xref: /titanic_51/usr/src/uts/common/io/scsi/targets/sd.c (revision ef292b7fad311e62bc65379b1190c4ab7a898668)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * SCSI disk target driver.
30  */
31 #include <sys/scsi/scsi.h>
32 #include <sys/dkbad.h>
33 #include <sys/dklabel.h>
34 #include <sys/dkio.h>
35 #include <sys/fdio.h>
36 #include <sys/cdio.h>
37 #include <sys/mhd.h>
38 #include <sys/vtoc.h>
39 #include <sys/dktp/fdisk.h>
40 #include <sys/file.h>
41 #include <sys/stat.h>
42 #include <sys/kstat.h>
43 #include <sys/vtrace.h>
44 #include <sys/note.h>
45 #include <sys/thread.h>
46 #include <sys/proc.h>
47 #include <sys/efi_partition.h>
48 #include <sys/var.h>
49 #include <sys/aio_req.h>
50 
51 #ifdef __lock_lint
52 #define	_LP64
53 #define	__amd64
54 #endif
55 
56 #if (defined(__fibre))
57 /* Note: is there a leadville version of the following? */
58 #include <sys/fc4/fcal_linkapp.h>
59 #endif
60 #include <sys/taskq.h>
61 #include <sys/uuid.h>
62 #include <sys/byteorder.h>
63 #include <sys/sdt.h>
64 
65 #include "sd_xbuf.h"
66 
67 #include <sys/scsi/targets/sddef.h>
68 
69 
70 /*
71  * Loadable module info.
72  */
73 #if (defined(__fibre))
74 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver %I%"
75 char _depends_on[]	= "misc/scsi drv/fcp";
76 #else
77 #define	SD_MODULE_NAME	"SCSI Disk Driver %I%"
78 char _depends_on[]	= "misc/scsi";
79 #endif
80 
81 /*
82  * Define the interconnect type, to allow the driver to distinguish
83  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
84  *
85  * This is really for backward compatability. In the future, the driver
86  * should actually check the "interconnect-type" property as reported by
87  * the HBA; however at present this property is not defined by all HBAs,
88  * so we will use this #define (1) to permit the driver to run in
89  * backward-compatability mode; and (2) to print a notification message
90  * if an FC HBA does not support the "interconnect-type" property.  The
91  * behavior of the driver will be to assume parallel SCSI behaviors unless
92  * the "interconnect-type" property is defined by the HBA **AND** has a
93  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
94  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
95  * Channel behaviors (as per the old ssd).  (Note that the
96  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
97  * will result in the driver assuming parallel SCSI behaviors.)
98  *
99  * (see common/sys/scsi/impl/services.h)
100  *
101  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
102  * since some FC HBAs may already support that, and there is some code in
103  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
104  * default would confuse that code, and besides things should work fine
105  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
106  * "interconnect_type" property.
107  *
108  * Notes for off-by-1 workaround:
109  * -----------------------------
110  *
111  *    SCSI READ_CAPACITY command returns the LBA number of the
112  *    last logical block, but sd once treated this number as
113  *    disks' capacity on x86 platform. And LBAs are addressed
114  *    based 0. So the last block was lost on x86 platform.
115  *
116  *    Now, we remove this workaround. In order for present sd
117  *    driver to work with disks which are labeled/partitioned
118  *    via previous sd, we add workaround as follows:
119  *
120  *    1) Locate backup EFI label: sd searchs the next to last
121  *       block for backup EFI label if it can't find it on the
122  *       last block;
123  *    2) Calculate geometry: refer to sd_convert_geometry(), If
124  *       capacity increasing by 1 causes disks' capacity to cross
125  *       over the limits in table CHS_values, geometry info will
126  *       change. This will raise an issue: In case that primary
127  *       VTOC label is destroyed, format commandline can restore
128  *       it via backup VTOC labels. And format locates backup VTOC
129  *       labels by use of geometry from sd driver. So changing
130  *       geometry will prevent format from finding backup VTOC
131  *       labels. To eliminate this side effect for compatibility,
132  *       sd uses (capacity -1) to calculate geometry;
133  *    3) 1TB disks: VTOC uses 32-bit signed int, thus sd doesn't
134  *       support VTOC for a disk which has more than DK_MAX_BLOCKS
135  *       LBAs. However, for exactly 1TB disk, it was treated as
136  *       (1T - 512)B in the past, and could have VTOC. To overcome
137  *       this, if an exactly 1TB disk has solaris fdisk partition,
138  *       it will be allowed to work with sd.
139  */
140 #if (defined(__fibre))
141 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
142 #else
143 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
144 #endif
145 
146 /*
147  * The name of the driver, established from the module name in _init.
148  */
149 static	char *sd_label			= NULL;
150 
151 /*
152  * Driver name is unfortunately prefixed on some driver.conf properties.
153  */
154 #if (defined(__fibre))
155 #define	sd_max_xfer_size		ssd_max_xfer_size
156 #define	sd_config_list			ssd_config_list
157 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
158 static	char *sd_config_list		= "ssd-config-list";
159 #else
160 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
161 static	char *sd_config_list		= "sd-config-list";
162 #endif
163 
164 /*
165  * Driver global variables
166  */
167 
168 #if (defined(__fibre))
169 /*
170  * These #defines are to avoid namespace collisions that occur because this
171  * code is currently used to compile two seperate driver modules: sd and ssd.
172  * All global variables need to be treated this way (even if declared static)
173  * in order to allow the debugger to resolve the names properly.
174  * It is anticipated that in the near future the ssd module will be obsoleted,
175  * at which time this namespace issue should go away.
176  */
177 #define	sd_state			ssd_state
178 #define	sd_io_time			ssd_io_time
179 #define	sd_failfast_enable		ssd_failfast_enable
180 #define	sd_ua_retry_count		ssd_ua_retry_count
181 #define	sd_report_pfa			ssd_report_pfa
182 #define	sd_max_throttle			ssd_max_throttle
183 #define	sd_min_throttle			ssd_min_throttle
184 #define	sd_rot_delay			ssd_rot_delay
185 
186 #define	sd_retry_on_reservation_conflict	\
187 					ssd_retry_on_reservation_conflict
188 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
189 #define	sd_resv_conflict_name		ssd_resv_conflict_name
190 
191 #define	sd_component_mask		ssd_component_mask
192 #define	sd_level_mask			ssd_level_mask
193 #define	sd_debug_un			ssd_debug_un
194 #define	sd_error_level			ssd_error_level
195 
196 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
197 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
198 
199 #define	sd_tr				ssd_tr
200 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
201 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
202 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
203 #define	sd_check_media_time		ssd_check_media_time
204 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
205 #define	sd_label_mutex			ssd_label_mutex
206 #define	sd_detach_mutex			ssd_detach_mutex
207 #define	sd_log_buf			ssd_log_buf
208 #define	sd_log_mutex			ssd_log_mutex
209 
210 #define	sd_disk_table			ssd_disk_table
211 #define	sd_disk_table_size		ssd_disk_table_size
212 #define	sd_sense_mutex			ssd_sense_mutex
213 #define	sd_cdbtab			ssd_cdbtab
214 
215 #define	sd_cb_ops			ssd_cb_ops
216 #define	sd_ops				ssd_ops
217 #define	sd_additional_codes		ssd_additional_codes
218 
219 #define	sd_minor_data			ssd_minor_data
220 #define	sd_minor_data_efi		ssd_minor_data_efi
221 
222 #define	sd_tq				ssd_tq
223 #define	sd_wmr_tq			ssd_wmr_tq
224 #define	sd_taskq_name			ssd_taskq_name
225 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
226 #define	sd_taskq_minalloc		ssd_taskq_minalloc
227 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
228 
229 #define	sd_dump_format_string		ssd_dump_format_string
230 
231 #define	sd_iostart_chain		ssd_iostart_chain
232 #define	sd_iodone_chain			ssd_iodone_chain
233 
234 #define	sd_pm_idletime			ssd_pm_idletime
235 
236 #define	sd_force_pm_supported		ssd_force_pm_supported
237 
238 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
239 
240 #endif
241 
242 
243 #ifdef	SDDEBUG
244 int	sd_force_pm_supported		= 0;
245 #endif	/* SDDEBUG */
246 
247 void *sd_state				= NULL;
248 int sd_io_time				= SD_IO_TIME;
249 int sd_failfast_enable			= 1;
250 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
251 int sd_report_pfa			= 1;
252 int sd_max_throttle			= SD_MAX_THROTTLE;
253 int sd_min_throttle			= SD_MIN_THROTTLE;
254 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
255 int sd_qfull_throttle_enable		= TRUE;
256 
257 int sd_retry_on_reservation_conflict	= 1;
258 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
259 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
260 
261 static int sd_dtype_optical_bind	= -1;
262 
263 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
264 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
265 
266 /*
267  * Global data for debug logging. To enable debug printing, sd_component_mask
268  * and sd_level_mask should be set to the desired bit patterns as outlined in
269  * sddef.h.
270  */
271 uint_t	sd_component_mask		= 0x0;
272 uint_t	sd_level_mask			= 0x0;
273 struct	sd_lun *sd_debug_un		= NULL;
274 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
275 
276 /* Note: these may go away in the future... */
277 static uint32_t	sd_xbuf_active_limit	= 512;
278 static uint32_t sd_xbuf_reserve_limit	= 16;
279 
280 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
281 
282 /*
283  * Timer value used to reset the throttle after it has been reduced
284  * (typically in response to TRAN_BUSY or STATUS_QFULL)
285  */
286 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
287 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
288 
289 /*
290  * Interval value associated with the media change scsi watch.
291  */
292 static int sd_check_media_time		= 3000000;
293 
294 /*
295  * Wait value used for in progress operations during a DDI_SUSPEND
296  */
297 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
298 
299 /*
300  * sd_label_mutex protects a static buffer used in the disk label
301  * component of the driver
302  */
303 static kmutex_t sd_label_mutex;
304 
305 /*
306  * sd_detach_mutex protects un_layer_count, un_detach_count, and
307  * un_opens_in_progress in the sd_lun structure.
308  */
309 static kmutex_t sd_detach_mutex;
310 
311 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
312 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
313 
314 /*
315  * Global buffer and mutex for debug logging
316  */
317 static char	sd_log_buf[1024];
318 static kmutex_t	sd_log_mutex;
319 
320 /*
321  * Structs and globals for recording attached lun information.
322  * This maintains a chain. Each node in the chain represents a SCSI controller.
323  * The structure records the number of luns attached to each target connected
324  * with the controller.
325  * For parallel scsi device only.
326  */
327 struct sd_scsi_hba_tgt_lun {
328 	struct sd_scsi_hba_tgt_lun	*next;
329 	dev_info_t			*pdip;
330 	int				nlun[NTARGETS_WIDE];
331 };
332 
333 /*
334  * Flag to indicate the lun is attached or detached
335  */
336 #define	SD_SCSI_LUN_ATTACH	0
337 #define	SD_SCSI_LUN_DETACH	1
338 
339 static kmutex_t	sd_scsi_target_lun_mutex;
340 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
341 
342 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
343     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
344 
345 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
346     sd_scsi_target_lun_head))
347 
348 /*
349  * "Smart" Probe Caching structs, globals, #defines, etc.
350  * For parallel scsi and non-self-identify device only.
351  */
352 
353 /*
354  * The following resources and routines are implemented to support
355  * "smart" probing, which caches the scsi_probe() results in an array,
356  * in order to help avoid long probe times.
357  */
358 struct sd_scsi_probe_cache {
359 	struct	sd_scsi_probe_cache	*next;
360 	dev_info_t	*pdip;
361 	int		cache[NTARGETS_WIDE];
362 };
363 
364 static kmutex_t	sd_scsi_probe_cache_mutex;
365 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
366 
367 /*
368  * Really we only need protection on the head of the linked list, but
369  * better safe than sorry.
370  */
371 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
372     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
373 
374 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
375     sd_scsi_probe_cache_head))
376 
377 
378 /*
379  * Vendor specific data name property declarations
380  */
381 
382 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
383 
384 static sd_tunables seagate_properties = {
385 	SEAGATE_THROTTLE_VALUE,
386 	0,
387 	0,
388 	0,
389 	0,
390 	0,
391 	0,
392 	0,
393 	0
394 };
395 
396 
397 static sd_tunables fujitsu_properties = {
398 	FUJITSU_THROTTLE_VALUE,
399 	0,
400 	0,
401 	0,
402 	0,
403 	0,
404 	0,
405 	0,
406 	0
407 };
408 
409 static sd_tunables ibm_properties = {
410 	IBM_THROTTLE_VALUE,
411 	0,
412 	0,
413 	0,
414 	0,
415 	0,
416 	0,
417 	0,
418 	0
419 };
420 
421 static sd_tunables purple_properties = {
422 	PURPLE_THROTTLE_VALUE,
423 	0,
424 	0,
425 	PURPLE_BUSY_RETRIES,
426 	PURPLE_RESET_RETRY_COUNT,
427 	PURPLE_RESERVE_RELEASE_TIME,
428 	0,
429 	0,
430 	0
431 };
432 
433 static sd_tunables sve_properties = {
434 	SVE_THROTTLE_VALUE,
435 	0,
436 	0,
437 	SVE_BUSY_RETRIES,
438 	SVE_RESET_RETRY_COUNT,
439 	SVE_RESERVE_RELEASE_TIME,
440 	SVE_MIN_THROTTLE_VALUE,
441 	SVE_DISKSORT_DISABLED_FLAG,
442 	0
443 };
444 
445 static sd_tunables maserati_properties = {
446 	0,
447 	0,
448 	0,
449 	0,
450 	0,
451 	0,
452 	0,
453 	MASERATI_DISKSORT_DISABLED_FLAG,
454 	MASERATI_LUN_RESET_ENABLED_FLAG
455 };
456 
457 static sd_tunables pirus_properties = {
458 	PIRUS_THROTTLE_VALUE,
459 	0,
460 	PIRUS_NRR_COUNT,
461 	PIRUS_BUSY_RETRIES,
462 	PIRUS_RESET_RETRY_COUNT,
463 	0,
464 	PIRUS_MIN_THROTTLE_VALUE,
465 	PIRUS_DISKSORT_DISABLED_FLAG,
466 	PIRUS_LUN_RESET_ENABLED_FLAG
467 };
468 
469 #endif
470 
471 #if (defined(__sparc) && !defined(__fibre)) || \
472 	(defined(__i386) || defined(__amd64))
473 
474 
475 static sd_tunables elite_properties = {
476 	ELITE_THROTTLE_VALUE,
477 	0,
478 	0,
479 	0,
480 	0,
481 	0,
482 	0,
483 	0,
484 	0
485 };
486 
487 static sd_tunables st31200n_properties = {
488 	ST31200N_THROTTLE_VALUE,
489 	0,
490 	0,
491 	0,
492 	0,
493 	0,
494 	0,
495 	0,
496 	0
497 };
498 
499 #endif /* Fibre or not */
500 
501 static sd_tunables lsi_properties_scsi = {
502 	LSI_THROTTLE_VALUE,
503 	0,
504 	LSI_NOTREADY_RETRIES,
505 	0,
506 	0,
507 	0,
508 	0,
509 	0,
510 	0
511 };
512 
513 static sd_tunables symbios_properties = {
514 	SYMBIOS_THROTTLE_VALUE,
515 	0,
516 	SYMBIOS_NOTREADY_RETRIES,
517 	0,
518 	0,
519 	0,
520 	0,
521 	0,
522 	0
523 };
524 
525 static sd_tunables lsi_properties = {
526 	0,
527 	0,
528 	LSI_NOTREADY_RETRIES,
529 	0,
530 	0,
531 	0,
532 	0,
533 	0,
534 	0
535 };
536 
537 static sd_tunables lsi_oem_properties = {
538 	0,
539 	0,
540 	LSI_OEM_NOTREADY_RETRIES,
541 	0,
542 	0,
543 	0,
544 	0,
545 	0,
546 	0
547 };
548 
549 
550 
551 #if (defined(SD_PROP_TST))
552 
553 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
554 #define	SD_TST_THROTTLE_VAL	16
555 #define	SD_TST_NOTREADY_VAL	12
556 #define	SD_TST_BUSY_VAL		60
557 #define	SD_TST_RST_RETRY_VAL	36
558 #define	SD_TST_RSV_REL_TIME	60
559 
560 static sd_tunables tst_properties = {
561 	SD_TST_THROTTLE_VAL,
562 	SD_TST_CTYPE_VAL,
563 	SD_TST_NOTREADY_VAL,
564 	SD_TST_BUSY_VAL,
565 	SD_TST_RST_RETRY_VAL,
566 	SD_TST_RSV_REL_TIME,
567 	0,
568 	0,
569 	0
570 };
571 #endif
572 
573 /* This is similiar to the ANSI toupper implementation */
574 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
575 
576 /*
577  * Static Driver Configuration Table
578  *
579  * This is the table of disks which need throttle adjustment (or, perhaps
580  * something else as defined by the flags at a future time.)  device_id
581  * is a string consisting of concatenated vid (vendor), pid (product/model)
582  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
583  * the parts of the string are as defined by the sizes in the scsi_inquiry
584  * structure.  Device type is searched as far as the device_id string is
585  * defined.  Flags defines which values are to be set in the driver from the
586  * properties list.
587  *
588  * Entries below which begin and end with a "*" are a special case.
589  * These do not have a specific vendor, and the string which follows
590  * can appear anywhere in the 16 byte PID portion of the inquiry data.
591  *
592  * Entries below which begin and end with a " " (blank) are a special
593  * case. The comparison function will treat multiple consecutive blanks
594  * as equivalent to a single blank. For example, this causes a
595  * sd_disk_table entry of " NEC CDROM " to match a device's id string
596  * of  "NEC       CDROM".
597  *
598  * Note: The MD21 controller type has been obsoleted.
599  *	 ST318202F is a Legacy device
600  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
601  *	 made with an FC connection. The entries here are a legacy.
602  */
603 static sd_disk_config_t sd_disk_table[] = {
604 #if defined(__fibre) || defined(__i386) || defined(__amd64)
605 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
606 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
607 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
608 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
609 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
610 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
611 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
612 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
613 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
614 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
615 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
616 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
617 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
618 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
619 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
620 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
621 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
622 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
623 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
624 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
625 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
626 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
627 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
628 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
629 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
630 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
631 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
632 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
633 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
634 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
635 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
636 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
637 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
638 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
639 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
640 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
641 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
642 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
643 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
644 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
645 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
646 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
647 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
648 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
649 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
650 			SD_CONF_BSET_BSY_RETRY_COUNT|
651 			SD_CONF_BSET_RST_RETRIES|
652 			SD_CONF_BSET_RSV_REL_TIME,
653 		&purple_properties },
654 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
655 		SD_CONF_BSET_BSY_RETRY_COUNT|
656 		SD_CONF_BSET_RST_RETRIES|
657 		SD_CONF_BSET_RSV_REL_TIME|
658 		SD_CONF_BSET_MIN_THROTTLE|
659 		SD_CONF_BSET_DISKSORT_DISABLED,
660 		&sve_properties },
661 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
662 			SD_CONF_BSET_BSY_RETRY_COUNT|
663 			SD_CONF_BSET_RST_RETRIES|
664 			SD_CONF_BSET_RSV_REL_TIME,
665 		&purple_properties },
666 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
667 		SD_CONF_BSET_LUN_RESET_ENABLED,
668 		&maserati_properties },
669 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
670 		SD_CONF_BSET_NRR_COUNT|
671 		SD_CONF_BSET_BSY_RETRY_COUNT|
672 		SD_CONF_BSET_RST_RETRIES|
673 		SD_CONF_BSET_MIN_THROTTLE|
674 		SD_CONF_BSET_DISKSORT_DISABLED|
675 		SD_CONF_BSET_LUN_RESET_ENABLED,
676 		&pirus_properties },
677 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
678 		SD_CONF_BSET_NRR_COUNT|
679 		SD_CONF_BSET_BSY_RETRY_COUNT|
680 		SD_CONF_BSET_RST_RETRIES|
681 		SD_CONF_BSET_MIN_THROTTLE|
682 		SD_CONF_BSET_DISKSORT_DISABLED|
683 		SD_CONF_BSET_LUN_RESET_ENABLED,
684 		&pirus_properties },
685 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
686 		SD_CONF_BSET_NRR_COUNT|
687 		SD_CONF_BSET_BSY_RETRY_COUNT|
688 		SD_CONF_BSET_RST_RETRIES|
689 		SD_CONF_BSET_MIN_THROTTLE|
690 		SD_CONF_BSET_DISKSORT_DISABLED|
691 		SD_CONF_BSET_LUN_RESET_ENABLED,
692 		&pirus_properties },
693 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
694 		SD_CONF_BSET_NRR_COUNT|
695 		SD_CONF_BSET_BSY_RETRY_COUNT|
696 		SD_CONF_BSET_RST_RETRIES|
697 		SD_CONF_BSET_MIN_THROTTLE|
698 		SD_CONF_BSET_DISKSORT_DISABLED|
699 		SD_CONF_BSET_LUN_RESET_ENABLED,
700 		&pirus_properties },
701 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
702 		SD_CONF_BSET_NRR_COUNT|
703 		SD_CONF_BSET_BSY_RETRY_COUNT|
704 		SD_CONF_BSET_RST_RETRIES|
705 		SD_CONF_BSET_MIN_THROTTLE|
706 		SD_CONF_BSET_DISKSORT_DISABLED|
707 		SD_CONF_BSET_LUN_RESET_ENABLED,
708 		&pirus_properties },
709 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
710 		SD_CONF_BSET_NRR_COUNT|
711 		SD_CONF_BSET_BSY_RETRY_COUNT|
712 		SD_CONF_BSET_RST_RETRIES|
713 		SD_CONF_BSET_MIN_THROTTLE|
714 		SD_CONF_BSET_DISKSORT_DISABLED|
715 		SD_CONF_BSET_LUN_RESET_ENABLED,
716 		&pirus_properties },
717 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
718 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
719 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
720 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
721 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
722 #endif /* fibre or NON-sparc platforms */
723 #if ((defined(__sparc) && !defined(__fibre)) ||\
724 	(defined(__i386) || defined(__amd64)))
725 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
726 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
727 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
728 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
729 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
730 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
731 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
732 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
733 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
734 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
735 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
736 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
737 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
738 	    &symbios_properties },
739 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
740 	    &lsi_properties_scsi },
741 #if defined(__i386) || defined(__amd64)
742 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
743 				    | SD_CONF_BSET_READSUB_BCD
744 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
745 				    | SD_CONF_BSET_NO_READ_HEADER
746 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
747 
748 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
749 				    | SD_CONF_BSET_READSUB_BCD
750 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
751 				    | SD_CONF_BSET_NO_READ_HEADER
752 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
753 #endif /* __i386 || __amd64 */
754 #endif /* sparc NON-fibre or NON-sparc platforms */
755 
756 #if (defined(SD_PROP_TST))
757 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
758 				| SD_CONF_BSET_CTYPE
759 				| SD_CONF_BSET_NRR_COUNT
760 				| SD_CONF_BSET_FAB_DEVID
761 				| SD_CONF_BSET_NOCACHE
762 				| SD_CONF_BSET_BSY_RETRY_COUNT
763 				| SD_CONF_BSET_PLAYMSF_BCD
764 				| SD_CONF_BSET_READSUB_BCD
765 				| SD_CONF_BSET_READ_TOC_TRK_BCD
766 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
767 				| SD_CONF_BSET_NO_READ_HEADER
768 				| SD_CONF_BSET_READ_CD_XD4
769 				| SD_CONF_BSET_RST_RETRIES
770 				| SD_CONF_BSET_RSV_REL_TIME
771 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
772 #endif
773 };
774 
775 static const int sd_disk_table_size =
776 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
777 
778 
779 /*
780  * Return codes of sd_uselabel().
781  */
782 #define	SD_LABEL_IS_VALID		0
783 #define	SD_LABEL_IS_INVALID		1
784 
785 #define	SD_INTERCONNECT_PARALLEL	0
786 #define	SD_INTERCONNECT_FABRIC		1
787 #define	SD_INTERCONNECT_FIBRE		2
788 #define	SD_INTERCONNECT_SSA		3
789 #define	SD_INTERCONNECT_SATA		4
790 #define	SD_IS_PARALLEL_SCSI(un)		\
791 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
792 #define	SD_IS_SERIAL(un)		\
793 	((un)->un_interconnect_type == SD_INTERCONNECT_SATA)
794 
795 /*
796  * Definitions used by device id registration routines
797  */
798 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
799 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
800 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
801 #define	WD_NODE			7	/* the whole disk minor */
802 
803 static kmutex_t sd_sense_mutex = {0};
804 
805 /*
806  * Macros for updates of the driver state
807  */
808 #define	New_state(un, s)        \
809 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
810 #define	Restore_state(un)	\
811 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
812 
813 static struct sd_cdbinfo sd_cdbtab[] = {
814 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
815 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
816 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
817 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
818 };
819 
820 /*
821  * Specifies the number of seconds that must have elapsed since the last
822  * cmd. has completed for a device to be declared idle to the PM framework.
823  */
824 static int sd_pm_idletime = 1;
825 
826 /*
827  * Internal function prototypes
828  */
829 
830 #if (defined(__fibre))
831 /*
832  * These #defines are to avoid namespace collisions that occur because this
833  * code is currently used to compile two seperate driver modules: sd and ssd.
834  * All function names need to be treated this way (even if declared static)
835  * in order to allow the debugger to resolve the names properly.
836  * It is anticipated that in the near future the ssd module will be obsoleted,
837  * at which time this ugliness should go away.
838  */
839 #define	sd_log_trace			ssd_log_trace
840 #define	sd_log_info			ssd_log_info
841 #define	sd_log_err			ssd_log_err
842 #define	sdprobe				ssdprobe
843 #define	sdinfo				ssdinfo
844 #define	sd_prop_op			ssd_prop_op
845 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
846 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
847 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
848 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
849 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
850 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
851 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
852 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
853 #define	sd_spin_up_unit			ssd_spin_up_unit
854 #define	sd_enable_descr_sense		ssd_enable_descr_sense
855 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
856 #define	sd_set_mmc_caps			ssd_set_mmc_caps
857 #define	sd_read_unit_properties		ssd_read_unit_properties
858 #define	sd_process_sdconf_file		ssd_process_sdconf_file
859 #define	sd_process_sdconf_table		ssd_process_sdconf_table
860 #define	sd_sdconf_id_match		ssd_sdconf_id_match
861 #define	sd_blank_cmp			ssd_blank_cmp
862 #define	sd_chk_vers1_data		ssd_chk_vers1_data
863 #define	sd_set_vers1_properties		ssd_set_vers1_properties
864 #define	sd_validate_geometry		ssd_validate_geometry
865 
866 #if defined(_SUNOS_VTOC_16)
867 #define	sd_convert_geometry		ssd_convert_geometry
868 #endif
869 
870 #define	sd_resync_geom_caches		ssd_resync_geom_caches
871 #define	sd_read_fdisk			ssd_read_fdisk
872 #define	sd_get_physical_geometry	ssd_get_physical_geometry
873 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
874 #define	sd_update_block_info		ssd_update_block_info
875 #define	sd_swap_efi_gpt			ssd_swap_efi_gpt
876 #define	sd_swap_efi_gpe			ssd_swap_efi_gpe
877 #define	sd_validate_efi			ssd_validate_efi
878 #define	sd_use_efi			ssd_use_efi
879 #define	sd_uselabel			ssd_uselabel
880 #define	sd_build_default_label		ssd_build_default_label
881 #define	sd_has_max_chs_vals		ssd_has_max_chs_vals
882 #define	sd_inq_fill			ssd_inq_fill
883 #define	sd_register_devid		ssd_register_devid
884 #define	sd_get_devid_block		ssd_get_devid_block
885 #define	sd_get_devid			ssd_get_devid
886 #define	sd_create_devid			ssd_create_devid
887 #define	sd_write_deviceid		ssd_write_deviceid
888 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
889 #define	sd_setup_pm			ssd_setup_pm
890 #define	sd_create_pm_components		ssd_create_pm_components
891 #define	sd_ddi_suspend			ssd_ddi_suspend
892 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
893 #define	sd_ddi_resume			ssd_ddi_resume
894 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
895 #define	sdpower				ssdpower
896 #define	sdattach			ssdattach
897 #define	sddetach			ssddetach
898 #define	sd_unit_attach			ssd_unit_attach
899 #define	sd_unit_detach			ssd_unit_detach
900 #define	sd_set_unit_attributes		ssd_set_unit_attributes
901 #define	sd_create_minor_nodes		ssd_create_minor_nodes
902 #define	sd_create_errstats		ssd_create_errstats
903 #define	sd_set_errstats			ssd_set_errstats
904 #define	sd_set_pstats			ssd_set_pstats
905 #define	sddump				ssddump
906 #define	sd_scsi_poll			ssd_scsi_poll
907 #define	sd_send_polled_RQS		ssd_send_polled_RQS
908 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
909 #define	sd_init_event_callbacks		ssd_init_event_callbacks
910 #define	sd_event_callback		ssd_event_callback
911 #define	sd_cache_control		ssd_cache_control
912 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
913 #define	sd_make_device			ssd_make_device
914 #define	sdopen				ssdopen
915 #define	sdclose				ssdclose
916 #define	sd_ready_and_valid		ssd_ready_and_valid
917 #define	sdmin				ssdmin
918 #define	sdread				ssdread
919 #define	sdwrite				ssdwrite
920 #define	sdaread				ssdaread
921 #define	sdawrite			ssdawrite
922 #define	sdstrategy			ssdstrategy
923 #define	sdioctl				ssdioctl
924 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
925 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
926 #define	sd_checksum_iostart		ssd_checksum_iostart
927 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
928 #define	sd_pm_iostart			ssd_pm_iostart
929 #define	sd_core_iostart			ssd_core_iostart
930 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
931 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
932 #define	sd_checksum_iodone		ssd_checksum_iodone
933 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
934 #define	sd_pm_iodone			ssd_pm_iodone
935 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
936 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
937 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
938 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
939 #define	sd_buf_iodone			ssd_buf_iodone
940 #define	sd_uscsi_strategy		ssd_uscsi_strategy
941 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
942 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
943 #define	sd_uscsi_iodone			ssd_uscsi_iodone
944 #define	sd_xbuf_strategy		ssd_xbuf_strategy
945 #define	sd_xbuf_init			ssd_xbuf_init
946 #define	sd_pm_entry			ssd_pm_entry
947 #define	sd_pm_exit			ssd_pm_exit
948 
949 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
950 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
951 
952 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
953 #define	sdintr				ssdintr
954 #define	sd_start_cmds			ssd_start_cmds
955 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
956 #define	sd_bioclone_alloc		ssd_bioclone_alloc
957 #define	sd_bioclone_free		ssd_bioclone_free
958 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
959 #define	sd_shadow_buf_free		ssd_shadow_buf_free
960 #define	sd_print_transport_rejected_message	\
961 					ssd_print_transport_rejected_message
962 #define	sd_retry_command		ssd_retry_command
963 #define	sd_set_retry_bp			ssd_set_retry_bp
964 #define	sd_send_request_sense_command	ssd_send_request_sense_command
965 #define	sd_start_retry_command		ssd_start_retry_command
966 #define	sd_start_direct_priority_command	\
967 					ssd_start_direct_priority_command
968 #define	sd_return_failed_command	ssd_return_failed_command
969 #define	sd_return_failed_command_no_restart	\
970 					ssd_return_failed_command_no_restart
971 #define	sd_return_command		ssd_return_command
972 #define	sd_sync_with_callback		ssd_sync_with_callback
973 #define	sdrunout			ssdrunout
974 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
975 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
976 #define	sd_reduce_throttle		ssd_reduce_throttle
977 #define	sd_restore_throttle		ssd_restore_throttle
978 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
979 #define	sd_init_cdb_limits		ssd_init_cdb_limits
980 #define	sd_pkt_status_good		ssd_pkt_status_good
981 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
982 #define	sd_pkt_status_busy		ssd_pkt_status_busy
983 #define	sd_pkt_status_reservation_conflict	\
984 					ssd_pkt_status_reservation_conflict
985 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
986 #define	sd_handle_request_sense		ssd_handle_request_sense
987 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
988 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
989 #define	sd_validate_sense_data		ssd_validate_sense_data
990 #define	sd_decode_sense			ssd_decode_sense
991 #define	sd_print_sense_msg		ssd_print_sense_msg
992 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
993 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
994 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
995 #define	sd_sense_key_medium_or_hardware_error	\
996 					ssd_sense_key_medium_or_hardware_error
997 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
998 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
999 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
1000 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
1001 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
1002 #define	sd_sense_key_default		ssd_sense_key_default
1003 #define	sd_print_retry_msg		ssd_print_retry_msg
1004 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
1005 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
1006 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
1007 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
1008 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
1009 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
1010 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
1011 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
1012 #define	sd_pkt_reason_default		ssd_pkt_reason_default
1013 #define	sd_reset_target			ssd_reset_target
1014 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
1015 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
1016 #define	sd_taskq_create			ssd_taskq_create
1017 #define	sd_taskq_delete			ssd_taskq_delete
1018 #define	sd_media_change_task		ssd_media_change_task
1019 #define	sd_handle_mchange		ssd_handle_mchange
1020 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
1021 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
1022 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
1023 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
1024 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
1025 					sd_send_scsi_feature_GET_CONFIGURATION
1026 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
1027 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
1028 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
1029 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
1030 					ssd_send_scsi_PERSISTENT_RESERVE_IN
1031 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
1032 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
1033 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
1034 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
1035 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
1036 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
1037 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
1038 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
1039 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
1040 #define	sd_alloc_rqs			ssd_alloc_rqs
1041 #define	sd_free_rqs			ssd_free_rqs
1042 #define	sd_dump_memory			ssd_dump_memory
1043 #define	sd_uscsi_ioctl			ssd_uscsi_ioctl
1044 #define	sd_get_media_info		ssd_get_media_info
1045 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
1046 #define	sd_dkio_get_geometry		ssd_dkio_get_geometry
1047 #define	sd_dkio_set_geometry		ssd_dkio_set_geometry
1048 #define	sd_dkio_get_partition		ssd_dkio_get_partition
1049 #define	sd_dkio_set_partition		ssd_dkio_set_partition
1050 #define	sd_dkio_partition		ssd_dkio_partition
1051 #define	sd_dkio_get_vtoc		ssd_dkio_get_vtoc
1052 #define	sd_dkio_get_efi			ssd_dkio_get_efi
1053 #define	sd_build_user_vtoc		ssd_build_user_vtoc
1054 #define	sd_dkio_set_vtoc		ssd_dkio_set_vtoc
1055 #define	sd_dkio_set_efi			ssd_dkio_set_efi
1056 #define	sd_build_label_vtoc		ssd_build_label_vtoc
1057 #define	sd_write_label			ssd_write_label
1058 #define	sd_clear_vtoc			ssd_clear_vtoc
1059 #define	sd_clear_efi			ssd_clear_efi
1060 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
1061 #define	sd_setup_next_xfer		ssd_setup_next_xfer
1062 #define	sd_dkio_get_temp		ssd_dkio_get_temp
1063 #define	sd_dkio_get_mboot		ssd_dkio_get_mboot
1064 #define	sd_dkio_set_mboot		ssd_dkio_set_mboot
1065 #define	sd_setup_default_geometry	ssd_setup_default_geometry
1066 #define	sd_update_fdisk_and_vtoc	ssd_update_fdisk_and_vtoc
1067 #define	sd_check_mhd			ssd_check_mhd
1068 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1069 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1070 #define	sd_sname			ssd_sname
1071 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1072 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1073 #define	sd_take_ownership		ssd_take_ownership
1074 #define	sd_reserve_release		ssd_reserve_release
1075 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1076 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1077 #define	sd_persistent_reservation_in_read_keys	\
1078 					ssd_persistent_reservation_in_read_keys
1079 #define	sd_persistent_reservation_in_read_resv	\
1080 					ssd_persistent_reservation_in_read_resv
1081 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1082 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1083 #define	sd_mhdioc_release		ssd_mhdioc_release
1084 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1085 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1086 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1087 #define	sr_change_blkmode		ssr_change_blkmode
1088 #define	sr_change_speed			ssr_change_speed
1089 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1090 #define	sr_pause_resume			ssr_pause_resume
1091 #define	sr_play_msf			ssr_play_msf
1092 #define	sr_play_trkind			ssr_play_trkind
1093 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1094 #define	sr_read_subchannel		ssr_read_subchannel
1095 #define	sr_read_tocentry		ssr_read_tocentry
1096 #define	sr_read_tochdr			ssr_read_tochdr
1097 #define	sr_read_cdda			ssr_read_cdda
1098 #define	sr_read_cdxa			ssr_read_cdxa
1099 #define	sr_read_mode1			ssr_read_mode1
1100 #define	sr_read_mode2			ssr_read_mode2
1101 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1102 #define	sr_sector_mode			ssr_sector_mode
1103 #define	sr_eject			ssr_eject
1104 #define	sr_ejected			ssr_ejected
1105 #define	sr_check_wp			ssr_check_wp
1106 #define	sd_check_media			ssd_check_media
1107 #define	sd_media_watch_cb		ssd_media_watch_cb
1108 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1109 #define	sr_volume_ctrl			ssr_volume_ctrl
1110 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1111 #define	sd_log_page_supported		ssd_log_page_supported
1112 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1113 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1114 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1115 #define	sd_range_lock			ssd_range_lock
1116 #define	sd_get_range			ssd_get_range
1117 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1118 #define	sd_range_unlock			ssd_range_unlock
1119 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1120 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1121 
1122 #define	sd_iostart_chain		ssd_iostart_chain
1123 #define	sd_iodone_chain			ssd_iodone_chain
1124 #define	sd_initpkt_map			ssd_initpkt_map
1125 #define	sd_destroypkt_map		ssd_destroypkt_map
1126 #define	sd_chain_type_map		ssd_chain_type_map
1127 #define	sd_chain_index_map		ssd_chain_index_map
1128 
1129 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1130 #define	sd_failfast_flushq		ssd_failfast_flushq
1131 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1132 
1133 #define	sd_is_lsi			ssd_is_lsi
1134 
1135 #endif	/* #if (defined(__fibre)) */
1136 
1137 
1138 int _init(void);
1139 int _fini(void);
1140 int _info(struct modinfo *modinfop);
1141 
1142 /*PRINTFLIKE3*/
1143 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1144 /*PRINTFLIKE3*/
1145 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1146 /*PRINTFLIKE3*/
1147 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1148 
1149 static int sdprobe(dev_info_t *devi);
1150 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1151     void **result);
1152 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1153     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1154 
1155 /*
1156  * Smart probe for parallel scsi
1157  */
1158 static void sd_scsi_probe_cache_init(void);
1159 static void sd_scsi_probe_cache_fini(void);
1160 static void sd_scsi_clear_probe_cache(void);
1161 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1162 
1163 /*
1164  * Attached luns on target for parallel scsi
1165  */
1166 static void sd_scsi_target_lun_init(void);
1167 static void sd_scsi_target_lun_fini(void);
1168 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1169 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1170 
1171 static int	sd_spin_up_unit(struct sd_lun *un);
1172 #ifdef _LP64
1173 static void	sd_enable_descr_sense(struct sd_lun *un);
1174 static void	sd_reenable_dsense_task(void *arg);
1175 #endif /* _LP64 */
1176 
1177 static void	sd_set_mmc_caps(struct sd_lun *un);
1178 
1179 static void sd_read_unit_properties(struct sd_lun *un);
1180 static int  sd_process_sdconf_file(struct sd_lun *un);
1181 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1182     int *data_list, sd_tunables *values);
1183 static void sd_process_sdconf_table(struct sd_lun *un);
1184 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1185 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1186 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1187 	int list_len, char *dataname_ptr);
1188 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1189     sd_tunables *prop_list);
1190 static int  sd_validate_geometry(struct sd_lun *un, int path_flag);
1191 
1192 #if defined(_SUNOS_VTOC_16)
1193 static void sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g);
1194 #endif
1195 
1196 static void sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize,
1197 	int path_flag);
1198 static int  sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize,
1199 	int path_flag);
1200 static void sd_get_physical_geometry(struct sd_lun *un,
1201 	struct geom_cache *pgeom_p, int capacity, int lbasize, int path_flag);
1202 static void sd_get_virtual_geometry(struct sd_lun *un, int capacity,
1203 	int lbasize);
1204 static int  sd_uselabel(struct sd_lun *un, struct dk_label *l, int path_flag);
1205 static void sd_swap_efi_gpt(efi_gpt_t *);
1206 static void sd_swap_efi_gpe(int nparts, efi_gpe_t *);
1207 static int sd_validate_efi(efi_gpt_t *);
1208 static int sd_use_efi(struct sd_lun *, int);
1209 static void sd_build_default_label(struct sd_lun *un);
1210 
1211 #if defined(_FIRMWARE_NEEDS_FDISK)
1212 static int  sd_has_max_chs_vals(struct ipart *fdp);
1213 #endif
1214 static void sd_inq_fill(char *p, int l, char *s);
1215 
1216 
1217 static void sd_register_devid(struct sd_lun *un, dev_info_t *devi,
1218     int reservation_flag);
1219 static daddr_t  sd_get_devid_block(struct sd_lun *un);
1220 static int  sd_get_devid(struct sd_lun *un);
1221 static int  sd_get_serialnum(struct sd_lun *un, uchar_t *wwn, int *len);
1222 static ddi_devid_t sd_create_devid(struct sd_lun *un);
1223 static int  sd_write_deviceid(struct sd_lun *un);
1224 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1225 static int  sd_check_vpd_page_support(struct sd_lun *un);
1226 
1227 static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi);
1228 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1229 
1230 static int  sd_ddi_suspend(dev_info_t *devi);
1231 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1232 static int  sd_ddi_resume(dev_info_t *devi);
1233 static int  sd_ddi_pm_resume(struct sd_lun *un);
1234 static int  sdpower(dev_info_t *devi, int component, int level);
1235 
1236 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1237 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1238 static int  sd_unit_attach(dev_info_t *devi);
1239 static int  sd_unit_detach(dev_info_t *devi);
1240 
1241 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1242 static int  sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi);
1243 static void sd_create_errstats(struct sd_lun *un, int instance);
1244 static void sd_set_errstats(struct sd_lun *un);
1245 static void sd_set_pstats(struct sd_lun *un);
1246 
1247 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1248 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1249 static int  sd_send_polled_RQS(struct sd_lun *un);
1250 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1251 
1252 #if (defined(__fibre))
1253 /*
1254  * Event callbacks (photon)
1255  */
1256 static void sd_init_event_callbacks(struct sd_lun *un);
1257 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1258 #endif
1259 
1260 /*
1261  * Defines for sd_cache_control
1262  */
1263 
1264 #define	SD_CACHE_ENABLE		1
1265 #define	SD_CACHE_DISABLE	0
1266 #define	SD_CACHE_NOCHANGE	-1
1267 
1268 static int   sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag);
1269 static int   sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled);
1270 static dev_t sd_make_device(dev_info_t *devi);
1271 
1272 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1273 	uint64_t capacity);
1274 
1275 /*
1276  * Driver entry point functions.
1277  */
1278 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1279 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1280 static int  sd_ready_and_valid(struct sd_lun *un);
1281 
1282 static void sdmin(struct buf *bp);
1283 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1284 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1285 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1286 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1287 
1288 static int sdstrategy(struct buf *bp);
1289 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1290 
1291 /*
1292  * Function prototypes for layering functions in the iostart chain.
1293  */
1294 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1295 	struct buf *bp);
1296 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1297 	struct buf *bp);
1298 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1299 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1300 	struct buf *bp);
1301 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1302 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1303 
1304 /*
1305  * Function prototypes for layering functions in the iodone chain.
1306  */
1307 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1308 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1309 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1310 	struct buf *bp);
1311 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1312 	struct buf *bp);
1313 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1314 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1315 	struct buf *bp);
1316 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1317 
1318 /*
1319  * Prototypes for functions to support buf(9S) based IO.
1320  */
1321 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1322 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1323 static void sd_destroypkt_for_buf(struct buf *);
1324 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1325 	struct buf *bp, int flags,
1326 	int (*callback)(caddr_t), caddr_t callback_arg,
1327 	diskaddr_t lba, uint32_t blockcount);
1328 #if defined(__i386) || defined(__amd64)
1329 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1330 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1331 #endif /* defined(__i386) || defined(__amd64) */
1332 
1333 /*
1334  * Prototypes for functions to support USCSI IO.
1335  */
1336 static int sd_uscsi_strategy(struct buf *bp);
1337 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1338 static void sd_destroypkt_for_uscsi(struct buf *);
1339 
1340 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1341 	uchar_t chain_type, void *pktinfop);
1342 
1343 static int  sd_pm_entry(struct sd_lun *un);
1344 static void sd_pm_exit(struct sd_lun *un);
1345 
1346 static void sd_pm_idletimeout_handler(void *arg);
1347 
1348 /*
1349  * sd_core internal functions (used at the sd_core_io layer).
1350  */
1351 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1352 static void sdintr(struct scsi_pkt *pktp);
1353 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1354 
1355 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd,
1356 	enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace,
1357 	int path_flag);
1358 
1359 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1360 	daddr_t blkno, int (*func)(struct buf *));
1361 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1362 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1363 static void sd_bioclone_free(struct buf *bp);
1364 static void sd_shadow_buf_free(struct buf *bp);
1365 
1366 static void sd_print_transport_rejected_message(struct sd_lun *un,
1367 	struct sd_xbuf *xp, int code);
1368 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1369     void *arg, int code);
1370 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1371     void *arg, int code);
1372 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1373     void *arg, int code);
1374 
1375 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1376 	int retry_check_flag,
1377 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1378 		int c),
1379 	void *user_arg, int failure_code,  clock_t retry_delay,
1380 	void (*statp)(kstat_io_t *));
1381 
1382 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1383 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1384 
1385 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1386 	struct scsi_pkt *pktp);
1387 static void sd_start_retry_command(void *arg);
1388 static void sd_start_direct_priority_command(void *arg);
1389 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1390 	int errcode);
1391 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1392 	struct buf *bp, int errcode);
1393 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1394 static void sd_sync_with_callback(struct sd_lun *un);
1395 static int sdrunout(caddr_t arg);
1396 
1397 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1398 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1399 
1400 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1401 static void sd_restore_throttle(void *arg);
1402 
1403 static void sd_init_cdb_limits(struct sd_lun *un);
1404 
1405 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1406 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1407 
1408 /*
1409  * Error handling functions
1410  */
1411 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1412 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1413 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1414 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1415 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1416 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1417 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1418 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1419 
1420 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1421 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1422 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1423 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1424 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1425 	struct sd_xbuf *xp);
1426 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1427 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1428 
1429 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1430 	void *arg, int code);
1431 
1432 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1433 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1434 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1435 	uint8_t *sense_datap,
1436 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1437 static void sd_sense_key_not_ready(struct sd_lun *un,
1438 	uint8_t *sense_datap,
1439 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1440 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1441 	uint8_t *sense_datap,
1442 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1443 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1444 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1445 static void sd_sense_key_unit_attention(struct sd_lun *un,
1446 	uint8_t *sense_datap,
1447 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1448 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1449 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1450 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1451 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1452 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1453 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1454 static void sd_sense_key_default(struct sd_lun *un,
1455 	uint8_t *sense_datap,
1456 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1457 
1458 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1459 	void *arg, int flag);
1460 
1461 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1462 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1463 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1464 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1465 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1466 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1467 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1468 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1469 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1470 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1471 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1472 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1473 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1474 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1475 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1476 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1477 
1478 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1479 
1480 static void sd_start_stop_unit_callback(void *arg);
1481 static void sd_start_stop_unit_task(void *arg);
1482 
1483 static void sd_taskq_create(void);
1484 static void sd_taskq_delete(void);
1485 static void sd_media_change_task(void *arg);
1486 
1487 static int sd_handle_mchange(struct sd_lun *un);
1488 static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag);
1489 static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp,
1490 	uint32_t *lbap, int path_flag);
1491 static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
1492 	uint32_t *lbap, int path_flag);
1493 static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag,
1494 	int path_flag);
1495 static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr,
1496 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1497 static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag);
1498 static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un,
1499 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1500 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un,
1501 	uchar_t usr_cmd, uchar_t *usr_bufp);
1502 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1503 	struct dk_callback *dkc);
1504 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1505 static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un,
1506 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1507 	uchar_t *bufaddr, uint_t buflen);
1508 static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
1509 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1510 	uchar_t *bufaddr, uint_t buflen, char feature);
1511 static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize,
1512 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1513 static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize,
1514 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1515 static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
1516 	size_t buflen, daddr_t start_block, int path_flag);
1517 #define	sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag)	\
1518 	sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \
1519 	path_flag)
1520 #define	sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag)	\
1521 	sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\
1522 	path_flag)
1523 
1524 static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr,
1525 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1526 	uint16_t param_ptr, int path_flag);
1527 
1528 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1529 static void sd_free_rqs(struct sd_lun *un);
1530 
1531 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1532 	uchar_t *data, int len, int fmt);
1533 static void sd_panic_for_res_conflict(struct sd_lun *un);
1534 
1535 /*
1536  * Disk Ioctl Function Prototypes
1537  */
1538 static int sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag);
1539 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1540 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1541 static int sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag,
1542 	int geom_validated);
1543 static int sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag);
1544 static int sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag,
1545 	int geom_validated);
1546 static int sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag);
1547 static int sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag,
1548 	int geom_validated);
1549 static int sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag);
1550 static int sd_dkio_partition(dev_t dev, caddr_t arg, int flag);
1551 static void sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc);
1552 static int sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag);
1553 static int sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag);
1554 static int sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc);
1555 static int sd_write_label(dev_t dev);
1556 static int sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl);
1557 static void sd_clear_vtoc(struct sd_lun *un);
1558 static void sd_clear_efi(struct sd_lun *un);
1559 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1560 static int sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag);
1561 static int sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag);
1562 static void sd_setup_default_geometry(struct sd_lun *un);
1563 #if defined(__i386) || defined(__amd64)
1564 static int sd_update_fdisk_and_vtoc(struct sd_lun *un);
1565 #endif
1566 
1567 /*
1568  * Multi-host Ioctl Prototypes
1569  */
1570 static int sd_check_mhd(dev_t dev, int interval);
1571 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1572 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1573 static char *sd_sname(uchar_t status);
1574 static void sd_mhd_resvd_recover(void *arg);
1575 static void sd_resv_reclaim_thread();
1576 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1577 static int sd_reserve_release(dev_t dev, int cmd);
1578 static void sd_rmv_resv_reclaim_req(dev_t dev);
1579 static void sd_mhd_reset_notify_cb(caddr_t arg);
1580 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1581 	mhioc_inkeys_t *usrp, int flag);
1582 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1583 	mhioc_inresvs_t *usrp, int flag);
1584 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1585 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1586 static int sd_mhdioc_release(dev_t dev);
1587 static int sd_mhdioc_register_devid(dev_t dev);
1588 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1589 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1590 
1591 /*
1592  * SCSI removable prototypes
1593  */
1594 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1595 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1596 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1597 static int sr_pause_resume(dev_t dev, int mode);
1598 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1599 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1600 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1601 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1602 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1603 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1604 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1605 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1606 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1607 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1608 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1609 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1610 static int sr_eject(dev_t dev);
1611 static void sr_ejected(register struct sd_lun *un);
1612 static int sr_check_wp(dev_t dev);
1613 static int sd_check_media(dev_t dev, enum dkio_state state);
1614 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1615 static void sd_delayed_cv_broadcast(void *arg);
1616 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1617 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1618 
1619 static int sd_log_page_supported(struct sd_lun *un, int log_page);
1620 
1621 /*
1622  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1623  */
1624 static void sd_check_for_writable_cd(struct sd_lun *un);
1625 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1626 static void sd_wm_cache_destructor(void *wm, void *un);
1627 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1628 	daddr_t endb, ushort_t typ);
1629 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1630 	daddr_t endb);
1631 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1632 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1633 static void sd_read_modify_write_task(void * arg);
1634 static int
1635 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1636 	struct buf **bpp);
1637 
1638 
1639 /*
1640  * Function prototypes for failfast support.
1641  */
1642 static void sd_failfast_flushq(struct sd_lun *un);
1643 static int sd_failfast_flushq_callback(struct buf *bp);
1644 
1645 /*
1646  * Function prototypes to check for lsi devices
1647  */
1648 static void sd_is_lsi(struct sd_lun *un);
1649 
1650 /*
1651  * Function prototypes for x86 support
1652  */
1653 #if defined(__i386) || defined(__amd64)
1654 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1655 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1656 #endif
1657 
1658 /*
1659  * Constants for failfast support:
1660  *
1661  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1662  * failfast processing being performed.
1663  *
1664  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1665  * failfast processing on all bufs with B_FAILFAST set.
1666  */
1667 
1668 #define	SD_FAILFAST_INACTIVE		0
1669 #define	SD_FAILFAST_ACTIVE		1
1670 
1671 /*
1672  * Bitmask to control behavior of buf(9S) flushes when a transition to
1673  * the failfast state occurs. Optional bits include:
1674  *
1675  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1676  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1677  * be flushed.
1678  *
1679  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1680  * driver, in addition to the regular wait queue. This includes the xbuf
1681  * queues. When clear, only the driver's wait queue will be flushed.
1682  */
1683 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1684 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1685 
1686 /*
1687  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1688  * to flush all queues within the driver.
1689  */
1690 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1691 
1692 
1693 /*
1694  * SD Testing Fault Injection
1695  */
1696 #ifdef SD_FAULT_INJECTION
1697 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1698 static void sd_faultinjection(struct scsi_pkt *pktp);
1699 static void sd_injection_log(char *buf, struct sd_lun *un);
1700 #endif
1701 
1702 /*
1703  * Device driver ops vector
1704  */
1705 static struct cb_ops sd_cb_ops = {
1706 	sdopen,			/* open */
1707 	sdclose,		/* close */
1708 	sdstrategy,		/* strategy */
1709 	nodev,			/* print */
1710 	sddump,			/* dump */
1711 	sdread,			/* read */
1712 	sdwrite,		/* write */
1713 	sdioctl,		/* ioctl */
1714 	nodev,			/* devmap */
1715 	nodev,			/* mmap */
1716 	nodev,			/* segmap */
1717 	nochpoll,		/* poll */
1718 	sd_prop_op,		/* cb_prop_op */
1719 	0,			/* streamtab  */
1720 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1721 	CB_REV,			/* cb_rev */
1722 	sdaread, 		/* async I/O read entry point */
1723 	sdawrite		/* async I/O write entry point */
1724 };
1725 
1726 static struct dev_ops sd_ops = {
1727 	DEVO_REV,		/* devo_rev, */
1728 	0,			/* refcnt  */
1729 	sdinfo,			/* info */
1730 	nulldev,		/* identify */
1731 	sdprobe,		/* probe */
1732 	sdattach,		/* attach */
1733 	sddetach,		/* detach */
1734 	nodev,			/* reset */
1735 	&sd_cb_ops,		/* driver operations */
1736 	NULL,			/* bus operations */
1737 	sdpower			/* power */
1738 };
1739 
1740 
1741 /*
1742  * This is the loadable module wrapper.
1743  */
1744 #include <sys/modctl.h>
1745 
1746 static struct modldrv modldrv = {
1747 	&mod_driverops,		/* Type of module. This one is a driver */
1748 	SD_MODULE_NAME,		/* Module name. */
1749 	&sd_ops			/* driver ops */
1750 };
1751 
1752 
1753 static struct modlinkage modlinkage = {
1754 	MODREV_1,
1755 	&modldrv,
1756 	NULL
1757 };
1758 
1759 
1760 static struct scsi_asq_key_strings sd_additional_codes[] = {
1761 	0x81, 0, "Logical Unit is Reserved",
1762 	0x85, 0, "Audio Address Not Valid",
1763 	0xb6, 0, "Media Load Mechanism Failed",
1764 	0xB9, 0, "Audio Play Operation Aborted",
1765 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1766 	0x53, 2, "Medium removal prevented",
1767 	0x6f, 0, "Authentication failed during key exchange",
1768 	0x6f, 1, "Key not present",
1769 	0x6f, 2, "Key not established",
1770 	0x6f, 3, "Read without proper authentication",
1771 	0x6f, 4, "Mismatched region to this logical unit",
1772 	0x6f, 5, "Region reset count error",
1773 	0xffff, 0x0, NULL
1774 };
1775 
1776 
1777 /*
1778  * Struct for passing printing information for sense data messages
1779  */
1780 struct sd_sense_info {
1781 	int	ssi_severity;
1782 	int	ssi_pfa_flag;
1783 };
1784 
1785 /*
1786  * Table of function pointers for iostart-side routines. Seperate "chains"
1787  * of layered function calls are formed by placing the function pointers
1788  * sequentially in the desired order. Functions are called according to an
1789  * incrementing table index ordering. The last function in each chain must
1790  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1791  * in the sd_iodone_chain[] array.
1792  *
1793  * Note: It may seem more natural to organize both the iostart and iodone
1794  * functions together, into an array of structures (or some similar
1795  * organization) with a common index, rather than two seperate arrays which
1796  * must be maintained in synchronization. The purpose of this division is
1797  * to achiece improved performance: individual arrays allows for more
1798  * effective cache line utilization on certain platforms.
1799  */
1800 
1801 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1802 
1803 
1804 static sd_chain_t sd_iostart_chain[] = {
1805 
1806 	/* Chain for buf IO for disk drive targets (PM enabled) */
1807 	sd_mapblockaddr_iostart,	/* Index: 0 */
1808 	sd_pm_iostart,			/* Index: 1 */
1809 	sd_core_iostart,		/* Index: 2 */
1810 
1811 	/* Chain for buf IO for disk drive targets (PM disabled) */
1812 	sd_mapblockaddr_iostart,	/* Index: 3 */
1813 	sd_core_iostart,		/* Index: 4 */
1814 
1815 	/* Chain for buf IO for removable-media targets (PM enabled) */
1816 	sd_mapblockaddr_iostart,	/* Index: 5 */
1817 	sd_mapblocksize_iostart,	/* Index: 6 */
1818 	sd_pm_iostart,			/* Index: 7 */
1819 	sd_core_iostart,		/* Index: 8 */
1820 
1821 	/* Chain for buf IO for removable-media targets (PM disabled) */
1822 	sd_mapblockaddr_iostart,	/* Index: 9 */
1823 	sd_mapblocksize_iostart,	/* Index: 10 */
1824 	sd_core_iostart,		/* Index: 11 */
1825 
1826 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1827 	sd_mapblockaddr_iostart,	/* Index: 12 */
1828 	sd_checksum_iostart,		/* Index: 13 */
1829 	sd_pm_iostart,			/* Index: 14 */
1830 	sd_core_iostart,		/* Index: 15 */
1831 
1832 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1833 	sd_mapblockaddr_iostart,	/* Index: 16 */
1834 	sd_checksum_iostart,		/* Index: 17 */
1835 	sd_core_iostart,		/* Index: 18 */
1836 
1837 	/* Chain for USCSI commands (all targets) */
1838 	sd_pm_iostart,			/* Index: 19 */
1839 	sd_core_iostart,		/* Index: 20 */
1840 
1841 	/* Chain for checksumming USCSI commands (all targets) */
1842 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1843 	sd_pm_iostart,			/* Index: 22 */
1844 	sd_core_iostart,		/* Index: 23 */
1845 
1846 	/* Chain for "direct" USCSI commands (all targets) */
1847 	sd_core_iostart,		/* Index: 24 */
1848 
1849 	/* Chain for "direct priority" USCSI commands (all targets) */
1850 	sd_core_iostart,		/* Index: 25 */
1851 };
1852 
1853 /*
1854  * Macros to locate the first function of each iostart chain in the
1855  * sd_iostart_chain[] array. These are located by the index in the array.
1856  */
1857 #define	SD_CHAIN_DISK_IOSTART			0
1858 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1859 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1860 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1861 #define	SD_CHAIN_CHKSUM_IOSTART			12
1862 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1863 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1864 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1865 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1866 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1867 
1868 
1869 /*
1870  * Table of function pointers for the iodone-side routines for the driver-
1871  * internal layering mechanism.  The calling sequence for iodone routines
1872  * uses a decrementing table index, so the last routine called in a chain
1873  * must be at the lowest array index location for that chain.  The last
1874  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1875  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1876  * of the functions in an iodone side chain must correspond to the ordering
1877  * of the iostart routines for that chain.  Note that there is no iodone
1878  * side routine that corresponds to sd_core_iostart(), so there is no
1879  * entry in the table for this.
1880  */
1881 
1882 static sd_chain_t sd_iodone_chain[] = {
1883 
1884 	/* Chain for buf IO for disk drive targets (PM enabled) */
1885 	sd_buf_iodone,			/* Index: 0 */
1886 	sd_mapblockaddr_iodone,		/* Index: 1 */
1887 	sd_pm_iodone,			/* Index: 2 */
1888 
1889 	/* Chain for buf IO for disk drive targets (PM disabled) */
1890 	sd_buf_iodone,			/* Index: 3 */
1891 	sd_mapblockaddr_iodone,		/* Index: 4 */
1892 
1893 	/* Chain for buf IO for removable-media targets (PM enabled) */
1894 	sd_buf_iodone,			/* Index: 5 */
1895 	sd_mapblockaddr_iodone,		/* Index: 6 */
1896 	sd_mapblocksize_iodone,		/* Index: 7 */
1897 	sd_pm_iodone,			/* Index: 8 */
1898 
1899 	/* Chain for buf IO for removable-media targets (PM disabled) */
1900 	sd_buf_iodone,			/* Index: 9 */
1901 	sd_mapblockaddr_iodone,		/* Index: 10 */
1902 	sd_mapblocksize_iodone,		/* Index: 11 */
1903 
1904 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1905 	sd_buf_iodone,			/* Index: 12 */
1906 	sd_mapblockaddr_iodone,		/* Index: 13 */
1907 	sd_checksum_iodone,		/* Index: 14 */
1908 	sd_pm_iodone,			/* Index: 15 */
1909 
1910 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1911 	sd_buf_iodone,			/* Index: 16 */
1912 	sd_mapblockaddr_iodone,		/* Index: 17 */
1913 	sd_checksum_iodone,		/* Index: 18 */
1914 
1915 	/* Chain for USCSI commands (non-checksum targets) */
1916 	sd_uscsi_iodone,		/* Index: 19 */
1917 	sd_pm_iodone,			/* Index: 20 */
1918 
1919 	/* Chain for USCSI commands (checksum targets) */
1920 	sd_uscsi_iodone,		/* Index: 21 */
1921 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1922 	sd_pm_iodone,			/* Index: 22 */
1923 
1924 	/* Chain for "direct" USCSI commands (all targets) */
1925 	sd_uscsi_iodone,		/* Index: 24 */
1926 
1927 	/* Chain for "direct priority" USCSI commands (all targets) */
1928 	sd_uscsi_iodone,		/* Index: 25 */
1929 };
1930 
1931 
1932 /*
1933  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1934  * each iodone-side chain. These are located by the array index, but as the
1935  * iodone side functions are called in a decrementing-index order, the
1936  * highest index number in each chain must be specified (as these correspond
1937  * to the first function in the iodone chain that will be called by the core
1938  * at IO completion time).
1939  */
1940 
1941 #define	SD_CHAIN_DISK_IODONE			2
1942 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1943 #define	SD_CHAIN_RMMEDIA_IODONE			8
1944 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1945 #define	SD_CHAIN_CHKSUM_IODONE			15
1946 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1947 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1948 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1949 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1950 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1951 
1952 
1953 
1954 
1955 /*
1956  * Array to map a layering chain index to the appropriate initpkt routine.
1957  * The redundant entries are present so that the index used for accessing
1958  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1959  * with this table as well.
1960  */
1961 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1962 
1963 static sd_initpkt_t	sd_initpkt_map[] = {
1964 
1965 	/* Chain for buf IO for disk drive targets (PM enabled) */
1966 	sd_initpkt_for_buf,		/* Index: 0 */
1967 	sd_initpkt_for_buf,		/* Index: 1 */
1968 	sd_initpkt_for_buf,		/* Index: 2 */
1969 
1970 	/* Chain for buf IO for disk drive targets (PM disabled) */
1971 	sd_initpkt_for_buf,		/* Index: 3 */
1972 	sd_initpkt_for_buf,		/* Index: 4 */
1973 
1974 	/* Chain for buf IO for removable-media targets (PM enabled) */
1975 	sd_initpkt_for_buf,		/* Index: 5 */
1976 	sd_initpkt_for_buf,		/* Index: 6 */
1977 	sd_initpkt_for_buf,		/* Index: 7 */
1978 	sd_initpkt_for_buf,		/* Index: 8 */
1979 
1980 	/* Chain for buf IO for removable-media targets (PM disabled) */
1981 	sd_initpkt_for_buf,		/* Index: 9 */
1982 	sd_initpkt_for_buf,		/* Index: 10 */
1983 	sd_initpkt_for_buf,		/* Index: 11 */
1984 
1985 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1986 	sd_initpkt_for_buf,		/* Index: 12 */
1987 	sd_initpkt_for_buf,		/* Index: 13 */
1988 	sd_initpkt_for_buf,		/* Index: 14 */
1989 	sd_initpkt_for_buf,		/* Index: 15 */
1990 
1991 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1992 	sd_initpkt_for_buf,		/* Index: 16 */
1993 	sd_initpkt_for_buf,		/* Index: 17 */
1994 	sd_initpkt_for_buf,		/* Index: 18 */
1995 
1996 	/* Chain for USCSI commands (non-checksum targets) */
1997 	sd_initpkt_for_uscsi,		/* Index: 19 */
1998 	sd_initpkt_for_uscsi,		/* Index: 20 */
1999 
2000 	/* Chain for USCSI commands (checksum targets) */
2001 	sd_initpkt_for_uscsi,		/* Index: 21 */
2002 	sd_initpkt_for_uscsi,		/* Index: 22 */
2003 	sd_initpkt_for_uscsi,		/* Index: 22 */
2004 
2005 	/* Chain for "direct" USCSI commands (all targets) */
2006 	sd_initpkt_for_uscsi,		/* Index: 24 */
2007 
2008 	/* Chain for "direct priority" USCSI commands (all targets) */
2009 	sd_initpkt_for_uscsi,		/* Index: 25 */
2010 
2011 };
2012 
2013 
2014 /*
2015  * Array to map a layering chain index to the appropriate destroypktpkt routine.
2016  * The redundant entries are present so that the index used for accessing
2017  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2018  * with this table as well.
2019  */
2020 typedef void (*sd_destroypkt_t)(struct buf *);
2021 
2022 static sd_destroypkt_t	sd_destroypkt_map[] = {
2023 
2024 	/* Chain for buf IO for disk drive targets (PM enabled) */
2025 	sd_destroypkt_for_buf,		/* Index: 0 */
2026 	sd_destroypkt_for_buf,		/* Index: 1 */
2027 	sd_destroypkt_for_buf,		/* Index: 2 */
2028 
2029 	/* Chain for buf IO for disk drive targets (PM disabled) */
2030 	sd_destroypkt_for_buf,		/* Index: 3 */
2031 	sd_destroypkt_for_buf,		/* Index: 4 */
2032 
2033 	/* Chain for buf IO for removable-media targets (PM enabled) */
2034 	sd_destroypkt_for_buf,		/* Index: 5 */
2035 	sd_destroypkt_for_buf,		/* Index: 6 */
2036 	sd_destroypkt_for_buf,		/* Index: 7 */
2037 	sd_destroypkt_for_buf,		/* Index: 8 */
2038 
2039 	/* Chain for buf IO for removable-media targets (PM disabled) */
2040 	sd_destroypkt_for_buf,		/* Index: 9 */
2041 	sd_destroypkt_for_buf,		/* Index: 10 */
2042 	sd_destroypkt_for_buf,		/* Index: 11 */
2043 
2044 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2045 	sd_destroypkt_for_buf,		/* Index: 12 */
2046 	sd_destroypkt_for_buf,		/* Index: 13 */
2047 	sd_destroypkt_for_buf,		/* Index: 14 */
2048 	sd_destroypkt_for_buf,		/* Index: 15 */
2049 
2050 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2051 	sd_destroypkt_for_buf,		/* Index: 16 */
2052 	sd_destroypkt_for_buf,		/* Index: 17 */
2053 	sd_destroypkt_for_buf,		/* Index: 18 */
2054 
2055 	/* Chain for USCSI commands (non-checksum targets) */
2056 	sd_destroypkt_for_uscsi,	/* Index: 19 */
2057 	sd_destroypkt_for_uscsi,	/* Index: 20 */
2058 
2059 	/* Chain for USCSI commands (checksum targets) */
2060 	sd_destroypkt_for_uscsi,	/* Index: 21 */
2061 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2062 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2063 
2064 	/* Chain for "direct" USCSI commands (all targets) */
2065 	sd_destroypkt_for_uscsi,	/* Index: 24 */
2066 
2067 	/* Chain for "direct priority" USCSI commands (all targets) */
2068 	sd_destroypkt_for_uscsi,	/* Index: 25 */
2069 
2070 };
2071 
2072 
2073 
2074 /*
2075  * Array to map a layering chain index to the appropriate chain "type".
2076  * The chain type indicates a specific property/usage of the chain.
2077  * The redundant entries are present so that the index used for accessing
2078  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2079  * with this table as well.
2080  */
2081 
2082 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
2083 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
2084 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
2085 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
2086 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
2087 						/* (for error recovery) */
2088 
2089 static int sd_chain_type_map[] = {
2090 
2091 	/* Chain for buf IO for disk drive targets (PM enabled) */
2092 	SD_CHAIN_BUFIO,			/* Index: 0 */
2093 	SD_CHAIN_BUFIO,			/* Index: 1 */
2094 	SD_CHAIN_BUFIO,			/* Index: 2 */
2095 
2096 	/* Chain for buf IO for disk drive targets (PM disabled) */
2097 	SD_CHAIN_BUFIO,			/* Index: 3 */
2098 	SD_CHAIN_BUFIO,			/* Index: 4 */
2099 
2100 	/* Chain for buf IO for removable-media targets (PM enabled) */
2101 	SD_CHAIN_BUFIO,			/* Index: 5 */
2102 	SD_CHAIN_BUFIO,			/* Index: 6 */
2103 	SD_CHAIN_BUFIO,			/* Index: 7 */
2104 	SD_CHAIN_BUFIO,			/* Index: 8 */
2105 
2106 	/* Chain for buf IO for removable-media targets (PM disabled) */
2107 	SD_CHAIN_BUFIO,			/* Index: 9 */
2108 	SD_CHAIN_BUFIO,			/* Index: 10 */
2109 	SD_CHAIN_BUFIO,			/* Index: 11 */
2110 
2111 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2112 	SD_CHAIN_BUFIO,			/* Index: 12 */
2113 	SD_CHAIN_BUFIO,			/* Index: 13 */
2114 	SD_CHAIN_BUFIO,			/* Index: 14 */
2115 	SD_CHAIN_BUFIO,			/* Index: 15 */
2116 
2117 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2118 	SD_CHAIN_BUFIO,			/* Index: 16 */
2119 	SD_CHAIN_BUFIO,			/* Index: 17 */
2120 	SD_CHAIN_BUFIO,			/* Index: 18 */
2121 
2122 	/* Chain for USCSI commands (non-checksum targets) */
2123 	SD_CHAIN_USCSI,			/* Index: 19 */
2124 	SD_CHAIN_USCSI,			/* Index: 20 */
2125 
2126 	/* Chain for USCSI commands (checksum targets) */
2127 	SD_CHAIN_USCSI,			/* Index: 21 */
2128 	SD_CHAIN_USCSI,			/* Index: 22 */
2129 	SD_CHAIN_USCSI,			/* Index: 22 */
2130 
2131 	/* Chain for "direct" USCSI commands (all targets) */
2132 	SD_CHAIN_DIRECT,		/* Index: 24 */
2133 
2134 	/* Chain for "direct priority" USCSI commands (all targets) */
2135 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2136 };
2137 
2138 
2139 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2140 #define	SD_IS_BUFIO(xp)			\
2141 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2142 
2143 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2144 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2145 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2146 
2147 
2148 
2149 /*
2150  * Struct, array, and macros to map a specific chain to the appropriate
2151  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2152  *
2153  * The sd_chain_index_map[] array is used at attach time to set the various
2154  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2155  * chain to be used with the instance. This allows different instances to use
2156  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2157  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2158  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2159  * dynamically & without the use of locking; and (2) a layer may update the
2160  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2161  * to allow for deferred processing of an IO within the same chain from a
2162  * different execution context.
2163  */
2164 
2165 struct sd_chain_index {
2166 	int	sci_iostart_index;
2167 	int	sci_iodone_index;
2168 };
2169 
2170 static struct sd_chain_index	sd_chain_index_map[] = {
2171 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2172 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2173 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2174 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2175 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2176 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2177 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2178 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2179 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2180 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2181 };
2182 
2183 
2184 /*
2185  * The following are indexes into the sd_chain_index_map[] array.
2186  */
2187 
2188 /* un->un_buf_chain_type must be set to one of these */
2189 #define	SD_CHAIN_INFO_DISK		0
2190 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2191 #define	SD_CHAIN_INFO_RMMEDIA		2
2192 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2193 #define	SD_CHAIN_INFO_CHKSUM		4
2194 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2195 
2196 /* un->un_uscsi_chain_type must be set to one of these */
2197 #define	SD_CHAIN_INFO_USCSI_CMD		6
2198 /* USCSI with PM disabled is the same as DIRECT */
2199 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2200 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2201 
2202 /* un->un_direct_chain_type must be set to one of these */
2203 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2204 
2205 /* un->un_priority_chain_type must be set to one of these */
2206 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2207 
2208 /* size for devid inquiries */
2209 #define	MAX_INQUIRY_SIZE		0xF0
2210 
2211 /*
2212  * Macros used by functions to pass a given buf(9S) struct along to the
2213  * next function in the layering chain for further processing.
2214  *
2215  * In the following macros, passing more than three arguments to the called
2216  * routines causes the optimizer for the SPARC compiler to stop doing tail
2217  * call elimination which results in significant performance degradation.
2218  */
2219 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2220 	((*(sd_iostart_chain[index]))(index, un, bp))
2221 
2222 #define	SD_BEGIN_IODONE(index, un, bp)	\
2223 	((*(sd_iodone_chain[index]))(index, un, bp))
2224 
2225 #define	SD_NEXT_IOSTART(index, un, bp)				\
2226 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2227 
2228 #define	SD_NEXT_IODONE(index, un, bp)				\
2229 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2230 
2231 /*
2232  *    Function: _init
2233  *
2234  * Description: This is the driver _init(9E) entry point.
2235  *
2236  * Return Code: Returns the value from mod_install(9F) or
2237  *		ddi_soft_state_init(9F) as appropriate.
2238  *
2239  *     Context: Called when driver module loaded.
2240  */
2241 
2242 int
2243 _init(void)
2244 {
2245 	int	err;
2246 
2247 	/* establish driver name from module name */
2248 	sd_label = mod_modname(&modlinkage);
2249 
2250 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2251 		SD_MAXUNIT);
2252 
2253 	if (err != 0) {
2254 		return (err);
2255 	}
2256 
2257 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2258 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2259 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2260 
2261 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2262 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2263 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2264 
2265 	/*
2266 	 * it's ok to init here even for fibre device
2267 	 */
2268 	sd_scsi_probe_cache_init();
2269 
2270 	sd_scsi_target_lun_init();
2271 
2272 	/*
2273 	 * Creating taskq before mod_install ensures that all callers (threads)
2274 	 * that enter the module after a successfull mod_install encounter
2275 	 * a valid taskq.
2276 	 */
2277 	sd_taskq_create();
2278 
2279 	err = mod_install(&modlinkage);
2280 	if (err != 0) {
2281 		/* delete taskq if install fails */
2282 		sd_taskq_delete();
2283 
2284 		mutex_destroy(&sd_detach_mutex);
2285 		mutex_destroy(&sd_log_mutex);
2286 		mutex_destroy(&sd_label_mutex);
2287 
2288 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2289 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2290 		cv_destroy(&sd_tr.srq_inprocess_cv);
2291 
2292 		sd_scsi_probe_cache_fini();
2293 
2294 		sd_scsi_target_lun_fini();
2295 
2296 		ddi_soft_state_fini(&sd_state);
2297 		return (err);
2298 	}
2299 
2300 	return (err);
2301 }
2302 
2303 
2304 /*
2305  *    Function: _fini
2306  *
2307  * Description: This is the driver _fini(9E) entry point.
2308  *
2309  * Return Code: Returns the value from mod_remove(9F)
2310  *
2311  *     Context: Called when driver module is unloaded.
2312  */
2313 
2314 int
2315 _fini(void)
2316 {
2317 	int err;
2318 
2319 	if ((err = mod_remove(&modlinkage)) != 0) {
2320 		return (err);
2321 	}
2322 
2323 	sd_taskq_delete();
2324 
2325 	mutex_destroy(&sd_detach_mutex);
2326 	mutex_destroy(&sd_log_mutex);
2327 	mutex_destroy(&sd_label_mutex);
2328 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2329 
2330 	sd_scsi_probe_cache_fini();
2331 
2332 	sd_scsi_target_lun_fini();
2333 
2334 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2335 	cv_destroy(&sd_tr.srq_inprocess_cv);
2336 
2337 	ddi_soft_state_fini(&sd_state);
2338 
2339 	return (err);
2340 }
2341 
2342 
2343 /*
2344  *    Function: _info
2345  *
2346  * Description: This is the driver _info(9E) entry point.
2347  *
2348  *   Arguments: modinfop - pointer to the driver modinfo structure
2349  *
2350  * Return Code: Returns the value from mod_info(9F).
2351  *
2352  *     Context: Kernel thread context
2353  */
2354 
2355 int
2356 _info(struct modinfo *modinfop)
2357 {
2358 	return (mod_info(&modlinkage, modinfop));
2359 }
2360 
2361 
2362 /*
2363  * The following routines implement the driver message logging facility.
2364  * They provide component- and level- based debug output filtering.
2365  * Output may also be restricted to messages for a single instance by
2366  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2367  * to NULL, then messages for all instances are printed.
2368  *
2369  * These routines have been cloned from each other due to the language
2370  * constraints of macros and variable argument list processing.
2371  */
2372 
2373 
2374 /*
2375  *    Function: sd_log_err
2376  *
2377  * Description: This routine is called by the SD_ERROR macro for debug
2378  *		logging of error conditions.
2379  *
2380  *   Arguments: comp - driver component being logged
2381  *		dev  - pointer to driver info structure
2382  *		fmt  - error string and format to be logged
2383  */
2384 
2385 static void
2386 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2387 {
2388 	va_list		ap;
2389 	dev_info_t	*dev;
2390 
2391 	ASSERT(un != NULL);
2392 	dev = SD_DEVINFO(un);
2393 	ASSERT(dev != NULL);
2394 
2395 	/*
2396 	 * Filter messages based on the global component and level masks.
2397 	 * Also print if un matches the value of sd_debug_un, or if
2398 	 * sd_debug_un is set to NULL.
2399 	 */
2400 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2401 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2402 		mutex_enter(&sd_log_mutex);
2403 		va_start(ap, fmt);
2404 		(void) vsprintf(sd_log_buf, fmt, ap);
2405 		va_end(ap);
2406 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2407 		mutex_exit(&sd_log_mutex);
2408 	}
2409 #ifdef SD_FAULT_INJECTION
2410 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2411 	if (un->sd_injection_mask & comp) {
2412 		mutex_enter(&sd_log_mutex);
2413 		va_start(ap, fmt);
2414 		(void) vsprintf(sd_log_buf, fmt, ap);
2415 		va_end(ap);
2416 		sd_injection_log(sd_log_buf, un);
2417 		mutex_exit(&sd_log_mutex);
2418 	}
2419 #endif
2420 }
2421 
2422 
2423 /*
2424  *    Function: sd_log_info
2425  *
2426  * Description: This routine is called by the SD_INFO macro for debug
2427  *		logging of general purpose informational conditions.
2428  *
2429  *   Arguments: comp - driver component being logged
2430  *		dev  - pointer to driver info structure
2431  *		fmt  - info string and format to be logged
2432  */
2433 
2434 static void
2435 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2436 {
2437 	va_list		ap;
2438 	dev_info_t	*dev;
2439 
2440 	ASSERT(un != NULL);
2441 	dev = SD_DEVINFO(un);
2442 	ASSERT(dev != NULL);
2443 
2444 	/*
2445 	 * Filter messages based on the global component and level masks.
2446 	 * Also print if un matches the value of sd_debug_un, or if
2447 	 * sd_debug_un is set to NULL.
2448 	 */
2449 	if ((sd_component_mask & component) &&
2450 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2451 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2452 		mutex_enter(&sd_log_mutex);
2453 		va_start(ap, fmt);
2454 		(void) vsprintf(sd_log_buf, fmt, ap);
2455 		va_end(ap);
2456 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2457 		mutex_exit(&sd_log_mutex);
2458 	}
2459 #ifdef SD_FAULT_INJECTION
2460 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2461 	if (un->sd_injection_mask & component) {
2462 		mutex_enter(&sd_log_mutex);
2463 		va_start(ap, fmt);
2464 		(void) vsprintf(sd_log_buf, fmt, ap);
2465 		va_end(ap);
2466 		sd_injection_log(sd_log_buf, un);
2467 		mutex_exit(&sd_log_mutex);
2468 	}
2469 #endif
2470 }
2471 
2472 
2473 /*
2474  *    Function: sd_log_trace
2475  *
2476  * Description: This routine is called by the SD_TRACE macro for debug
2477  *		logging of trace conditions (i.e. function entry/exit).
2478  *
2479  *   Arguments: comp - driver component being logged
2480  *		dev  - pointer to driver info structure
2481  *		fmt  - trace string and format to be logged
2482  */
2483 
2484 static void
2485 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2486 {
2487 	va_list		ap;
2488 	dev_info_t	*dev;
2489 
2490 	ASSERT(un != NULL);
2491 	dev = SD_DEVINFO(un);
2492 	ASSERT(dev != NULL);
2493 
2494 	/*
2495 	 * Filter messages based on the global component and level masks.
2496 	 * Also print if un matches the value of sd_debug_un, or if
2497 	 * sd_debug_un is set to NULL.
2498 	 */
2499 	if ((sd_component_mask & component) &&
2500 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2501 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2502 		mutex_enter(&sd_log_mutex);
2503 		va_start(ap, fmt);
2504 		(void) vsprintf(sd_log_buf, fmt, ap);
2505 		va_end(ap);
2506 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2507 		mutex_exit(&sd_log_mutex);
2508 	}
2509 #ifdef SD_FAULT_INJECTION
2510 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2511 	if (un->sd_injection_mask & component) {
2512 		mutex_enter(&sd_log_mutex);
2513 		va_start(ap, fmt);
2514 		(void) vsprintf(sd_log_buf, fmt, ap);
2515 		va_end(ap);
2516 		sd_injection_log(sd_log_buf, un);
2517 		mutex_exit(&sd_log_mutex);
2518 	}
2519 #endif
2520 }
2521 
2522 
2523 /*
2524  *    Function: sdprobe
2525  *
2526  * Description: This is the driver probe(9e) entry point function.
2527  *
2528  *   Arguments: devi - opaque device info handle
2529  *
2530  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2531  *              DDI_PROBE_FAILURE: If the probe failed.
2532  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2533  *				   but may be present in the future.
2534  */
2535 
2536 static int
2537 sdprobe(dev_info_t *devi)
2538 {
2539 	struct scsi_device	*devp;
2540 	int			rval;
2541 	int			instance;
2542 
2543 	/*
2544 	 * if it wasn't for pln, sdprobe could actually be nulldev
2545 	 * in the "__fibre" case.
2546 	 */
2547 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2548 		return (DDI_PROBE_DONTCARE);
2549 	}
2550 
2551 	devp = ddi_get_driver_private(devi);
2552 
2553 	if (devp == NULL) {
2554 		/* Ooops... nexus driver is mis-configured... */
2555 		return (DDI_PROBE_FAILURE);
2556 	}
2557 
2558 	instance = ddi_get_instance(devi);
2559 
2560 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2561 		return (DDI_PROBE_PARTIAL);
2562 	}
2563 
2564 	/*
2565 	 * Call the SCSA utility probe routine to see if we actually
2566 	 * have a target at this SCSI nexus.
2567 	 */
2568 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2569 	case SCSIPROBE_EXISTS:
2570 		switch (devp->sd_inq->inq_dtype) {
2571 		case DTYPE_DIRECT:
2572 			rval = DDI_PROBE_SUCCESS;
2573 			break;
2574 		case DTYPE_RODIRECT:
2575 			/* CDs etc. Can be removable media */
2576 			rval = DDI_PROBE_SUCCESS;
2577 			break;
2578 		case DTYPE_OPTICAL:
2579 			/*
2580 			 * Rewritable optical driver HP115AA
2581 			 * Can also be removable media
2582 			 */
2583 
2584 			/*
2585 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2586 			 * pre solaris 9 sparc sd behavior is required
2587 			 *
2588 			 * If first time through and sd_dtype_optical_bind
2589 			 * has not been set in /etc/system check properties
2590 			 */
2591 
2592 			if (sd_dtype_optical_bind  < 0) {
2593 			    sd_dtype_optical_bind = ddi_prop_get_int
2594 				(DDI_DEV_T_ANY,	devi,	0,
2595 				"optical-device-bind",	1);
2596 			}
2597 
2598 			if (sd_dtype_optical_bind == 0) {
2599 				rval = DDI_PROBE_FAILURE;
2600 			} else {
2601 				rval = DDI_PROBE_SUCCESS;
2602 			}
2603 			break;
2604 
2605 		case DTYPE_NOTPRESENT:
2606 		default:
2607 			rval = DDI_PROBE_FAILURE;
2608 			break;
2609 		}
2610 		break;
2611 	default:
2612 		rval = DDI_PROBE_PARTIAL;
2613 		break;
2614 	}
2615 
2616 	/*
2617 	 * This routine checks for resource allocation prior to freeing,
2618 	 * so it will take care of the "smart probing" case where a
2619 	 * scsi_probe() may or may not have been issued and will *not*
2620 	 * free previously-freed resources.
2621 	 */
2622 	scsi_unprobe(devp);
2623 	return (rval);
2624 }
2625 
2626 
2627 /*
2628  *    Function: sdinfo
2629  *
2630  * Description: This is the driver getinfo(9e) entry point function.
2631  * 		Given the device number, return the devinfo pointer from
2632  *		the scsi_device structure or the instance number
2633  *		associated with the dev_t.
2634  *
2635  *   Arguments: dip     - pointer to device info structure
2636  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2637  *			  DDI_INFO_DEVT2INSTANCE)
2638  *		arg     - driver dev_t
2639  *		resultp - user buffer for request response
2640  *
2641  * Return Code: DDI_SUCCESS
2642  *              DDI_FAILURE
2643  */
2644 /* ARGSUSED */
2645 static int
2646 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2647 {
2648 	struct sd_lun	*un;
2649 	dev_t		dev;
2650 	int		instance;
2651 	int		error;
2652 
2653 	switch (infocmd) {
2654 	case DDI_INFO_DEVT2DEVINFO:
2655 		dev = (dev_t)arg;
2656 		instance = SDUNIT(dev);
2657 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2658 			return (DDI_FAILURE);
2659 		}
2660 		*result = (void *) SD_DEVINFO(un);
2661 		error = DDI_SUCCESS;
2662 		break;
2663 	case DDI_INFO_DEVT2INSTANCE:
2664 		dev = (dev_t)arg;
2665 		instance = SDUNIT(dev);
2666 		*result = (void *)(uintptr_t)instance;
2667 		error = DDI_SUCCESS;
2668 		break;
2669 	default:
2670 		error = DDI_FAILURE;
2671 	}
2672 	return (error);
2673 }
2674 
2675 /*
2676  *    Function: sd_prop_op
2677  *
2678  * Description: This is the driver prop_op(9e) entry point function.
2679  *		Return the number of blocks for the partition in question
2680  *		or forward the request to the property facilities.
2681  *
2682  *   Arguments: dev       - device number
2683  *		dip       - pointer to device info structure
2684  *		prop_op   - property operator
2685  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2686  *		name      - pointer to property name
2687  *		valuep    - pointer or address of the user buffer
2688  *		lengthp   - property length
2689  *
2690  * Return Code: DDI_PROP_SUCCESS
2691  *              DDI_PROP_NOT_FOUND
2692  *              DDI_PROP_UNDEFINED
2693  *              DDI_PROP_NO_MEMORY
2694  *              DDI_PROP_BUF_TOO_SMALL
2695  */
2696 
2697 static int
2698 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2699 	char *name, caddr_t valuep, int *lengthp)
2700 {
2701 	int		instance = ddi_get_instance(dip);
2702 	struct sd_lun	*un;
2703 	uint64_t	nblocks64;
2704 
2705 	/*
2706 	 * Our dynamic properties are all device specific and size oriented.
2707 	 * Requests issued under conditions where size is valid are passed
2708 	 * to ddi_prop_op_nblocks with the size information, otherwise the
2709 	 * request is passed to ddi_prop_op. Size depends on valid geometry.
2710 	 */
2711 	un = ddi_get_soft_state(sd_state, instance);
2712 	if ((dev == DDI_DEV_T_ANY) || (un == NULL) ||
2713 	    (un->un_f_geometry_is_valid == FALSE)) {
2714 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2715 		    name, valuep, lengthp));
2716 	} else {
2717 		/* get nblocks value */
2718 		ASSERT(!mutex_owned(SD_MUTEX(un)));
2719 		mutex_enter(SD_MUTEX(un));
2720 		nblocks64 = (ulong_t)un->un_map[SDPART(dev)].dkl_nblk;
2721 		mutex_exit(SD_MUTEX(un));
2722 
2723 		return (ddi_prop_op_nblocks(dev, dip, prop_op, mod_flags,
2724 		    name, valuep, lengthp, nblocks64));
2725 	}
2726 }
2727 
2728 /*
2729  * The following functions are for smart probing:
2730  * sd_scsi_probe_cache_init()
2731  * sd_scsi_probe_cache_fini()
2732  * sd_scsi_clear_probe_cache()
2733  * sd_scsi_probe_with_cache()
2734  */
2735 
2736 /*
2737  *    Function: sd_scsi_probe_cache_init
2738  *
2739  * Description: Initializes the probe response cache mutex and head pointer.
2740  *
2741  *     Context: Kernel thread context
2742  */
2743 
2744 static void
2745 sd_scsi_probe_cache_init(void)
2746 {
2747 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2748 	sd_scsi_probe_cache_head = NULL;
2749 }
2750 
2751 
2752 /*
2753  *    Function: sd_scsi_probe_cache_fini
2754  *
2755  * Description: Frees all resources associated with the probe response cache.
2756  *
2757  *     Context: Kernel thread context
2758  */
2759 
2760 static void
2761 sd_scsi_probe_cache_fini(void)
2762 {
2763 	struct sd_scsi_probe_cache *cp;
2764 	struct sd_scsi_probe_cache *ncp;
2765 
2766 	/* Clean up our smart probing linked list */
2767 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2768 		ncp = cp->next;
2769 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2770 	}
2771 	sd_scsi_probe_cache_head = NULL;
2772 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2773 }
2774 
2775 
2776 /*
2777  *    Function: sd_scsi_clear_probe_cache
2778  *
2779  * Description: This routine clears the probe response cache. This is
2780  *		done when open() returns ENXIO so that when deferred
2781  *		attach is attempted (possibly after a device has been
2782  *		turned on) we will retry the probe. Since we don't know
2783  *		which target we failed to open, we just clear the
2784  *		entire cache.
2785  *
2786  *     Context: Kernel thread context
2787  */
2788 
2789 static void
2790 sd_scsi_clear_probe_cache(void)
2791 {
2792 	struct sd_scsi_probe_cache	*cp;
2793 	int				i;
2794 
2795 	mutex_enter(&sd_scsi_probe_cache_mutex);
2796 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2797 		/*
2798 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2799 		 * force probing to be performed the next time
2800 		 * sd_scsi_probe_with_cache is called.
2801 		 */
2802 		for (i = 0; i < NTARGETS_WIDE; i++) {
2803 			cp->cache[i] = SCSIPROBE_EXISTS;
2804 		}
2805 	}
2806 	mutex_exit(&sd_scsi_probe_cache_mutex);
2807 }
2808 
2809 
2810 /*
2811  *    Function: sd_scsi_probe_with_cache
2812  *
2813  * Description: This routine implements support for a scsi device probe
2814  *		with cache. The driver maintains a cache of the target
2815  *		responses to scsi probes. If we get no response from a
2816  *		target during a probe inquiry, we remember that, and we
2817  *		avoid additional calls to scsi_probe on non-zero LUNs
2818  *		on the same target until the cache is cleared. By doing
2819  *		so we avoid the 1/4 sec selection timeout for nonzero
2820  *		LUNs. lun0 of a target is always probed.
2821  *
2822  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2823  *              waitfunc - indicates what the allocator routines should
2824  *			   do when resources are not available. This value
2825  *			   is passed on to scsi_probe() when that routine
2826  *			   is called.
2827  *
2828  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2829  *		otherwise the value returned by scsi_probe(9F).
2830  *
2831  *     Context: Kernel thread context
2832  */
2833 
2834 static int
2835 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2836 {
2837 	struct sd_scsi_probe_cache	*cp;
2838 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2839 	int		lun, tgt;
2840 
2841 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2842 	    SCSI_ADDR_PROP_LUN, 0);
2843 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2844 	    SCSI_ADDR_PROP_TARGET, -1);
2845 
2846 	/* Make sure caching enabled and target in range */
2847 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2848 		/* do it the old way (no cache) */
2849 		return (scsi_probe(devp, waitfn));
2850 	}
2851 
2852 	mutex_enter(&sd_scsi_probe_cache_mutex);
2853 
2854 	/* Find the cache for this scsi bus instance */
2855 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2856 		if (cp->pdip == pdip) {
2857 			break;
2858 		}
2859 	}
2860 
2861 	/* If we can't find a cache for this pdip, create one */
2862 	if (cp == NULL) {
2863 		int i;
2864 
2865 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2866 		    KM_SLEEP);
2867 		cp->pdip = pdip;
2868 		cp->next = sd_scsi_probe_cache_head;
2869 		sd_scsi_probe_cache_head = cp;
2870 		for (i = 0; i < NTARGETS_WIDE; i++) {
2871 			cp->cache[i] = SCSIPROBE_EXISTS;
2872 		}
2873 	}
2874 
2875 	mutex_exit(&sd_scsi_probe_cache_mutex);
2876 
2877 	/* Recompute the cache for this target if LUN zero */
2878 	if (lun == 0) {
2879 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2880 	}
2881 
2882 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2883 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2884 		return (SCSIPROBE_NORESP);
2885 	}
2886 
2887 	/* Do the actual probe; save & return the result */
2888 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2889 }
2890 
2891 
2892 /*
2893  *    Function: sd_scsi_target_lun_init
2894  *
2895  * Description: Initializes the attached lun chain mutex and head pointer.
2896  *
2897  *     Context: Kernel thread context
2898  */
2899 
2900 static void
2901 sd_scsi_target_lun_init(void)
2902 {
2903 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
2904 	sd_scsi_target_lun_head = NULL;
2905 }
2906 
2907 
2908 /*
2909  *    Function: sd_scsi_target_lun_fini
2910  *
2911  * Description: Frees all resources associated with the attached lun
2912  *              chain
2913  *
2914  *     Context: Kernel thread context
2915  */
2916 
2917 static void
2918 sd_scsi_target_lun_fini(void)
2919 {
2920 	struct sd_scsi_hba_tgt_lun	*cp;
2921 	struct sd_scsi_hba_tgt_lun	*ncp;
2922 
2923 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
2924 		ncp = cp->next;
2925 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
2926 	}
2927 	sd_scsi_target_lun_head = NULL;
2928 	mutex_destroy(&sd_scsi_target_lun_mutex);
2929 }
2930 
2931 
2932 /*
2933  *    Function: sd_scsi_get_target_lun_count
2934  *
2935  * Description: This routine will check in the attached lun chain to see
2936  * 		how many luns are attached on the required SCSI controller
2937  * 		and target. Currently, some capabilities like tagged queue
2938  *		are supported per target based by HBA. So all luns in a
2939  *		target have the same capabilities. Based on this assumption,
2940  * 		sd should only set these capabilities once per target. This
2941  *		function is called when sd needs to decide how many luns
2942  *		already attached on a target.
2943  *
2944  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
2945  *			  controller device.
2946  *              target	- The target ID on the controller's SCSI bus.
2947  *
2948  * Return Code: The number of luns attached on the required target and
2949  *		controller.
2950  *		-1 if target ID is not in parallel SCSI scope or the given
2951  * 		dip is not in the chain.
2952  *
2953  *     Context: Kernel thread context
2954  */
2955 
2956 static int
2957 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
2958 {
2959 	struct sd_scsi_hba_tgt_lun	*cp;
2960 
2961 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
2962 		return (-1);
2963 	}
2964 
2965 	mutex_enter(&sd_scsi_target_lun_mutex);
2966 
2967 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2968 		if (cp->pdip == dip) {
2969 			break;
2970 		}
2971 	}
2972 
2973 	mutex_exit(&sd_scsi_target_lun_mutex);
2974 
2975 	if (cp == NULL) {
2976 		return (-1);
2977 	}
2978 
2979 	return (cp->nlun[target]);
2980 }
2981 
2982 
2983 /*
2984  *    Function: sd_scsi_update_lun_on_target
2985  *
2986  * Description: This routine is used to update the attached lun chain when a
2987  *		lun is attached or detached on a target.
2988  *
2989  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
2990  *                        controller device.
2991  *              target  - The target ID on the controller's SCSI bus.
2992  *		flag	- Indicate the lun is attached or detached.
2993  *
2994  *     Context: Kernel thread context
2995  */
2996 
2997 static void
2998 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
2999 {
3000 	struct sd_scsi_hba_tgt_lun	*cp;
3001 
3002 	mutex_enter(&sd_scsi_target_lun_mutex);
3003 
3004 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
3005 		if (cp->pdip == dip) {
3006 			break;
3007 		}
3008 	}
3009 
3010 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
3011 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
3012 		    KM_SLEEP);
3013 		cp->pdip = dip;
3014 		cp->next = sd_scsi_target_lun_head;
3015 		sd_scsi_target_lun_head = cp;
3016 	}
3017 
3018 	mutex_exit(&sd_scsi_target_lun_mutex);
3019 
3020 	if (cp != NULL) {
3021 		if (flag == SD_SCSI_LUN_ATTACH) {
3022 			cp->nlun[target] ++;
3023 		} else {
3024 			cp->nlun[target] --;
3025 		}
3026 	}
3027 }
3028 
3029 
3030 /*
3031  *    Function: sd_spin_up_unit
3032  *
3033  * Description: Issues the following commands to spin-up the device:
3034  *		START STOP UNIT, and INQUIRY.
3035  *
3036  *   Arguments: un - driver soft state (unit) structure
3037  *
3038  * Return Code: 0 - success
3039  *		EIO - failure
3040  *		EACCES - reservation conflict
3041  *
3042  *     Context: Kernel thread context
3043  */
3044 
3045 static int
3046 sd_spin_up_unit(struct sd_lun *un)
3047 {
3048 	size_t	resid		= 0;
3049 	int	has_conflict	= FALSE;
3050 	uchar_t *bufaddr;
3051 
3052 	ASSERT(un != NULL);
3053 
3054 	/*
3055 	 * Send a throwaway START UNIT command.
3056 	 *
3057 	 * If we fail on this, we don't care presently what precisely
3058 	 * is wrong.  EMC's arrays will also fail this with a check
3059 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
3060 	 * we don't want to fail the attach because it may become
3061 	 * "active" later.
3062 	 */
3063 	if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT)
3064 	    == EACCES)
3065 		has_conflict = TRUE;
3066 
3067 	/*
3068 	 * Send another INQUIRY command to the target. This is necessary for
3069 	 * non-removable media direct access devices because their INQUIRY data
3070 	 * may not be fully qualified until they are spun up (perhaps via the
3071 	 * START command above).  Note: This seems to be needed for some
3072 	 * legacy devices only.) The INQUIRY command should succeed even if a
3073 	 * Reservation Conflict is present.
3074 	 */
3075 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
3076 	if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) {
3077 		kmem_free(bufaddr, SUN_INQSIZE);
3078 		return (EIO);
3079 	}
3080 
3081 	/*
3082 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
3083 	 * Note that this routine does not return a failure here even if the
3084 	 * INQUIRY command did not return any data.  This is a legacy behavior.
3085 	 */
3086 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
3087 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
3088 	}
3089 
3090 	kmem_free(bufaddr, SUN_INQSIZE);
3091 
3092 	/* If we hit a reservation conflict above, tell the caller. */
3093 	if (has_conflict == TRUE) {
3094 		return (EACCES);
3095 	}
3096 
3097 	return (0);
3098 }
3099 
3100 #ifdef _LP64
3101 /*
3102  *    Function: sd_enable_descr_sense
3103  *
3104  * Description: This routine attempts to select descriptor sense format
3105  *		using the Control mode page.  Devices that support 64 bit
3106  *		LBAs (for >2TB luns) should also implement descriptor
3107  *		sense data so we will call this function whenever we see
3108  *		a lun larger than 2TB.  If for some reason the device
3109  *		supports 64 bit LBAs but doesn't support descriptor sense
3110  *		presumably the mode select will fail.  Everything will
3111  *		continue to work normally except that we will not get
3112  *		complete sense data for commands that fail with an LBA
3113  *		larger than 32 bits.
3114  *
3115  *   Arguments: un - driver soft state (unit) structure
3116  *
3117  *     Context: Kernel thread context only
3118  */
3119 
3120 static void
3121 sd_enable_descr_sense(struct sd_lun *un)
3122 {
3123 	uchar_t			*header;
3124 	struct mode_control_scsi3 *ctrl_bufp;
3125 	size_t			buflen;
3126 	size_t			bd_len;
3127 
3128 	/*
3129 	 * Read MODE SENSE page 0xA, Control Mode Page
3130 	 */
3131 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3132 	    sizeof (struct mode_control_scsi3);
3133 	header = kmem_zalloc(buflen, KM_SLEEP);
3134 	if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
3135 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) {
3136 		SD_ERROR(SD_LOG_COMMON, un,
3137 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3138 		goto eds_exit;
3139 	}
3140 
3141 	/*
3142 	 * Determine size of Block Descriptors in order to locate
3143 	 * the mode page data. ATAPI devices return 0, SCSI devices
3144 	 * should return MODE_BLK_DESC_LENGTH.
3145 	 */
3146 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3147 
3148 	ctrl_bufp = (struct mode_control_scsi3 *)
3149 	    (header + MODE_HEADER_LENGTH + bd_len);
3150 
3151 	/*
3152 	 * Clear PS bit for MODE SELECT
3153 	 */
3154 	ctrl_bufp->mode_page.ps = 0;
3155 
3156 	/*
3157 	 * Set D_SENSE to enable descriptor sense format.
3158 	 */
3159 	ctrl_bufp->d_sense = 1;
3160 
3161 	/*
3162 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3163 	 */
3164 	if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
3165 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) {
3166 		SD_INFO(SD_LOG_COMMON, un,
3167 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3168 		goto eds_exit;
3169 	}
3170 
3171 eds_exit:
3172 	kmem_free(header, buflen);
3173 }
3174 
3175 /*
3176  *    Function: sd_reenable_dsense_task
3177  *
3178  * Description: Re-enable descriptor sense after device or bus reset
3179  *
3180  *     Context: Executes in a taskq() thread context
3181  */
3182 static void
3183 sd_reenable_dsense_task(void *arg)
3184 {
3185 	struct	sd_lun	*un = arg;
3186 
3187 	ASSERT(un != NULL);
3188 	sd_enable_descr_sense(un);
3189 }
3190 #endif /* _LP64 */
3191 
3192 /*
3193  *    Function: sd_set_mmc_caps
3194  *
3195  * Description: This routine determines if the device is MMC compliant and if
3196  *		the device supports CDDA via a mode sense of the CDVD
3197  *		capabilities mode page. Also checks if the device is a
3198  *		dvdram writable device.
3199  *
3200  *   Arguments: un - driver soft state (unit) structure
3201  *
3202  *     Context: Kernel thread context only
3203  */
3204 
3205 static void
3206 sd_set_mmc_caps(struct sd_lun *un)
3207 {
3208 	struct mode_header_grp2		*sense_mhp;
3209 	uchar_t				*sense_page;
3210 	caddr_t				buf;
3211 	int				bd_len;
3212 	int				status;
3213 	struct uscsi_cmd		com;
3214 	int				rtn;
3215 	uchar_t				*out_data_rw, *out_data_hd;
3216 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3217 
3218 	ASSERT(un != NULL);
3219 
3220 	/*
3221 	 * The flags which will be set in this function are - mmc compliant,
3222 	 * dvdram writable device, cdda support. Initialize them to FALSE
3223 	 * and if a capability is detected - it will be set to TRUE.
3224 	 */
3225 	un->un_f_mmc_cap = FALSE;
3226 	un->un_f_dvdram_writable_device = FALSE;
3227 	un->un_f_cfg_cdda = FALSE;
3228 
3229 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3230 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3231 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3232 
3233 	if (status != 0) {
3234 		/* command failed; just return */
3235 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3236 		return;
3237 	}
3238 	/*
3239 	 * If the mode sense request for the CDROM CAPABILITIES
3240 	 * page (0x2A) succeeds the device is assumed to be MMC.
3241 	 */
3242 	un->un_f_mmc_cap = TRUE;
3243 
3244 	/* Get to the page data */
3245 	sense_mhp = (struct mode_header_grp2 *)buf;
3246 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3247 	    sense_mhp->bdesc_length_lo;
3248 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3249 		/*
3250 		 * We did not get back the expected block descriptor
3251 		 * length so we cannot determine if the device supports
3252 		 * CDDA. However, we still indicate the device is MMC
3253 		 * according to the successful response to the page
3254 		 * 0x2A mode sense request.
3255 		 */
3256 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3257 		    "sd_set_mmc_caps: Mode Sense returned "
3258 		    "invalid block descriptor length\n");
3259 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3260 		return;
3261 	}
3262 
3263 	/* See if read CDDA is supported */
3264 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3265 	    bd_len);
3266 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3267 
3268 	/* See if writing DVD RAM is supported. */
3269 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3270 	if (un->un_f_dvdram_writable_device == TRUE) {
3271 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3272 		return;
3273 	}
3274 
3275 	/*
3276 	 * If the device presents DVD or CD capabilities in the mode
3277 	 * page, we can return here since a RRD will not have
3278 	 * these capabilities.
3279 	 */
3280 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3281 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3282 		return;
3283 	}
3284 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3285 
3286 	/*
3287 	 * If un->un_f_dvdram_writable_device is still FALSE,
3288 	 * check for a Removable Rigid Disk (RRD).  A RRD
3289 	 * device is identified by the features RANDOM_WRITABLE and
3290 	 * HARDWARE_DEFECT_MANAGEMENT.
3291 	 */
3292 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3293 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3294 
3295 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3296 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3297 	    RANDOM_WRITABLE);
3298 	if (rtn != 0) {
3299 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3300 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3301 		return;
3302 	}
3303 
3304 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3305 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3306 
3307 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3308 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3309 	    HARDWARE_DEFECT_MANAGEMENT);
3310 	if (rtn == 0) {
3311 		/*
3312 		 * We have good information, check for random writable
3313 		 * and hardware defect features.
3314 		 */
3315 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3316 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3317 			un->un_f_dvdram_writable_device = TRUE;
3318 		}
3319 	}
3320 
3321 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3322 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3323 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3324 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3325 }
3326 
3327 /*
3328  *    Function: sd_check_for_writable_cd
3329  *
3330  * Description: This routine determines if the media in the device is
3331  *		writable or not. It uses the get configuration command (0x46)
3332  *		to determine if the media is writable
3333  *
3334  *   Arguments: un - driver soft state (unit) structure
3335  *
3336  *     Context: Never called at interrupt context.
3337  */
3338 
3339 static void
3340 sd_check_for_writable_cd(struct sd_lun *un)
3341 {
3342 	struct uscsi_cmd		com;
3343 	uchar_t				*out_data;
3344 	uchar_t				*rqbuf;
3345 	int				rtn;
3346 	uchar_t				*out_data_rw, *out_data_hd;
3347 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3348 	struct mode_header_grp2		*sense_mhp;
3349 	uchar_t				*sense_page;
3350 	caddr_t				buf;
3351 	int				bd_len;
3352 	int				status;
3353 
3354 	ASSERT(un != NULL);
3355 	ASSERT(mutex_owned(SD_MUTEX(un)));
3356 
3357 	/*
3358 	 * Initialize the writable media to false, if configuration info.
3359 	 * tells us otherwise then only we will set it.
3360 	 */
3361 	un->un_f_mmc_writable_media = FALSE;
3362 	mutex_exit(SD_MUTEX(un));
3363 
3364 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3365 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3366 
3367 	rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH,
3368 	    out_data, SD_PROFILE_HEADER_LEN);
3369 
3370 	mutex_enter(SD_MUTEX(un));
3371 	if (rtn == 0) {
3372 		/*
3373 		 * We have good information, check for writable DVD.
3374 		 */
3375 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3376 			un->un_f_mmc_writable_media = TRUE;
3377 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3378 			kmem_free(rqbuf, SENSE_LENGTH);
3379 			return;
3380 		}
3381 	}
3382 
3383 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3384 	kmem_free(rqbuf, SENSE_LENGTH);
3385 
3386 	/*
3387 	 * Determine if this is a RRD type device.
3388 	 */
3389 	mutex_exit(SD_MUTEX(un));
3390 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3391 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3392 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3393 	mutex_enter(SD_MUTEX(un));
3394 	if (status != 0) {
3395 		/* command failed; just return */
3396 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3397 		return;
3398 	}
3399 
3400 	/* Get to the page data */
3401 	sense_mhp = (struct mode_header_grp2 *)buf;
3402 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3403 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3404 		/*
3405 		 * We did not get back the expected block descriptor length so
3406 		 * we cannot check the mode page.
3407 		 */
3408 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3409 		    "sd_check_for_writable_cd: Mode Sense returned "
3410 		    "invalid block descriptor length\n");
3411 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3412 		return;
3413 	}
3414 
3415 	/*
3416 	 * If the device presents DVD or CD capabilities in the mode
3417 	 * page, we can return here since a RRD device will not have
3418 	 * these capabilities.
3419 	 */
3420 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3421 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3422 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3423 		return;
3424 	}
3425 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3426 
3427 	/*
3428 	 * If un->un_f_mmc_writable_media is still FALSE,
3429 	 * check for RRD type media.  A RRD device is identified
3430 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3431 	 */
3432 	mutex_exit(SD_MUTEX(un));
3433 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3434 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3435 
3436 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3437 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3438 	    RANDOM_WRITABLE);
3439 	if (rtn != 0) {
3440 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3441 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3442 		mutex_enter(SD_MUTEX(un));
3443 		return;
3444 	}
3445 
3446 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3447 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3448 
3449 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3450 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3451 	    HARDWARE_DEFECT_MANAGEMENT);
3452 	mutex_enter(SD_MUTEX(un));
3453 	if (rtn == 0) {
3454 		/*
3455 		 * We have good information, check for random writable
3456 		 * and hardware defect features as current.
3457 		 */
3458 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3459 		    (out_data_rw[10] & 0x1) &&
3460 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3461 		    (out_data_hd[10] & 0x1)) {
3462 			un->un_f_mmc_writable_media = TRUE;
3463 		}
3464 	}
3465 
3466 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3467 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3468 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3469 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3470 }
3471 
3472 /*
3473  *    Function: sd_read_unit_properties
3474  *
3475  * Description: The following implements a property lookup mechanism.
3476  *		Properties for particular disks (keyed on vendor, model
3477  *		and rev numbers) are sought in the sd.conf file via
3478  *		sd_process_sdconf_file(), and if not found there, are
3479  *		looked for in a list hardcoded in this driver via
3480  *		sd_process_sdconf_table() Once located the properties
3481  *		are used to update the driver unit structure.
3482  *
3483  *   Arguments: un - driver soft state (unit) structure
3484  */
3485 
3486 static void
3487 sd_read_unit_properties(struct sd_lun *un)
3488 {
3489 	/*
3490 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3491 	 * the "sd-config-list" property (from the sd.conf file) or if
3492 	 * there was not a match for the inquiry vid/pid. If this event
3493 	 * occurs the static driver configuration table is searched for
3494 	 * a match.
3495 	 */
3496 	ASSERT(un != NULL);
3497 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3498 		sd_process_sdconf_table(un);
3499 	}
3500 
3501 	/* check for LSI device */
3502 	sd_is_lsi(un);
3503 
3504 
3505 }
3506 
3507 
3508 /*
3509  *    Function: sd_process_sdconf_file
3510  *
3511  * Description: Use ddi_getlongprop to obtain the properties from the
3512  *		driver's config file (ie, sd.conf) and update the driver
3513  *		soft state structure accordingly.
3514  *
3515  *   Arguments: un - driver soft state (unit) structure
3516  *
3517  * Return Code: SD_SUCCESS - The properties were successfully set according
3518  *			     to the driver configuration file.
3519  *		SD_FAILURE - The driver config list was not obtained or
3520  *			     there was no vid/pid match. This indicates that
3521  *			     the static config table should be used.
3522  *
3523  * The config file has a property, "sd-config-list", which consists of
3524  * one or more duplets as follows:
3525  *
3526  *  sd-config-list=
3527  *	<duplet>,
3528  *	[<duplet>,]
3529  *	[<duplet>];
3530  *
3531  * The structure of each duplet is as follows:
3532  *
3533  *  <duplet>:= <vid+pid>,<data-property-name_list>
3534  *
3535  * The first entry of the duplet is the device ID string (the concatenated
3536  * vid & pid; not to be confused with a device_id).  This is defined in
3537  * the same way as in the sd_disk_table.
3538  *
3539  * The second part of the duplet is a string that identifies a
3540  * data-property-name-list. The data-property-name-list is defined as
3541  * follows:
3542  *
3543  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3544  *
3545  * The syntax of <data-property-name> depends on the <version> field.
3546  *
3547  * If version = SD_CONF_VERSION_1 we have the following syntax:
3548  *
3549  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3550  *
3551  * where the prop0 value will be used to set prop0 if bit0 set in the
3552  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3553  *
3554  */
3555 
3556 static int
3557 sd_process_sdconf_file(struct sd_lun *un)
3558 {
3559 	char	*config_list = NULL;
3560 	int	config_list_len;
3561 	int	len;
3562 	int	dupletlen = 0;
3563 	char	*vidptr;
3564 	int	vidlen;
3565 	char	*dnlist_ptr;
3566 	char	*dataname_ptr;
3567 	int	dnlist_len;
3568 	int	dataname_len;
3569 	int	*data_list;
3570 	int	data_list_len;
3571 	int	rval = SD_FAILURE;
3572 	int	i;
3573 
3574 	ASSERT(un != NULL);
3575 
3576 	/* Obtain the configuration list associated with the .conf file */
3577 	if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS,
3578 	    sd_config_list, (caddr_t)&config_list, &config_list_len)
3579 	    != DDI_PROP_SUCCESS) {
3580 		return (SD_FAILURE);
3581 	}
3582 
3583 	/*
3584 	 * Compare vids in each duplet to the inquiry vid - if a match is
3585 	 * made, get the data value and update the soft state structure
3586 	 * accordingly.
3587 	 *
3588 	 * Note: This algorithm is complex and difficult to maintain. It should
3589 	 * be replaced with a more robust implementation.
3590 	 */
3591 	for (len = config_list_len, vidptr = config_list; len > 0;
3592 	    vidptr += dupletlen, len -= dupletlen) {
3593 		/*
3594 		 * Note: The assumption here is that each vid entry is on
3595 		 * a unique line from its associated duplet.
3596 		 */
3597 		vidlen = dupletlen = (int)strlen(vidptr);
3598 		if ((vidlen == 0) ||
3599 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3600 			dupletlen++;
3601 			continue;
3602 		}
3603 
3604 		/*
3605 		 * dnlist contains 1 or more blank separated
3606 		 * data-property-name entries
3607 		 */
3608 		dnlist_ptr = vidptr + vidlen + 1;
3609 		dnlist_len = (int)strlen(dnlist_ptr);
3610 		dupletlen += dnlist_len + 2;
3611 
3612 		/*
3613 		 * Set a pointer for the first data-property-name
3614 		 * entry in the list
3615 		 */
3616 		dataname_ptr = dnlist_ptr;
3617 		dataname_len = 0;
3618 
3619 		/*
3620 		 * Loop through all data-property-name entries in the
3621 		 * data-property-name-list setting the properties for each.
3622 		 */
3623 		while (dataname_len < dnlist_len) {
3624 			int version;
3625 
3626 			/*
3627 			 * Determine the length of the current
3628 			 * data-property-name entry by indexing until a
3629 			 * blank or NULL is encountered. When the space is
3630 			 * encountered reset it to a NULL for compliance
3631 			 * with ddi_getlongprop().
3632 			 */
3633 			for (i = 0; ((dataname_ptr[i] != ' ') &&
3634 			    (dataname_ptr[i] != '\0')); i++) {
3635 				;
3636 			}
3637 
3638 			dataname_len += i;
3639 			/* If not null terminated, Make it so */
3640 			if (dataname_ptr[i] == ' ') {
3641 				dataname_ptr[i] = '\0';
3642 			}
3643 			dataname_len++;
3644 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3645 			    "sd_process_sdconf_file: disk:%s, data:%s\n",
3646 			    vidptr, dataname_ptr);
3647 
3648 			/* Get the data list */
3649 			if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0,
3650 			    dataname_ptr, (caddr_t)&data_list, &data_list_len)
3651 			    != DDI_PROP_SUCCESS) {
3652 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3653 				    "sd_process_sdconf_file: data property (%s)"
3654 				    " has no value\n", dataname_ptr);
3655 				dataname_ptr = dnlist_ptr + dataname_len;
3656 				continue;
3657 			}
3658 
3659 			version = data_list[0];
3660 
3661 			if (version == SD_CONF_VERSION_1) {
3662 				sd_tunables values;
3663 
3664 				/* Set the properties */
3665 				if (sd_chk_vers1_data(un, data_list[1],
3666 				    &data_list[2], data_list_len, dataname_ptr)
3667 				    == SD_SUCCESS) {
3668 					sd_get_tunables_from_conf(un,
3669 					    data_list[1], &data_list[2],
3670 					    &values);
3671 					sd_set_vers1_properties(un,
3672 					    data_list[1], &values);
3673 					rval = SD_SUCCESS;
3674 				} else {
3675 					rval = SD_FAILURE;
3676 				}
3677 			} else {
3678 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3679 				    "data property %s version 0x%x is invalid.",
3680 				    dataname_ptr, version);
3681 				rval = SD_FAILURE;
3682 			}
3683 			kmem_free(data_list, data_list_len);
3684 			dataname_ptr = dnlist_ptr + dataname_len;
3685 		}
3686 	}
3687 
3688 	/* free up the memory allocated by ddi_getlongprop */
3689 	if (config_list) {
3690 		kmem_free(config_list, config_list_len);
3691 	}
3692 
3693 	return (rval);
3694 }
3695 
3696 /*
3697  *    Function: sd_get_tunables_from_conf()
3698  *
3699  *
3700  *    This function reads the data list from the sd.conf file and pulls
3701  *    the values that can have numeric values as arguments and places
3702  *    the values in the apropriate sd_tunables member.
3703  *    Since the order of the data list members varies across platforms
3704  *    This function reads them from the data list in a platform specific
3705  *    order and places them into the correct sd_tunable member that is
3706  *    a consistant across all platforms.
3707  */
3708 static void
3709 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3710     sd_tunables *values)
3711 {
3712 	int i;
3713 	int mask;
3714 
3715 	bzero(values, sizeof (sd_tunables));
3716 
3717 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3718 
3719 		mask = 1 << i;
3720 		if (mask > flags) {
3721 			break;
3722 		}
3723 
3724 		switch (mask & flags) {
3725 		case 0:	/* This mask bit not set in flags */
3726 			continue;
3727 		case SD_CONF_BSET_THROTTLE:
3728 			values->sdt_throttle = data_list[i];
3729 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3730 			    "sd_get_tunables_from_conf: throttle = %d\n",
3731 			    values->sdt_throttle);
3732 			break;
3733 		case SD_CONF_BSET_CTYPE:
3734 			values->sdt_ctype = data_list[i];
3735 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3736 			    "sd_get_tunables_from_conf: ctype = %d\n",
3737 			    values->sdt_ctype);
3738 			break;
3739 		case SD_CONF_BSET_NRR_COUNT:
3740 			values->sdt_not_rdy_retries = data_list[i];
3741 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3742 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
3743 			    values->sdt_not_rdy_retries);
3744 			break;
3745 		case SD_CONF_BSET_BSY_RETRY_COUNT:
3746 			values->sdt_busy_retries = data_list[i];
3747 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3748 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
3749 			    values->sdt_busy_retries);
3750 			break;
3751 		case SD_CONF_BSET_RST_RETRIES:
3752 			values->sdt_reset_retries = data_list[i];
3753 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3754 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
3755 			    values->sdt_reset_retries);
3756 			break;
3757 		case SD_CONF_BSET_RSV_REL_TIME:
3758 			values->sdt_reserv_rel_time = data_list[i];
3759 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3760 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
3761 			    values->sdt_reserv_rel_time);
3762 			break;
3763 		case SD_CONF_BSET_MIN_THROTTLE:
3764 			values->sdt_min_throttle = data_list[i];
3765 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3766 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
3767 			    values->sdt_min_throttle);
3768 			break;
3769 		case SD_CONF_BSET_DISKSORT_DISABLED:
3770 			values->sdt_disk_sort_dis = data_list[i];
3771 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3772 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
3773 			    values->sdt_disk_sort_dis);
3774 			break;
3775 		case SD_CONF_BSET_LUN_RESET_ENABLED:
3776 			values->sdt_lun_reset_enable = data_list[i];
3777 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3778 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
3779 			    "\n", values->sdt_lun_reset_enable);
3780 			break;
3781 		}
3782 	}
3783 }
3784 
3785 /*
3786  *    Function: sd_process_sdconf_table
3787  *
3788  * Description: Search the static configuration table for a match on the
3789  *		inquiry vid/pid and update the driver soft state structure
3790  *		according to the table property values for the device.
3791  *
3792  *		The form of a configuration table entry is:
3793  *		  <vid+pid>,<flags>,<property-data>
3794  *		  "SEAGATE ST42400N",1,63,0,0			(Fibre)
3795  *		  "SEAGATE ST42400N",1,63,0,0,0,0		(Sparc)
3796  *		  "SEAGATE ST42400N",1,63,0,0,0,0,0,0,0,0,0,0	(Intel)
3797  *
3798  *   Arguments: un - driver soft state (unit) structure
3799  */
3800 
3801 static void
3802 sd_process_sdconf_table(struct sd_lun *un)
3803 {
3804 	char	*id = NULL;
3805 	int	table_index;
3806 	int	idlen;
3807 
3808 	ASSERT(un != NULL);
3809 	for (table_index = 0; table_index < sd_disk_table_size;
3810 	    table_index++) {
3811 		id = sd_disk_table[table_index].device_id;
3812 		idlen = strlen(id);
3813 		if (idlen == 0) {
3814 			continue;
3815 		}
3816 
3817 		/*
3818 		 * The static configuration table currently does not
3819 		 * implement version 10 properties. Additionally,
3820 		 * multiple data-property-name entries are not
3821 		 * implemented in the static configuration table.
3822 		 */
3823 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
3824 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3825 			    "sd_process_sdconf_table: disk %s\n", id);
3826 			sd_set_vers1_properties(un,
3827 			    sd_disk_table[table_index].flags,
3828 			    sd_disk_table[table_index].properties);
3829 			break;
3830 		}
3831 	}
3832 }
3833 
3834 
3835 /*
3836  *    Function: sd_sdconf_id_match
3837  *
3838  * Description: This local function implements a case sensitive vid/pid
3839  *		comparison as well as the boundary cases of wild card and
3840  *		multiple blanks.
3841  *
3842  *		Note: An implicit assumption made here is that the scsi
3843  *		inquiry structure will always keep the vid, pid and
3844  *		revision strings in consecutive sequence, so they can be
3845  *		read as a single string. If this assumption is not the
3846  *		case, a separate string, to be used for the check, needs
3847  *		to be built with these strings concatenated.
3848  *
3849  *   Arguments: un - driver soft state (unit) structure
3850  *		id - table or config file vid/pid
3851  *		idlen  - length of the vid/pid (bytes)
3852  *
3853  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3854  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3855  */
3856 
3857 static int
3858 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
3859 {
3860 	struct scsi_inquiry	*sd_inq;
3861 	int 			rval = SD_SUCCESS;
3862 
3863 	ASSERT(un != NULL);
3864 	sd_inq = un->un_sd->sd_inq;
3865 	ASSERT(id != NULL);
3866 
3867 	/*
3868 	 * We use the inq_vid as a pointer to a buffer containing the
3869 	 * vid and pid and use the entire vid/pid length of the table
3870 	 * entry for the comparison. This works because the inq_pid
3871 	 * data member follows inq_vid in the scsi_inquiry structure.
3872 	 */
3873 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
3874 		/*
3875 		 * The user id string is compared to the inquiry vid/pid
3876 		 * using a case insensitive comparison and ignoring
3877 		 * multiple spaces.
3878 		 */
3879 		rval = sd_blank_cmp(un, id, idlen);
3880 		if (rval != SD_SUCCESS) {
3881 			/*
3882 			 * User id strings that start and end with a "*"
3883 			 * are a special case. These do not have a
3884 			 * specific vendor, and the product string can
3885 			 * appear anywhere in the 16 byte PID portion of
3886 			 * the inquiry data. This is a simple strstr()
3887 			 * type search for the user id in the inquiry data.
3888 			 */
3889 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
3890 				char	*pidptr = &id[1];
3891 				int	i;
3892 				int	j;
3893 				int	pidstrlen = idlen - 2;
3894 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
3895 				    pidstrlen;
3896 
3897 				if (j < 0) {
3898 					return (SD_FAILURE);
3899 				}
3900 				for (i = 0; i < j; i++) {
3901 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
3902 					    pidptr, pidstrlen) == 0) {
3903 						rval = SD_SUCCESS;
3904 						break;
3905 					}
3906 				}
3907 			}
3908 		}
3909 	}
3910 	return (rval);
3911 }
3912 
3913 
3914 /*
3915  *    Function: sd_blank_cmp
3916  *
3917  * Description: If the id string starts and ends with a space, treat
3918  *		multiple consecutive spaces as equivalent to a single
3919  *		space. For example, this causes a sd_disk_table entry
3920  *		of " NEC CDROM " to match a device's id string of
3921  *		"NEC       CDROM".
3922  *
3923  *		Note: The success exit condition for this routine is if
3924  *		the pointer to the table entry is '\0' and the cnt of
3925  *		the inquiry length is zero. This will happen if the inquiry
3926  *		string returned by the device is padded with spaces to be
3927  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
3928  *		SCSI spec states that the inquiry string is to be padded with
3929  *		spaces.
3930  *
3931  *   Arguments: un - driver soft state (unit) structure
3932  *		id - table or config file vid/pid
3933  *		idlen  - length of the vid/pid (bytes)
3934  *
3935  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3936  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3937  */
3938 
3939 static int
3940 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
3941 {
3942 	char		*p1;
3943 	char		*p2;
3944 	int		cnt;
3945 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
3946 	    sizeof (SD_INQUIRY(un)->inq_pid);
3947 
3948 	ASSERT(un != NULL);
3949 	p2 = un->un_sd->sd_inq->inq_vid;
3950 	ASSERT(id != NULL);
3951 	p1 = id;
3952 
3953 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
3954 		/*
3955 		 * Note: string p1 is terminated by a NUL but string p2
3956 		 * isn't.  The end of p2 is determined by cnt.
3957 		 */
3958 		for (;;) {
3959 			/* skip over any extra blanks in both strings */
3960 			while ((*p1 != '\0') && (*p1 == ' ')) {
3961 				p1++;
3962 			}
3963 			while ((cnt != 0) && (*p2 == ' ')) {
3964 				p2++;
3965 				cnt--;
3966 			}
3967 
3968 			/* compare the two strings */
3969 			if ((cnt == 0) ||
3970 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
3971 				break;
3972 			}
3973 			while ((cnt > 0) &&
3974 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
3975 				p1++;
3976 				p2++;
3977 				cnt--;
3978 			}
3979 		}
3980 	}
3981 
3982 	/* return SD_SUCCESS if both strings match */
3983 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
3984 }
3985 
3986 
3987 /*
3988  *    Function: sd_chk_vers1_data
3989  *
3990  * Description: Verify the version 1 device properties provided by the
3991  *		user via the configuration file
3992  *
3993  *   Arguments: un	     - driver soft state (unit) structure
3994  *		flags	     - integer mask indicating properties to be set
3995  *		prop_list    - integer list of property values
3996  *		list_len     - length of user provided data
3997  *
3998  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
3999  *		SD_FAILURE - Indicates the user provided data is invalid
4000  */
4001 
4002 static int
4003 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
4004     int list_len, char *dataname_ptr)
4005 {
4006 	int i;
4007 	int mask = 1;
4008 	int index = 0;
4009 
4010 	ASSERT(un != NULL);
4011 
4012 	/* Check for a NULL property name and list */
4013 	if (dataname_ptr == NULL) {
4014 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4015 		    "sd_chk_vers1_data: NULL data property name.");
4016 		return (SD_FAILURE);
4017 	}
4018 	if (prop_list == NULL) {
4019 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4020 		    "sd_chk_vers1_data: %s NULL data property list.",
4021 		    dataname_ptr);
4022 		return (SD_FAILURE);
4023 	}
4024 
4025 	/* Display a warning if undefined bits are set in the flags */
4026 	if (flags & ~SD_CONF_BIT_MASK) {
4027 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4028 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
4029 		    "Properties not set.",
4030 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
4031 		return (SD_FAILURE);
4032 	}
4033 
4034 	/*
4035 	 * Verify the length of the list by identifying the highest bit set
4036 	 * in the flags and validating that the property list has a length
4037 	 * up to the index of this bit.
4038 	 */
4039 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4040 		if (flags & mask) {
4041 			index++;
4042 		}
4043 		mask = 1 << i;
4044 	}
4045 	if ((list_len / sizeof (int)) < (index + 2)) {
4046 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4047 		    "sd_chk_vers1_data: "
4048 		    "Data property list %s size is incorrect. "
4049 		    "Properties not set.", dataname_ptr);
4050 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
4051 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
4052 		return (SD_FAILURE);
4053 	}
4054 	return (SD_SUCCESS);
4055 }
4056 
4057 
4058 /*
4059  *    Function: sd_set_vers1_properties
4060  *
4061  * Description: Set version 1 device properties based on a property list
4062  *		retrieved from the driver configuration file or static
4063  *		configuration table. Version 1 properties have the format:
4064  *
4065  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
4066  *
4067  *		where the prop0 value will be used to set prop0 if bit0
4068  *		is set in the flags
4069  *
4070  *   Arguments: un	     - driver soft state (unit) structure
4071  *		flags	     - integer mask indicating properties to be set
4072  *		prop_list    - integer list of property values
4073  */
4074 
4075 static void
4076 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
4077 {
4078 	ASSERT(un != NULL);
4079 
4080 	/*
4081 	 * Set the flag to indicate cache is to be disabled. An attempt
4082 	 * to disable the cache via sd_cache_control() will be made
4083 	 * later during attach once the basic initialization is complete.
