xref: /titanic_51/usr/src/uts/common/io/scsi/targets/sd.c (revision e5ed77eb84ab73cba03914971dba76b740b42a1f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * SCSI disk target driver.
29  */
30 #include <sys/scsi/scsi.h>
31 #include <sys/dkbad.h>
32 #include <sys/dklabel.h>
33 #include <sys/dkio.h>
34 #include <sys/fdio.h>
35 #include <sys/cdio.h>
36 #include <sys/mhd.h>
37 #include <sys/vtoc.h>
38 #include <sys/dktp/fdisk.h>
39 #include <sys/kstat.h>
40 #include <sys/vtrace.h>
41 #include <sys/note.h>
42 #include <sys/thread.h>
43 #include <sys/proc.h>
44 #include <sys/efi_partition.h>
45 #include <sys/var.h>
46 #include <sys/aio_req.h>
47 
48 #ifdef __lock_lint
49 #define	_LP64
50 #define	__amd64
51 #endif
52 
53 #if (defined(__fibre))
54 /* Note: is there a leadville version of the following? */
55 #include <sys/fc4/fcal_linkapp.h>
56 #endif
57 #include <sys/taskq.h>
58 #include <sys/uuid.h>
59 #include <sys/byteorder.h>
60 #include <sys/sdt.h>
61 
62 #include "sd_xbuf.h"
63 
64 #include <sys/scsi/targets/sddef.h>
65 #include <sys/cmlb.h>
66 #include <sys/sysevent/eventdefs.h>
67 #include <sys/sysevent/dev.h>
68 
69 #include <sys/fm/protocol.h>
70 
71 /*
72  * Loadable module info.
73  */
74 #if (defined(__fibre))
75 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver"
76 char _depends_on[]	= "misc/scsi misc/cmlb drv/fcp";
77 #else
78 #define	SD_MODULE_NAME	"SCSI Disk Driver"
79 char _depends_on[]	= "misc/scsi misc/cmlb";
80 #endif
81 
82 /*
83  * Define the interconnect type, to allow the driver to distinguish
84  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
85  *
86  * This is really for backward compatibility. In the future, the driver
87  * should actually check the "interconnect-type" property as reported by
88  * the HBA; however at present this property is not defined by all HBAs,
89  * so we will use this #define (1) to permit the driver to run in
90  * backward-compatibility mode; and (2) to print a notification message
91  * if an FC HBA does not support the "interconnect-type" property.  The
92  * behavior of the driver will be to assume parallel SCSI behaviors unless
93  * the "interconnect-type" property is defined by the HBA **AND** has a
94  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
95  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
96  * Channel behaviors (as per the old ssd).  (Note that the
97  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
98  * will result in the driver assuming parallel SCSI behaviors.)
99  *
100  * (see common/sys/scsi/impl/services.h)
101  *
102  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
103  * since some FC HBAs may already support that, and there is some code in
104  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
105  * default would confuse that code, and besides things should work fine
106  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
107  * "interconnect_type" property.
108  *
109  */
110 #if (defined(__fibre))
111 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
112 #else
113 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
114 #endif
115 
116 /*
117  * The name of the driver, established from the module name in _init.
118  */
119 static	char *sd_label			= NULL;
120 
121 /*
122  * Driver name is unfortunately prefixed on some driver.conf properties.
123  */
124 #if (defined(__fibre))
125 #define	sd_max_xfer_size		ssd_max_xfer_size
126 #define	sd_config_list			ssd_config_list
127 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
128 static	char *sd_config_list		= "ssd-config-list";
129 #else
130 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
131 static	char *sd_config_list		= "sd-config-list";
132 #endif
133 
134 /*
135  * Driver global variables
136  */
137 
138 #if (defined(__fibre))
139 /*
140  * These #defines are to avoid namespace collisions that occur because this
141  * code is currently used to compile two separate driver modules: sd and ssd.
142  * All global variables need to be treated this way (even if declared static)
143  * in order to allow the debugger to resolve the names properly.
144  * It is anticipated that in the near future the ssd module will be obsoleted,
145  * at which time this namespace issue should go away.
146  */
147 #define	sd_state			ssd_state
148 #define	sd_io_time			ssd_io_time
149 #define	sd_failfast_enable		ssd_failfast_enable
150 #define	sd_ua_retry_count		ssd_ua_retry_count
151 #define	sd_report_pfa			ssd_report_pfa
152 #define	sd_max_throttle			ssd_max_throttle
153 #define	sd_min_throttle			ssd_min_throttle
154 #define	sd_rot_delay			ssd_rot_delay
155 
156 #define	sd_retry_on_reservation_conflict	\
157 					ssd_retry_on_reservation_conflict
158 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
159 #define	sd_resv_conflict_name		ssd_resv_conflict_name
160 
161 #define	sd_component_mask		ssd_component_mask
162 #define	sd_level_mask			ssd_level_mask
163 #define	sd_debug_un			ssd_debug_un
164 #define	sd_error_level			ssd_error_level
165 
166 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
167 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
168 
169 #define	sd_tr				ssd_tr
170 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
171 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
172 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
173 #define	sd_check_media_time		ssd_check_media_time
174 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
175 #define	sd_label_mutex			ssd_label_mutex
176 #define	sd_detach_mutex			ssd_detach_mutex
177 #define	sd_log_buf			ssd_log_buf
178 #define	sd_log_mutex			ssd_log_mutex
179 
180 #define	sd_disk_table			ssd_disk_table
181 #define	sd_disk_table_size		ssd_disk_table_size
182 #define	sd_sense_mutex			ssd_sense_mutex
183 #define	sd_cdbtab			ssd_cdbtab
184 
185 #define	sd_cb_ops			ssd_cb_ops
186 #define	sd_ops				ssd_ops
187 #define	sd_additional_codes		ssd_additional_codes
188 #define	sd_tgops			ssd_tgops
189 
190 #define	sd_minor_data			ssd_minor_data
191 #define	sd_minor_data_efi		ssd_minor_data_efi
192 
193 #define	sd_tq				ssd_tq
194 #define	sd_wmr_tq			ssd_wmr_tq
195 #define	sd_taskq_name			ssd_taskq_name
196 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
197 #define	sd_taskq_minalloc		ssd_taskq_minalloc
198 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
199 
200 #define	sd_dump_format_string		ssd_dump_format_string
201 
202 #define	sd_iostart_chain		ssd_iostart_chain
203 #define	sd_iodone_chain			ssd_iodone_chain
204 
205 #define	sd_pm_idletime			ssd_pm_idletime
206 
207 #define	sd_force_pm_supported		ssd_force_pm_supported
208 
209 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
210 
211 #define	sd_ssc_init			ssd_ssc_init
212 #define	sd_ssc_send			ssd_ssc_send
213 #define	sd_ssc_fini			ssd_ssc_fini
214 #define	sd_ssc_assessment		ssd_ssc_assessment
215 #define	sd_ssc_post			ssd_ssc_post
216 #define	sd_ssc_print			ssd_ssc_print
217 #define	sd_ssc_ereport_post		ssd_ssc_ereport_post
218 #define	sd_ssc_set_info			ssd_ssc_set_info
219 #define	sd_ssc_extract_info		ssd_ssc_extract_info
220 
221 #endif
222 
223 #ifdef	SDDEBUG
224 int	sd_force_pm_supported		= 0;
225 #endif	/* SDDEBUG */
226 
227 void *sd_state				= NULL;
228 int sd_io_time				= SD_IO_TIME;
229 int sd_failfast_enable			= 1;
230 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
231 int sd_report_pfa			= 1;
232 int sd_max_throttle			= SD_MAX_THROTTLE;
233 int sd_min_throttle			= SD_MIN_THROTTLE;
234 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
235 int sd_qfull_throttle_enable		= TRUE;
236 
237 int sd_retry_on_reservation_conflict	= 1;
238 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
239 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
240 
241 static int sd_dtype_optical_bind	= -1;
242 
243 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
244 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
245 
246 /*
247  * Global data for debug logging. To enable debug printing, sd_component_mask
248  * and sd_level_mask should be set to the desired bit patterns as outlined in
249  * sddef.h.
250  */
251 uint_t	sd_component_mask		= 0x0;
252 uint_t	sd_level_mask			= 0x0;
253 struct	sd_lun *sd_debug_un		= NULL;
254 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
255 
256 /* Note: these may go away in the future... */
257 static uint32_t	sd_xbuf_active_limit	= 512;
258 static uint32_t sd_xbuf_reserve_limit	= 16;
259 
260 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
261 
262 /*
263  * Timer value used to reset the throttle after it has been reduced
264  * (typically in response to TRAN_BUSY or STATUS_QFULL)
265  */
266 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
267 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
268 
269 /*
270  * Interval value associated with the media change scsi watch.
271  */
272 static int sd_check_media_time		= 3000000;
273 
274 /*
275  * Wait value used for in progress operations during a DDI_SUSPEND
276  */
277 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
278 
279 /*
280  * sd_label_mutex protects a static buffer used in the disk label
281  * component of the driver
282  */
283 static kmutex_t sd_label_mutex;
284 
285 /*
286  * sd_detach_mutex protects un_layer_count, un_detach_count, and
287  * un_opens_in_progress in the sd_lun structure.
288  */
289 static kmutex_t sd_detach_mutex;
290 
291 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
292 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
293 
294 /*
295  * Global buffer and mutex for debug logging
296  */
297 static char	sd_log_buf[1024];
298 static kmutex_t	sd_log_mutex;
299 
300 /*
301  * Structs and globals for recording attached lun information.
302  * This maintains a chain. Each node in the chain represents a SCSI controller.
303  * The structure records the number of luns attached to each target connected
304  * with the controller.
305  * For parallel scsi device only.
306  */
307 struct sd_scsi_hba_tgt_lun {
308 	struct sd_scsi_hba_tgt_lun	*next;
309 	dev_info_t			*pdip;
310 	int				nlun[NTARGETS_WIDE];
311 };
312 
313 /*
314  * Flag to indicate the lun is attached or detached
315  */
316 #define	SD_SCSI_LUN_ATTACH	0
317 #define	SD_SCSI_LUN_DETACH	1
318 
319 static kmutex_t	sd_scsi_target_lun_mutex;
320 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
321 
322 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
323     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
324 
325 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
326     sd_scsi_target_lun_head))
327 
328 /*
329  * "Smart" Probe Caching structs, globals, #defines, etc.
330  * For parallel scsi and non-self-identify device only.
331  */
332 
333 /*
334  * The following resources and routines are implemented to support
335  * "smart" probing, which caches the scsi_probe() results in an array,
336  * in order to help avoid long probe times.
337  */
338 struct sd_scsi_probe_cache {
339 	struct	sd_scsi_probe_cache	*next;
340 	dev_info_t	*pdip;
341 	int		cache[NTARGETS_WIDE];
342 };
343 
344 static kmutex_t	sd_scsi_probe_cache_mutex;
345 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
346 
347 /*
348  * Really we only need protection on the head of the linked list, but
349  * better safe than sorry.
350  */
351 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
352     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
353 
354 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
355     sd_scsi_probe_cache_head))
356 
357 
358 /*
359  * Vendor specific data name property declarations
360  */
361 
362 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
363 
364 static sd_tunables seagate_properties = {
365 	SEAGATE_THROTTLE_VALUE,
366 	0,
367 	0,
368 	0,
369 	0,
370 	0,
371 	0,
372 	0,
373 	0
374 };
375 
376 
377 static sd_tunables fujitsu_properties = {
378 	FUJITSU_THROTTLE_VALUE,
379 	0,
380 	0,
381 	0,
382 	0,
383 	0,
384 	0,
385 	0,
386 	0
387 };
388 
389 static sd_tunables ibm_properties = {
390 	IBM_THROTTLE_VALUE,
391 	0,
392 	0,
393 	0,
394 	0,
395 	0,
396 	0,
397 	0,
398 	0
399 };
400 
401 static sd_tunables purple_properties = {
402 	PURPLE_THROTTLE_VALUE,
403 	0,
404 	0,
405 	PURPLE_BUSY_RETRIES,
406 	PURPLE_RESET_RETRY_COUNT,
407 	PURPLE_RESERVE_RELEASE_TIME,
408 	0,
409 	0,
410 	0
411 };
412 
413 static sd_tunables sve_properties = {
414 	SVE_THROTTLE_VALUE,
415 	0,
416 	0,
417 	SVE_BUSY_RETRIES,
418 	SVE_RESET_RETRY_COUNT,
419 	SVE_RESERVE_RELEASE_TIME,
420 	SVE_MIN_THROTTLE_VALUE,
421 	SVE_DISKSORT_DISABLED_FLAG,
422 	0
423 };
424 
425 static sd_tunables maserati_properties = {
426 	0,
427 	0,
428 	0,
429 	0,
430 	0,
431 	0,
432 	0,
433 	MASERATI_DISKSORT_DISABLED_FLAG,
434 	MASERATI_LUN_RESET_ENABLED_FLAG
435 };
436 
437 static sd_tunables pirus_properties = {
438 	PIRUS_THROTTLE_VALUE,
439 	0,
440 	PIRUS_NRR_COUNT,
441 	PIRUS_BUSY_RETRIES,
442 	PIRUS_RESET_RETRY_COUNT,
443 	0,
444 	PIRUS_MIN_THROTTLE_VALUE,
445 	PIRUS_DISKSORT_DISABLED_FLAG,
446 	PIRUS_LUN_RESET_ENABLED_FLAG
447 };
448 
449 #endif
450 
451 #if (defined(__sparc) && !defined(__fibre)) || \
452 	(defined(__i386) || defined(__amd64))
453 
454 
455 static sd_tunables elite_properties = {
456 	ELITE_THROTTLE_VALUE,
457 	0,
458 	0,
459 	0,
460 	0,
461 	0,
462 	0,
463 	0,
464 	0
465 };
466 
467 static sd_tunables st31200n_properties = {
468 	ST31200N_THROTTLE_VALUE,
469 	0,
470 	0,
471 	0,
472 	0,
473 	0,
474 	0,
475 	0,
476 	0
477 };
478 
479 #endif /* Fibre or not */
480 
481 static sd_tunables lsi_properties_scsi = {
482 	LSI_THROTTLE_VALUE,
483 	0,
484 	LSI_NOTREADY_RETRIES,
485 	0,
486 	0,
487 	0,
488 	0,
489 	0,
490 	0
491 };
492 
493 static sd_tunables symbios_properties = {
494 	SYMBIOS_THROTTLE_VALUE,
495 	0,
496 	SYMBIOS_NOTREADY_RETRIES,
497 	0,
498 	0,
499 	0,
500 	0,
501 	0,
502 	0
503 };
504 
505 static sd_tunables lsi_properties = {
506 	0,
507 	0,
508 	LSI_NOTREADY_RETRIES,
509 	0,
510 	0,
511 	0,
512 	0,
513 	0,
514 	0
515 };
516 
517 static sd_tunables lsi_oem_properties = {
518 	0,
519 	0,
520 	LSI_OEM_NOTREADY_RETRIES,
521 	0,
522 	0,
523 	0,
524 	0,
525 	0,
526 	0,
527 	1
528 };
529 
530 
531 
532 #if (defined(SD_PROP_TST))
533 
534 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
535 #define	SD_TST_THROTTLE_VAL	16
536 #define	SD_TST_NOTREADY_VAL	12
537 #define	SD_TST_BUSY_VAL		60
538 #define	SD_TST_RST_RETRY_VAL	36
539 #define	SD_TST_RSV_REL_TIME	60
540 
541 static sd_tunables tst_properties = {
542 	SD_TST_THROTTLE_VAL,
543 	SD_TST_CTYPE_VAL,
544 	SD_TST_NOTREADY_VAL,
545 	SD_TST_BUSY_VAL,
546 	SD_TST_RST_RETRY_VAL,
547 	SD_TST_RSV_REL_TIME,
548 	0,
549 	0,
550 	0
551 };
552 #endif
553 
554 /* This is similar to the ANSI toupper implementation */
555 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
556 
557 /*
558  * Static Driver Configuration Table
559  *
560  * This is the table of disks which need throttle adjustment (or, perhaps
561  * something else as defined by the flags at a future time.)  device_id
562  * is a string consisting of concatenated vid (vendor), pid (product/model)
563  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
564  * the parts of the string are as defined by the sizes in the scsi_inquiry
565  * structure.  Device type is searched as far as the device_id string is
566  * defined.  Flags defines which values are to be set in the driver from the
567  * properties list.
568  *
569  * Entries below which begin and end with a "*" are a special case.
570  * These do not have a specific vendor, and the string which follows
571  * can appear anywhere in the 16 byte PID portion of the inquiry data.
572  *
573  * Entries below which begin and end with a " " (blank) are a special
574  * case. The comparison function will treat multiple consecutive blanks
575  * as equivalent to a single blank. For example, this causes a
576  * sd_disk_table entry of " NEC CDROM " to match a device's id string
577  * of  "NEC       CDROM".
578  *
579  * Note: The MD21 controller type has been obsoleted.
580  *	 ST318202F is a Legacy device
581  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
582  *	 made with an FC connection. The entries here are a legacy.
583  */
584 static sd_disk_config_t sd_disk_table[] = {
585 #if defined(__fibre) || defined(__i386) || defined(__amd64)
586 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
587 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
588 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
589 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
590 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
591 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
592 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
593 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
594 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
595 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
596 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
597 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
598 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
599 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
600 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
601 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
602 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
603 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
604 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
605 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
606 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
607 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
608 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
609 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
610 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
611 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
612 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
613 	{ "IBM     1724-100",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
614 	{ "IBM     1726-2xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
615 	{ "IBM     1726-22x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
616 	{ "IBM     1726-4xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
617 	{ "IBM     1726-42x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
618 	{ "IBM     1726-3xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
619 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
620 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
621 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
622 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
623 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
624 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
625 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
626 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
627 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
628 	{ "IBM     1818",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
629 	{ "DELL    MD3000",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
630 	{ "DELL    MD3000i",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
631 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
632 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
633 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
634 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
635 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT |
636 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
637 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT |
638 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
639 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
640 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
641 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
642 			SD_CONF_BSET_BSY_RETRY_COUNT|
643 			SD_CONF_BSET_RST_RETRIES|
644 			SD_CONF_BSET_RSV_REL_TIME,
645 		&purple_properties },
646 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
647 		SD_CONF_BSET_BSY_RETRY_COUNT|
648 		SD_CONF_BSET_RST_RETRIES|
649 		SD_CONF_BSET_RSV_REL_TIME|
650 		SD_CONF_BSET_MIN_THROTTLE|
651 		SD_CONF_BSET_DISKSORT_DISABLED,
652 		&sve_properties },
653 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
654 			SD_CONF_BSET_BSY_RETRY_COUNT|
655 			SD_CONF_BSET_RST_RETRIES|
656 			SD_CONF_BSET_RSV_REL_TIME,
657 		&purple_properties },
658 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
659 		SD_CONF_BSET_LUN_RESET_ENABLED,
660 		&maserati_properties },
661 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
662 		SD_CONF_BSET_NRR_COUNT|
663 		SD_CONF_BSET_BSY_RETRY_COUNT|
664 		SD_CONF_BSET_RST_RETRIES|
665 		SD_CONF_BSET_MIN_THROTTLE|
666 		SD_CONF_BSET_DISKSORT_DISABLED|
667 		SD_CONF_BSET_LUN_RESET_ENABLED,
668 		&pirus_properties },
669 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
670 		SD_CONF_BSET_NRR_COUNT|
671 		SD_CONF_BSET_BSY_RETRY_COUNT|
672 		SD_CONF_BSET_RST_RETRIES|
673 		SD_CONF_BSET_MIN_THROTTLE|
674 		SD_CONF_BSET_DISKSORT_DISABLED|
675 		SD_CONF_BSET_LUN_RESET_ENABLED,
676 		&pirus_properties },
677 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
678 		SD_CONF_BSET_NRR_COUNT|
679 		SD_CONF_BSET_BSY_RETRY_COUNT|
680 		SD_CONF_BSET_RST_RETRIES|
681 		SD_CONF_BSET_MIN_THROTTLE|
682 		SD_CONF_BSET_DISKSORT_DISABLED|
683 		SD_CONF_BSET_LUN_RESET_ENABLED,
684 		&pirus_properties },
685 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
686 		SD_CONF_BSET_NRR_COUNT|
687 		SD_CONF_BSET_BSY_RETRY_COUNT|
688 		SD_CONF_BSET_RST_RETRIES|
689 		SD_CONF_BSET_MIN_THROTTLE|
690 		SD_CONF_BSET_DISKSORT_DISABLED|
691 		SD_CONF_BSET_LUN_RESET_ENABLED,
692 		&pirus_properties },
693 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
694 		SD_CONF_BSET_NRR_COUNT|
695 		SD_CONF_BSET_BSY_RETRY_COUNT|
696 		SD_CONF_BSET_RST_RETRIES|
697 		SD_CONF_BSET_MIN_THROTTLE|
698 		SD_CONF_BSET_DISKSORT_DISABLED|
699 		SD_CONF_BSET_LUN_RESET_ENABLED,
700 		&pirus_properties },
701 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
702 		SD_CONF_BSET_NRR_COUNT|
703 		SD_CONF_BSET_BSY_RETRY_COUNT|
704 		SD_CONF_BSET_RST_RETRIES|
705 		SD_CONF_BSET_MIN_THROTTLE|
706 		SD_CONF_BSET_DISKSORT_DISABLED|
707 		SD_CONF_BSET_LUN_RESET_ENABLED,
708 		&pirus_properties },
709 	{ "SUN     STK6580_6780", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
710 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
711 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
712 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
713 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
714 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
715 #endif /* fibre or NON-sparc platforms */
716 #if ((defined(__sparc) && !defined(__fibre)) ||\
717 	(defined(__i386) || defined(__amd64)))
718 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
719 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
720 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
721 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
722 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
723 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
724 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
725 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
726 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
727 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
728 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
729 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
730 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
731 	    &symbios_properties },
732 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
733 	    &lsi_properties_scsi },
734 #if defined(__i386) || defined(__amd64)
735 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
736 				    | SD_CONF_BSET_READSUB_BCD
737 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
738 				    | SD_CONF_BSET_NO_READ_HEADER
739 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
740 
741 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
742 				    | SD_CONF_BSET_READSUB_BCD
743 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
744 				    | SD_CONF_BSET_NO_READ_HEADER
745 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
746 #endif /* __i386 || __amd64 */
747 #endif /* sparc NON-fibre or NON-sparc platforms */
748 
749 #if (defined(SD_PROP_TST))
750 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
751 				| SD_CONF_BSET_CTYPE
752 				| SD_CONF_BSET_NRR_COUNT
753 				| SD_CONF_BSET_FAB_DEVID
754 				| SD_CONF_BSET_NOCACHE
755 				| SD_CONF_BSET_BSY_RETRY_COUNT
756 				| SD_CONF_BSET_PLAYMSF_BCD
757 				| SD_CONF_BSET_READSUB_BCD
758 				| SD_CONF_BSET_READ_TOC_TRK_BCD
759 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
760 				| SD_CONF_BSET_NO_READ_HEADER
761 				| SD_CONF_BSET_READ_CD_XD4
762 				| SD_CONF_BSET_RST_RETRIES
763 				| SD_CONF_BSET_RSV_REL_TIME
764 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
765 #endif
766 };
767 
768 static const int sd_disk_table_size =
769 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
770 
771 
772 
773 #define	SD_INTERCONNECT_PARALLEL	0
774 #define	SD_INTERCONNECT_FABRIC		1
775 #define	SD_INTERCONNECT_FIBRE		2
776 #define	SD_INTERCONNECT_SSA		3
777 #define	SD_INTERCONNECT_SATA		4
778 #define	SD_IS_PARALLEL_SCSI(un)		\
779 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
780 #define	SD_IS_SERIAL(un)		\
781 	((un)->un_interconnect_type == SD_INTERCONNECT_SATA)
782 
783 /*
784  * Definitions used by device id registration routines
785  */
786 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
787 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
788 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
789 
790 static kmutex_t sd_sense_mutex = {0};
791 
792 /*
793  * Macros for updates of the driver state
794  */
795 #define	New_state(un, s)        \
796 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
797 #define	Restore_state(un)	\
798 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
799 
800 static struct sd_cdbinfo sd_cdbtab[] = {
801 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
802 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
803 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
804 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
805 };
806 
807 /*
808  * Specifies the number of seconds that must have elapsed since the last
809  * cmd. has completed for a device to be declared idle to the PM framework.
810  */
811 static int sd_pm_idletime = 1;
812 
813 /*
814  * Internal function prototypes
815  */
816 
817 #if (defined(__fibre))
818 /*
819  * These #defines are to avoid namespace collisions that occur because this
820  * code is currently used to compile two separate driver modules: sd and ssd.
821  * All function names need to be treated this way (even if declared static)
822  * in order to allow the debugger to resolve the names properly.
823  * It is anticipated that in the near future the ssd module will be obsoleted,
824  * at which time this ugliness should go away.
825  */
826 #define	sd_log_trace			ssd_log_trace
827 #define	sd_log_info			ssd_log_info
828 #define	sd_log_err			ssd_log_err
829 #define	sdprobe				ssdprobe
830 #define	sdinfo				ssdinfo
831 #define	sd_prop_op			ssd_prop_op
832 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
833 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
834 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
835 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
836 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
837 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
838 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
839 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
840 #define	sd_spin_up_unit			ssd_spin_up_unit
841 #define	sd_enable_descr_sense		ssd_enable_descr_sense
842 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
843 #define	sd_set_mmc_caps			ssd_set_mmc_caps
844 #define	sd_read_unit_properties		ssd_read_unit_properties
845 #define	sd_process_sdconf_file		ssd_process_sdconf_file
846 #define	sd_process_sdconf_table		ssd_process_sdconf_table
847 #define	sd_sdconf_id_match		ssd_sdconf_id_match
848 #define	sd_blank_cmp			ssd_blank_cmp
849 #define	sd_chk_vers1_data		ssd_chk_vers1_data
850 #define	sd_set_vers1_properties		ssd_set_vers1_properties
851 
852 #define	sd_get_physical_geometry	ssd_get_physical_geometry
853 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
854 #define	sd_update_block_info		ssd_update_block_info
855 #define	sd_register_devid		ssd_register_devid
856 #define	sd_get_devid			ssd_get_devid
857 #define	sd_create_devid			ssd_create_devid
858 #define	sd_write_deviceid		ssd_write_deviceid
859 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
860 #define	sd_setup_pm			ssd_setup_pm
861 #define	sd_create_pm_components		ssd_create_pm_components
862 #define	sd_ddi_suspend			ssd_ddi_suspend
863 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
864 #define	sd_ddi_resume			ssd_ddi_resume
865 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
866 #define	sdpower				ssdpower
867 #define	sdattach			ssdattach
868 #define	sddetach			ssddetach
869 #define	sd_unit_attach			ssd_unit_attach
870 #define	sd_unit_detach			ssd_unit_detach
871 #define	sd_set_unit_attributes		ssd_set_unit_attributes
872 #define	sd_create_errstats		ssd_create_errstats
873 #define	sd_set_errstats			ssd_set_errstats
874 #define	sd_set_pstats			ssd_set_pstats
875 #define	sddump				ssddump
876 #define	sd_scsi_poll			ssd_scsi_poll
877 #define	sd_send_polled_RQS		ssd_send_polled_RQS
878 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
879 #define	sd_init_event_callbacks		ssd_init_event_callbacks
880 #define	sd_event_callback		ssd_event_callback
881 #define	sd_cache_control		ssd_cache_control
882 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
883 #define	sd_get_nv_sup			ssd_get_nv_sup
884 #define	sd_make_device			ssd_make_device
885 #define	sdopen				ssdopen
886 #define	sdclose				ssdclose
887 #define	sd_ready_and_valid		ssd_ready_and_valid
888 #define	sdmin				ssdmin
889 #define	sdread				ssdread
890 #define	sdwrite				ssdwrite
891 #define	sdaread				ssdaread
892 #define	sdawrite			ssdawrite
893 #define	sdstrategy			ssdstrategy
894 #define	sdioctl				ssdioctl
895 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
896 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
897 #define	sd_checksum_iostart		ssd_checksum_iostart
898 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
899 #define	sd_pm_iostart			ssd_pm_iostart
900 #define	sd_core_iostart			ssd_core_iostart
901 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
902 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
903 #define	sd_checksum_iodone		ssd_checksum_iodone
904 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
905 #define	sd_pm_iodone			ssd_pm_iodone
906 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
907 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
908 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
909 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
910 #define	sd_buf_iodone			ssd_buf_iodone
911 #define	sd_uscsi_strategy		ssd_uscsi_strategy
912 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
913 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
914 #define	sd_uscsi_iodone			ssd_uscsi_iodone
915 #define	sd_xbuf_strategy		ssd_xbuf_strategy
916 #define	sd_xbuf_init			ssd_xbuf_init
917 #define	sd_pm_entry			ssd_pm_entry
918 #define	sd_pm_exit			ssd_pm_exit
919 
920 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
921 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
922 
923 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
924 #define	sdintr				ssdintr
925 #define	sd_start_cmds			ssd_start_cmds
926 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
927 #define	sd_bioclone_alloc		ssd_bioclone_alloc
928 #define	sd_bioclone_free		ssd_bioclone_free
929 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
930 #define	sd_shadow_buf_free		ssd_shadow_buf_free
931 #define	sd_print_transport_rejected_message	\
932 					ssd_print_transport_rejected_message
933 #define	sd_retry_command		ssd_retry_command
934 #define	sd_set_retry_bp			ssd_set_retry_bp
935 #define	sd_send_request_sense_command	ssd_send_request_sense_command
936 #define	sd_start_retry_command		ssd_start_retry_command
937 #define	sd_start_direct_priority_command	\
938 					ssd_start_direct_priority_command
939 #define	sd_return_failed_command	ssd_return_failed_command
940 #define	sd_return_failed_command_no_restart	\
941 					ssd_return_failed_command_no_restart
942 #define	sd_return_command		ssd_return_command
943 #define	sd_sync_with_callback		ssd_sync_with_callback
944 #define	sdrunout			ssdrunout
945 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
946 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
947 #define	sd_reduce_throttle		ssd_reduce_throttle
948 #define	sd_restore_throttle		ssd_restore_throttle
949 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
950 #define	sd_init_cdb_limits		ssd_init_cdb_limits
951 #define	sd_pkt_status_good		ssd_pkt_status_good
952 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
953 #define	sd_pkt_status_busy		ssd_pkt_status_busy
954 #define	sd_pkt_status_reservation_conflict	\
955 					ssd_pkt_status_reservation_conflict
956 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
957 #define	sd_handle_request_sense		ssd_handle_request_sense
958 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
959 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
960 #define	sd_validate_sense_data		ssd_validate_sense_data
961 #define	sd_decode_sense			ssd_decode_sense
962 #define	sd_print_sense_msg		ssd_print_sense_msg
963 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
964 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
965 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
966 #define	sd_sense_key_medium_or_hardware_error	\
967 					ssd_sense_key_medium_or_hardware_error
968 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
969 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
970 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
971 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
972 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
973 #define	sd_sense_key_default		ssd_sense_key_default
974 #define	sd_print_retry_msg		ssd_print_retry_msg
975 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
976 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
977 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
978 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
979 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
980 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
981 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
982 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
983 #define	sd_pkt_reason_default		ssd_pkt_reason_default
984 #define	sd_reset_target			ssd_reset_target
985 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
986 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
987 #define	sd_taskq_create			ssd_taskq_create
988 #define	sd_taskq_delete			ssd_taskq_delete
989 #define	sd_target_change_task		ssd_target_change_task
990 #define	sd_log_lun_expansion_event	ssd_log_lun_expansion_event
991 #define	sd_media_change_task		ssd_media_change_task
992 #define	sd_handle_mchange		ssd_handle_mchange
993 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
994 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
995 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
996 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
997 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
998 					sd_send_scsi_feature_GET_CONFIGURATION
999 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
1000 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
1001 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
1002 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
1003 					ssd_send_scsi_PERSISTENT_RESERVE_IN
1004 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
1005 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
1006 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
1007 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
1008 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
1009 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
1010 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
1011 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
1012 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
1013 #define	sd_alloc_rqs			ssd_alloc_rqs
1014 #define	sd_free_rqs			ssd_free_rqs
1015 #define	sd_dump_memory			ssd_dump_memory
1016 #define	sd_get_media_info		ssd_get_media_info
1017 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
1018 #define	sd_nvpair_str_decode		ssd_nvpair_str_decode
1019 #define	sd_strtok_r			ssd_strtok_r
1020 #define	sd_set_properties		ssd_set_properties
1021 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
1022 #define	sd_setup_next_xfer		ssd_setup_next_xfer
1023 #define	sd_dkio_get_temp		ssd_dkio_get_temp
1024 #define	sd_check_mhd			ssd_check_mhd
1025 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1026 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1027 #define	sd_sname			ssd_sname
1028 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1029 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1030 #define	sd_take_ownership		ssd_take_ownership
1031 #define	sd_reserve_release		ssd_reserve_release
1032 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1033 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1034 #define	sd_persistent_reservation_in_read_keys	\
1035 					ssd_persistent_reservation_in_read_keys
1036 #define	sd_persistent_reservation_in_read_resv	\
1037 					ssd_persistent_reservation_in_read_resv
1038 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1039 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1040 #define	sd_mhdioc_release		ssd_mhdioc_release
1041 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1042 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1043 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1044 #define	sr_change_blkmode		ssr_change_blkmode
1045 #define	sr_change_speed			ssr_change_speed
1046 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1047 #define	sr_pause_resume			ssr_pause_resume
1048 #define	sr_play_msf			ssr_play_msf
1049 #define	sr_play_trkind			ssr_play_trkind
1050 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1051 #define	sr_read_subchannel		ssr_read_subchannel
1052 #define	sr_read_tocentry		ssr_read_tocentry
1053 #define	sr_read_tochdr			ssr_read_tochdr
1054 #define	sr_read_cdda			ssr_read_cdda
1055 #define	sr_read_cdxa			ssr_read_cdxa
1056 #define	sr_read_mode1			ssr_read_mode1
1057 #define	sr_read_mode2			ssr_read_mode2
1058 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1059 #define	sr_sector_mode			ssr_sector_mode
1060 #define	sr_eject			ssr_eject
1061 #define	sr_ejected			ssr_ejected
1062 #define	sr_check_wp			ssr_check_wp
1063 #define	sd_check_media			ssd_check_media
1064 #define	sd_media_watch_cb		ssd_media_watch_cb
1065 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1066 #define	sr_volume_ctrl			ssr_volume_ctrl
1067 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1068 #define	sd_log_page_supported		ssd_log_page_supported
1069 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1070 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1071 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1072 #define	sd_range_lock			ssd_range_lock
1073 #define	sd_get_range			ssd_get_range
1074 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1075 #define	sd_range_unlock			ssd_range_unlock
1076 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1077 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1078 
1079 #define	sd_iostart_chain		ssd_iostart_chain
1080 #define	sd_iodone_chain			ssd_iodone_chain
1081 #define	sd_initpkt_map			ssd_initpkt_map
1082 #define	sd_destroypkt_map		ssd_destroypkt_map
1083 #define	sd_chain_type_map		ssd_chain_type_map
1084 #define	sd_chain_index_map		ssd_chain_index_map
1085 
1086 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1087 #define	sd_failfast_flushq		ssd_failfast_flushq
1088 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1089 
1090 #define	sd_is_lsi			ssd_is_lsi
1091 #define	sd_tg_rdwr			ssd_tg_rdwr
1092 #define	sd_tg_getinfo			ssd_tg_getinfo
1093 
1094 #endif	/* #if (defined(__fibre)) */
1095 
1096 
1097 int _init(void);
1098 int _fini(void);
1099 int _info(struct modinfo *modinfop);
1100 
1101 /*PRINTFLIKE3*/
1102 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1103 /*PRINTFLIKE3*/
1104 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1105 /*PRINTFLIKE3*/
1106 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1107 
1108 static int sdprobe(dev_info_t *devi);
1109 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1110     void **result);
1111 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1112     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1113 
1114 /*
1115  * Smart probe for parallel scsi
1116  */
1117 static void sd_scsi_probe_cache_init(void);
1118 static void sd_scsi_probe_cache_fini(void);
1119 static void sd_scsi_clear_probe_cache(void);
1120 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1121 
1122 /*
1123  * Attached luns on target for parallel scsi
1124  */
1125 static void sd_scsi_target_lun_init(void);
1126 static void sd_scsi_target_lun_fini(void);
1127 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1128 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1129 
1130 static int	sd_spin_up_unit(sd_ssc_t *ssc);
1131 
1132 /*
1133  * Using sd_ssc_init to establish sd_ssc_t struct
1134  * Using sd_ssc_send to send uscsi internal command
1135  * Using sd_ssc_fini to free sd_ssc_t struct
1136  */
1137 static sd_ssc_t *sd_ssc_init(struct sd_lun *un);
1138 static int sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd,
1139     int flag, enum uio_seg dataspace, int path_flag);
1140 static void sd_ssc_fini(sd_ssc_t *ssc);
1141 
1142 /*
1143  * Using sd_ssc_assessment to set correct type-of-assessment
1144  * Using sd_ssc_post to post ereport & system log
1145  *       sd_ssc_post will call sd_ssc_print to print system log
1146  *       sd_ssc_post will call sd_ssd_ereport_post to post ereport
1147  */
1148 static void sd_ssc_assessment(sd_ssc_t *ssc,
1149     enum sd_type_assessment tp_assess);
1150 
1151 static void sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess);
1152 static void sd_ssc_print(sd_ssc_t *ssc, int sd_severity);
1153 static void sd_ssc_ereport_post(sd_ssc_t *ssc,
1154     enum sd_driver_assessment drv_assess);
1155 
1156 /*
1157  * Using sd_ssc_set_info to mark an un-decodable-data error.
1158  * Using sd_ssc_extract_info to transfer information from internal
1159  *       data structures to sd_ssc_t.
1160  */
1161 static void sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags,
1162     const char *fmt, ...);
1163 static void sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un,
1164     struct scsi_pkt *pktp, struct buf *bp, struct sd_xbuf *xp);
1165 
1166 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1167     enum uio_seg dataspace, int path_flag);
1168 
1169 #ifdef _LP64
1170 static void	sd_enable_descr_sense(sd_ssc_t *ssc);
1171 static void	sd_reenable_dsense_task(void *arg);
1172 #endif /* _LP64 */
1173 
1174 static void	sd_set_mmc_caps(sd_ssc_t *ssc);
1175 
1176 static void sd_read_unit_properties(struct sd_lun *un);
1177 static int  sd_process_sdconf_file(struct sd_lun *un);
1178 static void sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str);
1179 static char *sd_strtok_r(char *string, const char *sepset, char **lasts);
1180 static void sd_set_properties(struct sd_lun *un, char *name, char *value);
1181 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1182     int *data_list, sd_tunables *values);
1183 static void sd_process_sdconf_table(struct sd_lun *un);
1184 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1185 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1186 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1187 	int list_len, char *dataname_ptr);
1188 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1189     sd_tunables *prop_list);
1190 
1191 static void sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi,
1192     int reservation_flag);
1193 static int  sd_get_devid(sd_ssc_t *ssc);
1194 static ddi_devid_t sd_create_devid(sd_ssc_t *ssc);
1195 static int  sd_write_deviceid(sd_ssc_t *ssc);
1196 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1197 static int  sd_check_vpd_page_support(sd_ssc_t *ssc);
1198 
1199 static void sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi);
1200 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1201 
1202 static int  sd_ddi_suspend(dev_info_t *devi);
1203 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1204 static int  sd_ddi_resume(dev_info_t *devi);
1205 static int  sd_ddi_pm_resume(struct sd_lun *un);
1206 static int  sdpower(dev_info_t *devi, int component, int level);
1207 
1208 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1209 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1210 static int  sd_unit_attach(dev_info_t *devi);
1211 static int  sd_unit_detach(dev_info_t *devi);
1212 
1213 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1214 static void sd_create_errstats(struct sd_lun *un, int instance);
1215 static void sd_set_errstats(struct sd_lun *un);
1216 static void sd_set_pstats(struct sd_lun *un);
1217 
1218 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1219 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1220 static int  sd_send_polled_RQS(struct sd_lun *un);
1221 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1222 
1223 #if (defined(__fibre))
1224 /*
1225  * Event callbacks (photon)
1226  */
1227 static void sd_init_event_callbacks(struct sd_lun *un);
1228 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1229 #endif
1230 
1231 /*
1232  * Defines for sd_cache_control
1233  */
1234 
1235 #define	SD_CACHE_ENABLE		1
1236 #define	SD_CACHE_DISABLE	0
1237 #define	SD_CACHE_NOCHANGE	-1
1238 
1239 static int   sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag);
1240 static int   sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled);
1241 static void  sd_get_nv_sup(sd_ssc_t *ssc);
1242 static dev_t sd_make_device(dev_info_t *devi);
1243 
1244 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1245 	uint64_t capacity);
1246 
1247 /*
1248  * Driver entry point functions.
1249  */
1250 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1251 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1252 static int  sd_ready_and_valid(sd_ssc_t *ssc, int part);
1253 
1254 static void sdmin(struct buf *bp);
1255 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1256 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1257 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1258 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1259 
1260 static int sdstrategy(struct buf *bp);
1261 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1262 
1263 /*
1264  * Function prototypes for layering functions in the iostart chain.
1265  */
1266 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1267 	struct buf *bp);
1268 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1269 	struct buf *bp);
1270 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1271 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1272 	struct buf *bp);
1273 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1274 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1275 
1276 /*
1277  * Function prototypes for layering functions in the iodone chain.
1278  */
1279 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1280 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1281 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1282 	struct buf *bp);
1283 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1284 	struct buf *bp);
1285 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1286 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1287 	struct buf *bp);
1288 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1289 
1290 /*
1291  * Prototypes for functions to support buf(9S) based IO.
1292  */
1293 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1294 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1295 static void sd_destroypkt_for_buf(struct buf *);
1296 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1297 	struct buf *bp, int flags,
1298 	int (*callback)(caddr_t), caddr_t callback_arg,
1299 	diskaddr_t lba, uint32_t blockcount);
1300 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1301 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1302 
1303 /*
1304  * Prototypes for functions to support USCSI IO.
1305  */
1306 static int sd_uscsi_strategy(struct buf *bp);
1307 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1308 static void sd_destroypkt_for_uscsi(struct buf *);
1309 
1310 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1311 	uchar_t chain_type, void *pktinfop);
1312 
1313 static int  sd_pm_entry(struct sd_lun *un);
1314 static void sd_pm_exit(struct sd_lun *un);
1315 
1316 static void sd_pm_idletimeout_handler(void *arg);
1317 
1318 /*
1319  * sd_core internal functions (used at the sd_core_io layer).
1320  */
1321 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1322 static void sdintr(struct scsi_pkt *pktp);
1323 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1324 
1325 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1326 	enum uio_seg dataspace, int path_flag);
1327 
1328 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1329 	daddr_t blkno, int (*func)(struct buf *));
1330 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1331 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1332 static void sd_bioclone_free(struct buf *bp);
1333 static void sd_shadow_buf_free(struct buf *bp);
1334 
1335 static void sd_print_transport_rejected_message(struct sd_lun *un,
1336 	struct sd_xbuf *xp, int code);
1337 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1338     void *arg, int code);
1339 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1340     void *arg, int code);
1341 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1342     void *arg, int code);
1343 
1344 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1345 	int retry_check_flag,
1346 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1347 		int c),
1348 	void *user_arg, int failure_code,  clock_t retry_delay,
1349 	void (*statp)(kstat_io_t *));
1350 
1351 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1352 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1353 
1354 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1355 	struct scsi_pkt *pktp);
1356 static void sd_start_retry_command(void *arg);
1357 static void sd_start_direct_priority_command(void *arg);
1358 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1359 	int errcode);
1360 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1361 	struct buf *bp, int errcode);
1362 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1363 static void sd_sync_with_callback(struct sd_lun *un);
1364 static int sdrunout(caddr_t arg);
1365 
1366 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1367 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1368 
1369 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1370 static void sd_restore_throttle(void *arg);
1371 
1372 static void sd_init_cdb_limits(struct sd_lun *un);
1373 
1374 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1375 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1376 
1377 /*
1378  * Error handling functions
1379  */
1380 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1381 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1382 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1383 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1384 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1385 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1386 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1387 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1388 
1389 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1390 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1391 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1392 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1393 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1394 	struct sd_xbuf *xp, size_t actual_len);
1395 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1396 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1397 
1398 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1399 	void *arg, int code);
1400 
1401 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1402 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1403 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1404 	uint8_t *sense_datap,
1405 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1406 static void sd_sense_key_not_ready(struct sd_lun *un,
1407 	uint8_t *sense_datap,
1408 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1409 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1410 	uint8_t *sense_datap,
1411 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1412 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1413 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1414 static void sd_sense_key_unit_attention(struct sd_lun *un,
1415 	uint8_t *sense_datap,
1416 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1417 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1418 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1419 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1420 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1421 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1422 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1423 static void sd_sense_key_default(struct sd_lun *un,
1424 	uint8_t *sense_datap,
1425 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1426 
1427 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1428 	void *arg, int flag);
1429 
1430 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1431 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1432 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1433 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1434 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1435 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1436 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1437 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1438 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1439 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1440 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1441 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1442 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1443 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1444 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1445 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1446 
1447 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1448 
1449 static void sd_start_stop_unit_callback(void *arg);
1450 static void sd_start_stop_unit_task(void *arg);
1451 
1452 static void sd_taskq_create(void);
1453 static void sd_taskq_delete(void);
1454 static void sd_target_change_task(void *arg);
1455 static void sd_log_lun_expansion_event(struct sd_lun *un, int km_flag);
1456 static void sd_media_change_task(void *arg);
1457 
1458 static int sd_handle_mchange(struct sd_lun *un);
1459 static int sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag);
1460 static int sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp,
1461 	uint32_t *lbap, int path_flag);
1462 static int sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp,
1463 	uint32_t *lbap, int path_flag);
1464 static int sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int flag,
1465 	int path_flag);
1466 static int sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr,
1467 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1468 static int sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag);
1469 static int sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc,
1470 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1471 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc,
1472 	uchar_t usr_cmd, uchar_t *usr_bufp);
1473 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1474 	struct dk_callback *dkc);
1475 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1476 static int sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc,
1477 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1478 	uchar_t *bufaddr, uint_t buflen, int path_flag);
1479 static int sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc,
1480 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1481 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag);
1482 static int sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize,
1483 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1484 static int sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize,
1485 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1486 static int sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
1487 	size_t buflen, daddr_t start_block, int path_flag);
1488 #define	sd_send_scsi_READ(ssc, bufaddr, buflen, start_block, path_flag)	\
1489 	sd_send_scsi_RDWR(ssc, SCMD_READ, bufaddr, buflen, start_block, \
1490 	path_flag)
1491 #define	sd_send_scsi_WRITE(ssc, bufaddr, buflen, start_block, path_flag)\
1492 	sd_send_scsi_RDWR(ssc, SCMD_WRITE, bufaddr, buflen, start_block,\
1493 	path_flag)
1494 
1495 static int sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr,
1496 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1497 	uint16_t param_ptr, int path_flag);
1498 
1499 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1500 static void sd_free_rqs(struct sd_lun *un);
1501 
1502 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1503 	uchar_t *data, int len, int fmt);
1504 static void sd_panic_for_res_conflict(struct sd_lun *un);
1505 
1506 /*
1507  * Disk Ioctl Function Prototypes
1508  */
1509 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1510 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1511 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1512 
1513 /*
1514  * Multi-host Ioctl Prototypes
1515  */
1516 static int sd_check_mhd(dev_t dev, int interval);
1517 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1518 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1519 static char *sd_sname(uchar_t status);
1520 static void sd_mhd_resvd_recover(void *arg);
1521 static void sd_resv_reclaim_thread();
1522 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1523 static int sd_reserve_release(dev_t dev, int cmd);
1524 static void sd_rmv_resv_reclaim_req(dev_t dev);
1525 static void sd_mhd_reset_notify_cb(caddr_t arg);
1526 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1527 	mhioc_inkeys_t *usrp, int flag);
1528 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1529 	mhioc_inresvs_t *usrp, int flag);
1530 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1531 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1532 static int sd_mhdioc_release(dev_t dev);
1533 static int sd_mhdioc_register_devid(dev_t dev);
1534 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1535 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1536 
1537 /*
1538  * SCSI removable prototypes
1539  */
1540 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1541 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1542 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1543 static int sr_pause_resume(dev_t dev, int mode);
1544 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1545 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1546 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1547 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1548 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1549 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1550 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1551 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1552 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1553 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1554 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1555 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1556 static int sr_eject(dev_t dev);
1557 static void sr_ejected(register struct sd_lun *un);
1558 static int sr_check_wp(dev_t dev);
1559 static int sd_check_media(dev_t dev, enum dkio_state state);
1560 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1561 static void sd_delayed_cv_broadcast(void *arg);
1562 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1563 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1564 
1565 static int sd_log_page_supported(sd_ssc_t *ssc, int log_page);
1566 
1567 /*
1568  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1569  */
1570 static void sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag);
1571 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1572 static void sd_wm_cache_destructor(void *wm, void *un);
1573 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1574 	daddr_t endb, ushort_t typ);
1575 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1576 	daddr_t endb);
1577 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1578 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1579 static void sd_read_modify_write_task(void * arg);
1580 static int
1581 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1582 	struct buf **bpp);
1583 
1584 
1585 /*
1586  * Function prototypes for failfast support.
1587  */
1588 static void sd_failfast_flushq(struct sd_lun *un);
1589 static int sd_failfast_flushq_callback(struct buf *bp);
1590 
1591 /*
1592  * Function prototypes to check for lsi devices
1593  */
1594 static void sd_is_lsi(struct sd_lun *un);
1595 
1596 /*
1597  * Function prototypes for partial DMA support
1598  */
1599 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1600 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1601 
1602 
1603 /* Function prototypes for cmlb */
1604 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
1605     diskaddr_t start_block, size_t reqlength, void *tg_cookie);
1606 
1607 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie);
1608 
1609 /*
1610  * Constants for failfast support:
1611  *
1612  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1613  * failfast processing being performed.
1614  *
1615  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1616  * failfast processing on all bufs with B_FAILFAST set.
1617  */
1618 
1619 #define	SD_FAILFAST_INACTIVE		0
1620 #define	SD_FAILFAST_ACTIVE		1
1621 
1622 /*
1623  * Bitmask to control behavior of buf(9S) flushes when a transition to
1624  * the failfast state occurs. Optional bits include:
1625  *
1626  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1627  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1628  * be flushed.
1629  *
1630  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1631  * driver, in addition to the regular wait queue. This includes the xbuf
1632  * queues. When clear, only the driver's wait queue will be flushed.
1633  */
1634 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1635 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1636 
1637 /*
1638  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1639  * to flush all queues within the driver.
1640  */
1641 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1642 
1643 
1644 /*
1645  * SD Testing Fault Injection
1646  */
1647 #ifdef SD_FAULT_INJECTION
1648 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1649 static void sd_faultinjection(struct scsi_pkt *pktp);
1650 static void sd_injection_log(char *buf, struct sd_lun *un);
1651 #endif
1652 
1653 /*
1654  * Device driver ops vector
1655  */
1656 static struct cb_ops sd_cb_ops = {
1657 	sdopen,			/* open */
1658 	sdclose,		/* close */
1659 	sdstrategy,		/* strategy */
1660 	nodev,			/* print */
1661 	sddump,			/* dump */
1662 	sdread,			/* read */
1663 	sdwrite,		/* write */
1664 	sdioctl,		/* ioctl */
1665 	nodev,			/* devmap */
1666 	nodev,			/* mmap */
1667 	nodev,			/* segmap */
1668 	nochpoll,		/* poll */
1669 	sd_prop_op,		/* cb_prop_op */
1670 	0,			/* streamtab  */
1671 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1672 	CB_REV,			/* cb_rev */
1673 	sdaread, 		/* async I/O read entry point */
1674 	sdawrite		/* async I/O write entry point */
1675 };
1676 
1677 static struct dev_ops sd_ops = {
1678 	DEVO_REV,		/* devo_rev, */
1679 	0,			/* refcnt  */
1680 	sdinfo,			/* info */
1681 	nulldev,		/* identify */
1682 	sdprobe,		/* probe */
1683 	sdattach,		/* attach */
1684 	sddetach,		/* detach */
1685 	nodev,			/* reset */
1686 	&sd_cb_ops,		/* driver operations */
1687 	NULL,			/* bus operations */
1688 	sdpower			/* power */
1689 };
1690 
1691 
1692 /*
1693  * This is the loadable module wrapper.
1694  */
1695 #include <sys/modctl.h>
1696 
1697 static struct modldrv modldrv = {
1698 	&mod_driverops,		/* Type of module. This one is a driver */
1699 	SD_MODULE_NAME,		/* Module name. */
1700 	&sd_ops			/* driver ops */
1701 };
1702 
1703 
1704 static struct modlinkage modlinkage = {
1705 	MODREV_1,
1706 	&modldrv,
1707 	NULL
1708 };
1709 
1710 static cmlb_tg_ops_t sd_tgops = {
1711 	TG_DK_OPS_VERSION_1,
1712 	sd_tg_rdwr,
1713 	sd_tg_getinfo
1714 	};
1715 
1716 static struct scsi_asq_key_strings sd_additional_codes[] = {
1717 	0x81, 0, "Logical Unit is Reserved",
1718 	0x85, 0, "Audio Address Not Valid",
1719 	0xb6, 0, "Media Load Mechanism Failed",
1720 	0xB9, 0, "Audio Play Operation Aborted",
1721 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1722 	0x53, 2, "Medium removal prevented",
1723 	0x6f, 0, "Authentication failed during key exchange",
1724 	0x6f, 1, "Key not present",
1725 	0x6f, 2, "Key not established",
1726 	0x6f, 3, "Read without proper authentication",
1727 	0x6f, 4, "Mismatched region to this logical unit",
1728 	0x6f, 5, "Region reset count error",
1729 	0xffff, 0x0, NULL
1730 };
1731 
1732 
1733 /*
1734  * Struct for passing printing information for sense data messages
1735  */
1736 struct sd_sense_info {
1737 	int	ssi_severity;
1738 	int	ssi_pfa_flag;
1739 };
1740 
1741 /*
1742  * Table of function pointers for iostart-side routines. Separate "chains"
1743  * of layered function calls are formed by placing the function pointers
1744  * sequentially in the desired order. Functions are called according to an
1745  * incrementing table index ordering. The last function in each chain must
1746  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1747  * in the sd_iodone_chain[] array.
1748  *
1749  * Note: It may seem more natural to organize both the iostart and iodone
1750  * functions together, into an array of structures (or some similar
1751  * organization) with a common index, rather than two separate arrays which
1752  * must be maintained in synchronization. The purpose of this division is
1753  * to achieve improved performance: individual arrays allows for more
1754  * effective cache line utilization on certain platforms.
1755  */
1756 
1757 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1758 
1759 
1760 static sd_chain_t sd_iostart_chain[] = {
1761 
1762 	/* Chain for buf IO for disk drive targets (PM enabled) */
1763 	sd_mapblockaddr_iostart,	/* Index: 0 */
1764 	sd_pm_iostart,			/* Index: 1 */
1765 	sd_core_iostart,		/* Index: 2 */
1766 
1767 	/* Chain for buf IO for disk drive targets (PM disabled) */
1768 	sd_mapblockaddr_iostart,	/* Index: 3 */
1769 	sd_core_iostart,		/* Index: 4 */
1770 
1771 	/* Chain for buf IO for removable-media targets (PM enabled) */
1772 	sd_mapblockaddr_iostart,	/* Index: 5 */
1773 	sd_mapblocksize_iostart,	/* Index: 6 */
1774 	sd_pm_iostart,			/* Index: 7 */
1775 	sd_core_iostart,		/* Index: 8 */
1776 
1777 	/* Chain for buf IO for removable-media targets (PM disabled) */
1778 	sd_mapblockaddr_iostart,	/* Index: 9 */
1779 	sd_mapblocksize_iostart,	/* Index: 10 */
1780 	sd_core_iostart,		/* Index: 11 */
1781 
1782 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1783 	sd_mapblockaddr_iostart,	/* Index: 12 */
1784 	sd_checksum_iostart,		/* Index: 13 */
1785 	sd_pm_iostart,			/* Index: 14 */
1786 	sd_core_iostart,		/* Index: 15 */
1787 
1788 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1789 	sd_mapblockaddr_iostart,	/* Index: 16 */
1790 	sd_checksum_iostart,		/* Index: 17 */
1791 	sd_core_iostart,		/* Index: 18 */
1792 
1793 	/* Chain for USCSI commands (all targets) */
1794 	sd_pm_iostart,			/* Index: 19 */
1795 	sd_core_iostart,		/* Index: 20 */
1796 
1797 	/* Chain for checksumming USCSI commands (all targets) */
1798 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1799 	sd_pm_iostart,			/* Index: 22 */
1800 	sd_core_iostart,		/* Index: 23 */
1801 
1802 	/* Chain for "direct" USCSI commands (all targets) */
1803 	sd_core_iostart,		/* Index: 24 */
1804 
1805 	/* Chain for "direct priority" USCSI commands (all targets) */
1806 	sd_core_iostart,		/* Index: 25 */
1807 };
1808 
1809 /*
1810  * Macros to locate the first function of each iostart chain in the
1811  * sd_iostart_chain[] array. These are located by the index in the array.
1812  */
1813 #define	SD_CHAIN_DISK_IOSTART			0
1814 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1815 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1816 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1817 #define	SD_CHAIN_CHKSUM_IOSTART			12
1818 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1819 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1820 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1821 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1822 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1823 
1824 
1825 /*
1826  * Table of function pointers for the iodone-side routines for the driver-
1827  * internal layering mechanism.  The calling sequence for iodone routines
1828  * uses a decrementing table index, so the last routine called in a chain
1829  * must be at the lowest array index location for that chain.  The last
1830  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1831  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1832  * of the functions in an iodone side chain must correspond to the ordering
1833  * of the iostart routines for that chain.  Note that there is no iodone
1834  * side routine that corresponds to sd_core_iostart(), so there is no
1835  * entry in the table for this.
1836  */
1837 
1838 static sd_chain_t sd_iodone_chain[] = {
1839 
1840 	/* Chain for buf IO for disk drive targets (PM enabled) */
1841 	sd_buf_iodone,			/* Index: 0 */
1842 	sd_mapblockaddr_iodone,		/* Index: 1 */
1843 	sd_pm_iodone,			/* Index: 2 */
1844 
1845 	/* Chain for buf IO for disk drive targets (PM disabled) */
1846 	sd_buf_iodone,			/* Index: 3 */
1847 	sd_mapblockaddr_iodone,		/* Index: 4 */
1848 
1849 	/* Chain for buf IO for removable-media targets (PM enabled) */
1850 	sd_buf_iodone,			/* Index: 5 */
1851 	sd_mapblockaddr_iodone,		/* Index: 6 */
1852 	sd_mapblocksize_iodone,		/* Index: 7 */
1853 	sd_pm_iodone,			/* Index: 8 */
1854 
1855 	/* Chain for buf IO for removable-media targets (PM disabled) */
1856 	sd_buf_iodone,			/* Index: 9 */
1857 	sd_mapblockaddr_iodone,		/* Index: 10 */
1858 	sd_mapblocksize_iodone,		/* Index: 11 */
1859 
1860 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1861 	sd_buf_iodone,			/* Index: 12 */
1862 	sd_mapblockaddr_iodone,		/* Index: 13 */
1863 	sd_checksum_iodone,		/* Index: 14 */
1864 	sd_pm_iodone,			/* Index: 15 */
1865 
1866 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1867 	sd_buf_iodone,			/* Index: 16 */
1868 	sd_mapblockaddr_iodone,		/* Index: 17 */
1869 	sd_checksum_iodone,		/* Index: 18 */
1870 
1871 	/* Chain for USCSI commands (non-checksum targets) */
1872 	sd_uscsi_iodone,		/* Index: 19 */
1873 	sd_pm_iodone,			/* Index: 20 */
1874 
1875 	/* Chain for USCSI commands (checksum targets) */
1876 	sd_uscsi_iodone,		/* Index: 21 */
1877 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1878 	sd_pm_iodone,			/* Index: 22 */
1879 
1880 	/* Chain for "direct" USCSI commands (all targets) */
1881 	sd_uscsi_iodone,		/* Index: 24 */
1882 
1883 	/* Chain for "direct priority" USCSI commands (all targets) */
1884 	sd_uscsi_iodone,		/* Index: 25 */
1885 };
1886 
1887 
1888 /*
1889  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1890  * each iodone-side chain. These are located by the array index, but as the
1891  * iodone side functions are called in a decrementing-index order, the
1892  * highest index number in each chain must be specified (as these correspond
1893  * to the first function in the iodone chain that will be called by the core
1894  * at IO completion time).
1895  */
1896 
1897 #define	SD_CHAIN_DISK_IODONE			2
1898 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1899 #define	SD_CHAIN_RMMEDIA_IODONE			8
1900 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1901 #define	SD_CHAIN_CHKSUM_IODONE			15
1902 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1903 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1904 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1905 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1906 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1907 
1908 
1909 
1910 
1911 /*
1912  * Array to map a layering chain index to the appropriate initpkt routine.
1913  * The redundant entries are present so that the index used for accessing
1914  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1915  * with this table as well.
1916  */
1917 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1918 
1919 static sd_initpkt_t	sd_initpkt_map[] = {
1920 
1921 	/* Chain for buf IO for disk drive targets (PM enabled) */
1922 	sd_initpkt_for_buf,		/* Index: 0 */
1923 	sd_initpkt_for_buf,		/* Index: 1 */
1924 	sd_initpkt_for_buf,		/* Index: 2 */
1925 
1926 	/* Chain for buf IO for disk drive targets (PM disabled) */
1927 	sd_initpkt_for_buf,		/* Index: 3 */
1928 	sd_initpkt_for_buf,		/* Index: 4 */
1929 
1930 	/* Chain for buf IO for removable-media targets (PM enabled) */
1931 	sd_initpkt_for_buf,		/* Index: 5 */
1932 	sd_initpkt_for_buf,		/* Index: 6 */
1933 	sd_initpkt_for_buf,		/* Index: 7 */
1934 	sd_initpkt_for_buf,		/* Index: 8 */
1935 
1936 	/* Chain for buf IO for removable-media targets (PM disabled) */
1937 	sd_initpkt_for_buf,		/* Index: 9 */
1938 	sd_initpkt_for_buf,		/* Index: 10 */
1939 	sd_initpkt_for_buf,		/* Index: 11 */
1940 
1941 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1942 	sd_initpkt_for_buf,		/* Index: 12 */
1943 	sd_initpkt_for_buf,		/* Index: 13 */
1944 	sd_initpkt_for_buf,		/* Index: 14 */
1945 	sd_initpkt_for_buf,		/* Index: 15 */
1946 
1947 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1948 	sd_initpkt_for_buf,		/* Index: 16 */
1949 	sd_initpkt_for_buf,		/* Index: 17 */
1950 	sd_initpkt_for_buf,		/* Index: 18 */
1951 
1952 	/* Chain for USCSI commands (non-checksum targets) */
1953 	sd_initpkt_for_uscsi,		/* Index: 19 */
1954 	sd_initpkt_for_uscsi,		/* Index: 20 */
1955 
1956 	/* Chain for USCSI commands (checksum targets) */
1957 	sd_initpkt_for_uscsi,		/* Index: 21 */
1958 	sd_initpkt_for_uscsi,		/* Index: 22 */
1959 	sd_initpkt_for_uscsi,		/* Index: 22 */
1960 
1961 	/* Chain for "direct" USCSI commands (all targets) */
1962 	sd_initpkt_for_uscsi,		/* Index: 24 */
1963 
1964 	/* Chain for "direct priority" USCSI commands (all targets) */
1965 	sd_initpkt_for_uscsi,		/* Index: 25 */
1966 
1967 };
1968 
1969 
1970 /*
1971  * Array to map a layering chain index to the appropriate destroypktpkt routine.
1972  * The redundant entries are present so that the index used for accessing
1973  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1974  * with this table as well.
1975  */
1976 typedef void (*sd_destroypkt_t)(struct buf *);
1977 
1978 static sd_destroypkt_t	sd_destroypkt_map[] = {
1979 
1980 	/* Chain for buf IO for disk drive targets (PM enabled) */
1981 	sd_destroypkt_for_buf,		/* Index: 0 */
1982 	sd_destroypkt_for_buf,		/* Index: 1 */
1983 	sd_destroypkt_for_buf,		/* Index: 2 */
1984 
1985 	/* Chain for buf IO for disk drive targets (PM disabled) */
1986 	sd_destroypkt_for_buf,		/* Index: 3 */
1987 	sd_destroypkt_for_buf,		/* Index: 4 */
1988 
1989 	/* Chain for buf IO for removable-media targets (PM enabled) */
1990 	sd_destroypkt_for_buf,		/* Index: 5 */
1991 	sd_destroypkt_for_buf,		/* Index: 6 */
1992 	sd_destroypkt_for_buf,		/* Index: 7 */
1993 	sd_destroypkt_for_buf,		/* Index: 8 */
1994 
1995 	/* Chain for buf IO for removable-media targets (PM disabled) */
1996 	sd_destroypkt_for_buf,		/* Index: 9 */
1997 	sd_destroypkt_for_buf,		/* Index: 10 */
1998 	sd_destroypkt_for_buf,		/* Index: 11 */
1999 
2000 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2001 	sd_destroypkt_for_buf,		/* Index: 12 */
2002 	sd_destroypkt_for_buf,		/* Index: 13 */
2003 	sd_destroypkt_for_buf,		/* Index: 14 */
2004 	sd_destroypkt_for_buf,		/* Index: 15 */
2005 
2006 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2007 	sd_destroypkt_for_buf,		/* Index: 16 */
2008 	sd_destroypkt_for_buf,		/* Index: 17 */
2009 	sd_destroypkt_for_buf,		/* Index: 18 */
2010 
2011 	/* Chain for USCSI commands (non-checksum targets) */
2012 	sd_destroypkt_for_uscsi,	/* Index: 19 */
2013 	sd_destroypkt_for_uscsi,	/* Index: 20 */
2014 
2015 	/* Chain for USCSI commands (checksum targets) */
2016 	sd_destroypkt_for_uscsi,	/* Index: 21 */
2017 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2018 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2019 
2020 	/* Chain for "direct" USCSI commands (all targets) */
2021 	sd_destroypkt_for_uscsi,	/* Index: 24 */
2022 
2023 	/* Chain for "direct priority" USCSI commands (all targets) */
2024 	sd_destroypkt_for_uscsi,	/* Index: 25 */
2025 
2026 };
2027 
2028 
2029 
2030 /*
2031  * Array to map a layering chain index to the appropriate chain "type".
2032  * The chain type indicates a specific property/usage of the chain.
2033  * The redundant entries are present so that the index used for accessing
2034  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2035  * with this table as well.
2036  */
2037 
2038 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
2039 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
2040 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
2041 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
2042 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
2043 						/* (for error recovery) */
2044 
2045 static int sd_chain_type_map[] = {
2046 
2047 	/* Chain for buf IO for disk drive targets (PM enabled) */
2048 	SD_CHAIN_BUFIO,			/* Index: 0 */
2049 	SD_CHAIN_BUFIO,			/* Index: 1 */
2050 	SD_CHAIN_BUFIO,			/* Index: 2 */
2051 
2052 	/* Chain for buf IO for disk drive targets (PM disabled) */
2053 	SD_CHAIN_BUFIO,			/* Index: 3 */
2054 	SD_CHAIN_BUFIO,			/* Index: 4 */
2055 
2056 	/* Chain for buf IO for removable-media targets (PM enabled) */
2057 	SD_CHAIN_BUFIO,			/* Index: 5 */
2058 	SD_CHAIN_BUFIO,			/* Index: 6 */
2059 	SD_CHAIN_BUFIO,			/* Index: 7 */
2060 	SD_CHAIN_BUFIO,			/* Index: 8 */
2061 
2062 	/* Chain for buf IO for removable-media targets (PM disabled) */
2063 	SD_CHAIN_BUFIO,			/* Index: 9 */
2064 	SD_CHAIN_BUFIO,			/* Index: 10 */
2065 	SD_CHAIN_BUFIO,			/* Index: 11 */
2066 
2067 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2068 	SD_CHAIN_BUFIO,			/* Index: 12 */
2069 	SD_CHAIN_BUFIO,			/* Index: 13 */
2070 	SD_CHAIN_BUFIO,			/* Index: 14 */
2071 	SD_CHAIN_BUFIO,			/* Index: 15 */
2072 
2073 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2074 	SD_CHAIN_BUFIO,			/* Index: 16 */
2075 	SD_CHAIN_BUFIO,			/* Index: 17 */
2076 	SD_CHAIN_BUFIO,			/* Index: 18 */
2077 
2078 	/* Chain for USCSI commands (non-checksum targets) */
2079 	SD_CHAIN_USCSI,			/* Index: 19 */
2080 	SD_CHAIN_USCSI,			/* Index: 20 */
2081 
2082 	/* Chain for USCSI commands (checksum targets) */
2083 	SD_CHAIN_USCSI,			/* Index: 21 */
2084 	SD_CHAIN_USCSI,			/* Index: 22 */
2085 	SD_CHAIN_USCSI,			/* Index: 22 */
2086 
2087 	/* Chain for "direct" USCSI commands (all targets) */
2088 	SD_CHAIN_DIRECT,		/* Index: 24 */
2089 
2090 	/* Chain for "direct priority" USCSI commands (all targets) */
2091 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2092 };
2093 
2094 
2095 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2096 #define	SD_IS_BUFIO(xp)			\
2097 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2098 
2099 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2100 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2101 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2102 
2103 
2104 
2105 /*
2106  * Struct, array, and macros to map a specific chain to the appropriate
2107  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2108  *
2109  * The sd_chain_index_map[] array is used at attach time to set the various
2110  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2111  * chain to be used with the instance. This allows different instances to use
2112  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2113  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2114  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2115  * dynamically & without the use of locking; and (2) a layer may update the
2116  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2117  * to allow for deferred processing of an IO within the same chain from a
2118  * different execution context.
2119  */
2120 
2121 struct sd_chain_index {
2122 	int	sci_iostart_index;
2123 	int	sci_iodone_index;
2124 };
2125 
2126 static struct sd_chain_index	sd_chain_index_map[] = {
2127 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2128 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2129 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2130 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2131 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2132 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2133 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2134 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2135 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2136 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2137 };
2138 
2139 
2140 /*
2141  * The following are indexes into the sd_chain_index_map[] array.
2142  */
2143 
2144 /* un->un_buf_chain_type must be set to one of these */
2145 #define	SD_CHAIN_INFO_DISK		0
2146 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2147 #define	SD_CHAIN_INFO_RMMEDIA		2
2148 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2149 #define	SD_CHAIN_INFO_CHKSUM		4
2150 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2151 
2152 /* un->un_uscsi_chain_type must be set to one of these */
2153 #define	SD_CHAIN_INFO_USCSI_CMD		6
2154 /* USCSI with PM disabled is the same as DIRECT */
2155 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2156 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2157 
2158 /* un->un_direct_chain_type must be set to one of these */
2159 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2160 
2161 /* un->un_priority_chain_type must be set to one of these */
2162 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2163 
2164 /* size for devid inquiries */
2165 #define	MAX_INQUIRY_SIZE		0xF0
2166 
2167 /*
2168  * Macros used by functions to pass a given buf(9S) struct along to the
2169  * next function in the layering chain for further processing.
2170  *
2171  * In the following macros, passing more than three arguments to the called
2172  * routines causes the optimizer for the SPARC compiler to stop doing tail
2173  * call elimination which results in significant performance degradation.
2174  */
2175 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2176 	((*(sd_iostart_chain[index]))(index, un, bp))
2177 
2178 #define	SD_BEGIN_IODONE(index, un, bp)	\
2179 	((*(sd_iodone_chain[index]))(index, un, bp))
2180 
2181 #define	SD_NEXT_IOSTART(index, un, bp)				\
2182 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2183 
2184 #define	SD_NEXT_IODONE(index, un, bp)				\
2185 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2186 
2187 /*
2188  *    Function: _init
2189  *
2190  * Description: This is the driver _init(9E) entry point.
2191  *
2192  * Return Code: Returns the value from mod_install(9F) or
2193  *		ddi_soft_state_init(9F) as appropriate.
2194  *
2195  *     Context: Called when driver module loaded.
2196  */
2197 
2198 int
2199 _init(void)
2200 {
2201 	int	err;
2202 
2203 	/* establish driver name from module name */
2204 	sd_label = (char *)mod_modname(&modlinkage);
2205 
2206 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2207 	    SD_MAXUNIT);
2208 
2209 	if (err != 0) {
2210 		return (err);
2211 	}
2212 
2213 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2214 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2215 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2216 
2217 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2218 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2219 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2220 
2221 	/*
2222 	 * it's ok to init here even for fibre device
2223 	 */
2224 	sd_scsi_probe_cache_init();
2225 
2226 	sd_scsi_target_lun_init();
2227 
2228 	/*
2229 	 * Creating taskq before mod_install ensures that all callers (threads)
2230 	 * that enter the module after a successful mod_install encounter
2231 	 * a valid taskq.
2232 	 */
2233 	sd_taskq_create();
2234 
2235 	err = mod_install(&modlinkage);
2236 	if (err != 0) {
2237 		/* delete taskq if install fails */
2238 		sd_taskq_delete();
2239 
2240 		mutex_destroy(&sd_detach_mutex);
2241 		mutex_destroy(&sd_log_mutex);
2242 		mutex_destroy(&sd_label_mutex);
2243 
2244 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2245 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2246 		cv_destroy(&sd_tr.srq_inprocess_cv);
2247 
2248 		sd_scsi_probe_cache_fini();
2249 
2250 		sd_scsi_target_lun_fini();
2251 
2252 		ddi_soft_state_fini(&sd_state);
2253 		return (err);
2254 	}
2255 
2256 	return (err);
2257 }
2258 
2259 
2260 /*
2261  *    Function: _fini
2262  *
2263  * Description: This is the driver _fini(9E) entry point.
2264  *
2265  * Return Code: Returns the value from mod_remove(9F)
2266  *
2267  *     Context: Called when driver module is unloaded.
2268  */
2269 
2270 int
2271 _fini(void)
2272 {
2273 	int err;
2274 
2275 	if ((err = mod_remove(&modlinkage)) != 0) {
2276 		return (err);
2277 	}
2278 
2279 	sd_taskq_delete();
2280 
2281 	mutex_destroy(&sd_detach_mutex);
2282 	mutex_destroy(&sd_log_mutex);
2283 	mutex_destroy(&sd_label_mutex);
2284 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2285 
2286 	sd_scsi_probe_cache_fini();
2287 
2288 	sd_scsi_target_lun_fini();
2289 
2290 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2291 	cv_destroy(&sd_tr.srq_inprocess_cv);
2292 
2293 	ddi_soft_state_fini(&sd_state);
2294 
2295 	return (err);
2296 }
2297 
2298 
2299 /*
2300  *    Function: _info
2301  *
2302  * Description: This is the driver _info(9E) entry point.
2303  *
2304  *   Arguments: modinfop - pointer to the driver modinfo structure
2305  *
2306  * Return Code: Returns the value from mod_info(9F).
2307  *
2308  *     Context: Kernel thread context
2309  */
2310 
2311 int
2312 _info(struct modinfo *modinfop)
2313 {
2314 	return (mod_info(&modlinkage, modinfop));
2315 }
2316 
2317 
2318 /*
2319  * The following routines implement the driver message logging facility.
2320  * They provide component- and level- based debug output filtering.
2321  * Output may also be restricted to messages for a single instance by
2322  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2323  * to NULL, then messages for all instances are printed.
2324  *
2325  * These routines have been cloned from each other due to the language
2326  * constraints of macros and variable argument list processing.
2327  */
2328 
2329 
2330 /*
2331  *    Function: sd_log_err
2332  *
2333  * Description: This routine is called by the SD_ERROR macro for debug
2334  *		logging of error conditions.
2335  *
2336  *   Arguments: comp - driver component being logged
2337  *		dev  - pointer to driver info structure
2338  *		fmt  - error string and format to be logged
2339  */
2340 
2341 static void
2342 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2343 {
2344 	va_list		ap;
2345 	dev_info_t	*dev;
2346 
2347 	ASSERT(un != NULL);
2348 	dev = SD_DEVINFO(un);
2349 	ASSERT(dev != NULL);
2350 
2351 	/*
2352 	 * Filter messages based on the global component and level masks.
2353 	 * Also print if un matches the value of sd_debug_un, or if
2354 	 * sd_debug_un is set to NULL.
2355 	 */
2356 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2357 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2358 		mutex_enter(&sd_log_mutex);
2359 		va_start(ap, fmt);
2360 		(void) vsprintf(sd_log_buf, fmt, ap);
2361 		va_end(ap);
2362 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2363 		mutex_exit(&sd_log_mutex);
2364 	}
2365 #ifdef SD_FAULT_INJECTION
2366 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2367 	if (un->sd_injection_mask & comp) {
2368 		mutex_enter(&sd_log_mutex);
2369 		va_start(ap, fmt);
2370 		(void) vsprintf(sd_log_buf, fmt, ap);
2371 		va_end(ap);
2372 		sd_injection_log(sd_log_buf, un);
2373 		mutex_exit(&sd_log_mutex);
2374 	}
2375 #endif
2376 }
2377 
2378 
2379 /*
2380  *    Function: sd_log_info
2381  *
2382  * Description: This routine is called by the SD_INFO macro for debug
2383  *		logging of general purpose informational conditions.
2384  *
2385  *   Arguments: comp - driver component being logged
2386  *		dev  - pointer to driver info structure
2387  *		fmt  - info string and format to be logged
2388  */
2389 
2390 static void
2391 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2392 {
2393 	va_list		ap;
2394 	dev_info_t	*dev;
2395 
2396 	ASSERT(un != NULL);
2397 	dev = SD_DEVINFO(un);
2398 	ASSERT(dev != NULL);
2399 
2400 	/*
2401 	 * Filter messages based on the global component and level masks.
2402 	 * Also print if un matches the value of sd_debug_un, or if
2403 	 * sd_debug_un is set to NULL.
2404 	 */
2405 	if ((sd_component_mask & component) &&
2406 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2407 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2408 		mutex_enter(&sd_log_mutex);
2409 		va_start(ap, fmt);
2410 		(void) vsprintf(sd_log_buf, fmt, ap);
2411 		va_end(ap);
2412 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2413 		mutex_exit(&sd_log_mutex);
2414 	}
2415 #ifdef SD_FAULT_INJECTION
2416 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2417 	if (un->sd_injection_mask & component) {
2418 		mutex_enter(&sd_log_mutex);
2419 		va_start(ap, fmt);
2420 		(void) vsprintf(sd_log_buf, fmt, ap);
2421 		va_end(ap);
2422 		sd_injection_log(sd_log_buf, un);
2423 		mutex_exit(&sd_log_mutex);
2424 	}
2425 #endif
2426 }
2427 
2428 
2429 /*
2430  *    Function: sd_log_trace
2431  *
2432  * Description: This routine is called by the SD_TRACE macro for debug
2433  *		logging of trace conditions (i.e. function entry/exit).
2434  *
2435  *   Arguments: comp - driver component being logged
2436  *		dev  - pointer to driver info structure
2437  *		fmt  - trace string and format to be logged
2438  */
2439 
2440 static void
2441 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2442 {
2443 	va_list		ap;
2444 	dev_info_t	*dev;
2445 
2446 	ASSERT(un != NULL);
2447 	dev = SD_DEVINFO(un);
2448 	ASSERT(dev != NULL);
2449 
2450 	/*
2451 	 * Filter messages based on the global component and level masks.
2452 	 * Also print if un matches the value of sd_debug_un, or if
2453 	 * sd_debug_un is set to NULL.
2454 	 */
2455 	if ((sd_component_mask & component) &&
2456 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2457 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2458 		mutex_enter(&sd_log_mutex);
2459 		va_start(ap, fmt);
2460 		(void) vsprintf(sd_log_buf, fmt, ap);
2461 		va_end(ap);
2462 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2463 		mutex_exit(&sd_log_mutex);
2464 	}
2465 #ifdef SD_FAULT_INJECTION
2466 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2467 	if (un->sd_injection_mask & component) {
2468 		mutex_enter(&sd_log_mutex);
2469 		va_start(ap, fmt);
2470 		(void) vsprintf(sd_log_buf, fmt, ap);
2471 		va_end(ap);
2472 		sd_injection_log(sd_log_buf, un);
2473 		mutex_exit(&sd_log_mutex);
2474 	}
2475 #endif
2476 }
2477 
2478 
2479 /*
2480  *    Function: sdprobe
2481  *
2482  * Description: This is the driver probe(9e) entry point function.
2483  *
2484  *   Arguments: devi - opaque device info handle
2485  *
2486  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2487  *              DDI_PROBE_FAILURE: If the probe failed.
2488  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2489  *				   but may be present in the future.
2490  */
2491 
2492 static int
2493 sdprobe(dev_info_t *devi)
2494 {
2495 	struct scsi_device	*devp;
2496 	int			rval;
2497 	int			instance;
2498 
2499 	/*
2500 	 * if it wasn't for pln, sdprobe could actually be nulldev
2501 	 * in the "__fibre" case.
2502 	 */
2503 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2504 		return (DDI_PROBE_DONTCARE);
2505 	}
2506 
2507 	devp = ddi_get_driver_private(devi);
2508 
2509 	if (devp == NULL) {
2510 		/* Ooops... nexus driver is mis-configured... */
2511 		return (DDI_PROBE_FAILURE);
2512 	}
2513 
2514 	instance = ddi_get_instance(devi);
2515 
2516 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2517 		return (DDI_PROBE_PARTIAL);
2518 	}
2519 
2520 	/*
2521 	 * Call the SCSA utility probe routine to see if we actually
2522 	 * have a target at this SCSI nexus.
2523 	 */
2524 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2525 	case SCSIPROBE_EXISTS:
2526 		switch (devp->sd_inq->inq_dtype) {
2527 		case DTYPE_DIRECT:
2528 			rval = DDI_PROBE_SUCCESS;
2529 			break;
2530 		case DTYPE_RODIRECT:
2531 			/* CDs etc. Can be removable media */
2532 			rval = DDI_PROBE_SUCCESS;
2533 			break;
2534 		case DTYPE_OPTICAL:
2535 			/*
2536 			 * Rewritable optical driver HP115AA
2537 			 * Can also be removable media
2538 			 */
2539 
2540 			/*
2541 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2542 			 * pre solaris 9 sparc sd behavior is required
2543 			 *
2544 			 * If first time through and sd_dtype_optical_bind
2545 			 * has not been set in /etc/system check properties
2546 			 */
2547 
2548 			if (sd_dtype_optical_bind  < 0) {
2549 				sd_dtype_optical_bind = ddi_prop_get_int
2550 				    (DDI_DEV_T_ANY, devi, 0,
2551 				    "optical-device-bind", 1);
2552 			}
2553 
2554 			if (sd_dtype_optical_bind == 0) {
2555 				rval = DDI_PROBE_FAILURE;
2556 			} else {
2557 				rval = DDI_PROBE_SUCCESS;
2558 			}
2559 			break;
2560 
2561 		case DTYPE_NOTPRESENT:
2562 		default:
2563 			rval = DDI_PROBE_FAILURE;
2564 			break;
2565 		}
2566 		break;
2567 	default:
2568 		rval = DDI_PROBE_PARTIAL;
2569 		break;
2570 	}
2571 
2572 	/*
2573 	 * This routine checks for resource allocation prior to freeing,
2574 	 * so it will take care of the "smart probing" case where a
2575 	 * scsi_probe() may or may not have been issued and will *not*
2576 	 * free previously-freed resources.
2577 	 */
2578 	scsi_unprobe(devp);
2579 	return (rval);
2580 }
2581 
2582 
2583 /*
2584  *    Function: sdinfo
2585  *
2586  * Description: This is the driver getinfo(9e) entry point function.
2587  * 		Given the device number, return the devinfo pointer from
2588  *		the scsi_device structure or the instance number
2589  *		associated with the dev_t.
2590  *
2591  *   Arguments: dip     - pointer to device info structure
2592  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2593  *			  DDI_INFO_DEVT2INSTANCE)
2594  *		arg     - driver dev_t
2595  *		resultp - user buffer for request response
2596  *
2597  * Return Code: DDI_SUCCESS
2598  *              DDI_FAILURE
2599  */
2600 /* ARGSUSED */
2601 static int
2602 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2603 {
2604 	struct sd_lun	*un;
2605 	dev_t		dev;
2606 	int		instance;
2607 	int		error;
2608 
2609 	switch (infocmd) {
2610 	case DDI_INFO_DEVT2DEVINFO:
2611 		dev = (dev_t)arg;
2612 		instance = SDUNIT(dev);
2613 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2614 			return (DDI_FAILURE);
2615 		}
2616 		*result = (void *) SD_DEVINFO(un);
2617 		error = DDI_SUCCESS;
2618 		break;
2619 	case DDI_INFO_DEVT2INSTANCE:
2620 		dev = (dev_t)arg;
2621 		instance = SDUNIT(dev);
2622 		*result = (void *)(uintptr_t)instance;
2623 		error = DDI_SUCCESS;
2624 		break;
2625 	default:
2626 		error = DDI_FAILURE;
2627 	}
2628 	return (error);
2629 }
2630 
2631 /*
2632  *    Function: sd_prop_op
2633  *
2634  * Description: This is the driver prop_op(9e) entry point function.
2635  *		Return the number of blocks for the partition in question
2636  *		or forward the request to the property facilities.
2637  *
2638  *   Arguments: dev       - device number
2639  *		dip       - pointer to device info structure
2640  *		prop_op   - property operator
2641  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2642  *		name      - pointer to property name
2643  *		valuep    - pointer or address of the user buffer
2644  *		lengthp   - property length
2645  *
2646  * Return Code: DDI_PROP_SUCCESS
2647  *              DDI_PROP_NOT_FOUND
2648  *              DDI_PROP_UNDEFINED
2649  *              DDI_PROP_NO_MEMORY
2650  *              DDI_PROP_BUF_TOO_SMALL
2651  */
2652 
2653 static int
2654 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2655 	char *name, caddr_t valuep, int *lengthp)
2656 {
2657 	struct sd_lun	*un;
2658 
2659 	if ((un = ddi_get_soft_state(sd_state, ddi_get_instance(dip))) == NULL)
2660 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2661 		    name, valuep, lengthp));
2662 
2663 	return (cmlb_prop_op(un->un_cmlbhandle,
2664 	    dev, dip, prop_op, mod_flags, name, valuep, lengthp,
2665 	    SDPART(dev), (void *)SD_PATH_DIRECT));
2666 }
2667 
2668 /*
2669  * The following functions are for smart probing:
2670  * sd_scsi_probe_cache_init()
2671  * sd_scsi_probe_cache_fini()
2672  * sd_scsi_clear_probe_cache()
2673  * sd_scsi_probe_with_cache()
2674  */
2675 
2676 /*
2677  *    Function: sd_scsi_probe_cache_init
2678  *
2679  * Description: Initializes the probe response cache mutex and head pointer.
2680  *
2681  *     Context: Kernel thread context
2682  */
2683 
2684 static void
2685 sd_scsi_probe_cache_init(void)
2686 {
2687 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2688 	sd_scsi_probe_cache_head = NULL;
2689 }
2690 
2691 
2692 /*
2693  *    Function: sd_scsi_probe_cache_fini
2694  *
2695  * Description: Frees all resources associated with the probe response cache.
2696  *
2697  *     Context: Kernel thread context
2698  */
2699 
2700 static void
2701 sd_scsi_probe_cache_fini(void)
2702 {
2703 	struct sd_scsi_probe_cache *cp;
2704 	struct sd_scsi_probe_cache *ncp;
2705 
2706 	/* Clean up our smart probing linked list */
2707 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2708 		ncp = cp->next;
2709 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2710 	}
2711 	sd_scsi_probe_cache_head = NULL;
2712 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2713 }
2714 
2715 
2716 /*
2717  *    Function: sd_scsi_clear_probe_cache
2718  *
2719  * Description: This routine clears the probe response cache. This is
2720  *		done when open() returns ENXIO so that when deferred
2721  *		attach is attempted (possibly after a device has been
2722  *		turned on) we will retry the probe. Since we don't know
2723  *		which target we failed to open, we just clear the
2724  *		entire cache.
2725  *
2726  *     Context: Kernel thread context
2727  */
2728 
2729 static void
2730 sd_scsi_clear_probe_cache(void)
2731 {
2732 	struct sd_scsi_probe_cache	*cp;
2733 	int				i;
2734 
2735 	mutex_enter(&sd_scsi_probe_cache_mutex);
2736 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2737 		/*
2738 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2739 		 * force probing to be performed the next time
2740 		 * sd_scsi_probe_with_cache is called.
2741 		 */
2742 		for (i = 0; i < NTARGETS_WIDE; i++) {
2743 			cp->cache[i] = SCSIPROBE_EXISTS;
2744 		}
2745 	}
2746 	mutex_exit(&sd_scsi_probe_cache_mutex);
2747 }
2748 
2749 
2750 /*
2751  *    Function: sd_scsi_probe_with_cache
2752  *
2753  * Description: This routine implements support for a scsi device probe
2754  *		with cache. The driver maintains a cache of the target
2755  *		responses to scsi probes. If we get no response from a
2756  *		target during a probe inquiry, we remember that, and we
2757  *		avoid additional calls to scsi_probe on non-zero LUNs
2758  *		on the same target until the cache is cleared. By doing
2759  *		so we avoid the 1/4 sec selection timeout for nonzero
2760  *		LUNs. lun0 of a target is always probed.
2761  *
2762  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2763  *              waitfunc - indicates what the allocator routines should
2764  *			   do when resources are not available. This value
2765  *			   is passed on to scsi_probe() when that routine
2766  *			   is called.
2767  *
2768  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2769  *		otherwise the value returned by scsi_probe(9F).
2770  *
2771  *     Context: Kernel thread context
2772  */
2773 
2774 static int
2775 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2776 {
2777 	struct sd_scsi_probe_cache	*cp;
2778 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2779 	int		lun, tgt;
2780 
2781 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2782 	    SCSI_ADDR_PROP_LUN, 0);
2783 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2784 	    SCSI_ADDR_PROP_TARGET, -1);
2785 
2786 	/* Make sure caching enabled and target in range */
2787 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2788 		/* do it the old way (no cache) */
2789 		return (scsi_probe(devp, waitfn));
2790 	}
2791 
2792 	mutex_enter(&sd_scsi_probe_cache_mutex);
2793 
2794 	/* Find the cache for this scsi bus instance */
2795 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2796 		if (cp->pdip == pdip) {
2797 			break;
2798 		}
2799 	}
2800 
2801 	/* If we can't find a cache for this pdip, create one */
2802 	if (cp == NULL) {
2803 		int i;
2804 
2805 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2806 		    KM_SLEEP);
2807 		cp->pdip = pdip;
2808 		cp->next = sd_scsi_probe_cache_head;
2809 		sd_scsi_probe_cache_head = cp;
2810 		for (i = 0; i < NTARGETS_WIDE; i++) {
2811 			cp->cache[i] = SCSIPROBE_EXISTS;
2812 		}
2813 	}
2814 
2815 	mutex_exit(&sd_scsi_probe_cache_mutex);
2816 
2817 	/* Recompute the cache for this target if LUN zero */
2818 	if (lun == 0) {
2819 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2820 	}
2821 
2822 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2823 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2824 		return (SCSIPROBE_NORESP);
2825 	}
2826 
2827 	/* Do the actual probe; save & return the result */
2828 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2829 }
2830 
2831 
2832 /*
2833  *    Function: sd_scsi_target_lun_init
2834  *
2835  * Description: Initializes the attached lun chain mutex and head pointer.
2836  *
2837  *     Context: Kernel thread context
2838  */
2839 
2840 static void
2841 sd_scsi_target_lun_init(void)
2842 {
2843 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
2844 	sd_scsi_target_lun_head = NULL;
2845 }
2846 
2847 
2848 /*
2849  *    Function: sd_scsi_target_lun_fini
2850  *
2851  * Description: Frees all resources associated with the attached lun
2852  *              chain
2853  *
2854  *     Context: Kernel thread context
2855  */
2856 
2857 static void
2858 sd_scsi_target_lun_fini(void)
2859 {
2860 	struct sd_scsi_hba_tgt_lun	*cp;
2861 	struct sd_scsi_hba_tgt_lun	*ncp;
2862 
2863 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
2864 		ncp = cp->next;
2865 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
2866 	}
2867 	sd_scsi_target_lun_head = NULL;
2868 	mutex_destroy(&sd_scsi_target_lun_mutex);
2869 }
2870 
2871 
2872 /*
2873  *    Function: sd_scsi_get_target_lun_count
2874  *
2875  * Description: This routine will check in the attached lun chain to see
2876  * 		how many luns are attached on the required SCSI controller
2877  * 		and target. Currently, some capabilities like tagged queue
2878  *		are supported per target based by HBA. So all luns in a
2879  *		target have the same capabilities. Based on this assumption,
2880  * 		sd should only set these capabilities once per target. This
2881  *		function is called when sd needs to decide how many luns
2882  *		already attached on a target.
2883  *
2884  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
2885  *			  controller device.
2886  *              target	- The target ID on the controller's SCSI bus.
2887  *
2888  * Return Code: The number of luns attached on the required target and
2889  *		controller.
2890  *		-1 if target ID is not in parallel SCSI scope or the given
2891  * 		dip is not in the chain.
2892  *
2893  *     Context: Kernel thread context
2894  */
2895 
2896 static int
2897 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
2898 {
2899 	struct sd_scsi_hba_tgt_lun	*cp;
2900 
2901 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
2902 		return (-1);
2903 	}
2904 
2905 	mutex_enter(&sd_scsi_target_lun_mutex);
2906 
2907 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2908 		if (cp->pdip == dip) {
2909 			break;
2910 		}
2911 	}
2912 
2913 	mutex_exit(&sd_scsi_target_lun_mutex);
2914 
2915 	if (cp == NULL) {
2916 		return (-1);
2917 	}
2918 
2919 	return (cp->nlun[target]);
2920 }
2921 
2922 
2923 /*
2924  *    Function: sd_scsi_update_lun_on_target
2925  *
2926  * Description: This routine is used to update the attached lun chain when a
2927  *		lun is attached or detached on a target.
2928  *
2929  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
2930  *                        controller device.
2931  *              target  - The target ID on the controller's SCSI bus.
2932  *		flag	- Indicate the lun is attached or detached.
2933  *
2934  *     Context: Kernel thread context
2935  */
2936 
2937 static void
2938 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
2939 {
2940 	struct sd_scsi_hba_tgt_lun	*cp;
2941 
2942 	mutex_enter(&sd_scsi_target_lun_mutex);
2943 
2944 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2945 		if (cp->pdip == dip) {
2946 			break;
2947 		}
2948 	}
2949 
2950 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
2951 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
2952 		    KM_SLEEP);
2953 		cp->pdip = dip;
2954 		cp->next = sd_scsi_target_lun_head;
2955 		sd_scsi_target_lun_head = cp;
2956 	}
2957 
2958 	mutex_exit(&sd_scsi_target_lun_mutex);
2959 
2960 	if (cp != NULL) {
2961 		if (flag == SD_SCSI_LUN_ATTACH) {
2962 			cp->nlun[target] ++;
2963 		} else {
2964 			cp->nlun[target] --;
2965 		}
2966 	}
2967 }
2968 
2969 
2970 /*
2971  *    Function: sd_spin_up_unit
2972  *
2973  * Description: Issues the following commands to spin-up the device:
2974  *		START STOP UNIT, and INQUIRY.
2975  *
2976  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
2977  *                      structure for this target.
2978  *
2979  * Return Code: 0 - success
2980  *		EIO - failure
2981  *		EACCES - reservation conflict
2982  *
2983  *     Context: Kernel thread context
2984  */
2985 
2986 static int
2987 sd_spin_up_unit(sd_ssc_t *ssc)
2988 {
2989 	size_t	resid		= 0;
2990 	int	has_conflict	= FALSE;
2991 	uchar_t *bufaddr;
2992 	int 	status;
2993 	struct sd_lun	*un;
2994 
2995 	ASSERT(ssc != NULL);
2996 	un = ssc->ssc_un;
2997 	ASSERT(un != NULL);
2998 
2999 	/*
3000 	 * Send a throwaway START UNIT command.
3001 	 *
3002 	 * If we fail on this, we don't care presently what precisely
3003 	 * is wrong.  EMC's arrays will also fail this with a check
3004 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
3005 	 * we don't want to fail the attach because it may become
3006 	 * "active" later.
3007 	 */
3008 	status = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_START,
3009 	    SD_PATH_DIRECT);
3010 
3011 	if (status != 0) {
3012 		if (status == EACCES)
3013 			has_conflict = TRUE;
3014 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3015 	}
3016 
3017 	/*
3018 	 * Send another INQUIRY command to the target. This is necessary for
3019 	 * non-removable media direct access devices because their INQUIRY data
3020 	 * may not be fully qualified until they are spun up (perhaps via the
3021 	 * START command above).  Note: This seems to be needed for some
3022 	 * legacy devices only.) The INQUIRY command should succeed even if a
3023 	 * Reservation Conflict is present.
3024 	 */
3025 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
3026 
3027 	if (sd_send_scsi_INQUIRY(ssc, bufaddr, SUN_INQSIZE, 0, 0, &resid)
3028 	    != 0) {
3029 		kmem_free(bufaddr, SUN_INQSIZE);
3030 		sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
3031 		return (EIO);
3032 	}
3033 
3034 	/*
3035 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
3036 	 * Note that this routine does not return a failure here even if the
3037 	 * INQUIRY command did not return any data.  This is a legacy behavior.
3038 	 */
3039 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
3040 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
3041 	}
3042 
3043 	kmem_free(bufaddr, SUN_INQSIZE);
3044 
3045 	/* If we hit a reservation conflict above, tell the caller. */
3046 	if (has_conflict == TRUE) {
3047 		return (EACCES);
3048 	}
3049 
3050 	return (0);
3051 }
3052 
3053 #ifdef _LP64
3054 /*
3055  *    Function: sd_enable_descr_sense
3056  *
3057  * Description: This routine attempts to select descriptor sense format
3058  *		using the Control mode page.  Devices that support 64 bit
3059  *		LBAs (for >2TB luns) should also implement descriptor
3060  *		sense data so we will call this function whenever we see
3061  *		a lun larger than 2TB.  If for some reason the device
3062  *		supports 64 bit LBAs but doesn't support descriptor sense
3063  *		presumably the mode select will fail.  Everything will
3064  *		continue to work normally except that we will not get
3065  *		complete sense data for commands that fail with an LBA
3066  *		larger than 32 bits.
3067  *
3068  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3069  *                      structure for this target.
3070  *
3071  *     Context: Kernel thread context only
3072  */
3073 
3074 static void
3075 sd_enable_descr_sense(sd_ssc_t *ssc)
3076 {
3077 	uchar_t			*header;
3078 	struct mode_control_scsi3 *ctrl_bufp;
3079 	size_t			buflen;
3080 	size_t			bd_len;
3081 	int			status;
3082 	struct sd_lun		*un;
3083 
3084 	ASSERT(ssc != NULL);
3085 	un = ssc->ssc_un;
3086 	ASSERT(un != NULL);
3087 
3088 	/*
3089 	 * Read MODE SENSE page 0xA, Control Mode Page
3090 	 */
3091 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3092 	    sizeof (struct mode_control_scsi3);
3093 	header = kmem_zalloc(buflen, KM_SLEEP);
3094 
3095 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
3096 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT);
3097 
3098 	if (status != 0) {
3099 		SD_ERROR(SD_LOG_COMMON, un,
3100 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3101 		goto eds_exit;
3102 	}
3103 
3104 	/*
3105 	 * Determine size of Block Descriptors in order to locate
3106 	 * the mode page data. ATAPI devices return 0, SCSI devices
3107 	 * should return MODE_BLK_DESC_LENGTH.
3108 	 */
3109 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3110 
3111 	/* Clear the mode data length field for MODE SELECT */
3112 	((struct mode_header *)header)->length = 0;
3113 
3114 	ctrl_bufp = (struct mode_control_scsi3 *)
3115 	    (header + MODE_HEADER_LENGTH + bd_len);
3116 
3117 	/*
3118 	 * If the page length is smaller than the expected value,
3119 	 * the target device doesn't support D_SENSE. Bail out here.
3120 	 */
3121 	if (ctrl_bufp->mode_page.length <
3122 	    sizeof (struct mode_control_scsi3) - 2) {
3123 		SD_ERROR(SD_LOG_COMMON, un,
3124 		    "sd_enable_descr_sense: enable D_SENSE failed\n");
3125 		goto eds_exit;
3126 	}
3127 
3128 	/*
3129 	 * Clear PS bit for MODE SELECT
3130 	 */
3131 	ctrl_bufp->mode_page.ps = 0;
3132 
3133 	/*
3134 	 * Set D_SENSE to enable descriptor sense format.
3135 	 */
3136 	ctrl_bufp->d_sense = 1;
3137 
3138 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3139 
3140 	/*
3141 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3142 	 */
3143 	status = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header,
3144 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT);
3145 
3146 	if (status != 0) {
3147 		SD_INFO(SD_LOG_COMMON, un,
3148 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3149 	} else {
3150 		kmem_free(header, buflen);
3151 		return;
3152 	}
3153 
3154 eds_exit:
3155 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3156 	kmem_free(header, buflen);
3157 }
3158 
3159 /*
3160  *    Function: sd_reenable_dsense_task
3161  *
3162  * Description: Re-enable descriptor sense after device or bus reset
3163  *
3164  *     Context: Executes in a taskq() thread context
3165  */
3166 static void
3167 sd_reenable_dsense_task(void *arg)
3168 {
3169 	struct	sd_lun	*un = arg;
3170 	sd_ssc_t	*ssc;
3171 
3172 	ASSERT(un != NULL);
3173 
3174 	ssc = sd_ssc_init(un);
3175 	sd_enable_descr_sense(ssc);
3176 	sd_ssc_fini(ssc);
3177 }
3178 #endif /* _LP64 */
3179 
3180 /*
3181  *    Function: sd_set_mmc_caps
3182  *
3183  * Description: This routine determines if the device is MMC compliant and if
3184  *		the device supports CDDA via a mode sense of the CDVD
3185  *		capabilities mode page. Also checks if the device is a
3186  *		dvdram writable device.
3187  *
3188  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3189  *                      structure for this target.
3190  *
3191  *     Context: Kernel thread context only
3192  */
3193 
3194 static void
3195 sd_set_mmc_caps(sd_ssc_t *ssc)
3196 {
3197 	struct mode_header_grp2		*sense_mhp;
3198 	uchar_t				*sense_page;
3199 	caddr_t				buf;
3200 	int				bd_len;
3201 	int				status;
3202 	struct uscsi_cmd		com;
3203 	int				rtn;
3204 	uchar_t				*out_data_rw, *out_data_hd;
3205 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3206 	struct sd_lun			*un;
3207 
3208 	ASSERT(ssc != NULL);
3209 	un = ssc->ssc_un;
3210 	ASSERT(un != NULL);
3211 
3212 	/*
3213 	 * The flags which will be set in this function are - mmc compliant,
3214 	 * dvdram writable device, cdda support. Initialize them to FALSE
3215 	 * and if a capability is detected - it will be set to TRUE.
3216 	 */
3217 	un->un_f_mmc_cap = FALSE;
3218 	un->un_f_dvdram_writable_device = FALSE;
3219 	un->un_f_cfg_cdda = FALSE;
3220 
3221 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3222 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3223 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3224 
3225 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3226 
3227 	if (status != 0) {
3228 		/* command failed; just return */
3229 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3230 		return;
3231 	}
3232 	/*
3233 	 * If the mode sense request for the CDROM CAPABILITIES
3234 	 * page (0x2A) succeeds the device is assumed to be MMC.
3235 	 */
3236 	un->un_f_mmc_cap = TRUE;
3237 
3238 	/* Get to the page data */
3239 	sense_mhp = (struct mode_header_grp2 *)buf;
3240 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3241 	    sense_mhp->bdesc_length_lo;
3242 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3243 		/*
3244 		 * We did not get back the expected block descriptor
3245 		 * length so we cannot determine if the device supports
3246 		 * CDDA. However, we still indicate the device is MMC
3247 		 * according to the successful response to the page
3248 		 * 0x2A mode sense request.
3249 		 */
3250 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3251 		    "sd_set_mmc_caps: Mode Sense returned "
3252 		    "invalid block descriptor length\n");
3253 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3254 		return;
3255 	}
3256 
3257 	/* See if read CDDA is supported */
3258 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3259 	    bd_len);
3260 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3261 
3262 	/* See if writing DVD RAM is supported. */
3263 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3264 	if (un->un_f_dvdram_writable_device == TRUE) {
3265 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3266 		return;
3267 	}
3268 
3269 	/*
3270 	 * If the device presents DVD or CD capabilities in the mode
3271 	 * page, we can return here since a RRD will not have
3272 	 * these capabilities.
3273 	 */
3274 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3275 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3276 		return;
3277 	}
3278 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3279 
3280 	/*
3281 	 * If un->un_f_dvdram_writable_device is still FALSE,
3282 	 * check for a Removable Rigid Disk (RRD).  A RRD
3283 	 * device is identified by the features RANDOM_WRITABLE and
3284 	 * HARDWARE_DEFECT_MANAGEMENT.
3285 	 */
3286 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3287 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3288 
3289 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3290 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3291 	    RANDOM_WRITABLE, SD_PATH_STANDARD);
3292 
3293 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3294 
3295 	if (rtn != 0) {
3296 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3297 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3298 		return;
3299 	}
3300 
3301 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3302 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3303 
3304 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3305 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3306 	    HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD);
3307 
3308 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3309 
3310 	if (rtn == 0) {
3311 		/*
3312 		 * We have good information, check for random writable
3313 		 * and hardware defect features.
3314 		 */
3315 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3316 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3317 			un->un_f_dvdram_writable_device = TRUE;
3318 		}
3319 	}
3320 
3321 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3322 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3323 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3324 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3325 }
3326 
3327 /*
3328  *    Function: sd_check_for_writable_cd
3329  *
3330  * Description: This routine determines if the media in the device is
3331  *		writable or not. It uses the get configuration command (0x46)
3332  *		to determine if the media is writable
3333  *
3334  *   Arguments: un - driver soft state (unit) structure
3335  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct"
3336  *                           chain and the normal command waitq, or
3337  *                           SD_PATH_DIRECT_PRIORITY to use the USCSI
3338  *                           "direct" chain and bypass the normal command
3339  *                           waitq.
3340  *
3341  *     Context: Never called at interrupt context.
3342  */
3343 
3344 static void
3345 sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag)
3346 {
3347 	struct uscsi_cmd		com;
3348 	uchar_t				*out_data;
3349 	uchar_t				*rqbuf;
3350 	int				rtn;
3351 	uchar_t				*out_data_rw, *out_data_hd;
3352 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3353 	struct mode_header_grp2		*sense_mhp;
3354 	uchar_t				*sense_page;
3355 	caddr_t				buf;
3356 	int				bd_len;
3357 	int				status;
3358 	struct sd_lun			*un;
3359 
3360 	ASSERT(ssc != NULL);
3361 	un = ssc->ssc_un;
3362 	ASSERT(un != NULL);
3363 	ASSERT(mutex_owned(SD_MUTEX(un)));
3364 
3365 	/*
3366 	 * Initialize the writable media to false, if configuration info.
3367 	 * tells us otherwise then only we will set it.
3368 	 */
3369 	un->un_f_mmc_writable_media = FALSE;
3370 	mutex_exit(SD_MUTEX(un));
3371 
3372 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3373 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3374 
3375 	rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, SENSE_LENGTH,
3376 	    out_data, SD_PROFILE_HEADER_LEN, path_flag);
3377 
3378 	if (rtn != 0)
3379 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3380 
3381 	mutex_enter(SD_MUTEX(un));
3382 	if (rtn == 0) {
3383 		/*
3384 		 * We have good information, check for writable DVD.
3385 		 */
3386 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3387 			un->un_f_mmc_writable_media = TRUE;
3388 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3389 			kmem_free(rqbuf, SENSE_LENGTH);
3390 			return;
3391 		}
3392 	}
3393 
3394 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3395 	kmem_free(rqbuf, SENSE_LENGTH);
3396 
3397 	/*
3398 	 * Determine if this is a RRD type device.
3399 	 */
3400 	mutex_exit(SD_MUTEX(un));
3401 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3402 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3403 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag);
3404 
3405 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3406 
3407 	mutex_enter(SD_MUTEX(un));
3408 	if (status != 0) {
3409 		/* command failed; just return */
3410 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3411 		return;
3412 	}
3413 
3414 	/* Get to the page data */
3415 	sense_mhp = (struct mode_header_grp2 *)buf;
3416 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3417 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3418 		/*
3419 		 * We did not get back the expected block descriptor length so
3420 		 * we cannot check the mode page.
3421 		 */
3422 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3423 		    "sd_check_for_writable_cd: Mode Sense returned "
3424 		    "invalid block descriptor length\n");
3425 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3426 		return;
3427 	}
3428 
3429 	/*
3430 	 * If the device presents DVD or CD capabilities in the mode
3431 	 * page, we can return here since a RRD device will not have
3432 	 * these capabilities.
3433 	 */
3434 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3435 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3436 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3437 		return;
3438 	}
3439 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3440 
3441 	/*
3442 	 * If un->un_f_mmc_writable_media is still FALSE,
3443 	 * check for RRD type media.  A RRD device is identified
3444 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3445 	 */
3446 	mutex_exit(SD_MUTEX(un));
3447 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3448 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3449 
3450 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3451 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3452 	    RANDOM_WRITABLE, path_flag);
3453 
3454 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3455 	if (rtn != 0) {
3456 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3457 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3458 		mutex_enter(SD_MUTEX(un));
3459 		return;
3460 	}
3461 
3462 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3463 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3464 
3465 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3466 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3467 	    HARDWARE_DEFECT_MANAGEMENT, path_flag);
3468 
3469 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3470 	mutex_enter(SD_MUTEX(un));
3471 	if (rtn == 0) {
3472 		/*
3473 		 * We have good information, check for random writable
3474 		 * and hardware defect features as current.
3475 		 */
3476 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3477 		    (out_data_rw[10] & 0x1) &&
3478 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3479 		    (out_data_hd[10] & 0x1)) {
3480 			un->un_f_mmc_writable_media = TRUE;
3481 		}
3482 	}
3483 
3484 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3485 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3486 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3487 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3488 }
3489 
3490 /*
3491  *    Function: sd_read_unit_properties
3492  *
3493  * Description: The following implements a property lookup mechanism.
3494  *		Properties for particular disks (keyed on vendor, model
3495  *		and rev numbers) are sought in the sd.conf file via
3496  *		sd_process_sdconf_file(), and if not found there, are
3497  *		looked for in a list hardcoded in this driver via
3498  *		sd_process_sdconf_table() Once located the properties
3499  *		are used to update the driver unit structure.
3500  *
3501  *   Arguments: un - driver soft state (unit) structure
3502  */
3503 
3504 static void
3505 sd_read_unit_properties(struct sd_lun *un)
3506 {
3507 	/*
3508 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3509 	 * the "sd-config-list" property (from the sd.conf file) or if
3510 	 * there was not a match for the inquiry vid/pid. If this event
3511 	 * occurs the static driver configuration table is searched for
3512 	 * a match.
3513 	 */
3514 	ASSERT(un != NULL);
3515 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3516 		sd_process_sdconf_table(un);
3517 	}
3518 
3519 	/* check for LSI device */
3520 	sd_is_lsi(un);
3521 
3522 
3523 }
3524 
3525 
3526 /*
3527  *    Function: sd_process_sdconf_file
3528  *
3529  * Description: Use ddi_prop_lookup(9F) to obtain the properties from the
3530  *		driver's config file (ie, sd.conf) and update the driver
3531  *		soft state structure accordingly.
3532  *
3533  *   Arguments: un - driver soft state (unit) structure
3534  *
3535  * Return Code: SD_SUCCESS - The properties were successfully set according
3536  *			     to the driver configuration file.
3537  *		SD_FAILURE - The driver config list was not obtained or
3538  *			     there was no vid/pid match. This indicates that
3539  *			     the static config table should be used.
3540  *
3541  * The config file has a property, "sd-config-list". Currently we support
3542  * two kinds of formats. For both formats, the value of this property
3543  * is a list of duplets:
3544  *
3545  *  sd-config-list=
3546  *	<duplet>,
3547  *	[,<duplet>]*;
3548  *
3549  * For the improved format, where
3550  *
3551  *     <duplet>:= "<vid+pid>","<tunable-list>"
3552  *
3553  * and
3554  *
3555  *     <tunable-list>:=   <tunable> [, <tunable> ]*;
3556  *     <tunable> =        <name> : <value>
3557  *
3558  * The <vid+pid> is the string that is returned by the target device on a
3559  * SCSI inquiry command, the <tunable-list> contains one or more tunables
3560  * to apply to all target devices with the specified <vid+pid>.
3561  *
3562  * Each <tunable> is a "<name> : <value>" pair.
3563  *
3564  * For the old format, the structure of each duplet is as follows:
3565  *
3566  *  <duplet>:= "<vid+pid>","<data-property-name_list>"
3567  *
3568  * The first entry of the duplet is the device ID string (the concatenated
3569  * vid & pid; not to be confused with a device_id).  This is defined in
3570  * the same way as in the sd_disk_table.
3571  *
3572  * The second part of the duplet is a string that identifies a
3573  * data-property-name-list. The data-property-name-list is defined as
3574  * follows:
3575  *
3576  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3577  *
3578  * The syntax of <data-property-name> depends on the <version> field.
3579  *
3580  * If version = SD_CONF_VERSION_1 we have the following syntax:
3581  *
3582  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3583  *
3584  * where the prop0 value will be used to set prop0 if bit0 set in the
3585  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3586  *
3587  */
3588 
3589 static int
3590 sd_process_sdconf_file(struct sd_lun *un)
3591 {
3592 	char	**config_list = NULL;
3593 	uint_t	nelements;
3594 	char	*vidptr;
3595 	int	vidlen;
3596 	char	*dnlist_ptr;
3597 	char	*dataname_ptr;
3598 	char	*dataname_lasts;
3599 	int	*data_list = NULL;
3600 	uint_t	data_list_len;
3601 	int	rval = SD_FAILURE;
3602 	int	i;
3603 
3604 	ASSERT(un != NULL);
3605 
3606 	/* Obtain the configuration list associated with the .conf file */
3607 	if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, SD_DEVINFO(un),
3608 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, sd_config_list,
3609 	    &config_list, &nelements) != DDI_PROP_SUCCESS) {
3610 		return (SD_FAILURE);
3611 	}
3612 
3613 	/*
3614 	 * Compare vids in each duplet to the inquiry vid - if a match is
3615 	 * made, get the data value and update the soft state structure
3616 	 * accordingly.
3617 	 *
3618 	 * Each duplet should show as a pair of strings, return SD_FAILURE
3619 	 * otherwise.
3620 	 */
3621 	if (nelements & 1) {
3622 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3623 		    "sd-config-list should show as pairs of strings.\n");
3624 		if (config_list)
3625 			ddi_prop_free(config_list);
3626 		return (SD_FAILURE);
3627 	}
3628 
3629 	for (i = 0; i < nelements; i += 2) {
3630 		/*
3631 		 * Note: The assumption here is that each vid entry is on
3632 		 * a unique line from its associated duplet.
3633 		 */
3634 		vidptr = config_list[i];
3635 		vidlen = (int)strlen(vidptr);
3636 		if ((vidlen == 0) ||
3637 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3638 			continue;
3639 		}
3640 
3641 		/*
3642 		 * dnlist contains 1 or more blank separated
3643 		 * data-property-name entries
3644 		 */
3645 		dnlist_ptr = config_list[i + 1];
3646 
3647 		if (strchr(dnlist_ptr, ':') != NULL) {
3648 			/*
3649 			 * Decode the improved format sd-config-list.
3650 			 */
3651 			sd_nvpair_str_decode(un, dnlist_ptr);
3652 		} else {
3653 			/*
3654 			 * The old format sd-config-list, loop through all
3655 			 * data-property-name entries in the
3656 			 * data-property-name-list
3657 			 * setting the properties for each.
3658 			 */
3659 			for (dataname_ptr = sd_strtok_r(dnlist_ptr, " \t",
3660 			    &dataname_lasts); dataname_ptr != NULL;
3661 			    dataname_ptr = sd_strtok_r(NULL, " \t",
3662 			    &dataname_lasts)) {
3663 				int version;
3664 
3665 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3666 				    "sd_process_sdconf_file: disk:%s, "
3667 				    "data:%s\n", vidptr, dataname_ptr);
3668 
3669 				/* Get the data list */
3670 				if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY,
3671 				    SD_DEVINFO(un), 0, dataname_ptr, &data_list,
3672 				    &data_list_len) != DDI_PROP_SUCCESS) {
3673 					SD_INFO(SD_LOG_ATTACH_DETACH, un,
3674 					    "sd_process_sdconf_file: data "
3675 					    "property (%s) has no value\n",
3676 					    dataname_ptr);
3677 					continue;
3678 				}
3679 
3680 				version = data_list[0];
3681 
3682 				if (version == SD_CONF_VERSION_1) {
3683 					sd_tunables values;
3684 
3685 					/* Set the properties */
3686 					if (sd_chk_vers1_data(un, data_list[1],
3687 					    &data_list[2], data_list_len,
3688 					    dataname_ptr) == SD_SUCCESS) {
3689 						sd_get_tunables_from_conf(un,
3690 						    data_list[1], &data_list[2],
3691 						    &values);
3692 						sd_set_vers1_properties(un,
3693 						    data_list[1], &values);
3694 						rval = SD_SUCCESS;
3695 					} else {
3696 						rval = SD_FAILURE;
3697 					}
3698 				} else {
3699 					scsi_log(SD_DEVINFO(un), sd_label,
3700 					    CE_WARN, "data property %s version "
3701 					    "0x%x is invalid.",
3702 					    dataname_ptr, version);
3703 					rval = SD_FAILURE;
3704 				}
3705 				if (data_list)
3706 					ddi_prop_free(data_list);
3707 			}
3708 		}
3709 	}
3710 
3711 	/* free up the memory allocated by ddi_prop_lookup_string_array(). */
3712 	if (config_list) {
3713 		ddi_prop_free(config_list);
3714 	}
3715 
3716 	return (rval);
3717 }
3718 
3719 /*
3720  *    Function: sd_nvpair_str_decode()
3721  *
3722  * Description: Parse the improved format sd-config-list to get
3723  *    each entry of tunable, which includes a name-value pair.
3724  *    Then call sd_set_properties() to set the property.
3725  *
3726  *   Arguments: un - driver soft state (unit) structure
3727  *    nvpair_str - the tunable list
3728  */
3729 static void
3730 sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str)
3731 {
3732 	char	*nv, *name, *value, *token;
3733 	char	*nv_lasts, *v_lasts, *x_lasts;
3734 
3735 	for (nv = sd_strtok_r(nvpair_str, ",", &nv_lasts); nv != NULL;
3736 	    nv = sd_strtok_r(NULL, ",", &nv_lasts)) {
3737 		token = sd_strtok_r(nv, ":", &v_lasts);
3738 		name  = sd_strtok_r(token, " \t", &x_lasts);
3739 		token = sd_strtok_r(NULL, ":", &v_lasts);
3740 		value = sd_strtok_r(token, " \t", &x_lasts);
3741 		if (name == NULL || value == NULL) {
3742 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3743 			    "sd_nvpair_str_decode: "
3744 			    "name or value is not valid!\n");
3745 		} else {
3746 			sd_set_properties(un, name, value);
3747 		}
3748 	}
3749 }
3750 
3751 /*
3752  *    Function: sd_strtok_r()
3753  *
3754  * Description: This function uses strpbrk and strspn to break
3755  *    string into tokens on sequentially subsequent calls. Return
3756  *    NULL when no non-separator characters remain. The first
3757  *    argument is NULL for subsequent calls.
3758  */
3759 static char *
3760 sd_strtok_r(char *string, const char *sepset, char **lasts)
3761 {
3762 	char	*q, *r;
3763 
3764 	/* First or subsequent call */
3765 	if (string == NULL)
3766 		string = *lasts;
3767 
3768 	if (string == NULL)
3769 		return (NULL);
3770 
3771 	/* Skip leading separators */
3772 	q = string + strspn(string, sepset);
3773 
3774 	if (*q == '\0')
3775 		return (NULL);
3776 
3777 	if ((r = strpbrk(q, sepset)) == NULL)
3778 		*lasts = NULL;
3779 	else {
3780 		*r = '\0';
3781 		*lasts = r + 1;
3782 	}
3783 	return (q);
3784 }
3785 
3786 /*
3787  *    Function: sd_set_properties()
3788  *
3789  * Description: Set device properties based on the improved
3790  *    format sd-config-list.
3791  *
3792  *   Arguments: un - driver soft state (unit) structure
3793  *    name  - supported tunable name
3794  *    value - tunable value
3795  */
3796 static void
3797 sd_set_properties(struct sd_lun *un, char *name, char *value)
3798 {
3799 	char	*endptr = NULL;
3800 	long	val = 0;
3801 
3802 	if (strcasecmp(name, "cache-nonvolatile") == 0) {
3803 		if (strcasecmp(value, "true") == 0) {
3804 			un->un_f_suppress_cache_flush = TRUE;
3805 		} else if (strcasecmp(value, "false") == 0) {
3806 			un->un_f_suppress_cache_flush = FALSE;
3807 		} else {
3808 			goto value_invalid;
3809 		}
3810 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3811 		    "suppress_cache_flush flag set to %d\n",
3812 		    un->un_f_suppress_cache_flush);
3813 		return;
3814 	}
3815 
3816 	if (strcasecmp(name, "controller-type") == 0) {
3817 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3818 			un->un_ctype = val;
3819 		} else {
3820 			goto value_invalid;
3821 		}
3822 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3823 		    "ctype set to %d\n", un->un_ctype);
3824 		return;
3825 	}
3826 
3827 	if (strcasecmp(name, "delay-busy") == 0) {
3828 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3829 			un->un_busy_timeout = drv_usectohz(val / 1000);
3830 		} else {
3831 			goto value_invalid;
3832 		}
3833 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3834 		    "busy_timeout set to %d\n", un->un_busy_timeout);
3835 		return;
3836 	}
3837 
3838 	if (strcasecmp(name, "disksort") == 0) {
3839 		if (strcasecmp(value, "true") == 0) {
3840 			un->un_f_disksort_disabled = FALSE;
3841 		} else if (strcasecmp(value, "false") == 0) {
3842 			un->un_f_disksort_disabled = TRUE;
3843 		} else {
3844 			goto value_invalid;
3845 		}
3846 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3847 		    "disksort disabled flag set to %d\n",
3848 		    un->un_f_disksort_disabled);
3849 		return;
3850 	}
3851 
3852 	if (strcasecmp(name, "timeout-releasereservation") == 0) {
3853 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3854 			un->un_reserve_release_time = val;
3855 		} else {
3856 			goto value_invalid;
3857 		}
3858 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3859 		    "reservation release timeout set to %d\n",
3860 		    un->un_reserve_release_time);
3861 		return;
3862 	}
3863 
3864 	if (strcasecmp(name, "reset-lun") == 0) {
3865 		if (strcasecmp(value, "true") == 0) {
3866 			un->un_f_lun_reset_enabled = TRUE;
3867 		} else if (strcasecmp(value, "false") == 0) {
3868 			un->un_f_lun_reset_enabled = FALSE;
3869 		} else {
3870 			goto value_invalid;
3871 		}
3872 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3873 		    "lun reset enabled flag set to %d\n",
3874 		    un->un_f_lun_reset_enabled);
3875 		return;
3876 	}
3877 
3878 	if (strcasecmp(name, "retries-busy") == 0) {
3879 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3880 			un->un_busy_retry_count = val;
3881 		} else {
3882 			goto value_invalid;
3883 		}
3884 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3885 		    "busy retry count set to %d\n", un->un_busy_retry_count);
3886 		return;
3887 	}
3888 
3889 	if (strcasecmp(name, "retries-timeout") == 0) {
3890 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3891 			un->un_retry_count = val;
3892 		} else {
3893 			goto value_invalid;
3894 		}
3895 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3896 		    "timeout retry count set to %d\n", un->un_retry_count);
3897 		return;
3898 	}
3899 
3900 	if (strcasecmp(name, "retries-notready") == 0) {
3901 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3902 			un->un_notready_retry_count = val;
3903 		} else {
3904 			goto value_invalid;
3905 		}
3906 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3907 		    "notready retry count set to %d\n",
3908 		    un->un_notready_retry_count);
3909 		return;
3910 	}
3911 
3912 	if (strcasecmp(name, "retries-reset") == 0) {
3913 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3914 			un->un_reset_retry_count = val;
3915 		} else {
3916 			goto value_invalid;
3917 		}
3918 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3919 		    "reset retry count set to %d\n",
3920 		    un->un_reset_retry_count);
3921 		return;
3922 	}
3923 
3924 	if (strcasecmp(name, "throttle-max") == 0) {
3925 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3926 			un->un_saved_throttle = un->un_throttle = val;
3927 		} else {
3928 			goto value_invalid;
3929 		}
3930 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3931 		    "throttle set to %d\n", un->un_throttle);
3932 	}
3933 
3934 	if (strcasecmp(name, "throttle-min") == 0) {
3935 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3936 			un->un_min_throttle = val;
3937 		} else {
3938 			goto value_invalid;
3939 		}
3940 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3941 		    "min throttle set to %d\n", un->un_min_throttle);
3942 	}
3943 
3944 	/*
3945 	 * Validate the throttle values.
