki_media_type = DK_ZIP;
23419 				} else if (
23420 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
23421 					*dki_media_type = DK_JAZ;
23422 				}
23423 			}
23424 		} else {
23425 			/*
23426 			 * Not a CD, direct access or optical disk so return
23427 			 * unknown media
23428 			 */
23429 			*dki_media_type = DK_UNKNOWN;
23430 		}
23431 	}
23432 
23433 	/*
23434 	 * Now read the capacity so we can provide the lbasize,
23435 	 * pbsize and capacity.
23436 	 */
23437 	if (dki_pbsize && un->un_f_descr_format_supported)
23438 		rval = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, &lbasize,
23439 		    &pbsize, SD_PATH_DIRECT);
23440 
23441 	if (dki_pbsize == NULL || rval != 0 ||
23442 	    !un->un_f_descr_format_supported) {
23443 		rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
23444 		    SD_PATH_DIRECT);
23445 
23446 		switch (rval) {
23447 		case 0:
23448 			if (un->un_f_enable_rmw &&
23449 			    un->un_phy_blocksize != 0) {
23450 				pbsize = un->un_phy_blocksize;
23451 			} else {
23452 				pbsize = lbasize;
23453 			}
23454 			media_capacity = capacity;
23455 
23456 			/*
23457 			 * sd_send_scsi_READ_CAPACITY() reports capacity in
23458 			 * un->un_sys_blocksize chunks. So we need to convert
23459 			 * it into cap.lbsize chunks.
23460 			 */
23461 			if (un->un_f_has_removable_media) {
23462 				media_capacity *= un->un_sys_blocksize;
23463 				media_capacity /= lbasize;
23464 			}
23465 			break;
23466 		case EACCES:
23467 			rval = EACCES;
23468 			goto done;
23469 		default:
23470 			rval = EIO;
23471 			goto done;
23472 		}
23473 	} else {
23474 		if (un->un_f_enable_rmw &&
23475 		    !ISP2(pbsize % DEV_BSIZE)) {
23476 			pbsize = SSD_SECSIZE;
23477 		} else if (!ISP2(lbasize % DEV_BSIZE) ||
23478 		    !ISP2(pbsize % DEV_BSIZE)) {
23479 			pbsize = lbasize = DEV_BSIZE;
23480 		}
23481 		media_capacity = capacity;
23482 	}
23483 
23484 	/*
23485 	 * If lun is expanded dynamically, update the un structure.
23486 	 */
23487 	mutex_enter(SD_MUTEX(un));
23488 	if ((un->un_f_blockcount_is_valid == TRUE) &&
23489 	    (un->un_f_tgt_blocksize_is_valid == TRUE) &&
23490 	    (capacity > un->un_blockcount)) {
23491 		un->un_f_expnevent = B_FALSE;
23492 		sd_update_block_info(un, lbasize, capacity);
23493 	}
23494 	mutex_exit(SD_MUTEX(un));
23495 
23496 	*dki_lbsize = lbasize;
23497 	*dki_capacity = media_capacity;
23498 	if (dki_pbsize)
23499 		*dki_pbsize = pbsize;
23500 
23501 done:
23502 	if (rval != 0) {
23503 		if (rval == EIO)
23504 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23505 		else
23506 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23507 	}
23508 no_assessment:
23509 	sd_ssc_fini(ssc);
23510 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
23511 	kmem_free(rqbuf, SENSE_LENGTH);
23512 	return (rval);
23513 }
23514 
23515 /*
23516  *    Function: sd_get_media_info
23517  *
23518  * Description: This routine is the driver entry point for handling ioctl
23519  *		requests for the media type or command set profile used by the
23520  *		drive to operate on the media (DKIOCGMEDIAINFO).
23521  *
23522  *   Arguments: dev	- the device number
23523  *		arg	- pointer to user provided dk_minfo structure
23524  *			  specifying the media type, logical block size and
23525  *			  drive capacity.
23526  *		flag	- this argument is a pass through to ddi_copyxxx()
23527  *			  directly from the mode argument of ioctl().
23528  *
23529  * Return Code: returns the value from sd_get_media_info_com
23530  */
23531 static int
23532 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
23533 {
23534 	struct dk_minfo		mi;
23535 	int			rval;
23536 
23537 	rval = sd_get_media_info_com(dev, &mi.dki_media_type,
23538 	    &mi.dki_lbsize, &mi.dki_capacity, NULL);
23539 
23540 	if (rval)
23541 		return (rval);
23542 	if (ddi_copyout(&mi, arg, sizeof (struct dk_minfo), flag))
23543 		rval = EFAULT;
23544 	return (rval);
23545 }
23546 
23547 /*
23548  *    Function: sd_get_media_info_ext
23549  *
23550  * Description: This routine is the driver entry point for handling ioctl
23551  *		requests for the media type or command set profile used by the
23552  *		drive to operate on the media (DKIOCGMEDIAINFOEXT). The
23553  *		difference this ioctl and DKIOCGMEDIAINFO is the return value
23554  *		of this ioctl contains both logical block size and physical
23555  *		block size.
23556  *
23557  *
23558  *   Arguments: dev	- the device number
23559  *		arg	- pointer to user provided dk_minfo_ext structure
23560  *			  specifying the media type, logical block size,
23561  *			  physical block size and disk capacity.
23562  *		flag	- this argument is a pass through to ddi_copyxxx()
23563  *			  directly from the mode argument of ioctl().
23564  *
23565  * Return Code: returns the value from sd_get_media_info_com
23566  */
23567 static int
23568 sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag)
23569 {
23570 	struct dk_minfo_ext	mie;
23571 	int			rval = 0;
23572 
23573 	rval = sd_get_media_info_com(dev, &mie.dki_media_type,
23574 	    &mie.dki_lbsize, &mie.dki_capacity, &mie.dki_pbsize);
23575 
23576 	if (rval)
23577 		return (rval);
23578 	if (ddi_copyout(&mie, arg, sizeof (struct dk_minfo_ext), flag))
23579 		rval = EFAULT;
23580 	return (rval);
23581 
23582 }
23583 
23584 /*
23585  *    Function: sd_watch_request_submit
23586  *
23587  * Description: Call scsi_watch_request_submit or scsi_mmc_watch_request_submit
23588  *		depending on which is supported by device.
23589  */
23590 static opaque_t
23591 sd_watch_request_submit(struct sd_lun *un)
23592 {
23593 	dev_t			dev;
23594 
23595 	/* All submissions are unified to use same device number */
23596 	dev = sd_make_device(SD_DEVINFO(un));
23597 
23598 	if (un->un_f_mmc_cap && un->un_f_mmc_gesn_polling) {
23599 		return (scsi_mmc_watch_request_submit(SD_SCSI_DEVP(un),
23600 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
23601 		    (caddr_t)dev));
23602 	} else {
23603 		return (scsi_watch_request_submit(SD_SCSI_DEVP(un),
23604 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
23605 		    (caddr_t)dev));
23606 	}
23607 }
23608 
23609 
23610 /*
23611  *    Function: sd_check_media
23612  *
23613  * Description: This utility routine implements the functionality for the
23614  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
23615  *		driver state changes from that specified by the user
23616  *		(inserted or ejected). For example, if the user specifies
23617  *		DKIO_EJECTED and the current media state is inserted this
23618  *		routine will immediately return DKIO_INSERTED. However, if the
23619  *		current media state is not inserted the user thread will be
23620  *		blocked until the drive state changes. If DKIO_NONE is specified
23621  *		the user thread will block until a drive state change occurs.
23622  *
23623  *   Arguments: dev  - the device number
23624  *		state  - user pointer to a dkio_state, updated with the current
23625  *			drive state at return.
23626  *
23627  * Return Code: ENXIO
23628  *		EIO
23629  *		EAGAIN
23630  *		EINTR
23631  */
23632 
23633 static int
23634 sd_check_media(dev_t dev, enum dkio_state state)
23635 {
23636 	struct sd_lun		*un = NULL;
23637 	enum dkio_state		prev_state;
23638 	opaque_t		token = NULL;
23639 	int			rval = 0;
23640 	sd_ssc_t		*ssc;
23641 
23642 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23643 		return (ENXIO);
23644 	}
23645 
23646 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
23647 
23648 	ssc = sd_ssc_init(un);
23649 
23650 	mutex_enter(SD_MUTEX(un));
23651 
23652 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
23653 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
23654 
23655 	prev_state = un->un_mediastate;
23656 
23657 	/* is there anything to do? */
23658 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
23659 		/*
23660 		 * submit the request to the scsi_watch service;
23661 		 * scsi_media_watch_cb() does the real work
23662 		 */
23663 		mutex_exit(SD_MUTEX(un));
23664 
23665 		/*
23666 		 * This change handles the case where a scsi watch request is
23667 		 * added to a device that is powered down. To accomplish this
23668 		 * we power up the device before adding the scsi watch request,
23669 		 * since the scsi watch sends a TUR directly to the device
23670 		 * which the device cannot handle if it is powered down.
23671 		 */
23672 		if (sd_pm_entry(un) != DDI_SUCCESS) {
23673 			mutex_enter(SD_MUTEX(un));
23674 			goto done;
23675 		}
23676 
23677 		token = sd_watch_request_submit(un);
23678 
23679 		sd_pm_exit(un);
23680 
23681 		mutex_enter(SD_MUTEX(un));
23682 		if (token == NULL) {
23683 			rval = EAGAIN;
23684 			goto done;
23685 		}
23686 
23687 		/*
23688 		 * This is a special case IOCTL that doesn't return
23689 		 * until the media state changes. Routine sdpower
23690 		 * knows about and handles this so don't count it
23691 		 * as an active cmd in the driver, which would
23692 		 * keep the device busy to the pm framework.
23693 		 * If the count isn't decremented the device can't
23694 		 * be powered down.
23695 		 */
23696 		un->un_ncmds_in_driver--;
23697 		ASSERT(un->un_ncmds_in_driver >= 0);
23698 
23699 		/*
23700 		 * if a prior request had been made, this will be the same
23701 		 * token, as scsi_watch was designed that way.
23702 		 */
23703 		un->un_swr_token = token;
23704 		un->un_specified_mediastate = state;
23705 
23706 		/*
23707 		 * now wait for media change
23708 		 * we will not be signalled unless mediastate == state but it is
23709 		 * still better to test for this condition, since there is a
23710 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
23711 		 */
23712 		SD_TRACE(SD_LOG_COMMON, un,
23713 		    "sd_check_media: waiting for media state change\n");
23714 		while (un->un_mediastate == state) {
23715 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
23716 				SD_TRACE(SD_LOG_COMMON, un,
23717 				    "sd_check_media: waiting for media state "
23718 				    "was interrupted\n");
23719 				un->un_ncmds_in_driver++;
23720 				rval = EINTR;
23721 				goto done;
23722 			}
23723 			SD_TRACE(SD_LOG_COMMON, un,
23724 			    "sd_check_media: received signal, state=%x\n",
23725 			    un->un_mediastate);
23726 		}
23727 		/*
23728 		 * Inc the counter to indicate the device once again
23729 		 * has an active outstanding cmd.
23730 		 */
23731 		un->un_ncmds_in_driver++;
23732 	}
23733 
23734 	/* invalidate geometry */
23735 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
23736 		sr_ejected(un);
23737 	}
23738 
23739 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
23740 		uint64_t	capacity;
23741 		uint_t		lbasize;
23742 
23743 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
23744 		mutex_exit(SD_MUTEX(un));
23745 		/*
23746 		 * Since the following routines use SD_PATH_DIRECT, we must
23747 		 * call PM directly before the upcoming disk accesses. This
23748 		 * may cause the disk to be power/spin up.
23749 		 */
23750 
23751 		if (sd_pm_entry(un) == DDI_SUCCESS) {
23752 			rval = sd_send_scsi_READ_CAPACITY(ssc,
23753 			    &capacity, &lbasize, SD_PATH_DIRECT);
23754 			if (rval != 0) {
23755 				sd_pm_exit(un);
23756 				if (rval == EIO)
23757 					sd_ssc_assessment(ssc,
23758 					    SD_FMT_STATUS_CHECK);
23759 				else
23760 					sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23761 				mutex_enter(SD_MUTEX(un));
23762 				goto done;
23763 			}
23764 		} else {
23765 			rval = EIO;
23766 			mutex_enter(SD_MUTEX(un));
23767 			goto done;
23768 		}
23769 		mutex_enter(SD_MUTEX(un));
23770 
23771 		sd_update_block_info(un, lbasize, capacity);
23772 
23773 		/*
23774 		 *  Check if the media in the device is writable or not
23775 		 */
23776 		if (ISCD(un)) {
23777 			sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
23778 		}
23779 
23780 		mutex_exit(SD_MUTEX(un));
23781 		cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
23782 		if ((cmlb_validate(un->un_cmlbhandle, 0,
23783 		    (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) {
23784 			sd_set_pstats(un);
23785 			SD_TRACE(SD_LOG_IO_PARTITION, un,
23786 			    "sd_check_media: un:0x%p pstats created and "
23787 			    "set\n", un);
23788 		}
23789 
23790 		rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
23791 		    SD_PATH_DIRECT);
23792 
23793 		sd_pm_exit(un);
23794 
23795 		if (rval != 0) {
23796 			if (rval == EIO)
23797 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23798 			else
23799 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23800 		}
23801 
23802 		mutex_enter(SD_MUTEX(un));
23803 	}
23804 done:
23805 	sd_ssc_fini(ssc);
23806 	un->un_f_watcht_stopped = FALSE;
23807 	if (token != NULL && un->un_swr_token != NULL) {
23808 		/*
23809 		 * Use of this local token and the mutex ensures that we avoid
23810 		 * some race conditions associated with terminating the
23811 		 * scsi watch.
23812 		 */
23813 		token = un->un_swr_token;
23814 		mutex_exit(SD_MUTEX(un));
23815 		(void) scsi_watch_request_terminate(token,
23816 		    SCSI_WATCH_TERMINATE_WAIT);
23817 		if (scsi_watch_get_ref_count(token) == 0) {
23818 			mutex_enter(SD_MUTEX(un));
23819 			un->un_swr_token = (opaque_t)NULL;
23820 		} else {
23821 			mutex_enter(SD_MUTEX(un));
23822 		}
23823 	}
23824 
23825 	/*
23826 	 * Update the capacity kstat value, if no media previously
23827 	 * (capacity kstat is 0) and a media has been inserted
23828 	 * (un_f_blockcount_is_valid == TRUE)
23829 	 */
23830 	if (un->un_errstats) {
23831 		struct sd_errstats	*stp = NULL;
23832 
23833 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
23834 		if ((stp->sd_capacity.value.ui64 == 0) &&
23835 		    (un->un_f_blockcount_is_valid == TRUE)) {
23836 			stp->sd_capacity.value.ui64 =
23837 			    (uint64_t)((uint64_t)un->un_blockcount *
23838 			    un->un_sys_blocksize);
23839 		}
23840 	}
23841 	mutex_exit(SD_MUTEX(un));
23842 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
23843 	return (rval);
23844 }
23845 
23846 
23847 /*
23848  *    Function: sd_delayed_cv_broadcast
23849  *
23850  * Description: Delayed cv_broadcast to allow for target to recover from media
23851  *		insertion.
23852  *
23853  *   Arguments: arg - driver soft state (unit) structure
23854  */
23855 
23856 static void
23857 sd_delayed_cv_broadcast(void *arg)
23858 {
23859 	struct sd_lun *un = arg;
23860 
23861 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
23862 
23863 	mutex_enter(SD_MUTEX(un));
23864 	un->un_dcvb_timeid = NULL;
23865 	cv_broadcast(&un->un_state_cv);
23866 	mutex_exit(SD_MUTEX(un));
23867 }
23868 
23869 
23870 /*
23871  *    Function: sd_media_watch_cb
23872  *
23873  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
23874  *		routine processes the TUR sense data and updates the driver
23875  *		state if a transition has occurred. The user thread
23876  *		(sd_check_media) is then signalled.
23877  *
23878  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
23879  *			among multiple watches that share this callback function
23880  *		resultp - scsi watch facility result packet containing scsi
23881  *			  packet, status byte and sense data
23882  *
23883  * Return Code: 0 for success, -1 for failure
23884  */
23885 
23886 static int
23887 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
23888 {
23889 	struct sd_lun			*un;
23890 	struct scsi_status		*statusp = resultp->statusp;
23891 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
23892 	enum dkio_state			state = DKIO_NONE;
23893 	dev_t				dev = (dev_t)arg;
23894 	uchar_t				actual_sense_length;
23895 	uint8_t				skey, asc, ascq;
23896 
23897 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23898 		return (-1);
23899 	}
23900 	actual_sense_length = resultp->actual_sense_length;
23901 
23902 	mutex_enter(SD_MUTEX(un));
23903 	SD_TRACE(SD_LOG_COMMON, un,
23904 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
23905 	    *((char *)statusp), (void *)sensep, actual_sense_length);
23906 
23907 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
23908 		un->un_mediastate = DKIO_DEV_GONE;
23909 		cv_broadcast(&un->un_state_cv);
23910 		mutex_exit(SD_MUTEX(un));
23911 
23912 		return (0);
23913 	}
23914 
23915 	if (un->un_f_mmc_cap && un->un_f_mmc_gesn_polling) {
23916 		if (sd_gesn_media_data_valid(resultp->mmc_data)) {
23917 			if ((resultp->mmc_data[5] &
23918 			    SD_GESN_MEDIA_EVENT_STATUS_PRESENT) != 0) {
23919 				state = DKIO_INSERTED;
23920 			} else {
23921 				state = DKIO_EJECTED;
23922 			}
23923 			if ((resultp->mmc_data[4] & SD_GESN_MEDIA_EVENT_CODE) ==
23924 			    SD_GESN_MEDIA_EVENT_EJECTREQUEST) {
23925 				sd_log_eject_request_event(un, KM_NOSLEEP);
23926 			}
23927 		}
23928 	} else if (sensep != NULL) {
23929 		/*
23930 		 * If there was a check condition then sensep points to valid
23931 		 * sense data. If status was not a check condition but a
23932 		 * reservation or busy status then the new state is DKIO_NONE.
23933 		 */
23934 		skey = scsi_sense_key(sensep);
23935 		asc = scsi_sense_asc(sensep);
23936 		ascq = scsi_sense_ascq(sensep);
23937 
23938 		SD_INFO(SD_LOG_COMMON, un,
23939 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
23940 		    skey, asc, ascq);
23941 		/* This routine only uses up to 13 bytes of sense data. */
23942 		if (actual_sense_length >= 13) {
23943 			if (skey == KEY_UNIT_ATTENTION) {
23944 				if (asc == 0x28) {
23945 					state = DKIO_INSERTED;
23946 				}
23947 			} else if (skey == KEY_NOT_READY) {
23948 				/*
23949 				 * Sense data of 02/06/00 means that the
23950 				 * drive could not read the media (No
23951 				 * reference position found). In this case
23952 				 * to prevent a hang on the DKIOCSTATE IOCTL
23953 				 * we set the media state to DKIO_INSERTED.
23954 				 */
23955 				if (asc == 0x06 && ascq == 0x00)
23956 					state = DKIO_INSERTED;
23957 
23958 				/*
23959 				 * if 02/04/02  means that the host
23960 				 * should send start command. Explicitly
23961 				 * leave the media state as is
23962 				 * (inserted) as the media is inserted
23963 				 * and host has stopped device for PM
23964 				 * reasons. Upon next true read/write
23965 				 * to this media will bring the
23966 				 * device to the right state good for
23967 				 * media access.
23968 				 */
23969 				if (asc == 0x3a) {
23970 					state = DKIO_EJECTED;
23971 				} else {
23972 					/*
23973 					 * If the drive is busy with an
23974 					 * operation or long write, keep the
23975 					 * media in an inserted state.
23976 					 */
23977 
23978 					if ((asc == 0x04) &&
23979 					    ((ascq == 0x02) ||
23980 					    (ascq == 0x07) ||
23981 					    (ascq == 0x08))) {
23982 						state = DKIO_INSERTED;
23983 					}
23984 				}
23985 			} else if (skey == KEY_NO_SENSE) {
23986 				if ((asc == 0x00) && (ascq == 0x00)) {
23987 					/*
23988 					 * Sense Data 00/00/00 does not provide
23989 					 * any information about the state of
23990 					 * the media. Ignore it.
23991 					 */
23992 					mutex_exit(SD_MUTEX(un));
23993 					return (0);
23994 				}
23995 			}
23996 		}
23997 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
23998 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
23999 		state = DKIO_INSERTED;
24000 	}
24001 
24002 	SD_TRACE(SD_LOG_COMMON, un,
24003 	    "sd_media_watch_cb: state=%x, specified=%x\n",
24004 	    state, un->un_specified_mediastate);
24005 
24006 	/*
24007 	 * now signal the waiting thread if this is *not* the specified state;
24008 	 * delay the signal if the state is DKIO_INSERTED to allow the target
24009 	 * to recover
24010 	 */
24011 	if (state != un->un_specified_mediastate) {
24012 		un->un_mediastate = state;
24013 		if (state == DKIO_INSERTED) {
24014 			/*
24015 			 * delay the signal to give the drive a chance
24016 			 * to do what it apparently needs to do
24017 			 */
24018 			SD_TRACE(SD_LOG_COMMON, un,
24019 			    "sd_media_watch_cb: delayed cv_broadcast\n");
24020 			if (un->un_dcvb_timeid == NULL) {
24021 				un->un_dcvb_timeid =
24022 				    timeout(sd_delayed_cv_broadcast, un,
24023 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
24024 			}
24025 		} else {
24026 			SD_TRACE(SD_LOG_COMMON, un,
24027 			    "sd_media_watch_cb: immediate cv_broadcast\n");
24028 			cv_broadcast(&un->un_state_cv);
24029 		}
24030 	}
24031 	mutex_exit(SD_MUTEX(un));
24032 	return (0);
24033 }
24034 
24035 
24036 /*
24037  *    Function: sd_dkio_get_temp
24038  *
24039  * Description: This routine is the driver entry point for handling ioctl
24040  *		requests to get the disk temperature.
24041  *
24042  *   Arguments: dev  - the device number
24043  *		arg  - pointer to user provided dk_temperature structure.
24044  *		flag - this argument is a pass through to ddi_copyxxx()
24045  *		       directly from the mode argument of ioctl().
24046  *
24047  * Return Code: 0
24048  *		EFAULT
24049  *		ENXIO
24050  *		EAGAIN
24051  */
24052 
24053 static int
24054 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
24055 {
24056 	struct sd_lun		*un = NULL;
24057 	struct dk_temperature	*dktemp = NULL;
24058 	uchar_t			*temperature_page;
24059 	int			rval = 0;
24060 	int			path_flag = SD_PATH_STANDARD;
24061 	sd_ssc_t		*ssc;
24062 
24063 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24064 		return (ENXIO);
24065 	}
24066 
24067 	ssc = sd_ssc_init(un);
24068 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
24069 
24070 	/* copyin the disk temp argument to get the user flags */
24071 	if (ddi_copyin((void *)arg, dktemp,
24072 	    sizeof (struct dk_temperature), flag) != 0) {
24073 		rval = EFAULT;
24074 		goto done;
24075 	}
24076 
24077 	/* Initialize the temperature to invalid. */
24078 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24079 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24080 
24081 	/*
24082 	 * Note: Investigate removing the "bypass pm" semantic.
24083 	 * Can we just bypass PM always?
24084 	 */
24085 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
24086 		path_flag = SD_PATH_DIRECT;
24087 		ASSERT(!mutex_owned(&un->un_pm_mutex));
24088 		mutex_enter(&un->un_pm_mutex);
24089 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
24090 			/*
24091 			 * If DKT_BYPASS_PM is set, and the drive happens to be
24092 			 * in low power mode, we can not wake it up, Need to
24093 			 * return EAGAIN.
24094 			 */
24095 			mutex_exit(&un->un_pm_mutex);
24096 			rval = EAGAIN;
24097 			goto done;
24098 		} else {
24099 			/*
24100 			 * Indicate to PM the device is busy. This is required
24101 			 * to avoid a race - i.e. the ioctl is issuing a
24102 			 * command and the pm framework brings down the device
24103 			 * to low power mode (possible power cut-off on some
24104 			 * platforms).
24105 			 */
24106 			mutex_exit(&un->un_pm_mutex);
24107 			if (sd_pm_entry(un) != DDI_SUCCESS) {
24108 				rval = EAGAIN;
24109 				goto done;
24110 			}
24111 		}
24112 	}
24113 
24114 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
24115 
24116 	rval = sd_send_scsi_LOG_SENSE(ssc, temperature_page,
24117 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag);
24118 	if (rval != 0)
24119 		goto done2;
24120 
24121 	/*
24122 	 * For the current temperature verify that the parameter length is 0x02
24123 	 * and the parameter code is 0x00
24124 	 */
24125 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
24126 	    (temperature_page[5] == 0x00)) {
24127 		if (temperature_page[9] == 0xFF) {
24128 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24129 		} else {
24130 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
24131 		}
24132 	}
24133 
24134 	/*
24135 	 * For the reference temperature verify that the parameter
24136 	 * length is 0x02 and the parameter code is 0x01
24137 	 */
24138 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
24139 	    (temperature_page[11] == 0x01)) {
24140 		if (temperature_page[15] == 0xFF) {
24141 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24142 		} else {
24143 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
24144 		}
24145 	}
24146 
24147 	/* Do the copyout regardless of the temperature commands status. */
24148 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
24149 	    flag) != 0) {
24150 		rval = EFAULT;
24151 		goto done1;
24152 	}
24153 
24154 done2:
24155 	if (rval != 0) {
24156 		if (rval == EIO)
24157 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
24158 		else
24159 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
24160 	}
24161 done1:
24162 	if (path_flag == SD_PATH_DIRECT) {
24163 		sd_pm_exit(un);
24164 	}
24165 
24166 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
24167 done:
24168 	sd_ssc_fini(ssc);
24169 	if (dktemp != NULL) {
24170 		kmem_free(dktemp, sizeof (struct dk_temperature));
24171 	}
24172 
24173 	return (rval);
24174 }
24175 
24176 
24177 /*
24178  *    Function: sd_log_page_supported
24179  *
24180  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
24181  *		supported log pages.
24182  *
24183  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
24184  *                      structure for this target.
24185  *		log_page -
24186  *
24187  * Return Code: -1 - on error (log sense is optional and may not be supported).
24188  *		0  - log page not found.
24189  *  		1  - log page found.
24190  */
24191 
24192 static int
24193 sd_log_page_supported(sd_ssc_t *ssc, int log_page)
24194 {
24195 	uchar_t *log_page_data;
24196 	int	i;
24197 	int	match = 0;
24198 	int	log_size;
24199 	int	status = 0;
24200 	struct sd_lun	*un;
24201 
24202 	ASSERT(ssc != NULL);
24203 	un = ssc->ssc_un;
24204 	ASSERT(un != NULL);
24205 
24206 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
24207 
24208 	status = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 0xFF, 0, 0x01, 0,
24209 	    SD_PATH_DIRECT);
24210 
24211 	if (status != 0) {
24212 		if (status == EIO) {
24213 			/*
24214 			 * Some disks do not support log sense, we
24215 			 * should ignore this kind of error(sense key is
24216 			 * 0x5 - illegal request).
24217 			 */
24218 			uint8_t *sensep;
24219 			int senlen;
24220 
24221 			sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
24222 			senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
24223 			    ssc->ssc_uscsi_cmd->uscsi_rqresid);
24224 
24225 			if (senlen > 0 &&
24226 			    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
24227 				sd_ssc_assessment(ssc,
24228 				    SD_FMT_IGNORE_COMPROMISE);
24229 			} else {
24230 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
24231 			}
24232 		} else {
24233 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
24234 		}
24235 
24236 		SD_ERROR(SD_LOG_COMMON, un,
24237 		    "sd_log_page_supported: failed log page retrieval\n");
24238 		kmem_free(log_page_data, 0xFF);
24239 		return (-1);
24240 	}
24241 
24242 	log_size = log_page_data[3];
24243 
24244 	/*
24245 	 * The list of supported log pages start from the fourth byte. Check
24246 	 * until we run out of log pages or a match is found.
24247 	 */
24248 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
24249 		if (log_page_data[i] == log_page) {
24250 			match++;
24251 		}
24252 	}
24253 	kmem_free(log_page_data, 0xFF);
24254 	return (match);
24255 }
24256 
24257 
24258 /*
24259  *    Function: sd_mhdioc_failfast
24260  *
24261  * Description: This routine is the driver entry point for handling ioctl
24262  *		requests to enable/disable the multihost failfast option.
24263  *		(MHIOCENFAILFAST)
24264  *
24265  *   Arguments: dev	- the device number
24266  *		arg	- user specified probing interval.
24267  *		flag	- this argument is a pass through to ddi_copyxxx()
24268  *			  directly from the mode argument of ioctl().
24269  *
24270  * Return Code: 0
24271  *		EFAULT
24272  *		ENXIO
24273  */
24274 
24275 static int
24276 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
24277 {
24278 	struct sd_lun	*un = NULL;
24279 	int		mh_time;
24280 	int		rval = 0;
24281 
24282 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24283 		return (ENXIO);
24284 	}
24285 
24286 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
24287 		return (EFAULT);
24288 
24289 	if (mh_time) {
24290 		mutex_enter(SD_MUTEX(un));
24291 		un->un_resvd_status |= SD_FAILFAST;
24292 		mutex_exit(SD_MUTEX(un));
24293 		/*
24294 		 * If mh_time is INT_MAX, then this ioctl is being used for
24295 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
24296 		 */
24297 		if (mh_time != INT_MAX) {
24298 			rval = sd_check_mhd(dev, mh_time);
24299 		}
24300 	} else {
24301 		(void) sd_check_mhd(dev, 0);
24302 		mutex_enter(SD_MUTEX(un));
24303 		un->un_resvd_status &= ~SD_FAILFAST;
24304 		mutex_exit(SD_MUTEX(un));
24305 	}
24306 	return (rval);
24307 }
24308 
24309 
24310 /*
24311  *    Function: sd_mhdioc_takeown
24312  *
24313  * Description: This routine is the driver entry point for handling ioctl
24314  *		requests to forcefully acquire exclusive access rights to the
24315  *		multihost disk (MHIOCTKOWN).
24316  *
24317  *   Arguments: dev	- the device number
24318  *		arg	- user provided structure specifying the delay
24319  *			  parameters in milliseconds
24320  *		flag	- this argument is a pass through to ddi_copyxxx()
24321  *			  directly from the mode argument of ioctl().
24322  *
24323  * Return Code: 0
24324  *		EFAULT
24325  *		ENXIO
24326  */
24327 
24328 static int
24329 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
24330 {
24331 	struct sd_lun		*un = NULL;
24332 	struct mhioctkown	*tkown = NULL;
24333 	int			rval = 0;
24334 
24335 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24336 		return (ENXIO);
24337 	}
24338 
24339 	if (arg != NULL) {
24340 		tkown = (struct mhioctkown *)
24341 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
24342 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
24343 		if (rval != 0) {
24344 			rval = EFAULT;
24345 			goto error;
24346 		}
24347 	}
24348 
24349 	rval = sd_take_ownership(dev, tkown);
24350 	mutex_enter(SD_MUTEX(un));
24351 	if (rval == 0) {
24352 		un->un_resvd_status |= SD_RESERVE;
24353 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
24354 			sd_reinstate_resv_delay =
24355 			    tkown->reinstate_resv_delay * 1000;
24356 		} else {
24357 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
24358 		}
24359 		/*
24360 		 * Give the scsi_watch routine interval set by
24361 		 * the MHIOCENFAILFAST ioctl precedence here.
24362 		 */
24363 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
24364 			mutex_exit(SD_MUTEX(un));
24365 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
24366 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
24367 			    "sd_mhdioc_takeown : %d\n",
24368 			    sd_reinstate_resv_delay);
24369 		} else {
24370 			mutex_exit(SD_MUTEX(un));
24371 		}
24372 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
24373 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24374 	} else {
24375 		un->un_resvd_status &= ~SD_RESERVE;
24376 		mutex_exit(SD_MUTEX(un));
24377 	}
24378 
24379 error:
24380 	if (tkown != NULL) {
24381 		kmem_free(tkown, sizeof (struct mhioctkown));
24382 	}
24383 	return (rval);
24384 }
24385 
24386 
24387 /*
24388  *    Function: sd_mhdioc_release
24389  *
24390  * Description: This routine is the driver entry point for handling ioctl
24391  *		requests to release exclusive access rights to the multihost
24392  *		disk (MHIOCRELEASE).
24393  *
24394  *   Arguments: dev	- the device number
24395  *
24396  * Return Code: 0
24397  *		ENXIO
24398  */
24399 
24400 static int
24401 sd_mhdioc_release(dev_t dev)
24402 {
24403 	struct sd_lun		*un = NULL;
24404 	timeout_id_t		resvd_timeid_save;
24405 	int			resvd_status_save;
24406 	int			rval = 0;
24407 
24408 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24409 		return (ENXIO);
24410 	}
24411 
24412 	mutex_enter(SD_MUTEX(un));
24413 	resvd_status_save = un->un_resvd_status;
24414 	un->un_resvd_status &=
24415 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
24416 	if (un->un_resvd_timeid) {
24417 		resvd_timeid_save = un->un_resvd_timeid;
24418 		un->un_resvd_timeid = NULL;
24419 		mutex_exit(SD_MUTEX(un));
24420 		(void) untimeout(resvd_timeid_save);
24421 	} else {
24422 		mutex_exit(SD_MUTEX(un));
24423 	}
24424 
24425 	/*
24426 	 * destroy any pending timeout thread that may be attempting to
24427 	 * reinstate reservation on this device.
24428 	 */
24429 	sd_rmv_resv_reclaim_req(dev);
24430 
24431 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
24432 		mutex_enter(SD_MUTEX(un));
24433 		if ((un->un_mhd_token) &&
24434 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
24435 			mutex_exit(SD_MUTEX(un));
24436 			(void) sd_check_mhd(dev, 0);
24437 		} else {
24438 			mutex_exit(SD_MUTEX(un));
24439 		}
24440 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
24441 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24442 	} else {
24443 		/*
24444 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
24445 		 */
24446 		mutex_enter(SD_MUTEX(un));
24447 		un->un_resvd_status = resvd_status_save;
24448 		mutex_exit(SD_MUTEX(un));
24449 	}
24450 	return (rval);
24451 }
24452 
24453 
24454 /*
24455  *    Function: sd_mhdioc_register_devid
24456  *
24457  * Description: This routine is the driver entry point for handling ioctl
24458  *		requests to register the device id (MHIOCREREGISTERDEVID).