4084 	 */
4085 	if (flags & SD_CONF_BSET_NOCACHE) {
4086 		un->un_f_opt_disable_cache = TRUE;
4087 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4088 		    "sd_set_vers1_properties: caching disabled flag set\n");
4089 	}
4090 
4091 	/* CD-specific configuration parameters */
4092 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4093 		un->un_f_cfg_playmsf_bcd = TRUE;
4094 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4095 		    "sd_set_vers1_properties: playmsf_bcd set\n");
4096 	}
4097 	if (flags & SD_CONF_BSET_READSUB_BCD) {
4098 		un->un_f_cfg_readsub_bcd = TRUE;
4099 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4100 		    "sd_set_vers1_properties: readsub_bcd set\n");
4101 	}
4102 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4103 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4104 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4105 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4106 	}
4107 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4108 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4109 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4110 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4111 	}
4112 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4113 		un->un_f_cfg_no_read_header = TRUE;
4114 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4115 			    "sd_set_vers1_properties: no_read_header set\n");
4116 	}
4117 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4118 		un->un_f_cfg_read_cd_xd4 = TRUE;
4119 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4120 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4121 	}
4122 
4123 	/* Support for devices which do not have valid/unique serial numbers */
4124 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4125 		un->un_f_opt_fab_devid = TRUE;
4126 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4127 		    "sd_set_vers1_properties: fab_devid bit set\n");
4128 	}
4129 
4130 	/* Support for user throttle configuration */
4131 	if (flags & SD_CONF_BSET_THROTTLE) {
4132 		ASSERT(prop_list != NULL);
4133 		un->un_saved_throttle = un->un_throttle =
4134 		    prop_list->sdt_throttle;
4135 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4136 		    "sd_set_vers1_properties: throttle set to %d\n",
4137 		    prop_list->sdt_throttle);
4138 	}
4139 
4140 	/* Set the per disk retry count according to the conf file or table. */
4141 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4142 		ASSERT(prop_list != NULL);
4143 		if (prop_list->sdt_not_rdy_retries) {
4144 			un->un_notready_retry_count =
4145 				prop_list->sdt_not_rdy_retries;
4146 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4147 			    "sd_set_vers1_properties: not ready retry count"
4148 			    " set to %d\n", un->un_notready_retry_count);
4149 		}
4150 	}
4151 
4152 	/* The controller type is reported for generic disk driver ioctls */
4153 	if (flags & SD_CONF_BSET_CTYPE) {
4154 		ASSERT(prop_list != NULL);
4155 		switch (prop_list->sdt_ctype) {
4156 		case CTYPE_CDROM:
4157 			un->un_ctype = prop_list->sdt_ctype;
4158 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4159 			    "sd_set_vers1_properties: ctype set to "
4160 			    "CTYPE_CDROM\n");
4161 			break;
4162 		case CTYPE_CCS:
4163 			un->un_ctype = prop_list->sdt_ctype;
4164 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4165 				"sd_set_vers1_properties: ctype set to "
4166 				"CTYPE_CCS\n");
4167 			break;
4168 		case CTYPE_ROD:		/* RW optical */
4169 			un->un_ctype = prop_list->sdt_ctype;
4170 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4171 			    "sd_set_vers1_properties: ctype set to "
4172 			    "CTYPE_ROD\n");
4173 			break;
4174 		default:
4175 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4176 			    "sd_set_vers1_properties: Could not set "
4177 			    "invalid ctype value (%d)",
4178 			    prop_list->sdt_ctype);
4179 		}
4180 	}
4181 
4182 	/* Purple failover timeout */
4183 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4184 		ASSERT(prop_list != NULL);
4185 		un->un_busy_retry_count =
4186 			prop_list->sdt_busy_retries;
4187 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4188 		    "sd_set_vers1_properties: "
4189 		    "busy retry count set to %d\n",
4190 		    un->un_busy_retry_count);
4191 	}
4192 
4193 	/* Purple reset retry count */
4194 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4195 		ASSERT(prop_list != NULL);
4196 		un->un_reset_retry_count =
4197 			prop_list->sdt_reset_retries;
4198 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4199 		    "sd_set_vers1_properties: "
4200 		    "reset retry count set to %d\n",
4201 		    un->un_reset_retry_count);
4202 	}
4203 
4204 	/* Purple reservation release timeout */
4205 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4206 		ASSERT(prop_list != NULL);
4207 		un->un_reserve_release_time =
4208 			prop_list->sdt_reserv_rel_time;
4209 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4210 		    "sd_set_vers1_properties: "
4211 		    "reservation release timeout set to %d\n",
4212 		    un->un_reserve_release_time);
4213 	}
4214 
4215 	/*
4216 	 * Driver flag telling the driver to verify that no commands are pending
4217 	 * for a device before issuing a Test Unit Ready. This is a workaround
4218 	 * for a firmware bug in some Seagate eliteI drives.
4219 	 */
4220 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4221 		un->un_f_cfg_tur_check = TRUE;
4222 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4223 		    "sd_set_vers1_properties: tur queue check set\n");
4224 	}
4225 
4226 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4227 		un->un_min_throttle = prop_list->sdt_min_throttle;
4228 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4229 		    "sd_set_vers1_properties: min throttle set to %d\n",
4230 		    un->un_min_throttle);
4231 	}
4232 
4233 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4234 		un->un_f_disksort_disabled =
4235 		    (prop_list->sdt_disk_sort_dis != 0) ?
4236 		    TRUE : FALSE;
4237 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4238 		    "sd_set_vers1_properties: disksort disabled "
4239 		    "flag set to %d\n",
4240 		    prop_list->sdt_disk_sort_dis);
4241 	}
4242 
4243 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4244 		un->un_f_lun_reset_enabled =
4245 		    (prop_list->sdt_lun_reset_enable != 0) ?
4246 		    TRUE : FALSE;
4247 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4248 		    "sd_set_vers1_properties: lun reset enabled "
4249 		    "flag set to %d\n",
4250 		    prop_list->sdt_lun_reset_enable);
4251 	}
4252 
4253 	/*
4254 	 * Validate the throttle values.
4255 	 * If any of the numbers are invalid, set everything to defaults.
4256 	 */
4257 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4258 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4259 	    (un->un_min_throttle > un->un_throttle)) {
4260 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4261 		un->un_min_throttle = sd_min_throttle;
4262 	}
4263 }
4264 
4265 /*
4266  *   Function: sd_is_lsi()
4267  *
4268  *   Description: Check for lsi devices, step throught the static device
4269  *	table to match vid/pid.
4270  *
4271  *   Args: un - ptr to sd_lun
4272  *
4273  *   Notes:  When creating new LSI property, need to add the new LSI property
4274  *		to this function.
4275  */
4276 static void
4277 sd_is_lsi(struct sd_lun *un)
4278 {
4279 	char	*id = NULL;
4280 	int	table_index;
4281 	int	idlen;
4282 	void	*prop;
4283 
4284 	ASSERT(un != NULL);
4285 	for (table_index = 0; table_index < sd_disk_table_size;
4286 	    table_index++) {
4287 		id = sd_disk_table[table_index].device_id;
4288 		idlen = strlen(id);
4289 		if (idlen == 0) {
4290 			continue;
4291 		}
4292 
4293 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4294 			prop = sd_disk_table[table_index].properties;
4295 			if (prop == &lsi_properties ||
4296 			    prop == &lsi_oem_properties ||
4297 			    prop == &lsi_properties_scsi ||
4298 			    prop == &symbios_properties) {
4299 				un->un_f_cfg_is_lsi = TRUE;
4300 			}
4301 			break;
4302 		}
4303 	}
4304 }
4305 
4306 
4307 /*
4308  * The following routines support reading and interpretation of disk labels,
4309  * including Solaris BE (8-slice) vtoc's, Solaris LE (16-slice) vtoc's, and
4310  * fdisk tables.
4311  */
4312 
4313 /*
4314  *    Function: sd_validate_geometry
4315  *
4316  * Description: Read the label from the disk (if present). Update the unit's
4317  *		geometry and vtoc information from the data in the label.
4318  *		Verify that the label is valid.
4319  *
4320  *   Arguments: un - driver soft state (unit) structure
4321  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4322  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4323  *			to use the USCSI "direct" chain and bypass the normal
4324  *			command waitq.
4325  *
4326  * Return Code: 0 - Successful completion
4327  *		EINVAL  - Invalid value in un->un_tgt_blocksize or
4328  *			  un->un_blockcount; or label on disk is corrupted
4329  *			  or unreadable.
4330  *		EACCES  - Reservation conflict at the device.
4331  *		ENOMEM  - Resource allocation error
4332  *		ENOTSUP - geometry not applicable
4333  *
4334  *     Context: Kernel thread only (can sleep).
4335  */
4336 
4337 static int
4338 sd_validate_geometry(struct sd_lun *un, int path_flag)
4339 {
4340 	static	char		labelstring[128];
4341 	static	char		buf[256];
4342 	char	*label		= NULL;
4343 	int	label_error = 0;
4344 	int	gvalid		= un->un_f_geometry_is_valid;
4345 	int	lbasize;
4346 	uint_t	capacity;
4347 	int	count;
4348 
4349 	ASSERT(un != NULL);
4350 	ASSERT(mutex_owned(SD_MUTEX(un)));
4351 
4352 	/*
4353 	 * If the required values are not valid, then try getting them
4354 	 * once via read capacity. If that fails, then fail this call.
4355 	 * This is necessary with the new mpxio failover behavior in
4356 	 * the T300 where we can get an attach for the inactive path
4357 	 * before the active path. The inactive path fails commands with
4358 	 * sense data of 02,04,88 which happens to the read capacity
4359 	 * before mpxio has had sufficient knowledge to know if it should
4360 	 * force a fail over or not. (Which it won't do at attach anyhow).
4361 	 * If the read capacity at attach time fails, un_tgt_blocksize and
4362 	 * un_blockcount won't be valid.
4363 	 */
4364 	if ((un->un_f_tgt_blocksize_is_valid != TRUE) ||
4365 	    (un->un_f_blockcount_is_valid != TRUE)) {
4366 		uint64_t	cap;
4367 		uint32_t	lbasz;
4368 		int		rval;
4369 
4370 		mutex_exit(SD_MUTEX(un));
4371 		rval = sd_send_scsi_READ_CAPACITY(un, &cap,
4372 		    &lbasz, SD_PATH_DIRECT);
4373 		mutex_enter(SD_MUTEX(un));
4374 		if (rval == 0) {
4375 			/*
4376 			 * The following relies on
4377 			 * sd_send_scsi_READ_CAPACITY never
4378 			 * returning 0 for capacity and/or lbasize.
4379 			 */
4380 			sd_update_block_info(un, lbasz, cap);
4381 		}
4382 
4383 		if ((un->un_f_tgt_blocksize_is_valid != TRUE) ||
4384 		    (un->un_f_blockcount_is_valid != TRUE)) {
4385 			return (EINVAL);
4386 		}
4387 	}
4388 
4389 	/*
4390 	 * Copy the lbasize and capacity so that if they're reset while we're
4391 	 * not holding the SD_MUTEX, we will continue to use valid values
4392 	 * after the SD_MUTEX is reacquired. (4119659)
4393 	 */
4394 	lbasize  = un->un_tgt_blocksize;
4395 	capacity = un->un_blockcount;
4396 
4397 #if defined(_SUNOS_VTOC_16)
4398 	/*
4399 	 * Set up the "whole disk" fdisk partition; this should always
4400 	 * exist, regardless of whether the disk contains an fdisk table
4401 	 * or vtoc.
4402 	 */
4403 	un->un_map[P0_RAW_DISK].dkl_cylno = 0;
4404 	un->un_map[P0_RAW_DISK].dkl_nblk  = capacity;
4405 #endif
4406 
4407 	/*
4408 	 * Refresh the logical and physical geometry caches.
4409 	 * (data from MODE SENSE format/rigid disk geometry pages,
4410 	 * and scsi_ifgetcap("geometry").
4411 	 */
4412 	sd_resync_geom_caches(un, capacity, lbasize, path_flag);
4413 
4414 	label_error = sd_use_efi(un, path_flag);
4415 	if (label_error == 0) {
4416 		/* found a valid EFI label */
4417 		SD_TRACE(SD_LOG_IO_PARTITION, un,
4418 			"sd_validate_geometry: found EFI label\n");
4419 		un->un_solaris_offset = 0;
4420 		un->un_solaris_size = capacity;
4421 		return (ENOTSUP);
4422 	}
4423 	if (un->un_blockcount > DK_MAX_BLOCKS) {
4424 		if (label_error == ESRCH) {
4425 			/*
4426 			 * they've configured a LUN over 1TB, but used
4427 			 * format.dat to restrict format's view of the
4428 			 * capacity to be under 1TB
4429 			 */
4430 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4431 "is >1TB and has a VTOC label: use format(1M) to either decrease the");
4432 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
4433 "size to be < 1TB or relabel the disk with an EFI label");
4434 		} else {
4435 			/* unlabeled disk over 1TB */
4436 #if defined(__i386) || defined(__amd64)
4437 			/*
4438 			 * Refer to comments on off-by-1 at the head of the file
4439 			 * A 1TB disk was treated as (1T - 512)B in the past,
4440 			 * thus, it might have valid solaris partition. We
4441 			 * will return ENOTSUP later only if this disk has no
4442 			 * valid solaris partition.
4443 			 */
4444 			if ((un->un_tgt_blocksize != un->un_sys_blocksize) ||
4445 			    (un->un_blockcount - 1 > DK_MAX_BLOCKS) ||
4446 			    un->un_f_has_removable_media ||
4447 			    un->un_f_is_hotpluggable)
4448 #endif
4449 				return (ENOTSUP);
4450 		}
4451 	}
4452 	label_error = 0;
4453 
4454 	/*
4455 	 * at this point it is either labeled with a VTOC or it is
4456 	 * under 1TB (<= 1TB actually for off-by-1)
4457 	 */
4458 	if (un->un_f_vtoc_label_supported) {
4459 		struct	dk_label *dkl;
4460 		offset_t dkl1;
4461 		offset_t label_addr, real_addr;
4462 		int	rval;
4463 		size_t	buffer_size;
4464 
4465 		/*
4466 		 * Note: This will set up un->un_solaris_size and
4467 		 * un->un_solaris_offset.
4468 		 */
4469 		switch (sd_read_fdisk(un, capacity, lbasize, path_flag)) {
4470 		case SD_CMD_RESERVATION_CONFLICT:
4471 			ASSERT(mutex_owned(SD_MUTEX(un)));
4472 			return (EACCES);
4473 		case SD_CMD_FAILURE:
4474 			ASSERT(mutex_owned(SD_MUTEX(un)));
4475 			return (ENOMEM);
4476 		}
4477 
4478 		if (un->un_solaris_size <= DK_LABEL_LOC) {
4479 
4480 #if defined(__i386) || defined(__amd64)
4481 			/*
4482 			 * Refer to comments on off-by-1 at the head of the file
4483 			 * This is for 1TB disk only. Since that there is no
4484 			 * solaris partitions, return ENOTSUP as we do for
4485 			 * >1TB disk.
4486 			 */
4487 			if (un->un_blockcount > DK_MAX_BLOCKS)
4488 				return (ENOTSUP);
4489 #endif
4490 			/*
4491 			 * Found fdisk table but no Solaris partition entry,
4492 			 * so don't call sd_uselabel() and don't create
4493 			 * a default label.
4494 			 */
4495 			label_error = 0;
4496 			un->un_f_geometry_is_valid = TRUE;
4497 			goto no_solaris_partition;
4498 		}
4499 		label_addr = (daddr_t)(un->un_solaris_offset + DK_LABEL_LOC);
4500 
4501 #if defined(__i386) || defined(__amd64)
4502 		/*
4503 		 * Refer to comments on off-by-1 at the head of the file
4504 		 * Now, this 1TB disk has valid solaris partition. It
4505 		 * must be created by previous sd driver, we have to
4506 		 * treat it as (1T-512)B.
4507 		 */
4508 		if (un->un_blockcount > DK_MAX_BLOCKS) {
4509 			un->un_f_capacity_adjusted = 1;
4510 			un->un_blockcount = DK_MAX_BLOCKS;
4511 			un->un_map[P0_RAW_DISK].dkl_nblk  = DK_MAX_BLOCKS;
4512 
4513 			/*
4514 			 * Refer to sd_read_fdisk, when there is no
4515 			 * fdisk partition table, un_solaris_size is
4516 			 * set to disk's capacity. In this case, we
4517 			 * need to adjust it
4518 			 */
4519 			if (un->un_solaris_size > DK_MAX_BLOCKS)
4520 				un->un_solaris_size = DK_MAX_BLOCKS;
4521 			sd_resync_geom_caches(un, DK_MAX_BLOCKS,
4522 			    lbasize, path_flag);
4523 		}
4524 #endif
4525 
4526 		/*
4527 		 * sys_blocksize != tgt_blocksize, need to re-adjust
4528 		 * blkno and save the index to beginning of dk_label
4529 		 */
4530 		real_addr = SD_SYS2TGTBLOCK(un, label_addr);
4531 		buffer_size = SD_REQBYTES2TGTBYTES(un,
4532 		    sizeof (struct dk_label));
4533 
4534 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_validate_geometry: "
4535 		    "label_addr: 0x%x allocation size: 0x%x\n",
4536 		    label_addr, buffer_size);
4537 		dkl = kmem_zalloc(buffer_size, KM_NOSLEEP);
4538 		if (dkl == NULL) {
4539 			return (ENOMEM);
4540 		}
4541 
4542 		mutex_exit(SD_MUTEX(un));
4543 		rval = sd_send_scsi_READ(un, dkl, buffer_size, real_addr,
4544 		    path_flag);
4545 		mutex_enter(SD_MUTEX(un));
4546 
4547 		switch (rval) {
4548 		case 0:
4549 			/*
4550 			 * sd_uselabel will establish that the geometry
4551 			 * is valid.
4552 			 * For sys_blocksize != tgt_blocksize, need
4553 			 * to index into the beginning of dk_label
4554 			 */
4555 			dkl1 = (daddr_t)dkl
4556 				+ SD_TGTBYTEOFFSET(un, label_addr, real_addr);
4557 			if (sd_uselabel(un, (struct dk_label *)(uintptr_t)dkl1,
4558 			    path_flag) != SD_LABEL_IS_VALID) {
4559 				label_error = EINVAL;
4560 			}
4561 			break;
4562 		case EACCES:
4563 			label_error = EACCES;
4564 			break;
4565 		default:
4566 			label_error = EINVAL;
4567 			break;
4568 		}
4569 
4570 		kmem_free(dkl, buffer_size);
4571 
4572 #if defined(_SUNOS_VTOC_8)
4573 		label = (char *)un->un_asciilabel;
4574 #elif defined(_SUNOS_VTOC_16)
4575 		label = (char *)un->un_vtoc.v_asciilabel;
4576 #else
4577 #error "No VTOC format defined."
4578 #endif
4579 	}
4580 
4581 	/*
4582 	 * If a valid label was not found, AND if no reservation conflict
4583 	 * was detected, then go ahead and create a default label (4069506).
4584 	 */
4585 	if (un->un_f_default_vtoc_supported && (label_error != EACCES)) {
4586 		if (un->un_f_geometry_is_valid == FALSE) {
4587 			sd_build_default_label(un);
4588 		}
4589 		label_error = 0;
4590 	}
4591 
4592 no_solaris_partition:
4593 	if ((!un->un_f_has_removable_media ||
4594 	    (un->un_f_has_removable_media &&
4595 		un->un_mediastate == DKIO_EJECTED)) &&
4596 		(un->un_state == SD_STATE_NORMAL && !gvalid)) {
4597 		/*
4598 		 * Print out a message indicating who and what we are.
4599 		 * We do this only when we happen to really validate the
4600 		 * geometry. We may call sd_validate_geometry() at other
4601 		 * times, e.g., ioctl()'s like Get VTOC in which case we
4602 		 * don't want to print the label.
4603 		 * If the geometry is valid, print the label string,
4604 		 * else print vendor and product info, if available
4605 		 */
4606 		if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) {
4607 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "?<%s>\n", label);
4608 		} else {
4609 			mutex_enter(&sd_label_mutex);
4610 			sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX,
4611 			    labelstring);
4612 			sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX,
4613 			    &labelstring[64]);
4614 			(void) sprintf(buf, "?Vendor '%s', product '%s'",
4615 			    labelstring, &labelstring[64]);
4616 			if (un->un_f_blockcount_is_valid == TRUE) {
4617 				(void) sprintf(&buf[strlen(buf)],
4618 				    ", %llu %u byte blocks\n",
4619 				    (longlong_t)un->un_blockcount,
4620 				    un->un_tgt_blocksize);
4621 			} else {
4622 				(void) sprintf(&buf[strlen(buf)],
4623 				    ", (unknown capacity)\n");
4624 			}
4625 			SD_INFO(SD_LOG_ATTACH_DETACH, un, buf);
4626 			mutex_exit(&sd_label_mutex);
4627 		}
4628 	}
4629 
4630 #if defined(_SUNOS_VTOC_16)
4631 	/*
4632 	 * If we have valid geometry, set up the remaining fdisk partitions.
4633 	 * Note that dkl_cylno is not used for the fdisk map entries, so
4634 	 * we set it to an entirely bogus value.
4635 	 */
4636 	for (count = 0; count < FD_NUMPART; count++) {
4637 		un->un_map[FDISK_P1 + count].dkl_cylno = -1;
4638 		un->un_map[FDISK_P1 + count].dkl_nblk =
4639 		    un->un_fmap[count].fmap_nblk;
4640 
4641 		un->un_offset[FDISK_P1 + count] =
4642 		    un->un_fmap[count].fmap_start;
4643 	}
4644 #endif
4645 
4646 	for (count = 0; count < NDKMAP; count++) {
4647 #if defined(_SUNOS_VTOC_8)
4648 		struct dk_map *lp  = &un->un_map[count];
4649 		un->un_offset[count] =
4650 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
4651 #elif defined(_SUNOS_VTOC_16)
4652 		struct dkl_partition *vp = &un->un_vtoc.v_part[count];
4653 
4654 		un->un_offset[count] = vp->p_start + un->un_solaris_offset;
4655 #else
4656 #error "No VTOC format defined."
4657 #endif
4658 	}
4659 
4660 	return (label_error);
4661 }
4662 
4663 
4664 #if defined(_SUNOS_VTOC_16)
4665 /*
4666  * Macro: MAX_BLKS
4667  *
4668  *	This macro is used for table entries where we need to have the largest
4669  *	possible sector value for that head & SPT (sectors per track)
4670  *	combination.  Other entries for some smaller disk sizes are set by
4671  *	convention to match those used by X86 BIOS usage.
4672  */
4673 #define	MAX_BLKS(heads, spt)	UINT16_MAX * heads * spt, heads, spt
4674 
4675 /*
4676  *    Function: sd_convert_geometry
4677  *
4678  * Description: Convert physical geometry into a dk_geom structure. In
4679  *		other words, make sure we don't wrap 16-bit values.
4680  *		e.g. converting from geom_cache to dk_geom
4681  *
4682  *     Context: Kernel thread only
4683  */
4684 static void
4685 sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g)
4686 {
4687 	int i;
4688 	static const struct chs_values {
4689 		uint_t max_cap;		/* Max Capacity for this HS. */
4690 		uint_t nhead;		/* Heads to use. */
4691 		uint_t nsect;		/* SPT to use. */
4692 	} CHS_values[] = {
4693 		{0x00200000,  64, 32},		/* 1GB or smaller disk. */
4694 		{0x01000000, 128, 32},		/* 8GB or smaller disk. */
4695 		{MAX_BLKS(255,  63)},		/* 502.02GB or smaller disk. */
4696 		{MAX_BLKS(255, 126)},		/* .98TB or smaller disk. */
4697 		{DK_MAX_BLOCKS, 255, 189}	/* Max size is just under 1TB */
4698 	};
4699 
4700 	/* Unlabeled SCSI floppy device */
4701 	if (capacity <= 0x1000) {
4702 		un_g->dkg_nhead = 2;
4703 		un_g->dkg_ncyl = 80;
4704 		un_g->dkg_nsect = capacity / (un_g->dkg_nhead * un_g->dkg_ncyl);
4705 		return;
4706 	}
4707 
4708 	/*
4709 	 * For all devices we calculate cylinders using the
4710 	 * heads and sectors we assign based on capacity of the
4711 	 * device.  The table is designed to be compatible with the
4712 	 * way other operating systems lay out fdisk tables for X86
4713 	 * and to insure that the cylinders never exceed 65535 to
4714 	 * prevent problems with X86 ioctls that report geometry.
4715 	 * We use SPT that are multiples of 63, since other OSes that
4716 	 * are not limited to 16-bits for cylinders stop at 63 SPT
4717 	 * we make do by using multiples of 63 SPT.
4718 	 *
4719 	 * Note than capacities greater than or equal to 1TB will simply
4720 	 * get the largest geometry from the table. This should be okay
4721 	 * since disks this large shouldn't be using CHS values anyway.
4722 	 */
4723 	for (i = 0; CHS_values[i].max_cap < capacity &&
4724 	    CHS_values[i].max_cap != DK_MAX_BLOCKS; i++)
4725 		;
4726 
4727 	un_g->dkg_nhead = CHS_values[i].nhead;
4728 	un_g->dkg_nsect = CHS_values[i].nsect;
4729 }
4730 #endif
4731 
4732 
4733 /*
4734  *    Function: sd_resync_geom_caches
4735  *
4736  * Description: (Re)initialize both geometry caches: the virtual geometry
4737  *		information is extracted from the HBA (the "geometry"
4738  *		capability), and the physical geometry cache data is
4739  *		generated by issuing MODE SENSE commands.
4740  *
4741  *   Arguments: un - driver soft state (unit) structure
4742  *		capacity - disk capacity in #blocks
4743  *		lbasize - disk block size in bytes
4744  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4745  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4746  *			to use the USCSI "direct" chain and bypass the normal
4747  *			command waitq.
4748  *
4749  *     Context: Kernel thread only (can sleep).
4750  */
4751 
4752 static void
4753 sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize,
4754 	int path_flag)
4755 {
4756 	struct 	geom_cache 	pgeom;
4757 	struct 	geom_cache	*pgeom_p = &pgeom;
4758 	int 	spc;
4759 	unsigned short nhead;
4760 	unsigned short nsect;
4761 
4762 	ASSERT(un != NULL);
4763 	ASSERT(mutex_owned(SD_MUTEX(un)));
4764 
4765 	/*
4766 	 * Ask the controller for its logical geometry.
4767 	 * Note: if the HBA does not support scsi_ifgetcap("geometry"),
4768 	 * then the lgeom cache will be invalid.
4769 	 */
4770 	sd_get_virtual_geometry(un, capacity, lbasize);
4771 
4772 	/*
4773 	 * Initialize the pgeom cache from lgeom, so that if MODE SENSE
4774 	 * doesn't work, DKIOCG_PHYSGEOM can return reasonable values.
4775 	 */
4776 	if (un->un_lgeom.g_nsect == 0 || un->un_lgeom.g_nhead == 0) {
4777 		/*
4778 		 * Note: Perhaps this needs to be more adaptive? The rationale
4779 		 * is that, if there's no HBA geometry from the HBA driver, any
4780 		 * guess is good, since this is the physical geometry. If MODE
4781 		 * SENSE fails this gives a max cylinder size for non-LBA access
4782 		 */
4783 		nhead = 255;
4784 		nsect = 63;
4785 	} else {
4786 		nhead = un->un_lgeom.g_nhead;
4787 		nsect = un->un_lgeom.g_nsect;
4788 	}
4789 
4790 	if (ISCD(un)) {
4791 		pgeom_p->g_nhead = 1;
4792 		pgeom_p->g_nsect = nsect * nhead;
4793 	} else {
4794 		pgeom_p->g_nhead = nhead;
4795 		pgeom_p->g_nsect = nsect;
4796 	}
4797 
4798 	spc = pgeom_p->g_nhead * pgeom_p->g_nsect;
4799 	pgeom_p->g_capacity = capacity;
4800 	pgeom_p->g_ncyl = pgeom_p->g_capacity / spc;
4801 	pgeom_p->g_acyl = 0;
4802 
4803 	/*
4804 	 * Retrieve fresh geometry data from the hardware, stash it
4805 	 * here temporarily before we rebuild the incore label.
4806 	 *
4807 	 * We want to use the MODE SENSE commands to derive the
4808 	 * physical geometry of the device, but if either command
4809 	 * fails, the logical geometry is used as the fallback for
4810 	 * disk label geometry.
4811 	 */
4812 	mutex_exit(SD_MUTEX(un));
4813 	sd_get_physical_geometry(un, pgeom_p, capacity, lbasize, path_flag);
4814 	mutex_enter(SD_MUTEX(un));
4815 
4816 	/*
4817 	 * Now update the real copy while holding the mutex. This
4818 	 * way the global copy is never in an inconsistent state.
4819 	 */
4820 	bcopy(pgeom_p, &un->un_pgeom,  sizeof (un->un_pgeom));
4821 
4822 	SD_INFO(SD_LOG_COMMON, un, "sd_resync_geom_caches: "
4823 	    "(cached from lgeom)\n");
4824 	SD_INFO(SD_LOG_COMMON, un,
4825 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4826 	    un->un_pgeom.g_ncyl, un->un_pgeom.g_acyl,
4827 	    un->un_pgeom.g_nhead, un->un_pgeom.g_nsect);
4828 	SD_INFO(SD_LOG_COMMON, un, "   lbasize: %d; capacity: %ld; "
4829 	    "intrlv: %d; rpm: %d\n", un->un_pgeom.g_secsize,
4830 	    un->un_pgeom.g_capacity, un->un_pgeom.g_intrlv,
4831 	    un->un_pgeom.g_rpm);
4832 }
4833 
4834 
4835 /*
4836  *    Function: sd_read_fdisk
4837  *
4838  * Description: utility routine to read the fdisk table.
4839  *
4840  *   Arguments: un - driver soft state (unit) structure
4841  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4842  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4843  *			to use the USCSI "direct" chain and bypass the normal
4844  *			command waitq.
4845  *
4846  * Return Code: SD_CMD_SUCCESS
4847  *		SD_CMD_FAILURE
4848  *
4849  *     Context: Kernel thread only (can sleep).
4850  */
4851 /* ARGSUSED */
4852 static int
4853 sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize, int path_flag)
4854 {
4855 #if defined(_NO_FDISK_PRESENT)
4856 
4857 	un->un_solaris_offset = 0;
4858 	un->un_solaris_size = capacity;
4859 	bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
4860 	return (SD_CMD_SUCCESS);
4861 
4862 #elif defined(_FIRMWARE_NEEDS_FDISK)
4863 
4864 	struct ipart	*fdp;
4865 	struct mboot	*mbp;
4866 	struct ipart	fdisk[FD_NUMPART];
4867 	int		i;
4868 	char		sigbuf[2];
4869 	caddr_t		bufp;
4870 	int		uidx;
4871 	int		rval;
4872 	int		lba = 0;
4873 	uint_t		solaris_offset;	/* offset to solaris part. */
4874 	daddr_t		solaris_size;	/* size of solaris partition */
4875 	uint32_t	blocksize;
4876 
4877 	ASSERT(un != NULL);
4878 	ASSERT(mutex_owned(SD_MUTEX(un)));
4879 	ASSERT(un->un_f_tgt_blocksize_is_valid == TRUE);
4880 
4881 	blocksize = un->un_tgt_blocksize;
4882 
4883 	/*
4884 	 * Start off assuming no fdisk table
4885 	 */
4886 	solaris_offset = 0;
4887 	solaris_size   = capacity;
4888 
4889 	mutex_exit(SD_MUTEX(un));
4890 	bufp = kmem_zalloc(blocksize, KM_SLEEP);
4891 	rval = sd_send_scsi_READ(un, bufp, blocksize, 0, path_flag);
4892 	mutex_enter(SD_MUTEX(un));
4893 
4894 	if (rval != 0) {
4895 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4896 		    "sd_read_fdisk: fdisk read err\n");
4897 		kmem_free(bufp, blocksize);
4898 		return (SD_CMD_FAILURE);
4899 	}
4900 
4901 	mbp = (struct mboot *)bufp;
4902 
4903 	/*
4904 	 * The fdisk table does not begin on a 4-byte boundary within the
4905 	 * master boot record, so we copy it to an aligned structure to avoid
4906 	 * alignment exceptions on some processors.
4907 	 */
4908 	bcopy(&mbp->parts[0], fdisk, sizeof (fdisk));
4909 
4910 	/*
4911 	 * Check for lba support before verifying sig; sig might not be
4912 	 * there, say on a blank disk, but the max_chs mark may still
4913 	 * be present.
4914 	 *
4915 	 * Note: LBA support and BEFs are an x86-only concept but this
4916 	 * code should work OK on SPARC as well.
4917 	 */
4918 
4919 	/*
4920 	 * First, check for lba-access-ok on root node (or prom root node)
4921 	 * if present there, don't need to search fdisk table.
4922 	 */
4923 	if (ddi_getprop(DDI_DEV_T_ANY, ddi_root_node(), 0,
4924 	    "lba-access-ok", 0) != 0) {
4925 		/* All drives do LBA; don't search fdisk table */
4926 		lba = 1;
4927 	} else {
4928 		/* Okay, look for mark in fdisk table */
4929 		for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
4930 			/* accumulate "lba" value from all partitions */
4931 			lba = (lba || sd_has_max_chs_vals(fdp));
4932 		}
4933 	}
4934 
4935 	if (lba != 0) {
4936 		dev_t dev = sd_make_device(SD_DEVINFO(un));
4937 
4938 		if (ddi_getprop(dev, SD_DEVINFO(un), DDI_PROP_DONTPASS,
4939 		    "lba-access-ok", 0) == 0) {
4940 			/* not found; create it */
4941 			if (ddi_prop_create(dev, SD_DEVINFO(un), 0,
4942 			    "lba-access-ok", (caddr_t)NULL, 0) !=
4943 			    DDI_PROP_SUCCESS) {
4944 				SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4945 				    "sd_read_fdisk: Can't create lba property "
4946 				    "for instance %d\n",
4947 				    ddi_get_instance(SD_DEVINFO(un)));
4948 			}
4949 		}
4950 	}
4951 
4952 	bcopy(&mbp->signature, sigbuf, sizeof (sigbuf));
4953 
4954 	/*
4955 	 * Endian-independent signature check
4956 	 */
4957 	if (((sigbuf[1] & 0xFF) != ((MBB_MAGIC >> 8) & 0xFF)) ||
4958 	    (sigbuf[0] != (MBB_MAGIC & 0xFF))) {
4959 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4960 		    "sd_read_fdisk: no fdisk\n");
4961 		bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
4962 		rval = SD_CMD_SUCCESS;
4963 		goto done;
4964 	}
4965 
4966 #ifdef SDDEBUG
4967 	if (sd_level_mask & SD_LOGMASK_INFO) {
4968 		fdp = fdisk;
4969 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_read_fdisk:\n");
4970 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "         relsect    "
4971 		    "numsect         sysid       bootid\n");
4972 		for (i = 0; i < FD_NUMPART; i++, fdp++) {
4973 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4974 			    "    %d:  %8d   %8d     0x%08x     0x%08x\n",
4975 			    i, fdp->relsect, fdp->numsect,
4976 			    fdp->systid, fdp->bootid);
4977 		}
4978 	}
4979 #endif
4980 
4981 	/*
4982 	 * Try to find the unix partition
4983 	 */
4984 	uidx = -1;
4985 	solaris_offset = 0;
4986 	solaris_size   = 0;
4987 
4988 	for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
4989 		int	relsect;
4990 		int	numsect;
4991 
4992 		if (fdp->numsect == 0) {
4993 			un->un_fmap[i].fmap_start = 0;
4994 			un->un_fmap[i].fmap_nblk  = 0;
4995 			continue;
4996 		}
4997 
4998 		/*
4999 		 * Data in the fdisk table is little-endian.
5000 		 */
5001 		relsect = LE_32(fdp->relsect);
5002 		numsect = LE_32(fdp->numsect);
5003 
5004 		un->un_fmap[i].fmap_start = relsect;
5005 		un->un_fmap[i].fmap_nblk  = numsect;
5006 
5007 		if (fdp->systid != SUNIXOS &&
5008 		    fdp->systid != SUNIXOS2 &&
5009 		    fdp->systid != EFI_PMBR) {
5010 			continue;
5011 		}
5012 
5013 		/*
5014 		 * use the last active solaris partition id found
5015 		 * (there should only be 1 active partition id)
5016 		 *
5017 		 * if there are no active solaris partition id
5018 		 * then use the first inactive solaris partition id
5019 		 */
5020 		if ((uidx == -1) || (fdp->bootid == ACTIVE)) {
5021 			uidx = i;
5022 			solaris_offset = relsect;
5023 			solaris_size   = numsect;
5024 		}
5025 	}
5026 
5027 	SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk 0x%x 0x%lx",
5028 	    un->un_solaris_offset, un->un_solaris_size);
5029 
5030 	rval = SD_CMD_SUCCESS;
5031 
5032 done:
5033 
5034 	/*
5035 	 * Clear the VTOC info, only if the Solaris partition entry
5036 	 * has moved, changed size, been deleted, or if the size of
5037 	 * the partition is too small to even fit the label sector.
5038 	 */
5039 	if ((un->un_solaris_offset != solaris_offset) ||
5040 	    (un->un_solaris_size != solaris_size) ||
5041 	    solaris_size <= DK_LABEL_LOC) {
5042 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk moved 0x%x 0x%lx",
5043 			solaris_offset, solaris_size);
5044 		bzero(&un->un_g, sizeof (struct dk_geom));
5045 		bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
5046 		bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
5047 		un->un_f_geometry_is_valid = FALSE;
5048 	}
5049 	un->un_solaris_offset = solaris_offset;
5050 	un->un_solaris_size = solaris_size;
5051 	kmem_free(bufp, blocksize);
5052 	return (rval);
5053 
5054 #else	/* #elif defined(_FIRMWARE_NEEDS_FDISK) */
5055 #error "fdisk table presence undetermined for this platform."
5056 #endif	/* #if defined(_NO_FDISK_PRESENT) */
5057 }
5058 
5059 
5060 /*
5061  *    Function: sd_get_physical_geometry
5062  *
5063  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
5064  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
5065  *		target, and use this information to initialize the physical
5066  *		geometry cache specified by pgeom_p.
5067  *
5068  *		MODE SENSE is an optional command, so failure in this case
5069  *		does not necessarily denote an error. We want to use the
5070  *		MODE SENSE commands to derive the physical geometry of the
5071  *		device, but if either command fails, the logical geometry is
5072  *		used as the fallback for disk label geometry.
5073  *
5074  *		This requires that un->un_blockcount and un->un_tgt_blocksize
5075  *		have already been initialized for the current target and
5076  *		that the current values be passed as args so that we don't
5077  *		end up ever trying to use -1 as a valid value. This could
5078  *		happen if either value is reset while we're not holding
5079  *		the mutex.
5080  *
5081  *   Arguments: un - driver soft state (unit) structure
5082  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
5083  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
5084  *			to use the USCSI "direct" chain and bypass the normal
5085  *			command waitq.
5086  *
5087  *     Context: Kernel thread only (can sleep).
5088  */
5089 
5090 static void
5091 sd_get_physical_geometry(struct sd_lun *un, struct geom_cache *pgeom_p,
5092 	int capacity, int lbasize, int path_flag)
5093 {
5094 	struct	mode_format	*page3p;
5095 	struct	mode_geometry	*page4p;
5096 	struct	mode_header	*headerp;
5097 	int	sector_size;
5098 	int	nsect;
5099 	int	nhead;
5100 	int	ncyl;
5101 	int	intrlv;
5102 	int	spc;
5103 	int	modesense_capacity;
5104 	int	rpm;
5105 	int	bd_len;
5106 	int	mode_header_length;
5107 	uchar_t	*p3bufp;
5108 	uchar_t	*p4bufp;
5109 	int	cdbsize;
5110 
5111 	ASSERT(un != NULL);
5112 	ASSERT(!(mutex_owned(SD_MUTEX(un))));
5113 
5114 	if (un->un_f_blockcount_is_valid != TRUE) {
5115 		return;
5116 	}
5117 
5118 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
5119 		return;
5120 	}
5121 
5122 	if (lbasize == 0) {
5123 		if (ISCD(un)) {
5124 			lbasize = 2048;
5125 		} else {
5126 			lbasize = un->un_sys_blocksize;
5127 		}
5128 	}
5129 	pgeom_p->g_secsize = (unsigned short)lbasize;
5130 
5131 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
5132 
5133 	/*
5134 	 * Retrieve MODE SENSE page 3 - Format Device Page
5135 	 */
5136 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
5137 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp,
5138 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag)
5139 	    != 0) {
5140 		SD_ERROR(SD_LOG_COMMON, un,
5141 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
5142 		goto page3_exit;
5143 	}
5144 
5145 	/*
5146 	 * Determine size of Block Descriptors in order to locate the mode
5147 	 * page data.  ATAPI devices return 0, SCSI devices should return
5148 	 * MODE_BLK_DESC_LENGTH.
5149 	 */
5150 	headerp = (struct mode_header *)p3bufp;
5151 	if (un->un_f_cfg_is_atapi == TRUE) {
5152 		struct mode_header_grp2 *mhp =
5153 		    (struct mode_header_grp2 *)headerp;
5154 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
5155 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
5156 	} else {
5157 		mode_header_length = MODE_HEADER_LENGTH;
5158 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
5159 	}
5160 
5161 	if (bd_len > MODE_BLK_DESC_LENGTH) {
5162 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
5163 		    "received unexpected bd_len of %d, page3\n", bd_len);
5164 		goto page3_exit;
5165 	}
5166 
5167 	page3p = (struct mode_format *)
5168 	    ((caddr_t)headerp + mode_header_length + bd_len);
5169 
5170 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
5171 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
5172 		    "mode sense pg3 code mismatch %d\n",
5173 		    page3p->mode_page.code);
5174 		goto page3_exit;
5175 	}
5176 
5177 	/*
5178 	 * Use this physical geometry data only if BOTH MODE SENSE commands
5179 	 * complete successfully; otherwise, revert to the logical geometry.
5180 	 * So, we need to save everything in temporary variables.
5181 	 */
5182 	sector_size = BE_16(page3p->data_bytes_sect);
5183 
5184 	/*
5185 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
5186 	 */
5187 	if (sector_size == 0) {
5188 		sector_size = (ISCD(un)) ? 2048 : un->un_sys_blocksize;
5189 	} else {
5190 		sector_size &= ~(un->un_sys_blocksize - 1);
5191 	}
5192 
5193 	nsect  = BE_16(page3p->sect_track);
5194 	intrlv = BE_16(page3p->interleave);
5195 
5196 	SD_INFO(SD_LOG_COMMON, un,
5197 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
5198 	SD_INFO(SD_LOG_COMMON, un,
5199 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
5200 	    page3p->mode_page.code, nsect, sector_size);
5201 	SD_INFO(SD_LOG_COMMON, un,
5202 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
5203 	    BE_16(page3p->track_skew),
5204 	    BE_16(page3p->cylinder_skew));
5205 
5206 
5207 	/*
5208 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
5209 	 */
5210 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
5211 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp,
5212 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag)
5213 	    != 0) {
5214 		SD_ERROR(SD_LOG_COMMON, un,
5215 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
5216 		goto page4_exit;
5217 	}
5218 
5219 	/*
5220 	 * Determine size of Block Descriptors in order to locate the mode
5221 	 * page data.  ATAPI devices return 0, SCSI devices should return
5222 	 * MODE_BLK_DESC_LENGTH.
5223 	 */
5224 	headerp = (struct mode_header *)p4bufp;
5225 	if (un->un_f_cfg_is_atapi == TRUE) {
5226 		struct mode_header_grp2 *mhp =
5227 		    (struct mode_header_grp2 *)headerp;
5228 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
5229 	} else {
5230 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
5231 	}
5232 
5233 	if (bd_len > MODE_BLK_DESC_LENGTH) {
5234 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
5235 		    "received unexpected bd_len of %d, page4\n", bd_len);
5236 		goto page4_exit;
5237 	}
5238 
5239 	page4p = (struct mode_geometry *)
5240 	    ((caddr_t)headerp + mode_header_length + bd_len);
5241 
5242 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
5243 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
5244 		    "mode sense pg4 code mismatch %d\n",
5245 		    page4p->mode_page.code);
5246 		goto page4_exit;
5247 	}
5248 
5249 	/*
5250 	 * Stash the data now, after we know that both commands completed.
5251 	 */
5252 
5253 	mutex_enter(SD_MUTEX(un));
5254 
5255 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
5256 	spc   = nhead * nsect;
5257 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
5258 	rpm   = BE_16(page4p->rpm);
5259 
5260 	modesense_capacity = spc * ncyl;
5261 
5262 	SD_INFO(SD_LOG_COMMON, un,
5263 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
5264 	SD_INFO(SD_LOG_COMMON, un,
5265 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
5266 	SD_INFO(SD_LOG_COMMON, un,
5267 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
5268 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
5269 	    (void *)pgeom_p, capacity);
5270 
5271 	/*
5272 	 * Compensate if the drive's geometry is not rectangular, i.e.,
5273 	 * the product of C * H * S returned by MODE SENSE >= that returned
5274 	 * by read capacity. This is an idiosyncrasy of the original x86
5275 	 * disk subsystem.
5276 	 */
5277 	if (modesense_capacity >= capacity) {
5278 		SD_INFO(SD_LOG_COMMON, un,
5279 		    "sd_get_physical_geometry: adjusting acyl; "
5280 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
5281 		    (modesense_capacity - capacity + spc - 1) / spc);
5282 		if (sector_size != 0) {
5283 			/* 1243403: NEC D38x7 drives don't support sec size */
5284 			pgeom_p->g_secsize = (unsigned short)sector_size;
5285 		}
5286 		pgeom_p->g_nsect    = (unsigned short)nsect;
5287 		pgeom_p->g_nhead    = (unsigned short)nhead;
5288 		pgeom_p->g_capacity = capacity;
5289 		pgeom_p->g_acyl	    =
5290 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
5291 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
5292 	}
5293 
5294 	pgeom_p->g_rpm    = (unsigned short)rpm;
5295 	pgeom_p->g_intrlv = (unsigned short)intrlv;
5296 
5297 	SD_INFO(SD_LOG_COMMON, un,
5298 	    "sd_get_physical_geometry: mode sense geometry:\n");
5299 	SD_INFO(SD_LOG_COMMON, un,
5300 	    "   nsect: %d; sector size: %d; interlv: %d\n",
5301 	    nsect, sector_size, intrlv);
5302 	SD_INFO(SD_LOG_COMMON, un,
5303 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
5304 	    nhead, ncyl, rpm, modesense_capacity);
5305 	SD_INFO(SD_LOG_COMMON, un,
5306 	    "sd_get_physical_geometry: (cached)\n");
5307 	SD_INFO(SD_LOG_COMMON, un,
5308 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5309 	    un->un_pgeom.g_ncyl,  un->un_pgeom.g_acyl,
5310 	    un->un_pgeom.g_nhead, un->un_pgeom.g_nsect);
5311 	SD_INFO(SD_LOG_COMMON, un,
5312 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
5313 	    un->un_pgeom.g_secsize, un->un_pgeom.g_capacity,
5314 	    un->un_pgeom.g_intrlv, un->un_pgeom.g_rpm);
5315 
5316 	mutex_exit(SD_MUTEX(un));
5317 
5318 page4_exit:
5319 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
5320 page3_exit:
5321 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
5322 }
5323 
5324 
5325 /*
5326  *    Function: sd_get_virtual_geometry
5327  *
5328  * Description: Ask the controller to tell us about the target device.
5329  *
5330  *   Arguments: un - pointer to softstate
5331  *		capacity - disk capacity in #blocks
5332  *		lbasize - disk block size in bytes
5333  *
5334  *     Context: Kernel thread only
5335  */
5336 
5337 static void
5338 sd_get_virtual_geometry(struct sd_lun *un, int capacity, int lbasize)
5339 {
5340 	struct	geom_cache 	*lgeom_p = &un->un_lgeom;
5341 	uint_t	geombuf;
5342 	int	spc;
5343 
5344 	ASSERT(un != NULL);
5345 	ASSERT(mutex_owned(SD_MUTEX(un)));
5346 
5347 	mutex_exit(SD_MUTEX(un));
5348 
5349 	/* Set sector size, and total number of sectors */
5350 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
5351 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
5352 
5353 	/* Let the HBA tell us its geometry */
5354 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
5355 
5356 	mutex_enter(SD_MUTEX(un));
5357 
5358 	/* A value of -1 indicates an undefined "geometry" property */
5359 	if (geombuf == (-1)) {
5360 		return;
5361 	}
5362 
5363 	/* Initialize the logical geometry cache. */
5364 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
5365 	lgeom_p->g_nsect   = geombuf & 0xffff;
5366 	lgeom_p->g_secsize = un->un_sys_blocksize;
5367 
5368 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
5369 
5370 	/*
5371 	 * Note: The driver originally converted the capacity value from
5372 	 * target blocks to system blocks. However, the capacity value passed
5373 	 * to this routine is already in terms of system blocks (this scaling
5374 	 * is done when the READ CAPACITY command is issued and processed).
5375 	 * This 'error' may have gone undetected because the usage of g_ncyl
5376 	 * (which is based upon g_capacity) is very limited within the driver
5377 	 */
5378 	lgeom_p->g_capacity = capacity;
5379 
5380 	/*
5381 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
5382 	 * hba may return zero values if the device has been removed.
5383 	 */
5384 	if (spc == 0) {
5385 		lgeom_p->g_ncyl = 0;
5386 	} else {
5387 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
5388 	}
5389 	lgeom_p->g_acyl = 0;
5390 
5391 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
5392 	SD_INFO(SD_LOG_COMMON, un,
5393 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5394 	    un->un_lgeom.g_ncyl,  un->un_lgeom.g_acyl,
5395 	    un->un_lgeom.g_nhead, un->un_lgeom.g_nsect);
5396 	SD_INFO(SD_LOG_COMMON, un, "   lbasize: %d; capacity: %ld; "
5397 	    "intrlv: %d; rpm: %d\n", un->un_lgeom.g_secsize,
5398 	    un->un_lgeom.g_capacity, un->un_lgeom.g_intrlv, un->un_lgeom.g_rpm);
5399 }
5400 
5401 
5402 /*
5403  *    Function: sd_update_block_info
5404  *
5405  * Description: Calculate a byte count to sector count bitshift value
5406  *		from sector size.
5407  *
5408  *   Arguments: un: unit struct.
5409  *		lbasize: new target sector size
5410  *		capacity: new target capacity, ie. block count
5411  *
5412  *     Context: Kernel thread context
5413  */
5414 
5415 static void
5416 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
5417 {
5418 	if (lbasize != 0) {
5419 		un->un_tgt_blocksize = lbasize;
5420 		un->un_f_tgt_blocksize_is_valid	= TRUE;
5421 	}
5422 
5423 	if (capacity != 0) {
5424 		un->un_blockcount		= capacity;
5425 		un->un_f_blockcount_is_valid	= TRUE;
5426 	}
5427 }
5428 
5429 
5430 static void
5431 sd_swap_efi_gpt(efi_gpt_t *e)
5432 {
5433 	_NOTE(ASSUMING_PROTECTED(*e))
5434 	e->efi_gpt_Signature = LE_64(e->efi_gpt_Signature);
5435 	e->efi_gpt_Revision = LE_32(e->efi_gpt_Revision);
5436 	e->efi_gpt_HeaderSize = LE_32(e->efi_gpt_HeaderSize);
5437 	e->efi_gpt_HeaderCRC32 = LE_32(e->efi_gpt_HeaderCRC32);
5438 	e->efi_gpt_MyLBA = LE_64(e->efi_gpt_MyLBA);
5439 	e->efi_gpt_AlternateLBA = LE_64(e->efi_gpt_AlternateLBA);
5440 	e->efi_gpt_FirstUsableLBA = LE_64(e->efi_gpt_FirstUsableLBA);
5441 	e->efi_gpt_LastUsableLBA = LE_64(e->efi_gpt_LastUsableLBA);
5442 	UUID_LE_CONVERT(e->efi_gpt_DiskGUID, e->efi_gpt_DiskGUID);
5443 	e->efi_gpt_PartitionEntryLBA = LE_64(e->efi_gpt_PartitionEntryLBA);
5444 	e->efi_gpt_NumberOfPartitionEntries =
5445 	    LE_32(e->efi_gpt_NumberOfPartitionEntries);
5446 	e->efi_gpt_SizeOfPartitionEntry =
5447 	    LE_32(e->efi_gpt_SizeOfPartitionEntry);
5448 	e->efi_gpt_PartitionEntryArrayCRC32 =
5449 	    LE_32(e->efi_gpt_PartitionEntryArrayCRC32);
5450 }
5451 
5452 static void
5453 sd_swap_efi_gpe(int nparts, efi_gpe_t *p)
5454 {
5455 	int i;
5456 
5457 	_NOTE(ASSUMING_PROTECTED(*p))
5458 	for (i = 0; i < nparts; i++) {
5459 		UUID_LE_CONVERT(p[i].efi_gpe_PartitionTypeGUID,
5460 		    p[i].efi_gpe_PartitionTypeGUID);
5461 		p[i].efi_gpe_StartingLBA = LE_64(p[i].efi_gpe_StartingLBA);
5462 		p[i].efi_gpe_EndingLBA = LE_64(p[i].efi_gpe_EndingLBA);
5463 		/* PartitionAttrs */
5464 	}
5465 }
5466 
5467 static int
5468 sd_validate_efi(efi_gpt_t *labp)
5469 {
5470 	if (labp->efi_gpt_Signature != EFI_SIGNATURE)
5471 		return (EINVAL);
5472 	/* at least 96 bytes in this version of the spec. */
5473 	if (sizeof (efi_gpt_t) - sizeof (labp->efi_gpt_Reserved2) >
5474 	    labp->efi_gpt_HeaderSize)
5475 		return (EINVAL);
5476 	/* this should be 128 bytes */
5477 	if (labp->efi_gpt_SizeOfPartitionEntry != sizeof (efi_gpe_t))
5478 		return (EINVAL);
5479 	return (0);
5480 }
5481 
5482 static int
5483 sd_use_efi(struct sd_lun *un, int path_flag)
5484 {
5485 	int		i;
5486 	int		rval = 0;
5487 	efi_gpe_t	*partitions;
5488 	uchar_t		*buf;
5489 	uint_t		lbasize;
5490 	uint64_t	cap = 0;
5491 	uint_t		nparts;
5492 	diskaddr_t	gpe_lba;
5493 	struct uuid	uuid_type_reserved = EFI_RESERVED;
5494 
5495 	ASSERT(mutex_owned(SD_MUTEX(un)));
5496 	lbasize = un->un_tgt_blocksize;
5497 	un->un_reserved = -1;
5498 
5499 	mutex_exit(SD_MUTEX(un));
5500 
5501 	buf = kmem_zalloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
5502 
5503 	if (un->un_tgt_blocksize != un->un_sys_blocksize) {
5504 		rval = EINVAL;
5505 		goto done_err;
5506 	}
5507 
5508 	rval = sd_send_scsi_READ(un, buf, lbasize, 0, path_flag);
5509 	if (rval) {
5510 		goto done_err;
5511 	}
5512 	if (((struct dk_label *)buf)->dkl_magic == DKL_MAGIC) {
5513 		/* not ours */
5514 		rval = ESRCH;
5515 		goto done_err;
5516 	}
5517 
5518 	rval = sd_send_scsi_READ(un, buf, lbasize, 1, path_flag);
5519 	if (rval) {
5520 		goto done_err;
5521 	}
5522 	sd_swap_efi_gpt((efi_gpt_t *)buf);
5523 
5524 	if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0) {
5525 		/*
5526 		 * Couldn't read the primary, try the backup.  Our
5527 		 * capacity at this point could be based on CHS, so
5528 		 * check what the device reports.
5529 		 */
5530 		rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
5531 		    path_flag);
5532 		if (rval) {
5533 			goto done_err;
5534 		}
5535 
5536 		/*
5537 		 * The MMC standard allows READ CAPACITY to be
5538 		 * inaccurate by a bounded amount (in the interest of
5539 		 * response latency).  As a result, failed READs are
5540 		 * commonplace (due to the reading of metadata and not
5541 		 * data). Depending on the per-Vendor/drive Sense data,
5542 		 * the failed READ can cause many (unnecessary) retries.
5543 		 */
5544 		if ((rval = sd_send_scsi_READ(un, buf, lbasize,
5545 		    cap - 1, (ISCD(un)) ? SD_PATH_DIRECT_PRIORITY :
5546 			path_flag)) != 0) {
5547 				goto done_err;
5548 		}
5549 
5550 		sd_swap_efi_gpt((efi_gpt_t *)buf);
5551 		if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0) {
5552 
5553 			/*
5554 			 * Refer to comments related to off-by-1 at the
5555 			 * header of this file. Search the next to last
5556 			 * block for backup EFI label.
5557 			 */
5558 			if ((rval = sd_send_scsi_READ(un, buf, lbasize,
5559 			    cap - 2, (ISCD(un)) ? SD_PATH_DIRECT_PRIORITY :
5560 				path_flag)) != 0) {
5561 					goto done_err;
5562 			}
5563 			sd_swap_efi_gpt((efi_gpt_t *)buf);
5564 			if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0)
5565 				goto done_err;
5566 		}
5567 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5568 		    "primary label corrupt; using backup\n");
5569 	}
5570 
5571 	if (cap == 0)
5572 		rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
5573 		    path_flag);
5574 
5575 	nparts = ((efi_gpt_t *)buf)->efi_gpt_NumberOfPartitionEntries;
5576 	gpe_lba = ((efi_gpt_t *)buf)->efi_gpt_PartitionEntryLBA;
5577 
5578 	rval = sd_send_scsi_READ(un, buf, EFI_MIN_ARRAY_SIZE, gpe_lba,
5579 	    path_flag);
5580 	if (rval) {
5581 		goto done_err;
5582 	}
5583 	partitions = (efi_gpe_t *)buf;
5584 
5585 	if (nparts > MAXPART) {
5586 		nparts = MAXPART;
5587 	}
5588 	sd_swap_efi_gpe(nparts, partitions);
5589 
5590 	mutex_enter(SD_MUTEX(un));
5591 
5592 	/* Fill in partition table. */
5593 	for (i = 0; i < nparts; i++) {
5594 		if (partitions->efi_gpe_StartingLBA != 0 ||
5595 		    partitions->efi_gpe_EndingLBA != 0) {
5596 			un->un_map[i].dkl_cylno =
5597 			    partitions->efi_gpe_StartingLBA;
5598 			un->un_map[i].dkl_nblk =
5599 			    partitions->efi_gpe_EndingLBA -
5600 			    partitions->efi_gpe_StartingLBA + 1;
5601 			un->un_offset[i] =
5602 			    partitions->efi_gpe_StartingLBA;
5603 		}
5604 		if (un->un_reserved == -1) {
5605 			if (bcmp(&partitions->efi_gpe_PartitionTypeGUID,
5606 			    &uuid_type_reserved, sizeof (struct uuid)) == 0) {
5607 				un->un_reserved = i;
5608 			}
5609 		}
5610 		if (i == WD_NODE) {
5611 			/*
5612 			 * minor number 7 corresponds to the whole disk
5613 			 */
5614 			un->un_map[i].dkl_cylno = 0;
5615 			un->un_map[i].dkl_nblk = un->un_blockcount;
5616 			un->un_offset[i] = 0;
5617 		}
5618 		partitions++;
5619 	}
5620 	un->un_solaris_offset = 0;
5621 	un->un_solaris_size = cap;
5622 	un->un_f_geometry_is_valid = TRUE;
5623 
5624 	/* clear the vtoc label */
5625 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
5626 
5627 	kmem_free(buf, EFI_MIN_ARRAY_SIZE);
5628 	return (0);
5629 
5630 done_err:
5631 	kmem_free(buf, EFI_MIN_ARRAY_SIZE);
5632 	mutex_enter(SD_MUTEX(un));
5633 	/*
5634 	 * if we didn't find something that could look like a VTOC
5635 	 * and the disk is over 1TB, we know there isn't a valid label.
5636 	 * Otherwise let sd_uselabel decide what to do.  We only
5637 	 * want to invalidate this if we're certain the label isn't
5638 	 * valid because sd_prop_op will now fail, which in turn
5639 	 * causes things like opens and stats on the partition to fail.
5640 	 */
5641 	if ((un->un_blockcount > DK_MAX_BLOCKS) && (rval != ESRCH)) {
5642 		un->un_f_geometry_is_valid = FALSE;
5643 	}
5644 	return (rval);
5645 }
5646 
5647 
5648 /*
5649  *    Function: sd_uselabel
5650  *
5651  * Description: Validate the disk label and update the relevant data (geometry,
5652  *		partition, vtoc, and capacity data) in the sd_lun struct.
5653  *		Marks the geometry of the unit as being valid.
5654  *
5655  *   Arguments: un: unit struct.
5656  *		dk_label: disk label
5657  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
5658  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
5659  *			to use the USCSI "direct" chain and bypass the normal
5660  *			command waitq.
5661  *
5662  * Return Code: SD_LABEL_IS_VALID: Label read from disk is OK; geometry,
5663  *		partition, vtoc, and capacity data are good.
5664  *
5665  *		SD_LABEL_IS_INVALID: Magic number or checksum error in the
5666  *		label; or computed capacity does not jibe with capacity
5667  *		reported from the READ CAPACITY command.
5668  *
5669  *     Context: Kernel thread only (can sleep).
5670  */
5671 
5672 static int
5673 sd_uselabel(struct sd_lun *un, struct dk_label *labp, int path_flag)
5674 {
5675 	short	*sp;
5676 	short	sum;
5677 	short	count;
5678 	int	label_error = SD_LABEL_IS_VALID;
5679 	int	i;
5680 	int	capacity;
5681 	int	part_end;
5682 	int	track_capacity;
5683 	int	err;
5684 #if defined(_SUNOS_VTOC_16)
5685 	struct	dkl_partition	*vpartp;
5686 #endif
5687 	ASSERT(un != NULL);
5688 	ASSERT(mutex_owned(SD_MUTEX(un)));
5689 
5690 	/* Validate the magic number of the label. */
5691 	if (labp->dkl_magic != DKL_MAGIC) {
5692 #if defined(__sparc)
5693 		if ((un->un_state == SD_STATE_NORMAL) &&
5694 			un->un_f_vtoc_errlog_supported) {
5695 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5696 			    "Corrupt label; wrong magic number\n");
5697 		}
5698 #endif
5699 		return (SD_LABEL_IS_INVALID);
5700 	}
5701 
5702 	/* Validate the checksum of the label. */
5703 	sp  = (short *)labp;
5704 	sum = 0;
5705 	count = sizeof (struct dk_label) / sizeof (short);
5706 	while (count--)	 {
5707 		sum ^= *sp++;
5708 	}
5709 
5710 	if (sum != 0) {
5711 #if	defined(_SUNOS_VTOC_16)
5712 		if ((un->un_state == SD_STATE_NORMAL) && !ISCD(un)) {
5713 #elif defined(_SUNOS_VTOC_8)
5714 		if ((un->un_state == SD_STATE_NORMAL) &&
5715 		    un->un_f_vtoc_errlog_supported) {
5716 #endif
5717 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5718 			    "Corrupt label - label checksum failed\n");
5719 		}
5720 		return (SD_LABEL_IS_INVALID);
5721 	}
5722 
5723 
5724 	/*
5725 	 * Fill in geometry structure with data from label.
5726 	 */
5727 	bzero(&un->un_g, sizeof (struct dk_geom));
5728 	un->un_g.dkg_ncyl   = labp->dkl_ncyl;
5729 	un->un_g.dkg_acyl   = labp->dkl_acyl;
5730 	un->un_g.dkg_bcyl   = 0;
5731 	un->un_g.dkg_nhead  = labp->dkl_nhead;
5732 	un->un_g.dkg_nsect  = labp->dkl_nsect;
5733 	un->un_g.dkg_intrlv = labp->dkl_intrlv;
5734 
5735 #if defined(_SUNOS_VTOC_8)
5736 	un->un_g.dkg_gap1   = labp->dkl_gap1;
5737 	un->un_g.dkg_gap2   = labp->dkl_gap2;
5738 	un->un_g.dkg_bhead  = labp->dkl_bhead;
5739 #endif
5740 #if defined(_SUNOS_VTOC_16)
5741 	un->un_dkg_skew = labp->dkl_skew;
5742 #endif
5743 
5744 #if defined(__i386) || defined(__amd64)
5745 	un->un_g.dkg_apc = labp->dkl_apc;
5746 #endif
5747 
5748 	/*
5749 	 * Currently we rely on the values in the label being accurate. If
5750 	 * dlk_rpm or dlk_pcly are zero in the label, use a default value.
5751 	 *
5752 	 * Note: In the future a MODE SENSE may be used to retrieve this data,
5753 	 * although this command is optional in SCSI-2.
5754 	 */
5755 	un->un_g.dkg_rpm  = (labp->dkl_rpm  != 0) ? labp->dkl_rpm  : 3600;
5756 	un->un_g.dkg_pcyl = (labp->dkl_pcyl != 0) ? labp->dkl_pcyl :
5757 	    (un->un_g.dkg_ncyl + un->un_g.dkg_acyl);
5758 
5759 	/*
5760 	 * The Read and Write reinstruct values may not be valid
5761 	 * for older disks.
5762 	 */
5763 	un->un_g.dkg_read_reinstruct  = labp->dkl_read_reinstruct;
5764 	un->un_g.dkg_write_reinstruct = labp->dkl_write_reinstruct;
5765 
5766 	/* Fill in partition table. */
5767 #if defined(_SUNOS_VTOC_8)
5768 	for (i = 0; i < NDKMAP; i++) {
5769 		un->un_map[i].dkl_cylno = labp->dkl_map[i].dkl_cylno;
5770 		un->un_map[i].dkl_nblk  = labp->dkl_map[i].dkl_nblk;
5771 	}
5772 #endif
5773 #if  defined(_SUNOS_VTOC_16)
5774 	vpartp		= labp->dkl_vtoc.v_part;
5775 	track_capacity	= labp->dkl_nhead * labp->dkl_nsect;
5776 
5777 	/* Prevent divide by zero */
5778 	if (track_capacity == 0) {
5779 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5780 		    "Corrupt label - zero nhead or nsect value\n");
5781 
5782 		return (SD_LABEL_IS_INVALID);
5783 	}
5784 
5785 	for (i = 0; i < NDKMAP; i++, vpartp++) {
5786 		un->un_map[i].dkl_cylno = vpartp->p_start / track_capacity;
5787 		un->un_map[i].dkl_nblk  = vpartp->p_size;
5788 	}
5789 #endif
5790 
5791 	/* Fill in VTOC Structure. */
5792 	bcopy(&labp->dkl_vtoc, &un->un_vtoc, sizeof (struct dk_vtoc));
5793 #if defined(_SUNOS_VTOC_8)
5794 	/*
5795 	 * The 8-slice vtoc does not include the ascii label; save it into
5796 	 * the device's soft state structure here.
5797 	 */
5798 	bcopy(labp->dkl_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
5799 #endif
5800 
5801 	/* Now look for a valid capacity. */
5802 	track_capacity	= (un->un_g.dkg_nhead * un->un_g.dkg_nsect);
5803 	capacity	= (un->un_g.dkg_ncyl  * track_capacity);
5804 
5805 	if (un->un_g.dkg_acyl) {
5806 #if defined(__i386) || defined(__amd64)
5807 		/* we may have > 1 alts cylinder */
5808 		capacity += (track_capacity * un->un_g.dkg_acyl);
5809 #else
5810 		capacity += track_capacity;
5811 #endif
5812 	}
5813 
5814 	/*
5815 	 * Force check here to ensure the computed capacity is valid.
5816 	 * If capacity is zero, it indicates an invalid label and
5817 	 * we should abort updating the relevant data then.
5818 	 */
5819 	if (capacity == 0) {
5820 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5821 		    "Corrupt label - no valid capacity could be retrieved\n");
5822 
5823 		return (SD_LABEL_IS_INVALID);
5824 	}
5825 
5826 	/* Mark the geometry as valid. */
5827 	un->un_f_geometry_is_valid = TRUE;
5828 
5829 	/*
5830 	 * At this point, un->un_blockcount should contain valid data from
5831 	 * the READ CAPACITY command.
5832 	 */
5833 	if (un->un_f_blockcount_is_valid != TRUE) {
5834 		/*
5835 		 * We have a situation where the target didn't give us a good
5836 		 * READ CAPACITY value, yet there appears to be a valid label.
5837 		 * In this case, we'll fake the capacity.
5838 		 */
5839 		un->un_blockcount = capacity;
5840 		un->un_f_blockcount_is_valid = TRUE;
5841 		goto done;
5842 	}
5843 
5844 
5845 	if ((capacity <= un->un_blockcount) ||
5846 	    (un->un_state != SD_STATE_NORMAL)) {
5847 #if defined(_SUNOS_VTOC_8)
5848 		/*
5849 		 * We can't let this happen on drives that are subdivided
5850 		 * into logical disks (i.e., that have an fdisk table).
5851 		 * The un_blockcount field should always hold the full media
5852 		 * size in sectors, period.  This code would overwrite
5853 		 * un_blockcount with the size of the Solaris fdisk partition.
5854 		 */
5855 		SD_ERROR(SD_LOG_COMMON, un,
5856 		    "sd_uselabel: Label %d blocks; Drive %d blocks\n",
5857 		    capacity, un->un_blockcount);
5858 		un->un_blockcount = capacity;
5859 		un->un_f_blockcount_is_valid = TRUE;
5860 #endif	/* defined(_SUNOS_VTOC_8) */
5861 		goto done;
5862 	}
5863 
5864 	if (ISCD(un)) {
5865 		/* For CDROMs, we trust that the data in the label is OK. */
5866 #if defined(_SUNOS_VTOC_8)
5867 		for (i = 0; i < NDKMAP; i++) {
5868 			part_end = labp->dkl_nhead * labp->dkl_nsect *
5869 			    labp->dkl_map[i].dkl_cylno +
5870 			    labp->dkl_map[i].dkl_nblk  - 1;
5871 
5872 			if ((labp->dkl_map[i].dkl_nblk) &&
5873 			    (part_end > un->un_blockcount)) {
5874 				un->un_f_geometry_is_valid = FALSE;
5875 				break;
5876 			}
5877 		}
5878 #endif
5879 #if defined(_SUNOS_VTOC_16)
5880 		vpartp = &(labp->dkl_vtoc.v_part[0]);
5881 		for (i = 0; i < NDKMAP; i++, vpartp++) {
5882 			part_end = vpartp->p_start + vpartp->p_size;
5883 			if ((vpartp->p_size > 0) &&
5884 			    (part_end > un->un_blockcount)) {
5885 				un->un_f_geometry_is_valid = FALSE;
5886 				break;
5887 			}
5888 		}
5889 #endif
5890 	} else {
5891 		uint64_t t_capacity;
5892 		uint32_t t_lbasize;
5893 
5894 		mutex_exit(SD_MUTEX(un));
5895 		err = sd_send_scsi_READ_CAPACITY(un, &t_capacity, &t_lbasize,
5896 		    path_flag);
5897 		ASSERT(t_capacity <= DK_MAX_BLOCKS);
5898 		mutex_enter(SD_MUTEX(un));
5899 
5900 		if (err == 0) {
5901 			sd_update_block_info(un, t_lbasize, t_capacity);
5902 		}
5903 
5904 		if (capacity > un->un_blockcount) {
5905 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5906 			    "Corrupt label - bad geometry\n");
5907 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
5908 			    "Label says %u blocks; Drive says %llu blocks\n",
5909 			    capacity, (unsigned long long)un->un_blockcount);
5910 			un->un_f_geometry_is_valid = FALSE;
5911 			label_error = SD_LABEL_IS_INVALID;
5912 		}
5913 	}
5914 
5915 done:
5916 
5917 	SD_INFO(SD_LOG_COMMON, un, "sd_uselabel: (label geometry)\n");
5918 	SD_INFO(SD_LOG_COMMON, un,
5919 	    "   ncyl: %d; acyl: %d; nhead: %d; nsect: %d\n",
5920 	    un->un_g.dkg_ncyl,  un->un_g.dkg_acyl,
5921 	    un->un_g.dkg_nhead, un->un_g.dkg_nsect);
5922 	SD_INFO(SD_LOG_COMMON, un,
5923 	    "   lbasize: %d; capacity: %d; intrlv: %d; rpm: %d\n",
5924 	    un->un_tgt_blocksize, un->un_blockcount,
5925 	    un->un_g.dkg_intrlv, un->un_g.dkg_rpm);
5926 	SD_INFO(SD_LOG_COMMON, un, "   wrt_reinstr: %d; rd_reinstr: %d\n",
5927 	    un->un_g.dkg_write_reinstruct, un->un_g.dkg_read_reinstruct);
5928 
5929 	ASSERT(mutex_owned(SD_MUTEX(un)));
5930 
5931 	return (label_error);
5932 }
5933 
5934 
5935 /*
5936  *    Function: sd_build_default_label
5937  *
5938  * Description: Generate a default label for those devices that do not have
5939  *		one, e.g., new media, removable cartridges, etc..
5940  *
5941  *     Context: Kernel thread only
5942  */
5943 
5944 static void
5945 sd_build_default_label(struct sd_lun *un)
5946 {
5947 #if defined(_SUNOS_VTOC_16)
5948 	uint_t	phys_spc;
5949 	uint_t	disksize;
5950 	struct	dk_geom un_g;
5951 	uint64_t capacity;
5952 #endif
5953 
5954 	ASSERT(un != NULL);
5955 	ASSERT(mutex_owned(SD_MUTEX(un)));
5956 
5957 #if defined(_SUNOS_VTOC_8)
5958 	/*
5959 	 * Note: This is a legacy check for non-removable devices on VTOC_8
5960 	 * only. This may be a valid check for VTOC_16 as well.
5961 	 * Once we understand why there is this difference between SPARC and
5962 	 * x86 platform, we could remove this legacy check.
5963 	 */
5964 	ASSERT(un->un_f_default_vtoc_supported);
5965 #endif
5966 
5967 	bzero(&un->un_g, sizeof (struct dk_geom));
5968 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
5969 	bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
5970 
5971 #if defined(_SUNOS_VTOC_8)
5972 
5973 	/*
5974 	 * It's a REMOVABLE media, therefore no label (on sparc, anyway).
5975 	 * But it is still necessary to set up various geometry information,
5976 	 * and we are doing this here.
5977 	 */
5978 
5979 	/*
5980 	 * For the rpm, we use the minimum for the disk.  For the head, cyl,
5981 	 * and number of sector per track, if the capacity <= 1GB, head = 64,
5982 	 * sect = 32.  else head = 255, sect 63 Note: the capacity should be
5983 	 * equal to C*H*S values.  This will cause some truncation of size due
5984 	 * to round off errors. For CD-ROMs, this truncation can have adverse
5985 	 * side effects, so returning ncyl and nhead as 1. The nsect will
5986 	 * overflow for most of CD-ROMs as nsect is of type ushort. (4190569)
5987 	 */
5988 	if (ISCD(un)) {
5989 		/*
5990 		 * Preserve the old behavior for non-writable
5991 		 * medias. Since dkg_nsect is a ushort, it
5992 		 * will lose bits as cdroms have more than
5993 		 * 65536 sectors. So if we recalculate
5994 		 * capacity, it will become much shorter.
5995 		 * But the dkg_* information is not
5996 		 * used for CDROMs so it is OK. But for
5997 		 * Writable CDs we need this information
5998 		 * to be valid (for newfs say). So we
5999 		 * make nsect and nhead > 1 that way
6000 		 * nsect can still stay within ushort limit
6001 		 * without losing any bits.
6002 		 */
6003 		if (un->un_f_mmc_writable_media == TRUE) {
6004 			un->un_g.dkg_nhead = 64;
6005 			un->un_g.dkg_nsect = 32;
6006 			un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
6007 			un->un_blockcount = un->un_g.dkg_ncyl *
6008 			    un->un_g.dkg_nhead * un->un_g.dkg_nsect;
6009 		} else {
6010 			un->un_g.dkg_ncyl  = 1;
6011 			un->un_g.dkg_nhead = 1;
6012 			un->un_g.dkg_nsect = un->un_blockcount;
6013 		}
6014 	} else {
6015 		if (un->un_blockcount <= 0x1000) {
6016 			/* unlabeled SCSI floppy device */
6017 			un->un_g.dkg_nhead = 2;
6018 			un->un_g.dkg_ncyl = 80;
6019 			un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
6020 		} else if (un->un_blockcount <= 0x200000) {
6021 			un->un_g.dkg_nhead = 64;
6022 			un->un_g.dkg_nsect = 32;
6023 			un->un_g.dkg_ncyl  = un->un_blockcount / (64 * 32);
6024 		} else {
6025 			un->un_g.dkg_nhead = 255;
6026 			un->un_g.dkg_nsect = 63;
6027 			un->un_g.dkg_ncyl  = un->un_blockcount / (255 * 63);
6028 		}
6029 		un->un_blockcount =
6030 		    un->un_g.dkg_ncyl * un->un_g.dkg_nhead * un->un_g.dkg_nsect;
6031 	}
6032 
6033 	un->un_g.dkg_acyl	= 0;
6034 	un->un_g.dkg_bcyl	= 0;
6035 	un->un_g.dkg_rpm	= 200;
6036 	un->un_asciilabel[0]	= '\0';
6037 	un->un_g.dkg_pcyl	= un->un_g.dkg_ncyl;
6038 
6039 	un->un_map[0].dkl_cylno = 0;
6040 	un->un_map[0].dkl_nblk  = un->un_blockcount;
6041 	un->un_map[2].dkl_cylno = 0;
6042 	un->un_map[2].dkl_nblk  = un->un_blockcount;
6043 
6044 #elif defined(_SUNOS_VTOC_16)
6045 
6046 	if (un->un_solaris_size == 0) {
6047 		/*
6048 		 * Got fdisk table but no solaris entry therefore
6049 		 * don't create a default label
6050 		 */
6051 		un->un_f_geometry_is_valid = TRUE;
6052 		return;
6053 	}
6054 
6055 	/*
6056 	 * For CDs we continue to use the physical geometry to calculate
6057 	 * number of cylinders. All other devices must convert the
6058 	 * physical geometry (geom_cache) to values that will fit
6059 	 * in a dk_geom structure.
6060 	 */
6061 	if (ISCD(un)) {
6062 		phys_spc = un->un_pgeom.g_nhead * un->un_pgeom.g_nsect;
6063 	} else {
6064 		/* Convert physical geometry to disk geometry */
6065 		bzero(&un_g, sizeof (struct dk_geom));
6066 
6067 		/*
6068 		 * Refer to comments related to off-by-1 at the
6069 		 * header of this file.
6070 		 * Before caculating geometry, capacity should be
6071 		 * decreased by 1. That un_f_capacity_adjusted is
6072 		 * TRUE means that we are treating a 1TB disk as
6073 		 * (1T - 512)B. And the capacity of disks is already
6074 		 * decreased by 1.
6075 		 */
6076 		if (!un->un_f_capacity_adjusted &&
6077 		    !un->un_f_has_removable_media &&
6078 		    !un->un_f_is_hotpluggable &&
6079 			un->un_tgt_blocksize == un->un_sys_blocksize)
6080 			capacity = un->un_blockcount - 1;
6081 		else
6082 			capacity = un->un_blockcount;
6083 
6084 		sd_convert_geometry(capacity, &un_g);
6085 		bcopy(&un_g, &un->un_g, sizeof (un->un_g));
6086 		phys_spc = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
6087 	}
6088 
6089 	ASSERT(phys_spc != 0);
6090 	un->un_g.dkg_pcyl = un->un_solaris_size / phys_spc;
6091 	un->un_g.dkg_acyl = DK_ACYL;
6092 	un->un_g.dkg_ncyl = un->un_g.dkg_pcyl - DK_ACYL;
6093 	disksize = un->un_g.dkg_ncyl * phys_spc;
6094 
6095 	if (ISCD(un)) {
6096 		/*
6097 		 * CD's don't use the "heads * sectors * cyls"-type of
6098 		 * geometry, but instead use the entire capacity of the media.
6099 		 */
6100 		disksize = un->un_solaris_size;
6101 		un->un_g.dkg_nhead = 1;
6102 		un->un_g.dkg_nsect = 1;
6103 		un->un_g.dkg_rpm =
6104 		    (un->un_pgeom.g_rpm == 0) ? 200 : un->un_pgeom.g_rpm;
6105 
6106 		un->un_vtoc.v_part[0].p_start = 0;
6107 		un->un_vtoc.v_part[0].p_size  = disksize;
6108 		un->un_vtoc.v_part[0].p_tag   = V_BACKUP;
6109 		un->un_vtoc.v_part[0].p_flag  = V_UNMNT;
6110 
6111 		un->un_map[0].dkl_cylno = 0;
6112 		un->un_map[0].dkl_nblk  = disksize;
6113 		un->un_offset[0] = 0;
6114 
6115 	} else {
6116 		/*
6117 		 * Hard disks and removable media cartridges
6118 		 */
6119 		un->un_g.dkg_rpm =
6120 		    (un->un_pgeom.g_rpm == 0) ? 3600: un->un_pgeom.g_rpm;
6121 		un->un_vtoc.v_sectorsz = un->un_sys_blocksize;
6122 
6123 		/* Add boot slice */
6124 		un->un_vtoc.v_part[8].p_start = 0;
6125 		un->un_vtoc.v_part[8].p_size  = phys_spc;
6126 		un->un_vtoc.v_part[8].p_tag   = V_BOOT;
6127 		un->un_vtoc.v_part[8].p_flag  = V_UNMNT;
6128 
6129 		un->un_map[8].dkl_cylno = 0;
6130 		un->un_map[8].dkl_nblk  = phys_spc;
6131 		un->un_offset[8] = 0;
6132 	}
6133 
6134 	un->un_g.dkg_apc = 0;
6135 	un->un_vtoc.v_nparts = V_NUMPAR;
6136 	un->un_vtoc.v_version = V_VERSION;
6137 
6138 	/* Add backup slice */
6139 	un->un_vtoc.v_part[2].p_start = 0;
6140 	un->un_vtoc.v_part[2].p_size  = disksize;
6141 	un->un_vtoc.v_part[2].p_tag   = V_BACKUP;
6142 	un->un_vtoc.v_part[2].p_flag  = V_UNMNT;
6143 
6144 	un->un_map[2].dkl_cylno = 0;
6145 	un->un_map[2].dkl_nblk  = disksize;
6146 	un->un_offset[2] = 0;
6147 
6148 	(void) sprintf(un->un_vtoc.v_asciilabel, "DEFAULT cyl %d alt %d"
6149 	    " hd %d sec %d", un->un_g.dkg_ncyl, un->un_g.dkg_acyl,
6150 	    un->un_g.dkg_nhead, un->un_g.dkg_nsect);
6151 
6152 #else
6153 #error "No VTOC format defined."
6154 #endif
6155 
6156 	un->un_g.dkg_read_reinstruct  = 0;
6157 	un->un_g.dkg_write_reinstruct = 0;
6158 
6159 	un->un_g.dkg_intrlv = 1;
6160 
6161 	un->un_vtoc.v_sanity  = VTOC_SANE;
6162 
6163 	un->un_f_geometry_is_valid = TRUE;
6164 
6165 	SD_INFO(SD_LOG_COMMON, un,
6166 	    "sd_build_default_label: Default label created: "
6167 	    "cyl: %d\tacyl: %d\tnhead: %d\tnsect: %d\tcap: %d\n",
6168 	    un->un_g.dkg_ncyl, un->un_g.dkg_acyl, un->un_g.dkg_nhead,
6169 	    un->un_g.dkg_nsect, un->un_blockcount);
6170 }
6171 
6172 
6173 #if defined(_FIRMWARE_NEEDS_FDISK)
6174 /*
6175  * Max CHS values, as they are encoded into bytes, for 1022/254/63
6176  */
6177 #define	LBA_MAX_SECT	(63 | ((1022 & 0x300) >> 2))
6178 #define	LBA_MAX_CYL	(1022 & 0xFF)
6179 #define	LBA_MAX_HEAD	(254)
6180 
6181 
6182 /*
6183  *    Function: sd_has_max_chs_vals
6184  *
6185  * Description: Return TRUE if Cylinder-Head-Sector values are all at maximum.
6186  *
6187  *   Arguments: fdp - ptr to CHS info
6188  *
6189  * Return Code: True or false
6190  *
6191  *     Context: Any.
6192  */
6193 
6194 static int
6195 sd_has_max_chs_vals(struct ipart *fdp)
6196 {
6197 	return ((fdp->begcyl  == LBA_MAX_CYL)	&&
6198 	    (fdp->beghead == LBA_MAX_HEAD)	&&
6199 	    (fdp->begsect == LBA_MAX_SECT)	&&
6200 	    (fdp->endcyl  == LBA_MAX_CYL)	&&
6201 	    (fdp->endhead == LBA_MAX_HEAD)	&&
6202 	    (fdp->endsect == LBA_MAX_SECT));
6203 }
6204 #endif
6205 
6206 
6207 /*
6208  *    Function: sd_inq_fill
6209  *
6210  * Description: Print a piece of inquiry data, cleaned up for non-printable
6211  *		characters and stopping at the first space character after
6212  *		the beginning of the passed string;
6213  *
6214  *   Arguments: p - source string
6215  *		l - maximum length to copy
6216  *		s - destination string
6217  *
6218  *     Context: Any.
6219  */
6220 
6221 static void
6222 sd_inq_fill(char *p, int l, char *s)
6223 {
6224 	unsigned i = 0;
6225 	char c;
6226 
6227 	while (i++ < l) {
6228 		if ((c = *p++) < ' ' || c >= 0x7F) {
6229 			c = '*';
6230 		} else if (i != 1 && c == ' ') {
6231 			break;
6232 		}
6233 		*s++ = c;
6234 	}
6235 	*s++ = 0;
6236 }
6237 
6238 
6239 /*
6240  *    Function: sd_register_devid
6241  *
6242  * Description: This routine will obtain the device id information from the
6243  *		target, obtain the serial number, and register the device
6244  *		id with the ddi framework.
6245  *
6246  *   Arguments: devi - the system's dev_info_t for the device.
6247  *		un - driver soft state (unit) structure
6248  *		reservation_flag - indicates if a reservation conflict
6249  *		occurred during attach
6250  *
6251  *     Context: Kernel Thread
6252  */
6253 static void
6254 sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag)
6255 {
6256 	int		rval		= 0;
6257 	uchar_t		*inq80		= NULL;
6258 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
6259 	size_t		inq80_resid	= 0;
6260 	uchar_t		*inq83		= NULL;
6261 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
6262 	size_t		inq83_resid	= 0;
6263 
6264 	ASSERT(un != NULL);
6265 	ASSERT(mutex_owned(SD_MUTEX(un)));
6266 	ASSERT((SD_DEVINFO(un)) == devi);
6267 
6268 	/*
6269 	 * This is the case of antiquated Sun disk drives that have the
6270 	 * FAB_DEVID property set in the disk_table.  These drives
6271 	 * manage the devid's by storing them in last 2 available sectors
6272 	 * on the drive and have them fabricated by the ddi layer by calling
6273 	 * ddi_devid_init and passing the DEVID_FAB flag.
6274 	 */
6275 	if (un->un_f_opt_fab_devid == TRUE) {
6276 		/*
6277 		 * Depending on EINVAL isn't reliable, since a reserved disk
6278 		 * may result in invalid geometry, so check to make sure a
6279 		 * reservation conflict did not occur during attach.
6280 		 */
6281 		if ((sd_get_devid(un) == EINVAL) &&
6282 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
6283 			/*
6284 			 * The devid is invalid AND there is no reservation
6285 			 * conflict.  Fabricate a new devid.
6286 			 */
6287 			(void) sd_create_devid(un);
6288 		}
6289 
6290 		/* Register the devid if it exists */
6291 		if (un->un_devid != NULL) {
6292 			(void) ddi_devid_register(SD_DEVINFO(un),
6293 			    un->un_devid);
6294 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6295 			    "sd_register_devid: Devid Fabricated\n");
6296 		}
6297 		return;
6298 	}
6299 
6300 	/*
6301 	 * We check the availibility of the World Wide Name (0x83) and Unit
6302 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
6303 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
6304 	 * 0x83 is availible, that is the best choice.  Our next choice is
6305 	 * 0x80.  If neither are availible, we munge the devid from the device
6306 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
6307 	 * to fabricate a devid for non-Sun qualified disks.
6308 	 */
6309 	if (sd_check_vpd_page_support(un) == 0) {
6310 		/* collect page 80 data if available */
6311 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
6312 
6313 			mutex_exit(SD_MUTEX(un));
6314 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
6315 			rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len,
6316 			    0x01, 0x80, &inq80_resid);
6317 
6318 			if (rval != 0) {
6319 				kmem_free(inq80, inq80_len);
6320 				inq80 = NULL;
6321 				inq80_len = 0;
6322 			}
6323 			mutex_enter(SD_MUTEX(un));
6324 		}
6325 
6326 		/* collect page 83 data if available */
6327 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
6328 			mutex_exit(SD_MUTEX(un));
6329 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
6330 			rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len,
6331 			    0x01, 0x83, &inq83_resid);
6332 
6333 			if (rval != 0) {
6334 				kmem_free(inq83, inq83_len);
6335 				inq83 = NULL;
6336 				inq83_len = 0;
6337 			}
6338 			mutex_enter(SD_MUTEX(un));
6339 		}
6340 	}
6341 
6342 	/* encode best devid possible based on data available */
6343 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
6344 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
6345 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
6346 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
6347 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
6348 
6349 		/* devid successfully encoded, register devid */
6350 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
6351 
6352 	} else {
6353 		/*
6354 		 * Unable to encode a devid based on data available.
6355 		 * This is not a Sun qualified disk.  Older Sun disk
6356 		 * drives that have the SD_FAB_DEVID property
6357 		 * set in the disk_table and non Sun qualified
6358 		 * disks are treated in the same manner.  These
6359 		 * drives manage the devid's by storing them in
6360 		 * last 2 available sectors on the drive and
6361 		 * have them fabricated by the ddi layer by
6362 		 * calling ddi_devid_init and passing the
6363 		 * DEVID_FAB flag.
6364 		 * Create a fabricate devid only if there's no
6365 		 * fabricate devid existed.
6366 		 */
6367 		if (sd_get_devid(un) == EINVAL) {
6368 			(void) sd_create_devid(un);
6369 		}
6370 		un->un_f_opt_fab_devid = TRUE;
6371 
6372 		/* Register the devid if it exists */
6373 		if (un->un_devid != NULL) {
6374 			(void) ddi_devid_register(SD_DEVINFO(un),
6375 			    un->un_devid);
6376 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6377 			    "sd_register_devid: devid fabricated using "
6378 			    "ddi framework\n");
6379 		}
6380 	}
6381 
6382 	/* clean up resources */
6383 	if (inq80 != NULL) {
6384 		kmem_free(inq80, inq80_len);
6385 	}
6386 	if (inq83 != NULL) {
6387 		kmem_free(inq83, inq83_len);
6388 	}
6389 }
6390 
6391 static daddr_t
6392 sd_get_devid_block(struct sd_lun *un)
6393 {
6394 	daddr_t			spc, blk, head, cyl;
6395 
6396 	if ((un->un_f_geometry_is_valid == FALSE) ||
6397 	    (un->un_solaris_size < DK_LABEL_LOC))
6398 		return (-1);
6399 
6400 	if (un->un_vtoc.v_sanity != VTOC_SANE) {
6401 		/* EFI labeled */
6402 		if (un->un_reserved != -1) {
6403 			blk = un->un_map[un->un_reserved].dkl_cylno;
6404 		} else {
6405 			return (-1);
6406 		}
6407 	} else {
6408 		/* SMI labeled */
6409 		/* this geometry doesn't allow us to write a devid */
6410 		if (un->un_g.dkg_acyl < 2) {
6411 			return (-1);
6412 		}
6413 
6414 		/*
6415 		 * Subtract 2 guarantees that the next to last cylinder
6416 		 * is used
6417 		 */
6418 		cyl  = un->un_g.dkg_ncyl  + un->un_g.dkg_acyl - 2;
6419 		spc  = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
6420 		head = un->un_g.dkg_nhead - 1;
6421 		blk  = (cyl * (spc - un->un_g.dkg_apc)) +
6422 		    (head * un->un_g.dkg_nsect) + 1;
6423 	}
6424 	return (blk);
6425 }
6426 
6427 /*
6428  *    Function: sd_get_devid
6429  *
6430  * Description: This routine will return 0 if a valid device id has been
6431  *		obtained from the target and stored in the soft state. If a
6432  *		valid device id has not been previously read and stored, a
6433  *		read attempt will be made.
6434  *
6435  *   Arguments: un - driver soft state (unit) structure
6436  *
6437  * Return Code: 0 if we successfully get the device id
6438  *
6439  *     Context: Kernel Thread
6440  */
6441 
6442 static int
6443 sd_get_devid(struct sd_lun *un)
6444 {
6445 	struct dk_devid		*dkdevid;
6446 	ddi_devid_t		tmpid;
6447 	uint_t			*ip;
6448 	size_t			sz;
6449 	daddr_t			blk;
6450 	int			status;
6451 	int			chksum;
6452 	int			i;
6453 	size_t			buffer_size;
6454 
6455 	ASSERT(un != NULL);
6456 	ASSERT(mutex_owned(SD_MUTEX(un)));
6457 
6458 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
6459 	    un);
6460 
6461 	if (un->un_devid != NULL) {
6462 		return (0);
6463 	}
6464 
6465 	blk = sd_get_devid_block(un);
6466 	if (blk < 0)
6467 		return (EINVAL);
6468 
6469 	/*
6470 	 * Read and verify device id, stored in the reserved cylinders at the
6471 	 * end of the disk. Backup label is on the odd sectors of the last
6472 	 * track of the last cylinder. Device id will be on track of the next
6473 	 * to last cylinder.
6474 	 */
6475 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
6476 	mutex_exit(SD_MUTEX(un));
6477 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
6478 	status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk,
6479 	    SD_PATH_DIRECT);
6480 	if (status != 0) {
6481 		goto error;
6482 	}
6483 
6484 	/* Validate the revision */
6485 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
6486 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
6487 		status = EINVAL;
6488 		goto error;
6489 	}
6490 
6491 	/* Calculate the checksum */
6492 	chksum = 0;
6493 	ip = (uint_t *)dkdevid;
6494 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
6495 	    i++) {
6496 		chksum ^= ip[i];
6497 	}
6498 
6499 	/* Compare the checksums */
6500 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
6501 		status = EINVAL;
6502 		goto error;
6503 	}
6504 
6505 	/* Validate the device id */
6506 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
6507 		status = EINVAL;
6508 		goto error;
6509 	}
6510 
6511 	/*
6512 	 * Store the device id in the driver soft state
6513 	 */
6514 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
6515 	tmpid = kmem_alloc(sz, KM_SLEEP);
6516 
6517 	mutex_enter(SD_MUTEX(un));
6518 
6519 	un->un_devid = tmpid;
6520 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
6521 
6522 	kmem_free(dkdevid, buffer_size);
6523 
6524 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
6525 
6526 	return (status);
6527 error:
6528 	mutex_enter(SD_MUTEX(un));
6529 	kmem_free(dkdevid, buffer_size);
6530 	return (status);
6531 }
6532 
6533 
6534 /*
6535  *    Function: sd_create_devid
6536  *
6537  * Description: This routine will fabricate the device id and write it
6538  *		to the disk.
6539  *
6540  *   Arguments: un - driver soft state (unit) structure
6541  *
6542  * Return Code: value of the fabricated device id
6543  *
6544  *     Context: Kernel Thread
6545  */
6546 
6547 static ddi_devid_t
6548 sd_create_devid(struct sd_lun *un)
6549 {
6550 	ASSERT(un != NULL);
6551 
6552 	/* Fabricate the devid */
6553 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
6554 	    == DDI_FAILURE) {
6555 		return (NULL);
6556 	}
6557 
6558 	/* Write the devid to disk */
6559 	if (sd_write_deviceid(un) != 0) {
6560 		ddi_devid_free(un->un_devid);
6561 		un->un_devid = NULL;
6562 	}
6563 
6564 	return (un->un_devid);
6565 }
6566 
6567 
6568 /*
6569  *    Function: sd_write_deviceid
6570  *
6571  * Description: This routine will write the device id to the disk
6572  *		reserved sector.
6573  *
6574  *   Arguments: un - driver soft state (unit) structure
6575  *
6576  * Return Code: EINVAL
6577  *		value returned by sd_send_scsi_cmd
6578  *
6579  *     Context: Kernel Thread
6580  */
6581 
6582 static int
6583 sd_write_deviceid(struct sd_lun *un)
6584 {
6585 	struct dk_devid		*dkdevid;
6586 	daddr_t			blk;
6587 	uint_t			*ip, chksum;
6588 	int			status;
6589 	int			i;
6590 
6591 	ASSERT(mutex_owned(SD_MUTEX(un)));
6592 
6593 	blk = sd_get_devid_block(un);
6594 	if (blk < 0)
6595 		return (-1);
6596 	mutex_exit(SD_MUTEX(un));
6597 
6598 	/* Allocate the buffer */
6599 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
6600 
6601 	/* Fill in the revision */
6602 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
6603 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
6604 
6605 	/* Copy in the device id */
6606 	mutex_enter(SD_MUTEX(un));
6607 	bcopy(un->un_devid, &dkdevid->dkd_devid,
6608 	    ddi_devid_sizeof(un->un_devid));
6609 	mutex_exit(SD_MUTEX(un));
6610 
6611 	/* Calculate the checksum */
6612 	chksum = 0;
6613 	ip = (uint_t *)dkdevid;
6614 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
6615 	    i++) {
6616 		chksum ^= ip[i];
6617 	}
6618 
6619 	/* Fill-in checksum */
6620 	DKD_FORMCHKSUM(chksum, dkdevid);
6621 
6622 	/* Write the reserved sector */
6623 	status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk,
6624 	    SD_PATH_DIRECT);
6625 
6626 	kmem_free(dkdevid, un->un_sys_blocksize);
6627 
6628 	mutex_enter(SD_MUTEX(un));
6629 	return (status);
6630 }
6631 
6632 
6633 /*
6634  *    Function: sd_check_vpd_page_support
6635  *
6636  * Description: This routine sends an inquiry command with the EVPD bit set and
6637  *		a page code of 0x00 to the device. It is used to determine which
6638  *		vital product pages are availible to find the devid. We are
6639  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
6640  *		device does not support that command.
6641  *
6642  *   Arguments: un  - driver soft state (unit) structure
6643  *
6644  * Return Code: 0 - success
6645  *		1 - check condition
6646  *
6647  *     Context: This routine can sleep.
6648  */
6649 
6650 static int
6651 sd_check_vpd_page_support(struct sd_lun *un)
6652 {
6653 	uchar_t	*page_list	= NULL;
6654 	uchar_t	page_length	= 0xff;	/* Use max possible length */
6655 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
6656 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
6657 	int    	rval		= 0;
6658 	int	counter;
6659 
6660 	ASSERT(un != NULL);
6661 	ASSERT(mutex_owned(SD_MUTEX(un)));
6662 
6663 	mutex_exit(SD_MUTEX(un));
6664 
6665 	/*
6666 	 * We'll set the page length to the maximum to save figuring it out
6667 	 * with an additional call.
6668 	 */
6669 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
6670 
6671 	rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd,
6672 	    page_code, NULL);
6673 
6674 	mutex_enter(SD_MUTEX(un));
6675 
6676 	/*
6677 	 * Now we must validate that the device accepted the command, as some
6678 	 * drives do not support it.  If the drive does support it, we will
6679 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
6680 	 * not, we return -1.
6681 	 */
6682 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
6683 		/* Loop to find one of the 2 pages we need */
6684 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
6685 
6686 		/*
6687 		 * Pages are returned in ascending order, and 0x83 is what we
6688 		 * are hoping for.
6689 		 */
6690 		while ((page_list[counter] <= 0x83) &&
6691 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
6692 		    VPD_HEAD_OFFSET))) {
6693 			/*
6694 			 * Add 3 because page_list[3] is the number of
6695 			 * pages minus 3
6696 			 */
6697 
6698 			switch (page_list[counter]) {
6699 			case 0x00:
6700 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
6701 				break;
6702 			case 0x80:
6703 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
6704 				break;
6705 			case 0x81:
6706 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
6707 				break;
6708 			case 0x82:
6709 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
6710 				break;
6711 			case 0x83:
6712 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
6713 				break;
6714 			}
6715 			counter++;
6716 		}
6717 
6718 	} else {
6719 		rval = -1;
6720 
6721 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6722 		    "sd_check_vpd_page_support: This drive does not implement "
6723 		    "VPD pages.\n");
6724 	}
6725 
6726 	kmem_free(page_list, page_length);
6727 
6728 	return (rval);
6729 }
6730 
6731 
6732 /*
6733  *    Function: sd_setup_pm
6734  *
6735  * Description: Initialize Power Management on the device
6736  *
6737  *     Context: Kernel Thread
6738  */
6739 
6740 static void
6741 sd_setup_pm(struct sd_lun *un, dev_info_t *devi)
6742 {
6743 	uint_t	log_page_size;
6744 	uchar_t	*log_page_data;
6745 	int	rval;
6746 
6747 	/*
6748 	 * Since we are called from attach, holding a mutex for
6749 	 * un is unnecessary. Because some of the routines called
6750 	 * from here require SD_MUTEX to not be held, assert this
6751 	 * right up front.
6752 	 */
6753 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6754 	/*
6755 	 * Since the sd device does not have the 'reg' property,
6756 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
6757 	 * The following code is to tell cpr that this device
6758 	 * DOES need to be suspended and resumed.
6759 	 */
6760 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
6761 	    "pm-hardware-state", "needs-suspend-resume");
6762 
6763 	/*
6764 	 * This complies with the new power management framework
6765 	 * for certain desktop machines. Create the pm_components
6766 	 * property as a string array property.
6767 	 */
6768 	if (un->un_f_pm_supported) {
6769 		/*
6770 		 * not all devices have a motor, try it first.
6771 		 * some devices may return ILLEGAL REQUEST, some
6772 		 * will hang
6773 		 * The following START_STOP_UNIT is used to check if target
6774 		 * device has a motor.
6775 		 */
6776 		un->un_f_start_stop_supported = TRUE;
6777 		if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
6778 		    SD_PATH_DIRECT) != 0) {
6779 			un->un_f_start_stop_supported = FALSE;
6780 		}
6781 
6782 		/*
6783 		 * create pm properties anyways otherwise the parent can't
6784 		 * go to sleep
6785 		 */
6786 		(void) sd_create_pm_components(devi, un);
6787 		un->un_f_pm_is_enabled = TRUE;
6788 		return;
6789 	}
6790 
6791 	if (!un->un_f_log_sense_supported) {
6792 		un->un_power_level = SD_SPINDLE_ON;
6793 		un->un_f_pm_is_enabled = FALSE;
6794 		return;
6795 	}
6796 
6797 	rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE);
6798 
6799 #ifdef	SDDEBUG
6800 	if (sd_force_pm_supported) {
6801 		/* Force a successful result */
6802 		rval = 1;
6803 	}
6804 #endif
6805 
6806 	/*
6807 	 * If the start-stop cycle counter log page is not supported
6808 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
6809 	 * then we should not create the pm_components property.
6810 	 */
6811 	if (rval == -1) {
6812 		/*
6813 		 * Error.
6814 		 * Reading log sense failed, most likely this is
6815 		 * an older drive that does not support log sense.
6816 		 * If this fails auto-pm is not supported.
6817 		 */
6818 		un->un_power_level = SD_SPINDLE_ON;
6819 		un->un_f_pm_is_enabled = FALSE;
6820 
6821 	} else if (rval == 0) {
6822 		/*
6823 		 * Page not found.
6824 		 * The start stop cycle counter is implemented as page
6825 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
6826 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
6827 		 */
6828 		if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) {
6829 			/*
6830 			 * Page found, use this one.
6831 			 */
6832 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
6833 			un->un_f_pm_is_enabled = TRUE;
6834 		} else {
6835 			/*
6836 			 * Error or page not found.
6837 			 * auto-pm is not supported for this device.
6838 			 */
6839 			un->un_power_level = SD_SPINDLE_ON;
6840 			un->un_f_pm_is_enabled = FALSE;
6841 		}
6842 	} else {
6843 		/*
6844 		 * Page found, use it.
6845 		 */
6846 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
6847 		un->un_f_pm_is_enabled = TRUE;
6848 	}
6849 
6850 
6851 	if (un->un_f_pm_is_enabled == TRUE) {
6852 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6853 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6854 
6855 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
6856 		    log_page_size, un->un_start_stop_cycle_page,
6857 		    0x01, 0, SD_PATH_DIRECT);
6858 #ifdef	SDDEBUG
6859 		if (sd_force_pm_supported) {
6860 			/* Force a successful result */
6861 			rval = 0;
6862 		}
6863 #endif
6864 
6865 		/*
6866 		 * If the Log sense for Page( Start/stop cycle counter page)
6867 		 * succeeds, then power managment is supported and we can
6868 		 * enable auto-pm.
6869 		 */
6870 		if (rval == 0)  {
6871 			(void) sd_create_pm_components(devi, un);
6872 		} else {
6873 			un->un_power_level = SD_SPINDLE_ON;
6874 			un->un_f_pm_is_enabled = FALSE;
6875 		}
6876 
6877 		kmem_free(log_page_data, log_page_size);
6878 	}
6879 }
6880 
6881 
6882 /*
6883  *    Function: sd_create_pm_components
6884  *
6885  * Description: Initialize PM property.
6886  *
6887  *     Context: Kernel thread context
6888  */
6889 
6890 static void
6891 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
6892 {
6893 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
6894 
6895 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6896 
6897 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6898 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
6899 		/*
6900 		 * When components are initially created they are idle,
6901 		 * power up any non-removables.
6902 		 * Note: the return value of pm_raise_power can't be used
6903 		 * for determining if PM should be enabled for this device.
6904 		 * Even if you check the return values and remove this
6905 		 * property created above, the PM framework will not honor the
6906 		 * change after the first call to pm_raise_power. Hence,
6907 		 * removal of that property does not help if pm_raise_power
6908 		 * fails. In the case of removable media, the start/stop
6909 		 * will fail if the media is not present.
6910 		 */
6911 		if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
6912 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
6913 			mutex_enter(SD_MUTEX(un));
6914 			un->un_power_level = SD_SPINDLE_ON;
6915 			mutex_enter(&un->un_pm_mutex);
6916 			/* Set to on and not busy. */
6917 			un->un_pm_count = 0;
6918 		} else {
6919 			mutex_enter(SD_MUTEX(un));
6920 			un->un_power_level = SD_SPINDLE_OFF;
6921 			mutex_enter(&un->un_pm_mutex);
6922 			/* Set to off. */
6923 			un->un_pm_count = -1;
6924 		}
6925 		mutex_exit(&un->un_pm_mutex);
6926 		mutex_exit(SD_MUTEX(un));
6927 	} else {
6928 		un->un_power_level = SD_SPINDLE_ON;
6929 		un->un_f_pm_is_enabled = FALSE;
6930 	}
6931 }
6932 
6933 
6934 /*
6935  *    Function: sd_ddi_suspend
6936  *
6937  * Description: Performs system power-down operations. This includes
6938  *		setting the drive state to indicate its suspended so
6939  *		that no new commands will be accepted. Also, wait for
6940  *		all commands that are in transport or queued to a timer
6941  *		for retry to complete. All timeout threads are cancelled.
6942  *
6943  * Return Code: DDI_FAILURE or DDI_SUCCESS
6944  *
6945  *     Context: Kernel thread context
6946  */
6947 
6948 static int
6949 sd_ddi_suspend(dev_info_t *devi)
6950 {
6951 	struct	sd_lun	*un;
6952 	clock_t		wait_cmds_complete;
6953 
6954 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6955 	if (un == NULL) {
6956 		return (DDI_FAILURE);
6957 	}
6958 
6959 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
6960 
6961 	mutex_enter(SD_MUTEX(un));
6962 
6963 	/* Return success if the device is already suspended. */
6964 	if (un->un_state == SD_STATE_SUSPENDED) {
6965 		mutex_exit(SD_MUTEX(un));
6966 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6967 		    "device already suspended, exiting\n");
6968 		return (DDI_SUCCESS);
6969 	}
6970 
6971 	/* Return failure if the device is being used by HA */
6972 	if (un->un_resvd_status &
6973 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
6974 		mutex_exit(SD_MUTEX(un));
6975 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6976 		    "device in use by HA, exiting\n");
6977 		return (DDI_FAILURE);
6978 	}
6979 
6980 	/*
6981 	 * Return failure if the device is in a resource wait
6982 	 * or power changing state.
6983 	 */
6984 	if ((un->un_state == SD_STATE_RWAIT) ||
6985 	    (un->un_state == SD_STATE_PM_CHANGING)) {
6986 		mutex_exit(SD_MUTEX(un));
6987 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6988 		    "device in resource wait state, exiting\n");
6989 		return (DDI_FAILURE);
6990 	}
6991 
6992 
6993 	un->un_save_state = un->un_last_state;
6994 	New_state(un, SD_STATE_SUSPENDED);
6995 
6996 	/*
6997 	 * Wait for all commands that are in transport or queued to a timer
6998 	 * for retry to complete.
6999 	 *
7000 	 * While waiting, no new commands will be accepted or sent because of
7001 	 * the new state we set above.
7002 	 *
7003 	 * Wait till current operation has completed. If we are in the resource
7004 	 * wait state (with an intr outstanding) then we need to wait till the
7005 	 * intr completes and starts the next cmd. We want to wait for
7006 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
7007 	 */
7008 	wait_cmds_complete = ddi_get_lbolt() +
7009 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
7010 
7011 	while (un->un_ncmds_in_transport != 0) {
7012 		/*
7013 		 * Fail if commands do not finish in the specified time.
7014 		 */
7015 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
7016 		    wait_cmds_complete) == -1) {
7017 			/*
7018 			 * Undo the state changes made above. Everything
7019 			 * must go back to it's original value.
7020 			 */
7021 			Restore_state(un);
7022 			un->un_last_state = un->un_save_state;
7023 			/* Wake up any threads that might be waiting. */
7024 			cv_broadcast(&un->un_suspend_cv);
7025 			mutex_exit(SD_MUTEX(un));
7026 			SD_ERROR(SD_LOG_IO_PM, un,
7027 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
7028 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
7029 			return (DDI_FAILURE);
7030 		}
7031 	}
7032 
7033 	/*
7034 	 * Cancel SCSI watch thread and timeouts, if any are active
7035 	 */
7036 
7037 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
7038 		opaque_t temp_token = un->un_swr_token;
7039 		mutex_exit(SD_MUTEX(un));
7040 		scsi_watch_suspend(temp_token);
7041 		mutex_enter(SD_MUTEX(un));
7042 	}
7043 
7044 	if (un->un_reset_throttle_timeid != NULL) {
7045 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7046 		un->un_reset_throttle_timeid = NULL;
7047 		mutex_exit(SD_MUTEX(un));
7048 		(void) untimeout(temp_id);
7049 		mutex_enter(SD_MUTEX(un));
7050 	}
7051 
7052 	if (un->un_dcvb_timeid != NULL) {
7053 		timeout_id_t temp_id = un->un_dcvb_timeid;
7054 		un->un_dcvb_timeid = NULL;
7055 		mutex_exit(SD_MUTEX(un));
7056 		(void) untimeout(temp_id);
7057 		mutex_enter(SD_MUTEX(un));
7058 	}
7059 
7060 	mutex_enter(&un->un_pm_mutex);
7061 	if (un->un_pm_timeid != NULL) {
7062 		timeout_id_t temp_id = un->un_pm_timeid;
7063 		un->un_pm_timeid = NULL;
7064 		mutex_exit(&un->un_pm_mutex);
7065 		mutex_exit(SD_MUTEX(un));
7066 		(void) untimeout(temp_id);
7067 		mutex_enter(SD_MUTEX(un));
7068 	} else {
7069 		mutex_exit(&un->un_pm_mutex);
7070 	}
7071 
7072 	if (un->un_retry_timeid != NULL) {
7073 		timeout_id_t temp_id = un->un_retry_timeid;
7074 		un->un_retry_timeid = NULL;
7075 		mutex_exit(SD_MUTEX(un));
7076 		(void) untimeout(temp_id);
7077 		mutex_enter(SD_MUTEX(un));
7078 	}
7079 
7080 	if (un->un_direct_priority_timeid != NULL) {
7081 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7082 		un->un_direct_priority_timeid = NULL;
7083 		mutex_exit(SD_MUTEX(un));
7084 		(void) untimeout(temp_id);
7085 		mutex_enter(SD_MUTEX(un));
7086 	}
7087 
7088 	if (un->un_f_is_fibre == TRUE) {
7089 		/*
7090 		 * Remove callbacks for insert and remove events
7091 		 */
7092 		if (un->un_insert_event != NULL) {
7093 			mutex_exit(SD_MUTEX(un));
7094 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
7095 			mutex_enter(SD_MUTEX(un));
7096 			un->un_insert_event = NULL;
7097 		}
7098 
7099 		if (un->un_remove_event != NULL) {
7100 			mutex_exit(SD_MUTEX(un));
7101 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
7102 			mutex_enter(SD_MUTEX(un));
7103 			un->un_remove_event = NULL;
7104 		}
7105 	}
7106 
7107 	mutex_exit(SD_MUTEX(un));
7108 
7109 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
7110 
7111 	return (DDI_SUCCESS);
7112 }
7113 
7114 
7115 /*
7116  *    Function: sd_ddi_pm_suspend
7117  *
7118  * Description: Set the drive state to low power.
7119  *		Someone else is required to actually change the drive
7120  *		power level.
7121  *
7122  *   Arguments: un - driver soft state (unit) structure
7123  *
7124  * Return Code: DDI_FAILURE or DDI_SUCCESS
7125  *
7126  *     Context: Kernel thread context
7127  */
7128 
7129 static int
7130 sd_ddi_pm_suspend(struct sd_lun *un)
7131 {
7132 	ASSERT(un != NULL);
7133 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
7134 
7135 	ASSERT(!mutex_owned(SD_MUTEX(un)));
7136 	mutex_enter(SD_MUTEX(un));
7137 
7138 	/*
7139 	 * Exit if power management is not enabled for this device, or if
7140 	 * the device is being used by HA.
7141 	 */
7142 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
7143 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
7144 		mutex_exit(SD_MUTEX(un));
7145 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
7146 		return (DDI_SUCCESS);
7147 	}
7148 
7149 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
7150 	    un->un_ncmds_in_driver);
7151 
7152 	/*
7153 	 * See if the device is not busy, ie.:
7154 	 *    - we have no commands in the driver for this device
7155 	 *    - not waiting for resources
7156 	 */
7157 	if ((un->un_ncmds_in_driver == 0) &&
7158 	    (un->un_state != SD_STATE_RWAIT)) {
7159 		/*
7160 		 * The device is not busy, so it is OK to go to low power state.
7161 		 * Indicate low power, but rely on someone else to actually
7162 		 * change it.
7163 		 */
7164 		mutex_enter(&un->un_pm_mutex);
7165 		un->un_pm_count = -1;
7166 		mutex_exit(&un->un_pm_mutex);
7167 		un->un_power_level = SD_SPINDLE_OFF;
7168 	}
7169 
7170 	mutex_exit(SD_MUTEX(un));
7171 
7172 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
7173 
7174 	return (DDI_SUCCESS);
7175 }
7176 
7177 
7178 /*
7179  *    Function: sd_ddi_resume
7180  *
7181  * Description: Performs system power-up operations..
7182  *
7183  * Return Code: DDI_SUCCESS
7184  *		DDI_FAILURE
7185  *
7186  *     Context: Kernel thread context
7187  */
7188 
7189 static int
7190 sd_ddi_resume(dev_info_t *devi)
7191 {
7192 	struct	sd_lun	*un;
7193 
7194 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
7195 	if (un == NULL) {
7196 		return (DDI_FAILURE);
7197 	}
7198 
7199 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
7200 
7201 	mutex_enter(SD_MUTEX(un));
7202 	Restore_state(un);
7203 
7204 	/*
7205 	 * Restore the state which was saved to give the
7206 	 * the right state in un_last_state
7207 	 */
7208 	un->un_last_state = un->un_save_state;
7209 	/*
7210 	 * Note: throttle comes back at full.
7211 	 * Also note: this MUST be done before calling pm_raise_power
7212 	 * otherwise the system can get hung in biowait. The scenario where
7213 	 * this'll happen is under cpr suspend. Writing of the system
7214 	 * state goes through sddump, which writes 0 to un_throttle. If
7215 	 * writing the system state then fails, example if the partition is
7216 	 * too small, then cpr attempts a resume. If throttle isn't restored
7217 	 * from the saved value until after calling pm_raise_power then
7218 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
7219 	 * in biowait.
7220 	 */
7221 	un->un_throttle = un->un_saved_throttle;
7222 
7223 	/*
7224 	 * The chance of failure is very rare as the only command done in power
7225 	 * entry point is START command when you transition from 0->1 or
7226 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
7227 	 * which suspend was done. Ignore the return value as the resume should
7228 	 * not be failed. In the case of removable media the media need not be
7229 	 * inserted and hence there is a chance that raise power will fail with
7230 	 * media not present.
7231 	 */
7232 	if (un->un_f_attach_spinup) {
7233 		mutex_exit(SD_MUTEX(un));
7234 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
7235 		mutex_enter(SD_MUTEX(un));
7236 	}
7237 
7238 	/*
7239 	 * Don't broadcast to the suspend cv and therefore possibly
7240 	 * start I/O until after power has been restored.
7241 	 */
7242 	cv_broadcast(&un->un_suspend_cv);
7243 	cv_broadcast(&un->un_state_cv);
7244 
7245 	/* restart thread */
7246 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
7247 		scsi_watch_resume(un->un_swr_token);
7248 	}
7249 
7250 #if (defined(__fibre))
7251 	if (un->un_f_is_fibre == TRUE) {
7252 		/*
7253 		 * Add callbacks for insert and remove events
7254 		 */
7255 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
7256 			sd_init_event_callbacks(un);
7257 		}
7258 	}
7259 #endif
7260 
7261 	/*
7262 	 * Transport any pending commands to the target.
7263 	 *
7264 	 * If this is a low-activity device commands in queue will have to wait
7265 	 * until new commands come in, which may take awhile. Also, we
7266 	 * specifically don't check un_ncmds_in_transport because we know that
7267 	 * there really are no commands in progress after the unit was
7268 	 * suspended and we could have reached the throttle level, been
7269 	 * suspended, and have no new commands coming in for awhile. Highly
7270 	 * unlikely, but so is the low-activity disk scenario.
7271 	 */
7272 	ddi_xbuf_dispatch(un->un_xbuf_attr);
7273 
7274 	sd_start_cmds(un, NULL);
7275 	mutex_exit(SD_MUTEX(un));
7276 
7277 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
7278 
7279 	return (DDI_SUCCESS);
7280 }
7281 
7282 
7283 /*
7284  *    Function: sd_ddi_pm_resume
7285  *
7286  * Description: Set the drive state to powered on.
7287  *		Someone else is required to actually change the drive
7288  *		power level.
7289  *
7290  *   Arguments: un - driver soft state (unit) structure
7291  *
7292  * Return Code: DDI_SUCCESS
7293  *
7294  *     Context: Kernel thread context
7295  */
7296 
7297 static int
7298 sd_ddi_pm_resume(struct sd_lun *un)
7299 {
7300 	ASSERT(un != NULL);
7301 
7302 	ASSERT(!mutex_owned(SD_MUTEX(un)));
7303 	mutex_enter(SD_MUTEX(un));
7304 	un->un_power_level = SD_SPINDLE_ON;
7305 
7306 	ASSERT(!mutex_owned(&un->un_pm_mutex));
7307 	mutex_enter(&un->un_pm_mutex);
7308 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
7309 		un->un_pm_count++;
7310 		ASSERT(un->un_pm_count == 0);
7311 		/*
7312 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
7313 		 * un_suspend_cv is for a system resume, not a power management
7314 		 * device resume. (4297749)
7315 		 *	 cv_broadcast(&un->un_suspend_cv);
7316 		 */
7317 	}
7318 	mutex_exit(&un->un_pm_mutex);
7319 	mutex_exit(SD_MUTEX(un));
7320 
7321 	return (DDI_SUCCESS);
7322 }
7323 
7324 
7325 /*
7326  *    Function: sd_pm_idletimeout_handler
7327  *
7328  * Description: A timer routine that's active only while a device is busy.
7329  *		The purpose is to extend slightly the pm framework's busy
7330  *		view of the device to prevent busy/idle thrashing for
7331  *		back-to-back commands. Do this by comparing the current time
7332  *		to the time at which the last command completed and when the
7333  *		difference is greater than sd_pm_idletime, call
7334  *		pm_idle_component. In addition to indicating idle to the pm
7335  *		framework, update the chain type to again use the internal pm
7336  *		layers of the driver.
7337  *
7338  *   Arguments: arg - driver soft state (unit) structure
7339  *
7340  *     Context: Executes in a timeout(9F) thread context
7341  */
7342 
7343 static void
7344 sd_pm_idletimeout_handler(void *arg)
7345 {
7346 	struct sd_lun *un = arg;
7347 
7348 	time_t	now;
7349 
7350 	mutex_enter(&sd_detach_mutex);
7351 	if (un->un_detach_count != 0) {
7352 		/* Abort if the instance is detaching */
7353 		mutex_exit(&sd_detach_mutex);
7354 		return;
7355 	}
7356 	mutex_exit(&sd_detach_mutex);
7357 
7358 	now = ddi_get_time();
7359 	/*
7360 	 * Grab both mutexes, in the proper order, since we're accessing
7361 	 * both PM and softstate variables.
7362 	 */
7363 	mutex_enter(SD_MUTEX(un));
7364 	mutex_enter(&un->un_pm_mutex);
7365 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
7366 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
7367 		/*
7368 		 * Update the chain types.
7369 		 * This takes affect on the next new command received.
7370 		 */
7371 		if (un->un_f_non_devbsize_supported) {
7372 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
7373 		} else {
7374 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
7375 		}
7376 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
7377 
7378 		SD_TRACE(SD_LOG_IO_PM, un,
7379 		    "sd_pm_idletimeout_handler: idling device\n");
7380 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7381 		un->un_pm_idle_timeid = NULL;
7382 	} else {
7383 		un->un_pm_idle_timeid =
7384 			timeout(sd_pm_idletimeout_handler, un,
7385 			(drv_usectohz((clock_t)300000))); /* 300 ms. */
7386 	}
7387 	mutex_exit(&un->un_pm_mutex);
7388 	mutex_exit(SD_MUTEX(un));
7389 }
7390 
7391 
7392 /*
7393  *    Function: sd_pm_timeout_handler
7394  *
7395  * Description: Callback to tell framework we are idle.
7396  *
7397  *     Context: timeout(9f) thread context.
7398  */
7399 
7400 static void
7401 sd_pm_timeout_handler(void *arg)
7402 {
7403 	struct sd_lun *un = arg;
7404 
7405 	(void) pm_idle_component(SD_DEVINFO(un), 0);
7406 	mutex_enter(&un->un_pm_mutex);
7407 	un->un_pm_timeid = NULL;
7408 	mutex_exit(&un->un_pm_mutex);
7409 }
7410 
7411 
7412 /*
7413  *    Function: sdpower
7414  *
7415  * Description: PM entry point.
7416  *
7417  * Return Code: DDI_SUCCESS
7418  *		DDI_FAILURE
7419  *
7420  *     Context: Kernel thread context
7421  */
7422 
7423 static int
7424 sdpower(dev_info_t *devi, int component, int level)
7425 {
7426 	struct sd_lun	*un;
7427 	int		instance;
7428 	int		rval = DDI_SUCCESS;
7429 	uint_t		i, log_page_size, maxcycles, ncycles;
7430 	uchar_t		*log_page_data;
7431 	int		log_sense_page;
7432 	int		medium_present;
7433 	time_t		intvlp;
7434 	dev_t		dev;
7435 	struct pm_trans_data	sd_pm_tran_data;
7436 	uchar_t		save_state;
7437 	int		sval;
7438 	uchar_t		state_before_pm;
7439 	int		got_semaphore_here;
7440 
7441 	instance = ddi_get_instance(devi);
7442 
7443 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
7444 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
7445 	    component != 0) {
7446 		return (DDI_FAILURE);
7447 	}
7448 
7449 	dev = sd_make_device(SD_DEVINFO(un));
7450 
7451 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
7452 
7453 	/*
7454 	 * Must synchronize power down with close.
7455 	 * Attempt to decrement/acquire the open/close semaphore,
7456 	 * but do NOT wait on it. If it's not greater than zero,
7457 	 * ie. it can't be decremented without waiting, then
7458 	 * someone else, either open or close, already has it
7459 	 * and the try returns 0. Use that knowledge here to determine
7460 	 * if it's OK to change the device power level.
7461 	 * Also, only increment it on exit if it was decremented, ie. gotten,
7462 	 * here.
7463 	 */
7464 	got_semaphore_here = sema_tryp(&un->un_semoclose);
7465 
7466 	mutex_enter(SD_MUTEX(un));
7467 
7468 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
7469 	    un->un_ncmds_in_driver);
7470 
7471 	/*
7472 	 * If un_ncmds_in_driver is non-zero it indicates commands are
7473 	 * already being processed in the driver, or if the semaphore was
7474 	 * not gotten here it indicates an open or close is being processed.
7475 	 * At the same time somebody is requesting to go low power which
7476 	 * can't happen, therefore we need to return failure.
7477 	 */
7478 	if ((level == SD_SPINDLE_OFF) &&
7479 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
7480 		mutex_exit(SD_MUTEX(un));
7481 
7482 		if (got_semaphore_here != 0) {
7483 			sema_v(&un->un_semoclose);
7484 		}
7485 		SD_TRACE(SD_LOG_IO_PM, un,
7486 		    "sdpower: exit, device has queued cmds.\n");
7487 		return (DDI_FAILURE);
7488 	}
7489 
7490 	/*
7491 	 * if it is OFFLINE that means the disk is completely dead
7492 	 * in our case we have to put the disk in on or off by sending commands
7493 	 * Of course that will fail anyway so return back here.
7494 	 *
7495 	 * Power changes to a device that's OFFLINE or SUSPENDED
7496 	 * are not allowed.
7497 	 */
7498 	if ((un->un_state == SD_STATE_OFFLINE) ||
7499 	    (un->un_state == SD_STATE_SUSPENDED)) {
7500 		mutex_exit(SD_MUTEX(un));
7501 
7502 		if (got_semaphore_here != 0) {
7503 			sema_v(&un->un_semoclose);
7504 		}
7505 		SD_TRACE(SD_LOG_IO_PM, un,
7506 		    "sdpower: exit, device is off-line.\n");
7507 		return (DDI_FAILURE);
7508 	}
7509 
7510 	/*
7511 	 * Change the device's state to indicate it's power level
7512 	 * is being changed. Do this to prevent a power off in the
7513 	 * middle of commands, which is especially bad on devices
7514 	 * that are really powered off instead of just spun down.
7515 	 */
7516 	state_before_pm = un->un_state;
7517 	un->un_state = SD_STATE_PM_CHANGING;
7518 
7519 	mutex_exit(SD_MUTEX(un));
7520 
7521 	/*
7522 	 * If "pm-capable" property is set to TRUE by HBA drivers,
7523 	 * bypass the following checking, otherwise, check the log
7524 	 * sense information for this device
7525 	 */
7526 	if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) {
7527 		/*
7528 		 * Get the log sense information to understand whether the
7529 		 * the powercycle counts have gone beyond the threshhold.
7530 		 */
7531 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
7532 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
7533 
7534 		mutex_enter(SD_MUTEX(un));
7535 		log_sense_page = un->un_start_stop_cycle_page;
7536 		mutex_exit(SD_MUTEX(un));
7537 
7538 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
7539 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
7540 #ifdef	SDDEBUG
7541 		if (sd_force_pm_supported) {
7542 			/* Force a successful result */
7543 			rval = 0;
7544 		}
7545 #endif
7546 		if (rval != 0) {
7547 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
7548 			    "Log Sense Failed\n");
7549 			kmem_free(log_page_data, log_page_size);
7550 			/* Cannot support power management on those drives */
7551 
7552 			if (got_semaphore_here != 0) {
7553 				sema_v(&un->un_semoclose);
7554 			}
7555 			/*
7556 			 * On exit put the state back to it's original value
7557 			 * and broadcast to anyone waiting for the power
7558 			 * change completion.
7559 			 */
7560 			mutex_enter(SD_MUTEX(un));
7561 			un->un_state = state_before_pm;
7562 			cv_broadcast(&un->un_suspend_cv);
7563 			mutex_exit(SD_MUTEX(un));
7564 			SD_TRACE(SD_LOG_IO_PM, un,
7565 			    "sdpower: exit, Log Sense Failed.\n");
7566 			return (DDI_FAILURE);
7567 		}
7568 
7569 		/*
7570 		 * From the page data - Convert the essential information to
7571 		 * pm_trans_data
7572 		 */
7573 		maxcycles =
7574 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
7575 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
7576 
7577 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
7578 
7579 		ncycles =
7580 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
7581 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
7582 
7583 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
7584 
7585 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
7586 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
7587 			    log_page_data[8+i];
7588 		}
7589 
7590 		kmem_free(log_page_data, log_page_size);
7591 
7592 		/*
7593 		 * Call pm_trans_check routine to get the Ok from
7594 		 * the global policy
7595 		 */
7596 
7597 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
7598 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
7599 
7600 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
7601 #ifdef	SDDEBUG
7602 		if (sd_force_pm_supported) {
7603 			/* Force a successful result */
7604 			rval = 1;
7605 		}
7606 #endif
7607 		switch (rval) {
7608 		case 0:
7609 			/*
7610 			 * Not Ok to Power cycle or error in parameters passed
7611 			 * Would have given the advised time to consider power
7612 			 * cycle. Based on the new intvlp parameter we are
7613 			 * supposed to pretend we are busy so that pm framework
7614 			 * will never call our power entry point. Because of
7615 			 * that install a timeout handler and wait for the
7616 			 * recommended time to elapse so that power management
7617 			 * can be effective again.
7618 			 *
7619 			 * To effect this behavior, call pm_busy_component to
7620 			 * indicate to the framework this device is busy.
7621 			 * By not adjusting un_pm_count the rest of PM in
7622 			 * the driver will function normally, and independant
7623 			 * of this but because the framework is told the device
7624 			 * is busy it won't attempt powering down until it gets
7625 			 * a matching idle. The timeout handler sends this.
7626 			 * Note: sd_pm_entry can't be called here to do this
7627 			 * because sdpower may have been called as a result
7628 			 * of a call to pm_raise_power from within sd_pm_entry.
7629 			 *
7630 			 * If a timeout handler is already active then
7631 			 * don't install another.
7632 			 */
7633 			mutex_enter(&un->un_pm_mutex);
7634 			if (un->un_pm_timeid == NULL) {
7635 				un->un_pm_timeid =
7636 				    timeout(sd_pm_timeout_handler,
7637 				    un, intvlp * drv_usectohz(1000000));
7638 				mutex_exit(&un->un_pm_mutex);
7639 				(void) pm_busy_component(SD_DEVINFO(un), 0);
7640 			} else {
7641 				mutex_exit(&un->un_pm_mutex);
7642 			}
7643 			if (got_semaphore_here != 0) {
7644 				sema_v(&un->un_semoclose);
7645 			}
7646 			/*
7647 			 * On exit put the state back to it's original value
7648 			 * and broadcast to anyone waiting for the power
7649 			 * change completion.
7650 			 */
7651 			mutex_enter(SD_MUTEX(un));
7652 			un->un_state = state_before_pm;
7653 			cv_broadcast(&un->un_suspend_cv);
7654 			mutex_exit(SD_MUTEX(un));
7655 
7656 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
7657 			    "trans check Failed, not ok to power cycle.\n");
7658 			return (DDI_FAILURE);
7659 
7660 		case -1:
7661 			if (got_semaphore_here != 0) {
7662 				sema_v(&un->un_semoclose);
7663 			}
7664 			/*
7665 			 * On exit put the state back to it's original value
7666 			 * and broadcast to anyone waiting for the power
7667 			 * change completion.
