xref: /titanic_51/usr/src/uts/common/io/scsi/targets/sd.c (revision bd46b14ca347e868514df513ef142976b742825a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * SCSI disk target driver.
31  */
32 
33 #include <sys/scsi/scsi.h>
34 #include <sys/dkbad.h>
35 #include <sys/dklabel.h>
36 #include <sys/dkio.h>
37 #include <sys/fdio.h>
38 #include <sys/cdio.h>
39 #include <sys/mhd.h>
40 #include <sys/vtoc.h>
41 #include <sys/dktp/fdisk.h>
42 #include <sys/file.h>
43 #include <sys/stat.h>
44 #include <sys/kstat.h>
45 #include <sys/vtrace.h>
46 #include <sys/note.h>
47 #include <sys/thread.h>
48 #include <sys/proc.h>
49 #include <sys/efi_partition.h>
50 #include <sys/var.h>
51 #include <sys/aio_req.h>
52 #if (defined(__fibre))
53 /* Note: is there a leadville version of the following? */
54 #include <sys/fc4/fcal_linkapp.h>
55 #endif
56 #include <sys/taskq.h>
57 #include <sys/uuid.h>
58 #include <sys/byteorder.h>
59 #include <sys/sdt.h>
60 
61 #include "sd_xbuf.h"
62 
63 #include <sys/scsi/targets/sddef.h>
64 
65 
66 /*
67  * Loadable module info.
68  */
69 #if (defined(__fibre))
70 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver %I%"
71 char _depends_on[]	= "misc/scsi drv/fcp";
72 #else
73 #define	SD_MODULE_NAME	"SCSI Disk Driver %I%"
74 char _depends_on[]	= "misc/scsi";
75 #endif
76 
77 /*
78  * Define the interconnect type, to allow the driver to distinguish
79  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
80  *
81  * This is really for backward compatability. In the future, the driver
82  * should actually check the "interconnect-type" property as reported by
83  * the HBA; however at present this property is not defined by all HBAs,
84  * so we will use this #define (1) to permit the driver to run in
85  * backward-compatability mode; and (2) to print a notification message
86  * if an FC HBA does not support the "interconnect-type" property.  The
87  * behavior of the driver will be to assume parallel SCSI behaviors unless
88  * the "interconnect-type" property is defined by the HBA **AND** has a
89  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
90  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
91  * Channel behaviors (as per the old ssd).  (Note that the
92  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
93  * will result in the driver assuming parallel SCSI behaviors.)
94  *
95  * (see common/sys/scsi/impl/services.h)
96  *
97  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
98  * since some FC HBAs may already support that, and there is some code in
99  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
100  * default would confuse that code, and besides things should work fine
101  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
102  * "interconnect_type" property.
103  */
104 #if (defined(__fibre))
105 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
106 #else
107 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
108 #endif
109 
110 /*
111  * The name of the driver, established from the module name in _init.
112  */
113 static	char *sd_label			= NULL;
114 
115 /*
116  * Driver name is unfortunately prefixed on some driver.conf properties.
117  */
118 #if (defined(__fibre))
119 #define	sd_max_xfer_size		ssd_max_xfer_size
120 #define	sd_config_list			ssd_config_list
121 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
122 static	char *sd_config_list		= "ssd-config-list";
123 #else
124 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
125 static	char *sd_config_list		= "sd-config-list";
126 #endif
127 
128 /*
129  * Driver global variables
130  */
131 
132 #if (defined(__fibre))
133 /*
134  * These #defines are to avoid namespace collisions that occur because this
135  * code is currently used to compile two seperate driver modules: sd and ssd.
136  * All global variables need to be treated this way (even if declared static)
137  * in order to allow the debugger to resolve the names properly.
138  * It is anticipated that in the near future the ssd module will be obsoleted,
139  * at which time this namespace issue should go away.
140  */
141 #define	sd_state			ssd_state
142 #define	sd_io_time			ssd_io_time
143 #define	sd_failfast_enable		ssd_failfast_enable
144 #define	sd_ua_retry_count		ssd_ua_retry_count
145 #define	sd_report_pfa			ssd_report_pfa
146 #define	sd_max_throttle			ssd_max_throttle
147 #define	sd_min_throttle			ssd_min_throttle
148 #define	sd_rot_delay			ssd_rot_delay
149 
150 #define	sd_retry_on_reservation_conflict	\
151 					ssd_retry_on_reservation_conflict
152 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
153 #define	sd_resv_conflict_name		ssd_resv_conflict_name
154 
155 #define	sd_component_mask		ssd_component_mask
156 #define	sd_level_mask			ssd_level_mask
157 #define	sd_debug_un			ssd_debug_un
158 #define	sd_error_level			ssd_error_level
159 
160 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
161 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
162 
163 #define	sd_tr				ssd_tr
164 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
165 #define	sd_check_media_time		ssd_check_media_time
166 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
167 #define	sd_label_mutex			ssd_label_mutex
168 #define	sd_detach_mutex			ssd_detach_mutex
169 #define	sd_log_buf			ssd_log_buf
170 #define	sd_log_mutex			ssd_log_mutex
171 
172 #define	sd_disk_table			ssd_disk_table
173 #define	sd_disk_table_size		ssd_disk_table_size
174 #define	sd_sense_mutex			ssd_sense_mutex
175 #define	sd_cdbtab			ssd_cdbtab
176 
177 #define	sd_cb_ops			ssd_cb_ops
178 #define	sd_ops				ssd_ops
179 #define	sd_additional_codes		ssd_additional_codes
180 
181 #define	sd_minor_data			ssd_minor_data
182 #define	sd_minor_data_efi		ssd_minor_data_efi
183 
184 #define	sd_tq				ssd_tq
185 #define	sd_wmr_tq			ssd_wmr_tq
186 #define	sd_taskq_name			ssd_taskq_name
187 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
188 #define	sd_taskq_minalloc		ssd_taskq_minalloc
189 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
190 
191 #define	sd_dump_format_string		ssd_dump_format_string
192 
193 #define	sd_iostart_chain		ssd_iostart_chain
194 #define	sd_iodone_chain			ssd_iodone_chain
195 
196 #define	sd_pm_idletime			ssd_pm_idletime
197 
198 #define	sd_force_pm_supported		ssd_force_pm_supported
199 
200 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
201 #endif
202 
203 
204 #ifdef	SDDEBUG
205 int	sd_force_pm_supported		= 0;
206 #endif	/* SDDEBUG */
207 
208 void *sd_state				= NULL;
209 int sd_io_time				= SD_IO_TIME;
210 int sd_failfast_enable			= 1;
211 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
212 int sd_report_pfa			= 1;
213 int sd_max_throttle			= SD_MAX_THROTTLE;
214 int sd_min_throttle			= SD_MIN_THROTTLE;
215 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
216 
217 int sd_retry_on_reservation_conflict	= 1;
218 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
219 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
220 
221 static int sd_dtype_optical_bind	= -1;
222 
223 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
224 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
225 
226 /*
227  * Global data for debug logging. To enable debug printing, sd_component_mask
228  * and sd_level_mask should be set to the desired bit patterns as outlined in
229  * sddef.h.
230  */
231 uint_t	sd_component_mask		= 0x0;
232 uint_t	sd_level_mask			= 0x0;
233 struct	sd_lun *sd_debug_un		= NULL;
234 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
235 
236 /* Note: these may go away in the future... */
237 static uint32_t	sd_xbuf_active_limit	= 512;
238 static uint32_t sd_xbuf_reserve_limit	= 16;
239 
240 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
241 
242 /*
243  * Timer value used to reset the throttle after it has been reduced
244  * (typically in response to TRAN_BUSY)
245  */
246 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
247 
248 /*
249  * Interval value associated with the media change scsi watch.
250  */
251 static int sd_check_media_time		= 3000000;
252 
253 /*
254  * Wait value used for in progress operations during a DDI_SUSPEND
255  */
256 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
257 
258 /*
259  * sd_label_mutex protects a static buffer used in the disk label
260  * component of the driver
261  */
262 static kmutex_t sd_label_mutex;
263 
264 /*
265  * sd_detach_mutex protects un_layer_count, un_detach_count, and
266  * un_opens_in_progress in the sd_lun structure.
267  */
268 static kmutex_t sd_detach_mutex;
269 
270 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
271 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
272 
273 /*
274  * Global buffer and mutex for debug logging
275  */
276 static char	sd_log_buf[1024];
277 static kmutex_t	sd_log_mutex;
278 
279 
280 /*
281  * "Smart" Probe Caching structs, globals, #defines, etc.
282  * For parallel scsi and non-self-identify device only.
283  */
284 
285 /*
286  * The following resources and routines are implemented to support
287  * "smart" probing, which caches the scsi_probe() results in an array,
288  * in order to help avoid long probe times.
289  */
290 struct sd_scsi_probe_cache {
291 	struct	sd_scsi_probe_cache	*next;
292 	dev_info_t	*pdip;
293 	int		cache[NTARGETS_WIDE];
294 };
295 
296 static kmutex_t	sd_scsi_probe_cache_mutex;
297 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
298 
299 /*
300  * Really we only need protection on the head of the linked list, but
301  * better safe than sorry.
302  */
303 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
304     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
305 
306 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
307     sd_scsi_probe_cache_head))
308 
309 
310 /*
311  * Vendor specific data name property declarations
312  */
313 
314 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
315 
316 static sd_tunables seagate_properties = {
317 	SEAGATE_THROTTLE_VALUE,
318 	0,
319 	0,
320 	0,
321 	0,
322 	0,
323 	0,
324 	0,
325 	0
326 };
327 
328 static sd_tunables lsi_properties = {
329 	0,
330 	0,
331 	LSI_NOTREADY_RETRIES,
332 	0,
333 	0,
334 	0,
335 	0,
336 	0,
337 	0
338 };
339 
340 static sd_tunables lsi_oem_properties = {
341 	0,
342 	0,
343 	LSI_OEM_NOTREADY_RETRIES,
344 	0,
345 	0,
346 	0,
347 	0,
348 	0,
349 	0
350 };
351 
352 static sd_tunables fujitsu_properties = {
353 	FUJITSU_THROTTLE_VALUE,
354 	0,
355 	0,
356 	0,
357 	0,
358 	0,
359 	0,
360 	0,
361 	0
362 };
363 
364 static sd_tunables ibm_properties = {
365 	IBM_THROTTLE_VALUE,
366 	0,
367 	0,
368 	0,
369 	0,
370 	0,
371 	0,
372 	0,
373 	0
374 };
375 
376 static sd_tunables purple_properties = {
377 	PURPLE_THROTTLE_VALUE,
378 	0,
379 	0,
380 	PURPLE_BUSY_RETRIES,
381 	PURPLE_RESET_RETRY_COUNT,
382 	PURPLE_RESERVE_RELEASE_TIME,
383 	0,
384 	0,
385 	0
386 };
387 
388 static sd_tunables sve_properties = {
389 	SVE_THROTTLE_VALUE,
390 	0,
391 	0,
392 	SVE_BUSY_RETRIES,
393 	SVE_RESET_RETRY_COUNT,
394 	SVE_RESERVE_RELEASE_TIME,
395 	SVE_MIN_THROTTLE_VALUE,
396 	SVE_DISKSORT_DISABLED_FLAG,
397 	0
398 };
399 
400 static sd_tunables maserati_properties = {
401 	0,
402 	0,
403 	0,
404 	0,
405 	0,
406 	0,
407 	0,
408 	MASERATI_DISKSORT_DISABLED_FLAG,
409 	MASERATI_LUN_RESET_ENABLED_FLAG
410 };
411 
412 static sd_tunables pirus_properties = {
413 	PIRUS_THROTTLE_VALUE,
414 	0,
415 	PIRUS_NRR_COUNT,
416 	PIRUS_BUSY_RETRIES,
417 	PIRUS_RESET_RETRY_COUNT,
418 	0,
419 	PIRUS_MIN_THROTTLE_VALUE,
420 	PIRUS_DISKSORT_DISABLED_FLAG,
421 	PIRUS_LUN_RESET_ENABLED_FLAG
422 };
423 
424 #endif
425 #if (defined(__sparc) && !defined(__fibre)) || \
426 	(defined(__i386) || defined(__amd64))
427 
428 static sd_tunables lsi_properties_scsi = {
429 	LSI_THROTTLE_VALUE,
430 	0,
431 	LSI_NOTREADY_RETRIES,
432 	0,
433 	0,
434 	0,
435 	0,
436 	0,
437 	0
438 };
439 
440 static sd_tunables elite_properties = {
441 	ELITE_THROTTLE_VALUE,
442 	0,
443 	0,
444 	0,
445 	0,
446 	0,
447 	0,
448 	0,
449 	0
450 };
451 
452 static sd_tunables st31200n_properties = {
453 	ST31200N_THROTTLE_VALUE,
454 	0,
455 	0,
456 	0,
457 	0,
458 	0,
459 	0,
460 	0,
461 	0
462 };
463 
464 #endif /* Fibre or not */
465 
466 static sd_tunables symbios_properties = {
467 	SYMBIOS_THROTTLE_VALUE,
468 	0,
469 	SYMBIOS_NOTREADY_RETRIES,
470 	0,
471 	0,
472 	0,
473 	0,
474 	0,
475 	0
476 };
477 
478 
479 
480 
481 #if (defined(SD_PROP_TST))
482 
483 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
484 #define	SD_TST_THROTTLE_VAL	16
485 #define	SD_TST_NOTREADY_VAL	12
486 #define	SD_TST_BUSY_VAL		60
487 #define	SD_TST_RST_RETRY_VAL	36
488 #define	SD_TST_RSV_REL_TIME	60
489 
490 static sd_tunables tst_properties = {
491 	SD_TST_THROTTLE_VAL,
492 	SD_TST_CTYPE_VAL,
493 	SD_TST_NOTREADY_VAL,
494 	SD_TST_BUSY_VAL,
495 	SD_TST_RST_RETRY_VAL,
496 	SD_TST_RSV_REL_TIME,
497 	0,
498 	0,
499 	0
500 };
501 #endif
502 
503 /* This is similiar to the ANSI toupper implementation */
504 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
505 
506 /*
507  * Static Driver Configuration Table
508  *
509  * This is the table of disks which need throttle adjustment (or, perhaps
510  * something else as defined by the flags at a future time.)  device_id
511  * is a string consisting of concatenated vid (vendor), pid (product/model)
512  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
513  * the parts of the string are as defined by the sizes in the scsi_inquiry
514  * structure.  Device type is searched as far as the device_id string is
515  * defined.  Flags defines which values are to be set in the driver from the
516  * properties list.
517  *
518  * Entries below which begin and end with a "*" are a special case.
519  * These do not have a specific vendor, and the string which follows
520  * can appear anywhere in the 16 byte PID portion of the inquiry data.
521  *
522  * Entries below which begin and end with a " " (blank) are a special
523  * case. The comparison function will treat multiple consecutive blanks
524  * as equivalent to a single blank. For example, this causes a
525  * sd_disk_table entry of " NEC CDROM " to match a device's id string
526  * of  "NEC       CDROM".
527  *
528  * Note: The MD21 controller type has been obsoleted.
529  *	 ST318202F is a Legacy device
530  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
531  *	 made with an FC connection. The entries here are a legacy.
532  */
533 static sd_disk_config_t sd_disk_table[] = {
534 #if defined(__fibre) || defined(__i386) || defined(__amd64)
535 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
536 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
537 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
538 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
539 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
540 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
541 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
542 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
543 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
544 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
545 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
546 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
547 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
548 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
549 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
550 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
551 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
552 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
553 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
554 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
555 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
556 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
557 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
558 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
559 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
560 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
561 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
562 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
563 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
564 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
565 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
566 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
567 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
568 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
569 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
570 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
571 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
572 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
573 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
574 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
575 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
576 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
577 			SD_CONF_BSET_BSY_RETRY_COUNT|
578 			SD_CONF_BSET_RST_RETRIES|
579 			SD_CONF_BSET_RSV_REL_TIME,
580 		&purple_properties },
581 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
582 		SD_CONF_BSET_BSY_RETRY_COUNT|
583 		SD_CONF_BSET_RST_RETRIES|
584 		SD_CONF_BSET_RSV_REL_TIME|
585 		SD_CONF_BSET_MIN_THROTTLE|
586 		SD_CONF_BSET_DISKSORT_DISABLED,
587 		&sve_properties },
588 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
589 			SD_CONF_BSET_BSY_RETRY_COUNT|
590 			SD_CONF_BSET_RST_RETRIES|
591 			SD_CONF_BSET_RSV_REL_TIME,
592 		&purple_properties },
593 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
594 		SD_CONF_BSET_LUN_RESET_ENABLED,
595 		&maserati_properties },
596 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
597 		SD_CONF_BSET_NRR_COUNT|
598 		SD_CONF_BSET_BSY_RETRY_COUNT|
599 		SD_CONF_BSET_RST_RETRIES|
600 		SD_CONF_BSET_MIN_THROTTLE|
601 		SD_CONF_BSET_DISKSORT_DISABLED|
602 		SD_CONF_BSET_LUN_RESET_ENABLED,
603 		&pirus_properties },
604 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
605 		SD_CONF_BSET_NRR_COUNT|
606 		SD_CONF_BSET_BSY_RETRY_COUNT|
607 		SD_CONF_BSET_RST_RETRIES|
608 		SD_CONF_BSET_MIN_THROTTLE|
609 		SD_CONF_BSET_DISKSORT_DISABLED|
610 		SD_CONF_BSET_LUN_RESET_ENABLED,
611 		&pirus_properties },
612 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
613 		SD_CONF_BSET_NRR_COUNT|
614 		SD_CONF_BSET_BSY_RETRY_COUNT|
615 		SD_CONF_BSET_RST_RETRIES|
616 		SD_CONF_BSET_MIN_THROTTLE|
617 		SD_CONF_BSET_DISKSORT_DISABLED|
618 		SD_CONF_BSET_LUN_RESET_ENABLED,
619 		&pirus_properties },
620 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
621 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
622 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
623 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
624 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
625 #endif /* fibre or NON-sparc platforms */
626 #if ((defined(__sparc) && !defined(__fibre)) ||\
627 	(defined(__i386) || defined(__amd64)))
628 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
629 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
630 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
631 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
632 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
633 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
634 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
635 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
636 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
637 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
638 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
639 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
640 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
641 	    &symbios_properties },
642 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
643 	    &lsi_properties_scsi },
644 #if defined(__i386) || defined(__amd64)
645 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
646 				    | SD_CONF_BSET_READSUB_BCD
647 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
648 				    | SD_CONF_BSET_NO_READ_HEADER
649 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
650 
651 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
652 				    | SD_CONF_BSET_READSUB_BCD
653 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
654 				    | SD_CONF_BSET_NO_READ_HEADER
655 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
656 #endif /* __i386 || __amd64 */
657 #endif /* sparc NON-fibre or NON-sparc platforms */
658 
659 #if (defined(SD_PROP_TST))
660 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
661 				| SD_CONF_BSET_CTYPE
662 				| SD_CONF_BSET_NRR_COUNT
663 				| SD_CONF_BSET_FAB_DEVID
664 				| SD_CONF_BSET_NOCACHE
665 				| SD_CONF_BSET_BSY_RETRY_COUNT
666 				| SD_CONF_BSET_PLAYMSF_BCD
667 				| SD_CONF_BSET_READSUB_BCD
668 				| SD_CONF_BSET_READ_TOC_TRK_BCD
669 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
670 				| SD_CONF_BSET_NO_READ_HEADER
671 				| SD_CONF_BSET_READ_CD_XD4
672 				| SD_CONF_BSET_RST_RETRIES
673 				| SD_CONF_BSET_RSV_REL_TIME
674 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
675 #endif
676 };
677 
678 static const int sd_disk_table_size =
679 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
680 
681 
682 /*
683  * Return codes of sd_uselabel().
684  */
685 #define	SD_LABEL_IS_VALID		0
686 #define	SD_LABEL_IS_INVALID		1
687 
688 #define	SD_INTERCONNECT_PARALLEL	0
689 #define	SD_INTERCONNECT_FABRIC		1
690 #define	SD_INTERCONNECT_FIBRE		2
691 #define	SD_INTERCONNECT_SSA		3
692 #define	SD_IS_PARALLEL_SCSI(un)		\
693 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
694 
695 /*
696  * Definitions used by device id registration routines
697  */
698 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
699 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
700 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
701 #define	WD_NODE			7	/* the whole disk minor */
702 
703 static kmutex_t sd_sense_mutex = {0};
704 
705 /*
706  * Macros for updates of the driver state
707  */
708 #define	New_state(un, s)        \
709 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
710 #define	Restore_state(un)	\
711 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
712 
713 static struct sd_cdbinfo sd_cdbtab[] = {
714 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
715 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
716 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
717 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
718 };
719 
720 /*
721  * Specifies the number of seconds that must have elapsed since the last
722  * cmd. has completed for a device to be declared idle to the PM framework.
723  */
724 static int sd_pm_idletime = 1;
725 
726 /*
727  * Internal function prototypes
728  */
729 
730 #if (defined(__fibre))
731 /*
732  * These #defines are to avoid namespace collisions that occur because this
733  * code is currently used to compile two seperate driver modules: sd and ssd.
734  * All function names need to be treated this way (even if declared static)
735  * in order to allow the debugger to resolve the names properly.
736  * It is anticipated that in the near future the ssd module will be obsoleted,
737  * at which time this ugliness should go away.
738  */
739 #define	sd_log_trace			ssd_log_trace
740 #define	sd_log_info			ssd_log_info
741 #define	sd_log_err			ssd_log_err
742 #define	sdprobe				ssdprobe
743 #define	sdinfo				ssdinfo
744 #define	sd_prop_op			ssd_prop_op
745 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
746 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
747 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
748 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
749 #define	sd_spin_up_unit			ssd_spin_up_unit
750 #define	sd_enable_descr_sense		ssd_enable_descr_sense
751 #define	sd_set_mmc_caps			ssd_set_mmc_caps
752 #define	sd_read_unit_properties		ssd_read_unit_properties
753 #define	sd_process_sdconf_file		ssd_process_sdconf_file
754 #define	sd_process_sdconf_table		ssd_process_sdconf_table
755 #define	sd_sdconf_id_match		ssd_sdconf_id_match
756 #define	sd_blank_cmp			ssd_blank_cmp
757 #define	sd_chk_vers1_data		ssd_chk_vers1_data
758 #define	sd_set_vers1_properties		ssd_set_vers1_properties
759 #define	sd_validate_geometry		ssd_validate_geometry
760 
761 #if defined(_SUNOS_VTOC_16)
762 #define	sd_convert_geometry		ssd_convert_geometry
763 #endif
764 
765 #define	sd_resync_geom_caches		ssd_resync_geom_caches
766 #define	sd_read_fdisk			ssd_read_fdisk
767 #define	sd_get_physical_geometry	ssd_get_physical_geometry
768 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
769 #define	sd_update_block_info		ssd_update_block_info
770 #define	sd_swap_efi_gpt			ssd_swap_efi_gpt
771 #define	sd_swap_efi_gpe			ssd_swap_efi_gpe
772 #define	sd_validate_efi			ssd_validate_efi
773 #define	sd_use_efi			ssd_use_efi
774 #define	sd_uselabel			ssd_uselabel
775 #define	sd_build_default_label		ssd_build_default_label
776 #define	sd_has_max_chs_vals		ssd_has_max_chs_vals
777 #define	sd_inq_fill			ssd_inq_fill
778 #define	sd_register_devid		ssd_register_devid
779 #define	sd_get_devid_block		ssd_get_devid_block
780 #define	sd_get_devid			ssd_get_devid
781 #define	sd_create_devid			ssd_create_devid
782 #define	sd_write_deviceid		ssd_write_deviceid
783 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
784 #define	sd_setup_pm			ssd_setup_pm
785 #define	sd_create_pm_components		ssd_create_pm_components
786 #define	sd_ddi_suspend			ssd_ddi_suspend
787 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
788 #define	sd_ddi_resume			ssd_ddi_resume
789 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
790 #define	sdpower				ssdpower
791 #define	sdattach			ssdattach
792 #define	sddetach			ssddetach
793 #define	sd_unit_attach			ssd_unit_attach
794 #define	sd_unit_detach			ssd_unit_detach
795 #define	sd_create_minor_nodes		ssd_create_minor_nodes
796 #define	sd_create_errstats		ssd_create_errstats
797 #define	sd_set_errstats			ssd_set_errstats
798 #define	sd_set_pstats			ssd_set_pstats
799 #define	sddump				ssddump
800 #define	sd_scsi_poll			ssd_scsi_poll
801 #define	sd_send_polled_RQS		ssd_send_polled_RQS
802 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
803 #define	sd_init_event_callbacks		ssd_init_event_callbacks
804 #define	sd_event_callback		ssd_event_callback
805 #define	sd_disable_caching		ssd_disable_caching
806 #define	sd_make_device			ssd_make_device
807 #define	sdopen				ssdopen
808 #define	sdclose				ssdclose
809 #define	sd_ready_and_valid		ssd_ready_and_valid
810 #define	sdmin				ssdmin
811 #define	sdread				ssdread
812 #define	sdwrite				ssdwrite
813 #define	sdaread				ssdaread
814 #define	sdawrite			ssdawrite
815 #define	sdstrategy			ssdstrategy
816 #define	sdioctl				ssdioctl
817 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
818 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
819 #define	sd_checksum_iostart		ssd_checksum_iostart
820 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
821 #define	sd_pm_iostart			ssd_pm_iostart
822 #define	sd_core_iostart			ssd_core_iostart
823 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
824 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
825 #define	sd_checksum_iodone		ssd_checksum_iodone
826 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
827 #define	sd_pm_iodone			ssd_pm_iodone
828 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
829 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
830 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
831 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
832 #define	sd_buf_iodone			ssd_buf_iodone
833 #define	sd_uscsi_strategy		ssd_uscsi_strategy
834 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
835 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
836 #define	sd_uscsi_iodone			ssd_uscsi_iodone
837 #define	sd_xbuf_strategy		ssd_xbuf_strategy
838 #define	sd_xbuf_init			ssd_xbuf_init
839 #define	sd_pm_entry			ssd_pm_entry
840 #define	sd_pm_exit			ssd_pm_exit
841 
842 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
843 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
844 
845 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
846 #define	sdintr				ssdintr
847 #define	sd_start_cmds			ssd_start_cmds
848 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
849 #define	sd_bioclone_alloc		ssd_bioclone_alloc
850 #define	sd_bioclone_free		ssd_bioclone_free
851 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
852 #define	sd_shadow_buf_free		ssd_shadow_buf_free
853 #define	sd_print_transport_rejected_message	\
854 					ssd_print_transport_rejected_message
855 #define	sd_retry_command		ssd_retry_command
856 #define	sd_set_retry_bp			ssd_set_retry_bp
857 #define	sd_send_request_sense_command	ssd_send_request_sense_command
858 #define	sd_start_retry_command		ssd_start_retry_command
859 #define	sd_start_direct_priority_command	\
860 					ssd_start_direct_priority_command
861 #define	sd_return_failed_command	ssd_return_failed_command
862 #define	sd_return_failed_command_no_restart	\
863 					ssd_return_failed_command_no_restart
864 #define	sd_return_command		ssd_return_command
865 #define	sd_sync_with_callback		ssd_sync_with_callback
866 #define	sdrunout			ssdrunout
867 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
868 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
869 #define	sd_reduce_throttle		ssd_reduce_throttle
870 #define	sd_restore_throttle		ssd_restore_throttle
871 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
872 #define	sd_init_cdb_limits		ssd_init_cdb_limits
873 #define	sd_pkt_status_good		ssd_pkt_status_good
874 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
875 #define	sd_pkt_status_busy		ssd_pkt_status_busy
876 #define	sd_pkt_status_reservation_conflict	\
877 					ssd_pkt_status_reservation_conflict
878 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
879 #define	sd_handle_request_sense		ssd_handle_request_sense
880 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
881 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
882 #define	sd_validate_sense_data		ssd_validate_sense_data
883 #define	sd_decode_sense			ssd_decode_sense
884 #define	sd_print_sense_msg		ssd_print_sense_msg
885 #define	sd_extract_sense_info_descr	ssd_extract_sense_info_descr
886 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
887 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
888 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
889 #define	sd_sense_key_medium_or_hardware_error	\
890 					ssd_sense_key_medium_or_hardware_error
891 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
892 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
893 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
894 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
895 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
896 #define	sd_sense_key_default		ssd_sense_key_default
897 #define	sd_print_retry_msg		ssd_print_retry_msg
898 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
899 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
900 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
901 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
902 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
903 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
904 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
905 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
906 #define	sd_pkt_reason_default		ssd_pkt_reason_default
907 #define	sd_reset_target			ssd_reset_target
908 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
909 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
910 #define	sd_taskq_create			ssd_taskq_create
911 #define	sd_taskq_delete			ssd_taskq_delete
912 #define	sd_media_change_task		ssd_media_change_task
913 #define	sd_handle_mchange		ssd_handle_mchange
914 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
915 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
916 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
917 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
918 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
919 					sd_send_scsi_feature_GET_CONFIGURATION
920 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
921 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
922 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
923 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
924 					ssd_send_scsi_PERSISTENT_RESERVE_IN
925 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
926 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
927 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
928 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
929 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
930 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
931 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
932 #define	sd_alloc_rqs			ssd_alloc_rqs
933 #define	sd_free_rqs			ssd_free_rqs
934 #define	sd_dump_memory			ssd_dump_memory
935 #define	sd_uscsi_ioctl			ssd_uscsi_ioctl
936 #define	sd_get_media_info		ssd_get_media_info
937 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
938 #define	sd_dkio_get_geometry		ssd_dkio_get_geometry
939 #define	sd_dkio_set_geometry		ssd_dkio_set_geometry
940 #define	sd_dkio_get_partition		ssd_dkio_get_partition
941 #define	sd_dkio_set_partition		ssd_dkio_set_partition
942 #define	sd_dkio_partition		ssd_dkio_partition
943 #define	sd_dkio_get_vtoc		ssd_dkio_get_vtoc
944 #define	sd_dkio_get_efi			ssd_dkio_get_efi
945 #define	sd_build_user_vtoc		ssd_build_user_vtoc
946 #define	sd_dkio_set_vtoc		ssd_dkio_set_vtoc
947 #define	sd_dkio_set_efi			ssd_dkio_set_efi
948 #define	sd_build_label_vtoc		ssd_build_label_vtoc
949 #define	sd_write_label			ssd_write_label
950 #define	sd_clear_vtoc			ssd_clear_vtoc
951 #define	sd_clear_efi			ssd_clear_efi
952 #define	sd_fill_scsi1_lun		ssd_fill_scsi1_lun
953 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
954 #define	sd_setup_next_xfer		ssd_setup_next_xfer
955 #define	sd_dkio_get_temp		ssd_dkio_get_temp
956 #define	sd_dkio_get_mboot		ssd_dkio_get_mboot
957 #define	sd_dkio_set_mboot		ssd_dkio_set_mboot
958 #define	sd_setup_default_geometry	ssd_setup_default_geometry
959 #define	sd_update_fdisk_and_vtoc	ssd_update_fdisk_and_vtoc
960 #define	sd_check_mhd			ssd_check_mhd
961 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
962 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
963 #define	sd_sname			ssd_sname
964 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
965 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
966 #define	sd_take_ownership		ssd_take_ownership
967 #define	sd_reserve_release		ssd_reserve_release
968 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
969 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
970 #define	sd_persistent_reservation_in_read_keys	\
971 					ssd_persistent_reservation_in_read_keys
972 #define	sd_persistent_reservation_in_read_resv	\
973 					ssd_persistent_reservation_in_read_resv
974 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
975 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
976 #define	sd_mhdioc_release		ssd_mhdioc_release
977 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
978 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
979 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
980 #define	sr_change_blkmode		ssr_change_blkmode
981 #define	sr_change_speed			ssr_change_speed
982 #define	sr_atapi_change_speed		ssr_atapi_change_speed
983 #define	sr_pause_resume			ssr_pause_resume
984 #define	sr_play_msf			ssr_play_msf
985 #define	sr_play_trkind			ssr_play_trkind
986 #define	sr_read_all_subcodes		ssr_read_all_subcodes
987 #define	sr_read_subchannel		ssr_read_subchannel
988 #define	sr_read_tocentry		ssr_read_tocentry
989 #define	sr_read_tochdr			ssr_read_tochdr
990 #define	sr_read_cdda			ssr_read_cdda
991 #define	sr_read_cdxa			ssr_read_cdxa
992 #define	sr_read_mode1			ssr_read_mode1
993 #define	sr_read_mode2			ssr_read_mode2
994 #define	sr_read_cd_mode2		ssr_read_cd_mode2
995 #define	sr_sector_mode			ssr_sector_mode
996 #define	sr_eject			ssr_eject
997 #define	sr_ejected			ssr_ejected
998 #define	sr_check_wp			ssr_check_wp
999 #define	sd_check_media			ssd_check_media
1000 #define	sd_media_watch_cb		ssd_media_watch_cb
1001 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1002 #define	sr_volume_ctrl			ssr_volume_ctrl
1003 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1004 #define	sd_log_page_supported		ssd_log_page_supported
1005 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1006 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1007 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1008 #define	sd_range_lock			ssd_range_lock
1009 #define	sd_get_range			ssd_get_range
1010 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1011 #define	sd_range_unlock			ssd_range_unlock
1012 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1013 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1014 
1015 #define	sd_iostart_chain		ssd_iostart_chain
1016 #define	sd_iodone_chain			ssd_iodone_chain
1017 #define	sd_initpkt_map			ssd_initpkt_map
1018 #define	sd_destroypkt_map		ssd_destroypkt_map
1019 #define	sd_chain_type_map		ssd_chain_type_map
1020 #define	sd_chain_index_map		ssd_chain_index_map
1021 
1022 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1023 #define	sd_failfast_flushq		ssd_failfast_flushq
1024 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1025 
1026 #endif	/* #if (defined(__fibre)) */
1027 
1028 
1029 int _init(void);
1030 int _fini(void);
1031 int _info(struct modinfo *modinfop);
1032 
1033 /*PRINTFLIKE3*/
1034 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1035 /*PRINTFLIKE3*/
1036 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1037 /*PRINTFLIKE3*/
1038 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1039 
1040 static int sdprobe(dev_info_t *devi);
1041 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1042     void **result);
1043 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1044     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1045 
1046 /*
1047  * Smart probe for parallel scsi
1048  */
1049 static void sd_scsi_probe_cache_init(void);
1050 static void sd_scsi_probe_cache_fini(void);
1051 static void sd_scsi_clear_probe_cache(void);
1052 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1053 
1054 static int	sd_spin_up_unit(struct sd_lun *un);
1055 static void	sd_enable_descr_sense(struct sd_lun *un);
1056 static void	sd_set_mmc_caps(struct sd_lun *un);
1057 
1058 static void sd_fill_scsi1_lun(struct sd_lun *un, struct scsi_pkt *);
1059 static void sd_read_unit_properties(struct sd_lun *un);
1060 static int  sd_process_sdconf_file(struct sd_lun *un);
1061 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1062     int *data_list, sd_tunables *values);
1063 static void sd_process_sdconf_table(struct sd_lun *un);
1064 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1065 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1066 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1067 	int list_len, char *dataname_ptr);
1068 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1069     sd_tunables *prop_list);
1070 static int  sd_validate_geometry(struct sd_lun *un, int path_flag);
1071 
1072 #if defined(_SUNOS_VTOC_16)
1073 static void sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g);
1074 #endif
1075 
1076 static void sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize,
1077 	int path_flag);
1078 static int  sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize,
1079 	int path_flag);
1080 static void sd_get_physical_geometry(struct sd_lun *un,
1081 	struct geom_cache *pgeom_p, int capacity, int lbasize, int path_flag);
1082 static void sd_get_virtual_geometry(struct sd_lun *un, int capacity,
1083 	int lbasize);
1084 static int  sd_uselabel(struct sd_lun *un, struct dk_label *l, int path_flag);
1085 static void sd_swap_efi_gpt(efi_gpt_t *);
1086 static void sd_swap_efi_gpe(int nparts, efi_gpe_t *);
1087 static int sd_validate_efi(efi_gpt_t *);
1088 static int sd_use_efi(struct sd_lun *, int);
1089 static void sd_build_default_label(struct sd_lun *un);
1090 
1091 #if defined(_FIRMWARE_NEEDS_FDISK)
1092 static int  sd_has_max_chs_vals(struct ipart *fdp);
1093 #endif
1094 static void sd_inq_fill(char *p, int l, char *s);
1095 
1096 
1097 static void sd_register_devid(struct sd_lun *un, dev_info_t *devi,
1098     int reservation_flag);
1099 static daddr_t  sd_get_devid_block(struct sd_lun *un);
1100 static int  sd_get_devid(struct sd_lun *un);
1101 static int  sd_get_serialnum(struct sd_lun *un, uchar_t *wwn, int *len);
1102 static ddi_devid_t sd_create_devid(struct sd_lun *un);
1103 static int  sd_write_deviceid(struct sd_lun *un);
1104 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1105 static int  sd_check_vpd_page_support(struct sd_lun *un);
1106 
1107 static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi);
1108 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1109 
1110 static int  sd_ddi_suspend(dev_info_t *devi);
1111 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1112 static int  sd_ddi_resume(dev_info_t *devi);
1113 static int  sd_ddi_pm_resume(struct sd_lun *un);
1114 static int  sdpower(dev_info_t *devi, int component, int level);
1115 
1116 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1117 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1118 static int  sd_unit_attach(dev_info_t *devi);
1119 static int  sd_unit_detach(dev_info_t *devi);
1120 
1121 static int  sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi);
1122 static void sd_create_errstats(struct sd_lun *un, int instance);
1123 static void sd_set_errstats(struct sd_lun *un);
1124 static void sd_set_pstats(struct sd_lun *un);
1125 
1126 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1127 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1128 static int  sd_send_polled_RQS(struct sd_lun *un);
1129 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1130 
1131 #if (defined(__fibre))
1132 /*
1133  * Event callbacks (photon)
1134  */
1135 static void sd_init_event_callbacks(struct sd_lun *un);
1136 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1137 #endif
1138 
1139 
1140 static int   sd_disable_caching(struct sd_lun *un);
1141 static dev_t sd_make_device(dev_info_t *devi);
1142 
1143 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1144 	uint64_t capacity);
1145 
1146 /*
1147  * Driver entry point functions.
1148  */
1149 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1150 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1151 static int  sd_ready_and_valid(struct sd_lun *un);
1152 
1153 static void sdmin(struct buf *bp);
1154 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1155 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1156 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1157 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1158 
1159 static int sdstrategy(struct buf *bp);
1160 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1161 
1162 /*
1163  * Function prototypes for layering functions in the iostart chain.
1164  */
1165 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1166 	struct buf *bp);
1167 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1168 	struct buf *bp);
1169 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1170 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1171 	struct buf *bp);
1172 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1173 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1174 
1175 /*
1176  * Function prototypes for layering functions in the iodone chain.
1177  */
1178 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1179 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1180 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1181 	struct buf *bp);
1182 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1183 	struct buf *bp);
1184 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1185 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1186 	struct buf *bp);
1187 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1188 
1189 /*
1190  * Prototypes for functions to support buf(9S) based IO.
1191  */
1192 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1193 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1194 static void sd_destroypkt_for_buf(struct buf *);
1195 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1196 	struct buf *bp, int flags,
1197 	int (*callback)(caddr_t), caddr_t callback_arg,
1198 	diskaddr_t lba, uint32_t blockcount);
1199 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1200 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1201 
1202 /*
1203  * Prototypes for functions to support USCSI IO.
1204  */
1205 static int sd_uscsi_strategy(struct buf *bp);
1206 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1207 static void sd_destroypkt_for_uscsi(struct buf *);
1208 
1209 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1210 	uchar_t chain_type, void *pktinfop);
1211 
1212 static int  sd_pm_entry(struct sd_lun *un);
1213 static void sd_pm_exit(struct sd_lun *un);
1214 
1215 static void sd_pm_idletimeout_handler(void *arg);
1216 
1217 /*
1218  * sd_core internal functions (used at the sd_core_io layer).
1219  */
1220 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1221 static void sdintr(struct scsi_pkt *pktp);
1222 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1223 
1224 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd,
1225 	enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace,
1226 	int path_flag);
1227 
1228 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1229 	daddr_t blkno, int (*func)(struct buf *));
1230 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1231 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1232 static void sd_bioclone_free(struct buf *bp);
1233 static void sd_shadow_buf_free(struct buf *bp);
1234 
1235 static void sd_print_transport_rejected_message(struct sd_lun *un,
1236 	struct sd_xbuf *xp, int code);
1237 
1238 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1239 	int retry_check_flag,
1240 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1241 		int c),
1242 	void *user_arg, int failure_code,  clock_t retry_delay,
1243 	void (*statp)(kstat_io_t *));
1244 
1245 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1246 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1247 
1248 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1249 	struct scsi_pkt *pktp);
1250 static void sd_start_retry_command(void *arg);
1251 static void sd_start_direct_priority_command(void *arg);
1252 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1253 	int errcode);
1254 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1255 	struct buf *bp, int errcode);
1256 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1257 static void sd_sync_with_callback(struct sd_lun *un);
1258 static int sdrunout(caddr_t arg);
1259 
1260 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1261 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1262 
1263 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1264 static void sd_restore_throttle(void *arg);
1265 
1266 static void sd_init_cdb_limits(struct sd_lun *un);
1267 
1268 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1269 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1270 
1271 /*
1272  * Error handling functions
1273  */
1274 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1275 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1276 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1277 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1278 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1279 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1280 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1281 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1282 
1283 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1284 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1285 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1286 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1287 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1288 	struct sd_xbuf *xp);
1289 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1290 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1291 
1292 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1293 	void *arg, int code);
1294 static diskaddr_t sd_extract_sense_info_descr(
1295 	struct scsi_descr_sense_hdr *sdsp);
1296 
1297 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1298 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1299 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1300 	uint8_t asc,
1301 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1302 static void sd_sense_key_not_ready(struct sd_lun *un,
1303 	uint8_t asc, uint8_t ascq,
1304 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1305 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1306 	int sense_key, uint8_t asc,
1307 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1308 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1309 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1310 static void sd_sense_key_unit_attention(struct sd_lun *un,
1311 	uint8_t asc,
1312 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1313 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1314 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1315 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1316 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1317 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1318 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1319 static void sd_sense_key_default(struct sd_lun *un,
1320 	int sense_key,
1321 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1322 
1323 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1324 	void *arg, int flag);
1325 
1326 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1327 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1328 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1329 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1330 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1331 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1332 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1333 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1334 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1335 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1336 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1337 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1338 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1339 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1340 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1341 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1342 
1343 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1344 
1345 static void sd_start_stop_unit_callback(void *arg);
1346 static void sd_start_stop_unit_task(void *arg);
1347 
1348 static void sd_taskq_create(void);
1349 static void sd_taskq_delete(void);
1350 static void sd_media_change_task(void *arg);
1351 
1352 static int sd_handle_mchange(struct sd_lun *un);
1353 static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag);
1354 static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp,
1355 	uint32_t *lbap, int path_flag);
1356 static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
1357 	uint32_t *lbap, int path_flag);
1358 static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag,
1359 	int path_flag);
1360 static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr,
1361 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1362 static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag);
1363 static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un,
1364 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1365 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un,
1366 	uchar_t usr_cmd, uchar_t *usr_bufp);
1367 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un);
1368 static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un,
1369 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1370 	uchar_t *bufaddr, uint_t buflen);
1371 static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
1372 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1373 	uchar_t *bufaddr, uint_t buflen, char feature);
1374 static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize,
1375 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1376 static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize,
1377 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1378 static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
1379 	size_t buflen, daddr_t start_block, int path_flag);
1380 #define	sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag)	\
1381 	sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \
1382 	path_flag)
1383 #define	sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag)	\
1384 	sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\
1385 	path_flag)
1386 
1387 static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr,
1388 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1389 	uint16_t param_ptr, int path_flag);
1390 
1391 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1392 static void sd_free_rqs(struct sd_lun *un);
1393 
1394 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1395 	uchar_t *data, int len, int fmt);
1396 
1397 /*
1398  * Disk Ioctl Function Prototypes
1399  */
1400 static int sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag);
1401 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1402 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1403 static int sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag,
1404 	int geom_validated);
1405 static int sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag);
1406 static int sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag,
1407 	int geom_validated);
1408 static int sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag);
1409 static int sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag,
1410 	int geom_validated);
1411 static int sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag);
1412 static int sd_dkio_partition(dev_t dev, caddr_t arg, int flag);
1413 static void sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc);
1414 static int sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag);
1415 static int sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag);
1416 static int sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc);
1417 static int sd_write_label(dev_t dev);
1418 static int sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl);
1419 static void sd_clear_vtoc(struct sd_lun *un);
1420 static void sd_clear_efi(struct sd_lun *un);
1421 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1422 static int sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag);
1423 static int sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag);
1424 static void sd_setup_default_geometry(struct sd_lun *un);
1425 #if defined(__i386) || defined(__amd64)
1426 static int sd_update_fdisk_and_vtoc(struct sd_lun *un);
1427 #endif
1428 
1429 /*
1430  * Multi-host Ioctl Prototypes
1431  */
1432 static int sd_check_mhd(dev_t dev, int interval);
1433 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1434 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1435 static char *sd_sname(uchar_t status);
1436 static void sd_mhd_resvd_recover(void *arg);
1437 static void sd_resv_reclaim_thread();
1438 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1439 static int sd_reserve_release(dev_t dev, int cmd);
1440 static void sd_rmv_resv_reclaim_req(dev_t dev);
1441 static void sd_mhd_reset_notify_cb(caddr_t arg);
1442 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1443 	mhioc_inkeys_t *usrp, int flag);
1444 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1445 	mhioc_inresvs_t *usrp, int flag);
1446 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1447 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1448 static int sd_mhdioc_release(dev_t dev);
1449 static int sd_mhdioc_register_devid(dev_t dev);
1450 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1451 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1452 
1453 /*
1454  * SCSI removable prototypes
1455  */
1456 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1457 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1458 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1459 static int sr_pause_resume(dev_t dev, int mode);
1460 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1461 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1462 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1463 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1464 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1465 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1466 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1467 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1468 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1469 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1470 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1471 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1472 static int sr_eject(dev_t dev);
1473 static void sr_ejected(register struct sd_lun *un);
1474 static int sr_check_wp(dev_t dev);
1475 static int sd_check_media(dev_t dev, enum dkio_state state);
1476 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1477 static void sd_delayed_cv_broadcast(void *arg);
1478 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1479 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1480 
1481 static int sd_log_page_supported(struct sd_lun *un, int log_page);
1482 
1483 /*
1484  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1485  */
1486 static void sd_check_for_writable_cd(struct sd_lun *un);
1487 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1488 static void sd_wm_cache_destructor(void *wm, void *un);
1489 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1490 	daddr_t endb, ushort_t typ);
1491 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1492 	daddr_t endb);
1493 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1494 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1495 static void sd_read_modify_write_task(void * arg);
1496 static int
1497 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1498 	struct buf **bpp);
1499 
1500 
1501 /*
1502  * Function prototypes for failfast support.
1503  */
1504 static void sd_failfast_flushq(struct sd_lun *un);
1505 static int sd_failfast_flushq_callback(struct buf *bp);
1506 
1507 /*
1508  * Function prototypes for x86 support
1509  */
1510 #if defined(__i386) || defined(__amd64)
1511 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1512 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1513 #endif
1514 
1515 /*
1516  * Constants for failfast support:
1517  *
1518  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1519  * failfast processing being performed.
1520  *
1521  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1522  * failfast processing on all bufs with B_FAILFAST set.
1523  */
1524 
1525 #define	SD_FAILFAST_INACTIVE		0
1526 #define	SD_FAILFAST_ACTIVE		1
1527 
1528 /*
1529  * Bitmask to control behavior of buf(9S) flushes when a transition to
1530  * the failfast state occurs. Optional bits include:
1531  *
1532  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1533  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1534  * be flushed.
1535  *
1536  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1537  * driver, in addition to the regular wait queue. This includes the xbuf
1538  * queues. When clear, only the driver's wait queue will be flushed.
1539  */
1540 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1541 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1542 
1543 /*
1544  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1545  * to flush all queues within the driver.
1546  */
1547 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1548 
1549 
1550 /*
1551  * SD Testing Fault Injection
1552  */
1553 #ifdef SD_FAULT_INJECTION
1554 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1555 static void sd_faultinjection(struct scsi_pkt *pktp);
1556 static void sd_injection_log(char *buf, struct sd_lun *un);
1557 #endif
1558 
1559 /*
1560  * Device driver ops vector
1561  */
1562 static struct cb_ops sd_cb_ops = {
1563 	sdopen,			/* open */
1564 	sdclose,		/* close */
1565 	sdstrategy,		/* strategy */
1566 	nodev,			/* print */
1567 	sddump,			/* dump */
1568 	sdread,			/* read */
1569 	sdwrite,		/* write */
1570 	sdioctl,		/* ioctl */
1571 	nodev,			/* devmap */
1572 	nodev,			/* mmap */
1573 	nodev,			/* segmap */
1574 	nochpoll,		/* poll */
1575 	sd_prop_op,		/* cb_prop_op */
1576 	0,			/* streamtab  */
1577 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1578 	CB_REV,			/* cb_rev */
1579 	sdaread, 		/* async I/O read entry point */
1580 	sdawrite		/* async I/O write entry point */
1581 };
1582 
1583 static struct dev_ops sd_ops = {
1584 	DEVO_REV,		/* devo_rev, */
1585 	0,			/* refcnt  */
1586 	sdinfo,			/* info */
1587 	nulldev,		/* identify */
1588 	sdprobe,		/* probe */
1589 	sdattach,		/* attach */
1590 	sddetach,		/* detach */
1591 	nodev,			/* reset */
1592 	&sd_cb_ops,		/* driver operations */
1593 	NULL,			/* bus operations */
1594 	sdpower			/* power */
1595 };
1596 
1597 
1598 /*
1599  * This is the loadable module wrapper.
1600  */
1601 #include <sys/modctl.h>
1602 
1603 static struct modldrv modldrv = {
1604 	&mod_driverops,		/* Type of module. This one is a driver */
1605 	SD_MODULE_NAME,		/* Module name. */
1606 	&sd_ops			/* driver ops */
1607 };
1608 
1609 
1610 static struct modlinkage modlinkage = {
1611 	MODREV_1,
1612 	&modldrv,
1613 	NULL
1614 };
1615 
1616 
1617 static struct scsi_asq_key_strings sd_additional_codes[] = {
1618 	0x81, 0, "Logical Unit is Reserved",
1619 	0x85, 0, "Audio Address Not Valid",
1620 	0xb6, 0, "Media Load Mechanism Failed",
1621 	0xB9, 0, "Audio Play Operation Aborted",
1622 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1623 	0x53, 2, "Medium removal prevented",
1624 	0x6f, 0, "Authentication failed during key exchange",
1625 	0x6f, 1, "Key not present",
1626 	0x6f, 2, "Key not established",
1627 	0x6f, 3, "Read without proper authentication",
1628 	0x6f, 4, "Mismatched region to this logical unit",
1629 	0x6f, 5, "Region reset count error",
1630 	0xffff, 0x0, NULL
1631 };
1632 
1633 
1634 /*
1635  * Struct for passing printing information for sense data messages
1636  */
1637 struct sd_sense_info {
1638 	int	ssi_severity;
1639 	int	ssi_pfa_flag;
1640 };
1641 
1642 /*
1643  * Table of function pointers for iostart-side routines. Seperate "chains"
1644  * of layered function calls are formed by placing the function pointers
1645  * sequentially in the desired order. Functions are called according to an
1646  * incrementing table index ordering. The last function in each chain must
1647  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1648  * in the sd_iodone_chain[] array.
1649  *
1650  * Note: It may seem more natural to organize both the iostart and iodone
1651  * functions together, into an array of structures (or some similar
1652  * organization) with a common index, rather than two seperate arrays which
1653  * must be maintained in synchronization. The purpose of this division is
1654  * to achiece improved performance: individual arrays allows for more
1655  * effective cache line utilization on certain platforms.
1656  */
1657 
1658 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1659 
1660 
1661 static sd_chain_t sd_iostart_chain[] = {
1662 
1663 	/* Chain for buf IO for disk drive targets (PM enabled) */
1664 	sd_mapblockaddr_iostart,	/* Index: 0 */
1665 	sd_pm_iostart,			/* Index: 1 */
1666 	sd_core_iostart,		/* Index: 2 */
1667 
1668 	/* Chain for buf IO for disk drive targets (PM disabled) */
1669 	sd_mapblockaddr_iostart,	/* Index: 3 */
1670 	sd_core_iostart,		/* Index: 4 */
1671 
1672 	/* Chain for buf IO for removable-media targets (PM enabled) */
1673 	sd_mapblockaddr_iostart,	/* Index: 5 */
1674 	sd_mapblocksize_iostart,	/* Index: 6 */
1675 	sd_pm_iostart,			/* Index: 7 */
1676 	sd_core_iostart,		/* Index: 8 */
1677 
1678 	/* Chain for buf IO for removable-media targets (PM disabled) */
1679 	sd_mapblockaddr_iostart,	/* Index: 9 */
1680 	sd_mapblocksize_iostart,	/* Index: 10 */
1681 	sd_core_iostart,		/* Index: 11 */
1682 
1683 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1684 	sd_mapblockaddr_iostart,	/* Index: 12 */
1685 	sd_checksum_iostart,		/* Index: 13 */
1686 	sd_pm_iostart,			/* Index: 14 */
1687 	sd_core_iostart,		/* Index: 15 */
1688 
1689 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1690 	sd_mapblockaddr_iostart,	/* Index: 16 */
1691 	sd_checksum_iostart,		/* Index: 17 */
1692 	sd_core_iostart,		/* Index: 18 */
1693 
1694 	/* Chain for USCSI commands (all targets) */
1695 	sd_pm_iostart,			/* Index: 19 */
1696 	sd_core_iostart,		/* Index: 20 */
1697 
1698 	/* Chain for checksumming USCSI commands (all targets) */
1699 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1700 	sd_pm_iostart,			/* Index: 22 */
1701 	sd_core_iostart,		/* Index: 23 */
1702 
1703 	/* Chain for "direct" USCSI commands (all targets) */
1704 	sd_core_iostart,		/* Index: 24 */
1705 
1706 	/* Chain for "direct priority" USCSI commands (all targets) */
1707 	sd_core_iostart,		/* Index: 25 */
1708 };
1709 
1710 /*
1711  * Macros to locate the first function of each iostart chain in the
1712  * sd_iostart_chain[] array. These are located by the index in the array.
1713  */
1714 #define	SD_CHAIN_DISK_IOSTART			0
1715 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1716 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1717 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1718 #define	SD_CHAIN_CHKSUM_IOSTART			12
1719 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1720 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1721 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1722 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1723 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1724 
1725 
1726 /*
1727  * Table of function pointers for the iodone-side routines for the driver-
1728  * internal layering mechanism.  The calling sequence for iodone routines
1729  * uses a decrementing table index, so the last routine called in a chain
1730  * must be at the lowest array index location for that chain.  The last
1731  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1732  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1733  * of the functions in an iodone side chain must correspond to the ordering
1734  * of the iostart routines for that chain.  Note that there is no iodone
1735  * side routine that corresponds to sd_core_iostart(), so there is no
1736  * entry in the table for this.
1737  */
1738 
1739 static sd_chain_t sd_iodone_chain[] = {
1740 
1741 	/* Chain for buf IO for disk drive targets (PM enabled) */
1742 	sd_buf_iodone,			/* Index: 0 */
1743 	sd_mapblockaddr_iodone,		/* Index: 1 */
1744 	sd_pm_iodone,			/* Index: 2 */
1745 
1746 	/* Chain for buf IO for disk drive targets (PM disabled) */
1747 	sd_buf_iodone,			/* Index: 3 */
1748 	sd_mapblockaddr_iodone,		/* Index: 4 */
1749 
1750 	/* Chain for buf IO for removable-media targets (PM enabled) */
1751 	sd_buf_iodone,			/* Index: 5 */
1752 	sd_mapblockaddr_iodone,		/* Index: 6 */
1753 	sd_mapblocksize_iodone,		/* Index: 7 */
1754 	sd_pm_iodone,			/* Index: 8 */
1755 
1756 	/* Chain for buf IO for removable-media targets (PM disabled) */
1757 	sd_buf_iodone,			/* Index: 9 */
1758 	sd_mapblockaddr_iodone,		/* Index: 10 */
1759 	sd_mapblocksize_iodone,		/* Index: 11 */
1760 
1761 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1762 	sd_buf_iodone,			/* Index: 12 */
1763 	sd_mapblockaddr_iodone,		/* Index: 13 */
1764 	sd_checksum_iodone,		/* Index: 14 */
1765 	sd_pm_iodone,			/* Index: 15 */
1766 
1767 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1768 	sd_buf_iodone,			/* Index: 16 */
1769 	sd_mapblockaddr_iodone,		/* Index: 17 */
1770 	sd_checksum_iodone,		/* Index: 18 */
1771 
1772 	/* Chain for USCSI commands (non-checksum targets) */
1773 	sd_uscsi_iodone,		/* Index: 19 */
1774 	sd_pm_iodone,			/* Index: 20 */
1775 
1776 	/* Chain for USCSI commands (checksum targets) */
1777 	sd_uscsi_iodone,		/* Index: 21 */
1778 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1779 	sd_pm_iodone,			/* Index: 22 */
1780 
1781 	/* Chain for "direct" USCSI commands (all targets) */
1782 	sd_uscsi_iodone,		/* Index: 24 */
1783 
1784 	/* Chain for "direct priority" USCSI commands (all targets) */
1785 	sd_uscsi_iodone,		/* Index: 25 */
1786 };
1787 
1788 
1789 /*
1790  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1791  * each iodone-side chain. These are located by the array index, but as the
1792  * iodone side functions are called in a decrementing-index order, the
1793  * highest index number in each chain must be specified (as these correspond
1794  * to the first function in the iodone chain that will be called by the core
1795  * at IO completion time).
1796  */
1797 
1798 #define	SD_CHAIN_DISK_IODONE			2
1799 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1800 #define	SD_CHAIN_RMMEDIA_IODONE			8
1801 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1802 #define	SD_CHAIN_CHKSUM_IODONE			15
1803 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1804 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1805 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1806 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1807 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1808 
1809 
1810 
1811 
1812 /*
1813  * Array to map a layering chain index to the appropriate initpkt routine.
1814  * The redundant entries are present so that the index used for accessing
1815  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1816  * with this table as well.
1817  */
1818 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1819 
1820 static sd_initpkt_t	sd_initpkt_map[] = {
1821 
1822 	/* Chain for buf IO for disk drive targets (PM enabled) */
1823 	sd_initpkt_for_buf,		/* Index: 0 */
1824 	sd_initpkt_for_buf,		/* Index: 1 */
1825 	sd_initpkt_for_buf,		/* Index: 2 */
1826 
1827 	/* Chain for buf IO for disk drive targets (PM disabled) */
1828 	sd_initpkt_for_buf,		/* Index: 3 */
1829 	sd_initpkt_for_buf,		/* Index: 4 */
1830 
1831 	/* Chain for buf IO for removable-media targets (PM enabled) */
1832 	sd_initpkt_for_buf,		/* Index: 5 */
1833 	sd_initpkt_for_buf,		/* Index: 6 */
1834 	sd_initpkt_for_buf,		/* Index: 7 */
1835 	sd_initpkt_for_buf,		/* Index: 8 */
1836 
1837 	/* Chain for buf IO for removable-media targets (PM disabled) */
1838 	sd_initpkt_for_buf,		/* Index: 9 */
1839 	sd_initpkt_for_buf,		/* Index: 10 */
1840 	sd_initpkt_for_buf,		/* Index: 11 */
1841 
1842 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1843 	sd_initpkt_for_buf,		/* Index: 12 */
1844 	sd_initpkt_for_buf,		/* Index: 13 */
1845 	sd_initpkt_for_buf,		/* Index: 14 */
1846 	sd_initpkt_for_buf,		/* Index: 15 */
1847 
1848 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1849 	sd_initpkt_for_buf,		/* Index: 16 */
1850 	sd_initpkt_for_buf,		/* Index: 17 */
1851 	sd_initpkt_for_buf,		/* Index: 18 */
1852 
1853 	/* Chain for USCSI commands (non-checksum targets) */
1854 	sd_initpkt_for_uscsi,		/* Index: 19 */
1855 	sd_initpkt_for_uscsi,		/* Index: 20 */
1856 
1857 	/* Chain for USCSI commands (checksum targets) */
1858 	sd_initpkt_for_uscsi,		/* Index: 21 */
1859 	sd_initpkt_for_uscsi,		/* Index: 22 */
1860 	sd_initpkt_for_uscsi,		/* Index: 22 */
1861 
1862 	/* Chain for "direct" USCSI commands (all targets) */
1863 	sd_initpkt_for_uscsi,		/* Index: 24 */
1864 
1865 	/* Chain for "direct priority" USCSI commands (all targets) */
1866 	sd_initpkt_for_uscsi,		/* Index: 25 */
1867 
1868 };
1869 
1870 
1871 /*
1872  * Array to map a layering chain index to the appropriate destroypktpkt routine.
1873  * The redundant entries are present so that the index used for accessing
1874  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1875  * with this table as well.
1876  */
1877 typedef void (*sd_destroypkt_t)(struct buf *);
1878 
1879 static sd_destroypkt_t	sd_destroypkt_map[] = {
1880 
1881 	/* Chain for buf IO for disk drive targets (PM enabled) */
1882 	sd_destroypkt_for_buf,		/* Index: 0 */
1883 	sd_destroypkt_for_buf,		/* Index: 1 */
1884 	sd_destroypkt_for_buf,		/* Index: 2 */
1885 
1886 	/* Chain for buf IO for disk drive targets (PM disabled) */
1887 	sd_destroypkt_for_buf,		/* Index: 3 */
1888 	sd_destroypkt_for_buf,		/* Index: 4 */
1889 
1890 	/* Chain for buf IO for removable-media targets (PM enabled) */
1891 	sd_destroypkt_for_buf,		/* Index: 5 */
1892 	sd_destroypkt_for_buf,		/* Index: 6 */
1893 	sd_destroypkt_for_buf,		/* Index: 7 */
1894 	sd_destroypkt_for_buf,		/* Index: 8 */
1895 
1896 	/* Chain for buf IO for removable-media targets (PM disabled) */
1897 	sd_destroypkt_for_buf,		/* Index: 9 */
1898 	sd_destroypkt_for_buf,		/* Index: 10 */
1899 	sd_destroypkt_for_buf,		/* Index: 11 */
1900 
1901 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1902 	sd_destroypkt_for_buf,		/* Index: 12 */
1903 	sd_destroypkt_for_buf,		/* Index: 13 */
1904 	sd_destroypkt_for_buf,		/* Index: 14 */
1905 	sd_destroypkt_for_buf,		/* Index: 15 */
1906 
1907 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1908 	sd_destroypkt_for_buf,		/* Index: 16 */
1909 	sd_destroypkt_for_buf,		/* Index: 17 */
1910 	sd_destroypkt_for_buf,		/* Index: 18 */
1911 
1912 	/* Chain for USCSI commands (non-checksum targets) */
1913 	sd_destroypkt_for_uscsi,	/* Index: 19 */
1914 	sd_destroypkt_for_uscsi,	/* Index: 20 */
1915 
1916 	/* Chain for USCSI commands (checksum targets) */
1917 	sd_destroypkt_for_uscsi,	/* Index: 21 */
1918 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1919 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1920 
1921 	/* Chain for "direct" USCSI commands (all targets) */
1922 	sd_destroypkt_for_uscsi,	/* Index: 24 */
1923 
1924 	/* Chain for "direct priority" USCSI commands (all targets) */
1925 	sd_destroypkt_for_uscsi,	/* Index: 25 */
1926 
1927 };
1928 
1929 
1930 
1931 /*
1932  * Array to map a layering chain index to the appropriate chain "type".
1933  * The chain type indicates a specific property/usage of the chain.
1934  * The redundant entries are present so that the index used for accessing
1935  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1936  * with this table as well.