24459  *
24460  *		Note: The implementation for this ioctl has been updated to
24461  *		be consistent with the original PSARC case (1999/357)
24462  *		(4375899, 4241671, 4220005)
24463  *
24464  *   Arguments: dev	- the device number
24465  *
24466  * Return Code: 0
24467  *		ENXIO
24468  */
24469 
24470 static int
24471 sd_mhdioc_register_devid(dev_t dev)
24472 {
24473 	struct sd_lun	*un = NULL;
24474 	int		rval = 0;
24475 	sd_ssc_t	*ssc;
24476 
24477 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24478 		return (ENXIO);
24479 	}
24480 
24481 	ASSERT(!mutex_owned(SD_MUTEX(un)));
24482 
24483 	mutex_enter(SD_MUTEX(un));
24484 
24485 	/* If a devid already exists, de-register it */
24486 	if (un->un_devid != NULL) {
24487 		ddi_devid_unregister(SD_DEVINFO(un));
24488 		/*
24489 		 * After unregister devid, needs to free devid memory
24490 		 */
24491 		ddi_devid_free(un->un_devid);
24492 		un->un_devid = NULL;
24493 	}
24494 
24495 	/* Check for reservation conflict */
24496 	mutex_exit(SD_MUTEX(un));
24497 	ssc = sd_ssc_init(un);
24498 	rval = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
24499 	mutex_enter(SD_MUTEX(un));
24500 
24501 	switch (rval) {
24502 	case 0:
24503 		sd_register_devid(ssc, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
24504 		break;
24505 	case EACCES:
24506 		break;
24507 	default:
24508 		rval = EIO;
24509 	}
24510 
24511 	mutex_exit(SD_MUTEX(un));
24512 	if (rval != 0) {
24513 		if (rval == EIO)
24514 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
24515 		else
24516 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
24517 	}
24518 	sd_ssc_fini(ssc);
24519 	return (rval);
24520 }
24521 
24522 
24523 /*
24524  *    Function: sd_mhdioc_inkeys
24525  *
24526  * Description: This routine is the driver entry point for handling ioctl
24527  *		requests to issue the SCSI-3 Persistent In Read Keys command
24528  *		to the device (MHIOCGRP_INKEYS).
24529  *
24530  *   Arguments: dev	- the device number
24531  *		arg	- user provided in_keys structure
24532  *		flag	- this argument is a pass through to ddi_copyxxx()
24533  *			  directly from the mode argument of ioctl().
24534  *
24535  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
24536  *		ENXIO
24537  *		EFAULT
24538  */
24539 
24540 static int
24541 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
24542 {
24543 	struct sd_lun		*un;
24544 	mhioc_inkeys_t		inkeys;
24545 	int			rval = 0;
24546 
24547 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24548 		return (ENXIO);
24549 	}
24550 
24551 #ifdef _MULTI_DATAMODEL
24552 	switch (ddi_model_convert_from(flag & FMODELS)) {
24553 	case DDI_MODEL_ILP32: {
24554 		struct mhioc_inkeys32	inkeys32;
24555 
24556 		if (ddi_copyin(arg, &inkeys32,
24557 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
24558 			return (EFAULT);
24559 		}
24560 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
24561 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24562 		    &inkeys, flag)) != 0) {
24563 			return (rval);
24564 		}
24565 		inkeys32.generation = inkeys.generation;
24566 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
24567 		    flag) != 0) {
24568 			return (EFAULT);
24569 		}
24570 		break;
24571 	}
24572 	case DDI_MODEL_NONE:
24573 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
24574 		    flag) != 0) {
24575 			return (EFAULT);
24576 		}
24577 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24578 		    &inkeys, flag)) != 0) {
24579 			return (rval);
24580 		}
24581 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
24582 		    flag) != 0) {
24583 			return (EFAULT);
24584 		}
24585 		break;
24586 	}
24587 
24588 #else /* ! _MULTI_DATAMODEL */
24589 
24590 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
24591 		return (EFAULT);
24592 	}
24593 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
24594 	if (rval != 0) {
24595 		return (rval);
24596 	}
24597 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
24598 		return (EFAULT);
24599 	}
24600 
24601 #endif /* _MULTI_DATAMODEL */
24602 
24603 	return (rval);
24604 }
24605 
24606 
24607 /*
24608  *    Function: sd_mhdioc_inresv
24609  *
24610  * Description: This routine is the driver entry point for handling ioctl
24611  *		requests to issue the SCSI-3 Persistent In Read Reservations
24612  *		command to the device (MHIOCGRP_INKEYS).
24613  *
24614  *   Arguments: dev	- the device number
24615  *		arg	- user provided in_resv structure
24616  *		flag	- this argument is a pass through to ddi_copyxxx()
24617  *			  directly from the mode argument of ioctl().
24618  *
24619  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
24620  *		ENXIO
24621  *		EFAULT
24622  */
24623 
24624 static int
24625 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
24626 {
24627 	struct sd_lun		*un;
24628 	mhioc_inresvs_t		inresvs;
24629 	int			rval = 0;
24630 
24631 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24632 		return (ENXIO);
24633 	}
24634 
24635 #ifdef _MULTI_DATAMODEL
24636 
24637 	switch (ddi_model_convert_from(flag & FMODELS)) {
24638 	case DDI_MODEL_ILP32: {
24639 		struct mhioc_inresvs32	inresvs32;
24640 
24641 		if (ddi_copyin(arg, &inresvs32,
24642 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24643 			return (EFAULT);
24644 		}
24645 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
24646 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24647 		    &inresvs, flag)) != 0) {
24648 			return (rval);
24649 		}
24650 		inresvs32.generation = inresvs.generation;
24651 		if (ddi_copyout(&inresvs32, arg,
24652 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24653 			return (EFAULT);
24654 		}
24655 		break;
24656 	}
24657 	case DDI_MODEL_NONE:
24658 		if (ddi_copyin(arg, &inresvs,
24659 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24660 			return (EFAULT);
24661 		}
24662 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24663 		    &inresvs, flag)) != 0) {
24664 			return (rval);
24665 		}
24666 		if (ddi_copyout(&inresvs, arg,
24667 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24668 			return (EFAULT);
24669 		}
24670 		break;
24671 	}
24672 
24673 #else /* ! _MULTI_DATAMODEL */
24674 
24675 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
24676 		return (EFAULT);
24677 	}
24678 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
24679 	if (rval != 0) {
24680 		return (rval);
24681 	}
24682 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
24683 		return (EFAULT);
24684 	}
24685 
24686 #endif /* ! _MULTI_DATAMODEL */
24687 
24688 	return (rval);
24689 }
24690 
24691 
24692 /*
24693  * The following routines support the clustering functionality described below
24694  * and implement lost reservation reclaim functionality.
24695  *
24696  * Clustering
24697  * ----------
24698  * The clustering code uses two different, independent forms of SCSI
24699  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
24700  * Persistent Group Reservations. For any particular disk, it will use either
24701  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
24702  *
24703  * SCSI-2
24704  * The cluster software takes ownership of a multi-hosted disk by issuing the
24705  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
24706  * MHIOCRELEASE ioctl.  Closely related is the MHIOCENFAILFAST ioctl -- a
24707  * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl
24708  * then issues the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the
24709  * driver. The meaning of failfast is that if the driver (on this host) ever
24710  * encounters the scsi error return code RESERVATION_CONFLICT from the device,
24711  * it should immediately panic the host. The motivation for this ioctl is that
24712  * if this host does encounter reservation conflict, the underlying cause is
24713  * that some other host of the cluster has decided that this host is no longer
24714  * in the cluster and has seized control of the disks for itself. Since this
24715  * host is no longer in the cluster, it ought to panic itself. The
24716  * MHIOCENFAILFAST ioctl does two things:
24717  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
24718  *      error to panic the host
24719  *      (b) it sets up a periodic timer to test whether this host still has
24720  *      "access" (in that no other host has reserved the device):  if the
24721  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
24722  *      purpose of that periodic timer is to handle scenarios where the host is
24723  *      otherwise temporarily quiescent, temporarily doing no real i/o.
24724  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
24725  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
24726  * the device itself.
24727  *
24728  * SCSI-3 PGR
24729  * A direct semantic implementation of the SCSI-3 Persistent Reservation
24730  * facility is supported through the shared multihost disk ioctls
24731  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
24732  * MHIOCGRP_PREEMPTANDABORT)
24733  *
24734  * Reservation Reclaim:
24735  * --------------------
24736  * To support the lost reservation reclaim operations this driver creates a
24737  * single thread to handle reinstating reservations on all devices that have
24738  * lost reservations sd_resv_reclaim_requests are logged for all devices that
24739  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
24740  * and the reservation reclaim thread loops through the requests to regain the
24741  * lost reservations.
24742  */
24743 
24744 /*
24745  *    Function: sd_check_mhd()
24746  *
24747  * Description: This function sets up and submits a scsi watch request or
24748  *		terminates an existing watch request. This routine is used in
24749  *		support of reservation reclaim.
24750  *
24751  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
24752  *			 among multiple watches that share the callback function
24753  *		interval - the number of microseconds specifying the watch
24754  *			   interval for issuing TEST UNIT READY commands. If
24755  *			   set to 0 the watch should be terminated. If the
24756  *			   interval is set to 0 and if the device is required
24757  *			   to hold reservation while disabling failfast, the
24758  *			   watch is restarted with an interval of
24759  *			   reinstate_resv_delay.
24760  *
24761  * Return Code: 0	   - Successful submit/terminate of scsi watch request
24762  *		ENXIO      - Indicates an invalid device was specified
24763  *		EAGAIN     - Unable to submit the scsi watch request
24764  */
24765 
24766 static int
24767 sd_check_mhd(dev_t dev, int interval)
24768 {
24769 	struct sd_lun	*un;
24770 	opaque_t	token;
24771 
24772 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24773 		return (ENXIO);
24774 	}
24775 
24776 	/* is this a watch termination request? */
24777 	if (interval == 0) {
24778 		mutex_enter(SD_MUTEX(un));
24779 		/* if there is an existing watch task then terminate it */
24780 		if (un->un_mhd_token) {
24781 			token = un->un_mhd_token;
24782 			un->un_mhd_token = NULL;
24783 			mutex_exit(SD_MUTEX(un));
24784 			(void) scsi_watch_request_terminate(token,
24785 			    SCSI_WATCH_TERMINATE_ALL_WAIT);
24786 			mutex_enter(SD_MUTEX(un));
24787 		} else {
24788 			mutex_exit(SD_MUTEX(un));
24789 			/*
24790 			 * Note: If we return here we don't check for the
24791 			 * failfast case. This is the original legacy
24792 			 * implementation but perhaps we should be checking
24793 			 * the failfast case.
24794 			 */
24795 			return (0);
24796 		}
24797 		/*
24798 		 * If the device is required to hold reservation while
24799 		 * disabling failfast, we need to restart the scsi_watch
24800 		 * routine with an interval of reinstate_resv_delay.
24801 		 */
24802 		if (un->un_resvd_status & SD_RESERVE) {
24803 			interval = sd_reinstate_resv_delay/1000;
24804 		} else {
24805 			/* no failfast so bail */
24806 			mutex_exit(SD_MUTEX(un));
24807 			return (0);
24808 		}
24809 		mutex_exit(SD_MUTEX(un));
24810 	}
24811 
24812 	/*
24813 	 * adjust minimum time interval to 1 second,
24814 	 * and convert from msecs to usecs
24815 	 */
24816 	if (interval > 0 && interval < 1000) {
24817 		interval = 1000;
24818 	}
24819 	interval *= 1000;
24820 
24821 	/*
24822 	 * submit the request to the scsi_watch service
24823 	 */
24824 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
24825 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
24826 	if (token == NULL) {
24827 		return (EAGAIN);
24828 	}
24829 
24830 	/*
24831 	 * save token for termination later on
24832 	 */
24833 	mutex_enter(SD_MUTEX(un));
24834 	un->un_mhd_token = token;
24835 	mutex_exit(SD_MUTEX(un));
24836 	return (0);
24837 }
24838 
24839 
24840 /*
24841  *    Function: sd_mhd_watch_cb()
24842  *
24843  * Description: This function is the call back function used by the scsi watch
24844  *		facility. The scsi watch facility sends the "Test Unit Ready"
24845  *		and processes the status. If applicable (i.e. a "Unit Attention"
24846  *		status and automatic "Request Sense" not used) the scsi watch
24847  *		facility will send a "Request Sense" and retrieve the sense data
24848  *		to be passed to this callback function. In either case the
24849  *		automatic "Request Sense" or the facility submitting one, this
24850  *		callback is passed the status and sense data.
24851  *
24852  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24853  *			among multiple watches that share this callback function
24854  *		resultp - scsi watch facility result packet containing scsi
24855  *			  packet, status byte and sense data
24856  *
24857  * Return Code: 0 - continue the watch task
24858  *		non-zero - terminate the watch task
24859  */
24860 
24861 static int
24862 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
24863 {
24864 	struct sd_lun			*un;
24865 	struct scsi_status		*statusp;
24866 	uint8_t				*sensep;
24867 	struct scsi_pkt			*pkt;
24868 	uchar_t				actual_sense_length;
24869 	dev_t  				dev = (dev_t)arg;
24870 
24871 	ASSERT(resultp != NULL);
24872 	statusp			= resultp->statusp;
24873 	sensep			= (uint8_t *)resultp->sensep;
24874 	pkt			= resultp->pkt;
24875 	actual_sense_length	= resultp->actual_sense_length;
24876 
24877 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24878 		return (ENXIO);
24879 	}
24880 
24881 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
24882 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
24883 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
24884 
24885 	/* Begin processing of the status and/or sense data */
24886 	if (pkt->pkt_reason != CMD_CMPLT) {
24887 		/* Handle the incomplete packet */
24888 		sd_mhd_watch_incomplete(un, pkt);
24889 		return (0);
24890 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
24891 		if (*((unsigned char *)statusp)
24892 		    == STATUS_RESERVATION_CONFLICT) {
24893 			/*
24894 			 * Handle a reservation conflict by panicking if
24895 			 * configured for failfast or by logging the conflict
24896 			 * and updating the reservation status
24897 			 */
24898 			mutex_enter(SD_MUTEX(un));
24899 			if ((un->un_resvd_status & SD_FAILFAST) &&
24900 			    (sd_failfast_enable)) {
24901 				sd_panic_for_res_conflict(un);
24902 				/*NOTREACHED*/
24903 			}
24904 			SD_INFO(SD_LOG_IOCTL_MHD, un,
24905 			    "sd_mhd_watch_cb: Reservation Conflict\n");
24906 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
24907 			mutex_exit(SD_MUTEX(un));
24908 		}
24909 	}
24910 
24911 	if (sensep != NULL) {
24912 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
24913 			mutex_enter(SD_MUTEX(un));
24914 			if ((scsi_sense_asc(sensep) ==
24915 			    SD_SCSI_RESET_SENSE_CODE) &&
24916 			    (un->un_resvd_status & SD_RESERVE)) {
24917 				/*
24918 				 * The additional sense code indicates a power
24919 				 * on or bus device reset has occurred; update
24920 				 * the reservation status.
24921 				 */
24922 				un->un_resvd_status |=
24923 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
24924 				SD_INFO(SD_LOG_IOCTL_MHD, un,
24925 				    "sd_mhd_watch_cb: Lost Reservation\n");
24926 			}
24927 		} else {
24928 			return (0);
24929 		}
24930 	} else {
24931 		mutex_enter(SD_MUTEX(un));
24932 	}
24933 
24934 	if ((un->un_resvd_status & SD_RESERVE) &&
24935 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
24936 		if (un->un_resvd_status & SD_WANT_RESERVE) {
24937 			/*
24938 			 * A reset occurred in between the last probe and this
24939 			 * one so if a timeout is pending cancel it.
24940 			 */
24941 			if (un->un_resvd_timeid) {
24942 				timeout_id_t temp_id = un->un_resvd_timeid;
24943 				un->un_resvd_timeid = NULL;
24944 				mutex_exit(SD_MUTEX(un));
24945 				(void) untimeout(temp_id);
24946 				mutex_enter(SD_MUTEX(un));
24947 			}
24948 			un->un_resvd_status &= ~SD_WANT_RESERVE;
24949 		}
24950 		if (un->un_resvd_timeid == 0) {
24951 			/* Schedule a timeout to handle the lost reservation */
24952 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
24953 			    (void *)dev,
24954 			    drv_usectohz(sd_reinstate_resv_delay));
24955 		}
24956 	}
24957 	mutex_exit(SD_MUTEX(un));
24958 	return (0);
24959 }
24960 
24961 
24962 /*
24963  *    Function: sd_mhd_watch_incomplete()
24964  *
24965  * Description: This function is used to find out why a scsi pkt sent by the
24966  *		scsi watch facility was not completed. Under some scenarios this
24967  *		routine will return. Otherwise it will send a bus reset to see
24968  *		if the drive is still online.
24969  *
24970  *   Arguments: un  - driver soft state (unit) structure
24971  *		pkt - incomplete scsi pkt
24972  */
24973 
24974 static void
24975 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
24976 {
24977 	int	be_chatty;
24978 	int	perr;
24979 
24980 	ASSERT(pkt != NULL);
24981 	ASSERT(un != NULL);
24982 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
24983 	perr		= (pkt->pkt_statistics & STAT_PERR);
24984 
24985 	mutex_enter(SD_MUTEX(un));
24986 	if (un->un_state == SD_STATE_DUMPING) {
24987 		mutex_exit(SD_MUTEX(un));
24988 		return;
24989 	}
24990 
24991 	switch (pkt->pkt_reason) {
24992 	case CMD_UNX_BUS_FREE:
24993 		/*
24994 		 * If we had a parity error that caused the target to drop BSY*,
24995 		 * don't be chatty about it.
24996 		 */
24997 		if (perr && be_chatty) {
24998 			be_chatty = 0;
24999 		}
25000 		break;
25001 	case CMD_TAG_REJECT:
25002 		/*
25003 		 * The SCSI-2 spec states that a tag reject will be sent by the
25004 		 * target if tagged queuing is not supported. A tag reject may
25005 		 * also be sent during certain initialization periods or to
25006 		 * control internal resources. For the latter case the target
25007 		 * may also return Queue Full.
25008 		 *
25009 		 * If this driver receives a tag reject from a target that is
25010 		 * going through an init period or controlling internal
25011 		 * resources tagged queuing will be disabled. This is a less
25012 		 * than optimal behavior but the driver is unable to determine
25013 		 * the target state and assumes tagged queueing is not supported
25014 		 */
25015 		pkt->pkt_flags = 0;
25016 		un->un_tagflags = 0;
25017 
25018 		if (un->un_f_opt_queueing == TRUE) {
25019 			un->un_throttle = min(un->un_throttle, 3);
25020 		} else {
25021 			un->un_throttle = 1;
25022 		}
25023 		mutex_exit(SD_MUTEX(un));
25024 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
25025 		mutex_enter(SD_MUTEX(un));
25026 		break;
25027 	case CMD_INCOMPLETE:
25028 		/*
25029 		 * The transport stopped with an abnormal state, fallthrough and
25030 		 * reset the target and/or bus unless selection did not complete
25031 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
25032 		 * go through a target/bus reset
25033 		 */
25034 		if (pkt->pkt_state == STATE_GOT_BUS) {
25035 			break;
25036 		}
25037 		/*FALLTHROUGH*/
25038 
25039 	case CMD_TIMEOUT:
25040 	default:
25041 		/*
25042 		 * The lun may still be running the command, so a lun reset
25043 		 * should be attempted. If the lun reset fails or cannot be
25044 		 * issued, than try a target reset. Lastly try a bus reset.
25045 		 */
25046 		if ((pkt->pkt_statistics &
25047 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
25048 			int reset_retval = 0;
25049 			mutex_exit(SD_MUTEX(un));
25050 			if (un->un_f_allow_bus_device_reset == TRUE) {
25051 				if (un->un_f_lun_reset_enabled == TRUE) {
25052 					reset_retval =
25053 					    scsi_reset(SD_ADDRESS(un),
25054 					    RESET_LUN);
25055 				}
25056 				if (reset_retval == 0) {
25057 					reset_retval =
25058 					    scsi_reset(SD_ADDRESS(un),
25059 					    RESET_TARGET);
25060 				}
25061 			}
25062 			if (reset_retval == 0) {
25063 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
25064 			}
25065 			mutex_enter(SD_MUTEX(un));
25066 		}
25067 		break;
25068 	}
25069 
25070 	/* A device/bus reset has occurred; update the reservation status. */
25071 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
25072 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
25073 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25074 			un->un_resvd_status |=
25075 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
25076 			SD_INFO(SD_LOG_IOCTL_MHD, un,
25077 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
25078 		}
25079 	}
25080 
25081 	/*
25082 	 * The disk has been turned off; Update the device state.
25083 	 *
25084 	 * Note: Should we be offlining the disk here?
25085 	 */
25086 	if (pkt->pkt_state == STATE_GOT_BUS) {
25087 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
25088 		    "Disk not responding to selection\n");
25089 		if (un->un_state != SD_STATE_OFFLINE) {
25090 			New_state(un, SD_STATE_OFFLINE);
25091 		}
25092 	} else if (be_chatty) {
25093 		/*
25094 		 * suppress messages if they are all the same pkt reason;
25095 		 * with TQ, many (up to 256) are returned with the same
25096 		 * pkt_reason
25097 		 */
25098 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
25099 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25100 			    "sd_mhd_watch_incomplete: "
25101 			    "SCSI transport failed: reason '%s'\n",
25102 			    scsi_rname(pkt->pkt_reason));
25103 		}
25104 	}
25105 	un->un_last_pkt_reason = pkt->pkt_reason;
25106 	mutex_exit(SD_MUTEX(un));
25107 }
25108 
25109 
25110 /*
25111  *    Function: sd_sname()
25112  *
25113  * Description: This is a simple little routine to return a string containing
25114  *		a printable description of command status byte for use in
25115  *		logging.
25116  *
25117  *   Arguments: status - pointer to a status byte
25118  *
25119  * Return Code: char * - string containing status description.
25120  */
25121 
25122 static char *
25123 sd_sname(uchar_t status)
25124 {
25125 	switch (status & STATUS_MASK) {
25126 	case STATUS_GOOD:
25127 		return ("good status");
25128 	case STATUS_CHECK:
25129 		return ("check condition");
25130 	case STATUS_MET:
25131 		return ("condition met");
25132 	case STATUS_BUSY:
25133 		return ("busy");
25134 	case STATUS_INTERMEDIATE:
25135 		return ("intermediate");
25136 	case STATUS_INTERMEDIATE_MET:
25137 		return ("intermediate - condition met");
25138 	case STATUS_RESERVATION_CONFLICT:
25139 		return ("reservation_conflict");
25140 	case STATUS_TERMINATED:
25141 		return ("command terminated");
25142 	case STATUS_QFULL:
25143 		return ("queue full");
25144 	default:
25145 		return ("<unknown status>");
25146 	}
25147 }
25148 
25149 
25150 /*
25151  *    Function: sd_mhd_resvd_recover()
25152  *
25153  * Description: This function adds a reservation entry to the
25154  *		sd_resv_reclaim_request list and signals the reservation
25155  *		reclaim thread that there is work pending. If the reservation
25156  *		reclaim thread has not been previously created this function
25157  *		will kick it off.
25158  *
25159  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
25160  *			among multiple watches that share this callback function
25161  *
25162  *     Context: This routine is called by timeout() and is run in interrupt
25163  *		context. It must not sleep or call other functions which may
25164  *		sleep.
25165  */
25166 
25167 static void
25168 sd_mhd_resvd_recover(void *arg)
25169 {
25170 	dev_t			dev = (dev_t)arg;
25171 	struct sd_lun		*un;
25172 	struct sd_thr_request	*sd_treq = NULL;
25173 	struct sd_thr_request	*sd_cur = NULL;
25174 	struct sd_thr_request	*sd_prev = NULL;
25175 	int			already_there = 0;
25176 
25177 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25178 		return;
25179 	}
25180 
25181 	mutex_enter(SD_MUTEX(un));
25182 	un->un_resvd_timeid = NULL;
25183 	if (un->un_resvd_status & SD_WANT_RESERVE) {
25184 		/*
25185 		 * There was a reset so don't issue the reserve, allow the
25186 		 * sd_mhd_watch_cb callback function to notice this and
25187 		 * reschedule the timeout for reservation.
25188 		 */
25189 		mutex_exit(SD_MUTEX(un));
25190 		return;
25191 	}
25192 	mutex_exit(SD_MUTEX(un));
25193 
25194 	/*
25195 	 * Add this device to the sd_resv_reclaim_request list and the
25196 	 * sd_resv_reclaim_thread should take care of the rest.
25197 	 *
25198 	 * Note: We can't sleep in this context so if the memory allocation
25199 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
25200 	 * reschedule the timeout for reservation.  (4378460)
25201 	 */
25202 	sd_treq = (struct sd_thr_request *)
25203 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
25204 	if (sd_treq == NULL) {
25205 		return;
25206 	}
25207 
25208 	sd_treq->sd_thr_req_next = NULL;
25209 	sd_treq->dev = dev;
25210 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25211 	if (sd_tr.srq_thr_req_head == NULL) {
25212 		sd_tr.srq_thr_req_head = sd_treq;
25213 	} else {
25214 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
25215 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
25216 			if (sd_cur->dev == dev) {
25217 				/*
25218 				 * already in Queue so don't log
25219 				 * another request for the device
25220 				 */
25221 				already_there = 1;
25222 				break;
25223 			}
25224 			sd_prev = sd_cur;
25225 		}
25226 		if (!already_there) {
25227 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
25228 			    "logging request for %lx\n", dev);
25229 			sd_prev->sd_thr_req_next = sd_treq;
25230 		} else {
25231 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
25232 		}
25233 	}
25234 
25235 	/*
25236 	 * Create a kernel thread to do the reservation reclaim and free up this
25237 	 * thread. We cannot block this thread while we go away to do the
25238 	 * reservation reclaim
25239 	 */
25240 	if (sd_tr.srq_resv_reclaim_thread == NULL)
25241 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
25242 		    sd_resv_reclaim_thread, NULL,
25243 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
25244 
25245 	/* Tell the reservation reclaim thread that it has work to do */
25246 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
25247 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25248 }
25249 
25250 /*
25251  *    Function: sd_resv_reclaim_thread()
25252  *
25253  * Description: This function implements the reservation reclaim operations
25254  *
25255  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
25256  *		      among multiple watches that share this callback function
25257  */
25258 
25259 static void
25260 sd_resv_reclaim_thread()
25261 {
25262 	struct sd_lun		*un;
25263 	struct sd_thr_request	*sd_mhreq;
25264 
25265 	/* Wait for work */
25266 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25267 	if (sd_tr.srq_thr_req_head == NULL) {
25268 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
25269 		    &sd_tr.srq_resv_reclaim_mutex);
25270 	}
25271 
25272 	/* Loop while we have work */
25273 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
25274 		un = ddi_get_soft_state(sd_state,
25275 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
25276 		if (un == NULL) {
25277 			/*
25278 			 * softstate structure is NULL so just
25279 			 * dequeue the request and continue
25280 			 */
25281 			sd_tr.srq_thr_req_head =
25282 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25283 			kmem_free(sd_tr.srq_thr_cur_req,
25284 			    sizeof (struct sd_thr_request));
25285 			continue;
25286 		}
25287 
25288 		/* dequeue the request */
25289 		sd_mhreq = sd_tr.srq_thr_cur_req;
25290 		sd_tr.srq_thr_req_head =
25291 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25292 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25293 
25294 		/*
25295 		 * Reclaim reservation only if SD_RESERVE is still set. There
25296 		 * may have been a call to MHIOCRELEASE before we got here.
25297 		 */
25298 		mutex_enter(SD_MUTEX(un));
25299 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25300 			/*
25301 			 * Note: The SD_LOST_RESERVE flag is cleared before
25302 			 * reclaiming the reservation. If this is done after the
25303 			 * call to sd_reserve_release a reservation loss in the
25304 			 * window between pkt completion of reserve cmd and
25305 			 * mutex_enter below may not be recognized
25306 			 */
25307 			un->un_resvd_status &= ~SD_LOST_RESERVE;
25308 			mutex_exit(SD_MUTEX(un));
25309 
25310 			if (sd_reserve_release(sd_mhreq->dev,
25311 			    SD_RESERVE) == 0) {
25312 				mutex_enter(SD_MUTEX(un));
25313 				un->un_resvd_status |= SD_RESERVE;
25314 				mutex_exit(SD_MUTEX(un));
25315 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25316 				    "sd_resv_reclaim_thread: "
25317 				    "Reservation Recovered\n");
25318 			} else {
25319 				mutex_enter(SD_MUTEX(un));
25320 				un->un_resvd_status |= SD_LOST_RESERVE;
25321 				mutex_exit(SD_MUTEX(un));
25322 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25323 				    "sd_resv_reclaim_thread: Failed "
25324 				    "Reservation Recovery\n");
25325 			}
25326 		} else {
25327 			mutex_exit(SD_MUTEX(un));
25328 		}
25329 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25330 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
25331 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25332 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
25333 		/*
25334 		 * wakeup the destroy thread if anyone is waiting on
25335 		 * us to complete.
25336 		 */
25337 		cv_signal(&sd_tr.srq_inprocess_cv);
25338 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
25339 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
25340 	}
25341 
25342 	/*
25343 	 * cleanup the sd_tr structure now that this thread will not exist
25344 	 */
25345 	ASSERT(sd_tr.srq_thr_req_head == NULL);
25346 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
25347 	sd_tr.srq_resv_reclaim_thread = NULL;
25348 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25349 	thread_exit();
25350 }
25351 
25352 
25353 /*
25354  *    Function: sd_rmv_resv_reclaim_req()
25355  *
25356  * Description: This function removes any pending reservation reclaim requests
25357  *		for the specified device.
25358  *
25359  *   Arguments: dev - the device 'dev_t'
25360  */
25361 
25362 static void
25363 sd_rmv_resv_reclaim_req(dev_t dev)
25364 {
25365 	struct sd_thr_request *sd_mhreq;
25366 	struct sd_thr_request *sd_prev;
25367 
25368 	/* Remove a reservation reclaim request from the list */
25369 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25370 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
25371 		/*
25372 		 * We are attempting to reinstate reservation for
25373 		 * this device. We wait for sd_reserve_release()
25374 		 * to return before we return.
25375 		 */
25376 		cv_wait(&sd_tr.srq_inprocess_cv,
25377 		    &sd_tr.srq_resv_reclaim_mutex);
25378 	} else {
25379 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
25380 		if (sd_mhreq && sd_mhreq->dev == dev) {
25381 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
25382 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25383 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25384 			return;
25385 		}
25386 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
25387 			if (sd_mhreq && sd_mhreq->dev == dev) {
25388 				break;
25389 			}
25390 			sd_prev = sd_mhreq;
25391 		}
25392 		if (sd_mhreq != NULL) {
25393 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
25394 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25395 		}
25396 	}
25397 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25398 }
25399 
25400 
25401 /*
25402  *    Function: sd_mhd_reset_notify_cb()
25403  *
25404  * Description: This is a call back function for scsi_reset_notify. This
25405  *		function updates the softstate reserved status and logs the
25406  *		reset. The driver scsi watch facility callback function
25407  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
25408  *		will reclaim the reservation.
25409  *
25410  *   Arguments: arg  - driver soft state (unit) structure
25411  */
25412 
25413 static void
25414 sd_mhd_reset_notify_cb(caddr_t arg)
25415 {
25416 	struct sd_lun *un = (struct sd_lun *)arg;
25417 
25418 	mutex_enter(SD_MUTEX(un));
25419 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25420 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
25421 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25422 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
25423 	}
25424 	mutex_exit(SD_MUTEX(un));
25425 }
25426 
25427 
25428 /*
25429  *    Function: sd_take_ownership()
25430  *
25431  * Description: This routine implements an algorithm to achieve a stable
25432  *		reservation on disks which don't implement priority reserve,
25433  *		and makes sure that other host lose re-reservation attempts.
25434  *		This algorithm contains of a loop that keeps issuing the RESERVE
25435  *		for some period of time (min_ownership_delay, default 6 seconds)
25436  *		During that loop, it looks to see if there has been a bus device
25437  *		reset or bus reset (both of which cause an existing reservation
25438  *		to be lost). If the reservation is lost issue RESERVE until a
25439  *		period of min_ownership_delay with no resets has gone by, or
25440  *		until max_ownership_delay has expired. This loop ensures that
25441  *		the host really did manage to reserve the device, in spite of
25442  *		resets. The looping for min_ownership_delay (default six
25443  *		seconds) is important to early generation clustering products,
25444  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
25445  *		MHIOCENFAILFAST periodic timer of two seconds. By having
25446  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
25447  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
25448  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
25449  *		have already noticed, via the MHIOCENFAILFAST polling, that it
25450  *		no longer "owns" the disk and will have panicked itself.  Thus,
25451  *		the host issuing the MHIOCTKOWN is assured (with timing
25452  *		dependencies) that by the time it actually starts to use the
25453  *		disk for real work, the old owner is no longer accessing it.
25454  *
25455  *		min_ownership_delay is the minimum amount of time for which the
25456  *		disk must be reserved continuously devoid of resets before the
25457  *		MHIOCTKOWN ioctl will return success.
25458  *
25459  *		max_ownership_delay indicates the amount of time by which the
25460  *		take ownership should succeed or timeout with an error.
25461  *
25462  *   Arguments: dev - the device 'dev_t'
25463  *		*p  - struct containing timing info.
25464  *
25465  * Return Code: 0 for success or error code
25466  */
25467 
25468 static int
25469 sd_take_ownership(dev_t dev, struct mhioctkown *p)
25470 {
25471 	struct sd_lun	*un;
25472 	int		rval;
25473 	int		err;
25474 	int		reservation_count   = 0;
25475 	int		min_ownership_delay =  6000000; /* in usec */
25476 	int		max_ownership_delay = 30000000; /* in usec */
25477 	clock_t		start_time;	/* starting time of this algorithm */
25478 	clock_t		end_time;	/* time limit for giving up */
25479 	clock_t		ownership_time;	/* time limit for stable ownership */
25480 	clock_t		current_time;
25481 	clock_t		previous_current_time;
25482 
25483 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25484 		return (ENXIO);
25485 	}
25486 
25487 	/*
25488 	 * Attempt a device reservation. A priority reservation is requested.