7668 			 */
7669 			mutex_enter(SD_MUTEX(un));
7670 			un->un_state = state_before_pm;
7671 			cv_broadcast(&un->un_suspend_cv);
7672 			mutex_exit(SD_MUTEX(un));
7673 			SD_TRACE(SD_LOG_IO_PM, un,
7674 			    "sdpower: exit, trans check command Failed.\n");
7675 			return (DDI_FAILURE);
7676 		}
7677 	}
7678 
7679 	if (level == SD_SPINDLE_OFF) {
7680 		/*
7681 		 * Save the last state... if the STOP FAILS we need it
7682 		 * for restoring
7683 		 */
7684 		mutex_enter(SD_MUTEX(un));
7685 		save_state = un->un_last_state;
7686 		/*
7687 		 * There must not be any cmds. getting processed
7688 		 * in the driver when we get here. Power to the
7689 		 * device is potentially going off.
7690 		 */
7691 		ASSERT(un->un_ncmds_in_driver == 0);
7692 		mutex_exit(SD_MUTEX(un));
7693 
7694 		/*
7695 		 * For now suspend the device completely before spindle is
7696 		 * turned off
7697 		 */
7698 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
7699 			if (got_semaphore_here != 0) {
7700 				sema_v(&un->un_semoclose);
7701 			}
7702 			/*
7703 			 * On exit put the state back to it's original value
7704 			 * and broadcast to anyone waiting for the power
7705 			 * change completion.
7706 			 */
7707 			mutex_enter(SD_MUTEX(un));
7708 			un->un_state = state_before_pm;
7709 			cv_broadcast(&un->un_suspend_cv);
7710 			mutex_exit(SD_MUTEX(un));
7711 			SD_TRACE(SD_LOG_IO_PM, un,
7712 			    "sdpower: exit, PM suspend Failed.\n");
7713 			return (DDI_FAILURE);
7714 		}
7715 	}
7716 
7717 	/*
7718 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
7719 	 * close, or strategy. Dump no long uses this routine, it uses it's
7720 	 * own code so it can be done in polled mode.
7721 	 */
7722 
7723 	medium_present = TRUE;
7724 
7725 	/*
7726 	 * When powering up, issue a TUR in case the device is at unit
7727 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
7728 	 * a deadlock on un_pm_busy_cv will occur.
7729 	 */
7730 	if (level == SD_SPINDLE_ON) {
7731 		(void) sd_send_scsi_TEST_UNIT_READY(un,
7732 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
7733 	}
7734 
7735 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
7736 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
7737 
7738 	sval = sd_send_scsi_START_STOP_UNIT(un,
7739 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
7740 	    SD_PATH_DIRECT);
7741 	/* Command failed, check for media present. */
7742 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
7743 		medium_present = FALSE;
7744 	}
7745 
7746 	/*
7747 	 * The conditions of interest here are:
7748 	 *   if a spindle off with media present fails,
7749 	 *	then restore the state and return an error.
7750 	 *   else if a spindle on fails,
7751 	 *	then return an error (there's no state to restore).
7752 	 * In all other cases we setup for the new state
7753 	 * and return success.
7754 	 */
7755 	switch (level) {
7756 	case SD_SPINDLE_OFF:
7757 		if ((medium_present == TRUE) && (sval != 0)) {
7758 			/* The stop command from above failed */
7759 			rval = DDI_FAILURE;
7760 			/*
7761 			 * The stop command failed, and we have media
7762 			 * present. Put the level back by calling the
7763 			 * sd_pm_resume() and set the state back to
7764 			 * it's previous value.
7765 			 */
7766 			(void) sd_ddi_pm_resume(un);
7767 			mutex_enter(SD_MUTEX(un));
7768 			un->un_last_state = save_state;
7769 			mutex_exit(SD_MUTEX(un));
7770 			break;
7771 		}
7772 		/*
7773 		 * The stop command from above succeeded.
7774 		 */
7775 		if (un->un_f_monitor_media_state) {
7776 			/*
7777 			 * Terminate watch thread in case of removable media
7778 			 * devices going into low power state. This is as per
7779 			 * the requirements of pm framework, otherwise commands
7780 			 * will be generated for the device (through watch
7781 			 * thread), even when the device is in low power state.
7782 			 */
7783 			mutex_enter(SD_MUTEX(un));
7784 			un->un_f_watcht_stopped = FALSE;
7785 			if (un->un_swr_token != NULL) {
7786 				opaque_t temp_token = un->un_swr_token;
7787 				un->un_f_watcht_stopped = TRUE;
7788 				un->un_swr_token = NULL;
7789 				mutex_exit(SD_MUTEX(un));
7790 				(void) scsi_watch_request_terminate(temp_token,
7791 				    SCSI_WATCH_TERMINATE_WAIT);
7792 			} else {
7793 				mutex_exit(SD_MUTEX(un));
7794 			}
7795 		}
7796 		break;
7797 
7798 	default:	/* The level requested is spindle on... */
7799 		/*
7800 		 * Legacy behavior: return success on a failed spinup
7801 		 * if there is no media in the drive.
7802 		 * Do this by looking at medium_present here.
7803 		 */
7804 		if ((sval != 0) && medium_present) {
7805 			/* The start command from above failed */
7806 			rval = DDI_FAILURE;
7807 			break;
7808 		}
7809 		/*
7810 		 * The start command from above succeeded
7811 		 * Resume the devices now that we have
7812 		 * started the disks
7813 		 */
7814 		(void) sd_ddi_pm_resume(un);
7815 
7816 		/*
7817 		 * Resume the watch thread since it was suspended
7818 		 * when the device went into low power mode.
7819 		 */
7820 		if (un->un_f_monitor_media_state) {
7821 			mutex_enter(SD_MUTEX(un));
7822 			if (un->un_f_watcht_stopped == TRUE) {
7823 				opaque_t temp_token;
7824 
7825 				un->un_f_watcht_stopped = FALSE;
7826 				mutex_exit(SD_MUTEX(un));
7827 				temp_token = scsi_watch_request_submit(
7828 				    SD_SCSI_DEVP(un),
7829 				    sd_check_media_time,
7830 				    SENSE_LENGTH, sd_media_watch_cb,
7831 				    (caddr_t)dev);
7832 				mutex_enter(SD_MUTEX(un));
7833 				un->un_swr_token = temp_token;
7834 			}
7835 			mutex_exit(SD_MUTEX(un));
7836 		}
7837 	}
7838 	if (got_semaphore_here != 0) {
7839 		sema_v(&un->un_semoclose);
7840 	}
7841 	/*
7842 	 * On exit put the state back to it's original value
7843 	 * and broadcast to anyone waiting for the power
7844 	 * change completion.
7845 	 */
7846 	mutex_enter(SD_MUTEX(un));
7847 	un->un_state = state_before_pm;
7848 	cv_broadcast(&un->un_suspend_cv);
7849 	mutex_exit(SD_MUTEX(un));
7850 
7851 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
7852 
7853 	return (rval);
7854 }
7855 
7856 
7857 
7858 /*
7859  *    Function: sdattach
7860  *
7861  * Description: Driver's attach(9e) entry point function.
7862  *
7863  *   Arguments: devi - opaque device info handle
7864  *		cmd  - attach  type
7865  *
7866  * Return Code: DDI_SUCCESS
7867  *		DDI_FAILURE
7868  *
7869  *     Context: Kernel thread context
7870  */
7871 
7872 static int
7873 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
7874 {
7875 	switch (cmd) {
7876 	case DDI_ATTACH:
7877 		return (sd_unit_attach(devi));
7878 	case DDI_RESUME:
7879 		return (sd_ddi_resume(devi));
7880 	default:
7881 		break;
7882 	}
7883 	return (DDI_FAILURE);
7884 }
7885 
7886 
7887 /*
7888  *    Function: sddetach
7889  *
7890  * Description: Driver's detach(9E) entry point function.
7891  *
7892  *   Arguments: devi - opaque device info handle
7893  *		cmd  - detach  type
7894  *
7895  * Return Code: DDI_SUCCESS
7896  *		DDI_FAILURE
7897  *
7898  *     Context: Kernel thread context
7899  */
7900 
7901 static int
7902 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
7903 {
7904 	switch (cmd) {
7905 	case DDI_DETACH:
7906 		return (sd_unit_detach(devi));
7907 	case DDI_SUSPEND:
7908 		return (sd_ddi_suspend(devi));
7909 	default:
7910 		break;
7911 	}
7912 	return (DDI_FAILURE);
7913 }
7914 
7915 
7916 /*
7917  *     Function: sd_sync_with_callback
7918  *
7919  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
7920  *		 state while the callback routine is active.
7921  *
7922  *    Arguments: un: softstate structure for the instance
7923  *
7924  *	Context: Kernel thread context
7925  */
7926 
7927 static void
7928 sd_sync_with_callback(struct sd_lun *un)
7929 {
7930 	ASSERT(un != NULL);
7931 
7932 	mutex_enter(SD_MUTEX(un));
7933 
7934 	ASSERT(un->un_in_callback >= 0);
7935 
7936 	while (un->un_in_callback > 0) {
7937 		mutex_exit(SD_MUTEX(un));
7938 		delay(2);
7939 		mutex_enter(SD_MUTEX(un));
7940 	}
7941 
7942 	mutex_exit(SD_MUTEX(un));
7943 }
7944 
7945 /*
7946  *    Function: sd_unit_attach
7947  *
7948  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
7949  *		the soft state structure for the device and performs
7950  *		all necessary structure and device initializations.
7951  *
7952  *   Arguments: devi: the system's dev_info_t for the device.
7953  *
7954  * Return Code: DDI_SUCCESS if attach is successful.
7955  *		DDI_FAILURE if any part of the attach fails.
7956  *
7957  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
7958  *		Kernel thread context only.  Can sleep.
7959  */
7960 
7961 static int
7962 sd_unit_attach(dev_info_t *devi)
7963 {
7964 	struct	scsi_device	*devp;
7965 	struct	sd_lun		*un;
7966 	char			*variantp;
7967 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
7968 	int	instance;
7969 	int	rval;
7970 	int	wc_enabled;
7971 	int	tgt;
7972 	uint64_t	capacity;
7973 	uint_t		lbasize;
7974 	dev_info_t	*pdip = ddi_get_parent(devi);
7975 
7976 	/*
7977 	 * Retrieve the target driver's private data area. This was set
7978 	 * up by the HBA.
7979 	 */
7980 	devp = ddi_get_driver_private(devi);
7981 
7982 	/*
7983 	 * Retrieve the target ID of the device.
7984 	 */
7985 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7986 	    SCSI_ADDR_PROP_TARGET, -1);
7987 
7988 	/*
7989 	 * Since we have no idea what state things were left in by the last
7990 	 * user of the device, set up some 'default' settings, ie. turn 'em
7991 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
7992 	 * Do this before the scsi_probe, which sends an inquiry.
7993 	 * This is a fix for bug (4430280).
7994 	 * Of special importance is wide-xfer. The drive could have been left
7995 	 * in wide transfer mode by the last driver to communicate with it,
7996 	 * this includes us. If that's the case, and if the following is not
7997 	 * setup properly or we don't re-negotiate with the drive prior to
7998 	 * transferring data to/from the drive, it causes bus parity errors,
7999 	 * data overruns, and unexpected interrupts. This first occurred when
8000 	 * the fix for bug (4378686) was made.
8001 	 */
8002 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
8003 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
8004 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
8005 
8006 	/*
8007 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
8008 	 * on a target. Setting it per lun instance actually sets the
8009 	 * capability of this target, which affects those luns already
8010 	 * attached on the same target. So during attach, we can only disable
8011 	 * this capability only when no other lun has been attached on this
8012 	 * target. By doing this, we assume a target has the same tagged-qing
8013 	 * capability for every lun. The condition can be removed when HBA
8014 	 * is changed to support per lun based tagged-qing capability.
8015 	 */
8016 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
8017 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
8018 	}
8019 
8020 	/*
8021 	 * Use scsi_probe() to issue an INQUIRY command to the device.
8022 	 * This call will allocate and fill in the scsi_inquiry structure
8023 	 * and point the sd_inq member of the scsi_device structure to it.
8024 	 * If the attach succeeds, then this memory will not be de-allocated
8025 	 * (via scsi_unprobe()) until the instance is detached.
8026 	 */
8027 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
8028 		goto probe_failed;
8029 	}
8030 
8031 	/*
8032 	 * Check the device type as specified in the inquiry data and
8033 	 * claim it if it is of a type that we support.
8034 	 */
8035 	switch (devp->sd_inq->inq_dtype) {
8036 	case DTYPE_DIRECT:
8037 		break;
8038 	case DTYPE_RODIRECT:
8039 		break;
8040 	case DTYPE_OPTICAL:
8041 		break;
8042 	case DTYPE_NOTPRESENT:
8043 	default:
8044 		/* Unsupported device type; fail the attach. */
8045 		goto probe_failed;
8046 	}
8047 
8048 	/*
8049 	 * Allocate the soft state structure for this unit.
8050 	 *
8051 	 * We rely upon this memory being set to all zeroes by
8052 	 * ddi_soft_state_zalloc().  We assume that any member of the
8053 	 * soft state structure that is not explicitly initialized by
8054 	 * this routine will have a value of zero.
8055 	 */
8056 	instance = ddi_get_instance(devp->sd_dev);
8057 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
8058 		goto probe_failed;
8059 	}
8060 
8061 	/*
8062 	 * Retrieve a pointer to the newly-allocated soft state.
8063 	 *
8064 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
8065 	 * was successful, unless something has gone horribly wrong and the
8066 	 * ddi's soft state internals are corrupt (in which case it is
8067 	 * probably better to halt here than just fail the attach....)
8068 	 */
8069 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
8070 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
8071 		    instance);
8072 		/*NOTREACHED*/
8073 	}
8074 
8075 	/*
8076 	 * Link the back ptr of the driver soft state to the scsi_device
8077 	 * struct for this lun.
8078 	 * Save a pointer to the softstate in the driver-private area of
8079 	 * the scsi_device struct.
8080 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
8081 	 * we first set un->un_sd below.
8082 	 */
8083 	un->un_sd = devp;
8084 	devp->sd_private = (opaque_t)un;
8085 
8086 	/*
8087 	 * The following must be after devp is stored in the soft state struct.
8088 	 */
8089 #ifdef SDDEBUG
8090 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8091 	    "%s_unit_attach: un:0x%p instance:%d\n",
8092 	    ddi_driver_name(devi), un, instance);
8093 #endif
8094 
8095 	/*
8096 	 * Set up the device type and node type (for the minor nodes).
8097 	 * By default we assume that the device can at least support the
8098 	 * Common Command Set. Call it a CD-ROM if it reports itself
8099 	 * as a RODIRECT device.
8100 	 */
8101 	switch (devp->sd_inq->inq_dtype) {
8102 	case DTYPE_RODIRECT:
8103 		un->un_node_type = DDI_NT_CD_CHAN;
8104 		un->un_ctype	 = CTYPE_CDROM;
8105 		break;
8106 	case DTYPE_OPTICAL:
8107 		un->un_node_type = DDI_NT_BLOCK_CHAN;
8108 		un->un_ctype	 = CTYPE_ROD;
8109 		break;
8110 	default:
8111 		un->un_node_type = DDI_NT_BLOCK_CHAN;
8112 		un->un_ctype	 = CTYPE_CCS;
8113 		break;
8114 	}
8115 
8116 	/*
8117 	 * Try to read the interconnect type from the HBA.
8118 	 *
8119 	 * Note: This driver is currently compiled as two binaries, a parallel
8120 	 * scsi version (sd) and a fibre channel version (ssd). All functional
8121 	 * differences are determined at compile time. In the future a single
8122 	 * binary will be provided and the inteconnect type will be used to
8123 	 * differentiate between fibre and parallel scsi behaviors. At that time
8124 	 * it will be necessary for all fibre channel HBAs to support this
8125 	 * property.
8126 	 *
8127 	 * set un_f_is_fiber to TRUE ( default fiber )
8128 	 */
8129 	un->un_f_is_fibre = TRUE;
8130 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
8131 	case INTERCONNECT_SSA:
8132 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
8133 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8134 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
8135 		break;
8136 	case INTERCONNECT_PARALLEL:
8137 		un->un_f_is_fibre = FALSE;
8138 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
8139 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8140 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
8141 		break;
8142 	case INTERCONNECT_SATA:
8143 		un->un_f_is_fibre = FALSE;
8144 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
8145 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8146 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
8147 		break;
8148 	case INTERCONNECT_FIBRE:
8149 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
8150 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8151 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
8152 		break;
8153 	case INTERCONNECT_FABRIC:
8154 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
8155 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
8156 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8157 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
8158 		break;
8159 	default:
8160 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
8161 		/*
8162 		 * The HBA does not support the "interconnect-type" property
8163 		 * (or did not provide a recognized type).
8164 		 *
8165 		 * Note: This will be obsoleted when a single fibre channel
8166 		 * and parallel scsi driver is delivered. In the meantime the
8167 		 * interconnect type will be set to the platform default.If that
8168 		 * type is not parallel SCSI, it means that we should be
8169 		 * assuming "ssd" semantics. However, here this also means that
8170 		 * the FC HBA is not supporting the "interconnect-type" property
8171 		 * like we expect it to, so log this occurrence.
8172 		 */
8173 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
8174 		if (!SD_IS_PARALLEL_SCSI(un)) {
8175 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8176 			    "sd_unit_attach: un:0x%p Assuming "
8177 			    "INTERCONNECT_FIBRE\n", un);
8178 		} else {
8179 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8180 			    "sd_unit_attach: un:0x%p Assuming "
8181 			    "INTERCONNECT_PARALLEL\n", un);
8182 			un->un_f_is_fibre = FALSE;
8183 		}
8184 #else
8185 		/*
8186 		 * Note: This source will be implemented when a single fibre
8187 		 * channel and parallel scsi driver is delivered. The default
8188 		 * will be to assume that if a device does not support the
8189 		 * "interconnect-type" property it is a parallel SCSI HBA and
8190 		 * we will set the interconnect type for parallel scsi.
8191 		 */
8192 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
8193 		un->un_f_is_fibre = FALSE;
8194 #endif
8195 		break;
8196 	}
8197 
8198 	if (un->un_f_is_fibre == TRUE) {
8199 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
8200 			SCSI_VERSION_3) {
8201 			switch (un->un_interconnect_type) {
8202 			case SD_INTERCONNECT_FIBRE:
8203 			case SD_INTERCONNECT_SSA:
8204 				un->un_node_type = DDI_NT_BLOCK_WWN;
8205 				break;
8206 			default:
8207 				break;
8208 			}
8209 		}
8210 	}
8211 
8212 	/*
8213 	 * Initialize the Request Sense command for the target
8214 	 */
8215 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
8216 		goto alloc_rqs_failed;
8217 	}
8218 
8219 	/*
8220 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
8221 	 * with seperate binary for sd and ssd.
8222 	 *
8223 	 * x86 has 1 binary, un_retry_count is set base on connection type.
8224 	 * The hardcoded values will go away when Sparc uses 1 binary
8225 	 * for sd and ssd.  This hardcoded values need to match
8226 	 * SD_RETRY_COUNT in sddef.h
8227 	 * The value used is base on interconnect type.
8228 	 * fibre = 3, parallel = 5
8229 	 */
8230 #if defined(__i386) || defined(__amd64)
8231 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
8232 #else
8233 	un->un_retry_count = SD_RETRY_COUNT;
8234 #endif
8235 
8236 	/*
8237 	 * Set the per disk retry count to the default number of retries
8238 	 * for disks and CDROMs. This value can be overridden by the
8239 	 * disk property list or an entry in sd.conf.
8240 	 */
8241 	un->un_notready_retry_count =
8242 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
8243 			: DISK_NOT_READY_RETRY_COUNT(un);
8244 
8245 	/*
8246 	 * Set the busy retry count to the default value of un_retry_count.
8247 	 * This can be overridden by entries in sd.conf or the device
8248 	 * config table.
8249 	 */
8250 	un->un_busy_retry_count = un->un_retry_count;
8251 
8252 	/*
8253 	 * Init the reset threshold for retries.  This number determines
8254 	 * how many retries must be performed before a reset can be issued
8255 	 * (for certain error conditions). This can be overridden by entries
8256 	 * in sd.conf or the device config table.
8257 	 */
8258 	un->un_reset_retry_count = (un->un_retry_count / 2);
8259 
8260 	/*
8261 	 * Set the victim_retry_count to the default un_retry_count
8262 	 */
8263 	un->un_victim_retry_count = (2 * un->un_retry_count);
8264 
8265 	/*
8266 	 * Set the reservation release timeout to the default value of
8267 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
8268 	 * device config table.
8269 	 */
8270 	un->un_reserve_release_time = 5;
8271 
8272 	/*
8273 	 * Set up the default maximum transfer size. Note that this may
8274 	 * get updated later in the attach, when setting up default wide
8275 	 * operations for disks.
8276 	 */
8277 #if defined(__i386) || defined(__amd64)
8278 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
8279 #else
8280 	un->un_max_xfer_size = (uint_t)maxphys;
8281 #endif
8282 
8283 	/*
8284 	 * Get "allow bus device reset" property (defaults to "enabled" if
8285 	 * the property was not defined). This is to disable bus resets for
8286 	 * certain kinds of error recovery. Note: In the future when a run-time
8287 	 * fibre check is available the soft state flag should default to
8288 	 * enabled.
8289 	 */
8290 	if (un->un_f_is_fibre == TRUE) {
8291 		un->un_f_allow_bus_device_reset = TRUE;
8292 	} else {
8293 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
8294 			"allow-bus-device-reset", 1) != 0) {
8295 			un->un_f_allow_bus_device_reset = TRUE;
8296 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8297 			"sd_unit_attach: un:0x%p Bus device reset enabled\n",
8298 				un);
8299 		} else {
8300 			un->un_f_allow_bus_device_reset = FALSE;
8301 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8302 			"sd_unit_attach: un:0x%p Bus device reset disabled\n",
8303 				un);
8304 		}
8305 	}
8306 
8307 	/*
8308 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
8309 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
8310 	 *
8311 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
8312 	 * property. The new "variant" property with a value of "atapi" has been
8313 	 * introduced so that future 'variants' of standard SCSI behavior (like
8314 	 * atapi) could be specified by the underlying HBA drivers by supplying
8315 	 * a new value for the "variant" property, instead of having to define a
8316 	 * new property.
8317 	 */
8318 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
8319 		un->un_f_cfg_is_atapi = TRUE;
8320 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8321 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
8322 	}
8323 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
8324 	    &variantp) == DDI_PROP_SUCCESS) {
8325 		if (strcmp(variantp, "atapi") == 0) {
8326 			un->un_f_cfg_is_atapi = TRUE;
8327 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8328 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
8329 		}
8330 		ddi_prop_free(variantp);
8331 	}
8332 
8333 	un->un_cmd_timeout	= SD_IO_TIME;
8334 
8335 	/* Info on current states, statuses, etc. (Updated frequently) */
8336 	un->un_state		= SD_STATE_NORMAL;
8337 	un->un_last_state	= SD_STATE_NORMAL;
8338 
8339 	/* Control & status info for command throttling */
8340 	un->un_throttle		= sd_max_throttle;
8341 	un->un_saved_throttle	= sd_max_throttle;
8342 	un->un_min_throttle	= sd_min_throttle;
8343 
8344 	if (un->un_f_is_fibre == TRUE) {
8345 		un->un_f_use_adaptive_throttle = TRUE;
8346 	} else {
8347 		un->un_f_use_adaptive_throttle = FALSE;
8348 	}
8349 
8350 	/* Removable media support. */
8351 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
8352 	un->un_mediastate		= DKIO_NONE;
8353 	un->un_specified_mediastate	= DKIO_NONE;
8354 
8355 	/* CVs for suspend/resume (PM or DR) */
8356 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
8357 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
8358 
8359 	/* Power management support. */
8360 	un->un_power_level = SD_SPINDLE_UNINIT;
8361 
8362 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
8363 	un->un_f_wcc_inprog = 0;
8364 
8365 	/*
8366 	 * The open/close semaphore is used to serialize threads executing
8367 	 * in the driver's open & close entry point routines for a given
8368 	 * instance.
8369 	 */
8370 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
8371 
8372 	/*
8373 	 * The conf file entry and softstate variable is a forceful override,
8374 	 * meaning a non-zero value must be entered to change the default.
8375 	 */
8376 	un->un_f_disksort_disabled = FALSE;
8377 
8378 	/*
8379 	 * Retrieve the properties from the static driver table or the driver
8380 	 * configuration file (.conf) for this unit and update the soft state
8381 	 * for the device as needed for the indicated properties.
8382 	 * Note: the property configuration needs to occur here as some of the
8383 	 * following routines may have dependancies on soft state flags set
8384 	 * as part of the driver property configuration.
8385 	 */
8386 	sd_read_unit_properties(un);
8387 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8388 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
8389 
8390 	/*
8391 	 * Only if a device has "hotpluggable" property, it is
8392 	 * treated as hotpluggable device. Otherwise, it is
8393 	 * regarded as non-hotpluggable one.
8394 	 */
8395 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
8396 	    -1) != -1) {
8397 		un->un_f_is_hotpluggable = TRUE;
8398 	}
8399 
8400 	/*
8401 	 * set unit's attributes(flags) according to "hotpluggable" and
8402 	 * RMB bit in INQUIRY data.
8403 	 */
8404 	sd_set_unit_attributes(un, devi);
8405 
8406 	/*
8407 	 * By default, we mark the capacity, lbasize, and geometry
8408 	 * as invalid. Only if we successfully read a valid capacity
8409 	 * will we update the un_blockcount and un_tgt_blocksize with the
8410 	 * valid values (the geometry will be validated later).
8411 	 */
8412 	un->un_f_blockcount_is_valid	= FALSE;
8413 	un->un_f_tgt_blocksize_is_valid	= FALSE;
8414 	un->un_f_geometry_is_valid	= FALSE;
8415 
8416 	/*
8417 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
8418 	 * otherwise.
8419 	 */
8420 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
8421 	un->un_blockcount = 0;
8422 
8423 	/*
8424 	 * Set up the per-instance info needed to determine the correct
8425 	 * CDBs and other info for issuing commands to the target.
8426 	 */
8427 	sd_init_cdb_limits(un);
8428 
8429 	/*
8430 	 * Set up the IO chains to use, based upon the target type.
8431 	 */
8432 	if (un->un_f_non_devbsize_supported) {
8433 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
8434 	} else {
8435 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
8436 	}
8437 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
8438 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
8439 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
8440 
8441 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
8442 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
8443 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
8444 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
8445 
8446 
8447 	if (ISCD(un)) {
8448 		un->un_additional_codes = sd_additional_codes;
8449 	} else {
8450 		un->un_additional_codes = NULL;
8451 	}
8452 
8453 	/*
8454 	 * Create the kstats here so they can be available for attach-time
8455 	 * routines that send commands to the unit (either polled or via
8456 	 * sd_send_scsi_cmd).
8457 	 *
8458 	 * Note: This is a critical sequence that needs to be maintained:
8459 	 *	1) Instantiate the kstats here, before any routines using the
8460 	 *	   iopath (i.e. sd_send_scsi_cmd).
8461 	 *	2) Initialize the error stats (sd_set_errstats) and partition
8462 	 *	   stats (sd_set_pstats), following sd_validate_geometry(),
8463 	 *	   sd_register_devid(), and sd_cache_control().
8464 	 */
8465 
8466 	un->un_stats = kstat_create(sd_label, instance,
8467 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
8468 	if (un->un_stats != NULL) {
8469 		un->un_stats->ks_lock = SD_MUTEX(un);
8470 		kstat_install(un->un_stats);
8471 	}
8472 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8473 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
8474 
8475 	sd_create_errstats(un, instance);
8476 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8477 	    "sd_unit_attach: un:0x%p errstats created\n", un);
8478 
8479 	/*
8480 	 * The following if/else code was relocated here from below as part
8481 	 * of the fix for bug (4430280). However with the default setup added
8482 	 * on entry to this routine, it's no longer absolutely necessary for
8483 	 * this to be before the call to sd_spin_up_unit.
8484 	 */
8485 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
8486 		/*
8487 		 * If SCSI-2 tagged queueing is supported by the target
8488 		 * and by the host adapter then we will enable it.
8489 		 */
8490 		un->un_tagflags = 0;
8491 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
8492 		    (devp->sd_inq->inq_cmdque) &&
8493 		    (un->un_f_arq_enabled == TRUE)) {
8494 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
8495 			    1, 1) == 1) {
8496 				un->un_tagflags = FLAG_STAG;
8497 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8498 				    "sd_unit_attach: un:0x%p tag queueing "
8499 				    "enabled\n", un);
8500 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
8501 			    "untagged-qing", 0) == 1) {
8502 				un->un_f_opt_queueing = TRUE;
8503 				un->un_saved_throttle = un->un_throttle =
8504 				    min(un->un_throttle, 3);
8505 			} else {
8506 				un->un_f_opt_queueing = FALSE;
8507 				un->un_saved_throttle = un->un_throttle = 1;
8508 			}
8509 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
8510 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
8511 			/* The Host Adapter supports internal queueing. */
8512 			un->un_f_opt_queueing = TRUE;
8513 			un->un_saved_throttle = un->un_throttle =
8514 			    min(un->un_throttle, 3);
8515 		} else {
8516 			un->un_f_opt_queueing = FALSE;
8517 			un->un_saved_throttle = un->un_throttle = 1;
8518 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8519 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
8520 		}
8521 
8522 		/*
8523 		 * Enable large transfers for SATA/SAS drives
8524 		 */
8525 		if (SD_IS_SERIAL(un)) {
8526 			un->un_max_xfer_size =
8527 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8528 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
8529 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8530 			    "sd_unit_attach: un:0x%p max transfer "
8531 			    "size=0x%x\n", un, un->un_max_xfer_size);
8532 
8533 		}
8534 
8535 		/* Setup or tear down default wide operations for disks */
8536 
8537 		/*
8538 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
8539 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
8540 		 * system and be set to different values. In the future this
8541 		 * code may need to be updated when the ssd module is
8542 		 * obsoleted and removed from the system. (4299588)
8543 		 */
8544 		if (SD_IS_PARALLEL_SCSI(un) &&
8545 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
8546 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
8547 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
8548 			    1, 1) == 1) {
8549 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8550 				    "sd_unit_attach: un:0x%p Wide Transfer "
8551 				    "enabled\n", un);
8552 			}
8553 
8554 			/*
8555 			 * If tagged queuing has also been enabled, then
8556 			 * enable large xfers
8557 			 */
8558 			if (un->un_saved_throttle == sd_max_throttle) {
8559 				un->un_max_xfer_size =
8560 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8561 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
8562 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8563 				    "sd_unit_attach: un:0x%p max transfer "
8564 				    "size=0x%x\n", un, un->un_max_xfer_size);
8565 			}
8566 		} else {
8567 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
8568 			    0, 1) == 1) {
8569 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8570 				    "sd_unit_attach: un:0x%p "
8571 				    "Wide Transfer disabled\n", un);
8572 			}
8573 		}
8574 	} else {
8575 		un->un_tagflags = FLAG_STAG;
8576 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
8577 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
8578 	}
8579 
8580 	/*
8581 	 * If this target supports LUN reset, try to enable it.
8582 	 */
8583 	if (un->un_f_lun_reset_enabled) {
8584 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
8585 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
8586 			    "un:0x%p lun_reset capability set\n", un);
8587 		} else {
8588 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
8589 			    "un:0x%p lun-reset capability not set\n", un);
8590 		}
8591 	}
8592 
8593 	/*
8594 	 * At this point in the attach, we have enough info in the
8595 	 * soft state to be able to issue commands to the target.
8596 	 *
8597 	 * All command paths used below MUST issue their commands as
8598 	 * SD_PATH_DIRECT. This is important as intermediate layers
8599 	 * are not all initialized yet (such as PM).
8600 	 */
8601 
8602 	/*
8603 	 * Send a TEST UNIT READY command to the device. This should clear
8604 	 * any outstanding UNIT ATTENTION that may be present.
8605 	 *
8606 	 * Note: Don't check for success, just track if there is a reservation,
8607 	 * this is a throw away command to clear any unit attentions.
8608 	 *
8609 	 * Note: This MUST be the first command issued to the target during
8610 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
8611 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
8612 	 * with attempts at spinning up a device with no media.
8613 	 */
8614 	if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) {
8615 		reservation_flag = SD_TARGET_IS_RESERVED;
8616 	}
8617 
8618 	/*
8619 	 * If the device is NOT a removable media device, attempt to spin
8620 	 * it up (using the START_STOP_UNIT command) and read its capacity
8621 	 * (using the READ CAPACITY command).  Note, however, that either
8622 	 * of these could fail and in some cases we would continue with
8623 	 * the attach despite the failure (see below).
8624 	 */
8625 	if (un->un_f_descr_format_supported) {
8626 		switch (sd_spin_up_unit(un)) {
8627 		case 0:
8628 			/*
8629 			 * Spin-up was successful; now try to read the
8630 			 * capacity.  If successful then save the results
8631 			 * and mark the capacity & lbasize as valid.
8632 			 */
8633 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8634 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
8635 
8636 			switch (sd_send_scsi_READ_CAPACITY(un, &capacity,
8637 			    &lbasize, SD_PATH_DIRECT)) {
8638 			case 0: {
8639 				if (capacity > DK_MAX_BLOCKS) {
8640 #ifdef _LP64
8641 					if (capacity + 1 >
8642 					    SD_GROUP1_MAX_ADDRESS) {
8643 						/*
8644 						 * Enable descriptor format
8645 						 * sense data so that we can
8646 						 * get 64 bit sense data
8647 						 * fields.
8648 						 */
8649 						sd_enable_descr_sense(un);
8650 					}
8651 #else
8652 					/* 32-bit kernels can't handle this */
8653 					scsi_log(SD_DEVINFO(un),
8654 					    sd_label, CE_WARN,
8655 					    "disk has %llu blocks, which "
8656 					    "is too large for a 32-bit "
8657 					    "kernel", capacity);
8658 
8659 #if defined(__i386) || defined(__amd64)
8660 					/*
8661 					 * Refer to comments related to off-by-1
8662 					 * at the header of this file.
8663 					 * 1TB disk was treated as (1T - 512)B
8664 					 * in the past, so that it might has
8665 					 * valid VTOC and solaris partitions,
8666 					 * we have to allow it to continue to
8667 					 * work.
8668 					 */
8669 					if (capacity -1 > DK_MAX_BLOCKS)
8670 #endif
8671 					goto spinup_failed;
8672 #endif
8673 				}
8674 
8675 				/*
8676 				 * Here it's not necessary to check the case:
8677 				 * the capacity of the device is bigger than
8678 				 * what the max hba cdb can support. Because
8679 				 * sd_send_scsi_READ_CAPACITY will retrieve
8680 				 * the capacity by sending USCSI command, which
8681 				 * is constrained by the max hba cdb. Actually,
8682 				 * sd_send_scsi_READ_CAPACITY will return
8683 				 * EINVAL when using bigger cdb than required
8684 				 * cdb length. Will handle this case in
8685 				 * "case EINVAL".
8686 				 */
8687 
8688 				/*
8689 				 * The following relies on
8690 				 * sd_send_scsi_READ_CAPACITY never
8691 				 * returning 0 for capacity and/or lbasize.
8692 				 */
8693 				sd_update_block_info(un, lbasize, capacity);
8694 
8695 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8696 				    "sd_unit_attach: un:0x%p capacity = %ld "
8697 				    "blocks; lbasize= %ld.\n", un,
8698 				    un->un_blockcount, un->un_tgt_blocksize);
8699 
8700 				break;
8701 			}
8702 			case EINVAL:
8703 				/*
8704 				 * In the case where the max-cdb-length property
8705 				 * is smaller than the required CDB length for
8706 				 * a SCSI device, a target driver can fail to
8707 				 * attach to that device.
8708 				 */
8709 				scsi_log(SD_DEVINFO(un),
8710 				    sd_label, CE_WARN,
8711 				    "disk capacity is too large "
8712 				    "for current cdb length");
8713 				goto spinup_failed;
8714 			case EACCES:
8715 				/*
8716 				 * Should never get here if the spin-up
8717 				 * succeeded, but code it in anyway.
8718 				 * From here, just continue with the attach...
8719 				 */
8720 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8721 				    "sd_unit_attach: un:0x%p "
8722 				    "sd_send_scsi_READ_CAPACITY "
8723 				    "returned reservation conflict\n", un);
8724 				reservation_flag = SD_TARGET_IS_RESERVED;
8725 				break;
8726 			default:
8727 				/*
8728 				 * Likewise, should never get here if the
8729 				 * spin-up succeeded. Just continue with
8730 				 * the attach...
8731 				 */
8732 				break;
8733 			}
8734 			break;
8735 		case EACCES:
8736 			/*
8737 			 * Device is reserved by another host.  In this case
8738 			 * we could not spin it up or read the capacity, but
8739 			 * we continue with the attach anyway.
8740 			 */
8741 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8742 			    "sd_unit_attach: un:0x%p spin-up reservation "
8743 			    "conflict.\n", un);
8744 			reservation_flag = SD_TARGET_IS_RESERVED;
8745 			break;
8746 		default:
8747 			/* Fail the attach if the spin-up failed. */
8748 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8749 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
8750 			goto spinup_failed;
8751 		}
8752 	}
8753 
8754 	/*
8755 	 * Check to see if this is a MMC drive
8756 	 */
8757 	if (ISCD(un)) {
8758 		sd_set_mmc_caps(un);
8759 	}
8760 
8761 	/*
8762 	 * Create the minor nodes for the device.
8763 	 * Note: If we want to support fdisk on both sparc and intel, this will
8764 	 * have to separate out the notion that VTOC8 is always sparc, and
8765 	 * VTOC16 is always intel (tho these can be the defaults).  The vtoc
8766 	 * type will have to be determined at run-time, and the fdisk
8767 	 * partitioning will have to have been read & set up before we
8768 	 * create the minor nodes. (any other inits (such as kstats) that
8769 	 * also ought to be done before creating the minor nodes?) (Doesn't
8770 	 * setting up the minor nodes kind of imply that we're ready to
8771 	 * handle an open from userland?)
8772 	 */
8773 	if (sd_create_minor_nodes(un, devi) != DDI_SUCCESS) {
8774 		goto create_minor_nodes_failed;
8775 	}
8776 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8777 	    "sd_unit_attach: un:0x%p minor nodes created\n", un);
8778 
8779 	/*
8780 	 * Add a zero-length attribute to tell the world we support
8781 	 * kernel ioctls (for layered drivers)
8782 	 */
8783 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8784 	    DDI_KERNEL_IOCTL, NULL, 0);
8785 
8786 	/*
8787 	 * Add a boolean property to tell the world we support
8788 	 * the B_FAILFAST flag (for layered drivers)
8789 	 */
8790 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8791 	    "ddi-failfast-supported", NULL, 0);
8792 
8793 	/*
8794 	 * Initialize power management
8795 	 */
8796 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
8797 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
8798 	sd_setup_pm(un, devi);
8799 	if (un->un_f_pm_is_enabled == FALSE) {
8800 		/*
8801 		 * For performance, point to a jump table that does
8802 		 * not include pm.
8803 		 * The direct and priority chains don't change with PM.
8804 		 *
8805 		 * Note: this is currently done based on individual device
8806 		 * capabilities. When an interface for determining system
8807 		 * power enabled state becomes available, or when additional
8808 		 * layers are added to the command chain, these values will
8809 		 * have to be re-evaluated for correctness.
8810 		 */
8811 		if (un->un_f_non_devbsize_supported) {
8812 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
8813 		} else {
8814 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
8815 		}
8816 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8817 	}
8818 
8819 	/*
8820 	 * This property is set to 0 by HA software to avoid retries
8821 	 * on a reserved disk. (The preferred property name is
8822 	 * "retry-on-reservation-conflict") (1189689)
8823 	 *
8824 	 * Note: The use of a global here can have unintended consequences. A
8825 	 * per instance variable is preferrable to match the capabilities of
8826 	 * different underlying hba's (4402600)
8827 	 */
8828 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
8829 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
8830 	    sd_retry_on_reservation_conflict);
8831 	if (sd_retry_on_reservation_conflict != 0) {
8832 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
8833 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
8834 		    sd_retry_on_reservation_conflict);
8835 	}
8836 
8837 	/* Set up options for QFULL handling. */
8838 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8839 	    "qfull-retries", -1)) != -1) {
8840 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
8841 		    rval, 1);
8842 	}
8843 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8844 	    "qfull-retry-interval", -1)) != -1) {
8845 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
8846 		    rval, 1);
8847 	}
8848 
8849 	/*
8850 	 * This just prints a message that announces the existence of the
8851 	 * device. The message is always printed in the system logfile, but
8852 	 * only appears on the console if the system is booted with the
8853 	 * -v (verbose) argument.
8854 	 */
8855 	ddi_report_dev(devi);
8856 
8857 	/*
8858 	 * The framework calls driver attach routines single-threaded
8859 	 * for a given instance.  However we still acquire SD_MUTEX here
8860 	 * because this required for calling the sd_validate_geometry()
8861 	 * and sd_register_devid() functions.
8862 	 */
8863 	mutex_enter(SD_MUTEX(un));
8864 	un->un_f_geometry_is_valid = FALSE;
8865 	un->un_mediastate = DKIO_NONE;
8866 	un->un_reserved = -1;
8867 
8868 	/*
8869 	 * Read and validate the device's geometry (ie, disk label)
8870 	 * A new unformatted drive will not have a valid geometry, but
8871 	 * the driver needs to successfully attach to this device so
8872 	 * the drive can be formatted via ioctls.
8873 	 */
8874 	if (((sd_validate_geometry(un, SD_PATH_DIRECT) ==
8875 	    ENOTSUP)) &&
8876 	    (un->un_blockcount < DK_MAX_BLOCKS)) {
8877 		/*
8878 		 * We found a small disk with an EFI label on it;
8879 		 * we need to fix up the minor nodes accordingly.
8880 		 */
8881 		ddi_remove_minor_node(devi, "h");
8882 		ddi_remove_minor_node(devi, "h,raw");
8883 		(void) ddi_create_minor_node(devi, "wd",
8884 		    S_IFBLK,
8885 		    (instance << SDUNIT_SHIFT) | WD_NODE,
8886 		    un->un_node_type, NULL);
8887 		(void) ddi_create_minor_node(devi, "wd,raw",
8888 		    S_IFCHR,
8889 		    (instance << SDUNIT_SHIFT) | WD_NODE,
8890 		    un->un_node_type, NULL);
8891 	}
8892 #if defined(__i386) || defined(__amd64)
8893 	else if (un->un_f_capacity_adjusted == 1) {
8894 		/*
8895 		 * Refer to comments related to off-by-1 at the
8896 		 * header of this file.
8897 		 * Adjust minor node for 1TB disk.
8898 		 */
8899 		ddi_remove_minor_node(devi, "wd");
8900 		ddi_remove_minor_node(devi, "wd,raw");
8901 		(void) ddi_create_minor_node(devi, "h",
8902 		    S_IFBLK,
8903 		    (instance << SDUNIT_SHIFT) | WD_NODE,
8904 		    un->un_node_type, NULL);
8905 		(void) ddi_create_minor_node(devi, "h,raw",
8906 		    S_IFCHR,
8907 		    (instance << SDUNIT_SHIFT) | WD_NODE,
8908 		    un->un_node_type, NULL);
8909 	}
8910 #endif
8911 	/*
8912 	 * Read and initialize the devid for the unit.
8913 	 */
8914 	ASSERT(un->un_errstats != NULL);
8915 	if (un->un_f_devid_supported) {
8916 		sd_register_devid(un, devi, reservation_flag);
8917 	}
8918 	mutex_exit(SD_MUTEX(un));
8919 
8920 #if (defined(__fibre))
8921 	/*
8922 	 * Register callbacks for fibre only.  You can't do this soley
8923 	 * on the basis of the devid_type because this is hba specific.
8924 	 * We need to query our hba capabilities to find out whether to
8925 	 * register or not.
8926 	 */
8927 	if (un->un_f_is_fibre) {
8928 	    if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
8929 		sd_init_event_callbacks(un);
8930 		SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8931 		    "sd_unit_attach: un:0x%p event callbacks inserted", un);
8932 	    }
8933 	}
8934 #endif
8935 
8936 	if (un->un_f_opt_disable_cache == TRUE) {
8937 		/*
8938 		 * Disable both read cache and write cache.  This is
8939 		 * the historic behavior of the keywords in the config file.
8940 		 */
8941 		if (sd_cache_control(un, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
8942 		    0) {
8943 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8944 			    "sd_unit_attach: un:0x%p Could not disable "
8945 			    "caching", un);
8946 			goto devid_failed;
8947 		}
8948 	}
8949 
8950 	/*
8951 	 * Check the value of the WCE bit now and
8952 	 * set un_f_write_cache_enabled accordingly.
8953 	 */
8954 	(void) sd_get_write_cache_enabled(un, &wc_enabled);
8955 	mutex_enter(SD_MUTEX(un));
8956 	un->un_f_write_cache_enabled = (wc_enabled != 0);
8957 	mutex_exit(SD_MUTEX(un));
8958 
8959 	/*
8960 	 * Set the pstat and error stat values here, so data obtained during the
8961 	 * previous attach-time routines is available.
8962 	 *
8963 	 * Note: This is a critical sequence that needs to be maintained:
8964 	 *	1) Instantiate the kstats before any routines using the iopath
8965 	 *	   (i.e. sd_send_scsi_cmd).
8966 	 *	2) Initialize the error stats (sd_set_errstats) and partition
8967 	 *	   stats (sd_set_pstats)here, following sd_validate_geometry(),
8968 	 *	   sd_register_devid(), and sd_cache_control().
8969 	 */
8970 	if (un->un_f_pkstats_enabled) {
8971 		sd_set_pstats(un);
8972 		SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8973 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
8974 	}
8975 
8976 	sd_set_errstats(un);
8977 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8978 	    "sd_unit_attach: un:0x%p errstats set\n", un);
8979 
8980 	/*
8981 	 * Find out what type of reservation this disk supports.
8982 	 */
8983 	switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) {
8984 	case 0:
8985 		/*
8986 		 * SCSI-3 reservations are supported.
8987 		 */
8988 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8989 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8990 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
8991 		break;
8992 	case ENOTSUP:
8993 		/*
8994 		 * The PERSISTENT RESERVE IN command would not be recognized by
8995 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
8996 		 */
8997 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8998 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
8999 		un->un_reservation_type = SD_SCSI2_RESERVATION;
9000 		break;
9001 	default:
9002 		/*
9003 		 * default to SCSI-3 reservations
9004 		 */
9005 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
9006 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
9007 		un->un_reservation_type = SD_SCSI3_RESERVATION;
9008 		break;
9009 	}
9010 
9011 	/*
9012 	 * After successfully attaching an instance, we record the information
9013 	 * of how many luns have been attached on the relative target and
9014 	 * controller for parallel SCSI. This information is used when sd tries
9015 	 * to set the tagged queuing capability in HBA.
9016 	 */
9017 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
9018 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
9019 	}
9020 
9021 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
9022 	    "sd_unit_attach: un:0x%p exit success\n", un);
9023 
9024 	return (DDI_SUCCESS);
9025 
9026 	/*
9027 	 * An error occurred during the attach; clean up & return failure.
9028 	 */
9029 
9030 devid_failed:
9031 
9032 setup_pm_failed:
9033 	ddi_remove_minor_node(devi, NULL);
9034 
9035 create_minor_nodes_failed:
9036 	/*
9037 	 * Cleanup from the scsi_ifsetcap() calls (437868)
9038 	 */
9039 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
9040 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
9041 
9042 	/*
9043 	 * Refer to the comments of setting tagged-qing in the beginning of
9044 	 * sd_unit_attach. We can only disable tagged queuing when there is
9045 	 * no lun attached on the target.
9046 	 */
9047 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
9048 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
9049 	}
9050 
9051 	if (un->un_f_is_fibre == FALSE) {
9052 	    (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
9053 	}
9054 
9055 spinup_failed:
9056 
9057 	mutex_enter(SD_MUTEX(un));
9058 
9059 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
9060 	if (un->un_direct_priority_timeid != NULL) {
9061 		timeout_id_t temp_id = un->un_direct_priority_timeid;
9062 		un->un_direct_priority_timeid = NULL;
9063 		mutex_exit(SD_MUTEX(un));
9064 		(void) untimeout(temp_id);
9065 		mutex_enter(SD_MUTEX(un));
9066 	}
9067 
9068 	/* Cancel any pending start/stop timeouts */
9069 	if (un->un_startstop_timeid != NULL) {
9070 		timeout_id_t temp_id = un->un_startstop_timeid;
9071 		un->un_startstop_timeid = NULL;
9072 		mutex_exit(SD_MUTEX(un));
9073 		(void) untimeout(temp_id);
9074 		mutex_enter(SD_MUTEX(un));
9075 	}
9076 
9077 	/* Cancel any pending reset-throttle timeouts */
9078 	if (un->un_reset_throttle_timeid != NULL) {
9079 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
9080 		un->un_reset_throttle_timeid = NULL;
9081 		mutex_exit(SD_MUTEX(un));
9082 		(void) untimeout(temp_id);
9083 		mutex_enter(SD_MUTEX(un));
9084 	}
9085 
9086 	/* Cancel any pending retry timeouts */
9087 	if (un->un_retry_timeid != NULL) {
9088 		timeout_id_t temp_id = un->un_retry_timeid;
9089 		un->un_retry_timeid = NULL;
9090 		mutex_exit(SD_MUTEX(un));
9091 		(void) untimeout(temp_id);
9092 		mutex_enter(SD_MUTEX(un));
9093 	}
9094 
9095 	/* Cancel any pending delayed cv broadcast timeouts */
9096 	if (un->un_dcvb_timeid != NULL) {
9097 		timeout_id_t temp_id = un->un_dcvb_timeid;
9098 		un->un_dcvb_timeid = NULL;
9099 		mutex_exit(SD_MUTEX(un));
9100 		(void) untimeout(temp_id);
9101 		mutex_enter(SD_MUTEX(un));
9102 	}
9103 
9104 	mutex_exit(SD_MUTEX(un));
9105 
9106 	/* There should not be any in-progress I/O so ASSERT this check */
9107 	ASSERT(un->un_ncmds_in_transport == 0);
9108 	ASSERT(un->un_ncmds_in_driver == 0);
9109 
9110 	/* Do not free the softstate if the callback routine is active */
9111 	sd_sync_with_callback(un);
9112 
9113 	/*
9114 	 * Partition stats apparently are not used with removables. These would
9115 	 * not have been created during attach, so no need to clean them up...
9116 	 */
9117 	if (un->un_stats != NULL) {
9118 		kstat_delete(un->un_stats);
9119 		un->un_stats = NULL;
9120 	}
9121 	if (un->un_errstats != NULL) {
9122 		kstat_delete(un->un_errstats);
9123 		un->un_errstats = NULL;
9124 	}
9125 
9126 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
9127 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
9128 
9129 	ddi_prop_remove_all(devi);
9130 	sema_destroy(&un->un_semoclose);
9131 	cv_destroy(&un->un_state_cv);
9132 
9133 getrbuf_failed:
9134 
9135 	sd_free_rqs(un);
9136 
9137 alloc_rqs_failed:
9138 
9139 	devp->sd_private = NULL;
9140 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
9141 
9142 get_softstate_failed:
9143 	/*
9144 	 * Note: the man pages are unclear as to whether or not doing a
9145 	 * ddi_soft_state_free(sd_state, instance) is the right way to
9146 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
9147 	 * ddi_get_soft_state() fails.  The implication seems to be
9148 	 * that the get_soft_state cannot fail if the zalloc succeeds.
9149 	 */
9150 	ddi_soft_state_free(sd_state, instance);
9151 
9152 probe_failed:
9153 	scsi_unprobe(devp);
9154 #ifdef SDDEBUG
9155 	if ((sd_component_mask & SD_LOG_ATTACH_DETACH) &&
9156 	    (sd_level_mask & SD_LOGMASK_TRACE)) {
9157 		cmn_err(CE_CONT, "sd_unit_attach: un:0x%p exit failure\n",
9158 		    (void *)un);
9159 	}
9160 #endif
9161 	return (DDI_FAILURE);
9162 }
9163 
9164 
9165 /*
9166  *    Function: sd_unit_detach
9167  *
9168  * Description: Performs DDI_DETACH processing for sddetach().
9169  *
9170  * Return Code: DDI_SUCCESS
9171  *		DDI_FAILURE
9172  *
9173  *     Context: Kernel thread context
9174  */
9175 
9176 static int
9177 sd_unit_detach(dev_info_t *devi)
9178 {
9179 	struct scsi_device	*devp;
9180 	struct sd_lun		*un;
9181 	int			i;
9182 	int			tgt;
9183 	dev_t			dev;
9184 	dev_info_t		*pdip = ddi_get_parent(devi);
9185 	int			instance = ddi_get_instance(devi);
9186 
9187 	mutex_enter(&sd_detach_mutex);
9188 
9189 	/*
9190 	 * Fail the detach for any of the following:
9191 	 *  - Unable to get the sd_lun struct for the instance
9192 	 *  - A layered driver has an outstanding open on the instance
9193 	 *  - Another thread is already detaching this instance
9194 	 *  - Another thread is currently performing an open
9195 	 */
9196 	devp = ddi_get_driver_private(devi);
9197 	if ((devp == NULL) ||
9198 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
9199 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
9200 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
9201 		mutex_exit(&sd_detach_mutex);
9202 		return (DDI_FAILURE);
9203 	}
9204 
9205 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
9206 
9207 	/*
9208 	 * Mark this instance as currently in a detach, to inhibit any
9209 	 * opens from a layered driver.
9210 	 */
9211 	un->un_detach_count++;
9212 	mutex_exit(&sd_detach_mutex);
9213 
9214 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
9215 	    SCSI_ADDR_PROP_TARGET, -1);
9216 
9217 	dev = sd_make_device(SD_DEVINFO(un));
9218 
9219 #ifndef lint
9220 	_NOTE(COMPETING_THREADS_NOW);
9221 #endif
9222 
9223 	mutex_enter(SD_MUTEX(un));
9224 
9225 	/*
9226 	 * Fail the detach if there are any outstanding layered
9227 	 * opens on this device.
9228 	 */
9229 	for (i = 0; i < NDKMAP; i++) {
9230 		if (un->un_ocmap.lyropen[i] != 0) {
9231 			goto err_notclosed;
9232 		}
9233 	}
9234 
9235 	/*
9236 	 * Verify there are NO outstanding commands issued to this device.
9237 	 * ie, un_ncmds_in_transport == 0.
9238 	 * It's possible to have outstanding commands through the physio
9239 	 * code path, even though everything's closed.
9240 	 */
9241 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
9242 	    (un->un_direct_priority_timeid != NULL) ||
9243 	    (un->un_state == SD_STATE_RWAIT)) {
9244 		mutex_exit(SD_MUTEX(un));
9245 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9246 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
9247 		goto err_stillbusy;
9248 	}
9249 
9250 	/*
9251 	 * If we have the device reserved, release the reservation.
9252 	 */
9253 	if ((un->un_resvd_status & SD_RESERVE) &&
9254 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
9255 		mutex_exit(SD_MUTEX(un));
9256 		/*
9257 		 * Note: sd_reserve_release sends a command to the device
9258 		 * via the sd_ioctlcmd() path, and can sleep.
9259 		 */
9260 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
9261 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9262 			    "sd_dr_detach: Cannot release reservation \n");
9263 		}
9264 	} else {
9265 		mutex_exit(SD_MUTEX(un));
9266 	}
9267 
9268 	/*
9269 	 * Untimeout any reserve recover, throttle reset, restart unit
9270 	 * and delayed broadcast timeout threads. Protect the timeout pointer
9271 	 * from getting nulled by their callback functions.
9272 	 */
9273 	mutex_enter(SD_MUTEX(un));
9274 	if (un->un_resvd_timeid != NULL) {
9275 		timeout_id_t temp_id = un->un_resvd_timeid;
9276 		un->un_resvd_timeid = NULL;
9277 		mutex_exit(SD_MUTEX(un));
9278 		(void) untimeout(temp_id);
9279 		mutex_enter(SD_MUTEX(un));
9280 	}
9281 
9282 	if (un->un_reset_throttle_timeid != NULL) {
9283 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
9284 		un->un_reset_throttle_timeid = NULL;
9285 		mutex_exit(SD_MUTEX(un));
9286 		(void) untimeout(temp_id);
9287 		mutex_enter(SD_MUTEX(un));
9288 	}
9289 
9290 	if (un->un_startstop_timeid != NULL) {
9291 		timeout_id_t temp_id = un->un_startstop_timeid;
9292 		un->un_startstop_timeid = NULL;
9293 		mutex_exit(SD_MUTEX(un));
9294 		(void) untimeout(temp_id);
9295 		mutex_enter(SD_MUTEX(un));
9296 	}
9297 
9298 	if (un->un_dcvb_timeid != NULL) {
9299 		timeout_id_t temp_id = un->un_dcvb_timeid;
9300 		un->un_dcvb_timeid = NULL;
9301 		mutex_exit(SD_MUTEX(un));
9302 		(void) untimeout(temp_id);
9303 	} else {
9304 		mutex_exit(SD_MUTEX(un));
9305 	}
9306 
9307 	/* Remove any pending reservation reclaim requests for this device */
9308 	sd_rmv_resv_reclaim_req(dev);
9309 
9310 	mutex_enter(SD_MUTEX(un));
9311 
9312 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
9313 	if (un->un_direct_priority_timeid != NULL) {
9314 		timeout_id_t temp_id = un->un_direct_priority_timeid;
9315 		un->un_direct_priority_timeid = NULL;
9316 		mutex_exit(SD_MUTEX(un));
9317 		(void) untimeout(temp_id);
9318 		mutex_enter(SD_MUTEX(un));
9319 	}
9320 
9321 	/* Cancel any active multi-host disk watch thread requests */
9322 	if (un->un_mhd_token != NULL) {
9323 		mutex_exit(SD_MUTEX(un));
9324 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
9325 		if (scsi_watch_request_terminate(un->un_mhd_token,
9326 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
9327 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9328 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
9329 			/*
9330 			 * Note: We are returning here after having removed
9331 			 * some driver timeouts above. This is consistent with
9332 			 * the legacy implementation but perhaps the watch
9333 			 * terminate call should be made with the wait flag set.
9334 			 */
9335 			goto err_stillbusy;
9336 		}
9337 		mutex_enter(SD_MUTEX(un));
9338 		un->un_mhd_token = NULL;
9339 	}
9340 
9341 	if (un->un_swr_token != NULL) {
9342 		mutex_exit(SD_MUTEX(un));
9343 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
9344 		if (scsi_watch_request_terminate(un->un_swr_token,
9345 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
9346 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9347 			    "sd_dr_detach: Cannot cancel swr watch request\n");
9348 			/*
9349 			 * Note: We are returning here after having removed
9350 			 * some driver timeouts above. This is consistent with
9351 			 * the legacy implementation but perhaps the watch
9352 			 * terminate call should be made with the wait flag set.
9353 			 */
9354 			goto err_stillbusy;
9355 		}
9356 		mutex_enter(SD_MUTEX(un));
9357 		un->un_swr_token = NULL;
9358 	}
9359 
9360 	mutex_exit(SD_MUTEX(un));
9361 
9362 	/*
9363 	 * Clear any scsi_reset_notifies. We clear the reset notifies
9364 	 * if we have not registered one.
9365 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
9366 	 */
9367 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
9368 	    sd_mhd_reset_notify_cb, (caddr_t)un);
9369 
9370 	/*
9371 	 * protect the timeout pointers from getting nulled by
9372 	 * their callback functions during the cancellation process.
9373 	 * In such a scenario untimeout can be invoked with a null value.
9374 	 */
9375 	_NOTE(NO_COMPETING_THREADS_NOW);
9376 
9377 	mutex_enter(&un->un_pm_mutex);
9378 	if (un->un_pm_idle_timeid != NULL) {
9379 		timeout_id_t temp_id = un->un_pm_idle_timeid;
9380 		un->un_pm_idle_timeid = NULL;
9381 		mutex_exit(&un->un_pm_mutex);
9382 
9383 		/*
9384 		 * Timeout is active; cancel it.
9385 		 * Note that it'll never be active on a device
9386 		 * that does not support PM therefore we don't
9387 		 * have to check before calling pm_idle_component.
9388 		 */
9389 		(void) untimeout(temp_id);
9390 		(void) pm_idle_component(SD_DEVINFO(un), 0);
9391 		mutex_enter(&un->un_pm_mutex);
9392 	}
9393 
9394 	/*
9395 	 * Check whether there is already a timeout scheduled for power
9396 	 * management. If yes then don't lower the power here, that's.
9397 	 * the timeout handler's job.
9398 	 */
9399 	if (un->un_pm_timeid != NULL) {
9400 		timeout_id_t temp_id = un->un_pm_timeid;
9401 		un->un_pm_timeid = NULL;
9402 		mutex_exit(&un->un_pm_mutex);
9403 		/*
9404 		 * Timeout is active; cancel it.
9405 		 * Note that it'll never be active on a device
9406 		 * that does not support PM therefore we don't
9407 		 * have to check before calling pm_idle_component.
9408 		 */
9409 		(void) untimeout(temp_id);
9410 		(void) pm_idle_component(SD_DEVINFO(un), 0);
9411 
9412 	} else {
9413 		mutex_exit(&un->un_pm_mutex);
9414 		if ((un->un_f_pm_is_enabled == TRUE) &&
9415 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
9416 		    DDI_SUCCESS)) {
9417 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9418 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
9419 			/*
9420 			 * Fix for bug: 4297749, item # 13
9421 			 * The above test now includes a check to see if PM is
9422 			 * supported by this device before call
9423 			 * pm_lower_power().
9424 			 * Note, the following is not dead code. The call to
9425 			 * pm_lower_power above will generate a call back into
9426 			 * our sdpower routine which might result in a timeout
9427 			 * handler getting activated. Therefore the following
9428 			 * code is valid and necessary.
9429 			 */
9430 			mutex_enter(&un->un_pm_mutex);
9431 			if (un->un_pm_timeid != NULL) {
9432 				timeout_id_t temp_id = un->un_pm_timeid;
9433 				un->un_pm_timeid = NULL;
9434 				mutex_exit(&un->un_pm_mutex);
9435 				(void) untimeout(temp_id);
9436 				(void) pm_idle_component(SD_DEVINFO(un), 0);
9437 			} else {
9438 				mutex_exit(&un->un_pm_mutex);
9439 			}
9440 		}
9441 	}
9442 
9443 	/*
9444 	 * Cleanup from the scsi_ifsetcap() calls (437868)
9445 	 * Relocated here from above to be after the call to
9446 	 * pm_lower_power, which was getting errors.
9447 	 */
9448 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
9449 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
9450 
9451 	/*
9452 	 * Currently, tagged queuing is supported per target based by HBA.
9453 	 * Setting this per lun instance actually sets the capability of this
9454 	 * target in HBA, which affects those luns already attached on the
9455 	 * same target. So during detach, we can only disable this capability
9456 	 * only when this is the only lun left on this target. By doing
9457 	 * this, we assume a target has the same tagged queuing capability
9458 	 * for every lun. The condition can be removed when HBA is changed to
9459 	 * support per lun based tagged queuing capability.
9460 	 */
9461 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
9462 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
9463 	}
9464 
9465 	if (un->un_f_is_fibre == FALSE) {
9466 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
9467 	}
9468 
9469 	/*
9470 	 * Remove any event callbacks, fibre only
9471 	 */
9472 	if (un->un_f_is_fibre == TRUE) {
9473 		if ((un->un_insert_event != NULL) &&
9474 			(ddi_remove_event_handler(un->un_insert_cb_id) !=
9475 				DDI_SUCCESS)) {
9476 			/*
9477 			 * Note: We are returning here after having done
9478 			 * substantial cleanup above. This is consistent
9479 			 * with the legacy implementation but this may not
9480 			 * be the right thing to do.
9481 			 */
9482 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9483 				"sd_dr_detach: Cannot cancel insert event\n");
9484 			goto err_remove_event;
9485 		}
9486 		un->un_insert_event = NULL;
9487 
9488 		if ((un->un_remove_event != NULL) &&
9489 			(ddi_remove_event_handler(un->un_remove_cb_id) !=
9490 				DDI_SUCCESS)) {
9491 			/*
9492 			 * Note: We are returning here after having done
9493 			 * substantial cleanup above. This is consistent
9494 			 * with the legacy implementation but this may not
9495 			 * be the right thing to do.
9496 			 */
9497 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9498 				"sd_dr_detach: Cannot cancel remove event\n");
9499 			goto err_remove_event;
9500 		}
9501 		un->un_remove_event = NULL;
9502 	}
9503 
9504 	/* Do not free the softstate if the callback routine is active */
9505 	sd_sync_with_callback(un);
9506 
9507 	/*
9508 	 * Hold the detach mutex here, to make sure that no other threads ever
9509 	 * can access a (partially) freed soft state structure.
9510 	 */
9511 	mutex_enter(&sd_detach_mutex);
9512 
9513 	/*
9514 	 * Clean up the soft state struct.
9515 	 * Cleanup is done in reverse order of allocs/inits.
9516 	 * At this point there should be no competing threads anymore.
9517 	 */
9518 
9519 	/* Unregister and free device id. */
9520 	ddi_devid_unregister(devi);
9521 	if (un->un_devid) {
9522 		ddi_devid_free(un->un_devid);
9523 		un->un_devid = NULL;
9524 	}
9525 
9526 	/*
9527 	 * Destroy wmap cache if it exists.
9528 	 */
9529 	if (un->un_wm_cache != NULL) {
9530 		kmem_cache_destroy(un->un_wm_cache);
9531 		un->un_wm_cache = NULL;
9532 	}
9533 
9534 	/* Remove minor nodes */
9535 	ddi_remove_minor_node(devi, NULL);
9536 
9537 	/*
9538 	 * kstat cleanup is done in detach for all device types (4363169).
9539 	 * We do not want to fail detach if the device kstats are not deleted
9540 	 * since there is a confusion about the devo_refcnt for the device.
9541 	 * We just delete the kstats and let detach complete successfully.
9542 	 */
9543 	if (un->un_stats != NULL) {
9544 		kstat_delete(un->un_stats);
9545 		un->un_stats = NULL;
9546 	}
9547 	if (un->un_errstats != NULL) {
9548 		kstat_delete(un->un_errstats);
9549 		un->un_errstats = NULL;
9550 	}
9551 
9552 	/* Remove partition stats */
9553 	if (un->un_f_pkstats_enabled) {
9554 		for (i = 0; i < NSDMAP; i++) {
9555 			if (un->un_pstats[i] != NULL) {
9556 				kstat_delete(un->un_pstats[i]);
9557 				un->un_pstats[i] = NULL;
9558 			}
9559 		}
9560 	}
9561 
9562 	/* Remove xbuf registration */
9563 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
9564 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
9565 
9566 	/* Remove driver properties */
9567 	ddi_prop_remove_all(devi);
9568 
9569 	mutex_destroy(&un->un_pm_mutex);
9570 	cv_destroy(&un->un_pm_busy_cv);
9571 
9572 	cv_destroy(&un->un_wcc_cv);
9573 
9574 	/* Open/close semaphore */
9575 	sema_destroy(&un->un_semoclose);
9576 
9577 	/* Removable media condvar. */
9578 	cv_destroy(&un->un_state_cv);
9579 
9580 	/* Suspend/resume condvar. */
9581 	cv_destroy(&un->un_suspend_cv);
9582 	cv_destroy(&un->un_disk_busy_cv);
9583 
9584 	sd_free_rqs(un);
9585 
9586 	/* Free up soft state */
9587 	devp->sd_private = NULL;
9588 	bzero(un, sizeof (struct sd_lun));
9589 	ddi_soft_state_free(sd_state, instance);
9590 
9591 	mutex_exit(&sd_detach_mutex);
9592 
9593 	/* This frees up the INQUIRY data associated with the device. */
9594 	scsi_unprobe(devp);
9595 
9596 	/*
9597 	 * After successfully detaching an instance, we update the information
9598 	 * of how many luns have been attached in the relative target and
9599 	 * controller for parallel SCSI. This information is used when sd tries
9600 	 * to set the tagged queuing capability in HBA.
9601 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
9602 	 * check if the device is parallel SCSI. However, we don't need to
9603 	 * check here because we've already checked during attach. No device
9604 	 * that is not parallel SCSI is in the chain.
9605 	 */
9606 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
9607 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
9608 	}
9609 
9610 	return (DDI_SUCCESS);
9611 
9612 err_notclosed:
9613 	mutex_exit(SD_MUTEX(un));
9614 
9615 err_stillbusy:
9616 	_NOTE(NO_COMPETING_THREADS_NOW);
9617 
9618 err_remove_event:
9619 	mutex_enter(&sd_detach_mutex);
9620 	un->un_detach_count--;
9621 	mutex_exit(&sd_detach_mutex);
9622 
9623 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
9624 	return (DDI_FAILURE);
9625 }
9626 
9627 
9628 /*
9629  * Driver minor node structure and data table
9630  */
9631 struct driver_minor_data {
9632 	char	*name;
9633 	minor_t	minor;
9634 	int	type;
9635 };
9636 
9637 static struct driver_minor_data sd_minor_data[] = {
9638 	{"a", 0, S_IFBLK},
9639 	{"b", 1, S_IFBLK},
9640 	{"c", 2, S_IFBLK},
9641 	{"d", 3, S_IFBLK},
9642 	{"e", 4, S_IFBLK},
9643 	{"f", 5, S_IFBLK},
9644 	{"g", 6, S_IFBLK},
9645 	{"h", 7, S_IFBLK},
9646 #if defined(_SUNOS_VTOC_16)
9647 	{"i", 8, S_IFBLK},
9648 	{"j", 9, S_IFBLK},
9649 	{"k", 10, S_IFBLK},
9650 	{"l", 11, S_IFBLK},
9651 	{"m", 12, S_IFBLK},
9652 	{"n", 13, S_IFBLK},
9653 	{"o", 14, S_IFBLK},
9654 	{"p", 15, S_IFBLK},
9655 #endif			/* defined(_SUNOS_VTOC_16) */
9656 #if defined(_FIRMWARE_NEEDS_FDISK)
9657 	{"q", 16, S_IFBLK},
9658 	{"r", 17, S_IFBLK},
9659 	{"s", 18, S_IFBLK},
9660 	{"t", 19, S_IFBLK},
9661 	{"u", 20, S_IFBLK},
9662 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9663 	{"a,raw", 0, S_IFCHR},
9664 	{"b,raw", 1, S_IFCHR},
9665 	{"c,raw", 2, S_IFCHR},
9666 	{"d,raw", 3, S_IFCHR},
9667 	{"e,raw", 4, S_IFCHR},
9668 	{"f,raw", 5, S_IFCHR},
9669 	{"g,raw", 6, S_IFCHR},
9670 	{"h,raw", 7, S_IFCHR},
9671 #if defined(_SUNOS_VTOC_16)
9672 	{"i,raw", 8, S_IFCHR},
9673 	{"j,raw", 9, S_IFCHR},
9674 	{"k,raw", 10, S_IFCHR},
9675 	{"l,raw", 11, S_IFCHR},
9676 	{"m,raw", 12, S_IFCHR},
9677 	{"n,raw", 13, S_IFCHR},
9678 	{"o,raw", 14, S_IFCHR},
9679 	{"p,raw", 15, S_IFCHR},
9680 #endif			/* defined(_SUNOS_VTOC_16) */
9681 #if defined(_FIRMWARE_NEEDS_FDISK)
9682 	{"q,raw", 16, S_IFCHR},
9683 	{"r,raw", 17, S_IFCHR},
9684 	{"s,raw", 18, S_IFCHR},
9685 	{"t,raw", 19, S_IFCHR},
9686 	{"u,raw", 20, S_IFCHR},
9687 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9688 	{0}
9689 };
9690 
9691 static struct driver_minor_data sd_minor_data_efi[] = {
9692 	{"a", 0, S_IFBLK},
9693 	{"b", 1, S_IFBLK},
9694 	{"c", 2, S_IFBLK},
9695 	{"d", 3, S_IFBLK},
9696 	{"e", 4, S_IFBLK},
9697 	{"f", 5, S_IFBLK},
9698 	{"g", 6, S_IFBLK},
9699 	{"wd", 7, S_IFBLK},
9700 #if defined(_FIRMWARE_NEEDS_FDISK)
9701 	{"q", 16, S_IFBLK},
9702 	{"r", 17, S_IFBLK},
9703 	{"s", 18, S_IFBLK},
9704 	{"t", 19, S_IFBLK},
9705 	{"u", 20, S_IFBLK},
9706 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9707 	{"a,raw", 0, S_IFCHR},
9708 	{"b,raw", 1, S_IFCHR},
9709 	{"c,raw", 2, S_IFCHR},
9710 	{"d,raw", 3, S_IFCHR},
9711 	{"e,raw", 4, S_IFCHR},
9712 	{"f,raw", 5, S_IFCHR},
9713 	{"g,raw", 6, S_IFCHR},
9714 	{"wd,raw", 7, S_IFCHR},
9715 #if defined(_FIRMWARE_NEEDS_FDISK)
9716 	{"q,raw", 16, S_IFCHR},
9717 	{"r,raw", 17, S_IFCHR},
9718 	{"s,raw", 18, S_IFCHR},
9719 	{"t,raw", 19, S_IFCHR},
9720 	{"u,raw", 20, S_IFCHR},
9721 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9722 	{0}
9723 };
9724 
9725 
9726 /*
9727  *    Function: sd_create_minor_nodes
9728  *
9729  * Description: Create the minor device nodes for the instance.
9730  *
9731  *   Arguments: un - driver soft state (unit) structure
9732  *		devi - pointer to device info structure
9733  *
9734  * Return Code: DDI_SUCCESS
9735  *		DDI_FAILURE
9736  *
9737  *     Context: Kernel thread context
9738  */
9739 
9740 static int
9741 sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi)
9742 {
9743 	struct driver_minor_data	*dmdp;
9744 	struct scsi_device		*devp;
9745 	int				instance;
9746 	char				name[48];
9747 
9748 	ASSERT(un != NULL);
9749 	devp = ddi_get_driver_private(devi);
9750 	instance = ddi_get_instance(devp->sd_dev);
9751 
9752 	/*
9753 	 * Create all the minor nodes for this target.
9754 	 */
9755 	if (un->un_blockcount > DK_MAX_BLOCKS)
9756 		dmdp = sd_minor_data_efi;
9757 	else
9758 		dmdp = sd_minor_data;
9759 	while (dmdp->name != NULL) {
9760 
9761 		(void) sprintf(name, "%s", dmdp->name);
9762 
9763 		if (ddi_create_minor_node(devi, name, dmdp->type,
9764 		    (instance << SDUNIT_SHIFT) | dmdp->minor,
9765 		    un->un_node_type, NULL) == DDI_FAILURE) {
9766 			/*
9767 			 * Clean up any nodes that may have been created, in
9768 			 * case this fails in the middle of the loop.
9769 			 */
9770 			ddi_remove_minor_node(devi, NULL);
9771 			return (DDI_FAILURE);
9772 		}
9773 		dmdp++;
9774 	}
9775 
9776 	return (DDI_SUCCESS);
9777 }
9778 
9779 
9780 /*
9781  *    Function: sd_create_errstats
9782  *
9783  * Description: This routine instantiates the device error stats.
9784  *
9785  *		Note: During attach the stats are instantiated first so they are
9786  *		available for attach-time routines that utilize the driver
9787  *		iopath to send commands to the device. The stats are initialized
9788  *		separately so data obtained during some attach-time routines is
9789  *		available. (4362483)
9790  *
9791  *   Arguments: un - driver soft state (unit) structure
9792  *		instance - driver instance
9793  *
9794  *     Context: Kernel thread context
9795  */
9796 
9797 static void
9798 sd_create_errstats(struct sd_lun *un, int instance)
9799 {
9800 	struct	sd_errstats	*stp;
9801 	char	kstatmodule_err[KSTAT_STRLEN];
9802 	char	kstatname[KSTAT_STRLEN];
9803 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
9804 
9805 	ASSERT(un != NULL);
9806 
9807 	if (un->un_errstats != NULL) {
9808 		return;
9809 	}
9810 
9811 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
9812 	    "%serr", sd_label);
9813 	(void) snprintf(kstatname, sizeof (kstatname),
9814 	    "%s%d,err", sd_label, instance);
9815 
9816 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
9817 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
9818 
9819 	if (un->un_errstats == NULL) {
9820 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9821 		    "sd_create_errstats: Failed kstat_create\n");
9822 		return;
9823 	}
9824 
9825 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9826 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
9827 	    KSTAT_DATA_UINT32);
9828 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
9829 	    KSTAT_DATA_UINT32);
9830 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
9831 	    KSTAT_DATA_UINT32);
9832 	kstat_named_init(&stp->sd_vid,		"Vendor",
9833 	    KSTAT_DATA_CHAR);
9834 	kstat_named_init(&stp->sd_pid,		"Product",
9835 	    KSTAT_DATA_CHAR);
9836 	kstat_named_init(&stp->sd_revision,	"Revision",
9837 	    KSTAT_DATA_CHAR);
9838 	kstat_named_init(&stp->sd_serial,	"Serial No",
9839 	    KSTAT_DATA_CHAR);
9840 	kstat_named_init(&stp->sd_capacity,	"Size",
9841 	    KSTAT_DATA_ULONGLONG);
9842 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
9843 	    KSTAT_DATA_UINT32);
9844 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
9845 	    KSTAT_DATA_UINT32);
9846 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
9847 	    KSTAT_DATA_UINT32);
9848 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
9849 	    KSTAT_DATA_UINT32);
9850 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
9851 	    KSTAT_DATA_UINT32);
9852 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
9853 	    KSTAT_DATA_UINT32);
9854 
9855 	un->un_errstats->ks_private = un;
9856 	un->un_errstats->ks_update  = nulldev;
9857 
9858 	kstat_install(un->un_errstats);
9859 }
9860 
9861 
9862 /*
9863  *    Function: sd_set_errstats
9864  *
9865  * Description: This routine sets the value of the vendor id, product id,
9866  *		revision, serial number, and capacity device error stats.
9867  *
9868  *		Note: During attach the stats are instantiated first so they are
9869  *		available for attach-time routines that utilize the driver
9870  *		iopath to send commands to the device. The stats are initialized
9871  *		separately so data obtained during some attach-time routines is
9872  *		available. (4362483)
9873  *
9874  *   Arguments: un - driver soft state (unit) structure
9875  *
9876  *     Context: Kernel thread context
9877  */
9878 
9879 static void
9880 sd_set_errstats(struct sd_lun *un)
9881 {
9882 	struct	sd_errstats	*stp;
9883 
9884 	ASSERT(un != NULL);
9885 	ASSERT(un->un_errstats != NULL);
9886 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9887 	ASSERT(stp != NULL);
9888 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
9889 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
9890 	(void) strncpy(stp->sd_revision.value.c,
9891 	    un->un_sd->sd_inq->inq_revision, 4);
9892 
9893 	/*
9894 	 * All the errstats are persistent across detach/attach,
9895 	 * so reset all the errstats here in case of the hot
9896 	 * replacement of disk drives, except for not changed
9897 	 * Sun qualified drives.
9898 	 */
9899 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
9900 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9901 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
9902 		stp->sd_softerrs.value.ui32 = 0;
9903 		stp->sd_harderrs.value.ui32 = 0;
9904 		stp->sd_transerrs.value.ui32 = 0;
9905 		stp->sd_rq_media_err.value.ui32 = 0;
9906 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
9907 		stp->sd_rq_nodev_err.value.ui32 = 0;
9908 		stp->sd_rq_recov_err.value.ui32 = 0;
9909 		stp->sd_rq_illrq_err.value.ui32 = 0;
9910 		stp->sd_rq_pfa_err.value.ui32 = 0;
9911 	}
9912 
9913 	/*
9914 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
9915 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
9916 	 * (4376302))
9917 	 */
9918 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
9919 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9920 		    sizeof (SD_INQUIRY(un)->inq_serial));
9921 	}
9922 
9923 	if (un->un_f_blockcount_is_valid != TRUE) {
9924 		/*
9925 		 * Set capacity error stat to 0 for no media. This ensures
9926 		 * a valid capacity is displayed in response to 'iostat -E'
9927 		 * when no media is present in the device.
9928 		 */
9929 		stp->sd_capacity.value.ui64 = 0;
9930 	} else {
9931 		/*
9932 		 * Multiply un_blockcount by un->un_sys_blocksize to get
9933 		 * capacity.
9934 		 *
9935 		 * Note: for non-512 blocksize devices "un_blockcount" has been
9936 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
9937 		 * (un_tgt_blocksize / un->un_sys_blocksize).
9938 		 */
9939 		stp->sd_capacity.value.ui64 = (uint64_t)
9940 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
9941 	}
9942 }
9943 
9944 
9945 /*
9946  *    Function: sd_set_pstats
9947  *
9948  * Description: This routine instantiates and initializes the partition
9949  *              stats for each partition with more than zero blocks.
9950  *		(4363169)
9951  *
9952  *   Arguments: un - driver soft state (unit) structure
9953  *
9954  *     Context: Kernel thread context
9955  */
9956 
9957 static void
9958 sd_set_pstats(struct sd_lun *un)
9959 {
9960 	char	kstatname[KSTAT_STRLEN];
9961 	int	instance;
9962 	int	i;
9963 
9964 	ASSERT(un != NULL);
9965 
9966 	instance = ddi_get_instance(SD_DEVINFO(un));
9967 
9968 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
9969 	for (i = 0; i < NSDMAP; i++) {
9970 		if ((un->un_pstats[i] == NULL) &&
9971 		    (un->un_map[i].dkl_nblk != 0)) {
9972 			(void) snprintf(kstatname, sizeof (kstatname),
9973 			    "%s%d,%s", sd_label, instance,
9974 			    sd_minor_data[i].name);
9975 			un->un_pstats[i] = kstat_create(sd_label,
9976 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
9977 			    1, KSTAT_FLAG_PERSISTENT);
9978 			if (un->un_pstats[i] != NULL) {
9979 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
9980 				kstat_install(un->un_pstats[i]);
9981 			}
9982 		}
9983 	}
9984 }
9985 
9986 
9987 #if (defined(__fibre))
9988 /*
9989  *    Function: sd_init_event_callbacks
9990  *
9991  * Description: This routine initializes the insertion and removal event
9992  *		callbacks. (fibre only)
9993  *
9994  *   Arguments: un - driver soft state (unit) structure
9995  *
9996  *     Context: Kernel thread context
9997  */
9998 
9999 static void
10000 sd_init_event_callbacks(struct sd_lun *un)
10001 {
10002 	ASSERT(un != NULL);
10003 
10004 	if ((un->un_insert_event == NULL) &&
10005 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
10006 	    &un->un_insert_event) == DDI_SUCCESS)) {
10007 		/*
10008 		 * Add the callback for an insertion event
10009 		 */
10010 		(void) ddi_add_event_handler(SD_DEVINFO(un),
10011 		    un->un_insert_event, sd_event_callback, (void *)un,
10012 		    &(un->un_insert_cb_id));
10013 	}
10014 
10015 	if ((un->un_remove_event == NULL) &&
10016 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
10017 	    &un->un_remove_event) == DDI_SUCCESS)) {
10018 		/*
10019 		 * Add the callback for a removal event
10020 		 */
10021 		(void) ddi_add_event_handler(SD_DEVINFO(un),
10022 		    un->un_remove_event, sd_event_callback, (void *)un,
10023 		    &(un->un_remove_cb_id));
10024 	}
10025 }
10026 
10027 
10028 /*
10029  *    Function: sd_event_callback
10030  *
10031  * Description: This routine handles insert/remove events (photon). The
10032  *		state is changed to OFFLINE which can be used to supress
10033  *		error msgs. (fibre only)
10034  *
10035  *   Arguments: un - driver soft state (unit) structure
10036  *
10037  *     Context: Callout thread context
10038  */
10039 /* ARGSUSED */
10040 static void
10041 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
10042     void *bus_impldata)
10043 {
10044 	struct sd_lun *un = (struct sd_lun *)arg;
10045 
10046 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
10047 	if (event == un->un_insert_event) {
10048 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
10049 		mutex_enter(SD_MUTEX(un));
10050 		if (un->un_state == SD_STATE_OFFLINE) {
10051 			if (un->un_last_state != SD_STATE_SUSPENDED) {
10052 				un->un_state = un->un_last_state;
10053 			} else {
10054 				/*
10055 				 * We have gone through SUSPEND/RESUME while
10056 				 * we were offline. Restore the last state
10057 				 */
10058 				un->un_state = un->un_save_state;
10059 			}
10060 		}
10061 		mutex_exit(SD_MUTEX(un));
10062 
10063 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
10064 	} else if (event == un->un_remove_event) {
10065 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
10066 		mutex_enter(SD_MUTEX(un));
10067 		/*
10068 		 * We need to handle an event callback that occurs during
10069 		 * the suspend operation, since we don't prevent it.
10070 		 */
10071 		if (un->un_state != SD_STATE_OFFLINE) {
10072 			if (un->un_state != SD_STATE_SUSPENDED) {
10073 				New_state(un, SD_STATE_OFFLINE);
10074 			} else {
10075 				un->un_last_state = SD_STATE_OFFLINE;
10076 			}
10077 		}
10078 		mutex_exit(SD_MUTEX(un));
10079 	} else {
10080 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
10081 		    "!Unknown event\n");
10082 	}
10083 
10084 }
10085 #endif
10086 
10087 /*
10088  *    Function: sd_cache_control()
10089  *
10090  * Description: This routine is the driver entry point for setting
10091  *		read and write caching by modifying the WCE (write cache
10092  *		enable) and RCD (read cache disable) bits of mode
10093  *		page 8 (MODEPAGE_CACHING).
10094  *
10095  *   Arguments: un - driver soft state (unit) structure
10096  *		rcd_flag - flag for controlling the read cache
10097  *		wce_flag - flag for controlling the write cache
10098  *
10099  * Return Code: EIO
10100  *		code returned by sd_send_scsi_MODE_SENSE and
10101  *		sd_send_scsi_MODE_SELECT
10102  *
10103  *     Context: Kernel Thread
10104  */
10105 
10106 static int
10107 sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag)
10108 {
10109 	struct mode_caching	*mode_caching_page;
10110 	uchar_t			*header;
10111 	size_t			buflen;
10112 	int			hdrlen;
10113 	int			bd_len;
10114 	int			rval = 0;
10115 	struct mode_header_grp2	*mhp;
10116 
10117 	ASSERT(un != NULL);
10118 
10119 	/*
10120 	 * Do a test unit ready, otherwise a mode sense may not work if this
10121 	 * is the first command sent to the device after boot.
10122 	 */
10123 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
10124 
10125 	if (un->un_f_cfg_is_atapi == TRUE) {
10126 		hdrlen = MODE_HEADER_LENGTH_GRP2;
10127 	} else {
10128 		hdrlen = MODE_HEADER_LENGTH;
10129 	}
10130 
10131 	/*
10132 	 * Allocate memory for the retrieved mode page and its headers.  Set
10133 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
10134 	 * we get all of the mode sense data otherwise, the mode select
10135 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
10136 	 */
10137 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
10138 		sizeof (struct mode_cache_scsi3);
10139 
10140 	header = kmem_zalloc(buflen, KM_SLEEP);
10141 
10142 	/* Get the information from the device. */
10143 	if (un->un_f_cfg_is_atapi == TRUE) {
10144 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
10145 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
10146 	} else {
10147 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
10148 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
10149 	}
10150 	if (rval != 0) {
10151 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
10152 		    "sd_cache_control: Mode Sense Failed\n");
10153 		kmem_free(header, buflen);
10154 		return (rval);
10155 	}
10156 
10157 	/*
10158 	 * Determine size of Block Descriptors in order to locate
10159 	 * the mode page data. ATAPI devices return 0, SCSI devices
10160 	 * should return MODE_BLK_DESC_LENGTH.
10161 	 */
10162 	if (un->un_f_cfg_is_atapi == TRUE) {
10163 		mhp	= (struct mode_header_grp2 *)header;
10164 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
10165 	} else {
10166 		bd_len  = ((struct mode_header *)header)->bdesc_length;
10167 	}
10168 
10169 	if (bd_len > MODE_BLK_DESC_LENGTH) {
10170 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10171 		    "sd_cache_control: Mode Sense returned invalid "
10172 		    "block descriptor length\n");
10173 		kmem_free(header, buflen);
10174 		return (EIO);
10175 	}
10176 
10177 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
10178 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
10179 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
10180 		    " caching page code mismatch %d\n",
10181 		    mode_caching_page->mode_page.code);
10182 		kmem_free(header, buflen);
10183 		return (EIO);
10184 	}
10185 
10186 	/* Check the relevant bits on successful mode sense. */
10187 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
10188 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
10189 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
10190 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
10191 
10192 		size_t sbuflen;
10193 		uchar_t save_pg;
10194 
10195 		/*
10196 		 * Construct select buffer length based on the
10197 		 * length of the sense data returned.
10198 		 */
10199 		sbuflen =  hdrlen + MODE_BLK_DESC_LENGTH +
10200 				sizeof (struct mode_page) +
10201 				(int)mode_caching_page->mode_page.length;
10202 
10203 		/*
10204 		 * Set the caching bits as requested.
10205 		 */
10206 		if (rcd_flag == SD_CACHE_ENABLE)
10207 			mode_caching_page->rcd = 0;
10208 		else if (rcd_flag == SD_CACHE_DISABLE)
10209 			mode_caching_page->rcd = 1;
10210 
10211 		if (wce_flag == SD_CACHE_ENABLE)
10212 			mode_caching_page->wce = 1;
10213 		else if (wce_flag == SD_CACHE_DISABLE)
10214 			mode_caching_page->wce = 0;
10215 
10216 		/*
10217 		 * Save the page if the mode sense says the
10218 		 * drive supports it.
10219 		 */
10220 		save_pg = mode_caching_page->mode_page.ps ?
10221 				SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
10222 
10223 		/* Clear reserved bits before mode select. */
10224 		mode_caching_page->mode_page.ps = 0;
10225 
10226 		/*
10227 		 * Clear out mode header for mode select.
10228 		 * The rest of the retrieved page will be reused.
10229 		 */
10230 		bzero(header, hdrlen);
10231 
10232 		if (un->un_f_cfg_is_atapi == TRUE) {
10233 			mhp = (struct mode_header_grp2 *)header;
10234 			mhp->bdesc_length_hi = bd_len >> 8;
10235 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
10236 		} else {
10237 			((struct mode_header *)header)->bdesc_length = bd_len;
10238 		}
10239 
10240 		/* Issue mode select to change the cache settings */
10241 		if (un->un_f_cfg_is_atapi == TRUE) {
10242 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header,
10243 			    sbuflen, save_pg, SD_PATH_DIRECT);
10244 		} else {
10245 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
10246 			    sbuflen, save_pg, SD_PATH_DIRECT);
10247 		}
10248 	}
10249 
10250 	kmem_free(header, buflen);
10251 	return (rval);
10252 }
10253 
10254 
10255 /*
10256  *    Function: sd_get_write_cache_enabled()
10257  *
10258  * Description: This routine is the driver entry point for determining if
10259  *		write caching is enabled.  It examines the WCE (write cache
10260  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
10261  *
10262  *   Arguments: un - driver soft state (unit) structure
10263  *   		is_enabled - pointer to int where write cache enabled state
10264  *   			is returned (non-zero -> write cache enabled)
10265  *
10266  *
10267  * Return Code: EIO
10268  *		code returned by sd_send_scsi_MODE_SENSE
10269  *
10270  *     Context: Kernel Thread
10271  *
10272  * NOTE: If ioctl is added to disable write cache, this sequence should
10273  * be followed so that no locking is required for accesses to
10274  * un->un_f_write_cache_enabled:
10275  * 	do mode select to clear wce
10276  * 	do synchronize cache to flush cache
10277  * 	set un->un_f_write_cache_enabled = FALSE
10278  *
10279  * Conversely, an ioctl to enable the write cache should be done
10280  * in this order:
10281  * 	set un->un_f_write_cache_enabled = TRUE
10282  * 	do mode select to set wce
10283  */
10284 
10285 static int
10286 sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled)
10287 {
10288 	struct mode_caching	*mode_caching_page;
10289 	uchar_t			*header;
10290 	size_t			buflen;
10291 	int			hdrlen;
10292 	int			bd_len;
10293 	int			rval = 0;
10294 
10295 	ASSERT(un != NULL);
10296 	ASSERT(is_enabled != NULL);
10297 
10298 	/* in case of error, flag as enabled */
10299 	*is_enabled = TRUE;
10300 
10301 	/*
10302 	 * Do a test unit ready, otherwise a mode sense may not work if this
10303 	 * is the first command sent to the device after boot.
10304 	 */
10305 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
10306 
10307 	if (un->un_f_cfg_is_atapi == TRUE) {
10308 		hdrlen = MODE_HEADER_LENGTH_GRP2;
10309 	} else {
10310 		hdrlen = MODE_HEADER_LENGTH;
10311 	}
10312 
10313 	/*
10314 	 * Allocate memory for the retrieved mode page and its headers.  Set
10315 	 * a pointer to the page itself.
10316 	 */
10317 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
10318 	header = kmem_zalloc(buflen, KM_SLEEP);
10319 
10320 	/* Get the information from the device. */
10321 	if (un->un_f_cfg_is_atapi == TRUE) {
10322 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
10323 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
10324 	} else {
10325 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
10326 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
10327 	}
10328 	if (rval != 0) {
10329 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
10330 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
10331 		kmem_free(header, buflen);
10332 		return (rval);
10333 	}
10334 
10335 	/*
10336 	 * Determine size of Block Descriptors in order to locate
10337 	 * the mode page data. ATAPI devices return 0, SCSI devices
10338 	 * should return MODE_BLK_DESC_LENGTH.
10339 	 */
10340 	if (un->un_f_cfg_is_atapi == TRUE) {
10341 		struct mode_header_grp2	*mhp;
10342 		mhp	= (struct mode_header_grp2 *)header;
10343 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
10344 	} else {
10345 		bd_len  = ((struct mode_header *)header)->bdesc_length;
10346 	}
10347 
10348 	if (bd_len > MODE_BLK_DESC_LENGTH) {
10349 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10350 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
10351 		    "block descriptor length\n");
10352 		kmem_free(header, buflen);
10353 		return (EIO);
10354 	}
10355 
10356 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
10357 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
10358 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
10359 		    " caching page code mismatch %d\n",
10360 		    mode_caching_page->mode_page.code);
10361 		kmem_free(header, buflen);
10362 		return (EIO);
10363 	}
10364 	*is_enabled = mode_caching_page->wce;
10365 
10366 	kmem_free(header, buflen);
10367 	return (0);
10368 }
10369 
10370 
10371 /*
10372  *    Function: sd_make_device
10373  *
10374  * Description: Utility routine to return the Solaris device number from
10375  *		the data in the device's dev_info structure.
10376  *
10377  * Return Code: The Solaris device number
10378  *
10379  *     Context: Any
10380  */
10381 
10382 static dev_t
10383 sd_make_device(dev_info_t *devi)
10384 {
10385 	return (makedevice(ddi_name_to_major(ddi_get_name(devi)),
10386 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
10387 }
10388 
10389 
10390 /*
10391  *    Function: sd_pm_entry
10392  *
10393  * Description: Called at the start of a new command to manage power
10394  *		and busy status of a device. This includes determining whether
10395  *		the current power state of the device is sufficient for
10396  *		performing the command or whether it must be changed.
10397  *		The PM framework is notified appropriately.
10398  *		Only with a return status of DDI_SUCCESS will the
10399  *		component be busy to the framework.
10400  *
10401  *		All callers of sd_pm_entry must check the return status
10402  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
10403  *		of DDI_FAILURE indicates the device failed to power up.
10404  *		In this case un_pm_count has been adjusted so the result
10405  *		on exit is still powered down, ie. count is less than 0.
10406  *		Calling sd_pm_exit with this count value hits an ASSERT.
10407  *
10408  * Return Code: DDI_SUCCESS or DDI_FAILURE
10409  *
10410  *     Context: Kernel thread context.
10411  */
10412 
10413 static int
10414 sd_pm_entry(struct sd_lun *un)
10415 {
10416 	int return_status = DDI_SUCCESS;
10417 
10418 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10419 	ASSERT(!mutex_owned(&un->un_pm_mutex));
10420 
10421 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
10422 
10423 	if (un->un_f_pm_is_enabled == FALSE) {
10424 		SD_TRACE(SD_LOG_IO_PM, un,
10425 		    "sd_pm_entry: exiting, PM not enabled\n");
10426 		return (return_status);
10427 	}
10428 
10429 	/*
10430 	 * Just increment a counter if PM is enabled. On the transition from
10431 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
10432 	 * the count with each IO and mark the device as idle when the count
10433 	 * hits 0.
10434 	 *
10435 	 * If the count is less than 0 the device is powered down. If a powered
10436 	 * down device is successfully powered up then the count must be
10437 	 * incremented to reflect the power up. Note that it'll get incremented
10438 	 * a second time to become busy.
10439 	 *
10440 	 * Because the following has the potential to change the device state
10441 	 * and must release the un_pm_mutex to do so, only one thread can be
10442 	 * allowed through at a time.
10443 	 */
10444 
10445 	mutex_enter(&un->un_pm_mutex);
10446 	while (un->un_pm_busy == TRUE) {
10447 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
10448 	}
10449 	un->un_pm_busy = TRUE;
10450 
10451 	if (un->un_pm_count < 1) {
10452 
10453 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
10454 
10455 		/*
10456 		 * Indicate we are now busy so the framework won't attempt to
10457 		 * power down the device. This call will only fail if either
10458 		 * we passed a bad component number or the device has no
10459 		 * components. Neither of these should ever happen.
10460 		 */
10461 		mutex_exit(&un->un_pm_mutex);
10462 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
10463 		ASSERT(return_status == DDI_SUCCESS);
10464 
10465 		mutex_enter(&un->un_pm_mutex);
10466 
10467 		if (un->un_pm_count < 0) {
10468 			mutex_exit(&un->un_pm_mutex);
10469 
10470 			SD_TRACE(SD_LOG_IO_PM, un,
10471 			    "sd_pm_entry: power up component\n");
10472 
10473 			/*
10474 			 * pm_raise_power will cause sdpower to be called
10475 			 * which brings the device power level to the
10476 			 * desired state, ON in this case. If successful,
10477 			 * un_pm_count and un_power_level will be updated
10478 			 * appropriately.
10479 			 */
10480 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
10481 			    SD_SPINDLE_ON);
10482 
10483 			mutex_enter(&un->un_pm_mutex);
10484 
10485 			if (return_status != DDI_SUCCESS) {
10486 				/*
10487 				 * Power up failed.
10488 				 * Idle the device and adjust the count
10489 				 * so the result on exit is that we're
10490 				 * still powered down, ie. count is less than 0.
10491 				 */
10492 				SD_TRACE(SD_LOG_IO_PM, un,
10493 				    "sd_pm_entry: power up failed,"
10494 				    " idle the component\n");
10495 
10496 				(void) pm_idle_component(SD_DEVINFO(un), 0);
10497 				un->un_pm_count--;
10498 			} else {
10499 				/*
10500 				 * Device is powered up, verify the
10501 				 * count is non-negative.
10502 				 * This is debug only.
10503 				 */
10504 				ASSERT(un->un_pm_count == 0);
10505 			}
10506 		}
10507 
10508 		if (return_status == DDI_SUCCESS) {
10509 			/*
10510 			 * For performance, now that the device has been tagged
10511 			 * as busy, and it's known to be powered up, update the
10512 			 * chain types to use jump tables that do not include
10513 			 * pm. This significantly lowers the overhead and
10514 			 * therefore improves performance.
10515 			 */
10516 
10517 			mutex_exit(&un->un_pm_mutex);
10518 			mutex_enter(SD_MUTEX(un));
10519 			SD_TRACE(SD_LOG_IO_PM, un,
10520 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
10521 			    un->un_uscsi_chain_type);
10522 
10523 			if (un->un_f_non_devbsize_supported) {
10524 				un->un_buf_chain_type =
10525 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
10526 			} else {
10527 				un->un_buf_chain_type =
10528 				    SD_CHAIN_INFO_DISK_NO_PM;
10529 			}
10530 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
10531 
10532 			SD_TRACE(SD_LOG_IO_PM, un,
10533 			    "             changed  uscsi_chain_type to   %d\n",
10534 			    un->un_uscsi_chain_type);
10535 			mutex_exit(SD_MUTEX(un));
10536 			mutex_enter(&un->un_pm_mutex);
10537 
10538 			if (un->un_pm_idle_timeid == NULL) {
10539 				/* 300 ms. */
10540 				un->un_pm_idle_timeid =
10541 				    timeout(sd_pm_idletimeout_handler, un,
10542 				    (drv_usectohz((clock_t)300000)));
10543 				/*
10544 				 * Include an extra call to busy which keeps the
10545 				 * device busy with-respect-to the PM layer
10546 				 * until the timer fires, at which time it'll
10547 				 * get the extra idle call.
10548 				 */
10549 				(void) pm_busy_component(SD_DEVINFO(un), 0);
10550 			}
10551 		}
10552 	}
10553 	un->un_pm_busy = FALSE;
10554 	/* Next... */
10555 	cv_signal(&un->un_pm_busy_cv);
10556 
10557 	un->un_pm_count++;
10558 
10559 	SD_TRACE(SD_LOG_IO_PM, un,
10560 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
10561 
10562 	mutex_exit(&un->un_pm_mutex);
10563 
10564 	return (return_status);
10565 }
10566 
10567 
10568 /*
10569  *    Function: sd_pm_exit
10570  *
10571  * Description: Called at the completion of a command to manage busy
10572  *		status for the device. If the device becomes idle the
10573  *		PM framework is notified.
10574  *
10575  *     Context: Kernel thread context
10576  */
10577 
10578 static void
10579 sd_pm_exit(struct sd_lun *un)
10580 {
10581 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10582 	ASSERT(!mutex_owned(&un->un_pm_mutex));
10583 
10584 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
10585 
10586 	/*
10587 	 * After attach the following flag is only read, so don't
10588 	 * take the penalty of acquiring a mutex for it.
10589 	 */
10590 	if (un->un_f_pm_is_enabled == TRUE) {
10591 
10592 		mutex_enter(&un->un_pm_mutex);
10593 		un->un_pm_count--;
10594 
10595 		SD_TRACE(SD_LOG_IO_PM, un,
10596 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
10597 
10598 		ASSERT(un->un_pm_count >= 0);
10599 		if (un->un_pm_count == 0) {
10600 			mutex_exit(&un->un_pm_mutex);
10601 
10602 			SD_TRACE(SD_LOG_IO_PM, un,
10603 			    "sd_pm_exit: idle component\n");
10604 
10605 			(void) pm_idle_component(SD_DEVINFO(un), 0);
10606 
10607 		} else {
10608 			mutex_exit(&un->un_pm_mutex);
10609 		}
10610 	}
10611 
10612 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
10613 }
10614 
10615 
10616 /*
10617  *    Function: sdopen
10618  *
10619  * Description: Driver's open(9e) entry point function.
10620  *
10621  *   Arguments: dev_i   - pointer to device number
10622  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
10623  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10624  *		cred_p  - user credential pointer
10625  *
10626  * Return Code: EINVAL
10627  *		ENXIO
10628  *		EIO
10629  *		EROFS
10630  *		EBUSY
10631  *
10632  *     Context: Kernel thread context
10633  */
10634 /* ARGSUSED */
10635 static int
10636 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
10637 {
10638 	struct sd_lun	*un;
10639 	int		nodelay;
10640 	int		part;
10641 	uint64_t	partmask;
10642 	int		instance;
10643 	dev_t		dev;
10644 	int		rval = EIO;
10645 
10646 	/* Validate the open type */
10647 	if (otyp >= OTYPCNT) {
10648 		return (EINVAL);
10649 	}
10650 
10651 	dev = *dev_p;
10652 	instance = SDUNIT(dev);
10653 	mutex_enter(&sd_detach_mutex);
10654 
10655 	/*
10656 	 * Fail the open if there is no softstate for the instance, or
10657 	 * if another thread somewhere is trying to detach the instance.
10658 	 */
10659 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
10660 	    (un->un_detach_count != 0)) {
10661 		mutex_exit(&sd_detach_mutex);
10662 		/*
10663 		 * The probe cache only needs to be cleared when open (9e) fails
10664 		 * with ENXIO (4238046).
10665 		 */
10666 		/*
10667 		 * un-conditionally clearing probe cache is ok with
10668 		 * separate sd/ssd binaries
10669 		 * x86 platform can be an issue with both parallel
10670 		 * and fibre in 1 binary
10671 		 */
10672 		sd_scsi_clear_probe_cache();
10673 		return (ENXIO);
10674 	}
10675 
10676 	/*
10677 	 * The un_layer_count is to prevent another thread in specfs from
10678 	 * trying to detach the instance, which can happen when we are
10679 	 * called from a higher-layer driver instead of thru specfs.
10680 	 * This will not be needed when DDI provides a layered driver
10681 	 * interface that allows specfs to know that an instance is in
10682 	 * use by a layered driver & should not be detached.
10683 	 *
10684 	 * Note: the semantics for layered driver opens are exactly one
10685 	 * close for every open.
10686 	 */
10687 	if (otyp == OTYP_LYR) {
10688 		un->un_layer_count++;
10689 	}
10690 
10691 	/*
10692 	 * Keep a count of the current # of opens in progress. This is because
10693 	 * some layered drivers try to call us as a regular open. This can
10694 	 * cause problems that we cannot prevent, however by keeping this count
10695 	 * we can at least keep our open and detach routines from racing against
10696 	 * each other under such conditions.
10697 	 */
10698 	un->un_opens_in_progress++;
10699 	mutex_exit(&sd_detach_mutex);
10700 
10701 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
10702 	part	 = SDPART(dev);
10703 	partmask = 1 << part;
10704 
10705 	/*
10706 	 * We use a semaphore here in order to serialize
10707 	 * open and close requests on the device.
10708 	 */
10709 	sema_p(&un->un_semoclose);
10710 
10711 	mutex_enter(SD_MUTEX(un));
10712 
10713 	/*
10714 	 * All device accesses go thru sdstrategy() where we check
10715 	 * on suspend status but there could be a scsi_poll command,
10716 	 * which bypasses sdstrategy(), so we need to check pm
10717 	 * status.
10718 	 */
10719 
10720 	if (!nodelay) {
10721 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10722 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10723 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10724 		}
10725 
10726 		mutex_exit(SD_MUTEX(un));
10727 		if (sd_pm_entry(un) != DDI_SUCCESS) {
10728 			rval = EIO;
10729 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
10730 			    "sdopen: sd_pm_entry failed\n");
10731 			goto open_failed_with_pm;
10732 		}
10733 		mutex_enter(SD_MUTEX(un));
10734 	}
10735 
10736 	/* check for previous exclusive open */
10737 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
10738 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10739 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
10740 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
10741 
10742 	if (un->un_exclopen & (partmask)) {
10743 		goto excl_open_fail;
10744 	}
10745 
10746 	if (flag & FEXCL) {
10747 		int i;
10748 		if (un->un_ocmap.lyropen[part]) {
10749 			goto excl_open_fail;
10750 		}
10751 		for (i = 0; i < (OTYPCNT - 1); i++) {
10752 			if (un->un_ocmap.regopen[i] & (partmask)) {
10753 				goto excl_open_fail;
10754 			}
10755 		}
10756 	}
10757 
10758 	/*
10759 	 * Check the write permission if this is a removable media device,
10760 	 * NDELAY has not been set, and writable permission is requested.
10761 	 *
10762 	 * Note: If NDELAY was set and this is write-protected media the WRITE
10763 	 * attempt will fail with EIO as part of the I/O processing. This is a
10764 	 * more permissive implementation that allows the open to succeed and
10765 	 * WRITE attempts to fail when appropriate.
10766 	 */
10767 	if (un->un_f_chk_wp_open) {
10768 		if ((flag & FWRITE) && (!nodelay)) {
10769 			mutex_exit(SD_MUTEX(un));
10770 			/*
10771 			 * Defer the check for write permission on writable
10772 			 * DVD drive till sdstrategy and will not fail open even
10773 			 * if FWRITE is set as the device can be writable
10774 			 * depending upon the media and the media can change
10775 			 * after the call to open().
10776 			 */
10777 			if (un->un_f_dvdram_writable_device == FALSE) {
10778 				if (ISCD(un) || sr_check_wp(dev)) {
10779 				rval = EROFS;
10780 				mutex_enter(SD_MUTEX(un));
10781 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10782 				    "write to cd or write protected media\n");
10783 				goto open_fail;
10784 				}
10785 			}
10786 			mutex_enter(SD_MUTEX(un));
10787 		}
10788 	}
10789 
10790 	/*
10791 	 * If opening in NDELAY/NONBLOCK mode, just return.
10792 	 * Check if disk is ready and has a valid geometry later.
10793 	 */
10794 	if (!nodelay) {
10795 		mutex_exit(SD_MUTEX(un));
10796 		rval = sd_ready_and_valid(un);
10797 		mutex_enter(SD_MUTEX(un));
10798 		/*
10799 		 * Fail if device is not ready or if the number of disk
10800 		 * blocks is zero or negative for non CD devices.
10801 		 */
10802 		if ((rval != SD_READY_VALID) ||
10803 		    (!ISCD(un) && un->un_map[part].dkl_nblk <= 0)) {
10804 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
10805 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10806 			    "device not ready or invalid disk block value\n");
10807 			goto open_fail;
10808 		}
10809 #if defined(__i386) || defined(__amd64)
10810 	} else {
10811 		uchar_t *cp;
10812 		/*
10813 		 * x86 requires special nodelay handling, so that p0 is
10814 		 * always defined and accessible.
10815 		 * Invalidate geometry only if device is not already open.
10816 		 */
10817 		cp = &un->un_ocmap.chkd[0];
10818 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10819 			if (*cp != (uchar_t)0) {
10820 			    break;
10821 			}
10822 			cp++;
10823 		}
10824 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10825 			un->un_f_geometry_is_valid = FALSE;
10826 		}
10827 
10828 #endif
10829 	}
10830 
10831 	if (otyp == OTYP_LYR) {
10832 		un->un_ocmap.lyropen[part]++;
10833 	} else {
10834 		un->un_ocmap.regopen[otyp] |= partmask;
10835 	}
10836 
10837 	/* Set up open and exclusive open flags */
10838 	if (flag & FEXCL) {
10839 		un->un_exclopen |= (partmask);
10840 	}
10841 
10842 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10843 	    "open of part %d type %d\n", part, otyp);
10844 
10845 	mutex_exit(SD_MUTEX(un));
10846 	if (!nodelay) {
10847 		sd_pm_exit(un);
10848 	}
10849 
10850 	sema_v(&un->un_semoclose);
10851 
10852 	mutex_enter(&sd_detach_mutex);
10853 	un->un_opens_in_progress--;
10854 	mutex_exit(&sd_detach_mutex);
10855 
10856 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
10857 	return (DDI_SUCCESS);
10858 
10859 excl_open_fail:
10860 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
10861 	rval = EBUSY;
10862 
10863 open_fail:
10864 	mutex_exit(SD_MUTEX(un));
10865 
10866 	/*
10867 	 * On a failed open we must exit the pm management.
10868 	 */
10869 	if (!nodelay) {
10870 		sd_pm_exit(un);
10871 	}
10872 open_failed_with_pm:
10873 	sema_v(&un->un_semoclose);
10874 
10875 	mutex_enter(&sd_detach_mutex);
10876 	un->un_opens_in_progress--;
10877 	if (otyp == OTYP_LYR) {
10878 		un->un_layer_count--;
10879 	}
10880 	mutex_exit(&sd_detach_mutex);
10881 
10882 	return (rval);
10883 }
10884 
10885 
10886 /*
10887  *    Function: sdclose
10888  *
10889  * Description: Driver's close(9e) entry point function.
10890  *
10891  *   Arguments: dev    - device number
10892  *		flag   - file status flag, informational only
10893  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10894  *		cred_p - user credential pointer
10895  *
10896  * Return Code: ENXIO
10897  *
10898  *     Context: Kernel thread context
10899  */
10900 /* ARGSUSED */
10901 static int
10902 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
10903 {
10904 	struct sd_lun	*un;
10905 	uchar_t		*cp;
10906 	int		part;
10907 	int		nodelay;
10908 	int		rval = 0;
10909 
10910 	/* Validate the open type */
10911 	if (otyp >= OTYPCNT) {
10912 		return (ENXIO);
10913 	}
10914 
10915 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10916 		return (ENXIO);
10917 	}
10918 
10919 	part = SDPART(dev);
10920 	nodelay = flag & (FNDELAY | FNONBLOCK);
10921 
10922 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10923 	    "sdclose: close of part %d type %d\n", part, otyp);
10924 
10925 	/*
10926 	 * We use a semaphore here in order to serialize
10927 	 * open and close requests on the device.
10928 	 */
10929 	sema_p(&un->un_semoclose);
10930 
10931 	mutex_enter(SD_MUTEX(un));
10932 
10933 	/* Don't proceed if power is being changed. */
10934 	while (un->un_state == SD_STATE_PM_CHANGING) {
10935 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10936 	}
10937 
10938 	if (un->un_exclopen & (1 << part)) {
10939 		un->un_exclopen &= ~(1 << part);
10940 	}
10941 
10942 	/* Update the open partition map */
10943 	if (otyp == OTYP_LYR) {
10944 		un->un_ocmap.lyropen[part] -= 1;
10945 	} else {
10946 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
10947 	}
10948 
10949 	cp = &un->un_ocmap.chkd[0];
10950 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10951 		if (*cp != NULL) {
10952 			break;
10953 		}
10954 		cp++;
10955 	}
10956 
10957 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10958 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
10959 
10960 		/*
10961 		 * We avoid persistance upon the last close, and set
10962 		 * the throttle back to the maximum.
10963 		 */
10964 		un->un_throttle = un->un_saved_throttle;
10965 
10966 		if (un->un_state == SD_STATE_OFFLINE) {
10967 			if (un->un_f_is_fibre == FALSE) {
10968 				scsi_log(SD_DEVINFO(un), sd_label,
10969 					CE_WARN, "offline\n");
10970 			}
10971 			un->un_f_geometry_is_valid = FALSE;
10972 
10973 		} else {
10974 			/*
10975 			 * Flush any outstanding writes in NVRAM cache.
10976 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
10977 			 * cmd, it may not work for non-Pluto devices.
10978 			 * SYNCHRONIZE CACHE is not required for removables,
10979 			 * except DVD-RAM drives.
10980 			 *
10981 			 * Also note: because SYNCHRONIZE CACHE is currently
10982 			 * the only command issued here that requires the
10983 			 * drive be powered up, only do the power up before
10984 			 * sending the Sync Cache command. If additional
10985 			 * commands are added which require a powered up
10986 			 * drive, the following sequence may have to change.
10987 			 *
10988 			 * And finally, note that parallel SCSI on SPARC
10989 			 * only issues a Sync Cache to DVD-RAM, a newly
10990 			 * supported device.
10991 			 */
10992 #if defined(__i386) || defined(__amd64)
10993 			if (un->un_f_sync_cache_supported ||
10994 			    un->un_f_dvdram_writable_device == TRUE) {
10995 #else
10996 			if (un->un_f_dvdram_writable_device == TRUE) {
10997 #endif
10998 				mutex_exit(SD_MUTEX(un));
10999 				if (sd_pm_entry(un) == DDI_SUCCESS) {
11000 					rval =
11001 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
11002 					    NULL);
11003 					/* ignore error if not supported */
11004 					if (rval == ENOTSUP) {
11005 						rval = 0;
11006 					} else if (rval != 0) {
11007 						rval = EIO;
11008 					}
11009 					sd_pm_exit(un);
11010 				} else {
11011 					rval = EIO;
11012 				}
11013 				mutex_enter(SD_MUTEX(un));
11014 			}
11015 
11016 			/*
11017 			 * For devices which supports DOOR_LOCK, send an ALLOW
11018 			 * MEDIA REMOVAL command, but don't get upset if it
11019 			 * fails. We need to raise the power of the drive before
11020 			 * we can call sd_send_scsi_DOORLOCK()
11021 			 */
11022 			if (un->un_f_doorlock_supported) {
11023 				mutex_exit(SD_MUTEX(un));
11024 				if (sd_pm_entry(un) == DDI_SUCCESS) {
11025 					rval = sd_send_scsi_DOORLOCK(un,
11026 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
11027 
11028 					sd_pm_exit(un);
11029 					if (ISCD(un) && (rval != 0) &&
11030 					    (nodelay != 0)) {
11031 						rval = ENXIO;
11032 					}
11033 				} else {
11034 					rval = EIO;
11035 				}
11036 				mutex_enter(SD_MUTEX(un));
11037 			}
11038 
11039 			/*
11040 			 * If a device has removable media, invalidate all
11041 			 * parameters related to media, such as geometry,
11042 			 * blocksize, and blockcount.
11043 			 */
11044 			if (un->un_f_has_removable_media) {
11045 				sr_ejected(un);
11046 			}
11047 
11048 			/*
11049 			 * Destroy the cache (if it exists) which was
11050 			 * allocated for the write maps since this is
11051 			 * the last close for this media.
11052 			 */
11053 			if (un->un_wm_cache) {
11054 				/*
11055 				 * Check if there are pending commands.
11056 				 * and if there are give a warning and
11057 				 * do not destroy the cache.
11058 				 */
11059 				if (un->un_ncmds_in_driver > 0) {
11060 					scsi_log(SD_DEVINFO(un),
11061 					    sd_label, CE_WARN,
11062 					    "Unable to clean up memory "
11063 					    "because of pending I/O\n");
11064 				} else {
11065 					kmem_cache_destroy(
11066 					    un->un_wm_cache);
11067 					un->un_wm_cache = NULL;
11068 				}
11069 			}
11070 		}
11071 	}
11072 
11073 	mutex_exit(SD_MUTEX(un));
11074 	sema_v(&un->un_semoclose);
11075 
11076 	if (otyp == OTYP_LYR) {
11077 		mutex_enter(&sd_detach_mutex);
11078 		/*
11079 		 * The detach routine may run when the layer count
11080 		 * drops to zero.
11081 		 */
11082 		un->un_layer_count--;
11083 		mutex_exit(&sd_detach_mutex);
11084 	}
11085 
11086 	return (rval);
11087 }
11088 
11089 
11090 /*
11091  *    Function: sd_ready_and_valid
11092  *
11093  * Description: Test if device is ready and has a valid geometry.
11094  *
11095  *   Arguments: dev - device number
11096  *		un  - driver soft state (unit) structure
11097  *
11098  * Return Code: SD_READY_VALID		ready and valid label
11099  *		SD_READY_NOT_VALID	ready, geom ops never applicable
11100  *		SD_NOT_READY_VALID	not ready, no label
11101  *		SD_RESERVED_BY_OTHERS	reservation conflict
11102  *
11103  *     Context: Never called at interrupt context.
11104  */
11105 
11106 static int
11107 sd_ready_and_valid(struct sd_lun *un)
11108 {
11109 	struct sd_errstats	*stp;
11110 	uint64_t		capacity;
11111 	uint_t			lbasize;
11112 	int			rval = SD_READY_VALID;
11113 	char			name_str[48];
11114 
11115 	ASSERT(un != NULL);
11116 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11117 
11118 	mutex_enter(SD_MUTEX(un));
11119 	/*
11120 	 * If a device has removable media, we must check if media is
11121 	 * ready when checking if this device is ready and valid.
11122 	 */
11123 	if (un->un_f_has_removable_media) {
11124 		mutex_exit(SD_MUTEX(un));
11125 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
11126 			rval = SD_NOT_READY_VALID;
11127 			mutex_enter(SD_MUTEX(un));
11128 			goto done;
11129 		}
11130 
11131 		mutex_enter(SD_MUTEX(un));
11132 		if ((un->un_f_geometry_is_valid == FALSE) ||
11133 		    (un->un_f_blockcount_is_valid == FALSE) ||
11134 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
11135 
11136 			/* capacity has to be read every open. */
11137 			mutex_exit(SD_MUTEX(un));
11138 			if (sd_send_scsi_READ_CAPACITY(un, &capacity,
11139 			    &lbasize, SD_PATH_DIRECT) != 0) {
11140 				mutex_enter(SD_MUTEX(un));
11141 				un->un_f_geometry_is_valid = FALSE;
11142 				rval = SD_NOT_READY_VALID;
11143 				goto done;
11144 			} else {
11145 				mutex_enter(SD_MUTEX(un));
11146 				sd_update_block_info(un, lbasize, capacity);
11147 			}
11148 		}
11149 
11150 		/*
11151 		 * Check if the media in the device is writable or not.
11152 		 */
11153 		if ((un->un_f_geometry_is_valid == FALSE) && ISCD(un)) {
11154 			sd_check_for_writable_cd(un);
11155 		}
11156 
11157 	} else {
11158 		/*
11159 		 * Do a test unit ready to clear any unit attention from non-cd
11160 		 * devices.
11161 		 */
11162 		mutex_exit(SD_MUTEX(un));
11163 		(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
11164 		mutex_enter(SD_MUTEX(un));
11165 	}
11166 
11167 
11168 	/*
11169 	 * If this is a non 512 block device, allocate space for
11170 	 * the wmap cache. This is being done here since every time
11171 	 * a media is changed this routine will be called and the
11172 	 * block size is a function of media rather than device.
11173 	 */
11174 	if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) {
11175 		if (!(un->un_wm_cache)) {
11176 			(void) snprintf(name_str, sizeof (name_str),
11177 			    "%s%d_cache",
11178 			    ddi_driver_name(SD_DEVINFO(un)),
11179 			    ddi_get_instance(SD_DEVINFO(un)));
11180 			un->un_wm_cache = kmem_cache_create(
11181 			    name_str, sizeof (struct sd_w_map),
11182 			    8, sd_wm_cache_constructor,
11183 			    sd_wm_cache_destructor, NULL,
11184 			    (void *)un, NULL, 0);
11185 			if (!(un->un_wm_cache)) {
11186 					rval = ENOMEM;
11187 					goto done;
11188 			}
11189 		}
11190 	}
11191 
11192 	if (un->un_state == SD_STATE_NORMAL) {
11193 		/*
11194 		 * If the target is not yet ready here (defined by a TUR
11195 		 * failure), invalidate the geometry and print an 'offline'
11196 		 * message. This is a legacy message, as the state of the
11197 		 * target is not actually changed to SD_STATE_OFFLINE.
11198 		 *
11199 		 * If the TUR fails for EACCES (Reservation Conflict),
11200 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
11201 		 * reservation conflict. If the TUR fails for other
11202 		 * reasons, SD_NOT_READY_VALID will be returned.
11203 		 */
11204 		int err;
11205 
11206 		mutex_exit(SD_MUTEX(un));
11207 		err = sd_send_scsi_TEST_UNIT_READY(un, 0);
11208 		mutex_enter(SD_MUTEX(un));
11209 
11210 		if (err != 0) {
11211 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
11212 			    "offline or reservation conflict\n");
11213 			un->un_f_geometry_is_valid = FALSE;
11214 			if (err == EACCES) {
11215 				rval = SD_RESERVED_BY_OTHERS;
11216 			} else {
11217 				rval = SD_NOT_READY_VALID;
11218 			}
11219 			goto done;
11220 		}
11221 	}
11222 
11223 	if (un->un_f_format_in_progress == FALSE) {
11224 		/*
11225 		 * Note: sd_validate_geometry may return TRUE, but that does
11226 		 * not necessarily mean un_f_geometry_is_valid == TRUE!
11227 		 */
11228 		rval = sd_validate_geometry(un, SD_PATH_DIRECT);
11229 		if (rval == ENOTSUP) {
11230 			if (un->un_f_geometry_is_valid == TRUE)
11231 				rval = 0;
11232 			else {
11233 				rval = SD_READY_NOT_VALID;
11234 				goto done;
11235 			}
11236 		}
11237 		if (rval != 0) {
11238 			/*
11239 			 * We don't check the validity of geometry for
11240 			 * CDROMs. Also we assume we have a good label
11241 			 * even if sd_validate_geometry returned ENOMEM.
11242 			 */
11243 			if (!ISCD(un) && rval != ENOMEM) {
11244 				rval = SD_NOT_READY_VALID;
11245 				goto done;
11246 			}
11247 		}
11248 	}
11249 
11250 	/*
11251 	 * If this device supports DOOR_LOCK command, try and send
11252 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
11253 	 * if it fails. For a CD, however, it is an error
11254 	 */
11255 	if (un->un_f_doorlock_supported) {
11256 		mutex_exit(SD_MUTEX(un));
11257 		if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
11258 		    SD_PATH_DIRECT) != 0) && ISCD(un)) {
11259 			rval = SD_NOT_READY_VALID;
11260 			mutex_enter(SD_MUTEX(un));
11261 			goto done;
11262 		}
11263 		mutex_enter(SD_MUTEX(un));
11264 	}
11265 
11266 	/* The state has changed, inform the media watch routines */
11267 	un->un_mediastate = DKIO_INSERTED;
11268 	cv_broadcast(&un->un_state_cv);
11269 	rval = SD_READY_VALID;
11270 
11271 done:
11272 
11273 	/*
11274 	 * Initialize the capacity kstat value, if no media previously
11275 	 * (capacity kstat is 0) and a media has been inserted
11276 	 * (un_blockcount > 0).
11277 	 */
11278 	if (un->un_errstats != NULL) {
11279 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
11280 		if ((stp->sd_capacity.value.ui64 == 0) &&
11281 		    (un->un_f_blockcount_is_valid == TRUE)) {
11282 			stp->sd_capacity.value.ui64 =
11283 			    (uint64_t)((uint64_t)un->un_blockcount *
11284 			    un->un_sys_blocksize);
11285 		}
11286 	}
11287 
11288 	mutex_exit(SD_MUTEX(un));
11289 	return (rval);
11290 }
11291 
11292 
11293 /*
11294  *    Function: sdmin
11295  *
11296  * Description: Routine to limit the size of a data transfer. Used in
11297  *		conjunction with physio(9F).
11298  *
11299  *   Arguments: bp - pointer to the indicated buf(9S) struct.
11300  *
11301  *     Context: Kernel thread context.
11302  */
11303 
11304 static void
11305 sdmin(struct buf *bp)
11306 {
11307 	struct sd_lun	*un;
11308 	int		instance;
11309 
11310 	instance = SDUNIT(bp->b_edev);
11311 
11312 	un = ddi_get_soft_state(sd_state, instance);
11313 	ASSERT(un != NULL);
11314 
11315 	if (bp->b_bcount > un->un_max_xfer_size) {
11316 		bp->b_bcount = un->un_max_xfer_size;
11317 	}
11318 }
11319 
11320 
11321 /*
11322  *    Function: sdread
11323  *
11324  * Description: Driver's read(9e) entry point function.
11325  *
11326  *   Arguments: dev   - device number
11327  *		uio   - structure pointer describing where data is to be stored
11328  *			in user's space
11329  *		cred_p  - user credential pointer
11330  *
11331  * Return Code: ENXIO
11332  *		EIO
11333  *		EINVAL
11334  *		value returned by physio
11335  *
11336  *     Context: Kernel thread context.
11337  */
11338 /* ARGSUSED */
11339 static int
11340 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
11341 {
11342 	struct sd_lun	*un = NULL;
11343 	int		secmask;
11344 	int		err;
11345 
11346 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11347 		return (ENXIO);
11348 	}
11349 
11350 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11351 
11352 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
11353 		mutex_enter(SD_MUTEX(un));
11354 		/*
11355 		 * Because the call to sd_ready_and_valid will issue I/O we
11356 		 * must wait here if either the device is suspended or
11357 		 * if it's power level is changing.
11358 		 */
11359 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11360 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11361 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11362 		}
11363 		un->un_ncmds_in_driver++;
11364 		mutex_exit(SD_MUTEX(un));
11365 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
11366 			mutex_enter(SD_MUTEX(un));
11367 			un->un_ncmds_in_driver--;
11368 			ASSERT(un->un_ncmds_in_driver >= 0);
11369 			mutex_exit(SD_MUTEX(un));
11370 			return (EIO);
11371 		}
11372 		mutex_enter(SD_MUTEX(un));
11373 		un->un_ncmds_in_driver--;
11374 		ASSERT(un->un_ncmds_in_driver >= 0);
11375 		mutex_exit(SD_MUTEX(un));
11376 	}
11377 
11378 	/*
11379 	 * Read requests are restricted to multiples of the system block size.
11380 	 */
11381 	secmask = un->un_sys_blocksize - 1;
11382 
11383 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11384 		SD_ERROR(SD_LOG_READ_WRITE, un,
11385 		    "sdread: file offset not modulo %d\n",
11386 		    un->un_sys_blocksize);
11387 		err = EINVAL;
11388 	} else if (uio->uio_iov->iov_len & (secmask)) {
11389 		SD_ERROR(SD_LOG_READ_WRITE, un,
11390 		    "sdread: transfer length not modulo %d\n",
11391 		    un->un_sys_blocksize);
11392 		err = EINVAL;
11393 	} else {
11394 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
11395 	}
11396 	return (err);
11397 }
11398 
11399 
11400 /*
11401  *    Function: sdwrite
11402  *
11403  * Description: Driver's write(9e) entry point function.
11404  *
11405  *   Arguments: dev   - device number
11406  *		uio   - structure pointer describing where data is stored in
11407  *			user's space
11408  *		cred_p  - user credential pointer
11409  *
11410  * Return Code: ENXIO
11411  *		EIO
11412  *		EINVAL
11413  *		value returned by physio
11414  *
11415  *     Context: Kernel thread context.
11416  */
11417 /* ARGSUSED */
11418 static int
11419 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
11420 {
11421 	struct sd_lun	*un = NULL;
11422 	int		secmask;
11423 	int		err;
11424 
11425 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11426 		return (ENXIO);
11427 	}
11428 
11429 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11430 
11431 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
11432 		mutex_enter(SD_MUTEX(un));
11433 		/*
11434 		 * Because the call to sd_ready_and_valid will issue I/O we
11435 		 * must wait here if either the device is suspended or
11436 		 * if it's power level is changing.
11437 		 */
11438 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11439 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11440 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11441 		}
11442 		un->un_ncmds_in_driver++;
11443 		mutex_exit(SD_MUTEX(un));
11444 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
11445 			mutex_enter(SD_MUTEX(un));
11446 			un->un_ncmds_in_driver--;
11447 			ASSERT(un->un_ncmds_in_driver >= 0);
11448 			mutex_exit(SD_MUTEX(un));
11449 			return (EIO);
11450 		}
11451 		mutex_enter(SD_MUTEX(un));
11452 		un->un_ncmds_in_driver--;
11453 		ASSERT(un->un_ncmds_in_driver >= 0);
11454 		mutex_exit(SD_MUTEX(un));
11455 	}
11456 
11457 	/*
11458 	 * Write requests are restricted to multiples of the system block size.
11459 	 */
11460 	secmask = un->un_sys_blocksize - 1;
11461 
11462 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11463 		SD_ERROR(SD_LOG_READ_WRITE, un,
11464 		    "sdwrite: file offset not modulo %d\n",
11465 		    un->un_sys_blocksize);
11466 		err = EINVAL;
11467 	} else if (uio->uio_iov->iov_len & (secmask)) {
11468 		SD_ERROR(SD_LOG_READ_WRITE, un,
11469 		    "sdwrite: transfer length not modulo %d\n",
11470 		    un->un_sys_blocksize);
11471 		err = EINVAL;
11472 	} else {
11473 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
11474 	}
11475 	return (err);
11476 }
11477 
11478 
11479 /*
11480  *    Function: sdaread
11481  *
11482  * Description: Driver's aread(9e) entry point function.
11483  *
11484  *   Arguments: dev   - device number
11485  *		aio   - structure pointer describing where data is to be stored
11486  *		cred_p  - user credential pointer
11487  *
11488  * Return Code: ENXIO
11489  *		EIO
11490  *		EINVAL
11491  *		value returned by aphysio
11492  *
11493  *     Context: Kernel thread context.
11494  */
11495 /* ARGSUSED */
11496 static int
11497 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11498 {
11499 	struct sd_lun	*un = NULL;
11500 	struct uio	*uio = aio->aio_uio;
11501 	int		secmask;
11502 	int		err;
11503 
11504 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11505 		return (ENXIO);
11506 	}
11507 
11508 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11509 
11510 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
11511 		mutex_enter(SD_MUTEX(un));
11512 		/*
11513 		 * Because the call to sd_ready_and_valid will issue I/O we
11514 		 * must wait here if either the device is suspended or
11515 		 * if it's power level is changing.