1937  */
1938 
1939 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
1940 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
1941 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
1942 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
1943 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
1944 						/* (for error recovery) */
1945 
1946 static int sd_chain_type_map[] = {
1947 
1948 	/* Chain for buf IO for disk drive targets (PM enabled) */
1949 	SD_CHAIN_BUFIO,			/* Index: 0 */
1950 	SD_CHAIN_BUFIO,			/* Index: 1 */
1951 	SD_CHAIN_BUFIO,			/* Index: 2 */
1952 
1953 	/* Chain for buf IO for disk drive targets (PM disabled) */
1954 	SD_CHAIN_BUFIO,			/* Index: 3 */
1955 	SD_CHAIN_BUFIO,			/* Index: 4 */
1956 
1957 	/* Chain for buf IO for removable-media targets (PM enabled) */
1958 	SD_CHAIN_BUFIO,			/* Index: 5 */
1959 	SD_CHAIN_BUFIO,			/* Index: 6 */
1960 	SD_CHAIN_BUFIO,			/* Index: 7 */
1961 	SD_CHAIN_BUFIO,			/* Index: 8 */
1962 
1963 	/* Chain for buf IO for removable-media targets (PM disabled) */
1964 	SD_CHAIN_BUFIO,			/* Index: 9 */
1965 	SD_CHAIN_BUFIO,			/* Index: 10 */
1966 	SD_CHAIN_BUFIO,			/* Index: 11 */
1967 
1968 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1969 	SD_CHAIN_BUFIO,			/* Index: 12 */
1970 	SD_CHAIN_BUFIO,			/* Index: 13 */
1971 	SD_CHAIN_BUFIO,			/* Index: 14 */
1972 	SD_CHAIN_BUFIO,			/* Index: 15 */
1973 
1974 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1975 	SD_CHAIN_BUFIO,			/* Index: 16 */
1976 	SD_CHAIN_BUFIO,			/* Index: 17 */
1977 	SD_CHAIN_BUFIO,			/* Index: 18 */
1978 
1979 	/* Chain for USCSI commands (non-checksum targets) */
1980 	SD_CHAIN_USCSI,			/* Index: 19 */
1981 	SD_CHAIN_USCSI,			/* Index: 20 */
1982 
1983 	/* Chain for USCSI commands (checksum targets) */
1984 	SD_CHAIN_USCSI,			/* Index: 21 */
1985 	SD_CHAIN_USCSI,			/* Index: 22 */
1986 	SD_CHAIN_USCSI,			/* Index: 22 */
1987 
1988 	/* Chain for "direct" USCSI commands (all targets) */
1989 	SD_CHAIN_DIRECT,		/* Index: 24 */
1990 
1991 	/* Chain for "direct priority" USCSI commands (all targets) */
1992 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
1993 };
1994 
1995 
1996 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
1997 #define	SD_IS_BUFIO(xp)			\
1998 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
1999 
2000 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2001 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2002 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2003 
2004 
2005 
2006 /*
2007  * Struct, array, and macros to map a specific chain to the appropriate
2008  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2009  *
2010  * The sd_chain_index_map[] array is used at attach time to set the various
2011  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2012  * chain to be used with the instance. This allows different instances to use
2013  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2014  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2015  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2016  * dynamically & without the use of locking; and (2) a layer may update the
2017  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2018  * to allow for deferred processing of an IO within the same chain from a
2019  * different execution context.
2020  */
2021 
2022 struct sd_chain_index {
2023 	int	sci_iostart_index;
2024 	int	sci_iodone_index;
2025 };
2026 
2027 static struct sd_chain_index	sd_chain_index_map[] = {
2028 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2029 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2030 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2031 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2032 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2033 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2034 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2035 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2036 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2037 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2038 };
2039 
2040 
2041 /*
2042  * The following are indexes into the sd_chain_index_map[] array.
2043  */
2044 
2045 /* un->un_buf_chain_type must be set to one of these */
2046 #define	SD_CHAIN_INFO_DISK		0
2047 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2048 #define	SD_CHAIN_INFO_RMMEDIA		2
2049 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2050 #define	SD_CHAIN_INFO_CHKSUM		4
2051 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2052 
2053 /* un->un_uscsi_chain_type must be set to one of these */
2054 #define	SD_CHAIN_INFO_USCSI_CMD		6
2055 /* USCSI with PM disabled is the same as DIRECT */
2056 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2057 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2058 
2059 /* un->un_direct_chain_type must be set to one of these */
2060 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2061 
2062 /* un->un_priority_chain_type must be set to one of these */
2063 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2064 
2065 /* size for devid inquiries */
2066 #define	MAX_INQUIRY_SIZE		0xF0
2067 
2068 /*
2069  * Macros used by functions to pass a given buf(9S) struct along to the
2070  * next function in the layering chain for further processing.
2071  *
2072  * In the following macros, passing more than three arguments to the called
2073  * routines causes the optimizer for the SPARC compiler to stop doing tail
2074  * call elimination which results in significant performance degradation.
2075  */
2076 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2077 	((*(sd_iostart_chain[index]))(index, un, bp))
2078 
2079 #define	SD_BEGIN_IODONE(index, un, bp)	\
2080 	((*(sd_iodone_chain[index]))(index, un, bp))
2081 
2082 #define	SD_NEXT_IOSTART(index, un, bp)				\
2083 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2084 
2085 #define	SD_NEXT_IODONE(index, un, bp)				\
2086 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2087 
2088 
2089 /*
2090  *    Function: _init
2091  *
2092  * Description: This is the driver _init(9E) entry point.
2093  *
2094  * Return Code: Returns the value from mod_install(9F) or
2095  *		ddi_soft_state_init(9F) as appropriate.
2096  *
2097  *     Context: Called when driver module loaded.
2098  */
2099 
2100 int
2101 _init(void)
2102 {
2103 	int	err;
2104 
2105 	/* establish driver name from module name */
2106 	sd_label = mod_modname(&modlinkage);
2107 
2108 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2109 		SD_MAXUNIT);
2110 
2111 	if (err != 0) {
2112 		return (err);
2113 	}
2114 
2115 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2116 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2117 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2118 
2119 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2120 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2121 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2122 
2123 	/*
2124 	 * it's ok to init here even for fibre device
2125 	 */
2126 	sd_scsi_probe_cache_init();
2127 
2128 	/*
2129 	 * Creating taskq before mod_install ensures that all callers (threads)
2130 	 * that enter the module after a successfull mod_install encounter
2131 	 * a valid taskq.
2132 	 */
2133 	sd_taskq_create();
2134 
2135 	err = mod_install(&modlinkage);
2136 	if (err != 0) {
2137 		/* delete taskq if install fails */
2138 		sd_taskq_delete();
2139 
2140 		mutex_destroy(&sd_detach_mutex);
2141 		mutex_destroy(&sd_log_mutex);
2142 		mutex_destroy(&sd_label_mutex);
2143 
2144 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2145 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2146 		cv_destroy(&sd_tr.srq_inprocess_cv);
2147 
2148 		sd_scsi_probe_cache_fini();
2149 
2150 		ddi_soft_state_fini(&sd_state);
2151 		return (err);
2152 	}
2153 
2154 	return (err);
2155 }
2156 
2157 
2158 /*
2159  *    Function: _fini
2160  *
2161  * Description: This is the driver _fini(9E) entry point.
2162  *
2163  * Return Code: Returns the value from mod_remove(9F)
2164  *
2165  *     Context: Called when driver module is unloaded.
2166  */
2167 
2168 int
2169 _fini(void)
2170 {
2171 	int err;
2172 
2173 	if ((err = mod_remove(&modlinkage)) != 0) {
2174 		return (err);
2175 	}
2176 
2177 	sd_taskq_delete();
2178 
2179 	mutex_destroy(&sd_detach_mutex);
2180 	mutex_destroy(&sd_log_mutex);
2181 	mutex_destroy(&sd_label_mutex);
2182 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2183 
2184 	sd_scsi_probe_cache_fini();
2185 
2186 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2187 	cv_destroy(&sd_tr.srq_inprocess_cv);
2188 
2189 	ddi_soft_state_fini(&sd_state);
2190 
2191 	return (err);
2192 }
2193 
2194 
2195 /*
2196  *    Function: _info
2197  *
2198  * Description: This is the driver _info(9E) entry point.
2199  *
2200  *   Arguments: modinfop - pointer to the driver modinfo structure
2201  *
2202  * Return Code: Returns the value from mod_info(9F).
2203  *
2204  *     Context: Kernel thread context
2205  */
2206 
2207 int
2208 _info(struct modinfo *modinfop)
2209 {
2210 	return (mod_info(&modlinkage, modinfop));
2211 }
2212 
2213 
2214 static void
2215 sd_fill_scsi1_lun(struct sd_lun *un, struct scsi_pkt *pktp)
2216 {
2217 	ASSERT(pktp != NULL);
2218 	if (un->un_f_is_fibre == TRUE) {
2219 		return;
2220 	}
2221 
2222 	SD_FILL_SCSI1_LUN(SD_SCSI_DEVP(un), pktp);
2223 }
2224 
2225 /*
2226  * The following routines implement the driver message logging facility.
2227  * They provide component- and level- based debug output filtering.
2228  * Output may also be restricted to messages for a single instance by
2229  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2230  * to NULL, then messages for all instances are printed.
2231  *
2232  * These routines have been cloned from each other due to the language
2233  * constraints of macros and variable argument list processing.
2234  */
2235 
2236 
2237 /*
2238  *    Function: sd_log_err
2239  *
2240  * Description: This routine is called by the SD_ERROR macro for debug
2241  *		logging of error conditions.
2242  *
2243  *   Arguments: comp - driver component being logged
2244  *		dev  - pointer to driver info structure
2245  *		fmt  - error string and format to be logged
2246  */
2247 
2248 static void
2249 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2250 {
2251 	va_list		ap;
2252 	dev_info_t	*dev;
2253 
2254 	ASSERT(un != NULL);
2255 	dev = SD_DEVINFO(un);
2256 	ASSERT(dev != NULL);
2257 
2258 	/*
2259 	 * Filter messages based on the global component and level masks.
2260 	 * Also print if un matches the value of sd_debug_un, or if
2261 	 * sd_debug_un is set to NULL.
2262 	 */
2263 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2264 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2265 		mutex_enter(&sd_log_mutex);
2266 		va_start(ap, fmt);
2267 		(void) vsprintf(sd_log_buf, fmt, ap);
2268 		va_end(ap);
2269 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2270 		mutex_exit(&sd_log_mutex);
2271 	}
2272 #ifdef SD_FAULT_INJECTION
2273 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2274 	if (un->sd_injection_mask & comp) {
2275 		mutex_enter(&sd_log_mutex);
2276 		va_start(ap, fmt);
2277 		(void) vsprintf(sd_log_buf, fmt, ap);
2278 		va_end(ap);
2279 		sd_injection_log(sd_log_buf, un);
2280 		mutex_exit(&sd_log_mutex);
2281 	}
2282 #endif
2283 }
2284 
2285 
2286 /*
2287  *    Function: sd_log_info
2288  *
2289  * Description: This routine is called by the SD_INFO macro for debug
2290  *		logging of general purpose informational conditions.
2291  *
2292  *   Arguments: comp - driver component being logged
2293  *		dev  - pointer to driver info structure
2294  *		fmt  - info string and format to be logged
2295  */
2296 
2297 static void
2298 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2299 {
2300 	va_list		ap;
2301 	dev_info_t	*dev;
2302 
2303 	ASSERT(un != NULL);
2304 	dev = SD_DEVINFO(un);
2305 	ASSERT(dev != NULL);
2306 
2307 	/*
2308 	 * Filter messages based on the global component and level masks.
2309 	 * Also print if un matches the value of sd_debug_un, or if
2310 	 * sd_debug_un is set to NULL.
2311 	 */
2312 	if ((sd_component_mask & component) &&
2313 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2314 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2315 		mutex_enter(&sd_log_mutex);
2316 		va_start(ap, fmt);
2317 		(void) vsprintf(sd_log_buf, fmt, ap);
2318 		va_end(ap);
2319 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2320 		mutex_exit(&sd_log_mutex);
2321 	}
2322 #ifdef SD_FAULT_INJECTION
2323 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2324 	if (un->sd_injection_mask & component) {
2325 		mutex_enter(&sd_log_mutex);
2326 		va_start(ap, fmt);
2327 		(void) vsprintf(sd_log_buf, fmt, ap);
2328 		va_end(ap);
2329 		sd_injection_log(sd_log_buf, un);
2330 		mutex_exit(&sd_log_mutex);
2331 	}
2332 #endif
2333 }
2334 
2335 
2336 /*
2337  *    Function: sd_log_trace
2338  *
2339  * Description: This routine is called by the SD_TRACE macro for debug
2340  *		logging of trace conditions (i.e. function entry/exit).
2341  *
2342  *   Arguments: comp - driver component being logged
2343  *		dev  - pointer to driver info structure
2344  *		fmt  - trace string and format to be logged
2345  */
2346 
2347 static void
2348 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2349 {
2350 	va_list		ap;
2351 	dev_info_t	*dev;
2352 
2353 	ASSERT(un != NULL);
2354 	dev = SD_DEVINFO(un);
2355 	ASSERT(dev != NULL);
2356 
2357 	/*
2358 	 * Filter messages based on the global component and level masks.
2359 	 * Also print if un matches the value of sd_debug_un, or if
2360 	 * sd_debug_un is set to NULL.
2361 	 */
2362 	if ((sd_component_mask & component) &&
2363 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2364 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2365 		mutex_enter(&sd_log_mutex);
2366 		va_start(ap, fmt);
2367 		(void) vsprintf(sd_log_buf, fmt, ap);
2368 		va_end(ap);
2369 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2370 		mutex_exit(&sd_log_mutex);
2371 	}
2372 #ifdef SD_FAULT_INJECTION
2373 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2374 	if (un->sd_injection_mask & component) {
2375 		mutex_enter(&sd_log_mutex);
2376 		va_start(ap, fmt);
2377 		(void) vsprintf(sd_log_buf, fmt, ap);
2378 		va_end(ap);
2379 		sd_injection_log(sd_log_buf, un);
2380 		mutex_exit(&sd_log_mutex);
2381 	}
2382 #endif
2383 }
2384 
2385 
2386 /*
2387  *    Function: sdprobe
2388  *
2389  * Description: This is the driver probe(9e) entry point function.
2390  *
2391  *   Arguments: devi - opaque device info handle
2392  *
2393  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2394  *              DDI_PROBE_FAILURE: If the probe failed.
2395  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2396  *				   but may be present in the future.
2397  */
2398 
2399 static int
2400 sdprobe(dev_info_t *devi)
2401 {
2402 	struct scsi_device	*devp;
2403 	int			rval;
2404 	int			instance;
2405 
2406 	/*
2407 	 * if it wasn't for pln, sdprobe could actually be nulldev
2408 	 * in the "__fibre" case.
2409 	 */
2410 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2411 		return (DDI_PROBE_DONTCARE);
2412 	}
2413 
2414 	devp = ddi_get_driver_private(devi);
2415 
2416 	if (devp == NULL) {
2417 		/* Ooops... nexus driver is mis-configured... */
2418 		return (DDI_PROBE_FAILURE);
2419 	}
2420 
2421 	instance = ddi_get_instance(devi);
2422 
2423 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2424 		return (DDI_PROBE_PARTIAL);
2425 	}
2426 
2427 	/*
2428 	 * Call the SCSA utility probe routine to see if we actually
2429 	 * have a target at this SCSI nexus.
2430 	 */
2431 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2432 	case SCSIPROBE_EXISTS:
2433 		switch (devp->sd_inq->inq_dtype) {
2434 		case DTYPE_DIRECT:
2435 			rval = DDI_PROBE_SUCCESS;
2436 			break;
2437 		case DTYPE_RODIRECT:
2438 			/* CDs etc. Can be removable media */
2439 			rval = DDI_PROBE_SUCCESS;
2440 			break;
2441 		case DTYPE_OPTICAL:
2442 			/*
2443 			 * Rewritable optical driver HP115AA
2444 			 * Can also be removable media
2445 			 */
2446 
2447 			/*
2448 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2449 			 * pre solaris 9 sparc sd behavior is required
2450 			 *
2451 			 * If first time through and sd_dtype_optical_bind
2452 			 * has not been set in /etc/system check properties
2453 			 */
2454 
2455 			if (sd_dtype_optical_bind  < 0) {
2456 			    sd_dtype_optical_bind = ddi_prop_get_int
2457 				(DDI_DEV_T_ANY,	devi,	0,
2458 				"optical-device-bind",	1);
2459 			}
2460 
2461 			if (sd_dtype_optical_bind == 0) {
2462 				rval = DDI_PROBE_FAILURE;
2463 			} else {
2464 				rval = DDI_PROBE_SUCCESS;
2465 			}
2466 			break;
2467 
2468 		case DTYPE_NOTPRESENT:
2469 		default:
2470 			rval = DDI_PROBE_FAILURE;
2471 			break;
2472 		}
2473 		break;
2474 	default:
2475 		rval = DDI_PROBE_PARTIAL;
2476 		break;
2477 	}
2478 
2479 	/*
2480 	 * This routine checks for resource allocation prior to freeing,
2481 	 * so it will take care of the "smart probing" case where a
2482 	 * scsi_probe() may or may not have been issued and will *not*
2483 	 * free previously-freed resources.
2484 	 */
2485 	scsi_unprobe(devp);
2486 	return (rval);
2487 }
2488 
2489 
2490 /*
2491  *    Function: sdinfo
2492  *
2493  * Description: This is the driver getinfo(9e) entry point function.
2494  * 		Given the device number, return the devinfo pointer from
2495  *		the scsi_device structure or the instance number
2496  *		associated with the dev_t.
2497  *
2498  *   Arguments: dip     - pointer to device info structure
2499  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2500  *			  DDI_INFO_DEVT2INSTANCE)
2501  *		arg     - driver dev_t
2502  *		resultp - user buffer for request response
2503  *
2504  * Return Code: DDI_SUCCESS
2505  *              DDI_FAILURE
2506  */
2507 /* ARGSUSED */
2508 static int
2509 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2510 {
2511 	struct sd_lun	*un;
2512 	dev_t		dev;
2513 	int		instance;
2514 	int		error;
2515 
2516 	switch (infocmd) {
2517 	case DDI_INFO_DEVT2DEVINFO:
2518 		dev = (dev_t)arg;
2519 		instance = SDUNIT(dev);
2520 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2521 			return (DDI_FAILURE);
2522 		}
2523 		*result = (void *) SD_DEVINFO(un);
2524 		error = DDI_SUCCESS;
2525 		break;
2526 	case DDI_INFO_DEVT2INSTANCE:
2527 		dev = (dev_t)arg;
2528 		instance = SDUNIT(dev);
2529 		*result = (void *)(uintptr_t)instance;
2530 		error = DDI_SUCCESS;
2531 		break;
2532 	default:
2533 		error = DDI_FAILURE;
2534 	}
2535 	return (error);
2536 }
2537 
2538 /*
2539  *    Function: sd_prop_op
2540  *
2541  * Description: This is the driver prop_op(9e) entry point function.
2542  *		Return the number of blocks for the partition in question
2543  *		or forward the request to the property facilities.
2544  *
2545  *   Arguments: dev       - device number
2546  *		dip       - pointer to device info structure
2547  *		prop_op   - property operator
2548  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2549  *		name      - pointer to property name
2550  *		valuep    - pointer or address of the user buffer
2551  *		lengthp   - property length
2552  *
2553  * Return Code: DDI_PROP_SUCCESS
2554  *              DDI_PROP_NOT_FOUND
2555  *              DDI_PROP_UNDEFINED
2556  *              DDI_PROP_NO_MEMORY
2557  *              DDI_PROP_BUF_TOO_SMALL
2558  */
2559 
2560 static int
2561 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2562 	char *name, caddr_t valuep, int *lengthp)
2563 {
2564 	int		instance = ddi_get_instance(dip);
2565 	struct sd_lun	*un;
2566 	uint64_t	nblocks64;
2567 
2568 	/*
2569 	 * Our dynamic properties are all device specific and size oriented.
2570 	 * Requests issued under conditions where size is valid are passed
2571 	 * to ddi_prop_op_nblocks with the size information, otherwise the
2572 	 * request is passed to ddi_prop_op. Size depends on valid geometry.
2573 	 */
2574 	un = ddi_get_soft_state(sd_state, instance);
2575 	if ((dev == DDI_DEV_T_ANY) || (un == NULL) ||
2576 	    (un->un_f_geometry_is_valid == FALSE)) {
2577 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2578 		    name, valuep, lengthp));
2579 	} else {
2580 		/* get nblocks value */
2581 		ASSERT(!mutex_owned(SD_MUTEX(un)));
2582 		mutex_enter(SD_MUTEX(un));
2583 		nblocks64 = (ulong_t)un->un_map[SDPART(dev)].dkl_nblk;
2584 		mutex_exit(SD_MUTEX(un));
2585 
2586 		return (ddi_prop_op_nblocks(dev, dip, prop_op, mod_flags,
2587 		    name, valuep, lengthp, nblocks64));
2588 	}
2589 }
2590 
2591 /*
2592  * The following functions are for smart probing:
2593  * sd_scsi_probe_cache_init()
2594  * sd_scsi_probe_cache_fini()
2595  * sd_scsi_clear_probe_cache()
2596  * sd_scsi_probe_with_cache()
2597  */
2598 
2599 /*
2600  *    Function: sd_scsi_probe_cache_init
2601  *
2602  * Description: Initializes the probe response cache mutex and head pointer.
2603  *
2604  *     Context: Kernel thread context
2605  */
2606 
2607 static void
2608 sd_scsi_probe_cache_init(void)
2609 {
2610 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2611 	sd_scsi_probe_cache_head = NULL;
2612 }
2613 
2614 
2615 /*
2616  *    Function: sd_scsi_probe_cache_fini
2617  *
2618  * Description: Frees all resources associated with the probe response cache.
2619  *
2620  *     Context: Kernel thread context
2621  */
2622 
2623 static void
2624 sd_scsi_probe_cache_fini(void)
2625 {
2626 	struct sd_scsi_probe_cache *cp;
2627 	struct sd_scsi_probe_cache *ncp;
2628 
2629 	/* Clean up our smart probing linked list */
2630 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2631 		ncp = cp->next;
2632 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2633 	}
2634 	sd_scsi_probe_cache_head = NULL;
2635 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2636 }
2637 
2638 
2639 /*
2640  *    Function: sd_scsi_clear_probe_cache
2641  *
2642  * Description: This routine clears the probe response cache. This is
2643  *		done when open() returns ENXIO so that when deferred
2644  *		attach is attempted (possibly after a device has been
2645  *		turned on) we will retry the probe. Since we don't know
2646  *		which target we failed to open, we just clear the
2647  *		entire cache.
2648  *
2649  *     Context: Kernel thread context
2650  */
2651 
2652 static void
2653 sd_scsi_clear_probe_cache(void)
2654 {
2655 	struct sd_scsi_probe_cache	*cp;
2656 	int				i;
2657 
2658 	mutex_enter(&sd_scsi_probe_cache_mutex);
2659 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2660 		/*
2661 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2662 		 * force probing to be performed the next time
2663 		 * sd_scsi_probe_with_cache is called.
2664 		 */
2665 		for (i = 0; i < NTARGETS_WIDE; i++) {
2666 			cp->cache[i] = SCSIPROBE_EXISTS;
2667 		}
2668 	}
2669 	mutex_exit(&sd_scsi_probe_cache_mutex);
2670 }
2671 
2672 
2673 /*
2674  *    Function: sd_scsi_probe_with_cache
2675  *
2676  * Description: This routine implements support for a scsi device probe
2677  *		with cache. The driver maintains a cache of the target
2678  *		responses to scsi probes. If we get no response from a
2679  *		target during a probe inquiry, we remember that, and we
2680  *		avoid additional calls to scsi_probe on non-zero LUNs
2681  *		on the same target until the cache is cleared. By doing
2682  *		so we avoid the 1/4 sec selection timeout for nonzero
2683  *		LUNs. lun0 of a target is always probed.
2684  *
2685  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2686  *              waitfunc - indicates what the allocator routines should
2687  *			   do when resources are not available. This value
2688  *			   is passed on to scsi_probe() when that routine
2689  *			   is called.
2690  *
2691  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2692  *		otherwise the value returned by scsi_probe(9F).
2693  *
2694  *     Context: Kernel thread context
2695  */
2696 
2697 static int
2698 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2699 {
2700 	struct sd_scsi_probe_cache	*cp;
2701 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2702 	int		lun   = devp->sd_address.a_lun;
2703 	int		tgt   = devp->sd_address.a_target;
2704 
2705 	/* Make sure caching enabled and target in range */
2706 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2707 		/* do it the old way (no cache) */
2708 		return (scsi_probe(devp, waitfn));
2709 	}
2710 
2711 	mutex_enter(&sd_scsi_probe_cache_mutex);
2712 
2713 	/* Find the cache for this scsi bus instance */
2714 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2715 		if (cp->pdip == pdip) {
2716 			break;
2717 		}
2718 	}
2719 
2720 	/* If we can't find a cache for this pdip, create one */
2721 	if (cp == NULL) {
2722 		int i;
2723 
2724 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2725 		    KM_SLEEP);
2726 		cp->pdip = pdip;
2727 		cp->next = sd_scsi_probe_cache_head;
2728 		sd_scsi_probe_cache_head = cp;
2729 		for (i = 0; i < NTARGETS_WIDE; i++) {
2730 			cp->cache[i] = SCSIPROBE_EXISTS;
2731 		}
2732 	}
2733 
2734 	mutex_exit(&sd_scsi_probe_cache_mutex);
2735 
2736 	/* Recompute the cache for this target if LUN zero */
2737 	if (lun == 0) {
2738 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2739 	}
2740 
2741 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2742 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2743 		return (SCSIPROBE_NORESP);
2744 	}
2745 
2746 	/* Do the actual probe; save & return the result */
2747 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2748 }
2749 
2750 
2751 /*
2752  *    Function: sd_spin_up_unit
2753  *
2754  * Description: Issues the following commands to spin-up the device:
2755  *		START STOP UNIT, and INQUIRY.
2756  *
2757  *   Arguments: un - driver soft state (unit) structure
2758  *
2759  * Return Code: 0 - success
2760  *		EIO - failure
2761  *		EACCES - reservation conflict
2762  *
2763  *     Context: Kernel thread context
2764  */
2765 
2766 static int
2767 sd_spin_up_unit(struct sd_lun *un)
2768 {
2769 	size_t	resid		= 0;
2770 	int	has_conflict	= FALSE;
2771 	uchar_t *bufaddr;
2772 
2773 	ASSERT(un != NULL);
2774 
2775 	/*
2776 	 * Send a throwaway START UNIT command.
2777 	 *
2778 	 * If we fail on this, we don't care presently what precisely
2779 	 * is wrong.  EMC's arrays will also fail this with a check
2780 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
2781 	 * we don't want to fail the attach because it may become
2782 	 * "active" later.
2783 	 */
2784 	if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT)
2785 	    == EACCES)
2786 		has_conflict = TRUE;
2787 
2788 	/*
2789 	 * Send another INQUIRY command to the target. This is necessary for
2790 	 * non-removable media direct access devices because their INQUIRY data
2791 	 * may not be fully qualified until they are spun up (perhaps via the
2792 	 * START command above).  Note: This seems to be needed for some
2793 	 * legacy devices only.) The INQUIRY command should succeed even if a
2794 	 * Reservation Conflict is present.
2795 	 */
2796 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
2797 	if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) {
2798 		kmem_free(bufaddr, SUN_INQSIZE);
2799 		return (EIO);
2800 	}
2801 
2802 	/*
2803 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
2804 	 * Note that this routine does not return a failure here even if the
2805 	 * INQUIRY command did not return any data.  This is a legacy behavior.
2806 	 */
2807 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
2808 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
2809 	}
2810 
2811 	kmem_free(bufaddr, SUN_INQSIZE);
2812 
2813 	/* If we hit a reservation conflict above, tell the caller. */
2814 	if (has_conflict == TRUE) {
2815 		return (EACCES);
2816 	}
2817 
2818 	return (0);
2819 }
2820 
2821 /*
2822  *    Function: sd_enable_descr_sense
2823  *
2824  * Description: This routine attempts to select descriptor sense format
2825  *		using the Control mode page.  Devices that support 64 bit
2826  *		LBAs (for >2TB luns) should also implement descriptor
2827  *		sense data so we will call this function whenever we see
2828  *		a lun larger than 2TB.  If for some reason the device
2829  *		supports 64 bit LBAs but doesn't support descriptor sense
2830  *		presumably the mode select will fail.  Everything will
2831  *		continue to work normally except that we will not get
2832  *		complete sense data for commands that fail with an LBA
2833  *		larger than 32 bits.
2834  *
2835  *   Arguments: un - driver soft state (unit) structure
2836  *
2837  *     Context: Kernel thread context only
2838  */
2839 
2840 static void
2841 sd_enable_descr_sense(struct sd_lun *un)
2842 {
2843 	uchar_t			*header;
2844 	struct mode_control_scsi3 *ctrl_bufp;
2845 	size_t			buflen;
2846 	size_t			bd_len;
2847 
2848 	/*
2849 	 * Read MODE SENSE page 0xA, Control Mode Page
2850 	 */
2851 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
2852 	    sizeof (struct mode_control_scsi3);
2853 	header = kmem_zalloc(buflen, KM_SLEEP);
2854 	if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
2855 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) {
2856 		SD_ERROR(SD_LOG_COMMON, un,
2857 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
2858 		goto eds_exit;
2859 	}
2860 
2861 	/*
2862 	 * Determine size of Block Descriptors in order to locate
2863 	 * the mode page data. ATAPI devices return 0, SCSI devices
2864 	 * should return MODE_BLK_DESC_LENGTH.
2865 	 */
2866 	bd_len  = ((struct mode_header *)header)->bdesc_length;
2867 
2868 	ctrl_bufp = (struct mode_control_scsi3 *)
2869 	    (header + MODE_HEADER_LENGTH + bd_len);
2870 
2871 	/*
2872 	 * Clear PS bit for MODE SELECT
2873 	 */
2874 	ctrl_bufp->mode_page.ps = 0;
2875 
2876 	/*
2877 	 * Set D_SENSE to enable descriptor sense format.
2878 	 */
2879 	ctrl_bufp->d_sense = 1;
2880 
2881 	/*
2882 	 * Use MODE SELECT to commit the change to the D_SENSE bit
2883 	 */
2884 	if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
2885 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) {
2886 		SD_INFO(SD_LOG_COMMON, un,
2887 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
2888 		goto eds_exit;
2889 	}
2890 
2891 eds_exit:
2892 	kmem_free(header, buflen);
2893 }
2894 
2895 
2896 /*
2897  *    Function: sd_set_mmc_caps
2898  *
2899  * Description: This routine determines if the device is MMC compliant and if
2900  *		the device supports CDDA via a mode sense of the CDVD
2901  *		capabilities mode page. Also checks if the device is a
2902  *		dvdram writable device.
2903  *
2904  *   Arguments: un - driver soft state (unit) structure
2905  *
2906  *     Context: Kernel thread context only
2907  */
2908 
2909 static void
2910 sd_set_mmc_caps(struct sd_lun *un)
2911 {
2912 	struct mode_header_grp2		*sense_mhp;
2913 	uchar_t				*sense_page;
2914 	caddr_t				buf;
2915 	int				bd_len;
2916 	int				status;
2917 	struct uscsi_cmd		com;
2918 	int				rtn;
2919 	uchar_t				*out_data_rw, *out_data_hd;
2920 	uchar_t				*rqbuf_rw, *rqbuf_hd;
2921 
2922 	ASSERT(un != NULL);
2923 
2924 	/*
2925 	 * The flags which will be set in this function are - mmc compliant,
2926 	 * dvdram writable device, cdda support. Initialize them to FALSE
2927 	 * and if a capability is detected - it will be set to TRUE.
2928 	 */
2929 	un->un_f_mmc_cap = FALSE;
2930 	un->un_f_dvdram_writable_device = FALSE;
2931 	un->un_f_cfg_cdda = FALSE;
2932 
2933 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
2934 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
2935 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
2936 
2937 	if (status != 0) {
2938 		/* command failed; just return */
2939 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
2940 		return;
2941 	}
2942 	/*
2943 	 * If the mode sense request for the CDROM CAPABILITIES
2944 	 * page (0x2A) succeeds the device is assumed to be MMC.
2945 	 */
2946 	un->un_f_mmc_cap = TRUE;
2947 
2948 	/* Get to the page data */
2949 	sense_mhp = (struct mode_header_grp2 *)buf;
2950 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
2951 	    sense_mhp->bdesc_length_lo;
2952 	if (bd_len > MODE_BLK_DESC_LENGTH) {
2953 		/*
2954 		 * We did not get back the expected block descriptor
2955 		 * length so we cannot determine if the device supports
2956 		 * CDDA. However, we still indicate the device is MMC
2957 		 * according to the successful response to the page
2958 		 * 0x2A mode sense request.
2959 		 */
2960 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
2961 		    "sd_set_mmc_caps: Mode Sense returned "
2962 		    "invalid block descriptor length\n");
2963 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
2964 		return;
2965 	}
2966 
2967 	/* See if read CDDA is supported */
2968 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
2969 	    bd_len);
2970 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
2971 
2972 	/* See if writing DVD RAM is supported. */
2973 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
2974 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
2975 	if (un->un_f_dvdram_writable_device == TRUE) {
2976 		return;
2977 	}
2978 
2979 	/*
2980 	 * If un->un_f_dvdram_writable_device is still FALSE,
2981 	 * check for Iomega RRD type device.  Iomega is identifying
2982 	 * their RRD type devices by the features RANDOM_WRITABLE and
2983 	 * HARDWARE_DEFECT_MANAGEMENT.
2984 	 */
2985 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
2986 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
2987 
2988 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
2989 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
2990 	    RANDOM_WRITABLE);
2991 	if (rtn != 0) {
2992 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
2993 		kmem_free(rqbuf_rw, SENSE_LENGTH);
2994 		return;
2995 	}
2996 
2997 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
2998 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
2999 
3000 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3001 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3002 	    HARDWARE_DEFECT_MANAGEMENT);
3003 	if (rtn == 0) {
3004 		/*
3005 		 * We have good information, check for random writable
3006 		 * and hardware defect features.
3007 		 */
3008 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3009 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3010 			un->un_f_dvdram_writable_device = TRUE;
3011 		}
3012 	}
3013 
3014 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3015 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3016 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3017 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3018 }
3019 
3020 /*
3021  *    Function: sd_check_for_writable_cd
3022  *
3023  * Description: This routine determines if the media in the device is
3024  *		writable or not. It uses the get configuration command (0x46)
3025  *		to determine if the media is writable
3026  *
3027  *   Arguments: un - driver soft state (unit) structure
3028  *
3029  *     Context: Never called at interrupt context.
3030  */
3031 
3032 static void
3033 sd_check_for_writable_cd(struct sd_lun *un)
3034 {
3035 	struct uscsi_cmd		com;
3036 	uchar_t				*out_data;
3037 	uchar_t				*rqbuf;
3038 	int				rtn;
3039 	uchar_t				*out_data_rw, *out_data_hd;
3040 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3041 
3042 	ASSERT(un != NULL);
3043 	ASSERT(mutex_owned(SD_MUTEX(un)));
3044 
3045 	/*
3046 	 * Initialize the writable media to false, if configuration info.
3047 	 * tells us otherwise then only we will set it.
3048 	 */
3049 	un->un_f_mmc_writable_media = FALSE;
3050 	mutex_exit(SD_MUTEX(un));
3051 
3052 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3053 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3054 
3055 	rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH,
3056 	    out_data, SD_PROFILE_HEADER_LEN);
3057 
3058 	mutex_enter(SD_MUTEX(un));
3059 	if (rtn == 0) {
3060 		/*
3061 		 * We have good information, check for writable DVD.
3062 		 */
3063 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3064 			un->un_f_mmc_writable_media = TRUE;
3065 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3066 			kmem_free(rqbuf, SENSE_LENGTH);
3067 			return;
3068 		}
3069 	}
3070 
3071 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3072 	kmem_free(rqbuf, SENSE_LENGTH);
3073 
3074 	/*
3075 	 * If un->un_f_mmc_writable_media is still FALSE,
3076 	 * check for Iomega RRD type media.  Iomega is identifying
3077 	 * their RRD type devices by the features RANDOM_WRITABLE and
3078 	 * HARDWARE_DEFECT_MANAGEMENT.
3079 	 */
3080 	mutex_exit(SD_MUTEX(un));
3081 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3082 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3083 
3084 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3085 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3086 	    RANDOM_WRITABLE);
3087 	if (rtn != 0) {
3088 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3089 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3090 		mutex_enter(SD_MUTEX(un));
3091 		return;
3092 	}
3093 
3094 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3095 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3096 
3097 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3098 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3099 	    HARDWARE_DEFECT_MANAGEMENT);
3100 	mutex_enter(SD_MUTEX(un));
3101 	if (rtn == 0) {
3102 		/*
3103 		 * We have good information, check for random writable
3104 		 * and hardware defect features as current.
3105 		 */
3106 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3107 		    (out_data_rw[10] & 0x1) &&
3108 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3109 		    (out_data_hd[10] & 0x1)) {
3110 			un->un_f_mmc_writable_media = TRUE;
3111 		}
3112 	}
3113 
3114 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3115 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3116 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3117 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3118 }
3119 
3120 /*
3121  *    Function: sd_read_unit_properties
3122  *
3123  * Description: The following implements a property lookup mechanism.
3124  *		Properties for particular disks (keyed on vendor, model
3125  *		and rev numbers) are sought in the sd.conf file via
3126  *		sd_process_sdconf_file(), and if not found there, are
3127  *		looked for in a list hardcoded in this driver via
3128  *		sd_process_sdconf_table() Once located the properties
3129  *		are used to update the driver unit structure.
3130  *
3131  *   Arguments: un - driver soft state (unit) structure
3132  */
3133 
3134 static void
3135 sd_read_unit_properties(struct sd_lun *un)
3136 {
3137 	/*
3138 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3139 	 * the "sd-config-list" property (from the sd.conf file) or if
3140 	 * there was not a match for the inquiry vid/pid. If this event
3141 	 * occurs the static driver configuration table is searched for
3142 	 * a match.
3143 	 */
3144 	ASSERT(un != NULL);
3145 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3146 		sd_process_sdconf_table(un);
3147 	}
3148 
3149 	/*
3150 	 * Set this in sd.conf to 0 in order to disable kstats.  The default
3151 	 * is 1, so they are enabled by default.
3152 	 */
3153 	un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
3154 	    SD_DEVINFO(un), DDI_PROP_DONTPASS, "enable-partition-kstats", 1));
3155 }
3156 
3157 
3158 /*
3159  *    Function: sd_process_sdconf_file
3160  *
3161  * Description: Use ddi_getlongprop to obtain the properties from the
3162  *		driver's config file (ie, sd.conf) and update the driver
3163  *		soft state structure accordingly.
3164  *
3165  *   Arguments: un - driver soft state (unit) structure
3166  *
3167  * Return Code: SD_SUCCESS - The properties were successfully set according
3168  *			     to the driver configuration file.
3169  *		SD_FAILURE - The driver config list was not obtained or
3170  *			     there was no vid/pid match. This indicates that
3171  *			     the static config table should be used.
3172  *
3173  * The config file has a property, "sd-config-list", which consists of
3174  * one or more duplets as follows:
3175  *
3176  *  sd-config-list=
3177  *	<duplet>,
3178  *	[<duplet>,]
3179  *	[<duplet>];
3180  *
3181  * The structure of each duplet is as follows:
3182  *
3183  *  <duplet>:= <vid+pid>,<data-property-name_list>
3184  *
3185  * The first entry of the duplet is the device ID string (the concatenated
3186  * vid & pid; not to be confused with a device_id).  This is defined in
3187  * the same way as in the sd_disk_table.
3188  *
3189  * The second part of the duplet is a string that identifies a
3190  * data-property-name-list. The data-property-name-list is defined as
3191  * follows:
3192  *
3193  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3194  *
3195  * The syntax of <data-property-name> depends on the <version> field.
3196  *
3197  * If version = SD_CONF_VERSION_1 we have the following syntax:
3198  *
3199  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3200  *
3201  * where the prop0 value will be used to set prop0 if bit0 set in the
3202  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3203  *
3204  * If version = SD_CONF_VERSION_10 we have the following syntax:
3205  *
3206  * 	<data-property-name>:=<version>,<prop0>,<prop1>,<prop2>,<prop3>
3207  */
3208 
3209 static int
3210 sd_process_sdconf_file(struct sd_lun *un)
3211 {
3212 	char	*config_list = NULL;
3213 	int	config_list_len;
3214 	int	len;
3215 	int	dupletlen = 0;
3216 	char	*vidptr;
3217 	int	vidlen;
3218 	char	*dnlist_ptr;
3219 	char	*dataname_ptr;
3220 	int	dnlist_len;
3221 	int	dataname_len;
3222 	int	*data_list;
3223 	int	data_list_len;
3224 	int	rval = SD_FAILURE;
3225 	int	i;
3226 
3227 	ASSERT(un != NULL);
3228 
3229 	/* Obtain the configuration list associated with the .conf file */
3230 	if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS,
3231 	    sd_config_list, (caddr_t)&config_list, &config_list_len)
3232 	    != DDI_PROP_SUCCESS) {
3233 		return (SD_FAILURE);
3234 	}
3235 
3236 	/*
3237 	 * Compare vids in each duplet to the inquiry vid - if a match is
3238 	 * made, get the data value and update the soft state structure
3239 	 * accordingly.
3240 	 *
3241 	 * Note: This algorithm is complex and difficult to maintain. It should
3242 	 * be replaced with a more robust implementation.
3243 	 */
3244 	for (len = config_list_len, vidptr = config_list; len > 0;
3245 	    vidptr += dupletlen, len -= dupletlen) {
3246 		/*
3247 		 * Note: The assumption here is that each vid entry is on
3248 		 * a unique line from its associated duplet.
3249 		 */
3250 		vidlen = dupletlen = (int)strlen(vidptr);
3251 		if ((vidlen == 0) ||
3252 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3253 			dupletlen++;
3254 			continue;
3255 		}
3256 
3257 		/*
3258 		 * dnlist contains 1 or more blank separated
3259 		 * data-property-name entries
3260 		 */
3261 		dnlist_ptr = vidptr + vidlen + 1;
3262 		dnlist_len = (int)strlen(dnlist_ptr);
3263 		dupletlen += dnlist_len + 2;
3264 
3265 		/*
3266 		 * Set a pointer for the first data-property-name
3267 		 * entry in the list
3268 		 */
3269 		dataname_ptr = dnlist_ptr;
3270 		dataname_len = 0;
3271 
3272 		/*
3273 		 * Loop through all data-property-name entries in the
3274 		 * data-property-name-list setting the properties for each.
3275 		 */
3276 		while (dataname_len < dnlist_len) {
3277 			int version;
3278 
3279 			/*
3280 			 * Determine the length of the current
3281 			 * data-property-name entry by indexing until a
3282 			 * blank or NULL is encountered. When the space is
3283 			 * encountered reset it to a NULL for compliance
3284 			 * with ddi_getlongprop().
3285 			 */
3286 			for (i = 0; ((dataname_ptr[i] != ' ') &&
3287 			    (dataname_ptr[i] != '\0')); i++) {
3288 				;
3289 			}
3290 
3291 			dataname_len += i;
3292 			/* If not null terminated, Make it so */
3293 			if (dataname_ptr[i] == ' ') {
3294 				dataname_ptr[i] = '\0';
3295 			}
3296 			dataname_len++;
3297 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3298 			    "sd_process_sdconf_file: disk:%s, data:%s\n",
3299 			    vidptr, dataname_ptr);
3300 
3301 			/* Get the data list */
3302 			if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0,
3303 			    dataname_ptr, (caddr_t)&data_list, &data_list_len)
3304 			    != DDI_PROP_SUCCESS) {
3305 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3306 				    "sd_process_sdconf_file: data property (%s)"
3307 				    " has no value\n", dataname_ptr);
3308 				dataname_ptr = dnlist_ptr + dataname_len;
3309 				continue;
3310 			}
3311 
3312 			version = data_list[0];
3313 
3314 			if (version == SD_CONF_VERSION_1) {
3315 				sd_tunables values;
3316 
3317 				/* Set the properties */
3318 				if (sd_chk_vers1_data(un, data_list[1],
3319 				    &data_list[2], data_list_len, dataname_ptr)
3320 				    == SD_SUCCESS) {
3321 					sd_get_tunables_from_conf(un,
3322 					    data_list[1], &data_list[2],
3323 					    &values);
3324 					sd_set_vers1_properties(un,
3325 					    data_list[1], &values);
3326 					rval = SD_SUCCESS;
3327 				} else {
3328 					rval = SD_FAILURE;
3329 				}
3330 			} else {
3331 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3332 				    "data property %s version 0x%x is invalid.",
3333 				    dataname_ptr, version);
3334 				rval = SD_FAILURE;
3335 			}
3336 			kmem_free(data_list, data_list_len);
3337 			dataname_ptr = dnlist_ptr + dataname_len;
3338 		}
3339 	}
3340 
3341 	/* free up the memory allocated by ddi_getlongprop */
3342 	if (config_list) {
3343 		kmem_free(config_list, config_list_len);
3344 	}
3345 
3346 	return (rval);
3347 }
3348 
3349 /*
3350  *    Function: sd_get_tunables_from_conf()
3351  *
3352  *
3353  *    This function reads the data list from the sd.conf file and pulls
3354  *    the values that can have numeric values as arguments and places
3355  *    the values in the apropriate sd_tunables member.
3356  *    Since the order of the data list members varies across platforms
3357  *    This function reads them from the data list in a platform specific
3358  *    order and places them into the correct sd_tunable member that is
3359  *    a consistant across all platforms.
3360  */
3361 static void
3362 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3363     sd_tunables *values)
3364 {
3365 	int i;
3366 	int mask;
3367 
3368 	bzero(values, sizeof (sd_tunables));
3369 
3370 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3371 
3372 		mask = 1 << i;
3373 		if (mask > flags) {
3374 			break;
3375 		}
3376 
3377 		switch (mask & flags) {
3378 		case 0:	/* This mask bit not set in flags */
3379 			continue;
3380 		case SD_CONF_BSET_THROTTLE:
3381 			values->sdt_throttle = data_list[i];
3382 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3383 			    "sd_get_tunables_from_conf: throttle = %d\n",
3384 			    values->sdt_throttle);
3385 			break;
3386 		case SD_CONF_BSET_CTYPE:
3387 			values->sdt_ctype = data_list[i];
3388 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3389 			    "sd_get_tunables_from_conf: ctype = %d\n",
3390 			    values->sdt_ctype);
3391 			break;
3392 		case SD_CONF_BSET_NRR_COUNT:
3393 			values->sdt_not_rdy_retries = data_list[i];
3394 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3395 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
3396 			    values->sdt_not_rdy_retries);
3397 			break;
3398 		case SD_CONF_BSET_BSY_RETRY_COUNT:
3399 			values->sdt_busy_retries = data_list[i];
3400 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3401 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
3402 			    values->sdt_busy_retries);
3403 			break;
3404 		case SD_CONF_BSET_RST_RETRIES:
3405 			values->sdt_reset_retries = data_list[i];
3406 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3407 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
3408 			    values->sdt_reset_retries);
3409 			break;
3410 		case SD_CONF_BSET_RSV_REL_TIME:
3411 			values->sdt_reserv_rel_time = data_list[i];
3412 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3413 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
3414 			    values->sdt_reserv_rel_time);
3415 			break;
3416 		case SD_CONF_BSET_MIN_THROTTLE:
3417 			values->sdt_min_throttle = data_list[i];
3418 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3419 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
3420 			    values->sdt_min_throttle);
3421 			break;
3422 		case SD_CONF_BSET_DISKSORT_DISABLED:
3423 			values->sdt_disk_sort_dis = data_list[i];
3424 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3425 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
3426 			    values->sdt_disk_sort_dis);
3427 			break;
3428 		case SD_CONF_BSET_LUN_RESET_ENABLED:
3429 			values->sdt_lun_reset_enable = data_list[i];
3430 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3431 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
3432 			    "\n", values->sdt_lun_reset_enable);
3433 			break;
3434 		}
3435 	}
3436 }
3437 
3438 /*
3439  *    Function: sd_process_sdconf_table
3440  *
3441  * Description: Search the static configuration table for a match on the
3442  *		inquiry vid/pid and update the driver soft state structure
3443  *		according to the table property values for the device.
3444  *
3445  *		The form of a configuration table entry is:
3446  *		  <vid+pid>,<flags>,<property-data>
3447  *		  "SEAGATE ST42400N",1,63,0,0			(Fibre)
3448  *		  "SEAGATE ST42400N",1,63,0,0,0,0		(Sparc)
3449  *		  "SEAGATE ST42400N",1,63,0,0,0,0,0,0,0,0,0,0	(Intel)
3450  *
3451  *   Arguments: un - driver soft state (unit) structure
3452  */
3453 
3454 static void
3455 sd_process_sdconf_table(struct sd_lun *un)
3456 {
3457 	char	*id = NULL;
3458 	int	table_index;
3459 	int	idlen;
3460 
3461 	ASSERT(un != NULL);
3462 	for (table_index = 0; table_index < sd_disk_table_size;
3463 	    table_index++) {
3464 		id = sd_disk_table[table_index].device_id;
3465 		idlen = strlen(id);
3466 		if (idlen == 0) {
3467 			continue;
3468 		}
3469 
3470 		/*
3471 		 * The static configuration table currently does not
3472 		 * implement version 10 properties. Additionally,
3473 		 * multiple data-property-name entries are not
3474 		 * implemented in the static configuration table.
3475 		 */
3476 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
3477 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3478 			    "sd_process_sdconf_table: disk %s\n", id);
3479 			sd_set_vers1_properties(un,
3480 			    sd_disk_table[table_index].flags,
3481 			    sd_disk_table[table_index].properties);
3482 			break;
3483 		}
3484 	}
3485 }
3486 
3487 
3488 /*
3489  *    Function: sd_sdconf_id_match
3490  *
3491  * Description: This local function implements a case sensitive vid/pid
3492  *		comparison as well as the boundary cases of wild card and
3493  *		multiple blanks.
3494  *
3495  *		Note: An implicit assumption made here is that the scsi
3496  *		inquiry structure will always keep the vid, pid and
3497  *		revision strings in consecutive sequence, so they can be
3498  *		read as a single string. If this assumption is not the
3499  *		case, a separate string, to be used for the check, needs
3500  *		to be built with these strings concatenated.
3501  *
3502  *   Arguments: un - driver soft state (unit) structure
3503  *		id - table or config file vid/pid
3504  *		idlen  - length of the vid/pid (bytes)
3505  *
3506  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3507  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3508  */
3509 
3510 static int
3511 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
3512 {
3513 	struct scsi_inquiry	*sd_inq;
3514 	int 			rval = SD_SUCCESS;
3515 
3516 	ASSERT(un != NULL);
3517 	sd_inq = un->un_sd->sd_inq;
3518 	ASSERT(id != NULL);
3519 
3520 	/*
3521 	 * We use the inq_vid as a pointer to a buffer containing the
3522 	 * vid and pid and use the entire vid/pid length of the table
3523 	 * entry for the comparison. This works because the inq_pid
3524 	 * data member follows inq_vid in the scsi_inquiry structure.
3525 	 */
3526 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
3527 		/*
3528 		 * The user id string is compared to the inquiry vid/pid
3529 		 * using a case insensitive comparison and ignoring
3530 		 * multiple spaces.
3531 		 */
3532 		rval = sd_blank_cmp(un, id, idlen);
3533 		if (rval != SD_SUCCESS) {
3534 			/*
3535 			 * User id strings that start and end with a "*"
3536 			 * are a special case. These do not have a
3537 			 * specific vendor, and the product string can
3538 			 * appear anywhere in the 16 byte PID portion of
3539 			 * the inquiry data. This is a simple strstr()
3540 			 * type search for the user id in the inquiry data.
3541 			 */
3542 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
3543 				char	*pidptr = &id[1];
3544 				int	i;
3545 				int	j;
3546 				int	pidstrlen = idlen - 2;
3547 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
3548 				    pidstrlen;
3549 
3550 				if (j < 0) {
3551 					return (SD_FAILURE);
3552 				}
3553 				for (i = 0; i < j; i++) {
3554 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
3555 					    pidptr, pidstrlen) == 0) {
3556 						rval = SD_SUCCESS;
3557 						break;
3558 					}
3559 				}
3560 			}
3561 		}
3562 	}
3563 	return (rval);
3564 }
3565 
3566 
3567 /*
3568  *    Function: sd_blank_cmp
3569  *
3570  * Description: If the id string starts and ends with a space, treat
3571  *		multiple consecutive spaces as equivalent to a single
3572  *		space. For example, this causes a sd_disk_table entry
3573  *		of " NEC CDROM " to match a device's id string of
3574  *		"NEC       CDROM".
3575  *
3576  *		Note: The success exit condition for this routine is if
3577  *		the pointer to the table entry is '\0' and the cnt of
3578  *		the inquiry length is zero. This will happen if the inquiry
3579  *		string returned by the device is padded with spaces to be
3580  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
3581  *		SCSI spec states that the inquiry string is to be padded with
3582  *		spaces.
3583  *
3584  *   Arguments: un - driver soft state (unit) structure
3585  *		id - table or config file vid/pid
3586  *		idlen  - length of the vid/pid (bytes)
3587  *
3588  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3589  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3590  */
3591 
3592 static int
3593 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
3594 {
3595 	char		*p1;
3596 	char		*p2;
3597 	int		cnt;
3598 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
3599 	    sizeof (SD_INQUIRY(un)->inq_pid);
3600 
3601 	ASSERT(un != NULL);
3602 	p2 = un->un_sd->sd_inq->inq_vid;
3603 	ASSERT(id != NULL);
3604 	p1 = id;
3605 
3606 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
3607 		/*
3608 		 * Note: string p1 is terminated by a NUL but string p2
3609 		 * isn't.  The end of p2 is determined by cnt.
3610 		 */
3611 		for (;;) {
3612 			/* skip over any extra blanks in both strings */
3613 			while ((*p1 != '\0') && (*p1 == ' ')) {
3614 				p1++;
3615 			}
3616 			while ((cnt != 0) && (*p2 == ' ')) {
3617 				p2++;
3618 				cnt--;
3619 			}
3620 
3621 			/* compare the two strings */
3622 			if ((cnt == 0) ||
3623 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
3624 				break;
3625 			}
3626 			while ((cnt > 0) &&
3627 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
3628 				p1++;
3629 				p2++;
3630 				cnt--;
3631 			}
3632 		}
3633 	}
3634 
3635 	/* return SD_SUCCESS if both strings match */
3636 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
3637 }
3638 
3639 
3640 /*
3641  *    Function: sd_chk_vers1_data
3642  *
3643  * Description: Verify the version 1 device properties provided by the
3644  *		user via the configuration file
3645  *
3646  *   Arguments: un	     - driver soft state (unit) structure
3647  *		flags	     - integer mask indicating properties to be set
3648  *		prop_list    - integer list of property values
3649  *		list_len     - length of user provided data
3650  *
3651  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
3652  *		SD_FAILURE - Indicates the user provided data is invalid
3653  */
3654 
3655 static int
3656 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
3657     int list_len, char *dataname_ptr)
3658 {
3659 	int i;
3660 	int mask = 1;
3661 	int index = 0;
3662 
3663 	ASSERT(un != NULL);
3664 
3665 	/* Check for a NULL property name and list */
3666 	if (dataname_ptr == NULL) {
3667 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3668 		    "sd_chk_vers1_data: NULL data property name.");
3669 		return (SD_FAILURE);
3670 	}
3671 	if (prop_list == NULL) {
3672 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3673 		    "sd_chk_vers1_data: %s NULL data property list.",
3674 		    dataname_ptr);
3675 		return (SD_FAILURE);
3676 	}
3677 
3678 	/* Display a warning if undefined bits are set in the flags */
3679 	if (flags & ~SD_CONF_BIT_MASK) {
3680 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3681 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
3682 		    "Properties not set.",
3683 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
3684 		return (SD_FAILURE);
3685 	}
3686 
3687 	/*
3688 	 * Verify the length of the list by identifying the highest bit set
3689 	 * in the flags and validating that the property list has a length
3690 	 * up to the index of this bit.
3691 	 */
3692 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3693 		if (flags & mask) {
3694 			index++;
3695 		}
3696 		mask = 1 << i;
3697 	}
3698 	if ((list_len / sizeof (int)) < (index + 2)) {
3699 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3700 		    "sd_chk_vers1_data: "
3701 		    "Data property list %s size is incorrect. "
3702 		    "Properties not set.", dataname_ptr);
3703 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
3704 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
3705 		return (SD_FAILURE);
3706 	}
3707 	return (SD_SUCCESS);
3708 }
3709 
3710 
3711 /*
3712  *    Function: sd_set_vers1_properties
3713  *
3714  * Description: Set version 1 device properties based on a property list
3715  *		retrieved from the driver configuration file or static
3716  *		configuration table. Version 1 properties have the format:
3717  *
3718  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3719  *
3720  *		where the prop0 value will be used to set prop0 if bit0
3721  *		is set in the flags
3722  *
3723  *   Arguments: un	     - driver soft state (unit) structure
3724  *		flags	     - integer mask indicating properties to be set
3725  *		prop_list    - integer list of property values
3726  */
3727 
3728 static void
3729 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
3730 {
3731 	ASSERT(un != NULL);
3732 
3733 	/*
3734 	 * Set the flag to indicate cache is to be disabled. An attempt
3735 	 * to disable the cache via sd_disable_caching() will be made
3736 	 * later during attach once the basic initialization is complete.
3737 	 */
3738 	if (flags & SD_CONF_BSET_NOCACHE) {
3739 		un->un_f_opt_disable_cache = TRUE;
3740 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3741 		    "sd_set_vers1_properties: caching disabled flag set\n");
3742 	}
3743 
3744 	/* CD-specific configuration parameters */
3745 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
3746 		un->un_f_cfg_playmsf_bcd = TRUE;
3747 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3748 		    "sd_set_vers1_properties: playmsf_bcd set\n");
3749 	}
3750 	if (flags & SD_CONF_BSET_READSUB_BCD) {
3751 		un->un_f_cfg_readsub_bcd = TRUE;
3752 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3753 		    "sd_set_vers1_properties: readsub_bcd set\n");
3754 	}
3755 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
3756 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
3757 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3758 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
3759 	}
3760 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
3761 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
3762 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3763 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
3764 	}
3765 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
3766 		un->un_f_cfg_no_read_header = TRUE;
3767 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3768 			    "sd_set_vers1_properties: no_read_header set\n");
3769 	}
3770 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
3771 		un->un_f_cfg_read_cd_xd4 = TRUE;
3772 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3773 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
3774 	}
3775 
3776 	/* Support for devices which do not have valid/unique serial numbers */
3777 	if (flags & SD_CONF_BSET_FAB_DEVID) {
3778 		un->un_f_opt_fab_devid = TRUE;
3779 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3780 		    "sd_set_vers1_properties: fab_devid bit set\n");
3781 	}
3782 
3783 	/* Support for user throttle configuration */
3784 	if (flags & SD_CONF_BSET_THROTTLE) {
3785 		ASSERT(prop_list != NULL);
3786 		un->un_saved_throttle = un->un_throttle =
3787 		    prop_list->sdt_throttle;
3788 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3789 		    "sd_set_vers1_properties: throttle set to %d\n",
3790 		    prop_list->sdt_throttle);
3791 	}
3792 
3793 	/* Set the per disk retry count according to the conf file or table. */
3794 	if (flags & SD_CONF_BSET_NRR_COUNT) {
3795 		ASSERT(prop_list != NULL);
3796 		if (prop_list->sdt_not_rdy_retries) {
3797 			un->un_notready_retry_count =
3798 				prop_list->sdt_not_rdy_retries;
3799 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3800 			    "sd_set_vers1_properties: not ready retry count"
3801 			    " set to %d\n", un->un_notready_retry_count);
3802 		}
3803 	}
3804 
3805 	/* The controller type is reported for generic disk driver ioctls */
3806 	if (flags & SD_CONF_BSET_CTYPE) {
3807 		ASSERT(prop_list != NULL);
3808 		switch (prop_list->sdt_ctype) {
3809 		case CTYPE_CDROM:
3810 			un->un_ctype = prop_list->sdt_ctype;
3811 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3812 			    "sd_set_vers1_properties: ctype set to "
3813 			    "CTYPE_CDROM\n");
3814 			break;
3815 		case CTYPE_CCS:
3816 			un->un_ctype = prop_list->sdt_ctype;
3817 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3818 				"sd_set_vers1_properties: ctype set to "
3819 				"CTYPE_CCS\n");
3820 			break;
3821 		case CTYPE_ROD:		/* RW optical */
3822 			un->un_ctype = prop_list->sdt_ctype;
3823 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3824 			    "sd_set_vers1_properties: ctype set to "
3825 			    "CTYPE_ROD\n");
3826 			break;
3827 		default:
3828 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3829 			    "sd_set_vers1_properties: Could not set "
3830 			    "invalid ctype value (%d)",
3831 			    prop_list->sdt_ctype);
3832 		}
3833 	}
3834 
3835 	/* Purple failover timeout */
3836 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
3837 		ASSERT(prop_list != NULL);
3838 		un->un_busy_retry_count =
3839 			prop_list->sdt_busy_retries;
3840 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3841 		    "sd_set_vers1_properties: "
3842 		    "busy retry count set to %d\n",
3843 		    un->un_busy_retry_count);
3844 	}
3845 
3846 	/* Purple reset retry count */
3847 	if (flags & SD_CONF_BSET_RST_RETRIES) {
3848 		ASSERT(prop_list != NULL);
3849 		un->un_reset_retry_count =
3850 			prop_list->sdt_reset_retries;
3851 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3852 		    "sd_set_vers1_properties: "
3853 		    "reset retry count set to %d\n",
3854 		    un->un_reset_retry_count);
3855 	}
3856 
3857 	/* Purple reservation release timeout */
3858 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
3859 		ASSERT(prop_list != NULL);
3860 		un->un_reserve_release_time =
3861 			prop_list->sdt_reserv_rel_time;
3862 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3863 		    "sd_set_vers1_properties: "
3864 		    "reservation release timeout set to %d\n",
3865 		    un->un_reserve_release_time);
3866 	}
3867 
3868 	/*
3869 	 * Driver flag telling the driver to verify that no commands are pending
3870 	 * for a device before issuing a Test Unit Ready. This is a workaround
3871 	 * for a firmware bug in some Seagate eliteI drives.
3872 	 */
3873 	if (flags & SD_CONF_BSET_TUR_CHECK) {
3874 		un->un_f_cfg_tur_check = TRUE;
3875 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3876 		    "sd_set_vers1_properties: tur queue check set\n");
3877 	}
3878 
3879 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
3880 		un->un_min_throttle = prop_list->sdt_min_throttle;
3881 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3882 		    "sd_set_vers1_properties: min throttle set to %d\n",
3883 		    un->un_min_throttle);
3884 	}
3885 
3886 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
3887 		un->un_f_disksort_disabled =
3888 		    (prop_list->sdt_disk_sort_dis != 0) ?
3889 		    TRUE : FALSE;
3890 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3891 		    "sd_set_vers1_properties: disksort disabled "
3892 		    "flag set to %d\n",
3893 		    prop_list->sdt_disk_sort_dis);
3894 	}
3895 
3896 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
3897 		un->un_f_lun_reset_enabled =
3898 		    (prop_list->sdt_lun_reset_enable != 0) ?
3899 		    TRUE : FALSE;
3900 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3901 		    "sd_set_vers1_properties: lun reset enabled "
3902 		    "flag set to %d\n",
3903 		    prop_list->sdt_lun_reset_enable);
3904 	}
3905 
3906 	/*
3907 	 * Validate the throttle values.
3908 	 * If any of the numbers are invalid, set everything to defaults.
3909 	 */
3910 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
3911 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
3912 	    (un->un_min_throttle > un->un_throttle)) {
3913 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
3914 		un->un_min_throttle = sd_min_throttle;
3915 	}
3916 }
3917 
3918 /*
3919  * The following routines support reading and interpretation of disk labels,
3920  * including Solaris BE (8-slice) vtoc's, Solaris LE (16-slice) vtoc's, and
3921  * fdisk tables.
3922  */
3923 
3924 /*
3925  *    Function: sd_validate_geometry
3926  *
3927  * Description: Read the label from the disk (if present). Update the unit's
3928  *		geometry and vtoc information from the data in the label.
3929  *		Verify that the label is valid.
3930  *
3931  *   Arguments: un - driver soft state (unit) structure
3932  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
3933  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
3934  *			to use the USCSI "direct" chain and bypass the normal
3935  *			command waitq.
3936  *
3937  * Return Code: 0 - Successful completion
3938  *		EINVAL  - Invalid value in un->un_tgt_blocksize or
3939  *			  un->un_blockcount; or label on disk is corrupted
3940  *			  or unreadable.
3941  *		EACCES  - Reservation conflict at the device.
3942  *		ENOMEM  - Resource allocation error
3943  *		ENOTSUP - geometry not applicable
3944  *
3945  *     Context: Kernel thread only (can sleep).
3946  */
3947 
3948 static int
3949 sd_validate_geometry(struct sd_lun *un, int path_flag)
3950 {
3951 	static	char		labelstring[128];
3952 	static	char		buf[256];
3953 	char	*label		= NULL;
3954 	int	label_error	= 0;
3955 	int	gvalid		= un->un_f_geometry_is_valid;
3956 	int	lbasize;
3957 	uint_t	capacity;
3958 	int	count;
3959 
3960 	ASSERT(un != NULL);
3961 	ASSERT(mutex_owned(SD_MUTEX(un)));
3962 
3963 	/*
3964 	 * If the required values are not valid, then try getting them
3965 	 * once via read capacity. If that fails, then fail this call.
3966 	 * This is necessary with the new mpxio failover behavior in
3967 	 * the T300 where we can get an attach for the inactive path
3968 	 * before the active path. The inactive path fails commands with
3969 	 * sense data of 02,04,88 which happens to the read capacity
3970 	 * before mpxio has had sufficient knowledge to know if it should
3971 	 * force a fail over or not. (Which it won't do at attach anyhow).