25489 	 */
25490 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
25491 	    != SD_SUCCESS) {
25492 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25493 		    "sd_take_ownership: return(1)=%d\n", rval);
25494 		return (rval);
25495 	}
25496 
25497 	/* Update the softstate reserved status to indicate the reservation */
25498 	mutex_enter(SD_MUTEX(un));
25499 	un->un_resvd_status |= SD_RESERVE;
25500 	un->un_resvd_status &=
25501 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
25502 	mutex_exit(SD_MUTEX(un));
25503 
25504 	if (p != NULL) {
25505 		if (p->min_ownership_delay != 0) {
25506 			min_ownership_delay = p->min_ownership_delay * 1000;
25507 		}
25508 		if (p->max_ownership_delay != 0) {
25509 			max_ownership_delay = p->max_ownership_delay * 1000;
25510 		}
25511 	}
25512 	SD_INFO(SD_LOG_IOCTL_MHD, un,
25513 	    "sd_take_ownership: min, max delays: %d, %d\n",
25514 	    min_ownership_delay, max_ownership_delay);
25515 
25516 	start_time = ddi_get_lbolt();
25517 	current_time	= start_time;
25518 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
25519 	end_time	= start_time + drv_usectohz(max_ownership_delay);
25520 
25521 	while (current_time - end_time < 0) {
25522 		delay(drv_usectohz(500000));
25523 
25524 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
25525 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
25526 				mutex_enter(SD_MUTEX(un));
25527 				rval = (un->un_resvd_status &
25528 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
25529 				mutex_exit(SD_MUTEX(un));
25530 				break;
25531 			}
25532 		}
25533 		previous_current_time = current_time;
25534 		current_time = ddi_get_lbolt();
25535 		mutex_enter(SD_MUTEX(un));
25536 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
25537 			ownership_time = ddi_get_lbolt() +
25538 			    drv_usectohz(min_ownership_delay);
25539 			reservation_count = 0;
25540 		} else {
25541 			reservation_count++;
25542 		}
25543 		un->un_resvd_status |= SD_RESERVE;
25544 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
25545 		mutex_exit(SD_MUTEX(un));
25546 
25547 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25548 		    "sd_take_ownership: ticks for loop iteration=%ld, "
25549 		    "reservation=%s\n", (current_time - previous_current_time),
25550 		    reservation_count ? "ok" : "reclaimed");
25551 
25552 		if (current_time - ownership_time >= 0 &&
25553 		    reservation_count >= 4) {
25554 			rval = 0; /* Achieved a stable ownership */
25555 			break;
25556 		}
25557 		if (current_time - end_time >= 0) {
25558 			rval = EACCES; /* No ownership in max possible time */
25559 			break;
25560 		}
25561 	}
25562 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
25563 	    "sd_take_ownership: return(2)=%d\n", rval);
25564 	return (rval);
25565 }
25566 
25567 
25568 /*
25569  *    Function: sd_reserve_release()
25570  *
25571  * Description: This function builds and sends scsi RESERVE, RELEASE, and
25572  *		PRIORITY RESERVE commands based on a user specified command type
25573  *
25574  *   Arguments: dev - the device 'dev_t'
25575  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
25576  *		      SD_RESERVE, SD_RELEASE
25577  *
25578  * Return Code: 0 or Error Code
25579  */
25580 
25581 static int
25582 sd_reserve_release(dev_t dev, int cmd)
25583 {
25584 	struct uscsi_cmd	*com = NULL;
25585 	struct sd_lun		*un = NULL;
25586 	char			cdb[CDB_GROUP0];
25587 	int			rval;
25588 
25589 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
25590 	    (cmd == SD_PRIORITY_RESERVE));
25591 
25592 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25593 		return (ENXIO);
25594 	}
25595 
25596 	/* instantiate and initialize the command and cdb */
25597 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25598 	bzero(cdb, CDB_GROUP0);
25599 	com->uscsi_flags   = USCSI_SILENT;
25600 	com->uscsi_timeout = un->un_reserve_release_time;
25601 	com->uscsi_cdblen  = CDB_GROUP0;
25602 	com->uscsi_cdb	   = cdb;
25603 	if (cmd == SD_RELEASE) {
25604 		cdb[0] = SCMD_RELEASE;
25605 	} else {
25606 		cdb[0] = SCMD_RESERVE;
25607 	}
25608 
25609 	/* Send the command. */
25610 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25611 	    SD_PATH_STANDARD);
25612 
25613 	/*
25614 	 * "break" a reservation that is held by another host, by issuing a
25615 	 * reset if priority reserve is desired, and we could not get the
25616 	 * device.
25617 	 */
25618 	if ((cmd == SD_PRIORITY_RESERVE) &&
25619 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25620 		/*
25621 		 * First try to reset the LUN. If we cannot, then try a target
25622 		 * reset, followed by a bus reset if the target reset fails.
25623 		 */
25624 		int reset_retval = 0;
25625 		if (un->un_f_lun_reset_enabled == TRUE) {
25626 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
25627 		}
25628 		if (reset_retval == 0) {
25629 			/* The LUN reset either failed or was not issued */
25630 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
25631 		}
25632 		if ((reset_retval == 0) &&
25633 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
25634 			rval = EIO;
25635 			kmem_free(com, sizeof (*com));
25636 			return (rval);
25637 		}
25638 
25639 		bzero(com, sizeof (struct uscsi_cmd));
25640 		com->uscsi_flags   = USCSI_SILENT;
25641 		com->uscsi_cdb	   = cdb;
25642 		com->uscsi_cdblen  = CDB_GROUP0;
25643 		com->uscsi_timeout = 5;
25644 
25645 		/*
25646 		 * Reissue the last reserve command, this time without request
25647 		 * sense.  Assume that it is just a regular reserve command.
25648 		 */
25649 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25650 		    SD_PATH_STANDARD);
25651 	}
25652 
25653 	/* Return an error if still getting a reservation conflict. */
25654 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25655 		rval = EACCES;
25656 	}
25657 
25658 	kmem_free(com, sizeof (*com));
25659 	return (rval);
25660 }
25661 
25662 
25663 #define	SD_NDUMP_RETRIES	12
25664 /*
25665  *	System Crash Dump routine
25666  */
25667 
25668 static int
25669 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
25670 {
25671 	int		instance;
25672 	int		partition;
25673 	int		i;
25674 	int		err;
25675 	struct sd_lun	*un;
25676 	struct scsi_pkt *wr_pktp;
25677 	struct buf	*wr_bp;
25678 	struct buf	wr_buf;
25679 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
25680 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
25681 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
25682 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
25683 	size_t		io_start_offset;
25684 	int		doing_rmw = FALSE;
25685 	int		rval;
25686 	ssize_t		dma_resid;
25687 	daddr_t		oblkno;
25688 	diskaddr_t	nblks = 0;
25689 	diskaddr_t	start_block;
25690 
25691 	instance = SDUNIT(dev);
25692 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
25693 	    !SD_IS_VALID_LABEL(un) || ISCD(un)) {
25694 		return (ENXIO);
25695 	}
25696 
25697 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
25698 
25699 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
25700 
25701 	partition = SDPART(dev);
25702 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
25703 
25704 	if (!(NOT_DEVBSIZE(un))) {
25705 		int secmask = 0;
25706 		int blknomask = 0;
25707 
25708 		blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1;
25709 		secmask = un->un_tgt_blocksize - 1;
25710 
25711 		if (blkno & blknomask) {
25712 			SD_TRACE(SD_LOG_DUMP, un,
25713 			    "sddump: dump start block not modulo %d\n",
25714 			    un->un_tgt_blocksize);
25715 			return (EINVAL);
25716 		}
25717 
25718 		if ((nblk * DEV_BSIZE) & secmask) {
25719 			SD_TRACE(SD_LOG_DUMP, un,
25720 			    "sddump: dump length not modulo %d\n",
25721 			    un->un_tgt_blocksize);
25722 			return (EINVAL);
25723 		}
25724 
25725 	}
25726 
25727 	/* Validate blocks to dump at against partition size. */
25728 
25729 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
25730 	    &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT);
25731 
25732 	if (NOT_DEVBSIZE(un)) {
25733 		if ((blkno + nblk) > nblks) {
25734 			SD_TRACE(SD_LOG_DUMP, un,
25735 			    "sddump: dump range larger than partition: "
25736 			    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
25737 			    blkno, nblk, nblks);
25738 			return (EINVAL);
25739 		}
25740 	} else {
25741 		if (((blkno / (un->un_tgt_blocksize / DEV_BSIZE)) +
25742 		    (nblk / (un->un_tgt_blocksize / DEV_BSIZE))) > nblks) {
25743 			SD_TRACE(SD_LOG_DUMP, un,
25744 			    "sddump: dump range larger than partition: "
25745 			    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
25746 			    blkno, nblk, nblks);
25747 			return (EINVAL);
25748 		}
25749 	}
25750 
25751 	mutex_enter(&un->un_pm_mutex);
25752 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
25753 		struct scsi_pkt *start_pktp;
25754 
25755 		mutex_exit(&un->un_pm_mutex);
25756 
25757 		/*
25758 		 * use pm framework to power on HBA 1st
25759 		 */
25760 		(void) pm_raise_power(SD_DEVINFO(un), 0,
25761 		    SD_PM_STATE_ACTIVE(un));
25762 
25763 		/*
25764 		 * Dump no long uses sdpower to power on a device, it's
25765 		 * in-line here so it can be done in polled mode.
25766 		 */
25767 
25768 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
25769 
25770 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
25771 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
25772 
25773 		if (start_pktp == NULL) {
25774 			/* We were not given a SCSI packet, fail. */
25775 			return (EIO);
25776 		}
25777 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
25778 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
25779 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
25780 		start_pktp->pkt_flags = FLAG_NOINTR;
25781 
25782 		mutex_enter(SD_MUTEX(un));
25783 		SD_FILL_SCSI1_LUN(un, start_pktp);
25784 		mutex_exit(SD_MUTEX(un));
25785 		/*
25786 		 * Scsi_poll returns 0 (success) if the command completes and
25787 		 * the status block is STATUS_GOOD.
25788 		 */
25789 		if (sd_scsi_poll(un, start_pktp) != 0) {
25790 			scsi_destroy_pkt(start_pktp);
25791 			return (EIO);
25792 		}
25793 		scsi_destroy_pkt(start_pktp);
25794 		(void) sd_pm_state_change(un, SD_PM_STATE_ACTIVE(un),
25795 		    SD_PM_STATE_CHANGE);
25796 	} else {
25797 		mutex_exit(&un->un_pm_mutex);
25798 	}
25799 
25800 	mutex_enter(SD_MUTEX(un));
25801 	un->un_throttle = 0;
25802 
25803 	/*
25804 	 * The first time through, reset the specific target device.
25805 	 * However, when cpr calls sddump we know that sd is in a
25806 	 * a good state so no bus reset is required.
25807 	 * Clear sense data via Request Sense cmd.
25808 	 * In sddump we don't care about allow_bus_device_reset anymore
25809 	 */
25810 
25811 	if ((un->un_state != SD_STATE_SUSPENDED) &&
25812 	    (un->un_state != SD_STATE_DUMPING)) {
25813 
25814 		New_state(un, SD_STATE_DUMPING);
25815 
25816 		if (un->un_f_is_fibre == FALSE) {
25817 			mutex_exit(SD_MUTEX(un));
25818 			/*
25819 			 * Attempt a bus reset for parallel scsi.
25820 			 *
25821 			 * Note: A bus reset is required because on some host
25822 			 * systems (i.e. E420R) a bus device reset is
25823 			 * insufficient to reset the state of the target.
25824 			 *
25825 			 * Note: Don't issue the reset for fibre-channel,
25826 			 * because this tends to hang the bus (loop) for
25827 			 * too long while everyone is logging out and in
25828 			 * and the deadman timer for dumping will fire
25829 			 * before the dump is complete.
25830 			 */
25831 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
25832 				mutex_enter(SD_MUTEX(un));
25833 				Restore_state(un);
25834 				mutex_exit(SD_MUTEX(un));
25835 				return (EIO);
25836 			}
25837 
25838 			/* Delay to give the device some recovery time. */
25839 			drv_usecwait(10000);
25840 
25841 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
25842 				SD_INFO(SD_LOG_DUMP, un,
25843 				    "sddump: sd_send_polled_RQS failed\n");
25844 			}
25845 			mutex_enter(SD_MUTEX(un));
25846 		}
25847 	}
25848 
25849 	/*
25850 	 * Convert the partition-relative block number to a
25851 	 * disk physical block number.
25852 	 */
25853 	if (NOT_DEVBSIZE(un)) {
25854 		blkno += start_block;
25855 	} else {
25856 		blkno = blkno / (un->un_tgt_blocksize / DEV_BSIZE);
25857 		blkno += start_block;
25858 	}
25859 
25860 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
25861 
25862 
25863 	/*
25864 	 * Check if the device has a non-512 block size.
25865 	 */
25866 	wr_bp = NULL;
25867 	if (NOT_DEVBSIZE(un)) {
25868 		tgt_byte_offset = blkno * un->un_sys_blocksize;
25869 		tgt_byte_count = nblk * un->un_sys_blocksize;
25870 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
25871 		    (tgt_byte_count % un->un_tgt_blocksize)) {
25872 			doing_rmw = TRUE;
25873 			/*
25874 			 * Calculate the block number and number of block
25875 			 * in terms of the media block size.
25876 			 */
25877 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
25878 			tgt_nblk =
25879 			    ((tgt_byte_offset + tgt_byte_count +
25880 			    (un->un_tgt_blocksize - 1)) /
25881 			    un->un_tgt_blocksize) - tgt_blkno;
25882 
25883 			/*
25884 			 * Invoke the routine which is going to do read part
25885 			 * of read-modify-write.
25886 			 * Note that this routine returns a pointer to
25887 			 * a valid bp in wr_bp.
25888 			 */
25889 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
25890 			    &wr_bp);
25891 			if (err) {
25892 				mutex_exit(SD_MUTEX(un));
25893 				return (err);
25894 			}
25895 			/*
25896 			 * Offset is being calculated as -
25897 			 * (original block # * system block size) -
25898 			 * (new block # * target block size)
25899 			 */
25900 			io_start_offset =
25901 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
25902 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
25903 
25904 			ASSERT((io_start_offset >= 0) &&
25905 			    (io_start_offset < un->un_tgt_blocksize));
25906 			/*
25907 			 * Do the modify portion of read modify write.
25908 			 */
25909 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
25910 			    (size_t)nblk * un->un_sys_blocksize);
25911 		} else {
25912 			doing_rmw = FALSE;
25913 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
25914 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
25915 		}
25916 
25917 		/* Convert blkno and nblk to target blocks */
25918 		blkno = tgt_blkno;
25919 		nblk = tgt_nblk;
25920 	} else {
25921 		wr_bp = &wr_buf;
25922 		bzero(wr_bp, sizeof (struct buf));
25923 		wr_bp->b_flags		= B_BUSY;
25924 		wr_bp->b_un.b_addr	= addr;
25925 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
25926 		wr_bp->b_resid		= 0;
25927 	}
25928 
25929 	mutex_exit(SD_MUTEX(un));
25930 
25931 	/*
25932 	 * Obtain a SCSI packet for the write command.
25933 	 * It should be safe to call the allocator here without
25934 	 * worrying about being locked for DVMA mapping because
25935 	 * the address we're passed is already a DVMA mapping
25936 	 *
25937 	 * We are also not going to worry about semaphore ownership
25938 	 * in the dump buffer. Dumping is single threaded at present.
25939 	 */
25940 
25941 	wr_pktp = NULL;
25942 
25943 	dma_resid = wr_bp->b_bcount;
25944 	oblkno = blkno;
25945 
25946 	if (!(NOT_DEVBSIZE(un))) {
25947 		nblk = nblk / (un->un_tgt_blocksize / DEV_BSIZE);
25948 	}
25949 
25950 	while (dma_resid != 0) {
25951 
25952 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
25953 		wr_bp->b_flags &= ~B_ERROR;
25954 
25955 		if (un->un_partial_dma_supported == 1) {
25956 			blkno = oblkno +
25957 			    ((wr_bp->b_bcount - dma_resid) /
25958 			    un->un_tgt_blocksize);
25959 			nblk = dma_resid / un->un_tgt_blocksize;
25960 
25961 			if (wr_pktp) {
25962 				/*
25963 				 * Partial DMA transfers after initial transfer
25964 				 */
25965 				rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
25966 				    blkno, nblk);
25967 			} else {
25968 				/* Initial transfer */
25969 				rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
25970 				    un->un_pkt_flags, NULL_FUNC, NULL,
25971 				    blkno, nblk);
25972 			}
25973 		} else {
25974 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
25975 			    0, NULL_FUNC, NULL, blkno, nblk);
25976 		}
25977 
25978 		if (rval == 0) {
25979 			/* We were given a SCSI packet, continue. */
25980 			break;
25981 		}
25982 
25983 		if (i == 0) {
25984 			if (wr_bp->b_flags & B_ERROR) {
25985 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25986 				    "no resources for dumping; "
25987 				    "error code: 0x%x, retrying",
25988 				    geterror(wr_bp));
25989 			} else {
25990 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25991 				    "no resources for dumping; retrying");
25992 			}
25993 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
25994 			if (wr_bp->b_flags & B_ERROR) {
25995 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
25996 				    "no resources for dumping; error code: "
25997 				    "0x%x, retrying\n", geterror(wr_bp));
25998 			}
25999 		} else {
26000 			if (wr_bp->b_flags & B_ERROR) {
26001 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26002 				    "no resources for dumping; "
26003 				    "error code: 0x%x, retries failed, "
26004 				    "giving up.\n", geterror(wr_bp));
26005 			} else {
26006 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26007 				    "no resources for dumping; "
26008 				    "retries failed, giving up.\n");
26009 			}
26010 			mutex_enter(SD_MUTEX(un));
26011 			Restore_state(un);
26012 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
26013 				mutex_exit(SD_MUTEX(un));
26014 				scsi_free_consistent_buf(wr_bp);
26015 			} else {
26016 				mutex_exit(SD_MUTEX(un));
26017 			}
26018 			return (EIO);
26019 		}
26020 		drv_usecwait(10000);
26021 	}
26022 
26023 	if (un->un_partial_dma_supported == 1) {
26024 		/*
26025 		 * save the resid from PARTIAL_DMA
26026 		 */
26027 		dma_resid = wr_pktp->pkt_resid;
26028 		if (dma_resid != 0)
26029 			nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
26030 		wr_pktp->pkt_resid = 0;
26031 	} else {
26032 		dma_resid = 0;
26033 	}
26034 
26035 	/* SunBug 1222170 */
26036 	wr_pktp->pkt_flags = FLAG_NOINTR;
26037 
26038 	err = EIO;
26039 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26040 
26041 		/*
26042 		 * Scsi_poll returns 0 (success) if the command completes and
26043 		 * the status block is STATUS_GOOD.  We should only check
26044 		 * errors if this condition is not true.  Even then we should
26045 		 * send our own request sense packet only if we have a check
26046 		 * condition and auto request sense has not been performed by
26047 		 * the hba.
26048 		 */
26049 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
26050 
26051 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
26052 		    (wr_pktp->pkt_resid == 0)) {
26053 			err = SD_SUCCESS;
26054 			break;
26055 		}
26056 
26057 		/*
26058 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
26059 		 */
26060 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
26061 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26062 			    "Error while dumping state...Device is gone\n");
26063 			break;
26064 		}
26065 
26066 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
26067 			SD_INFO(SD_LOG_DUMP, un,
26068 			    "sddump: write failed with CHECK, try # %d\n", i);
26069 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
26070 				(void) sd_send_polled_RQS(un);
26071 			}
26072 
26073 			continue;
26074 		}
26075 
26076 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
26077 			int reset_retval = 0;
26078 
26079 			SD_INFO(SD_LOG_DUMP, un,
26080 			    "sddump: write failed with BUSY, try # %d\n", i);
26081 
26082 			if (un->un_f_lun_reset_enabled == TRUE) {
26083 				reset_retval = scsi_reset(SD_ADDRESS(un),
26084 				    RESET_LUN);
26085 			}
26086 			if (reset_retval == 0) {
26087 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26088 			}
26089 			(void) sd_send_polled_RQS(un);
26090 
26091 		} else {
26092 			SD_INFO(SD_LOG_DUMP, un,
26093 			    "sddump: write failed with 0x%x, try # %d\n",
26094 			    SD_GET_PKT_STATUS(wr_pktp), i);
26095 			mutex_enter(SD_MUTEX(un));
26096 			sd_reset_target(un, wr_pktp);
26097 			mutex_exit(SD_MUTEX(un));
26098 		}
26099 
26100 		/*
26101 		 * If we are not getting anywhere with lun/target resets,
26102 		 * let's reset the bus.
26103 		 */
26104 		if (i == SD_NDUMP_RETRIES/2) {
26105 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26106 			(void) sd_send_polled_RQS(un);
26107 		}
26108 	}
26109 	}
26110 
26111 	scsi_destroy_pkt(wr_pktp);
26112 	mutex_enter(SD_MUTEX(un));
26113 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
26114 		mutex_exit(SD_MUTEX(un));
26115 		scsi_free_consistent_buf(wr_bp);
26116 	} else {
26117 		mutex_exit(SD_MUTEX(un));
26118 	}
26119 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
26120 	return (err);
26121 }
26122 
26123 /*
26124  *    Function: sd_scsi_poll()
26125  *
26126  * Description: This is a wrapper for the scsi_poll call.
26127  *
26128  *   Arguments: sd_lun - The unit structure
26129  *              scsi_pkt - The scsi packet being sent to the device.
26130  *
26131  * Return Code: 0 - Command completed successfully with good status
26132  *             -1 - Command failed.  This could indicate a check condition
26133  *                  or other status value requiring recovery action.
26134  *
26135  * NOTE: This code is only called off sddump().
26136  */
26137 
26138 static int
26139 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
26140 {
26141 	int status;
26142 
26143 	ASSERT(un != NULL);
26144 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26145 	ASSERT(pktp != NULL);
26146 
26147 	status = SD_SUCCESS;
26148 
26149 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
26150 		pktp->pkt_flags |= un->un_tagflags;
26151 		pktp->pkt_flags &= ~FLAG_NODISCON;
26152 	}
26153 
26154 	status = sd_ddi_scsi_poll(pktp);
26155 	/*
26156 	 * Scsi_poll returns 0 (success) if the command completes and the
26157 	 * status block is STATUS_GOOD.  We should only check errors if this
26158 	 * condition is not true.  Even then we should send our own request
26159 	 * sense packet only if we have a check condition and auto
26160 	 * request sense has not been performed by the hba.
26161 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
26162 	 */
26163 	if ((status != SD_SUCCESS) &&
26164 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
26165 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
26166 	    (pktp->pkt_reason != CMD_DEV_GONE))
26167 		(void) sd_send_polled_RQS(un);
26168 
26169 	return (status);
26170 }
26171 
26172 /*
26173  *    Function: sd_send_polled_RQS()
26174  *
26175  * Description: This sends the request sense command to a device.
26176  *
26177  *   Arguments: sd_lun - The unit structure
26178  *
26179  * Return Code: 0 - Command completed successfully with good status
26180  *             -1 - Command failed.
26181  *
26182  */
26183 
26184 static int
26185 sd_send_polled_RQS(struct sd_lun *un)
26186 {
26187 	int	ret_val;
26188 	struct	scsi_pkt	*rqs_pktp;
26189 	struct	buf		*rqs_bp;
26190 
26191 	ASSERT(un != NULL);
26192 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26193 
26194 	ret_val = SD_SUCCESS;
26195 
26196 	rqs_pktp = un->un_rqs_pktp;
26197 	rqs_bp	 = un->un_rqs_bp;
26198 
26199 	mutex_enter(SD_MUTEX(un));
26200 
26201 	if (un->un_sense_isbusy) {
26202 		ret_val = SD_FAILURE;
26203 		mutex_exit(SD_MUTEX(un));
26204 		return (ret_val);
26205 	}
26206 
26207 	/*
26208 	 * If the request sense buffer (and packet) is not in use,
26209 	 * let's set the un_sense_isbusy and send our packet
26210 	 */
26211 	un->un_sense_isbusy 	= 1;
26212 	rqs_pktp->pkt_resid  	= 0;
26213 	rqs_pktp->pkt_reason 	= 0;
26214 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
26215 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
26216 
26217 	mutex_exit(SD_MUTEX(un));
26218 
26219 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
26220 	    " 0x%p\n", rqs_bp->b_un.b_addr);
26221 
26222 	/*
26223 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
26224 	 * axle - it has a call into us!
26225 	 */
26226 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
26227 		SD_INFO(SD_LOG_COMMON, un,
26228 		    "sd_send_polled_RQS: RQS failed\n");
26229 	}
26230 
26231 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
26232 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
26233 
26234 	mutex_enter(SD_MUTEX(un));
26235 	un->un_sense_isbusy = 0;
26236 	mutex_exit(SD_MUTEX(un));
26237 
26238 	return (ret_val);
26239 }
26240 
26241 /*
26242  * Defines needed for localized version of the scsi_poll routine.
26243  */
26244 #define	CSEC		10000			/* usecs */
26245 #define	SEC_TO_CSEC	(1000000/CSEC)
26246 
26247 /*
26248  *    Function: sd_ddi_scsi_poll()
26249  *
26250  * Description: Localized version of the scsi_poll routine.  The purpose is to
26251  *		send a scsi_pkt to a device as a polled command.  This version
26252  *		is to ensure more robust handling of transport errors.
26253  *		Specifically this routine cures not ready, coming ready
26254  *		transition for power up and reset of sonoma's.  This can take
26255  *		up to 45 seconds for power-on and 20 seconds for reset of a
26256  * 		sonoma lun.
26257  *
26258  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
26259  *
26260  * Return Code: 0 - Command completed successfully with good status
26261  *             -1 - Command failed.
26262  *
26263  * NOTE: This code is almost identical to scsi_poll, however before 6668774 can
26264  * be fixed (removing this code), we need to determine how to handle the
26265  * KEY_UNIT_ATTENTION condition below in conditions not as limited as sddump().
26266  *
26267  * NOTE: This code is only called off sddump().
26268  */
26269 static int
26270 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
26271 {
26272 	int			rval = -1;
26273 	int			savef;
26274 	long			savet;
26275 	void			(*savec)();
26276 	int			timeout;
26277 	int			busy_count;
26278 	int			poll_delay;
26279 	int			rc;
26280 	uint8_t			*sensep;
26281 	struct scsi_arq_status	*arqstat;
26282 	extern int		do_polled_io;
26283 
26284 	ASSERT(pkt->pkt_scbp);
26285 
26286 	/*
26287 	 * save old flags..
26288 	 */
26289 	savef = pkt->pkt_flags;
26290 	savec = pkt->pkt_comp;
26291 	savet = pkt->pkt_time;
26292 
26293 	pkt->pkt_flags |= FLAG_NOINTR;
26294 
26295 	/*
26296 	 * XXX there is nothing in the SCSA spec that states that we should not
26297 	 * do a callback for polled cmds; however, removing this will break sd
26298 	 * and probably other target drivers
26299 	 */
26300 	pkt->pkt_comp = NULL;
26301 
26302 	/*
26303 	 * we don't like a polled command without timeout.
26304 	 * 60 seconds seems long enough.
26305 	 */
26306 	if (pkt->pkt_time == 0)
26307 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
26308 
26309 	/*
26310 	 * Send polled cmd.
26311 	 *
26312 	 * We do some error recovery for various errors.  Tran_busy,
26313 	 * queue full, and non-dispatched commands are retried every 10 msec.
26314 	 * as they are typically transient failures.  Busy status and Not
26315 	 * Ready are retried every second as this status takes a while to
26316 	 * change.
26317 	 */
26318 	timeout = pkt->pkt_time * SEC_TO_CSEC;
26319 
26320 	for (busy_count = 0; busy_count < timeout; busy_count++) {
26321 		/*
26322 		 * Initialize pkt status variables.
26323 		 */
26324 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
26325 
26326 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
26327 			if (rc != TRAN_BUSY) {
26328 				/* Transport failed - give up. */
26329 				break;
26330 			} else {
26331 				/* Transport busy - try again. */
26332 				poll_delay = 1 * CSEC;		/* 10 msec. */
26333 			}
26334 		} else {
26335 			/*
26336 			 * Transport accepted - check pkt status.
26337 			 */
26338 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
26339 			if ((pkt->pkt_reason == CMD_CMPLT) &&
26340 			    (rc == STATUS_CHECK) &&
26341 			    (pkt->pkt_state & STATE_ARQ_DONE)) {
26342 				arqstat =
26343 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
26344 				sensep = (uint8_t *)&arqstat->sts_sensedata;
26345 			} else {
26346 				sensep = NULL;
26347 			}
26348 
26349 			if ((pkt->pkt_reason == CMD_CMPLT) &&
26350 			    (rc == STATUS_GOOD)) {
26351 				/* No error - we're done */
26352 				rval = 0;
26353 				break;
26354 
26355 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
26356 				/* Lost connection - give up */
26357 				break;
26358 
26359 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
26360 			    (pkt->pkt_state == 0)) {
26361 				/* Pkt not dispatched - try again. */
26362 				poll_delay = 1 * CSEC;		/* 10 msec. */
26363 
26364 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26365 			    (rc == STATUS_QFULL)) {
26366 				/* Queue full - try again. */
26367 				poll_delay = 1 * CSEC;		/* 10 msec. */
26368 
26369 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26370 			    (rc == STATUS_BUSY)) {
26371 				/* Busy - try again. */
26372 				poll_delay = 100 * CSEC;	/* 1 sec. */
26373 				busy_count += (SEC_TO_CSEC - 1);
26374 
26375 			} else if ((sensep != NULL) &&
26376 			    (scsi_sense_key(sensep) == KEY_UNIT_ATTENTION)) {
26377 				/*
26378 				 * Unit Attention - try again.
26379 				 * Pretend it took 1 sec.
26380 				 * NOTE: 'continue' avoids poll_delay
26381 				 */
26382 				busy_count += (SEC_TO_CSEC - 1);
26383 				continue;
26384 
26385 			} else if ((sensep != NULL) &&
26386 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
26387 			    (scsi_sense_asc(sensep) == 0x04) &&
26388 			    (scsi_sense_ascq(sensep) == 0x01)) {
26389 				/*
26390 				 * Not ready -> ready - try again.
26391 				 * 04h/01h: LUN IS IN PROCESS OF BECOMING READY
26392 				 * ...same as STATUS_BUSY
26393 				 */
26394 				poll_delay = 100 * CSEC;	/* 1 sec. */
26395 				busy_count += (SEC_TO_CSEC - 1);
26396 
26397 			} else {
26398 				/* BAD status - give up. */
26399 				break;
26400 			}
26401 		}
26402 
26403 		if (((curthread->t_flag & T_INTR_THREAD) == 0) &&
26404 		    !do_polled_io) {
26405 			delay(drv_usectohz(poll_delay));
26406 		} else {
26407 			/* we busy wait during cpr_dump or interrupt threads */
26408 			drv_usecwait(poll_delay);
26409 		}
26410 	}
26411 
26412 	pkt->pkt_flags = savef;
26413 	pkt->pkt_comp = savec;
26414 	pkt->pkt_time = savet;
26415 
26416 	/* return on error */
26417 	if (rval)
26418 		return (rval);
26419 
26420 	/*
26421 	 * This is not a performance critical code path.
26422 	 *
26423 	 * As an accommodation for scsi_poll callers, to avoid ddi_dma_sync()
26424 	 * issues associated with looking at DMA memory prior to
26425 	 * scsi_pkt_destroy(), we scsi_sync_pkt() prior to return.
26426 	 */
26427 	scsi_sync_pkt(pkt);
26428 	return (0);
26429 }
26430 
26431 
26432 
26433 /*
26434  *    Function: sd_persistent_reservation_in_read_keys
26435  *
26436  * Description: This routine is the driver entry point for handling CD-ROM
26437  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
26438  *		by sending the SCSI-3 PRIN commands to the device.
26439  *		Processes the read keys command response by copying the
26440  *		reservation key information into the user provided buffer.
26441  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
26442  *
26443  *   Arguments: un   -  Pointer to soft state struct for the target.
26444  *		usrp -	user provided pointer to multihost Persistent In Read
26445  *			Keys structure (mhioc_inkeys_t)
26446  *		flag -	this argument is a pass through to ddi_copyxxx()
26447  *			directly from the mode argument of ioctl().
26448  *
26449  * Return Code: 0   - Success
26450  *		EACCES
26451  *		ENOTSUP
26452  *		errno return code from sd_send_scsi_cmd()
26453  *
26454  *     Context: Can sleep. Does not return until command is completed.
26455  */
26456 
26457 static int
26458 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
26459     mhioc_inkeys_t *usrp, int flag)
26460 {
26461 #ifdef _MULTI_DATAMODEL
26462 	struct mhioc_key_list32	li32;
26463 #endif
26464 	sd_prin_readkeys_t	*in;
26465 	mhioc_inkeys_t		*ptr;
26466 	mhioc_key_list_t	li;
26467 	uchar_t			*data_bufp;
26468 	int 			data_len;
26469 	int			rval = 0;
26470 	size_t			copysz;
26471 	sd_ssc_t		*ssc;
26472 
26473 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
26474 		return (EINVAL);
26475 	}
26476 	bzero(&li, sizeof (mhioc_key_list_t));
26477 
26478 	ssc = sd_ssc_init(un);
26479 
26480 	/*
26481 	 * Get the listsize from user
26482 	 */
26483 #ifdef _MULTI_DATAMODEL
26484 
26485 	switch (ddi_model_convert_from(flag & FMODELS)) {
26486 	case DDI_MODEL_ILP32:
26487 		copysz = sizeof (struct mhioc_key_list32);
26488 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
26489 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26490 			    "sd_persistent_reservation_in_read_keys: "
26491 			    "failed ddi_copyin: mhioc_key_list32_t\n");
26492 			rval = EFAULT;
26493 			goto done;
26494 		}
26495 		li.listsize = li32.listsize;
26496 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
26497 		break;
26498 
26499 	case DDI_MODEL_NONE:
26500 		copysz = sizeof (mhioc_key_list_t);
26501 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26502 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26503 			    "sd_persistent_reservation_in_read_keys: "
26504 			    "failed ddi_copyin: mhioc_key_list_t\n");
26505 			rval = EFAULT;
26506 			goto done;
26507 		}
26508 		break;
26509 	}
26510 
26511 #else /* ! _MULTI_DATAMODEL */
26512 	copysz = sizeof (mhioc_key_list_t);
26513 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26514 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26515 		    "sd_persistent_reservation_in_read_keys: "
26516 		    "failed ddi_copyin: mhioc_key_list_t\n");
26517 		rval = EFAULT;
26518 		goto done;
26519 	}
26520 #endif
26521 
26522 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
26523 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
26524 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26525 
26526 	rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS,
26527 	    data_len, data_bufp);
26528 	if (rval != 0) {
26529 		if (rval == EIO)
26530 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
26531 		else
26532 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
26533 		goto done;
26534 	}
26535 	in = (sd_prin_readkeys_t *)data_bufp;
26536 	ptr->generation = BE_32(in->generation);
26537 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
26538 
26539 	/*
26540 	 * Return the min(listsize, listlen) keys
26541 	 */
26542 #ifdef _MULTI_DATAMODEL
26543 
26544 	switch (ddi_model_convert_from(flag & FMODELS)) {
26545 	case DDI_MODEL_ILP32:
26546 		li32.listlen = li.listlen;
26547 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
26548 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26549 			    "sd_persistent_reservation_in_read_keys: "
26550 			    "failed ddi_copyout: mhioc_key_list32_t\n");
26551 			rval = EFAULT;
26552 			goto done;
26553 		}
26554 		break;
26555 
26556 	case DDI_MODEL_NONE:
26557 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26558 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26559 			    "sd_persistent_reservation_in_read_keys: "
26560 			    "failed ddi_copyout: mhioc_key_list_t\n");
26561 			rval = EFAULT;
26562 			goto done;
26563 		}
26564 		break;
26565 	}
26566 
26567 #else /* ! _MULTI_DATAMODEL */
26568 
26569 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26570 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26571 		    "sd_persistent_reservation_in_read_keys: "
26572 		    "failed ddi_copyout: mhioc_key_list_t\n");
26573 		rval = EFAULT;
26574 		goto done;
26575 	}
26576 
26577 #endif /* _MULTI_DATAMODEL */
26578 
26579 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
26580 	    li.listsize * MHIOC_RESV_KEY_SIZE);
26581 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
26582 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26583 		    "sd_persistent_reservation_in_read_keys: "
26584 		    "failed ddi_copyout: keylist\n");
26585 		rval = EFAULT;
26586 	}
26587 done:
26588 	sd_ssc_fini(ssc);
26589 	kmem_free(data_bufp, data_len);
26590 	return (rval);
26591 }
26592 
26593 
26594 /*
26595  *    Function: sd_persistent_reservation_in_read_resv
26596  *
26597  * Description: This routine is the driver entry point for handling CD-ROM
26598  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
26599  *		by sending the SCSI-3 PRIN commands to the device.