11516 		 */
11517 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11518 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11519 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11520 		}
11521 		un->un_ncmds_in_driver++;
11522 		mutex_exit(SD_MUTEX(un));
11523 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
11524 			mutex_enter(SD_MUTEX(un));
11525 			un->un_ncmds_in_driver--;
11526 			ASSERT(un->un_ncmds_in_driver >= 0);
11527 			mutex_exit(SD_MUTEX(un));
11528 			return (EIO);
11529 		}
11530 		mutex_enter(SD_MUTEX(un));
11531 		un->un_ncmds_in_driver--;
11532 		ASSERT(un->un_ncmds_in_driver >= 0);
11533 		mutex_exit(SD_MUTEX(un));
11534 	}
11535 
11536 	/*
11537 	 * Read requests are restricted to multiples of the system block size.
11538 	 */
11539 	secmask = un->un_sys_blocksize - 1;
11540 
11541 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11542 		SD_ERROR(SD_LOG_READ_WRITE, un,
11543 		    "sdaread: file offset not modulo %d\n",
11544 		    un->un_sys_blocksize);
11545 		err = EINVAL;
11546 	} else if (uio->uio_iov->iov_len & (secmask)) {
11547 		SD_ERROR(SD_LOG_READ_WRITE, un,
11548 		    "sdaread: transfer length not modulo %d\n",
11549 		    un->un_sys_blocksize);
11550 		err = EINVAL;
11551 	} else {
11552 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
11553 	}
11554 	return (err);
11555 }
11556 
11557 
11558 /*
11559  *    Function: sdawrite
11560  *
11561  * Description: Driver's awrite(9e) entry point function.
11562  *
11563  *   Arguments: dev   - device number
11564  *		aio   - structure pointer describing where data is stored
11565  *		cred_p  - user credential pointer
11566  *
11567  * Return Code: ENXIO
11568  *		EIO
11569  *		EINVAL
11570  *		value returned by aphysio
11571  *
11572  *     Context: Kernel thread context.
11573  */
11574 /* ARGSUSED */
11575 static int
11576 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11577 {
11578 	struct sd_lun	*un = NULL;
11579 	struct uio	*uio = aio->aio_uio;
11580 	int		secmask;
11581 	int		err;
11582 
11583 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11584 		return (ENXIO);
11585 	}
11586 
11587 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11588 
11589 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
11590 		mutex_enter(SD_MUTEX(un));
11591 		/*
11592 		 * Because the call to sd_ready_and_valid will issue I/O we
11593 		 * must wait here if either the device is suspended or
11594 		 * if it's power level is changing.
11595 		 */
11596 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11597 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11598 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11599 		}
11600 		un->un_ncmds_in_driver++;
11601 		mutex_exit(SD_MUTEX(un));
11602 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
11603 			mutex_enter(SD_MUTEX(un));
11604 			un->un_ncmds_in_driver--;
11605 			ASSERT(un->un_ncmds_in_driver >= 0);
11606 			mutex_exit(SD_MUTEX(un));
11607 			return (EIO);
11608 		}
11609 		mutex_enter(SD_MUTEX(un));
11610 		un->un_ncmds_in_driver--;
11611 		ASSERT(un->un_ncmds_in_driver >= 0);
11612 		mutex_exit(SD_MUTEX(un));
11613 	}
11614 
11615 	/*
11616 	 * Write requests are restricted to multiples of the system block size.
11617 	 */
11618 	secmask = un->un_sys_blocksize - 1;
11619 
11620 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11621 		SD_ERROR(SD_LOG_READ_WRITE, un,
11622 		    "sdawrite: file offset not modulo %d\n",
11623 		    un->un_sys_blocksize);
11624 		err = EINVAL;
11625 	} else if (uio->uio_iov->iov_len & (secmask)) {
11626 		SD_ERROR(SD_LOG_READ_WRITE, un,
11627 		    "sdawrite: transfer length not modulo %d\n",
11628 		    un->un_sys_blocksize);
11629 		err = EINVAL;
11630 	} else {
11631 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
11632 	}
11633 	return (err);
11634 }
11635 
11636 
11637 
11638 
11639 
11640 /*
11641  * Driver IO processing follows the following sequence:
11642  *
11643  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
11644  *         |                |                     ^
11645  *         v                v                     |
11646  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
11647  *         |                |                     |                   |
11648  *         v                |                     |                   |
11649  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
11650  *         |                |                     ^                   ^
11651  *         v                v                     |                   |
11652  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
11653  *         |                |                     |                   |
11654  *     +---+                |                     +------------+      +-------+
11655  *     |                    |                                  |              |
11656  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11657  *     |                    v                                  |              |
11658  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
11659  *     |                    |                                  ^              |
11660  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11661  *     |                    v                                  |              |
11662  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
11663  *     |                    |                                  ^              |
11664  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11665  *     |                    v                                  |              |
11666  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
11667  *     |                    |                                  ^              |
11668  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
11669  *     |                    v                                  |              |
11670  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
11671  *     |                    |                                  ^              |
11672  *     |                    |                                  |              |
11673  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
11674  *                          |                           ^
11675  *                          v                           |
11676  *                   sd_core_iostart()                  |
11677  *                          |                           |
11678  *                          |                           +------>(*destroypkt)()
11679  *                          +-> sd_start_cmds() <-+     |           |
11680  *                          |                     |     |           v
11681  *                          |                     |     |  scsi_destroy_pkt(9F)
11682  *                          |                     |     |
11683  *                          +->(*initpkt)()       +- sdintr()
11684  *                          |  |                        |  |
11685  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
11686  *                          |  +-> scsi_setup_cdb(9F)   |
11687  *                          |                           |
11688  *                          +--> scsi_transport(9F)     |
11689  *                                     |                |
11690  *                                     +----> SCSA ---->+
11691  *
11692  *
11693  * This code is based upon the following presumtions:
11694  *
11695  *   - iostart and iodone functions operate on buf(9S) structures. These
11696  *     functions perform the necessary operations on the buf(9S) and pass
11697  *     them along to the next function in the chain by using the macros
11698  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
11699  *     (for iodone side functions).
11700  *
11701  *   - The iostart side functions may sleep. The iodone side functions
11702  *     are called under interrupt context and may NOT sleep. Therefore
11703  *     iodone side functions also may not call iostart side functions.
11704  *     (NOTE: iostart side functions should NOT sleep for memory, as
11705  *     this could result in deadlock.)
11706  *
11707  *   - An iostart side function may call its corresponding iodone side
11708  *     function directly (if necessary).
11709  *
11710  *   - In the event of an error, an iostart side function can return a buf(9S)
11711  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
11712  *     b_error in the usual way of course).
11713  *
11714  *   - The taskq mechanism may be used by the iodone side functions to dispatch
11715  *     requests to the iostart side functions.  The iostart side functions in
11716  *     this case would be called under the context of a taskq thread, so it's
11717  *     OK for them to block/sleep/spin in this case.
11718  *
11719  *   - iostart side functions may allocate "shadow" buf(9S) structs and
11720  *     pass them along to the next function in the chain.  The corresponding
11721  *     iodone side functions must coalesce the "shadow" bufs and return
11722  *     the "original" buf to the next higher layer.
11723  *
11724  *   - The b_private field of the buf(9S) struct holds a pointer to
11725  *     an sd_xbuf struct, which contains information needed to
11726  *     construct the scsi_pkt for the command.
11727  *
11728  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
11729  *     layer must acquire & release the SD_MUTEX(un) as needed.
11730  */
11731 
11732 
11733 /*
11734  * Create taskq for all targets in the system. This is created at
11735  * _init(9E) and destroyed at _fini(9E).
11736  *
11737  * Note: here we set the minalloc to a reasonably high number to ensure that
11738  * we will have an adequate supply of task entries available at interrupt time.
11739  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
11740  * sd_create_taskq().  Since we do not want to sleep for allocations at
11741  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
11742  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
11743  * requests any one instant in time.
11744  */
11745 #define	SD_TASKQ_NUMTHREADS	8
11746 #define	SD_TASKQ_MINALLOC	256
11747 #define	SD_TASKQ_MAXALLOC	256
11748 
11749 static taskq_t	*sd_tq = NULL;
11750 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
11751 
11752 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
11753 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
11754 
11755 /*
11756  * The following task queue is being created for the write part of
11757  * read-modify-write of non-512 block size devices.
11758  * Limit the number of threads to 1 for now. This number has been choosen
11759  * considering the fact that it applies only to dvd ram drives/MO drives
11760  * currently. Performance for which is not main criteria at this stage.
11761  * Note: It needs to be explored if we can use a single taskq in future
11762  */
11763 #define	SD_WMR_TASKQ_NUMTHREADS	1
11764 static taskq_t	*sd_wmr_tq = NULL;
11765 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
11766 
11767 /*
11768  *    Function: sd_taskq_create
11769  *
11770  * Description: Create taskq thread(s) and preallocate task entries
11771  *
11772  * Return Code: Returns a pointer to the allocated taskq_t.
11773  *
11774  *     Context: Can sleep. Requires blockable context.
11775  *
11776  *       Notes: - The taskq() facility currently is NOT part of the DDI.
11777  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
11778  *		- taskq_create() will block for memory, also it will panic
11779  *		  if it cannot create the requested number of threads.
11780  *		- Currently taskq_create() creates threads that cannot be
11781  *		  swapped.
11782  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
11783  *		  supply of taskq entries at interrupt time (ie, so that we
11784  *		  do not have to sleep for memory)
11785  */
11786 
11787 static void
11788 sd_taskq_create(void)
11789 {
11790 	char	taskq_name[TASKQ_NAMELEN];
11791 
11792 	ASSERT(sd_tq == NULL);
11793 	ASSERT(sd_wmr_tq == NULL);
11794 
11795 	(void) snprintf(taskq_name, sizeof (taskq_name),
11796 	    "%s_drv_taskq", sd_label);
11797 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
11798 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11799 	    TASKQ_PREPOPULATE));
11800 
11801 	(void) snprintf(taskq_name, sizeof (taskq_name),
11802 	    "%s_rmw_taskq", sd_label);
11803 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
11804 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11805 	    TASKQ_PREPOPULATE));
11806 }
11807 
11808 
11809 /*
11810  *    Function: sd_taskq_delete
11811  *
11812  * Description: Complementary cleanup routine for sd_taskq_create().
11813  *
11814  *     Context: Kernel thread context.
11815  */
11816 
11817 static void
11818 sd_taskq_delete(void)
11819 {
11820 	ASSERT(sd_tq != NULL);
11821 	ASSERT(sd_wmr_tq != NULL);
11822 	taskq_destroy(sd_tq);
11823 	taskq_destroy(sd_wmr_tq);
11824 	sd_tq = NULL;
11825 	sd_wmr_tq = NULL;
11826 }
11827 
11828 
11829 /*
11830  *    Function: sdstrategy
11831  *
11832  * Description: Driver's strategy (9E) entry point function.
11833  *
11834  *   Arguments: bp - pointer to buf(9S)
11835  *
11836  * Return Code: Always returns zero
11837  *
11838  *     Context: Kernel thread context.
11839  */
11840 
11841 static int
11842 sdstrategy(struct buf *bp)
11843 {
11844 	struct sd_lun *un;
11845 
11846 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11847 	if (un == NULL) {
11848 		bioerror(bp, EIO);
11849 		bp->b_resid = bp->b_bcount;
11850 		biodone(bp);
11851 		return (0);
11852 	}
11853 	/* As was done in the past, fail new cmds. if state is dumping. */
11854 	if (un->un_state == SD_STATE_DUMPING) {
11855 		bioerror(bp, ENXIO);
11856 		bp->b_resid = bp->b_bcount;
11857 		biodone(bp);
11858 		return (0);
11859 	}
11860 
11861 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11862 
11863 	/*
11864 	 * Commands may sneak in while we released the mutex in
11865 	 * DDI_SUSPEND, we should block new commands. However, old
11866 	 * commands that are still in the driver at this point should
11867 	 * still be allowed to drain.
11868 	 */
11869 	mutex_enter(SD_MUTEX(un));
11870 	/*
11871 	 * Must wait here if either the device is suspended or
11872 	 * if it's power level is changing.
11873 	 */
11874 	while ((un->un_state == SD_STATE_SUSPENDED) ||
11875 	    (un->un_state == SD_STATE_PM_CHANGING)) {
11876 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11877 	}
11878 
11879 	un->un_ncmds_in_driver++;
11880 
11881 	/*
11882 	 * atapi: Since we are running the CD for now in PIO mode we need to
11883 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11884 	 * the HBA's init_pkt routine.
11885 	 */
11886 	if (un->un_f_cfg_is_atapi == TRUE) {
11887 		mutex_exit(SD_MUTEX(un));
11888 		bp_mapin(bp);
11889 		mutex_enter(SD_MUTEX(un));
11890 	}
11891 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
11892 	    un->un_ncmds_in_driver);
11893 
11894 	mutex_exit(SD_MUTEX(un));
11895 
11896 	/*
11897 	 * This will (eventually) allocate the sd_xbuf area and
11898 	 * call sd_xbuf_strategy().  We just want to return the
11899 	 * result of ddi_xbuf_qstrategy so that we have an opt-
11900 	 * imized tail call which saves us a stack frame.
11901 	 */
11902 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
11903 }
11904 
11905 
11906 /*
11907  *    Function: sd_xbuf_strategy
11908  *
11909  * Description: Function for initiating IO operations via the
11910  *		ddi_xbuf_qstrategy() mechanism.
11911  *
11912  *     Context: Kernel thread context.
11913  */
11914 
11915 static void
11916 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
11917 {
11918 	struct sd_lun *un = arg;
11919 
11920 	ASSERT(bp != NULL);
11921 	ASSERT(xp != NULL);
11922 	ASSERT(un != NULL);
11923 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11924 
11925 	/*
11926 	 * Initialize the fields in the xbuf and save a pointer to the
11927 	 * xbuf in bp->b_private.
11928 	 */
11929 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
11930 
11931 	/* Send the buf down the iostart chain */
11932 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
11933 }
11934 
11935 
11936 /*
11937  *    Function: sd_xbuf_init
11938  *
11939  * Description: Prepare the given sd_xbuf struct for use.
11940  *
11941  *   Arguments: un - ptr to softstate
11942  *		bp - ptr to associated buf(9S)
11943  *		xp - ptr to associated sd_xbuf
11944  *		chain_type - IO chain type to use:
11945  *			SD_CHAIN_NULL
11946  *			SD_CHAIN_BUFIO
11947  *			SD_CHAIN_USCSI
11948  *			SD_CHAIN_DIRECT
11949  *			SD_CHAIN_DIRECT_PRIORITY
11950  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
11951  *			initialization; may be NULL if none.
11952  *
11953  *     Context: Kernel thread context
11954  */
11955 
11956 static void
11957 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
11958 	uchar_t chain_type, void *pktinfop)
11959 {
11960 	int index;
11961 
11962 	ASSERT(un != NULL);
11963 	ASSERT(bp != NULL);
11964 	ASSERT(xp != NULL);
11965 
11966 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
11967 	    bp, chain_type);
11968 
11969 	xp->xb_un	= un;
11970 	xp->xb_pktp	= NULL;
11971 	xp->xb_pktinfo	= pktinfop;
11972 	xp->xb_private	= bp->b_private;
11973 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
11974 
11975 	/*
11976 	 * Set up the iostart and iodone chain indexes in the xbuf, based
11977 	 * upon the specified chain type to use.
11978 	 */
11979 	switch (chain_type) {
11980 	case SD_CHAIN_NULL:
11981 		/*
11982 		 * Fall thru to just use the values for the buf type, even
11983 		 * tho for the NULL chain these values will never be used.
11984 		 */
11985 		/* FALLTHRU */
11986 	case SD_CHAIN_BUFIO:
11987 		index = un->un_buf_chain_type;
11988 		break;
11989 	case SD_CHAIN_USCSI:
11990 		index = un->un_uscsi_chain_type;
11991 		break;
11992 	case SD_CHAIN_DIRECT:
11993 		index = un->un_direct_chain_type;
11994 		break;
11995 	case SD_CHAIN_DIRECT_PRIORITY:
11996 		index = un->un_priority_chain_type;
11997 		break;
11998 	default:
11999 		/* We're really broken if we ever get here... */
12000 		panic("sd_xbuf_init: illegal chain type!");
12001 		/*NOTREACHED*/
12002 	}
12003 
12004 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
12005 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
12006 
12007 	/*
12008 	 * It might be a bit easier to simply bzero the entire xbuf above,
12009 	 * but it turns out that since we init a fair number of members anyway,
12010 	 * we save a fair number cycles by doing explicit assignment of zero.
12011 	 */
12012 	xp->xb_pkt_flags	= 0;
12013 	xp->xb_dma_resid	= 0;
12014 	xp->xb_retry_count	= 0;
12015 	xp->xb_victim_retry_count = 0;
12016 	xp->xb_ua_retry_count	= 0;
12017 	xp->xb_sense_bp		= NULL;
12018 	xp->xb_sense_status	= 0;
12019 	xp->xb_sense_state	= 0;
12020 	xp->xb_sense_resid	= 0;
12021 
12022 	bp->b_private	= xp;
12023 	bp->b_flags	&= ~(B_DONE | B_ERROR);
12024 	bp->b_resid	= 0;
12025 	bp->av_forw	= NULL;
12026 	bp->av_back	= NULL;
12027 	bioerror(bp, 0);
12028 
12029 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
12030 }
12031 
12032 
12033 /*
12034  *    Function: sd_uscsi_strategy
12035  *
12036  * Description: Wrapper for calling into the USCSI chain via physio(9F)
12037  *
12038  *   Arguments: bp - buf struct ptr
12039  *
12040  * Return Code: Always returns 0
12041  *
12042  *     Context: Kernel thread context
12043  */
12044 
12045 static int
12046 sd_uscsi_strategy(struct buf *bp)
12047 {
12048 	struct sd_lun		*un;
12049 	struct sd_uscsi_info	*uip;
12050 	struct sd_xbuf		*xp;
12051 	uchar_t			chain_type;
12052 
12053 	ASSERT(bp != NULL);
12054 
12055 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
12056 	if (un == NULL) {
12057 		bioerror(bp, EIO);
12058 		bp->b_resid = bp->b_bcount;
12059 		biodone(bp);
12060 		return (0);
12061 	}
12062 
12063 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12064 
12065 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
12066 
12067 	mutex_enter(SD_MUTEX(un));
12068 	/*
12069 	 * atapi: Since we are running the CD for now in PIO mode we need to
12070 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
12071 	 * the HBA's init_pkt routine.
12072 	 */
12073 	if (un->un_f_cfg_is_atapi == TRUE) {
12074 		mutex_exit(SD_MUTEX(un));
12075 		bp_mapin(bp);
12076 		mutex_enter(SD_MUTEX(un));
12077 	}
12078 	un->un_ncmds_in_driver++;
12079 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
12080 	    un->un_ncmds_in_driver);
12081 	mutex_exit(SD_MUTEX(un));
12082 
12083 	/*
12084 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
12085 	 */
12086 	ASSERT(bp->b_private != NULL);
12087 	uip = (struct sd_uscsi_info *)bp->b_private;
12088 
12089 	switch (uip->ui_flags) {
12090 	case SD_PATH_DIRECT:
12091 		chain_type = SD_CHAIN_DIRECT;
12092 		break;
12093 	case SD_PATH_DIRECT_PRIORITY:
12094 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
12095 		break;
12096 	default:
12097 		chain_type = SD_CHAIN_USCSI;
12098 		break;
12099 	}
12100 
12101 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
12102 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
12103 
12104 	/* Use the index obtained within xbuf_init */
12105 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
12106 
12107 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
12108 
12109 	return (0);
12110 }
12111 
12112 
12113 /*
12114  * These routines perform raw i/o operations.
12115  */
12116 /*ARGSUSED*/
12117 static void
12118 sduscsimin(struct buf *bp)
12119 {
12120 	/*
12121 	 * do not break up because the CDB count would then
12122 	 * be incorrect and data underruns would result (incomplete
12123 	 * read/writes which would be retried and then failed, see
12124 	 * sdintr().
12125 	 */
12126 }
12127 
12128 
12129 
12130 /*
12131  *    Function: sd_send_scsi_cmd
12132  *
12133  * Description: Runs a USCSI command for user (when called thru sdioctl),
12134  *		or for the driver
12135  *
12136  *   Arguments: dev - the dev_t for the device
12137  *		incmd - ptr to a valid uscsi_cmd struct
12138  *		cdbspace - UIO_USERSPACE or UIO_SYSSPACE
12139  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
12140  *		rqbufspace - UIO_USERSPACE or UIO_SYSSPACE
12141  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
12142  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
12143  *			to use the USCSI "direct" chain and bypass the normal
12144  *			command waitq.
12145  *
12146  * Return Code: 0 -  successful completion of the given command
12147  *		EIO - scsi_reset() failed, or see biowait()/physio() codes.
12148  *		ENXIO  - soft state not found for specified dev
12149  *		EINVAL
12150  *		EFAULT - copyin/copyout error
12151  *		return code of biowait(9F) or physio(9F):
12152  *			EIO - IO error, caller may check incmd->uscsi_status
12153  *			ENXIO
12154  *			EACCES - reservation conflict
12155  *
12156  *     Context: Waits for command to complete. Can sleep.
12157  */
12158 
12159 static int
12160 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd,
12161 	enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace,
12162 	int path_flag)
12163 {
12164 	struct sd_uscsi_info	*uip;
12165 	struct uscsi_cmd	*uscmd;
12166 	struct sd_lun	*un;
12167 	struct buf	*bp;
12168 	int	rval;
12169 	int	flags;
12170 
12171 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
12172 	if (un == NULL) {
12173 		return (ENXIO);
12174 	}
12175 
12176 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12177 
12178 #ifdef SDDEBUG
12179 	switch (dataspace) {
12180 	case UIO_USERSPACE:
12181 		SD_TRACE(SD_LOG_IO, un,
12182 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un);
12183 		break;
12184 	case UIO_SYSSPACE:
12185 		SD_TRACE(SD_LOG_IO, un,
12186 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un);
12187 		break;
12188 	default:
12189 		SD_TRACE(SD_LOG_IO, un,
12190 		    "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un);
12191 		break;
12192 	}
12193 #endif
12194 
12195 	/*
12196 	 * Perform resets directly; no need to generate a command to do it.
12197 	 */
12198 	if (incmd->uscsi_flags & (USCSI_RESET | USCSI_RESET_ALL)) {
12199 		flags = ((incmd->uscsi_flags & USCSI_RESET_ALL) != 0) ?
12200 		    RESET_ALL : RESET_TARGET;
12201 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: Issuing reset\n");
12202 		if (scsi_reset(SD_ADDRESS(un), flags) == 0) {
12203 			/* Reset attempt was unsuccessful */
12204 			SD_TRACE(SD_LOG_IO, un,
12205 			    "sd_send_scsi_cmd: reset: failure\n");
12206 			return (EIO);
12207 		}
12208 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: reset: success\n");
12209 		return (0);
12210 	}
12211 
12212 	/* Perfunctory sanity check... */
12213 	if (incmd->uscsi_cdblen <= 0) {
12214 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12215 		    "invalid uscsi_cdblen, returning EINVAL\n");
12216 		return (EINVAL);
12217 	} else if (incmd->uscsi_cdblen > un->un_max_hba_cdb) {
12218 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12219 		    "unsupported uscsi_cdblen, returning EINVAL\n");
12220 		return (EINVAL);
12221 	}
12222 
12223 	/*
12224 	 * In order to not worry about where the uscsi structure came from
12225 	 * (or where the cdb it points to came from) we're going to make
12226 	 * kmem_alloc'd copies of them here. This will also allow reference
12227 	 * to the data they contain long after this process has gone to
12228 	 * sleep and its kernel stack has been unmapped, etc.
12229 	 *
12230 	 * First get some memory for the uscsi_cmd struct and copy the
12231 	 * contents of the given uscsi_cmd struct into it.
12232 	 */
12233 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
12234 	bcopy(incmd, uscmd, sizeof (struct uscsi_cmd));
12235 
12236 	SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: uscsi_cmd",
12237 	    (uchar_t *)uscmd, sizeof (struct uscsi_cmd), SD_LOG_HEX);
12238 
12239 	/*
12240 	 * Now get some space for the CDB, and copy the given CDB into
12241 	 * it. Use ddi_copyin() in case the data is in user space.
12242 	 */
12243 	uscmd->uscsi_cdb = kmem_zalloc((size_t)incmd->uscsi_cdblen, KM_SLEEP);
12244 	flags = (cdbspace == UIO_SYSSPACE) ? FKIOCTL : 0;
12245 	if (ddi_copyin(incmd->uscsi_cdb, uscmd->uscsi_cdb,
12246 	    (uint_t)incmd->uscsi_cdblen, flags) != 0) {
12247 		kmem_free(uscmd->uscsi_cdb, (size_t)incmd->uscsi_cdblen);
12248 		kmem_free(uscmd, sizeof (struct uscsi_cmd));
12249 		return (EFAULT);
12250 	}
12251 
12252 	SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: CDB",
12253 	    (uchar_t *)uscmd->uscsi_cdb, incmd->uscsi_cdblen, SD_LOG_HEX);
12254 
12255 	bp = getrbuf(KM_SLEEP);
12256 
12257 	/*
12258 	 * Allocate an sd_uscsi_info struct and fill it with the info
12259 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
12260 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
12261 	 * since we allocate the buf here in this function, we do not
12262 	 * need to preserve the prior contents of b_private.
12263 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
12264 	 */
12265 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
12266 	uip->ui_flags = path_flag;
12267 	uip->ui_cmdp  = uscmd;
12268 	bp->b_private = uip;
12269 
12270 	/*
12271 	 * Initialize Request Sense buffering, if requested.
12272 	 */
12273 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
12274 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
12275 		/*
12276 		 * Here uscmd->uscsi_rqbuf currently points to the caller's
12277 		 * buffer, but we replace this with a kernel buffer that
12278 		 * we allocate to use with the sense data. The sense data
12279 		 * (if present) gets copied into this new buffer before the
12280 		 * command is completed.  Then we copy the sense data from
12281 		 * our allocated buf into the caller's buffer below. Note
12282 		 * that incmd->uscsi_rqbuf and incmd->uscsi_rqlen are used
12283 		 * below to perform the copy back to the caller's buf.
12284 		 */
12285 		uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
12286 		if (rqbufspace == UIO_USERSPACE) {
12287 			uscmd->uscsi_rqlen   = SENSE_LENGTH;
12288 			uscmd->uscsi_rqresid = SENSE_LENGTH;
12289 		} else {
12290 			uchar_t rlen = min(SENSE_LENGTH, uscmd->uscsi_rqlen);
12291 			uscmd->uscsi_rqlen   = rlen;
12292 			uscmd->uscsi_rqresid = rlen;
12293 		}
12294 	} else {
12295 		uscmd->uscsi_rqbuf = NULL;
12296 		uscmd->uscsi_rqlen   = 0;
12297 		uscmd->uscsi_rqresid = 0;
12298 	}
12299 
12300 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: rqbuf:0x%p  rqlen:%d\n",
12301 	    uscmd->uscsi_rqbuf, uscmd->uscsi_rqlen);
12302 
12303 	if (un->un_f_is_fibre == FALSE) {
12304 		/*
12305 		 * Force asynchronous mode, if necessary.  Doing this here
12306 		 * has the unfortunate effect of running other queued
12307 		 * commands async also, but since the main purpose of this
12308 		 * capability is downloading new drive firmware, we can
12309 		 * probably live with it.
12310 		 */
12311 		if ((uscmd->uscsi_flags & USCSI_ASYNC) != 0) {
12312 			if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1)
12313 				== 1) {
12314 				if (scsi_ifsetcap(SD_ADDRESS(un),
12315 					    "synchronous", 0, 1) == 1) {
12316 					SD_TRACE(SD_LOG_IO, un,
12317 					"sd_send_scsi_cmd: forced async ok\n");
12318 				} else {
12319 					SD_TRACE(SD_LOG_IO, un,
12320 					"sd_send_scsi_cmd:\
12321 					forced async failed\n");
12322 					rval = EINVAL;
12323 					goto done;
12324 				}
12325 			}
12326 		}
12327 
12328 		/*
12329 		 * Re-enable synchronous mode, if requested
12330 		 */
12331 		if (uscmd->uscsi_flags & USCSI_SYNC) {
12332 			if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1)
12333 				== 0) {
12334 				int i = scsi_ifsetcap(SD_ADDRESS(un),
12335 						"synchronous", 1, 1);
12336 				SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12337 					"re-enabled sync %s\n",
12338 					(i == 1) ? "ok" : "failed");
12339 			}
12340 		}
12341 	}
12342 
12343 	/*
12344 	 * Commands sent with priority are intended for error recovery
12345 	 * situations, and do not have retries performed.
12346 	 */
12347 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
12348 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
12349 	}
12350 
12351 	/*
12352 	 * If we're going to do actual I/O, let physio do all the right things
12353 	 */
12354 	if (uscmd->uscsi_buflen != 0) {
12355 		struct iovec	aiov;
12356 		struct uio	auio;
12357 		struct uio	*uio = &auio;
12358 
12359 		bzero(&auio, sizeof (struct uio));
12360 		bzero(&aiov, sizeof (struct iovec));
12361 		aiov.iov_base = uscmd->uscsi_bufaddr;
12362 		aiov.iov_len  = uscmd->uscsi_buflen;
12363 		uio->uio_iov  = &aiov;
12364 
12365 		uio->uio_iovcnt  = 1;
12366 		uio->uio_resid   = uscmd->uscsi_buflen;
12367 		uio->uio_segflg  = dataspace;
12368 
12369 		/*
12370 		 * physio() will block here until the command completes....
12371 		 */
12372 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling physio.\n");
12373 
12374 		rval = physio(sd_uscsi_strategy, bp, dev,
12375 		    ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE),
12376 		    sduscsimin, uio);
12377 
12378 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12379 		    "returned from physio with 0x%x\n", rval);
12380 
12381 	} else {
12382 		/*
12383 		 * We have to mimic what physio would do here! Argh!
12384 		 */
12385 		bp->b_flags  = B_BUSY |
12386 		    ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE);
12387 		bp->b_edev   = dev;
12388 		bp->b_dev    = cmpdev(dev);	/* maybe unnecessary? */
12389 		bp->b_bcount = 0;
12390 		bp->b_blkno  = 0;
12391 
12392 		SD_TRACE(SD_LOG_IO, un,
12393 		    "sd_send_scsi_cmd: calling sd_uscsi_strategy...\n");
12394 
12395 		(void) sd_uscsi_strategy(bp);
12396 
12397 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling biowait\n");
12398 
12399 		rval = biowait(bp);
12400 
12401 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12402 		    "returned from  biowait with 0x%x\n", rval);
12403 	}
12404 
12405 done:
12406 
12407 #ifdef SDDEBUG
12408 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12409 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
12410 	    uscmd->uscsi_status, uscmd->uscsi_resid);
12411 	if (uscmd->uscsi_bufaddr != NULL) {
12412 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12413 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
12414 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
12415 		if (dataspace == UIO_SYSSPACE) {
12416 			SD_DUMP_MEMORY(un, SD_LOG_IO,
12417 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
12418 			    uscmd->uscsi_buflen, SD_LOG_HEX);
12419 		}
12420 	}
12421 #endif
12422 
12423 	/*
12424 	 * Get the status and residual to return to the caller.
12425 	 */
12426 	incmd->uscsi_status = uscmd->uscsi_status;
12427 	incmd->uscsi_resid  = uscmd->uscsi_resid;
12428 
12429 	/*
12430 	 * If the caller wants sense data, copy back whatever sense data
12431 	 * we may have gotten, and update the relevant rqsense info.
12432 	 */
12433 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
12434 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
12435 
12436 		int rqlen = uscmd->uscsi_rqlen - uscmd->uscsi_rqresid;
12437 		rqlen = min(((int)incmd->uscsi_rqlen), rqlen);
12438 
12439 		/* Update the Request Sense status and resid */
12440 		incmd->uscsi_rqresid  = incmd->uscsi_rqlen - rqlen;
12441 		incmd->uscsi_rqstatus = uscmd->uscsi_rqstatus;
12442 
12443 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12444 		    "uscsi_rqstatus: 0x%02x  uscsi_rqresid:0x%x\n",
12445 		    incmd->uscsi_rqstatus, incmd->uscsi_rqresid);
12446 
12447 		/* Copy out the sense data for user processes */
12448 		if ((incmd->uscsi_rqbuf != NULL) && (rqlen != 0)) {
12449 			int flags =
12450 			    (rqbufspace == UIO_USERSPACE) ? 0 : FKIOCTL;
12451 			if (ddi_copyout(uscmd->uscsi_rqbuf, incmd->uscsi_rqbuf,
12452 			    rqlen, flags) != 0) {
12453 				rval = EFAULT;
12454 			}
12455 			/*
12456 			 * Note: Can't touch incmd->uscsi_rqbuf so use
12457 			 * uscmd->uscsi_rqbuf instead. They're the same.
12458 			 */
12459 			SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12460 			    "incmd->uscsi_rqbuf: 0x%p  rqlen:%d\n",
12461 			    incmd->uscsi_rqbuf, rqlen);
12462 			SD_DUMP_MEMORY(un, SD_LOG_IO, "rq",
12463 			    (uchar_t *)uscmd->uscsi_rqbuf, rqlen, SD_LOG_HEX);
12464 		}
12465 	}
12466 
12467 	/*
12468 	 * Free allocated resources and return; mapout the buf in case it was
12469 	 * mapped in by a lower layer.
12470 	 */
12471 	bp_mapout(bp);
12472 	freerbuf(bp);
12473 	kmem_free(uip, sizeof (struct sd_uscsi_info));
12474 	if (uscmd->uscsi_rqbuf != NULL) {
12475 		kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
12476 	}
12477 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
12478 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
12479 
12480 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: exit\n");
12481 
12482 	return (rval);
12483 }
12484 
12485 
12486 /*
12487  *    Function: sd_buf_iodone
12488  *
12489  * Description: Frees the sd_xbuf & returns the buf to its originator.
12490  *
12491  *     Context: May be called from interrupt context.
12492  */
12493 /* ARGSUSED */
12494 static void
12495 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
12496 {
12497 	struct sd_xbuf *xp;
12498 
12499 	ASSERT(un != NULL);
12500 	ASSERT(bp != NULL);
12501 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12502 
12503 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
12504 
12505 	xp = SD_GET_XBUF(bp);
12506 	ASSERT(xp != NULL);
12507 
12508 	mutex_enter(SD_MUTEX(un));
12509 
12510 	/*
12511 	 * Grab time when the cmd completed.
12512 	 * This is used for determining if the system has been
12513 	 * idle long enough to make it idle to the PM framework.
12514 	 * This is for lowering the overhead, and therefore improving
12515 	 * performance per I/O operation.
12516 	 */
12517 	un->un_pm_idle_time = ddi_get_time();
12518 
12519 	un->un_ncmds_in_driver--;
12520 	ASSERT(un->un_ncmds_in_driver >= 0);
12521 	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
12522 	    un->un_ncmds_in_driver);
12523 
12524 	mutex_exit(SD_MUTEX(un));
12525 
12526 	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
12527 	biodone(bp);				/* bp is gone after this */
12528 
12529 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
12530 }
12531 
12532 
12533 /*
12534  *    Function: sd_uscsi_iodone
12535  *
12536  * Description: Frees the sd_xbuf & returns the buf to its originator.
12537  *
12538  *     Context: May be called from interrupt context.
12539  */
12540 /* ARGSUSED */
12541 static void
12542 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12543 {
12544 	struct sd_xbuf *xp;
12545 
12546 	ASSERT(un != NULL);
12547 	ASSERT(bp != NULL);
12548 
12549 	xp = SD_GET_XBUF(bp);
12550 	ASSERT(xp != NULL);
12551 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12552 
12553 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
12554 
12555 	bp->b_private = xp->xb_private;
12556 
12557 	mutex_enter(SD_MUTEX(un));
12558 
12559 	/*
12560 	 * Grab time when the cmd completed.
12561 	 * This is used for determining if the system has been
12562 	 * idle long enough to make it idle to the PM framework.
12563 	 * This is for lowering the overhead, and therefore improving
12564 	 * performance per I/O operation.
12565 	 */
12566 	un->un_pm_idle_time = ddi_get_time();
12567 
12568 	un->un_ncmds_in_driver--;
12569 	ASSERT(un->un_ncmds_in_driver >= 0);
12570 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
12571 	    un->un_ncmds_in_driver);
12572 
12573 	mutex_exit(SD_MUTEX(un));
12574 
12575 	kmem_free(xp, sizeof (struct sd_xbuf));
12576 	biodone(bp);
12577 
12578 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
12579 }
12580 
12581 
12582 /*
12583  *    Function: sd_mapblockaddr_iostart
12584  *
12585  * Description: Verify request lies withing the partition limits for
12586  *		the indicated minor device.  Issue "overrun" buf if
12587  *		request would exceed partition range.  Converts
12588  *		partition-relative block address to absolute.
12589  *
12590  *     Context: Can sleep
12591  *
12592  *      Issues: This follows what the old code did, in terms of accessing
12593  *		some of the partition info in the unit struct without holding
12594  *		the mutext.  This is a general issue, if the partition info
12595  *		can be altered while IO is in progress... as soon as we send
12596  *		a buf, its partitioning can be invalid before it gets to the
12597  *		device.  Probably the right fix is to move partitioning out
12598  *		of the driver entirely.
12599  */
12600 
12601 static void
12602 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
12603 {
12604 	daddr_t	nblocks;	/* #blocks in the given partition */
12605 	daddr_t	blocknum;	/* Block number specified by the buf */
12606 	size_t	requested_nblocks;
12607 	size_t	available_nblocks;
12608 	int	partition;
12609 	diskaddr_t	partition_offset;
12610 	struct sd_xbuf *xp;
12611 
12612 
12613 	ASSERT(un != NULL);
12614 	ASSERT(bp != NULL);
12615 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12616 
12617 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12618 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
12619 
12620 	xp = SD_GET_XBUF(bp);
12621 	ASSERT(xp != NULL);
12622 
12623 	/*
12624 	 * If the geometry is not indicated as valid, attempt to access
12625 	 * the unit & verify the geometry/label. This can be the case for
12626 	 * removable-media devices, of if the device was opened in
12627 	 * NDELAY/NONBLOCK mode.
12628 	 */
12629 	if ((un->un_f_geometry_is_valid != TRUE) &&
12630 	    (sd_ready_and_valid(un) != SD_READY_VALID)) {
12631 		/*
12632 		 * For removable devices it is possible to start an I/O
12633 		 * without a media by opening the device in nodelay mode.
12634 		 * Also for writable CDs there can be many scenarios where
12635 		 * there is no geometry yet but volume manager is trying to
12636 		 * issue a read() just because it can see TOC on the CD. So
12637 		 * do not print a message for removables.
12638 		 */
12639 		if (!un->un_f_has_removable_media) {
12640 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12641 			    "i/o to invalid geometry\n");
12642 		}
12643 		bioerror(bp, EIO);
12644 		bp->b_resid = bp->b_bcount;
12645 		SD_BEGIN_IODONE(index, un, bp);
12646 		return;
12647 	}
12648 
12649 	partition = SDPART(bp->b_edev);
12650 
12651 	/* #blocks in partition */
12652 	nblocks = un->un_map[partition].dkl_nblk;    /* #blocks in partition */
12653 
12654 	/* Use of a local variable potentially improves performance slightly */
12655 	partition_offset = un->un_offset[partition];
12656 
12657 	/*
12658 	 * blocknum is the starting block number of the request. At this
12659 	 * point it is still relative to the start of the minor device.
12660 	 */
12661 	blocknum = xp->xb_blkno;
12662 
12663 	/*
12664 	 * Legacy: If the starting block number is one past the last block
12665 	 * in the partition, do not set B_ERROR in the buf.
12666 	 */
12667 	if (blocknum == nblocks)  {
12668 		goto error_exit;
12669 	}
12670 
12671 	/*
12672 	 * Confirm that the first block of the request lies within the
12673 	 * partition limits. Also the requested number of bytes must be
12674 	 * a multiple of the system block size.
12675 	 */
12676 	if ((blocknum < 0) || (blocknum >= nblocks) ||
12677 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
12678 		bp->b_flags |= B_ERROR;
12679 		goto error_exit;
12680 	}
12681 
12682 	/*
12683 	 * If the requsted # blocks exceeds the available # blocks, that
12684 	 * is an overrun of the partition.
12685 	 */
12686 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
12687 	available_nblocks = (size_t)(nblocks - blocknum);
12688 	ASSERT(nblocks >= blocknum);
12689 
12690 	if (requested_nblocks > available_nblocks) {
12691 		/*
12692 		 * Allocate an "overrun" buf to allow the request to proceed
12693 		 * for the amount of space available in the partition. The
12694 		 * amount not transferred will be added into the b_resid
12695 		 * when the operation is complete. The overrun buf
12696 		 * replaces the original buf here, and the original buf
12697 		 * is saved inside the overrun buf, for later use.
12698 		 */
12699 		size_t resid = SD_SYSBLOCKS2BYTES(un,
12700 		    (offset_t)(requested_nblocks - available_nblocks));
12701 		size_t count = bp->b_bcount - resid;
12702 		/*
12703 		 * Note: count is an unsigned entity thus it'll NEVER
12704 		 * be less than 0 so ASSERT the original values are
12705 		 * correct.
12706 		 */
12707 		ASSERT(bp->b_bcount >= resid);
12708 
12709 		bp = sd_bioclone_alloc(bp, count, blocknum,
12710 			(int (*)(struct buf *)) sd_mapblockaddr_iodone);
12711 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
12712 		ASSERT(xp != NULL);
12713 	}
12714 
12715 	/* At this point there should be no residual for this buf. */
12716 	ASSERT(bp->b_resid == 0);
12717 
12718 	/* Convert the block number to an absolute address. */
12719 	xp->xb_blkno += partition_offset;
12720 
12721 	SD_NEXT_IOSTART(index, un, bp);
12722 
12723 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12724 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
12725 
12726 	return;
12727 
12728 error_exit:
12729 	bp->b_resid = bp->b_bcount;
12730 	SD_BEGIN_IODONE(index, un, bp);
12731 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12732 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
12733 }
12734 
12735 
12736 /*
12737  *    Function: sd_mapblockaddr_iodone
12738  *
12739  * Description: Completion-side processing for partition management.
12740  *
12741  *     Context: May be called under interrupt context
12742  */
12743 
12744 static void
12745 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
12746 {
12747 	/* int	partition; */	/* Not used, see below. */
12748 	ASSERT(un != NULL);
12749 	ASSERT(bp != NULL);
12750 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12751 
12752 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12753 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
12754 
12755 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
12756 		/*
12757 		 * We have an "overrun" buf to deal with...
12758 		 */
12759 		struct sd_xbuf	*xp;
12760 		struct buf	*obp;	/* ptr to the original buf */
12761 
12762 		xp = SD_GET_XBUF(bp);
12763 		ASSERT(xp != NULL);
12764 
12765 		/* Retrieve the pointer to the original buf */
12766 		obp = (struct buf *)xp->xb_private;
12767 		ASSERT(obp != NULL);
12768 
12769 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
12770 		bioerror(obp, bp->b_error);
12771 
12772 		sd_bioclone_free(bp);
12773 
12774 		/*
12775 		 * Get back the original buf.
12776 		 * Note that since the restoration of xb_blkno below
12777 		 * was removed, the sd_xbuf is not needed.
12778 		 */
12779 		bp = obp;
12780 		/*
12781 		 * xp = SD_GET_XBUF(bp);
12782 		 * ASSERT(xp != NULL);
12783 		 */
12784 	}
12785 
12786 	/*
12787 	 * Convert sd->xb_blkno back to a minor-device relative value.
12788 	 * Note: this has been commented out, as it is not needed in the
12789 	 * current implementation of the driver (ie, since this function
12790 	 * is at the top of the layering chains, so the info will be
12791 	 * discarded) and it is in the "hot" IO path.
12792 	 *
12793 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
12794 	 * xp->xb_blkno -= un->un_offset[partition];
12795 	 */
12796 
12797 	SD_NEXT_IODONE(index, un, bp);
12798 
12799 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12800 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
12801 }
12802 
12803 
12804 /*
12805  *    Function: sd_mapblocksize_iostart
12806  *
12807  * Description: Convert between system block size (un->un_sys_blocksize)
12808  *		and target block size (un->un_tgt_blocksize).
12809  *
12810  *     Context: Can sleep to allocate resources.
12811  *
12812  * Assumptions: A higher layer has already performed any partition validation,
12813  *		and converted the xp->xb_blkno to an absolute value relative
12814  *		to the start of the device.
12815  *
12816  *		It is also assumed that the higher layer has implemented
12817  *		an "overrun" mechanism for the case where the request would
12818  *		read/write beyond the end of a partition.  In this case we
12819  *		assume (and ASSERT) that bp->b_resid == 0.
12820  *
12821  *		Note: The implementation for this routine assumes the target
12822  *		block size remains constant between allocation and transport.
12823  */
12824 
12825 static void
12826 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
12827 {
12828 	struct sd_mapblocksize_info	*bsp;
12829 	struct sd_xbuf			*xp;
12830 	offset_t first_byte;
12831 	daddr_t	start_block, end_block;
12832 	daddr_t	request_bytes;
12833 	ushort_t is_aligned = FALSE;
12834 
12835 	ASSERT(un != NULL);
12836 	ASSERT(bp != NULL);
12837 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12838 	ASSERT(bp->b_resid == 0);
12839 
12840 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12841 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
12842 
12843 	/*
12844 	 * For a non-writable CD, a write request is an error
12845 	 */
12846 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
12847 	    (un->un_f_mmc_writable_media == FALSE)) {
12848 		bioerror(bp, EIO);
12849 		bp->b_resid = bp->b_bcount;
12850 		SD_BEGIN_IODONE(index, un, bp);
12851 		return;
12852 	}
12853 
12854 	/*
12855 	 * We do not need a shadow buf if the device is using
12856 	 * un->un_sys_blocksize as its block size or if bcount == 0.
12857 	 * In this case there is no layer-private data block allocated.
12858 	 */
12859 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12860 	    (bp->b_bcount == 0)) {
12861 		goto done;
12862 	}
12863 
12864 #if defined(__i386) || defined(__amd64)
12865 	/* We do not support non-block-aligned transfers for ROD devices */
12866 	ASSERT(!ISROD(un));
12867 #endif
12868 
12869 	xp = SD_GET_XBUF(bp);
12870 	ASSERT(xp != NULL);
12871 
12872 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12873 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
12874 	    un->un_tgt_blocksize, un->un_sys_blocksize);
12875 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12876 	    "request start block:0x%x\n", xp->xb_blkno);
12877 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12878 	    "request len:0x%x\n", bp->b_bcount);
12879 
12880 	/*
12881 	 * Allocate the layer-private data area for the mapblocksize layer.
12882 	 * Layers are allowed to use the xp_private member of the sd_xbuf
12883 	 * struct to store the pointer to their layer-private data block, but
12884 	 * each layer also has the responsibility of restoring the prior
12885 	 * contents of xb_private before returning the buf/xbuf to the
12886 	 * higher layer that sent it.
12887 	 *
12888 	 * Here we save the prior contents of xp->xb_private into the
12889 	 * bsp->mbs_oprivate field of our layer-private data area. This value
12890 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
12891 	 * the layer-private area and returning the buf/xbuf to the layer
12892 	 * that sent it.
12893 	 *
12894 	 * Note that here we use kmem_zalloc for the allocation as there are
12895 	 * parts of the mapblocksize code that expect certain fields to be
12896 	 * zero unless explicitly set to a required value.
12897 	 */
12898 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12899 	bsp->mbs_oprivate = xp->xb_private;
12900 	xp->xb_private = bsp;
12901 
12902 	/*
12903 	 * This treats the data on the disk (target) as an array of bytes.
12904 	 * first_byte is the byte offset, from the beginning of the device,
12905 	 * to the location of the request. This is converted from a
12906 	 * un->un_sys_blocksize block address to a byte offset, and then back
12907 	 * to a block address based upon a un->un_tgt_blocksize block size.
12908 	 *
12909 	 * xp->xb_blkno should be absolute upon entry into this function,
12910 	 * but, but it is based upon partitions that use the "system"
12911 	 * block size. It must be adjusted to reflect the block size of
12912 	 * the target.
12913 	 *
12914 	 * Note that end_block is actually the block that follows the last
12915 	 * block of the request, but that's what is needed for the computation.
12916 	 */
12917 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12918 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
12919 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
12920 	    un->un_tgt_blocksize;
12921 
12922 	/* request_bytes is rounded up to a multiple of the target block size */
12923 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
12924 
12925 	/*
12926 	 * See if the starting address of the request and the request
12927 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
12928 	 * then we do not need to allocate a shadow buf to handle the request.
12929 	 */
12930 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
12931 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
12932 		is_aligned = TRUE;
12933 	}
12934 
12935 	if ((bp->b_flags & B_READ) == 0) {
12936 		/*
12937 		 * Lock the range for a write operation. An aligned request is
12938 		 * considered a simple write; otherwise the request must be a
12939 		 * read-modify-write.
12940 		 */
12941 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
12942 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
12943 	}
12944 
12945 	/*
12946 	 * Alloc a shadow buf if the request is not aligned. Also, this is
12947 	 * where the READ command is generated for a read-modify-write. (The
12948 	 * write phase is deferred until after the read completes.)
12949 	 */
12950 	if (is_aligned == FALSE) {
12951 
12952 		struct sd_mapblocksize_info	*shadow_bsp;
12953 		struct sd_xbuf	*shadow_xp;
12954 		struct buf	*shadow_bp;
12955 
12956 		/*
12957 		 * Allocate the shadow buf and it associated xbuf. Note that
12958 		 * after this call the xb_blkno value in both the original
12959 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
12960 		 * same: absolute relative to the start of the device, and
12961 		 * adjusted for the target block size. The b_blkno in the
12962 		 * shadow buf will also be set to this value. We should never
12963 		 * change b_blkno in the original bp however.
12964 		 *
12965 		 * Note also that the shadow buf will always need to be a
12966 		 * READ command, regardless of whether the incoming command
12967 		 * is a READ or a WRITE.
12968 		 */
12969 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
12970 		    xp->xb_blkno,
12971 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
12972 
12973 		shadow_xp = SD_GET_XBUF(shadow_bp);
12974 
12975 		/*
12976 		 * Allocate the layer-private data for the shadow buf.
12977 		 * (No need to preserve xb_private in the shadow xbuf.)
12978 		 */
12979 		shadow_xp->xb_private = shadow_bsp =
12980 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12981 
12982 		/*
12983 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
12984 		 * to figure out where the start of the user data is (based upon
12985 		 * the system block size) in the data returned by the READ
12986 		 * command (which will be based upon the target blocksize). Note
12987 		 * that this is only really used if the request is unaligned.
12988 		 */
12989 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
12990 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
12991 		ASSERT((bsp->mbs_copy_offset >= 0) &&
12992 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
12993 
12994 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
12995 
12996 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
12997 
12998 		/* Transfer the wmap (if any) to the shadow buf */
12999 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
13000 		bsp->mbs_wmp = NULL;
13001 
13002 		/*
13003 		 * The shadow buf goes on from here in place of the
13004 		 * original buf.
13005 		 */
13006 		shadow_bsp->mbs_orig_bp = bp;
13007 		bp = shadow_bp;
13008 	}
13009 
13010 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13011 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
13012 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13013 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
13014 	    request_bytes);
13015 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13016 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
13017 
13018 done:
13019 	SD_NEXT_IOSTART(index, un, bp);
13020 
13021 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
13022 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
13023 }
13024 
13025 
13026 /*
13027  *    Function: sd_mapblocksize_iodone
13028  *
13029  * Description: Completion side processing for block-size mapping.
13030  *
13031  *     Context: May be called under interrupt context
13032  */
13033 
13034 static void
13035 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
13036 {
13037 	struct sd_mapblocksize_info	*bsp;
13038 	struct sd_xbuf	*xp;
13039 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
13040 	struct buf	*orig_bp;	/* ptr to the original buf */
13041 	offset_t	shadow_end;
13042 	offset_t	request_end;
13043 	offset_t	shadow_start;
13044 	ssize_t		copy_offset;
13045 	size_t		copy_length;
13046 	size_t		shortfall;
13047 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
13048 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
13049 
13050 	ASSERT(un != NULL);
13051 	ASSERT(bp != NULL);
13052 
13053 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
13054 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
13055 
13056 	/*
13057 	 * There is no shadow buf or layer-private data if the target is
13058 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
13059 	 */
13060 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
13061 	    (bp->b_bcount == 0)) {
13062 		goto exit;
13063 	}
13064 
13065 	xp = SD_GET_XBUF(bp);
13066 	ASSERT(xp != NULL);
13067 
13068 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
13069 	bsp = xp->xb_private;
13070 
13071 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
13072 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
13073 
13074 	if (is_write) {
13075 		/*
13076 		 * For a WRITE request we must free up the block range that
13077 		 * we have locked up.  This holds regardless of whether this is
13078 		 * an aligned write request or a read-modify-write request.
13079 		 */
13080 		sd_range_unlock(un, bsp->mbs_wmp);
13081 		bsp->mbs_wmp = NULL;
13082 	}
13083 
13084 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
13085 		/*
13086 		 * An aligned read or write command will have no shadow buf;
13087 		 * there is not much else to do with it.
13088 		 */
13089 		goto done;
13090 	}
13091 
13092 	orig_bp = bsp->mbs_orig_bp;
13093 	ASSERT(orig_bp != NULL);
13094 	orig_xp = SD_GET_XBUF(orig_bp);
13095 	ASSERT(orig_xp != NULL);
13096 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13097 
13098 	if (!is_write && has_wmap) {
13099 		/*
13100 		 * A READ with a wmap means this is the READ phase of a
13101 		 * read-modify-write. If an error occurred on the READ then
13102 		 * we do not proceed with the WRITE phase or copy any data.
13103 		 * Just release the write maps and return with an error.
13104 		 */
13105 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
13106 			orig_bp->b_resid = orig_bp->b_bcount;
13107 			bioerror(orig_bp, bp->b_error);
13108 			sd_range_unlock(un, bsp->mbs_wmp);
13109 			goto freebuf_done;
13110 		}
13111 	}
13112 
13113 	/*
13114 	 * Here is where we set up to copy the data from the shadow buf
13115 	 * into the space associated with the original buf.
13116 	 *
13117 	 * To deal with the conversion between block sizes, these
13118 	 * computations treat the data as an array of bytes, with the
13119 	 * first byte (byte 0) corresponding to the first byte in the
13120 	 * first block on the disk.
13121 	 */
13122 
13123 	/*
13124 	 * shadow_start and shadow_len indicate the location and size of
13125 	 * the data returned with the shadow IO request.
13126 	 */
13127 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
13128 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
13129 
13130 	/*
13131 	 * copy_offset gives the offset (in bytes) from the start of the first
13132 	 * block of the READ request to the beginning of the data.  We retrieve
13133 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
13134 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
13135 	 * data to be copied (in bytes).
13136 	 */
13137 	copy_offset  = bsp->mbs_copy_offset;
13138 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
13139 	copy_length  = orig_bp->b_bcount;
13140 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
13141 
13142 	/*
13143 	 * Set up the resid and error fields of orig_bp as appropriate.
13144 	 */
13145 	if (shadow_end >= request_end) {
13146 		/* We got all the requested data; set resid to zero */
13147 		orig_bp->b_resid = 0;
13148 	} else {
13149 		/*
13150 		 * We failed to get enough data to fully satisfy the original
13151 		 * request. Just copy back whatever data we got and set
13152 		 * up the residual and error code as required.
13153 		 *
13154 		 * 'shortfall' is the amount by which the data received with the
13155 		 * shadow buf has "fallen short" of the requested amount.
13156 		 */
13157 		shortfall = (size_t)(request_end - shadow_end);
13158 
13159 		if (shortfall > orig_bp->b_bcount) {
13160 			/*
13161 			 * We did not get enough data to even partially
13162 			 * fulfill the original request.  The residual is
13163 			 * equal to the amount requested.
13164 			 */
13165 			orig_bp->b_resid = orig_bp->b_bcount;
13166 		} else {
13167 			/*
13168 			 * We did not get all the data that we requested
13169 			 * from the device, but we will try to return what
13170 			 * portion we did get.
13171 			 */
13172 			orig_bp->b_resid = shortfall;
13173 		}
13174 		ASSERT(copy_length >= orig_bp->b_resid);
13175 		copy_length  -= orig_bp->b_resid;
13176 	}
13177 
13178 	/* Propagate the error code from the shadow buf to the original buf */
13179 	bioerror(orig_bp, bp->b_error);
13180 
13181 	if (is_write) {
13182 		goto freebuf_done;	/* No data copying for a WRITE */
13183 	}
13184 
13185 	if (has_wmap) {
13186 		/*
13187 		 * This is a READ command from the READ phase of a
13188 		 * read-modify-write request. We have to copy the data given
13189 		 * by the user OVER the data returned by the READ command,
13190 		 * then convert the command from a READ to a WRITE and send
13191 		 * it back to the target.
13192 		 */
13193 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
13194 		    copy_length);
13195 
13196 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
13197 
13198 		/*
13199 		 * Dispatch the WRITE command to the taskq thread, which
13200 		 * will in turn send the command to the target. When the
13201 		 * WRITE command completes, we (sd_mapblocksize_iodone())
13202 		 * will get called again as part of the iodone chain
13203 		 * processing for it. Note that we will still be dealing
13204 		 * with the shadow buf at that point.
13205 		 */
13206 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
13207 		    KM_NOSLEEP) != 0) {
13208 			/*
13209 			 * Dispatch was successful so we are done. Return
13210 			 * without going any higher up the iodone chain. Do
13211 			 * not free up any layer-private data until after the
13212 			 * WRITE completes.
13213 			 */
13214 			return;
13215 		}
13216 
13217 		/*
13218 		 * Dispatch of the WRITE command failed; set up the error
13219 		 * condition and send this IO back up the iodone chain.
13220 		 */
13221 		bioerror(orig_bp, EIO);
13222 		orig_bp->b_resid = orig_bp->b_bcount;
13223 
13224 	} else {
13225 		/*
13226 		 * This is a regular READ request (ie, not a RMW). Copy the
13227 		 * data from the shadow buf into the original buf. The
13228 		 * copy_offset compensates for any "misalignment" between the
13229 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
13230 		 * original buf (with its un->un_sys_blocksize blocks).
13231 		 */
13232 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
13233 		    copy_length);
13234 	}
13235 
13236 freebuf_done:
13237 
13238 	/*
13239 	 * At this point we still have both the shadow buf AND the original
13240 	 * buf to deal with, as well as the layer-private data area in each.
13241 	 * Local variables are as follows:
13242 	 *
13243 	 * bp -- points to shadow buf
13244 	 * xp -- points to xbuf of shadow buf
13245 	 * bsp -- points to layer-private data area of shadow buf
13246 	 * orig_bp -- points to original buf
13247 	 *
13248 	 * First free the shadow buf and its associated xbuf, then free the
13249 	 * layer-private data area from the shadow buf. There is no need to
13250 	 * restore xb_private in the shadow xbuf.
13251 	 */
13252 	sd_shadow_buf_free(bp);
13253 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
13254 
13255 	/*
13256 	 * Now update the local variables to point to the original buf, xbuf,
13257 	 * and layer-private area.
13258 	 */
13259 	bp = orig_bp;
13260 	xp = SD_GET_XBUF(bp);
13261 	ASSERT(xp != NULL);
13262 	ASSERT(xp == orig_xp);
13263 	bsp = xp->xb_private;
13264 	ASSERT(bsp != NULL);
13265 
13266 done:
13267 	/*
13268 	 * Restore xb_private to whatever it was set to by the next higher
13269 	 * layer in the chain, then free the layer-private data area.
13270 	 */
13271 	xp->xb_private = bsp->mbs_oprivate;
13272 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
13273 
13274 exit:
13275 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
13276 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
13277 
13278 	SD_NEXT_IODONE(index, un, bp);
13279 }
13280 
13281 
13282 /*
13283  *    Function: sd_checksum_iostart
13284  *
13285  * Description: A stub function for a layer that's currently not used.
13286  *		For now just a placeholder.
13287  *
13288  *     Context: Kernel thread context
13289  */
13290 
13291 static void
13292 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
13293 {
13294 	ASSERT(un != NULL);
13295 	ASSERT(bp != NULL);
13296 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13297 	SD_NEXT_IOSTART(index, un, bp);
13298 }
13299 
13300 
13301 /*
13302  *    Function: sd_checksum_iodone
13303  *
13304  * Description: A stub function for a layer that's currently not used.
13305  *		For now just a placeholder.
13306  *
13307  *     Context: May be called under interrupt context
13308  */
13309 
13310 static void
13311 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
13312 {
13313 	ASSERT(un != NULL);
13314 	ASSERT(bp != NULL);
13315 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13316 	SD_NEXT_IODONE(index, un, bp);
13317 }
13318 
13319 
13320 /*
13321  *    Function: sd_checksum_uscsi_iostart
13322  *
13323  * Description: A stub function for a layer that's currently not used.
13324  *		For now just a placeholder.
13325  *
13326  *     Context: Kernel thread context
13327  */
13328 
13329 static void
13330 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
13331 {
13332 	ASSERT(un != NULL);
13333 	ASSERT(bp != NULL);
13334 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13335 	SD_NEXT_IOSTART(index, un, bp);
13336 }
13337 
13338 
13339 /*
13340  *    Function: sd_checksum_uscsi_iodone
13341  *
13342  * Description: A stub function for a layer that's currently not used.
13343  *		For now just a placeholder.
13344  *
13345  *     Context: May be called under interrupt context
13346  */
13347 
13348 static void
13349 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
13350 {
13351 	ASSERT(un != NULL);
13352 	ASSERT(bp != NULL);
13353 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13354 	SD_NEXT_IODONE(index, un, bp);
13355 }
13356 
13357 
13358 /*
13359  *    Function: sd_pm_iostart
13360  *
13361  * Description: iostart-side routine for Power mangement.
13362  *
13363  *     Context: Kernel thread context
13364  */
13365 
13366 static void
13367 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
13368 {
13369 	ASSERT(un != NULL);
13370 	ASSERT(bp != NULL);
13371 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13372 	ASSERT(!mutex_owned(&un->un_pm_mutex));
13373 
13374 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
13375 
13376 	if (sd_pm_entry(un) != DDI_SUCCESS) {
13377 		/*
13378 		 * Set up to return the failed buf back up the 'iodone'
13379 		 * side of the calling chain.
13380 		 */
13381 		bioerror(bp, EIO);
13382 		bp->b_resid = bp->b_bcount;
13383 
13384 		SD_BEGIN_IODONE(index, un, bp);
13385 
13386 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13387 		return;
13388 	}
13389 
13390 	SD_NEXT_IOSTART(index, un, bp);
13391 
13392 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13393 }
13394 
13395 
13396 /*
13397  *    Function: sd_pm_iodone
13398  *
13399  * Description: iodone-side routine for power mangement.
13400  *
13401  *     Context: may be called from interrupt context
13402  */
13403 
13404 static void
13405 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
13406 {
13407 	ASSERT(un != NULL);
13408 	ASSERT(bp != NULL);
13409 	ASSERT(!mutex_owned(&un->un_pm_mutex));
13410 
13411 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
13412 
13413 	/*
13414 	 * After attach the following flag is only read, so don't
13415 	 * take the penalty of acquiring a mutex for it.
13416 	 */
13417 	if (un->un_f_pm_is_enabled == TRUE) {
13418 		sd_pm_exit(un);
13419 	}
13420 
13421 	SD_NEXT_IODONE(index, un, bp);
13422 
13423 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
13424 }
13425 
13426 
13427 /*
13428  *    Function: sd_core_iostart
13429  *
13430  * Description: Primary driver function for enqueuing buf(9S) structs from
13431  *		the system and initiating IO to the target device
13432  *
13433  *     Context: Kernel thread context. Can sleep.
13434  *
13435  * Assumptions:  - The given xp->xb_blkno is absolute
13436  *		   (ie, relative to the start of the device).
13437  *		 - The IO is to be done using the native blocksize of
13438  *		   the device, as specified in un->un_tgt_blocksize.
13439  */
13440 /* ARGSUSED */
13441 static void
13442 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
13443 {
13444 	struct sd_xbuf *xp;
13445 
13446 	ASSERT(un != NULL);
13447 	ASSERT(bp != NULL);
13448 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13449 	ASSERT(bp->b_resid == 0);
13450 
13451 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
13452 
13453 	xp = SD_GET_XBUF(bp);
13454 	ASSERT(xp != NULL);
13455 
13456 	mutex_enter(SD_MUTEX(un));
13457 
13458 	/*
13459 	 * If we are currently in the failfast state, fail any new IO
13460 	 * that has B_FAILFAST set, then return.
13461 	 */
13462 	if ((bp->b_flags & B_FAILFAST) &&
13463 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
13464 		mutex_exit(SD_MUTEX(un));
13465 		bioerror(bp, EIO);
13466 		bp->b_resid = bp->b_bcount;
13467 		SD_BEGIN_IODONE(index, un, bp);
13468 		return;
13469 	}
13470 
13471 	if (SD_IS_DIRECT_PRIORITY(xp)) {
13472 		/*
13473 		 * Priority command -- transport it immediately.
13474 		 *
13475 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
13476 		 * because all direct priority commands should be associated
13477 		 * with error recovery actions which we don't want to retry.
13478 		 */
13479 		sd_start_cmds(un, bp);
13480 	} else {
13481 		/*
13482 		 * Normal command -- add it to the wait queue, then start
13483 		 * transporting commands from the wait queue.
13484 		 */
13485 		sd_add_buf_to_waitq(un, bp);
13486 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
13487 		sd_start_cmds(un, NULL);
13488 	}
13489 
13490 	mutex_exit(SD_MUTEX(un));
13491 
13492 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
13493 }
13494 
13495 
13496 /*
13497  *    Function: sd_init_cdb_limits
13498  *
13499  * Description: This is to handle scsi_pkt initialization differences
13500  *		between the driver platforms.
13501  *
13502  *		Legacy behaviors:
13503  *
13504  *		If the block number or the sector count exceeds the
13505  *		capabilities of a Group 0 command, shift over to a
13506  *		Group 1 command. We don't blindly use Group 1
13507  *		commands because a) some drives (CDC Wren IVs) get a
13508  *		bit confused, and b) there is probably a fair amount
13509  *		of speed difference for a target to receive and decode
13510  *		a 10 byte command instead of a 6 byte command.
13511  *
13512  *		The xfer time difference of 6 vs 10 byte CDBs is
13513  *		still significant so this code is still worthwhile.
13514  *		10 byte CDBs are very inefficient with the fas HBA driver
13515  *		and older disks. Each CDB byte took 1 usec with some
13516  *		popular disks.
13517  *
13518  *     Context: Must be called at attach time
13519  */
13520 
13521 static void
13522 sd_init_cdb_limits(struct sd_lun *un)
13523 {
13524 	int hba_cdb_limit;
13525 
13526 	/*
13527 	 * Use CDB_GROUP1 commands for most devices except for
13528 	 * parallel SCSI fixed drives in which case we get better
13529 	 * performance using CDB_GROUP0 commands (where applicable).
13530 	 */
13531 	un->un_mincdb = SD_CDB_GROUP1;
13532 #if !defined(__fibre)
13533 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
13534 	    !un->un_f_has_removable_media) {
13535 		un->un_mincdb = SD_CDB_GROUP0;
13536 	}
13537 #endif
13538 
13539 	/*
13540 	 * Try to read the max-cdb-length supported by HBA.
13541 	 */
13542 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
13543 	if (0 >= un->un_max_hba_cdb) {
13544 		un->un_max_hba_cdb = CDB_GROUP4;
13545 		hba_cdb_limit = SD_CDB_GROUP4;
13546 	} else if (0 < un->un_max_hba_cdb &&
13547 	    un->un_max_hba_cdb < CDB_GROUP1) {
13548 		hba_cdb_limit = SD_CDB_GROUP0;
13549 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
13550 	    un->un_max_hba_cdb < CDB_GROUP5) {
13551 		hba_cdb_limit = SD_CDB_GROUP1;
13552 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
13553 	    un->un_max_hba_cdb < CDB_GROUP4) {
13554 		hba_cdb_limit = SD_CDB_GROUP5;
13555 	} else {
13556 		hba_cdb_limit = SD_CDB_GROUP4;
13557 	}
13558 
13559 	/*
13560 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
13561 	 * commands for fixed disks unless we are building for a 32 bit
13562 	 * kernel.
13563 	 */
13564 #ifdef _LP64
13565 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13566 	    min(hba_cdb_limit, SD_CDB_GROUP4);
13567 #else
13568 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13569 	    min(hba_cdb_limit, SD_CDB_GROUP1);
13570 #endif
13571 
13572 	/*
13573 	 * x86 systems require the PKT_DMA_PARTIAL flag
13574 	 */
13575 #if defined(__x86)
13576 	un->un_pkt_flags = PKT_DMA_PARTIAL;
13577 #else
13578 	un->un_pkt_flags = 0;
13579 #endif
13580 
13581 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
13582 	    ? sizeof (struct scsi_arq_status) : 1);
13583 	un->un_cmd_timeout = (ushort_t)sd_io_time;
13584 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
13585 }
13586 
13587 
13588 /*
13589  *    Function: sd_initpkt_for_buf
13590  *
13591  * Description: Allocate and initialize for transport a scsi_pkt struct,
13592  *		based upon the info specified in the given buf struct.
13593  *
13594  *		Assumes the xb_blkno in the request is absolute (ie,
13595  *		relative to the start of the device (NOT partition!).
13596  *		Also assumes that the request is using the native block
13597  *		size of the device (as returned by the READ CAPACITY
13598  *		command).
13599  *
13600  * Return Code: SD_PKT_ALLOC_SUCCESS
13601  *		SD_PKT_ALLOC_FAILURE
13602  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13603  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13604  *
13605  *     Context: Kernel thread and may be called from software interrupt context
13606  *		as part of a sdrunout callback. This function may not block or
13607  *		call routines that block
13608  */
13609 
13610 static int
13611 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
13612 {
13613 	struct sd_xbuf	*xp;
13614 	struct scsi_pkt *pktp = NULL;
13615 	struct sd_lun	*un;
13616 	size_t		blockcount;
13617 	daddr_t		startblock;
13618 	int		rval;
13619 	int		cmd_flags;
13620 
13621 	ASSERT(bp != NULL);
13622 	ASSERT(pktpp != NULL);
13623 	xp = SD_GET_XBUF(bp);
13624 	ASSERT(xp != NULL);
13625 	un = SD_GET_UN(bp);
13626 	ASSERT(un != NULL);
13627 	ASSERT(mutex_owned(SD_MUTEX(un)));
13628 	ASSERT(bp->b_resid == 0);
13629 
13630 	SD_TRACE(SD_LOG_IO_CORE, un,
13631 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
13632 
13633 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13634 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
13635 		/*
13636 		 * Already have a scsi_pkt -- just need DMA resources.
13637 		 * We must recompute the CDB in case the mapping returns
13638 		 * a nonzero pkt_resid.
13639 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
13640 		 * that is being retried, the unmap/remap of the DMA resouces
13641 		 * will result in the entire transfer starting over again
13642 		 * from the very first block.
13643 		 */
13644 		ASSERT(xp->xb_pktp != NULL);
13645 		pktp = xp->xb_pktp;
13646 	} else {
13647 		pktp = NULL;
13648 	}
13649 #endif /* __i386 || __amd64 */
13650 
13651 	startblock = xp->xb_blkno;	/* Absolute block num. */
13652 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
13653 
13654 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13655 
13656 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
13657 
13658 #else
13659 
13660 	cmd_flags = un->un_pkt_flags | xp->xb_pkt_flags;
13661 
13662 #endif
13663 
13664 	/*
13665 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
13666 	 * call scsi_init_pkt, and build the CDB.
13667 	 */
13668 	rval = sd_setup_rw_pkt(un, &pktp, bp,
13669 	    cmd_flags, sdrunout, (caddr_t)un,
13670 	    startblock, blockcount);
13671 
13672 	if (rval == 0) {
13673 		/*
13674 		 * Success.
13675 		 *
13676 		 * If partial DMA is being used and required for this transfer.
13677 		 * set it up here.
13678 		 */
13679 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
13680 		    (pktp->pkt_resid != 0)) {
13681 
13682 			/*
13683 			 * Save the CDB length and pkt_resid for the
13684 			 * next xfer
13685 			 */
13686 			xp->xb_dma_resid = pktp->pkt_resid;
13687 
13688 			/* rezero resid */
13689 			pktp->pkt_resid = 0;
13690 
13691 		} else {
13692 			xp->xb_dma_resid = 0;
13693 		}
13694 
13695 		pktp->pkt_flags = un->un_tagflags;
13696 		pktp->pkt_time  = un->un_cmd_timeout;
13697 		pktp->pkt_comp  = sdintr;
13698 
13699 		pktp->pkt_private = bp;
13700 		*pktpp = pktp;
13701 
13702 		SD_TRACE(SD_LOG_IO_CORE, un,
13703 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
13704 
13705 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13706 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
13707 #endif
13708 
13709 		return (SD_PKT_ALLOC_SUCCESS);
13710 
13711 	}
13712 
13713 	/*
13714 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
13715 	 * from sd_setup_rw_pkt.
13716 	 */
13717 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
13718 
13719 	if (rval == SD_PKT_ALLOC_FAILURE) {
13720 		*pktpp = NULL;
13721 		/*
13722 		 * Set the driver state to RWAIT to indicate the driver
13723 		 * is waiting on resource allocations. The driver will not
13724 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13725 		 */
13726 		New_state(un, SD_STATE_RWAIT);
13727 
13728 		SD_ERROR(SD_LOG_IO_CORE, un,
13729 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
13730 
13731 		if ((bp->b_flags & B_ERROR) != 0) {
13732 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13733 		}
13734 		return (SD_PKT_ALLOC_FAILURE);
13735 	} else {
13736 		/*
13737 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13738 		 *
13739 		 * This should never happen.  Maybe someone messed with the
13740 		 * kernel's minphys?
13741 		 */
13742 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13743 		    "Request rejected: too large for CDB: "
13744 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
13745 		SD_ERROR(SD_LOG_IO_CORE, un,
13746 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
13747 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13748 
13749 	}
13750 }
13751 
13752 
13753 /*
13754  *    Function: sd_destroypkt_for_buf
13755  *
13756  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
13757  *
13758  *     Context: Kernel thread or interrupt context
13759  */
13760 
13761 static void
13762 sd_destroypkt_for_buf(struct buf *bp)
13763 {
13764 	ASSERT(bp != NULL);
13765 	ASSERT(SD_GET_UN(bp) != NULL);
13766 
13767 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13768 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
13769 
13770 	ASSERT(SD_GET_PKTP(bp) != NULL);
13771 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13772 
13773 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13774 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
13775 }
13776 
13777 /*
13778  *    Function: sd_setup_rw_pkt
13779  *
13780  * Description: Determines appropriate CDB group for the requested LBA
13781  *		and transfer length, calls scsi_init_pkt, and builds
13782  *		the CDB.  Do not use for partial DMA transfers except
13783  *		for the initial transfer since the CDB size must
13784  *		remain constant.
13785  *
13786  *     Context: Kernel thread and may be called from software interrupt
13787  *		context as part of a sdrunout callback. This function may not
13788  *		block or call routines that block
13789  */
13790 
13791 
13792 int
13793 sd_setup_rw_pkt(struct sd_lun *un,
13794     struct scsi_pkt **pktpp, struct buf *bp, int flags,
13795     int (*callback)(caddr_t), caddr_t callback_arg,
13796     diskaddr_t lba, uint32_t blockcount)
13797 {
13798 	struct scsi_pkt *return_pktp;
13799 	union scsi_cdb *cdbp;
13800 	struct sd_cdbinfo *cp = NULL;
13801 	int i;
13802 
13803 	/*
13804 	 * See which size CDB to use, based upon the request.
13805 	 */
13806 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
13807 
13808 		/*
13809 		 * Check lba and block count against sd_cdbtab limits.
13810 		 * In the partial DMA case, we have to use the same size
13811 		 * CDB for all the transfers.  Check lba + blockcount
13812 		 * against the max LBA so we know that segment of the
13813 		 * transfer can use the CDB we select.
13814 		 */
13815 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
13816 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
13817 
13818 			/*
13819 			 * The command will fit into the CDB type
13820 			 * specified by sd_cdbtab[i].
13821 			 */
13822 			cp = sd_cdbtab + i;
13823 
13824 			/*
13825 			 * Call scsi_init_pkt so we can fill in the
13826 			 * CDB.
13827 			 */
13828 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
13829 			    bp, cp->sc_grpcode, un->un_status_len, 0,
13830 			    flags, callback, callback_arg);
13831 
13832 			if (return_pktp != NULL) {
13833 
13834 				/*
13835 				 * Return new value of pkt
13836 				 */
13837 				*pktpp = return_pktp;
13838 
13839 				/*
13840 				 * To be safe, zero the CDB insuring there is
13841 				 * no leftover data from a previous command.
13842 				 */
13843 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
13844 
13845 				/*
13846 				 * Handle partial DMA mapping
13847 				 */
13848 				if (return_pktp->pkt_resid != 0) {
13849 
13850 					/*
13851 					 * Not going to xfer as many blocks as
13852 					 * originally expected
13853 					 */
13854 					blockcount -=
13855 					    SD_BYTES2TGTBLOCKS(un,
13856 						return_pktp->pkt_resid);
13857 				}
13858 
13859 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
13860 
13861 				/*
13862 				 * Set command byte based on the CDB
13863 				 * type we matched.
13864 				 */
13865 				cdbp->scc_cmd = cp->sc_grpmask |
13866 				    ((bp->b_flags & B_READ) ?
13867 					SCMD_READ : SCMD_WRITE);
13868 
13869 				SD_FILL_SCSI1_LUN(un, return_pktp);
13870 
13871 				/*
13872 				 * Fill in LBA and length
13873 				 */
13874 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
13875 				    (cp->sc_grpcode == CDB_GROUP4) ||
13876 				    (cp->sc_grpcode == CDB_GROUP0) ||
13877 				    (cp->sc_grpcode == CDB_GROUP5));
13878 
13879 				if (cp->sc_grpcode == CDB_GROUP1) {
13880 					FORMG1ADDR(cdbp, lba);
13881 					FORMG1COUNT(cdbp, blockcount);
13882 					return (0);
13883 				} else if (cp->sc_grpcode == CDB_GROUP4) {
13884 					FORMG4LONGADDR(cdbp, lba);
13885 					FORMG4COUNT(cdbp, blockcount);
13886 					return (0);
13887 				} else if (cp->sc_grpcode == CDB_GROUP0) {
13888 					FORMG0ADDR(cdbp, lba);
13889 					FORMG0COUNT(cdbp, blockcount);
13890 					return (0);
13891 				} else if (cp->sc_grpcode == CDB_GROUP5) {
13892 					FORMG5ADDR(cdbp, lba);
13893 					FORMG5COUNT(cdbp, blockcount);
13894 					return (0);
13895 				}
13896 
13897 				/*
13898 				 * It should be impossible to not match one
13899 				 * of the CDB types above, so we should never
13900 				 * reach this point.  Set the CDB command byte
13901 				 * to test-unit-ready to avoid writing
13902 				 * to somewhere we don't intend.
13903 				 */
13904 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
13905 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13906 			} else {
13907 				/*
13908 				 * Couldn't get scsi_pkt
13909 				 */
13910 				return (SD_PKT_ALLOC_FAILURE);
13911 			}
13912 		}
13913 	}
13914 
13915 	/*
13916 	 * None of the available CDB types were suitable.  This really
13917 	 * should never happen:  on a 64 bit system we support
13918 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
13919 	 * and on a 32 bit system we will refuse to bind to a device
13920 	 * larger than 2TB so addresses will never be larger than 32 bits.
13921 	 */
13922 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13923 }
13924 
13925 #if defined(__i386) || defined(__amd64)
13926 /*
13927  *    Function: sd_setup_next_rw_pkt
13928  *
13929  * Description: Setup packet for partial DMA transfers, except for the
13930  * 		initial transfer.  sd_setup_rw_pkt should be used for
13931  *		the initial transfer.
13932  *
13933  *     Context: Kernel thread and may be called from interrupt context.
13934  */
13935 
13936 int
13937 sd_setup_next_rw_pkt(struct sd_lun *un,
13938     struct scsi_pkt *pktp, struct buf *bp,
13939     diskaddr_t lba, uint32_t blockcount)
13940 {
13941 	uchar_t com;
13942 	union scsi_cdb *cdbp;
13943 	uchar_t cdb_group_id;
13944 
13945 	ASSERT(pktp != NULL);
13946 	ASSERT(pktp->pkt_cdbp != NULL);
13947 
13948 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
13949 	com = cdbp->scc_cmd;
13950 	cdb_group_id = CDB_GROUPID(com);
13951 
13952 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
13953 	    (cdb_group_id == CDB_GROUPID_1) ||
13954 	    (cdb_group_id == CDB_GROUPID_4) ||
13955 	    (cdb_group_id == CDB_GROUPID_5));
13956 
13957 	/*
13958 	 * Move pkt to the next portion of the xfer.
13959 	 * func is NULL_FUNC so we do not have to release
13960 	 * the disk mutex here.
13961 	 */
13962 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
13963 	    NULL_FUNC, NULL) == pktp) {
13964 		/* Success.  Handle partial DMA */
13965 		if (pktp->pkt_resid != 0) {
13966 			blockcount -=
13967 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
13968 		}
13969 
13970 		cdbp->scc_cmd = com;
13971 		SD_FILL_SCSI1_LUN(un, pktp);
13972 		if (cdb_group_id == CDB_GROUPID_1) {
13973 			FORMG1ADDR(cdbp, lba);
13974 			FORMG1COUNT(cdbp, blockcount);
13975 			return (0);
13976 		} else if (cdb_group_id == CDB_GROUPID_4) {
13977 			FORMG4LONGADDR(cdbp, lba);
13978 			FORMG4COUNT(cdbp, blockcount);
13979 			return (0);
13980 		} else if (cdb_group_id == CDB_GROUPID_0) {
13981 			FORMG0ADDR(cdbp, lba);
13982 			FORMG0COUNT(cdbp, blockcount);
13983 			return (0);
13984 		} else if (cdb_group_id == CDB_GROUPID_5) {
13985 			FORMG5ADDR(cdbp, lba);
13986 			FORMG5COUNT(cdbp, blockcount);
13987 			return (0);
13988 		}
13989 
13990 		/* Unreachable */
13991 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13992 	}
13993 
13994 	/*
13995 	 * Error setting up next portion of cmd transfer.
13996 	 * Something is definitely very wrong and this
13997 	 * should not happen.
13998 	 */
13999 	return (SD_PKT_ALLOC_FAILURE);
14000 }
14001 #endif /* defined(__i386) || defined(__amd64) */
14002 
14003 /*
14004  *    Function: sd_initpkt_for_uscsi
14005  *
14006  * Description: Allocate and initialize for transport a scsi_pkt struct,
14007  *		based upon the info specified in the given uscsi_cmd struct.
14008  *
14009  * Return Code: SD_PKT_ALLOC_SUCCESS
14010  *		SD_PKT_ALLOC_FAILURE
14011  *		SD_PKT_ALLOC_FAILURE_NO_DMA
14012  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
14013  *
14014  *     Context: Kernel thread and may be called from software interrupt context
14015  *		as part of a sdrunout callback. This function may not block or
14016  *		call routines that block
14017  */
14018 
14019 static int
14020 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
14021 {
14022 	struct uscsi_cmd *uscmd;
14023 	struct sd_xbuf	*xp;
14024 	struct scsi_pkt	*pktp;
14025 	struct sd_lun	*un;
14026 	uint32_t	flags = 0;
14027 
14028 	ASSERT(bp != NULL);
14029 	ASSERT(pktpp != NULL);
14030 	xp = SD_GET_XBUF(bp);
14031 	ASSERT(xp != NULL);
14032 	un = SD_GET_UN(bp);
14033 	ASSERT(un != NULL);
14034 	ASSERT(mutex_owned(SD_MUTEX(un)));
14035 
14036 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
14037 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
14038 	ASSERT(uscmd != NULL);
14039 
14040 	SD_TRACE(SD_LOG_IO_CORE, un,
14041 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
14042 
14043 	/*
14044 	 * Allocate the scsi_pkt for the command.
14045 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
14046 	 *	 during scsi_init_pkt time and will continue to use the
14047 	 *	 same path as long as the same scsi_pkt is used without
14048 	 *	 intervening scsi_dma_free(). Since uscsi command does
14049 	 *	 not call scsi_dmafree() before retry failed command, it
14050 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
14051 	 *	 set such that scsi_vhci can use other available path for
14052 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
14053 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
14054 	 */
14055 	pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
14056 	    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
14057 	    sizeof (struct scsi_arq_status), 0,
14058 	    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
14059 	    sdrunout, (caddr_t)un);
14060 
14061 	if (pktp == NULL) {
14062 		*pktpp = NULL;
14063 		/*
14064 		 * Set the driver state to RWAIT to indicate the driver
14065 		 * is waiting on resource allocations. The driver will not
14066 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
14067 		 */
14068 		New_state(un, SD_STATE_RWAIT);
14069 
14070 		SD_ERROR(SD_LOG_IO_CORE, un,
14071 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
14072 
14073 		if ((bp->b_flags & B_ERROR) != 0) {
14074 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
14075 		}
14076 		return (SD_PKT_ALLOC_FAILURE);
14077 	}
14078 
14079 	/*
14080 	 * We do not do DMA breakup for USCSI commands, so return failure
14081 	 * here if all the needed DMA resources were not allocated.
14082 	 */
14083 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
14084 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
14085 		scsi_destroy_pkt(pktp);
14086 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
14087 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
14088 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
14089 	}
14090 
14091 	/* Init the cdb from the given uscsi struct */
14092 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
14093 	    uscmd->uscsi_cdb[0], 0, 0, 0);
14094 
14095 	SD_FILL_SCSI1_LUN(un, pktp);
14096 
14097 	/*
14098 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
14099 	 * for listing of the supported flags.
14100 	 */
14101 
14102 	if (uscmd->uscsi_flags & USCSI_SILENT) {
14103 		flags |= FLAG_SILENT;
14104 	}
14105 
14106 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
14107 		flags |= FLAG_DIAGNOSE;
14108 	}
14109 
14110 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
14111 		flags |= FLAG_ISOLATE;
14112 	}
14113 
14114 	if (un->un_f_is_fibre == FALSE) {
14115 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
14116 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
14117 		}
14118 	}
14119 
14120 	/*
14121 	 * Set the pkt flags here so we save time later.
14122 	 * Note: These flags are NOT in the uscsi man page!!!
14123 	 */
14124 	if (uscmd->uscsi_flags & USCSI_HEAD) {
14125 		flags |= FLAG_HEAD;
14126 	}
14127 
14128 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
14129 		flags |= FLAG_NOINTR;
14130 	}
14131 
14132 	/*
14133 	 * For tagged queueing, things get a bit complicated.
14134 	 * Check first for head of queue and last for ordered queue.
14135 	 * If neither head nor order, use the default driver tag flags.
14136 	 */
14137 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
14138 		if (uscmd->uscsi_flags & USCSI_HTAG) {
14139 			flags |= FLAG_HTAG;
14140 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
14141 			flags |= FLAG_OTAG;
14142 		} else {
14143 			flags |= un->un_tagflags & FLAG_TAGMASK;
14144 		}
14145 	}
14146 
14147 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
14148 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
14149 	}
14150 
14151 	pktp->pkt_flags = flags;
14152 
14153 	/* Copy the caller's CDB into the pkt... */
14154 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
14155 
14156 	if (uscmd->uscsi_timeout == 0) {
14157 		pktp->pkt_time = un->un_uscsi_timeout;
14158 	} else {
14159 		pktp->pkt_time = uscmd->uscsi_timeout;
14160 	}
14161 
14162 	/* need it later to identify USCSI request in sdintr */
14163 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
14164 
14165 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
14166 
14167 	pktp->pkt_private = bp;
14168 	pktp->pkt_comp = sdintr;
14169 	*pktpp = pktp;
14170 
14171 	SD_TRACE(SD_LOG_IO_CORE, un,
14172 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
14173 
14174 	return (SD_PKT_ALLOC_SUCCESS);
14175 }
14176 
14177 
14178 /*
14179  *    Function: sd_destroypkt_for_uscsi
14180  *
14181  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
14182  *		IOs.. Also saves relevant info into the associated uscsi_cmd
14183  *		struct.
14184  *
14185  *     Context: May be called under interrupt context
14186  */
14187 
14188 static void
14189 sd_destroypkt_for_uscsi(struct buf *bp)
14190 {
14191 	struct uscsi_cmd *uscmd;
14192 	struct sd_xbuf	*xp;
14193 	struct scsi_pkt	*pktp;
14194 	struct sd_lun	*un;
14195 
14196 	ASSERT(bp != NULL);
14197 	xp = SD_GET_XBUF(bp);
14198 	ASSERT(xp != NULL);
14199 	un = SD_GET_UN(bp);
14200 	ASSERT(un != NULL);
14201 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14202 	pktp = SD_GET_PKTP(bp);
14203 	ASSERT(pktp != NULL);
14204 
14205 	SD_TRACE(SD_LOG_IO_CORE, un,
14206 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
14207 
14208 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
14209 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
14210 	ASSERT(uscmd != NULL);
14211 
14212 	/* Save the status and the residual into the uscsi_cmd struct */
14213 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
14214 	uscmd->uscsi_resid  = bp->b_resid;
14215 
14216 	/*
14217 	 * If enabled, copy any saved sense data into the area specified
14218 	 * by the uscsi command.
14219 	 */
14220 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
14221 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
14222 		/*
14223 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
14224 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
14225 		 */
14226 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
14227 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
14228 		bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, SENSE_LENGTH);
14229 	}
14230 
14231 	/* We are done with the scsi_pkt; free it now */
14232 	ASSERT(SD_GET_PKTP(bp) != NULL);
14233 	scsi_destroy_pkt(SD_GET_PKTP(bp));
14234 
14235 	SD_TRACE(SD_LOG_IO_CORE, un,
14236 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
14237 }
14238 
14239 
14240 /*
14241  *    Function: sd_bioclone_alloc
14242  *
14243  * Description: Allocate a buf(9S) and init it as per the given buf
14244  *		and the various arguments.  The associated sd_xbuf
14245  *		struct is (nearly) duplicated.  The struct buf *bp
14246  *		argument is saved in new_xp->xb_private.
14247  *
14248  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
14249  *		datalen - size of data area for the shadow bp
14250  *		blkno - starting LBA
14251  *		func - function pointer for b_iodone in the shadow buf. (May
14252  *			be NULL if none.)
14253  *
14254  * Return Code: Pointer to allocates buf(9S) struct
14255  *
14256  *     Context: Can sleep.
14257  */
14258 
14259 static struct buf *
14260 sd_bioclone_alloc(struct buf *bp, size_t datalen,
14261 	daddr_t blkno, int (*func)(struct buf *))
14262 {
14263 	struct	sd_lun	*un;
14264 	struct	sd_xbuf	*xp;
14265 	struct	sd_xbuf	*new_xp;
14266 	struct	buf	*new_bp;
14267 
14268 	ASSERT(bp != NULL);
14269 	xp = SD_GET_XBUF(bp);
14270 	ASSERT(xp != NULL);
14271 	un = SD_GET_UN(bp);
14272 	ASSERT(un != NULL);
14273 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14274 
14275 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
14276 	    NULL, KM_SLEEP);
14277 
14278 	new_bp->b_lblkno	= blkno;
14279 
14280 	/*
14281 	 * Allocate an xbuf for the shadow bp and copy the contents of the
14282 	 * original xbuf into it.
14283 	 */
14284 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14285 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
14286 
14287 	/*
14288 	 * The given bp is automatically saved in the xb_private member
14289 	 * of the new xbuf.  Callers are allowed to depend on this.
14290 	 */
14291 	new_xp->xb_private = bp;
14292 
14293 	new_bp->b_private  = new_xp;
14294 
14295 	return (new_bp);
14296 }
14297 
14298 /*
14299  *    Function: sd_shadow_buf_alloc
14300  *
14301  * Description: Allocate a buf(9S) and init it as per the given buf
14302  *		and the various arguments.  The associated sd_xbuf
14303  *		struct is (nearly) duplicated.  The struct buf *bp
14304  *		argument is saved in new_xp->xb_private.
14305  *
14306  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
14307  *		datalen - size of data area for the shadow bp
14308  *		bflags - B_READ or B_WRITE (pseudo flag)
14309  *		blkno - starting LBA
14310  *		func - function pointer for b_iodone in the shadow buf. (May
14311  *			be NULL if none.)
14312  *
14313  * Return Code: Pointer to allocates buf(9S) struct
14314  *
14315  *     Context: Can sleep.
14316  */
14317 
14318 static struct buf *
14319 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
14320 	daddr_t blkno, int (*func)(struct buf *))
14321 {
14322 	struct	sd_lun	*un;
14323 	struct	sd_xbuf	*xp;
14324 	struct	sd_xbuf	*new_xp;
14325 	struct	buf	*new_bp;
14326 
14327 	ASSERT(bp != NULL);
14328 	xp = SD_GET_XBUF(bp);
14329 	ASSERT(xp != NULL);
14330 	un = SD_GET_UN(bp);
14331 	ASSERT(un != NULL);
14332 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14333 
14334 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
14335 		bp_mapin(bp);
14336 	}
14337 
14338 	bflags &= (B_READ | B_WRITE);
14339 #if defined(__i386) || defined(__amd64)
14340 	new_bp = getrbuf(KM_SLEEP);
14341 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
14342 	new_bp->b_bcount = datalen;
14343 	new_bp->b_flags = bflags |
14344 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
14345 #else
14346 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
14347 	    datalen, bflags, SLEEP_FUNC, NULL);
14348 #endif
14349 	new_bp->av_forw	= NULL;
14350 	new_bp->av_back	= NULL;
14351 	new_bp->b_dev	= bp->b_dev;
14352 	new_bp->b_blkno	= blkno;
14353 	new_bp->b_iodone = func;
14354 	new_bp->b_edev	= bp->b_edev;
14355 	new_bp->b_resid	= 0;
14356 
14357 	/* We need to preserve the B_FAILFAST flag */
14358 	if (bp->b_flags & B_FAILFAST) {
14359 		new_bp->b_flags |= B_FAILFAST;
14360 	}
14361 
14362 	/*
14363 	 * Allocate an xbuf for the shadow bp and copy the contents of the
14364 	 * original xbuf into it.
14365 	 */
14366 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14367 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
14368 
14369 	/* Need later to copy data between the shadow buf & original buf! */
14370 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
14371 
14372 	/*
14373 	 * The given bp is automatically saved in the xb_private member
14374 	 * of the new xbuf.  Callers are allowed to depend on this.
14375 	 */
14376 	new_xp->xb_private = bp;
14377 
14378 	new_bp->b_private  = new_xp;
14379 
14380 	return (new_bp);
14381 }
14382 
14383 /*
14384  *    Function: sd_bioclone_free
14385  *
14386  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
14387  *		in the larger than partition operation.
14388  *
14389  *     Context: May be called under interrupt context
14390  */
14391 
14392 static void
14393 sd_bioclone_free(struct buf *bp)
14394 {
14395 	struct sd_xbuf	*xp;
14396 
14397 	ASSERT(bp != NULL);
14398 	xp = SD_GET_XBUF(bp);
14399 	ASSERT(xp != NULL);
14400 
14401 	/*
14402 	 * Call bp_mapout() before freeing the buf,  in case a lower
14403 	 * layer or HBA  had done a bp_mapin().  we must do this here
14404 	 * as we are the "originator" of the shadow buf.
14405 	 */
14406 	bp_mapout(bp);
14407 
14408 	/*
14409 	 * Null out b_iodone before freeing the bp, to ensure that the driver
14410 	 * never gets confused by a stale value in this field. (Just a little
14411 	 * extra defensiveness here.)
14412 	 */
14413 	bp->b_iodone = NULL;
14414 
14415 	freerbuf(bp);
14416 
14417 	kmem_free(xp, sizeof (struct sd_xbuf));
14418 }
14419 
14420 /*
14421  *    Function: sd_shadow_buf_free
14422  *
14423  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
14424  *
14425  *     Context: May be called under interrupt context
14426  */
14427 
14428 static void
14429 sd_shadow_buf_free(struct buf *bp)
14430 {
14431 	struct sd_xbuf	*xp;
14432 
14433 	ASSERT(bp != NULL);
14434 	xp = SD_GET_XBUF(bp);
14435 	ASSERT(xp != NULL);
14436 
14437 #if defined(__sparc)
14438 	/*
14439 	 * Call bp_mapout() before freeing the buf,  in case a lower
14440 	 * layer or HBA  had done a bp_mapin().  we must do this here
14441 	 * as we are the "originator" of the shadow buf.
14442 	 */
14443 	bp_mapout(bp);
14444 #endif
14445 
14446 	/*
14447 	 * Null out b_iodone before freeing the bp, to ensure that the driver
14448 	 * never gets confused by a stale value in this field. (Just a little
14449 	 * extra defensiveness here.)
14450 	 */
14451 	bp->b_iodone = NULL;
14452 
14453 #if defined(__i386) || defined(__amd64)
14454 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
14455 	freerbuf(bp);
14456 #else
14457 	scsi_free_consistent_buf(bp);
14458 #endif
14459 
14460 	kmem_free(xp, sizeof (struct sd_xbuf));
14461 }
14462 
14463 
14464 /*
14465  *    Function: sd_print_transport_rejected_message
14466  *
14467  * Description: This implements the ludicrously complex rules for printing
14468  *		a "transport rejected" message.  This is to address the
14469  *		specific problem of having a flood of this error message
14470  *		produced when a failover occurs.
14471  *
14472  *     Context: Any.
14473  */
14474 
14475 static void
14476 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
14477 	int code)
14478 {
14479 	ASSERT(un != NULL);
14480 	ASSERT(mutex_owned(SD_MUTEX(un)));
14481 	ASSERT(xp != NULL);
14482 
14483 	/*
14484 	 * Print the "transport rejected" message under the following
14485 	 * conditions:
14486 	 *
14487 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
14488 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
14489 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
14490 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
14491 	 *   scsi_transport(9F) (which indicates that the target might have
14492 	 *   gone off-line).  This uses the un->un_tran_fatal_count
14493 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
14494 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
14495 	 *   from scsi_transport().
14496 	 *
14497 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
14498 	 * the preceeding cases in order for the message to be printed.
14499 	 */
14500 	if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) {
14501 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
14502 		    (code != TRAN_FATAL_ERROR) ||
14503 		    (un->un_tran_fatal_count == 1)) {
14504 			switch (code) {
14505 			case TRAN_BADPKT:
14506 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14507 				    "transport rejected bad packet\n");
14508 				break;
14509 			case TRAN_FATAL_ERROR:
14510 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14511 				    "transport rejected fatal error\n");
14512 				break;
14513 			default:
14514 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14515 				    "transport rejected (%d)\n", code);
14516 				break;
14517 			}
14518 		}
14519 	}
14520 }
14521 
14522 
14523 /*
14524  *    Function: sd_add_buf_to_waitq
14525  *
14526  * Description: Add the given buf(9S) struct to the wait queue for the
14527  *		instance.  If sorting is enabled, then the buf is added
14528  *		to the queue via an elevator sort algorithm (a la
14529  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
14530  *		If sorting is not enabled, then the buf is just added
14531  *		to the end of the wait queue.
14532  *
14533  * Return Code: void
14534  *
14535  *     Context: Does not sleep/block, therefore technically can be called
14536  *		from any context.  However if sorting is enabled then the
14537  *		execution time is indeterminate, and may take long if
14538  *		the wait queue grows large.
14539  */
14540 
14541 static void
14542 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
14543 {
14544 	struct buf *ap;
14545 
14546 	ASSERT(bp != NULL);
14547 	ASSERT(un != NULL);
14548 	ASSERT(mutex_owned(SD_MUTEX(un)));
14549 
14550 	/* If the queue is empty, add the buf as the only entry & return. */
14551 	if (un->un_waitq_headp == NULL) {
14552 		ASSERT(un->un_waitq_tailp == NULL);
14553 		un->un_waitq_headp = un->un_waitq_tailp = bp;
14554 		bp->av_forw = NULL;
14555 		return;
14556 	}
14557 
14558 	ASSERT(un->un_waitq_tailp != NULL);
14559 
14560 	/*
14561 	 * If sorting is disabled, just add the buf to the tail end of
14562 	 * the wait queue and return.
14563 	 */
14564 	if (un->un_f_disksort_disabled) {
14565 		un->un_waitq_tailp->av_forw = bp;
14566 		un->un_waitq_tailp = bp;
14567 		bp->av_forw = NULL;
14568 		return;
14569 	}
14570 
14571 	/*
14572 	 * Sort thru the list of requests currently on the wait queue
14573 	 * and add the new buf request at the appropriate position.
14574 	 *
14575 	 * The un->un_waitq_headp is an activity chain pointer on which
14576 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
14577 	 * first queue holds those requests which are positioned after
14578 	 * the current SD_GET_BLKNO() (in the first request); the second holds
14579 	 * requests which came in after their SD_GET_BLKNO() number was passed.
14580 	 * Thus we implement a one way scan, retracting after reaching
14581 	 * the end of the drive to the first request on the second
14582 	 * queue, at which time it becomes the first queue.
14583 	 * A one-way scan is natural because of the way UNIX read-ahead
14584 	 * blocks are allocated.
14585 	 *
14586 	 * If we lie after the first request, then we must locate the
14587 	 * second request list and add ourselves to it.
14588 	 */
14589 	ap = un->un_waitq_headp;
14590 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
14591 		while (ap->av_forw != NULL) {
14592 			/*
14593 			 * Look for an "inversion" in the (normally
14594 			 * ascending) block numbers. This indicates
14595 			 * the start of the second request list.
14596 			 */
14597 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
14598 				/*
14599 				 * Search the second request list for the
14600 				 * first request at a larger block number.
14601 				 * We go before that; however if there is
14602 				 * no such request, we go at the end.
14603 				 */
14604 				do {
14605 					if (SD_GET_BLKNO(bp) <
14606 					    SD_GET_BLKNO(ap->av_forw)) {
14607 						goto insert;
14608 					}
14609 					ap = ap->av_forw;
14610 				} while (ap->av_forw != NULL);
14611 				goto insert;		/* after last */
14612 			}
14613 			ap = ap->av_forw;
14614 		}
14615 
14616 		/*
14617 		 * No inversions... we will go after the last, and
14618 		 * be the first request in the second request list.
14619 		 */
14620 		goto insert;
14621 	}
14622 
14623 	/*
14624 	 * Request is at/after the current request...
14625 	 * sort in the first request list.
14626 	 */
14627 	while (ap->av_forw != NULL) {
14628 		/*
14629 		 * We want to go after the current request (1) if
14630 		 * there is an inversion after it (i.e. it is the end
14631 		 * of the first request list), or (2) if the next
14632 		 * request is a larger block no. than our request.
14633 		 */
14634 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
14635 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
14636 			goto insert;
14637 		}
14638 		ap = ap->av_forw;
14639 	}
14640 
14641 	/*
14642 	 * Neither a second list nor a larger request, therefore
14643 	 * we go at the end of the first list (which is the same
14644 	 * as the end of the whole schebang).
14645 	 */
14646 insert:
14647 	bp->av_forw = ap->av_forw;
14648 	ap->av_forw = bp;
14649 
14650 	/*
14651 	 * If we inserted onto the tail end of the waitq, make sure the
14652 	 * tail pointer is updated.
14653 	 */
14654 	if (ap == un->un_waitq_tailp) {
14655 		un->un_waitq_tailp = bp;
14656 	}
14657 }
14658 
14659 
14660 /*
14661  *    Function: sd_start_cmds
14662  *
14663  * Description: Remove and transport cmds from the driver queues.
14664  *
14665  *   Arguments: un - pointer to the unit (soft state) struct for the target.
14666  *
14667  *		immed_bp - ptr to a buf to be transported immediately. Only
14668  *		the immed_bp is transported; bufs on the waitq are not
14669  *		processed and the un_retry_bp is not checked.  If immed_bp is
14670  *		NULL, then normal queue processing is performed.
14671  *
14672  *     Context: May be called from kernel thread context, interrupt context,
14673  *		or runout callback context. This function may not block or
14674  *		call routines that block.
14675  */
14676 
14677 static void
14678 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
14679 {
14680 	struct	sd_xbuf	*xp;
14681 	struct	buf	*bp;
14682 	void	(*statp)(kstat_io_t *);
14683 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14684 	void	(*saved_statp)(kstat_io_t *);
14685 #endif
14686 	int	rval;
14687 
14688 	ASSERT(un != NULL);
14689 	ASSERT(mutex_owned(SD_MUTEX(un)));
14690 	ASSERT(un->un_ncmds_in_transport >= 0);
14691 	ASSERT(un->un_throttle >= 0);
14692 
14693 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
14694 
14695 	do {
14696 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14697 		saved_statp = NULL;
14698 #endif
14699 
14700 		/*
14701 		 * If we are syncing or dumping, fail the command to
14702 		 * avoid recursively calling back into scsi_transport().
14703 		 * The dump I/O itself uses a separate code path so this
14704 		 * only prevents non-dump I/O from being sent while dumping.
14705 		 * File system sync takes place before dumping begins.
14706 		 * During panic, filesystem I/O is allowed provided
14707 		 * un_in_callback is <= 1.  This is to prevent recursion
14708 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
14709 		 * sd_start_cmds and so on.  See panic.c for more information
14710 		 * about the states the system can be in during panic.
14711 		 */
14712 		if ((un->un_state == SD_STATE_DUMPING) ||
14713 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
14714 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14715 			    "sd_start_cmds: panicking\n");
14716 			goto exit;
14717 		}
14718 
14719 		if ((bp = immed_bp) != NULL) {
14720 			/*
14721 			 * We have a bp that must be transported immediately.
14722 			 * It's OK to transport the immed_bp here without doing
14723 			 * the throttle limit check because the immed_bp is
14724 			 * always used in a retry/recovery case. This means
14725 			 * that we know we are not at the throttle limit by
14726 			 * virtue of the fact that to get here we must have
14727 			 * already gotten a command back via sdintr(). This also
14728 			 * relies on (1) the command on un_retry_bp preventing
14729 			 * further commands from the waitq from being issued;
14730 			 * and (2) the code in sd_retry_command checking the
14731 			 * throttle limit before issuing a delayed or immediate
14732 			 * retry. This holds even if the throttle limit is
14733 			 * currently ratcheted down from its maximum value.
14734 			 */
14735 			statp = kstat_runq_enter;
14736 			if (bp == un->un_retry_bp) {
14737 				ASSERT((un->un_retry_statp == NULL) ||
14738 				    (un->un_retry_statp == kstat_waitq_enter) ||
14739 				    (un->un_retry_statp ==
14740 				    kstat_runq_back_to_waitq));
14741 				/*
14742 				 * If the waitq kstat was incremented when
14743 				 * sd_set_retry_bp() queued this bp for a retry,
14744 				 * then we must set up statp so that the waitq
14745 				 * count will get decremented correctly below.
14746 				 * Also we must clear un->un_retry_statp to
14747 				 * ensure that we do not act on a stale value
14748 				 * in this field.
14749 				 */
14750 				if ((un->un_retry_statp == kstat_waitq_enter) ||
14751 				    (un->un_retry_statp ==
14752 				    kstat_runq_back_to_waitq)) {
14753 					statp = kstat_waitq_to_runq;
14754 				}
14755 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14756 				saved_statp = un->un_retry_statp;
14757 #endif
14758 				un->un_retry_statp = NULL;
14759 
14760 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14761 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
14762 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
14763 				    un, un->un_retry_bp, un->un_throttle,
14764 				    un->un_ncmds_in_transport);
14765 			} else {
14766 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
14767 				    "processing priority bp:0x%p\n", bp);
14768 			}
14769 
14770 		} else if ((bp = un->un_waitq_headp) != NULL) {
14771 			/*
14772 			 * A command on the waitq is ready to go, but do not
14773 			 * send it if:
14774 			 *
14775 			 * (1) the throttle limit has been reached, or
14776 			 * (2) a retry is pending, or
14777 			 * (3) a START_STOP_UNIT callback pending, or
14778 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
14779 			 *	command is pending.
14780 			 *
14781 			 * For all of these conditions, IO processing will
14782 			 * restart after the condition is cleared.
14783 			 */
14784 			if (un->un_ncmds_in_transport >= un->un_throttle) {
14785 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14786 				    "sd_start_cmds: exiting, "
14787 				    "throttle limit reached!\n");
14788 				goto exit;
14789 			}
14790 			if (un->un_retry_bp != NULL) {
14791 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14792 				    "sd_start_cmds: exiting, retry pending!\n");
14793 				goto exit;
14794 			}
14795 			if (un->un_startstop_timeid != NULL) {
14796 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14797 				    "sd_start_cmds: exiting, "
14798 				    "START_STOP pending!\n");
14799 				goto exit;
14800 			}
14801 			if (un->un_direct_priority_timeid != NULL) {
14802 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14803 				    "sd_start_cmds: exiting, "
14804 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
14805 				goto exit;
14806 			}
14807 
14808 			/* Dequeue the command */
14809 			un->un_waitq_headp = bp->av_forw;
14810 			if (un->un_waitq_headp == NULL) {
14811 				un->un_waitq_tailp = NULL;
14812 			}
14813 			bp->av_forw = NULL;
14814 			statp = kstat_waitq_to_runq;
14815 			SD_TRACE(SD_LOG_IO_CORE, un,
14816 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
14817 
14818 		} else {
14819 			/* No work to do so bail out now */
14820 			SD_TRACE(SD_LOG_IO_CORE, un,
14821 			    "sd_start_cmds: no more work, exiting!\n");
14822 			goto exit;
14823 		}
14824 
14825 		/*
14826 		 * Reset the state to normal. This is the mechanism by which
14827 		 * the state transitions from either SD_STATE_RWAIT or
14828 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
14829 		 * If state is SD_STATE_PM_CHANGING then this command is
14830 		 * part of the device power control and the state must
14831 		 * not be put back to normal. Doing so would would
14832 		 * allow new commands to proceed when they shouldn't,
14833 		 * the device may be going off.
14834 		 */
14835 		if ((un->un_state != SD_STATE_SUSPENDED) &&
14836 		    (un->un_state != SD_STATE_PM_CHANGING)) {
14837 			New_state(un, SD_STATE_NORMAL);
14838 		    }
14839 
14840 		xp = SD_GET_XBUF(bp);
14841 		ASSERT(xp != NULL);
14842 
14843 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14844 		/*
14845 		 * Allocate the scsi_pkt if we need one, or attach DMA
14846 		 * resources if we have a scsi_pkt that needs them. The
14847 		 * latter should only occur for commands that are being
14848 		 * retried.
14849 		 */
14850 		if ((xp->xb_pktp == NULL) ||
14851 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
14852 #else
14853 		if (xp->xb_pktp == NULL) {
14854 #endif
14855 			/*
14856 			 * There is no scsi_pkt allocated for this buf. Call
14857 			 * the initpkt function to allocate & init one.
14858 			 *
14859 			 * The scsi_init_pkt runout callback functionality is
14860 			 * implemented as follows:
14861 			 *
14862 			 * 1) The initpkt function always calls
14863 			 *    scsi_init_pkt(9F) with sdrunout specified as the
14864 			 *    callback routine.
14865 			 * 2) A successful packet allocation is initialized and
14866 			 *    the I/O is transported.
14867 			 * 3) The I/O associated with an allocation resource
14868 			 *    failure is left on its queue to be retried via
14869 			 *    runout or the next I/O.
14870 			 * 4) The I/O associated with a DMA error is removed
14871 			 *    from the queue and failed with EIO. Processing of
14872 			 *    the transport queues is also halted to be
14873 			 *    restarted via runout or the next I/O.
14874 			 * 5) The I/O associated with a CDB size or packet
14875 			 *    size error is removed from the queue and failed
14876 			 *    with EIO. Processing of the transport queues is
14877 			 *    continued.
14878 			 *
14879 			 * Note: there is no interface for canceling a runout
14880 			 * callback. To prevent the driver from detaching or
14881 			 * suspending while a runout is pending the driver
14882 			 * state is set to SD_STATE_RWAIT
14883 			 *
14884 			 * Note: using the scsi_init_pkt callback facility can
14885 			 * result in an I/O request persisting at the head of
14886 			 * the list which cannot be satisfied even after
14887 			 * multiple retries. In the future the driver may
14888 			 * implement some kind of maximum runout count before
14889 			 * failing an I/O.
14890 			 *
14891 			 * Note: the use of funcp below may seem superfluous,
14892 			 * but it helps warlock figure out the correct
14893 			 * initpkt function calls (see [s]sd.wlcmd).
14894 			 */
14895 			struct scsi_pkt	*pktp;
14896 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
14897 
14898 			ASSERT(bp != un->un_rqs_bp);
14899 
14900 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
14901 			switch ((*funcp)(bp, &pktp)) {
14902 			case  SD_PKT_ALLOC_SUCCESS:
14903 				xp->xb_pktp = pktp;
14904 				SD_TRACE(SD_LOG_IO_CORE, un,
14905 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
14906 				    pktp);
14907 				goto got_pkt;
14908 
14909 			case SD_PKT_ALLOC_FAILURE:
14910 				/*
14911 				 * Temporary (hopefully) resource depletion.
14912 				 * Since retries and RQS commands always have a
14913 				 * scsi_pkt allocated, these cases should never
14914 				 * get here. So the only cases this needs to
14915 				 * handle is a bp from the waitq (which we put
14916 				 * back onto the waitq for sdrunout), or a bp
14917 				 * sent as an immed_bp (which we just fail).
14918 				 */
14919 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14920 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
14921 
14922 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14923 
14924 				if (bp == immed_bp) {
14925 					/*
14926 					 * If SD_XB_DMA_FREED is clear, then
14927 					 * this is a failure to allocate a
14928 					 * scsi_pkt, and we must fail the
14929 					 * command.
14930 					 */
14931 					if ((xp->xb_pkt_flags &
14932 					    SD_XB_DMA_FREED) == 0) {
14933 						break;
14934 					}
14935 
14936 					/*
14937 					 * If this immediate command is NOT our
14938 					 * un_retry_bp, then we must fail it.
14939 					 */
14940 					if (bp != un->un_retry_bp) {
14941 						break;
14942 					}
14943 
14944 					/*
14945 					 * We get here if this cmd is our
14946 					 * un_retry_bp that was DMAFREED, but
14947 					 * scsi_init_pkt() failed to reallocate
14948 					 * DMA resources when we attempted to
14949 					 * retry it. This can happen when an
14950 					 * mpxio failover is in progress, but
14951 					 * we don't want to just fail the
14952 					 * command in this case.
14953 					 *
14954 					 * Use timeout(9F) to restart it after
14955 					 * a 100ms delay.  We don't want to
14956 					 * let sdrunout() restart it, because
14957 					 * sdrunout() is just supposed to start
14958 					 * commands that are sitting on the
14959 					 * wait queue.  The un_retry_bp stays
14960 					 * set until the command completes, but
14961 					 * sdrunout can be called many times
14962 					 * before that happens.  Since sdrunout
14963 					 * cannot tell if the un_retry_bp is
14964 					 * already in the transport, it could
14965 					 * end up calling scsi_transport() for
14966 					 * the un_retry_bp multiple times.
14967 					 *
14968 					 * Also: don't schedule the callback
14969 					 * if some other callback is already
14970 					 * pending.
14971 					 */
14972 					if (un->un_retry_statp == NULL) {
14973 						/*
14974 						 * restore the kstat pointer to
14975 						 * keep kstat counts coherent
14976 						 * when we do retry the command.
14977 						 */
14978 						un->un_retry_statp =
14979 						    saved_statp;
14980 					}
14981 
14982 					if ((un->un_startstop_timeid == NULL) &&
14983 					    (un->un_retry_timeid == NULL) &&
14984 					    (un->un_direct_priority_timeid ==
14985 					    NULL)) {
14986 
14987 						un->un_retry_timeid =
14988 						    timeout(
14989 						    sd_start_retry_command,
14990 						    un, SD_RESTART_TIMEOUT);
14991 					}
14992 					goto exit;
14993 				}
14994 
14995 #else
14996 				if (bp == immed_bp) {
14997 					break;	/* Just fail the command */
14998 				}
14999 #endif
15000 
15001 				/* Add the buf back to the head of the waitq */
15002 				bp->av_forw = un->un_waitq_headp;
15003 				un->un_waitq_headp = bp;
15004 				if (un->un_waitq_tailp == NULL) {
15005 					un->un_waitq_tailp = bp;
15006 				}
15007 				goto exit;
15008 
15009 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
15010 				/*
15011 				 * HBA DMA resource failure. Fail the command
15012 				 * and continue processing of the queues.
15013 				 */
15014 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15015 				    "sd_start_cmds: "
15016 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
15017 				break;
15018 
15019 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
15020 				/*
15021 				 * Note:x86: Partial DMA mapping not supported
15022 				 * for USCSI commands, and all the needed DMA
15023 				 * resources were not allocated.
15024 				 */
15025 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15026 				    "sd_start_cmds: "
15027 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
15028 				break;
15029 
15030 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
15031 				/*
15032 				 * Note:x86: Request cannot fit into CDB based
15033 				 * on lba and len.
15034 				 */
15035 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15036 				    "sd_start_cmds: "
15037 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
15038 				break;
15039 
15040 			default:
15041 				/* Should NEVER get here! */
15042 				panic("scsi_initpkt error");
15043 				/*NOTREACHED*/
15044 			}
15045 
15046 			/*
15047 			 * Fatal error in allocating a scsi_pkt for this buf.
15048 			 * Update kstats & return the buf with an error code.
15049 			 * We must use sd_return_failed_command_no_restart() to
15050 			 * avoid a recursive call back into sd_start_cmds().
15051 			 * However this also means that we must keep processing
15052 			 * the waitq here in order to avoid stalling.
15053 			 */
15054 			if (statp == kstat_waitq_to_runq) {
15055 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
15056 			}
15057 			sd_return_failed_command_no_restart(un, bp, EIO);
15058 			if (bp == immed_bp) {
15059 				/* immed_bp is gone by now, so clear this */
15060 				immed_bp = NULL;
15061 			}
15062 			continue;
15063 		}
15064 got_pkt:
15065 		if (bp == immed_bp) {
15066 			/* goto the head of the class.... */
15067 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15068 		}
15069 
15070 		un->un_ncmds_in_transport++;
15071 		SD_UPDATE_KSTATS(un, statp, bp);
15072 
15073 		/*
15074 		 * Call scsi_transport() to send the command to the target.
15075 		 * According to SCSA architecture, we must drop the mutex here
15076 		 * before calling scsi_transport() in order to avoid deadlock.
15077 		 * Note that the scsi_pkt's completion routine can be executed
15078 		 * (from interrupt context) even before the call to
15079 		 * scsi_transport() returns.
15080 		 */
15081 		SD_TRACE(SD_LOG_IO_CORE, un,
15082 		    "sd_start_cmds: calling scsi_transport()\n");
15083 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
15084 
15085 		mutex_exit(SD_MUTEX(un));
15086 		rval = scsi_transport(xp->xb_pktp);
15087 		mutex_enter(SD_MUTEX(un));
15088 
15089 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15090 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
15091 
15092 		switch (rval) {
15093 		case TRAN_ACCEPT:
15094 			/* Clear this with every pkt accepted by the HBA */
15095 			un->un_tran_fatal_count = 0;
15096 			break;	/* Success; try the next cmd (if any) */
15097 
15098 		case TRAN_BUSY:
15099 			un->un_ncmds_in_transport--;
15100 			ASSERT(un->un_ncmds_in_transport >= 0);
15101 
15102 			/*
15103 			 * Don't retry request sense, the sense data
15104 			 * is lost when another request is sent.
15105 			 * Free up the rqs buf and retry
15106 			 * the original failed cmd.  Update kstat.
15107 			 */
15108 			if (bp == un->un_rqs_bp) {
15109 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15110 				bp = sd_mark_rqs_idle(un, xp);
15111 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15112 					NULL, NULL, EIO, SD_BSY_TIMEOUT / 500,
15113 					kstat_waitq_enter);
15114 				goto exit;
15115 			}
15116 
15117 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
15118 			/*
15119 			 * Free the DMA resources for the  scsi_pkt. This will
15120 			 * allow mpxio to select another path the next time
15121 			 * we call scsi_transport() with this scsi_pkt.
15122 			 * See sdintr() for the rationalization behind this.
15123 			 */
15124 			if ((un->un_f_is_fibre == TRUE) &&
15125 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
15126 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
15127 				scsi_dmafree(xp->xb_pktp);
15128 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
15129 			}
15130 #endif
15131 
15132 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
15133 				/*
15134 				 * Commands that are SD_PATH_DIRECT_PRIORITY
15135 				 * are for error recovery situations. These do
15136 				 * not use the normal command waitq, so if they
15137 				 * get a TRAN_BUSY we cannot put them back onto
15138 				 * the waitq for later retry. One possible
15139 				 * problem is that there could already be some
15140 				 * other command on un_retry_bp that is waiting
15141 				 * for this one to complete, so we would be
15142 				 * deadlocked if we put this command back onto
15143 				 * the waitq for later retry (since un_retry_bp
15144 				 * must complete before the driver gets back to
15145 				 * commands on the waitq).
15146 				 *
15147 				 * To avoid deadlock we must schedule a callback
15148 				 * that will restart this command after a set
15149 				 * interval.  This should keep retrying for as
15150 				 * long as the underlying transport keeps
15151 				 * returning TRAN_BUSY (just like for other
15152 				 * commands).  Use the same timeout interval as
15153 				 * for the ordinary TRAN_BUSY retry.
15154 				 */
15155 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15156 				    "sd_start_cmds: scsi_transport() returned "
15157 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
15158 
15159 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15160 				un->un_direct_priority_timeid =
15161 				    timeout(sd_start_direct_priority_command,
15162 				    bp, SD_BSY_TIMEOUT / 500);
15163 
15164 				goto exit;
15165 			}
15166 
15167 			/*
15168 			 * For TRAN_BUSY, we want to reduce the throttle value,
15169 			 * unless we are retrying a command.
15170 			 */
15171 			if (bp != un->un_retry_bp) {
15172 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
15173 			}
15174 
15175 			/*
15176 			 * Set up the bp to be tried again 10 ms later.
15177 			 * Note:x86: Is there a timeout value in the sd_lun
15178 			 * for this condition?
15179 			 */
15180 			sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500,
15181 				kstat_runq_back_to_waitq);
15182 			goto exit;
15183 
15184 		case TRAN_FATAL_ERROR:
15185 			un->un_tran_fatal_count++;
15186 			/* FALLTHRU */
15187 
15188 		case TRAN_BADPKT:
15189 		default:
15190 			un->un_ncmds_in_transport--;
15191 			ASSERT(un->un_ncmds_in_transport >= 0);
15192 
15193 			/*
15194 			 * If this is our REQUEST SENSE command with a
15195 			 * transport error, we must get back the pointers
15196 			 * to the original buf, and mark the REQUEST
15197 			 * SENSE command as "available".
15198 			 */
15199 			if (bp == un->un_rqs_bp) {
15200 				bp = sd_mark_rqs_idle(un, xp);
15201 				xp = SD_GET_XBUF(bp);
15202 			} else {
15203 				/*
15204 				 * Legacy behavior: do not update transport
15205 				 * error count for request sense commands.
15206 				 */
15207 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
15208 			}
15209 
15210 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15211 			sd_print_transport_rejected_message(un, xp, rval);
15212 
15213 			/*
15214 			 * We must use sd_return_failed_command_no_restart() to
15215 			 * avoid a recursive call back into sd_start_cmds().
15216 			 * However this also means that we must keep processing
15217 			 * the waitq here in order to avoid stalling.
15218 			 */
15219 			sd_return_failed_command_no_restart(un, bp, EIO);
15220 
15221 			/*
15222 			 * Notify any threads waiting in sd_ddi_suspend() that
15223 			 * a command completion has occurred.
15224 			 */
15225 			if (un->un_state == SD_STATE_SUSPENDED) {
15226 				cv_broadcast(&un->un_disk_busy_cv);
15227 			}
15228 
15229 			if (bp == immed_bp) {
15230 				/* immed_bp is gone by now, so clear this */
15231 				immed_bp = NULL;
15232 			}
15233 			break;
15234 		}
15235 
15236 	} while (immed_bp == NULL);
15237 
15238 exit:
15239 	ASSERT(mutex_owned(SD_MUTEX(un)));
15240 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
15241 }
15242 
15243 
15244 /*
15245  *    Function: sd_return_command
15246  *
15247  * Description: Returns a command to its originator (with or without an
15248  *		error).  Also starts commands waiting to be transported
15249  *		to the target.
15250  *
15251  *     Context: May be called from interrupt, kernel, or timeout context
15252  */
15253 
15254 static void
15255 sd_return_command(struct sd_lun *un, struct buf *bp)
15256 {
15257 	struct sd_xbuf *xp;
15258 #if defined(__i386) || defined(__amd64)
15259 	struct scsi_pkt *pktp;
15260 #endif
15261 
15262 	ASSERT(bp != NULL);
15263 	ASSERT(un != NULL);
15264 	ASSERT(mutex_owned(SD_MUTEX(un)));
15265 	ASSERT(bp != un->un_rqs_bp);
15266 	xp = SD_GET_XBUF(bp);
15267 	ASSERT(xp != NULL);
15268 
15269 #if defined(__i386) || defined(__amd64)
15270 	pktp = SD_GET_PKTP(bp);
15271 #endif
15272 
15273 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
15274 
15275 #if defined(__i386) || defined(__amd64)
15276 	/*
15277 	 * Note:x86: check for the "sdrestart failed" case.
15278 	 */
15279 	if (((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
15280 		(geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
15281 		(xp->xb_pktp->pkt_resid == 0)) {
15282 
15283 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
15284 			/*
15285 			 * Successfully set up next portion of cmd
15286 			 * transfer, try sending it
15287 			 */
15288 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15289 			    NULL, NULL, 0, (clock_t)0, NULL);
15290 			sd_start_cmds(un, NULL);
15291 			return;	/* Note:x86: need a return here? */
15292 		}
15293 	}
15294 #endif
15295 
15296 	/*
15297 	 * If this is the failfast bp, clear it from un_failfast_bp. This
15298 	 * can happen if upon being re-tried the failfast bp either
15299 	 * succeeded or encountered another error (possibly even a different
15300 	 * error than the one that precipitated the failfast state, but in
15301 	 * that case it would have had to exhaust retries as well). Regardless,
15302 	 * this should not occur whenever the instance is in the active
15303 	 * failfast state.
15304 	 */
15305 	if (bp == un->un_failfast_bp) {
15306 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
15307 		un->un_failfast_bp = NULL;
15308 	}
15309 
15310 	/*
15311 	 * Clear the failfast state upon successful completion of ANY cmd.
15312 	 */
15313 	if (bp->b_error == 0) {
15314 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15315 	}
15316 
15317 	/*
15318 	 * This is used if the command was retried one or more times. Show that
15319 	 * we are done with it, and allow processing of the waitq to resume.
15320 	 */
15321 	if (bp == un->un_retry_bp) {
15322 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15323 		    "sd_return_command: un:0x%p: "
15324 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
15325 		un->un_retry_bp = NULL;
15326 		un->un_retry_statp = NULL;
15327 	}
15328 
15329 	SD_UPDATE_RDWR_STATS(un, bp);
15330 	SD_UPDATE_PARTITION_STATS(un, bp);
15331 
15332 	switch (un->un_state) {
15333 	case SD_STATE_SUSPENDED:
15334 		/*
15335 		 * Notify any threads waiting in sd_ddi_suspend() that
15336 		 * a command completion has occurred.
15337 		 */
15338 		cv_broadcast(&un->un_disk_busy_cv);
15339 		break;
15340 	default:
15341 		sd_start_cmds(un, NULL);
15342 		break;
15343 	}
15344 
15345 	/* Return this command up the iodone chain to its originator. */
15346 	mutex_exit(SD_MUTEX(un));
15347 
15348 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15349 	xp->xb_pktp = NULL;
15350 
15351 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15352 
15353 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15354 	mutex_enter(SD_MUTEX(un));
15355 
15356 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
15357 }
15358 
15359 
15360 /*
15361  *    Function: sd_return_failed_command
15362  *
15363  * Description: Command completion when an error occurred.
15364  *
15365  *     Context: May be called from interrupt context
15366  */
15367 
15368 static void
15369 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
15370 {
15371 	ASSERT(bp != NULL);
15372 	ASSERT(un != NULL);
15373 	ASSERT(mutex_owned(SD_MUTEX(un)));
15374 
15375 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15376 	    "sd_return_failed_command: entry\n");
15377 
15378 	/*
15379 	 * b_resid could already be nonzero due to a partial data
15380 	 * transfer, so do not change it here.
15381 	 */
15382 	SD_BIOERROR(bp, errcode);
15383 
15384 	sd_return_command(un, bp);
15385 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15386 	    "sd_return_failed_command: exit\n");
15387 }
15388 
15389 
15390 /*
15391  *    Function: sd_return_failed_command_no_restart
15392  *
15393  * Description: Same as sd_return_failed_command, but ensures that no
15394  *		call back into sd_start_cmds will be issued.
15395  *
15396  *     Context: May be called from interrupt context
15397  */
15398 
15399 static void
15400 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
15401 	int errcode)
15402 {
15403 	struct sd_xbuf *xp;
15404 
15405 	ASSERT(bp != NULL);
15406 	ASSERT(un != NULL);
15407 	ASSERT(mutex_owned(SD_MUTEX(un)));
15408 	xp = SD_GET_XBUF(bp);
15409 	ASSERT(xp != NULL);
15410 	ASSERT(errcode != 0);
15411 
15412 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15413 	    "sd_return_failed_command_no_restart: entry\n");
15414 
15415 	/*
15416 	 * b_resid could already be nonzero due to a partial data
15417 	 * transfer, so do not change it here.
15418 	 */
15419 	SD_BIOERROR(bp, errcode);
15420 
15421 	/*
15422 	 * If this is the failfast bp, clear it. This can happen if the
15423 	 * failfast bp encounterd a fatal error when we attempted to
15424 	 * re-try it (such as a scsi_transport(9F) failure).  However
15425 	 * we should NOT be in an active failfast state if the failfast
15426 	 * bp is not NULL.
15427 	 */
15428 	if (bp == un->un_failfast_bp) {
15429 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
15430 		un->un_failfast_bp = NULL;
15431 	}
15432 
15433 	if (bp == un->un_retry_bp) {
15434 		/*
15435 		 * This command was retried one or more times. Show that we are
15436 		 * done with it, and allow processing of the waitq to resume.
15437 		 */
15438 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15439 		    "sd_return_failed_command_no_restart: "
15440 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
15441 		un->un_retry_bp = NULL;
15442 		un->un_retry_statp = NULL;
15443 	}
15444 
15445 	SD_UPDATE_RDWR_STATS(un, bp);
15446 	SD_UPDATE_PARTITION_STATS(un, bp);
15447 
15448 	mutex_exit(SD_MUTEX(un));
15449 
15450 	if (xp->xb_pktp != NULL) {
15451 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15452 		xp->xb_pktp = NULL;
15453 	}
15454 
15455 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15456 
15457 	mutex_enter(SD_MUTEX(un));
15458 
15459 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15460 	    "sd_return_failed_command_no_restart: exit\n");
15461 }
15462 
15463 
15464 /*
15465  *    Function: sd_retry_command
15466  *
15467  * Description: queue up a command for retry, or (optionally) fail it
15468  *		if retry counts are exhausted.
15469  *
15470  *   Arguments: un - Pointer to the sd_lun struct for the target.