3946 	 * If any of the numbers are invalid, set everything to defaults.
3947 	 */
3948 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
3949 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
3950 	    (un->un_min_throttle > un->un_throttle)) {
3951 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
3952 		un->un_min_throttle = sd_min_throttle;
3953 	}
3954 	return;
3955 
3956 value_invalid:
3957 	SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3958 	    "value of prop %s is invalid\n", name);
3959 }
3960 
3961 /*
3962  *    Function: sd_get_tunables_from_conf()
3963  *
3964  *
3965  *    This function reads the data list from the sd.conf file and pulls
3966  *    the values that can have numeric values as arguments and places
3967  *    the values in the appropriate sd_tunables member.
3968  *    Since the order of the data list members varies across platforms
3969  *    This function reads them from the data list in a platform specific
3970  *    order and places them into the correct sd_tunable member that is
3971  *    consistent across all platforms.
3972  */
3973 static void
3974 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3975     sd_tunables *values)
3976 {
3977 	int i;
3978 	int mask;
3979 
3980 	bzero(values, sizeof (sd_tunables));
3981 
3982 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3983 
3984 		mask = 1 << i;
3985 		if (mask > flags) {
3986 			break;
3987 		}
3988 
3989 		switch (mask & flags) {
3990 		case 0:	/* This mask bit not set in flags */
3991 			continue;
3992 		case SD_CONF_BSET_THROTTLE:
3993 			values->sdt_throttle = data_list[i];
3994 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3995 			    "sd_get_tunables_from_conf: throttle = %d\n",
3996 			    values->sdt_throttle);
3997 			break;
3998 		case SD_CONF_BSET_CTYPE:
3999 			values->sdt_ctype = data_list[i];
4000 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4001 			    "sd_get_tunables_from_conf: ctype = %d\n",
4002 			    values->sdt_ctype);
4003 			break;
4004 		case SD_CONF_BSET_NRR_COUNT:
4005 			values->sdt_not_rdy_retries = data_list[i];
4006 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4007 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
4008 			    values->sdt_not_rdy_retries);
4009 			break;
4010 		case SD_CONF_BSET_BSY_RETRY_COUNT:
4011 			values->sdt_busy_retries = data_list[i];
4012 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4013 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
4014 			    values->sdt_busy_retries);
4015 			break;
4016 		case SD_CONF_BSET_RST_RETRIES:
4017 			values->sdt_reset_retries = data_list[i];
4018 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4019 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
4020 			    values->sdt_reset_retries);
4021 			break;
4022 		case SD_CONF_BSET_RSV_REL_TIME:
4023 			values->sdt_reserv_rel_time = data_list[i];
4024 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4025 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
4026 			    values->sdt_reserv_rel_time);
4027 			break;
4028 		case SD_CONF_BSET_MIN_THROTTLE:
4029 			values->sdt_min_throttle = data_list[i];
4030 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4031 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
4032 			    values->sdt_min_throttle);
4033 			break;
4034 		case SD_CONF_BSET_DISKSORT_DISABLED:
4035 			values->sdt_disk_sort_dis = data_list[i];
4036 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4037 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
4038 			    values->sdt_disk_sort_dis);
4039 			break;
4040 		case SD_CONF_BSET_LUN_RESET_ENABLED:
4041 			values->sdt_lun_reset_enable = data_list[i];
4042 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4043 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
4044 			    "\n", values->sdt_lun_reset_enable);
4045 			break;
4046 		case SD_CONF_BSET_CACHE_IS_NV:
4047 			values->sdt_suppress_cache_flush = data_list[i];
4048 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4049 			    "sd_get_tunables_from_conf: \
4050 			    suppress_cache_flush = %d"
4051 			    "\n", values->sdt_suppress_cache_flush);
4052 			break;
4053 		}
4054 	}
4055 }
4056 
4057 /*
4058  *    Function: sd_process_sdconf_table
4059  *
4060  * Description: Search the static configuration table for a match on the
4061  *		inquiry vid/pid and update the driver soft state structure
4062  *		according to the table property values for the device.
4063  *
4064  *		The form of a configuration table entry is:
4065  *		  <vid+pid>,<flags>,<property-data>
4066  *		  "SEAGATE ST42400N",1,0x40000,
4067  *		  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
4068  *
4069  *   Arguments: un - driver soft state (unit) structure
4070  */
4071 
4072 static void
4073 sd_process_sdconf_table(struct sd_lun *un)
4074 {
4075 	char	*id = NULL;
4076 	int	table_index;
4077 	int	idlen;
4078 
4079 	ASSERT(un != NULL);
4080 	for (table_index = 0; table_index < sd_disk_table_size;
4081 	    table_index++) {
4082 		id = sd_disk_table[table_index].device_id;
4083 		idlen = strlen(id);
4084 		if (idlen == 0) {
4085 			continue;
4086 		}
4087 
4088 		/*
4089 		 * The static configuration table currently does not
4090 		 * implement version 10 properties. Additionally,
4091 		 * multiple data-property-name entries are not
4092 		 * implemented in the static configuration table.
4093 		 */
4094 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4095 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4096 			    "sd_process_sdconf_table: disk %s\n", id);
4097 			sd_set_vers1_properties(un,
4098 			    sd_disk_table[table_index].flags,
4099 			    sd_disk_table[table_index].properties);
4100 			break;
4101 		}
4102 	}
4103 }
4104 
4105 
4106 /*
4107  *    Function: sd_sdconf_id_match
4108  *
4109  * Description: This local function implements a case sensitive vid/pid
4110  *		comparison as well as the boundary cases of wild card and
4111  *		multiple blanks.
4112  *
4113  *		Note: An implicit assumption made here is that the scsi
4114  *		inquiry structure will always keep the vid, pid and
4115  *		revision strings in consecutive sequence, so they can be
4116  *		read as a single string. If this assumption is not the
4117  *		case, a separate string, to be used for the check, needs
4118  *		to be built with these strings concatenated.
4119  *
4120  *   Arguments: un - driver soft state (unit) structure
4121  *		id - table or config file vid/pid
4122  *		idlen  - length of the vid/pid (bytes)
4123  *
4124  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4125  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
4126  */
4127 
4128 static int
4129 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
4130 {
4131 	struct scsi_inquiry	*sd_inq;
4132 	int 			rval = SD_SUCCESS;
4133 
4134 	ASSERT(un != NULL);
4135 	sd_inq = un->un_sd->sd_inq;
4136 	ASSERT(id != NULL);
4137 
4138 	/*
4139 	 * We use the inq_vid as a pointer to a buffer containing the
4140 	 * vid and pid and use the entire vid/pid length of the table
4141 	 * entry for the comparison. This works because the inq_pid
4142 	 * data member follows inq_vid in the scsi_inquiry structure.
4143 	 */
4144 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
4145 		/*
4146 		 * The user id string is compared to the inquiry vid/pid
4147 		 * using a case insensitive comparison and ignoring
4148 		 * multiple spaces.
4149 		 */
4150 		rval = sd_blank_cmp(un, id, idlen);
4151 		if (rval != SD_SUCCESS) {
4152 			/*
4153 			 * User id strings that start and end with a "*"
4154 			 * are a special case. These do not have a
4155 			 * specific vendor, and the product string can
4156 			 * appear anywhere in the 16 byte PID portion of
4157 			 * the inquiry data. This is a simple strstr()
4158 			 * type search for the user id in the inquiry data.
4159 			 */
4160 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
4161 				char	*pidptr = &id[1];
4162 				int	i;
4163 				int	j;
4164 				int	pidstrlen = idlen - 2;
4165 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
4166 				    pidstrlen;
4167 
4168 				if (j < 0) {
4169 					return (SD_FAILURE);
4170 				}
4171 				for (i = 0; i < j; i++) {
4172 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
4173 					    pidptr, pidstrlen) == 0) {
4174 						rval = SD_SUCCESS;
4175 						break;
4176 					}
4177 				}
4178 			}
4179 		}
4180 	}
4181 	return (rval);
4182 }
4183 
4184 
4185 /*
4186  *    Function: sd_blank_cmp
4187  *
4188  * Description: If the id string starts and ends with a space, treat
4189  *		multiple consecutive spaces as equivalent to a single
4190  *		space. For example, this causes a sd_disk_table entry
4191  *		of " NEC CDROM " to match a device's id string of
4192  *		"NEC       CDROM".
4193  *
4194  *		Note: The success exit condition for this routine is if
4195  *		the pointer to the table entry is '\0' and the cnt of
4196  *		the inquiry length is zero. This will happen if the inquiry
4197  *		string returned by the device is padded with spaces to be
4198  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
4199  *		SCSI spec states that the inquiry string is to be padded with
4200  *		spaces.
4201  *
4202  *   Arguments: un - driver soft state (unit) structure
4203  *		id - table or config file vid/pid
4204  *		idlen  - length of the vid/pid (bytes)
4205  *
4206  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4207  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
4208  */
4209 
4210 static int
4211 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
4212 {
4213 	char		*p1;
4214 	char		*p2;
4215 	int		cnt;
4216 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
4217 	    sizeof (SD_INQUIRY(un)->inq_pid);
4218 
4219 	ASSERT(un != NULL);
4220 	p2 = un->un_sd->sd_inq->inq_vid;
4221 	ASSERT(id != NULL);
4222 	p1 = id;
4223 
4224 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
4225 		/*
4226 		 * Note: string p1 is terminated by a NUL but string p2
4227 		 * isn't.  The end of p2 is determined by cnt.
4228 		 */
4229 		for (;;) {
4230 			/* skip over any extra blanks in both strings */
4231 			while ((*p1 != '\0') && (*p1 == ' ')) {
4232 				p1++;
4233 			}
4234 			while ((cnt != 0) && (*p2 == ' ')) {
4235 				p2++;
4236 				cnt--;
4237 			}
4238 
4239 			/* compare the two strings */
4240 			if ((cnt == 0) ||
4241 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
4242 				break;
4243 			}
4244 			while ((cnt > 0) &&
4245 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
4246 				p1++;
4247 				p2++;
4248 				cnt--;
4249 			}
4250 		}
4251 	}
4252 
4253 	/* return SD_SUCCESS if both strings match */
4254 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
4255 }
4256 
4257 
4258 /*
4259  *    Function: sd_chk_vers1_data
4260  *
4261  * Description: Verify the version 1 device properties provided by the
4262  *		user via the configuration file
4263  *
4264  *   Arguments: un	     - driver soft state (unit) structure
4265  *		flags	     - integer mask indicating properties to be set
4266  *		prop_list    - integer list of property values
4267  *		list_len     - number of the elements
4268  *
4269  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
4270  *		SD_FAILURE - Indicates the user provided data is invalid
4271  */
4272 
4273 static int
4274 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
4275     int list_len, char *dataname_ptr)
4276 {
4277 	int i;
4278 	int mask = 1;
4279 	int index = 0;
4280 
4281 	ASSERT(un != NULL);
4282 
4283 	/* Check for a NULL property name and list */
4284 	if (dataname_ptr == NULL) {
4285 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4286 		    "sd_chk_vers1_data: NULL data property name.");
4287 		return (SD_FAILURE);
4288 	}
4289 	if (prop_list == NULL) {
4290 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4291 		    "sd_chk_vers1_data: %s NULL data property list.",
4292 		    dataname_ptr);
4293 		return (SD_FAILURE);
4294 	}
4295 
4296 	/* Display a warning if undefined bits are set in the flags */
4297 	if (flags & ~SD_CONF_BIT_MASK) {
4298 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4299 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
4300 		    "Properties not set.",
4301 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
4302 		return (SD_FAILURE);
4303 	}
4304 
4305 	/*
4306 	 * Verify the length of the list by identifying the highest bit set
4307 	 * in the flags and validating that the property list has a length
4308 	 * up to the index of this bit.
4309 	 */
4310 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4311 		if (flags & mask) {
4312 			index++;
4313 		}
4314 		mask = 1 << i;
4315 	}
4316 	if (list_len < (index + 2)) {
4317 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4318 		    "sd_chk_vers1_data: "
4319 		    "Data property list %s size is incorrect. "
4320 		    "Properties not set.", dataname_ptr);
4321 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
4322 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
4323 		return (SD_FAILURE);
4324 	}
4325 	return (SD_SUCCESS);
4326 }
4327 
4328 
4329 /*
4330  *    Function: sd_set_vers1_properties
4331  *
4332  * Description: Set version 1 device properties based on a property list
4333  *		retrieved from the driver configuration file or static
4334  *		configuration table. Version 1 properties have the format:
4335  *
4336  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
4337  *
4338  *		where the prop0 value will be used to set prop0 if bit0
4339  *		is set in the flags
4340  *
4341  *   Arguments: un	     - driver soft state (unit) structure
4342  *		flags	     - integer mask indicating properties to be set
4343  *		prop_list    - integer list of property values
4344  */
4345 
4346 static void
4347 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
4348 {
4349 	ASSERT(un != NULL);
4350 
4351 	/*
4352 	 * Set the flag to indicate cache is to be disabled. An attempt
4353 	 * to disable the cache via sd_cache_control() will be made
4354 	 * later during attach once the basic initialization is complete.
4355 	 */
4356 	if (flags & SD_CONF_BSET_NOCACHE) {
4357 		un->un_f_opt_disable_cache = TRUE;
4358 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4359 		    "sd_set_vers1_properties: caching disabled flag set\n");
4360 	}
4361 
4362 	/* CD-specific configuration parameters */
4363 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4364 		un->un_f_cfg_playmsf_bcd = TRUE;
4365 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4366 		    "sd_set_vers1_properties: playmsf_bcd set\n");
4367 	}
4368 	if (flags & SD_CONF_BSET_READSUB_BCD) {
4369 		un->un_f_cfg_readsub_bcd = TRUE;
4370 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4371 		    "sd_set_vers1_properties: readsub_bcd set\n");
4372 	}
4373 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4374 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4375 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4376 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4377 	}
4378 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4379 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4380 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4381 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4382 	}
4383 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4384 		un->un_f_cfg_no_read_header = TRUE;
4385 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4386 		    "sd_set_vers1_properties: no_read_header set\n");
4387 	}
4388 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4389 		un->un_f_cfg_read_cd_xd4 = TRUE;
4390 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4391 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4392 	}
4393 
4394 	/* Support for devices which do not have valid/unique serial numbers */
4395 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4396 		un->un_f_opt_fab_devid = TRUE;
4397 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4398 		    "sd_set_vers1_properties: fab_devid bit set\n");
4399 	}
4400 
4401 	/* Support for user throttle configuration */
4402 	if (flags & SD_CONF_BSET_THROTTLE) {
4403 		ASSERT(prop_list != NULL);
4404 		un->un_saved_throttle = un->un_throttle =
4405 		    prop_list->sdt_throttle;
4406 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4407 		    "sd_set_vers1_properties: throttle set to %d\n",
4408 		    prop_list->sdt_throttle);
4409 	}
4410 
4411 	/* Set the per disk retry count according to the conf file or table. */
4412 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4413 		ASSERT(prop_list != NULL);
4414 		if (prop_list->sdt_not_rdy_retries) {
4415 			un->un_notready_retry_count =
4416 			    prop_list->sdt_not_rdy_retries;
4417 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4418 			    "sd_set_vers1_properties: not ready retry count"
4419 			    " set to %d\n", un->un_notready_retry_count);
4420 		}
4421 	}
4422 
4423 	/* The controller type is reported for generic disk driver ioctls */
4424 	if (flags & SD_CONF_BSET_CTYPE) {
4425 		ASSERT(prop_list != NULL);
4426 		switch (prop_list->sdt_ctype) {
4427 		case CTYPE_CDROM:
4428 			un->un_ctype = prop_list->sdt_ctype;
4429 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4430 			    "sd_set_vers1_properties: ctype set to "
4431 			    "CTYPE_CDROM\n");
4432 			break;
4433 		case CTYPE_CCS:
4434 			un->un_ctype = prop_list->sdt_ctype;
4435 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4436 			    "sd_set_vers1_properties: ctype set to "
4437 			    "CTYPE_CCS\n");
4438 			break;
4439 		case CTYPE_ROD:		/* RW optical */
4440 			un->un_ctype = prop_list->sdt_ctype;
4441 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4442 			    "sd_set_vers1_properties: ctype set to "
4443 			    "CTYPE_ROD\n");
4444 			break;
4445 		default:
4446 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4447 			    "sd_set_vers1_properties: Could not set "
4448 			    "invalid ctype value (%d)",
4449 			    prop_list->sdt_ctype);
4450 		}
4451 	}
4452 
4453 	/* Purple failover timeout */
4454 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4455 		ASSERT(prop_list != NULL);
4456 		un->un_busy_retry_count =
4457 		    prop_list->sdt_busy_retries;
4458 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4459 		    "sd_set_vers1_properties: "
4460 		    "busy retry count set to %d\n",
4461 		    un->un_busy_retry_count);
4462 	}
4463 
4464 	/* Purple reset retry count */
4465 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4466 		ASSERT(prop_list != NULL);
4467 		un->un_reset_retry_count =
4468 		    prop_list->sdt_reset_retries;
4469 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4470 		    "sd_set_vers1_properties: "
4471 		    "reset retry count set to %d\n",
4472 		    un->un_reset_retry_count);
4473 	}
4474 
4475 	/* Purple reservation release timeout */
4476 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4477 		ASSERT(prop_list != NULL);
4478 		un->un_reserve_release_time =
4479 		    prop_list->sdt_reserv_rel_time;
4480 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4481 		    "sd_set_vers1_properties: "
4482 		    "reservation release timeout set to %d\n",
4483 		    un->un_reserve_release_time);
4484 	}
4485 
4486 	/*
4487 	 * Driver flag telling the driver to verify that no commands are pending
4488 	 * for a device before issuing a Test Unit Ready. This is a workaround
4489 	 * for a firmware bug in some Seagate eliteI drives.
4490 	 */
4491 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4492 		un->un_f_cfg_tur_check = TRUE;
4493 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4494 		    "sd_set_vers1_properties: tur queue check set\n");
4495 	}
4496 
4497 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4498 		un->un_min_throttle = prop_list->sdt_min_throttle;
4499 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4500 		    "sd_set_vers1_properties: min throttle set to %d\n",
4501 		    un->un_min_throttle);
4502 	}
4503 
4504 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4505 		un->un_f_disksort_disabled =
4506 		    (prop_list->sdt_disk_sort_dis != 0) ?
4507 		    TRUE : FALSE;
4508 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4509 		    "sd_set_vers1_properties: disksort disabled "
4510 		    "flag set to %d\n",
4511 		    prop_list->sdt_disk_sort_dis);
4512 	}
4513 
4514 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4515 		un->un_f_lun_reset_enabled =
4516 		    (prop_list->sdt_lun_reset_enable != 0) ?
4517 		    TRUE : FALSE;
4518 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4519 		    "sd_set_vers1_properties: lun reset enabled "
4520 		    "flag set to %d\n",
4521 		    prop_list->sdt_lun_reset_enable);
4522 	}
4523 
4524 	if (flags & SD_CONF_BSET_CACHE_IS_NV) {
4525 		un->un_f_suppress_cache_flush =
4526 		    (prop_list->sdt_suppress_cache_flush != 0) ?
4527 		    TRUE : FALSE;
4528 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4529 		    "sd_set_vers1_properties: suppress_cache_flush "
4530 		    "flag set to %d\n",
4531 		    prop_list->sdt_suppress_cache_flush);
4532 	}
4533 
4534 	/*
4535 	 * Validate the throttle values.
4536 	 * If any of the numbers are invalid, set everything to defaults.
4537 	 */
4538 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4539 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4540 	    (un->un_min_throttle > un->un_throttle)) {
4541 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4542 		un->un_min_throttle = sd_min_throttle;
4543 	}
4544 }
4545 
4546 /*
4547  *   Function: sd_is_lsi()
4548  *
4549  *   Description: Check for lsi devices, step through the static device
4550  *	table to match vid/pid.
4551  *
4552  *   Args: un - ptr to sd_lun
4553  *
4554  *   Notes:  When creating new LSI property, need to add the new LSI property
4555  *		to this function.
4556  */
4557 static void
4558 sd_is_lsi(struct sd_lun *un)
4559 {
4560 	char	*id = NULL;
4561 	int	table_index;
4562 	int	idlen;
4563 	void	*prop;
4564 
4565 	ASSERT(un != NULL);
4566 	for (table_index = 0; table_index < sd_disk_table_size;
4567 	    table_index++) {
4568 		id = sd_disk_table[table_index].device_id;
4569 		idlen = strlen(id);
4570 		if (idlen == 0) {
4571 			continue;
4572 		}
4573 
4574 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4575 			prop = sd_disk_table[table_index].properties;
4576 			if (prop == &lsi_properties ||
4577 			    prop == &lsi_oem_properties ||
4578 			    prop == &lsi_properties_scsi ||
4579 			    prop == &symbios_properties) {
4580 				un->un_f_cfg_is_lsi = TRUE;
4581 			}
4582 			break;
4583 		}
4584 	}
4585 }
4586 
4587 /*
4588  *    Function: sd_get_physical_geometry
4589  *
4590  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4591  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4592  *		target, and use this information to initialize the physical
4593  *		geometry cache specified by pgeom_p.
4594  *
4595  *		MODE SENSE is an optional command, so failure in this case
4596  *		does not necessarily denote an error. We want to use the
4597  *		MODE SENSE commands to derive the physical geometry of the
4598  *		device, but if either command fails, the logical geometry is
4599  *		used as the fallback for disk label geometry in cmlb.
4600  *
4601  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4602  *		have already been initialized for the current target and
4603  *		that the current values be passed as args so that we don't
4604  *		end up ever trying to use -1 as a valid value. This could
4605  *		happen if either value is reset while we're not holding
4606  *		the mutex.
4607  *
4608  *   Arguments: un - driver soft state (unit) structure
4609  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4610  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4611  *			to use the USCSI "direct" chain and bypass the normal
4612  *			command waitq.
4613  *
4614  *     Context: Kernel thread only (can sleep).
4615  */
4616 
4617 static int
4618 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p,
4619 	diskaddr_t capacity, int lbasize, int path_flag)
4620 {
4621 	struct	mode_format	*page3p;
4622 	struct	mode_geometry	*page4p;
4623 	struct	mode_header	*headerp;
4624 	int	sector_size;
4625 	int	nsect;
4626 	int	nhead;
4627 	int	ncyl;
4628 	int	intrlv;
4629 	int	spc;
4630 	diskaddr_t	modesense_capacity;
4631 	int	rpm;
4632 	int	bd_len;
4633 	int	mode_header_length;
4634 	uchar_t	*p3bufp;
4635 	uchar_t	*p4bufp;
4636 	int	cdbsize;
4637 	int 	ret = EIO;
4638 	sd_ssc_t *ssc;
4639 	int	status;
4640 
4641 	ASSERT(un != NULL);
4642 
4643 	if (lbasize == 0) {
4644 		if (ISCD(un)) {
4645 			lbasize = 2048;
4646 		} else {
4647 			lbasize = un->un_sys_blocksize;
4648 		}
4649 	}
4650 	pgeom_p->g_secsize = (unsigned short)lbasize;
4651 
4652 	/*
4653 	 * If the unit is a cd/dvd drive MODE SENSE page three
4654 	 * and MODE SENSE page four are reserved (see SBC spec
4655 	 * and MMC spec). To prevent soft errors just return
4656 	 * using the default LBA size.
4657 	 */
4658 	if (ISCD(un))
4659 		return (ret);
4660 
4661 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4662 
4663 	/*
4664 	 * Retrieve MODE SENSE page 3 - Format Device Page
4665 	 */
4666 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4667 	ssc = sd_ssc_init(un);
4668 	status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p3bufp,
4669 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag);
4670 	if (status != 0) {
4671 		SD_ERROR(SD_LOG_COMMON, un,
4672 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4673 		goto page3_exit;
4674 	}
4675 
4676 	/*
4677 	 * Determine size of Block Descriptors in order to locate the mode
4678 	 * page data.  ATAPI devices return 0, SCSI devices should return
4679 	 * MODE_BLK_DESC_LENGTH.
4680 	 */
4681 	headerp = (struct mode_header *)p3bufp;
4682 	if (un->un_f_cfg_is_atapi == TRUE) {
4683 		struct mode_header_grp2 *mhp =
4684 		    (struct mode_header_grp2 *)headerp;
4685 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4686 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4687 	} else {
4688 		mode_header_length = MODE_HEADER_LENGTH;
4689 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4690 	}
4691 
4692 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4693 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4694 		    "received unexpected bd_len of %d, page3\n", bd_len);
4695 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
4696 		    "sd_get_physical_geometry: received unexpected "
4697 		    "bd_len of %d, page3", bd_len);
4698 		status = EIO;
4699 		goto page3_exit;
4700 	}
4701 
4702 	page3p = (struct mode_format *)
4703 	    ((caddr_t)headerp + mode_header_length + bd_len);
4704 
4705 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
4706 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4707 		    "mode sense pg3 code mismatch %d\n",
4708 		    page3p->mode_page.code);
4709 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
4710 		    "sd_get_physical_geometry: mode sense pg3 code "
4711 		    "mismatch %d", page3p->mode_page.code);
4712 		status = EIO;
4713 		goto page3_exit;
4714 	}
4715 
4716 	/*
4717 	 * Use this physical geometry data only if BOTH MODE SENSE commands
4718 	 * complete successfully; otherwise, revert to the logical geometry.
4719 	 * So, we need to save everything in temporary variables.
4720 	 */
4721 	sector_size = BE_16(page3p->data_bytes_sect);
4722 
4723 	/*
4724 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
4725 	 */
4726 	if (sector_size == 0) {
4727 		sector_size = un->un_sys_blocksize;
4728 	} else {
4729 		sector_size &= ~(un->un_sys_blocksize - 1);
4730 	}
4731 
4732 	nsect  = BE_16(page3p->sect_track);
4733 	intrlv = BE_16(page3p->interleave);
4734 
4735 	SD_INFO(SD_LOG_COMMON, un,
4736 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
4737 	SD_INFO(SD_LOG_COMMON, un,
4738 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
4739 	    page3p->mode_page.code, nsect, sector_size);
4740 	SD_INFO(SD_LOG_COMMON, un,
4741 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
4742 	    BE_16(page3p->track_skew),
4743 	    BE_16(page3p->cylinder_skew));
4744 
4745 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
4746 
4747 	/*
4748 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
4749 	 */
4750 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
4751 	status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p4bufp,
4752 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag);
4753 	if (status != 0) {
4754 		SD_ERROR(SD_LOG_COMMON, un,
4755 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
4756 		goto page4_exit;
4757 	}
4758 
4759 	/*
4760 	 * Determine size of Block Descriptors in order to locate the mode
4761 	 * page data.  ATAPI devices return 0, SCSI devices should return
4762 	 * MODE_BLK_DESC_LENGTH.
4763 	 */
4764 	headerp = (struct mode_header *)p4bufp;
4765 	if (un->un_f_cfg_is_atapi == TRUE) {
4766 		struct mode_header_grp2 *mhp =
4767 		    (struct mode_header_grp2 *)headerp;
4768 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4769 	} else {
4770 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4771 	}
4772 
4773 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4774 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4775 		    "received unexpected bd_len of %d, page4\n", bd_len);
4776 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
4777 		    "sd_get_physical_geometry: received unexpected "
4778 		    "bd_len of %d, page4", bd_len);
4779 		status = EIO;
4780 		goto page4_exit;
4781 	}
4782 
4783 	page4p = (struct mode_geometry *)
4784 	    ((caddr_t)headerp + mode_header_length + bd_len);
4785 
4786 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
4787 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4788 		    "mode sense pg4 code mismatch %d\n",
4789 		    page4p->mode_page.code);
4790 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
4791 		    "sd_get_physical_geometry: mode sense pg4 code "
4792 		    "mismatch %d", page4p->mode_page.code);
4793 		status = EIO;
4794 		goto page4_exit;
4795 	}
4796 
4797 	/*
4798 	 * Stash the data now, after we know that both commands completed.
4799 	 */
4800 
4801 
4802 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
4803 	spc   = nhead * nsect;
4804 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
4805 	rpm   = BE_16(page4p->rpm);
4806 
4807 	modesense_capacity = spc * ncyl;
4808 
4809 	SD_INFO(SD_LOG_COMMON, un,
4810 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
4811 	SD_INFO(SD_LOG_COMMON, un,
4812 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
4813 	SD_INFO(SD_LOG_COMMON, un,
4814 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
4815 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
4816 	    (void *)pgeom_p, capacity);
4817 
4818 	/*
4819 	 * Compensate if the drive's geometry is not rectangular, i.e.,
4820 	 * the product of C * H * S returned by MODE SENSE >= that returned
4821 	 * by read capacity. This is an idiosyncrasy of the original x86
4822 	 * disk subsystem.
4823 	 */
4824 	if (modesense_capacity >= capacity) {
4825 		SD_INFO(SD_LOG_COMMON, un,
4826 		    "sd_get_physical_geometry: adjusting acyl; "
4827 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
4828 		    (modesense_capacity - capacity + spc - 1) / spc);
4829 		if (sector_size != 0) {
4830 			/* 1243403: NEC D38x7 drives don't support sec size */
4831 			pgeom_p->g_secsize = (unsigned short)sector_size;
4832 		}
4833 		pgeom_p->g_nsect    = (unsigned short)nsect;
4834 		pgeom_p->g_nhead    = (unsigned short)nhead;
4835 		pgeom_p->g_capacity = capacity;
4836 		pgeom_p->g_acyl	    =
4837 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
4838 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
4839 	}
4840 
4841 	pgeom_p->g_rpm    = (unsigned short)rpm;
4842 	pgeom_p->g_intrlv = (unsigned short)intrlv;
4843 	ret = 0;
4844 
4845 	SD_INFO(SD_LOG_COMMON, un,
4846 	    "sd_get_physical_geometry: mode sense geometry:\n");
4847 	SD_INFO(SD_LOG_COMMON, un,
4848 	    "   nsect: %d; sector size: %d; interlv: %d\n",
4849 	    nsect, sector_size, intrlv);
4850 	SD_INFO(SD_LOG_COMMON, un,
4851 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
4852 	    nhead, ncyl, rpm, modesense_capacity);
4853 	SD_INFO(SD_LOG_COMMON, un,
4854 	    "sd_get_physical_geometry: (cached)\n");
4855 	SD_INFO(SD_LOG_COMMON, un,
4856 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4857 	    pgeom_p->g_ncyl,  pgeom_p->g_acyl,
4858 	    pgeom_p->g_nhead, pgeom_p->g_nsect);
4859 	SD_INFO(SD_LOG_COMMON, un,
4860 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
4861 	    pgeom_p->g_secsize, pgeom_p->g_capacity,
4862 	    pgeom_p->g_intrlv, pgeom_p->g_rpm);
4863 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
4864 
4865 page4_exit:
4866 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
4867 
4868 page3_exit:
4869 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
4870 
4871 	if (status != 0) {
4872 		if (status == EIO) {
4873 			/*
4874 			 * Some disks do not support mode sense(6), we
4875 			 * should ignore this kind of error(sense key is
4876 			 * 0x5 - illegal request).
4877 			 */
4878 			uint8_t *sensep;
4879 			int senlen;
4880 
4881 			sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
4882 			senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
4883 			    ssc->ssc_uscsi_cmd->uscsi_rqresid);
4884 
4885 			if (senlen > 0 &&
4886 			    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
4887 				sd_ssc_assessment(ssc,
4888 				    SD_FMT_IGNORE_COMPROMISE);
4889 			} else {
4890 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
4891 			}
4892 		} else {
4893 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
4894 		}
4895 	}
4896 	sd_ssc_fini(ssc);
4897 	return (ret);
4898 }
4899 
4900 /*
4901  *    Function: sd_get_virtual_geometry
4902  *
4903  * Description: Ask the controller to tell us about the target device.
4904  *
4905  *   Arguments: un - pointer to softstate
4906  *		capacity - disk capacity in #blocks
4907  *		lbasize - disk block size in bytes
4908  *
4909  *     Context: Kernel thread only
4910  */
4911 
4912 static int
4913 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p,
4914     diskaddr_t capacity, int lbasize)
4915 {
4916 	uint_t	geombuf;
4917 	int	spc;
4918 
4919 	ASSERT(un != NULL);
4920 
4921 	/* Set sector size, and total number of sectors */
4922 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
4923 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
4924 
4925 	/* Let the HBA tell us its geometry */
4926 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
4927 
4928 	/* A value of -1 indicates an undefined "geometry" property */
4929 	if (geombuf == (-1)) {
4930 		return (EINVAL);
4931 	}
4932 
4933 	/* Initialize the logical geometry cache. */
4934 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
4935 	lgeom_p->g_nsect   = geombuf & 0xffff;
4936 	lgeom_p->g_secsize = un->un_sys_blocksize;
4937 
4938 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
4939 
4940 	/*
4941 	 * Note: The driver originally converted the capacity value from
4942 	 * target blocks to system blocks. However, the capacity value passed
4943 	 * to this routine is already in terms of system blocks (this scaling
4944 	 * is done when the READ CAPACITY command is issued and processed).
4945 	 * This 'error' may have gone undetected because the usage of g_ncyl
4946 	 * (which is based upon g_capacity) is very limited within the driver
4947 	 */
4948 	lgeom_p->g_capacity = capacity;
4949 
4950 	/*
4951 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
4952 	 * hba may return zero values if the device has been removed.
4953 	 */
4954 	if (spc == 0) {
4955 		lgeom_p->g_ncyl = 0;
4956 	} else {
4957 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
4958 	}
4959 	lgeom_p->g_acyl = 0;
4960 
4961 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
4962 	return (0);
4963 
4964 }
4965 /*
4966  *    Function: sd_update_block_info
4967  *
4968  * Description: Calculate a byte count to sector count bitshift value
4969  *		from sector size.
4970  *
4971  *   Arguments: un: unit struct.
4972  *		lbasize: new target sector size
4973  *		capacity: new target capacity, ie. block count
4974  *
4975  *     Context: Kernel thread context
4976  */
4977 
4978 static void
4979 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
4980 {
4981 	if (lbasize != 0) {
4982 		un->un_tgt_blocksize = lbasize;
4983 		un->un_f_tgt_blocksize_is_valid	= TRUE;
4984 	}
4985 
4986 	if (capacity != 0) {
4987 		un->un_blockcount		= capacity;
4988 		un->un_f_blockcount_is_valid	= TRUE;
4989 	}
4990 }
4991 
4992 
4993 /*
4994  *    Function: sd_register_devid
4995  *
4996  * Description: This routine will obtain the device id information from the
4997  *		target, obtain the serial number, and register the device
4998  *		id with the ddi framework.
4999  *
5000  *   Arguments: devi - the system's dev_info_t for the device.
5001  *		un - driver soft state (unit) structure
5002  *		reservation_flag - indicates if a reservation conflict
5003  *		occurred during attach
5004  *
5005  *     Context: Kernel Thread
5006  */
5007 static void
5008 sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi, int reservation_flag)
5009 {
5010 	int		rval		= 0;
5011 	uchar_t		*inq80		= NULL;
5012 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
5013 	size_t		inq80_resid	= 0;
5014 	uchar_t		*inq83		= NULL;
5015 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
5016 	size_t		inq83_resid	= 0;
5017 	int		dlen, len;
5018 	char		*sn;
5019 	struct sd_lun	*un;
5020 
5021 	ASSERT(ssc != NULL);
5022 	un = ssc->ssc_un;
5023 	ASSERT(un != NULL);
5024 	ASSERT(mutex_owned(SD_MUTEX(un)));
5025 	ASSERT((SD_DEVINFO(un)) == devi);
5026 
5027 	/*
5028 	 * If transport has already registered a devid for this target
5029 	 * then that takes precedence over the driver's determination
5030 	 * of the devid.
5031 	 */
5032 	if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) {
5033 		ASSERT(un->un_devid);
5034 		return; /* use devid registered by the transport */
5035 	}
5036 
5037 	/*
5038 	 * This is the case of antiquated Sun disk drives that have the
5039 	 * FAB_DEVID property set in the disk_table.  These drives
5040 	 * manage the devid's by storing them in last 2 available sectors
5041 	 * on the drive and have them fabricated by the ddi layer by calling
5042 	 * ddi_devid_init and passing the DEVID_FAB flag.
5043 	 */
5044 	if (un->un_f_opt_fab_devid == TRUE) {
5045 		/*
5046 		 * Depending on EINVAL isn't reliable, since a reserved disk
5047 		 * may result in invalid geometry, so check to make sure a
5048 		 * reservation conflict did not occur during attach.
5049 		 */
5050 		if ((sd_get_devid(ssc) == EINVAL) &&
5051 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
5052 			/*
5053 			 * The devid is invalid AND there is no reservation
5054 			 * conflict.  Fabricate a new devid.
5055 			 */
5056 			(void) sd_create_devid(ssc);
5057 		}
5058 
5059 		/* Register the devid if it exists */
5060 		if (un->un_devid != NULL) {
5061 			(void) ddi_devid_register(SD_DEVINFO(un),
5062 			    un->un_devid);
5063 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5064 			    "sd_register_devid: Devid Fabricated\n");
5065 		}
5066 		return;
5067 	}
5068 
5069 	/*
5070 	 * We check the availability of the World Wide Name (0x83) and Unit
5071 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
5072 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
5073 	 * 0x83 is available, that is the best choice.  Our next choice is
5074 	 * 0x80.  If neither are available, we munge the devid from the device
5075 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
5076 	 * to fabricate a devid for non-Sun qualified disks.
5077 	 */
5078 	if (sd_check_vpd_page_support(ssc) == 0) {
5079 		/* collect page 80 data if available */
5080 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
5081 
5082 			mutex_exit(SD_MUTEX(un));
5083 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
5084 
5085 			rval = sd_send_scsi_INQUIRY(ssc, inq80, inq80_len,
5086 			    0x01, 0x80, &inq80_resid);
5087 
5088 			if (rval != 0) {
5089 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5090 				kmem_free(inq80, inq80_len);
5091 				inq80 = NULL;
5092 				inq80_len = 0;
5093 			} else if (ddi_prop_exists(
5094 			    DDI_DEV_T_NONE, SD_DEVINFO(un),
5095 			    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
5096 			    INQUIRY_SERIAL_NO) == 0) {
5097 				/*
5098 				 * If we don't already have a serial number
5099 				 * property, do quick verify of data returned
5100 				 * and define property.
5101 				 */
5102 				dlen = inq80_len - inq80_resid;
5103 				len = (size_t)inq80[3];
5104 				if ((dlen >= 4) && ((len + 4) <= dlen)) {
5105 					/*
5106 					 * Ensure sn termination, skip leading
5107 					 * blanks, and create property
5108 					 * 'inquiry-serial-no'.
5109 					 */
5110 					sn = (char *)&inq80[4];
5111 					sn[len] = 0;
5112 					while (*sn && (*sn == ' '))
5113 						sn++;
5114 					if (*sn) {
5115 						(void) ddi_prop_update_string(
5116 						    DDI_DEV_T_NONE,
5117 						    SD_DEVINFO(un),
5118 						    INQUIRY_SERIAL_NO, sn);
5119 					}
5120 				}
5121 			}
5122 			mutex_enter(SD_MUTEX(un));
5123 		}
5124 
5125 		/* collect page 83 data if available */
5126 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
5127 			mutex_exit(SD_MUTEX(un));
5128 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
5129 
5130 			rval = sd_send_scsi_INQUIRY(ssc, inq83, inq83_len,
5131 			    0x01, 0x83, &inq83_resid);
5132 
5133 			if (rval != 0) {
5134 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5135 				kmem_free(inq83, inq83_len);
5136 				inq83 = NULL;
5137 				inq83_len = 0;
5138 			}
5139 			mutex_enter(SD_MUTEX(un));
5140 		}
5141 	}
5142 
5143 	/* encode best devid possible based on data available */
5144 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
5145 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
5146 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
5147 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
5148 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
5149 
5150 		/* devid successfully encoded, register devid */
5151 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
5152 
5153 	} else {
5154 		/*
5155 		 * Unable to encode a devid based on data available.
5156 		 * This is not a Sun qualified disk.  Older Sun disk
5157 		 * drives that have the SD_FAB_DEVID property
5158 		 * set in the disk_table and non Sun qualified
5159 		 * disks are treated in the same manner.  These
5160 		 * drives manage the devid's by storing them in
5161 		 * last 2 available sectors on the drive and
5162 		 * have them fabricated by the ddi layer by
5163 		 * calling ddi_devid_init and passing the
5164 		 * DEVID_FAB flag.
5165 		 * Create a fabricate devid only if there's no
5166 		 * fabricate devid existed.
5167 		 */
5168 		if (sd_get_devid(ssc) == EINVAL) {
5169 			(void) sd_create_devid(ssc);
5170 		}
5171 		un->un_f_opt_fab_devid = TRUE;
5172 
5173 		/* Register the devid if it exists */
5174 		if (un->un_devid != NULL) {
5175 			(void) ddi_devid_register(SD_DEVINFO(un),
5176 			    un->un_devid);
5177 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5178 			    "sd_register_devid: devid fabricated using "
5179 			    "ddi framework\n");
5180 		}
5181 	}
5182 
5183 	/* clean up resources */
5184 	if (inq80 != NULL) {
5185 		kmem_free(inq80, inq80_len);
5186 	}
5187 	if (inq83 != NULL) {
5188 		kmem_free(inq83, inq83_len);
5189 	}
5190 }
5191 
5192 
5193 
5194 /*
5195  *    Function: sd_get_devid
5196  *
5197  * Description: This routine will return 0 if a valid device id has been
5198  *		obtained from the target and stored in the soft state. If a
5199  *		valid device id has not been previously read and stored, a
5200  *		read attempt will be made.
5201  *
5202  *   Arguments: un - driver soft state (unit) structure
5203  *
5204  * Return Code: 0 if we successfully get the device id
5205  *
5206  *     Context: Kernel Thread
5207  */
5208 
5209 static int
5210 sd_get_devid(sd_ssc_t *ssc)
5211 {
5212 	struct dk_devid		*dkdevid;
5213 	ddi_devid_t		tmpid;
5214 	uint_t			*ip;
5215 	size_t			sz;
5216 	diskaddr_t		blk;
5217 	int			status;
5218 	int			chksum;
5219 	int			i;
5220 	size_t			buffer_size;
5221 	struct sd_lun		*un;
5222 
5223 	ASSERT(ssc != NULL);
5224 	un = ssc->ssc_un;
5225 	ASSERT(un != NULL);
5226 	ASSERT(mutex_owned(SD_MUTEX(un)));
5227 
5228 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
5229 	    un);
5230 
5231 	if (un->un_devid != NULL) {
5232 		return (0);
5233 	}
5234 
5235 	mutex_exit(SD_MUTEX(un));
5236 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5237 	    (void *)SD_PATH_DIRECT) != 0) {
5238 		mutex_enter(SD_MUTEX(un));
5239 		return (EINVAL);
5240 	}
5241 
5242 	/*
5243 	 * Read and verify device id, stored in the reserved cylinders at the
5244 	 * end of the disk. Backup label is on the odd sectors of the last
5245 	 * track of the last cylinder. Device id will be on track of the next
5246 	 * to last cylinder.
5247 	 */
5248 	mutex_enter(SD_MUTEX(un));
5249 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
5250 	mutex_exit(SD_MUTEX(un));
5251 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
5252 	status = sd_send_scsi_READ(ssc, dkdevid, buffer_size, blk,
5253 	    SD_PATH_DIRECT);
5254 
5255 	if (status != 0) {
5256 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5257 		goto error;
5258 	}
5259 
5260 	/* Validate the revision */
5261 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
5262 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
5263 		status = EINVAL;
5264 		goto error;
5265 	}
5266 
5267 	/* Calculate the checksum */
5268 	chksum = 0;
5269 	ip = (uint_t *)dkdevid;
5270 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
5271 	    i++) {
5272 		chksum ^= ip[i];
5273 	}
5274 
5275 	/* Compare the checksums */
5276 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
5277 		status = EINVAL;
5278 		goto error;
5279 	}
5280 
5281 	/* Validate the device id */
5282 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
5283 		status = EINVAL;
5284 		goto error;
5285 	}
5286 
5287 	/*
5288 	 * Store the device id in the driver soft state
5289 	 */
5290 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
5291 	tmpid = kmem_alloc(sz, KM_SLEEP);
5292 
5293 	mutex_enter(SD_MUTEX(un));
5294 
5295 	un->un_devid = tmpid;
5296 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
5297 
5298 	kmem_free(dkdevid, buffer_size);
5299 
5300 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
5301 
5302 	return (status);
5303 error:
5304 	mutex_enter(SD_MUTEX(un));
5305 	kmem_free(dkdevid, buffer_size);
5306 	return (status);
5307 }
5308 
5309 
5310 /*
5311  *    Function: sd_create_devid
5312  *
5313  * Description: This routine will fabricate the device id and write it
5314  *		to the disk.
5315  *
5316  *   Arguments: un - driver soft state (unit) structure
5317  *
5318  * Return Code: value of the fabricated device id
5319  *
5320  *     Context: Kernel Thread
5321  */
5322 
5323 static ddi_devid_t
5324 sd_create_devid(sd_ssc_t *ssc)
5325 {
5326 	struct sd_lun	*un;
5327 
5328 	ASSERT(ssc != NULL);
5329 	un = ssc->ssc_un;
5330 	ASSERT(un != NULL);
5331 
5332 	/* Fabricate the devid */
5333 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
5334 	    == DDI_FAILURE) {
5335 		return (NULL);
5336 	}
5337 
5338 	/* Write the devid to disk */
5339 	if (sd_write_deviceid(ssc) != 0) {
5340 		ddi_devid_free(un->un_devid);
5341 		un->un_devid = NULL;
5342 	}
5343 
5344 	return (un->un_devid);
5345 }
5346 
5347 
5348 /*
5349  *    Function: sd_write_deviceid
5350  *
5351  * Description: This routine will write the device id to the disk
5352  *		reserved sector.
5353  *
5354  *   Arguments: un - driver soft state (unit) structure
5355  *
5356  * Return Code: EINVAL
5357  *		value returned by sd_send_scsi_cmd
5358  *
5359  *     Context: Kernel Thread
5360  */
5361 
5362 static int
5363 sd_write_deviceid(sd_ssc_t *ssc)
5364 {
5365 	struct dk_devid		*dkdevid;
5366 	diskaddr_t		blk;
5367 	uint_t			*ip, chksum;
5368 	int			status;
5369 	int			i;
5370 	struct sd_lun		*un;
5371 
5372 	ASSERT(ssc != NULL);
5373 	un = ssc->ssc_un;
5374 	ASSERT(un != NULL);
5375 	ASSERT(mutex_owned(SD_MUTEX(un)));
5376 
5377 	mutex_exit(SD_MUTEX(un));
5378 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5379 	    (void *)SD_PATH_DIRECT) != 0) {
5380 		mutex_enter(SD_MUTEX(un));
5381 		return (-1);
5382 	}
5383 
5384 
5385 	/* Allocate the buffer */
5386 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
5387 
5388 	/* Fill in the revision */
5389 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
5390 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
5391 
5392 	/* Copy in the device id */
5393 	mutex_enter(SD_MUTEX(un));
5394 	bcopy(un->un_devid, &dkdevid->dkd_devid,
5395 	    ddi_devid_sizeof(un->un_devid));
5396 	mutex_exit(SD_MUTEX(un));
5397 
5398 	/* Calculate the checksum */
5399 	chksum = 0;
5400 	ip = (uint_t *)dkdevid;
5401 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
5402 	    i++) {
5403 		chksum ^= ip[i];
5404 	}
5405 
5406 	/* Fill-in checksum */
5407 	DKD_FORMCHKSUM(chksum, dkdevid);
5408 
5409 	/* Write the reserved sector */
5410 	status = sd_send_scsi_WRITE(ssc, dkdevid, un->un_sys_blocksize, blk,
5411 	    SD_PATH_DIRECT);
5412 	if (status != 0)
5413 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5414 
5415 	kmem_free(dkdevid, un->un_sys_blocksize);
5416 
5417 	mutex_enter(SD_MUTEX(un));
5418 	return (status);
5419 }
5420 
5421 
5422 /*
5423  *    Function: sd_check_vpd_page_support
5424  *
5425  * Description: This routine sends an inquiry command with the EVPD bit set and
5426  *		a page code of 0x00 to the device. It is used to determine which
5427  *		vital product pages are available to find the devid. We are
5428  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
5429  *		device does not support that command.
5430  *
5431  *   Arguments: un  - driver soft state (unit) structure
5432  *
5433  * Return Code: 0 - success
5434  *		1 - check condition
5435  *
5436  *     Context: This routine can sleep.
5437  */
5438 
5439 static int
5440 sd_check_vpd_page_support(sd_ssc_t *ssc)
5441 {
5442 	uchar_t	*page_list	= NULL;
5443 	uchar_t	page_length	= 0xff;	/* Use max possible length */
5444 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
5445 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
5446 	int    	rval		= 0;
5447 	int	counter;
5448 	struct sd_lun		*un;
5449 
5450 	ASSERT(ssc != NULL);
5451 	un = ssc->ssc_un;
5452 	ASSERT(un != NULL);
5453 	ASSERT(mutex_owned(SD_MUTEX(un)));
5454 
5455 	mutex_exit(SD_MUTEX(un));
5456 
5457 	/*
5458 	 * We'll set the page length to the maximum to save figuring it out
5459 	 * with an additional call.
5460 	 */
5461 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
5462 
5463 	rval = sd_send_scsi_INQUIRY(ssc, page_list, page_length, evpd,
5464 	    page_code, NULL);
5465 
5466 	if (rval != 0)
5467 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5468 
5469 	mutex_enter(SD_MUTEX(un));
5470 
5471 	/*
5472 	 * Now we must validate that the device accepted the command, as some
5473 	 * drives do not support it.  If the drive does support it, we will
5474 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
5475 	 * not, we return -1.
5476 	 */
5477 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
5478 		/* Loop to find one of the 2 pages we need */
5479 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
5480 
5481 		/*
5482 		 * Pages are returned in ascending order, and 0x83 is what we
5483 		 * are hoping for.
5484 		 */
5485 		while ((page_list[counter] <= 0x86) &&
5486 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
5487 		    VPD_HEAD_OFFSET))) {
5488 			/*
5489 			 * Add 3 because page_list[3] is the number of
5490 			 * pages minus 3
5491 			 */
5492 
5493 			switch (page_list[counter]) {
5494 			case 0x00:
5495 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
5496 				break;
5497 			case 0x80:
5498 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
5499 				break;
5500 			case 0x81:
5501 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
5502 				break;
5503 			case 0x82:
5504 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
5505 				break;
5506 			case 0x83:
5507 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
5508 				break;
5509 			case 0x86:
5510 				un->un_vpd_page_mask |= SD_VPD_EXTENDED_DATA_PG;
5511 				break;
5512 			}
5513 			counter++;
5514 		}
5515 
5516 	} else {
5517 		rval = -1;
5518 
5519 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
5520 		    "sd_check_vpd_page_support: This drive does not implement "
5521 		    "VPD pages.\n");
5522 	}
5523 
5524 	kmem_free(page_list, page_length);
5525 
5526 	return (rval);
5527 }
5528 
5529 
5530 /*
5531  *    Function: sd_setup_pm
5532  *
5533  * Description: Initialize Power Management on the device
5534  *
5535  *     Context: Kernel Thread
5536  */
5537 
5538 static void
5539 sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi)
5540 {
5541 	uint_t		log_page_size;
5542 	uchar_t		*log_page_data;
5543 	int		rval = 0;
5544 	struct sd_lun	*un;
5545 
5546 	ASSERT(ssc != NULL);
5547 	un = ssc->ssc_un;
5548 	ASSERT(un != NULL);
5549 
5550 	/*
5551 	 * Since we are called from attach, holding a mutex for
5552 	 * un is unnecessary. Because some of the routines called
5553 	 * from here require SD_MUTEX to not be held, assert this
5554 	 * right up front.
5555 	 */
5556 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5557 	/*
5558 	 * Since the sd device does not have the 'reg' property,
5559 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
5560 	 * The following code is to tell cpr that this device
5561 	 * DOES need to be suspended and resumed.
5562 	 */
5563 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
5564 	    "pm-hardware-state", "needs-suspend-resume");
5565 
5566 	/*
5567 	 * This complies with the new power management framework
5568 	 * for certain desktop machines. Create the pm_components
5569 	 * property as a string array property.
5570 	 */
5571 	if (un->un_f_pm_supported) {
5572 		/*
5573 		 * not all devices have a motor, try it first.
5574 		 * some devices may return ILLEGAL REQUEST, some
5575 		 * will hang
5576 		 * The following START_STOP_UNIT is used to check if target
5577 		 * device has a motor.
5578 		 */
5579 		un->un_f_start_stop_supported = TRUE;
5580 		rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_START,
5581 		    SD_PATH_DIRECT);
5582 
5583 		if (rval != 0) {
5584 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5585 			un->un_f_start_stop_supported = FALSE;
5586 		}
5587 
5588 		/*
5589 		 * create pm properties anyways otherwise the parent can't
5590 		 * go to sleep
5591 		 */
5592 		(void) sd_create_pm_components(devi, un);
5593 		un->un_f_pm_is_enabled = TRUE;
5594 		return;
5595 	}
5596 
5597 	if (!un->un_f_log_sense_supported) {
5598 		un->un_power_level = SD_SPINDLE_ON;
5599 		un->un_f_pm_is_enabled = FALSE;
5600 		return;
5601 	}
5602 
5603 	rval = sd_log_page_supported(ssc, START_STOP_CYCLE_PAGE);
5604 
5605 #ifdef	SDDEBUG
5606 	if (sd_force_pm_supported) {
5607 		/* Force a successful result */
5608 		rval = 1;
5609 	}
5610 #endif
5611 
5612 	/*
5613 	 * If the start-stop cycle counter log page is not supported
5614 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
5615 	 * then we should not create the pm_components property.
5616 	 */
5617 	if (rval == -1) {
5618 		/*
5619 		 * Error.
5620 		 * Reading log sense failed, most likely this is
5621 		 * an older drive that does not support log sense.
5622 		 * If this fails auto-pm is not supported.
5623 		 */
5624 		un->un_power_level = SD_SPINDLE_ON;
5625 		un->un_f_pm_is_enabled = FALSE;
5626 
5627 	} else if (rval == 0) {
5628 		/*
5629 		 * Page not found.
5630 		 * The start stop cycle counter is implemented as page
5631 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
5632 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
5633 		 */
5634 		if (sd_log_page_supported(ssc, START_STOP_CYCLE_VU_PAGE) == 1) {
5635 			/*
5636 			 * Page found, use this one.
5637 			 */
5638 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
5639 			un->un_f_pm_is_enabled = TRUE;
5640 		} else {
5641 			/*
5642 			 * Error or page not found.
5643 			 * auto-pm is not supported for this device.
5644 			 */
5645 			un->un_power_level = SD_SPINDLE_ON;
5646 			un->un_f_pm_is_enabled = FALSE;
5647 		}
5648 	} else {
5649 		/*
5650 		 * Page found, use it.
5651 		 */
5652 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
5653 		un->un_f_pm_is_enabled = TRUE;
5654 	}
5655 
5656 
5657 	if (un->un_f_pm_is_enabled == TRUE) {
5658 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5659 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5660 
5661 		rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
5662 		    log_page_size, un->un_start_stop_cycle_page,
5663 		    0x01, 0, SD_PATH_DIRECT);
5664 
5665 		if (rval != 0) {
5666 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5667 		}
5668 
5669 #ifdef	SDDEBUG
5670 		if (sd_force_pm_supported) {
5671 			/* Force a successful result */
5672 			rval = 0;
5673 		}
5674 #endif
5675 
5676 		/*
5677 		 * If the Log sense for Page( Start/stop cycle counter page)
5678 		 * succeeds, then power management is supported and we can
5679 		 * enable auto-pm.
5680 		 */
5681 		if (rval == 0)  {
5682 			(void) sd_create_pm_components(devi, un);
5683 		} else {
5684 			un->un_power_level = SD_SPINDLE_ON;
5685 			un->un_f_pm_is_enabled = FALSE;
5686 		}
5687 
5688 		kmem_free(log_page_data, log_page_size);
5689 	}
5690 }
5691 
5692 
5693 /*
5694  *    Function: sd_create_pm_components
5695  *
5696  * Description: Initialize PM property.
5697  *
5698  *     Context: Kernel thread context
5699  */
5700 
5701 static void
5702 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
5703 {
5704 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
5705 
5706 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5707 
5708 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
5709 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
5710 		/*
5711 		 * When components are initially created they are idle,
5712 		 * power up any non-removables.
5713 		 * Note: the return value of pm_raise_power can't be used
5714 		 * for determining if PM should be enabled for this device.
5715 		 * Even if you check the return values and remove this
5716 		 * property created above, the PM framework will not honor the
5717 		 * change after the first call to pm_raise_power. Hence,
5718 		 * removal of that property does not help if pm_raise_power
5719 		 * fails. In the case of removable media, the start/stop
5720 		 * will fail if the media is not present.
5721 		 */
5722 		if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
5723 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
5724 			mutex_enter(SD_MUTEX(un));
5725 			un->un_power_level = SD_SPINDLE_ON;
5726 			mutex_enter(&un->un_pm_mutex);
5727 			/* Set to on and not busy. */
5728 			un->un_pm_count = 0;
5729 		} else {
5730 			mutex_enter(SD_MUTEX(un));
5731 			un->un_power_level = SD_SPINDLE_OFF;
5732 			mutex_enter(&un->un_pm_mutex);
5733 			/* Set to off. */
5734 			un->un_pm_count = -1;
5735 		}
5736 		mutex_exit(&un->un_pm_mutex);
5737 		mutex_exit(SD_MUTEX(un));
5738 	} else {
5739 		un->un_power_level = SD_SPINDLE_ON;
5740 		un->un_f_pm_is_enabled = FALSE;
5741 	}
5742 }
5743 
5744 
5745 /*
5746  *    Function: sd_ddi_suspend
5747  *
5748  * Description: Performs system power-down operations. This includes
5749  *		setting the drive state to indicate its suspended so
5750  *		that no new commands will be accepted. Also, wait for
5751  *		all commands that are in transport or queued to a timer
5752  *		for retry to complete. All timeout threads are cancelled.
5753  *
5754  * Return Code: DDI_FAILURE or DDI_SUCCESS
5755  *
5756  *     Context: Kernel thread context
5757  */
5758 
5759 static int
5760 sd_ddi_suspend(dev_info_t *devi)
5761 {
5762 	struct	sd_lun	*un;
5763 	clock_t		wait_cmds_complete;
5764 
5765 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5766 	if (un == NULL) {
5767 		return (DDI_FAILURE);
5768 	}
5769 
5770 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
5771 
5772 	mutex_enter(SD_MUTEX(un));
5773 
5774 	/* Return success if the device is already suspended. */
5775 	if (un->un_state == SD_STATE_SUSPENDED) {
5776 		mutex_exit(SD_MUTEX(un));
5777 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5778 		    "device already suspended, exiting\n");
5779 		return (DDI_SUCCESS);
5780 	}
5781 
5782 	/* Return failure if the device is being used by HA */
5783 	if (un->un_resvd_status &
5784 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
5785 		mutex_exit(SD_MUTEX(un));
5786 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5787 		    "device in use by HA, exiting\n");
5788 		return (DDI_FAILURE);
5789 	}
5790 
5791 	/*
5792 	 * Return failure if the device is in a resource wait
5793 	 * or power changing state.
5794 	 */
5795 	if ((un->un_state == SD_STATE_RWAIT) ||
5796 	    (un->un_state == SD_STATE_PM_CHANGING)) {
5797 		mutex_exit(SD_MUTEX(un));
5798 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5799 		    "device in resource wait state, exiting\n");
5800 		return (DDI_FAILURE);
5801 	}
5802 
5803 
5804 	un->un_save_state = un->un_last_state;
5805 	New_state(un, SD_STATE_SUSPENDED);
5806 
5807 	/*
5808 	 * Wait for all commands that are in transport or queued to a timer
5809 	 * for retry to complete.
5810 	 *
5811 	 * While waiting, no new commands will be accepted or sent because of
5812 	 * the new state we set above.
5813 	 *
5814 	 * Wait till current operation has completed. If we are in the resource
5815 	 * wait state (with an intr outstanding) then we need to wait till the
5816 	 * intr completes and starts the next cmd. We want to wait for
5817 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
5818 	 */
5819 	wait_cmds_complete = ddi_get_lbolt() +
5820 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
5821 
5822 	while (un->un_ncmds_in_transport != 0) {
5823 		/*
5824 		 * Fail if commands do not finish in the specified time.
5825 		 */
5826 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
5827 		    wait_cmds_complete) == -1) {
5828 			/*
5829 			 * Undo the state changes made above. Everything
5830 			 * must go back to it's original value.
5831 			 */
5832 			Restore_state(un);
5833 			un->un_last_state = un->un_save_state;
5834 			/* Wake up any threads that might be waiting. */
5835 			cv_broadcast(&un->un_suspend_cv);
5836 			mutex_exit(SD_MUTEX(un));
5837 			SD_ERROR(SD_LOG_IO_PM, un,
5838 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
5839 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
5840 			return (DDI_FAILURE);
5841 		}
5842 	}
5843 
5844 	/*
5845 	 * Cancel SCSI watch thread and timeouts, if any are active
5846 	 */
5847 
5848 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
5849 		opaque_t temp_token = un->un_swr_token;
5850 		mutex_exit(SD_MUTEX(un));
5851 		scsi_watch_suspend(temp_token);
5852 		mutex_enter(SD_MUTEX(un));
5853 	}
5854 
5855 	if (un->un_reset_throttle_timeid != NULL) {
5856 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
5857 		un->un_reset_throttle_timeid = NULL;
5858 		mutex_exit(SD_MUTEX(un));
5859 		(void) untimeout(temp_id);
5860 		mutex_enter(SD_MUTEX(un));
5861 	}
5862 
5863 	if (un->un_dcvb_timeid != NULL) {
5864 		timeout_id_t temp_id = un->un_dcvb_timeid;
5865 		un->un_dcvb_timeid = NULL;
5866 		mutex_exit(SD_MUTEX(un));
5867 		(void) untimeout(temp_id);
5868 		mutex_enter(SD_MUTEX(un));
5869 	}
5870 
5871 	mutex_enter(&un->un_pm_mutex);
5872 	if (un->un_pm_timeid != NULL) {
5873 		timeout_id_t temp_id = un->un_pm_timeid;
5874 		un->un_pm_timeid = NULL;
5875 		mutex_exit(&un->un_pm_mutex);
5876 		mutex_exit(SD_MUTEX(un));
5877 		(void) untimeout(temp_id);
5878 		mutex_enter(SD_MUTEX(un));
5879 	} else {
5880 		mutex_exit(&un->un_pm_mutex);
5881 	}
5882 
5883 	if (un->un_retry_timeid != NULL) {
5884 		timeout_id_t temp_id = un->un_retry_timeid;
5885 		un->un_retry_timeid = NULL;
5886 		mutex_exit(SD_MUTEX(un));
5887 		(void) untimeout(temp_id);
5888 		mutex_enter(SD_MUTEX(un));
5889 
5890 		if (un->un_retry_bp != NULL) {
5891 			un->un_retry_bp->av_forw = un->un_waitq_headp;
5892 			un->un_waitq_headp = un->un_retry_bp;
5893 			if (un->un_waitq_tailp == NULL) {
5894 				un->un_waitq_tailp = un->un_retry_bp;
5895 			}
5896 			un->un_retry_bp = NULL;
5897 			un->un_retry_statp = NULL;
5898 		}
5899 	}
5900 
5901 	if (un->un_direct_priority_timeid != NULL) {
5902 		timeout_id_t temp_id = un->un_direct_priority_timeid;
5903 		un->un_direct_priority_timeid = NULL;
5904 		mutex_exit(SD_MUTEX(un));
5905 		(void) untimeout(temp_id);
5906 		mutex_enter(SD_MUTEX(un));
5907 	}
5908 
5909 	if (un->un_f_is_fibre == TRUE) {
5910 		/*
5911 		 * Remove callbacks for insert and remove events
5912 		 */
5913 		if (un->un_insert_event != NULL) {
5914 			mutex_exit(SD_MUTEX(un));
5915 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
5916 			mutex_enter(SD_MUTEX(un));
5917 			un->un_insert_event = NULL;
5918 		}
5919 
5920 		if (un->un_remove_event != NULL) {
5921 			mutex_exit(SD_MUTEX(un));
5922 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
5923 			mutex_enter(SD_MUTEX(un));
5924 			un->un_remove_event = NULL;
5925 		}
5926 	}
5927 
5928 	mutex_exit(SD_MUTEX(un));
5929 
5930 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
5931 
5932 	return (DDI_SUCCESS);
5933 }
5934 
5935 
5936 /*
5937  *    Function: sd_ddi_pm_suspend
5938  *
5939  * Description: Set the drive state to low power.
5940  *		Someone else is required to actually change the drive
5941  *		power level.
5942  *
5943  *   Arguments: un - driver soft state (unit) structure
5944  *
5945  * Return Code: DDI_FAILURE or DDI_SUCCESS
5946  *
5947  *     Context: Kernel thread context
5948  */
5949 
5950 static int
5951 sd_ddi_pm_suspend(struct sd_lun *un)
5952 {
5953 	ASSERT(un != NULL);
5954 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
5955 
5956 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5957 	mutex_enter(SD_MUTEX(un));
5958 
5959 	/*
5960 	 * Exit if power management is not enabled for this device, or if
5961 	 * the device is being used by HA.
5962 	 */
5963 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
5964 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
5965 		mutex_exit(SD_MUTEX(un));
5966 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
5967 		return (DDI_SUCCESS);
5968 	}
5969 
5970 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
5971 	    un->un_ncmds_in_driver);
5972 
5973 	/*
5974 	 * See if the device is not busy, ie.:
5975 	 *    - we have no commands in the driver for this device
5976 	 *    - not waiting for resources
5977 	 */
5978 	if ((un->un_ncmds_in_driver == 0) &&
5979 	    (un->un_state != SD_STATE_RWAIT)) {
5980 		/*
5981 		 * The device is not busy, so it is OK to go to low power state.
5982 		 * Indicate low power, but rely on someone else to actually
5983 		 * change it.
5984 		 */
5985 		mutex_enter(&un->un_pm_mutex);
5986 		un->un_pm_count = -1;
5987 		mutex_exit(&un->un_pm_mutex);
5988 		un->un_power_level = SD_SPINDLE_OFF;
5989 	}
5990 
5991 	mutex_exit(SD_MUTEX(un));
5992 
5993 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
5994 
5995 	return (DDI_SUCCESS);
5996 }
5997 
5998 
5999 /*
6000  *    Function: sd_ddi_resume
6001  *
6002  * Description: Performs system power-up operations..
6003  *
6004  * Return Code: DDI_SUCCESS
6005  *		DDI_FAILURE
6006  *
6007  *     Context: Kernel thread context
6008  */
6009 
6010 static int
6011 sd_ddi_resume(dev_info_t *devi)
6012 {
6013 	struct	sd_lun	*un;
6014 
6015 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6016 	if (un == NULL) {
6017 		return (DDI_FAILURE);
6018 	}
6019 
6020 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
6021 
6022 	mutex_enter(SD_MUTEX(un));
6023 	Restore_state(un);
6024 
6025 	/*
6026 	 * Restore the state which was saved to give the
6027 	 * the right state in un_last_state
6028 	 */
6029 	un->un_last_state = un->un_save_state;
6030 	/*
6031 	 * Note: throttle comes back at full.
6032 	 * Also note: this MUST be done before calling pm_raise_power
6033 	 * otherwise the system can get hung in biowait. The scenario where
6034 	 * this'll happen is under cpr suspend. Writing of the system
6035 	 * state goes through sddump, which writes 0 to un_throttle. If
6036 	 * writing the system state then fails, example if the partition is
6037 	 * too small, then cpr attempts a resume. If throttle isn't restored
6038 	 * from the saved value until after calling pm_raise_power then
6039 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
6040 	 * in biowait.
6041 	 */
6042 	un->un_throttle = un->un_saved_throttle;
6043 
6044 	/*
6045 	 * The chance of failure is very rare as the only command done in power
6046 	 * entry point is START command when you transition from 0->1 or
6047 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
6048 	 * which suspend was done. Ignore the return value as the resume should
6049 	 * not be failed. In the case of removable media the media need not be
6050 	 * inserted and hence there is a chance that raise power will fail with
6051 	 * media not present.
6052 	 */
6053 	if (un->un_f_attach_spinup) {
6054 		mutex_exit(SD_MUTEX(un));
6055 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
6056 		mutex_enter(SD_MUTEX(un));
6057 	}
6058 
6059 	/*
6060 	 * Don't broadcast to the suspend cv and therefore possibly
6061 	 * start I/O until after power has been restored.
6062 	 */
6063 	cv_broadcast(&un->un_suspend_cv);
6064 	cv_broadcast(&un->un_state_cv);
6065 
6066 	/* restart thread */
6067 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
6068 		scsi_watch_resume(un->un_swr_token);
6069 	}
6070 
6071 #if (defined(__fibre))
6072 	if (un->un_f_is_fibre == TRUE) {
6073 		/*
6074 		 * Add callbacks for insert and remove events
6075 		 */
6076 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
6077 			sd_init_event_callbacks(un);
6078 		}
6079 	}
6080 #endif
6081 
6082 	/*
6083 	 * Transport any pending commands to the target.
6084 	 *
6085 	 * If this is a low-activity device commands in queue will have to wait
6086 	 * until new commands come in, which may take awhile. Also, we
6087 	 * specifically don't check un_ncmds_in_transport because we know that
6088 	 * there really are no commands in progress after the unit was
6089 	 * suspended and we could have reached the throttle level, been
6090 	 * suspended, and have no new commands coming in for awhile. Highly
6091 	 * unlikely, but so is the low-activity disk scenario.
6092 	 */
6093 	ddi_xbuf_dispatch(un->un_xbuf_attr);
6094 
6095 	sd_start_cmds(un, NULL);
6096 	mutex_exit(SD_MUTEX(un));
6097 
6098 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
6099 
6100 	return (DDI_SUCCESS);
6101 }
6102 
6103 
6104 /*
6105  *    Function: sd_ddi_pm_resume
6106  *
6107  * Description: Set the drive state to powered on.
6108  *		Someone else is required to actually change the drive
6109  *		power level.
6110  *
6111  *   Arguments: un - driver soft state (unit) structure
6112  *
6113  * Return Code: DDI_SUCCESS
6114  *
6115  *     Context: Kernel thread context
6116  */
6117 
6118 static int
6119 sd_ddi_pm_resume(struct sd_lun *un)
6120 {
6121 	ASSERT(un != NULL);
6122 
6123 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6124 	mutex_enter(SD_MUTEX(un));
6125 	un->un_power_level = SD_SPINDLE_ON;
6126 
6127 	ASSERT(!mutex_owned(&un->un_pm_mutex));
6128 	mutex_enter(&un->un_pm_mutex);
6129 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
6130 		un->un_pm_count++;
6131 		ASSERT(un->un_pm_count == 0);
6132 		/*
6133 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
6134 		 * un_suspend_cv is for a system resume, not a power management
6135 		 * device resume. (4297749)
6136 		 *	 cv_broadcast(&un->un_suspend_cv);
6137 		 */
6138 	}
6139 	mutex_exit(&un->un_pm_mutex);
6140 	mutex_exit(SD_MUTEX(un));
6141 
6142 	return (DDI_SUCCESS);
6143 }
6144 
6145 
6146 /*
6147  *    Function: sd_pm_idletimeout_handler
6148  *
6149  * Description: A timer routine that's active only while a device is busy.
6150  *		The purpose is to extend slightly the pm framework's busy
6151  *		view of the device to prevent busy/idle thrashing for
6152  *		back-to-back commands. Do this by comparing the current time
6153  *		to the time at which the last command completed and when the
6154  *		difference is greater than sd_pm_idletime, call
6155  *		pm_idle_component. In addition to indicating idle to the pm
6156  *		framework, update the chain type to again use the internal pm
6157  *		layers of the driver.
6158  *
6159  *   Arguments: arg - driver soft state (unit) structure
6160  *
6161  *     Context: Executes in a timeout(9F) thread context
6162  */
6163 
6164 static void
6165 sd_pm_idletimeout_handler(void *arg)
6166 {
6167 	struct sd_lun *un = arg;
6168 
6169 	time_t	now;
6170 
6171 	mutex_enter(&sd_detach_mutex);
6172 	if (un->un_detach_count != 0) {
6173 		/* Abort if the instance is detaching */
6174 		mutex_exit(&sd_detach_mutex);
6175 		return;
6176 	}
6177 	mutex_exit(&sd_detach_mutex);
6178 
6179 	now = ddi_get_time();
6180 	/*
6181 	 * Grab both mutexes, in the proper order, since we're accessing
6182 	 * both PM and softstate variables.
6183 	 */
6184 	mutex_enter(SD_MUTEX(un));
6185 	mutex_enter(&un->un_pm_mutex);
6186 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
6187 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
6188 		/*
6189 		 * Update the chain types.
6190 		 * This takes affect on the next new command received.
6191 		 */
6192 		if (un->un_f_non_devbsize_supported) {
6193 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
6194 		} else {
6195 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
6196 		}
6197 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
6198 
6199 		SD_TRACE(SD_LOG_IO_PM, un,
6200 		    "sd_pm_idletimeout_handler: idling device\n");
6201 		(void) pm_idle_component(SD_DEVINFO(un), 0);
6202 		un->un_pm_idle_timeid = NULL;
6203 	} else {
6204 		un->un_pm_idle_timeid =
6205 		    timeout(sd_pm_idletimeout_handler, un,
6206 		    (drv_usectohz((clock_t)300000))); /* 300 ms. */
6207 	}
6208 	mutex_exit(&un->un_pm_mutex);
6209 	mutex_exit(SD_MUTEX(un));
6210 }
6211 
6212 
6213 /*
6214  *    Function: sd_pm_timeout_handler
6215  *
6216  * Description: Callback to tell framework we are idle.
6217  *
6218  *     Context: timeout(9f) thread context.
6219  */
6220 
6221 static void
6222 sd_pm_timeout_handler(void *arg)
6223 {
6224 	struct sd_lun *un = arg;
6225 
6226 	(void) pm_idle_component(SD_DEVINFO(un), 0);
6227 	mutex_enter(&un->un_pm_mutex);
6228 	un->un_pm_timeid = NULL;
6229 	mutex_exit(&un->un_pm_mutex);
6230 }
6231 
6232 
6233 /*
6234  *    Function: sdpower
6235  *
6236  * Description: PM entry point.
6237  *
6238  * Return Code: DDI_SUCCESS
6239  *		DDI_FAILURE
6240  *
6241  *     Context: Kernel thread context
6242  */
6243 
6244 static int
6245 sdpower(dev_info_t *devi, int component, int level)
6246 {
6247 	struct sd_lun	*un;
6248 	int		instance;
6249 	int		rval = DDI_SUCCESS;
6250 	uint_t		i, log_page_size, maxcycles, ncycles;
6251 	uchar_t		*log_page_data;
6252 	int		log_sense_page;
6253 	int		medium_present;
6254 	time_t		intvlp;
6255 	dev_t		dev;
6256 	struct pm_trans_data	sd_pm_tran_data;
6257 	uchar_t		save_state;
6258 	int		sval;
6259 	uchar_t		state_before_pm;
6260 	int		got_semaphore_here;
6261 	sd_ssc_t	*ssc;
6262 
6263 	instance = ddi_get_instance(devi);
6264 
6265 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
6266 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
6267 	    component != 0) {
6268 		return (DDI_FAILURE);
6269 	}
6270 
6271 	dev = sd_make_device(SD_DEVINFO(un));
6272 	ssc = sd_ssc_init(un);
6273 
6274 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
6275 
6276 	/*
6277 	 * Must synchronize power down with close.
6278 	 * Attempt to decrement/acquire the open/close semaphore,
6279 	 * but do NOT wait on it. If it's not greater than zero,
6280 	 * ie. it can't be decremented without waiting, then
6281 	 * someone else, either open or close, already has it
6282 	 * and the try returns 0. Use that knowledge here to determine
6283 	 * if it's OK to change the device power level.
6284 	 * Also, only increment it on exit if it was decremented, ie. gotten,
6285 	 * here.
6286 	 */
6287 	got_semaphore_here = sema_tryp(&un->un_semoclose);
6288 
6289 	mutex_enter(SD_MUTEX(un));
6290 
6291 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
6292 	    un->un_ncmds_in_driver);
6293 
6294 	/*
6295 	 * If un_ncmds_in_driver is non-zero it indicates commands are
6296 	 * already being processed in the driver, or if the semaphore was
6297 	 * not gotten here it indicates an open or close is being processed.
6298 	 * At the same time somebody is requesting to go low power which
6299 	 * can't happen, therefore we need to return failure.
6300 	 */
6301 	if ((level == SD_SPINDLE_OFF) &&
6302 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
6303 		mutex_exit(SD_MUTEX(un));
6304 
6305 		if (got_semaphore_here != 0) {
6306 			sema_v(&un->un_semoclose);
6307 		}
6308 		SD_TRACE(SD_LOG_IO_PM, un,
6309 		    "sdpower: exit, device has queued cmds.\n");
6310 
6311 		goto sdpower_failed;
6312 	}
6313 
6314 	/*
6315 	 * if it is OFFLINE that means the disk is completely dead
6316 	 * in our case we have to put the disk in on or off by sending commands
6317 	 * Of course that will fail anyway so return back here.
6318 	 *
6319 	 * Power changes to a device that's OFFLINE or SUSPENDED
6320 	 * are not allowed.
6321 	 */
6322 	if ((un->un_state == SD_STATE_OFFLINE) ||
6323 	    (un->un_state == SD_STATE_SUSPENDED)) {
6324 		mutex_exit(SD_MUTEX(un));
6325 
6326 		if (got_semaphore_here != 0) {
6327 			sema_v(&un->un_semoclose);
6328 		}
6329 		SD_TRACE(SD_LOG_IO_PM, un,
6330 		    "sdpower: exit, device is off-line.\n");
6331 
6332 		goto sdpower_failed;
6333 	}
6334 
6335 	/*
6336 	 * Change the device's state to indicate it's power level
6337 	 * is being changed. Do this to prevent a power off in the
6338 	 * middle of commands, which is especially bad on devices
6339 	 * that are really powered off instead of just spun down.
6340 	 */
6341 	state_before_pm = un->un_state;
6342 	un->un_state = SD_STATE_PM_CHANGING;
6343 
6344 	mutex_exit(SD_MUTEX(un));
6345 
6346 	/*
6347 	 * If "pm-capable" property is set to TRUE by HBA drivers,
6348 	 * bypass the following checking, otherwise, check the log
6349 	 * sense information for this device
6350 	 */
6351 	if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) {
6352 		/*
6353 		 * Get the log sense information to understand whether the
6354 		 * the powercycle counts have gone beyond the threshhold.
6355 		 */
6356 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6357 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6358 
6359 		mutex_enter(SD_MUTEX(un));
6360 		log_sense_page = un->un_start_stop_cycle_page;
6361 		mutex_exit(SD_MUTEX(un));
6362 
6363 		rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
6364 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
6365 
6366 		if (rval != 0) {
6367 			if (rval == EIO)
6368 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6369 			else
6370 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6371 		}
6372 
6373 #ifdef	SDDEBUG
6374 		if (sd_force_pm_supported) {
6375 			/* Force a successful result */
6376 			rval = 0;
6377 		}
6378 #endif
6379 		if (rval != 0) {
6380 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
6381 			    "Log Sense Failed\n");
6382 
6383 			kmem_free(log_page_data, log_page_size);
6384 			/* Cannot support power management on those drives */
6385 
6386 			if (got_semaphore_here != 0) {
6387 				sema_v(&un->un_semoclose);
6388 			}
6389 			/*
6390 			 * On exit put the state back to it's original value
6391 			 * and broadcast to anyone waiting for the power
6392 			 * change completion.
6393 			 */
6394 			mutex_enter(SD_MUTEX(un));
6395 			un->un_state = state_before_pm;
6396 			cv_broadcast(&un->un_suspend_cv);
6397 			mutex_exit(SD_MUTEX(un));
6398 			SD_TRACE(SD_LOG_IO_PM, un,
6399 			    "sdpower: exit, Log Sense Failed.\n");
6400 
6401 			goto sdpower_failed;
6402 		}
6403 
6404 		/*
6405 		 * From the page data - Convert the essential information to
6406 		 * pm_trans_data
6407 		 */
6408 		maxcycles =
6409 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
6410 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
6411 
6412 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
6413 
6414 		ncycles =
6415 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
6416 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
6417 
6418 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
6419 
6420 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
6421 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
6422 			    log_page_data[8+i];
6423 		}
6424 
6425 		kmem_free(log_page_data, log_page_size);
6426 
6427 		/*
6428 		 * Call pm_trans_check routine to get the Ok from
6429 		 * the global policy
6430 		 */
6431 
6432 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
6433 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
6434 
6435 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
6436 #ifdef	SDDEBUG
6437 		if (sd_force_pm_supported) {
6438 			/* Force a successful result */
6439 			rval = 1;
6440 		}
6441 #endif
6442 		switch (rval) {
6443 		case 0:
6444 			/*
6445 			 * Not Ok to Power cycle or error in parameters passed
6446 			 * Would have given the advised time to consider power
6447 			 * cycle. Based on the new intvlp parameter we are
6448 			 * supposed to pretend we are busy so that pm framework
6449 			 * will never call our power entry point. Because of
6450 			 * that install a timeout handler and wait for the
6451 			 * recommended time to elapse so that power management
6452 			 * can be effective again.
6453 			 *
6454 			 * To effect this behavior, call pm_busy_component to
6455 			 * indicate to the framework this device is busy.
6456 			 * By not adjusting un_pm_count the rest of PM in
6457 			 * the driver will function normally, and independent
6458 			 * of this but because the framework is told the device
6459 			 * is busy it won't attempt powering down until it gets
6460 			 * a matching idle. The timeout handler sends this.
6461 			 * Note: sd_pm_entry can't be called here to do this
6462 			 * because sdpower may have been called as a result
6463 			 * of a call to pm_raise_power from within sd_pm_entry.
6464 			 *
6465 			 * If a timeout handler is already active then
6466 			 * don't install another.
6467 			 */
6468 			mutex_enter(&un->un_pm_mutex);
6469 			if (un->un_pm_timeid == NULL) {
6470 				un->un_pm_timeid =
6471 				    timeout(sd_pm_timeout_handler,
6472 				    un, intvlp * drv_usectohz(1000000));
6473 				mutex_exit(&un->un_pm_mutex);
6474 				(void) pm_busy_component(SD_DEVINFO(un), 0);
6475 			} else {
6476 				mutex_exit(&un->un_pm_mutex);
6477 			}
6478 			if (got_semaphore_here != 0) {
6479 				sema_v(&un->un_semoclose);
6480 			}
6481 			/*
6482 			 * On exit put the state back to it's original value
6483 			 * and broadcast to anyone waiting for the power
6484 			 * change completion.
6485 			 */
6486 			mutex_enter(SD_MUTEX(un));
6487 			un->un_state = state_before_pm;
6488 			cv_broadcast(&un->un_suspend_cv);
6489 			mutex_exit(SD_MUTEX(un));
6490 
6491 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
6492 			    "trans check Failed, not ok to power cycle.\n");
6493 
6494 			goto sdpower_failed;
6495 		case -1:
6496 			if (got_semaphore_here != 0) {
6497 				sema_v(&un->un_semoclose);
6498 			}
6499 			/*
6500 			 * On exit put the state back to it's original value
6501 			 * and broadcast to anyone waiting for the power
6502 			 * change completion.
6503 			 */
6504 			mutex_enter(SD_MUTEX(un));
6505 			un->un_state = state_before_pm;
6506 			cv_broadcast(&un->un_suspend_cv);
6507 			mutex_exit(SD_MUTEX(un));
6508 			SD_TRACE(SD_LOG_IO_PM, un,
6509 			    "sdpower: exit, trans check command Failed.\n");
6510 
6511 			goto sdpower_failed;
6512 		}
6513 	}
6514 
6515 	if (level == SD_SPINDLE_OFF) {
6516 		/*
6517 		 * Save the last state... if the STOP FAILS we need it
6518 		 * for restoring
6519 		 */
6520 		mutex_enter(SD_MUTEX(un));
6521 		save_state = un->un_last_state;
6522 		/*
6523 		 * There must not be any cmds. getting processed
6524 		 * in the driver when we get here. Power to the
6525 		 * device is potentially going off.
6526 		 */
6527 		ASSERT(un->un_ncmds_in_driver == 0);
6528 		mutex_exit(SD_MUTEX(un));
6529 
6530 		/*
6531 		 * For now suspend the device completely before spindle is
6532 		 * turned off
6533 		 */
6534 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
6535 			if (got_semaphore_here != 0) {
6536 				sema_v(&un->un_semoclose);
6537 			}
6538 			/*
6539 			 * On exit put the state back to it's original value
6540 			 * and broadcast to anyone waiting for the power
6541 			 * change completion.
6542 			 */
6543 			mutex_enter(SD_MUTEX(un));
6544 			un->un_state = state_before_pm;
6545 			cv_broadcast(&un->un_suspend_cv);
6546 			mutex_exit(SD_MUTEX(un));
6547 			SD_TRACE(SD_LOG_IO_PM, un,
6548 			    "sdpower: exit, PM suspend Failed.\n");
6549 
6550 			goto sdpower_failed;
6551 		}
6552 	}
6553 
6554 	/*
6555 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
6556 	 * close, or strategy. Dump no long uses this routine, it uses it's
6557 	 * own code so it can be done in polled mode.
6558 	 */
6559 
6560 	medium_present = TRUE;
6561 
6562 	/*
6563 	 * When powering up, issue a TUR in case the device is at unit
6564 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
6565 	 * a deadlock on un_pm_busy_cv will occur.
6566 	 */
6567 	if (level == SD_SPINDLE_ON) {
6568 		sval = sd_send_scsi_TEST_UNIT_READY(ssc,
6569 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
6570 		if (sval != 0)
6571 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6572 	}
6573 
6574 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
6575 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
6576 
6577 	sval = sd_send_scsi_START_STOP_UNIT(ssc,
6578 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
6579 	    SD_PATH_DIRECT);
6580 	if (sval != 0) {
6581 		if (sval == EIO)
6582 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6583 		else
6584 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6585 	}
6586 
6587 	/* Command failed, check for media present. */
6588 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
6589 		medium_present = FALSE;
6590 	}
6591 
6592 	/*
6593 	 * The conditions of interest here are:
6594 	 *   if a spindle off with media present fails,
6595 	 *	then restore the state and return an error.
6596 	 *   else if a spindle on fails,
6597 	 *	then return an error (there's no state to restore).
6598 	 * In all other cases we setup for the new state
6599 	 * and return success.
6600 	 */
6601 	switch (level) {
6602 	case SD_SPINDLE_OFF:
6603 		if ((medium_present == TRUE) && (sval != 0)) {
6604 			/* The stop command from above failed */
6605 			rval = DDI_FAILURE;
6606 			/*
6607 			 * The stop command failed, and we have media
6608 			 * present. Put the level back by calling the
6609 			 * sd_pm_resume() and set the state back to
6610 			 * it's previous value.
6611 			 */
6612 			(void) sd_ddi_pm_resume(un);
6613 			mutex_enter(SD_MUTEX(un));
6614 			un->un_last_state = save_state;
6615 			mutex_exit(SD_MUTEX(un));
6616 			break;
6617 		}
6618 		/*
6619 		 * The stop command from above succeeded.
6620 		 */
6621 		if (un->un_f_monitor_media_state) {
6622 			/*
6623 			 * Terminate watch thread in case of removable media
6624 			 * devices going into low power state. This is as per
6625 			 * the requirements of pm framework, otherwise commands
6626 			 * will be generated for the device (through watch
6627 			 * thread), even when the device is in low power state.
6628 			 */
6629 			mutex_enter(SD_MUTEX(un));
6630 			un->un_f_watcht_stopped = FALSE;
6631 			if (un->un_swr_token != NULL) {
6632 				opaque_t temp_token = un->un_swr_token;
6633 				un->un_f_watcht_stopped = TRUE;
6634 				un->un_swr_token = NULL;
6635 				mutex_exit(SD_MUTEX(un));
6636 				(void) scsi_watch_request_terminate(temp_token,
6637 				    SCSI_WATCH_TERMINATE_ALL_WAIT);
6638 			} else {
6639 				mutex_exit(SD_MUTEX(un));
6640 			}
6641 		}
6642 		break;
6643 
6644 	default:	/* The level requested is spindle on... */
6645 		/*
6646 		 * Legacy behavior: return success on a failed spinup
6647 		 * if there is no media in the drive.
6648 		 * Do this by looking at medium_present here.
6649 		 */
6650 		if ((sval != 0) && medium_present) {
6651 			/* The start command from above failed */
6652 			rval = DDI_FAILURE;
6653 			break;
6654 		}
6655 		/*
6656 		 * The start command from above succeeded
6657 		 * Resume the devices now that we have
6658 		 * started the disks
6659 		 */
6660 		(void) sd_ddi_pm_resume(un);
6661 
6662 		/*
6663 		 * Resume the watch thread since it was suspended
6664 		 * when the device went into low power mode.
6665 		 */
6666 		if (un->un_f_monitor_media_state) {
6667 			mutex_enter(SD_MUTEX(un));
6668 			if (un->un_f_watcht_stopped == TRUE) {
6669 				opaque_t temp_token;
6670 
6671 				un->un_f_watcht_stopped = FALSE;
6672 				mutex_exit(SD_MUTEX(un));
6673 				temp_token = scsi_watch_request_submit(
6674 				    SD_SCSI_DEVP(un),
6675 				    sd_check_media_time,
6676 				    SENSE_LENGTH, sd_media_watch_cb,
6677 				    (caddr_t)dev);
6678 				mutex_enter(SD_MUTEX(un));
6679 				un->un_swr_token = temp_token;
6680 			}
6681 			mutex_exit(SD_MUTEX(un));
6682 		}
6683 	}
6684 	if (got_semaphore_here != 0) {
6685 		sema_v(&un->un_semoclose);
6686 	}
6687 	/*
6688 	 * On exit put the state back to it's original value
6689 	 * and broadcast to anyone waiting for the power
6690 	 * change completion.
6691 	 */
6692 	mutex_enter(SD_MUTEX(un));
6693 	un->un_state = state_before_pm;
6694 	cv_broadcast(&un->un_suspend_cv);
6695 	mutex_exit(SD_MUTEX(un));
6696 
6697 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
6698 
6699 	sd_ssc_fini(ssc);
6700 	return (rval);
6701 
6702 sdpower_failed:
6703 
6704 	sd_ssc_fini(ssc);
6705 	return (DDI_FAILURE);
6706 }
6707 
6708 
6709 
6710 /*
6711  *    Function: sdattach
6712  *
6713  * Description: Driver's attach(9e) entry point function.
6714  *
6715  *   Arguments: devi - opaque device info handle
6716  *		cmd  - attach  type
6717  *
6718  * Return Code: DDI_SUCCESS
6719  *		DDI_FAILURE
6720  *
6721  *     Context: Kernel thread context
6722  */
6723 
6724 static int
6725 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
6726 {
6727 	switch (cmd) {
6728 	case DDI_ATTACH:
6729 		return (sd_unit_attach(devi));
6730 	case DDI_RESUME:
6731 		return (sd_ddi_resume(devi));
6732 	default:
6733 		break;
6734 	}
6735 	return (DDI_FAILURE);
6736 }
6737 
6738 
6739 /*
6740  *    Function: sddetach
6741  *
6742  * Description: Driver's detach(9E) entry point function.
6743  *
6744  *   Arguments: devi - opaque device info handle
6745  *		cmd  - detach  type
6746  *
6747  * Return Code: DDI_SUCCESS
6748  *		DDI_FAILURE
6749  *
6750  *     Context: Kernel thread context
6751  */
6752 
6753 static int
6754 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
6755 {
6756 	switch (cmd) {
6757 	case DDI_DETACH:
6758 		return (sd_unit_detach(devi));
6759 	case DDI_SUSPEND:
6760 		return (sd_ddi_suspend(devi));
6761 	default:
6762 		break;
6763 	}
6764 	return (DDI_FAILURE);
6765 }
6766 
6767 
6768 /*
6769  *     Function: sd_sync_with_callback
6770  *
6771  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
6772  *		 state while the callback routine is active.
6773  *
6774  *    Arguments: un: softstate structure for the instance
6775  *
6776  *	Context: Kernel thread context
6777  */
6778 
6779 static void
6780 sd_sync_with_callback(struct sd_lun *un)
6781 {
6782 	ASSERT(un != NULL);
6783 
6784 	mutex_enter(SD_MUTEX(un));
6785 
6786 	ASSERT(un->un_in_callback >= 0);
6787 
6788 	while (un->un_in_callback > 0) {
6789 		mutex_exit(SD_MUTEX(un));
6790 		delay(2);
6791 		mutex_enter(SD_MUTEX(un));
6792 	}
6793 
6794 	mutex_exit(SD_MUTEX(un));
6795 }
6796 
6797 /*
6798  *    Function: sd_unit_attach
6799  *
6800  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
6801  *		the soft state structure for the device and performs
6802  *		all necessary structure and device initializations.
6803  *
6804  *   Arguments: devi: the system's dev_info_t for the device.
6805  *
6806  * Return Code: DDI_SUCCESS if attach is successful.
6807  *		DDI_FAILURE if any part of the attach fails.
6808  *
6809  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
6810  *		Kernel thread context only.  Can sleep.
6811  */
6812 
6813 static int
6814 sd_unit_attach(dev_info_t *devi)
6815 {
6816 	struct	scsi_device	*devp;
6817 	struct	sd_lun		*un;
6818 	char			*variantp;
6819 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
6820 	int	instance;
6821 	int	rval;
6822 	int	wc_enabled;
6823 	int	tgt;
6824 	uint64_t	capacity;
6825 	uint_t		lbasize = 0;
6826 	dev_info_t	*pdip = ddi_get_parent(devi);
6827 	int		offbyone = 0;
6828 	int		geom_label_valid = 0;
6829 	sd_ssc_t	*ssc;
6830 	int		status;
6831 	struct sd_fm_internal	*sfip = NULL;
6832 #if defined(__sparc)
6833 	int		max_xfer_size;
6834 #endif
6835 
6836 	/*
6837 	 * Retrieve the target driver's private data area. This was set
6838 	 * up by the HBA.
6839 	 */
6840 	devp = ddi_get_driver_private(devi);
6841 
6842 	/*
6843 	 * Retrieve the target ID of the device.
6844 	 */
6845 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6846 	    SCSI_ADDR_PROP_TARGET, -1);
6847 
6848 	/*
6849 	 * Since we have no idea what state things were left in by the last
6850 	 * user of the device, set up some 'default' settings, ie. turn 'em
6851 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
6852 	 * Do this before the scsi_probe, which sends an inquiry.
6853 	 * This is a fix for bug (4430280).
6854 	 * Of special importance is wide-xfer. The drive could have been left
6855 	 * in wide transfer mode by the last driver to communicate with it,
6856 	 * this includes us. If that's the case, and if the following is not
6857 	 * setup properly or we don't re-negotiate with the drive prior to
6858 	 * transferring data to/from the drive, it causes bus parity errors,
6859 	 * data overruns, and unexpected interrupts. This first occurred when
6860 	 * the fix for bug (4378686) was made.
6861 	 */
6862 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
6863 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
6864 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
6865 
6866 	/*
6867 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
6868 	 * on a target. Setting it per lun instance actually sets the
6869 	 * capability of this target, which affects those luns already
6870 	 * attached on the same target. So during attach, we can only disable
6871 	 * this capability only when no other lun has been attached on this
6872 	 * target. By doing this, we assume a target has the same tagged-qing
6873 	 * capability for every lun. The condition can be removed when HBA
6874 	 * is changed to support per lun based tagged-qing capability.
6875 	 */
6876 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
6877 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
6878 	}
6879 
6880 	/*
6881 	 * Use scsi_probe() to issue an INQUIRY command to the device.
6882 	 * This call will allocate and fill in the scsi_inquiry structure
6883 	 * and point the sd_inq member of the scsi_device structure to it.
6884 	 * If the attach succeeds, then this memory will not be de-allocated
6885 	 * (via scsi_unprobe()) until the instance is detached.
6886 	 */
6887 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
6888 		goto probe_failed;
6889 	}
6890 
6891 	/*
6892 	 * Check the device type as specified in the inquiry data and
6893 	 * claim it if it is of a type that we support.
6894 	 */
6895 	switch (devp->sd_inq->inq_dtype) {
6896 	case DTYPE_DIRECT:
6897 		break;
6898 	case DTYPE_RODIRECT:
6899 		break;
6900 	case DTYPE_OPTICAL:
6901 		break;
6902 	case DTYPE_NOTPRESENT:
6903 	default:
6904 		/* Unsupported device type; fail the attach. */
6905 		goto probe_failed;
6906 	}
6907 
6908 	/*
6909 	 * Allocate the soft state structure for this unit.
6910 	 *
6911 	 * We rely upon this memory being set to all zeroes by
6912 	 * ddi_soft_state_zalloc().  We assume that any member of the
6913 	 * soft state structure that is not explicitly initialized by
6914 	 * this routine will have a value of zero.
6915 	 */
6916 	instance = ddi_get_instance(devp->sd_dev);
6917 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
6918 		goto probe_failed;
6919 	}
6920 
6921 	/*
6922 	 * Retrieve a pointer to the newly-allocated soft state.
6923 	 *
6924 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
6925 	 * was successful, unless something has gone horribly wrong and the
6926 	 * ddi's soft state internals are corrupt (in which case it is
6927 	 * probably better to halt here than just fail the attach....)
6928 	 */
6929 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
6930 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
6931 		    instance);
6932 		/*NOTREACHED*/
6933 	}
6934 
6935 	/*
6936 	 * Link the back ptr of the driver soft state to the scsi_device
6937 	 * struct for this lun.
6938 	 * Save a pointer to the softstate in the driver-private area of
6939 	 * the scsi_device struct.
6940 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
6941 	 * we first set un->un_sd below.
6942 	 */
6943 	un->un_sd = devp;
6944 	devp->sd_private = (opaque_t)un;
6945 
6946 	/*
6947 	 * The following must be after devp is stored in the soft state struct.
6948 	 */
6949 #ifdef SDDEBUG
6950 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6951 	    "%s_unit_attach: un:0x%p instance:%d\n",
6952 	    ddi_driver_name(devi), un, instance);
6953 #endif
6954 
6955 	/*
6956 	 * Set up the device type and node type (for the minor nodes).
6957 	 * By default we assume that the device can at least support the
6958 	 * Common Command Set. Call it a CD-ROM if it reports itself
6959 	 * as a RODIRECT device.
6960 	 */
6961 	switch (devp->sd_inq->inq_dtype) {
6962 	case DTYPE_RODIRECT:
6963 		un->un_node_type = DDI_NT_CD_CHAN;
6964 		un->un_ctype	 = CTYPE_CDROM;
6965 		break;
6966 	case DTYPE_OPTICAL:
6967 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6968 		un->un_ctype	 = CTYPE_ROD;
6969 		break;
6970 	default:
6971 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6972 		un->un_ctype	 = CTYPE_CCS;
6973 		break;
6974 	}
6975 
6976 	/*
6977 	 * Try to read the interconnect type from the HBA.
6978 	 *
6979 	 * Note: This driver is currently compiled as two binaries, a parallel
6980 	 * scsi version (sd) and a fibre channel version (ssd). All functional
6981 	 * differences are determined at compile time. In the future a single
6982 	 * binary will be provided and the interconnect type will be used to
6983 	 * differentiate between fibre and parallel scsi behaviors. At that time
6984 	 * it will be necessary for all fibre channel HBAs to support this
6985 	 * property.
6986 	 *
6987 	 * set un_f_is_fiber to TRUE ( default fiber )
6988 	 */
6989 	un->un_f_is_fibre = TRUE;
6990 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
6991 	case INTERCONNECT_SSA:
6992 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
6993 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6994 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
6995 		break;
6996 	case INTERCONNECT_PARALLEL:
6997 		un->un_f_is_fibre = FALSE;
6998 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
6999 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7000 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
7001 		break;
7002 	case INTERCONNECT_SATA:
7003 		un->un_f_is_fibre = FALSE;
7004 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
7005 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7006 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
7007 		break;
7008 	case INTERCONNECT_FIBRE:
7009 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
7010 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7011 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
7012 		break;
7013 	case INTERCONNECT_FABRIC:
7014 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
7015 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
7016 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7017 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
7018 		break;
7019 	default:
7020 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
7021 		/*
7022 		 * The HBA does not support the "interconnect-type" property
7023 		 * (or did not provide a recognized type).
7024 		 *
7025 		 * Note: This will be obsoleted when a single fibre channel
7026 		 * and parallel scsi driver is delivered. In the meantime the
7027 		 * interconnect type will be set to the platform default.If that
7028 		 * type is not parallel SCSI, it means that we should be
7029 		 * assuming "ssd" semantics. However, here this also means that
7030 		 * the FC HBA is not supporting the "interconnect-type" property
7031 		 * like we expect it to, so log this occurrence.
7032 		 */
7033 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
7034 		if (!SD_IS_PARALLEL_SCSI(un)) {
7035 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7036 			    "sd_unit_attach: un:0x%p Assuming "
7037 			    "INTERCONNECT_FIBRE\n", un);
7038 		} else {
7039 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7040 			    "sd_unit_attach: un:0x%p Assuming "
7041 			    "INTERCONNECT_PARALLEL\n", un);
7042 			un->un_f_is_fibre = FALSE;
7043 		}
7044 #else
7045 		/*
7046 		 * Note: This source will be implemented when a single fibre
7047 		 * channel and parallel scsi driver is delivered. The default
7048 		 * will be to assume that if a device does not support the
7049 		 * "interconnect-type" property it is a parallel SCSI HBA and
7050 		 * we will set the interconnect type for parallel scsi.
7051 		 */
7052 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7053 		un->un_f_is_fibre = FALSE;
7054 #endif
7055 		break;
7056 	}
7057 
7058 	if (un->un_f_is_fibre == TRUE) {
7059 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
7060 		    SCSI_VERSION_3) {
7061 			switch (un->un_interconnect_type) {
7062 			case SD_INTERCONNECT_FIBRE:
7063 			case SD_INTERCONNECT_SSA:
7064 				un->un_node_type = DDI_NT_BLOCK_WWN;
7065 				break;
7066 			default:
7067 				break;
7068 			}
7069 		}
7070 	}
7071 
7072 	/*
7073 	 * Initialize the Request Sense command for the target
7074 	 */
7075 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
7076 		goto alloc_rqs_failed;
7077 	}
7078 
7079 	/*
7080 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
7081 	 * with separate binary for sd and ssd.
7082 	 *
7083 	 * x86 has 1 binary, un_retry_count is set base on connection type.
7084 	 * The hardcoded values will go away when Sparc uses 1 binary
7085 	 * for sd and ssd.  This hardcoded values need to match
7086 	 * SD_RETRY_COUNT in sddef.h
7087 	 * The value used is base on interconnect type.
7088 	 * fibre = 3, parallel = 5
7089 	 */
7090 #if defined(__i386) || defined(__amd64)
7091 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
7092 #else
7093 	un->un_retry_count = SD_RETRY_COUNT;
7094 #endif
7095 
7096 	/*
7097 	 * Set the per disk retry count to the default number of retries
7098 	 * for disks and CDROMs. This value can be overridden by the
7099 	 * disk property list or an entry in sd.conf.
7100 	 */
7101 	un->un_notready_retry_count =
7102 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
7103 	    : DISK_NOT_READY_RETRY_COUNT(un);
7104 
7105 	/*
7106 	 * Set the busy retry count to the default value of un_retry_count.
7107 	 * This can be overridden by entries in sd.conf or the device
7108 	 * config table.
7109 	 */
7110 	un->un_busy_retry_count = un->un_retry_count;
7111 
7112 	/*
7113 	 * Init the reset threshold for retries.  This number determines
7114 	 * how many retries must be performed before a reset can be issued
7115 	 * (for certain error conditions). This can be overridden by entries
7116 	 * in sd.conf or the device config table.
7117 	 */
7118 	un->un_reset_retry_count = (un->un_retry_count / 2);
7119 
7120 	/*
7121 	 * Set the victim_retry_count to the default un_retry_count
7122 	 */
7123 	un->un_victim_retry_count = (2 * un->un_retry_count);
7124 
7125 	/*
7126 	 * Set the reservation release timeout to the default value of
7127 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
7128 	 * device config table.
7129 	 */
7130 	un->un_reserve_release_time = 5;
7131 
7132 	/*
7133 	 * Set up the default maximum transfer size. Note that this may
7134 	 * get updated later in the attach, when setting up default wide
7135 	 * operations for disks.
7136 	 */
7137 #if defined(__i386) || defined(__amd64)
7138 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
7139 	un->un_partial_dma_supported = 1;
7140 #else
7141 	un->un_max_xfer_size = (uint_t)maxphys;
7142 #endif
7143 
7144 	/*
7145 	 * Get "allow bus device reset" property (defaults to "enabled" if
7146 	 * the property was not defined). This is to disable bus resets for
7147 	 * certain kinds of error recovery. Note: In the future when a run-time
7148 	 * fibre check is available the soft state flag should default to
7149 	 * enabled.
7150 	 */
7151 	if (un->un_f_is_fibre == TRUE) {
7152 		un->un_f_allow_bus_device_reset = TRUE;
7153 	} else {
7154 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7155 		    "allow-bus-device-reset", 1) != 0) {
7156 			un->un_f_allow_bus_device_reset = TRUE;
7157 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7158 			    "sd_unit_attach: un:0x%p Bus device reset "
7159 			    "enabled\n", un);
7160 		} else {
7161 			un->un_f_allow_bus_device_reset = FALSE;
7162 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7163 			    "sd_unit_attach: un:0x%p Bus device reset "
7164 			    "disabled\n", un);
7165 		}
7166 	}
7167 
7168 	/*
7169 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
7170 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
7171 	 *
7172 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
7173 	 * property. The new "variant" property with a value of "atapi" has been
7174 	 * introduced so that future 'variants' of standard SCSI behavior (like
7175 	 * atapi) could be specified by the underlying HBA drivers by supplying
7176 	 * a new value for the "variant" property, instead of having to define a
7177 	 * new property.
7178 	 */
7179 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
7180 		un->un_f_cfg_is_atapi = TRUE;
7181 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7182 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
7183 	}
7184 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
7185 	    &variantp) == DDI_PROP_SUCCESS) {
7186 		if (strcmp(variantp, "atapi") == 0) {
7187 			un->un_f_cfg_is_atapi = TRUE;
7188 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7189 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
7190 		}
7191 		ddi_prop_free(variantp);
7192 	}
7193 
7194 	un->un_cmd_timeout	= SD_IO_TIME;
7195 
7196 	un->un_busy_timeout  = SD_BSY_TIMEOUT;
7197 
7198 	/* Info on current states, statuses, etc. (Updated frequently) */
7199 	un->un_state		= SD_STATE_NORMAL;
7200 	un->un_last_state	= SD_STATE_NORMAL;
7201 
7202 	/* Control & status info for command throttling */
7203 	un->un_throttle		= sd_max_throttle;
7204 	un->un_saved_throttle	= sd_max_throttle;
7205 	un->un_min_throttle	= sd_min_throttle;
7206 
7207 	if (un->un_f_is_fibre == TRUE) {
7208 		un->un_f_use_adaptive_throttle = TRUE;
7209 	} else {
7210 		un->un_f_use_adaptive_throttle = FALSE;
7211 	}
7212 
7213 	/* Removable media support. */
7214 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
7215 	un->un_mediastate		= DKIO_NONE;
7216 	un->un_specified_mediastate	= DKIO_NONE;
7217 
7218 	/* CVs for suspend/resume (PM or DR) */
7219 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
7220 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
7221 
7222 	/* Power management support. */
7223 	un->un_power_level = SD_SPINDLE_UNINIT;
7224 
7225 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
7226 	un->un_f_wcc_inprog = 0;
7227 
7228 	/*
7229 	 * The open/close semaphore is used to serialize threads executing
7230 	 * in the driver's open & close entry point routines for a given
7231 	 * instance.
7232 	 */
7233 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
7234 
7235 	/*
7236 	 * The conf file entry and softstate variable is a forceful override,
7237 	 * meaning a non-zero value must be entered to change the default.
7238 	 */
7239 	un->un_f_disksort_disabled = FALSE;
7240 
7241 	/*
7242 	 * Retrieve the properties from the static driver table or the driver
7243 	 * configuration file (.conf) for this unit and update the soft state
7244 	 * for the device as needed for the indicated properties.
7245 	 * Note: the property configuration needs to occur here as some of the
7246 	 * following routines may have dependencies on soft state flags set
7247 	 * as part of the driver property configuration.
7248 	 */
7249 	sd_read_unit_properties(un);
7250 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7251 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
7252 
7253 	/*
7254 	 * Only if a device has "hotpluggable" property, it is
7255 	 * treated as hotpluggable device. Otherwise, it is
7256 	 * regarded as non-hotpluggable one.
7257 	 */
7258 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
7259 	    -1) != -1) {
7260 		un->un_f_is_hotpluggable = TRUE;
7261 	}
7262 
7263 	/*
7264 	 * set unit's attributes(flags) according to "hotpluggable" and
7265 	 * RMB bit in INQUIRY data.
7266 	 */
7267 	sd_set_unit_attributes(un, devi);
7268 
7269 	/*
7270 	 * By default, we mark the capacity, lbasize, and geometry
7271 	 * as invalid. Only if we successfully read a valid capacity
7272 	 * will we update the un_blockcount and un_tgt_blocksize with the
7273 	 * valid values (the geometry will be validated later).
7274 	 */
7275 	un->un_f_blockcount_is_valid	= FALSE;
7276 	un->un_f_tgt_blocksize_is_valid	= FALSE;
7277 
7278 	/*
7279 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
7280 	 * otherwise.
7281 	 */
7282 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
7283 	un->un_blockcount = 0;
7284 
7285 	/*
7286 	 * Set up the per-instance info needed to determine the correct
7287 	 * CDBs and other info for issuing commands to the target.
7288 	 */
7289 	sd_init_cdb_limits(un);
7290 
7291 	/*
7292 	 * Set up the IO chains to use, based upon the target type.
7293 	 */
7294 	if (un->un_f_non_devbsize_supported) {
7295 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
7296 	} else {
7297 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
7298 	}
7299 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
7300 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
7301 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
7302 
7303 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
7304 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
7305 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
7306 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
7307 
7308 
7309 	if (ISCD(un)) {
7310 		un->un_additional_codes = sd_additional_codes;
7311 	} else {
7312 		un->un_additional_codes = NULL;
7313 	}
7314 
7315 	/*
7316 	 * Create the kstats here so they can be available for attach-time
7317 	 * routines that send commands to the unit (either polled or via
7318 	 * sd_send_scsi_cmd).
7319 	 *
7320 	 * Note: This is a critical sequence that needs to be maintained:
7321 	 *	1) Instantiate the kstats here, before any routines using the
7322 	 *	   iopath (i.e. sd_send_scsi_cmd).
7323 	 *	2) Instantiate and initialize the partition stats
7324 	 *	   (sd_set_pstats).
7325 	 *	3) Initialize the error stats (sd_set_errstats), following
7326 	 *	   sd_validate_geometry(),sd_register_devid(),
7327 	 *	   and sd_cache_control().
7328 	 */
7329 
7330 	un->un_stats = kstat_create(sd_label, instance,
7331 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
7332 	if (un->un_stats != NULL) {
7333 		un->un_stats->ks_lock = SD_MUTEX(un);
7334 		kstat_install(un->un_stats);
7335 	}
7336 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7337 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
7338 
7339 	sd_create_errstats(un, instance);
7340 	if (un->un_errstats == NULL) {
7341 		goto create_errstats_failed;
7342 	}
7343 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7344 	    "sd_unit_attach: un:0x%p errstats created\n", un);
7345 
7346 	/*
7347 	 * The following if/else code was relocated here from below as part
7348 	 * of the fix for bug (4430280). However with the default setup added
7349 	 * on entry to this routine, it's no longer absolutely necessary for
7350 	 * this to be before the call to sd_spin_up_unit.
7351 	 */
7352 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
7353 		int tq_trigger_flag = (((devp->sd_inq->inq_ansi == 4) ||
7354 		    (devp->sd_inq->inq_ansi == 5)) &&
7355 		    devp->sd_inq->inq_bque) || devp->sd_inq->inq_cmdque;
7356 
7357 		/*
7358 		 * If tagged queueing is supported by the target
7359 		 * and by the host adapter then we will enable it
7360 		 */
7361 		un->un_tagflags = 0;
7362 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && tq_trigger_flag &&
7363 		    (un->un_f_arq_enabled == TRUE)) {
7364 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
7365 			    1, 1) == 1) {
7366 				un->un_tagflags = FLAG_STAG;
7367 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7368 				    "sd_unit_attach: un:0x%p tag queueing "
7369 				    "enabled\n", un);
7370 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
7371 			    "untagged-qing", 0) == 1) {
7372 				un->un_f_opt_queueing = TRUE;
7373 				un->un_saved_throttle = un->un_throttle =
7374 				    min(un->un_throttle, 3);
7375 			} else {
7376 				un->un_f_opt_queueing = FALSE;
7377 				un->un_saved_throttle = un->un_throttle = 1;
7378 			}
7379 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
7380 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
7381 			/* The Host Adapter supports internal queueing. */
7382 			un->un_f_opt_queueing = TRUE;
7383 			un->un_saved_throttle = un->un_throttle =
7384 			    min(un->un_throttle, 3);
7385 		} else {
7386 			un->un_f_opt_queueing = FALSE;
7387 			un->un_saved_throttle = un->un_throttle = 1;
7388 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7389 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
7390 		}
7391 
7392 		/*
7393 		 * Enable large transfers for SATA/SAS drives
7394 		 */
7395 		if (SD_IS_SERIAL(un)) {
7396 			un->un_max_xfer_size =
7397 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7398 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
7399 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7400 			    "sd_unit_attach: un:0x%p max transfer "
7401 			    "size=0x%x\n", un, un->un_max_xfer_size);
7402 
7403 		}
7404 
7405 		/* Setup or tear down default wide operations for disks */
7406 
7407 		/*
7408 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
7409 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
7410 		 * system and be set to different values. In the future this
7411 		 * code may need to be updated when the ssd module is
7412 		 * obsoleted and removed from the system. (4299588)
7413 		 */
7414 		if (SD_IS_PARALLEL_SCSI(un) &&
7415 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
7416 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
7417 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7418 			    1, 1) == 1) {
7419 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7420 				    "sd_unit_attach: un:0x%p Wide Transfer "
7421 				    "enabled\n", un);
7422 			}
7423 
7424 			/*
7425 			 * If tagged queuing has also been enabled, then
7426 			 * enable large xfers
7427 			 */
7428 			if (un->un_saved_throttle == sd_max_throttle) {
7429 				un->un_max_xfer_size =
7430 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7431 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
7432 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7433 				    "sd_unit_attach: un:0x%p max transfer "
7434 				    "size=0x%x\n", un, un->un_max_xfer_size);
7435 			}
7436 		} else {
7437 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7438 			    0, 1) == 1) {
7439 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7440 				    "sd_unit_attach: un:0x%p "
7441 				    "Wide Transfer disabled\n", un);
7442 			}
7443 		}
7444 	} else {
7445 		un->un_tagflags = FLAG_STAG;
7446 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
7447 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
7448 	}
7449 
7450 	/*
7451 	 * If this target supports LUN reset, try to enable it.
7452 	 */
7453 	if (un->un_f_lun_reset_enabled) {
7454 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
7455 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7456 			    "un:0x%p lun_reset capability set\n", un);
7457 		} else {
7458 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7459 			    "un:0x%p lun-reset capability not set\n", un);
7460 		}
7461 	}
7462 
7463 	/*
7464 	 * Adjust the maximum transfer size. This is to fix
7465 	 * the problem of partial DMA support on SPARC. Some
7466 	 * HBA driver, like aac, has very small dma_attr_maxxfer
7467 	 * size, which requires partial DMA support on SPARC.
7468 	 * In the future the SPARC pci nexus driver may solve
7469 	 * the problem instead of this fix.
7470 	 */
7471 #if defined(__sparc)
7472 	max_xfer_size = scsi_ifgetcap(SD_ADDRESS(un), "dma-max", 1);
7473 	if ((max_xfer_size > 0) && (max_xfer_size < un->un_max_xfer_size)) {
7474 		un->un_max_xfer_size = max_xfer_size;
7475 		un->un_partial_dma_supported = 1;
7476 	}
7477 #endif
7478 
7479 	/*
7480 	 * Set PKT_DMA_PARTIAL flag.
7481 	 */
7482 	if (un->un_partial_dma_supported == 1) {
7483 		un->un_pkt_flags = PKT_DMA_PARTIAL;
7484 	} else {
7485 		un->un_pkt_flags = 0;
7486 	}
7487 
7488 	/* Initialize sd_ssc_t for internal uscsi commands */
7489 	ssc = sd_ssc_init(un);
7490 	scsi_fm_init(devp);
7491 
7492 	/*
7493 	 * Allocate memory for SCSI FMA stuffs.
7494 	 */
7495 	un->un_fm_private =
7496 	    kmem_zalloc(sizeof (struct sd_fm_internal), KM_SLEEP);
7497 	sfip = (struct sd_fm_internal *)un->un_fm_private;
7498 	sfip->fm_ssc.ssc_uscsi_cmd = &sfip->fm_ucmd;
7499 	sfip->fm_ssc.ssc_uscsi_info = &sfip->fm_uinfo;
7500 	sfip->fm_ssc.ssc_un = un;
7501 
7502 	/*
7503 	 * At this point in the attach, we have enough info in the
7504 	 * soft state to be able to issue commands to the target.
7505 	 *
7506 	 * All command paths used below MUST issue their commands as
7507 	 * SD_PATH_DIRECT. This is important as intermediate layers
7508 	 * are not all initialized yet (such as PM).
7509 	 */
7510 
7511 	/*
7512 	 * Send a TEST UNIT READY command to the device. This should clear
7513 	 * any outstanding UNIT ATTENTION that may be present.
7514 	 *
7515 	 * Note: Don't check for success, just track if there is a reservation,
7516 	 * this is a throw away command to clear any unit attentions.
7517 	 *
7518 	 * Note: This MUST be the first command issued to the target during
7519 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
7520 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
7521 	 * with attempts at spinning up a device with no media.
7522 	 */
7523 	status = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
7524 	if (status != 0) {
7525 		if (status == EACCES)
7526 			reservation_flag = SD_TARGET_IS_RESERVED;
7527 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7528 	}
7529 
7530 	/*
7531 	 * If the device is NOT a removable media device, attempt to spin
7532 	 * it up (using the START_STOP_UNIT command) and read its capacity
7533 	 * (using the READ CAPACITY command).  Note, however, that either
7534 	 * of these could fail and in some cases we would continue with
7535 	 * the attach despite the failure (see below).
7536 	 */
7537 	if (un->un_f_descr_format_supported) {
7538 
7539 		switch (sd_spin_up_unit(ssc)) {
7540 		case 0:
7541 			/*
7542 			 * Spin-up was successful; now try to read the
7543 			 * capacity.  If successful then save the results
7544 			 * and mark the capacity & lbasize as valid.
7545 			 */
7546 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7547 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
7548 
7549 			status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
7550 			    &lbasize, SD_PATH_DIRECT);
7551 
7552 			switch (status) {
7553 			case 0: {
7554 				if (capacity > DK_MAX_BLOCKS) {
7555 #ifdef _LP64
7556 					if ((capacity + 1) >
7557 					    SD_GROUP1_MAX_ADDRESS) {
7558 						/*
7559 						 * Enable descriptor format
7560 						 * sense data so that we can
7561 						 * get 64 bit sense data
7562 						 * fields.
7563 						 */
7564 						sd_enable_descr_sense(ssc);
7565 					}
7566 #else
7567 					/* 32-bit kernels can't handle this */
7568 					scsi_log(SD_DEVINFO(un),
7569 					    sd_label, CE_WARN,
7570 					    "disk has %llu blocks, which "
7571 					    "is too large for a 32-bit "
7572 					    "kernel", capacity);
7573 
7574 #if defined(__i386) || defined(__amd64)
7575 					/*
7576 					 * 1TB disk was treated as (1T - 512)B
7577 					 * in the past, so that it might have
7578 					 * valid VTOC and solaris partitions,
7579 					 * we have to allow it to continue to
7580 					 * work.
7581 					 */
7582 					if (capacity -1 > DK_MAX_BLOCKS)
7583 #endif
7584 					goto spinup_failed;
7585 #endif
7586 				}
7587 
7588 				/*
7589 				 * Here it's not necessary to check the case:
7590 				 * the capacity of the device is bigger than
7591 				 * what the max hba cdb can support. Because
7592 				 * sd_send_scsi_READ_CAPACITY will retrieve
7593 				 * the capacity by sending USCSI command, which
7594 				 * is constrained by the max hba cdb. Actually,
7595 				 * sd_send_scsi_READ_CAPACITY will return
7596 				 * EINVAL when using bigger cdb than required
7597 				 * cdb length. Will handle this case in
7598 				 * "case EINVAL".
7599 				 */
7600 
7601 				/*
7602 				 * The following relies on
7603 				 * sd_send_scsi_READ_CAPACITY never
7604 				 * returning 0 for capacity and/or lbasize.
7605 				 */
7606 				sd_update_block_info(un, lbasize, capacity);
7607 
7608 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7609 				    "sd_unit_attach: un:0x%p capacity = %ld "
7610 				    "blocks; lbasize= %ld.\n", un,
7611 				    un->un_blockcount, un->un_tgt_blocksize);
7612 
7613 				break;
7614 			}
7615 			case EINVAL:
7616 				/*
7617 				 * In the case where the max-cdb-length property
7618 				 * is smaller than the required CDB length for
7619 				 * a SCSI device, a target driver can fail to
7620 				 * attach to that device.
7621 				 */
7622 				scsi_log(SD_DEVINFO(un),
7623 				    sd_label, CE_WARN,
7624 				    "disk capacity is too large "
7625 				    "for current cdb length");
7626 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7627 
7628 				goto spinup_failed;
7629 			case EACCES:
7630 				/*
7631 				 * Should never get here if the spin-up
7632 				 * succeeded, but code it in anyway.
7633 				 * From here, just continue with the attach...