26600  *		Process the read persistent reservations command response by
26601  *		copying the reservation information into the user provided
26602  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
26603  *
26604  *   Arguments: un   -  Pointer to soft state struct for the target.
26605  *		usrp -	user provided pointer to multihost Persistent In Read
26606  *			Keys structure (mhioc_inkeys_t)
26607  *		flag -	this argument is a pass through to ddi_copyxxx()
26608  *			directly from the mode argument of ioctl().
26609  *
26610  * Return Code: 0   - Success
26611  *		EACCES
26612  *		ENOTSUP
26613  *		errno return code from sd_send_scsi_cmd()
26614  *
26615  *     Context: Can sleep. Does not return until command is completed.
26616  */
26617 
26618 static int
26619 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
26620     mhioc_inresvs_t *usrp, int flag)
26621 {
26622 #ifdef _MULTI_DATAMODEL
26623 	struct mhioc_resv_desc_list32 resvlist32;
26624 #endif
26625 	sd_prin_readresv_t	*in;
26626 	mhioc_inresvs_t		*ptr;
26627 	sd_readresv_desc_t	*readresv_ptr;
26628 	mhioc_resv_desc_list_t	resvlist;
26629 	mhioc_resv_desc_t 	resvdesc;
26630 	uchar_t			*data_bufp = NULL;
26631 	int 			data_len;
26632 	int			rval = 0;
26633 	int			i;
26634 	size_t			copysz;
26635 	mhioc_resv_desc_t	*bufp;
26636 	sd_ssc_t		*ssc;
26637 
26638 	if ((ptr = usrp) == NULL) {
26639 		return (EINVAL);
26640 	}
26641 
26642 	ssc = sd_ssc_init(un);
26643 
26644 	/*
26645 	 * Get the listsize from user
26646 	 */
26647 #ifdef _MULTI_DATAMODEL
26648 	switch (ddi_model_convert_from(flag & FMODELS)) {
26649 	case DDI_MODEL_ILP32:
26650 		copysz = sizeof (struct mhioc_resv_desc_list32);
26651 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
26652 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26653 			    "sd_persistent_reservation_in_read_resv: "
26654 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26655 			rval = EFAULT;
26656 			goto done;
26657 		}
26658 		resvlist.listsize = resvlist32.listsize;
26659 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
26660 		break;
26661 
26662 	case DDI_MODEL_NONE:
26663 		copysz = sizeof (mhioc_resv_desc_list_t);
26664 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26665 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26666 			    "sd_persistent_reservation_in_read_resv: "
26667 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26668 			rval = EFAULT;
26669 			goto done;
26670 		}
26671 		break;
26672 	}
26673 #else /* ! _MULTI_DATAMODEL */
26674 	copysz = sizeof (mhioc_resv_desc_list_t);
26675 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26676 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26677 		    "sd_persistent_reservation_in_read_resv: "
26678 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26679 		rval = EFAULT;
26680 		goto done;
26681 	}
26682 #endif /* ! _MULTI_DATAMODEL */
26683 
26684 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
26685 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
26686 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26687 
26688 	rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_RESV,
26689 	    data_len, data_bufp);
26690 	if (rval != 0) {
26691 		if (rval == EIO)
26692 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
26693 		else
26694 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
26695 		goto done;
26696 	}
26697 	in = (sd_prin_readresv_t *)data_bufp;
26698 	ptr->generation = BE_32(in->generation);
26699 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
26700 
26701 	/*
26702 	 * Return the min(listsize, listlen( keys
26703 	 */
26704 #ifdef _MULTI_DATAMODEL
26705 
26706 	switch (ddi_model_convert_from(flag & FMODELS)) {
26707 	case DDI_MODEL_ILP32:
26708 		resvlist32.listlen = resvlist.listlen;
26709 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
26710 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26711 			    "sd_persistent_reservation_in_read_resv: "
26712 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26713 			rval = EFAULT;
26714 			goto done;
26715 		}
26716 		break;
26717 
26718 	case DDI_MODEL_NONE:
26719 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26720 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26721 			    "sd_persistent_reservation_in_read_resv: "
26722 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26723 			rval = EFAULT;
26724 			goto done;
26725 		}
26726 		break;
26727 	}
26728 
26729 #else /* ! _MULTI_DATAMODEL */
26730 
26731 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26732 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26733 		    "sd_persistent_reservation_in_read_resv: "
26734 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26735 		rval = EFAULT;
26736 		goto done;
26737 	}
26738 
26739 #endif /* ! _MULTI_DATAMODEL */
26740 
26741 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
26742 	bufp = resvlist.list;
26743 	copysz = sizeof (mhioc_resv_desc_t);
26744 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
26745 	    i++, readresv_ptr++, bufp++) {
26746 
26747 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
26748 		    MHIOC_RESV_KEY_SIZE);
26749 		resvdesc.type  = readresv_ptr->type;
26750 		resvdesc.scope = readresv_ptr->scope;
26751 		resvdesc.scope_specific_addr =
26752 		    BE_32(readresv_ptr->scope_specific_addr);
26753 
26754 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
26755 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26756 			    "sd_persistent_reservation_in_read_resv: "
26757 			    "failed ddi_copyout: resvlist\n");
26758 			rval = EFAULT;
26759 			goto done;
26760 		}
26761 	}
26762 done:
26763 	sd_ssc_fini(ssc);
26764 	/* only if data_bufp is allocated, we need to free it */
26765 	if (data_bufp) {
26766 		kmem_free(data_bufp, data_len);
26767 	}
26768 	return (rval);
26769 }
26770 
26771 
26772 /*
26773  *    Function: sr_change_blkmode()
26774  *
26775  * Description: This routine is the driver entry point for handling CD-ROM
26776  *		block mode ioctl requests. Support for returning and changing
26777  *		the current block size in use by the device is implemented. The
26778  *		LBA size is changed via a MODE SELECT Block Descriptor.
26779  *
26780  *		This routine issues a mode sense with an allocation length of
26781  *		12 bytes for the mode page header and a single block descriptor.
26782  *
26783  *   Arguments: dev - the device 'dev_t'
26784  *		cmd - the request type; one of CDROMGBLKMODE (get) or
26785  *		      CDROMSBLKMODE (set)
26786  *		data - current block size or requested block size
26787  *		flag - this argument is a pass through to ddi_copyxxx() directly
26788  *		       from the mode argument of ioctl().
26789  *
26790  * Return Code: the code returned by sd_send_scsi_cmd()
26791  *		EINVAL if invalid arguments are provided
26792  *		EFAULT if ddi_copyxxx() fails
26793  *		ENXIO if fail ddi_get_soft_state
26794  *		EIO if invalid mode sense block descriptor length
26795  *
26796  */
26797 
26798 static int
26799 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
26800 {
26801 	struct sd_lun			*un = NULL;
26802 	struct mode_header		*sense_mhp, *select_mhp;
26803 	struct block_descriptor		*sense_desc, *select_desc;
26804 	int				current_bsize;
26805 	int				rval = EINVAL;
26806 	uchar_t				*sense = NULL;
26807 	uchar_t				*select = NULL;
26808 	sd_ssc_t			*ssc;
26809 
26810 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
26811 
26812 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26813 		return (ENXIO);
26814 	}
26815 
26816 	/*
26817 	 * The block length is changed via the Mode Select block descriptor, the
26818 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
26819 	 * required as part of this routine. Therefore the mode sense allocation
26820 	 * length is specified to be the length of a mode page header and a
26821 	 * block descriptor.
26822 	 */
26823 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26824 
26825 	ssc = sd_ssc_init(un);
26826 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
26827 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
26828 	sd_ssc_fini(ssc);
26829 	if (rval != 0) {
26830 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26831 		    "sr_change_blkmode: Mode Sense Failed\n");
26832 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26833 		return (rval);
26834 	}
26835 
26836 	/* Check the block descriptor len to handle only 1 block descriptor */
26837 	sense_mhp = (struct mode_header *)sense;
26838 	if ((sense_mhp->bdesc_length == 0) ||
26839 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
26840 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26841 		    "sr_change_blkmode: Mode Sense returned invalid block"
26842 		    " descriptor length\n");
26843 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26844 		return (EIO);
26845 	}
26846 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
26847 	current_bsize = ((sense_desc->blksize_hi << 16) |
26848 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
26849 
26850 	/* Process command */
26851 	switch (cmd) {
26852 	case CDROMGBLKMODE:
26853 		/* Return the block size obtained during the mode sense */
26854 		if (ddi_copyout(&current_bsize, (void *)data,
26855 		    sizeof (int), flag) != 0)
26856 			rval = EFAULT;
26857 		break;
26858 	case CDROMSBLKMODE:
26859 		/* Validate the requested block size */
26860 		switch (data) {
26861 		case CDROM_BLK_512:
26862 		case CDROM_BLK_1024:
26863 		case CDROM_BLK_2048:
26864 		case CDROM_BLK_2056:
26865 		case CDROM_BLK_2336:
26866 		case CDROM_BLK_2340:
26867 		case CDROM_BLK_2352:
26868 		case CDROM_BLK_2368:
26869 		case CDROM_BLK_2448:
26870 		case CDROM_BLK_2646:
26871 		case CDROM_BLK_2647:
26872 			break;
26873 		default:
26874 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26875 			    "sr_change_blkmode: "
26876 			    "Block Size '%ld' Not Supported\n", data);
26877 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26878 			return (EINVAL);
26879 		}
26880 
26881 		/*
26882 		 * The current block size matches the requested block size so
26883 		 * there is no need to send the mode select to change the size
26884 		 */
26885 		if (current_bsize == data) {
26886 			break;
26887 		}
26888 
26889 		/* Build the select data for the requested block size */
26890 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26891 		select_mhp = (struct mode_header *)select;
26892 		select_desc =
26893 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
26894 		/*
26895 		 * The LBA size is changed via the block descriptor, so the
26896 		 * descriptor is built according to the user data
26897 		 */
26898 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
26899 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
26900 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
26901 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
26902 
26903 		/* Send the mode select for the requested block size */
26904 		ssc = sd_ssc_init(un);
26905 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
26906 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
26907 		    SD_PATH_STANDARD);
26908 		sd_ssc_fini(ssc);
26909 		if (rval != 0) {
26910 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26911 			    "sr_change_blkmode: Mode Select Failed\n");
26912 			/*
26913 			 * The mode select failed for the requested block size,
26914 			 * so reset the data for the original block size and
26915 			 * send it to the target. The error is indicated by the
26916 			 * return value for the failed mode select.
26917 			 */
26918 			select_desc->blksize_hi  = sense_desc->blksize_hi;
26919 			select_desc->blksize_mid = sense_desc->blksize_mid;
26920 			select_desc->blksize_lo  = sense_desc->blksize_lo;
26921 			ssc = sd_ssc_init(un);
26922 			(void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
26923 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
26924 			    SD_PATH_STANDARD);
26925 			sd_ssc_fini(ssc);
26926 		} else {
26927 			ASSERT(!mutex_owned(SD_MUTEX(un)));
26928 			mutex_enter(SD_MUTEX(un));
26929 			sd_update_block_info(un, (uint32_t)data, 0);
26930 			mutex_exit(SD_MUTEX(un));
26931 		}
26932 		break;
26933 	default:
26934 		/* should not reach here, but check anyway */
26935 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26936 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
26937 		rval = EINVAL;
26938 		break;
26939 	}
26940 
26941 	if (select) {
26942 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
26943 	}
26944 	if (sense) {
26945 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26946 	}
26947 	return (rval);
26948 }
26949 
26950 
26951 /*
26952  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
26953  * implement driver support for getting and setting the CD speed. The command
26954  * set used will be based on the device type. If the device has not been
26955  * identified as MMC the Toshiba vendor specific mode page will be used. If
26956  * the device is MMC but does not support the Real Time Streaming feature
26957  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
26958  * be used to read the speed.
26959  */
26960 
26961 /*
26962  *    Function: sr_change_speed()
26963  *
26964  * Description: This routine is the driver entry point for handling CD-ROM
26965  *		drive speed ioctl requests for devices supporting the Toshiba
26966  *		vendor specific drive speed mode page. Support for returning
26967  *		and changing the current drive speed in use by the device is
26968  *		implemented.
26969  *
26970  *   Arguments: dev - the device 'dev_t'
26971  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
26972  *		      CDROMSDRVSPEED (set)
26973  *		data - current drive speed or requested drive speed
26974  *		flag - this argument is a pass through to ddi_copyxxx() directly
26975  *		       from the mode argument of ioctl().
26976  *
26977  * Return Code: the code returned by sd_send_scsi_cmd()
26978  *		EINVAL if invalid arguments are provided
26979  *		EFAULT if ddi_copyxxx() fails
26980  *		ENXIO if fail ddi_get_soft_state
26981  *		EIO if invalid mode sense block descriptor length
26982  */
26983 
26984 static int
26985 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
26986 {
26987 	struct sd_lun			*un = NULL;
26988 	struct mode_header		*sense_mhp, *select_mhp;
26989 	struct mode_speed		*sense_page, *select_page;
26990 	int				current_speed;
26991 	int				rval = EINVAL;
26992 	int				bd_len;
26993 	uchar_t				*sense = NULL;
26994 	uchar_t				*select = NULL;
26995 	sd_ssc_t			*ssc;
26996 
26997 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
26998 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26999 		return (ENXIO);
27000 	}
27001 
27002 	/*
27003 	 * Note: The drive speed is being modified here according to a Toshiba
27004 	 * vendor specific mode page (0x31).
27005 	 */
27006 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27007 
27008 	ssc = sd_ssc_init(un);
27009 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
27010 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
27011 	    SD_PATH_STANDARD);
27012 	sd_ssc_fini(ssc);
27013 	if (rval != 0) {
27014 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27015 		    "sr_change_speed: Mode Sense Failed\n");
27016 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27017 		return (rval);
27018 	}
27019 	sense_mhp  = (struct mode_header *)sense;
27020 
27021 	/* Check the block descriptor len to handle only 1 block descriptor */
27022 	bd_len = sense_mhp->bdesc_length;
27023 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27024 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27025 		    "sr_change_speed: Mode Sense returned invalid block "
27026 		    "descriptor length\n");
27027 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27028 		return (EIO);
27029 	}
27030 
27031 	sense_page = (struct mode_speed *)
27032 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
27033 	current_speed = sense_page->speed;
27034 
27035 	/* Process command */
27036 	switch (cmd) {
27037 	case CDROMGDRVSPEED:
27038 		/* Return the drive speed obtained during the mode sense */
27039 		if (current_speed == 0x2) {
27040 			current_speed = CDROM_TWELVE_SPEED;
27041 		}
27042 		if (ddi_copyout(&current_speed, (void *)data,
27043 		    sizeof (int), flag) != 0) {
27044 			rval = EFAULT;
27045 		}
27046 		break;
27047 	case CDROMSDRVSPEED:
27048 		/* Validate the requested drive speed */
27049 		switch ((uchar_t)data) {
27050 		case CDROM_TWELVE_SPEED:
27051 			data = 0x2;
27052 			/*FALLTHROUGH*/
27053 		case CDROM_NORMAL_SPEED:
27054 		case CDROM_DOUBLE_SPEED:
27055 		case CDROM_QUAD_SPEED:
27056 		case CDROM_MAXIMUM_SPEED:
27057 			break;
27058 		default:
27059 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27060 			    "sr_change_speed: "
27061 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
27062 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27063 			return (EINVAL);
27064 		}
27065 
27066 		/*
27067 		 * The current drive speed matches the requested drive speed so
27068 		 * there is no need to send the mode select to change the speed
27069 		 */
27070 		if (current_speed == data) {
27071 			break;
27072 		}
27073 
27074 		/* Build the select data for the requested drive speed */
27075 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27076 		select_mhp = (struct mode_header *)select;
27077 		select_mhp->bdesc_length = 0;
27078 		select_page =
27079 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27080 		select_page =
27081 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27082 		select_page->mode_page.code = CDROM_MODE_SPEED;
27083 		select_page->mode_page.length = 2;
27084 		select_page->speed = (uchar_t)data;
27085 
27086 		/* Send the mode select for the requested block size */
27087 		ssc = sd_ssc_init(un);
27088 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
27089 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27090 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27091 		sd_ssc_fini(ssc);
27092 		if (rval != 0) {
27093 			/*
27094 			 * The mode select failed for the requested drive speed,
27095 			 * so reset the data for the original drive speed and
27096 			 * send it to the target. The error is indicated by the
27097 			 * return value for the failed mode select.
27098 			 */
27099 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27100 			    "sr_drive_speed: Mode Select Failed\n");
27101 			select_page->speed = sense_page->speed;
27102 			ssc = sd_ssc_init(un);
27103 			(void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
27104 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27105 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27106 			sd_ssc_fini(ssc);
27107 		}
27108 		break;
27109 	default:
27110 		/* should not reach here, but check anyway */
27111 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27112 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
27113 		rval = EINVAL;
27114 		break;
27115 	}
27116 
27117 	if (select) {
27118 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
27119 	}
27120 	if (sense) {
27121 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27122 	}
27123 
27124 	return (rval);
27125 }
27126 
27127 
27128 /*
27129  *    Function: sr_atapi_change_speed()
27130  *
27131  * Description: This routine is the driver entry point for handling CD-ROM
27132  *		drive speed ioctl requests for MMC devices that do not support
27133  *		the Real Time Streaming feature (0x107).
27134  *
27135  *		Note: This routine will use the SET SPEED command which may not
27136  *		be supported by all devices.
27137  *
27138  *   Arguments: dev- the device 'dev_t'
27139  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
27140  *		     CDROMSDRVSPEED (set)
27141  *		data- current drive speed or requested drive speed
27142  *		flag- this argument is a pass through to ddi_copyxxx() directly
27143  *		      from the mode argument of ioctl().
27144  *
27145  * Return Code: the code returned by sd_send_scsi_cmd()
27146  *		EINVAL if invalid arguments are provided
27147  *		EFAULT if ddi_copyxxx() fails
27148  *		ENXIO if fail ddi_get_soft_state
27149  *		EIO if invalid mode sense block descriptor length
27150  */
27151 
27152 static int
27153 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27154 {
27155 	struct sd_lun			*un;
27156 	struct uscsi_cmd		*com = NULL;
27157 	struct mode_header_grp2		*sense_mhp;
27158 	uchar_t				*sense_page;
27159 	uchar_t				*sense = NULL;
27160 	char				cdb[CDB_GROUP5];
27161 	int				bd_len;
27162 	int				current_speed = 0;
27163 	int				max_speed = 0;
27164 	int				rval;
27165 	sd_ssc_t			*ssc;
27166 
27167 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27168 
27169 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27170 		return (ENXIO);
27171 	}
27172 
27173 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
27174 
27175 	ssc = sd_ssc_init(un);
27176 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
27177 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
27178 	    SD_PATH_STANDARD);
27179 	sd_ssc_fini(ssc);
27180 	if (rval != 0) {
27181 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27182 		    "sr_atapi_change_speed: Mode Sense Failed\n");
27183 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27184 		return (rval);
27185 	}
27186 
27187 	/* Check the block descriptor len to handle only 1 block descriptor */
27188 	sense_mhp = (struct mode_header_grp2 *)sense;
27189 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
27190 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27191 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27192 		    "sr_atapi_change_speed: Mode Sense returned invalid "
27193 		    "block descriptor length\n");
27194 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27195 		return (EIO);
27196 	}
27197 
27198 	/* Calculate the current and maximum drive speeds */
27199 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
27200 	current_speed = (sense_page[14] << 8) | sense_page[15];
27201 	max_speed = (sense_page[8] << 8) | sense_page[9];
27202 
27203 	/* Process the command */
27204 	switch (cmd) {
27205 	case CDROMGDRVSPEED:
27206 		current_speed /= SD_SPEED_1X;
27207 		if (ddi_copyout(&current_speed, (void *)data,
27208 		    sizeof (int), flag) != 0)
27209 			rval = EFAULT;
27210 		break;
27211 	case CDROMSDRVSPEED:
27212 		/* Convert the speed code to KB/sec */
27213 		switch ((uchar_t)data) {
27214 		case CDROM_NORMAL_SPEED:
27215 			current_speed = SD_SPEED_1X;
27216 			break;
27217 		case CDROM_DOUBLE_SPEED:
27218 			current_speed = 2 * SD_SPEED_1X;
27219 			break;
27220 		case CDROM_QUAD_SPEED:
27221 			current_speed = 4 * SD_SPEED_1X;
27222 			break;
27223 		case CDROM_TWELVE_SPEED:
27224 			current_speed = 12 * SD_SPEED_1X;
27225 			break;
27226 		case CDROM_MAXIMUM_SPEED:
27227 			current_speed = 0xffff;
27228 			break;
27229 		default:
27230 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27231 			    "sr_atapi_change_speed: invalid drive speed %d\n",
27232 			    (uchar_t)data);
27233 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27234 			return (EINVAL);
27235 		}
27236 
27237 		/* Check the request against the drive's max speed. */
27238 		if (current_speed != 0xffff) {
27239 			if (current_speed > max_speed) {
27240 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27241 				return (EINVAL);
27242 			}
27243 		}
27244 
27245 		/*
27246 		 * Build and send the SET SPEED command
27247 		 *
27248 		 * Note: The SET SPEED (0xBB) command used in this routine is
27249 		 * obsolete per the SCSI MMC spec but still supported in the
27250 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27251 		 * therefore the command is still implemented in this routine.
27252 		 */
27253 		bzero(cdb, sizeof (cdb));
27254 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
27255 		cdb[2] = (uchar_t)(current_speed >> 8);
27256 		cdb[3] = (uchar_t)current_speed;
27257 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27258 		com->uscsi_cdb	   = (caddr_t)cdb;
27259 		com->uscsi_cdblen  = CDB_GROUP5;
27260 		com->uscsi_bufaddr = NULL;
27261 		com->uscsi_buflen  = 0;
27262 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
27263 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD);
27264 		break;
27265 	default:
27266 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27267 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
27268 		rval = EINVAL;
27269 	}
27270 
27271 	if (sense) {
27272 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27273 	}
27274 	if (com) {
27275 		kmem_free(com, sizeof (*com));
27276 	}
27277 	return (rval);
27278 }
27279 
27280 
27281 /*
27282  *    Function: sr_pause_resume()
27283  *
27284  * Description: This routine is the driver entry point for handling CD-ROM
27285  *		pause/resume ioctl requests. This only affects the audio play
27286  *		operation.
27287  *
27288  *   Arguments: dev - the device 'dev_t'
27289  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
27290  *		      for setting the resume bit of the cdb.
27291  *
27292  * Return Code: the code returned by sd_send_scsi_cmd()
27293  *		EINVAL if invalid mode specified
27294  *
27295  */
27296 
27297 static int
27298 sr_pause_resume(dev_t dev, int cmd)
27299 {
27300 	struct sd_lun		*un;
27301 	struct uscsi_cmd	*com;
27302 	char			cdb[CDB_GROUP1];
27303 	int			rval;
27304 
27305 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27306 		return (ENXIO);
27307 	}
27308 
27309 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27310 	bzero(cdb, CDB_GROUP1);
27311 	cdb[0] = SCMD_PAUSE_RESUME;
27312 	switch (cmd) {
27313 	case CDROMRESUME:
27314 		cdb[8] = 1;
27315 		break;
27316 	case CDROMPAUSE:
27317 		cdb[8] = 0;
27318 		break;
27319 	default:
27320 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
27321 		    " Command '%x' Not Supported\n", cmd);
27322 		rval = EINVAL;
27323 		goto done;
27324 	}
27325 
27326 	com->uscsi_cdb    = cdb;
27327 	com->uscsi_cdblen = CDB_GROUP1;
27328 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27329 
27330 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27331 	    SD_PATH_STANDARD);
27332 
27333 done:
27334 	kmem_free(com, sizeof (*com));
27335 	return (rval);
27336 }
27337 
27338 
27339 /*
27340  *    Function: sr_play_msf()
27341  *
27342  * Description: This routine is the driver entry point for handling CD-ROM
27343  *		ioctl requests to output the audio signals at the specified
27344  *		starting address and continue the audio play until the specified
27345  *		ending address (CDROMPLAYMSF) The address is in Minute Second
27346  *		Frame (MSF) format.
27347  *
27348  *   Arguments: dev	- the device 'dev_t'
27349  *		data	- pointer to user provided audio msf structure,
27350  *		          specifying start/end addresses.
27351  *		flag	- this argument is a pass through to ddi_copyxxx()
27352  *		          directly from the mode argument of ioctl().
27353  *
27354  * Return Code: the code returned by sd_send_scsi_cmd()
27355  *		EFAULT if ddi_copyxxx() fails
27356  *		ENXIO if fail ddi_get_soft_state
27357  *		EINVAL if data pointer is NULL
27358  */
27359 
27360 static int
27361 sr_play_msf(dev_t dev, caddr_t data, int flag)
27362 {
27363 	struct sd_lun		*un;
27364 	struct uscsi_cmd	*com;
27365 	struct cdrom_msf	msf_struct;
27366 	struct cdrom_msf	*msf = &msf_struct;
27367 	char			cdb[CDB_GROUP1];
27368 	int			rval;
27369 
27370 	if (data == NULL) {
27371 		return (EINVAL);
27372 	}
27373 
27374 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27375 		return (ENXIO);
27376 	}
27377 
27378 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
27379 		return (EFAULT);
27380 	}
27381 
27382 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27383 	bzero(cdb, CDB_GROUP1);
27384 	cdb[0] = SCMD_PLAYAUDIO_MSF;
27385 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
27386 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
27387 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
27388 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
27389 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
27390 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
27391 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
27392 	} else {
27393 		cdb[3] = msf->cdmsf_min0;
27394 		cdb[4] = msf->cdmsf_sec0;
27395 		cdb[5] = msf->cdmsf_frame0;
27396 		cdb[6] = msf->cdmsf_min1;
27397 		cdb[7] = msf->cdmsf_sec1;
27398 		cdb[8] = msf->cdmsf_frame1;
27399 	}
27400 	com->uscsi_cdb    = cdb;
27401 	com->uscsi_cdblen = CDB_GROUP1;
27402 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27403 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27404 	    SD_PATH_STANDARD);
27405 	kmem_free(com, sizeof (*com));
27406 	return (rval);
27407 }
27408 
27409 
27410 /*
27411  *    Function: sr_play_trkind()
27412  *
27413  * Description: This routine is the driver entry point for handling CD-ROM
27414  *		ioctl requests to output the audio signals at the specified
27415  *		starting address and continue the audio play until the specified
27416  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
27417  *		format.
27418  *
27419  *   Arguments: dev	- the device 'dev_t'
27420  *		data	- pointer to user provided audio track/index structure,
27421  *		          specifying start/end addresses.
27422  *		flag	- this argument is a pass through to ddi_copyxxx()
27423  *		          directly from the mode argument of ioctl().
27424  *
27425  * Return Code: the code returned by sd_send_scsi_cmd()
27426  *		EFAULT if ddi_copyxxx() fails
27427  *		ENXIO if fail ddi_get_soft_state
27428  *		EINVAL if data pointer is NULL
27429  */
27430 
27431 static int
27432 sr_play_trkind(dev_t dev, caddr_t data, int flag)
27433 {
27434 	struct cdrom_ti		ti_struct;
27435 	struct cdrom_ti		*ti = &ti_struct;
27436 	struct uscsi_cmd	*com = NULL;
27437 	char			cdb[CDB_GROUP1];
27438 	int			rval;
27439 
27440 	if (data == NULL) {
27441 		return (EINVAL);
27442 	}
27443 
27444 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
27445 		return (EFAULT);
27446 	}
27447 
27448 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27449 	bzero(cdb, CDB_GROUP1);
27450 	cdb[0] = SCMD_PLAYAUDIO_TI;
27451 	cdb[4] = ti->cdti_trk0;
27452 	cdb[5] = ti->cdti_ind0;
27453 	cdb[7] = ti->cdti_trk1;
27454 	cdb[8] = ti->cdti_ind1;
27455 	com->uscsi_cdb    = cdb;
27456 	com->uscsi_cdblen = CDB_GROUP1;
27457 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27458 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27459 	    SD_PATH_STANDARD);
27460 	kmem_free(com, sizeof (*com));
27461 	return (rval);
27462 }
27463 
27464 
27465 /*
27466  *    Function: sr_read_all_subcodes()
27467  *
27468  * Description: This routine is the driver entry point for handling CD-ROM
27469  *		ioctl requests to return raw subcode data while the target is
27470  *		playing audio (CDROMSUBCODE).
27471  *
27472  *   Arguments: dev	- the device 'dev_t'
27473  *		data	- pointer to user provided cdrom subcode structure,
27474  *		          specifying the transfer length and address.
27475  *		flag	- this argument is a pass through to ddi_copyxxx()
27476  *		          directly from the mode argument of ioctl().
27477  *
27478  * Return Code: the code returned by sd_send_scsi_cmd()
27479  *		EFAULT if ddi_copyxxx() fails
27480  *		ENXIO if fail ddi_get_soft_state
27481  *		EINVAL if data pointer is NULL
27482  */
27483 
27484 static int
27485 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
27486 {
27487 	struct sd_lun		*un = NULL;
27488 	struct uscsi_cmd	*com = NULL;
27489 	struct cdrom_subcode	*subcode = NULL;
27490 	int			rval;
27491 	size_t			buflen;
27492 	char			cdb[CDB_GROUP5];
27493 
27494 #ifdef _MULTI_DATAMODEL
27495 	/* To support ILP32 applications in an LP64 world */
27496 	struct cdrom_subcode32		cdrom_subcode32;
27497 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
27498 #endif
27499 	if (data == NULL) {
27500 		return (EINVAL);
27501 	}
27502 
27503 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27504 		return (ENXIO);
27505 	}
27506 
27507 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
27508 
27509 #ifdef _MULTI_DATAMODEL
27510 	switch (ddi_model_convert_from(flag & FMODELS)) {
27511 	case DDI_MODEL_ILP32:
27512 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
27513 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27514 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27515 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27516 			return (EFAULT);
27517 		}
27518 		/* Convert the ILP32 uscsi data from the application to LP64 */
27519 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
27520 		break;
27521 	case DDI_MODEL_NONE:
27522 		if (ddi_copyin(data, subcode,
27523 		    sizeof (struct cdrom_subcode), flag)) {
27524 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27525 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27526 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27527 			return (EFAULT);
27528 		}
27529 		break;
27530 	}
27531 #else /* ! _MULTI_DATAMODEL */
27532 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
27533 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27534 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
27535 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27536 		return (EFAULT);
27537 	}
27538 #endif /* _MULTI_DATAMODEL */
27539 
27540 	/*
27541 	 * Since MMC-2 expects max 3 bytes for length, check if the
27542 	 * length input is greater than 3 bytes
27543 	 */
27544 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
27545 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27546 		    "sr_read_all_subcodes: "
27547 		    "cdrom transfer length too large: %d (limit %d)\n",
27548 		    subcode->cdsc_length, 0xFFFFFF);
27549 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27550 		return (EINVAL);
27551 	}
27552 
27553 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
27554 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27555 	bzero(cdb, CDB_GROUP5);
27556 
27557 	if (un->un_f_mmc_cap == TRUE) {
27558 		cdb[0] = (char)SCMD_READ_CD;
27559 		cdb[2] = (char)0xff;
27560 		cdb[3] = (char)0xff;
27561 		cdb[4] = (char)0xff;
27562 		cdb[5] = (char)0xff;
27563 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27564 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27565 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
27566 		cdb[10] = 1;
27567 	} else {
27568 		/*
27569 		 * Note: A vendor specific command (0xDF) is being used her to
27570 		 * request a read of all subcodes.
27571 		 */
27572 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
27573 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
27574 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27575 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27576 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
27577 	}
27578 	com->uscsi_cdb	   = cdb;
27579 	com->uscsi_cdblen  = CDB_GROUP5;
27580 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
27581 	com->uscsi_buflen  = buflen;
27582 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27583 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27584 	    SD_PATH_STANDARD);
27585 	kmem_free(subcode, sizeof (struct cdrom_subcode));
27586 	kmem_free(com, sizeof (*com));
27587 	return (rval);
27588 }
27589 
27590 
27591 /*
27592  *    Function: sr_read_subchannel()
27593  *
27594  * Description: This routine is the driver entry point for handling CD-ROM
27595  *		ioctl requests to return the Q sub-channel data of the CD
27596  *		current position block. (CDROMSUBCHNL) The data includes the
27597  *		track number, index number, absolute CD-ROM address (LBA or MSF
27598  *		format per the user) , track relative CD-ROM address (LBA or MSF
27599  *		format per the user), control data and audio status.
27600  *
27601  *   Arguments: dev	- the device 'dev_t'
27602  *		data	- pointer to user provided cdrom sub-channel structure
27603  *		flag	- this argument is a pass through to ddi_copyxxx()
27604  *		          directly from the mode argument of ioctl().
27605  *
27606  * Return Code: the code returned by sd_send_scsi_cmd()
27607  *		EFAULT if ddi_copyxxx() fails
27608  *		ENXIO if fail ddi_get_soft_state
27609  *		EINVAL if data pointer is NULL
27610  */
27611 
27612 static int
27613 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
27614 {
27615 	struct sd_lun		*un;
27616 	struct uscsi_cmd	*com;
27617 	struct cdrom_subchnl	subchanel;
27618 	struct cdrom_subchnl	*subchnl = &subchanel;
27619 	char			cdb[CDB_GROUP1];
27620 	caddr_t			buffer;
27621 	int			rval;
27622 
27623 	if (data == NULL) {
27624 		return (EINVAL);
27625 	}
27626 
27627 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27628 	    (un->un_state == SD_STATE_OFFLINE)) {
27629 		return (ENXIO);
27630 	}
27631 
27632 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
27633 		return (EFAULT);
27634 	}
27635 
27636 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
27637 	bzero(cdb, CDB_GROUP1);
27638 	cdb[0] = SCMD_READ_SUBCHANNEL;
27639 	/* Set the MSF bit based on the user requested address format */
27640 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
27641 	/*
27642 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
27643 	 * returned
27644 	 */
27645 	cdb[2] = 0x40;
27646 	/*
27647 	 * Set byte 3 to specify the return data format. A value of 0x01
27648 	 * indicates that the CD-ROM current position should be returned.