3972 	 * If the read capacity at attach time fails, un_tgt_blocksize and
3973 	 * un_blockcount won't be valid.
3974 	 */
3975 	if ((un->un_f_tgt_blocksize_is_valid != TRUE) ||
3976 	    (un->un_f_blockcount_is_valid != TRUE)) {
3977 		uint64_t	cap;
3978 		uint32_t	lbasz;
3979 		int		rval;
3980 
3981 		mutex_exit(SD_MUTEX(un));
3982 		rval = sd_send_scsi_READ_CAPACITY(un, &cap,
3983 		    &lbasz, SD_PATH_DIRECT);
3984 		mutex_enter(SD_MUTEX(un));
3985 		if (rval == 0) {
3986 			/*
3987 			 * The following relies on
3988 			 * sd_send_scsi_READ_CAPACITY never
3989 			 * returning 0 for capacity and/or lbasize.
3990 			 */
3991 			sd_update_block_info(un, lbasz, cap);
3992 		}
3993 
3994 		if ((un->un_f_tgt_blocksize_is_valid != TRUE) ||
3995 		    (un->un_f_blockcount_is_valid != TRUE)) {
3996 			return (EINVAL);
3997 		}
3998 	}
3999 
4000 	/*
4001 	 * Copy the lbasize and capacity so that if they're reset while we're
4002 	 * not holding the SD_MUTEX, we will continue to use valid values
4003 	 * after the SD_MUTEX is reacquired. (4119659)
4004 	 */
4005 	lbasize  = un->un_tgt_blocksize;
4006 	capacity = un->un_blockcount;
4007 
4008 #if defined(_SUNOS_VTOC_16)
4009 	/*
4010 	 * Set up the "whole disk" fdisk partition; this should always
4011 	 * exist, regardless of whether the disk contains an fdisk table
4012 	 * or vtoc.
4013 	 */
4014 	un->un_map[P0_RAW_DISK].dkl_cylno = 0;
4015 	un->un_map[P0_RAW_DISK].dkl_nblk  = capacity;
4016 #endif
4017 
4018 	/*
4019 	 * Refresh the logical and physical geometry caches.
4020 	 * (data from MODE SENSE format/rigid disk geometry pages,
4021 	 * and scsi_ifgetcap("geometry").
4022 	 */
4023 	sd_resync_geom_caches(un, capacity, lbasize, path_flag);
4024 
4025 	label_error = sd_use_efi(un, path_flag);
4026 	if (label_error == 0) {
4027 		/* found a valid EFI label */
4028 		SD_TRACE(SD_LOG_IO_PARTITION, un,
4029 			"sd_validate_geometry: found EFI label\n");
4030 		un->un_solaris_offset = 0;
4031 		un->un_solaris_size = capacity;
4032 		return (ENOTSUP);
4033 	}
4034 	if (un->un_blockcount > DK_MAX_BLOCKS) {
4035 		if (label_error == ESRCH) {
4036 			/*
4037 			 * they've configured a LUN over 1TB, but used
4038 			 * format.dat to restrict format's view of the
4039 			 * capacity to be under 1TB
4040 			 */
4041 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4042 "is >1TB and has a VTOC label: use format(1M) to either decrease the");
4043 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
4044 "size to be < 1TB or relabel the disk with an EFI label");
4045 		} else {
4046 			/* unlabeled disk over 1TB */
4047 			return (ENOTSUP);
4048 		}
4049 	}
4050 	label_error = 0;
4051 
4052 	/*
4053 	 * at this point it is either labeled with a VTOC or it is
4054 	 * under 1TB
4055 	 */
4056 
4057 	/*
4058 	 * Only DIRECT ACCESS devices will have Sun labels.
4059 	 * CD's supposedly have a Sun label, too
4060 	 */
4061 	if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT || ISREMOVABLE(un)) {
4062 		struct	dk_label *dkl;
4063 		offset_t dkl1;
4064 		offset_t label_addr, real_addr;
4065 		int	rval;
4066 		size_t	buffer_size;
4067 
4068 		/*
4069 		 * Note: This will set up un->un_solaris_size and
4070 		 * un->un_solaris_offset.
4071 		 */
4072 		switch (sd_read_fdisk(un, capacity, lbasize, path_flag)) {
4073 		case SD_CMD_RESERVATION_CONFLICT:
4074 			ASSERT(mutex_owned(SD_MUTEX(un)));
4075 			return (EACCES);
4076 		case SD_CMD_FAILURE:
4077 			ASSERT(mutex_owned(SD_MUTEX(un)));
4078 			return (ENOMEM);
4079 		}
4080 
4081 		if (un->un_solaris_size <= DK_LABEL_LOC) {
4082 			/*
4083 			 * Found fdisk table but no Solaris partition entry,
4084 			 * so don't call sd_uselabel() and don't create
4085 			 * a default label.
4086 			 */
4087 			label_error = 0;
4088 			un->un_f_geometry_is_valid = TRUE;
4089 			goto no_solaris_partition;
4090 		}
4091 		label_addr = (daddr_t)(un->un_solaris_offset + DK_LABEL_LOC);
4092 
4093 		/*
4094 		 * sys_blocksize != tgt_blocksize, need to re-adjust
4095 		 * blkno and save the index to beginning of dk_label
4096 		 */
4097 		real_addr = SD_SYS2TGTBLOCK(un, label_addr);
4098 		buffer_size = SD_REQBYTES2TGTBYTES(un,
4099 		    sizeof (struct dk_label));
4100 
4101 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_validate_geometry: "
4102 		    "label_addr: 0x%x allocation size: 0x%x\n",
4103 		    label_addr, buffer_size);
4104 		dkl = kmem_zalloc(buffer_size, KM_NOSLEEP);
4105 		if (dkl == NULL) {
4106 			return (ENOMEM);
4107 		}
4108 
4109 		mutex_exit(SD_MUTEX(un));
4110 		rval = sd_send_scsi_READ(un, dkl, buffer_size, real_addr,
4111 		    path_flag);
4112 		mutex_enter(SD_MUTEX(un));
4113 
4114 		switch (rval) {
4115 		case 0:
4116 			/*
4117 			 * sd_uselabel will establish that the geometry
4118 			 * is valid.
4119 			 * For sys_blocksize != tgt_blocksize, need
4120 			 * to index into the beginning of dk_label
4121 			 */
4122 			dkl1 = (daddr_t)dkl
4123 				+ SD_TGTBYTEOFFSET(un, label_addr, real_addr);
4124 			if (sd_uselabel(un, (struct dk_label *)(uintptr_t)dkl1,
4125 			    path_flag) != SD_LABEL_IS_VALID) {
4126 				label_error = EINVAL;
4127 			}
4128 			break;
4129 		case EACCES:
4130 			label_error = EACCES;
4131 			break;
4132 		default:
4133 			label_error = EINVAL;
4134 			break;
4135 		}
4136 
4137 		kmem_free(dkl, buffer_size);
4138 
4139 #if defined(_SUNOS_VTOC_8)
4140 		label = (char *)un->un_asciilabel;
4141 #elif defined(_SUNOS_VTOC_16)
4142 		label = (char *)un->un_vtoc.v_asciilabel;
4143 #else
4144 #error "No VTOC format defined."
4145 #endif
4146 	}
4147 
4148 	/*
4149 	 * If a valid label was not found, AND if no reservation conflict
4150 	 * was detected, then go ahead and create a default label (4069506).
4151 	 *
4152 	 * Note: currently, for VTOC_8 devices, the default label is created
4153 	 * for removables only.  For VTOC_16 devices, the default label will
4154 	 * be created for both removables and non-removables alike.
4155 	 * (see sd_build_default_label)
4156 	 */
4157 #if defined(_SUNOS_VTOC_8)
4158 	if (ISREMOVABLE(un) && (label_error != EACCES)) {
4159 #elif defined(_SUNOS_VTOC_16)
4160 	if (label_error != EACCES) {
4161 #endif
4162 		if (un->un_f_geometry_is_valid == FALSE) {
4163 			sd_build_default_label(un);
4164 		}
4165 		label_error = 0;
4166 	}
4167 
4168 no_solaris_partition:
4169 	if ((!ISREMOVABLE(un) ||
4170 	    (ISREMOVABLE(un) && un->un_mediastate == DKIO_EJECTED)) &&
4171 	    (un->un_state == SD_STATE_NORMAL && gvalid == FALSE)) {
4172 		/*
4173 		 * Print out a message indicating who and what we are.
4174 		 * We do this only when we happen to really validate the
4175 		 * geometry. We may call sd_validate_geometry() at other
4176 		 * times, e.g., ioctl()'s like Get VTOC in which case we
4177 		 * don't want to print the label.
4178 		 * If the geometry is valid, print the label string,
4179 		 * else print vendor and product info, if available
4180 		 */
4181 		if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) {
4182 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "?<%s>\n", label);
4183 		} else {
4184 			mutex_enter(&sd_label_mutex);
4185 			sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX,
4186 			    labelstring);
4187 			sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX,
4188 			    &labelstring[64]);
4189 			(void) sprintf(buf, "?Vendor '%s', product '%s'",
4190 			    labelstring, &labelstring[64]);
4191 			if (un->un_f_blockcount_is_valid == TRUE) {
4192 				(void) sprintf(&buf[strlen(buf)],
4193 				    ", %llu %u byte blocks\n",
4194 				    (longlong_t)un->un_blockcount,
4195 				    un->un_tgt_blocksize);
4196 			} else {
4197 				(void) sprintf(&buf[strlen(buf)],
4198 				    ", (unknown capacity)\n");
4199 			}
4200 			SD_INFO(SD_LOG_ATTACH_DETACH, un, buf);
4201 			mutex_exit(&sd_label_mutex);
4202 		}
4203 	}
4204 
4205 #if defined(_SUNOS_VTOC_16)
4206 	/*
4207 	 * If we have valid geometry, set up the remaining fdisk partitions.
4208 	 * Note that dkl_cylno is not used for the fdisk map entries, so
4209 	 * we set it to an entirely bogus value.
4210 	 */
4211 	for (count = 0; count < FD_NUMPART; count++) {
4212 		un->un_map[FDISK_P1 + count].dkl_cylno = -1;
4213 		un->un_map[FDISK_P1 + count].dkl_nblk =
4214 		    un->un_fmap[count].fmap_nblk;
4215 
4216 		un->un_offset[FDISK_P1 + count] =
4217 		    un->un_fmap[count].fmap_start;
4218 	}
4219 #endif
4220 
4221 	for (count = 0; count < NDKMAP; count++) {
4222 #if defined(_SUNOS_VTOC_8)
4223 		struct dk_map *lp  = &un->un_map[count];
4224 		un->un_offset[count] =
4225 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
4226 #elif defined(_SUNOS_VTOC_16)
4227 		struct dkl_partition *vp = &un->un_vtoc.v_part[count];
4228 
4229 		un->un_offset[count] = vp->p_start + un->un_solaris_offset;
4230 #else
4231 #error "No VTOC format defined."
4232 #endif
4233 	}
4234 
4235 	return (label_error);
4236 }
4237 
4238 
4239 #if defined(_SUNOS_VTOC_16)
4240 /*
4241  * Macro: MAX_BLKS
4242  *
4243  *	This macro is used for table entries where we need to have the largest
4244  *	possible sector value for that head & SPT (sectors per track)
4245  *	combination.  Other entries for some smaller disk sizes are set by
4246  *	convention to match those used by X86 BIOS usage.
4247  */
4248 #define	MAX_BLKS(heads, spt)	UINT16_MAX * heads * spt, heads, spt
4249 
4250 /*
4251  *    Function: sd_convert_geometry
4252  *
4253  * Description: Convert physical geometry into a dk_geom structure. In
4254  *		other words, make sure we don't wrap 16-bit values.
4255  *		e.g. converting from geom_cache to dk_geom
4256  *
4257  *     Context: Kernel thread only
4258  */
4259 static void
4260 sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g)
4261 {
4262 	int i;
4263 	static const struct chs_values {
4264 		uint_t max_cap;		/* Max Capacity for this HS. */
4265 		uint_t nhead;		/* Heads to use. */
4266 		uint_t nsect;		/* SPT to use. */
4267 	} CHS_values[] = {
4268 		{0x00200000,  64, 32},		/* 1GB or smaller disk. */
4269 		{0x01000000, 128, 32},		/* 8GB or smaller disk. */
4270 		{MAX_BLKS(255,  63)},		/* 502.02GB or smaller disk. */
4271 		{MAX_BLKS(255, 126)},		/* .98TB or smaller disk. */
4272 		{DK_MAX_BLOCKS, 255, 189}	/* Max size is just under 1TB */
4273 	};
4274 
4275 	/* Unlabeled SCSI floppy device */
4276 	if (capacity <= 0x1000) {
4277 		un_g->dkg_nhead = 2;
4278 		un_g->dkg_ncyl = 80;
4279 		un_g->dkg_nsect = capacity / (un_g->dkg_nhead * un_g->dkg_ncyl);
4280 		return;
4281 	}
4282 
4283 	/*
4284 	 * For all devices we calculate cylinders using the
4285 	 * heads and sectors we assign based on capacity of the
4286 	 * device.  The table is designed to be compatible with the
4287 	 * way other operating systems lay out fdisk tables for X86
4288 	 * and to insure that the cylinders never exceed 65535 to
4289 	 * prevent problems with X86 ioctls that report geometry.
4290 	 * We use SPT that are multiples of 63, since other OSes that
4291 	 * are not limited to 16-bits for cylinders stop at 63 SPT
4292 	 * we make do by using multiples of 63 SPT.
4293 	 *
4294 	 * Note than capacities greater than or equal to 1TB will simply
4295 	 * get the largest geometry from the table. This should be okay
4296 	 * since disks this large shouldn't be using CHS values anyway.
4297 	 */
4298 	for (i = 0; CHS_values[i].max_cap < capacity &&
4299 	    CHS_values[i].max_cap != DK_MAX_BLOCKS; i++)
4300 		;
4301 
4302 	un_g->dkg_nhead = CHS_values[i].nhead;
4303 	un_g->dkg_nsect = CHS_values[i].nsect;
4304 }
4305 #endif
4306 
4307 
4308 /*
4309  *    Function: sd_resync_geom_caches
4310  *
4311  * Description: (Re)initialize both geometry caches: the virtual geometry
4312  *		information is extracted from the HBA (the "geometry"
4313  *		capability), and the physical geometry cache data is
4314  *		generated by issuing MODE SENSE commands.
4315  *
4316  *   Arguments: un - driver soft state (unit) structure
4317  *		capacity - disk capacity in #blocks
4318  *		lbasize - disk block size in bytes
4319  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4320  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4321  *			to use the USCSI "direct" chain and bypass the normal
4322  *			command waitq.
4323  *
4324  *     Context: Kernel thread only (can sleep).
4325  */
4326 
4327 static void
4328 sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize,
4329 	int path_flag)
4330 {
4331 	struct 	geom_cache 	pgeom;
4332 	struct 	geom_cache	*pgeom_p = &pgeom;
4333 	int 	spc;
4334 	unsigned short nhead;
4335 	unsigned short nsect;
4336 
4337 	ASSERT(un != NULL);
4338 	ASSERT(mutex_owned(SD_MUTEX(un)));
4339 
4340 	/*
4341 	 * Ask the controller for its logical geometry.
4342 	 * Note: if the HBA does not support scsi_ifgetcap("geometry"),
4343 	 * then the lgeom cache will be invalid.
4344 	 */
4345 	sd_get_virtual_geometry(un, capacity, lbasize);
4346 
4347 	/*
4348 	 * Initialize the pgeom cache from lgeom, so that if MODE SENSE
4349 	 * doesn't work, DKIOCG_PHYSGEOM can return reasonable values.
4350 	 */
4351 	if (un->un_lgeom.g_nsect == 0 || un->un_lgeom.g_nhead == 0) {
4352 		/*
4353 		 * Note: Perhaps this needs to be more adaptive? The rationale
4354 		 * is that, if there's no HBA geometry from the HBA driver, any
4355 		 * guess is good, since this is the physical geometry. If MODE
4356 		 * SENSE fails this gives a max cylinder size for non-LBA access
4357 		 */
4358 		nhead = 255;
4359 		nsect = 63;
4360 	} else {
4361 		nhead = un->un_lgeom.g_nhead;
4362 		nsect = un->un_lgeom.g_nsect;
4363 	}
4364 
4365 	if (ISCD(un)) {
4366 		pgeom_p->g_nhead = 1;
4367 		pgeom_p->g_nsect = nsect * nhead;
4368 	} else {
4369 		pgeom_p->g_nhead = nhead;
4370 		pgeom_p->g_nsect = nsect;
4371 	}
4372 
4373 	spc = pgeom_p->g_nhead * pgeom_p->g_nsect;
4374 	pgeom_p->g_capacity = capacity;
4375 	pgeom_p->g_ncyl = pgeom_p->g_capacity / spc;
4376 	pgeom_p->g_acyl = 0;
4377 
4378 	/*
4379 	 * Retrieve fresh geometry data from the hardware, stash it
4380 	 * here temporarily before we rebuild the incore label.
4381 	 *
4382 	 * We want to use the MODE SENSE commands to derive the
4383 	 * physical geometry of the device, but if either command
4384 	 * fails, the logical geometry is used as the fallback for
4385 	 * disk label geometry.
4386 	 */
4387 	mutex_exit(SD_MUTEX(un));
4388 	sd_get_physical_geometry(un, pgeom_p, capacity, lbasize, path_flag);
4389 	mutex_enter(SD_MUTEX(un));
4390 
4391 	/*
4392 	 * Now update the real copy while holding the mutex. This
4393 	 * way the global copy is never in an inconsistent state.
4394 	 */
4395 	bcopy(pgeom_p, &un->un_pgeom,  sizeof (un->un_pgeom));
4396 
4397 	SD_INFO(SD_LOG_COMMON, un, "sd_resync_geom_caches: "
4398 	    "(cached from lgeom)\n");
4399 	SD_INFO(SD_LOG_COMMON, un,
4400 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4401 	    un->un_pgeom.g_ncyl, un->un_pgeom.g_acyl,
4402 	    un->un_pgeom.g_nhead, un->un_pgeom.g_nsect);
4403 	SD_INFO(SD_LOG_COMMON, un, "   lbasize: %d; capacity: %ld; "
4404 	    "intrlv: %d; rpm: %d\n", un->un_pgeom.g_secsize,
4405 	    un->un_pgeom.g_capacity, un->un_pgeom.g_intrlv,
4406 	    un->un_pgeom.g_rpm);
4407 }
4408 
4409 
4410 /*
4411  *    Function: sd_read_fdisk
4412  *
4413  * Description: utility routine to read the fdisk table.
4414  *
4415  *   Arguments: un - driver soft state (unit) structure
4416  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4417  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4418  *			to use the USCSI "direct" chain and bypass the normal
4419  *			command waitq.
4420  *
4421  * Return Code: SD_CMD_SUCCESS
4422  *		SD_CMD_FAILURE
4423  *
4424  *     Context: Kernel thread only (can sleep).
4425  */
4426 /* ARGSUSED */
4427 static int
4428 sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize, int path_flag)
4429 {
4430 #if defined(_NO_FDISK_PRESENT)
4431 
4432 	un->un_solaris_offset = 0;
4433 	un->un_solaris_size = capacity;
4434 	bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
4435 	return (SD_CMD_SUCCESS);
4436 
4437 #elif defined(_FIRMWARE_NEEDS_FDISK)
4438 
4439 	struct ipart	*fdp;
4440 	struct mboot	*mbp;
4441 	struct ipart	fdisk[FD_NUMPART];
4442 	int		i;
4443 	char		sigbuf[2];
4444 	caddr_t		bufp;
4445 	int		uidx;
4446 	int		rval;
4447 	int		lba = 0;
4448 	uint_t		solaris_offset;	/* offset to solaris part. */
4449 	daddr_t		solaris_size;	/* size of solaris partition */
4450 	uint32_t	blocksize;
4451 
4452 	ASSERT(un != NULL);
4453 	ASSERT(mutex_owned(SD_MUTEX(un)));
4454 	ASSERT(un->un_f_tgt_blocksize_is_valid == TRUE);
4455 
4456 	blocksize = un->un_tgt_blocksize;
4457 
4458 	/*
4459 	 * Start off assuming no fdisk table
4460 	 */
4461 	solaris_offset = 0;
4462 	solaris_size   = capacity;
4463 
4464 	mutex_exit(SD_MUTEX(un));
4465 	bufp = kmem_zalloc(blocksize, KM_SLEEP);
4466 	rval = sd_send_scsi_READ(un, bufp, blocksize, 0, path_flag);
4467 	mutex_enter(SD_MUTEX(un));
4468 
4469 	if (rval != 0) {
4470 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4471 		    "sd_read_fdisk: fdisk read err\n");
4472 		kmem_free(bufp, blocksize);
4473 		return (SD_CMD_FAILURE);
4474 	}
4475 
4476 	mbp = (struct mboot *)bufp;
4477 
4478 	/*
4479 	 * The fdisk table does not begin on a 4-byte boundary within the
4480 	 * master boot record, so we copy it to an aligned structure to avoid
4481 	 * alignment exceptions on some processors.
4482 	 */
4483 	bcopy(&mbp->parts[0], fdisk, sizeof (fdisk));
4484 
4485 	/*
4486 	 * Check for lba support before verifying sig; sig might not be
4487 	 * there, say on a blank disk, but the max_chs mark may still
4488 	 * be present.
4489 	 *
4490 	 * Note: LBA support and BEFs are an x86-only concept but this
4491 	 * code should work OK on SPARC as well.
4492 	 */
4493 
4494 	/*
4495 	 * First, check for lba-access-ok on root node (or prom root node)
4496 	 * if present there, don't need to search fdisk table.
4497 	 */
4498 	if (ddi_getprop(DDI_DEV_T_ANY, ddi_root_node(), 0,
4499 	    "lba-access-ok", 0) != 0) {
4500 		/* All drives do LBA; don't search fdisk table */
4501 		lba = 1;
4502 	} else {
4503 		/* Okay, look for mark in fdisk table */
4504 		for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
4505 			/* accumulate "lba" value from all partitions */
4506 			lba = (lba || sd_has_max_chs_vals(fdp));
4507 		}
4508 	}
4509 
4510 	/*
4511 	 * Next, look for 'no-bef-lba-access' prop on parent.
4512 	 * Its presence means the realmode driver doesn't support
4513 	 * LBA, so the target driver shouldn't advertise it as ok.
4514 	 * This should be a temporary condition; one day all
4515 	 * BEFs should support the LBA access functions.
4516 	 */
4517 	if ((lba != 0) && (ddi_getprop(DDI_DEV_T_ANY,
4518 	    ddi_get_parent(SD_DEVINFO(un)), DDI_PROP_DONTPASS,
4519 	    "no-bef-lba-access", 0) != 0)) {
4520 		/* BEF doesn't support LBA; don't advertise it as ok */
4521 		lba = 0;
4522 	}
4523 
4524 	if (lba != 0) {
4525 		dev_t dev = sd_make_device(SD_DEVINFO(un));
4526 
4527 		if (ddi_getprop(dev, SD_DEVINFO(un), DDI_PROP_DONTPASS,
4528 		    "lba-access-ok", 0) == 0) {
4529 			/* not found; create it */
4530 			if (ddi_prop_create(dev, SD_DEVINFO(un), 0,
4531 			    "lba-access-ok", (caddr_t)NULL, 0) !=
4532 			    DDI_PROP_SUCCESS) {
4533 				SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4534 				    "sd_read_fdisk: Can't create lba property "
4535 				    "for instance %d\n",
4536 				    ddi_get_instance(SD_DEVINFO(un)));
4537 			}
4538 		}
4539 	}
4540 
4541 	bcopy(&mbp->signature, sigbuf, sizeof (sigbuf));
4542 
4543 	/*
4544 	 * Endian-independent signature check
4545 	 */
4546 	if (((sigbuf[1] & 0xFF) != ((MBB_MAGIC >> 8) & 0xFF)) ||
4547 	    (sigbuf[0] != (MBB_MAGIC & 0xFF))) {
4548 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4549 		    "sd_read_fdisk: no fdisk\n");
4550 		bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
4551 		rval = SD_CMD_SUCCESS;
4552 		goto done;
4553 	}
4554 
4555 #ifdef SDDEBUG
4556 	if (sd_level_mask & SD_LOGMASK_INFO) {
4557 		fdp = fdisk;
4558 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_read_fdisk:\n");
4559 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "         relsect    "
4560 		    "numsect         sysid       bootid\n");
4561 		for (i = 0; i < FD_NUMPART; i++, fdp++) {
4562 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4563 			    "    %d:  %8d   %8d     0x%08x     0x%08x\n",
4564 			    i, fdp->relsect, fdp->numsect,
4565 			    fdp->systid, fdp->bootid);
4566 		}
4567 	}
4568 #endif
4569 
4570 	/*
4571 	 * Try to find the unix partition
4572 	 */
4573 	uidx = -1;
4574 	solaris_offset = 0;
4575 	solaris_size   = 0;
4576 
4577 	for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
4578 		int	relsect;
4579 		int	numsect;
4580 
4581 		if (fdp->numsect == 0) {
4582 			un->un_fmap[i].fmap_start = 0;
4583 			un->un_fmap[i].fmap_nblk  = 0;
4584 			continue;
4585 		}
4586 
4587 		/*
4588 		 * Data in the fdisk table is little-endian.
4589 		 */
4590 		relsect = LE_32(fdp->relsect);
4591 		numsect = LE_32(fdp->numsect);
4592 
4593 		un->un_fmap[i].fmap_start = relsect;
4594 		un->un_fmap[i].fmap_nblk  = numsect;
4595 
4596 		if (fdp->systid != SUNIXOS &&
4597 		    fdp->systid != SUNIXOS2 &&
4598 		    fdp->systid != EFI_PMBR) {
4599 			continue;
4600 		}
4601 
4602 		/*
4603 		 * use the last active solaris partition id found
4604 		 * (there should only be 1 active partition id)
4605 		 *
4606 		 * if there are no active solaris partition id
4607 		 * then use the first inactive solaris partition id
4608 		 */
4609 		if ((uidx == -1) || (fdp->bootid == ACTIVE)) {
4610 			uidx = i;
4611 			solaris_offset = relsect;
4612 			solaris_size   = numsect;
4613 		}
4614 	}
4615 
4616 	SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk 0x%x 0x%lx",
4617 	    un->un_solaris_offset, un->un_solaris_size);
4618 
4619 	rval = SD_CMD_SUCCESS;
4620 
4621 done:
4622 
4623 	/*
4624 	 * Clear the VTOC info, only if the Solaris partition entry
4625 	 * has moved, changed size, been deleted, or if the size of
4626 	 * the partition is too small to even fit the label sector.
4627 	 */
4628 	if ((un->un_solaris_offset != solaris_offset) ||
4629 	    (un->un_solaris_size != solaris_size) ||
4630 	    solaris_size <= DK_LABEL_LOC) {
4631 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk moved 0x%x 0x%lx",
4632 			solaris_offset, solaris_size);
4633 		bzero(&un->un_g, sizeof (struct dk_geom));
4634 		bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
4635 		bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
4636 		un->un_f_geometry_is_valid = FALSE;
4637 	}
4638 	un->un_solaris_offset = solaris_offset;
4639 	un->un_solaris_size = solaris_size;
4640 	kmem_free(bufp, blocksize);
4641 	return (rval);
4642 
4643 #else	/* #elif defined(_FIRMWARE_NEEDS_FDISK) */
4644 #error "fdisk table presence undetermined for this platform."
4645 #endif	/* #if defined(_NO_FDISK_PRESENT) */
4646 }
4647 
4648 
4649 /*
4650  *    Function: sd_get_physical_geometry
4651  *
4652  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4653  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4654  *		target, and use this information to initialize the physical
4655  *		geometry cache specified by pgeom_p.
4656  *
4657  *		MODE SENSE is an optional command, so failure in this case
4658  *		does not necessarily denote an error. We want to use the
4659  *		MODE SENSE commands to derive the physical geometry of the
4660  *		device, but if either command fails, the logical geometry is
4661  *		used as the fallback for disk label geometry.
4662  *
4663  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4664  *		have already been initialized for the current target and
4665  *		that the current values be passed as args so that we don't
4666  *		end up ever trying to use -1 as a valid value. This could
4667  *		happen if either value is reset while we're not holding
4668  *		the mutex.
4669  *
4670  *   Arguments: un - driver soft state (unit) structure
4671  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4672  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4673  *			to use the USCSI "direct" chain and bypass the normal
4674  *			command waitq.
4675  *
4676  *     Context: Kernel thread only (can sleep).
4677  */
4678 
4679 static void
4680 sd_get_physical_geometry(struct sd_lun *un, struct geom_cache *pgeom_p,
4681 	int capacity, int lbasize, int path_flag)
4682 {
4683 	struct	mode_format	*page3p;
4684 	struct	mode_geometry	*page4p;
4685 	struct	mode_header	*headerp;
4686 	int	sector_size;
4687 	int	nsect;
4688 	int	nhead;
4689 	int	ncyl;
4690 	int	intrlv;
4691 	int	spc;
4692 	int	modesense_capacity;
4693 	int	rpm;
4694 	int	bd_len;
4695 	int	mode_header_length;
4696 	uchar_t	*p3bufp;
4697 	uchar_t	*p4bufp;
4698 	int	cdbsize;
4699 
4700 	ASSERT(un != NULL);
4701 	ASSERT(!(mutex_owned(SD_MUTEX(un))));
4702 
4703 	if (un->un_f_blockcount_is_valid != TRUE) {
4704 		return;
4705 	}
4706 
4707 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
4708 		return;
4709 	}
4710 
4711 	if (lbasize == 0) {
4712 		if (ISCD(un)) {
4713 			lbasize = 2048;
4714 		} else {
4715 			lbasize = un->un_sys_blocksize;
4716 		}
4717 	}
4718 	pgeom_p->g_secsize = (unsigned short)lbasize;
4719 
4720 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4721 
4722 	/*
4723 	 * Retrieve MODE SENSE page 3 - Format Device Page
4724 	 */
4725 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4726 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp,
4727 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag)
4728 	    != 0) {
4729 		SD_ERROR(SD_LOG_COMMON, un,
4730 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4731 		goto page3_exit;
4732 	}
4733 
4734 	/*
4735 	 * Determine size of Block Descriptors in order to locate the mode
4736 	 * page data.  ATAPI devices return 0, SCSI devices should return
4737 	 * MODE_BLK_DESC_LENGTH.
4738 	 */
4739 	headerp = (struct mode_header *)p3bufp;
4740 	if (un->un_f_cfg_is_atapi == TRUE) {
4741 		struct mode_header_grp2 *mhp =
4742 		    (struct mode_header_grp2 *)headerp;
4743 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4744 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4745 	} else {
4746 		mode_header_length = MODE_HEADER_LENGTH;
4747 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4748 	}
4749 
4750 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4751 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4752 		    "received unexpected bd_len of %d, page3\n", bd_len);
4753 		goto page3_exit;
4754 	}
4755 
4756 	page3p = (struct mode_format *)
4757 	    ((caddr_t)headerp + mode_header_length + bd_len);
4758 
4759 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
4760 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4761 		    "mode sense pg3 code mismatch %d\n",
4762 		    page3p->mode_page.code);
4763 		goto page3_exit;
4764 	}
4765 
4766 	/*
4767 	 * Use this physical geometry data only if BOTH MODE SENSE commands
4768 	 * complete successfully; otherwise, revert to the logical geometry.
4769 	 * So, we need to save everything in temporary variables.
4770 	 */
4771 	sector_size = BE_16(page3p->data_bytes_sect);
4772 
4773 	/*
4774 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
4775 	 */
4776 	if (sector_size == 0) {
4777 		sector_size = (ISCD(un)) ? 2048 : un->un_sys_blocksize;
4778 	} else {
4779 		sector_size &= ~(un->un_sys_blocksize - 1);
4780 	}
4781 
4782 	nsect  = BE_16(page3p->sect_track);
4783 	intrlv = BE_16(page3p->interleave);
4784 
4785 	SD_INFO(SD_LOG_COMMON, un,
4786 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
4787 	SD_INFO(SD_LOG_COMMON, un,
4788 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
4789 	    page3p->mode_page.code, nsect, sector_size);
4790 	SD_INFO(SD_LOG_COMMON, un,
4791 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
4792 	    BE_16(page3p->track_skew),
4793 	    BE_16(page3p->cylinder_skew));
4794 
4795 
4796 	/*
4797 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
4798 	 */
4799 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
4800 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp,
4801 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag)
4802 	    != 0) {
4803 		SD_ERROR(SD_LOG_COMMON, un,
4804 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
4805 		goto page4_exit;
4806 	}
4807 
4808 	/*
4809 	 * Determine size of Block Descriptors in order to locate the mode
4810 	 * page data.  ATAPI devices return 0, SCSI devices should return
4811 	 * MODE_BLK_DESC_LENGTH.
4812 	 */
4813 	headerp = (struct mode_header *)p4bufp;
4814 	if (un->un_f_cfg_is_atapi == TRUE) {
4815 		struct mode_header_grp2 *mhp =
4816 		    (struct mode_header_grp2 *)headerp;
4817 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4818 	} else {
4819 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4820 	}
4821 
4822 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4823 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4824 		    "received unexpected bd_len of %d, page4\n", bd_len);
4825 		goto page4_exit;
4826 	}
4827 
4828 	page4p = (struct mode_geometry *)
4829 	    ((caddr_t)headerp + mode_header_length + bd_len);
4830 
4831 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
4832 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4833 		    "mode sense pg4 code mismatch %d\n",
4834 		    page4p->mode_page.code);
4835 		goto page4_exit;
4836 	}
4837 
4838 	/*
4839 	 * Stash the data now, after we know that both commands completed.
4840 	 */
4841 
4842 	mutex_enter(SD_MUTEX(un));
4843 
4844 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
4845 	spc   = nhead * nsect;
4846 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
4847 	rpm   = BE_16(page4p->rpm);
4848 
4849 	modesense_capacity = spc * ncyl;
4850 
4851 	SD_INFO(SD_LOG_COMMON, un,
4852 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
4853 	SD_INFO(SD_LOG_COMMON, un,
4854 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
4855 	SD_INFO(SD_LOG_COMMON, un,
4856 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
4857 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
4858 	    (void *)pgeom_p, capacity);
4859 
4860 	/*
4861 	 * Compensate if the drive's geometry is not rectangular, i.e.,
4862 	 * the product of C * H * S returned by MODE SENSE >= that returned
4863 	 * by read capacity. This is an idiosyncrasy of the original x86
4864 	 * disk subsystem.
4865 	 */
4866 	if (modesense_capacity >= capacity) {
4867 		SD_INFO(SD_LOG_COMMON, un,
4868 		    "sd_get_physical_geometry: adjusting acyl; "
4869 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
4870 		    (modesense_capacity - capacity + spc - 1) / spc);
4871 		if (sector_size != 0) {
4872 			/* 1243403: NEC D38x7 drives don't support sec size */
4873 			pgeom_p->g_secsize = (unsigned short)sector_size;
4874 		}
4875 		pgeom_p->g_nsect    = (unsigned short)nsect;
4876 		pgeom_p->g_nhead    = (unsigned short)nhead;
4877 		pgeom_p->g_capacity = capacity;
4878 		pgeom_p->g_acyl	    =
4879 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
4880 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
4881 	}
4882 
4883 	pgeom_p->g_rpm    = (unsigned short)rpm;
4884 	pgeom_p->g_intrlv = (unsigned short)intrlv;
4885 
4886 	SD_INFO(SD_LOG_COMMON, un,
4887 	    "sd_get_physical_geometry: mode sense geometry:\n");
4888 	SD_INFO(SD_LOG_COMMON, un,
4889 	    "   nsect: %d; sector size: %d; interlv: %d\n",
4890 	    nsect, sector_size, intrlv);
4891 	SD_INFO(SD_LOG_COMMON, un,
4892 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
4893 	    nhead, ncyl, rpm, modesense_capacity);
4894 	SD_INFO(SD_LOG_COMMON, un,
4895 	    "sd_get_physical_geometry: (cached)\n");
4896 	SD_INFO(SD_LOG_COMMON, un,
4897 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4898 	    un->un_pgeom.g_ncyl,  un->un_pgeom.g_acyl,
4899 	    un->un_pgeom.g_nhead, un->un_pgeom.g_nsect);
4900 	SD_INFO(SD_LOG_COMMON, un,
4901 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
4902 	    un->un_pgeom.g_secsize, un->un_pgeom.g_capacity,
4903 	    un->un_pgeom.g_intrlv, un->un_pgeom.g_rpm);
4904 
4905 	mutex_exit(SD_MUTEX(un));
4906 
4907 page4_exit:
4908 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
4909 page3_exit:
4910 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
4911 }
4912 
4913 
4914 /*
4915  *    Function: sd_get_virtual_geometry
4916  *
4917  * Description: Ask the controller to tell us about the target device.
4918  *
4919  *   Arguments: un - pointer to softstate
4920  *		capacity - disk capacity in #blocks
4921  *		lbasize - disk block size in bytes
4922  *
4923  *     Context: Kernel thread only
4924  */
4925 
4926 static void
4927 sd_get_virtual_geometry(struct sd_lun *un, int capacity, int lbasize)
4928 {
4929 	struct	geom_cache 	*lgeom_p = &un->un_lgeom;
4930 	uint_t	geombuf;
4931 	int	spc;
4932 
4933 	ASSERT(un != NULL);
4934 	ASSERT(mutex_owned(SD_MUTEX(un)));
4935 
4936 	mutex_exit(SD_MUTEX(un));
4937 
4938 	/* Set sector size, and total number of sectors */
4939 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
4940 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
4941 
4942 	/* Let the HBA tell us its geometry */
4943 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
4944 
4945 	mutex_enter(SD_MUTEX(un));
4946 
4947 	/* A value of -1 indicates an undefined "geometry" property */
4948 	if (geombuf == (-1)) {
4949 		return;
4950 	}
4951 
4952 	/* Initialize the logical geometry cache. */
4953 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
4954 	lgeom_p->g_nsect   = geombuf & 0xffff;
4955 	lgeom_p->g_secsize = un->un_sys_blocksize;
4956 
4957 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
4958 
4959 	/*
4960 	 * Note: The driver originally converted the capacity value from
4961 	 * target blocks to system blocks. However, the capacity value passed
4962 	 * to this routine is already in terms of system blocks (this scaling
4963 	 * is done when the READ CAPACITY command is issued and processed).
4964 	 * This 'error' may have gone undetected because the usage of g_ncyl
4965 	 * (which is based upon g_capacity) is very limited within the driver
4966 	 */
4967 	lgeom_p->g_capacity = capacity;
4968 
4969 	/*
4970 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
4971 	 * hba may return zero values if the device has been removed.
4972 	 */
4973 	if (spc == 0) {
4974 		lgeom_p->g_ncyl = 0;
4975 	} else {
4976 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
4977 	}
4978 	lgeom_p->g_acyl = 0;
4979 
4980 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
4981 	SD_INFO(SD_LOG_COMMON, un,
4982 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4983 	    un->un_lgeom.g_ncyl,  un->un_lgeom.g_acyl,
4984 	    un->un_lgeom.g_nhead, un->un_lgeom.g_nsect);
4985 	SD_INFO(SD_LOG_COMMON, un, "   lbasize: %d; capacity: %ld; "
4986 	    "intrlv: %d; rpm: %d\n", un->un_lgeom.g_secsize,
4987 	    un->un_lgeom.g_capacity, un->un_lgeom.g_intrlv, un->un_lgeom.g_rpm);
4988 }
4989 
4990 
4991 /*
4992  *    Function: sd_update_block_info
4993  *
4994  * Description: Calculate a byte count to sector count bitshift value
4995  *		from sector size.
4996  *
4997  *   Arguments: un: unit struct.
4998  *		lbasize: new target sector size
4999  *		capacity: new target capacity, ie. block count
5000  *
5001  *     Context: Kernel thread context
5002  */
5003 
5004 static void
5005 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
5006 {
5007 	if (lbasize != 0) {
5008 		un->un_tgt_blocksize = lbasize;
5009 		un->un_f_tgt_blocksize_is_valid	= TRUE;
5010 	}
5011 
5012 	if (capacity != 0) {
5013 		un->un_blockcount		= capacity;
5014 		un->un_f_blockcount_is_valid	= TRUE;
5015 	}
5016 }
5017 
5018 
5019 static void
5020 sd_swap_efi_gpt(efi_gpt_t *e)
5021 {
5022 	_NOTE(ASSUMING_PROTECTED(*e))
5023 	e->efi_gpt_Signature = LE_64(e->efi_gpt_Signature);
5024 	e->efi_gpt_Revision = LE_32(e->efi_gpt_Revision);
5025 	e->efi_gpt_HeaderSize = LE_32(e->efi_gpt_HeaderSize);
5026 	e->efi_gpt_HeaderCRC32 = LE_32(e->efi_gpt_HeaderCRC32);
5027 	e->efi_gpt_MyLBA = LE_64(e->efi_gpt_MyLBA);
5028 	e->efi_gpt_AlternateLBA = LE_64(e->efi_gpt_AlternateLBA);
5029 	e->efi_gpt_FirstUsableLBA = LE_64(e->efi_gpt_FirstUsableLBA);
5030 	e->efi_gpt_LastUsableLBA = LE_64(e->efi_gpt_LastUsableLBA);
5031 	UUID_LE_CONVERT(e->efi_gpt_DiskGUID, e->efi_gpt_DiskGUID);
5032 	e->efi_gpt_PartitionEntryLBA = LE_64(e->efi_gpt_PartitionEntryLBA);
5033 	e->efi_gpt_NumberOfPartitionEntries =
5034 	    LE_32(e->efi_gpt_NumberOfPartitionEntries);
5035 	e->efi_gpt_SizeOfPartitionEntry =
5036 	    LE_32(e->efi_gpt_SizeOfPartitionEntry);
5037 	e->efi_gpt_PartitionEntryArrayCRC32 =
5038 	    LE_32(e->efi_gpt_PartitionEntryArrayCRC32);
5039 }
5040 
5041 static void
5042 sd_swap_efi_gpe(int nparts, efi_gpe_t *p)
5043 {
5044 	int i;
5045 
5046 	_NOTE(ASSUMING_PROTECTED(*p))
5047 	for (i = 0; i < nparts; i++) {
5048 		UUID_LE_CONVERT(p[i].efi_gpe_PartitionTypeGUID,
5049 		    p[i].efi_gpe_PartitionTypeGUID);
5050 		p[i].efi_gpe_StartingLBA = LE_64(p[i].efi_gpe_StartingLBA);
5051 		p[i].efi_gpe_EndingLBA = LE_64(p[i].efi_gpe_EndingLBA);
5052 		/* PartitionAttrs */
5053 	}
5054 }
5055 
5056 static int
5057 sd_validate_efi(efi_gpt_t *labp)
5058 {
5059 	if (labp->efi_gpt_Signature != EFI_SIGNATURE)
5060 		return (EINVAL);
5061 	/* at least 96 bytes in this version of the spec. */
5062 	if (sizeof (efi_gpt_t) - sizeof (labp->efi_gpt_Reserved2) >
5063 	    labp->efi_gpt_HeaderSize)
5064 		return (EINVAL);
5065 	/* this should be 128 bytes */
5066 	if (labp->efi_gpt_SizeOfPartitionEntry != sizeof (efi_gpe_t))
5067 		return (EINVAL);
5068 	return (0);
5069 }
5070 
5071 static int
5072 sd_use_efi(struct sd_lun *un, int path_flag)
5073 {
5074 	int		i;
5075 	int		rval = 0;
5076 	efi_gpe_t	*partitions;
5077 	uchar_t		*buf;
5078 	uint_t		lbasize;
5079 	uint64_t	cap;
5080 	uint_t		nparts;
5081 	diskaddr_t	gpe_lba;
5082 
5083 	ASSERT(mutex_owned(SD_MUTEX(un)));
5084 	lbasize = un->un_tgt_blocksize;
5085 
5086 	mutex_exit(SD_MUTEX(un));
5087 
5088 	buf = kmem_zalloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
5089 
5090 	if (un->un_tgt_blocksize != un->un_sys_blocksize) {
5091 		rval = EINVAL;
5092 		goto done_err;
5093 	}
5094 
5095 	rval = sd_send_scsi_READ(un, buf, lbasize, 0, path_flag);
5096 	if (rval) {
5097 		goto done_err;
5098 	}
5099 	if (((struct dk_label *)buf)->dkl_magic == DKL_MAGIC) {
5100 		/* not ours */
5101 		rval = ESRCH;
5102 		goto done_err;
5103 	}
5104 
5105 	rval = sd_send_scsi_READ(un, buf, lbasize, 1, path_flag);
5106 	if (rval) {
5107 		goto done_err;
5108 	}
5109 	sd_swap_efi_gpt((efi_gpt_t *)buf);
5110 
5111 	if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0) {
5112 		/*
5113 		 * Couldn't read the primary, try the backup.  Our
5114 		 * capacity at this point could be based on CHS, so
5115 		 * check what the device reports.
5116 		 */
5117 		rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
5118 		    path_flag);
5119 		if (rval) {
5120 			goto done_err;
5121 		}
5122 		if ((rval = sd_send_scsi_READ(un, buf, lbasize,
5123 		    cap - 1, path_flag)) != 0) {
5124 			goto done_err;
5125 		}
5126 		sd_swap_efi_gpt((efi_gpt_t *)buf);
5127 		if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0)
5128 			goto done_err;
5129 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5130 		    "primary label corrupt; using backup\n");
5131 	}
5132 
5133 	nparts = ((efi_gpt_t *)buf)->efi_gpt_NumberOfPartitionEntries;
5134 	gpe_lba = ((efi_gpt_t *)buf)->efi_gpt_PartitionEntryLBA;
5135 
5136 	rval = sd_send_scsi_READ(un, buf, EFI_MIN_ARRAY_SIZE, gpe_lba,
5137 	    path_flag);
5138 	if (rval) {
5139 		goto done_err;
5140 	}
5141 	partitions = (efi_gpe_t *)buf;
5142 
5143 	if (nparts > MAXPART) {
5144 		nparts = MAXPART;
5145 	}
5146 	sd_swap_efi_gpe(nparts, partitions);
5147 
5148 	mutex_enter(SD_MUTEX(un));
5149 
5150 	/* Fill in partition table. */
5151 	for (i = 0; i < nparts; i++) {
5152 		if (partitions->efi_gpe_StartingLBA != 0 ||
5153 		    partitions->efi_gpe_EndingLBA != 0) {
5154 			un->un_map[i].dkl_cylno =
5155 			    partitions->efi_gpe_StartingLBA;
5156 			un->un_map[i].dkl_nblk =
5157 			    partitions->efi_gpe_EndingLBA -
5158 			    partitions->efi_gpe_StartingLBA + 1;
5159 			un->un_offset[i] =
5160 			    partitions->efi_gpe_StartingLBA;
5161 		}
5162 		if (i == WD_NODE) {
5163 			/*
5164 			 * minor number 7 corresponds to the whole disk
5165 			 */
5166 			un->un_map[i].dkl_cylno = 0;
5167 			un->un_map[i].dkl_nblk = un->un_blockcount;
5168 			un->un_offset[i] = 0;
5169 		}
5170 		partitions++;
5171 	}
5172 	un->un_solaris_offset = 0;
5173 	un->un_solaris_size = cap;
5174 	un->un_f_geometry_is_valid = TRUE;
5175 	kmem_free(buf, EFI_MIN_ARRAY_SIZE);
5176 	return (0);
5177 
5178 done_err:
5179 	kmem_free(buf, EFI_MIN_ARRAY_SIZE);
5180 	mutex_enter(SD_MUTEX(un));
5181 	/*
5182 	 * if we didn't find something that could look like a VTOC
5183 	 * and the disk is over 1TB, we know there isn't a valid label.
5184 	 * Otherwise let sd_uselabel decide what to do.  We only
5185 	 * want to invalidate this if we're certain the label isn't
5186 	 * valid because sd_prop_op will now fail, which in turn
5187 	 * causes things like opens and stats on the partition to fail.
5188 	 */
5189 	if ((un->un_blockcount > DK_MAX_BLOCKS) && (rval != ESRCH)) {
5190 		un->un_f_geometry_is_valid = FALSE;
5191 	}
5192 	return (rval);
5193 }
5194 
5195 
5196 /*
5197  *    Function: sd_uselabel
5198  *
5199  * Description: Validate the disk label and update the relevant data (geometry,
5200  *		partition, vtoc, and capacity data) in the sd_lun struct.
5201  *		Marks the geometry of the unit as being valid.
5202  *
5203  *   Arguments: un: unit struct.
5204  *		dk_label: disk label
5205  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
5206  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
5207  *			to use the USCSI "direct" chain and bypass the normal
5208  *			command waitq.
5209  *
5210  * Return Code: SD_LABEL_IS_VALID: Label read from disk is OK; geometry,
5211  *		partition, vtoc, and capacity data are good.
5212  *
5213  *		SD_LABEL_IS_INVALID: Magic number or checksum error in the
5214  *		label; or computed capacity does not jibe with capacity
5215  *		reported from the READ CAPACITY command.
5216  *
5217  *     Context: Kernel thread only (can sleep).
5218  */
5219 
5220 static int
5221 sd_uselabel(struct sd_lun *un, struct dk_label *labp, int path_flag)
5222 {
5223 	short	*sp;
5224 	short	sum;
5225 	short	count;
5226 	int	label_error = SD_LABEL_IS_VALID;
5227 	int	i;
5228 	int	capacity;
5229 	int	part_end;
5230 	int	track_capacity;
5231 	int	err;
5232 #if defined(_SUNOS_VTOC_16)
5233 	struct	dkl_partition	*vpartp;
5234 #endif
5235 	ASSERT(un != NULL);
5236 	ASSERT(mutex_owned(SD_MUTEX(un)));
5237 
5238 	/* Validate the magic number of the label. */
5239 	if (labp->dkl_magic != DKL_MAGIC) {
5240 #if defined(__sparc)
5241 		if ((un->un_state == SD_STATE_NORMAL) &&
5242 		    !ISREMOVABLE(un)) {
5243 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5244 			    "Corrupt label; wrong magic number\n");
5245 		}
5246 #endif
5247 		return (SD_LABEL_IS_INVALID);
5248 	}
5249 
5250 	/* Validate the checksum of the label. */
5251 	sp  = (short *)labp;
5252 	sum = 0;
5253 	count = sizeof (struct dk_label) / sizeof (short);
5254 	while (count--)	 {
5255 		sum ^= *sp++;
5256 	}
5257 
5258 	if (sum != 0) {
5259 #if defined(_SUNOS_VTOC_16)
5260 		if (un->un_state == SD_STATE_NORMAL && !ISCD(un)) {
5261 #elif defined(_SUNOS_VTOC_8)
5262 		if (un->un_state == SD_STATE_NORMAL && !ISREMOVABLE(un)) {
5263 #endif
5264 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5265 			    "Corrupt label - label checksum failed\n");
5266 		}
5267 		return (SD_LABEL_IS_INVALID);
5268 	}
5269 
5270 
5271 	/*
5272 	 * Fill in geometry structure with data from label.
5273 	 */
5274 	bzero(&un->un_g, sizeof (struct dk_geom));
5275 	un->un_g.dkg_ncyl   = labp->dkl_ncyl;
5276 	un->un_g.dkg_acyl   = labp->dkl_acyl;
5277 	un->un_g.dkg_bcyl   = 0;
5278 	un->un_g.dkg_nhead  = labp->dkl_nhead;
5279 	un->un_g.dkg_nsect  = labp->dkl_nsect;
5280 	un->un_g.dkg_intrlv = labp->dkl_intrlv;
5281 
5282 #if defined(_SUNOS_VTOC_8)
5283 	un->un_g.dkg_gap1   = labp->dkl_gap1;
5284 	un->un_g.dkg_gap2   = labp->dkl_gap2;
5285 	un->un_g.dkg_bhead  = labp->dkl_bhead;
5286 #endif
5287 #if defined(_SUNOS_VTOC_16)
5288 	un->un_dkg_skew = labp->dkl_skew;
5289 #endif
5290 
5291 #if defined(__i386) || defined(__amd64)
5292 	un->un_g.dkg_apc = labp->dkl_apc;
5293 #endif
5294 
5295 	/*
5296 	 * Currently we rely on the values in the label being accurate. If
5297 	 * dlk_rpm or dlk_pcly are zero in the label, use a default value.
5298 	 *
5299 	 * Note: In the future a MODE SENSE may be used to retrieve this data,
5300 	 * although this command is optional in SCSI-2.
5301 	 */
5302 	un->un_g.dkg_rpm  = (labp->dkl_rpm  != 0) ? labp->dkl_rpm  : 3600;
5303 	un->un_g.dkg_pcyl = (labp->dkl_pcyl != 0) ? labp->dkl_pcyl :
5304 	    (un->un_g.dkg_ncyl + un->un_g.dkg_acyl);
5305 
5306 	/*
5307 	 * The Read and Write reinstruct values may not be valid
5308 	 * for older disks.
5309 	 */
5310 	un->un_g.dkg_read_reinstruct  = labp->dkl_read_reinstruct;
5311 	un->un_g.dkg_write_reinstruct = labp->dkl_write_reinstruct;
5312 
5313 	/* Fill in partition table. */
5314 #if defined(_SUNOS_VTOC_8)
5315 	for (i = 0; i < NDKMAP; i++) {
5316 		un->un_map[i].dkl_cylno = labp->dkl_map[i].dkl_cylno;
5317 		un->un_map[i].dkl_nblk  = labp->dkl_map[i].dkl_nblk;
5318 	}
5319 #endif
5320 #if  defined(_SUNOS_VTOC_16)
5321 	vpartp		= labp->dkl_vtoc.v_part;
5322 	track_capacity	= labp->dkl_nhead * labp->dkl_nsect;
5323 
5324 	for (i = 0; i < NDKMAP; i++, vpartp++) {
5325 		un->un_map[i].dkl_cylno = vpartp->p_start / track_capacity;
5326 		un->un_map[i].dkl_nblk  = vpartp->p_size;
5327 	}
5328 #endif
5329 
5330 	/* Fill in VTOC Structure. */
5331 	bcopy(&labp->dkl_vtoc, &un->un_vtoc, sizeof (struct dk_vtoc));
5332 #if defined(_SUNOS_VTOC_8)
5333 	/*
5334 	 * The 8-slice vtoc does not include the ascii label; save it into
5335 	 * the device's soft state structure here.
5336 	 */
5337 	bcopy(labp->dkl_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
5338 #endif
5339 
5340 	/* Mark the geometry as valid. */
5341 	un->un_f_geometry_is_valid = TRUE;
5342 
5343 	/* Now look for a valid capacity. */
5344 	track_capacity	= (un->un_g.dkg_nhead * un->un_g.dkg_nsect);
5345 	capacity	= (un->un_g.dkg_ncyl  * track_capacity);
5346 
5347 	if (un->un_g.dkg_acyl) {
5348 #if defined(__i386) || defined(__amd64)
5349 		/* we may have > 1 alts cylinder */
5350 		capacity += (track_capacity * un->un_g.dkg_acyl);
5351 #else
5352 		capacity += track_capacity;
5353 #endif
5354 	}
5355 
5356 	/*
5357 	 * At this point, un->un_blockcount should contain valid data from
5358 	 * the READ CAPACITY command.
5359 	 */
5360 	if (un->un_f_blockcount_is_valid != TRUE) {
5361 		/*
5362 		 * We have a situation where the target didn't give us a good
5363 		 * READ CAPACITY value, yet there appears to be a valid label.
5364 		 * In this case, we'll fake the capacity.
5365 		 */
5366 		un->un_blockcount = capacity;
5367 		un->un_f_blockcount_is_valid = TRUE;
5368 		goto done;
5369 	}
5370 
5371 
5372 	if ((capacity <= un->un_blockcount) ||
5373 	    (un->un_state != SD_STATE_NORMAL)) {
5374 #if defined(_SUNOS_VTOC_8)
5375 		/*
5376 		 * We can't let this happen on drives that are subdivided
5377 		 * into logical disks (i.e., that have an fdisk table).
5378 		 * The un_blockcount field should always hold the full media
5379 		 * size in sectors, period.  This code would overwrite
5380 		 * un_blockcount with the size of the Solaris fdisk partition.
5381 		 */
5382 		SD_ERROR(SD_LOG_COMMON, un,
5383 		    "sd_uselabel: Label %d blocks; Drive %d blocks\n",
5384 		    capacity, un->un_blockcount);
5385 		un->un_blockcount = capacity;
5386 		un->un_f_blockcount_is_valid = TRUE;
5387 #endif	/* defined(_SUNOS_VTOC_8) */
5388 		goto done;
5389 	}
5390 
5391 	if (ISCD(un)) {
5392 		/* For CDROMs, we trust that the data in the label is OK. */
5393 #if defined(_SUNOS_VTOC_8)
5394 		for (i = 0; i < NDKMAP; i++) {
5395 			part_end = labp->dkl_nhead * labp->dkl_nsect *
5396 			    labp->dkl_map[i].dkl_cylno +
5397 			    labp->dkl_map[i].dkl_nblk  - 1;
5398 
5399 			if ((labp->dkl_map[i].dkl_nblk) &&
5400 			    (part_end > un->un_blockcount)) {
5401 				un->un_f_geometry_is_valid = FALSE;
5402 				break;
5403 			}
5404 		}
5405 #endif
5406 #if defined(_SUNOS_VTOC_16)
5407 		vpartp = &(labp->dkl_vtoc.v_part[0]);
5408 		for (i = 0; i < NDKMAP; i++, vpartp++) {
5409 			part_end = vpartp->p_start + vpartp->p_size;
5410 			if ((vpartp->p_size > 0) &&
5411 			    (part_end > un->un_blockcount)) {
5412 				un->un_f_geometry_is_valid = FALSE;
5413 				break;
5414 			}
5415 		}
5416 #endif
5417 	} else {
5418 		uint64_t t_capacity;
5419 		uint32_t t_lbasize;
5420 
5421 		mutex_exit(SD_MUTEX(un));
5422 		err = sd_send_scsi_READ_CAPACITY(un, &t_capacity, &t_lbasize,
5423 		    path_flag);
5424 		ASSERT(t_capacity <= DK_MAX_BLOCKS);
5425 		mutex_enter(SD_MUTEX(un));
5426 
5427 		if (err == 0) {
5428 			sd_update_block_info(un, t_lbasize, t_capacity);
5429 		}
5430 
5431 		if (capacity > un->un_blockcount) {
5432 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5433 			    "Corrupt label - bad geometry\n");
5434 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
5435 			    "Label says %u blocks; Drive says %llu blocks\n",
5436 			    capacity, (unsigned long long)un->un_blockcount);
5437 			un->un_f_geometry_is_valid = FALSE;
5438 			label_error = SD_LABEL_IS_INVALID;
5439 		}
5440 	}
5441 
5442 done:
5443 
5444 	SD_INFO(SD_LOG_COMMON, un, "sd_uselabel: (label geometry)\n");
5445 	SD_INFO(SD_LOG_COMMON, un,
5446 	    "   ncyl: %d; acyl: %d; nhead: %d; nsect: %d\n",
5447 	    un->un_g.dkg_ncyl,  un->un_g.dkg_acyl,
5448 	    un->un_g.dkg_nhead, un->un_g.dkg_nsect);
5449 	SD_INFO(SD_LOG_COMMON, un,
5450 	    "   lbasize: %d; capacity: %d; intrlv: %d; rpm: %d\n",
5451 	    un->un_tgt_blocksize, un->un_blockcount,
5452 	    un->un_g.dkg_intrlv, un->un_g.dkg_rpm);
5453 	SD_INFO(SD_LOG_COMMON, un, "   wrt_reinstr: %d; rd_reinstr: %d\n",
5454 	    un->un_g.dkg_write_reinstruct, un->un_g.dkg_read_reinstruct);
5455 
5456 	ASSERT(mutex_owned(SD_MUTEX(un)));
5457 
5458 	return (label_error);
5459 }
5460 
5461 
5462 /*
5463  *    Function: sd_build_default_label
5464  *
5465  * Description: Generate a default label for those devices that do not have
5466  *		one, e.g., new media, removable cartridges, etc..
5467  *
5468  *     Context: Kernel thread only
5469  */
5470 
5471 static void
5472 sd_build_default_label(struct sd_lun *un)
5473 {
5474 #if defined(_SUNOS_VTOC_16)
5475 	uint_t	phys_spc;
5476 	uint_t	disksize;
5477 	struct	dk_geom un_g;
5478 #endif
5479 
5480 	ASSERT(un != NULL);
5481 	ASSERT(mutex_owned(SD_MUTEX(un)));
5482 
5483 #if defined(_SUNOS_VTOC_8)
5484 	/*
5485 	 * Note: This is a legacy check for non-removable devices on VTOC_8
5486 	 * only. This may be a valid check for VTOC_16 as well.
5487 	 */
5488 	if (!ISREMOVABLE(un)) {
5489 		return;
5490 	}
5491 #endif
5492 
5493 	bzero(&un->un_g, sizeof (struct dk_geom));
5494 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
5495 	bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
5496 
5497 #if defined(_SUNOS_VTOC_8)
5498 
5499 	/*
5500 	 * It's a REMOVABLE media, therefore no label (on sparc, anyway).
5501 	 * But it is still necessary to set up various geometry information,
5502 	 * and we are doing this here.
5503 	 */
5504 
5505 	/*
5506 	 * For the rpm, we use the minimum for the disk.  For the head, cyl,
5507 	 * and number of sector per track, if the capacity <= 1GB, head = 64,
5508 	 * sect = 32.  else head = 255, sect 63 Note: the capacity should be
5509 	 * equal to C*H*S values.  This will cause some truncation of size due
5510 	 * to round off errors. For CD-ROMs, this truncation can have adverse
5511 	 * side effects, so returning ncyl and nhead as 1. The nsect will
5512 	 * overflow for most of CD-ROMs as nsect is of type ushort. (4190569)
5513 	 */
5514 	if (ISCD(un)) {
5515 		/*
5516 		 * Preserve the old behavior for non-writable
5517 		 * medias. Since dkg_nsect is a ushort, it
5518 		 * will lose bits as cdroms have more than
5519 		 * 65536 sectors. So if we recalculate
5520 		 * capacity, it will become much shorter.
5521 		 * But the dkg_* information is not
5522 		 * used for CDROMs so it is OK. But for
5523 		 * Writable CDs we need this information
5524 		 * to be valid (for newfs say). So we
5525 		 * make nsect and nhead > 1 that way
5526 		 * nsect can still stay within ushort limit
5527 		 * without losing any bits.
5528 		 */
5529 		if (un->un_f_mmc_writable_media == TRUE) {
5530 			un->un_g.dkg_nhead = 64;
5531 			un->un_g.dkg_nsect = 32;
5532 			un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
5533 			un->un_blockcount = un->un_g.dkg_ncyl *
5534 			    un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5535 		} else {
5536 			un->un_g.dkg_ncyl  = 1;
5537 			un->un_g.dkg_nhead = 1;
5538 			un->un_g.dkg_nsect = un->un_blockcount;
5539 		}
5540 	} else {
5541 		if (un->un_blockcount <= 0x1000) {
5542 			/* unlabeled SCSI floppy device */
5543 			un->un_g.dkg_nhead = 2;
5544 			un->un_g.dkg_ncyl = 80;
5545 			un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
5546 		} else if (un->un_blockcount <= 0x200000) {
5547 			un->un_g.dkg_nhead = 64;
5548 			un->un_g.dkg_nsect = 32;
5549 			un->un_g.dkg_ncyl  = un->un_blockcount / (64 * 32);
5550 		} else {
5551 			un->un_g.dkg_nhead = 255;
5552 			un->un_g.dkg_nsect = 63;
5553 			un->un_g.dkg_ncyl  = un->un_blockcount / (255 * 63);
5554 		}
5555 		un->un_blockcount =
5556 		    un->un_g.dkg_ncyl * un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5557 	}
5558 
5559 	un->un_g.dkg_acyl	= 0;
5560 	un->un_g.dkg_bcyl	= 0;
5561 	un->un_g.dkg_rpm	= 200;
5562 	un->un_asciilabel[0]	= '\0';
5563 	un->un_g.dkg_pcyl	= un->un_g.dkg_ncyl;
5564 
5565 	un->un_map[0].dkl_cylno = 0;
5566 	un->un_map[0].dkl_nblk  = un->un_blockcount;
5567 	un->un_map[2].dkl_cylno = 0;
5568 	un->un_map[2].dkl_nblk  = un->un_blockcount;
5569 
5570 #elif defined(_SUNOS_VTOC_16)
5571 
5572 	if (un->un_solaris_size == 0) {
5573 		/*
5574 		 * Got fdisk table but no solaris entry therefore
5575 		 * don't create a default label
5576 		 */
5577 		un->un_f_geometry_is_valid = TRUE;
5578 		return;
5579 	}
5580 
5581 	/*
5582 	 * For CDs we continue to use the physical geometry to calculate
5583 	 * number of cylinders. All other devices must convert the
5584 	 * physical geometry (geom_cache) to values that will fit
5585 	 * in a dk_geom structure.