15471  *
15472  *		bp - Pointer to the buf for the command to be retried.
15473  *
15474  *		retry_check_flag - Flag to see which (if any) of the retry
15475  *		   counts should be decremented/checked. If the indicated
15476  *		   retry count is exhausted, then the command will not be
15477  *		   retried; it will be failed instead. This should use a
15478  *		   value equal to one of the following:
15479  *
15480  *			SD_RETRIES_NOCHECK
15481  *			SD_RESD_RETRIES_STANDARD
15482  *			SD_RETRIES_VICTIM
15483  *
15484  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
15485  *		   if the check should be made to see of FLAG_ISOLATE is set
15486  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
15487  *		   not retried, it is simply failed.
15488  *
15489  *		user_funcp - Ptr to function to call before dispatching the
15490  *		   command. May be NULL if no action needs to be performed.
15491  *		   (Primarily intended for printing messages.)
15492  *
15493  *		user_arg - Optional argument to be passed along to
15494  *		   the user_funcp call.
15495  *
15496  *		failure_code - errno return code to set in the bp if the
15497  *		   command is going to be failed.
15498  *
15499  *		retry_delay - Retry delay interval in (clock_t) units. May
15500  *		   be zero which indicates that the retry should be retried
15501  *		   immediately (ie, without an intervening delay).
15502  *
15503  *		statp - Ptr to kstat function to be updated if the command
15504  *		   is queued for a delayed retry. May be NULL if no kstat
15505  *		   update is desired.
15506  *
15507  *     Context: May be called from interupt context.
15508  */
15509 
15510 static void
15511 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
15512 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
15513 	code), void *user_arg, int failure_code,  clock_t retry_delay,
15514 	void (*statp)(kstat_io_t *))
15515 {
15516 	struct sd_xbuf	*xp;
15517 	struct scsi_pkt	*pktp;
15518 
15519 	ASSERT(un != NULL);
15520 	ASSERT(mutex_owned(SD_MUTEX(un)));
15521 	ASSERT(bp != NULL);
15522 	xp = SD_GET_XBUF(bp);
15523 	ASSERT(xp != NULL);
15524 	pktp = SD_GET_PKTP(bp);
15525 	ASSERT(pktp != NULL);
15526 
15527 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15528 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
15529 
15530 	/*
15531 	 * If we are syncing or dumping, fail the command to avoid
15532 	 * recursively calling back into scsi_transport().
15533 	 */
15534 	if (ddi_in_panic()) {
15535 		goto fail_command_no_log;
15536 	}
15537 
15538 	/*
15539 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
15540 	 * log an error and fail the command.
15541 	 */
15542 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15543 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
15544 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
15545 		sd_dump_memory(un, SD_LOG_IO, "CDB",
15546 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15547 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
15548 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15549 		goto fail_command;
15550 	}
15551 
15552 	/*
15553 	 * If we are suspended, then put the command onto head of the
15554 	 * wait queue since we don't want to start more commands.
15555 	 */
15556 	switch (un->un_state) {
15557 	case SD_STATE_SUSPENDED:
15558 	case SD_STATE_DUMPING:
15559 		bp->av_forw = un->un_waitq_headp;
15560 		un->un_waitq_headp = bp;
15561 		if (un->un_waitq_tailp == NULL) {
15562 			un->un_waitq_tailp = bp;
15563 		}
15564 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
15565 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
15566 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
15567 		return;
15568 	default:
15569 		break;
15570 	}
15571 
15572 	/*
15573 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
15574 	 * is set; if it is then we do not want to retry the command.
15575 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
15576 	 */
15577 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
15578 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
15579 			goto fail_command;
15580 		}
15581 	}
15582 
15583 
15584 	/*
15585 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
15586 	 * command timeout or a selection timeout has occurred. This means
15587 	 * that we were unable to establish an kind of communication with
15588 	 * the target, and subsequent retries and/or commands are likely
15589 	 * to encounter similar results and take a long time to complete.
15590 	 *
15591 	 * If this is a failfast error condition, we need to update the
15592 	 * failfast state, even if this bp does not have B_FAILFAST set.
15593 	 */
15594 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
15595 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
15596 			ASSERT(un->un_failfast_bp == NULL);
15597 			/*
15598 			 * If we are already in the active failfast state, and
15599 			 * another failfast error condition has been detected,
15600 			 * then fail this command if it has B_FAILFAST set.
15601 			 * If B_FAILFAST is clear, then maintain the legacy
15602 			 * behavior of retrying heroically, even tho this will
15603 			 * take a lot more time to fail the command.
15604 			 */
15605 			if (bp->b_flags & B_FAILFAST) {
15606 				goto fail_command;
15607 			}
15608 		} else {
15609 			/*
15610 			 * We're not in the active failfast state, but we
15611 			 * have a failfast error condition, so we must begin
15612 			 * transition to the next state. We do this regardless
15613 			 * of whether or not this bp has B_FAILFAST set.
15614 			 */
15615 			if (un->un_failfast_bp == NULL) {
15616 				/*
15617 				 * This is the first bp to meet a failfast
15618 				 * condition so save it on un_failfast_bp &
15619 				 * do normal retry processing. Do not enter
15620 				 * active failfast state yet. This marks
15621 				 * entry into the "failfast pending" state.
15622 				 */
15623 				un->un_failfast_bp = bp;
15624 
15625 			} else if (un->un_failfast_bp == bp) {
15626 				/*
15627 				 * This is the second time *this* bp has
15628 				 * encountered a failfast error condition,
15629 				 * so enter active failfast state & flush
15630 				 * queues as appropriate.
15631 				 */
15632 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
15633 				un->un_failfast_bp = NULL;
15634 				sd_failfast_flushq(un);
15635 
15636 				/*
15637 				 * Fail this bp now if B_FAILFAST set;
15638 				 * otherwise continue with retries. (It would
15639 				 * be pretty ironic if this bp succeeded on a
15640 				 * subsequent retry after we just flushed all
15641 				 * the queues).
15642 				 */
15643 				if (bp->b_flags & B_FAILFAST) {
15644 					goto fail_command;
15645 				}
15646 
15647 #if !defined(lint) && !defined(__lint)
15648 			} else {
15649 				/*
15650 				 * If neither of the preceeding conditionals
15651 				 * was true, it means that there is some
15652 				 * *other* bp that has met an inital failfast
15653 				 * condition and is currently either being
15654 				 * retried or is waiting to be retried. In
15655 				 * that case we should perform normal retry
15656 				 * processing on *this* bp, since there is a
15657 				 * chance that the current failfast condition
15658 				 * is transient and recoverable. If that does
15659 				 * not turn out to be the case, then retries
15660 				 * will be cleared when the wait queue is
15661 				 * flushed anyway.
15662 				 */
15663 #endif
15664 			}
15665 		}
15666 	} else {
15667 		/*
15668 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
15669 		 * likely were able to at least establish some level of
15670 		 * communication with the target and subsequent commands
15671 		 * and/or retries are likely to get through to the target,
15672 		 * In this case we want to be aggressive about clearing
15673 		 * the failfast state. Note that this does not affect
15674 		 * the "failfast pending" condition.
15675 		 */
15676 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15677 	}
15678 
15679 
15680 	/*
15681 	 * Check the specified retry count to see if we can still do
15682 	 * any retries with this pkt before we should fail it.
15683 	 */
15684 	switch (retry_check_flag & SD_RETRIES_MASK) {
15685 	case SD_RETRIES_VICTIM:
15686 		/*
15687 		 * Check the victim retry count. If exhausted, then fall
15688 		 * thru & check against the standard retry count.
15689 		 */
15690 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
15691 			/* Increment count & proceed with the retry */
15692 			xp->xb_victim_retry_count++;
15693 			break;
15694 		}
15695 		/* Victim retries exhausted, fall back to std. retries... */
15696 		/* FALLTHRU */
15697 
15698 	case SD_RETRIES_STANDARD:
15699 		if (xp->xb_retry_count >= un->un_retry_count) {
15700 			/* Retries exhausted, fail the command */
15701 			SD_TRACE(SD_LOG_IO_CORE, un,
15702 			    "sd_retry_command: retries exhausted!\n");
15703 			/*
15704 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
15705 			 * commands with nonzero pkt_resid.
15706 			 */
15707 			if ((pktp->pkt_reason == CMD_CMPLT) &&
15708 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
15709 			    (pktp->pkt_resid != 0)) {
15710 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
15711 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
15712 					SD_UPDATE_B_RESID(bp, pktp);
15713 				}
15714 			}
15715 			goto fail_command;
15716 		}
15717 		xp->xb_retry_count++;
15718 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15719 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15720 		break;
15721 
15722 	case SD_RETRIES_UA:
15723 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
15724 			/* Retries exhausted, fail the command */
15725 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15726 			    "Unit Attention retries exhausted. "
15727 			    "Check the target.\n");
15728 			goto fail_command;
15729 		}
15730 		xp->xb_ua_retry_count++;
15731 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15732 		    "sd_retry_command: retry count:%d\n",
15733 			xp->xb_ua_retry_count);
15734 		break;
15735 
15736 	case SD_RETRIES_BUSY:
15737 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
15738 			/* Retries exhausted, fail the command */
15739 			SD_TRACE(SD_LOG_IO_CORE, un,
15740 			    "sd_retry_command: retries exhausted!\n");
15741 			goto fail_command;
15742 		}
15743 		xp->xb_retry_count++;
15744 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15745 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15746 		break;
15747 
15748 	case SD_RETRIES_NOCHECK:
15749 	default:
15750 		/* No retry count to check. Just proceed with the retry */
15751 		break;
15752 	}
15753 
15754 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15755 
15756 	/*
15757 	 * If we were given a zero timeout, we must attempt to retry the
15758 	 * command immediately (ie, without a delay).
15759 	 */
15760 	if (retry_delay == 0) {
15761 		/*
15762 		 * Check some limiting conditions to see if we can actually
15763 		 * do the immediate retry.  If we cannot, then we must
15764 		 * fall back to queueing up a delayed retry.
15765 		 */
15766 		if (un->un_ncmds_in_transport >= un->un_throttle) {
15767 			/*
15768 			 * We are at the throttle limit for the target,
15769 			 * fall back to delayed retry.
15770 			 */
15771 			retry_delay = SD_BSY_TIMEOUT;
15772 			statp = kstat_waitq_enter;
15773 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15774 			    "sd_retry_command: immed. retry hit "
15775 			    "throttle!\n");
15776 		} else {
15777 			/*
15778 			 * We're clear to proceed with the immediate retry.
15779 			 * First call the user-provided function (if any)
15780 			 */
15781 			if (user_funcp != NULL) {
15782 				(*user_funcp)(un, bp, user_arg,
15783 				    SD_IMMEDIATE_RETRY_ISSUED);
15784 #ifdef __lock_lint
15785 				sd_print_incomplete_msg(un, bp, user_arg,
15786 				    SD_IMMEDIATE_RETRY_ISSUED);
15787 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
15788 				    SD_IMMEDIATE_RETRY_ISSUED);
15789 				sd_print_sense_failed_msg(un, bp, user_arg,
15790 				    SD_IMMEDIATE_RETRY_ISSUED);
15791 #endif
15792 			}
15793 
15794 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15795 			    "sd_retry_command: issuing immediate retry\n");
15796 
15797 			/*
15798 			 * Call sd_start_cmds() to transport the command to
15799 			 * the target.
15800 			 */
15801 			sd_start_cmds(un, bp);
15802 
15803 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15804 			    "sd_retry_command exit\n");
15805 			return;
15806 		}
15807 	}
15808 
15809 	/*
15810 	 * Set up to retry the command after a delay.
15811 	 * First call the user-provided function (if any)
15812 	 */
15813 	if (user_funcp != NULL) {
15814 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
15815 	}
15816 
15817 	sd_set_retry_bp(un, bp, retry_delay, statp);
15818 
15819 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15820 	return;
15821 
15822 fail_command:
15823 
15824 	if (user_funcp != NULL) {
15825 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
15826 	}
15827 
15828 fail_command_no_log:
15829 
15830 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15831 	    "sd_retry_command: returning failed command\n");
15832 
15833 	sd_return_failed_command(un, bp, failure_code);
15834 
15835 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15836 }
15837 
15838 
15839 /*
15840  *    Function: sd_set_retry_bp
15841  *
15842  * Description: Set up the given bp for retry.
15843  *
15844  *   Arguments: un - ptr to associated softstate
15845  *		bp - ptr to buf(9S) for the command
15846  *		retry_delay - time interval before issuing retry (may be 0)
15847  *		statp - optional pointer to kstat function
15848  *
15849  *     Context: May be called under interrupt context
15850  */
15851 
15852 static void
15853 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
15854 	void (*statp)(kstat_io_t *))
15855 {
15856 	ASSERT(un != NULL);
15857 	ASSERT(mutex_owned(SD_MUTEX(un)));
15858 	ASSERT(bp != NULL);
15859 
15860 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15861 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
15862 
15863 	/*
15864 	 * Indicate that the command is being retried. This will not allow any
15865 	 * other commands on the wait queue to be transported to the target
15866 	 * until this command has been completed (success or failure). The
15867 	 * "retry command" is not transported to the target until the given
15868 	 * time delay expires, unless the user specified a 0 retry_delay.
15869 	 *
15870 	 * Note: the timeout(9F) callback routine is what actually calls
15871 	 * sd_start_cmds() to transport the command, with the exception of a
15872 	 * zero retry_delay. The only current implementor of a zero retry delay
15873 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
15874 	 */
15875 	if (un->un_retry_bp == NULL) {
15876 		ASSERT(un->un_retry_statp == NULL);
15877 		un->un_retry_bp = bp;
15878 
15879 		/*
15880 		 * If the user has not specified a delay the command should
15881 		 * be queued and no timeout should be scheduled.
15882 		 */
15883 		if (retry_delay == 0) {
15884 			/*
15885 			 * Save the kstat pointer that will be used in the
15886 			 * call to SD_UPDATE_KSTATS() below, so that
15887 			 * sd_start_cmds() can correctly decrement the waitq
15888 			 * count when it is time to transport this command.
15889 			 */
15890 			un->un_retry_statp = statp;
15891 			goto done;
15892 		}
15893 	}
15894 
15895 	if (un->un_retry_bp == bp) {
15896 		/*
15897 		 * Save the kstat pointer that will be used in the call to
15898 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
15899 		 * correctly decrement the waitq count when it is time to
15900 		 * transport this command.
15901 		 */
15902 		un->un_retry_statp = statp;
15903 
15904 		/*
15905 		 * Schedule a timeout if:
15906 		 *   1) The user has specified a delay.
15907 		 *   2) There is not a START_STOP_UNIT callback pending.
15908 		 *
15909 		 * If no delay has been specified, then it is up to the caller
15910 		 * to ensure that IO processing continues without stalling.
15911 		 * Effectively, this means that the caller will issue the
15912 		 * required call to sd_start_cmds(). The START_STOP_UNIT
15913 		 * callback does this after the START STOP UNIT command has
15914 		 * completed. In either of these cases we should not schedule
15915 		 * a timeout callback here.  Also don't schedule the timeout if
15916 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
15917 		 */
15918 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
15919 		    (un->un_direct_priority_timeid == NULL)) {
15920 			un->un_retry_timeid =
15921 			    timeout(sd_start_retry_command, un, retry_delay);
15922 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15923 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
15924 			    " bp:0x%p un_retry_timeid:0x%p\n",
15925 			    un, bp, un->un_retry_timeid);
15926 		}
15927 	} else {
15928 		/*
15929 		 * We only get in here if there is already another command
15930 		 * waiting to be retried.  In this case, we just put the
15931 		 * given command onto the wait queue, so it can be transported
15932 		 * after the current retry command has completed.
15933 		 *
15934 		 * Also we have to make sure that if the command at the head
15935 		 * of the wait queue is the un_failfast_bp, that we do not
15936 		 * put ahead of it any other commands that are to be retried.
15937 		 */
15938 		if ((un->un_failfast_bp != NULL) &&
15939 		    (un->un_failfast_bp == un->un_waitq_headp)) {
15940 			/*
15941 			 * Enqueue this command AFTER the first command on
15942 			 * the wait queue (which is also un_failfast_bp).
15943 			 */
15944 			bp->av_forw = un->un_waitq_headp->av_forw;
15945 			un->un_waitq_headp->av_forw = bp;
15946 			if (un->un_waitq_headp == un->un_waitq_tailp) {
15947 				un->un_waitq_tailp = bp;
15948 			}
15949 		} else {
15950 			/* Enqueue this command at the head of the waitq. */
15951 			bp->av_forw = un->un_waitq_headp;
15952 			un->un_waitq_headp = bp;
15953 			if (un->un_waitq_tailp == NULL) {
15954 				un->un_waitq_tailp = bp;
15955 			}
15956 		}
15957 
15958 		if (statp == NULL) {
15959 			statp = kstat_waitq_enter;
15960 		}
15961 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15962 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
15963 	}
15964 
15965 done:
15966 	if (statp != NULL) {
15967 		SD_UPDATE_KSTATS(un, statp, bp);
15968 	}
15969 
15970 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15971 	    "sd_set_retry_bp: exit un:0x%p\n", un);
15972 }
15973 
15974 
15975 /*
15976  *    Function: sd_start_retry_command
15977  *
15978  * Description: Start the command that has been waiting on the target's
15979  *		retry queue.  Called from timeout(9F) context after the
15980  *		retry delay interval has expired.
15981  *
15982  *   Arguments: arg - pointer to associated softstate for the device.
15983  *
15984  *     Context: timeout(9F) thread context.  May not sleep.
15985  */
15986 
15987 static void
15988 sd_start_retry_command(void *arg)
15989 {
15990 	struct sd_lun *un = arg;
15991 
15992 	ASSERT(un != NULL);
15993 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15994 
15995 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15996 	    "sd_start_retry_command: entry\n");
15997 
15998 	mutex_enter(SD_MUTEX(un));
15999 
16000 	un->un_retry_timeid = NULL;
16001 
16002 	if (un->un_retry_bp != NULL) {
16003 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16004 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
16005 		    un, un->un_retry_bp);
16006 		sd_start_cmds(un, un->un_retry_bp);
16007 	}
16008 
16009 	mutex_exit(SD_MUTEX(un));
16010 
16011 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16012 	    "sd_start_retry_command: exit\n");
16013 }
16014 
16015 
16016 /*
16017  *    Function: sd_start_direct_priority_command
16018  *
16019  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
16020  *		received TRAN_BUSY when we called scsi_transport() to send it
16021  *		to the underlying HBA. This function is called from timeout(9F)
16022  *		context after the delay interval has expired.
16023  *
16024  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
16025  *
16026  *     Context: timeout(9F) thread context.  May not sleep.
16027  */
16028 
16029 static void
16030 sd_start_direct_priority_command(void *arg)
16031 {
16032 	struct buf	*priority_bp = arg;
16033 	struct sd_lun	*un;
16034 
16035 	ASSERT(priority_bp != NULL);
16036 	un = SD_GET_UN(priority_bp);
16037 	ASSERT(un != NULL);
16038 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16039 
16040 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16041 	    "sd_start_direct_priority_command: entry\n");
16042 
16043 	mutex_enter(SD_MUTEX(un));
16044 	un->un_direct_priority_timeid = NULL;
16045 	sd_start_cmds(un, priority_bp);
16046 	mutex_exit(SD_MUTEX(un));
16047 
16048 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16049 	    "sd_start_direct_priority_command: exit\n");
16050 }
16051 
16052 
16053 /*
16054  *    Function: sd_send_request_sense_command
16055  *
16056  * Description: Sends a REQUEST SENSE command to the target
16057  *
16058  *     Context: May be called from interrupt context.
16059  */
16060 
16061 static void
16062 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
16063 	struct scsi_pkt *pktp)
16064 {
16065 	ASSERT(bp != NULL);
16066 	ASSERT(un != NULL);
16067 	ASSERT(mutex_owned(SD_MUTEX(un)));
16068 
16069 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
16070 	    "entry: buf:0x%p\n", bp);
16071 
16072 	/*
16073 	 * If we are syncing or dumping, then fail the command to avoid a
16074 	 * recursive callback into scsi_transport(). Also fail the command
16075 	 * if we are suspended (legacy behavior).
16076 	 */
16077 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
16078 	    (un->un_state == SD_STATE_DUMPING)) {
16079 		sd_return_failed_command(un, bp, EIO);
16080 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16081 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
16082 		return;
16083 	}
16084 
16085 	/*
16086 	 * Retry the failed command and don't issue the request sense if:
16087 	 *    1) the sense buf is busy
16088 	 *    2) we have 1 or more outstanding commands on the target
16089 	 *    (the sense data will be cleared or invalidated any way)
16090 	 *
16091 	 * Note: There could be an issue with not checking a retry limit here,
16092 	 * the problem is determining which retry limit to check.
16093 	 */
16094 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
16095 		/* Don't retry if the command is flagged as non-retryable */
16096 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16097 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
16098 			    NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter);
16099 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16100 			    "sd_send_request_sense_command: "
16101 			    "at full throttle, retrying exit\n");
16102 		} else {
16103 			sd_return_failed_command(un, bp, EIO);
16104 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16105 			    "sd_send_request_sense_command: "
16106 			    "at full throttle, non-retryable exit\n");
16107 		}
16108 		return;
16109 	}
16110 
16111 	sd_mark_rqs_busy(un, bp);
16112 	sd_start_cmds(un, un->un_rqs_bp);
16113 
16114 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16115 	    "sd_send_request_sense_command: exit\n");
16116 }
16117 
16118 
16119 /*
16120  *    Function: sd_mark_rqs_busy
16121  *
16122  * Description: Indicate that the request sense bp for this instance is
16123  *		in use.
16124  *
16125  *     Context: May be called under interrupt context
16126  */
16127 
16128 static void
16129 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
16130 {
16131 	struct sd_xbuf	*sense_xp;
16132 
16133 	ASSERT(un != NULL);
16134 	ASSERT(bp != NULL);
16135 	ASSERT(mutex_owned(SD_MUTEX(un)));
16136 	ASSERT(un->un_sense_isbusy == 0);
16137 
16138 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
16139 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
16140 
16141 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
16142 	ASSERT(sense_xp != NULL);
16143 
16144 	SD_INFO(SD_LOG_IO, un,
16145 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
16146 
16147 	ASSERT(sense_xp->xb_pktp != NULL);
16148 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
16149 	    == (FLAG_SENSING | FLAG_HEAD));
16150 
16151 	un->un_sense_isbusy = 1;
16152 	un->un_rqs_bp->b_resid = 0;
16153 	sense_xp->xb_pktp->pkt_resid  = 0;
16154 	sense_xp->xb_pktp->pkt_reason = 0;
16155 
16156 	/* So we can get back the bp at interrupt time! */
16157 	sense_xp->xb_sense_bp = bp;
16158 
16159 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
16160 
16161 	/*
16162 	 * Mark this buf as awaiting sense data. (This is already set in
16163 	 * the pkt_flags for the RQS packet.)
16164 	 */
16165 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
16166 
16167 	sense_xp->xb_retry_count	= 0;
16168 	sense_xp->xb_victim_retry_count = 0;
16169 	sense_xp->xb_ua_retry_count	= 0;
16170 	sense_xp->xb_dma_resid  = 0;
16171 
16172 	/* Clean up the fields for auto-request sense */
16173 	sense_xp->xb_sense_status = 0;
16174 	sense_xp->xb_sense_state  = 0;
16175 	sense_xp->xb_sense_resid  = 0;
16176 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
16177 
16178 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
16179 }
16180 
16181 
16182 /*
16183  *    Function: sd_mark_rqs_idle
16184  *
16185  * Description: SD_MUTEX must be held continuously through this routine
16186  *		to prevent reuse of the rqs struct before the caller can
16187  *		complete it's processing.
16188  *
16189  * Return Code: Pointer to the RQS buf
16190  *
16191  *     Context: May be called under interrupt context
16192  */
16193 
16194 static struct buf *
16195 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
16196 {
16197 	struct buf *bp;
16198 	ASSERT(un != NULL);
16199 	ASSERT(sense_xp != NULL);
16200 	ASSERT(mutex_owned(SD_MUTEX(un)));
16201 	ASSERT(un->un_sense_isbusy != 0);
16202 
16203 	un->un_sense_isbusy = 0;
16204 	bp = sense_xp->xb_sense_bp;
16205 	sense_xp->xb_sense_bp = NULL;
16206 
16207 	/* This pkt is no longer interested in getting sense data */
16208 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
16209 
16210 	return (bp);
16211 }
16212 
16213 
16214 
16215 /*
16216  *    Function: sd_alloc_rqs
16217  *
16218  * Description: Set up the unit to receive auto request sense data
16219  *
16220  * Return Code: DDI_SUCCESS or DDI_FAILURE
16221  *
16222  *     Context: Called under attach(9E) context
16223  */
16224 
16225 static int
16226 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
16227 {
16228 	struct sd_xbuf *xp;
16229 
16230 	ASSERT(un != NULL);
16231 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16232 	ASSERT(un->un_rqs_bp == NULL);
16233 	ASSERT(un->un_rqs_pktp == NULL);
16234 
16235 	/*
16236 	 * First allocate the required buf and scsi_pkt structs, then set up
16237 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
16238 	 */
16239 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
16240 	    SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
16241 	if (un->un_rqs_bp == NULL) {
16242 		return (DDI_FAILURE);
16243 	}
16244 
16245 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
16246 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
16247 
16248 	if (un->un_rqs_pktp == NULL) {
16249 		sd_free_rqs(un);
16250 		return (DDI_FAILURE);
16251 	}
16252 
16253 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
16254 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
16255 	    SCMD_REQUEST_SENSE, 0, SENSE_LENGTH, 0);
16256 
16257 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
16258 
16259 	/* Set up the other needed members in the ARQ scsi_pkt. */
16260 	un->un_rqs_pktp->pkt_comp   = sdintr;
16261 	un->un_rqs_pktp->pkt_time   = sd_io_time;
16262 	un->un_rqs_pktp->pkt_flags |=
16263 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
16264 
16265 	/*
16266 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
16267 	 * provide any intpkt, destroypkt routines as we take care of
16268 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
16269 	 */
16270 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
16271 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
16272 	xp->xb_pktp = un->un_rqs_pktp;
16273 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
16274 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
16275 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
16276 
16277 	/*
16278 	 * Save the pointer to the request sense private bp so it can
16279 	 * be retrieved in sdintr.
16280 	 */
16281 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
16282 	ASSERT(un->un_rqs_bp->b_private == xp);
16283 
16284 	/*
16285 	 * See if the HBA supports auto-request sense for the specified
16286 	 * target/lun. If it does, then try to enable it (if not already
16287 	 * enabled).
16288 	 *
16289 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
16290 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
16291 	 * return success.  However, in both of these cases ARQ is always
16292 	 * enabled and scsi_ifgetcap will always return true. The best approach
16293 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
16294 	 *
16295 	 * The 3rd case is the HBA (adp) always return enabled on
16296 	 * scsi_ifgetgetcap even when it's not enable, the best approach
16297 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
16298 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
16299 	 */
16300 
16301 	if (un->un_f_is_fibre == TRUE) {
16302 		un->un_f_arq_enabled = TRUE;
16303 	} else {
16304 #if defined(__i386) || defined(__amd64)
16305 		/*
16306 		 * Circumvent the Adaptec bug, remove this code when
16307 		 * the bug is fixed
16308 		 */
16309 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
16310 #endif
16311 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
16312 		case 0:
16313 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16314 				"sd_alloc_rqs: HBA supports ARQ\n");
16315 			/*
16316 			 * ARQ is supported by this HBA but currently is not
16317 			 * enabled. Attempt to enable it and if successful then
16318 			 * mark this instance as ARQ enabled.
16319 			 */
16320 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
16321 				== 1) {
16322 				/* Successfully enabled ARQ in the HBA */
16323 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
16324 					"sd_alloc_rqs: ARQ enabled\n");
16325 				un->un_f_arq_enabled = TRUE;
16326 			} else {
16327 				/* Could not enable ARQ in the HBA */
16328 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
16329 				"sd_alloc_rqs: failed ARQ enable\n");
16330 				un->un_f_arq_enabled = FALSE;
16331 			}
16332 			break;
16333 		case 1:
16334 			/*
16335 			 * ARQ is supported by this HBA and is already enabled.
16336 			 * Just mark ARQ as enabled for this instance.
16337 			 */
16338 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16339 				"sd_alloc_rqs: ARQ already enabled\n");
16340 			un->un_f_arq_enabled = TRUE;
16341 			break;
16342 		default:
16343 			/*
16344 			 * ARQ is not supported by this HBA; disable it for this
16345 			 * instance.
16346 			 */
16347 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16348 				"sd_alloc_rqs: HBA does not support ARQ\n");
16349 			un->un_f_arq_enabled = FALSE;
16350 			break;
16351 		}
16352 	}
16353 
16354 	return (DDI_SUCCESS);
16355 }
16356 
16357 
16358 /*
16359  *    Function: sd_free_rqs
16360  *
16361  * Description: Cleanup for the pre-instance RQS command.
16362  *
16363  *     Context: Kernel thread context
16364  */
16365 
16366 static void
16367 sd_free_rqs(struct sd_lun *un)
16368 {
16369 	ASSERT(un != NULL);
16370 
16371 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
16372 
16373 	/*
16374 	 * If consistent memory is bound to a scsi_pkt, the pkt
16375 	 * has to be destroyed *before* freeing the consistent memory.
16376 	 * Don't change the sequence of this operations.
16377 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
16378 	 * after it was freed in scsi_free_consistent_buf().
16379 	 */
16380 	if (un->un_rqs_pktp != NULL) {
16381 		scsi_destroy_pkt(un->un_rqs_pktp);
16382 		un->un_rqs_pktp = NULL;
16383 	}
16384 
16385 	if (un->un_rqs_bp != NULL) {
16386 		kmem_free(SD_GET_XBUF(un->un_rqs_bp), sizeof (struct sd_xbuf));
16387 		scsi_free_consistent_buf(un->un_rqs_bp);
16388 		un->un_rqs_bp = NULL;
16389 	}
16390 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
16391 }
16392 
16393 
16394 
16395 /*
16396  *    Function: sd_reduce_throttle
16397  *
16398  * Description: Reduces the maximun # of outstanding commands on a
16399  *		target to the current number of outstanding commands.
16400  *		Queues a tiemout(9F) callback to restore the limit
16401  *		after a specified interval has elapsed.
16402  *		Typically used when we get a TRAN_BUSY return code
16403  *		back from scsi_transport().
16404  *
16405  *   Arguments: un - ptr to the sd_lun softstate struct
16406  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
16407  *
16408  *     Context: May be called from interrupt context
16409  */
16410 
16411 static void
16412 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
16413 {
16414 	ASSERT(un != NULL);
16415 	ASSERT(mutex_owned(SD_MUTEX(un)));
16416 	ASSERT(un->un_ncmds_in_transport >= 0);
16417 
16418 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16419 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
16420 	    un, un->un_throttle, un->un_ncmds_in_transport);
16421 
16422 	if (un->un_throttle > 1) {
16423 		if (un->un_f_use_adaptive_throttle == TRUE) {
16424 			switch (throttle_type) {
16425 			case SD_THROTTLE_TRAN_BUSY:
16426 				if (un->un_busy_throttle == 0) {
16427 					un->un_busy_throttle = un->un_throttle;
16428 				}
16429 				break;
16430 			case SD_THROTTLE_QFULL:
16431 				un->un_busy_throttle = 0;
16432 				break;
16433 			default:
16434 				ASSERT(FALSE);
16435 			}
16436 
16437 			if (un->un_ncmds_in_transport > 0) {
16438 			    un->un_throttle = un->un_ncmds_in_transport;
16439 			}
16440 
16441 		} else {
16442 			if (un->un_ncmds_in_transport == 0) {
16443 				un->un_throttle = 1;
16444 			} else {
16445 				un->un_throttle = un->un_ncmds_in_transport;
16446 			}
16447 		}
16448 	}
16449 
16450 	/* Reschedule the timeout if none is currently active */
16451 	if (un->un_reset_throttle_timeid == NULL) {
16452 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
16453 		    un, SD_THROTTLE_RESET_INTERVAL);
16454 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16455 		    "sd_reduce_throttle: timeout scheduled!\n");
16456 	}
16457 
16458 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16459 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16460 }
16461 
16462 
16463 
16464 /*
16465  *    Function: sd_restore_throttle
16466  *
16467  * Description: Callback function for timeout(9F).  Resets the current
16468  *		value of un->un_throttle to its default.
16469  *
16470  *   Arguments: arg - pointer to associated softstate for the device.
16471  *
16472  *     Context: May be called from interrupt context
16473  */
16474 
16475 static void
16476 sd_restore_throttle(void *arg)
16477 {
16478 	struct sd_lun	*un = arg;
16479 
16480 	ASSERT(un != NULL);
16481 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16482 
16483 	mutex_enter(SD_MUTEX(un));
16484 
16485 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16486 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16487 
16488 	un->un_reset_throttle_timeid = NULL;
16489 
16490 	if (un->un_f_use_adaptive_throttle == TRUE) {
16491 		/*
16492 		 * If un_busy_throttle is nonzero, then it contains the
16493 		 * value that un_throttle was when we got a TRAN_BUSY back
16494 		 * from scsi_transport(). We want to revert back to this
16495 		 * value.
16496 		 *
16497 		 * In the QFULL case, the throttle limit will incrementally
16498 		 * increase until it reaches max throttle.
16499 		 */
16500 		if (un->un_busy_throttle > 0) {
16501 			un->un_throttle = un->un_busy_throttle;
16502 			un->un_busy_throttle = 0;
16503 		} else {
16504 			/*
16505 			 * increase throttle by 10% open gate slowly, schedule
16506 			 * another restore if saved throttle has not been
16507 			 * reached
16508 			 */
16509 			short throttle;
16510 			if (sd_qfull_throttle_enable) {
16511 				throttle = un->un_throttle +
16512 				    max((un->un_throttle / 10), 1);
16513 				un->un_throttle =
16514 				    (throttle < un->un_saved_throttle) ?
16515 				    throttle : un->un_saved_throttle;
16516 				if (un->un_throttle < un->un_saved_throttle) {
16517 				    un->un_reset_throttle_timeid =
16518 					timeout(sd_restore_throttle,
16519 					un, SD_QFULL_THROTTLE_RESET_INTERVAL);
16520 				}
16521 			}
16522 		}
16523 
16524 		/*
16525 		 * If un_throttle has fallen below the low-water mark, we
16526 		 * restore the maximum value here (and allow it to ratchet
16527 		 * down again if necessary).
16528 		 */
16529 		if (un->un_throttle < un->un_min_throttle) {
16530 			un->un_throttle = un->un_saved_throttle;
16531 		}
16532 	} else {
16533 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16534 		    "restoring limit from 0x%x to 0x%x\n",
16535 		    un->un_throttle, un->un_saved_throttle);
16536 		un->un_throttle = un->un_saved_throttle;
16537 	}
16538 
16539 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16540 	    "sd_restore_throttle: calling sd_start_cmds!\n");
16541 
16542 	sd_start_cmds(un, NULL);
16543 
16544 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16545 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
16546 	    un, un->un_throttle);
16547 
16548 	mutex_exit(SD_MUTEX(un));
16549 
16550 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
16551 }
16552 
16553 /*
16554  *    Function: sdrunout
16555  *
16556  * Description: Callback routine for scsi_init_pkt when a resource allocation
16557  *		fails.
16558  *
16559  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
16560  *		soft state instance.
16561  *
16562  * Return Code: The scsi_init_pkt routine allows for the callback function to
16563  *		return a 0 indicating the callback should be rescheduled or a 1
16564  *		indicating not to reschedule. This routine always returns 1
16565  *		because the driver always provides a callback function to
16566  *		scsi_init_pkt. This results in a callback always being scheduled
16567  *		(via the scsi_init_pkt callback implementation) if a resource
16568  *		failure occurs.
16569  *
16570  *     Context: This callback function may not block or call routines that block
16571  *
16572  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
16573  *		request persisting at the head of the list which cannot be
16574  *		satisfied even after multiple retries. In the future the driver
16575  *		may implement some time of maximum runout count before failing
16576  *		an I/O.
16577  */
16578 
16579 static int
16580 sdrunout(caddr_t arg)
16581 {
16582 	struct sd_lun	*un = (struct sd_lun *)arg;
16583 
16584 	ASSERT(un != NULL);
16585 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16586 
16587 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
16588 
16589 	mutex_enter(SD_MUTEX(un));
16590 	sd_start_cmds(un, NULL);
16591 	mutex_exit(SD_MUTEX(un));
16592 	/*
16593 	 * This callback routine always returns 1 (i.e. do not reschedule)
16594 	 * because we always specify sdrunout as the callback handler for
16595 	 * scsi_init_pkt inside the call to sd_start_cmds.
16596 	 */
16597 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
16598 	return (1);
16599 }
16600 
16601 
16602 /*
16603  *    Function: sdintr
16604  *
16605  * Description: Completion callback routine for scsi_pkt(9S) structs
16606  *		sent to the HBA driver via scsi_transport(9F).
16607  *
16608  *     Context: Interrupt context
16609  */
16610 
16611 static void
16612 sdintr(struct scsi_pkt *pktp)
16613 {
16614 	struct buf	*bp;
16615 	struct sd_xbuf	*xp;
16616 	struct sd_lun	*un;
16617 
16618 	ASSERT(pktp != NULL);
16619 	bp = (struct buf *)pktp->pkt_private;
16620 	ASSERT(bp != NULL);
16621 	xp = SD_GET_XBUF(bp);
16622 	ASSERT(xp != NULL);
16623 	ASSERT(xp->xb_pktp != NULL);
16624 	un = SD_GET_UN(bp);
16625 	ASSERT(un != NULL);
16626 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16627 
16628 #ifdef SD_FAULT_INJECTION
16629 
16630 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
16631 	/* SD FaultInjection */
16632 	sd_faultinjection(pktp);
16633 
16634 #endif /* SD_FAULT_INJECTION */
16635 
16636 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
16637 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
16638 
16639 	mutex_enter(SD_MUTEX(un));
16640 
16641 	/* Reduce the count of the #commands currently in transport */
16642 	un->un_ncmds_in_transport--;
16643 	ASSERT(un->un_ncmds_in_transport >= 0);
16644 
16645 	/* Increment counter to indicate that the callback routine is active */
16646 	un->un_in_callback++;
16647 
16648 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
16649 
16650 #ifdef	SDDEBUG
16651 	if (bp == un->un_retry_bp) {
16652 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
16653 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
16654 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
16655 	}
16656 #endif
16657 
16658 	/*
16659 	 * If pkt_reason is CMD_DEV_GONE, just fail the command
16660 	 */
16661 	if (pktp->pkt_reason == CMD_DEV_GONE) {
16662 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16663 			    "Device is gone\n");
16664 		sd_return_failed_command(un, bp, EIO);
16665 		goto exit;
16666 	}
16667 
16668 	/*
16669 	 * First see if the pkt has auto-request sense data with it....
16670 	 * Look at the packet state first so we don't take a performance
16671 	 * hit looking at the arq enabled flag unless absolutely necessary.
16672 	 */
16673 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
16674 	    (un->un_f_arq_enabled == TRUE)) {
16675 		/*
16676 		 * The HBA did an auto request sense for this command so check
16677 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16678 		 * driver command that should not be retried.
16679 		 */
16680 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16681 			/*
16682 			 * Save the relevant sense info into the xp for the
16683 			 * original cmd.
16684 			 */
16685 			struct scsi_arq_status *asp;
16686 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16687 			xp->xb_sense_status =
16688 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
16689 			xp->xb_sense_state  = asp->sts_rqpkt_state;
16690 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16691 			bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16692 			    min(sizeof (struct scsi_extended_sense),
16693 			    SENSE_LENGTH));
16694 
16695 			/* fail the command */
16696 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16697 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
16698 			sd_return_failed_command(un, bp, EIO);
16699 			goto exit;
16700 		}
16701 
16702 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16703 		/*
16704 		 * We want to either retry or fail this command, so free
16705 		 * the DMA resources here.  If we retry the command then
16706 		 * the DMA resources will be reallocated in sd_start_cmds().
16707 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
16708 		 * causes the *entire* transfer to start over again from the
16709 		 * beginning of the request, even for PARTIAL chunks that
16710 		 * have already transferred successfully.
16711 		 */
16712 		if ((un->un_f_is_fibre == TRUE) &&
16713 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16714 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16715 			scsi_dmafree(pktp);
16716 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16717 		}
16718 #endif
16719 
16720 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16721 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
16722 
16723 		sd_handle_auto_request_sense(un, bp, xp, pktp);
16724 		goto exit;
16725 	}
16726 
16727 	/* Next see if this is the REQUEST SENSE pkt for the instance */
16728 	if (pktp->pkt_flags & FLAG_SENSING)  {
16729 		/* This pktp is from the unit's REQUEST_SENSE command */
16730 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16731 		    "sdintr: sd_handle_request_sense\n");
16732 		sd_handle_request_sense(un, bp, xp, pktp);
16733 		goto exit;
16734 	}
16735 
16736 	/*
16737 	 * Check to see if the command successfully completed as requested;
16738 	 * this is the most common case (and also the hot performance path).
16739 	 *
16740 	 * Requirements for successful completion are:
16741 	 * pkt_reason is CMD_CMPLT and packet status is status good.
16742 	 * In addition:
16743 	 * - A residual of zero indicates successful completion no matter what
16744 	 *   the command is.
16745 	 * - If the residual is not zero and the command is not a read or
16746 	 *   write, then it's still defined as successful completion. In other
16747 	 *   words, if the command is a read or write the residual must be
16748 	 *   zero for successful completion.
16749 	 * - If the residual is not zero and the command is a read or
16750 	 *   write, and it's a USCSICMD, then it's still defined as
16751 	 *   successful completion.
16752 	 */
16753 	if ((pktp->pkt_reason == CMD_CMPLT) &&
16754 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
16755 
16756 		/*
16757 		 * Since this command is returned with a good status, we
16758 		 * can reset the count for Sonoma failover.
16759 		 */
16760 		un->un_sonoma_failure_count = 0;
16761 
16762 		/*
16763 		 * Return all USCSI commands on good status
16764 		 */
16765 		if (pktp->pkt_resid == 0) {
16766 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16767 			    "sdintr: returning command for resid == 0\n");
16768 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
16769 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
16770 			SD_UPDATE_B_RESID(bp, pktp);
16771 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16772 			    "sdintr: returning command for resid != 0\n");
16773 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16774 			SD_UPDATE_B_RESID(bp, pktp);
16775 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16776 				"sdintr: returning uscsi command\n");
16777 		} else {
16778 			goto not_successful;
16779 		}
16780 		sd_return_command(un, bp);
16781 
16782 		/*
16783 		 * Decrement counter to indicate that the callback routine
16784 		 * is done.
16785 		 */
16786 		un->un_in_callback--;
16787 		ASSERT(un->un_in_callback >= 0);
16788 		mutex_exit(SD_MUTEX(un));
16789 
16790 		return;
16791 	}
16792 
16793 not_successful:
16794 
16795 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16796 	/*
16797 	 * The following is based upon knowledge of the underlying transport
16798 	 * and its use of DMA resources.  This code should be removed when
16799 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
16800 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
16801 	 * and sd_start_cmds().
16802 	 *
16803 	 * Free any DMA resources associated with this command if there
16804 	 * is a chance it could be retried or enqueued for later retry.
16805 	 * If we keep the DMA binding then mpxio cannot reissue the
16806 	 * command on another path whenever a path failure occurs.
16807 	 *
16808 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
16809 	 * causes the *entire* transfer to start over again from the
16810 	 * beginning of the request, even for PARTIAL chunks that
16811 	 * have already transferred successfully.
16812 	 *
16813 	 * This is only done for non-uscsi commands (and also skipped for the
16814 	 * driver's internal RQS command). Also just do this for Fibre Channel
16815 	 * devices as these are the only ones that support mpxio.
16816 	 */
16817 	if ((un->un_f_is_fibre == TRUE) &&
16818 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16819 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16820 		scsi_dmafree(pktp);
16821 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16822 	}
16823 #endif
16824 
16825 	/*
16826 	 * The command did not successfully complete as requested so check
16827 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16828 	 * driver command that should not be retried so just return. If
16829 	 * FLAG_DIAGNOSE is not set the error will be processed below.
16830 	 */
16831 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16832 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16833 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
16834 		/*
16835 		 * Issue a request sense if a check condition caused the error
16836 		 * (we handle the auto request sense case above), otherwise
16837 		 * just fail the command.
16838 		 */
16839 		if ((pktp->pkt_reason == CMD_CMPLT) &&
16840 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
16841 			sd_send_request_sense_command(un, bp, pktp);
16842 		} else {
16843 			sd_return_failed_command(un, bp, EIO);
16844 		}
16845 		goto exit;
16846 	}
16847 
16848 	/*
16849 	 * The command did not successfully complete as requested so process
16850 	 * the error, retry, and/or attempt recovery.
16851 	 */
16852 	switch (pktp->pkt_reason) {
16853 	case CMD_CMPLT:
16854 		switch (SD_GET_PKT_STATUS(pktp)) {
16855 		case STATUS_GOOD:
16856 			/*
16857 			 * The command completed successfully with a non-zero
16858 			 * residual
16859 			 */
16860 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16861 			    "sdintr: STATUS_GOOD \n");
16862 			sd_pkt_status_good(un, bp, xp, pktp);
16863 			break;
16864 
16865 		case STATUS_CHECK:
16866 		case STATUS_TERMINATED:
16867 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16868 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
16869 			sd_pkt_status_check_condition(un, bp, xp, pktp);
16870 			break;
16871 
16872 		case STATUS_BUSY:
16873 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16874 			    "sdintr: STATUS_BUSY\n");
16875 			sd_pkt_status_busy(un, bp, xp, pktp);
16876 			break;
16877 
16878 		case STATUS_RESERVATION_CONFLICT:
16879 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16880 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
16881 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16882 			break;
16883 
16884 		case STATUS_QFULL:
16885 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16886 			    "sdintr: STATUS_QFULL\n");
16887 			sd_pkt_status_qfull(un, bp, xp, pktp);
16888 			break;
16889 
16890 		case STATUS_MET:
16891 		case STATUS_INTERMEDIATE:
16892 		case STATUS_SCSI2:
16893 		case STATUS_INTERMEDIATE_MET:
16894 		case STATUS_ACA_ACTIVE:
16895 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16896 			    "Unexpected SCSI status received: 0x%x\n",
16897 			    SD_GET_PKT_STATUS(pktp));
16898 			sd_return_failed_command(un, bp, EIO);
16899 			break;
16900 
16901 		default:
16902 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16903 			    "Invalid SCSI status received: 0x%x\n",
16904 			    SD_GET_PKT_STATUS(pktp));
16905 			sd_return_failed_command(un, bp, EIO);
16906 			break;
16907 
16908 		}
16909 		break;
16910 
16911 	case CMD_INCOMPLETE:
16912 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16913 		    "sdintr:  CMD_INCOMPLETE\n");
16914 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
16915 		break;
16916 	case CMD_TRAN_ERR:
16917 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16918 		    "sdintr: CMD_TRAN_ERR\n");
16919 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
16920 		break;
16921 	case CMD_RESET:
16922 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16923 		    "sdintr: CMD_RESET \n");
16924 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
16925 		break;
16926 	case CMD_ABORTED:
16927 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16928 		    "sdintr: CMD_ABORTED \n");
16929 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
16930 		break;
16931 	case CMD_TIMEOUT:
16932 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16933 		    "sdintr: CMD_TIMEOUT\n");
16934 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
16935 		break;
16936 	case CMD_UNX_BUS_FREE:
16937 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16938 		    "sdintr: CMD_UNX_BUS_FREE \n");
16939 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
16940 		break;
16941 	case CMD_TAG_REJECT:
16942 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16943 		    "sdintr: CMD_TAG_REJECT\n");
16944 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
16945 		break;
16946 	default:
16947 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16948 		    "sdintr: default\n");
16949 		sd_pkt_reason_default(un, bp, xp, pktp);
16950 		break;
16951 	}
16952 
16953 exit:
16954 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
16955 
16956 	/* Decrement counter to indicate that the callback routine is done. */
16957 	un->un_in_callback--;
16958 	ASSERT(un->un_in_callback >= 0);
16959 
16960 	/*
16961 	 * At this point, the pkt has been dispatched, ie, it is either
16962 	 * being re-tried or has been returned to its caller and should
16963 	 * not be referenced.
16964 	 */
16965 
16966 	mutex_exit(SD_MUTEX(un));
16967 }
16968 
16969 
16970 /*
16971  *    Function: sd_print_incomplete_msg
16972  *
16973  * Description: Prints the error message for a CMD_INCOMPLETE error.
16974  *
16975  *   Arguments: un - ptr to associated softstate for the device.
16976  *		bp - ptr to the buf(9S) for the command.
16977  *		arg - message string ptr
16978  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
16979  *			or SD_NO_RETRY_ISSUED.
16980  *
16981  *     Context: May be called under interrupt context
16982  */
16983 
16984 static void
16985 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
16986 {
16987 	struct scsi_pkt	*pktp;
16988 	char	*msgp;
16989 	char	*cmdp = arg;
16990 
16991 	ASSERT(un != NULL);
16992 	ASSERT(mutex_owned(SD_MUTEX(un)));
16993 	ASSERT(bp != NULL);
16994 	ASSERT(arg != NULL);
16995 	pktp = SD_GET_PKTP(bp);
16996 	ASSERT(pktp != NULL);
16997 
16998 	switch (code) {
16999 	case SD_DELAYED_RETRY_ISSUED:
17000 	case SD_IMMEDIATE_RETRY_ISSUED:
17001 		msgp = "retrying";
17002 		break;
17003 	case SD_NO_RETRY_ISSUED:
17004 	default:
17005 		msgp = "giving up";
17006 		break;
17007 	}
17008 
17009 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17010 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17011 		    "incomplete %s- %s\n", cmdp, msgp);
17012 	}
17013 }
17014 
17015 
17016 
17017 /*
17018  *    Function: sd_pkt_status_good
17019  *
17020  * Description: Processing for a STATUS_GOOD code in pkt_status.
17021  *
17022  *     Context: May be called under interrupt context
17023  */
17024 
17025 static void
17026 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
17027 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17028 {
17029 	char	*cmdp;
17030 
17031 	ASSERT(un != NULL);
17032 	ASSERT(mutex_owned(SD_MUTEX(un)));
17033 	ASSERT(bp != NULL);
17034 	ASSERT(xp != NULL);
17035 	ASSERT(pktp != NULL);
17036 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
17037 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
17038 	ASSERT(pktp->pkt_resid != 0);
17039 
17040 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
17041 
17042 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17043 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
17044 	case SCMD_READ:
17045 		cmdp = "read";
17046 		break;
17047 	case SCMD_WRITE:
17048 		cmdp = "write";
17049 		break;
17050 	default:
17051 		SD_UPDATE_B_RESID(bp, pktp);
17052 		sd_return_command(un, bp);
17053 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
17054 		return;
17055 	}
17056 
17057 	/*
17058 	 * See if we can retry the read/write, preferrably immediately.
17059 	 * If retries are exhaused, then sd_retry_command() will update
17060 	 * the b_resid count.
17061 	 */
17062 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
17063 	    cmdp, EIO, (clock_t)0, NULL);
17064 
17065 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
17066 }
17067 
17068 
17069 
17070 
17071 
17072 /*
17073  *    Function: sd_handle_request_sense
17074  *
17075  * Description: Processing for non-auto Request Sense command.
17076  *
17077  *   Arguments: un - ptr to associated softstate
17078  *		sense_bp - ptr to buf(9S) for the RQS command
17079  *		sense_xp - ptr to the sd_xbuf for the RQS command
17080  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
17081  *
17082  *     Context: May be called under interrupt context
17083  */
17084 
17085 static void
17086 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
17087 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
17088 {
17089 	struct buf	*cmd_bp;	/* buf for the original command */
17090 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
17091 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
17092 
17093 	ASSERT(un != NULL);
17094 	ASSERT(mutex_owned(SD_MUTEX(un)));
17095 	ASSERT(sense_bp != NULL);
17096 	ASSERT(sense_xp != NULL);
17097 	ASSERT(sense_pktp != NULL);
17098 
17099 	/*
17100 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
17101 	 * RQS command and not the original command.
17102 	 */
17103 	ASSERT(sense_pktp == un->un_rqs_pktp);
17104 	ASSERT(sense_bp   == un->un_rqs_bp);
17105 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
17106 	    (FLAG_SENSING | FLAG_HEAD));
17107 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
17108 	    FLAG_SENSING) == FLAG_SENSING);
17109 
17110 	/* These are the bp, xp, and pktp for the original command */
17111 	cmd_bp = sense_xp->xb_sense_bp;
17112 	cmd_xp = SD_GET_XBUF(cmd_bp);
17113 	cmd_pktp = SD_GET_PKTP(cmd_bp);
17114 
17115 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
17116 		/*
17117 		 * The REQUEST SENSE command failed.  Release the REQUEST
17118 		 * SENSE command for re-use, get back the bp for the original
17119 		 * command, and attempt to re-try the original command if
17120 		 * FLAG_DIAGNOSE is not set in the original packet.
17121 		 */
17122 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17123 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
17124 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
17125 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
17126 			    NULL, NULL, EIO, (clock_t)0, NULL);
17127 			return;
17128 		}
17129 	}
17130 
17131 	/*
17132 	 * Save the relevant sense info into the xp for the original cmd.
17133 	 *
17134 	 * Note: if the request sense failed the state info will be zero
17135 	 * as set in sd_mark_rqs_busy()
17136 	 */
17137 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
17138 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
17139 	cmd_xp->xb_sense_resid  = sense_pktp->pkt_resid;
17140 	bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, SENSE_LENGTH);
17141 
17142 	/*
17143 	 *  Free up the RQS command....
17144 	 *  NOTE:
17145 	 *	Must do this BEFORE calling sd_validate_sense_data!
17146 	 *	sd_validate_sense_data may return the original command in
17147 	 *	which case the pkt will be freed and the flags can no
17148 	 *	longer be touched.
17149 	 *	SD_MUTEX is held through this process until the command
17150 	 *	is dispatched based upon the sense data, so there are
17151 	 *	no race conditions.
17152 	 */
17153 	(void) sd_mark_rqs_idle(un, sense_xp);
17154 
17155 	/*
17156 	 * For a retryable command see if we have valid sense data, if so then
17157 	 * turn it over to sd_decode_sense() to figure out the right course of
17158 	 * action. Just fail a non-retryable command.
17159 	 */
17160 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
17161 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp) ==
17162 		    SD_SENSE_DATA_IS_VALID) {
17163 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
17164 		}
17165 	} else {
17166 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
17167 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17168 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
17169 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
17170 		sd_return_failed_command(un, cmd_bp, EIO);
17171 	}
17172 }
17173 
17174 
17175 
17176 
17177 /*
17178  *    Function: sd_handle_auto_request_sense
17179  *
17180  * Description: Processing for auto-request sense information.
17181  *
17182  *   Arguments: un - ptr to associated softstate
17183  *		bp - ptr to buf(9S) for the command
17184  *		xp - ptr to the sd_xbuf for the command
17185  *		pktp - ptr to the scsi_pkt(9S) for the command
17186  *
17187  *     Context: May be called under interrupt context
17188  */
17189 
17190 static void
17191 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
17192 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17193 {
17194 	struct scsi_arq_status *asp;
17195 
17196 	ASSERT(un != NULL);
17197 	ASSERT(mutex_owned(SD_MUTEX(un)));
17198 	ASSERT(bp != NULL);
17199 	ASSERT(xp != NULL);
17200 	ASSERT(pktp != NULL);
17201 	ASSERT(pktp != un->un_rqs_pktp);
17202 	ASSERT(bp   != un->un_rqs_bp);
17203 
17204 	/*
17205 	 * For auto-request sense, we get a scsi_arq_status back from
17206 	 * the HBA, with the sense data in the sts_sensedata member.
17207 	 * The pkt_scbp of the packet points to this scsi_arq_status.
17208 	 */
17209 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
17210 
17211 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
17212 		/*
17213 		 * The auto REQUEST SENSE failed; see if we can re-try
17214 		 * the original command.
17215 		 */
17216 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17217 		    "auto request sense failed (reason=%s)\n",
17218 		    scsi_rname(asp->sts_rqpkt_reason));
17219 
17220 		sd_reset_target(un, pktp);
17221 
17222 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17223 		    NULL, NULL, EIO, (clock_t)0, NULL);
17224 		return;
17225 	}
17226 
17227 	/* Save the relevant sense info into the xp for the original cmd. */
17228 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
17229 	xp->xb_sense_state  = asp->sts_rqpkt_state;
17230 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
17231 	bcopy(&asp->sts_sensedata, xp->xb_sense_data,
17232 	    min(sizeof (struct scsi_extended_sense), SENSE_LENGTH));
17233 
17234 	/*
17235 	 * See if we have valid sense data, if so then turn it over to
17236 	 * sd_decode_sense() to figure out the right course of action.
17237 	 */
17238 	if (sd_validate_sense_data(un, bp, xp) == SD_SENSE_DATA_IS_VALID) {
17239 		sd_decode_sense(un, bp, xp, pktp);
17240 	}
17241 }
17242 
17243 
17244 /*
17245  *    Function: sd_print_sense_failed_msg
17246  *
17247  * Description: Print log message when RQS has failed.
17248  *
17249  *   Arguments: un - ptr to associated softstate
17250  *		bp - ptr to buf(9S) for the command
17251  *		arg - generic message string ptr
17252  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17253  *			or SD_NO_RETRY_ISSUED
17254  *
17255  *     Context: May be called from interrupt context
17256  */
17257 
17258 static void
17259 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
17260 	int code)
17261 {
17262 	char	*msgp = arg;
17263 
17264 	ASSERT(un != NULL);
17265 	ASSERT(mutex_owned(SD_MUTEX(un)));
17266 	ASSERT(bp != NULL);
17267 
17268 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
17269 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
17270 	}
17271 }
17272 
17273 
17274 /*
17275  *    Function: sd_validate_sense_data
17276  *
17277  * Description: Check the given sense data for validity.
17278  *		If the sense data is not valid, the command will
17279  *		be either failed or retried!
17280  *
17281  * Return Code: SD_SENSE_DATA_IS_INVALID
17282  *		SD_SENSE_DATA_IS_VALID
17283  *
17284  *     Context: May be called from interrupt context
17285  */
17286 
17287 static int
17288 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp)
17289 {
17290 	struct scsi_extended_sense *esp;
17291 	struct	scsi_pkt *pktp;
17292 	size_t	actual_len;
17293 	char	*msgp = NULL;
17294 
17295 	ASSERT(un != NULL);
17296 	ASSERT(mutex_owned(SD_MUTEX(un)));
17297 	ASSERT(bp != NULL);
17298 	ASSERT(bp != un->un_rqs_bp);
17299 	ASSERT(xp != NULL);
17300 
17301 	pktp = SD_GET_PKTP(bp);
17302 	ASSERT(pktp != NULL);
17303 
17304 	/*
17305 	 * Check the status of the RQS command (auto or manual).
17306 	 */
17307 	switch (xp->xb_sense_status & STATUS_MASK) {
17308 	case STATUS_GOOD:
17309 		break;
17310 
17311 	case STATUS_RESERVATION_CONFLICT:
17312 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
17313 		return (SD_SENSE_DATA_IS_INVALID);
17314 
17315 	case STATUS_BUSY:
17316 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17317 		    "Busy Status on REQUEST SENSE\n");
17318 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
17319 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
17320 		return (SD_SENSE_DATA_IS_INVALID);
17321 
17322 	case STATUS_QFULL:
17323 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17324 		    "QFULL Status on REQUEST SENSE\n");
17325 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
17326 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
17327 		return (SD_SENSE_DATA_IS_INVALID);
17328 
17329 	case STATUS_CHECK:
17330 	case STATUS_TERMINATED:
17331 		msgp = "Check Condition on REQUEST SENSE\n";
17332 		goto sense_failed;
17333 
17334 	default:
17335 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
17336 		goto sense_failed;
17337 	}
17338 
17339 	/*
17340 	 * See if we got the minimum required amount of sense data.
17341 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
17342 	 * or less.
17343 	 */
17344 	actual_len = (int)(SENSE_LENGTH - xp->xb_sense_resid);
17345 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
17346 	    (actual_len == 0)) {
17347 		msgp = "Request Sense couldn't get sense data\n";
17348 		goto sense_failed;
17349 	}
17350 
17351 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
17352 		msgp = "Not enough sense information\n";
17353 		goto sense_failed;
17354 	}
17355 
17356 	/*
17357 	 * We require the extended sense data
17358 	 */
17359 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
17360 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
17361 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17362 			static char tmp[8];
17363 			static char buf[148];
17364 			char *p = (char *)(xp->xb_sense_data);
17365 			int i;
17366 
17367 			mutex_enter(&sd_sense_mutex);
17368 			(void) strcpy(buf, "undecodable sense information:");
17369 			for (i = 0; i < actual_len; i++) {
17370 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
17371 				(void) strcpy(&buf[strlen(buf)], tmp);
17372 			}
17373 			i = strlen(buf);
17374 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
17375 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf);
17376 			mutex_exit(&sd_sense_mutex);
17377 		}
17378 		/* Note: Legacy behavior, fail the command with no retry */
17379 		sd_return_failed_command(un, bp, EIO);
17380 		return (SD_SENSE_DATA_IS_INVALID);
17381 	}
17382 
17383 	/*
17384 	 * Check that es_code is valid (es_class concatenated with es_code
17385 	 * make up the "response code" field.  es_class will always be 7, so
17386 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
17387 	 * format.
17388 	 */
17389 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
17390 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
17391 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
17392 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
17393 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
17394 		goto sense_failed;
17395 	}
17396 
17397 	return (SD_SENSE_DATA_IS_VALID);
17398 
17399 sense_failed:
17400 	/*
17401 	 * If the request sense failed (for whatever reason), attempt
17402 	 * to retry the original command.
17403 	 */
17404 #if defined(__i386) || defined(__amd64)
17405 	/*
17406 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
17407 	 * sddef.h for Sparc platform, and x86 uses 1 binary
17408 	 * for both SCSI/FC.
17409 	 * The SD_RETRY_DELAY value need to be adjusted here
17410 	 * when SD_RETRY_DELAY change in sddef.h
17411 	 */
17412 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17413 	    sd_print_sense_failed_msg, msgp, EIO,
17414 		un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
17415 #else
17416 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17417 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
17418 #endif
17419 
17420 	return (SD_SENSE_DATA_IS_INVALID);
17421 }
17422 
17423 
17424 
17425 /*
17426  *    Function: sd_decode_sense
17427  *
17428  * Description: Take recovery action(s) when SCSI Sense Data is received.
17429  *
17430  *     Context: Interrupt context.
17431  */
17432 
17433 static void
17434 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17435 	struct scsi_pkt *pktp)
17436 {
17437 	uint8_t sense_key;
17438 
17439 	ASSERT(un != NULL);
17440 	ASSERT(mutex_owned(SD_MUTEX(un)));
17441 	ASSERT(bp != NULL);
17442 	ASSERT(bp != un->un_rqs_bp);
17443 	ASSERT(xp != NULL);
17444 	ASSERT(pktp != NULL);
17445 
17446 	sense_key = scsi_sense_key(xp->xb_sense_data);
17447 
17448 	switch (sense_key) {
17449 	case KEY_NO_SENSE:
17450 		sd_sense_key_no_sense(un, bp, xp, pktp);
17451 		break;
17452 	case KEY_RECOVERABLE_ERROR:
17453 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
17454 		    bp, xp, pktp);
17455 		break;
17456 	case KEY_NOT_READY:
17457 		sd_sense_key_not_ready(un, xp->xb_sense_data,
17458 		    bp, xp, pktp);
17459 		break;
17460 	case KEY_MEDIUM_ERROR:
17461 	case KEY_HARDWARE_ERROR:
17462 		sd_sense_key_medium_or_hardware_error(un,
17463 		    xp->xb_sense_data, bp, xp, pktp);
17464 		break;
17465 	case KEY_ILLEGAL_REQUEST:
17466 		sd_sense_key_illegal_request(un, bp, xp, pktp);
17467 		break;
17468 	case KEY_UNIT_ATTENTION:
17469 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
17470 		    bp, xp, pktp);
17471 		break;
17472 	case KEY_WRITE_PROTECT:
17473 	case KEY_VOLUME_OVERFLOW:
17474 	case KEY_MISCOMPARE:
17475 		sd_sense_key_fail_command(un, bp, xp, pktp);
17476 		break;
17477 	case KEY_BLANK_CHECK:
17478 		sd_sense_key_blank_check(un, bp, xp, pktp);
17479 		break;
17480 	case KEY_ABORTED_COMMAND:
17481 		sd_sense_key_aborted_command(un, bp, xp, pktp);
17482 		break;
17483 	case KEY_VENDOR_UNIQUE:
17484 	case KEY_COPY_ABORTED:
17485 	case KEY_EQUAL:
17486 	case KEY_RESERVED:
17487 	default:
17488 		sd_sense_key_default(un, xp->xb_sense_data,
17489 		    bp, xp, pktp);
17490 		break;
17491 	}
17492 }
17493 
17494 
17495 /*
17496  *    Function: sd_dump_memory
17497  *
17498  * Description: Debug logging routine to print the contents of a user provided
17499  *		buffer. The output of the buffer is broken up into 256 byte
17500  *		segments due to a size constraint of the scsi_log.
17501  *		implementation.
17502  *
17503  *   Arguments: un - ptr to softstate
17504  *		comp - component mask
17505  *		title - "title" string to preceed data when printed
17506  *		data - ptr to data block to be printed
17507  *		len - size of data block to be printed
17508  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
17509  *
17510  *     Context: May be called from interrupt context
17511  */
17512 
17513 #define	SD_DUMP_MEMORY_BUF_SIZE	256
17514 
17515 static char *sd_dump_format_string[] = {
17516 		" 0x%02x",
17517 		" %c"
17518 };
17519 
17520 static void
17521 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
17522     int len, int fmt)
17523 {
17524 	int	i, j;
17525 	int	avail_count;
17526 	int	start_offset;
17527 	int	end_offset;
17528 	size_t	entry_len;
17529 	char	*bufp;
17530 	char	*local_buf;
17531 	char	*format_string;
17532 
17533 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
17534 
17535 	/*
17536 	 * In the debug version of the driver, this function is called from a
17537 	 * number of places which are NOPs in the release driver.
17538 	 * The debug driver therefore has additional methods of filtering
17539 	 * debug output.
17540 	 */
17541 #ifdef SDDEBUG
17542 	/*
17543 	 * In the debug version of the driver we can reduce the amount of debug
17544 	 * messages by setting sd_error_level to something other than
17545 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
17546 	 * sd_component_mask.
17547 	 */
17548 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
17549 	    (sd_error_level != SCSI_ERR_ALL)) {
17550 		return;
17551 	}
17552 	if (((sd_component_mask & comp) == 0) ||
17553 	    (sd_error_level != SCSI_ERR_ALL)) {
17554 		return;
17555 	}
17556 #else
17557 	if (sd_error_level != SCSI_ERR_ALL) {
17558 		return;
17559 	}
17560 #endif
17561 
17562 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
17563 	bufp = local_buf;
17564 	/*
17565 	 * Available length is the length of local_buf[], minus the
17566 	 * length of the title string, minus one for the ":", minus
17567 	 * one for the newline, minus one for the NULL terminator.
17568 	 * This gives the #bytes available for holding the printed
17569 	 * values from the given data buffer.
17570 	 */
17571 	if (fmt == SD_LOG_HEX) {
17572 		format_string = sd_dump_format_string[0];
17573 	} else /* SD_LOG_CHAR */ {
17574 		format_string = sd_dump_format_string[1];
17575 	}
17576 	/*
17577 	 * Available count is the number of elements from the given
17578 	 * data buffer that we can fit into the available length.
17579 	 * This is based upon the size of the format string used.
17580 	 * Make one entry and find it's size.
17581 	 */
17582 	(void) sprintf(bufp, format_string, data[0]);
17583 	entry_len = strlen(bufp);
17584 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
17585 
17586 	j = 0;
17587 	while (j < len) {
17588 		bufp = local_buf;
17589 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
17590 		start_offset = j;
17591 
17592 		end_offset = start_offset + avail_count;
17593 
17594 		(void) sprintf(bufp, "%s:", title);
17595 		bufp += strlen(bufp);
17596 		for (i = start_offset; ((i < end_offset) && (j < len));
17597 		    i++, j++) {
17598 			(void) sprintf(bufp, format_string, data[i]);
17599 			bufp += entry_len;
17600 		}
17601 		(void) sprintf(bufp, "\n");
17602 
17603 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
17604 	}
17605 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
17606 }
17607 
17608 /*
17609  *    Function: sd_print_sense_msg
17610  *
17611  * Description: Log a message based upon the given sense data.
17612  *
17613  *   Arguments: un - ptr to associated softstate
17614  *		bp - ptr to buf(9S) for the command
17615  *		arg - ptr to associate sd_sense_info struct
17616  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17617  *			or SD_NO_RETRY_ISSUED
17618  *
17619  *     Context: May be called from interrupt context
17620  */
17621 
17622 static void
17623 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17624 {
17625 	struct sd_xbuf	*xp;
17626 	struct scsi_pkt	*pktp;
17627 	uint8_t *sensep;
17628 	daddr_t request_blkno;
17629 	diskaddr_t err_blkno;
17630 	int severity;
17631 	int pfa_flag;
17632 	extern struct scsi_key_strings scsi_cmds[];
17633 
17634 	ASSERT(un != NULL);
17635 	ASSERT(mutex_owned(SD_MUTEX(un)));
17636 	ASSERT(bp != NULL);
17637 	xp = SD_GET_XBUF(bp);
17638 	ASSERT(xp != NULL);
17639 	pktp = SD_GET_PKTP(bp);
17640 	ASSERT(pktp != NULL);
17641 	ASSERT(arg != NULL);
17642 
17643 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
17644 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
17645 
17646 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
17647 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
17648 		severity = SCSI_ERR_RETRYABLE;
17649 	}
17650 
17651 	/* Use absolute block number for the request block number */
17652 	request_blkno = xp->xb_blkno;
17653 
17654 	/*
17655 	 * Now try to get the error block number from the sense data
17656 	 */
17657 	sensep = xp->xb_sense_data;
17658 
17659 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
17660 		(uint64_t *)&err_blkno)) {
17661 		/*
17662 		 * We retrieved the error block number from the information
17663 		 * portion of the sense data.
17664 		 *
17665 		 * For USCSI commands we are better off using the error
17666 		 * block no. as the requested block no. (This is the best
17667 		 * we can estimate.)
17668 		 */
17669 		if ((SD_IS_BUFIO(xp) == FALSE) &&
17670 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
17671 			request_blkno = err_blkno;
17672 		}
17673 	} else {
17674 		/*
17675 		 * Without the es_valid bit set (for fixed format) or an
17676 		 * information descriptor (for descriptor format) we cannot
17677 		 * be certain of the error blkno, so just use the
17678 		 * request_blkno.
17679 		 */
17680 		err_blkno = (diskaddr_t)request_blkno;
17681 	}
17682 
17683 	/*
17684 	 * The following will log the buffer contents for the release driver
17685 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
17686 	 * level is set to verbose.
17687 	 */
17688 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
17689 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17690 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
17691 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
17692 
17693 	if (pfa_flag == FALSE) {
17694 		/* This is normally only set for USCSI */
17695 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
17696 			return;
17697 		}
17698 
17699 		if ((SD_IS_BUFIO(xp) == TRUE) &&
17700 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
17701 		    (severity < sd_error_level))) {
17702 			return;
17703 		}
17704 	}
17705 
17706 	/*
17707 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
17708 	 */
17709 	if ((SD_IS_LSI(un)) &&
17710 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
17711 	    (scsi_sense_asc(sensep) == 0x94) &&
17712 	    (scsi_sense_ascq(sensep) == 0x01)) {
17713 		un->un_sonoma_failure_count++;
17714 		if (un->un_sonoma_failure_count > 1) {
17715 			return;
17716 		}
17717 	}
17718 
17719 	scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
17720 	    request_blkno, err_blkno, scsi_cmds,
17721 	    (struct scsi_extended_sense *)sensep,
17722 	    un->un_additional_codes, NULL);
17723 }
17724 
17725 /*
17726  *    Function: sd_sense_key_no_sense
17727  *
17728  * Description: Recovery action when sense data was not received.
17729  *
17730  *     Context: May be called from interrupt context
17731  */
17732 
17733 static void
17734 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
17735 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17736 {
17737 	struct sd_sense_info	si;
17738 
17739 	ASSERT(un != NULL);
17740 	ASSERT(mutex_owned(SD_MUTEX(un)));
17741 	ASSERT(bp != NULL);
17742 	ASSERT(xp != NULL);
17743 	ASSERT(pktp != NULL);
17744 
17745 	si.ssi_severity = SCSI_ERR_FATAL;
17746 	si.ssi_pfa_flag = FALSE;
17747 
17748 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
17749 
17750 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17751 		&si, EIO, (clock_t)0, NULL);
17752 }
17753 
17754 
17755 /*
17756  *    Function: sd_sense_key_recoverable_error
17757  *
17758  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
17759  *
17760  *     Context: May be called from interrupt context
17761  */
17762 
17763 static void
17764 sd_sense_key_recoverable_error(struct sd_lun *un,
17765 	uint8_t *sense_datap,
17766 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17767 {
17768 	struct sd_sense_info	si;
17769 	uint8_t asc = scsi_sense_asc(sense_datap);
17770 
17771 	ASSERT(un != NULL);
17772 	ASSERT(mutex_owned(SD_MUTEX(un)));
17773 	ASSERT(bp != NULL);
17774 	ASSERT(xp != NULL);
17775 	ASSERT(pktp != NULL);
17776 
17777 	/*
17778 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
17779 	 */
17780 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
17781 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17782 		si.ssi_severity = SCSI_ERR_INFO;
17783 		si.ssi_pfa_flag = TRUE;
17784 	} else {
17785 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
17786 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
17787 		si.ssi_severity = SCSI_ERR_RECOVERED;
17788 		si.ssi_pfa_flag = FALSE;
17789 	}
17790 
17791 	if (pktp->pkt_resid == 0) {
17792 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17793 		sd_return_command(un, bp);
17794 		return;
17795 	}
17796 
17797 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17798 	    &si, EIO, (clock_t)0, NULL);
17799 }
17800 
17801 
17802 
17803 
17804 /*
17805  *    Function: sd_sense_key_not_ready
17806  *
17807  * Description: Recovery actions for a SCSI "Not Ready" sense key.
17808  *
17809  *     Context: May be called from interrupt context
17810  */
17811 
17812 static void
17813 sd_sense_key_not_ready(struct sd_lun *un,
17814 	uint8_t *sense_datap,
17815 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17816 {
17817 	struct sd_sense_info	si;
17818 	uint8_t asc = scsi_sense_asc(sense_datap);
17819 	uint8_t ascq = scsi_sense_ascq(sense_datap);
17820 
17821 	ASSERT(un != NULL);
17822 	ASSERT(mutex_owned(SD_MUTEX(un)));
17823 	ASSERT(bp != NULL);
17824 	ASSERT(xp != NULL);
17825 	ASSERT(pktp != NULL);
17826 
17827 	si.ssi_severity = SCSI_ERR_FATAL;
17828 	si.ssi_pfa_flag = FALSE;
17829 
17830 	/*
17831 	 * Update error stats after first NOT READY error. Disks may have
17832 	 * been powered down and may need to be restarted.  For CDROMs,
17833 	 * report NOT READY errors only if media is present.
17834 	 */
17835 	if ((ISCD(un) && (un->un_f_geometry_is_valid == TRUE)) ||
17836 	    (xp->xb_retry_count > 0)) {
17837 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17838 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
17839 	}
17840 
17841 	/*
17842 	 * Just fail if the "not ready" retry limit has been reached.
17843 	 */
17844 	if (xp->xb_retry_count >= un->un_notready_retry_count) {
17845 		/* Special check for error message printing for removables. */
17846 		if (un->un_f_has_removable_media && (asc == 0x04) &&
17847 		    (ascq >= 0x04)) {
17848 			si.ssi_severity = SCSI_ERR_ALL;
17849 		}
17850 		goto fail_command;
17851 	}
17852 
17853 	/*
17854 	 * Check the ASC and ASCQ in the sense data as needed, to determine
17855 	 * what to do.
17856 	 */
17857 	switch (asc) {
17858 	case 0x04:	/* LOGICAL UNIT NOT READY */
17859 		/*
17860 		 * disk drives that don't spin up result in a very long delay
17861 		 * in format without warning messages. We will log a message
17862 		 * if the error level is set to verbose.
17863 		 */
17864 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17865 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17866 			    "logical unit not ready, resetting disk\n");
17867 		}
17868 
17869 		/*
17870 		 * There are different requirements for CDROMs and disks for
17871 		 * the number of retries.  If a CD-ROM is giving this, it is
17872 		 * probably reading TOC and is in the process of getting
17873 		 * ready, so we should keep on trying for a long time to make
17874 		 * sure that all types of media are taken in account (for
17875 		 * some media the drive takes a long time to read TOC).  For
17876 		 * disks we do not want to retry this too many times as this
17877 		 * can cause a long hang in format when the drive refuses to
17878 		 * spin up (a very common failure).
17879 		 */
17880 		switch (ascq) {
17881 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
17882 			/*
17883 			 * Disk drives frequently refuse to spin up which
17884 			 * results in a very long hang in format without
17885 			 * warning messages.
17886 			 *
17887 			 * Note: This code preserves the legacy behavior of
17888 			 * comparing xb_retry_count against zero for fibre
17889 			 * channel targets instead of comparing against the
17890 			 * un_reset_retry_count value.  The reason for this
17891 			 * discrepancy has been so utterly lost beneath the
17892 			 * Sands of Time that even Indiana Jones could not
17893 			 * find it.
17894 			 */
17895 			if (un->un_f_is_fibre == TRUE) {
17896 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17897 					(xp->xb_retry_count > 0)) &&
17898 					(un->un_startstop_timeid == NULL)) {
17899 					scsi_log(SD_DEVINFO(un), sd_label,
17900 					CE_WARN, "logical unit not ready, "
17901 					"resetting disk\n");
17902 					sd_reset_target(un, pktp);
17903 				}
17904 			} else {
17905 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17906 					(xp->xb_retry_count >
17907 					un->un_reset_retry_count)) &&
17908 					(un->un_startstop_timeid == NULL)) {
17909 					scsi_log(SD_DEVINFO(un), sd_label,
17910 					CE_WARN, "logical unit not ready, "
17911 					"resetting disk\n");
17912 					sd_reset_target(un, pktp);
17913 				}
17914 			}
17915 			break;
17916 
17917 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
17918 			/*
17919 			 * If the target is in the process of becoming
17920 			 * ready, just proceed with the retry. This can
17921 			 * happen with CD-ROMs that take a long time to
17922 			 * read TOC after a power cycle or reset.
17923 			 */
17924 			goto do_retry;
17925 
17926 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
17927 			break;
17928 
17929 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
17930 			/*
17931 			 * Retries cannot help here so just fail right away.
17932 			 */
17933 			goto fail_command;
17934 
17935 		case 0x88:
17936 			/*
17937 			 * Vendor-unique code for T3/T4: it indicates a
17938 			 * path problem in a mutipathed config, but as far as
17939 			 * the target driver is concerned it equates to a fatal
17940 			 * error, so we should just fail the command right away
17941 			 * (without printing anything to the console). If this
17942 			 * is not a T3/T4, fall thru to the default recovery
17943 			 * action.
17944 			 * T3/T4 is FC only, don't need to check is_fibre
17945 			 */
17946 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
17947 				sd_return_failed_command(un, bp, EIO);
17948 				return;
17949 			}
17950 			/* FALLTHRU */
17951 
17952 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
17953 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
17954 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
17955 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
17956 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
17957 		default:    /* Possible future codes in SCSI spec? */
17958 			/*
17959 			 * For removable-media devices, do not retry if
17960 			 * ASCQ > 2 as these result mostly from USCSI commands
17961 			 * on MMC devices issued to check status of an
17962 			 * operation initiated in immediate mode.  Also for
17963 			 * ASCQ >= 4 do not print console messages as these
17964 			 * mainly represent a user-initiated operation
17965 			 * instead of a system failure.
17966 			 */
17967 			if (un->un_f_has_removable_media) {
17968 				si.ssi_severity = SCSI_ERR_ALL;
17969 				goto fail_command;
17970 			}
17971 			break;
17972 		}
17973 
17974 		/*
17975 		 * As part of our recovery attempt for the NOT READY
17976 		 * condition, we issue a START STOP UNIT command. However
17977 		 * we want to wait for a short delay before attempting this
17978 		 * as there may still be more commands coming back from the
17979 		 * target with the check condition. To do this we use
17980 		 * timeout(9F) to call sd_start_stop_unit_callback() after
17981 		 * the delay interval expires. (sd_start_stop_unit_callback()
17982 		 * dispatches sd_start_stop_unit_task(), which will issue
17983 		 * the actual START STOP UNIT command. The delay interval
17984 		 * is one-half of the delay that we will use to retry the
17985 		 * command that generated the NOT READY condition.
17986 		 *
17987 		 * Note that we could just dispatch sd_start_stop_unit_task()
17988 		 * from here and allow it to sleep for the delay interval,
17989 		 * but then we would be tying up the taskq thread
17990 		 * uncesessarily for the duration of the delay.
17991 		 *
17992 		 * Do not issue the START STOP UNIT if the current command
17993 		 * is already a START STOP UNIT.
17994 		 */
17995 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
17996 			break;
17997 		}
17998 
17999 		/*
18000 		 * Do not schedule the timeout if one is already pending.
18001 		 */
18002 		if (un->un_startstop_timeid != NULL) {
18003 			SD_INFO(SD_LOG_ERROR, un,
18004 			    "sd_sense_key_not_ready: restart already issued to"
18005 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
18006 			    ddi_get_instance(SD_DEVINFO(un)));
18007 			break;
18008 		}
18009 
18010 		/*
18011 		 * Schedule the START STOP UNIT command, then queue the command
18012 		 * for a retry.
18013 		 *
18014 		 * Note: A timeout is not scheduled for this retry because we
18015 		 * want the retry to be serial with the START_STOP_UNIT. The
18016 		 * retry will be started when the START_STOP_UNIT is completed
18017 		 * in sd_start_stop_unit_task.
18018 		 */
18019 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
18020 		    un, SD_BSY_TIMEOUT / 2);
18021 		xp->xb_retry_count++;
18022 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
18023 		return;
18024 
18025 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
18026 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18027 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18028 			    "unit does not respond to selection\n");
18029 		}
18030 		break;
18031 
18032 	case 0x3A:	/* MEDIUM NOT PRESENT */
18033 		if (sd_error_level >= SCSI_ERR_FATAL) {
18034 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18035 			    "Caddy not inserted in drive\n");
18036 		}
18037 
18038 		sr_ejected(un);
18039 		un->un_mediastate = DKIO_EJECTED;
18040 		/* The state has changed, inform the media watch routines */
18041 		cv_broadcast(&un->un_state_cv);
18042 		/* Just fail if no media is present in the drive. */
18043 		goto fail_command;
18044 
18045 	default:
18046 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18047 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
18048 			    "Unit not Ready. Additional sense code 0x%x\n",
18049 			    asc);
18050 		}
18051 		break;
18052 	}
18053 
18054 do_retry:
18055 
18056 	/*
18057 	 * Retry the command, as some targets may report NOT READY for
18058 	 * several seconds after being reset.
18059 	 */
18060 	xp->xb_retry_count++;
18061 	si.ssi_severity = SCSI_ERR_RETRYABLE;
18062 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
18063 	    &si, EIO, SD_BSY_TIMEOUT, NULL);
18064 
18065 	return;
18066 
18067 fail_command:
18068 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18069 	sd_return_failed_command(un, bp, EIO);
18070 }
18071 
18072 
18073 
18074 /*
18075  *    Function: sd_sense_key_medium_or_hardware_error
18076  *
18077  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
18078  *		sense key.
18079  *
18080  *     Context: May be called from interrupt context
18081  */
18082 
18083 static void
18084 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
18085 	uint8_t *sense_datap,
18086 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18087 {
18088 	struct sd_sense_info	si;
18089 	uint8_t sense_key = scsi_sense_key(sense_datap);
18090 	uint8_t asc = scsi_sense_asc(sense_datap);
18091 
18092 	ASSERT(un != NULL);
18093 	ASSERT(mutex_owned(SD_MUTEX(un)));
18094 	ASSERT(bp != NULL);
18095 	ASSERT(xp != NULL);
18096 	ASSERT(pktp != NULL);
18097 
18098 	si.ssi_severity = SCSI_ERR_FATAL;
18099 	si.ssi_pfa_flag = FALSE;
18100 
18101 	if (sense_key == KEY_MEDIUM_ERROR) {
18102 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
18103 	}
18104 
18105 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18106 
18107 	if ((un->un_reset_retry_count != 0) &&
18108 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
18109 		mutex_exit(SD_MUTEX(un));
18110 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
18111 		if (un->un_f_allow_bus_device_reset == TRUE) {
18112 
18113 			boolean_t try_resetting_target = B_TRUE;
18114 
18115 			/*
18116 			 * We need to be able to handle specific ASC when we are
18117 			 * handling a KEY_HARDWARE_ERROR. In particular
18118 			 * taking the default action of resetting the target may
18119 			 * not be the appropriate way to attempt recovery.
18120 			 * Resetting a target because of a single LUN failure
18121 			 * victimizes all LUNs on that target.
18122 			 *
18123 			 * This is true for the LSI arrays, if an LSI
18124 			 * array controller returns an ASC of 0x84 (LUN Dead) we
18125 			 * should trust it.
18126 			 */
18127 
18128 			if (sense_key == KEY_HARDWARE_ERROR) {
18129 				switch (asc) {
18130 				case 0x84:
18131 					if (SD_IS_LSI(un)) {
18132 						try_resetting_target = B_FALSE;
18133 					}
18134 					break;
18135 				default:
18136 					break;
18137 				}
18138 			}
18139 
18140 			if (try_resetting_target == B_TRUE) {
18141 				int reset_retval = 0;
18142 				if (un->un_f_lun_reset_enabled == TRUE) {
18143 					SD_TRACE(SD_LOG_IO_CORE, un,
18144 					    "sd_sense_key_medium_or_hardware_"
18145 					    "error: issuing RESET_LUN\n");
18146 					reset_retval =
18147 					    scsi_reset(SD_ADDRESS(un),
18148 					    RESET_LUN);
18149 				}
18150 				if (reset_retval == 0) {
18151 					SD_TRACE(SD_LOG_IO_CORE, un,
18152 					    "sd_sense_key_medium_or_hardware_"
18153 					    "error: issuing RESET_TARGET\n");
18154 					(void) scsi_reset(SD_ADDRESS(un),
18155 					    RESET_TARGET);
18156 				}
18157 			}
18158 		}
18159 		mutex_enter(SD_MUTEX(un));
18160 	}
18161 
18162 	/*
18163 	 * This really ought to be a fatal error, but we will retry anyway
18164 	 * as some drives report this as a spurious error.
18165 	 */
18166 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18167 	    &si, EIO, (clock_t)0, NULL);
18168 }
18169 
18170 
18171 
18172 /*
18173  *    Function: sd_sense_key_illegal_request
18174  *
18175  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
18176  *
18177  *     Context: May be called from interrupt context
18178  */
18179 
18180 static void
18181 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
18182 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18183 {
18184 	struct sd_sense_info	si;
18185 
18186 	ASSERT(un != NULL);
18187 	ASSERT(mutex_owned(SD_MUTEX(un)));
18188 	ASSERT(bp != NULL);
18189 	ASSERT(xp != NULL);
18190 	ASSERT(pktp != NULL);
18191 
18192 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
18193 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
18194 
18195 	si.ssi_severity = SCSI_ERR_INFO;
18196 	si.ssi_pfa_flag = FALSE;
18197 
18198 	/* Pointless to retry if the target thinks it's an illegal request */
18199 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18200 	sd_return_failed_command(un, bp, EIO);
18201 }
18202 
18203 
18204 
18205 
18206 /*
18207  *    Function: sd_sense_key_unit_attention
18208  *
18209  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
18210  *
18211  *     Context: May be called from interrupt context
18212  */
18213 
18214 static void
18215 sd_sense_key_unit_attention(struct sd_lun *un,
18216 	uint8_t *sense_datap,
18217 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18218 {
18219 	/*
18220 	 * For UNIT ATTENTION we allow retries for one minute. Devices
18221 	 * like Sonoma can return UNIT ATTENTION close to a minute
18222 	 * under certain conditions.
18223 	 */
18224 	int	retry_check_flag = SD_RETRIES_UA;
18225 	boolean_t	kstat_updated = B_FALSE;
18226 	struct	sd_sense_info		si;
18227 	uint8_t asc = scsi_sense_asc(sense_datap);
18228 
18229 	ASSERT(un != NULL);
18230 	ASSERT(mutex_owned(SD_MUTEX(un)));
18231 	ASSERT(bp != NULL);
18232 	ASSERT(xp != NULL);
18233 	ASSERT(pktp != NULL);
18234 
18235 	si.ssi_severity = SCSI_ERR_INFO;
18236 	si.ssi_pfa_flag = FALSE;
18237 
18238 
18239 	switch (asc) {
18240 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
18241 		if (sd_report_pfa != 0) {
18242 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
18243 			si.ssi_pfa_flag = TRUE;
18244 			retry_check_flag = SD_RETRIES_STANDARD;
18245 			goto do_retry;
18246 		}
18247 
18248 		break;
18249 
18250 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
18251 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
18252 			un->un_resvd_status |=
18253 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
18254 		}
18255 #ifdef _LP64
18256 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
18257 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
18258 			    un, KM_NOSLEEP) == 0) {
18259 				/*
18260 				 * If we can't dispatch the task we'll just
18261 				 * live without descriptor sense.  We can
18262 				 * try again on the next "unit attention"
18263 				 */
18264 				SD_ERROR(SD_LOG_ERROR, un,
18265 				    "sd_sense_key_unit_attention: "
18266 				    "Could not dispatch "
18267 				    "sd_reenable_dsense_task\n");
18268 			}
18269 		}
18270 #endif /* _LP64 */
18271 		/* FALLTHRU */
18272 
18273 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
18274 		if (!un->un_f_has_removable_media) {
18275 			break;
18276 		}
18277 
18278 		/*
18279 		 * When we get a unit attention from a removable-media device,
18280 		 * it may be in a state that will take a long time to recover
18281 		 * (e.g., from a reset).  Since we are executing in interrupt
18282 		 * context here, we cannot wait around for the device to come
18283 		 * back. So hand this command off to sd_media_change_task()
18284 		 * for deferred processing under taskq thread context. (Note
18285 		 * that the command still may be failed if a problem is
18286 		 * encountered at a later time.)
18287 		 */
18288 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
18289 		    KM_NOSLEEP) == 0) {
18290 			/*
18291 			 * Cannot dispatch the request so fail the command.
18292 			 */
18293 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
18294 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18295 			si.ssi_severity = SCSI_ERR_FATAL;
18296 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18297 			sd_return_failed_command(un, bp, EIO);
18298 		}
18299 
18300 		/*
18301 		 * If failed to dispatch sd_media_change_task(), we already
18302 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
18303 		 * we should update kstat later if it encounters an error. So,
18304 		 * we update kstat_updated flag here.
18305 		 */
18306 		kstat_updated = B_TRUE;
18307 
18308 		/*
18309 		 * Either the command has been successfully dispatched to a
18310 		 * task Q for retrying, or the dispatch failed. In either case
18311 		 * do NOT retry again by calling sd_retry_command. This sets up
18312 		 * two retries of the same command and when one completes and
18313 		 * frees the resources the other will access freed memory,
18314 		 * a bad thing.
18315 		 */
18316 		return;
18317 
18318 	default:
18319 		break;
18320 	}
18321 
18322 	/*
18323 	 * Update kstat if we haven't done that.
18324 	 */
18325 	if (!kstat_updated) {
18326 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18327 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18328 	}
18329 
18330 do_retry:
18331 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
18332 	    EIO, SD_UA_RETRY_DELAY, NULL);
18333 }
18334 
18335 
18336 
18337 /*
18338  *    Function: sd_sense_key_fail_command
18339  *
18340  * Description: Use to fail a command when we don't like the sense key that
18341  *		was returned.
18342  *
18343  *     Context: May be called from interrupt context
18344  */
18345 
18346 static void
18347 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
18348 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18349 {
18350 	struct sd_sense_info	si;
18351 
18352 	ASSERT(un != NULL);
18353 	ASSERT(mutex_owned(SD_MUTEX(un)));
18354 	ASSERT(bp != NULL);
18355 	ASSERT(xp != NULL);
18356 	ASSERT(pktp != NULL);
18357 
18358 	si.ssi_severity = SCSI_ERR_FATAL;
18359 	si.ssi_pfa_flag = FALSE;
18360 
18361 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18362 	sd_return_failed_command(un, bp, EIO);
18363 }
18364 
18365 
18366 
18367 /*
18368  *    Function: sd_sense_key_blank_check
18369  *
18370  * Description: Recovery actions for a SCSI "Blank Check" sense key.
18371  *		Has no monetary connotation.
18372  *
18373  *     Context: May be called from interrupt context
18374  */
18375 
18376 static void
18377 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
18378 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18379 {
18380 	struct sd_sense_info	si;
18381 
18382 	ASSERT(un != NULL);
18383 	ASSERT(mutex_owned(SD_MUTEX(un)));
18384 	ASSERT(bp != NULL);
18385 	ASSERT(xp != NULL);
18386 	ASSERT(pktp != NULL);
18387 
18388 	/*
18389 	 * Blank check is not fatal for removable devices, therefore
18390 	 * it does not require a console message.
18391 	 */
18392 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
18393 	    SCSI_ERR_FATAL;
18394 	si.ssi_pfa_flag = FALSE;
18395 
18396 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18397 	sd_return_failed_command(un, bp, EIO);
18398 }
18399 
18400 
18401 
18402 
18403 /*
18404  *    Function: sd_sense_key_aborted_command
18405  *
18406  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
18407  *
18408  *     Context: May be called from interrupt context
18409  */
18410 
18411 static void
18412 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
18413 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18414 {
18415 	struct sd_sense_info	si;
18416 
18417 	ASSERT(un != NULL);
18418 	ASSERT(mutex_owned(SD_MUTEX(un)));
18419 	ASSERT(bp != NULL);
18420 	ASSERT(xp != NULL);
18421 	ASSERT(pktp != NULL);
18422 
18423 	si.ssi_severity = SCSI_ERR_FATAL;
18424 	si.ssi_pfa_flag = FALSE;
18425 
18426 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18427 
18428 	/*
18429 	 * This really ought to be a fatal error, but we will retry anyway
18430 	 * as some drives report this as a spurious error.
18431 	 */
18432 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18433 	    &si, EIO, (clock_t)0, NULL);
18434 }
18435 
18436 
18437 
18438 /*
18439  *    Function: sd_sense_key_default
18440  *
18441  * Description: Default recovery action for several SCSI sense keys (basically
18442  *		attempts a retry).
18443  *
18444  *     Context: May be called from interrupt context
18445  */
18446 
18447 static void
18448 sd_sense_key_default(struct sd_lun *un,
18449 	uint8_t *sense_datap,
18450 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18451 {
18452 	struct sd_sense_info	si;
18453 	uint8_t sense_key = scsi_sense_key(sense_datap);
18454 
18455 	ASSERT(un != NULL);
18456 	ASSERT(mutex_owned(SD_MUTEX(un)));
18457 	ASSERT(bp != NULL);
18458 	ASSERT(xp != NULL);
18459 	ASSERT(pktp != NULL);
18460 
18461 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18462 
18463 	/*
18464 	 * Undecoded sense key.	Attempt retries and hope that will fix
18465 	 * the problem.  Otherwise, we're dead.
18466 	 */
18467 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
18468 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18469 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
18470 	}
18471 
18472 	si.ssi_severity = SCSI_ERR_FATAL;
18473 	si.ssi_pfa_flag = FALSE;
18474 
18475 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18476 	    &si, EIO, (clock_t)0, NULL);
18477 }
18478 
18479 
18480 
18481 /*
18482  *    Function: sd_print_retry_msg
18483  *
18484  * Description: Print a message indicating the retry action being taken.
18485  *
18486  *   Arguments: un - ptr to associated softstate
18487  *		bp - ptr to buf(9S) for the command
18488  *		arg - not used.
18489  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18490  *			or SD_NO_RETRY_ISSUED
18491  *
18492  *     Context: May be called from interrupt context
18493  */
18494 /* ARGSUSED */
18495 static void
18496 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
18497 {
18498 	struct sd_xbuf	*xp;
18499 	struct scsi_pkt *pktp;
18500 	char *reasonp;
18501 	char *msgp;
18502 
18503 	ASSERT(un != NULL);
18504 	ASSERT(mutex_owned(SD_MUTEX(un)));
18505 	ASSERT(bp != NULL);
18506 	pktp = SD_GET_PKTP(bp);
18507 	ASSERT(pktp != NULL);
18508 	xp = SD_GET_XBUF(bp);
18509 	ASSERT(xp != NULL);
18510 
18511 	ASSERT(!mutex_owned(&un->un_pm_mutex));
18512 	mutex_enter(&un->un_pm_mutex);
18513 	if ((un->un_state == SD_STATE_SUSPENDED) ||
18514 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
18515 	    (pktp->pkt_flags & FLAG_SILENT)) {
18516 		mutex_exit(&un->un_pm_mutex);
18517 		goto update_pkt_reason;
18518 	}
18519 	mutex_exit(&un->un_pm_mutex);
18520 
18521 	/*
18522 	 * Suppress messages if they are all the same pkt_reason; with
18523 	 * TQ, many (up to 256) are returned with the same pkt_reason.
18524 	 * If we are in panic, then suppress the retry messages.
18525 	 */
18526 	switch (flag) {
18527 	case SD_NO_RETRY_ISSUED:
18528 		msgp = "giving up";
18529 		break;
18530 	case SD_IMMEDIATE_RETRY_ISSUED:
18531 	case SD_DELAYED_RETRY_ISSUED:
18532 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
18533 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
18534 		    (sd_error_level != SCSI_ERR_ALL))) {
18535 			return;
18536 		}
18537 		msgp = "retrying command";
18538 		break;
18539 	default:
18540 		goto update_pkt_reason;
18541 	}
18542 
18543 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
18544 	    scsi_rname(pktp->pkt_reason));
18545 
18546 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18547 	    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
18548 
18549 update_pkt_reason:
18550 	/*
18551 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
18552 	 * This is to prevent multiple console messages for the same failure
18553 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
18554 	 * when the command is retried successfully because there still may be
18555 	 * more commands coming back with the same value of pktp->pkt_reason.
18556 	 */
18557 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
18558 		un->un_last_pkt_reason = pktp->pkt_reason;
18559 	}
18560 }
18561 
18562 
18563 /*
18564  *    Function: sd_print_cmd_incomplete_msg
18565  *
18566  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
18567  *
18568  *   Arguments: un - ptr to associated softstate
18569  *		bp - ptr to buf(9S) for the command
18570  *		arg - passed to sd_print_retry_msg()
18571  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18572  *			or SD_NO_RETRY_ISSUED
18573  *
18574  *     Context: May be called from interrupt context
18575  */
18576 
18577 static void
18578 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
18579 	int code)
18580 {
18581 	dev_info_t	*dip;
18582 
18583 	ASSERT(un != NULL);
18584 	ASSERT(mutex_owned(SD_MUTEX(un)));
18585 	ASSERT(bp != NULL);
18586 
18587 	switch (code) {
18588 	case SD_NO_RETRY_ISSUED:
18589 		/* Command was failed. Someone turned off this target? */
18590 		if (un->un_state != SD_STATE_OFFLINE) {
18591 			/*
18592 			 * Suppress message if we are detaching and
18593 			 * device has been disconnected
18594 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
18595 			 * private interface and not part of the DDI
18596 			 */
18597 			dip = un->un_sd->sd_dev;
18598 			if (!(DEVI_IS_DETACHING(dip) &&
18599 			    DEVI_IS_DEVICE_REMOVED(dip))) {
18600 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18601 				"disk not responding to selection\n");
18602 			}
18603 			New_state(un, SD_STATE_OFFLINE);
18604 		}
18605 		break;
18606 
18607 	case SD_DELAYED_RETRY_ISSUED:
18608 	case SD_IMMEDIATE_RETRY_ISSUED:
18609 	default:
18610 		/* Command was successfully queued for retry */
18611 		sd_print_retry_msg(un, bp, arg, code);
18612 		break;
18613 	}
18614 }
18615 
18616 
18617 /*
18618  *    Function: sd_pkt_reason_cmd_incomplete
18619  *
18620  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
18621  *
18622  *     Context: May be called from interrupt context
18623  */
18624 
18625 static void
18626 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
18627 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18628 {
18629 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
18630 
18631 	ASSERT(un != NULL);
18632 	ASSERT(mutex_owned(SD_MUTEX(un)));
18633 	ASSERT(bp != NULL);
18634 	ASSERT(xp != NULL);
18635 	ASSERT(pktp != NULL);
18636 
18637 	/* Do not do a reset if selection did not complete */
18638 	/* Note: Should this not just check the bit? */
18639 	if (pktp->pkt_state != STATE_GOT_BUS) {
18640 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18641 		sd_reset_target(un, pktp);
18642 	}
18643 
18644 	/*
18645 	 * If the target was not successfully selected, then set
18646 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
18647 	 * with the target, and further retries and/or commands are
18648 	 * likely to take a long time.
18649 	 */
18650 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
18651 		flag |= SD_RETRIES_FAILFAST;
18652 	}
18653 
18654 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18655 
18656 	sd_retry_command(un, bp, flag,
18657 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18658 }
18659 
18660 
18661 
18662 /*
18663  *    Function: sd_pkt_reason_cmd_tran_err
18664  *
18665  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
18666  *
18667  *     Context: May be called from interrupt context
18668  */
18669 
18670 static void
18671 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
18672 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18673 {
18674 	ASSERT(un != NULL);
18675 	ASSERT(mutex_owned(SD_MUTEX(un)));
18676 	ASSERT(bp != NULL);
18677 	ASSERT(xp != NULL);
18678 	ASSERT(pktp != NULL);
18679 
18680 	/*
18681 	 * Do not reset if we got a parity error, or if
18682 	 * selection did not complete.
18683 	 */
18684 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18685 	/* Note: Should this not just check the bit for pkt_state? */
18686 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
18687 	    (pktp->pkt_state != STATE_GOT_BUS)) {
18688 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18689 		sd_reset_target(un, pktp);
18690 	}
18691 
18692 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18693 
18694 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18695 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18696 }
18697 
18698 
18699 
18700 /*
18701  *    Function: sd_pkt_reason_cmd_reset
18702  *
18703  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
18704  *
18705  *     Context: May be called from interrupt context
18706  */
18707 
18708 static void
18709 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
18710 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18711 {
18712 	ASSERT(un != NULL);
18713 	ASSERT(mutex_owned(SD_MUTEX(un)));
18714 	ASSERT(bp != NULL);
18715 	ASSERT(xp != NULL);
18716 	ASSERT(pktp != NULL);
18717 
18718 	/* The target may still be running the command, so try to reset. */
18719 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18720 	sd_reset_target(un, pktp);
18721 
18722 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18723 
18724 	/*
18725 	 * If pkt_reason is CMD_RESET chances are that this pkt got
18726 	 * reset because another target on this bus caused it. The target
18727 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18728 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18729 	 */
18730 
18731 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18732 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18733 }
18734 
18735 
18736 
18737 
18738 /*
18739  *    Function: sd_pkt_reason_cmd_aborted
18740  *
18741  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
18742  *
18743  *     Context: May be called from interrupt context
18744  */
18745 
18746 static void
18747 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
18748 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18749 {
18750 	ASSERT(un != NULL);
18751 	ASSERT(mutex_owned(SD_MUTEX(un)));
18752 	ASSERT(bp != NULL);
18753 	ASSERT(xp != NULL);
18754 	ASSERT(pktp != NULL);
18755 
18756 	/* The target may still be running the command, so try to reset. */
18757 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18758 	sd_reset_target(un, pktp);
18759 
18760 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18761 
18762 	/*
18763 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
18764 	 * aborted because another target on this bus caused it. The target
18765 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18766 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18767 	 */
18768 
18769 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18770 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18771 }
18772 
18773 
18774 
18775 /*
18776  *    Function: sd_pkt_reason_cmd_timeout
18777  *
18778  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
18779  *
18780  *     Context: May be called from interrupt context
18781  */
18782 
18783 static void
18784 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
18785 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18786 {
18787 	ASSERT(un != NULL);
18788 	ASSERT(mutex_owned(SD_MUTEX(un)));
18789 	ASSERT(bp != NULL);
18790 	ASSERT(xp != NULL);
18791 	ASSERT(pktp != NULL);
18792 
18793 
18794 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18795 	sd_reset_target(un, pktp);
18796 
18797 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18798 
18799 	/*
18800 	 * A command timeout indicates that we could not establish
18801 	 * communication with the target, so set SD_RETRIES_FAILFAST
18802 	 * as further retries/commands are likely to take a long time.
18803 	 */
18804 	sd_retry_command(un, bp,
18805 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
18806 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18807 }
18808 
18809 
18810 
18811 /*
18812  *    Function: sd_pkt_reason_cmd_unx_bus_free
18813  *
18814  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
18815  *
18816  *     Context: May be called from interrupt context
18817  */
18818 
18819 static void
18820 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
18821 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18822 {
18823 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
18824 
18825 	ASSERT(un != NULL);
18826 	ASSERT(mutex_owned(SD_MUTEX(un)));
18827 	ASSERT(bp != NULL);
18828 	ASSERT(xp != NULL);
18829 	ASSERT(pktp != NULL);
18830 
18831 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18832 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18833 
18834 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
18835 	    sd_print_retry_msg : NULL;
18836 
18837 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18838 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18839 }
18840 
18841 
18842 /*
18843  *    Function: sd_pkt_reason_cmd_tag_reject
18844  *
18845  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
18846  *
18847  *     Context: May be called from interrupt context
18848  */
18849 
18850 static void
18851 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
18852 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18853 {
18854 	ASSERT(un != NULL);
18855 	ASSERT(mutex_owned(SD_MUTEX(un)));
18856 	ASSERT(bp != NULL);
18857 	ASSERT(xp != NULL);
18858 	ASSERT(pktp != NULL);
18859 
18860 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18861 	pktp->pkt_flags = 0;
18862 	un->un_tagflags = 0;
18863 	if (un->un_f_opt_queueing == TRUE) {
18864 		un->un_throttle = min(un->un_throttle, 3);
18865 	} else {
18866 		un->un_throttle = 1;
18867 	}
18868 	mutex_exit(SD_MUTEX(un));
18869 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
18870 	mutex_enter(SD_MUTEX(un));
18871 
18872 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18873 
18874 	/* Legacy behavior not to check retry counts here. */
18875 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
18876 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18877 }
18878 
18879 
18880 /*
18881  *    Function: sd_pkt_reason_default
18882  *
18883  * Description: Default recovery actions for SCSA pkt_reason values that
18884  *		do not have more explicit recovery actions.
18885  *
18886  *     Context: May be called from interrupt context
18887  */
18888 
18889 static void
18890 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
18891 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18892 {
18893 	ASSERT(un != NULL);
18894 	ASSERT(mutex_owned(SD_MUTEX(un)));
18895 	ASSERT(bp != NULL);
18896 	ASSERT(xp != NULL);
18897 	ASSERT(pktp != NULL);
18898 
18899 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18900 	sd_reset_target(un, pktp);
18901 
18902 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18903 
18904 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18905 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18906 }
18907 
18908 
18909 
18910 /*
18911  *    Function: sd_pkt_status_check_condition
18912  *
18913  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
18914  *
18915  *     Context: May be called from interrupt context
18916  */
18917 
18918 static void
18919 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
18920 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18921 {
18922 	ASSERT(un != NULL);
18923 	ASSERT(mutex_owned(SD_MUTEX(un)));
18924 	ASSERT(bp != NULL);
18925 	ASSERT(xp != NULL);
18926 	ASSERT(pktp != NULL);
18927 
18928 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
18929 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
18930 
18931 	/*
18932 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
18933 	 * command will be retried after the request sense). Otherwise, retry
18934 	 * the command. Note: we are issuing the request sense even though the
18935 	 * retry limit may have been reached for the failed command.
18936 	 */
18937 	if (un->un_f_arq_enabled == FALSE) {
18938 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18939 		    "no ARQ, sending request sense command\n");
18940 		sd_send_request_sense_command(un, bp, pktp);
18941 	} else {
18942 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18943 		    "ARQ,retrying request sense command\n");
18944 #if defined(__i386) || defined(__amd64)
18945 		/*
18946 		 * The SD_RETRY_DELAY value need to be adjusted here
18947 		 * when SD_RETRY_DELAY change in sddef.h
18948 		 */
18949 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18950 			un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
18951 			NULL);
18952 #else
18953 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
18954 		    EIO, SD_RETRY_DELAY, NULL);
18955 #endif
18956 	}
18957 
18958 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
18959 }
18960 
18961 
18962 /*
18963  *    Function: sd_pkt_status_busy
18964  *
18965  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
18966  *
18967  *     Context: May be called from interrupt context
18968  */
18969 
18970 static void
18971 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
18972 	struct scsi_pkt *pktp)
18973 {
18974 	ASSERT(un != NULL);
18975 	ASSERT(mutex_owned(SD_MUTEX(un)));
18976 	ASSERT(bp != NULL);
18977 	ASSERT(xp != NULL);
18978 	ASSERT(pktp != NULL);
18979 
18980 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18981 	    "sd_pkt_status_busy: entry\n");
18982 
18983 	/* If retries are exhausted, just fail the command. */
18984 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
18985 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18986 		    "device busy too long\n");
18987 		sd_return_failed_command(un, bp, EIO);
18988 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18989 		    "sd_pkt_status_busy: exit\n");
18990 		return;
18991 	}
18992 	xp->xb_retry_count++;
18993 
18994 	/*
18995 	 * Try to reset the target. However, we do not want to perform
18996 	 * more than one reset if the device continues to fail. The reset
18997 	 * will be performed when the retry count reaches the reset
18998 	 * threshold.  This threshold should be set such that at least
18999 	 * one retry is issued before the reset is performed.
19000 	 */
19001 	if (xp->xb_retry_count ==
19002 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
19003 		int rval = 0;
19004 		mutex_exit(SD_MUTEX(un));
19005 		if (un->un_f_allow_bus_device_reset == TRUE) {
19006 			/*
19007 			 * First try to reset the LUN; if we cannot then
19008 			 * try to reset the target.
19009 			 */
19010 			if (un->un_f_lun_reset_enabled == TRUE) {
19011 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19012 				    "sd_pkt_status_busy: RESET_LUN\n");
19013 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
19014 			}
19015 			if (rval == 0) {
19016 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19017 				    "sd_pkt_status_busy: RESET_TARGET\n");
19018 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
19019 			}
19020 		}
19021 		if (rval == 0) {
19022 			/*
19023 			 * If the RESET_LUN and/or RESET_TARGET failed,
19024 			 * try RESET_ALL
19025 			 */
19026 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19027 			    "sd_pkt_status_busy: RESET_ALL\n");
19028 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
19029 		}
19030 		mutex_enter(SD_MUTEX(un));
19031 		if (rval == 0) {
19032 			/*
19033 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
19034 			 * At this point we give up & fail the command.
19035 			 */
19036 			sd_return_failed_command(un, bp, EIO);
19037 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19038 			    "sd_pkt_status_busy: exit (failed cmd)\n");
19039 			return;
19040 		}
19041 	}
19042 
19043 	/*
19044 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
19045 	 * we have already checked the retry counts above.
19046 	 */
19047 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
19048 	    EIO, SD_BSY_TIMEOUT, NULL);
19049 
19050 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19051 	    "sd_pkt_status_busy: exit\n");
19052 }
19053 
19054 
19055 /*
19056  *    Function: sd_pkt_status_reservation_conflict
19057  *
19058  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
19059  *		command status.
19060  *
19061  *     Context: May be called from interrupt context
19062  */
19063 
19064 static void
19065 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
19066 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19067 {
19068 	ASSERT(un != NULL);
19069 	ASSERT(mutex_owned(SD_MUTEX(un)));
19070 	ASSERT(bp != NULL);
19071 	ASSERT(xp != NULL);
19072 	ASSERT(pktp != NULL);
19073 
19074 	/*
19075 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
19076 	 * conflict could be due to various reasons like incorrect keys, not
19077 	 * registered or not reserved etc. So, we return EACCES to the caller.
19078 	 */
19079 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
19080 		int cmd = SD_GET_PKT_OPCODE(pktp);
19081 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
19082 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
19083 			sd_return_failed_command(un, bp, EACCES);
19084 			return;
19085 		}
19086 	}
19087 
19088 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
19089 
19090 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
19091 		if (sd_failfast_enable != 0) {
19092 			/* By definition, we must panic here.... */
19093 			sd_panic_for_res_conflict(un);
19094 			/*NOTREACHED*/
19095 		}
19096 		SD_ERROR(SD_LOG_IO, un,
19097 		    "sd_handle_resv_conflict: Disk Reserved\n");
19098 		sd_return_failed_command(un, bp, EACCES);
19099 		return;
19100 	}
19101 
19102 	/*
19103 	 * 1147670: retry only if sd_retry_on_reservation_conflict
19104 	 * property is set (default is 1). Retries will not succeed
19105 	 * on a disk reserved by another initiator. HA systems
19106 	 * may reset this via sd.conf to avoid these retries.
19107 	 *
19108 	 * Note: The legacy return code for this failure is EIO, however EACCES
19109 	 * seems more appropriate for a reservation conflict.
19110 	 */
19111 	if (sd_retry_on_reservation_conflict == 0) {
19112 		SD_ERROR(SD_LOG_IO, un,
19113 		    "sd_handle_resv_conflict: Device Reserved\n");
19114 		sd_return_failed_command(un, bp, EIO);
19115 		return;
19116 	}
19117 
19118 	/*
19119 	 * Retry the command if we can.
19120 	 *
19121 	 * Note: The legacy return code for this failure is EIO, however EACCES
19122 	 * seems more appropriate for a reservation conflict.
19123 	 */
19124 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
19125 	    (clock_t)2, NULL);
19126 }
19127 
19128 
19129 
19130 /*
19131  *    Function: sd_pkt_status_qfull
19132  *
19133  * Description: Handle a QUEUE FULL condition from the target.  This can
19134  *		occur if the HBA does not handle the queue full condition.
19135  *		(Basically this means third-party HBAs as Sun HBAs will
19136  *		handle the queue full condition.)  Note that if there are
19137  *		some commands already in the transport, then the queue full
19138  *		has occurred because the queue for this nexus is actually
19139  *		full. If there are no commands in the transport, then the
19140  *		queue full is resulting from some other initiator or lun
19141  *		consuming all the resources at the target.
19142  *
19143  *     Context: May be called from interrupt context
19144  */
19145 
19146 static void
19147 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
19148 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19149 {
19150 	ASSERT(un != NULL);
19151 	ASSERT(mutex_owned(SD_MUTEX(un)));
19152 	ASSERT(bp != NULL);
19153 	ASSERT(xp != NULL);
19154 	ASSERT(pktp != NULL);
19155 
19156 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19157 	    "sd_pkt_status_qfull: entry\n");
19158 
19159 	/*
19160 	 * Just lower the QFULL throttle and retry the command.  Note that
19161 	 * we do not limit the number of retries here.
19162 	 */
19163 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
19164 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
19165 	    SD_RESTART_TIMEOUT, NULL);
19166 
19167 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19168 	    "sd_pkt_status_qfull: exit\n");
19169 }
19170 
19171 
19172 /*
19173  *    Function: sd_reset_target
19174  *
19175  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
19176  *		RESET_TARGET, or RESET_ALL.
19177  *
19178  *     Context: May be called under interrupt context.
19179  */
19180 
19181 static void
19182 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
19183 {
19184 	int rval = 0;
19185 
19186 	ASSERT(un != NULL);
19187 	ASSERT(mutex_owned(SD_MUTEX(un)));
19188 	ASSERT(pktp != NULL);
19189 
19190 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
19191 
19192 	/*
19193 	 * No need to reset if the transport layer has already done so.
19194 	 */
19195 	if ((pktp->pkt_statistics &
19196 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
19197 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19198 		    "sd_reset_target: no reset\n");
19199 		return;
19200 	}
19201 
19202 	mutex_exit(SD_MUTEX(un));
19203 
19204 	if (un->un_f_allow_bus_device_reset == TRUE) {
19205 		if (un->un_f_lun_reset_enabled == TRUE) {
19206 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19207 			    "sd_reset_target: RESET_LUN\n");
19208 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
19209 		}
19210 		if (rval == 0) {
19211 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19212 			    "sd_reset_target: RESET_TARGET\n");
19213 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
19214 		}
19215 	}
19216 
19217 	if (rval == 0) {
19218 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19219 		    "sd_reset_target: RESET_ALL\n");
19220 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
19221 	}
19222 
19223 	mutex_enter(SD_MUTEX(un));
19224 
19225 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
19226 }
19227 
19228 
19229 /*
19230  *    Function: sd_media_change_task
19231  *
19232  * Description: Recovery action for CDROM to become available.
19233  *
19234  *     Context: Executes in a taskq() thread context
19235  */
19236 
19237 static void
19238 sd_media_change_task(void *arg)
19239 {
19240 	struct	scsi_pkt	*pktp = arg;
19241 	struct	sd_lun		*un;
19242 	struct	buf		*bp;
19243 	struct	sd_xbuf		*xp;
19244 	int	err		= 0;
19245 	int	retry_count	= 0;
19246 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
19247 	struct	sd_sense_info	si;
19248 
19249 	ASSERT(pktp != NULL);
19250 	bp = (struct buf *)pktp->pkt_private;
19251 	ASSERT(bp != NULL);
19252 	xp = SD_GET_XBUF(bp);
19253 	ASSERT(xp != NULL);
19254 	un = SD_GET_UN(bp);
19255 	ASSERT(un != NULL);
19256 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19257 	ASSERT(un->un_f_monitor_media_state);
19258 
19259 	si.ssi_severity = SCSI_ERR_INFO;
19260 	si.ssi_pfa_flag = FALSE;
19261 
19262 	/*
19263 	 * When a reset is issued on a CDROM, it takes a long time to
19264 	 * recover. First few attempts to read capacity and other things
19265 	 * related to handling unit attention fail (with a ASC 0x4 and
19266 	 * ASCQ 0x1). In that case we want to do enough retries and we want
19267 	 * to limit the retries in other cases of genuine failures like
19268 	 * no media in drive.
19269 	 */
19270 	while (retry_count++ < retry_limit) {
19271 		if ((err = sd_handle_mchange(un)) == 0) {
19272 			break;
19273 		}
19274 		if (err == EAGAIN) {
19275 			retry_limit = SD_UNIT_ATTENTION_RETRY;
19276 		}
19277 		/* Sleep for 0.5 sec. & try again */
19278 		delay(drv_usectohz(500000));
19279 	}
19280 
19281 	/*
19282 	 * Dispatch (retry or fail) the original command here,
19283 	 * along with appropriate console messages....
19284 	 *
19285 	 * Must grab the mutex before calling sd_retry_command,
19286 	 * sd_print_sense_msg and sd_return_failed_command.
19287 	 */
19288 	mutex_enter(SD_MUTEX(un));
19289 	if (err != SD_CMD_SUCCESS) {
19290 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
19291 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
19292 		si.ssi_severity = SCSI_ERR_FATAL;
19293 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
19294 		sd_return_failed_command(un, bp, EIO);
19295 	} else {
19296 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
19297 		    &si, EIO, (clock_t)0, NULL);
19298 	}
19299 	mutex_exit(SD_MUTEX(un));
19300 }
19301 
19302 
19303 
19304 /*
19305  *    Function: sd_handle_mchange
19306  *
19307  * Description: Perform geometry validation & other recovery when CDROM
19308  *		has been removed from drive.
19309  *
19310  * Return Code: 0 for success
19311  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
19312  *		sd_send_scsi_READ_CAPACITY()
19313  *
19314  *     Context: Executes in a taskq() thread context
19315  */
19316 
19317 static int
19318 sd_handle_mchange(struct sd_lun *un)
19319 {
19320 	uint64_t	capacity;
19321 	uint32_t	lbasize;
19322 	int		rval;
19323 
19324 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19325 	ASSERT(un->un_f_monitor_media_state);
19326 
19327 	if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
19328 	    SD_PATH_DIRECT_PRIORITY)) != 0) {
19329 		return (rval);
19330 	}
19331 
19332 	mutex_enter(SD_MUTEX(un));
19333 	sd_update_block_info(un, lbasize, capacity);
19334 
19335 	if (un->un_errstats != NULL) {
19336 		struct	sd_errstats *stp =
19337 		    (struct sd_errstats *)un->un_errstats->ks_data;
19338 		stp->sd_capacity.value.ui64 = (uint64_t)
19339 		    ((uint64_t)un->un_blockcount *
19340 		    (uint64_t)un->un_tgt_blocksize);
19341 	}
19342 
19343 	/*
19344 	 * Note: Maybe let the strategy/partitioning chain worry about getting
19345 	 * valid geometry.
19346 	 */
19347 	un->un_f_geometry_is_valid = FALSE;
19348 	(void) sd_validate_geometry(un, SD_PATH_DIRECT_PRIORITY);
19349 	if (un->un_f_geometry_is_valid == FALSE) {
19350 		mutex_exit(SD_MUTEX(un));
19351 		return (EIO);
19352 	}
19353 
19354 	mutex_exit(SD_MUTEX(un));
19355 
19356 	/*
19357 	 * Try to lock the door
19358 	 */
19359 	return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
19360 	    SD_PATH_DIRECT_PRIORITY));
19361 }
19362 
19363 
19364 /*
19365  *    Function: sd_send_scsi_DOORLOCK
19366  *
19367  * Description: Issue the scsi DOOR LOCK command
19368  *
19369  *   Arguments: un    - pointer to driver soft state (unit) structure for
19370  *			this target.
19371  *		flag  - SD_REMOVAL_ALLOW
19372  *			SD_REMOVAL_PREVENT
19373  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19374  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19375  *			to use the USCSI "direct" chain and bypass the normal
19376  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19377  *			command is issued as part of an error recovery action.
19378  *
19379  * Return Code: 0   - Success
19380  *		errno return code from sd_send_scsi_cmd()
19381  *
19382  *     Context: Can sleep.
19383  */
19384 
19385 static int
19386 sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag)
19387 {
19388 	union scsi_cdb		cdb;
19389 	struct uscsi_cmd	ucmd_buf;
19390 	struct scsi_extended_sense	sense_buf;
19391 	int			status;
19392 
19393 	ASSERT(un != NULL);
19394 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19395 
19396 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
19397 
19398 	/* already determined doorlock is not supported, fake success */
19399 	if (un->un_f_doorlock_supported == FALSE) {
19400 		return (0);
19401 	}
19402 
19403 	bzero(&cdb, sizeof (cdb));
19404 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19405 
19406 	cdb.scc_cmd = SCMD_DOORLOCK;
19407 	cdb.cdb_opaque[4] = (uchar_t)flag;
19408 
19409 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19410 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19411 	ucmd_buf.uscsi_bufaddr	= NULL;
19412 	ucmd_buf.uscsi_buflen	= 0;
19413 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19414 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19415 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19416 	ucmd_buf.uscsi_timeout	= 15;
19417 
19418 	SD_TRACE(SD_LOG_IO, un,
19419 	    "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n");
19420 
19421 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19422 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19423 
19424 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
19425 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19426 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
19427 		/* fake success and skip subsequent doorlock commands */
19428 		un->un_f_doorlock_supported = FALSE;
19429 		return (0);
19430 	}
19431 
19432 	return (status);
19433 }
19434 
19435 /*
19436  *    Function: sd_send_scsi_READ_CAPACITY
19437  *
19438  * Description: This routine uses the scsi READ CAPACITY command to determine
19439  *		the device capacity in number of blocks and the device native
19440  *		block size. If this function returns a failure, then the
19441  *		values in *capp and *lbap are undefined.  If the capacity
19442  *		returned is 0xffffffff then the lun is too large for a
19443  *		normal READ CAPACITY command and the results of a
19444  *		READ CAPACITY 16 will be used instead.
19445  *
19446  *   Arguments: un   - ptr to soft state struct for the target
19447  *		capp - ptr to unsigned 64-bit variable to receive the
19448  *			capacity value from the command.
19449  *		lbap - ptr to unsigned 32-bit varaible to receive the
19450  *			block size value from the command
19451  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19452  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19453  *			to use the USCSI "direct" chain and bypass the normal
19454  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19455  *			command is issued as part of an error recovery action.
19456  *
19457  * Return Code: 0   - Success
19458  *		EIO - IO error
19459  *		EACCES - Reservation conflict detected
19460  *		EAGAIN - Device is becoming ready
19461  *		errno return code from sd_send_scsi_cmd()
19462  *
19463  *     Context: Can sleep.  Blocks until command completes.
19464  */
19465 
19466 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
19467 
19468 static int
19469 sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap,
19470 	int path_flag)
19471 {
19472 	struct	scsi_extended_sense	sense_buf;
19473 	struct	uscsi_cmd	ucmd_buf;
19474 	union	scsi_cdb	cdb;
19475 	uint32_t		*capacity_buf;
19476 	uint64_t		capacity;
19477 	uint32_t		lbasize;
19478 	int			status;
19479 
19480 	ASSERT(un != NULL);
19481 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19482 	ASSERT(capp != NULL);
19483 	ASSERT(lbap != NULL);
19484 
19485 	SD_TRACE(SD_LOG_IO, un,
19486 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19487 
19488 	/*
19489 	 * First send a READ_CAPACITY command to the target.
19490 	 * (This command is mandatory under SCSI-2.)
19491 	 *
19492 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
19493 	 * Medium Indicator bit is cleared.  The address field must be
19494 	 * zero if the PMI bit is zero.
19495 	 */
19496 	bzero(&cdb, sizeof (cdb));
19497 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19498 
19499 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
19500 
19501 	cdb.scc_cmd = SCMD_READ_CAPACITY;
19502 
19503 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19504 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19505 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
19506 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
19507 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19508 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19509 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19510 	ucmd_buf.uscsi_timeout	= 60;
19511 
19512 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19513 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19514 
19515 	switch (status) {
19516 	case 0:
19517 		/* Return failure if we did not get valid capacity data. */
19518 		if (ucmd_buf.uscsi_resid != 0) {
19519 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19520 			return (EIO);
19521 		}
19522 
19523 		/*
19524 		 * Read capacity and block size from the READ CAPACITY 10 data.
19525 		 * This data may be adjusted later due to device specific
19526 		 * issues.
19527 		 *
19528 		 * According to the SCSI spec, the READ CAPACITY 10
19529 		 * command returns the following:
19530 		 *
19531 		 *  bytes 0-3: Maximum logical block address available.
19532 		 *		(MSB in byte:0 & LSB in byte:3)
19533 		 *
19534 		 *  bytes 4-7: Block length in bytes
19535 		 *		(MSB in byte:4 & LSB in byte:7)
19536 		 *
19537 		 */
19538 		capacity = BE_32(capacity_buf[0]);
19539 		lbasize = BE_32(capacity_buf[1]);
19540 
19541 		/*
19542 		 * Done with capacity_buf
19543 		 */
19544 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19545 
19546 		/*
19547 		 * if the reported capacity is set to all 0xf's, then
19548 		 * this disk is too large and requires SBC-2 commands.
19549 		 * Reissue the request using READ CAPACITY 16.
19550 		 */
19551 		if (capacity == 0xffffffff) {
19552 			status = sd_send_scsi_READ_CAPACITY_16(un, &capacity,
19553 			    &lbasize, path_flag);
19554 			if (status != 0) {
19555 				return (status);
19556 			}
19557 		}
19558 		break;	/* Success! */
19559 	case EIO:
19560 		switch (ucmd_buf.uscsi_status) {
19561 		case STATUS_RESERVATION_CONFLICT:
19562 			status = EACCES;
19563 			break;
19564 		case STATUS_CHECK:
19565 			/*
19566 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19567 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19568 			 */
19569 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19570 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
19571 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
19572 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19573 				return (EAGAIN);
19574 			}
19575 			break;
19576 		default:
19577 			break;
19578 		}
19579 		/* FALLTHRU */
19580 	default:
19581 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19582 		return (status);
19583 	}
19584 
19585 	/*
19586 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
19587 	 * (2352 and 0 are common) so for these devices always force the value
19588 	 * to 2048 as required by the ATAPI specs.
19589 	 */
19590 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
19591 		lbasize = 2048;
19592 	}
19593 
19594 	/*
19595 	 * Get the maximum LBA value from the READ CAPACITY data.
19596 	 * Here we assume that the Partial Medium Indicator (PMI) bit
19597 	 * was cleared when issuing the command. This means that the LBA
19598 	 * returned from the device is the LBA of the last logical block
19599 	 * on the logical unit.  The actual logical block count will be
19600 	 * this value plus one.
19601 	 *
19602 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
19603 	 * so scale the capacity value to reflect this.
19604 	 */
19605 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
19606 
19607 #if defined(__i386) || defined(__amd64)
19608 	/*
19609 	 * Refer to comments related to off-by-1 at the
19610 	 * header of this file.
19611 	 * Treat 1TB disk as (1T - 512)B.
19612 	 */
19613 	if (un->un_f_capacity_adjusted == 1)
19614 	    capacity = DK_MAX_BLOCKS;
19615 #endif
19616 
19617 	/*
19618 	 * Copy the values from the READ CAPACITY command into the space
19619 	 * provided by the caller.
19620 	 */
19621 	*capp = capacity;
19622 	*lbap = lbasize;
19623 
19624 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
19625 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19626 
19627 	/*
19628 	 * Both the lbasize and capacity from the device must be nonzero,
19629 	 * otherwise we assume that the values are not valid and return
19630 	 * failure to the caller. (4203735)
19631 	 */
19632 	if ((capacity == 0) || (lbasize == 0)) {
19633 		return (EIO);
19634 	}
19635 
19636 	return (0);
19637 }
19638 
19639 /*
19640  *    Function: sd_send_scsi_READ_CAPACITY_16
19641  *
19642  * Description: This routine uses the scsi READ CAPACITY 16 command to
19643  *		determine the device capacity in number of blocks and the
19644  *		device native block size.  If this function returns a failure,
19645  *		then the values in *capp and *lbap are undefined.
19646  *		This routine should always be called by
19647  *		sd_send_scsi_READ_CAPACITY which will appy any device
19648  *		specific adjustments to capacity and lbasize.
19649  *
19650  *   Arguments: un   - ptr to soft state struct for the target
19651  *		capp - ptr to unsigned 64-bit variable to receive the
19652  *			capacity value from the command.
19653  *		lbap - ptr to unsigned 32-bit varaible to receive the
19654  *			block size value from the command
19655  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19656  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19657  *			to use the USCSI "direct" chain and bypass the normal
19658  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
19659  *			this command is issued as part of an error recovery
19660  *			action.
19661  *
19662  * Return Code: 0   - Success
19663  *		EIO - IO error
19664  *		EACCES - Reservation conflict detected
19665  *		EAGAIN - Device is becoming ready
19666  *		errno return code from sd_send_scsi_cmd()
19667  *
19668  *     Context: Can sleep.  Blocks until command completes.
19669  */
19670 
19671 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
19672 
19673 static int
19674 sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
19675 	uint32_t *lbap, int path_flag)
19676 {
19677 	struct	scsi_extended_sense	sense_buf;
19678 	struct	uscsi_cmd	ucmd_buf;
19679 	union	scsi_cdb	cdb;
19680 	uint64_t		*capacity16_buf;
19681 	uint64_t		capacity;
19682 	uint32_t		lbasize;
19683 	int			status;
19684 
19685 	ASSERT(un != NULL);
19686 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19687 	ASSERT(capp != NULL);
19688 	ASSERT(lbap != NULL);
19689 
19690 	SD_TRACE(SD_LOG_IO, un,
19691 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19692 
19693 	/*
19694 	 * First send a READ_CAPACITY_16 command to the target.