27649 	 */
27650 	cdb[3] = 0x01;
27651 	cdb[8] = 0x10;
27652 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27653 	com->uscsi_cdb	   = cdb;
27654 	com->uscsi_cdblen  = CDB_GROUP1;
27655 	com->uscsi_bufaddr = buffer;
27656 	com->uscsi_buflen  = 16;
27657 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27658 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27659 	    SD_PATH_STANDARD);
27660 	if (rval != 0) {
27661 		kmem_free(buffer, 16);
27662 		kmem_free(com, sizeof (*com));
27663 		return (rval);
27664 	}
27665 
27666 	/* Process the returned Q sub-channel data */
27667 	subchnl->cdsc_audiostatus = buffer[1];
27668 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
27669 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
27670 	subchnl->cdsc_trk	= buffer[6];
27671 	subchnl->cdsc_ind	= buffer[7];
27672 	if (subchnl->cdsc_format & CDROM_LBA) {
27673 		subchnl->cdsc_absaddr.lba =
27674 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27675 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27676 		subchnl->cdsc_reladdr.lba =
27677 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
27678 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
27679 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
27680 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
27681 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
27682 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
27683 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
27684 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
27685 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
27686 	} else {
27687 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
27688 		subchnl->cdsc_absaddr.msf.second = buffer[10];
27689 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
27690 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
27691 		subchnl->cdsc_reladdr.msf.second = buffer[14];
27692 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
27693 	}
27694 	kmem_free(buffer, 16);
27695 	kmem_free(com, sizeof (*com));
27696 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
27697 	    != 0) {
27698 		return (EFAULT);
27699 	}
27700 	return (rval);
27701 }
27702 
27703 
27704 /*
27705  *    Function: sr_read_tocentry()
27706  *
27707  * Description: This routine is the driver entry point for handling CD-ROM
27708  *		ioctl requests to read from the Table of Contents (TOC)
27709  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
27710  *		fields, the starting address (LBA or MSF format per the user)
27711  *		and the data mode if the user specified track is a data track.
27712  *
27713  *		Note: The READ HEADER (0x44) command used in this routine is
27714  *		obsolete per the SCSI MMC spec but still supported in the
27715  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27716  *		therefore the command is still implemented in this routine.
27717  *
27718  *   Arguments: dev	- the device 'dev_t'
27719  *		data	- pointer to user provided toc entry structure,
27720  *			  specifying the track # and the address format
27721  *			  (LBA or MSF).
27722  *		flag	- this argument is a pass through to ddi_copyxxx()
27723  *		          directly from the mode argument of ioctl().
27724  *
27725  * Return Code: the code returned by sd_send_scsi_cmd()
27726  *		EFAULT if ddi_copyxxx() fails
27727  *		ENXIO if fail ddi_get_soft_state
27728  *		EINVAL if data pointer is NULL
27729  */
27730 
27731 static int
27732 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
27733 {
27734 	struct sd_lun		*un = NULL;
27735 	struct uscsi_cmd	*com;
27736 	struct cdrom_tocentry	toc_entry;
27737 	struct cdrom_tocentry	*entry = &toc_entry;
27738 	caddr_t			buffer;
27739 	int			rval;
27740 	char			cdb[CDB_GROUP1];
27741 
27742 	if (data == NULL) {
27743 		return (EINVAL);
27744 	}
27745 
27746 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27747 	    (un->un_state == SD_STATE_OFFLINE)) {
27748 		return (ENXIO);
27749 	}
27750 
27751 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
27752 		return (EFAULT);
27753 	}
27754 
27755 	/* Validate the requested track and address format */
27756 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
27757 		return (EINVAL);
27758 	}
27759 
27760 	if (entry->cdte_track == 0) {
27761 		return (EINVAL);
27762 	}
27763 
27764 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
27765 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27766 	bzero(cdb, CDB_GROUP1);
27767 
27768 	cdb[0] = SCMD_READ_TOC;
27769 	/* Set the MSF bit based on the user requested address format  */
27770 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
27771 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
27772 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
27773 	} else {
27774 		cdb[6] = entry->cdte_track;
27775 	}
27776 
27777 	/*
27778 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
27779 	 * (4 byte TOC response header + 8 byte track descriptor)
27780 	 */
27781 	cdb[8] = 12;
27782 	com->uscsi_cdb	   = cdb;
27783 	com->uscsi_cdblen  = CDB_GROUP1;
27784 	com->uscsi_bufaddr = buffer;
27785 	com->uscsi_buflen  = 0x0C;
27786 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
27787 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27788 	    SD_PATH_STANDARD);
27789 	if (rval != 0) {
27790 		kmem_free(buffer, 12);
27791 		kmem_free(com, sizeof (*com));
27792 		return (rval);
27793 	}
27794 
27795 	/* Process the toc entry */
27796 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
27797 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
27798 	if (entry->cdte_format & CDROM_LBA) {
27799 		entry->cdte_addr.lba =
27800 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27801 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27802 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
27803 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
27804 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
27805 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
27806 		/*
27807 		 * Send a READ TOC command using the LBA address format to get
27808 		 * the LBA for the track requested so it can be used in the
27809 		 * READ HEADER request
27810 		 *
27811 		 * Note: The MSF bit of the READ HEADER command specifies the
27812 		 * output format. The block address specified in that command
27813 		 * must be in LBA format.
27814 		 */
27815 		cdb[1] = 0;
27816 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27817 		    SD_PATH_STANDARD);
27818 		if (rval != 0) {
27819 			kmem_free(buffer, 12);
27820 			kmem_free(com, sizeof (*com));
27821 			return (rval);
27822 		}
27823 	} else {
27824 		entry->cdte_addr.msf.minute	= buffer[9];
27825 		entry->cdte_addr.msf.second	= buffer[10];
27826 		entry->cdte_addr.msf.frame	= buffer[11];
27827 		/*
27828 		 * Send a READ TOC command using the LBA address format to get
27829 		 * the LBA for the track requested so it can be used in the
27830 		 * READ HEADER request
27831 		 *
27832 		 * Note: The MSF bit of the READ HEADER command specifies the
27833 		 * output format. The block address specified in that command
27834 		 * must be in LBA format.
27835 		 */
27836 		cdb[1] = 0;
27837 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27838 		    SD_PATH_STANDARD);
27839 		if (rval != 0) {
27840 			kmem_free(buffer, 12);
27841 			kmem_free(com, sizeof (*com));
27842 			return (rval);
27843 		}
27844 	}
27845 
27846 	/*
27847 	 * Build and send the READ HEADER command to determine the data mode of
27848 	 * the user specified track.
27849 	 */
27850 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
27851 	    (entry->cdte_track != CDROM_LEADOUT)) {
27852 		bzero(cdb, CDB_GROUP1);
27853 		cdb[0] = SCMD_READ_HEADER;
27854 		cdb[2] = buffer[8];
27855 		cdb[3] = buffer[9];
27856 		cdb[4] = buffer[10];
27857 		cdb[5] = buffer[11];
27858 		cdb[8] = 0x08;
27859 		com->uscsi_buflen = 0x08;
27860 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27861 		    SD_PATH_STANDARD);
27862 		if (rval == 0) {
27863 			entry->cdte_datamode = buffer[0];
27864 		} else {
27865 			/*
27866 			 * READ HEADER command failed, since this is
27867 			 * obsoleted in one spec, its better to return
27868 			 * -1 for an invlid track so that we can still
27869 			 * receive the rest of the TOC data.
27870 			 */
27871 			entry->cdte_datamode = (uchar_t)-1;
27872 		}
27873 	} else {
27874 		entry->cdte_datamode = (uchar_t)-1;
27875 	}
27876 
27877 	kmem_free(buffer, 12);
27878 	kmem_free(com, sizeof (*com));
27879 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
27880 		return (EFAULT);
27881 
27882 	return (rval);
27883 }
27884 
27885 
27886 /*
27887  *    Function: sr_read_tochdr()
27888  *
27889  * Description: This routine is the driver entry point for handling CD-ROM
27890  * 		ioctl requests to read the Table of Contents (TOC) header
27891  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
27892  *		and ending track numbers
27893  *
27894  *   Arguments: dev	- the device 'dev_t'
27895  *		data	- pointer to user provided toc header structure,
27896  *			  specifying the starting and ending track numbers.
27897  *		flag	- this argument is a pass through to ddi_copyxxx()
27898  *			  directly from the mode argument of ioctl().
27899  *
27900  * Return Code: the code returned by sd_send_scsi_cmd()
27901  *		EFAULT if ddi_copyxxx() fails
27902  *		ENXIO if fail ddi_get_soft_state
27903  *		EINVAL if data pointer is NULL
27904  */
27905 
27906 static int
27907 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
27908 {
27909 	struct sd_lun		*un;
27910 	struct uscsi_cmd	*com;
27911 	struct cdrom_tochdr	toc_header;
27912 	struct cdrom_tochdr	*hdr = &toc_header;
27913 	char			cdb[CDB_GROUP1];
27914 	int			rval;
27915 	caddr_t			buffer;
27916 
27917 	if (data == NULL) {
27918 		return (EINVAL);
27919 	}
27920 
27921 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27922 	    (un->un_state == SD_STATE_OFFLINE)) {
27923 		return (ENXIO);
27924 	}
27925 
27926 	buffer = kmem_zalloc(4, KM_SLEEP);
27927 	bzero(cdb, CDB_GROUP1);
27928 	cdb[0] = SCMD_READ_TOC;
27929 	/*
27930 	 * Specifying a track number of 0x00 in the READ TOC command indicates
27931 	 * that the TOC header should be returned
27932 	 */
27933 	cdb[6] = 0x00;
27934 	/*
27935 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
27936 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
27937 	 */
27938 	cdb[8] = 0x04;
27939 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27940 	com->uscsi_cdb	   = cdb;
27941 	com->uscsi_cdblen  = CDB_GROUP1;
27942 	com->uscsi_bufaddr = buffer;
27943 	com->uscsi_buflen  = 0x04;
27944 	com->uscsi_timeout = 300;
27945 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27946 
27947 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27948 	    SD_PATH_STANDARD);
27949 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
27950 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
27951 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
27952 	} else {
27953 		hdr->cdth_trk0 = buffer[2];
27954 		hdr->cdth_trk1 = buffer[3];
27955 	}
27956 	kmem_free(buffer, 4);
27957 	kmem_free(com, sizeof (*com));
27958 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
27959 		return (EFAULT);
27960 	}
27961 	return (rval);
27962 }
27963 
27964 
27965 /*
27966  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
27967  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
27968  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
27969  * digital audio and extended architecture digital audio. These modes are
27970  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
27971  * MMC specs.
27972  *
27973  * In addition to support for the various data formats these routines also
27974  * include support for devices that implement only the direct access READ
27975  * commands (0x08, 0x28), devices that implement the READ_CD commands
27976  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
27977  * READ CDXA commands (0xD8, 0xDB)
27978  */
27979 
27980 /*
27981  *    Function: sr_read_mode1()
27982  *
27983  * Description: This routine is the driver entry point for handling CD-ROM
27984  *		ioctl read mode1 requests (CDROMREADMODE1).
27985  *
27986  *   Arguments: dev	- the device 'dev_t'
27987  *		data	- pointer to user provided cd read structure specifying
27988  *			  the lba buffer address and length.
27989  *		flag	- this argument is a pass through to ddi_copyxxx()
27990  *			  directly from the mode argument of ioctl().
27991  *
27992  * Return Code: the code returned by sd_send_scsi_cmd()
27993  *		EFAULT if ddi_copyxxx() fails
27994  *		ENXIO if fail ddi_get_soft_state
27995  *		EINVAL if data pointer is NULL
27996  */
27997 
27998 static int
27999 sr_read_mode1(dev_t dev, caddr_t data, int flag)
28000 {
28001 	struct sd_lun		*un;
28002 	struct cdrom_read	mode1_struct;
28003 	struct cdrom_read	*mode1 = &mode1_struct;
28004 	int			rval;
28005 	sd_ssc_t		*ssc;
28006 
28007 #ifdef _MULTI_DATAMODEL
28008 	/* To support ILP32 applications in an LP64 world */
28009 	struct cdrom_read32	cdrom_read32;
28010 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28011 #endif /* _MULTI_DATAMODEL */
28012 
28013 	if (data == NULL) {
28014 		return (EINVAL);
28015 	}
28016 
28017 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28018 	    (un->un_state == SD_STATE_OFFLINE)) {
28019 		return (ENXIO);
28020 	}
28021 
28022 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28023 	    "sd_read_mode1: entry: un:0x%p\n", un);
28024 
28025 #ifdef _MULTI_DATAMODEL
28026 	switch (ddi_model_convert_from(flag & FMODELS)) {
28027 	case DDI_MODEL_ILP32:
28028 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28029 			return (EFAULT);
28030 		}
28031 		/* Convert the ILP32 uscsi data from the application to LP64 */
28032 		cdrom_read32tocdrom_read(cdrd32, mode1);
28033 		break;
28034 	case DDI_MODEL_NONE:
28035 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28036 			return (EFAULT);
28037 		}
28038 	}
28039 #else /* ! _MULTI_DATAMODEL */
28040 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28041 		return (EFAULT);
28042 	}
28043 #endif /* _MULTI_DATAMODEL */
28044 
28045 	ssc = sd_ssc_init(un);
28046 	rval = sd_send_scsi_READ(ssc, mode1->cdread_bufaddr,
28047 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
28048 	sd_ssc_fini(ssc);
28049 
28050 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28051 	    "sd_read_mode1: exit: un:0x%p\n", un);
28052 
28053 	return (rval);
28054 }
28055 
28056 
28057 /*
28058  *    Function: sr_read_cd_mode2()
28059  *
28060  * Description: This routine is the driver entry point for handling CD-ROM
28061  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28062  *		support the READ CD (0xBE) command or the 1st generation
28063  *		READ CD (0xD4) command.
28064  *
28065  *   Arguments: dev	- the device 'dev_t'
28066  *		data	- pointer to user provided cd read structure specifying
28067  *			  the lba buffer address and length.
28068  *		flag	- this argument is a pass through to ddi_copyxxx()
28069  *			  directly from the mode argument of ioctl().
28070  *
28071  * Return Code: the code returned by sd_send_scsi_cmd()
28072  *		EFAULT if ddi_copyxxx() fails
28073  *		ENXIO if fail ddi_get_soft_state
28074  *		EINVAL if data pointer is NULL
28075  */
28076 
28077 static int
28078 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
28079 {
28080 	struct sd_lun		*un;
28081 	struct uscsi_cmd	*com;
28082 	struct cdrom_read	mode2_struct;
28083 	struct cdrom_read	*mode2 = &mode2_struct;
28084 	uchar_t			cdb[CDB_GROUP5];
28085 	int			nblocks;
28086 	int			rval;
28087 #ifdef _MULTI_DATAMODEL
28088 	/*  To support ILP32 applications in an LP64 world */
28089 	struct cdrom_read32	cdrom_read32;
28090 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28091 #endif /* _MULTI_DATAMODEL */
28092 
28093 	if (data == NULL) {
28094 		return (EINVAL);
28095 	}
28096 
28097 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28098 	    (un->un_state == SD_STATE_OFFLINE)) {
28099 		return (ENXIO);
28100 	}
28101 
28102 #ifdef _MULTI_DATAMODEL
28103 	switch (ddi_model_convert_from(flag & FMODELS)) {
28104 	case DDI_MODEL_ILP32:
28105 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28106 			return (EFAULT);
28107 		}
28108 		/* Convert the ILP32 uscsi data from the application to LP64 */
28109 		cdrom_read32tocdrom_read(cdrd32, mode2);
28110 		break;
28111 	case DDI_MODEL_NONE:
28112 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28113 			return (EFAULT);
28114 		}
28115 		break;
28116 	}
28117 
28118 #else /* ! _MULTI_DATAMODEL */
28119 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28120 		return (EFAULT);
28121 	}
28122 #endif /* _MULTI_DATAMODEL */
28123 
28124 	bzero(cdb, sizeof (cdb));
28125 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
28126 		/* Read command supported by 1st generation atapi drives */
28127 		cdb[0] = SCMD_READ_CDD4;
28128 	} else {
28129 		/* Universal CD Access Command */
28130 		cdb[0] = SCMD_READ_CD;
28131 	}
28132 
28133 	/*
28134 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
28135 	 */
28136 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
28137 
28138 	/* set the start address */
28139 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
28140 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
28141 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28142 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
28143 
28144 	/* set the transfer length */
28145 	nblocks = mode2->cdread_buflen / 2336;
28146 	cdb[6] = (uchar_t)(nblocks >> 16);
28147 	cdb[7] = (uchar_t)(nblocks >> 8);
28148 	cdb[8] = (uchar_t)nblocks;
28149 
28150 	/* set the filter bits */
28151 	cdb[9] = CDROM_READ_CD_USERDATA;
28152 
28153 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28154 	com->uscsi_cdb = (caddr_t)cdb;
28155 	com->uscsi_cdblen = sizeof (cdb);
28156 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28157 	com->uscsi_buflen = mode2->cdread_buflen;
28158 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28159 
28160 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28161 	    SD_PATH_STANDARD);
28162 	kmem_free(com, sizeof (*com));
28163 	return (rval);
28164 }
28165 
28166 
28167 /*
28168  *    Function: sr_read_mode2()
28169  *
28170  * Description: This routine is the driver entry point for handling CD-ROM
28171  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28172  *		do not support the READ CD (0xBE) command.
28173  *
28174  *   Arguments: dev	- the device 'dev_t'
28175  *		data	- pointer to user provided cd read structure specifying
28176  *			  the lba buffer address and length.
28177  *		flag	- this argument is a pass through to ddi_copyxxx()
28178  *			  directly from the mode argument of ioctl().
28179  *
28180  * Return Code: the code returned by sd_send_scsi_cmd()
28181  *		EFAULT if ddi_copyxxx() fails
28182  *		ENXIO if fail ddi_get_soft_state
28183  *		EINVAL if data pointer is NULL
28184  *		EIO if fail to reset block size
28185  *		EAGAIN if commands are in progress in the driver
28186  */
28187 
28188 static int
28189 sr_read_mode2(dev_t dev, caddr_t data, int flag)
28190 {
28191 	struct sd_lun		*un;
28192 	struct cdrom_read	mode2_struct;
28193 	struct cdrom_read	*mode2 = &mode2_struct;
28194 	int			rval;
28195 	uint32_t		restore_blksize;
28196 	struct uscsi_cmd	*com;
28197 	uchar_t			cdb[CDB_GROUP0];
28198 	int			nblocks;
28199 
28200 #ifdef _MULTI_DATAMODEL
28201 	/* To support ILP32 applications in an LP64 world */
28202 	struct cdrom_read32	cdrom_read32;
28203 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28204 #endif /* _MULTI_DATAMODEL */
28205 
28206 	if (data == NULL) {
28207 		return (EINVAL);
28208 	}
28209 
28210 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28211 	    (un->un_state == SD_STATE_OFFLINE)) {
28212 		return (ENXIO);
28213 	}
28214 
28215 	/*
28216 	 * Because this routine will update the device and driver block size
28217 	 * being used we want to make sure there are no commands in progress.
28218 	 * If commands are in progress the user will have to try again.
28219 	 *
28220 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
28221 	 * in sdioctl to protect commands from sdioctl through to the top of
28222 	 * sd_uscsi_strategy. See sdioctl for details.
28223 	 */
28224 	mutex_enter(SD_MUTEX(un));
28225 	if (un->un_ncmds_in_driver != 1) {
28226 		mutex_exit(SD_MUTEX(un));
28227 		return (EAGAIN);
28228 	}
28229 	mutex_exit(SD_MUTEX(un));
28230 
28231 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28232 	    "sd_read_mode2: entry: un:0x%p\n", un);
28233 
28234 #ifdef _MULTI_DATAMODEL
28235 	switch (ddi_model_convert_from(flag & FMODELS)) {
28236 	case DDI_MODEL_ILP32:
28237 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28238 			return (EFAULT);
28239 		}
28240 		/* Convert the ILP32 uscsi data from the application to LP64 */
28241 		cdrom_read32tocdrom_read(cdrd32, mode2);
28242 		break;
28243 	case DDI_MODEL_NONE:
28244 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28245 			return (EFAULT);
28246 		}
28247 		break;
28248 	}
28249 #else /* ! _MULTI_DATAMODEL */
28250 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
28251 		return (EFAULT);
28252 	}
28253 #endif /* _MULTI_DATAMODEL */
28254 
28255 	/* Store the current target block size for restoration later */
28256 	restore_blksize = un->un_tgt_blocksize;
28257 
28258 	/* Change the device and soft state target block size to 2336 */
28259 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
28260 		rval = EIO;
28261 		goto done;
28262 	}
28263 
28264 
28265 	bzero(cdb, sizeof (cdb));
28266 
28267 	/* set READ operation */
28268 	cdb[0] = SCMD_READ;
28269 
28270 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
28271 	mode2->cdread_lba >>= 2;
28272 
28273 	/* set the start address */
28274 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
28275 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28276 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
28277 
28278 	/* set the transfer length */
28279 	nblocks = mode2->cdread_buflen / 2336;
28280 	cdb[4] = (uchar_t)nblocks & 0xFF;
28281 
28282 	/* build command */
28283 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28284 	com->uscsi_cdb = (caddr_t)cdb;
28285 	com->uscsi_cdblen = sizeof (cdb);
28286 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28287 	com->uscsi_buflen = mode2->cdread_buflen;
28288 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28289 
28290 	/*
28291 	 * Issue SCSI command with user space address for read buffer.
28292 	 *
28293 	 * This sends the command through main channel in the driver.
28294 	 *
28295 	 * Since this is accessed via an IOCTL call, we go through the
28296 	 * standard path, so that if the device was powered down, then
28297 	 * it would be 'awakened' to handle the command.
28298 	 */
28299 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28300 	    SD_PATH_STANDARD);
28301 
28302 	kmem_free(com, sizeof (*com));
28303 
28304 	/* Restore the device and soft state target block size */
28305 	if (sr_sector_mode(dev, restore_blksize) != 0) {
28306 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28307 		    "can't do switch back to mode 1\n");
28308 		/*
28309 		 * If sd_send_scsi_READ succeeded we still need to report
28310 		 * an error because we failed to reset the block size
28311 		 */
28312 		if (rval == 0) {
28313 			rval = EIO;
28314 		}
28315 	}
28316 
28317 done:
28318 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28319 	    "sd_read_mode2: exit: un:0x%p\n", un);
28320 
28321 	return (rval);
28322 }
28323 
28324 
28325 /*
28326  *    Function: sr_sector_mode()
28327  *
28328  * Description: This utility function is used by sr_read_mode2 to set the target
28329  *		block size based on the user specified size. This is a legacy
28330  *		implementation based upon a vendor specific mode page
28331  *
28332  *   Arguments: dev	- the device 'dev_t'
28333  *		data	- flag indicating if block size is being set to 2336 or
28334  *			  512.
28335  *
28336  * Return Code: the code returned by sd_send_scsi_cmd()
28337  *		EFAULT if ddi_copyxxx() fails
28338  *		ENXIO if fail ddi_get_soft_state
28339  *		EINVAL if data pointer is NULL
28340  */
28341 
28342 static int
28343 sr_sector_mode(dev_t dev, uint32_t blksize)
28344 {
28345 	struct sd_lun	*un;
28346 	uchar_t		*sense;
28347 	uchar_t		*select;
28348 	int		rval;
28349 	sd_ssc_t	*ssc;
28350 
28351 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28352 	    (un->un_state == SD_STATE_OFFLINE)) {
28353 		return (ENXIO);
28354 	}
28355 
28356 	sense = kmem_zalloc(20, KM_SLEEP);
28357 
28358 	/* Note: This is a vendor specific mode page (0x81) */
28359 	ssc = sd_ssc_init(un);
28360 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 20, 0x81,
28361 	    SD_PATH_STANDARD);
28362 	sd_ssc_fini(ssc);
28363 	if (rval != 0) {
28364 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28365 		    "sr_sector_mode: Mode Sense failed\n");
28366 		kmem_free(sense, 20);
28367 		return (rval);
28368 	}
28369 	select = kmem_zalloc(20, KM_SLEEP);
28370 	select[3] = 0x08;
28371 	select[10] = ((blksize >> 8) & 0xff);
28372 	select[11] = (blksize & 0xff);
28373 	select[12] = 0x01;
28374 	select[13] = 0x06;
28375 	select[14] = sense[14];
28376 	select[15] = sense[15];
28377 	if (blksize == SD_MODE2_BLKSIZE) {
28378 		select[14] |= 0x01;
28379 	}
28380 
28381 	ssc = sd_ssc_init(un);
28382 	rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 20,
28383 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
28384 	sd_ssc_fini(ssc);
28385 	if (rval != 0) {
28386 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28387 		    "sr_sector_mode: Mode Select failed\n");
28388 	} else {
28389 		/*
28390 		 * Only update the softstate block size if we successfully
28391 		 * changed the device block mode.
28392 		 */
28393 		mutex_enter(SD_MUTEX(un));
28394 		sd_update_block_info(un, blksize, 0);
28395 		mutex_exit(SD_MUTEX(un));
28396 	}
28397 	kmem_free(sense, 20);
28398 	kmem_free(select, 20);
28399 	return (rval);
28400 }
28401 
28402 
28403 /*
28404  *    Function: sr_read_cdda()
28405  *
28406  * Description: This routine is the driver entry point for handling CD-ROM
28407  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
28408  *		the target supports CDDA these requests are handled via a vendor
28409  *		specific command (0xD8) If the target does not support CDDA
28410  *		these requests are handled via the READ CD command (0xBE).
28411  *
28412  *   Arguments: dev	- the device 'dev_t'
28413  *		data	- pointer to user provided CD-DA structure specifying
28414  *			  the track starting address, transfer length, and
28415  *			  subcode options.
28416  *		flag	- this argument is a pass through to ddi_copyxxx()
28417  *			  directly from the mode argument of ioctl().
28418  *
28419  * Return Code: the code returned by sd_send_scsi_cmd()
28420  *		EFAULT if ddi_copyxxx() fails
28421  *		ENXIO if fail ddi_get_soft_state
28422  *		EINVAL if invalid arguments are provided
28423  *		ENOTTY
28424  */
28425 
28426 static int
28427 sr_read_cdda(dev_t dev, caddr_t data, int flag)
28428 {
28429 	struct sd_lun			*un;
28430 	struct uscsi_cmd		*com;
28431 	struct cdrom_cdda		*cdda;
28432 	int				rval;
28433 	size_t				buflen;
28434 	char				cdb[CDB_GROUP5];
28435 
28436 #ifdef _MULTI_DATAMODEL
28437 	/* To support ILP32 applications in an LP64 world */
28438 	struct cdrom_cdda32	cdrom_cdda32;
28439 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
28440 #endif /* _MULTI_DATAMODEL */
28441 
28442 	if (data == NULL) {
28443 		return (EINVAL);
28444 	}
28445 
28446 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28447 		return (ENXIO);
28448 	}
28449 
28450 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
28451 
28452 #ifdef _MULTI_DATAMODEL
28453 	switch (ddi_model_convert_from(flag & FMODELS)) {
28454 	case DDI_MODEL_ILP32:
28455 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
28456 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28457 			    "sr_read_cdda: ddi_copyin Failed\n");
28458 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28459 			return (EFAULT);
28460 		}
28461 		/* Convert the ILP32 uscsi data from the application to LP64 */
28462 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
28463 		break;
28464 	case DDI_MODEL_NONE:
28465 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28466 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28467 			    "sr_read_cdda: ddi_copyin Failed\n");
28468 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28469 			return (EFAULT);
28470 		}
28471 		break;
28472 	}
28473 #else /* ! _MULTI_DATAMODEL */
28474 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28475 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28476 		    "sr_read_cdda: ddi_copyin Failed\n");
28477 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28478 		return (EFAULT);
28479 	}
28480 #endif /* _MULTI_DATAMODEL */
28481 
28482 	/*
28483 	 * Since MMC-2 expects max 3 bytes for length, check if the
28484 	 * length input is greater than 3 bytes
28485 	 */
28486 	if ((cdda->cdda_length & 0xFF000000) != 0) {
28487 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
28488 		    "cdrom transfer length too large: %d (limit %d)\n",
28489 		    cdda->cdda_length, 0xFFFFFF);
28490 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28491 		return (EINVAL);
28492 	}
28493 
28494 	switch (cdda->cdda_subcode) {
28495 	case CDROM_DA_NO_SUBCODE:
28496 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
28497 		break;
28498 	case CDROM_DA_SUBQ:
28499 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
28500 		break;
28501 	case CDROM_DA_ALL_SUBCODE:
28502 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
28503 		break;
28504 	case CDROM_DA_SUBCODE_ONLY:
28505 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
28506 		break;
28507 	default:
28508 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28509 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
28510 		    cdda->cdda_subcode);
28511 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28512 		return (EINVAL);
28513 	}
28514 
28515 	/* Build and send the command */
28516 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28517 	bzero(cdb, CDB_GROUP5);
28518 
28519 	if (un->un_f_cfg_cdda == TRUE) {
28520 		cdb[0] = (char)SCMD_READ_CD;
28521 		cdb[1] = 0x04;
28522 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28523 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28524 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28525 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28526 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28527 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28528 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
28529 		cdb[9] = 0x10;
28530 		switch (cdda->cdda_subcode) {
28531 		case CDROM_DA_NO_SUBCODE :
28532 			cdb[10] = 0x0;
28533 			break;
28534 		case CDROM_DA_SUBQ :
28535 			cdb[10] = 0x2;
28536 			break;
28537 		case CDROM_DA_ALL_SUBCODE :
28538 			cdb[10] = 0x1;
28539 			break;
28540 		case CDROM_DA_SUBCODE_ONLY :
28541 			/* FALLTHROUGH */
28542 		default :
28543 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28544 			kmem_free(com, sizeof (*com));
28545 			return (ENOTTY);
28546 		}
28547 	} else {
28548 		cdb[0] = (char)SCMD_READ_CDDA;
28549 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28550 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28551 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28552 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28553 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
28554 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28555 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28556 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
28557 		cdb[10] = cdda->cdda_subcode;
28558 	}
28559 
28560 	com->uscsi_cdb = cdb;
28561 	com->uscsi_cdblen = CDB_GROUP5;
28562 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
28563 	com->uscsi_buflen = buflen;
28564 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28565 
28566 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28567 	    SD_PATH_STANDARD);
28568 
28569 	kmem_free(cdda, sizeof (struct cdrom_cdda));
28570 	kmem_free(com, sizeof (*com));
28571 	return (rval);
28572 }
28573 
28574 
28575 /*
28576  *    Function: sr_read_cdxa()
28577  *
28578  * Description: This routine is the driver entry point for handling CD-ROM
28579  *		ioctl requests to return CD-XA (Extended Architecture) data.
28580  *		(CDROMCDXA).
28581  *
28582  *   Arguments: dev	- the device 'dev_t'
28583  *		data	- pointer to user provided CD-XA structure specifying
28584  *			  the data starting address, transfer length, and format
28585  *		flag	- this argument is a pass through to ddi_copyxxx()
28586  *			  directly from the mode argument of ioctl().
28587  *
28588  * Return Code: the code returned by sd_send_scsi_cmd()
28589  *		EFAULT if ddi_copyxxx() fails
28590  *		ENXIO if fail ddi_get_soft_state
28591  *		EINVAL if data pointer is NULL
28592  */
28593 
28594 static int
28595 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
28596 {
28597 	struct sd_lun		*un;
28598 	struct uscsi_cmd	*com;
28599 	struct cdrom_cdxa	*cdxa;
28600 	int			rval;
28601 	size_t			buflen;
28602 	char			cdb[CDB_GROUP5];
28603 	uchar_t			read_flags;
28604 
28605 #ifdef _MULTI_DATAMODEL
28606 	/* To support ILP32 applications in an LP64 world */
28607 	struct cdrom_cdxa32		cdrom_cdxa32;
28608 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
28609 #endif /* _MULTI_DATAMODEL */
28610 
28611 	if (data == NULL) {
28612 		return (EINVAL);
28613 	}
28614 
28615 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28616 		return (ENXIO);
28617 	}
28618 
28619 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
28620 
28621 #ifdef _MULTI_DATAMODEL
28622 	switch (ddi_model_convert_from(flag & FMODELS)) {
28623 	case DDI_MODEL_ILP32:
28624 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
28625 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28626 			return (EFAULT);
28627 		}
28628 		/*
28629 		 * Convert the ILP32 uscsi data from the
28630 		 * application to LP64 for internal use.
28631 		 */
28632 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
28633 		break;
28634 	case DDI_MODEL_NONE:
28635 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28636 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28637 			return (EFAULT);
28638 		}
28639 		break;
28640 	}
28641 #else /* ! _MULTI_DATAMODEL */
28642 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28643 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28644 		return (EFAULT);
28645 	}
28646 #endif /* _MULTI_DATAMODEL */
28647 
28648 	/*
28649 	 * Since MMC-2 expects max 3 bytes for length, check if the
28650 	 * length input is greater than 3 bytes
28651 	 */
28652 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
28653 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
28654 		    "cdrom transfer length too large: %d (limit %d)\n",
28655 		    cdxa->cdxa_length, 0xFFFFFF);
28656 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28657 		return (EINVAL);
28658 	}
28659 
28660 	switch (cdxa->cdxa_format) {
28661 	case CDROM_XA_DATA:
28662 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
28663 		read_flags = 0x10;
28664 		break;
28665 	case CDROM_XA_SECTOR_DATA:
28666 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
28667 		read_flags = 0xf8;
28668 		break;
28669 	case CDROM_XA_DATA_W_ERROR:
28670 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
28671 		read_flags = 0xfc;
28672 		break;
28673 	default:
28674 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28675 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
28676 		    cdxa->cdxa_format);
28677 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28678 		return (EINVAL);
28679 	}
28680 
28681 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28682 	bzero(cdb, CDB_GROUP5);
28683 	if (un->un_f_mmc_cap == TRUE) {
28684 		cdb[0] = (char)SCMD_READ_CD;
28685 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28686 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28687 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28688 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28689 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28690 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28691 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
28692 		cdb[9] = (char)read_flags;
28693 	} else {
28694 		/*
28695 		 * Note: A vendor specific command (0xDB) is being used her to
28696 		 * request a read of all subcodes.
28697 		 */
28698 		cdb[0] = (char)SCMD_READ_CDXA;
28699 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28700 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28701 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28702 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28703 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
28704 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28705 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28706 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
28707 		cdb[10] = cdxa->cdxa_format;
28708 	}
28709 	com->uscsi_cdb	   = cdb;
28710 	com->uscsi_cdblen  = CDB_GROUP5;
28711 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
28712 	com->uscsi_buflen  = buflen;
28713 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28714 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28715 	    SD_PATH_STANDARD);
28716 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28717 	kmem_free(com, sizeof (*com));
28718 	return (rval);
28719 }
28720 
28721 
28722 /*
28723  *    Function: sr_eject()
28724  *
28725  * Description: This routine is the driver entry point for handling CD-ROM
28726  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
28727  *
28728  *   Arguments: dev	- the device 'dev_t'
28729  *
28730  * Return Code: the code returned by sd_send_scsi_cmd()
28731  */
28732 
28733 static int
28734 sr_eject(dev_t dev)
28735 {
28736 	struct sd_lun	*un;
28737 	int		rval;
28738 	sd_ssc_t	*ssc;
28739 
28740 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28741 	    (un->un_state == SD_STATE_OFFLINE)) {
28742 		return (ENXIO);
28743 	}
28744 
28745 	/*
28746 	 * To prevent race conditions with the eject
28747 	 * command, keep track of an eject command as
28748 	 * it progresses. If we are already handling
28749 	 * an eject command in the driver for the given
28750 	 * unit and another request to eject is received
28751 	 * immediately return EAGAIN so we don't lose
28752 	 * the command if the current eject command fails.