7634 				 */
7635 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7636 				    "sd_unit_attach: un:0x%p "
7637 				    "sd_send_scsi_READ_CAPACITY "
7638 				    "returned reservation conflict\n", un);
7639 				reservation_flag = SD_TARGET_IS_RESERVED;
7640 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7641 				break;
7642 			default:
7643 				/*
7644 				 * Likewise, should never get here if the
7645 				 * spin-up succeeded. Just continue with
7646 				 * the attach...
7647 				 */
7648 				if (status == EIO)
7649 					sd_ssc_assessment(ssc,
7650 					    SD_FMT_STATUS_CHECK);
7651 				else
7652 					sd_ssc_assessment(ssc,
7653 					    SD_FMT_IGNORE);
7654 				break;
7655 			}
7656 			break;
7657 		case EACCES:
7658 			/*
7659 			 * Device is reserved by another host.  In this case
7660 			 * we could not spin it up or read the capacity, but
7661 			 * we continue with the attach anyway.
7662 			 */
7663 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7664 			    "sd_unit_attach: un:0x%p spin-up reservation "
7665 			    "conflict.\n", un);
7666 			reservation_flag = SD_TARGET_IS_RESERVED;
7667 			break;
7668 		default:
7669 			/* Fail the attach if the spin-up failed. */
7670 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7671 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
7672 			goto spinup_failed;
7673 		}
7674 
7675 	}
7676 
7677 	/*
7678 	 * Check to see if this is a MMC drive
7679 	 */
7680 	if (ISCD(un)) {
7681 		sd_set_mmc_caps(ssc);
7682 	}
7683 
7684 
7685 	/*
7686 	 * Add a zero-length attribute to tell the world we support
7687 	 * kernel ioctls (for layered drivers)
7688 	 */
7689 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7690 	    DDI_KERNEL_IOCTL, NULL, 0);
7691 
7692 	/*
7693 	 * Add a boolean property to tell the world we support
7694 	 * the B_FAILFAST flag (for layered drivers)
7695 	 */
7696 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7697 	    "ddi-failfast-supported", NULL, 0);
7698 
7699 	/*
7700 	 * Initialize power management
7701 	 */
7702 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
7703 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
7704 	sd_setup_pm(ssc, devi);
7705 	if (un->un_f_pm_is_enabled == FALSE) {
7706 		/*
7707 		 * For performance, point to a jump table that does
7708 		 * not include pm.
7709 		 * The direct and priority chains don't change with PM.
7710 		 *
7711 		 * Note: this is currently done based on individual device
7712 		 * capabilities. When an interface for determining system
7713 		 * power enabled state becomes available, or when additional
7714 		 * layers are added to the command chain, these values will
7715 		 * have to be re-evaluated for correctness.
7716 		 */
7717 		if (un->un_f_non_devbsize_supported) {
7718 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
7719 		} else {
7720 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
7721 		}
7722 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
7723 	}
7724 
7725 	/*
7726 	 * This property is set to 0 by HA software to avoid retries
7727 	 * on a reserved disk. (The preferred property name is
7728 	 * "retry-on-reservation-conflict") (1189689)
7729 	 *
7730 	 * Note: The use of a global here can have unintended consequences. A
7731 	 * per instance variable is preferable to match the capabilities of
7732 	 * different underlying hba's (4402600)
7733 	 */
7734 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
7735 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
7736 	    sd_retry_on_reservation_conflict);
7737 	if (sd_retry_on_reservation_conflict != 0) {
7738 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
7739 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
7740 		    sd_retry_on_reservation_conflict);
7741 	}
7742 
7743 	/* Set up options for QFULL handling. */
7744 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7745 	    "qfull-retries", -1)) != -1) {
7746 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
7747 		    rval, 1);
7748 	}
7749 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7750 	    "qfull-retry-interval", -1)) != -1) {
7751 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
7752 		    rval, 1);
7753 	}
7754 
7755 	/*
7756 	 * This just prints a message that announces the existence of the
7757 	 * device. The message is always printed in the system logfile, but
7758 	 * only appears on the console if the system is booted with the
7759 	 * -v (verbose) argument.
7760 	 */
7761 	ddi_report_dev(devi);
7762 
7763 	un->un_mediastate = DKIO_NONE;
7764 
7765 	cmlb_alloc_handle(&un->un_cmlbhandle);
7766 
7767 #if defined(__i386) || defined(__amd64)
7768 	/*
7769 	 * On x86, compensate for off-by-1 legacy error
7770 	 */
7771 	if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
7772 	    (lbasize == un->un_sys_blocksize))
7773 		offbyone = CMLB_OFF_BY_ONE;
7774 #endif
7775 
7776 	if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype,
7777 	    un->un_f_has_removable_media, un->un_f_is_hotpluggable,
7778 	    un->un_node_type, offbyone, un->un_cmlbhandle,
7779 	    (void *)SD_PATH_DIRECT) != 0) {
7780 		goto cmlb_attach_failed;
7781 	}
7782 
7783 
7784 	/*
7785 	 * Read and validate the device's geometry (ie, disk label)
7786 	 * A new unformatted drive will not have a valid geometry, but
7787 	 * the driver needs to successfully attach to this device so
7788 	 * the drive can be formatted via ioctls.
7789 	 */
7790 	geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0,
7791 	    (void *)SD_PATH_DIRECT) == 0) ? 1: 0;
7792 
7793 	mutex_enter(SD_MUTEX(un));
7794 
7795 	/*
7796 	 * Read and initialize the devid for the unit.
7797 	 */
7798 	if (un->un_f_devid_supported) {
7799 		sd_register_devid(ssc, devi, reservation_flag);
7800 	}
7801 	mutex_exit(SD_MUTEX(un));
7802 
7803 #if (defined(__fibre))
7804 	/*
7805 	 * Register callbacks for fibre only.  You can't do this solely
7806 	 * on the basis of the devid_type because this is hba specific.
7807 	 * We need to query our hba capabilities to find out whether to
7808 	 * register or not.
7809 	 */
7810 	if (un->un_f_is_fibre) {
7811 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
7812 			sd_init_event_callbacks(un);
7813 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7814 			    "sd_unit_attach: un:0x%p event callbacks inserted",
7815 			    un);
7816 		}
7817 	}
7818 #endif
7819 
7820 	if (un->un_f_opt_disable_cache == TRUE) {
7821 		/*
7822 		 * Disable both read cache and write cache.  This is
7823 		 * the historic behavior of the keywords in the config file.
7824 		 */
7825 		if (sd_cache_control(ssc, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
7826 		    0) {
7827 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7828 			    "sd_unit_attach: un:0x%p Could not disable "
7829 			    "caching", un);
7830 			goto devid_failed;
7831 		}
7832 	}
7833 
7834 	/*
7835 	 * Check the value of the WCE bit now and
7836 	 * set un_f_write_cache_enabled accordingly.
7837 	 */
7838 	(void) sd_get_write_cache_enabled(ssc, &wc_enabled);
7839 	mutex_enter(SD_MUTEX(un));
7840 	un->un_f_write_cache_enabled = (wc_enabled != 0);
7841 	mutex_exit(SD_MUTEX(un));
7842 
7843 	/*
7844 	 * Check the value of the NV_SUP bit and set
7845 	 * un_f_suppress_cache_flush accordingly.
7846 	 */
7847 	sd_get_nv_sup(ssc);
7848 
7849 	/*
7850 	 * Find out what type of reservation this disk supports.
7851 	 */
7852 	status = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS, 0, NULL);
7853 
7854 	switch (status) {
7855 	case 0:
7856 		/*
7857 		 * SCSI-3 reservations are supported.
7858 		 */
7859 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7860 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7861 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
7862 		break;
7863 	case ENOTSUP:
7864 		/*
7865 		 * The PERSISTENT RESERVE IN command would not be recognized by
7866 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
7867 		 */
7868 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7869 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
7870 		un->un_reservation_type = SD_SCSI2_RESERVATION;
7871 
7872 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7873 		break;
7874 	default:
7875 		/*
7876 		 * default to SCSI-3 reservations
7877 		 */
7878 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7879 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
7880 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7881 
7882 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7883 		break;
7884 	}
7885 
7886 	/*
7887 	 * Set the pstat and error stat values here, so data obtained during the
7888 	 * previous attach-time routines is available.
7889 	 *
7890 	 * Note: This is a critical sequence that needs to be maintained:
7891 	 *	1) Instantiate the kstats before any routines using the iopath
7892 	 *	   (i.e. sd_send_scsi_cmd).
7893 	 *	2) Initialize the error stats (sd_set_errstats) and partition
7894 	 *	   stats (sd_set_pstats)here, following
7895 	 *	   cmlb_validate_geometry(), sd_register_devid(), and
7896 	 *	   sd_cache_control().
7897 	 */
7898 
7899 	if (un->un_f_pkstats_enabled && geom_label_valid) {
7900 		sd_set_pstats(un);
7901 		SD_TRACE(SD_LOG_IO_PARTITION, un,
7902 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
7903 	}
7904 
7905 	sd_set_errstats(un);
7906 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7907 	    "sd_unit_attach: un:0x%p errstats set\n", un);
7908 
7909 
7910 	/*
7911 	 * After successfully attaching an instance, we record the information
7912 	 * of how many luns have been attached on the relative target and
7913 	 * controller for parallel SCSI. This information is used when sd tries
7914 	 * to set the tagged queuing capability in HBA.
7915 	 */
7916 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
7917 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
7918 	}
7919 
7920 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7921 	    "sd_unit_attach: un:0x%p exit success\n", un);
7922 
7923 	/* Uninitialize sd_ssc_t pointer */
7924 	sd_ssc_fini(ssc);
7925 
7926 	return (DDI_SUCCESS);
7927 
7928 	/*
7929 	 * An error occurred during the attach; clean up & return failure.
7930 	 */
7931 
7932 devid_failed:
7933 
7934 setup_pm_failed:
7935 	ddi_remove_minor_node(devi, NULL);
7936 
7937 cmlb_attach_failed:
7938 	/*
7939 	 * Cleanup from the scsi_ifsetcap() calls (437868)
7940 	 */
7941 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7942 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7943 
7944 	/*
7945 	 * Refer to the comments of setting tagged-qing in the beginning of
7946 	 * sd_unit_attach. We can only disable tagged queuing when there is
7947 	 * no lun attached on the target.
7948 	 */
7949 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
7950 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
7951 	}
7952 
7953 	if (un->un_f_is_fibre == FALSE) {
7954 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
7955 	}
7956 
7957 spinup_failed:
7958 
7959 	/* Uninitialize sd_ssc_t pointer */
7960 	sd_ssc_fini(ssc);
7961 
7962 	mutex_enter(SD_MUTEX(un));
7963 
7964 	/* Deallocate SCSI FMA memory spaces */
7965 	kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
7966 
7967 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
7968 	if (un->un_direct_priority_timeid != NULL) {
7969 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7970 		un->un_direct_priority_timeid = NULL;
7971 		mutex_exit(SD_MUTEX(un));
7972 		(void) untimeout(temp_id);
7973 		mutex_enter(SD_MUTEX(un));
7974 	}
7975 
7976 	/* Cancel any pending start/stop timeouts */
7977 	if (un->un_startstop_timeid != NULL) {
7978 		timeout_id_t temp_id = un->un_startstop_timeid;
7979 		un->un_startstop_timeid = NULL;
7980 		mutex_exit(SD_MUTEX(un));
7981 		(void) untimeout(temp_id);
7982 		mutex_enter(SD_MUTEX(un));
7983 	}
7984 
7985 	/* Cancel any pending reset-throttle timeouts */
7986 	if (un->un_reset_throttle_timeid != NULL) {
7987 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7988 		un->un_reset_throttle_timeid = NULL;
7989 		mutex_exit(SD_MUTEX(un));
7990 		(void) untimeout(temp_id);
7991 		mutex_enter(SD_MUTEX(un));
7992 	}
7993 
7994 	/* Cancel any pending retry timeouts */
7995 	if (un->un_retry_timeid != NULL) {
7996 		timeout_id_t temp_id = un->un_retry_timeid;
7997 		un->un_retry_timeid = NULL;
7998 		mutex_exit(SD_MUTEX(un));
7999 		(void) untimeout(temp_id);
8000 		mutex_enter(SD_MUTEX(un));
8001 	}
8002 
8003 	/* Cancel any pending delayed cv broadcast timeouts */
8004 	if (un->un_dcvb_timeid != NULL) {
8005 		timeout_id_t temp_id = un->un_dcvb_timeid;
8006 		un->un_dcvb_timeid = NULL;
8007 		mutex_exit(SD_MUTEX(un));
8008 		(void) untimeout(temp_id);
8009 		mutex_enter(SD_MUTEX(un));
8010 	}
8011 
8012 	mutex_exit(SD_MUTEX(un));
8013 
8014 	/* There should not be any in-progress I/O so ASSERT this check */
8015 	ASSERT(un->un_ncmds_in_transport == 0);
8016 	ASSERT(un->un_ncmds_in_driver == 0);
8017 
8018 	/* Do not free the softstate if the callback routine is active */
8019 	sd_sync_with_callback(un);
8020 
8021 	/*
8022 	 * Partition stats apparently are not used with removables. These would
8023 	 * not have been created during attach, so no need to clean them up...
8024 	 */
8025 	if (un->un_errstats != NULL) {
8026 		kstat_delete(un->un_errstats);
8027 		un->un_errstats = NULL;
8028 	}
8029 
8030 create_errstats_failed:
8031 
8032 	if (un->un_stats != NULL) {
8033 		kstat_delete(un->un_stats);
8034 		un->un_stats = NULL;
8035 	}
8036 
8037 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8038 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8039 
8040 	ddi_prop_remove_all(devi);
8041 	sema_destroy(&un->un_semoclose);
8042 	cv_destroy(&un->un_state_cv);
8043 
8044 getrbuf_failed:
8045 
8046 	sd_free_rqs(un);
8047 
8048 alloc_rqs_failed:
8049 
8050 	devp->sd_private = NULL;
8051 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
8052 
8053 get_softstate_failed:
8054 	/*
8055 	 * Note: the man pages are unclear as to whether or not doing a
8056 	 * ddi_soft_state_free(sd_state, instance) is the right way to
8057 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
8058 	 * ddi_get_soft_state() fails.  The implication seems to be
8059 	 * that the get_soft_state cannot fail if the zalloc succeeds.
8060 	 */
8061 	ddi_soft_state_free(sd_state, instance);
8062 
8063 probe_failed:
8064 	scsi_unprobe(devp);
8065 
8066 	return (DDI_FAILURE);
8067 }
8068 
8069 
8070 /*
8071  *    Function: sd_unit_detach
8072  *
8073  * Description: Performs DDI_DETACH processing for sddetach().
8074  *
8075  * Return Code: DDI_SUCCESS
8076  *		DDI_FAILURE
8077  *
8078  *     Context: Kernel thread context
8079  */
8080 
8081 static int
8082 sd_unit_detach(dev_info_t *devi)
8083 {
8084 	struct scsi_device	*devp;
8085 	struct sd_lun		*un;
8086 	int			i;
8087 	int			tgt;
8088 	dev_t			dev;
8089 	dev_info_t		*pdip = ddi_get_parent(devi);
8090 	int			instance = ddi_get_instance(devi);
8091 
8092 	mutex_enter(&sd_detach_mutex);
8093 
8094 	/*
8095 	 * Fail the detach for any of the following:
8096 	 *  - Unable to get the sd_lun struct for the instance
8097 	 *  - A layered driver has an outstanding open on the instance
8098 	 *  - Another thread is already detaching this instance
8099 	 *  - Another thread is currently performing an open
8100 	 */
8101 	devp = ddi_get_driver_private(devi);
8102 	if ((devp == NULL) ||
8103 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
8104 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
8105 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
8106 		mutex_exit(&sd_detach_mutex);
8107 		return (DDI_FAILURE);
8108 	}
8109 
8110 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
8111 
8112 	/*
8113 	 * Mark this instance as currently in a detach, to inhibit any
8114 	 * opens from a layered driver.
8115 	 */
8116 	un->un_detach_count++;
8117 	mutex_exit(&sd_detach_mutex);
8118 
8119 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
8120 	    SCSI_ADDR_PROP_TARGET, -1);
8121 
8122 	dev = sd_make_device(SD_DEVINFO(un));
8123 
8124 #ifndef lint
8125 	_NOTE(COMPETING_THREADS_NOW);
8126 #endif
8127 
8128 	mutex_enter(SD_MUTEX(un));
8129 
8130 	/*
8131 	 * Fail the detach if there are any outstanding layered
8132 	 * opens on this device.
8133 	 */
8134 	for (i = 0; i < NDKMAP; i++) {
8135 		if (un->un_ocmap.lyropen[i] != 0) {
8136 			goto err_notclosed;
8137 		}
8138 	}
8139 
8140 	/*
8141 	 * Verify there are NO outstanding commands issued to this device.
8142 	 * ie, un_ncmds_in_transport == 0.
8143 	 * It's possible to have outstanding commands through the physio
8144 	 * code path, even though everything's closed.
8145 	 */
8146 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
8147 	    (un->un_direct_priority_timeid != NULL) ||
8148 	    (un->un_state == SD_STATE_RWAIT)) {
8149 		mutex_exit(SD_MUTEX(un));
8150 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8151 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
8152 		goto err_stillbusy;
8153 	}
8154 
8155 	/*
8156 	 * If we have the device reserved, release the reservation.
8157 	 */
8158 	if ((un->un_resvd_status & SD_RESERVE) &&
8159 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
8160 		mutex_exit(SD_MUTEX(un));
8161 		/*
8162 		 * Note: sd_reserve_release sends a command to the device
8163 		 * via the sd_ioctlcmd() path, and can sleep.
8164 		 */
8165 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
8166 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8167 			    "sd_dr_detach: Cannot release reservation \n");
8168 		}
8169 	} else {
8170 		mutex_exit(SD_MUTEX(un));
8171 	}
8172 
8173 	/*
8174 	 * Untimeout any reserve recover, throttle reset, restart unit
8175 	 * and delayed broadcast timeout threads. Protect the timeout pointer
8176 	 * from getting nulled by their callback functions.
8177 	 */
8178 	mutex_enter(SD_MUTEX(un));
8179 	if (un->un_resvd_timeid != NULL) {
8180 		timeout_id_t temp_id = un->un_resvd_timeid;
8181 		un->un_resvd_timeid = NULL;
8182 		mutex_exit(SD_MUTEX(un));
8183 		(void) untimeout(temp_id);
8184 		mutex_enter(SD_MUTEX(un));
8185 	}
8186 
8187 	if (un->un_reset_throttle_timeid != NULL) {
8188 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8189 		un->un_reset_throttle_timeid = NULL;
8190 		mutex_exit(SD_MUTEX(un));
8191 		(void) untimeout(temp_id);
8192 		mutex_enter(SD_MUTEX(un));
8193 	}
8194 
8195 	if (un->un_startstop_timeid != NULL) {
8196 		timeout_id_t temp_id = un->un_startstop_timeid;
8197 		un->un_startstop_timeid = NULL;
8198 		mutex_exit(SD_MUTEX(un));
8199 		(void) untimeout(temp_id);
8200 		mutex_enter(SD_MUTEX(un));
8201 	}
8202 
8203 	if (un->un_dcvb_timeid != NULL) {
8204 		timeout_id_t temp_id = un->un_dcvb_timeid;
8205 		un->un_dcvb_timeid = NULL;
8206 		mutex_exit(SD_MUTEX(un));
8207 		(void) untimeout(temp_id);
8208 	} else {
8209 		mutex_exit(SD_MUTEX(un));
8210 	}
8211 
8212 	/* Remove any pending reservation reclaim requests for this device */
8213 	sd_rmv_resv_reclaim_req(dev);
8214 
8215 	mutex_enter(SD_MUTEX(un));
8216 
8217 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
8218 	if (un->un_direct_priority_timeid != NULL) {
8219 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8220 		un->un_direct_priority_timeid = NULL;
8221 		mutex_exit(SD_MUTEX(un));
8222 		(void) untimeout(temp_id);
8223 		mutex_enter(SD_MUTEX(un));
8224 	}
8225 
8226 	/* Cancel any active multi-host disk watch thread requests */
8227 	if (un->un_mhd_token != NULL) {
8228 		mutex_exit(SD_MUTEX(un));
8229 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
8230 		if (scsi_watch_request_terminate(un->un_mhd_token,
8231 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8232 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8233 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
8234 			/*
8235 			 * Note: We are returning here after having removed
8236 			 * some driver timeouts above. This is consistent with
8237 			 * the legacy implementation but perhaps the watch
8238 			 * terminate call should be made with the wait flag set.
8239 			 */
8240 			goto err_stillbusy;
8241 		}
8242 		mutex_enter(SD_MUTEX(un));
8243 		un->un_mhd_token = NULL;
8244 	}
8245 
8246 	if (un->un_swr_token != NULL) {
8247 		mutex_exit(SD_MUTEX(un));
8248 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
8249 		if (scsi_watch_request_terminate(un->un_swr_token,
8250 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8251 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8252 			    "sd_dr_detach: Cannot cancel swr watch request\n");
8253 			/*
8254 			 * Note: We are returning here after having removed
8255 			 * some driver timeouts above. This is consistent with
8256 			 * the legacy implementation but perhaps the watch
8257 			 * terminate call should be made with the wait flag set.
8258 			 */
8259 			goto err_stillbusy;
8260 		}
8261 		mutex_enter(SD_MUTEX(un));
8262 		un->un_swr_token = NULL;
8263 	}
8264 
8265 	mutex_exit(SD_MUTEX(un));
8266 
8267 	/*
8268 	 * Clear any scsi_reset_notifies. We clear the reset notifies
8269 	 * if we have not registered one.
8270 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
8271 	 */
8272 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
8273 	    sd_mhd_reset_notify_cb, (caddr_t)un);
8274 
8275 	/*
8276 	 * protect the timeout pointers from getting nulled by
8277 	 * their callback functions during the cancellation process.
8278 	 * In such a scenario untimeout can be invoked with a null value.
8279 	 */
8280 	_NOTE(NO_COMPETING_THREADS_NOW);
8281 
8282 	mutex_enter(&un->un_pm_mutex);
8283 	if (un->un_pm_idle_timeid != NULL) {
8284 		timeout_id_t temp_id = un->un_pm_idle_timeid;
8285 		un->un_pm_idle_timeid = NULL;
8286 		mutex_exit(&un->un_pm_mutex);
8287 
8288 		/*
8289 		 * Timeout is active; cancel it.
8290 		 * Note that it'll never be active on a device
8291 		 * that does not support PM therefore we don't
8292 		 * have to check before calling pm_idle_component.
8293 		 */
8294 		(void) untimeout(temp_id);
8295 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8296 		mutex_enter(&un->un_pm_mutex);
8297 	}
8298 
8299 	/*
8300 	 * Check whether there is already a timeout scheduled for power
8301 	 * management. If yes then don't lower the power here, that's.
8302 	 * the timeout handler's job.
8303 	 */
8304 	if (un->un_pm_timeid != NULL) {
8305 		timeout_id_t temp_id = un->un_pm_timeid;
8306 		un->un_pm_timeid = NULL;
8307 		mutex_exit(&un->un_pm_mutex);
8308 		/*
8309 		 * Timeout is active; cancel it.
8310 		 * Note that it'll never be active on a device
8311 		 * that does not support PM therefore we don't
8312 		 * have to check before calling pm_idle_component.
8313 		 */
8314 		(void) untimeout(temp_id);
8315 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8316 
8317 	} else {
8318 		mutex_exit(&un->un_pm_mutex);
8319 		if ((un->un_f_pm_is_enabled == TRUE) &&
8320 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
8321 		    DDI_SUCCESS)) {
8322 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8323 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
8324 			/*
8325 			 * Fix for bug: 4297749, item # 13
8326 			 * The above test now includes a check to see if PM is
8327 			 * supported by this device before call
8328 			 * pm_lower_power().
8329 			 * Note, the following is not dead code. The call to
8330 			 * pm_lower_power above will generate a call back into
8331 			 * our sdpower routine which might result in a timeout
8332 			 * handler getting activated. Therefore the following
8333 			 * code is valid and necessary.
8334 			 */
8335 			mutex_enter(&un->un_pm_mutex);
8336 			if (un->un_pm_timeid != NULL) {
8337 				timeout_id_t temp_id = un->un_pm_timeid;
8338 				un->un_pm_timeid = NULL;
8339 				mutex_exit(&un->un_pm_mutex);
8340 				(void) untimeout(temp_id);
8341 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8342 			} else {
8343 				mutex_exit(&un->un_pm_mutex);
8344 			}
8345 		}
8346 	}
8347 
8348 	/*
8349 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8350 	 * Relocated here from above to be after the call to
8351 	 * pm_lower_power, which was getting errors.
8352 	 */
8353 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8354 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8355 
8356 	/*
8357 	 * Currently, tagged queuing is supported per target based by HBA.
8358 	 * Setting this per lun instance actually sets the capability of this
8359 	 * target in HBA, which affects those luns already attached on the
8360 	 * same target. So during detach, we can only disable this capability
8361 	 * only when this is the only lun left on this target. By doing
8362 	 * this, we assume a target has the same tagged queuing capability
8363 	 * for every lun. The condition can be removed when HBA is changed to
8364 	 * support per lun based tagged queuing capability.
8365 	 */
8366 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
8367 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8368 	}
8369 
8370 	if (un->un_f_is_fibre == FALSE) {
8371 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8372 	}
8373 
8374 	/*
8375 	 * Remove any event callbacks, fibre only
8376 	 */
8377 	if (un->un_f_is_fibre == TRUE) {
8378 		if ((un->un_insert_event != NULL) &&
8379 		    (ddi_remove_event_handler(un->un_insert_cb_id) !=
8380 		    DDI_SUCCESS)) {
8381 			/*
8382 			 * Note: We are returning here after having done
8383 			 * substantial cleanup above. This is consistent
8384 			 * with the legacy implementation but this may not
8385 			 * be the right thing to do.
8386 			 */
8387 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8388 			    "sd_dr_detach: Cannot cancel insert event\n");
8389 			goto err_remove_event;
8390 		}
8391 		un->un_insert_event = NULL;
8392 
8393 		if ((un->un_remove_event != NULL) &&
8394 		    (ddi_remove_event_handler(un->un_remove_cb_id) !=
8395 		    DDI_SUCCESS)) {
8396 			/*
8397 			 * Note: We are returning here after having done
8398 			 * substantial cleanup above. This is consistent
8399 			 * with the legacy implementation but this may not
8400 			 * be the right thing to do.
8401 			 */
8402 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8403 			    "sd_dr_detach: Cannot cancel remove event\n");
8404 			goto err_remove_event;
8405 		}
8406 		un->un_remove_event = NULL;
8407 	}
8408 
8409 	/* Do not free the softstate if the callback routine is active */
8410 	sd_sync_with_callback(un);
8411 
8412 	cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
8413 	cmlb_free_handle(&un->un_cmlbhandle);
8414 
8415 	/*
8416 	 * Hold the detach mutex here, to make sure that no other threads ever
8417 	 * can access a (partially) freed soft state structure.
8418 	 */
8419 	mutex_enter(&sd_detach_mutex);
8420 
8421 	/*
8422 	 * Clean up the soft state struct.
8423 	 * Cleanup is done in reverse order of allocs/inits.
8424 	 * At this point there should be no competing threads anymore.
8425 	 */
8426 
8427 	scsi_fm_fini(devp);
8428 
8429 	/*
8430 	 * Deallocate memory for SCSI FMA.
8431 	 */
8432 	kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
8433 
8434 	/* Unregister and free device id. */
8435 	ddi_devid_unregister(devi);
8436 	if (un->un_devid) {
8437 		ddi_devid_free(un->un_devid);
8438 		un->un_devid = NULL;
8439 	}
8440 
8441 	/*
8442 	 * Destroy wmap cache if it exists.
8443 	 */
8444 	if (un->un_wm_cache != NULL) {
8445 		kmem_cache_destroy(un->un_wm_cache);
8446 		un->un_wm_cache = NULL;
8447 	}
8448 
8449 	/*
8450 	 * kstat cleanup is done in detach for all device types (4363169).
8451 	 * We do not want to fail detach if the device kstats are not deleted
8452 	 * since there is a confusion about the devo_refcnt for the device.
8453 	 * We just delete the kstats and let detach complete successfully.
8454 	 */
8455 	if (un->un_stats != NULL) {
8456 		kstat_delete(un->un_stats);
8457 		un->un_stats = NULL;
8458 	}
8459 	if (un->un_errstats != NULL) {
8460 		kstat_delete(un->un_errstats);
8461 		un->un_errstats = NULL;
8462 	}
8463 
8464 	/* Remove partition stats */
8465 	if (un->un_f_pkstats_enabled) {
8466 		for (i = 0; i < NSDMAP; i++) {
8467 			if (un->un_pstats[i] != NULL) {
8468 				kstat_delete(un->un_pstats[i]);
8469 				un->un_pstats[i] = NULL;
8470 			}
8471 		}
8472 	}
8473 
8474 	/* Remove xbuf registration */
8475 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8476 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8477 
8478 	/* Remove driver properties */
8479 	ddi_prop_remove_all(devi);
8480 
8481 	mutex_destroy(&un->un_pm_mutex);
8482 	cv_destroy(&un->un_pm_busy_cv);
8483 
8484 	cv_destroy(&un->un_wcc_cv);
8485 
8486 	/* Open/close semaphore */
8487 	sema_destroy(&un->un_semoclose);
8488 
8489 	/* Removable media condvar. */
8490 	cv_destroy(&un->un_state_cv);
8491 
8492 	/* Suspend/resume condvar. */
8493 	cv_destroy(&un->un_suspend_cv);
8494 	cv_destroy(&un->un_disk_busy_cv);
8495 
8496 	sd_free_rqs(un);
8497 
8498 	/* Free up soft state */
8499 	devp->sd_private = NULL;
8500 
8501 	bzero(un, sizeof (struct sd_lun));
8502 	ddi_soft_state_free(sd_state, instance);
8503 
8504 	mutex_exit(&sd_detach_mutex);
8505 
8506 	/* This frees up the INQUIRY data associated with the device. */
8507 	scsi_unprobe(devp);
8508 
8509 	/*
8510 	 * After successfully detaching an instance, we update the information
8511 	 * of how many luns have been attached in the relative target and
8512 	 * controller for parallel SCSI. This information is used when sd tries
8513 	 * to set the tagged queuing capability in HBA.
8514 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
8515 	 * check if the device is parallel SCSI. However, we don't need to
8516 	 * check here because we've already checked during attach. No device
8517 	 * that is not parallel SCSI is in the chain.
8518 	 */
8519 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
8520 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
8521 	}
8522 
8523 	return (DDI_SUCCESS);
8524 
8525 err_notclosed:
8526 	mutex_exit(SD_MUTEX(un));
8527 
8528 err_stillbusy:
8529 	_NOTE(NO_COMPETING_THREADS_NOW);
8530 
8531 err_remove_event:
8532 	mutex_enter(&sd_detach_mutex);
8533 	un->un_detach_count--;
8534 	mutex_exit(&sd_detach_mutex);
8535 
8536 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
8537 	return (DDI_FAILURE);
8538 }
8539 
8540 
8541 /*
8542  *    Function: sd_create_errstats
8543  *
8544  * Description: This routine instantiates the device error stats.
8545  *
8546  *		Note: During attach the stats are instantiated first so they are
8547  *		available for attach-time routines that utilize the driver
8548  *		iopath to send commands to the device. The stats are initialized
8549  *		separately so data obtained during some attach-time routines is
8550  *		available. (4362483)
8551  *
8552  *   Arguments: un - driver soft state (unit) structure
8553  *		instance - driver instance
8554  *
8555  *     Context: Kernel thread context
8556  */
8557 
8558 static void
8559 sd_create_errstats(struct sd_lun *un, int instance)
8560 {
8561 	struct	sd_errstats	*stp;
8562 	char	kstatmodule_err[KSTAT_STRLEN];
8563 	char	kstatname[KSTAT_STRLEN];
8564 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
8565 
8566 	ASSERT(un != NULL);
8567 
8568 	if (un->un_errstats != NULL) {
8569 		return;
8570 	}
8571 
8572 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
8573 	    "%serr", sd_label);
8574 	(void) snprintf(kstatname, sizeof (kstatname),
8575 	    "%s%d,err", sd_label, instance);
8576 
8577 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
8578 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
8579 
8580 	if (un->un_errstats == NULL) {
8581 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8582 		    "sd_create_errstats: Failed kstat_create\n");
8583 		return;
8584 	}
8585 
8586 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8587 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
8588 	    KSTAT_DATA_UINT32);
8589 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
8590 	    KSTAT_DATA_UINT32);
8591 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
8592 	    KSTAT_DATA_UINT32);
8593 	kstat_named_init(&stp->sd_vid,		"Vendor",
8594 	    KSTAT_DATA_CHAR);
8595 	kstat_named_init(&stp->sd_pid,		"Product",
8596 	    KSTAT_DATA_CHAR);
8597 	kstat_named_init(&stp->sd_revision,	"Revision",
8598 	    KSTAT_DATA_CHAR);
8599 	kstat_named_init(&stp->sd_serial,	"Serial No",
8600 	    KSTAT_DATA_CHAR);
8601 	kstat_named_init(&stp->sd_capacity,	"Size",
8602 	    KSTAT_DATA_ULONGLONG);
8603 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
8604 	    KSTAT_DATA_UINT32);
8605 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
8606 	    KSTAT_DATA_UINT32);
8607 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
8608 	    KSTAT_DATA_UINT32);
8609 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
8610 	    KSTAT_DATA_UINT32);
8611 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
8612 	    KSTAT_DATA_UINT32);
8613 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
8614 	    KSTAT_DATA_UINT32);
8615 
8616 	un->un_errstats->ks_private = un;
8617 	un->un_errstats->ks_update  = nulldev;
8618 
8619 	kstat_install(un->un_errstats);
8620 }
8621 
8622 
8623 /*
8624  *    Function: sd_set_errstats
8625  *
8626  * Description: This routine sets the value of the vendor id, product id,
8627  *		revision, serial number, and capacity device error stats.
8628  *
8629  *		Note: During attach the stats are instantiated first so they are
8630  *		available for attach-time routines that utilize the driver
8631  *		iopath to send commands to the device. The stats are initialized
8632  *		separately so data obtained during some attach-time routines is
8633  *		available. (4362483)
8634  *
8635  *   Arguments: un - driver soft state (unit) structure
8636  *
8637  *     Context: Kernel thread context
8638  */
8639 
8640 static void
8641 sd_set_errstats(struct sd_lun *un)
8642 {
8643 	struct	sd_errstats	*stp;
8644 
8645 	ASSERT(un != NULL);
8646 	ASSERT(un->un_errstats != NULL);
8647 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8648 	ASSERT(stp != NULL);
8649 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
8650 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
8651 	(void) strncpy(stp->sd_revision.value.c,
8652 	    un->un_sd->sd_inq->inq_revision, 4);
8653 
8654 	/*
8655 	 * All the errstats are persistent across detach/attach,
8656 	 * so reset all the errstats here in case of the hot
8657 	 * replacement of disk drives, except for not changed
8658 	 * Sun qualified drives.
8659 	 */
8660 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
8661 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8662 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
8663 		stp->sd_softerrs.value.ui32 = 0;
8664 		stp->sd_harderrs.value.ui32 = 0;
8665 		stp->sd_transerrs.value.ui32 = 0;
8666 		stp->sd_rq_media_err.value.ui32 = 0;
8667 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
8668 		stp->sd_rq_nodev_err.value.ui32 = 0;
8669 		stp->sd_rq_recov_err.value.ui32 = 0;
8670 		stp->sd_rq_illrq_err.value.ui32 = 0;
8671 		stp->sd_rq_pfa_err.value.ui32 = 0;
8672 	}
8673 
8674 	/*
8675 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
8676 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
8677 	 * (4376302))
8678 	 */
8679 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
8680 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8681 		    sizeof (SD_INQUIRY(un)->inq_serial));
8682 	}
8683 
8684 	if (un->un_f_blockcount_is_valid != TRUE) {
8685 		/*
8686 		 * Set capacity error stat to 0 for no media. This ensures
8687 		 * a valid capacity is displayed in response to 'iostat -E'
8688 		 * when no media is present in the device.
8689 		 */
8690 		stp->sd_capacity.value.ui64 = 0;
8691 	} else {
8692 		/*
8693 		 * Multiply un_blockcount by un->un_sys_blocksize to get
8694 		 * capacity.
8695 		 *
8696 		 * Note: for non-512 blocksize devices "un_blockcount" has been
8697 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
8698 		 * (un_tgt_blocksize / un->un_sys_blocksize).
8699 		 */
8700 		stp->sd_capacity.value.ui64 = (uint64_t)
8701 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
8702 	}
8703 }
8704 
8705 
8706 /*
8707  *    Function: sd_set_pstats
8708  *
8709  * Description: This routine instantiates and initializes the partition
8710  *              stats for each partition with more than zero blocks.
8711  *		(4363169)
8712  *
8713  *   Arguments: un - driver soft state (unit) structure
8714  *
8715  *     Context: Kernel thread context
8716  */
8717 
8718 static void
8719 sd_set_pstats(struct sd_lun *un)
8720 {
8721 	char	kstatname[KSTAT_STRLEN];
8722 	int	instance;
8723 	int	i;
8724 	diskaddr_t	nblks = 0;
8725 	char	*partname = NULL;
8726 
8727 	ASSERT(un != NULL);
8728 
8729 	instance = ddi_get_instance(SD_DEVINFO(un));
8730 
8731 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
8732 	for (i = 0; i < NSDMAP; i++) {
8733 
8734 		if (cmlb_partinfo(un->un_cmlbhandle, i,
8735 		    &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0)
8736 			continue;
8737 		mutex_enter(SD_MUTEX(un));
8738 
8739 		if ((un->un_pstats[i] == NULL) &&
8740 		    (nblks != 0)) {
8741 
8742 			(void) snprintf(kstatname, sizeof (kstatname),
8743 			    "%s%d,%s", sd_label, instance,
8744 			    partname);
8745 
8746 			un->un_pstats[i] = kstat_create(sd_label,
8747 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
8748 			    1, KSTAT_FLAG_PERSISTENT);
8749 			if (un->un_pstats[i] != NULL) {
8750 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
8751 				kstat_install(un->un_pstats[i]);
8752 			}
8753 		}
8754 		mutex_exit(SD_MUTEX(un));
8755 	}
8756 }
8757 
8758 
8759 #if (defined(__fibre))
8760 /*
8761  *    Function: sd_init_event_callbacks
8762  *
8763  * Description: This routine initializes the insertion and removal event
8764  *		callbacks. (fibre only)
8765  *
8766  *   Arguments: un - driver soft state (unit) structure
8767  *
8768  *     Context: Kernel thread context
8769  */
8770 
8771 static void
8772 sd_init_event_callbacks(struct sd_lun *un)
8773 {
8774 	ASSERT(un != NULL);
8775 
8776 	if ((un->un_insert_event == NULL) &&
8777 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
8778 	    &un->un_insert_event) == DDI_SUCCESS)) {
8779 		/*
8780 		 * Add the callback for an insertion event
8781 		 */
8782 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8783 		    un->un_insert_event, sd_event_callback, (void *)un,
8784 		    &(un->un_insert_cb_id));
8785 	}
8786 
8787 	if ((un->un_remove_event == NULL) &&
8788 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
8789 	    &un->un_remove_event) == DDI_SUCCESS)) {
8790 		/*
8791 		 * Add the callback for a removal event
8792 		 */
8793 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8794 		    un->un_remove_event, sd_event_callback, (void *)un,
8795 		    &(un->un_remove_cb_id));
8796 	}
8797 }
8798 
8799 
8800 /*
8801  *    Function: sd_event_callback
8802  *
8803  * Description: This routine handles insert/remove events (photon). The
8804  *		state is changed to OFFLINE which can be used to supress
8805  *		error msgs. (fibre only)
8806  *
8807  *   Arguments: un - driver soft state (unit) structure
8808  *
8809  *     Context: Callout thread context
8810  */
8811 /* ARGSUSED */
8812 static void
8813 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
8814     void *bus_impldata)
8815 {
8816 	struct sd_lun *un = (struct sd_lun *)arg;
8817 
8818 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
8819 	if (event == un->un_insert_event) {
8820 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
8821 		mutex_enter(SD_MUTEX(un));
8822 		if (un->un_state == SD_STATE_OFFLINE) {
8823 			if (un->un_last_state != SD_STATE_SUSPENDED) {
8824 				un->un_state = un->un_last_state;
8825 			} else {
8826 				/*
8827 				 * We have gone through SUSPEND/RESUME while
8828 				 * we were offline. Restore the last state
8829 				 */
8830 				un->un_state = un->un_save_state;
8831 			}
8832 		}
8833 		mutex_exit(SD_MUTEX(un));
8834 
8835 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
8836 	} else if (event == un->un_remove_event) {
8837 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
8838 		mutex_enter(SD_MUTEX(un));
8839 		/*
8840 		 * We need to handle an event callback that occurs during
8841 		 * the suspend operation, since we don't prevent it.
8842 		 */
8843 		if (un->un_state != SD_STATE_OFFLINE) {
8844 			if (un->un_state != SD_STATE_SUSPENDED) {
8845 				New_state(un, SD_STATE_OFFLINE);
8846 			} else {
8847 				un->un_last_state = SD_STATE_OFFLINE;
8848 			}
8849 		}
8850 		mutex_exit(SD_MUTEX(un));
8851 	} else {
8852 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
8853 		    "!Unknown event\n");
8854 	}
8855 
8856 }
8857 #endif
8858 
8859 /*
8860  *    Function: sd_cache_control()
8861  *
8862  * Description: This routine is the driver entry point for setting
8863  *		read and write caching by modifying the WCE (write cache
8864  *		enable) and RCD (read cache disable) bits of mode
8865  *		page 8 (MODEPAGE_CACHING).
8866  *
8867  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
8868  *                      structure for this target.
8869  *		rcd_flag - flag for controlling the read cache
8870  *		wce_flag - flag for controlling the write cache
8871  *
8872  * Return Code: EIO
8873  *		code returned by sd_send_scsi_MODE_SENSE and
8874  *		sd_send_scsi_MODE_SELECT
8875  *
8876  *     Context: Kernel Thread
8877  */
8878 
8879 static int
8880 sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag)
8881 {
8882 	struct mode_caching	*mode_caching_page;
8883 	uchar_t			*header;
8884 	size_t			buflen;
8885 	int			hdrlen;
8886 	int			bd_len;
8887 	int			rval = 0;
8888 	struct mode_header_grp2	*mhp;
8889 	struct sd_lun		*un;
8890 	int			status;
8891 
8892 	ASSERT(ssc != NULL);
8893 	un = ssc->ssc_un;
8894 	ASSERT(un != NULL);
8895 
8896 	/*
8897 	 * Do a test unit ready, otherwise a mode sense may not work if this
8898 	 * is the first command sent to the device after boot.
8899 	 */
8900 	status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
8901 	if (status != 0)
8902 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8903 
8904 	if (un->un_f_cfg_is_atapi == TRUE) {
8905 		hdrlen = MODE_HEADER_LENGTH_GRP2;
8906 	} else {
8907 		hdrlen = MODE_HEADER_LENGTH;
8908 	}
8909 
8910 	/*
8911 	 * Allocate memory for the retrieved mode page and its headers.  Set
8912 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
8913 	 * we get all of the mode sense data otherwise, the mode select
8914 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
8915 	 */
8916 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
8917 	    sizeof (struct mode_cache_scsi3);
8918 
8919 	header = kmem_zalloc(buflen, KM_SLEEP);
8920 
8921 	/* Get the information from the device. */
8922 	if (un->un_f_cfg_is_atapi == TRUE) {
8923 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen,
8924 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8925 	} else {
8926 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
8927 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8928 	}
8929 
8930 	if (rval != 0) {
8931 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8932 		    "sd_cache_control: Mode Sense Failed\n");
8933 		goto mode_sense_failed;
8934 	}
8935 
8936 	/*
8937 	 * Determine size of Block Descriptors in order to locate
8938 	 * the mode page data. ATAPI devices return 0, SCSI devices
8939 	 * should return MODE_BLK_DESC_LENGTH.
8940 	 */
8941 	if (un->un_f_cfg_is_atapi == TRUE) {
8942 		mhp	= (struct mode_header_grp2 *)header;
8943 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
8944 	} else {
8945 		bd_len  = ((struct mode_header *)header)->bdesc_length;
8946 	}
8947 
8948 	if (bd_len > MODE_BLK_DESC_LENGTH) {
8949 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
8950 		    "sd_cache_control: Mode Sense returned invalid "
8951 		    "block descriptor length\n");
8952 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
8953 		    "sd_cache_control: Mode Sense returned invalid "
8954 		    "block descriptor length");
8955 		rval = EIO;
8956 		goto mode_sense_failed;
8957 	}
8958 
8959 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
8960 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
8961 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
8962 		    " caching page code mismatch %d\n",
8963 		    mode_caching_page->mode_page.code);
8964 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
8965 		    "sd_cache_control: Mode Sense caching page code "
8966 		    "mismatch %d", mode_caching_page->mode_page.code);
8967 		rval = EIO;
8968 		goto mode_sense_failed;
8969 	}
8970 
8971 	/* Check the relevant bits on successful mode sense. */
8972 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
8973 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
8974 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
8975 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
8976 
8977 		size_t sbuflen;
8978 		uchar_t save_pg;
8979 
8980 		/*
8981 		 * Construct select buffer length based on the
8982 		 * length of the sense data returned.
8983 		 */
8984 		sbuflen =  hdrlen + MODE_BLK_DESC_LENGTH +
8985 		    sizeof (struct mode_page) +
8986 		    (int)mode_caching_page->mode_page.length;
8987 
8988 		/*
8989 		 * Set the caching bits as requested.
8990 		 */
8991 		if (rcd_flag == SD_CACHE_ENABLE)
8992 			mode_caching_page->rcd = 0;
8993 		else if (rcd_flag == SD_CACHE_DISABLE)
8994 			mode_caching_page->rcd = 1;
8995 
8996 		if (wce_flag == SD_CACHE_ENABLE)
8997 			mode_caching_page->wce = 1;
8998 		else if (wce_flag == SD_CACHE_DISABLE)
8999 			mode_caching_page->wce = 0;
9000 
9001 		/*
9002 		 * Save the page if the mode sense says the
9003 		 * drive supports it.
9004 		 */
9005 		save_pg = mode_caching_page->mode_page.ps ?
9006 		    SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
9007 
9008 		/* Clear reserved bits before mode select. */
9009 		mode_caching_page->mode_page.ps = 0;
9010 
9011 		/*
9012 		 * Clear out mode header for mode select.
9013 		 * The rest of the retrieved page will be reused.
9014 		 */
9015 		bzero(header, hdrlen);
9016 
9017 		if (un->un_f_cfg_is_atapi == TRUE) {
9018 			mhp = (struct mode_header_grp2 *)header;
9019 			mhp->bdesc_length_hi = bd_len >> 8;
9020 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
9021 		} else {
9022 			((struct mode_header *)header)->bdesc_length = bd_len;
9023 		}
9024 
9025 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9026 
9027 		/* Issue mode select to change the cache settings */
9028 		if (un->un_f_cfg_is_atapi == TRUE) {
9029 			rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, header,
9030 			    sbuflen, save_pg, SD_PATH_DIRECT);
9031 		} else {
9032 			rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header,
9033 			    sbuflen, save_pg, SD_PATH_DIRECT);
9034 		}
9035 
9036 	}
9037 
9038 
9039 mode_sense_failed:
9040 
9041 	kmem_free(header, buflen);
9042 
9043 	if (rval != 0) {
9044 		if (rval == EIO)
9045 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9046 		else
9047 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9048 	}
9049 	return (rval);
9050 }
9051 
9052 
9053 /*
9054  *    Function: sd_get_write_cache_enabled()
9055  *
9056  * Description: This routine is the driver entry point for determining if
9057  *		write caching is enabled.  It examines the WCE (write cache
9058  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
9059  *
9060  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
9061  *                      structure for this target.
9062  *		is_enabled - pointer to int where write cache enabled state
9063  *		is returned (non-zero -> write cache enabled)
9064  *
9065  *
9066  * Return Code: EIO
9067  *		code returned by sd_send_scsi_MODE_SENSE
9068  *
9069  *     Context: Kernel Thread
9070  *
9071  * NOTE: If ioctl is added to disable write cache, this sequence should
9072  * be followed so that no locking is required for accesses to
9073  * un->un_f_write_cache_enabled:
9074  * 	do mode select to clear wce
9075  * 	do synchronize cache to flush cache
9076  * 	set un->un_f_write_cache_enabled = FALSE
9077  *
9078  * Conversely, an ioctl to enable the write cache should be done
9079  * in this order:
9080  * 	set un->un_f_write_cache_enabled = TRUE
9081  * 	do mode select to set wce
9082  */
9083 
9084 static int
9085 sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled)
9086 {
9087 	struct mode_caching	*mode_caching_page;
9088 	uchar_t			*header;
9089 	size_t			buflen;
9090 	int			hdrlen;
9091 	int			bd_len;
9092 	int			rval = 0;
9093 	struct sd_lun		*un;
9094 	int			status;
9095 
9096 	ASSERT(ssc != NULL);
9097 	un = ssc->ssc_un;
9098 	ASSERT(un != NULL);
9099 	ASSERT(is_enabled != NULL);
9100 
9101 	/* in case of error, flag as enabled */
9102 	*is_enabled = TRUE;
9103 
9104 	/*
9105 	 * Do a test unit ready, otherwise a mode sense may not work if this
9106 	 * is the first command sent to the device after boot.
9107 	 */
9108 	status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
9109 
9110 	if (status != 0)
9111 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9112 
9113 	if (un->un_f_cfg_is_atapi == TRUE) {
9114 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9115 	} else {
9116 		hdrlen = MODE_HEADER_LENGTH;
9117 	}
9118 
9119 	/*
9120 	 * Allocate memory for the retrieved mode page and its headers.  Set
9121 	 * a pointer to the page itself.
9122 	 */
9123 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
9124 	header = kmem_zalloc(buflen, KM_SLEEP);
9125 
9126 	/* Get the information from the device. */
9127 	if (un->un_f_cfg_is_atapi == TRUE) {
9128 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen,
9129 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9130 	} else {
9131 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
9132 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9133 	}
9134 
9135 	if (rval != 0) {
9136 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9137 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
9138 		goto mode_sense_failed;
9139 	}
9140 
9141 	/*
9142 	 * Determine size of Block Descriptors in order to locate
9143 	 * the mode page data. ATAPI devices return 0, SCSI devices
9144 	 * should return MODE_BLK_DESC_LENGTH.
9145 	 */
9146 	if (un->un_f_cfg_is_atapi == TRUE) {
9147 		struct mode_header_grp2	*mhp;
9148 		mhp	= (struct mode_header_grp2 *)header;
9149 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9150 	} else {
9151 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9152 	}
9153 
9154 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9155 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9156 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
9157 		    "block descriptor length\n");
9158 		/* FMA should make upset complain here */
9159 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
9160 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
9161 		    "block descriptor length %d", bd_len);
9162 		rval = EIO;
9163 		goto mode_sense_failed;
9164 	}
9165 
9166 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9167 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
9168 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
9169 		    " caching page code mismatch %d\n",
9170 		    mode_caching_page->mode_page.code);
9171 		/* FMA could make upset complain here */
9172 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
9173 		    "sd_cache_control: Mode Sense caching page code "
9174 		    "mismatch %d", mode_caching_page->mode_page.code);
9175 		rval = EIO;
9176 		goto mode_sense_failed;
9177 	}
9178 	*is_enabled = mode_caching_page->wce;
9179 
9180 mode_sense_failed:
9181 	if (rval == 0) {
9182 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
9183 	} else if (rval == EIO) {
9184 		/*
9185 		 * Some disks do not support mode sense(6), we
9186 		 * should ignore this kind of error(sense key is
9187 		 * 0x5 - illegal request).
9188 		 */
9189 		uint8_t *sensep;
9190 		int senlen;
9191 
9192 		sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
9193 		senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
9194 		    ssc->ssc_uscsi_cmd->uscsi_rqresid);
9195 
9196 		if (senlen > 0 &&
9197 		    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
9198 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
9199 		} else {
9200 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9201 		}
9202 	} else {
9203 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9204 	}
9205 	kmem_free(header, buflen);
9206 	return (rval);
9207 }
9208 
9209 /*
9210  *    Function: sd_get_nv_sup()
9211  *
9212  * Description: This routine is the driver entry point for
9213  * determining whether non-volatile cache is supported. This
9214  * determination process works as follows:
9215  *
9216  * 1. sd first queries sd.conf on whether
9217  * suppress_cache_flush bit is set for this device.
9218  *
9219  * 2. if not there, then queries the internal disk table.
9220  *
9221  * 3. if either sd.conf or internal disk table specifies
9222  * cache flush be suppressed, we don't bother checking
9223  * NV_SUP bit.
9224  *
9225  * If SUPPRESS_CACHE_FLUSH bit is not set to 1, sd queries
9226  * the optional INQUIRY VPD page 0x86. If the device
9227  * supports VPD page 0x86, sd examines the NV_SUP
9228  * (non-volatile cache support) bit in the INQUIRY VPD page
9229  * 0x86:
9230  *   o If NV_SUP bit is set, sd assumes the device has a
9231  *   non-volatile cache and set the
9232  *   un_f_sync_nv_supported to TRUE.
9233  *   o Otherwise cache is not non-volatile,
9234  *   un_f_sync_nv_supported is set to FALSE.
9235  *
9236  * Arguments: un - driver soft state (unit) structure
9237  *
9238  * Return Code:
9239  *
9240  *     Context: Kernel Thread
9241  */
9242 
9243 static void
9244 sd_get_nv_sup(sd_ssc_t *ssc)
9245 {
9246 	int		rval		= 0;
9247 	uchar_t		*inq86		= NULL;
9248 	size_t		inq86_len	= MAX_INQUIRY_SIZE;
9249 	size_t		inq86_resid	= 0;
9250 	struct		dk_callback *dkc;
9251 	struct sd_lun	*un;
9252 
9253 	ASSERT(ssc != NULL);
9254 	un = ssc->ssc_un;
9255 	ASSERT(un != NULL);
9256 
9257 	mutex_enter(SD_MUTEX(un));
9258 
9259 	/*
9260 	 * Be conservative on the device's support of
9261 	 * SYNC_NV bit: un_f_sync_nv_supported is
9262 	 * initialized to be false.
9263 	 */
9264 	un->un_f_sync_nv_supported = FALSE;
9265 
9266 	/*
9267 	 * If either sd.conf or internal disk table
9268 	 * specifies cache flush be suppressed, then
9269 	 * we don't bother checking NV_SUP bit.
9270 	 */
9271 	if (un->un_f_suppress_cache_flush == TRUE) {
9272 		mutex_exit(SD_MUTEX(un));
9273 		return;
9274 	}
9275 
9276 	if (sd_check_vpd_page_support(ssc) == 0 &&
9277 	    un->un_vpd_page_mask & SD_VPD_EXTENDED_DATA_PG) {
9278 		mutex_exit(SD_MUTEX(un));
9279 		/* collect page 86 data if available */
9280 		inq86 = kmem_zalloc(inq86_len, KM_SLEEP);
9281 
9282 		rval = sd_send_scsi_INQUIRY(ssc, inq86, inq86_len,
9283 		    0x01, 0x86, &inq86_resid);
9284 
9285 		if (rval == 0 && (inq86_len - inq86_resid > 6)) {
9286 			SD_TRACE(SD_LOG_COMMON, un,
9287 			    "sd_get_nv_sup: \
9288 			    successfully get VPD page: %x \
9289 			    PAGE LENGTH: %x BYTE 6: %x\n",
9290 			    inq86[1], inq86[3], inq86[6]);
9291 
9292 			mutex_enter(SD_MUTEX(un));
9293 			/*
9294 			 * check the value of NV_SUP bit: only if the device
9295 			 * reports NV_SUP bit to be 1, the
9296 			 * un_f_sync_nv_supported bit will be set to true.
9297 			 */
9298 			if (inq86[6] & SD_VPD_NV_SUP) {
9299 				un->un_f_sync_nv_supported = TRUE;
9300 			}
9301 			mutex_exit(SD_MUTEX(un));
9302 		} else if (rval != 0) {
9303 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9304 		}
9305 
9306 		kmem_free(inq86, inq86_len);
9307 	} else {
9308 		mutex_exit(SD_MUTEX(un));
9309 	}
9310 
9311 	/*
9312 	 * Send a SYNC CACHE command to check whether
9313 	 * SYNC_NV bit is supported. This command should have
9314 	 * un_f_sync_nv_supported set to correct value.
9315 	 */
9316 	mutex_enter(SD_MUTEX(un));
9317 	if (un->un_f_sync_nv_supported) {
9318 		mutex_exit(SD_MUTEX(un));
9319 		dkc = kmem_zalloc(sizeof (struct dk_callback), KM_SLEEP);
9320 		dkc->dkc_flag = FLUSH_VOLATILE;
9321 		(void) sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
9322 
9323 		/*
9324 		 * Send a TEST UNIT READY command to the device. This should
9325 		 * clear any outstanding UNIT ATTENTION that may be present.
9326 		 */
9327 		rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
9328 		if (rval != 0)
9329 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9330 
9331 		kmem_free(dkc, sizeof (struct dk_callback));
9332 	} else {
9333 		mutex_exit(SD_MUTEX(un));
9334 	}
9335 
9336 	SD_TRACE(SD_LOG_COMMON, un, "sd_get_nv_sup: \
9337 	    un_f_suppress_cache_flush is set to %d\n",
9338 	    un->un_f_suppress_cache_flush);
9339 }
9340 
9341 /*
9342  *    Function: sd_make_device
9343  *
9344  * Description: Utility routine to return the Solaris device number from
9345  *		the data in the device's dev_info structure.
9346  *
9347  * Return Code: The Solaris device number
9348  *
9349  *     Context: Any
9350  */
9351 
9352 static dev_t
9353 sd_make_device(dev_info_t *devi)
9354 {
9355 	return (makedevice(ddi_name_to_major(ddi_get_name(devi)),
9356 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
9357 }
9358 
9359 
9360 /*
9361  *    Function: sd_pm_entry
9362  *
9363  * Description: Called at the start of a new command to manage power
9364  *		and busy status of a device. This includes determining whether
9365  *		the current power state of the device is sufficient for
9366  *		performing the command or whether it must be changed.
9367  *		The PM framework is notified appropriately.
9368  *		Only with a return status of DDI_SUCCESS will the
9369  *		component be busy to the framework.
9370  *
9371  *		All callers of sd_pm_entry must check the return status
9372  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
9373  *		of DDI_FAILURE indicates the device failed to power up.
9374  *		In this case un_pm_count has been adjusted so the result
9375  *		on exit is still powered down, ie. count is less than 0.
9376  *		Calling sd_pm_exit with this count value hits an ASSERT.
9377  *
9378  * Return Code: DDI_SUCCESS or DDI_FAILURE
9379  *
9380  *     Context: Kernel thread context.
9381  */
9382 
9383 static int
9384 sd_pm_entry(struct sd_lun *un)
9385 {
9386 	int return_status = DDI_SUCCESS;
9387 
9388 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9389 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9390 
9391 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
9392 
9393 	if (un->un_f_pm_is_enabled == FALSE) {
9394 		SD_TRACE(SD_LOG_IO_PM, un,
9395 		    "sd_pm_entry: exiting, PM not enabled\n");
9396 		return (return_status);
9397 	}
9398 
9399 	/*
9400 	 * Just increment a counter if PM is enabled. On the transition from
9401 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
9402 	 * the count with each IO and mark the device as idle when the count
9403 	 * hits 0.
9404 	 *
9405 	 * If the count is less than 0 the device is powered down. If a powered
9406 	 * down device is successfully powered up then the count must be
9407 	 * incremented to reflect the power up. Note that it'll get incremented
9408 	 * a second time to become busy.
9409 	 *
9410 	 * Because the following has the potential to change the device state
9411 	 * and must release the un_pm_mutex to do so, only one thread can be
9412 	 * allowed through at a time.
9413 	 */
9414 
9415 	mutex_enter(&un->un_pm_mutex);
9416 	while (un->un_pm_busy == TRUE) {
9417 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
9418 	}
9419 	un->un_pm_busy = TRUE;
9420 
9421 	if (un->un_pm_count < 1) {
9422 
9423 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
9424 
9425 		/*
9426 		 * Indicate we are now busy so the framework won't attempt to
9427 		 * power down the device. This call will only fail if either
9428 		 * we passed a bad component number or the device has no
9429 		 * components. Neither of these should ever happen.
9430 		 */
9431 		mutex_exit(&un->un_pm_mutex);
9432 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
9433 		ASSERT(return_status == DDI_SUCCESS);
9434 
9435 		mutex_enter(&un->un_pm_mutex);
9436 
9437 		if (un->un_pm_count < 0) {
9438 			mutex_exit(&un->un_pm_mutex);
9439 
9440 			SD_TRACE(SD_LOG_IO_PM, un,
9441 			    "sd_pm_entry: power up component\n");
9442 
9443 			/*
9444 			 * pm_raise_power will cause sdpower to be called
9445 			 * which brings the device power level to the
9446 			 * desired state, ON in this case. If successful,
9447 			 * un_pm_count and un_power_level will be updated
9448 			 * appropriately.
9449 			 */
9450 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
9451 			    SD_SPINDLE_ON);
9452 
9453 			mutex_enter(&un->un_pm_mutex);
9454 
9455 			if (return_status != DDI_SUCCESS) {
9456 				/*
9457 				 * Power up failed.
9458 				 * Idle the device and adjust the count
9459 				 * so the result on exit is that we're
9460 				 * still powered down, ie. count is less than 0.
9461 				 */
9462 				SD_TRACE(SD_LOG_IO_PM, un,
9463 				    "sd_pm_entry: power up failed,"
9464 				    " idle the component\n");
9465 
9466 				(void) pm_idle_component(SD_DEVINFO(un), 0);
9467 				un->un_pm_count--;
9468 			} else {
9469 				/*
9470 				 * Device is powered up, verify the
9471 				 * count is non-negative.
9472 				 * This is debug only.
9473 				 */
9474 				ASSERT(un->un_pm_count == 0);
9475 			}
9476 		}
9477 
9478 		if (return_status == DDI_SUCCESS) {
9479 			/*
9480 			 * For performance, now that the device has been tagged
9481 			 * as busy, and it's known to be powered up, update the
9482 			 * chain types to use jump tables that do not include
9483 			 * pm. This significantly lowers the overhead and
9484 			 * therefore improves performance.
9485 			 */
9486 
9487 			mutex_exit(&un->un_pm_mutex);
9488 			mutex_enter(SD_MUTEX(un));
9489 			SD_TRACE(SD_LOG_IO_PM, un,
9490 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
9491 			    un->un_uscsi_chain_type);
9492 
9493 			if (un->un_f_non_devbsize_supported) {
9494 				un->un_buf_chain_type =
9495 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
9496 			} else {
9497 				un->un_buf_chain_type =
9498 				    SD_CHAIN_INFO_DISK_NO_PM;
9499 			}
9500 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
9501 
9502 			SD_TRACE(SD_LOG_IO_PM, un,
9503 			    "             changed  uscsi_chain_type to   %d\n",
9504 			    un->un_uscsi_chain_type);
9505 			mutex_exit(SD_MUTEX(un));
9506 			mutex_enter(&un->un_pm_mutex);
9507 
9508 			if (un->un_pm_idle_timeid == NULL) {
9509 				/* 300 ms. */
9510 				un->un_pm_idle_timeid =
9511 				    timeout(sd_pm_idletimeout_handler, un,
9512 				    (drv_usectohz((clock_t)300000)));
9513 				/*
9514 				 * Include an extra call to busy which keeps the
9515 				 * device busy with-respect-to the PM layer
9516 				 * until the timer fires, at which time it'll
9517 				 * get the extra idle call.
9518 				 */
9519 				(void) pm_busy_component(SD_DEVINFO(un), 0);
9520 			}
9521 		}
9522 	}
9523 	un->un_pm_busy = FALSE;
9524 	/* Next... */
9525 	cv_signal(&un->un_pm_busy_cv);
9526 
9527 	un->un_pm_count++;
9528 
9529 	SD_TRACE(SD_LOG_IO_PM, un,
9530 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
9531 
9532 	mutex_exit(&un->un_pm_mutex);
9533 
9534 	return (return_status);
9535 }
9536 
9537 
9538 /*
9539  *    Function: sd_pm_exit
9540  *
9541  * Description: Called at the completion of a command to manage busy
9542  *		status for the device. If the device becomes idle the
9543  *		PM framework is notified.
9544  *
9545  *     Context: Kernel thread context
9546  */
9547 
9548 static void
9549 sd_pm_exit(struct sd_lun *un)
9550 {
9551 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9552 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9553 
9554 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
9555 
9556 	/*
9557 	 * After attach the following flag is only read, so don't
9558 	 * take the penalty of acquiring a mutex for it.
9559 	 */
9560 	if (un->un_f_pm_is_enabled == TRUE) {
9561 
9562 		mutex_enter(&un->un_pm_mutex);
9563 		un->un_pm_count--;
9564 
9565 		SD_TRACE(SD_LOG_IO_PM, un,
9566 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
9567 
9568 		ASSERT(un->un_pm_count >= 0);
9569 		if (un->un_pm_count == 0) {
9570 			mutex_exit(&un->un_pm_mutex);
9571 
9572 			SD_TRACE(SD_LOG_IO_PM, un,
9573 			    "sd_pm_exit: idle component\n");
9574 
9575 			(void) pm_idle_component(SD_DEVINFO(un), 0);
9576 
9577 		} else {
9578 			mutex_exit(&un->un_pm_mutex);
9579 		}
9580 	}
9581 
9582 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
9583 }
9584 
9585 
9586 /*
9587  *    Function: sdopen
9588  *
9589  * Description: Driver's open(9e) entry point function.
9590  *
9591  *   Arguments: dev_i   - pointer to device number
9592  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
9593  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9594  *		cred_p  - user credential pointer
9595  *
9596  * Return Code: EINVAL
9597  *		ENXIO
9598  *		EIO
9599  *		EROFS
9600  *		EBUSY
9601  *
9602  *     Context: Kernel thread context
9603  */
9604 /* ARGSUSED */
9605 static int
9606 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
9607 {
9608 	struct sd_lun	*un;
9609 	int		nodelay;
9610 	int		part;
9611 	uint64_t	partmask;
9612 	int		instance;
9613 	dev_t		dev;
9614 	int		rval = EIO;
9615 	diskaddr_t	nblks = 0;
9616 	diskaddr_t	label_cap;
9617 
9618 	/* Validate the open type */
9619 	if (otyp >= OTYPCNT) {
9620 		return (EINVAL);
9621 	}
9622 
9623 	dev = *dev_p;
9624 	instance = SDUNIT(dev);
9625 	mutex_enter(&sd_detach_mutex);
9626 
9627 	/*
9628 	 * Fail the open if there is no softstate for the instance, or
9629 	 * if another thread somewhere is trying to detach the instance.
9630 	 */
9631 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
9632 	    (un->un_detach_count != 0)) {
9633 		mutex_exit(&sd_detach_mutex);
9634 		/*
9635 		 * The probe cache only needs to be cleared when open (9e) fails
9636 		 * with ENXIO (4238046).
9637 		 */
9638 		/*
9639 		 * un-conditionally clearing probe cache is ok with
9640 		 * separate sd/ssd binaries
9641 		 * x86 platform can be an issue with both parallel
9642 		 * and fibre in 1 binary
9643 		 */
9644 		sd_scsi_clear_probe_cache();
9645 		return (ENXIO);
9646 	}
9647 
9648 	/*
9649 	 * The un_layer_count is to prevent another thread in specfs from
9650 	 * trying to detach the instance, which can happen when we are
9651 	 * called from a higher-layer driver instead of thru specfs.
9652 	 * This will not be needed when DDI provides a layered driver
9653 	 * interface that allows specfs to know that an instance is in
9654 	 * use by a layered driver & should not be detached.
9655 	 *
9656 	 * Note: the semantics for layered driver opens are exactly one
9657 	 * close for every open.
9658 	 */
9659 	if (otyp == OTYP_LYR) {
9660 		un->un_layer_count++;
9661 	}
9662 
9663 	/*
9664 	 * Keep a count of the current # of opens in progress. This is because
9665 	 * some layered drivers try to call us as a regular open. This can
9666 	 * cause problems that we cannot prevent, however by keeping this count
9667 	 * we can at least keep our open and detach routines from racing against
9668 	 * each other under such conditions.
9669 	 */
9670 	un->un_opens_in_progress++;
9671 	mutex_exit(&sd_detach_mutex);
9672 
9673 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
9674 	part	 = SDPART(dev);
9675 	partmask = 1 << part;
9676 
9677 	/*
9678 	 * We use a semaphore here in order to serialize
9679 	 * open and close requests on the device.
9680 	 */
9681 	sema_p(&un->un_semoclose);
9682 
9683 	mutex_enter(SD_MUTEX(un));
9684 
9685 	/*
9686 	 * All device accesses go thru sdstrategy() where we check
9687 	 * on suspend status but there could be a scsi_poll command,
9688 	 * which bypasses sdstrategy(), so we need to check pm
9689 	 * status.
9690 	 */
9691 
9692 	if (!nodelay) {
9693 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9694 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9695 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9696 		}
9697 
9698 		mutex_exit(SD_MUTEX(un));
9699 		if (sd_pm_entry(un) != DDI_SUCCESS) {
9700 			rval = EIO;
9701 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
9702 			    "sdopen: sd_pm_entry failed\n");
9703 			goto open_failed_with_pm;
9704 		}
9705 		mutex_enter(SD_MUTEX(un));
9706 	}
9707 
9708 	/* check for previous exclusive open */
9709 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
9710 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9711 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
9712 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
9713 
9714 	if (un->un_exclopen & (partmask)) {
9715 		goto excl_open_fail;
9716 	}
9717 
9718 	if (flag & FEXCL) {
9719 		int i;
9720 		if (un->un_ocmap.lyropen[part]) {
9721 			goto excl_open_fail;
9722 		}
9723 		for (i = 0; i < (OTYPCNT - 1); i++) {
9724 			if (un->un_ocmap.regopen[i] & (partmask)) {
9725 				goto excl_open_fail;
9726 			}
9727 		}
9728 	}
9729 
9730 	/*
9731 	 * Check the write permission if this is a removable media device,
9732 	 * NDELAY has not been set, and writable permission is requested.
9733 	 *
9734 	 * Note: If NDELAY was set and this is write-protected media the WRITE
9735 	 * attempt will fail with EIO as part of the I/O processing. This is a
9736 	 * more permissive implementation that allows the open to succeed and
9737 	 * WRITE attempts to fail when appropriate.
9738 	 */
9739 	if (un->un_f_chk_wp_open) {
9740 		if ((flag & FWRITE) && (!nodelay)) {
9741 			mutex_exit(SD_MUTEX(un));
9742 			/*
9743 			 * Defer the check for write permission on writable
9744 			 * DVD drive till sdstrategy and will not fail open even
9745 			 * if FWRITE is set as the device can be writable
9746 			 * depending upon the media and the media can change
9747 			 * after the call to open().
9748 			 */
9749 			if (un->un_f_dvdram_writable_device == FALSE) {
9750 				if (ISCD(un) || sr_check_wp(dev)) {
9751 				rval = EROFS;
9752 				mutex_enter(SD_MUTEX(un));
9753 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9754 				    "write to cd or write protected media\n");
9755 				goto open_fail;
9756 				}
9757 			}
9758 			mutex_enter(SD_MUTEX(un));
9759 		}
9760 	}
9761 
9762 	/*
9763 	 * If opening in NDELAY/NONBLOCK mode, just return.
9764 	 * Check if disk is ready and has a valid geometry later.
9765 	 */
9766 	if (!nodelay) {
9767 		sd_ssc_t	*ssc;
9768 
9769 		mutex_exit(SD_MUTEX(un));
9770 		ssc = sd_ssc_init(un);
9771 		rval = sd_ready_and_valid(ssc, part);
9772 		sd_ssc_fini(ssc);
9773 		mutex_enter(SD_MUTEX(un));
9774 		/*
9775 		 * Fail if device is not ready or if the number of disk
9776 		 * blocks is zero or negative for non CD devices.
9777 		 */
9778 
9779 		nblks = 0;
9780 
9781 		if (rval == SD_READY_VALID && (!ISCD(un))) {
9782 			/* if cmlb_partinfo fails, nblks remains 0 */
9783 			mutex_exit(SD_MUTEX(un));
9784 			(void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks,
9785 			    NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
9786 			mutex_enter(SD_MUTEX(un));
9787 		}
9788 
9789 		if ((rval != SD_READY_VALID) ||
9790 		    (!ISCD(un) && nblks <= 0)) {
9791 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
9792 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9793 			    "device not ready or invalid disk block value\n");
9794 			goto open_fail;
9795 		}
9796 #if defined(__i386) || defined(__amd64)
9797 	} else {
9798 		uchar_t *cp;
9799 		/*
9800 		 * x86 requires special nodelay handling, so that p0 is
9801 		 * always defined and accessible.
9802 		 * Invalidate geometry only if device is not already open.
9803 		 */
9804 		cp = &un->un_ocmap.chkd[0];
9805 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9806 			if (*cp != (uchar_t)0) {
9807 				break;
9808 			}
9809 			cp++;
9810 		}
9811 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9812 			mutex_exit(SD_MUTEX(un));
9813 			cmlb_invalidate(un->un_cmlbhandle,
9814 			    (void *)SD_PATH_DIRECT);
9815 			mutex_enter(SD_MUTEX(un));
9816 		}
9817 
9818 #endif
9819 	}
9820 
9821 	if (otyp == OTYP_LYR) {
9822 		un->un_ocmap.lyropen[part]++;
9823 	} else {
9824 		un->un_ocmap.regopen[otyp] |= partmask;
9825 	}
9826 
9827 	/* Set up open and exclusive open flags */
9828 	if (flag & FEXCL) {
9829 		un->un_exclopen |= (partmask);
9830 	}
9831 
9832 	/*
9833 	 * If the lun is EFI labeled and lun capacity is greater than the
9834 	 * capacity contained in the label, log a sys-event to notify the
9835 	 * interested module.
9836 	 * To avoid an infinite loop of logging sys-event, we only log the
9837 	 * event when the lun is not opened in NDELAY mode. The event handler
9838 	 * should open the lun in NDELAY mode.
9839 	 */
9840 	if (!(flag & FNDELAY)) {
9841 		mutex_exit(SD_MUTEX(un));
9842 		if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
9843 		    (void*)SD_PATH_DIRECT) == 0) {
9844 			mutex_enter(SD_MUTEX(un));
9845 			if (un->un_f_blockcount_is_valid &&
9846 			    un->un_blockcount > label_cap) {
9847 				mutex_exit(SD_MUTEX(un));
9848 				sd_log_lun_expansion_event(un,
9849 				    (nodelay ? KM_NOSLEEP : KM_SLEEP));
9850 				mutex_enter(SD_MUTEX(un));
9851 			}
9852 		} else {
9853 			mutex_enter(SD_MUTEX(un));
9854 		}
9855 	}
9856 
9857 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9858 	    "open of part %d type %d\n", part, otyp);
9859 
9860 	mutex_exit(SD_MUTEX(un));
9861 	if (!nodelay) {
9862 		sd_pm_exit(un);
9863 	}
9864 
9865 	sema_v(&un->un_semoclose);
9866 
9867 	mutex_enter(&sd_detach_mutex);
9868 	un->un_opens_in_progress--;
9869 	mutex_exit(&sd_detach_mutex);
9870 
9871 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
9872 	return (DDI_SUCCESS);
9873 
9874 excl_open_fail:
9875 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
9876 	rval = EBUSY;
9877 
9878 open_fail:
9879 	mutex_exit(SD_MUTEX(un));
9880 
9881 	/*
9882 	 * On a failed open we must exit the pm management.
9883 	 */
9884 	if (!nodelay) {
9885 		sd_pm_exit(un);
9886 	}
9887 open_failed_with_pm:
9888 	sema_v(&un->un_semoclose);
9889 
9890 	mutex_enter(&sd_detach_mutex);
9891 	un->un_opens_in_progress--;
9892 	if (otyp == OTYP_LYR) {
9893 		un->un_layer_count--;
9894 	}
9895 	mutex_exit(&sd_detach_mutex);
9896 
9897 	return (rval);
9898 }
9899 
9900 
9901 /*
9902  *    Function: sdclose
9903  *
9904  * Description: Driver's close(9e) entry point function.
9905  *
9906  *   Arguments: dev    - device number
9907  *		flag   - file status flag, informational only
9908  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9909  *		cred_p - user credential pointer
9910  *
9911  * Return Code: ENXIO
9912  *
9913  *     Context: Kernel thread context
9914  */
9915 /* ARGSUSED */
9916 static int
9917 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
9918 {
9919 	struct sd_lun	*un;
9920 	uchar_t		*cp;
9921 	int		part;
9922 	int		nodelay;
9923 	int		rval = 0;
9924 
9925 	/* Validate the open type */
9926 	if (otyp >= OTYPCNT) {
9927 		return (ENXIO);
9928 	}
9929 
9930 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9931 		return (ENXIO);
9932 	}
9933 
9934 	part = SDPART(dev);
9935 	nodelay = flag & (FNDELAY | FNONBLOCK);
9936 
9937 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9938 	    "sdclose: close of part %d type %d\n", part, otyp);
9939 
9940 	/*
9941 	 * We use a semaphore here in order to serialize
9942 	 * open and close requests on the device.
9943 	 */
9944 	sema_p(&un->un_semoclose);
9945 
9946 	mutex_enter(SD_MUTEX(un));
9947 
9948 	/* Don't proceed if power is being changed. */
9949 	while (un->un_state == SD_STATE_PM_CHANGING) {
9950 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9951 	}
9952 
9953 	if (un->un_exclopen & (1 << part)) {
9954 		un->un_exclopen &= ~(1 << part);
9955 	}
9956 
9957 	/* Update the open partition map */
9958 	if (otyp == OTYP_LYR) {
9959 		un->un_ocmap.lyropen[part] -= 1;
9960 	} else {
9961 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
9962 	}
9963 
9964 	cp = &un->un_ocmap.chkd[0];
9965 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9966 		if (*cp != NULL) {
9967 			break;
9968 		}
9969 		cp++;
9970 	}
9971 
9972 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9973 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
9974 
9975 		/*
9976 		 * We avoid persistance upon the last close, and set
9977 		 * the throttle back to the maximum.
9978 		 */
9979 		un->un_throttle = un->un_saved_throttle;
9980 
9981 		if (un->un_state == SD_STATE_OFFLINE) {
9982 			if (un->un_f_is_fibre == FALSE) {
9983 				scsi_log(SD_DEVINFO(un), sd_label,
9984 				    CE_WARN, "offline\n");
9985 			}
9986 			mutex_exit(SD_MUTEX(un));
9987 			cmlb_invalidate(un->un_cmlbhandle,
9988 			    (void *)SD_PATH_DIRECT);
9989 			mutex_enter(SD_MUTEX(un));
9990 
9991 		} else {
9992 			/*
9993 			 * Flush any outstanding writes in NVRAM cache.
9994 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
9995 			 * cmd, it may not work for non-Pluto devices.
9996 			 * SYNCHRONIZE CACHE is not required for removables,
9997 			 * except DVD-RAM drives.
9998 			 *
9999 			 * Also note: because SYNCHRONIZE CACHE is currently
10000 			 * the only command issued here that requires the
10001 			 * drive be powered up, only do the power up before
10002 			 * sending the Sync Cache command. If additional
10003 			 * commands are added which require a powered up
10004 			 * drive, the following sequence may have to change.
10005 			 *
10006 			 * And finally, note that parallel SCSI on SPARC
10007 			 * only issues a Sync Cache to DVD-RAM, a newly
10008 			 * supported device.
10009 			 */
10010 #if defined(__i386) || defined(__amd64)
10011 			if ((un->un_f_sync_cache_supported &&
10012 			    un->un_f_sync_cache_required) ||
10013 			    un->un_f_dvdram_writable_device == TRUE) {
10014 #else
10015 			if (un->un_f_dvdram_writable_device == TRUE) {
10016 #endif
10017 				mutex_exit(SD_MUTEX(un));
10018 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10019 					rval =
10020 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
10021 					    NULL);
10022 					/* ignore error if not supported */
10023 					if (rval == ENOTSUP) {
10024 						rval = 0;
10025 					} else if (rval != 0) {
10026 						rval = EIO;
10027 					}
10028 					sd_pm_exit(un);
10029 				} else {
10030 					rval = EIO;
10031 				}
10032 				mutex_enter(SD_MUTEX(un));
10033 			}
10034 
10035 			/*
10036 			 * For devices which supports DOOR_LOCK, send an ALLOW
10037 			 * MEDIA REMOVAL command, but don't get upset if it
10038 			 * fails. We need to raise the power of the drive before
10039 			 * we can call sd_send_scsi_DOORLOCK()
10040 			 */
10041 			if (un->un_f_doorlock_supported) {
10042 				mutex_exit(SD_MUTEX(un));
10043 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10044 					sd_ssc_t	*ssc;
10045 
10046 					ssc = sd_ssc_init(un);
10047 					rval = sd_send_scsi_DOORLOCK(ssc,
10048 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
10049 					if (rval != 0)
10050 						sd_ssc_assessment(ssc,
10051 						    SD_FMT_IGNORE);
10052 					sd_ssc_fini(ssc);
10053 
10054 					sd_pm_exit(un);
10055 					if (ISCD(un) && (rval != 0) &&
10056 					    (nodelay != 0)) {
10057 						rval = ENXIO;
10058 					}
10059 				} else {
10060 					rval = EIO;
10061 				}
10062 				mutex_enter(SD_MUTEX(un));
10063 			}
10064 
10065 			/*
10066 			 * If a device has removable media, invalidate all
10067 			 * parameters related to media, such as geometry,
10068 			 * blocksize, and blockcount.
10069 			 */
10070 			if (un->un_f_has_removable_media) {
10071 				sr_ejected(un);
10072 			}
10073 
10074 			/*
10075 			 * Destroy the cache (if it exists) which was
10076 			 * allocated for the write maps since this is
10077 			 * the last close for this media.
10078 			 */
10079 			if (un->un_wm_cache) {
10080 				/*
10081 				 * Check if there are pending commands.
10082 				 * and if there are give a warning and
10083 				 * do not destroy the cache.
10084 				 */
10085 				if (un->un_ncmds_in_driver > 0) {
10086 					scsi_log(SD_DEVINFO(un),
10087 					    sd_label, CE_WARN,
10088 					    "Unable to clean up memory "
10089 					    "because of pending I/O\n");
10090 				} else {
10091 					kmem_cache_destroy(
10092 					    un->un_wm_cache);
10093 					un->un_wm_cache = NULL;
10094 				}
10095 			}
10096 		}
10097 	}
10098 
10099 	mutex_exit(SD_MUTEX(un));
10100 	sema_v(&un->un_semoclose);
10101 
10102 	if (otyp == OTYP_LYR) {
10103 		mutex_enter(&sd_detach_mutex);
10104 		/*
10105 		 * The detach routine may run when the layer count
10106 		 * drops to zero.
10107 		 */
10108 		un->un_layer_count--;
10109 		mutex_exit(&sd_detach_mutex);
10110 	}
10111 
10112 	return (rval);
10113 }
10114 
10115 
10116 /*
10117  *    Function: sd_ready_and_valid
10118  *
10119  * Description: Test if device is ready and has a valid geometry.
10120  *
10121  *   Arguments: ssc - sd_ssc_t will contain un
10122  *		un  - driver soft state (unit) structure
10123  *
10124  * Return Code: SD_READY_VALID		ready and valid label
10125  *		SD_NOT_READY_VALID	not ready, no label
10126  *		SD_RESERVED_BY_OTHERS	reservation conflict
10127  *
10128  *     Context: Never called at interrupt context.
10129  */
10130 
10131 static int
10132 sd_ready_and_valid(sd_ssc_t *ssc, int part)
10133 {
10134 	struct sd_errstats	*stp;
10135 	uint64_t		capacity;
10136 	uint_t			lbasize;
10137 	int			rval = SD_READY_VALID;
10138 	char			name_str[48];
10139 	int			is_valid;
10140 	struct sd_lun		*un;
10141 	int			status;
10142 
10143 	ASSERT(ssc != NULL);
10144 	un = ssc->ssc_un;
10145 	ASSERT(un != NULL);
10146 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10147 
10148 	mutex_enter(SD_MUTEX(un));
10149 	/*
10150 	 * If a device has removable media, we must check if media is
10151 	 * ready when checking if this device is ready and valid.
10152 	 */
10153 	if (un->un_f_has_removable_media) {
10154 		mutex_exit(SD_MUTEX(un));
10155 		status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10156 
10157 		if (status != 0) {
10158 			rval = SD_NOT_READY_VALID;
10159 			mutex_enter(SD_MUTEX(un));
10160 
10161 			/* Ignore all failed status for removalbe media */
10162 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10163 
10164 			goto done;
10165 		}
10166 
10167 		is_valid = SD_IS_VALID_LABEL(un);
10168 		mutex_enter(SD_MUTEX(un));
10169 		if (!is_valid ||
10170 		    (un->un_f_blockcount_is_valid == FALSE) ||
10171 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
10172 
10173 			/* capacity has to be read every open. */
10174 			mutex_exit(SD_MUTEX(un));
10175 			status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
10176 			    &lbasize, SD_PATH_DIRECT);
10177 
10178 			if (status != 0) {
10179 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10180 
10181 				cmlb_invalidate(un->un_cmlbhandle,
10182 				    (void *)SD_PATH_DIRECT);
10183 				mutex_enter(SD_MUTEX(un));
10184 				rval = SD_NOT_READY_VALID;
10185 
10186 				goto done;
10187 			} else {
10188 				mutex_enter(SD_MUTEX(un));
10189 				sd_update_block_info(un, lbasize, capacity);
10190 			}
10191 		}
10192 
10193 		/*
10194 		 * Check if the media in the device is writable or not.
10195 		 */
10196 		if (!is_valid && ISCD(un)) {
10197 			sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
10198 		}
10199 
10200 	} else {
10201 		/*
10202 		 * Do a test unit ready to clear any unit attention from non-cd
10203 		 * devices.
10204 		 */
10205 		mutex_exit(SD_MUTEX(un));
10206 
10207 		status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10208 		if (status != 0) {
10209 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10210 		}
10211 
10212 		mutex_enter(SD_MUTEX(un));
10213 	}
10214 
10215 
10216 	/*
10217 	 * If this is a non 512 block device, allocate space for
10218 	 * the wmap cache. This is being done here since every time
10219 	 * a media is changed this routine will be called and the
10220 	 * block size is a function of media rather than device.
10221 	 */
10222 	if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) {
10223 		if (!(un->un_wm_cache)) {
10224 			(void) snprintf(name_str, sizeof (name_str),
10225 			    "%s%d_cache",
10226 			    ddi_driver_name(SD_DEVINFO(un)),
10227 			    ddi_get_instance(SD_DEVINFO(un)));
10228 			un->un_wm_cache = kmem_cache_create(
10229 			    name_str, sizeof (struct sd_w_map),
10230 			    8, sd_wm_cache_constructor,
10231 			    sd_wm_cache_destructor, NULL,
10232 			    (void *)un, NULL, 0);
10233 			if (!(un->un_wm_cache)) {
10234 				rval = ENOMEM;
10235 				goto done;
10236 			}
10237 		}
10238 	}
10239 
10240 	if (un->un_state == SD_STATE_NORMAL) {
10241 		/*
10242 		 * If the target is not yet ready here (defined by a TUR
10243 		 * failure), invalidate the geometry and print an 'offline'
10244 		 * message. This is a legacy message, as the state of the
10245 		 * target is not actually changed to SD_STATE_OFFLINE.
10246 		 *
10247 		 * If the TUR fails for EACCES (Reservation Conflict),
10248 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
10249 		 * reservation conflict. If the TUR fails for other
10250 		 * reasons, SD_NOT_READY_VALID will be returned.
10251 		 */
10252 		int err;
10253 
10254 		mutex_exit(SD_MUTEX(un));
10255 		err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10256 		mutex_enter(SD_MUTEX(un));
10257 
10258 		if (err != 0) {
10259 			mutex_exit(SD_MUTEX(un));
10260 			cmlb_invalidate(un->un_cmlbhandle,
10261 			    (void *)SD_PATH_DIRECT);
10262 			mutex_enter(SD_MUTEX(un));
10263 			if (err == EACCES) {
10264 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10265 				    "reservation conflict\n");
10266 				rval = SD_RESERVED_BY_OTHERS;
10267 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10268 			} else {
10269 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10270 				    "drive offline\n");
10271 				rval = SD_NOT_READY_VALID;
10272 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
10273 			}
10274 			goto done;
10275 		}
10276 	}
10277 
10278 	if (un->un_f_format_in_progress == FALSE) {
10279 		mutex_exit(SD_MUTEX(un));
10280 
10281 		if (cmlb_partinfo(un->un_cmlbhandle, part, NULL, NULL, NULL,
10282 		    NULL, (void *) SD_PATH_DIRECT) != 0) {
10283 			rval = SD_NOT_READY_VALID;
10284 			mutex_enter(SD_MUTEX(un));
10285 
10286 			goto done;
10287 		}
10288 		if (un->un_f_pkstats_enabled) {
10289 			sd_set_pstats(un);
10290 			SD_TRACE(SD_LOG_IO_PARTITION, un,
10291 			    "sd_ready_and_valid: un:0x%p pstats created and "
10292 			    "set\n", un);
10293 		}
10294 		mutex_enter(SD_MUTEX(un));
10295 	}
10296 
10297 	/*
10298 	 * If this device supports DOOR_LOCK command, try and send
10299 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
10300 	 * if it fails. For a CD, however, it is an error
10301 	 */
10302 	if (un->un_f_doorlock_supported) {
10303 		mutex_exit(SD_MUTEX(un));
10304 		status = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
10305 		    SD_PATH_DIRECT);
10306 
10307 		if ((status != 0) && ISCD(un)) {
10308 			rval = SD_NOT_READY_VALID;
10309 			mutex_enter(SD_MUTEX(un));
10310 
10311 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10312 
10313 			goto done;
10314 		} else if (status != 0)
10315 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10316 		mutex_enter(SD_MUTEX(un));
10317 	}
10318 
10319 	/* The state has changed, inform the media watch routines */
10320 	un->un_mediastate = DKIO_INSERTED;
10321 	cv_broadcast(&un->un_state_cv);
10322 	rval = SD_READY_VALID;
10323 
10324 done:
10325 
10326 	/*
10327 	 * Initialize the capacity kstat value, if no media previously
10328 	 * (capacity kstat is 0) and a media has been inserted
10329 	 * (un_blockcount > 0).
10330 	 */
10331 	if (un->un_errstats != NULL) {
10332 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
10333 		if ((stp->sd_capacity.value.ui64 == 0) &&
10334 		    (un->un_f_blockcount_is_valid == TRUE)) {
10335 			stp->sd_capacity.value.ui64 =
10336 			    (uint64_t)((uint64_t)un->un_blockcount *
10337 			    un->un_sys_blocksize);
10338 		}
10339 	}
10340 
10341 	mutex_exit(SD_MUTEX(un));
10342 	return (rval);
10343 }
10344 
10345 
10346 /*
10347  *    Function: sdmin
10348  *
10349  * Description: Routine to limit the size of a data transfer. Used in
10350  *		conjunction with physio(9F).
10351  *
10352  *   Arguments: bp - pointer to the indicated buf(9S) struct.
10353  *
10354  *     Context: Kernel thread context.
10355  */
10356 
10357 static void
10358 sdmin(struct buf *bp)
10359 {
10360 	struct sd_lun	*un;
10361 	int		instance;
10362 
10363 	instance = SDUNIT(bp->b_edev);
10364 
10365 	un = ddi_get_soft_state(sd_state, instance);
10366 	ASSERT(un != NULL);
10367 
10368 	if (bp->b_bcount > un->un_max_xfer_size) {
10369 		bp->b_bcount = un->un_max_xfer_size;
10370 	}
10371 }
10372 
10373 
10374 /*
10375  *    Function: sdread
10376  *
10377  * Description: Driver's read(9e) entry point function.
10378  *
10379  *   Arguments: dev   - device number
10380  *		uio   - structure pointer describing where data is to be stored
10381  *			in user's space
10382  *		cred_p  - user credential pointer
10383  *
10384  * Return Code: ENXIO
10385  *		EIO
10386  *		EINVAL
10387  *		value returned by physio
10388  *
10389  *     Context: Kernel thread context.
10390  */
10391 /* ARGSUSED */
10392 static int
10393 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
10394 {
10395 	struct sd_lun	*un = NULL;
10396 	int		secmask;
10397 	int		err = 0;
10398 	sd_ssc_t	*ssc;
10399 
10400 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10401 		return (ENXIO);
10402 	}
10403 
10404 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10405 
10406 
10407 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10408 		mutex_enter(SD_MUTEX(un));
10409 		/*
10410 		 * Because the call to sd_ready_and_valid will issue I/O we
10411 		 * must wait here if either the device is suspended or
10412 		 * if it's power level is changing.
10413 		 */
10414 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10415 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10416 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10417 		}
10418 		un->un_ncmds_in_driver++;
10419 		mutex_exit(SD_MUTEX(un));
10420 
10421 		/* Initialize sd_ssc_t for internal uscsi commands */
10422 		ssc = sd_ssc_init(un);
10423 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10424 			err = EIO;
10425 		} else {
10426 			err = 0;
10427 		}
10428 		sd_ssc_fini(ssc);
10429 
10430 		mutex_enter(SD_MUTEX(un));
10431 		un->un_ncmds_in_driver--;
10432 		ASSERT(un->un_ncmds_in_driver >= 0);
10433 		mutex_exit(SD_MUTEX(un));
10434 		if (err != 0)
10435 			return (err);
10436 	}
10437 
10438 	/*
10439 	 * Read requests are restricted to multiples of the system block size.
10440 	 */
10441 	secmask = un->un_sys_blocksize - 1;
10442 
10443 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10444 		SD_ERROR(SD_LOG_READ_WRITE, un,
10445 		    "sdread: file offset not modulo %d\n",
10446 		    un->un_sys_blocksize);
10447 		err = EINVAL;
10448 	} else if (uio->uio_iov->iov_len & (secmask)) {
10449 		SD_ERROR(SD_LOG_READ_WRITE, un,
10450 		    "sdread: transfer length not modulo %d\n",
10451 		    un->un_sys_blocksize);
10452 		err = EINVAL;
10453 	} else {
10454 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
10455 	}
10456 
10457 	return (err);
10458 }
10459 
10460 
10461 /*
10462  *    Function: sdwrite
10463  *
10464  * Description: Driver's write(9e) entry point function.
10465  *
10466  *   Arguments: dev   - device number
10467  *		uio   - structure pointer describing where data is stored in
10468  *			user's space
10469  *		cred_p  - user credential pointer
10470  *
10471  * Return Code: ENXIO
10472  *		EIO
10473  *		EINVAL
10474  *		value returned by physio
10475  *
10476  *     Context: Kernel thread context.
10477  */
10478 /* ARGSUSED */
10479 static int
10480 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
10481 {
10482 	struct sd_lun	*un = NULL;
10483 	int		secmask;
10484 	int		err = 0;
10485 	sd_ssc_t	*ssc;
10486 
10487 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10488 		return (ENXIO);
10489 	}
10490 
10491 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10492 
10493 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10494 		mutex_enter(SD_MUTEX(un));
10495 		/*
10496 		 * Because the call to sd_ready_and_valid will issue I/O we
10497 		 * must wait here if either the device is suspended or
10498 		 * if it's power level is changing.
10499 		 */
10500 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10501 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10502 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10503 		}
10504 		un->un_ncmds_in_driver++;
10505 		mutex_exit(SD_MUTEX(un));
10506 
10507 		/* Initialize sd_ssc_t for internal uscsi commands */
10508 		ssc = sd_ssc_init(un);
10509 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10510 			err = EIO;
10511 		} else {
10512 			err = 0;
10513 		}
10514 		sd_ssc_fini(ssc);
10515 
10516 		mutex_enter(SD_MUTEX(un));
10517 		un->un_ncmds_in_driver--;
10518 		ASSERT(un->un_ncmds_in_driver >= 0);
10519 		mutex_exit(SD_MUTEX(un));
10520 		if (err != 0)
10521 			return (err);
10522 	}
10523 
10524 	/*
10525 	 * Write requests are restricted to multiples of the system block size.
10526 	 */
10527 	secmask = un->un_sys_blocksize - 1;
10528 
10529 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10530 		SD_ERROR(SD_LOG_READ_WRITE, un,
10531 		    "sdwrite: file offset not modulo %d\n",
10532 		    un->un_sys_blocksize);
10533 		err = EINVAL;
10534 	} else if (uio->uio_iov->iov_len & (secmask)) {
10535 		SD_ERROR(SD_LOG_READ_WRITE, un,
10536 		    "sdwrite: transfer length not modulo %d\n",
10537 		    un->un_sys_blocksize);
10538 		err = EINVAL;
10539 	} else {
10540 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
10541 	}
10542 
10543 	return (err);
10544 }
10545 
10546 
10547 /*
10548  *    Function: sdaread
10549  *
10550  * Description: Driver's aread(9e) entry point function.
10551  *
10552  *   Arguments: dev   - device number
10553  *		aio   - structure pointer describing where data is to be stored
10554  *		cred_p  - user credential pointer
10555  *
10556  * Return Code: ENXIO
10557  *		EIO
10558  *		EINVAL
10559  *		value returned by aphysio
10560  *
10561  *     Context: Kernel thread context.
10562  */
10563 /* ARGSUSED */
10564 static int
10565 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
10566 {
10567 	struct sd_lun	*un = NULL;
10568 	struct uio	*uio = aio->aio_uio;
10569 	int		secmask;
10570 	int		err = 0;
10571 	sd_ssc_t	*ssc;
10572 
10573 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10574 		return (ENXIO);
10575 	}
10576 
10577 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10578 
10579 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10580 		mutex_enter(SD_MUTEX(un));
10581 		/*
10582 		 * Because the call to sd_ready_and_valid will issue I/O we
10583 		 * must wait here if either the device is suspended or
10584 		 * if it's power level is changing.
10585 		 */
10586 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10587 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10588 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10589 		}
10590 		un->un_ncmds_in_driver++;
10591 		mutex_exit(SD_MUTEX(un));
10592 
10593 		/* Initialize sd_ssc_t for internal uscsi commands */
10594 		ssc = sd_ssc_init(un);
10595 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10596 			err = EIO;
10597 		} else {
10598 			err = 0;
10599 		}
10600 		sd_ssc_fini(ssc);
10601 
10602 		mutex_enter(SD_MUTEX(un));
10603 		un->un_ncmds_in_driver--;
10604 		ASSERT(un->un_ncmds_in_driver >= 0);
10605 		mutex_exit(SD_MUTEX(un));
10606 		if (err != 0)
10607 			return (err);
10608 	}
10609 
10610 	/*
10611 	 * Read requests are restricted to multiples of the system block size.
10612 	 */
10613 	secmask = un->un_sys_blocksize - 1;
10614 
10615 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10616 		SD_ERROR(SD_LOG_READ_WRITE, un,
10617 		    "sdaread: file offset not modulo %d\n",
10618 		    un->un_sys_blocksize);
10619 		err = EINVAL;
10620 	} else if (uio->uio_iov->iov_len & (secmask)) {
10621 		SD_ERROR(SD_LOG_READ_WRITE, un,
10622 		    "sdaread: transfer length not modulo %d\n",
10623 		    un->un_sys_blocksize);
10624 		err = EINVAL;
10625 	} else {
10626 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
10627 	}
10628 
10629 	return (err);
10630 }
10631 
10632 
10633 /*
10634  *    Function: sdawrite
10635  *
10636  * Description: Driver's awrite(9e) entry point function.
10637  *
10638  *   Arguments: dev   - device number
10639  *		aio   - structure pointer describing where data is stored
10640  *		cred_p  - user credential pointer
10641  *
10642  * Return Code: ENXIO
10643  *		EIO
10644  *		EINVAL
10645  *		value returned by aphysio
10646  *
10647  *     Context: Kernel thread context.
10648  */
10649 /* ARGSUSED */
10650 static int
10651 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
10652 {
10653 	struct sd_lun	*un = NULL;
10654 	struct uio	*uio = aio->aio_uio;
10655 	int		secmask;
10656 	int		err = 0;
10657 	sd_ssc_t	*ssc;
10658 
10659 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10660 		return (ENXIO);
10661 	}
10662 
10663 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10664 
10665 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10666 		mutex_enter(SD_MUTEX(un));
10667 		/*
10668 		 * Because the call to sd_ready_and_valid will issue I/O we
10669 		 * must wait here if either the device is suspended or
10670 		 * if it's power level is changing.
10671 		 */
10672 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10673 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10674 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10675 		}
10676 		un->un_ncmds_in_driver++;
10677 		mutex_exit(SD_MUTEX(un));
10678 
10679 		/* Initialize sd_ssc_t for internal uscsi commands */
10680 		ssc = sd_ssc_init(un);
10681 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10682 			err = EIO;
10683 		} else {
10684 			err = 0;
10685 		}
10686 		sd_ssc_fini(ssc);
10687 
10688 		mutex_enter(SD_MUTEX(un));
10689 		un->un_ncmds_in_driver--;
10690 		ASSERT(un->un_ncmds_in_driver >= 0);
10691 		mutex_exit(SD_MUTEX(un));
10692 		if (err != 0)
10693 			return (err);
10694 	}
10695 
10696 	/*
10697 	 * Write requests are restricted to multiples of the system block size.
10698 	 */
10699 	secmask = un->un_sys_blocksize - 1;
10700 
10701 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10702 		SD_ERROR(SD_LOG_READ_WRITE, un,
10703 		    "sdawrite: file offset not modulo %d\n",
10704 		    un->un_sys_blocksize);
10705 		err = EINVAL;
10706 	} else if (uio->uio_iov->iov_len & (secmask)) {
10707 		SD_ERROR(SD_LOG_READ_WRITE, un,
10708 		    "sdawrite: transfer length not modulo %d\n",
10709 		    un->un_sys_blocksize);
10710 		err = EINVAL;
10711 	} else {
10712 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
10713 	}
10714 
10715 	return (err);
10716 }
10717 
10718 
10719 
10720 
10721 
10722 /*
10723  * Driver IO processing follows the following sequence:
10724  *
10725  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
10726  *         |                |                     ^
10727  *         v                v                     |
10728  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
10729  *         |                |                     |                   |
10730  *         v                |                     |                   |
10731  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
10732  *         |                |                     ^                   ^
10733  *         v                v                     |                   |
10734  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
10735  *         |                |                     |                   |
10736  *     +---+                |                     +------------+      +-------+
10737  *     |                    |                                  |              |
10738  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10739  *     |                    v                                  |              |
10740  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
10741  *     |                    |                                  ^              |
10742  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10743  *     |                    v                                  |              |
10744  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
10745  *     |                    |                                  ^              |
10746  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10747  *     |                    v                                  |              |
10748  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
10749  *     |                    |                                  ^              |
10750  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
10751  *     |                    v                                  |              |
10752  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
10753  *     |                    |                                  ^              |
10754  *     |                    |                                  |              |
10755  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
10756  *                          |                           ^
10757  *                          v                           |
10758  *                   sd_core_iostart()                  |
10759  *                          |                           |
10760  *                          |                           +------>(*destroypkt)()
10761  *                          +-> sd_start_cmds() <-+     |           |
10762  *                          |                     |     |           v
10763  *                          |                     |     |  scsi_destroy_pkt(9F)
10764  *                          |                     |     |
10765  *                          +->(*initpkt)()       +- sdintr()
10766  *                          |  |                        |  |
10767  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
10768  *                          |  +-> scsi_setup_cdb(9F)   |
10769  *                          |                           |
10770  *                          +--> scsi_transport(9F)     |
10771  *                                     |                |
10772  *                                     +----> SCSA ---->+
10773  *
10774  *
10775  * This code is based upon the following presumptions:
10776  *
10777  *   - iostart and iodone functions operate on buf(9S) structures. These
10778  *     functions perform the necessary operations on the buf(9S) and pass
10779  *     them along to the next function in the chain by using the macros
10780  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
10781  *     (for iodone side functions).
10782  *
10783  *   - The iostart side functions may sleep. The iodone side functions
10784  *     are called under interrupt context and may NOT sleep. Therefore
10785  *     iodone side functions also may not call iostart side functions.
10786  *     (NOTE: iostart side functions should NOT sleep for memory, as
10787  *     this could result in deadlock.)
10788  *
10789  *   - An iostart side function may call its corresponding iodone side
10790  *     function directly (if necessary).
10791  *
10792  *   - In the event of an error, an iostart side function can return a buf(9S)
10793  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
10794  *     b_error in the usual way of course).
10795  *
10796  *   - The taskq mechanism may be used by the iodone side functions to dispatch
10797  *     requests to the iostart side functions.  The iostart side functions in
10798  *     this case would be called under the context of a taskq thread, so it's
10799  *     OK for them to block/sleep/spin in this case.
10800  *
10801  *   - iostart side functions may allocate "shadow" buf(9S) structs and
10802  *     pass them along to the next function in the chain.  The corresponding
10803  *     iodone side functions must coalesce the "shadow" bufs and return
10804  *     the "original" buf to the next higher layer.
10805  *
10806  *   - The b_private field of the buf(9S) struct holds a pointer to
10807  *     an sd_xbuf struct, which contains information needed to
10808  *     construct the scsi_pkt for the command.
10809  *
10810  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
10811  *     layer must acquire & release the SD_MUTEX(un) as needed.
10812  */
10813 
10814 
10815 /*
10816  * Create taskq for all targets in the system. This is created at
10817  * _init(9E) and destroyed at _fini(9E).
10818  *
10819  * Note: here we set the minalloc to a reasonably high number to ensure that
10820  * we will have an adequate supply of task entries available at interrupt time.
10821  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
10822  * sd_create_taskq().  Since we do not want to sleep for allocations at
10823  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
10824  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
10825  * requests any one instant in time.
10826  */
10827 #define	SD_TASKQ_NUMTHREADS	8
10828 #define	SD_TASKQ_MINALLOC	256
10829 #define	SD_TASKQ_MAXALLOC	256
10830 
10831 static taskq_t	*sd_tq = NULL;
10832 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
10833 
10834 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
10835 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
10836 
10837 /*
10838  * The following task queue is being created for the write part of
10839  * read-modify-write of non-512 block size devices.
10840  * Limit the number of threads to 1 for now. This number has been chosen
10841  * considering the fact that it applies only to dvd ram drives/MO drives
10842  * currently. Performance for which is not main criteria at this stage.
10843  * Note: It needs to be explored if we can use a single taskq in future
10844  */
10845 #define	SD_WMR_TASKQ_NUMTHREADS	1
10846 static taskq_t	*sd_wmr_tq = NULL;
10847 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
10848 
10849 /*
10850  *    Function: sd_taskq_create
10851  *
10852  * Description: Create taskq thread(s) and preallocate task entries
10853  *
10854  * Return Code: Returns a pointer to the allocated taskq_t.
10855  *
10856  *     Context: Can sleep. Requires blockable context.
10857  *
10858  *       Notes: - The taskq() facility currently is NOT part of the DDI.
10859  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
10860  *		- taskq_create() will block for memory, also it will panic
10861  *		  if it cannot create the requested number of threads.
10862  *		- Currently taskq_create() creates threads that cannot be
10863  *		  swapped.
10864  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
10865  *		  supply of taskq entries at interrupt time (ie, so that we
10866  *		  do not have to sleep for memory)
10867  */
10868 
10869 static void
10870 sd_taskq_create(void)
10871 {
10872 	char	taskq_name[TASKQ_NAMELEN];
10873 
10874 	ASSERT(sd_tq == NULL);
10875 	ASSERT(sd_wmr_tq == NULL);
10876 
10877 	(void) snprintf(taskq_name, sizeof (taskq_name),
10878 	    "%s_drv_taskq", sd_label);
10879 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
10880 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10881 	    TASKQ_PREPOPULATE));
10882 
10883 	(void) snprintf(taskq_name, sizeof (taskq_name),
10884 	    "%s_rmw_taskq", sd_label);
10885 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
10886 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10887 	    TASKQ_PREPOPULATE));
10888 }
10889 
10890 
10891 /*
10892  *    Function: sd_taskq_delete
10893  *
10894  * Description: Complementary cleanup routine for sd_taskq_create().
10895  *
10896  *     Context: Kernel thread context.
10897  */
10898 
10899 static void
10900 sd_taskq_delete(void)
10901 {
10902 	ASSERT(sd_tq != NULL);
10903 	ASSERT(sd_wmr_tq != NULL);
10904 	taskq_destroy(sd_tq);
10905 	taskq_destroy(sd_wmr_tq);
10906 	sd_tq = NULL;
10907 	sd_wmr_tq = NULL;
10908 }
10909 
10910 
10911 /*
10912  *    Function: sdstrategy
10913  *
10914  * Description: Driver's strategy (9E) entry point function.
10915  *
10916  *   Arguments: bp - pointer to buf(9S)
10917  *
10918  * Return Code: Always returns zero
10919  *
10920  *     Context: Kernel thread context.
10921  */
10922 
10923 static int
10924 sdstrategy(struct buf *bp)
10925 {
10926 	struct sd_lun *un;
10927 
10928 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
10929 	if (un == NULL) {
10930 		bioerror(bp, EIO);
10931 		bp->b_resid = bp->b_bcount;
10932 		biodone(bp);
10933 		return (0);
10934 	}
10935 	/* As was done in the past, fail new cmds. if state is dumping. */
10936 	if (un->un_state == SD_STATE_DUMPING) {
10937 		bioerror(bp, ENXIO);
10938 		bp->b_resid = bp->b_bcount;
10939 		biodone(bp);
10940 		return (0);
10941 	}
10942 
10943 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10944 
10945 	/*
10946 	 * Commands may sneak in while we released the mutex in
10947 	 * DDI_SUSPEND, we should block new commands. However, old
10948 	 * commands that are still in the driver at this point should
10949 	 * still be allowed to drain.
10950 	 */
10951 	mutex_enter(SD_MUTEX(un));
10952 	/*
10953 	 * Must wait here if either the device is suspended or
10954 	 * if it's power level is changing.
10955 	 */
10956 	while ((un->un_state == SD_STATE_SUSPENDED) ||
10957 	    (un->un_state == SD_STATE_PM_CHANGING)) {
10958 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10959 	}
10960 
10961 	un->un_ncmds_in_driver++;
10962 
10963 	/*
10964 	 * atapi: Since we are running the CD for now in PIO mode we need to
10965 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
10966 	 * the HBA's init_pkt routine.
10967 	 */
10968 	if (un->un_f_cfg_is_atapi == TRUE) {
10969 		mutex_exit(SD_MUTEX(un));
10970 		bp_mapin(bp);
10971 		mutex_enter(SD_MUTEX(un));
10972 	}
10973 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
10974 	    un->un_ncmds_in_driver);
10975 
10976 	if (bp->b_flags & B_WRITE)
10977 		un->un_f_sync_cache_required = TRUE;
10978 
10979 	mutex_exit(SD_MUTEX(un));
10980 
10981 	/*
10982 	 * This will (eventually) allocate the sd_xbuf area and
10983 	 * call sd_xbuf_strategy().  We just want to return the
10984 	 * result of ddi_xbuf_qstrategy so that we have an opt-
10985 	 * imized tail call which saves us a stack frame.
10986 	 */
10987 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
10988 }
10989 
10990 
10991 /*
10992  *    Function: sd_xbuf_strategy
10993  *
10994  * Description: Function for initiating IO operations via the
10995  *		ddi_xbuf_qstrategy() mechanism.
10996  *
10997  *     Context: Kernel thread context.
10998  */
10999 
11000 static void
11001 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
11002 {
11003 	struct sd_lun *un = arg;
11004 
11005 	ASSERT(bp != NULL);
11006 	ASSERT(xp != NULL);
11007 	ASSERT(un != NULL);
11008 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11009 
11010 	/*
11011 	 * Initialize the fields in the xbuf and save a pointer to the
11012 	 * xbuf in bp->b_private.
11013 	 */
11014 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
11015 
11016 	/* Send the buf down the iostart chain */
11017 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
11018 }
11019 
11020 
11021 /*
11022  *    Function: sd_xbuf_init
11023  *
11024  * Description: Prepare the given sd_xbuf struct for use.
11025  *
11026  *   Arguments: un - ptr to softstate
11027  *		bp - ptr to associated buf(9S)
11028  *		xp - ptr to associated sd_xbuf
11029  *		chain_type - IO chain type to use:
11030  *			SD_CHAIN_NULL
11031  *			SD_CHAIN_BUFIO
11032  *			SD_CHAIN_USCSI
11033  *			SD_CHAIN_DIRECT
11034  *			SD_CHAIN_DIRECT_PRIORITY
11035  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
11036  *			initialization; may be NULL if none.
11037  *
11038  *     Context: Kernel thread context
11039  */
11040 
11041 static void
11042 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
11043 	uchar_t chain_type, void *pktinfop)
11044 {
11045 	int index;
11046 
11047 	ASSERT(un != NULL);
11048 	ASSERT(bp != NULL);
11049 	ASSERT(xp != NULL);
11050 
11051 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
11052 	    bp, chain_type);
11053 
11054 	xp->xb_un	= un;
11055 	xp->xb_pktp	= NULL;
11056 	xp->xb_pktinfo	= pktinfop;
11057 	xp->xb_private	= bp->b_private;
11058 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
11059 
11060 	/*
11061 	 * Set up the iostart and iodone chain indexes in the xbuf, based
11062 	 * upon the specified chain type to use.
11063 	 */
11064 	switch (chain_type) {
11065 	case SD_CHAIN_NULL:
11066 		/*
11067 		 * Fall thru to just use the values for the buf type, even
11068 		 * tho for the NULL chain these values will never be used.
11069 		 */
11070 		/* FALLTHRU */
11071 	case SD_CHAIN_BUFIO:
11072 		index = un->un_buf_chain_type;
11073 		break;
11074 	case SD_CHAIN_USCSI:
11075 		index = un->un_uscsi_chain_type;
11076 		break;
11077 	case SD_CHAIN_DIRECT:
11078 		index = un->un_direct_chain_type;
11079 		break;
11080 	case SD_CHAIN_DIRECT_PRIORITY:
11081 		index = un->un_priority_chain_type;
11082 		break;
11083 	default:
11084 		/* We're really broken if we ever get here... */
11085 		panic("sd_xbuf_init: illegal chain type!");
11086 		/*NOTREACHED*/
11087 	}
11088 
11089 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
11090 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
11091 
11092 	/*
11093 	 * It might be a bit easier to simply bzero the entire xbuf above,
11094 	 * but it turns out that since we init a fair number of members anyway,
11095 	 * we save a fair number cycles by doing explicit assignment of zero.
11096 	 */
11097 	xp->xb_pkt_flags	= 0;
11098 	xp->xb_dma_resid	= 0;
11099 	xp->xb_retry_count	= 0;
11100 	xp->xb_victim_retry_count = 0;
11101 	xp->xb_ua_retry_count	= 0;
11102 	xp->xb_nr_retry_count	= 0;
11103 	xp->xb_sense_bp		= NULL;
11104 	xp->xb_sense_status	= 0;
11105 	xp->xb_sense_state	= 0;
11106 	xp->xb_sense_resid	= 0;
11107 	xp->xb_ena		= 0;
11108 
11109 	bp->b_private	= xp;
11110 	bp->b_flags	&= ~(B_DONE | B_ERROR);
11111 	bp->b_resid	= 0;
11112 	bp->av_forw	= NULL;
11113 	bp->av_back	= NULL;
11114 	bioerror(bp, 0);
11115 
11116 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
11117 }
11118 
11119 
11120 /*
11121  *    Function: sd_uscsi_strategy
11122  *
11123  * Description: Wrapper for calling into the USCSI chain via physio(9F)
11124  *
11125  *   Arguments: bp - buf struct ptr
11126  *
11127  * Return Code: Always returns 0
11128  *
11129  *     Context: Kernel thread context
11130  */
11131 
11132 static int
11133 sd_uscsi_strategy(struct buf *bp)
11134 {
11135 	struct sd_lun		*un;
11136 	struct sd_uscsi_info	*uip;
11137 	struct sd_xbuf		*xp;
11138 	uchar_t			chain_type;
11139 	uchar_t			cmd;
11140 
11141 	ASSERT(bp != NULL);
11142 
11143 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11144 	if (un == NULL) {
11145 		bioerror(bp, EIO);
11146 		bp->b_resid = bp->b_bcount;
11147 		biodone(bp);
11148 		return (0);
11149 	}
11150 
11151 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11152 
11153 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
11154 
11155 	/*
11156 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
11157 	 */
11158 	ASSERT(bp->b_private != NULL);
11159 	uip = (struct sd_uscsi_info *)bp->b_private;
11160 	cmd = ((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_cdb[0];
11161 
11162 	mutex_enter(SD_MUTEX(un));
11163 	/*
11164 	 * atapi: Since we are running the CD for now in PIO mode we need to
11165 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11166 	 * the HBA's init_pkt routine.
11167 	 */
11168 	if (un->un_f_cfg_is_atapi == TRUE) {
11169 		mutex_exit(SD_MUTEX(un));
11170 		bp_mapin(bp);
11171 		mutex_enter(SD_MUTEX(un));
11172 	}
11173 	un->un_ncmds_in_driver++;
11174 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
11175 	    un->un_ncmds_in_driver);
11176 
11177 	if ((bp->b_flags & B_WRITE) && (bp->b_bcount != 0) &&
11178 	    (cmd != SCMD_MODE_SELECT) && (cmd != SCMD_MODE_SELECT_G1))
11179 		un->un_f_sync_cache_required = TRUE;
11180 
11181 	mutex_exit(SD_MUTEX(un));
11182 
11183 	switch (uip->ui_flags) {
11184 	case SD_PATH_DIRECT:
11185 		chain_type = SD_CHAIN_DIRECT;
11186 		break;
11187 	case SD_PATH_DIRECT_PRIORITY:
11188 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
11189 		break;
11190 	default:
11191 		chain_type = SD_CHAIN_USCSI;
11192 		break;
11193 	}
11194 
11195 	/*
11196 	 * We may allocate extra buf for external USCSI commands. If the
11197 	 * application asks for bigger than 20-byte sense data via USCSI,
11198 	 * SCSA layer will allocate 252 bytes sense buf for that command.
11199 	 */
11200 	if (((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_rqlen >
11201 	    SENSE_LENGTH) {
11202 		xp = kmem_zalloc(sizeof (struct sd_xbuf) - SENSE_LENGTH +
11203 		    MAX_SENSE_LENGTH, KM_SLEEP);
11204 	} else {
11205 		xp = kmem_zalloc(sizeof (struct sd_xbuf), KM_SLEEP);
11206 	}
11207 
11208 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
11209 
11210 	/* Use the index obtained within xbuf_init */
11211 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
11212 
11213 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
11214 
11215 	return (0);
11216 }
11217 
11218 /*
11219  *    Function: sd_send_scsi_cmd
11220  *
11221  * Description: Runs a USCSI command for user (when called thru sdioctl),
11222  *		or for the driver
11223  *
11224  *   Arguments: dev - the dev_t for the device
11225  *		incmd - ptr to a valid uscsi_cmd struct
11226  *		flag - bit flag, indicating open settings, 32/64 bit type
11227  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11228  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11229  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11230  *			to use the USCSI "direct" chain and bypass the normal
11231  *			command waitq.
11232  *
11233  * Return Code: 0 -  successful completion of the given command
11234  *		EIO - scsi_uscsi_handle_command() failed
11235  *		ENXIO  - soft state not found for specified dev
11236  *		EINVAL
11237  *		EFAULT - copyin/copyout error
11238  *		return code of scsi_uscsi_handle_command():
11239  *			EIO
11240  *			ENXIO
11241  *			EACCES
11242  *
11243  *     Context: Waits for command to complete. Can sleep.
11244  */
11245 
11246 static int
11247 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
11248 	enum uio_seg dataspace, int path_flag)
11249 {
11250 	struct sd_lun	*un;
11251 	sd_ssc_t	*ssc;
11252 	int		rval;
11253 
11254 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
11255 	if (un == NULL) {
11256 		return (ENXIO);
11257 	}
11258 
11259 	/*
11260 	 * Using sd_ssc_send to handle uscsi cmd
11261 	 */
11262 	ssc = sd_ssc_init(un);
11263 	rval = sd_ssc_send(ssc, incmd, flag, dataspace, path_flag);
11264 	sd_ssc_fini(ssc);
11265 
11266 	return (rval);
11267 }
11268 
11269 /*
11270  *    Function: sd_ssc_init
11271  *
11272  * Description: Uscsi end-user call this function to initialize necessary
11273  *              fields, such as uscsi_cmd and sd_uscsi_info struct.
11274  *
11275  *              The return value of sd_send_scsi_cmd will be treated as a
11276  *              fault in various conditions. Even it is not Zero, some
11277  *              callers may ignore the return value. That is to say, we can
11278  *              not make an accurate assessment in sdintr, since if a
11279  *              command is failed in sdintr it does not mean the caller of
11280  *              sd_send_scsi_cmd will treat it as a real failure.
11281  *
11282  *              To avoid printing too many error logs for a failed uscsi
11283  *              packet that the caller may not treat it as a failure, the
11284  *              sd will keep silent for handling all uscsi commands.
11285  *
11286  *              During detach->attach and attach-open, for some types of
11287  *              problems, the driver should be providing information about
11288  *              the problem encountered. Device use USCSI_SILENT, which
11289  *              suppresses all driver information. The result is that no
11290  *              information about the problem is available. Being
11291  *              completely silent during this time is inappropriate. The
11292  *              driver needs a more selective filter than USCSI_SILENT, so
11293  *              that information related to faults is provided.
11294  *
11295  *              To make the accurate accessment, the caller  of
11296  *              sd_send_scsi_USCSI_CMD should take the ownership and
11297  *              get necessary information to print error messages.
11298  *
11299  *              If we want to print necessary info of uscsi command, we need to
11300  *              keep the uscsi_cmd and sd_uscsi_info till we can make the
11301  *              assessment. We use sd_ssc_init to alloc necessary
11302  *              structs for sending an uscsi command and we are also
11303  *              responsible for free the memory by calling
11304  *              sd_ssc_fini.
11305  *
11306  *              The calling secquences will look like:
11307  *              sd_ssc_init->
11308  *
11309  *                  ...
11310  *
11311  *                  sd_send_scsi_USCSI_CMD->
11312  *                      sd_ssc_send-> - - - sdintr
11313  *                  ...
11314  *
11315  *                  if we think the return value should be treated as a
11316  *                  failure, we make the accessment here and print out
11317  *                  necessary by retrieving uscsi_cmd and sd_uscsi_info'
11318  *
11319  *                  ...
11320  *
11321  *              sd_ssc_fini
11322  *
11323  *
11324  *   Arguments: un - pointer to driver soft state (unit) structure for this
11325  *                   target.
11326  *
11327  * Return code: sd_ssc_t - pointer to allocated sd_ssc_t struct, it contains
11328  *                         uscsi_cmd and sd_uscsi_info.
11329  *                  NULL - if can not alloc memory for sd_ssc_t struct
11330  *
11331  *     Context: Kernel Thread.
11332  */
11333 static sd_ssc_t *
11334 sd_ssc_init(struct sd_lun *un)
11335 {
11336 	sd_ssc_t		*ssc;
11337 	struct uscsi_cmd	*ucmdp;
11338 	struct sd_uscsi_info	*uip;
11339 
11340 	ASSERT(un != NULL);
11341 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11342 
11343 	/*
11344 	 * Allocate sd_ssc_t structure
11345 	 */
11346 	ssc = kmem_zalloc(sizeof (sd_ssc_t), KM_SLEEP);
11347 
11348 	/*
11349 	 * Allocate uscsi_cmd by calling scsi_uscsi_alloc common routine
11350 	 */
11351 	ucmdp = scsi_uscsi_alloc();
11352 
11353 	/*
11354 	 * Allocate sd_uscsi_info structure
11355 	 */
11356 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
11357 
11358 	ssc->ssc_uscsi_cmd = ucmdp;
11359 	ssc->ssc_uscsi_info = uip;
11360 	ssc->ssc_un = un;
11361 
11362 	return (ssc);
11363 }
11364 
11365 /*
11366  * Function: sd_ssc_fini
11367  *
11368  * Description: To free sd_ssc_t and it's hanging off
11369  *
11370  * Arguments: ssc - struct pointer of sd_ssc_t.