5586 	 */
5587 	if (ISCD(un)) {
5588 		phys_spc = un->un_pgeom.g_nhead * un->un_pgeom.g_nsect;
5589 	} else {
5590 		/* Convert physical geometry to disk geometry */
5591 		bzero(&un_g, sizeof (struct dk_geom));
5592 		sd_convert_geometry(un->un_blockcount, &un_g);
5593 		bcopy(&un_g, &un->un_g, sizeof (un->un_g));
5594 		phys_spc = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5595 	}
5596 
5597 	un->un_g.dkg_pcyl = un->un_solaris_size / phys_spc;
5598 	un->un_g.dkg_acyl = DK_ACYL;
5599 	un->un_g.dkg_ncyl = un->un_g.dkg_pcyl - DK_ACYL;
5600 	disksize = un->un_g.dkg_ncyl * phys_spc;
5601 
5602 	if (ISCD(un)) {
5603 		/*
5604 		 * CD's don't use the "heads * sectors * cyls"-type of
5605 		 * geometry, but instead use the entire capacity of the media.
5606 		 */
5607 		disksize = un->un_solaris_size;
5608 		un->un_g.dkg_nhead = 1;
5609 		un->un_g.dkg_nsect = 1;
5610 		un->un_g.dkg_rpm =
5611 		    (un->un_pgeom.g_rpm == 0) ? 200 : un->un_pgeom.g_rpm;
5612 
5613 		un->un_vtoc.v_part[0].p_start = 0;
5614 		un->un_vtoc.v_part[0].p_size  = disksize;
5615 		un->un_vtoc.v_part[0].p_tag   = V_BACKUP;
5616 		un->un_vtoc.v_part[0].p_flag  = V_UNMNT;
5617 
5618 		un->un_map[0].dkl_cylno = 0;
5619 		un->un_map[0].dkl_nblk  = disksize;
5620 		un->un_offset[0] = 0;
5621 
5622 	} else {
5623 		/*
5624 		 * Hard disks and removable media cartridges
5625 		 */
5626 		un->un_g.dkg_rpm =
5627 		    (un->un_pgeom.g_rpm == 0) ? 3600: un->un_pgeom.g_rpm;
5628 		un->un_vtoc.v_sectorsz = un->un_sys_blocksize;
5629 
5630 		/* Add boot slice */
5631 		un->un_vtoc.v_part[8].p_start = 0;
5632 		un->un_vtoc.v_part[8].p_size  = phys_spc;
5633 		un->un_vtoc.v_part[8].p_tag   = V_BOOT;
5634 		un->un_vtoc.v_part[8].p_flag  = V_UNMNT;
5635 
5636 		un->un_map[8].dkl_cylno = 0;
5637 		un->un_map[8].dkl_nblk  = phys_spc;
5638 		un->un_offset[8] = 0;
5639 	}
5640 
5641 	un->un_g.dkg_apc = 0;
5642 	un->un_vtoc.v_nparts = V_NUMPAR;
5643 	un->un_vtoc.v_version = V_VERSION;
5644 
5645 	/* Add backup slice */
5646 	un->un_vtoc.v_part[2].p_start = 0;
5647 	un->un_vtoc.v_part[2].p_size  = disksize;
5648 	un->un_vtoc.v_part[2].p_tag   = V_BACKUP;
5649 	un->un_vtoc.v_part[2].p_flag  = V_UNMNT;
5650 
5651 	un->un_map[2].dkl_cylno = 0;
5652 	un->un_map[2].dkl_nblk  = disksize;
5653 	un->un_offset[2] = 0;
5654 
5655 	(void) sprintf(un->un_vtoc.v_asciilabel, "DEFAULT cyl %d alt %d"
5656 	    " hd %d sec %d", un->un_g.dkg_ncyl, un->un_g.dkg_acyl,
5657 	    un->un_g.dkg_nhead, un->un_g.dkg_nsect);
5658 
5659 #else
5660 #error "No VTOC format defined."
5661 #endif
5662 
5663 	un->un_g.dkg_read_reinstruct  = 0;
5664 	un->un_g.dkg_write_reinstruct = 0;
5665 
5666 	un->un_g.dkg_intrlv = 1;
5667 
5668 	un->un_vtoc.v_sanity  = VTOC_SANE;
5669 
5670 	un->un_f_geometry_is_valid = TRUE;
5671 
5672 	SD_INFO(SD_LOG_COMMON, un,
5673 	    "sd_build_default_label: Default label created: "
5674 	    "cyl: %d\tacyl: %d\tnhead: %d\tnsect: %d\tcap: %d\n",
5675 	    un->un_g.dkg_ncyl, un->un_g.dkg_acyl, un->un_g.dkg_nhead,
5676 	    un->un_g.dkg_nsect, un->un_blockcount);
5677 }
5678 
5679 
5680 #if defined(_FIRMWARE_NEEDS_FDISK)
5681 /*
5682  * Max CHS values, as they are encoded into bytes, for 1022/254/63
5683  */
5684 #define	LBA_MAX_SECT	(63 | ((1022 & 0x300) >> 2))
5685 #define	LBA_MAX_CYL	(1022 & 0xFF)
5686 #define	LBA_MAX_HEAD	(254)
5687 
5688 
5689 /*
5690  *    Function: sd_has_max_chs_vals
5691  *
5692  * Description: Return TRUE if Cylinder-Head-Sector values are all at maximum.
5693  *
5694  *   Arguments: fdp - ptr to CHS info
5695  *
5696  * Return Code: True or false
5697  *
5698  *     Context: Any.
5699  */
5700 
5701 static int
5702 sd_has_max_chs_vals(struct ipart *fdp)
5703 {
5704 	return ((fdp->begcyl  == LBA_MAX_CYL)	&&
5705 	    (fdp->beghead == LBA_MAX_HEAD)	&&
5706 	    (fdp->begsect == LBA_MAX_SECT)	&&
5707 	    (fdp->endcyl  == LBA_MAX_CYL)	&&
5708 	    (fdp->endhead == LBA_MAX_HEAD)	&&
5709 	    (fdp->endsect == LBA_MAX_SECT));
5710 }
5711 #endif
5712 
5713 
5714 /*
5715  *    Function: sd_inq_fill
5716  *
5717  * Description: Print a piece of inquiry data, cleaned up for non-printable
5718  *		characters and stopping at the first space character after
5719  *		the beginning of the passed string;
5720  *
5721  *   Arguments: p - source string
5722  *		l - maximum length to copy
5723  *		s - destination string
5724  *
5725  *     Context: Any.
5726  */
5727 
5728 static void
5729 sd_inq_fill(char *p, int l, char *s)
5730 {
5731 	unsigned i = 0;
5732 	char c;
5733 
5734 	while (i++ < l) {
5735 		if ((c = *p++) < ' ' || c >= 0x7F) {
5736 			c = '*';
5737 		} else if (i != 1 && c == ' ') {
5738 			break;
5739 		}
5740 		*s++ = c;
5741 	}
5742 	*s++ = 0;
5743 }
5744 
5745 
5746 /*
5747  *    Function: sd_register_devid
5748  *
5749  * Description: This routine will obtain the device id information from the
5750  *		target, obtain the serial number, and register the device
5751  *		id with the ddi framework.
5752  *
5753  *   Arguments: devi - the system's dev_info_t for the device.
5754  *		un - driver soft state (unit) structure
5755  *		reservation_flag - indicates if a reservation conflict
5756  *		occurred during attach
5757  *
5758  *     Context: Kernel Thread
5759  */
5760 static void
5761 sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag)
5762 {
5763 	int		rval		= 0;
5764 	uchar_t		*inq80		= NULL;
5765 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
5766 	size_t		inq80_resid	= 0;
5767 	uchar_t		*inq83		= NULL;
5768 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
5769 	size_t		inq83_resid	= 0;
5770 
5771 	ASSERT(un != NULL);
5772 	ASSERT(mutex_owned(SD_MUTEX(un)));
5773 	ASSERT((SD_DEVINFO(un)) == devi);
5774 
5775 	/*
5776 	 * This is the case of antiquated Sun disk drives that have the
5777 	 * FAB_DEVID property set in the disk_table.  These drives
5778 	 * manage the devid's by storing them in last 2 available sectors
5779 	 * on the drive and have them fabricated by the ddi layer by calling
5780 	 * ddi_devid_init and passing the DEVID_FAB flag.
5781 	 */
5782 	if (un->un_f_opt_fab_devid == TRUE) {
5783 		/*
5784 		 * Depending on EINVAL isn't reliable, since a reserved disk
5785 		 * may result in invalid geometry, so check to make sure a
5786 		 * reservation conflict did not occur during attach.
5787 		 */
5788 		if ((sd_get_devid(un) == EINVAL) &&
5789 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
5790 			/*
5791 			 * The devid is invalid AND there is no reservation
5792 			 * conflict.  Fabricate a new devid.
5793 			 */
5794 			(void) sd_create_devid(un);
5795 		}
5796 
5797 		/* Register the devid if it exists */
5798 		if (un->un_devid != NULL) {
5799 			(void) ddi_devid_register(SD_DEVINFO(un),
5800 			    un->un_devid);
5801 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5802 			    "sd_register_devid: Devid Fabricated\n");
5803 		}
5804 		return;
5805 	}
5806 
5807 	/*
5808 	 * We check the availibility of the World Wide Name (0x83) and Unit
5809 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
5810 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
5811 	 * 0x83 is availible, that is the best choice.  Our next choice is
5812 	 * 0x80.  If neither are availible, we munge the devid from the device
5813 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
5814 	 * to fabricate a devid for non-Sun qualified disks.
5815 	 */
5816 	if (sd_check_vpd_page_support(un) == 0) {
5817 		/* collect page 80 data if available */
5818 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
5819 
5820 			mutex_exit(SD_MUTEX(un));
5821 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
5822 			rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len,
5823 			    0x01, 0x80, &inq80_resid);
5824 
5825 			if (rval != 0) {
5826 				kmem_free(inq80, inq80_len);
5827 				inq80 = NULL;
5828 				inq80_len = 0;
5829 			}
5830 			mutex_enter(SD_MUTEX(un));
5831 		}
5832 
5833 		/* collect page 83 data if available */
5834 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
5835 
5836 			mutex_exit(SD_MUTEX(un));
5837 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
5838 			rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len,
5839 			    0x01, 0x83, &inq83_resid);
5840 
5841 			if (rval != 0) {
5842 				kmem_free(inq83, inq83_len);
5843 				inq83 = NULL;
5844 				inq83_len = 0;
5845 			}
5846 			mutex_enter(SD_MUTEX(un));
5847 		}
5848 	}
5849 
5850 	/* encode best devid possible based on data available */
5851 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
5852 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
5853 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
5854 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
5855 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
5856 
5857 		/* devid successfully encoded, register devid */
5858 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
5859 
5860 	} else {
5861 		/*
5862 		 * Unable to encode a devid based on data available.
5863 		 * This is not a Sun qualified disk.  Older Sun disk
5864 		 * drives that have the SD_FAB_DEVID property
5865 		 * set in the disk_table and non Sun qualified
5866 		 * disks are treated in the same manner.  These
5867 		 * drives manage the devid's by storing them in
5868 		 * last 2 available sectors on the drive and
5869 		 * have them fabricated by the ddi layer by
5870 		 * calling ddi_devid_init and passing the
5871 		 * DEVID_FAB flag.
5872 		 * Create a fabricate devid only if there's no
5873 		 * fabricate devid existed.
5874 		 */
5875 		if (sd_get_devid(un) == EINVAL) {
5876 			(void) sd_create_devid(un);
5877 			un->un_f_opt_fab_devid = TRUE;
5878 		}
5879 
5880 		/* Register the devid if it exists */
5881 		if (un->un_devid != NULL) {
5882 			(void) ddi_devid_register(SD_DEVINFO(un),
5883 			    un->un_devid);
5884 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5885 			    "sd_register_devid: devid fabricated using "
5886 			    "ddi framework\n");
5887 		}
5888 	}
5889 
5890 	/* clean up resources */
5891 	if (inq80 != NULL) {
5892 		kmem_free(inq80, inq80_len);
5893 	}
5894 	if (inq83 != NULL) {
5895 		kmem_free(inq83, inq83_len);
5896 	}
5897 }
5898 
5899 static daddr_t
5900 sd_get_devid_block(struct sd_lun *un)
5901 {
5902 	daddr_t			spc, blk, head, cyl;
5903 
5904 	if (un->un_blockcount <= DK_MAX_BLOCKS) {
5905 		/* this geometry doesn't allow us to write a devid */
5906 		if (un->un_g.dkg_acyl < 2) {
5907 			return (-1);
5908 		}
5909 
5910 		/*
5911 		 * Subtract 2 guarantees that the next to last cylinder
5912 		 * is used
5913 		 */
5914 		cyl  = un->un_g.dkg_ncyl  + un->un_g.dkg_acyl - 2;
5915 		spc  = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5916 		head = un->un_g.dkg_nhead - 1;
5917 		blk  = (cyl * (spc - un->un_g.dkg_apc)) +
5918 		    (head * un->un_g.dkg_nsect) + 1;
5919 	} else {
5920 		if (un->un_reserved != -1) {
5921 			blk = un->un_map[un->un_reserved].dkl_cylno + 1;
5922 		} else {
5923 			return (-1);
5924 		}
5925 	}
5926 	return (blk);
5927 }
5928 
5929 /*
5930  *    Function: sd_get_devid
5931  *
5932  * Description: This routine will return 0 if a valid device id has been
5933  *		obtained from the target and stored in the soft state. If a
5934  *		valid device id has not been previously read and stored, a
5935  *		read attempt will be made.
5936  *
5937  *   Arguments: un - driver soft state (unit) structure
5938  *
5939  * Return Code: 0 if we successfully get the device id
5940  *
5941  *     Context: Kernel Thread
5942  */
5943 
5944 static int
5945 sd_get_devid(struct sd_lun *un)
5946 {
5947 	struct dk_devid		*dkdevid;
5948 	ddi_devid_t		tmpid;
5949 	uint_t			*ip;
5950 	size_t			sz;
5951 	daddr_t			blk;
5952 	int			status;
5953 	int			chksum;
5954 	int			i;
5955 	size_t			buffer_size;
5956 
5957 	ASSERT(un != NULL);
5958 	ASSERT(mutex_owned(SD_MUTEX(un)));
5959 
5960 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
5961 	    un);
5962 
5963 	if (un->un_devid != NULL) {
5964 		return (0);
5965 	}
5966 
5967 	blk = sd_get_devid_block(un);
5968 	if (blk < 0)
5969 		return (EINVAL);
5970 
5971 	/*
5972 	 * Read and verify device id, stored in the reserved cylinders at the
5973 	 * end of the disk. Backup label is on the odd sectors of the last
5974 	 * track of the last cylinder. Device id will be on track of the next
5975 	 * to last cylinder.
5976 	 */
5977 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
5978 	mutex_exit(SD_MUTEX(un));
5979 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
5980 	status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk,
5981 	    SD_PATH_DIRECT);
5982 	if (status != 0) {
5983 		goto error;
5984 	}
5985 
5986 	/* Validate the revision */
5987 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
5988 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
5989 		status = EINVAL;
5990 		goto error;
5991 	}
5992 
5993 	/* Calculate the checksum */
5994 	chksum = 0;
5995 	ip = (uint_t *)dkdevid;
5996 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
5997 	    i++) {
5998 		chksum ^= ip[i];
5999 	}
6000 
6001 	/* Compare the checksums */
6002 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
6003 		status = EINVAL;
6004 		goto error;
6005 	}
6006 
6007 	/* Validate the device id */
6008 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
6009 		status = EINVAL;
6010 		goto error;
6011 	}
6012 
6013 	/*
6014 	 * Store the device id in the driver soft state
6015 	 */
6016 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
6017 	tmpid = kmem_alloc(sz, KM_SLEEP);
6018 
6019 	mutex_enter(SD_MUTEX(un));
6020 
6021 	un->un_devid = tmpid;
6022 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
6023 
6024 	kmem_free(dkdevid, buffer_size);
6025 
6026 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
6027 
6028 	return (status);
6029 error:
6030 	mutex_enter(SD_MUTEX(un));
6031 	kmem_free(dkdevid, buffer_size);
6032 	return (status);
6033 }
6034 
6035 
6036 /*
6037  *    Function: sd_create_devid
6038  *
6039  * Description: This routine will fabricate the device id and write it
6040  *		to the disk.
6041  *
6042  *   Arguments: un - driver soft state (unit) structure
6043  *
6044  * Return Code: value of the fabricated device id
6045  *
6046  *     Context: Kernel Thread
6047  */
6048 
6049 static ddi_devid_t
6050 sd_create_devid(struct sd_lun *un)
6051 {
6052 	ASSERT(un != NULL);
6053 
6054 	/* Fabricate the devid */
6055 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
6056 	    == DDI_FAILURE) {
6057 		return (NULL);
6058 	}
6059 
6060 	/* Write the devid to disk */
6061 	if (sd_write_deviceid(un) != 0) {
6062 		ddi_devid_free(un->un_devid);
6063 		un->un_devid = NULL;
6064 	}
6065 
6066 	return (un->un_devid);
6067 }
6068 
6069 
6070 /*
6071  *    Function: sd_write_deviceid
6072  *
6073  * Description: This routine will write the device id to the disk
6074  *		reserved sector.
6075  *
6076  *   Arguments: un - driver soft state (unit) structure
6077  *
6078  * Return Code: EINVAL
6079  *		value returned by sd_send_scsi_cmd
6080  *
6081  *     Context: Kernel Thread
6082  */
6083 
6084 static int
6085 sd_write_deviceid(struct sd_lun *un)
6086 {
6087 	struct dk_devid		*dkdevid;
6088 	daddr_t			blk;
6089 	uint_t			*ip, chksum;
6090 	int			status;
6091 	int			i;
6092 
6093 	ASSERT(mutex_owned(SD_MUTEX(un)));
6094 
6095 	blk = sd_get_devid_block(un);
6096 	if (blk < 0)
6097 		return (-1);
6098 	mutex_exit(SD_MUTEX(un));
6099 
6100 	/* Allocate the buffer */
6101 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
6102 
6103 	/* Fill in the revision */
6104 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
6105 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
6106 
6107 	/* Copy in the device id */
6108 	mutex_enter(SD_MUTEX(un));
6109 	bcopy(un->un_devid, &dkdevid->dkd_devid,
6110 	    ddi_devid_sizeof(un->un_devid));
6111 	mutex_exit(SD_MUTEX(un));
6112 
6113 	/* Calculate the checksum */
6114 	chksum = 0;
6115 	ip = (uint_t *)dkdevid;
6116 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
6117 	    i++) {
6118 		chksum ^= ip[i];
6119 	}
6120 
6121 	/* Fill-in checksum */
6122 	DKD_FORMCHKSUM(chksum, dkdevid);
6123 
6124 	/* Write the reserved sector */
6125 	status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk,
6126 	    SD_PATH_DIRECT);
6127 
6128 	kmem_free(dkdevid, un->un_sys_blocksize);
6129 
6130 	mutex_enter(SD_MUTEX(un));
6131 	return (status);
6132 }
6133 
6134 
6135 /*
6136  *    Function: sd_check_vpd_page_support
6137  *
6138  * Description: This routine sends an inquiry command with the EVPD bit set and
6139  *		a page code of 0x00 to the device. It is used to determine which
6140  *		vital product pages are availible to find the devid. We are
6141  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
6142  *		device does not support that command.
6143  *
6144  *   Arguments: un  - driver soft state (unit) structure
6145  *
6146  * Return Code: 0 - success
6147  *		1 - check condition
6148  *
6149  *     Context: This routine can sleep.
6150  */
6151 
6152 static int
6153 sd_check_vpd_page_support(struct sd_lun *un)
6154 {
6155 	uchar_t	*page_list	= NULL;
6156 	uchar_t	page_length	= 0xff;	/* Use max possible length */
6157 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
6158 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
6159 	int    	rval		= 0;
6160 	int	counter;
6161 
6162 	ASSERT(un != NULL);
6163 	ASSERT(mutex_owned(SD_MUTEX(un)));
6164 
6165 	mutex_exit(SD_MUTEX(un));
6166 
6167 	/*
6168 	 * We'll set the page length to the maximum to save figuring it out
6169 	 * with an additional call.
6170 	 */
6171 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
6172 
6173 	rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd,
6174 	    page_code, NULL);
6175 
6176 	mutex_enter(SD_MUTEX(un));
6177 
6178 	/*
6179 	 * Now we must validate that the device accepted the command, as some
6180 	 * drives do not support it.  If the drive does support it, we will
6181 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
6182 	 * not, we return -1.
6183 	 */
6184 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
6185 		/* Loop to find one of the 2 pages we need */
6186 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
6187 
6188 		/*
6189 		 * Pages are returned in ascending order, and 0x83 is what we
6190 		 * are hoping for.
6191 		 */
6192 		while ((page_list[counter] <= 0x83) &&
6193 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
6194 		    VPD_HEAD_OFFSET))) {
6195 			/*
6196 			 * Add 3 because page_list[3] is the number of
6197 			 * pages minus 3
6198 			 */
6199 
6200 			switch (page_list[counter]) {
6201 			case 0x00:
6202 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
6203 				break;
6204 			case 0x80:
6205 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
6206 				break;
6207 			case 0x81:
6208 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
6209 				break;
6210 			case 0x82:
6211 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
6212 				break;
6213 			case 0x83:
6214 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
6215 				break;
6216 			}
6217 			counter++;
6218 		}
6219 
6220 	} else {
6221 		rval = -1;
6222 
6223 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6224 		    "sd_check_vpd_page_support: This drive does not implement "
6225 		    "VPD pages.\n");
6226 	}
6227 
6228 	kmem_free(page_list, page_length);
6229 
6230 	return (rval);
6231 }
6232 
6233 
6234 /*
6235  *    Function: sd_setup_pm
6236  *
6237  * Description: Initialize Power Management on the device
6238  *
6239  *     Context: Kernel Thread
6240  */
6241 
6242 static void
6243 sd_setup_pm(struct sd_lun *un, dev_info_t *devi)
6244 {
6245 	uint_t	log_page_size;
6246 	uchar_t	*log_page_data;
6247 	int	rval;
6248 
6249 	/*
6250 	 * Since we are called from attach, holding a mutex for
6251 	 * un is unnecessary. Because some of the routines called
6252 	 * from here require SD_MUTEX to not be held, assert this
6253 	 * right up front.
6254 	 */
6255 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6256 	/*
6257 	 * Since the sd device does not have the 'reg' property,
6258 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
6259 	 * The following code is to tell cpr that this device
6260 	 * DOES need to be suspended and resumed.
6261 	 */
6262 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
6263 	    "pm-hardware-state", "needs-suspend-resume");
6264 
6265 	/*
6266 	 * Check if HBA has set the "pm-capable" property.
6267 	 * If "pm-capable" exists and is non-zero then we can
6268 	 * power manage the device without checking the start/stop
6269 	 * cycle count log sense page.
6270 	 *
6271 	 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
6272 	 * then we should not power manage the device.
6273 	 *
6274 	 * If "pm-capable" doesn't exist then un->un_pm_capable_prop will
6275 	 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case, sd will
6276 	 * check the start/stop cycle count log sense page and power manage
6277 	 * the device if the cycle count limit has not been exceeded.
6278 	 */
6279 	un->un_pm_capable_prop =
6280 	    ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6281 		"pm-capable", SD_PM_CAPABLE_UNDEFINED);
6282 	if (un->un_pm_capable_prop != SD_PM_CAPABLE_UNDEFINED) {
6283 		/*
6284 		 * pm-capable property exists.
6285 		 *
6286 		 * Convert "TRUE" values for un_pm_capable_prop to
6287 		 * SD_PM_CAPABLE_TRUE (1) to make it easier to check later.
6288 		 * "TRUE" values are any values except SD_PM_CAPABLE_FALSE (0)
6289 		 *  and SD_PM_CAPABLE_UNDEFINED (-1)
6290 		 */
6291 		if (un->un_pm_capable_prop != SD_PM_CAPABLE_FALSE) {
6292 			un->un_pm_capable_prop = SD_PM_CAPABLE_TRUE;
6293 		}
6294 
6295 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6296 		    "sd_unit_attach: un:0x%p pm-capable "
6297 		    "property set to %d.\n", un, un->un_pm_capable_prop);
6298 	}
6299 
6300 	/*
6301 	 * This complies with the new power management framework
6302 	 * for certain desktop machines. Create the pm_components
6303 	 * property as a string array property.
6304 	 *
6305 	 * If this is a removable device or if the pm-capable property
6306 	 * is SD_PM_CAPABLE_TRUE (1) then we should create the
6307 	 * pm_components property without checking for the existance of
6308 	 * the start-stop cycle counter log page
6309 	 */
6310 	if (ISREMOVABLE(un) ||
6311 	    un->un_pm_capable_prop == SD_PM_CAPABLE_TRUE) {
6312 		/*
6313 		 * not all devices have a motor, try it first.
6314 		 * some devices may return ILLEGAL REQUEST, some
6315 		 * will hang
6316 		 */
6317 		un->un_f_start_stop_supported = TRUE;
6318 		if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
6319 		    SD_PATH_DIRECT) != 0) {
6320 			un->un_f_start_stop_supported = FALSE;
6321 		}
6322 
6323 		/*
6324 		 * create pm properties anyways otherwise the parent can't
6325 		 * go to sleep
6326 		 */
6327 		(void) sd_create_pm_components(devi, un);
6328 		un->un_f_pm_is_enabled = TRUE;
6329 
6330 		/*
6331 		 * Need to create a zero length (Boolean) property
6332 		 * removable-media for the removable media devices.
6333 		 * Note that the return value of the property is not being
6334 		 * checked, since if unable to create the property
6335 		 * then do not want the attach to fail altogether. Consistent
6336 		 * with other property creation in attach.
6337 		 */
6338 		if (ISREMOVABLE(un)) {
6339 			(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
6340 			    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
6341 		}
6342 		return;
6343 	}
6344 
6345 	rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE);
6346 
6347 #ifdef	SDDEBUG
6348 	if (sd_force_pm_supported) {
6349 		/* Force a successful result */
6350 		rval = 1;
6351 	}
6352 #endif
6353 
6354 	/*
6355 	 * If the start-stop cycle counter log page is not supported
6356 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
6357 	 * then we should not create the pm_components property.
6358 	 */
6359 	if (rval == -1 || un->un_pm_capable_prop == SD_PM_CAPABLE_FALSE) {
6360 		/*
6361 		 * Error.
6362 		 * Reading log sense failed, most likely this is
6363 		 * an older drive that does not support log sense.
6364 		 * If this fails auto-pm is not supported.
6365 		 */
6366 		un->un_power_level = SD_SPINDLE_ON;
6367 		un->un_f_pm_is_enabled = FALSE;
6368 
6369 	} else if (rval == 0) {
6370 		/*
6371 		 * Page not found.
6372 		 * The start stop cycle counter is implemented as page
6373 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
6374 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
6375 		 */
6376 		if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) {
6377 			/*
6378 			 * Page found, use this one.
6379 			 */
6380 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
6381 			un->un_f_pm_is_enabled = TRUE;
6382 		} else {
6383 			/*
6384 			 * Error or page not found.
6385 			 * auto-pm is not supported for this device.
6386 			 */
6387 			un->un_power_level = SD_SPINDLE_ON;
6388 			un->un_f_pm_is_enabled = FALSE;
6389 		}
6390 	} else {
6391 		/*
6392 		 * Page found, use it.
6393 		 */
6394 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
6395 		un->un_f_pm_is_enabled = TRUE;
6396 	}
6397 
6398 
6399 	if (un->un_f_pm_is_enabled == TRUE) {
6400 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6401 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6402 
6403 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
6404 		    log_page_size, un->un_start_stop_cycle_page,
6405 		    0x01, 0, SD_PATH_DIRECT);
6406 #ifdef	SDDEBUG
6407 		if (sd_force_pm_supported) {
6408 			/* Force a successful result */
6409 			rval = 0;
6410 		}
6411 #endif
6412 
6413 		/*
6414 		 * If the Log sense for Page( Start/stop cycle counter page)
6415 		 * succeeds, then power managment is supported and we can
6416 		 * enable auto-pm.
6417 		 */
6418 		if (rval == 0)  {
6419 			(void) sd_create_pm_components(devi, un);
6420 		} else {
6421 			un->un_power_level = SD_SPINDLE_ON;
6422 			un->un_f_pm_is_enabled = FALSE;
6423 		}
6424 
6425 		kmem_free(log_page_data, log_page_size);
6426 	}
6427 }
6428 
6429 
6430 /*
6431  *    Function: sd_create_pm_components
6432  *
6433  * Description: Initialize PM property.
6434  *
6435  *     Context: Kernel thread context
6436  */
6437 
6438 static void
6439 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
6440 {
6441 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
6442 
6443 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6444 
6445 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6446 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
6447 		/*
6448 		 * When components are initially created they are idle,
6449 		 * power up any non-removables.
6450 		 * Note: the return value of pm_raise_power can't be used
6451 		 * for determining if PM should be enabled for this device.
6452 		 * Even if you check the return values and remove this
6453 		 * property created above, the PM framework will not honor the
6454 		 * change after the first call to pm_raise_power. Hence,
6455 		 * removal of that property does not help if pm_raise_power
6456 		 * fails. In the case of removable media, the start/stop
6457 		 * will fail if the media is not present.
6458 		 */
6459 		if ((!ISREMOVABLE(un)) && (pm_raise_power(SD_DEVINFO(un), 0,
6460 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
6461 			mutex_enter(SD_MUTEX(un));
6462 			un->un_power_level = SD_SPINDLE_ON;
6463 			mutex_enter(&un->un_pm_mutex);
6464 			/* Set to on and not busy. */
6465 			un->un_pm_count = 0;
6466 		} else {
6467 			mutex_enter(SD_MUTEX(un));
6468 			un->un_power_level = SD_SPINDLE_OFF;
6469 			mutex_enter(&un->un_pm_mutex);
6470 			/* Set to off. */
6471 			un->un_pm_count = -1;
6472 		}
6473 		mutex_exit(&un->un_pm_mutex);
6474 		mutex_exit(SD_MUTEX(un));
6475 	} else {
6476 		un->un_power_level = SD_SPINDLE_ON;
6477 		un->un_f_pm_is_enabled = FALSE;
6478 	}
6479 }
6480 
6481 
6482 /*
6483  *    Function: sd_ddi_suspend
6484  *
6485  * Description: Performs system power-down operations. This includes
6486  *		setting the drive state to indicate its suspended so
6487  *		that no new commands will be accepted. Also, wait for
6488  *		all commands that are in transport or queued to a timer
6489  *		for retry to complete. All timeout threads are cancelled.
6490  *
6491  * Return Code: DDI_FAILURE or DDI_SUCCESS
6492  *
6493  *     Context: Kernel thread context
6494  */
6495 
6496 static int
6497 sd_ddi_suspend(dev_info_t *devi)
6498 {
6499 	struct	sd_lun	*un;
6500 	clock_t		wait_cmds_complete;
6501 
6502 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6503 	if (un == NULL) {
6504 		return (DDI_FAILURE);
6505 	}
6506 
6507 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
6508 
6509 	mutex_enter(SD_MUTEX(un));
6510 
6511 	/* Return success if the device is already suspended. */
6512 	if (un->un_state == SD_STATE_SUSPENDED) {
6513 		mutex_exit(SD_MUTEX(un));
6514 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6515 		    "device already suspended, exiting\n");
6516 		return (DDI_SUCCESS);
6517 	}
6518 
6519 	/* Return failure if the device is being used by HA */
6520 	if (un->un_resvd_status &
6521 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
6522 		mutex_exit(SD_MUTEX(un));
6523 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6524 		    "device in use by HA, exiting\n");
6525 		return (DDI_FAILURE);
6526 	}
6527 
6528 	/*
6529 	 * Return failure if the device is in a resource wait
6530 	 * or power changing state.
6531 	 */
6532 	if ((un->un_state == SD_STATE_RWAIT) ||
6533 	    (un->un_state == SD_STATE_PM_CHANGING)) {
6534 		mutex_exit(SD_MUTEX(un));
6535 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6536 		    "device in resource wait state, exiting\n");
6537 		return (DDI_FAILURE);
6538 	}
6539 
6540 
6541 	un->un_save_state = un->un_last_state;
6542 	New_state(un, SD_STATE_SUSPENDED);
6543 
6544 	/*
6545 	 * Wait for all commands that are in transport or queued to a timer
6546 	 * for retry to complete.
6547 	 *
6548 	 * While waiting, no new commands will be accepted or sent because of
6549 	 * the new state we set above.
6550 	 *
6551 	 * Wait till current operation has completed. If we are in the resource
6552 	 * wait state (with an intr outstanding) then we need to wait till the
6553 	 * intr completes and starts the next cmd. We want to wait for
6554 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
6555 	 */
6556 	wait_cmds_complete = ddi_get_lbolt() +
6557 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
6558 
6559 	while (un->un_ncmds_in_transport != 0) {
6560 		/*
6561 		 * Fail if commands do not finish in the specified time.
6562 		 */
6563 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
6564 		    wait_cmds_complete) == -1) {
6565 			/*
6566 			 * Undo the state changes made above. Everything
6567 			 * must go back to it's original value.
6568 			 */
6569 			Restore_state(un);
6570 			un->un_last_state = un->un_save_state;
6571 			/* Wake up any threads that might be waiting. */
6572 			cv_broadcast(&un->un_suspend_cv);
6573 			mutex_exit(SD_MUTEX(un));
6574 			SD_ERROR(SD_LOG_IO_PM, un,
6575 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
6576 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
6577 			return (DDI_FAILURE);
6578 		}
6579 	}
6580 
6581 	/*
6582 	 * Cancel SCSI watch thread and timeouts, if any are active
6583 	 */
6584 
6585 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
6586 		opaque_t temp_token = un->un_swr_token;
6587 		mutex_exit(SD_MUTEX(un));
6588 		scsi_watch_suspend(temp_token);
6589 		mutex_enter(SD_MUTEX(un));
6590 	}
6591 
6592 	if (un->un_reset_throttle_timeid != NULL) {
6593 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
6594 		un->un_reset_throttle_timeid = NULL;
6595 		mutex_exit(SD_MUTEX(un));
6596 		(void) untimeout(temp_id);
6597 		mutex_enter(SD_MUTEX(un));
6598 	}
6599 
6600 	if (un->un_dcvb_timeid != NULL) {
6601 		timeout_id_t temp_id = un->un_dcvb_timeid;
6602 		un->un_dcvb_timeid = NULL;
6603 		mutex_exit(SD_MUTEX(un));
6604 		(void) untimeout(temp_id);
6605 		mutex_enter(SD_MUTEX(un));
6606 	}
6607 
6608 	mutex_enter(&un->un_pm_mutex);
6609 	if (un->un_pm_timeid != NULL) {
6610 		timeout_id_t temp_id = un->un_pm_timeid;
6611 		un->un_pm_timeid = NULL;
6612 		mutex_exit(&un->un_pm_mutex);
6613 		mutex_exit(SD_MUTEX(un));
6614 		(void) untimeout(temp_id);
6615 		mutex_enter(SD_MUTEX(un));
6616 	} else {
6617 		mutex_exit(&un->un_pm_mutex);
6618 	}
6619 
6620 	if (un->un_retry_timeid != NULL) {
6621 		timeout_id_t temp_id = un->un_retry_timeid;
6622 		un->un_retry_timeid = NULL;
6623 		mutex_exit(SD_MUTEX(un));
6624 		(void) untimeout(temp_id);
6625 		mutex_enter(SD_MUTEX(un));
6626 	}
6627 
6628 	if (un->un_direct_priority_timeid != NULL) {
6629 		timeout_id_t temp_id = un->un_direct_priority_timeid;
6630 		un->un_direct_priority_timeid = NULL;
6631 		mutex_exit(SD_MUTEX(un));
6632 		(void) untimeout(temp_id);
6633 		mutex_enter(SD_MUTEX(un));
6634 	}
6635 
6636 	if (un->un_f_is_fibre == TRUE) {
6637 		/*
6638 		 * Remove callbacks for insert and remove events
6639 		 */
6640 		if (un->un_insert_event != NULL) {
6641 			mutex_exit(SD_MUTEX(un));
6642 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
6643 			mutex_enter(SD_MUTEX(un));
6644 			un->un_insert_event = NULL;
6645 		}
6646 
6647 		if (un->un_remove_event != NULL) {
6648 			mutex_exit(SD_MUTEX(un));
6649 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
6650 			mutex_enter(SD_MUTEX(un));
6651 			un->un_remove_event = NULL;
6652 		}
6653 	}
6654 
6655 	mutex_exit(SD_MUTEX(un));
6656 
6657 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
6658 
6659 	return (DDI_SUCCESS);
6660 }
6661 
6662 
6663 /*
6664  *    Function: sd_ddi_pm_suspend
6665  *
6666  * Description: Set the drive state to low power.
6667  *		Someone else is required to actually change the drive
6668  *		power level.
6669  *
6670  *   Arguments: un - driver soft state (unit) structure
6671  *
6672  * Return Code: DDI_FAILURE or DDI_SUCCESS
6673  *
6674  *     Context: Kernel thread context
6675  */
6676 
6677 static int
6678 sd_ddi_pm_suspend(struct sd_lun *un)
6679 {
6680 	ASSERT(un != NULL);
6681 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
6682 
6683 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6684 	mutex_enter(SD_MUTEX(un));
6685 
6686 	/*
6687 	 * Exit if power management is not enabled for this device, or if
6688 	 * the device is being used by HA.
6689 	 */
6690 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
6691 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
6692 		mutex_exit(SD_MUTEX(un));
6693 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
6694 		return (DDI_SUCCESS);
6695 	}
6696 
6697 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
6698 	    un->un_ncmds_in_driver);
6699 
6700 	/*
6701 	 * See if the device is not busy, ie.:
6702 	 *    - we have no commands in the driver for this device
6703 	 *    - not waiting for resources
6704 	 */
6705 	if ((un->un_ncmds_in_driver == 0) &&
6706 	    (un->un_state != SD_STATE_RWAIT)) {
6707 		/*
6708 		 * The device is not busy, so it is OK to go to low power state.
6709 		 * Indicate low power, but rely on someone else to actually
6710 		 * change it.
6711 		 */
6712 		mutex_enter(&un->un_pm_mutex);
6713 		un->un_pm_count = -1;
6714 		mutex_exit(&un->un_pm_mutex);
6715 		un->un_power_level = SD_SPINDLE_OFF;
6716 	}
6717 
6718 	mutex_exit(SD_MUTEX(un));
6719 
6720 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
6721 
6722 	return (DDI_SUCCESS);
6723 }
6724 
6725 
6726 /*
6727  *    Function: sd_ddi_resume
6728  *
6729  * Description: Performs system power-up operations..
6730  *
6731  * Return Code: DDI_SUCCESS
6732  *		DDI_FAILURE
6733  *
6734  *     Context: Kernel thread context
6735  */
6736 
6737 static int
6738 sd_ddi_resume(dev_info_t *devi)
6739 {
6740 	struct	sd_lun	*un;
6741 
6742 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6743 	if (un == NULL) {
6744 		return (DDI_FAILURE);
6745 	}
6746 
6747 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
6748 
6749 	mutex_enter(SD_MUTEX(un));
6750 	Restore_state(un);
6751 
6752 	/*
6753 	 * Restore the state which was saved to give the
6754 	 * the right state in un_last_state
6755 	 */
6756 	un->un_last_state = un->un_save_state;
6757 	/*
6758 	 * Note: throttle comes back at full.
6759 	 * Also note: this MUST be done before calling pm_raise_power
6760 	 * otherwise the system can get hung in biowait. The scenario where
6761 	 * this'll happen is under cpr suspend. Writing of the system
6762 	 * state goes through sddump, which writes 0 to un_throttle. If
6763 	 * writing the system state then fails, example if the partition is
6764 	 * too small, then cpr attempts a resume. If throttle isn't restored
6765 	 * from the saved value until after calling pm_raise_power then
6766 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
6767 	 * in biowait.
6768 	 */
6769 	un->un_throttle = un->un_saved_throttle;
6770 
6771 	/*
6772 	 * The chance of failure is very rare as the only command done in power
6773 	 * entry point is START command when you transition from 0->1 or
6774 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
6775 	 * which suspend was done. Ignore the return value as the resume should
6776 	 * not be failed. In the case of removable media the media need not be
6777 	 * inserted and hence there is a chance that raise power will fail with
6778 	 * media not present.
6779 	 */
6780 	if (!ISREMOVABLE(un)) {
6781 		mutex_exit(SD_MUTEX(un));
6782 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
6783 		mutex_enter(SD_MUTEX(un));
6784 	}
6785 
6786 	/*
6787 	 * Don't broadcast to the suspend cv and therefore possibly
6788 	 * start I/O until after power has been restored.
6789 	 */
6790 	cv_broadcast(&un->un_suspend_cv);
6791 	cv_broadcast(&un->un_state_cv);
6792 
6793 	/* restart thread */
6794 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
6795 		scsi_watch_resume(un->un_swr_token);
6796 	}
6797 
6798 #if (defined(__fibre))
6799 	if (un->un_f_is_fibre == TRUE) {
6800 		/*
6801 		 * Add callbacks for insert and remove events
6802 		 */
6803 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
6804 			sd_init_event_callbacks(un);
6805 		}
6806 	}
6807 #endif
6808 
6809 	/*
6810 	 * Transport any pending commands to the target.
6811 	 *
6812 	 * If this is a low-activity device commands in queue will have to wait
6813 	 * until new commands come in, which may take awhile. Also, we
6814 	 * specifically don't check un_ncmds_in_transport because we know that
6815 	 * there really are no commands in progress after the unit was
6816 	 * suspended and we could have reached the throttle level, been
6817 	 * suspended, and have no new commands coming in for awhile. Highly
6818 	 * unlikely, but so is the low-activity disk scenario.
6819 	 */
6820 	ddi_xbuf_dispatch(un->un_xbuf_attr);
6821 
6822 	sd_start_cmds(un, NULL);
6823 	mutex_exit(SD_MUTEX(un));
6824 
6825 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
6826 
6827 	return (DDI_SUCCESS);
6828 }
6829 
6830 
6831 /*
6832  *    Function: sd_ddi_pm_resume
6833  *
6834  * Description: Set the drive state to powered on.
6835  *		Someone else is required to actually change the drive
6836  *		power level.
6837  *
6838  *   Arguments: un - driver soft state (unit) structure
6839  *
6840  * Return Code: DDI_SUCCESS
6841  *
6842  *     Context: Kernel thread context
6843  */
6844 
6845 static int
6846 sd_ddi_pm_resume(struct sd_lun *un)
6847 {
6848 	ASSERT(un != NULL);
6849 
6850 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6851 	mutex_enter(SD_MUTEX(un));
6852 	un->un_power_level = SD_SPINDLE_ON;
6853 
6854 	ASSERT(!mutex_owned(&un->un_pm_mutex));
6855 	mutex_enter(&un->un_pm_mutex);
6856 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
6857 		un->un_pm_count++;
6858 		ASSERT(un->un_pm_count == 0);
6859 		/*
6860 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
6861 		 * un_suspend_cv is for a system resume, not a power management
6862 		 * device resume. (4297749)
6863 		 *	 cv_broadcast(&un->un_suspend_cv);
6864 		 */
6865 	}
6866 	mutex_exit(&un->un_pm_mutex);
6867 	mutex_exit(SD_MUTEX(un));
6868 
6869 	return (DDI_SUCCESS);
6870 }
6871 
6872 
6873 /*
6874  *    Function: sd_pm_idletimeout_handler
6875  *
6876  * Description: A timer routine that's active only while a device is busy.
6877  *		The purpose is to extend slightly the pm framework's busy
6878  *		view of the device to prevent busy/idle thrashing for
6879  *		back-to-back commands. Do this by comparing the current time
6880  *		to the time at which the last command completed and when the
6881  *		difference is greater than sd_pm_idletime, call
6882  *		pm_idle_component. In addition to indicating idle to the pm
6883  *		framework, update the chain type to again use the internal pm
6884  *		layers of the driver.
6885  *
6886  *   Arguments: arg - driver soft state (unit) structure
6887  *
6888  *     Context: Executes in a timeout(9F) thread context
6889  */
6890 
6891 static void
6892 sd_pm_idletimeout_handler(void *arg)
6893 {
6894 	struct sd_lun *un = arg;
6895 
6896 	time_t	now;
6897 
6898 	mutex_enter(&sd_detach_mutex);
6899 	if (un->un_detach_count != 0) {
6900 		/* Abort if the instance is detaching */
6901 		mutex_exit(&sd_detach_mutex);
6902 		return;
6903 	}
6904 	mutex_exit(&sd_detach_mutex);
6905 
6906 	now = ddi_get_time();
6907 	/*
6908 	 * Grab both mutexes, in the proper order, since we're accessing
6909 	 * both PM and softstate variables.
6910 	 */
6911 	mutex_enter(SD_MUTEX(un));
6912 	mutex_enter(&un->un_pm_mutex);
6913 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
6914 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
6915 		/*
6916 		 * Update the chain types.
6917 		 * This takes affect on the next new command received.
6918 		 */
6919 		if (ISREMOVABLE(un)) {
6920 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
6921 		} else {
6922 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
6923 		}
6924 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
6925 
6926 		SD_TRACE(SD_LOG_IO_PM, un,
6927 		    "sd_pm_idletimeout_handler: idling device\n");
6928 		(void) pm_idle_component(SD_DEVINFO(un), 0);
6929 		un->un_pm_idle_timeid = NULL;
6930 	} else {
6931 		un->un_pm_idle_timeid =
6932 			timeout(sd_pm_idletimeout_handler, un,
6933 			(drv_usectohz((clock_t)300000))); /* 300 ms. */
6934 	}
6935 	mutex_exit(&un->un_pm_mutex);
6936 	mutex_exit(SD_MUTEX(un));
6937 }
6938 
6939 
6940 /*
6941  *    Function: sd_pm_timeout_handler
6942  *
6943  * Description: Callback to tell framework we are idle.
6944  *
6945  *     Context: timeout(9f) thread context.
6946  */
6947 
6948 static void
6949 sd_pm_timeout_handler(void *arg)
6950 {
6951 	struct sd_lun *un = arg;
6952 
6953 	(void) pm_idle_component(SD_DEVINFO(un), 0);
6954 	mutex_enter(&un->un_pm_mutex);
6955 	un->un_pm_timeid = NULL;
6956 	mutex_exit(&un->un_pm_mutex);
6957 }
6958 
6959 
6960 /*
6961  *    Function: sdpower
6962  *
6963  * Description: PM entry point.
6964  *
6965  * Return Code: DDI_SUCCESS
6966  *		DDI_FAILURE
6967  *
6968  *     Context: Kernel thread context
6969  */
6970 
6971 static int
6972 sdpower(dev_info_t *devi, int component, int level)
6973 {
6974 	struct sd_lun	*un;
6975 	int		instance;
6976 	int		rval = DDI_SUCCESS;
6977 	uint_t		i, log_page_size, maxcycles, ncycles;
6978 	uchar_t		*log_page_data;
6979 	int		log_sense_page;
6980 	int		medium_present;
6981 	time_t		intvlp;
6982 	dev_t		dev;
6983 	struct pm_trans_data	sd_pm_tran_data;
6984 	uchar_t		save_state;
6985 	int		sval;
6986 	uchar_t		state_before_pm;
6987 	int		got_semaphore_here;
6988 
6989 	instance = ddi_get_instance(devi);
6990 
6991 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
6992 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
6993 	    component != 0) {
6994 		return (DDI_FAILURE);
6995 	}
6996 
6997 	dev = sd_make_device(SD_DEVINFO(un));
6998 
6999 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
7000 
7001 	/*
7002 	 * Must synchronize power down with close.
7003 	 * Attempt to decrement/acquire the open/close semaphore,
7004 	 * but do NOT wait on it. If it's not greater than zero,
7005 	 * ie. it can't be decremented without waiting, then
7006 	 * someone else, either open or close, already has it
7007 	 * and the try returns 0. Use that knowledge here to determine
7008 	 * if it's OK to change the device power level.
7009 	 * Also, only increment it on exit if it was decremented, ie. gotten,
7010 	 * here.
7011 	 */
7012 	got_semaphore_here = sema_tryp(&un->un_semoclose);
7013 
7014 	mutex_enter(SD_MUTEX(un));
7015 
7016 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
7017 	    un->un_ncmds_in_driver);
7018 
7019 	/*
7020 	 * If un_ncmds_in_driver is non-zero it indicates commands are
7021 	 * already being processed in the driver, or if the semaphore was
7022 	 * not gotten here it indicates an open or close is being processed.
7023 	 * At the same time somebody is requesting to go low power which
7024 	 * can't happen, therefore we need to return failure.
7025 	 */
7026 	if ((level == SD_SPINDLE_OFF) &&
7027 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
7028 		mutex_exit(SD_MUTEX(un));
7029 
7030 		if (got_semaphore_here != 0) {
7031 			sema_v(&un->un_semoclose);
7032 		}
7033 		SD_TRACE(SD_LOG_IO_PM, un,
7034 		    "sdpower: exit, device has queued cmds.\n");
7035 		return (DDI_FAILURE);
7036 	}
7037 
7038 	/*
7039 	 * if it is OFFLINE that means the disk is completely dead
7040 	 * in our case we have to put the disk in on or off by sending commands
7041 	 * Of course that will fail anyway so return back here.
7042 	 *
7043 	 * Power changes to a device that's OFFLINE or SUSPENDED
7044 	 * are not allowed.
7045 	 */
7046 	if ((un->un_state == SD_STATE_OFFLINE) ||
7047 	    (un->un_state == SD_STATE_SUSPENDED)) {
7048 		mutex_exit(SD_MUTEX(un));
7049 
7050 		if (got_semaphore_here != 0) {
7051 			sema_v(&un->un_semoclose);
7052 		}
7053 		SD_TRACE(SD_LOG_IO_PM, un,
7054 		    "sdpower: exit, device is off-line.\n");
7055 		return (DDI_FAILURE);
7056 	}
7057 
7058 	/*
7059 	 * Change the device's state to indicate it's power level
7060 	 * is being changed. Do this to prevent a power off in the
7061 	 * middle of commands, which is especially bad on devices
7062 	 * that are really powered off instead of just spun down.
7063 	 */
7064 	state_before_pm = un->un_state;
7065 	un->un_state = SD_STATE_PM_CHANGING;
7066 
7067 	mutex_exit(SD_MUTEX(un));
7068 
7069 	/*
7070 	 * Bypass checking the log sense information for removables
7071 	 * and devices for which the HBA set the pm-capable property.
7072 	 * If un->un_pm_capable_prop is SD_PM_CAPABLE_UNDEFINED (-1)
7073 	 * then the HBA did not create the property.
7074 	 */
7075 	if ((level == SD_SPINDLE_OFF) && (!ISREMOVABLE(un)) &&
7076 	    un->un_pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
7077 		/*
7078 		 * Get the log sense information to understand whether the
7079 		 * the powercycle counts have gone beyond the threshhold.
7080 		 */
7081 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
7082 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
7083 
7084 		mutex_enter(SD_MUTEX(un));
7085 		log_sense_page = un->un_start_stop_cycle_page;
7086 		mutex_exit(SD_MUTEX(un));
7087 
7088 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
7089 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
7090 #ifdef	SDDEBUG
7091 		if (sd_force_pm_supported) {
7092 			/* Force a successful result */
7093 			rval = 0;
7094 		}
7095 #endif
7096 		if (rval != 0) {
7097 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
7098 			    "Log Sense Failed\n");
7099 			kmem_free(log_page_data, log_page_size);
7100 			/* Cannot support power management on those drives */
7101 
7102 			if (got_semaphore_here != 0) {
7103 				sema_v(&un->un_semoclose);
7104 			}
7105 			/*
7106 			 * On exit put the state back to it's original value
7107 			 * and broadcast to anyone waiting for the power
7108 			 * change completion.
7109 			 */
7110 			mutex_enter(SD_MUTEX(un));
7111 			un->un_state = state_before_pm;
7112 			cv_broadcast(&un->un_suspend_cv);
7113 			mutex_exit(SD_MUTEX(un));
7114 			SD_TRACE(SD_LOG_IO_PM, un,
7115 			    "sdpower: exit, Log Sense Failed.\n");
7116 			return (DDI_FAILURE);
7117 		}
7118 
7119 		/*
7120 		 * From the page data - Convert the essential information to
7121 		 * pm_trans_data
7122 		 */
7123 		maxcycles =
7124 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
7125 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
7126 
7127 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
7128 
7129 		ncycles =
7130 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
7131 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
7132 
7133 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
7134 
7135 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
7136 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
7137 			    log_page_data[8+i];
7138 		}
7139 
7140 		kmem_free(log_page_data, log_page_size);
7141 
7142 		/*
7143 		 * Call pm_trans_check routine to get the Ok from
7144 		 * the global policy
7145 		 */
7146 
7147 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
7148 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
7149 
7150 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
7151 #ifdef	SDDEBUG
7152 		if (sd_force_pm_supported) {
7153 			/* Force a successful result */
7154 			rval = 1;
7155 		}
7156 #endif
7157 		switch (rval) {
7158 		case 0:
7159 			/*
7160 			 * Not Ok to Power cycle or error in parameters passed
7161 			 * Would have given the advised time to consider power
7162 			 * cycle. Based on the new intvlp parameter we are
7163 			 * supposed to pretend we are busy so that pm framework
7164 			 * will never call our power entry point. Because of
7165 			 * that install a timeout handler and wait for the
7166 			 * recommended time to elapse so that power management
7167 			 * can be effective again.
7168 			 *
7169 			 * To effect this behavior, call pm_busy_component to
7170 			 * indicate to the framework this device is busy.
7171 			 * By not adjusting un_pm_count the rest of PM in
7172 			 * the driver will function normally, and independant
7173 			 * of this but because the framework is told the device
7174 			 * is busy it won't attempt powering down until it gets
7175 			 * a matching idle. The timeout handler sends this.
7176 			 * Note: sd_pm_entry can't be called here to do this
7177 			 * because sdpower may have been called as a result
7178 			 * of a call to pm_raise_power from within sd_pm_entry.
7179 			 *
7180 			 * If a timeout handler is already active then
7181 			 * don't install another.
7182 			 */
7183 			mutex_enter(&un->un_pm_mutex);
7184 			if (un->un_pm_timeid == NULL) {
7185 				un->un_pm_timeid =
7186 				    timeout(sd_pm_timeout_handler,
7187 				    un, intvlp * drv_usectohz(1000000));
7188 				mutex_exit(&un->un_pm_mutex);
7189 				(void) pm_busy_component(SD_DEVINFO(un), 0);
7190 			} else {
7191 				mutex_exit(&un->un_pm_mutex);
7192 			}
7193 			if (got_semaphore_here != 0) {
7194 				sema_v(&un->un_semoclose);
7195 			}
7196 			/*
7197 			 * On exit put the state back to it's original value
7198 			 * and broadcast to anyone waiting for the power
7199 			 * change completion.
7200 			 */
7201 			mutex_enter(SD_MUTEX(un));
7202 			un->un_state = state_before_pm;
7203 			cv_broadcast(&un->un_suspend_cv);
7204 			mutex_exit(SD_MUTEX(un));
7205 
7206 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
7207 			    "trans check Failed, not ok to power cycle.\n");
7208 			return (DDI_FAILURE);
7209 
7210 		case -1:
7211 			if (got_semaphore_here != 0) {
7212 				sema_v(&un->un_semoclose);
7213 			}
7214 			/*
7215 			 * On exit put the state back to it's original value
7216 			 * and broadcast to anyone waiting for the power
7217 			 * change completion.
7218 			 */
7219 			mutex_enter(SD_MUTEX(un));
7220 			un->un_state = state_before_pm;
7221 			cv_broadcast(&un->un_suspend_cv);
7222 			mutex_exit(SD_MUTEX(un));
7223 			SD_TRACE(SD_LOG_IO_PM, un,
7224 			    "sdpower: exit, trans check command Failed.\n");
7225 			return (DDI_FAILURE);
7226 		}
7227 	}
7228 
7229 	if (level == SD_SPINDLE_OFF) {
7230 		/*
7231 		 * Save the last state... if the STOP FAILS we need it
7232 		 * for restoring
7233 		 */
7234 		mutex_enter(SD_MUTEX(un));
7235 		save_state = un->un_last_state;
7236 		/*
7237 		 * There must not be any cmds. getting processed
7238 		 * in the driver when we get here. Power to the
7239 		 * device is potentially going off.
7240 		 */
7241 		ASSERT(un->un_ncmds_in_driver == 0);
7242 		mutex_exit(SD_MUTEX(un));
7243 
7244 		/*
7245 		 * For now suspend the device completely before spindle is
7246 		 * turned off
7247 		 */
7248 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
7249 			if (got_semaphore_here != 0) {
7250 				sema_v(&un->un_semoclose);
7251 			}
7252 			/*
7253 			 * On exit put the state back to it's original value
7254 			 * and broadcast to anyone waiting for the power
7255 			 * change completion.
7256 			 */
7257 			mutex_enter(SD_MUTEX(un));
7258 			un->un_state = state_before_pm;
7259 			cv_broadcast(&un->un_suspend_cv);
7260 			mutex_exit(SD_MUTEX(un));
7261 			SD_TRACE(SD_LOG_IO_PM, un,
7262 			    "sdpower: exit, PM suspend Failed.\n");
7263 			return (DDI_FAILURE);
7264 		}
7265 	}
7266 
7267 	/*
7268 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
7269 	 * close, or strategy. Dump no long uses this routine, it uses it's
7270 	 * own code so it can be done in polled mode.
7271 	 */
7272 
7273 	medium_present = TRUE;
7274 
7275 	/*
7276 	 * When powering up, issue a TUR in case the device is at unit
7277 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
7278 	 * a deadlock on un_pm_busy_cv will occur.
7279 	 */
7280 	if (level == SD_SPINDLE_ON) {
7281 		(void) sd_send_scsi_TEST_UNIT_READY(un,
7282 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
7283 	}
7284 
7285 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
7286 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
7287 
7288 	sval = sd_send_scsi_START_STOP_UNIT(un,
7289 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
7290 	    SD_PATH_DIRECT);
7291 	/* Command failed, check for media present. */
7292 	if ((sval == ENXIO) && ISREMOVABLE(un)) {
7293 		medium_present = FALSE;
7294 	}
7295 
7296 	/*
7297 	 * The conditions of interest here are:
7298 	 *   if a spindle off with media present fails,
7299 	 *	then restore the state and return an error.
7300 	 *   else if a spindle on fails,
7301 	 *	then return an error (there's no state to restore).
7302 	 * In all other cases we setup for the new state
7303 	 * and return success.
7304 	 */
7305 	switch (level) {
7306 	case SD_SPINDLE_OFF:
7307 		if ((medium_present == TRUE) && (sval != 0)) {
7308 			/* The stop command from above failed */
7309 			rval = DDI_FAILURE;
7310 			/*
7311 			 * The stop command failed, and we have media
7312 			 * present. Put the level back by calling the
7313 			 * sd_pm_resume() and set the state back to
7314 			 * it's previous value.
7315 			 */
7316 			(void) sd_ddi_pm_resume(un);
7317 			mutex_enter(SD_MUTEX(un));
7318 			un->un_last_state = save_state;
7319 			mutex_exit(SD_MUTEX(un));
7320 			break;
7321 		}
7322 		/*
7323 		 * The stop command from above succeeded.
7324 		 */
7325 		if (ISREMOVABLE(un)) {
7326 			/*
7327 			 * Terminate watch thread in case of removable media
7328 			 * devices going into low power state. This is as per
7329 			 * the requirements of pm framework, otherwise commands
7330 			 * will be generated for the device (through watch
7331 			 * thread), even when the device is in low power state.
7332 			 */
7333 			mutex_enter(SD_MUTEX(un));
7334 			un->un_f_watcht_stopped = FALSE;
7335 			if (un->un_swr_token != NULL) {
7336 				opaque_t temp_token = un->un_swr_token;
7337 				un->un_f_watcht_stopped = TRUE;
7338 				un->un_swr_token = NULL;
7339 				mutex_exit(SD_MUTEX(un));
7340 				(void) scsi_watch_request_terminate(temp_token,
7341 				    SCSI_WATCH_TERMINATE_WAIT);
7342 			} else {
7343 				mutex_exit(SD_MUTEX(un));
7344 			}
7345 		}
7346 		break;
7347 
7348 	default:	/* The level requested is spindle on... */
7349 		/*
7350 		 * Legacy behavior: return success on a failed spinup
7351 		 * if there is no media in the drive.
7352 		 * Do this by looking at medium_present here.
7353 		 */
7354 		if ((sval != 0) && medium_present) {
7355 			/* The start command from above failed */
7356 			rval = DDI_FAILURE;
7357 			break;
7358 		}
7359 		/*
7360 		 * The start command from above succeeded
7361 		 * Resume the devices now that we have
7362 		 * started the disks
7363 		 */
7364 		(void) sd_ddi_pm_resume(un);
7365 
7366 		/*
7367 		 * Resume the watch thread since it was suspended
7368 		 * when the device went into low power mode.
7369 		 */
7370 		if (ISREMOVABLE(un)) {
7371 			mutex_enter(SD_MUTEX(un));
7372 			if (un->un_f_watcht_stopped == TRUE) {
7373 				opaque_t temp_token;
7374 
7375 				un->un_f_watcht_stopped = FALSE;
7376 				mutex_exit(SD_MUTEX(un));
7377 				temp_token = scsi_watch_request_submit(
7378 				    SD_SCSI_DEVP(un),
7379 				    sd_check_media_time,
7380 				    SENSE_LENGTH, sd_media_watch_cb,
7381 				    (caddr_t)dev);
7382 				mutex_enter(SD_MUTEX(un));
7383 				un->un_swr_token = temp_token;
7384 			}
7385 			mutex_exit(SD_MUTEX(un));
7386 		}
7387 	}
7388 	if (got_semaphore_here != 0) {
7389 		sema_v(&un->un_semoclose);
7390 	}
7391 	/*
7392 	 * On exit put the state back to it's original value
7393 	 * and broadcast to anyone waiting for the power
7394 	 * change completion.
7395 	 */
7396 	mutex_enter(SD_MUTEX(un));
7397 	un->un_state = state_before_pm;
7398 	cv_broadcast(&un->un_suspend_cv);
7399 	mutex_exit(SD_MUTEX(un));
7400 
7401 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
7402 
7403 	return (rval);
7404 }
7405 
7406 
7407 
7408 /*
7409  *    Function: sdattach
7410  *
7411  * Description: Driver's attach(9e) entry point function.
7412  *
7413  *   Arguments: devi - opaque device info handle
7414  *		cmd  - attach  type
7415  *
7416  * Return Code: DDI_SUCCESS
7417  *		DDI_FAILURE
7418  *
7419  *     Context: Kernel thread context
7420  */
7421 
7422 static int
7423 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
7424 {
7425 	switch (cmd) {
7426 	case DDI_ATTACH:
7427 		return (sd_unit_attach(devi));
7428 	case DDI_RESUME:
7429 		return (sd_ddi_resume(devi));
7430 	default:
7431 		break;
7432 	}
7433 	return (DDI_FAILURE);
7434 }
7435 
7436 
7437 /*
7438  *    Function: sddetach
7439  *
7440  * Description: Driver's detach(9E) entry point function.
7441  *
7442  *   Arguments: devi - opaque device info handle
7443  *		cmd  - detach  type
7444  *
7445  * Return Code: DDI_SUCCESS
7446  *		DDI_FAILURE
7447  *
7448  *     Context: Kernel thread context
7449  */
7450 
7451 static int
7452 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
7453 {
7454 	switch (cmd) {
7455 	case DDI_DETACH:
7456 		return (sd_unit_detach(devi));
7457 	case DDI_SUSPEND:
7458 		return (sd_ddi_suspend(devi));
7459 	default:
7460 		break;
7461 	}
7462 	return (DDI_FAILURE);
7463 }
7464 
7465 
7466 /*
7467  *     Function: sd_sync_with_callback
7468  *
7469  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
7470  *		 state while the callback routine is active.
7471  *
7472  *    Arguments: un: softstate structure for the instance
7473  *
7474  *	Context: Kernel thread context
7475  */
7476 
7477 static void
7478 sd_sync_with_callback(struct sd_lun *un)
7479 {
7480 	ASSERT(un != NULL);
7481 
7482 	mutex_enter(SD_MUTEX(un));
7483 
7484 	ASSERT(un->un_in_callback >= 0);
7485 
7486 	while (un->un_in_callback > 0) {
7487 		mutex_exit(SD_MUTEX(un));
7488 		delay(2);
7489 		mutex_enter(SD_MUTEX(un));
7490 	}
7491 
7492 	mutex_exit(SD_MUTEX(un));
7493 }
7494 
7495 /*
7496  *    Function: sd_unit_attach
7497  *
7498  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
7499  *		the soft state structure for the device and performs
7500  *		all necessary structure and device initializations.
7501  *
7502  *   Arguments: devi: the system's dev_info_t for the device.
7503  *
7504  * Return Code: DDI_SUCCESS if attach is successful.
7505  *		DDI_FAILURE if any part of the attach fails.