28753 	 */
28754 	mutex_enter(SD_MUTEX(un));
28755 	if (un->un_f_ejecting == TRUE) {
28756 		mutex_exit(SD_MUTEX(un));
28757 		return (EAGAIN);
28758 	}
28759 	un->un_f_ejecting = TRUE;
28760 	mutex_exit(SD_MUTEX(un));
28761 
28762 	ssc = sd_ssc_init(un);
28763 	rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
28764 	    SD_PATH_STANDARD);
28765 	sd_ssc_fini(ssc);
28766 
28767 	if (rval != 0) {
28768 		mutex_enter(SD_MUTEX(un));
28769 		un->un_f_ejecting = FALSE;
28770 		mutex_exit(SD_MUTEX(un));
28771 		return (rval);
28772 	}
28773 
28774 	ssc = sd_ssc_init(un);
28775 	rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
28776 	    SD_TARGET_EJECT, SD_PATH_STANDARD);
28777 	sd_ssc_fini(ssc);
28778 
28779 	if (rval == 0) {
28780 		mutex_enter(SD_MUTEX(un));
28781 		sr_ejected(un);
28782 		un->un_mediastate = DKIO_EJECTED;
28783 		un->un_f_ejecting = FALSE;
28784 		cv_broadcast(&un->un_state_cv);
28785 		mutex_exit(SD_MUTEX(un));
28786 	} else {
28787 		mutex_enter(SD_MUTEX(un));
28788 		un->un_f_ejecting = FALSE;
28789 		mutex_exit(SD_MUTEX(un));
28790 	}
28791 	return (rval);
28792 }
28793 
28794 
28795 /*
28796  *    Function: sr_ejected()
28797  *
28798  * Description: This routine updates the soft state structure to invalidate the
28799  *		geometry information after the media has been ejected or a
28800  *		media eject has been detected.
28801  *
28802  *   Arguments: un - driver soft state (unit) structure
28803  */
28804 
28805 static void
28806 sr_ejected(struct sd_lun *un)
28807 {
28808 	struct sd_errstats *stp;
28809 
28810 	ASSERT(un != NULL);
28811 	ASSERT(mutex_owned(SD_MUTEX(un)));
28812 
28813 	un->un_f_blockcount_is_valid	= FALSE;
28814 	un->un_f_tgt_blocksize_is_valid	= FALSE;
28815 	mutex_exit(SD_MUTEX(un));
28816 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
28817 	mutex_enter(SD_MUTEX(un));
28818 
28819 	if (un->un_errstats != NULL) {
28820 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
28821 		stp->sd_capacity.value.ui64 = 0;
28822 	}
28823 }
28824 
28825 
28826 /*
28827  *    Function: sr_check_wp()
28828  *
28829  * Description: This routine checks the write protection of a removable
28830  *      media disk and hotpluggable devices via the write protect bit of
28831  *      the Mode Page Header device specific field. Some devices choke
28832  *      on unsupported mode page. In order to workaround this issue,
28833  *      this routine has been implemented to use 0x3f mode page(request
28834  *      for all pages) for all device types.
28835  *
28836  *   Arguments: dev             - the device 'dev_t'
28837  *
28838  * Return Code: int indicating if the device is write protected (1) or not (0)
28839  *
28840  *     Context: Kernel thread.
28841  *
28842  */
28843 
28844 static int
28845 sr_check_wp(dev_t dev)
28846 {
28847 	struct sd_lun	*un;
28848 	uchar_t		device_specific;
28849 	uchar_t		*sense;
28850 	int		hdrlen;
28851 	int		rval = FALSE;
28852 	int		status;
28853 	sd_ssc_t	*ssc;
28854 
28855 	/*
28856 	 * Note: The return codes for this routine should be reworked to
28857 	 * properly handle the case of a NULL softstate.
28858 	 */
28859 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28860 		return (FALSE);
28861 	}
28862 
28863 	if (un->un_f_cfg_is_atapi == TRUE) {
28864 		/*
28865 		 * The mode page contents are not required; set the allocation
28866 		 * length for the mode page header only
28867 		 */
28868 		hdrlen = MODE_HEADER_LENGTH_GRP2;
28869 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28870 		ssc = sd_ssc_init(un);
28871 		status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, hdrlen,
28872 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
28873 		sd_ssc_fini(ssc);
28874 		if (status != 0)
28875 			goto err_exit;
28876 		device_specific =
28877 		    ((struct mode_header_grp2 *)sense)->device_specific;
28878 	} else {
28879 		hdrlen = MODE_HEADER_LENGTH;
28880 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28881 		ssc = sd_ssc_init(un);
28882 		status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, hdrlen,
28883 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
28884 		sd_ssc_fini(ssc);
28885 		if (status != 0)
28886 			goto err_exit;
28887 		device_specific =
28888 		    ((struct mode_header *)sense)->device_specific;
28889 	}
28890 
28891 
28892 	/*
28893 	 * Write protect mode sense failed; not all disks
28894 	 * understand this query. Return FALSE assuming that
28895 	 * these devices are not writable.
28896 	 */
28897 	if (device_specific & WRITE_PROTECT) {
28898 		rval = TRUE;
28899 	}
28900 
28901 err_exit:
28902 	kmem_free(sense, hdrlen);
28903 	return (rval);
28904 }
28905 
28906 /*
28907  *    Function: sr_volume_ctrl()
28908  *
28909  * Description: This routine is the driver entry point for handling CD-ROM
28910  *		audio output volume ioctl requests. (CDROMVOLCTRL)
28911  *
28912  *   Arguments: dev	- the device 'dev_t'
28913  *		data	- pointer to user audio volume control structure
28914  *		flag	- this argument is a pass through to ddi_copyxxx()
28915  *			  directly from the mode argument of ioctl().
28916  *
28917  * Return Code: the code returned by sd_send_scsi_cmd()
28918  *		EFAULT if ddi_copyxxx() fails
28919  *		ENXIO if fail ddi_get_soft_state
28920  *		EINVAL if data pointer is NULL
28921  *
28922  */
28923 
28924 static int
28925 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
28926 {
28927 	struct sd_lun		*un;
28928 	struct cdrom_volctrl    volume;
28929 	struct cdrom_volctrl    *vol = &volume;
28930 	uchar_t			*sense_page;
28931 	uchar_t			*select_page;
28932 	uchar_t			*sense;
28933 	uchar_t			*select;
28934 	int			sense_buflen;
28935 	int			select_buflen;
28936 	int			rval;
28937 	sd_ssc_t		*ssc;
28938 
28939 	if (data == NULL) {
28940 		return (EINVAL);
28941 	}
28942 
28943 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28944 	    (un->un_state == SD_STATE_OFFLINE)) {
28945 		return (ENXIO);
28946 	}
28947 
28948 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
28949 		return (EFAULT);
28950 	}
28951 
28952 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
28953 		struct mode_header_grp2		*sense_mhp;
28954 		struct mode_header_grp2		*select_mhp;
28955 		int				bd_len;
28956 
28957 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
28958 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
28959 		    MODEPAGE_AUDIO_CTRL_LEN;
28960 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
28961 		select = kmem_zalloc(select_buflen, KM_SLEEP);
28962 		ssc = sd_ssc_init(un);
28963 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
28964 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
28965 		    SD_PATH_STANDARD);
28966 		sd_ssc_fini(ssc);
28967 
28968 		if (rval != 0) {
28969 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28970 			    "sr_volume_ctrl: Mode Sense Failed\n");
28971 			kmem_free(sense, sense_buflen);
28972 			kmem_free(select, select_buflen);
28973 			return (rval);
28974 		}
28975 		sense_mhp = (struct mode_header_grp2 *)sense;
28976 		select_mhp = (struct mode_header_grp2 *)select;
28977 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
28978 		    sense_mhp->bdesc_length_lo;
28979 		if (bd_len > MODE_BLK_DESC_LENGTH) {
28980 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28981 			    "sr_volume_ctrl: Mode Sense returned invalid "
28982 			    "block descriptor length\n");
28983 			kmem_free(sense, sense_buflen);
28984 			kmem_free(select, select_buflen);
28985 			return (EIO);
28986 		}
28987 		sense_page = (uchar_t *)
28988 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
28989 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
28990 		select_mhp->length_msb = 0;
28991 		select_mhp->length_lsb = 0;
28992 		select_mhp->bdesc_length_hi = 0;
28993 		select_mhp->bdesc_length_lo = 0;
28994 	} else {
28995 		struct mode_header		*sense_mhp, *select_mhp;
28996 
28997 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
28998 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
28999 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29000 		select = kmem_zalloc(select_buflen, KM_SLEEP);
29001 		ssc = sd_ssc_init(un);
29002 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
29003 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
29004 		    SD_PATH_STANDARD);
29005 		sd_ssc_fini(ssc);
29006 
29007 		if (rval != 0) {
29008 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29009 			    "sr_volume_ctrl: Mode Sense Failed\n");
29010 			kmem_free(sense, sense_buflen);
29011 			kmem_free(select, select_buflen);
29012 			return (rval);
29013 		}
29014 		sense_mhp  = (struct mode_header *)sense;
29015 		select_mhp = (struct mode_header *)select;
29016 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
29017 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29018 			    "sr_volume_ctrl: Mode Sense returned invalid "
29019 			    "block descriptor length\n");
29020 			kmem_free(sense, sense_buflen);
29021 			kmem_free(select, select_buflen);
29022 			return (EIO);
29023 		}
29024 		sense_page = (uchar_t *)
29025 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
29026 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
29027 		select_mhp->length = 0;
29028 		select_mhp->bdesc_length = 0;
29029 	}
29030 	/*
29031 	 * Note: An audio control data structure could be created and overlayed
29032 	 * on the following in place of the array indexing method implemented.
29033 	 */
29034 
29035 	/* Build the select data for the user volume data */
29036 	select_page[0] = MODEPAGE_AUDIO_CTRL;
29037 	select_page[1] = 0xE;
29038 	/* Set the immediate bit */
29039 	select_page[2] = 0x04;
29040 	/* Zero out reserved fields */
29041 	select_page[3] = 0x00;
29042 	select_page[4] = 0x00;
29043 	/* Return sense data for fields not to be modified */
29044 	select_page[5] = sense_page[5];
29045 	select_page[6] = sense_page[6];
29046 	select_page[7] = sense_page[7];
29047 	/* Set the user specified volume levels for channel 0 and 1 */
29048 	select_page[8] = 0x01;
29049 	select_page[9] = vol->channel0;
29050 	select_page[10] = 0x02;
29051 	select_page[11] = vol->channel1;
29052 	/* Channel 2 and 3 are currently unsupported so return the sense data */
29053 	select_page[12] = sense_page[12];
29054 	select_page[13] = sense_page[13];
29055 	select_page[14] = sense_page[14];
29056 	select_page[15] = sense_page[15];
29057 
29058 	ssc = sd_ssc_init(un);
29059 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29060 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, select,
29061 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29062 	} else {
29063 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
29064 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29065 	}
29066 	sd_ssc_fini(ssc);
29067 
29068 	kmem_free(sense, sense_buflen);
29069 	kmem_free(select, select_buflen);
29070 	return (rval);
29071 }
29072 
29073 
29074 /*
29075  *    Function: sr_read_sony_session_offset()
29076  *
29077  * Description: This routine is the driver entry point for handling CD-ROM
29078  *		ioctl requests for session offset information. (CDROMREADOFFSET)
29079  *		The address of the first track in the last session of a
29080  *		multi-session CD-ROM is returned
29081  *
29082  *		Note: This routine uses a vendor specific key value in the
29083  *		command control field without implementing any vendor check here
29084  *		or in the ioctl routine.
29085  *
29086  *   Arguments: dev	- the device 'dev_t'
29087  *		data	- pointer to an int to hold the requested address
29088  *		flag	- this argument is a pass through to ddi_copyxxx()
29089  *			  directly from the mode argument of ioctl().
29090  *
29091  * Return Code: the code returned by sd_send_scsi_cmd()
29092  *		EFAULT if ddi_copyxxx() fails
29093  *		ENXIO if fail ddi_get_soft_state
29094  *		EINVAL if data pointer is NULL
29095  */
29096 
29097 static int
29098 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
29099 {
29100 	struct sd_lun		*un;
29101 	struct uscsi_cmd	*com;
29102 	caddr_t			buffer;
29103 	char			cdb[CDB_GROUP1];
29104 	int			session_offset = 0;
29105 	int			rval;
29106 
29107 	if (data == NULL) {
29108 		return (EINVAL);
29109 	}
29110 
29111 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29112 	    (un->un_state == SD_STATE_OFFLINE)) {
29113 		return (ENXIO);
29114 	}
29115 
29116 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
29117 	bzero(cdb, CDB_GROUP1);
29118 	cdb[0] = SCMD_READ_TOC;
29119 	/*
29120 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
29121 	 * (4 byte TOC response header + 8 byte response data)
29122 	 */
29123 	cdb[8] = SONY_SESSION_OFFSET_LEN;
29124 	/* Byte 9 is the control byte. A vendor specific value is used */
29125 	cdb[9] = SONY_SESSION_OFFSET_KEY;
29126 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29127 	com->uscsi_cdb = cdb;
29128 	com->uscsi_cdblen = CDB_GROUP1;
29129 	com->uscsi_bufaddr = buffer;
29130 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
29131 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29132 
29133 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
29134 	    SD_PATH_STANDARD);
29135 	if (rval != 0) {
29136 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29137 		kmem_free(com, sizeof (*com));
29138 		return (rval);
29139 	}
29140 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
29141 		session_offset =
29142 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
29143 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
29144 		/*
29145 		 * Offset returned offset in current lbasize block's. Convert to
29146 		 * 2k block's to return to the user
29147 		 */
29148 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
29149 			session_offset >>= 2;
29150 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
29151 			session_offset >>= 1;
29152 		}
29153 	}
29154 
29155 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
29156 		rval = EFAULT;
29157 	}
29158 
29159 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29160 	kmem_free(com, sizeof (*com));
29161 	return (rval);
29162 }
29163 
29164 
29165 /*
29166  *    Function: sd_wm_cache_constructor()
29167  *
29168  * Description: Cache Constructor for the wmap cache for the read/modify/write
29169  * 		devices.
29170  *
29171  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29172  *		un	- sd_lun structure for the device.
29173  *		flag	- the km flags passed to constructor
29174  *
29175  * Return Code: 0 on success.
29176  *		-1 on failure.
29177  */
29178 
29179 /*ARGSUSED*/
29180 static int
29181 sd_wm_cache_constructor(void *wm, void *un, int flags)
29182 {
29183 	bzero(wm, sizeof (struct sd_w_map));
29184 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
29185 	return (0);
29186 }
29187 
29188 
29189 /*
29190  *    Function: sd_wm_cache_destructor()
29191  *
29192  * Description: Cache destructor for the wmap cache for the read/modify/write
29193  * 		devices.
29194  *
29195  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29196  *		un	- sd_lun structure for the device.
29197  */
29198 /*ARGSUSED*/
29199 static void
29200 sd_wm_cache_destructor(void *wm, void *un)
29201 {
29202 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
29203 }
29204 
29205 
29206 /*
29207  *    Function: sd_range_lock()
29208  *
29209  * Description: Lock the range of blocks specified as parameter to ensure
29210  *		that read, modify write is atomic and no other i/o writes
29211  *		to the same location. The range is specified in terms
29212  *		of start and end blocks. Block numbers are the actual
29213  *		media block numbers and not system.
29214  *
29215  *   Arguments: un	- sd_lun structure for the device.
29216  *		startb - The starting block number
29217  *		endb - The end block number
29218  *		typ - type of i/o - simple/read_modify_write
29219  *
29220  * Return Code: wm  - pointer to the wmap structure.
29221  *
29222  *     Context: This routine can sleep.
29223  */
29224 
29225 static struct sd_w_map *
29226 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
29227 {
29228 	struct sd_w_map *wmp = NULL;
29229 	struct sd_w_map *sl_wmp = NULL;
29230 	struct sd_w_map *tmp_wmp;
29231 	wm_state state = SD_WM_CHK_LIST;
29232 
29233 
29234 	ASSERT(un != NULL);
29235 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29236 
29237 	mutex_enter(SD_MUTEX(un));
29238 
29239 	while (state != SD_WM_DONE) {
29240 
29241 		switch (state) {
29242 		case SD_WM_CHK_LIST:
29243 			/*
29244 			 * This is the starting state. Check the wmap list
29245 			 * to see if the range is currently available.
29246 			 */
29247 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
29248 				/*
29249 				 * If this is a simple write and no rmw
29250 				 * i/o is pending then try to lock the
29251 				 * range as the range should be available.
29252 				 */
29253 				state = SD_WM_LOCK_RANGE;
29254 			} else {
29255 				tmp_wmp = sd_get_range(un, startb, endb);
29256 				if (tmp_wmp != NULL) {
29257 					if ((wmp != NULL) && ONLIST(un, wmp)) {
29258 						/*
29259 						 * Should not keep onlist wmps
29260 						 * while waiting this macro
29261 						 * will also do wmp = NULL;
29262 						 */
29263 						FREE_ONLIST_WMAP(un, wmp);
29264 					}
29265 					/*
29266 					 * sl_wmp is the wmap on which wait
29267 					 * is done, since the tmp_wmp points
29268 					 * to the inuse wmap, set sl_wmp to
29269 					 * tmp_wmp and change the state to sleep
29270 					 */
29271 					sl_wmp = tmp_wmp;
29272 					state = SD_WM_WAIT_MAP;
29273 				} else {
29274 					state = SD_WM_LOCK_RANGE;
29275 				}
29276 
29277 			}
29278 			break;
29279 
29280 		case SD_WM_LOCK_RANGE:
29281 			ASSERT(un->un_wm_cache);
29282 			/*
29283 			 * The range need to be locked, try to get a wmap.
29284 			 * First attempt it with NO_SLEEP, want to avoid a sleep
29285 			 * if possible as we will have to release the sd mutex
29286 			 * if we have to sleep.
29287 			 */
29288 			if (wmp == NULL)
29289 				wmp = kmem_cache_alloc(un->un_wm_cache,
29290 				    KM_NOSLEEP);
29291 			if (wmp == NULL) {
29292 				mutex_exit(SD_MUTEX(un));
29293 				_NOTE(DATA_READABLE_WITHOUT_LOCK
29294 				    (sd_lun::un_wm_cache))
29295 				wmp = kmem_cache_alloc(un->un_wm_cache,
29296 				    KM_SLEEP);
29297 				mutex_enter(SD_MUTEX(un));
29298 				/*
29299 				 * we released the mutex so recheck and go to
29300 				 * check list state.
29301 				 */
29302 				state = SD_WM_CHK_LIST;
29303 			} else {
29304 				/*
29305 				 * We exit out of state machine since we
29306 				 * have the wmap. Do the housekeeping first.
29307 				 * place the wmap on the wmap list if it is not
29308 				 * on it already and then set the state to done.
29309 				 */
29310 				wmp->wm_start = startb;
29311 				wmp->wm_end = endb;
29312 				wmp->wm_flags = typ | SD_WM_BUSY;
29313 				if (typ & SD_WTYPE_RMW) {
29314 					un->un_rmw_count++;
29315 				}
29316 				/*
29317 				 * If not already on the list then link
29318 				 */
29319 				if (!ONLIST(un, wmp)) {
29320 					wmp->wm_next = un->un_wm;
29321 					wmp->wm_prev = NULL;
29322 					if (wmp->wm_next)
29323 						wmp->wm_next->wm_prev = wmp;
29324 					un->un_wm = wmp;
29325 				}
29326 				state = SD_WM_DONE;
29327 			}
29328 			break;
29329 
29330 		case SD_WM_WAIT_MAP:
29331 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
29332 			/*
29333 			 * Wait is done on sl_wmp, which is set in the
29334 			 * check_list state.
29335 			 */
29336 			sl_wmp->wm_wanted_count++;
29337 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
29338 			sl_wmp->wm_wanted_count--;
29339 			/*
29340 			 * We can reuse the memory from the completed sl_wmp
29341 			 * lock range for our new lock, but only if noone is
29342 			 * waiting for it.
29343 			 */
29344 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
29345 			if (sl_wmp->wm_wanted_count == 0) {
29346 				if (wmp != NULL)
29347 					CHK_N_FREEWMP(un, wmp);
29348 				wmp = sl_wmp;
29349 			}
29350 			sl_wmp = NULL;
29351 			/*
29352 			 * After waking up, need to recheck for availability of
29353 			 * range.
29354 			 */
29355 			state = SD_WM_CHK_LIST;
29356 			break;
29357 
29358 		default:
29359 			panic("sd_range_lock: "
29360 			    "Unknown state %d in sd_range_lock", state);
29361 			/*NOTREACHED*/
29362 		} /* switch(state) */
29363 
29364 	} /* while(state != SD_WM_DONE) */
29365 
29366 	mutex_exit(SD_MUTEX(un));
29367 
29368 	ASSERT(wmp != NULL);
29369 
29370 	return (wmp);
29371 }
29372 
29373 
29374 /*
29375  *    Function: sd_get_range()
29376  *
29377  * Description: Find if there any overlapping I/O to this one
29378  *		Returns the write-map of 1st such I/O, NULL otherwise.
29379  *
29380  *   Arguments: un	- sd_lun structure for the device.
29381  *		startb - The starting block number
29382  *		endb - The end block number
29383  *
29384  * Return Code: wm  - pointer to the wmap structure.
29385  */
29386 
29387 static struct sd_w_map *
29388 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
29389 {
29390 	struct sd_w_map *wmp;
29391 
29392 	ASSERT(un != NULL);
29393 
29394 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
29395 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
29396 			continue;
29397 		}
29398 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
29399 			break;
29400 		}
29401 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
29402 			break;
29403 		}
29404 	}
29405 
29406 	return (wmp);
29407 }
29408 
29409 
29410 /*
29411  *    Function: sd_free_inlist_wmap()
29412  *
29413  * Description: Unlink and free a write map struct.
29414  *
29415  *   Arguments: un      - sd_lun structure for the device.
29416  *		wmp	- sd_w_map which needs to be unlinked.
29417  */
29418 
29419 static void
29420 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
29421 {
29422 	ASSERT(un != NULL);
29423 
29424 	if (un->un_wm == wmp) {
29425 		un->un_wm = wmp->wm_next;
29426 	} else {
29427 		wmp->wm_prev->wm_next = wmp->wm_next;
29428 	}
29429 
29430 	if (wmp->wm_next) {
29431 		wmp->wm_next->wm_prev = wmp->wm_prev;
29432 	}
29433 
29434 	wmp->wm_next = wmp->wm_prev = NULL;
29435 
29436 	kmem_cache_free(un->un_wm_cache, wmp);
29437 }
29438 
29439 
29440 /*
29441  *    Function: sd_range_unlock()
29442  *
29443  * Description: Unlock the range locked by wm.
29444  *		Free write map if nobody else is waiting on it.
29445  *
29446  *   Arguments: un      - sd_lun structure for the device.
29447  *              wmp     - sd_w_map which needs to be unlinked.
29448  */
29449 
29450 static void
29451 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
29452 {
29453 	ASSERT(un != NULL);
29454 	ASSERT(wm != NULL);
29455 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29456 
29457 	mutex_enter(SD_MUTEX(un));
29458 
29459 	if (wm->wm_flags & SD_WTYPE_RMW) {
29460 		un->un_rmw_count--;
29461 	}
29462 
29463 	if (wm->wm_wanted_count) {
29464 		wm->wm_flags = 0;
29465 		/*
29466 		 * Broadcast that the wmap is available now.
29467 		 */
29468 		cv_broadcast(&wm->wm_avail);
29469 	} else {
29470 		/*
29471 		 * If no one is waiting on the map, it should be free'ed.
29472 		 */
29473 		sd_free_inlist_wmap(un, wm);
29474 	}
29475 
29476 	mutex_exit(SD_MUTEX(un));
29477 }
29478 
29479 
29480 /*
29481  *    Function: sd_read_modify_write_task
29482  *
29483  * Description: Called from a taskq thread to initiate the write phase of
29484  *		a read-modify-write request.  This is used for targets where
29485  *		un->un_sys_blocksize != un->un_tgt_blocksize.
29486  *
29487  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
29488  *
29489  *     Context: Called under taskq thread context.
29490  */
29491 
29492 static void
29493 sd_read_modify_write_task(void *arg)
29494 {
29495 	struct sd_mapblocksize_info	*bsp;
29496 	struct buf	*bp;
29497 	struct sd_xbuf	*xp;
29498 	struct sd_lun	*un;
29499 
29500 	bp = arg;	/* The bp is given in arg */
29501 	ASSERT(bp != NULL);
29502 
29503 	/* Get the pointer to the layer-private data struct */
29504 	xp = SD_GET_XBUF(bp);
29505 	ASSERT(xp != NULL);
29506 	bsp = xp->xb_private;
29507 	ASSERT(bsp != NULL);
29508 
29509 	un = SD_GET_UN(bp);
29510 	ASSERT(un != NULL);
29511 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29512 
29513 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29514 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
29515 
29516 	/*
29517 	 * This is the write phase of a read-modify-write request, called
29518 	 * under the context of a taskq thread in response to the completion
29519 	 * of the read portion of the rmw request completing under interrupt
29520 	 * context. The write request must be sent from here down the iostart
29521 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
29522 	 * we use the layer index saved in the layer-private data area.
29523 	 */
29524 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
29525 
29526 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29527 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
29528 }
29529 
29530 
29531 /*
29532  *    Function: sddump_do_read_of_rmw()
29533  *
29534  * Description: This routine will be called from sddump, If sddump is called
29535  *		with an I/O which not aligned on device blocksize boundary
29536  *		then the write has to be converted to read-modify-write.
29537  *		Do the read part here in order to keep sddump simple.
29538  *		Note - That the sd_mutex is held across the call to this
29539  *		routine.
29540  *
29541  *   Arguments: un	- sd_lun
29542  *		blkno	- block number in terms of media block size.
29543  *		nblk	- number of blocks.
29544  *		bpp	- pointer to pointer to the buf structure. On return
29545  *			from this function, *bpp points to the valid buffer
29546  *			to which the write has to be done.
29547  *
29548  * Return Code: 0 for success or errno-type return code
29549  */
29550 
29551 static int
29552 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
29553 	struct buf **bpp)
29554 {
29555 	int err;
29556 	int i;
29557 	int rval;
29558 	struct buf *bp;
29559 	struct scsi_pkt *pkt = NULL;
29560 	uint32_t target_blocksize;
29561 
29562 	ASSERT(un != NULL);
29563 	ASSERT(mutex_owned(SD_MUTEX(un)));
29564 
29565 	target_blocksize = un->un_tgt_blocksize;
29566 
29567 	mutex_exit(SD_MUTEX(un));
29568 
29569 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
29570 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
29571 	if (bp == NULL) {
29572 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29573 		    "no resources for dumping; giving up");
29574 		err = ENOMEM;
29575 		goto done;
29576 	}
29577 
29578 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
29579 	    blkno, nblk);
29580 	if (rval != 0) {
29581 		scsi_free_consistent_buf(bp);
29582 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29583 		    "no resources for dumping; giving up");
29584 		err = ENOMEM;
29585 		goto done;
29586 	}
29587 
29588 	pkt->pkt_flags |= FLAG_NOINTR;
29589 
29590 	err = EIO;
29591 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
29592 
29593 		/*
29594 		 * Scsi_poll returns 0 (success) if the command completes and
29595 		 * the status block is STATUS_GOOD.  We should only check
29596 		 * errors if this condition is not true.  Even then we should
29597 		 * send our own request sense packet only if we have a check
29598 		 * condition and auto request sense has not been performed by
29599 		 * the hba.
29600 		 */
29601 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
29602 
29603 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
29604 			err = 0;
29605 			break;
29606 		}
29607 
29608 		/*
29609 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
29610 		 * no need to read RQS data.
29611 		 */
29612 		if (pkt->pkt_reason == CMD_DEV_GONE) {
29613 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29614 			    "Error while dumping state with rmw..."
29615 			    "Device is gone\n");
29616 			break;
29617 		}
29618 
29619 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
29620 			SD_INFO(SD_LOG_DUMP, un,
29621 			    "sddump: read failed with CHECK, try # %d\n", i);
29622 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
29623 				(void) sd_send_polled_RQS(un);
29624 			}
29625 
29626 			continue;
29627 		}
29628 
29629 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
29630 			int reset_retval = 0;
29631 
29632 			SD_INFO(SD_LOG_DUMP, un,
29633 			    "sddump: read failed with BUSY, try # %d\n", i);
29634 
29635 			if (un->un_f_lun_reset_enabled == TRUE) {
29636 				reset_retval = scsi_reset(SD_ADDRESS(un),
29637 				    RESET_LUN);
29638 			}
29639 			if (reset_retval == 0) {
29640 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
29641 			}
29642 			(void) sd_send_polled_RQS(un);
29643 
29644 		} else {
29645 			SD_INFO(SD_LOG_DUMP, un,
29646 			    "sddump: read failed with 0x%x, try # %d\n",
29647 			    SD_GET_PKT_STATUS(pkt), i);
29648 			mutex_enter(SD_MUTEX(un));
29649 			sd_reset_target(un, pkt);
29650 			mutex_exit(SD_MUTEX(un));
29651 		}
29652 
29653 		/*
29654 		 * If we are not getting anywhere with lun/target resets,
29655 		 * let's reset the bus.
29656 		 */
29657 		if (i > SD_NDUMP_RETRIES/2) {
29658 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
29659 			(void) sd_send_polled_RQS(un);
29660 		}
29661 
29662 	}
29663 	scsi_destroy_pkt(pkt);
29664 
29665 	if (err != 0) {
29666 		scsi_free_consistent_buf(bp);
29667 		*bpp = NULL;
29668 	} else {
29669 		*bpp = bp;
29670 	}
29671 
29672 done:
29673 	mutex_enter(SD_MUTEX(un));
29674 	return (err);
29675 }
29676 
29677 
29678 /*
29679  *    Function: sd_failfast_flushq
29680  *
29681  * Description: Take all bp's on the wait queue that have B_FAILFAST set
29682  *		in b_flags and move them onto the failfast queue, then kick
29683  *		off a thread to return all bp's on the failfast queue to
29684  *		their owners with an error set.
29685  *
29686  *   Arguments: un - pointer to the soft state struct for the instance.
29687  *
29688  *     Context: may execute in interrupt context.
29689  */
29690 
29691 static void
29692 sd_failfast_flushq(struct sd_lun *un)
29693 {
29694 	struct buf *bp;
29695 	struct buf *next_waitq_bp;
29696 	struct buf *prev_waitq_bp = NULL;
29697 
29698 	ASSERT(un != NULL);
29699 	ASSERT(mutex_owned(SD_MUTEX(un)));
29700 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
29701 	ASSERT(un->un_failfast_bp == NULL);
29702 
29703 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29704 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
29705 
29706 	/*
29707 	 * Check if we should flush all bufs when entering failfast state, or
29708 	 * just those with B_FAILFAST set.
29709 	 */
29710 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
29711 		/*
29712 		 * Move *all* bp's on the wait queue to the failfast flush
29713 		 * queue, including those that do NOT have B_FAILFAST set.
29714 		 */
29715 		if (un->un_failfast_headp == NULL) {
29716 			ASSERT(un->un_failfast_tailp == NULL);
29717 			un->un_failfast_headp = un->un_waitq_headp;
29718 		} else {
29719 			ASSERT(un->un_failfast_tailp != NULL);
29720 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
29721 		}
29722 
29723 		un->un_failfast_tailp = un->un_waitq_tailp;
29724 
29725 		/* update kstat for each bp moved out of the waitq */
29726 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
29727 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
29728 		}
29729 
29730 		/* empty the waitq */
29731 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
29732 
29733 	} else {
29734 		/*
29735 		 * Go thru the wait queue, pick off all entries with
29736 		 * B_FAILFAST set, and move these onto the failfast queue.
29737 		 */
29738 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
29739 			/*
29740 			 * Save the pointer to the next bp on the wait queue,
29741 			 * so we get to it on the next iteration of this loop.
29742 			 */
29743 			next_waitq_bp = bp->av_forw;
29744 
29745 			/*
29746 			 * If this bp from the wait queue does NOT have
29747 			 * B_FAILFAST set, just move on to the next element
29748 			 * in the wait queue. Note, this is the only place
29749 			 * where it is correct to set prev_waitq_bp.
29750 			 */
29751 			if ((bp->b_flags & B_FAILFAST) == 0) {
29752 				prev_waitq_bp = bp;
29753 				continue;
29754 			}
29755 
29756 			/*
29757 			 * Remove the bp from the wait queue.
29758 			 */
29759 			if (bp == un->un_waitq_headp) {
29760 				/* The bp is the first element of the waitq. */
29761 				un->un_waitq_headp = next_waitq_bp;
29762 				if (un->un_waitq_headp == NULL) {
29763 					/* The wait queue is now empty */
29764 					un->un_waitq_tailp = NULL;
29765 				}
29766 			} else {
29767 				/*
29768 				 * The bp is either somewhere in the middle
29769 				 * or at the end of the wait queue.
29770 				 */
29771 				ASSERT(un->un_waitq_headp != NULL);
29772 				ASSERT(prev_waitq_bp != NULL);
29773 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
29774 				    == 0);
29775 				if (bp == un->un_waitq_tailp) {
29776 					/* bp is the last entry on the waitq. */
29777 					ASSERT(next_waitq_bp == NULL);
29778 					un->un_waitq_tailp = prev_waitq_bp;
29779 				}
29780 				prev_waitq_bp->av_forw = next_waitq_bp;
29781 			}
29782 			bp->av_forw = NULL;
29783 
29784 			/*
29785 			 * update kstat since the bp is moved out of
29786 			 * the waitq
29787 			 */
29788 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
29789 
29790 			/*
29791 			 * Now put the bp onto the failfast queue.
29792 			 */
29793 			if (un->un_failfast_headp == NULL) {
29794 				/* failfast queue is currently empty */
29795 				ASSERT(un->un_failfast_tailp == NULL);
29796 				un->un_failfast_headp =
29797 				    un->un_failfast_tailp = bp;
29798 			} else {
29799 				/* Add the bp to the end of the failfast q */
29800 				ASSERT(un->un_failfast_tailp != NULL);
29801 				ASSERT(un->un_failfast_tailp->b_flags &
29802 				    B_FAILFAST);
29803 				un->un_failfast_tailp->av_forw = bp;
29804 				un->un_failfast_tailp = bp;
29805 			}
29806 		}
29807 	}
29808 
29809 	/*
29810 	 * Now return all bp's on the failfast queue to their owners.
29811 	 */
29812 	while ((bp = un->un_failfast_headp) != NULL) {
29813 
29814 		un->un_failfast_headp = bp->av_forw;
29815 		if (un->un_failfast_headp == NULL) {
29816 			un->un_failfast_tailp = NULL;
29817 		}
29818 
29819 		/*
29820 		 * We want to return the bp with a failure error code, but
29821 		 * we do not want a call to sd_start_cmds() to occur here,
29822 		 * so use sd_return_failed_command_no_restart() instead of
29823 		 * sd_return_failed_command().
29824 		 */
29825 		sd_return_failed_command_no_restart(un, bp, EIO);
29826 	}
29827 
29828 	/* Flush the xbuf queues if required. */
29829 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
29830 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
29831 	}
29832 
29833 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29834 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
29835 }
29836 
29837 
29838 /*
29839  *    Function: sd_failfast_flushq_callback
29840  *
29841  * Description: Return TRUE if the given bp meets the criteria for failfast
29842  *		flushing. Used with ddi_xbuf_flushq(9F).
29843  *
29844  *   Arguments: bp - ptr to buf struct to be examined.