11371  */
11372 static void
11373 sd_ssc_fini(sd_ssc_t *ssc)
11374 {
11375 	scsi_uscsi_free(ssc->ssc_uscsi_cmd);
11376 
11377 	if (ssc->ssc_uscsi_info != NULL) {
11378 		kmem_free(ssc->ssc_uscsi_info, sizeof (struct sd_uscsi_info));
11379 		ssc->ssc_uscsi_info = NULL;
11380 	}
11381 
11382 	kmem_free(ssc, sizeof (sd_ssc_t));
11383 	ssc = NULL;
11384 }
11385 
11386 /*
11387  * Function: sd_ssc_send
11388  *
11389  * Description: Runs a USCSI command for user when called through sdioctl,
11390  *              or for the driver.
11391  *
11392  *   Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11393  *                    sd_uscsi_info in.
11394  *		incmd - ptr to a valid uscsi_cmd struct
11395  *		flag - bit flag, indicating open settings, 32/64 bit type
11396  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11397  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11398  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11399  *			to use the USCSI "direct" chain and bypass the normal
11400  *			command waitq.
11401  *
11402  * Return Code: 0 -  successful completion of the given command
11403  *		EIO - scsi_uscsi_handle_command() failed
11404  *		ENXIO  - soft state not found for specified dev
11405  *		EINVAL
11406  *		EFAULT - copyin/copyout error
11407  *		return code of scsi_uscsi_handle_command():
11408  *			EIO
11409  *			ENXIO
11410  *			EACCES
11411  *
11412  *     Context: Kernel Thread;
11413  *              Waits for command to complete. Can sleep.
11414  */
11415 static int
11416 sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd, int flag,
11417 	enum uio_seg dataspace, int path_flag)
11418 {
11419 	struct sd_uscsi_info	*uip;
11420 	struct uscsi_cmd	*uscmd = ssc->ssc_uscsi_cmd;
11421 	struct sd_lun		*un;
11422 	dev_t			dev;
11423 
11424 	int	format = 0;
11425 	int	rval;
11426 
11427 
11428 	ASSERT(ssc != NULL);
11429 	un = ssc->ssc_un;
11430 	ASSERT(un != NULL);
11431 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11432 	ASSERT(!(ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT));
11433 	/*
11434 	 * We need to make sure sd_ssc_send will have sd_ssc_assessment
11435 	 * followed to avoid missing any point of telemetry.
11436 	 */
11437 	ssc->ssc_flags |= SSC_FLAGS_NEED_ASSESSMENT;
11438 
11439 	if (uscmd == NULL) {
11440 		return (ENXIO);
11441 	}
11442 
11443 
11444 #ifdef SDDEBUG
11445 	switch (dataspace) {
11446 	case UIO_USERSPACE:
11447 		SD_TRACE(SD_LOG_IO, un,
11448 		    "sd_ssc_send: entry: un:0x%p UIO_USERSPACE\n", un);
11449 		break;
11450 	case UIO_SYSSPACE:
11451 		SD_TRACE(SD_LOG_IO, un,
11452 		    "sd_ssc_send: entry: un:0x%p UIO_SYSSPACE\n", un);
11453 		break;
11454 	default:
11455 		SD_TRACE(SD_LOG_IO, un,
11456 		    "sd_ssc_send: entry: un:0x%p UNEXPECTED SPACE\n", un);
11457 		break;
11458 	}
11459 #endif
11460 
11461 	rval = scsi_uscsi_copyin((intptr_t)incmd, flag,
11462 	    SD_ADDRESS(un), &uscmd);
11463 	if (rval != 0) {
11464 		SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: "
11465 		    "scsi_uscsi_alloc_and_copyin failed\n", un);
11466 		return (rval);
11467 	}
11468 
11469 	if ((uscmd->uscsi_cdb != NULL) &&
11470 	    (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) {
11471 		mutex_enter(SD_MUTEX(un));
11472 		un->un_f_format_in_progress = TRUE;
11473 		mutex_exit(SD_MUTEX(un));
11474 		format = 1;
11475 	}
11476 
11477 	/*
11478 	 * Allocate an sd_uscsi_info struct and fill it with the info
11479 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
11480 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
11481 	 * since we allocate the buf here in this function, we do not
11482 	 * need to preserve the prior contents of b_private.
11483 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
11484 	 */
11485 	uip = ssc->ssc_uscsi_info;
11486 	uip->ui_flags = path_flag;
11487 	uip->ui_cmdp = uscmd;
11488 
11489 	/*
11490 	 * Commands sent with priority are intended for error recovery
11491 	 * situations, and do not have retries performed.
11492 	 */
11493 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
11494 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
11495 	}
11496 	uscmd->uscsi_flags &= ~USCSI_NOINTR;
11497 
11498 	dev = SD_GET_DEV(un);
11499 	rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd,
11500 	    sd_uscsi_strategy, NULL, uip);
11501 
11502 	/*
11503 	 * mark ssc_flags right after handle_cmd to make sure
11504 	 * the uscsi has been sent
11505 	 */
11506 	ssc->ssc_flags |= SSC_FLAGS_CMD_ISSUED;
11507 
11508 #ifdef SDDEBUG
11509 	SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
11510 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
11511 	    uscmd->uscsi_status, uscmd->uscsi_resid);
11512 	if (uscmd->uscsi_bufaddr != NULL) {
11513 		SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
11514 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
11515 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
11516 		if (dataspace == UIO_SYSSPACE) {
11517 			SD_DUMP_MEMORY(un, SD_LOG_IO,
11518 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
11519 			    uscmd->uscsi_buflen, SD_LOG_HEX);
11520 		}
11521 	}
11522 #endif
11523 
11524 	if (format == 1) {
11525 		mutex_enter(SD_MUTEX(un));
11526 		un->un_f_format_in_progress = FALSE;
11527 		mutex_exit(SD_MUTEX(un));
11528 	}
11529 
11530 	(void) scsi_uscsi_copyout((intptr_t)incmd, uscmd);
11531 
11532 	return (rval);
11533 }
11534 
11535 /*
11536  *     Function: sd_ssc_print
11537  *
11538  * Description: Print information available to the console.
11539  *
11540  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11541  *                    sd_uscsi_info in.
11542  *            sd_severity - log level.
11543  *     Context: Kernel thread or interrupt context.
11544  */
11545 static void
11546 sd_ssc_print(sd_ssc_t *ssc, int sd_severity)
11547 {
11548 	struct uscsi_cmd	*ucmdp;
11549 	struct scsi_device	*devp;
11550 	dev_info_t 		*devinfo;
11551 	uchar_t			*sensep;
11552 	int			senlen;
11553 	union scsi_cdb		*cdbp;
11554 	uchar_t			com;
11555 	extern struct scsi_key_strings scsi_cmds[];
11556 
11557 	ASSERT(ssc != NULL);
11558 
11559 	ucmdp = ssc->ssc_uscsi_cmd;
11560 	devp = SD_SCSI_DEVP(ssc->ssc_un);
11561 	devinfo = SD_DEVINFO(ssc->ssc_un);
11562 	ASSERT(ucmdp != NULL);
11563 	ASSERT(devp != NULL);
11564 	ASSERT(devinfo != NULL);
11565 	sensep = (uint8_t *)ucmdp->uscsi_rqbuf;
11566 	senlen = ucmdp->uscsi_rqlen - ucmdp->uscsi_rqresid;
11567 	cdbp = (union scsi_cdb *)ucmdp->uscsi_cdb;
11568 
11569 	/* In certain case (like DOORLOCK), the cdb could be NULL. */
11570 	if (cdbp == NULL)
11571 		return;
11572 	/* We don't print log if no sense data available. */
11573 	if (senlen == 0)
11574 		sensep = NULL;
11575 	com = cdbp->scc_cmd;
11576 	scsi_generic_errmsg(devp, sd_label, sd_severity, 0, 0, com,
11577 	    scsi_cmds, sensep, ssc->ssc_un->un_additional_codes, NULL);
11578 }
11579 
11580 /*
11581  *     Function: sd_ssc_assessment
11582  *
11583  * Description: We use this function to make an assessment at the point
11584  *              where SD driver may encounter a potential error.
11585  *
11586  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11587  *                    sd_uscsi_info in.
11588  *            tp_assess - a hint of strategy for ereport posting.
11589  *            Possible values of tp_assess include:
11590  *                SD_FMT_IGNORE - we don't post any ereport because we're
11591  *                sure that it is ok to ignore the underlying problems.
11592  *                SD_FMT_IGNORE_COMPROMISE - we don't post any ereport for now
11593  *                but it might be not correct to ignore the underlying hardware
11594  *                error.
11595  *                SD_FMT_STATUS_CHECK - we will post an ereport with the
11596  *                payload driver-assessment of value "fail" or
11597  *                "fatal"(depending on what information we have here). This
11598  *                assessment value is usually set when SD driver think there
11599  *                is a potential error occurred(Typically, when return value
11600  *                of the SCSI command is EIO).
11601  *                SD_FMT_STANDARD - we will post an ereport with the payload
11602  *                driver-assessment of value "info". This assessment value is
11603  *                set when the SCSI command returned successfully and with
11604  *                sense data sent back.
11605  *
11606  *     Context: Kernel thread.
11607  */
11608 static void
11609 sd_ssc_assessment(sd_ssc_t *ssc, enum sd_type_assessment tp_assess)
11610 {
11611 	int senlen = 0;
11612 	struct uscsi_cmd *ucmdp = NULL;
11613 	struct sd_lun *un;
11614 
11615 	ASSERT(ssc != NULL);
11616 	ASSERT(ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT);
11617 
11618 	ssc->ssc_flags &= ~SSC_FLAGS_NEED_ASSESSMENT;
11619 	un = ssc->ssc_un;
11620 	ASSERT(un != NULL);
11621 
11622 	/*
11623 	 * We don't handle CD-ROM, and removable media
11624 	 */
11625 	if (ISCD(un) || un->un_f_has_removable_media) {
11626 		ssc->ssc_flags &= ~SSC_FLAGS_CMD_ISSUED;
11627 		ssc->ssc_flags &= ~SSC_FLAGS_INVALID_DATA;
11628 		return;
11629 	}
11630 
11631 	/*
11632 	 * Only handle an issued command which is waiting for assessment.
11633 	 */
11634 	if (!(ssc->ssc_flags & SSC_FLAGS_CMD_ISSUED)) {
11635 		sd_ssc_print(ssc, SCSI_ERR_INFO);
11636 		return;
11637 	} else
11638 		ssc->ssc_flags &= ~SSC_FLAGS_CMD_ISSUED;
11639 
11640 	ucmdp = ssc->ssc_uscsi_cmd;
11641 	ASSERT(ucmdp != NULL);
11642 
11643 	/*
11644 	 * We will not deal with non-retryable commands here.
11645 	 */
11646 	if (ucmdp->uscsi_flags & USCSI_DIAGNOSE) {
11647 		ssc->ssc_flags &= ~SSC_FLAGS_INVALID_DATA;
11648 		return;
11649 	}
11650 
11651 	switch (tp_assess) {
11652 	case SD_FMT_IGNORE:
11653 	case SD_FMT_IGNORE_COMPROMISE:
11654 		ssc->ssc_flags &= ~SSC_FLAGS_INVALID_DATA;
11655 		break;
11656 	case SD_FMT_STATUS_CHECK:
11657 		/*
11658 		 * For a failed command(including the succeeded command
11659 		 * with invalid data sent back).
11660 		 */
11661 		sd_ssc_post(ssc, SD_FM_DRV_FATAL);
11662 		break;
11663 	case SD_FMT_STANDARD:
11664 		/*
11665 		 * Always for the succeeded commands probably with sense
11666 		 * data sent back.
11667 		 * Limitation:
11668 		 *	We can only handle a succeeded command with sense
11669 		 *	data sent back when auto-request-sense is enabled.
11670 		 */
11671 		senlen = ssc->ssc_uscsi_cmd->uscsi_rqlen -
11672 		    ssc->ssc_uscsi_cmd->uscsi_rqresid;
11673 		if ((ssc->ssc_uscsi_info->ui_pkt_state & STATE_ARQ_DONE) &&
11674 		    (un->un_f_arq_enabled == TRUE) &&
11675 		    senlen > 0 &&
11676 		    ssc->ssc_uscsi_cmd->uscsi_rqbuf != NULL) {
11677 			sd_ssc_post(ssc, SD_FM_DRV_NOTICE);
11678 		}
11679 		break;
11680 	default:
11681 		/*
11682 		 * Should be an software error.
11683 		 */
11684 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
11685 		    "sd_ssc_assessment got wrong \
11686 		    sd_type_assessment %d\n", tp_assess);
11687 		break;
11688 	}
11689 }
11690 
11691 /*
11692  *    Function: sd_ssc_post
11693  *
11694  * Description: 1. read the driver property to get fm-scsi-log flag.
11695  *              2. print log if fm_log_capable is non-zero.
11696  *              3. call sd_ssc_ereport_post to post ereport if possible.
11697  *
11698  *    Context: May be called from kernel thread or interrupt context.
11699  */
11700 static void
11701 sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess)
11702 {
11703 	struct sd_lun	*un;
11704 	int 		fm_scsi_log = 0;
11705 	int		sd_severity;
11706 
11707 	ASSERT(ssc != NULL);
11708 	un = ssc->ssc_un;
11709 	ASSERT(un != NULL);
11710 
11711 	fm_scsi_log = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
11712 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "fm-scsi-log", 0);
11713 
11714 	if (fm_scsi_log != 0) {
11715 		switch (sd_assess) {
11716 		case SD_FM_DRV_FATAL:
11717 			sd_severity = SCSI_ERR_FATAL;
11718 			break;
11719 		case SD_FM_DRV_RECOVERY:
11720 			sd_severity = SCSI_ERR_RECOVERED;
11721 			break;
11722 		case SD_FM_DRV_RETRY:
11723 			sd_severity = SCSI_ERR_RETRYABLE;
11724 			break;
11725 		case SD_FM_DRV_NOTICE:
11726 			sd_severity = SCSI_ERR_INFO;
11727 			break;
11728 		default:
11729 			sd_severity = SCSI_ERR_UNKNOWN;
11730 		}
11731 		/* print log */
11732 		sd_ssc_print(ssc, sd_severity);
11733 	}
11734 
11735 	/* always post ereport */
11736 	sd_ssc_ereport_post(ssc, sd_assess);
11737 }
11738 
11739 /*
11740  *    Function: sd_ssc_set_info
11741  *
11742  * Description: Mark ssc_flags and set ssc_info which would be the
11743  *              payload of uderr ereport. This function will cause
11744  *              sd_ssc_ereport_post to post uderr ereport only.
11745  *
11746  *    Context: Kernel thread or interrupt context
11747  */
11748 static void
11749 sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, const char *fmt, ...)
11750 {
11751 	va_list	ap;
11752 
11753 	ASSERT(ssc != NULL);
11754 
11755 	ssc->ssc_flags |= ssc_flags;
11756 	va_start(ap, fmt);
11757 	(void) vsnprintf(ssc->ssc_info, sizeof (ssc->ssc_info), fmt, ap);
11758 	va_end(ap);
11759 }
11760 
11761 /*
11762  *    Function: sd_buf_iodone
11763  *
11764  * Description: Frees the sd_xbuf & returns the buf to its originator.
11765  *
11766  *     Context: May be called from interrupt context.
11767  */
11768 /* ARGSUSED */
11769 static void
11770 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
11771 {
11772 	struct sd_xbuf *xp;
11773 
11774 	ASSERT(un != NULL);
11775 	ASSERT(bp != NULL);
11776 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11777 
11778 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
11779 
11780 	xp = SD_GET_XBUF(bp);
11781 	ASSERT(xp != NULL);
11782 
11783 	mutex_enter(SD_MUTEX(un));
11784 
11785 	/*
11786 	 * Grab time when the cmd completed.
11787 	 * This is used for determining if the system has been
11788 	 * idle long enough to make it idle to the PM framework.
11789 	 * This is for lowering the overhead, and therefore improving
11790 	 * performance per I/O operation.
11791 	 */
11792 	un->un_pm_idle_time = ddi_get_time();
11793 
11794 	un->un_ncmds_in_driver--;
11795 	ASSERT(un->un_ncmds_in_driver >= 0);
11796 	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
11797 	    un->un_ncmds_in_driver);
11798 
11799 	mutex_exit(SD_MUTEX(un));
11800 
11801 	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
11802 	biodone(bp);				/* bp is gone after this */
11803 
11804 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
11805 }
11806 
11807 
11808 /*
11809  *    Function: sd_uscsi_iodone
11810  *
11811  * Description: Frees the sd_xbuf & returns the buf to its originator.
11812  *
11813  *     Context: May be called from interrupt context.
11814  */
11815 /* ARGSUSED */
11816 static void
11817 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
11818 {
11819 	struct sd_xbuf *xp;
11820 
11821 	ASSERT(un != NULL);
11822 	ASSERT(bp != NULL);
11823 
11824 	xp = SD_GET_XBUF(bp);
11825 	ASSERT(xp != NULL);
11826 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11827 
11828 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
11829 
11830 	bp->b_private = xp->xb_private;
11831 
11832 	mutex_enter(SD_MUTEX(un));
11833 
11834 	/*
11835 	 * Grab time when the cmd completed.
11836 	 * This is used for determining if the system has been
11837 	 * idle long enough to make it idle to the PM framework.
11838 	 * This is for lowering the overhead, and therefore improving
11839 	 * performance per I/O operation.
11840 	 */
11841 	un->un_pm_idle_time = ddi_get_time();
11842 
11843 	un->un_ncmds_in_driver--;
11844 	ASSERT(un->un_ncmds_in_driver >= 0);
11845 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
11846 	    un->un_ncmds_in_driver);
11847 
11848 	mutex_exit(SD_MUTEX(un));
11849 
11850 	if (((struct uscsi_cmd *)(xp->xb_pktinfo))->uscsi_rqlen >
11851 	    SENSE_LENGTH) {
11852 		kmem_free(xp, sizeof (struct sd_xbuf) - SENSE_LENGTH +
11853 		    MAX_SENSE_LENGTH);
11854 	} else {
11855 		kmem_free(xp, sizeof (struct sd_xbuf));
11856 	}
11857 
11858 	biodone(bp);
11859 
11860 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
11861 }
11862 
11863 
11864 /*
11865  *    Function: sd_mapblockaddr_iostart
11866  *
11867  * Description: Verify request lies within the partition limits for
11868  *		the indicated minor device.  Issue "overrun" buf if
11869  *		request would exceed partition range.  Converts
11870  *		partition-relative block address to absolute.
11871  *
11872  *     Context: Can sleep
11873  *
11874  *      Issues: This follows what the old code did, in terms of accessing
11875  *		some of the partition info in the unit struct without holding
11876  *		the mutext.  This is a general issue, if the partition info
11877  *		can be altered while IO is in progress... as soon as we send
11878  *		a buf, its partitioning can be invalid before it gets to the
11879  *		device.  Probably the right fix is to move partitioning out
11880  *		of the driver entirely.
11881  */
11882 
11883 static void
11884 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
11885 {
11886 	diskaddr_t	nblocks;	/* #blocks in the given partition */
11887 	daddr_t	blocknum;	/* Block number specified by the buf */
11888 	size_t	requested_nblocks;
11889 	size_t	available_nblocks;
11890 	int	partition;
11891 	diskaddr_t	partition_offset;
11892 	struct sd_xbuf *xp;
11893 
11894 	ASSERT(un != NULL);
11895 	ASSERT(bp != NULL);
11896 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11897 
11898 	SD_TRACE(SD_LOG_IO_PARTITION, un,
11899 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
11900 
11901 	xp = SD_GET_XBUF(bp);
11902 	ASSERT(xp != NULL);
11903 
11904 	/*
11905 	 * If the geometry is not indicated as valid, attempt to access
11906 	 * the unit & verify the geometry/label. This can be the case for
11907 	 * removable-media devices, of if the device was opened in
11908 	 * NDELAY/NONBLOCK mode.
11909 	 */
11910 	partition = SDPART(bp->b_edev);
11911 
11912 	if (!SD_IS_VALID_LABEL(un)) {
11913 		sd_ssc_t *ssc;
11914 		/*
11915 		 * Initialize sd_ssc_t for internal uscsi commands
11916 		 * In case of potential porformance issue, we need
11917 		 * to alloc memory only if there is invalid label
11918 		 */
11919 		ssc = sd_ssc_init(un);
11920 
11921 		if (sd_ready_and_valid(ssc, partition) != SD_READY_VALID) {
11922 			/*
11923 			 * For removable devices it is possible to start an
11924 			 * I/O without a media by opening the device in nodelay
11925 			 * mode. Also for writable CDs there can be many
11926 			 * scenarios where there is no geometry yet but volume
11927 			 * manager is trying to issue a read() just because
11928 			 * it can see TOC on the CD. So do not print a message
11929 			 * for removables.
11930 			 */
11931 			if (!un->un_f_has_removable_media) {
11932 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
11933 				    "i/o to invalid geometry\n");
11934 			}
11935 			bioerror(bp, EIO);
11936 			bp->b_resid = bp->b_bcount;
11937 			SD_BEGIN_IODONE(index, un, bp);
11938 
11939 			sd_ssc_fini(ssc);
11940 			return;
11941 		}
11942 		sd_ssc_fini(ssc);
11943 	}
11944 
11945 	nblocks = 0;
11946 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
11947 	    &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT);
11948 
11949 	/*
11950 	 * blocknum is the starting block number of the request. At this
11951 	 * point it is still relative to the start of the minor device.
11952 	 */
11953 	blocknum = xp->xb_blkno;
11954 
11955 	/*
11956 	 * Legacy: If the starting block number is one past the last block
11957 	 * in the partition, do not set B_ERROR in the buf.
11958 	 */
11959 	if (blocknum == nblocks)  {
11960 		goto error_exit;
11961 	}
11962 
11963 	/*
11964 	 * Confirm that the first block of the request lies within the
11965 	 * partition limits. Also the requested number of bytes must be
11966 	 * a multiple of the system block size.
11967 	 */
11968 	if ((blocknum < 0) || (blocknum >= nblocks) ||
11969 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
11970 		bp->b_flags |= B_ERROR;
11971 		goto error_exit;
11972 	}
11973 
11974 	/*
11975 	 * If the requsted # blocks exceeds the available # blocks, that
11976 	 * is an overrun of the partition.
11977 	 */
11978 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
11979 	available_nblocks = (size_t)(nblocks - blocknum);
11980 	ASSERT(nblocks >= blocknum);
11981 
11982 	if (requested_nblocks > available_nblocks) {
11983 		/*
11984 		 * Allocate an "overrun" buf to allow the request to proceed
11985 		 * for the amount of space available in the partition. The
11986 		 * amount not transferred will be added into the b_resid
11987 		 * when the operation is complete. The overrun buf
11988 		 * replaces the original buf here, and the original buf
11989 		 * is saved inside the overrun buf, for later use.
11990 		 */
11991 		size_t resid = SD_SYSBLOCKS2BYTES(un,
11992 		    (offset_t)(requested_nblocks - available_nblocks));
11993 		size_t count = bp->b_bcount - resid;
11994 		/*
11995 		 * Note: count is an unsigned entity thus it'll NEVER
11996 		 * be less than 0 so ASSERT the original values are
11997 		 * correct.
11998 		 */
11999 		ASSERT(bp->b_bcount >= resid);
12000 
12001 		bp = sd_bioclone_alloc(bp, count, blocknum,
12002 		    (int (*)(struct buf *)) sd_mapblockaddr_iodone);
12003 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
12004 		ASSERT(xp != NULL);
12005 	}
12006 
12007 	/* At this point there should be no residual for this buf. */
12008 	ASSERT(bp->b_resid == 0);
12009 
12010 	/* Convert the block number to an absolute address. */
12011 	xp->xb_blkno += partition_offset;
12012 
12013 	SD_NEXT_IOSTART(index, un, bp);
12014 
12015 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12016 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
12017 
12018 	return;
12019 
12020 error_exit:
12021 	bp->b_resid = bp->b_bcount;
12022 	SD_BEGIN_IODONE(index, un, bp);
12023 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12024 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
12025 }
12026 
12027 
12028 /*
12029  *    Function: sd_mapblockaddr_iodone
12030  *
12031  * Description: Completion-side processing for partition management.
12032  *
12033  *     Context: May be called under interrupt context
12034  */
12035 
12036 static void
12037 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
12038 {
12039 	/* int	partition; */	/* Not used, see below. */
12040 	ASSERT(un != NULL);
12041 	ASSERT(bp != NULL);
12042 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12043 
12044 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12045 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
12046 
12047 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
12048 		/*
12049 		 * We have an "overrun" buf to deal with...
12050 		 */
12051 		struct sd_xbuf	*xp;
12052 		struct buf	*obp;	/* ptr to the original buf */
12053 
12054 		xp = SD_GET_XBUF(bp);
12055 		ASSERT(xp != NULL);
12056 
12057 		/* Retrieve the pointer to the original buf */
12058 		obp = (struct buf *)xp->xb_private;
12059 		ASSERT(obp != NULL);
12060 
12061 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
12062 		bioerror(obp, bp->b_error);
12063 
12064 		sd_bioclone_free(bp);
12065 
12066 		/*
12067 		 * Get back the original buf.
12068 		 * Note that since the restoration of xb_blkno below
12069 		 * was removed, the sd_xbuf is not needed.
12070 		 */
12071 		bp = obp;
12072 		/*
12073 		 * xp = SD_GET_XBUF(bp);
12074 		 * ASSERT(xp != NULL);
12075 		 */
12076 	}
12077 
12078 	/*
12079 	 * Convert sd->xb_blkno back to a minor-device relative value.
12080 	 * Note: this has been commented out, as it is not needed in the
12081 	 * current implementation of the driver (ie, since this function
12082 	 * is at the top of the layering chains, so the info will be
12083 	 * discarded) and it is in the "hot" IO path.
12084 	 *
12085 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
12086 	 * xp->xb_blkno -= un->un_offset[partition];
12087 	 */
12088 
12089 	SD_NEXT_IODONE(index, un, bp);
12090 
12091 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12092 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
12093 }
12094 
12095 
12096 /*
12097  *    Function: sd_mapblocksize_iostart
12098  *
12099  * Description: Convert between system block size (un->un_sys_blocksize)
12100  *		and target block size (un->un_tgt_blocksize).
12101  *
12102  *     Context: Can sleep to allocate resources.
12103  *
12104  * Assumptions: A higher layer has already performed any partition validation,
12105  *		and converted the xp->xb_blkno to an absolute value relative
12106  *		to the start of the device.
12107  *
12108  *		It is also assumed that the higher layer has implemented
12109  *		an "overrun" mechanism for the case where the request would
12110  *		read/write beyond the end of a partition.  In this case we
12111  *		assume (and ASSERT) that bp->b_resid == 0.
12112  *
12113  *		Note: The implementation for this routine assumes the target
12114  *		block size remains constant between allocation and transport.
12115  */
12116 
12117 static void
12118 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
12119 {
12120 	struct sd_mapblocksize_info	*bsp;
12121 	struct sd_xbuf			*xp;
12122 	offset_t first_byte;
12123 	daddr_t	start_block, end_block;
12124 	daddr_t	request_bytes;
12125 	ushort_t is_aligned = FALSE;
12126 
12127 	ASSERT(un != NULL);
12128 	ASSERT(bp != NULL);
12129 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12130 	ASSERT(bp->b_resid == 0);
12131 
12132 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12133 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
12134 
12135 	/*
12136 	 * For a non-writable CD, a write request is an error
12137 	 */
12138 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
12139 	    (un->un_f_mmc_writable_media == FALSE)) {
12140 		bioerror(bp, EIO);
12141 		bp->b_resid = bp->b_bcount;
12142 		SD_BEGIN_IODONE(index, un, bp);
12143 		return;
12144 	}
12145 
12146 	/*
12147 	 * We do not need a shadow buf if the device is using
12148 	 * un->un_sys_blocksize as its block size or if bcount == 0.
12149 	 * In this case there is no layer-private data block allocated.
12150 	 */
12151 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12152 	    (bp->b_bcount == 0)) {
12153 		goto done;
12154 	}
12155 
12156 #if defined(__i386) || defined(__amd64)
12157 	/* We do not support non-block-aligned transfers for ROD devices */
12158 	ASSERT(!ISROD(un));
12159 #endif
12160 
12161 	xp = SD_GET_XBUF(bp);
12162 	ASSERT(xp != NULL);
12163 
12164 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12165 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
12166 	    un->un_tgt_blocksize, un->un_sys_blocksize);
12167 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12168 	    "request start block:0x%x\n", xp->xb_blkno);
12169 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12170 	    "request len:0x%x\n", bp->b_bcount);
12171 
12172 	/*
12173 	 * Allocate the layer-private data area for the mapblocksize layer.
12174 	 * Layers are allowed to use the xp_private member of the sd_xbuf
12175 	 * struct to store the pointer to their layer-private data block, but
12176 	 * each layer also has the responsibility of restoring the prior
12177 	 * contents of xb_private before returning the buf/xbuf to the
12178 	 * higher layer that sent it.
12179 	 *
12180 	 * Here we save the prior contents of xp->xb_private into the
12181 	 * bsp->mbs_oprivate field of our layer-private data area. This value
12182 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
12183 	 * the layer-private area and returning the buf/xbuf to the layer
12184 	 * that sent it.
12185 	 *
12186 	 * Note that here we use kmem_zalloc for the allocation as there are
12187 	 * parts of the mapblocksize code that expect certain fields to be
12188 	 * zero unless explicitly set to a required value.
12189 	 */
12190 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12191 	bsp->mbs_oprivate = xp->xb_private;
12192 	xp->xb_private = bsp;
12193 
12194 	/*
12195 	 * This treats the data on the disk (target) as an array of bytes.
12196 	 * first_byte is the byte offset, from the beginning of the device,
12197 	 * to the location of the request. This is converted from a
12198 	 * un->un_sys_blocksize block address to a byte offset, and then back
12199 	 * to a block address based upon a un->un_tgt_blocksize block size.
12200 	 *
12201 	 * xp->xb_blkno should be absolute upon entry into this function,
12202 	 * but, but it is based upon partitions that use the "system"
12203 	 * block size. It must be adjusted to reflect the block size of
12204 	 * the target.
12205 	 *
12206 	 * Note that end_block is actually the block that follows the last
12207 	 * block of the request, but that's what is needed for the computation.
12208 	 */
12209 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12210 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
12211 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
12212 	    un->un_tgt_blocksize;
12213 
12214 	/* request_bytes is rounded up to a multiple of the target block size */
12215 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
12216 
12217 	/*
12218 	 * See if the starting address of the request and the request
12219 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
12220 	 * then we do not need to allocate a shadow buf to handle the request.
12221 	 */
12222 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
12223 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
12224 		is_aligned = TRUE;
12225 	}
12226 
12227 	if ((bp->b_flags & B_READ) == 0) {
12228 		/*
12229 		 * Lock the range for a write operation. An aligned request is
12230 		 * considered a simple write; otherwise the request must be a
12231 		 * read-modify-write.
12232 		 */
12233 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
12234 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
12235 	}
12236 
12237 	/*
12238 	 * Alloc a shadow buf if the request is not aligned. Also, this is
12239 	 * where the READ command is generated for a read-modify-write. (The
12240 	 * write phase is deferred until after the read completes.)
12241 	 */
12242 	if (is_aligned == FALSE) {
12243 
12244 		struct sd_mapblocksize_info	*shadow_bsp;
12245 		struct sd_xbuf	*shadow_xp;
12246 		struct buf	*shadow_bp;
12247 
12248 		/*
12249 		 * Allocate the shadow buf and it associated xbuf. Note that
12250 		 * after this call the xb_blkno value in both the original
12251 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
12252 		 * same: absolute relative to the start of the device, and
12253 		 * adjusted for the target block size. The b_blkno in the
12254 		 * shadow buf will also be set to this value. We should never
12255 		 * change b_blkno in the original bp however.
12256 		 *
12257 		 * Note also that the shadow buf will always need to be a
12258 		 * READ command, regardless of whether the incoming command
12259 		 * is a READ or a WRITE.
12260 		 */
12261 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
12262 		    xp->xb_blkno,
12263 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
12264 
12265 		shadow_xp = SD_GET_XBUF(shadow_bp);
12266 
12267 		/*
12268 		 * Allocate the layer-private data for the shadow buf.
12269 		 * (No need to preserve xb_private in the shadow xbuf.)
12270 		 */
12271 		shadow_xp->xb_private = shadow_bsp =
12272 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12273 
12274 		/*
12275 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
12276 		 * to figure out where the start of the user data is (based upon
12277 		 * the system block size) in the data returned by the READ
12278 		 * command (which will be based upon the target blocksize). Note
12279 		 * that this is only really used if the request is unaligned.
12280 		 */
12281 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
12282 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
12283 		ASSERT((bsp->mbs_copy_offset >= 0) &&
12284 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
12285 
12286 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
12287 
12288 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
12289 
12290 		/* Transfer the wmap (if any) to the shadow buf */
12291 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
12292 		bsp->mbs_wmp = NULL;
12293 
12294 		/*
12295 		 * The shadow buf goes on from here in place of the
12296 		 * original buf.
12297 		 */
12298 		shadow_bsp->mbs_orig_bp = bp;
12299 		bp = shadow_bp;
12300 	}
12301 
12302 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12303 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
12304 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12305 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
12306 	    request_bytes);
12307 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12308 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
12309 
12310 done:
12311 	SD_NEXT_IOSTART(index, un, bp);
12312 
12313 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12314 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
12315 }
12316 
12317 
12318 /*
12319  *    Function: sd_mapblocksize_iodone
12320  *
12321  * Description: Completion side processing for block-size mapping.
12322  *
12323  *     Context: May be called under interrupt context
12324  */
12325 
12326 static void
12327 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
12328 {
12329 	struct sd_mapblocksize_info	*bsp;
12330 	struct sd_xbuf	*xp;
12331 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
12332 	struct buf	*orig_bp;	/* ptr to the original buf */
12333 	offset_t	shadow_end;
12334 	offset_t	request_end;
12335 	offset_t	shadow_start;
12336 	ssize_t		copy_offset;
12337 	size_t		copy_length;
12338 	size_t		shortfall;
12339 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
12340 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
12341 
12342 	ASSERT(un != NULL);
12343 	ASSERT(bp != NULL);
12344 
12345 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12346 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
12347 
12348 	/*
12349 	 * There is no shadow buf or layer-private data if the target is
12350 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
12351 	 */
12352 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12353 	    (bp->b_bcount == 0)) {
12354 		goto exit;
12355 	}
12356 
12357 	xp = SD_GET_XBUF(bp);
12358 	ASSERT(xp != NULL);
12359 
12360 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
12361 	bsp = xp->xb_private;
12362 
12363 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
12364 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
12365 
12366 	if (is_write) {
12367 		/*
12368 		 * For a WRITE request we must free up the block range that
12369 		 * we have locked up.  This holds regardless of whether this is
12370 		 * an aligned write request or a read-modify-write request.
12371 		 */
12372 		sd_range_unlock(un, bsp->mbs_wmp);
12373 		bsp->mbs_wmp = NULL;
12374 	}
12375 
12376 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
12377 		/*
12378 		 * An aligned read or write command will have no shadow buf;
12379 		 * there is not much else to do with it.
12380 		 */
12381 		goto done;
12382 	}
12383 
12384 	orig_bp = bsp->mbs_orig_bp;
12385 	ASSERT(orig_bp != NULL);
12386 	orig_xp = SD_GET_XBUF(orig_bp);
12387 	ASSERT(orig_xp != NULL);
12388 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12389 
12390 	if (!is_write && has_wmap) {
12391 		/*
12392 		 * A READ with a wmap means this is the READ phase of a
12393 		 * read-modify-write. If an error occurred on the READ then
12394 		 * we do not proceed with the WRITE phase or copy any data.
12395 		 * Just release the write maps and return with an error.
12396 		 */
12397 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
12398 			orig_bp->b_resid = orig_bp->b_bcount;
12399 			bioerror(orig_bp, bp->b_error);
12400 			sd_range_unlock(un, bsp->mbs_wmp);
12401 			goto freebuf_done;
12402 		}
12403 	}
12404 
12405 	/*
12406 	 * Here is where we set up to copy the data from the shadow buf
12407 	 * into the space associated with the original buf.
12408 	 *
12409 	 * To deal with the conversion between block sizes, these
12410 	 * computations treat the data as an array of bytes, with the
12411 	 * first byte (byte 0) corresponding to the first byte in the
12412 	 * first block on the disk.
12413 	 */
12414 
12415 	/*
12416 	 * shadow_start and shadow_len indicate the location and size of
12417 	 * the data returned with the shadow IO request.
12418 	 */
12419 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12420 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
12421 
12422 	/*
12423 	 * copy_offset gives the offset (in bytes) from the start of the first
12424 	 * block of the READ request to the beginning of the data.  We retrieve
12425 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
12426 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
12427 	 * data to be copied (in bytes).
12428 	 */
12429 	copy_offset  = bsp->mbs_copy_offset;
12430 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
12431 	copy_length  = orig_bp->b_bcount;
12432 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
12433 
12434 	/*
12435 	 * Set up the resid and error fields of orig_bp as appropriate.
12436 	 */
12437 	if (shadow_end >= request_end) {
12438 		/* We got all the requested data; set resid to zero */
12439 		orig_bp->b_resid = 0;
12440 	} else {
12441 		/*
12442 		 * We failed to get enough data to fully satisfy the original
12443 		 * request. Just copy back whatever data we got and set
12444 		 * up the residual and error code as required.
12445 		 *
12446 		 * 'shortfall' is the amount by which the data received with the
12447 		 * shadow buf has "fallen short" of the requested amount.
12448 		 */
12449 		shortfall = (size_t)(request_end - shadow_end);
12450 
12451 		if (shortfall > orig_bp->b_bcount) {
12452 			/*
12453 			 * We did not get enough data to even partially
12454 			 * fulfill the original request.  The residual is
12455 			 * equal to the amount requested.
12456 			 */
12457 			orig_bp->b_resid = orig_bp->b_bcount;
12458 		} else {
12459 			/*
12460 			 * We did not get all the data that we requested
12461 			 * from the device, but we will try to return what
12462 			 * portion we did get.
12463 			 */
12464 			orig_bp->b_resid = shortfall;
12465 		}
12466 		ASSERT(copy_length >= orig_bp->b_resid);
12467 		copy_length  -= orig_bp->b_resid;
12468 	}
12469 
12470 	/* Propagate the error code from the shadow buf to the original buf */
12471 	bioerror(orig_bp, bp->b_error);
12472 
12473 	if (is_write) {
12474 		goto freebuf_done;	/* No data copying for a WRITE */
12475 	}
12476 
12477 	if (has_wmap) {
12478 		/*
12479 		 * This is a READ command from the READ phase of a
12480 		 * read-modify-write request. We have to copy the data given
12481 		 * by the user OVER the data returned by the READ command,
12482 		 * then convert the command from a READ to a WRITE and send
12483 		 * it back to the target.
12484 		 */
12485 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
12486 		    copy_length);
12487 
12488 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
12489 
12490 		/*
12491 		 * Dispatch the WRITE command to the taskq thread, which
12492 		 * will in turn send the command to the target. When the
12493 		 * WRITE command completes, we (sd_mapblocksize_iodone())
12494 		 * will get called again as part of the iodone chain
12495 		 * processing for it. Note that we will still be dealing
12496 		 * with the shadow buf at that point.
12497 		 */
12498 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
12499 		    KM_NOSLEEP) != 0) {
12500 			/*
12501 			 * Dispatch was successful so we are done. Return
12502 			 * without going any higher up the iodone chain. Do
12503 			 * not free up any layer-private data until after the
12504 			 * WRITE completes.
12505 			 */
12506 			return;
12507 		}
12508 
12509 		/*
12510 		 * Dispatch of the WRITE command failed; set up the error
12511 		 * condition and send this IO back up the iodone chain.
12512 		 */
12513 		bioerror(orig_bp, EIO);
12514 		orig_bp->b_resid = orig_bp->b_bcount;
12515 
12516 	} else {
12517 		/*
12518 		 * This is a regular READ request (ie, not a RMW). Copy the
12519 		 * data from the shadow buf into the original buf. The
12520 		 * copy_offset compensates for any "misalignment" between the
12521 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
12522 		 * original buf (with its un->un_sys_blocksize blocks).
12523 		 */
12524 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
12525 		    copy_length);
12526 	}
12527 
12528 freebuf_done:
12529 
12530 	/*
12531 	 * At this point we still have both the shadow buf AND the original
12532 	 * buf to deal with, as well as the layer-private data area in each.
12533 	 * Local variables are as follows:
12534 	 *
12535 	 * bp -- points to shadow buf
12536 	 * xp -- points to xbuf of shadow buf
12537 	 * bsp -- points to layer-private data area of shadow buf
12538 	 * orig_bp -- points to original buf
12539 	 *
12540 	 * First free the shadow buf and its associated xbuf, then free the
12541 	 * layer-private data area from the shadow buf. There is no need to
12542 	 * restore xb_private in the shadow xbuf.
12543 	 */
12544 	sd_shadow_buf_free(bp);
12545 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12546 
12547 	/*
12548 	 * Now update the local variables to point to the original buf, xbuf,
12549 	 * and layer-private area.
12550 	 */
12551 	bp = orig_bp;
12552 	xp = SD_GET_XBUF(bp);
12553 	ASSERT(xp != NULL);
12554 	ASSERT(xp == orig_xp);
12555 	bsp = xp->xb_private;
12556 	ASSERT(bsp != NULL);
12557 
12558 done:
12559 	/*
12560 	 * Restore xb_private to whatever it was set to by the next higher
12561 	 * layer in the chain, then free the layer-private data area.
12562 	 */
12563 	xp->xb_private = bsp->mbs_oprivate;
12564 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12565 
12566 exit:
12567 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
12568 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
12569 
12570 	SD_NEXT_IODONE(index, un, bp);
12571 }
12572 
12573 
12574 /*
12575  *    Function: sd_checksum_iostart
12576  *
12577  * Description: A stub function for a layer that's currently not used.
12578  *		For now just a placeholder.
12579  *
12580  *     Context: Kernel thread context
12581  */
12582 
12583 static void
12584 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
12585 {
12586 	ASSERT(un != NULL);
12587 	ASSERT(bp != NULL);
12588 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12589 	SD_NEXT_IOSTART(index, un, bp);
12590 }
12591 
12592 
12593 /*
12594  *    Function: sd_checksum_iodone
12595  *
12596  * Description: A stub function for a layer that's currently not used.
12597  *		For now just a placeholder.
12598  *
12599  *     Context: May be called under interrupt context
12600  */
12601 
12602 static void
12603 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
12604 {
12605 	ASSERT(un != NULL);
12606 	ASSERT(bp != NULL);
12607 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12608 	SD_NEXT_IODONE(index, un, bp);
12609 }
12610 
12611 
12612 /*
12613  *    Function: sd_checksum_uscsi_iostart
12614  *
12615  * Description: A stub function for a layer that's currently not used.
12616  *		For now just a placeholder.
12617  *
12618  *     Context: Kernel thread context
12619  */
12620 
12621 static void
12622 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
12623 {
12624 	ASSERT(un != NULL);
12625 	ASSERT(bp != NULL);
12626 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12627 	SD_NEXT_IOSTART(index, un, bp);
12628 }
12629 
12630 
12631 /*
12632  *    Function: sd_checksum_uscsi_iodone
12633  *
12634  * Description: A stub function for a layer that's currently not used.
12635  *		For now just a placeholder.
12636  *
12637  *     Context: May be called under interrupt context
12638  */
12639 
12640 static void
12641 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12642 {
12643 	ASSERT(un != NULL);
12644 	ASSERT(bp != NULL);
12645 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12646 	SD_NEXT_IODONE(index, un, bp);
12647 }
12648 
12649 
12650 /*
12651  *    Function: sd_pm_iostart
12652  *
12653  * Description: iostart-side routine for Power mangement.
12654  *
12655  *     Context: Kernel thread context
12656  */
12657 
12658 static void
12659 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
12660 {
12661 	ASSERT(un != NULL);
12662 	ASSERT(bp != NULL);
12663 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12664 	ASSERT(!mutex_owned(&un->un_pm_mutex));
12665 
12666 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
12667 
12668 	if (sd_pm_entry(un) != DDI_SUCCESS) {
12669 		/*
12670 		 * Set up to return the failed buf back up the 'iodone'
12671 		 * side of the calling chain.
12672 		 */
12673 		bioerror(bp, EIO);
12674 		bp->b_resid = bp->b_bcount;
12675 
12676 		SD_BEGIN_IODONE(index, un, bp);
12677 
12678 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
12679 		return;
12680 	}
12681 
12682 	SD_NEXT_IOSTART(index, un, bp);
12683 
12684 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
12685 }
12686 
12687 
12688 /*
12689  *    Function: sd_pm_iodone
12690  *
12691  * Description: iodone-side routine for power mangement.
12692  *
12693  *     Context: may be called from interrupt context
12694  */
12695 
12696 static void
12697 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
12698 {
12699 	ASSERT(un != NULL);
12700 	ASSERT(bp != NULL);
12701 	ASSERT(!mutex_owned(&un->un_pm_mutex));
12702 
12703 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
12704 
12705 	/*
12706 	 * After attach the following flag is only read, so don't
12707 	 * take the penalty of acquiring a mutex for it.
12708 	 */
12709 	if (un->un_f_pm_is_enabled == TRUE) {
12710 		sd_pm_exit(un);
12711 	}
12712 
12713 	SD_NEXT_IODONE(index, un, bp);
12714 
12715 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
12716 }
12717 
12718 
12719 /*
12720  *    Function: sd_core_iostart
12721  *
12722  * Description: Primary driver function for enqueuing buf(9S) structs from
12723  *		the system and initiating IO to the target device
12724  *
12725  *     Context: Kernel thread context. Can sleep.
12726  *
12727  * Assumptions:  - The given xp->xb_blkno is absolute
12728  *		   (ie, relative to the start of the device).
12729  *		 - The IO is to be done using the native blocksize of
12730  *		   the device, as specified in un->un_tgt_blocksize.
12731  */
12732 /* ARGSUSED */
12733 static void
12734 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
12735 {
12736 	struct sd_xbuf *xp;
12737 
12738 	ASSERT(un != NULL);
12739 	ASSERT(bp != NULL);
12740 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12741 	ASSERT(bp->b_resid == 0);
12742 
12743 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
12744 
12745 	xp = SD_GET_XBUF(bp);
12746 	ASSERT(xp != NULL);
12747 
12748 	mutex_enter(SD_MUTEX(un));
12749 
12750 	/*
12751 	 * If we are currently in the failfast state, fail any new IO
12752 	 * that has B_FAILFAST set, then return.
12753 	 */
12754 	if ((bp->b_flags & B_FAILFAST) &&
12755 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
12756 		mutex_exit(SD_MUTEX(un));
12757 		bioerror(bp, EIO);
12758 		bp->b_resid = bp->b_bcount;
12759 		SD_BEGIN_IODONE(index, un, bp);
12760 		return;
12761 	}
12762 
12763 	if (SD_IS_DIRECT_PRIORITY(xp)) {
12764 		/*
12765 		 * Priority command -- transport it immediately.
12766 		 *
12767 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
12768 		 * because all direct priority commands should be associated
12769 		 * with error recovery actions which we don't want to retry.
12770 		 */
12771 		sd_start_cmds(un, bp);
12772 	} else {
12773 		/*
12774 		 * Normal command -- add it to the wait queue, then start
12775 		 * transporting commands from the wait queue.
12776 		 */
12777 		sd_add_buf_to_waitq(un, bp);
12778 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
12779 		sd_start_cmds(un, NULL);
12780 	}
12781 
12782 	mutex_exit(SD_MUTEX(un));
12783 
12784 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
12785 }
12786 
12787 
12788 /*
12789  *    Function: sd_init_cdb_limits
12790  *
12791  * Description: This is to handle scsi_pkt initialization differences
12792  *		between the driver platforms.
12793  *
12794  *		Legacy behaviors:
12795  *
12796  *		If the block number or the sector count exceeds the
12797  *		capabilities of a Group 0 command, shift over to a
12798  *		Group 1 command. We don't blindly use Group 1
12799  *		commands because a) some drives (CDC Wren IVs) get a
12800  *		bit confused, and b) there is probably a fair amount
12801  *		of speed difference for a target to receive and decode
12802  *		a 10 byte command instead of a 6 byte command.
12803  *
12804  *		The xfer time difference of 6 vs 10 byte CDBs is
12805  *		still significant so this code is still worthwhile.
12806  *		10 byte CDBs are very inefficient with the fas HBA driver
12807  *		and older disks. Each CDB byte took 1 usec with some
12808  *		popular disks.
12809  *
12810  *     Context: Must be called at attach time
12811  */
12812 
12813 static void
12814 sd_init_cdb_limits(struct sd_lun *un)
12815 {
12816 	int hba_cdb_limit;
12817 
12818 	/*
12819 	 * Use CDB_GROUP1 commands for most devices except for
12820 	 * parallel SCSI fixed drives in which case we get better
12821 	 * performance using CDB_GROUP0 commands (where applicable).
12822 	 */
12823 	un->un_mincdb = SD_CDB_GROUP1;
12824 #if !defined(__fibre)
12825 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
12826 	    !un->un_f_has_removable_media) {
12827 		un->un_mincdb = SD_CDB_GROUP0;
12828 	}
12829 #endif
12830 
12831 	/*
12832 	 * Try to read the max-cdb-length supported by HBA.
12833 	 */
12834 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
12835 	if (0 >= un->un_max_hba_cdb) {
12836 		un->un_max_hba_cdb = CDB_GROUP4;
12837 		hba_cdb_limit = SD_CDB_GROUP4;
12838 	} else if (0 < un->un_max_hba_cdb &&
12839 	    un->un_max_hba_cdb < CDB_GROUP1) {
12840 		hba_cdb_limit = SD_CDB_GROUP0;
12841 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
12842 	    un->un_max_hba_cdb < CDB_GROUP5) {
12843 		hba_cdb_limit = SD_CDB_GROUP1;
12844 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
12845 	    un->un_max_hba_cdb < CDB_GROUP4) {
12846 		hba_cdb_limit = SD_CDB_GROUP5;
12847 	} else {
12848 		hba_cdb_limit = SD_CDB_GROUP4;
12849 	}
12850 
12851 	/*
12852 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
12853 	 * commands for fixed disks unless we are building for a 32 bit
12854 	 * kernel.
12855 	 */
12856 #ifdef _LP64
12857 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
12858 	    min(hba_cdb_limit, SD_CDB_GROUP4);
12859 #else
12860 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
12861 	    min(hba_cdb_limit, SD_CDB_GROUP1);
12862 #endif
12863 
12864 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
12865 	    ? sizeof (struct scsi_arq_status) : 1);
12866 	un->un_cmd_timeout = (ushort_t)sd_io_time;
12867 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
12868 }
12869 
12870 
12871 /*
12872  *    Function: sd_initpkt_for_buf
12873  *
12874  * Description: Allocate and initialize for transport a scsi_pkt struct,
12875  *		based upon the info specified in the given buf struct.
12876  *
12877  *		Assumes the xb_blkno in the request is absolute (ie,
12878  *		relative to the start of the device (NOT partition!).
12879  *		Also assumes that the request is using the native block
12880  *		size of the device (as returned by the READ CAPACITY
12881  *		command).
12882  *
12883  * Return Code: SD_PKT_ALLOC_SUCCESS
12884  *		SD_PKT_ALLOC_FAILURE
12885  *		SD_PKT_ALLOC_FAILURE_NO_DMA
12886  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
12887  *
12888  *     Context: Kernel thread and may be called from software interrupt context
12889  *		as part of a sdrunout callback. This function may not block or
12890  *		call routines that block
12891  */
12892 
12893 static int
12894 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
12895 {
12896 	struct sd_xbuf	*xp;
12897 	struct scsi_pkt *pktp = NULL;
12898 	struct sd_lun	*un;
12899 	size_t		blockcount;
12900 	daddr_t		startblock;
12901 	int		rval;
12902 	int		cmd_flags;
12903 
12904 	ASSERT(bp != NULL);
12905 	ASSERT(pktpp != NULL);
12906 	xp = SD_GET_XBUF(bp);
12907 	ASSERT(xp != NULL);
12908 	un = SD_GET_UN(bp);
12909 	ASSERT(un != NULL);
12910 	ASSERT(mutex_owned(SD_MUTEX(un)));
12911 	ASSERT(bp->b_resid == 0);
12912 
12913 	SD_TRACE(SD_LOG_IO_CORE, un,
12914 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
12915 
12916 	mutex_exit(SD_MUTEX(un));
12917 
12918 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12919 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
12920 		/*
12921 		 * Already have a scsi_pkt -- just need DMA resources.
12922 		 * We must recompute the CDB in case the mapping returns
12923 		 * a nonzero pkt_resid.
12924 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
12925 		 * that is being retried, the unmap/remap of the DMA resouces
12926 		 * will result in the entire transfer starting over again
12927 		 * from the very first block.
12928 		 */
12929 		ASSERT(xp->xb_pktp != NULL);
12930 		pktp = xp->xb_pktp;
12931 	} else {
12932 		pktp = NULL;
12933 	}
12934 #endif /* __i386 || __amd64 */
12935 
12936 	startblock = xp->xb_blkno;	/* Absolute block num. */
12937 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
12938 
12939 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
12940 
12941 	/*
12942 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
12943 	 * call scsi_init_pkt, and build the CDB.
12944 	 */
12945 	rval = sd_setup_rw_pkt(un, &pktp, bp,
12946 	    cmd_flags, sdrunout, (caddr_t)un,
12947 	    startblock, blockcount);
12948 
12949 	if (rval == 0) {
12950 		/*
12951 		 * Success.
12952 		 *
12953 		 * If partial DMA is being used and required for this transfer.
12954 		 * set it up here.
12955 		 */
12956 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
12957 		    (pktp->pkt_resid != 0)) {
12958 
12959 			/*
12960 			 * Save the CDB length and pkt_resid for the
12961 			 * next xfer
12962 			 */
12963 			xp->xb_dma_resid = pktp->pkt_resid;
12964 
12965 			/* rezero resid */
12966 			pktp->pkt_resid = 0;
12967 
12968 		} else {
12969 			xp->xb_dma_resid = 0;
12970 		}
12971 
12972 		pktp->pkt_flags = un->un_tagflags;
12973 		pktp->pkt_time  = un->un_cmd_timeout;
12974 		pktp->pkt_comp  = sdintr;
12975 
12976 		pktp->pkt_private = bp;
12977 		*pktpp = pktp;
12978 
12979 		SD_TRACE(SD_LOG_IO_CORE, un,
12980 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
12981 
12982 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12983 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
12984 #endif
12985 
12986 		mutex_enter(SD_MUTEX(un));
12987 		return (SD_PKT_ALLOC_SUCCESS);
12988 
12989 	}
12990 
12991 	/*
12992 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
12993 	 * from sd_setup_rw_pkt.
12994 	 */
12995 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
12996 
12997 	if (rval == SD_PKT_ALLOC_FAILURE) {
12998 		*pktpp = NULL;
12999 		/*
13000 		 * Set the driver state to RWAIT to indicate the driver
13001 		 * is waiting on resource allocations. The driver will not
13002 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13003 		 */
13004 		mutex_enter(SD_MUTEX(un));
13005 		New_state(un, SD_STATE_RWAIT);
13006 
13007 		SD_ERROR(SD_LOG_IO_CORE, un,
13008 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
13009 
13010 		if ((bp->b_flags & B_ERROR) != 0) {
13011 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13012 		}
13013 		return (SD_PKT_ALLOC_FAILURE);
13014 	} else {
13015 		/*
13016 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13017 		 *
13018 		 * This should never happen.  Maybe someone messed with the
13019 		 * kernel's minphys?
13020 		 */
13021 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13022 		    "Request rejected: too large for CDB: "
13023 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
13024 		SD_ERROR(SD_LOG_IO_CORE, un,
13025 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
13026 		mutex_enter(SD_MUTEX(un));
13027 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13028 
13029 	}
13030 }
13031 
13032 
13033 /*
13034  *    Function: sd_destroypkt_for_buf
13035  *
13036  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
13037  *
13038  *     Context: Kernel thread or interrupt context
13039  */
13040 
13041 static void
13042 sd_destroypkt_for_buf(struct buf *bp)
13043 {
13044 	ASSERT(bp != NULL);
13045 	ASSERT(SD_GET_UN(bp) != NULL);
13046 
13047 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13048 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
13049 
13050 	ASSERT(SD_GET_PKTP(bp) != NULL);
13051 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13052 
13053 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13054 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
13055 }
13056 
13057 /*
13058  *    Function: sd_setup_rw_pkt
13059  *
13060  * Description: Determines appropriate CDB group for the requested LBA
13061  *		and transfer length, calls scsi_init_pkt, and builds
13062  *		the CDB.  Do not use for partial DMA transfers except
13063  *		for the initial transfer since the CDB size must
13064  *		remain constant.
13065  *
13066  *     Context: Kernel thread and may be called from software interrupt
13067  *		context as part of a sdrunout callback. This function may not
13068  *		block or call routines that block
13069  */
13070 
13071 
13072 int
13073 sd_setup_rw_pkt(struct sd_lun *un,
13074     struct scsi_pkt **pktpp, struct buf *bp, int flags,
13075     int (*callback)(caddr_t), caddr_t callback_arg,
13076     diskaddr_t lba, uint32_t blockcount)
13077 {
13078 	struct scsi_pkt *return_pktp;
13079 	union scsi_cdb *cdbp;
13080 	struct sd_cdbinfo *cp = NULL;
13081 	int i;
13082 
13083 	/*
13084 	 * See which size CDB to use, based upon the request.
13085 	 */
13086 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
13087 
13088 		/*
13089 		 * Check lba and block count against sd_cdbtab limits.
13090 		 * In the partial DMA case, we have to use the same size
13091 		 * CDB for all the transfers.  Check lba + blockcount
13092 		 * against the max LBA so we know that segment of the
13093 		 * transfer can use the CDB we select.
13094 		 */
13095 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
13096 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
13097 
13098 			/*
13099 			 * The command will fit into the CDB type
13100 			 * specified by sd_cdbtab[i].
13101 			 */
13102 			cp = sd_cdbtab + i;
13103 
13104 			/*
13105 			 * Call scsi_init_pkt so we can fill in the
13106 			 * CDB.
13107 			 */
13108 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
13109 			    bp, cp->sc_grpcode, un->un_status_len, 0,
13110 			    flags, callback, callback_arg);
13111 
13112 			if (return_pktp != NULL) {
13113 
13114 				/*
13115 				 * Return new value of pkt
13116 				 */
13117 				*pktpp = return_pktp;
13118 
13119 				/*
13120 				 * To be safe, zero the CDB insuring there is
13121 				 * no leftover data from a previous command.
13122 				 */
13123 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
13124 
13125 				/*
13126 				 * Handle partial DMA mapping
13127 				 */
13128 				if (return_pktp->pkt_resid != 0) {
13129 
13130 					/*
13131 					 * Not going to xfer as many blocks as
13132 					 * originally expected
13133 					 */
13134 					blockcount -=
13135 					    SD_BYTES2TGTBLOCKS(un,
13136 					    return_pktp->pkt_resid);
13137 				}
13138 
13139 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
13140 
13141 				/*
13142 				 * Set command byte based on the CDB
13143 				 * type we matched.
13144 				 */
13145 				cdbp->scc_cmd = cp->sc_grpmask |
13146 				    ((bp->b_flags & B_READ) ?
13147 				    SCMD_READ : SCMD_WRITE);
13148 
13149 				SD_FILL_SCSI1_LUN(un, return_pktp);
13150 
13151 				/*
13152 				 * Fill in LBA and length
13153 				 */
13154 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
13155 				    (cp->sc_grpcode == CDB_GROUP4) ||
13156 				    (cp->sc_grpcode == CDB_GROUP0) ||
13157 				    (cp->sc_grpcode == CDB_GROUP5));
13158 
13159 				if (cp->sc_grpcode == CDB_GROUP1) {
13160 					FORMG1ADDR(cdbp, lba);
13161 					FORMG1COUNT(cdbp, blockcount);
13162 					return (0);
13163 				} else if (cp->sc_grpcode == CDB_GROUP4) {
13164 					FORMG4LONGADDR(cdbp, lba);
13165 					FORMG4COUNT(cdbp, blockcount);
13166 					return (0);
13167 				} else if (cp->sc_grpcode == CDB_GROUP0) {
13168 					FORMG0ADDR(cdbp, lba);
13169 					FORMG0COUNT(cdbp, blockcount);
13170 					return (0);
13171 				} else if (cp->sc_grpcode == CDB_GROUP5) {
13172 					FORMG5ADDR(cdbp, lba);
13173 					FORMG5COUNT(cdbp, blockcount);
13174 					return (0);
13175 				}
13176 
13177 				/*
13178 				 * It should be impossible to not match one
13179 				 * of the CDB types above, so we should never
13180 				 * reach this point.  Set the CDB command byte
13181 				 * to test-unit-ready to avoid writing
13182 				 * to somewhere we don't intend.
13183 				 */
13184 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
13185 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13186 			} else {
13187 				/*
13188 				 * Couldn't get scsi_pkt
13189 				 */
13190 				return (SD_PKT_ALLOC_FAILURE);
13191 			}
13192 		}
13193 	}
13194 
13195 	/*
13196 	 * None of the available CDB types were suitable.  This really
13197 	 * should never happen:  on a 64 bit system we support
13198 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
13199 	 * and on a 32 bit system we will refuse to bind to a device
13200 	 * larger than 2TB so addresses will never be larger than 32 bits.
13201 	 */
13202 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13203 }
13204 
13205 /*
13206  *    Function: sd_setup_next_rw_pkt
13207  *
13208  * Description: Setup packet for partial DMA transfers, except for the
13209  * 		initial transfer.  sd_setup_rw_pkt should be used for
13210  *		the initial transfer.
13211  *
13212  *     Context: Kernel thread and may be called from interrupt context.
13213  */
13214 
13215 int
13216 sd_setup_next_rw_pkt(struct sd_lun *un,
13217     struct scsi_pkt *pktp, struct buf *bp,
13218     diskaddr_t lba, uint32_t blockcount)
13219 {
13220 	uchar_t com;
13221 	union scsi_cdb *cdbp;
13222 	uchar_t cdb_group_id;
13223 
13224 	ASSERT(pktp != NULL);
13225 	ASSERT(pktp->pkt_cdbp != NULL);
13226 
13227 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
13228 	com = cdbp->scc_cmd;
13229 	cdb_group_id = CDB_GROUPID(com);
13230 
13231 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
13232 	    (cdb_group_id == CDB_GROUPID_1) ||
13233 	    (cdb_group_id == CDB_GROUPID_4) ||
13234 	    (cdb_group_id == CDB_GROUPID_5));
13235 
13236 	/*
13237 	 * Move pkt to the next portion of the xfer.
13238 	 * func is NULL_FUNC so we do not have to release
13239 	 * the disk mutex here.
13240 	 */
13241 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
13242 	    NULL_FUNC, NULL) == pktp) {
13243 		/* Success.  Handle partial DMA */
13244 		if (pktp->pkt_resid != 0) {
13245 			blockcount -=
13246 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
13247 		}
13248 
13249 		cdbp->scc_cmd = com;
13250 		SD_FILL_SCSI1_LUN(un, pktp);
13251 		if (cdb_group_id == CDB_GROUPID_1) {
13252 			FORMG1ADDR(cdbp, lba);
13253 			FORMG1COUNT(cdbp, blockcount);
13254 			return (0);
13255 		} else if (cdb_group_id == CDB_GROUPID_4) {
13256 			FORMG4LONGADDR(cdbp, lba);
13257 			FORMG4COUNT(cdbp, blockcount);
13258 			return (0);
13259 		} else if (cdb_group_id == CDB_GROUPID_0) {
13260 			FORMG0ADDR(cdbp, lba);
13261 			FORMG0COUNT(cdbp, blockcount);
13262 			return (0);
13263 		} else if (cdb_group_id == CDB_GROUPID_5) {
13264 			FORMG5ADDR(cdbp, lba);
13265 			FORMG5COUNT(cdbp, blockcount);
13266 			return (0);
13267 		}
13268 
13269 		/* Unreachable */
13270 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13271 	}
13272 
13273 	/*
13274 	 * Error setting up next portion of cmd transfer.
13275 	 * Something is definitely very wrong and this
13276 	 * should not happen.
13277 	 */
13278 	return (SD_PKT_ALLOC_FAILURE);
13279 }
13280 
13281 /*
13282  *    Function: sd_initpkt_for_uscsi
13283  *
13284  * Description: Allocate and initialize for transport a scsi_pkt struct,
13285  *		based upon the info specified in the given uscsi_cmd struct.
13286  *
13287  * Return Code: SD_PKT_ALLOC_SUCCESS
13288  *		SD_PKT_ALLOC_FAILURE
13289  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13290  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13291  *
13292  *     Context: Kernel thread and may be called from software interrupt context
13293  *		as part of a sdrunout callback. This function may not block or
13294  *		call routines that block
13295  */
13296 
13297 static int
13298 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
13299 {
13300 	struct uscsi_cmd *uscmd;
13301 	struct sd_xbuf	*xp;
13302 	struct scsi_pkt	*pktp;
13303 	struct sd_lun	*un;
13304 	uint32_t	flags = 0;
13305 
13306 	ASSERT(bp != NULL);
13307 	ASSERT(pktpp != NULL);
13308 	xp = SD_GET_XBUF(bp);
13309 	ASSERT(xp != NULL);
13310 	un = SD_GET_UN(bp);
13311 	ASSERT(un != NULL);
13312 	ASSERT(mutex_owned(SD_MUTEX(un)));
13313 
13314 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13315 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13316 	ASSERT(uscmd != NULL);
13317 
13318 	SD_TRACE(SD_LOG_IO_CORE, un,
13319 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
13320 
13321 	/*
13322 	 * Allocate the scsi_pkt for the command.
13323 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
13324 	 *	 during scsi_init_pkt time and will continue to use the
13325 	 *	 same path as long as the same scsi_pkt is used without
13326 	 *	 intervening scsi_dma_free(). Since uscsi command does
13327 	 *	 not call scsi_dmafree() before retry failed command, it
13328 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
13329 	 *	 set such that scsi_vhci can use other available path for
13330 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
13331 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
13332 	 */
13333 	if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
13334 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
13335 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
13336 		    ((int)(uscmd->uscsi_rqlen) + sizeof (struct scsi_arq_status)
13337 		    - sizeof (struct scsi_extended_sense)), 0,
13338 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL) | PKT_XARQ,
13339 		    sdrunout, (caddr_t)un);
13340 	} else {
13341 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
13342 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
13343 		    sizeof (struct scsi_arq_status), 0,
13344 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
13345 		    sdrunout, (caddr_t)un);
13346 	}
13347 
13348 	if (pktp == NULL) {
13349 		*pktpp = NULL;
13350 		/*
13351 		 * Set the driver state to RWAIT to indicate the driver
13352 		 * is waiting on resource allocations. The driver will not
13353 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13354 		 */
13355 		New_state(un, SD_STATE_RWAIT);
13356 
13357 		SD_ERROR(SD_LOG_IO_CORE, un,
13358 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
13359 
13360 		if ((bp->b_flags & B_ERROR) != 0) {
13361 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13362 		}
13363 		return (SD_PKT_ALLOC_FAILURE);
13364 	}
13365 
13366 	/*
13367 	 * We do not do DMA breakup for USCSI commands, so return failure
13368 	 * here if all the needed DMA resources were not allocated.
13369 	 */
13370 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
13371 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
13372 		scsi_destroy_pkt(pktp);
13373 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
13374 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
13375 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
13376 	}
13377 
13378 	/* Init the cdb from the given uscsi struct */
13379 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
13380 	    uscmd->uscsi_cdb[0], 0, 0, 0);
13381 
13382 	SD_FILL_SCSI1_LUN(un, pktp);
13383 
13384 	/*
13385 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
13386 	 * for listing of the supported flags.
13387 	 */
13388 
13389 	if (uscmd->uscsi_flags & USCSI_SILENT) {
13390 		flags |= FLAG_SILENT;
13391 	}
13392 
13393 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
13394 		flags |= FLAG_DIAGNOSE;
13395 	}
13396 
13397 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
13398 		flags |= FLAG_ISOLATE;
13399 	}
13400 
13401 	if (un->un_f_is_fibre == FALSE) {
13402 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
13403 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
13404 		}
13405 	}
13406 
13407 	/*
13408 	 * Set the pkt flags here so we save time later.
13409 	 * Note: These flags are NOT in the uscsi man page!!!
13410 	 */
13411 	if (uscmd->uscsi_flags & USCSI_HEAD) {
13412 		flags |= FLAG_HEAD;
13413 	}
13414 
13415 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
13416 		flags |= FLAG_NOINTR;
13417 	}
13418 
13419 	/*
13420 	 * For tagged queueing, things get a bit complicated.
13421 	 * Check first for head of queue and last for ordered queue.
13422 	 * If neither head nor order, use the default driver tag flags.
13423 	 */
13424 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
13425 		if (uscmd->uscsi_flags & USCSI_HTAG) {
13426 			flags |= FLAG_HTAG;
13427 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
13428 			flags |= FLAG_OTAG;
13429 		} else {
13430 			flags |= un->un_tagflags & FLAG_TAGMASK;
13431 		}
13432 	}
13433 
13434 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
13435 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
13436 	}
13437 
13438 	pktp->pkt_flags = flags;
13439 
13440 	/* Transfer uscsi information to scsi_pkt */
13441 	(void) scsi_uscsi_pktinit(uscmd, pktp);
13442 
13443 	/* Copy the caller's CDB into the pkt... */
13444 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
13445 
13446 	if (uscmd->uscsi_timeout == 0) {
13447 		pktp->pkt_time = un->un_uscsi_timeout;
13448 	} else {
13449 		pktp->pkt_time = uscmd->uscsi_timeout;
13450 	}
13451 
13452 	/* need it later to identify USCSI request in sdintr */
13453 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
13454 
13455 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
13456 
13457 	pktp->pkt_private = bp;
13458 	pktp->pkt_comp = sdintr;
13459 	*pktpp = pktp;
13460 
13461 	SD_TRACE(SD_LOG_IO_CORE, un,
13462 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
13463 
13464 	return (SD_PKT_ALLOC_SUCCESS);
13465 }
13466 
13467 
13468 /*
13469  *    Function: sd_destroypkt_for_uscsi
13470  *
13471  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
13472  *		IOs.. Also saves relevant info into the associated uscsi_cmd
13473  *		struct.
13474  *
13475  *     Context: May be called under interrupt context
13476  */
13477 
13478 static void
13479 sd_destroypkt_for_uscsi(struct buf *bp)
13480 {
13481 	struct uscsi_cmd *uscmd;
13482 	struct sd_xbuf	*xp;
13483 	struct scsi_pkt	*pktp;
13484 	struct sd_lun	*un;
13485 	struct sd_uscsi_info *suip;
13486 
13487 	ASSERT(bp != NULL);
13488 	xp = SD_GET_XBUF(bp);
13489 	ASSERT(xp != NULL);
13490 	un = SD_GET_UN(bp);
13491 	ASSERT(un != NULL);
13492 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13493 	pktp = SD_GET_PKTP(bp);
13494 	ASSERT(pktp != NULL);
13495 
13496 	SD_TRACE(SD_LOG_IO_CORE, un,
13497 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
13498 
13499 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13500 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13501 	ASSERT(uscmd != NULL);
13502 
13503 	/* Save the status and the residual into the uscsi_cmd struct */
13504 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
13505 	uscmd->uscsi_resid  = bp->b_resid;
13506 
13507 	/* Transfer scsi_pkt information to uscsi */
13508 	(void) scsi_uscsi_pktfini(pktp, uscmd);
13509 
13510 	/*
13511 	 * If enabled, copy any saved sense data into the area specified
13512 	 * by the uscsi command.
13513 	 */
13514 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
13515 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
13516 		/*
13517 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
13518 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
13519 		 */
13520 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
13521 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
13522 		if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
13523 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
13524 			    MAX_SENSE_LENGTH);
13525 		} else {
13526 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
13527 			    SENSE_LENGTH);
13528 		}
13529 	}
13530 	/*
13531 	 * The following assignments are for SCSI FMA.
13532 	 */
13533 	ASSERT(xp->xb_private != NULL);
13534 	suip = (struct sd_uscsi_info *)xp->xb_private;
13535 	suip->ui_pkt_reason = pktp->pkt_reason;
13536 	suip->ui_pkt_state = pktp->pkt_state;
13537 	suip->ui_pkt_statistics = pktp->pkt_statistics;
13538 	suip->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
13539 
13540 	/* We are done with the scsi_pkt; free it now */
13541 	ASSERT(SD_GET_PKTP(bp) != NULL);
13542 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13543 
13544 	SD_TRACE(SD_LOG_IO_CORE, un,
13545 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
13546 }
13547 
13548 
13549 /*
13550  *    Function: sd_bioclone_alloc
13551  *
13552  * Description: Allocate a buf(9S) and init it as per the given buf
13553  *		and the various arguments.  The associated sd_xbuf
13554  *		struct is (nearly) duplicated.  The struct buf *bp
13555  *		argument is saved in new_xp->xb_private.
13556  *
13557  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13558  *		datalen - size of data area for the shadow bp
13559  *		blkno - starting LBA
13560  *		func - function pointer for b_iodone in the shadow buf. (May
13561  *			be NULL if none.)
13562  *
13563  * Return Code: Pointer to allocates buf(9S) struct
13564  *
13565  *     Context: Can sleep.
13566  */
13567 
13568 static struct buf *
13569 sd_bioclone_alloc(struct buf *bp, size_t datalen,
13570 	daddr_t blkno, int (*func)(struct buf *))
13571 {
13572 	struct	sd_lun	*un;
13573 	struct	sd_xbuf	*xp;
13574 	struct	sd_xbuf	*new_xp;
13575 	struct	buf	*new_bp;
13576 
13577 	ASSERT(bp != NULL);
13578 	xp = SD_GET_XBUF(bp);
13579 	ASSERT(xp != NULL);
13580 	un = SD_GET_UN(bp);
13581 	ASSERT(un != NULL);
13582 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13583 
13584 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
13585 	    NULL, KM_SLEEP);
13586 
13587 	new_bp->b_lblkno	= blkno;
13588 
13589 	/*
13590 	 * Allocate an xbuf for the shadow bp and copy the contents of the
13591 	 * original xbuf into it.
13592 	 */
13593 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
13594 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
13595 
13596 	/*
13597 	 * The given bp is automatically saved in the xb_private member
13598 	 * of the new xbuf.  Callers are allowed to depend on this.
13599 	 */
13600 	new_xp->xb_private = bp;
13601 
13602 	new_bp->b_private  = new_xp;
13603 
13604 	return (new_bp);
13605 }
13606 
13607 /*
13608  *    Function: sd_shadow_buf_alloc
13609  *
13610  * Description: Allocate a buf(9S) and init it as per the given buf
13611  *		and the various arguments.  The associated sd_xbuf
13612  *		struct is (nearly) duplicated.  The struct buf *bp
13613  *		argument is saved in new_xp->xb_private.
13614  *
13615  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13616  *		datalen - size of data area for the shadow bp
13617  *		bflags - B_READ or B_WRITE (pseudo flag)
13618  *		blkno - starting LBA
13619  *		func - function pointer for b_iodone in the shadow buf. (May
13620  *			be NULL if none.)
13621  *
13622  * Return Code: Pointer to allocates buf(9S) struct
13623  *
13624  *     Context: Can sleep.
13625  */
13626 
13627 static struct buf *
13628 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
13629 	daddr_t blkno, int (*func)(struct buf *))
13630 {
13631 	struct	sd_lun	*un;
13632 	struct	sd_xbuf	*xp;
13633 	struct	sd_xbuf	*new_xp;
13634 	struct	buf	*new_bp;
13635 
13636 	ASSERT(bp != NULL);
13637 	xp = SD_GET_XBUF(bp);
13638 	ASSERT(xp != NULL);
13639 	un = SD_GET_UN(bp);
13640 	ASSERT(un != NULL);
13641 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13642 
13643 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
13644 		bp_mapin(bp);
13645 	}
13646 
13647 	bflags &= (B_READ | B_WRITE);
13648 #if defined(__i386) || defined(__amd64)
13649 	new_bp = getrbuf(KM_SLEEP);
13650 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
13651 	new_bp->b_bcount = datalen;
13652 	new_bp->b_flags = bflags |
13653 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
13654 #else
13655 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
13656 	    datalen, bflags, SLEEP_FUNC, NULL);
13657 #endif
13658 	new_bp->av_forw	= NULL;
13659 	new_bp->av_back	= NULL;
13660 	new_bp->b_dev	= bp->b_dev;
13661 	new_bp->b_blkno	= blkno;
13662 	new_bp->b_iodone = func;
13663 	new_bp->b_edev	= bp->b_edev;
13664 	new_bp->b_resid	= 0;
13665 
13666 	/* We need to preserve the B_FAILFAST flag */
13667 	if (bp->b_flags & B_FAILFAST) {
13668 		new_bp->b_flags |= B_FAILFAST;
13669 	}
13670 
13671 	/*
13672 	 * Allocate an xbuf for the shadow bp and copy the contents of the
13673 	 * original xbuf into it.
13674 	 */
13675 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
13676 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
13677 
13678 	/* Need later to copy data between the shadow buf & original buf! */
13679 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
13680 
13681 	/*
13682 	 * The given bp is automatically saved in the xb_private member
13683 	 * of the new xbuf.  Callers are allowed to depend on this.
13684 	 */
13685 	new_xp->xb_private = bp;
13686 
13687 	new_bp->b_private  = new_xp;
13688 
13689 	return (new_bp);
13690 }
13691 
13692 /*
13693  *    Function: sd_bioclone_free
13694  *
13695  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
13696  *		in the larger than partition operation.
13697  *
13698  *     Context: May be called under interrupt context
13699  */
13700 
13701 static void
13702 sd_bioclone_free(struct buf *bp)
13703 {
13704 	struct sd_xbuf	*xp;
13705 
13706 	ASSERT(bp != NULL);
13707 	xp = SD_GET_XBUF(bp);
13708 	ASSERT(xp != NULL);
13709 
13710 	/*
13711 	 * Call bp_mapout() before freeing the buf,  in case a lower
13712 	 * layer or HBA  had done a bp_mapin().  we must do this here
13713 	 * as we are the "originator" of the shadow buf.
13714 	 */
13715 	bp_mapout(bp);
13716 
13717 	/*
13718 	 * Null out b_iodone before freeing the bp, to ensure that the driver
13719 	 * never gets confused by a stale value in this field. (Just a little
13720 	 * extra defensiveness here.)
13721 	 */
13722 	bp->b_iodone = NULL;
13723 
13724 	freerbuf(bp);
13725 
13726 	kmem_free(xp, sizeof (struct sd_xbuf));
13727 }
13728 
13729 /*
13730  *    Function: sd_shadow_buf_free
13731  *
13732  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
13733  *
13734  *     Context: May be called under interrupt context
13735  */
13736 
13737 static void
13738 sd_shadow_buf_free(struct buf *bp)
13739 {
13740 	struct sd_xbuf	*xp;
13741 
13742 	ASSERT(bp != NULL);
13743 	xp = SD_GET_XBUF(bp);
13744 	ASSERT(xp != NULL);
13745 
13746 #if defined(__sparc)
13747 	/*
13748 	 * Call bp_mapout() before freeing the buf,  in case a lower
13749 	 * layer or HBA  had done a bp_mapin().  we must do this here
13750 	 * as we are the "originator" of the shadow buf.
13751 	 */
13752 	bp_mapout(bp);
13753 #endif
13754 
13755 	/*
13756 	 * Null out b_iodone before freeing the bp, to ensure that the driver
13757 	 * never gets confused by a stale value in this field. (Just a little
13758 	 * extra defensiveness here.)
13759 	 */
13760 	bp->b_iodone = NULL;
13761 
13762 #if defined(__i386) || defined(__amd64)
13763 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
13764 	freerbuf(bp);
13765 #else
13766 	scsi_free_consistent_buf(bp);
13767 #endif
13768 
13769 	kmem_free(xp, sizeof (struct sd_xbuf));
13770 }
13771 
13772 
13773 /*
13774  *    Function: sd_print_transport_rejected_message
13775  *
13776  * Description: This implements the ludicrously complex rules for printing
13777  *		a "transport rejected" message.  This is to address the
13778  *		specific problem of having a flood of this error message
13779  *		produced when a failover occurs.
13780  *
13781  *     Context: Any.
13782  */
13783 
13784 static void
13785 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
13786 	int code)
13787 {
13788 	ASSERT(un != NULL);
13789 	ASSERT(mutex_owned(SD_MUTEX(un)));
13790 	ASSERT(xp != NULL);
13791 
13792 	/*
13793 	 * Print the "transport rejected" message under the following
13794 	 * conditions:
13795 	 *
13796 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
13797 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
13798 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
13799 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
13800 	 *   scsi_transport(9F) (which indicates that the target might have
13801 	 *   gone off-line).  This uses the un->un_tran_fatal_count
13802 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
13803 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
13804 	 *   from scsi_transport().
13805 	 *
13806 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
13807 	 * the preceeding cases in order for the message to be printed.
13808 	 */
13809 	if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) {
13810 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
13811 		    (code != TRAN_FATAL_ERROR) ||
13812 		    (un->un_tran_fatal_count == 1)) {
13813 			switch (code) {
13814 			case TRAN_BADPKT:
13815 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13816 				    "transport rejected bad packet\n");
13817 				break;
13818 			case TRAN_FATAL_ERROR:
13819 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13820 				    "transport rejected fatal error\n");
13821 				break;
13822 			default:
13823 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13824 				    "transport rejected (%d)\n", code);
13825 				break;
13826 			}
13827 		}
13828 	}
13829 }
13830 
13831 
13832 /*
13833  *    Function: sd_add_buf_to_waitq
13834  *
13835  * Description: Add the given buf(9S) struct to the wait queue for the
13836  *		instance.  If sorting is enabled, then the buf is added
13837  *		to the queue via an elevator sort algorithm (a la
13838  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
13839  *		If sorting is not enabled, then the buf is just added
13840  *		to the end of the wait queue.
13841  *
13842  * Return Code: void
13843  *
13844  *     Context: Does not sleep/block, therefore technically can be called
13845  *		from any context.  However if sorting is enabled then the
13846  *		execution time is indeterminate, and may take long if
13847  *		the wait queue grows large.
13848  */
13849 
13850 static void
13851 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
13852 {
13853 	struct buf *ap;
13854 
13855 	ASSERT(bp != NULL);
13856 	ASSERT(un != NULL);
13857 	ASSERT(mutex_owned(SD_MUTEX(un)));
13858 
13859 	/* If the queue is empty, add the buf as the only entry & return. */
13860 	if (un->un_waitq_headp == NULL) {
13861 		ASSERT(un->un_waitq_tailp == NULL);
13862 		un->un_waitq_headp = un->un_waitq_tailp = bp;
13863 		bp->av_forw = NULL;
13864 		return;
13865 	}
13866 
13867 	ASSERT(un->un_waitq_tailp != NULL);
13868 
13869 	/*
13870 	 * If sorting is disabled, just add the buf to the tail end of
13871 	 * the wait queue and return.
13872 	 */
13873 	if (un->un_f_disksort_disabled) {
13874 		un->un_waitq_tailp->av_forw = bp;
13875 		un->un_waitq_tailp = bp;
13876 		bp->av_forw = NULL;
13877 		return;
13878 	}
13879 
13880 	/*
13881 	 * Sort thru the list of requests currently on the wait queue
13882 	 * and add the new buf request at the appropriate position.
13883 	 *
13884 	 * The un->un_waitq_headp is an activity chain pointer on which
13885 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
13886 	 * first queue holds those requests which are positioned after
13887 	 * the current SD_GET_BLKNO() (in the first request); the second holds
13888 	 * requests which came in after their SD_GET_BLKNO() number was passed.
13889 	 * Thus we implement a one way scan, retracting after reaching
13890 	 * the end of the drive to the first request on the second
13891 	 * queue, at which time it becomes the first queue.
13892 	 * A one-way scan is natural because of the way UNIX read-ahead
13893 	 * blocks are allocated.
13894 	 *
13895 	 * If we lie after the first request, then we must locate the
13896 	 * second request list and add ourselves to it.
13897 	 */
13898 	ap = un->un_waitq_headp;
13899 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
13900 		while (ap->av_forw != NULL) {
13901 			/*
13902 			 * Look for an "inversion" in the (normally
13903 			 * ascending) block numbers. This indicates
13904 			 * the start of the second request list.
13905 			 */
13906 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
13907 				/*
13908 				 * Search the second request list for the
13909 				 * first request at a larger block number.
13910 				 * We go before that; however if there is
13911 				 * no such request, we go at the end.
13912 				 */
13913 				do {
13914 					if (SD_GET_BLKNO(bp) <
13915 					    SD_GET_BLKNO(ap->av_forw)) {
13916 						goto insert;
13917 					}
13918 					ap = ap->av_forw;
13919 				} while (ap->av_forw != NULL);
13920 				goto insert;		/* after last */
13921 			}
13922 			ap = ap->av_forw;
13923 		}
13924 
13925 		/*
13926 		 * No inversions... we will go after the last, and
13927 		 * be the first request in the second request list.
13928 		 */
13929 		goto insert;
13930 	}
13931 
13932 	/*
13933 	 * Request is at/after the current request...
13934 	 * sort in the first request list.
13935 	 */
13936 	while (ap->av_forw != NULL) {
13937 		/*
13938 		 * We want to go after the current request (1) if
13939 		 * there is an inversion after it (i.e. it is the end
13940 		 * of the first request list), or (2) if the next
13941 		 * request is a larger block no. than our request.
13942 		 */
13943 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
13944 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
13945 			goto insert;
13946 		}
13947 		ap = ap->av_forw;
13948 	}
13949 
13950 	/*
13951 	 * Neither a second list nor a larger request, therefore
13952 	 * we go at the end of the first list (which is the same
13953 	 * as the end of the whole schebang).
13954 	 */
13955 insert:
13956 	bp->av_forw = ap->av_forw;
13957 	ap->av_forw = bp;
13958 
13959 	/*
13960 	 * If we inserted onto the tail end of the waitq, make sure the
13961 	 * tail pointer is updated.
13962 	 */
13963 	if (ap == un->un_waitq_tailp) {
13964 		un->un_waitq_tailp = bp;
13965 	}
13966 }
13967 
13968 
13969 /*
13970  *    Function: sd_start_cmds
13971  *
13972  * Description: Remove and transport cmds from the driver queues.
13973  *
13974  *   Arguments: un - pointer to the unit (soft state) struct for the target.
13975  *
13976  *		immed_bp - ptr to a buf to be transported immediately. Only
13977  *		the immed_bp is transported; bufs on the waitq are not
13978  *		processed and the un_retry_bp is not checked.  If immed_bp is
13979  *		NULL, then normal queue processing is performed.
13980  *
13981  *     Context: May be called from kernel thread context, interrupt context,
13982  *		or runout callback context. This function may not block or
13983  *		call routines that block.
13984  */
13985 
13986 static void
13987 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
13988 {
13989 	struct	sd_xbuf	*xp;
13990 	struct	buf	*bp;
13991 	void	(*statp)(kstat_io_t *);
13992 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13993 	void	(*saved_statp)(kstat_io_t *);
13994 #endif
13995 	int	rval;
13996 	struct sd_fm_internal *sfip = NULL;
13997 
13998 	ASSERT(un != NULL);
13999 	ASSERT(mutex_owned(SD_MUTEX(un)));
14000 	ASSERT(un->un_ncmds_in_transport >= 0);
14001 	ASSERT(un->un_throttle >= 0);
14002 
14003 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
14004 
14005 	do {
14006 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14007 		saved_statp = NULL;
14008 #endif
14009 
14010 		/*
14011 		 * If we are syncing or dumping, fail the command to
14012 		 * avoid recursively calling back into scsi_transport().
14013 		 * The dump I/O itself uses a separate code path so this
14014 		 * only prevents non-dump I/O from being sent while dumping.
14015 		 * File system sync takes place before dumping begins.
14016 		 * During panic, filesystem I/O is allowed provided
14017 		 * un_in_callback is <= 1.  This is to prevent recursion
14018 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
14019 		 * sd_start_cmds and so on.  See panic.c for more information
14020 		 * about the states the system can be in during panic.
14021 		 */
14022 		if ((un->un_state == SD_STATE_DUMPING) ||
14023 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
14024 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14025 			    "sd_start_cmds: panicking\n");
14026 			goto exit;
14027 		}
14028 
14029 		if ((bp = immed_bp) != NULL) {
14030 			/*
14031 			 * We have a bp that must be transported immediately.
14032 			 * It's OK to transport the immed_bp here without doing
14033 			 * the throttle limit check because the immed_bp is
14034 			 * always used in a retry/recovery case. This means
14035 			 * that we know we are not at the throttle limit by
14036 			 * virtue of the fact that to get here we must have
14037 			 * already gotten a command back via sdintr(). This also
14038 			 * relies on (1) the command on un_retry_bp preventing
14039 			 * further commands from the waitq from being issued;
14040 			 * and (2) the code in sd_retry_command checking the
14041 			 * throttle limit before issuing a delayed or immediate
14042 			 * retry. This holds even if the throttle limit is
14043 			 * currently ratcheted down from its maximum value.
14044 			 */
14045 			statp = kstat_runq_enter;
14046 			if (bp == un->un_retry_bp) {
14047 				ASSERT((un->un_retry_statp == NULL) ||
14048 				    (un->un_retry_statp == kstat_waitq_enter) ||
14049 				    (un->un_retry_statp ==
14050 				    kstat_runq_back_to_waitq));
14051 				/*
14052 				 * If the waitq kstat was incremented when
14053 				 * sd_set_retry_bp() queued this bp for a retry,
14054 				 * then we must set up statp so that the waitq
14055 				 * count will get decremented correctly below.
14056 				 * Also we must clear un->un_retry_statp to
14057 				 * ensure that we do not act on a stale value
14058 				 * in this field.
14059 				 */
14060 				if ((un->un_retry_statp == kstat_waitq_enter) ||
14061 				    (un->un_retry_statp ==
14062 				    kstat_runq_back_to_waitq)) {
14063 					statp = kstat_waitq_to_runq;
14064 				}
14065 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14066 				saved_statp = un->un_retry_statp;
14067 #endif
14068 				un->un_retry_statp = NULL;
14069 
14070 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14071 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
14072 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
14073 				    un, un->un_retry_bp, un->un_throttle,
14074 				    un->un_ncmds_in_transport);
14075 			} else {
14076 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
14077 				    "processing priority bp:0x%p\n", bp);
14078 			}
14079 
14080 		} else if ((bp = un->un_waitq_headp) != NULL) {
14081 			/*
14082 			 * A command on the waitq is ready to go, but do not
14083 			 * send it if:
14084 			 *
14085 			 * (1) the throttle limit has been reached, or
14086 			 * (2) a retry is pending, or
14087 			 * (3) a START_STOP_UNIT callback pending, or
14088 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
14089 			 *	command is pending.
14090 			 *
14091 			 * For all of these conditions, IO processing will
14092 			 * restart after the condition is cleared.
14093 			 */
14094 			if (un->un_ncmds_in_transport >= un->un_throttle) {
14095 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14096 				    "sd_start_cmds: exiting, "
14097 				    "throttle limit reached!\n");
14098 				goto exit;
14099 			}
14100 			if (un->un_retry_bp != NULL) {
14101 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14102 				    "sd_start_cmds: exiting, retry pending!\n");
14103 				goto exit;
14104 			}
14105 			if (un->un_startstop_timeid != NULL) {
14106 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14107 				    "sd_start_cmds: exiting, "
14108 				    "START_STOP pending!\n");
14109 				goto exit;
14110 			}
14111 			if (un->un_direct_priority_timeid != NULL) {
14112 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14113 				    "sd_start_cmds: exiting, "
14114 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
14115 				goto exit;
14116 			}
14117 
14118 			/* Dequeue the command */
14119 			un->un_waitq_headp = bp->av_forw;
14120 			if (un->un_waitq_headp == NULL) {
14121 				un->un_waitq_tailp = NULL;
14122 			}
14123 			bp->av_forw = NULL;
14124 			statp = kstat_waitq_to_runq;
14125 			SD_TRACE(SD_LOG_IO_CORE, un,
14126 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
14127 
14128 		} else {
14129 			/* No work to do so bail out now */
14130 			SD_TRACE(SD_LOG_IO_CORE, un,
14131 			    "sd_start_cmds: no more work, exiting!\n");
14132 			goto exit;
14133 		}
14134 
14135 		/*
14136 		 * Reset the state to normal. This is the mechanism by which
14137 		 * the state transitions from either SD_STATE_RWAIT or
14138 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
14139 		 * If state is SD_STATE_PM_CHANGING then this command is
14140 		 * part of the device power control and the state must
14141 		 * not be put back to normal. Doing so would would
14142 		 * allow new commands to proceed when they shouldn't,
14143 		 * the device may be going off.
14144 		 */
14145 		if ((un->un_state != SD_STATE_SUSPENDED) &&
14146 		    (un->un_state != SD_STATE_PM_CHANGING)) {
14147 			New_state(un, SD_STATE_NORMAL);
14148 		}
14149 
14150 		xp = SD_GET_XBUF(bp);
14151 		ASSERT(xp != NULL);
14152 
14153 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14154 		/*
14155 		 * Allocate the scsi_pkt if we need one, or attach DMA
14156 		 * resources if we have a scsi_pkt that needs them. The
14157 		 * latter should only occur for commands that are being
14158 		 * retried.
14159 		 */
14160 		if ((xp->xb_pktp == NULL) ||
14161 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
14162 #else
14163 		if (xp->xb_pktp == NULL) {
14164 #endif
14165 			/*
14166 			 * There is no scsi_pkt allocated for this buf. Call
14167 			 * the initpkt function to allocate & init one.
14168 			 *
14169 			 * The scsi_init_pkt runout callback functionality is
14170 			 * implemented as follows:
14171 			 *
14172 			 * 1) The initpkt function always calls
14173 			 *    scsi_init_pkt(9F) with sdrunout specified as the
14174 			 *    callback routine.
14175 			 * 2) A successful packet allocation is initialized and
14176 			 *    the I/O is transported.
14177 			 * 3) The I/O associated with an allocation resource
14178 			 *    failure is left on its queue to be retried via
14179 			 *    runout or the next I/O.
14180 			 * 4) The I/O associated with a DMA error is removed
14181 			 *    from the queue and failed with EIO. Processing of
14182 			 *    the transport queues is also halted to be
14183 			 *    restarted via runout or the next I/O.
14184 			 * 5) The I/O associated with a CDB size or packet
14185 			 *    size error is removed from the queue and failed
14186 			 *    with EIO. Processing of the transport queues is
14187 			 *    continued.
14188 			 *
14189 			 * Note: there is no interface for canceling a runout
14190 			 * callback. To prevent the driver from detaching or
14191 			 * suspending while a runout is pending the driver
14192 			 * state is set to SD_STATE_RWAIT
14193 			 *
14194 			 * Note: using the scsi_init_pkt callback facility can
14195 			 * result in an I/O request persisting at the head of
14196 			 * the list which cannot be satisfied even after
14197 			 * multiple retries. In the future the driver may
14198 			 * implement some kind of maximum runout count before
14199 			 * failing an I/O.
14200 			 *
14201 			 * Note: the use of funcp below may seem superfluous,
14202 			 * but it helps warlock figure out the correct
14203 			 * initpkt function calls (see [s]sd.wlcmd).
14204 			 */
14205 			struct scsi_pkt	*pktp;
14206 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
14207 
14208 			ASSERT(bp != un->un_rqs_bp);
14209 
14210 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
14211 			switch ((*funcp)(bp, &pktp)) {
14212 			case  SD_PKT_ALLOC_SUCCESS:
14213 				xp->xb_pktp = pktp;
14214 				SD_TRACE(SD_LOG_IO_CORE, un,
14215 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
14216 				    pktp);
14217 				goto got_pkt;
14218 
14219 			case SD_PKT_ALLOC_FAILURE:
14220 				/*
14221 				 * Temporary (hopefully) resource depletion.
14222 				 * Since retries and RQS commands always have a
14223 				 * scsi_pkt allocated, these cases should never
14224 				 * get here. So the only cases this needs to
14225 				 * handle is a bp from the waitq (which we put
14226 				 * back onto the waitq for sdrunout), or a bp
14227 				 * sent as an immed_bp (which we just fail).
14228 				 */
14229 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14230 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
14231 
14232 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14233 
14234 				if (bp == immed_bp) {
14235 					/*
14236 					 * If SD_XB_DMA_FREED is clear, then
14237 					 * this is a failure to allocate a
14238 					 * scsi_pkt, and we must fail the
14239 					 * command.
14240 					 */
14241 					if ((xp->xb_pkt_flags &
14242 					    SD_XB_DMA_FREED) == 0) {
14243 						break;
14244 					}
14245 
14246 					/*
14247 					 * If this immediate command is NOT our
14248 					 * un_retry_bp, then we must fail it.
14249 					 */
14250 					if (bp != un->un_retry_bp) {
14251 						break;
14252 					}
14253 
14254 					/*
14255 					 * We get here if this cmd is our
14256 					 * un_retry_bp that was DMAFREED, but
14257 					 * scsi_init_pkt() failed to reallocate
14258 					 * DMA resources when we attempted to
14259 					 * retry it. This can happen when an
14260 					 * mpxio failover is in progress, but
14261 					 * we don't want to just fail the
14262 					 * command in this case.
14263 					 *
14264 					 * Use timeout(9F) to restart it after
14265 					 * a 100ms delay.  We don't want to
14266 					 * let sdrunout() restart it, because
14267 					 * sdrunout() is just supposed to start
14268 					 * commands that are sitting on the
14269 					 * wait queue.  The un_retry_bp stays
14270 					 * set until the command completes, but
14271 					 * sdrunout can be called many times
14272 					 * before that happens.  Since sdrunout
14273 					 * cannot tell if the un_retry_bp is
14274 					 * already in the transport, it could
14275 					 * end up calling scsi_transport() for
14276 					 * the un_retry_bp multiple times.
14277 					 *
14278 					 * Also: don't schedule the callback
14279 					 * if some other callback is already
14280 					 * pending.
14281 					 */
14282 					if (un->un_retry_statp == NULL) {
14283 						/*
14284 						 * restore the kstat pointer to
14285 						 * keep kstat counts coherent
14286 						 * when we do retry the command.
14287 						 */
14288 						un->un_retry_statp =
14289 						    saved_statp;
14290 					}
14291 
14292 					if ((un->un_startstop_timeid == NULL) &&
14293 					    (un->un_retry_timeid == NULL) &&
14294 					    (un->un_direct_priority_timeid ==
14295 					    NULL)) {
14296 
14297 						un->un_retry_timeid =
14298 						    timeout(
14299 						    sd_start_retry_command,
14300 						    un, SD_RESTART_TIMEOUT);
14301 					}
14302 					goto exit;
14303 				}
14304 
14305 #else
14306 				if (bp == immed_bp) {
14307 					break;	/* Just fail the command */
14308 				}
14309 #endif
14310 
14311 				/* Add the buf back to the head of the waitq */
14312 				bp->av_forw = un->un_waitq_headp;
14313 				un->un_waitq_headp = bp;
14314 				if (un->un_waitq_tailp == NULL) {
14315 					un->un_waitq_tailp = bp;
14316 				}
14317 				goto exit;
14318 
14319 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
14320 				/*
14321 				 * HBA DMA resource failure. Fail the command
14322 				 * and continue processing of the queues.
14323 				 */
14324 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14325 				    "sd_start_cmds: "
14326 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
14327 				break;
14328 
14329 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
14330 				/*
14331 				 * Note:x86: Partial DMA mapping not supported
14332 				 * for USCSI commands, and all the needed DMA
14333 				 * resources were not allocated.
14334 				 */
14335 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14336 				    "sd_start_cmds: "
14337 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
14338 				break;
14339 
14340 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
14341 				/*
14342 				 * Note:x86: Request cannot fit into CDB based
14343 				 * on lba and len.
14344 				 */
14345 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14346 				    "sd_start_cmds: "
14347 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
14348 				break;
14349 
14350 			default:
14351 				/* Should NEVER get here! */
14352 				panic("scsi_initpkt error");
14353 				/*NOTREACHED*/
14354 			}
14355 
14356 			/*
14357 			 * Fatal error in allocating a scsi_pkt for this buf.
14358 			 * Update kstats & return the buf with an error code.
14359 			 * We must use sd_return_failed_command_no_restart() to
14360 			 * avoid a recursive call back into sd_start_cmds().
14361 			 * However this also means that we must keep processing
14362 			 * the waitq here in order to avoid stalling.
14363 			 */
14364 			if (statp == kstat_waitq_to_runq) {
14365 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
14366 			}
14367 			sd_return_failed_command_no_restart(un, bp, EIO);
14368 			if (bp == immed_bp) {
14369 				/* immed_bp is gone by now, so clear this */
14370 				immed_bp = NULL;
14371 			}
14372 			continue;
14373 		}
14374 got_pkt:
14375 		if (bp == immed_bp) {
14376 			/* goto the head of the class.... */
14377 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
14378 		}
14379 
14380 		un->un_ncmds_in_transport++;
14381 		SD_UPDATE_KSTATS(un, statp, bp);
14382 
14383 		/*
14384 		 * Call scsi_transport() to send the command to the target.
14385 		 * According to SCSA architecture, we must drop the mutex here
14386 		 * before calling scsi_transport() in order to avoid deadlock.
14387 		 * Note that the scsi_pkt's completion routine can be executed
14388 		 * (from interrupt context) even before the call to
14389 		 * scsi_transport() returns.
14390 		 */
14391 		SD_TRACE(SD_LOG_IO_CORE, un,
14392 		    "sd_start_cmds: calling scsi_transport()\n");
14393 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
14394 
14395 		mutex_exit(SD_MUTEX(un));
14396 		rval = scsi_transport(xp->xb_pktp);
14397 		mutex_enter(SD_MUTEX(un));
14398 
14399 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14400 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
14401 
14402 		switch (rval) {
14403 		case TRAN_ACCEPT:
14404 			/* Clear this with every pkt accepted by the HBA */
14405 			un->un_tran_fatal_count = 0;
14406 			break;	/* Success; try the next cmd (if any) */
14407 
14408 		case TRAN_BUSY:
14409 			un->un_ncmds_in_transport--;
14410 			ASSERT(un->un_ncmds_in_transport >= 0);
14411 
14412 			/*
14413 			 * Don't retry request sense, the sense data
14414 			 * is lost when another request is sent.
14415 			 * Free up the rqs buf and retry
14416 			 * the original failed cmd.  Update kstat.
14417 			 */
14418 			if (bp == un->un_rqs_bp) {
14419 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14420 				bp = sd_mark_rqs_idle(un, xp);
14421 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
14422 				    NULL, NULL, EIO, un->un_busy_timeout / 500,
14423 				    kstat_waitq_enter);
14424 				goto exit;
14425 			}
14426 
14427 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14428 			/*
14429 			 * Free the DMA resources for the  scsi_pkt. This will
14430 			 * allow mpxio to select another path the next time
14431 			 * we call scsi_transport() with this scsi_pkt.
14432 			 * See sdintr() for the rationalization behind this.
14433 			 */
14434 			if ((un->un_f_is_fibre == TRUE) &&
14435 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14436 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
14437 				scsi_dmafree(xp->xb_pktp);
14438 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14439 			}
14440 #endif
14441 
14442 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
14443 				/*
14444 				 * Commands that are SD_PATH_DIRECT_PRIORITY
14445 				 * are for error recovery situations. These do
14446 				 * not use the normal command waitq, so if they
14447 				 * get a TRAN_BUSY we cannot put them back onto
14448 				 * the waitq for later retry. One possible
14449 				 * problem is that there could already be some
14450 				 * other command on un_retry_bp that is waiting
14451 				 * for this one to complete, so we would be
14452 				 * deadlocked if we put this command back onto
14453 				 * the waitq for later retry (since un_retry_bp
14454 				 * must complete before the driver gets back to
14455 				 * commands on the waitq).
14456 				 *
14457 				 * To avoid deadlock we must schedule a callback
14458 				 * that will restart this command after a set
14459 				 * interval.  This should keep retrying for as
14460 				 * long as the underlying transport keeps
14461 				 * returning TRAN_BUSY (just like for other
14462 				 * commands).  Use the same timeout interval as
14463 				 * for the ordinary TRAN_BUSY retry.
14464 				 */
14465 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14466 				    "sd_start_cmds: scsi_transport() returned "
14467 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
14468 
14469 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14470 				un->un_direct_priority_timeid =
14471 				    timeout(sd_start_direct_priority_command,
14472 				    bp, un->un_busy_timeout / 500);
14473 
14474 				goto exit;
14475 			}
14476 
14477 			/*
14478 			 * For TRAN_BUSY, we want to reduce the throttle value,
14479 			 * unless we are retrying a command.
14480 			 */
14481 			if (bp != un->un_retry_bp) {
14482 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
14483 			}
14484 
14485 			/*
14486 			 * Set up the bp to be tried again 10 ms later.
14487 			 * Note:x86: Is there a timeout value in the sd_lun
14488 			 * for this condition?
14489 			 */
14490 			sd_set_retry_bp(un, bp, un->un_busy_timeout / 500,
14491 			    kstat_runq_back_to_waitq);
14492 			goto exit;
14493 
14494 		case TRAN_FATAL_ERROR:
14495 			un->un_tran_fatal_count++;
14496 			/* FALLTHRU */
14497 
14498 		case TRAN_BADPKT:
14499 		default:
14500 			un->un_ncmds_in_transport--;
14501 			ASSERT(un->un_ncmds_in_transport >= 0);
14502 
14503 			/*
14504 			 * If this is our REQUEST SENSE command with a
14505 			 * transport error, we must get back the pointers
14506 			 * to the original buf, and mark the REQUEST
14507 			 * SENSE command as "available".
14508 			 */
14509 			if (bp == un->un_rqs_bp) {
14510 				bp = sd_mark_rqs_idle(un, xp);
14511 				xp = SD_GET_XBUF(bp);
14512 			} else {
14513 				/*
14514 				 * Legacy behavior: do not update transport
14515 				 * error count for request sense commands.
14516 				 */
14517 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
14518 			}
14519 
14520 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14521 			sd_print_transport_rejected_message(un, xp, rval);
14522 
14523 			/*
14524 			 * This command will be terminated by SD driver due
14525 			 * to a fatal transport error. We should post
14526 			 * ereport.io.scsi.cmd.disk.tran with driver-assessment
14527 			 * of "fail" for any command to indicate this
14528 			 * situation.
14529 			 */
14530 			if (xp->xb_ena > 0) {
14531 				ASSERT(un->un_fm_private != NULL);
14532 				sfip = un->un_fm_private;
14533 				sfip->fm_ssc.ssc_flags |= SSC_FLAGS_TRAN_ABORT;
14534 				sd_ssc_extract_info(&sfip->fm_ssc, un,
14535 				    xp->xb_pktp, bp, xp);
14536 				sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
14537 			}
14538 
14539 			/*
14540 			 * We must use sd_return_failed_command_no_restart() to
14541 			 * avoid a recursive call back into sd_start_cmds().
14542 			 * However this also means that we must keep processing
14543 			 * the waitq here in order to avoid stalling.
14544 			 */
14545 			sd_return_failed_command_no_restart(un, bp, EIO);
14546 
14547 			/*
14548 			 * Notify any threads waiting in sd_ddi_suspend() that
14549 			 * a command completion has occurred.
14550 			 */
14551 			if (un->un_state == SD_STATE_SUSPENDED) {
14552 				cv_broadcast(&un->un_disk_busy_cv);
14553 			}
14554 
14555 			if (bp == immed_bp) {
14556 				/* immed_bp is gone by now, so clear this */
14557 				immed_bp = NULL;
14558 			}
14559 			break;
14560 		}
14561 
14562 	} while (immed_bp == NULL);
14563 
14564 exit:
14565 	ASSERT(mutex_owned(SD_MUTEX(un)));
14566 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
14567 }
14568 
14569 
14570 /*
14571  *    Function: sd_return_command
14572  *
14573  * Description: Returns a command to its originator (with or without an
14574  *		error).  Also starts commands waiting to be transported
14575  *		to the target.
14576  *
14577  *     Context: May be called from interrupt, kernel, or timeout context
14578  */
14579 
14580 static void
14581 sd_return_command(struct sd_lun *un, struct buf *bp)
14582 {
14583 	struct sd_xbuf *xp;
14584 	struct scsi_pkt *pktp;
14585 	struct sd_fm_internal *sfip;
14586 
14587 	ASSERT(bp != NULL);
14588 	ASSERT(un != NULL);
14589 	ASSERT(mutex_owned(SD_MUTEX(un)));
14590 	ASSERT(bp != un->un_rqs_bp);
14591 	xp = SD_GET_XBUF(bp);
14592 	ASSERT(xp != NULL);
14593 
14594 	pktp = SD_GET_PKTP(bp);
14595 	sfip = (struct sd_fm_internal *)un->un_fm_private;
14596 	ASSERT(sfip != NULL);
14597 
14598 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
14599 
14600 	/*
14601 	 * Note: check for the "sdrestart failed" case.
14602 	 */
14603 	if ((un->un_partial_dma_supported == 1) &&
14604 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
14605 	    (geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
14606 	    (xp->xb_pktp->pkt_resid == 0)) {
14607 
14608 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
14609 			/*
14610 			 * Successfully set up next portion of cmd
14611 			 * transfer, try sending it
14612 			 */
14613 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
14614 			    NULL, NULL, 0, (clock_t)0, NULL);
14615 			sd_start_cmds(un, NULL);
14616 			return;	/* Note:x86: need a return here? */
14617 		}
14618 	}
14619 
14620 	/*
14621 	 * If this is the failfast bp, clear it from un_failfast_bp. This
14622 	 * can happen if upon being re-tried the failfast bp either
14623 	 * succeeded or encountered another error (possibly even a different
14624 	 * error than the one that precipitated the failfast state, but in
14625 	 * that case it would have had to exhaust retries as well). Regardless,
14626 	 * this should not occur whenever the instance is in the active
14627 	 * failfast state.
14628 	 */
14629 	if (bp == un->un_failfast_bp) {
14630 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
14631 		un->un_failfast_bp = NULL;
14632 	}
14633 
14634 	/*
14635 	 * Clear the failfast state upon successful completion of ANY cmd.
14636 	 */
14637 	if (bp->b_error == 0) {
14638 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
14639 		/*
14640 		 * If this is a successful command, but used to be retried,
14641 		 * we will take it as a recovered command and post an
14642 		 * ereport with driver-assessment of "recovered".
14643 		 */
14644 		if (xp->xb_ena > 0) {
14645 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
14646 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RECOVERY);
14647 		}
14648 	} else {
14649 		/*
14650 		 * If this is a failed non-USCSI command we will post an
14651 		 * ereport with driver-assessment set accordingly("fail" or
14652 		 * "fatal").
14653 		 */
14654 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
14655 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
14656 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
14657 		}
14658 	}
14659 
14660 	/*
14661 	 * This is used if the command was retried one or more times. Show that
14662 	 * we are done with it, and allow processing of the waitq to resume.
14663 	 */
14664 	if (bp == un->un_retry_bp) {
14665 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14666 		    "sd_return_command: un:0x%p: "
14667 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
14668 		un->un_retry_bp = NULL;
14669 		un->un_retry_statp = NULL;
14670 	}
14671 
14672 	SD_UPDATE_RDWR_STATS(un, bp);
14673 	SD_UPDATE_PARTITION_STATS(un, bp);
14674 
14675 	switch (un->un_state) {
14676 	case SD_STATE_SUSPENDED:
14677 		/*
14678 		 * Notify any threads waiting in sd_ddi_suspend() that
14679 		 * a command completion has occurred.
14680 		 */
14681 		cv_broadcast(&un->un_disk_busy_cv);
14682 		break;
14683 	default:
14684 		sd_start_cmds(un, NULL);
14685 		break;
14686 	}
14687 
14688 	/* Return this command up the iodone chain to its originator. */
14689 	mutex_exit(SD_MUTEX(un));
14690 
14691 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
14692 	xp->xb_pktp = NULL;
14693 
14694 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
14695 
14696 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14697 	mutex_enter(SD_MUTEX(un));
14698 
14699 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
14700 }
14701 
14702 
14703 /*
14704  *    Function: sd_return_failed_command
14705  *
14706  * Description: Command completion when an error occurred.
14707  *
14708  *     Context: May be called from interrupt context
14709  */
14710 
14711 static void
14712 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
14713 {
14714 	ASSERT(bp != NULL);
14715 	ASSERT(un != NULL);
14716 	ASSERT(mutex_owned(SD_MUTEX(un)));
14717 
14718 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14719 	    "sd_return_failed_command: entry\n");
14720 
14721 	/*
14722 	 * b_resid could already be nonzero due to a partial data
14723 	 * transfer, so do not change it here.
14724 	 */
14725 	SD_BIOERROR(bp, errcode);
14726 
14727 	sd_return_command(un, bp);
14728 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14729 	    "sd_return_failed_command: exit\n");
14730 }
14731 
14732 
14733 /*
14734  *    Function: sd_return_failed_command_no_restart
14735  *
14736  * Description: Same as sd_return_failed_command, but ensures that no
14737  *		call back into sd_start_cmds will be issued.
14738  *
14739  *     Context: May be called from interrupt context
14740  */
14741 
14742 static void
14743 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
14744 	int errcode)
14745 {
14746 	struct sd_xbuf *xp;
14747 
14748 	ASSERT(bp != NULL);
14749 	ASSERT(un != NULL);
14750 	ASSERT(mutex_owned(SD_MUTEX(un)));
14751 	xp = SD_GET_XBUF(bp);
14752 	ASSERT(xp != NULL);
14753 	ASSERT(errcode != 0);
14754 
14755 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14756 	    "sd_return_failed_command_no_restart: entry\n");
14757 
14758 	/*
14759 	 * b_resid could already be nonzero due to a partial data
14760 	 * transfer, so do not change it here.
14761 	 */
14762 	SD_BIOERROR(bp, errcode);
14763 
14764 	/*
14765 	 * If this is the failfast bp, clear it. This can happen if the
14766 	 * failfast bp encounterd a fatal error when we attempted to
14767 	 * re-try it (such as a scsi_transport(9F) failure).  However
14768 	 * we should NOT be in an active failfast state if the failfast
14769 	 * bp is not NULL.
14770 	 */
14771 	if (bp == un->un_failfast_bp) {
14772 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
14773 		un->un_failfast_bp = NULL;
14774 	}
14775 
14776 	if (bp == un->un_retry_bp) {
14777 		/*
14778 		 * This command was retried one or more times. Show that we are
14779 		 * done with it, and allow processing of the waitq to resume.
14780 		 */
14781 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14782 		    "sd_return_failed_command_no_restart: "
14783 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
14784 		un->un_retry_bp = NULL;
14785 		un->un_retry_statp = NULL;
14786 	}
14787 
14788 	SD_UPDATE_RDWR_STATS(un, bp);
14789 	SD_UPDATE_PARTITION_STATS(un, bp);
14790 
14791 	mutex_exit(SD_MUTEX(un));
14792 
14793 	if (xp->xb_pktp != NULL) {
14794 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
14795 		xp->xb_pktp = NULL;
14796 	}
14797 
14798 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
14799 
14800 	mutex_enter(SD_MUTEX(un));
14801 
14802 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14803 	    "sd_return_failed_command_no_restart: exit\n");
14804 }
14805 
14806 
14807 /*
14808  *    Function: sd_retry_command
14809  *
14810  * Description: queue up a command for retry, or (optionally) fail it
14811  *		if retry counts are exhausted.
14812  *
14813  *   Arguments: un - Pointer to the sd_lun struct for the target.
14814  *
14815  *		bp - Pointer to the buf for the command to be retried.
14816  *
14817  *		retry_check_flag - Flag to see which (if any) of the retry
14818  *		   counts should be decremented/checked. If the indicated
14819  *		   retry count is exhausted, then the command will not be
14820  *		   retried; it will be failed instead. This should use a
14821  *		   value equal to one of the following:
14822  *
14823  *			SD_RETRIES_NOCHECK
14824  *			SD_RESD_RETRIES_STANDARD
14825  *			SD_RETRIES_VICTIM
14826  *
14827  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
14828  *		   if the check should be made to see of FLAG_ISOLATE is set
14829  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
14830  *		   not retried, it is simply failed.
14831  *
14832  *		user_funcp - Ptr to function to call before dispatching the
14833  *		   command. May be NULL if no action needs to be performed.
14834  *		   (Primarily intended for printing messages.)
14835  *
14836  *		user_arg - Optional argument to be passed along to
14837  *		   the user_funcp call.
14838  *
14839  *		failure_code - errno return code to set in the bp if the
14840  *		   command is going to be failed.
14841  *
14842  *		retry_delay - Retry delay interval in (clock_t) units. May
14843  *		   be zero which indicates that the retry should be retried
14844  *		   immediately (ie, without an intervening delay).
14845  *
14846  *		statp - Ptr to kstat function to be updated if the command
14847  *		   is queued for a delayed retry. May be NULL if no kstat
14848  *		   update is desired.
14849  *
14850  *     Context: May be called from interrupt context.
14851  */
14852 
14853 static void
14854 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
14855 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
14856 	code), void *user_arg, int failure_code,  clock_t retry_delay,
14857 	void (*statp)(kstat_io_t *))
14858 {
14859 	struct sd_xbuf	*xp;
14860 	struct scsi_pkt	*pktp;
14861 	struct sd_fm_internal *sfip;
14862 
14863 	ASSERT(un != NULL);
14864 	ASSERT(mutex_owned(SD_MUTEX(un)));
14865 	ASSERT(bp != NULL);
14866 	xp = SD_GET_XBUF(bp);
14867 	ASSERT(xp != NULL);
14868 	pktp = SD_GET_PKTP(bp);
14869 	ASSERT(pktp != NULL);
14870 
14871 	sfip = (struct sd_fm_internal *)un->un_fm_private;
14872 	ASSERT(sfip != NULL);
14873 
14874 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14875 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
14876 
14877 	/*
14878 	 * If we are syncing or dumping, fail the command to avoid
14879 	 * recursively calling back into scsi_transport().
14880 	 */
14881 	if (ddi_in_panic()) {
14882 		goto fail_command_no_log;
14883 	}
14884 
14885 	/*
14886 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
14887 	 * log an error and fail the command.
14888 	 */
14889 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
14890 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
14891 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
14892 		sd_dump_memory(un, SD_LOG_IO, "CDB",
14893 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
14894 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
14895 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
14896 		goto fail_command;
14897 	}
14898 
14899 	/*
14900 	 * If we are suspended, then put the command onto head of the
14901 	 * wait queue since we don't want to start more commands, and
14902 	 * clear the un_retry_bp. Next time when we are resumed, will
14903 	 * handle the command in the wait queue.
14904 	 */
14905 	switch (un->un_state) {
14906 	case SD_STATE_SUSPENDED:
14907 	case SD_STATE_DUMPING:
14908 		bp->av_forw = un->un_waitq_headp;
14909 		un->un_waitq_headp = bp;
14910 		if (un->un_waitq_tailp == NULL) {
14911 			un->un_waitq_tailp = bp;
14912 		}
14913 		if (bp == un->un_retry_bp) {
14914 			un->un_retry_bp = NULL;
14915 			un->un_retry_statp = NULL;
14916 		}
14917 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
14918 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
14919 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
14920 		return;
14921 	default:
14922 		break;
14923 	}
14924 
14925 	/*
14926 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
14927 	 * is set; if it is then we do not want to retry the command.
14928 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
14929 	 */
14930 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
14931 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
14932 			goto fail_command;
14933 		}
14934 	}
14935 
14936 
14937 	/*
14938 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
14939 	 * command timeout or a selection timeout has occurred. This means
14940 	 * that we were unable to establish an kind of communication with
14941 	 * the target, and subsequent retries and/or commands are likely
14942 	 * to encounter similar results and take a long time to complete.
14943 	 *
14944 	 * If this is a failfast error condition, we need to update the
14945 	 * failfast state, even if this bp does not have B_FAILFAST set.
14946 	 */
14947 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
14948 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
14949 			ASSERT(un->un_failfast_bp == NULL);
14950 			/*
14951 			 * If we are already in the active failfast state, and
14952 			 * another failfast error condition has been detected,
14953 			 * then fail this command if it has B_FAILFAST set.
14954 			 * If B_FAILFAST is clear, then maintain the legacy
14955 			 * behavior of retrying heroically, even tho this will
14956 			 * take a lot more time to fail the command.
14957 			 */
14958 			if (bp->b_flags & B_FAILFAST) {
14959 				goto fail_command;
14960 			}
14961 		} else {
14962 			/*
14963 			 * We're not in the active failfast state, but we
14964 			 * have a failfast error condition, so we must begin
14965 			 * transition to the next state. We do this regardless
14966 			 * of whether or not this bp has B_FAILFAST set.
14967 			 */
14968 			if (un->un_failfast_bp == NULL) {
14969 				/*
14970 				 * This is the first bp to meet a failfast
14971 				 * condition so save it on un_failfast_bp &
14972 				 * do normal retry processing. Do not enter
14973 				 * active failfast state yet. This marks
14974 				 * entry into the "failfast pending" state.
14975 				 */
14976 				un->un_failfast_bp = bp;
14977 
14978 			} else if (un->un_failfast_bp == bp) {
14979 				/*
14980 				 * This is the second time *this* bp has
14981 				 * encountered a failfast error condition,
14982 				 * so enter active failfast state & flush
14983 				 * queues as appropriate.
14984 				 */
14985 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
14986 				un->un_failfast_bp = NULL;
14987 				sd_failfast_flushq(un);
14988 
14989 				/*
14990 				 * Fail this bp now if B_FAILFAST set;
14991 				 * otherwise continue with retries. (It would
14992 				 * be pretty ironic if this bp succeeded on a
14993 				 * subsequent retry after we just flushed all
14994 				 * the queues).
14995 				 */
14996 				if (bp->b_flags & B_FAILFAST) {
14997 					goto fail_command;
14998 				}
14999 
15000 #if !defined(lint) && !defined(__lint)
15001 			} else {
15002 				/*
15003 				 * If neither of the preceeding conditionals
15004 				 * was true, it means that there is some
15005 				 * *other* bp that has met an inital failfast
15006 				 * condition and is currently either being
15007 				 * retried or is waiting to be retried. In
15008 				 * that case we should perform normal retry
15009 				 * processing on *this* bp, since there is a
15010 				 * chance that the current failfast condition
15011 				 * is transient and recoverable. If that does
15012 				 * not turn out to be the case, then retries
15013 				 * will be cleared when the wait queue is
15014 				 * flushed anyway.
15015 				 */
15016 #endif
15017 			}
15018 		}
15019 	} else {
15020 		/*
15021 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
15022 		 * likely were able to at least establish some level of
15023 		 * communication with the target and subsequent commands
15024 		 * and/or retries are likely to get through to the target,
15025 		 * In this case we want to be aggressive about clearing
15026 		 * the failfast state. Note that this does not affect
15027 		 * the "failfast pending" condition.
15028 		 */
15029 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15030 	}
15031 
15032 
15033 	/*
15034 	 * Check the specified retry count to see if we can still do
15035 	 * any retries with this pkt before we should fail it.
15036 	 */
15037 	switch (retry_check_flag & SD_RETRIES_MASK) {
15038 	case SD_RETRIES_VICTIM:
15039 		/*
15040 		 * Check the victim retry count. If exhausted, then fall
15041 		 * thru & check against the standard retry count.