7506  *
7507  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
7508  *		Kernel thread context only.  Can sleep.
7509  */
7510 
7511 static int
7512 sd_unit_attach(dev_info_t *devi)
7513 {
7514 	struct	scsi_device	*devp;
7515 	struct	sd_lun		*un;
7516 	char			*variantp;
7517 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
7518 	int	instance;
7519 	int	rval;
7520 	uint64_t	capacity;
7521 	uint_t		lbasize;
7522 
7523 	/*
7524 	 * Retrieve the target driver's private data area. This was set
7525 	 * up by the HBA.
7526 	 */
7527 	devp = ddi_get_driver_private(devi);
7528 
7529 	/*
7530 	 * Since we have no idea what state things were left in by the last
7531 	 * user of the device, set up some 'default' settings, ie. turn 'em
7532 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
7533 	 * Do this before the scsi_probe, which sends an inquiry.
7534 	 * This is a fix for bug (4430280).
7535 	 * Of special importance is wide-xfer. The drive could have been left
7536 	 * in wide transfer mode by the last driver to communicate with it,
7537 	 * this includes us. If that's the case, and if the following is not
7538 	 * setup properly or we don't re-negotiate with the drive prior to
7539 	 * transferring data to/from the drive, it causes bus parity errors,
7540 	 * data overruns, and unexpected interrupts. This first occurred when
7541 	 * the fix for bug (4378686) was made.
7542 	 */
7543 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
7544 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
7545 	(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
7546 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
7547 
7548 	/*
7549 	 * Use scsi_probe() to issue an INQUIRY command to the device.
7550 	 * This call will allocate and fill in the scsi_inquiry structure
7551 	 * and point the sd_inq member of the scsi_device structure to it.
7552 	 * If the attach succeeds, then this memory will not be de-allocated
7553 	 * (via scsi_unprobe()) until the instance is detached.
7554 	 */
7555 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
7556 		goto probe_failed;
7557 	}
7558 
7559 	/*
7560 	 * Check the device type as specified in the inquiry data and
7561 	 * claim it if it is of a type that we support.
7562 	 */
7563 	switch (devp->sd_inq->inq_dtype) {
7564 	case DTYPE_DIRECT:
7565 		break;
7566 	case DTYPE_RODIRECT:
7567 		break;
7568 	case DTYPE_OPTICAL:
7569 		break;
7570 	case DTYPE_NOTPRESENT:
7571 	default:
7572 		/* Unsupported device type; fail the attach. */
7573 		goto probe_failed;
7574 	}
7575 
7576 	/*
7577 	 * Allocate the soft state structure for this unit.
7578 	 *
7579 	 * We rely upon this memory being set to all zeroes by
7580 	 * ddi_soft_state_zalloc().  We assume that any member of the
7581 	 * soft state structure that is not explicitly initialized by
7582 	 * this routine will have a value of zero.
7583 	 */
7584 	instance = ddi_get_instance(devp->sd_dev);
7585 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
7586 		goto probe_failed;
7587 	}
7588 
7589 	/*
7590 	 * Retrieve a pointer to the newly-allocated soft state.
7591 	 *
7592 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
7593 	 * was successful, unless something has gone horribly wrong and the
7594 	 * ddi's soft state internals are corrupt (in which case it is
7595 	 * probably better to halt here than just fail the attach....)
7596 	 */
7597 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
7598 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
7599 		    instance);
7600 		/*NOTREACHED*/
7601 	}
7602 
7603 	/*
7604 	 * Link the back ptr of the driver soft state to the scsi_device
7605 	 * struct for this lun.
7606 	 * Save a pointer to the softstate in the driver-private area of
7607 	 * the scsi_device struct.
7608 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
7609 	 * we first set un->un_sd below.
7610 	 */
7611 	un->un_sd = devp;
7612 	devp->sd_private = (opaque_t)un;
7613 
7614 	/*
7615 	 * The following must be after devp is stored in the soft state struct.
7616 	 */
7617 #ifdef SDDEBUG
7618 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7619 	    "%s_unit_attach: un:0x%p instance:%d\n",
7620 	    ddi_driver_name(devi), un, instance);
7621 #endif
7622 
7623 	/*
7624 	 * Set up the device type and node type (for the minor nodes).
7625 	 * By default we assume that the device can at least support the
7626 	 * Common Command Set. Call it a CD-ROM if it reports itself
7627 	 * as a RODIRECT device.
7628 	 */
7629 	switch (devp->sd_inq->inq_dtype) {
7630 	case DTYPE_RODIRECT:
7631 		un->un_node_type = DDI_NT_CD_CHAN;
7632 		un->un_ctype	 = CTYPE_CDROM;
7633 		break;
7634 	case DTYPE_OPTICAL:
7635 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7636 		un->un_ctype	 = CTYPE_ROD;
7637 		break;
7638 	default:
7639 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7640 		un->un_ctype	 = CTYPE_CCS;
7641 		break;
7642 	}
7643 
7644 	/*
7645 	 * Try to read the interconnect type from the HBA.
7646 	 *
7647 	 * Note: This driver is currently compiled as two binaries, a parallel
7648 	 * scsi version (sd) and a fibre channel version (ssd). All functional
7649 	 * differences are determined at compile time. In the future a single
7650 	 * binary will be provided and the inteconnect type will be used to
7651 	 * differentiate between fibre and parallel scsi behaviors. At that time
7652 	 * it will be necessary for all fibre channel HBAs to support this
7653 	 * property.
7654 	 *
7655 	 * set un_f_is_fiber to TRUE ( default fiber )
7656 	 */
7657 	un->un_f_is_fibre = TRUE;
7658 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
7659 	case INTERCONNECT_SSA:
7660 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
7661 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7662 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
7663 		break;
7664 	case INTERCONNECT_PARALLEL:
7665 		un->un_f_is_fibre = FALSE;
7666 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7667 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7668 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
7669 		break;
7670 	case INTERCONNECT_FIBRE:
7671 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
7672 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7673 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
7674 		break;
7675 	case INTERCONNECT_FABRIC:
7676 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
7677 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
7678 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7679 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
7680 		break;
7681 	default:
7682 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
7683 		/*
7684 		 * The HBA does not support the "interconnect-type" property
7685 		 * (or did not provide a recognized type).
7686 		 *
7687 		 * Note: This will be obsoleted when a single fibre channel
7688 		 * and parallel scsi driver is delivered. In the meantime the
7689 		 * interconnect type will be set to the platform default.If that
7690 		 * type is not parallel SCSI, it means that we should be
7691 		 * assuming "ssd" semantics. However, here this also means that
7692 		 * the FC HBA is not supporting the "interconnect-type" property
7693 		 * like we expect it to, so log this occurrence.
7694 		 */
7695 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
7696 		if (!SD_IS_PARALLEL_SCSI(un)) {
7697 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7698 			    "sd_unit_attach: un:0x%p Assuming "
7699 			    "INTERCONNECT_FIBRE\n", un);
7700 		} else {
7701 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7702 			    "sd_unit_attach: un:0x%p Assuming "
7703 			    "INTERCONNECT_PARALLEL\n", un);
7704 			un->un_f_is_fibre = FALSE;
7705 		}
7706 #else
7707 		/*
7708 		 * Note: This source will be implemented when a single fibre
7709 		 * channel and parallel scsi driver is delivered. The default
7710 		 * will be to assume that if a device does not support the
7711 		 * "interconnect-type" property it is a parallel SCSI HBA and
7712 		 * we will set the interconnect type for parallel scsi.
7713 		 */
7714 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7715 		un->un_f_is_fibre = FALSE;
7716 #endif
7717 		break;
7718 	}
7719 
7720 	if (un->un_f_is_fibre == TRUE) {
7721 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
7722 			SCSI_VERSION_3) {
7723 			switch (un->un_interconnect_type) {
7724 			case SD_INTERCONNECT_FIBRE:
7725 			case SD_INTERCONNECT_SSA:
7726 				un->un_node_type = DDI_NT_BLOCK_WWN;
7727 				break;
7728 			default:
7729 				break;
7730 			}
7731 		}
7732 	}
7733 
7734 	/*
7735 	 * Initialize the Request Sense command for the target
7736 	 */
7737 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
7738 		goto alloc_rqs_failed;
7739 	}
7740 
7741 	/*
7742 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
7743 	 * with seperate binary for sd and ssd.
7744 	 *
7745 	 * x86 has 1 binary, un_retry_count is set base on connection type.
7746 	 * The hardcoded values will go away when Sparc uses 1 binary
7747 	 * for sd and ssd.  This hardcoded values need to match
7748 	 * SD_RETRY_COUNT in sddef.h
7749 	 * The value used is base on interconnect type.
7750 	 * fibre = 3, parallel = 5
7751 	 */
7752 #if defined(__i386) || defined(__amd64)
7753 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
7754 #else
7755 	un->un_retry_count = SD_RETRY_COUNT;
7756 #endif
7757 
7758 	/*
7759 	 * Set the per disk retry count to the default number of retries
7760 	 * for disks and CDROMs. This value can be overridden by the
7761 	 * disk property list or an entry in sd.conf.
7762 	 */
7763 	un->un_notready_retry_count =
7764 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
7765 			: DISK_NOT_READY_RETRY_COUNT(un);
7766 
7767 	/*
7768 	 * Set the busy retry count to the default value of un_retry_count.
7769 	 * This can be overridden by entries in sd.conf or the device
7770 	 * config table.
7771 	 */
7772 	un->un_busy_retry_count = un->un_retry_count;
7773 
7774 	/*
7775 	 * Init the reset threshold for retries.  This number determines
7776 	 * how many retries must be performed before a reset can be issued
7777 	 * (for certain error conditions). This can be overridden by entries
7778 	 * in sd.conf or the device config table.
7779 	 */
7780 	un->un_reset_retry_count = (un->un_retry_count / 2);
7781 
7782 	/*
7783 	 * Set the victim_retry_count to the default un_retry_count
7784 	 */
7785 	un->un_victim_retry_count = (2 * un->un_retry_count);
7786 
7787 	/*
7788 	 * Set the reservation release timeout to the default value of
7789 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
7790 	 * device config table.
7791 	 */
7792 	un->un_reserve_release_time = 5;
7793 
7794 	/*
7795 	 * Set up the default maximum transfer size. Note that this may
7796 	 * get updated later in the attach, when setting up default wide
7797 	 * operations for disks.
7798 	 */
7799 #if defined(__i386) || defined(__amd64)
7800 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
7801 #else
7802 	un->un_max_xfer_size = (uint_t)maxphys;
7803 #endif
7804 
7805 	/*
7806 	 * Get "allow bus device reset" property (defaults to "enabled" if
7807 	 * the property was not defined). This is to disable bus resets for
7808 	 * certain kinds of error recovery. Note: In the future when a run-time
7809 	 * fibre check is available the soft state flag should default to
7810 	 * enabled.
7811 	 */
7812 	if (un->un_f_is_fibre == TRUE) {
7813 		un->un_f_allow_bus_device_reset = TRUE;
7814 	} else {
7815 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7816 			"allow-bus-device-reset", 1) != 0) {
7817 			un->un_f_allow_bus_device_reset = TRUE;
7818 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7819 			"sd_unit_attach: un:0x%p Bus device reset enabled\n",
7820 				un);
7821 		} else {
7822 			un->un_f_allow_bus_device_reset = FALSE;
7823 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7824 			"sd_unit_attach: un:0x%p Bus device reset disabled\n",
7825 				un);
7826 		}
7827 	}
7828 
7829 	/*
7830 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
7831 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
7832 	 *
7833 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
7834 	 * property. The new "variant" property with a value of "atapi" has been
7835 	 * introduced so that future 'variants' of standard SCSI behavior (like
7836 	 * atapi) could be specified by the underlying HBA drivers by supplying
7837 	 * a new value for the "variant" property, instead of having to define a
7838 	 * new property.
7839 	 */
7840 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
7841 		un->un_f_cfg_is_atapi = TRUE;
7842 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7843 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
7844 	}
7845 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
7846 	    &variantp) == DDI_PROP_SUCCESS) {
7847 		if (strcmp(variantp, "atapi") == 0) {
7848 			un->un_f_cfg_is_atapi = TRUE;
7849 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7850 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
7851 		}
7852 		ddi_prop_free(variantp);
7853 	}
7854 
7855 	/*
7856 	 * Assume doorlock commands are supported. If not, the first
7857 	 * call to sd_send_scsi_DOORLOCK() will set to FALSE
7858 	 */
7859 	un->un_f_doorlock_supported = TRUE;
7860 
7861 	un->un_cmd_timeout	= SD_IO_TIME;
7862 
7863 	/* Info on current states, statuses, etc. (Updated frequently) */
7864 	un->un_state		= SD_STATE_NORMAL;
7865 	un->un_last_state	= SD_STATE_NORMAL;
7866 
7867 	/* Control & status info for command throttling */
7868 	un->un_throttle		= sd_max_throttle;
7869 	un->un_saved_throttle	= sd_max_throttle;
7870 	un->un_min_throttle	= sd_min_throttle;
7871 
7872 	if (un->un_f_is_fibre == TRUE) {
7873 		un->un_f_use_adaptive_throttle = TRUE;
7874 	} else {
7875 		un->un_f_use_adaptive_throttle = FALSE;
7876 	}
7877 
7878 	/* Removable media support. */
7879 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
7880 	un->un_mediastate		= DKIO_NONE;
7881 	un->un_specified_mediastate	= DKIO_NONE;
7882 
7883 	/* CVs for suspend/resume (PM or DR) */
7884 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
7885 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
7886 
7887 	/* Power management support. */
7888 	un->un_power_level = SD_SPINDLE_UNINIT;
7889 
7890 	/*
7891 	 * The open/close semaphore is used to serialize threads executing
7892 	 * in the driver's open & close entry point routines for a given
7893 	 * instance.
7894 	 */
7895 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
7896 
7897 	/*
7898 	 * The conf file entry and softstate variable is a forceful override,
7899 	 * meaning a non-zero value must be entered to change the default.
7900 	 */
7901 	un->un_f_disksort_disabled = FALSE;
7902 
7903 	/*
7904 	 * Retrieve the properties from the static driver table or the driver
7905 	 * configuration file (.conf) for this unit and update the soft state
7906 	 * for the device as needed for the indicated properties.
7907 	 * Note: the property configuration needs to occur here as some of the
7908 	 * following routines may have dependancies on soft state flags set
7909 	 * as part of the driver property configuration.
7910 	 */
7911 	sd_read_unit_properties(un);
7912 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7913 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
7914 
7915 	/*
7916 	 * By default, we mark the capacity, lbazize, and geometry
7917 	 * as invalid. Only if we successfully read a valid capacity
7918 	 * will we update the un_blockcount and un_tgt_blocksize with the
7919 	 * valid values (the geometry will be validated later).
7920 	 */
7921 	un->un_f_blockcount_is_valid	= FALSE;
7922 	un->un_f_tgt_blocksize_is_valid	= FALSE;
7923 	un->un_f_geometry_is_valid	= FALSE;
7924 
7925 	/*
7926 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
7927 	 * otherwise.
7928 	 */
7929 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
7930 	un->un_blockcount = 0;
7931 
7932 	/*
7933 	 * Set up the per-instance info needed to determine the correct
7934 	 * CDBs and other info for issuing commands to the target.
7935 	 */
7936 	sd_init_cdb_limits(un);
7937 
7938 	/*
7939 	 * Set up the IO chains to use, based upon the target type.
7940 	 */
7941 	if (ISREMOVABLE(un)) {
7942 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
7943 	} else {
7944 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
7945 	}
7946 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
7947 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
7948 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
7949 
7950 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
7951 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
7952 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
7953 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
7954 
7955 
7956 	if (ISCD(un)) {
7957 		un->un_additional_codes = sd_additional_codes;
7958 	} else {
7959 		un->un_additional_codes = NULL;
7960 	}
7961 
7962 	/*
7963 	 * Create the kstats here so they can be available for attach-time
7964 	 * routines that send commands to the unit (either polled or via
7965 	 * sd_send_scsi_cmd).
7966 	 *
7967 	 * Note: This is a critical sequence that needs to be maintained:
7968 	 *	1) Instantiate the kstats here, before any routines using the
7969 	 *	   iopath (i.e. sd_send_scsi_cmd).
7970 	 *	2) Initialize the error stats (sd_set_errstats) and partition
7971 	 *	   stats (sd_set_pstats), following sd_validate_geometry(),
7972 	 *	   sd_register_devid(), and sd_disable_caching().
7973 	 */
7974 
7975 	un->un_stats = kstat_create(sd_label, instance,
7976 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
7977 	if (un->un_stats != NULL) {
7978 		un->un_stats->ks_lock = SD_MUTEX(un);
7979 		kstat_install(un->un_stats);
7980 	}
7981 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7982 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
7983 
7984 	sd_create_errstats(un, instance);
7985 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7986 	    "sd_unit_attach: un:0x%p errstats created\n", un);
7987 
7988 	/*
7989 	 * The following if/else code was relocated here from below as part
7990 	 * of the fix for bug (4430280). However with the default setup added
7991 	 * on entry to this routine, it's no longer absolutely necessary for
7992 	 * this to be before the call to sd_spin_up_unit.
7993 	 */
7994 	if (SD_IS_PARALLEL_SCSI(un)) {
7995 		/*
7996 		 * If SCSI-2 tagged queueing is supported by the target
7997 		 * and by the host adapter then we will enable it.
7998 		 */
7999 		un->un_tagflags = 0;
8000 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
8001 		    (devp->sd_inq->inq_cmdque) &&
8002 		    (un->un_f_arq_enabled == TRUE)) {
8003 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
8004 			    1, 1) == 1) {
8005 				un->un_tagflags = FLAG_STAG;
8006 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8007 				    "sd_unit_attach: un:0x%p tag queueing "
8008 				    "enabled\n", un);
8009 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
8010 			    "untagged-qing", 0) == 1) {
8011 				un->un_f_opt_queueing = TRUE;
8012 				un->un_saved_throttle = un->un_throttle =
8013 				    min(un->un_throttle, 3);
8014 			} else {
8015 				un->un_f_opt_queueing = FALSE;
8016 				un->un_saved_throttle = un->un_throttle = 1;
8017 			}
8018 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
8019 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
8020 			/* The Host Adapter supports internal queueing. */
8021 			un->un_f_opt_queueing = TRUE;
8022 			un->un_saved_throttle = un->un_throttle =
8023 			    min(un->un_throttle, 3);
8024 		} else {
8025 			un->un_f_opt_queueing = FALSE;
8026 			un->un_saved_throttle = un->un_throttle = 1;
8027 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8028 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
8029 		}
8030 
8031 
8032 		/* Setup or tear down default wide operations for disks */
8033 
8034 		/*
8035 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
8036 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
8037 		 * system and be set to different values. In the future this
8038 		 * code may need to be updated when the ssd module is
8039 		 * obsoleted and removed from the system. (4299588)
8040 		 */
8041 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
8042 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
8043 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
8044 			    1, 1) == 1) {
8045 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8046 				    "sd_unit_attach: un:0x%p Wide Transfer "
8047 				    "enabled\n", un);
8048 			}
8049 
8050 			/*
8051 			 * If tagged queuing has also been enabled, then
8052 			 * enable large xfers
8053 			 */
8054 			if (un->un_saved_throttle == sd_max_throttle) {
8055 				un->un_max_xfer_size =
8056 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8057 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
8058 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8059 				    "sd_unit_attach: un:0x%p max transfer "
8060 				    "size=0x%x\n", un, un->un_max_xfer_size);
8061 			}
8062 		} else {
8063 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
8064 			    0, 1) == 1) {
8065 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8066 				    "sd_unit_attach: un:0x%p "
8067 				    "Wide Transfer disabled\n", un);
8068 			}
8069 		}
8070 	} else {
8071 		un->un_tagflags = FLAG_STAG;
8072 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
8073 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
8074 	}
8075 
8076 	/*
8077 	 * If this target supports LUN reset, try to enable it.
8078 	 */
8079 	if (un->un_f_lun_reset_enabled) {
8080 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
8081 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
8082 			    "un:0x%p lun_reset capability set\n", un);
8083 		} else {
8084 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
8085 			    "un:0x%p lun-reset capability not set\n", un);
8086 		}
8087 	}
8088 
8089 	/*
8090 	 * At this point in the attach, we have enough info in the
8091 	 * soft state to be able to issue commands to the target.
8092 	 *
8093 	 * All command paths used below MUST issue their commands as
8094 	 * SD_PATH_DIRECT. This is important as intermediate layers
8095 	 * are not all initialized yet (such as PM).
8096 	 */
8097 
8098 	/*
8099 	 * Send a TEST UNIT READY command to the device. This should clear
8100 	 * any outstanding UNIT ATTENTION that may be present.
8101 	 *
8102 	 * Note: Don't check for success, just track if there is a reservation,
8103 	 * this is a throw away command to clear any unit attentions.
8104 	 *
8105 	 * Note: This MUST be the first command issued to the target during
8106 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
8107 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
8108 	 * with attempts at spinning up a device with no media.
8109 	 */
8110 	if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) {
8111 		reservation_flag = SD_TARGET_IS_RESERVED;
8112 	}
8113 
8114 	/*
8115 	 * If the device is NOT a removable media device, attempt to spin
8116 	 * it up (using the START_STOP_UNIT command) and read its capacity
8117 	 * (using the READ CAPACITY command).  Note, however, that either
8118 	 * of these could fail and in some cases we would continue with
8119 	 * the attach despite the failure (see below).
8120 	 */
8121 	if (devp->sd_inq->inq_dtype == DTYPE_DIRECT && !ISREMOVABLE(un)) {
8122 		switch (sd_spin_up_unit(un)) {
8123 		case 0:
8124 			/*
8125 			 * Spin-up was successful; now try to read the
8126 			 * capacity.  If successful then save the results
8127 			 * and mark the capacity & lbasize as valid.
8128 			 */
8129 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8130 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
8131 
8132 			switch (sd_send_scsi_READ_CAPACITY(un, &capacity,
8133 			    &lbasize, SD_PATH_DIRECT)) {
8134 			case 0: {
8135 				if (capacity > DK_MAX_BLOCKS) {
8136 #ifdef _LP64
8137 					/*
8138 					 * Enable descriptor format sense data
8139 					 * so that we can get 64 bit sense
8140 					 * data fields.
8141 					 */
8142 					sd_enable_descr_sense(un);
8143 #else
8144 					/* 32-bit kernels can't handle this */
8145 					scsi_log(SD_DEVINFO(un),
8146 					    sd_label, CE_WARN,
8147 					    "disk has %llu blocks, which "
8148 					    "is too large for a 32-bit "
8149 					    "kernel", capacity);
8150 					goto spinup_failed;
8151 #endif
8152 				}
8153 				/*
8154 				 * The following relies on
8155 				 * sd_send_scsi_READ_CAPACITY never
8156 				 * returning 0 for capacity and/or lbasize.
8157 				 */
8158 				sd_update_block_info(un, lbasize, capacity);
8159 
8160 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8161 				    "sd_unit_attach: un:0x%p capacity = %ld "
8162 				    "blocks; lbasize= %ld.\n", un,
8163 				    un->un_blockcount, un->un_tgt_blocksize);
8164 
8165 				break;
8166 			}
8167 			case EACCES:
8168 				/*
8169 				 * Should never get here if the spin-up
8170 				 * succeeded, but code it in anyway.
8171 				 * From here, just continue with the attach...
8172 				 */
8173 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8174 				    "sd_unit_attach: un:0x%p "
8175 				    "sd_send_scsi_READ_CAPACITY "
8176 				    "returned reservation conflict\n", un);
8177 				reservation_flag = SD_TARGET_IS_RESERVED;
8178 				break;
8179 			default:
8180 				/*
8181 				 * Likewise, should never get here if the
8182 				 * spin-up succeeded. Just continue with
8183 				 * the attach...
8184 				 */
8185 				break;
8186 			}
8187 			break;
8188 		case EACCES:
8189 			/*
8190 			 * Device is reserved by another host.  In this case
8191 			 * we could not spin it up or read the capacity, but
8192 			 * we continue with the attach anyway.
8193 			 */
8194 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8195 			    "sd_unit_attach: un:0x%p spin-up reservation "
8196 			    "conflict.\n", un);
8197 			reservation_flag = SD_TARGET_IS_RESERVED;
8198 			break;
8199 		default:
8200 			/* Fail the attach if the spin-up failed. */
8201 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8202 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
8203 			goto spinup_failed;
8204 		}
8205 	}
8206 
8207 	/*
8208 	 * Check to see if this is a MMC drive
8209 	 */
8210 	if (ISCD(un)) {
8211 		sd_set_mmc_caps(un);
8212 	}
8213 
8214 	/*
8215 	 * Create the minor nodes for the device.
8216 	 * Note: If we want to support fdisk on both sparc and intel, this will
8217 	 * have to separate out the notion that VTOC8 is always sparc, and
8218 	 * VTOC16 is always intel (tho these can be the defaults).  The vtoc
8219 	 * type will have to be determined at run-time, and the fdisk
8220 	 * partitioning will have to have been read & set up before we
8221 	 * create the minor nodes. (any other inits (such as kstats) that
8222 	 * also ought to be done before creating the minor nodes?) (Doesn't
8223 	 * setting up the minor nodes kind of imply that we're ready to
8224 	 * handle an open from userland?)
8225 	 */
8226 	if (sd_create_minor_nodes(un, devi) != DDI_SUCCESS) {
8227 		goto create_minor_nodes_failed;
8228 	}
8229 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8230 	    "sd_unit_attach: un:0x%p minor nodes created\n", un);
8231 
8232 	/*
8233 	 * Add a zero-length attribute to tell the world we support
8234 	 * kernel ioctls (for layered drivers)
8235 	 */
8236 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8237 	    DDI_KERNEL_IOCTL, NULL, 0);
8238 
8239 	/*
8240 	 * Add a boolean property to tell the world we support
8241 	 * the B_FAILFAST flag (for layered drivers)
8242 	 */
8243 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8244 	    "ddi-failfast-supported", NULL, 0);
8245 
8246 	/*
8247 	 * Initialize power management
8248 	 */
8249 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
8250 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
8251 	sd_setup_pm(un, devi);
8252 	if (un->un_f_pm_is_enabled == FALSE) {
8253 		/*
8254 		 * For performance, point to a jump table that does
8255 		 * not include pm.
8256 		 * The direct and priority chains don't change with PM.
8257 		 *
8258 		 * Note: this is currently done based on individual device
8259 		 * capabilities. When an interface for determining system
8260 		 * power enabled state becomes available, or when additional
8261 		 * layers are added to the command chain, these values will
8262 		 * have to be re-evaluated for correctness.
8263 		 */
8264 		if (ISREMOVABLE(un)) {
8265 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
8266 		} else {
8267 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
8268 		}
8269 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8270 	}
8271 
8272 	/*
8273 	 * This property is set to 0 by HA software to avoid retries
8274 	 * on a reserved disk. (The preferred property name is
8275 	 * "retry-on-reservation-conflict") (1189689)
8276 	 *
8277 	 * Note: The use of a global here can have unintended consequences. A
8278 	 * per instance variable is preferrable to match the capabilities of
8279 	 * different underlying hba's (4402600)
8280 	 */
8281 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
8282 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
8283 	    sd_retry_on_reservation_conflict);
8284 	if (sd_retry_on_reservation_conflict != 0) {
8285 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
8286 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
8287 		    sd_retry_on_reservation_conflict);
8288 	}
8289 
8290 	/* Set up options for QFULL handling. */
8291 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8292 	    "qfull-retries", -1)) != -1) {
8293 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
8294 		    rval, 1);
8295 	}
8296 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8297 	    "qfull-retry-interval", -1)) != -1) {
8298 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
8299 		    rval, 1);
8300 	}
8301 
8302 	/*
8303 	 * This just prints a message that announces the existence of the
8304 	 * device. The message is always printed in the system logfile, but
8305 	 * only appears on the console if the system is booted with the
8306 	 * -v (verbose) argument.
8307 	 */
8308 	ddi_report_dev(devi);
8309 
8310 	/*
8311 	 * The framework calls driver attach routines single-threaded
8312 	 * for a given instance.  However we still acquire SD_MUTEX here
8313 	 * because this required for calling the sd_validate_geometry()
8314 	 * and sd_register_devid() functions.
8315 	 */
8316 	mutex_enter(SD_MUTEX(un));
8317 	un->un_f_geometry_is_valid = FALSE;
8318 	un->un_mediastate = DKIO_NONE;
8319 	un->un_reserved = -1;
8320 	if (!ISREMOVABLE(un)) {
8321 		/*
8322 		 * Read and validate the device's geometry (ie, disk label)
8323 		 * A new unformatted drive will not have a valid geometry, but
8324 		 * the driver needs to successfully attach to this device so
8325 		 * the drive can be formatted via ioctls.
8326 		 */
8327 		if (((sd_validate_geometry(un, SD_PATH_DIRECT) ==
8328 		    ENOTSUP)) &&
8329 		    (un->un_blockcount < DK_MAX_BLOCKS)) {
8330 			/*
8331 			 * We found a small disk with an EFI label on it;
8332 			 * we need to fix up the minor nodes accordingly.
8333 			 */
8334 			ddi_remove_minor_node(devi, "h");
8335 			ddi_remove_minor_node(devi, "h,raw");
8336 			(void) ddi_create_minor_node(devi, "wd",
8337 			    S_IFBLK,
8338 			    (instance << SDUNIT_SHIFT) | WD_NODE,
8339 			    un->un_node_type, NULL);
8340 			(void) ddi_create_minor_node(devi, "wd,raw",
8341 			    S_IFCHR,
8342 			    (instance << SDUNIT_SHIFT) | WD_NODE,
8343 			    un->un_node_type, NULL);
8344 		}
8345 	}
8346 
8347 	/*
8348 	 * Read and initialize the devid for the unit.
8349 	 */
8350 	ASSERT(un->un_errstats != NULL);
8351 	if (!ISREMOVABLE(un)) {
8352 		sd_register_devid(un, devi, reservation_flag);
8353 	}
8354 	mutex_exit(SD_MUTEX(un));
8355 
8356 #if (defined(__fibre))
8357 	/*
8358 	 * Register callbacks for fibre only.  You can't do this soley
8359 	 * on the basis of the devid_type because this is hba specific.
8360 	 * We need to query our hba capabilities to find out whether to
8361 	 * register or not.
8362 	 */
8363 	if (un->un_f_is_fibre) {
8364 	    if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
8365 		sd_init_event_callbacks(un);
8366 		SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8367 		    "sd_unit_attach: un:0x%p event callbacks inserted", un);
8368 	    }
8369 	}
8370 #endif
8371 
8372 	if (un->un_f_opt_disable_cache == TRUE) {
8373 		if (sd_disable_caching(un) != 0) {
8374 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8375 			    "sd_unit_attach: un:0x%p Could not disable "
8376 			    "caching", un);
8377 			goto devid_failed;
8378 		}
8379 	}
8380 
8381 	/*
8382 	 * Set the pstat and error stat values here, so data obtained during the
8383 	 * previous attach-time routines is available.
8384 	 *
8385 	 * Note: This is a critical sequence that needs to be maintained:
8386 	 *	1) Instantiate the kstats before any routines using the iopath
8387 	 *	   (i.e. sd_send_scsi_cmd).
8388 	 *	2) Initialize the error stats (sd_set_errstats) and partition
8389 	 *	   stats (sd_set_pstats)here, following sd_validate_geometry(),
8390 	 *	   sd_register_devid(), and sd_disable_caching().
8391 	 */
8392 	if (!ISREMOVABLE(un) && (un->un_f_pkstats_enabled == TRUE)) {
8393 		sd_set_pstats(un);
8394 		SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8395 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
8396 	}
8397 
8398 	sd_set_errstats(un);
8399 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8400 	    "sd_unit_attach: un:0x%p errstats set\n", un);
8401 
8402 	/*
8403 	 * Find out what type of reservation this disk supports.
8404 	 */
8405 	switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) {
8406 	case 0:
8407 		/*
8408 		 * SCSI-3 reservations are supported.
8409 		 */
8410 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8411 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8412 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
8413 		break;
8414 	case ENOTSUP:
8415 		/*
8416 		 * The PERSISTENT RESERVE IN command would not be recognized by
8417 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
8418 		 */
8419 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8420 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
8421 		un->un_reservation_type = SD_SCSI2_RESERVATION;
8422 		break;
8423 	default:
8424 		/*
8425 		 * default to SCSI-3 reservations
8426 		 */
8427 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8428 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
8429 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8430 		break;
8431 	}
8432 
8433 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8434 	    "sd_unit_attach: un:0x%p exit success\n", un);
8435 
8436 	return (DDI_SUCCESS);
8437 
8438 	/*
8439 	 * An error occurred during the attach; clean up & return failure.
8440 	 */
8441 
8442 devid_failed:
8443 
8444 setup_pm_failed:
8445 	ddi_remove_minor_node(devi, NULL);
8446 
8447 create_minor_nodes_failed:
8448 	/*
8449 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8450 	 */
8451 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8452 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8453 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8454 
8455 	if (un->un_f_is_fibre == FALSE) {
8456 	    (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8457 	}
8458 
8459 spinup_failed:
8460 
8461 	mutex_enter(SD_MUTEX(un));
8462 
8463 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
8464 	if (un->un_direct_priority_timeid != NULL) {
8465 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8466 		un->un_direct_priority_timeid = NULL;
8467 		mutex_exit(SD_MUTEX(un));
8468 		(void) untimeout(temp_id);
8469 		mutex_enter(SD_MUTEX(un));
8470 	}
8471 
8472 	/* Cancel any pending start/stop timeouts */
8473 	if (un->un_startstop_timeid != NULL) {
8474 		timeout_id_t temp_id = un->un_startstop_timeid;
8475 		un->un_startstop_timeid = NULL;
8476 		mutex_exit(SD_MUTEX(un));
8477 		(void) untimeout(temp_id);
8478 		mutex_enter(SD_MUTEX(un));
8479 	}
8480 
8481 	mutex_exit(SD_MUTEX(un));
8482 
8483 	/* There should not be any in-progress I/O so ASSERT this check */
8484 	ASSERT(un->un_ncmds_in_transport == 0);
8485 	ASSERT(un->un_ncmds_in_driver == 0);
8486 
8487 	/* Do not free the softstate if the callback routine is active */
8488 	sd_sync_with_callback(un);
8489 
8490 	/*
8491 	 * Partition stats apparently are not used with removables. These would
8492 	 * not have been created during attach, so no need to clean them up...
8493 	 */
8494 	if (un->un_stats != NULL) {
8495 		kstat_delete(un->un_stats);
8496 		un->un_stats = NULL;
8497 	}
8498 	if (un->un_errstats != NULL) {
8499 		kstat_delete(un->un_errstats);
8500 		un->un_errstats = NULL;
8501 	}
8502 
8503 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8504 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8505 
8506 	ddi_prop_remove_all(devi);
8507 	sema_destroy(&un->un_semoclose);
8508 	cv_destroy(&un->un_state_cv);
8509 
8510 getrbuf_failed:
8511 
8512 	sd_free_rqs(un);
8513 
8514 alloc_rqs_failed:
8515 
8516 	devp->sd_private = NULL;
8517 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
8518 
8519 get_softstate_failed:
8520 	/*
8521 	 * Note: the man pages are unclear as to whether or not doing a
8522 	 * ddi_soft_state_free(sd_state, instance) is the right way to
8523 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
8524 	 * ddi_get_soft_state() fails.  The implication seems to be
8525 	 * that the get_soft_state cannot fail if the zalloc succeeds.
8526 	 */
8527 	ddi_soft_state_free(sd_state, instance);
8528 
8529 probe_failed:
8530 	scsi_unprobe(devp);
8531 #ifdef SDDEBUG
8532 	if ((sd_component_mask & SD_LOG_ATTACH_DETACH) &&
8533 	    (sd_level_mask & SD_LOGMASK_TRACE)) {
8534 		cmn_err(CE_CONT, "sd_unit_attach: un:0x%p exit failure\n",
8535 		    (void *)un);
8536 	}
8537 #endif
8538 	return (DDI_FAILURE);
8539 }
8540 
8541 
8542 /*
8543  *    Function: sd_unit_detach
8544  *
8545  * Description: Performs DDI_DETACH processing for sddetach().
8546  *
8547  * Return Code: DDI_SUCCESS
8548  *		DDI_FAILURE
8549  *
8550  *     Context: Kernel thread context
8551  */
8552 
8553 static int
8554 sd_unit_detach(dev_info_t *devi)
8555 {
8556 	struct scsi_device	*devp;
8557 	struct sd_lun		*un;
8558 	int			i;
8559 	dev_t			dev;
8560 #if !(defined(__i386) || defined(__amd64)) && !defined(__fibre)
8561 	int			reset_retval;
8562 #endif
8563 	int			instance = ddi_get_instance(devi);
8564 
8565 	mutex_enter(&sd_detach_mutex);
8566 
8567 	/*
8568 	 * Fail the detach for any of the following:
8569 	 *  - Unable to get the sd_lun struct for the instance
8570 	 *  - A layered driver has an outstanding open on the instance
8571 	 *  - Another thread is already detaching this instance
8572 	 *  - Another thread is currently performing an open
8573 	 */
8574 	devp = ddi_get_driver_private(devi);
8575 	if ((devp == NULL) ||
8576 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
8577 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
8578 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
8579 		mutex_exit(&sd_detach_mutex);
8580 		return (DDI_FAILURE);
8581 	}
8582 
8583 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
8584 
8585 	/*
8586 	 * Mark this instance as currently in a detach, to inhibit any
8587 	 * opens from a layered driver.
8588 	 */
8589 	un->un_detach_count++;
8590 	mutex_exit(&sd_detach_mutex);
8591 
8592 	dev = sd_make_device(SD_DEVINFO(un));
8593 
8594 	_NOTE(COMPETING_THREADS_NOW);
8595 
8596 	mutex_enter(SD_MUTEX(un));
8597 
8598 	/*
8599 	 * Fail the detach if there are any outstanding layered
8600 	 * opens on this device.
8601 	 */
8602 	for (i = 0; i < NDKMAP; i++) {
8603 		if (un->un_ocmap.lyropen[i] != 0) {
8604 			goto err_notclosed;
8605 		}
8606 	}
8607 
8608 	/*
8609 	 * Verify there are NO outstanding commands issued to this device.
8610 	 * ie, un_ncmds_in_transport == 0.
8611 	 * It's possible to have outstanding commands through the physio
8612 	 * code path, even though everything's closed.
8613 	 */
8614 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
8615 	    (un->un_direct_priority_timeid != NULL) ||
8616 	    (un->un_state == SD_STATE_RWAIT)) {
8617 		mutex_exit(SD_MUTEX(un));
8618 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8619 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
8620 		goto err_stillbusy;
8621 	}
8622 
8623 	/*
8624 	 * If we have the device reserved, release the reservation.
8625 	 */
8626 	if ((un->un_resvd_status & SD_RESERVE) &&
8627 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
8628 		mutex_exit(SD_MUTEX(un));
8629 		/*
8630 		 * Note: sd_reserve_release sends a command to the device
8631 		 * via the sd_ioctlcmd() path, and can sleep.
8632 		 */
8633 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
8634 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8635 			    "sd_dr_detach: Cannot release reservation \n");
8636 		}
8637 	} else {
8638 		mutex_exit(SD_MUTEX(un));
8639 	}
8640 
8641 	/*
8642 	 * Untimeout any reserve recover, throttle reset, restart unit
8643 	 * and delayed broadcast timeout threads. Protect the timeout pointer
8644 	 * from getting nulled by their callback functions.
8645 	 */
8646 	mutex_enter(SD_MUTEX(un));
8647 	if (un->un_resvd_timeid != NULL) {
8648 		timeout_id_t temp_id = un->un_resvd_timeid;
8649 		un->un_resvd_timeid = NULL;
8650 		mutex_exit(SD_MUTEX(un));
8651 		(void) untimeout(temp_id);
8652 		mutex_enter(SD_MUTEX(un));
8653 	}
8654 
8655 	if (un->un_reset_throttle_timeid != NULL) {
8656 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8657 		un->un_reset_throttle_timeid = NULL;
8658 		mutex_exit(SD_MUTEX(un));
8659 		(void) untimeout(temp_id);
8660 		mutex_enter(SD_MUTEX(un));
8661 	}
8662 
8663 	if (un->un_startstop_timeid != NULL) {
8664 		timeout_id_t temp_id = un->un_startstop_timeid;
8665 		un->un_startstop_timeid = NULL;
8666 		mutex_exit(SD_MUTEX(un));
8667 		(void) untimeout(temp_id);
8668 		mutex_enter(SD_MUTEX(un));
8669 	}
8670 
8671 	if (un->un_dcvb_timeid != NULL) {
8672 		timeout_id_t temp_id = un->un_dcvb_timeid;
8673 		un->un_dcvb_timeid = NULL;
8674 		mutex_exit(SD_MUTEX(un));
8675 		(void) untimeout(temp_id);
8676 	} else {
8677 		mutex_exit(SD_MUTEX(un));
8678 	}
8679 
8680 	/* Remove any pending reservation reclaim requests for this device */
8681 	sd_rmv_resv_reclaim_req(dev);
8682 
8683 	mutex_enter(SD_MUTEX(un));
8684 
8685 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
8686 	if (un->un_direct_priority_timeid != NULL) {
8687 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8688 		un->un_direct_priority_timeid = NULL;
8689 		mutex_exit(SD_MUTEX(un));
8690 		(void) untimeout(temp_id);
8691 		mutex_enter(SD_MUTEX(un));
8692 	}
8693 
8694 	/* Cancel any active multi-host disk watch thread requests */
8695 	if (un->un_mhd_token != NULL) {
8696 		mutex_exit(SD_MUTEX(un));
8697 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
8698 		if (scsi_watch_request_terminate(un->un_mhd_token,
8699 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8700 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8701 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
8702 			/*
8703 			 * Note: We are returning here after having removed
8704 			 * some driver timeouts above. This is consistent with
8705 			 * the legacy implementation but perhaps the watch
8706 			 * terminate call should be made with the wait flag set.
8707 			 */
8708 			goto err_stillbusy;
8709 		}
8710 		mutex_enter(SD_MUTEX(un));
8711 		un->un_mhd_token = NULL;
8712 	}
8713 
8714 	if (un->un_swr_token != NULL) {
8715 		mutex_exit(SD_MUTEX(un));
8716 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
8717 		if (scsi_watch_request_terminate(un->un_swr_token,
8718 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8719 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8720 			    "sd_dr_detach: Cannot cancel swr watch request\n");
8721 			/*
8722 			 * Note: We are returning here after having removed
8723 			 * some driver timeouts above. This is consistent with
8724 			 * the legacy implementation but perhaps the watch
8725 			 * terminate call should be made with the wait flag set.
8726 			 */
8727 			goto err_stillbusy;
8728 		}
8729 		mutex_enter(SD_MUTEX(un));
8730 		un->un_swr_token = NULL;
8731 	}
8732 
8733 	mutex_exit(SD_MUTEX(un));
8734 
8735 	/*
8736 	 * Clear any scsi_reset_notifies. We clear the reset notifies
8737 	 * if we have not registered one.
8738 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
8739 	 */
8740 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
8741 	    sd_mhd_reset_notify_cb, (caddr_t)un);
8742 
8743 
8744 
8745 #if defined(__i386) || defined(__amd64)
8746 	/*
8747 	 * Gratuitous bus resets sometimes cause an otherwise
8748 	 * okay ATA/ATAPI bus to hang. This is due the lack of
8749 	 * a clear spec of how resets should be implemented by ATA
8750 	 * disk drives.
8751 	 */
8752 #elif !defined(__fibre)		/* "#else if" does NOT work! */
8753 	/*
8754 	 * Reset target/bus.
8755 	 *
8756 	 * Note: This is a legacy workaround for Elite III dual-port drives that
8757 	 * will not come online after an aborted detach and subsequent re-attach
8758 	 * It should be removed when the Elite III FW is fixed, or the drives
8759 	 * are no longer supported.
8760 	 */
8761 	if (un->un_f_cfg_is_atapi == FALSE) {
8762 		reset_retval = 0;
8763 
8764 		/* If the device is in low power mode don't reset it */
8765 
8766 		mutex_enter(&un->un_pm_mutex);
8767 		if (!SD_DEVICE_IS_IN_LOW_POWER(un)) {
8768 			/*
8769 			 * First try a LUN reset if we can, then move on to a
8770 			 * target reset if needed; swat the bus as a last
8771 			 * resort.
8772 			 */
8773 			mutex_exit(&un->un_pm_mutex);
8774 			if (un->un_f_allow_bus_device_reset == TRUE) {
8775 				if (un->un_f_lun_reset_enabled == TRUE) {
8776 					reset_retval =
8777 					    scsi_reset(SD_ADDRESS(un),
8778 					    RESET_LUN);
8779 				}
8780 				if (reset_retval == 0) {
8781 					reset_retval =
8782 					    scsi_reset(SD_ADDRESS(un),
8783 					    RESET_TARGET);
8784 				}
8785 			}
8786 			if (reset_retval == 0) {
8787 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
8788 			}
8789 		} else {
8790 			mutex_exit(&un->un_pm_mutex);
8791 		}
8792 	}
8793 #endif
8794 
8795 	/*
8796 	 * protect the timeout pointers from getting nulled by
8797 	 * their callback functions during the cancellation process.
8798 	 * In such a scenario untimeout can be invoked with a null value.
8799 	 */
8800 	_NOTE(NO_COMPETING_THREADS_NOW);
8801 
8802 	mutex_enter(&un->un_pm_mutex);
8803 	if (un->un_pm_idle_timeid != NULL) {
8804 		timeout_id_t temp_id = un->un_pm_idle_timeid;
8805 		un->un_pm_idle_timeid = NULL;
8806 		mutex_exit(&un->un_pm_mutex);
8807 
8808 		/*
8809 		 * Timeout is active; cancel it.
8810 		 * Note that it'll never be active on a device
8811 		 * that does not support PM therefore we don't
8812 		 * have to check before calling pm_idle_component.
8813 		 */
8814 		(void) untimeout(temp_id);
8815 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8816 		mutex_enter(&un->un_pm_mutex);
8817 	}
8818 
8819 	/*
8820 	 * Check whether there is already a timeout scheduled for power
8821 	 * management. If yes then don't lower the power here, that's.
8822 	 * the timeout handler's job.
8823 	 */
8824 	if (un->un_pm_timeid != NULL) {
8825 		timeout_id_t temp_id = un->un_pm_timeid;
8826 		un->un_pm_timeid = NULL;
8827 		mutex_exit(&un->un_pm_mutex);
8828 		/*
8829 		 * Timeout is active; cancel it.
8830 		 * Note that it'll never be active on a device
8831 		 * that does not support PM therefore we don't
8832 		 * have to check before calling pm_idle_component.
8833 		 */
8834 		(void) untimeout(temp_id);
8835 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8836 
8837 	} else {
8838 		mutex_exit(&un->un_pm_mutex);
8839 		if ((un->un_f_pm_is_enabled == TRUE) &&
8840 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
8841 		    DDI_SUCCESS)) {
8842 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8843 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
8844 			/*
8845 			 * Fix for bug: 4297749, item # 13
8846 			 * The above test now includes a check to see if PM is
8847 			 * supported by this device before call
8848 			 * pm_lower_power().
8849 			 * Note, the following is not dead code. The call to
8850 			 * pm_lower_power above will generate a call back into
8851 			 * our sdpower routine which might result in a timeout
8852 			 * handler getting activated. Therefore the following
8853 			 * code is valid and necessary.
8854 			 */
8855 			mutex_enter(&un->un_pm_mutex);
8856 			if (un->un_pm_timeid != NULL) {
8857 				timeout_id_t temp_id = un->un_pm_timeid;
8858 				un->un_pm_timeid = NULL;
8859 				mutex_exit(&un->un_pm_mutex);
8860 				(void) untimeout(temp_id);
8861 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8862 			} else {
8863 				mutex_exit(&un->un_pm_mutex);
8864 			}
8865 		}
8866 	}
8867 
8868 	/*
8869 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8870 	 * Relocated here from above to be after the call to
8871 	 * pm_lower_power, which was getting errors.
8872 	 */
8873 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8874 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8875 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8876 
8877 	if (un->un_f_is_fibre == FALSE) {
8878 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8879 	}
8880 
8881 	/*
8882 	 * Remove any event callbacks, fibre only
8883 	 */
8884 	if (un->un_f_is_fibre == TRUE) {
8885 		if ((un->un_insert_event != NULL) &&
8886 			(ddi_remove_event_handler(un->un_insert_cb_id) !=
8887 				DDI_SUCCESS)) {
8888 			/*
8889 			 * Note: We are returning here after having done
8890 			 * substantial cleanup above. This is consistent
8891 			 * with the legacy implementation but this may not
8892 			 * be the right thing to do.
8893 			 */
8894 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8895 				"sd_dr_detach: Cannot cancel insert event\n");
8896 			goto err_remove_event;
8897 		}
8898 		un->un_insert_event = NULL;
8899 
8900 		if ((un->un_remove_event != NULL) &&
8901 			(ddi_remove_event_handler(un->un_remove_cb_id) !=
8902 				DDI_SUCCESS)) {
8903 			/*
8904 			 * Note: We are returning here after having done
8905 			 * substantial cleanup above. This is consistent
8906 			 * with the legacy implementation but this may not
8907 			 * be the right thing to do.
8908 			 */
8909 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8910 				"sd_dr_detach: Cannot cancel remove event\n");
8911 			goto err_remove_event;
8912 		}
8913 		un->un_remove_event = NULL;
8914 	}
8915 
8916 	/* Do not free the softstate if the callback routine is active */
8917 	sd_sync_with_callback(un);
8918 
8919 	/*
8920 	 * Hold the detach mutex here, to make sure that no other threads ever
8921 	 * can access a (partially) freed soft state structure.
8922 	 */
8923 	mutex_enter(&sd_detach_mutex);
8924 
8925 	/*
8926 	 * Clean up the soft state struct.
8927 	 * Cleanup is done in reverse order of allocs/inits.
8928 	 * At this point there should be no competing threads anymore.
8929 	 */
8930 
8931 	/* Unregister and free device id. */
8932 	ddi_devid_unregister(devi);
8933 	if (un->un_devid) {
8934 		ddi_devid_free(un->un_devid);
8935 		un->un_devid = NULL;
8936 	}
8937 
8938 	/*
8939 	 * Destroy wmap cache if it exists.
8940 	 */
8941 	if (un->un_wm_cache != NULL) {
8942 		kmem_cache_destroy(un->un_wm_cache);
8943 		un->un_wm_cache = NULL;
8944 	}
8945 
8946 	/* Remove minor nodes */
8947 	ddi_remove_minor_node(devi, NULL);
8948 
8949 	/*
8950 	 * kstat cleanup is done in detach for all device types (4363169).
8951 	 * We do not want to fail detach if the device kstats are not deleted
8952 	 * since there is a confusion about the devo_refcnt for the device.
8953 	 * We just delete the kstats and let detach complete successfully.
8954 	 */
8955 	if (un->un_stats != NULL) {
8956 		kstat_delete(un->un_stats);
8957 		un->un_stats = NULL;
8958 	}
8959 	if (un->un_errstats != NULL) {
8960 		kstat_delete(un->un_errstats);
8961 		un->un_errstats = NULL;
8962 	}
8963 
8964 	/* Remove partition stats (not created for removables) */
8965 	if (!ISREMOVABLE(un)) {
8966 		for (i = 0; i < NSDMAP; i++) {
8967 			if (un->un_pstats[i] != NULL) {
8968 				kstat_delete(un->un_pstats[i]);
8969 				un->un_pstats[i] = NULL;
8970 			}
8971 		}
8972 	}
8973 
8974 	/* Remove xbuf registration */
8975 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8976 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8977 
8978 	/* Remove driver properties */
8979 	ddi_prop_remove_all(devi);
8980 
8981 	mutex_destroy(&un->un_pm_mutex);
8982 	cv_destroy(&un->un_pm_busy_cv);
8983 
8984 	/* Open/close semaphore */
8985 	sema_destroy(&un->un_semoclose);
8986 
8987 	/* Removable media condvar. */
8988 	cv_destroy(&un->un_state_cv);
8989 
8990 	/* Suspend/resume condvar. */
8991 	cv_destroy(&un->un_suspend_cv);
8992 	cv_destroy(&un->un_disk_busy_cv);
8993 
8994 	sd_free_rqs(un);
8995 
8996 	/* Free up soft state */
8997 	devp->sd_private = NULL;
8998 	bzero(un, sizeof (struct sd_lun));
8999 	ddi_soft_state_free(sd_state, instance);
9000 
9001 	mutex_exit(&sd_detach_mutex);
9002 
9003 	/* This frees up the INQUIRY data associated with the device. */
9004 	scsi_unprobe(devp);
9005 
9006 	return (DDI_SUCCESS);
9007 
9008 err_notclosed:
9009 	mutex_exit(SD_MUTEX(un));
9010 
9011 err_stillbusy:
9012 	_NOTE(NO_COMPETING_THREADS_NOW);
9013 
9014 err_remove_event:
9015 	mutex_enter(&sd_detach_mutex);
9016 	un->un_detach_count--;
9017 	mutex_exit(&sd_detach_mutex);
9018 
9019 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
9020 	return (DDI_FAILURE);
9021 }
9022 
9023 
9024 /*
9025  * Driver minor node structure and data table
9026  */
9027 struct driver_minor_data {
9028 	char	*name;
9029 	minor_t	minor;
9030 	int	type;
9031 };
9032 
9033 static struct driver_minor_data sd_minor_data[] = {
9034 	{"a", 0, S_IFBLK},
9035 	{"b", 1, S_IFBLK},
9036 	{"c", 2, S_IFBLK},
9037 	{"d", 3, S_IFBLK},
9038 	{"e", 4, S_IFBLK},
9039 	{"f", 5, S_IFBLK},
9040 	{"g", 6, S_IFBLK},
9041 	{"h", 7, S_IFBLK},
9042 #if defined(_SUNOS_VTOC_16)
9043 	{"i", 8, S_IFBLK},
9044 	{"j", 9, S_IFBLK},
9045 	{"k", 10, S_IFBLK},
9046 	{"l", 11, S_IFBLK},
9047 	{"m", 12, S_IFBLK},
9048 	{"n", 13, S_IFBLK},
9049 	{"o", 14, S_IFBLK},
9050 	{"p", 15, S_IFBLK},
9051 #endif			/* defined(_SUNOS_VTOC_16) */
9052 #if defined(_FIRMWARE_NEEDS_FDISK)
9053 	{"q", 16, S_IFBLK},
9054 	{"r", 17, S_IFBLK},
9055 	{"s", 18, S_IFBLK},
9056 	{"t", 19, S_IFBLK},
9057 	{"u", 20, S_IFBLK},
9058 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9059 	{"a,raw", 0, S_IFCHR},
9060 	{"b,raw", 1, S_IFCHR},
9061 	{"c,raw", 2, S_IFCHR},
9062 	{"d,raw", 3, S_IFCHR},
9063 	{"e,raw", 4, S_IFCHR},
9064 	{"f,raw", 5, S_IFCHR},
9065 	{"g,raw", 6, S_IFCHR},
9066 	{"h,raw", 7, S_IFCHR},
9067 #if defined(_SUNOS_VTOC_16)
9068 	{"i,raw", 8, S_IFCHR},
9069 	{"j,raw", 9, S_IFCHR},
9070 	{"k,raw", 10, S_IFCHR},
9071 	{"l,raw", 11, S_IFCHR},
9072 	{"m,raw", 12, S_IFCHR},
9073 	{"n,raw", 13, S_IFCHR},
9074 	{"o,raw", 14, S_IFCHR},
9075 	{"p,raw", 15, S_IFCHR},
9076 #endif			/* defined(_SUNOS_VTOC_16) */
9077 #if defined(_FIRMWARE_NEEDS_FDISK)
9078 	{"q,raw", 16, S_IFCHR},
9079 	{"r,raw", 17, S_IFCHR},
9080 	{"s,raw", 18, S_IFCHR},
9081 	{"t,raw", 19, S_IFCHR},
9082 	{"u,raw", 20, S_IFCHR},
9083 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9084 	{0}
9085 };
9086 
9087 static struct driver_minor_data sd_minor_data_efi[] = {
9088 	{"a", 0, S_IFBLK},
9089 	{"b", 1, S_IFBLK},
9090 	{"c", 2, S_IFBLK},
9091 	{"d", 3, S_IFBLK},
9092 	{"e", 4, S_IFBLK},
9093 	{"f", 5, S_IFBLK},
9094 	{"g", 6, S_IFBLK},
9095 	{"wd", 7, S_IFBLK},
9096 #if defined(_FIRMWARE_NEEDS_FDISK)
9097 	{"q", 16, S_IFBLK},
9098 	{"r", 17, S_IFBLK},
9099 	{"s", 18, S_IFBLK},
9100 	{"t", 19, S_IFBLK},
9101 	{"u", 20, S_IFBLK},
9102 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9103 	{"a,raw", 0, S_IFCHR},
9104 	{"b,raw", 1, S_IFCHR},
9105 	{"c,raw", 2, S_IFCHR},
9106 	{"d,raw", 3, S_IFCHR},
9107 	{"e,raw", 4, S_IFCHR},
9108 	{"f,raw", 5, S_IFCHR},
9109 	{"g,raw", 6, S_IFCHR},
9110 	{"wd,raw", 7, S_IFCHR},
9111 #if defined(_FIRMWARE_NEEDS_FDISK)
9112 	{"q,raw", 16, S_IFCHR},
9113 	{"r,raw", 17, S_IFCHR},
9114 	{"s,raw", 18, S_IFCHR},
9115 	{"t,raw", 19, S_IFCHR},
9116 	{"u,raw", 20, S_IFCHR},
9117 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9118 	{0}
9119 };
9120 
9121 
9122 /*
9123  *    Function: sd_create_minor_nodes
9124  *
9125  * Description: Create the minor device nodes for the instance.
9126  *
9127  *   Arguments: un - driver soft state (unit) structure
9128  *		devi - pointer to device info structure
9129  *
9130  * Return Code: DDI_SUCCESS
9131  *		DDI_FAILURE
9132  *
9133  *     Context: Kernel thread context
9134  */
9135 
9136 static int
9137 sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi)
9138 {
9139 	struct driver_minor_data	*dmdp;
9140 	struct scsi_device		*devp;
9141 	int				instance;
9142 	char				name[48];
9143 
9144 	ASSERT(un != NULL);
9145 	devp = ddi_get_driver_private(devi);
9146 	instance = ddi_get_instance(devp->sd_dev);
9147 
9148 	/*
9149 	 * Create all the minor nodes for this target.
9150 	 */
9151 	if (un->un_blockcount > DK_MAX_BLOCKS)
9152 		dmdp = sd_minor_data_efi;
9153 	else
9154 		dmdp = sd_minor_data;
9155 	while (dmdp->name != NULL) {
9156 
9157 		(void) sprintf(name, "%s", dmdp->name);
9158 
9159 		if (ddi_create_minor_node(devi, name, dmdp->type,
9160 		    (instance << SDUNIT_SHIFT) | dmdp->minor,
9161 		    un->un_node_type, NULL) == DDI_FAILURE) {
9162 			/*
9163 			 * Clean up any nodes that may have been created, in
9164 			 * case this fails in the middle of the loop.
9165 			 */
9166 			ddi_remove_minor_node(devi, NULL);
9167 			return (DDI_FAILURE);
9168 		}
9169 		dmdp++;
9170 	}
9171 
9172 	return (DDI_SUCCESS);
9173 }
9174 
9175 
9176 /*
9177  *    Function: sd_create_errstats
9178  *
9179  * Description: This routine instantiates the device error stats.
9180  *
9181  *		Note: During attach the stats are instantiated first so they are
9182  *		available for attach-time routines that utilize the driver
9183  *		iopath to send commands to the device. The stats are initialized
9184  *		separately so data obtained during some attach-time routines is
9185  *		available. (4362483)
9186  *
9187  *   Arguments: un - driver soft state (unit) structure
9188  *		instance - driver instance
9189  *
9190  *     Context: Kernel thread context
9191  */
9192 
9193 static void
9194 sd_create_errstats(struct sd_lun *un, int instance)
9195 {
9196 	struct	sd_errstats	*stp;
9197 	char	kstatmodule_err[KSTAT_STRLEN];
9198 	char	kstatname[KSTAT_STRLEN];
9199 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
9200 
9201 	ASSERT(un != NULL);
9202 
9203 	if (un->un_errstats != NULL) {
9204 		return;
9205 	}
9206 
9207 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
9208 	    "%serr", sd_label);
9209 	(void) snprintf(kstatname, sizeof (kstatname),
9210 	    "%s%d,err", sd_label, instance);
9211 
9212 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
9213 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
9214 
9215 	if (un->un_errstats == NULL) {
9216 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9217 		    "sd_create_errstats: Failed kstat_create\n");
9218 		return;
9219 	}
9220 
9221 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9222 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
9223 	    KSTAT_DATA_UINT32);
9224 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
9225 	    KSTAT_DATA_UINT32);
9226 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
9227 	    KSTAT_DATA_UINT32);
9228 	kstat_named_init(&stp->sd_vid,		"Vendor",
9229 	    KSTAT_DATA_CHAR);
9230 	kstat_named_init(&stp->sd_pid,		"Product",
9231 	    KSTAT_DATA_CHAR);
9232 	kstat_named_init(&stp->sd_revision,	"Revision",
9233 	    KSTAT_DATA_CHAR);
9234 	kstat_named_init(&stp->sd_serial,	"Serial No",
9235 	    KSTAT_DATA_CHAR);
9236 	kstat_named_init(&stp->sd_capacity,	"Size",
9237 	    KSTAT_DATA_ULONGLONG);
9238 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
9239 	    KSTAT_DATA_UINT32);
9240 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
9241 	    KSTAT_DATA_UINT32);
9242 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
9243 	    KSTAT_DATA_UINT32);
9244 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
9245 	    KSTAT_DATA_UINT32);
9246 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
9247 	    KSTAT_DATA_UINT32);
9248 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
9249 	    KSTAT_DATA_UINT32);
9250 
9251 	un->un_errstats->ks_private = un;
9252 	un->un_errstats->ks_update  = nulldev;
9253 
9254 	kstat_install(un->un_errstats);
9255 }
9256 
9257 
9258 /*
9259  *    Function: sd_set_errstats
9260  *
9261  * Description: This routine sets the value of the vendor id, product id,
9262  *		revision, serial number, and capacity device error stats.
9263  *
9264  *		Note: During attach the stats are instantiated first so they are
9265  *		available for attach-time routines that utilize the driver
9266  *		iopath to send commands to the device. The stats are initialized
9267  *		separately so data obtained during some attach-time routines is
9268  *		available. (4362483)
9269  *
9270  *   Arguments: un - driver soft state (unit) structure
9271  *
9272  *     Context: Kernel thread context
9273  */
9274 
9275 static void
9276 sd_set_errstats(struct sd_lun *un)
9277 {
9278 	struct	sd_errstats	*stp;
9279 
9280 	ASSERT(un != NULL);
9281 	ASSERT(un->un_errstats != NULL);
9282 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9283 	ASSERT(stp != NULL);
9284 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
9285 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
9286 	(void) strncpy(stp->sd_revision.value.c,
9287 	    un->un_sd->sd_inq->inq_revision, 4);
9288 
9289 	/*
9290 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
9291 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
9292 	 * (4376302))
9293 	 */
9294 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
9295 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9296 		    sizeof (SD_INQUIRY(un)->inq_serial));
9297 	}
9298 
9299 	if (un->un_f_blockcount_is_valid != TRUE) {
9300 		/*
9301 		 * Set capacity error stat to 0 for no media. This ensures
9302 		 * a valid capacity is displayed in response to 'iostat -E'
9303 		 * when no media is present in the device.
9304 		 */
9305 		stp->sd_capacity.value.ui64 = 0;
9306 	} else {
9307 		/*
9308 		 * Multiply un_blockcount by un->un_sys_blocksize to get
9309 		 * capacity.
9310 		 *
9311 		 * Note: for non-512 blocksize devices "un_blockcount" has been
9312 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
9313 		 * (un_tgt_blocksize / un->un_sys_blocksize).
9314 		 */
9315 		stp->sd_capacity.value.ui64 = (uint64_t)
9316 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
9317 	}
9318 }
9319 
9320 
9321 /*
9322  *    Function: sd_set_pstats
9323  *
9324  * Description: This routine instantiates and initializes the partition
9325  *              stats for each partition with more than zero blocks.