29845  *
29846  *     Context: Any
29847  */
29848 
29849 static int
29850 sd_failfast_flushq_callback(struct buf *bp)
29851 {
29852 	/*
29853 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
29854 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
29855 	 */
29856 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
29857 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
29858 }
29859 
29860 
29861 
29862 /*
29863  * Function: sd_setup_next_xfer
29864  *
29865  * Description: Prepare next I/O operation using DMA_PARTIAL
29866  *
29867  */
29868 
29869 static int
29870 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
29871     struct scsi_pkt *pkt, struct sd_xbuf *xp)
29872 {
29873 	ssize_t	num_blks_not_xfered;
29874 	daddr_t	strt_blk_num;
29875 	ssize_t	bytes_not_xfered;
29876 	int	rval;
29877 
29878 	ASSERT(pkt->pkt_resid == 0);
29879 
29880 	/*
29881 	 * Calculate next block number and amount to be transferred.
29882 	 *
29883 	 * How much data NOT transfered to the HBA yet.
29884 	 */
29885 	bytes_not_xfered = xp->xb_dma_resid;
29886 
29887 	/*
29888 	 * figure how many blocks NOT transfered to the HBA yet.
29889 	 */
29890 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
29891 
29892 	/*
29893 	 * set starting block number to the end of what WAS transfered.
29894 	 */
29895 	strt_blk_num = xp->xb_blkno +
29896 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
29897 
29898 	/*
29899 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
29900 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
29901 	 * the disk mutex here.
29902 	 */
29903 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
29904 	    strt_blk_num, num_blks_not_xfered);
29905 
29906 	if (rval == 0) {
29907 
29908 		/*
29909 		 * Success.
29910 		 *
29911 		 * Adjust things if there are still more blocks to be
29912 		 * transfered.
29913 		 */
29914 		xp->xb_dma_resid = pkt->pkt_resid;
29915 		pkt->pkt_resid = 0;
29916 
29917 		return (1);
29918 	}
29919 
29920 	/*
29921 	 * There's really only one possible return value from
29922 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
29923 	 * returns NULL.
29924 	 */
29925 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
29926 
29927 	bp->b_resid = bp->b_bcount;
29928 	bp->b_flags |= B_ERROR;
29929 
29930 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29931 	    "Error setting up next portion of DMA transfer\n");
29932 
29933 	return (0);
29934 }
29935 
29936 /*
29937  *    Function: sd_panic_for_res_conflict
29938  *
29939  * Description: Call panic with a string formatted with "Reservation Conflict"
29940  *		and a human readable identifier indicating the SD instance
29941  *		that experienced the reservation conflict.
29942  *
29943  *   Arguments: un - pointer to the soft state struct for the instance.
29944  *
29945  *     Context: may execute in interrupt context.
29946  */
29947 
29948 #define	SD_RESV_CONFLICT_FMT_LEN 40
29949 void
29950 sd_panic_for_res_conflict(struct sd_lun *un)
29951 {
29952 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
29953 	char path_str[MAXPATHLEN];
29954 
29955 	(void) snprintf(panic_str, sizeof (panic_str),
29956 	    "Reservation Conflict\nDisk: %s",
29957 	    ddi_pathname(SD_DEVINFO(un), path_str));
29958 
29959 	panic(panic_str);
29960 }
29961 
29962 /*
29963  * Note: The following sd_faultinjection_ioctl( ) routines implement
29964  * driver support for handling fault injection for error analysis
29965  * causing faults in multiple layers of the driver.
29966  *
29967  */
29968 
29969 #ifdef SD_FAULT_INJECTION
29970 static uint_t   sd_fault_injection_on = 0;
29971 
29972 /*
29973  *    Function: sd_faultinjection_ioctl()
29974  *
29975  * Description: This routine is the driver entry point for handling
29976  *              faultinjection ioctls to inject errors into the
29977  *              layer model
29978  *
29979  *   Arguments: cmd	- the ioctl cmd received
29980  *		arg	- the arguments from user and returns
29981  */
29982 
29983 static void
29984 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
29985 
29986 	uint_t i = 0;
29987 	uint_t rval;
29988 
29989 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
29990 
29991 	mutex_enter(SD_MUTEX(un));
29992 
29993 	switch (cmd) {
29994 	case SDIOCRUN:
29995 		/* Allow pushed faults to be injected */
29996 		SD_INFO(SD_LOG_SDTEST, un,
29997 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
29998 
29999 		sd_fault_injection_on = 1;
30000 
30001 		SD_INFO(SD_LOG_IOERR, un,
30002 		    "sd_faultinjection_ioctl: run finished\n");
30003 		break;
30004 
30005 	case SDIOCSTART:
30006 		/* Start Injection Session */
30007 		SD_INFO(SD_LOG_SDTEST, un,
30008 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
30009 
30010 		sd_fault_injection_on = 0;
30011 		un->sd_injection_mask = 0xFFFFFFFF;
30012 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30013 			un->sd_fi_fifo_pkt[i] = NULL;
30014 			un->sd_fi_fifo_xb[i] = NULL;
30015 			un->sd_fi_fifo_un[i] = NULL;
30016 			un->sd_fi_fifo_arq[i] = NULL;
30017 		}
30018 		un->sd_fi_fifo_start = 0;
30019 		un->sd_fi_fifo_end = 0;
30020 
30021 		mutex_enter(&(un->un_fi_mutex));
30022 		un->sd_fi_log[0] = '\0';
30023 		un->sd_fi_buf_len = 0;
30024 		mutex_exit(&(un->un_fi_mutex));
30025 
30026 		SD_INFO(SD_LOG_IOERR, un,
30027 		    "sd_faultinjection_ioctl: start finished\n");
30028 		break;
30029 
30030 	case SDIOCSTOP:
30031 		/* Stop Injection Session */
30032 		SD_INFO(SD_LOG_SDTEST, un,
30033 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
30034 		sd_fault_injection_on = 0;
30035 		un->sd_injection_mask = 0x0;
30036 
30037 		/* Empty stray or unuseds structs from fifo */
30038 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30039 			if (un->sd_fi_fifo_pkt[i] != NULL) {
30040 				kmem_free(un->sd_fi_fifo_pkt[i],
30041 				    sizeof (struct sd_fi_pkt));
30042 			}
30043 			if (un->sd_fi_fifo_xb[i] != NULL) {
30044 				kmem_free(un->sd_fi_fifo_xb[i],
30045 				    sizeof (struct sd_fi_xb));
30046 			}
30047 			if (un->sd_fi_fifo_un[i] != NULL) {
30048 				kmem_free(un->sd_fi_fifo_un[i],
30049 				    sizeof (struct sd_fi_un));
30050 			}
30051 			if (un->sd_fi_fifo_arq[i] != NULL) {
30052 				kmem_free(un->sd_fi_fifo_arq[i],
30053 				    sizeof (struct sd_fi_arq));
30054 			}
30055 			un->sd_fi_fifo_pkt[i] = NULL;
30056 			un->sd_fi_fifo_un[i] = NULL;
30057 			un->sd_fi_fifo_xb[i] = NULL;
30058 			un->sd_fi_fifo_arq[i] = NULL;
30059 		}
30060 		un->sd_fi_fifo_start = 0;
30061 		un->sd_fi_fifo_end = 0;
30062 
30063 		SD_INFO(SD_LOG_IOERR, un,
30064 		    "sd_faultinjection_ioctl: stop finished\n");
30065 		break;
30066 
30067 	case SDIOCINSERTPKT:
30068 		/* Store a packet struct to be pushed onto fifo */
30069 		SD_INFO(SD_LOG_SDTEST, un,
30070 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
30071 
30072 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30073 
30074 		sd_fault_injection_on = 0;
30075 
30076 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
30077 		if (un->sd_fi_fifo_pkt[i] != NULL) {
30078 			kmem_free(un->sd_fi_fifo_pkt[i],
30079 			    sizeof (struct sd_fi_pkt));
30080 		}
30081 		if (arg != NULL) {
30082 			un->sd_fi_fifo_pkt[i] =
30083 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
30084 			if (un->sd_fi_fifo_pkt[i] == NULL) {
30085 				/* Alloc failed don't store anything */
30086 				break;
30087 			}
30088 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
30089 			    sizeof (struct sd_fi_pkt), 0);
30090 			if (rval == -1) {
30091 				kmem_free(un->sd_fi_fifo_pkt[i],
30092 				    sizeof (struct sd_fi_pkt));
30093 				un->sd_fi_fifo_pkt[i] = NULL;
30094 			}
30095 		} else {
30096 			SD_INFO(SD_LOG_IOERR, un,
30097 			    "sd_faultinjection_ioctl: pkt null\n");
30098 		}
30099 		break;
30100 
30101 	case SDIOCINSERTXB:
30102 		/* Store a xb struct to be pushed onto fifo */
30103 		SD_INFO(SD_LOG_SDTEST, un,
30104 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
30105 
30106 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30107 
30108 		sd_fault_injection_on = 0;
30109 
30110 		if (un->sd_fi_fifo_xb[i] != NULL) {
30111 			kmem_free(un->sd_fi_fifo_xb[i],
30112 			    sizeof (struct sd_fi_xb));
30113 			un->sd_fi_fifo_xb[i] = NULL;
30114 		}
30115 		if (arg != NULL) {
30116 			un->sd_fi_fifo_xb[i] =
30117 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
30118 			if (un->sd_fi_fifo_xb[i] == NULL) {
30119 				/* Alloc failed don't store anything */
30120 				break;
30121 			}
30122 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
30123 			    sizeof (struct sd_fi_xb), 0);
30124 
30125 			if (rval == -1) {
30126 				kmem_free(un->sd_fi_fifo_xb[i],
30127 				    sizeof (struct sd_fi_xb));
30128 				un->sd_fi_fifo_xb[i] = NULL;
30129 			}
30130 		} else {
30131 			SD_INFO(SD_LOG_IOERR, un,
30132 			    "sd_faultinjection_ioctl: xb null\n");
30133 		}
30134 		break;
30135 
30136 	case SDIOCINSERTUN:
30137 		/* Store a un struct to be pushed onto fifo */
30138 		SD_INFO(SD_LOG_SDTEST, un,
30139 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
30140 
30141 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30142 
30143 		sd_fault_injection_on = 0;
30144 
30145 		if (un->sd_fi_fifo_un[i] != NULL) {
30146 			kmem_free(un->sd_fi_fifo_un[i],
30147 			    sizeof (struct sd_fi_un));
30148 			un->sd_fi_fifo_un[i] = NULL;
30149 		}
30150 		if (arg != NULL) {
30151 			un->sd_fi_fifo_un[i] =
30152 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
30153 			if (un->sd_fi_fifo_un[i] == NULL) {
30154 				/* Alloc failed don't store anything */
30155 				break;
30156 			}
30157 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
30158 			    sizeof (struct sd_fi_un), 0);
30159 			if (rval == -1) {
30160 				kmem_free(un->sd_fi_fifo_un[i],
30161 				    sizeof (struct sd_fi_un));
30162 				un->sd_fi_fifo_un[i] = NULL;
30163 			}
30164 
30165 		} else {
30166 			SD_INFO(SD_LOG_IOERR, un,
30167 			    "sd_faultinjection_ioctl: un null\n");
30168 		}
30169 
30170 		break;
30171 
30172 	case SDIOCINSERTARQ:
30173 		/* Store a arq struct to be pushed onto fifo */
30174 		SD_INFO(SD_LOG_SDTEST, un,
30175 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
30176 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30177 
30178 		sd_fault_injection_on = 0;
30179 
30180 		if (un->sd_fi_fifo_arq[i] != NULL) {
30181 			kmem_free(un->sd_fi_fifo_arq[i],
30182 			    sizeof (struct sd_fi_arq));
30183 			un->sd_fi_fifo_arq[i] = NULL;
30184 		}
30185 		if (arg != NULL) {
30186 			un->sd_fi_fifo_arq[i] =
30187 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
30188 			if (un->sd_fi_fifo_arq[i] == NULL) {
30189 				/* Alloc failed don't store anything */
30190 				break;
30191 			}
30192 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
30193 			    sizeof (struct sd_fi_arq), 0);
30194 			if (rval == -1) {
30195 				kmem_free(un->sd_fi_fifo_arq[i],
30196 				    sizeof (struct sd_fi_arq));
30197 				un->sd_fi_fifo_arq[i] = NULL;
30198 			}
30199 
30200 		} else {
30201 			SD_INFO(SD_LOG_IOERR, un,
30202 			    "sd_faultinjection_ioctl: arq null\n");
30203 		}
30204 
30205 		break;
30206 
30207 	case SDIOCPUSH:
30208 		/* Push stored xb, pkt, un, and arq onto fifo */
30209 		sd_fault_injection_on = 0;
30210 
30211 		if (arg != NULL) {
30212 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
30213 			if (rval != -1 &&
30214 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30215 				un->sd_fi_fifo_end += i;
30216 			}
30217 		} else {
30218 			SD_INFO(SD_LOG_IOERR, un,
30219 			    "sd_faultinjection_ioctl: push arg null\n");
30220 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30221 				un->sd_fi_fifo_end++;
30222 			}
30223 		}
30224 		SD_INFO(SD_LOG_IOERR, un,
30225 		    "sd_faultinjection_ioctl: push to end=%d\n",
30226 		    un->sd_fi_fifo_end);
30227 		break;
30228 
30229 	case SDIOCRETRIEVE:
30230 		/* Return buffer of log from Injection session */
30231 		SD_INFO(SD_LOG_SDTEST, un,
30232 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
30233 
30234 		sd_fault_injection_on = 0;
30235 
30236 		mutex_enter(&(un->un_fi_mutex));
30237 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
30238 		    un->sd_fi_buf_len+1, 0);
30239 		mutex_exit(&(un->un_fi_mutex));
30240 
30241 		if (rval == -1) {
30242 			/*
30243 			 * arg is possibly invalid setting
30244 			 * it to NULL for return
30245 			 */
30246 			arg = NULL;
30247 		}
30248 		break;
30249 	}
30250 
30251 	mutex_exit(SD_MUTEX(un));
30252 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
30253 			    " exit\n");
30254 }
30255 
30256 
30257 /*
30258  *    Function: sd_injection_log()
30259  *
30260  * Description: This routine adds buff to the already existing injection log
30261  *              for retrieval via faultinjection_ioctl for use in fault
30262  *              detection and recovery
30263  *
30264  *   Arguments: buf - the string to add to the log
30265  */
30266 
30267 static void
30268 sd_injection_log(char *buf, struct sd_lun *un)
30269 {
30270 	uint_t len;
30271 
30272 	ASSERT(un != NULL);
30273 	ASSERT(buf != NULL);
30274 
30275 	mutex_enter(&(un->un_fi_mutex));
30276 
30277 	len = min(strlen(buf), 255);
30278 	/* Add logged value to Injection log to be returned later */
30279 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
30280 		uint_t	offset = strlen((char *)un->sd_fi_log);
30281 		char *destp = (char *)un->sd_fi_log + offset;
30282 		int i;
30283 		for (i = 0; i < len; i++) {
30284 			*destp++ = *buf++;
30285 		}
30286 		un->sd_fi_buf_len += len;
30287 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
30288 	}
30289 
30290 	mutex_exit(&(un->un_fi_mutex));
30291 }
30292 
30293 
30294 /*
30295  *    Function: sd_faultinjection()
30296  *
30297  * Description: This routine takes the pkt and changes its
30298  *		content based on error injection scenerio.
30299  *
30300  *   Arguments: pktp	- packet to be changed
30301  */
30302 
30303 static void
30304 sd_faultinjection(struct scsi_pkt *pktp)
30305 {
30306 	uint_t i;
30307 	struct sd_fi_pkt *fi_pkt;
30308 	struct sd_fi_xb *fi_xb;
30309 	struct sd_fi_un *fi_un;
30310 	struct sd_fi_arq *fi_arq;
30311 	struct buf *bp;
30312 	struct sd_xbuf *xb;
30313 	struct sd_lun *un;
30314 
30315 	ASSERT(pktp != NULL);
30316 
30317 	/* pull bp xb and un from pktp */
30318 	bp = (struct buf *)pktp->pkt_private;
30319 	xb = SD_GET_XBUF(bp);
30320 	un = SD_GET_UN(bp);
30321 
30322 	ASSERT(un != NULL);
30323 
30324 	mutex_enter(SD_MUTEX(un));
30325 
30326 	SD_TRACE(SD_LOG_SDTEST, un,
30327 	    "sd_faultinjection: entry Injection from sdintr\n");
30328 
30329 	/* if injection is off return */
30330 	if (sd_fault_injection_on == 0 ||
30331 	    un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
30332 		mutex_exit(SD_MUTEX(un));
30333 		return;
30334 	}
30335 
30336 	SD_INFO(SD_LOG_SDTEST, un,
30337 	    "sd_faultinjection: is working for copying\n");
30338 
30339 	/* take next set off fifo */
30340 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
30341 
30342 	fi_pkt = un->sd_fi_fifo_pkt[i];
30343 	fi_xb = un->sd_fi_fifo_xb[i];
30344 	fi_un = un->sd_fi_fifo_un[i];
30345 	fi_arq = un->sd_fi_fifo_arq[i];
30346 
30347 
30348 	/* set variables accordingly */
30349 	/* set pkt if it was on fifo */
30350 	if (fi_pkt != NULL) {
30351 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
30352 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
30353 		if (fi_pkt->pkt_cdbp != 0xff)
30354 			SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
30355 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
30356 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
30357 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
30358 
30359 	}
30360 	/* set xb if it was on fifo */
30361 	if (fi_xb != NULL) {
30362 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
30363 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
30364 		if (fi_xb->xb_retry_count != 0)
30365 			SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
30366 		SD_CONDSET(xb, xb, xb_victim_retry_count,
30367 		    "xb_victim_retry_count");
30368 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
30369 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
30370 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
30371 
30372 		/* copy in block data from sense */
30373 		/*
30374 		 * if (fi_xb->xb_sense_data[0] != -1) {
30375 		 *	bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
30376 		 *	SENSE_LENGTH);
30377 		 * }
30378 		 */
30379 		bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, SENSE_LENGTH);
30380 
30381 		/* copy in extended sense codes */
30382 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30383 		    xb, es_code, "es_code");
30384 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30385 		    xb, es_key, "es_key");
30386 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30387 		    xb, es_add_code, "es_add_code");
30388 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30389 		    xb, es_qual_code, "es_qual_code");
30390 		struct scsi_extended_sense *esp;
30391 		esp = (struct scsi_extended_sense *)xb->xb_sense_data;
30392 		esp->es_class = CLASS_EXTENDED_SENSE;
30393 	}
30394 
30395 	/* set un if it was on fifo */
30396 	if (fi_un != NULL) {
30397 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
30398 		SD_CONDSET(un, un, un_ctype, "un_ctype");
30399 		SD_CONDSET(un, un, un_reset_retry_count,
30400 		    "un_reset_retry_count");
30401 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
30402 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
30403 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
30404 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
30405 		    "un_f_allow_bus_device_reset");
30406 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
30407 
30408 	}
30409 
30410 	/* copy in auto request sense if it was on fifo */
30411 	if (fi_arq != NULL) {
30412 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
30413 	}
30414 
30415 	/* free structs */
30416 	if (un->sd_fi_fifo_pkt[i] != NULL) {
30417 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
30418 	}
30419 	if (un->sd_fi_fifo_xb[i] != NULL) {
30420 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
30421 	}
30422 	if (un->sd_fi_fifo_un[i] != NULL) {
30423 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
30424 	}
30425 	if (un->sd_fi_fifo_arq[i] != NULL) {
30426 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
30427 	}
30428 
30429 	/*
30430 	 * kmem_free does not gurantee to set to NULL
30431 	 * since we uses these to determine if we set
30432 	 * values or not lets confirm they are always
30433 	 * NULL after free
30434 	 */
30435 	un->sd_fi_fifo_pkt[i] = NULL;
30436 	un->sd_fi_fifo_un[i] = NULL;
30437 	un->sd_fi_fifo_xb[i] = NULL;
30438 	un->sd_fi_fifo_arq[i] = NULL;
30439 
30440 	un->sd_fi_fifo_start++;
30441 
30442 	mutex_exit(SD_MUTEX(un));
30443 
30444 	SD_INFO(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
30445 }
30446 
30447 #endif /* SD_FAULT_INJECTION */
30448 
30449 /*
30450  * This routine is invoked in sd_unit_attach(). Before calling it, the
30451  * properties in conf file should be processed already, and "hotpluggable"
30452  * property was processed also.
30453  *
30454  * The sd driver distinguishes 3 different type of devices: removable media,
30455  * non-removable media, and hotpluggable. Below the differences are defined:
30456  *
30457  * 1. Device ID
30458  *
30459  *     The device ID of a device is used to identify this device. Refer to
30460  *     ddi_devid_register(9F).
30461  *
30462  *     For a non-removable media disk device which can provide 0x80 or 0x83
30463  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
30464  *     device ID is created to identify this device. For other non-removable
30465  *     media devices, a default device ID is created only if this device has
30466  *     at least 2 alter cylinders. Otherwise, this device has no devid.
30467  *
30468  *     -------------------------------------------------------
30469  *     removable media   hotpluggable  | Can Have Device ID
30470  *     -------------------------------------------------------
30471  *         false             false     |     Yes
30472  *         false             true      |     Yes
30473  *         true                x       |     No
30474  *     ------------------------------------------------------
30475  *
30476  *
30477  * 2. SCSI group 4 commands
30478  *
30479  *     In SCSI specs, only some commands in group 4 command set can use
30480  *     8-byte addresses that can be used to access >2TB storage spaces.
30481  *     Other commands have no such capability. Without supporting group4,
30482  *     it is impossible to make full use of storage spaces of a disk with
30483  *     capacity larger than 2TB.
30484  *
30485  *     -----------------------------------------------
30486  *     removable media   hotpluggable   LP64  |  Group
30487  *     -----------------------------------------------
30488  *           false          false       false |   1
30489  *           false          false       true  |   4
30490  *           false          true        false |   1
30491  *           false          true        true  |   4
30492  *           true             x           x   |   5
30493  *     -----------------------------------------------
30494  *
30495  *
30496  * 3. Check for VTOC Label
30497  *
30498  *     If a direct-access disk has no EFI label, sd will check if it has a
30499  *     valid VTOC label. Now, sd also does that check for removable media
30500  *     and hotpluggable devices.
30501  *
30502  *     --------------------------------------------------------------
30503  *     Direct-Access   removable media    hotpluggable |  Check Label
30504  *     -------------------------------------------------------------
30505  *         false          false           false        |   No
30506  *         false          false           true         |   No
30507  *         false          true            false        |   Yes
30508  *         false          true            true         |   Yes
30509  *         true            x                x          |   Yes
30510  *     --------------------------------------------------------------
30511  *
30512  *
30513  * 4. Building default VTOC label
30514  *
30515  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
30516  *     If those devices have no valid VTOC label, sd(7d) will attempt to
30517  *     create default VTOC for them. Currently sd creates default VTOC label
30518  *     for all devices on x86 platform (VTOC_16), but only for removable
30519  *     media devices on SPARC (VTOC_8).
30520  *
30521  *     -----------------------------------------------------------
30522  *       removable media hotpluggable platform   |   Default Label
30523  *     -----------------------------------------------------------
30524  *             false          false    sparc     |     No
30525  *             false          true      x86      |     Yes
30526  *             false          true     sparc     |     Yes
30527  *             true             x        x       |     Yes
30528  *     ----------------------------------------------------------
30529  *
30530  *
30531  * 5. Supported blocksizes of target devices
30532  *
30533  *     Sd supports non-512-byte blocksize for removable media devices only.
30534  *     For other devices, only 512-byte blocksize is supported. This may be
30535  *     changed in near future because some RAID devices require non-512-byte
30536  *     blocksize
30537  *
30538  *     -----------------------------------------------------------
30539  *     removable media    hotpluggable    | non-512-byte blocksize
30540  *     -----------------------------------------------------------
30541  *           false          false         |   No
30542  *           false          true          |   No
30543  *           true             x           |   Yes
30544  *     -----------------------------------------------------------
30545  *
30546  *
30547  * 6. Automatic mount & unmount
30548  *
30549  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
30550  *     if a device is removable media device. It return 1 for removable media
30551  *     devices, and 0 for others.
30552  *
30553  *     The automatic mounting subsystem should distinguish between the types
30554  *     of devices and apply automounting policies to each.
30555  *
30556  *
30557  * 7. fdisk partition management
30558  *
30559  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
30560  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
30561  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
30562  *     fdisk partitions on both x86 and SPARC platform.
30563  *
30564  *     -----------------------------------------------------------
30565  *       platform   removable media  USB/1394  |  fdisk supported
30566  *     -----------------------------------------------------------
30567  *        x86         X               X        |       true
30568  *     ------------------------------------------------------------
30569  *        sparc       X               X        |       false
30570  *     ------------------------------------------------------------
30571  *
30572  *
30573  * 8. MBOOT/MBR
30574  *
30575  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
30576  *     read/write mboot for removable media devices on sparc platform.
30577  *
30578  *     -----------------------------------------------------------
30579  *       platform   removable media  USB/1394  |  mboot supported
30580  *     -----------------------------------------------------------
30581  *        x86         X               X        |       true
30582  *     ------------------------------------------------------------
30583  *        sparc      false           false     |       false
30584  *        sparc      false           true      |       true
30585  *        sparc      true            false     |       true
30586  *        sparc      true            true      |       true
30587  *     ------------------------------------------------------------
30588  *
30589  *
30590  * 9.  error handling during opening device
30591  *
30592  *     If failed to open a disk device, an errno is returned. For some kinds
30593  *     of errors, different errno is returned depending on if this device is
30594  *     a removable media device. This brings USB/1394 hard disks in line with
30595  *     expected hard disk behavior. It is not expected that this breaks any
30596  *     application.
30597  *
30598  *     ------------------------------------------------------
30599  *       removable media    hotpluggable   |  errno
30600  *     ------------------------------------------------------
30601  *             false          false        |   EIO
30602  *             false          true         |   EIO
30603  *             true             x          |   ENXIO
30604  *     ------------------------------------------------------
30605  *
30606  *
30607  * 11. ioctls: DKIOCEJECT, CDROMEJECT
30608  *
30609  *     These IOCTLs are applicable only to removable media devices.
30610  *
30611  *     -----------------------------------------------------------
30612  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
30613  *     -----------------------------------------------------------
30614  *             false          false        |     No
30615  *             false          true         |     No
30616  *             true            x           |     Yes
30617  *     -----------------------------------------------------------
30618  *
30619  *
30620  * 12. Kstats for partitions
30621  *
30622  *     sd creates partition kstat for non-removable media devices. USB and
30623  *     Firewire hard disks now have partition kstats
30624  *
30625  *      ------------------------------------------------------
30626  *       removable media    hotpluggable   |   kstat
30627  *      ------------------------------------------------------
30628  *             false          false        |    Yes
30629  *             false          true         |    Yes
30630  *             true             x          |    No
30631  *       ------------------------------------------------------
30632  *
30633  *
30634  * 13. Removable media & hotpluggable properties
30635  *
30636  *     Sd driver creates a "removable-media" property for removable media
30637  *     devices. Parent nexus drivers create a "hotpluggable" property if
30638  *     it supports hotplugging.
30639  *
30640  *     ---------------------------------------------------------------------
30641  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
30642  *     ---------------------------------------------------------------------
30643  *       false            false       |    No                   No
30644  *       false            true        |    No                   Yes
30645  *       true             false       |    Yes                  No
30646  *       true             true        |    Yes                  Yes
30647  *     ---------------------------------------------------------------------
30648  *
30649  *
30650  * 14. Power Management
30651  *
30652  *     sd only power manages removable media devices or devices that support
30653  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
30654  *
30655  *     A parent nexus that supports hotplugging can also set "pm-capable"
30656  *     if the disk can be power managed.
30657  *
30658  *     ------------------------------------------------------------
30659  *       removable media hotpluggable pm-capable  |   power manage
30660  *     ------------------------------------------------------------
30661  *             false          false     false     |     No
30662  *             false          false     true      |     Yes
30663  *             false          true      false     |     No
30664  *             false          true      true      |     Yes
30665  *             true             x        x        |     Yes
30666  *     ------------------------------------------------------------
30667  *
30668  *      USB and firewire hard disks can now be power managed independently
30669  *      of the framebuffer
30670  *
30671  *
30672  * 15. Support for USB disks with capacity larger than 1TB
30673  *
30674  *     Currently, sd doesn't permit a fixed disk device with capacity
30675  *     larger than 1TB to be used in a 32-bit operating system environment.
30676  *     However, sd doesn't do that for removable media devices. Instead, it
30677  *     assumes that removable media devices cannot have a capacity larger
30678  *     than 1TB. Therefore, using those devices on 32-bit system is partially
30679  *     supported, which can cause some unexpected results.
30680  *
30681  *     ---------------------------------------------------------------------
30682  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
30683  *     ---------------------------------------------------------------------
30684  *             false          false  |   true         |     no
30685  *             false          true   |   true         |     no
30686  *             true           false  |   true         |     Yes
30687  *             true           true   |   true         |     Yes
30688  *     ---------------------------------------------------------------------
30689  *
30690  *
30691  * 16. Check write-protection at open time
30692  *
30693  *     When a removable media device is being opened for writing without NDELAY
30694  *     flag, sd will check if this device is writable. If attempting to open
30695  *     without NDELAY flag a write-protected device, this operation will abort.
30696  *
30697  *     ------------------------------------------------------------
30698  *       removable media    USB/1394   |   WP Check
30699  *     ------------------------------------------------------------
30700  *             false          false    |     No
30701  *             false          true     |     No
30702  *             true           false    |     Yes
30703  *             true           true     |     Yes
30704  *     ------------------------------------------------------------
30705  *
30706  *
30707  * 17. syslog when corrupted VTOC is encountered
30708  *
30709  *      Currently, if an invalid VTOC is encountered, sd only print syslog
30710  *      for fixed SCSI disks.
30711  *     ------------------------------------------------------------
30712  *       removable media    USB/1394   |   print syslog
30713  *     ------------------------------------------------------------
30714  *             false          false    |     Yes
30715  *             false          true     |     No
30716  *             true           false    |     No
30717  *             true           true     |     No
30718  *     ------------------------------------------------------------
30719  */
30720 static void
30721 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
30722 {
30723 	int	pm_cap;
30724 
30725 	ASSERT(un->un_sd);
30726 	ASSERT(un->un_sd->sd_inq);
30727 
30728 	/*
30729 	 * Enable SYNC CACHE support for all devices.
30730 	 */
30731 	un->un_f_sync_cache_supported = TRUE;
30732 
30733 	/*
30734 	 * Set the sync cache required flag to false.
30735 	 * This would ensure that there is no SYNC CACHE
30736 	 * sent when there are no writes
30737 	 */
30738 	un->un_f_sync_cache_required = FALSE;
30739 
30740 	if (un->un_sd->sd_inq->inq_rmb) {
30741 		/*
30742 		 * The media of this device is removable. And for this kind
30743 		 * of devices, it is possible to change medium after opening
30744 		 * devices. Thus we should support this operation.
30745 		 */
30746 		un->un_f_has_removable_media = TRUE;
30747 
30748 		/*
30749 		 * support non-512-byte blocksize of removable media devices
30750 		 */
30751 		un->un_f_non_devbsize_supported = TRUE;
30752 
30753 		/*
30754 		 * Assume that all removable media devices support DOOR_LOCK
30755 		 */
30756 		un->un_f_doorlock_supported = TRUE;
30757 
30758 		/*
30759 		 * For a removable media device, it is possible to be opened
30760 		 * with NDELAY flag when there is no media in drive, in this
30761 		 * case we don't care if device is writable. But if without
30762 		 * NDELAY flag, we need to check if media is write-protected.
30763 		 */
30764 		un->un_f_chk_wp_open = TRUE;
30765 
30766 		/*
30767 		 * need to start a SCSI watch thread to monitor media state,
30768 		 * when media is being inserted or ejected, notify syseventd.
30769 		 */
30770 		un->un_f_monitor_media_state = TRUE;
30771 
30772 		/*
30773 		 * Some devices don't support START_STOP_UNIT command.
30774 		 * Therefore, we'd better check if a device supports it
30775 		 * before sending it.
30776 		 */
30777 		un->un_f_check_start_stop = TRUE;
30778 
30779 		/*
30780 		 * support eject media ioctl:
30781 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
30782 		 */
30783 		un->un_f_eject_media_supported = TRUE;
30784 
30785 		/*
30786 		 * Because many removable-media devices don't support
30787 		 * LOG_SENSE, we couldn't use this command to check if
30788 		 * a removable media device support power-management.
30789 		 * We assume that they support power-management via
30790 		 * START_STOP_UNIT command and can be spun up and down
30791 		 * without limitations.
30792 		 */
30793 		un->un_f_pm_supported = TRUE;
30794 
30795 		/*
30796 		 * Need to create a zero length (Boolean) property
30797 		 * removable-media for the removable media devices.
30798 		 * Note that the return value of the property is not being
30799 		 * checked, since if unable to create the property
30800 		 * then do not want the attach to fail altogether. Consistent
30801 		 * with other property creation in attach.
30802 		 */
30803 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
30804 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
30805 
30806 	} else {
30807 		/*
30808 		 * create device ID for device
30809 		 */
30810 		un->un_f_devid_supported = TRUE;
30811 
30812 		/*
30813 		 * Spin up non-removable-media devices once it is attached
30814 		 */
30815 		un->un_f_attach_spinup = TRUE;
30816 
30817 		/*
30818 		 * According to SCSI specification, Sense data has two kinds of
30819 		 * format: fixed format, and descriptor format. At present, we
30820 		 * don't support descriptor format sense data for removable
30821 		 * media.
30822 		 */
30823 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
30824 			un->un_f_descr_format_supported = TRUE;
30825 		}
30826 
30827 		/*
30828 		 * kstats are created only for non-removable media devices.
30829 		 *
30830 		 * Set this in sd.conf to 0 in order to disable kstats.  The
30831 		 * default is 1, so they are enabled by default.
30832 		 */
30833 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
30834 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
30835 		    "enable-partition-kstats", 1));
30836 
30837 		/*
30838 		 * Check if HBA has set the "pm-capable" property.
30839 		 * If "pm-capable" exists and is non-zero then we can
30840 		 * power manage the device without checking the start/stop
30841 		 * cycle count log sense page.
30842 		 *
30843 		 * If "pm-capable" exists and is set to be false (0),
30844 		 * then we should not power manage the device.
30845 		 *
30846 		 * If "pm-capable" doesn't exist then pm_cap will
30847 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
30848 		 * sd will check the start/stop cycle count log sense page
30849 		 * and power manage the device if the cycle count limit has
30850 		 * not been exceeded.
30851 		 */
30852 		pm_cap = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
30853 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
30854 		if (SD_PM_CAPABLE_IS_UNDEFINED(pm_cap)) {
30855 			un->un_f_log_sense_supported = TRUE;
30856 			if (!un->un_f_power_condition_disabled &&
30857 			    SD_INQUIRY(un)->inq_ansi == 6) {
30858 				un->un_f_power_condition_supported = TRUE;
30859 			}
30860 		} else {
30861 			/*
30862 			 * pm-capable property exists.
30863 			 *
30864 			 * Convert "TRUE" values for pm_cap to
30865 			 * SD_PM_CAPABLE_IS_TRUE to make it easier to check
30866 			 * later. "TRUE" values are any values defined in
30867 			 * inquiry.h.