15042 		 */
15043 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
15044 			/* Increment count & proceed with the retry */
15045 			xp->xb_victim_retry_count++;
15046 			break;
15047 		}
15048 		/* Victim retries exhausted, fall back to std. retries... */
15049 		/* FALLTHRU */
15050 
15051 	case SD_RETRIES_STANDARD:
15052 		if (xp->xb_retry_count >= un->un_retry_count) {
15053 			/* Retries exhausted, fail the command */
15054 			SD_TRACE(SD_LOG_IO_CORE, un,
15055 			    "sd_retry_command: retries exhausted!\n");
15056 			/*
15057 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
15058 			 * commands with nonzero pkt_resid.
15059 			 */
15060 			if ((pktp->pkt_reason == CMD_CMPLT) &&
15061 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
15062 			    (pktp->pkt_resid != 0)) {
15063 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
15064 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
15065 					SD_UPDATE_B_RESID(bp, pktp);
15066 				}
15067 			}
15068 			goto fail_command;
15069 		}
15070 		xp->xb_retry_count++;
15071 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15072 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15073 		break;
15074 
15075 	case SD_RETRIES_UA:
15076 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
15077 			/* Retries exhausted, fail the command */
15078 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15079 			    "Unit Attention retries exhausted. "
15080 			    "Check the target.\n");
15081 			goto fail_command;
15082 		}
15083 		xp->xb_ua_retry_count++;
15084 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15085 		    "sd_retry_command: retry count:%d\n",
15086 		    xp->xb_ua_retry_count);
15087 		break;
15088 
15089 	case SD_RETRIES_BUSY:
15090 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
15091 			/* Retries exhausted, fail the command */
15092 			SD_TRACE(SD_LOG_IO_CORE, un,
15093 			    "sd_retry_command: retries exhausted!\n");
15094 			goto fail_command;
15095 		}
15096 		xp->xb_retry_count++;
15097 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15098 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15099 		break;
15100 
15101 	case SD_RETRIES_NOCHECK:
15102 	default:
15103 		/* No retry count to check. Just proceed with the retry */
15104 		break;
15105 	}
15106 
15107 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15108 
15109 	/*
15110 	 * If this is a non-USCSI command being retried
15111 	 * during execution last time, we should post an ereport with
15112 	 * driver-assessment of the value "retry".
15113 	 * For partial DMA, request sense and STATUS_QFULL, there are no
15114 	 * hardware errors, we bypass ereport posting.
15115 	 */
15116 	if (failure_code != 0) {
15117 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
15118 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15119 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RETRY);
15120 		}
15121 	}
15122 
15123 	/*
15124 	 * If we were given a zero timeout, we must attempt to retry the
15125 	 * command immediately (ie, without a delay).
15126 	 */
15127 	if (retry_delay == 0) {
15128 		/*
15129 		 * Check some limiting conditions to see if we can actually
15130 		 * do the immediate retry.  If we cannot, then we must
15131 		 * fall back to queueing up a delayed retry.
15132 		 */
15133 		if (un->un_ncmds_in_transport >= un->un_throttle) {
15134 			/*
15135 			 * We are at the throttle limit for the target,
15136 			 * fall back to delayed retry.
15137 			 */
15138 			retry_delay = un->un_busy_timeout;
15139 			statp = kstat_waitq_enter;
15140 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15141 			    "sd_retry_command: immed. retry hit "
15142 			    "throttle!\n");
15143 		} else {
15144 			/*
15145 			 * We're clear to proceed with the immediate retry.
15146 			 * First call the user-provided function (if any)
15147 			 */
15148 			if (user_funcp != NULL) {
15149 				(*user_funcp)(un, bp, user_arg,
15150 				    SD_IMMEDIATE_RETRY_ISSUED);
15151 #ifdef __lock_lint
15152 				sd_print_incomplete_msg(un, bp, user_arg,
15153 				    SD_IMMEDIATE_RETRY_ISSUED);
15154 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
15155 				    SD_IMMEDIATE_RETRY_ISSUED);
15156 				sd_print_sense_failed_msg(un, bp, user_arg,
15157 				    SD_IMMEDIATE_RETRY_ISSUED);
15158 #endif
15159 			}
15160 
15161 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15162 			    "sd_retry_command: issuing immediate retry\n");
15163 
15164 			/*
15165 			 * Call sd_start_cmds() to transport the command to
15166 			 * the target.
15167 			 */
15168 			sd_start_cmds(un, bp);
15169 
15170 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15171 			    "sd_retry_command exit\n");
15172 			return;
15173 		}
15174 	}
15175 
15176 	/*
15177 	 * Set up to retry the command after a delay.
15178 	 * First call the user-provided function (if any)
15179 	 */
15180 	if (user_funcp != NULL) {
15181 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
15182 	}
15183 
15184 	sd_set_retry_bp(un, bp, retry_delay, statp);
15185 
15186 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15187 	return;
15188 
15189 fail_command:
15190 
15191 	if (user_funcp != NULL) {
15192 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
15193 	}
15194 
15195 fail_command_no_log:
15196 
15197 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15198 	    "sd_retry_command: returning failed command\n");
15199 
15200 	sd_return_failed_command(un, bp, failure_code);
15201 
15202 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15203 }
15204 
15205 
15206 /*
15207  *    Function: sd_set_retry_bp
15208  *
15209  * Description: Set up the given bp for retry.
15210  *
15211  *   Arguments: un - ptr to associated softstate
15212  *		bp - ptr to buf(9S) for the command
15213  *		retry_delay - time interval before issuing retry (may be 0)
15214  *		statp - optional pointer to kstat function
15215  *
15216  *     Context: May be called under interrupt context
15217  */
15218 
15219 static void
15220 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
15221 	void (*statp)(kstat_io_t *))
15222 {
15223 	ASSERT(un != NULL);
15224 	ASSERT(mutex_owned(SD_MUTEX(un)));
15225 	ASSERT(bp != NULL);
15226 
15227 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15228 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
15229 
15230 	/*
15231 	 * Indicate that the command is being retried. This will not allow any
15232 	 * other commands on the wait queue to be transported to the target
15233 	 * until this command has been completed (success or failure). The
15234 	 * "retry command" is not transported to the target until the given
15235 	 * time delay expires, unless the user specified a 0 retry_delay.
15236 	 *
15237 	 * Note: the timeout(9F) callback routine is what actually calls
15238 	 * sd_start_cmds() to transport the command, with the exception of a
15239 	 * zero retry_delay. The only current implementor of a zero retry delay
15240 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
15241 	 */
15242 	if (un->un_retry_bp == NULL) {
15243 		ASSERT(un->un_retry_statp == NULL);
15244 		un->un_retry_bp = bp;
15245 
15246 		/*
15247 		 * If the user has not specified a delay the command should
15248 		 * be queued and no timeout should be scheduled.
15249 		 */
15250 		if (retry_delay == 0) {
15251 			/*
15252 			 * Save the kstat pointer that will be used in the
15253 			 * call to SD_UPDATE_KSTATS() below, so that
15254 			 * sd_start_cmds() can correctly decrement the waitq
15255 			 * count when it is time to transport this command.
15256 			 */
15257 			un->un_retry_statp = statp;
15258 			goto done;
15259 		}
15260 	}
15261 
15262 	if (un->un_retry_bp == bp) {
15263 		/*
15264 		 * Save the kstat pointer that will be used in the call to
15265 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
15266 		 * correctly decrement the waitq count when it is time to
15267 		 * transport this command.
15268 		 */
15269 		un->un_retry_statp = statp;
15270 
15271 		/*
15272 		 * Schedule a timeout if:
15273 		 *   1) The user has specified a delay.
15274 		 *   2) There is not a START_STOP_UNIT callback pending.
15275 		 *
15276 		 * If no delay has been specified, then it is up to the caller
15277 		 * to ensure that IO processing continues without stalling.
15278 		 * Effectively, this means that the caller will issue the
15279 		 * required call to sd_start_cmds(). The START_STOP_UNIT
15280 		 * callback does this after the START STOP UNIT command has
15281 		 * completed. In either of these cases we should not schedule
15282 		 * a timeout callback here.  Also don't schedule the timeout if
15283 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
15284 		 */
15285 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
15286 		    (un->un_direct_priority_timeid == NULL)) {
15287 			un->un_retry_timeid =
15288 			    timeout(sd_start_retry_command, un, retry_delay);
15289 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15290 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
15291 			    " bp:0x%p un_retry_timeid:0x%p\n",
15292 			    un, bp, un->un_retry_timeid);
15293 		}
15294 	} else {
15295 		/*
15296 		 * We only get in here if there is already another command
15297 		 * waiting to be retried.  In this case, we just put the
15298 		 * given command onto the wait queue, so it can be transported
15299 		 * after the current retry command has completed.
15300 		 *
15301 		 * Also we have to make sure that if the command at the head
15302 		 * of the wait queue is the un_failfast_bp, that we do not
15303 		 * put ahead of it any other commands that are to be retried.
15304 		 */
15305 		if ((un->un_failfast_bp != NULL) &&
15306 		    (un->un_failfast_bp == un->un_waitq_headp)) {
15307 			/*
15308 			 * Enqueue this command AFTER the first command on
15309 			 * the wait queue (which is also un_failfast_bp).
15310 			 */
15311 			bp->av_forw = un->un_waitq_headp->av_forw;
15312 			un->un_waitq_headp->av_forw = bp;
15313 			if (un->un_waitq_headp == un->un_waitq_tailp) {
15314 				un->un_waitq_tailp = bp;
15315 			}
15316 		} else {
15317 			/* Enqueue this command at the head of the waitq. */
15318 			bp->av_forw = un->un_waitq_headp;
15319 			un->un_waitq_headp = bp;
15320 			if (un->un_waitq_tailp == NULL) {
15321 				un->un_waitq_tailp = bp;
15322 			}
15323 		}
15324 
15325 		if (statp == NULL) {
15326 			statp = kstat_waitq_enter;
15327 		}
15328 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15329 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
15330 	}
15331 
15332 done:
15333 	if (statp != NULL) {
15334 		SD_UPDATE_KSTATS(un, statp, bp);
15335 	}
15336 
15337 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15338 	    "sd_set_retry_bp: exit un:0x%p\n", un);
15339 }
15340 
15341 
15342 /*
15343  *    Function: sd_start_retry_command
15344  *
15345  * Description: Start the command that has been waiting on the target's
15346  *		retry queue.  Called from timeout(9F) context after the
15347  *		retry delay interval has expired.
15348  *
15349  *   Arguments: arg - pointer to associated softstate for the device.
15350  *
15351  *     Context: timeout(9F) thread context.  May not sleep.
15352  */
15353 
15354 static void
15355 sd_start_retry_command(void *arg)
15356 {
15357 	struct sd_lun *un = arg;
15358 
15359 	ASSERT(un != NULL);
15360 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15361 
15362 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15363 	    "sd_start_retry_command: entry\n");
15364 
15365 	mutex_enter(SD_MUTEX(un));
15366 
15367 	un->un_retry_timeid = NULL;
15368 
15369 	if (un->un_retry_bp != NULL) {
15370 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15371 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
15372 		    un, un->un_retry_bp);
15373 		sd_start_cmds(un, un->un_retry_bp);
15374 	}
15375 
15376 	mutex_exit(SD_MUTEX(un));
15377 
15378 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15379 	    "sd_start_retry_command: exit\n");
15380 }
15381 
15382 
15383 /*
15384  *    Function: sd_start_direct_priority_command
15385  *
15386  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
15387  *		received TRAN_BUSY when we called scsi_transport() to send it
15388  *		to the underlying HBA. This function is called from timeout(9F)
15389  *		context after the delay interval has expired.
15390  *
15391  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
15392  *
15393  *     Context: timeout(9F) thread context.  May not sleep.
15394  */
15395 
15396 static void
15397 sd_start_direct_priority_command(void *arg)
15398 {
15399 	struct buf	*priority_bp = arg;
15400 	struct sd_lun	*un;
15401 
15402 	ASSERT(priority_bp != NULL);
15403 	un = SD_GET_UN(priority_bp);
15404 	ASSERT(un != NULL);
15405 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15406 
15407 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15408 	    "sd_start_direct_priority_command: entry\n");
15409 
15410 	mutex_enter(SD_MUTEX(un));
15411 	un->un_direct_priority_timeid = NULL;
15412 	sd_start_cmds(un, priority_bp);
15413 	mutex_exit(SD_MUTEX(un));
15414 
15415 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15416 	    "sd_start_direct_priority_command: exit\n");
15417 }
15418 
15419 
15420 /*
15421  *    Function: sd_send_request_sense_command
15422  *
15423  * Description: Sends a REQUEST SENSE command to the target
15424  *
15425  *     Context: May be called from interrupt context.
15426  */
15427 
15428 static void
15429 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
15430 	struct scsi_pkt *pktp)
15431 {
15432 	ASSERT(bp != NULL);
15433 	ASSERT(un != NULL);
15434 	ASSERT(mutex_owned(SD_MUTEX(un)));
15435 
15436 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
15437 	    "entry: buf:0x%p\n", bp);
15438 
15439 	/*
15440 	 * If we are syncing or dumping, then fail the command to avoid a
15441 	 * recursive callback into scsi_transport(). Also fail the command
15442 	 * if we are suspended (legacy behavior).
15443 	 */
15444 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
15445 	    (un->un_state == SD_STATE_DUMPING)) {
15446 		sd_return_failed_command(un, bp, EIO);
15447 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15448 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
15449 		return;
15450 	}
15451 
15452 	/*
15453 	 * Retry the failed command and don't issue the request sense if:
15454 	 *    1) the sense buf is busy
15455 	 *    2) we have 1 or more outstanding commands on the target
15456 	 *    (the sense data will be cleared or invalidated any way)
15457 	 *
15458 	 * Note: There could be an issue with not checking a retry limit here,
15459 	 * the problem is determining which retry limit to check.
15460 	 */
15461 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
15462 		/* Don't retry if the command is flagged as non-retryable */
15463 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15464 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15465 			    NULL, NULL, 0, un->un_busy_timeout,
15466 			    kstat_waitq_enter);
15467 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15468 			    "sd_send_request_sense_command: "
15469 			    "at full throttle, retrying exit\n");
15470 		} else {
15471 			sd_return_failed_command(un, bp, EIO);
15472 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15473 			    "sd_send_request_sense_command: "
15474 			    "at full throttle, non-retryable exit\n");
15475 		}
15476 		return;
15477 	}
15478 
15479 	sd_mark_rqs_busy(un, bp);
15480 	sd_start_cmds(un, un->un_rqs_bp);
15481 
15482 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15483 	    "sd_send_request_sense_command: exit\n");
15484 }
15485 
15486 
15487 /*
15488  *    Function: sd_mark_rqs_busy
15489  *
15490  * Description: Indicate that the request sense bp for this instance is
15491  *		in use.
15492  *
15493  *     Context: May be called under interrupt context
15494  */
15495 
15496 static void
15497 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
15498 {
15499 	struct sd_xbuf	*sense_xp;
15500 
15501 	ASSERT(un != NULL);
15502 	ASSERT(bp != NULL);
15503 	ASSERT(mutex_owned(SD_MUTEX(un)));
15504 	ASSERT(un->un_sense_isbusy == 0);
15505 
15506 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
15507 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
15508 
15509 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
15510 	ASSERT(sense_xp != NULL);
15511 
15512 	SD_INFO(SD_LOG_IO, un,
15513 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
15514 
15515 	ASSERT(sense_xp->xb_pktp != NULL);
15516 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
15517 	    == (FLAG_SENSING | FLAG_HEAD));
15518 
15519 	un->un_sense_isbusy = 1;
15520 	un->un_rqs_bp->b_resid = 0;
15521 	sense_xp->xb_pktp->pkt_resid  = 0;
15522 	sense_xp->xb_pktp->pkt_reason = 0;
15523 
15524 	/* So we can get back the bp at interrupt time! */
15525 	sense_xp->xb_sense_bp = bp;
15526 
15527 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
15528 
15529 	/*
15530 	 * Mark this buf as awaiting sense data. (This is already set in
15531 	 * the pkt_flags for the RQS packet.)
15532 	 */
15533 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
15534 
15535 	/* Request sense down same path */
15536 	if (scsi_pkt_allocated_correctly((SD_GET_XBUF(bp))->xb_pktp) &&
15537 	    ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance)
15538 		sense_xp->xb_pktp->pkt_path_instance =
15539 		    ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance;
15540 
15541 	sense_xp->xb_retry_count	= 0;
15542 	sense_xp->xb_victim_retry_count = 0;
15543 	sense_xp->xb_ua_retry_count	= 0;
15544 	sense_xp->xb_nr_retry_count 	= 0;
15545 	sense_xp->xb_dma_resid  = 0;
15546 
15547 	/* Clean up the fields for auto-request sense */
15548 	sense_xp->xb_sense_status = 0;
15549 	sense_xp->xb_sense_state  = 0;
15550 	sense_xp->xb_sense_resid  = 0;
15551 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
15552 
15553 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
15554 }
15555 
15556 
15557 /*
15558  *    Function: sd_mark_rqs_idle
15559  *
15560  * Description: SD_MUTEX must be held continuously through this routine
15561  *		to prevent reuse of the rqs struct before the caller can
15562  *		complete it's processing.
15563  *
15564  * Return Code: Pointer to the RQS buf
15565  *
15566  *     Context: May be called under interrupt context
15567  */
15568 
15569 static struct buf *
15570 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
15571 {
15572 	struct buf *bp;
15573 	ASSERT(un != NULL);
15574 	ASSERT(sense_xp != NULL);
15575 	ASSERT(mutex_owned(SD_MUTEX(un)));
15576 	ASSERT(un->un_sense_isbusy != 0);
15577 
15578 	un->un_sense_isbusy = 0;
15579 	bp = sense_xp->xb_sense_bp;
15580 	sense_xp->xb_sense_bp = NULL;
15581 
15582 	/* This pkt is no longer interested in getting sense data */
15583 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
15584 
15585 	return (bp);
15586 }
15587 
15588 
15589 
15590 /*
15591  *    Function: sd_alloc_rqs
15592  *
15593  * Description: Set up the unit to receive auto request sense data
15594  *
15595  * Return Code: DDI_SUCCESS or DDI_FAILURE
15596  *
15597  *     Context: Called under attach(9E) context
15598  */
15599 
15600 static int
15601 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
15602 {
15603 	struct sd_xbuf *xp;
15604 
15605 	ASSERT(un != NULL);
15606 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15607 	ASSERT(un->un_rqs_bp == NULL);
15608 	ASSERT(un->un_rqs_pktp == NULL);
15609 
15610 	/*
15611 	 * First allocate the required buf and scsi_pkt structs, then set up
15612 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
15613 	 */
15614 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
15615 	    MAX_SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
15616 	if (un->un_rqs_bp == NULL) {
15617 		return (DDI_FAILURE);
15618 	}
15619 
15620 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
15621 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
15622 
15623 	if (un->un_rqs_pktp == NULL) {
15624 		sd_free_rqs(un);
15625 		return (DDI_FAILURE);
15626 	}
15627 
15628 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
15629 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
15630 	    SCMD_REQUEST_SENSE, 0, MAX_SENSE_LENGTH, 0);
15631 
15632 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
15633 
15634 	/* Set up the other needed members in the ARQ scsi_pkt. */
15635 	un->un_rqs_pktp->pkt_comp   = sdintr;
15636 	un->un_rqs_pktp->pkt_time   = sd_io_time;
15637 	un->un_rqs_pktp->pkt_flags |=
15638 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
15639 
15640 	/*
15641 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
15642 	 * provide any intpkt, destroypkt routines as we take care of
15643 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
15644 	 */
15645 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
15646 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
15647 	xp->xb_pktp = un->un_rqs_pktp;
15648 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
15649 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
15650 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
15651 
15652 	/*
15653 	 * Save the pointer to the request sense private bp so it can
15654 	 * be retrieved in sdintr.
15655 	 */
15656 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
15657 	ASSERT(un->un_rqs_bp->b_private == xp);
15658 
15659 	/*
15660 	 * See if the HBA supports auto-request sense for the specified
15661 	 * target/lun. If it does, then try to enable it (if not already
15662 	 * enabled).
15663 	 *
15664 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
15665 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
15666 	 * return success.  However, in both of these cases ARQ is always
15667 	 * enabled and scsi_ifgetcap will always return true. The best approach
15668 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
15669 	 *
15670 	 * The 3rd case is the HBA (adp) always return enabled on
15671 	 * scsi_ifgetgetcap even when it's not enable, the best approach
15672 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
15673 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
15674 	 */
15675 
15676 	if (un->un_f_is_fibre == TRUE) {
15677 		un->un_f_arq_enabled = TRUE;
15678 	} else {
15679 #if defined(__i386) || defined(__amd64)
15680 		/*
15681 		 * Circumvent the Adaptec bug, remove this code when
15682 		 * the bug is fixed
15683 		 */
15684 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
15685 #endif
15686 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
15687 		case 0:
15688 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15689 			    "sd_alloc_rqs: HBA supports ARQ\n");
15690 			/*
15691 			 * ARQ is supported by this HBA but currently is not
15692 			 * enabled. Attempt to enable it and if successful then
15693 			 * mark this instance as ARQ enabled.
15694 			 */
15695 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
15696 			    == 1) {
15697 				/* Successfully enabled ARQ in the HBA */
15698 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15699 				    "sd_alloc_rqs: ARQ enabled\n");
15700 				un->un_f_arq_enabled = TRUE;
15701 			} else {
15702 				/* Could not enable ARQ in the HBA */
15703 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15704 				    "sd_alloc_rqs: failed ARQ enable\n");
15705 				un->un_f_arq_enabled = FALSE;
15706 			}
15707 			break;
15708 		case 1:
15709 			/*
15710 			 * ARQ is supported by this HBA and is already enabled.
15711 			 * Just mark ARQ as enabled for this instance.
15712 			 */
15713 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15714 			    "sd_alloc_rqs: ARQ already enabled\n");
15715 			un->un_f_arq_enabled = TRUE;
15716 			break;
15717 		default:
15718 			/*
15719 			 * ARQ is not supported by this HBA; disable it for this
15720 			 * instance.
15721 			 */
15722 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15723 			    "sd_alloc_rqs: HBA does not support ARQ\n");
15724 			un->un_f_arq_enabled = FALSE;
15725 			break;
15726 		}
15727 	}
15728 
15729 	return (DDI_SUCCESS);
15730 }
15731 
15732 
15733 /*
15734  *    Function: sd_free_rqs
15735  *
15736  * Description: Cleanup for the pre-instance RQS command.
15737  *
15738  *     Context: Kernel thread context
15739  */
15740 
15741 static void
15742 sd_free_rqs(struct sd_lun *un)
15743 {
15744 	ASSERT(un != NULL);
15745 
15746 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
15747 
15748 	/*
15749 	 * If consistent memory is bound to a scsi_pkt, the pkt
15750 	 * has to be destroyed *before* freeing the consistent memory.
15751 	 * Don't change the sequence of this operations.
15752 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
15753 	 * after it was freed in scsi_free_consistent_buf().
15754 	 */
15755 	if (un->un_rqs_pktp != NULL) {
15756 		scsi_destroy_pkt(un->un_rqs_pktp);
15757 		un->un_rqs_pktp = NULL;
15758 	}
15759 
15760 	if (un->un_rqs_bp != NULL) {
15761 		struct sd_xbuf *xp = SD_GET_XBUF(un->un_rqs_bp);
15762 		if (xp != NULL) {
15763 			kmem_free(xp, sizeof (struct sd_xbuf));
15764 		}
15765 		scsi_free_consistent_buf(un->un_rqs_bp);
15766 		un->un_rqs_bp = NULL;
15767 	}
15768 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
15769 }
15770 
15771 
15772 
15773 /*
15774  *    Function: sd_reduce_throttle
15775  *
15776  * Description: Reduces the maximum # of outstanding commands on a
15777  *		target to the current number of outstanding commands.
15778  *		Queues a tiemout(9F) callback to restore the limit
15779  *		after a specified interval has elapsed.
15780  *		Typically used when we get a TRAN_BUSY return code
15781  *		back from scsi_transport().
15782  *
15783  *   Arguments: un - ptr to the sd_lun softstate struct
15784  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
15785  *
15786  *     Context: May be called from interrupt context
15787  */
15788 
15789 static void
15790 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
15791 {
15792 	ASSERT(un != NULL);
15793 	ASSERT(mutex_owned(SD_MUTEX(un)));
15794 	ASSERT(un->un_ncmds_in_transport >= 0);
15795 
15796 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
15797 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
15798 	    un, un->un_throttle, un->un_ncmds_in_transport);
15799 
15800 	if (un->un_throttle > 1) {
15801 		if (un->un_f_use_adaptive_throttle == TRUE) {
15802 			switch (throttle_type) {
15803 			case SD_THROTTLE_TRAN_BUSY:
15804 				if (un->un_busy_throttle == 0) {
15805 					un->un_busy_throttle = un->un_throttle;
15806 				}
15807 				break;
15808 			case SD_THROTTLE_QFULL:
15809 				un->un_busy_throttle = 0;
15810 				break;
15811 			default:
15812 				ASSERT(FALSE);
15813 			}
15814 
15815 			if (un->un_ncmds_in_transport > 0) {
15816 				un->un_throttle = un->un_ncmds_in_transport;
15817 			}
15818 
15819 		} else {
15820 			if (un->un_ncmds_in_transport == 0) {
15821 				un->un_throttle = 1;
15822 			} else {
15823 				un->un_throttle = un->un_ncmds_in_transport;
15824 			}
15825 		}
15826 	}
15827 
15828 	/* Reschedule the timeout if none is currently active */
15829 	if (un->un_reset_throttle_timeid == NULL) {
15830 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
15831 		    un, SD_THROTTLE_RESET_INTERVAL);
15832 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15833 		    "sd_reduce_throttle: timeout scheduled!\n");
15834 	}
15835 
15836 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
15837 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
15838 }
15839 
15840 
15841 
15842 /*
15843  *    Function: sd_restore_throttle
15844  *
15845  * Description: Callback function for timeout(9F).  Resets the current
15846  *		value of un->un_throttle to its default.
15847  *
15848  *   Arguments: arg - pointer to associated softstate for the device.
15849  *
15850  *     Context: May be called from interrupt context
15851  */
15852 
15853 static void
15854 sd_restore_throttle(void *arg)
15855 {
15856 	struct sd_lun	*un = arg;
15857 
15858 	ASSERT(un != NULL);
15859 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15860 
15861 	mutex_enter(SD_MUTEX(un));
15862 
15863 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
15864 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
15865 
15866 	un->un_reset_throttle_timeid = NULL;
15867 
15868 	if (un->un_f_use_adaptive_throttle == TRUE) {
15869 		/*
15870 		 * If un_busy_throttle is nonzero, then it contains the
15871 		 * value that un_throttle was when we got a TRAN_BUSY back
15872 		 * from scsi_transport(). We want to revert back to this
15873 		 * value.
15874 		 *
15875 		 * In the QFULL case, the throttle limit will incrementally
15876 		 * increase until it reaches max throttle.
15877 		 */
15878 		if (un->un_busy_throttle > 0) {
15879 			un->un_throttle = un->un_busy_throttle;
15880 			un->un_busy_throttle = 0;
15881 		} else {
15882 			/*
15883 			 * increase throttle by 10% open gate slowly, schedule
15884 			 * another restore if saved throttle has not been
15885 			 * reached
15886 			 */
15887 			short throttle;
15888 			if (sd_qfull_throttle_enable) {
15889 				throttle = un->un_throttle +
15890 				    max((un->un_throttle / 10), 1);
15891 				un->un_throttle =
15892 				    (throttle < un->un_saved_throttle) ?
15893 				    throttle : un->un_saved_throttle;
15894 				if (un->un_throttle < un->un_saved_throttle) {
15895 					un->un_reset_throttle_timeid =
15896 					    timeout(sd_restore_throttle,
15897 					    un,
15898 					    SD_QFULL_THROTTLE_RESET_INTERVAL);
15899 				}
15900 			}
15901 		}
15902 
15903 		/*
15904 		 * If un_throttle has fallen below the low-water mark, we
15905 		 * restore the maximum value here (and allow it to ratchet
15906 		 * down again if necessary).
15907 		 */
15908 		if (un->un_throttle < un->un_min_throttle) {
15909 			un->un_throttle = un->un_saved_throttle;
15910 		}
15911 	} else {
15912 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
15913 		    "restoring limit from 0x%x to 0x%x\n",
15914 		    un->un_throttle, un->un_saved_throttle);
15915 		un->un_throttle = un->un_saved_throttle;
15916 	}
15917 
15918 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15919 	    "sd_restore_throttle: calling sd_start_cmds!\n");
15920 
15921 	sd_start_cmds(un, NULL);
15922 
15923 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15924 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
15925 	    un, un->un_throttle);
15926 
15927 	mutex_exit(SD_MUTEX(un));
15928 
15929 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
15930 }
15931 
15932 /*
15933  *    Function: sdrunout
15934  *
15935  * Description: Callback routine for scsi_init_pkt when a resource allocation
15936  *		fails.
15937  *
15938  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
15939  *		soft state instance.
15940  *
15941  * Return Code: The scsi_init_pkt routine allows for the callback function to
15942  *		return a 0 indicating the callback should be rescheduled or a 1
15943  *		indicating not to reschedule. This routine always returns 1
15944  *		because the driver always provides a callback function to
15945  *		scsi_init_pkt. This results in a callback always being scheduled
15946  *		(via the scsi_init_pkt callback implementation) if a resource
15947  *		failure occurs.
15948  *
15949  *     Context: This callback function may not block or call routines that block
15950  *
15951  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
15952  *		request persisting at the head of the list which cannot be
15953  *		satisfied even after multiple retries. In the future the driver
15954  *		may implement some time of maximum runout count before failing
15955  *		an I/O.
15956  */
15957 
15958 static int
15959 sdrunout(caddr_t arg)
15960 {
15961 	struct sd_lun	*un = (struct sd_lun *)arg;
15962 
15963 	ASSERT(un != NULL);
15964 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15965 
15966 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
15967 
15968 	mutex_enter(SD_MUTEX(un));
15969 	sd_start_cmds(un, NULL);
15970 	mutex_exit(SD_MUTEX(un));
15971 	/*
15972 	 * This callback routine always returns 1 (i.e. do not reschedule)
15973 	 * because we always specify sdrunout as the callback handler for
15974 	 * scsi_init_pkt inside the call to sd_start_cmds.
15975 	 */
15976 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
15977 	return (1);
15978 }
15979 
15980 
15981 /*
15982  *    Function: sdintr
15983  *
15984  * Description: Completion callback routine for scsi_pkt(9S) structs
15985  *		sent to the HBA driver via scsi_transport(9F).
15986  *
15987  *     Context: Interrupt context
15988  */
15989 
15990 static void
15991 sdintr(struct scsi_pkt *pktp)
15992 {
15993 	struct buf	*bp;
15994 	struct sd_xbuf	*xp;
15995 	struct sd_lun	*un;
15996 	size_t		actual_len;
15997 	sd_ssc_t	*sscp;
15998 
15999 	ASSERT(pktp != NULL);
16000 	bp = (struct buf *)pktp->pkt_private;
16001 	ASSERT(bp != NULL);
16002 	xp = SD_GET_XBUF(bp);
16003 	ASSERT(xp != NULL);
16004 	ASSERT(xp->xb_pktp != NULL);
16005 	un = SD_GET_UN(bp);
16006 	ASSERT(un != NULL);
16007 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16008 
16009 #ifdef SD_FAULT_INJECTION
16010 
16011 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
16012 	/* SD FaultInjection */
16013 	sd_faultinjection(pktp);
16014 
16015 #endif /* SD_FAULT_INJECTION */
16016 
16017 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
16018 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
16019 
16020 	mutex_enter(SD_MUTEX(un));
16021 
16022 	ASSERT(un->un_fm_private != NULL);
16023 	sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
16024 	ASSERT(sscp != NULL);
16025 
16026 	/* Reduce the count of the #commands currently in transport */
16027 	un->un_ncmds_in_transport--;
16028 	ASSERT(un->un_ncmds_in_transport >= 0);
16029 
16030 	/* Increment counter to indicate that the callback routine is active */
16031 	un->un_in_callback++;
16032 
16033 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
16034 
16035 #ifdef	SDDEBUG
16036 	if (bp == un->un_retry_bp) {
16037 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
16038 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
16039 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
16040 	}
16041 #endif
16042 
16043 	/*
16044 	 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media
16045 	 * state if needed.
16046 	 */
16047 	if (pktp->pkt_reason == CMD_DEV_GONE) {
16048 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16049 		    "Command failed to complete...Device is gone\n");
16050 		if (un->un_mediastate != DKIO_DEV_GONE) {
16051 			un->un_mediastate = DKIO_DEV_GONE;
16052 			cv_broadcast(&un->un_state_cv);
16053 		}
16054 		sd_return_failed_command(un, bp, EIO);
16055 		goto exit;
16056 	}
16057 
16058 	if (pktp->pkt_state & STATE_XARQ_DONE) {
16059 		SD_TRACE(SD_LOG_COMMON, un,
16060 		    "sdintr: extra sense data received. pkt=%p\n", pktp);
16061 	}
16062 
16063 	/*
16064 	 * First see if the pkt has auto-request sense data with it....
16065 	 * Look at the packet state first so we don't take a performance
16066 	 * hit looking at the arq enabled flag unless absolutely necessary.
16067 	 */
16068 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
16069 	    (un->un_f_arq_enabled == TRUE)) {
16070 		/*
16071 		 * The HBA did an auto request sense for this command so check
16072 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16073 		 * driver command that should not be retried.
16074 		 */
16075 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16076 			/*
16077 			 * Save the relevant sense info into the xp for the
16078 			 * original cmd.
16079 			 */
16080 			struct scsi_arq_status *asp;
16081 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16082 			xp->xb_sense_status =
16083 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
16084 			xp->xb_sense_state  = asp->sts_rqpkt_state;
16085 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16086 			if (pktp->pkt_state & STATE_XARQ_DONE) {
16087 				actual_len = MAX_SENSE_LENGTH -
16088 				    xp->xb_sense_resid;
16089 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16090 				    MAX_SENSE_LENGTH);
16091 			} else {
16092 				if (xp->xb_sense_resid > SENSE_LENGTH) {
16093 					actual_len = MAX_SENSE_LENGTH -
16094 					    xp->xb_sense_resid;
16095 				} else {
16096 					actual_len = SENSE_LENGTH -
16097 					    xp->xb_sense_resid;
16098 				}
16099 				if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16100 					if ((((struct uscsi_cmd *)
16101 					    (xp->xb_pktinfo))->uscsi_rqlen) >
16102 					    actual_len) {
16103 						xp->xb_sense_resid =
16104 						    (((struct uscsi_cmd *)
16105 						    (xp->xb_pktinfo))->
16106 						    uscsi_rqlen) - actual_len;
16107 					} else {
16108 						xp->xb_sense_resid = 0;
16109 					}
16110 				}
16111 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16112 				    SENSE_LENGTH);
16113 			}
16114 
16115 			/* fail the command */
16116 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16117 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
16118 			sd_return_failed_command(un, bp, EIO);
16119 			goto exit;
16120 		}
16121 
16122 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16123 		/*
16124 		 * We want to either retry or fail this command, so free
16125 		 * the DMA resources here.  If we retry the command then
16126 		 * the DMA resources will be reallocated in sd_start_cmds().
16127 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
16128 		 * causes the *entire* transfer to start over again from the
16129 		 * beginning of the request, even for PARTIAL chunks that
16130 		 * have already transferred successfully.
16131 		 */
16132 		if ((un->un_f_is_fibre == TRUE) &&
16133 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16134 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16135 			scsi_dmafree(pktp);
16136 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16137 		}
16138 #endif
16139 
16140 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16141 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
16142 
16143 		sd_handle_auto_request_sense(un, bp, xp, pktp);
16144 		goto exit;
16145 	}
16146 
16147 	/* Next see if this is the REQUEST SENSE pkt for the instance */
16148 	if (pktp->pkt_flags & FLAG_SENSING)  {
16149 		/* This pktp is from the unit's REQUEST_SENSE command */
16150 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16151 		    "sdintr: sd_handle_request_sense\n");
16152 		sd_handle_request_sense(un, bp, xp, pktp);
16153 		goto exit;
16154 	}
16155 
16156 	/*
16157 	 * Check to see if the command successfully completed as requested;
16158 	 * this is the most common case (and also the hot performance path).
16159 	 *
16160 	 * Requirements for successful completion are:
16161 	 * pkt_reason is CMD_CMPLT and packet status is status good.
16162 	 * In addition:
16163 	 * - A residual of zero indicates successful completion no matter what
16164 	 *   the command is.
16165 	 * - If the residual is not zero and the command is not a read or
16166 	 *   write, then it's still defined as successful completion. In other
16167 	 *   words, if the command is a read or write the residual must be
16168 	 *   zero for successful completion.
16169 	 * - If the residual is not zero and the command is a read or
16170 	 *   write, and it's a USCSICMD, then it's still defined as
16171 	 *   successful completion.
16172 	 */
16173 	if ((pktp->pkt_reason == CMD_CMPLT) &&
16174 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
16175 
16176 		/*
16177 		 * Since this command is returned with a good status, we
16178 		 * can reset the count for Sonoma failover.
16179 		 */
16180 		un->un_sonoma_failure_count = 0;
16181 
16182 		/*
16183 		 * Return all USCSI commands on good status
16184 		 */
16185 		if (pktp->pkt_resid == 0) {
16186 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16187 			    "sdintr: returning command for resid == 0\n");
16188 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
16189 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
16190 			SD_UPDATE_B_RESID(bp, pktp);
16191 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16192 			    "sdintr: returning command for resid != 0\n");
16193 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16194 			SD_UPDATE_B_RESID(bp, pktp);
16195 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16196 			    "sdintr: returning uscsi command\n");
16197 		} else {
16198 			goto not_successful;
16199 		}
16200 		sd_return_command(un, bp);
16201 
16202 		/*
16203 		 * Decrement counter to indicate that the callback routine
16204 		 * is done.
16205 		 */
16206 		un->un_in_callback--;
16207 		ASSERT(un->un_in_callback >= 0);
16208 		mutex_exit(SD_MUTEX(un));
16209 
16210 		return;
16211 	}
16212 
16213 not_successful:
16214 
16215 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16216 	/*
16217 	 * The following is based upon knowledge of the underlying transport
16218 	 * and its use of DMA resources.  This code should be removed when
16219 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
16220 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
16221 	 * and sd_start_cmds().
16222 	 *
16223 	 * Free any DMA resources associated with this command if there
16224 	 * is a chance it could be retried or enqueued for later retry.
16225 	 * If we keep the DMA binding then mpxio cannot reissue the
16226 	 * command on another path whenever a path failure occurs.
16227 	 *
16228 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
16229 	 * causes the *entire* transfer to start over again from the
16230 	 * beginning of the request, even for PARTIAL chunks that
16231 	 * have already transferred successfully.
16232 	 *
16233 	 * This is only done for non-uscsi commands (and also skipped for the
16234 	 * driver's internal RQS command). Also just do this for Fibre Channel
16235 	 * devices as these are the only ones that support mpxio.
16236 	 */
16237 	if ((un->un_f_is_fibre == TRUE) &&
16238 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16239 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16240 		scsi_dmafree(pktp);
16241 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16242 	}
16243 #endif
16244 
16245 	/*
16246 	 * The command did not successfully complete as requested so check
16247 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16248 	 * driver command that should not be retried so just return. If
16249 	 * FLAG_DIAGNOSE is not set the error will be processed below.
16250 	 */
16251 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16252 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16253 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
16254 		/*
16255 		 * Issue a request sense if a check condition caused the error
16256 		 * (we handle the auto request sense case above), otherwise
16257 		 * just fail the command.
16258 		 */
16259 		if ((pktp->pkt_reason == CMD_CMPLT) &&
16260 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
16261 			sd_send_request_sense_command(un, bp, pktp);
16262 		} else {
16263 			sd_return_failed_command(un, bp, EIO);
16264 		}
16265 		goto exit;
16266 	}
16267 
16268 	/*
16269 	 * The command did not successfully complete as requested so process
16270 	 * the error, retry, and/or attempt recovery.
16271 	 */
16272 	switch (pktp->pkt_reason) {
16273 	case CMD_CMPLT:
16274 		switch (SD_GET_PKT_STATUS(pktp)) {
16275 		case STATUS_GOOD:
16276 			/*
16277 			 * The command completed successfully with a non-zero
16278 			 * residual
16279 			 */
16280 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16281 			    "sdintr: STATUS_GOOD \n");
16282 			sd_pkt_status_good(un, bp, xp, pktp);
16283 			break;
16284 
16285 		case STATUS_CHECK:
16286 		case STATUS_TERMINATED:
16287 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16288 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
16289 			sd_pkt_status_check_condition(un, bp, xp, pktp);
16290 			break;
16291 
16292 		case STATUS_BUSY:
16293 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16294 			    "sdintr: STATUS_BUSY\n");
16295 			sd_pkt_status_busy(un, bp, xp, pktp);
16296 			break;
16297 
16298 		case STATUS_RESERVATION_CONFLICT:
16299 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16300 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
16301 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16302 			break;
16303 
16304 		case STATUS_QFULL:
16305 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16306 			    "sdintr: STATUS_QFULL\n");
16307 			sd_pkt_status_qfull(un, bp, xp, pktp);
16308 			break;
16309 
16310 		case STATUS_MET:
16311 		case STATUS_INTERMEDIATE:
16312 		case STATUS_SCSI2:
16313 		case STATUS_INTERMEDIATE_MET:
16314 		case STATUS_ACA_ACTIVE:
16315 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16316 			    "Unexpected SCSI status received: 0x%x\n",
16317 			    SD_GET_PKT_STATUS(pktp));
16318 			/*
16319 			 * Mark the ssc_flags when detected invalid status
16320 			 * code for non-USCSI command.
16321 			 */
16322 			if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16323 				sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
16324 				    "stat-code");
16325 			}
16326 			sd_return_failed_command(un, bp, EIO);
16327 			break;
16328 
16329 		default:
16330 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16331 			    "Invalid SCSI status received: 0x%x\n",
16332 			    SD_GET_PKT_STATUS(pktp));
16333 			if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16334 				sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
16335 				    "stat-code");
16336 			}
16337 			sd_return_failed_command(un, bp, EIO);
16338 			break;
16339 
16340 		}
16341 		break;
16342 
16343 	case CMD_INCOMPLETE:
16344 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16345 		    "sdintr:  CMD_INCOMPLETE\n");
16346 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
16347 		break;
16348 	case CMD_TRAN_ERR:
16349 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16350 		    "sdintr: CMD_TRAN_ERR\n");
16351 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
16352 		break;
16353 	case CMD_RESET:
16354 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16355 		    "sdintr: CMD_RESET \n");
16356 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
16357 		break;
16358 	case CMD_ABORTED:
16359 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16360 		    "sdintr: CMD_ABORTED \n");
16361 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
16362 		break;
16363 	case CMD_TIMEOUT:
16364 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16365 		    "sdintr: CMD_TIMEOUT\n");
16366 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
16367 		break;
16368 	case CMD_UNX_BUS_FREE:
16369 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16370 		    "sdintr: CMD_UNX_BUS_FREE \n");
16371 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
16372 		break;
16373 	case CMD_TAG_REJECT:
16374 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16375 		    "sdintr: CMD_TAG_REJECT\n");
16376 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
16377 		break;
16378 	default:
16379 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16380 		    "sdintr: default\n");
16381 		/*
16382 		 * Mark the ssc_flags for detecting invliad pkt_reason.
16383 		 */
16384 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16385 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_PKT_REASON,
16386 			    "pkt-reason");
16387 		}
16388 		sd_pkt_reason_default(un, bp, xp, pktp);
16389 		break;
16390 	}
16391 
16392 exit:
16393 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
16394 
16395 	/* Decrement counter to indicate that the callback routine is done. */
16396 	un->un_in_callback--;
16397 	ASSERT(un->un_in_callback >= 0);
16398 
16399 	/*
16400 	 * At this point, the pkt has been dispatched, ie, it is either
16401 	 * being re-tried or has been returned to its caller and should
16402 	 * not be referenced.
16403 	 */
16404 
16405 	mutex_exit(SD_MUTEX(un));
16406 }
16407 
16408 
16409 /*
16410  *    Function: sd_print_incomplete_msg
16411  *
16412  * Description: Prints the error message for a CMD_INCOMPLETE error.
16413  *
16414  *   Arguments: un - ptr to associated softstate for the device.
16415  *		bp - ptr to the buf(9S) for the command.
16416  *		arg - message string ptr
16417  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
16418  *			or SD_NO_RETRY_ISSUED.
16419  *
16420  *     Context: May be called under interrupt context
16421  */
16422 
16423 static void
16424 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
16425 {
16426 	struct scsi_pkt	*pktp;
16427 	char	*msgp;
16428 	char	*cmdp = arg;
16429 
16430 	ASSERT(un != NULL);
16431 	ASSERT(mutex_owned(SD_MUTEX(un)));
16432 	ASSERT(bp != NULL);
16433 	ASSERT(arg != NULL);
16434 	pktp = SD_GET_PKTP(bp);
16435 	ASSERT(pktp != NULL);
16436 
16437 	switch (code) {
16438 	case SD_DELAYED_RETRY_ISSUED:
16439 	case SD_IMMEDIATE_RETRY_ISSUED:
16440 		msgp = "retrying";
16441 		break;
16442 	case SD_NO_RETRY_ISSUED:
16443 	default:
16444 		msgp = "giving up";
16445 		break;
16446 	}
16447 
16448 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16449 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16450 		    "incomplete %s- %s\n", cmdp, msgp);
16451 	}
16452 }
16453 
16454 
16455 
16456 /*
16457  *    Function: sd_pkt_status_good
16458  *
16459  * Description: Processing for a STATUS_GOOD code in pkt_status.
16460  *
16461  *     Context: May be called under interrupt context
16462  */
16463 
16464 static void
16465 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
16466 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16467 {
16468 	char	*cmdp;
16469 
16470 	ASSERT(un != NULL);
16471 	ASSERT(mutex_owned(SD_MUTEX(un)));
16472 	ASSERT(bp != NULL);
16473 	ASSERT(xp != NULL);
16474 	ASSERT(pktp != NULL);
16475 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
16476 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
16477 	ASSERT(pktp->pkt_resid != 0);
16478 
16479 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
16480 
16481 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16482 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
16483 	case SCMD_READ:
16484 		cmdp = "read";
16485 		break;
16486 	case SCMD_WRITE:
16487 		cmdp = "write";
16488 		break;
16489 	default:
16490 		SD_UPDATE_B_RESID(bp, pktp);
16491 		sd_return_command(un, bp);
16492 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16493 		return;
16494 	}
16495 
16496 	/*
16497 	 * See if we can retry the read/write, preferrably immediately.
16498 	 * If retries are exhaused, then sd_retry_command() will update
16499 	 * the b_resid count.
16500 	 */
16501 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
16502 	    cmdp, EIO, (clock_t)0, NULL);
16503 
16504 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16505 }
16506 
16507 
16508 
16509 
16510 
16511 /*
16512  *    Function: sd_handle_request_sense
16513  *
16514  * Description: Processing for non-auto Request Sense command.
16515  *
16516  *   Arguments: un - ptr to associated softstate
16517  *		sense_bp - ptr to buf(9S) for the RQS command
16518  *		sense_xp - ptr to the sd_xbuf for the RQS command
16519  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
16520  *
16521  *     Context: May be called under interrupt context
16522  */
16523 
16524 static void
16525 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
16526 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
16527 {
16528 	struct buf	*cmd_bp;	/* buf for the original command */
16529 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
16530 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
16531 	size_t		actual_len;	/* actual sense data length */
16532 
16533 	ASSERT(un != NULL);
16534 	ASSERT(mutex_owned(SD_MUTEX(un)));
16535 	ASSERT(sense_bp != NULL);
16536 	ASSERT(sense_xp != NULL);
16537 	ASSERT(sense_pktp != NULL);
16538 
16539 	/*
16540 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
16541 	 * RQS command and not the original command.
16542 	 */
16543 	ASSERT(sense_pktp == un->un_rqs_pktp);
16544 	ASSERT(sense_bp   == un->un_rqs_bp);
16545 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
16546 	    (FLAG_SENSING | FLAG_HEAD));
16547 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
16548 	    FLAG_SENSING) == FLAG_SENSING);
16549 
16550 	/* These are the bp, xp, and pktp for the original command */
16551 	cmd_bp = sense_xp->xb_sense_bp;
16552 	cmd_xp = SD_GET_XBUF(cmd_bp);
16553 	cmd_pktp = SD_GET_PKTP(cmd_bp);
16554 
16555 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
16556 		/*
16557 		 * The REQUEST SENSE command failed.  Release the REQUEST
16558 		 * SENSE command for re-use, get back the bp for the original
16559 		 * command, and attempt to re-try the original command if
16560 		 * FLAG_DIAGNOSE is not set in the original packet.
16561 		 */
16562 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16563 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16564 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
16565 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
16566 			    NULL, NULL, EIO, (clock_t)0, NULL);
16567 			return;
16568 		}
16569 	}
16570 
16571 	/*
16572 	 * Save the relevant sense info into the xp for the original cmd.
16573 	 *
16574 	 * Note: if the request sense failed the state info will be zero
16575 	 * as set in sd_mark_rqs_busy()
16576 	 */
16577 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
16578 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
16579 	actual_len = MAX_SENSE_LENGTH - sense_pktp->pkt_resid;
16580 	if ((cmd_xp->xb_pkt_flags & SD_XB_USCSICMD) &&
16581 	    (((struct uscsi_cmd *)cmd_xp->xb_pktinfo)->uscsi_rqlen >
16582 	    SENSE_LENGTH)) {
16583 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
16584 		    MAX_SENSE_LENGTH);
16585 		cmd_xp->xb_sense_resid = sense_pktp->pkt_resid;
16586 	} else {
16587 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
16588 		    SENSE_LENGTH);
16589 		if (actual_len < SENSE_LENGTH) {
16590 			cmd_xp->xb_sense_resid = SENSE_LENGTH - actual_len;
16591 		} else {
16592 			cmd_xp->xb_sense_resid = 0;
16593 		}
16594 	}
16595 
16596 	/*
16597 	 *  Free up the RQS command....
16598 	 *  NOTE:
16599 	 *	Must do this BEFORE calling sd_validate_sense_data!
16600 	 *	sd_validate_sense_data may return the original command in
16601 	 *	which case the pkt will be freed and the flags can no
16602 	 *	longer be touched.
16603 	 *	SD_MUTEX is held through this process until the command
16604 	 *	is dispatched based upon the sense data, so there are
16605 	 *	no race conditions.
16606 	 */
16607 	(void) sd_mark_rqs_idle(un, sense_xp);
16608 
16609 	/*
16610 	 * For a retryable command see if we have valid sense data, if so then
16611 	 * turn it over to sd_decode_sense() to figure out the right course of
16612 	 * action. Just fail a non-retryable command.
16613 	 */
16614 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16615 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp, actual_len) ==
16616 		    SD_SENSE_DATA_IS_VALID) {
16617 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
16618 		}
16619 	} else {
16620 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
16621 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
16622 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
16623 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
16624 		sd_return_failed_command(un, cmd_bp, EIO);
16625 	}
16626 }
16627 
16628 
16629 
16630 
16631 /*
16632  *    Function: sd_handle_auto_request_sense
16633  *
16634  * Description: Processing for auto-request sense information.
16635  *
16636  *   Arguments: un - ptr to associated softstate
16637  *		bp - ptr to buf(9S) for the command
16638  *		xp - ptr to the sd_xbuf for the command
16639  *		pktp - ptr to the scsi_pkt(9S) for the command
16640  *
16641  *     Context: May be called under interrupt context
16642  */
16643 
16644 static void
16645 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
16646 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16647 {
16648 	struct scsi_arq_status *asp;
16649 	size_t actual_len;
16650 
16651 	ASSERT(un != NULL);
16652 	ASSERT(mutex_owned(SD_MUTEX(un)));
16653 	ASSERT(bp != NULL);
16654 	ASSERT(xp != NULL);
16655 	ASSERT(pktp != NULL);
16656 	ASSERT(pktp != un->un_rqs_pktp);
16657 	ASSERT(bp   != un->un_rqs_bp);
16658 
16659 	/*
16660 	 * For auto-request sense, we get a scsi_arq_status back from
16661 	 * the HBA, with the sense data in the sts_sensedata member.
16662 	 * The pkt_scbp of the packet points to this scsi_arq_status.
16663 	 */
16664 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16665 
16666 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
16667 		/*
16668 		 * The auto REQUEST SENSE failed; see if we can re-try
16669 		 * the original command.
16670 		 */
16671 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16672 		    "auto request sense failed (reason=%s)\n",
16673 		    scsi_rname(asp->sts_rqpkt_reason));
16674 
16675 		sd_reset_target(un, pktp);
16676 
16677 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16678 		    NULL, NULL, EIO, (clock_t)0, NULL);
16679 		return;
16680 	}
16681 
16682 	/* Save the relevant sense info into the xp for the original cmd. */
16683 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
16684 	xp->xb_sense_state  = asp->sts_rqpkt_state;
16685 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16686 	if (xp->xb_sense_state & STATE_XARQ_DONE) {
16687 		actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
16688 		bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16689 		    MAX_SENSE_LENGTH);
16690 	} else {
16691 		if (xp->xb_sense_resid > SENSE_LENGTH) {
16692 			actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
16693 		} else {
16694 			actual_len = SENSE_LENGTH - xp->xb_sense_resid;
16695 		}
16696 		if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16697 			if ((((struct uscsi_cmd *)
16698 			    (xp->xb_pktinfo))->uscsi_rqlen) > actual_len) {
16699 				xp->xb_sense_resid = (((struct uscsi_cmd *)
16700 				    (xp->xb_pktinfo))->uscsi_rqlen) -
16701 				    actual_len;
16702 			} else {
16703 				xp->xb_sense_resid = 0;
16704 			}
16705 		}
16706 		bcopy(&asp->sts_sensedata, xp->xb_sense_data, SENSE_LENGTH);
16707 	}
16708 
16709 	/*
16710 	 * See if we have valid sense data, if so then turn it over to
16711 	 * sd_decode_sense() to figure out the right course of action.
16712 	 */
16713 	if (sd_validate_sense_data(un, bp, xp, actual_len) ==
16714 	    SD_SENSE_DATA_IS_VALID) {
16715 		sd_decode_sense(un, bp, xp, pktp);
16716 	}
16717 }
16718 
16719 
16720 /*
16721  *    Function: sd_print_sense_failed_msg
16722  *
16723  * Description: Print log message when RQS has failed.
16724  *
16725  *   Arguments: un - ptr to associated softstate
16726  *		bp - ptr to buf(9S) for the command
16727  *		arg - generic message string ptr
16728  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16729  *			or SD_NO_RETRY_ISSUED
16730  *
16731  *     Context: May be called from interrupt context
16732  */
16733 
16734 static void
16735 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
16736 	int code)
16737 {
16738 	char	*msgp = arg;
16739 
16740 	ASSERT(un != NULL);
16741 	ASSERT(mutex_owned(SD_MUTEX(un)));
16742 	ASSERT(bp != NULL);
16743 
16744 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
16745 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
16746 	}
16747 }
16748 
16749 
16750 /*
16751  *    Function: sd_validate_sense_data
16752  *
16753  * Description: Check the given sense data for validity.
16754  *		If the sense data is not valid, the command will
16755  *		be either failed or retried!
16756  *
16757  * Return Code: SD_SENSE_DATA_IS_INVALID
16758  *		SD_SENSE_DATA_IS_VALID
16759  *
16760  *     Context: May be called from interrupt context
16761  */
16762 
16763 static int
16764 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
16765 	size_t actual_len)
16766 {
16767 	struct scsi_extended_sense *esp;
16768 	struct	scsi_pkt *pktp;
16769 	char	*msgp = NULL;
16770 	sd_ssc_t *sscp;
16771 
16772 	ASSERT(un != NULL);
16773 	ASSERT(mutex_owned(SD_MUTEX(un)));
16774 	ASSERT(bp != NULL);
16775 	ASSERT(bp != un->un_rqs_bp);
16776 	ASSERT(xp != NULL);
16777 	ASSERT(un->un_fm_private != NULL);
16778 
16779 	pktp = SD_GET_PKTP(bp);
16780 	ASSERT(pktp != NULL);
16781 
16782 	sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
16783 	ASSERT(sscp != NULL);
16784 
16785 	/*
16786 	 * Check the status of the RQS command (auto or manual).
16787 	 */
16788 	switch (xp->xb_sense_status & STATUS_MASK) {
16789 	case STATUS_GOOD:
16790 		break;
16791 
16792 	case STATUS_RESERVATION_CONFLICT:
16793 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16794 		return (SD_SENSE_DATA_IS_INVALID);
16795 
16796 	case STATUS_BUSY:
16797 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16798 		    "Busy Status on REQUEST SENSE\n");
16799 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
16800 		    NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
16801 		return (SD_SENSE_DATA_IS_INVALID);
16802 
16803 	case STATUS_QFULL:
16804 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16805 		    "QFULL Status on REQUEST SENSE\n");
16806 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
16807 		    NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
16808 		return (SD_SENSE_DATA_IS_INVALID);
16809 
16810 	case STATUS_CHECK:
16811 	case STATUS_TERMINATED:
16812 		msgp = "Check Condition on REQUEST SENSE\n";
16813 		goto sense_failed;
16814 
16815 	default:
16816 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
16817 		goto sense_failed;
16818 	}
16819 
16820 	/*
16821 	 * See if we got the minimum required amount of sense data.
16822 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
16823 	 * or less.
16824 	 */
16825 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
16826 	    (actual_len == 0)) {
16827 		msgp = "Request Sense couldn't get sense data\n";
16828 		goto sense_failed;
16829 	}
16830 
16831 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
16832 		msgp = "Not enough sense information\n";
16833 		/* Mark the ssc_flags for detecting invalid sense data */
16834 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16835 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE,
16836 			    "sense-data");
16837 		}
16838 		goto sense_failed;
16839 	}
16840 
16841 	/*
16842 	 * We require the extended sense data
16843 	 */
16844 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
16845 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
16846 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16847 			static char tmp[8];
16848 			static char buf[148];
16849 			char *p = (char *)(xp->xb_sense_data);
16850 			int i;
16851 
16852 			mutex_enter(&sd_sense_mutex);
16853 			(void) strcpy(buf, "undecodable sense information:");
16854 			for (i = 0; i < actual_len; i++) {
16855 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
16856 				(void) strcpy(&buf[strlen(buf)], tmp);
16857 			}
16858 			i = strlen(buf);
16859 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
16860 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf);
16861 			mutex_exit(&sd_sense_mutex);
16862 		}
16863 
16864 		/* Mark the ssc_flags for detecting invalid sense data */
16865 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16866 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE,
16867 			    "sense-data");
16868 		}
16869 
16870 		/* Note: Legacy behavior, fail the command with no retry */
16871 		sd_return_failed_command(un, bp, EIO);
16872 		return (SD_SENSE_DATA_IS_INVALID);
16873 	}
16874 
16875 	/*
16876 	 * Check that es_code is valid (es_class concatenated with es_code
16877 	 * make up the "response code" field.  es_class will always be 7, so
16878 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
16879 	 * format.
16880 	 */
16881 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
16882 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
16883 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
16884 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
16885 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
16886 		/* Mark the ssc_flags for detecting invalid sense data */
16887 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16888 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE,
16889 			    "sense-data");
16890 		}
16891 		goto sense_failed;
16892 	}
16893 
16894 	return (SD_SENSE_DATA_IS_VALID);
16895 
16896 sense_failed:
16897 	/*
16898 	 * If the request sense failed (for whatever reason), attempt
16899 	 * to retry the original command.
16900 	 */
16901 #if defined(__i386) || defined(__amd64)
16902 	/*
16903 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
16904 	 * sddef.h for Sparc platform, and x86 uses 1 binary
16905 	 * for both SCSI/FC.
16906 	 * The SD_RETRY_DELAY value need to be adjusted here
16907 	 * when SD_RETRY_DELAY change in sddef.h
16908 	 */
16909 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16910 	    sd_print_sense_failed_msg, msgp, EIO,
16911 	    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
16912 #else
16913 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16914 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
16915 #endif
16916 
16917 	return (SD_SENSE_DATA_IS_INVALID);
16918 }
16919 
16920 /*
16921  *    Function: sd_decode_sense
16922  *
16923  * Description: Take recovery action(s) when SCSI Sense Data is received.
16924  *
16925  *     Context: Interrupt context.
16926  */
16927 
16928 static void
16929 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
16930 	struct scsi_pkt *pktp)
16931 {
16932 	uint8_t sense_key;
16933 
16934 	ASSERT(un != NULL);
16935 	ASSERT(mutex_owned(SD_MUTEX(un)));
16936 	ASSERT(bp != NULL);
16937 	ASSERT(bp != un->un_rqs_bp);
16938 	ASSERT(xp != NULL);
16939 	ASSERT(pktp != NULL);
16940 
16941 	sense_key = scsi_sense_key(xp->xb_sense_data);
16942 
16943 	switch (sense_key) {
16944 	case KEY_NO_SENSE:
16945 		sd_sense_key_no_sense(un, bp, xp, pktp);
16946 		break;
16947 	case KEY_RECOVERABLE_ERROR:
16948 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
16949 		    bp, xp, pktp);
16950 		break;
16951 	case KEY_NOT_READY:
16952 		sd_sense_key_not_ready(un, xp->xb_sense_data,
16953 		    bp, xp, pktp);
16954 		break;
16955 	case KEY_MEDIUM_ERROR:
16956 	case KEY_HARDWARE_ERROR:
16957 		sd_sense_key_medium_or_hardware_error(un,
16958 		    xp->xb_sense_data, bp, xp, pktp);
16959 		break;
16960 	case KEY_ILLEGAL_REQUEST:
16961 		sd_sense_key_illegal_request(un, bp, xp, pktp);
16962 		break;
16963 	case KEY_UNIT_ATTENTION:
16964 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
16965 		    bp, xp, pktp);
16966 		break;
16967 	case KEY_WRITE_PROTECT:
16968 	case KEY_VOLUME_OVERFLOW:
16969 	case KEY_MISCOMPARE:
16970 		sd_sense_key_fail_command(un, bp, xp, pktp);
16971 		break;
16972 	case KEY_BLANK_CHECK:
16973 		sd_sense_key_blank_check(un, bp, xp, pktp);
16974 		break;
16975 	case KEY_ABORTED_COMMAND:
16976 		sd_sense_key_aborted_command(un, bp, xp, pktp);
16977 		break;
16978 	case KEY_VENDOR_UNIQUE:
16979 	case KEY_COPY_ABORTED:
16980 	case KEY_EQUAL:
16981 	case KEY_RESERVED:
16982 	default:
16983 		sd_sense_key_default(un, xp->xb_sense_data,
16984 		    bp, xp, pktp);
16985 		break;
16986 	}
16987 }
16988 
16989 
16990 /*
16991  *    Function: sd_dump_memory
16992  *
16993  * Description: Debug logging routine to print the contents of a user provided
16994  *		buffer. The output of the buffer is broken up into 256 byte
16995  *		segments due to a size constraint of the scsi_log.
16996  *		implementation.
16997  *
16998  *   Arguments: un - ptr to softstate
16999  *		comp - component mask
17000  *		title - "title" string to preceed data when printed
17001  *		data - ptr to data block to be printed
17002  *		len - size of data block to be printed
17003  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
17004  *
17005  *     Context: May be called from interrupt context
17006  */
17007 
17008 #define	SD_DUMP_MEMORY_BUF_SIZE	256
17009 
17010 static char *sd_dump_format_string[] = {
17011 		" 0x%02x",
17012 		" %c"
17013 };
17014 
17015 static void
17016 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
17017     int len, int fmt)
17018 {
17019 	int	i, j;
17020 	int	avail_count;
17021 	int	start_offset;
17022 	int	end_offset;
17023 	size_t	entry_len;
17024 	char	*bufp;
17025 	char	*local_buf;
17026 	char	*format_string;
17027 
17028 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
17029 
17030 	/*
17031 	 * In the debug version of the driver, this function is called from a
17032 	 * number of places which are NOPs in the release driver.
17033 	 * The debug driver therefore has additional methods of filtering
17034 	 * debug output.
17035 	 */
17036 #ifdef SDDEBUG
17037 	/*
17038 	 * In the debug version of the driver we can reduce the amount of debug
17039 	 * messages by setting sd_error_level to something other than
17040 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
17041 	 * sd_component_mask.
17042 	 */
17043 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
17044 	    (sd_error_level != SCSI_ERR_ALL)) {
17045 		return;
17046 	}
17047 	if (((sd_component_mask & comp) == 0) ||
17048 	    (sd_error_level != SCSI_ERR_ALL)) {
17049 		return;
17050 	}
17051 #else
17052 	if (sd_error_level != SCSI_ERR_ALL) {
17053 		return;
17054 	}
17055 #endif
17056 
17057 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
17058 	bufp = local_buf;
17059 	/*
17060 	 * Available length is the length of local_buf[], minus the
17061 	 * length of the title string, minus one for the ":", minus
17062 	 * one for the newline, minus one for the NULL terminator.
17063 	 * This gives the #bytes available for holding the printed
17064 	 * values from the given data buffer.
17065 	 */
17066 	if (fmt == SD_LOG_HEX) {
17067 		format_string = sd_dump_format_string[0];
17068 	} else /* SD_LOG_CHAR */ {
17069 		format_string = sd_dump_format_string[1];
17070 	}
17071 	/*
17072 	 * Available count is the number of elements from the given
17073 	 * data buffer that we can fit into the available length.
17074 	 * This is based upon the size of the format string used.
17075 	 * Make one entry and find it's size.
17076 	 */
17077 	(void) sprintf(bufp, format_string, data[0]);
17078 	entry_len = strlen(bufp);
17079 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
17080 
17081 	j = 0;
17082 	while (j < len) {
17083 		bufp = local_buf;
17084 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
17085 		start_offset = j;
17086 
17087 		end_offset = start_offset + avail_count;
17088 
17089 		(void) sprintf(bufp, "%s:", title);
17090 		bufp += strlen(bufp);
17091 		for (i = start_offset; ((i < end_offset) && (j < len));
17092 		    i++, j++) {
17093 			(void) sprintf(bufp, format_string, data[i]);
17094 			bufp += entry_len;
17095 		}
17096 		(void) sprintf(bufp, "\n");
17097 
17098 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
17099 	}
17100 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
17101 }
17102 
17103 /*
17104  *    Function: sd_print_sense_msg
17105  *
17106  * Description: Log a message based upon the given sense data.
17107  *
17108  *   Arguments: un - ptr to associated softstate
17109  *		bp - ptr to buf(9S) for the command
17110  *		arg - ptr to associate sd_sense_info struct
17111  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17112  *			or SD_NO_RETRY_ISSUED
17113  *
17114  *     Context: May be called from interrupt context
17115  */
17116 
17117 static void
17118 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17119 {
17120 	struct sd_xbuf	*xp;
17121 	struct scsi_pkt	*pktp;
17122 	uint8_t *sensep;
17123 	daddr_t request_blkno;
17124 	diskaddr_t err_blkno;
17125 	int severity;
17126 	int pfa_flag;
17127 	extern struct scsi_key_strings scsi_cmds[];
17128 
17129 	ASSERT(un != NULL);
17130 	ASSERT(mutex_owned(SD_MUTEX(un)));
17131 	ASSERT(bp != NULL);
17132 	xp = SD_GET_XBUF(bp);
17133 	ASSERT(xp != NULL);
17134 	pktp = SD_GET_PKTP(bp);
17135 	ASSERT(pktp != NULL);
17136 	ASSERT(arg != NULL);
17137 
17138 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
17139 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
17140 
17141 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
17142 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
17143 		severity = SCSI_ERR_RETRYABLE;
17144 	}
17145 
17146 	/* Use absolute block number for the request block number */
17147 	request_blkno = xp->xb_blkno;
17148 
17149 	/*
17150 	 * Now try to get the error block number from the sense data
17151 	 */
17152 	sensep = xp->xb_sense_data;
17153 
17154 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
17155 	    (uint64_t *)&err_blkno)) {
17156 		/*
17157 		 * We retrieved the error block number from the information
17158 		 * portion of the sense data.
17159 		 *
17160 		 * For USCSI commands we are better off using the error
17161 		 * block no. as the requested block no. (This is the best
17162 		 * we can estimate.)
17163 		 */
17164 		if ((SD_IS_BUFIO(xp) == FALSE) &&
17165 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
17166 			request_blkno = err_blkno;
17167 		}
17168 	} else {
17169 		/*
17170 		 * Without the es_valid bit set (for fixed format) or an
17171 		 * information descriptor (for descriptor format) we cannot
17172 		 * be certain of the error blkno, so just use the
17173 		 * request_blkno.
17174 		 */
17175 		err_blkno = (diskaddr_t)request_blkno;
17176 	}
17177 
17178 	/*
17179 	 * The following will log the buffer contents for the release driver
17180 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
17181 	 * level is set to verbose.
17182 	 */
17183 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
17184 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17185 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
17186 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
17187 
17188 	if (pfa_flag == FALSE) {
17189 		/* This is normally only set for USCSI */
17190 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
17191 			return;
17192 		}
17193 
17194 		if ((SD_IS_BUFIO(xp) == TRUE) &&
17195 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
17196 		    (severity < sd_error_level))) {
17197 			return;
17198 		}
17199 	}
17200 	/*
17201 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
17202 	 */
17203 	if ((SD_IS_LSI(un)) &&
17204 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
17205 	    (scsi_sense_asc(sensep) == 0x94) &&
17206 	    (scsi_sense_ascq(sensep) == 0x01)) {
17207 		un->un_sonoma_failure_count++;
17208 		if (un->un_sonoma_failure_count > 1) {
17209 			return;
17210 		}
17211 	}
17212 
17213 	scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
17214 	    request_blkno, err_blkno, scsi_cmds,
17215 	    (struct scsi_extended_sense *)sensep,
17216 	    un->un_additional_codes, NULL);
17217 }
17218 
17219 /*
17220  *    Function: sd_sense_key_no_sense
17221  *
17222  * Description: Recovery action when sense data was not received.
17223  *
17224  *     Context: May be called from interrupt context
17225  */
17226 
17227 static void
17228 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
17229 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17230 {
17231 	struct sd_sense_info	si;
17232 
17233 	ASSERT(un != NULL);
17234 	ASSERT(mutex_owned(SD_MUTEX(un)));
17235 	ASSERT(bp != NULL);
17236 	ASSERT(xp != NULL);
17237 	ASSERT(pktp != NULL);
17238 
17239 	si.ssi_severity = SCSI_ERR_FATAL;
17240 	si.ssi_pfa_flag = FALSE;
17241 
17242 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
17243 
17244 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17245 	    &si, EIO, (clock_t)0, NULL);
17246 }
17247 
17248 
17249 /*
17250  *    Function: sd_sense_key_recoverable_error
17251  *
17252  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
17253  *
17254  *     Context: May be called from interrupt context
17255  */
17256 
17257 static void
17258 sd_sense_key_recoverable_error(struct sd_lun *un,
17259 	uint8_t *sense_datap,
17260 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17261 {
17262 	struct sd_sense_info	si;
17263 	uint8_t asc = scsi_sense_asc(sense_datap);
17264 
17265 	ASSERT(un != NULL);
17266 	ASSERT(mutex_owned(SD_MUTEX(un)));
17267 	ASSERT(bp != NULL);
17268 	ASSERT(xp != NULL);
17269 	ASSERT(pktp != NULL);
17270 
17271 	/*
17272 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
17273 	 */
17274 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
17275 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17276 		si.ssi_severity = SCSI_ERR_INFO;
17277 		si.ssi_pfa_flag = TRUE;
17278 	} else {
17279 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
17280 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
17281 		si.ssi_severity = SCSI_ERR_RECOVERED;
17282 		si.ssi_pfa_flag = FALSE;
17283 	}
17284 
17285 	if (pktp->pkt_resid == 0) {
17286 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17287 		sd_return_command(un, bp);
17288 		return;
17289 	}
17290 
17291 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17292 	    &si, EIO, (clock_t)0, NULL);
17293 }
17294 
17295 
17296 
17297 
17298 /*
17299  *    Function: sd_sense_key_not_ready
17300  *
17301  * Description: Recovery actions for a SCSI "Not Ready" sense key.
17302  *
17303  *     Context: May be called from interrupt context
17304  */
17305 
17306 static void
17307 sd_sense_key_not_ready(struct sd_lun *un,
17308 	uint8_t *sense_datap,
17309 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17310 {
17311 	struct sd_sense_info	si;
17312 	uint8_t asc = scsi_sense_asc(sense_datap);
17313 	uint8_t ascq = scsi_sense_ascq(sense_datap);
17314 
17315 	ASSERT(un != NULL);
17316 	ASSERT(mutex_owned(SD_MUTEX(un)));
17317 	ASSERT(bp != NULL);
17318 	ASSERT(xp != NULL);
17319 	ASSERT(pktp != NULL);
17320 
17321 	si.ssi_severity = SCSI_ERR_FATAL;
17322 	si.ssi_pfa_flag = FALSE;
17323 
17324 	/*
17325 	 * Update error stats after first NOT READY error. Disks may have
17326 	 * been powered down and may need to be restarted.  For CDROMs,
17327 	 * report NOT READY errors only if media is present.
17328 	 */
17329 	if ((ISCD(un) && (asc == 0x3A)) ||
17330 	    (xp->xb_nr_retry_count > 0)) {
17331 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17332 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
17333 	}
17334 
17335 	/*
17336 	 * Just fail if the "not ready" retry limit has been reached.
17337 	 */
17338 	if (xp->xb_nr_retry_count >= un->un_notready_retry_count) {
17339 		/* Special check for error message printing for removables. */
17340 		if (un->un_f_has_removable_media && (asc == 0x04) &&
17341 		    (ascq >= 0x04)) {
17342 			si.ssi_severity = SCSI_ERR_ALL;
17343 		}
17344 		goto fail_command;
17345 	}
17346 
17347 	/*
17348 	 * Check the ASC and ASCQ in the sense data as needed, to determine
17349 	 * what to do.
17350 	 */
17351 	switch (asc) {
17352 	case 0x04:	/* LOGICAL UNIT NOT READY */
17353 		/*
17354 		 * disk drives that don't spin up result in a very long delay
17355 		 * in format without warning messages. We will log a message
17356 		 * if the error level is set to verbose.
17357 		 */
17358 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17359 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17360 			    "logical unit not ready, resetting disk\n");
17361 		}
17362 
17363 		/*
17364 		 * There are different requirements for CDROMs and disks for
17365 		 * the number of retries.  If a CD-ROM is giving this, it is
17366 		 * probably reading TOC and is in the process of getting
17367 		 * ready, so we should keep on trying for a long time to make
17368 		 * sure that all types of media are taken in account (for
17369 		 * some media the drive takes a long time to read TOC).  For
17370 		 * disks we do not want to retry this too many times as this
17371 		 * can cause a long hang in format when the drive refuses to
17372 		 * spin up (a very common failure).
17373 		 */
17374 		switch (ascq) {
17375 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
17376 			/*
17377 			 * Disk drives frequently refuse to spin up which
17378 			 * results in a very long hang in format without
17379 			 * warning messages.
17380 			 *
17381 			 * Note: This code preserves the legacy behavior of
17382 			 * comparing xb_nr_retry_count against zero for fibre
17383 			 * channel targets instead of comparing against the
17384 			 * un_reset_retry_count value.  The reason for this
17385 			 * discrepancy has been so utterly lost beneath the
17386 			 * Sands of Time that even Indiana Jones could not
17387 			 * find it.
17388 			 */
17389 			if (un->un_f_is_fibre == TRUE) {
17390 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17391 				    (xp->xb_nr_retry_count > 0)) &&
17392 				    (un->un_startstop_timeid == NULL)) {
17393 					scsi_log(SD_DEVINFO(un), sd_label,
17394 					    CE_WARN, "logical unit not ready, "
17395 					    "resetting disk\n");
17396 					sd_reset_target(un, pktp);
17397 				}
17398 			} else {
17399 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17400 				    (xp->xb_nr_retry_count >
17401 				    un->un_reset_retry_count)) &&
17402 				    (un->un_startstop_timeid == NULL)) {
17403 					scsi_log(SD_DEVINFO(un), sd_label,
17404 					    CE_WARN, "logical unit not ready, "
17405 					    "resetting disk\n");
17406 					sd_reset_target(un, pktp);
17407 				}
17408 			}
17409 			break;
17410 
17411 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
17412 			/*
17413 			 * If the target is in the process of becoming
17414 			 * ready, just proceed with the retry. This can
17415 			 * happen with CD-ROMs that take a long time to
17416 			 * read TOC after a power cycle or reset.
17417 			 */
17418 			goto do_retry;
17419 
17420 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
17421 			break;
17422 
17423 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
17424 			/*
17425 			 * Retries cannot help here so just fail right away.
17426 			 */
17427 			goto fail_command;
17428 
17429 		case 0x88:
17430 			/*
17431 			 * Vendor-unique code for T3/T4: it indicates a
17432 			 * path problem in a mutipathed config, but as far as
17433 			 * the target driver is concerned it equates to a fatal
17434 			 * error, so we should just fail the command right away
17435 			 * (without printing anything to the console). If this
17436 			 * is not a T3/T4, fall thru to the default recovery
17437 			 * action.
17438 			 * T3/T4 is FC only, don't need to check is_fibre
17439 			 */
17440 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
17441 				sd_return_failed_command(un, bp, EIO);
17442 				return;
17443 			}
17444 			/* FALLTHRU */
17445 
17446 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
17447 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
17448 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
17449 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
17450 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
17451 		default:    /* Possible future codes in SCSI spec? */
17452 			/*
17453 			 * For removable-media devices, do not retry if
17454 			 * ASCQ > 2 as these result mostly from USCSI commands
17455 			 * on MMC devices issued to check status of an
17456 			 * operation initiated in immediate mode.  Also for
17457 			 * ASCQ >= 4 do not print console messages as these
17458 			 * mainly represent a user-initiated operation
17459 			 * instead of a system failure.
17460 			 */
17461 			if (un->un_f_has_removable_media) {
17462 				si.ssi_severity = SCSI_ERR_ALL;
17463 				goto fail_command;
17464 			}
17465 			break;
17466 		}
17467 
17468 		/*
17469 		 * As part of our recovery attempt for the NOT READY
17470 		 * condition, we issue a START STOP UNIT command. However
17471 		 * we want to wait for a short delay before attempting this
17472 		 * as there may still be more commands coming back from the
17473 		 * target with the check condition. To do this we use
17474 		 * timeout(9F) to call sd_start_stop_unit_callback() after
17475 		 * the delay interval expires. (sd_start_stop_unit_callback()
17476 		 * dispatches sd_start_stop_unit_task(), which will issue
17477 		 * the actual START STOP UNIT command. The delay interval
17478 		 * is one-half of the delay that we will use to retry the
17479 		 * command that generated the NOT READY condition.
17480 		 *
17481 		 * Note that we could just dispatch sd_start_stop_unit_task()
17482 		 * from here and allow it to sleep for the delay interval,
17483 		 * but then we would be tying up the taskq thread
17484 		 * uncesessarily for the duration of the delay.
17485 		 *
17486 		 * Do not issue the START STOP UNIT if the current command
17487 		 * is already a START STOP UNIT.
17488 		 */
17489 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
17490 			break;
17491 		}
17492 
17493 		/*
17494 		 * Do not schedule the timeout if one is already pending.
17495 		 */
17496 		if (un->un_startstop_timeid != NULL) {
17497 			SD_INFO(SD_LOG_ERROR, un,
17498 			    "sd_sense_key_not_ready: restart already issued to"
17499 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
17500 			    ddi_get_instance(SD_DEVINFO(un)));
17501 			break;
17502 		}
17503 
17504 		/*
17505 		 * Schedule the START STOP UNIT command, then queue the command
17506 		 * for a retry.
17507 		 *
17508 		 * Note: A timeout is not scheduled for this retry because we
17509 		 * want the retry to be serial with the START_STOP_UNIT. The
17510 		 * retry will be started when the START_STOP_UNIT is completed
17511 		 * in sd_start_stop_unit_task.
17512 		 */
17513 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
17514 		    un, un->un_busy_timeout / 2);
17515 		xp->xb_nr_retry_count++;
17516 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
17517 		return;
17518 
17519 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
17520 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17521 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17522 			    "unit does not respond to selection\n");
17523 		}
17524 		break;
17525 
17526 	case 0x3A:	/* MEDIUM NOT PRESENT */
17527 		if (sd_error_level >= SCSI_ERR_FATAL) {
17528 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17529 			    "Caddy not inserted in drive\n");
17530 		}
17531 
17532 		sr_ejected(un);
17533 		un->un_mediastate = DKIO_EJECTED;
17534 		/* The state has changed, inform the media watch routines */
17535 		cv_broadcast(&un->un_state_cv);
17536 		/* Just fail if no media is present in the drive. */
17537 		goto fail_command;
17538 
17539 	default:
17540 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17541 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
17542 			    "Unit not Ready. Additional sense code 0x%x\n",
17543 			    asc);
17544 		}
17545 		break;
17546 	}
17547 
17548 do_retry:
17549 
17550 	/*
17551 	 * Retry the command, as some targets may report NOT READY for
17552 	 * several seconds after being reset.
17553 	 */
17554 	xp->xb_nr_retry_count++;
17555 	si.ssi_severity = SCSI_ERR_RETRYABLE;
17556 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
17557 	    &si, EIO, un->un_busy_timeout, NULL);
17558 
17559 	return;
17560 
17561 fail_command:
17562 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17563 	sd_return_failed_command(un, bp, EIO);
17564 }
17565 
17566 
17567 
17568 /*
17569  *    Function: sd_sense_key_medium_or_hardware_error
17570  *
17571  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
17572  *		sense key.
17573  *
17574  *     Context: May be called from interrupt context
17575  */
17576 
17577 static void
17578 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
17579 	uint8_t *sense_datap,
17580 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17581 {
17582 	struct sd_sense_info	si;
17583 	uint8_t sense_key = scsi_sense_key(sense_datap);
17584 	uint8_t asc = scsi_sense_asc(sense_datap);
17585 
17586 	ASSERT(un != NULL);
17587 	ASSERT(mutex_owned(SD_MUTEX(un)));
17588 	ASSERT(bp != NULL);
17589 	ASSERT(xp != NULL);
17590 	ASSERT(pktp != NULL);
17591 
17592 	si.ssi_severity = SCSI_ERR_FATAL;
17593 	si.ssi_pfa_flag = FALSE;
17594 
17595 	if (sense_key == KEY_MEDIUM_ERROR) {
17596 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
17597 	}
17598 
17599 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17600 
17601 	if ((un->un_reset_retry_count != 0) &&
17602 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
17603 		mutex_exit(SD_MUTEX(un));
17604 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
17605 		if (un->un_f_allow_bus_device_reset == TRUE) {
17606 
17607 			boolean_t try_resetting_target = B_TRUE;
17608 
17609 			/*
17610 			 * We need to be able to handle specific ASC when we are
17611 			 * handling a KEY_HARDWARE_ERROR. In particular
17612 			 * taking the default action of resetting the target may
17613 			 * not be the appropriate way to attempt recovery.
17614 			 * Resetting a target because of a single LUN failure
17615 			 * victimizes all LUNs on that target.
17616 			 *
17617 			 * This is true for the LSI arrays, if an LSI
17618 			 * array controller returns an ASC of 0x84 (LUN Dead) we
17619 			 * should trust it.
17620 			 */
17621 
17622 			if (sense_key == KEY_HARDWARE_ERROR) {
17623 				switch (asc) {
17624 				case 0x84:
17625 					if (SD_IS_LSI(un)) {
17626 						try_resetting_target = B_FALSE;
17627 					}
17628 					break;
17629 				default:
17630 					break;
17631 				}
17632 			}
17633 
17634 			if (try_resetting_target == B_TRUE) {
17635 				int reset_retval = 0;
17636 				if (un->un_f_lun_reset_enabled == TRUE) {
17637 					SD_TRACE(SD_LOG_IO_CORE, un,
17638 					    "sd_sense_key_medium_or_hardware_"
17639 					    "error: issuing RESET_LUN\n");
17640 					reset_retval =
17641 					    scsi_reset(SD_ADDRESS(un),
17642 					    RESET_LUN);
17643 				}
17644 				if (reset_retval == 0) {
17645 					SD_TRACE(SD_LOG_IO_CORE, un,
17646 					    "sd_sense_key_medium_or_hardware_"
17647 					    "error: issuing RESET_TARGET\n");
17648 					(void) scsi_reset(SD_ADDRESS(un),
17649 					    RESET_TARGET);
17650 				}
17651 			}
17652 		}
17653 		mutex_enter(SD_MUTEX(un));
17654 	}
17655 
17656 	/*
17657 	 * This really ought to be a fatal error, but we will retry anyway
17658 	 * as some drives report this as a spurious error.
17659 	 */
17660 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17661 	    &si, EIO, (clock_t)0, NULL);
17662 }
17663 
17664 
17665 
17666 /*
17667  *    Function: sd_sense_key_illegal_request
17668  *
17669  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
17670  *
17671  *     Context: May be called from interrupt context
17672  */
17673 
17674 static void
17675 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
17676 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17677 {
17678 	struct sd_sense_info	si;
17679 
17680 	ASSERT(un != NULL);
17681 	ASSERT(mutex_owned(SD_MUTEX(un)));
17682 	ASSERT(bp != NULL);
17683 	ASSERT(xp != NULL);
17684 	ASSERT(pktp != NULL);
17685 
17686 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
17687 
17688 	si.ssi_severity = SCSI_ERR_INFO;
17689 	si.ssi_pfa_flag = FALSE;
17690 
17691 	/* Pointless to retry if the target thinks it's an illegal request */
17692 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17693 	sd_return_failed_command(un, bp, EIO);
17694 }
17695 
17696 
17697 
17698 
17699 /*
17700  *    Function: sd_sense_key_unit_attention
17701  *
17702  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
17703  *
17704  *     Context: May be called from interrupt context
17705  */
17706 
17707 static void
17708 sd_sense_key_unit_attention(struct sd_lun *un,
17709 	uint8_t *sense_datap,
17710 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17711 {
17712 	/*
17713 	 * For UNIT ATTENTION we allow retries for one minute. Devices
17714 	 * like Sonoma can return UNIT ATTENTION close to a minute
17715 	 * under certain conditions.
17716 	 */
17717 	int	retry_check_flag = SD_RETRIES_UA;
17718 	boolean_t	kstat_updated = B_FALSE;
17719 	struct	sd_sense_info		si;
17720 	uint8_t asc = scsi_sense_asc(sense_datap);
17721 	uint8_t	ascq = scsi_sense_ascq(sense_datap);
17722 
17723 	ASSERT(un != NULL);
17724 	ASSERT(mutex_owned(SD_MUTEX(un)));
17725 	ASSERT(bp != NULL);
17726 	ASSERT(xp != NULL);
17727 	ASSERT(pktp != NULL);
17728 
17729 	si.ssi_severity = SCSI_ERR_INFO;
17730 	si.ssi_pfa_flag = FALSE;
17731 
17732 
17733 	switch (asc) {
17734 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
17735 		if (sd_report_pfa != 0) {
17736 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17737 			si.ssi_pfa_flag = TRUE;
17738 			retry_check_flag = SD_RETRIES_STANDARD;
17739 			goto do_retry;
17740 		}
17741 
17742 		break;
17743 
17744 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
17745 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
17746 			un->un_resvd_status |=
17747 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
17748 		}
17749 #ifdef _LP64
17750 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
17751 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
17752 			    un, KM_NOSLEEP) == 0) {
17753 				/*
17754 				 * If we can't dispatch the task we'll just
17755 				 * live without descriptor sense.  We can
17756 				 * try again on the next "unit attention"
17757 				 */
17758 				SD_ERROR(SD_LOG_ERROR, un,
17759 				    "sd_sense_key_unit_attention: "
17760 				    "Could not dispatch "
17761 				    "sd_reenable_dsense_task\n");
17762 			}
17763 		}
17764 #endif /* _LP64 */
17765 		/* FALLTHRU */
17766 
17767 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
17768 		if (!un->un_f_has_removable_media) {
17769 			break;
17770 		}
17771 
17772 		/*
17773 		 * When we get a unit attention from a removable-media device,
17774 		 * it may be in a state that will take a long time to recover
17775 		 * (e.g., from a reset).  Since we are executing in interrupt
17776 		 * context here, we cannot wait around for the device to come
17777 		 * back. So hand this command off to sd_media_change_task()
17778 		 * for deferred processing under taskq thread context. (Note
17779 		 * that the command still may be failed if a problem is
17780 		 * encountered at a later time.)
17781 		 */
17782 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
17783 		    KM_NOSLEEP) == 0) {
17784 			/*
17785 			 * Cannot dispatch the request so fail the command.
17786 			 */
17787 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
17788 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17789 			si.ssi_severity = SCSI_ERR_FATAL;
17790 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17791 			sd_return_failed_command(un, bp, EIO);
17792 		}
17793 
17794 		/*
17795 		 * If failed to dispatch sd_media_change_task(), we already
17796 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
17797 		 * we should update kstat later if it encounters an error. So,
17798 		 * we update kstat_updated flag here.
17799 		 */
17800 		kstat_updated = B_TRUE;
17801 
17802 		/*
17803 		 * Either the command has been successfully dispatched to a
17804 		 * task Q for retrying, or the dispatch failed. In either case
17805 		 * do NOT retry again by calling sd_retry_command. This sets up
17806 		 * two retries of the same command and when one completes and
17807 		 * frees the resources the other will access freed memory,
17808 		 * a bad thing.
17809 		 */
17810 		return;
17811 
17812 	default:
17813 		break;
17814 	}
17815 
17816 	/*
17817 	 * ASC  ASCQ
17818 	 *  2A   09	Capacity data has changed
17819 	 *  2A   01	Mode parameters changed
17820 	 *  3F   0E	Reported luns data has changed
17821 	 * Arrays that support logical unit expansion should report
17822 	 * capacity changes(2Ah/09). Mode parameters changed and
17823 	 * reported luns data has changed are the approximation.
17824 	 */
17825 	if (((asc == 0x2a) && (ascq == 0x09)) ||
17826 	    ((asc == 0x2a) && (ascq == 0x01)) ||
17827 	    ((asc == 0x3f) && (ascq == 0x0e))) {
17828 		if (taskq_dispatch(sd_tq, sd_target_change_task, un,
17829 		    KM_NOSLEEP) == 0) {
17830 			SD_ERROR(SD_LOG_ERROR, un,
17831 			    "sd_sense_key_unit_attention: "
17832 			    "Could not dispatch sd_target_change_task\n");
17833 		}
17834 	}
17835 
17836 	/*
17837 	 * Update kstat if we haven't done that.
17838 	 */
17839 	if (!kstat_updated) {
17840 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17841 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17842 	}
17843 
17844 do_retry:
17845 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
17846 	    EIO, SD_UA_RETRY_DELAY, NULL);
17847 }
17848 
17849 
17850 
17851 /*
17852  *    Function: sd_sense_key_fail_command
17853  *
17854  * Description: Use to fail a command when we don't like the sense key that
17855  *		was returned.
17856  *
17857  *     Context: May be called from interrupt context
17858  */
17859 
17860 static void
17861 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
17862 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17863 {
17864 	struct sd_sense_info	si;
17865 
17866 	ASSERT(un != NULL);
17867 	ASSERT(mutex_owned(SD_MUTEX(un)));
17868 	ASSERT(bp != NULL);
17869 	ASSERT(xp != NULL);
17870 	ASSERT(pktp != NULL);
17871 
17872 	si.ssi_severity = SCSI_ERR_FATAL;
17873 	si.ssi_pfa_flag = FALSE;
17874 
17875 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17876 	sd_return_failed_command(un, bp, EIO);
17877 }
17878 
17879 
17880 
17881 /*
17882  *    Function: sd_sense_key_blank_check
17883  *
17884  * Description: Recovery actions for a SCSI "Blank Check" sense key.
17885  *		Has no monetary connotation.
17886  *
17887  *     Context: May be called from interrupt context
17888  */
17889 
17890 static void
17891 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
17892 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17893 {
17894 	struct sd_sense_info	si;
17895 
17896 	ASSERT(un != NULL);
17897 	ASSERT(mutex_owned(SD_MUTEX(un)));
17898 	ASSERT(bp != NULL);
17899 	ASSERT(xp != NULL);
17900 	ASSERT(pktp != NULL);
17901 
17902 	/*
17903 	 * Blank check is not fatal for removable devices, therefore
17904 	 * it does not require a console message.
17905 	 */
17906 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
17907 	    SCSI_ERR_FATAL;
17908 	si.ssi_pfa_flag = FALSE;
17909 
17910 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17911 	sd_return_failed_command(un, bp, EIO);
17912 }
17913 
17914 
17915 
17916 
17917 /*
17918  *    Function: sd_sense_key_aborted_command
17919  *
17920  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
17921  *
17922  *     Context: May be called from interrupt context
17923  */
17924 
17925 static void
17926 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
17927 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17928 {
17929 	struct sd_sense_info	si;
17930 
17931 	ASSERT(un != NULL);
17932 	ASSERT(mutex_owned(SD_MUTEX(un)));
17933 	ASSERT(bp != NULL);
17934 	ASSERT(xp != NULL);
17935 	ASSERT(pktp != NULL);
17936 
17937 	si.ssi_severity = SCSI_ERR_FATAL;
17938 	si.ssi_pfa_flag = FALSE;
17939 
17940 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17941 
17942 	/*
17943 	 * This really ought to be a fatal error, but we will retry anyway
17944 	 * as some drives report this as a spurious error.
17945 	 */
17946 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17947 	    &si, EIO, drv_usectohz(100000), NULL);
17948 }
17949 
17950 
17951 
17952 /*
17953  *    Function: sd_sense_key_default
17954  *
17955  * Description: Default recovery action for several SCSI sense keys (basically
17956  *		attempts a retry).
17957  *
17958  *     Context: May be called from interrupt context
17959  */
17960 
17961 static void
17962 sd_sense_key_default(struct sd_lun *un,
17963 	uint8_t *sense_datap,
17964 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17965 {
17966 	struct sd_sense_info	si;
17967 	uint8_t sense_key = scsi_sense_key(sense_datap);
17968 
17969 	ASSERT(un != NULL);
17970 	ASSERT(mutex_owned(SD_MUTEX(un)));
17971 	ASSERT(bp != NULL);
17972 	ASSERT(xp != NULL);
17973 	ASSERT(pktp != NULL);
17974 
17975 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17976 
17977 	/*
17978 	 * Undecoded sense key.	Attempt retries and hope that will fix
17979 	 * the problem.  Otherwise, we're dead.
17980 	 */
17981 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17982 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17983 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
17984 	}
17985 
17986 	si.ssi_severity = SCSI_ERR_FATAL;
17987 	si.ssi_pfa_flag = FALSE;
17988 
17989 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17990 	    &si, EIO, (clock_t)0, NULL);
17991 }
17992 
17993 
17994 
17995 /*
17996  *    Function: sd_print_retry_msg
17997  *
17998  * Description: Print a message indicating the retry action being taken.
17999  *
18000  *   Arguments: un - ptr to associated softstate
18001  *		bp - ptr to buf(9S) for the command
18002  *		arg - not used.
18003  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18004  *			or SD_NO_RETRY_ISSUED
18005  *
18006  *     Context: May be called from interrupt context
18007  */
18008 /* ARGSUSED */
18009 static void
18010 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
18011 {
18012 	struct sd_xbuf	*xp;
18013 	struct scsi_pkt *pktp;
18014 	char *reasonp;
18015 	char *msgp;
18016 
18017 	ASSERT(un != NULL);
18018 	ASSERT(mutex_owned(SD_MUTEX(un)));
18019 	ASSERT(bp != NULL);
18020 	pktp = SD_GET_PKTP(bp);
18021 	ASSERT(pktp != NULL);
18022 	xp = SD_GET_XBUF(bp);
18023 	ASSERT(xp != NULL);
18024 
18025 	ASSERT(!mutex_owned(&un->un_pm_mutex));
18026 	mutex_enter(&un->un_pm_mutex);
18027 	if ((un->un_state == SD_STATE_SUSPENDED) ||
18028 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
18029 	    (pktp->pkt_flags & FLAG_SILENT)) {
18030 		mutex_exit(&un->un_pm_mutex);
18031 		goto update_pkt_reason;
18032 	}
18033 	mutex_exit(&un->un_pm_mutex);
18034 
18035 	/*
18036 	 * Suppress messages if they are all the same pkt_reason; with
18037 	 * TQ, many (up to 256) are returned with the same pkt_reason.
18038 	 * If we are in panic, then suppress the retry messages.
18039 	 */
18040 	switch (flag) {
18041 	case SD_NO_RETRY_ISSUED:
18042 		msgp = "giving up";
18043 		break;
18044 	case SD_IMMEDIATE_RETRY_ISSUED:
18045 	case SD_DELAYED_RETRY_ISSUED:
18046 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
18047 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
18048 		    (sd_error_level != SCSI_ERR_ALL))) {
18049 			return;
18050 		}
18051 		msgp = "retrying command";
18052 		break;
18053 	default:
18054 		goto update_pkt_reason;
18055 	}
18056 
18057 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
18058 	    scsi_rname(pktp->pkt_reason));
18059 
18060 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18061 	    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
18062 
18063 update_pkt_reason:
18064 	/*
18065 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
18066 	 * This is to prevent multiple console messages for the same failure
18067 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
18068 	 * when the command is retried successfully because there still may be
18069 	 * more commands coming back with the same value of pktp->pkt_reason.
18070 	 */
18071 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
18072 		un->un_last_pkt_reason = pktp->pkt_reason;
18073 	}
18074 }
18075 
18076 
18077 /*
18078  *    Function: sd_print_cmd_incomplete_msg
18079  *
18080  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
18081  *
18082  *   Arguments: un - ptr to associated softstate
18083  *		bp - ptr to buf(9S) for the command
18084  *		arg - passed to sd_print_retry_msg()
18085  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18086  *			or SD_NO_RETRY_ISSUED
18087  *
18088  *     Context: May be called from interrupt context
18089  */
18090 
18091 static void
18092 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
18093 	int code)
18094 {
18095 	dev_info_t	*dip;
18096 
18097 	ASSERT(un != NULL);
18098 	ASSERT(mutex_owned(SD_MUTEX(un)));
18099 	ASSERT(bp != NULL);
18100 
18101 	switch (code) {
18102 	case SD_NO_RETRY_ISSUED:
18103 		/* Command was failed. Someone turned off this target? */
18104 		if (un->un_state != SD_STATE_OFFLINE) {
18105 			/*
18106 			 * Suppress message if we are detaching and
18107 			 * device has been disconnected
18108 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
18109 			 * private interface and not part of the DDI
18110 			 */
18111 			dip = un->un_sd->sd_dev;
18112 			if (!(DEVI_IS_DETACHING(dip) &&
18113 			    DEVI_IS_DEVICE_REMOVED(dip))) {
18114 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18115 				"disk not responding to selection\n");
18116 			}
18117 			New_state(un, SD_STATE_OFFLINE);
18118 		}
18119 		break;
18120 
18121 	case SD_DELAYED_RETRY_ISSUED:
18122 	case SD_IMMEDIATE_RETRY_ISSUED:
18123 	default:
18124 		/* Command was successfully queued for retry */
18125 		sd_print_retry_msg(un, bp, arg, code);
18126 		break;
18127 	}
18128 }
18129 
18130 
18131 /*
18132  *    Function: sd_pkt_reason_cmd_incomplete
18133  *
18134  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
18135  *
18136  *     Context: May be called from interrupt context
18137  */
18138 
18139 static void
18140 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
18141 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18142 {
18143 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
18144 
18145 	ASSERT(un != NULL);
18146 	ASSERT(mutex_owned(SD_MUTEX(un)));
18147 	ASSERT(bp != NULL);
18148 	ASSERT(xp != NULL);
18149 	ASSERT(pktp != NULL);
18150 
18151 	/* Do not do a reset if selection did not complete */
18152 	/* Note: Should this not just check the bit? */
18153 	if (pktp->pkt_state != STATE_GOT_BUS) {
18154 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18155 		sd_reset_target(un, pktp);
18156 	}
18157 
18158 	/*
18159 	 * If the target was not successfully selected, then set
18160 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
18161 	 * with the target, and further retries and/or commands are
18162 	 * likely to take a long time.
18163 	 */
18164 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
18165 		flag |= SD_RETRIES_FAILFAST;
18166 	}
18167 
18168 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18169 
18170 	sd_retry_command(un, bp, flag,
18171 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18172 }
18173 
18174 
18175 
18176 /*
18177  *    Function: sd_pkt_reason_cmd_tran_err
18178  *
18179  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
18180  *
18181  *     Context: May be called from interrupt context
18182  */
18183 
18184 static void
18185 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
18186 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18187 {
18188 	ASSERT(un != NULL);
18189 	ASSERT(mutex_owned(SD_MUTEX(un)));
18190 	ASSERT(bp != NULL);
18191 	ASSERT(xp != NULL);
18192 	ASSERT(pktp != NULL);
18193 
18194 	/*
18195 	 * Do not reset if we got a parity error, or if
18196 	 * selection did not complete.
18197 	 */
18198 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18199 	/* Note: Should this not just check the bit for pkt_state? */
18200 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
18201 	    (pktp->pkt_state != STATE_GOT_BUS)) {
18202 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18203 		sd_reset_target(un, pktp);
18204 	}
18205 
18206 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18207 
18208 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18209 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18210 }
18211 
18212 
18213 
18214 /*
18215  *    Function: sd_pkt_reason_cmd_reset
18216  *
18217  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
18218  *
18219  *     Context: May be called from interrupt context
18220  */
18221 
18222 static void
18223 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
18224 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18225 {
18226 	ASSERT(un != NULL);
18227 	ASSERT(mutex_owned(SD_MUTEX(un)));
18228 	ASSERT(bp != NULL);
18229 	ASSERT(xp != NULL);
18230 	ASSERT(pktp != NULL);
18231 
18232 	/* The target may still be running the command, so try to reset. */
18233 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18234 	sd_reset_target(un, pktp);
18235 
18236 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18237 
18238 	/*
18239 	 * If pkt_reason is CMD_RESET chances are that this pkt got
18240 	 * reset because another target on this bus caused it. The target
18241 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18242 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18243 	 */
18244 
18245 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18246 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18247 }
18248 
18249 
18250 
18251 
18252 /*
18253  *    Function: sd_pkt_reason_cmd_aborted
18254  *
18255  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
18256  *
18257  *     Context: May be called from interrupt context
18258  */
18259 
18260 static void
18261 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
18262 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18263 {
18264 	ASSERT(un != NULL);
18265 	ASSERT(mutex_owned(SD_MUTEX(un)));
18266 	ASSERT(bp != NULL);
18267 	ASSERT(xp != NULL);
18268 	ASSERT(pktp != NULL);
18269 
18270 	/* The target may still be running the command, so try to reset. */
18271 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18272 	sd_reset_target(un, pktp);
18273 
18274 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18275 
18276 	/*
18277 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
18278 	 * aborted because another target on this bus caused it. The target
18279 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18280 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18281 	 */
18282 
18283 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18284 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18285 }
18286 
18287 
18288 
18289 /*
18290  *    Function: sd_pkt_reason_cmd_timeout
18291  *
18292  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
18293  *
18294  *     Context: May be called from interrupt context
18295  */
18296 
18297 static void
18298 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
18299 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18300 {
18301 	ASSERT(un != NULL);
18302 	ASSERT(mutex_owned(SD_MUTEX(un)));
18303 	ASSERT(bp != NULL);
18304 	ASSERT(xp != NULL);
18305 	ASSERT(pktp != NULL);
18306 
18307 
18308 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18309 	sd_reset_target(un, pktp);
18310 
18311 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18312 
18313 	/*
18314 	 * A command timeout indicates that we could not establish
18315 	 * communication with the target, so set SD_RETRIES_FAILFAST
18316 	 * as further retries/commands are likely to take a long time.
18317 	 */
18318 	sd_retry_command(un, bp,
18319 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
18320 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18321 }
18322 
18323 
18324 
18325 /*
18326  *    Function: sd_pkt_reason_cmd_unx_bus_free
18327  *
18328  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
18329  *
18330  *     Context: May be called from interrupt context
18331  */
18332 
18333 static void
18334 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
18335 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18336 {
18337 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
18338 
18339 	ASSERT(un != NULL);
18340 	ASSERT(mutex_owned(SD_MUTEX(un)));
18341 	ASSERT(bp != NULL);
18342 	ASSERT(xp != NULL);
18343 	ASSERT(pktp != NULL);
18344 
18345 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18346 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18347 
18348 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
18349 	    sd_print_retry_msg : NULL;
18350 
18351 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18352 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18353 }
18354 
18355 
18356 /*
18357  *    Function: sd_pkt_reason_cmd_tag_reject
18358  *
18359  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
18360  *
18361  *     Context: May be called from interrupt context
18362  */
18363 
18364 static void
18365 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
18366 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18367 {
18368 	ASSERT(un != NULL);
18369 	ASSERT(mutex_owned(SD_MUTEX(un)));
18370 	ASSERT(bp != NULL);
18371 	ASSERT(xp != NULL);
18372 	ASSERT(pktp != NULL);
18373 
18374 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18375 	pktp->pkt_flags = 0;
18376 	un->un_tagflags = 0;
18377 	if (un->un_f_opt_queueing == TRUE) {
18378 		un->un_throttle = min(un->un_throttle, 3);
18379 	} else {
18380 		un->un_throttle = 1;
18381 	}
18382 	mutex_exit(SD_MUTEX(un));
18383 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
18384 	mutex_enter(SD_MUTEX(un));
18385 
18386 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18387 
18388 	/* Legacy behavior not to check retry counts here. */
18389 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
18390 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18391 }
18392 
18393 
18394 /*
18395  *    Function: sd_pkt_reason_default
18396  *
18397  * Description: Default recovery actions for SCSA pkt_reason values that
18398  *		do not have more explicit recovery actions.
18399  *
18400  *     Context: May be called from interrupt context
18401  */
18402 
18403 static void
18404 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
18405 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18406 {
18407 	ASSERT(un != NULL);
18408 	ASSERT(mutex_owned(SD_MUTEX(un)));
18409 	ASSERT(bp != NULL);
18410 	ASSERT(xp != NULL);
18411 	ASSERT(pktp != NULL);
18412 
18413 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18414 	sd_reset_target(un, pktp);
18415 
18416 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18417 
18418 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18419 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18420 }
18421 
18422 
18423 
18424 /*
18425  *    Function: sd_pkt_status_check_condition
18426  *
18427  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
18428  *
18429  *     Context: May be called from interrupt context
18430  */
18431 
18432 static void
18433 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
18434 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18435 {
18436 	ASSERT(un != NULL);
18437 	ASSERT(mutex_owned(SD_MUTEX(un)));
18438 	ASSERT(bp != NULL);
18439 	ASSERT(xp != NULL);
18440 	ASSERT(pktp != NULL);
18441 
18442 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
18443 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
18444 
18445 	/*
18446 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
18447 	 * command will be retried after the request sense). Otherwise, retry
18448 	 * the command. Note: we are issuing the request sense even though the
18449 	 * retry limit may have been reached for the failed command.
18450 	 */
18451 	if (un->un_f_arq_enabled == FALSE) {
18452 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18453 		    "no ARQ, sending request sense command\n");
18454 		sd_send_request_sense_command(un, bp, pktp);
18455 	} else {
18456 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18457 		    "ARQ,retrying request sense command\n");
18458 #if defined(__i386) || defined(__amd64)
18459 		/*
18460 		 * The SD_RETRY_DELAY value need to be adjusted here
18461 		 * when SD_RETRY_DELAY change in sddef.h
18462 		 */
18463 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18464 		    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
18465 		    NULL);
18466 #else
18467 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
18468 		    EIO, SD_RETRY_DELAY, NULL);
18469 #endif
18470 	}
18471 
18472 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
18473 }
18474 
18475 
18476 /*
18477  *    Function: sd_pkt_status_busy
18478  *
18479  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
18480  *
18481  *     Context: May be called from interrupt context
18482  */
18483 
18484 static void
18485 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
18486 	struct scsi_pkt *pktp)
18487 {
18488 	ASSERT(un != NULL);
18489 	ASSERT(mutex_owned(SD_MUTEX(un)));
18490 	ASSERT(bp != NULL);
18491 	ASSERT(xp != NULL);
18492 	ASSERT(pktp != NULL);
18493 
18494 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18495 	    "sd_pkt_status_busy: entry\n");
18496 
18497 	/* If retries are exhausted, just fail the command. */
18498 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
18499 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18500 		    "device busy too long\n");
18501 		sd_return_failed_command(un, bp, EIO);
18502 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18503 		    "sd_pkt_status_busy: exit\n");
18504 		return;
18505 	}
18506 	xp->xb_retry_count++;
18507 
18508 	/*
18509 	 * Try to reset the target. However, we do not want to perform
18510 	 * more than one reset if the device continues to fail. The reset
18511 	 * will be performed when the retry count reaches the reset
18512 	 * threshold.  This threshold should be set such that at least
18513 	 * one retry is issued before the reset is performed.
18514 	 */
18515 	if (xp->xb_retry_count ==
18516 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
18517 		int rval = 0;
18518 		mutex_exit(SD_MUTEX(un));
18519 		if (un->un_f_allow_bus_device_reset == TRUE) {
18520 			/*
18521 			 * First try to reset the LUN; if we cannot then
18522 			 * try to reset the target.
18523 			 */
18524 			if (un->un_f_lun_reset_enabled == TRUE) {
18525 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18526 				    "sd_pkt_status_busy: RESET_LUN\n");
18527 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18528 			}
18529 			if (rval == 0) {
18530 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18531 				    "sd_pkt_status_busy: RESET_TARGET\n");
18532 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18533 			}
18534 		}
18535 		if (rval == 0) {
18536 			/*
18537 			 * If the RESET_LUN and/or RESET_TARGET failed,
18538 			 * try RESET_ALL
18539 			 */
18540 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18541 			    "sd_pkt_status_busy: RESET_ALL\n");
18542 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
18543 		}
18544 		mutex_enter(SD_MUTEX(un));
18545 		if (rval == 0) {
18546 			/*
18547 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
18548 			 * At this point we give up & fail the command.
18549 			 */
18550 			sd_return_failed_command(un, bp, EIO);
18551 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18552 			    "sd_pkt_status_busy: exit (failed cmd)\n");
18553 			return;
18554 		}
18555 	}
18556 
18557 	/*
18558 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
18559 	 * we have already checked the retry counts above.
18560 	 */
18561 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
18562 	    EIO, un->un_busy_timeout, NULL);
18563 
18564 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18565 	    "sd_pkt_status_busy: exit\n");
18566 }
18567 
18568 
18569 /*
18570  *    Function: sd_pkt_status_reservation_conflict
18571  *
18572  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
18573  *		command status.
18574  *
18575  *     Context: May be called from interrupt context
18576  */
18577 
18578 static void
18579 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
18580 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18581 {
18582 	ASSERT(un != NULL);
18583 	ASSERT(mutex_owned(SD_MUTEX(un)));
18584 	ASSERT(bp != NULL);
18585 	ASSERT(xp != NULL);
18586 	ASSERT(pktp != NULL);
18587 
18588 	/*
18589 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
18590 	 * conflict could be due to various reasons like incorrect keys, not
18591 	 * registered or not reserved etc. So, we return EACCES to the caller.
18592 	 */
18593 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
18594 		int cmd = SD_GET_PKT_OPCODE(pktp);
18595 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
18596 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
18597 			sd_return_failed_command(un, bp, EACCES);
18598 			return;
18599 		}
18600 	}
18601 
18602 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
18603 
18604 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
18605 		if (sd_failfast_enable != 0) {
18606 			/* By definition, we must panic here.... */
18607 			sd_panic_for_res_conflict(un);
18608 			/*NOTREACHED*/
18609 		}
18610 		SD_ERROR(SD_LOG_IO, un,
18611 		    "sd_handle_resv_conflict: Disk Reserved\n");
18612 		sd_return_failed_command(un, bp, EACCES);
18613 		return;
18614 	}
18615 
18616 	/*
18617 	 * 1147670: retry only if sd_retry_on_reservation_conflict
18618 	 * property is set (default is 1). Retries will not succeed
18619 	 * on a disk reserved by another initiator. HA systems
18620 	 * may reset this via sd.conf to avoid these retries.
18621 	 *
18622 	 * Note: The legacy return code for this failure is EIO, however EACCES
18623 	 * seems more appropriate for a reservation conflict.
18624 	 */
18625 	if (sd_retry_on_reservation_conflict == 0) {
18626 		SD_ERROR(SD_LOG_IO, un,
18627 		    "sd_handle_resv_conflict: Device Reserved\n");
18628 		sd_return_failed_command(un, bp, EIO);
18629 		return;
18630 	}
18631 
18632 	/*
18633 	 * Retry the command if we can.
18634 	 *
18635 	 * Note: The legacy return code for this failure is EIO, however EACCES
18636 	 * seems more appropriate for a reservation conflict.
18637 	 */
18638 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18639 	    (clock_t)2, NULL);
18640 }
18641 
18642 
18643 
18644 /*
18645  *    Function: sd_pkt_status_qfull
18646  *
18647  * Description: Handle a QUEUE FULL condition from the target.  This can
18648  *		occur if the HBA does not handle the queue full condition.
18649  *		(Basically this means third-party HBAs as Sun HBAs will
18650  *		handle the queue full condition.)  Note that if there are
18651  *		some commands already in the transport, then the queue full
18652  *		has occurred because the queue for this nexus is actually
18653  *		full. If there are no commands in the transport, then the
18654  *		queue full is resulting from some other initiator or lun
18655  *		consuming all the resources at the target.
18656  *
18657  *     Context: May be called from interrupt context
18658  */
18659 
18660 static void
18661 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
18662 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18663 {
18664 	ASSERT(un != NULL);
18665 	ASSERT(mutex_owned(SD_MUTEX(un)));
18666 	ASSERT(bp != NULL);
18667 	ASSERT(xp != NULL);
18668 	ASSERT(pktp != NULL);
18669 
18670 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18671 	    "sd_pkt_status_qfull: entry\n");
18672 
18673 	/*
18674 	 * Just lower the QFULL throttle and retry the command.  Note that
18675 	 * we do not limit the number of retries here.
18676 	 */
18677 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
18678 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
18679 	    SD_RESTART_TIMEOUT, NULL);
18680 
18681 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18682 	    "sd_pkt_status_qfull: exit\n");
18683 }
18684 
18685 
18686 /*
18687  *    Function: sd_reset_target
18688  *
18689  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
18690  *		RESET_TARGET, or RESET_ALL.
18691  *
18692  *     Context: May be called under interrupt context.
18693  */
18694 
18695 static void
18696 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
18697 {
18698 	int rval = 0;
18699 
18700 	ASSERT(un != NULL);
18701 	ASSERT(mutex_owned(SD_MUTEX(un)));
18702 	ASSERT(pktp != NULL);
18703 
18704 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
18705 
18706 	/*
18707 	 * No need to reset if the transport layer has already done so.
18708 	 */
18709 	if ((pktp->pkt_statistics &
18710 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
18711 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18712 		    "sd_reset_target: no reset\n");
18713 		return;
18714 	}
18715 
18716 	mutex_exit(SD_MUTEX(un));
18717 
18718 	if (un->un_f_allow_bus_device_reset == TRUE) {
18719 		if (un->un_f_lun_reset_enabled == TRUE) {
18720 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18721 			    "sd_reset_target: RESET_LUN\n");
18722 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18723 		}
18724 		if (rval == 0) {
18725 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18726 			    "sd_reset_target: RESET_TARGET\n");
18727 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18728 		}
18729 	}
18730 
18731 	if (rval == 0) {
18732 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18733 		    "sd_reset_target: RESET_ALL\n");
18734 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
18735 	}
18736 
18737 	mutex_enter(SD_MUTEX(un));
18738 
18739 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
18740 }
18741 
18742 /*
18743  *    Function: sd_target_change_task
18744  *
18745  * Description: Handle dynamic target change
18746  *
18747  *     Context: Executes in a taskq() thread context
18748  */
18749 static void
18750 sd_target_change_task(void *arg)
18751 {
18752 	struct sd_lun		*un = arg;
18753 	uint64_t		capacity;
18754 	diskaddr_t		label_cap;
18755 	uint_t			lbasize;
18756 	sd_ssc_t		*ssc;
18757 
18758 	ASSERT(un != NULL);
18759 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18760 
18761 	if ((un->un_f_blockcount_is_valid == FALSE) ||
18762 	    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
18763 		return;
18764 	}
18765 
18766 	ssc = sd_ssc_init(un);
18767 
18768 	if (sd_send_scsi_READ_CAPACITY(ssc, &capacity,
18769 	    &lbasize, SD_PATH_DIRECT) != 0) {
18770 		SD_ERROR(SD_LOG_ERROR, un,
18771 		    "sd_target_change_task: fail to read capacity\n");
18772 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
18773 		goto task_exit;
18774 	}
18775 
18776 	mutex_enter(SD_MUTEX(un));
18777 	if (capacity <= un->un_blockcount) {
18778 		mutex_exit(SD_MUTEX(un));
18779 		goto task_exit;
18780 	}
18781 
18782 	sd_update_block_info(un, lbasize, capacity);
18783 	mutex_exit(SD_MUTEX(un));
18784 
18785 	/*
18786 	 * If lun is EFI labeled and lun capacity is greater than the
18787 	 * capacity contained in the label, log a sys event.
18788 	 */
18789 	if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
18790 	    (void*)SD_PATH_DIRECT) == 0) {
18791 		mutex_enter(SD_MUTEX(un));
18792 		if (un->un_f_blockcount_is_valid &&
18793 		    un->un_blockcount > label_cap) {
18794 			mutex_exit(SD_MUTEX(un));
18795 			sd_log_lun_expansion_event(un, KM_SLEEP);
18796 		} else {
18797 			mutex_exit(SD_MUTEX(un));
18798 		}
18799 	}
18800 
18801 task_exit:
18802 	sd_ssc_fini(ssc);
18803 }
18804 
18805 /*
18806  *    Function: sd_log_lun_expansion_event
18807  *
18808  * Description: Log lun expansion sys event
18809  *
18810  *     Context: Never called from interrupt context
18811  */
18812 static void
18813 sd_log_lun_expansion_event(struct sd_lun *un, int km_flag)
18814 {
18815 	int err;
18816 	char			*path;
18817 	nvlist_t		*dle_attr_list;
18818 
18819 	/* Allocate and build sysevent attribute list */
18820 	err = nvlist_alloc(&dle_attr_list, NV_UNIQUE_NAME_TYPE, km_flag);
18821 	if (err != 0) {
18822 		SD_ERROR(SD_LOG_ERROR, un,
18823 		    "sd_log_lun_expansion_event: fail to allocate space\n");
18824 		return;
18825 	}
18826 
18827 	path = kmem_alloc(MAXPATHLEN, km_flag);
18828 	if (path == NULL) {
18829 		nvlist_free(dle_attr_list);
18830 		SD_ERROR(SD_LOG_ERROR, un,
18831 		    "sd_log_lun_expansion_event: fail to allocate space\n");
18832 		return;
18833 	}
18834 	/*
18835 	 * Add path attribute to identify the lun.
18836 	 * We are using minor node 'a' as the sysevent attribute.
18837 	 */
18838 	(void) snprintf(path, MAXPATHLEN, "/devices");
18839 	(void) ddi_pathname(SD_DEVINFO(un), path + strlen(path));
18840 	(void) snprintf(path + strlen(path), MAXPATHLEN - strlen(path),
18841 	    ":a");
18842 
18843 	err = nvlist_add_string(dle_attr_list, DEV_PHYS_PATH, path);
18844 	if (err != 0) {
18845 		nvlist_free(dle_attr_list);
18846 		kmem_free(path, MAXPATHLEN);
18847 		SD_ERROR(SD_LOG_ERROR, un,
18848 		    "sd_log_lun_expansion_event: fail to add attribute\n");
18849 		return;
18850 	}
18851 
18852 	/* Log dynamic lun expansion sysevent */
18853 	err = ddi_log_sysevent(SD_DEVINFO(un), SUNW_VENDOR, EC_DEV_STATUS,
18854 	    ESC_DEV_DLE, dle_attr_list, NULL, km_flag);
18855 	if (err != DDI_SUCCESS) {
18856 		SD_ERROR(SD_LOG_ERROR, un,
18857 		    "sd_log_lun_expansion_event: fail to log sysevent\n");
18858 	}
18859 
18860 	nvlist_free(dle_attr_list);
18861 	kmem_free(path, MAXPATHLEN);
18862 }
18863 
18864 /*
18865  *    Function: sd_media_change_task
18866  *
18867  * Description: Recovery action for CDROM to become available.
18868  *
18869  *     Context: Executes in a taskq() thread context
18870  */
18871 
18872 static void
18873 sd_media_change_task(void *arg)
18874 {
18875 	struct	scsi_pkt	*pktp = arg;
18876 	struct	sd_lun		*un;
18877 	struct	buf		*bp;
18878 	struct	sd_xbuf		*xp;
18879 	int	err		= 0;
18880 	int	retry_count	= 0;
18881 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
18882 	struct	sd_sense_info	si;
18883 
18884 	ASSERT(pktp != NULL);
18885 	bp = (struct buf *)pktp->pkt_private;
18886 	ASSERT(bp != NULL);
18887 	xp = SD_GET_XBUF(bp);
18888 	ASSERT(xp != NULL);
18889 	un = SD_GET_UN(bp);
18890 	ASSERT(un != NULL);
18891 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18892 	ASSERT(un->un_f_monitor_media_state);
18893 
18894 	si.ssi_severity = SCSI_ERR_INFO;
18895 	si.ssi_pfa_flag = FALSE;
18896 
18897 	/*
18898 	 * When a reset is issued on a CDROM, it takes a long time to
18899 	 * recover. First few attempts to read capacity and other things
18900 	 * related to handling unit attention fail (with a ASC 0x4 and
18901 	 * ASCQ 0x1). In that case we want to do enough retries and we want
18902 	 * to limit the retries in other cases of genuine failures like
18903 	 * no media in drive.
18904 	 */
18905 	while (retry_count++ < retry_limit) {
18906 		if ((err = sd_handle_mchange(un)) == 0) {
18907 			break;
18908 		}
18909 		if (err == EAGAIN) {
18910 			retry_limit = SD_UNIT_ATTENTION_RETRY;
18911 		}
18912 		/* Sleep for 0.5 sec. & try again */
18913 		delay(drv_usectohz(500000));
18914 	}
18915 
18916 	/*
18917 	 * Dispatch (retry or fail) the original command here,
18918 	 * along with appropriate console messages....
18919 	 *
18920 	 * Must grab the mutex before calling sd_retry_command,
18921 	 * sd_print_sense_msg and sd_return_failed_command.
18922 	 */
18923 	mutex_enter(SD_MUTEX(un));
18924 	if (err != SD_CMD_SUCCESS) {
18925 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18926 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18927 		si.ssi_severity = SCSI_ERR_FATAL;
18928 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18929 		sd_return_failed_command(un, bp, EIO);
18930 	} else {
18931 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
18932 		    &si, EIO, (clock_t)0, NULL);
18933 	}
18934 	mutex_exit(SD_MUTEX(un));
18935 }
18936 
18937 
18938 
18939 /*
18940  *    Function: sd_handle_mchange
18941  *
18942  * Description: Perform geometry validation & other recovery when CDROM
18943  *		has been removed from drive.
18944  *
18945  * Return Code: 0 for success
18946  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
18947  *		sd_send_scsi_READ_CAPACITY()
18948  *
18949  *     Context: Executes in a taskq() thread context
18950  */
18951 
18952 static int
18953 sd_handle_mchange(struct sd_lun *un)
18954 {
18955 	uint64_t	capacity;
18956 	uint32_t	lbasize;
18957 	int		rval;
18958 	sd_ssc_t	*ssc;
18959 
18960 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18961 	ASSERT(un->un_f_monitor_media_state);
18962 
18963 	ssc = sd_ssc_init(un);
18964 	rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
18965 	    SD_PATH_DIRECT_PRIORITY);
18966 
18967 	if (rval != 0)
18968 		goto failed;
18969 
18970 	mutex_enter(SD_MUTEX(un));
18971 	sd_update_block_info(un, lbasize, capacity);
18972 
18973 	if (un->un_errstats != NULL) {
18974 		struct	sd_errstats *stp =
18975 		    (struct sd_errstats *)un->un_errstats->ks_data;
18976 		stp->sd_capacity.value.ui64 = (uint64_t)
18977 		    ((uint64_t)un->un_blockcount *
18978 		    (uint64_t)un->un_tgt_blocksize);
18979 	}
18980 
18981 	/*
18982 	 * Check if the media in the device is writable or not
18983 	 */
18984 	if (ISCD(un)) {
18985 		sd_check_for_writable_cd(ssc, SD_PATH_DIRECT_PRIORITY);
18986 	}
18987 
18988 	/*
18989 	 * Note: Maybe let the strategy/partitioning chain worry about getting
18990 	 * valid geometry.