9326  *		(4363169)
9327  *
9328  *   Arguments: un - driver soft state (unit) structure
9329  *
9330  *     Context: Kernel thread context
9331  */
9332 
9333 static void
9334 sd_set_pstats(struct sd_lun *un)
9335 {
9336 	char	kstatname[KSTAT_STRLEN];
9337 	int	instance;
9338 	int	i;
9339 
9340 	ASSERT(un != NULL);
9341 
9342 	instance = ddi_get_instance(SD_DEVINFO(un));
9343 
9344 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
9345 	for (i = 0; i < NSDMAP; i++) {
9346 		if ((un->un_pstats[i] == NULL) &&
9347 		    (un->un_map[i].dkl_nblk != 0)) {
9348 			(void) snprintf(kstatname, sizeof (kstatname),
9349 			    "%s%d,%s", sd_label, instance,
9350 			    sd_minor_data[i].name);
9351 			un->un_pstats[i] = kstat_create(sd_label,
9352 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
9353 			    1, KSTAT_FLAG_PERSISTENT);
9354 			if (un->un_pstats[i] != NULL) {
9355 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
9356 				kstat_install(un->un_pstats[i]);
9357 			}
9358 		}
9359 	}
9360 }
9361 
9362 
9363 #if (defined(__fibre))
9364 /*
9365  *    Function: sd_init_event_callbacks
9366  *
9367  * Description: This routine initializes the insertion and removal event
9368  *		callbacks. (fibre only)
9369  *
9370  *   Arguments: un - driver soft state (unit) structure
9371  *
9372  *     Context: Kernel thread context
9373  */
9374 
9375 static void
9376 sd_init_event_callbacks(struct sd_lun *un)
9377 {
9378 	ASSERT(un != NULL);
9379 
9380 	if ((un->un_insert_event == NULL) &&
9381 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
9382 	    &un->un_insert_event) == DDI_SUCCESS)) {
9383 		/*
9384 		 * Add the callback for an insertion event
9385 		 */
9386 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9387 		    un->un_insert_event, sd_event_callback, (void *)un,
9388 		    &(un->un_insert_cb_id));
9389 	}
9390 
9391 	if ((un->un_remove_event == NULL) &&
9392 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
9393 	    &un->un_remove_event) == DDI_SUCCESS)) {
9394 		/*
9395 		 * Add the callback for a removal event
9396 		 */
9397 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9398 		    un->un_remove_event, sd_event_callback, (void *)un,
9399 		    &(un->un_remove_cb_id));
9400 	}
9401 }
9402 
9403 
9404 /*
9405  *    Function: sd_event_callback
9406  *
9407  * Description: This routine handles insert/remove events (photon). The
9408  *		state is changed to OFFLINE which can be used to supress
9409  *		error msgs. (fibre only)
9410  *
9411  *   Arguments: un - driver soft state (unit) structure
9412  *
9413  *     Context: Callout thread context
9414  */
9415 /* ARGSUSED */
9416 static void
9417 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
9418     void *bus_impldata)
9419 {
9420 	struct sd_lun *un = (struct sd_lun *)arg;
9421 
9422 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
9423 	if (event == un->un_insert_event) {
9424 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
9425 		mutex_enter(SD_MUTEX(un));
9426 		if (un->un_state == SD_STATE_OFFLINE) {
9427 			if (un->un_last_state != SD_STATE_SUSPENDED) {
9428 				un->un_state = un->un_last_state;
9429 			} else {
9430 				/*
9431 				 * We have gone through SUSPEND/RESUME while
9432 				 * we were offline. Restore the last state
9433 				 */
9434 				un->un_state = un->un_save_state;
9435 			}
9436 		}
9437 		mutex_exit(SD_MUTEX(un));
9438 
9439 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
9440 	} else if (event == un->un_remove_event) {
9441 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
9442 		mutex_enter(SD_MUTEX(un));
9443 		/*
9444 		 * We need to handle an event callback that occurs during
9445 		 * the suspend operation, since we don't prevent it.
9446 		 */
9447 		if (un->un_state != SD_STATE_OFFLINE) {
9448 			if (un->un_state != SD_STATE_SUSPENDED) {
9449 				New_state(un, SD_STATE_OFFLINE);
9450 			} else {
9451 				un->un_last_state = SD_STATE_OFFLINE;
9452 			}
9453 		}
9454 		mutex_exit(SD_MUTEX(un));
9455 	} else {
9456 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
9457 		    "!Unknown event\n");
9458 	}
9459 
9460 }
9461 #endif
9462 
9463 
9464 /*
9465  *    Function: sd_disable_caching()
9466  *
9467  * Description: This routine is the driver entry point for disabling
9468  *		read and write caching by modifying the WCE (write cache
9469  *		enable) and RCD (read cache disable) bits of mode
9470  *		page 8 (MODEPAGE_CACHING).
9471  *
9472  *   Arguments: un - driver soft state (unit) structure
9473  *
9474  * Return Code: EIO
9475  *		code returned by sd_send_scsi_MODE_SENSE and
9476  *		sd_send_scsi_MODE_SELECT
9477  *
9478  *     Context: Kernel Thread
9479  */
9480 
9481 static int
9482 sd_disable_caching(struct sd_lun *un)
9483 {
9484 	struct mode_caching	*mode_caching_page;
9485 	uchar_t			*header;
9486 	size_t			buflen;
9487 	int			hdrlen;
9488 	int			bd_len;
9489 	int			rval = 0;
9490 
9491 	ASSERT(un != NULL);
9492 
9493 	/*
9494 	 * Do a test unit ready, otherwise a mode sense may not work if this
9495 	 * is the first command sent to the device after boot.
9496 	 */
9497 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
9498 
9499 	if (un->un_f_cfg_is_atapi == TRUE) {
9500 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9501 	} else {
9502 		hdrlen = MODE_HEADER_LENGTH;
9503 	}
9504 
9505 	/*
9506 	 * Allocate memory for the retrieved mode page and its headers.  Set
9507 	 * a pointer to the page itself.
9508 	 */
9509 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
9510 	header = kmem_zalloc(buflen, KM_SLEEP);
9511 
9512 	/* Get the information from the device. */
9513 	if (un->un_f_cfg_is_atapi == TRUE) {
9514 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
9515 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9516 	} else {
9517 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
9518 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9519 	}
9520 	if (rval != 0) {
9521 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9522 		    "sd_disable_caching: Mode Sense Failed\n");
9523 		kmem_free(header, buflen);
9524 		return (rval);
9525 	}
9526 
9527 	/*
9528 	 * Determine size of Block Descriptors in order to locate
9529 	 * the mode page data. ATAPI devices return 0, SCSI devices
9530 	 * should return MODE_BLK_DESC_LENGTH.
9531 	 */
9532 	if (un->un_f_cfg_is_atapi == TRUE) {
9533 		struct mode_header_grp2	*mhp;
9534 		mhp	= (struct mode_header_grp2 *)header;
9535 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9536 	} else {
9537 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9538 	}
9539 
9540 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9541 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9542 		    "sd_disable_caching: Mode Sense returned invalid "
9543 		    "block descriptor length\n");
9544 		kmem_free(header, buflen);
9545 		return (EIO);
9546 	}
9547 
9548 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9549 
9550 	/* Check the relevant bits on successful mode sense. */
9551 	if ((mode_caching_page->wce) || !(mode_caching_page->rcd)) {
9552 		/*
9553 		 * Read or write caching is enabled.  Disable both of them.
9554 		 */
9555 		mode_caching_page->wce = 0;
9556 		mode_caching_page->rcd = 1;
9557 
9558 		/* Clear reserved bits before mode select. */
9559 		mode_caching_page->mode_page.ps = 0;
9560 
9561 		/*
9562 		 * Clear out mode header for mode select.
9563 		 * The rest of the retrieved page will be reused.
9564 		 */
9565 		bzero(header, hdrlen);
9566 
9567 		/* Change the cache page to disable all caching. */
9568 		if (un->un_f_cfg_is_atapi == TRUE) {
9569 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header,
9570 			    buflen, SD_SAVE_PAGE, SD_PATH_DIRECT);
9571 		} else {
9572 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
9573 			    buflen, SD_SAVE_PAGE, SD_PATH_DIRECT);
9574 		}
9575 	}
9576 
9577 	kmem_free(header, buflen);
9578 	return (rval);
9579 }
9580 
9581 
9582 /*
9583  *    Function: sd_make_device
9584  *
9585  * Description: Utility routine to return the Solaris device number from
9586  *		the data in the device's dev_info structure.
9587  *
9588  * Return Code: The Solaris device number
9589  *
9590  *     Context: Any
9591  */
9592 
9593 static dev_t
9594 sd_make_device(dev_info_t *devi)
9595 {
9596 	return (makedevice(ddi_name_to_major(ddi_get_name(devi)),
9597 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
9598 }
9599 
9600 
9601 /*
9602  *    Function: sd_pm_entry
9603  *
9604  * Description: Called at the start of a new command to manage power
9605  *		and busy status of a device. This includes determining whether
9606  *		the current power state of the device is sufficient for
9607  *		performing the command or whether it must be changed.
9608  *		The PM framework is notified appropriately.
9609  *		Only with a return status of DDI_SUCCESS will the
9610  *		component be busy to the framework.
9611  *
9612  *		All callers of sd_pm_entry must check the return status
9613  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
9614  *		of DDI_FAILURE indicates the device failed to power up.
9615  *		In this case un_pm_count has been adjusted so the result
9616  *		on exit is still powered down, ie. count is less than 0.
9617  *		Calling sd_pm_exit with this count value hits an ASSERT.
9618  *
9619  * Return Code: DDI_SUCCESS or DDI_FAILURE
9620  *
9621  *     Context: Kernel thread context.
9622  */
9623 
9624 static int
9625 sd_pm_entry(struct sd_lun *un)
9626 {
9627 	int return_status = DDI_SUCCESS;
9628 
9629 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9630 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9631 
9632 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
9633 
9634 	if (un->un_f_pm_is_enabled == FALSE) {
9635 		SD_TRACE(SD_LOG_IO_PM, un,
9636 		    "sd_pm_entry: exiting, PM not enabled\n");
9637 		return (return_status);
9638 	}
9639 
9640 	/*
9641 	 * Just increment a counter if PM is enabled. On the transition from
9642 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
9643 	 * the count with each IO and mark the device as idle when the count
9644 	 * hits 0.
9645 	 *
9646 	 * If the count is less than 0 the device is powered down. If a powered
9647 	 * down device is successfully powered up then the count must be
9648 	 * incremented to reflect the power up. Note that it'll get incremented
9649 	 * a second time to become busy.
9650 	 *
9651 	 * Because the following has the potential to change the device state
9652 	 * and must release the un_pm_mutex to do so, only one thread can be
9653 	 * allowed through at a time.
9654 	 */
9655 
9656 	mutex_enter(&un->un_pm_mutex);
9657 	while (un->un_pm_busy == TRUE) {
9658 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
9659 	}
9660 	un->un_pm_busy = TRUE;
9661 
9662 	if (un->un_pm_count < 1) {
9663 
9664 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
9665 
9666 		/*
9667 		 * Indicate we are now busy so the framework won't attempt to
9668 		 * power down the device. This call will only fail if either
9669 		 * we passed a bad component number or the device has no
9670 		 * components. Neither of these should ever happen.
9671 		 */
9672 		mutex_exit(&un->un_pm_mutex);
9673 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
9674 		ASSERT(return_status == DDI_SUCCESS);
9675 
9676 		mutex_enter(&un->un_pm_mutex);
9677 
9678 		if (un->un_pm_count < 0) {
9679 			mutex_exit(&un->un_pm_mutex);
9680 
9681 			SD_TRACE(SD_LOG_IO_PM, un,
9682 			    "sd_pm_entry: power up component\n");
9683 
9684 			/*
9685 			 * pm_raise_power will cause sdpower to be called
9686 			 * which brings the device power level to the
9687 			 * desired state, ON in this case. If successful,
9688 			 * un_pm_count and un_power_level will be updated
9689 			 * appropriately.
9690 			 */
9691 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
9692 			    SD_SPINDLE_ON);
9693 
9694 			mutex_enter(&un->un_pm_mutex);
9695 
9696 			if (return_status != DDI_SUCCESS) {
9697 				/*
9698 				 * Power up failed.
9699 				 * Idle the device and adjust the count
9700 				 * so the result on exit is that we're
9701 				 * still powered down, ie. count is less than 0.
9702 				 */
9703 				SD_TRACE(SD_LOG_IO_PM, un,
9704 				    "sd_pm_entry: power up failed,"
9705 				    " idle the component\n");
9706 
9707 				(void) pm_idle_component(SD_DEVINFO(un), 0);
9708 				un->un_pm_count--;
9709 			} else {
9710 				/*
9711 				 * Device is powered up, verify the
9712 				 * count is non-negative.
9713 				 * This is debug only.
9714 				 */
9715 				ASSERT(un->un_pm_count == 0);
9716 			}
9717 		}
9718 
9719 		if (return_status == DDI_SUCCESS) {
9720 			/*
9721 			 * For performance, now that the device has been tagged
9722 			 * as busy, and it's known to be powered up, update the
9723 			 * chain types to use jump tables that do not include
9724 			 * pm. This significantly lowers the overhead and
9725 			 * therefore improves performance.
9726 			 */
9727 
9728 			mutex_exit(&un->un_pm_mutex);
9729 			mutex_enter(SD_MUTEX(un));
9730 			SD_TRACE(SD_LOG_IO_PM, un,
9731 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
9732 			    un->un_uscsi_chain_type);
9733 
9734 			if (ISREMOVABLE(un)) {
9735 				un->un_buf_chain_type =
9736 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
9737 			} else {
9738 				un->un_buf_chain_type =
9739 				    SD_CHAIN_INFO_DISK_NO_PM;
9740 			}
9741 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
9742 
9743 			SD_TRACE(SD_LOG_IO_PM, un,
9744 			    "             changed  uscsi_chain_type to   %d\n",
9745 			    un->un_uscsi_chain_type);
9746 			mutex_exit(SD_MUTEX(un));
9747 			mutex_enter(&un->un_pm_mutex);
9748 
9749 			if (un->un_pm_idle_timeid == NULL) {
9750 				/* 300 ms. */
9751 				un->un_pm_idle_timeid =
9752 				    timeout(sd_pm_idletimeout_handler, un,
9753 				    (drv_usectohz((clock_t)300000)));
9754 				/*
9755 				 * Include an extra call to busy which keeps the
9756 				 * device busy with-respect-to the PM layer
9757 				 * until the timer fires, at which time it'll
9758 				 * get the extra idle call.
9759 				 */
9760 				(void) pm_busy_component(SD_DEVINFO(un), 0);
9761 			}
9762 		}
9763 	}
9764 	un->un_pm_busy = FALSE;
9765 	/* Next... */
9766 	cv_signal(&un->un_pm_busy_cv);
9767 
9768 	un->un_pm_count++;
9769 
9770 	SD_TRACE(SD_LOG_IO_PM, un,
9771 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
9772 
9773 	mutex_exit(&un->un_pm_mutex);
9774 
9775 	return (return_status);
9776 }
9777 
9778 
9779 /*
9780  *    Function: sd_pm_exit
9781  *
9782  * Description: Called at the completion of a command to manage busy
9783  *		status for the device. If the device becomes idle the
9784  *		PM framework is notified.
9785  *
9786  *     Context: Kernel thread context
9787  */
9788 
9789 static void
9790 sd_pm_exit(struct sd_lun *un)
9791 {
9792 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9793 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9794 
9795 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
9796 
9797 	/*
9798 	 * After attach the following flag is only read, so don't
9799 	 * take the penalty of acquiring a mutex for it.
9800 	 */
9801 	if (un->un_f_pm_is_enabled == TRUE) {
9802 
9803 		mutex_enter(&un->un_pm_mutex);
9804 		un->un_pm_count--;
9805 
9806 		SD_TRACE(SD_LOG_IO_PM, un,
9807 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
9808 
9809 		ASSERT(un->un_pm_count >= 0);
9810 		if (un->un_pm_count == 0) {
9811 			mutex_exit(&un->un_pm_mutex);
9812 
9813 			SD_TRACE(SD_LOG_IO_PM, un,
9814 			    "sd_pm_exit: idle component\n");
9815 
9816 			(void) pm_idle_component(SD_DEVINFO(un), 0);
9817 
9818 		} else {
9819 			mutex_exit(&un->un_pm_mutex);
9820 		}
9821 	}
9822 
9823 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
9824 }
9825 
9826 
9827 /*
9828  *    Function: sdopen
9829  *
9830  * Description: Driver's open(9e) entry point function.
9831  *
9832  *   Arguments: dev_i   - pointer to device number
9833  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
9834  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9835  *		cred_p  - user credential pointer
9836  *
9837  * Return Code: EINVAL
9838  *		ENXIO
9839  *		EIO
9840  *		EROFS
9841  *		EBUSY
9842  *
9843  *     Context: Kernel thread context
9844  */
9845 /* ARGSUSED */
9846 static int
9847 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
9848 {
9849 	struct sd_lun	*un;
9850 	int		nodelay;
9851 	int		part;
9852 	int		partmask;
9853 	int		instance;
9854 	dev_t		dev;
9855 	int		rval = EIO;
9856 
9857 	/* Validate the open type */
9858 	if (otyp >= OTYPCNT) {
9859 		return (EINVAL);
9860 	}
9861 
9862 	dev = *dev_p;
9863 	instance = SDUNIT(dev);
9864 	mutex_enter(&sd_detach_mutex);
9865 
9866 	/*
9867 	 * Fail the open if there is no softstate for the instance, or
9868 	 * if another thread somewhere is trying to detach the instance.
9869 	 */
9870 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
9871 	    (un->un_detach_count != 0)) {
9872 		mutex_exit(&sd_detach_mutex);
9873 		/*
9874 		 * The probe cache only needs to be cleared when open (9e) fails
9875 		 * with ENXIO (4238046).
9876 		 */
9877 		/*
9878 		 * un-conditionally clearing probe cache is ok with
9879 		 * separate sd/ssd binaries
9880 		 * x86 platform can be an issue with both parallel
9881 		 * and fibre in 1 binary
9882 		 */
9883 		sd_scsi_clear_probe_cache();
9884 		return (ENXIO);
9885 	}
9886 
9887 	/*
9888 	 * The un_layer_count is to prevent another thread in specfs from
9889 	 * trying to detach the instance, which can happen when we are
9890 	 * called from a higher-layer driver instead of thru specfs.
9891 	 * This will not be needed when DDI provides a layered driver
9892 	 * interface that allows specfs to know that an instance is in
9893 	 * use by a layered driver & should not be detached.
9894 	 *
9895 	 * Note: the semantics for layered driver opens are exactly one
9896 	 * close for every open.
9897 	 */
9898 	if (otyp == OTYP_LYR) {
9899 		un->un_layer_count++;
9900 	}
9901 
9902 	/*
9903 	 * Keep a count of the current # of opens in progress. This is because
9904 	 * some layered drivers try to call us as a regular open. This can
9905 	 * cause problems that we cannot prevent, however by keeping this count
9906 	 * we can at least keep our open and detach routines from racing against
9907 	 * each other under such conditions.
9908 	 */
9909 	un->un_opens_in_progress++;
9910 	mutex_exit(&sd_detach_mutex);
9911 
9912 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
9913 	part	 = SDPART(dev);
9914 	partmask = 1 << part;
9915 
9916 	/*
9917 	 * We use a semaphore here in order to serialize
9918 	 * open and close requests on the device.
9919 	 */
9920 	sema_p(&un->un_semoclose);
9921 
9922 	mutex_enter(SD_MUTEX(un));
9923 
9924 	/*
9925 	 * All device accesses go thru sdstrategy() where we check
9926 	 * on suspend status but there could be a scsi_poll command,
9927 	 * which bypasses sdstrategy(), so we need to check pm
9928 	 * status.
9929 	 */
9930 
9931 	if (!nodelay) {
9932 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9933 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9934 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9935 		}
9936 
9937 		mutex_exit(SD_MUTEX(un));
9938 		if (sd_pm_entry(un) != DDI_SUCCESS) {
9939 			rval = EIO;
9940 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
9941 			    "sdopen: sd_pm_entry failed\n");
9942 			goto open_failed_with_pm;
9943 		}
9944 		mutex_enter(SD_MUTEX(un));
9945 	}
9946 
9947 	/* check for previous exclusive open */
9948 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
9949 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9950 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
9951 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
9952 
9953 	if (un->un_exclopen & (partmask)) {
9954 		goto excl_open_fail;
9955 	}
9956 
9957 	if (flag & FEXCL) {
9958 		int i;
9959 		if (un->un_ocmap.lyropen[part]) {
9960 			goto excl_open_fail;
9961 		}
9962 		for (i = 0; i < (OTYPCNT - 1); i++) {
9963 			if (un->un_ocmap.regopen[i] & (partmask)) {
9964 				goto excl_open_fail;
9965 			}
9966 		}
9967 	}
9968 
9969 	/*
9970 	 * Check the write permission if this is a removable media device,
9971 	 * NDELAY has not been set, and writable permission is requested.
9972 	 *
9973 	 * Note: If NDELAY was set and this is write-protected media the WRITE
9974 	 * attempt will fail with EIO as part of the I/O processing. This is a
9975 	 * more permissive implementation that allows the open to succeed and
9976 	 * WRITE attempts to fail when appropriate.
9977 	 */
9978 	if (ISREMOVABLE(un)) {
9979 		if ((flag & FWRITE) && (!nodelay)) {
9980 			mutex_exit(SD_MUTEX(un));
9981 			/*
9982 			 * Defer the check for write permission on writable
9983 			 * DVD drive till sdstrategy and will not fail open even
9984 			 * if FWRITE is set as the device can be writable
9985 			 * depending upon the media and the media can change
9986 			 * after the call to open().
9987 			 */
9988 			if (un->un_f_dvdram_writable_device == FALSE) {
9989 				if (ISCD(un) || sr_check_wp(dev)) {
9990 				rval = EROFS;
9991 				mutex_enter(SD_MUTEX(un));
9992 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9993 				    "write to cd or write protected media\n");
9994 				goto open_fail;
9995 				}
9996 			}
9997 			mutex_enter(SD_MUTEX(un));
9998 		}
9999 	}
10000 
10001 	/*
10002 	 * If opening in NDELAY/NONBLOCK mode, just return.
10003 	 * Check if disk is ready and has a valid geometry later.
10004 	 */
10005 	if (!nodelay) {
10006 		mutex_exit(SD_MUTEX(un));
10007 		rval = sd_ready_and_valid(un);
10008 		mutex_enter(SD_MUTEX(un));
10009 		/*
10010 		 * Fail if device is not ready or if the number of disk
10011 		 * blocks is zero or negative for non CD devices.
10012 		 */
10013 		if ((rval != SD_READY_VALID) ||
10014 		    (!ISCD(un) && un->un_map[part].dkl_nblk <= 0)) {
10015 			if (ISREMOVABLE(un)) {
10016 				rval = ENXIO;
10017 			} else {
10018 				rval = EIO;
10019 			}
10020 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10021 			    "device not ready or invalid disk block value\n");
10022 			goto open_fail;
10023 		}
10024 #if defined(__i386) || defined(__amd64)
10025 	} else {
10026 		uchar_t *cp;
10027 		/*
10028 		 * x86 requires special nodelay handling, so that p0 is
10029 		 * always defined and accessible.
10030 		 * Invalidate geometry only if device is not already open.
10031 		 */
10032 		cp = &un->un_ocmap.chkd[0];
10033 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10034 			if (*cp != (uchar_t)0) {
10035 			    break;
10036 			}
10037 			cp++;
10038 		}
10039 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10040 			un->un_f_geometry_is_valid = FALSE;
10041 		}
10042 
10043 #endif
10044 	}
10045 
10046 	if (otyp == OTYP_LYR) {
10047 		un->un_ocmap.lyropen[part]++;
10048 	} else {
10049 		un->un_ocmap.regopen[otyp] |= partmask;
10050 	}
10051 
10052 	/* Set up open and exclusive open flags */
10053 	if (flag & FEXCL) {
10054 		un->un_exclopen |= (partmask);
10055 	}
10056 
10057 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10058 	    "open of part %d type %d\n", part, otyp);
10059 
10060 	mutex_exit(SD_MUTEX(un));
10061 	if (!nodelay) {
10062 		sd_pm_exit(un);
10063 	}
10064 
10065 	sema_v(&un->un_semoclose);
10066 
10067 	mutex_enter(&sd_detach_mutex);
10068 	un->un_opens_in_progress--;
10069 	mutex_exit(&sd_detach_mutex);
10070 
10071 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
10072 	return (DDI_SUCCESS);
10073 
10074 excl_open_fail:
10075 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
10076 	rval = EBUSY;
10077 
10078 open_fail:
10079 	mutex_exit(SD_MUTEX(un));
10080 
10081 	/*
10082 	 * On a failed open we must exit the pm management.
10083 	 */
10084 	if (!nodelay) {
10085 		sd_pm_exit(un);
10086 	}
10087 open_failed_with_pm:
10088 	sema_v(&un->un_semoclose);
10089 
10090 	mutex_enter(&sd_detach_mutex);
10091 	un->un_opens_in_progress--;
10092 	if (otyp == OTYP_LYR) {
10093 		un->un_layer_count--;
10094 	}
10095 	mutex_exit(&sd_detach_mutex);
10096 
10097 	return (rval);
10098 }
10099 
10100 
10101 /*
10102  *    Function: sdclose
10103  *
10104  * Description: Driver's close(9e) entry point function.
10105  *
10106  *   Arguments: dev    - device number
10107  *		flag   - file status flag, informational only
10108  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10109  *		cred_p - user credential pointer
10110  *
10111  * Return Code: ENXIO
10112  *
10113  *     Context: Kernel thread context
10114  */
10115 /* ARGSUSED */
10116 static int
10117 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
10118 {
10119 	struct sd_lun	*un;
10120 	uchar_t		*cp;
10121 	int		part;
10122 	int		nodelay;
10123 	int		rval = 0;
10124 
10125 	/* Validate the open type */
10126 	if (otyp >= OTYPCNT) {
10127 		return (ENXIO);
10128 	}
10129 
10130 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10131 		return (ENXIO);
10132 	}
10133 
10134 	part = SDPART(dev);
10135 	nodelay = flag & (FNDELAY | FNONBLOCK);
10136 
10137 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10138 	    "sdclose: close of part %d type %d\n", part, otyp);
10139 
10140 	/*
10141 	 * We use a semaphore here in order to serialize
10142 	 * open and close requests on the device.
10143 	 */
10144 	sema_p(&un->un_semoclose);
10145 
10146 	mutex_enter(SD_MUTEX(un));
10147 
10148 	/* Don't proceed if power is being changed. */
10149 	while (un->un_state == SD_STATE_PM_CHANGING) {
10150 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10151 	}
10152 
10153 	if (un->un_exclopen & (1 << part)) {
10154 		un->un_exclopen &= ~(1 << part);
10155 	}
10156 
10157 	/* Update the open partition map */
10158 	if (otyp == OTYP_LYR) {
10159 		un->un_ocmap.lyropen[part] -= 1;
10160 	} else {
10161 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
10162 	}
10163 
10164 	cp = &un->un_ocmap.chkd[0];
10165 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10166 		if (*cp != NULL) {
10167 			break;
10168 		}
10169 		cp++;
10170 	}
10171 
10172 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10173 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
10174 
10175 		/*
10176 		 * We avoid persistance upon the last close, and set
10177 		 * the throttle back to the maximum.
10178 		 */
10179 		un->un_throttle = un->un_saved_throttle;
10180 
10181 		if (un->un_state == SD_STATE_OFFLINE) {
10182 			if (un->un_f_is_fibre == FALSE) {
10183 				scsi_log(SD_DEVINFO(un), sd_label,
10184 					CE_WARN, "offline\n");
10185 			}
10186 			un->un_f_geometry_is_valid = FALSE;
10187 
10188 		} else {
10189 			/*
10190 			 * Flush any outstanding writes in NVRAM cache.
10191 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
10192 			 * cmd, it may not work for non-Pluto devices.
10193 			 * SYNCHRONIZE CACHE is not required for removables,
10194 			 * except DVD-RAM drives.
10195 			 *
10196 			 * Also note: because SYNCHRONIZE CACHE is currently
10197 			 * the only command issued here that requires the
10198 			 * drive be powered up, only do the power up before
10199 			 * sending the Sync Cache command. If additional
10200 			 * commands are added which require a powered up
10201 			 * drive, the following sequence may have to change.
10202 			 *
10203 			 * And finally, note that parallel SCSI on SPARC
10204 			 * only issues a Sync Cache to DVD-RAM, a newly
10205 			 * supported device.
10206 			 */
10207 #if defined(__i386) || defined(__amd64)
10208 			if (!ISREMOVABLE(un) ||
10209 			    un->un_f_dvdram_writable_device == TRUE) {
10210 #else
10211 			if (un->un_f_dvdram_writable_device == TRUE) {
10212 #endif
10213 				mutex_exit(SD_MUTEX(un));
10214 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10215 					if (sd_send_scsi_SYNCHRONIZE_CACHE(un)
10216 					    != 0) {
10217 						rval = EIO;
10218 					}
10219 					sd_pm_exit(un);
10220 				} else {
10221 					rval = EIO;
10222 				}
10223 				mutex_enter(SD_MUTEX(un));
10224 			}
10225 
10226 			/*
10227 			 * For removable media devices, send an ALLOW MEDIA
10228 			 * REMOVAL command, but don't get upset if it fails.
10229 			 * Also invalidate the geometry. We need to raise
10230 			 * the power of the drive before we can call
10231 			 * sd_send_scsi_DOORLOCK()
10232 			 */
10233 			if (ISREMOVABLE(un)) {
10234 				mutex_exit(SD_MUTEX(un));
10235 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10236 					rval = sd_send_scsi_DOORLOCK(un,
10237 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
10238 
10239 					sd_pm_exit(un);
10240 					if (ISCD(un) && (rval != 0) &&
10241 					    (nodelay != 0)) {
10242 						rval = ENXIO;
10243 					}
10244 				} else {
10245 					rval = EIO;
10246 				}
10247 				mutex_enter(SD_MUTEX(un));
10248 
10249 				sr_ejected(un);
10250 				/*
10251 				 * Destroy the cache (if it exists) which was
10252 				 * allocated for the write maps since this is
10253 				 * the last close for this media.
10254 				 */
10255 				if (un->un_wm_cache) {
10256 					/*
10257 					 * Check if there are pending commands.
10258 					 * and if there are give a warning and
10259 					 * do not destroy the cache.
10260 					 */
10261 					if (un->un_ncmds_in_driver > 0) {
10262 						scsi_log(SD_DEVINFO(un),
10263 						    sd_label, CE_WARN,
10264 						    "Unable to clean up memory "
10265 						    "because of pending I/O\n");
10266 					} else {
10267 						kmem_cache_destroy(
10268 						    un->un_wm_cache);
10269 						un->un_wm_cache = NULL;
10270 					}
10271 				}
10272 			}
10273 		}
10274 	}
10275 
10276 	mutex_exit(SD_MUTEX(un));
10277 	sema_v(&un->un_semoclose);
10278 
10279 	if (otyp == OTYP_LYR) {
10280 		mutex_enter(&sd_detach_mutex);
10281 		/*
10282 		 * The detach routine may run when the layer count
10283 		 * drops to zero.
10284 		 */
10285 		un->un_layer_count--;
10286 		mutex_exit(&sd_detach_mutex);
10287 	}
10288 
10289 	return (rval);
10290 }
10291 
10292 
10293 /*
10294  *    Function: sd_ready_and_valid
10295  *
10296  * Description: Test if device is ready and has a valid geometry.
10297  *
10298  *   Arguments: dev - device number
10299  *		un  - driver soft state (unit) structure
10300  *
10301  * Return Code: SD_READY_VALID		ready and valid label
10302  *		SD_READY_NOT_VALID	ready, geom ops never applicable
10303  *		SD_NOT_READY_VALID	not ready, no label
10304  *
10305  *     Context: Never called at interrupt context.
10306  */
10307 
10308 static int
10309 sd_ready_and_valid(struct sd_lun *un)
10310 {
10311 	struct sd_errstats	*stp;
10312 	uint64_t		capacity;
10313 	uint_t			lbasize;
10314 	int			rval = SD_READY_VALID;
10315 	char			name_str[48];
10316 
10317 	ASSERT(un != NULL);
10318 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10319 
10320 	mutex_enter(SD_MUTEX(un));
10321 	if (ISREMOVABLE(un)) {
10322 		mutex_exit(SD_MUTEX(un));
10323 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
10324 			rval = SD_NOT_READY_VALID;
10325 			mutex_enter(SD_MUTEX(un));
10326 			goto done;
10327 		}
10328 
10329 		mutex_enter(SD_MUTEX(un));
10330 		if ((un->un_f_geometry_is_valid == FALSE) ||
10331 		    (un->un_f_blockcount_is_valid == FALSE) ||
10332 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
10333 
10334 			/* capacity has to be read every open. */
10335 			mutex_exit(SD_MUTEX(un));
10336 			if (sd_send_scsi_READ_CAPACITY(un, &capacity,
10337 			    &lbasize, SD_PATH_DIRECT) != 0) {
10338 				mutex_enter(SD_MUTEX(un));
10339 				un->un_f_geometry_is_valid = FALSE;
10340 				rval = SD_NOT_READY_VALID;
10341 				goto done;
10342 			} else {
10343 				mutex_enter(SD_MUTEX(un));
10344 				sd_update_block_info(un, lbasize, capacity);
10345 			}
10346 		}
10347 
10348 		/*
10349 		 * If this is a non 512 block device, allocate space for
10350 		 * the wmap cache. This is being done here since every time
10351 		 * a media is changed this routine will be called and the
10352 		 * block size is a function of media rather than device.
10353 		 */
10354 		if (NOT_DEVBSIZE(un)) {
10355 			if (!(un->un_wm_cache)) {
10356 				(void) snprintf(name_str, sizeof (name_str),
10357 				    "%s%d_cache",
10358 				    ddi_driver_name(SD_DEVINFO(un)),
10359 				    ddi_get_instance(SD_DEVINFO(un)));
10360 				un->un_wm_cache = kmem_cache_create(
10361 				    name_str, sizeof (struct sd_w_map),
10362 				    8, sd_wm_cache_constructor,
10363 				    sd_wm_cache_destructor, NULL,
10364 				    (void *)un, NULL, 0);
10365 				if (!(un->un_wm_cache)) {
10366 					rval = ENOMEM;
10367 					goto done;
10368 				}
10369 			}
10370 		}
10371 
10372 		/*
10373 		 * Check if the media in the device is writable or not.
10374 		 */
10375 		if ((un->un_f_geometry_is_valid == FALSE) && ISCD(un)) {
10376 			sd_check_for_writable_cd(un);
10377 		}
10378 
10379 	} else {
10380 		/*
10381 		 * Do a test unit ready to clear any unit attention from non-cd
10382 		 * devices.
10383 		 */
10384 		mutex_exit(SD_MUTEX(un));
10385 		(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
10386 		mutex_enter(SD_MUTEX(un));
10387 	}
10388 
10389 
10390 	if (un->un_state == SD_STATE_NORMAL) {
10391 		/*
10392 		 * If the target is not yet ready here (defined by a TUR
10393 		 * failure), invalidate the geometry and print an 'offline'
10394 		 * message. This is a legacy message, as the state of the
10395 		 * target is not actually changed to SD_STATE_OFFLINE.
10396 		 *
10397 		 * If the TUR fails for EACCES (Reservation Conflict), it
10398 		 * means there actually is nothing wrong with the target that
10399 		 * would require invalidating the geometry, so continue in
10400 		 * that case as if the TUR was successful.
10401 		 */
10402 		int err;
10403 
10404 		mutex_exit(SD_MUTEX(un));
10405 		err = sd_send_scsi_TEST_UNIT_READY(un, 0);
10406 		mutex_enter(SD_MUTEX(un));
10407 
10408 		if ((err != 0) && (err != EACCES)) {
10409 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10410 			    "offline\n");
10411 			un->un_f_geometry_is_valid = FALSE;
10412 			rval = SD_NOT_READY_VALID;
10413 			goto done;
10414 		}
10415 	}
10416 
10417 	if (un->un_f_format_in_progress == FALSE) {
10418 		/*
10419 		 * Note: sd_validate_geometry may return TRUE, but that does
10420 		 * not necessarily mean un_f_geometry_is_valid == TRUE!
10421 		 */
10422 		rval = sd_validate_geometry(un, SD_PATH_DIRECT);
10423 		if (rval == ENOTSUP) {
10424 			if (un->un_f_geometry_is_valid == TRUE)
10425 				rval = 0;
10426 			else {
10427 				rval = SD_READY_NOT_VALID;
10428 				goto done;
10429 			}
10430 		}
10431 		if (rval != 0) {
10432 			/*
10433 			 * We don't check the validity of geometry for
10434 			 * CDROMs. Also we assume we have a good label
10435 			 * even if sd_validate_geometry returned ENOMEM.
10436 			 */
10437 			if (!ISCD(un) && rval != ENOMEM) {
10438 				rval = SD_NOT_READY_VALID;
10439 				goto done;
10440 			}
10441 		}
10442 	}
10443 
10444 #ifdef DOESNTWORK /* on eliteII, see 1118607 */
10445 	/*
10446 	 * check to see if this disk is write protected, if it is and we have
10447 	 * not set read-only, then fail
10448 	 */
10449 	if ((flag & FWRITE) && (sr_check_wp(dev))) {
10450 		New_state(un, SD_STATE_CLOSED);
10451 		goto done;
10452 	}
10453 #endif
10454 
10455 	/*
10456 	 * If this is a removable media device, try and send
10457 	 * a PREVENT MEDIA REMOVAL command, but don't get upset
10458 	 * if it fails. For a CD, however, it is an error
10459 	 */
10460 	if (ISREMOVABLE(un)) {
10461 		mutex_exit(SD_MUTEX(un));
10462 		if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
10463 		    SD_PATH_DIRECT) != 0) && ISCD(un)) {
10464 			rval = SD_NOT_READY_VALID;
10465 			mutex_enter(SD_MUTEX(un));
10466 			goto done;
10467 		}
10468 		mutex_enter(SD_MUTEX(un));
10469 	}
10470 
10471 	/* The state has changed, inform the media watch routines */
10472 	un->un_mediastate = DKIO_INSERTED;
10473 	cv_broadcast(&un->un_state_cv);
10474 	rval = SD_READY_VALID;
10475 
10476 done:
10477 
10478 	/*
10479 	 * Initialize the capacity kstat value, if no media previously
10480 	 * (capacity kstat is 0) and a media has been inserted
10481 	 * (un_blockcount > 0).
10482 	 * This is a more generic way then checking for ISREMOVABLE.
10483 	 */
10484 	if (un->un_errstats != NULL) {
10485 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
10486 		if ((stp->sd_capacity.value.ui64 == 0) &&
10487 		    (un->un_f_blockcount_is_valid == TRUE)) {
10488 			stp->sd_capacity.value.ui64 =
10489 			    (uint64_t)((uint64_t)un->un_blockcount *
10490 			    un->un_sys_blocksize);
10491 		}
10492 	}
10493 
10494 	mutex_exit(SD_MUTEX(un));
10495 	return (rval);
10496 }
10497 
10498 
10499 /*
10500  *    Function: sdmin
10501  *
10502  * Description: Routine to limit the size of a data transfer. Used in
10503  *		conjunction with physio(9F).
10504  *
10505  *   Arguments: bp - pointer to the indicated buf(9S) struct.
10506  *
10507  *     Context: Kernel thread context.
10508  */
10509 
10510 static void
10511 sdmin(struct buf *bp)
10512 {
10513 	struct sd_lun	*un;
10514 	int		instance;
10515 
10516 	instance = SDUNIT(bp->b_edev);
10517 
10518 	un = ddi_get_soft_state(sd_state, instance);
10519 	ASSERT(un != NULL);
10520 
10521 	if (bp->b_bcount > un->un_max_xfer_size) {
10522 		bp->b_bcount = un->un_max_xfer_size;
10523 	}
10524 }
10525 
10526 
10527 /*
10528  *    Function: sdread
10529  *
10530  * Description: Driver's read(9e) entry point function.
10531  *
10532  *   Arguments: dev   - device number
10533  *		uio   - structure pointer describing where data is to be stored
10534  *			in user's space
10535  *		cred_p  - user credential pointer
10536  *
10537  * Return Code: ENXIO
10538  *		EIO
10539  *		EINVAL
10540  *		value returned by physio
10541  *
10542  *     Context: Kernel thread context.
10543  */
10544 /* ARGSUSED */
10545 static int
10546 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
10547 {
10548 	struct sd_lun	*un = NULL;
10549 	int		secmask;
10550 	int		err;
10551 
10552 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10553 		return (ENXIO);
10554 	}
10555 
10556 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10557 
10558 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
10559 		mutex_enter(SD_MUTEX(un));
10560 		/*
10561 		 * Because the call to sd_ready_and_valid will issue I/O we
10562 		 * must wait here if either the device is suspended or
10563 		 * if it's power level is changing.
10564 		 */
10565 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10566 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10567 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10568 		}
10569 		un->un_ncmds_in_driver++;
10570 		mutex_exit(SD_MUTEX(un));
10571 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10572 			mutex_enter(SD_MUTEX(un));
10573 			un->un_ncmds_in_driver--;
10574 			ASSERT(un->un_ncmds_in_driver >= 0);
10575 			mutex_exit(SD_MUTEX(un));
10576 			return (EIO);
10577 		}
10578 		mutex_enter(SD_MUTEX(un));
10579 		un->un_ncmds_in_driver--;
10580 		ASSERT(un->un_ncmds_in_driver >= 0);
10581 		mutex_exit(SD_MUTEX(un));
10582 	}
10583 
10584 	/*
10585 	 * Read requests are restricted to multiples of the system block size.
10586 	 */
10587 	secmask = un->un_sys_blocksize - 1;
10588 
10589 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10590 		SD_ERROR(SD_LOG_READ_WRITE, un,
10591 		    "sdread: file offset not modulo %d\n",
10592 		    un->un_sys_blocksize);
10593 		err = EINVAL;
10594 	} else if (uio->uio_iov->iov_len & (secmask)) {
10595 		SD_ERROR(SD_LOG_READ_WRITE, un,
10596 		    "sdread: transfer length not modulo %d\n",
10597 		    un->un_sys_blocksize);
10598 		err = EINVAL;
10599 	} else {
10600 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
10601 	}
10602 	return (err);
10603 }
10604 
10605 
10606 /*
10607  *    Function: sdwrite
10608  *
10609  * Description: Driver's write(9e) entry point function.
10610  *
10611  *   Arguments: dev   - device number
10612  *		uio   - structure pointer describing where data is stored in
10613  *			user's space
10614  *		cred_p  - user credential pointer
10615  *
10616  * Return Code: ENXIO
10617  *		EIO
10618  *		EINVAL
10619  *		value returned by physio
10620  *
10621  *     Context: Kernel thread context.
10622  */
10623 /* ARGSUSED */
10624 static int
10625 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
10626 {
10627 	struct sd_lun	*un = NULL;
10628 	int		secmask;
10629 	int		err;
10630 
10631 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10632 		return (ENXIO);
10633 	}
10634 
10635 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10636 
10637 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
10638 		mutex_enter(SD_MUTEX(un));
10639 		/*
10640 		 * Because the call to sd_ready_and_valid will issue I/O we
10641 		 * must wait here if either the device is suspended or
10642 		 * if it's power level is changing.
10643 		 */
10644 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10645 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10646 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10647 		}
10648 		un->un_ncmds_in_driver++;
10649 		mutex_exit(SD_MUTEX(un));
10650 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10651 			mutex_enter(SD_MUTEX(un));
10652 			un->un_ncmds_in_driver--;
10653 			ASSERT(un->un_ncmds_in_driver >= 0);
10654 			mutex_exit(SD_MUTEX(un));
10655 			return (EIO);
10656 		}
10657 		mutex_enter(SD_MUTEX(un));
10658 		un->un_ncmds_in_driver--;
10659 		ASSERT(un->un_ncmds_in_driver >= 0);
10660 		mutex_exit(SD_MUTEX(un));
10661 	}
10662 
10663 	/*
10664 	 * Write requests are restricted to multiples of the system block size.
10665 	 */
10666 	secmask = un->un_sys_blocksize - 1;
10667 
10668 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10669 		SD_ERROR(SD_LOG_READ_WRITE, un,
10670 		    "sdwrite: file offset not modulo %d\n",
10671 		    un->un_sys_blocksize);
10672 		err = EINVAL;
10673 	} else if (uio->uio_iov->iov_len & (secmask)) {
10674 		SD_ERROR(SD_LOG_READ_WRITE, un,
10675 		    "sdwrite: transfer length not modulo %d\n",
10676 		    un->un_sys_blocksize);
10677 		err = EINVAL;
10678 	} else {
10679 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
10680 	}
10681 	return (err);
10682 }
10683 
10684 
10685 /*
10686  *    Function: sdaread
10687  *
10688  * Description: Driver's aread(9e) entry point function.
10689  *
10690  *   Arguments: dev   - device number
10691  *		aio   - structure pointer describing where data is to be stored
10692  *		cred_p  - user credential pointer
10693  *
10694  * Return Code: ENXIO
10695  *		EIO
10696  *		EINVAL
10697  *		value returned by aphysio
10698  *
10699  *     Context: Kernel thread context.
10700  */
10701 /* ARGSUSED */
10702 static int
10703 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
10704 {
10705 	struct sd_lun	*un = NULL;
10706 	struct uio	*uio = aio->aio_uio;
10707 	int		secmask;
10708 	int		err;
10709 
10710 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10711 		return (ENXIO);
10712 	}
10713 
10714 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10715 
10716 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
10717 		mutex_enter(SD_MUTEX(un));
10718 		/*
10719 		 * Because the call to sd_ready_and_valid will issue I/O we
10720 		 * must wait here if either the device is suspended or
10721 		 * if it's power level is changing.
10722 		 */
10723 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10724 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10725 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10726 		}
10727 		un->un_ncmds_in_driver++;
10728 		mutex_exit(SD_MUTEX(un));
10729 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10730 			mutex_enter(SD_MUTEX(un));
10731 			un->un_ncmds_in_driver--;
10732 			ASSERT(un->un_ncmds_in_driver >= 0);
10733 			mutex_exit(SD_MUTEX(un));
10734 			return (EIO);
10735 		}
10736 		mutex_enter(SD_MUTEX(un));
10737 		un->un_ncmds_in_driver--;
10738 		ASSERT(un->un_ncmds_in_driver >= 0);
10739 		mutex_exit(SD_MUTEX(un));
10740 	}
10741 
10742 	/*
10743 	 * Read requests are restricted to multiples of the system block size.
10744 	 */
10745 	secmask = un->un_sys_blocksize - 1;
10746 
10747 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10748 		SD_ERROR(SD_LOG_READ_WRITE, un,
10749 		    "sdaread: file offset not modulo %d\n",
10750 		    un->un_sys_blocksize);
10751 		err = EINVAL;
10752 	} else if (uio->uio_iov->iov_len & (secmask)) {
10753 		SD_ERROR(SD_LOG_READ_WRITE, un,
10754 		    "sdaread: transfer length not modulo %d\n",
10755 		    un->un_sys_blocksize);
10756 		err = EINVAL;
10757 	} else {
10758 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
10759 	}
10760 	return (err);
10761 }
10762 
10763 
10764 /*
10765  *    Function: sdawrite
10766  *
10767  * Description: Driver's awrite(9e) entry point function.
10768  *
10769  *   Arguments: dev   - device number
10770  *		aio   - structure pointer describing where data is stored
10771  *		cred_p  - user credential pointer
10772  *
10773  * Return Code: ENXIO
10774  *		EIO
10775  *		EINVAL
10776  *		value returned by aphysio
10777  *
10778  *     Context: Kernel thread context.
10779  */
10780 /* ARGSUSED */
10781 static int
10782 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
10783 {
10784 	struct sd_lun	*un = NULL;
10785 	struct uio	*uio = aio->aio_uio;
10786 	int		secmask;
10787 	int		err;
10788 
10789 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10790 		return (ENXIO);
10791 	}
10792 
10793 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10794 
10795 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
10796 		mutex_enter(SD_MUTEX(un));
10797 		/*
10798 		 * Because the call to sd_ready_and_valid will issue I/O we
10799 		 * must wait here if either the device is suspended or
10800 		 * if it's power level is changing.
10801 		 */
10802 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10803 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10804 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10805 		}
10806 		un->un_ncmds_in_driver++;
10807 		mutex_exit(SD_MUTEX(un));
10808 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10809 			mutex_enter(SD_MUTEX(un));
10810 			un->un_ncmds_in_driver--;
10811 			ASSERT(un->un_ncmds_in_driver >= 0);
10812 			mutex_exit(SD_MUTEX(un));
10813 			return (EIO);
10814 		}
10815 		mutex_enter(SD_MUTEX(un));
10816 		un->un_ncmds_in_driver--;
10817 		ASSERT(un->un_ncmds_in_driver >= 0);
10818 		mutex_exit(SD_MUTEX(un));
10819 	}
10820 
10821 	/*
10822 	 * Write requests are restricted to multiples of the system block size.
10823 	 */
10824 	secmask = un->un_sys_blocksize - 1;
10825 
10826 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10827 		SD_ERROR(SD_LOG_READ_WRITE, un,
10828 		    "sdawrite: file offset not modulo %d\n",
10829 		    un->un_sys_blocksize);
10830 		err = EINVAL;
10831 	} else if (uio->uio_iov->iov_len & (secmask)) {
10832 		SD_ERROR(SD_LOG_READ_WRITE, un,
10833 		    "sdawrite: transfer length not modulo %d\n",
10834 		    un->un_sys_blocksize);
10835 		err = EINVAL;
10836 	} else {
10837 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
10838 	}
10839 	return (err);
10840 }
10841 
10842 
10843 
10844 
10845 
10846 /*
10847  * Driver IO processing follows the following sequence:
10848  *
10849  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
10850  *         |                |                     ^
10851  *         v                v                     |
10852  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
10853  *         |                |                     |                   |
10854  *         v                |                     |                   |
10855  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
10856  *         |                |                     ^                   ^
10857  *         v                v                     |                   |
10858  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
10859  *         |                |                     |                   |
10860  *     +---+                |                     +------------+      +-------+
10861  *     |                    |                                  |              |
10862  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10863  *     |                    v                                  |              |
10864  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
10865  *     |                    |                                  ^              |
10866  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10867  *     |                    v                                  |              |
10868  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
10869  *     |                    |                                  ^              |
10870  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10871  *     |                    v                                  |              |
10872  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
10873  *     |                    |                                  ^              |
10874  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
10875  *     |                    v                                  |              |
10876  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
10877  *     |                    |                                  ^              |
10878  *     |                    |                                  |              |
10879  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
10880  *                          |                           ^
10881  *                          v                           |
10882  *                   sd_core_iostart()                  |
10883  *                          |                           |
10884  *                          |                           +------>(*destroypkt)()
10885  *                          +-> sd_start_cmds() <-+     |           |
10886  *                          |                     |     |           v
10887  *                          |                     |     |  scsi_destroy_pkt(9F)
10888  *                          |                     |     |
10889  *                          +->(*initpkt)()       +- sdintr()
10890  *                          |  |                        |  |
10891  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
10892  *                          |  +-> scsi_setup_cdb(9F)   |
10893  *                          |                           |
10894  *                          +--> scsi_transport(9F)     |
10895  *                                     |                |
10896  *                                     +----> SCSA ---->+
10897  *
10898  *
10899  * This code is based upon the following presumtions:
10900  *
10901  *   - iostart and iodone functions operate on buf(9S) structures. These
10902  *     functions perform the necessary operations on the buf(9S) and pass
10903  *     them along to the next function in the chain by using the macros
10904  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
10905  *     (for iodone side functions).
10906  *
10907  *   - The iostart side functions may sleep. The iodone side functions
10908  *     are called under interrupt context and may NOT sleep. Therefore
10909  *     iodone side functions also may not call iostart side functions.
10910  *     (NOTE: iostart side functions should NOT sleep for memory, as
10911  *     this could result in deadlock.)
10912  *
10913  *   - An iostart side function may call its corresponding iodone side
10914  *     function directly (if necessary).
10915  *
10916  *   - In the event of an error, an iostart side function can return a buf(9S)
10917  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
10918  *     b_error in the usual way of course).
10919  *
10920  *   - The taskq mechanism may be used by the iodone side functions to dispatch
10921  *     requests to the iostart side functions.  The iostart side functions in
10922  *     this case would be called under the context of a taskq thread, so it's
10923  *     OK for them to block/sleep/spin in this case.
10924  *
10925  *   - iostart side functions may allocate "shadow" buf(9S) structs and
10926  *     pass them along to the next function in the chain.  The corresponding
10927  *     iodone side functions must coalesce the "shadow" bufs and return
10928  *     the "original" buf to the next higher layer.
10929  *
10930  *   - The b_private field of the buf(9S) struct holds a pointer to
10931  *     an sd_xbuf struct, which contains information needed to
10932  *     construct the scsi_pkt for the command.
10933  *
10934  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
10935  *     layer must acquire & release the SD_MUTEX(un) as needed.
10936  */
10937 
10938 
10939 /*
10940  * Create taskq for all targets in the system. This is created at
10941  * _init(9E) and destroyed at _fini(9E).
10942  *
10943  * Note: here we set the minalloc to a reasonably high number to ensure that
10944  * we will have an adequate supply of task entries available at interrupt time.
10945  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
10946  * sd_create_taskq().  Since we do not want to sleep for allocations at
10947  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
10948  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
10949  * requests any one instant in time.
10950  */
10951 #define	SD_TASKQ_NUMTHREADS	8
10952 #define	SD_TASKQ_MINALLOC	256
10953 #define	SD_TASKQ_MAXALLOC	256
10954 
10955 static taskq_t	*sd_tq = NULL;
10956 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
10957 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
10958 
10959 /*
10960  * The following task queue is being created for the write part of
10961  * read-modify-write of non-512 block size devices.
10962  * Limit the number of threads to 1 for now. This number has been choosen
10963  * considering the fact that it applies only to dvd ram drives/MO drives
10964  * currently. Performance for which is not main criteria at this stage.
10965  * Note: It needs to be explored if we can use a single taskq in future
10966  */
10967 #define	SD_WMR_TASKQ_NUMTHREADS	1
10968 static taskq_t	*sd_wmr_tq = NULL;
10969 
10970 /*
10971  *    Function: sd_taskq_create
10972  *
10973  * Description: Create taskq thread(s) and preallocate task entries
10974  *
10975  * Return Code: Returns a pointer to the allocated taskq_t.
10976  *
10977  *     Context: Can sleep. Requires blockable context.
10978  *
10979  *       Notes: - The taskq() facility currently is NOT part of the DDI.
10980  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
10981  *		- taskq_create() will block for memory, also it will panic
10982  *		  if it cannot create the requested number of threads.
10983  *		- Currently taskq_create() creates threads that cannot be
10984  *		  swapped.
10985  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
10986  *		  supply of taskq entries at interrupt time (ie, so that we
10987  *		  do not have to sleep for memory)
10988  */
10989 
10990 static void
10991 sd_taskq_create(void)
10992 {
10993 	char	taskq_name[TASKQ_NAMELEN];
10994 
10995 	ASSERT(sd_tq == NULL);
10996 	ASSERT(sd_wmr_tq == NULL);
10997 
10998 	(void) snprintf(taskq_name, sizeof (taskq_name),
10999 	    "%s_drv_taskq", sd_label);
11000 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
11001 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11002 	    TASKQ_PREPOPULATE));
11003 
11004 	(void) snprintf(taskq_name, sizeof (taskq_name),
11005 	    "%s_rmw_taskq", sd_label);
11006 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
11007 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11008 	    TASKQ_PREPOPULATE));
11009 }
11010 
11011 
11012 /*
11013  *    Function: sd_taskq_delete
11014  *
11015  * Description: Complementary cleanup routine for sd_taskq_create().
11016  *
11017  *     Context: Kernel thread context.
11018  */
11019 
11020 static void
11021 sd_taskq_delete(void)
11022 {
11023 	ASSERT(sd_tq != NULL);
11024 	ASSERT(sd_wmr_tq != NULL);
11025 	taskq_destroy(sd_tq);
11026 	taskq_destroy(sd_wmr_tq);
11027 	sd_tq = NULL;
11028 	sd_wmr_tq = NULL;
11029 }
11030 
11031 
11032 /*
11033  *    Function: sdstrategy
11034  *
11035  * Description: Driver's strategy (9E) entry point function.
11036  *
11037  *   Arguments: bp - pointer to buf(9S)
11038  *
11039  * Return Code: Always returns zero
11040  *
11041  *     Context: Kernel thread context.
11042  */
11043 
11044 static int
11045 sdstrategy(struct buf *bp)
11046 {
11047 	struct sd_lun *un;
11048 
11049 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11050 	if (un == NULL) {
11051 		bioerror(bp, EIO);
11052 		bp->b_resid = bp->b_bcount;
11053 		biodone(bp);
11054 		return (0);
11055 	}
11056 	/* As was done in the past, fail new cmds. if state is dumping. */
11057 	if (un->un_state == SD_STATE_DUMPING) {
11058 		bioerror(bp, ENXIO);
11059 		bp->b_resid = bp->b_bcount;
11060 		biodone(bp);
11061 		return (0);
11062 	}
11063 
11064 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11065 
11066 	/*
11067 	 * Commands may sneak in while we released the mutex in
11068 	 * DDI_SUSPEND, we should block new commands. However, old
11069 	 * commands that are still in the driver at this point should
11070 	 * still be allowed to drain.
11071 	 */
11072 	mutex_enter(SD_MUTEX(un));
11073 	/*
11074 	 * Must wait here if either the device is suspended or
11075 	 * if it's power level is changing.
11076 	 */
11077 	while ((un->un_state == SD_STATE_SUSPENDED) ||
11078 	    (un->un_state == SD_STATE_PM_CHANGING)) {
11079 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11080 	}
11081 
11082 	un->un_ncmds_in_driver++;
11083 
11084 	/*
11085 	 * atapi: Since we are running the CD for now in PIO mode we need to
11086 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11087 	 * the HBA's init_pkt routine.
11088 	 */
11089 	if (un->un_f_cfg_is_atapi == TRUE) {
11090 		mutex_exit(SD_MUTEX(un));
11091 		bp_mapin(bp);
11092 		mutex_enter(SD_MUTEX(un));
11093 	}
11094 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
11095 	    un->un_ncmds_in_driver);
11096 
11097 	mutex_exit(SD_MUTEX(un));
11098 
11099 	/*
11100 	 * This will (eventually) allocate the sd_xbuf area and
11101 	 * call sd_xbuf_strategy().  We just want to return the
11102 	 * result of ddi_xbuf_qstrategy so that we have an opt-
11103 	 * imized tail call which saves us a stack frame.
11104 	 */
11105 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
11106 }
11107 
11108 
11109 /*
11110  *    Function: sd_xbuf_strategy
11111  *
11112  * Description: Function for initiating IO operations via the
11113  *		ddi_xbuf_qstrategy() mechanism.
11114  *
11115  *     Context: Kernel thread context.
11116  */
11117 
11118 static void
11119 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
11120 {
11121 	struct sd_lun *un = arg;
11122 
11123 	ASSERT(bp != NULL);
11124 	ASSERT(xp != NULL);
11125 	ASSERT(un != NULL);
11126 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11127 
11128 	/*
11129 	 * Initialize the fields in the xbuf and save a pointer to the
11130 	 * xbuf in bp->b_private.
11131 	 */
11132 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
11133 
11134 	/* Send the buf down the iostart chain */
11135 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
11136 }
11137 
11138 
11139 /*
11140  *    Function: sd_xbuf_init
11141  *
11142  * Description: Prepare the given sd_xbuf struct for use.
11143  *
11144  *   Arguments: un - ptr to softstate
11145  *		bp - ptr to associated buf(9S)
11146  *		xp - ptr to associated sd_xbuf
11147  *		chain_type - IO chain type to use:
11148  *			SD_CHAIN_NULL
11149  *			SD_CHAIN_BUFIO
11150  *			SD_CHAIN_USCSI
11151  *			SD_CHAIN_DIRECT
11152  *			SD_CHAIN_DIRECT_PRIORITY
11153  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
11154  *			initialization; may be NULL if none.
11155  *
11156  *     Context: Kernel thread context
11157  */
11158 
11159 static void
11160 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
11161 	uchar_t chain_type, void *pktinfop)
11162 {
11163 	int index;
11164 
11165 	ASSERT(un != NULL);
11166 	ASSERT(bp != NULL);
11167 	ASSERT(xp != NULL);
11168 
11169 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
11170 	    bp, chain_type);
11171 
11172 	xp->xb_un	= un;
11173 	xp->xb_pktp	= NULL;
11174 	xp->xb_pktinfo	= pktinfop;
11175 	xp->xb_private	= bp->b_private;
11176 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
11177 
11178 	/*
11179 	 * Set up the iostart and iodone chain indexes in the xbuf, based
11180 	 * upon the specified chain type to use.
11181 	 */
11182 	switch (chain_type) {
11183 	case SD_CHAIN_NULL:
11184 		/*
11185 		 * Fall thru to just use the values for the buf type, even
11186 		 * tho for the NULL chain these values will never be used.
11187 		 */
11188 		/* FALLTHRU */
11189 	case SD_CHAIN_BUFIO:
11190 		index = un->un_buf_chain_type;
11191 		break;
11192 	case SD_CHAIN_USCSI:
11193 		index = un->un_uscsi_chain_type;
11194 		break;
11195 	case SD_CHAIN_DIRECT:
11196 		index = un->un_direct_chain_type;
11197 		break;
11198 	case SD_CHAIN_DIRECT_PRIORITY:
11199 		index = un->un_priority_chain_type;
11200 		break;
11201 	default:
11202 		/* We're really broken if we ever get here... */
11203 		panic("sd_xbuf_init: illegal chain type!");
11204 		/*NOTREACHED*/
11205 	}
11206 
11207 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
11208 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
11209 
11210 	/*
11211 	 * It might be a bit easier to simply bzero the entire xbuf above,
11212 	 * but it turns out that since we init a fair number of members anyway,
11213 	 * we save a fair number cycles by doing explicit assignment of zero.
11214 	 */
11215 	xp->xb_pkt_flags	= 0;
11216 	xp->xb_dma_resid	= 0;
11217 	xp->xb_retry_count	= 0;
11218 	xp->xb_victim_retry_count = 0;
11219 	xp->xb_ua_retry_count	= 0;
11220 	xp->xb_sense_bp		= NULL;
11221 	xp->xb_sense_status	= 0;
11222 	xp->xb_sense_state	= 0;
11223 	xp->xb_sense_resid	= 0;
11224 
11225 	bp->b_private	= xp;
11226 	bp->b_flags	&= ~(B_DONE | B_ERROR);
11227 	bp->b_resid	= 0;
11228 	bp->av_forw	= NULL;
11229 	bp->av_back	= NULL;
11230 	bioerror(bp, 0);
11231 
11232 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
11233 }
11234 
11235 
11236 /*
11237  *    Function: sd_uscsi_strategy
11238  *
11239  * Description: Wrapper for calling into the USCSI chain via physio(9F)
11240  *
11241  *   Arguments: bp - buf struct ptr
11242  *
11243  * Return Code: Always returns 0
11244  *
11245  *     Context: Kernel thread context
11246  */
11247 
11248 static int
11249 sd_uscsi_strategy(struct buf *bp)
11250 {
11251 	struct sd_lun		*un;
11252 	struct sd_uscsi_info	*uip;
11253 	struct sd_xbuf		*xp;
11254 	uchar_t			chain_type;
11255 
11256 	ASSERT(bp != NULL);
11257 
11258 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11259 	if (un == NULL) {
11260 		bioerror(bp, EIO);
11261 		bp->b_resid = bp->b_bcount;
11262 		biodone(bp);
11263 		return (0);
11264 	}
11265 
11266 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11267 
11268 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
11269 
11270 	mutex_enter(SD_MUTEX(un));
11271 	/*
11272 	 * atapi: Since we are running the CD for now in PIO mode we need to
11273 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11274 	 * the HBA's init_pkt routine.
11275 	 */
11276 	if (un->un_f_cfg_is_atapi == TRUE) {
11277 		mutex_exit(SD_MUTEX(un));
11278 		bp_mapin(bp);
11279 		mutex_enter(SD_MUTEX(un));
11280 	}
11281 	un->un_ncmds_in_driver++;
11282 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
11283 	    un->un_ncmds_in_driver);
11284 	mutex_exit(SD_MUTEX(un));
11285 
11286 	/*
11287 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
11288 	 */
11289 	ASSERT(bp->b_private != NULL);
11290 	uip = (struct sd_uscsi_info *)bp->b_private;
11291 
11292 	switch (uip->ui_flags) {
11293 	case SD_PATH_DIRECT:
11294 		chain_type = SD_CHAIN_DIRECT;
11295 		break;
11296 	case SD_PATH_DIRECT_PRIORITY:
11297 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
11298 		break;
11299 	default:
11300 		chain_type = SD_CHAIN_USCSI;
11301 		break;
11302 	}
11303 
11304 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
11305 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
11306 
11307 	/* Use the index obtained within xbuf_init */
11308 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
11309 
11310 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
11311 
11312 	return (0);
11313 }
11314 
11315 
11316 /*
11317  * These routines perform raw i/o operations.
11318  */
11319 /*ARGSUSED*/
11320 static void
11321 sduscsimin(struct buf *bp)
11322 {
11323 	/*
11324 	 * do not break up because the CDB count would then
11325 	 * be incorrect and data underruns would result (incomplete
11326 	 * read/writes which would be retried and then failed, see
11327 	 * sdintr().