30868 			 */
30869 			if (SD_PM_CAPABLE_IS_FALSE(pm_cap)) {
30870 				un->un_f_log_sense_supported = FALSE;
30871 			} else {
30872 				/* SD_PM_CAPABLE_IS_TRUE case */
30873 				un->un_f_pm_supported = TRUE;
30874 				if (!un->un_f_power_condition_disabled &&
30875 				    SD_PM_CAPABLE_IS_SPC_4(pm_cap)) {
30876 					un->un_f_power_condition_supported =
30877 					    TRUE;
30878 				}
30879 				if (SD_PM_CAP_LOG_SUPPORTED(pm_cap)) {
30880 					un->un_f_log_sense_supported = TRUE;
30881 					un->un_f_pm_log_sense_smart =
30882 					    SD_PM_CAP_SMART_LOG(pm_cap);
30883 				}
30884 			}
30885 
30886 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
30887 			    "sd_unit_attach: un:0x%p pm-capable "
30888 			    "property set to %d.\n", un, un->un_f_pm_supported);
30889 		}
30890 	}
30891 
30892 	if (un->un_f_is_hotpluggable) {
30893 
30894 		/*
30895 		 * Have to watch hotpluggable devices as well, since
30896 		 * that's the only way for userland applications to
30897 		 * detect hot removal while device is busy/mounted.
30898 		 */
30899 		un->un_f_monitor_media_state = TRUE;
30900 
30901 		un->un_f_check_start_stop = TRUE;
30902 
30903 	}
30904 }
30905 
30906 /*
30907  * sd_tg_rdwr:
30908  * Provides rdwr access for cmlb via sd_tgops. The start_block is
30909  * in sys block size, req_length in bytes.
30910  *
30911  */
30912 static int
30913 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
30914     diskaddr_t start_block, size_t reqlength, void *tg_cookie)
30915 {
30916 	struct sd_lun *un;
30917 	int path_flag = (int)(uintptr_t)tg_cookie;
30918 	char *dkl = NULL;
30919 	diskaddr_t real_addr = start_block;
30920 	diskaddr_t first_byte, end_block;
30921 
30922 	size_t	buffer_size = reqlength;
30923 	int rval = 0;
30924 	diskaddr_t	cap;
30925 	uint32_t	lbasize;
30926 	sd_ssc_t	*ssc;
30927 
30928 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
30929 	if (un == NULL)
30930 		return (ENXIO);
30931 
30932 	if (cmd != TG_READ && cmd != TG_WRITE)
30933 		return (EINVAL);
30934 
30935 	ssc = sd_ssc_init(un);
30936 	mutex_enter(SD_MUTEX(un));
30937 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
30938 		mutex_exit(SD_MUTEX(un));
30939 		rval = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
30940 		    &lbasize, path_flag);
30941 		if (rval != 0)
30942 			goto done1;
30943 		mutex_enter(SD_MUTEX(un));
30944 		sd_update_block_info(un, lbasize, cap);
30945 		if ((un->un_f_tgt_blocksize_is_valid == FALSE)) {
30946 			mutex_exit(SD_MUTEX(un));
30947 			rval = EIO;
30948 			goto done;
30949 		}
30950 	}
30951 
30952 	if (NOT_DEVBSIZE(un)) {
30953 		/*
30954 		 * sys_blocksize != tgt_blocksize, need to re-adjust
30955 		 * blkno and save the index to beginning of dk_label
30956 		 */
30957 		first_byte  = SD_SYSBLOCKS2BYTES(start_block);
30958 		real_addr = first_byte / un->un_tgt_blocksize;
30959 
30960 		end_block = (first_byte + reqlength +
30961 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
30962 
30963 		/* round up buffer size to multiple of target block size */
30964 		buffer_size = (end_block - real_addr) * un->un_tgt_blocksize;
30965 
30966 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr",
30967 		    "label_addr: 0x%x allocation size: 0x%x\n",
30968 		    real_addr, buffer_size);
30969 
30970 		if (((first_byte % un->un_tgt_blocksize) != 0) ||
30971 		    (reqlength % un->un_tgt_blocksize) != 0)
30972 			/* the request is not aligned */
30973 			dkl = kmem_zalloc(buffer_size, KM_SLEEP);
30974 	}
30975 
30976 	/*
30977 	 * The MMC standard allows READ CAPACITY to be
30978 	 * inaccurate by a bounded amount (in the interest of
30979 	 * response latency).  As a result, failed READs are
30980 	 * commonplace (due to the reading of metadata and not
30981 	 * data). Depending on the per-Vendor/drive Sense data,
30982 	 * the failed READ can cause many (unnecessary) retries.
30983 	 */
30984 
30985 	if (ISCD(un) && (cmd == TG_READ) &&
30986 	    (un->un_f_blockcount_is_valid == TRUE) &&
30987 	    ((start_block == (un->un_blockcount - 1))||
30988 	    (start_block == (un->un_blockcount - 2)))) {
30989 			path_flag = SD_PATH_DIRECT_PRIORITY;
30990 	}
30991 
30992 	mutex_exit(SD_MUTEX(un));
30993 	if (cmd == TG_READ) {
30994 		rval = sd_send_scsi_READ(ssc, (dkl != NULL)? dkl: bufaddr,
30995 		    buffer_size, real_addr, path_flag);
30996 		if (dkl != NULL)
30997 			bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block,
30998 			    real_addr), bufaddr, reqlength);
30999 	} else {
31000 		if (dkl) {
31001 			rval = sd_send_scsi_READ(ssc, dkl, buffer_size,
31002 			    real_addr, path_flag);
31003 			if (rval) {
31004 				goto done1;
31005 			}
31006 			bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block,
31007 			    real_addr), reqlength);
31008 		}
31009 		rval = sd_send_scsi_WRITE(ssc, (dkl != NULL)? dkl: bufaddr,
31010 		    buffer_size, real_addr, path_flag);
31011 	}
31012 
31013 done1:
31014 	if (dkl != NULL)
31015 		kmem_free(dkl, buffer_size);
31016 
31017 	if (rval != 0) {
31018 		if (rval == EIO)
31019 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
31020 		else
31021 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
31022 	}
31023 done:
31024 	sd_ssc_fini(ssc);
31025 	return (rval);
31026 }
31027 
31028 
31029 static int
31030 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie)
31031 {
31032 
31033 	struct sd_lun *un;
31034 	diskaddr_t	cap;
31035 	uint32_t	lbasize;
31036 	int		path_flag = (int)(uintptr_t)tg_cookie;
31037 	int		ret = 0;
31038 
31039 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
31040 	if (un == NULL)
31041 		return (ENXIO);
31042 
31043 	switch (cmd) {
31044 	case TG_GETPHYGEOM:
31045 	case TG_GETVIRTGEOM:
31046 	case TG_GETCAPACITY:
31047 	case TG_GETBLOCKSIZE:
31048 		mutex_enter(SD_MUTEX(un));
31049 
31050 		if ((un->un_f_blockcount_is_valid == TRUE) &&
31051 		    (un->un_f_tgt_blocksize_is_valid == TRUE)) {
31052 			cap = un->un_blockcount;
31053 			lbasize = un->un_tgt_blocksize;
31054 			mutex_exit(SD_MUTEX(un));
31055 		} else {
31056 			sd_ssc_t	*ssc;
31057 			mutex_exit(SD_MUTEX(un));
31058 			ssc = sd_ssc_init(un);
31059 			ret = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
31060 			    &lbasize, path_flag);
31061 			if (ret != 0) {
31062 				if (ret == EIO)
31063 					sd_ssc_assessment(ssc,
31064 					    SD_FMT_STATUS_CHECK);
31065 				else
31066 					sd_ssc_assessment(ssc,
31067 					    SD_FMT_IGNORE);
31068 				sd_ssc_fini(ssc);
31069 				return (ret);
31070 			}
31071 			sd_ssc_fini(ssc);
31072 			mutex_enter(SD_MUTEX(un));
31073 			sd_update_block_info(un, lbasize, cap);
31074 			if ((un->un_f_blockcount_is_valid == FALSE) ||
31075 			    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
31076 				mutex_exit(SD_MUTEX(un));
31077 				return (EIO);
31078 			}
31079 			mutex_exit(SD_MUTEX(un));
31080 		}
31081 
31082 		if (cmd == TG_GETCAPACITY) {
31083 			*(diskaddr_t *)arg = cap;
31084 			return (0);
31085 		}
31086 
31087 		if (cmd == TG_GETBLOCKSIZE) {
31088 			*(uint32_t *)arg = lbasize;
31089 			return (0);
31090 		}
31091 
31092 		if (cmd == TG_GETPHYGEOM)
31093 			ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg,
31094 			    cap, lbasize, path_flag);
31095 		else
31096 			/* TG_GETVIRTGEOM */
31097 			ret = sd_get_virtual_geometry(un,
31098 			    (cmlb_geom_t *)arg, cap, lbasize);
31099 
31100 		return (ret);
31101 
31102 	case TG_GETATTR:
31103 		mutex_enter(SD_MUTEX(un));
31104 		((tg_attribute_t *)arg)->media_is_writable =
31105 		    un->un_f_mmc_writable_media;
31106 		((tg_attribute_t *)arg)->media_is_solid_state =
31107 		    un->un_f_is_solid_state;
31108 		mutex_exit(SD_MUTEX(un));
31109 		return (0);
31110 	default:
31111 		return (ENOTTY);
31112 
31113 	}
31114 }
31115 
31116 /*
31117  *    Function: sd_ssc_ereport_post
31118  *
31119  * Description: Will be called when SD driver need to post an ereport.
31120  *
31121  *    Context: Kernel thread or interrupt context.
31122  */
31123 
31124 #define	DEVID_IF_KNOWN(d) "devid", DATA_TYPE_STRING, (d) ? (d) : "unknown"
31125 
31126 static void
31127 sd_ssc_ereport_post(sd_ssc_t *ssc, enum sd_driver_assessment drv_assess)
31128 {
31129 	int uscsi_path_instance = 0;
31130 	uchar_t	uscsi_pkt_reason;
31131 	uint32_t uscsi_pkt_state;
31132 	uint32_t uscsi_pkt_statistics;
31133 	uint64_t uscsi_ena;
31134 	uchar_t op_code;
31135 	uint8_t *sensep;
31136 	union scsi_cdb *cdbp;
31137 	uint_t cdblen = 0;
31138 	uint_t senlen = 0;
31139 	struct sd_lun *un;
31140 	dev_info_t *dip;
31141 	char *devid;
31142 	int ssc_invalid_flags = SSC_FLAGS_INVALID_PKT_REASON |
31143 	    SSC_FLAGS_INVALID_STATUS |
31144 	    SSC_FLAGS_INVALID_SENSE |
31145 	    SSC_FLAGS_INVALID_DATA;
31146 	char assessment[16];
31147 
31148 	ASSERT(ssc != NULL);
31149 	ASSERT(ssc->ssc_uscsi_cmd != NULL);
31150 	ASSERT(ssc->ssc_uscsi_info != NULL);
31151 
31152 	un = ssc->ssc_un;
31153 	ASSERT(un != NULL);
31154 
31155 	dip = un->un_sd->sd_dev;
31156 
31157 	/*
31158 	 * Get the devid:
31159 	 *	devid will only be passed to non-transport error reports.
31160 	 */
31161 	devid = DEVI(dip)->devi_devid_str;
31162 
31163 	/*
31164 	 * If we are syncing or dumping, the command will not be executed
31165 	 * so we bypass this situation.
31166 	 */
31167 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
31168 	    (un->un_state == SD_STATE_DUMPING))
31169 		return;
31170 
31171 	uscsi_pkt_reason = ssc->ssc_uscsi_info->ui_pkt_reason;
31172 	uscsi_path_instance = ssc->ssc_uscsi_cmd->uscsi_path_instance;
31173 	uscsi_pkt_state = ssc->ssc_uscsi_info->ui_pkt_state;
31174 	uscsi_pkt_statistics = ssc->ssc_uscsi_info->ui_pkt_statistics;
31175 	uscsi_ena = ssc->ssc_uscsi_info->ui_ena;
31176 
31177 	sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
31178 	cdbp = (union scsi_cdb *)ssc->ssc_uscsi_cmd->uscsi_cdb;
31179 
31180 	/* In rare cases, EG:DOORLOCK, the cdb could be NULL */
31181 	if (cdbp == NULL) {
31182 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
31183 		    "sd_ssc_ereport_post meet empty cdb\n");
31184 		return;
31185 	}
31186 
31187 	op_code = cdbp->scc_cmd;
31188 
31189 	cdblen = (int)ssc->ssc_uscsi_cmd->uscsi_cdblen;
31190 	senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
31191 	    ssc->ssc_uscsi_cmd->uscsi_rqresid);
31192 
31193 	if (senlen > 0)
31194 		ASSERT(sensep != NULL);
31195 
31196 	/*
31197 	 * Initialize drv_assess to corresponding values.
31198 	 * SD_FM_DRV_FATAL will be mapped to "fail" or "fatal" depending
31199 	 * on the sense-key returned back.
31200 	 */
31201 	switch (drv_assess) {
31202 		case SD_FM_DRV_RECOVERY:
31203 			(void) sprintf(assessment, "%s", "recovered");
31204 			break;
31205 		case SD_FM_DRV_RETRY:
31206 			(void) sprintf(assessment, "%s", "retry");
31207 			break;
31208 		case SD_FM_DRV_NOTICE:
31209 			(void) sprintf(assessment, "%s", "info");
31210 			break;
31211 		case SD_FM_DRV_FATAL:
31212 		default:
31213 			(void) sprintf(assessment, "%s", "unknown");
31214 	}
31215 	/*
31216 	 * If drv_assess == SD_FM_DRV_RECOVERY, this should be a recovered
31217 	 * command, we will post ereport.io.scsi.cmd.disk.recovered.
31218 	 * driver-assessment will always be "recovered" here.
31219 	 */
31220 	if (drv_assess == SD_FM_DRV_RECOVERY) {
31221 		scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, NULL,
31222 		    "cmd.disk.recovered", uscsi_ena, devid, NULL,
31223 		    DDI_NOSLEEP, NULL,
31224 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31225 		    DEVID_IF_KNOWN(devid),
31226 		    "driver-assessment", DATA_TYPE_STRING, assessment,
31227 		    "op-code", DATA_TYPE_UINT8, op_code,
31228 		    "cdb", DATA_TYPE_UINT8_ARRAY,
31229 		    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31230 		    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31231 		    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
31232 		    "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
31233 		    NULL);
31234 		return;
31235 	}
31236 
31237 	/*
31238 	 * If there is un-expected/un-decodable data, we should post
31239 	 * ereport.io.scsi.cmd.disk.dev.uderr.
31240 	 * driver-assessment will be set based on parameter drv_assess.
31241 	 * SSC_FLAGS_INVALID_SENSE - invalid sense data sent back.
31242 	 * SSC_FLAGS_INVALID_PKT_REASON - invalid pkt-reason encountered.
31243 	 * SSC_FLAGS_INVALID_STATUS - invalid stat-code encountered.
31244 	 * SSC_FLAGS_INVALID_DATA - invalid data sent back.
31245 	 */
31246 	if (ssc->ssc_flags & ssc_invalid_flags) {
31247 		if (ssc->ssc_flags & SSC_FLAGS_INVALID_SENSE) {
31248 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
31249 			    NULL, "cmd.disk.dev.uderr", uscsi_ena, devid,
31250 			    NULL, DDI_NOSLEEP, NULL,
31251 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31252 			    DEVID_IF_KNOWN(devid),
31253 			    "driver-assessment", DATA_TYPE_STRING,
31254 			    drv_assess == SD_FM_DRV_FATAL ?
31255 			    "fail" : assessment,
31256 			    "op-code", DATA_TYPE_UINT8, op_code,
31257 			    "cdb", DATA_TYPE_UINT8_ARRAY,
31258 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31259 			    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31260 			    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
31261 			    "pkt-stats", DATA_TYPE_UINT32,
31262 			    uscsi_pkt_statistics,
31263 			    "stat-code", DATA_TYPE_UINT8,
31264 			    ssc->ssc_uscsi_cmd->uscsi_status,
31265 			    "un-decode-info", DATA_TYPE_STRING,
31266 			    ssc->ssc_info,
31267 			    "un-decode-value", DATA_TYPE_UINT8_ARRAY,
31268 			    senlen, sensep,
31269 			    NULL);
31270 		} else {
31271 			/*
31272 			 * For other type of invalid data, the
31273 			 * un-decode-value field would be empty because the
31274 			 * un-decodable content could be seen from upper
31275 			 * level payload or inside un-decode-info.
31276 			 */
31277 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
31278 			    NULL,
31279 			    "cmd.disk.dev.uderr", uscsi_ena, devid,
31280 			    NULL, DDI_NOSLEEP, NULL,
31281 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31282 			    DEVID_IF_KNOWN(devid),
31283 			    "driver-assessment", DATA_TYPE_STRING,
31284 			    drv_assess == SD_FM_DRV_FATAL ?
31285 			    "fail" : assessment,
31286 			    "op-code", DATA_TYPE_UINT8, op_code,
31287 			    "cdb", DATA_TYPE_UINT8_ARRAY,
31288 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31289 			    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31290 			    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
31291 			    "pkt-stats", DATA_TYPE_UINT32,
31292 			    uscsi_pkt_statistics,
31293 			    "stat-code", DATA_TYPE_UINT8,
31294 			    ssc->ssc_uscsi_cmd->uscsi_status,
31295 			    "un-decode-info", DATA_TYPE_STRING,
31296 			    ssc->ssc_info,
31297 			    "un-decode-value", DATA_TYPE_UINT8_ARRAY,
31298 			    0, NULL,
31299 			    NULL);
31300 		}
31301 		ssc->ssc_flags &= ~ssc_invalid_flags;
31302 		return;
31303 	}
31304 
31305 	if (uscsi_pkt_reason != CMD_CMPLT ||
31306 	    (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)) {
31307 		/*
31308 		 * pkt-reason != CMD_CMPLT or SSC_FLAGS_TRAN_ABORT was
31309 		 * set inside sd_start_cmds due to errors(bad packet or
31310 		 * fatal transport error), we should take it as a
31311 		 * transport error, so we post ereport.io.scsi.cmd.disk.tran.
31312 		 * driver-assessment will be set based on drv_assess.
31313 		 * We will set devid to NULL because it is a transport
31314 		 * error.
31315 		 */
31316 		if (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)
31317 			ssc->ssc_flags &= ~SSC_FLAGS_TRAN_ABORT;
31318 
31319 		scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, NULL,
31320 		    "cmd.disk.tran", uscsi_ena, NULL, NULL, DDI_NOSLEEP, NULL,
31321 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31322 		    DEVID_IF_KNOWN(devid),
31323 		    "driver-assessment", DATA_TYPE_STRING,
31324 		    drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
31325 		    "op-code", DATA_TYPE_UINT8, op_code,
31326 		    "cdb", DATA_TYPE_UINT8_ARRAY,
31327 		    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31328 		    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31329 		    "pkt-state", DATA_TYPE_UINT8, uscsi_pkt_state,
31330 		    "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
31331 		    NULL);
31332 	} else {
31333 		/*
31334 		 * If we got here, we have a completed command, and we need
31335 		 * to further investigate the sense data to see what kind
31336 		 * of ereport we should post.
31337 		 * Post ereport.io.scsi.cmd.disk.dev.rqs.merr
31338 		 * if sense-key == 0x3.
31339 		 * Post ereport.io.scsi.cmd.disk.dev.rqs.derr otherwise.
31340 		 * driver-assessment will be set based on the parameter
31341 		 * drv_assess.
31342 		 */
31343 		if (senlen > 0) {
31344 			/*
31345 			 * Here we have sense data available.
31346 			 */
31347 			uint8_t sense_key;
31348 			sense_key = scsi_sense_key(sensep);
31349 			if (sense_key == 0x3) {
31350 				/*
31351 				 * sense-key == 0x3(medium error),
31352 				 * driver-assessment should be "fatal" if
31353 				 * drv_assess is SD_FM_DRV_FATAL.
31354 				 */
31355 				scsi_fm_ereport_post(un->un_sd,
31356 				    uscsi_path_instance, NULL,
31357 				    "cmd.disk.dev.rqs.merr",
31358 				    uscsi_ena, devid, NULL, DDI_NOSLEEP, NULL,
31359 				    FM_VERSION, DATA_TYPE_UINT8,
31360 				    FM_EREPORT_VERS0,
31361 				    DEVID_IF_KNOWN(devid),
31362 				    "driver-assessment",
31363 				    DATA_TYPE_STRING,
31364 				    drv_assess == SD_FM_DRV_FATAL ?
31365 				    "fatal" : assessment,
31366 				    "op-code",
31367 				    DATA_TYPE_UINT8, op_code,
31368 				    "cdb",
31369 				    DATA_TYPE_UINT8_ARRAY, cdblen,
31370 				    ssc->ssc_uscsi_cmd->uscsi_cdb,
31371 				    "pkt-reason",
31372 				    DATA_TYPE_UINT8, uscsi_pkt_reason,
31373 				    "pkt-state",
31374 				    DATA_TYPE_UINT8, uscsi_pkt_state,
31375 				    "pkt-stats",
31376 				    DATA_TYPE_UINT32,
31377 				    uscsi_pkt_statistics,
31378 				    "stat-code",
31379 				    DATA_TYPE_UINT8,
31380 				    ssc->ssc_uscsi_cmd->uscsi_status,
31381 				    "key",
31382 				    DATA_TYPE_UINT8,
31383 				    scsi_sense_key(sensep),
31384 				    "asc",
31385 				    DATA_TYPE_UINT8,
31386 				    scsi_sense_asc(sensep),
31387 				    "ascq",
31388 				    DATA_TYPE_UINT8,
31389 				    scsi_sense_ascq(sensep),
31390 				    "sense-data",
31391 				    DATA_TYPE_UINT8_ARRAY,
31392 				    senlen, sensep,
31393 				    "lba",
31394 				    DATA_TYPE_UINT64,
31395 				    ssc->ssc_uscsi_info->ui_lba,
31396 				    NULL);
31397 				} else {
31398 					/*
31399 					 * if sense-key == 0x4(hardware
31400 					 * error), driver-assessment should
31401 					 * be "fatal" if drv_assess is
31402 					 * SD_FM_DRV_FATAL.
31403 					 */
31404 					scsi_fm_ereport_post(un->un_sd,
31405 					    uscsi_path_instance, NULL,
31406 					    "cmd.disk.dev.rqs.derr",
31407 					    uscsi_ena, devid,
31408 					    NULL, DDI_NOSLEEP, NULL,
31409 					    FM_VERSION,
31410 					    DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31411 					    DEVID_IF_KNOWN(devid),
31412 					    "driver-assessment",
31413 					    DATA_TYPE_STRING,
31414 					    drv_assess == SD_FM_DRV_FATAL ?
31415 					    (sense_key == 0x4 ?
31416 					    "fatal" : "fail") : assessment,
31417 					    "op-code",
31418 					    DATA_TYPE_UINT8, op_code,
31419 					    "cdb",
31420 					    DATA_TYPE_UINT8_ARRAY, cdblen,
31421 					    ssc->ssc_uscsi_cmd->uscsi_cdb,
31422 					    "pkt-reason",
31423 					    DATA_TYPE_UINT8, uscsi_pkt_reason,
31424 					    "pkt-state",
31425 					    DATA_TYPE_UINT8, uscsi_pkt_state,
31426 					    "pkt-stats",
31427 					    DATA_TYPE_UINT32,
31428 					    uscsi_pkt_statistics,
31429 					    "stat-code",
31430 					    DATA_TYPE_UINT8,
31431 					    ssc->ssc_uscsi_cmd->uscsi_status,
31432 					    "key",
31433 					    DATA_TYPE_UINT8,
31434 					    scsi_sense_key(sensep),
31435 					    "asc",
31436 					    DATA_TYPE_UINT8,
31437 					    scsi_sense_asc(sensep),
31438 					    "ascq",
31439 					    DATA_TYPE_UINT8,
31440 					    scsi_sense_ascq(sensep),
31441 					    "sense-data",
31442 					    DATA_TYPE_UINT8_ARRAY,
31443 					    senlen, sensep,
31444 					    NULL);
31445 				}
31446 		} else {
31447 			/*
31448 			 * For stat_code == STATUS_GOOD, this is not a
31449 			 * hardware error.
31450 			 */
31451 			if (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD)
31452 				return;
31453 
31454 			/*
31455 			 * Post ereport.io.scsi.cmd.disk.dev.serr if we got the
31456 			 * stat-code but with sense data unavailable.
31457 			 * driver-assessment will be set based on parameter
31458 			 * drv_assess.
31459 			 */
31460 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
31461 			    NULL,
31462 			    "cmd.disk.dev.serr", uscsi_ena,
31463 			    devid, NULL, DDI_NOSLEEP, NULL,
31464 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31465 			    DEVID_IF_KNOWN(devid),
31466 			    "driver-assessment", DATA_TYPE_STRING,
31467 			    drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
31468 			    "op-code", DATA_TYPE_UINT8, op_code,
31469 			    "cdb",
31470 			    DATA_TYPE_UINT8_ARRAY,
31471 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31472 			    "pkt-reason",
31473 			    DATA_TYPE_UINT8, uscsi_pkt_reason,
31474 			    "pkt-state",
31475 			    DATA_TYPE_UINT8, uscsi_pkt_state,
31476 			    "pkt-stats",
31477 			    DATA_TYPE_UINT32, uscsi_pkt_statistics,
31478 			    "stat-code",
31479 			    DATA_TYPE_UINT8,
31480 			    ssc->ssc_uscsi_cmd->uscsi_status,
31481 			    NULL);
31482 		}
31483 	}
31484 }
31485 
31486 /*
31487  *     Function: sd_ssc_extract_info
31488  *
31489  * Description: Extract information available to help generate ereport.
31490  *
31491  *     Context: Kernel thread or interrupt context.
31492  */
31493 static void
31494 sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un, struct scsi_pkt *pktp,
31495     struct buf *bp, struct sd_xbuf *xp)
31496 {
31497 	size_t senlen = 0;
31498 	union scsi_cdb *cdbp;
31499 	int path_instance;
31500 	/*
31501 	 * Need scsi_cdb_size array to determine the cdb length.
31502 	 */
31503 	extern uchar_t	scsi_cdb_size[];
31504 
31505 	ASSERT(un != NULL);
31506 	ASSERT(pktp != NULL);
31507 	ASSERT(bp != NULL);
31508 	ASSERT(xp != NULL);
31509 	ASSERT(ssc != NULL);
31510 	ASSERT(mutex_owned(SD_MUTEX(un)));
31511 
31512 	/*
31513 	 * Transfer the cdb buffer pointer here.
31514 	 */
31515 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
31516 
31517 	ssc->ssc_uscsi_cmd->uscsi_cdblen = scsi_cdb_size[GETGROUP(cdbp)];
31518 	ssc->ssc_uscsi_cmd->uscsi_cdb = (caddr_t)cdbp;
31519 
31520 	/*
31521 	 * Transfer the sense data buffer pointer if sense data is available,
31522 	 * calculate the sense data length first.
31523 	 */
31524 	if ((xp->xb_sense_state & STATE_XARQ_DONE) ||
31525 	    (xp->xb_sense_state & STATE_ARQ_DONE)) {
31526 		/*
31527 		 * For arq case, we will enter here.
31528 		 */
31529 		if (xp->xb_sense_state & STATE_XARQ_DONE) {
31530 			senlen = MAX_SENSE_LENGTH - xp->xb_sense_resid;
31531 		} else {
31532 			senlen = SENSE_LENGTH;
31533 		}
31534 	} else {
31535 		/*
31536 		 * For non-arq case, we will enter this branch.
31537 		 */
31538 		if (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK &&
31539 		    (xp->xb_sense_state & STATE_XFERRED_DATA)) {
31540 			senlen = SENSE_LENGTH - xp->xb_sense_resid;
31541 		}
31542 
31543 	}
31544 
31545 	ssc->ssc_uscsi_cmd->uscsi_rqlen = (senlen & 0xff);
31546 	ssc->ssc_uscsi_cmd->uscsi_rqresid = 0;
31547 	ssc->ssc_uscsi_cmd->uscsi_rqbuf = (caddr_t)xp->xb_sense_data;
31548 
31549 	ssc->ssc_uscsi_cmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
31550 
31551 	/*
31552 	 * Only transfer path_instance when scsi_pkt was properly allocated.
31553 	 */
31554 	path_instance = pktp->pkt_path_instance;
31555 	if (scsi_pkt_allocated_correctly(pktp) && path_instance)
31556 		ssc->ssc_uscsi_cmd->uscsi_path_instance = path_instance;
31557 	else
31558 		ssc->ssc_uscsi_cmd->uscsi_path_instance = 0;
31559 
31560 	/*
31561 	 * Copy in the other fields we may need when posting ereport.
31562 	 */
31563 	ssc->ssc_uscsi_info->ui_pkt_reason = pktp->pkt_reason;
31564 	ssc->ssc_uscsi_info->ui_pkt_state = pktp->pkt_state;
31565 	ssc->ssc_uscsi_info->ui_pkt_statistics = pktp->pkt_statistics;
31566 	ssc->ssc_uscsi_info->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
31567 
31568 	/*
31569 	 * For partially read/write command, we will not create ena
31570 	 * in case of a successful command be reconized as recovered.
31571 	 */
31572 	if ((pktp->pkt_reason == CMD_CMPLT) &&
31573 	    (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD) &&
31574 	    (senlen == 0)) {
31575 		return;
31576 	}
31577 
31578 	/*
31579 	 * To associate ereports of a single command execution flow, we
31580 	 * need a shared ena for a specific command.
31581 	 */
31582 	if (xp->xb_ena == 0)
31583 		xp->xb_ena = fm_ena_generate(0, FM_ENA_FMT1);
31584 	ssc->ssc_uscsi_info->ui_ena = xp->xb_ena;
31585 }
31586 
31587 
31588 /*
31589  *     Function: sd_check_solid_state
31590  *
31591  * Description: Query the optional INQUIRY VPD page 0xb1. If the device
31592  *              supports VPD page 0xb1, sd examines the MEDIUM ROTATION
31593  *              RATE. If the MEDIUM ROTATION RATE is 1, sd assumes the
31594  *              device is a solid state drive.
31595  *
31596  *     Context: Kernel thread or interrupt context.
31597  */
31598 
31599 static void
31600 sd_check_solid_state(sd_ssc_t *ssc)
31601 {
31602 	int		rval		= 0;
31603 	uchar_t		*inqb1		= NULL;
31604 	size_t		inqb1_len	= MAX_INQUIRY_SIZE;
31605 	size_t		inqb1_resid	= 0;
31606 	struct sd_lun	*un;
31607 
31608 	ASSERT(ssc != NULL);
31609 	un = ssc->ssc_un;
31610 	ASSERT(un != NULL);
31611 	ASSERT(!mutex_owned(SD_MUTEX(un)));
31612 
31613 	mutex_enter(SD_MUTEX(un));
31614 	un->un_f_is_solid_state = FALSE;
31615 
31616 	if (ISCD(un)) {
31617 		mutex_exit(SD_MUTEX(un));
31618 		return;
31619 	}
31620 
31621 	if (sd_check_vpd_page_support(ssc) == 0 &&
31622 	    un->un_vpd_page_mask & SD_VPD_DEV_CHARACTER_PG) {
31623 		mutex_exit(SD_MUTEX(un));
31624 		/* collect page b1 data */
31625 		inqb1 = kmem_zalloc(inqb1_len, KM_SLEEP);
31626 
31627 		rval = sd_send_scsi_INQUIRY(ssc, inqb1, inqb1_len,
31628 		    0x01, 0xB1, &inqb1_resid);
31629 
31630 		if (rval == 0 && (inqb1_len - inqb1_resid > 5)) {
31631 			SD_TRACE(SD_LOG_COMMON, un,
31632 			    "sd_check_solid_state: \
31633 			    successfully get VPD page: %x \
31634 			    PAGE LENGTH: %x BYTE 4: %x \
31635 			    BYTE 5: %x", inqb1[1], inqb1[3], inqb1[4],
31636 			    inqb1[5]);
31637 
31638 			mutex_enter(SD_MUTEX(un));
31639 			/*
31640 			 * Check the MEDIUM ROTATION RATE. If it is set
31641 			 * to 1, the device is a solid state drive.
31642 			 */
31643 			if (inqb1[4] == 0 && inqb1[5] == 1) {
31644 				un->un_f_is_solid_state = TRUE;
31645 			}
31646 			mutex_exit(SD_MUTEX(un));
31647 		} else if (rval != 0) {
31648 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
31649 		}
31650 
31651 		kmem_free(inqb1, inqb1_len);
31652 	} else {
31653 		mutex_exit(SD_MUTEX(un));
31654 	}
31655 }
31656 
31657 /*
31658  *	Function: sd_check_emulation_mode
31659  *
31660  *   Description: Check whether the SSD is at emulation mode
31661  *		  by issuing READ_CAPACITY_16 to see whether
31662  *		  we can get physical block size of the drive.
31663  *
31664  *	 Context: Kernel thread or interrupt context.
31665  */
31666 
31667 static void
31668 sd_check_emulation_mode(sd_ssc_t *ssc)
31669 {
31670 	int		rval = 0;
31671 	uint64_t	capacity;
31672 	uint_t		lbasize;
31673 	uint_t		pbsize;
31674 	int		i;
31675 	int		devid_len;
31676 	struct sd_lun	*un;
31677 
31678 	ASSERT(ssc != NULL);
31679 	un = ssc->ssc_un;
31680 	ASSERT(un != NULL);
31681 	ASSERT(!mutex_owned(SD_MUTEX(un)));
31682 
31683 	mutex_enter(SD_MUTEX(un));
31684 	if (ISCD(un)) {
31685 		mutex_exit(SD_MUTEX(un));
31686 		return;
31687 	}
31688 
31689 	if (un->un_f_descr_format_supported) {
31690 		mutex_exit(SD_MUTEX(un));
31691 		rval = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, &lbasize,
31692 		    &pbsize, SD_PATH_DIRECT);
31693 		mutex_enter(SD_MUTEX(un));
31694 
31695 		if (rval != 0) {
31696 			un->un_phy_blocksize = DEV_BSIZE;
31697 		} else {
31698 			if (!ISP2(pbsize % DEV_BSIZE) || pbsize == 0) {
31699 				un->un_phy_blocksize = DEV_BSIZE;
31700 			} else {
31701 				un->un_phy_blocksize = pbsize;
31702 			}
31703 		}
31704 	}
31705 
31706 	for (i = 0; i < sd_flash_dev_table_size; i++) {
31707 		devid_len = (int)strlen(sd_flash_dev_table[i]);
31708 		if (sd_sdconf_id_match(un, sd_flash_dev_table[i], devid_len)
31709 		    == SD_SUCCESS) {
31710 			un->un_phy_blocksize = SSD_SECSIZE;
31711 			if (un->un_f_is_solid_state &&
31712 			    un->un_phy_blocksize != un->un_tgt_blocksize)
31713 				un->un_f_enable_rmw = TRUE;
31714 		}
31715 	}
31716 
31717 	mutex_exit(SD_MUTEX(un));
31718 }
31719