18991 	 */
18992 	mutex_exit(SD_MUTEX(un));
18993 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
18994 
18995 
18996 	if (cmlb_validate(un->un_cmlbhandle, 0,
18997 	    (void *)SD_PATH_DIRECT_PRIORITY) != 0) {
18998 		sd_ssc_fini(ssc);
18999 		return (EIO);
19000 	} else {
19001 		if (un->un_f_pkstats_enabled) {
19002 			sd_set_pstats(un);
19003 			SD_TRACE(SD_LOG_IO_PARTITION, un,
19004 			    "sd_handle_mchange: un:0x%p pstats created and "
19005 			    "set\n", un);
19006 		}
19007 	}
19008 
19009 	/*
19010 	 * Try to lock the door
19011 	 */
19012 	rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
19013 	    SD_PATH_DIRECT_PRIORITY);
19014 failed:
19015 	if (rval != 0)
19016 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19017 	sd_ssc_fini(ssc);
19018 	return (rval);
19019 }
19020 
19021 
19022 /*
19023  *    Function: sd_send_scsi_DOORLOCK
19024  *
19025  * Description: Issue the scsi DOOR LOCK command
19026  *
19027  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
19028  *                      structure for this target.
19029  *		flag  - SD_REMOVAL_ALLOW
19030  *			SD_REMOVAL_PREVENT
19031  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19032  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19033  *			to use the USCSI "direct" chain and bypass the normal
19034  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19035  *			command is issued as part of an error recovery action.
19036  *
19037  * Return Code: 0   - Success
19038  *		errno return code from sd_ssc_send()
19039  *
19040  *     Context: Can sleep.
19041  */
19042 
19043 static int
19044 sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag)
19045 {
19046 	struct scsi_extended_sense	sense_buf;
19047 	union scsi_cdb		cdb;
19048 	struct uscsi_cmd	ucmd_buf;
19049 	int			status;
19050 	struct sd_lun		*un;
19051 
19052 	ASSERT(ssc != NULL);
19053 	un = ssc->ssc_un;
19054 	ASSERT(un != NULL);
19055 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19056 
19057 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
19058 
19059 	/* already determined doorlock is not supported, fake success */
19060 	if (un->un_f_doorlock_supported == FALSE) {
19061 		return (0);
19062 	}
19063 
19064 	/*
19065 	 * If we are ejecting and see an SD_REMOVAL_PREVENT
19066 	 * ignore the command so we can complete the eject
19067 	 * operation.
19068 	 */
19069 	if (flag == SD_REMOVAL_PREVENT) {
19070 		mutex_enter(SD_MUTEX(un));
19071 		if (un->un_f_ejecting == TRUE) {
19072 			mutex_exit(SD_MUTEX(un));
19073 			return (EAGAIN);
19074 		}
19075 		mutex_exit(SD_MUTEX(un));
19076 	}
19077 
19078 	bzero(&cdb, sizeof (cdb));
19079 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19080 
19081 	cdb.scc_cmd = SCMD_DOORLOCK;
19082 	cdb.cdb_opaque[4] = (uchar_t)flag;
19083 
19084 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19085 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19086 	ucmd_buf.uscsi_bufaddr	= NULL;
19087 	ucmd_buf.uscsi_buflen	= 0;
19088 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19089 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19090 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19091 	ucmd_buf.uscsi_timeout	= 15;
19092 
19093 	SD_TRACE(SD_LOG_IO, un,
19094 	    "sd_send_scsi_DOORLOCK: returning sd_ssc_send\n");
19095 
19096 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19097 	    UIO_SYSSPACE, path_flag);
19098 
19099 	if (status == 0)
19100 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19101 
19102 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
19103 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19104 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
19105 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19106 
19107 		/* fake success and skip subsequent doorlock commands */
19108 		un->un_f_doorlock_supported = FALSE;
19109 		return (0);
19110 	}
19111 
19112 	return (status);
19113 }
19114 
19115 /*
19116  *    Function: sd_send_scsi_READ_CAPACITY
19117  *
19118  * Description: This routine uses the scsi READ CAPACITY command to determine
19119  *		the device capacity in number of blocks and the device native
19120  *		block size. If this function returns a failure, then the
19121  *		values in *capp and *lbap are undefined.  If the capacity
19122  *		returned is 0xffffffff then the lun is too large for a
19123  *		normal READ CAPACITY command and the results of a
19124  *		READ CAPACITY 16 will be used instead.
19125  *
19126  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
19127  *		capp - ptr to unsigned 64-bit variable to receive the
19128  *			capacity value from the command.
19129  *		lbap - ptr to unsigned 32-bit varaible to receive the
19130  *			block size value from the command
19131  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19132  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19133  *			to use the USCSI "direct" chain and bypass the normal
19134  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19135  *			command is issued as part of an error recovery action.
19136  *
19137  * Return Code: 0   - Success
19138  *		EIO - IO error
19139  *		EACCES - Reservation conflict detected
19140  *		EAGAIN - Device is becoming ready
19141  *		errno return code from sd_ssc_send()
19142  *
19143  *     Context: Can sleep.  Blocks until command completes.
19144  */
19145 
19146 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
19147 
19148 static int
19149 sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp, uint32_t *lbap,
19150 	int path_flag)
19151 {
19152 	struct	scsi_extended_sense	sense_buf;
19153 	struct	uscsi_cmd	ucmd_buf;
19154 	union	scsi_cdb	cdb;
19155 	uint32_t		*capacity_buf;
19156 	uint64_t		capacity;
19157 	uint32_t		lbasize;
19158 	int			status;
19159 	struct sd_lun		*un;
19160 
19161 	ASSERT(ssc != NULL);
19162 
19163 	un = ssc->ssc_un;
19164 	ASSERT(un != NULL);
19165 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19166 	ASSERT(capp != NULL);
19167 	ASSERT(lbap != NULL);
19168 
19169 	SD_TRACE(SD_LOG_IO, un,
19170 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19171 
19172 	/*
19173 	 * First send a READ_CAPACITY command to the target.
19174 	 * (This command is mandatory under SCSI-2.)
19175 	 *
19176 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
19177 	 * Medium Indicator bit is cleared.  The address field must be
19178 	 * zero if the PMI bit is zero.
19179 	 */
19180 	bzero(&cdb, sizeof (cdb));
19181 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19182 
19183 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
19184 
19185 	cdb.scc_cmd = SCMD_READ_CAPACITY;
19186 
19187 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19188 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19189 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
19190 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
19191 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19192 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19193 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19194 	ucmd_buf.uscsi_timeout	= 60;
19195 
19196 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19197 	    UIO_SYSSPACE, path_flag);
19198 
19199 	switch (status) {
19200 	case 0:
19201 		/* Return failure if we did not get valid capacity data. */
19202 		if (ucmd_buf.uscsi_resid != 0) {
19203 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
19204 			    "sd_send_scsi_READ_CAPACITY received "
19205 			    "invalid capacity data");
19206 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19207 			return (EIO);
19208 		}
19209 
19210 		/*
19211 		 * Read capacity and block size from the READ CAPACITY 10 data.
19212 		 * This data may be adjusted later due to device specific
19213 		 * issues.
19214 		 *
19215 		 * According to the SCSI spec, the READ CAPACITY 10
19216 		 * command returns the following:
19217 		 *
19218 		 *  bytes 0-3: Maximum logical block address available.
19219 		 *		(MSB in byte:0 & LSB in byte:3)
19220 		 *
19221 		 *  bytes 4-7: Block length in bytes
19222 		 *		(MSB in byte:4 & LSB in byte:7)
19223 		 *
19224 		 */
19225 		capacity = BE_32(capacity_buf[0]);
19226 		lbasize = BE_32(capacity_buf[1]);
19227 
19228 		/*
19229 		 * Done with capacity_buf
19230 		 */
19231 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19232 
19233 		/*
19234 		 * if the reported capacity is set to all 0xf's, then
19235 		 * this disk is too large and requires SBC-2 commands.
19236 		 * Reissue the request using READ CAPACITY 16.
19237 		 */
19238 		if (capacity == 0xffffffff) {
19239 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19240 			status = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity,
19241 			    &lbasize, path_flag);
19242 			if (status != 0) {
19243 				return (status);
19244 			}
19245 		}
19246 		break;	/* Success! */
19247 	case EIO:
19248 		switch (ucmd_buf.uscsi_status) {
19249 		case STATUS_RESERVATION_CONFLICT:
19250 			status = EACCES;
19251 			break;
19252 		case STATUS_CHECK:
19253 			/*
19254 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19255 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19256 			 */
19257 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19258 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
19259 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
19260 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19261 				return (EAGAIN);
19262 			}
19263 			break;
19264 		default:
19265 			break;
19266 		}
19267 		/* FALLTHRU */
19268 	default:
19269 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19270 		return (status);
19271 	}
19272 
19273 	/*
19274 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
19275 	 * (2352 and 0 are common) so for these devices always force the value
19276 	 * to 2048 as required by the ATAPI specs.
19277 	 */
19278 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
19279 		lbasize = 2048;
19280 	}
19281 
19282 	/*
19283 	 * Get the maximum LBA value from the READ CAPACITY data.
19284 	 * Here we assume that the Partial Medium Indicator (PMI) bit
19285 	 * was cleared when issuing the command. This means that the LBA
19286 	 * returned from the device is the LBA of the last logical block
19287 	 * on the logical unit.  The actual logical block count will be
19288 	 * this value plus one.
19289 	 *
19290 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
19291 	 * so scale the capacity value to reflect this.
19292 	 */
19293 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
19294 
19295 	/*
19296 	 * Copy the values from the READ CAPACITY command into the space
19297 	 * provided by the caller.
19298 	 */
19299 	*capp = capacity;
19300 	*lbap = lbasize;
19301 
19302 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
19303 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19304 
19305 	/*
19306 	 * Both the lbasize and capacity from the device must be nonzero,
19307 	 * otherwise we assume that the values are not valid and return
19308 	 * failure to the caller. (4203735)
19309 	 */
19310 	if ((capacity == 0) || (lbasize == 0)) {
19311 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
19312 		    "sd_send_scsi_READ_CAPACITY received invalid value "
19313 		    "capacity %llu lbasize %d", capacity, lbasize);
19314 		return (EIO);
19315 	}
19316 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19317 	return (0);
19318 }
19319 
19320 /*
19321  *    Function: sd_send_scsi_READ_CAPACITY_16
19322  *
19323  * Description: This routine uses the scsi READ CAPACITY 16 command to
19324  *		determine the device capacity in number of blocks and the
19325  *		device native block size.  If this function returns a failure,
19326  *		then the values in *capp and *lbap are undefined.
19327  *		This routine should always be called by
19328  *		sd_send_scsi_READ_CAPACITY which will appy any device
19329  *		specific adjustments to capacity and lbasize.
19330  *
19331  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
19332  *		capp - ptr to unsigned 64-bit variable to receive the
19333  *			capacity value from the command.
19334  *		lbap - ptr to unsigned 32-bit varaible to receive the
19335  *			block size value from the command
19336  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19337  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19338  *			to use the USCSI "direct" chain and bypass the normal
19339  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
19340  *			this command is issued as part of an error recovery
19341  *			action.
19342  *
19343  * Return Code: 0   - Success
19344  *		EIO - IO error
19345  *		EACCES - Reservation conflict detected
19346  *		EAGAIN - Device is becoming ready
19347  *		errno return code from sd_ssc_send()
19348  *
19349  *     Context: Can sleep.  Blocks until command completes.
19350  */
19351 
19352 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
19353 
19354 static int
19355 sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp,
19356 	uint32_t *lbap, int path_flag)
19357 {
19358 	struct	scsi_extended_sense	sense_buf;
19359 	struct	uscsi_cmd	ucmd_buf;
19360 	union	scsi_cdb	cdb;
19361 	uint64_t		*capacity16_buf;
19362 	uint64_t		capacity;
19363 	uint32_t		lbasize;
19364 	int			status;
19365 	struct sd_lun		*un;
19366 
19367 	ASSERT(ssc != NULL);
19368 
19369 	un = ssc->ssc_un;
19370 	ASSERT(un != NULL);
19371 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19372 	ASSERT(capp != NULL);
19373 	ASSERT(lbap != NULL);
19374 
19375 	SD_TRACE(SD_LOG_IO, un,
19376 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19377 
19378 	/*
19379 	 * First send a READ_CAPACITY_16 command to the target.
19380 	 *
19381 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
19382 	 * Medium Indicator bit is cleared.  The address field must be
19383 	 * zero if the PMI bit is zero.
19384 	 */
19385 	bzero(&cdb, sizeof (cdb));
19386 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19387 
19388 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
19389 
19390 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19391 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
19392 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
19393 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
19394 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19395 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19396 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19397 	ucmd_buf.uscsi_timeout	= 60;
19398 
19399 	/*
19400 	 * Read Capacity (16) is a Service Action In command.  One
19401 	 * command byte (0x9E) is overloaded for multiple operations,
19402 	 * with the second CDB byte specifying the desired operation
19403 	 */
19404 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
19405 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
19406 
19407 	/*
19408 	 * Fill in allocation length field
19409 	 */
19410 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
19411 
19412 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19413 	    UIO_SYSSPACE, path_flag);
19414 
19415 	switch (status) {
19416 	case 0:
19417 		/* Return failure if we did not get valid capacity data. */
19418 		if (ucmd_buf.uscsi_resid > 20) {
19419 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
19420 			    "sd_send_scsi_READ_CAPACITY_16 received "
19421 			    "invalid capacity data");
19422 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19423 			return (EIO);
19424 		}
19425 
19426 		/*
19427 		 * Read capacity and block size from the READ CAPACITY 10 data.
19428 		 * This data may be adjusted later due to device specific
19429 		 * issues.
19430 		 *
19431 		 * According to the SCSI spec, the READ CAPACITY 10
19432 		 * command returns the following:
19433 		 *
19434 		 *  bytes 0-7: Maximum logical block address available.
19435 		 *		(MSB in byte:0 & LSB in byte:7)
19436 		 *
19437 		 *  bytes 8-11: Block length in bytes
19438 		 *		(MSB in byte:8 & LSB in byte:11)
19439 		 *
19440 		 */
19441 		capacity = BE_64(capacity16_buf[0]);
19442 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
19443 
19444 		/*
19445 		 * Done with capacity16_buf
19446 		 */
19447 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19448 
19449 		/*
19450 		 * if the reported capacity is set to all 0xf's, then
19451 		 * this disk is too large.  This could only happen with
19452 		 * a device that supports LBAs larger than 64 bits which
19453 		 * are not defined by any current T10 standards.
19454 		 */
19455 		if (capacity == 0xffffffffffffffff) {
19456 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
19457 			    "disk is too large");
19458 			return (EIO);
19459 		}
19460 		break;	/* Success! */
19461 	case EIO:
19462 		switch (ucmd_buf.uscsi_status) {
19463 		case STATUS_RESERVATION_CONFLICT:
19464 			status = EACCES;
19465 			break;
19466 		case STATUS_CHECK:
19467 			/*
19468 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19469 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19470 			 */
19471 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19472 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
19473 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
19474 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19475 				return (EAGAIN);
19476 			}
19477 			break;
19478 		default:
19479 			break;
19480 		}
19481 		/* FALLTHRU */
19482 	default:
19483 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19484 		return (status);
19485 	}
19486 
19487 	*capp = capacity;
19488 	*lbap = lbasize;
19489 
19490 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
19491 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19492 
19493 	return (0);
19494 }
19495 
19496 
19497 /*
19498  *    Function: sd_send_scsi_START_STOP_UNIT
19499  *
19500  * Description: Issue a scsi START STOP UNIT command to the target.
19501  *
19502  *   Arguments: ssc    - ssc contatins pointer to driver soft state (unit)
19503  *                       structure for this target.
19504  *		flag  - SD_TARGET_START
19505  *			SD_TARGET_STOP
19506  *			SD_TARGET_EJECT
19507  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19508  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19509  *			to use the USCSI "direct" chain and bypass the normal
19510  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19511  *			command is issued as part of an error recovery action.
19512  *
19513  * Return Code: 0   - Success
19514  *		EIO - IO error
19515  *		EACCES - Reservation conflict detected
19516  *		ENXIO  - Not Ready, medium not present
19517  *		errno return code from sd_ssc_send()
19518  *
19519  *     Context: Can sleep.
19520  */
19521 
19522 static int
19523 sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int flag, int path_flag)
19524 {
19525 	struct	scsi_extended_sense	sense_buf;
19526 	union scsi_cdb		cdb;
19527 	struct uscsi_cmd	ucmd_buf;
19528 	int			status;
19529 	struct sd_lun		*un;
19530 
19531 	ASSERT(ssc != NULL);
19532 	un = ssc->ssc_un;
19533 	ASSERT(un != NULL);
19534 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19535 
19536 	SD_TRACE(SD_LOG_IO, un,
19537 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
19538 
19539 	if (un->un_f_check_start_stop &&
19540 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
19541 	    (un->un_f_start_stop_supported != TRUE)) {
19542 		return (0);
19543 	}
19544 
19545 	/*
19546 	 * If we are performing an eject operation and
19547 	 * we receive any command other than SD_TARGET_EJECT
19548 	 * we should immediately return.
19549 	 */
19550 	if (flag != SD_TARGET_EJECT) {
19551 		mutex_enter(SD_MUTEX(un));
19552 		if (un->un_f_ejecting == TRUE) {
19553 			mutex_exit(SD_MUTEX(un));
19554 			return (EAGAIN);
19555 		}
19556 		mutex_exit(SD_MUTEX(un));
19557 	}
19558 
19559 	bzero(&cdb, sizeof (cdb));
19560 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19561 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19562 
19563 	cdb.scc_cmd = SCMD_START_STOP;
19564 	cdb.cdb_opaque[4] = (uchar_t)flag;
19565 
19566 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19567 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19568 	ucmd_buf.uscsi_bufaddr	= NULL;
19569 	ucmd_buf.uscsi_buflen	= 0;
19570 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19571 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19572 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19573 	ucmd_buf.uscsi_timeout	= 200;
19574 
19575 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19576 	    UIO_SYSSPACE, path_flag);
19577 
19578 	switch (status) {
19579 	case 0:
19580 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19581 		break;	/* Success! */
19582 	case EIO:
19583 		switch (ucmd_buf.uscsi_status) {
19584 		case STATUS_RESERVATION_CONFLICT:
19585 			status = EACCES;
19586 			break;
19587 		case STATUS_CHECK:
19588 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
19589 				switch (scsi_sense_key(
19590 				    (uint8_t *)&sense_buf)) {
19591 				case KEY_ILLEGAL_REQUEST:
19592 					status = ENOTSUP;
19593 					break;
19594 				case KEY_NOT_READY:
19595 					if (scsi_sense_asc(
19596 					    (uint8_t *)&sense_buf)
19597 					    == 0x3A) {
19598 						status = ENXIO;
19599 					}
19600 					break;
19601 				default:
19602 					break;
19603 				}
19604 			}
19605 			break;
19606 		default:
19607 			break;
19608 		}
19609 		break;
19610 	default:
19611 		break;
19612 	}
19613 
19614 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
19615 
19616 	return (status);
19617 }
19618 
19619 
19620 /*
19621  *    Function: sd_start_stop_unit_callback
19622  *
19623  * Description: timeout(9F) callback to begin recovery process for a
19624  *		device that has spun down.
19625  *
19626  *   Arguments: arg - pointer to associated softstate struct.
19627  *
19628  *     Context: Executes in a timeout(9F) thread context
19629  */
19630 
19631 static void
19632 sd_start_stop_unit_callback(void *arg)
19633 {
19634 	struct sd_lun	*un = arg;
19635 	ASSERT(un != NULL);
19636 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19637 
19638 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
19639 
19640 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
19641 }
19642 
19643 
19644 /*
19645  *    Function: sd_start_stop_unit_task
19646  *
19647  * Description: Recovery procedure when a drive is spun down.
19648  *
19649  *   Arguments: arg - pointer to associated softstate struct.
19650  *
19651  *     Context: Executes in a taskq() thread context
19652  */
19653 
19654 static void
19655 sd_start_stop_unit_task(void *arg)
19656 {
19657 	struct sd_lun	*un = arg;
19658 	sd_ssc_t	*ssc;
19659 	int		rval;
19660 
19661 	ASSERT(un != NULL);
19662 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19663 
19664 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
19665 
19666 	/*
19667 	 * Some unformatted drives report not ready error, no need to
19668 	 * restart if format has been initiated.
19669 	 */
19670 	mutex_enter(SD_MUTEX(un));
19671 	if (un->un_f_format_in_progress == TRUE) {
19672 		mutex_exit(SD_MUTEX(un));
19673 		return;
19674 	}
19675 	mutex_exit(SD_MUTEX(un));
19676 
19677 	/*
19678 	 * When a START STOP command is issued from here, it is part of a
19679 	 * failure recovery operation and must be issued before any other
19680 	 * commands, including any pending retries. Thus it must be sent
19681 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
19682 	 * succeeds or not, we will start I/O after the attempt.
19683 	 */
19684 	ssc = sd_ssc_init(un);
19685 	rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_START,
19686 	    SD_PATH_DIRECT_PRIORITY);
19687 	if (rval != 0)
19688 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19689 	sd_ssc_fini(ssc);
19690 	/*
19691 	 * The above call blocks until the START_STOP_UNIT command completes.
19692 	 * Now that it has completed, we must re-try the original IO that
19693 	 * received the NOT READY condition in the first place. There are
19694 	 * three possible conditions here:
19695 	 *
19696 	 *  (1) The original IO is on un_retry_bp.
19697 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
19698 	 *	is NULL.
19699 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
19700 	 *	points to some other, unrelated bp.
19701 	 *
19702 	 * For each case, we must call sd_start_cmds() with un_retry_bp
19703 	 * as the argument. If un_retry_bp is NULL, this will initiate
19704 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
19705 	 * then this will process the bp on un_retry_bp. That may or may not
19706 	 * be the original IO, but that does not matter: the important thing
19707 	 * is to keep the IO processing going at this point.
19708 	 *
19709 	 * Note: This is a very specific error recovery sequence associated
19710 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
19711 	 * serialize the I/O with completion of the spin-up.
19712 	 */
19713 	mutex_enter(SD_MUTEX(un));
19714 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19715 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
19716 	    un, un->un_retry_bp);
19717 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
19718 	sd_start_cmds(un, un->un_retry_bp);
19719 	mutex_exit(SD_MUTEX(un));
19720 
19721 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
19722 }
19723 
19724 
19725 /*
19726  *    Function: sd_send_scsi_INQUIRY
19727  *
19728  * Description: Issue the scsi INQUIRY command.
19729  *
19730  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
19731  *                      structure for this target.
19732  *		bufaddr
19733  *		buflen
19734  *		evpd
19735  *		page_code
19736  *		page_length
19737  *
19738  * Return Code: 0   - Success
19739  *		errno return code from sd_ssc_send()
19740  *
19741  *     Context: Can sleep. Does not return until command is completed.
19742  */
19743 
19744 static int
19745 sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr, size_t buflen,
19746 	uchar_t evpd, uchar_t page_code, size_t *residp)
19747 {
19748 	union scsi_cdb		cdb;
19749 	struct uscsi_cmd	ucmd_buf;
19750 	int			status;
19751 	struct sd_lun		*un;
19752 
19753 	ASSERT(ssc != NULL);
19754 	un = ssc->ssc_un;
19755 	ASSERT(un != NULL);
19756 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19757 	ASSERT(bufaddr != NULL);
19758 
19759 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
19760 
19761 	bzero(&cdb, sizeof (cdb));
19762 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19763 	bzero(bufaddr, buflen);
19764 
19765 	cdb.scc_cmd = SCMD_INQUIRY;
19766 	cdb.cdb_opaque[1] = evpd;
19767 	cdb.cdb_opaque[2] = page_code;
19768 	FORMG0COUNT(&cdb, buflen);
19769 
19770 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19771 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19772 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19773 	ucmd_buf.uscsi_buflen	= buflen;
19774 	ucmd_buf.uscsi_rqbuf	= NULL;
19775 	ucmd_buf.uscsi_rqlen	= 0;
19776 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
19777 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
19778 
19779 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19780 	    UIO_SYSSPACE, SD_PATH_DIRECT);
19781 
19782 	/*
19783 	 * Only handle status == 0, the upper-level caller
19784 	 * will put different assessment based on the context.
19785 	 */
19786 	if (status == 0)
19787 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19788 
19789 	if ((status == 0) && (residp != NULL)) {
19790 		*residp = ucmd_buf.uscsi_resid;
19791 	}
19792 
19793 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
19794 
19795 	return (status);
19796 }
19797 
19798 
19799 /*
19800  *    Function: sd_send_scsi_TEST_UNIT_READY
19801  *
19802  * Description: Issue the scsi TEST UNIT READY command.
19803  *		This routine can be told to set the flag USCSI_DIAGNOSE to
19804  *		prevent retrying failed commands. Use this when the intent
19805  *		is either to check for device readiness, to clear a Unit
19806  *		Attention, or to clear any outstanding sense data.
19807  *		However under specific conditions the expected behavior
19808  *		is for retries to bring a device ready, so use the flag
19809  *		with caution.
19810  *
19811  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
19812  *                      structure for this target.
19813  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
19814  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
19815  *			0: dont check for media present, do retries on cmd.
19816  *
19817  * Return Code: 0   - Success
19818  *		EIO - IO error
19819  *		EACCES - Reservation conflict detected
19820  *		ENXIO  - Not Ready, medium not present
19821  *		errno return code from sd_ssc_send()
19822  *
19823  *     Context: Can sleep. Does not return until command is completed.
19824  */
19825 
19826 static int
19827 sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag)
19828 {
19829 	struct	scsi_extended_sense	sense_buf;
19830 	union scsi_cdb		cdb;
19831 	struct uscsi_cmd	ucmd_buf;
19832 	int			status;
19833 	struct sd_lun		*un;
19834 
19835 	ASSERT(ssc != NULL);
19836 	un = ssc->ssc_un;
19837 	ASSERT(un != NULL);
19838 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19839 
19840 	SD_TRACE(SD_LOG_IO, un,
19841 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
19842 
19843 	/*
19844 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
19845 	 * timeouts when they receive a TUR and the queue is not empty. Check
19846 	 * the configuration flag set during attach (indicating the drive has
19847 	 * this firmware bug) and un_ncmds_in_transport before issuing the
19848 	 * TUR. If there are
19849 	 * pending commands return success, this is a bit arbitrary but is ok
19850 	 * for non-removables (i.e. the eliteI disks) and non-clustering
19851 	 * configurations.
19852 	 */
19853 	if (un->un_f_cfg_tur_check == TRUE) {
19854 		mutex_enter(SD_MUTEX(un));
19855 		if (un->un_ncmds_in_transport != 0) {
19856 			mutex_exit(SD_MUTEX(un));
19857 			return (0);
19858 		}
19859 		mutex_exit(SD_MUTEX(un));
19860 	}
19861 
19862 	bzero(&cdb, sizeof (cdb));
19863 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19864 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19865 
19866 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
19867 
19868 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19869 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19870 	ucmd_buf.uscsi_bufaddr	= NULL;
19871 	ucmd_buf.uscsi_buflen	= 0;
19872 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19873 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19874 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19875 
19876 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
19877 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
19878 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
19879 	}
19880 	ucmd_buf.uscsi_timeout	= 60;
19881 
19882 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19883 	    UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT :
19884 	    SD_PATH_STANDARD));
19885 
19886 	switch (status) {
19887 	case 0:
19888 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19889 		break;	/* Success! */
19890 	case EIO:
19891 		switch (ucmd_buf.uscsi_status) {
19892 		case STATUS_RESERVATION_CONFLICT:
19893 			status = EACCES;
19894 			break;
19895 		case STATUS_CHECK:
19896 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
19897 				break;
19898 			}
19899 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19900 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
19901 			    KEY_NOT_READY) &&
19902 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
19903 				status = ENXIO;
19904 			}
19905 			break;
19906 		default:
19907 			break;
19908 		}
19909 		break;
19910 	default:
19911 		break;
19912 	}
19913 
19914 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
19915 
19916 	return (status);
19917 }
19918 
19919 /*
19920  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
19921  *
19922  * Description: Issue the scsi PERSISTENT RESERVE IN command.
19923  *
19924  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
19925  *                      structure for this target.
19926  *
19927  * Return Code: 0   - Success
19928  *		EACCES
19929  *		ENOTSUP
19930  *		errno return code from sd_ssc_send()
19931  *
19932  *     Context: Can sleep. Does not return until command is completed.
19933  */
19934 
19935 static int
19936 sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc, uchar_t  usr_cmd,
19937 	uint16_t data_len, uchar_t *data_bufp)
19938 {
19939 	struct scsi_extended_sense	sense_buf;
19940 	union scsi_cdb		cdb;
19941 	struct uscsi_cmd	ucmd_buf;
19942 	int			status;
19943 	int			no_caller_buf = FALSE;
19944 	struct sd_lun		*un;
19945 
19946 	ASSERT(ssc != NULL);
19947 	un = ssc->ssc_un;
19948 	ASSERT(un != NULL);
19949 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19950 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
19951 
19952 	SD_TRACE(SD_LOG_IO, un,
19953 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
19954 
19955 	bzero(&cdb, sizeof (cdb));
19956 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19957 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19958 	if (data_bufp == NULL) {
19959 		/* Allocate a default buf if the caller did not give one */
19960 		ASSERT(data_len == 0);
19961 		data_len  = MHIOC_RESV_KEY_SIZE;
19962 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
19963 		no_caller_buf = TRUE;
19964 	}
19965 
19966 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
19967 	cdb.cdb_opaque[1] = usr_cmd;
19968 	FORMG1COUNT(&cdb, data_len);
19969 
19970 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19971 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19972 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
19973 	ucmd_buf.uscsi_buflen	= data_len;
19974 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19975 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19976 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19977 	ucmd_buf.uscsi_timeout	= 60;
19978 
19979 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19980 	    UIO_SYSSPACE, SD_PATH_STANDARD);
19981 
19982 	switch (status) {
19983 	case 0:
19984 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19985 
19986 		break;	/* Success! */
19987 	case EIO:
19988 		switch (ucmd_buf.uscsi_status) {
19989 		case STATUS_RESERVATION_CONFLICT:
19990 			status = EACCES;
19991 			break;
19992 		case STATUS_CHECK:
19993 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19994 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
19995 			    KEY_ILLEGAL_REQUEST)) {
19996 				status = ENOTSUP;
19997 			}
19998 			break;
19999 		default:
20000 			break;
20001 		}
20002 		break;
20003 	default:
20004 		break;
20005 	}
20006 
20007 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
20008 
20009 	if (no_caller_buf == TRUE) {
20010 		kmem_free(data_bufp, data_len);
20011 	}
20012 
20013 	return (status);
20014 }
20015 
20016 
20017 /*
20018  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
20019  *
20020  * Description: This routine is the driver entry point for handling CD-ROM
20021  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
20022  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
20023  *		device.
20024  *
20025  *   Arguments: ssc  -  ssc contains un - pointer to soft state struct
20026  *                      for the target.
20027  *		usr_cmd SCSI-3 reservation facility command (one of
20028  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
20029  *			SD_SCSI3_PREEMPTANDABORT)
20030  *		usr_bufp - user provided pointer register, reserve descriptor or
20031  *			preempt and abort structure (mhioc_register_t,
20032  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
20033  *
20034  * Return Code: 0   - Success
20035  *		EACCES
20036  *		ENOTSUP
20037  *		errno return code from sd_ssc_send()
20038  *
20039  *     Context: Can sleep. Does not return until command is completed.
20040  */
20041 
20042 static int
20043 sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc, uchar_t usr_cmd,
20044 	uchar_t	*usr_bufp)
20045 {
20046 	struct scsi_extended_sense	sense_buf;
20047 	union scsi_cdb		cdb;
20048 	struct uscsi_cmd	ucmd_buf;
20049 	int			status;
20050 	uchar_t			data_len = sizeof (sd_prout_t);
20051 	sd_prout_t		*prp;
20052 	struct sd_lun		*un;
20053 
20054 	ASSERT(ssc != NULL);
20055 	un = ssc->ssc_un;
20056 	ASSERT(un != NULL);
20057 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20058 	ASSERT(data_len == 24);	/* required by scsi spec */
20059 
20060 	SD_TRACE(SD_LOG_IO, un,
20061 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
20062 
20063 	if (usr_bufp == NULL) {
20064 		return (EINVAL);
20065 	}
20066 
20067 	bzero(&cdb, sizeof (cdb));
20068 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20069 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20070 	prp = kmem_zalloc(data_len, KM_SLEEP);
20071 
20072 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
20073 	cdb.cdb_opaque[1] = usr_cmd;
20074 	FORMG1COUNT(&cdb, data_len);
20075 
20076 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20077 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20078 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
20079 	ucmd_buf.uscsi_buflen	= data_len;
20080 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20081 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20082 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20083 	ucmd_buf.uscsi_timeout	= 60;
20084 
20085 	switch (usr_cmd) {
20086 	case SD_SCSI3_REGISTER: {
20087 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
20088 
20089 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20090 		bcopy(ptr->newkey.key, prp->service_key,
20091 		    MHIOC_RESV_KEY_SIZE);
20092 		prp->aptpl = ptr->aptpl;
20093 		break;
20094 	}
20095 	case SD_SCSI3_RESERVE:
20096 	case SD_SCSI3_RELEASE: {
20097 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
20098 
20099 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20100 		prp->scope_address = BE_32(ptr->scope_specific_addr);
20101 		cdb.cdb_opaque[2] = ptr->type;
20102 		break;
20103 	}
20104 	case SD_SCSI3_PREEMPTANDABORT: {
20105 		mhioc_preemptandabort_t *ptr =
20106 		    (mhioc_preemptandabort_t *)usr_bufp;
20107 
20108 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20109 		bcopy(ptr->victim_key.key, prp->service_key,
20110 		    MHIOC_RESV_KEY_SIZE);
20111 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
20112 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
20113 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
20114 		break;
20115 	}
20116 	case SD_SCSI3_REGISTERANDIGNOREKEY:
20117 	{
20118 		mhioc_registerandignorekey_t *ptr;
20119 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
20120 		bcopy(ptr->newkey.key,
20121 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
20122 		prp->aptpl = ptr->aptpl;
20123 		break;
20124 	}
20125 	default:
20126 		ASSERT(FALSE);
20127 		break;
20128 	}
20129 
20130 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20131 	    UIO_SYSSPACE, SD_PATH_STANDARD);
20132 
20133 	switch (status) {
20134 	case 0:
20135 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20136 		break;	/* Success! */
20137 	case EIO:
20138 		switch (ucmd_buf.uscsi_status) {
20139 		case STATUS_RESERVATION_CONFLICT:
20140 			status = EACCES;
20141 			break;
20142 		case STATUS_CHECK:
20143 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20144 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20145 			    KEY_ILLEGAL_REQUEST)) {
20146 				status = ENOTSUP;
20147 			}
20148 			break;
20149 		default:
20150 			break;
20151 		}
20152 		break;
20153 	default:
20154 		break;
20155 	}
20156 
20157 	kmem_free(prp, data_len);
20158 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
20159 	return (status);
20160 }
20161 
20162 
20163 /*
20164  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
20165  *
20166  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
20167  *
20168  *   Arguments: un - pointer to the target's soft state struct
20169  *              dkc - pointer to the callback structure
20170  *
20171  * Return Code: 0 - success
20172  *		errno-type error code
20173  *
20174  *     Context: kernel thread context only.
20175  *
20176  *  _______________________________________________________________
20177  * | dkc_flag &   | dkc_callback | DKIOCFLUSHWRITECACHE            |
20178  * |FLUSH_VOLATILE|              | operation                       |
20179  * |______________|______________|_________________________________|
20180  * | 0            | NULL         | Synchronous flush on both       |
20181  * |              |              | volatile and non-volatile cache |
20182  * |______________|______________|_________________________________|
20183  * | 1            | NULL         | Synchronous flush on volatile   |
20184  * |              |              | cache; disk drivers may suppress|
20185  * |              |              | flush if disk table indicates   |
20186  * |              |              | non-volatile cache              |
20187  * |______________|______________|_________________________________|
20188  * | 0            | !NULL        | Asynchronous flush on both      |
20189  * |              |              | volatile and non-volatile cache;|
20190  * |______________|______________|_________________________________|
20191  * | 1            | !NULL        | Asynchronous flush on volatile  |
20192  * |              |              | cache; disk drivers may suppress|
20193  * |              |              | flush if disk table indicates   |
20194  * |              |              | non-volatile cache              |
20195  * |______________|______________|_________________________________|
20196  *
20197  */
20198 
20199 static int
20200 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
20201 {
20202 	struct sd_uscsi_info	*uip;
20203 	struct uscsi_cmd	*uscmd;
20204 	union scsi_cdb		*cdb;
20205 	struct buf		*bp;
20206 	int			rval = 0;
20207 	int			is_async;
20208 
20209 	SD_TRACE(SD_LOG_IO, un,
20210 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
20211 
20212 	ASSERT(un != NULL);
20213 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20214 
20215 	if (dkc == NULL || dkc->dkc_callback == NULL) {
20216 		is_async = FALSE;
20217 	} else {
20218 		is_async = TRUE;
20219 	}
20220 
20221 	mutex_enter(SD_MUTEX(un));
20222 	/* check whether cache flush should be suppressed */
20223 	if (un->un_f_suppress_cache_flush == TRUE) {
20224 		mutex_exit(SD_MUTEX(un));
20225 		/*
20226 		 * suppress the cache flush if the device is told to do
20227 		 * so by sd.conf or disk table
20228 		 */
20229 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: \
20230 		    skip the cache flush since suppress_cache_flush is %d!\n",
20231 		    un->un_f_suppress_cache_flush);
20232 
20233 		if (is_async == TRUE) {
20234 			/* invoke callback for asynchronous flush */
20235 			(*dkc->dkc_callback)(dkc->dkc_cookie, 0);
20236 		}
20237 		return (rval);
20238 	}
20239 	mutex_exit(SD_MUTEX(un));
20240 
20241 	/*
20242 	 * check dkc_flag & FLUSH_VOLATILE so SYNC_NV bit can be
20243 	 * set properly
20244 	 */
20245 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
20246 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
20247 
20248 	mutex_enter(SD_MUTEX(un));
20249 	if (dkc != NULL && un->un_f_sync_nv_supported &&
20250 	    (dkc->dkc_flag & FLUSH_VOLATILE)) {
20251 		/*
20252 		 * if the device supports SYNC_NV bit, turn on
20253 		 * the SYNC_NV bit to only flush volatile cache
20254 		 */
20255 		cdb->cdb_un.tag |= SD_SYNC_NV_BIT;
20256 	}
20257 	mutex_exit(SD_MUTEX(un));
20258 
20259 	/*
20260 	 * First get some memory for the uscsi_cmd struct and cdb
20261 	 * and initialize for SYNCHRONIZE_CACHE cmd.
20262 	 */
20263 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
20264 	uscmd->uscsi_cdblen = CDB_GROUP1;
20265 	uscmd->uscsi_cdb = (caddr_t)cdb;
20266 	uscmd->uscsi_bufaddr = NULL;
20267 	uscmd->uscsi_buflen = 0;
20268 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
20269 	uscmd->uscsi_rqlen = SENSE_LENGTH;
20270 	uscmd->uscsi_rqresid = SENSE_LENGTH;
20271 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
20272 	uscmd->uscsi_timeout = sd_io_time;
20273 
20274 	/*
20275 	 * Allocate an sd_uscsi_info struct and fill it with the info
20276 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
20277 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
20278 	 * since we allocate the buf here in this function, we do not
20279 	 * need to preserve the prior contents of b_private.
20280 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
20281 	 */
20282 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
20283 	uip->ui_flags = SD_PATH_DIRECT;
20284 	uip->ui_cmdp  = uscmd;
20285 
20286 	bp = getrbuf(KM_SLEEP);
20287 	bp->b_private = uip;
20288 
20289 	/*
20290 	 * Setup buffer to carry uscsi request.
20291 	 */
20292 	bp->b_flags  = B_BUSY;
20293 	bp->b_bcount = 0;
20294 	bp->b_blkno  = 0;
20295 
20296 	if (is_async == TRUE) {
20297 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
20298 		uip->ui_dkc = *dkc;
20299 	}
20300 
20301 	bp->b_edev = SD_GET_DEV(un);
20302 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
20303 
20304 	/*
20305 	 * Unset un_f_sync_cache_required flag
20306 	 */
20307 	mutex_enter(SD_MUTEX(un));
20308 	un->un_f_sync_cache_required = FALSE;
20309 	mutex_exit(SD_MUTEX(un));
20310 
20311 	(void) sd_uscsi_strategy(bp);
20312 
20313 	/*
20314 	 * If synchronous request, wait for completion
20315 	 * If async just return and let b_iodone callback
20316 	 * cleanup.
20317 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
20318 	 * but it was also incremented in sd_uscsi_strategy(), so
20319 	 * we should be ok.
20320 	 */
20321 	if (is_async == FALSE) {
20322 		(void) biowait(bp);
20323 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
20324 	}
20325 
20326 	return (rval);
20327 }
20328 
20329 
20330 static int
20331 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
20332 {
20333 	struct sd_uscsi_info *uip;
20334 	struct uscsi_cmd *uscmd;
20335 	uint8_t *sense_buf;
20336 	struct sd_lun *un;
20337 	int status;
20338 	union scsi_cdb *cdb;
20339 
20340 	uip = (struct sd_uscsi_info *)(bp->b_private);
20341 	ASSERT(uip != NULL);
20342 
20343 	uscmd = uip->ui_cmdp;
20344 	ASSERT(uscmd != NULL);
20345 
20346 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
20347 	ASSERT(sense_buf != NULL);
20348 
20349 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
20350 	ASSERT(un != NULL);
20351 
20352 	cdb = (union scsi_cdb *)uscmd->uscsi_cdb;
20353 
20354 	status = geterror(bp);
20355 	switch (status) {
20356 	case 0:
20357 		break;	/* Success! */
20358 	case EIO:
20359 		switch (uscmd->uscsi_status) {
20360 		case STATUS_RESERVATION_CONFLICT:
20361 			/* Ignore reservation conflict */
20362 			status = 0;
20363 			goto done;
20364 
20365 		case STATUS_CHECK:
20366 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
20367 			    (scsi_sense_key(sense_buf) ==
20368 			    KEY_ILLEGAL_REQUEST)) {
20369 				/* Ignore Illegal Request error */
20370 				if (cdb->cdb_un.tag&SD_SYNC_NV_BIT) {
20371 					mutex_enter(SD_MUTEX(un));
20372 					un->un_f_sync_nv_supported = FALSE;
20373 					mutex_exit(SD_MUTEX(un));
20374 					status = 0;
20375 					SD_TRACE(SD_LOG_IO, un,
20376 					    "un_f_sync_nv_supported \
20377 					    is set to false.\n");
20378 					goto done;
20379 				}
20380 
20381 				mutex_enter(SD_MUTEX(un));
20382 				un->un_f_sync_cache_supported = FALSE;
20383 				mutex_exit(SD_MUTEX(un));
20384 				SD_TRACE(SD_LOG_IO, un,
20385 				    "sd_send_scsi_SYNCHRONIZE_CACHE_biodone: \
20386 				    un_f_sync_cache_supported set to false \
20387 				    with asc = %x, ascq = %x\n",
20388 				    scsi_sense_asc(sense_buf),
20389 				    scsi_sense_ascq(sense_buf));
20390 				status = ENOTSUP;
20391 				goto done;
20392 			}
20393 			break;
20394 		default:
20395 			break;
20396 		}
20397 		/* FALLTHRU */
20398 	default:
20399 		/*
20400 		 * Turn on the un_f_sync_cache_required flag
20401 		 * since the SYNC CACHE command failed
20402 		 */
20403 		mutex_enter(SD_MUTEX(un));
20404 		un->un_f_sync_cache_required = TRUE;
20405 		mutex_exit(SD_MUTEX(un));
20406 
20407 		/*
20408 		 * Don't log an error message if this device
20409 		 * has removable media.
20410 		 */
20411 		if (!un->un_f_has_removable_media) {
20412 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
20413 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
20414 		}
20415 		break;
20416 	}
20417 
20418 done:
20419 	if (uip->ui_dkc.dkc_callback != NULL) {
20420 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
20421 	}
20422 
20423 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
20424 	freerbuf(bp);
20425 	kmem_free(uip, sizeof (struct sd_uscsi_info));
20426 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
20427 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
20428 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
20429 
20430 	return (status);
20431 }
20432 
20433 
20434 /*
20435  *    Function: sd_send_scsi_GET_CONFIGURATION
20436  *
20437  * Description: Issues the get configuration command to the device.
20438  *		Called from sd_check_for_writable_cd & sd_get_media_info
20439  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
20440  *   Arguments: ssc
20441  *		ucmdbuf
20442  *		rqbuf
20443  *		rqbuflen
20444  *		bufaddr
20445  *		buflen
20446  *		path_flag
20447  *
20448  * Return Code: 0   - Success
20449  *		errno return code from sd_ssc_send()
20450  *
20451  *     Context: Can sleep. Does not return until command is completed.
20452  *
20453  */
20454 
20455 static int
20456 sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc, struct uscsi_cmd *ucmdbuf,
20457 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen,
20458 	int path_flag)
20459 {
20460 	char	cdb[CDB_GROUP1];
20461 	int	status;
20462 	struct sd_lun	*un;
20463 
20464 	ASSERT(ssc != NULL);
20465 	un = ssc->ssc_un;
20466 	ASSERT(un != NULL);
20467 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20468 	ASSERT(bufaddr != NULL);
20469 	ASSERT(ucmdbuf != NULL);
20470 	ASSERT(rqbuf != NULL);
20471 
20472 	SD_TRACE(SD_LOG_IO, un,
20473 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
20474 
20475 	bzero(cdb, sizeof (cdb));
20476 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20477 	bzero(rqbuf, rqbuflen);
20478 	bzero(bufaddr, buflen);
20479 
20480 	/*
20481 	 * Set up cdb field for the get configuration command.
20482 	 */
20483 	cdb[0] = SCMD_GET_CONFIGURATION;
20484 	cdb[1] = 0x02;  /* Requested Type */
20485 	cdb[8] = SD_PROFILE_HEADER_LEN;
20486 	ucmdbuf->uscsi_cdb = cdb;
20487 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20488 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20489 	ucmdbuf->uscsi_buflen = buflen;
20490 	ucmdbuf->uscsi_timeout = sd_io_time;
20491 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20492 	ucmdbuf->uscsi_rqlen = rqbuflen;
20493 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20494 
20495 	status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
20496 	    UIO_SYSSPACE, path_flag);
20497 
20498 	switch (status) {
20499 	case 0:
20500 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20501 		break;  /* Success! */
20502 	case EIO:
20503 		switch (ucmdbuf->uscsi_status) {
20504 		case STATUS_RESERVATION_CONFLICT:
20505 			status = EACCES;
20506 			break;
20507 		default:
20508 			break;
20509 		}
20510 		break;
20511 	default:
20512 		break;
20513 	}
20514 
20515 	if (status == 0) {
20516 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20517 		    "sd_send_scsi_GET_CONFIGURATION: data",
20518 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20519 	}
20520 
20521 	SD_TRACE(SD_LOG_IO, un,
20522 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
20523 
20524 	return (status);
20525 }
20526 
20527 /*
20528  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
20529  *
20530  * Description: Issues the get configuration command to the device to
20531  *              retrieve a specific feature. Called from
20532  *		sd_check_for_writable_cd & sd_set_mmc_caps.
20533  *   Arguments: ssc
20534  *              ucmdbuf
20535  *              rqbuf
20536  *              rqbuflen
20537  *              bufaddr
20538  *              buflen
20539  *		feature
20540  *
20541  * Return Code: 0   - Success
20542  *              errno return code from sd_ssc_send()
20543  *
20544  *     Context: Can sleep. Does not return until command is completed.
20545  *
20546  */
20547 static int
20548 sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc,
20549 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
20550 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag)
20551 {
20552 	char    cdb[CDB_GROUP1];
20553 	int	status;
20554 	struct sd_lun	*un;
20555 
20556 	ASSERT(ssc != NULL);
20557 	un = ssc->ssc_un;
20558 	ASSERT(un != NULL);
20559 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20560 	ASSERT(bufaddr != NULL);
20561 	ASSERT(ucmdbuf != NULL);
20562 	ASSERT(rqbuf != NULL);
20563 
20564 	SD_TRACE(SD_LOG_IO, un,
20565 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
20566 
20567 	bzero(cdb, sizeof (cdb));
20568 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20569 	bzero(rqbuf, rqbuflen);
20570 	bzero(bufaddr, buflen);
20571 
20572 	/*
20573 	 * Set up cdb field for the get configuration command.
20574 	 */
20575 	cdb[0] = SCMD_GET_CONFIGURATION;
20576 	cdb[1] = 0x02;  /* Requested Type */
20577 	cdb[3] = feature;
20578 	cdb[8] = buflen;
20579 	ucmdbuf->uscsi_cdb = cdb;
20580 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20581 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20582 	ucmdbuf->uscsi_buflen = buflen;
20583 	ucmdbuf->uscsi_timeout = sd_io_time;
20584 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20585 	ucmdbuf->uscsi_rqlen = rqbuflen;
20586 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20587 
20588 	status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
20589 	    UIO_SYSSPACE, path_flag);
20590 
20591 	switch (status) {
20592 	case 0:
20593 
20594 		break;  /* Success! */
20595 	case EIO:
20596 		switch (ucmdbuf->uscsi_status) {
20597 		case STATUS_RESERVATION_CONFLICT:
20598 			status = EACCES;
20599 			break;
20600 		default:
20601 			break;
20602 		}
20603 		break;
20604 	default:
20605 		break;
20606 	}
20607 
20608 	if (status == 0) {
20609 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20610 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
20611 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20612 	}
20613 
20614 	SD_TRACE(SD_LOG_IO, un,
20615 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
20616 
20617 	return (status);
20618 }
20619 
20620 
20621 /*
20622  *    Function: sd_send_scsi_MODE_SENSE
20623  *
20624  * Description: Utility function for issuing a scsi MODE SENSE command.
20625  *		Note: This routine uses a consistent implementation for Group0,
20626  *		Group1, and Group2 commands across all platforms. ATAPI devices
20627  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20628  *
20629  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20630  *                      structure for this target.
20631  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20632  *			  CDB_GROUP[1|2] (10 byte).
20633  *		bufaddr - buffer for page data retrieved from the target.
20634  *		buflen - size of page to be retrieved.
20635  *		page_code - page code of data to be retrieved from the target.
20636  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20637  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20638  *			to use the USCSI "direct" chain and bypass the normal
20639  *			command waitq.
20640  *
20641  * Return Code: 0   - Success
20642  *		errno return code from sd_ssc_send()
20643  *
20644  *     Context: Can sleep. Does not return until command is completed.
20645  */
20646 
20647 static int
20648 sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
20649 	size_t buflen,  uchar_t page_code, int path_flag)
20650 {
20651 	struct	scsi_extended_sense	sense_buf;
20652 	union scsi_cdb		cdb;
20653 	struct uscsi_cmd	ucmd_buf;
20654 	int			status;
20655 	int			headlen;
20656 	struct sd_lun		*un;
20657 
20658 	ASSERT(ssc != NULL);
20659 	un = ssc->ssc_un;
20660 	ASSERT(un != NULL);
20661 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20662 	ASSERT(bufaddr != NULL);
20663 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20664 	    (cdbsize == CDB_GROUP2));
20665 
20666 	SD_TRACE(SD_LOG_IO, un,
20667 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
20668 
20669 	bzero(&cdb, sizeof (cdb));
20670 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20671 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20672 	bzero(bufaddr, buflen);
20673 
20674 	if (cdbsize == CDB_GROUP0) {
20675 		cdb.scc_cmd = SCMD_MODE_SENSE;
20676 		cdb.cdb_opaque[2] = page_code;
20677 		FORMG0COUNT(&cdb, buflen);
20678 		headlen = MODE_HEADER_LENGTH;
20679 	} else {
20680 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
20681 		cdb.cdb_opaque[2] = page_code;
20682 		FORMG1COUNT(&cdb, buflen);
20683 		headlen = MODE_HEADER_LENGTH_GRP2;
20684 	}
20685 
20686 	ASSERT(headlen <= buflen);
20687 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20688 
20689 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20690 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20691 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20692 	ucmd_buf.uscsi_buflen	= buflen;
20693 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20694 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20695 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20696 	ucmd_buf.uscsi_timeout	= 60;
20697 
20698 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20699 	    UIO_SYSSPACE, path_flag);
20700 
20701 	switch (status) {
20702 	case 0:
20703 		/*
20704 		 * sr_check_wp() uses 0x3f page code and check the header of
20705 		 * mode page to determine if target device is write-protected.
20706 		 * But some USB devices return 0 bytes for 0x3f page code. For
20707 		 * this case, make sure that mode page header is returned at
20708 		 * least.
20709 		 */
20710 		if (buflen - ucmd_buf.uscsi_resid <  headlen) {
20711 			status = EIO;
20712 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA,
20713 			    "mode page header is not returned");
20714 		}
20715 		break;	/* Success! */
20716 	case EIO:
20717 		switch (ucmd_buf.uscsi_status) {
20718 		case STATUS_RESERVATION_CONFLICT:
20719 			status = EACCES;
20720 			break;
20721 		default:
20722 			break;
20723 		}
20724 		break;
20725 	default:
20726 		break;
20727 	}
20728 
20729 	if (status == 0) {
20730 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
20731 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20732 	}
20733 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
20734 
20735 	return (status);
20736 }
20737 
20738 
20739 /*
20740  *    Function: sd_send_scsi_MODE_SELECT
20741  *
20742  * Description: Utility function for issuing a scsi MODE SELECT command.
20743  *		Note: This routine uses a consistent implementation for Group0,
20744  *		Group1, and Group2 commands across all platforms. ATAPI devices
20745  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20746  *
20747  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20748  *                      structure for this target.
20749  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20750  *			  CDB_GROUP[1|2] (10 byte).
20751  *		bufaddr - buffer for page data retrieved from the target.
20752  *		buflen - size of page to be retrieved.
20753  *		save_page - boolean to determin if SP bit should be set.
20754  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20755  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20756  *			to use the USCSI "direct" chain and bypass the normal
20757  *			command waitq.
20758  *
20759  * Return Code: 0   - Success
20760  *		errno return code from sd_ssc_send()
20761  *
20762  *     Context: Can sleep. Does not return until command is completed.
20763  */
20764 
20765 static int
20766 sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
20767 	size_t buflen,  uchar_t save_page, int path_flag)
20768 {
20769 	struct	scsi_extended_sense	sense_buf;
20770 	union scsi_cdb		cdb;
20771 	struct uscsi_cmd	ucmd_buf;
20772 	int			status;
20773 	struct sd_lun		*un;
20774 
20775 	ASSERT(ssc != NULL);
20776 	un = ssc->ssc_un;
20777 	ASSERT(un != NULL);
20778 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20779 	ASSERT(bufaddr != NULL);
20780 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20781 	    (cdbsize == CDB_GROUP2));
20782 
20783 	SD_TRACE(SD_LOG_IO, un,
20784 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
20785 
20786 	bzero(&cdb, sizeof (cdb));
20787 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20788 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20789 
20790 	/* Set the PF bit for many third party drives */
20791 	cdb.cdb_opaque[1] = 0x10;
20792 
20793 	/* Set the savepage(SP) bit if given */
20794 	if (save_page == SD_SAVE_PAGE) {
20795 		cdb.cdb_opaque[1] |= 0x01;
20796 	}
20797 
20798 	if (cdbsize == CDB_GROUP0) {
20799 		cdb.scc_cmd = SCMD_MODE_SELECT;
20800 		FORMG0COUNT(&cdb, buflen);
20801 	} else {
20802 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
20803 		FORMG1COUNT(&cdb, buflen);
20804 	}
20805 
20806 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20807 
20808 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20809 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20810 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20811 	ucmd_buf.uscsi_buflen	= buflen;
20812 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20813 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20814 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20815 	ucmd_buf.uscsi_timeout	= 60;
20816 
20817 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20818 	    UIO_SYSSPACE, path_flag);
20819 
20820 	switch (status) {
20821 	case 0:
20822 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20823 		break;	/* Success! */
20824 	case EIO:
20825 		switch (ucmd_buf.uscsi_status) {
20826 		case STATUS_RESERVATION_CONFLICT:
20827 			status = EACCES;
20828 			break;
20829 		default:
20830 			break;
20831 		}
20832 		break;
20833 	default:
20834 		break;
20835 	}
20836 
20837 	if (status == 0) {
20838 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
20839 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20840 	}
20841 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
20842 
20843 	return (status);
20844 }
20845 
20846 
20847 /*
20848  *    Function: sd_send_scsi_RDWR
20849  *
20850  * Description: Issue a scsi READ or WRITE command with the given parameters.
20851  *
20852  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20853  *                      structure for this target.
20854  *		cmd:	 SCMD_READ or SCMD_WRITE
20855  *		bufaddr: Address of caller's buffer to receive the RDWR data
20856  *		buflen:  Length of caller's buffer receive the RDWR data.
20857  *		start_block: Block number for the start of the RDWR operation.
20858  *			 (Assumes target-native block size.)
20859  *		residp:  Pointer to variable to receive the redisual of the
20860  *			 RDWR operation (may be NULL of no residual requested).
20861  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20862  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20863  *			to use the USCSI "direct" chain and bypass the normal
20864  *			command waitq.
20865  *
20866  * Return Code: 0   - Success
20867  *		errno return code from sd_ssc_send()
20868  *
20869  *     Context: Can sleep. Does not return until command is completed.
20870  */
20871 
20872 static int
20873 sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
20874 	size_t buflen, daddr_t start_block, int path_flag)
20875 {
20876 	struct	scsi_extended_sense	sense_buf;
20877 	union scsi_cdb		cdb;
20878 	struct uscsi_cmd	ucmd_buf;
20879 	uint32_t		block_count;
20880 	int			status;
20881 	int			cdbsize;
20882 	uchar_t			flag;
20883 	struct sd_lun		*un;
20884 
20885 	ASSERT(ssc != NULL);
20886 	un = ssc->ssc_un;
20887 	ASSERT(un != NULL);
20888 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20889 	ASSERT(bufaddr != NULL);
20890 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
20891 
20892 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
20893 
20894 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
20895 		return (EINVAL);
20896 	}
20897 
20898 	mutex_enter(SD_MUTEX(un));
20899 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
20900 	mutex_exit(SD_MUTEX(un));
20901 
20902 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
20903 
20904 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
20905 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
20906 	    bufaddr, buflen, start_block, block_count);
20907 
20908 	bzero(&cdb, sizeof (cdb));
20909 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20910 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20911 
20912 	/* Compute CDB size to use */
20913 	if (start_block > 0xffffffff)
20914 		cdbsize = CDB_GROUP4;
20915 	else if ((start_block & 0xFFE00000) ||
20916 	    (un->un_f_cfg_is_atapi == TRUE))
20917 		cdbsize = CDB_GROUP1;
20918 	else
20919 		cdbsize = CDB_GROUP0;
20920 
20921 	switch (cdbsize) {
20922 	case CDB_GROUP0:	/* 6-byte CDBs */
20923 		cdb.scc_cmd = cmd;
20924 		FORMG0ADDR(&cdb, start_block);
20925 		FORMG0COUNT(&cdb, block_count);
20926 		break;
20927 	case CDB_GROUP1:	/* 10-byte CDBs */
20928 		cdb.scc_cmd = cmd | SCMD_GROUP1;
20929 		FORMG1ADDR(&cdb, start_block);
20930 		FORMG1COUNT(&cdb, block_count);
20931 		break;
20932 	case CDB_GROUP4:	/* 16-byte CDBs */
20933 		cdb.scc_cmd = cmd | SCMD_GROUP4;
20934 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
20935 		FORMG4COUNT(&cdb, block_count);
20936 		break;
20937 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
20938 	default:
20939 		/* All others reserved */
20940 		return (EINVAL);
20941 	}
20942 
20943 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
20944 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20945 
20946 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20947 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20948 	ucmd_buf.uscsi_bufaddr	= bufaddr;
20949 	ucmd_buf.uscsi_buflen	= buflen;
20950 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20951 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20952 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
20953 	ucmd_buf.uscsi_timeout	= 60;
20954 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20955 	    UIO_SYSSPACE, path_flag);
20956 
20957 	switch (status) {
20958 	case 0:
20959 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20960 		break;	/* Success! */
20961 	case EIO:
20962 		switch (ucmd_buf.uscsi_status) {
20963 		case STATUS_RESERVATION_CONFLICT:
20964 			status = EACCES;
20965 			break;
20966 		default:
20967 			break;
20968 		}
20969 		break;
20970 	default:
20971 		break;
20972 	}
20973 
20974 	if (status == 0) {
20975 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
20976 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20977 	}
20978 
20979 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
20980 
20981 	return (status);
20982 }
20983 
20984 
20985 /*
20986  *    Function: sd_send_scsi_LOG_SENSE
20987  *
20988  * Description: Issue a scsi LOG_SENSE command with the given parameters.
20989  *
20990  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20991  *                      structure for this target.
20992  *
20993  * Return Code: 0   - Success
20994  *		errno return code from sd_ssc_send()
20995  *
20996  *     Context: Can sleep. Does not return until command is completed.
20997  */
20998 
20999 static int
21000 sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr, uint16_t buflen,
21001 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
21002 	int path_flag)
21003 
21004 {
21005 	struct scsi_extended_sense	sense_buf;
21006 	union scsi_cdb		cdb;
21007 	struct uscsi_cmd	ucmd_buf;
21008 	int			status;
21009 	struct sd_lun		*un;
21010 
21011 	ASSERT(ssc != NULL);
21012 	un = ssc->ssc_un;
21013 	ASSERT(un != NULL);
21014 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21015 
21016 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
21017 
21018 	bzero(&cdb, sizeof (cdb));
21019 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21020 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21021 
21022 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
21023 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
21024 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
21025 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
21026 	FORMG1COUNT(&cdb, buflen);
21027 
21028 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21029 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
21030 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21031 	ucmd_buf.uscsi_buflen	= buflen;
21032 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21033 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21034 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
21035 	ucmd_buf.uscsi_timeout	= 60;
21036 
21037 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21038 	    UIO_SYSSPACE, path_flag);
21039 
21040 	switch (status) {
21041 	case 0:
21042 		break;
21043 	case EIO:
21044 		switch (ucmd_buf.uscsi_status) {
21045 		case STATUS_RESERVATION_CONFLICT:
21046 			status = EACCES;
21047 			break;
21048 		case STATUS_CHECK:
21049 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
21050 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
21051 				KEY_ILLEGAL_REQUEST) &&
21052 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
21053 				/*
21054 				 * ASC 0x24: INVALID FIELD IN CDB
21055 				 */
21056 				switch (page_code) {
21057 				case START_STOP_CYCLE_PAGE:
21058 					/*
21059 					 * The start stop cycle counter is
21060 					 * implemented as page 0x31 in earlier
21061 					 * generation disks. In new generation
21062 					 * disks the start stop cycle counter is
21063 					 * implemented as page 0xE. To properly
21064 					 * handle this case if an attempt for
21065 					 * log page 0xE is made and fails we
21066 					 * will try again using page 0x31.
21067 					 *
21068 					 * Network storage BU committed to
21069 					 * maintain the page 0x31 for this
21070 					 * purpose and will not have any other
21071 					 * page implemented with page code 0x31
21072 					 * until all disks transition to the
21073 					 * standard page.
21074 					 */
21075 					mutex_enter(SD_MUTEX(un));
21076 					un->un_start_stop_cycle_page =
21077 					    START_STOP_CYCLE_VU_PAGE;
21078 					cdb.cdb_opaque[2] =
21079 					    (char)(page_control << 6) |
21080 					    un->un_start_stop_cycle_page;
21081 					mutex_exit(SD_MUTEX(un));
21082 					sd_ssc_assessment(ssc, SD_FMT_IGNORE);
21083 					status = sd_ssc_send(
21084 					    ssc, &ucmd_buf, FKIOCTL,
21085 					    UIO_SYSSPACE, path_flag);
21086 
21087 					break;
21088 				case TEMPERATURE_PAGE:
21089 					status = ENOTTY;
21090 					break;
21091 				default:
21092 					break;
21093 				}
21094 			}
21095 			break;
21096 		default:
21097 			break;
21098 		}
21099 		break;
21100 	default:
21101 		break;
21102 	}
21103 
21104 	if (status == 0) {
21105 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21106 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
21107 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21108 	}
21109 
21110 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
21111 
21112 	return (status);
21113 }
21114 
21115 
21116 /*
21117  *    Function: sdioctl
21118  *
21119  * Description: Driver's ioctl(9e) entry point function.
21120  *
21121  *   Arguments: dev     - device number
21122  *		cmd     - ioctl operation to be performed
21123  *		arg     - user argument, contains data to be set or reference
21124  *			  parameter for get
21125  *		flag    - bit flag, indicating open settings, 32/64 bit type
21126  *		cred_p  - user credential pointer
21127  *		rval_p  - calling process return value (OPT)
21128  *
21129  * Return Code: EINVAL
21130  *		ENOTTY
21131  *		ENXIO
21132  *		EIO
21133  *		EFAULT
21134  *		ENOTSUP
21135  *		EPERM
21136  *
21137  *     Context: Called from the device switch at normal priority.
21138  */
21139 
21140 static int
21141 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
21142 {
21143 	struct sd_lun	*un = NULL;
21144 	int		err = 0;
21145 	int		i = 0;
21146 	cred_t		*cr;
21147 	int		tmprval = EINVAL;
21148 	int 		is_valid;
21149 	sd_ssc_t	*ssc;
21150 
21151 	/*
21152 	 * All device accesses go thru sdstrategy where we check on suspend
21153 	 * status
21154 	 */
21155 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21156 		return (ENXIO);
21157 	}
21158 
21159 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21160 
21161 	/* Initialize sd_ssc_t for internal uscsi commands */
21162 	ssc = sd_ssc_init(un);
21163 
21164 	is_valid = SD_IS_VALID_LABEL(un);
21165 
21166 	/*
21167 	 * Moved this wait from sd_uscsi_strategy to here for
21168 	 * reasons of deadlock prevention. Internal driver commands,
21169 	 * specifically those to change a devices power level, result
21170 	 * in a call to sd_uscsi_strategy.
21171 	 */
21172 	mutex_enter(SD_MUTEX(un));
21173 	while ((un->un_state == SD_STATE_SUSPENDED) ||
21174 	    (un->un_state == SD_STATE_PM_CHANGING)) {
21175 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
21176 	}
21177 	/*
21178 	 * Twiddling the counter here protects commands from now
21179 	 * through to the top of sd_uscsi_strategy. Without the
21180 	 * counter inc. a power down, for example, could get in
21181 	 * after the above check for state is made and before
21182 	 * execution gets to the top of sd_uscsi_strategy.
21183 	 * That would cause problems.
21184 	 */
21185 	un->un_ncmds_in_driver++;
21186 
21187 	if (!is_valid &&
21188 	    (flag & (FNDELAY | FNONBLOCK))) {
21189 		switch (cmd) {
21190 		case DKIOCGGEOM:	/* SD_PATH_DIRECT */
21191 		case DKIOCGVTOC:
21192 		case DKIOCGEXTVTOC:
21193 		case DKIOCGAPART:
21194 		case DKIOCPARTINFO:
21195 		case DKIOCEXTPARTINFO:
21196 		case DKIOCSGEOM:
21197 		case DKIOCSAPART:
21198 		case DKIOCGETEFI:
21199 		case DKIOCPARTITION:
21200 		case DKIOCSVTOC:
21201 		case DKIOCSEXTVTOC:
21202 		case DKIOCSETEFI:
21203 		case DKIOCGMBOOT:
21204 		case DKIOCSMBOOT:
21205 		case DKIOCG_PHYGEOM:
21206 		case DKIOCG_VIRTGEOM:
21207 			/* let cmlb handle it */
21208 			goto skip_ready_valid;
21209 
21210 		case CDROMPAUSE:
21211 		case CDROMRESUME:
21212 		case CDROMPLAYMSF:
21213 		case CDROMPLAYTRKIND:
21214 		case CDROMREADTOCHDR:
21215 		case CDROMREADTOCENTRY:
21216 		case CDROMSTOP:
21217 		case CDROMSTART:
21218 		case CDROMVOLCTRL:
21219 		case CDROMSUBCHNL:
21220 		case CDROMREADMODE2:
21221 		case CDROMREADMODE1:
21222 		case CDROMREADOFFSET:
21223 		case CDROMSBLKMODE:
21224 		case CDROMGBLKMODE:
21225 		case CDROMGDRVSPEED:
21226 		case CDROMSDRVSPEED:
21227 		case CDROMCDDA:
21228 		case CDROMCDXA:
21229 		case CDROMSUBCODE:
21230 			if (!ISCD(un)) {
21231 				un->un_ncmds_in_driver--;
21232 				ASSERT(un->un_ncmds_in_driver >= 0);
21233 				mutex_exit(SD_MUTEX(un));
21234 				err = ENOTTY;
21235 				goto done_without_assess;
21236 			}
21237 			break;
21238 		case FDEJECT:
21239 		case DKIOCEJECT:
21240 		case CDROMEJECT:
21241 			if (!un->un_f_eject_media_supported) {
21242 				un->un_ncmds_in_driver--;
21243 				ASSERT(un->un_ncmds_in_driver >= 0);
21244 				mutex_exit(SD_MUTEX(un));
21245 				err = ENOTTY;
21246 				goto done_without_assess;
21247 			}
21248 			break;
21249 		case DKIOCFLUSHWRITECACHE:
21250 			mutex_exit(SD_MUTEX(un));
21251 			err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
21252 			if (err != 0) {
21253 				mutex_enter(SD_MUTEX(un));
21254 				un->un_ncmds_in_driver--;
21255 				ASSERT(un->un_ncmds_in_driver >= 0);
21256 				mutex_exit(SD_MUTEX(un));
21257 				err = EIO;
21258 				goto done_quick_assess;
21259 			}
21260 			mutex_enter(SD_MUTEX(un));
21261 			/* FALLTHROUGH */
21262 		case DKIOCREMOVABLE:
21263 		case DKIOCHOTPLUGGABLE:
21264 		case DKIOCINFO:
21265 		case DKIOCGMEDIAINFO:
21266 		case MHIOCENFAILFAST:
21267 		case MHIOCSTATUS:
21268 		case MHIOCTKOWN:
21269 		case MHIOCRELEASE:
21270 		case MHIOCGRP_INKEYS:
21271 		case MHIOCGRP_INRESV:
21272 		case MHIOCGRP_REGISTER:
21273 		case MHIOCGRP_RESERVE:
21274 		case MHIOCGRP_PREEMPTANDABORT:
21275 		case MHIOCGRP_REGISTERANDIGNOREKEY:
21276 		case CDROMCLOSETRAY:
21277 		case USCSICMD:
21278 			goto skip_ready_valid;
21279 		default:
21280 			break;
21281 		}
21282 
21283 		mutex_exit(SD_MUTEX(un));
21284 		err = sd_ready_and_valid(ssc, SDPART(dev));
21285 		mutex_enter(SD_MUTEX(un));
21286 
21287 		if (err != SD_READY_VALID) {
21288 			switch (cmd) {
21289 			case DKIOCSTATE:
21290 			case CDROMGDRVSPEED:
21291 			case CDROMSDRVSPEED:
21292 			case FDEJECT:	/* for eject command */
21293 			case DKIOCEJECT:
21294 			case CDROMEJECT:
21295 			case DKIOCREMOVABLE:
21296 			case DKIOCHOTPLUGGABLE:
21297 				break;
21298 			default:
21299 				if (un->un_f_has_removable_media) {
21300 					err = ENXIO;
21301 				} else {
21302 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
21303 					if (err == SD_RESERVED_BY_OTHERS) {
21304 						err = EACCES;
21305 					} else {
21306 						err = EIO;
21307 					}
21308 				}
21309 				un->un_ncmds_in_driver--;
21310 				ASSERT(un->un_ncmds_in_driver >= 0);
21311 				mutex_exit(SD_MUTEX(un));
21312 
21313 				goto done_without_assess;
21314 			}
21315 		}
21316 	}
21317 
21318 skip_ready_valid:
21319 	mutex_exit(SD_MUTEX(un));
21320 
21321 	switch (cmd) {
21322 	case DKIOCINFO:
21323 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
21324 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
21325 		break;
21326 
21327 	case DKIOCGMEDIAINFO:
21328 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
21329 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
21330 		break;
21331 
21332 	case DKIOCGGEOM:
21333 	case DKIOCGVTOC:
21334 	case DKIOCGEXTVTOC:
21335 	case DKIOCGAPART:
21336 	case DKIOCPARTINFO:
21337 	case DKIOCEXTPARTINFO:
21338 	case DKIOCSGEOM:
21339 	case DKIOCSAPART:
21340 	case DKIOCGETEFI:
21341 	case DKIOCPARTITION:
21342 	case DKIOCSVTOC:
21343 	case DKIOCSEXTVTOC:
21344 	case DKIOCSETEFI:
21345 	case DKIOCGMBOOT:
21346 	case DKIOCSMBOOT:
21347 	case DKIOCG_PHYGEOM:
21348 	case DKIOCG_VIRTGEOM:
21349 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd);
21350 
21351 		/* TUR should spin up */
21352 
21353 		if (un->un_f_has_removable_media)
21354 			err = sd_send_scsi_TEST_UNIT_READY(ssc,
21355 			    SD_CHECK_FOR_MEDIA);
21356 
21357 		else
21358 			err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
21359 
21360 		if (err != 0)
21361 			goto done_with_assess;
21362 
21363 		err = cmlb_ioctl(un->un_cmlbhandle, dev,
21364 		    cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT);
21365 
21366 		if ((err == 0) &&
21367 		    ((cmd == DKIOCSETEFI) ||
21368 		    (un->un_f_pkstats_enabled) &&
21369 		    (cmd == DKIOCSAPART || cmd == DKIOCSVTOC))) {
21370 
21371 			tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT,
21372 			    (void *)SD_PATH_DIRECT);
21373 			if ((tmprval == 0) && un->un_f_pkstats_enabled) {
21374 				sd_set_pstats(un);
21375 				SD_TRACE(SD_LOG_IO_PARTITION, un,
21376 				    "sd_ioctl: un:0x%p pstats created and "
21377 				    "set\n", un);
21378 			}
21379 		}
21380 
21381 		if ((cmd == DKIOCSVTOC) ||
21382 		    ((cmd == DKIOCSETEFI) && (tmprval == 0))) {
21383 
21384 			mutex_enter(SD_MUTEX(un));
21385 			if (un->un_f_devid_supported &&
21386 			    (un->un_f_opt_fab_devid == TRUE)) {
21387 				if (un->un_devid == NULL) {
21388 					sd_register_devid(ssc, SD_DEVINFO(un),
21389 					    SD_TARGET_IS_UNRESERVED);
21390 				} else {
21391 					/*
21392 					 * The device id for this disk
21393 					 * has been fabricated. The
21394 					 * device id must be preserved
21395 					 * by writing it back out to
21396 					 * disk.
21397 					 */
21398 					if (sd_write_deviceid(ssc) != 0) {
21399 						ddi_devid_free(un->un_devid);
21400 						un->un_devid = NULL;
21401 					}
21402 				}
21403 			}
21404 			mutex_exit(SD_MUTEX(un));
21405 		}
21406 
21407 		break;
21408 
21409 	case DKIOCLOCK:
21410 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
21411 		err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
21412 		    SD_PATH_STANDARD);
21413 		goto done_with_assess;
21414 
21415 	case DKIOCUNLOCK:
21416 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
21417 		err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
21418 		    SD_PATH_STANDARD);
21419 		goto done_with_assess;
21420 
21421 	case DKIOCSTATE: {
21422 		enum dkio_state		state;
21423 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
21424 
21425 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
21426 			err = EFAULT;
21427 		} else {
21428 			err = sd_check_media(dev, state);
21429 			if (err == 0) {
21430 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
21431 				    sizeof (int), flag) != 0)
21432 					err = EFAULT;
21433 			}
21434 		}
21435 		break;
21436 	}
21437 
21438 	case DKIOCREMOVABLE:
21439 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
21440 		i = un->un_f_has_removable_media ? 1 : 0;
21441 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
21442 			err = EFAULT;
21443 		} else {
21444 			err = 0;
21445 		}
21446 		break;
21447 
21448 	case DKIOCHOTPLUGGABLE:
21449 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
21450 		i = un->un_f_is_hotpluggable ? 1 : 0;
21451 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
21452 			err = EFAULT;
21453 		} else {
21454 			err = 0;
21455 		}
21456 		break;
21457 
21458 	case DKIOCGTEMPERATURE:
21459 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
21460 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
21461 		break;
21462 
21463 	case MHIOCENFAILFAST:
21464 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
21465 		if ((err = drv_priv(cred_p)) == 0) {
21466 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
21467 		}
21468 		break;
21469 
21470 	case MHIOCTKOWN:
21471 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
21472 		if ((err = drv_priv(cred_p)) == 0) {
21473 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
21474 		}
21475 		break;
21476 
21477 	case MHIOCRELEASE:
21478 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
21479 		if ((err = drv_priv(cred_p)) == 0) {
21480 			err = sd_mhdioc_release(dev);
21481 		}
21482 		break;
21483 
21484 	case MHIOCSTATUS:
21485 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
21486 		if ((err = drv_priv(cred_p)) == 0) {
21487 			switch (sd_send_scsi_TEST_UNIT_READY(ssc, 0)) {
21488 			case 0:
21489 				err = 0;
21490 				break;
21491 			case EACCES:
21492 				*rval_p = 1;
21493 				err = 0;
21494 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
21495 				break;
21496 			default:
21497 				err = EIO;
21498 				goto done_with_assess;
21499 			}
21500 		}
21501 		break;
21502 
21503 	case MHIOCQRESERVE:
21504 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
21505 		if ((err = drv_priv(cred_p)) == 0) {
21506 			err = sd_reserve_release(dev, SD_RESERVE);
21507 		}
21508 		break;
21509 
21510 	case MHIOCREREGISTERDEVID:
21511 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
21512 		if (drv_priv(cred_p) == EPERM) {
21513 			err = EPERM;
21514 		} else if (!un->un_f_devid_supported) {
21515 			err = ENOTTY;
21516 		} else {
21517 			err = sd_mhdioc_register_devid(dev);
21518 		}
21519 		break;
21520 
21521 	case MHIOCGRP_INKEYS:
21522 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
21523 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21524 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21525 				err = ENOTSUP;
21526 			} else {
21527 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
21528 				    flag);
21529 			}
21530 		}
21531 		break;
21532 
21533 	case MHIOCGRP_INRESV:
21534 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
21535 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21536 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21537 				err = ENOTSUP;
21538 			} else {
21539 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
21540 			}
21541 		}
21542 		break;
21543 
21544 	case MHIOCGRP_REGISTER:
21545 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
21546 		if ((err = drv_priv(cred_p)) != EPERM) {
21547 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21548 				err = ENOTSUP;
21549 			} else if (arg != NULL) {
21550 				mhioc_register_t reg;
21551 				if (ddi_copyin((void *)arg, &reg,
21552 				    sizeof (mhioc_register_t), flag) != 0) {
21553 					err = EFAULT;
21554 				} else {
21555 					err =
21556 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21557 					    ssc, SD_SCSI3_REGISTER,
21558 					    (uchar_t *)&reg);
21559 					if (err != 0)
21560 						goto done_with_assess;
21561 				}
21562 			}
21563 		}
21564 		break;
21565 
21566 	case MHIOCGRP_RESERVE:
21567 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
21568 		if ((err = drv_priv(cred_p)) != EPERM) {
21569 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21570 				err = ENOTSUP;
21571 			} else if (arg != NULL) {
21572 				mhioc_resv_desc_t resv_desc;
21573 				if (ddi_copyin((void *)arg, &resv_desc,
21574 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
21575 					err = EFAULT;
21576 				} else {
21577 					err =
21578 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21579 					    ssc, SD_SCSI3_RESERVE,
21580 					    (uchar_t *)&resv_desc);
21581 					if (err != 0)
21582 						goto done_with_assess;
21583 				}
21584 			}
21585 		}
21586 		break;
21587 
21588 	case MHIOCGRP_PREEMPTANDABORT:
21589 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
21590 		if ((err = drv_priv(cred_p)) != EPERM) {
21591 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21592 				err = ENOTSUP;
21593 			} else if (arg != NULL) {
21594 				mhioc_preemptandabort_t preempt_abort;
21595 				if (ddi_copyin((void *)arg, &preempt_abort,
21596 				    sizeof (mhioc_preemptandabort_t),
21597 				    flag) != 0) {
21598 					err = EFAULT;
21599 				} else {
21600 					err =
21601 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21602 					    ssc, SD_SCSI3_PREEMPTANDABORT,
21603 					    (uchar_t *)&preempt_abort);
21604 					if (err != 0)
21605 						goto done_with_assess;
21606 				}
21607 			}
21608 		}
21609 		break;
21610 
21611 	case MHIOCGRP_REGISTERANDIGNOREKEY:
21612 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n");
21613 		if ((err = drv_priv(cred_p)) != EPERM) {
21614 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21615 				err = ENOTSUP;
21616 			} else if (arg != NULL) {
21617 				mhioc_registerandignorekey_t r_and_i;
21618 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
21619 				    sizeof (mhioc_registerandignorekey_t),
21620 				    flag) != 0) {
21621 					err = EFAULT;
21622 				} else {
21623 					err =
21624 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21625 					    ssc, SD_SCSI3_REGISTERANDIGNOREKEY,
21626 					    (uchar_t *)&r_and_i);
21627 					if (err != 0)
21628 						goto done_with_assess;
21629 				}
21630 			}
21631 		}
21632 		break;
21633 
21634 	case USCSICMD:
21635 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
21636 		cr = ddi_get_cred();
21637 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
21638 			err = EPERM;
21639 		} else {
21640 			enum uio_seg	uioseg;
21641 
21642 			uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE :
21643 			    UIO_USERSPACE;
21644 			if (un->un_f_format_in_progress == TRUE) {
21645 				err = EAGAIN;
21646 				break;
21647 			}
21648 
21649 			err = sd_ssc_send(ssc,
21650 			    (struct uscsi_cmd *)arg,
21651 			    flag, uioseg, SD_PATH_STANDARD);
21652 			if (err != 0)
21653 				goto done_with_assess;
21654 			else
21655 				sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21656 		}
21657 		break;
21658 
21659 	case CDROMPAUSE:
21660 	case CDROMRESUME:
21661 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
21662 		if (!ISCD(un)) {
21663 			err = ENOTTY;
21664 		} else {
21665 			err = sr_pause_resume(dev, cmd);
21666 		}
21667 		break;
21668 
21669 	case CDROMPLAYMSF:
21670 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
21671 		if (!ISCD(un)) {
21672 			err = ENOTTY;
21673 		} else {
21674 			err = sr_play_msf(dev, (caddr_t)arg, flag);
21675 		}
21676 		break;
21677 
21678 	case CDROMPLAYTRKIND:
21679 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
21680 #if defined(__i386) || defined(__amd64)
21681 		/*
21682 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
21683 		 */
21684 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21685 #else
21686 		if (!ISCD(un)) {
21687 #endif
21688 			err = ENOTTY;
21689 		} else {
21690 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
21691 		}
21692 		break;
21693 
21694 	case CDROMREADTOCHDR:
21695 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
21696 		if (!ISCD(un)) {
21697 			err = ENOTTY;
21698 		} else {
21699 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
21700 		}
21701 		break;
21702 
21703 	case CDROMREADTOCENTRY:
21704 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
21705 		if (!ISCD(un)) {
21706 			err = ENOTTY;
21707 		} else {
21708 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
21709 		}
21710 		break;
21711 
21712 	case CDROMSTOP:
21713 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
21714 		if (!ISCD(un)) {
21715 			err = ENOTTY;
21716 		} else {
21717 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_STOP,
21718 			    SD_PATH_STANDARD);
21719 			goto done_with_assess;
21720 		}
21721 		break;
21722 
21723 	case CDROMSTART:
21724 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
21725 		if (!ISCD(un)) {
21726 			err = ENOTTY;
21727 		} else {
21728 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_START,
21729 			    SD_PATH_STANDARD);
21730 			goto done_with_assess;
21731 		}
21732 		break;
21733 
21734 	case CDROMCLOSETRAY:
21735 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
21736 		if (!ISCD(un)) {
21737 			err = ENOTTY;
21738 		} else {
21739 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_CLOSE,
21740 			    SD_PATH_STANDARD);
21741 			goto done_with_assess;
21742 		}
21743 		break;
21744 
21745 	case FDEJECT:	/* for eject command */
21746 	case DKIOCEJECT:
21747 	case CDROMEJECT:
21748 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
21749 		if (!un->un_f_eject_media_supported) {
21750 			err = ENOTTY;
21751 		} else {
21752 			err = sr_eject(dev);
21753 		}
21754 		break;
21755 
21756 	case CDROMVOLCTRL:
21757 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
21758 		if (!ISCD(un)) {
21759 			err = ENOTTY;
21760 		} else {
21761 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
21762 		}
21763 		break;
21764 
21765 	case CDROMSUBCHNL:
21766 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
21767 		if (!ISCD(un)) {
21768 			err = ENOTTY;
21769 		} else {
21770 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
21771 		}
21772 		break;
21773 
21774 	case CDROMREADMODE2:
21775 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
21776 		if (!ISCD(un)) {
21777 			err = ENOTTY;
21778 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21779 			/*
21780 			 * If the drive supports READ CD, use that instead of
21781 			 * switching the LBA size via a MODE SELECT
21782 			 * Block Descriptor
21783 			 */
21784 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
21785 		} else {
21786 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
21787 		}
21788 		break;
21789 
21790 	case CDROMREADMODE1:
21791 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
21792 		if (!ISCD(un)) {
21793 			err = ENOTTY;
21794 		} else {
21795 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
21796 		}
21797 		break;
21798 
21799 	case CDROMREADOFFSET:
21800 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
21801 		if (!ISCD(un)) {
21802 			err = ENOTTY;
21803 		} else {
21804 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
21805 			    flag);
21806 		}
21807 		break;
21808 
21809 	case CDROMSBLKMODE:
21810 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
21811 		/*
21812 		 * There is no means of changing block size in case of atapi
21813 		 * drives, thus return ENOTTY if drive type is atapi
21814 		 */
21815 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21816 			err = ENOTTY;
21817 		} else if (un->un_f_mmc_cap == TRUE) {
21818 
21819 			/*
21820 			 * MMC Devices do not support changing the
21821 			 * logical block size
21822 			 *
21823 			 * Note: EINVAL is being returned instead of ENOTTY to
21824 			 * maintain consistancy with the original mmc
21825 			 * driver update.
21826 			 */
21827 			err = EINVAL;
21828 		} else {
21829 			mutex_enter(SD_MUTEX(un));
21830 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
21831 			    (un->un_ncmds_in_transport > 0)) {
21832 				mutex_exit(SD_MUTEX(un));
21833 				err = EINVAL;
21834 			} else {
21835 				mutex_exit(SD_MUTEX(un));
21836 				err = sr_change_blkmode(dev, cmd, arg, flag);
21837 			}
21838 		}
21839 		break;
21840 
21841 	case CDROMGBLKMODE:
21842 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
21843 		if (!ISCD(un)) {
21844 			err = ENOTTY;
21845 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
21846 		    (un->un_f_blockcount_is_valid != FALSE)) {
21847 			/*
21848 			 * Drive is an ATAPI drive so return target block
21849 			 * size for ATAPI drives since we cannot change the
21850 			 * blocksize on ATAPI drives. Used primarily to detect
21851 			 * if an ATAPI cdrom is present.
21852 			 */
21853 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
21854 			    sizeof (int), flag) != 0) {
21855 				err = EFAULT;
21856 			} else {
21857 				err = 0;
21858 			}
21859 
21860 		} else {
21861 			/*
21862 			 * Drive supports changing block sizes via a Mode
21863 			 * Select.
21864 			 */
21865 			err = sr_change_blkmode(dev, cmd, arg, flag);
21866 		}
21867 		break;
21868 
21869 	case CDROMGDRVSPEED:
21870 	case CDROMSDRVSPEED:
21871 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
21872 		if (!ISCD(un)) {
21873 			err = ENOTTY;
21874 		} else if (un->un_f_mmc_cap == TRUE) {
21875 			/*
21876 			 * Note: In the future the driver implementation
21877 			 * for getting and
21878 			 * setting cd speed should entail:
21879 			 * 1) If non-mmc try the Toshiba mode page
21880 			 *    (sr_change_speed)
21881 			 * 2) If mmc but no support for Real Time Streaming try
21882 			 *    the SET CD SPEED (0xBB) command
21883 			 *   (sr_atapi_change_speed)
21884 			 * 3) If mmc and support for Real Time Streaming
21885 			 *    try the GET PERFORMANCE and SET STREAMING
21886 			 *    commands (not yet implemented, 4380808)
21887 			 */
21888 			/*
21889 			 * As per recent MMC spec, CD-ROM speed is variable
21890 			 * and changes with LBA. Since there is no such
21891 			 * things as drive speed now, fail this ioctl.
21892 			 *
21893 			 * Note: EINVAL is returned for consistancy of original
21894 			 * implementation which included support for getting
21895 			 * the drive speed of mmc devices but not setting
21896 			 * the drive speed. Thus EINVAL would be returned
21897 			 * if a set request was made for an mmc device.
21898 			 * We no longer support get or set speed for
21899 			 * mmc but need to remain consistent with regard
21900 			 * to the error code returned.
21901 			 */
21902 			err = EINVAL;
21903 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21904 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
21905 		} else {
21906 			err = sr_change_speed(dev, cmd, arg, flag);
21907 		}
21908 		break;
21909 
21910 	case CDROMCDDA:
21911 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
21912 		if (!ISCD(un)) {
21913 			err = ENOTTY;
21914 		} else {
21915 			err = sr_read_cdda(dev, (void *)arg, flag);
21916 		}
21917 		break;
21918 
21919 	case CDROMCDXA:
21920 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
21921 		if (!ISCD(un)) {
21922 			err = ENOTTY;
21923 		} else {
21924 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
21925 		}
21926 		break;
21927 
21928 	case CDROMSUBCODE:
21929 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
21930 		if (!ISCD(un)) {
21931 			err = ENOTTY;
21932 		} else {
21933 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
21934 		}
21935 		break;
21936 
21937 
21938 #ifdef SDDEBUG
21939 /* RESET/ABORTS testing ioctls */
21940 	case DKIOCRESET: {
21941 		int	reset_level;
21942 
21943 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
21944 			err = EFAULT;
21945 		} else {
21946 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
21947 			    "reset_level = 0x%lx\n", reset_level);
21948 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
21949 				err = 0;
21950 			} else {
21951 				err = EIO;
21952 			}
21953 		}
21954 		break;
21955 	}
21956 
21957 	case DKIOCABORT:
21958 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
21959 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
21960 			err = 0;
21961 		} else {
21962 			err = EIO;
21963 		}
21964 		break;
21965 #endif
21966 
21967 #ifdef SD_FAULT_INJECTION
21968 /* SDIOC FaultInjection testing ioctls */
21969 	case SDIOCSTART:
21970 	case SDIOCSTOP:
21971 	case SDIOCINSERTPKT:
21972 	case SDIOCINSERTXB:
21973 	case SDIOCINSERTUN:
21974 	case SDIOCINSERTARQ:
21975 	case SDIOCPUSH:
21976 	case SDIOCRETRIEVE:
21977 	case SDIOCRUN:
21978 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
21979 		    "SDIOC detected cmd:0x%X:\n", cmd);
21980 		/* call error generator */
21981 		sd_faultinjection_ioctl(cmd, arg, un);
21982 		err = 0;
21983 		break;
21984 
21985 #endif /* SD_FAULT_INJECTION */
21986 
21987 	case DKIOCFLUSHWRITECACHE:
21988 		{
21989 			struct dk_callback *dkc = (struct dk_callback *)arg;
21990 
21991 			mutex_enter(SD_MUTEX(un));
21992 			if (!un->un_f_sync_cache_supported ||
21993 			    !un->un_f_write_cache_enabled) {
21994 				err = un->un_f_sync_cache_supported ?
21995 				    0 : ENOTSUP;
21996 				mutex_exit(SD_MUTEX(un));
21997 				if ((flag & FKIOCTL) && dkc != NULL &&
21998 				    dkc->dkc_callback != NULL) {
21999 					(*dkc->dkc_callback)(dkc->dkc_cookie,
22000 					    err);
22001 					/*
22002 					 * Did callback and reported error.
22003 					 * Since we did a callback, ioctl
22004 					 * should return 0.
22005 					 */
22006 					err = 0;
22007 				}
22008 				break;
22009 			}
22010 			mutex_exit(SD_MUTEX(un));
22011 
22012 			if ((flag & FKIOCTL) && dkc != NULL &&
22013 			    dkc->dkc_callback != NULL) {
22014 				/* async SYNC CACHE request */
22015 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
22016 			} else {
22017 				/* synchronous SYNC CACHE request */
22018 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
22019 			}
22020 		}
22021 		break;
22022 
22023 	case DKIOCGETWCE: {
22024 
22025 		int wce;
22026 
22027 		if ((err = sd_get_write_cache_enabled(ssc, &wce)) != 0) {
22028 			break;
22029 		}
22030 
22031 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
22032 			err = EFAULT;
22033 		}
22034 		break;
22035 	}
22036 
22037 	case DKIOCSETWCE: {
22038 
22039 		int wce, sync_supported;
22040 
22041 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
22042 			err = EFAULT;
22043 			break;
22044 		}
22045 
22046 		/*
22047 		 * Synchronize multiple threads trying to enable
22048 		 * or disable the cache via the un_f_wcc_cv
22049 		 * condition variable.
22050 		 */
22051 		mutex_enter(SD_MUTEX(un));
22052 
22053 		/*
22054 		 * Don't allow the cache to be enabled if the
22055 		 * config file has it disabled.
22056 		 */
22057 		if (un->un_f_opt_disable_cache && wce) {
22058 			mutex_exit(SD_MUTEX(un));
22059 			err = EINVAL;
22060 			break;
22061 		}
22062 
22063 		/*
22064 		 * Wait for write cache change in progress
22065 		 * bit to be clear before proceeding.
22066 		 */
22067 		while (un->un_f_wcc_inprog)
22068 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
22069 
22070 		un->un_f_wcc_inprog = 1;
22071 
22072 		if (un->un_f_write_cache_enabled && wce == 0) {
22073 			/*
22074 			 * Disable the write cache.  Don't clear
22075 			 * un_f_write_cache_enabled until after
22076 			 * the mode select and flush are complete.
22077 			 */
22078 			sync_supported = un->un_f_sync_cache_supported;
22079 
22080 			/*
22081 			 * If cache flush is suppressed, we assume that the
22082 			 * controller firmware will take care of managing the
22083 			 * write cache for us: no need to explicitly
22084 			 * disable it.
22085 			 */
22086 			if (!un->un_f_suppress_cache_flush) {
22087 				mutex_exit(SD_MUTEX(un));
22088 				if ((err = sd_cache_control(ssc,
22089 				    SD_CACHE_NOCHANGE,
22090 				    SD_CACHE_DISABLE)) == 0 &&
22091 				    sync_supported) {
22092 					err = sd_send_scsi_SYNCHRONIZE_CACHE(un,
22093 					    NULL);
22094 				}
22095 			} else {
22096 				mutex_exit(SD_MUTEX(un));
22097 			}
22098 
22099 			mutex_enter(SD_MUTEX(un));
22100 			if (err == 0) {
22101 				un->un_f_write_cache_enabled = 0;
22102 			}
22103 
22104 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
22105 			/*
22106 			 * Set un_f_write_cache_enabled first, so there is
22107 			 * no window where the cache is enabled, but the
22108 			 * bit says it isn't.
22109 			 */
22110 			un->un_f_write_cache_enabled = 1;
22111 
22112 			/*
22113 			 * If cache flush is suppressed, we assume that the
22114 			 * controller firmware will take care of managing the
22115 			 * write cache for us: no need to explicitly
22116 			 * enable it.
22117 			 */
22118 			if (!un->un_f_suppress_cache_flush) {
22119 				mutex_exit(SD_MUTEX(un));
22120 				err = sd_cache_control(ssc, SD_CACHE_NOCHANGE,
22121 				    SD_CACHE_ENABLE);
22122 			} else {
22123 				mutex_exit(SD_MUTEX(un));
22124 			}
22125 
22126 			mutex_enter(SD_MUTEX(un));
22127 
22128 			if (err) {
22129 				un->un_f_write_cache_enabled = 0;
22130 			}
22131 		}
22132 
22133 		un->un_f_wcc_inprog = 0;
22134 		cv_broadcast(&un->un_wcc_cv);
22135 		mutex_exit(SD_MUTEX(un));
22136 		break;
22137 	}
22138 
22139 	default:
22140 		err = ENOTTY;
22141 		break;
22142 	}
22143 	mutex_enter(SD_MUTEX(un));
22144 	un->un_ncmds_in_driver--;
22145 	ASSERT(un->un_ncmds_in_driver >= 0);
22146 	mutex_exit(SD_MUTEX(un));
22147 
22148 
22149 done_without_assess:
22150 	sd_ssc_fini(ssc);
22151 
22152 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
22153 	return (err);
22154 
22155 done_with_assess:
22156 	mutex_enter(SD_MUTEX(un));
22157 	un->un_ncmds_in_driver--;
22158 	ASSERT(un->un_ncmds_in_driver >= 0);
22159 	mutex_exit(SD_MUTEX(un));
22160 
22161 done_quick_assess:
22162 	if (err != 0)
22163 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22164 	/* Uninitialize sd_ssc_t pointer */
22165 	sd_ssc_fini(ssc);
22166 
22167 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
22168 	return (err);
22169 }
22170 
22171 
22172 /*
22173  *    Function: sd_dkio_ctrl_info
22174  *
22175  * Description: This routine is the driver entry point for handling controller
22176  *		information ioctl requests (DKIOCINFO).
22177  *
22178  *   Arguments: dev  - the device number
22179  *		arg  - pointer to user provided dk_cinfo structure
22180  *		       specifying the controller type and attributes.
22181  *		flag - this argument is a pass through to ddi_copyxxx()
22182  *		       directly from the mode argument of ioctl().
22183  *
22184  * Return Code: 0
22185  *		EFAULT
22186  *		ENXIO
22187  */
22188 
22189 static int
22190 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
22191 {
22192 	struct sd_lun	*un = NULL;
22193 	struct dk_cinfo	*info;
22194 	dev_info_t	*pdip;
22195 	int		lun, tgt;
22196 
22197 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22198 		return (ENXIO);
22199 	}
22200 
22201 	info = (struct dk_cinfo *)
22202 	    kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
22203 
22204 	switch (un->un_ctype) {
22205 	case CTYPE_CDROM:
22206 		info->dki_ctype = DKC_CDROM;
22207 		break;
22208 	default:
22209 		info->dki_ctype = DKC_SCSI_CCS;
22210 		break;
22211 	}
22212 	pdip = ddi_get_parent(SD_DEVINFO(un));
22213 	info->dki_cnum = ddi_get_instance(pdip);
22214 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
22215 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
22216 	} else {
22217 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
22218 		    DK_DEVLEN - 1);
22219 	}
22220 
22221 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
22222 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
22223 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
22224 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
22225 
22226 	/* Unit Information */
22227 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
22228 	info->dki_slave = ((tgt << 3) | lun);
22229 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
22230 	    DK_DEVLEN - 1);
22231 	info->dki_flags = DKI_FMTVOL;
22232 	info->dki_partition = SDPART(dev);
22233 
22234 	/* Max Transfer size of this device in blocks */
22235 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
22236 	info->dki_addr = 0;
22237 	info->dki_space = 0;
22238 	info->dki_prio = 0;
22239 	info->dki_vec = 0;
22240 
22241 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
22242 		kmem_free(info, sizeof (struct dk_cinfo));
22243 		return (EFAULT);
22244 	} else {
22245 		kmem_free(info, sizeof (struct dk_cinfo));
22246 		return (0);
22247 	}
22248 }
22249 
22250 
22251 /*
22252  *    Function: sd_get_media_info
22253  *
22254  * Description: This routine is the driver entry point for handling ioctl
22255  *		requests for the media type or command set profile used by the
22256  *		drive to operate on the media (DKIOCGMEDIAINFO).
22257  *
22258  *   Arguments: dev	- the device number
22259  *		arg	- pointer to user provided dk_minfo structure
22260  *			  specifying the media type, logical block size and
22261  *			  drive capacity.
22262  *		flag	- this argument is a pass through to ddi_copyxxx()
22263  *			  directly from the mode argument of ioctl().
22264  *
22265  * Return Code: 0
22266  *		EACCESS
22267  *		EFAULT
22268  *		ENXIO
22269  *		EIO
22270  */
22271 
22272 static int
22273 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
22274 {
22275 	struct sd_lun		*un = NULL;
22276 	struct uscsi_cmd	com;
22277 	struct scsi_inquiry	*sinq;
22278 	struct dk_minfo		media_info;
22279 	u_longlong_t		media_capacity;
22280 	uint64_t		capacity;
22281 	uint_t			lbasize;
22282 	uchar_t			*out_data;
22283 	uchar_t			*rqbuf;
22284 	int			rval = 0;
22285 	int			rtn;
22286 	sd_ssc_t		*ssc;
22287 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
22288 	    (un->un_state == SD_STATE_OFFLINE)) {
22289 		return (ENXIO);
22290 	}
22291 
22292 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
22293 
22294 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
22295 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
22296 
22297 	/* Issue a TUR to determine if the drive is ready with media present */
22298 	ssc = sd_ssc_init(un);
22299 	rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_CHECK_FOR_MEDIA);
22300 	if (rval == ENXIO) {
22301 		goto done;
22302 	} else if (rval != 0) {
22303 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22304 	}
22305 
22306 	/* Now get configuration data */
22307 	if (ISCD(un)) {
22308 		media_info.dki_media_type = DK_CDROM;
22309 
22310 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
22311 		if (un->un_f_mmc_cap == TRUE) {
22312 			rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf,
22313 			    SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN,
22314 			    SD_PATH_STANDARD);
22315 
22316 			if (rtn) {
22317 				/*
22318 				 * We ignore all failures for CD and need to
22319 				 * put the assessment before processing code
22320 				 * to avoid missing assessment for FMA.
22321 				 */
22322 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22323 				/*
22324 				 * Failed for other than an illegal request
22325 				 * or command not supported
22326 				 */
22327 				if ((com.uscsi_status == STATUS_CHECK) &&
22328 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
22329 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
22330 					    (rqbuf[12] != 0x20)) {
22331 						rval = EIO;
22332 						goto no_assessment;
22333 					}
22334 				}
22335 			} else {
22336 				/*
22337 				 * The GET CONFIGURATION command succeeded
22338 				 * so set the media type according to the
22339 				 * returned data
22340 				 */
22341 				media_info.dki_media_type = out_data[6];
22342 				media_info.dki_media_type <<= 8;
22343 				media_info.dki_media_type |= out_data[7];
22344 			}
22345 		}
22346 	} else {
22347 		/*
22348 		 * The profile list is not available, so we attempt to identify
22349 		 * the media type based on the inquiry data
22350 		 */
22351 		sinq = un->un_sd->sd_inq;
22352 		if ((sinq->inq_dtype == DTYPE_DIRECT) ||
22353 		    (sinq->inq_dtype == DTYPE_OPTICAL)) {
22354 			/* This is a direct access device  or optical disk */
22355 			media_info.dki_media_type = DK_FIXED_DISK;
22356 
22357 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
22358 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
22359 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
22360 					media_info.dki_media_type = DK_ZIP;
22361 				} else if (
22362 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
22363 					media_info.dki_media_type = DK_JAZ;
22364 				}
22365 			}
22366 		} else {
22367 			/*
22368 			 * Not a CD, direct access or optical disk so return
22369 			 * unknown media
22370 			 */
22371 			media_info.dki_media_type = DK_UNKNOWN;
22372 		}
22373 	}
22374 
22375 	/* Now read the capacity so we can provide the lbasize and capacity */
22376 	rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
22377 	    SD_PATH_DIRECT);
22378 	switch (rval) {
22379 	case 0:
22380 		break;
22381 	case EACCES:
22382 		rval = EACCES;
22383 		goto done;
22384 	default:
22385 		rval = EIO;
22386 		goto done;
22387 	}
22388 
22389 	/*
22390 	 * If lun is expanded dynamically, update the un structure.
22391 	 */
22392 	mutex_enter(SD_MUTEX(un));
22393 	if ((un->un_f_blockcount_is_valid == TRUE) &&
22394 	    (un->un_f_tgt_blocksize_is_valid == TRUE) &&
22395 	    (capacity > un->un_blockcount)) {
22396 		sd_update_block_info(un, lbasize, capacity);
22397 	}
22398 	mutex_exit(SD_MUTEX(un));
22399 
22400 	media_info.dki_lbsize = lbasize;
22401 	media_capacity = capacity;
22402 
22403 	/*
22404 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
22405 	 * un->un_sys_blocksize chunks. So we need to convert it into
22406 	 * cap.lbasize chunks.
22407 	 */
22408 	media_capacity *= un->un_sys_blocksize;
22409 	media_capacity /= lbasize;
22410 	media_info.dki_capacity = media_capacity;
22411 
22412 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
22413 		rval = EFAULT;
22414 		/* Put goto. Anybody might add some code below in future */
22415 		goto no_assessment;
22416 	}
22417 done:
22418 	if (rval != 0) {
22419 		if (rval == EIO)
22420 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
22421 		else
22422 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22423 	}
22424 no_assessment:
22425 	sd_ssc_fini(ssc);
22426 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
22427 	kmem_free(rqbuf, SENSE_LENGTH);
22428 	return (rval);
22429 }
22430 
22431 
22432 /*
22433  *    Function: sd_check_media
22434  *
22435  * Description: This utility routine implements the functionality for the
22436  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
22437  *		driver state changes from that specified by the user
22438  *		(inserted or ejected). For example, if the user specifies
22439  *		DKIO_EJECTED and the current media state is inserted this
22440  *		routine will immediately return DKIO_INSERTED. However, if the
22441  *		current media state is not inserted the user thread will be
22442  *		blocked until the drive state changes. If DKIO_NONE is specified
22443  *		the user thread will block until a drive state change occurs.
22444  *
22445  *   Arguments: dev  - the device number
22446  *		state  - user pointer to a dkio_state, updated with the current
22447  *			drive state at return.
22448  *
22449  * Return Code: ENXIO
22450  *		EIO
22451  *		EAGAIN
22452  *		EINTR
22453  */
22454 
22455 static int
22456 sd_check_media(dev_t dev, enum dkio_state state)
22457 {
22458 	struct sd_lun		*un = NULL;
22459 	enum dkio_state		prev_state;
22460 	opaque_t		token = NULL;
22461 	int			rval = 0;
22462 	sd_ssc_t		*ssc;
22463 
22464 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22465 		return (ENXIO);
22466 	}
22467 
22468 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
22469 
22470 	ssc = sd_ssc_init(un);
22471 
22472 	mutex_enter(SD_MUTEX(un));
22473 
22474 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
22475 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
22476 
22477 	prev_state = un->un_mediastate;
22478 
22479 	/* is there anything to do? */
22480 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
22481 		/*
22482 		 * submit the request to the scsi_watch service;
22483 		 * scsi_media_watch_cb() does the real work
22484 		 */
22485 		mutex_exit(SD_MUTEX(un));
22486 
22487 		/*
22488 		 * This change handles the case where a scsi watch request is
22489 		 * added to a device that is powered down. To accomplish this
22490 		 * we power up the device before adding the scsi watch request,
22491 		 * since the scsi watch sends a TUR directly to the device
22492 		 * which the device cannot handle if it is powered down.
22493 		 */
22494 		if (sd_pm_entry(un) != DDI_SUCCESS) {
22495 			mutex_enter(SD_MUTEX(un));
22496 			goto done;
22497 		}
22498 
22499 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
22500 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
22501 		    (caddr_t)dev);
22502 
22503 		sd_pm_exit(un);
22504 
22505 		mutex_enter(SD_MUTEX(un));
22506 		if (token == NULL) {
22507 			rval = EAGAIN;
22508 			goto done;
22509 		}
22510 
22511 		/*
22512 		 * This is a special case IOCTL that doesn't return
22513 		 * until the media state changes. Routine sdpower
22514 		 * knows about and handles this so don't count it
22515 		 * as an active cmd in the driver, which would
22516 		 * keep the device busy to the pm framework.
22517 		 * If the count isn't decremented the device can't
22518 		 * be powered down.
22519 		 */
22520 		un->un_ncmds_in_driver--;
22521 		ASSERT(un->un_ncmds_in_driver >= 0);
22522 
22523 		/*
22524 		 * if a prior request had been made, this will be the same
22525 		 * token, as scsi_watch was designed that way.
22526 		 */
22527 		un->un_swr_token = token;
22528 		un->un_specified_mediastate = state;
22529 
22530 		/*
22531 		 * now wait for media change
22532 		 * we will not be signalled unless mediastate == state but it is
22533 		 * still better to test for this condition, since there is a
22534 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
22535 		 */
22536 		SD_TRACE(SD_LOG_COMMON, un,
22537 		    "sd_check_media: waiting for media state change\n");
22538 		while (un->un_mediastate == state) {
22539 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
22540 				SD_TRACE(SD_LOG_COMMON, un,
22541 				    "sd_check_media: waiting for media state "
22542 				    "was interrupted\n");
22543 				un->un_ncmds_in_driver++;
22544 				rval = EINTR;
22545 				goto done;
22546 			}
22547 			SD_TRACE(SD_LOG_COMMON, un,
22548 			    "sd_check_media: received signal, state=%x\n",
22549 			    un->un_mediastate);
22550 		}
22551 		/*
22552 		 * Inc the counter to indicate the device once again
22553 		 * has an active outstanding cmd.
22554 		 */
22555 		un->un_ncmds_in_driver++;
22556 	}
22557 
22558 	/* invalidate geometry */
22559 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
22560 		sr_ejected(un);
22561 	}
22562 
22563 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
22564 		uint64_t	capacity;
22565 		uint_t		lbasize;
22566 
22567 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
22568 		mutex_exit(SD_MUTEX(un));
22569 		/*
22570 		 * Since the following routines use SD_PATH_DIRECT, we must
22571 		 * call PM directly before the upcoming disk accesses. This
22572 		 * may cause the disk to be power/spin up.
22573 		 */
22574 
22575 		if (sd_pm_entry(un) == DDI_SUCCESS) {
22576 			rval = sd_send_scsi_READ_CAPACITY(ssc,
22577 			    &capacity, &lbasize, SD_PATH_DIRECT);
22578 			if (rval != 0) {
22579 				sd_pm_exit(un);
22580 				if (rval == EIO)
22581 					sd_ssc_assessment(ssc,
22582 					    SD_FMT_STATUS_CHECK);
22583 				else
22584 					sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22585 				mutex_enter(SD_MUTEX(un));
22586 				goto done;
22587 			}
22588 		} else {
22589 			rval = EIO;
22590 			mutex_enter(SD_MUTEX(un));
22591 			goto done;
22592 		}
22593 		mutex_enter(SD_MUTEX(un));
22594 
22595 		sd_update_block_info(un, lbasize, capacity);
22596 
22597 		/*
22598 		 *  Check if the media in the device is writable or not
22599 		 */
22600 		if (ISCD(un)) {
22601 			sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
22602 		}
22603 
22604 		mutex_exit(SD_MUTEX(un));
22605 		cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
22606 		if ((cmlb_validate(un->un_cmlbhandle, 0,
22607 		    (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) {
22608 			sd_set_pstats(un);
22609 			SD_TRACE(SD_LOG_IO_PARTITION, un,
22610 			    "sd_check_media: un:0x%p pstats created and "
22611 			    "set\n", un);
22612 		}
22613 
22614 		rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
22615 		    SD_PATH_DIRECT);
22616 
22617 		sd_pm_exit(un);
22618 
22619 		if (rval != 0) {
22620 			if (rval == EIO)
22621 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
22622 			else
22623 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22624 		}
22625 
22626 		mutex_enter(SD_MUTEX(un));
22627 	}
22628 done:
22629 	sd_ssc_fini(ssc);
22630 	un->un_f_watcht_stopped = FALSE;
22631 		/*
22632 		 * Use of this local token and the mutex ensures that we avoid
22633 		 * some race conditions associated with terminating the
22634 		 * scsi watch.
22635 		 */
22636 	if (token) {
22637 		un->un_swr_token = (opaque_t)NULL;
22638 		mutex_exit(SD_MUTEX(un));
22639 		(void) scsi_watch_request_terminate(token,
22640 		    SCSI_WATCH_TERMINATE_WAIT);
22641 		mutex_enter(SD_MUTEX(un));
22642 	}
22643 
22644 	/*
22645 	 * Update the capacity kstat value, if no media previously
22646 	 * (capacity kstat is 0) and a media has been inserted
22647 	 * (un_f_blockcount_is_valid == TRUE)
22648 	 */
22649 	if (un->un_errstats) {
22650 		struct sd_errstats	*stp = NULL;
22651 
22652 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
22653 		if ((stp->sd_capacity.value.ui64 == 0) &&
22654 		    (un->un_f_blockcount_is_valid == TRUE)) {
22655 			stp->sd_capacity.value.ui64 =
22656 			    (uint64_t)((uint64_t)un->un_blockcount *
22657 			    un->un_sys_blocksize);
22658 		}
22659 	}
22660 	mutex_exit(SD_MUTEX(un));
22661 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
22662 	return (rval);
22663 }
22664 
22665 
22666 /*
22667  *    Function: sd_delayed_cv_broadcast
22668  *
22669  * Description: Delayed cv_broadcast to allow for target to recover from media
22670  *		insertion.
22671  *
22672  *   Arguments: arg - driver soft state (unit) structure
22673  */
22674 
22675 static void
22676 sd_delayed_cv_broadcast(void *arg)
22677 {
22678 	struct sd_lun *un = arg;
22679 
22680 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
22681 
22682 	mutex_enter(SD_MUTEX(un));
22683 	un->un_dcvb_timeid = NULL;
22684 	cv_broadcast(&un->un_state_cv);
22685 	mutex_exit(SD_MUTEX(un));
22686 }
22687 
22688 
22689 /*
22690  *    Function: sd_media_watch_cb
22691  *
22692  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
22693  *		routine processes the TUR sense data and updates the driver
22694  *		state if a transition has occurred. The user thread
22695  *		(sd_check_media) is then signalled.
22696  *
22697  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
22698  *			among multiple watches that share this callback function
22699  *		resultp - scsi watch facility result packet containing scsi
22700  *			  packet, status byte and sense data
22701  *
22702  * Return Code: 0 for success, -1 for failure
22703  */
22704 
22705 static int
22706 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
22707 {
22708 	struct sd_lun			*un;
22709 	struct scsi_status		*statusp = resultp->statusp;
22710 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
22711 	enum dkio_state			state = DKIO_NONE;
22712 	dev_t				dev = (dev_t)arg;
22713 	uchar_t				actual_sense_length;
22714 	uint8_t				skey, asc, ascq;
22715 
22716 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22717 		return (-1);
22718 	}
22719 	actual_sense_length = resultp->actual_sense_length;
22720 
22721 	mutex_enter(SD_MUTEX(un));
22722 	SD_TRACE(SD_LOG_COMMON, un,
22723 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
22724 	    *((char *)statusp), (void *)sensep, actual_sense_length);
22725 
22726 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
22727 		un->un_mediastate = DKIO_DEV_GONE;
22728 		cv_broadcast(&un->un_state_cv);
22729 		mutex_exit(SD_MUTEX(un));
22730 
22731 		return (0);
22732 	}
22733 
22734 	/*
22735 	 * If there was a check condition then sensep points to valid sense data
22736 	 * If status was not a check condition but a reservation or busy status
22737 	 * then the new state is DKIO_NONE
22738 	 */
22739 	if (sensep != NULL) {
22740 		skey = scsi_sense_key(sensep);
22741 		asc = scsi_sense_asc(sensep);
22742 		ascq = scsi_sense_ascq(sensep);
22743 
22744 		SD_INFO(SD_LOG_COMMON, un,
22745 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
22746 		    skey, asc, ascq);
22747 		/* This routine only uses up to 13 bytes of sense data. */
22748 		if (actual_sense_length >= 13) {
22749 			if (skey == KEY_UNIT_ATTENTION) {
22750 				if (asc == 0x28) {
22751 					state = DKIO_INSERTED;
22752 				}
22753 			} else if (skey == KEY_NOT_READY) {
22754 				/*
22755 				 * Sense data of 02/06/00 means that the
22756 				 * drive could not read the media (No
22757 				 * reference position found). In this case
22758 				 * to prevent a hang on the DKIOCSTATE IOCTL
22759 				 * we set the media state to DKIO_INSERTED.
22760 				 */
22761 				if (asc == 0x06 && ascq == 0x00)
22762 					state = DKIO_INSERTED;
22763 
22764 				/*
22765 				 * if 02/04/02  means that the host
22766 				 * should send start command. Explicitly
22767 				 * leave the media state as is
22768 				 * (inserted) as the media is inserted
22769 				 * and host has stopped device for PM
22770 				 * reasons. Upon next true read/write
22771 				 * to this media will bring the
22772 				 * device to the right state good for
22773 				 * media access.
22774 				 */
22775 				if (asc == 0x3a) {
22776 					state = DKIO_EJECTED;
22777 				} else {
22778 					/*
22779 					 * If the drive is busy with an
22780 					 * operation or long write, keep the
22781 					 * media in an inserted state.
22782 					 */
22783 
22784 					if ((asc == 0x04) &&
22785 					    ((ascq == 0x02) ||
22786 					    (ascq == 0x07) ||
22787 					    (ascq == 0x08))) {
22788 						state = DKIO_INSERTED;
22789 					}
22790 				}
22791 			} else if (skey == KEY_NO_SENSE) {
22792 				if ((asc == 0x00) && (ascq == 0x00)) {
22793 					/*
22794 					 * Sense Data 00/00/00 does not provide
22795 					 * any information about the state of
22796 					 * the media. Ignore it.
22797 					 */
22798 					mutex_exit(SD_MUTEX(un));
22799 					return (0);
22800 				}
22801 			}
22802 		}
22803 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
22804 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
22805 		state = DKIO_INSERTED;
22806 	}
22807 
22808 	SD_TRACE(SD_LOG_COMMON, un,
22809 	    "sd_media_watch_cb: state=%x, specified=%x\n",
22810 	    state, un->un_specified_mediastate);
22811 
22812 	/*
22813 	 * now signal the waiting thread if this is *not* the specified state;
22814 	 * delay the signal if the state is DKIO_INSERTED to allow the target
22815 	 * to recover
22816 	 */
22817 	if (state != un->un_specified_mediastate) {
22818 		un->un_mediastate = state;
22819 		if (state == DKIO_INSERTED) {
22820 			/*
22821 			 * delay the signal to give the drive a chance
22822 			 * to do what it apparently needs to do
22823 			 */
22824 			SD_TRACE(SD_LOG_COMMON, un,
22825 			    "sd_media_watch_cb: delayed cv_broadcast\n");
22826 			if (un->un_dcvb_timeid == NULL) {
22827 				un->un_dcvb_timeid =
22828 				    timeout(sd_delayed_cv_broadcast, un,
22829 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
22830 			}
22831 		} else {
22832 			SD_TRACE(SD_LOG_COMMON, un,
22833 			    "sd_media_watch_cb: immediate cv_broadcast\n");
22834 			cv_broadcast(&un->un_state_cv);
22835 		}
22836 	}
22837 	mutex_exit(SD_MUTEX(un));
22838 	return (0);
22839 }
22840 
22841 
22842 /*
22843  *    Function: sd_dkio_get_temp
22844  *
22845  * Description: This routine is the driver entry point for handling ioctl
22846  *		requests to get the disk temperature.
22847  *
22848  *   Arguments: dev  - the device number
22849  *		arg  - pointer to user provided dk_temperature structure.
22850  *		flag - this argument is a pass through to ddi_copyxxx()
22851  *		       directly from the mode argument of ioctl().
22852  *
22853  * Return Code: 0
22854  *		EFAULT
22855  *		ENXIO
22856  *		EAGAIN
22857  */
22858 
22859 static int
22860 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
22861 {
22862 	struct sd_lun		*un = NULL;
22863 	struct dk_temperature	*dktemp = NULL;
22864 	uchar_t			*temperature_page;
22865 	int			rval = 0;
22866 	int			path_flag = SD_PATH_STANDARD;
22867 	sd_ssc_t		*ssc;
22868 
22869 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22870 		return (ENXIO);
22871 	}
22872 
22873 	ssc = sd_ssc_init(un);
22874 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
22875 
22876 	/* copyin the disk temp argument to get the user flags */
22877 	if (ddi_copyin((void *)arg, dktemp,
22878 	    sizeof (struct dk_temperature), flag) != 0) {
22879 		rval = EFAULT;
22880 		goto done;
22881 	}
22882 
22883 	/* Initialize the temperature to invalid. */
22884 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
22885 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
22886 
22887 	/*
22888 	 * Note: Investigate removing the "bypass pm" semantic.
22889 	 * Can we just bypass PM always?
22890 	 */
22891 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
22892 		path_flag = SD_PATH_DIRECT;
22893 		ASSERT(!mutex_owned(&un->un_pm_mutex));
22894 		mutex_enter(&un->un_pm_mutex);
22895 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
22896 			/*
22897 			 * If DKT_BYPASS_PM is set, and the drive happens to be
22898 			 * in low power mode, we can not wake it up, Need to
22899 			 * return EAGAIN.
22900 			 */
22901 			mutex_exit(&un->un_pm_mutex);
22902 			rval = EAGAIN;
22903 			goto done;
22904 		} else {
22905 			/*
22906 			 * Indicate to PM the device is busy. This is required
22907 			 * to avoid a race - i.e. the ioctl is issuing a
22908 			 * command and the pm framework brings down the device
22909 			 * to low power mode (possible power cut-off on some
22910 			 * platforms).
22911 			 */
22912 			mutex_exit(&un->un_pm_mutex);
22913 			if (sd_pm_entry(un) != DDI_SUCCESS) {
22914 				rval = EAGAIN;
22915 				goto done;
22916 			}
22917 		}
22918 	}
22919 
22920 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
22921 
22922 	rval = sd_send_scsi_LOG_SENSE(ssc, temperature_page,
22923 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag);
22924 	if (rval != 0)
22925 		goto done2;
22926 
22927 	/*
22928 	 * For the current temperature verify that the parameter length is 0x02
22929 	 * and the parameter code is 0x00
22930 	 */
22931 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
22932 	    (temperature_page[5] == 0x00)) {
22933 		if (temperature_page[9] == 0xFF) {
22934 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
22935 		} else {
22936 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
22937 		}
22938 	}
22939 
22940 	/*
22941 	 * For the reference temperature verify that the parameter
22942 	 * length is 0x02 and the parameter code is 0x01
22943 	 */
22944 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
22945 	    (temperature_page[11] == 0x01)) {
22946 		if (temperature_page[15] == 0xFF) {
22947 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
22948 		} else {
22949 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
22950 		}
22951 	}
22952 
22953 	/* Do the copyout regardless of the temperature commands status. */
22954 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
22955 	    flag) != 0) {
22956 		rval = EFAULT;
22957 		goto done1;
22958 	}
22959 
22960 done2:
22961 	if (rval != 0) {
22962 		if (rval == EIO)
22963 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
22964 		else
22965 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22966 	}
22967 done1:
22968 	if (path_flag == SD_PATH_DIRECT) {
22969 		sd_pm_exit(un);
22970 	}
22971 
22972 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
22973 done:
22974 	sd_ssc_fini(ssc);
22975 	if (dktemp != NULL) {
22976 		kmem_free(dktemp, sizeof (struct dk_temperature));
22977 	}
22978 
22979 	return (rval);
22980 }
22981 
22982 
22983 /*
22984  *    Function: sd_log_page_supported
22985  *
22986  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
22987  *		supported log pages.