19695 	 *
19696 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
19697 	 * Medium Indicator bit is cleared.  The address field must be
19698 	 * zero if the PMI bit is zero.
19699 	 */
19700 	bzero(&cdb, sizeof (cdb));
19701 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19702 
19703 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
19704 
19705 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19706 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
19707 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
19708 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
19709 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19710 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19711 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19712 	ucmd_buf.uscsi_timeout	= 60;
19713 
19714 	/*
19715 	 * Read Capacity (16) is a Service Action In command.  One
19716 	 * command byte (0x9E) is overloaded for multiple operations,
19717 	 * with the second CDB byte specifying the desired operation
19718 	 */
19719 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
19720 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
19721 
19722 	/*
19723 	 * Fill in allocation length field
19724 	 */
19725 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
19726 
19727 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19728 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19729 
19730 	switch (status) {
19731 	case 0:
19732 		/* Return failure if we did not get valid capacity data. */
19733 		if (ucmd_buf.uscsi_resid > 20) {
19734 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19735 			return (EIO);
19736 		}
19737 
19738 		/*
19739 		 * Read capacity and block size from the READ CAPACITY 10 data.
19740 		 * This data may be adjusted later due to device specific
19741 		 * issues.
19742 		 *
19743 		 * According to the SCSI spec, the READ CAPACITY 10
19744 		 * command returns the following:
19745 		 *
19746 		 *  bytes 0-7: Maximum logical block address available.
19747 		 *		(MSB in byte:0 & LSB in byte:7)
19748 		 *
19749 		 *  bytes 8-11: Block length in bytes
19750 		 *		(MSB in byte:8 & LSB in byte:11)
19751 		 *
19752 		 */
19753 		capacity = BE_64(capacity16_buf[0]);
19754 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
19755 
19756 		/*
19757 		 * Done with capacity16_buf
19758 		 */
19759 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19760 
19761 		/*
19762 		 * if the reported capacity is set to all 0xf's, then
19763 		 * this disk is too large.  This could only happen with
19764 		 * a device that supports LBAs larger than 64 bits which
19765 		 * are not defined by any current T10 standards.
19766 		 */
19767 		if (capacity == 0xffffffffffffffff) {
19768 			return (EIO);
19769 		}
19770 		break;	/* Success! */
19771 	case EIO:
19772 		switch (ucmd_buf.uscsi_status) {
19773 		case STATUS_RESERVATION_CONFLICT:
19774 			status = EACCES;
19775 			break;
19776 		case STATUS_CHECK:
19777 			/*
19778 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19779 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19780 			 */
19781 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19782 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
19783 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
19784 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19785 				return (EAGAIN);
19786 			}
19787 			break;
19788 		default:
19789 			break;
19790 		}
19791 		/* FALLTHRU */
19792 	default:
19793 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19794 		return (status);
19795 	}
19796 
19797 	*capp = capacity;
19798 	*lbap = lbasize;
19799 
19800 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
19801 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19802 
19803 	return (0);
19804 }
19805 
19806 
19807 /*
19808  *    Function: sd_send_scsi_START_STOP_UNIT
19809  *
19810  * Description: Issue a scsi START STOP UNIT command to the target.
19811  *
19812  *   Arguments: un    - pointer to driver soft state (unit) structure for
19813  *			this target.
19814  *		flag  - SD_TARGET_START
19815  *			SD_TARGET_STOP
19816  *			SD_TARGET_EJECT
19817  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19818  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19819  *			to use the USCSI "direct" chain and bypass the normal
19820  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19821  *			command is issued as part of an error recovery action.
19822  *
19823  * Return Code: 0   - Success
19824  *		EIO - IO error
19825  *		EACCES - Reservation conflict detected
19826  *		ENXIO  - Not Ready, medium not present
19827  *		errno return code from sd_send_scsi_cmd()
19828  *
19829  *     Context: Can sleep.
19830  */
19831 
19832 static int
19833 sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag)
19834 {
19835 	struct	scsi_extended_sense	sense_buf;
19836 	union scsi_cdb		cdb;
19837 	struct uscsi_cmd	ucmd_buf;
19838 	int			status;
19839 
19840 	ASSERT(un != NULL);
19841 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19842 
19843 	SD_TRACE(SD_LOG_IO, un,
19844 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
19845 
19846 	if (un->un_f_check_start_stop &&
19847 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
19848 	    (un->un_f_start_stop_supported != TRUE)) {
19849 		return (0);
19850 	}
19851 
19852 	bzero(&cdb, sizeof (cdb));
19853 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19854 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19855 
19856 	cdb.scc_cmd = SCMD_START_STOP;
19857 	cdb.cdb_opaque[4] = (uchar_t)flag;
19858 
19859 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19860 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19861 	ucmd_buf.uscsi_bufaddr	= NULL;
19862 	ucmd_buf.uscsi_buflen	= 0;
19863 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19864 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19865 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19866 	ucmd_buf.uscsi_timeout	= 200;
19867 
19868 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19869 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19870 
19871 	switch (status) {
19872 	case 0:
19873 		break;	/* Success! */
19874 	case EIO:
19875 		switch (ucmd_buf.uscsi_status) {
19876 		case STATUS_RESERVATION_CONFLICT:
19877 			status = EACCES;
19878 			break;
19879 		case STATUS_CHECK:
19880 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
19881 				switch (scsi_sense_key(
19882 						(uint8_t *)&sense_buf)) {
19883 				case KEY_ILLEGAL_REQUEST:
19884 					status = ENOTSUP;
19885 					break;
19886 				case KEY_NOT_READY:
19887 					if (scsi_sense_asc(
19888 						    (uint8_t *)&sense_buf)
19889 					    == 0x3A) {
19890 						status = ENXIO;
19891 					}
19892 					break;
19893 				default:
19894 					break;
19895 				}
19896 			}
19897 			break;
19898 		default:
19899 			break;
19900 		}
19901 		break;
19902 	default:
19903 		break;
19904 	}
19905 
19906 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
19907 
19908 	return (status);
19909 }
19910 
19911 
19912 /*
19913  *    Function: sd_start_stop_unit_callback
19914  *
19915  * Description: timeout(9F) callback to begin recovery process for a
19916  *		device that has spun down.
19917  *
19918  *   Arguments: arg - pointer to associated softstate struct.
19919  *
19920  *     Context: Executes in a timeout(9F) thread context
19921  */
19922 
19923 static void
19924 sd_start_stop_unit_callback(void *arg)
19925 {
19926 	struct sd_lun	*un = arg;
19927 	ASSERT(un != NULL);
19928 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19929 
19930 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
19931 
19932 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
19933 }
19934 
19935 
19936 /*
19937  *    Function: sd_start_stop_unit_task
19938  *
19939  * Description: Recovery procedure when a drive is spun down.
19940  *
19941  *   Arguments: arg - pointer to associated softstate struct.
19942  *
19943  *     Context: Executes in a taskq() thread context
19944  */
19945 
19946 static void
19947 sd_start_stop_unit_task(void *arg)
19948 {
19949 	struct sd_lun	*un = arg;
19950 
19951 	ASSERT(un != NULL);
19952 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19953 
19954 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
19955 
19956 	/*
19957 	 * Some unformatted drives report not ready error, no need to
19958 	 * restart if format has been initiated.
19959 	 */
19960 	mutex_enter(SD_MUTEX(un));
19961 	if (un->un_f_format_in_progress == TRUE) {
19962 		mutex_exit(SD_MUTEX(un));
19963 		return;
19964 	}
19965 	mutex_exit(SD_MUTEX(un));
19966 
19967 	/*
19968 	 * When a START STOP command is issued from here, it is part of a
19969 	 * failure recovery operation and must be issued before any other
19970 	 * commands, including any pending retries. Thus it must be sent
19971 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
19972 	 * succeeds or not, we will start I/O after the attempt.
19973 	 */
19974 	(void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
19975 	    SD_PATH_DIRECT_PRIORITY);
19976 
19977 	/*
19978 	 * The above call blocks until the START_STOP_UNIT command completes.
19979 	 * Now that it has completed, we must re-try the original IO that
19980 	 * received the NOT READY condition in the first place. There are
19981 	 * three possible conditions here:
19982 	 *
19983 	 *  (1) The original IO is on un_retry_bp.
19984 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
19985 	 *	is NULL.
19986 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
19987 	 *	points to some other, unrelated bp.
19988 	 *
19989 	 * For each case, we must call sd_start_cmds() with un_retry_bp
19990 	 * as the argument. If un_retry_bp is NULL, this will initiate
19991 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
19992 	 * then this will process the bp on un_retry_bp. That may or may not
19993 	 * be the original IO, but that does not matter: the important thing
19994 	 * is to keep the IO processing going at this point.
19995 	 *
19996 	 * Note: This is a very specific error recovery sequence associated
19997 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
19998 	 * serialize the I/O with completion of the spin-up.
19999 	 */
20000 	mutex_enter(SD_MUTEX(un));
20001 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
20002 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
20003 	    un, un->un_retry_bp);
20004 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
20005 	sd_start_cmds(un, un->un_retry_bp);
20006 	mutex_exit(SD_MUTEX(un));
20007 
20008 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
20009 }
20010 
20011 
20012 /*
20013  *    Function: sd_send_scsi_INQUIRY
20014  *
20015  * Description: Issue the scsi INQUIRY command.
20016  *
20017  *   Arguments: un
20018  *		bufaddr
20019  *		buflen
20020  *		evpd
20021  *		page_code
20022  *		page_length
20023  *
20024  * Return Code: 0   - Success
20025  *		errno return code from sd_send_scsi_cmd()
20026  *
20027  *     Context: Can sleep. Does not return until command is completed.
20028  */
20029 
20030 static int
20031 sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen,
20032 	uchar_t evpd, uchar_t page_code, size_t *residp)
20033 {
20034 	union scsi_cdb		cdb;
20035 	struct uscsi_cmd	ucmd_buf;
20036 	int			status;
20037 
20038 	ASSERT(un != NULL);
20039 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20040 	ASSERT(bufaddr != NULL);
20041 
20042 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
20043 
20044 	bzero(&cdb, sizeof (cdb));
20045 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20046 	bzero(bufaddr, buflen);
20047 
20048 	cdb.scc_cmd = SCMD_INQUIRY;
20049 	cdb.cdb_opaque[1] = evpd;
20050 	cdb.cdb_opaque[2] = page_code;
20051 	FORMG0COUNT(&cdb, buflen);
20052 
20053 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20054 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20055 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20056 	ucmd_buf.uscsi_buflen	= buflen;
20057 	ucmd_buf.uscsi_rqbuf	= NULL;
20058 	ucmd_buf.uscsi_rqlen	= 0;
20059 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
20060 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
20061 
20062 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20063 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_DIRECT);
20064 
20065 	if ((status == 0) && (residp != NULL)) {
20066 		*residp = ucmd_buf.uscsi_resid;
20067 	}
20068 
20069 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
20070 
20071 	return (status);
20072 }
20073 
20074 
20075 /*
20076  *    Function: sd_send_scsi_TEST_UNIT_READY
20077  *
20078  * Description: Issue the scsi TEST UNIT READY command.
20079  *		This routine can be told to set the flag USCSI_DIAGNOSE to
20080  *		prevent retrying failed commands. Use this when the intent
20081  *		is either to check for device readiness, to clear a Unit
20082  *		Attention, or to clear any outstanding sense data.
20083  *		However under specific conditions the expected behavior
20084  *		is for retries to bring a device ready, so use the flag
20085  *		with caution.
20086  *
20087  *   Arguments: un
20088  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
20089  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
20090  *			0: dont check for media present, do retries on cmd.
20091  *
20092  * Return Code: 0   - Success
20093  *		EIO - IO error
20094  *		EACCES - Reservation conflict detected
20095  *		ENXIO  - Not Ready, medium not present
20096  *		errno return code from sd_send_scsi_cmd()
20097  *
20098  *     Context: Can sleep. Does not return until command is completed.
20099  */
20100 
20101 static int
20102 sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag)
20103 {
20104 	struct	scsi_extended_sense	sense_buf;
20105 	union scsi_cdb		cdb;
20106 	struct uscsi_cmd	ucmd_buf;
20107 	int			status;
20108 
20109 	ASSERT(un != NULL);
20110 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20111 
20112 	SD_TRACE(SD_LOG_IO, un,
20113 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
20114 
20115 	/*
20116 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
20117 	 * timeouts when they receive a TUR and the queue is not empty. Check
20118 	 * the configuration flag set during attach (indicating the drive has
20119 	 * this firmware bug) and un_ncmds_in_transport before issuing the
20120 	 * TUR. If there are
20121 	 * pending commands return success, this is a bit arbitrary but is ok
20122 	 * for non-removables (i.e. the eliteI disks) and non-clustering
20123 	 * configurations.
20124 	 */
20125 	if (un->un_f_cfg_tur_check == TRUE) {
20126 		mutex_enter(SD_MUTEX(un));
20127 		if (un->un_ncmds_in_transport != 0) {
20128 			mutex_exit(SD_MUTEX(un));
20129 			return (0);
20130 		}
20131 		mutex_exit(SD_MUTEX(un));
20132 	}
20133 
20134 	bzero(&cdb, sizeof (cdb));
20135 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20136 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20137 
20138 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
20139 
20140 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20141 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20142 	ucmd_buf.uscsi_bufaddr	= NULL;
20143 	ucmd_buf.uscsi_buflen	= 0;
20144 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20145 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20146 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
20147 
20148 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
20149 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
20150 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
20151 	}
20152 	ucmd_buf.uscsi_timeout	= 60;
20153 
20154 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20155 	    UIO_SYSSPACE, UIO_SYSSPACE,
20156 	    ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT : SD_PATH_STANDARD));
20157 
20158 	switch (status) {
20159 	case 0:
20160 		break;	/* Success! */
20161 	case EIO:
20162 		switch (ucmd_buf.uscsi_status) {
20163 		case STATUS_RESERVATION_CONFLICT:
20164 			status = EACCES;
20165 			break;
20166 		case STATUS_CHECK:
20167 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
20168 				break;
20169 			}
20170 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20171 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20172 				KEY_NOT_READY) &&
20173 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
20174 				status = ENXIO;
20175 			}
20176 			break;
20177 		default:
20178 			break;
20179 		}
20180 		break;
20181 	default:
20182 		break;
20183 	}
20184 
20185 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
20186 
20187 	return (status);
20188 }
20189 
20190 
20191 /*
20192  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
20193  *
20194  * Description: Issue the scsi PERSISTENT RESERVE IN command.
20195  *
20196  *   Arguments: un
20197  *
20198  * Return Code: 0   - Success
20199  *		EACCES
20200  *		ENOTSUP
20201  *		errno return code from sd_send_scsi_cmd()
20202  *
20203  *     Context: Can sleep. Does not return until command is completed.
20204  */
20205 
20206 static int
20207 sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t  usr_cmd,
20208 	uint16_t data_len, uchar_t *data_bufp)
20209 {
20210 	struct scsi_extended_sense	sense_buf;
20211 	union scsi_cdb		cdb;
20212 	struct uscsi_cmd	ucmd_buf;
20213 	int			status;
20214 	int			no_caller_buf = FALSE;
20215 
20216 	ASSERT(un != NULL);
20217 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20218 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
20219 
20220 	SD_TRACE(SD_LOG_IO, un,
20221 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
20222 
20223 	bzero(&cdb, sizeof (cdb));
20224 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20225 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20226 	if (data_bufp == NULL) {
20227 		/* Allocate a default buf if the caller did not give one */
20228 		ASSERT(data_len == 0);
20229 		data_len  = MHIOC_RESV_KEY_SIZE;
20230 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
20231 		no_caller_buf = TRUE;
20232 	}
20233 
20234 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
20235 	cdb.cdb_opaque[1] = usr_cmd;
20236 	FORMG1COUNT(&cdb, data_len);
20237 
20238 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20239 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20240 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
20241 	ucmd_buf.uscsi_buflen	= data_len;
20242 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20243 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20244 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20245 	ucmd_buf.uscsi_timeout	= 60;
20246 
20247 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20248 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
20249 
20250 	switch (status) {
20251 	case 0:
20252 		break;	/* Success! */
20253 	case EIO:
20254 		switch (ucmd_buf.uscsi_status) {
20255 		case STATUS_RESERVATION_CONFLICT:
20256 			status = EACCES;
20257 			break;
20258 		case STATUS_CHECK:
20259 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20260 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20261 				KEY_ILLEGAL_REQUEST)) {
20262 				status = ENOTSUP;
20263 			}
20264 			break;
20265 		default:
20266 			break;
20267 		}
20268 		break;
20269 	default:
20270 		break;
20271 	}
20272 
20273 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
20274 
20275 	if (no_caller_buf == TRUE) {
20276 		kmem_free(data_bufp, data_len);
20277 	}
20278 
20279 	return (status);
20280 }
20281 
20282 
20283 /*
20284  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
20285  *
20286  * Description: This routine is the driver entry point for handling CD-ROM
20287  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
20288  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
20289  *		device.
20290  *
20291  *   Arguments: un  -   Pointer to soft state struct for the target.
20292  *		usr_cmd SCSI-3 reservation facility command (one of
20293  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
20294  *			SD_SCSI3_PREEMPTANDABORT)
20295  *		usr_bufp - user provided pointer register, reserve descriptor or
20296  *			preempt and abort structure (mhioc_register_t,
20297  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
20298  *
20299  * Return Code: 0   - Success
20300  *		EACCES
20301  *		ENOTSUP
20302  *		errno return code from sd_send_scsi_cmd()
20303  *
20304  *     Context: Can sleep. Does not return until command is completed.
20305  */
20306 
20307 static int
20308 sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd,
20309 	uchar_t	*usr_bufp)
20310 {
20311 	struct scsi_extended_sense	sense_buf;
20312 	union scsi_cdb		cdb;
20313 	struct uscsi_cmd	ucmd_buf;
20314 	int			status;
20315 	uchar_t			data_len = sizeof (sd_prout_t);
20316 	sd_prout_t		*prp;
20317 
20318 	ASSERT(un != NULL);
20319 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20320 	ASSERT(data_len == 24);	/* required by scsi spec */
20321 
20322 	SD_TRACE(SD_LOG_IO, un,
20323 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
20324 
20325 	if (usr_bufp == NULL) {
20326 		return (EINVAL);
20327 	}
20328 
20329 	bzero(&cdb, sizeof (cdb));
20330 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20331 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20332 	prp = kmem_zalloc(data_len, KM_SLEEP);
20333 
20334 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
20335 	cdb.cdb_opaque[1] = usr_cmd;
20336 	FORMG1COUNT(&cdb, data_len);
20337 
20338 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20339 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20340 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
20341 	ucmd_buf.uscsi_buflen	= data_len;
20342 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20343 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20344 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20345 	ucmd_buf.uscsi_timeout	= 60;
20346 
20347 	switch (usr_cmd) {
20348 	case SD_SCSI3_REGISTER: {
20349 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
20350 
20351 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20352 		bcopy(ptr->newkey.key, prp->service_key,
20353 		    MHIOC_RESV_KEY_SIZE);
20354 		prp->aptpl = ptr->aptpl;
20355 		break;
20356 	}
20357 	case SD_SCSI3_RESERVE:
20358 	case SD_SCSI3_RELEASE: {
20359 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
20360 
20361 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20362 		prp->scope_address = BE_32(ptr->scope_specific_addr);
20363 		cdb.cdb_opaque[2] = ptr->type;
20364 		break;
20365 	}
20366 	case SD_SCSI3_PREEMPTANDABORT: {
20367 		mhioc_preemptandabort_t *ptr =
20368 		    (mhioc_preemptandabort_t *)usr_bufp;
20369 
20370 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20371 		bcopy(ptr->victim_key.key, prp->service_key,
20372 		    MHIOC_RESV_KEY_SIZE);
20373 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
20374 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
20375 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
20376 		break;
20377 	}
20378 	case SD_SCSI3_REGISTERANDIGNOREKEY:
20379 	{
20380 		mhioc_registerandignorekey_t *ptr;
20381 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
20382 		bcopy(ptr->newkey.key,
20383 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
20384 		prp->aptpl = ptr->aptpl;
20385 		break;
20386 	}
20387 	default:
20388 		ASSERT(FALSE);
20389 		break;
20390 	}
20391 
20392 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20393 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
20394 
20395 	switch (status) {
20396 	case 0:
20397 		break;	/* Success! */
20398 	case EIO:
20399 		switch (ucmd_buf.uscsi_status) {
20400 		case STATUS_RESERVATION_CONFLICT:
20401 			status = EACCES;
20402 			break;
20403 		case STATUS_CHECK:
20404 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20405 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20406 				KEY_ILLEGAL_REQUEST)) {
20407 				status = ENOTSUP;
20408 			}
20409 			break;
20410 		default:
20411 			break;
20412 		}
20413 		break;
20414 	default:
20415 		break;
20416 	}
20417 
20418 	kmem_free(prp, data_len);
20419 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
20420 	return (status);
20421 }
20422 
20423 
20424 /*
20425  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
20426  *
20427  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
20428  *
20429  *   Arguments: un - pointer to the target's soft state struct
20430  *
20431  * Return Code: 0 - success
20432  *		errno-type error code
20433  *
20434  *     Context: kernel thread context only.
20435  */
20436 
20437 static int
20438 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
20439 {
20440 	struct sd_uscsi_info	*uip;
20441 	struct uscsi_cmd	*uscmd;
20442 	union scsi_cdb		*cdb;
20443 	struct buf		*bp;
20444 	int			rval = 0;
20445 
20446 	SD_TRACE(SD_LOG_IO, un,
20447 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
20448 
20449 	ASSERT(un != NULL);
20450 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20451 
20452 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
20453 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
20454 
20455 	/*
20456 	 * First get some memory for the uscsi_cmd struct and cdb
20457 	 * and initialize for SYNCHRONIZE_CACHE cmd.
20458 	 */
20459 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
20460 	uscmd->uscsi_cdblen = CDB_GROUP1;
20461 	uscmd->uscsi_cdb = (caddr_t)cdb;
20462 	uscmd->uscsi_bufaddr = NULL;
20463 	uscmd->uscsi_buflen = 0;
20464 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
20465 	uscmd->uscsi_rqlen = SENSE_LENGTH;
20466 	uscmd->uscsi_rqresid = SENSE_LENGTH;
20467 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
20468 	uscmd->uscsi_timeout = sd_io_time;
20469 
20470 	/*
20471 	 * Allocate an sd_uscsi_info struct and fill it with the info
20472 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
20473 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
20474 	 * since we allocate the buf here in this function, we do not
20475 	 * need to preserve the prior contents of b_private.
20476 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
20477 	 */
20478 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
20479 	uip->ui_flags = SD_PATH_DIRECT;
20480 	uip->ui_cmdp  = uscmd;
20481 
20482 	bp = getrbuf(KM_SLEEP);
20483 	bp->b_private = uip;
20484 
20485 	/*
20486 	 * Setup buffer to carry uscsi request.
20487 	 */
20488 	bp->b_flags  = B_BUSY;
20489 	bp->b_bcount = 0;
20490 	bp->b_blkno  = 0;
20491 
20492 	if (dkc != NULL) {
20493 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
20494 		uip->ui_dkc = *dkc;
20495 	}
20496 
20497 	bp->b_edev = SD_GET_DEV(un);
20498 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
20499 
20500 	(void) sd_uscsi_strategy(bp);
20501 
20502 	/*
20503 	 * If synchronous request, wait for completion
20504 	 * If async just return and let b_iodone callback
20505 	 * cleanup.
20506 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
20507 	 * but it was also incremented in sd_uscsi_strategy(), so
20508 	 * we should be ok.
20509 	 */
20510 	if (dkc == NULL) {
20511 		(void) biowait(bp);
20512 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
20513 	}
20514 
20515 	return (rval);
20516 }
20517 
20518 
20519 static int
20520 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
20521 {
20522 	struct sd_uscsi_info *uip;
20523 	struct uscsi_cmd *uscmd;
20524 	uint8_t *sense_buf;
20525 	struct sd_lun *un;
20526 	int status;
20527 
20528 	uip = (struct sd_uscsi_info *)(bp->b_private);
20529 	ASSERT(uip != NULL);
20530 
20531 	uscmd = uip->ui_cmdp;
20532 	ASSERT(uscmd != NULL);
20533 
20534 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
20535 	ASSERT(sense_buf != NULL);
20536 
20537 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
20538 	ASSERT(un != NULL);
20539 
20540 	status = geterror(bp);
20541 	switch (status) {
20542 	case 0:
20543 		break;	/* Success! */
20544 	case EIO:
20545 		switch (uscmd->uscsi_status) {
20546 		case STATUS_RESERVATION_CONFLICT:
20547 			/* Ignore reservation conflict */
20548 			status = 0;
20549 			goto done;
20550 
20551 		case STATUS_CHECK:
20552 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
20553 			    (scsi_sense_key(sense_buf) ==
20554 				KEY_ILLEGAL_REQUEST)) {
20555 				/* Ignore Illegal Request error */
20556 				mutex_enter(SD_MUTEX(un));
20557 				un->un_f_sync_cache_supported = FALSE;
20558 				mutex_exit(SD_MUTEX(un));
20559 				status = ENOTSUP;
20560 				goto done;
20561 			}
20562 			break;
20563 		default:
20564 			break;
20565 		}
20566 		/* FALLTHRU */
20567 	default:
20568 		/*
20569 		 * Don't log an error message if this device
20570 		 * has removable media.
20571 		 */
20572 		if (!un->un_f_has_removable_media) {
20573 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
20574 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
20575 		}
20576 		break;
20577 	}
20578 
20579 done:
20580 	if (uip->ui_dkc.dkc_callback != NULL) {
20581 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
20582 	}
20583 
20584 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
20585 	freerbuf(bp);
20586 	kmem_free(uip, sizeof (struct sd_uscsi_info));
20587 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
20588 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
20589 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
20590 
20591 	return (status);
20592 }
20593 
20594 
20595 /*
20596  *    Function: sd_send_scsi_GET_CONFIGURATION
20597  *
20598  * Description: Issues the get configuration command to the device.
20599  *		Called from sd_check_for_writable_cd & sd_get_media_info
20600  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
20601  *   Arguments: un
20602  *		ucmdbuf
20603  *		rqbuf
20604  *		rqbuflen
20605  *		bufaddr
20606  *		buflen
20607  *
20608  * Return Code: 0   - Success
20609  *		errno return code from sd_send_scsi_cmd()
20610  *
20611  *     Context: Can sleep. Does not return until command is completed.
20612  *
20613  */
20614 
20615 static int
20616 sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf,
20617 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen)
20618 {
20619 	char	cdb[CDB_GROUP1];
20620 	int	status;
20621 
20622 	ASSERT(un != NULL);
20623 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20624 	ASSERT(bufaddr != NULL);
20625 	ASSERT(ucmdbuf != NULL);
20626 	ASSERT(rqbuf != NULL);
20627 
20628 	SD_TRACE(SD_LOG_IO, un,
20629 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
20630 
20631 	bzero(cdb, sizeof (cdb));
20632 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20633 	bzero(rqbuf, rqbuflen);
20634 	bzero(bufaddr, buflen);
20635 
20636 	/*
20637 	 * Set up cdb field for the get configuration command.
20638 	 */
20639 	cdb[0] = SCMD_GET_CONFIGURATION;
20640 	cdb[1] = 0x02;  /* Requested Type */
20641 	cdb[8] = SD_PROFILE_HEADER_LEN;
20642 	ucmdbuf->uscsi_cdb = cdb;
20643 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20644 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20645 	ucmdbuf->uscsi_buflen = buflen;
20646 	ucmdbuf->uscsi_timeout = sd_io_time;
20647 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20648 	ucmdbuf->uscsi_rqlen = rqbuflen;
20649 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20650 
20651 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE,
20652 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
20653 
20654 	switch (status) {
20655 	case 0:
20656 		break;  /* Success! */
20657 	case EIO:
20658 		switch (ucmdbuf->uscsi_status) {
20659 		case STATUS_RESERVATION_CONFLICT:
20660 			status = EACCES;
20661 			break;
20662 		default:
20663 			break;
20664 		}
20665 		break;
20666 	default:
20667 		break;
20668 	}
20669 
20670 	if (status == 0) {
20671 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20672 		    "sd_send_scsi_GET_CONFIGURATION: data",
20673 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20674 	}
20675 
20676 	SD_TRACE(SD_LOG_IO, un,
20677 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
20678 
20679 	return (status);
20680 }
20681 
20682 /*
20683  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
20684  *
20685  * Description: Issues the get configuration command to the device to
20686  *              retrieve a specfic feature. Called from
20687  *		sd_check_for_writable_cd & sd_set_mmc_caps.
20688  *   Arguments: un
20689  *              ucmdbuf
20690  *              rqbuf
20691  *              rqbuflen
20692  *              bufaddr
20693  *              buflen
20694  *		feature
20695  *
20696  * Return Code: 0   - Success
20697  *              errno return code from sd_send_scsi_cmd()
20698  *
20699  *     Context: Can sleep. Does not return until command is completed.
20700  *
20701  */
20702 static int
20703 sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
20704 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
20705 	uchar_t *bufaddr, uint_t buflen, char feature)
20706 {
20707 	char    cdb[CDB_GROUP1];
20708 	int	status;
20709 
20710 	ASSERT(un != NULL);
20711 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20712 	ASSERT(bufaddr != NULL);
20713 	ASSERT(ucmdbuf != NULL);
20714 	ASSERT(rqbuf != NULL);
20715 
20716 	SD_TRACE(SD_LOG_IO, un,
20717 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
20718 
20719 	bzero(cdb, sizeof (cdb));
20720 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20721 	bzero(rqbuf, rqbuflen);
20722 	bzero(bufaddr, buflen);
20723 
20724 	/*
20725 	 * Set up cdb field for the get configuration command.
20726 	 */
20727 	cdb[0] = SCMD_GET_CONFIGURATION;
20728 	cdb[1] = 0x02;  /* Requested Type */
20729 	cdb[3] = feature;
20730 	cdb[8] = buflen;
20731 	ucmdbuf->uscsi_cdb = cdb;
20732 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20733 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20734 	ucmdbuf->uscsi_buflen = buflen;
20735 	ucmdbuf->uscsi_timeout = sd_io_time;
20736 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20737 	ucmdbuf->uscsi_rqlen = rqbuflen;
20738 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20739 
20740 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE,
20741 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
20742 
20743 	switch (status) {
20744 	case 0:
20745 		break;  /* Success! */
20746 	case EIO:
20747 		switch (ucmdbuf->uscsi_status) {
20748 		case STATUS_RESERVATION_CONFLICT:
20749 			status = EACCES;
20750 			break;
20751 		default:
20752 			break;
20753 		}
20754 		break;
20755 	default:
20756 		break;
20757 	}
20758 
20759 	if (status == 0) {
20760 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20761 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
20762 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20763 	}
20764 
20765 	SD_TRACE(SD_LOG_IO, un,
20766 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
20767 
20768 	return (status);
20769 }
20770 
20771 
20772 /*
20773  *    Function: sd_send_scsi_MODE_SENSE
20774  *
20775  * Description: Utility function for issuing a scsi MODE SENSE command.
20776  *		Note: This routine uses a consistent implementation for Group0,
20777  *		Group1, and Group2 commands across all platforms. ATAPI devices
20778  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20779  *
20780  *   Arguments: un - pointer to the softstate struct for the target.
20781  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20782  *			  CDB_GROUP[1|2] (10 byte).
20783  *		bufaddr - buffer for page data retrieved from the target.
20784  *		buflen - size of page to be retrieved.
20785  *		page_code - page code of data to be retrieved from the target.
20786  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20787  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20788  *			to use the USCSI "direct" chain and bypass the normal
20789  *			command waitq.
20790  *
20791  * Return Code: 0   - Success
20792  *		errno return code from sd_send_scsi_cmd()
20793  *
20794  *     Context: Can sleep. Does not return until command is completed.
20795  */
20796 
20797 static int
20798 sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
20799 	size_t buflen,  uchar_t page_code, int path_flag)
20800 {
20801 	struct	scsi_extended_sense	sense_buf;
20802 	union scsi_cdb		cdb;
20803 	struct uscsi_cmd	ucmd_buf;
20804 	int			status;
20805 	int			headlen;
20806 
20807 	ASSERT(un != NULL);
20808 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20809 	ASSERT(bufaddr != NULL);
20810 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20811 	    (cdbsize == CDB_GROUP2));
20812 
20813 	SD_TRACE(SD_LOG_IO, un,
20814 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
20815 
20816 	bzero(&cdb, sizeof (cdb));
20817 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20818 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20819 	bzero(bufaddr, buflen);
20820 
20821 	if (cdbsize == CDB_GROUP0) {
20822 		cdb.scc_cmd = SCMD_MODE_SENSE;
20823 		cdb.cdb_opaque[2] = page_code;
20824 		FORMG0COUNT(&cdb, buflen);
20825 		headlen = MODE_HEADER_LENGTH;
20826 	} else {
20827 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
20828 		cdb.cdb_opaque[2] = page_code;
20829 		FORMG1COUNT(&cdb, buflen);
20830 		headlen = MODE_HEADER_LENGTH_GRP2;
20831 	}
20832 
20833 	ASSERT(headlen <= buflen);
20834 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20835 
20836 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20837 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20838 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20839 	ucmd_buf.uscsi_buflen	= buflen;
20840 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20841 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20842 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20843 	ucmd_buf.uscsi_timeout	= 60;
20844 
20845 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20846 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20847 
20848 	switch (status) {
20849 	case 0:
20850 		/*
20851 		 * sr_check_wp() uses 0x3f page code and check the header of
20852 		 * mode page to determine if target device is write-protected.
20853 		 * But some USB devices return 0 bytes for 0x3f page code. For
20854 		 * this case, make sure that mode page header is returned at
20855 		 * least.
20856 		 */
20857 		if (buflen - ucmd_buf.uscsi_resid <  headlen)
20858 			status = EIO;
20859 		break;	/* Success! */
20860 	case EIO:
20861 		switch (ucmd_buf.uscsi_status) {
20862 		case STATUS_RESERVATION_CONFLICT:
20863 			status = EACCES;
20864 			break;
20865 		default:
20866 			break;
20867 		}
20868 		break;
20869 	default:
20870 		break;
20871 	}
20872 
20873 	if (status == 0) {
20874 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
20875 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20876 	}
20877 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
20878 
20879 	return (status);
20880 }
20881 
20882 
20883 /*
20884  *    Function: sd_send_scsi_MODE_SELECT
20885  *
20886  * Description: Utility function for issuing a scsi MODE SELECT command.
20887  *		Note: This routine uses a consistent implementation for Group0,
20888  *		Group1, and Group2 commands across all platforms. ATAPI devices
20889  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20890  *
20891  *   Arguments: un - pointer to the softstate struct for the target.
20892  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20893  *			  CDB_GROUP[1|2] (10 byte).
20894  *		bufaddr - buffer for page data retrieved from the target.
20895  *		buflen - size of page to be retrieved.
20896  *		save_page - boolean to determin if SP bit should be set.
20897  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20898  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20899  *			to use the USCSI "direct" chain and bypass the normal
20900  *			command waitq.
20901  *
20902  * Return Code: 0   - Success
20903  *		errno return code from sd_send_scsi_cmd()
20904  *
20905  *     Context: Can sleep. Does not return until command is completed.
20906  */
20907 
20908 static int
20909 sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
20910 	size_t buflen,  uchar_t save_page, int path_flag)
20911 {
20912 	struct	scsi_extended_sense	sense_buf;
20913 	union scsi_cdb		cdb;
20914 	struct uscsi_cmd	ucmd_buf;
20915 	int			status;
20916 
20917 	ASSERT(un != NULL);
20918 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20919 	ASSERT(bufaddr != NULL);
20920 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20921 	    (cdbsize == CDB_GROUP2));
20922 
20923 	SD_TRACE(SD_LOG_IO, un,
20924 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
20925 
20926 	bzero(&cdb, sizeof (cdb));
20927 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20928 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20929 
20930 	/* Set the PF bit for many third party drives */
20931 	cdb.cdb_opaque[1] = 0x10;
20932 
20933 	/* Set the savepage(SP) bit if given */
20934 	if (save_page == SD_SAVE_PAGE) {
20935 		cdb.cdb_opaque[1] |= 0x01;
20936 	}
20937 
20938 	if (cdbsize == CDB_GROUP0) {
20939 		cdb.scc_cmd = SCMD_MODE_SELECT;
20940 		FORMG0COUNT(&cdb, buflen);
20941 	} else {
20942 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
20943 		FORMG1COUNT(&cdb, buflen);
20944 	}
20945 
20946 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20947 
20948 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20949 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20950 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20951 	ucmd_buf.uscsi_buflen	= buflen;
20952 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20953 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20954 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20955 	ucmd_buf.uscsi_timeout	= 60;
20956 
20957 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20958 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20959 
20960 	switch (status) {
20961 	case 0:
20962 		break;	/* Success! */
20963 	case EIO:
20964 		switch (ucmd_buf.uscsi_status) {
20965 		case STATUS_RESERVATION_CONFLICT:
20966 			status = EACCES;
20967 			break;
20968 		default:
20969 			break;
20970 		}
20971 		break;
20972 	default:
20973 		break;
20974 	}
20975 
20976 	if (status == 0) {
20977 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
20978 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20979 	}
20980 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
20981 
20982 	return (status);
20983 }
20984 
20985 
20986 /*
20987  *    Function: sd_send_scsi_RDWR
20988  *
20989  * Description: Issue a scsi READ or WRITE command with the given parameters.
20990  *
20991  *   Arguments: un:      Pointer to the sd_lun struct for the target.
20992  *		cmd:	 SCMD_READ or SCMD_WRITE
20993  *		bufaddr: Address of caller's buffer to receive the RDWR data
20994  *		buflen:  Length of caller's buffer receive the RDWR data.
20995  *		start_block: Block number for the start of the RDWR operation.
20996  *			 (Assumes target-native block size.)
20997  *		residp:  Pointer to variable to receive the redisual of the
20998  *			 RDWR operation (may be NULL of no residual requested).
20999  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21000  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21001  *			to use the USCSI "direct" chain and bypass the normal
21002  *			command waitq.
21003  *
21004  * Return Code: 0   - Success
21005  *		errno return code from sd_send_scsi_cmd()
21006  *
21007  *     Context: Can sleep. Does not return until command is completed.
21008  */
21009 
21010 static int
21011 sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
21012 	size_t buflen, daddr_t start_block, int path_flag)
21013 {
21014 	struct	scsi_extended_sense	sense_buf;
21015 	union scsi_cdb		cdb;
21016 	struct uscsi_cmd	ucmd_buf;
21017 	uint32_t		block_count;
21018 	int			status;
21019 	int			cdbsize;
21020 	uchar_t			flag;
21021 
21022 	ASSERT(un != NULL);
21023 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21024 	ASSERT(bufaddr != NULL);
21025 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
21026 
21027 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
21028 
21029 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
21030 		return (EINVAL);
21031 	}
21032 
21033 	mutex_enter(SD_MUTEX(un));
21034 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
21035 	mutex_exit(SD_MUTEX(un));
21036 
21037 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
21038 
21039 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
21040 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
21041 	    bufaddr, buflen, start_block, block_count);
21042 
21043 	bzero(&cdb, sizeof (cdb));
21044 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21045 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21046 
21047 	/* Compute CDB size to use */
21048 	if (start_block > 0xffffffff)
21049 		cdbsize = CDB_GROUP4;
21050 	else if ((start_block & 0xFFE00000) ||
21051 	    (un->un_f_cfg_is_atapi == TRUE))
21052 		cdbsize = CDB_GROUP1;
21053 	else
21054 		cdbsize = CDB_GROUP0;
21055 
21056 	switch (cdbsize) {
21057 	case CDB_GROUP0:	/* 6-byte CDBs */
21058 		cdb.scc_cmd = cmd;
21059 		FORMG0ADDR(&cdb, start_block);
21060 		FORMG0COUNT(&cdb, block_count);
21061 		break;
21062 	case CDB_GROUP1:	/* 10-byte CDBs */
21063 		cdb.scc_cmd = cmd | SCMD_GROUP1;
21064 		FORMG1ADDR(&cdb, start_block);
21065 		FORMG1COUNT(&cdb, block_count);
21066 		break;
21067 	case CDB_GROUP4:	/* 16-byte CDBs */
21068 		cdb.scc_cmd = cmd | SCMD_GROUP4;
21069 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
21070 		FORMG4COUNT(&cdb, block_count);
21071 		break;
21072 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
21073 	default:
21074 		/* All others reserved */
21075 		return (EINVAL);
21076 	}
21077 
21078 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
21079 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21080 
21081 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21082 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21083 	ucmd_buf.uscsi_bufaddr	= bufaddr;
21084 	ucmd_buf.uscsi_buflen	= buflen;
21085 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21086 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21087 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
21088 	ucmd_buf.uscsi_timeout	= 60;
21089 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
21090 				UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
21091 	switch (status) {
21092 	case 0:
21093 		break;	/* Success! */
21094 	case EIO:
21095 		switch (ucmd_buf.uscsi_status) {
21096 		case STATUS_RESERVATION_CONFLICT:
21097 			status = EACCES;
21098 			break;
21099 		default:
21100 			break;
21101 		}
21102 		break;
21103 	default:
21104 		break;
21105 	}
21106 
21107 	if (status == 0) {
21108 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
21109 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21110 	}
21111 
21112 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
21113 
21114 	return (status);
21115 }
21116 
21117 
21118 /*
21119  *    Function: sd_send_scsi_LOG_SENSE
21120  *
21121  * Description: Issue a scsi LOG_SENSE command with the given parameters.
21122  *
21123  *   Arguments: un:      Pointer to the sd_lun struct for the target.
21124  *
21125  * Return Code: 0   - Success
21126  *		errno return code from sd_send_scsi_cmd()
21127  *
21128  *     Context: Can sleep. Does not return until command is completed.
21129  */
21130 
21131 static int
21132 sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen,
21133 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
21134 	int path_flag)
21135 
21136 {
21137 	struct	scsi_extended_sense	sense_buf;
21138 	union scsi_cdb		cdb;
21139 	struct uscsi_cmd	ucmd_buf;
21140 	int			status;
21141 
21142 	ASSERT(un != NULL);
21143 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21144 
21145 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
21146 
21147 	bzero(&cdb, sizeof (cdb));
21148 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21149 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21150 
21151 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
21152 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
21153 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
21154 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
21155 	FORMG1COUNT(&cdb, buflen);
21156 
21157 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21158 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
21159 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21160 	ucmd_buf.uscsi_buflen	= buflen;
21161 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21162 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21163 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
21164 	ucmd_buf.uscsi_timeout	= 60;
21165 
21166 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
21167 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
21168 
21169 	switch (status) {
21170 	case 0:
21171 		break;
21172 	case EIO:
21173 		switch (ucmd_buf.uscsi_status) {
21174 		case STATUS_RESERVATION_CONFLICT:
21175 			status = EACCES;
21176 			break;
21177 		case STATUS_CHECK:
21178 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
21179 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
21180 				KEY_ILLEGAL_REQUEST) &&
21181 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
21182 				/*
21183 				 * ASC 0x24: INVALID FIELD IN CDB
21184 				 */
21185 				switch (page_code) {
21186 				case START_STOP_CYCLE_PAGE:
21187 					/*
21188 					 * The start stop cycle counter is
21189 					 * implemented as page 0x31 in earlier
21190 					 * generation disks. In new generation
21191 					 * disks the start stop cycle counter is
21192 					 * implemented as page 0xE. To properly
21193 					 * handle this case if an attempt for
21194 					 * log page 0xE is made and fails we
21195 					 * will try again using page 0x31.
21196 					 *
21197 					 * Network storage BU committed to
21198 					 * maintain the page 0x31 for this
21199 					 * purpose and will not have any other
21200 					 * page implemented with page code 0x31
21201 					 * until all disks transition to the
21202 					 * standard page.
21203 					 */
21204 					mutex_enter(SD_MUTEX(un));
21205 					un->un_start_stop_cycle_page =
21206 					    START_STOP_CYCLE_VU_PAGE;
21207 					cdb.cdb_opaque[2] =
21208 					    (char)(page_control << 6) |
21209 					    un->un_start_stop_cycle_page;
21210 					mutex_exit(SD_MUTEX(un));
21211 					status = sd_send_scsi_cmd(
21212 					    SD_GET_DEV(un), &ucmd_buf,
21213 					    UIO_SYSSPACE, UIO_SYSSPACE,
21214 					    UIO_SYSSPACE, path_flag);
21215 
21216 					break;
21217 				case TEMPERATURE_PAGE:
21218 					status = ENOTTY;
21219 					break;
21220 				default:
21221 					break;
21222 				}
21223 			}
21224 			break;
21225 		default:
21226 			break;
21227 		}
21228 		break;
21229 	default:
21230 		break;
21231 	}
21232 
21233 	if (status == 0) {
21234 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
21235 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21236 	}
21237 
21238 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
21239 
21240 	return (status);
21241 }
21242 
21243 
21244 /*
21245  *    Function: sdioctl
21246  *
21247  * Description: Driver's ioctl(9e) entry point function.
21248  *
21249  *   Arguments: dev     - device number
21250  *		cmd     - ioctl operation to be performed
21251  *		arg     - user argument, contains data to be set or reference
21252  *			  parameter for get
21253  *		flag    - bit flag, indicating open settings, 32/64 bit type
21254  *		cred_p  - user credential pointer
21255  *		rval_p  - calling process return value (OPT)
21256  *
21257  * Return Code: EINVAL
21258  *		ENOTTY
21259  *		ENXIO
21260  *		EIO
21261  *		EFAULT
21262  *		ENOTSUP
21263  *		EPERM
21264  *
21265  *     Context: Called from the device switch at normal priority.
21266  */
21267 
21268 static int
21269 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
21270 {
21271 	struct sd_lun	*un = NULL;
21272 	int		geom_validated = FALSE;
21273 	int		err = 0;
21274 	int		i = 0;
21275 	cred_t		*cr;
21276 
21277 	/*
21278 	 * All device accesses go thru sdstrategy where we check on suspend
21279 	 * status
21280 	 */
21281 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21282 		return (ENXIO);
21283 	}
21284 
21285 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21286 
21287 	/*
21288 	 * Moved this wait from sd_uscsi_strategy to here for
21289 	 * reasons of deadlock prevention. Internal driver commands,
21290 	 * specifically those to change a devices power level, result
21291 	 * in a call to sd_uscsi_strategy.
21292 	 */
21293 	mutex_enter(SD_MUTEX(un));
21294 	while ((un->un_state == SD_STATE_SUSPENDED) ||
21295 	    (un->un_state == SD_STATE_PM_CHANGING)) {
21296 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
21297 	}
21298 	/*
21299 	 * Twiddling the counter here protects commands from now
21300 	 * through to the top of sd_uscsi_strategy. Without the
21301 	 * counter inc. a power down, for example, could get in
21302 	 * after the above check for state is made and before
21303 	 * execution gets to the top of sd_uscsi_strategy.
21304 	 * That would cause problems.
21305 	 */
21306 	un->un_ncmds_in_driver++;
21307 
21308 	if ((un->un_f_geometry_is_valid == FALSE) &&
21309 	    (flag & (FNDELAY | FNONBLOCK))) {
21310 		switch (cmd) {
21311 		case CDROMPAUSE:
21312 		case CDROMRESUME:
21313 		case CDROMPLAYMSF:
21314 		case CDROMPLAYTRKIND:
21315 		case CDROMREADTOCHDR:
21316 		case CDROMREADTOCENTRY:
21317 		case CDROMSTOP:
21318 		case CDROMSTART:
21319 		case CDROMVOLCTRL:
21320 		case CDROMSUBCHNL:
21321 		case CDROMREADMODE2:
21322 		case CDROMREADMODE1:
21323 		case CDROMREADOFFSET:
21324 		case CDROMSBLKMODE:
21325 		case CDROMGBLKMODE:
21326 		case CDROMGDRVSPEED:
21327 		case CDROMSDRVSPEED:
21328 		case CDROMCDDA:
21329 		case CDROMCDXA:
21330 		case CDROMSUBCODE:
21331 			if (!ISCD(un)) {
21332 				un->un_ncmds_in_driver--;
21333 				ASSERT(un->un_ncmds_in_driver >= 0);
21334 				mutex_exit(SD_MUTEX(un));
21335 				return (ENOTTY);
21336 			}
21337 			break;
21338 		case FDEJECT:
21339 		case DKIOCEJECT:
21340 		case CDROMEJECT:
21341 			if (!un->un_f_eject_media_supported) {
21342 				un->un_ncmds_in_driver--;
21343 				ASSERT(un->un_ncmds_in_driver >= 0);
21344 				mutex_exit(SD_MUTEX(un));
21345 				return (ENOTTY);
21346 			}
21347 			break;
21348 		case DKIOCSVTOC:
21349 		case DKIOCSETEFI:
21350 		case DKIOCSMBOOT:
21351 		case DKIOCFLUSHWRITECACHE:
21352 			mutex_exit(SD_MUTEX(un));
21353 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
21354 			if (err != 0) {
21355 				mutex_enter(SD_MUTEX(un));
21356 				un->un_ncmds_in_driver--;
21357 				ASSERT(un->un_ncmds_in_driver >= 0);
21358 				mutex_exit(SD_MUTEX(un));
21359 				return (EIO);
21360 			}
21361 			mutex_enter(SD_MUTEX(un));
21362 			/* FALLTHROUGH */
21363 		case DKIOCREMOVABLE:
21364 		case DKIOCHOTPLUGGABLE:
21365 		case DKIOCINFO:
21366 		case DKIOCGMEDIAINFO:
21367 		case MHIOCENFAILFAST:
21368 		case MHIOCSTATUS:
21369 		case MHIOCTKOWN:
21370 		case MHIOCRELEASE:
21371 		case MHIOCGRP_INKEYS:
21372 		case MHIOCGRP_INRESV:
21373 		case MHIOCGRP_REGISTER:
21374 		case MHIOCGRP_RESERVE:
21375 		case MHIOCGRP_PREEMPTANDABORT:
21376 		case MHIOCGRP_REGISTERANDIGNOREKEY:
21377 		case CDROMCLOSETRAY:
21378 		case USCSICMD:
21379 			goto skip_ready_valid;
21380 		default:
21381 			break;
21382 		}
21383 
21384 		mutex_exit(SD_MUTEX(un));
21385 		err = sd_ready_and_valid(un);
21386 		mutex_enter(SD_MUTEX(un));
21387 		if (err == SD_READY_NOT_VALID) {
21388 			switch (cmd) {
21389 			case DKIOCGAPART:
21390 			case DKIOCGGEOM:
21391 			case DKIOCSGEOM:
21392 			case DKIOCGVTOC:
21393 			case DKIOCSVTOC:
21394 			case DKIOCSAPART:
21395 			case DKIOCG_PHYGEOM:
21396 			case DKIOCG_VIRTGEOM:
21397 				err = ENOTSUP;
21398 				un->un_ncmds_in_driver--;
21399 				ASSERT(un->un_ncmds_in_driver >= 0);
21400 				mutex_exit(SD_MUTEX(un));
21401 				return (err);
21402 			}
21403 		}
21404 		if (err != SD_READY_VALID) {
21405 			switch (cmd) {
21406 			case DKIOCSTATE:
21407 			case CDROMGDRVSPEED:
21408 			case CDROMSDRVSPEED:
21409 			case FDEJECT:	/* for eject command */
21410 			case DKIOCEJECT:
21411 			case CDROMEJECT:
21412 			case DKIOCGETEFI:
21413 			case DKIOCSGEOM:
21414 			case DKIOCREMOVABLE:
21415 			case DKIOCHOTPLUGGABLE:
21416 			case DKIOCSAPART:
21417 			case DKIOCSETEFI:
21418 				break;
21419 			default:
21420 				if (un->un_f_has_removable_media) {
21421 					err = ENXIO;
21422 				} else {
21423 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
21424 					if (err == SD_RESERVED_BY_OTHERS) {
21425 						err = EACCES;
21426 					} else {
21427 						err = EIO;
21428 					}
21429 				}
21430 				un->un_ncmds_in_driver--;
21431 				ASSERT(un->un_ncmds_in_driver >= 0);
21432 				mutex_exit(SD_MUTEX(un));
21433 				return (err);
21434 			}
21435 		}
21436 		geom_validated = TRUE;
21437 	}
21438 	if ((un->un_f_geometry_is_valid == TRUE) &&
21439 	    (un->un_solaris_size > 0)) {
21440 		/*
21441 		 * the "geometry_is_valid" flag could be true if we
21442 		 * have an fdisk table but no Solaris partition
21443 		 */
21444 		if (un->un_vtoc.v_sanity != VTOC_SANE) {
21445 			/* it is EFI, so return ENOTSUP for these */
21446 			switch (cmd) {
21447 			case DKIOCGAPART:
21448 			case DKIOCGGEOM:
21449 			case DKIOCGVTOC:
21450 			case DKIOCSVTOC:
21451 			case DKIOCSAPART:
21452 				err = ENOTSUP;
21453 				un->un_ncmds_in_driver--;
21454 				ASSERT(un->un_ncmds_in_driver >= 0);
21455 				mutex_exit(SD_MUTEX(un));
21456 				return (err);
21457 			}
21458 		}
21459 	}
21460 
21461 skip_ready_valid:
21462 	mutex_exit(SD_MUTEX(un));
21463 
21464 	switch (cmd) {
21465 	case DKIOCINFO:
21466 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
21467 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
21468 		break;
21469 
21470 	case DKIOCGMEDIAINFO:
21471 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
21472 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
21473 		break;
21474 
21475 	case DKIOCGGEOM:
21476 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGGEOM\n");
21477 		err = sd_dkio_get_geometry(dev, (caddr_t)arg, flag,
21478 		    geom_validated);
21479 		break;
21480 
21481 	case DKIOCSGEOM:
21482 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSGEOM\n");
21483 		err = sd_dkio_set_geometry(dev, (caddr_t)arg, flag);
21484 		break;
21485 
21486 	case DKIOCGAPART:
21487 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGAPART\n");
21488 		err = sd_dkio_get_partition(dev, (caddr_t)arg, flag,
21489 		    geom_validated);
21490 		break;
21491 
21492 	case DKIOCSAPART:
21493 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSAPART\n");
21494 		err = sd_dkio_set_partition(dev, (caddr_t)arg, flag);
21495 		break;
21496 
21497 	case DKIOCGVTOC:
21498 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGVTOC\n");
21499 		err = sd_dkio_get_vtoc(dev, (caddr_t)arg, flag,
21500 		    geom_validated);
21501 		break;
21502 
21503 	case DKIOCGETEFI:
21504 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGETEFI\n");
21505 		err = sd_dkio_get_efi(dev, (caddr_t)arg, flag);
21506 		break;
21507 
21508 	case DKIOCPARTITION:
21509 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTITION\n");
21510 		err = sd_dkio_partition(dev, (caddr_t)arg, flag);
21511 		break;
21512 
21513 	case DKIOCSVTOC:
21514 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSVTOC\n");
21515 		err = sd_dkio_set_vtoc(dev, (caddr_t)arg, flag);
21516 		break;
21517 
21518 	case DKIOCSETEFI:
21519 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSETEFI\n");
21520 		err = sd_dkio_set_efi(dev, (caddr_t)arg, flag);
21521 		break;
21522 
21523 	case DKIOCGMBOOT:
21524 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMBOOT\n");
21525 		err = sd_dkio_get_mboot(dev, (caddr_t)arg, flag);
21526 		break;
21527 
21528 	case DKIOCSMBOOT:
21529 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSMBOOT\n");
21530 		err = sd_dkio_set_mboot(dev, (caddr_t)arg, flag);
21531 		break;
21532 
21533 	case DKIOCLOCK:
21534 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
21535 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
21536 		    SD_PATH_STANDARD);
21537 		break;
21538 
21539 	case DKIOCUNLOCK:
21540 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
21541 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
21542 		    SD_PATH_STANDARD);
21543 		break;
21544 
21545 	case DKIOCSTATE: {
21546 		enum dkio_state		state;
21547 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
21548 
21549 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
21550 			err = EFAULT;
21551 		} else {
21552 			err = sd_check_media(dev, state);
21553 			if (err == 0) {
21554 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
21555 				    sizeof (int), flag) != 0)
21556 					err = EFAULT;
21557 			}
21558 		}
21559 		break;
21560 	}
21561 
21562 	case DKIOCREMOVABLE:
21563 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
21564 		/*
21565 		 * At present, vold only does automount for removable-media
21566 		 * devices, in order not to break current applications, we
21567 		 * still let hopluggable devices pretend to be removable media
21568 		 * devices for vold. In the near future, once vold is EOL'ed,
21569 		 * we should remove this workaround.
21570 		 */
21571 		if (un->un_f_has_removable_media || un->un_f_is_hotpluggable) {
21572 			i = 1;
21573 		} else {
21574 			i = 0;
21575 		}
21576 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
21577 			err = EFAULT;
21578 		} else {
21579 			err = 0;
21580 		}
21581 		break;
21582 
21583 	case DKIOCHOTPLUGGABLE:
21584 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
21585 		if (un->un_f_is_hotpluggable) {
21586 			i = 1;
21587 		} else {
21588 			i = 0;
21589 		}
21590 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
21591 			err = EFAULT;
21592 		} else {
21593 			err = 0;
21594 		}
21595 		break;
21596 
21597 	case DKIOCGTEMPERATURE:
21598 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
21599 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
21600 		break;
21601 
21602 	case MHIOCENFAILFAST:
21603 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
21604 		if ((err = drv_priv(cred_p)) == 0) {
21605 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
21606 		}
21607 		break;
21608 
21609 	case MHIOCTKOWN:
21610 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
21611 		if ((err = drv_priv(cred_p)) == 0) {
21612 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
21613 		}
21614 		break;
21615 
21616 	case MHIOCRELEASE:
21617 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
21618 		if ((err = drv_priv(cred_p)) == 0) {
21619 			err = sd_mhdioc_release(dev);
21620 		}
21621 		break;
21622 
21623 	case MHIOCSTATUS:
21624 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
21625 		if ((err = drv_priv(cred_p)) == 0) {
21626 			switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) {
21627 			case 0:
21628 				err = 0;
21629 				break;
21630 			case EACCES:
21631 				*rval_p = 1;
21632 				err = 0;
21633 				break;
21634 			default:
21635 				err = EIO;
21636 				break;
21637 			}
21638 		}
21639 		break;
21640 
21641 	case MHIOCQRESERVE:
21642 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
21643 		if ((err = drv_priv(cred_p)) == 0) {
21644 			err = sd_reserve_release(dev, SD_RESERVE);
21645 		}
21646 		break;
21647 
21648 	case MHIOCREREGISTERDEVID:
21649 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
21650 		if (drv_priv(cred_p) == EPERM) {
21651 			err = EPERM;
21652 		} else if (!un->un_f_devid_supported) {
21653 			err = ENOTTY;
21654 		} else {
21655 			err = sd_mhdioc_register_devid(dev);
21656 		}
21657 		break;
21658 
21659 	case MHIOCGRP_INKEYS:
21660 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
21661 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21662 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21663 				err = ENOTSUP;
21664 			} else {
21665 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
21666 				    flag);
21667 			}
21668 		}
21669 		break;
21670 
21671 	case MHIOCGRP_INRESV:
21672 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
21673 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21674 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21675 				err = ENOTSUP;
21676 			} else {
21677 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
21678 			}
21679 		}
21680 		break;
21681 
21682 	case MHIOCGRP_REGISTER:
21683 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
21684 		if ((err = drv_priv(cred_p)) != EPERM) {
21685 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21686 				err = ENOTSUP;
21687 			} else if (arg != NULL) {
21688 				mhioc_register_t reg;
21689 				if (ddi_copyin((void *)arg, &reg,
21690 				    sizeof (mhioc_register_t), flag) != 0) {
21691 					err = EFAULT;
21692 				} else {
21693 					err =
21694 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21695 					    un, SD_SCSI3_REGISTER,
21696 					    (uchar_t *)&reg);
21697 				}
21698 			}
21699 		}
21700 		break;
21701 
21702 	case MHIOCGRP_RESERVE:
21703 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
21704 		if ((err = drv_priv(cred_p)) != EPERM) {
21705 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21706 				err = ENOTSUP;
21707 			} else if (arg != NULL) {
21708 				mhioc_resv_desc_t resv_desc;
21709 				if (ddi_copyin((void *)arg, &resv_desc,
21710 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
21711 					err = EFAULT;
21712 				} else {
21713 					err =
21714 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21715 					    un, SD_SCSI3_RESERVE,
21716 					    (uchar_t *)&resv_desc);
21717 				}
21718 			}
21719 		}
21720 		break;
21721 
21722 	case MHIOCGRP_PREEMPTANDABORT:
21723 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
21724 		if ((err = drv_priv(cred_p)) != EPERM) {
21725 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21726 				err = ENOTSUP;
21727 			} else if (arg != NULL) {
21728 				mhioc_preemptandabort_t preempt_abort;
21729 				if (ddi_copyin((void *)arg, &preempt_abort,
21730 				    sizeof (mhioc_preemptandabort_t),
21731 				    flag) != 0) {
21732 					err = EFAULT;
21733 				} else {
21734 					err =
21735 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21736 					    un, SD_SCSI3_PREEMPTANDABORT,
21737 					    (uchar_t *)&preempt_abort);
21738 				}
21739 			}
21740 		}
21741 		break;
21742 
21743 	case MHIOCGRP_REGISTERANDIGNOREKEY:
21744 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
21745 		if ((err = drv_priv(cred_p)) != EPERM) {
21746 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21747 				err = ENOTSUP;
21748 			} else if (arg != NULL) {
21749 				mhioc_registerandignorekey_t r_and_i;
21750 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
21751 				    sizeof (mhioc_registerandignorekey_t),
21752 				    flag) != 0) {
21753 					err = EFAULT;
21754 				} else {
21755 					err =
21756 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21757 					    un, SD_SCSI3_REGISTERANDIGNOREKEY,
21758 					    (uchar_t *)&r_and_i);
21759 				}
21760 			}
21761 		}
21762 		break;
21763 
21764 	case USCSICMD:
21765 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
21766 		cr = ddi_get_cred();
21767 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
21768 			err = EPERM;
21769 		} else {
21770 			err = sd_uscsi_ioctl(dev, (caddr_t)arg, flag);
21771 		}
21772 		break;
21773 
21774 	case CDROMPAUSE:
21775 	case CDROMRESUME:
21776 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
21777 		if (!ISCD(un)) {
21778 			err = ENOTTY;
21779 		} else {
21780 			err = sr_pause_resume(dev, cmd);
21781 		}
21782 		break;
21783 
21784 	case CDROMPLAYMSF:
21785 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
21786 		if (!ISCD(un)) {
21787 			err = ENOTTY;
21788 		} else {
21789 			err = sr_play_msf(dev, (caddr_t)arg, flag);
21790 		}
21791 		break;
21792 
21793 	case CDROMPLAYTRKIND:
21794 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
21795 #if defined(__i386) || defined(__amd64)
21796 		/*
21797 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
21798 		 */
21799 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21800 #else
21801 		if (!ISCD(un)) {
21802 #endif
21803 			err = ENOTTY;
21804 		} else {
21805 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
21806 		}
21807 		break;
21808 
21809 	case CDROMREADTOCHDR:
21810 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
21811 		if (!ISCD(un)) {
21812 			err = ENOTTY;
21813 		} else {
21814 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
21815 		}
21816 		break;
21817 
21818 	case CDROMREADTOCENTRY:
21819 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
21820 		if (!ISCD(un)) {
21821 			err = ENOTTY;
21822 		} else {
21823 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
21824 		}
21825 		break;
21826 
21827 	case CDROMSTOP:
21828 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
21829 		if (!ISCD(un)) {
21830 			err = ENOTTY;
21831 		} else {
21832 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP,
21833 			    SD_PATH_STANDARD);
21834 		}
21835 		break;
21836 
21837 	case CDROMSTART:
21838 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
21839 		if (!ISCD(un)) {
21840 			err = ENOTTY;
21841 		} else {
21842 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
21843 			    SD_PATH_STANDARD);
21844 		}
21845 		break;
21846 
21847 	case CDROMCLOSETRAY:
21848 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
21849 		if (!ISCD(un)) {
21850 			err = ENOTTY;
21851 		} else {
21852 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE,
21853 			    SD_PATH_STANDARD);
21854 		}
21855 		break;
21856 
21857 	case FDEJECT:	/* for eject command */
21858 	case DKIOCEJECT:
21859 	case CDROMEJECT:
21860 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
21861 		if (!un->un_f_eject_media_supported) {
21862 			err = ENOTTY;
21863 		} else {
21864 			err = sr_eject(dev);
21865 		}
21866 		break;
21867 
21868 	case CDROMVOLCTRL:
21869 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
21870 		if (!ISCD(un)) {
21871 			err = ENOTTY;
21872 		} else {
21873 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
21874 		}
21875 		break;
21876 
21877 	case CDROMSUBCHNL:
21878 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
21879 		if (!ISCD(un)) {
21880 			err = ENOTTY;
21881 		} else {
21882 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
21883 		}
21884 		break;
21885 
21886 	case CDROMREADMODE2:
21887 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
21888 		if (!ISCD(un)) {
21889 			err = ENOTTY;
21890 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21891 			/*
21892 			 * If the drive supports READ CD, use that instead of
21893 			 * switching the LBA size via a MODE SELECT
21894 			 * Block Descriptor
21895 			 */
21896 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
21897 		} else {
21898 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
21899 		}
21900 		break;
21901 
21902 	case CDROMREADMODE1:
21903 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
21904 		if (!ISCD(un)) {
21905 			err = ENOTTY;
21906 		} else {
21907 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
21908 		}
21909 		break;
21910 
21911 	case CDROMREADOFFSET:
21912 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
21913 		if (!ISCD(un)) {
21914 			err = ENOTTY;
21915 		} else {
21916 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
21917 			    flag);
21918 		}
21919 		break;
21920 
21921 	case CDROMSBLKMODE:
21922 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
21923 		/*
21924 		 * There is no means of changing block size in case of atapi
21925 		 * drives, thus return ENOTTY if drive type is atapi
21926 		 */
21927 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21928 			err = ENOTTY;
21929 		} else if (un->un_f_mmc_cap == TRUE) {
21930 
21931 			/*
21932 			 * MMC Devices do not support changing the
21933 			 * logical block size
21934 			 *
21935 			 * Note: EINVAL is being returned instead of ENOTTY to
21936 			 * maintain consistancy with the original mmc
21937 			 * driver update.
21938 			 */
21939 			err = EINVAL;
21940 		} else {
21941 			mutex_enter(SD_MUTEX(un));
21942 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
21943 			    (un->un_ncmds_in_transport > 0)) {
21944 				mutex_exit(SD_MUTEX(un));
21945 				err = EINVAL;
21946 			} else {
21947 				mutex_exit(SD_MUTEX(un));
21948 				err = sr_change_blkmode(dev, cmd, arg, flag);
21949 			}
21950 		}
21951 		break;
21952 
21953 	case CDROMGBLKMODE:
21954 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
21955 		if (!ISCD(un)) {
21956 			err = ENOTTY;
21957 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
21958 		    (un->un_f_blockcount_is_valid != FALSE)) {
21959 			/*
21960 			 * Drive is an ATAPI drive so return target block
21961 			 * size for ATAPI drives since we cannot change the
21962 			 * blocksize on ATAPI drives. Used primarily to detect
21963 			 * if an ATAPI cdrom is present.
21964 			 */
21965 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
21966 			    sizeof (int), flag) != 0) {
21967 				err = EFAULT;
21968 			} else {
21969 				err = 0;
21970 			}
21971 
21972 		} else {
21973 			/*
21974 			 * Drive supports changing block sizes via a Mode
21975 			 * Select.
21976 			 */
21977 			err = sr_change_blkmode(dev, cmd, arg, flag);
21978 		}
21979 		break;
21980 
21981 	case CDROMGDRVSPEED:
21982 	case CDROMSDRVSPEED:
21983 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
21984 		if (!ISCD(un)) {
21985 			err = ENOTTY;
21986 		} else if (un->un_f_mmc_cap == TRUE) {
21987 			/*
21988 			 * Note: In the future the driver implementation
21989 			 * for getting and
21990 			 * setting cd speed should entail:
21991 			 * 1) If non-mmc try the Toshiba mode page
21992 			 *    (sr_change_speed)
21993 			 * 2) If mmc but no support for Real Time Streaming try
21994 			 *    the SET CD SPEED (0xBB) command
21995 			 *   (sr_atapi_change_speed)
21996 			 * 3) If mmc and support for Real Time Streaming
21997 			 *    try the GET PERFORMANCE and SET STREAMING
21998 			 *    commands (not yet implemented, 4380808)
21999 			 */
22000 			/*
22001 			 * As per recent MMC spec, CD-ROM speed is variable
22002 			 * and changes with LBA. Since there is no such
22003 			 * things as drive speed now, fail this ioctl.
22004 			 *
22005 			 * Note: EINVAL is returned for consistancy of original
22006 			 * implementation which included support for getting
22007 			 * the drive speed of mmc devices but not setting
22008 			 * the drive speed. Thus EINVAL would be returned
22009 			 * if a set request was made for an mmc device.
22010 			 * We no longer support get or set speed for
22011 			 * mmc but need to remain consistant with regard
22012 			 * to the error code returned.
22013 			 */
22014 			err = EINVAL;
22015 		} else if (un->un_f_cfg_is_atapi == TRUE) {
22016 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
22017 		} else {
22018 			err = sr_change_speed(dev, cmd, arg, flag);
22019 		}
22020 		break;
22021 
22022 	case CDROMCDDA:
22023 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
22024 		if (!ISCD(un)) {
22025 			err = ENOTTY;
22026 		} else {
22027 			err = sr_read_cdda(dev, (void *)arg, flag);
22028 		}
22029 		break;
22030 
22031 	case CDROMCDXA:
22032 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
22033 		if (!ISCD(un)) {
22034 			err = ENOTTY;
22035 		} else {
22036 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
22037 		}
22038 		break;
22039 
22040 	case CDROMSUBCODE:
22041 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
22042 		if (!ISCD(un)) {
22043 			err = ENOTTY;
22044 		} else {
22045 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
22046 		}
22047 		break;
22048 
22049 	case DKIOCPARTINFO: {
22050 		/*
22051 		 * Return parameters describing the selected disk slice.
22052 		 * Note: this ioctl is for the intel platform only
22053 		 */
22054 #if defined(__i386) || defined(__amd64)
22055 		int part;
22056 
22057 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n");
22058 		part = SDPART(dev);
22059 
22060 		/* don't check un_solaris_size for pN */
22061 		if (part < P0_RAW_DISK && un->un_solaris_size == 0) {
22062 			err = EIO;
22063 		} else {
22064 			struct part_info p;
22065 
22066 			p.p_start = (daddr_t)un->un_offset[part];
22067 			p.p_length = (int)un->un_map[part].dkl_nblk;
22068 #ifdef _MULTI_DATAMODEL
22069 			switch (ddi_model_convert_from(flag & FMODELS)) {
22070 			case DDI_MODEL_ILP32:
22071 			{
22072 				struct part_info32 p32;
22073 
22074 				p32.p_start = (daddr32_t)p.p_start;
22075 				p32.p_length = p.p_length;
22076 				if (ddi_copyout(&p32, (void *)arg,
22077 				    sizeof (p32), flag))
22078 					err = EFAULT;
22079 				break;
22080 			}
22081 
22082 			case DDI_MODEL_NONE:
22083 			{
22084 				if (ddi_copyout(&p, (void *)arg, sizeof (p),
22085 				    flag))
22086 					err = EFAULT;
22087 				break;
22088 			}
22089 			}
22090 #else /* ! _MULTI_DATAMODEL */
22091 			if (ddi_copyout(&p, (void *)arg, sizeof (p), flag))
22092 				err = EFAULT;
22093 #endif /* _MULTI_DATAMODEL */
22094 		}
22095 #else
22096 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n");
22097 		err = ENOTTY;
22098 #endif
22099 		break;
22100 	}
22101 
22102 	case DKIOCG_PHYGEOM: {
22103 		/* Return the driver's notion of the media physical geometry */
22104 #if defined(__i386) || defined(__amd64)
22105 		uint64_t	capacity;
22106 		struct dk_geom	disk_geom;
22107 		struct dk_geom	*dkgp = &disk_geom;
22108 
22109 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n");
22110 		mutex_enter(SD_MUTEX(un));
22111 
22112 		if (un->un_g.dkg_nhead != 0 &&
22113 		    un->un_g.dkg_nsect != 0) {
22114 			/*
22115 			 * We succeeded in getting a geometry, but
22116 			 * right now it is being reported as just the
22117 			 * Solaris fdisk partition, just like for
22118 			 * DKIOCGGEOM. We need to change that to be
22119 			 * correct for the entire disk now.
22120 			 */
22121 			bcopy(&un->un_g, dkgp, sizeof (*dkgp));
22122 			dkgp->dkg_acyl = 0;
22123 			dkgp->dkg_ncyl = un->un_blockcount /
22124 			    (dkgp->dkg_nhead * dkgp->dkg_nsect);
22125 		} else {
22126 			bzero(dkgp, sizeof (struct dk_geom));
22127 			/*
22128 			 * This disk does not have a Solaris VTOC
22129 			 * so we must present a physical geometry
22130 			 * that will remain consistent regardless
22131 			 * of how the disk is used. This will ensure
22132 			 * that the geometry does not change regardless
22133 			 * of the fdisk partition type (ie. EFI, FAT32,
22134 			 * Solaris, etc).
22135 			 */
22136 			if (ISCD(un)) {
22137 				dkgp->dkg_nhead = un->un_pgeom.g_nhead;
22138 				dkgp->dkg_nsect = un->un_pgeom.g_nsect;
22139 				dkgp->dkg_ncyl = un->un_pgeom.g_ncyl;
22140 				dkgp->dkg_acyl = un->un_pgeom.g_acyl;
22141 			} else {
22142 				/*
22143 				 * Invalid un_blockcount can generate invalid
22144 				 * dk_geom and may result in division by zero
22145 				 * system failure. Should make sure blockcount
22146 				 * is valid before using it here.
22147 				 */
22148 				if (un->un_f_blockcount_is_valid == FALSE) {
22149 					mutex_exit(SD_MUTEX(un));
22150 					err = EIO;
22151 
22152 					break;
22153 				}
22154 
22155 				/*
22156 				 * Refer to comments related to off-by-1 at the
22157 				 * header of this file
22158 				 */
22159 				if (!un->un_f_capacity_adjusted &&
22160 					!un->un_f_has_removable_media &&
22161 				    !un->un_f_is_hotpluggable &&
22162 					(un->un_tgt_blocksize ==
22163 					un->un_sys_blocksize))
22164 					capacity = un->un_blockcount - 1;
22165 				else
22166 					capacity = un->un_blockcount;
22167 
22168 				sd_convert_geometry(capacity, dkgp);
22169 				dkgp->dkg_acyl = 0;
22170 				dkgp->dkg_ncyl = capacity /
22171 				    (dkgp->dkg_nhead * dkgp->dkg_nsect);
22172 			}
22173 		}
22174 		dkgp->dkg_pcyl = dkgp->dkg_ncyl + dkgp->dkg_acyl;
22175 
22176 		if (ddi_copyout(dkgp, (void *)arg,
22177 		    sizeof (struct dk_geom), flag)) {
22178 			mutex_exit(SD_MUTEX(un));
22179 			err = EFAULT;
22180 		} else {
22181 			mutex_exit(SD_MUTEX(un));
22182 			err = 0;
22183 		}
22184 #else
22185 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n");
22186 		err = ENOTTY;
22187 #endif
22188 		break;
22189 	}
22190 
22191 	case DKIOCG_VIRTGEOM: {
22192 		/* Return the driver's notion of the media's logical geometry */
22193 #if defined(__i386) || defined(__amd64)
22194 		struct dk_geom	disk_geom;
22195 		struct dk_geom	*dkgp = &disk_geom;
22196 
22197 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n");
22198 		mutex_enter(SD_MUTEX(un));
22199 		/*
22200 		 * If there is no HBA geometry available, or
22201 		 * if the HBA returned us something that doesn't
22202 		 * really fit into an Int 13/function 8 geometry
22203 		 * result, just fail the ioctl.  See PSARC 1998/313.
22204 		 */
22205 		if (un->un_lgeom.g_nhead == 0 ||
22206 		    un->un_lgeom.g_nsect == 0 ||
22207 		    un->un_lgeom.g_ncyl > 1024) {
22208 			mutex_exit(SD_MUTEX(un));
22209 			err = EINVAL;
22210 		} else {
22211 			dkgp->dkg_ncyl	= un->un_lgeom.g_ncyl;
22212 			dkgp->dkg_acyl	= un->un_lgeom.g_acyl;
22213 			dkgp->dkg_pcyl	= dkgp->dkg_ncyl + dkgp->dkg_acyl;
22214 			dkgp->dkg_nhead	= un->un_lgeom.g_nhead;
22215 			dkgp->dkg_nsect	= un->un_lgeom.g_nsect;
22216 
22217 			if (ddi_copyout(dkgp, (void *)arg,
22218 			    sizeof (struct dk_geom), flag)) {
22219 				mutex_exit(SD_MUTEX(un));
22220 				err = EFAULT;
22221 			} else {
22222 				mutex_exit(SD_MUTEX(un));
22223 				err = 0;
22224 			}
22225 		}
22226 #else
22227 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n");
22228 		err = ENOTTY;
22229 #endif
22230 		break;
22231 	}
22232 #ifdef SDDEBUG
22233 /* RESET/ABORTS testing ioctls */
22234 	case DKIOCRESET: {
22235 		int	reset_level;
22236 
22237 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
22238 			err = EFAULT;
22239 		} else {
22240 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
22241 			    "reset_level = 0x%lx\n", reset_level);
22242 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
22243 				err = 0;
22244 			} else {
22245 				err = EIO;
22246 			}
22247 		}
22248 		break;
22249 	}
22250 
22251 	case DKIOCABORT:
22252 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
22253 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
22254 			err = 0;
22255 		} else {
22256 			err = EIO;
22257 		}
22258 		break;
22259 #endif
22260 
22261 #ifdef SD_FAULT_INJECTION
22262 /* SDIOC FaultInjection testing ioctls */
22263 	case SDIOCSTART:
22264 	case SDIOCSTOP:
22265 	case SDIOCINSERTPKT:
22266 	case SDIOCINSERTXB:
22267 	case SDIOCINSERTUN:
22268 	case SDIOCINSERTARQ:
22269 	case SDIOCPUSH:
22270 	case SDIOCRETRIEVE:
22271 	case SDIOCRUN:
22272 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
22273 		    "SDIOC detected cmd:0x%X:\n", cmd);
22274 		/* call error generator */
22275 		sd_faultinjection_ioctl(cmd, arg, un);
22276 		err = 0;
22277 		break;
22278 
22279 #endif /* SD_FAULT_INJECTION */
22280 
22281 	case DKIOCFLUSHWRITECACHE:
22282 		{
22283 			struct dk_callback *dkc = (struct dk_callback *)arg;
22284 
22285 			mutex_enter(SD_MUTEX(un));
22286 			if (!un->un_f_sync_cache_supported ||
22287 			    !un->un_f_write_cache_enabled) {
22288 				err = un->un_f_sync_cache_supported ?
22289 					0 : ENOTSUP;
22290 				mutex_exit(SD_MUTEX(un));
22291 				if ((flag & FKIOCTL) && dkc != NULL &&
22292 				    dkc->dkc_callback != NULL) {
22293 					(*dkc->dkc_callback)(dkc->dkc_cookie,
22294 					    err);
22295 					/*
22296 					 * Did callback and reported error.
22297 					 * Since we did a callback, ioctl
22298 					 * should return 0.
22299 					 */
22300 					err = 0;
22301 				}
22302 				break;
22303 			}
22304 			mutex_exit(SD_MUTEX(un));
22305 
22306 			if ((flag & FKIOCTL) && dkc != NULL &&
22307 			    dkc->dkc_callback != NULL) {
22308 				/* async SYNC CACHE request */
22309 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
22310 			} else {
22311 				/* synchronous SYNC CACHE request */
22312 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
22313 			}
22314 		}
22315 		break;
22316 
22317 	case DKIOCGETWCE: {
22318 
22319 		int wce;
22320 
22321 		if ((err = sd_get_write_cache_enabled(un, &wce)) != 0) {
22322 			break;
22323 		}
22324 
22325 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
22326 			err = EFAULT;
22327 		}
22328 		break;
22329 	}
22330 
22331 	case DKIOCSETWCE: {
22332 
22333 		int wce, sync_supported;
22334 
22335 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
22336 			err = EFAULT;
22337 			break;
22338 		}
22339 
22340 		/*
22341 		 * Synchronize multiple threads trying to enable
22342 		 * or disable the cache via the un_f_wcc_cv
22343 		 * condition variable.
22344 		 */
22345 		mutex_enter(SD_MUTEX(un));
22346 
22347 		/*
22348 		 * Don't allow the cache to be enabled if the
22349 		 * config file has it disabled.
22350 		 */
22351 		if (un->un_f_opt_disable_cache && wce) {
22352 			mutex_exit(SD_MUTEX(un));
22353 			err = EINVAL;
22354 			break;
22355 		}
22356 
22357 		/*
22358 		 * Wait for write cache change in progress
22359 		 * bit to be clear before proceeding.
22360 		 */
22361 		while (un->un_f_wcc_inprog)
22362 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
22363 
22364 		un->un_f_wcc_inprog = 1;
22365 
22366 		if (un->un_f_write_cache_enabled && wce == 0) {
22367 			/*
22368 			 * Disable the write cache.  Don't clear
22369 			 * un_f_write_cache_enabled until after
22370 			 * the mode select and flush are complete.
22371 			 */
22372 			sync_supported = un->un_f_sync_cache_supported;
22373 			mutex_exit(SD_MUTEX(un));
22374 			if ((err = sd_cache_control(un, SD_CACHE_NOCHANGE,
22375 			    SD_CACHE_DISABLE)) == 0 && sync_supported) {
22376 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
22377 			}
22378 
22379 			mutex_enter(SD_MUTEX(un));
22380 			if (err == 0) {
22381 				un->un_f_write_cache_enabled = 0;
22382 			}
22383 
22384 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
22385 			/*
22386 			 * Set un_f_write_cache_enabled first, so there is
22387 			 * no window where the cache is enabled, but the
22388 			 * bit says it isn't.
22389 			 */
22390 			un->un_f_write_cache_enabled = 1;
22391 			mutex_exit(SD_MUTEX(un));
22392 
22393 			err = sd_cache_control(un, SD_CACHE_NOCHANGE,
22394 				SD_CACHE_ENABLE);
22395 
22396 			mutex_enter(SD_MUTEX(un));
22397 
22398 			if (err) {
22399 				un->un_f_write_cache_enabled = 0;
22400 			}
22401 		}
22402 
22403 		un->un_f_wcc_inprog = 0;
22404 		cv_broadcast(&un->un_wcc_cv);
22405 		mutex_exit(SD_MUTEX(un));
22406 		break;
22407 	}
22408 
22409 	default:
22410 		err = ENOTTY;
22411 		break;
22412 	}
22413 	mutex_enter(SD_MUTEX(un));
22414 	un->un_ncmds_in_driver--;
22415 	ASSERT(un->un_ncmds_in_driver >= 0);
22416 	mutex_exit(SD_MUTEX(un));
22417 
22418 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
22419 	return (err);
22420 }
22421 
22422 
22423 /*
22424  *    Function: sd_uscsi_ioctl
22425  *
22426  * Description: This routine is the driver entry point for handling USCSI ioctl
22427  *		requests (USCSICMD).
22428  *
22429  *   Arguments: dev	- the device number
22430  *		arg	- user provided scsi command
22431  *		flag	- this argument is a pass through to ddi_copyxxx()
22432  *			  directly from the mode argument of ioctl().
22433  *
22434  * Return Code: code returned by sd_send_scsi_cmd
22435  *		ENXIO
22436  *		EFAULT
22437  *		EAGAIN
22438  */
22439 
22440 static int
22441 sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag)
22442 {
22443 #ifdef _MULTI_DATAMODEL
22444 	/*
22445 	 * For use when a 32 bit app makes a call into a
22446 	 * 64 bit ioctl
22447 	 */
22448 	struct uscsi_cmd32	uscsi_cmd_32_for_64;
22449 	struct uscsi_cmd32	*ucmd32 = &uscsi_cmd_32_for_64;
22450 	model_t			model;
22451 #endif /* _MULTI_DATAMODEL */
22452 	struct uscsi_cmd	*scmd = NULL;
22453 	struct sd_lun		*un = NULL;
22454 	enum uio_seg		uioseg;
22455 	char			cdb[CDB_GROUP0];
22456 	int			rval = 0;
22457 
22458 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22459 		return (ENXIO);
22460 	}
22461 
22462 	SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: entry: un:0x%p\n", un);
22463 
22464 	scmd = (struct uscsi_cmd *)
22465 	    kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
22466 
22467 #ifdef _MULTI_DATAMODEL
22468 	switch (model = ddi_model_convert_from(flag & FMODELS)) {
22469 	case DDI_MODEL_ILP32:
22470 	{
22471 		if (ddi_copyin((void *)arg, ucmd32, sizeof (*ucmd32), flag)) {
22472 			rval = EFAULT;
22473 			goto done;
22474 		}
22475 		/*
22476 		 * Convert the ILP32 uscsi data from the
22477 		 * application to LP64 for internal use.
22478 		 */
22479 		uscsi_cmd32touscsi_cmd(ucmd32, scmd);
22480 		break;
22481 	}
22482 	case DDI_MODEL_NONE:
22483 		if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) {
22484 			rval = EFAULT;
22485 			goto done;
22486 		}
22487 		break;
22488 	}
22489 #else /* ! _MULTI_DATAMODEL */
22490 	if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) {
22491 		rval = EFAULT;
22492 		goto done;
22493 	}
22494 #endif /* _MULTI_DATAMODEL */
22495 
22496 	scmd->uscsi_flags &= ~USCSI_NOINTR;
22497 	uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE : UIO_USERSPACE;
22498 	if (un->un_f_format_in_progress == TRUE) {
22499 		rval = EAGAIN;
22500 		goto done;
22501 	}
22502 
22503 	/*
22504 	 * Gotta do the ddi_copyin() here on the uscsi_cdb so that
22505 	 * we will have a valid cdb[0] to test.
22506 	 */
22507 	if ((ddi_copyin(scmd->uscsi_cdb, cdb, CDB_GROUP0, flag) == 0) &&
22508 	    (cdb[0] == SCMD_FORMAT)) {
22509 		SD_TRACE(SD_LOG_IOCTL, un,
22510 		    "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]);
22511 		mutex_enter(SD_MUTEX(un));
22512 		un->un_f_format_in_progress = TRUE;
22513 		mutex_exit(SD_MUTEX(un));
22514 		rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg,
22515 		    SD_PATH_STANDARD);
22516 		mutex_enter(SD_MUTEX(un));
22517 		un->un_f_format_in_progress = FALSE;
22518 		mutex_exit(SD_MUTEX(un));
22519 	} else {
22520 		SD_TRACE(SD_LOG_IOCTL, un,
22521 		    "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]);
22522 		/*
22523 		 * It's OK to fall into here even if the ddi_copyin()
22524 		 * on the uscsi_cdb above fails, because sd_send_scsi_cmd()
22525 		 * does this same copyin and will return the EFAULT
22526 		 * if it fails.
22527 		 */
22528 		rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg,
22529 		    SD_PATH_STANDARD);
22530 	}
22531 #ifdef _MULTI_DATAMODEL
22532 	switch (model) {
22533 	case DDI_MODEL_ILP32:
22534 		/*
22535 		 * Convert back to ILP32 before copyout to the
22536 		 * application
22537 		 */
22538 		uscsi_cmdtouscsi_cmd32(scmd, ucmd32);
22539 		if (ddi_copyout(ucmd32, (void *)arg, sizeof (*ucmd32), flag)) {
22540 			if (rval != 0) {
22541 				rval = EFAULT;
22542 			}
22543 		}
22544 		break;
22545 	case DDI_MODEL_NONE:
22546 		if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) {
22547 			if (rval != 0) {
22548 				rval = EFAULT;
22549 			}
22550 		}
22551 		break;
22552 	}
22553 #else /* ! _MULTI_DATAMODE */
22554 	if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) {
22555 		if (rval != 0) {
22556 			rval = EFAULT;
22557 		}
22558 	}
22559 #endif /* _MULTI_DATAMODE */
22560 done:
22561 	kmem_free(scmd, sizeof (struct uscsi_cmd));
22562 
22563 	SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: exit: un:0x%p\n", un);
22564 
22565 	return (rval);
22566 }
22567 
22568 
22569 /*
22570  *    Function: sd_dkio_ctrl_info
22571  *
22572  * Description: This routine is the driver entry point for handling controller
22573  *		information ioctl requests (DKIOCINFO).
22574  *
22575  *   Arguments: dev  - the device number
22576  *		arg  - pointer to user provided dk_cinfo structure
22577  *		       specifying the controller type and attributes.
22578  *		flag - this argument is a pass through to ddi_copyxxx()
22579  *		       directly from the mode argument of ioctl().
22580  *
22581  * Return Code: 0
22582  *		EFAULT
22583  *		ENXIO
22584  */
22585 
22586 static int
22587 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
22588 {
22589 	struct sd_lun	*un = NULL;
22590 	struct dk_cinfo	*info;
22591 	dev_info_t	*pdip;
22592 	int		lun, tgt;
22593 
22594 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22595 		return (ENXIO);
22596 	}
22597 
22598 	info = (struct dk_cinfo *)
22599 		kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
22600 
22601 	switch (un->un_ctype) {
22602 	case CTYPE_CDROM:
22603 		info->dki_ctype = DKC_CDROM;
22604 		break;
22605 	default:
22606 		info->dki_ctype = DKC_SCSI_CCS;
22607 		break;
22608 	}
22609 	pdip = ddi_get_parent(SD_DEVINFO(un));
22610 	info->dki_cnum = ddi_get_instance(pdip);
22611 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
22612 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
22613 	} else {
22614 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
22615 		    DK_DEVLEN - 1);
22616 	}
22617 
22618 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
22619 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
22620 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
22621 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
22622 
22623 	/* Unit Information */
22624 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
22625 	info->dki_slave = ((tgt << 3) | lun);
22626 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
22627 	    DK_DEVLEN - 1);
22628 	info->dki_flags = DKI_FMTVOL;
22629 	info->dki_partition = SDPART(dev);
22630 
22631 	/* Max Transfer size of this device in blocks */
22632 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
22633 	info->dki_addr = 0;
22634 	info->dki_space = 0;
22635 	info->dki_prio = 0;
22636 	info->dki_vec = 0;
22637 
22638 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
22639 		kmem_free(info, sizeof (struct dk_cinfo));
22640 		return (EFAULT);
22641 	} else {
22642 		kmem_free(info, sizeof (struct dk_cinfo));
22643 		return (0);
22644 	}
22645 }
22646 
22647 
22648 /*
22649  *    Function: sd_get_media_info
22650  *
22651  * Description: This routine is the driver entry point for handling ioctl
22652  *		requests for the media type or command set profile used by the
22653  *		drive to operate on the media (DKIOCGMEDIAINFO).
22654  *
22655  *   Arguments: dev	- the device number
22656  *		arg	- pointer to user provided dk_minfo structure
22657  *			  specifying the media type, logical block size and
22658  *			  drive capacity.
22659  *		flag	- this argument is a pass through to ddi_copyxxx()
22660  *			  directly from the mode argument of ioctl().
22661  *
22662  * Return Code: 0
22663  *		EACCESS
22664  *		EFAULT
22665  *		ENXIO
22666  *		EIO
22667  */
22668 
22669 static int
22670 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
22671 {
22672 	struct sd_lun		*un = NULL;
22673 	struct uscsi_cmd	com;
22674 	struct scsi_inquiry	*sinq;
22675 	struct dk_minfo		media_info;
22676 	u_longlong_t		media_capacity;
22677 	uint64_t		capacity;
22678 	uint_t			lbasize;
22679 	uchar_t			*out_data;
22680 	uchar_t			*rqbuf;
22681 	int			rval = 0;
22682 	int			rtn;
22683 
22684 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
22685 	    (un->un_state == SD_STATE_OFFLINE)) {
22686 		return (ENXIO);
22687 	}
22688 
22689 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
22690 
22691 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
22692 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
22693 
22694 	/* Issue a TUR to determine if the drive is ready with media present */
22695 	rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA);
22696 	if (rval == ENXIO) {
22697 		goto done;
22698 	}
22699 
22700 	/* Now get configuration data */
22701 	if (ISCD(un)) {
22702 		media_info.dki_media_type = DK_CDROM;
22703 
22704 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
22705 		if (un->un_f_mmc_cap == TRUE) {
22706 			rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf,
22707 				SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN);
22708 
22709 			if (rtn) {
22710 				/*
22711 				 * Failed for other than an illegal request
22712 				 * or command not supported
22713 				 */
22714 				if ((com.uscsi_status == STATUS_CHECK) &&
22715 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
22716 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
22717 					    (rqbuf[12] != 0x20)) {
22718 						rval = EIO;
22719 						goto done;
22720 					}
22721 				}
22722 			} else {
22723 				/*
22724 				 * The GET CONFIGURATION command succeeded
22725 				 * so set the media type according to the
22726 				 * returned data
22727 				 */
22728 				media_info.dki_media_type = out_data[6];
22729 				media_info.dki_media_type <<= 8;
22730 				media_info.dki_media_type |= out_data[7];
22731 			}
22732 		}
22733 	} else {
22734 		/*
22735 		 * The profile list is not available, so we attempt to identify
22736 		 * the media type based on the inquiry data
22737 		 */
22738 		sinq = un->un_sd->sd_inq;
22739 		if (sinq->inq_qual == 0) {
22740 			/* This is a direct access device */
22741 			media_info.dki_media_type = DK_FIXED_DISK;
22742 
22743 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
22744 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
22745 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
22746 					media_info.dki_media_type = DK_ZIP;
22747 				} else if (
22748 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
22749 					media_info.dki_media_type = DK_JAZ;
22750 				}
22751 			}
22752 		} else {
22753 			/* Not a CD or direct access so return unknown media */
22754 			media_info.dki_media_type = DK_UNKNOWN;
22755 		}
22756 	}
22757 
22758 	/* Now read the capacity so we can provide the lbasize and capacity */
22759 	switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
22760 	    SD_PATH_DIRECT)) {
22761 	case 0:
22762 		break;
22763 	case EACCES:
22764 		rval = EACCES;
22765 		goto done;
22766 	default:
22767 		rval = EIO;
22768 		goto done;
22769 	}
22770 
22771 	media_info.dki_lbsize = lbasize;
22772 	media_capacity = capacity;
22773 
22774 	/*
22775 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
22776 	 * un->un_sys_blocksize chunks. So we need to convert it into
22777 	 * cap.lbasize chunks.
22778 	 */
22779 	media_capacity *= un->un_sys_blocksize;
22780 	media_capacity /= lbasize;
22781 	media_info.dki_capacity = media_capacity;
22782 
22783 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
22784 		rval = EFAULT;
22785 		/* Put goto. Anybody might add some code below in future */
22786 		goto done;
22787 	}
22788 done:
22789 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
22790 	kmem_free(rqbuf, SENSE_LENGTH);
22791 	return (rval);
22792 }
22793 
22794 
22795 /*
22796  *    Function: sd_dkio_get_geometry
22797  *
22798  * Description: This routine is the driver entry point for handling user
22799  *		requests to get the device geometry (DKIOCGGEOM).
22800  *
22801  *   Arguments: dev  - the device number
22802  *		arg  - pointer to user provided dk_geom structure specifying
22803  *			the controller's notion of the current geometry.
22804  *		flag - this argument is a pass through to ddi_copyxxx()
22805  *		       directly from the mode argument of ioctl().
22806  *		geom_validated - flag indicating if the device geometry has been
22807  *				 previously validated in the sdioctl routine.
22808  *
22809  * Return Code: 0
22810  *		EFAULT
22811  *		ENXIO
22812  *		EIO
22813  */
22814 
22815 static int
22816 sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag, int geom_validated)
22817 {
22818 	struct sd_lun	*un = NULL;
22819 	struct dk_geom	*tmp_geom = NULL;
22820 	int		rval = 0;
22821 
22822 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22823 		return (ENXIO);
22824 	}
22825 
22826 	if (geom_validated == FALSE) {
22827 		/*
22828 		 * sd_validate_geometry does not spin a disk up
22829 		 * if it was spun down. We need to make sure it
22830 		 * is ready.
22831 		 */
22832 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
22833 			return (rval);
22834 		}
22835 		mutex_enter(SD_MUTEX(un));
22836 		rval = sd_validate_geometry(un, SD_PATH_DIRECT);
22837 		mutex_exit(SD_MUTEX(un));
22838 	}
22839 	if (rval)
22840 		return (rval);
22841 
22842 	/*
22843 	 * It is possible that un_solaris_size is 0(uninitialized)
22844 	 * after sd_unit_attach. Reservation conflict may cause the
22845 	 * above situation. Thus, the zero check of un_solaris_size
22846 	 * should occur after the sd_validate_geometry() call.
22847 	 */
22848 #if defined(__i386) || defined(__amd64)
22849 	if (un->un_solaris_size == 0) {
22850 		return (EIO);
22851 	}
22852 #endif
22853 
22854 	/*
22855 	 * Make a local copy of the soft state geometry to avoid some potential
22856 	 * race conditions associated with holding the mutex and updating the
22857 	 * write_reinstruct value
22858 	 */
22859 	tmp_geom = kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
22860 	mutex_enter(SD_MUTEX(un));
22861 	bcopy(&un->un_g, tmp_geom, sizeof (struct dk_geom));
22862 	mutex_exit(SD_MUTEX(un));
22863 
22864 	if (tmp_geom->dkg_write_reinstruct == 0) {
22865 		tmp_geom->dkg_write_reinstruct =
22866 		    (int)((int)(tmp_geom->dkg_nsect * tmp_geom->dkg_rpm *
22867 		    sd_rot_delay) / (int)60000);
22868 	}
22869 
22870 	rval = ddi_copyout(tmp_geom, (void *)arg, sizeof (struct dk_geom),
22871 	    flag);
22872 	if (rval != 0) {
22873 		rval = EFAULT;
22874 	}
22875 
22876 	kmem_free(tmp_geom, sizeof (struct dk_geom));
22877 	return (rval);
22878 
22879 }
22880 
22881 
22882 /*
22883  *    Function: sd_dkio_set_geometry
22884  *
22885  * Description: This routine is the driver entry point for handling user
22886  *		requests to set the device geometry (DKIOCSGEOM). The actual
22887  *		device geometry is not updated, just the driver "notion" of it.
22888  *
22889  *   Arguments: dev  - the device number
22890  *		arg  - pointer to user provided dk_geom structure used to set
22891  *			the controller's notion of the current geometry.
22892  *		flag - this argument is a pass through to ddi_copyxxx()
22893  *		       directly from the mode argument of ioctl().
22894  *
22895  * Return Code: 0
22896  *		EFAULT
22897  *		ENXIO
22898  *		EIO
22899  */
22900 
22901 static int
22902 sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag)
22903 {
22904 	struct sd_lun	*un = NULL;
22905 	struct dk_geom	*tmp_geom;
22906 	struct dk_map	*lp;
22907 	int		rval = 0;
22908 	int		i;
22909 
22910 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22911 		return (ENXIO);
22912 	}
22913 
22914 	/*
22915 	 * Make sure there is no reservation conflict on the lun.
22916 	 */
22917 	if (sd_send_scsi_TEST_UNIT_READY(un, 0) == EACCES) {
22918 		return (EACCES);
22919 	}
22920 
22921 #if defined(__i386) || defined(__amd64)
22922 	if (un->un_solaris_size == 0) {
22923 		return (EIO);
22924 	}
22925 #endif
22926 
22927 	/*
22928 	 * We need to copy the user specified geometry into local
22929 	 * storage and then update the softstate. We don't want to hold
22930 	 * the mutex and copyin directly from the user to the soft state
22931 	 */
22932 	tmp_geom = (struct dk_geom *)
22933 	    kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
22934 	rval = ddi_copyin(arg, tmp_geom, sizeof (struct dk_geom), flag);
22935 	if (rval != 0) {
22936 		kmem_free(tmp_geom, sizeof (struct dk_geom));
22937 		return (EFAULT);
22938 	}
22939 
22940 	mutex_enter(SD_MUTEX(un));
22941 	bcopy(tmp_geom, &un->un_g, sizeof (struct dk_geom));
22942 	for (i = 0; i < NDKMAP; i++) {
22943 		lp  = &un->un_map[i];
22944 		un->un_offset[i] =
22945 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
22946 #if defined(__i386) || defined(__amd64)
22947 		un->un_offset[i] += un->un_solaris_offset;
22948 #endif
22949 	}
22950 	un->un_f_geometry_is_valid = FALSE;
22951 	mutex_exit(SD_MUTEX(un));
22952 	kmem_free(tmp_geom, sizeof (struct dk_geom));
22953 
22954 	return (rval);
22955 }
22956 
22957 
22958 /*
22959  *    Function: sd_dkio_get_partition
22960  *
22961  * Description: This routine is the driver entry point for handling user
22962  *		requests to get the partition table (DKIOCGAPART).
22963  *
22964  *   Arguments: dev  - the device number
22965  *		arg  - pointer to user provided dk_allmap structure specifying
22966  *			the controller's notion of the current partition table.
22967  *		flag - this argument is a pass through to ddi_copyxxx()
22968  *		       directly from the mode argument of ioctl().
22969  *		geom_validated - flag indicating if the device geometry has been
22970  *				 previously validated in the sdioctl routine.
22971  *
22972  * Return Code: 0
22973  *		EFAULT
22974  *		ENXIO
22975  *		EIO
22976  */
22977 
22978 static int
22979 sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag, int geom_validated)
22980 {
22981 	struct sd_lun	*un = NULL;
22982 	int		rval = 0;
22983 	int		size;
22984 
22985 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22986 		return (ENXIO);
22987 	}
22988 
22989 	/*
22990 	 * Make sure the geometry is valid before getting the partition
22991 	 * information.
22992 	 */
22993 	mutex_enter(SD_MUTEX(un));
22994 	if (geom_validated == FALSE) {
22995 		/*
22996 		 * sd_validate_geometry does not spin a disk up
22997 		 * if it was spun down. We need to make sure it
22998 		 * is ready before validating the geometry.
22999 		 */
23000 		mutex_exit(SD_MUTEX(un));
23001 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
23002 			return (rval);
23003 		}
23004 		mutex_enter(SD_MUTEX(un));
23005 
23006 		if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) {
23007 			mutex_exit(SD_MUTEX(un));
23008 			return (rval);
23009 		}
23010 	}
23011 	mutex_exit(SD_MUTEX(un));
23012 
23013 	/*
23014 	 * It is possible that un_solaris_size is 0(uninitialized)
23015 	 * after sd_unit_attach. Reservation conflict may cause the
23016 	 * above situation. Thus, the zero check of un_solaris_size
23017 	 * should occur after the sd_validate_geometry() call.
23018 	 */
23019 #if defined(__i386) || defined(__amd64)
23020 	if (un->un_solaris_size == 0) {
23021 		return (EIO);
23022 	}
23023 #endif
23024 
23025 #ifdef _MULTI_DATAMODEL
23026 	switch (ddi_model_convert_from(flag & FMODELS)) {
23027 	case DDI_MODEL_ILP32: {
23028 		struct dk_map32 dk_map32[NDKMAP];
23029 		int		i;
23030 
23031 		for (i = 0; i < NDKMAP; i++) {
23032 			dk_map32[i].dkl_cylno = un->un_map[i].dkl_cylno;
23033 			dk_map32[i].dkl_nblk  = un->un_map[i].dkl_nblk;
23034 		}
23035 		size = NDKMAP * sizeof (struct dk_map32);
23036 		rval = ddi_copyout(dk_map32, (void *)arg, size, flag);
23037 		if (rval != 0) {
23038 			rval = EFAULT;
23039 		}
23040 		break;
23041 	}
23042 	case DDI_MODEL_NONE:
23043 		size = NDKMAP * sizeof (struct dk_map);
23044 		rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
23045 		if (rval != 0) {
23046 			rval = EFAULT;
23047 		}
23048 		break;
23049 	}
23050 #else /* ! _MULTI_DATAMODEL */
23051 	size = NDKMAP * sizeof (struct dk_map);
23052 	rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
23053 	if (rval != 0) {
23054 		rval = EFAULT;
23055 	}
23056 #endif /* _MULTI_DATAMODEL */
23057 	return (rval);
23058 }
23059 
23060 
23061 /*
23062  *    Function: sd_dkio_set_partition
23063  *
23064  * Description: This routine is the driver entry point for handling user
23065  *		requests to set the partition table (DKIOCSAPART). The actual
23066  *		device partition is not updated.
23067  *
23068  *   Arguments: dev  - the device number
23069  *		arg  - pointer to user provided dk_allmap structure used to set
23070  *			the controller's notion of the partition table.
23071  *		flag - this argument is a pass through to ddi_copyxxx()
23072  *		       directly from the mode argument of ioctl().
23073  *
23074  * Return Code: 0
23075  *		EINVAL
23076  *		EFAULT
23077  *		ENXIO
23078  *		EIO
23079  */
23080 
23081 static int
23082 sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag)
23083 {
23084 	struct sd_lun	*un = NULL;
23085 	struct dk_map	dk_map[NDKMAP];
23086 	struct dk_map	*lp;
23087 	int		rval = 0;
23088 	int		size;
23089 	int		i;
23090 #if defined(_SUNOS_VTOC_16)
23091 	struct dkl_partition	*vp;
23092 #endif
23093 
23094 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23095 		return (ENXIO);
23096 	}
23097 
23098 	/*
23099 	 * Set the map for all logical partitions.  We lock
23100 	 * the priority just to make sure an interrupt doesn't
23101 	 * come in while the map is half updated.
23102 	 */
23103 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_solaris_size))
23104 	mutex_enter(SD_MUTEX(un));
23105 	if (un->un_blockcount > DK_MAX_BLOCKS) {
23106 		mutex_exit(SD_MUTEX(un));
23107 		return (ENOTSUP);
23108 	}
23109 	mutex_exit(SD_MUTEX(un));
23110 
23111 	/*
23112 	 * Make sure there is no reservation conflict on the lun.
23113 	 */
23114 	if (sd_send_scsi_TEST_UNIT_READY(un, 0) == EACCES) {
23115 		return (EACCES);
23116 	}
23117 
23118 #if defined(__i386) || defined(__amd64)
23119 	if (un->un_solaris_size == 0) {
23120 		return (EIO);
23121 	}
23122 #endif
23123 
23124 #ifdef _MULTI_DATAMODEL
23125 	switch (ddi_model_convert_from(flag & FMODELS)) {
23126 	case DDI_MODEL_ILP32: {
23127 		struct dk_map32 dk_map32[NDKMAP];
23128 
23129 		size = NDKMAP * sizeof (struct dk_map32);
23130 		rval = ddi_copyin((void *)arg, dk_map32, size, flag);
23131 		if (rval != 0) {
23132 			return (EFAULT);
23133 		}
23134 		for (i = 0; i < NDKMAP; i++) {
23135 			dk_map[i].dkl_cylno = dk_map32[i].dkl_cylno;
23136 			dk_map[i].dkl_nblk  = dk_map32[i].dkl_nblk;
23137 		}
23138 		break;
23139 	}
23140 	case DDI_MODEL_NONE:
23141 		size = NDKMAP * sizeof (struct dk_map);
23142 		rval = ddi_copyin((void *)arg, dk_map, size, flag);
23143 		if (rval != 0) {
23144 			return (EFAULT);
23145 		}
23146 		break;
23147 	}
23148 #else /* ! _MULTI_DATAMODEL */
23149 	size = NDKMAP * sizeof (struct dk_map);
23150 	rval = ddi_copyin((void *)arg, dk_map, size, flag);
23151 	if (rval != 0) {
23152 		return (EFAULT);
23153 	}
23154 #endif /* _MULTI_DATAMODEL */
23155 
23156 	mutex_enter(SD_MUTEX(un));
23157 	/* Note: The size used in this bcopy is set based upon the data model */
23158 	bcopy(dk_map, un->un_map, size);
23159 #if defined(_SUNOS_VTOC_16)
23160 	vp = (struct dkl_partition *)&(un->un_vtoc);
23161 #endif	/* defined(_SUNOS_VTOC_16) */
23162 	for (i = 0; i < NDKMAP; i++) {
23163 		lp  = &un->un_map[i];
23164 		un->un_offset[i] =
23165 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
23166 #if defined(_SUNOS_VTOC_16)
23167 		vp->p_start = un->un_offset[i];
23168 		vp->p_size = lp->dkl_nblk;
23169 		vp++;
23170 #endif	/* defined(_SUNOS_VTOC_16) */
23171 #if defined(__i386) || defined(__amd64)
23172 		un->un_offset[i] += un->un_solaris_offset;
23173 #endif
23174 	}
23175 	mutex_exit(SD_MUTEX(un));
23176 	return (rval);
23177 }
23178 
23179 
23180 /*
23181  *    Function: sd_dkio_get_vtoc
23182  *
23183  * Description: This routine is the driver entry point for handling user
23184  *		requests to get the current volume table of contents
23185  *		(DKIOCGVTOC).
23186  *
23187  *   Arguments: dev  - the device number
23188  *		arg  - pointer to user provided vtoc structure specifying
23189  *			the current vtoc.
23190  *		flag - this argument is a pass through to ddi_copyxxx()
23191  *		       directly from the mode argument of ioctl().
23192  *		geom_validated - flag indicating if the device geometry has been
23193  *				 previously validated in the sdioctl routine.
23194  *
23195  * Return Code: 0
23196  *		EFAULT
23197  *		ENXIO
23198  *		EIO
23199  */
23200 
23201 static int
23202 sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag, int geom_validated)
23203 {
23204 	struct sd_lun	*un = NULL;
23205 #if defined(_SUNOS_VTOC_8)
23206 	struct vtoc	user_vtoc;
23207 #endif	/* defined(_SUNOS_VTOC_8) */
23208 	int		rval = 0;
23209 
23210 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23211 		return (ENXIO);
23212 	}
23213 
23214 	mutex_enter(SD_MUTEX(un));
23215 	if (geom_validated == FALSE) {
23216 		/*
23217 		 * sd_validate_geometry does not spin a disk up
23218 		 * if it was spun down. We need to make sure it
23219 		 * is ready.
23220 		 */
23221 		mutex_exit(SD_MUTEX(un));
23222 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
23223 			return (rval);
23224 		}
23225 		mutex_enter(SD_MUTEX(un));
23226 		if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) {
23227 			mutex_exit(SD_MUTEX(un));
23228 			return (rval);
23229 		}
23230 	}
23231 
23232 #if defined(_SUNOS_VTOC_8)
23233 	sd_build_user_vtoc(un, &user_vtoc);
23234 	mutex_exit(SD_MUTEX(un));
23235 
23236 #ifdef _MULTI_DATAMODEL
23237 	switch (ddi_model_convert_from(flag & FMODELS)) {
23238 	case DDI_MODEL_ILP32: {
23239 		struct vtoc32 user_vtoc32;
23240 
23241 		vtoctovtoc32(user_vtoc, user_vtoc32);
23242 		if (ddi_copyout(&user_vtoc32, (void *)arg,
23243 		    sizeof (struct vtoc32), flag)) {
23244 			return (EFAULT);
23245 		}
23246 		break;
23247 	}
23248 
23249 	case DDI_MODEL_NONE:
23250 		if (ddi_copyout(&user_vtoc, (void *)arg,
23251 		    sizeof (struct vtoc), flag)) {
23252 			return (EFAULT);
23253 		}
23254 		break;
23255 	}
23256 #else /* ! _MULTI_DATAMODEL */
23257 	if (ddi_copyout(&user_vtoc, (void *)arg, sizeof (struct vtoc), flag)) {
23258 		return (EFAULT);
23259 	}
23260 #endif /* _MULTI_DATAMODEL */
23261 
23262 #elif defined(_SUNOS_VTOC_16)
23263 	mutex_exit(SD_MUTEX(un));
23264 
23265 #ifdef _MULTI_DATAMODEL
23266 	/*
23267 	 * The un_vtoc structure is a "struct dk_vtoc"  which is always
23268 	 * 32-bit to maintain compatibility with existing on-disk
23269 	 * structures.  Thus, we need to convert the structure when copying
23270 	 * it out to a datamodel-dependent "struct vtoc" in a 64-bit
23271 	 * program.  If the target is a 32-bit program, then no conversion
23272 	 * is necessary.
23273 	 */
23274 	/* LINTED: logical expression always true: op "||" */
23275 	ASSERT(sizeof (un->un_vtoc) == sizeof (struct vtoc32));
23276 	switch (ddi_model_convert_from(flag & FMODELS)) {
23277 	case DDI_MODEL_ILP32:
23278 		if (ddi_copyout(&(un->un_vtoc), (void *)arg,
23279 		    sizeof (un->un_vtoc), flag)) {
23280 			return (EFAULT);
23281 		}
23282 		break;
23283 
23284 	case DDI_MODEL_NONE: {
23285 		struct vtoc user_vtoc;
23286 
23287 		vtoc32tovtoc(un->un_vtoc, user_vtoc);
23288 		if (ddi_copyout(&user_vtoc, (void *)arg,
23289 		    sizeof (struct vtoc), flag)) {
23290 			return (EFAULT);
23291 		}
23292 		break;
23293 	}
23294 	}
23295 #else /* ! _MULTI_DATAMODEL */
23296 	if (ddi_copyout(&(un->un_vtoc), (void *)arg, sizeof (un->un_vtoc),
23297 	    flag)) {
23298 		return (EFAULT);
23299 	}
23300 #endif /* _MULTI_DATAMODEL */
23301 #else
23302 #error "No VTOC format defined."
23303 #endif
23304 
23305 	return (rval);
23306 }
23307 
23308 static int
23309 sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag)
23310 {
23311 	struct sd_lun	*un = NULL;
23312 	dk_efi_t	user_efi;
23313 	int		rval = 0;
23314 	void		*buffer;
23315 
23316 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL)
23317 		return (ENXIO);
23318 
23319 	if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
23320 		return (EFAULT);
23321 
23322 	user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
23323 
23324 	if ((user_efi.dki_length % un->un_tgt_blocksize) ||
23325 	    (user_efi.dki_length > un->un_max_xfer_size))
23326 		return (EINVAL);
23327 
23328 	buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
23329 	rval = sd_send_scsi_READ(un, buffer, user_efi.dki_length,
23330 	    user_efi.dki_lba, SD_PATH_DIRECT);
23331 	if (rval == 0 && ddi_copyout(buffer, user_efi.dki_data,
23332 	    user_efi.dki_length, flag) != 0)
23333 		rval = EFAULT;
23334 
23335 	kmem_free(buffer, user_efi.dki_length);
23336 	return (rval);
23337 }
23338 
23339 /*
23340  *    Function: sd_build_user_vtoc
23341  *
23342  * Description: This routine populates a pass by reference variable with the
23343  *		current volume table of contents.
23344  *
23345  *   Arguments: un - driver soft state (unit) structure
23346  *		user_vtoc - pointer to vtoc structure to be populated
23347  */
23348 
23349 static void
23350 sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc)
23351 {
23352 	struct dk_map2		*lpart;
23353 	struct dk_map		*lmap;
23354 	struct partition	*vpart;
23355 	int			nblks;
23356 	int			i;
23357 
23358 	ASSERT(mutex_owned(SD_MUTEX(un)));
23359 
23360 	/*
23361 	 * Return vtoc structure fields in the provided VTOC area, addressed
23362 	 * by *vtoc.
23363 	 */
23364 	bzero(user_vtoc, sizeof (struct vtoc));
23365 	user_vtoc->v_bootinfo[0] = un->un_vtoc.v_bootinfo[0];
23366 	user_vtoc->v_bootinfo[1] = un->un_vtoc.v_bootinfo[1];
23367 	user_vtoc->v_bootinfo[2] = un->un_vtoc.v_bootinfo[2];
23368 	user_vtoc->v_sanity	= VTOC_SANE;
23369 	user_vtoc->v_version	= un->un_vtoc.v_version;
23370 	bcopy(un->un_vtoc.v_volume, user_vtoc->v_volume, LEN_DKL_VVOL);
23371 	user_vtoc->v_sectorsz = un->un_sys_blocksize;
23372 	user_vtoc->v_nparts = un->un_vtoc.v_nparts;
23373 	bcopy(un->un_vtoc.v_reserved, user_vtoc->v_reserved,
23374 	    sizeof (un->un_vtoc.v_reserved));
23375 	/*
23376 	 * Convert partitioning information.
23377 	 *
23378 	 * Note the conversion from starting cylinder number
23379 	 * to starting sector number.
23380 	 */
23381 	lmap = un->un_map;
23382 	lpart = (struct dk_map2 *)un->un_vtoc.v_part;
23383 	vpart = user_vtoc->v_part;
23384 
23385 	nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
23386 
23387 	for (i = 0; i < V_NUMPAR; i++) {
23388 		vpart->p_tag	= lpart->p_tag;
23389 		vpart->p_flag	= lpart->p_flag;
23390 		vpart->p_start	= lmap->dkl_cylno * nblks;
23391 		vpart->p_size	= lmap->dkl_nblk;
23392 		lmap++;
23393 		lpart++;
23394 		vpart++;
23395 
23396 		/* (4364927) */
23397 		user_vtoc->timestamp[i] = (time_t)un->un_vtoc.v_timestamp[i];
23398 	}
23399 
23400 	bcopy(un->un_asciilabel, user_vtoc->v_asciilabel, LEN_DKL_ASCII);
23401 }
23402 
23403 static int
23404 sd_dkio_partition(dev_t dev, caddr_t arg, int flag)
23405 {
23406 	struct sd_lun		*un = NULL;
23407 	struct partition64	p64;
23408 	int			rval = 0;
23409 	uint_t			nparts;
23410 	efi_gpe_t		*partitions;
23411 	efi_gpt_t		*buffer;
23412 	diskaddr_t		gpe_lba;
23413 
23414 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23415 		return (ENXIO);
23416 	}
23417 
23418 	if (ddi_copyin((const void *)arg, &p64,
23419 	    sizeof (struct partition64), flag)) {
23420 		return (EFAULT);
23421 	}
23422 
23423 	buffer = kmem_alloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
23424 	rval = sd_send_scsi_READ(un, buffer, DEV_BSIZE,
23425 		1, SD_PATH_DIRECT);
23426 	if (rval != 0)
23427 		goto done_error;
23428 
23429 	sd_swap_efi_gpt(buffer);
23430 
23431 	if ((rval = sd_validate_efi(buffer)) != 0)
23432 		goto done_error;
23433 
23434 	nparts = buffer->efi_gpt_NumberOfPartitionEntries;
23435 	gpe_lba = buffer->efi_gpt_PartitionEntryLBA;
23436 	if (p64.p_partno > nparts) {
23437 		/* couldn't find it */
23438 		rval = ESRCH;
23439 		goto done_error;
23440 	}
23441 	/*
23442 	 * if we're dealing with a partition that's out of the normal
23443 	 * 16K block, adjust accordingly
23444 	 */
23445 	gpe_lba += p64.p_partno / sizeof (efi_gpe_t);
23446 	rval = sd_send_scsi_READ(un, buffer, EFI_MIN_ARRAY_SIZE,
23447 			gpe_lba, SD_PATH_DIRECT);
23448 	if (rval) {
23449 		goto done_error;
23450 	}
23451 	partitions = (efi_gpe_t *)buffer;
23452 
23453 	sd_swap_efi_gpe(nparts, partitions);
23454 
23455 	partitions += p64.p_partno;
23456 	bcopy(&partitions->efi_gpe_PartitionTypeGUID, &p64.p_type,
23457 	    sizeof (struct uuid));
23458 	p64.p_start = partitions->efi_gpe_StartingLBA;
23459 	p64.p_size = partitions->efi_gpe_EndingLBA -
23460 			p64.p_start + 1;
23461 
23462 	if (ddi_copyout(&p64, (void *)arg, sizeof (struct partition64), flag))
23463 		rval = EFAULT;
23464 
23465 done_error:
23466 	kmem_free(buffer, EFI_MIN_ARRAY_SIZE);
23467 	return (rval);
23468 }
23469 
23470 
23471 /*
23472  *    Function: sd_dkio_set_vtoc
23473  *
23474  * Description: This routine is the driver entry point for handling user
23475  *		requests to set the current volume table of contents
23476  *		(DKIOCSVTOC).
23477  *
23478  *   Arguments: dev  - the device number
23479  *		arg  - pointer to user provided vtoc structure used to set the
23480  *			current vtoc.
23481  *		flag - this argument is a pass through to ddi_copyxxx()
23482  *		       directly from the mode argument of ioctl().
23483  *
23484  * Return Code: 0
23485  *		EFAULT
23486  *		ENXIO
23487  *		EINVAL
23488  *		ENOTSUP
23489  */
23490 
23491 static int
23492 sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag)
23493 {
23494 	struct sd_lun	*un = NULL;
23495 	struct vtoc	user_vtoc;
23496 	int		rval = 0;
23497 
23498 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23499 		return (ENXIO);
23500 	}
23501 
23502 #if defined(__i386) || defined(__amd64)
23503 	if (un->un_tgt_blocksize != un->un_sys_blocksize) {
23504 		return (EINVAL);
23505 	}
23506 #endif
23507 
23508 #ifdef _MULTI_DATAMODEL
23509 	switch (ddi_model_convert_from(flag & FMODELS)) {
23510 	case DDI_MODEL_ILP32: {
23511 		struct vtoc32 user_vtoc32;
23512 
23513 		if (ddi_copyin((const void *)arg, &user_vtoc32,
23514 		    sizeof (struct vtoc32), flag)) {
23515 			return (EFAULT);
23516 		}
23517 		vtoc32tovtoc(user_vtoc32, user_vtoc);
23518 		break;
23519 	}
23520 
23521 	case DDI_MODEL_NONE:
23522 		if (ddi_copyin((const void *)arg, &user_vtoc,
23523 		    sizeof (struct vtoc), flag)) {
23524 			return (EFAULT);
23525 		}
23526 		break;
23527 	}
23528 #else /* ! _MULTI_DATAMODEL */
23529 	if (ddi_copyin((const void *)arg, &user_vtoc,
23530 	    sizeof (struct vtoc), flag)) {
23531 		return (EFAULT);
23532 	}
23533 #endif /* _MULTI_DATAMODEL */
23534 
23535 	mutex_enter(SD_MUTEX(un));
23536 	if (un->un_blockcount > DK_MAX_BLOCKS) {
23537 		mutex_exit(SD_MUTEX(un));
23538 		return (ENOTSUP);
23539 	}
23540 	if (un->un_g.dkg_ncyl == 0) {
23541 		mutex_exit(SD_MUTEX(un));
23542 		return (EINVAL);
23543 	}
23544 
23545 	mutex_exit(SD_MUTEX(un));
23546 	sd_clear_efi(un);
23547 	ddi_remove_minor_node(SD_DEVINFO(un), "wd");
23548 	ddi_remove_minor_node(SD_DEVINFO(un), "wd,raw");
23549 	(void) ddi_create_minor_node(SD_DEVINFO(un), "h",
23550 	    S_IFBLK, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23551 	    un->un_node_type, NULL);
23552 	(void) ddi_create_minor_node(SD_DEVINFO(un), "h,raw",
23553 	    S_IFCHR, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23554 	    un->un_node_type, NULL);
23555 	mutex_enter(SD_MUTEX(un));
23556 
23557 	if ((rval = sd_build_label_vtoc(un, &user_vtoc)) == 0) {
23558 		if ((rval = sd_write_label(dev)) == 0) {
23559 			if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT))
23560 			    != 0) {
23561 				SD_ERROR(SD_LOG_IOCTL_DKIO, un,
23562 				    "sd_dkio_set_vtoc: "
23563 				    "Failed validate geometry\n");
23564 			}
23565 		}
23566 	}
23567 
23568 	/*
23569 	 * If sd_build_label_vtoc, or sd_write_label failed above write the
23570 	 * devid anyway, what can it hurt? Also preserve the device id by
23571 	 * writing to the disk acyl for the case where a devid has been
23572 	 * fabricated.
23573 	 */
23574 	if (un->un_f_devid_supported &&
23575 	    (un->un_f_opt_fab_devid == TRUE)) {
23576 		if (un->un_devid == NULL) {
23577 			sd_register_devid(un, SD_DEVINFO(un),
23578 			    SD_TARGET_IS_UNRESERVED);
23579 		} else {
23580 			/*
23581 			 * The device id for this disk has been
23582 			 * fabricated. Fabricated device id's are
23583 			 * managed by storing them in the last 2
23584 			 * available sectors on the drive. The device
23585 			 * id must be preserved by writing it back out
23586 			 * to this location.
23587 			 */
23588 			if (sd_write_deviceid(un) != 0) {
23589 				ddi_devid_free(un->un_devid);
23590 				un->un_devid = NULL;
23591 			}
23592 		}
23593 	}
23594 	mutex_exit(SD_MUTEX(un));
23595 	return (rval);
23596 }
23597 
23598 
23599 /*
23600  *    Function: sd_build_label_vtoc
23601  *
23602  * Description: This routine updates the driver soft state current volume table
23603  *		of contents based on a user specified vtoc.
23604  *
23605  *   Arguments: un - driver soft state (unit) structure
23606  *		user_vtoc - pointer to vtoc structure specifying vtoc to be used
23607  *			    to update the driver soft state.
23608  *
23609  * Return Code: 0
23610  *		EINVAL
23611  */
23612 
23613 static int
23614 sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc)
23615 {
23616 	struct dk_map		*lmap;
23617 	struct partition	*vpart;
23618 	int			nblks;
23619 #if defined(_SUNOS_VTOC_8)
23620 	int			ncyl;
23621 	struct dk_map2		*lpart;
23622 #endif	/* defined(_SUNOS_VTOC_8) */
23623 	int			i;
23624 
23625 	ASSERT(mutex_owned(SD_MUTEX(un)));
23626 
23627 	/* Sanity-check the vtoc */
23628 	if (user_vtoc->v_sanity != VTOC_SANE ||
23629 	    user_vtoc->v_sectorsz != un->un_sys_blocksize ||
23630 	    user_vtoc->v_nparts != V_NUMPAR) {
23631 		return (EINVAL);
23632 	}
23633 
23634 	nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
23635 	if (nblks == 0) {
23636 		return (EINVAL);
23637 	}
23638 
23639 #if defined(_SUNOS_VTOC_8)
23640 	vpart = user_vtoc->v_part;
23641 	for (i = 0; i < V_NUMPAR; i++) {
23642 		if ((vpart->p_start % nblks) != 0) {
23643 			return (EINVAL);
23644 		}
23645 		ncyl = vpart->p_start / nblks;
23646 		ncyl += vpart->p_size / nblks;
23647 		if ((vpart->p_size % nblks) != 0) {
23648 			ncyl++;
23649 		}
23650 		if (ncyl > (int)un->un_g.dkg_ncyl) {
23651 			return (EINVAL);
23652 		}
23653 		vpart++;
23654 	}
23655 #endif	/* defined(_SUNOS_VTOC_8) */
23656 
23657 	/* Put appropriate vtoc structure fields into the disk label */
23658 #if defined(_SUNOS_VTOC_16)
23659 	/*
23660 	 * The vtoc is always a 32bit data structure to maintain the
23661 	 * on-disk format. Convert "in place" instead of bcopying it.
23662 	 */
23663 	vtoctovtoc32((*user_vtoc), (*((struct vtoc32 *)&(un->un_vtoc))));
23664 
23665 	/*
23666 	 * in the 16-slice vtoc, starting sectors are expressed in
23667 	 * numbers *relative* to the start of the Solaris fdisk partition.
23668 	 */
23669 	lmap = un->un_map;
23670 	vpart = user_vtoc->v_part;
23671 
23672 	for (i = 0; i < (int)user_vtoc->v_nparts; i++, lmap++, vpart++) {
23673 		lmap->dkl_cylno = vpart->p_start / nblks;
23674 		lmap->dkl_nblk = vpart->p_size;
23675 	}
23676 
23677 #elif defined(_SUNOS_VTOC_8)
23678 
23679 	un->un_vtoc.v_bootinfo[0] = (uint32_t)user_vtoc->v_bootinfo[0];
23680 	un->un_vtoc.v_bootinfo[1] = (uint32_t)user_vtoc->v_bootinfo[1];
23681 	un->un_vtoc.v_bootinfo[2] = (uint32_t)user_vtoc->v_bootinfo[2];
23682 
23683 	un->un_vtoc.v_sanity = (uint32_t)user_vtoc->v_sanity;
23684 	un->un_vtoc.v_version = (uint32_t)user_vtoc->v_version;
23685 
23686 	bcopy(user_vtoc->v_volume, un->un_vtoc.v_volume, LEN_DKL_VVOL);
23687 
23688 	un->un_vtoc.v_nparts = user_vtoc->v_nparts;
23689 
23690 	bcopy(user_vtoc->v_reserved, un->un_vtoc.v_reserved,
23691 	    sizeof (un->un_vtoc.v_reserved));
23692 
23693 	/*
23694 	 * Note the conversion from starting sector number
23695 	 * to starting cylinder number.
23696 	 * Return error if division results in a remainder.
23697 	 */
23698 	lmap = un->un_map;
23699 	lpart = un->un_vtoc.v_part;
23700 	vpart = user_vtoc->v_part;
23701 
23702 	for (i = 0; i < (int)user_vtoc->v_nparts; i++) {
23703 		lpart->p_tag  = vpart->p_tag;
23704 		lpart->p_flag = vpart->p_flag;
23705 		lmap->dkl_cylno = vpart->p_start / nblks;
23706 		lmap->dkl_nblk = vpart->p_size;
23707 
23708 		lmap++;
23709 		lpart++;
23710 		vpart++;
23711 
23712 		/* (4387723) */
23713 #ifdef _LP64
23714 		if (user_vtoc->timestamp[i] > TIME32_MAX) {
23715 			un->un_vtoc.v_timestamp[i] = TIME32_MAX;
23716 		} else {
23717 			un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
23718 		}
23719 #else
23720 		un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
23721 #endif
23722 	}
23723 
23724 	bcopy(user_vtoc->v_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
23725 #else
23726 #error "No VTOC format defined."
23727 #endif
23728 	return (0);
23729 }
23730 
23731 /*
23732  *    Function: sd_clear_efi
23733  *
23734  * Description: This routine clears all EFI labels.
23735  *
23736  *   Arguments: un - driver soft state (unit) structure
23737  *
23738  * Return Code: void
23739  */
23740 
23741 static void
23742 sd_clear_efi(struct sd_lun *un)
23743 {
23744 	efi_gpt_t	*gpt;
23745 	uint_t		lbasize;
23746 	uint64_t	cap;
23747 	int rval;
23748 
23749 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23750 
23751 	mutex_enter(SD_MUTEX(un));
23752 	un->un_reserved = -1;
23753 	mutex_exit(SD_MUTEX(un));
23754 	gpt = kmem_alloc(sizeof (efi_gpt_t), KM_SLEEP);
23755 
23756 	if (sd_send_scsi_READ(un, gpt, DEV_BSIZE, 1, SD_PATH_DIRECT) != 0) {
23757 		goto done;
23758 	}
23759 
23760 	sd_swap_efi_gpt(gpt);
23761 	rval = sd_validate_efi(gpt);
23762 	if (rval == 0) {
23763 		/* clear primary */
23764 		bzero(gpt, sizeof (efi_gpt_t));
23765 		if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE, 1,
23766 			SD_PATH_DIRECT))) {
23767 			SD_INFO(SD_LOG_IO_PARTITION, un,
23768 				"sd_clear_efi: clear primary label failed\n");
23769 		}
23770 	}
23771 	/* the backup */
23772 	rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
23773 	    SD_PATH_DIRECT);
23774 	if (rval) {
23775 		goto done;
23776 	}
23777 	/*
23778 	 * The MMC standard allows READ CAPACITY to be
23779 	 * inaccurate by a bounded amount (in the interest of
23780 	 * response latency).  As a result, failed READs are
23781 	 * commonplace (due to the reading of metadata and not
23782 	 * data). Depending on the per-Vendor/drive Sense data,
23783 	 * the failed READ can cause many (unnecessary) retries.