11328 	 */
11329 }
11330 
11331 
11332 
11333 /*
11334  *    Function: sd_send_scsi_cmd
11335  *
11336  * Description: Runs a USCSI command for user (when called thru sdioctl),
11337  *		or for the driver
11338  *
11339  *   Arguments: dev - the dev_t for the device
11340  *		incmd - ptr to a valid uscsi_cmd struct
11341  *		cdbspace - UIO_USERSPACE or UIO_SYSSPACE
11342  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11343  *		rqbufspace - UIO_USERSPACE or UIO_SYSSPACE
11344  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11345  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11346  *			to use the USCSI "direct" chain and bypass the normal
11347  *			command waitq.
11348  *
11349  * Return Code: 0 -  successful completion of the given command
11350  *		EIO - scsi_reset() failed, or see biowait()/physio() codes.
11351  *		ENXIO  - soft state not found for specified dev
11352  *		EINVAL
11353  *		EFAULT - copyin/copyout error
11354  *		return code of biowait(9F) or physio(9F):
11355  *			EIO - IO error, caller may check incmd->uscsi_status
11356  *			ENXIO
11357  *			EACCES - reservation conflict
11358  *
11359  *     Context: Waits for command to complete. Can sleep.
11360  */
11361 
11362 static int
11363 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd,
11364 	enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace,
11365 	int path_flag)
11366 {
11367 	struct sd_uscsi_info	*uip;
11368 	struct uscsi_cmd	*uscmd;
11369 	struct sd_lun	*un;
11370 	struct buf	*bp;
11371 	int	rval;
11372 	int	flags;
11373 
11374 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
11375 	if (un == NULL) {
11376 		return (ENXIO);
11377 	}
11378 
11379 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11380 
11381 #ifdef SDDEBUG
11382 	switch (dataspace) {
11383 	case UIO_USERSPACE:
11384 		SD_TRACE(SD_LOG_IO, un,
11385 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un);
11386 		break;
11387 	case UIO_SYSSPACE:
11388 		SD_TRACE(SD_LOG_IO, un,
11389 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un);
11390 		break;
11391 	default:
11392 		SD_TRACE(SD_LOG_IO, un,
11393 		    "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un);
11394 		break;
11395 	}
11396 #endif
11397 
11398 	/*
11399 	 * Perform resets directly; no need to generate a command to do it.
11400 	 */
11401 	if (incmd->uscsi_flags & (USCSI_RESET | USCSI_RESET_ALL)) {
11402 		flags = ((incmd->uscsi_flags & USCSI_RESET_ALL) != 0) ?
11403 		    RESET_ALL : RESET_TARGET;
11404 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: Issuing reset\n");
11405 		if (scsi_reset(SD_ADDRESS(un), flags) == 0) {
11406 			/* Reset attempt was unsuccessful */
11407 			SD_TRACE(SD_LOG_IO, un,
11408 			    "sd_send_scsi_cmd: reset: failure\n");
11409 			return (EIO);
11410 		}
11411 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: reset: success\n");
11412 		return (0);
11413 	}
11414 
11415 	/* Perfunctory sanity check... */
11416 	if (incmd->uscsi_cdblen <= 0) {
11417 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11418 		    "invalid uscsi_cdblen, returning EINVAL\n");
11419 		return (EINVAL);
11420 	}
11421 
11422 	/*
11423 	 * In order to not worry about where the uscsi structure came from
11424 	 * (or where the cdb it points to came from) we're going to make
11425 	 * kmem_alloc'd copies of them here. This will also allow reference
11426 	 * to the data they contain long after this process has gone to
11427 	 * sleep and its kernel stack has been unmapped, etc.
11428 	 *
11429 	 * First get some memory for the uscsi_cmd struct and copy the
11430 	 * contents of the given uscsi_cmd struct into it.
11431 	 */
11432 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
11433 	bcopy(incmd, uscmd, sizeof (struct uscsi_cmd));
11434 
11435 	SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: uscsi_cmd",
11436 	    (uchar_t *)uscmd, sizeof (struct uscsi_cmd), SD_LOG_HEX);
11437 
11438 	/*
11439 	 * Now get some space for the CDB, and copy the given CDB into
11440 	 * it. Use ddi_copyin() in case the data is in user space.
11441 	 */
11442 	uscmd->uscsi_cdb = kmem_zalloc((size_t)incmd->uscsi_cdblen, KM_SLEEP);
11443 	flags = (cdbspace == UIO_SYSSPACE) ? FKIOCTL : 0;
11444 	if (ddi_copyin(incmd->uscsi_cdb, uscmd->uscsi_cdb,
11445 	    (uint_t)incmd->uscsi_cdblen, flags) != 0) {
11446 		kmem_free(uscmd->uscsi_cdb, (size_t)incmd->uscsi_cdblen);
11447 		kmem_free(uscmd, sizeof (struct uscsi_cmd));
11448 		return (EFAULT);
11449 	}
11450 
11451 	SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: CDB",
11452 	    (uchar_t *)uscmd->uscsi_cdb, incmd->uscsi_cdblen, SD_LOG_HEX);
11453 
11454 	bp = getrbuf(KM_SLEEP);
11455 
11456 	/*
11457 	 * Allocate an sd_uscsi_info struct and fill it with the info
11458 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
11459 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
11460 	 * since we allocate the buf here in this function, we do not
11461 	 * need to preserve the prior contents of b_private.
11462 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
11463 	 */
11464 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
11465 	uip->ui_flags = path_flag;
11466 	uip->ui_cmdp  = uscmd;
11467 	bp->b_private = uip;
11468 
11469 	/*
11470 	 * Initialize Request Sense buffering, if requested.
11471 	 */
11472 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
11473 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
11474 		/*
11475 		 * Here uscmd->uscsi_rqbuf currently points to the caller's
11476 		 * buffer, but we replace this with a kernel buffer that
11477 		 * we allocate to use with the sense data. The sense data
11478 		 * (if present) gets copied into this new buffer before the
11479 		 * command is completed.  Then we copy the sense data from
11480 		 * our allocated buf into the caller's buffer below. Note
11481 		 * that incmd->uscsi_rqbuf and incmd->uscsi_rqlen are used
11482 		 * below to perform the copy back to the caller's buf.
11483 		 */
11484 		uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
11485 		if (rqbufspace == UIO_USERSPACE) {
11486 			uscmd->uscsi_rqlen   = SENSE_LENGTH;
11487 			uscmd->uscsi_rqresid = SENSE_LENGTH;
11488 		} else {
11489 			uchar_t rlen = min(SENSE_LENGTH, uscmd->uscsi_rqlen);
11490 			uscmd->uscsi_rqlen   = rlen;
11491 			uscmd->uscsi_rqresid = rlen;
11492 		}
11493 	} else {
11494 		uscmd->uscsi_rqbuf = NULL;
11495 		uscmd->uscsi_rqlen   = 0;
11496 		uscmd->uscsi_rqresid = 0;
11497 	}
11498 
11499 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: rqbuf:0x%p  rqlen:%d\n",
11500 	    uscmd->uscsi_rqbuf, uscmd->uscsi_rqlen);
11501 
11502 	if (un->un_f_is_fibre == FALSE) {
11503 		/*
11504 		 * Force asynchronous mode, if necessary.  Doing this here
11505 		 * has the unfortunate effect of running other queued
11506 		 * commands async also, but since the main purpose of this
11507 		 * capability is downloading new drive firmware, we can
11508 		 * probably live with it.
11509 		 */
11510 		if ((uscmd->uscsi_flags & USCSI_ASYNC) != 0) {
11511 			if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1)
11512 				== 1) {
11513 				if (scsi_ifsetcap(SD_ADDRESS(un),
11514 					    "synchronous", 0, 1) == 1) {
11515 					SD_TRACE(SD_LOG_IO, un,
11516 					"sd_send_scsi_cmd: forced async ok\n");
11517 				} else {
11518 					SD_TRACE(SD_LOG_IO, un,
11519 					"sd_send_scsi_cmd:\
11520 					forced async failed\n");
11521 					rval = EINVAL;
11522 					goto done;
11523 				}
11524 			}
11525 		}
11526 
11527 		/*
11528 		 * Re-enable synchronous mode, if requested
11529 		 */
11530 		if (uscmd->uscsi_flags & USCSI_SYNC) {
11531 			if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1)
11532 				== 0) {
11533 				int i = scsi_ifsetcap(SD_ADDRESS(un),
11534 						"synchronous", 1, 1);
11535 				SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11536 					"re-enabled sync %s\n",
11537 					(i == 1) ? "ok" : "failed");
11538 			}
11539 		}
11540 	}
11541 
11542 	/*
11543 	 * Commands sent with priority are intended for error recovery
11544 	 * situations, and do not have retries performed.
11545 	 */
11546 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
11547 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
11548 	}
11549 
11550 	/*
11551 	 * If we're going to do actual I/O, let physio do all the right things
11552 	 */
11553 	if (uscmd->uscsi_buflen != 0) {
11554 		struct iovec	aiov;
11555 		struct uio	auio;
11556 		struct uio	*uio = &auio;
11557 
11558 		bzero(&auio, sizeof (struct uio));
11559 		bzero(&aiov, sizeof (struct iovec));
11560 		aiov.iov_base = uscmd->uscsi_bufaddr;
11561 		aiov.iov_len  = uscmd->uscsi_buflen;
11562 		uio->uio_iov  = &aiov;
11563 
11564 		uio->uio_iovcnt  = 1;
11565 		uio->uio_resid   = uscmd->uscsi_buflen;
11566 		uio->uio_segflg  = dataspace;
11567 
11568 		/*
11569 		 * physio() will block here until the command completes....
11570 		 */
11571 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling physio.\n");
11572 
11573 		rval = physio(sd_uscsi_strategy, bp, dev,
11574 		    ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE),
11575 		    sduscsimin, uio);
11576 
11577 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11578 		    "returned from physio with 0x%x\n", rval);
11579 
11580 	} else {
11581 		/*
11582 		 * We have to mimic what physio would do here! Argh!
11583 		 */
11584 		bp->b_flags  = B_BUSY |
11585 		    ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE);
11586 		bp->b_edev   = dev;
11587 		bp->b_dev    = cmpdev(dev);	/* maybe unnecessary? */
11588 		bp->b_bcount = 0;
11589 		bp->b_blkno  = 0;
11590 
11591 		SD_TRACE(SD_LOG_IO, un,
11592 		    "sd_send_scsi_cmd: calling sd_uscsi_strategy...\n");
11593 
11594 		(void) sd_uscsi_strategy(bp);
11595 
11596 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling biowait\n");
11597 
11598 		rval = biowait(bp);
11599 
11600 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11601 		    "returned from  biowait with 0x%x\n", rval);
11602 	}
11603 
11604 done:
11605 
11606 #ifdef SDDEBUG
11607 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11608 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
11609 	    uscmd->uscsi_status, uscmd->uscsi_resid);
11610 	if (uscmd->uscsi_bufaddr != NULL) {
11611 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11612 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
11613 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
11614 		if (dataspace == UIO_SYSSPACE) {
11615 			SD_DUMP_MEMORY(un, SD_LOG_IO,
11616 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
11617 			    uscmd->uscsi_buflen, SD_LOG_HEX);
11618 		}
11619 	}
11620 #endif
11621 
11622 	/*
11623 	 * Get the status and residual to return to the caller.
11624 	 */
11625 	incmd->uscsi_status = uscmd->uscsi_status;
11626 	incmd->uscsi_resid  = uscmd->uscsi_resid;
11627 
11628 	/*
11629 	 * If the caller wants sense data, copy back whatever sense data
11630 	 * we may have gotten, and update the relevant rqsense info.
11631 	 */
11632 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
11633 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
11634 
11635 		int rqlen = uscmd->uscsi_rqlen - uscmd->uscsi_rqresid;
11636 		rqlen = min(((int)incmd->uscsi_rqlen), rqlen);
11637 
11638 		/* Update the Request Sense status and resid */
11639 		incmd->uscsi_rqresid  = incmd->uscsi_rqlen - rqlen;
11640 		incmd->uscsi_rqstatus = uscmd->uscsi_rqstatus;
11641 
11642 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11643 		    "uscsi_rqstatus: 0x%02x  uscsi_rqresid:0x%x\n",
11644 		    incmd->uscsi_rqstatus, incmd->uscsi_rqresid);
11645 
11646 		/* Copy out the sense data for user processes */
11647 		if ((incmd->uscsi_rqbuf != NULL) && (rqlen != 0)) {
11648 			int flags =
11649 			    (rqbufspace == UIO_USERSPACE) ? 0 : FKIOCTL;
11650 			if (ddi_copyout(uscmd->uscsi_rqbuf, incmd->uscsi_rqbuf,
11651 			    rqlen, flags) != 0) {
11652 				rval = EFAULT;
11653 			}
11654 			/*
11655 			 * Note: Can't touch incmd->uscsi_rqbuf so use
11656 			 * uscmd->uscsi_rqbuf instead. They're the same.
11657 			 */
11658 			SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11659 			    "incmd->uscsi_rqbuf: 0x%p  rqlen:%d\n",
11660 			    incmd->uscsi_rqbuf, rqlen);
11661 			SD_DUMP_MEMORY(un, SD_LOG_IO, "rq",
11662 			    (uchar_t *)uscmd->uscsi_rqbuf, rqlen, SD_LOG_HEX);
11663 		}
11664 	}
11665 
11666 	/*
11667 	 * Free allocated resources and return; mapout the buf in case it was
11668 	 * mapped in by a lower layer.
11669 	 */
11670 	bp_mapout(bp);
11671 	freerbuf(bp);
11672 	kmem_free(uip, sizeof (struct sd_uscsi_info));
11673 	if (uscmd->uscsi_rqbuf != NULL) {
11674 		kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
11675 	}
11676 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
11677 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
11678 
11679 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: exit\n");
11680 
11681 	return (rval);
11682 }
11683 
11684 
11685 /*
11686  *    Function: sd_buf_iodone
11687  *
11688  * Description: Frees the sd_xbuf & returns the buf to its originator.
11689  *
11690  *     Context: May be called from interrupt context.
11691  */
11692 /* ARGSUSED */
11693 static void
11694 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
11695 {
11696 	struct sd_xbuf *xp;
11697 
11698 	ASSERT(un != NULL);
11699 	ASSERT(bp != NULL);
11700 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11701 
11702 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
11703 
11704 	xp = SD_GET_XBUF(bp);
11705 	ASSERT(xp != NULL);
11706 
11707 	mutex_enter(SD_MUTEX(un));
11708 
11709 	/*
11710 	 * Grab time when the cmd completed.
11711 	 * This is used for determining if the system has been
11712 	 * idle long enough to make it idle to the PM framework.
11713 	 * This is for lowering the overhead, and therefore improving
11714 	 * performance per I/O operation.
11715 	 */
11716 	un->un_pm_idle_time = ddi_get_time();
11717 
11718 	un->un_ncmds_in_driver--;
11719 	ASSERT(un->un_ncmds_in_driver >= 0);
11720 	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
11721 	    un->un_ncmds_in_driver);
11722 
11723 	mutex_exit(SD_MUTEX(un));
11724 
11725 	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
11726 	biodone(bp);				/* bp is gone after this */
11727 
11728 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
11729 }
11730 
11731 
11732 /*
11733  *    Function: sd_uscsi_iodone
11734  *
11735  * Description: Frees the sd_xbuf & returns the buf to its originator.
11736  *
11737  *     Context: May be called from interrupt context.
11738  */
11739 /* ARGSUSED */
11740 static void
11741 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
11742 {
11743 	struct sd_xbuf *xp;
11744 
11745 	ASSERT(un != NULL);
11746 	ASSERT(bp != NULL);
11747 
11748 	xp = SD_GET_XBUF(bp);
11749 	ASSERT(xp != NULL);
11750 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11751 
11752 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
11753 
11754 	mutex_enter(SD_MUTEX(un));
11755 
11756 	/*
11757 	 * Grab time when the cmd completed.
11758 	 * This is used for determining if the system has been
11759 	 * idle long enough to make it idle to the PM framework.
11760 	 * This is for lowering the overhead, and therefore improving
11761 	 * performance per I/O operation.
11762 	 */
11763 	un->un_pm_idle_time = ddi_get_time();
11764 
11765 	un->un_ncmds_in_driver--;
11766 	ASSERT(un->un_ncmds_in_driver >= 0);
11767 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
11768 	    un->un_ncmds_in_driver);
11769 
11770 	mutex_exit(SD_MUTEX(un));
11771 
11772 	kmem_free(xp, sizeof (struct sd_xbuf));
11773 	biodone(bp);
11774 
11775 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
11776 }
11777 
11778 
11779 /*
11780  *    Function: sd_mapblockaddr_iostart
11781  *
11782  * Description: Verify request lies withing the partition limits for
11783  *		the indicated minor device.  Issue "overrun" buf if
11784  *		request would exceed partition range.  Converts
11785  *		partition-relative block address to absolute.
11786  *
11787  *     Context: Can sleep
11788  *
11789  *      Issues: This follows what the old code did, in terms of accessing
11790  *		some of the partition info in the unit struct without holding
11791  *		the mutext.  This is a general issue, if the partition info
11792  *		can be altered while IO is in progress... as soon as we send
11793  *		a buf, its partitioning can be invalid before it gets to the
11794  *		device.  Probably the right fix is to move partitioning out
11795  *		of the driver entirely.
11796  */
11797 
11798 static void
11799 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
11800 {
11801 	daddr_t	nblocks;	/* #blocks in the given partition */
11802 	daddr_t	blocknum;	/* Block number specified by the buf */
11803 	size_t	requested_nblocks;
11804 	size_t	available_nblocks;
11805 	int	partition;
11806 	diskaddr_t	partition_offset;
11807 	struct sd_xbuf *xp;
11808 
11809 
11810 	ASSERT(un != NULL);
11811 	ASSERT(bp != NULL);
11812 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11813 
11814 	SD_TRACE(SD_LOG_IO_PARTITION, un,
11815 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
11816 
11817 	xp = SD_GET_XBUF(bp);
11818 	ASSERT(xp != NULL);
11819 
11820 	/*
11821 	 * If the geometry is not indicated as valid, attempt to access
11822 	 * the unit & verify the geometry/label. This can be the case for
11823 	 * removable-media devices, of if the device was opened in
11824 	 * NDELAY/NONBLOCK mode.
11825 	 */
11826 	if ((un->un_f_geometry_is_valid != TRUE) &&
11827 	    (sd_ready_and_valid(un) != SD_READY_VALID)) {
11828 		/*
11829 		 * For removable devices it is possible to start an I/O
11830 		 * without a media by opening the device in nodelay mode.
11831 		 * Also for writable CDs there can be many scenarios where
11832 		 * there is no geometry yet but volume manager is trying to
11833 		 * issue a read() just because it can see TOC on the CD. So
11834 		 * do not print a message for removables.
11835 		 */
11836 		if (!ISREMOVABLE(un)) {
11837 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
11838 			    "i/o to invalid geometry\n");
11839 		}
11840 		bioerror(bp, EIO);
11841 		bp->b_resid = bp->b_bcount;
11842 		SD_BEGIN_IODONE(index, un, bp);
11843 		return;
11844 	}
11845 
11846 	partition = SDPART(bp->b_edev);
11847 
11848 	/* #blocks in partition */
11849 	nblocks = un->un_map[partition].dkl_nblk;    /* #blocks in partition */
11850 
11851 	/* Use of a local variable potentially improves performance slightly */
11852 	partition_offset = un->un_offset[partition];
11853 
11854 	/*
11855 	 * blocknum is the starting block number of the request. At this
11856 	 * point it is still relative to the start of the minor device.
11857 	 */
11858 	blocknum = xp->xb_blkno;
11859 
11860 	/*
11861 	 * Legacy: If the starting block number is one past the last block
11862 	 * in the partition, do not set B_ERROR in the buf.
11863 	 */
11864 	if (blocknum == nblocks)  {
11865 		goto error_exit;
11866 	}
11867 
11868 	/*
11869 	 * Confirm that the first block of the request lies within the
11870 	 * partition limits. Also the requested number of bytes must be
11871 	 * a multiple of the system block size.
11872 	 */
11873 	if ((blocknum < 0) || (blocknum >= nblocks) ||
11874 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
11875 		bp->b_flags |= B_ERROR;
11876 		goto error_exit;
11877 	}
11878 
11879 	/*
11880 	 * If the requsted # blocks exceeds the available # blocks, that
11881 	 * is an overrun of the partition.
11882 	 */
11883 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
11884 	available_nblocks = (size_t)(nblocks - blocknum);
11885 	ASSERT(nblocks >= blocknum);
11886 
11887 	if (requested_nblocks > available_nblocks) {
11888 		/*
11889 		 * Allocate an "overrun" buf to allow the request to proceed
11890 		 * for the amount of space available in the partition. The
11891 		 * amount not transferred will be added into the b_resid
11892 		 * when the operation is complete. The overrun buf
11893 		 * replaces the original buf here, and the original buf
11894 		 * is saved inside the overrun buf, for later use.
11895 		 */
11896 		size_t resid = SD_SYSBLOCKS2BYTES(un,
11897 		    (offset_t)(requested_nblocks - available_nblocks));
11898 		size_t count = bp->b_bcount - resid;
11899 		/*
11900 		 * Note: count is an unsigned entity thus it'll NEVER
11901 		 * be less than 0 so ASSERT the original values are
11902 		 * correct.
11903 		 */
11904 		ASSERT(bp->b_bcount >= resid);
11905 
11906 		bp = sd_bioclone_alloc(bp, count, blocknum,
11907 			(int (*)(struct buf *)) sd_mapblockaddr_iodone);
11908 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
11909 		ASSERT(xp != NULL);
11910 	}
11911 
11912 	/* At this point there should be no residual for this buf. */
11913 	ASSERT(bp->b_resid == 0);
11914 
11915 	/* Convert the block number to an absolute address. */
11916 	xp->xb_blkno += partition_offset;
11917 
11918 	SD_NEXT_IOSTART(index, un, bp);
11919 
11920 	SD_TRACE(SD_LOG_IO_PARTITION, un,
11921 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
11922 
11923 	return;
11924 
11925 error_exit:
11926 	bp->b_resid = bp->b_bcount;
11927 	SD_BEGIN_IODONE(index, un, bp);
11928 	SD_TRACE(SD_LOG_IO_PARTITION, un,
11929 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
11930 }
11931 
11932 
11933 /*
11934  *    Function: sd_mapblockaddr_iodone
11935  *
11936  * Description: Completion-side processing for partition management.
11937  *
11938  *     Context: May be called under interrupt context
11939  */
11940 
11941 static void
11942 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
11943 {
11944 	/* int	partition; */	/* Not used, see below. */
11945 	ASSERT(un != NULL);
11946 	ASSERT(bp != NULL);
11947 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11948 
11949 	SD_TRACE(SD_LOG_IO_PARTITION, un,
11950 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
11951 
11952 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
11953 		/*
11954 		 * We have an "overrun" buf to deal with...
11955 		 */
11956 		struct sd_xbuf	*xp;
11957 		struct buf	*obp;	/* ptr to the original buf */
11958 
11959 		xp = SD_GET_XBUF(bp);
11960 		ASSERT(xp != NULL);
11961 
11962 		/* Retrieve the pointer to the original buf */
11963 		obp = (struct buf *)xp->xb_private;
11964 		ASSERT(obp != NULL);
11965 
11966 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
11967 		bioerror(obp, bp->b_error);
11968 
11969 		sd_bioclone_free(bp);
11970 
11971 		/*
11972 		 * Get back the original buf.
11973 		 * Note that since the restoration of xb_blkno below
11974 		 * was removed, the sd_xbuf is not needed.
11975 		 */
11976 		bp = obp;
11977 		/*
11978 		 * xp = SD_GET_XBUF(bp);
11979 		 * ASSERT(xp != NULL);
11980 		 */
11981 	}
11982 
11983 	/*
11984 	 * Convert sd->xb_blkno back to a minor-device relative value.
11985 	 * Note: this has been commented out, as it is not needed in the
11986 	 * current implementation of the driver (ie, since this function
11987 	 * is at the top of the layering chains, so the info will be
11988 	 * discarded) and it is in the "hot" IO path.
11989 	 *
11990 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
11991 	 * xp->xb_blkno -= un->un_offset[partition];
11992 	 */
11993 
11994 	SD_NEXT_IODONE(index, un, bp);
11995 
11996 	SD_TRACE(SD_LOG_IO_PARTITION, un,
11997 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
11998 }
11999 
12000 
12001 /*
12002  *    Function: sd_mapblocksize_iostart
12003  *
12004  * Description: Convert between system block size (un->un_sys_blocksize)
12005  *		and target block size (un->un_tgt_blocksize).
12006  *
12007  *     Context: Can sleep to allocate resources.
12008  *
12009  * Assumptions: A higher layer has already performed any partition validation,
12010  *		and converted the xp->xb_blkno to an absolute value relative
12011  *		to the start of the device.
12012  *
12013  *		It is also assumed that the higher layer has implemented
12014  *		an "overrun" mechanism for the case where the request would
12015  *		read/write beyond the end of a partition.  In this case we
12016  *		assume (and ASSERT) that bp->b_resid == 0.
12017  *
12018  *		Note: The implementation for this routine assumes the target
12019  *		block size remains constant between allocation and transport.
12020  */
12021 
12022 static void
12023 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
12024 {
12025 	struct sd_mapblocksize_info	*bsp;
12026 	struct sd_xbuf			*xp;
12027 	offset_t first_byte;
12028 	daddr_t	start_block, end_block;
12029 	daddr_t	request_bytes;
12030 	ushort_t is_aligned = FALSE;
12031 
12032 	ASSERT(un != NULL);
12033 	ASSERT(bp != NULL);
12034 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12035 	ASSERT(bp->b_resid == 0);
12036 
12037 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12038 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
12039 
12040 	/*
12041 	 * For a non-writable CD, a write request is an error
12042 	 */
12043 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
12044 	    (un->un_f_mmc_writable_media == FALSE)) {
12045 		bioerror(bp, EIO);
12046 		bp->b_resid = bp->b_bcount;
12047 		SD_BEGIN_IODONE(index, un, bp);
12048 		return;
12049 	}
12050 
12051 	/*
12052 	 * We do not need a shadow buf if the device is using
12053 	 * un->un_sys_blocksize as its block size or if bcount == 0.
12054 	 * In this case there is no layer-private data block allocated.
12055 	 */
12056 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12057 	    (bp->b_bcount == 0)) {
12058 		goto done;
12059 	}
12060 
12061 #if defined(__i386) || defined(__amd64)
12062 	/* We do not support non-block-aligned transfers for ROD devices */
12063 	ASSERT(!ISROD(un));
12064 #endif
12065 
12066 	xp = SD_GET_XBUF(bp);
12067 	ASSERT(xp != NULL);
12068 
12069 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12070 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
12071 	    un->un_tgt_blocksize, un->un_sys_blocksize);
12072 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12073 	    "request start block:0x%x\n", xp->xb_blkno);
12074 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12075 	    "request len:0x%x\n", bp->b_bcount);
12076 
12077 	/*
12078 	 * Allocate the layer-private data area for the mapblocksize layer.
12079 	 * Layers are allowed to use the xp_private member of the sd_xbuf
12080 	 * struct to store the pointer to their layer-private data block, but
12081 	 * each layer also has the responsibility of restoring the prior
12082 	 * contents of xb_private before returning the buf/xbuf to the
12083 	 * higher layer that sent it.
12084 	 *
12085 	 * Here we save the prior contents of xp->xb_private into the
12086 	 * bsp->mbs_oprivate field of our layer-private data area. This value
12087 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
12088 	 * the layer-private area and returning the buf/xbuf to the layer
12089 	 * that sent it.
12090 	 *
12091 	 * Note that here we use kmem_zalloc for the allocation as there are
12092 	 * parts of the mapblocksize code that expect certain fields to be
12093 	 * zero unless explicitly set to a required value.
12094 	 */
12095 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12096 	bsp->mbs_oprivate = xp->xb_private;
12097 	xp->xb_private = bsp;
12098 
12099 	/*
12100 	 * This treats the data on the disk (target) as an array of bytes.
12101 	 * first_byte is the byte offset, from the beginning of the device,
12102 	 * to the location of the request. This is converted from a
12103 	 * un->un_sys_blocksize block address to a byte offset, and then back
12104 	 * to a block address based upon a un->un_tgt_blocksize block size.
12105 	 *
12106 	 * xp->xb_blkno should be absolute upon entry into this function,
12107 	 * but, but it is based upon partitions that use the "system"
12108 	 * block size. It must be adjusted to reflect the block size of
12109 	 * the target.
12110 	 *
12111 	 * Note that end_block is actually the block that follows the last
12112 	 * block of the request, but that's what is needed for the computation.
12113 	 */
12114 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12115 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
12116 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
12117 	    un->un_tgt_blocksize;
12118 
12119 	/* request_bytes is rounded up to a multiple of the target block size */
12120 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
12121 
12122 	/*
12123 	 * See if the starting address of the request and the request
12124 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
12125 	 * then we do not need to allocate a shadow buf to handle the request.
12126 	 */
12127 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
12128 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
12129 		is_aligned = TRUE;
12130 	}
12131 
12132 	if ((bp->b_flags & B_READ) == 0) {
12133 		/*
12134 		 * Lock the range for a write operation. An aligned request is
12135 		 * considered a simple write; otherwise the request must be a
12136 		 * read-modify-write.
12137 		 */
12138 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
12139 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
12140 	}
12141 
12142 	/*
12143 	 * Alloc a shadow buf if the request is not aligned. Also, this is
12144 	 * where the READ command is generated for a read-modify-write. (The
12145 	 * write phase is deferred until after the read completes.)
12146 	 */
12147 	if (is_aligned == FALSE) {
12148 
12149 		struct sd_mapblocksize_info	*shadow_bsp;
12150 		struct sd_xbuf	*shadow_xp;
12151 		struct buf	*shadow_bp;
12152 
12153 		/*
12154 		 * Allocate the shadow buf and it associated xbuf. Note that
12155 		 * after this call the xb_blkno value in both the original
12156 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
12157 		 * same: absolute relative to the start of the device, and
12158 		 * adjusted for the target block size. The b_blkno in the
12159 		 * shadow buf will also be set to this value. We should never
12160 		 * change b_blkno in the original bp however.
12161 		 *
12162 		 * Note also that the shadow buf will always need to be a
12163 		 * READ command, regardless of whether the incoming command
12164 		 * is a READ or a WRITE.
12165 		 */
12166 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
12167 		    xp->xb_blkno,
12168 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
12169 
12170 		shadow_xp = SD_GET_XBUF(shadow_bp);
12171 
12172 		/*
12173 		 * Allocate the layer-private data for the shadow buf.
12174 		 * (No need to preserve xb_private in the shadow xbuf.)
12175 		 */
12176 		shadow_xp->xb_private = shadow_bsp =
12177 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12178 
12179 		/*
12180 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
12181 		 * to figure out where the start of the user data is (based upon
12182 		 * the system block size) in the data returned by the READ
12183 		 * command (which will be based upon the target blocksize). Note
12184 		 * that this is only really used if the request is unaligned.
12185 		 */
12186 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
12187 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
12188 		ASSERT((bsp->mbs_copy_offset >= 0) &&
12189 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
12190 
12191 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
12192 
12193 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
12194 
12195 		/* Transfer the wmap (if any) to the shadow buf */
12196 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
12197 		bsp->mbs_wmp = NULL;
12198 
12199 		/*
12200 		 * The shadow buf goes on from here in place of the
12201 		 * original buf.
12202 		 */
12203 		shadow_bsp->mbs_orig_bp = bp;
12204 		bp = shadow_bp;
12205 	}
12206 
12207 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12208 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
12209 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12210 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
12211 	    request_bytes);
12212 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12213 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
12214 
12215 done:
12216 	SD_NEXT_IOSTART(index, un, bp);
12217 
12218 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12219 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
12220 }
12221 
12222 
12223 /*
12224  *    Function: sd_mapblocksize_iodone
12225  *
12226  * Description: Completion side processing for block-size mapping.
12227  *
12228  *     Context: May be called under interrupt context
12229  */
12230 
12231 static void
12232 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
12233 {
12234 	struct sd_mapblocksize_info	*bsp;
12235 	struct sd_xbuf	*xp;
12236 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
12237 	struct buf	*orig_bp;	/* ptr to the original buf */
12238 	offset_t	shadow_end;
12239 	offset_t	request_end;
12240 	offset_t	shadow_start;
12241 	ssize_t		copy_offset;
12242 	size_t		copy_length;
12243 	size_t		shortfall;
12244 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
12245 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
12246 
12247 	ASSERT(un != NULL);
12248 	ASSERT(bp != NULL);
12249 
12250 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12251 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
12252 
12253 	/*
12254 	 * There is no shadow buf or layer-private data if the target is
12255 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
12256 	 */
12257 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12258 	    (bp->b_bcount == 0)) {
12259 		goto exit;
12260 	}
12261 
12262 	xp = SD_GET_XBUF(bp);
12263 	ASSERT(xp != NULL);
12264 
12265 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
12266 	bsp = xp->xb_private;
12267 
12268 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
12269 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
12270 
12271 	if (is_write) {
12272 		/*
12273 		 * For a WRITE request we must free up the block range that
12274 		 * we have locked up.  This holds regardless of whether this is
12275 		 * an aligned write request or a read-modify-write request.
12276 		 */
12277 		sd_range_unlock(un, bsp->mbs_wmp);
12278 		bsp->mbs_wmp = NULL;
12279 	}
12280 
12281 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
12282 		/*
12283 		 * An aligned read or write command will have no shadow buf;
12284 		 * there is not much else to do with it.
12285 		 */
12286 		goto done;
12287 	}
12288 
12289 	orig_bp = bsp->mbs_orig_bp;
12290 	ASSERT(orig_bp != NULL);
12291 	orig_xp = SD_GET_XBUF(orig_bp);
12292 	ASSERT(orig_xp != NULL);
12293 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12294 
12295 	if (!is_write && has_wmap) {
12296 		/*
12297 		 * A READ with a wmap means this is the READ phase of a
12298 		 * read-modify-write. If an error occurred on the READ then
12299 		 * we do not proceed with the WRITE phase or copy any data.
12300 		 * Just release the write maps and return with an error.
12301 		 */
12302 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
12303 			orig_bp->b_resid = orig_bp->b_bcount;
12304 			bioerror(orig_bp, bp->b_error);
12305 			sd_range_unlock(un, bsp->mbs_wmp);
12306 			goto freebuf_done;
12307 		}
12308 	}
12309 
12310 	/*
12311 	 * Here is where we set up to copy the data from the shadow buf
12312 	 * into the space associated with the original buf.
12313 	 *
12314 	 * To deal with the conversion between block sizes, these
12315 	 * computations treat the data as an array of bytes, with the
12316 	 * first byte (byte 0) corresponding to the first byte in the
12317 	 * first block on the disk.
12318 	 */
12319 
12320 	/*
12321 	 * shadow_start and shadow_len indicate the location and size of
12322 	 * the data returned with the shadow IO request.
12323 	 */
12324 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12325 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
12326 
12327 	/*
12328 	 * copy_offset gives the offset (in bytes) from the start of the first
12329 	 * block of the READ request to the beginning of the data.  We retrieve
12330 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
12331 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
12332 	 * data to be copied (in bytes).
12333 	 */
12334 	copy_offset  = bsp->mbs_copy_offset;
12335 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
12336 	copy_length  = orig_bp->b_bcount;
12337 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
12338 
12339 	/*
12340 	 * Set up the resid and error fields of orig_bp as appropriate.
12341 	 */
12342 	if (shadow_end >= request_end) {
12343 		/* We got all the requested data; set resid to zero */
12344 		orig_bp->b_resid = 0;
12345 	} else {
12346 		/*
12347 		 * We failed to get enough data to fully satisfy the original
12348 		 * request. Just copy back whatever data we got and set
12349 		 * up the residual and error code as required.
12350 		 *
12351 		 * 'shortfall' is the amount by which the data received with the
12352 		 * shadow buf has "fallen short" of the requested amount.
12353 		 */
12354 		shortfall = (size_t)(request_end - shadow_end);
12355 
12356 		if (shortfall > orig_bp->b_bcount) {
12357 			/*
12358 			 * We did not get enough data to even partially
12359 			 * fulfill the original request.  The residual is
12360 			 * equal to the amount requested.
12361 			 */
12362 			orig_bp->b_resid = orig_bp->b_bcount;
12363 		} else {
12364 			/*
12365 			 * We did not get all the data that we requested
12366 			 * from the device, but we will try to return what
12367 			 * portion we did get.
12368 			 */
12369 			orig_bp->b_resid = shortfall;
12370 		}
12371 		ASSERT(copy_length >= orig_bp->b_resid);
12372 		copy_length  -= orig_bp->b_resid;
12373 	}
12374 
12375 	/* Propagate the error code from the shadow buf to the original buf */
12376 	bioerror(orig_bp, bp->b_error);
12377 
12378 	if (is_write) {
12379 		goto freebuf_done;	/* No data copying for a WRITE */
12380 	}
12381 
12382 	if (has_wmap) {
12383 		/*
12384 		 * This is a READ command from the READ phase of a
12385 		 * read-modify-write request. We have to copy the data given
12386 		 * by the user OVER the data returned by the READ command,
12387 		 * then convert the command from a READ to a WRITE and send
12388 		 * it back to the target.
12389 		 */
12390 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
12391 		    copy_length);
12392 
12393 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
12394 
12395 		/*
12396 		 * Dispatch the WRITE command to the taskq thread, which
12397 		 * will in turn send the command to the target. When the
12398 		 * WRITE command completes, we (sd_mapblocksize_iodone())
12399 		 * will get called again as part of the iodone chain
12400 		 * processing for it. Note that we will still be dealing
12401 		 * with the shadow buf at that point.
12402 		 */
12403 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
12404 		    KM_NOSLEEP) != 0) {
12405 			/*
12406 			 * Dispatch was successful so we are done. Return
12407 			 * without going any higher up the iodone chain. Do
12408 			 * not free up any layer-private data until after the
12409 			 * WRITE completes.
12410 			 */
12411 			return;
12412 		}
12413 
12414 		/*
12415 		 * Dispatch of the WRITE command failed; set up the error
12416 		 * condition and send this IO back up the iodone chain.
12417 		 */
12418 		bioerror(orig_bp, EIO);
12419 		orig_bp->b_resid = orig_bp->b_bcount;
12420 
12421 	} else {
12422 		/*
12423 		 * This is a regular READ request (ie, not a RMW). Copy the
12424 		 * data from the shadow buf into the original buf. The
12425 		 * copy_offset compensates for any "misalignment" between the
12426 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
12427 		 * original buf (with its un->un_sys_blocksize blocks).
12428 		 */
12429 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
12430 		    copy_length);
12431 	}
12432 
12433 freebuf_done:
12434 
12435 	/*
12436 	 * At this point we still have both the shadow buf AND the original
12437 	 * buf to deal with, as well as the layer-private data area in each.
12438 	 * Local variables are as follows:
12439 	 *
12440 	 * bp -- points to shadow buf
12441 	 * xp -- points to xbuf of shadow buf
12442 	 * bsp -- points to layer-private data area of shadow buf
12443 	 * orig_bp -- points to original buf
12444 	 *
12445 	 * First free the shadow buf and its associated xbuf, then free the
12446 	 * layer-private data area from the shadow buf. There is no need to
12447 	 * restore xb_private in the shadow xbuf.
12448 	 */
12449 	sd_shadow_buf_free(bp);
12450 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12451 
12452 	/*
12453 	 * Now update the local variables to point to the original buf, xbuf,
12454 	 * and layer-private area.
12455 	 */
12456 	bp = orig_bp;
12457 	xp = SD_GET_XBUF(bp);
12458 	ASSERT(xp != NULL);
12459 	ASSERT(xp == orig_xp);
12460 	bsp = xp->xb_private;
12461 	ASSERT(bsp != NULL);
12462 
12463 done:
12464 	/*
12465 	 * Restore xb_private to whatever it was set to by the next higher
12466 	 * layer in the chain, then free the layer-private data area.
12467 	 */
12468 	xp->xb_private = bsp->mbs_oprivate;
12469 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12470 
12471 exit:
12472 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
12473 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
12474 
12475 	SD_NEXT_IODONE(index, un, bp);
12476 }
12477 
12478 
12479 /*
12480  *    Function: sd_checksum_iostart
12481  *
12482  * Description: A stub function for a layer that's currently not used.
12483  *		For now just a placeholder.
12484  *
12485  *     Context: Kernel thread context
12486  */
12487 
12488 static void
12489 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
12490 {
12491 	ASSERT(un != NULL);
12492 	ASSERT(bp != NULL);
12493 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12494 	SD_NEXT_IOSTART(index, un, bp);
12495 }
12496 
12497 
12498 /*
12499  *    Function: sd_checksum_iodone
12500  *
12501  * Description: A stub function for a layer that's currently not used.
12502  *		For now just a placeholder.
12503  *
12504  *     Context: May be called under interrupt context
12505  */
12506 
12507 static void
12508 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
12509 {
12510 	ASSERT(un != NULL);
12511 	ASSERT(bp != NULL);
12512 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12513 	SD_NEXT_IODONE(index, un, bp);
12514 }
12515 
12516 
12517 /*
12518  *    Function: sd_checksum_uscsi_iostart
12519  *
12520  * Description: A stub function for a layer that's currently not used.
12521  *		For now just a placeholder.
12522  *
12523  *     Context: Kernel thread context
12524  */
12525 
12526 static void
12527 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
12528 {
12529 	ASSERT(un != NULL);
12530 	ASSERT(bp != NULL);
12531 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12532 	SD_NEXT_IOSTART(index, un, bp);
12533 }
12534 
12535 
12536 /*
12537  *    Function: sd_checksum_uscsi_iodone
12538  *
12539  * Description: A stub function for a layer that's currently not used.
12540  *		For now just a placeholder.
12541  *
12542  *     Context: May be called under interrupt context
12543  */
12544 
12545 static void
12546 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12547 {
12548 	ASSERT(un != NULL);
12549 	ASSERT(bp != NULL);
12550 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12551 	SD_NEXT_IODONE(index, un, bp);
12552 }
12553 
12554 
12555 /*
12556  *    Function: sd_pm_iostart
12557  *
12558  * Description: iostart-side routine for Power mangement.
12559  *
12560  *     Context: Kernel thread context
12561  */
12562 
12563 static void
12564 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
12565 {
12566 	ASSERT(un != NULL);
12567 	ASSERT(bp != NULL);
12568 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12569 	ASSERT(!mutex_owned(&un->un_pm_mutex));
12570 
12571 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
12572 
12573 	if (sd_pm_entry(un) != DDI_SUCCESS) {
12574 		/*
12575 		 * Set up to return the failed buf back up the 'iodone'
12576 		 * side of the calling chain.
12577 		 */
12578 		bioerror(bp, EIO);
12579 		bp->b_resid = bp->b_bcount;
12580 
12581 		SD_BEGIN_IODONE(index, un, bp);
12582 
12583 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
12584 		return;
12585 	}
12586 
12587 	SD_NEXT_IOSTART(index, un, bp);
12588 
12589 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
12590 }
12591 
12592 
12593 /*
12594  *    Function: sd_pm_iodone
12595  *
12596  * Description: iodone-side routine for power mangement.
12597  *
12598  *     Context: may be called from interrupt context
12599  */
12600 
12601 static void
12602 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
12603 {
12604 	ASSERT(un != NULL);
12605 	ASSERT(bp != NULL);
12606 	ASSERT(!mutex_owned(&un->un_pm_mutex));
12607 
12608 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
12609 
12610 	/*
12611 	 * After attach the following flag is only read, so don't
12612 	 * take the penalty of acquiring a mutex for it.
12613 	 */
12614 	if (un->un_f_pm_is_enabled == TRUE) {
12615 		sd_pm_exit(un);
12616 	}
12617 
12618 	SD_NEXT_IODONE(index, un, bp);
12619 
12620 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
12621 }
12622 
12623 
12624 /*
12625  *    Function: sd_core_iostart
12626  *
12627  * Description: Primary driver function for enqueuing buf(9S) structs from
12628  *		the system and initiating IO to the target device
12629  *
12630  *     Context: Kernel thread context. Can sleep.
12631  *
12632  * Assumptions:  - The given xp->xb_blkno is absolute
12633  *		   (ie, relative to the start of the device).
12634  *		 - The IO is to be done using the native blocksize of
12635  *		   the device, as specified in un->un_tgt_blocksize.
12636  */
12637 /* ARGSUSED */
12638 static void
12639 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
12640 {
12641 	struct sd_xbuf *xp;
12642 
12643 	ASSERT(un != NULL);
12644 	ASSERT(bp != NULL);
12645 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12646 	ASSERT(bp->b_resid == 0);
12647 
12648 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
12649 
12650 	xp = SD_GET_XBUF(bp);
12651 	ASSERT(xp != NULL);
12652 
12653 	mutex_enter(SD_MUTEX(un));
12654 
12655 	/*
12656 	 * If we are currently in the failfast state, fail any new IO
12657 	 * that has B_FAILFAST set, then return.
12658 	 */
12659 	if ((bp->b_flags & B_FAILFAST) &&
12660 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
12661 		mutex_exit(SD_MUTEX(un));
12662 		bioerror(bp, EIO);
12663 		bp->b_resid = bp->b_bcount;
12664 		SD_BEGIN_IODONE(index, un, bp);
12665 		return;
12666 	}
12667 
12668 	if (SD_IS_DIRECT_PRIORITY(xp)) {
12669 		/*
12670 		 * Priority command -- transport it immediately.
12671 		 *
12672 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
12673 		 * because all direct priority commands should be associated
12674 		 * with error recovery actions which we don't want to retry.
12675 		 */
12676 		sd_start_cmds(un, bp);
12677 	} else {
12678 		/*
12679 		 * Normal command -- add it to the wait queue, then start
12680 		 * transporting commands from the wait queue.
12681 		 */
12682 		sd_add_buf_to_waitq(un, bp);
12683 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
12684 		sd_start_cmds(un, NULL);
12685 	}
12686 
12687 	mutex_exit(SD_MUTEX(un));
12688 
12689 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
12690 }
12691 
12692 
12693 /*
12694  *    Function: sd_init_cdb_limits
12695  *
12696  * Description: This is to handle scsi_pkt initialization differences
12697  *		between the driver platforms.
12698  *
12699  *		Legacy behaviors:
12700  *
12701  *		If the block number or the sector count exceeds the
12702  *		capabilities of a Group 0 command, shift over to a
12703  *		Group 1 command. We don't blindly use Group 1
12704  *		commands because a) some drives (CDC Wren IVs) get a
12705  *		bit confused, and b) there is probably a fair amount
12706  *		of speed difference for a target to receive and decode
12707  *		a 10 byte command instead of a 6 byte command.
12708  *
12709  *		The xfer time difference of 6 vs 10 byte CDBs is
12710  *		still significant so this code is still worthwhile.
12711  *		10 byte CDBs are very inefficient with the fas HBA driver
12712  *		and older disks. Each CDB byte took 1 usec with some
12713  *		popular disks.
12714  *
12715  *     Context: Must be called at attach time
12716  */
12717 
12718 static void
12719 sd_init_cdb_limits(struct sd_lun *un)
12720 {
12721 	/*
12722 	 * Use CDB_GROUP1 commands for most devices except for
12723 	 * parallel SCSI fixed drives in which case we get better
12724 	 * performance using CDB_GROUP0 commands (where applicable).
12725 	 */
12726 	un->un_mincdb = SD_CDB_GROUP1;
12727 #if !defined(__fibre)
12728 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
12729 	    !ISREMOVABLE(un)) {
12730 		un->un_mincdb = SD_CDB_GROUP0;
12731 	}
12732 #endif
12733 
12734 	/*
12735 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
12736 	 * commands for fixed disks unless we are building for a 32 bit
12737 	 * kernel.
12738 	 */
12739 #ifdef _LP64
12740 	un->un_maxcdb = (ISREMOVABLE(un)) ? SD_CDB_GROUP5 : SD_CDB_GROUP4;
12741 #else
12742 	un->un_maxcdb = (ISREMOVABLE(un)) ? SD_CDB_GROUP5 : SD_CDB_GROUP1;
12743 #endif
12744 
12745 	/*
12746 	 * x86 systems require the PKT_DMA_PARTIAL flag
12747 	 */
12748 #if defined(__x86)
12749 	un->un_pkt_flags = PKT_DMA_PARTIAL;
12750 #else
12751 	un->un_pkt_flags = 0;
12752 #endif
12753 
12754 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
12755 	    ? sizeof (struct scsi_arq_status) : 1);
12756 	un->un_cmd_timeout = (ushort_t)sd_io_time;
12757 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
12758 }
12759 
12760 
12761 /*
12762  *    Function: sd_initpkt_for_buf
12763  *
12764  * Description: Allocate and initialize for transport a scsi_pkt struct,
12765  *		based upon the info specified in the given buf struct.
12766  *
12767  *		Assumes the xb_blkno in the request is absolute (ie,
12768  *		relative to the start of the device (NOT partition!).
12769  *		Also assumes that the request is using the native block
12770  *		size of the device (as returned by the READ CAPACITY
12771  *		command).
12772  *
12773  * Return Code: SD_PKT_ALLOC_SUCCESS
12774  *		SD_PKT_ALLOC_FAILURE
12775  *		SD_PKT_ALLOC_FAILURE_NO_DMA
12776  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
12777  *
12778  *     Context: Kernel thread and may be called from software interrupt context
12779  *		as part of a sdrunout callback. This function may not block or
12780  *		call routines that block
12781  */
12782 
12783 static int
12784 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
12785 {
12786 	struct sd_xbuf	*xp;
12787 	struct scsi_pkt *pktp = NULL;
12788 	struct sd_lun	*un;
12789 	size_t		blockcount;
12790 	daddr_t		startblock;
12791 	int		rval;
12792 	int		cmd_flags;
12793 
12794 	ASSERT(bp != NULL);
12795 	ASSERT(pktpp != NULL);
12796 	xp = SD_GET_XBUF(bp);
12797 	ASSERT(xp != NULL);
12798 	un = SD_GET_UN(bp);
12799 	ASSERT(un != NULL);
12800 	ASSERT(mutex_owned(SD_MUTEX(un)));
12801 	ASSERT(bp->b_resid == 0);
12802 
12803 	SD_TRACE(SD_LOG_IO_CORE, un,
12804 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
12805 
12806 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12807 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
12808 		/*
12809 		 * Already have a scsi_pkt -- just need DMA resources.
12810 		 * We must recompute the CDB in case the mapping returns
12811 		 * a nonzero pkt_resid.
12812 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
12813 		 * that is being retried, the unmap/remap of the DMA resouces
12814 		 * will result in the entire transfer starting over again
12815 		 * from the very first block.
12816 		 */
12817 		ASSERT(xp->xb_pktp != NULL);
12818 		pktp = xp->xb_pktp;
12819 	} else {
12820 		pktp = NULL;
12821 	}
12822 #endif /* __i386 || __amd64 */
12823 
12824 	startblock = xp->xb_blkno;	/* Absolute block num. */
12825 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
12826 
12827 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12828 
12829 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
12830 
12831 #else
12832 
12833 	cmd_flags = un->un_pkt_flags | xp->xb_pkt_flags;
12834 
12835 #endif
12836 
12837 	/*
12838 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
12839 	 * call scsi_init_pkt, and build the CDB.
12840 	 */
12841 	rval = sd_setup_rw_pkt(un, &pktp, bp,
12842 	    cmd_flags, sdrunout, (caddr_t)un,
12843 	    startblock, blockcount);
12844 
12845 	if (rval == 0) {
12846 		/*
12847 		 * Success.
12848 		 *
12849 		 * If partial DMA is being used and required for this transfer.
12850 		 * set it up here.
12851 		 */
12852 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
12853 		    (pktp->pkt_resid != 0)) {
12854 
12855 			/*
12856 			 * Save the CDB length and pkt_resid for the
12857 			 * next xfer
12858 			 */
12859 			xp->xb_dma_resid = pktp->pkt_resid;
12860 
12861 			/* rezero resid */
12862 			pktp->pkt_resid = 0;
12863 
12864 		} else {
12865 			xp->xb_dma_resid = 0;
12866 		}
12867 
12868 		pktp->pkt_flags = un->un_tagflags;
12869 		pktp->pkt_time  = un->un_cmd_timeout;
12870 		pktp->pkt_comp  = sdintr;
12871 
12872 		pktp->pkt_private = bp;
12873 		*pktpp = pktp;
12874 
12875 		SD_TRACE(SD_LOG_IO_CORE, un,
12876 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
12877 
12878 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12879 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
12880 #endif
12881 
12882 		return (SD_PKT_ALLOC_SUCCESS);
12883 
12884 	}
12885 
12886 	/*
12887 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
12888 	 * from sd_setup_rw_pkt.
12889 	 */
12890 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
12891 
12892 	if (rval == SD_PKT_ALLOC_FAILURE) {
12893 		*pktpp = NULL;
12894 		/*
12895 		 * Set the driver state to RWAIT to indicate the driver
12896 		 * is waiting on resource allocations. The driver will not
12897 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
12898 		 */
12899 		New_state(un, SD_STATE_RWAIT);
12900 
12901 		SD_ERROR(SD_LOG_IO_CORE, un,
12902 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
12903 
12904 		if ((bp->b_flags & B_ERROR) != 0) {
12905 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
12906 		}
12907 		return (SD_PKT_ALLOC_FAILURE);
12908 	} else {
12909 		/*
12910 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
12911 		 *
12912 		 * This should never happen.  Maybe someone messed with the
12913 		 * kernel's minphys?
12914 		 */
12915 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12916 		    "Request rejected: too large for CDB: "
12917 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
12918 		SD_ERROR(SD_LOG_IO_CORE, un,
12919 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
12920 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
12921 
12922 	}
12923 }
12924 
12925 
12926 /*
12927  *    Function: sd_destroypkt_for_buf
12928  *
12929  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
12930  *
12931  *     Context: Kernel thread or interrupt context
12932  */
12933 
12934 static void
12935 sd_destroypkt_for_buf(struct buf *bp)
12936 {
12937 	ASSERT(bp != NULL);
12938 	ASSERT(SD_GET_UN(bp) != NULL);
12939 
12940 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
12941 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
12942 
12943 	ASSERT(SD_GET_PKTP(bp) != NULL);
12944 	scsi_destroy_pkt(SD_GET_PKTP(bp));
12945 
12946 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
12947 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
12948 }
12949 
12950 /*
12951  *    Function: sd_setup_rw_pkt
12952  *
12953  * Description: Determines appropriate CDB group for the requested LBA
12954  *		and transfer length, calls scsi_init_pkt, and builds
12955  *		the CDB.  Do not use for partial DMA transfers except
12956  *		for the initial transfer since the CDB size must
12957  *		remain constant.
12958  *
12959  *     Context: Kernel thread and may be called from software interrupt
12960  *		context as part of a sdrunout callback. This function may not
12961  *		block or call routines that block
12962  */
12963 
12964 
12965 int
12966 sd_setup_rw_pkt(struct sd_lun *un,
12967     struct scsi_pkt **pktpp, struct buf *bp, int flags,
12968     int (*callback)(caddr_t), caddr_t callback_arg,
12969     diskaddr_t lba, uint32_t blockcount)
12970 {
12971 	struct scsi_pkt *return_pktp;
12972 	union scsi_cdb *cdbp;
12973 	struct sd_cdbinfo *cp = NULL;
12974 	int i;
12975 
12976 	/*
12977 	 * See which size CDB to use, based upon the request.
12978 	 */
12979 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
12980 
12981 		/*
12982 		 * Check lba and block count against sd_cdbtab limits.
12983 		 * In the partial DMA case, we have to use the same size
12984 		 * CDB for all the transfers.  Check lba + blockcount
12985 		 * against the max LBA so we know that segment of the
12986 		 * transfer can use the CDB we select.
12987 		 */
12988 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
12989 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
12990 
12991 			/*
12992 			 * The command will fit into the CDB type
12993 			 * specified by sd_cdbtab[i].
12994 			 */
12995 			cp = sd_cdbtab + i;
12996 
12997 			/*
12998 			 * Call scsi_init_pkt so we can fill in the
12999 			 * CDB.
13000 			 */
13001 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
13002 			    bp, cp->sc_grpcode, un->un_status_len, 0,
13003 			    flags, callback, callback_arg);
13004 
13005 			if (return_pktp != NULL) {
13006 
13007 				/*
13008 				 * Return new value of pkt
13009 				 */
13010 				*pktpp = return_pktp;
13011 
13012 				/*
13013 				 * To be safe, zero the CDB insuring there is
13014 				 * no leftover data from a previous command.
13015 				 */
13016 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
13017 
13018 				/*
13019 				 * Handle partial DMA mapping
13020 				 */
13021 				if (return_pktp->pkt_resid != 0) {
13022 
13023 					/*
13024 					 * Not going to xfer as many blocks as
13025 					 * originally expected
13026 					 */
13027 					blockcount -=
13028 					    SD_BYTES2TGTBLOCKS(un,
13029 						return_pktp->pkt_resid);
13030 				}
13031 
13032 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
13033 
13034 				/*
13035 				 * Set command byte based on the CDB
13036 				 * type we matched.
13037 				 */
13038 				cdbp->scc_cmd = cp->sc_grpmask |
13039 				    ((bp->b_flags & B_READ) ?
13040 					SCMD_READ : SCMD_WRITE);
13041 
13042 				sd_fill_scsi1_lun(un, return_pktp);
13043 
13044 				/*
13045 				 * Fill in LBA and length
13046 				 */
13047 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
13048 				    (cp->sc_grpcode == CDB_GROUP4) ||
13049 				    (cp->sc_grpcode == CDB_GROUP0) ||
13050 				    (cp->sc_grpcode == CDB_GROUP5));
13051 
13052 				if (cp->sc_grpcode == CDB_GROUP1) {
13053 					FORMG1ADDR(cdbp, lba);
13054 					FORMG1COUNT(cdbp, blockcount);
13055 					return (0);
13056 				} else if (cp->sc_grpcode == CDB_GROUP4) {
13057 					FORMG4LONGADDR(cdbp, lba);
13058 					FORMG4COUNT(cdbp, blockcount);
13059 					return (0);
13060 				} else if (cp->sc_grpcode == CDB_GROUP0) {
13061 					FORMG0ADDR(cdbp, lba);
13062 					FORMG0COUNT(cdbp, blockcount);
13063 					return (0);
13064 				} else if (cp->sc_grpcode == CDB_GROUP5) {
13065 					FORMG5ADDR(cdbp, lba);
13066 					FORMG5COUNT(cdbp, blockcount);
13067 					return (0);
13068 				}
13069 
13070 				/*
13071 				 * It should be impossible to not match one
13072 				 * of the CDB types above, so we should never
13073 				 * reach this point.  Set the CDB command byte
13074 				 * to test-unit-ready to avoid writing
13075 				 * to somewhere we don't intend.
13076 				 */
13077 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
13078 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13079 			} else {
13080 				/*
13081 				 * Couldn't get scsi_pkt
13082 				 */
13083 				return (SD_PKT_ALLOC_FAILURE);
13084 			}
13085 		}
13086 	}
13087 
13088 	/*
13089 	 * None of the available CDB types were suitable.  This really
13090 	 * should never happen:  on a 64 bit system we support
13091 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
13092 	 * and on a 32 bit system we will refuse to bind to a device
13093 	 * larger than 2TB so addresses will never be larger than 32 bits.
13094 	 */
13095 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13096 }
13097 
13098 /*
13099  *    Function: sd_setup_next_rw_pkt
13100  *
13101  * Description: Setup packet for partial DMA transfers, except for the
13102  * 		initial transfer.  sd_setup_rw_pkt should be used for
13103  *		the initial transfer.
13104  *
13105  *     Context: Kernel thread and may be called from interrupt context.
13106  */
13107 
13108 int
13109 sd_setup_next_rw_pkt(struct sd_lun *un,
13110     struct scsi_pkt *pktp, struct buf *bp,
13111     diskaddr_t lba, uint32_t blockcount)
13112 {
13113 	uchar_t com;
13114 	union scsi_cdb *cdbp;
13115 	uchar_t cdb_group_id;
13116 
13117 	ASSERT(pktp != NULL);
13118 	ASSERT(pktp->pkt_cdbp != NULL);
13119 
13120 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
13121 	com = cdbp->scc_cmd;
13122 	cdb_group_id = CDB_GROUPID(com);
13123 
13124 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
13125 	    (cdb_group_id == CDB_GROUPID_1) ||
13126 	    (cdb_group_id == CDB_GROUPID_4) ||
13127 	    (cdb_group_id == CDB_GROUPID_5));
13128 
13129 	/*
13130 	 * Move pkt to the next portion of the xfer.
13131 	 * func is NULL_FUNC so we do not have to release
13132 	 * the disk mutex here.
13133 	 */
13134 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
13135 	    NULL_FUNC, NULL) == pktp) {
13136 		/* Success.  Handle partial DMA */
13137 		if (pktp->pkt_resid != 0) {
13138 			blockcount -=
13139 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
13140 		}
13141 
13142 		cdbp->scc_cmd = com;
13143 		sd_fill_scsi1_lun(un, pktp);
13144 		if (cdb_group_id == CDB_GROUPID_1) {
13145 			FORMG1ADDR(cdbp, lba);
13146 			FORMG1COUNT(cdbp, blockcount);
13147 			return (0);
13148 		} else if (cdb_group_id == CDB_GROUPID_4) {
13149 			FORMG4LONGADDR(cdbp, lba);
13150 			FORMG4COUNT(cdbp, blockcount);
13151 			return (0);
13152 		} else if (cdb_group_id == CDB_GROUPID_0) {
13153 			FORMG0ADDR(cdbp, lba);
13154 			FORMG0COUNT(cdbp, blockcount);
13155 			return (0);
13156 		} else if (cdb_group_id == CDB_GROUPID_5) {
13157 			FORMG5ADDR(cdbp, lba);
13158 			FORMG5COUNT(cdbp, blockcount);
13159 			return (0);
13160 		}
13161 
13162 		/* Unreachable */
13163 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13164 	}
13165 
13166 	/*
13167 	 * Error setting up next portion of cmd transfer.
13168 	 * Something is definitely very wrong and this
13169 	 * should not happen.
13170 	 */
13171 	return (SD_PKT_ALLOC_FAILURE);
13172 }
13173 
13174 /*
13175  *    Function: sd_initpkt_for_uscsi
13176  *
13177  * Description: Allocate and initialize for transport a scsi_pkt struct,
13178  *		based upon the info specified in the given uscsi_cmd struct.
13179  *
13180  * Return Code: SD_PKT_ALLOC_SUCCESS
13181  *		SD_PKT_ALLOC_FAILURE
13182  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13183  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13184  *
13185  *     Context: Kernel thread and may be called from software interrupt context
13186  *		as part of a sdrunout callback. This function may not block or
13187  *		call routines that block
13188  */
13189 
13190 static int
13191 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
13192 {
13193 	struct uscsi_cmd *uscmd;
13194 	struct sd_xbuf	*xp;
13195 	struct scsi_pkt	*pktp;
13196 	struct sd_lun	*un;
13197 	uint32_t	flags = 0;
13198 
13199 	ASSERT(bp != NULL);
13200 	ASSERT(pktpp != NULL);
13201 	xp = SD_GET_XBUF(bp);
13202 	ASSERT(xp != NULL);
13203 	un = SD_GET_UN(bp);
13204 	ASSERT(un != NULL);
13205 	ASSERT(mutex_owned(SD_MUTEX(un)));
13206 
13207 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13208 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13209 	ASSERT(uscmd != NULL);
13210 
13211 	SD_TRACE(SD_LOG_IO_CORE, un,
13212 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
13213 
13214 	/* Allocate the scsi_pkt for the command. */
13215 	pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
13216 	    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
13217 	    sizeof (struct scsi_arq_status), 0, un->un_pkt_flags,
13218 	    sdrunout, (caddr_t)un);
13219 
13220 	if (pktp == NULL) {
13221 		*pktpp = NULL;
13222 		/*
13223 		 * Set the driver state to RWAIT to indicate the driver
13224 		 * is waiting on resource allocations. The driver will not
13225 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13226 		 */
13227 		New_state(un, SD_STATE_RWAIT);
13228 
13229 		SD_ERROR(SD_LOG_IO_CORE, un,
13230 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
13231 
13232 		if ((bp->b_flags & B_ERROR) != 0) {
13233 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13234 		}
13235 		return (SD_PKT_ALLOC_FAILURE);
13236 	}
13237 
13238 	/*
13239 	 * We do not do DMA breakup for USCSI commands, so return failure
13240 	 * here if all the needed DMA resources were not allocated.
13241 	 */
13242 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
13243 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
13244 		scsi_destroy_pkt(pktp);
13245 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
13246 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
13247 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
13248 	}
13249 
13250 	/* Init the cdb from the given uscsi struct */
13251 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
13252 	    uscmd->uscsi_cdb[0], 0, 0, 0);
13253 
13254 	sd_fill_scsi1_lun(un, pktp);
13255 
13256 	/*
13257 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
13258 	 * for listing of the supported flags.