22988  *
22989  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
22990  *                      structure for this target.
22991  *		log_page -
22992  *
22993  * Return Code: -1 - on error (log sense is optional and may not be supported).
22994  *		0  - log page not found.
22995  *  		1  - log page found.
22996  */
22997 
22998 static int
22999 sd_log_page_supported(sd_ssc_t *ssc, int log_page)
23000 {
23001 	uchar_t *log_page_data;
23002 	int	i;
23003 	int	match = 0;
23004 	int	log_size;
23005 	int	status = 0;
23006 	struct sd_lun	*un;
23007 
23008 	ASSERT(ssc != NULL);
23009 	un = ssc->ssc_un;
23010 	ASSERT(un != NULL);
23011 
23012 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
23013 
23014 	status = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 0xFF, 0, 0x01, 0,
23015 	    SD_PATH_DIRECT);
23016 
23017 	if (status != 0) {
23018 		if (status == EIO) {
23019 			/*
23020 			 * Some disks do not support log sense, we
23021 			 * should ignore this kind of error(sense key is
23022 			 * 0x5 - illegal request).
23023 			 */
23024 			uint8_t *sensep;
23025 			int senlen;
23026 
23027 			sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
23028 			senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
23029 			    ssc->ssc_uscsi_cmd->uscsi_rqresid);
23030 
23031 			if (senlen > 0 &&
23032 			    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
23033 				sd_ssc_assessment(ssc,
23034 				    SD_FMT_IGNORE_COMPROMISE);
23035 			} else {
23036 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23037 			}
23038 		} else {
23039 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23040 		}
23041 
23042 		SD_ERROR(SD_LOG_COMMON, un,
23043 		    "sd_log_page_supported: failed log page retrieval\n");
23044 		kmem_free(log_page_data, 0xFF);
23045 		return (-1);
23046 	}
23047 
23048 	log_size = log_page_data[3];
23049 
23050 	/*
23051 	 * The list of supported log pages start from the fourth byte. Check
23052 	 * until we run out of log pages or a match is found.
23053 	 */
23054 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
23055 		if (log_page_data[i] == log_page) {
23056 			match++;
23057 		}
23058 	}
23059 	kmem_free(log_page_data, 0xFF);
23060 	return (match);
23061 }
23062 
23063 
23064 /*
23065  *    Function: sd_mhdioc_failfast
23066  *
23067  * Description: This routine is the driver entry point for handling ioctl
23068  *		requests to enable/disable the multihost failfast option.
23069  *		(MHIOCENFAILFAST)
23070  *
23071  *   Arguments: dev	- the device number
23072  *		arg	- user specified probing interval.
23073  *		flag	- this argument is a pass through to ddi_copyxxx()
23074  *			  directly from the mode argument of ioctl().
23075  *
23076  * Return Code: 0
23077  *		EFAULT
23078  *		ENXIO
23079  */
23080 
23081 static int
23082 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
23083 {
23084 	struct sd_lun	*un = NULL;
23085 	int		mh_time;
23086 	int		rval = 0;
23087 
23088 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23089 		return (ENXIO);
23090 	}
23091 
23092 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
23093 		return (EFAULT);
23094 
23095 	if (mh_time) {
23096 		mutex_enter(SD_MUTEX(un));
23097 		un->un_resvd_status |= SD_FAILFAST;
23098 		mutex_exit(SD_MUTEX(un));
23099 		/*
23100 		 * If mh_time is INT_MAX, then this ioctl is being used for
23101 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
23102 		 */
23103 		if (mh_time != INT_MAX) {
23104 			rval = sd_check_mhd(dev, mh_time);
23105 		}
23106 	} else {
23107 		(void) sd_check_mhd(dev, 0);
23108 		mutex_enter(SD_MUTEX(un));
23109 		un->un_resvd_status &= ~SD_FAILFAST;
23110 		mutex_exit(SD_MUTEX(un));
23111 	}
23112 	return (rval);
23113 }
23114 
23115 
23116 /*
23117  *    Function: sd_mhdioc_takeown
23118  *
23119  * Description: This routine is the driver entry point for handling ioctl
23120  *		requests to forcefully acquire exclusive access rights to the
23121  *		multihost disk (MHIOCTKOWN).
23122  *
23123  *   Arguments: dev	- the device number
23124  *		arg	- user provided structure specifying the delay
23125  *			  parameters in milliseconds
23126  *		flag	- this argument is a pass through to ddi_copyxxx()
23127  *			  directly from the mode argument of ioctl().
23128  *
23129  * Return Code: 0
23130  *		EFAULT
23131  *		ENXIO
23132  */
23133 
23134 static int
23135 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
23136 {
23137 	struct sd_lun		*un = NULL;
23138 	struct mhioctkown	*tkown = NULL;
23139 	int			rval = 0;
23140 
23141 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23142 		return (ENXIO);
23143 	}
23144 
23145 	if (arg != NULL) {
23146 		tkown = (struct mhioctkown *)
23147 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
23148 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
23149 		if (rval != 0) {
23150 			rval = EFAULT;
23151 			goto error;
23152 		}
23153 	}
23154 
23155 	rval = sd_take_ownership(dev, tkown);
23156 	mutex_enter(SD_MUTEX(un));
23157 	if (rval == 0) {
23158 		un->un_resvd_status |= SD_RESERVE;
23159 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
23160 			sd_reinstate_resv_delay =
23161 			    tkown->reinstate_resv_delay * 1000;
23162 		} else {
23163 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
23164 		}
23165 		/*
23166 		 * Give the scsi_watch routine interval set by
23167 		 * the MHIOCENFAILFAST ioctl precedence here.
23168 		 */
23169 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
23170 			mutex_exit(SD_MUTEX(un));
23171 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
23172 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
23173 			    "sd_mhdioc_takeown : %d\n",
23174 			    sd_reinstate_resv_delay);
23175 		} else {
23176 			mutex_exit(SD_MUTEX(un));
23177 		}
23178 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
23179 		    sd_mhd_reset_notify_cb, (caddr_t)un);
23180 	} else {
23181 		un->un_resvd_status &= ~SD_RESERVE;
23182 		mutex_exit(SD_MUTEX(un));
23183 	}
23184 
23185 error:
23186 	if (tkown != NULL) {
23187 		kmem_free(tkown, sizeof (struct mhioctkown));
23188 	}
23189 	return (rval);
23190 }
23191 
23192 
23193 /*
23194  *    Function: sd_mhdioc_release
23195  *
23196  * Description: This routine is the driver entry point for handling ioctl
23197  *		requests to release exclusive access rights to the multihost
23198  *		disk (MHIOCRELEASE).
23199  *
23200  *   Arguments: dev	- the device number
23201  *
23202  * Return Code: 0
23203  *		ENXIO
23204  */
23205 
23206 static int
23207 sd_mhdioc_release(dev_t dev)
23208 {
23209 	struct sd_lun		*un = NULL;
23210 	timeout_id_t		resvd_timeid_save;
23211 	int			resvd_status_save;
23212 	int			rval = 0;
23213 
23214 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23215 		return (ENXIO);
23216 	}
23217 
23218 	mutex_enter(SD_MUTEX(un));
23219 	resvd_status_save = un->un_resvd_status;
23220 	un->un_resvd_status &=
23221 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
23222 	if (un->un_resvd_timeid) {
23223 		resvd_timeid_save = un->un_resvd_timeid;
23224 		un->un_resvd_timeid = NULL;
23225 		mutex_exit(SD_MUTEX(un));
23226 		(void) untimeout(resvd_timeid_save);
23227 	} else {
23228 		mutex_exit(SD_MUTEX(un));
23229 	}
23230 
23231 	/*
23232 	 * destroy any pending timeout thread that may be attempting to
23233 	 * reinstate reservation on this device.
23234 	 */
23235 	sd_rmv_resv_reclaim_req(dev);
23236 
23237 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
23238 		mutex_enter(SD_MUTEX(un));
23239 		if ((un->un_mhd_token) &&
23240 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
23241 			mutex_exit(SD_MUTEX(un));
23242 			(void) sd_check_mhd(dev, 0);
23243 		} else {
23244 			mutex_exit(SD_MUTEX(un));
23245 		}
23246 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
23247 		    sd_mhd_reset_notify_cb, (caddr_t)un);
23248 	} else {
23249 		/*
23250 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
23251 		 */
23252 		mutex_enter(SD_MUTEX(un));
23253 		un->un_resvd_status = resvd_status_save;
23254 		mutex_exit(SD_MUTEX(un));
23255 	}
23256 	return (rval);
23257 }
23258 
23259 
23260 /*
23261  *    Function: sd_mhdioc_register_devid
23262  *
23263  * Description: This routine is the driver entry point for handling ioctl
23264  *		requests to register the device id (MHIOCREREGISTERDEVID).
23265  *
23266  *		Note: The implementation for this ioctl has been updated to
23267  *		be consistent with the original PSARC case (1999/357)
23268  *		(4375899, 4241671, 4220005)
23269  *
23270  *   Arguments: dev	- the device number
23271  *
23272  * Return Code: 0
23273  *		ENXIO
23274  */
23275 
23276 static int
23277 sd_mhdioc_register_devid(dev_t dev)
23278 {
23279 	struct sd_lun	*un = NULL;
23280 	int		rval = 0;
23281 	sd_ssc_t	*ssc;
23282 
23283 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23284 		return (ENXIO);
23285 	}
23286 
23287 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23288 
23289 	mutex_enter(SD_MUTEX(un));
23290 
23291 	/* If a devid already exists, de-register it */
23292 	if (un->un_devid != NULL) {
23293 		ddi_devid_unregister(SD_DEVINFO(un));
23294 		/*
23295 		 * After unregister devid, needs to free devid memory
23296 		 */
23297 		ddi_devid_free(un->un_devid);
23298 		un->un_devid = NULL;
23299 	}
23300 
23301 	/* Check for reservation conflict */
23302 	mutex_exit(SD_MUTEX(un));
23303 	ssc = sd_ssc_init(un);
23304 	rval = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
23305 	mutex_enter(SD_MUTEX(un));
23306 
23307 	switch (rval) {
23308 	case 0:
23309 		sd_register_devid(ssc, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
23310 		break;
23311 	case EACCES:
23312 		break;
23313 	default:
23314 		rval = EIO;
23315 	}
23316 
23317 	mutex_exit(SD_MUTEX(un));
23318 	if (rval != 0) {
23319 		if (rval == EIO)
23320 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23321 		else
23322 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23323 	}
23324 	sd_ssc_fini(ssc);
23325 	return (rval);
23326 }
23327 
23328 
23329 /*
23330  *    Function: sd_mhdioc_inkeys
23331  *
23332  * Description: This routine is the driver entry point for handling ioctl
23333  *		requests to issue the SCSI-3 Persistent In Read Keys command
23334  *		to the device (MHIOCGRP_INKEYS).
23335  *
23336  *   Arguments: dev	- the device number
23337  *		arg	- user provided in_keys structure
23338  *		flag	- this argument is a pass through to ddi_copyxxx()
23339  *			  directly from the mode argument of ioctl().
23340  *
23341  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
23342  *		ENXIO
23343  *		EFAULT
23344  */
23345 
23346 static int
23347 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
23348 {
23349 	struct sd_lun		*un;
23350 	mhioc_inkeys_t		inkeys;
23351 	int			rval = 0;
23352 
23353 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23354 		return (ENXIO);
23355 	}
23356 
23357 #ifdef _MULTI_DATAMODEL
23358 	switch (ddi_model_convert_from(flag & FMODELS)) {
23359 	case DDI_MODEL_ILP32: {
23360 		struct mhioc_inkeys32	inkeys32;
23361 
23362 		if (ddi_copyin(arg, &inkeys32,
23363 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
23364 			return (EFAULT);
23365 		}
23366 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
23367 		if ((rval = sd_persistent_reservation_in_read_keys(un,
23368 		    &inkeys, flag)) != 0) {
23369 			return (rval);
23370 		}
23371 		inkeys32.generation = inkeys.generation;
23372 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
23373 		    flag) != 0) {
23374 			return (EFAULT);
23375 		}
23376 		break;
23377 	}
23378 	case DDI_MODEL_NONE:
23379 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
23380 		    flag) != 0) {
23381 			return (EFAULT);
23382 		}
23383 		if ((rval = sd_persistent_reservation_in_read_keys(un,
23384 		    &inkeys, flag)) != 0) {
23385 			return (rval);
23386 		}
23387 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
23388 		    flag) != 0) {
23389 			return (EFAULT);
23390 		}
23391 		break;
23392 	}
23393 
23394 #else /* ! _MULTI_DATAMODEL */
23395 
23396 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
23397 		return (EFAULT);
23398 	}
23399 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
23400 	if (rval != 0) {
23401 		return (rval);
23402 	}
23403 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
23404 		return (EFAULT);
23405 	}
23406 
23407 #endif /* _MULTI_DATAMODEL */
23408 
23409 	return (rval);
23410 }
23411 
23412 
23413 /*
23414  *    Function: sd_mhdioc_inresv
23415  *
23416  * Description: This routine is the driver entry point for handling ioctl
23417  *		requests to issue the SCSI-3 Persistent In Read Reservations
23418  *		command to the device (MHIOCGRP_INKEYS).
23419  *
23420  *   Arguments: dev	- the device number
23421  *		arg	- user provided in_resv structure
23422  *		flag	- this argument is a pass through to ddi_copyxxx()
23423  *			  directly from the mode argument of ioctl().
23424  *
23425  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
23426  *		ENXIO
23427  *		EFAULT
23428  */
23429 
23430 static int
23431 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
23432 {
23433 	struct sd_lun		*un;
23434 	mhioc_inresvs_t		inresvs;
23435 	int			rval = 0;
23436 
23437 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23438 		return (ENXIO);
23439 	}
23440 
23441 #ifdef _MULTI_DATAMODEL
23442 
23443 	switch (ddi_model_convert_from(flag & FMODELS)) {
23444 	case DDI_MODEL_ILP32: {
23445 		struct mhioc_inresvs32	inresvs32;
23446 
23447 		if (ddi_copyin(arg, &inresvs32,
23448 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
23449 			return (EFAULT);
23450 		}
23451 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
23452 		if ((rval = sd_persistent_reservation_in_read_resv(un,
23453 		    &inresvs, flag)) != 0) {
23454 			return (rval);
23455 		}
23456 		inresvs32.generation = inresvs.generation;
23457 		if (ddi_copyout(&inresvs32, arg,
23458 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
23459 			return (EFAULT);
23460 		}
23461 		break;
23462 	}
23463 	case DDI_MODEL_NONE:
23464 		if (ddi_copyin(arg, &inresvs,
23465 		    sizeof (mhioc_inresvs_t), flag) != 0) {
23466 			return (EFAULT);
23467 		}
23468 		if ((rval = sd_persistent_reservation_in_read_resv(un,
23469 		    &inresvs, flag)) != 0) {
23470 			return (rval);
23471 		}
23472 		if (ddi_copyout(&inresvs, arg,
23473 		    sizeof (mhioc_inresvs_t), flag) != 0) {
23474 			return (EFAULT);
23475 		}
23476 		break;
23477 	}
23478 
23479 #else /* ! _MULTI_DATAMODEL */
23480 
23481 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
23482 		return (EFAULT);
23483 	}
23484 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
23485 	if (rval != 0) {
23486 		return (rval);
23487 	}
23488 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
23489 		return (EFAULT);
23490 	}
23491 
23492 #endif /* ! _MULTI_DATAMODEL */
23493 
23494 	return (rval);
23495 }
23496 
23497 
23498 /*
23499  * The following routines support the clustering functionality described below
23500  * and implement lost reservation reclaim functionality.
23501  *
23502  * Clustering
23503  * ----------
23504  * The clustering code uses two different, independent forms of SCSI
23505  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
23506  * Persistent Group Reservations. For any particular disk, it will use either
23507  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
23508  *
23509  * SCSI-2
23510  * The cluster software takes ownership of a multi-hosted disk by issuing the
23511  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
23512  * MHIOCRELEASE ioctl.  Closely related is the MHIOCENFAILFAST ioctl -- a
23513  * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl
23514  * then issues the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the
23515  * driver. The meaning of failfast is that if the driver (on this host) ever
23516  * encounters the scsi error return code RESERVATION_CONFLICT from the device,
23517  * it should immediately panic the host. The motivation for this ioctl is that
23518  * if this host does encounter reservation conflict, the underlying cause is
23519  * that some other host of the cluster has decided that this host is no longer
23520  * in the cluster and has seized control of the disks for itself. Since this
23521  * host is no longer in the cluster, it ought to panic itself. The
23522  * MHIOCENFAILFAST ioctl does two things:
23523  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
23524  *      error to panic the host
23525  *      (b) it sets up a periodic timer to test whether this host still has
23526  *      "access" (in that no other host has reserved the device):  if the
23527  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
23528  *      purpose of that periodic timer is to handle scenarios where the host is
23529  *      otherwise temporarily quiescent, temporarily doing no real i/o.
23530  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
23531  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
23532  * the device itself.
23533  *
23534  * SCSI-3 PGR
23535  * A direct semantic implementation of the SCSI-3 Persistent Reservation
23536  * facility is supported through the shared multihost disk ioctls
23537  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
23538  * MHIOCGRP_PREEMPTANDABORT)
23539  *
23540  * Reservation Reclaim:
23541  * --------------------
23542  * To support the lost reservation reclaim operations this driver creates a
23543  * single thread to handle reinstating reservations on all devices that have
23544  * lost reservations sd_resv_reclaim_requests are logged for all devices that
23545  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
23546  * and the reservation reclaim thread loops through the requests to regain the
23547  * lost reservations.
23548  */
23549 
23550 /*
23551  *    Function: sd_check_mhd()
23552  *
23553  * Description: This function sets up and submits a scsi watch request or
23554  *		terminates an existing watch request. This routine is used in
23555  *		support of reservation reclaim.
23556  *
23557  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
23558  *			 among multiple watches that share the callback function
23559  *		interval - the number of microseconds specifying the watch
23560  *			   interval for issuing TEST UNIT READY commands. If
23561  *			   set to 0 the watch should be terminated. If the
23562  *			   interval is set to 0 and if the device is required
23563  *			   to hold reservation while disabling failfast, the
23564  *			   watch is restarted with an interval of
23565  *			   reinstate_resv_delay.
23566  *
23567  * Return Code: 0	   - Successful submit/terminate of scsi watch request
23568  *		ENXIO      - Indicates an invalid device was specified
23569  *		EAGAIN     - Unable to submit the scsi watch request
23570  */
23571 
23572 static int
23573 sd_check_mhd(dev_t dev, int interval)
23574 {
23575 	struct sd_lun	*un;
23576 	opaque_t	token;
23577 
23578 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23579 		return (ENXIO);
23580 	}
23581 
23582 	/* is this a watch termination request? */
23583 	if (interval == 0) {
23584 		mutex_enter(SD_MUTEX(un));
23585 		/* if there is an existing watch task then terminate it */
23586 		if (un->un_mhd_token) {
23587 			token = un->un_mhd_token;
23588 			un->un_mhd_token = NULL;
23589 			mutex_exit(SD_MUTEX(un));
23590 			(void) scsi_watch_request_terminate(token,
23591 			    SCSI_WATCH_TERMINATE_ALL_WAIT);
23592 			mutex_enter(SD_MUTEX(un));
23593 		} else {
23594 			mutex_exit(SD_MUTEX(un));
23595 			/*
23596 			 * Note: If we return here we don't check for the
23597 			 * failfast case. This is the original legacy
23598 			 * implementation but perhaps we should be checking
23599 			 * the failfast case.
23600 			 */
23601 			return (0);
23602 		}
23603 		/*
23604 		 * If the device is required to hold reservation while
23605 		 * disabling failfast, we need to restart the scsi_watch
23606 		 * routine with an interval of reinstate_resv_delay.
23607 		 */
23608 		if (un->un_resvd_status & SD_RESERVE) {
23609 			interval = sd_reinstate_resv_delay/1000;
23610 		} else {
23611 			/* no failfast so bail */
23612 			mutex_exit(SD_MUTEX(un));
23613 			return (0);
23614 		}
23615 		mutex_exit(SD_MUTEX(un));
23616 	}
23617 
23618 	/*
23619 	 * adjust minimum time interval to 1 second,
23620 	 * and convert from msecs to usecs
23621 	 */
23622 	if (interval > 0 && interval < 1000) {
23623 		interval = 1000;
23624 	}
23625 	interval *= 1000;
23626 
23627 	/*
23628 	 * submit the request to the scsi_watch service
23629 	 */
23630 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
23631 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
23632 	if (token == NULL) {
23633 		return (EAGAIN);
23634 	}
23635 
23636 	/*
23637 	 * save token for termination later on
23638 	 */
23639 	mutex_enter(SD_MUTEX(un));
23640 	un->un_mhd_token = token;
23641 	mutex_exit(SD_MUTEX(un));
23642 	return (0);
23643 }
23644 
23645 
23646 /*
23647  *    Function: sd_mhd_watch_cb()
23648  *
23649  * Description: This function is the call back function used by the scsi watch
23650  *		facility. The scsi watch facility sends the "Test Unit Ready"
23651  *		and processes the status. If applicable (i.e. a "Unit Attention"
23652  *		status and automatic "Request Sense" not used) the scsi watch
23653  *		facility will send a "Request Sense" and retrieve the sense data
23654  *		to be passed to this callback function. In either case the
23655  *		automatic "Request Sense" or the facility submitting one, this
23656  *		callback is passed the status and sense data.
23657  *
23658  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
23659  *			among multiple watches that share this callback function
23660  *		resultp - scsi watch facility result packet containing scsi
23661  *			  packet, status byte and sense data
23662  *
23663  * Return Code: 0 - continue the watch task
23664  *		non-zero - terminate the watch task
23665  */
23666 
23667 static int
23668 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
23669 {
23670 	struct sd_lun			*un;
23671 	struct scsi_status		*statusp;
23672 	uint8_t				*sensep;
23673 	struct scsi_pkt			*pkt;
23674 	uchar_t				actual_sense_length;
23675 	dev_t  				dev = (dev_t)arg;
23676 
23677 	ASSERT(resultp != NULL);
23678 	statusp			= resultp->statusp;
23679 	sensep			= (uint8_t *)resultp->sensep;
23680 	pkt			= resultp->pkt;
23681 	actual_sense_length	= resultp->actual_sense_length;
23682 
23683 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23684 		return (ENXIO);
23685 	}
23686 
23687 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
23688 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
23689 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
23690 
23691 	/* Begin processing of the status and/or sense data */
23692 	if (pkt->pkt_reason != CMD_CMPLT) {
23693 		/* Handle the incomplete packet */
23694 		sd_mhd_watch_incomplete(un, pkt);
23695 		return (0);
23696 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
23697 		if (*((unsigned char *)statusp)
23698 		    == STATUS_RESERVATION_CONFLICT) {
23699 			/*
23700 			 * Handle a reservation conflict by panicking if
23701 			 * configured for failfast or by logging the conflict
23702 			 * and updating the reservation status
23703 			 */
23704 			mutex_enter(SD_MUTEX(un));
23705 			if ((un->un_resvd_status & SD_FAILFAST) &&
23706 			    (sd_failfast_enable)) {
23707 				sd_panic_for_res_conflict(un);
23708 				/*NOTREACHED*/
23709 			}
23710 			SD_INFO(SD_LOG_IOCTL_MHD, un,
23711 			    "sd_mhd_watch_cb: Reservation Conflict\n");
23712 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
23713 			mutex_exit(SD_MUTEX(un));
23714 		}
23715 	}
23716 
23717 	if (sensep != NULL) {
23718 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
23719 			mutex_enter(SD_MUTEX(un));
23720 			if ((scsi_sense_asc(sensep) ==
23721 			    SD_SCSI_RESET_SENSE_CODE) &&
23722 			    (un->un_resvd_status & SD_RESERVE)) {
23723 				/*
23724 				 * The additional sense code indicates a power
23725 				 * on or bus device reset has occurred; update
23726 				 * the reservation status.
23727 				 */
23728 				un->un_resvd_status |=
23729 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
23730 				SD_INFO(SD_LOG_IOCTL_MHD, un,
23731 				    "sd_mhd_watch_cb: Lost Reservation\n");
23732 			}
23733 		} else {
23734 			return (0);
23735 		}
23736 	} else {
23737 		mutex_enter(SD_MUTEX(un));
23738 	}
23739 
23740 	if ((un->un_resvd_status & SD_RESERVE) &&
23741 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
23742 		if (un->un_resvd_status & SD_WANT_RESERVE) {
23743 			/*
23744 			 * A reset occurred in between the last probe and this
23745 			 * one so if a timeout is pending cancel it.
23746 			 */
23747 			if (un->un_resvd_timeid) {
23748 				timeout_id_t temp_id = un->un_resvd_timeid;
23749 				un->un_resvd_timeid = NULL;
23750 				mutex_exit(SD_MUTEX(un));
23751 				(void) untimeout(temp_id);
23752 				mutex_enter(SD_MUTEX(un));
23753 			}
23754 			un->un_resvd_status &= ~SD_WANT_RESERVE;
23755 		}
23756 		if (un->un_resvd_timeid == 0) {
23757 			/* Schedule a timeout to handle the lost reservation */
23758 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
23759 			    (void *)dev,
23760 			    drv_usectohz(sd_reinstate_resv_delay));
23761 		}
23762 	}
23763 	mutex_exit(SD_MUTEX(un));
23764 	return (0);
23765 }
23766 
23767 
23768 /*
23769  *    Function: sd_mhd_watch_incomplete()
23770  *
23771  * Description: This function is used to find out why a scsi pkt sent by the
23772  *		scsi watch facility was not completed. Under some scenarios this
23773  *		routine will return. Otherwise it will send a bus reset to see
23774  *		if the drive is still online.
23775  *
23776  *   Arguments: un  - driver soft state (unit) structure
23777  *		pkt - incomplete scsi pkt
23778  */
23779 
23780 static void
23781 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
23782 {
23783 	int	be_chatty;
23784 	int	perr;
23785 
23786 	ASSERT(pkt != NULL);
23787 	ASSERT(un != NULL);
23788 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
23789 	perr		= (pkt->pkt_statistics & STAT_PERR);
23790 
23791 	mutex_enter(SD_MUTEX(un));
23792 	if (un->un_state == SD_STATE_DUMPING) {
23793 		mutex_exit(SD_MUTEX(un));
23794 		return;
23795 	}
23796 
23797 	switch (pkt->pkt_reason) {
23798 	case CMD_UNX_BUS_FREE:
23799 		/*
23800 		 * If we had a parity error that caused the target to drop BSY*,
23801 		 * don't be chatty about it.
23802 		 */
23803 		if (perr && be_chatty) {
23804 			be_chatty = 0;
23805 		}
23806 		break;
23807 	case CMD_TAG_REJECT:
23808 		/*
23809 		 * The SCSI-2 spec states that a tag reject will be sent by the
23810 		 * target if tagged queuing is not supported. A tag reject may
23811 		 * also be sent during certain initialization periods or to
23812 		 * control internal resources. For the latter case the target
23813 		 * may also return Queue Full.
23814 		 *
23815 		 * If this driver receives a tag reject from a target that is
23816 		 * going through an init period or controlling internal
23817 		 * resources tagged queuing will be disabled. This is a less
23818 		 * than optimal behavior but the driver is unable to determine
23819 		 * the target state and assumes tagged queueing is not supported
23820 		 */
23821 		pkt->pkt_flags = 0;
23822 		un->un_tagflags = 0;
23823 
23824 		if (un->un_f_opt_queueing == TRUE) {
23825 			un->un_throttle = min(un->un_throttle, 3);
23826 		} else {
23827 			un->un_throttle = 1;
23828 		}
23829 		mutex_exit(SD_MUTEX(un));
23830 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
23831 		mutex_enter(SD_MUTEX(un));
23832 		break;
23833 	case CMD_INCOMPLETE:
23834 		/*
23835 		 * The transport stopped with an abnormal state, fallthrough and
23836 		 * reset the target and/or bus unless selection did not complete
23837 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
23838 		 * go through a target/bus reset
23839 		 */
23840 		if (pkt->pkt_state == STATE_GOT_BUS) {
23841 			break;
23842 		}
23843 		/*FALLTHROUGH*/
23844 
23845 	case CMD_TIMEOUT:
23846 	default:
23847 		/*
23848 		 * The lun may still be running the command, so a lun reset
23849 		 * should be attempted. If the lun reset fails or cannot be
23850 		 * issued, than try a target reset. Lastly try a bus reset.
23851 		 */
23852 		if ((pkt->pkt_statistics &
23853 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
23854 			int reset_retval = 0;
23855 			mutex_exit(SD_MUTEX(un));
23856 			if (un->un_f_allow_bus_device_reset == TRUE) {
23857 				if (un->un_f_lun_reset_enabled == TRUE) {
23858 					reset_retval =
23859 					    scsi_reset(SD_ADDRESS(un),
23860 					    RESET_LUN);
23861 				}
23862 				if (reset_retval == 0) {
23863 					reset_retval =
23864 					    scsi_reset(SD_ADDRESS(un),
23865 					    RESET_TARGET);
23866 				}
23867 			}
23868 			if (reset_retval == 0) {
23869 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
23870 			}
23871 			mutex_enter(SD_MUTEX(un));
23872 		}
23873 		break;
23874 	}
23875 
23876 	/* A device/bus reset has occurred; update the reservation status. */
23877 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
23878 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
23879 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
23880 			un->un_resvd_status |=
23881 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
23882 			SD_INFO(SD_LOG_IOCTL_MHD, un,
23883 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
23884 		}
23885 	}
23886 
23887 	/*
23888 	 * The disk has been turned off; Update the device state.
23889 	 *
23890 	 * Note: Should we be offlining the disk here?
23891 	 */
23892 	if (pkt->pkt_state == STATE_GOT_BUS) {
23893 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
23894 		    "Disk not responding to selection\n");
23895 		if (un->un_state != SD_STATE_OFFLINE) {
23896 			New_state(un, SD_STATE_OFFLINE);
23897 		}
23898 	} else if (be_chatty) {
23899 		/*
23900 		 * suppress messages if they are all the same pkt reason;
23901 		 * with TQ, many (up to 256) are returned with the same
23902 		 * pkt_reason
23903 		 */
23904 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
23905 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23906 			    "sd_mhd_watch_incomplete: "
23907 			    "SCSI transport failed: reason '%s'\n",
23908 			    scsi_rname(pkt->pkt_reason));
23909 		}
23910 	}
23911 	un->un_last_pkt_reason = pkt->pkt_reason;
23912 	mutex_exit(SD_MUTEX(un));
23913 }
23914 
23915 
23916 /*
23917  *    Function: sd_sname()
23918  *
23919  * Description: This is a simple little routine to return a string containing
23920  *		a printable description of command status byte for use in
23921  *		logging.
23922  *
23923  *   Arguments: status - pointer to a status byte
23924  *
23925  * Return Code: char * - string containing status description.
23926  */
23927 
23928 static char *
23929 sd_sname(uchar_t status)
23930 {
23931 	switch (status & STATUS_MASK) {
23932 	case STATUS_GOOD:
23933 		return ("good status");
23934 	case STATUS_CHECK:
23935 		return ("check condition");
23936 	case STATUS_MET:
23937 		return ("condition met");
23938 	case STATUS_BUSY:
23939 		return ("busy");
23940 	case STATUS_INTERMEDIATE:
23941 		return ("intermediate");
23942 	case STATUS_INTERMEDIATE_MET:
23943 		return ("intermediate - condition met");
23944 	case STATUS_RESERVATION_CONFLICT:
23945 		return ("reservation_conflict");
23946 	case STATUS_TERMINATED:
23947 		return ("command terminated");
23948 	case STATUS_QFULL:
23949 		return ("queue full");
23950 	default:
23951 		return ("<unknown status>");
23952 	}
23953 }
23954 
23955 
23956 /*
23957  *    Function: sd_mhd_resvd_recover()
23958  *
23959  * Description: This function adds a reservation entry to the
23960  *		sd_resv_reclaim_request list and signals the reservation
23961  *		reclaim thread that there is work pending. If the reservation
23962  *		reclaim thread has not been previously created this function
23963  *		will kick it off.
23964  *
23965  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
23966  *			among multiple watches that share this callback function
23967  *
23968  *     Context: This routine is called by timeout() and is run in interrupt
23969  *		context. It must not sleep or call other functions which may
23970  *		sleep.
23971  */
23972 
23973 static void
23974 sd_mhd_resvd_recover(void *arg)
23975 {
23976 	dev_t			dev = (dev_t)arg;
23977 	struct sd_lun		*un;
23978 	struct sd_thr_request	*sd_treq = NULL;
23979 	struct sd_thr_request	*sd_cur = NULL;
23980 	struct sd_thr_request	*sd_prev = NULL;
23981 	int			already_there = 0;
23982 
23983 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23984 		return;
23985 	}
23986 
23987 	mutex_enter(SD_MUTEX(un));
23988 	un->un_resvd_timeid = NULL;
23989 	if (un->un_resvd_status & SD_WANT_RESERVE) {
23990 		/*
23991 		 * There was a reset so don't issue the reserve, allow the
23992 		 * sd_mhd_watch_cb callback function to notice this and
23993 		 * reschedule the timeout for reservation.
23994 		 */
23995 		mutex_exit(SD_MUTEX(un));
23996 		return;
23997 	}
23998 	mutex_exit(SD_MUTEX(un));
23999 
24000 	/*
24001 	 * Add this device to the sd_resv_reclaim_request list and the
24002 	 * sd_resv_reclaim_thread should take care of the rest.
24003 	 *
24004 	 * Note: We can't sleep in this context so if the memory allocation
24005 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
24006 	 * reschedule the timeout for reservation.  (4378460)
24007 	 */
24008 	sd_treq = (struct sd_thr_request *)
24009 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
24010 	if (sd_treq == NULL) {
24011 		return;
24012 	}
24013 
24014 	sd_treq->sd_thr_req_next = NULL;
24015 	sd_treq->dev = dev;
24016 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
24017 	if (sd_tr.srq_thr_req_head == NULL) {
24018 		sd_tr.srq_thr_req_head = sd_treq;
24019 	} else {
24020 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
24021 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
24022 			if (sd_cur->dev == dev) {
24023 				/*
24024 				 * already in Queue so don't log
24025 				 * another request for the device
24026 				 */
24027 				already_there = 1;
24028 				break;
24029 			}
24030 			sd_prev = sd_cur;
24031 		}
24032 		if (!already_there) {
24033 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
24034 			    "logging request for %lx\n", dev);
24035 			sd_prev->sd_thr_req_next = sd_treq;
24036 		} else {
24037 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
24038 		}
24039 	}
24040 
24041 	/*
24042 	 * Create a kernel thread to do the reservation reclaim and free up this
24043 	 * thread. We cannot block this thread while we go away to do the
24044 	 * reservation reclaim
24045 	 */
24046 	if (sd_tr.srq_resv_reclaim_thread == NULL)
24047 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
24048 		    sd_resv_reclaim_thread, NULL,
24049 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
24050 
24051 	/* Tell the reservation reclaim thread that it has work to do */
24052 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
24053 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24054 }
24055 
24056 /*
24057  *    Function: sd_resv_reclaim_thread()
24058  *
24059  * Description: This function implements the reservation reclaim operations
24060  *
24061  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
24062  *		      among multiple watches that share this callback function
24063  */
24064 
24065 static void
24066 sd_resv_reclaim_thread()
24067 {
24068 	struct sd_lun		*un;
24069 	struct sd_thr_request	*sd_mhreq;
24070 
24071 	/* Wait for work */
24072 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
24073 	if (sd_tr.srq_thr_req_head == NULL) {
24074 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
24075 		    &sd_tr.srq_resv_reclaim_mutex);
24076 	}
24077 
24078 	/* Loop while we have work */
24079 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
24080 		un = ddi_get_soft_state(sd_state,
24081 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
24082 		if (un == NULL) {
24083 			/*
24084 			 * softstate structure is NULL so just
24085 			 * dequeue the request and continue
24086 			 */
24087 			sd_tr.srq_thr_req_head =
24088 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
24089 			kmem_free(sd_tr.srq_thr_cur_req,
24090 			    sizeof (struct sd_thr_request));
24091 			continue;
24092 		}
24093 
24094 		/* dequeue the request */
24095 		sd_mhreq = sd_tr.srq_thr_cur_req;
24096 		sd_tr.srq_thr_req_head =
24097 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
24098 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24099 
24100 		/*
24101 		 * Reclaim reservation only if SD_RESERVE is still set. There
24102 		 * may have been a call to MHIOCRELEASE before we got here.
24103 		 */
24104 		mutex_enter(SD_MUTEX(un));
24105 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
24106 			/*
24107 			 * Note: The SD_LOST_RESERVE flag is cleared before
24108 			 * reclaiming the reservation. If this is done after the
24109 			 * call to sd_reserve_release a reservation loss in the
24110 			 * window between pkt completion of reserve cmd and
24111 			 * mutex_enter below may not be recognized
24112 			 */
24113 			un->un_resvd_status &= ~SD_LOST_RESERVE;
24114 			mutex_exit(SD_MUTEX(un));
24115 
24116 			if (sd_reserve_release(sd_mhreq->dev,
24117 			    SD_RESERVE) == 0) {
24118 				mutex_enter(SD_MUTEX(un));
24119 				un->un_resvd_status |= SD_RESERVE;
24120 				mutex_exit(SD_MUTEX(un));
24121 				SD_INFO(SD_LOG_IOCTL_MHD, un,
24122 				    "sd_resv_reclaim_thread: "
24123 				    "Reservation Recovered\n");
24124 			} else {
24125 				mutex_enter(SD_MUTEX(un));
24126 				un->un_resvd_status |= SD_LOST_RESERVE;
24127 				mutex_exit(SD_MUTEX(un));
24128 				SD_INFO(SD_LOG_IOCTL_MHD, un,
24129 				    "sd_resv_reclaim_thread: Failed "
24130 				    "Reservation Recovery\n");
24131 			}
24132 		} else {
24133 			mutex_exit(SD_MUTEX(un));
24134 		}
24135 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
24136 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
24137 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
24138 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
24139 		/*
24140 		 * wakeup the destroy thread if anyone is waiting on
24141 		 * us to complete.
24142 		 */
24143 		cv_signal(&sd_tr.srq_inprocess_cv);
24144 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
24145 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
24146 	}
24147 
24148 	/*
24149 	 * cleanup the sd_tr structure now that this thread will not exist
24150 	 */
24151 	ASSERT(sd_tr.srq_thr_req_head == NULL);
24152 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
24153 	sd_tr.srq_resv_reclaim_thread = NULL;
24154 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24155 	thread_exit();
24156 }
24157 
24158 
24159 /*
24160  *    Function: sd_rmv_resv_reclaim_req()
24161  *
24162  * Description: This function removes any pending reservation reclaim requests
24163  *		for the specified device.
24164  *
24165  *   Arguments: dev - the device 'dev_t'
24166  */
24167 
24168 static void
24169 sd_rmv_resv_reclaim_req(dev_t dev)
24170 {
24171 	struct sd_thr_request *sd_mhreq;
24172 	struct sd_thr_request *sd_prev;
24173 
24174 	/* Remove a reservation reclaim request from the list */
24175 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
24176 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
24177 		/*
24178 		 * We are attempting to reinstate reservation for
24179 		 * this device. We wait for sd_reserve_release()
24180 		 * to return before we return.
24181 		 */
24182 		cv_wait(&sd_tr.srq_inprocess_cv,
24183 		    &sd_tr.srq_resv_reclaim_mutex);
24184 	} else {
24185 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
24186 		if (sd_mhreq && sd_mhreq->dev == dev) {
24187 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
24188 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
24189 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24190 			return;
24191 		}
24192 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
24193 			if (sd_mhreq && sd_mhreq->dev == dev) {
24194 				break;
24195 			}
24196 			sd_prev = sd_mhreq;
24197 		}
24198 		if (sd_mhreq != NULL) {
24199 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
24200 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
24201 		}
24202 	}
24203 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24204 }
24205 
24206 
24207 /*
24208  *    Function: sd_mhd_reset_notify_cb()
24209  *
24210  * Description: This is a call back function for scsi_reset_notify. This
24211  *		function updates the softstate reserved status and logs the
24212  *		reset. The driver scsi watch facility callback function
24213  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
24214  *		will reclaim the reservation.
24215  *
24216  *   Arguments: arg  - driver soft state (unit) structure
24217  */
24218 
24219 static void
24220 sd_mhd_reset_notify_cb(caddr_t arg)
24221 {
24222 	struct sd_lun *un = (struct sd_lun *)arg;
24223 
24224 	mutex_enter(SD_MUTEX(un));
24225 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
24226 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
24227 		SD_INFO(SD_LOG_IOCTL_MHD, un,
24228 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
24229 	}
24230 	mutex_exit(SD_MUTEX(un));
24231 }
24232 
24233 
24234 /*
24235  *    Function: sd_take_ownership()
24236  *
24237  * Description: This routine implements an algorithm to achieve a stable
24238  *		reservation on disks which don't implement priority reserve,
24239  *		and makes sure that other host lose re-reservation attempts.
24240  *		This algorithm contains of a loop that keeps issuing the RESERVE
24241  *		for some period of time (min_ownership_delay, default 6 seconds)
24242  *		During that loop, it looks to see if there has been a bus device
24243  *		reset or bus reset (both of which cause an existing reservation
24244  *		to be lost). If the reservation is lost issue RESERVE until a
24245  *		period of min_ownership_delay with no resets has gone by, or
24246  *		until max_ownership_delay has expired. This loop ensures that
24247  *		the host really did manage to reserve the device, in spite of
24248  *		resets. The looping for min_ownership_delay (default six
24249  *		seconds) is important to early generation clustering products,
24250  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
24251  *		MHIOCENFAILFAST periodic timer of two seconds. By having
24252  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
24253  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
24254  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
24255  *		have already noticed, via the MHIOCENFAILFAST polling, that it
24256  *		no longer "owns" the disk and will have panicked itself.  Thus,
24257  *		the host issuing the MHIOCTKOWN is assured (with timing
24258  *		dependencies) that by the time it actually starts to use the
24259  *		disk for real work, the old owner is no longer accessing it.
24260  *
24261  *		min_ownership_delay is the minimum amount of time for which the
24262  *		disk must be reserved continuously devoid of resets before the
24263  *		MHIOCTKOWN ioctl will return success.
24264  *
24265  *		max_ownership_delay indicates the amount of time by which the
24266  *		take ownership should succeed or timeout with an error.
24267  *
24268  *   Arguments: dev - the device 'dev_t'
24269  *		*p  - struct containing timing info.
24270  *
24271  * Return Code: 0 for success or error code
24272  */
24273 
24274 static int
24275 sd_take_ownership(dev_t dev, struct mhioctkown *p)
24276 {
24277 	struct sd_lun	*un;
24278 	int		rval;
24279 	int		err;
24280 	int		reservation_count   = 0;
24281 	int		min_ownership_delay =  6000000; /* in usec */
24282 	int		max_ownership_delay = 30000000; /* in usec */
24283 	clock_t		start_time;	/* starting time of this algorithm */
24284 	clock_t		end_time;	/* time limit for giving up */
24285 	clock_t		ownership_time;	/* time limit for stable ownership */
24286 	clock_t		current_time;
24287 	clock_t		previous_current_time;
24288 
24289 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24290 		return (ENXIO);
24291 	}
24292 
24293 	/*
24294 	 * Attempt a device reservation. A priority reservation is requested.
24295 	 */
24296 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
24297 	    != SD_SUCCESS) {
24298 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
24299 		    "sd_take_ownership: return(1)=%d\n", rval);
24300 		return (rval);
24301 	}
24302 
24303 	/* Update the softstate reserved status to indicate the reservation */
24304 	mutex_enter(SD_MUTEX(un));
24305 	un->un_resvd_status |= SD_RESERVE;
24306 	un->un_resvd_status &=
24307 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
24308 	mutex_exit(SD_MUTEX(un));
24309 
24310 	if (p != NULL) {
24311 		if (p->min_ownership_delay != 0) {
24312 			min_ownership_delay = p->min_ownership_delay * 1000;
24313 		}
24314 		if (p->max_ownership_delay != 0) {
24315 			max_ownership_delay = p->max_ownership_delay * 1000;
24316 		}
24317 	}
24318 	SD_INFO(SD_LOG_IOCTL_MHD, un,
24319 	    "sd_take_ownership: min, max delays: %d, %d\n",
24320 	    min_ownership_delay, max_ownership_delay);
24321 
24322 	start_time = ddi_get_lbolt();
24323 	current_time	= start_time;
24324 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
24325 	end_time	= start_time + drv_usectohz(max_ownership_delay);
24326 
24327 	while (current_time - end_time < 0) {
24328 		delay(drv_usectohz(500000));
24329 
24330 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
24331 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
24332 				mutex_enter(SD_MUTEX(un));
24333 				rval = (un->un_resvd_status &
24334 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
24335 				mutex_exit(SD_MUTEX(un));
24336 				break;
24337 			}
24338 		}
24339 		previous_current_time = current_time;
24340 		current_time = ddi_get_lbolt();
24341 		mutex_enter(SD_MUTEX(un));
24342 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
24343 			ownership_time = ddi_get_lbolt() +
24344 			    drv_usectohz(min_ownership_delay);
24345 			reservation_count = 0;
24346 		} else {
24347 			reservation_count++;
24348 		}
24349 		un->un_resvd_status |= SD_RESERVE;
24350 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
24351 		mutex_exit(SD_MUTEX(un));
24352 
24353 		SD_INFO(SD_LOG_IOCTL_MHD, un,
24354 		    "sd_take_ownership: ticks for loop iteration=%ld, "
24355 		    "reservation=%s\n", (current_time - previous_current_time),
24356 		    reservation_count ? "ok" : "reclaimed");
24357 
24358 		if (current_time - ownership_time >= 0 &&
24359 		    reservation_count >= 4) {
24360 			rval = 0; /* Achieved a stable ownership */
24361 			break;
24362 		}
24363 		if (current_time - end_time >= 0) {
24364 			rval = EACCES; /* No ownership in max possible time */
24365 			break;
24366 		}
24367 	}
24368 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
24369 	    "sd_take_ownership: return(2)=%d\n", rval);
24370 	return (rval);
24371 }
24372 
24373 
24374 /*
24375  *    Function: sd_reserve_release()
24376  *
24377  * Description: This function builds and sends scsi RESERVE, RELEASE, and
24378  *		PRIORITY RESERVE commands based on a user specified command type
24379  *
24380  *   Arguments: dev - the device 'dev_t'
24381  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
24382  *		      SD_RESERVE, SD_RELEASE
24383  *
24384  * Return Code: 0 or Error Code
24385  */
24386 
24387 static int
24388 sd_reserve_release(dev_t dev, int cmd)
24389 {
24390 	struct uscsi_cmd	*com = NULL;
24391 	struct sd_lun		*un = NULL;
24392 	char			cdb[CDB_GROUP0];
24393 	int			rval;
24394 
24395 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
24396 	    (cmd == SD_PRIORITY_RESERVE));
24397 
24398 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24399 		return (ENXIO);
24400 	}
24401 
24402 	/* instantiate and initialize the command and cdb */
24403 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24404 	bzero(cdb, CDB_GROUP0);
24405 	com->uscsi_flags   = USCSI_SILENT;
24406 	com->uscsi_timeout = un->un_reserve_release_time;
24407 	com->uscsi_cdblen  = CDB_GROUP0;
24408 	com->uscsi_cdb	   = cdb;
24409 	if (cmd == SD_RELEASE) {
24410 		cdb[0] = SCMD_RELEASE;
24411 	} else {
24412 		cdb[0] = SCMD_RESERVE;
24413 	}
24414 
24415 	/* Send the command. */
24416 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24417 	    SD_PATH_STANDARD);
24418 
24419 	/*
24420 	 * "break" a reservation that is held by another host, by issuing a
24421 	 * reset if priority reserve is desired, and we could not get the
24422 	 * device.
24423 	 */
24424 	if ((cmd == SD_PRIORITY_RESERVE) &&
24425 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
24426 		/*
24427 		 * First try to reset the LUN. If we cannot, then try a target
24428 		 * reset, followed by a bus reset if the target reset fails.
24429 		 */
24430 		int reset_retval = 0;
24431 		if (un->un_f_lun_reset_enabled == TRUE) {
24432 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
24433 		}
24434 		if (reset_retval == 0) {
24435 			/* The LUN reset either failed or was not issued */
24436 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
24437 		}
24438 		if ((reset_retval == 0) &&
24439 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
24440 			rval = EIO;
24441 			kmem_free(com, sizeof (*com));
24442 			return (rval);
24443 		}
24444 
24445 		bzero(com, sizeof (struct uscsi_cmd));
24446 		com->uscsi_flags   = USCSI_SILENT;
24447 		com->uscsi_cdb	   = cdb;
24448 		com->uscsi_cdblen  = CDB_GROUP0;
24449 		com->uscsi_timeout = 5;
24450 
24451 		/*
24452 		 * Reissue the last reserve command, this time without request
24453 		 * sense.  Assume that it is just a regular reserve command.
24454 		 */
24455 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24456 		    SD_PATH_STANDARD);
24457 	}
24458 
24459 	/* Return an error if still getting a reservation conflict. */
24460 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
24461 		rval = EACCES;
24462 	}
24463 
24464 	kmem_free(com, sizeof (*com));
24465 	return (rval);
24466 }
24467 
24468 
24469 #define	SD_NDUMP_RETRIES	12
24470 /*
24471  *	System Crash Dump routine
24472  */
24473 
24474 static int
24475 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
24476 {
24477 	int		instance;
24478 	int		partition;
24479 	int		i;
24480 	int		err;
24481 	struct sd_lun	*un;
24482 	struct scsi_pkt *wr_pktp;
24483 	struct buf	*wr_bp;
24484 	struct buf	wr_buf;
24485 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
24486 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
24487 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
24488 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
24489 	size_t		io_start_offset;
24490 	int		doing_rmw = FALSE;
24491 	int		rval;
24492 	ssize_t		dma_resid;
24493 	daddr_t		oblkno;
24494 	diskaddr_t	nblks = 0;
24495 	diskaddr_t	start_block;
24496 
24497 	instance = SDUNIT(dev);
24498 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
24499 	    !SD_IS_VALID_LABEL(un) || ISCD(un)) {
24500 		return (ENXIO);
24501 	}
24502 
24503 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
24504 
24505 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
24506 
24507 	partition = SDPART(dev);
24508 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
24509 
24510 	/* Validate blocks to dump at against partition size. */
24511 
24512 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
24513 	    &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT);
24514 
24515 	if ((blkno + nblk) > nblks) {
24516 		SD_TRACE(SD_LOG_DUMP, un,
24517 		    "sddump: dump range larger than partition: "
24518 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
24519 		    blkno, nblk, nblks);
24520 		return (EINVAL);
24521 	}
24522 
24523 	mutex_enter(&un->un_pm_mutex);
24524 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
24525 		struct scsi_pkt *start_pktp;
24526 
24527 		mutex_exit(&un->un_pm_mutex);
24528 
24529 		/*
24530 		 * use pm framework to power on HBA 1st
24531 		 */
24532 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
24533 
24534 		/*
24535 		 * Dump no long uses sdpower to power on a device, it's
24536 		 * in-line here so it can be done in polled mode.
24537 		 */
24538 
24539 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
24540 
24541 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
24542 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
24543 
24544 		if (start_pktp == NULL) {
24545 			/* We were not given a SCSI packet, fail. */
24546 			return (EIO);
24547 		}
24548 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
24549 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
24550 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
24551 		start_pktp->pkt_flags = FLAG_NOINTR;
24552 
24553 		mutex_enter(SD_MUTEX(un));
24554 		SD_FILL_SCSI1_LUN(un, start_pktp);
24555 		mutex_exit(SD_MUTEX(un));
24556 		/*
24557 		 * Scsi_poll returns 0 (success) if the command completes and
24558 		 * the status block is STATUS_GOOD.
24559 		 */
24560 		if (sd_scsi_poll(un, start_pktp) != 0) {
24561 			scsi_destroy_pkt(start_pktp);
24562 			return (EIO);
24563 		}
24564 		scsi_destroy_pkt(start_pktp);
24565 		(void) sd_ddi_pm_resume(un);
24566 	} else {
24567 		mutex_exit(&un->un_pm_mutex);
24568 	}
24569 
24570 	mutex_enter(SD_MUTEX(un));
24571 	un->un_throttle = 0;
24572 
24573 	/*
24574 	 * The first time through, reset the specific target device.
24575 	 * However, when cpr calls sddump we know that sd is in a
24576 	 * a good state so no bus reset is required.
24577 	 * Clear sense data via Request Sense cmd.
24578 	 * In sddump we don't care about allow_bus_device_reset anymore
24579 	 */
24580 
24581 	if ((un->un_state != SD_STATE_SUSPENDED) &&
24582 	    (un->un_state != SD_STATE_DUMPING)) {
24583 
24584 		New_state(un, SD_STATE_DUMPING);
24585 
24586 		if (un->un_f_is_fibre == FALSE) {
24587 			mutex_exit(SD_MUTEX(un));
24588 			/*
24589 			 * Attempt a bus reset for parallel scsi.
24590 			 *
24591 			 * Note: A bus reset is required because on some host
24592 			 * systems (i.e. E420R) a bus device reset is
24593 			 * insufficient to reset the state of the target.
24594 			 *
24595 			 * Note: Don't issue the reset for fibre-channel,
24596 			 * because this tends to hang the bus (loop) for
24597 			 * too long while everyone is logging out and in
24598 			 * and the deadman timer for dumping will fire
24599 			 * before the dump is complete.
24600 			 */
24601 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
24602 				mutex_enter(SD_MUTEX(un));
24603 				Restore_state(un);
24604 				mutex_exit(SD_MUTEX(un));
24605 				return (EIO);
24606 			}
24607 
24608 			/* Delay to give the device some recovery time. */
24609 			drv_usecwait(10000);
24610 
24611 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
24612 				SD_INFO(SD_LOG_DUMP, un,
24613 				    "sddump: sd_send_polled_RQS failed\n");
24614 			}
24615 			mutex_enter(SD_MUTEX(un));
24616 		}
24617 	}
24618 
24619 	/*
24620 	 * Convert the partition-relative block number to a
24621 	 * disk physical block number.
24622 	 */
24623 	blkno += start_block;
24624 
24625 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
24626 
24627 
24628 	/*
24629 	 * Check if the device has a non-512 block size.
24630 	 */
24631 	wr_bp = NULL;
24632 	if (NOT_DEVBSIZE(un)) {
24633 		tgt_byte_offset = blkno * un->un_sys_blocksize;
24634 		tgt_byte_count = nblk * un->un_sys_blocksize;
24635 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
24636 		    (tgt_byte_count % un->un_tgt_blocksize)) {
24637 			doing_rmw = TRUE;
24638 			/*
24639 			 * Calculate the block number and number of block
24640 			 * in terms of the media block size.
24641 			 */
24642 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
24643 			tgt_nblk =
24644 			    ((tgt_byte_offset + tgt_byte_count +
24645 			    (un->un_tgt_blocksize - 1)) /
24646 			    un->un_tgt_blocksize) - tgt_blkno;
24647 
24648 			/*
24649 			 * Invoke the routine which is going to do read part
24650 			 * of read-modify-write.
24651 			 * Note that this routine returns a pointer to
24652 			 * a valid bp in wr_bp.
24653 			 */
24654 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
24655 			    &wr_bp);
24656 			if (err) {
24657 				mutex_exit(SD_MUTEX(un));
24658 				return (err);
24659 			}
24660 			/*
24661 			 * Offset is being calculated as -
24662 			 * (original block # * system block size) -
24663 			 * (new block # * target block size)
24664 			 */
24665 			io_start_offset =
24666 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
24667 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
24668 
24669 			ASSERT((io_start_offset >= 0) &&
24670 			    (io_start_offset < un->un_tgt_blocksize));
24671 			/*
24672 			 * Do the modify portion of read modify write.
24673 			 */
24674 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
24675 			    (size_t)nblk * un->un_sys_blocksize);
24676 		} else {
24677 			doing_rmw = FALSE;
24678 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
24679 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
24680 		}
24681 
24682 		/* Convert blkno and nblk to target blocks */
24683 		blkno = tgt_blkno;
24684 		nblk = tgt_nblk;
24685 	} else {
24686 		wr_bp = &wr_buf;
24687 		bzero(wr_bp, sizeof (struct buf));
24688 		wr_bp->b_flags		= B_BUSY;
24689 		wr_bp->b_un.b_addr	= addr;
24690 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
24691 		wr_bp->b_resid		= 0;
24692 	}
24693 
24694 	mutex_exit(SD_MUTEX(un));
24695 
24696 	/*
24697 	 * Obtain a SCSI packet for the write command.
24698 	 * It should be safe to call the allocator here without
24699 	 * worrying about being locked for DVMA mapping because
24700 	 * the address we're passed is already a DVMA mapping
24701 	 *
24702 	 * We are also not going to worry about semaphore ownership
24703 	 * in the dump buffer. Dumping is single threaded at present.
24704 	 */
24705 
24706 	wr_pktp = NULL;
24707 
24708 	dma_resid = wr_bp->b_bcount;
24709 	oblkno = blkno;
24710 
24711 	while (dma_resid != 0) {
24712 
24713 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
24714 		wr_bp->b_flags &= ~B_ERROR;
24715 
24716 		if (un->un_partial_dma_supported == 1) {
24717 			blkno = oblkno +
24718 			    ((wr_bp->b_bcount - dma_resid) /
24719 			    un->un_tgt_blocksize);
24720 			nblk = dma_resid / un->un_tgt_blocksize;
24721 
24722 			if (wr_pktp) {
24723 				/*
24724 				 * Partial DMA transfers after initial transfer
24725 				 */
24726 				rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
24727 				    blkno, nblk);
24728 			} else {
24729 				/* Initial transfer */
24730 				rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
24731 				    un->un_pkt_flags, NULL_FUNC, NULL,
24732 				    blkno, nblk);
24733 			}
24734 		} else {
24735 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
24736 			    0, NULL_FUNC, NULL, blkno, nblk);
24737 		}
24738 
24739 		if (rval == 0) {
24740 			/* We were given a SCSI packet, continue. */
24741 			break;
24742 		}
24743 
24744 		if (i == 0) {
24745 			if (wr_bp->b_flags & B_ERROR) {
24746 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24747 				    "no resources for dumping; "
24748 				    "error code: 0x%x, retrying",
24749 				    geterror(wr_bp));
24750 			} else {
24751 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24752 				    "no resources for dumping; retrying");
24753 			}
24754 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
24755 			if (wr_bp->b_flags & B_ERROR) {
24756 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
24757 				    "no resources for dumping; error code: "
24758 				    "0x%x, retrying\n", geterror(wr_bp));
24759 			}
24760 		} else {
24761 			if (wr_bp->b_flags & B_ERROR) {
24762 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
24763 				    "no resources for dumping; "
24764 				    "error code: 0x%x, retries failed, "
24765 				    "giving up.\n", geterror(wr_bp));
24766 			} else {
24767 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
24768 				    "no resources for dumping; "
24769 				    "retries failed, giving up.\n");
24770 			}
24771 			mutex_enter(SD_MUTEX(un));
24772 			Restore_state(un);
24773 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
24774 				mutex_exit(SD_MUTEX(un));
24775 				scsi_free_consistent_buf(wr_bp);
24776 			} else {
24777 				mutex_exit(SD_MUTEX(un));
24778 			}
24779 			return (EIO);
24780 		}
24781 		drv_usecwait(10000);
24782 	}
24783 
24784 	if (un->un_partial_dma_supported == 1) {
24785 		/*
24786 		 * save the resid from PARTIAL_DMA
24787 		 */
24788 		dma_resid = wr_pktp->pkt_resid;
24789 		if (dma_resid != 0)
24790 			nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
24791 		wr_pktp->pkt_resid = 0;
24792 	} else {
24793 		dma_resid = 0;
24794 	}
24795 
24796 	/* SunBug 1222170 */
24797 	wr_pktp->pkt_flags = FLAG_NOINTR;
24798 
24799 	err = EIO;
24800 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
24801 
24802 		/*
24803 		 * Scsi_poll returns 0 (success) if the command completes and
24804 		 * the status block is STATUS_GOOD.  We should only check
24805 		 * errors if this condition is not true.  Even then we should
24806 		 * send our own request sense packet only if we have a check
24807 		 * condition and auto request sense has not been performed by
24808 		 * the hba.
24809 		 */
24810 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
24811 
24812 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
24813 		    (wr_pktp->pkt_resid == 0)) {
24814 			err = SD_SUCCESS;
24815 			break;
24816 		}
24817 
24818 		/*
24819 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
24820 		 */
24821 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
24822 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24823 			    "Error while dumping state...Device is gone\n");
24824 			break;
24825 		}
24826 
24827 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
24828 			SD_INFO(SD_LOG_DUMP, un,
24829 			    "sddump: write failed with CHECK, try # %d\n", i);
24830 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
24831 				(void) sd_send_polled_RQS(un);
24832 			}
24833 
24834 			continue;
24835 		}
24836 
24837 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
24838 			int reset_retval = 0;
24839 
24840 			SD_INFO(SD_LOG_DUMP, un,
24841 			    "sddump: write failed with BUSY, try # %d\n", i);
24842 
24843 			if (un->un_f_lun_reset_enabled == TRUE) {
24844 				reset_retval = scsi_reset(SD_ADDRESS(un),
24845 				    RESET_LUN);
24846 			}
24847 			if (reset_retval == 0) {
24848 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
24849 			}
24850 			(void) sd_send_polled_RQS(un);
24851 
24852 		} else {
24853 			SD_INFO(SD_LOG_DUMP, un,
24854 			    "sddump: write failed with 0x%x, try # %d\n",
24855 			    SD_GET_PKT_STATUS(wr_pktp), i);
24856 			mutex_enter(SD_MUTEX(un));
24857 			sd_reset_target(un, wr_pktp);
24858 			mutex_exit(SD_MUTEX(un));
24859 		}
24860 
24861 		/*
24862 		 * If we are not getting anywhere with lun/target resets,
24863 		 * let's reset the bus.
24864 		 */
24865 		if (i == SD_NDUMP_RETRIES/2) {
24866 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
24867 			(void) sd_send_polled_RQS(un);
24868 		}
24869 	}
24870 	}
24871 
24872 	scsi_destroy_pkt(wr_pktp);
24873 	mutex_enter(SD_MUTEX(un));
24874 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
24875 		mutex_exit(SD_MUTEX(un));
24876 		scsi_free_consistent_buf(wr_bp);
24877 	} else {
24878 		mutex_exit(SD_MUTEX(un));
24879 	}
24880 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
24881 	return (err);
24882 }
24883 
24884 /*
24885  *    Function: sd_scsi_poll()
24886  *
24887  * Description: This is a wrapper for the scsi_poll call.
24888  *
24889  *   Arguments: sd_lun - The unit structure
24890  *              scsi_pkt - The scsi packet being sent to the device.
24891  *
24892  * Return Code: 0 - Command completed successfully with good status
24893  *             -1 - Command failed.  This could indicate a check condition
24894  *                  or other status value requiring recovery action.
24895  *
24896  * NOTE: This code is only called off sddump().
24897  */
24898 
24899 static int
24900 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
24901 {
24902 	int status;
24903 
24904 	ASSERT(un != NULL);
24905 	ASSERT(!mutex_owned(SD_MUTEX(un)));
24906 	ASSERT(pktp != NULL);
24907 
24908 	status = SD_SUCCESS;
24909 
24910 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
24911 		pktp->pkt_flags |= un->un_tagflags;
24912 		pktp->pkt_flags &= ~FLAG_NODISCON;
24913 	}
24914 
24915 	status = sd_ddi_scsi_poll(pktp);
24916 	/*
24917 	 * Scsi_poll returns 0 (success) if the command completes and the
24918 	 * status block is STATUS_GOOD.  We should only check errors if this
24919 	 * condition is not true.  Even then we should send our own request
24920 	 * sense packet only if we have a check condition and auto
24921 	 * request sense has not been performed by the hba.
24922 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
24923 	 */
24924 	if ((status != SD_SUCCESS) &&
24925 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
24926 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
24927 	    (pktp->pkt_reason != CMD_DEV_GONE))
24928 		(void) sd_send_polled_RQS(un);
24929 
24930 	return (status);
24931 }
24932 
24933 /*
24934  *    Function: sd_send_polled_RQS()
24935  *
24936  * Description: This sends the request sense command to a device.
24937  *
24938  *   Arguments: sd_lun - The unit structure
24939  *
24940  * Return Code: 0 - Command completed successfully with good status
24941  *             -1 - Command failed.
24942  *
24943  */
24944 
24945 static int
24946 sd_send_polled_RQS(struct sd_lun *un)
24947 {
24948 	int	ret_val;
24949 	struct	scsi_pkt	*rqs_pktp;
24950 	struct	buf		*rqs_bp;
24951 
24952 	ASSERT(un != NULL);
24953 	ASSERT(!mutex_owned(SD_MUTEX(un)));
24954 
24955 	ret_val = SD_SUCCESS;
24956 
24957 	rqs_pktp = un->un_rqs_pktp;
24958 	rqs_bp	 = un->un_rqs_bp;
24959 
24960 	mutex_enter(SD_MUTEX(un));
24961 
24962 	if (un->un_sense_isbusy) {
24963 		ret_val = SD_FAILURE;
24964 		mutex_exit(SD_MUTEX(un));
24965 		return (ret_val);
24966 	}
24967 
24968 	/*
24969 	 * If the request sense buffer (and packet) is not in use,
24970 	 * let's set the un_sense_isbusy and send our packet
24971 	 */
24972 	un->un_sense_isbusy 	= 1;
24973 	rqs_pktp->pkt_resid  	= 0;
24974 	rqs_pktp->pkt_reason 	= 0;
24975 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
24976 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
24977 
24978 	mutex_exit(SD_MUTEX(un));
24979 
24980 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
24981 	    " 0x%p\n", rqs_bp->b_un.b_addr);
24982 
24983 	/*
24984 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
24985 	 * axle - it has a call into us!
24986 	 */
24987 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
24988 		SD_INFO(SD_LOG_COMMON, un,
24989 		    "sd_send_polled_RQS: RQS failed\n");
24990 	}
24991 
24992 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
24993 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
24994 
24995 	mutex_enter(SD_MUTEX(un));
24996 	un->un_sense_isbusy = 0;
24997 	mutex_exit(SD_MUTEX(un));
24998 
24999 	return (ret_val);
25000 }
25001 
25002 /*
25003  * Defines needed for localized version of the scsi_poll routine.
25004  */
25005 #define	CSEC		10000			/* usecs */
25006 #define	SEC_TO_CSEC	(1000000/CSEC)
25007 
25008 /*
25009  *    Function: sd_ddi_scsi_poll()
25010  *
25011  * Description: Localized version of the scsi_poll routine.  The purpose is to
25012  *		send a scsi_pkt to a device as a polled command.  This version
25013  *		is to ensure more robust handling of transport errors.
25014  *		Specifically this routine cures not ready, coming ready
25015  *		transition for power up and reset of sonoma's.  This can take
25016  *		up to 45 seconds for power-on and 20 seconds for reset of a
25017  * 		sonoma lun.
25018  *
25019  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
25020  *
25021  * Return Code: 0 - Command completed successfully with good status
25022  *             -1 - Command failed.
25023  *
25024  * NOTE: This code is almost identical to scsi_poll, however before 6668774 can
25025  * be fixed (removing this code), we need to determine how to handle the
25026  * KEY_UNIT_ATTENTION condition below in conditions not as limited as sddump().
25027  *
25028  * NOTE: This code is only called off sddump().
25029  */
25030 static int
25031 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
25032 {
25033 	int			rval = -1;
25034 	int			savef;
25035 	long			savet;
25036 	void			(*savec)();
25037 	int			timeout;
25038 	int			busy_count;
25039 	int			poll_delay;
25040 	int			rc;
25041 	uint8_t			*sensep;
25042 	struct scsi_arq_status	*arqstat;
25043 	extern int		do_polled_io;
25044 
25045 	ASSERT(pkt->pkt_scbp);
25046 
25047 	/*
25048 	 * save old flags..
25049 	 */
25050 	savef = pkt->pkt_flags;
25051 	savec = pkt->pkt_comp;
25052 	savet = pkt->pkt_time;
25053 
25054 	pkt->pkt_flags |= FLAG_NOINTR;
25055 
25056 	/*
25057 	 * XXX there is nothing in the SCSA spec that states that we should not
25058 	 * do a callback for polled cmds; however, removing this will break sd
25059 	 * and probably other target drivers
25060 	 */
25061 	pkt->pkt_comp = NULL;
25062 
25063 	/*
25064 	 * we don't like a polled command without timeout.
25065 	 * 60 seconds seems long enough.
25066 	 */
25067 	if (pkt->pkt_time == 0)
25068 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
25069 
25070 	/*
25071 	 * Send polled cmd.
25072 	 *
25073 	 * We do some error recovery for various errors.  Tran_busy,
25074 	 * queue full, and non-dispatched commands are retried every 10 msec.
25075 	 * as they are typically transient failures.  Busy status and Not
25076 	 * Ready are retried every second as this status takes a while to
25077 	 * change.
25078 	 */
25079 	timeout = pkt->pkt_time * SEC_TO_CSEC;
25080 
25081 	for (busy_count = 0; busy_count < timeout; busy_count++) {
25082 		/*
25083 		 * Initialize pkt status variables.
25084 		 */
25085 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
25086 
25087 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
25088 			if (rc != TRAN_BUSY) {
25089 				/* Transport failed - give up. */
25090 				break;
25091 			} else {
25092 				/* Transport busy - try again. */
25093 				poll_delay = 1 * CSEC;		/* 10 msec. */
25094 			}
25095 		} else {
25096 			/*
25097 			 * Transport accepted - check pkt status.
25098 			 */
25099 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
25100 			if ((pkt->pkt_reason == CMD_CMPLT) &&
25101 			    (rc == STATUS_CHECK) &&
25102 			    (pkt->pkt_state & STATE_ARQ_DONE)) {
25103 				arqstat =
25104 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
25105 				sensep = (uint8_t *)&arqstat->sts_sensedata;
25106 			} else {
25107 				sensep = NULL;
25108 			}
25109 
25110 			if ((pkt->pkt_reason == CMD_CMPLT) &&
25111 			    (rc == STATUS_GOOD)) {
25112 				/* No error - we're done */
25113 				rval = 0;
25114 				break;
25115 
25116 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
25117 				/* Lost connection - give up */
25118 				break;
25119 
25120 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
25121 			    (pkt->pkt_state == 0)) {
25122 				/* Pkt not dispatched - try again. */
25123 				poll_delay = 1 * CSEC;		/* 10 msec. */
25124 
25125 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
25126 			    (rc == STATUS_QFULL)) {
25127 				/* Queue full - try again. */
25128 				poll_delay = 1 * CSEC;		/* 10 msec. */
25129 
25130 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
25131 			    (rc == STATUS_BUSY)) {
25132 				/* Busy - try again. */
25133 				poll_delay = 100 * CSEC;	/* 1 sec. */
25134 				busy_count += (SEC_TO_CSEC - 1);
25135 
25136 			} else if ((sensep != NULL) &&
25137 			    (scsi_sense_key(sensep) == KEY_UNIT_ATTENTION)) {
25138 				/*
25139 				 * Unit Attention - try again.
25140 				 * Pretend it took 1 sec.
25141 				 * NOTE: 'continue' avoids poll_delay
25142 				 */
25143 				busy_count += (SEC_TO_CSEC - 1);
25144 				continue;
25145 
25146 			} else if ((sensep != NULL) &&
25147 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
25148 			    (scsi_sense_asc(sensep) == 0x04) &&
25149 			    (scsi_sense_ascq(sensep) == 0x01)) {
25150 				/*
25151 				 * Not ready -> ready - try again.
25152 				 * 04h/01h: LUN IS IN PROCESS OF BECOMING READY
25153 				 * ...same as STATUS_BUSY
25154 				 */
25155 				poll_delay = 100 * CSEC;	/* 1 sec. */
25156 				busy_count += (SEC_TO_CSEC - 1);
25157 
25158 			} else {
25159 				/* BAD status - give up. */
25160 				break;
25161 			}
25162 		}
25163 
25164 		if (((curthread->t_flag & T_INTR_THREAD) == 0) &&
25165 		    !do_polled_io) {
25166 			delay(drv_usectohz(poll_delay));
25167 		} else {
25168 			/* we busy wait during cpr_dump or interrupt threads */
25169 			drv_usecwait(poll_delay);
25170 		}
25171 	}
25172 
25173 	pkt->pkt_flags = savef;
25174 	pkt->pkt_comp = savec;
25175 	pkt->pkt_time = savet;
25176 
25177 	/* return on error */
25178 	if (rval)
25179 		return (rval);
25180 
25181 	/*
25182 	 * This is not a performance critical code path.
25183 	 *
25184 	 * As an accommodation for scsi_poll callers, to avoid ddi_dma_sync()
25185 	 * issues associated with looking at DMA memory prior to
25186 	 * scsi_pkt_destroy(), we scsi_sync_pkt() prior to return.
25187 	 */
25188 	scsi_sync_pkt(pkt);
25189 	return (0);
25190 }
25191 
25192 
25193 
25194 /*
25195  *    Function: sd_persistent_reservation_in_read_keys
25196  *
25197  * Description: This routine is the driver entry point for handling CD-ROM
25198  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
25199  *		by sending the SCSI-3 PRIN commands to the device.
25200  *		Processes the read keys command response by copying the
25201  *		reservation key information into the user provided buffer.
25202  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
25203  *
25204  *   Arguments: un   -  Pointer to soft state struct for the target.
25205  *		usrp -	user provided pointer to multihost Persistent In Read
25206  *			Keys structure (mhioc_inkeys_t)
25207  *		flag -	this argument is a pass through to ddi_copyxxx()
25208  *			directly from the mode argument of ioctl().
25209  *
25210  * Return Code: 0   - Success
25211  *		EACCES
25212  *		ENOTSUP
25213  *		errno return code from sd_send_scsi_cmd()
25214  *
25215  *     Context: Can sleep. Does not return until command is completed.
25216  */
25217 
25218 static int
25219 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
25220     mhioc_inkeys_t *usrp, int flag)
25221 {
25222 #ifdef _MULTI_DATAMODEL
25223 	struct mhioc_key_list32	li32;
25224 #endif
25225 	sd_prin_readkeys_t	*in;
25226 	mhioc_inkeys_t		*ptr;
25227 	mhioc_key_list_t	li;
25228 	uchar_t			*data_bufp;
25229 	int 			data_len;
25230 	int			rval = 0;
25231 	size_t			copysz;
25232 	sd_ssc_t		*ssc;
25233 
25234 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
25235 		return (EINVAL);
25236 	}
25237 	bzero(&li, sizeof (mhioc_key_list_t));
25238 
25239 	ssc = sd_ssc_init(un);
25240 
25241 	/*
25242 	 * Get the listsize from user
25243 	 */
25244 #ifdef _MULTI_DATAMODEL
25245 
25246 	switch (ddi_model_convert_from(flag & FMODELS)) {
25247 	case DDI_MODEL_ILP32:
25248 		copysz = sizeof (struct mhioc_key_list32);
25249 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
25250 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25251 			    "sd_persistent_reservation_in_read_keys: "
25252 			    "failed ddi_copyin: mhioc_key_list32_t\n");
25253 			rval = EFAULT;
25254 			goto done;
25255 		}
25256 		li.listsize = li32.listsize;
25257 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
25258 		break;
25259 
25260 	case DDI_MODEL_NONE:
25261 		copysz = sizeof (mhioc_key_list_t);
25262 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
25263 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25264 			    "sd_persistent_reservation_in_read_keys: "
25265 			    "failed ddi_copyin: mhioc_key_list_t\n");
25266 			rval = EFAULT;
25267 			goto done;
25268 		}
25269 		break;
25270 	}
25271 
25272 #else /* ! _MULTI_DATAMODEL */
25273 	copysz = sizeof (mhioc_key_list_t);
25274 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
25275 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25276 		    "sd_persistent_reservation_in_read_keys: "
25277 		    "failed ddi_copyin: mhioc_key_list_t\n");
25278 		rval = EFAULT;
25279 		goto done;
25280 	}
25281 #endif
25282 
25283 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
25284 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
25285 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
25286 
25287 	rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS,
25288 	    data_len, data_bufp);
25289 	if (rval != 0) {
25290 		if (rval == EIO)
25291 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
25292 		else
25293 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
25294 		goto done;
25295 	}
25296 	in = (sd_prin_readkeys_t *)data_bufp;
25297 	ptr->generation = BE_32(in->generation);
25298 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
25299 
25300 	/*
25301 	 * Return the min(listsize, listlen) keys
25302 	 */
25303 #ifdef _MULTI_DATAMODEL
25304 
25305 	switch (ddi_model_convert_from(flag & FMODELS)) {
25306 	case DDI_MODEL_ILP32:
25307 		li32.listlen = li.listlen;
25308 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
25309 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25310 			    "sd_persistent_reservation_in_read_keys: "
25311 			    "failed ddi_copyout: mhioc_key_list32_t\n");
25312 			rval = EFAULT;
25313 			goto done;
25314 		}
25315 		break;
25316 
25317 	case DDI_MODEL_NONE:
25318 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
25319 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25320 			    "sd_persistent_reservation_in_read_keys: "
25321 			    "failed ddi_copyout: mhioc_key_list_t\n");
25322 			rval = EFAULT;
25323 			goto done;
25324 		}
25325 		break;
25326 	}
25327 
25328 #else /* ! _MULTI_DATAMODEL */
25329 
25330 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
25331 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25332 		    "sd_persistent_reservation_in_read_keys: "
25333 		    "failed ddi_copyout: mhioc_key_list_t\n");
25334 		rval = EFAULT;
25335 		goto done;
25336 	}
25337 
25338 #endif /* _MULTI_DATAMODEL */
25339 
25340 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
25341 	    li.listsize * MHIOC_RESV_KEY_SIZE);
25342 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
25343 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25344 		    "sd_persistent_reservation_in_read_keys: "
25345 		    "failed ddi_copyout: keylist\n");
25346 		rval = EFAULT;
25347 	}
25348 done:
25349 	sd_ssc_fini(ssc);
25350 	kmem_free(data_bufp, data_len);
25351 	return (rval);
25352 }
25353 
25354 
25355 /*
25356  *    Function: sd_persistent_reservation_in_read_resv
25357  *
25358  * Description: This routine is the driver entry point for handling CD-ROM
25359  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
25360  *		by sending the SCSI-3 PRIN commands to the device.
25361  *		Process the read persistent reservations command response by
25362  *		copying the reservation information into the user provided
25363  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
25364  *
25365  *   Arguments: un   -  Pointer to soft state struct for the target.
25366  *		usrp -	user provided pointer to multihost Persistent In Read
25367  *			Keys structure (mhioc_inkeys_t)
25368  *		flag -	this argument is a pass through to ddi_copyxxx()
25369  *			directly from the mode argument of ioctl().
25370  *
25371  * Return Code: 0   - Success
25372  *		EACCES
25373  *		ENOTSUP
25374  *		errno return code from sd_send_scsi_cmd()
25375  *
25376  *     Context: Can sleep. Does not return until command is completed.
25377  */
25378 
25379 static int
25380 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
25381     mhioc_inresvs_t *usrp, int flag)
25382 {
25383 #ifdef _MULTI_DATAMODEL
25384 	struct mhioc_resv_desc_list32 resvlist32;
25385 #endif
25386 	sd_prin_readresv_t	*in;
25387 	mhioc_inresvs_t		*ptr;
25388 	sd_readresv_desc_t	*readresv_ptr;
25389 	mhioc_resv_desc_list_t	resvlist;
25390 	mhioc_resv_desc_t 	resvdesc;
25391 	uchar_t			*data_bufp = NULL;
25392 	int 			data_len;
25393 	int			rval = 0;
25394 	int			i;
25395 	size_t			copysz;
25396 	mhioc_resv_desc_t	*bufp;
25397 	sd_ssc_t		*ssc;
25398 
25399 	if ((ptr = usrp) == NULL) {
25400 		return (EINVAL);
25401 	}
25402 
25403 	ssc = sd_ssc_init(un);
25404 
25405 	/*
25406 	 * Get the listsize from user
25407 	 */
25408 #ifdef _MULTI_DATAMODEL
25409 	switch (ddi_model_convert_from(flag & FMODELS)) {
25410 	case DDI_MODEL_ILP32:
25411 		copysz = sizeof (struct mhioc_resv_desc_list32);
25412 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
25413 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25414 			    "sd_persistent_reservation_in_read_resv: "
25415 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
25416 			rval = EFAULT;
25417 			goto done;
25418 		}
25419 		resvlist.listsize = resvlist32.listsize;
25420 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
25421 		break;
25422 
25423 	case DDI_MODEL_NONE:
25424 		copysz = sizeof (mhioc_resv_desc_list_t);
25425 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
25426 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25427 			    "sd_persistent_reservation_in_read_resv: "
25428 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
25429 			rval = EFAULT;
25430 			goto done;
25431 		}
25432 		break;
25433 	}
25434 #else /* ! _MULTI_DATAMODEL */
25435 	copysz = sizeof (mhioc_resv_desc_list_t);
25436 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
25437 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25438 		    "sd_persistent_reservation_in_read_resv: "
25439 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
25440 		rval = EFAULT;
25441 		goto done;
25442 	}
25443 #endif /* ! _MULTI_DATAMODEL */
25444 
25445 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
25446 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
25447 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
25448 
25449 	rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_RESV,
25450 	    data_len, data_bufp);
25451 	if (rval != 0) {
25452 		if (rval == EIO)
25453 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
25454 		else
25455 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
25456 		goto done;
25457 	}
25458 	in = (sd_prin_readresv_t *)data_bufp;
25459 	ptr->generation = BE_32(in->generation);
25460 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
25461 
25462 	/*
25463 	 * Return the min(listsize, listlen( keys
25464 	 */
25465 #ifdef _MULTI_DATAMODEL
25466 
25467 	switch (ddi_model_convert_from(flag & FMODELS)) {
25468 	case DDI_MODEL_ILP32:
25469 		resvlist32.listlen = resvlist.listlen;
25470 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
25471 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25472 			    "sd_persistent_reservation_in_read_resv: "
25473 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
25474 			rval = EFAULT;
25475 			goto done;
25476 		}
25477 		break;
25478 
25479 	case DDI_MODEL_NONE:
25480 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
25481 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25482 			    "sd_persistent_reservation_in_read_resv: "
25483 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
25484 			rval = EFAULT;
25485 			goto done;
25486 		}
25487 		break;
25488 	}
25489 
25490 #else /* ! _MULTI_DATAMODEL */
25491 
25492 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
25493 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25494 		    "sd_persistent_reservation_in_read_resv: "
25495 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
25496 		rval = EFAULT;
25497 		goto done;
25498 	}
25499 
25500 #endif /* ! _MULTI_DATAMODEL */
25501 
25502 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
25503 	bufp = resvlist.list;
25504 	copysz = sizeof (mhioc_resv_desc_t);
25505 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
25506 	    i++, readresv_ptr++, bufp++) {
25507 
25508 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
25509 		    MHIOC_RESV_KEY_SIZE);
25510 		resvdesc.type  = readresv_ptr->type;
25511 		resvdesc.scope = readresv_ptr->scope;
25512 		resvdesc.scope_specific_addr =
25513 		    BE_32(readresv_ptr->scope_specific_addr);
25514 
25515 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
25516 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25517 			    "sd_persistent_reservation_in_read_resv: "
25518 			    "failed ddi_copyout: resvlist\n");
25519 			rval = EFAULT;
25520 			goto done;
25521 		}
25522 	}
25523 done:
25524 	sd_ssc_fini(ssc);
25525 	/* only if data_bufp is allocated, we need to free it */
25526 	if (data_bufp) {
25527 		kmem_free(data_bufp, data_len);
25528 	}
25529 	return (rval);
25530 }
25531 
25532 
25533 /*
25534  *    Function: sr_change_blkmode()
25535  *
25536  * Description: This routine is the driver entry point for handling CD-ROM
25537  *		block mode ioctl requests. Support for returning and changing
25538  *		the current block size in use by the device is implemented. The
25539  *		LBA size is changed via a MODE SELECT Block Descriptor.
25540  *
25541  *		This routine issues a mode sense with an allocation length of
25542  *		12 bytes for the mode page header and a single block descriptor.
25543  *
25544  *   Arguments: dev - the device 'dev_t'
25545  *		cmd - the request type; one of CDROMGBLKMODE (get) or
25546  *		      CDROMSBLKMODE (set)
25547  *		data - current block size or requested block size
25548  *		flag - this argument is a pass through to ddi_copyxxx() directly
25549  *		       from the mode argument of ioctl().
25550  *
25551  * Return Code: the code returned by sd_send_scsi_cmd()
25552  *		EINVAL if invalid arguments are provided
25553  *		EFAULT if ddi_copyxxx() fails
25554  *		ENXIO if fail ddi_get_soft_state
25555  *		EIO if invalid mode sense block descriptor length
25556  *
25557  */
25558 
25559 static int
25560 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
25561 {
25562 	struct sd_lun			*un = NULL;
25563 	struct mode_header		*sense_mhp, *select_mhp;
25564 	struct block_descriptor		*sense_desc, *select_desc;
25565 	int				current_bsize;
25566 	int				rval = EINVAL;
25567 	uchar_t				*sense = NULL;
25568 	uchar_t				*select = NULL;
25569 	sd_ssc_t			*ssc;
25570 
25571 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
25572 
25573 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25574 		return (ENXIO);
25575 	}
25576 
25577 	/*
25578 	 * The block length is changed via the Mode Select block descriptor, the
25579 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
25580 	 * required as part of this routine. Therefore the mode sense allocation
25581 	 * length is specified to be the length of a mode page header and a
25582 	 * block descriptor.
25583 	 */
25584 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
25585 
25586 	ssc = sd_ssc_init(un);
25587 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
25588 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
25589 	sd_ssc_fini(ssc);
25590 	if (rval != 0) {
25591 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25592 		    "sr_change_blkmode: Mode Sense Failed\n");
25593 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
25594 		return (rval);
25595 	}
25596 
25597 	/* Check the block descriptor len to handle only 1 block descriptor */
25598 	sense_mhp = (struct mode_header *)sense;
25599 	if ((sense_mhp->bdesc_length == 0) ||
25600 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
25601 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25602 		    "sr_change_blkmode: Mode Sense returned invalid block"
25603 		    " descriptor length\n");
25604 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
25605 		return (EIO);
25606 	}
25607 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
25608 	current_bsize = ((sense_desc->blksize_hi << 16) |
25609 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
25610 
25611 	/* Process command */
25612 	switch (cmd) {
25613 	case CDROMGBLKMODE:
25614 		/* Return the block size obtained during the mode sense */
25615 		if (ddi_copyout(&current_bsize, (void *)data,
25616 		    sizeof (int), flag) != 0)
25617 			rval = EFAULT;
25618 		break;
25619 	case CDROMSBLKMODE:
25620 		/* Validate the requested block size */
25621 		switch (data) {
25622 		case CDROM_BLK_512:
25623 		case CDROM_BLK_1024:
25624 		case CDROM_BLK_2048:
25625 		case CDROM_BLK_2056:
25626 		case CDROM_BLK_2336:
25627 		case CDROM_BLK_2340:
25628 		case CDROM_BLK_2352:
25629 		case CDROM_BLK_2368:
25630 		case CDROM_BLK_2448:
25631 		case CDROM_BLK_2646:
25632 		case CDROM_BLK_2647:
25633 			break;
25634 		default:
25635 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25636 			    "sr_change_blkmode: "
25637 			    "Block Size '%ld' Not Supported\n", data);
25638 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
25639 			return (EINVAL);
25640 		}
25641 
25642 		/*
25643 		 * The current block size matches the requested block size so
25644 		 * there is no need to send the mode select to change the size
25645 		 */
25646 		if (current_bsize == data) {
25647 			break;
25648 		}
25649 
25650 		/* Build the select data for the requested block size */
25651 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
25652 		select_mhp = (struct mode_header *)select;
25653 		select_desc =
25654 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
25655 		/*
25656 		 * The LBA size is changed via the block descriptor, so the
25657 		 * descriptor is built according to the user data
25658 		 */
25659 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
25660 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
25661 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
25662 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
25663 
25664 		/* Send the mode select for the requested block size */
25665 		ssc = sd_ssc_init(un);
25666 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
25667 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
25668 		    SD_PATH_STANDARD);
25669 		sd_ssc_fini(ssc);
25670 		if (rval != 0) {
25671 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25672 			    "sr_change_blkmode: Mode Select Failed\n");
25673 			/*
25674 			 * The mode select failed for the requested block size,
25675 			 * so reset the data for the original block size and
25676 			 * send it to the target. The error is indicated by the
25677 			 * return value for the failed mode select.
25678 			 */
25679 			select_desc->blksize_hi  = sense_desc->blksize_hi;
25680 			select_desc->blksize_mid = sense_desc->blksize_mid;
25681 			select_desc->blksize_lo  = sense_desc->blksize_lo;
25682 			ssc = sd_ssc_init(un);
25683 			(void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
25684 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
25685 			    SD_PATH_STANDARD);
25686 			sd_ssc_fini(ssc);
25687 		} else {
25688 			ASSERT(!mutex_owned(SD_MUTEX(un)));
25689 			mutex_enter(SD_MUTEX(un));
25690 			sd_update_block_info(un, (uint32_t)data, 0);
25691 			mutex_exit(SD_MUTEX(un));
25692 		}
25693 		break;
25694 	default:
25695 		/* should not reach here, but check anyway */
25696 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25697 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
25698 		rval = EINVAL;
25699 		break;
25700 	}
25701 
25702 	if (select) {
25703 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
25704 	}
25705 	if (sense) {
25706 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
25707 	}
25708 	return (rval);
25709 }
25710 
25711 
25712 /*
25713  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
25714  * implement driver support for getting and setting the CD speed. The command
25715  * set used will be based on the device type. If the device has not been
25716  * identified as MMC the Toshiba vendor specific mode page will be used. If
25717  * the device is MMC but does not support the Real Time Streaming feature
25718  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
25719  * be used to read the speed.
25720  */
25721 
25722 /*
25723  *    Function: sr_change_speed()
25724  *
25725  * Description: This routine is the driver entry point for handling CD-ROM
25726  *		drive speed ioctl requests for devices supporting the Toshiba
25727  *		vendor specific drive speed mode page. Support for returning
25728  *		and changing the current drive speed in use by the device is
25729  *		implemented.
25730  *
25731  *   Arguments: dev - the device 'dev_t'
25732  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
25733  *		      CDROMSDRVSPEED (set)
25734  *		data - current drive speed or requested drive speed
25735  *		flag - this argument is a pass through to ddi_copyxxx() directly
25736  *		       from the mode argument of ioctl().
25737  *
25738  * Return Code: the code returned by sd_send_scsi_cmd()
25739  *		EINVAL if invalid arguments are provided
25740  *		EFAULT if ddi_copyxxx() fails
25741  *		ENXIO if fail ddi_get_soft_state
25742  *		EIO if invalid mode sense block descriptor length
25743  */
25744 
25745 static int
25746 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
25747 {
25748 	struct sd_lun			*un = NULL;
25749 	struct mode_header		*sense_mhp, *select_mhp;
25750 	struct mode_speed		*sense_page, *select_page;
25751 	int				current_speed;
25752 	int				rval = EINVAL;
25753 	int				bd_len;
25754 	uchar_t				*sense = NULL;
25755 	uchar_t				*select = NULL;
25756 	sd_ssc_t			*ssc;
25757 
25758 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
25759 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25760 		return (ENXIO);
25761 	}
25762 
25763 	/*
25764 	 * Note: The drive speed is being modified here according to a Toshiba
25765 	 * vendor specific mode page (0x31).
25766 	 */
25767 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
25768 
25769 	ssc = sd_ssc_init(un);
25770 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
25771 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
25772 	    SD_PATH_STANDARD);
25773 	sd_ssc_fini(ssc);
25774 	if (rval != 0) {
25775 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25776 		    "sr_change_speed: Mode Sense Failed\n");
25777 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
25778 		return (rval);
25779 	}
25780 	sense_mhp  = (struct mode_header *)sense;
25781 
25782 	/* Check the block descriptor len to handle only 1 block descriptor */
25783 	bd_len = sense_mhp->bdesc_length;
25784 	if (bd_len > MODE_BLK_DESC_LENGTH) {
25785 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25786 		    "sr_change_speed: Mode Sense returned invalid block "
25787 		    "descriptor length\n");
25788 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
25789 		return (EIO);
25790 	}
25791 
25792 	sense_page = (struct mode_speed *)
25793 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
25794 	current_speed = sense_page->speed;
25795 
25796 	/* Process command */
25797 	switch (cmd) {
25798 	case CDROMGDRVSPEED:
25799 		/* Return the drive speed obtained during the mode sense */
25800 		if (current_speed == 0x2) {
25801 			current_speed = CDROM_TWELVE_SPEED;
25802 		}
25803 		if (ddi_copyout(&current_speed, (void *)data,
25804 		    sizeof (int), flag) != 0) {
25805 			rval = EFAULT;
25806 		}
25807 		break;
25808 	case CDROMSDRVSPEED:
25809 		/* Validate the requested drive speed */
25810 		switch ((uchar_t)data) {
25811 		case CDROM_TWELVE_SPEED:
25812 			data = 0x2;
25813 			/*FALLTHROUGH*/
25814 		case CDROM_NORMAL_SPEED:
25815 		case CDROM_DOUBLE_SPEED:
25816 		case CDROM_QUAD_SPEED:
25817 		case CDROM_MAXIMUM_SPEED:
25818 			break;
25819 		default:
25820 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25821 			    "sr_change_speed: "
25822 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
25823 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
25824 			return (EINVAL);
25825 		}
25826 
25827 		/*
25828 		 * The current drive speed matches the requested drive speed so
25829 		 * there is no need to send the mode select to change the speed
25830 		 */
25831 		if (current_speed == data) {
25832 			break;
25833 		}
25834 
25835 		/* Build the select data for the requested drive speed */
25836 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
25837 		select_mhp = (struct mode_header *)select;
25838 		select_mhp->bdesc_length = 0;
25839 		select_page =
25840 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
25841 		select_page =
25842 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
25843 		select_page->mode_page.code = CDROM_MODE_SPEED;
25844 		select_page->mode_page.length = 2;
25845 		select_page->speed = (uchar_t)data;
25846 
25847 		/* Send the mode select for the requested block size */
25848 		ssc = sd_ssc_init(un);
25849 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
25850 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
25851 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
25852 		sd_ssc_fini(ssc);
25853 		if (rval != 0) {
25854 			/*
25855 			 * The mode select failed for the requested drive speed,
25856 			 * so reset the data for the original drive speed and
25857 			 * send it to the target. The error is indicated by the
25858 			 * return value for the failed mode select.
25859 			 */
25860 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25861 			    "sr_drive_speed: Mode Select Failed\n");
25862 			select_page->speed = sense_page->speed;
25863 			ssc = sd_ssc_init(un);
25864 			(void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
25865 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
25866 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
25867 			sd_ssc_fini(ssc);
25868 		}
25869 		break;
25870 	default:
25871 		/* should not reach here, but check anyway */
25872 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25873 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
25874 		rval = EINVAL;
25875 		break;
25876 	}
25877 
25878 	if (select) {
25879 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
25880 	}
25881 	if (sense) {
25882 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
25883 	}
25884 
25885 	return (rval);
25886 }
25887 
25888 
25889 /*
25890  *    Function: sr_atapi_change_speed()
25891  *
25892  * Description: This routine is the driver entry point for handling CD-ROM
25893  *		drive speed ioctl requests for MMC devices that do not support
25894  *		the Real Time Streaming feature (0x107).
25895  *
25896  *		Note: This routine will use the SET SPEED command which may not
25897  *		be supported by all devices.
25898  *
25899  *   Arguments: dev- the device 'dev_t'
25900  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
25901  *		     CDROMSDRVSPEED (set)
25902  *		data- current drive speed or requested drive speed
25903  *		flag- this argument is a pass through to ddi_copyxxx() directly
25904  *		      from the mode argument of ioctl().
25905  *
25906  * Return Code: the code returned by sd_send_scsi_cmd()
25907  *		EINVAL if invalid arguments are provided
25908  *		EFAULT if ddi_copyxxx() fails
25909  *		ENXIO if fail ddi_get_soft_state
25910  *		EIO if invalid mode sense block descriptor length
25911  */
25912 
25913 static int
25914 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
25915 {
25916 	struct sd_lun			*un;
25917 	struct uscsi_cmd		*com = NULL;
25918 	struct mode_header_grp2		*sense_mhp;
25919 	uchar_t				*sense_page;
25920 	uchar_t				*sense = NULL;
25921 	char				cdb[CDB_GROUP5];
25922 	int				bd_len;
25923 	int				current_speed = 0;
25924 	int				max_speed = 0;
25925 	int				rval;
25926 	sd_ssc_t			*ssc;
25927 
25928 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
25929 
25930 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25931 		return (ENXIO);
25932 	}
25933 
25934 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
25935 
25936 	ssc = sd_ssc_init(un);
25937 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
25938 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
25939 	    SD_PATH_STANDARD);
25940 	sd_ssc_fini(ssc);
25941 	if (rval != 0) {
25942 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25943 		    "sr_atapi_change_speed: Mode Sense Failed\n");
25944 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
25945 		return (rval);
25946 	}
25947 
25948 	/* Check the block descriptor len to handle only 1 block descriptor */
25949 	sense_mhp = (struct mode_header_grp2 *)sense;
25950 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
25951 	if (bd_len > MODE_BLK_DESC_LENGTH) {
25952 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25953 		    "sr_atapi_change_speed: Mode Sense returned invalid "
25954 		    "block descriptor length\n");
25955 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
25956 		return (EIO);
25957 	}
25958 
25959 	/* Calculate the current and maximum drive speeds */
25960 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
25961 	current_speed = (sense_page[14] << 8) | sense_page[15];
25962 	max_speed = (sense_page[8] << 8) | sense_page[9];
25963 
25964 	/* Process the command */
25965 	switch (cmd) {
25966 	case CDROMGDRVSPEED:
25967 		current_speed /= SD_SPEED_1X;
25968 		if (ddi_copyout(&current_speed, (void *)data,
25969 		    sizeof (int), flag) != 0)
25970 			rval = EFAULT;
25971 		break;
25972 	case CDROMSDRVSPEED:
25973 		/* Convert the speed code to KB/sec */
25974 		switch ((uchar_t)data) {
25975 		case CDROM_NORMAL_SPEED:
25976 			current_speed = SD_SPEED_1X;
25977 			break;
25978 		case CDROM_DOUBLE_SPEED:
25979 			current_speed = 2 * SD_SPEED_1X;
25980 			break;
25981 		case CDROM_QUAD_SPEED:
25982 			current_speed = 4 * SD_SPEED_1X;
25983 			break;
25984 		case CDROM_TWELVE_SPEED:
25985 			current_speed = 12 * SD_SPEED_1X;
25986 			break;
25987 		case CDROM_MAXIMUM_SPEED:
25988 			current_speed = 0xffff;
25989 			break;
25990 		default:
25991 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25992 			    "sr_atapi_change_speed: invalid drive speed %d\n",
25993 			    (uchar_t)data);
25994 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
25995 			return (EINVAL);
25996 		}
25997 
25998 		/* Check the request against the drive's max speed. */
25999 		if (current_speed != 0xffff) {
26000 			if (current_speed > max_speed) {
26001 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26002 				return (EINVAL);
26003 			}
26004 		}
26005 
26006 		/*
26007 		 * Build and send the SET SPEED command
26008 		 *
26009 		 * Note: The SET SPEED (0xBB) command used in this routine is
26010 		 * obsolete per the SCSI MMC spec but still supported in the
26011 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
26012 		 * therefore the command is still implemented in this routine.
26013 		 */
26014 		bzero(cdb, sizeof (cdb));
26015 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
26016 		cdb[2] = (uchar_t)(current_speed >> 8);
26017 		cdb[3] = (uchar_t)current_speed;
26018 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26019 		com->uscsi_cdb	   = (caddr_t)cdb;
26020 		com->uscsi_cdblen  = CDB_GROUP5;
26021 		com->uscsi_bufaddr = NULL;
26022 		com->uscsi_buflen  = 0;
26023 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
26024 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD);
26025 		break;
26026 	default:
26027 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26028 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
26029 		rval = EINVAL;
26030 	}
26031 
26032 	if (sense) {
26033 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26034 	}
26035 	if (com) {
26036 		kmem_free(com, sizeof (*com));
26037 	}
26038 	return (rval);
26039 }
26040 
26041 
26042 /*
26043  *    Function: sr_pause_resume()
26044  *
26045  * Description: This routine is the driver entry point for handling CD-ROM
26046  *		pause/resume ioctl requests. This only affects the audio play
26047  *		operation.
26048  *
26049  *   Arguments: dev - the device 'dev_t'
26050  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
26051  *		      for setting the resume bit of the cdb.
26052  *
26053  * Return Code: the code returned by sd_send_scsi_cmd()
26054  *		EINVAL if invalid mode specified
26055  *
26056  */
26057 
26058 static int
26059 sr_pause_resume(dev_t dev, int cmd)
26060 {
26061 	struct sd_lun		*un;
26062 	struct uscsi_cmd	*com;
26063 	char			cdb[CDB_GROUP1];
26064 	int			rval;
26065 
26066 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26067 		return (ENXIO);
26068 	}
26069 
26070 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26071 	bzero(cdb, CDB_GROUP1);
26072 	cdb[0] = SCMD_PAUSE_RESUME;
26073 	switch (cmd) {
26074 	case CDROMRESUME:
26075 		cdb[8] = 1;
26076 		break;
26077 	case CDROMPAUSE:
26078 		cdb[8] = 0;
26079 		break;
26080 	default:
26081 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
26082 		    " Command '%x' Not Supported\n", cmd);
26083 		rval = EINVAL;
26084 		goto done;
26085 	}
26086 
26087 	com->uscsi_cdb    = cdb;
26088 	com->uscsi_cdblen = CDB_GROUP1;
26089 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
26090 
26091 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26092 	    SD_PATH_STANDARD);
26093 
26094 done:
26095 	kmem_free(com, sizeof (*com));
26096 	return (rval);
26097 }
26098 
26099 
26100 /*
26101  *    Function: sr_play_msf()
26102  *
26103  * Description: This routine is the driver entry point for handling CD-ROM
26104  *		ioctl requests to output the audio signals at the specified
26105  *		starting address and continue the audio play until the specified
26106  *		ending address (CDROMPLAYMSF) The address is in Minute Second
26107  *		Frame (MSF) format.
26108  *
26109  *   Arguments: dev	- the device 'dev_t'
26110  *		data	- pointer to user provided audio msf structure,
26111  *		          specifying start/end addresses.
26112  *		flag	- this argument is a pass through to ddi_copyxxx()
26113  *		          directly from the mode argument of ioctl().
26114  *
26115  * Return Code: the code returned by sd_send_scsi_cmd()
26116  *		EFAULT if ddi_copyxxx() fails
26117  *		ENXIO if fail ddi_get_soft_state
26118  *		EINVAL if data pointer is NULL
26119  */
26120 
26121 static int
26122 sr_play_msf(dev_t dev, caddr_t data, int flag)
26123 {
26124 	struct sd_lun		*un;
26125 	struct uscsi_cmd	*com;
26126 	struct cdrom_msf	msf_struct;
26127 	struct cdrom_msf	*msf = &msf_struct;
26128 	char			cdb[CDB_GROUP1];
26129 	int			rval;
26130 
26131 	if (data == NULL) {
26132 		return (EINVAL);
26133 	}
26134 
26135 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26136 		return (ENXIO);
26137 	}
26138 
26139 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
26140 		return (EFAULT);
26141 	}
26142 
26143 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26144 	bzero(cdb, CDB_GROUP1);
26145 	cdb[0] = SCMD_PLAYAUDIO_MSF;
26146 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
26147 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
26148 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
26149 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
26150 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
26151 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
26152 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
26153 	} else {
26154 		cdb[3] = msf->cdmsf_min0;
26155 		cdb[4] = msf->cdmsf_sec0;
26156 		cdb[5] = msf->cdmsf_frame0;
26157 		cdb[6] = msf->cdmsf_min1;
26158 		cdb[7] = msf->cdmsf_sec1;
26159 		cdb[8] = msf->cdmsf_frame1;
26160 	}
26161 	com->uscsi_cdb    = cdb;
26162 	com->uscsi_cdblen = CDB_GROUP1;
26163 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
26164 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26165 	    SD_PATH_STANDARD);
26166 	kmem_free(com, sizeof (*com));
26167 	return (rval);
26168 }
26169 
26170 
26171 /*
26172  *    Function: sr_play_trkind()
26173  *
26174  * Description: This routine is the driver entry point for handling CD-ROM
26175  *		ioctl requests to output the audio signals at the specified
26176  *		starting address and continue the audio play until the specified
26177  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
26178  *		format.
26179  *
26180  *   Arguments: dev	- the device 'dev_t'
26181  *		data	- pointer to user provided audio track/index structure,
26182  *		          specifying start/end addresses.
26183  *		flag	- this argument is a pass through to ddi_copyxxx()
26184  *		          directly from the mode argument of ioctl().
26185  *
26186  * Return Code: the code returned by sd_send_scsi_cmd()
26187  *		EFAULT if ddi_copyxxx() fails
26188  *		ENXIO if fail ddi_get_soft_state
26189  *		EINVAL if data pointer is NULL
26190  */
26191 
26192 static int
26193 sr_play_trkind(dev_t dev, caddr_t data, int flag)
26194 {
26195 	struct cdrom_ti		ti_struct;
26196 	struct cdrom_ti		*ti = &ti_struct;
26197 	struct uscsi_cmd	*com = NULL;
26198 	char			cdb[CDB_GROUP1];
26199 	int			rval;
26200 
26201 	if (data == NULL) {
26202 		return (EINVAL);
26203 	}
26204 
26205 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
26206 		return (EFAULT);
26207 	}
26208 
26209 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26210 	bzero(cdb, CDB_GROUP1);
26211 	cdb[0] = SCMD_PLAYAUDIO_TI;
26212 	cdb[4] = ti->cdti_trk0;
26213 	cdb[5] = ti->cdti_ind0;
26214 	cdb[7] = ti->cdti_trk1;
26215 	cdb[8] = ti->cdti_ind1;
26216 	com->uscsi_cdb    = cdb;
26217 	com->uscsi_cdblen = CDB_GROUP1;
26218 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
26219 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26220 	    SD_PATH_STANDARD);
26221 	kmem_free(com, sizeof (*com));
26222 	return (rval);
26223 }
26224 
26225 
26226 /*
26227  *    Function: sr_read_all_subcodes()
26228  *
26229  * Description: This routine is the driver entry point for handling CD-ROM
26230  *		ioctl requests to return raw subcode data while the target is
26231  *		playing audio (CDROMSUBCODE).
26232  *
26233  *   Arguments: dev	- the device 'dev_t'
26234  *		data	- pointer to user provided cdrom subcode structure,
26235  *		          specifying the transfer length and address.
26236  *		flag	- this argument is a pass through to ddi_copyxxx()
26237  *		          directly from the mode argument of ioctl().
26238  *
26239  * Return Code: the code returned by sd_send_scsi_cmd()
26240  *		EFAULT if ddi_copyxxx() fails
26241  *		ENXIO if fail ddi_get_soft_state
26242  *		EINVAL if data pointer is NULL
26243  */
26244 
26245 static int
26246 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
26247 {
26248 	struct sd_lun		*un = NULL;
26249 	struct uscsi_cmd	*com = NULL;
26250 	struct cdrom_subcode	*subcode = NULL;
26251 	int			rval;
26252 	size_t			buflen;
26253 	char			cdb[CDB_GROUP5];
26254 
26255 #ifdef _MULTI_DATAMODEL
26256 	/* To support ILP32 applications in an LP64 world */
26257 	struct cdrom_subcode32		cdrom_subcode32;
26258 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
26259 #endif
26260 	if (data == NULL) {
26261 		return (EINVAL);
26262 	}
26263 
26264 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26265 		return (ENXIO);
26266 	}
26267 
26268 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
26269 
26270 #ifdef _MULTI_DATAMODEL
26271 	switch (ddi_model_convert_from(flag & FMODELS)) {
26272 	case DDI_MODEL_ILP32:
26273 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
26274 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26275 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
26276 			kmem_free(subcode, sizeof (struct cdrom_subcode));
26277 			return (EFAULT);
26278 		}
26279 		/* Convert the ILP32 uscsi data from the application to LP64 */
26280 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
26281 		break;
26282 	case DDI_MODEL_NONE:
26283 		if (ddi_copyin(data, subcode,
26284 		    sizeof (struct cdrom_subcode), flag)) {
26285 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26286 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
26287 			kmem_free(subcode, sizeof (struct cdrom_subcode));
26288 			return (EFAULT);
26289 		}
26290 		break;
26291 	}
26292 #else /* ! _MULTI_DATAMODEL */
26293 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
26294 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26295 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
26296 		kmem_free(subcode, sizeof (struct cdrom_subcode));
26297 		return (EFAULT);
26298 	}
26299 #endif /* _MULTI_DATAMODEL */
26300 
26301 	/*
26302 	 * Since MMC-2 expects max 3 bytes for length, check if the
26303 	 * length input is greater than 3 bytes
26304 	 */
26305 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
26306 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26307 		    "sr_read_all_subcodes: "
26308 		    "cdrom transfer length too large: %d (limit %d)\n",
26309 		    subcode->cdsc_length, 0xFFFFFF);
26310 		kmem_free(subcode, sizeof (struct cdrom_subcode));
26311 		return (EINVAL);
26312 	}
26313 
26314 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
26315 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26316 	bzero(cdb, CDB_GROUP5);
26317 
26318 	if (un->un_f_mmc_cap == TRUE) {
26319 		cdb[0] = (char)SCMD_READ_CD;
26320 		cdb[2] = (char)0xff;
26321 		cdb[3] = (char)0xff;
26322 		cdb[4] = (char)0xff;
26323 		cdb[5] = (char)0xff;
26324 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
26325 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
26326 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
26327 		cdb[10] = 1;
26328 	} else {
26329 		/*
26330 		 * Note: A vendor specific command (0xDF) is being used her to
26331 		 * request a read of all subcodes.
26332 		 */
26333 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
26334 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
26335 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
26336 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
26337 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
26338 	}
26339 	com->uscsi_cdb	   = cdb;
26340 	com->uscsi_cdblen  = CDB_GROUP5;
26341 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
26342 	com->uscsi_buflen  = buflen;
26343 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
26344 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
26345 	    SD_PATH_STANDARD);
26346 	kmem_free(subcode, sizeof (struct cdrom_subcode));
26347 	kmem_free(com, sizeof (*com));
26348 	return (rval);
26349 }
26350 
26351 
26352 /*
26353  *    Function: sr_read_subchannel()
26354  *
26355  * Description: This routine is the driver entry point for handling CD-ROM
26356  *		ioctl requests to return the Q sub-channel data of the CD
26357  *		current position block. (CDROMSUBCHNL) The data includes the
26358  *		track number, index number, absolute CD-ROM address (LBA or MSF
26359  *		format per the user) , track relative CD-ROM address (LBA or MSF
26360  *		format per the user), control data and audio status.
26361  *
26362  *   Arguments: dev	- the device 'dev_t'
26363  *		data	- pointer to user provided cdrom sub-channel structure
26364  *		flag	- this argument is a pass through to ddi_copyxxx()
26365  *		          directly from the mode argument of ioctl().
26366  *
26367  * Return Code: the code returned by sd_send_scsi_cmd()
26368  *		EFAULT if ddi_copyxxx() fails
26369  *		ENXIO if fail ddi_get_soft_state
26370  *		EINVAL if data pointer is NULL
26371  */
26372 
26373 static int
26374 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
26375 {
26376 	struct sd_lun		*un;
26377 	struct uscsi_cmd	*com;
26378 	struct cdrom_subchnl	subchanel;
26379 	struct cdrom_subchnl	*subchnl = &subchanel;
26380 	char			cdb[CDB_GROUP1];
26381 	caddr_t			buffer;
26382 	int			rval;
26383 
26384 	if (data == NULL) {
26385 		return (EINVAL);
26386 	}
26387 
26388 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26389 	    (un->un_state == SD_STATE_OFFLINE)) {
26390 		return (ENXIO);
26391 	}
26392 
26393 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
26394 		return (EFAULT);
26395 	}
26396 
26397 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
26398 	bzero(cdb, CDB_GROUP1);
26399 	cdb[0] = SCMD_READ_SUBCHANNEL;
26400 	/* Set the MSF bit based on the user requested address format */
26401 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
26402 	/*
26403 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
26404 	 * returned
26405 	 */
26406 	cdb[2] = 0x40;
26407 	/*
26408 	 * Set byte 3 to specify the return data format. A value of 0x01
26409 	 * indicates that the CD-ROM current position should be returned.
26410 	 */
26411 	cdb[3] = 0x01;
26412 	cdb[8] = 0x10;
26413 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26414 	com->uscsi_cdb	   = cdb;
26415 	com->uscsi_cdblen  = CDB_GROUP1;
26416 	com->uscsi_bufaddr = buffer;
26417 	com->uscsi_buflen  = 16;
26418 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
26419 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26420 	    SD_PATH_STANDARD);
26421 	if (rval != 0) {
26422 		kmem_free(buffer, 16);
26423 		kmem_free(com, sizeof (*com));
26424 		return (rval);
26425 	}
26426 
26427 	/* Process the returned Q sub-channel data */
26428 	subchnl->cdsc_audiostatus = buffer[1];
26429 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
26430 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
26431 	subchnl->cdsc_trk	= buffer[6];
26432 	subchnl->cdsc_ind	= buffer[7];
26433 	if (subchnl->cdsc_format & CDROM_LBA) {
26434 		subchnl->cdsc_absaddr.lba =
26435 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
26436 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
26437 		subchnl->cdsc_reladdr.lba =
26438 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
26439 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
26440 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
26441 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
26442 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
26443 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
26444 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
26445 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
26446 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
26447 	} else {
26448 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
26449 		subchnl->cdsc_absaddr.msf.second = buffer[10];
26450 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
26451 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
26452 		subchnl->cdsc_reladdr.msf.second = buffer[14];
26453 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
26454 	}
26455 	kmem_free(buffer, 16);
26456 	kmem_free(com, sizeof (*com));
26457 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
26458 	    != 0) {
26459 		return (EFAULT);
26460 	}
26461 	return (rval);
26462 }
26463 
26464 
26465 /*
26466  *    Function: sr_read_tocentry()
26467  *
26468  * Description: This routine is the driver entry point for handling CD-ROM
26469  *		ioctl requests to read from the Table of Contents (TOC)
26470  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
26471  *		fields, the starting address (LBA or MSF format per the user)
26472  *		and the data mode if the user specified track is a data track.
26473  *
26474  *		Note: The READ HEADER (0x44) command used in this routine is
26475  *		obsolete per the SCSI MMC spec but still supported in the
26476  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
26477  *		therefore the command is still implemented in this routine.
26478  *
26479  *   Arguments: dev	- the device 'dev_t'
26480  *		data	- pointer to user provided toc entry structure,
26481  *			  specifying the track # and the address format
26482  *			  (LBA or MSF).
26483  *		flag	- this argument is a pass through to ddi_copyxxx()
26484  *		          directly from the mode argument of ioctl().
26485  *
26486  * Return Code: the code returned by sd_send_scsi_cmd()
26487  *		EFAULT if ddi_copyxxx() fails
26488  *		ENXIO if fail ddi_get_soft_state
26489  *		EINVAL if data pointer is NULL
26490  */
26491 
26492 static int
26493 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
26494 {
26495 	struct sd_lun		*un = NULL;
26496 	struct uscsi_cmd	*com;
26497 	struct cdrom_tocentry	toc_entry;
26498 	struct cdrom_tocentry	*entry = &toc_entry;
26499 	caddr_t			buffer;
26500 	int			rval;
26501 	char			cdb[CDB_GROUP1];
26502 
26503 	if (data == NULL) {
26504 		return (EINVAL);
26505 	}
26506 
26507 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26508 	    (un->un_state == SD_STATE_OFFLINE)) {
26509 		return (ENXIO);
26510 	}
26511 
26512 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
26513 		return (EFAULT);
26514 	}
26515 
26516 	/* Validate the requested track and address format */
26517 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
26518 		return (EINVAL);
26519 	}
26520 
26521 	if (entry->cdte_track == 0) {
26522 		return (EINVAL);
26523 	}
26524 
26525 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
26526 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26527 	bzero(cdb, CDB_GROUP1);
26528 
26529 	cdb[0] = SCMD_READ_TOC;
26530 	/* Set the MSF bit based on the user requested address format  */
26531 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
26532 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
26533 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
26534 	} else {
26535 		cdb[6] = entry->cdte_track;
26536 	}
26537 
26538 	/*
26539 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
26540 	 * (4 byte TOC response header + 8 byte track descriptor)
26541 	 */
26542 	cdb[8] = 12;
26543 	com->uscsi_cdb	   = cdb;
26544 	com->uscsi_cdblen  = CDB_GROUP1;
26545 	com->uscsi_bufaddr = buffer;
26546 	com->uscsi_buflen  = 0x0C;
26547 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
26548 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26549 	    SD_PATH_STANDARD);
26550 	if (rval != 0) {
26551 		kmem_free(buffer, 12);
26552 		kmem_free(com, sizeof (*com));
26553 		return (rval);
26554 	}
26555 
26556 	/* Process the toc entry */
26557 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
26558 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
26559 	if (entry->cdte_format & CDROM_LBA) {
26560 		entry->cdte_addr.lba =
26561 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
26562 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
26563 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
26564 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
26565 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
26566 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
26567 		/*
26568 		 * Send a READ TOC command using the LBA address format to get
26569 		 * the LBA for the track requested so it can be used in the
26570 		 * READ HEADER request
26571 		 *
26572 		 * Note: The MSF bit of the READ HEADER command specifies the
26573 		 * output format. The block address specified in that command
26574 		 * must be in LBA format.
26575 		 */
26576 		cdb[1] = 0;
26577 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26578 		    SD_PATH_STANDARD);
26579 		if (rval != 0) {
26580 			kmem_free(buffer, 12);
26581 			kmem_free(com, sizeof (*com));
26582 			return (rval);
26583 		}
26584 	} else {
26585 		entry->cdte_addr.msf.minute	= buffer[9];
26586 		entry->cdte_addr.msf.second	= buffer[10];
26587 		entry->cdte_addr.msf.frame	= buffer[11];
26588 		/*
26589 		 * Send a READ TOC command using the LBA address format to get
26590 		 * the LBA for the track requested so it can be used in the
26591 		 * READ HEADER request
26592 		 *
26593 		 * Note: The MSF bit of the READ HEADER command specifies the
26594 		 * output format. The block address specified in that command
26595 		 * must be in LBA format.
26596 		 */
26597 		cdb[1] = 0;
26598 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26599 		    SD_PATH_STANDARD);
26600 		if (rval != 0) {
26601 			kmem_free(buffer, 12);
26602 			kmem_free(com, sizeof (*com));
26603 			return (rval);
26604 		}
26605 	}
26606 
26607 	/*
26608 	 * Build and send the READ HEADER command to determine the data mode of
26609 	 * the user specified track.
26610 	 */
26611 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
26612 	    (entry->cdte_track != CDROM_LEADOUT)) {
26613 		bzero(cdb, CDB_GROUP1);
26614 		cdb[0] = SCMD_READ_HEADER;
26615 		cdb[2] = buffer[8];
26616 		cdb[3] = buffer[9];
26617 		cdb[4] = buffer[10];
26618 		cdb[5] = buffer[11];
26619 		cdb[8] = 0x08;
26620 		com->uscsi_buflen = 0x08;
26621 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26622 		    SD_PATH_STANDARD);
26623 		if (rval == 0) {
26624 			entry->cdte_datamode = buffer[0];
26625 		} else {
26626 			/*
26627 			 * READ HEADER command failed, since this is
26628 			 * obsoleted in one spec, its better to return
26629 			 * -1 for an invlid track so that we can still
26630 			 * receive the rest of the TOC data.
26631 			 */
26632 			entry->cdte_datamode = (uchar_t)-1;
26633 		}
26634 	} else {
26635 		entry->cdte_datamode = (uchar_t)-1;
26636 	}
26637 
26638 	kmem_free(buffer, 12);
26639 	kmem_free(com, sizeof (*com));
26640 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
26641 		return (EFAULT);
26642 
26643 	return (rval);
26644 }
26645 
26646 
26647 /*
26648  *    Function: sr_read_tochdr()
26649  *
26650  * Description: This routine is the driver entry point for handling CD-ROM
26651  * 		ioctl requests to read the Table of Contents (TOC) header
26652  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
26653  *		and ending track numbers
26654  *
26655  *   Arguments: dev	- the device 'dev_t'
26656  *		data	- pointer to user provided toc header structure,
26657  *			  specifying the starting and ending track numbers.
26658  *		flag	- this argument is a pass through to ddi_copyxxx()
26659  *			  directly from the mode argument of ioctl().
26660  *
26661  * Return Code: the code returned by sd_send_scsi_cmd()
26662  *		EFAULT if ddi_copyxxx() fails
26663  *		ENXIO if fail ddi_get_soft_state
26664  *		EINVAL if data pointer is NULL
26665  */
26666 
26667 static int
26668 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
26669 {
26670 	struct sd_lun		*un;
26671 	struct uscsi_cmd	*com;
26672 	struct cdrom_tochdr	toc_header;
26673 	struct cdrom_tochdr	*hdr = &toc_header;
26674 	char			cdb[CDB_GROUP1];
26675 	int			rval;
26676 	caddr_t			buffer;
26677 
26678 	if (data == NULL) {
26679 		return (EINVAL);
26680 	}
26681 
26682 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26683 	    (un->un_state == SD_STATE_OFFLINE)) {
26684 		return (ENXIO);
26685 	}
26686 
26687 	buffer = kmem_zalloc(4, KM_SLEEP);
26688 	bzero(cdb, CDB_GROUP1);
26689 	cdb[0] = SCMD_READ_TOC;
26690 	/*
26691 	 * Specifying a track number of 0x00 in the READ TOC command indicates
26692 	 * that the TOC header should be returned
26693 	 */
26694 	cdb[6] = 0x00;
26695 	/*
26696 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
26697 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
26698 	 */
26699 	cdb[8] = 0x04;
26700 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26701 	com->uscsi_cdb	   = cdb;
26702 	com->uscsi_cdblen  = CDB_GROUP1;
26703 	com->uscsi_bufaddr = buffer;
26704 	com->uscsi_buflen  = 0x04;
26705 	com->uscsi_timeout = 300;
26706 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
26707 
26708 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26709 	    SD_PATH_STANDARD);
26710 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
26711 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
26712 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
26713 	} else {
26714 		hdr->cdth_trk0 = buffer[2];
26715 		hdr->cdth_trk1 = buffer[3];
26716 	}
26717 	kmem_free(buffer, 4);
26718 	kmem_free(com, sizeof (*com));
26719 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
26720 		return (EFAULT);
26721 	}
26722 	return (rval);
26723 }
26724 
26725 
26726 /*
26727  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
26728  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
26729  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
26730  * digital audio and extended architecture digital audio. These modes are
26731  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
26732  * MMC specs.
26733  *
26734  * In addition to support for the various data formats these routines also
26735  * include support for devices that implement only the direct access READ
26736  * commands (0x08, 0x28), devices that implement the READ_CD commands
26737  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
26738  * READ CDXA commands (0xD8, 0xDB)
26739  */
26740 
26741 /*
26742  *    Function: sr_read_mode1()
26743  *
26744  * Description: This routine is the driver entry point for handling CD-ROM
26745  *		ioctl read mode1 requests (CDROMREADMODE1).