23784 	 */
23785 	if ((rval = sd_send_scsi_READ(un, gpt, lbasize,
23786 	    cap - 1, ISCD(un) ? SD_PATH_DIRECT_PRIORITY :
23787 		SD_PATH_DIRECT)) != 0) {
23788 		goto done;
23789 	}
23790 	sd_swap_efi_gpt(gpt);
23791 	rval = sd_validate_efi(gpt);
23792 	if (rval == 0) {
23793 		/* clear backup */
23794 		SD_TRACE(SD_LOG_IOCTL, un, "sd_clear_efi clear backup@%lu\n",
23795 			cap-1);
23796 		bzero(gpt, sizeof (efi_gpt_t));
23797 		if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE,
23798 		    cap-1, SD_PATH_DIRECT))) {
23799 			SD_INFO(SD_LOG_IO_PARTITION, un,
23800 				"sd_clear_efi: clear backup label failed\n");
23801 		}
23802 	} else {
23803 		/*
23804 		 * Refer to comments related to off-by-1 at the
23805 		 * header of this file
23806 		 */
23807 		if ((rval = sd_send_scsi_READ(un, gpt, lbasize,
23808 		    cap - 2, ISCD(un) ? SD_PATH_DIRECT_PRIORITY :
23809 			SD_PATH_DIRECT)) != 0) {
23810 			goto done;
23811 		}
23812 		sd_swap_efi_gpt(gpt);
23813 		rval = sd_validate_efi(gpt);
23814 		if (rval == 0) {
23815 			/* clear legacy backup EFI label */
23816 			SD_TRACE(SD_LOG_IOCTL, un,
23817 			    "sd_clear_efi clear backup@%lu\n", cap-2);
23818 			bzero(gpt, sizeof (efi_gpt_t));
23819 			if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE,
23820 			    cap-2, SD_PATH_DIRECT))) {
23821 				SD_INFO(SD_LOG_IO_PARTITION,
23822 				    un, "sd_clear_efi: "
23823 				    " clear legacy backup label failed\n");
23824 			}
23825 		}
23826 	}
23827 
23828 done:
23829 	kmem_free(gpt, sizeof (efi_gpt_t));
23830 }
23831 
23832 /*
23833  *    Function: sd_set_vtoc
23834  *
23835  * Description: This routine writes data to the appropriate positions
23836  *
23837  *   Arguments: un - driver soft state (unit) structure
23838  *              dkl  - the data to be written
23839  *
23840  * Return: void
23841  */
23842 
23843 static int
23844 sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl)
23845 {
23846 	void			*shadow_buf;
23847 	uint_t			label_addr;
23848 	int			sec;
23849 	int			blk;
23850 	int			head;
23851 	int			cyl;
23852 	int			rval;
23853 
23854 #if defined(__i386) || defined(__amd64)
23855 	label_addr = un->un_solaris_offset + DK_LABEL_LOC;
23856 #else
23857 	/* Write the primary label at block 0 of the solaris partition. */
23858 	label_addr = 0;
23859 #endif
23860 
23861 	if (NOT_DEVBSIZE(un)) {
23862 		shadow_buf = kmem_zalloc(un->un_tgt_blocksize, KM_SLEEP);
23863 		/*
23864 		 * Read the target's first block.
23865 		 */
23866 		if ((rval = sd_send_scsi_READ(un, shadow_buf,
23867 		    un->un_tgt_blocksize, label_addr,
23868 		    SD_PATH_STANDARD)) != 0) {
23869 			goto exit;
23870 		}
23871 		/*
23872 		 * Copy the contents of the label into the shadow buffer
23873 		 * which is of the size of target block size.
23874 		 */
23875 		bcopy(dkl, shadow_buf, sizeof (struct dk_label));
23876 	}
23877 
23878 	/* Write the primary label */
23879 	if (NOT_DEVBSIZE(un)) {
23880 		rval = sd_send_scsi_WRITE(un, shadow_buf, un->un_tgt_blocksize,
23881 		    label_addr, SD_PATH_STANDARD);
23882 	} else {
23883 		rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize,
23884 		    label_addr, SD_PATH_STANDARD);
23885 	}
23886 	if (rval != 0) {
23887 		return (rval);
23888 	}
23889 
23890 	/*
23891 	 * Calculate where the backup labels go.  They are always on
23892 	 * the last alternate cylinder, but some older drives put them
23893 	 * on head 2 instead of the last head.	They are always on the
23894 	 * first 5 odd sectors of the appropriate track.
23895 	 *
23896 	 * We have no choice at this point, but to believe that the
23897 	 * disk label is valid.	 Use the geometry of the disk
23898 	 * as described in the label.
23899 	 */
23900 	cyl  = dkl->dkl_ncyl  + dkl->dkl_acyl - 1;
23901 	head = dkl->dkl_nhead - 1;
23902 
23903 	/*
23904 	 * Write and verify the backup labels. Make sure we don't try to
23905 	 * write past the last cylinder.
23906 	 */
23907 	for (sec = 1; ((sec < 5 * 2 + 1) && (sec < dkl->dkl_nsect)); sec += 2) {
23908 		blk = (daddr_t)(
23909 		    (cyl * ((dkl->dkl_nhead * dkl->dkl_nsect) - dkl->dkl_apc)) +
23910 		    (head * dkl->dkl_nsect) + sec);
23911 #if defined(__i386) || defined(__amd64)
23912 		blk += un->un_solaris_offset;
23913 #endif
23914 		if (NOT_DEVBSIZE(un)) {
23915 			uint64_t	tblk;
23916 			/*
23917 			 * Need to read the block first for read modify write.
23918 			 */
23919 			tblk = (uint64_t)blk;
23920 			blk = (int)((tblk * un->un_sys_blocksize) /
23921 			    un->un_tgt_blocksize);
23922 			if ((rval = sd_send_scsi_READ(un, shadow_buf,
23923 			    un->un_tgt_blocksize, blk,
23924 			    SD_PATH_STANDARD)) != 0) {
23925 				goto exit;
23926 			}
23927 			/*
23928 			 * Modify the shadow buffer with the label.
23929 			 */
23930 			bcopy(dkl, shadow_buf, sizeof (struct dk_label));
23931 			rval = sd_send_scsi_WRITE(un, shadow_buf,
23932 			    un->un_tgt_blocksize, blk, SD_PATH_STANDARD);
23933 		} else {
23934 			rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize,
23935 			    blk, SD_PATH_STANDARD);
23936 			SD_INFO(SD_LOG_IO_PARTITION, un,
23937 			"sd_set_vtoc: wrote backup label %d\n", blk);
23938 		}
23939 		if (rval != 0) {
23940 			goto exit;
23941 		}
23942 	}
23943 exit:
23944 	if (NOT_DEVBSIZE(un)) {
23945 		kmem_free(shadow_buf, un->un_tgt_blocksize);
23946 	}
23947 	return (rval);
23948 }
23949 
23950 /*
23951  *    Function: sd_clear_vtoc
23952  *
23953  * Description: This routine clears out the VTOC labels.
23954  *
23955  *   Arguments: un - driver soft state (unit) structure
23956  *
23957  * Return: void
23958  */
23959 
23960 static void
23961 sd_clear_vtoc(struct sd_lun *un)
23962 {
23963 	struct dk_label		*dkl;
23964 
23965 	mutex_exit(SD_MUTEX(un));
23966 	dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
23967 	mutex_enter(SD_MUTEX(un));
23968 	/*
23969 	 * sd_set_vtoc uses these fields in order to figure out
23970 	 * where to overwrite the backup labels
23971 	 */
23972 	dkl->dkl_apc    = un->un_g.dkg_apc;
23973 	dkl->dkl_ncyl   = un->un_g.dkg_ncyl;
23974 	dkl->dkl_acyl   = un->un_g.dkg_acyl;
23975 	dkl->dkl_nhead  = un->un_g.dkg_nhead;
23976 	dkl->dkl_nsect  = un->un_g.dkg_nsect;
23977 	mutex_exit(SD_MUTEX(un));
23978 	(void) sd_set_vtoc(un, dkl);
23979 	kmem_free(dkl, sizeof (struct dk_label));
23980 
23981 	mutex_enter(SD_MUTEX(un));
23982 }
23983 
23984 /*
23985  *    Function: sd_write_label
23986  *
23987  * Description: This routine will validate and write the driver soft state vtoc
23988  *		contents to the device.
23989  *
23990  *   Arguments: dev - the device number
23991  *
23992  * Return Code: the code returned by sd_send_scsi_cmd()
23993  *		0
23994  *		EINVAL
23995  *		ENXIO
23996  *		ENOMEM
23997  */
23998 
23999 static int
24000 sd_write_label(dev_t dev)
24001 {
24002 	struct sd_lun		*un;
24003 	struct dk_label		*dkl;
24004 	short			sum;
24005 	short			*sp;
24006 	int			i;
24007 	int			rval;
24008 
24009 	if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) ||
24010 	    (un->un_state == SD_STATE_OFFLINE)) {
24011 		return (ENXIO);
24012 	}
24013 	ASSERT(mutex_owned(SD_MUTEX(un)));
24014 	mutex_exit(SD_MUTEX(un));
24015 	dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
24016 	mutex_enter(SD_MUTEX(un));
24017 
24018 	bcopy(&un->un_vtoc, &dkl->dkl_vtoc, sizeof (struct dk_vtoc));
24019 	dkl->dkl_rpm	= un->un_g.dkg_rpm;
24020 	dkl->dkl_pcyl	= un->un_g.dkg_pcyl;
24021 	dkl->dkl_apc	= un->un_g.dkg_apc;
24022 	dkl->dkl_intrlv = un->un_g.dkg_intrlv;
24023 	dkl->dkl_ncyl	= un->un_g.dkg_ncyl;
24024 	dkl->dkl_acyl	= un->un_g.dkg_acyl;
24025 	dkl->dkl_nhead	= un->un_g.dkg_nhead;
24026 	dkl->dkl_nsect	= un->un_g.dkg_nsect;
24027 
24028 #if defined(_SUNOS_VTOC_8)
24029 	dkl->dkl_obs1	= un->un_g.dkg_obs1;
24030 	dkl->dkl_obs2	= un->un_g.dkg_obs2;
24031 	dkl->dkl_obs3	= un->un_g.dkg_obs3;
24032 	for (i = 0; i < NDKMAP; i++) {
24033 		dkl->dkl_map[i].dkl_cylno = un->un_map[i].dkl_cylno;
24034 		dkl->dkl_map[i].dkl_nblk  = un->un_map[i].dkl_nblk;
24035 	}
24036 	bcopy(un->un_asciilabel, dkl->dkl_asciilabel, LEN_DKL_ASCII);
24037 #elif defined(_SUNOS_VTOC_16)
24038 	dkl->dkl_skew	= un->un_dkg_skew;
24039 #else
24040 #error "No VTOC format defined."
24041 #endif
24042 
24043 	dkl->dkl_magic			= DKL_MAGIC;
24044 	dkl->dkl_write_reinstruct	= un->un_g.dkg_write_reinstruct;
24045 	dkl->dkl_read_reinstruct	= un->un_g.dkg_read_reinstruct;
24046 
24047 	/* Construct checksum for the new disk label */
24048 	sum = 0;
24049 	sp = (short *)dkl;
24050 	i = sizeof (struct dk_label) / sizeof (short);
24051 	while (i--) {
24052 		sum ^= *sp++;
24053 	}
24054 	dkl->dkl_cksum = sum;
24055 
24056 	mutex_exit(SD_MUTEX(un));
24057 
24058 	rval = sd_set_vtoc(un, dkl);
24059 exit:
24060 	kmem_free(dkl, sizeof (struct dk_label));
24061 	mutex_enter(SD_MUTEX(un));
24062 	return (rval);
24063 }
24064 
24065 static int
24066 sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag)
24067 {
24068 	struct sd_lun	*un = NULL;
24069 	dk_efi_t	user_efi;
24070 	int		rval = 0;
24071 	void		*buffer;
24072 	int		valid_efi;
24073 
24074 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL)
24075 		return (ENXIO);
24076 
24077 	if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
24078 		return (EFAULT);
24079 
24080 	user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
24081 
24082 	if ((user_efi.dki_length % un->un_tgt_blocksize) ||
24083 	    (user_efi.dki_length > un->un_max_xfer_size))
24084 		return (EINVAL);
24085 
24086 	buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
24087 	if (ddi_copyin(user_efi.dki_data, buffer, user_efi.dki_length, flag)) {
24088 		rval = EFAULT;
24089 	} else {
24090 		/*
24091 		 * let's clear the vtoc labels and clear the softstate
24092 		 * vtoc.
24093 		 */
24094 		mutex_enter(SD_MUTEX(un));
24095 		if (un->un_vtoc.v_sanity == VTOC_SANE) {
24096 			SD_TRACE(SD_LOG_IO_PARTITION, un,
24097 				"sd_dkio_set_efi: CLEAR VTOC\n");
24098 			sd_clear_vtoc(un);
24099 			bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
24100 			mutex_exit(SD_MUTEX(un));
24101 			ddi_remove_minor_node(SD_DEVINFO(un), "h");
24102 			ddi_remove_minor_node(SD_DEVINFO(un), "h,raw");
24103 			(void) ddi_create_minor_node(SD_DEVINFO(un), "wd",
24104 			    S_IFBLK,
24105 			    (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
24106 			    un->un_node_type, NULL);
24107 			(void) ddi_create_minor_node(SD_DEVINFO(un), "wd,raw",
24108 			    S_IFCHR,
24109 			    (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
24110 			    un->un_node_type, NULL);
24111 		} else
24112 			mutex_exit(SD_MUTEX(un));
24113 		rval = sd_send_scsi_WRITE(un, buffer, user_efi.dki_length,
24114 		    user_efi.dki_lba, SD_PATH_DIRECT);
24115 		if (rval == 0) {
24116 			mutex_enter(SD_MUTEX(un));
24117 
24118 			/*
24119 			 * Set the un_reserved for valid efi label.
24120 			 * Function clear_efi in fdisk and efi_write in
24121 			 * libefi both change efi label on disk in 3 steps
24122 			 * 1. Change primary gpt and gpe
24123 			 * 2. Change backup gpe
24124 			 * 3. Change backup gpt, which is one block
24125 			 * We only reread the efi label after the 3rd step,
24126 			 * or there will be warning "primary label corrupt".
24127 			 */
24128 			if (user_efi.dki_length == un->un_tgt_blocksize) {
24129 				un->un_f_geometry_is_valid = FALSE;
24130 				valid_efi = sd_use_efi(un, SD_PATH_DIRECT);
24131 				if ((valid_efi == 0) &&
24132 				    un->un_f_devid_supported &&
24133 				    (un->un_f_opt_fab_devid == TRUE)) {
24134 					if (un->un_devid == NULL) {
24135 						sd_register_devid(un,
24136 						    SD_DEVINFO(un),
24137 						    SD_TARGET_IS_UNRESERVED);
24138 					} else {
24139 						/*
24140 						 * The device id for this disk
24141 						 * has been fabricated. The
24142 						 * device id must be preserved
24143 						 * by writing it back out to
24144 						 * disk.
24145 						 */
24146 						if (sd_write_deviceid(un)
24147 						    != 0) {
24148 							ddi_devid_free(
24149 							    un->un_devid);
24150 							un->un_devid = NULL;
24151 						}
24152 					}
24153 				}
24154 			}
24155 
24156 			mutex_exit(SD_MUTEX(un));
24157 		}
24158 	}
24159 	kmem_free(buffer, user_efi.dki_length);
24160 	return (rval);
24161 }
24162 
24163 /*
24164  *    Function: sd_dkio_get_mboot
24165  *
24166  * Description: This routine is the driver entry point for handling user
24167  *		requests to get the current device mboot (DKIOCGMBOOT)
24168  *
24169  *   Arguments: dev  - the device number
24170  *		arg  - pointer to user provided mboot structure specifying
24171  *			the current mboot.
24172  *		flag - this argument is a pass through to ddi_copyxxx()
24173  *		       directly from the mode argument of ioctl().
24174  *
24175  * Return Code: 0
24176  *		EINVAL
24177  *		EFAULT
24178  *		ENXIO
24179  */
24180 
24181 static int
24182 sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag)
24183 {
24184 	struct sd_lun	*un;
24185 	struct mboot	*mboot;
24186 	int		rval;
24187 	size_t		buffer_size;
24188 
24189 	if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) ||
24190 	    (un->un_state == SD_STATE_OFFLINE)) {
24191 		return (ENXIO);
24192 	}
24193 
24194 	if (!un->un_f_mboot_supported || arg == NULL) {
24195 		return (EINVAL);
24196 	}
24197 
24198 	/*
24199 	 * Read the mboot block, located at absolute block 0 on the target.
24200 	 */
24201 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct mboot));
24202 
24203 	SD_TRACE(SD_LOG_IO_PARTITION, un,
24204 	    "sd_dkio_get_mboot: allocation size: 0x%x\n", buffer_size);
24205 
24206 	mboot = kmem_zalloc(buffer_size, KM_SLEEP);
24207 	if ((rval = sd_send_scsi_READ(un, mboot, buffer_size, 0,
24208 	    SD_PATH_STANDARD)) == 0) {
24209 		if (ddi_copyout(mboot, (void *)arg,
24210 		    sizeof (struct mboot), flag) != 0) {
24211 			rval = EFAULT;
24212 		}
24213 	}
24214 	kmem_free(mboot, buffer_size);
24215 	return (rval);
24216 }
24217 
24218 
24219 /*
24220  *    Function: sd_dkio_set_mboot
24221  *
24222  * Description: This routine is the driver entry point for handling user
24223  *		requests to validate and set the device master boot
24224  *		(DKIOCSMBOOT).
24225  *
24226  *   Arguments: dev  - the device number
24227  *		arg  - pointer to user provided mboot structure used to set the
24228  *			master boot.
24229  *		flag - this argument is a pass through to ddi_copyxxx()
24230  *		       directly from the mode argument of ioctl().
24231  *
24232  * Return Code: 0
24233  *		EINVAL
24234  *		EFAULT
24235  *		ENXIO
24236  */
24237 
24238 static int
24239 sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag)
24240 {
24241 	struct sd_lun	*un = NULL;
24242 	struct mboot	*mboot = NULL;
24243 	int		rval;
24244 	ushort_t	magic;
24245 
24246 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24247 		return (ENXIO);
24248 	}
24249 
24250 	ASSERT(!mutex_owned(SD_MUTEX(un)));
24251 
24252 	if (!un->un_f_mboot_supported) {
24253 		return (EINVAL);
24254 	}
24255 
24256 	if (arg == NULL) {
24257 		return (EINVAL);
24258 	}
24259 
24260 	mboot = kmem_zalloc(sizeof (struct mboot), KM_SLEEP);
24261 
24262 	if (ddi_copyin((const void *)arg, mboot,
24263 	    sizeof (struct mboot), flag) != 0) {
24264 		kmem_free(mboot, (size_t)(sizeof (struct mboot)));
24265 		return (EFAULT);
24266 	}
24267 
24268 	/* Is this really a master boot record? */
24269 	magic = LE_16(mboot->signature);
24270 	if (magic != MBB_MAGIC) {
24271 		kmem_free(mboot, (size_t)(sizeof (struct mboot)));
24272 		return (EINVAL);
24273 	}
24274 
24275 	rval = sd_send_scsi_WRITE(un, mboot, un->un_sys_blocksize, 0,
24276 	    SD_PATH_STANDARD);
24277 
24278 	mutex_enter(SD_MUTEX(un));
24279 #if defined(__i386) || defined(__amd64)
24280 	if (rval == 0) {
24281 		/*
24282 		 * mboot has been written successfully.
24283 		 * update the fdisk and vtoc tables in memory
24284 		 */
24285 		rval = sd_update_fdisk_and_vtoc(un);
24286 		if ((un->un_f_geometry_is_valid == FALSE) || (rval != 0)) {
24287 			mutex_exit(SD_MUTEX(un));
24288 			kmem_free(mboot, (size_t)(sizeof (struct mboot)));
24289 			return (rval);
24290 		}
24291 	}
24292 
24293 #ifdef __lock_lint
24294 	sd_setup_default_geometry(un);
24295 #endif
24296 
24297 #else
24298 	if (rval == 0) {
24299 		/*
24300 		 * mboot has been written successfully.
24301 		 * set up the default geometry and VTOC
24302 		 */
24303 		if (un->un_blockcount <= DK_MAX_BLOCKS)
24304 			sd_setup_default_geometry(un);
24305 	}
24306 #endif
24307 	mutex_exit(SD_MUTEX(un));
24308 	kmem_free(mboot, (size_t)(sizeof (struct mboot)));
24309 	return (rval);
24310 }
24311 
24312 
24313 /*
24314  *    Function: sd_setup_default_geometry
24315  *
24316  * Description: This local utility routine sets the default geometry as part of
24317  *		setting the device mboot.
24318  *
24319  *   Arguments: un - driver soft state (unit) structure
24320  *
24321  * Note: This may be redundant with sd_build_default_label.
24322  */
24323 
24324 static void
24325 sd_setup_default_geometry(struct sd_lun *un)
24326 {
24327 	/* zero out the soft state geometry and partition table. */
24328 	bzero(&un->un_g, sizeof (struct dk_geom));
24329 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
24330 	bzero(un->un_map, NDKMAP * (sizeof (struct dk_map)));
24331 	un->un_asciilabel[0] = '\0';
24332 
24333 	/*
24334 	 * For the rpm, we use the minimum for the disk.
24335 	 * For the head, cyl and number of sector per track,
24336 	 * if the capacity <= 1GB, head = 64, sect = 32.
24337 	 * else head = 255, sect 63
24338 	 * Note: the capacity should be equal to C*H*S values.
24339 	 * This will cause some truncation of size due to
24340 	 * round off errors. For CD-ROMs, this truncation can
24341 	 * have adverse side effects, so returning ncyl and
24342 	 * nhead as 1. The nsect will overflow for most of
24343 	 * CD-ROMs as nsect is of type ushort.
24344 	 */
24345 	if (ISCD(un)) {
24346 		un->un_g.dkg_ncyl = 1;
24347 		un->un_g.dkg_nhead = 1;
24348 		un->un_g.dkg_nsect = un->un_blockcount;
24349 	} else {
24350 		if (un->un_blockcount <= 0x1000) {
24351 			/* Needed for unlabeled SCSI floppies. */
24352 			un->un_g.dkg_nhead = 2;
24353 			un->un_g.dkg_ncyl = 80;
24354 			un->un_g.dkg_pcyl = 80;
24355 			un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
24356 		} else if (un->un_blockcount <= 0x200000) {
24357 			un->un_g.dkg_nhead = 64;
24358 			un->un_g.dkg_nsect = 32;
24359 			un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
24360 		} else {
24361 			un->un_g.dkg_nhead = 255;
24362 			un->un_g.dkg_nsect = 63;
24363 			un->un_g.dkg_ncyl = un->un_blockcount / (255 * 63);
24364 		}
24365 		un->un_blockcount = un->un_g.dkg_ncyl *
24366 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect;
24367 	}
24368 	un->un_g.dkg_acyl = 0;
24369 	un->un_g.dkg_bcyl = 0;
24370 	un->un_g.dkg_intrlv = 1;
24371 	un->un_g.dkg_rpm = 200;
24372 	un->un_g.dkg_read_reinstruct = 0;
24373 	un->un_g.dkg_write_reinstruct = 0;
24374 	if (un->un_g.dkg_pcyl == 0) {
24375 		un->un_g.dkg_pcyl = un->un_g.dkg_ncyl + un->un_g.dkg_acyl;
24376 	}
24377 
24378 	un->un_map['a'-'a'].dkl_cylno = 0;
24379 	un->un_map['a'-'a'].dkl_nblk = un->un_blockcount;
24380 	un->un_map['c'-'a'].dkl_cylno = 0;
24381 	un->un_map['c'-'a'].dkl_nblk = un->un_blockcount;
24382 	un->un_f_geometry_is_valid = FALSE;
24383 }
24384 
24385 
24386 #if defined(__i386) || defined(__amd64)
24387 /*
24388  *    Function: sd_update_fdisk_and_vtoc
24389  *
24390  * Description: This local utility routine updates the device fdisk and vtoc
24391  *		as part of setting the device mboot.
24392  *
24393  *   Arguments: un - driver soft state (unit) structure
24394  *
24395  * Return Code: 0 for success or errno-type return code.
24396  *
24397  *    Note:x86: This looks like a duplicate of sd_validate_geometry(), but
24398  *		these did exist seperately in x86 sd.c!!!
24399  */
24400 
24401 static int
24402 sd_update_fdisk_and_vtoc(struct sd_lun *un)
24403 {
24404 	static char	labelstring[128];
24405 	static char	buf[256];
24406 	char		*label = 0;
24407 	int		count;
24408 	int		label_rc = 0;
24409 	int		gvalid = un->un_f_geometry_is_valid;
24410 	int		fdisk_rval;
24411 	int		lbasize;
24412 	int		capacity;
24413 
24414 	ASSERT(mutex_owned(SD_MUTEX(un)));
24415 
24416 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
24417 		return (EINVAL);
24418 	}
24419 
24420 	if (un->un_f_blockcount_is_valid == FALSE) {
24421 		return (EINVAL);
24422 	}
24423 
24424 #if defined(_SUNOS_VTOC_16)
24425 	/*
24426 	 * Set up the "whole disk" fdisk partition; this should always
24427 	 * exist, regardless of whether the disk contains an fdisk table
24428 	 * or vtoc.
24429 	 */
24430 	un->un_map[P0_RAW_DISK].dkl_cylno = 0;
24431 	un->un_map[P0_RAW_DISK].dkl_nblk = un->un_blockcount;
24432 #endif	/* defined(_SUNOS_VTOC_16) */
24433 
24434 	/*
24435 	 * copy the lbasize and capacity so that if they're
24436 	 * reset while we're not holding the SD_MUTEX(un), we will
24437 	 * continue to use valid values after the SD_MUTEX(un) is
24438 	 * reacquired.
24439 	 */
24440 	lbasize  = un->un_tgt_blocksize;
24441 	capacity = un->un_blockcount;
24442 
24443 	/*
24444 	 * refresh the logical and physical geometry caches.
24445 	 * (data from mode sense format/rigid disk geometry pages,
24446 	 * and scsi_ifgetcap("geometry").
24447 	 */
24448 	sd_resync_geom_caches(un, capacity, lbasize, SD_PATH_DIRECT);
24449 
24450 	/*
24451 	 * Only DIRECT ACCESS devices will have Sun labels.
24452 	 * CD's supposedly have a Sun label, too
24453 	 */
24454 	if (un->un_f_vtoc_label_supported) {
24455 		fdisk_rval = sd_read_fdisk(un, capacity, lbasize,
24456 		    SD_PATH_DIRECT);
24457 		if (fdisk_rval == SD_CMD_FAILURE) {
24458 			ASSERT(mutex_owned(SD_MUTEX(un)));
24459 			return (EIO);
24460 		}
24461 
24462 		if (fdisk_rval == SD_CMD_RESERVATION_CONFLICT) {
24463 			ASSERT(mutex_owned(SD_MUTEX(un)));
24464 			return (EACCES);
24465 		}
24466 
24467 		if (un->un_solaris_size <= DK_LABEL_LOC) {
24468 			/*
24469 			 * Found fdisk table but no Solaris partition entry,
24470 			 * so don't call sd_uselabel() and don't create
24471 			 * a default label.
24472 			 */
24473 			label_rc = 0;
24474 			un->un_f_geometry_is_valid = TRUE;
24475 			goto no_solaris_partition;
24476 		}
24477 
24478 #if defined(_SUNOS_VTOC_8)
24479 		label = (char *)un->un_asciilabel;
24480 #elif defined(_SUNOS_VTOC_16)
24481 		label = (char *)un->un_vtoc.v_asciilabel;
24482 #else
24483 #error "No VTOC format defined."
24484 #endif
24485 	} else if (capacity < 0) {
24486 		ASSERT(mutex_owned(SD_MUTEX(un)));
24487 		return (EINVAL);
24488 	}
24489 
24490 	/*
24491 	 * For Removable media We reach here if we have found a
24492 	 * SOLARIS PARTITION.
24493 	 * If un_f_geometry_is_valid is FALSE it indicates that the SOLARIS
24494 	 * PARTITION has changed from the previous one, hence we will setup a
24495 	 * default VTOC in this case.
24496 	 */
24497 	if (un->un_f_geometry_is_valid == FALSE) {
24498 		sd_build_default_label(un);
24499 		label_rc = 0;
24500 	}
24501 
24502 no_solaris_partition:
24503 	if ((!un->un_f_has_removable_media ||
24504 	    (un->un_f_has_removable_media &&
24505 	    un->un_mediastate == DKIO_EJECTED)) &&
24506 		(un->un_state == SD_STATE_NORMAL && !gvalid)) {
24507 		/*
24508 		 * Print out a message indicating who and what we are.
24509 		 * We do this only when we happen to really validate the
24510 		 * geometry. We may call sd_validate_geometry() at other
24511 		 * times, ioctl()'s like Get VTOC in which case we
24512 		 * don't want to print the label.
24513 		 * If the geometry is valid, print the label string,
24514 		 * else print vendor and product info, if available
24515 		 */
24516 		if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) {
24517 			SD_INFO(SD_LOG_IOCTL_DKIO, un, "?<%s>\n", label);
24518 		} else {
24519 			mutex_enter(&sd_label_mutex);
24520 			sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX,
24521 			    labelstring);
24522 			sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX,
24523 			    &labelstring[64]);
24524 			(void) sprintf(buf, "?Vendor '%s', product '%s'",
24525 			    labelstring, &labelstring[64]);
24526 			if (un->un_f_blockcount_is_valid == TRUE) {
24527 				(void) sprintf(&buf[strlen(buf)],
24528 				    ", %" PRIu64 " %u byte blocks\n",
24529 				    un->un_blockcount,
24530 				    un->un_tgt_blocksize);
24531 			} else {
24532 				(void) sprintf(&buf[strlen(buf)],
24533 				    ", (unknown capacity)\n");
24534 			}
24535 			SD_INFO(SD_LOG_IOCTL_DKIO, un, buf);
24536 			mutex_exit(&sd_label_mutex);
24537 		}
24538 	}
24539 
24540 #if defined(_SUNOS_VTOC_16)
24541 	/*
24542 	 * If we have valid geometry, set up the remaining fdisk partitions.
24543 	 * Note that dkl_cylno is not used for the fdisk map entries, so
24544 	 * we set it to an entirely bogus value.
24545 	 */
24546 	for (count = 0; count < FD_NUMPART; count++) {
24547 		un->un_map[FDISK_P1 + count].dkl_cylno = -1;
24548 		un->un_map[FDISK_P1 + count].dkl_nblk =
24549 		    un->un_fmap[count].fmap_nblk;
24550 		un->un_offset[FDISK_P1 + count] =
24551 		    un->un_fmap[count].fmap_start;
24552 	}
24553 #endif
24554 
24555 	for (count = 0; count < NDKMAP; count++) {
24556 #if defined(_SUNOS_VTOC_8)
24557 		struct dk_map *lp  = &un->un_map[count];
24558 		un->un_offset[count] =
24559 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
24560 #elif defined(_SUNOS_VTOC_16)
24561 		struct dkl_partition *vp = &un->un_vtoc.v_part[count];
24562 		un->un_offset[count] = vp->p_start + un->un_solaris_offset;
24563 #else
24564 #error "No VTOC format defined."
24565 #endif
24566 	}
24567 
24568 	ASSERT(mutex_owned(SD_MUTEX(un)));
24569 	return (label_rc);
24570 }
24571 #endif
24572 
24573 
24574 /*
24575  *    Function: sd_check_media
24576  *
24577  * Description: This utility routine implements the functionality for the
24578  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
24579  *		driver state changes from that specified by the user
24580  *		(inserted or ejected). For example, if the user specifies
24581  *		DKIO_EJECTED and the current media state is inserted this
24582  *		routine will immediately return DKIO_INSERTED. However, if the
24583  *		current media state is not inserted the user thread will be
24584  *		blocked until the drive state changes. If DKIO_NONE is specified
24585  *		the user thread will block until a drive state change occurs.
24586  *
24587  *   Arguments: dev  - the device number
24588  *		state  - user pointer to a dkio_state, updated with the current
24589  *			drive state at return.
24590  *
24591  * Return Code: ENXIO
24592  *		EIO
24593  *		EAGAIN
24594  *		EINTR
24595  */
24596 
24597 static int
24598 sd_check_media(dev_t dev, enum dkio_state state)
24599 {
24600 	struct sd_lun		*un = NULL;
24601 	enum dkio_state		prev_state;
24602 	opaque_t		token = NULL;
24603 	int			rval = 0;
24604 
24605 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24606 		return (ENXIO);
24607 	}
24608 
24609 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
24610 
24611 	mutex_enter(SD_MUTEX(un));
24612 
24613 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
24614 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
24615 
24616 	prev_state = un->un_mediastate;
24617 
24618 	/* is there anything to do? */
24619 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
24620 		/*
24621 		 * submit the request to the scsi_watch service;
24622 		 * scsi_media_watch_cb() does the real work
24623 		 */
24624 		mutex_exit(SD_MUTEX(un));
24625 
24626 		/*
24627 		 * This change handles the case where a scsi watch request is
24628 		 * added to a device that is powered down. To accomplish this
24629 		 * we power up the device before adding the scsi watch request,
24630 		 * since the scsi watch sends a TUR directly to the device
24631 		 * which the device cannot handle if it is powered down.
24632 		 */
24633 		if (sd_pm_entry(un) != DDI_SUCCESS) {
24634 			mutex_enter(SD_MUTEX(un));
24635 			goto done;
24636 		}
24637 
24638 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
24639 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
24640 		    (caddr_t)dev);
24641 
24642 		sd_pm_exit(un);
24643 
24644 		mutex_enter(SD_MUTEX(un));
24645 		if (token == NULL) {
24646 			rval = EAGAIN;
24647 			goto done;
24648 		}
24649 
24650 		/*
24651 		 * This is a special case IOCTL that doesn't return
24652 		 * until the media state changes. Routine sdpower
24653 		 * knows about and handles this so don't count it
24654 		 * as an active cmd in the driver, which would
24655 		 * keep the device busy to the pm framework.
24656 		 * If the count isn't decremented the device can't
24657 		 * be powered down.
24658 		 */
24659 		un->un_ncmds_in_driver--;
24660 		ASSERT(un->un_ncmds_in_driver >= 0);
24661 
24662 		/*
24663 		 * if a prior request had been made, this will be the same
24664 		 * token, as scsi_watch was designed that way.
24665 		 */
24666 		un->un_swr_token = token;
24667 		un->un_specified_mediastate = state;
24668 
24669 		/*
24670 		 * now wait for media change
24671 		 * we will not be signalled unless mediastate == state but it is
24672 		 * still better to test for this condition, since there is a
24673 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
24674 		 */
24675 		SD_TRACE(SD_LOG_COMMON, un,
24676 		    "sd_check_media: waiting for media state change\n");
24677 		while (un->un_mediastate == state) {
24678 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
24679 				SD_TRACE(SD_LOG_COMMON, un,
24680 				    "sd_check_media: waiting for media state "
24681 				    "was interrupted\n");
24682 				un->un_ncmds_in_driver++;
24683 				rval = EINTR;
24684 				goto done;
24685 			}
24686 			SD_TRACE(SD_LOG_COMMON, un,
24687 			    "sd_check_media: received signal, state=%x\n",
24688 			    un->un_mediastate);
24689 		}
24690 		/*
24691 		 * Inc the counter to indicate the device once again
24692 		 * has an active outstanding cmd.
24693 		 */
24694 		un->un_ncmds_in_driver++;
24695 	}
24696 
24697 	/* invalidate geometry */
24698 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
24699 		sr_ejected(un);
24700 	}
24701 
24702 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
24703 		uint64_t	capacity;
24704 		uint_t		lbasize;
24705 
24706 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
24707 		mutex_exit(SD_MUTEX(un));
24708 		/*
24709 		 * Since the following routines use SD_PATH_DIRECT, we must
24710 		 * call PM directly before the upcoming disk accesses. This
24711 		 * may cause the disk to be power/spin up.
24712 		 */
24713 
24714 		if (sd_pm_entry(un) == DDI_SUCCESS) {
24715 			rval = sd_send_scsi_READ_CAPACITY(un,
24716 			    &capacity,
24717 			    &lbasize, SD_PATH_DIRECT);
24718 			if (rval != 0) {
24719 				sd_pm_exit(un);
24720 				mutex_enter(SD_MUTEX(un));
24721 				goto done;
24722 			}
24723 		} else {
24724 			rval = EIO;
24725 			mutex_enter(SD_MUTEX(un));
24726 			goto done;
24727 		}
24728 		mutex_enter(SD_MUTEX(un));
24729 
24730 		sd_update_block_info(un, lbasize, capacity);
24731 
24732 		un->un_f_geometry_is_valid	= FALSE;
24733 		(void) sd_validate_geometry(un, SD_PATH_DIRECT);
24734 
24735 		mutex_exit(SD_MUTEX(un));
24736 		rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
24737 		    SD_PATH_DIRECT);
24738 		sd_pm_exit(un);
24739 
24740 		mutex_enter(SD_MUTEX(un));
24741 	}
24742 done:
24743 	un->un_f_watcht_stopped = FALSE;
24744 	if (un->un_swr_token) {
24745 		/*
24746 		 * Use of this local token and the mutex ensures that we avoid
24747 		 * some race conditions associated with terminating the
24748 		 * scsi watch.
24749 		 */
24750 		token = un->un_swr_token;
24751 		un->un_swr_token = (opaque_t)NULL;
24752 		mutex_exit(SD_MUTEX(un));
24753 		(void) scsi_watch_request_terminate(token,
24754 		    SCSI_WATCH_TERMINATE_WAIT);
24755 		mutex_enter(SD_MUTEX(un));
24756 	}
24757 
24758 	/*
24759 	 * Update the capacity kstat value, if no media previously
24760 	 * (capacity kstat is 0) and a media has been inserted
24761 	 * (un_f_blockcount_is_valid == TRUE)
24762 	 */
24763 	if (un->un_errstats) {
24764 		struct sd_errstats	*stp = NULL;
24765 
24766 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
24767 		if ((stp->sd_capacity.value.ui64 == 0) &&
24768 		    (un->un_f_blockcount_is_valid == TRUE)) {
24769 			stp->sd_capacity.value.ui64 =
24770 			    (uint64_t)((uint64_t)un->un_blockcount *
24771 			    un->un_sys_blocksize);
24772 		}
24773 	}
24774 	mutex_exit(SD_MUTEX(un));
24775 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
24776 	return (rval);
24777 }
24778 
24779 
24780 /*
24781  *    Function: sd_delayed_cv_broadcast
24782  *
24783  * Description: Delayed cv_broadcast to allow for target to recover from media
24784  *		insertion.
24785  *
24786  *   Arguments: arg - driver soft state (unit) structure
24787  */
24788 
24789 static void
24790 sd_delayed_cv_broadcast(void *arg)
24791 {
24792 	struct sd_lun *un = arg;
24793 
24794 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
24795 
24796 	mutex_enter(SD_MUTEX(un));
24797 	un->un_dcvb_timeid = NULL;
24798 	cv_broadcast(&un->un_state_cv);
24799 	mutex_exit(SD_MUTEX(un));
24800 }
24801 
24802 
24803 /*
24804  *    Function: sd_media_watch_cb
24805  *
24806  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
24807  *		routine processes the TUR sense data and updates the driver
24808  *		state if a transition has occurred. The user thread
24809  *		(sd_check_media) is then signalled.
24810  *
24811  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24812  *			among multiple watches that share this callback function
24813  *		resultp - scsi watch facility result packet containing scsi
24814  *			  packet, status byte and sense data
24815  *
24816  * Return Code: 0 for success, -1 for failure
24817  */
24818 
24819 static int
24820 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
24821 {
24822 	struct sd_lun			*un;
24823 	struct scsi_status		*statusp = resultp->statusp;
24824 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
24825 	enum dkio_state			state = DKIO_NONE;
24826 	dev_t				dev = (dev_t)arg;
24827 	uchar_t				actual_sense_length;
24828 	uint8_t				skey, asc, ascq;
24829 
24830 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24831 		return (-1);
24832 	}
24833 	actual_sense_length = resultp->actual_sense_length;
24834 
24835 	mutex_enter(SD_MUTEX(un));
24836 	SD_TRACE(SD_LOG_COMMON, un,
24837 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
24838 	    *((char *)statusp), (void *)sensep, actual_sense_length);
24839 
24840 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
24841 		un->un_mediastate = DKIO_DEV_GONE;
24842 		cv_broadcast(&un->un_state_cv);
24843 		mutex_exit(SD_MUTEX(un));
24844 
24845 		return (0);
24846 	}
24847 
24848 	/*
24849 	 * If there was a check condition then sensep points to valid sense data
24850 	 * If status was not a check condition but a reservation or busy status
24851 	 * then the new state is DKIO_NONE
24852 	 */
24853 	if (sensep != NULL) {
24854 		skey = scsi_sense_key(sensep);
24855 		asc = scsi_sense_asc(sensep);
24856 		ascq = scsi_sense_ascq(sensep);
24857 
24858 		SD_INFO(SD_LOG_COMMON, un,
24859 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
24860 		    skey, asc, ascq);
24861 		/* This routine only uses up to 13 bytes of sense data. */
24862 		if (actual_sense_length >= 13) {
24863 			if (skey == KEY_UNIT_ATTENTION) {
24864 				if (asc == 0x28) {
24865 					state = DKIO_INSERTED;
24866 				}
24867 			} else {
24868 				/*
24869 				 * if 02/04/02  means that the host
24870 				 * should send start command. Explicitly
24871 				 * leave the media state as is
24872 				 * (inserted) as the media is inserted
24873 				 * and host has stopped device for PM
24874 				 * reasons. Upon next true read/write
24875 				 * to this media will bring the
24876 				 * device to the right state good for
24877 				 * media access.
24878 				 */
24879 				if ((skey == KEY_NOT_READY) &&
24880 				    (asc == 0x3a)) {
24881 					state = DKIO_EJECTED;
24882 				}
24883 
24884 				/*
24885 				 * If the drivge is busy with an operation
24886 				 * or long write, keep the media in an
24887 				 * inserted state.
24888 				 */
24889 
24890 				if ((skey == KEY_NOT_READY) &&
24891 				    (asc == 0x04) &&
24892 				    ((ascq == 0x02) ||
24893 				    (ascq == 0x07) ||
24894 				    (ascq == 0x08))) {
24895 					state = DKIO_INSERTED;
24896 				}
24897 			}
24898 		}
24899 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
24900 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
24901 		state = DKIO_INSERTED;
24902 	}
24903 
24904 	SD_TRACE(SD_LOG_COMMON, un,
24905 	    "sd_media_watch_cb: state=%x, specified=%x\n",
24906 	    state, un->un_specified_mediastate);
24907 
24908 	/*
24909 	 * now signal the waiting thread if this is *not* the specified state;
24910 	 * delay the signal if the state is DKIO_INSERTED to allow the target
24911 	 * to recover
24912 	 */
24913 	if (state != un->un_specified_mediastate) {
24914 		un->un_mediastate = state;
24915 		if (state == DKIO_INSERTED) {
24916 			/*
24917 			 * delay the signal to give the drive a chance
24918 			 * to do what it apparently needs to do
24919 			 */
24920 			SD_TRACE(SD_LOG_COMMON, un,
24921 			    "sd_media_watch_cb: delayed cv_broadcast\n");
24922 			if (un->un_dcvb_timeid == NULL) {
24923 				un->un_dcvb_timeid =
24924 				    timeout(sd_delayed_cv_broadcast, un,
24925 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
24926 			}
24927 		} else {
24928 			SD_TRACE(SD_LOG_COMMON, un,
24929 			    "sd_media_watch_cb: immediate cv_broadcast\n");
24930 			cv_broadcast(&un->un_state_cv);
24931 		}
24932 	}
24933 	mutex_exit(SD_MUTEX(un));
24934 	return (0);
24935 }
24936 
24937 
24938 /*
24939  *    Function: sd_dkio_get_temp
24940  *
24941  * Description: This routine is the driver entry point for handling ioctl
24942  *		requests to get the disk temperature.
24943  *
24944  *   Arguments: dev  - the device number
24945  *		arg  - pointer to user provided dk_temperature structure.
24946  *		flag - this argument is a pass through to ddi_copyxxx()
24947  *		       directly from the mode argument of ioctl().
24948  *
24949  * Return Code: 0
24950  *		EFAULT
24951  *		ENXIO
24952  *		EAGAIN
24953  */
24954 
24955 static int
24956 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
24957 {
24958 	struct sd_lun		*un = NULL;
24959 	struct dk_temperature	*dktemp = NULL;
24960 	uchar_t			*temperature_page;
24961 	int			rval = 0;
24962 	int			path_flag = SD_PATH_STANDARD;
24963 
24964 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24965 		return (ENXIO);
24966 	}
24967 
24968 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
24969 
24970 	/* copyin the disk temp argument to get the user flags */
24971 	if (ddi_copyin((void *)arg, dktemp,
24972 	    sizeof (struct dk_temperature), flag) != 0) {
24973 		rval = EFAULT;
24974 		goto done;
24975 	}
24976 
24977 	/* Initialize the temperature to invalid. */
24978 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24979 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24980 
24981 	/*
24982 	 * Note: Investigate removing the "bypass pm" semantic.
24983 	 * Can we just bypass PM always?
24984 	 */
24985 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
24986 		path_flag = SD_PATH_DIRECT;
24987 		ASSERT(!mutex_owned(&un->un_pm_mutex));
24988 		mutex_enter(&un->un_pm_mutex);
24989 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
24990 			/*
24991 			 * If DKT_BYPASS_PM is set, and the drive happens to be
24992 			 * in low power mode, we can not wake it up, Need to
24993 			 * return EAGAIN.
24994 			 */
24995 			mutex_exit(&un->un_pm_mutex);
24996 			rval = EAGAIN;
24997 			goto done;
24998 		} else {
24999 			/*
25000 			 * Indicate to PM the device is busy. This is required
25001 			 * to avoid a race - i.e. the ioctl is issuing a
25002 			 * command and the pm framework brings down the device
25003 			 * to low power mode (possible power cut-off on some
25004 			 * platforms).
25005 			 */
25006 			mutex_exit(&un->un_pm_mutex);
25007 			if (sd_pm_entry(un) != DDI_SUCCESS) {
25008 				rval = EAGAIN;
25009 				goto done;
25010 			}
25011 		}
25012 	}
25013 
25014 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
25015 
25016 	if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page,
25017 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) {
25018 		goto done2;
25019 	}
25020 
25021 	/*
25022 	 * For the current temperature verify that the parameter length is 0x02
25023 	 * and the parameter code is 0x00
25024 	 */
25025 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
25026 	    (temperature_page[5] == 0x00)) {
25027 		if (temperature_page[9] == 0xFF) {
25028 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
25029 		} else {
25030 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
25031 		}
25032 	}
25033 
25034 	/*
25035 	 * For the reference temperature verify that the parameter
25036 	 * length is 0x02 and the parameter code is 0x01
25037 	 */
25038 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
25039 	    (temperature_page[11] == 0x01)) {
25040 		if (temperature_page[15] == 0xFF) {
25041 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
25042 		} else {
25043 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
25044 		}
25045 	}
25046 
25047 	/* Do the copyout regardless of the temperature commands status. */
25048 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
25049 	    flag) != 0) {
25050 		rval = EFAULT;
25051 	}
25052 
25053 done2:
25054 	if (path_flag == SD_PATH_DIRECT) {
25055 		sd_pm_exit(un);
25056 	}
25057 
25058 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
25059 done:
25060 	if (dktemp != NULL) {
25061 		kmem_free(dktemp, sizeof (struct dk_temperature));
25062 	}
25063 
25064 	return (rval);
25065 }
25066 
25067 
25068 /*
25069  *    Function: sd_log_page_supported
25070  *
25071  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
25072  *		supported log pages.
25073  *
25074  *   Arguments: un -
25075  *		log_page -
25076  *
25077  * Return Code: -1 - on error (log sense is optional and may not be supported).
25078  *		0  - log page not found.
25079  *  		1  - log page found.
25080  */
25081 
25082 static int
25083 sd_log_page_supported(struct sd_lun *un, int log_page)
25084 {
25085 	uchar_t *log_page_data;
25086 	int	i;
25087 	int	match = 0;
25088 	int	log_size;
25089 
25090 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
25091 
25092 	if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0,
25093 	    SD_PATH_DIRECT) != 0) {
25094 		SD_ERROR(SD_LOG_COMMON, un,
25095 		    "sd_log_page_supported: failed log page retrieval\n");
25096 		kmem_free(log_page_data, 0xFF);
25097 		return (-1);
25098 	}
25099 	log_size = log_page_data[3];
25100 
25101 	/*
25102 	 * The list of supported log pages start from the fourth byte. Check
25103 	 * until we run out of log pages or a match is found.
25104 	 */
25105 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
25106 		if (log_page_data[i] == log_page) {
25107 			match++;
25108 		}
25109 	}
25110 	kmem_free(log_page_data, 0xFF);
25111 	return (match);
25112 }
25113 
25114 
25115 /*
25116  *    Function: sd_mhdioc_failfast
25117  *
25118  * Description: This routine is the driver entry point for handling ioctl
25119  *		requests to enable/disable the multihost failfast option.
25120  *		(MHIOCENFAILFAST)
25121  *
25122  *   Arguments: dev	- the device number
25123  *		arg	- user specified probing interval.
25124  *		flag	- this argument is a pass through to ddi_copyxxx()
25125  *			  directly from the mode argument of ioctl().
25126  *
25127  * Return Code: 0
25128  *		EFAULT
25129  *		ENXIO
25130  */
25131 
25132 static int
25133 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
25134 {
25135 	struct sd_lun	*un = NULL;
25136 	int		mh_time;
25137 	int		rval = 0;
25138 
25139 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25140 		return (ENXIO);
25141 	}
25142 
25143 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
25144 		return (EFAULT);
25145 
25146 	if (mh_time) {
25147 		mutex_enter(SD_MUTEX(un));
25148 		un->un_resvd_status |= SD_FAILFAST;
25149 		mutex_exit(SD_MUTEX(un));
25150 		/*
25151 		 * If mh_time is INT_MAX, then this ioctl is being used for
25152 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
25153 		 */
25154 		if (mh_time != INT_MAX) {
25155 			rval = sd_check_mhd(dev, mh_time);
25156 		}
25157 	} else {
25158 		(void) sd_check_mhd(dev, 0);
25159 		mutex_enter(SD_MUTEX(un));
25160 		un->un_resvd_status &= ~SD_FAILFAST;
25161 		mutex_exit(SD_MUTEX(un));
25162 	}
25163 	return (rval);
25164 }
25165 
25166 
25167 /*
25168  *    Function: sd_mhdioc_takeown
25169  *
25170  * Description: This routine is the driver entry point for handling ioctl
25171  *		requests to forcefully acquire exclusive access rights to the
25172  *		multihost disk (MHIOCTKOWN).
25173  *
25174  *   Arguments: dev	- the device number
25175  *		arg	- user provided structure specifying the delay
25176  *			  parameters in milliseconds
25177  *		flag	- this argument is a pass through to ddi_copyxxx()
25178  *			  directly from the mode argument of ioctl().
25179  *
25180  * Return Code: 0
25181  *		EFAULT
25182  *		ENXIO
25183  */
25184 
25185 static int
25186 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
25187 {
25188 	struct sd_lun		*un = NULL;
25189 	struct mhioctkown	*tkown = NULL;
25190 	int			rval = 0;
25191 
25192 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25193 		return (ENXIO);
25194 	}
25195 
25196 	if (arg != NULL) {
25197 		tkown = (struct mhioctkown *)
25198 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
25199 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
25200 		if (rval != 0) {
25201 			rval = EFAULT;
25202 			goto error;
25203 		}
25204 	}
25205 
25206 	rval = sd_take_ownership(dev, tkown);
25207 	mutex_enter(SD_MUTEX(un));
25208 	if (rval == 0) {
25209 		un->un_resvd_status |= SD_RESERVE;
25210 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
25211 			sd_reinstate_resv_delay =
25212 			    tkown->reinstate_resv_delay * 1000;
25213 		} else {
25214 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
25215 		}
25216 		/*
25217 		 * Give the scsi_watch routine interval set by
25218 		 * the MHIOCENFAILFAST ioctl precedence here.
25219 		 */
25220 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
25221 			mutex_exit(SD_MUTEX(un));
25222 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
25223 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
25224 			    "sd_mhdioc_takeown : %d\n",
25225 			    sd_reinstate_resv_delay);
25226 		} else {
25227 			mutex_exit(SD_MUTEX(un));
25228 		}
25229 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
25230 		    sd_mhd_reset_notify_cb, (caddr_t)un);
25231 	} else {
25232 		un->un_resvd_status &= ~SD_RESERVE;
25233 		mutex_exit(SD_MUTEX(un));
25234 	}
25235 
25236 error:
25237 	if (tkown != NULL) {
25238 		kmem_free(tkown, sizeof (struct mhioctkown));
25239 	}
25240 	return (rval);
25241 }
25242 
25243 
25244 /*
25245  *    Function: sd_mhdioc_release
25246  *
25247  * Description: This routine is the driver entry point for handling ioctl
25248  *		requests to release exclusive access rights to the multihost
25249  *		disk (MHIOCRELEASE).
25250  *
25251  *   Arguments: dev	- the device number
25252  *
25253  * Return Code: 0
25254  *		ENXIO
25255  */
25256 
25257 static int
25258 sd_mhdioc_release(dev_t dev)
25259 {
25260 	struct sd_lun		*un = NULL;
25261 	timeout_id_t		resvd_timeid_save;
25262 	int			resvd_status_save;
25263 	int			rval = 0;
25264 
25265 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25266 		return (ENXIO);
25267 	}
25268 
25269 	mutex_enter(SD_MUTEX(un));
25270 	resvd_status_save = un->un_resvd_status;
25271 	un->un_resvd_status &=
25272 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
25273 	if (un->un_resvd_timeid) {
25274 		resvd_timeid_save = un->un_resvd_timeid;
25275 		un->un_resvd_timeid = NULL;
25276 		mutex_exit(SD_MUTEX(un));
25277 		(void) untimeout(resvd_timeid_save);
25278 	} else {
25279 		mutex_exit(SD_MUTEX(un));
25280 	}
25281 
25282 	/*
25283 	 * destroy any pending timeout thread that may be attempting to
25284 	 * reinstate reservation on this device.
25285 	 */
25286 	sd_rmv_resv_reclaim_req(dev);
25287 
25288 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
25289 		mutex_enter(SD_MUTEX(un));
25290 		if ((un->un_mhd_token) &&
25291 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
25292 			mutex_exit(SD_MUTEX(un));
25293 			(void) sd_check_mhd(dev, 0);
25294 		} else {
25295 			mutex_exit(SD_MUTEX(un));
25296 		}
25297 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
25298 		    sd_mhd_reset_notify_cb, (caddr_t)un);
25299 	} else {
25300 		/*
25301 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
25302 		 */
25303 		mutex_enter(SD_MUTEX(un));
25304 		un->un_resvd_status = resvd_status_save;
25305 		mutex_exit(SD_MUTEX(un));
25306 	}
25307 	return (rval);
25308 }
25309 
25310 
25311 /*
25312  *    Function: sd_mhdioc_register_devid
25313  *
25314  * Description: This routine is the driver entry point for handling ioctl
25315  *		requests to register the device id (MHIOCREREGISTERDEVID).
25316  *
25317  *		Note: The implementation for this ioctl has been updated to
25318  *		be consistent with the original PSARC case (1999/357)
25319  *		(4375899, 4241671, 4220005)
25320  *
25321  *   Arguments: dev	- the device number
25322  *
25323  * Return Code: 0
25324  *		ENXIO
25325  */
25326 
25327 static int
25328 sd_mhdioc_register_devid(dev_t dev)
25329 {
25330 	struct sd_lun	*un = NULL;
25331 	int		rval = 0;
25332 
25333 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25334 		return (ENXIO);
25335 	}
25336 
25337 	ASSERT(!mutex_owned(SD_MUTEX(un)));
25338 
25339 	mutex_enter(SD_MUTEX(un));
25340 
25341 	/* If a devid already exists, de-register it */
25342 	if (un->un_devid != NULL) {
25343 		ddi_devid_unregister(SD_DEVINFO(un));
25344 		/*
25345 		 * After unregister devid, needs to free devid memory
25346 		 */
25347 		ddi_devid_free(un->un_devid);
25348 		un->un_devid = NULL;
25349 	}
25350 
25351 	/* Check for reservation conflict */
25352 	mutex_exit(SD_MUTEX(un));
25353 	rval = sd_send_scsi_TEST_UNIT_READY(un, 0);
25354 	mutex_enter(SD_MUTEX(un));
25355 
25356 	switch (rval) {
25357 	case 0:
25358 		sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
25359 		break;
25360 	case EACCES:
25361 		break;
25362 	default:
25363 		rval = EIO;
25364 	}
25365 
25366 	mutex_exit(SD_MUTEX(un));
25367 	return (rval);
25368 }
25369 
25370 
25371 /*
25372  *    Function: sd_mhdioc_inkeys
25373  *
25374  * Description: This routine is the driver entry point for handling ioctl
25375  *		requests to issue the SCSI-3 Persistent In Read Keys command
25376  *		to the device (MHIOCGRP_INKEYS).
25377  *
25378  *   Arguments: dev	- the device number
25379  *		arg	- user provided in_keys structure
25380  *		flag	- this argument is a pass through to ddi_copyxxx()
25381  *			  directly from the mode argument of ioctl().
25382  *
25383  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
25384  *		ENXIO
25385  *		EFAULT
25386  */
25387 
25388 static int
25389 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
25390 {
25391 	struct sd_lun		*un;
25392 	mhioc_inkeys_t		inkeys;
25393 	int			rval = 0;
25394 
25395 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25396 		return (ENXIO);
25397 	}
25398 
25399 #ifdef _MULTI_DATAMODEL
25400 	switch (ddi_model_convert_from(flag & FMODELS)) {
25401 	case DDI_MODEL_ILP32: {
25402 		struct mhioc_inkeys32	inkeys32;
25403 
25404 		if (ddi_copyin(arg, &inkeys32,
25405 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
25406 			return (EFAULT);
25407 		}
25408 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
25409 		if ((rval = sd_persistent_reservation_in_read_keys(un,
25410 		    &inkeys, flag)) != 0) {
25411 			return (rval);
25412 		}
25413 		inkeys32.generation = inkeys.generation;
25414 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
25415 		    flag) != 0) {
25416 			return (EFAULT);
25417 		}
25418 		break;
25419 	}
25420 	case DDI_MODEL_NONE:
25421 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
25422 		    flag) != 0) {
25423 			return (EFAULT);
25424 		}
25425 		if ((rval = sd_persistent_reservation_in_read_keys(un,
25426 		    &inkeys, flag)) != 0) {
25427 			return (rval);
25428 		}
25429 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
25430 		    flag) != 0) {
25431 			return (EFAULT);
25432 		}
25433 		break;
25434 	}
25435 
25436 #else /* ! _MULTI_DATAMODEL */
25437 
25438 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
25439 		return (EFAULT);
25440 	}
25441 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
25442 	if (rval != 0) {
25443 		return (rval);
25444 	}
25445 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
25446 		return (EFAULT);
25447 	}
25448 
25449 #endif /* _MULTI_DATAMODEL */
25450 
25451 	return (rval);
25452 }
25453 
25454 
25455 /*
25456  *    Function: sd_mhdioc_inresv
25457  *
25458  * Description: This routine is the driver entry point for handling ioctl
25459  *		requests to issue the SCSI-3 Persistent In Read Reservations
25460  *		command to the device (MHIOCGRP_INKEYS).
25461  *
25462  *   Arguments: dev	- the device number
25463  *		arg	- user provided in_resv structure
25464  *		flag	- this argument is a pass through to ddi_copyxxx()
25465  *			  directly from the mode argument of ioctl().
25466  *
25467  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
25468  *		ENXIO
25469  *		EFAULT
25470  */
25471 
25472 static int
25473 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
25474 {
25475 	struct sd_lun		*un;
25476 	mhioc_inresvs_t		inresvs;
25477 	int			rval = 0;
25478 
25479 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25480 		return (ENXIO);
25481 	}
25482 
25483 #ifdef _MULTI_DATAMODEL
25484 
25485 	switch (ddi_model_convert_from(flag & FMODELS)) {
25486 	case DDI_MODEL_ILP32: {
25487 		struct mhioc_inresvs32	inresvs32;
25488 
25489 		if (ddi_copyin(arg, &inresvs32,
25490 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
25491 			return (EFAULT);
25492 		}
25493 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
25494 		if ((rval = sd_persistent_reservation_in_read_resv(un,
25495 		    &inresvs, flag)) != 0) {
25496 			return (rval);
25497 		}
25498 		inresvs32.generation = inresvs.generation;
25499 		if (ddi_copyout(&inresvs32, arg,
25500 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
25501 			return (EFAULT);
25502 		}
25503 		break;
25504 	}
25505 	case DDI_MODEL_NONE:
25506 		if (ddi_copyin(arg, &inresvs,
25507 		    sizeof (mhioc_inresvs_t), flag) != 0) {
25508 			return (EFAULT);
25509 		}
25510 		if ((rval = sd_persistent_reservation_in_read_resv(un,
25511 		    &inresvs, flag)) != 0) {
25512 			return (rval);
25513 		}
25514 		if (ddi_copyout(&inresvs, arg,
25515 		    sizeof (mhioc_inresvs_t), flag) != 0) {
25516 			return (EFAULT);
25517 		}
25518 		break;
25519 	}
25520 
25521 #else /* ! _MULTI_DATAMODEL */
25522 
25523 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
25524 		return (EFAULT);
25525 	}
25526 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
25527 	if (rval != 0) {
25528 		return (rval);
25529 	}
25530 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
25531 		return (EFAULT);
25532 	}
25533 
25534 #endif /* ! _MULTI_DATAMODEL */
25535 
25536 	return (rval);
25537 }
25538 
25539 
25540 /*
25541  * The following routines support the clustering functionality described below
25542  * and implement lost reservation reclaim functionality.
25543  *
25544  * Clustering
25545  * ----------
25546  * The clustering code uses two different, independent forms of SCSI
25547  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
25548  * Persistent Group Reservations. For any particular disk, it will use either
25549  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
25550  *
25551  * SCSI-2
25552  * The cluster software takes ownership of a multi-hosted disk by issuing the
25553  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
25554  * MHIOCRELEASE ioctl.Closely related is the MHIOCENFAILFAST ioctl -- a cluster,
25555  * just after taking ownership of the disk with the MHIOCTKOWN ioctl then issues
25556  * the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the driver. The
25557  * meaning of failfast is that if the driver (on this host) ever encounters the
25558  * scsi error return code RESERVATION_CONFLICT from the device, it should
25559  * immediately panic the host. The motivation for this ioctl is that if this
25560  * host does encounter reservation conflict, the underlying cause is that some
25561  * other host of the cluster has decided that this host is no longer in the
25562  * cluster and has seized control of the disks for itself. Since this host is no
25563  * longer in the cluster, it ought to panic itself. The MHIOCENFAILFAST ioctl
25564  * does two things:
25565  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
25566  *      error to panic the host
25567  *      (b) it sets up a periodic timer to test whether this host still has
25568  *      "access" (in that no other host has reserved the device):  if the
25569  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
25570  *      purpose of that periodic timer is to handle scenarios where the host is
25571  *      otherwise temporarily quiescent, temporarily doing no real i/o.
25572  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
25573  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
25574  * the device itself.
25575  *
25576  * SCSI-3 PGR
25577  * A direct semantic implementation of the SCSI-3 Persistent Reservation
25578  * facility is supported through the shared multihost disk ioctls
25579  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
25580  * MHIOCGRP_PREEMPTANDABORT)
25581  *
25582  * Reservation Reclaim:
25583  * --------------------
25584  * To support the lost reservation reclaim operations this driver creates a
25585  * single thread to handle reinstating reservations on all devices that have
25586  * lost reservations sd_resv_reclaim_requests are logged for all devices that
25587  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
25588  * and the reservation reclaim thread loops through the requests to regain the
25589  * lost reservations.
25590  */
25591 
25592 /*
25593  *    Function: sd_check_mhd()
25594  *
25595  * Description: This function sets up and submits a scsi watch request or
25596  *		terminates an existing watch request. This routine is used in
25597  *		support of reservation reclaim.
25598  *
25599  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
25600  *			 among multiple watches that share the callback function
25601  *		interval - the number of microseconds specifying the watch
25602  *			   interval for issuing TEST UNIT READY commands. If
25603  *			   set to 0 the watch should be terminated. If the
25604  *			   interval is set to 0 and if the device is required
25605  *			   to hold reservation while disabling failfast, the
25606  *			   watch is restarted with an interval of
25607  *			   reinstate_resv_delay.
25608  *
25609  * Return Code: 0	   - Successful submit/terminate of scsi watch request
25610  *		ENXIO      - Indicates an invalid device was specified
25611  *		EAGAIN     - Unable to submit the scsi watch request
25612  */
25613 
25614 static int
25615 sd_check_mhd(dev_t dev, int interval)
25616 {
25617 	struct sd_lun	*un;
25618 	opaque_t	token;
25619 
25620 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25621 		return (ENXIO);
25622 	}
25623 
25624 	/* is this a watch termination request? */
25625 	if (interval == 0) {
25626 		mutex_enter(SD_MUTEX(un));
25627 		/* if there is an existing watch task then terminate it */
25628 		if (un->un_mhd_token) {
25629 			token = un->un_mhd_token;
25630 			un->un_mhd_token = NULL;
25631 			mutex_exit(SD_MUTEX(un));
25632 			(void) scsi_watch_request_terminate(token,
25633 			    SCSI_WATCH_TERMINATE_WAIT);
25634 			mutex_enter(SD_MUTEX(un));
25635 		} else {
25636 			mutex_exit(SD_MUTEX(un));
25637 			/*
25638 			 * Note: If we return here we don't check for the
25639 			 * failfast case. This is the original legacy
25640 			 * implementation but perhaps we should be checking
25641 			 * the failfast case.
25642 			 */
25643 			return (0);
25644 		}
25645 		/*
25646 		 * If the device is required to hold reservation while
25647 		 * disabling failfast, we need to restart the scsi_watch
25648 		 * routine with an interval of reinstate_resv_delay.
25649 		 */
25650 		if (un->un_resvd_status & SD_RESERVE) {
25651 			interval = sd_reinstate_resv_delay/1000;
25652 		} else {
25653 			/* no failfast so bail */
25654 			mutex_exit(SD_MUTEX(un));
25655 			return (0);
25656 		}
25657 		mutex_exit(SD_MUTEX(un));
25658 	}
25659 
25660 	/*
25661 	 * adjust minimum time interval to 1 second,
25662 	 * and convert from msecs to usecs
25663 	 */
25664 	if (interval > 0 && interval < 1000) {
25665 		interval = 1000;
25666 	}
25667 	interval *= 1000;
25668 
25669 	/*
25670 	 * submit the request to the scsi_watch service
25671 	 */
25672 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
25673 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
25674 	if (token == NULL) {
25675 		return (EAGAIN);
25676 	}
25677 
25678 	/*
25679 	 * save token for termination later on
25680 	 */
25681 	mutex_enter(SD_MUTEX(un));
25682 	un->un_mhd_token = token;
25683 	mutex_exit(SD_MUTEX(un));
25684 	return (0);
25685 }
25686 
25687 
25688 /*
25689  *    Function: sd_mhd_watch_cb()
25690  *
25691  * Description: This function is the call back function used by the scsi watch
25692  *		facility. The scsi watch facility sends the "Test Unit Ready"
25693  *		and processes the status. If applicable (i.e. a "Unit Attention"
25694  *		status and automatic "Request Sense" not used) the scsi watch
25695  *		facility will send a "Request Sense" and retrieve the sense data
25696  *		to be passed to this callback function. In either case the
25697  *		automatic "Request Sense" or the facility submitting one, this
25698  *		callback is passed the status and sense data.
25699  *
25700  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
25701  *			among multiple watches that share this callback function
25702  *		resultp - scsi watch facility result packet containing scsi
25703  *			  packet, status byte and sense data
25704  *
25705  * Return Code: 0 - continue the watch task
25706  *		non-zero - terminate the watch task
25707  */
25708 
25709 static int
25710 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
25711 {
25712 	struct sd_lun			*un;
25713 	struct scsi_status		*statusp;
25714 	uint8_t				*sensep;
25715 	struct scsi_pkt			*pkt;
25716 	uchar_t				actual_sense_length;
25717 	dev_t  				dev = (dev_t)arg;
25718 
25719 	ASSERT(resultp != NULL);
25720 	statusp			= resultp->statusp;
25721 	sensep			= (uint8_t *)resultp->sensep;
25722 	pkt			= resultp->pkt;
25723 	actual_sense_length	= resultp->actual_sense_length;
25724 
25725 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25726 		return (ENXIO);
25727 	}
25728 
25729 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
25730 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
25731 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
25732 
25733 	/* Begin processing of the status and/or sense data */
25734 	if (pkt->pkt_reason != CMD_CMPLT) {
25735 		/* Handle the incomplete packet */
25736 		sd_mhd_watch_incomplete(un, pkt);
25737 		return (0);
25738 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
25739 		if (*((unsigned char *)statusp)
25740 		    == STATUS_RESERVATION_CONFLICT) {
25741 			/*
25742 			 * Handle a reservation conflict by panicking if
25743 			 * configured for failfast or by logging the conflict
25744 			 * and updating the reservation status
25745 			 */
25746 			mutex_enter(SD_MUTEX(un));
25747 			if ((un->un_resvd_status & SD_FAILFAST) &&
25748 			    (sd_failfast_enable)) {
25749 				sd_panic_for_res_conflict(un);
25750 				/*NOTREACHED*/
25751 			}
25752 			SD_INFO(SD_LOG_IOCTL_MHD, un,
25753 			    "sd_mhd_watch_cb: Reservation Conflict\n");
25754 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
25755 			mutex_exit(SD_MUTEX(un));
25756 		}
25757 	}
25758 
25759 	if (sensep != NULL) {
25760 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
25761 			mutex_enter(SD_MUTEX(un));
25762 			if ((scsi_sense_asc(sensep) ==
25763 			    SD_SCSI_RESET_SENSE_CODE) &&
25764 			    (un->un_resvd_status & SD_RESERVE)) {
25765 				/*
25766 				 * The additional sense code indicates a power
25767 				 * on or bus device reset has occurred; update
25768 				 * the reservation status.
25769 				 */
25770 				un->un_resvd_status |=
25771 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
25772 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25773 				    "sd_mhd_watch_cb: Lost Reservation\n");
25774 			}
25775 		} else {
25776 			return (0);
25777 		}
25778 	} else {
25779 		mutex_enter(SD_MUTEX(un));
25780 	}
25781 
25782 	if ((un->un_resvd_status & SD_RESERVE) &&
25783 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
25784 		if (un->un_resvd_status & SD_WANT_RESERVE) {
25785 			/*
25786 			 * A reset occurred in between the last probe and this
25787 			 * one so if a timeout is pending cancel it.
25788 			 */
25789 			if (un->un_resvd_timeid) {
25790 				timeout_id_t temp_id = un->un_resvd_timeid;
25791 				un->un_resvd_timeid = NULL;
25792 				mutex_exit(SD_MUTEX(un));
25793 				(void) untimeout(temp_id);
25794 				mutex_enter(SD_MUTEX(un));
25795 			}
25796 			un->un_resvd_status &= ~SD_WANT_RESERVE;
25797 		}
25798 		if (un->un_resvd_timeid == 0) {
25799 			/* Schedule a timeout to handle the lost reservation */
25800 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
25801 			    (void *)dev,
25802 			    drv_usectohz(sd_reinstate_resv_delay));
25803 		}
25804 	}
25805 	mutex_exit(SD_MUTEX(un));
25806 	return (0);
25807 }
25808 
25809 
25810 /*
25811  *    Function: sd_mhd_watch_incomplete()
25812  *
25813  * Description: This function is used to find out why a scsi pkt sent by the
25814  *		scsi watch facility was not completed. Under some scenarios this
25815  *		routine will return. Otherwise it will send a bus reset to see
25816  *		if the drive is still online.
25817  *
25818  *   Arguments: un  - driver soft state (unit) structure
25819  *		pkt - incomplete scsi pkt
25820  */
25821 
25822 static void
25823 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
25824 {
25825 	int	be_chatty;
25826 	int	perr;
25827 
25828 	ASSERT(pkt != NULL);
25829 	ASSERT(un != NULL);
25830 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
25831 	perr		= (pkt->pkt_statistics & STAT_PERR);
25832 
25833 	mutex_enter(SD_MUTEX(un));
25834 	if (un->un_state == SD_STATE_DUMPING) {
25835 		mutex_exit(SD_MUTEX(un));
25836 		return;
25837 	}
25838 
25839 	switch (pkt->pkt_reason) {
25840 	case CMD_UNX_BUS_FREE:
25841 		/*
25842 		 * If we had a parity error that caused the target to drop BSY*,
25843 		 * don't be chatty about it.
25844 		 */
25845 		if (perr && be_chatty) {
25846 			be_chatty = 0;
25847 		}
25848 		break;
25849 	case CMD_TAG_REJECT:
25850 		/*
25851 		 * The SCSI-2 spec states that a tag reject will be sent by the
25852 		 * target if tagged queuing is not supported. A tag reject may
25853 		 * also be sent during certain initialization periods or to
25854 		 * control internal resources. For the latter case the target
25855 		 * may also return Queue Full.
25856 		 *
25857 		 * If this driver receives a tag reject from a target that is
25858 		 * going through an init period or controlling internal
25859 		 * resources tagged queuing will be disabled. This is a less
25860 		 * than optimal behavior but the driver is unable to determine
25861 		 * the target state and assumes tagged queueing is not supported
25862 		 */
25863 		pkt->pkt_flags = 0;
25864 		un->un_tagflags = 0;
25865 
25866 		if (un->un_f_opt_queueing == TRUE) {
25867 			un->un_throttle = min(un->un_throttle, 3);
25868 		} else {
25869 			un->un_throttle = 1;
25870 		}
25871 		mutex_exit(SD_MUTEX(un));
25872 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
25873 		mutex_enter(SD_MUTEX(un));
25874 		break;
25875 	case CMD_INCOMPLETE:
25876 		/*
25877 		 * The transport stopped with an abnormal state, fallthrough and
25878 		 * reset the target and/or bus unless selection did not complete
25879 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
25880 		 * go through a target/bus reset
25881 		 */
25882 		if (pkt->pkt_state == STATE_GOT_BUS) {
25883 			break;
25884 		}
25885 		/*FALLTHROUGH*/
25886 
25887 	case CMD_TIMEOUT:
25888 	default:
25889 		/*
25890 		 * The lun may still be running the command, so a lun reset
25891 		 * should be attempted. If the lun reset fails or cannot be
25892 		 * issued, than try a target reset. Lastly try a bus reset.
25893 		 */
25894 		if ((pkt->pkt_statistics &
25895 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
25896 			int reset_retval = 0;
25897 			mutex_exit(SD_MUTEX(un));
25898 			if (un->un_f_allow_bus_device_reset == TRUE) {
25899 				if (un->un_f_lun_reset_enabled == TRUE) {
25900 					reset_retval =
25901 					    scsi_reset(SD_ADDRESS(un),
25902 					    RESET_LUN);
25903 				}
25904 				if (reset_retval == 0) {
25905 					reset_retval =
25906 					    scsi_reset(SD_ADDRESS(un),
25907 					    RESET_TARGET);
25908 				}
25909 			}
25910 			if (reset_retval == 0) {
25911 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
25912 			}
25913 			mutex_enter(SD_MUTEX(un));
25914 		}
25915 		break;
25916 	}
25917 
25918 	/* A device/bus reset has occurred; update the reservation status. */
25919 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
25920 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
25921 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25922 			un->un_resvd_status |=
25923 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
25924 			SD_INFO(SD_LOG_IOCTL_MHD, un,
25925 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
25926 		}
25927 	}
25928 
25929 	/*
25930 	 * The disk has been turned off; Update the device state.
25931 	 *
25932 	 * Note: Should we be offlining the disk here?
25933 	 */
25934 	if (pkt->pkt_state == STATE_GOT_BUS) {
25935 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
25936 		    "Disk not responding to selection\n");
25937 		if (un->un_state != SD_STATE_OFFLINE) {
25938 			New_state(un, SD_STATE_OFFLINE);
25939 		}
25940 	} else if (be_chatty) {
25941 		/*
25942 		 * suppress messages if they are all the same pkt reason;
25943 		 * with TQ, many (up to 256) are returned with the same
25944 		 * pkt_reason
25945 		 */
25946 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
25947 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25948 			    "sd_mhd_watch_incomplete: "
25949 			    "SCSI transport failed: reason '%s'\n",
25950 			    scsi_rname(pkt->pkt_reason));
25951 		}
25952 	}
25953 	un->un_last_pkt_reason = pkt->pkt_reason;
25954 	mutex_exit(SD_MUTEX(un));
25955 }
25956 
25957 
25958 /*
25959  *    Function: sd_sname()
25960  *
25961  * Description: This is a simple little routine to return a string containing
25962  *		a printable description of command status byte for use in
25963  *		logging.
25964  *
25965  *   Arguments: status - pointer to a status byte
25966  *
25967  * Return Code: char * - string containing status description.
25968  */
25969 
25970 static char *
25971 sd_sname(uchar_t status)
25972 {
25973 	switch (status & STATUS_MASK) {
25974 	case STATUS_GOOD:
25975 		return ("good status");
25976 	case STATUS_CHECK:
25977 		return ("check condition");
25978 	case STATUS_MET:
25979 		return ("condition met");
25980 	case STATUS_BUSY:
25981 		return ("busy");
25982 	case STATUS_INTERMEDIATE:
25983 		return ("intermediate");
25984 	case STATUS_INTERMEDIATE_MET:
25985 		return ("intermediate - condition met");
25986 	case STATUS_RESERVATION_CONFLICT:
25987 		return ("reservation_conflict");
25988 	case STATUS_TERMINATED:
25989 		return ("command terminated");
25990 	case STATUS_QFULL:
25991 		return ("queue full");
25992 	default:
25993 		return ("<unknown status>");
25994 	}
25995 }
25996 
25997 
25998 /*
25999  *    Function: sd_mhd_resvd_recover()
26000  *
26001  * Description: This function adds a reservation entry to the
26002  *		sd_resv_reclaim_request list and signals the reservation
26003  *		reclaim thread that there is work pending. If the reservation
26004  *		reclaim thread has not been previously created this function
26005  *		will kick it off.
26006  *
26007  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
26008  *			among multiple watches that share this callback function
26009  *
26010  *     Context: This routine is called by timeout() and is run in interrupt
26011  *		context. It must not sleep or call other functions which may
26012  *		sleep.
26013  */
26014 
26015 static void
26016 sd_mhd_resvd_recover(void *arg)
26017 {
26018 	dev_t			dev = (dev_t)arg;
26019 	struct sd_lun		*un;
26020 	struct sd_thr_request	*sd_treq = NULL;
26021 	struct sd_thr_request	*sd_cur = NULL;
26022 	struct sd_thr_request	*sd_prev = NULL;
26023 	int			already_there = 0;
26024 
26025 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26026 		return;
26027 	}
26028 
26029 	mutex_enter(SD_MUTEX(un));
26030 	un->un_resvd_timeid = NULL;
26031 	if (un->un_resvd_status & SD_WANT_RESERVE) {
26032 		/*
26033 		 * There was a reset so don't issue the reserve, allow the
26034 		 * sd_mhd_watch_cb callback function to notice this and
26035 		 * reschedule the timeout for reservation.
26036 		 */
26037 		mutex_exit(SD_MUTEX(un));
26038 		return;
26039 	}
26040 	mutex_exit(SD_MUTEX(un));
26041 
26042 	/*
26043 	 * Add this device to the sd_resv_reclaim_request list and the
26044 	 * sd_resv_reclaim_thread should take care of the rest.
26045 	 *
26046 	 * Note: We can't sleep in this context so if the memory allocation
26047 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
26048 	 * reschedule the timeout for reservation.  (4378460)
26049 	 */
26050 	sd_treq = (struct sd_thr_request *)
26051 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
26052 	if (sd_treq == NULL) {
26053 		return;
26054 	}
26055 
26056 	sd_treq->sd_thr_req_next = NULL;
26057 	sd_treq->dev = dev;
26058 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
26059 	if (sd_tr.srq_thr_req_head == NULL) {
26060 		sd_tr.srq_thr_req_head = sd_treq;
26061 	} else {
26062 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
26063 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
26064 			if (sd_cur->dev == dev) {
26065 				/*
26066 				 * already in Queue so don't log
26067 				 * another request for the device
26068 				 */
26069 				already_there = 1;
26070 				break;
26071 			}
26072 			sd_prev = sd_cur;
26073 		}
26074 		if (!already_there) {
26075 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
26076 			    "logging request for %lx\n", dev);
26077 			sd_prev->sd_thr_req_next = sd_treq;
26078 		} else {
26079 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
26080 		}
26081 	}
26082 
26083 	/*
26084 	 * Create a kernel thread to do the reservation reclaim and free up this
26085 	 * thread. We cannot block this thread while we go away to do the
26086 	 * reservation reclaim
26087 	 */
26088 	if (sd_tr.srq_resv_reclaim_thread == NULL)
26089 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
26090 		    sd_resv_reclaim_thread, NULL,
26091 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
26092 
26093 	/* Tell the reservation reclaim thread that it has work to do */
26094 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
26095 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
26096 }
26097 
26098 /*
26099  *    Function: sd_resv_reclaim_thread()
26100  *
26101  * Description: This function implements the reservation reclaim operations
26102  *
26103  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
26104  *		      among multiple watches that share this callback function
26105  */
26106 
26107 static void
26108 sd_resv_reclaim_thread()
26109 {
26110 	struct sd_lun		*un;
26111 	struct sd_thr_request	*sd_mhreq;
26112 
26113 	/* Wait for work */
26114 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
26115 	if (sd_tr.srq_thr_req_head == NULL) {
26116 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
26117 		    &sd_tr.srq_resv_reclaim_mutex);
26118 	}
26119 
26120 	/* Loop while we have work */
26121 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
26122 		un = ddi_get_soft_state(sd_state,
26123 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
26124 		if (un == NULL) {
26125 			/*
26126 			 * softstate structure is NULL so just
26127 			 * dequeue the request and continue
26128 			 */
26129 			sd_tr.srq_thr_req_head =
26130 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
26131 			kmem_free(sd_tr.srq_thr_cur_req,
26132 			    sizeof (struct sd_thr_request));
26133 			continue;
26134 		}
26135 
26136 		/* dequeue the request */
26137 		sd_mhreq = sd_tr.srq_thr_cur_req;
26138 		sd_tr.srq_thr_req_head =
26139 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
26140 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
26141 
26142 		/*
26143 		 * Reclaim reservation only if SD_RESERVE is still set. There
26144 		 * may have been a call to MHIOCRELEASE before we got here.
26145 		 */
26146 		mutex_enter(SD_MUTEX(un));
26147 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
26148 			/*
26149 			 * Note: The SD_LOST_RESERVE flag is cleared before
26150 			 * reclaiming the reservation. If this is done after the
26151 			 * call to sd_reserve_release a reservation loss in the
26152 			 * window between pkt completion of reserve cmd and
26153 			 * mutex_enter below may not be recognized
26154 			 */
26155 			un->un_resvd_status &= ~SD_LOST_RESERVE;
26156 			mutex_exit(SD_MUTEX(un));
26157 
26158 			if (sd_reserve_release(sd_mhreq->dev,
26159 			    SD_RESERVE) == 0) {
26160 				mutex_enter(SD_MUTEX(un));
26161 				un->un_resvd_status |= SD_RESERVE;
26162 				mutex_exit(SD_MUTEX(un));
26163 				SD_INFO(SD_LOG_IOCTL_MHD, un,
26164 				    "sd_resv_reclaim_thread: "
26165 				    "Reservation Recovered\n");
26166 			} else {
26167 				mutex_enter(SD_MUTEX(un));
26168 				un->un_resvd_status |= SD_LOST_RESERVE;
26169 				mutex_exit(SD_MUTEX(un));
26170 				SD_INFO(SD_LOG_IOCTL_MHD, un,
26171 				    "sd_resv_reclaim_thread: Failed "
26172 				    "Reservation Recovery\n");
26173 			}
26174 		} else {
26175 			mutex_exit(SD_MUTEX(un));
26176 		}
26177 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
26178 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
26179 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
26180 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
26181 		/*
26182 		 * wakeup the destroy thread if anyone is waiting on
26183 		 * us to complete.
26184 		 */
26185 		cv_signal(&sd_tr.srq_inprocess_cv);
26186 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
26187 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
26188 	}
26189 
26190 	/*
26191 	 * cleanup the sd_tr structure now that this thread will not exist
26192 	 */
26193 	ASSERT(sd_tr.srq_thr_req_head == NULL);
26194 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
26195 	sd_tr.srq_resv_reclaim_thread = NULL;
26196 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
26197 	thread_exit();
26198 }
26199 
26200 
26201 /*
26202  *    Function: sd_rmv_resv_reclaim_req()
26203  *
26204  * Description: This function removes any pending reservation reclaim requests
26205  *		for the specified device.
26206  *
26207  *   Arguments: dev - the device 'dev_t'
26208  */
26209 
26210 static void
26211 sd_rmv_resv_reclaim_req(dev_t dev)
26212 {
26213 	struct sd_thr_request *sd_mhreq;
26214 	struct sd_thr_request *sd_prev;
26215 
26216 	/* Remove a reservation reclaim request from the list */
26217 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
26218 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
26219 		/*
26220 		 * We are attempting to reinstate reservation for
26221 		 * this device. We wait for sd_reserve_release()
26222 		 * to return before we return.
26223 		 */
26224 		cv_wait(&sd_tr.srq_inprocess_cv,
26225 		    &sd_tr.srq_resv_reclaim_mutex);
26226 	} else {
26227 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
26228 		if (sd_mhreq && sd_mhreq->dev == dev) {
26229 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
26230 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
26231 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
26232 			return;
26233 		}
26234 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
26235 			if (sd_mhreq && sd_mhreq->dev == dev) {
26236 				break;
26237 			}
26238 			sd_prev = sd_mhreq;
26239 		}
26240 		if (sd_mhreq != NULL) {
26241 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
26242 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
26243 		}
26244 	}
26245 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
26246 }
26247 
26248 
26249 /*
26250  *    Function: sd_mhd_reset_notify_cb()
26251  *
26252  * Description: This is a call back function for scsi_reset_notify. This
26253  *		function updates the softstate reserved status and logs the
26254  *		reset. The driver scsi watch facility callback function
26255  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
26256  *		will reclaim the reservation.
26257  *
26258  *   Arguments: arg  - driver soft state (unit) structure
26259  */
26260 
26261 static void
26262 sd_mhd_reset_notify_cb(caddr_t arg)
26263 {
26264 	struct sd_lun *un = (struct sd_lun *)arg;
26265 
26266 	mutex_enter(SD_MUTEX(un));
26267 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
26268 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
26269 		SD_INFO(SD_LOG_IOCTL_MHD, un,
26270 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
26271 	}
26272 	mutex_exit(SD_MUTEX(un));
26273 }
26274 
26275 
26276 /*
26277  *    Function: sd_take_ownership()
26278  *
26279  * Description: This routine implements an algorithm to achieve a stable
26280  *		reservation on disks which don't implement priority reserve,
26281  *		and makes sure that other host lose re-reservation attempts.
26282  *		This algorithm contains of a loop that keeps issuing the RESERVE
26283  *		for some period of time (min_ownership_delay, default 6 seconds)
26284  *		During that loop, it looks to see if there has been a bus device
26285  *		reset or bus reset (both of which cause an existing reservation
26286  *		to be lost). If the reservation is lost issue RESERVE until a
26287  *		period of min_ownership_delay with no resets has gone by, or
26288  *		until max_ownership_delay has expired. This loop ensures that
26289  *		the host really did manage to reserve the device, in spite of
26290  *		resets. The looping for min_ownership_delay (default six
26291  *		seconds) is important to early generation clustering products,
26292  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
26293  *		MHIOCENFAILFAST periodic timer of two seconds. By having
26294  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
26295  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
26296  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
26297  *		have already noticed, via the MHIOCENFAILFAST polling, that it
26298  *		no longer "owns" the disk and will have panicked itself.  Thus,
26299  *		the host issuing the MHIOCTKOWN is assured (with timing
26300  *		dependencies) that by the time it actually starts to use the
26301  *		disk for real work, the old owner is no longer accessing it.
26302  *
26303  *		min_ownership_delay is the minimum amount of time for which the
26304  *		disk must be reserved continuously devoid of resets before the
26305  *		MHIOCTKOWN ioctl will return success.
26306  *
26307  *		max_ownership_delay indicates the amount of time by which the
26308  *		take ownership should succeed or timeout with an error.
26309  *
26310  *   Arguments: dev - the device 'dev_t'
26311  *		*p  - struct containing timing info.
26312  *
26313  * Return Code: 0 for success or error code
26314  */
26315 
26316 static int
26317 sd_take_ownership(dev_t dev, struct mhioctkown *p)
26318 {
26319 	struct sd_lun	*un;
26320 	int		rval;
26321 	int		err;
26322 	int		reservation_count   = 0;
26323 	int		min_ownership_delay =  6000000; /* in usec */
26324 	int		max_ownership_delay = 30000000; /* in usec */
26325 	clock_t		start_time;	/* starting time of this algorithm */
26326 	clock_t		end_time;	/* time limit for giving up */
26327 	clock_t		ownership_time;	/* time limit for stable ownership */
26328 	clock_t		current_time;
26329 	clock_t		previous_current_time;
26330 
26331 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26332 		return (ENXIO);
26333 	}
26334 
26335 	/*
26336 	 * Attempt a device reservation. A priority reservation is requested.
26337 	 */
26338 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
26339 	    != SD_SUCCESS) {
26340 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26341 		    "sd_take_ownership: return(1)=%d\n", rval);
26342 		return (rval);
26343 	}
26344 
26345 	/* Update the softstate reserved status to indicate the reservation */
26346 	mutex_enter(SD_MUTEX(un));
26347 	un->un_resvd_status |= SD_RESERVE;
26348 	un->un_resvd_status &=
26349 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
26350 	mutex_exit(SD_MUTEX(un));
26351 
26352 	if (p != NULL) {
26353 		if (p->min_ownership_delay != 0) {
26354 			min_ownership_delay = p->min_ownership_delay * 1000;
26355 		}
26356 		if (p->max_ownership_delay != 0) {
26357 			max_ownership_delay = p->max_ownership_delay * 1000;
26358 		}
26359 	}
26360 	SD_INFO(SD_LOG_IOCTL_MHD, un,
26361 	    "sd_take_ownership: min, max delays: %d, %d\n",
26362 	    min_ownership_delay, max_ownership_delay);
26363 
26364 	start_time = ddi_get_lbolt();
26365 	current_time	= start_time;
26366 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
26367 	end_time	= start_time + drv_usectohz(max_ownership_delay);
26368 
26369 	while (current_time - end_time < 0) {
26370 		delay(drv_usectohz(500000));
26371 
26372 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
26373 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
26374 				mutex_enter(SD_MUTEX(un));
26375 				rval = (un->un_resvd_status &
26376 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
26377 				mutex_exit(SD_MUTEX(un));
26378 				break;
26379 			}
26380 		}
26381 		previous_current_time = current_time;
26382 		current_time = ddi_get_lbolt();
26383 		mutex_enter(SD_MUTEX(un));
26384 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
26385 			ownership_time = ddi_get_lbolt() +
26386 			    drv_usectohz(min_ownership_delay);
26387 			reservation_count = 0;
26388 		} else {
26389 			reservation_count++;
26390 		}
26391 		un->un_resvd_status |= SD_RESERVE;
26392 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
26393 		mutex_exit(SD_MUTEX(un));
26394 
26395 		SD_INFO(SD_LOG_IOCTL_MHD, un,
26396 		    "sd_take_ownership: ticks for loop iteration=%ld, "
26397 		    "reservation=%s\n", (current_time - previous_current_time),
26398 		    reservation_count ? "ok" : "reclaimed");
26399 
26400 		if (current_time - ownership_time >= 0 &&
26401 		    reservation_count >= 4) {
26402 			rval = 0; /* Achieved a stable ownership */
26403 			break;
26404 		}
26405 		if (current_time - end_time >= 0) {
26406 			rval = EACCES; /* No ownership in max possible time */
26407 			break;
26408 		}
26409 	}
26410 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
26411 	    "sd_take_ownership: return(2)=%d\n", rval);
26412 	return (rval);
26413 }
26414 
26415 
26416 /*
26417  *    Function: sd_reserve_release()
26418  *
26419  * Description: This function builds and sends scsi RESERVE, RELEASE, and
26420  *		PRIORITY RESERVE commands based on a user specified command type
26421  *
26422  *   Arguments: dev - the device 'dev_t'
26423  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
26424  *		      SD_RESERVE, SD_RELEASE
26425  *
26426  * Return Code: 0 or Error Code
26427  */
26428 
26429 static int
26430 sd_reserve_release(dev_t dev, int cmd)
26431 {
26432 	struct uscsi_cmd	*com = NULL;
26433 	struct sd_lun		*un = NULL;
26434 	char			cdb[CDB_GROUP0];
26435 	int			rval;
26436 
26437 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
26438 	    (cmd == SD_PRIORITY_RESERVE));
26439 
26440 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26441 		return (ENXIO);
26442 	}
26443 
26444 	/* instantiate and initialize the command and cdb */
26445 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26446 	bzero(cdb, CDB_GROUP0);
26447 	com->uscsi_flags   = USCSI_SILENT;
26448 	com->uscsi_timeout = un->un_reserve_release_time;
26449 	com->uscsi_cdblen  = CDB_GROUP0;
26450 	com->uscsi_cdb	   = cdb;
26451 	if (cmd == SD_RELEASE) {
26452 		cdb[0] = SCMD_RELEASE;
26453 	} else {
26454 		cdb[0] = SCMD_RESERVE;
26455 	}
26456 
26457 	/* Send the command. */
26458 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
26459 	    UIO_SYSSPACE, SD_PATH_STANDARD);
26460 
26461 	/*
26462 	 * "break" a reservation that is held by another host, by issuing a
26463 	 * reset if priority reserve is desired, and we could not get the
26464 	 * device.
26465 	 */
26466 	if ((cmd == SD_PRIORITY_RESERVE) &&
26467 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
26468 		/*
26469 		 * First try to reset the LUN. If we cannot, then try a target
26470 		 * reset, followed by a bus reset if the target reset fails.
26471 		 */
26472 		int reset_retval = 0;
26473 		if (un->un_f_lun_reset_enabled == TRUE) {
26474 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
26475 		}
26476 		if (reset_retval == 0) {
26477 			/* The LUN reset either failed or was not issued */
26478 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26479 		}
26480 		if ((reset_retval == 0) &&
26481 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
26482 			rval = EIO;
26483 			kmem_free(com, sizeof (*com));
26484 			return (rval);
26485 		}
26486 
26487 		bzero(com, sizeof (struct uscsi_cmd));
26488 		com->uscsi_flags   = USCSI_SILENT;
26489 		com->uscsi_cdb	   = cdb;
26490 		com->uscsi_cdblen  = CDB_GROUP0;
26491 		com->uscsi_timeout = 5;
26492 
26493 		/*
26494 		 * Reissue the last reserve command, this time without request
26495 		 * sense.  Assume that it is just a regular reserve command.
26496 		 */
26497 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
26498 		    UIO_SYSSPACE, SD_PATH_STANDARD);
26499 	}
26500 
26501 	/* Return an error if still getting a reservation conflict. */
26502 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
26503 		rval = EACCES;
26504 	}
26505 
26506 	kmem_free(com, sizeof (*com));
26507 	return (rval);
26508 }
26509 
26510 
26511 #define	SD_NDUMP_RETRIES	12
26512 /*
26513  *	System Crash Dump routine
26514  */
26515 
26516 static int
26517 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
26518 {
26519 	int		instance;
26520 	int		partition;
26521 	int		i;
26522 	int		err;
26523 	struct sd_lun	*un;
26524 	struct dk_map	*lp;
26525 	struct scsi_pkt *wr_pktp;
26526 	struct buf	*wr_bp;
26527 	struct buf	wr_buf;
26528 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
26529 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
26530 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
26531 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
26532 	size_t		io_start_offset;
26533 	int		doing_rmw = FALSE;
26534 	int		rval;
26535 #if defined(__i386) || defined(__amd64)
26536 	ssize_t dma_resid;
26537 	daddr_t oblkno;
26538 #endif
26539 
26540 	instance = SDUNIT(dev);
26541 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
26542 	    (!un->un_f_geometry_is_valid) || ISCD(un)) {
26543 		return (ENXIO);
26544 	}
26545 
26546 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
26547 
26548 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
26549 
26550 	partition = SDPART(dev);
26551 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
26552 
26553 	/* Validate blocks to dump at against partition size. */
26554 	lp = &un->un_map[partition];
26555 	if ((blkno + nblk) > lp->dkl_nblk) {
26556 		SD_TRACE(SD_LOG_DUMP, un,
26557 		    "sddump: dump range larger than partition: "
26558 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
26559 		    blkno, nblk, lp->dkl_nblk);
26560 		return (EINVAL);
26561 	}
26562 
26563 	mutex_enter(&un->un_pm_mutex);
26564 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
26565 		struct scsi_pkt *start_pktp;
26566 
26567 		mutex_exit(&un->un_pm_mutex);
26568 
26569 		/*
26570 		 * use pm framework to power on HBA 1st
26571 		 */
26572 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
26573 
26574 		/*
26575 		 * Dump no long uses sdpower to power on a device, it's
26576 		 * in-line here so it can be done in polled mode.
26577 		 */
26578 
26579 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
26580 
26581 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
26582 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
26583 
26584 		if (start_pktp == NULL) {
26585 			/* We were not given a SCSI packet, fail. */
26586 			return (EIO);
26587 		}
26588 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
26589 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
26590 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
26591 		start_pktp->pkt_flags = FLAG_NOINTR;
26592 
26593 		mutex_enter(SD_MUTEX(un));
26594 		SD_FILL_SCSI1_LUN(un, start_pktp);
26595 		mutex_exit(SD_MUTEX(un));
26596 		/*
26597 		 * Scsi_poll returns 0 (success) if the command completes and
26598 		 * the status block is STATUS_GOOD.
26599 		 */
26600 		if (sd_scsi_poll(un, start_pktp) != 0) {
26601 			scsi_destroy_pkt(start_pktp);
26602 			return (EIO);
26603 		}
26604 		scsi_destroy_pkt(start_pktp);
26605 		(void) sd_ddi_pm_resume(un);
26606 	} else {
26607 		mutex_exit(&un->un_pm_mutex);
26608 	}
26609 
26610 	mutex_enter(SD_MUTEX(un));
26611 	un->un_throttle = 0;
26612 
26613 	/*
26614 	 * The first time through, reset the specific target device.
26615 	 * However, when cpr calls sddump we know that sd is in a
26616 	 * a good state so no bus reset is required.
26617 	 * Clear sense data via Request Sense cmd.
26618 	 * In sddump we don't care about allow_bus_device_reset anymore
26619 	 */
26620 
26621 	if ((un->un_state != SD_STATE_SUSPENDED) &&
26622 	    (un->un_state != SD_STATE_DUMPING)) {
26623 
26624 		New_state(un, SD_STATE_DUMPING);
26625 
26626 		if (un->un_f_is_fibre == FALSE) {
26627 			mutex_exit(SD_MUTEX(un));
26628 			/*
26629 			 * Attempt a bus reset for parallel scsi.
26630 			 *
26631 			 * Note: A bus reset is required because on some host
26632 			 * systems (i.e. E420R) a bus device reset is
26633 			 * insufficient to reset the state of the target.
26634 			 *
26635 			 * Note: Don't issue the reset for fibre-channel,
26636 			 * because this tends to hang the bus (loop) for
26637 			 * too long while everyone is logging out and in
26638 			 * and the deadman timer for dumping will fire
26639 			 * before the dump is complete.
26640 			 */
26641 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
26642 				mutex_enter(SD_MUTEX(un));
26643 				Restore_state(un);
26644 				mutex_exit(SD_MUTEX(un));
26645 				return (EIO);
26646 			}
26647 
26648 			/* Delay to give the device some recovery time. */
26649 			drv_usecwait(10000);
26650 
26651 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
26652 				SD_INFO(SD_LOG_DUMP, un,
26653 					"sddump: sd_send_polled_RQS failed\n");
26654 			}
26655 			mutex_enter(SD_MUTEX(un));
26656 		}
26657 	}
26658 
26659 	/*
26660 	 * Convert the partition-relative block number to a
26661 	 * disk physical block number.
26662 	 */
26663 	blkno += un->un_offset[partition];
26664 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
26665 
26666 
26667 	/*
26668 	 * Check if the device has a non-512 block size.
26669 	 */
26670 	wr_bp = NULL;
26671 	if (NOT_DEVBSIZE(un)) {
26672 		tgt_byte_offset = blkno * un->un_sys_blocksize;
26673 		tgt_byte_count = nblk * un->un_sys_blocksize;
26674 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
26675 		    (tgt_byte_count % un->un_tgt_blocksize)) {
26676 			doing_rmw = TRUE;
26677 			/*
26678 			 * Calculate the block number and number of block
26679 			 * in terms of the media block size.
26680 			 */
26681 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
26682 			tgt_nblk =
26683 			    ((tgt_byte_offset + tgt_byte_count +
26684 				(un->un_tgt_blocksize - 1)) /
26685 				un->un_tgt_blocksize) - tgt_blkno;
26686 
26687 			/*
26688 			 * Invoke the routine which is going to do read part
26689 			 * of read-modify-write.
26690 			 * Note that this routine returns a pointer to
26691 			 * a valid bp in wr_bp.
26692 			 */
26693 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
26694 			    &wr_bp);
26695 			if (err) {
26696 				mutex_exit(SD_MUTEX(un));
26697 				return (err);
26698 			}
26699 			/*
26700 			 * Offset is being calculated as -
26701 			 * (original block # * system block size) -
26702 			 * (new block # * target block size)
26703 			 */
26704 			io_start_offset =
26705 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
26706 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
26707 
26708 			ASSERT((io_start_offset >= 0) &&
26709 			    (io_start_offset < un->un_tgt_blocksize));
26710 			/*
26711 			 * Do the modify portion of read modify write.
26712 			 */
26713 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
26714 			    (size_t)nblk * un->un_sys_blocksize);
26715 		} else {
26716 			doing_rmw = FALSE;
26717 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
26718 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
26719 		}
26720 
26721 		/* Convert blkno and nblk to target blocks */
26722 		blkno = tgt_blkno;
26723 		nblk = tgt_nblk;
26724 	} else {
26725 		wr_bp = &wr_buf;
26726 		bzero(wr_bp, sizeof (struct buf));
26727 		wr_bp->b_flags		= B_BUSY;
26728 		wr_bp->b_un.b_addr	= addr;
26729 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
26730 		wr_bp->b_resid		= 0;
26731 	}
26732 
26733 	mutex_exit(SD_MUTEX(un));
26734 
26735 	/*
26736 	 * Obtain a SCSI packet for the write command.
26737 	 * It should be safe to call the allocator here without
26738 	 * worrying about being locked for DVMA mapping because
26739 	 * the address we're passed is already a DVMA mapping
26740 	 *
26741 	 * We are also not going to worry about semaphore ownership
26742 	 * in the dump buffer. Dumping is single threaded at present.
26743 	 */
26744 
26745 	wr_pktp = NULL;
26746 
26747 #if defined(__i386) || defined(__amd64)
26748 	dma_resid = wr_bp->b_bcount;
26749 	oblkno = blkno;
26750 	while (dma_resid != 0) {
26751 #endif
26752 
26753 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26754 		wr_bp->b_flags &= ~B_ERROR;
26755 
26756 #if defined(__i386) || defined(__amd64)
26757 		blkno = oblkno +
26758 			((wr_bp->b_bcount - dma_resid) /
26759 			    un->un_tgt_blocksize);
26760 		nblk = dma_resid / un->un_tgt_blocksize;
26761 
26762 		if (wr_pktp) {
26763 			/* Partial DMA transfers after initial transfer */
26764 			rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
26765 			    blkno, nblk);
26766 		} else {
26767 			/* Initial transfer */
26768 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26769 			    un->un_pkt_flags, NULL_FUNC, NULL,
26770 			    blkno, nblk);
26771 		}
26772 #else
26773 		rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26774 		    0, NULL_FUNC, NULL, blkno, nblk);
26775 #endif
26776 
26777 		if (rval == 0) {
26778 			/* We were given a SCSI packet, continue. */
26779 			break;
26780 		}
26781 
26782 		if (i == 0) {
26783 			if (wr_bp->b_flags & B_ERROR) {
26784 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26785 				    "no resources for dumping; "
26786 				    "error code: 0x%x, retrying",
26787 				    geterror(wr_bp));
26788 			} else {
26789 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26790 				    "no resources for dumping; retrying");
26791 			}
26792 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
26793 			if (wr_bp->b_flags & B_ERROR) {
26794 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26795 				    "no resources for dumping; error code: "
26796 				    "0x%x, retrying\n", geterror(wr_bp));
26797 			}
26798 		} else {
26799 			if (wr_bp->b_flags & B_ERROR) {
26800 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26801 				    "no resources for dumping; "
26802 				    "error code: 0x%x, retries failed, "
26803 				    "giving up.\n", geterror(wr_bp));
26804 			} else {
26805 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26806 				    "no resources for dumping; "
26807 				    "retries failed, giving up.\n");
26808 			}
26809 			mutex_enter(SD_MUTEX(un));
26810 			Restore_state(un);
26811 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
26812 				mutex_exit(SD_MUTEX(un));
26813 				scsi_free_consistent_buf(wr_bp);
26814 			} else {
26815 				mutex_exit(SD_MUTEX(un));
26816 			}
26817 			return (EIO);
26818 		}
26819 		drv_usecwait(10000);
26820 	}
26821 
26822 #if defined(__i386) || defined(__amd64)
26823 	/*
26824 	 * save the resid from PARTIAL_DMA
26825 	 */
26826 	dma_resid = wr_pktp->pkt_resid;
26827 	if (dma_resid != 0)
26828 		nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
26829 	wr_pktp->pkt_resid = 0;
26830 #endif
26831 
26832 	/* SunBug 1222170 */
26833 	wr_pktp->pkt_flags = FLAG_NOINTR;
26834 
26835 	err = EIO;
26836 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26837 
26838 		/*
26839 		 * Scsi_poll returns 0 (success) if the command completes and
26840 		 * the status block is STATUS_GOOD.  We should only check
26841 		 * errors if this condition is not true.  Even then we should
26842 		 * send our own request sense packet only if we have a check
26843 		 * condition and auto request sense has not been performed by
26844 		 * the hba.
26845 		 */
26846 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
26847 
26848 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
26849 		    (wr_pktp->pkt_resid == 0)) {
26850 			err = SD_SUCCESS;
26851 			break;
26852 		}
26853 
26854 		/*
26855 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
26856 		 */
26857 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
26858 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26859 			    "Device is gone\n");
26860 			break;
26861 		}
26862 
26863 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
26864 			SD_INFO(SD_LOG_DUMP, un,
26865 			    "sddump: write failed with CHECK, try # %d\n", i);
26866 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
26867 				(void) sd_send_polled_RQS(un);
26868 			}
26869 
26870 			continue;
26871 		}
26872 
26873 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
26874 			int reset_retval = 0;
26875 
26876 			SD_INFO(SD_LOG_DUMP, un,
26877 			    "sddump: write failed with BUSY, try # %d\n", i);
26878 
26879 			if (un->un_f_lun_reset_enabled == TRUE) {
26880 				reset_retval = scsi_reset(SD_ADDRESS(un),
26881 				    RESET_LUN);
26882 			}
26883 			if (reset_retval == 0) {
26884 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26885 			}
26886 			(void) sd_send_polled_RQS(un);
26887 
26888 		} else {
26889 			SD_INFO(SD_LOG_DUMP, un,
26890 			    "sddump: write failed with 0x%x, try # %d\n",
26891 			    SD_GET_PKT_STATUS(wr_pktp), i);
26892 			mutex_enter(SD_MUTEX(un));
26893 			sd_reset_target(un, wr_pktp);
26894 			mutex_exit(SD_MUTEX(un));
26895 		}
26896 
26897 		/*
26898 		 * If we are not getting anywhere with lun/target resets,
26899 		 * let's reset the bus.
26900 		 */
26901 		if (i == SD_NDUMP_RETRIES/2) {
26902 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26903 			(void) sd_send_polled_RQS(un);
26904 		}
26905 
26906 	}
26907 #if defined(__i386) || defined(__amd64)
26908 	}	/* dma_resid */
26909 #endif
26910 
26911 	scsi_destroy_pkt(wr_pktp);
26912 	mutex_enter(SD_MUTEX(un));
26913 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
26914 		mutex_exit(SD_MUTEX(un));
26915 		scsi_free_consistent_buf(wr_bp);
26916 	} else {
26917 		mutex_exit(SD_MUTEX(un));
26918 	}
26919 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
26920 	return (err);
26921 }
26922 
26923 /*
26924  *    Function: sd_scsi_poll()
26925  *
26926  * Description: This is a wrapper for the scsi_poll call.
26927  *
26928  *   Arguments: sd_lun - The unit structure
26929  *              scsi_pkt - The scsi packet being sent to the device.
26930  *
26931  * Return Code: 0 - Command completed successfully with good status
26932  *             -1 - Command failed.  This could indicate a check condition
26933  *                  or other status value requiring recovery action.
26934  *
26935  */
26936 
26937 static int
26938 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
26939 {
26940 	int status;
26941 
26942 	ASSERT(un != NULL);
26943 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26944 	ASSERT(pktp != NULL);
26945 
26946 	status = SD_SUCCESS;
26947 
26948 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
26949 		pktp->pkt_flags |= un->un_tagflags;
26950 		pktp->pkt_flags &= ~FLAG_NODISCON;
26951 	}
26952 
26953 	status = sd_ddi_scsi_poll(pktp);
26954 	/*
26955 	 * Scsi_poll returns 0 (success) if the command completes and the
26956 	 * status block is STATUS_GOOD.  We should only check errors if this
26957 	 * condition is not true.  Even then we should send our own request
26958 	 * sense packet only if we have a check condition and auto
26959 	 * request sense has not been performed by the hba.
26960 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
26961 	 */
26962 	if ((status != SD_SUCCESS) &&
26963 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
26964 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
26965 	    (pktp->pkt_reason != CMD_DEV_GONE))
26966 		(void) sd_send_polled_RQS(un);
26967 
26968 	return (status);
26969 }
26970 
26971 /*
26972  *    Function: sd_send_polled_RQS()
26973  *
26974  * Description: This sends the request sense command to a device.
26975  *
26976  *   Arguments: sd_lun - The unit structure
26977  *
26978  * Return Code: 0 - Command completed successfully with good status
26979  *             -1 - Command failed.
26980  *
26981  */
26982 
26983 static int
26984 sd_send_polled_RQS(struct sd_lun *un)
26985 {
26986 	int	ret_val;
26987 	struct	scsi_pkt	*rqs_pktp;
26988 	struct	buf		*rqs_bp;
26989 
26990 	ASSERT(un != NULL);
26991 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26992 
26993 	ret_val = SD_SUCCESS;
26994 
26995 	rqs_pktp = un->un_rqs_pktp;
26996 	rqs_bp	 = un->un_rqs_bp;
26997 
26998 	mutex_enter(SD_MUTEX(un));
26999 
27000 	if (un->un_sense_isbusy) {
27001 		ret_val = SD_FAILURE;
27002 		mutex_exit(SD_MUTEX(un));
27003 		return (ret_val);
27004 	}
27005 
27006 	/*
27007 	 * If the request sense buffer (and packet) is not in use,
27008 	 * let's set the un_sense_isbusy and send our packet
27009 	 */
27010 	un->un_sense_isbusy 	= 1;
27011 	rqs_pktp->pkt_resid  	= 0;
27012 	rqs_pktp->pkt_reason 	= 0;
27013 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
27014 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
27015 
27016 	mutex_exit(SD_MUTEX(un));
27017 
27018 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
27019 	    " 0x%p\n", rqs_bp->b_un.b_addr);
27020 
27021 	/*
27022 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
27023 	 * axle - it has a call into us!
27024 	 */
27025 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
27026 		SD_INFO(SD_LOG_COMMON, un,
27027 		    "sd_send_polled_RQS: RQS failed\n");
27028 	}
27029 
27030 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
27031 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
27032 
27033 	mutex_enter(SD_MUTEX(un));
27034 	un->un_sense_isbusy = 0;
27035 	mutex_exit(SD_MUTEX(un));
27036 
27037 	return (ret_val);
27038 }
27039 
27040 /*
27041  * Defines needed for localized version of the scsi_poll routine.
27042  */
27043 #define	SD_CSEC		10000			/* usecs */
27044 #define	SD_SEC_TO_CSEC	(1000000/SD_CSEC)
27045 
27046 
27047 /*
27048  *    Function: sd_ddi_scsi_poll()
27049  *
27050  * Description: Localized version of the scsi_poll routine.  The purpose is to
27051  *		send a scsi_pkt to a device as a polled command.  This version
27052  *		is to ensure more robust handling of transport errors.
27053  *		Specifically this routine cures not ready, coming ready
27054  *		transition for power up and reset of sonoma's.  This can take
27055  *		up to 45 seconds for power-on and 20 seconds for reset of a
27056  * 		sonoma lun.
27057  *
27058  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
27059  *
27060  * Return Code: 0 - Command completed successfully with good status
27061  *             -1 - Command failed.
27062  *
27063  */
27064 
27065 static int
27066 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
27067 {
27068 	int busy_count;
27069 	int timeout;
27070 	int rval = SD_FAILURE;
27071 	int savef;
27072 	uint8_t *sensep;
27073 	long savet;
27074 	void (*savec)();
27075 	/*
27076 	 * The following is defined in machdep.c and is used in determining if
27077 	 * the scsi transport system will do polled I/O instead of interrupt
27078 	 * I/O when called from xx_dump().
27079 	 */
27080 	extern int do_polled_io;
27081 
27082 	/*
27083 	 * save old flags in pkt, to restore at end
27084 	 */
27085 	savef = pkt->pkt_flags;
27086 	savec = pkt->pkt_comp;
27087 	savet = pkt->pkt_time;
27088 
27089 	pkt->pkt_flags |= FLAG_NOINTR;
27090 
27091 	/*
27092 	 * XXX there is nothing in the SCSA spec that states that we should not
27093 	 * do a callback for polled cmds; however, removing this will break sd
27094 	 * and probably other target drivers
27095 	 */
27096 	pkt->pkt_comp = NULL;
27097 
27098 	/*
27099 	 * we don't like a polled command without timeout.
27100 	 * 60 seconds seems long enough.
27101 	 */
27102 	if (pkt->pkt_time == 0) {
27103 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
27104 	}
27105 
27106 	/*
27107 	 * Send polled cmd.
27108 	 *
27109 	 * We do some error recovery for various errors.  Tran_busy,
27110 	 * queue full, and non-dispatched commands are retried every 10 msec.
27111 	 * as they are typically transient failures.  Busy status and Not
27112 	 * Ready are retried every second as this status takes a while to
27113 	 * change.  Unit attention is retried for pkt_time (60) times
27114 	 * with no delay.
27115 	 */
27116 	timeout = pkt->pkt_time * SD_SEC_TO_CSEC;
27117 
27118 	for (busy_count = 0; busy_count < timeout; busy_count++) {
27119 		int rc;
27120 		int poll_delay;
27121 
27122 		/*
27123 		 * Initialize pkt status variables.
27124 		 */
27125 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
27126 
27127 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
27128 			if (rc != TRAN_BUSY) {
27129 				/* Transport failed - give up. */
27130 				break;
27131 			} else {
27132 				/* Transport busy - try again. */
27133 				poll_delay = 1 * SD_CSEC; /* 10 msec */
27134 			}
27135 		} else {
27136 			/*
27137 			 * Transport accepted - check pkt status.
27138 			 */
27139 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
27140 			if (pkt->pkt_reason == CMD_CMPLT &&
27141 			    rc == STATUS_CHECK &&
27142 			    pkt->pkt_state & STATE_ARQ_DONE) {
27143 				struct scsi_arq_status *arqstat =
27144 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
27145 
27146 				sensep = (uint8_t *)&arqstat->sts_sensedata;
27147 			} else {
27148 				sensep = NULL;
27149 			}
27150 
27151 			if ((pkt->pkt_reason == CMD_CMPLT) &&
27152 			    (rc == STATUS_GOOD)) {
27153 				/* No error - we're done */
27154 				rval = SD_SUCCESS;
27155 				break;
27156 
27157 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
27158 				/* Lost connection - give up */
27159 				break;
27160 
27161 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
27162 			    (pkt->pkt_state == 0)) {
27163 				/* Pkt not dispatched - try again. */
27164 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
27165 
27166 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
27167 			    (rc == STATUS_QFULL)) {
27168 				/* Queue full - try again. */
27169 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
27170 
27171 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
27172 			    (rc == STATUS_BUSY)) {
27173 				/* Busy - try again. */
27174 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
27175 				busy_count += (SD_SEC_TO_CSEC - 1);
27176 
27177 			} else if ((sensep != NULL) &&
27178 			    (scsi_sense_key(sensep) ==
27179 				KEY_UNIT_ATTENTION)) {
27180 				/* Unit Attention - try again */
27181 				busy_count += (SD_SEC_TO_CSEC - 1); /* 1 */
27182 				continue;
27183 
27184 			} else if ((sensep != NULL) &&
27185 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
27186 			    (scsi_sense_asc(sensep) == 0x04) &&
27187 			    (scsi_sense_ascq(sensep) == 0x01)) {
27188 				/* Not ready -> ready - try again. */
27189 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
27190 				busy_count += (SD_SEC_TO_CSEC - 1);
27191 
27192 			} else {
27193 				/* BAD status - give up. */
27194 				break;
27195 			}
27196 		}
27197 
27198 		if ((curthread->t_flag & T_INTR_THREAD) == 0 &&
27199 		    !do_polled_io) {
27200 			delay(drv_usectohz(poll_delay));
27201 		} else {
27202 			/* we busy wait during cpr_dump or interrupt threads */
27203 			drv_usecwait(poll_delay);
27204 		}
27205 	}
27206 
27207 	pkt->pkt_flags = savef;
27208 	pkt->pkt_comp = savec;
27209 	pkt->pkt_time = savet;
27210 	return (rval);
27211 }
27212 
27213 
27214 /*
27215  *    Function: sd_persistent_reservation_in_read_keys
27216  *
27217  * Description: This routine is the driver entry point for handling CD-ROM
27218  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
27219  *		by sending the SCSI-3 PRIN commands to the device.
27220  *		Processes the read keys command response by copying the
27221  *		reservation key information into the user provided buffer.
27222  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
27223  *
27224  *   Arguments: un   -  Pointer to soft state struct for the target.
27225  *		usrp -	user provided pointer to multihost Persistent In Read
27226  *			Keys structure (mhioc_inkeys_t)
27227  *		flag -	this argument is a pass through to ddi_copyxxx()
27228  *			directly from the mode argument of ioctl().
27229  *
27230  * Return Code: 0   - Success
27231  *		EACCES
27232  *		ENOTSUP
27233  *		errno return code from sd_send_scsi_cmd()
27234  *
27235  *     Context: Can sleep. Does not return until command is completed.
27236  */
27237 
27238 static int
27239 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
27240     mhioc_inkeys_t *usrp, int flag)
27241 {
27242 #ifdef _MULTI_DATAMODEL
27243 	struct mhioc_key_list32	li32;
27244 #endif
27245 	sd_prin_readkeys_t	*in;
27246 	mhioc_inkeys_t		*ptr;
27247 	mhioc_key_list_t	li;
27248 	uchar_t			*data_bufp;
27249 	int 			data_len;
27250 	int			rval;
27251 	size_t			copysz;
27252 
27253 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
27254 		return (EINVAL);
27255 	}
27256 	bzero(&li, sizeof (mhioc_key_list_t));
27257 
27258 	/*
27259 	 * Get the listsize from user
27260 	 */
27261 #ifdef _MULTI_DATAMODEL
27262 
27263 	switch (ddi_model_convert_from(flag & FMODELS)) {
27264 	case DDI_MODEL_ILP32:
27265 		copysz = sizeof (struct mhioc_key_list32);
27266 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
27267 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27268 			    "sd_persistent_reservation_in_read_keys: "
27269 			    "failed ddi_copyin: mhioc_key_list32_t\n");
27270 			rval = EFAULT;
27271 			goto done;
27272 		}
27273 		li.listsize = li32.listsize;
27274 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
27275 		break;
27276 
27277 	case DDI_MODEL_NONE:
27278 		copysz = sizeof (mhioc_key_list_t);
27279 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
27280 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27281 			    "sd_persistent_reservation_in_read_keys: "
27282 			    "failed ddi_copyin: mhioc_key_list_t\n");
27283 			rval = EFAULT;
27284 			goto done;
27285 		}
27286 		break;
27287 	}
27288 
27289 #else /* ! _MULTI_DATAMODEL */
27290 	copysz = sizeof (mhioc_key_list_t);
27291 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
27292 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
27293 		    "sd_persistent_reservation_in_read_keys: "
27294 		    "failed ddi_copyin: mhioc_key_list_t\n");
27295 		rval = EFAULT;
27296 		goto done;
27297 	}
27298 #endif
27299 
27300 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
27301 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
27302 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
27303 
27304 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS,
27305 	    data_len, data_bufp)) != 0) {
27306 		goto done;
27307 	}
27308 	in = (sd_prin_readkeys_t *)data_bufp;
27309 	ptr->generation = BE_32(in->generation);
27310 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
27311 
27312 	/*
27313 	 * Return the min(listsize, listlen) keys
27314 	 */
27315 #ifdef _MULTI_DATAMODEL
27316 
27317 	switch (ddi_model_convert_from(flag & FMODELS)) {
27318 	case DDI_MODEL_ILP32:
27319 		li32.listlen = li.listlen;
27320 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
27321 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27322 			    "sd_persistent_reservation_in_read_keys: "
27323 			    "failed ddi_copyout: mhioc_key_list32_t\n");
27324 			rval = EFAULT;
27325 			goto done;
27326 		}
27327 		break;
27328 
27329 	case DDI_MODEL_NONE:
27330 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
27331 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27332 			    "sd_persistent_reservation_in_read_keys: "
27333 			    "failed ddi_copyout: mhioc_key_list_t\n");
27334 			rval = EFAULT;
27335 			goto done;
27336 		}
27337 		break;
27338 	}
27339 
27340 #else /* ! _MULTI_DATAMODEL */
27341 
27342 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
27343 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
27344 		    "sd_persistent_reservation_in_read_keys: "
27345 		    "failed ddi_copyout: mhioc_key_list_t\n");
27346 		rval = EFAULT;
27347 		goto done;
27348 	}
27349 
27350 #endif /* _MULTI_DATAMODEL */
27351 
27352 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
27353 	    li.listsize * MHIOC_RESV_KEY_SIZE);
27354 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
27355 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
27356 		    "sd_persistent_reservation_in_read_keys: "
27357 		    "failed ddi_copyout: keylist\n");
27358 		rval = EFAULT;
27359 	}
27360 done:
27361 	kmem_free(data_bufp, data_len);
27362 	return (rval);
27363 }
27364 
27365 
27366 /*
27367  *    Function: sd_persistent_reservation_in_read_resv
27368  *
27369  * Description: This routine is the driver entry point for handling CD-ROM
27370  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
27371  *		by sending the SCSI-3 PRIN commands to the device.
27372  *		Process the read persistent reservations command response by
27373  *		copying the reservation information into the user provided
27374  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
27375  *
27376  *   Arguments: un   -  Pointer to soft state struct for the target.
27377  *		usrp -	user provided pointer to multihost Persistent In Read
27378  *			Keys structure (mhioc_inkeys_t)
27379  *		flag -	this argument is a pass through to ddi_copyxxx()
27380  *			directly from the mode argument of ioctl().
27381  *
27382  * Return Code: 0   - Success
27383  *		EACCES
27384  *		ENOTSUP
27385  *		errno return code from sd_send_scsi_cmd()
27386  *
27387  *     Context: Can sleep. Does not return until command is completed.
27388  */
27389 
27390 static int
27391 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
27392     mhioc_inresvs_t *usrp, int flag)
27393 {
27394 #ifdef _MULTI_DATAMODEL
27395 	struct mhioc_resv_desc_list32 resvlist32;
27396 #endif
27397 	sd_prin_readresv_t	*in;
27398 	mhioc_inresvs_t		*ptr;
27399 	sd_readresv_desc_t	*readresv_ptr;
27400 	mhioc_resv_desc_list_t	resvlist;
27401 	mhioc_resv_desc_t 	resvdesc;
27402 	uchar_t			*data_bufp;
27403 	int 			data_len;
27404 	int			rval;
27405 	int			i;
27406 	size_t			copysz;
27407 	mhioc_resv_desc_t	*bufp;
27408 
27409 	if ((ptr = usrp) == NULL) {
27410 		return (EINVAL);
27411 	}
27412 
27413 	/*
27414 	 * Get the listsize from user
27415 	 */
27416 #ifdef _MULTI_DATAMODEL
27417 	switch (ddi_model_convert_from(flag & FMODELS)) {
27418 	case DDI_MODEL_ILP32:
27419 		copysz = sizeof (struct mhioc_resv_desc_list32);
27420 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
27421 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27422 			    "sd_persistent_reservation_in_read_resv: "
27423 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
27424 			rval = EFAULT;
27425 			goto done;
27426 		}
27427 		resvlist.listsize = resvlist32.listsize;
27428 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
27429 		break;
27430 
27431 	case DDI_MODEL_NONE:
27432 		copysz = sizeof (mhioc_resv_desc_list_t);
27433 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
27434 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27435 			    "sd_persistent_reservation_in_read_resv: "
27436 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
27437 			rval = EFAULT;
27438 			goto done;
27439 		}
27440 		break;
27441 	}
27442 #else /* ! _MULTI_DATAMODEL */
27443 	copysz = sizeof (mhioc_resv_desc_list_t);
27444 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
27445 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
27446 		    "sd_persistent_reservation_in_read_resv: "
27447 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
27448 		rval = EFAULT;
27449 		goto done;
27450 	}
27451 #endif /* ! _MULTI_DATAMODEL */
27452 
27453 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
27454 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
27455 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
27456 
27457 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV,
27458 	    data_len, data_bufp)) != 0) {
27459 		goto done;
27460 	}
27461 	in = (sd_prin_readresv_t *)data_bufp;
27462 	ptr->generation = BE_32(in->generation);
27463 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
27464 
27465 	/*
27466 	 * Return the min(listsize, listlen( keys
27467 	 */
27468 #ifdef _MULTI_DATAMODEL
27469 
27470 	switch (ddi_model_convert_from(flag & FMODELS)) {
27471 	case DDI_MODEL_ILP32:
27472 		resvlist32.listlen = resvlist.listlen;
27473 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
27474 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27475 			    "sd_persistent_reservation_in_read_resv: "
27476 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
27477 			rval = EFAULT;
27478 			goto done;
27479 		}
27480 		break;
27481 
27482 	case DDI_MODEL_NONE:
27483 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
27484 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27485 			    "sd_persistent_reservation_in_read_resv: "
27486 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
27487 			rval = EFAULT;
27488 			goto done;
27489 		}
27490 		break;
27491 	}
27492 
27493 #else /* ! _MULTI_DATAMODEL */
27494 
27495 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
27496 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
27497 		    "sd_persistent_reservation_in_read_resv: "
27498 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
27499 		rval = EFAULT;
27500 		goto done;
27501 	}
27502 
27503 #endif /* ! _MULTI_DATAMODEL */
27504 
27505 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
27506 	bufp = resvlist.list;
27507 	copysz = sizeof (mhioc_resv_desc_t);
27508 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
27509 	    i++, readresv_ptr++, bufp++) {
27510 
27511 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
27512 		    MHIOC_RESV_KEY_SIZE);
27513 		resvdesc.type  = readresv_ptr->type;
27514 		resvdesc.scope = readresv_ptr->scope;
27515 		resvdesc.scope_specific_addr =
27516 		    BE_32(readresv_ptr->scope_specific_addr);
27517 
27518 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
27519 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27520 			    "sd_persistent_reservation_in_read_resv: "
27521 			    "failed ddi_copyout: resvlist\n");
27522 			rval = EFAULT;
27523 			goto done;
27524 		}
27525 	}
27526 done:
27527 	kmem_free(data_bufp, data_len);
27528 	return (rval);
27529 }
27530 
27531 
27532 /*
27533  *    Function: sr_change_blkmode()
27534  *
27535  * Description: This routine is the driver entry point for handling CD-ROM
27536  *		block mode ioctl requests. Support for returning and changing
27537  *		the current block size in use by the device is implemented. The
27538  *		LBA size is changed via a MODE SELECT Block Descriptor.
27539  *
27540  *		This routine issues a mode sense with an allocation length of
27541  *		12 bytes for the mode page header and a single block descriptor.
27542  *
27543  *   Arguments: dev - the device 'dev_t'
27544  *		cmd - the request type; one of CDROMGBLKMODE (get) or
27545  *		      CDROMSBLKMODE (set)
27546  *		data - current block size or requested block size
27547  *		flag - this argument is a pass through to ddi_copyxxx() directly
27548  *		       from the mode argument of ioctl().
27549  *
27550  * Return Code: the code returned by sd_send_scsi_cmd()
27551  *		EINVAL if invalid arguments are provided
27552  *		EFAULT if ddi_copyxxx() fails
27553  *		ENXIO if fail ddi_get_soft_state
27554  *		EIO if invalid mode sense block descriptor length
27555  *
27556  */
27557 
27558 static int
27559 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
27560 {
27561 	struct sd_lun			*un = NULL;
27562 	struct mode_header		*sense_mhp, *select_mhp;
27563 	struct block_descriptor		*sense_desc, *select_desc;
27564 	int				current_bsize;
27565 	int				rval = EINVAL;
27566 	uchar_t				*sense = NULL;
27567 	uchar_t				*select = NULL;
27568 
27569 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
27570 
27571 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27572 		return (ENXIO);
27573 	}
27574 
27575 	/*
27576 	 * The block length is changed via the Mode Select block descriptor, the
27577 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
27578 	 * required as part of this routine. Therefore the mode sense allocation
27579 	 * length is specified to be the length of a mode page header and a
27580 	 * block descriptor.