26746  *
26747  *   Arguments: dev	- the device 'dev_t'
26748  *		data	- pointer to user provided cd read structure specifying
26749  *			  the lba buffer address and length.
26750  *		flag	- this argument is a pass through to ddi_copyxxx()
26751  *			  directly from the mode argument of ioctl().
26752  *
26753  * Return Code: the code returned by sd_send_scsi_cmd()
26754  *		EFAULT if ddi_copyxxx() fails
26755  *		ENXIO if fail ddi_get_soft_state
26756  *		EINVAL if data pointer is NULL
26757  */
26758 
26759 static int
26760 sr_read_mode1(dev_t dev, caddr_t data, int flag)
26761 {
26762 	struct sd_lun		*un;
26763 	struct cdrom_read	mode1_struct;
26764 	struct cdrom_read	*mode1 = &mode1_struct;
26765 	int			rval;
26766 	sd_ssc_t		*ssc;
26767 
26768 #ifdef _MULTI_DATAMODEL
26769 	/* To support ILP32 applications in an LP64 world */
26770 	struct cdrom_read32	cdrom_read32;
26771 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
26772 #endif /* _MULTI_DATAMODEL */
26773 
26774 	if (data == NULL) {
26775 		return (EINVAL);
26776 	}
26777 
26778 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26779 	    (un->un_state == SD_STATE_OFFLINE)) {
26780 		return (ENXIO);
26781 	}
26782 
26783 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
26784 	    "sd_read_mode1: entry: un:0x%p\n", un);
26785 
26786 #ifdef _MULTI_DATAMODEL
26787 	switch (ddi_model_convert_from(flag & FMODELS)) {
26788 	case DDI_MODEL_ILP32:
26789 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
26790 			return (EFAULT);
26791 		}
26792 		/* Convert the ILP32 uscsi data from the application to LP64 */
26793 		cdrom_read32tocdrom_read(cdrd32, mode1);
26794 		break;
26795 	case DDI_MODEL_NONE:
26796 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
26797 			return (EFAULT);
26798 		}
26799 	}
26800 #else /* ! _MULTI_DATAMODEL */
26801 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
26802 		return (EFAULT);
26803 	}
26804 #endif /* _MULTI_DATAMODEL */
26805 
26806 	ssc = sd_ssc_init(un);
26807 	rval = sd_send_scsi_READ(ssc, mode1->cdread_bufaddr,
26808 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
26809 	sd_ssc_fini(ssc);
26810 
26811 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
26812 	    "sd_read_mode1: exit: un:0x%p\n", un);
26813 
26814 	return (rval);
26815 }
26816 
26817 
26818 /*
26819  *    Function: sr_read_cd_mode2()
26820  *
26821  * Description: This routine is the driver entry point for handling CD-ROM
26822  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
26823  *		support the READ CD (0xBE) command or the 1st generation
26824  *		READ CD (0xD4) command.
26825  *
26826  *   Arguments: dev	- the device 'dev_t'
26827  *		data	- pointer to user provided cd read structure specifying
26828  *			  the lba buffer address and length.
26829  *		flag	- this argument is a pass through to ddi_copyxxx()
26830  *			  directly from the mode argument of ioctl().
26831  *
26832  * Return Code: the code returned by sd_send_scsi_cmd()
26833  *		EFAULT if ddi_copyxxx() fails
26834  *		ENXIO if fail ddi_get_soft_state
26835  *		EINVAL if data pointer is NULL
26836  */
26837 
26838 static int
26839 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
26840 {
26841 	struct sd_lun		*un;
26842 	struct uscsi_cmd	*com;
26843 	struct cdrom_read	mode2_struct;
26844 	struct cdrom_read	*mode2 = &mode2_struct;
26845 	uchar_t			cdb[CDB_GROUP5];
26846 	int			nblocks;
26847 	int			rval;
26848 #ifdef _MULTI_DATAMODEL
26849 	/*  To support ILP32 applications in an LP64 world */
26850 	struct cdrom_read32	cdrom_read32;
26851 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
26852 #endif /* _MULTI_DATAMODEL */
26853 
26854 	if (data == NULL) {
26855 		return (EINVAL);
26856 	}
26857 
26858 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26859 	    (un->un_state == SD_STATE_OFFLINE)) {
26860 		return (ENXIO);
26861 	}
26862 
26863 #ifdef _MULTI_DATAMODEL
26864 	switch (ddi_model_convert_from(flag & FMODELS)) {
26865 	case DDI_MODEL_ILP32:
26866 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
26867 			return (EFAULT);
26868 		}
26869 		/* Convert the ILP32 uscsi data from the application to LP64 */
26870 		cdrom_read32tocdrom_read(cdrd32, mode2);
26871 		break;
26872 	case DDI_MODEL_NONE:
26873 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
26874 			return (EFAULT);
26875 		}
26876 		break;
26877 	}
26878 
26879 #else /* ! _MULTI_DATAMODEL */
26880 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
26881 		return (EFAULT);
26882 	}
26883 #endif /* _MULTI_DATAMODEL */
26884 
26885 	bzero(cdb, sizeof (cdb));
26886 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
26887 		/* Read command supported by 1st generation atapi drives */
26888 		cdb[0] = SCMD_READ_CDD4;
26889 	} else {
26890 		/* Universal CD Access Command */
26891 		cdb[0] = SCMD_READ_CD;
26892 	}
26893 
26894 	/*
26895 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
26896 	 */
26897 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
26898 
26899 	/* set the start address */
26900 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
26901 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
26902 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
26903 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
26904 
26905 	/* set the transfer length */
26906 	nblocks = mode2->cdread_buflen / 2336;
26907 	cdb[6] = (uchar_t)(nblocks >> 16);
26908 	cdb[7] = (uchar_t)(nblocks >> 8);
26909 	cdb[8] = (uchar_t)nblocks;
26910 
26911 	/* set the filter bits */
26912 	cdb[9] = CDROM_READ_CD_USERDATA;
26913 
26914 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26915 	com->uscsi_cdb = (caddr_t)cdb;
26916 	com->uscsi_cdblen = sizeof (cdb);
26917 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
26918 	com->uscsi_buflen = mode2->cdread_buflen;
26919 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
26920 
26921 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
26922 	    SD_PATH_STANDARD);
26923 	kmem_free(com, sizeof (*com));
26924 	return (rval);
26925 }
26926 
26927 
26928 /*
26929  *    Function: sr_read_mode2()
26930  *
26931  * Description: This routine is the driver entry point for handling CD-ROM
26932  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
26933  *		do not support the READ CD (0xBE) command.
26934  *
26935  *   Arguments: dev	- the device 'dev_t'
26936  *		data	- pointer to user provided cd read structure specifying
26937  *			  the lba buffer address and length.
26938  *		flag	- this argument is a pass through to ddi_copyxxx()
26939  *			  directly from the mode argument of ioctl().
26940  *
26941  * Return Code: the code returned by sd_send_scsi_cmd()
26942  *		EFAULT if ddi_copyxxx() fails
26943  *		ENXIO if fail ddi_get_soft_state
26944  *		EINVAL if data pointer is NULL
26945  *		EIO if fail to reset block size
26946  *		EAGAIN if commands are in progress in the driver
26947  */
26948 
26949 static int
26950 sr_read_mode2(dev_t dev, caddr_t data, int flag)
26951 {
26952 	struct sd_lun		*un;
26953 	struct cdrom_read	mode2_struct;
26954 	struct cdrom_read	*mode2 = &mode2_struct;
26955 	int			rval;
26956 	uint32_t		restore_blksize;
26957 	struct uscsi_cmd	*com;
26958 	uchar_t			cdb[CDB_GROUP0];
26959 	int			nblocks;
26960 
26961 #ifdef _MULTI_DATAMODEL
26962 	/* To support ILP32 applications in an LP64 world */
26963 	struct cdrom_read32	cdrom_read32;
26964 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
26965 #endif /* _MULTI_DATAMODEL */
26966 
26967 	if (data == NULL) {
26968 		return (EINVAL);
26969 	}
26970 
26971 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26972 	    (un->un_state == SD_STATE_OFFLINE)) {
26973 		return (ENXIO);
26974 	}
26975 
26976 	/*
26977 	 * Because this routine will update the device and driver block size
26978 	 * being used we want to make sure there are no commands in progress.
26979 	 * If commands are in progress the user will have to try again.
26980 	 *
26981 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
26982 	 * in sdioctl to protect commands from sdioctl through to the top of
26983 	 * sd_uscsi_strategy. See sdioctl for details.
26984 	 */
26985 	mutex_enter(SD_MUTEX(un));
26986 	if (un->un_ncmds_in_driver != 1) {
26987 		mutex_exit(SD_MUTEX(un));
26988 		return (EAGAIN);
26989 	}
26990 	mutex_exit(SD_MUTEX(un));
26991 
26992 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
26993 	    "sd_read_mode2: entry: un:0x%p\n", un);
26994 
26995 #ifdef _MULTI_DATAMODEL
26996 	switch (ddi_model_convert_from(flag & FMODELS)) {
26997 	case DDI_MODEL_ILP32:
26998 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
26999 			return (EFAULT);
27000 		}
27001 		/* Convert the ILP32 uscsi data from the application to LP64 */
27002 		cdrom_read32tocdrom_read(cdrd32, mode2);
27003 		break;
27004 	case DDI_MODEL_NONE:
27005 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
27006 			return (EFAULT);
27007 		}
27008 		break;
27009 	}
27010 #else /* ! _MULTI_DATAMODEL */
27011 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
27012 		return (EFAULT);
27013 	}
27014 #endif /* _MULTI_DATAMODEL */
27015 
27016 	/* Store the current target block size for restoration later */
27017 	restore_blksize = un->un_tgt_blocksize;
27018 
27019 	/* Change the device and soft state target block size to 2336 */
27020 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
27021 		rval = EIO;
27022 		goto done;
27023 	}
27024 
27025 
27026 	bzero(cdb, sizeof (cdb));
27027 
27028 	/* set READ operation */
27029 	cdb[0] = SCMD_READ;
27030 
27031 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
27032 	mode2->cdread_lba >>= 2;
27033 
27034 	/* set the start address */
27035 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
27036 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
27037 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
27038 
27039 	/* set the transfer length */
27040 	nblocks = mode2->cdread_buflen / 2336;
27041 	cdb[4] = (uchar_t)nblocks & 0xFF;
27042 
27043 	/* build command */
27044 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27045 	com->uscsi_cdb = (caddr_t)cdb;
27046 	com->uscsi_cdblen = sizeof (cdb);
27047 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
27048 	com->uscsi_buflen = mode2->cdread_buflen;
27049 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27050 
27051 	/*
27052 	 * Issue SCSI command with user space address for read buffer.
27053 	 *
27054 	 * This sends the command through main channel in the driver.
27055 	 *
27056 	 * Since this is accessed via an IOCTL call, we go through the
27057 	 * standard path, so that if the device was powered down, then
27058 	 * it would be 'awakened' to handle the command.
27059 	 */
27060 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27061 	    SD_PATH_STANDARD);
27062 
27063 	kmem_free(com, sizeof (*com));
27064 
27065 	/* Restore the device and soft state target block size */
27066 	if (sr_sector_mode(dev, restore_blksize) != 0) {
27067 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27068 		    "can't do switch back to mode 1\n");
27069 		/*
27070 		 * If sd_send_scsi_READ succeeded we still need to report
27071 		 * an error because we failed to reset the block size
27072 		 */
27073 		if (rval == 0) {
27074 			rval = EIO;
27075 		}
27076 	}
27077 
27078 done:
27079 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
27080 	    "sd_read_mode2: exit: un:0x%p\n", un);
27081 
27082 	return (rval);
27083 }
27084 
27085 
27086 /*
27087  *    Function: sr_sector_mode()
27088  *
27089  * Description: This utility function is used by sr_read_mode2 to set the target
27090  *		block size based on the user specified size. This is a legacy
27091  *		implementation based upon a vendor specific mode page
27092  *
27093  *   Arguments: dev	- the device 'dev_t'
27094  *		data	- flag indicating if block size is being set to 2336 or
27095  *			  512.
27096  *
27097  * Return Code: the code returned by sd_send_scsi_cmd()
27098  *		EFAULT if ddi_copyxxx() fails
27099  *		ENXIO if fail ddi_get_soft_state
27100  *		EINVAL if data pointer is NULL
27101  */
27102 
27103 static int
27104 sr_sector_mode(dev_t dev, uint32_t blksize)
27105 {
27106 	struct sd_lun	*un;
27107 	uchar_t		*sense;
27108 	uchar_t		*select;
27109 	int		rval;
27110 	sd_ssc_t	*ssc;
27111 
27112 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27113 	    (un->un_state == SD_STATE_OFFLINE)) {
27114 		return (ENXIO);
27115 	}
27116 
27117 	sense = kmem_zalloc(20, KM_SLEEP);
27118 
27119 	/* Note: This is a vendor specific mode page (0x81) */
27120 	ssc = sd_ssc_init(un);
27121 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 20, 0x81,
27122 	    SD_PATH_STANDARD);
27123 	sd_ssc_fini(ssc);
27124 	if (rval != 0) {
27125 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
27126 		    "sr_sector_mode: Mode Sense failed\n");
27127 		kmem_free(sense, 20);
27128 		return (rval);
27129 	}
27130 	select = kmem_zalloc(20, KM_SLEEP);
27131 	select[3] = 0x08;
27132 	select[10] = ((blksize >> 8) & 0xff);
27133 	select[11] = (blksize & 0xff);
27134 	select[12] = 0x01;
27135 	select[13] = 0x06;
27136 	select[14] = sense[14];
27137 	select[15] = sense[15];
27138 	if (blksize == SD_MODE2_BLKSIZE) {
27139 		select[14] |= 0x01;
27140 	}
27141 
27142 	ssc = sd_ssc_init(un);
27143 	rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 20,
27144 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27145 	sd_ssc_fini(ssc);
27146 	if (rval != 0) {
27147 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
27148 		    "sr_sector_mode: Mode Select failed\n");
27149 	} else {
27150 		/*
27151 		 * Only update the softstate block size if we successfully
27152 		 * changed the device block mode.
27153 		 */
27154 		mutex_enter(SD_MUTEX(un));
27155 		sd_update_block_info(un, blksize, 0);
27156 		mutex_exit(SD_MUTEX(un));
27157 	}
27158 	kmem_free(sense, 20);
27159 	kmem_free(select, 20);
27160 	return (rval);
27161 }
27162 
27163 
27164 /*
27165  *    Function: sr_read_cdda()
27166  *
27167  * Description: This routine is the driver entry point for handling CD-ROM
27168  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
27169  *		the target supports CDDA these requests are handled via a vendor
27170  *		specific command (0xD8) If the target does not support CDDA
27171  *		these requests are handled via the READ CD command (0xBE).
27172  *
27173  *   Arguments: dev	- the device 'dev_t'
27174  *		data	- pointer to user provided CD-DA structure specifying
27175  *			  the track starting address, transfer length, and
27176  *			  subcode options.
27177  *		flag	- this argument is a pass through to ddi_copyxxx()
27178  *			  directly from the mode argument of ioctl().
27179  *
27180  * Return Code: the code returned by sd_send_scsi_cmd()
27181  *		EFAULT if ddi_copyxxx() fails
27182  *		ENXIO if fail ddi_get_soft_state
27183  *		EINVAL if invalid arguments are provided
27184  *		ENOTTY
27185  */
27186 
27187 static int
27188 sr_read_cdda(dev_t dev, caddr_t data, int flag)
27189 {
27190 	struct sd_lun			*un;
27191 	struct uscsi_cmd		*com;
27192 	struct cdrom_cdda		*cdda;
27193 	int				rval;
27194 	size_t				buflen;
27195 	char				cdb[CDB_GROUP5];
27196 
27197 #ifdef _MULTI_DATAMODEL
27198 	/* To support ILP32 applications in an LP64 world */
27199 	struct cdrom_cdda32	cdrom_cdda32;
27200 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
27201 #endif /* _MULTI_DATAMODEL */
27202 
27203 	if (data == NULL) {
27204 		return (EINVAL);
27205 	}
27206 
27207 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27208 		return (ENXIO);
27209 	}
27210 
27211 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
27212 
27213 #ifdef _MULTI_DATAMODEL
27214 	switch (ddi_model_convert_from(flag & FMODELS)) {
27215 	case DDI_MODEL_ILP32:
27216 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
27217 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27218 			    "sr_read_cdda: ddi_copyin Failed\n");
27219 			kmem_free(cdda, sizeof (struct cdrom_cdda));
27220 			return (EFAULT);
27221 		}
27222 		/* Convert the ILP32 uscsi data from the application to LP64 */
27223 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
27224 		break;
27225 	case DDI_MODEL_NONE:
27226 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
27227 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27228 			    "sr_read_cdda: ddi_copyin Failed\n");
27229 			kmem_free(cdda, sizeof (struct cdrom_cdda));
27230 			return (EFAULT);
27231 		}
27232 		break;
27233 	}
27234 #else /* ! _MULTI_DATAMODEL */
27235 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
27236 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27237 		    "sr_read_cdda: ddi_copyin Failed\n");
27238 		kmem_free(cdda, sizeof (struct cdrom_cdda));
27239 		return (EFAULT);
27240 	}
27241 #endif /* _MULTI_DATAMODEL */
27242 
27243 	/*
27244 	 * Since MMC-2 expects max 3 bytes for length, check if the
27245 	 * length input is greater than 3 bytes
27246 	 */
27247 	if ((cdda->cdda_length & 0xFF000000) != 0) {
27248 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
27249 		    "cdrom transfer length too large: %d (limit %d)\n",
27250 		    cdda->cdda_length, 0xFFFFFF);
27251 		kmem_free(cdda, sizeof (struct cdrom_cdda));
27252 		return (EINVAL);
27253 	}
27254 
27255 	switch (cdda->cdda_subcode) {
27256 	case CDROM_DA_NO_SUBCODE:
27257 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
27258 		break;
27259 	case CDROM_DA_SUBQ:
27260 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
27261 		break;
27262 	case CDROM_DA_ALL_SUBCODE:
27263 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
27264 		break;
27265 	case CDROM_DA_SUBCODE_ONLY:
27266 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
27267 		break;
27268 	default:
27269 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27270 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
27271 		    cdda->cdda_subcode);
27272 		kmem_free(cdda, sizeof (struct cdrom_cdda));
27273 		return (EINVAL);
27274 	}
27275 
27276 	/* Build and send the command */
27277 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27278 	bzero(cdb, CDB_GROUP5);
27279 
27280 	if (un->un_f_cfg_cdda == TRUE) {
27281 		cdb[0] = (char)SCMD_READ_CD;
27282 		cdb[1] = 0x04;
27283 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
27284 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
27285 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
27286 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
27287 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
27288 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
27289 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
27290 		cdb[9] = 0x10;
27291 		switch (cdda->cdda_subcode) {
27292 		case CDROM_DA_NO_SUBCODE :
27293 			cdb[10] = 0x0;
27294 			break;
27295 		case CDROM_DA_SUBQ :
27296 			cdb[10] = 0x2;
27297 			break;
27298 		case CDROM_DA_ALL_SUBCODE :
27299 			cdb[10] = 0x1;
27300 			break;
27301 		case CDROM_DA_SUBCODE_ONLY :
27302 			/* FALLTHROUGH */
27303 		default :
27304 			kmem_free(cdda, sizeof (struct cdrom_cdda));
27305 			kmem_free(com, sizeof (*com));
27306 			return (ENOTTY);
27307 		}
27308 	} else {
27309 		cdb[0] = (char)SCMD_READ_CDDA;
27310 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
27311 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
27312 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
27313 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
27314 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
27315 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
27316 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
27317 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
27318 		cdb[10] = cdda->cdda_subcode;
27319 	}
27320 
27321 	com->uscsi_cdb = cdb;
27322 	com->uscsi_cdblen = CDB_GROUP5;
27323 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
27324 	com->uscsi_buflen = buflen;
27325 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27326 
27327 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27328 	    SD_PATH_STANDARD);
27329 
27330 	kmem_free(cdda, sizeof (struct cdrom_cdda));
27331 	kmem_free(com, sizeof (*com));
27332 	return (rval);
27333 }
27334 
27335 
27336 /*
27337  *    Function: sr_read_cdxa()
27338  *
27339  * Description: This routine is the driver entry point for handling CD-ROM
27340  *		ioctl requests to return CD-XA (Extended Architecture) data.
27341  *		(CDROMCDXA).
27342  *
27343  *   Arguments: dev	- the device 'dev_t'
27344  *		data	- pointer to user provided CD-XA structure specifying
27345  *			  the data starting address, transfer length, and format
27346  *		flag	- this argument is a pass through to ddi_copyxxx()
27347  *			  directly from the mode argument of ioctl().
27348  *
27349  * Return Code: the code returned by sd_send_scsi_cmd()
27350  *		EFAULT if ddi_copyxxx() fails
27351  *		ENXIO if fail ddi_get_soft_state
27352  *		EINVAL if data pointer is NULL
27353  */
27354 
27355 static int
27356 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
27357 {
27358 	struct sd_lun		*un;
27359 	struct uscsi_cmd	*com;
27360 	struct cdrom_cdxa	*cdxa;
27361 	int			rval;
27362 	size_t			buflen;
27363 	char			cdb[CDB_GROUP5];
27364 	uchar_t			read_flags;
27365 
27366 #ifdef _MULTI_DATAMODEL
27367 	/* To support ILP32 applications in an LP64 world */
27368 	struct cdrom_cdxa32		cdrom_cdxa32;
27369 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
27370 #endif /* _MULTI_DATAMODEL */
27371 
27372 	if (data == NULL) {
27373 		return (EINVAL);
27374 	}
27375 
27376 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27377 		return (ENXIO);
27378 	}
27379 
27380 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
27381 
27382 #ifdef _MULTI_DATAMODEL
27383 	switch (ddi_model_convert_from(flag & FMODELS)) {
27384 	case DDI_MODEL_ILP32:
27385 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
27386 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27387 			return (EFAULT);
27388 		}
27389 		/*
27390 		 * Convert the ILP32 uscsi data from the
27391 		 * application to LP64 for internal use.
27392 		 */
27393 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
27394 		break;
27395 	case DDI_MODEL_NONE:
27396 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
27397 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27398 			return (EFAULT);
27399 		}
27400 		break;
27401 	}
27402 #else /* ! _MULTI_DATAMODEL */
27403 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
27404 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27405 		return (EFAULT);
27406 	}
27407 #endif /* _MULTI_DATAMODEL */
27408 
27409 	/*
27410 	 * Since MMC-2 expects max 3 bytes for length, check if the
27411 	 * length input is greater than 3 bytes
27412 	 */
27413 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
27414 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
27415 		    "cdrom transfer length too large: %d (limit %d)\n",
27416 		    cdxa->cdxa_length, 0xFFFFFF);
27417 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27418 		return (EINVAL);
27419 	}
27420 
27421 	switch (cdxa->cdxa_format) {
27422 	case CDROM_XA_DATA:
27423 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
27424 		read_flags = 0x10;
27425 		break;
27426 	case CDROM_XA_SECTOR_DATA:
27427 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
27428 		read_flags = 0xf8;
27429 		break;
27430 	case CDROM_XA_DATA_W_ERROR:
27431 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
27432 		read_flags = 0xfc;
27433 		break;
27434 	default:
27435 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27436 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
27437 		    cdxa->cdxa_format);
27438 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27439 		return (EINVAL);
27440 	}
27441 
27442 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27443 	bzero(cdb, CDB_GROUP5);
27444 	if (un->un_f_mmc_cap == TRUE) {
27445 		cdb[0] = (char)SCMD_READ_CD;
27446 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
27447 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
27448 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
27449 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
27450 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
27451 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
27452 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
27453 		cdb[9] = (char)read_flags;
27454 	} else {
27455 		/*
27456 		 * Note: A vendor specific command (0xDB) is being used her to
27457 		 * request a read of all subcodes.
27458 		 */
27459 		cdb[0] = (char)SCMD_READ_CDXA;
27460 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
27461 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
27462 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
27463 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
27464 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
27465 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
27466 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
27467 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
27468 		cdb[10] = cdxa->cdxa_format;
27469 	}
27470 	com->uscsi_cdb	   = cdb;
27471 	com->uscsi_cdblen  = CDB_GROUP5;
27472 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
27473 	com->uscsi_buflen  = buflen;
27474 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27475 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27476 	    SD_PATH_STANDARD);
27477 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27478 	kmem_free(com, sizeof (*com));
27479 	return (rval);
27480 }
27481 
27482 
27483 /*
27484  *    Function: sr_eject()
27485  *
27486  * Description: This routine is the driver entry point for handling CD-ROM
27487  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
27488  *
27489  *   Arguments: dev	- the device 'dev_t'
27490  *
27491  * Return Code: the code returned by sd_send_scsi_cmd()
27492  */
27493 
27494 static int
27495 sr_eject(dev_t dev)
27496 {
27497 	struct sd_lun	*un;
27498 	int		rval;
27499 	sd_ssc_t	*ssc;
27500 
27501 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27502 	    (un->un_state == SD_STATE_OFFLINE)) {
27503 		return (ENXIO);
27504 	}
27505 
27506 	/*
27507 	 * To prevent race conditions with the eject
27508 	 * command, keep track of an eject command as
27509 	 * it progresses. If we are already handling
27510 	 * an eject command in the driver for the given
27511 	 * unit and another request to eject is received
27512 	 * immediately return EAGAIN so we don't lose
27513 	 * the command if the current eject command fails.
27514 	 */
27515 	mutex_enter(SD_MUTEX(un));
27516 	if (un->un_f_ejecting == TRUE) {
27517 		mutex_exit(SD_MUTEX(un));
27518 		return (EAGAIN);
27519 	}
27520 	un->un_f_ejecting = TRUE;
27521 	mutex_exit(SD_MUTEX(un));
27522 
27523 	ssc = sd_ssc_init(un);
27524 	rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
27525 	    SD_PATH_STANDARD);
27526 	sd_ssc_fini(ssc);
27527 
27528 	if (rval != 0) {
27529 		mutex_enter(SD_MUTEX(un));
27530 		un->un_f_ejecting = FALSE;
27531 		mutex_exit(SD_MUTEX(un));
27532 		return (rval);
27533 	}
27534 
27535 	ssc = sd_ssc_init(un);
27536 	rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_EJECT,
27537 	    SD_PATH_STANDARD);
27538 	sd_ssc_fini(ssc);
27539 
27540 	if (rval == 0) {
27541 		mutex_enter(SD_MUTEX(un));
27542 		sr_ejected(un);
27543 		un->un_mediastate = DKIO_EJECTED;
27544 		un->un_f_ejecting = FALSE;
27545 		cv_broadcast(&un->un_state_cv);
27546 		mutex_exit(SD_MUTEX(un));
27547 	} else {
27548 		mutex_enter(SD_MUTEX(un));
27549 		un->un_f_ejecting = FALSE;
27550 		mutex_exit(SD_MUTEX(un));
27551 	}
27552 	return (rval);
27553 }
27554 
27555 
27556 /*
27557  *    Function: sr_ejected()
27558  *
27559  * Description: This routine updates the soft state structure to invalidate the
27560  *		geometry information after the media has been ejected or a
27561  *		media eject has been detected.
27562  *
27563  *   Arguments: un - driver soft state (unit) structure
27564  */
27565 
27566 static void
27567 sr_ejected(struct sd_lun *un)
27568 {
27569 	struct sd_errstats *stp;
27570 
27571 	ASSERT(un != NULL);
27572 	ASSERT(mutex_owned(SD_MUTEX(un)));
27573 
27574 	un->un_f_blockcount_is_valid	= FALSE;
27575 	un->un_f_tgt_blocksize_is_valid	= FALSE;
27576 	mutex_exit(SD_MUTEX(un));
27577 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
27578 	mutex_enter(SD_MUTEX(un));
27579 
27580 	if (un->un_errstats != NULL) {
27581 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
27582 		stp->sd_capacity.value.ui64 = 0;
27583 	}
27584 }
27585 
27586 
27587 /*
27588  *    Function: sr_check_wp()
27589  *
27590  * Description: This routine checks the write protection of a removable
27591  *      media disk and hotpluggable devices via the write protect bit of
27592  *      the Mode Page Header device specific field. Some devices choke
27593  *      on unsupported mode page. In order to workaround this issue,
27594  *      this routine has been implemented to use 0x3f mode page(request
27595  *      for all pages) for all device types.
27596  *
27597  *   Arguments: dev             - the device 'dev_t'
27598  *
27599  * Return Code: int indicating if the device is write protected (1) or not (0)
27600  *
27601  *     Context: Kernel thread.
27602  *
27603  */
27604 
27605 static int
27606 sr_check_wp(dev_t dev)
27607 {
27608 	struct sd_lun	*un;
27609 	uchar_t		device_specific;
27610 	uchar_t		*sense;
27611 	int		hdrlen;
27612 	int		rval = FALSE;
27613 	int		status;
27614 	sd_ssc_t	*ssc;
27615 
27616 	/*
27617 	 * Note: The return codes for this routine should be reworked to
27618 	 * properly handle the case of a NULL softstate.
27619 	 */
27620 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27621 		return (FALSE);
27622 	}
27623 
27624 	if (un->un_f_cfg_is_atapi == TRUE) {
27625 		/*
27626 		 * The mode page contents are not required; set the allocation
27627 		 * length for the mode page header only
27628 		 */
27629 		hdrlen = MODE_HEADER_LENGTH_GRP2;
27630 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
27631 		ssc = sd_ssc_init(un);
27632 		status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, hdrlen,
27633 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
27634 		sd_ssc_fini(ssc);
27635 		if (status != 0)
27636 			goto err_exit;
27637 		device_specific =
27638 		    ((struct mode_header_grp2 *)sense)->device_specific;
27639 	} else {
27640 		hdrlen = MODE_HEADER_LENGTH;
27641 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
27642 		ssc = sd_ssc_init(un);
27643 		status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, hdrlen,
27644 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
27645 		sd_ssc_fini(ssc);
27646 		if (status != 0)
27647 			goto err_exit;
27648 		device_specific =
27649 		    ((struct mode_header *)sense)->device_specific;
27650 	}
27651 
27652 
27653 	/*
27654 	 * Write protect mode sense failed; not all disks
27655 	 * understand this query. Return FALSE assuming that
27656 	 * these devices are not writable.
27657 	 */
27658 	if (device_specific & WRITE_PROTECT) {
27659 		rval = TRUE;
27660 	}
27661 
27662 err_exit:
27663 	kmem_free(sense, hdrlen);
27664 	return (rval);
27665 }
27666 
27667 /*
27668  *    Function: sr_volume_ctrl()
27669  *
27670  * Description: This routine is the driver entry point for handling CD-ROM
27671  *		audio output volume ioctl requests. (CDROMVOLCTRL)
27672  *
27673  *   Arguments: dev	- the device 'dev_t'
27674  *		data	- pointer to user audio volume control structure
27675  *		flag	- this argument is a pass through to ddi_copyxxx()
27676  *			  directly from the mode argument of ioctl().
27677  *
27678  * Return Code: the code returned by sd_send_scsi_cmd()
27679  *		EFAULT if ddi_copyxxx() fails
27680  *		ENXIO if fail ddi_get_soft_state
27681  *		EINVAL if data pointer is NULL
27682  *
27683  */
27684 
27685 static int
27686 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
27687 {
27688 	struct sd_lun		*un;
27689 	struct cdrom_volctrl    volume;
27690 	struct cdrom_volctrl    *vol = &volume;
27691 	uchar_t			*sense_page;
27692 	uchar_t			*select_page;
27693 	uchar_t			*sense;
27694 	uchar_t			*select;
27695 	int			sense_buflen;
27696 	int			select_buflen;
27697 	int			rval;
27698 	sd_ssc_t		*ssc;
27699 
27700 	if (data == NULL) {
27701 		return (EINVAL);
27702 	}
27703 
27704 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27705 	    (un->un_state == SD_STATE_OFFLINE)) {
27706 		return (ENXIO);
27707 	}
27708 
27709 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
27710 		return (EFAULT);
27711 	}
27712 
27713 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
27714 		struct mode_header_grp2		*sense_mhp;
27715 		struct mode_header_grp2		*select_mhp;
27716 		int				bd_len;
27717 
27718 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
27719 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
27720 		    MODEPAGE_AUDIO_CTRL_LEN;
27721 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
27722 		select = kmem_zalloc(select_buflen, KM_SLEEP);
27723 		ssc = sd_ssc_init(un);
27724 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
27725 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
27726 		    SD_PATH_STANDARD);
27727 		sd_ssc_fini(ssc);
27728 
27729 		if (rval != 0) {
27730 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
27731 			    "sr_volume_ctrl: Mode Sense Failed\n");
27732 			kmem_free(sense, sense_buflen);
27733 			kmem_free(select, select_buflen);
27734 			return (rval);
27735 		}
27736 		sense_mhp = (struct mode_header_grp2 *)sense;
27737 		select_mhp = (struct mode_header_grp2 *)select;
27738 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
27739 		    sense_mhp->bdesc_length_lo;
27740 		if (bd_len > MODE_BLK_DESC_LENGTH) {
27741 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27742 			    "sr_volume_ctrl: Mode Sense returned invalid "
27743 			    "block descriptor length\n");
27744 			kmem_free(sense, sense_buflen);
27745 			kmem_free(select, select_buflen);
27746 			return (EIO);
27747 		}
27748 		sense_page = (uchar_t *)
27749 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
27750 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
27751 		select_mhp->length_msb = 0;
27752 		select_mhp->length_lsb = 0;
27753 		select_mhp->bdesc_length_hi = 0;
27754 		select_mhp->bdesc_length_lo = 0;
27755 	} else {
27756 		struct mode_header		*sense_mhp, *select_mhp;
27757 
27758 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
27759 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
27760 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
27761 		select = kmem_zalloc(select_buflen, KM_SLEEP);
27762 		ssc = sd_ssc_init(un);
27763 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
27764 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
27765 		    SD_PATH_STANDARD);
27766 		sd_ssc_fini(ssc);
27767 
27768 		if (rval != 0) {
27769 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27770 			    "sr_volume_ctrl: Mode Sense Failed\n");
27771 			kmem_free(sense, sense_buflen);
27772 			kmem_free(select, select_buflen);
27773 			return (rval);
27774 		}
27775 		sense_mhp  = (struct mode_header *)sense;
27776 		select_mhp = (struct mode_header *)select;
27777 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
27778 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27779 			    "sr_volume_ctrl: Mode Sense returned invalid "
27780 			    "block descriptor length\n");
27781 			kmem_free(sense, sense_buflen);
27782 			kmem_free(select, select_buflen);
27783 			return (EIO);
27784 		}
27785 		sense_page = (uchar_t *)
27786 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
27787 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
27788 		select_mhp->length = 0;
27789 		select_mhp->bdesc_length = 0;
27790 	}
27791 	/*
27792 	 * Note: An audio control data structure could be created and overlayed
27793 	 * on the following in place of the array indexing method implemented.
27794 	 */
27795 
27796 	/* Build the select data for the user volume data */
27797 	select_page[0] = MODEPAGE_AUDIO_CTRL;
27798 	select_page[1] = 0xE;
27799 	/* Set the immediate bit */
27800 	select_page[2] = 0x04;
27801 	/* Zero out reserved fields */
27802 	select_page[3] = 0x00;
27803 	select_page[4] = 0x00;
27804 	/* Return sense data for fields not to be modified */
27805 	select_page[5] = sense_page[5];
27806 	select_page[6] = sense_page[6];
27807 	select_page[7] = sense_page[7];
27808 	/* Set the user specified volume levels for channel 0 and 1 */
27809 	select_page[8] = 0x01;
27810 	select_page[9] = vol->channel0;
27811 	select_page[10] = 0x02;
27812 	select_page[11] = vol->channel1;
27813 	/* Channel 2 and 3 are currently unsupported so return the sense data */
27814 	select_page[12] = sense_page[12];
27815 	select_page[13] = sense_page[13];
27816 	select_page[14] = sense_page[14];
27817 	select_page[15] = sense_page[15];
27818 
27819 	ssc = sd_ssc_init(un);
27820 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
27821 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, select,
27822 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27823 	} else {
27824 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
27825 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27826 	}
27827 	sd_ssc_fini(ssc);
27828 
27829 	kmem_free(sense, sense_buflen);
27830 	kmem_free(select, select_buflen);
27831 	return (rval);
27832 }
27833 
27834 
27835 /*
27836  *    Function: sr_read_sony_session_offset()
27837  *
27838  * Description: This routine is the driver entry point for handling CD-ROM
27839  *		ioctl requests for session offset information. (CDROMREADOFFSET)
27840  *		The address of the first track in the last session of a
27841  *		multi-session CD-ROM is returned
27842  *
27843  *		Note: This routine uses a vendor specific key value in the
27844  *		command control field without implementing any vendor check here
27845  *		or in the ioctl routine.
27846  *
27847  *   Arguments: dev	- the device 'dev_t'
27848  *		data	- pointer to an int to hold the requested address
27849  *		flag	- this argument is a pass through to ddi_copyxxx()
27850  *			  directly from the mode argument of ioctl().
27851  *
27852  * Return Code: the code returned by sd_send_scsi_cmd()
27853  *		EFAULT if ddi_copyxxx() fails
27854  *		ENXIO if fail ddi_get_soft_state
27855  *		EINVAL if data pointer is NULL
27856  */
27857 
27858 static int
27859 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
27860 {
27861 	struct sd_lun		*un;
27862 	struct uscsi_cmd	*com;
27863 	caddr_t			buffer;
27864 	char			cdb[CDB_GROUP1];
27865 	int			session_offset = 0;
27866 	int			rval;
27867 
27868 	if (data == NULL) {
27869 		return (EINVAL);
27870 	}
27871 
27872 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27873 	    (un->un_state == SD_STATE_OFFLINE)) {
27874 		return (ENXIO);
27875 	}
27876 
27877 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
27878 	bzero(cdb, CDB_GROUP1);
27879 	cdb[0] = SCMD_READ_TOC;
27880 	/*
27881 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
27882 	 * (4 byte TOC response header + 8 byte response data)
27883 	 */
27884 	cdb[8] = SONY_SESSION_OFFSET_LEN;
27885 	/* Byte 9 is the control byte. A vendor specific value is used */
27886 	cdb[9] = SONY_SESSION_OFFSET_KEY;
27887 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27888 	com->uscsi_cdb = cdb;
27889 	com->uscsi_cdblen = CDB_GROUP1;
27890 	com->uscsi_bufaddr = buffer;
27891 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
27892 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27893 
27894 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27895 	    SD_PATH_STANDARD);
27896 	if (rval != 0) {
27897 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
27898 		kmem_free(com, sizeof (*com));
27899 		return (rval);
27900 	}
27901 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
27902 		session_offset =
27903 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27904 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27905 		/*
27906 		 * Offset returned offset in current lbasize block's. Convert to
27907 		 * 2k block's to return to the user
27908 		 */
27909 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
27910 			session_offset >>= 2;
27911 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
27912 			session_offset >>= 1;
27913 		}
27914 	}
27915 
27916 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
27917 		rval = EFAULT;
27918 	}
27919 
27920 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
27921 	kmem_free(com, sizeof (*com));
27922 	return (rval);
27923 }
27924 
27925 
27926 /*
27927  *    Function: sd_wm_cache_constructor()
27928  *
27929  * Description: Cache Constructor for the wmap cache for the read/modify/write
27930  * 		devices.
27931  *
27932  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
27933  *		un	- sd_lun structure for the device.
27934  *		flag	- the km flags passed to constructor
27935  *
27936  * Return Code: 0 on success.
27937  *		-1 on failure.
27938  */
27939 
27940 /*ARGSUSED*/
27941 static int
27942 sd_wm_cache_constructor(void *wm, void *un, int flags)
27943 {
27944 	bzero(wm, sizeof (struct sd_w_map));
27945 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
27946 	return (0);
27947 }
27948 
27949 
27950 /*
27951  *    Function: sd_wm_cache_destructor()
27952  *
27953  * Description: Cache destructor for the wmap cache for the read/modify/write
27954  * 		devices.
27955  *
27956  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
27957  *		un	- sd_lun structure for the device.
27958  */
27959 /*ARGSUSED*/
27960 static void
27961 sd_wm_cache_destructor(void *wm, void *un)
27962 {
27963 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
27964 }
27965 
27966 
27967 /*
27968  *    Function: sd_range_lock()
27969  *
27970  * Description: Lock the range of blocks specified as parameter to ensure
27971  *		that read, modify write is atomic and no other i/o writes
27972  *		to the same location. The range is specified in terms
27973  *		of start and end blocks. Block numbers are the actual
27974  *		media block numbers and not system.
27975  *
27976  *   Arguments: un	- sd_lun structure for the device.
27977  *		startb - The starting block number
27978  *		endb - The end block number
27979  *		typ - type of i/o - simple/read_modify_write
27980  *
27981  * Return Code: wm  - pointer to the wmap structure.
27982  *
27983  *     Context: This routine can sleep.
27984  */
27985 
27986 static struct sd_w_map *
27987 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
27988 {
27989 	struct sd_w_map *wmp = NULL;
27990 	struct sd_w_map *sl_wmp = NULL;
27991 	struct sd_w_map *tmp_wmp;
27992 	wm_state state = SD_WM_CHK_LIST;
27993 
27994 
27995 	ASSERT(un != NULL);
27996 	ASSERT(!mutex_owned(SD_MUTEX(un)));
27997 
27998 	mutex_enter(SD_MUTEX(un));
27999 
28000 	while (state != SD_WM_DONE) {
28001 
28002 		switch (state) {
28003 		case SD_WM_CHK_LIST:
28004 			/*
28005 			 * This is the starting state. Check the wmap list
28006 			 * to see if the range is currently available.
28007 			 */
28008 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
28009 				/*
28010 				 * If this is a simple write and no rmw
28011 				 * i/o is pending then try to lock the
28012 				 * range as the range should be available.
28013 				 */
28014 				state = SD_WM_LOCK_RANGE;
28015 			} else {
28016 				tmp_wmp = sd_get_range(un, startb, endb);
28017 				if (tmp_wmp != NULL) {
28018 					if ((wmp != NULL) && ONLIST(un, wmp)) {
28019 						/*
28020 						 * Should not keep onlist wmps
28021 						 * while waiting this macro
28022 						 * will also do wmp = NULL;
28023 						 */
28024 						FREE_ONLIST_WMAP(un, wmp);
28025 					}
28026 					/*
28027 					 * sl_wmp is the wmap on which wait
28028 					 * is done, since the tmp_wmp points
28029 					 * to the inuse wmap, set sl_wmp to
28030 					 * tmp_wmp and change the state to sleep
28031 					 */
28032 					sl_wmp = tmp_wmp;
28033 					state = SD_WM_WAIT_MAP;
28034 				} else {
28035 					state = SD_WM_LOCK_RANGE;
28036 				}
28037 
28038 			}
28039 			break;
28040 
28041 		case SD_WM_LOCK_RANGE:
28042 			ASSERT(un->un_wm_cache);
28043 			/*
28044 			 * The range need to be locked, try to get a wmap.
28045 			 * First attempt it with NO_SLEEP, want to avoid a sleep
28046 			 * if possible as we will have to release the sd mutex
28047 			 * if we have to sleep.
28048 			 */
28049 			if (wmp == NULL)
28050 				wmp = kmem_cache_alloc(un->un_wm_cache,
28051 				    KM_NOSLEEP);
28052 			if (wmp == NULL) {
28053 				mutex_exit(SD_MUTEX(un));
28054 				_NOTE(DATA_READABLE_WITHOUT_LOCK
28055 				    (sd_lun::un_wm_cache))
28056 				wmp = kmem_cache_alloc(un->un_wm_cache,
28057 				    KM_SLEEP);
28058 				mutex_enter(SD_MUTEX(un));
28059 				/*
28060 				 * we released the mutex so recheck and go to
28061 				 * check list state.
28062 				 */
28063 				state = SD_WM_CHK_LIST;
28064 			} else {
28065 				/*
28066 				 * We exit out of state machine since we
28067 				 * have the wmap. Do the housekeeping first.
28068 				 * place the wmap on the wmap list if it is not
28069 				 * on it already and then set the state to done.
28070 				 */
28071 				wmp->wm_start = startb;
28072 				wmp->wm_end = endb;
28073 				wmp->wm_flags = typ | SD_WM_BUSY;
28074 				if (typ & SD_WTYPE_RMW) {
28075 					un->un_rmw_count++;
28076 				}
28077 				/*
28078 				 * If not already on the list then link
28079 				 */
28080 				if (!ONLIST(un, wmp)) {
28081 					wmp->wm_next = un->un_wm;
28082 					wmp->wm_prev = NULL;
28083 					if (wmp->wm_next)
28084 						wmp->wm_next->wm_prev = wmp;
28085 					un->un_wm = wmp;
28086 				}
28087 				state = SD_WM_DONE;
28088 			}
28089 			break;
28090 
28091 		case SD_WM_WAIT_MAP:
28092 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
28093 			/*
28094 			 * Wait is done on sl_wmp, which is set in the
28095 			 * check_list state.
28096 			 */
28097 			sl_wmp->wm_wanted_count++;
28098 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
28099 			sl_wmp->wm_wanted_count--;
28100 			/*
28101 			 * We can reuse the memory from the completed sl_wmp
28102 			 * lock range for our new lock, but only if noone is
28103 			 * waiting for it.
28104 			 */
28105 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
28106 			if (sl_wmp->wm_wanted_count == 0) {
28107 				if (wmp != NULL)
28108 					CHK_N_FREEWMP(un, wmp);
28109 				wmp = sl_wmp;
28110 			}
28111 			sl_wmp = NULL;
28112 			/*
28113 			 * After waking up, need to recheck for availability of
28114 			 * range.
28115 			 */
28116 			state = SD_WM_CHK_LIST;
28117 			break;
28118 
28119 		default:
28120 			panic("sd_range_lock: "
28121 			    "Unknown state %d in sd_range_lock", state);
28122 			/*NOTREACHED*/
28123 		} /* switch(state) */
28124 
28125 	} /* while(state != SD_WM_DONE) */
28126 
28127 	mutex_exit(SD_MUTEX(un));
28128 
28129 	ASSERT(wmp != NULL);
28130 
28131 	return (wmp);
28132 }
28133 
28134 
28135 /*
28136  *    Function: sd_get_range()
28137  *
28138  * Description: Find if there any overlapping I/O to this one
28139  *		Returns the write-map of 1st such I/O, NULL otherwise.
28140  *
28141  *   Arguments: un	- sd_lun structure for the device.
28142  *		startb - The starting block number
28143  *		endb - The end block number
28144  *
28145  * Return Code: wm  - pointer to the wmap structure.
28146  */
28147 
28148 static struct sd_w_map *
28149 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
28150 {
28151 	struct sd_w_map *wmp;
28152 
28153 	ASSERT(un != NULL);
28154 
28155 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
28156 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
28157 			continue;
28158 		}
28159 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
28160 			break;
28161 		}
28162 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
28163 			break;
28164 		}
28165 	}
28166 
28167 	return (wmp);
28168 }
28169 
28170 
28171 /*
28172  *    Function: sd_free_inlist_wmap()
28173  *
28174  * Description: Unlink and free a write map struct.
28175  *
28176  *   Arguments: un      - sd_lun structure for the device.
28177  *		wmp	- sd_w_map which needs to be unlinked.
28178  */
28179 
28180 static void
28181 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
28182 {
28183 	ASSERT(un != NULL);
28184 
28185 	if (un->un_wm == wmp) {
28186 		un->un_wm = wmp->wm_next;
28187 	} else {
28188 		wmp->wm_prev->wm_next = wmp->wm_next;
28189 	}
28190 
28191 	if (wmp->wm_next) {
28192 		wmp->wm_next->wm_prev = wmp->wm_prev;
28193 	}
28194 
28195 	wmp->wm_next = wmp->wm_prev = NULL;
28196 
28197 	kmem_cache_free(un->un_wm_cache, wmp);
28198 }
28199 
28200 
28201 /*
28202  *    Function: sd_range_unlock()
28203  *
28204  * Description: Unlock the range locked by wm.
28205  *		Free write map if nobody else is waiting on it.
28206  *
28207  *   Arguments: un      - sd_lun structure for the device.
28208  *              wmp     - sd_w_map which needs to be unlinked.
28209  */
28210 
28211 static void
28212 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
28213 {
28214 	ASSERT(un != NULL);
28215 	ASSERT(wm != NULL);
28216 	ASSERT(!mutex_owned(SD_MUTEX(un)));
28217 
28218 	mutex_enter(SD_MUTEX(un));
28219 
28220 	if (wm->wm_flags & SD_WTYPE_RMW) {
28221 		un->un_rmw_count--;
28222 	}
28223 
28224 	if (wm->wm_wanted_count) {
28225 		wm->wm_flags = 0;
28226 		/*
28227 		 * Broadcast that the wmap is available now.
28228 		 */
28229 		cv_broadcast(&wm->wm_avail);
28230 	} else {
28231 		/*
28232 		 * If no one is waiting on the map, it should be free'ed.
28233 		 */
28234 		sd_free_inlist_wmap(un, wm);
28235 	}
28236 
28237 	mutex_exit(SD_MUTEX(un));
28238 }
28239 
28240 
28241 /*
28242  *    Function: sd_read_modify_write_task
28243  *
28244  * Description: Called from a taskq thread to initiate the write phase of
28245  *		a read-modify-write request.  This is used for targets where
28246  *		un->un_sys_blocksize != un->un_tgt_blocksize.
28247  *
28248  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
28249  *
28250  *     Context: Called under taskq thread context.
28251  */
28252 
28253 static void
28254 sd_read_modify_write_task(void *arg)
28255 {
28256 	struct sd_mapblocksize_info	*bsp;
28257 	struct buf	*bp;
28258 	struct sd_xbuf	*xp;
28259 	struct sd_lun	*un;
28260 
28261 	bp = arg;	/* The bp is given in arg */
28262 	ASSERT(bp != NULL);
28263 
28264 	/* Get the pointer to the layer-private data struct */
28265 	xp = SD_GET_XBUF(bp);
28266 	ASSERT(xp != NULL);
28267 	bsp = xp->xb_private;
28268 	ASSERT(bsp != NULL);
28269 
28270 	un = SD_GET_UN(bp);
28271 	ASSERT(un != NULL);
28272 	ASSERT(!mutex_owned(SD_MUTEX(un)));
28273 
28274 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
28275 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
28276 
28277 	/*
28278 	 * This is the write phase of a read-modify-write request, called
28279 	 * under the context of a taskq thread in response to the completion
28280 	 * of the read portion of the rmw request completing under interrupt
28281 	 * context. The write request must be sent from here down the iostart
28282 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
28283 	 * we use the layer index saved in the layer-private data area.
28284 	 */
28285 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
28286 
28287 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
28288 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
28289 }
28290 
28291 
28292 /*
28293  *    Function: sddump_do_read_of_rmw()
28294  *
28295  * Description: This routine will be called from sddump, If sddump is called
28296  *		with an I/O which not aligned on device blocksize boundary
28297  *		then the write has to be converted to read-modify-write.
28298  *		Do the read part here in order to keep sddump simple.
28299  *		Note - That the sd_mutex is held across the call to this
28300  *		routine.
28301  *
28302  *   Arguments: un	- sd_lun
28303  *		blkno	- block number in terms of media block size.
28304  *		nblk	- number of blocks.
28305  *		bpp	- pointer to pointer to the buf structure. On return
28306  *			from this function, *bpp points to the valid buffer
28307  *			to which the write has to be done.
28308  *
28309  * Return Code: 0 for success or errno-type return code
28310  */
28311 
28312 static int
28313 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
28314 	struct buf **bpp)
28315 {
28316 	int err;
28317 	int i;
28318 	int rval;
28319 	struct buf *bp;
28320 	struct scsi_pkt *pkt = NULL;
28321 	uint32_t target_blocksize;
28322 
28323 	ASSERT(un != NULL);
28324 	ASSERT(mutex_owned(SD_MUTEX(un)));
28325 
28326 	target_blocksize = un->un_tgt_blocksize;
28327 
28328 	mutex_exit(SD_MUTEX(un));
28329 
28330 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
28331 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
28332 	if (bp == NULL) {
28333 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28334 		    "no resources for dumping; giving up");
28335 		err = ENOMEM;
28336 		goto done;
28337 	}
28338 
28339 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
28340 	    blkno, nblk);
28341 	if (rval != 0) {
28342 		scsi_free_consistent_buf(bp);
28343 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28344 		    "no resources for dumping; giving up");
28345 		err = ENOMEM;
28346 		goto done;
28347 	}
28348 
28349 	pkt->pkt_flags |= FLAG_NOINTR;
28350 
28351 	err = EIO;
28352 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
28353 
28354 		/*
28355 		 * Scsi_poll returns 0 (success) if the command completes and
28356 		 * the status block is STATUS_GOOD.  We should only check
28357 		 * errors if this condition is not true.  Even then we should
28358 		 * send our own request sense packet only if we have a check
28359 		 * condition and auto request sense has not been performed by
28360 		 * the hba.
28361 		 */
28362 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
28363 
28364 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
28365 			err = 0;
28366 			break;
28367 		}
28368 
28369 		/*
28370 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
28371 		 * no need to read RQS data.
28372 		 */
28373 		if (pkt->pkt_reason == CMD_DEV_GONE) {
28374 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28375 			    "Error while dumping state with rmw..."
28376 			    "Device is gone\n");
28377 			break;
28378 		}
28379 
28380 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
28381 			SD_INFO(SD_LOG_DUMP, un,
28382 			    "sddump: read failed with CHECK, try # %d\n", i);
28383 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
28384 				(void) sd_send_polled_RQS(un);
28385 			}
28386 
28387 			continue;
28388 		}
28389 
28390 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
28391 			int reset_retval = 0;
28392 
28393 			SD_INFO(SD_LOG_DUMP, un,
28394 			    "sddump: read failed with BUSY, try # %d\n", i);
28395 
28396 			if (un->un_f_lun_reset_enabled == TRUE) {
28397 				reset_retval = scsi_reset(SD_ADDRESS(un),
28398 				    RESET_LUN);
28399 			}
28400 			if (reset_retval == 0) {
28401 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
28402 			}
28403 			(void) sd_send_polled_RQS(un);
28404 
28405 		} else {
28406 			SD_INFO(SD_LOG_DUMP, un,
28407 			    "sddump: read failed with 0x%x, try # %d\n",
28408 			    SD_GET_PKT_STATUS(pkt), i);
28409 			mutex_enter(SD_MUTEX(un));
28410 			sd_reset_target(un, pkt);
28411 			mutex_exit(SD_MUTEX(un));
28412 		}
28413 
28414 		/*
28415 		 * If we are not getting anywhere with lun/target resets,
28416 		 * let's reset the bus.
28417 		 */
28418 		if (i > SD_NDUMP_RETRIES/2) {
28419 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
28420 			(void) sd_send_polled_RQS(un);
28421 		}
28422 
28423 	}
28424 	scsi_destroy_pkt(pkt);
28425 
28426 	if (err != 0) {
28427 		scsi_free_consistent_buf(bp);
28428 		*bpp = NULL;
28429 	} else {
28430 		*bpp = bp;
28431 	}
28432 
28433 done:
28434 	mutex_enter(SD_MUTEX(un));
28435 	return (err);
28436 }
28437 
28438 
28439 /*
28440  *    Function: sd_failfast_flushq
28441  *
28442  * Description: Take all bp's on the wait queue that have B_FAILFAST set
28443  *		in b_flags and move them onto the failfast queue, then kick
28444  *		off a thread to return all bp's on the failfast queue to
28445  *		their owners with an error set.
28446  *
28447  *   Arguments: un - pointer to the soft state struct for the instance.
28448  *
28449  *     Context: may execute in interrupt context.
28450  */
28451 
28452 static void
28453 sd_failfast_flushq(struct sd_lun *un)
28454 {
28455 	struct buf *bp;
28456 	struct buf *next_waitq_bp;
28457 	struct buf *prev_waitq_bp = NULL;
28458 
28459 	ASSERT(un != NULL);
28460 	ASSERT(mutex_owned(SD_MUTEX(un)));
28461 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
28462 	ASSERT(un->un_failfast_bp == NULL);
28463 
28464 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
28465 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
28466 
28467 	/*
28468 	 * Check if we should flush all bufs when entering failfast state, or
28469 	 * just those with B_FAILFAST set.
28470 	 */
28471 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
28472 		/*
28473 		 * Move *all* bp's on the wait queue to the failfast flush
28474 		 * queue, including those that do NOT have B_FAILFAST set.
28475 		 */
28476 		if (un->un_failfast_headp == NULL) {
28477 			ASSERT(un->un_failfast_tailp == NULL);
28478 			un->un_failfast_headp = un->un_waitq_headp;
28479 		} else {
28480 			ASSERT(un->un_failfast_tailp != NULL);
28481 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
28482 		}
28483 
28484 		un->un_failfast_tailp = un->un_waitq_tailp;
28485 
28486 		/* update kstat for each bp moved out of the waitq */
28487 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
28488 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
28489 		}
28490 
28491 		/* empty the waitq */
28492 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
28493 
28494 	} else {
28495 		/*
28496 		 * Go thru the wait queue, pick off all entries with
28497 		 * B_FAILFAST set, and move these onto the failfast queue.
28498 		 */
28499 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
28500 			/*
28501 			 * Save the pointer to the next bp on the wait queue,
28502 			 * so we get to it on the next iteration of this loop.
28503 			 */
28504 			next_waitq_bp = bp->av_forw;
28505 
28506 			/*
28507 			 * If this bp from the wait queue does NOT have
28508 			 * B_FAILFAST set, just move on to the next element
28509 			 * in the wait queue. Note, this is the only place
28510 			 * where it is correct to set prev_waitq_bp.
28511 			 */
28512 			if ((bp->b_flags & B_FAILFAST) == 0) {
28513 				prev_waitq_bp = bp;
28514 				continue;
28515 			}
28516 
28517 			/*
28518 			 * Remove the bp from the wait queue.
28519 			 */
28520 			if (bp == un->un_waitq_headp) {
28521 				/* The bp is the first element of the waitq. */
28522 				un->un_waitq_headp = next_waitq_bp;
28523 				if (un->un_waitq_headp == NULL) {
28524 					/* The wait queue is now empty */
28525 					un->un_waitq_tailp = NULL;
28526 				}
28527 			} else {
28528 				/*
28529 				 * The bp is either somewhere in the middle
28530 				 * or at the end of the wait queue.
28531 				 */
28532 				ASSERT(un->un_waitq_headp != NULL);
28533 				ASSERT(prev_waitq_bp != NULL);
28534 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
28535 				    == 0);
28536 				if (bp == un->un_waitq_tailp) {
28537 					/* bp is the last entry on the waitq. */
28538 					ASSERT(next_waitq_bp == NULL);
28539 					un->un_waitq_tailp = prev_waitq_bp;
28540 				}
28541 				prev_waitq_bp->av_forw = next_waitq_bp;
28542 			}
28543 			bp->av_forw = NULL;
28544 
28545 			/*
28546 			 * update kstat since the bp is moved out of
28547 			 * the waitq
28548 			 */
28549 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
28550 
28551 			/*
28552 			 * Now put the bp onto the failfast queue.
28553 			 */
28554 			if (un->un_failfast_headp == NULL) {
28555 				/* failfast queue is currently empty */
28556 				ASSERT(un->un_failfast_tailp == NULL);
28557 				un->un_failfast_headp =
28558 				    un->un_failfast_tailp = bp;
28559 			} else {
28560 				/* Add the bp to the end of the failfast q */
28561 				ASSERT(un->un_failfast_tailp != NULL);
28562 				ASSERT(un->un_failfast_tailp->b_flags &
28563 				    B_FAILFAST);
28564 				un->un_failfast_tailp->av_forw = bp;
28565 				un->un_failfast_tailp = bp;
28566 			}
28567 		}
28568 	}
28569 
28570 	/*
28571 	 * Now return all bp's on the failfast queue to their owners.
28572 	 */
28573 	while ((bp = un->un_failfast_headp) != NULL) {
28574 
28575 		un->un_failfast_headp = bp->av_forw;
28576 		if (un->un_failfast_headp == NULL) {
28577 			un->un_failfast_tailp = NULL;
28578 		}
28579 
28580 		/*
28581 		 * We want to return the bp with a failure error code, but
28582 		 * we do not want a call to sd_start_cmds() to occur here,
28583 		 * so use sd_return_failed_command_no_restart() instead of
28584 		 * sd_return_failed_command().
28585 		 */
28586 		sd_return_failed_command_no_restart(un, bp, EIO);
28587 	}
28588 
28589 	/* Flush the xbuf queues if required. */
28590 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
28591 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
28592 	}
28593 
28594 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
28595 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
28596 }
28597 
28598 
28599 /*
28600  *    Function: sd_failfast_flushq_callback
28601  *
28602  * Description: Return TRUE if the given bp meets the criteria for failfast
28603  *		flushing. Used with ddi_xbuf_flushq(9F).
28604  *
28605  *   Arguments: bp - ptr to buf struct to be examined.
28606  *
28607  *     Context: Any
28608  */
28609 
28610 static int
28611 sd_failfast_flushq_callback(struct buf *bp)
28612 {
28613 	/*
28614 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
28615 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
28616 	 */
28617 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
28618 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
28619 }
28620 
28621 
28622 
28623 /*
28624  * Function: sd_setup_next_xfer
28625  *
28626  * Description: Prepare next I/O operation using DMA_PARTIAL
28627  *
28628  */
28629 
28630 static int
28631 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
28632     struct scsi_pkt *pkt, struct sd_xbuf *xp)
28633 {
28634 	ssize_t	num_blks_not_xfered;
28635 	daddr_t	strt_blk_num;
28636 	ssize_t	bytes_not_xfered;
28637 	int	rval;
28638 
28639 	ASSERT(pkt->pkt_resid == 0);
28640 
28641 	/*
28642 	 * Calculate next block number and amount to be transferred.
28643 	 *
28644 	 * How much data NOT transfered to the HBA yet.
28645 	 */
28646 	bytes_not_xfered = xp->xb_dma_resid;
28647 
28648 	/*
28649 	 * figure how many blocks NOT transfered to the HBA yet.
28650 	 */
28651 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
28652 
28653 	/*
28654 	 * set starting block number to the end of what WAS transfered.
28655 	 */
28656 	strt_blk_num = xp->xb_blkno +
28657 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
28658 
28659 	/*
28660 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
28661 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
28662 	 * the disk mutex here.
28663 	 */
28664 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
28665 	    strt_blk_num, num_blks_not_xfered);
28666 
28667 	if (rval == 0) {
28668 
28669 		/*
28670 		 * Success.
28671 		 *
28672 		 * Adjust things if there are still more blocks to be
28673 		 * transfered.
28674 		 */
28675 		xp->xb_dma_resid = pkt->pkt_resid;
28676 		pkt->pkt_resid = 0;
28677 
28678 		return (1);
28679 	}
28680 
28681 	/*
28682 	 * There's really only one possible return value from
28683 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
28684 	 * returns NULL.
28685 	 */
28686 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
28687 
28688 	bp->b_resid = bp->b_bcount;
28689 	bp->b_flags |= B_ERROR;
28690 
28691 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28692 	    "Error setting up next portion of DMA transfer\n");
28693 
28694 	return (0);
28695 }
28696 
28697 /*
28698  *    Function: sd_panic_for_res_conflict
28699  *
28700  * Description: Call panic with a string formatted with "Reservation Conflict"
28701  *		and a human readable identifier indicating the SD instance
28702  *		that experienced the reservation conflict.
28703  *
28704  *   Arguments: un - pointer to the soft state struct for the instance.
28705  *
28706  *     Context: may execute in interrupt context.
28707  */
28708 
28709 #define	SD_RESV_CONFLICT_FMT_LEN 40
28710 void
28711 sd_panic_for_res_conflict(struct sd_lun *un)
28712 {
28713 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
28714 	char path_str[MAXPATHLEN];
28715 
28716 	(void) snprintf(panic_str, sizeof (panic_str),
28717 	    "Reservation Conflict\nDisk: %s",
28718 	    ddi_pathname(SD_DEVINFO(un), path_str));
28719 
28720 	panic(panic_str);
28721 }
28722 
28723 /*
28724  * Note: The following sd_faultinjection_ioctl( ) routines implement
28725  * driver support for handling fault injection for error analysis
28726  * causing faults in multiple layers of the driver.
28727  *
28728  */
28729 
28730 #ifdef SD_FAULT_INJECTION
28731 static uint_t   sd_fault_injection_on = 0;
28732 
28733 /*
28734  *    Function: sd_faultinjection_ioctl()
28735  *
28736  * Description: This routine is the driver entry point for handling
28737  *              faultinjection ioctls to inject errors into the
28738  *              layer model
28739  *
28740  *   Arguments: cmd	- the ioctl cmd received
28741  *		arg	- the arguments from user and returns
28742  */
28743 
28744 static void
28745 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
28746 
28747 	uint_t i = 0;
28748 	uint_t rval;
28749 
28750 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
28751 
28752 	mutex_enter(SD_MUTEX(un));
28753 
28754 	switch (cmd) {
28755 	case SDIOCRUN:
28756 		/* Allow pushed faults to be injected */
28757 		SD_INFO(SD_LOG_SDTEST, un,
28758 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
28759 
28760 		sd_fault_injection_on = 1;
28761 
28762 		SD_INFO(SD_LOG_IOERR, un,
28763 		    "sd_faultinjection_ioctl: run finished\n");
28764 		break;
28765 
28766 	case SDIOCSTART:
28767 		/* Start Injection Session */
28768 		SD_INFO(SD_LOG_SDTEST, un,
28769 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
28770 
28771 		sd_fault_injection_on = 0;
28772 		un->sd_injection_mask = 0xFFFFFFFF;
28773 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
28774 			un->sd_fi_fifo_pkt[i] = NULL;
28775 			un->sd_fi_fifo_xb[i] = NULL;
28776 			un->sd_fi_fifo_un[i] = NULL;
28777 			un->sd_fi_fifo_arq[i] = NULL;
28778 		}
28779 		un->sd_fi_fifo_start = 0;
28780 		un->sd_fi_fifo_end = 0;
28781 
28782 		mutex_enter(&(un->un_fi_mutex));
28783 		un->sd_fi_log[0] = '\0';
28784 		un->sd_fi_buf_len = 0;
28785 		mutex_exit(&(un->un_fi_mutex));
28786 
28787 		SD_INFO(SD_LOG_IOERR, un,
28788 		    "sd_faultinjection_ioctl: start finished\n");
28789 		break;
28790 
28791 	case SDIOCSTOP:
28792 		/* Stop Injection Session */
28793 		SD_INFO(SD_LOG_SDTEST, un,
28794 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
28795 		sd_fault_injection_on = 0;
28796 		un->sd_injection_mask = 0x0;
28797 
28798 		/* Empty stray or unuseds structs from fifo */
28799 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
28800 			if (un->sd_fi_fifo_pkt[i] != NULL) {
28801 				kmem_free(un->sd_fi_fifo_pkt[i],
28802 				    sizeof (struct sd_fi_pkt));
28803 			}
28804 			if (un->sd_fi_fifo_xb[i] != NULL) {
28805 				kmem_free(un->sd_fi_fifo_xb[i],
28806 				    sizeof (struct sd_fi_xb));
28807 			}
28808 			if (un->sd_fi_fifo_un[i] != NULL) {
28809 				kmem_free(un->sd_fi_fifo_un[i],
28810 				    sizeof (struct sd_fi_un));
28811 			}
28812 			if (un->sd_fi_fifo_arq[i] != NULL) {
28813 				kmem_free(un->sd_fi_fifo_arq[i],
28814 				    sizeof (struct sd_fi_arq));
28815 			}
28816 			un->sd_fi_fifo_pkt[i] = NULL;
28817 			un->sd_fi_fifo_un[i] = NULL;
28818 			un->sd_fi_fifo_xb[i] = NULL;
28819 			un->sd_fi_fifo_arq[i] = NULL;
28820 		}
28821 		un->sd_fi_fifo_start = 0;
28822 		un->sd_fi_fifo_end = 0;
28823 
28824 		SD_INFO(SD_LOG_IOERR, un,
28825 		    "sd_faultinjection_ioctl: stop finished\n");
28826 		break;
28827 
28828 	case SDIOCINSERTPKT:
28829 		/* Store a packet struct to be pushed onto fifo */
28830 		SD_INFO(SD_LOG_SDTEST, un,
28831 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
28832 
28833 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
28834 
28835 		sd_fault_injection_on = 0;
28836 
28837 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
28838 		if (un->sd_fi_fifo_pkt[i] != NULL) {
28839 			kmem_free(un->sd_fi_fifo_pkt[i],
28840 			    sizeof (struct sd_fi_pkt));
28841 		}
28842 		if (arg != NULL) {
28843 			un->sd_fi_fifo_pkt[i] =
28844 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
28845 			if (un->sd_fi_fifo_pkt[i] == NULL) {
28846 				/* Alloc failed don't store anything */
28847 				break;
28848 			}
28849 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
28850 			    sizeof (struct sd_fi_pkt), 0);
28851 			if (rval == -1) {
28852 				kmem_free(un->sd_fi_fifo_pkt[i],
28853 				    sizeof (struct sd_fi_pkt));
28854 				un->sd_fi_fifo_pkt[i] = NULL;
28855 			}
28856 		} else {
28857 			SD_INFO(SD_LOG_IOERR, un,
28858 			    "sd_faultinjection_ioctl: pkt null\n");
28859 		}
28860 		break;
28861 
28862 	case SDIOCINSERTXB:
28863 		/* Store a xb struct to be pushed onto fifo */
28864 		SD_INFO(SD_LOG_SDTEST, un,
28865 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
28866 
28867 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
28868 
28869 		sd_fault_injection_on = 0;
28870 
28871 		if (un->sd_fi_fifo_xb[i] != NULL) {
28872 			kmem_free(un->sd_fi_fifo_xb[i],
28873 			    sizeof (struct sd_fi_xb));
28874 			un->sd_fi_fifo_xb[i] = NULL;
28875 		}
28876 		if (arg != NULL) {
28877 			un->sd_fi_fifo_xb[i] =
28878 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
28879 			if (un->sd_fi_fifo_xb[i] == NULL) {
28880 				/* Alloc failed don't store anything */
28881 				break;
28882 			}
28883 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
28884 			    sizeof (struct sd_fi_xb), 0);
28885 
28886 			if (rval == -1) {
28887 				kmem_free(un->sd_fi_fifo_xb[i],
28888 				    sizeof (struct sd_fi_xb));
28889 				un->sd_fi_fifo_xb[i] = NULL;
28890 			}
28891 		} else {
28892 			SD_INFO(SD_LOG_IOERR, un,
28893 			    "sd_faultinjection_ioctl: xb null\n");
28894 		}
28895 		break;
28896 
28897 	case SDIOCINSERTUN:
28898 		/* Store a un struct to be pushed onto fifo */
28899 		SD_INFO(SD_LOG_SDTEST, un,
28900 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
28901 
28902 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
28903 
28904 		sd_fault_injection_on = 0;
28905 
28906 		if (un->sd_fi_fifo_un[i] != NULL) {
28907 			kmem_free(un->sd_fi_fifo_un[i],
28908 			    sizeof (struct sd_fi_un));
28909 			un->sd_fi_fifo_un[i] = NULL;
28910 		}
28911 		if (arg != NULL) {
28912 			un->sd_fi_fifo_un[i] =
28913 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
28914 			if (un->sd_fi_fifo_un[i] == NULL) {
28915 				/* Alloc failed don't store anything */
28916 				break;
28917 			}
28918 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
28919 			    sizeof (struct sd_fi_un), 0);
28920 			if (rval == -1) {
28921 				kmem_free(un->sd_fi_fifo_un[i],
28922 				    sizeof (struct sd_fi_un));
28923 				un->sd_fi_fifo_un[i] = NULL;
28924 			}
28925 
28926 		} else {
28927 			SD_INFO(SD_LOG_IOERR, un,
28928 			    "sd_faultinjection_ioctl: un null\n");
28929 		}
28930 
28931 		break;
28932 
28933 	case SDIOCINSERTARQ:
28934 		/* Store a arq struct to be pushed onto fifo */
28935 		SD_INFO(SD_LOG_SDTEST, un,
28936 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
28937 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
28938 
28939 		sd_fault_injection_on = 0;
28940 
28941 		if (un->sd_fi_fifo_arq[i] != NULL) {
28942 			kmem_free(un->sd_fi_fifo_arq[i],
28943 			    sizeof (struct sd_fi_arq));
28944 			un->sd_fi_fifo_arq[i] = NULL;
28945 		}
28946 		if (arg != NULL) {
28947 			un->sd_fi_fifo_arq[i] =
28948 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
28949 			if (un->sd_fi_fifo_arq[i] == NULL) {
28950 				/* Alloc failed don't store anything */
28951 				break;
28952 			}
28953 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
28954 			    sizeof (struct sd_fi_arq), 0);
28955 			if (rval == -1) {
28956 				kmem_free(un->sd_fi_fifo_arq[i],
28957 				    sizeof (struct sd_fi_arq));
28958 				un->sd_fi_fifo_arq[i] = NULL;
28959 			}
28960 
28961 		} else {
28962 			SD_INFO(SD_LOG_IOERR, un,
28963 			    "sd_faultinjection_ioctl: arq null\n");
28964 		}
28965 
28966 		break;
28967 
28968 	case SDIOCPUSH:
28969 		/* Push stored xb, pkt, un, and arq onto fifo */
28970 		sd_fault_injection_on = 0;
28971 
28972 		if (arg != NULL) {
28973 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
28974 			if (rval != -1 &&
28975 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
28976 				un->sd_fi_fifo_end += i;
28977 			}
28978 		} else {
28979 			SD_INFO(SD_LOG_IOERR, un,
28980 			    "sd_faultinjection_ioctl: push arg null\n");
28981 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
28982 				un->sd_fi_fifo_end++;
28983 			}
28984 		}
28985 		SD_INFO(SD_LOG_IOERR, un,
28986 		    "sd_faultinjection_ioctl: push to end=%d\n",
28987 		    un->sd_fi_fifo_end);
28988 		break;
28989 
28990 	case SDIOCRETRIEVE:
28991 		/* Return buffer of log from Injection session */
28992 		SD_INFO(SD_LOG_SDTEST, un,
28993 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
28994 
28995 		sd_fault_injection_on = 0;
28996 
28997 		mutex_enter(&(un->un_fi_mutex));
28998 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
28999 		    un->sd_fi_buf_len+1, 0);
29000 		mutex_exit(&(un->un_fi_mutex));
29001 
29002 		if (rval == -1) {
29003 			/*
29004 			 * arg is possibly invalid setting
29005 			 * it to NULL for return
29006 			 */
29007 			arg = NULL;
29008 		}
29009 		break;
29010 	}
29011 
29012 	mutex_exit(SD_MUTEX(un));
29013 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
29014 			    " exit\n");
29015 }
29016 
29017 
29018 /*
29019  *    Function: sd_injection_log()
29020  *
29021  * Description: This routine adds buff to the already existing injection log
29022  *              for retrieval via faultinjection_ioctl for use in fault
29023  *              detection and recovery
29024  *
29025  *   Arguments: buf - the string to add to the log
29026  */
29027 
29028 static void
29029 sd_injection_log(char *buf, struct sd_lun *un)
29030 {
29031 	uint_t len;
29032 
29033 	ASSERT(un != NULL);
29034 	ASSERT(buf != NULL);
29035 
29036 	mutex_enter(&(un->un_fi_mutex));
29037 
29038 	len = min(strlen(buf), 255);
29039 	/* Add logged value to Injection log to be returned later */
29040 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
29041 		uint_t	offset = strlen((char *)un->sd_fi_log);
29042 		char *destp = (char *)un->sd_fi_log + offset;
29043 		int i;
29044 		for (i = 0; i < len; i++) {
29045 			*destp++ = *buf++;
29046 		}
29047 		un->sd_fi_buf_len += len;
29048 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
29049 	}
29050 
29051 	mutex_exit(&(un->un_fi_mutex));
29052 }
29053 
29054 
29055 /*
29056  *    Function: sd_faultinjection()
29057  *
29058  * Description: This routine takes the pkt and changes its
29059  *		content based on error injection scenerio.
29060  *
29061  *   Arguments: pktp	- packet to be changed
29062  */
29063 
29064 static void
29065 sd_faultinjection(struct scsi_pkt *pktp)
29066 {
29067 	uint_t i;
29068 	struct sd_fi_pkt *fi_pkt;
29069 	struct sd_fi_xb *fi_xb;
29070 	struct sd_fi_un *fi_un;
29071 	struct sd_fi_arq *fi_arq;
29072 	struct buf *bp;
29073 	struct sd_xbuf *xb;
29074 	struct sd_lun *un;
29075 
29076 	ASSERT(pktp != NULL);
29077 
29078 	/* pull bp xb and un from pktp */
29079 	bp = (struct buf *)pktp->pkt_private;
29080 	xb = SD_GET_XBUF(bp);
29081 	un = SD_GET_UN(bp);
29082 
29083 	ASSERT(un != NULL);
29084 
29085 	mutex_enter(SD_MUTEX(un));
29086 
29087 	SD_TRACE(SD_LOG_SDTEST, un,
29088 	    "sd_faultinjection: entry Injection from sdintr\n");
29089 
29090 	/* if injection is off return */
29091 	if (sd_fault_injection_on == 0 ||
29092 	    un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
29093 		mutex_exit(SD_MUTEX(un));
29094 		return;
29095 	}
29096 
29097 	SD_INFO(SD_LOG_SDTEST, un,
29098 	    "sd_faultinjection: is working for copying\n");
29099 
29100 	/* take next set off fifo */
29101 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
29102 
29103 	fi_pkt = un->sd_fi_fifo_pkt[i];
29104 	fi_xb = un->sd_fi_fifo_xb[i];
29105 	fi_un = un->sd_fi_fifo_un[i];
29106 	fi_arq = un->sd_fi_fifo_arq[i];
29107 
29108 
29109 	/* set variables accordingly */
29110 	/* set pkt if it was on fifo */
29111 	if (fi_pkt != NULL) {
29112 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
29113 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
29114 		if (fi_pkt->pkt_cdbp != 0xff)
29115 			SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
29116 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
29117 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
29118 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
29119 
29120 	}
29121 	/* set xb if it was on fifo */
29122 	if (fi_xb != NULL) {
29123 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
29124 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
29125 		if (fi_xb->xb_retry_count != 0)
29126 			SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
29127 		SD_CONDSET(xb, xb, xb_victim_retry_count,
29128 		    "xb_victim_retry_count");
29129 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
29130 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
29131 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
29132 
29133 		/* copy in block data from sense */
29134 		/*
29135 		 * if (fi_xb->xb_sense_data[0] != -1) {
29136 		 *	bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
29137 		 *	SENSE_LENGTH);
29138 		 * }
29139 		 */
29140 		bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, SENSE_LENGTH);
29141 
29142 		/* copy in extended sense codes */
29143 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
29144 		    xb, es_code, "es_code");
29145 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
29146 		    xb, es_key, "es_key");
29147 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
29148 		    xb, es_add_code, "es_add_code");
29149 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
29150 		    xb, es_qual_code, "es_qual_code");
29151 		struct scsi_extended_sense *esp;
29152 		esp = (struct scsi_extended_sense *)xb->xb_sense_data;
29153 		esp->es_class = CLASS_EXTENDED_SENSE;
29154 	}
29155 
29156 	/* set un if it was on fifo */
29157 	if (fi_un != NULL) {
29158 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
29159 		SD_CONDSET(un, un, un_ctype, "un_ctype");
29160 		SD_CONDSET(un, un, un_reset_retry_count,
29161 		    "un_reset_retry_count");
29162 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
29163 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
29164 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
29165 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
29166 		    "un_f_allow_bus_device_reset");
29167 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
29168 
29169 	}
29170 
29171 	/* copy in auto request sense if it was on fifo */
29172 	if (fi_arq != NULL) {
29173 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
29174 	}
29175 
29176 	/* free structs */
29177 	if (un->sd_fi_fifo_pkt[i] != NULL) {
29178 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
29179 	}
29180 	if (un->sd_fi_fifo_xb[i] != NULL) {
29181 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
29182 	}
29183 	if (un->sd_fi_fifo_un[i] != NULL) {
29184 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
29185 	}
29186 	if (un->sd_fi_fifo_arq[i] != NULL) {
29187 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
29188 	}
29189 
29190 	/*
29191 	 * kmem_free does not gurantee to set to NULL
29192 	 * since we uses these to determine if we set
29193 	 * values or not lets confirm they are always
29194 	 * NULL after free
29195 	 */
29196 	un->sd_fi_fifo_pkt[i] = NULL;
29197 	un->sd_fi_fifo_un[i] = NULL;
29198 	un->sd_fi_fifo_xb[i] = NULL;
29199 	un->sd_fi_fifo_arq[i] = NULL;
29200 
29201 	un->sd_fi_fifo_start++;
29202 
29203 	mutex_exit(SD_MUTEX(un));
29204 
29205 	SD_INFO(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
29206 }
29207 
29208 #endif /* SD_FAULT_INJECTION */
29209 
29210 /*
29211  * This routine is invoked in sd_unit_attach(). Before calling it, the
29212  * properties in conf file should be processed already, and "hotpluggable"
29213  * property was processed also.
29214  *
29215  * The sd driver distinguishes 3 different type of devices: removable media,
29216  * non-removable media, and hotpluggable. Below the differences are defined:
29217  *
29218  * 1. Device ID
29219  *
29220  *     The device ID of a device is used to identify this device. Refer to
29221  *     ddi_devid_register(9F).
29222  *
29223  *     For a non-removable media disk device which can provide 0x80 or 0x83
29224  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
29225  *     device ID is created to identify this device. For other non-removable
29226  *     media devices, a default device ID is created only if this device has
29227  *     at least 2 alter cylinders. Otherwise, this device has no devid.
29228  *
29229  *     -------------------------------------------------------
29230  *     removable media   hotpluggable  | Can Have Device ID
29231  *     -------------------------------------------------------
29232  *         false             false     |     Yes
29233  *         false             true      |     Yes
29234  *         true                x       |     No
29235  *     ------------------------------------------------------
29236  *
29237  *
29238  * 2. SCSI group 4 commands
29239  *
29240  *     In SCSI specs, only some commands in group 4 command set can use
29241  *     8-byte addresses that can be used to access >2TB storage spaces.
29242  *     Other commands have no such capability. Without supporting group4,
29243  *     it is impossible to make full use of storage spaces of a disk with
29244  *     capacity larger than 2TB.
29245  *
29246  *     -----------------------------------------------
29247  *     removable media   hotpluggable   LP64  |  Group
29248  *     -----------------------------------------------
29249  *           false          false       false |   1
29250  *           false          false       true  |   4
29251  *           false          true        false |   1
29252  *           false          true        true  |   4
29253  *           true             x           x   |   5
29254  *     -----------------------------------------------
29255  *
29256  *
29257  * 3. Check for VTOC Label
29258  *
29259  *     If a direct-access disk has no EFI label, sd will check if it has a
29260  *     valid VTOC label. Now, sd also does that check for removable media
29261  *     and hotpluggable devices.
29262  *
29263  *     --------------------------------------------------------------
29264  *     Direct-Access   removable media    hotpluggable |  Check Label
29265  *     -------------------------------------------------------------
29266  *         false          false           false        |   No
29267  *         false          false           true         |   No
29268  *         false          true            false        |   Yes
29269  *         false          true            true         |   Yes
29270  *         true            x                x          |   Yes
29271  *     --------------------------------------------------------------
29272  *
29273  *
29274  * 4. Building default VTOC label
29275  *
29276  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
29277  *     If those devices have no valid VTOC label, sd(7d) will attempt to
29278  *     create default VTOC for them. Currently sd creates default VTOC label
29279  *     for all devices on x86 platform (VTOC_16), but only for removable
29280  *     media devices on SPARC (VTOC_8).
29281  *
29282  *     -----------------------------------------------------------
29283  *       removable media hotpluggable platform   |   Default Label
29284  *     -----------------------------------------------------------
29285  *             false          false    sparc     |     No
29286  *             false          true      x86      |     Yes
29287  *             false          true     sparc     |     Yes
29288  *             true             x        x       |     Yes
29289  *     ----------------------------------------------------------
29290  *
29291  *
29292  * 5. Supported blocksizes of target devices
29293  *
29294  *     Sd supports non-512-byte blocksize for removable media devices only.
29295  *     For other devices, only 512-byte blocksize is supported. This may be
29296  *     changed in near future because some RAID devices require non-512-byte
29297  *     blocksize
29298  *
29299  *     -----------------------------------------------------------
29300  *     removable media    hotpluggable    | non-512-byte blocksize
29301  *     -----------------------------------------------------------
29302  *           false          false         |   No
29303  *           false          true          |   No
29304  *           true             x           |   Yes
29305  *     -----------------------------------------------------------
29306  *
29307  *
29308  * 6. Automatic mount & unmount
29309  *
29310  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
29311  *     if a device is removable media device. It return 1 for removable media
29312  *     devices, and 0 for others.
29313  *
29314  *     The automatic mounting subsystem should distinguish between the types
29315  *     of devices and apply automounting policies to each.
29316  *
29317  *
29318  * 7. fdisk partition management
29319  *
29320  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
29321  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
29322  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
29323  *     fdisk partitions on both x86 and SPARC platform.
29324  *
29325  *     -----------------------------------------------------------
29326  *       platform   removable media  USB/1394  |  fdisk supported
29327  *     -----------------------------------------------------------
29328  *        x86         X               X        |       true
29329  *     ------------------------------------------------------------
29330  *        sparc       X               X        |       false
29331  *     ------------------------------------------------------------
29332  *
29333  *
29334  * 8. MBOOT/MBR
29335  *
29336  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
29337  *     read/write mboot for removable media devices on sparc platform.
29338  *
29339  *     -----------------------------------------------------------
29340  *       platform   removable media  USB/1394  |  mboot supported
29341  *     -----------------------------------------------------------
29342  *        x86         X               X        |       true
29343  *     ------------------------------------------------------------
29344  *        sparc      false           false     |       false
29345  *        sparc      false           true      |       true
29346  *        sparc      true            false     |       true
29347  *        sparc      true            true      |       true
29348  *     ------------------------------------------------------------
29349  *
29350  *
29351  * 9.  error handling during opening device
29352  *
29353  *     If failed to open a disk device, an errno is returned. For some kinds
29354  *     of errors, different errno is returned depending on if this device is
29355  *     a removable media device. This brings USB/1394 hard disks in line with
29356  *     expected hard disk behavior. It is not expected that this breaks any
29357  *     application.
29358  *
29359  *     ------------------------------------------------------
29360  *       removable media    hotpluggable   |  errno
29361  *     ------------------------------------------------------
29362  *             false          false        |   EIO
29363  *             false          true         |   EIO
29364  *             true             x          |   ENXIO
29365  *     ------------------------------------------------------
29366  *
29367  *
29368  * 11. ioctls: DKIOCEJECT, CDROMEJECT
29369  *
29370  *     These IOCTLs are applicable only to removable media devices.
29371  *
29372  *     -----------------------------------------------------------
29373  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
29374  *     -----------------------------------------------------------
29375  *             false          false        |     No
29376  *             false          true         |     No
29377  *             true            x           |     Yes
29378  *     -----------------------------------------------------------
29379  *
29380  *
29381  * 12. Kstats for partitions
29382  *
29383  *     sd creates partition kstat for non-removable media devices. USB and
29384  *     Firewire hard disks now have partition kstats
29385  *
29386  *      ------------------------------------------------------
29387  *       removable media    hotpluggable   |   kstat
29388  *      ------------------------------------------------------
29389  *             false          false        |    Yes
29390  *             false          true         |    Yes
29391  *             true             x          |    No
29392  *       ------------------------------------------------------
29393  *
29394  *
29395  * 13. Removable media & hotpluggable properties
29396  *
29397  *     Sd driver creates a "removable-media" property for removable media
29398  *     devices. Parent nexus drivers create a "hotpluggable" property if
29399  *     it supports hotplugging.
29400  *
29401  *     ---------------------------------------------------------------------
29402  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
29403  *     ---------------------------------------------------------------------
29404  *       false            false       |    No                   No
29405  *       false            true        |    No                   Yes
29406  *       true             false       |    Yes                  No
29407  *       true             true        |    Yes                  Yes
29408  *     ---------------------------------------------------------------------
29409  *
29410  *
29411  * 14. Power Management
29412  *
29413  *     sd only power manages removable media devices or devices that support
29414  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
29415  *
29416  *     A parent nexus that supports hotplugging can also set "pm-capable"
29417  *     if the disk can be power managed.
29418  *
29419  *     ------------------------------------------------------------
29420  *       removable media hotpluggable pm-capable  |   power manage
29421  *     ------------------------------------------------------------
29422  *             false          false     false     |     No
29423  *             false          false     true      |     Yes
29424  *             false          true      false     |     No
29425  *             false          true      true      |     Yes
29426  *             true             x        x        |     Yes
29427  *     ------------------------------------------------------------
29428  *
29429  *      USB and firewire hard disks can now be power managed independently
29430  *      of the framebuffer
29431  *
29432  *
29433  * 15. Support for USB disks with capacity larger than 1TB
29434  *
29435  *     Currently, sd doesn't permit a fixed disk device with capacity
29436  *     larger than 1TB to be used in a 32-bit operating system environment.
29437  *     However, sd doesn't do that for removable media devices. Instead, it
29438  *     assumes that removable media devices cannot have a capacity larger
29439  *     than 1TB. Therefore, using those devices on 32-bit system is partially
29440  *     supported, which can cause some unexpected results.
29441  *
29442  *     ---------------------------------------------------------------------
29443  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
29444  *     ---------------------------------------------------------------------
29445  *             false          false  |   true         |     no
29446  *             false          true   |   true         |     no
29447  *             true           false  |   true         |     Yes
29448  *             true           true   |   true         |     Yes
29449  *     ---------------------------------------------------------------------
29450  *
29451  *
29452  * 16. Check write-protection at open time
29453  *
29454  *     When a removable media device is being opened for writing without NDELAY
29455  *     flag, sd will check if this device is writable. If attempting to open
29456  *     without NDELAY flag a write-protected device, this operation will abort.
29457  *
29458  *     ------------------------------------------------------------
29459  *       removable media    USB/1394   |   WP Check
29460  *     ------------------------------------------------------------
29461  *             false          false    |     No
29462  *             false          true     |     No
29463  *             true           false    |     Yes
29464  *             true           true     |     Yes
29465  *     ------------------------------------------------------------
29466  *
29467  *
29468  * 17. syslog when corrupted VTOC is encountered
29469  *
29470  *      Currently, if an invalid VTOC is encountered, sd only print syslog
29471  *      for fixed SCSI disks.
29472  *     ------------------------------------------------------------
29473  *       removable media    USB/1394   |   print syslog
29474  *     ------------------------------------------------------------
29475  *             false          false    |     Yes
29476  *             false          true     |     No
29477  *             true           false    |     No
29478  *             true           true     |     No
29479  *     ------------------------------------------------------------
29480  */
29481 static void
29482 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
29483 {
29484 	int	pm_capable_prop;
29485 
29486 	ASSERT(un->un_sd);
29487 	ASSERT(un->un_sd->sd_inq);
29488 
29489 	/*
29490 	 * Enable SYNC CACHE support for all devices.
29491 	 */
29492 	un->un_f_sync_cache_supported = TRUE;
29493 
29494 	/*
29495 	 * Set the sync cache required flag to false.
29496 	 * This would ensure that there is no SYNC CACHE
29497 	 * sent when there are no writes
29498 	 */
29499 	un->un_f_sync_cache_required = FALSE;
29500 
29501 	if (un->un_sd->sd_inq->inq_rmb) {
29502 		/*
29503 		 * The media of this device is removable. And for this kind
29504 		 * of devices, it is possible to change medium after opening
29505 		 * devices. Thus we should support this operation.
29506 		 */
29507 		un->un_f_has_removable_media = TRUE;
29508 
29509 		/*
29510 		 * support non-512-byte blocksize of removable media devices
29511 		 */
29512 		un->un_f_non_devbsize_supported = TRUE;
29513 
29514 		/*
29515 		 * Assume that all removable media devices support DOOR_LOCK
29516 		 */
29517 		un->un_f_doorlock_supported = TRUE;
29518 
29519 		/*
29520 		 * For a removable media device, it is possible to be opened
29521 		 * with NDELAY flag when there is no media in drive, in this
29522 		 * case we don't care if device is writable. But if without
29523 		 * NDELAY flag, we need to check if media is write-protected.
29524 		 */
29525 		un->un_f_chk_wp_open = TRUE;
29526 
29527 		/*
29528 		 * need to start a SCSI watch thread to monitor media state,
29529 		 * when media is being inserted or ejected, notify syseventd.
29530 		 */
29531 		un->un_f_monitor_media_state = TRUE;
29532 
29533 		/*
29534 		 * Some devices don't support START_STOP_UNIT command.
29535 		 * Therefore, we'd better check if a device supports it
29536 		 * before sending it.
29537 		 */
29538 		un->un_f_check_start_stop = TRUE;
29539 
29540 		/*
29541 		 * support eject media ioctl:
29542 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
29543 		 */
29544 		un->un_f_eject_media_supported = TRUE;
29545 
29546 		/*
29547 		 * Because many removable-media devices don't support
29548 		 * LOG_SENSE, we couldn't use this command to check if
29549 		 * a removable media device support power-management.
29550 		 * We assume that they support power-management via
29551 		 * START_STOP_UNIT command and can be spun up and down
29552 		 * without limitations.
29553 		 */
29554 		un->un_f_pm_supported = TRUE;
29555 
29556 		/*
29557 		 * Need to create a zero length (Boolean) property
29558 		 * removable-media for the removable media devices.
29559 		 * Note that the return value of the property is not being
29560 		 * checked, since if unable to create the property
29561 		 * then do not want the attach to fail altogether. Consistent
29562 		 * with other property creation in attach.
29563 		 */
29564 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
29565 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
29566 
29567 	} else {
29568 		/*
29569 		 * create device ID for device
29570 		 */
29571 		un->un_f_devid_supported = TRUE;
29572 
29573 		/*
29574 		 * Spin up non-removable-media devices once it is attached
29575 		 */
29576 		un->un_f_attach_spinup = TRUE;
29577 
29578 		/*
29579 		 * According to SCSI specification, Sense data has two kinds of
29580 		 * format: fixed format, and descriptor format. At present, we
29581 		 * don't support descriptor format sense data for removable
29582 		 * media.
29583 		 */
29584 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
29585 			un->un_f_descr_format_supported = TRUE;
29586 		}
29587 
29588 		/*
29589 		 * kstats are created only for non-removable media devices.
29590 		 *
29591 		 * Set this in sd.conf to 0 in order to disable kstats.  The
29592 		 * default is 1, so they are enabled by default.
29593 		 */
29594 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
29595 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
29596 		    "enable-partition-kstats", 1));
29597 
29598 		/*
29599 		 * Check if HBA has set the "pm-capable" property.
29600 		 * If "pm-capable" exists and is non-zero then we can
29601 		 * power manage the device without checking the start/stop
29602 		 * cycle count log sense page.
29603 		 *
29604 		 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
29605 		 * then we should not power manage the device.
29606 		 *
29607 		 * If "pm-capable" doesn't exist then pm_capable_prop will
29608 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
29609 		 * sd will check the start/stop cycle count log sense page
29610 		 * and power manage the device if the cycle count limit has
29611 		 * not been exceeded.
29612 		 */
29613 		pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
29614 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
29615 		if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
29616 			un->un_f_log_sense_supported = TRUE;
29617 		} else {
29618 			/*
29619 			 * pm-capable property exists.
29620 			 *
29621 			 * Convert "TRUE" values for pm_capable_prop to
29622 			 * SD_PM_CAPABLE_TRUE (1) to make it easier to check
29623 			 * later. "TRUE" values are any values except
29624 			 * SD_PM_CAPABLE_FALSE (0) and
29625 			 * SD_PM_CAPABLE_UNDEFINED (-1)
29626 			 */
29627 			if (pm_capable_prop == SD_PM_CAPABLE_FALSE) {
29628 				un->un_f_log_sense_supported = FALSE;
29629 			} else {
29630 				un->un_f_pm_supported = TRUE;
29631 			}
29632 
29633 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
29634 			    "sd_unit_attach: un:0x%p pm-capable "
29635 			    "property set to %d.\n", un, un->un_f_pm_supported);
29636 		}
29637 	}
29638 
29639 	if (un->un_f_is_hotpluggable) {
29640 
29641 		/*
29642 		 * Have to watch hotpluggable devices as well, since
29643 		 * that's the only way for userland applications to
29644 		 * detect hot removal while device is busy/mounted.
29645 		 */
29646 		un->un_f_monitor_media_state = TRUE;
29647 
29648 		un->un_f_check_start_stop = TRUE;
29649 
29650 	}
29651 }
29652 
29653 /*
29654  * sd_tg_rdwr:
29655  * Provides rdwr access for cmlb via sd_tgops. The start_block is
29656  * in sys block size, req_length in bytes.
29657  *
29658  */
29659 static int
29660 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
29661     diskaddr_t start_block, size_t reqlength, void *tg_cookie)
29662 {
29663 	struct sd_lun *un;
29664 	int path_flag = (int)(uintptr_t)tg_cookie;
29665 	char *dkl = NULL;
29666 	diskaddr_t real_addr = start_block;
29667 	diskaddr_t first_byte, end_block;
29668 
29669 	size_t	buffer_size = reqlength;
29670 	int rval = 0;
29671 	diskaddr_t	cap;
29672 	uint32_t	lbasize;
29673 	sd_ssc_t	*ssc;
29674 
29675 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
29676 	if (un == NULL)
29677 		return (ENXIO);
29678 
29679 	if (cmd != TG_READ && cmd != TG_WRITE)
29680 		return (EINVAL);
29681 
29682 	ssc = sd_ssc_init(un);
29683 	mutex_enter(SD_MUTEX(un));
29684 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
29685 		mutex_exit(SD_MUTEX(un));
29686 		rval = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
29687 		    &lbasize, path_flag);
29688 		if (rval != 0)
29689 			goto done1;
29690 		mutex_enter(SD_MUTEX(un));
29691 		sd_update_block_info(un, lbasize, cap);
29692 		if ((un->un_f_tgt_blocksize_is_valid == FALSE)) {
29693 			mutex_exit(SD_MUTEX(un));
29694 			rval = EIO;
29695 			goto done;
29696 		}
29697 	}
29698 
29699 	if (NOT_DEVBSIZE(un)) {
29700 		/*
29701 		 * sys_blocksize != tgt_blocksize, need to re-adjust
29702 		 * blkno and save the index to beginning of dk_label
29703 		 */
29704 		first_byte  = SD_SYSBLOCKS2BYTES(un, start_block);
29705 		real_addr = first_byte / un->un_tgt_blocksize;
29706 
29707 		end_block = (first_byte + reqlength +
29708 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
29709 
29710 		/* round up buffer size to multiple of target block size */
29711 		buffer_size = (end_block - real_addr) * un->un_tgt_blocksize;
29712 
29713 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr",
29714 		    "label_addr: 0x%x allocation size: 0x%x\n",
29715 		    real_addr, buffer_size);
29716 
29717 		if (((first_byte % un->un_tgt_blocksize) != 0) ||
29718 		    (reqlength % un->un_tgt_blocksize) != 0)
29719 			/* the request is not aligned */
29720 			dkl = kmem_zalloc(buffer_size, KM_SLEEP);
29721 	}
29722 
29723 	/*
29724 	 * The MMC standard allows READ CAPACITY to be
29725 	 * inaccurate by a bounded amount (in the interest of
29726 	 * response latency).  As a result, failed READs are
29727 	 * commonplace (due to the reading of metadata and not
29728 	 * data). Depending on the per-Vendor/drive Sense data,
29729 	 * the failed READ can cause many (unnecessary) retries.
29730 	 */
29731 
29732 	if (ISCD(un) && (cmd == TG_READ) &&
29733 	    (un->un_f_blockcount_is_valid == TRUE) &&
29734 	    ((start_block == (un->un_blockcount - 1))||
29735 	    (start_block == (un->un_blockcount - 2)))) {
29736 			path_flag = SD_PATH_DIRECT_PRIORITY;
29737 	}
29738 
29739 	mutex_exit(SD_MUTEX(un));
29740 	if (cmd == TG_READ) {
29741 		rval = sd_send_scsi_READ(ssc, (dkl != NULL)? dkl: bufaddr,
29742 		    buffer_size, real_addr, path_flag);
29743 		if (dkl != NULL)
29744 			bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block,
29745 			    real_addr), bufaddr, reqlength);
29746 	} else {
29747 		if (dkl) {
29748 			rval = sd_send_scsi_READ(ssc, dkl, buffer_size,
29749 			    real_addr, path_flag);
29750 			if (rval) {
29751 				goto done1;
29752 			}
29753 			bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block,
29754 			    real_addr), reqlength);
29755 		}
29756 		rval = sd_send_scsi_WRITE(ssc, (dkl != NULL)? dkl: bufaddr,
29757 		    buffer_size, real_addr, path_flag);
29758 	}
29759 
29760 done1:
29761 	if (dkl != NULL)
29762 		kmem_free(dkl, buffer_size);
29763 
29764 	if (rval != 0) {
29765 		if (rval == EIO)
29766 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
29767 		else
29768 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
29769 	}
29770 done:
29771 	sd_ssc_fini(ssc);
29772 	return (rval);
29773 }
29774 
29775 
29776 static int
29777 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie)
29778 {
29779 
29780 	struct sd_lun *un;
29781 	diskaddr_t	cap;
29782 	uint32_t	lbasize;
29783 	int		path_flag = (int)(uintptr_t)tg_cookie;
29784 	int		ret = 0;
29785 
29786 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
29787 	if (un == NULL)
29788 		return (ENXIO);
29789 
29790 	switch (cmd) {
29791 	case TG_GETPHYGEOM:
29792 	case TG_GETVIRTGEOM:
29793 	case TG_GETCAPACITY:
29794 	case TG_GETBLOCKSIZE:
29795 		mutex_enter(SD_MUTEX(un));
29796 
29797 		if ((un->un_f_blockcount_is_valid == TRUE) &&
29798 		    (un->un_f_tgt_blocksize_is_valid == TRUE)) {
29799 			cap = un->un_blockcount;
29800 			lbasize = un->un_tgt_blocksize;
29801 			mutex_exit(SD_MUTEX(un));
29802 		} else {
29803 			sd_ssc_t	*ssc;
29804 			mutex_exit(SD_MUTEX(un));
29805 			ssc = sd_ssc_init(un);
29806 			ret = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
29807 			    &lbasize, path_flag);
29808 			if (ret != 0) {
29809 				if (ret == EIO)
29810 					sd_ssc_assessment(ssc,
29811 					    SD_FMT_STATUS_CHECK);
29812 				else
29813 					sd_ssc_assessment(ssc,
29814 					    SD_FMT_IGNORE);
29815 				sd_ssc_fini(ssc);
29816 				return (ret);
29817 			}
29818 			sd_ssc_fini(ssc);
29819 			mutex_enter(SD_MUTEX(un));
29820 			sd_update_block_info(un, lbasize, cap);
29821 			if ((un->un_f_blockcount_is_valid == FALSE) ||
29822 			    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
29823 				mutex_exit(SD_MUTEX(un));
29824 				return (EIO);
29825 			}
29826 			mutex_exit(SD_MUTEX(un));
29827 		}
29828 
29829 		if (cmd == TG_GETCAPACITY) {
29830 			*(diskaddr_t *)arg = cap;
29831 			return (0);
29832 		}
29833 
29834 		if (cmd == TG_GETBLOCKSIZE) {
29835 			*(uint32_t *)arg = lbasize;
29836 			return (0);
29837 		}
29838 
29839 		if (cmd == TG_GETPHYGEOM)
29840 			ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg,
29841 			    cap, lbasize, path_flag);
29842 		else
29843 			/* TG_GETVIRTGEOM */
29844 			ret = sd_get_virtual_geometry(un,
29845 			    (cmlb_geom_t *)arg, cap, lbasize);
29846 
29847 		return (ret);
29848 
29849 	case TG_GETATTR:
29850 		mutex_enter(SD_MUTEX(un));
29851 		((tg_attribute_t *)arg)->media_is_writable =
29852 		    un->un_f_mmc_writable_media;
29853 		mutex_exit(SD_MUTEX(un));
29854 		return (0);
29855 	default:
29856 		return (ENOTTY);
29857 
29858 	}
29859 }
29860 
29861 /*
29862  *    Function: sd_ssc_ereport_post
29863  *
29864  * Description: Will be called when SD driver need to post an ereport.
29865  *
29866  *    Context: Kernel thread or interrupt context.
29867  */
29868 static void
29869 sd_ssc_ereport_post(sd_ssc_t *ssc, enum sd_driver_assessment drv_assess)
29870 {
29871 	int uscsi_path_instance = 0;
29872 	uchar_t	uscsi_pkt_reason;
29873 	uint32_t uscsi_pkt_state;
29874 	uint32_t uscsi_pkt_statistics;
29875 	uint64_t uscsi_ena;
29876 	uchar_t op_code;
29877 	uint8_t *sensep;
29878 	union scsi_cdb *cdbp;
29879 	uint_t cdblen = 0;
29880 	uint_t senlen = 0;
29881 	struct sd_lun *un;
29882 	dev_info_t *dip;
29883 	char *devid;
29884 	int ssc_invalid_flags = SSC_FLAGS_INVALID_PKT_REASON |
29885 	    SSC_FLAGS_INVALID_STATUS |
29886 	    SSC_FLAGS_INVALID_SENSE |
29887 	    SSC_FLAGS_INVALID_DATA;
29888 	char assessment[16];
29889 
29890 	ASSERT(ssc != NULL);
29891 	ASSERT(ssc->ssc_uscsi_cmd != NULL);
29892 	ASSERT(ssc->ssc_uscsi_info != NULL);
29893 
29894 	un = ssc->ssc_un;
29895 	ASSERT(un != NULL);
29896 
29897 	dip = un->un_sd->sd_dev;
29898 
29899 	/*
29900 	 * Get the devid:
29901 	 *	devid will only be passed to non-transport error reports.
29902 	 */
29903 	devid = DEVI(dip)->devi_devid_str;
29904 
29905 	/*
29906 	 * If we are syncing or dumping, the command will not be executed
29907 	 * so we bypass this situation.
29908 	 */
29909 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
29910 	    (un->un_state == SD_STATE_DUMPING))
29911 		return;
29912 
29913 	uscsi_pkt_reason = ssc->ssc_uscsi_info->ui_pkt_reason;
29914 	uscsi_path_instance = ssc->ssc_uscsi_cmd->uscsi_path_instance;
29915 	uscsi_pkt_state = ssc->ssc_uscsi_info->ui_pkt_state;
29916 	uscsi_pkt_statistics = ssc->ssc_uscsi_info->ui_pkt_statistics;
29917 	uscsi_ena = ssc->ssc_uscsi_info->ui_ena;
29918 
29919 	sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
29920 	cdbp = (union scsi_cdb *)ssc->ssc_uscsi_cmd->uscsi_cdb;
29921 
29922 	/* In rare cases, EG:DOORLOCK, the cdb could be NULL */
29923 	if (cdbp == NULL) {
29924 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29925 		    "sd_ssc_ereport_post meet empty cdb\n");
29926 		return;
29927 	}
29928 
29929 	op_code = cdbp->scc_cmd;
29930 
29931 	cdblen = (int)ssc->ssc_uscsi_cmd->uscsi_cdblen;
29932 	senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
29933 	    ssc->ssc_uscsi_cmd->uscsi_rqresid);
29934 
29935 	if (senlen > 0)
29936 		ASSERT(sensep != NULL);
29937 
29938 	/*
29939 	 * Initialize drv_assess to corresponding values.
29940 	 * SD_FM_DRV_FATAL will be mapped to "fail" or "fatal" depending
29941 	 * on the sense-key returned back.
29942 	 */
29943 	switch (drv_assess) {
29944 		case SD_FM_DRV_RECOVERY:
29945 			(void) sprintf(assessment, "%s", "recovered");
29946 			break;
29947 		case SD_FM_DRV_RETRY:
29948 			(void) sprintf(assessment, "%s", "retry");
29949 			break;
29950 		case SD_FM_DRV_NOTICE:
29951 			(void) sprintf(assessment, "%s", "info");
29952 			break;
29953 		case SD_FM_DRV_FATAL:
29954 		default:
29955 			(void) sprintf(assessment, "%s", "unknown");
29956 	}
29957 	/*
29958 	 * If drv_assess == SD_FM_DRV_RECOVERY, this should be a recovered
29959 	 * command, we will post ereport.io.scsi.cmd.disk.recovered.
29960 	 * driver-assessment will always be "recovered" here.
29961 	 */
29962 	if (drv_assess == SD_FM_DRV_RECOVERY) {
29963 		scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
29964 		    "cmd.disk.recovered", uscsi_ena, devid, DDI_NOSLEEP,
29965 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
29966 		    "driver-assessment", DATA_TYPE_STRING, assessment,
29967 		    "op-code", DATA_TYPE_UINT8, op_code,
29968 		    "cdb", DATA_TYPE_UINT8_ARRAY,
29969 		    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
29970 		    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
29971 		    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
29972 		    "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
29973 		    NULL);
29974 		return;
29975 	}
29976 
29977 	/*
29978 	 * If there is un-expected/un-decodable data, we should post
29979 	 * ereport.io.scsi.cmd.disk.dev.uderr.
29980 	 * driver-assessment will be set based on parameter drv_assess.
29981 	 * SSC_FLAGS_INVALID_SENSE - invalid sense data sent back.
29982 	 * SSC_FLAGS_INVALID_PKT_REASON - invalid pkt-reason encountered.
29983 	 * SSC_FLAGS_INVALID_STATUS - invalid stat-code encountered.
29984 	 * SSC_FLAGS_INVALID_DATA - invalid data sent back.
29985 	 */
29986 	if (ssc->ssc_flags & ssc_invalid_flags) {
29987 		if (ssc->ssc_flags & SSC_FLAGS_INVALID_SENSE) {
29988 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
29989 			    "cmd.disk.dev.uderr", uscsi_ena, devid, DDI_NOSLEEP,
29990 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
29991 			    "driver-assessment", DATA_TYPE_STRING,
29992 			    drv_assess == SD_FM_DRV_FATAL ?
29993 			    "fail" : assessment,
29994 			    "op-code", DATA_TYPE_UINT8, op_code,
29995 			    "cdb", DATA_TYPE_UINT8_ARRAY,
29996 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
29997 			    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
29998 			    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
29999 			    "pkt-stats", DATA_TYPE_UINT32,
30000 			    uscsi_pkt_statistics,
30001 			    "stat-code", DATA_TYPE_UINT8,
30002 			    ssc->ssc_uscsi_cmd->uscsi_status,
30003 			    "un-decode-info", DATA_TYPE_STRING,
30004 			    ssc->ssc_info,
30005 			    "un-decode-value", DATA_TYPE_UINT8_ARRAY,
30006 			    senlen, sensep,
30007 			    NULL);
30008 		} else {
30009 			/*
30010 			 * For other type of invalid data, the
30011 			 * un-decode-value field would be empty because the
30012 			 * un-decodable content could be seen from upper
30013 			 * level payload or inside un-decode-info.
30014 			 */
30015 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
30016 			    "cmd.disk.dev.uderr", uscsi_ena, devid, DDI_NOSLEEP,
30017 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30018 			    "driver-assessment", DATA_TYPE_STRING,
30019 			    drv_assess == SD_FM_DRV_FATAL ?
30020 			    "fail" : assessment,
30021 			    "op-code", DATA_TYPE_UINT8, op_code,
30022 			    "cdb", DATA_TYPE_UINT8_ARRAY,
30023 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
30024 			    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
30025 			    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
30026 			    "pkt-stats", DATA_TYPE_UINT32,
30027 			    uscsi_pkt_statistics,
30028 			    "stat-code", DATA_TYPE_UINT8,
30029 			    ssc->ssc_uscsi_cmd->uscsi_status,
30030 			    "un-decode-info", DATA_TYPE_STRING,
30031 			    ssc->ssc_info,
30032 			    "un-decode-value", DATA_TYPE_UINT8_ARRAY,
30033 			    0, NULL,
30034 			    NULL);
30035 		}
30036 		ssc->ssc_flags &= ~ssc_invalid_flags;
30037 		return;
30038 	}
30039 
30040 	if (uscsi_pkt_reason != CMD_CMPLT ||
30041 	    (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)) {
30042 		/*
30043 		 * pkt-reason != CMD_CMPLT or SSC_FLAGS_TRAN_ABORT was
30044 		 * set inside sd_start_cmds due to errors(bad packet or
30045 		 * fatal transport error), we should take it as a
30046 		 * transport error, so we post ereport.io.scsi.cmd.disk.tran.
30047 		 * driver-assessment will be set based on drv_assess.
30048 		 * We will set devid to NULL because it is a transport
30049 		 * error.
30050 		 */
30051 		if (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)
30052 			ssc->ssc_flags &= ~SSC_FLAGS_TRAN_ABORT;
30053 
30054 		scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
30055 		    "cmd.disk.tran", uscsi_ena, NULL, DDI_NOSLEEP, FM_VERSION,
30056 		    DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30057 		    "driver-assessment", DATA_TYPE_STRING,
30058 		    drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
30059 		    "op-code", DATA_TYPE_UINT8, op_code,
30060 		    "cdb", DATA_TYPE_UINT8_ARRAY,
30061 		    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
30062 		    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
30063 		    "pkt-state", DATA_TYPE_UINT8, uscsi_pkt_state,
30064 		    "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
30065 		    NULL);
30066 	} else {
30067 		/*
30068 		 * If we got here, we have a completed command, and we need
30069 		 * to further investigate the sense data to see what kind
30070 		 * of ereport we should post.
30071 		 * Post ereport.io.scsi.cmd.disk.dev.rqs.merr
30072 		 * if sense-key == 0x3.
30073 		 * Post ereport.io.scsi.cmd.disk.dev.rqs.derr otherwise.
30074 		 * driver-assessment will be set based on the parameter
30075 		 * drv_assess.
30076 		 */
30077 		if (senlen > 0) {
30078 			/*
30079 			 * Here we have sense data available.
30080 			 */
30081 			uint8_t sense_key;
30082 			sense_key = scsi_sense_key(sensep);
30083 			if (sense_key == 0x3) {
30084 				/*
30085 				 * sense-key == 0x3(medium error),
30086 				 * driver-assessment should be "fatal" if
30087 				 * drv_assess is SD_FM_DRV_FATAL.
30088 				 */
30089 				scsi_fm_ereport_post(un->un_sd,
30090 				    uscsi_path_instance,
30091 				    "cmd.disk.dev.rqs.merr",
30092 				    uscsi_ena, devid, DDI_NOSLEEP, FM_VERSION,
30093 				    DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30094 				    "driver-assessment",
30095 				    DATA_TYPE_STRING,
30096 				    drv_assess == SD_FM_DRV_FATAL ?
30097 				    "fatal" : assessment,
30098 				    "op-code",
30099 				    DATA_TYPE_UINT8, op_code,
30100 				    "cdb",
30101 				    DATA_TYPE_UINT8_ARRAY, cdblen,
30102 				    ssc->ssc_uscsi_cmd->uscsi_cdb,
30103 				    "pkt-reason",
30104 				    DATA_TYPE_UINT8, uscsi_pkt_reason,
30105 				    "pkt-state",
30106 				    DATA_TYPE_UINT8, uscsi_pkt_state,
30107 				    "pkt-stats",
30108 				    DATA_TYPE_UINT32,
30109 				    uscsi_pkt_statistics,
30110 				    "stat-code",
30111 				    DATA_TYPE_UINT8,
30112 				    ssc->ssc_uscsi_cmd->uscsi_status,
30113 				    "key",
30114 				    DATA_TYPE_UINT8,
30115 				    scsi_sense_key(sensep),
30116 				    "asc",
30117 				    DATA_TYPE_UINT8,
30118 				    scsi_sense_asc(sensep),
30119 				    "ascq",
30120 				    DATA_TYPE_UINT8,
30121 				    scsi_sense_ascq(sensep),
30122 				    "sense-data",
30123 				    DATA_TYPE_UINT8_ARRAY,
30124 				    senlen, sensep,
30125 				    "lba",
30126 				    DATA_TYPE_UINT64,
30127 				    ssc->ssc_uscsi_info->ui_lba,
30128 				    NULL);
30129 				} else {
30130 					/*
30131 					 * if sense-key == 0x4(hardware
30132 					 * error), driver-assessment should
30133 					 * be "fatal" if drv_assess is
30134 					 * SD_FM_DRV_FATAL.
30135 					 */
30136 					scsi_fm_ereport_post(un->un_sd,
30137 					    uscsi_path_instance,
30138 					    "cmd.disk.dev.rqs.derr",
30139 					    uscsi_ena, devid, DDI_NOSLEEP,
30140 					    FM_VERSION,
30141 					    DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30142 					    "driver-assessment",
30143 					    DATA_TYPE_STRING,
30144 					    drv_assess == SD_FM_DRV_FATAL ?
30145 					    (sense_key == 0x4 ?
30146 					    "fatal" : "fail") : assessment,
30147 					    "op-code",
30148 					    DATA_TYPE_UINT8, op_code,
30149 					    "cdb",
30150 					    DATA_TYPE_UINT8_ARRAY, cdblen,
30151 					    ssc->ssc_uscsi_cmd->uscsi_cdb,
30152 					    "pkt-reason",
30153 					    DATA_TYPE_UINT8, uscsi_pkt_reason,
30154 					    "pkt-state",
30155 					    DATA_TYPE_UINT8, uscsi_pkt_state,
30156 					    "pkt-stats",
30157 					    DATA_TYPE_UINT32,
30158 					    uscsi_pkt_statistics,
30159 					    "stat-code",
30160 					    DATA_TYPE_UINT8,
30161 					    ssc->ssc_uscsi_cmd->uscsi_status,
30162 					    "key",
30163 					    DATA_TYPE_UINT8,
30164 					    scsi_sense_key(sensep),
30165 					    "asc",
30166 					    DATA_TYPE_UINT8,
30167 					    scsi_sense_asc(sensep),
30168 					    "ascq",
30169 					    DATA_TYPE_UINT8,
30170 					    scsi_sense_ascq(sensep),
30171 					    "sense-data",
30172 					    DATA_TYPE_UINT8_ARRAY,
30173 					    senlen, sensep,
30174 					    NULL);
30175 				}
30176 		} else {
30177 			/*
30178 			 * For stat_code == STATUS_GOOD, this is not a
30179 			 * hardware error.
30180 			 */
30181 			if (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD)
30182 				return;
30183 
30184 			/*
30185 			 * Post ereport.io.scsi.cmd.disk.dev.serr if we got the
30186 			 * stat-code but with sense data unavailable.
30187 			 * driver-assessment will be set based on parameter
30188 			 * drv_assess.
30189 			 */
30190 			scsi_fm_ereport_post(un->un_sd,
30191 			    uscsi_path_instance, "cmd.disk.dev.serr", uscsi_ena,
30192 			    devid, DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8,
30193 			    FM_EREPORT_VERS0,
30194 			    "driver-assessment", DATA_TYPE_STRING,
30195 			    drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
30196 			    "op-code", DATA_TYPE_UINT8, op_code,
30197 			    "cdb",
30198 			    DATA_TYPE_UINT8_ARRAY,
30199 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
30200 			    "pkt-reason",
30201 			    DATA_TYPE_UINT8, uscsi_pkt_reason,
30202 			    "pkt-state",
30203 			    DATA_TYPE_UINT8, uscsi_pkt_state,
30204 			    "pkt-stats",
30205 			    DATA_TYPE_UINT32, uscsi_pkt_statistics,
30206 			    "stat-code",
30207 			    DATA_TYPE_UINT8,
30208 			    ssc->ssc_uscsi_cmd->uscsi_status,
30209 			    NULL);
30210 		}
30211 	}
30212 }
30213 
30214 /*
30215  *     Function: sd_ssc_extract_info
30216  *
30217  * Description: Extract information available to help generate ereport.
30218  *
30219  *     Context: Kernel thread or interrupt context.
30220  */
30221 static void
30222 sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un, struct scsi_pkt *pktp,
30223     struct buf *bp, struct sd_xbuf *xp)
30224 {
30225 	size_t senlen = 0;
30226 	union scsi_cdb *cdbp;
30227 	int path_instance;
30228 	/*
30229 	 * Need scsi_cdb_size array to determine the cdb length.
30230 	 */
30231 	extern uchar_t	scsi_cdb_size[];
30232 
30233 	ASSERT(un != NULL);
30234 	ASSERT(pktp != NULL);
30235 	ASSERT(bp != NULL);
30236 	ASSERT(xp != NULL);
30237 	ASSERT(ssc != NULL);
30238 	ASSERT(mutex_owned(SD_MUTEX(un)));
30239 
30240 	/*
30241 	 * Transfer the cdb buffer pointer here.
30242 	 */
30243 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
30244 
30245 	ssc->ssc_uscsi_cmd->uscsi_cdblen = scsi_cdb_size[GETGROUP(cdbp)];
30246 	ssc->ssc_uscsi_cmd->uscsi_cdb = (caddr_t)cdbp;
30247 
30248 	/*
30249 	 * Transfer the sense data buffer pointer if sense data is available,
30250 	 * calculate the sense data length first.
30251 	 */
30252 	if ((xp->xb_sense_state & STATE_XARQ_DONE) ||
30253 	    (xp->xb_sense_state & STATE_ARQ_DONE)) {
30254 		/*
30255 		 * For arq case, we will enter here.
30256 		 */
30257 		if (xp->xb_sense_state & STATE_XARQ_DONE) {
30258 			senlen = MAX_SENSE_LENGTH - xp->xb_sense_resid;
30259 		} else {
30260 			senlen = SENSE_LENGTH;
30261 		}
30262 	} else {
30263 		/*
30264 		 * For non-arq case, we will enter this branch.
30265 		 */
30266 		if (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK &&
30267 		    (xp->xb_sense_state & STATE_XFERRED_DATA)) {
30268 			senlen = SENSE_LENGTH - xp->xb_sense_resid;
30269 		}
30270 
30271 	}
30272 
30273 	ssc->ssc_uscsi_cmd->uscsi_rqlen = (senlen & 0xff);
30274 	ssc->ssc_uscsi_cmd->uscsi_rqresid = 0;
30275 	ssc->ssc_uscsi_cmd->uscsi_rqbuf = (caddr_t)xp->xb_sense_data;
30276 
30277 	ssc->ssc_uscsi_cmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
30278 
30279 	/*
30280 	 * Only transfer path_instance when scsi_pkt was properly allocated.
30281 	 */
30282 	path_instance = pktp->pkt_path_instance;
30283 	if (scsi_pkt_allocated_correctly(pktp) && path_instance)
30284 		ssc->ssc_uscsi_cmd->uscsi_path_instance = path_instance;
30285 	else
30286 		ssc->ssc_uscsi_cmd->uscsi_path_instance = 0;
30287 
30288 	/*
30289 	 * Copy in the other fields we may need when posting ereport.
30290 	 */
30291 	ssc->ssc_uscsi_info->ui_pkt_reason = pktp->pkt_reason;
30292 	ssc->ssc_uscsi_info->ui_pkt_state = pktp->pkt_state;
30293 	ssc->ssc_uscsi_info->ui_pkt_statistics = pktp->pkt_statistics;
30294 	ssc->ssc_uscsi_info->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
30295 
30296 	/*
30297 	 * For partially read/write command, we will not create ena
30298 	 * in case of a successful command be reconized as recovered.
30299 	 */
30300 	if ((pktp->pkt_reason == CMD_CMPLT) &&
30301 	    (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD) &&
30302 	    (senlen == 0)) {
30303 		return;
30304 	}
30305 
30306 	/*
30307 	 * To associate ereports of a single command execution flow, we
30308 	 * need a shared ena for a specific command.
30309 	 */
30310 	if (xp->xb_ena == 0)
30311 		xp->xb_ena = fm_ena_generate(0, FM_ENA_FMT1);
30312 	ssc->ssc_uscsi_info->ui_ena = xp->xb_ena;
30313 }
30314