27581 	 */
27582 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
27583 
27584 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
27585 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) {
27586 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27587 		    "sr_change_blkmode: Mode Sense Failed\n");
27588 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27589 		return (rval);
27590 	}
27591 
27592 	/* Check the block descriptor len to handle only 1 block descriptor */
27593 	sense_mhp = (struct mode_header *)sense;
27594 	if ((sense_mhp->bdesc_length == 0) ||
27595 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
27596 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27597 		    "sr_change_blkmode: Mode Sense returned invalid block"
27598 		    " descriptor length\n");
27599 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27600 		return (EIO);
27601 	}
27602 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
27603 	current_bsize = ((sense_desc->blksize_hi << 16) |
27604 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
27605 
27606 	/* Process command */
27607 	switch (cmd) {
27608 	case CDROMGBLKMODE:
27609 		/* Return the block size obtained during the mode sense */
27610 		if (ddi_copyout(&current_bsize, (void *)data,
27611 		    sizeof (int), flag) != 0)
27612 			rval = EFAULT;
27613 		break;
27614 	case CDROMSBLKMODE:
27615 		/* Validate the requested block size */
27616 		switch (data) {
27617 		case CDROM_BLK_512:
27618 		case CDROM_BLK_1024:
27619 		case CDROM_BLK_2048:
27620 		case CDROM_BLK_2056:
27621 		case CDROM_BLK_2336:
27622 		case CDROM_BLK_2340:
27623 		case CDROM_BLK_2352:
27624 		case CDROM_BLK_2368:
27625 		case CDROM_BLK_2448:
27626 		case CDROM_BLK_2646:
27627 		case CDROM_BLK_2647:
27628 			break;
27629 		default:
27630 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27631 			    "sr_change_blkmode: "
27632 			    "Block Size '%ld' Not Supported\n", data);
27633 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27634 			return (EINVAL);
27635 		}
27636 
27637 		/*
27638 		 * The current block size matches the requested block size so
27639 		 * there is no need to send the mode select to change the size
27640 		 */
27641 		if (current_bsize == data) {
27642 			break;
27643 		}
27644 
27645 		/* Build the select data for the requested block size */
27646 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
27647 		select_mhp = (struct mode_header *)select;
27648 		select_desc =
27649 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
27650 		/*
27651 		 * The LBA size is changed via the block descriptor, so the
27652 		 * descriptor is built according to the user data
27653 		 */
27654 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
27655 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
27656 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
27657 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
27658 
27659 		/* Send the mode select for the requested block size */
27660 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
27661 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
27662 		    SD_PATH_STANDARD)) != 0) {
27663 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27664 			    "sr_change_blkmode: Mode Select Failed\n");
27665 			/*
27666 			 * The mode select failed for the requested block size,
27667 			 * so reset the data for the original block size and
27668 			 * send it to the target. The error is indicated by the
27669 			 * return value for the failed mode select.
27670 			 */
27671 			select_desc->blksize_hi  = sense_desc->blksize_hi;
27672 			select_desc->blksize_mid = sense_desc->blksize_mid;
27673 			select_desc->blksize_lo  = sense_desc->blksize_lo;
27674 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
27675 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
27676 			    SD_PATH_STANDARD);
27677 		} else {
27678 			ASSERT(!mutex_owned(SD_MUTEX(un)));
27679 			mutex_enter(SD_MUTEX(un));
27680 			sd_update_block_info(un, (uint32_t)data, 0);
27681 
27682 			mutex_exit(SD_MUTEX(un));
27683 		}
27684 		break;
27685 	default:
27686 		/* should not reach here, but check anyway */
27687 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27688 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
27689 		rval = EINVAL;
27690 		break;
27691 	}
27692 
27693 	if (select) {
27694 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
27695 	}
27696 	if (sense) {
27697 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27698 	}
27699 	return (rval);
27700 }
27701 
27702 
27703 /*
27704  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
27705  * implement driver support for getting and setting the CD speed. The command
27706  * set used will be based on the device type. If the device has not been
27707  * identified as MMC the Toshiba vendor specific mode page will be used. If
27708  * the device is MMC but does not support the Real Time Streaming feature
27709  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
27710  * be used to read the speed.
27711  */
27712 
27713 /*
27714  *    Function: sr_change_speed()
27715  *
27716  * Description: This routine is the driver entry point for handling CD-ROM
27717  *		drive speed ioctl requests for devices supporting the Toshiba
27718  *		vendor specific drive speed mode page. Support for returning
27719  *		and changing the current drive speed in use by the device is
27720  *		implemented.
27721  *
27722  *   Arguments: dev - the device 'dev_t'
27723  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
27724  *		      CDROMSDRVSPEED (set)
27725  *		data - current drive speed or requested drive speed
27726  *		flag - this argument is a pass through to ddi_copyxxx() directly
27727  *		       from the mode argument of ioctl().
27728  *
27729  * Return Code: the code returned by sd_send_scsi_cmd()
27730  *		EINVAL if invalid arguments are provided
27731  *		EFAULT if ddi_copyxxx() fails
27732  *		ENXIO if fail ddi_get_soft_state
27733  *		EIO if invalid mode sense block descriptor length
27734  */
27735 
27736 static int
27737 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27738 {
27739 	struct sd_lun			*un = NULL;
27740 	struct mode_header		*sense_mhp, *select_mhp;
27741 	struct mode_speed		*sense_page, *select_page;
27742 	int				current_speed;
27743 	int				rval = EINVAL;
27744 	int				bd_len;
27745 	uchar_t				*sense = NULL;
27746 	uchar_t				*select = NULL;
27747 
27748 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27749 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27750 		return (ENXIO);
27751 	}
27752 
27753 	/*
27754 	 * Note: The drive speed is being modified here according to a Toshiba
27755 	 * vendor specific mode page (0x31).
27756 	 */
27757 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27758 
27759 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
27760 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
27761 		SD_PATH_STANDARD)) != 0) {
27762 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27763 		    "sr_change_speed: Mode Sense Failed\n");
27764 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27765 		return (rval);
27766 	}
27767 	sense_mhp  = (struct mode_header *)sense;
27768 
27769 	/* Check the block descriptor len to handle only 1 block descriptor */
27770 	bd_len = sense_mhp->bdesc_length;
27771 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27772 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27773 		    "sr_change_speed: Mode Sense returned invalid block "
27774 		    "descriptor length\n");
27775 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27776 		return (EIO);
27777 	}
27778 
27779 	sense_page = (struct mode_speed *)
27780 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
27781 	current_speed = sense_page->speed;
27782 
27783 	/* Process command */
27784 	switch (cmd) {
27785 	case CDROMGDRVSPEED:
27786 		/* Return the drive speed obtained during the mode sense */
27787 		if (current_speed == 0x2) {
27788 			current_speed = CDROM_TWELVE_SPEED;
27789 		}
27790 		if (ddi_copyout(&current_speed, (void *)data,
27791 		    sizeof (int), flag) != 0) {
27792 			rval = EFAULT;
27793 		}
27794 		break;
27795 	case CDROMSDRVSPEED:
27796 		/* Validate the requested drive speed */
27797 		switch ((uchar_t)data) {
27798 		case CDROM_TWELVE_SPEED:
27799 			data = 0x2;
27800 			/*FALLTHROUGH*/
27801 		case CDROM_NORMAL_SPEED:
27802 		case CDROM_DOUBLE_SPEED:
27803 		case CDROM_QUAD_SPEED:
27804 		case CDROM_MAXIMUM_SPEED:
27805 			break;
27806 		default:
27807 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27808 			    "sr_change_speed: "
27809 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
27810 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27811 			return (EINVAL);
27812 		}
27813 
27814 		/*
27815 		 * The current drive speed matches the requested drive speed so
27816 		 * there is no need to send the mode select to change the speed
27817 		 */
27818 		if (current_speed == data) {
27819 			break;
27820 		}
27821 
27822 		/* Build the select data for the requested drive speed */
27823 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27824 		select_mhp = (struct mode_header *)select;
27825 		select_mhp->bdesc_length = 0;
27826 		select_page =
27827 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27828 		select_page =
27829 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27830 		select_page->mode_page.code = CDROM_MODE_SPEED;
27831 		select_page->mode_page.length = 2;
27832 		select_page->speed = (uchar_t)data;
27833 
27834 		/* Send the mode select for the requested block size */
27835 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
27836 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27837 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
27838 			/*
27839 			 * The mode select failed for the requested drive speed,
27840 			 * so reset the data for the original drive speed and
27841 			 * send it to the target. The error is indicated by the
27842 			 * return value for the failed mode select.
27843 			 */
27844 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27845 			    "sr_drive_speed: Mode Select Failed\n");
27846 			select_page->speed = sense_page->speed;
27847 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
27848 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27849 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27850 		}
27851 		break;
27852 	default:
27853 		/* should not reach here, but check anyway */
27854 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27855 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
27856 		rval = EINVAL;
27857 		break;
27858 	}
27859 
27860 	if (select) {
27861 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
27862 	}
27863 	if (sense) {
27864 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27865 	}
27866 
27867 	return (rval);
27868 }
27869 
27870 
27871 /*
27872  *    Function: sr_atapi_change_speed()
27873  *
27874  * Description: This routine is the driver entry point for handling CD-ROM
27875  *		drive speed ioctl requests for MMC devices that do not support
27876  *		the Real Time Streaming feature (0x107).
27877  *
27878  *		Note: This routine will use the SET SPEED command which may not
27879  *		be supported by all devices.
27880  *
27881  *   Arguments: dev- the device 'dev_t'
27882  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
27883  *		     CDROMSDRVSPEED (set)
27884  *		data- current drive speed or requested drive speed
27885  *		flag- this argument is a pass through to ddi_copyxxx() directly
27886  *		      from the mode argument of ioctl().
27887  *
27888  * Return Code: the code returned by sd_send_scsi_cmd()
27889  *		EINVAL if invalid arguments are provided
27890  *		EFAULT if ddi_copyxxx() fails
27891  *		ENXIO if fail ddi_get_soft_state
27892  *		EIO if invalid mode sense block descriptor length
27893  */
27894 
27895 static int
27896 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27897 {
27898 	struct sd_lun			*un;
27899 	struct uscsi_cmd		*com = NULL;
27900 	struct mode_header_grp2		*sense_mhp;
27901 	uchar_t				*sense_page;
27902 	uchar_t				*sense = NULL;
27903 	char				cdb[CDB_GROUP5];
27904 	int				bd_len;
27905 	int				current_speed = 0;
27906 	int				max_speed = 0;
27907 	int				rval;
27908 
27909 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27910 
27911 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27912 		return (ENXIO);
27913 	}
27914 
27915 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
27916 
27917 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
27918 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
27919 	    SD_PATH_STANDARD)) != 0) {
27920 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27921 		    "sr_atapi_change_speed: Mode Sense Failed\n");
27922 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27923 		return (rval);
27924 	}
27925 
27926 	/* Check the block descriptor len to handle only 1 block descriptor */
27927 	sense_mhp = (struct mode_header_grp2 *)sense;
27928 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
27929 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27930 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27931 		    "sr_atapi_change_speed: Mode Sense returned invalid "
27932 		    "block descriptor length\n");
27933 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27934 		return (EIO);
27935 	}
27936 
27937 	/* Calculate the current and maximum drive speeds */
27938 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
27939 	current_speed = (sense_page[14] << 8) | sense_page[15];
27940 	max_speed = (sense_page[8] << 8) | sense_page[9];
27941 
27942 	/* Process the command */
27943 	switch (cmd) {
27944 	case CDROMGDRVSPEED:
27945 		current_speed /= SD_SPEED_1X;
27946 		if (ddi_copyout(&current_speed, (void *)data,
27947 		    sizeof (int), flag) != 0)
27948 			rval = EFAULT;
27949 		break;
27950 	case CDROMSDRVSPEED:
27951 		/* Convert the speed code to KB/sec */
27952 		switch ((uchar_t)data) {
27953 		case CDROM_NORMAL_SPEED:
27954 			current_speed = SD_SPEED_1X;
27955 			break;
27956 		case CDROM_DOUBLE_SPEED:
27957 			current_speed = 2 * SD_SPEED_1X;
27958 			break;
27959 		case CDROM_QUAD_SPEED:
27960 			current_speed = 4 * SD_SPEED_1X;
27961 			break;
27962 		case CDROM_TWELVE_SPEED:
27963 			current_speed = 12 * SD_SPEED_1X;
27964 			break;
27965 		case CDROM_MAXIMUM_SPEED:
27966 			current_speed = 0xffff;
27967 			break;
27968 		default:
27969 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27970 			    "sr_atapi_change_speed: invalid drive speed %d\n",
27971 			    (uchar_t)data);
27972 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27973 			return (EINVAL);
27974 		}
27975 
27976 		/* Check the request against the drive's max speed. */
27977 		if (current_speed != 0xffff) {
27978 			if (current_speed > max_speed) {
27979 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27980 				return (EINVAL);
27981 			}
27982 		}
27983 
27984 		/*
27985 		 * Build and send the SET SPEED command
27986 		 *
27987 		 * Note: The SET SPEED (0xBB) command used in this routine is
27988 		 * obsolete per the SCSI MMC spec but still supported in the
27989 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27990 		 * therefore the command is still implemented in this routine.
27991 		 */
27992 		bzero(cdb, sizeof (cdb));
27993 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
27994 		cdb[2] = (uchar_t)(current_speed >> 8);
27995 		cdb[3] = (uchar_t)current_speed;
27996 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27997 		com->uscsi_cdb	   = (caddr_t)cdb;
27998 		com->uscsi_cdblen  = CDB_GROUP5;
27999 		com->uscsi_bufaddr = NULL;
28000 		com->uscsi_buflen  = 0;
28001 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
28002 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, 0,
28003 		    UIO_SYSSPACE, SD_PATH_STANDARD);
28004 		break;
28005 	default:
28006 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28007 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
28008 		rval = EINVAL;
28009 	}
28010 
28011 	if (sense) {
28012 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
28013 	}
28014 	if (com) {
28015 		kmem_free(com, sizeof (*com));
28016 	}
28017 	return (rval);
28018 }
28019 
28020 
28021 /*
28022  *    Function: sr_pause_resume()
28023  *
28024  * Description: This routine is the driver entry point for handling CD-ROM
28025  *		pause/resume ioctl requests. This only affects the audio play
28026  *		operation.
28027  *
28028  *   Arguments: dev - the device 'dev_t'
28029  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
28030  *		      for setting the resume bit of the cdb.
28031  *
28032  * Return Code: the code returned by sd_send_scsi_cmd()
28033  *		EINVAL if invalid mode specified
28034  *
28035  */
28036 
28037 static int
28038 sr_pause_resume(dev_t dev, int cmd)
28039 {
28040 	struct sd_lun		*un;
28041 	struct uscsi_cmd	*com;
28042 	char			cdb[CDB_GROUP1];
28043 	int			rval;
28044 
28045 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28046 		return (ENXIO);
28047 	}
28048 
28049 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28050 	bzero(cdb, CDB_GROUP1);
28051 	cdb[0] = SCMD_PAUSE_RESUME;
28052 	switch (cmd) {
28053 	case CDROMRESUME:
28054 		cdb[8] = 1;
28055 		break;
28056 	case CDROMPAUSE:
28057 		cdb[8] = 0;
28058 		break;
28059 	default:
28060 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
28061 		    " Command '%x' Not Supported\n", cmd);
28062 		rval = EINVAL;
28063 		goto done;
28064 	}
28065 
28066 	com->uscsi_cdb    = cdb;
28067 	com->uscsi_cdblen = CDB_GROUP1;
28068 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
28069 
28070 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28071 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28072 
28073 done:
28074 	kmem_free(com, sizeof (*com));
28075 	return (rval);
28076 }
28077 
28078 
28079 /*
28080  *    Function: sr_play_msf()
28081  *
28082  * Description: This routine is the driver entry point for handling CD-ROM
28083  *		ioctl requests to output the audio signals at the specified
28084  *		starting address and continue the audio play until the specified
28085  *		ending address (CDROMPLAYMSF) The address is in Minute Second
28086  *		Frame (MSF) format.
28087  *
28088  *   Arguments: dev	- the device 'dev_t'
28089  *		data	- pointer to user provided audio msf structure,
28090  *		          specifying start/end addresses.
28091  *		flag	- this argument is a pass through to ddi_copyxxx()
28092  *		          directly from the mode argument of ioctl().
28093  *
28094  * Return Code: the code returned by sd_send_scsi_cmd()
28095  *		EFAULT if ddi_copyxxx() fails
28096  *		ENXIO if fail ddi_get_soft_state
28097  *		EINVAL if data pointer is NULL
28098  */
28099 
28100 static int
28101 sr_play_msf(dev_t dev, caddr_t data, int flag)
28102 {
28103 	struct sd_lun		*un;
28104 	struct uscsi_cmd	*com;
28105 	struct cdrom_msf	msf_struct;
28106 	struct cdrom_msf	*msf = &msf_struct;
28107 	char			cdb[CDB_GROUP1];
28108 	int			rval;
28109 
28110 	if (data == NULL) {
28111 		return (EINVAL);
28112 	}
28113 
28114 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28115 		return (ENXIO);
28116 	}
28117 
28118 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
28119 		return (EFAULT);
28120 	}
28121 
28122 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28123 	bzero(cdb, CDB_GROUP1);
28124 	cdb[0] = SCMD_PLAYAUDIO_MSF;
28125 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
28126 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
28127 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
28128 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
28129 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
28130 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
28131 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
28132 	} else {
28133 		cdb[3] = msf->cdmsf_min0;
28134 		cdb[4] = msf->cdmsf_sec0;
28135 		cdb[5] = msf->cdmsf_frame0;
28136 		cdb[6] = msf->cdmsf_min1;
28137 		cdb[7] = msf->cdmsf_sec1;
28138 		cdb[8] = msf->cdmsf_frame1;
28139 	}
28140 	com->uscsi_cdb    = cdb;
28141 	com->uscsi_cdblen = CDB_GROUP1;
28142 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
28143 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28144 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28145 	kmem_free(com, sizeof (*com));
28146 	return (rval);
28147 }
28148 
28149 
28150 /*
28151  *    Function: sr_play_trkind()
28152  *
28153  * Description: This routine is the driver entry point for handling CD-ROM
28154  *		ioctl requests to output the audio signals at the specified
28155  *		starting address and continue the audio play until the specified
28156  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
28157  *		format.
28158  *
28159  *   Arguments: dev	- the device 'dev_t'
28160  *		data	- pointer to user provided audio track/index structure,
28161  *		          specifying start/end addresses.
28162  *		flag	- this argument is a pass through to ddi_copyxxx()
28163  *		          directly from the mode argument of ioctl().
28164  *
28165  * Return Code: the code returned by sd_send_scsi_cmd()
28166  *		EFAULT if ddi_copyxxx() fails
28167  *		ENXIO if fail ddi_get_soft_state
28168  *		EINVAL if data pointer is NULL
28169  */
28170 
28171 static int
28172 sr_play_trkind(dev_t dev, caddr_t data, int flag)
28173 {
28174 	struct cdrom_ti		ti_struct;
28175 	struct cdrom_ti		*ti = &ti_struct;
28176 	struct uscsi_cmd	*com = NULL;
28177 	char			cdb[CDB_GROUP1];
28178 	int			rval;
28179 
28180 	if (data == NULL) {
28181 		return (EINVAL);
28182 	}
28183 
28184 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
28185 		return (EFAULT);
28186 	}
28187 
28188 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28189 	bzero(cdb, CDB_GROUP1);
28190 	cdb[0] = SCMD_PLAYAUDIO_TI;
28191 	cdb[4] = ti->cdti_trk0;
28192 	cdb[5] = ti->cdti_ind0;
28193 	cdb[7] = ti->cdti_trk1;
28194 	cdb[8] = ti->cdti_ind1;
28195 	com->uscsi_cdb    = cdb;
28196 	com->uscsi_cdblen = CDB_GROUP1;
28197 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
28198 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28199 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28200 	kmem_free(com, sizeof (*com));
28201 	return (rval);
28202 }
28203 
28204 
28205 /*
28206  *    Function: sr_read_all_subcodes()
28207  *
28208  * Description: This routine is the driver entry point for handling CD-ROM
28209  *		ioctl requests to return raw subcode data while the target is
28210  *		playing audio (CDROMSUBCODE).
28211  *
28212  *   Arguments: dev	- the device 'dev_t'
28213  *		data	- pointer to user provided cdrom subcode structure,
28214  *		          specifying the transfer length and address.
28215  *		flag	- this argument is a pass through to ddi_copyxxx()
28216  *		          directly from the mode argument of ioctl().
28217  *
28218  * Return Code: the code returned by sd_send_scsi_cmd()
28219  *		EFAULT if ddi_copyxxx() fails
28220  *		ENXIO if fail ddi_get_soft_state
28221  *		EINVAL if data pointer is NULL
28222  */
28223 
28224 static int
28225 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
28226 {
28227 	struct sd_lun		*un = NULL;
28228 	struct uscsi_cmd	*com = NULL;
28229 	struct cdrom_subcode	*subcode = NULL;
28230 	int			rval;
28231 	size_t			buflen;
28232 	char			cdb[CDB_GROUP5];
28233 
28234 #ifdef _MULTI_DATAMODEL
28235 	/* To support ILP32 applications in an LP64 world */
28236 	struct cdrom_subcode32		cdrom_subcode32;
28237 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
28238 #endif
28239 	if (data == NULL) {
28240 		return (EINVAL);
28241 	}
28242 
28243 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28244 		return (ENXIO);
28245 	}
28246 
28247 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
28248 
28249 #ifdef _MULTI_DATAMODEL
28250 	switch (ddi_model_convert_from(flag & FMODELS)) {
28251 	case DDI_MODEL_ILP32:
28252 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
28253 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28254 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
28255 			kmem_free(subcode, sizeof (struct cdrom_subcode));
28256 			return (EFAULT);
28257 		}
28258 		/* Convert the ILP32 uscsi data from the application to LP64 */
28259 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
28260 		break;
28261 	case DDI_MODEL_NONE:
28262 		if (ddi_copyin(data, subcode,
28263 		    sizeof (struct cdrom_subcode), flag)) {
28264 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28265 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
28266 			kmem_free(subcode, sizeof (struct cdrom_subcode));
28267 			return (EFAULT);
28268 		}
28269 		break;
28270 	}
28271 #else /* ! _MULTI_DATAMODEL */
28272 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
28273 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28274 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
28275 		kmem_free(subcode, sizeof (struct cdrom_subcode));
28276 		return (EFAULT);
28277 	}
28278 #endif /* _MULTI_DATAMODEL */
28279 
28280 	/*
28281 	 * Since MMC-2 expects max 3 bytes for length, check if the
28282 	 * length input is greater than 3 bytes
28283 	 */
28284 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
28285 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28286 		    "sr_read_all_subcodes: "
28287 		    "cdrom transfer length too large: %d (limit %d)\n",
28288 		    subcode->cdsc_length, 0xFFFFFF);
28289 		kmem_free(subcode, sizeof (struct cdrom_subcode));
28290 		return (EINVAL);
28291 	}
28292 
28293 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
28294 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28295 	bzero(cdb, CDB_GROUP5);
28296 
28297 	if (un->un_f_mmc_cap == TRUE) {
28298 		cdb[0] = (char)SCMD_READ_CD;
28299 		cdb[2] = (char)0xff;
28300 		cdb[3] = (char)0xff;
28301 		cdb[4] = (char)0xff;
28302 		cdb[5] = (char)0xff;
28303 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
28304 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
28305 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
28306 		cdb[10] = 1;
28307 	} else {
28308 		/*
28309 		 * Note: A vendor specific command (0xDF) is being used her to
28310 		 * request a read of all subcodes.
28311 		 */
28312 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
28313 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
28314 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
28315 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
28316 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
28317 	}
28318 	com->uscsi_cdb	   = cdb;
28319 	com->uscsi_cdblen  = CDB_GROUP5;
28320 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
28321 	com->uscsi_buflen  = buflen;
28322 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28323 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28324 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28325 	kmem_free(subcode, sizeof (struct cdrom_subcode));
28326 	kmem_free(com, sizeof (*com));
28327 	return (rval);
28328 }
28329 
28330 
28331 /*
28332  *    Function: sr_read_subchannel()
28333  *
28334  * Description: This routine is the driver entry point for handling CD-ROM
28335  *		ioctl requests to return the Q sub-channel data of the CD
28336  *		current position block. (CDROMSUBCHNL) The data includes the
28337  *		track number, index number, absolute CD-ROM address (LBA or MSF
28338  *		format per the user) , track relative CD-ROM address (LBA or MSF
28339  *		format per the user), control data and audio status.
28340  *
28341  *   Arguments: dev	- the device 'dev_t'
28342  *		data	- pointer to user provided cdrom sub-channel structure
28343  *		flag	- this argument is a pass through to ddi_copyxxx()
28344  *		          directly from the mode argument of ioctl().
28345  *
28346  * Return Code: the code returned by sd_send_scsi_cmd()
28347  *		EFAULT if ddi_copyxxx() fails
28348  *		ENXIO if fail ddi_get_soft_state
28349  *		EINVAL if data pointer is NULL
28350  */
28351 
28352 static int
28353 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
28354 {
28355 	struct sd_lun		*un;
28356 	struct uscsi_cmd	*com;
28357 	struct cdrom_subchnl	subchanel;
28358 	struct cdrom_subchnl	*subchnl = &subchanel;
28359 	char			cdb[CDB_GROUP1];
28360 	caddr_t			buffer;
28361 	int			rval;
28362 
28363 	if (data == NULL) {
28364 		return (EINVAL);
28365 	}
28366 
28367 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28368 	    (un->un_state == SD_STATE_OFFLINE)) {
28369 		return (ENXIO);
28370 	}
28371 
28372 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
28373 		return (EFAULT);
28374 	}
28375 
28376 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
28377 	bzero(cdb, CDB_GROUP1);
28378 	cdb[0] = SCMD_READ_SUBCHANNEL;
28379 	/* Set the MSF bit based on the user requested address format */
28380 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
28381 	/*
28382 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
28383 	 * returned
28384 	 */
28385 	cdb[2] = 0x40;
28386 	/*
28387 	 * Set byte 3 to specify the return data format. A value of 0x01
28388 	 * indicates that the CD-ROM current position should be returned.
28389 	 */
28390 	cdb[3] = 0x01;
28391 	cdb[8] = 0x10;
28392 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28393 	com->uscsi_cdb	   = cdb;
28394 	com->uscsi_cdblen  = CDB_GROUP1;
28395 	com->uscsi_bufaddr = buffer;
28396 	com->uscsi_buflen  = 16;
28397 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28398 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28399 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28400 	if (rval != 0) {
28401 		kmem_free(buffer, 16);
28402 		kmem_free(com, sizeof (*com));
28403 		return (rval);
28404 	}
28405 
28406 	/* Process the returned Q sub-channel data */
28407 	subchnl->cdsc_audiostatus = buffer[1];
28408 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
28409 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
28410 	subchnl->cdsc_trk	= buffer[6];
28411 	subchnl->cdsc_ind	= buffer[7];
28412 	if (subchnl->cdsc_format & CDROM_LBA) {
28413 		subchnl->cdsc_absaddr.lba =
28414 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
28415 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
28416 		subchnl->cdsc_reladdr.lba =
28417 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
28418 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
28419 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
28420 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
28421 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
28422 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
28423 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
28424 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
28425 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
28426 	} else {
28427 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
28428 		subchnl->cdsc_absaddr.msf.second = buffer[10];
28429 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
28430 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
28431 		subchnl->cdsc_reladdr.msf.second = buffer[14];
28432 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
28433 	}
28434 	kmem_free(buffer, 16);
28435 	kmem_free(com, sizeof (*com));
28436 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
28437 	    != 0) {
28438 		return (EFAULT);
28439 	}
28440 	return (rval);
28441 }
28442 
28443 
28444 /*
28445  *    Function: sr_read_tocentry()
28446  *
28447  * Description: This routine is the driver entry point for handling CD-ROM
28448  *		ioctl requests to read from the Table of Contents (TOC)
28449  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
28450  *		fields, the starting address (LBA or MSF format per the user)
28451  *		and the data mode if the user specified track is a data track.
28452  *
28453  *		Note: The READ HEADER (0x44) command used in this routine is
28454  *		obsolete per the SCSI MMC spec but still supported in the
28455  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
28456  *		therefore the command is still implemented in this routine.
28457  *
28458  *   Arguments: dev	- the device 'dev_t'
28459  *		data	- pointer to user provided toc entry structure,
28460  *			  specifying the track # and the address format
28461  *			  (LBA or MSF).
28462  *		flag	- this argument is a pass through to ddi_copyxxx()
28463  *		          directly from the mode argument of ioctl().
28464  *
28465  * Return Code: the code returned by sd_send_scsi_cmd()
28466  *		EFAULT if ddi_copyxxx() fails
28467  *		ENXIO if fail ddi_get_soft_state
28468  *		EINVAL if data pointer is NULL
28469  */
28470 
28471 static int
28472 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
28473 {
28474 	struct sd_lun		*un = NULL;
28475 	struct uscsi_cmd	*com;
28476 	struct cdrom_tocentry	toc_entry;
28477 	struct cdrom_tocentry	*entry = &toc_entry;
28478 	caddr_t			buffer;
28479 	int			rval;
28480 	char			cdb[CDB_GROUP1];
28481 
28482 	if (data == NULL) {
28483 		return (EINVAL);
28484 	}
28485 
28486 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28487 	    (un->un_state == SD_STATE_OFFLINE)) {
28488 		return (ENXIO);
28489 	}
28490 
28491 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
28492 		return (EFAULT);
28493 	}
28494 
28495 	/* Validate the requested track and address format */
28496 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
28497 		return (EINVAL);
28498 	}
28499 
28500 	if (entry->cdte_track == 0) {
28501 		return (EINVAL);
28502 	}
28503 
28504 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
28505 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28506 	bzero(cdb, CDB_GROUP1);
28507 
28508 	cdb[0] = SCMD_READ_TOC;
28509 	/* Set the MSF bit based on the user requested address format  */
28510 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
28511 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
28512 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
28513 	} else {
28514 		cdb[6] = entry->cdte_track;
28515 	}
28516 
28517 	/*
28518 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
28519 	 * (4 byte TOC response header + 8 byte track descriptor)
28520 	 */
28521 	cdb[8] = 12;
28522 	com->uscsi_cdb	   = cdb;
28523 	com->uscsi_cdblen  = CDB_GROUP1;
28524 	com->uscsi_bufaddr = buffer;
28525 	com->uscsi_buflen  = 0x0C;
28526 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
28527 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28528 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28529 	if (rval != 0) {
28530 		kmem_free(buffer, 12);
28531 		kmem_free(com, sizeof (*com));
28532 		return (rval);
28533 	}
28534 
28535 	/* Process the toc entry */
28536 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
28537 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
28538 	if (entry->cdte_format & CDROM_LBA) {
28539 		entry->cdte_addr.lba =
28540 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
28541 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
28542 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
28543 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
28544 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
28545 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
28546 		/*
28547 		 * Send a READ TOC command using the LBA address format to get
28548 		 * the LBA for the track requested so it can be used in the
28549 		 * READ HEADER request
28550 		 *
28551 		 * Note: The MSF bit of the READ HEADER command specifies the
28552 		 * output format. The block address specified in that command
28553 		 * must be in LBA format.
28554 		 */
28555 		cdb[1] = 0;
28556 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28557 		    UIO_SYSSPACE, SD_PATH_STANDARD);
28558 		if (rval != 0) {
28559 			kmem_free(buffer, 12);
28560 			kmem_free(com, sizeof (*com));
28561 			return (rval);
28562 		}
28563 	} else {
28564 		entry->cdte_addr.msf.minute	= buffer[9];
28565 		entry->cdte_addr.msf.second	= buffer[10];
28566 		entry->cdte_addr.msf.frame	= buffer[11];
28567 		/*
28568 		 * Send a READ TOC command using the LBA address format to get
28569 		 * the LBA for the track requested so it can be used in the
28570 		 * READ HEADER request
28571 		 *
28572 		 * Note: The MSF bit of the READ HEADER command specifies the
28573 		 * output format. The block address specified in that command
28574 		 * must be in LBA format.
28575 		 */
28576 		cdb[1] = 0;
28577 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28578 		    UIO_SYSSPACE, SD_PATH_STANDARD);
28579 		if (rval != 0) {
28580 			kmem_free(buffer, 12);
28581 			kmem_free(com, sizeof (*com));
28582 			return (rval);
28583 		}
28584 	}
28585 
28586 	/*
28587 	 * Build and send the READ HEADER command to determine the data mode of
28588 	 * the user specified track.
28589 	 */
28590 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
28591 	    (entry->cdte_track != CDROM_LEADOUT)) {
28592 		bzero(cdb, CDB_GROUP1);
28593 		cdb[0] = SCMD_READ_HEADER;
28594 		cdb[2] = buffer[8];
28595 		cdb[3] = buffer[9];
28596 		cdb[4] = buffer[10];
28597 		cdb[5] = buffer[11];
28598 		cdb[8] = 0x08;
28599 		com->uscsi_buflen = 0x08;
28600 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28601 		    UIO_SYSSPACE, SD_PATH_STANDARD);
28602 		if (rval == 0) {
28603 			entry->cdte_datamode = buffer[0];
28604 		} else {
28605 			/*
28606 			 * READ HEADER command failed, since this is
28607 			 * obsoleted in one spec, its better to return
28608 			 * -1 for an invlid track so that we can still
28609 			 * recieve the rest of the TOC data.
28610 			 */
28611 			entry->cdte_datamode = (uchar_t)-1;
28612 		}
28613 	} else {
28614 		entry->cdte_datamode = (uchar_t)-1;
28615 	}
28616 
28617 	kmem_free(buffer, 12);
28618 	kmem_free(com, sizeof (*com));
28619 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
28620 		return (EFAULT);
28621 
28622 	return (rval);
28623 }
28624 
28625 
28626 /*
28627  *    Function: sr_read_tochdr()
28628  *
28629  * Description: This routine is the driver entry point for handling CD-ROM
28630  * 		ioctl requests to read the Table of Contents (TOC) header
28631  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
28632  *		and ending track numbers
28633  *
28634  *   Arguments: dev	- the device 'dev_t'
28635  *		data	- pointer to user provided toc header structure,
28636  *			  specifying the starting and ending track numbers.
28637  *		flag	- this argument is a pass through to ddi_copyxxx()
28638  *			  directly from the mode argument of ioctl().
28639  *
28640  * Return Code: the code returned by sd_send_scsi_cmd()
28641  *		EFAULT if ddi_copyxxx() fails
28642  *		ENXIO if fail ddi_get_soft_state
28643  *		EINVAL if data pointer is NULL
28644  */
28645 
28646 static int
28647 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
28648 {
28649 	struct sd_lun		*un;
28650 	struct uscsi_cmd	*com;
28651 	struct cdrom_tochdr	toc_header;
28652 	struct cdrom_tochdr	*hdr = &toc_header;
28653 	char			cdb[CDB_GROUP1];
28654 	int			rval;
28655 	caddr_t			buffer;
28656 
28657 	if (data == NULL) {
28658 		return (EINVAL);
28659 	}
28660 
28661 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28662 	    (un->un_state == SD_STATE_OFFLINE)) {
28663 		return (ENXIO);
28664 	}
28665 
28666 	buffer = kmem_zalloc(4, KM_SLEEP);
28667 	bzero(cdb, CDB_GROUP1);
28668 	cdb[0] = SCMD_READ_TOC;
28669 	/*
28670 	 * Specifying a track number of 0x00 in the READ TOC command indicates
28671 	 * that the TOC header should be returned
28672 	 */
28673 	cdb[6] = 0x00;
28674 	/*
28675 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
28676 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
28677 	 */
28678 	cdb[8] = 0x04;
28679 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28680 	com->uscsi_cdb	   = cdb;
28681 	com->uscsi_cdblen  = CDB_GROUP1;
28682 	com->uscsi_bufaddr = buffer;
28683 	com->uscsi_buflen  = 0x04;
28684 	com->uscsi_timeout = 300;
28685 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28686 
28687 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28688 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28689 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
28690 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
28691 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
28692 	} else {
28693 		hdr->cdth_trk0 = buffer[2];
28694 		hdr->cdth_trk1 = buffer[3];
28695 	}
28696 	kmem_free(buffer, 4);
28697 	kmem_free(com, sizeof (*com));
28698 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
28699 		return (EFAULT);
28700 	}
28701 	return (rval);
28702 }
28703 
28704 
28705 /*
28706  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
28707  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
28708  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
28709  * digital audio and extended architecture digital audio. These modes are
28710  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
28711  * MMC specs.
28712  *
28713  * In addition to support for the various data formats these routines also
28714  * include support for devices that implement only the direct access READ
28715  * commands (0x08, 0x28), devices that implement the READ_CD commands
28716  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
28717  * READ CDXA commands (0xD8, 0xDB)
28718  */
28719 
28720 /*
28721  *    Function: sr_read_mode1()
28722  *
28723  * Description: This routine is the driver entry point for handling CD-ROM
28724  *		ioctl read mode1 requests (CDROMREADMODE1).
28725  *
28726  *   Arguments: dev	- the device 'dev_t'
28727  *		data	- pointer to user provided cd read structure specifying
28728  *			  the lba buffer address and length.
28729  *		flag	- this argument is a pass through to ddi_copyxxx()
28730  *			  directly from the mode argument of ioctl().
28731  *
28732  * Return Code: the code returned by sd_send_scsi_cmd()
28733  *		EFAULT if ddi_copyxxx() fails
28734  *		ENXIO if fail ddi_get_soft_state
28735  *		EINVAL if data pointer is NULL
28736  */
28737 
28738 static int
28739 sr_read_mode1(dev_t dev, caddr_t data, int flag)
28740 {
28741 	struct sd_lun		*un;
28742 	struct cdrom_read	mode1_struct;
28743 	struct cdrom_read	*mode1 = &mode1_struct;
28744 	int			rval;
28745 #ifdef _MULTI_DATAMODEL
28746 	/* To support ILP32 applications in an LP64 world */
28747 	struct cdrom_read32	cdrom_read32;
28748 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28749 #endif /* _MULTI_DATAMODEL */
28750 
28751 	if (data == NULL) {
28752 		return (EINVAL);
28753 	}
28754 
28755 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28756 	    (un->un_state == SD_STATE_OFFLINE)) {
28757 		return (ENXIO);
28758 	}
28759 
28760 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28761 	    "sd_read_mode1: entry: un:0x%p\n", un);
28762 
28763 #ifdef _MULTI_DATAMODEL
28764 	switch (ddi_model_convert_from(flag & FMODELS)) {
28765 	case DDI_MODEL_ILP32:
28766 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28767 			return (EFAULT);
28768 		}
28769 		/* Convert the ILP32 uscsi data from the application to LP64 */
28770 		cdrom_read32tocdrom_read(cdrd32, mode1);
28771 		break;
28772 	case DDI_MODEL_NONE:
28773 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28774 			return (EFAULT);
28775 		}
28776 	}
28777 #else /* ! _MULTI_DATAMODEL */
28778 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28779 		return (EFAULT);
28780 	}
28781 #endif /* _MULTI_DATAMODEL */
28782 
28783 	rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr,
28784 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
28785 
28786 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28787 	    "sd_read_mode1: exit: un:0x%p\n", un);
28788 
28789 	return (rval);
28790 }
28791 
28792 
28793 /*
28794  *    Function: sr_read_cd_mode2()
28795  *
28796  * Description: This routine is the driver entry point for handling CD-ROM
28797  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28798  *		support the READ CD (0xBE) command or the 1st generation
28799  *		READ CD (0xD4) command.
28800  *
28801  *   Arguments: dev	- the device 'dev_t'
28802  *		data	- pointer to user provided cd read structure specifying
28803  *			  the lba buffer address and length.
28804  *		flag	- this argument is a pass through to ddi_copyxxx()
28805  *			  directly from the mode argument of ioctl().
28806  *
28807  * Return Code: the code returned by sd_send_scsi_cmd()
28808  *		EFAULT if ddi_copyxxx() fails
28809  *		ENXIO if fail ddi_get_soft_state
28810  *		EINVAL if data pointer is NULL
28811  */
28812 
28813 static int
28814 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
28815 {
28816 	struct sd_lun		*un;
28817 	struct uscsi_cmd	*com;
28818 	struct cdrom_read	mode2_struct;
28819 	struct cdrom_read	*mode2 = &mode2_struct;
28820 	uchar_t			cdb[CDB_GROUP5];
28821 	int			nblocks;
28822 	int			rval;
28823 #ifdef _MULTI_DATAMODEL
28824 	/*  To support ILP32 applications in an LP64 world */
28825 	struct cdrom_read32	cdrom_read32;
28826 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28827 #endif /* _MULTI_DATAMODEL */
28828 
28829 	if (data == NULL) {
28830 		return (EINVAL);
28831 	}
28832 
28833 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28834 	    (un->un_state == SD_STATE_OFFLINE)) {
28835 		return (ENXIO);
28836 	}
28837 
28838 #ifdef _MULTI_DATAMODEL
28839 	switch (ddi_model_convert_from(flag & FMODELS)) {
28840 	case DDI_MODEL_ILP32:
28841 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28842 			return (EFAULT);
28843 		}
28844 		/* Convert the ILP32 uscsi data from the application to LP64 */
28845 		cdrom_read32tocdrom_read(cdrd32, mode2);
28846 		break;
28847 	case DDI_MODEL_NONE:
28848 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28849 			return (EFAULT);
28850 		}
28851 		break;
28852 	}
28853 
28854 #else /* ! _MULTI_DATAMODEL */
28855 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28856 		return (EFAULT);
28857 	}
28858 #endif /* _MULTI_DATAMODEL */
28859 
28860 	bzero(cdb, sizeof (cdb));
28861 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
28862 		/* Read command supported by 1st generation atapi drives */
28863 		cdb[0] = SCMD_READ_CDD4;
28864 	} else {
28865 		/* Universal CD Access Command */
28866 		cdb[0] = SCMD_READ_CD;
28867 	}
28868 
28869 	/*
28870 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
28871 	 */
28872 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
28873 
28874 	/* set the start address */
28875 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
28876 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
28877 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28878 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
28879 
28880 	/* set the transfer length */
28881 	nblocks = mode2->cdread_buflen / 2336;
28882 	cdb[6] = (uchar_t)(nblocks >> 16);
28883 	cdb[7] = (uchar_t)(nblocks >> 8);
28884 	cdb[8] = (uchar_t)nblocks;
28885 
28886 	/* set the filter bits */
28887 	cdb[9] = CDROM_READ_CD_USERDATA;
28888 
28889 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28890 	com->uscsi_cdb = (caddr_t)cdb;
28891 	com->uscsi_cdblen = sizeof (cdb);
28892 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28893 	com->uscsi_buflen = mode2->cdread_buflen;
28894 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28895 
28896 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28897 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28898 	kmem_free(com, sizeof (*com));
28899 	return (rval);
28900 }
28901 
28902 
28903 /*
28904  *    Function: sr_read_mode2()
28905  *
28906  * Description: This routine is the driver entry point for handling CD-ROM
28907  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28908  *		do not support the READ CD (0xBE) command.
28909  *
28910  *   Arguments: dev	- the device 'dev_t'
28911  *		data	- pointer to user provided cd read structure specifying
28912  *			  the lba buffer address and length.
28913  *		flag	- this argument is a pass through to ddi_copyxxx()
28914  *			  directly from the mode argument of ioctl().
28915  *
28916  * Return Code: the code returned by sd_send_scsi_cmd()
28917  *		EFAULT if ddi_copyxxx() fails
28918  *		ENXIO if fail ddi_get_soft_state
28919  *		EINVAL if data pointer is NULL
28920  *		EIO if fail to reset block size
28921  *		EAGAIN if commands are in progress in the driver
28922  */
28923 
28924 static int
28925 sr_read_mode2(dev_t dev, caddr_t data, int flag)
28926 {
28927 	struct sd_lun		*un;
28928 	struct cdrom_read	mode2_struct;
28929 	struct cdrom_read	*mode2 = &mode2_struct;
28930 	int			rval;
28931 	uint32_t		restore_blksize;
28932 	struct uscsi_cmd	*com;
28933 	uchar_t			cdb[CDB_GROUP0];
28934 	int			nblocks;
28935 
28936 #ifdef _MULTI_DATAMODEL
28937 	/* To support ILP32 applications in an LP64 world */
28938 	struct cdrom_read32	cdrom_read32;
28939 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28940 #endif /* _MULTI_DATAMODEL */
28941 
28942 	if (data == NULL) {
28943 		return (EINVAL);
28944 	}
28945 
28946 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28947 	    (un->un_state == SD_STATE_OFFLINE)) {
28948 		return (ENXIO);
28949 	}
28950 
28951 	/*
28952 	 * Because this routine will update the device and driver block size
28953 	 * being used we want to make sure there are no commands in progress.
28954 	 * If commands are in progress the user will have to try again.
28955 	 *
28956 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
28957 	 * in sdioctl to protect commands from sdioctl through to the top of
28958 	 * sd_uscsi_strategy. See sdioctl for details.
28959 	 */
28960 	mutex_enter(SD_MUTEX(un));
28961 	if (un->un_ncmds_in_driver != 1) {
28962 		mutex_exit(SD_MUTEX(un));
28963 		return (EAGAIN);
28964 	}
28965 	mutex_exit(SD_MUTEX(un));
28966 
28967 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28968 	    "sd_read_mode2: entry: un:0x%p\n", un);
28969 
28970 #ifdef _MULTI_DATAMODEL
28971 	switch (ddi_model_convert_from(flag & FMODELS)) {
28972 	case DDI_MODEL_ILP32:
28973 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28974 			return (EFAULT);
28975 		}
28976 		/* Convert the ILP32 uscsi data from the application to LP64 */
28977 		cdrom_read32tocdrom_read(cdrd32, mode2);
28978 		break;
28979 	case DDI_MODEL_NONE:
28980 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28981 			return (EFAULT);
28982 		}
28983 		break;
28984 	}
28985 #else /* ! _MULTI_DATAMODEL */
28986 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
28987 		return (EFAULT);
28988 	}
28989 #endif /* _MULTI_DATAMODEL */
28990 
28991 	/* Store the current target block size for restoration later */
28992 	restore_blksize = un->un_tgt_blocksize;
28993 
28994 	/* Change the device and soft state target block size to 2336 */
28995 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
28996 		rval = EIO;
28997 		goto done;
28998 	}
28999 
29000 
29001 	bzero(cdb, sizeof (cdb));
29002 
29003 	/* set READ operation */
29004 	cdb[0] = SCMD_READ;
29005 
29006 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
29007 	mode2->cdread_lba >>= 2;
29008 
29009 	/* set the start address */
29010 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
29011 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
29012 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
29013 
29014 	/* set the transfer length */
29015 	nblocks = mode2->cdread_buflen / 2336;
29016 	cdb[4] = (uchar_t)nblocks & 0xFF;
29017 
29018 	/* build command */
29019 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29020 	com->uscsi_cdb = (caddr_t)cdb;
29021 	com->uscsi_cdblen = sizeof (cdb);
29022 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
29023 	com->uscsi_buflen = mode2->cdread_buflen;
29024 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29025 
29026 	/*
29027 	 * Issue SCSI command with user space address for read buffer.
29028 	 *
29029 	 * This sends the command through main channel in the driver.
29030 	 *
29031 	 * Since this is accessed via an IOCTL call, we go through the
29032 	 * standard path, so that if the device was powered down, then
29033 	 * it would be 'awakened' to handle the command.
29034 	 */
29035 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
29036 	    UIO_SYSSPACE, SD_PATH_STANDARD);
29037 
29038 	kmem_free(com, sizeof (*com));
29039 
29040 	/* Restore the device and soft state target block size */
29041 	if (sr_sector_mode(dev, restore_blksize) != 0) {
29042 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29043 		    "can't do switch back to mode 1\n");
29044 		/*
29045 		 * If sd_send_scsi_READ succeeded we still need to report
29046 		 * an error because we failed to reset the block size
29047 		 */
29048 		if (rval == 0) {
29049 			rval = EIO;
29050 		}
29051 	}
29052 
29053 done:
29054 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
29055 	    "sd_read_mode2: exit: un:0x%p\n", un);
29056 
29057 	return (rval);
29058 }
29059 
29060 
29061 /*
29062  *    Function: sr_sector_mode()
29063  *
29064  * Description: This utility function is used by sr_read_mode2 to set the target
29065  *		block size based on the user specified size. This is a legacy
29066  *		implementation based upon a vendor specific mode page
29067  *
29068  *   Arguments: dev	- the device 'dev_t'
29069  *		data	- flag indicating if block size is being set to 2336 or
29070  *			  512.
29071  *
29072  * Return Code: the code returned by sd_send_scsi_cmd()
29073  *		EFAULT if ddi_copyxxx() fails
29074  *		ENXIO if fail ddi_get_soft_state
29075  *		EINVAL if data pointer is NULL
29076  */
29077 
29078 static int
29079 sr_sector_mode(dev_t dev, uint32_t blksize)
29080 {
29081 	struct sd_lun	*un;
29082 	uchar_t		*sense;
29083 	uchar_t		*select;
29084 	int		rval;
29085 
29086 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29087 	    (un->un_state == SD_STATE_OFFLINE)) {
29088 		return (ENXIO);
29089 	}
29090 
29091 	sense = kmem_zalloc(20, KM_SLEEP);
29092 
29093 	/* Note: This is a vendor specific mode page (0x81) */
29094 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81,
29095 	    SD_PATH_STANDARD)) != 0) {
29096 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
29097 		    "sr_sector_mode: Mode Sense failed\n");
29098 		kmem_free(sense, 20);
29099 		return (rval);
29100 	}
29101 	select = kmem_zalloc(20, KM_SLEEP);
29102 	select[3] = 0x08;
29103 	select[10] = ((blksize >> 8) & 0xff);
29104 	select[11] = (blksize & 0xff);
29105 	select[12] = 0x01;
29106 	select[13] = 0x06;
29107 	select[14] = sense[14];
29108 	select[15] = sense[15];
29109 	if (blksize == SD_MODE2_BLKSIZE) {
29110 		select[14] |= 0x01;
29111 	}
29112 
29113 	if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20,
29114 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
29115 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
29116 		    "sr_sector_mode: Mode Select failed\n");
29117 	} else {
29118 		/*
29119 		 * Only update the softstate block size if we successfully
29120 		 * changed the device block mode.
29121 		 */
29122 		mutex_enter(SD_MUTEX(un));
29123 		sd_update_block_info(un, blksize, 0);
29124 		mutex_exit(SD_MUTEX(un));
29125 	}
29126 	kmem_free(sense, 20);
29127 	kmem_free(select, 20);
29128 	return (rval);
29129 }
29130 
29131 
29132 /*
29133  *    Function: sr_read_cdda()
29134  *
29135  * Description: This routine is the driver entry point for handling CD-ROM
29136  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
29137  *		the target supports CDDA these requests are handled via a vendor
29138  *		specific command (0xD8) If the target does not support CDDA
29139  *		these requests are handled via the READ CD command (0xBE).
29140  *
29141  *   Arguments: dev	- the device 'dev_t'
29142  *		data	- pointer to user provided CD-DA structure specifying
29143  *			  the track starting address, transfer length, and
29144  *			  subcode options.
29145  *		flag	- this argument is a pass through to ddi_copyxxx()
29146  *			  directly from the mode argument of ioctl().
29147  *
29148  * Return Code: the code returned by sd_send_scsi_cmd()
29149  *		EFAULT if ddi_copyxxx() fails
29150  *		ENXIO if fail ddi_get_soft_state
29151  *		EINVAL if invalid arguments are provided
29152  *		ENOTTY
29153  */
29154 
29155 static int
29156 sr_read_cdda(dev_t dev, caddr_t data, int flag)
29157 {
29158 	struct sd_lun			*un;
29159 	struct uscsi_cmd		*com;
29160 	struct cdrom_cdda		*cdda;
29161 	int				rval;
29162 	size_t				buflen;
29163 	char				cdb[CDB_GROUP5];
29164 
29165 #ifdef _MULTI_DATAMODEL
29166 	/* To support ILP32 applications in an LP64 world */
29167 	struct cdrom_cdda32	cdrom_cdda32;
29168 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
29169 #endif /* _MULTI_DATAMODEL */
29170 
29171 	if (data == NULL) {
29172 		return (EINVAL);
29173 	}
29174 
29175 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
29176 		return (ENXIO);
29177 	}
29178 
29179 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
29180 
29181 #ifdef _MULTI_DATAMODEL
29182 	switch (ddi_model_convert_from(flag & FMODELS)) {
29183 	case DDI_MODEL_ILP32:
29184 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
29185 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29186 			    "sr_read_cdda: ddi_copyin Failed\n");
29187 			kmem_free(cdda, sizeof (struct cdrom_cdda));
29188 			return (EFAULT);
29189 		}
29190 		/* Convert the ILP32 uscsi data from the application to LP64 */
29191 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
29192 		break;
29193 	case DDI_MODEL_NONE:
29194 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
29195 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29196 			    "sr_read_cdda: ddi_copyin Failed\n");
29197 			kmem_free(cdda, sizeof (struct cdrom_cdda));
29198 			return (EFAULT);
29199 		}
29200 		break;
29201 	}
29202 #else /* ! _MULTI_DATAMODEL */
29203 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
29204 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29205 		    "sr_read_cdda: ddi_copyin Failed\n");
29206 		kmem_free(cdda, sizeof (struct cdrom_cdda));
29207 		return (EFAULT);
29208 	}
29209 #endif /* _MULTI_DATAMODEL */
29210 
29211 	/*
29212 	 * Since MMC-2 expects max 3 bytes for length, check if the
29213 	 * length input is greater than 3 bytes
29214 	 */
29215 	if ((cdda->cdda_length & 0xFF000000) != 0) {
29216 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
29217 		    "cdrom transfer length too large: %d (limit %d)\n",
29218 		    cdda->cdda_length, 0xFFFFFF);
29219 		kmem_free(cdda, sizeof (struct cdrom_cdda));
29220 		return (EINVAL);
29221 	}
29222 
29223 	switch (cdda->cdda_subcode) {
29224 	case CDROM_DA_NO_SUBCODE:
29225 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
29226 		break;
29227 	case CDROM_DA_SUBQ:
29228 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
29229 		break;
29230 	case CDROM_DA_ALL_SUBCODE:
29231 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
29232 		break;
29233 	case CDROM_DA_SUBCODE_ONLY:
29234 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
29235 		break;
29236 	default:
29237 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29238 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
29239 		    cdda->cdda_subcode);
29240 		kmem_free(cdda, sizeof (struct cdrom_cdda));
29241 		return (EINVAL);
29242 	}
29243 
29244 	/* Build and send the command */
29245 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29246 	bzero(cdb, CDB_GROUP5);
29247 
29248 	if (un->un_f_cfg_cdda == TRUE) {
29249 		cdb[0] = (char)SCMD_READ_CD;
29250 		cdb[1] = 0x04;
29251 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
29252 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
29253 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
29254 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
29255 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
29256 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
29257 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
29258 		cdb[9] = 0x10;
29259 		switch (cdda->cdda_subcode) {
29260 		case CDROM_DA_NO_SUBCODE :
29261 			cdb[10] = 0x0;
29262 			break;
29263 		case CDROM_DA_SUBQ :
29264 			cdb[10] = 0x2;
29265 			break;
29266 		case CDROM_DA_ALL_SUBCODE :
29267 			cdb[10] = 0x1;
29268 			break;
29269 		case CDROM_DA_SUBCODE_ONLY :
29270 			/* FALLTHROUGH */
29271 		default :
29272 			kmem_free(cdda, sizeof (struct cdrom_cdda));
29273 			kmem_free(com, sizeof (*com));
29274 			return (ENOTTY);
29275 		}
29276 	} else {
29277 		cdb[0] = (char)SCMD_READ_CDDA;
29278 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
29279 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
29280 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
29281 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
29282 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
29283 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
29284 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
29285 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
29286 		cdb[10] = cdda->cdda_subcode;
29287 	}
29288 
29289 	com->uscsi_cdb = cdb;
29290 	com->uscsi_cdblen = CDB_GROUP5;
29291 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
29292 	com->uscsi_buflen = buflen;
29293 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29294 
29295 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
29296 	    UIO_SYSSPACE, SD_PATH_STANDARD);
29297 
29298 	kmem_free(cdda, sizeof (struct cdrom_cdda));
29299 	kmem_free(com, sizeof (*com));
29300 	return (rval);
29301 }
29302 
29303 
29304 /*
29305  *    Function: sr_read_cdxa()
29306  *
29307  * Description: This routine is the driver entry point for handling CD-ROM
29308  *		ioctl requests to return CD-XA (Extended Architecture) data.
29309  *		(CDROMCDXA).
29310  *
29311  *   Arguments: dev	- the device 'dev_t'
29312  *		data	- pointer to user provided CD-XA structure specifying
29313  *			  the data starting address, transfer length, and format
29314  *		flag	- this argument is a pass through to ddi_copyxxx()
29315  *			  directly from the mode argument of ioctl().
29316  *
29317  * Return Code: the code returned by sd_send_scsi_cmd()
29318  *		EFAULT if ddi_copyxxx() fails
29319  *		ENXIO if fail ddi_get_soft_state
29320  *		EINVAL if data pointer is NULL
29321  */
29322 
29323 static int
29324 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
29325 {
29326 	struct sd_lun		*un;
29327 	struct uscsi_cmd	*com;
29328 	struct cdrom_cdxa	*cdxa;
29329 	int			rval;
29330 	size_t			buflen;
29331 	char			cdb[CDB_GROUP5];
29332 	uchar_t			read_flags;
29333 
29334 #ifdef _MULTI_DATAMODEL
29335 	/* To support ILP32 applications in an LP64 world */
29336 	struct cdrom_cdxa32		cdrom_cdxa32;
29337 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
29338 #endif /* _MULTI_DATAMODEL */
29339 
29340 	if (data == NULL) {
29341 		return (EINVAL);
29342 	}
29343 
29344 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
29345 		return (ENXIO);
29346 	}
29347 
29348 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
29349 
29350 #ifdef _MULTI_DATAMODEL
29351 	switch (ddi_model_convert_from(flag & FMODELS)) {
29352 	case DDI_MODEL_ILP32:
29353 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
29354 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29355 			return (EFAULT);
29356 		}
29357 		/*
29358 		 * Convert the ILP32 uscsi data from the
29359 		 * application to LP64 for internal use.
29360 		 */
29361 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
29362 		break;
29363 	case DDI_MODEL_NONE:
29364 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
29365 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29366 			return (EFAULT);
29367 		}
29368 		break;
29369 	}
29370 #else /* ! _MULTI_DATAMODEL */
29371 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
29372 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29373 		return (EFAULT);
29374 	}
29375 #endif /* _MULTI_DATAMODEL */
29376 
29377 	/*
29378 	 * Since MMC-2 expects max 3 bytes for length, check if the
29379 	 * length input is greater than 3 bytes
29380 	 */
29381 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
29382 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
29383 		    "cdrom transfer length too large: %d (limit %d)\n",
29384 		    cdxa->cdxa_length, 0xFFFFFF);
29385 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29386 		return (EINVAL);
29387 	}
29388 
29389 	switch (cdxa->cdxa_format) {
29390 	case CDROM_XA_DATA:
29391 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
29392 		read_flags = 0x10;
29393 		break;
29394 	case CDROM_XA_SECTOR_DATA:
29395 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
29396 		read_flags = 0xf8;
29397 		break;
29398 	case CDROM_XA_DATA_W_ERROR:
29399 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
29400 		read_flags = 0xfc;
29401 		break;
29402 	default:
29403 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29404 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
29405 		    cdxa->cdxa_format);
29406 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29407 		return (EINVAL);
29408 	}
29409 
29410 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29411 	bzero(cdb, CDB_GROUP5);
29412 	if (un->un_f_mmc_cap == TRUE) {
29413 		cdb[0] = (char)SCMD_READ_CD;
29414 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
29415 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
29416 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
29417 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
29418 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
29419 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
29420 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
29421 		cdb[9] = (char)read_flags;
29422 	} else {
29423 		/*
29424 		 * Note: A vendor specific command (0xDB) is being used her to
29425 		 * request a read of all subcodes.
29426 		 */
29427 		cdb[0] = (char)SCMD_READ_CDXA;
29428 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
29429 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
29430 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
29431 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
29432 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
29433 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
29434 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
29435 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
29436 		cdb[10] = cdxa->cdxa_format;
29437 	}
29438 	com->uscsi_cdb	   = cdb;
29439 	com->uscsi_cdblen  = CDB_GROUP5;
29440 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
29441 	com->uscsi_buflen  = buflen;
29442 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29443 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
29444 	    UIO_SYSSPACE, SD_PATH_STANDARD);
29445 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29446 	kmem_free(com, sizeof (*com));
29447 	return (rval);
29448 }
29449 
29450 
29451 /*
29452  *    Function: sr_eject()
29453  *
29454  * Description: This routine is the driver entry point for handling CD-ROM
29455  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
29456  *
29457  *   Arguments: dev	- the device 'dev_t'
29458  *
29459  * Return Code: the code returned by sd_send_scsi_cmd()
29460  */
29461 
29462 static int
29463 sr_eject(dev_t dev)
29464 {
29465 	struct sd_lun	*un;
29466 	int		rval;
29467 
29468 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29469 	    (un->un_state == SD_STATE_OFFLINE)) {
29470 		return (ENXIO);
29471 	}
29472 	if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
29473 	    SD_PATH_STANDARD)) != 0) {
29474 		return (rval);
29475 	}
29476 
29477 	rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT,
29478 	    SD_PATH_STANDARD);
29479 
29480 	if (rval == 0) {
29481 		mutex_enter(SD_MUTEX(un));
29482 		sr_ejected(un);
29483 		un->un_mediastate = DKIO_EJECTED;
29484 		cv_broadcast(&un->un_state_cv);
29485 		mutex_exit(SD_MUTEX(un));
29486 	}
29487 	return (rval);
29488 }
29489 
29490 
29491 /*
29492  *    Function: sr_ejected()
29493  *
29494  * Description: This routine updates the soft state structure to invalidate the
29495  *		geometry information after the media has been ejected or a
29496  *		media eject has been detected.
29497  *
29498  *   Arguments: un - driver soft state (unit) structure
29499  */
29500 
29501 static void
29502 sr_ejected(struct sd_lun *un)
29503 {
29504 	struct sd_errstats *stp;
29505 
29506 	ASSERT(un != NULL);
29507 	ASSERT(mutex_owned(SD_MUTEX(un)));
29508 
29509 	un->un_f_blockcount_is_valid	= FALSE;
29510 	un->un_f_tgt_blocksize_is_valid	= FALSE;
29511 	un->un_f_geometry_is_valid	= FALSE;
29512 
29513 	if (un->un_errstats != NULL) {
29514 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
29515 		stp->sd_capacity.value.ui64 = 0;
29516 	}
29517 }
29518 
29519 
29520 /*
29521  *    Function: sr_check_wp()
29522  *
29523  * Description: This routine checks the write protection of a removable
29524  *      media disk and hotpluggable devices via the write protect bit of
29525  *      the Mode Page Header device specific field. Some devices choke
29526  *      on unsupported mode page. In order to workaround this issue,
29527  *      this routine has been implemented to use 0x3f mode page(request
29528  *      for all pages) for all device types.
29529  *
29530  *   Arguments: dev		- the device 'dev_t'
29531  *
29532  * Return Code: int indicating if the device is write protected (1) or not (0)
29533  *
29534  *     Context: Kernel thread.
29535  *
29536  */
29537 
29538 static int
29539 sr_check_wp(dev_t dev)
29540 {
29541 	struct sd_lun	*un;
29542 	uchar_t		device_specific;
29543 	uchar_t		*sense;
29544 	int		hdrlen;
29545 	int		rval = FALSE;
29546 
29547 	/*
29548 	 * Note: The return codes for this routine should be reworked to
29549 	 * properly handle the case of a NULL softstate.
29550 	 */
29551 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
29552 		return (FALSE);
29553 	}
29554 
29555 	if (un->un_f_cfg_is_atapi == TRUE) {
29556 		/*
29557 		 * The mode page contents are not required; set the allocation
29558 		 * length for the mode page header only
29559 		 */
29560 		hdrlen = MODE_HEADER_LENGTH_GRP2;
29561 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
29562 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen,
29563 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
29564 			goto err_exit;
29565 		device_specific =
29566 		    ((struct mode_header_grp2 *)sense)->device_specific;
29567 	} else {
29568 		hdrlen = MODE_HEADER_LENGTH;
29569 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
29570 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen,
29571 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
29572 			goto err_exit;
29573 		device_specific =
29574 		    ((struct mode_header *)sense)->device_specific;
29575 	}
29576 
29577 	/*
29578 	 * Write protect mode sense failed; not all disks
29579 	 * understand this query. Return FALSE assuming that
29580 	 * these devices are not writable.
29581 	 */
29582 	if (device_specific & WRITE_PROTECT) {
29583 		rval = TRUE;
29584 	}
29585 
29586 err_exit:
29587 	kmem_free(sense, hdrlen);
29588 	return (rval);
29589 }
29590 
29591 /*
29592  *    Function: sr_volume_ctrl()
29593  *
29594  * Description: This routine is the driver entry point for handling CD-ROM
29595  *		audio output volume ioctl requests. (CDROMVOLCTRL)
29596  *
29597  *   Arguments: dev	- the device 'dev_t'
29598  *		data	- pointer to user audio volume control structure
29599  *		flag	- this argument is a pass through to ddi_copyxxx()
29600  *			  directly from the mode argument of ioctl().
29601  *
29602  * Return Code: the code returned by sd_send_scsi_cmd()
29603  *		EFAULT if ddi_copyxxx() fails
29604  *		ENXIO if fail ddi_get_soft_state
29605  *		EINVAL if data pointer is NULL
29606  *
29607  */
29608 
29609 static int
29610 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
29611 {
29612 	struct sd_lun		*un;
29613 	struct cdrom_volctrl    volume;
29614 	struct cdrom_volctrl    *vol = &volume;
29615 	uchar_t			*sense_page;
29616 	uchar_t			*select_page;
29617 	uchar_t			*sense;
29618 	uchar_t			*select;
29619 	int			sense_buflen;
29620 	int			select_buflen;
29621 	int			rval;
29622 
29623 	if (data == NULL) {
29624 		return (EINVAL);
29625 	}
29626 
29627 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29628 	    (un->un_state == SD_STATE_OFFLINE)) {
29629 		return (ENXIO);
29630 	}
29631 
29632 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
29633 		return (EFAULT);
29634 	}
29635 
29636 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29637 		struct mode_header_grp2		*sense_mhp;
29638 		struct mode_header_grp2		*select_mhp;
29639 		int				bd_len;
29640 
29641 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
29642 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
29643 		    MODEPAGE_AUDIO_CTRL_LEN;
29644 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29645 		select = kmem_zalloc(select_buflen, KM_SLEEP);
29646 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
29647 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
29648 		    SD_PATH_STANDARD)) != 0) {
29649 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
29650 			    "sr_volume_ctrl: Mode Sense Failed\n");
29651 			kmem_free(sense, sense_buflen);
29652 			kmem_free(select, select_buflen);
29653 			return (rval);
29654 		}
29655 		sense_mhp = (struct mode_header_grp2 *)sense;
29656 		select_mhp = (struct mode_header_grp2 *)select;
29657 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
29658 		    sense_mhp->bdesc_length_lo;
29659 		if (bd_len > MODE_BLK_DESC_LENGTH) {
29660 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29661 			    "sr_volume_ctrl: Mode Sense returned invalid "
29662 			    "block descriptor length\n");
29663 			kmem_free(sense, sense_buflen);
29664 			kmem_free(select, select_buflen);
29665 			return (EIO);
29666 		}
29667 		sense_page = (uchar_t *)
29668 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
29669 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
29670 		select_mhp->length_msb = 0;
29671 		select_mhp->length_lsb = 0;
29672 		select_mhp->bdesc_length_hi = 0;
29673 		select_mhp->bdesc_length_lo = 0;
29674 	} else {
29675 		struct mode_header		*sense_mhp, *select_mhp;
29676 
29677 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
29678 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
29679 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29680 		select = kmem_zalloc(select_buflen, KM_SLEEP);
29681 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
29682 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
29683 		    SD_PATH_STANDARD)) != 0) {
29684 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29685 			    "sr_volume_ctrl: Mode Sense Failed\n");
29686 			kmem_free(sense, sense_buflen);
29687 			kmem_free(select, select_buflen);
29688 			return (rval);
29689 		}
29690 		sense_mhp  = (struct mode_header *)sense;
29691 		select_mhp = (struct mode_header *)select;
29692 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
29693 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29694 			    "sr_volume_ctrl: Mode Sense returned invalid "
29695 			    "block descriptor length\n");
29696 			kmem_free(sense, sense_buflen);
29697 			kmem_free(select, select_buflen);
29698 			return (EIO);
29699 		}
29700 		sense_page = (uchar_t *)
29701 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
29702 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
29703 		select_mhp->length = 0;
29704 		select_mhp->bdesc_length = 0;
29705 	}
29706 	/*
29707 	 * Note: An audio control data structure could be created and overlayed
29708 	 * on the following in place of the array indexing method implemented.
29709 	 */
29710 
29711 	/* Build the select data for the user volume data */
29712 	select_page[0] = MODEPAGE_AUDIO_CTRL;
29713 	select_page[1] = 0xE;
29714 	/* Set the immediate bit */
29715 	select_page[2] = 0x04;
29716 	/* Zero out reserved fields */
29717 	select_page[3] = 0x00;
29718 	select_page[4] = 0x00;
29719 	/* Return sense data for fields not to be modified */
29720 	select_page[5] = sense_page[5];
29721 	select_page[6] = sense_page[6];
29722 	select_page[7] = sense_page[7];
29723 	/* Set the user specified volume levels for channel 0 and 1 */
29724 	select_page[8] = 0x01;
29725 	select_page[9] = vol->channel0;
29726 	select_page[10] = 0x02;
29727 	select_page[11] = vol->channel1;
29728 	/* Channel 2 and 3 are currently unsupported so return the sense data */
29729 	select_page[12] = sense_page[12];
29730 	select_page[13] = sense_page[13];
29731 	select_page[14] = sense_page[14];
29732 	select_page[15] = sense_page[15];
29733 
29734 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29735 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select,
29736 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29737 	} else {
29738 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
29739 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29740 	}
29741 
29742 	kmem_free(sense, sense_buflen);
29743 	kmem_free(select, select_buflen);
29744 	return (rval);
29745 }
29746 
29747 
29748 /*
29749  *    Function: sr_read_sony_session_offset()
29750  *
29751  * Description: This routine is the driver entry point for handling CD-ROM
29752  *		ioctl requests for session offset information. (CDROMREADOFFSET)
29753  *		The address of the first track in the last session of a
29754  *		multi-session CD-ROM is returned
29755  *
29756  *		Note: This routine uses a vendor specific key value in the
29757  *		command control field without implementing any vendor check here
29758  *		or in the ioctl routine.
29759  *
29760  *   Arguments: dev	- the device 'dev_t'
29761  *		data	- pointer to an int to hold the requested address
29762  *		flag	- this argument is a pass through to ddi_copyxxx()
29763  *			  directly from the mode argument of ioctl().
29764  *
29765  * Return Code: the code returned by sd_send_scsi_cmd()
29766  *		EFAULT if ddi_copyxxx() fails
29767  *		ENXIO if fail ddi_get_soft_state
29768  *		EINVAL if data pointer is NULL
29769  */
29770 
29771 static int
29772 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
29773 {
29774 	struct sd_lun		*un;
29775 	struct uscsi_cmd	*com;
29776 	caddr_t			buffer;
29777 	char			cdb[CDB_GROUP1];
29778 	int			session_offset = 0;
29779 	int			rval;
29780 
29781 	if (data == NULL) {
29782 		return (EINVAL);
29783 	}
29784 
29785 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29786 	    (un->un_state == SD_STATE_OFFLINE)) {
29787 		return (ENXIO);
29788 	}
29789 
29790 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
29791 	bzero(cdb, CDB_GROUP1);
29792 	cdb[0] = SCMD_READ_TOC;
29793 	/*
29794 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
29795 	 * (4 byte TOC response header + 8 byte response data)
29796 	 */
29797 	cdb[8] = SONY_SESSION_OFFSET_LEN;
29798 	/* Byte 9 is the control byte. A vendor specific value is used */
29799 	cdb[9] = SONY_SESSION_OFFSET_KEY;
29800 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29801 	com->uscsi_cdb = cdb;
29802 	com->uscsi_cdblen = CDB_GROUP1;
29803 	com->uscsi_bufaddr = buffer;
29804 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
29805 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29806 
29807 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
29808 	    UIO_SYSSPACE, SD_PATH_STANDARD);
29809 	if (rval != 0) {
29810 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29811 		kmem_free(com, sizeof (*com));
29812 		return (rval);
29813 	}
29814 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
29815 		session_offset =
29816 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
29817 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
29818 		/*
29819 		 * Offset returned offset in current lbasize block's. Convert to
29820 		 * 2k block's to return to the user
29821 		 */
29822 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
29823 			session_offset >>= 2;
29824 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
29825 			session_offset >>= 1;
29826 		}
29827 	}
29828 
29829 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
29830 		rval = EFAULT;
29831 	}
29832 
29833 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29834 	kmem_free(com, sizeof (*com));
29835 	return (rval);
29836 }
29837 
29838 
29839 /*
29840  *    Function: sd_wm_cache_constructor()
29841  *
29842  * Description: Cache Constructor for the wmap cache for the read/modify/write
29843  * 		devices.
29844  *
29845  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29846  *		un	- sd_lun structure for the device.
29847  *		flag	- the km flags passed to constructor
29848  *
29849  * Return Code: 0 on success.
29850  *		-1 on failure.
29851  */
29852 
29853 /*ARGSUSED*/
29854 static int
29855 sd_wm_cache_constructor(void *wm, void *un, int flags)
29856 {
29857 	bzero(wm, sizeof (struct sd_w_map));
29858 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
29859 	return (0);
29860 }
29861 
29862 
29863 /*
29864  *    Function: sd_wm_cache_destructor()
29865  *
29866  * Description: Cache destructor for the wmap cache for the read/modify/write
29867  * 		devices.
29868  *
29869  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29870  *		un	- sd_lun structure for the device.
29871  */
29872 /*ARGSUSED*/
29873 static void
29874 sd_wm_cache_destructor(void *wm, void *un)
29875 {
29876 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
29877 }
29878 
29879 
29880 /*
29881  *    Function: sd_range_lock()
29882  *
29883  * Description: Lock the range of blocks specified as parameter to ensure
29884  *		that read, modify write is atomic and no other i/o writes
29885  *		to the same location. The range is specified in terms
29886  *		of start and end blocks. Block numbers are the actual
29887  *		media block numbers and not system.
29888  *
29889  *   Arguments: un	- sd_lun structure for the device.
29890  *		startb - The starting block number
29891  *		endb - The end block number
29892  *		typ - type of i/o - simple/read_modify_write
29893  *
29894  * Return Code: wm  - pointer to the wmap structure.
29895  *
29896  *     Context: This routine can sleep.
29897  */
29898 
29899 static struct sd_w_map *
29900 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
29901 {
29902 	struct sd_w_map *wmp = NULL;
29903 	struct sd_w_map *sl_wmp = NULL;
29904 	struct sd_w_map *tmp_wmp;
29905 	wm_state state = SD_WM_CHK_LIST;
29906 
29907 
29908 	ASSERT(un != NULL);
29909 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29910 
29911 	mutex_enter(SD_MUTEX(un));
29912 
29913 	while (state != SD_WM_DONE) {
29914 
29915 		switch (state) {
29916 		case SD_WM_CHK_LIST:
29917 			/*
29918 			 * This is the starting state. Check the wmap list
29919 			 * to see if the range is currently available.
29920 			 */
29921 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
29922 				/*
29923 				 * If this is a simple write and no rmw
29924 				 * i/o is pending then try to lock the
29925 				 * range as the range should be available.
29926 				 */
29927 				state = SD_WM_LOCK_RANGE;
29928 			} else {
29929 				tmp_wmp = sd_get_range(un, startb, endb);
29930 				if (tmp_wmp != NULL) {
29931 					if ((wmp != NULL) && ONLIST(un, wmp)) {
29932 						/*
29933 						 * Should not keep onlist wmps
29934 						 * while waiting this macro
29935 						 * will also do wmp = NULL;
29936 						 */
29937 						FREE_ONLIST_WMAP(un, wmp);
29938 					}
29939 					/*
29940 					 * sl_wmp is the wmap on which wait
29941 					 * is done, since the tmp_wmp points
29942 					 * to the inuse wmap, set sl_wmp to
29943 					 * tmp_wmp and change the state to sleep
29944 					 */
29945 					sl_wmp = tmp_wmp;
29946 					state = SD_WM_WAIT_MAP;
29947 				} else {
29948 					state = SD_WM_LOCK_RANGE;
29949 				}
29950 
29951 			}
29952 			break;
29953 
29954 		case SD_WM_LOCK_RANGE:
29955 			ASSERT(un->un_wm_cache);
29956 			/*
29957 			 * The range need to be locked, try to get a wmap.
29958 			 * First attempt it with NO_SLEEP, want to avoid a sleep
29959 			 * if possible as we will have to release the sd mutex
29960 			 * if we have to sleep.
29961 			 */
29962 			if (wmp == NULL)
29963 				wmp = kmem_cache_alloc(un->un_wm_cache,
29964 				    KM_NOSLEEP);
29965 			if (wmp == NULL) {
29966 				mutex_exit(SD_MUTEX(un));
29967 				_NOTE(DATA_READABLE_WITHOUT_LOCK
29968 				    (sd_lun::un_wm_cache))
29969 				wmp = kmem_cache_alloc(un->un_wm_cache,
29970 				    KM_SLEEP);
29971 				mutex_enter(SD_MUTEX(un));
29972 				/*
29973 				 * we released the mutex so recheck and go to
29974 				 * check list state.
29975 				 */
29976 				state = SD_WM_CHK_LIST;
29977 			} else {
29978 				/*
29979 				 * We exit out of state machine since we
29980 				 * have the wmap. Do the housekeeping first.
29981 				 * place the wmap on the wmap list if it is not
29982 				 * on it already and then set the state to done.
29983 				 */
29984 				wmp->wm_start = startb;
29985 				wmp->wm_end = endb;
29986 				wmp->wm_flags = typ | SD_WM_BUSY;
29987 				if (typ & SD_WTYPE_RMW) {
29988 					un->un_rmw_count++;
29989 				}
29990 				/*
29991 				 * If not already on the list then link
29992 				 */
29993 				if (!ONLIST(un, wmp)) {
29994 					wmp->wm_next = un->un_wm;
29995 					wmp->wm_prev = NULL;
29996 					if (wmp->wm_next)
29997 						wmp->wm_next->wm_prev = wmp;
29998 					un->un_wm = wmp;
29999 				}
30000 				state = SD_WM_DONE;
30001 			}
30002 			break;
30003 
30004 		case SD_WM_WAIT_MAP:
30005 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
30006 			/*
30007 			 * Wait is done on sl_wmp, which is set in the
30008 			 * check_list state.
30009 			 */
30010 			sl_wmp->wm_wanted_count++;
30011 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
30012 			sl_wmp->wm_wanted_count--;
30013 			/*
30014 			 * We can reuse the memory from the completed sl_wmp
30015 			 * lock range for our new lock, but only if noone is
30016 			 * waiting for it.
30017 			 */
30018 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
30019 			if (sl_wmp->wm_wanted_count == 0) {
30020 				if (wmp != NULL)
30021 					CHK_N_FREEWMP(un, wmp);
30022 				wmp = sl_wmp;
30023 			}
30024 			sl_wmp = NULL;
30025 			/*
30026 			 * After waking up, need to recheck for availability of
30027 			 * range.
30028 			 */
30029 			state = SD_WM_CHK_LIST;
30030 			break;
30031 
30032 		default:
30033 			panic("sd_range_lock: "
30034 			    "Unknown state %d in sd_range_lock", state);
30035 			/*NOTREACHED*/
30036 		} /* switch(state) */
30037 
30038 	} /* while(state != SD_WM_DONE) */
30039 
30040 	mutex_exit(SD_MUTEX(un));
30041 
30042 	ASSERT(wmp != NULL);
30043 
30044 	return (wmp);
30045 }
30046 
30047 
30048 /*
30049  *    Function: sd_get_range()
30050  *
30051  * Description: Find if there any overlapping I/O to this one
30052  *		Returns the write-map of 1st such I/O, NULL otherwise.
30053  *
30054  *   Arguments: un	- sd_lun structure for the device.
30055  *		startb - The starting block number
30056  *		endb - The end block number
30057  *
30058  * Return Code: wm  - pointer to the wmap structure.
30059  */
30060 
30061 static struct sd_w_map *
30062 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
30063 {
30064 	struct sd_w_map *wmp;
30065 
30066 	ASSERT(un != NULL);
30067 
30068 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
30069 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
30070 			continue;
30071 		}
30072 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
30073 			break;
30074 		}
30075 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
30076 			break;
30077 		}
30078 	}
30079 
30080 	return (wmp);
30081 }
30082 
30083 
30084 /*
30085  *    Function: sd_free_inlist_wmap()
30086  *
30087  * Description: Unlink and free a write map struct.
30088  *
30089  *   Arguments: un      - sd_lun structure for the device.
30090  *		wmp	- sd_w_map which needs to be unlinked.
30091  */
30092 
30093 static void
30094 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
30095 {
30096 	ASSERT(un != NULL);
30097 
30098 	if (un->un_wm == wmp) {
30099 		un->un_wm = wmp->wm_next;
30100 	} else {
30101 		wmp->wm_prev->wm_next = wmp->wm_next;
30102 	}
30103 
30104 	if (wmp->wm_next) {
30105 		wmp->wm_next->wm_prev = wmp->wm_prev;
30106 	}
30107 
30108 	wmp->wm_next = wmp->wm_prev = NULL;
30109 
30110 	kmem_cache_free(un->un_wm_cache, wmp);
30111 }
30112 
30113 
30114 /*
30115  *    Function: sd_range_unlock()
30116  *
30117  * Description: Unlock the range locked by wm.
30118  *		Free write map if nobody else is waiting on it.
30119  *
30120  *   Arguments: un      - sd_lun structure for the device.
30121  *              wmp     - sd_w_map which needs to be unlinked.
30122  */
30123 
30124 static void
30125 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
30126 {
30127 	ASSERT(un != NULL);
30128 	ASSERT(wm != NULL);
30129 	ASSERT(!mutex_owned(SD_MUTEX(un)));
30130 
30131 	mutex_enter(SD_MUTEX(un));
30132 
30133 	if (wm->wm_flags & SD_WTYPE_RMW) {
30134 		un->un_rmw_count--;
30135 	}
30136 
30137 	if (wm->wm_wanted_count) {
30138 		wm->wm_flags = 0;
30139 		/*
30140 		 * Broadcast that the wmap is available now.
30141 		 */
30142 		cv_broadcast(&wm->wm_avail);
30143 	} else {
30144 		/*
30145 		 * If no one is waiting on the map, it should be free'ed.
30146 		 */
30147 		sd_free_inlist_wmap(un, wm);
30148 	}
30149 
30150 	mutex_exit(SD_MUTEX(un));
30151 }
30152 
30153 
30154 /*
30155  *    Function: sd_read_modify_write_task
30156  *
30157  * Description: Called from a taskq thread to initiate the write phase of
30158  *		a read-modify-write request.  This is used for targets where
30159  *		un->un_sys_blocksize != un->un_tgt_blocksize.
30160  *
30161  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
30162  *
30163  *     Context: Called under taskq thread context.
30164  */
30165 
30166 static void
30167 sd_read_modify_write_task(void *arg)
30168 {
30169 	struct sd_mapblocksize_info	*bsp;
30170 	struct buf	*bp;
30171 	struct sd_xbuf	*xp;
30172 	struct sd_lun	*un;
30173 
30174 	bp = arg;	/* The bp is given in arg */
30175 	ASSERT(bp != NULL);
30176 
30177 	/* Get the pointer to the layer-private data struct */
30178 	xp = SD_GET_XBUF(bp);
30179 	ASSERT(xp != NULL);
30180 	bsp = xp->xb_private;
30181 	ASSERT(bsp != NULL);
30182 
30183 	un = SD_GET_UN(bp);
30184 	ASSERT(un != NULL);
30185 	ASSERT(!mutex_owned(SD_MUTEX(un)));
30186 
30187 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
30188 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
30189 
30190 	/*
30191 	 * This is the write phase of a read-modify-write request, called
30192 	 * under the context of a taskq thread in response to the completion
30193 	 * of the read portion of the rmw request completing under interrupt
30194 	 * context. The write request must be sent from here down the iostart
30195 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
30196 	 * we use the layer index saved in the layer-private data area.
30197 	 */
30198 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
30199 
30200 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
30201 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
30202 }
30203 
30204 
30205 /*
30206  *    Function: sddump_do_read_of_rmw()
30207  *
30208  * Description: This routine will be called from sddump, If sddump is called
30209  *		with an I/O which not aligned on device blocksize boundary
30210  *		then the write has to be converted to read-modify-write.
30211  *		Do the read part here in order to keep sddump simple.
30212  *		Note - That the sd_mutex is held across the call to this
30213  *		routine.
30214  *
30215  *   Arguments: un	- sd_lun
30216  *		blkno	- block number in terms of media block size.
30217  *		nblk	- number of blocks.
30218  *		bpp	- pointer to pointer to the buf structure. On return
30219  *			from this function, *bpp points to the valid buffer
30220  *			to which the write has to be done.
30221  *
30222  * Return Code: 0 for success or errno-type return code
30223  */
30224 
30225 static int
30226 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
30227 	struct buf **bpp)
30228 {
30229 	int err;
30230 	int i;
30231 	int rval;
30232 	struct buf *bp;
30233 	struct scsi_pkt *pkt = NULL;
30234 	uint32_t target_blocksize;
30235 
30236 	ASSERT(un != NULL);
30237 	ASSERT(mutex_owned(SD_MUTEX(un)));
30238 
30239 	target_blocksize = un->un_tgt_blocksize;
30240 
30241 	mutex_exit(SD_MUTEX(un));
30242 
30243 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
30244 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
30245 	if (bp == NULL) {
30246 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
30247 		    "no resources for dumping; giving up");
30248 		err = ENOMEM;
30249 		goto done;
30250 	}
30251 
30252 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
30253 	    blkno, nblk);
30254 	if (rval != 0) {
30255 		scsi_free_consistent_buf(bp);
30256 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
30257 		    "no resources for dumping; giving up");
30258 		err = ENOMEM;
30259 		goto done;
30260 	}
30261 
30262 	pkt->pkt_flags |= FLAG_NOINTR;
30263 
30264 	err = EIO;
30265 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
30266 
30267 		/*
30268 		 * Scsi_poll returns 0 (success) if the command completes and
30269 		 * the status block is STATUS_GOOD.  We should only check
30270 		 * errors if this condition is not true.  Even then we should
30271 		 * send our own request sense packet only if we have a check
30272 		 * condition and auto request sense has not been performed by
30273 		 * the hba.
30274 		 */
30275 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
30276 
30277 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
30278 			err = 0;
30279 			break;
30280 		}
30281 
30282 		/*
30283 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
30284 		 * no need to read RQS data.
30285 		 */
30286 		if (pkt->pkt_reason == CMD_DEV_GONE) {
30287 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
30288 			    "Device is gone\n");
30289 			break;
30290 		}
30291 
30292 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
30293 			SD_INFO(SD_LOG_DUMP, un,
30294 			    "sddump: read failed with CHECK, try # %d\n", i);
30295 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
30296 				(void) sd_send_polled_RQS(un);
30297 			}
30298 
30299 			continue;
30300 		}
30301 
30302 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
30303 			int reset_retval = 0;
30304 
30305 			SD_INFO(SD_LOG_DUMP, un,
30306 			    "sddump: read failed with BUSY, try # %d\n", i);
30307 
30308 			if (un->un_f_lun_reset_enabled == TRUE) {
30309 				reset_retval = scsi_reset(SD_ADDRESS(un),
30310 				    RESET_LUN);
30311 			}
30312 			if (reset_retval == 0) {
30313 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
30314 			}
30315 			(void) sd_send_polled_RQS(un);
30316 
30317 		} else {
30318 			SD_INFO(SD_LOG_DUMP, un,
30319 			    "sddump: read failed with 0x%x, try # %d\n",
30320 			    SD_GET_PKT_STATUS(pkt), i);
30321 			mutex_enter(SD_MUTEX(un));
30322 			sd_reset_target(un, pkt);
30323 			mutex_exit(SD_MUTEX(un));
30324 		}
30325 
30326 		/*
30327 		 * If we are not getting anywhere with lun/target resets,
30328 		 * let's reset the bus.
30329 		 */
30330 		if (i > SD_NDUMP_RETRIES/2) {
30331 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
30332 			(void) sd_send_polled_RQS(un);
30333 		}
30334 
30335 	}
30336 	scsi_destroy_pkt(pkt);
30337 
30338 	if (err != 0) {
30339 		scsi_free_consistent_buf(bp);
30340 		*bpp = NULL;
30341 	} else {
30342 		*bpp = bp;
30343 	}
30344 
30345 done:
30346 	mutex_enter(SD_MUTEX(un));
30347 	return (err);
30348 }
30349 
30350 
30351 /*
30352  *    Function: sd_failfast_flushq
30353  *
30354  * Description: Take all bp's on the wait queue that have B_FAILFAST set
30355  *		in b_flags and move them onto the failfast queue, then kick
30356  *		off a thread to return all bp's on the failfast queue to
30357  *		their owners with an error set.
30358  *
30359  *   Arguments: un - pointer to the soft state struct for the instance.
30360  *
30361  *     Context: may execute in interrupt context.
30362  */
30363 
30364 static void
30365 sd_failfast_flushq(struct sd_lun *un)
30366 {
30367 	struct buf *bp;
30368 	struct buf *next_waitq_bp;
30369 	struct buf *prev_waitq_bp = NULL;
30370 
30371 	ASSERT(un != NULL);
30372 	ASSERT(mutex_owned(SD_MUTEX(un)));
30373 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
30374 	ASSERT(un->un_failfast_bp == NULL);
30375 
30376 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
30377 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
30378 
30379 	/*
30380 	 * Check if we should flush all bufs when entering failfast state, or
30381 	 * just those with B_FAILFAST set.
30382 	 */
30383 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
30384 		/*
30385 		 * Move *all* bp's on the wait queue to the failfast flush
30386 		 * queue, including those that do NOT have B_FAILFAST set.
30387 		 */
30388 		if (un->un_failfast_headp == NULL) {
30389 			ASSERT(un->un_failfast_tailp == NULL);
30390 			un->un_failfast_headp = un->un_waitq_headp;
30391 		} else {
30392 			ASSERT(un->un_failfast_tailp != NULL);
30393 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
30394 		}
30395 
30396 		un->un_failfast_tailp = un->un_waitq_tailp;
30397 
30398 		/* update kstat for each bp moved out of the waitq */
30399 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
30400 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
30401 		}
30402 
30403 		/* empty the waitq */
30404 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
30405 
30406 	} else {
30407 		/*
30408 		 * Go thru the wait queue, pick off all entries with
30409 		 * B_FAILFAST set, and move these onto the failfast queue.
30410 		 */
30411 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
30412 			/*
30413 			 * Save the pointer to the next bp on the wait queue,
30414 			 * so we get to it on the next iteration of this loop.
30415 			 */
30416 			next_waitq_bp = bp->av_forw;
30417 
30418 			/*
30419 			 * If this bp from the wait queue does NOT have
30420 			 * B_FAILFAST set, just move on to the next element
30421 			 * in the wait queue. Note, this is the only place
30422 			 * where it is correct to set prev_waitq_bp.
30423 			 */
30424 			if ((bp->b_flags & B_FAILFAST) == 0) {
30425 				prev_waitq_bp = bp;
30426 				continue;
30427 			}
30428 
30429 			/*
30430 			 * Remove the bp from the wait queue.
30431 			 */
30432 			if (bp == un->un_waitq_headp) {
30433 				/* The bp is the first element of the waitq. */
30434 				un->un_waitq_headp = next_waitq_bp;
30435 				if (un->un_waitq_headp == NULL) {
30436 					/* The wait queue is now empty */
30437 					un->un_waitq_tailp = NULL;
30438 				}
30439 			} else {
30440 				/*
30441 				 * The bp is either somewhere in the middle
30442 				 * or at the end of the wait queue.
30443 				 */
30444 				ASSERT(un->un_waitq_headp != NULL);
30445 				ASSERT(prev_waitq_bp != NULL);
30446 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
30447 				    == 0);
30448 				if (bp == un->un_waitq_tailp) {
30449 					/* bp is the last entry on the waitq. */
30450 					ASSERT(next_waitq_bp == NULL);
30451 					un->un_waitq_tailp = prev_waitq_bp;
30452 				}
30453 				prev_waitq_bp->av_forw = next_waitq_bp;
30454 			}
30455 			bp->av_forw = NULL;
30456 
30457 			/*
30458 			 * update kstat since the bp is moved out of
30459 			 * the waitq
30460 			 */
30461 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
30462 
30463 			/*
30464 			 * Now put the bp onto the failfast queue.
30465 			 */
30466 			if (un->un_failfast_headp == NULL) {
30467 				/* failfast queue is currently empty */
30468 				ASSERT(un->un_failfast_tailp == NULL);
30469 				un->un_failfast_headp =
30470 				    un->un_failfast_tailp = bp;
30471 			} else {
30472 				/* Add the bp to the end of the failfast q */
30473 				ASSERT(un->un_failfast_tailp != NULL);
30474 				ASSERT(un->un_failfast_tailp->b_flags &
30475 				    B_FAILFAST);
30476 				un->un_failfast_tailp->av_forw = bp;
30477 				un->un_failfast_tailp = bp;
30478 			}
30479 		}
30480 	}
30481 
30482 	/*
30483 	 * Now return all bp's on the failfast queue to their owners.
30484 	 */
30485 	while ((bp = un->un_failfast_headp) != NULL) {
30486 
30487 		un->un_failfast_headp = bp->av_forw;
30488 		if (un->un_failfast_headp == NULL) {
30489 			un->un_failfast_tailp = NULL;
30490 		}
30491 
30492 		/*
30493 		 * We want to return the bp with a failure error code, but
30494 		 * we do not want a call to sd_start_cmds() to occur here,
30495 		 * so use sd_return_failed_command_no_restart() instead of
30496 		 * sd_return_failed_command().
30497 		 */
30498 		sd_return_failed_command_no_restart(un, bp, EIO);
30499 	}
30500 
30501 	/* Flush the xbuf queues if required. */
30502 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
30503 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
30504 	}
30505 
30506 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
30507 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
30508 }
30509 
30510 
30511 /*
30512  *    Function: sd_failfast_flushq_callback
30513  *
30514  * Description: Return TRUE if the given bp meets the criteria for failfast
30515  *		flushing. Used with ddi_xbuf_flushq(9F).
30516  *
30517  *   Arguments: bp - ptr to buf struct to be examined.
30518  *
30519  *     Context: Any
30520  */
30521 
30522 static int
30523 sd_failfast_flushq_callback(struct buf *bp)
30524 {
30525 	/*
30526 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
30527 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
30528 	 */
30529 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
30530 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
30531 }
30532 
30533 
30534 
30535 #if defined(__i386) || defined(__amd64)
30536 /*
30537  * Function: sd_setup_next_xfer
30538  *
30539  * Description: Prepare next I/O operation using DMA_PARTIAL
30540  *
30541  */
30542 
30543 static int
30544 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
30545     struct scsi_pkt *pkt, struct sd_xbuf *xp)
30546 {
30547 	ssize_t	num_blks_not_xfered;
30548 	daddr_t	strt_blk_num;
30549 	ssize_t	bytes_not_xfered;
30550 	int	rval;
30551 
30552 	ASSERT(pkt->pkt_resid == 0);
30553 
30554 	/*
30555 	 * Calculate next block number and amount to be transferred.
30556 	 *
30557 	 * How much data NOT transfered to the HBA yet.
30558 	 */
30559 	bytes_not_xfered = xp->xb_dma_resid;
30560 
30561 	/*
30562 	 * figure how many blocks NOT transfered to the HBA yet.
30563 	 */
30564 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
30565 
30566 	/*
30567 	 * set starting block number to the end of what WAS transfered.
30568 	 */
30569 	strt_blk_num = xp->xb_blkno +
30570 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
30571 
30572 	/*
30573 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
30574 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
30575 	 * the disk mutex here.
30576 	 */
30577 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
30578 	    strt_blk_num, num_blks_not_xfered);
30579 
30580 	if (rval == 0) {
30581 
30582 		/*
30583 		 * Success.
30584 		 *
30585 		 * Adjust things if there are still more blocks to be
30586 		 * transfered.
30587 		 */
30588 		xp->xb_dma_resid = pkt->pkt_resid;
30589 		pkt->pkt_resid = 0;
30590 
30591 		return (1);
30592 	}
30593 
30594 	/*
30595 	 * There's really only one possible return value from
30596 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
30597 	 * returns NULL.
30598 	 */
30599 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
30600 
30601 	bp->b_resid = bp->b_bcount;
30602 	bp->b_flags |= B_ERROR;
30603 
30604 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
30605 	    "Error setting up next portion of DMA transfer\n");
30606 
30607 	return (0);
30608 }
30609 #endif
30610 
30611 /*
30612  *    Function: sd_panic_for_res_conflict
30613  *
30614  * Description: Call panic with a string formated with "Reservation Conflict"
30615  *		and a human readable identifier indicating the SD instance
30616  *		that experienced the reservation conflict.
30617  *
30618  *   Arguments: un - pointer to the soft state struct for the instance.
30619  *
30620  *     Context: may execute in interrupt context.
30621  */
30622 
30623 #define	SD_RESV_CONFLICT_FMT_LEN 40
30624 void
30625 sd_panic_for_res_conflict(struct sd_lun *un)
30626 {
30627 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
30628 	char path_str[MAXPATHLEN];
30629 
30630 	(void) snprintf(panic_str, sizeof (panic_str),
30631 	    "Reservation Conflict\nDisk: %s",
30632 	    ddi_pathname(SD_DEVINFO(un), path_str));
30633 
30634 	panic(panic_str);
30635 }
30636 
30637 /*
30638  * Note: The following sd_faultinjection_ioctl( ) routines implement
30639  * driver support for handling fault injection for error analysis
30640  * causing faults in multiple layers of the driver.
30641  *
30642  */
30643 
30644 #ifdef SD_FAULT_INJECTION
30645 static uint_t   sd_fault_injection_on = 0;
30646 
30647 /*
30648  *    Function: sd_faultinjection_ioctl()
30649  *
30650  * Description: This routine is the driver entry point for handling
30651  *              faultinjection ioctls to inject errors into the
30652  *              layer model
30653  *
30654  *   Arguments: cmd	- the ioctl cmd recieved
30655  *		arg	- the arguments from user and returns
30656  */
30657 
30658 static void
30659 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
30660 
30661 	uint_t i;
30662 	uint_t rval;
30663 
30664 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
30665 
30666 	mutex_enter(SD_MUTEX(un));
30667 
30668 	switch (cmd) {
30669 	case SDIOCRUN:
30670 		/* Allow pushed faults to be injected */
30671 		SD_INFO(SD_LOG_SDTEST, un,
30672 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
30673 
30674 		sd_fault_injection_on = 1;
30675 
30676 		SD_INFO(SD_LOG_IOERR, un,
30677 		    "sd_faultinjection_ioctl: run finished\n");
30678 		break;
30679 
30680 	case SDIOCSTART:
30681 		/* Start Injection Session */
30682 		SD_INFO(SD_LOG_SDTEST, un,
30683 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
30684 
30685 		sd_fault_injection_on = 0;
30686 		un->sd_injection_mask = 0xFFFFFFFF;
30687 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30688 			un->sd_fi_fifo_pkt[i] = NULL;
30689 			un->sd_fi_fifo_xb[i] = NULL;
30690 			un->sd_fi_fifo_un[i] = NULL;
30691 			un->sd_fi_fifo_arq[i] = NULL;
30692 		}
30693 		un->sd_fi_fifo_start = 0;
30694 		un->sd_fi_fifo_end = 0;
30695 
30696 		mutex_enter(&(un->un_fi_mutex));
30697 		un->sd_fi_log[0] = '\0';
30698 		un->sd_fi_buf_len = 0;
30699 		mutex_exit(&(un->un_fi_mutex));
30700 
30701 		SD_INFO(SD_LOG_IOERR, un,
30702 		    "sd_faultinjection_ioctl: start finished\n");
30703 		break;
30704 
30705 	case SDIOCSTOP:
30706 		/* Stop Injection Session */
30707 		SD_INFO(SD_LOG_SDTEST, un,
30708 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
30709 		sd_fault_injection_on = 0;
30710 		un->sd_injection_mask = 0x0;
30711 
30712 		/* Empty stray or unuseds structs from fifo */
30713 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30714 			if (un->sd_fi_fifo_pkt[i] != NULL) {
30715 				kmem_free(un->sd_fi_fifo_pkt[i],
30716 				    sizeof (struct sd_fi_pkt));
30717 			}
30718 			if (un->sd_fi_fifo_xb[i] != NULL) {
30719 				kmem_free(un->sd_fi_fifo_xb[i],
30720 				    sizeof (struct sd_fi_xb));
30721 			}
30722 			if (un->sd_fi_fifo_un[i] != NULL) {
30723 				kmem_free(un->sd_fi_fifo_un[i],
30724 				    sizeof (struct sd_fi_un));
30725 			}
30726 			if (un->sd_fi_fifo_arq[i] != NULL) {
30727 				kmem_free(un->sd_fi_fifo_arq[i],
30728 				    sizeof (struct sd_fi_arq));
30729 			}
30730 			un->sd_fi_fifo_pkt[i] = NULL;
30731 			un->sd_fi_fifo_un[i] = NULL;
30732 			un->sd_fi_fifo_xb[i] = NULL;
30733 			un->sd_fi_fifo_arq[i] = NULL;
30734 		}
30735 		un->sd_fi_fifo_start = 0;
30736 		un->sd_fi_fifo_end = 0;
30737 
30738 		SD_INFO(SD_LOG_IOERR, un,
30739 		    "sd_faultinjection_ioctl: stop finished\n");
30740 		break;
30741 
30742 	case SDIOCINSERTPKT:
30743 		/* Store a packet struct to be pushed onto fifo */
30744 		SD_INFO(SD_LOG_SDTEST, un,
30745 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
30746 
30747 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30748 
30749 		sd_fault_injection_on = 0;
30750 
30751 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
30752 		if (un->sd_fi_fifo_pkt[i] != NULL) {
30753 			kmem_free(un->sd_fi_fifo_pkt[i],
30754 			    sizeof (struct sd_fi_pkt));
30755 		}
30756 		if (arg != NULL) {
30757 			un->sd_fi_fifo_pkt[i] =
30758 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
30759 			if (un->sd_fi_fifo_pkt[i] == NULL) {
30760 				/* Alloc failed don't store anything */
30761 				break;
30762 			}
30763 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
30764 			    sizeof (struct sd_fi_pkt), 0);
30765 			if (rval == -1) {
30766 				kmem_free(un->sd_fi_fifo_pkt[i],
30767 				    sizeof (struct sd_fi_pkt));
30768 				un->sd_fi_fifo_pkt[i] = NULL;
30769 			}
30770 		} else {
30771 			SD_INFO(SD_LOG_IOERR, un,
30772 			    "sd_faultinjection_ioctl: pkt null\n");
30773 		}
30774 		break;
30775 
30776 	case SDIOCINSERTXB:
30777 		/* Store a xb struct to be pushed onto fifo */
30778 		SD_INFO(SD_LOG_SDTEST, un,
30779 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
30780 
30781 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30782 
30783 		sd_fault_injection_on = 0;
30784 
30785 		if (un->sd_fi_fifo_xb[i] != NULL) {
30786 			kmem_free(un->sd_fi_fifo_xb[i],
30787 			    sizeof (struct sd_fi_xb));
30788 			un->sd_fi_fifo_xb[i] = NULL;
30789 		}
30790 		if (arg != NULL) {
30791 			un->sd_fi_fifo_xb[i] =
30792 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
30793 			if (un->sd_fi_fifo_xb[i] == NULL) {
30794 				/* Alloc failed don't store anything */
30795 				break;
30796 			}
30797 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
30798 			    sizeof (struct sd_fi_xb), 0);
30799 
30800 			if (rval == -1) {
30801 				kmem_free(un->sd_fi_fifo_xb[i],
30802 				    sizeof (struct sd_fi_xb));
30803 				un->sd_fi_fifo_xb[i] = NULL;
30804 			}
30805 		} else {
30806 			SD_INFO(SD_LOG_IOERR, un,
30807 			    "sd_faultinjection_ioctl: xb null\n");
30808 		}
30809 		break;
30810 
30811 	case SDIOCINSERTUN:
30812 		/* Store a un struct to be pushed onto fifo */
30813 		SD_INFO(SD_LOG_SDTEST, un,
30814 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
30815 
30816 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30817 
30818 		sd_fault_injection_on = 0;
30819 
30820 		if (un->sd_fi_fifo_un[i] != NULL) {
30821 			kmem_free(un->sd_fi_fifo_un[i],
30822 			    sizeof (struct sd_fi_un));
30823 			un->sd_fi_fifo_un[i] = NULL;
30824 		}
30825 		if (arg != NULL) {
30826 			un->sd_fi_fifo_un[i] =
30827 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
30828 			if (un->sd_fi_fifo_un[i] == NULL) {
30829 				/* Alloc failed don't store anything */
30830 				break;
30831 			}
30832 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
30833 			    sizeof (struct sd_fi_un), 0);
30834 			if (rval == -1) {
30835 				kmem_free(un->sd_fi_fifo_un[i],
30836 				    sizeof (struct sd_fi_un));
30837 				un->sd_fi_fifo_un[i] = NULL;
30838 			}
30839 
30840 		} else {
30841 			SD_INFO(SD_LOG_IOERR, un,
30842 			    "sd_faultinjection_ioctl: un null\n");
30843 		}
30844 
30845 		break;
30846 
30847 	case SDIOCINSERTARQ:
30848 		/* Store a arq struct to be pushed onto fifo */
30849 		SD_INFO(SD_LOG_SDTEST, un,
30850 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
30851 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30852 
30853 		sd_fault_injection_on = 0;
30854 
30855 		if (un->sd_fi_fifo_arq[i] != NULL) {
30856 			kmem_free(un->sd_fi_fifo_arq[i],
30857 			    sizeof (struct sd_fi_arq));
30858 			un->sd_fi_fifo_arq[i] = NULL;
30859 		}
30860 		if (arg != NULL) {
30861 			un->sd_fi_fifo_arq[i] =
30862 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
30863 			if (un->sd_fi_fifo_arq[i] == NULL) {
30864 				/* Alloc failed don't store anything */
30865 				break;
30866 			}
30867 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
30868 			    sizeof (struct sd_fi_arq), 0);
30869 			if (rval == -1) {
30870 				kmem_free(un->sd_fi_fifo_arq[i],
30871 				    sizeof (struct sd_fi_arq));
30872 				un->sd_fi_fifo_arq[i] = NULL;
30873 			}
30874 
30875 		} else {
30876 			SD_INFO(SD_LOG_IOERR, un,
30877 			    "sd_faultinjection_ioctl: arq null\n");
30878 		}
30879 
30880 		break;
30881 
30882 	case SDIOCPUSH:
30883 		/* Push stored xb, pkt, un, and arq onto fifo */
30884 		sd_fault_injection_on = 0;
30885 
30886 		if (arg != NULL) {
30887 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
30888 			if (rval != -1 &&
30889 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30890 				un->sd_fi_fifo_end += i;
30891 			}
30892 		} else {
30893 			SD_INFO(SD_LOG_IOERR, un,
30894 			    "sd_faultinjection_ioctl: push arg null\n");
30895 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30896 				un->sd_fi_fifo_end++;
30897 			}
30898 		}
30899 		SD_INFO(SD_LOG_IOERR, un,
30900 		    "sd_faultinjection_ioctl: push to end=%d\n",
30901 		    un->sd_fi_fifo_end);
30902 		break;
30903 
30904 	case SDIOCRETRIEVE:
30905 		/* Return buffer of log from Injection session */
30906 		SD_INFO(SD_LOG_SDTEST, un,
30907 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
30908 
30909 		sd_fault_injection_on = 0;
30910 
30911 		mutex_enter(&(un->un_fi_mutex));
30912 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
30913 		    un->sd_fi_buf_len+1, 0);
30914 		mutex_exit(&(un->un_fi_mutex));
30915 
30916 		if (rval == -1) {
30917 			/*
30918 			 * arg is possibly invalid setting
30919 			 * it to NULL for return
30920 			 */
30921 			arg = NULL;
30922 		}
30923 		break;
30924 	}
30925 
30926 	mutex_exit(SD_MUTEX(un));
30927 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
30928 			    " exit\n");
30929 }
30930 
30931 
30932 /*
30933  *    Function: sd_injection_log()
30934  *
30935  * Description: This routine adds buff to the already existing injection log
30936  *              for retrieval via faultinjection_ioctl for use in fault
30937  *              detection and recovery
30938  *
30939  *   Arguments: buf - the string to add to the log
30940  */
30941 
30942 static void
30943 sd_injection_log(char *buf, struct sd_lun *un)
30944 {
30945 	uint_t len;
30946 
30947 	ASSERT(un != NULL);
30948 	ASSERT(buf != NULL);
30949 
30950 	mutex_enter(&(un->un_fi_mutex));
30951 
30952 	len = min(strlen(buf), 255);
30953 	/* Add logged value to Injection log to be returned later */
30954 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
30955 		uint_t	offset = strlen((char *)un->sd_fi_log);
30956 		char *destp = (char *)un->sd_fi_log + offset;
30957 		int i;
30958 		for (i = 0; i < len; i++) {
30959 			*destp++ = *buf++;
30960 		}
30961 		un->sd_fi_buf_len += len;
30962 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
30963 	}
30964 
30965 	mutex_exit(&(un->un_fi_mutex));
30966 }
30967 
30968 
30969 /*
30970  *    Function: sd_faultinjection()
30971  *
30972  * Description: This routine takes the pkt and changes its
30973  *		content based on error injection scenerio.
30974  *
30975  *   Arguments: pktp	- packet to be changed
30976  */
30977 
30978 static void
30979 sd_faultinjection(struct scsi_pkt *pktp)
30980 {
30981 	uint_t i;
30982 	struct sd_fi_pkt *fi_pkt;
30983 	struct sd_fi_xb *fi_xb;
30984 	struct sd_fi_un *fi_un;
30985 	struct sd_fi_arq *fi_arq;
30986 	struct buf *bp;
30987 	struct sd_xbuf *xb;
30988 	struct sd_lun *un;
30989 
30990 	ASSERT(pktp != NULL);
30991 
30992 	/* pull bp xb and un from pktp */
30993 	bp = (struct buf *)pktp->pkt_private;
30994 	xb = SD_GET_XBUF(bp);
30995 	un = SD_GET_UN(bp);
30996 
30997 	ASSERT(un != NULL);
30998 
30999 	mutex_enter(SD_MUTEX(un));
31000 
31001 	SD_TRACE(SD_LOG_SDTEST, un,
31002 	    "sd_faultinjection: entry Injection from sdintr\n");
31003 
31004 	/* if injection is off return */
31005 	if (sd_fault_injection_on == 0 ||
31006 		un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
31007 		mutex_exit(SD_MUTEX(un));
31008 		return;
31009 	}
31010 
31011 
31012 	/* take next set off fifo */
31013 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
31014 
31015 	fi_pkt = un->sd_fi_fifo_pkt[i];
31016 	fi_xb = un->sd_fi_fifo_xb[i];
31017 	fi_un = un->sd_fi_fifo_un[i];
31018 	fi_arq = un->sd_fi_fifo_arq[i];
31019 
31020 
31021 	/* set variables accordingly */
31022 	/* set pkt if it was on fifo */
31023 	if (fi_pkt != NULL) {
31024 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
31025 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
31026 		SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
31027 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
31028 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
31029 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
31030 
31031 	}
31032 
31033 	/* set xb if it was on fifo */
31034 	if (fi_xb != NULL) {
31035 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
31036 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
31037 		SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
31038 		SD_CONDSET(xb, xb, xb_victim_retry_count,
31039 		    "xb_victim_retry_count");
31040 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
31041 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
31042 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
31043 
31044 		/* copy in block data from sense */
31045 		if (fi_xb->xb_sense_data[0] != -1) {
31046 			bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
31047 			    SENSE_LENGTH);
31048 		}
31049 
31050 		/* copy in extended sense codes */
31051 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code,
31052 		    "es_code");
31053 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key,
31054 		    "es_key");
31055 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code,
31056 		    "es_add_code");
31057 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb,
31058 		    es_qual_code, "es_qual_code");
31059 	}
31060 
31061 	/* set un if it was on fifo */
31062 	if (fi_un != NULL) {
31063 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
31064 		SD_CONDSET(un, un, un_ctype, "un_ctype");
31065 		SD_CONDSET(un, un, un_reset_retry_count,
31066 		    "un_reset_retry_count");
31067 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
31068 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
31069 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
31070 		SD_CONDSET(un, un, un_f_geometry_is_valid,
31071 		    "un_f_geometry_is_valid");
31072 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
31073 		    "un_f_allow_bus_device_reset");
31074 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
31075 
31076 	}
31077 
31078 	/* copy in auto request sense if it was on fifo */
31079 	if (fi_arq != NULL) {
31080 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
31081 	}
31082 
31083 	/* free structs */
31084 	if (un->sd_fi_fifo_pkt[i] != NULL) {
31085 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
31086 	}
31087 	if (un->sd_fi_fifo_xb[i] != NULL) {
31088 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
31089 	}
31090 	if (un->sd_fi_fifo_un[i] != NULL) {
31091 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
31092 	}
31093 	if (un->sd_fi_fifo_arq[i] != NULL) {
31094 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
31095 	}
31096 
31097 	/*
31098 	 * kmem_free does not gurantee to set to NULL
31099 	 * since we uses these to determine if we set
31100 	 * values or not lets confirm they are always
31101 	 * NULL after free
31102 	 */
31103 	un->sd_fi_fifo_pkt[i] = NULL;
31104 	un->sd_fi_fifo_un[i] = NULL;
31105 	un->sd_fi_fifo_xb[i] = NULL;
31106 	un->sd_fi_fifo_arq[i] = NULL;
31107 
31108 	un->sd_fi_fifo_start++;
31109 
31110 	mutex_exit(SD_MUTEX(un));
31111 
31112 	SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
31113 }
31114 
31115 #endif /* SD_FAULT_INJECTION */
31116 
31117 /*
31118  * This routine is invoked in sd_unit_attach(). Before calling it, the
31119  * properties in conf file should be processed already, and "hotpluggable"
31120  * property was processed also.
31121  *
31122  * The sd driver distinguishes 3 different type of devices: removable media,
31123  * non-removable media, and hotpluggable. Below the differences are defined:
31124  *
31125  * 1. Device ID
31126  *
31127  *     The device ID of a device is used to identify this device. Refer to
31128  *     ddi_devid_register(9F).
31129  *
31130  *     For a non-removable media disk device which can provide 0x80 or 0x83
31131  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
31132  *     device ID is created to identify this device. For other non-removable
31133  *     media devices, a default device ID is created only if this device has
31134  *     at least 2 alter cylinders. Otherwise, this device has no devid.
31135  *
31136  *     -------------------------------------------------------
31137  *     removable media   hotpluggable  | Can Have Device ID
31138  *     -------------------------------------------------------
31139  *         false             false     |     Yes
31140  *         false             true      |     Yes
31141  *         true                x       |     No
31142  *     ------------------------------------------------------
31143  *
31144  *
31145  * 2. SCSI group 4 commands
31146  *
31147  *     In SCSI specs, only some commands in group 4 command set can use
31148  *     8-byte addresses that can be used to access >2TB storage spaces.
31149  *     Other commands have no such capability. Without supporting group4,
31150  *     it is impossible to make full use of storage spaces of a disk with
31151  *     capacity larger than 2TB.
31152  *
31153  *     -----------------------------------------------
31154  *     removable media   hotpluggable   LP64  |  Group
31155  *     -----------------------------------------------
31156  *           false          false       false |   1
31157  *           false          false       true  |   4
31158  *           false          true        false |   1
31159  *           false          true        true  |   4
31160  *           true             x           x   |   5
31161  *     -----------------------------------------------
31162  *
31163  *
31164  * 3. Check for VTOC Label
31165  *
31166  *     If a direct-access disk has no EFI label, sd will check if it has a
31167  *     valid VTOC label. Now, sd also does that check for removable media
31168  *     and hotpluggable devices.
31169  *
31170  *     --------------------------------------------------------------
31171  *     Direct-Access   removable media    hotpluggable |  Check Label
31172  *     -------------------------------------------------------------
31173  *         false          false           false        |   No
31174  *         false          false           true         |   No
31175  *         false          true            false        |   Yes
31176  *         false          true            true         |   Yes
31177  *         true            x                x          |   Yes
31178  *     --------------------------------------------------------------
31179  *
31180  *
31181  * 4. Building default VTOC label
31182  *
31183  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
31184  *     If those devices have no valid VTOC label, sd(7d) will attempt to
31185  *     create default VTOC for them. Currently sd creates default VTOC label
31186  *     for all devices on x86 platform (VTOC_16), but only for removable
31187  *     media devices on SPARC (VTOC_8).
31188  *
31189  *     -----------------------------------------------------------
31190  *       removable media hotpluggable platform   |   Default Label
31191  *     -----------------------------------------------------------
31192  *             false          false    sparc     |     No
31193  *             false          true      x86      |     Yes
31194  *             false          true     sparc     |     Yes
31195  *             true             x        x       |     Yes
31196  *     ----------------------------------------------------------
31197  *
31198  *
31199  * 5. Supported blocksizes of target devices
31200  *
31201  *     Sd supports non-512-byte blocksize for removable media devices only.
31202  *     For other devices, only 512-byte blocksize is supported. This may be
31203  *     changed in near future because some RAID devices require non-512-byte
31204  *     blocksize
31205  *
31206  *     -----------------------------------------------------------
31207  *     removable media    hotpluggable    | non-512-byte blocksize
31208  *     -----------------------------------------------------------
31209  *           false          false         |   No
31210  *           false          true          |   No
31211  *           true             x           |   Yes
31212  *     -----------------------------------------------------------
31213  *
31214  *
31215  * 6. Automatic mount & unmount (i.e. vold)
31216  *
31217  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
31218  *     if a device is removable media device. It return 1 for removable media
31219  *     devices, and 0 for others.
31220  *
31221  *     Vold treats a device as removable one only if DKIOREMOVABLE returns 1.
31222  *     And it does automounting only for removable media devices. In order to
31223  *     preserve users' experience and let vold continue to do automounting for
31224  *     USB disk devices, DKIOCREMOVABLE ioctl still returns 1 for USB/1394 disk
31225  *     devices.
31226  *
31227  *      ------------------------------------------------------
31228  *       removable media    hotpluggable   |  automatic mount
31229  *      ------------------------------------------------------
31230  *             false          false        |   No
31231  *             false          true         |   Yes
31232  *             true             x          |   Yes
31233  *      ------------------------------------------------------
31234  *
31235  *
31236  * 7. fdisk partition management
31237  *
31238  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
31239  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
31240  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
31241  *     fdisk partitions on both x86 and SPARC platform.
31242  *
31243  *     -----------------------------------------------------------
31244  *       platform   removable media  USB/1394  |  fdisk supported
31245  *     -----------------------------------------------------------
31246  *        x86         X               X        |       true
31247  *     ------------------------------------------------------------
31248  *        sparc       X               X        |       false
31249  *     ------------------------------------------------------------
31250  *
31251  *
31252  * 8. MBOOT/MBR
31253  *
31254  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
31255  *     read/write mboot for removable media devices on sparc platform.
31256  *
31257  *     -----------------------------------------------------------
31258  *       platform   removable media  USB/1394  |  mboot supported
31259  *     -----------------------------------------------------------
31260  *        x86         X               X        |       true
31261  *     ------------------------------------------------------------
31262  *        sparc      false           false     |       false
31263  *        sparc      false           true      |       true
31264  *        sparc      true            false     |       true
31265  *        sparc      true            true      |       true
31266  *     ------------------------------------------------------------
31267  *
31268  *
31269  * 9.  error handling during opening device
31270  *
31271  *     If failed to open a disk device, an errno is returned. For some kinds
31272  *     of errors, different errno is returned depending on if this device is
31273  *     a removable media device. This brings USB/1394 hard disks in line with
31274  *     expected hard disk behavior. It is not expected that this breaks any
31275  *     application.
31276  *
31277  *     ------------------------------------------------------
31278  *       removable media    hotpluggable   |  errno
31279  *     ------------------------------------------------------
31280  *             false          false        |   EIO
31281  *             false          true         |   EIO
31282  *             true             x          |   ENXIO
31283  *     ------------------------------------------------------
31284  *
31285  *
31286  * 11. ioctls: DKIOCEJECT, CDROMEJECT
31287  *
31288  *     These IOCTLs are applicable only to removable media devices.
31289  *
31290  *     -----------------------------------------------------------
31291  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
31292  *     -----------------------------------------------------------
31293  *             false          false        |     No
31294  *             false          true         |     No
31295  *             true            x           |     Yes
31296  *     -----------------------------------------------------------
31297  *
31298  *
31299  * 12. Kstats for partitions
31300  *
31301  *     sd creates partition kstat for non-removable media devices. USB and
31302  *     Firewire hard disks now have partition kstats
31303  *
31304  *      ------------------------------------------------------
31305  *       removable media    hotplugable    |   kstat
31306  *      ------------------------------------------------------
31307  *             false          false        |    Yes
31308  *             false          true         |    Yes
31309  *             true             x          |    No
31310  *       ------------------------------------------------------
31311  *
31312  *
31313  * 13. Removable media & hotpluggable properties
31314  *
31315  *     Sd driver creates a "removable-media" property for removable media
31316  *     devices. Parent nexus drivers create a "hotpluggable" property if
31317  *     it supports hotplugging.
31318  *
31319  *     ---------------------------------------------------------------------
31320  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
31321  *     ---------------------------------------------------------------------
31322  *       false            false       |    No                   No
31323  *       false            true        |    No                   Yes
31324  *       true             false       |    Yes                  No
31325  *       true             true        |    Yes                  Yes
31326  *     ---------------------------------------------------------------------
31327  *
31328  *
31329  * 14. Power Management
31330  *
31331  *     sd only power manages removable media devices or devices that support
31332  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
31333  *
31334  *     A parent nexus that supports hotplugging can also set "pm-capable"
31335  *     if the disk can be power managed.
31336  *
31337  *     ------------------------------------------------------------
31338  *       removable media hotpluggable pm-capable  |   power manage
31339  *     ------------------------------------------------------------
31340  *             false          false     false     |     No
31341  *             false          false     true      |     Yes
31342  *             false          true      false     |     No
31343  *             false          true      true      |     Yes
31344  *             true             x        x        |     Yes
31345  *     ------------------------------------------------------------
31346  *
31347  *      USB and firewire hard disks can now be power managed independently
31348  *      of the framebuffer
31349  *
31350  *
31351  * 15. Support for USB disks with capacity larger than 1TB
31352  *
31353  *     Currently, sd doesn't permit a fixed disk device with capacity
31354  *     larger than 1TB to be used in a 32-bit operating system environment.
31355  *     However, sd doesn't do that for removable media devices. Instead, it
31356  *     assumes that removable media devices cannot have a capacity larger
31357  *     than 1TB. Therefore, using those devices on 32-bit system is partially
31358  *     supported, which can cause some unexpected results.
31359  *
31360  *     ---------------------------------------------------------------------
31361  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
31362  *     ---------------------------------------------------------------------
31363  *             false          false  |   true         |     no
31364  *             false          true   |   true         |     no
31365  *             true           false  |   true         |     Yes
31366  *             true           true   |   true         |     Yes
31367  *     ---------------------------------------------------------------------
31368  *
31369  *
31370  * 16. Check write-protection at open time
31371  *
31372  *     When a removable media device is being opened for writing without NDELAY
31373  *     flag, sd will check if this device is writable. If attempting to open
31374  *     without NDELAY flag a write-protected device, this operation will abort.
31375  *
31376  *     ------------------------------------------------------------
31377  *       removable media    USB/1394   |   WP Check
31378  *     ------------------------------------------------------------
31379  *             false          false    |     No
31380  *             false          true     |     No
31381  *             true           false    |     Yes
31382  *             true           true     |     Yes
31383  *     ------------------------------------------------------------
31384  *
31385  *
31386  * 17. syslog when corrupted VTOC is encountered
31387  *
31388  *      Currently, if an invalid VTOC is encountered, sd only print syslog
31389  *      for fixed SCSI disks.
31390  *     ------------------------------------------------------------
31391  *       removable media    USB/1394   |   print syslog
31392  *     ------------------------------------------------------------
31393  *             false          false    |     Yes
31394  *             false          true     |     No
31395  *             true           false    |     No
31396  *             true           true     |     No
31397  *     ------------------------------------------------------------
31398  */
31399 static void
31400 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
31401 {
31402 	int	pm_capable_prop;
31403 
31404 	ASSERT(un->un_sd);
31405 	ASSERT(un->un_sd->sd_inq);
31406 
31407 #if defined(_SUNOS_VTOC_16)
31408 	/*
31409 	 * For VTOC_16 devices, the default label will be created for all
31410 	 * devices. (see sd_build_default_label)
31411 	 */
31412 	un->un_f_default_vtoc_supported = TRUE;
31413 #endif
31414 
31415 	if (un->un_sd->sd_inq->inq_rmb) {
31416 		/*
31417 		 * The media of this device is removable. And for this kind
31418 		 * of devices, it is possible to change medium after openning
31419 		 * devices. Thus we should support this operation.
31420 		 */
31421 		un->un_f_has_removable_media = TRUE;
31422 
31423 #if defined(_SUNOS_VTOC_8)
31424 		/*
31425 		 * Note: currently, for VTOC_8 devices, default label is
31426 		 * created for removable and hotpluggable devices only.
31427 		 */
31428 		un->un_f_default_vtoc_supported = TRUE;
31429 #endif
31430 		/*
31431 		 * support non-512-byte blocksize of removable media devices
31432 		 */
31433 		un->un_f_non_devbsize_supported = TRUE;
31434 
31435 		/*
31436 		 * Assume that all removable media devices support DOOR_LOCK
31437 		 */
31438 		un->un_f_doorlock_supported = TRUE;
31439 
31440 		/*
31441 		 * For a removable media device, it is possible to be opened
31442 		 * with NDELAY flag when there is no media in drive, in this
31443 		 * case we don't care if device is writable. But if without
31444 		 * NDELAY flag, we need to check if media is write-protected.
31445 		 */
31446 		un->un_f_chk_wp_open = TRUE;
31447 
31448 		/*
31449 		 * need to start a SCSI watch thread to monitor media state,
31450 		 * when media is being inserted or ejected, notify syseventd.
31451 		 */
31452 		un->un_f_monitor_media_state = TRUE;
31453 
31454 		/*
31455 		 * Some devices don't support START_STOP_UNIT command.
31456 		 * Therefore, we'd better check if a device supports it
31457 		 * before sending it.
31458 		 */
31459 		un->un_f_check_start_stop = TRUE;
31460 
31461 		/*
31462 		 * support eject media ioctl:
31463 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
31464 		 */
31465 		un->un_f_eject_media_supported = TRUE;
31466 
31467 		/*
31468 		 * Because many removable-media devices don't support
31469 		 * LOG_SENSE, we couldn't use this command to check if
31470 		 * a removable media device support power-management.
31471 		 * We assume that they support power-management via
31472 		 * START_STOP_UNIT command and can be spun up and down
31473 		 * without limitations.
31474 		 */
31475 		un->un_f_pm_supported = TRUE;
31476 
31477 		/*
31478 		 * Need to create a zero length (Boolean) property
31479 		 * removable-media for the removable media devices.
31480 		 * Note that the return value of the property is not being
31481 		 * checked, since if unable to create the property
31482 		 * then do not want the attach to fail altogether. Consistent
31483 		 * with other property creation in attach.
31484 		 */
31485 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
31486 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
31487 
31488 	} else {
31489 		/*
31490 		 * create device ID for device
31491 		 */
31492 		un->un_f_devid_supported = TRUE;
31493 
31494 		/*
31495 		 * Spin up non-removable-media devices once it is attached
31496 		 */
31497 		un->un_f_attach_spinup = TRUE;
31498 
31499 		/*
31500 		 * According to SCSI specification, Sense data has two kinds of
31501 		 * format: fixed format, and descriptor format. At present, we
31502 		 * don't support descriptor format sense data for removable
31503 		 * media.
31504 		 */
31505 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
31506 			un->un_f_descr_format_supported = TRUE;
31507 		}
31508 
31509 		/*
31510 		 * kstats are created only for non-removable media devices.
31511 		 *
31512 		 * Set this in sd.conf to 0 in order to disable kstats.  The
31513 		 * default is 1, so they are enabled by default.
31514 		 */
31515 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
31516 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
31517 			"enable-partition-kstats", 1));
31518 
31519 		/*
31520 		 * Check if HBA has set the "pm-capable" property.
31521 		 * If "pm-capable" exists and is non-zero then we can
31522 		 * power manage the device without checking the start/stop
31523 		 * cycle count log sense page.
31524 		 *
31525 		 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
31526 		 * then we should not power manage the device.
31527 		 *
31528 		 * If "pm-capable" doesn't exist then pm_capable_prop will
31529 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
31530 		 * sd will check the start/stop cycle count log sense page
31531 		 * and power manage the device if the cycle count limit has
31532 		 * not been exceeded.
31533 		 */
31534 		pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
31535 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
31536 		if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
31537 			un->un_f_log_sense_supported = TRUE;
31538 		} else {
31539 			/*
31540 			 * pm-capable property exists.
31541 			 *
31542 			 * Convert "TRUE" values for pm_capable_prop to
31543 			 * SD_PM_CAPABLE_TRUE (1) to make it easier to check
31544 			 * later. "TRUE" values are any values except
31545 			 * SD_PM_CAPABLE_FALSE (0) and
31546 			 * SD_PM_CAPABLE_UNDEFINED (-1)
31547 			 */
31548 			if (pm_capable_prop == SD_PM_CAPABLE_FALSE) {
31549 				un->un_f_log_sense_supported = FALSE;
31550 			} else {
31551 				un->un_f_pm_supported = TRUE;
31552 			}
31553 
31554 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
31555 			    "sd_unit_attach: un:0x%p pm-capable "
31556 			    "property set to %d.\n", un, un->un_f_pm_supported);
31557 		}
31558 	}
31559 
31560 	if (un->un_f_is_hotpluggable) {
31561 #if defined(_SUNOS_VTOC_8)
31562 		/*
31563 		 * Note: currently, for VTOC_8 devices, default label is
31564 		 * created for removable and hotpluggable devices only.
31565 		 */
31566 		un->un_f_default_vtoc_supported = TRUE;
31567 #endif
31568 
31569 		/*
31570 		 * Temporarily, let hotpluggable devices pretend to be
31571 		 * removable-media devices for vold.
31572 		 */
31573 		un->un_f_monitor_media_state = TRUE;
31574 
31575 		un->un_f_check_start_stop = TRUE;
31576 
31577 	}
31578 
31579 	/*
31580 	 * By default, only DIRECT ACCESS devices and CDs will have Sun
31581 	 * labels.
31582 	 */
31583 	if ((SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) ||
31584 	    (un->un_sd->sd_inq->inq_rmb)) {
31585 		/*
31586 		 * Direct access devices have disk label
31587 		 */
31588 		un->un_f_vtoc_label_supported = TRUE;
31589 	}
31590 
31591 	/*
31592 	 * Fdisk partitions are supported for all direct access devices on
31593 	 * x86 platform, and just for removable media and hotpluggable
31594 	 * devices on SPARC platform. Later, we will set the following flag
31595 	 * to FALSE if current device is not removable media or hotpluggable
31596 	 * device and if sd works on SAPRC platform.
31597 	 */
31598 	if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
31599 		un->un_f_mboot_supported = TRUE;
31600 	}
31601 
31602 	if (!un->un_f_is_hotpluggable &&
31603 	    !un->un_sd->sd_inq->inq_rmb) {
31604 
31605 #if defined(_SUNOS_VTOC_8)
31606 		/*
31607 		 * Don't support fdisk on fixed disk
31608 		 */
31609 		un->un_f_mboot_supported = FALSE;
31610 #endif
31611 
31612 		/*
31613 		 * Fixed disk support SYNC CACHE
31614 		 */
31615 		un->un_f_sync_cache_supported = TRUE;
31616 
31617 		/*
31618 		 * For fixed disk, if its VTOC is not valid, we will write
31619 		 * errlog into system log
31620 		 */
31621 		if (un->un_f_vtoc_label_supported)
31622 			un->un_f_vtoc_errlog_supported = TRUE;
31623 	}
31624 }
31625