13259 	 */
13260 
13261 	if (uscmd->uscsi_flags & USCSI_SILENT) {
13262 		flags |= FLAG_SILENT;
13263 	}
13264 
13265 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
13266 		flags |= FLAG_DIAGNOSE;
13267 	}
13268 
13269 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
13270 		flags |= FLAG_ISOLATE;
13271 	}
13272 
13273 	if (un->un_f_is_fibre == FALSE) {
13274 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
13275 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
13276 		}
13277 	}
13278 
13279 	/*
13280 	 * Set the pkt flags here so we save time later.
13281 	 * Note: These flags are NOT in the uscsi man page!!!
13282 	 */
13283 	if (uscmd->uscsi_flags & USCSI_HEAD) {
13284 		flags |= FLAG_HEAD;
13285 	}
13286 
13287 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
13288 		flags |= FLAG_NOINTR;
13289 	}
13290 
13291 	/*
13292 	 * For tagged queueing, things get a bit complicated.
13293 	 * Check first for head of queue and last for ordered queue.
13294 	 * If neither head nor order, use the default driver tag flags.
13295 	 */
13296 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
13297 		if (uscmd->uscsi_flags & USCSI_HTAG) {
13298 			flags |= FLAG_HTAG;
13299 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
13300 			flags |= FLAG_OTAG;
13301 		} else {
13302 			flags |= un->un_tagflags & FLAG_TAGMASK;
13303 		}
13304 	}
13305 
13306 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
13307 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
13308 	}
13309 
13310 	pktp->pkt_flags = flags;
13311 
13312 	/* Copy the caller's CDB into the pkt... */
13313 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
13314 
13315 	if (uscmd->uscsi_timeout == 0) {
13316 		pktp->pkt_time = un->un_uscsi_timeout;
13317 	} else {
13318 		pktp->pkt_time = uscmd->uscsi_timeout;
13319 	}
13320 
13321 	/* need it later to identify USCSI request in sdintr */
13322 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
13323 
13324 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
13325 
13326 	pktp->pkt_private = bp;
13327 	pktp->pkt_comp = sdintr;
13328 	*pktpp = pktp;
13329 
13330 	SD_TRACE(SD_LOG_IO_CORE, un,
13331 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
13332 
13333 	return (SD_PKT_ALLOC_SUCCESS);
13334 }
13335 
13336 
13337 /*
13338  *    Function: sd_destroypkt_for_uscsi
13339  *
13340  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
13341  *		IOs.. Also saves relevant info into the associated uscsi_cmd
13342  *		struct.
13343  *
13344  *     Context: May be called under interrupt context
13345  */
13346 
13347 static void
13348 sd_destroypkt_for_uscsi(struct buf *bp)
13349 {
13350 	struct uscsi_cmd *uscmd;
13351 	struct sd_xbuf	*xp;
13352 	struct scsi_pkt	*pktp;
13353 	struct sd_lun	*un;
13354 
13355 	ASSERT(bp != NULL);
13356 	xp = SD_GET_XBUF(bp);
13357 	ASSERT(xp != NULL);
13358 	un = SD_GET_UN(bp);
13359 	ASSERT(un != NULL);
13360 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13361 	pktp = SD_GET_PKTP(bp);
13362 	ASSERT(pktp != NULL);
13363 
13364 	SD_TRACE(SD_LOG_IO_CORE, un,
13365 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
13366 
13367 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13368 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13369 	ASSERT(uscmd != NULL);
13370 
13371 	/* Save the status and the residual into the uscsi_cmd struct */
13372 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
13373 	uscmd->uscsi_resid  = bp->b_resid;
13374 
13375 	/*
13376 	 * If enabled, copy any saved sense data into the area specified
13377 	 * by the uscsi command.
13378 	 */
13379 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
13380 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
13381 		/*
13382 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
13383 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
13384 		 */
13385 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
13386 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
13387 		bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, SENSE_LENGTH);
13388 	}
13389 
13390 	/* We are done with the scsi_pkt; free it now */
13391 	ASSERT(SD_GET_PKTP(bp) != NULL);
13392 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13393 
13394 	SD_TRACE(SD_LOG_IO_CORE, un,
13395 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
13396 }
13397 
13398 
13399 /*
13400  *    Function: sd_bioclone_alloc
13401  *
13402  * Description: Allocate a buf(9S) and init it as per the given buf
13403  *		and the various arguments.  The associated sd_xbuf
13404  *		struct is (nearly) duplicated.  The struct buf *bp
13405  *		argument is saved in new_xp->xb_private.
13406  *
13407  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13408  *		datalen - size of data area for the shadow bp
13409  *		blkno - starting LBA
13410  *		func - function pointer for b_iodone in the shadow buf. (May
13411  *			be NULL if none.)
13412  *
13413  * Return Code: Pointer to allocates buf(9S) struct
13414  *
13415  *     Context: Can sleep.
13416  */
13417 
13418 static struct buf *
13419 sd_bioclone_alloc(struct buf *bp, size_t datalen,
13420 	daddr_t blkno, int (*func)(struct buf *))
13421 {
13422 	struct	sd_lun	*un;
13423 	struct	sd_xbuf	*xp;
13424 	struct	sd_xbuf	*new_xp;
13425 	struct	buf	*new_bp;
13426 
13427 	ASSERT(bp != NULL);
13428 	xp = SD_GET_XBUF(bp);
13429 	ASSERT(xp != NULL);
13430 	un = SD_GET_UN(bp);
13431 	ASSERT(un != NULL);
13432 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13433 
13434 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
13435 	    NULL, KM_SLEEP);
13436 
13437 	new_bp->b_lblkno	= blkno;
13438 
13439 	/*
13440 	 * Allocate an xbuf for the shadow bp and copy the contents of the
13441 	 * original xbuf into it.
13442 	 */
13443 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
13444 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
13445 
13446 	/*
13447 	 * The given bp is automatically saved in the xb_private member
13448 	 * of the new xbuf.  Callers are allowed to depend on this.
13449 	 */
13450 	new_xp->xb_private = bp;
13451 
13452 	new_bp->b_private  = new_xp;
13453 
13454 	return (new_bp);
13455 }
13456 
13457 /*
13458  *    Function: sd_shadow_buf_alloc
13459  *
13460  * Description: Allocate a buf(9S) and init it as per the given buf
13461  *		and the various arguments.  The associated sd_xbuf
13462  *		struct is (nearly) duplicated.  The struct buf *bp
13463  *		argument is saved in new_xp->xb_private.
13464  *
13465  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13466  *		datalen - size of data area for the shadow bp
13467  *		bflags - B_READ or B_WRITE (pseudo flag)
13468  *		blkno - starting LBA
13469  *		func - function pointer for b_iodone in the shadow buf. (May
13470  *			be NULL if none.)
13471  *
13472  * Return Code: Pointer to allocates buf(9S) struct
13473  *
13474  *     Context: Can sleep.
13475  */
13476 
13477 static struct buf *
13478 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
13479 	daddr_t blkno, int (*func)(struct buf *))
13480 {
13481 	struct	sd_lun	*un;
13482 	struct	sd_xbuf	*xp;
13483 	struct	sd_xbuf	*new_xp;
13484 	struct	buf	*new_bp;
13485 
13486 	ASSERT(bp != NULL);
13487 	xp = SD_GET_XBUF(bp);
13488 	ASSERT(xp != NULL);
13489 	un = SD_GET_UN(bp);
13490 	ASSERT(un != NULL);
13491 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13492 
13493 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
13494 		bp_mapin(bp);
13495 	}
13496 
13497 	bflags &= (B_READ | B_WRITE);
13498 #if defined(__i386) || defined(__amd64)
13499 	new_bp = getrbuf(KM_SLEEP);
13500 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
13501 	new_bp->b_bcount = datalen;
13502 	new_bp->b_flags	= bp->b_flags | bflags;
13503 #else
13504 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
13505 	    datalen, bflags, SLEEP_FUNC, NULL);
13506 #endif
13507 	new_bp->av_forw	= NULL;
13508 	new_bp->av_back	= NULL;
13509 	new_bp->b_dev	= bp->b_dev;
13510 	new_bp->b_blkno	= blkno;
13511 	new_bp->b_iodone = func;
13512 	new_bp->b_edev	= bp->b_edev;
13513 	new_bp->b_resid	= 0;
13514 
13515 	/* We need to preserve the B_FAILFAST flag */
13516 	if (bp->b_flags & B_FAILFAST) {
13517 		new_bp->b_flags |= B_FAILFAST;
13518 	}
13519 
13520 	/*
13521 	 * Allocate an xbuf for the shadow bp and copy the contents of the
13522 	 * original xbuf into it.
13523 	 */
13524 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
13525 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
13526 
13527 	/* Need later to copy data between the shadow buf & original buf! */
13528 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
13529 
13530 	/*
13531 	 * The given bp is automatically saved in the xb_private member
13532 	 * of the new xbuf.  Callers are allowed to depend on this.
13533 	 */
13534 	new_xp->xb_private = bp;
13535 
13536 	new_bp->b_private  = new_xp;
13537 
13538 	return (new_bp);
13539 }
13540 
13541 /*
13542  *    Function: sd_bioclone_free
13543  *
13544  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
13545  *		in the larger than partition operation.
13546  *
13547  *     Context: May be called under interrupt context
13548  */
13549 
13550 static void
13551 sd_bioclone_free(struct buf *bp)
13552 {
13553 	struct sd_xbuf	*xp;
13554 
13555 	ASSERT(bp != NULL);
13556 	xp = SD_GET_XBUF(bp);
13557 	ASSERT(xp != NULL);
13558 
13559 	/*
13560 	 * Call bp_mapout() before freeing the buf,  in case a lower
13561 	 * layer or HBA  had done a bp_mapin().  we must do this here
13562 	 * as we are the "originator" of the shadow buf.
13563 	 */
13564 	bp_mapout(bp);
13565 
13566 	/*
13567 	 * Null out b_iodone before freeing the bp, to ensure that the driver
13568 	 * never gets confused by a stale value in this field. (Just a little
13569 	 * extra defensiveness here.)
13570 	 */
13571 	bp->b_iodone = NULL;
13572 
13573 	freerbuf(bp);
13574 
13575 	kmem_free(xp, sizeof (struct sd_xbuf));
13576 }
13577 
13578 /*
13579  *    Function: sd_shadow_buf_free
13580  *
13581  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
13582  *
13583  *     Context: May be called under interrupt context
13584  */
13585 
13586 static void
13587 sd_shadow_buf_free(struct buf *bp)
13588 {
13589 	struct sd_xbuf	*xp;
13590 
13591 	ASSERT(bp != NULL);
13592 	xp = SD_GET_XBUF(bp);
13593 	ASSERT(xp != NULL);
13594 
13595 #if defined(__sparc)
13596 	/*
13597 	 * Call bp_mapout() before freeing the buf,  in case a lower
13598 	 * layer or HBA  had done a bp_mapin().  we must do this here
13599 	 * as we are the "originator" of the shadow buf.
13600 	 */
13601 	bp_mapout(bp);
13602 #endif
13603 
13604 	/*
13605 	 * Null out b_iodone before freeing the bp, to ensure that the driver
13606 	 * never gets confused by a stale value in this field. (Just a little
13607 	 * extra defensiveness here.)
13608 	 */
13609 	bp->b_iodone = NULL;
13610 
13611 #if defined(__i386) || defined(__amd64)
13612 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
13613 	freerbuf(bp);
13614 #else
13615 	scsi_free_consistent_buf(bp);
13616 #endif
13617 
13618 	kmem_free(xp, sizeof (struct sd_xbuf));
13619 }
13620 
13621 
13622 /*
13623  *    Function: sd_print_transport_rejected_message
13624  *
13625  * Description: This implements the ludicrously complex rules for printing
13626  *		a "transport rejected" message.  This is to address the
13627  *		specific problem of having a flood of this error message
13628  *		produced when a failover occurs.
13629  *
13630  *     Context: Any.
13631  */
13632 
13633 static void
13634 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
13635 	int code)
13636 {
13637 	ASSERT(un != NULL);
13638 	ASSERT(mutex_owned(SD_MUTEX(un)));
13639 	ASSERT(xp != NULL);
13640 
13641 	/*
13642 	 * Print the "transport rejected" message under the following
13643 	 * conditions:
13644 	 *
13645 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
13646 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
13647 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
13648 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
13649 	 *   scsi_transport(9F) (which indicates that the target might have
13650 	 *   gone off-line).  This uses the un->un_tran_fatal_count
13651 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
13652 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
13653 	 *   from scsi_transport().
13654 	 *
13655 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
13656 	 * the preceeding cases in order for the message to be printed.
13657 	 */
13658 	if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) {
13659 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
13660 		    (code != TRAN_FATAL_ERROR) ||
13661 		    (un->un_tran_fatal_count == 1)) {
13662 			switch (code) {
13663 			case TRAN_BADPKT:
13664 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13665 				    "transport rejected bad packet\n");
13666 				break;
13667 			case TRAN_FATAL_ERROR:
13668 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13669 				    "transport rejected fatal error\n");
13670 				break;
13671 			default:
13672 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13673 				    "transport rejected (%d)\n", code);
13674 				break;
13675 			}
13676 		}
13677 	}
13678 }
13679 
13680 
13681 /*
13682  *    Function: sd_add_buf_to_waitq
13683  *
13684  * Description: Add the given buf(9S) struct to the wait queue for the
13685  *		instance.  If sorting is enabled, then the buf is added
13686  *		to the queue via an elevator sort algorithm (a la
13687  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
13688  *		If sorting is not enabled, then the buf is just added
13689  *		to the end of the wait queue.
13690  *
13691  * Return Code: void
13692  *
13693  *     Context: Does not sleep/block, therefore technically can be called
13694  *		from any context.  However if sorting is enabled then the
13695  *		execution time is indeterminate, and may take long if
13696  *		the wait queue grows large.
13697  */
13698 
13699 static void
13700 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
13701 {
13702 	struct buf *ap;
13703 
13704 	ASSERT(bp != NULL);
13705 	ASSERT(un != NULL);
13706 	ASSERT(mutex_owned(SD_MUTEX(un)));
13707 
13708 	/* If the queue is empty, add the buf as the only entry & return. */
13709 	if (un->un_waitq_headp == NULL) {
13710 		ASSERT(un->un_waitq_tailp == NULL);
13711 		un->un_waitq_headp = un->un_waitq_tailp = bp;
13712 		bp->av_forw = NULL;
13713 		return;
13714 	}
13715 
13716 	ASSERT(un->un_waitq_tailp != NULL);
13717 
13718 	/*
13719 	 * If sorting is disabled, just add the buf to the tail end of
13720 	 * the wait queue and return.
13721 	 */
13722 	if (un->un_f_disksort_disabled) {
13723 		un->un_waitq_tailp->av_forw = bp;
13724 		un->un_waitq_tailp = bp;
13725 		bp->av_forw = NULL;
13726 		return;
13727 	}
13728 
13729 	/*
13730 	 * Sort thru the list of requests currently on the wait queue
13731 	 * and add the new buf request at the appropriate position.
13732 	 *
13733 	 * The un->un_waitq_headp is an activity chain pointer on which
13734 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
13735 	 * first queue holds those requests which are positioned after
13736 	 * the current SD_GET_BLKNO() (in the first request); the second holds
13737 	 * requests which came in after their SD_GET_BLKNO() number was passed.
13738 	 * Thus we implement a one way scan, retracting after reaching
13739 	 * the end of the drive to the first request on the second
13740 	 * queue, at which time it becomes the first queue.
13741 	 * A one-way scan is natural because of the way UNIX read-ahead
13742 	 * blocks are allocated.
13743 	 *
13744 	 * If we lie after the first request, then we must locate the
13745 	 * second request list and add ourselves to it.
13746 	 */
13747 	ap = un->un_waitq_headp;
13748 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
13749 		while (ap->av_forw != NULL) {
13750 			/*
13751 			 * Look for an "inversion" in the (normally
13752 			 * ascending) block numbers. This indicates
13753 			 * the start of the second request list.
13754 			 */
13755 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
13756 				/*
13757 				 * Search the second request list for the
13758 				 * first request at a larger block number.
13759 				 * We go before that; however if there is
13760 				 * no such request, we go at the end.
13761 				 */
13762 				do {
13763 					if (SD_GET_BLKNO(bp) <
13764 					    SD_GET_BLKNO(ap->av_forw)) {
13765 						goto insert;
13766 					}
13767 					ap = ap->av_forw;
13768 				} while (ap->av_forw != NULL);
13769 				goto insert;		/* after last */
13770 			}
13771 			ap = ap->av_forw;
13772 		}
13773 
13774 		/*
13775 		 * No inversions... we will go after the last, and
13776 		 * be the first request in the second request list.
13777 		 */
13778 		goto insert;
13779 	}
13780 
13781 	/*
13782 	 * Request is at/after the current request...
13783 	 * sort in the first request list.
13784 	 */
13785 	while (ap->av_forw != NULL) {
13786 		/*
13787 		 * We want to go after the current request (1) if
13788 		 * there is an inversion after it (i.e. it is the end
13789 		 * of the first request list), or (2) if the next
13790 		 * request is a larger block no. than our request.
13791 		 */
13792 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
13793 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
13794 			goto insert;
13795 		}
13796 		ap = ap->av_forw;
13797 	}
13798 
13799 	/*
13800 	 * Neither a second list nor a larger request, therefore
13801 	 * we go at the end of the first list (which is the same
13802 	 * as the end of the whole schebang).
13803 	 */
13804 insert:
13805 	bp->av_forw = ap->av_forw;
13806 	ap->av_forw = bp;
13807 
13808 	/*
13809 	 * If we inserted onto the tail end of the waitq, make sure the
13810 	 * tail pointer is updated.
13811 	 */
13812 	if (ap == un->un_waitq_tailp) {
13813 		un->un_waitq_tailp = bp;
13814 	}
13815 }
13816 
13817 
13818 /*
13819  *    Function: sd_start_cmds
13820  *
13821  * Description: Remove and transport cmds from the driver queues.
13822  *
13823  *   Arguments: un - pointer to the unit (soft state) struct for the target.
13824  *
13825  *		immed_bp - ptr to a buf to be transported immediately. Only
13826  *		the immed_bp is transported; bufs on the waitq are not
13827  *		processed and the un_retry_bp is not checked.  If immed_bp is
13828  *		NULL, then normal queue processing is performed.
13829  *
13830  *     Context: May be called from kernel thread context, interrupt context,
13831  *		or runout callback context. This function may not block or
13832  *		call routines that block.
13833  */
13834 
13835 static void
13836 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
13837 {
13838 	struct	sd_xbuf	*xp;
13839 	struct	buf	*bp;
13840 	void	(*statp)(kstat_io_t *);
13841 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13842 	void	(*saved_statp)(kstat_io_t *);
13843 #endif
13844 	int	rval;
13845 
13846 	ASSERT(un != NULL);
13847 	ASSERT(mutex_owned(SD_MUTEX(un)));
13848 	ASSERT(un->un_ncmds_in_transport >= 0);
13849 	ASSERT(un->un_throttle >= 0);
13850 
13851 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
13852 
13853 	do {
13854 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13855 		saved_statp = NULL;
13856 #endif
13857 
13858 		/*
13859 		 * If we are syncing or dumping, fail the command to
13860 		 * avoid recursively calling back into scsi_transport().
13861 		 */
13862 		if (ddi_in_panic()) {
13863 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13864 			    "sd_start_cmds: panicking\n");
13865 			goto exit;
13866 		}
13867 
13868 		if ((bp = immed_bp) != NULL) {
13869 			/*
13870 			 * We have a bp that must be transported immediately.
13871 			 * It's OK to transport the immed_bp here without doing
13872 			 * the throttle limit check because the immed_bp is
13873 			 * always used in a retry/recovery case. This means
13874 			 * that we know we are not at the throttle limit by
13875 			 * virtue of the fact that to get here we must have
13876 			 * already gotten a command back via sdintr(). This also
13877 			 * relies on (1) the command on un_retry_bp preventing
13878 			 * further commands from the waitq from being issued;
13879 			 * and (2) the code in sd_retry_command checking the
13880 			 * throttle limit before issuing a delayed or immediate
13881 			 * retry. This holds even if the throttle limit is
13882 			 * currently ratcheted down from its maximum value.
13883 			 */
13884 			statp = kstat_runq_enter;
13885 			if (bp == un->un_retry_bp) {
13886 				ASSERT((un->un_retry_statp == NULL) ||
13887 				    (un->un_retry_statp == kstat_waitq_enter) ||
13888 				    (un->un_retry_statp ==
13889 				    kstat_runq_back_to_waitq));
13890 				/*
13891 				 * If the waitq kstat was incremented when
13892 				 * sd_set_retry_bp() queued this bp for a retry,
13893 				 * then we must set up statp so that the waitq
13894 				 * count will get decremented correctly below.
13895 				 * Also we must clear un->un_retry_statp to
13896 				 * ensure that we do not act on a stale value
13897 				 * in this field.
13898 				 */
13899 				if ((un->un_retry_statp == kstat_waitq_enter) ||
13900 				    (un->un_retry_statp ==
13901 				    kstat_runq_back_to_waitq)) {
13902 					statp = kstat_waitq_to_runq;
13903 				}
13904 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13905 				saved_statp = un->un_retry_statp;
13906 #endif
13907 				un->un_retry_statp = NULL;
13908 
13909 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
13910 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
13911 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
13912 				    un, un->un_retry_bp, un->un_throttle,
13913 				    un->un_ncmds_in_transport);
13914 			} else {
13915 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
13916 				    "processing priority bp:0x%p\n", bp);
13917 			}
13918 
13919 		} else if ((bp = un->un_waitq_headp) != NULL) {
13920 			/*
13921 			 * A command on the waitq is ready to go, but do not
13922 			 * send it if:
13923 			 *
13924 			 * (1) the throttle limit has been reached, or
13925 			 * (2) a retry is pending, or
13926 			 * (3) a START_STOP_UNIT callback pending, or
13927 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
13928 			 *	command is pending.
13929 			 *
13930 			 * For all of these conditions, IO processing will
13931 			 * restart after the condition is cleared.
13932 			 */
13933 			if (un->un_ncmds_in_transport >= un->un_throttle) {
13934 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13935 				    "sd_start_cmds: exiting, "
13936 				    "throttle limit reached!\n");
13937 				goto exit;
13938 			}
13939 			if (un->un_retry_bp != NULL) {
13940 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13941 				    "sd_start_cmds: exiting, retry pending!\n");
13942 				goto exit;
13943 			}
13944 			if (un->un_startstop_timeid != NULL) {
13945 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13946 				    "sd_start_cmds: exiting, "
13947 				    "START_STOP pending!\n");
13948 				goto exit;
13949 			}
13950 			if (un->un_direct_priority_timeid != NULL) {
13951 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13952 				    "sd_start_cmds: exiting, "
13953 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
13954 				goto exit;
13955 			}
13956 
13957 			/* Dequeue the command */
13958 			un->un_waitq_headp = bp->av_forw;
13959 			if (un->un_waitq_headp == NULL) {
13960 				un->un_waitq_tailp = NULL;
13961 			}
13962 			bp->av_forw = NULL;
13963 			statp = kstat_waitq_to_runq;
13964 			SD_TRACE(SD_LOG_IO_CORE, un,
13965 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
13966 
13967 		} else {
13968 			/* No work to do so bail out now */
13969 			SD_TRACE(SD_LOG_IO_CORE, un,
13970 			    "sd_start_cmds: no more work, exiting!\n");
13971 			goto exit;
13972 		}
13973 
13974 		/*
13975 		 * Reset the state to normal. This is the mechanism by which
13976 		 * the state transitions from either SD_STATE_RWAIT or
13977 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
13978 		 * If state is SD_STATE_PM_CHANGING then this command is
13979 		 * part of the device power control and the state must
13980 		 * not be put back to normal. Doing so would would
13981 		 * allow new commands to proceed when they shouldn't,
13982 		 * the device may be going off.
13983 		 */
13984 		if ((un->un_state != SD_STATE_SUSPENDED) &&
13985 		    (un->un_state != SD_STATE_PM_CHANGING)) {
13986 			New_state(un, SD_STATE_NORMAL);
13987 		    }
13988 
13989 		xp = SD_GET_XBUF(bp);
13990 		ASSERT(xp != NULL);
13991 
13992 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13993 		/*
13994 		 * Allocate the scsi_pkt if we need one, or attach DMA
13995 		 * resources if we have a scsi_pkt that needs them. The
13996 		 * latter should only occur for commands that are being
13997 		 * retried.
13998 		 */
13999 		if ((xp->xb_pktp == NULL) ||
14000 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
14001 #else
14002 		if (xp->xb_pktp == NULL) {
14003 #endif
14004 			/*
14005 			 * There is no scsi_pkt allocated for this buf. Call
14006 			 * the initpkt function to allocate & init one.
14007 			 *
14008 			 * The scsi_init_pkt runout callback functionality is
14009 			 * implemented as follows:
14010 			 *
14011 			 * 1) The initpkt function always calls
14012 			 *    scsi_init_pkt(9F) with sdrunout specified as the
14013 			 *    callback routine.
14014 			 * 2) A successful packet allocation is initialized and
14015 			 *    the I/O is transported.
14016 			 * 3) The I/O associated with an allocation resource
14017 			 *    failure is left on its queue to be retried via
14018 			 *    runout or the next I/O.
14019 			 * 4) The I/O associated with a DMA error is removed
14020 			 *    from the queue and failed with EIO. Processing of
14021 			 *    the transport queues is also halted to be
14022 			 *    restarted via runout or the next I/O.
14023 			 * 5) The I/O associated with a CDB size or packet
14024 			 *    size error is removed from the queue and failed
14025 			 *    with EIO. Processing of the transport queues is
14026 			 *    continued.
14027 			 *
14028 			 * Note: there is no interface for canceling a runout
14029 			 * callback. To prevent the driver from detaching or
14030 			 * suspending while a runout is pending the driver
14031 			 * state is set to SD_STATE_RWAIT
14032 			 *
14033 			 * Note: using the scsi_init_pkt callback facility can
14034 			 * result in an I/O request persisting at the head of
14035 			 * the list which cannot be satisfied even after
14036 			 * multiple retries. In the future the driver may
14037 			 * implement some kind of maximum runout count before
14038 			 * failing an I/O.
14039 			 *
14040 			 * Note: the use of funcp below may seem superfluous,
14041 			 * but it helps warlock figure out the correct
14042 			 * initpkt function calls (see [s]sd.wlcmd).
14043 			 */
14044 			struct scsi_pkt	*pktp;
14045 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
14046 
14047 			ASSERT(bp != un->un_rqs_bp);
14048 
14049 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
14050 			switch ((*funcp)(bp, &pktp)) {
14051 			case  SD_PKT_ALLOC_SUCCESS:
14052 				xp->xb_pktp = pktp;
14053 				SD_TRACE(SD_LOG_IO_CORE, un,
14054 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
14055 				    pktp);
14056 				goto got_pkt;
14057 
14058 			case SD_PKT_ALLOC_FAILURE:
14059 				/*
14060 				 * Temporary (hopefully) resource depletion.
14061 				 * Since retries and RQS commands always have a
14062 				 * scsi_pkt allocated, these cases should never
14063 				 * get here. So the only cases this needs to
14064 				 * handle is a bp from the waitq (which we put
14065 				 * back onto the waitq for sdrunout), or a bp
14066 				 * sent as an immed_bp (which we just fail).
14067 				 */
14068 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14069 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
14070 
14071 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14072 
14073 				if (bp == immed_bp) {
14074 					/*
14075 					 * If SD_XB_DMA_FREED is clear, then
14076 					 * this is a failure to allocate a
14077 					 * scsi_pkt, and we must fail the
14078 					 * command.
14079 					 */
14080 					if ((xp->xb_pkt_flags &
14081 					    SD_XB_DMA_FREED) == 0) {
14082 						break;
14083 					}
14084 
14085 					/*
14086 					 * If this immediate command is NOT our
14087 					 * un_retry_bp, then we must fail it.
14088 					 */
14089 					if (bp != un->un_retry_bp) {
14090 						break;
14091 					}
14092 
14093 					/*
14094 					 * We get here if this cmd is our
14095 					 * un_retry_bp that was DMAFREED, but
14096 					 * scsi_init_pkt() failed to reallocate
14097 					 * DMA resources when we attempted to
14098 					 * retry it. This can happen when an
14099 					 * mpxio failover is in progress, but
14100 					 * we don't want to just fail the
14101 					 * command in this case.
14102 					 *
14103 					 * Use timeout(9F) to restart it after
14104 					 * a 100ms delay.  We don't want to
14105 					 * let sdrunout() restart it, because
14106 					 * sdrunout() is just supposed to start
14107 					 * commands that are sitting on the
14108 					 * wait queue.  The un_retry_bp stays
14109 					 * set until the command completes, but
14110 					 * sdrunout can be called many times
14111 					 * before that happens.  Since sdrunout
14112 					 * cannot tell if the un_retry_bp is
14113 					 * already in the transport, it could
14114 					 * end up calling scsi_transport() for
14115 					 * the un_retry_bp multiple times.
14116 					 *
14117 					 * Also: don't schedule the callback
14118 					 * if some other callback is already
14119 					 * pending.
14120 					 */
14121 					if (un->un_retry_statp == NULL) {
14122 						/*
14123 						 * restore the kstat pointer to
14124 						 * keep kstat counts coherent
14125 						 * when we do retry the command.
14126 						 */
14127 						un->un_retry_statp =
14128 						    saved_statp;
14129 					}
14130 
14131 					if ((un->un_startstop_timeid == NULL) &&
14132 					    (un->un_retry_timeid == NULL) &&
14133 					    (un->un_direct_priority_timeid ==
14134 					    NULL)) {
14135 
14136 						un->un_retry_timeid =
14137 						    timeout(
14138 						    sd_start_retry_command,
14139 						    un, SD_RESTART_TIMEOUT);
14140 					}
14141 					goto exit;
14142 				}
14143 
14144 #else
14145 				if (bp == immed_bp) {
14146 					break;	/* Just fail the command */
14147 				}
14148 #endif
14149 
14150 				/* Add the buf back to the head of the waitq */
14151 				bp->av_forw = un->un_waitq_headp;
14152 				un->un_waitq_headp = bp;
14153 				if (un->un_waitq_tailp == NULL) {
14154 					un->un_waitq_tailp = bp;
14155 				}
14156 				goto exit;
14157 
14158 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
14159 				/*
14160 				 * HBA DMA resource failure. Fail the command
14161 				 * and continue processing of the queues.
14162 				 */
14163 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14164 				    "sd_start_cmds: "
14165 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
14166 				break;
14167 
14168 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
14169 				/*
14170 				 * Note:x86: Partial DMA mapping not supported
14171 				 * for USCSI commands, and all the needed DMA
14172 				 * resources were not allocated.
14173 				 */
14174 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14175 				    "sd_start_cmds: "
14176 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
14177 				break;
14178 
14179 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
14180 				/*
14181 				 * Note:x86: Request cannot fit into CDB based
14182 				 * on lba and len.
14183 				 */
14184 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14185 				    "sd_start_cmds: "
14186 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
14187 				break;
14188 
14189 			default:
14190 				/* Should NEVER get here! */
14191 				panic("scsi_initpkt error");
14192 				/*NOTREACHED*/
14193 			}
14194 
14195 			/*
14196 			 * Fatal error in allocating a scsi_pkt for this buf.
14197 			 * Update kstats & return the buf with an error code.
14198 			 * We must use sd_return_failed_command_no_restart() to
14199 			 * avoid a recursive call back into sd_start_cmds().
14200 			 * However this also means that we must keep processing
14201 			 * the waitq here in order to avoid stalling.
14202 			 */
14203 			if (statp == kstat_waitq_to_runq) {
14204 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
14205 			}
14206 			sd_return_failed_command_no_restart(un, bp, EIO);
14207 			if (bp == immed_bp) {
14208 				/* immed_bp is gone by now, so clear this */
14209 				immed_bp = NULL;
14210 			}
14211 			continue;
14212 		}
14213 got_pkt:
14214 		if (bp == immed_bp) {
14215 			/* goto the head of the class.... */
14216 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
14217 		}
14218 
14219 		un->un_ncmds_in_transport++;
14220 		SD_UPDATE_KSTATS(un, statp, bp);
14221 
14222 		/*
14223 		 * Call scsi_transport() to send the command to the target.
14224 		 * According to SCSA architecture, we must drop the mutex here
14225 		 * before calling scsi_transport() in order to avoid deadlock.
14226 		 * Note that the scsi_pkt's completion routine can be executed
14227 		 * (from interrupt context) even before the call to
14228 		 * scsi_transport() returns.
14229 		 */
14230 		SD_TRACE(SD_LOG_IO_CORE, un,
14231 		    "sd_start_cmds: calling scsi_transport()\n");
14232 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
14233 
14234 		mutex_exit(SD_MUTEX(un));
14235 		rval = scsi_transport(xp->xb_pktp);
14236 		mutex_enter(SD_MUTEX(un));
14237 
14238 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14239 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
14240 
14241 		switch (rval) {
14242 		case TRAN_ACCEPT:
14243 			/* Clear this with every pkt accepted by the HBA */
14244 			un->un_tran_fatal_count = 0;
14245 			break;	/* Success; try the next cmd (if any) */
14246 
14247 		case TRAN_BUSY:
14248 			un->un_ncmds_in_transport--;
14249 			ASSERT(un->un_ncmds_in_transport >= 0);
14250 
14251 			/*
14252 			 * Don't retry request sense, the sense data
14253 			 * is lost when another request is sent.
14254 			 * Free up the rqs buf and retry
14255 			 * the original failed cmd.  Update kstat.
14256 			 */
14257 			if (bp == un->un_rqs_bp) {
14258 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14259 				bp = sd_mark_rqs_idle(un, xp);
14260 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
14261 					NULL, NULL, EIO, SD_BSY_TIMEOUT / 500,
14262 					kstat_waitq_enter);
14263 				goto exit;
14264 			}
14265 
14266 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14267 			/*
14268 			 * Free the DMA resources for the  scsi_pkt. This will
14269 			 * allow mpxio to select another path the next time
14270 			 * we call scsi_transport() with this scsi_pkt.
14271 			 * See sdintr() for the rationalization behind this.
14272 			 */
14273 			if ((un->un_f_is_fibre == TRUE) &&
14274 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14275 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
14276 				scsi_dmafree(xp->xb_pktp);
14277 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14278 			}
14279 #endif
14280 
14281 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
14282 				/*
14283 				 * Commands that are SD_PATH_DIRECT_PRIORITY
14284 				 * are for error recovery situations. These do
14285 				 * not use the normal command waitq, so if they
14286 				 * get a TRAN_BUSY we cannot put them back onto
14287 				 * the waitq for later retry. One possible
14288 				 * problem is that there could already be some
14289 				 * other command on un_retry_bp that is waiting
14290 				 * for this one to complete, so we would be
14291 				 * deadlocked if we put this command back onto
14292 				 * the waitq for later retry (since un_retry_bp
14293 				 * must complete before the driver gets back to
14294 				 * commands on the waitq).
14295 				 *
14296 				 * To avoid deadlock we must schedule a callback
14297 				 * that will restart this command after a set
14298 				 * interval.  This should keep retrying for as
14299 				 * long as the underlying transport keeps
14300 				 * returning TRAN_BUSY (just like for other
14301 				 * commands).  Use the same timeout interval as
14302 				 * for the ordinary TRAN_BUSY retry.
14303 				 */
14304 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14305 				    "sd_start_cmds: scsi_transport() returned "
14306 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
14307 
14308 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14309 				un->un_direct_priority_timeid =
14310 				    timeout(sd_start_direct_priority_command,
14311 				    bp, SD_BSY_TIMEOUT / 500);
14312 
14313 				goto exit;
14314 			}
14315 
14316 			/*
14317 			 * For TRAN_BUSY, we want to reduce the throttle value,
14318 			 * unless we are retrying a command.
14319 			 */
14320 			if (bp != un->un_retry_bp) {
14321 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
14322 			}
14323 
14324 			/*
14325 			 * Set up the bp to be tried again 10 ms later.
14326 			 * Note:x86: Is there a timeout value in the sd_lun
14327 			 * for this condition?
14328 			 */
14329 			sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500,
14330 				kstat_runq_back_to_waitq);
14331 			goto exit;
14332 
14333 		case TRAN_FATAL_ERROR:
14334 			un->un_tran_fatal_count++;
14335 			/* FALLTHRU */
14336 
14337 		case TRAN_BADPKT:
14338 		default:
14339 			un->un_ncmds_in_transport--;
14340 			ASSERT(un->un_ncmds_in_transport >= 0);
14341 
14342 			/*
14343 			 * If this is our REQUEST SENSE command with a
14344 			 * transport error, we must get back the pointers
14345 			 * to the original buf, and mark the REQUEST
14346 			 * SENSE command as "available".
14347 			 */
14348 			if (bp == un->un_rqs_bp) {
14349 				bp = sd_mark_rqs_idle(un, xp);
14350 				xp = SD_GET_XBUF(bp);
14351 			} else {
14352 				/*
14353 				 * Legacy behavior: do not update transport
14354 				 * error count for request sense commands.
14355 				 */
14356 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
14357 			}
14358 
14359 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14360 			sd_print_transport_rejected_message(un, xp, rval);
14361 
14362 			/*
14363 			 * We must use sd_return_failed_command_no_restart() to
14364 			 * avoid a recursive call back into sd_start_cmds().
14365 			 * However this also means that we must keep processing
14366 			 * the waitq here in order to avoid stalling.
14367 			 */
14368 			sd_return_failed_command_no_restart(un, bp, EIO);
14369 
14370 			/*
14371 			 * Notify any threads waiting in sd_ddi_suspend() that
14372 			 * a command completion has occurred.
14373 			 */
14374 			if (un->un_state == SD_STATE_SUSPENDED) {
14375 				cv_broadcast(&un->un_disk_busy_cv);
14376 			}
14377 
14378 			if (bp == immed_bp) {
14379 				/* immed_bp is gone by now, so clear this */
14380 				immed_bp = NULL;
14381 			}
14382 			break;
14383 		}
14384 
14385 	} while (immed_bp == NULL);
14386 
14387 exit:
14388 	ASSERT(mutex_owned(SD_MUTEX(un)));
14389 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
14390 }
14391 
14392 
14393 /*
14394  *    Function: sd_return_command
14395  *
14396  * Description: Returns a command to its originator (with or without an
14397  *		error).  Also starts commands waiting to be transported
14398  *		to the target.
14399  *
14400  *     Context: May be called from interrupt, kernel, or timeout context
14401  */
14402 
14403 static void
14404 sd_return_command(struct sd_lun *un, struct buf *bp)
14405 {
14406 	struct sd_xbuf *xp;
14407 #if defined(__i386) || defined(__amd64)
14408 	struct scsi_pkt *pktp;
14409 #endif
14410 
14411 	ASSERT(bp != NULL);
14412 	ASSERT(un != NULL);
14413 	ASSERT(mutex_owned(SD_MUTEX(un)));
14414 	ASSERT(bp != un->un_rqs_bp);
14415 	xp = SD_GET_XBUF(bp);
14416 	ASSERT(xp != NULL);
14417 
14418 #if defined(__i386) || defined(__amd64)
14419 	pktp = SD_GET_PKTP(bp);
14420 #endif
14421 
14422 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
14423 
14424 #if defined(__i386) || defined(__amd64)
14425 	/*
14426 	 * Note:x86: check for the "sdrestart failed" case.
14427 	 */
14428 	if (((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
14429 		(geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
14430 		(xp->xb_pktp->pkt_resid == 0)) {
14431 
14432 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
14433 			/*
14434 			 * Successfully set up next portion of cmd
14435 			 * transfer, try sending it
14436 			 */
14437 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
14438 			    NULL, NULL, 0, (clock_t)0, NULL);
14439 			sd_start_cmds(un, NULL);
14440 			return;	/* Note:x86: need a return here? */
14441 		}
14442 	}
14443 #endif
14444 
14445 	/*
14446 	 * If this is the failfast bp, clear it from un_failfast_bp. This
14447 	 * can happen if upon being re-tried the failfast bp either
14448 	 * succeeded or encountered another error (possibly even a different
14449 	 * error than the one that precipitated the failfast state, but in
14450 	 * that case it would have had to exhaust retries as well). Regardless,
14451 	 * this should not occur whenever the instance is in the active
14452 	 * failfast state.
14453 	 */
14454 	if (bp == un->un_failfast_bp) {
14455 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
14456 		un->un_failfast_bp = NULL;
14457 	}
14458 
14459 	/*
14460 	 * Clear the failfast state upon successful completion of ANY cmd.
14461 	 */
14462 	if (bp->b_error == 0) {
14463 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
14464 	}
14465 
14466 	/*
14467 	 * This is used if the command was retried one or more times. Show that
14468 	 * we are done with it, and allow processing of the waitq to resume.
14469 	 */
14470 	if (bp == un->un_retry_bp) {
14471 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14472 		    "sd_return_command: un:0x%p: "
14473 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
14474 		un->un_retry_bp = NULL;
14475 		un->un_retry_statp = NULL;
14476 	}
14477 
14478 	SD_UPDATE_RDWR_STATS(un, bp);
14479 	SD_UPDATE_PARTITION_STATS(un, bp);
14480 
14481 	switch (un->un_state) {
14482 	case SD_STATE_SUSPENDED:
14483 		/*
14484 		 * Notify any threads waiting in sd_ddi_suspend() that
14485 		 * a command completion has occurred.
14486 		 */
14487 		cv_broadcast(&un->un_disk_busy_cv);
14488 		break;
14489 	default:
14490 		sd_start_cmds(un, NULL);
14491 		break;
14492 	}
14493 
14494 	/* Return this command up the iodone chain to its originator. */
14495 	mutex_exit(SD_MUTEX(un));
14496 
14497 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
14498 	xp->xb_pktp = NULL;
14499 
14500 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
14501 
14502 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14503 	mutex_enter(SD_MUTEX(un));
14504 
14505 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
14506 }
14507 
14508 
14509 /*
14510  *    Function: sd_return_failed_command
14511  *
14512  * Description: Command completion when an error occurred.
14513  *
14514  *     Context: May be called from interrupt context
14515  */
14516 
14517 static void
14518 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
14519 {
14520 	ASSERT(bp != NULL);
14521 	ASSERT(un != NULL);
14522 	ASSERT(mutex_owned(SD_MUTEX(un)));
14523 
14524 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14525 	    "sd_return_failed_command: entry\n");
14526 
14527 	/*
14528 	 * b_resid could already be nonzero due to a partial data
14529 	 * transfer, so do not change it here.
14530 	 */
14531 	SD_BIOERROR(bp, errcode);
14532 
14533 	sd_return_command(un, bp);
14534 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14535 	    "sd_return_failed_command: exit\n");
14536 }
14537 
14538 
14539 /*
14540  *    Function: sd_return_failed_command_no_restart
14541  *
14542  * Description: Same as sd_return_failed_command, but ensures that no
14543  *		call back into sd_start_cmds will be issued.
14544  *
14545  *     Context: May be called from interrupt context
14546  */
14547 
14548 static void
14549 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
14550 	int errcode)
14551 {
14552 	struct sd_xbuf *xp;
14553 
14554 	ASSERT(bp != NULL);
14555 	ASSERT(un != NULL);
14556 	ASSERT(mutex_owned(SD_MUTEX(un)));
14557 	xp = SD_GET_XBUF(bp);
14558 	ASSERT(xp != NULL);
14559 	ASSERT(errcode != 0);
14560 
14561 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14562 	    "sd_return_failed_command_no_restart: entry\n");
14563 
14564 	/*
14565 	 * b_resid could already be nonzero due to a partial data
14566 	 * transfer, so do not change it here.
14567 	 */
14568 	SD_BIOERROR(bp, errcode);
14569 
14570 	/*
14571 	 * If this is the failfast bp, clear it. This can happen if the
14572 	 * failfast bp encounterd a fatal error when we attempted to
14573 	 * re-try it (such as a scsi_transport(9F) failure).  However
14574 	 * we should NOT be in an active failfast state if the failfast
14575 	 * bp is not NULL.
14576 	 */
14577 	if (bp == un->un_failfast_bp) {
14578 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
14579 		un->un_failfast_bp = NULL;
14580 	}
14581 
14582 	if (bp == un->un_retry_bp) {
14583 		/*
14584 		 * This command was retried one or more times. Show that we are
14585 		 * done with it, and allow processing of the waitq to resume.
14586 		 */
14587 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14588 		    "sd_return_failed_command_no_restart: "
14589 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
14590 		un->un_retry_bp = NULL;
14591 		un->un_retry_statp = NULL;
14592 	}
14593 
14594 	SD_UPDATE_RDWR_STATS(un, bp);
14595 	SD_UPDATE_PARTITION_STATS(un, bp);
14596 
14597 	mutex_exit(SD_MUTEX(un));
14598 
14599 	if (xp->xb_pktp != NULL) {
14600 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
14601 		xp->xb_pktp = NULL;
14602 	}
14603 
14604 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
14605 
14606 	mutex_enter(SD_MUTEX(un));
14607 
14608 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14609 	    "sd_return_failed_command_no_restart: exit\n");
14610 }
14611 
14612 
14613 /*
14614  *    Function: sd_retry_command
14615  *
14616  * Description: queue up a command for retry, or (optionally) fail it
14617  *		if retry counts are exhausted.
14618  *
14619  *   Arguments: un - Pointer to the sd_lun struct for the target.
14620  *
14621  *		bp - Pointer to the buf for the command to be retried.
14622  *
14623  *		retry_check_flag - Flag to see which (if any) of the retry
14624  *		   counts should be decremented/checked. If the indicated
14625  *		   retry count is exhausted, then the command will not be
14626  *		   retried; it will be failed instead. This should use a
14627  *		   value equal to one of the following:
14628  *
14629  *			SD_RETRIES_NOCHECK
14630  *			SD_RESD_RETRIES_STANDARD
14631  *			SD_RETRIES_VICTIM
14632  *
14633  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
14634  *		   if the check should be made to see of FLAG_ISOLATE is set
14635  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
14636  *		   not retried, it is simply failed.
14637  *
14638  *		user_funcp - Ptr to function to call before dispatching the
14639  *		   command. May be NULL if no action needs to be performed.
14640  *		   (Primarily intended for printing messages.)
14641  *
14642  *		user_arg - Optional argument to be passed along to
14643  *		   the user_funcp call.
14644  *
14645  *		failure_code - errno return code to set in the bp if the
14646  *		   command is going to be failed.
14647  *
14648  *		retry_delay - Retry delay interval in (clock_t) units. May
14649  *		   be zero which indicates that the retry should be retried
14650  *		   immediately (ie, without an intervening delay).
14651  *
14652  *		statp - Ptr to kstat function to be updated if the command
14653  *		   is queued for a delayed retry. May be NULL if no kstat
14654  *		   update is desired.
14655  *
14656  *     Context: May be called from interupt context.
14657  */
14658 
14659 static void
14660 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
14661 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
14662 	code), void *user_arg, int failure_code,  clock_t retry_delay,
14663 	void (*statp)(kstat_io_t *))
14664 {
14665 	struct sd_xbuf	*xp;
14666 	struct scsi_pkt	*pktp;
14667 
14668 	ASSERT(un != NULL);
14669 	ASSERT(mutex_owned(SD_MUTEX(un)));
14670 	ASSERT(bp != NULL);
14671 	xp = SD_GET_XBUF(bp);
14672 	ASSERT(xp != NULL);
14673 	pktp = SD_GET_PKTP(bp);
14674 	ASSERT(pktp != NULL);
14675 
14676 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14677 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
14678 
14679 	/*
14680 	 * If we are syncing or dumping, fail the command to avoid
14681 	 * recursively calling back into scsi_transport().
14682 	 */
14683 	if (ddi_in_panic()) {
14684 		goto fail_command_no_log;
14685 	}
14686 
14687 	/*
14688 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
14689 	 * log an error and fail the command.
14690 	 */
14691 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
14692 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
14693 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
14694 		sd_dump_memory(un, SD_LOG_IO, "CDB",
14695 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
14696 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
14697 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
14698 		goto fail_command;
14699 	}
14700 
14701 	/*
14702 	 * If we are suspended, then put the command onto head of the
14703 	 * wait queue since we don't want to start more commands.
14704 	 */
14705 	switch (un->un_state) {
14706 	case SD_STATE_SUSPENDED:
14707 	case SD_STATE_DUMPING:
14708 		bp->av_forw = un->un_waitq_headp;
14709 		un->un_waitq_headp = bp;
14710 		if (un->un_waitq_tailp == NULL) {
14711 			un->un_waitq_tailp = bp;
14712 		}
14713 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
14714 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
14715 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
14716 		return;
14717 	default:
14718 		break;
14719 	}
14720 
14721 	/*
14722 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
14723 	 * is set; if it is then we do not want to retry the command.
14724 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
14725 	 */
14726 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
14727 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
14728 			goto fail_command;
14729 		}
14730 	}
14731 
14732 
14733 	/*
14734 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
14735 	 * command timeout or a selection timeout has occurred. This means
14736 	 * that we were unable to establish an kind of communication with
14737 	 * the target, and subsequent retries and/or commands are likely
14738 	 * to encounter similar results and take a long time to complete.
14739 	 *
14740 	 * If this is a failfast error condition, we need to update the
14741 	 * failfast state, even if this bp does not have B_FAILFAST set.
14742 	 */
14743 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
14744 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
14745 			ASSERT(un->un_failfast_bp == NULL);
14746 			/*
14747 			 * If we are already in the active failfast state, and
14748 			 * another failfast error condition has been detected,
14749 			 * then fail this command if it has B_FAILFAST set.
14750 			 * If B_FAILFAST is clear, then maintain the legacy
14751 			 * behavior of retrying heroically, even tho this will
14752 			 * take a lot more time to fail the command.
14753 			 */
14754 			if (bp->b_flags & B_FAILFAST) {
14755 				goto fail_command;
14756 			}
14757 		} else {
14758 			/*
14759 			 * We're not in the active failfast state, but we
14760 			 * have a failfast error condition, so we must begin
14761 			 * transition to the next state. We do this regardless
14762 			 * of whether or not this bp has B_FAILFAST set.
14763 			 */
14764 			if (un->un_failfast_bp == NULL) {
14765 				/*
14766 				 * This is the first bp to meet a failfast
14767 				 * condition so save it on un_failfast_bp &
14768 				 * do normal retry processing. Do not enter
14769 				 * active failfast state yet. This marks
14770 				 * entry into the "failfast pending" state.
14771 				 */
14772 				un->un_failfast_bp = bp;
14773 
14774 			} else if (un->un_failfast_bp == bp) {
14775 				/*
14776 				 * This is the second time *this* bp has
14777 				 * encountered a failfast error condition,
14778 				 * so enter active failfast state & flush
14779 				 * queues as appropriate.
14780 				 */
14781 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
14782 				un->un_failfast_bp = NULL;
14783 				sd_failfast_flushq(un);
14784 
14785 				/*
14786 				 * Fail this bp now if B_FAILFAST set;
14787 				 * otherwise continue with retries. (It would
14788 				 * be pretty ironic if this bp succeeded on a
14789 				 * subsequent retry after we just flushed all
14790 				 * the queues).
14791 				 */
14792 				if (bp->b_flags & B_FAILFAST) {
14793 					goto fail_command;
14794 				}
14795 
14796 #if !defined(lint) && !defined(__lint)
14797 			} else {
14798 				/*
14799 				 * If neither of the preceeding conditionals
14800 				 * was true, it means that there is some
14801 				 * *other* bp that has met an inital failfast
14802 				 * condition and is currently either being
14803 				 * retried or is waiting to be retried. In
14804 				 * that case we should perform normal retry
14805 				 * processing on *this* bp, since there is a
14806 				 * chance that the current failfast condition
14807 				 * is transient and recoverable. If that does
14808 				 * not turn out to be the case, then retries
14809 				 * will be cleared when the wait queue is
14810 				 * flushed anyway.
14811 				 */
14812 #endif
14813 			}
14814 		}
14815 	} else {
14816 		/*
14817 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
14818 		 * likely were able to at least establish some level of
14819 		 * communication with the target and subsequent commands
14820 		 * and/or retries are likely to get through to the target,
14821 		 * In this case we want to be aggressive about clearing
14822 		 * the failfast state. Note that this does not affect
14823 		 * the "failfast pending" condition.
14824 		 */
14825 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
14826 	}
14827 
14828 
14829 	/*
14830 	 * Check the specified retry count to see if we can still do
14831 	 * any retries with this pkt before we should fail it.
14832 	 */
14833 	switch (retry_check_flag & SD_RETRIES_MASK) {
14834 	case SD_RETRIES_VICTIM:
14835 		/*
14836 		 * Check the victim retry count. If exhausted, then fall
14837 		 * thru & check against the standard retry count.
14838 		 */
14839 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
14840 			/* Increment count & proceed with the retry */
14841 			xp->xb_victim_retry_count++;
14842 			break;
14843 		}
14844 		/* Victim retries exhausted, fall back to std. retries... */
14845 		/* FALLTHRU */
14846 
14847 	case SD_RETRIES_STANDARD:
14848 		if (xp->xb_retry_count >= un->un_retry_count) {
14849 			/* Retries exhausted, fail the command */
14850 			SD_TRACE(SD_LOG_IO_CORE, un,
14851 			    "sd_retry_command: retries exhausted!\n");
14852 			/*
14853 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
14854 			 * commands with nonzero pkt_resid.
14855 			 */
14856 			if ((pktp->pkt_reason == CMD_CMPLT) &&
14857 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
14858 			    (pktp->pkt_resid != 0)) {
14859 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
14860 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
14861 					SD_UPDATE_B_RESID(bp, pktp);
14862 				}
14863 			}
14864 			goto fail_command;
14865 		}
14866 		xp->xb_retry_count++;
14867 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14868 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
14869 		break;
14870 
14871 	case SD_RETRIES_UA:
14872 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
14873 			/* Retries exhausted, fail the command */
14874 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14875 			    "Unit Attention retries exhausted. "
14876 			    "Check the target.\n");
14877 			goto fail_command;
14878 		}
14879 		xp->xb_ua_retry_count++;
14880 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14881 		    "sd_retry_command: retry count:%d\n",
14882 			xp->xb_ua_retry_count);
14883 		break;
14884 
14885 	case SD_RETRIES_BUSY:
14886 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
14887 			/* Retries exhausted, fail the command */
14888 			SD_TRACE(SD_LOG_IO_CORE, un,
14889 			    "sd_retry_command: retries exhausted!\n");
14890 			goto fail_command;
14891 		}
14892 		xp->xb_retry_count++;
14893 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14894 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
14895 		break;
14896 
14897 	case SD_RETRIES_NOCHECK:
14898 	default:
14899 		/* No retry count to check. Just proceed with the retry */
14900 		break;
14901 	}
14902 
14903 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
14904 
14905 	/*
14906 	 * If we were given a zero timeout, we must attempt to retry the
14907 	 * command immediately (ie, without a delay).
14908 	 */
14909 	if (retry_delay == 0) {
14910 		/*
14911 		 * Check some limiting conditions to see if we can actually
14912 		 * do the immediate retry.  If we cannot, then we must
14913 		 * fall back to queueing up a delayed retry.
14914 		 */
14915 		if (un->un_ncmds_in_transport >= un->un_throttle) {
14916 			/*
14917 			 * We are at the throttle limit for the target,
14918 			 * fall back to delayed retry.
14919 			 */
14920 			retry_delay = SD_BSY_TIMEOUT;
14921 			statp = kstat_waitq_enter;
14922 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14923 			    "sd_retry_command: immed. retry hit throttle!\n");
14924 		} else {
14925 			/*
14926 			 * We're clear to proceed with the immediate retry.
14927 			 * First call the user-provided function (if any)
14928 			 */
14929 			if (user_funcp != NULL) {
14930 				(*user_funcp)(un, bp, user_arg,
14931 				    SD_IMMEDIATE_RETRY_ISSUED);
14932 			}
14933 
14934 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14935 			    "sd_retry_command: issuing immediate retry\n");
14936 
14937 			/*
14938 			 * Call sd_start_cmds() to transport the command to
14939 			 * the target.
14940 			 */
14941 			sd_start_cmds(un, bp);
14942 
14943 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14944 			    "sd_retry_command exit\n");
14945 			return;
14946 		}
14947 	}
14948 
14949 	/*
14950 	 * Set up to retry the command after a delay.
14951 	 * First call the user-provided function (if any)
14952 	 */
14953 	if (user_funcp != NULL) {
14954 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
14955 	}
14956 
14957 	sd_set_retry_bp(un, bp, retry_delay, statp);
14958 
14959 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
14960 	return;
14961 
14962 fail_command:
14963 
14964 	if (user_funcp != NULL) {
14965 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
14966 	}
14967 
14968 fail_command_no_log:
14969 
14970 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14971 	    "sd_retry_command: returning failed command\n");
14972 
14973 	sd_return_failed_command(un, bp, failure_code);
14974 
14975 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
14976 }
14977 
14978 
14979 /*
14980  *    Function: sd_set_retry_bp
14981  *
14982  * Description: Set up the given bp for retry.
14983  *
14984  *   Arguments: un - ptr to associated softstate
14985  *		bp - ptr to buf(9S) for the command
14986  *		retry_delay - time interval before issuing retry (may be 0)
14987  *		statp - optional pointer to kstat function
14988  *
14989  *     Context: May be called under interrupt context
14990  */
14991 
14992 static void
14993 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
14994 	void (*statp)(kstat_io_t *))
14995 {
14996 	ASSERT(un != NULL);
14997 	ASSERT(mutex_owned(SD_MUTEX(un)));
14998 	ASSERT(bp != NULL);
14999 
15000 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15001 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
15002 
15003 	/*
15004 	 * Indicate that the command is being retried. This will not allow any
15005 	 * other commands on the wait queue to be transported to the target
15006 	 * until this command has been completed (success or failure). The
15007 	 * "retry command" is not transported to the target until the given
15008 	 * time delay expires, unless the user specified a 0 retry_delay.
15009 	 *
15010 	 * Note: the timeout(9F) callback routine is what actually calls
15011 	 * sd_start_cmds() to transport the command, with the exception of a
15012 	 * zero retry_delay. The only current implementor of a zero retry delay
15013 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
15014 	 */
15015 	if (un->un_retry_bp == NULL) {
15016 		ASSERT(un->un_retry_statp == NULL);
15017 		un->un_retry_bp = bp;
15018 
15019 		/*
15020 		 * If the user has not specified a delay the command should
15021 		 * be queued and no timeout should be scheduled.
15022 		 */
15023 		if (retry_delay == 0) {
15024 			/*
15025 			 * Save the kstat pointer that will be used in the
15026 			 * call to SD_UPDATE_KSTATS() below, so that
15027 			 * sd_start_cmds() can correctly decrement the waitq
15028 			 * count when it is time to transport this command.
15029 			 */
15030 			un->un_retry_statp = statp;
15031 			goto done;
15032 		}
15033 	}
15034 
15035 	if (un->un_retry_bp == bp) {
15036 		/*
15037 		 * Save the kstat pointer that will be used in the call to
15038 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
15039 		 * correctly decrement the waitq count when it is time to
15040 		 * transport this command.
15041 		 */
15042 		un->un_retry_statp = statp;
15043 
15044 		/*
15045 		 * Schedule a timeout if:
15046 		 *   1) The user has specified a delay.
15047 		 *   2) There is not a START_STOP_UNIT callback pending.
15048 		 *
15049 		 * If no delay has been specified, then it is up to the caller
15050 		 * to ensure that IO processing continues without stalling.
15051 		 * Effectively, this means that the caller will issue the
15052 		 * required call to sd_start_cmds(). The START_STOP_UNIT
15053 		 * callback does this after the START STOP UNIT command has
15054 		 * completed. In either of these cases we should not schedule
15055 		 * a timeout callback here.  Also don't schedule the timeout if
15056 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
15057 		 */
15058 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
15059 		    (un->un_direct_priority_timeid == NULL)) {
15060 			un->un_retry_timeid =
15061 			    timeout(sd_start_retry_command, un, retry_delay);
15062 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15063 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
15064 			    " bp:0x%p un_retry_timeid:0x%p\n",
15065 			    un, bp, un->un_retry_timeid);
15066 		}
15067 	} else {
15068 		/*
15069 		 * We only get in here if there is already another command
15070 		 * waiting to be retried.  In this case, we just put the
15071 		 * given command onto the wait queue, so it can be transported
15072 		 * after the current retry command has completed.
15073 		 *
15074 		 * Also we have to make sure that if the command at the head
15075 		 * of the wait queue is the un_failfast_bp, that we do not
15076 		 * put ahead of it any other commands that are to be retried.
15077 		 */
15078 		if ((un->un_failfast_bp != NULL) &&
15079 		    (un->un_failfast_bp == un->un_waitq_headp)) {
15080 			/*
15081 			 * Enqueue this command AFTER the first command on
15082 			 * the wait queue (which is also un_failfast_bp).
15083 			 */
15084 			bp->av_forw = un->un_waitq_headp->av_forw;
15085 			un->un_waitq_headp->av_forw = bp;
15086 			if (un->un_waitq_headp == un->un_waitq_tailp) {
15087 				un->un_waitq_tailp = bp;
15088 			}
15089 		} else {
15090 			/* Enqueue this command at the head of the waitq. */
15091 			bp->av_forw = un->un_waitq_headp;
15092 			un->un_waitq_headp = bp;
15093 			if (un->un_waitq_tailp == NULL) {
15094 				un->un_waitq_tailp = bp;
15095 			}
15096 		}
15097 
15098 		if (statp == NULL) {
15099 			statp = kstat_waitq_enter;
15100 		}
15101 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15102 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
15103 	}
15104 
15105 done:
15106 	if (statp != NULL) {
15107 		SD_UPDATE_KSTATS(un, statp, bp);
15108 	}
15109 
15110 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15111 	    "sd_set_retry_bp: exit un:0x%p\n", un);
15112 }
15113 
15114 
15115 /*
15116  *    Function: sd_start_retry_command
15117  *
15118  * Description: Start the command that has been waiting on the target's
15119  *		retry queue.  Called from timeout(9F) context after the
15120  *		retry delay interval has expired.
15121  *
15122  *   Arguments: arg - pointer to associated softstate for the device.
15123  *
15124  *     Context: timeout(9F) thread context.  May not sleep.
15125  */
15126 
15127 static void
15128 sd_start_retry_command(void *arg)
15129 {
15130 	struct sd_lun *un = arg;
15131 
15132 	ASSERT(un != NULL);
15133 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15134 
15135 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15136 	    "sd_start_retry_command: entry\n");
15137 
15138 	mutex_enter(SD_MUTEX(un));
15139 
15140 	un->un_retry_timeid = NULL;
15141 
15142 	if (un->un_retry_bp != NULL) {
15143 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15144 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
15145 		    un, un->un_retry_bp);
15146 		sd_start_cmds(un, un->un_retry_bp);
15147 	}
15148 
15149 	mutex_exit(SD_MUTEX(un));
15150 
15151 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15152 	    "sd_start_retry_command: exit\n");
15153 }
15154 
15155 
15156 /*
15157  *    Function: sd_start_direct_priority_command
15158  *
15159  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
15160  *		received TRAN_BUSY when we called scsi_transport() to send it
15161  *		to the underlying HBA. This function is called from timeout(9F)
15162  *		context after the delay interval has expired.
15163  *
15164  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
15165  *
15166  *     Context: timeout(9F) thread context.  May not sleep.
15167  */
15168 
15169 static void
15170 sd_start_direct_priority_command(void *arg)
15171 {
15172 	struct buf	*priority_bp = arg;
15173 	struct sd_lun	*un;
15174 
15175 	ASSERT(priority_bp != NULL);
15176 	un = SD_GET_UN(priority_bp);
15177 	ASSERT(un != NULL);
15178 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15179 
15180 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15181 	    "sd_start_direct_priority_command: entry\n");
15182 
15183 	mutex_enter(SD_MUTEX(un));
15184 	un->un_direct_priority_timeid = NULL;
15185 	sd_start_cmds(un, priority_bp);
15186 	mutex_exit(SD_MUTEX(un));
15187 
15188 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15189 	    "sd_start_direct_priority_command: exit\n");
15190 }
15191 
15192 
15193 /*
15194  *    Function: sd_send_request_sense_command
15195  *
15196  * Description: Sends a REQUEST SENSE command to the target
15197  *
15198  *     Context: May be called from interrupt context.
15199  */
15200 
15201 static void
15202 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
15203 	struct scsi_pkt *pktp)
15204 {
15205 	ASSERT(bp != NULL);
15206 	ASSERT(un != NULL);
15207 	ASSERT(mutex_owned(SD_MUTEX(un)));
15208 
15209 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
15210 	    "entry: buf:0x%p\n", bp);
15211 
15212 	/*
15213 	 * If we are syncing or dumping, then fail the command to avoid a
15214 	 * recursive callback into scsi_transport(). Also fail the command
15215 	 * if we are suspended (legacy behavior).
15216 	 */
15217 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
15218 	    (un->un_state == SD_STATE_DUMPING)) {
15219 		sd_return_failed_command(un, bp, EIO);
15220 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15221 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
15222 		return;
15223 	}
15224 
15225 	/*
15226 	 * Retry the failed command and don't issue the request sense if:
15227 	 *    1) the sense buf is busy
15228 	 *    2) we have 1 or more outstanding commands on the target
15229 	 *    (the sense data will be cleared or invalidated any way)
15230 	 *
15231 	 * Note: There could be an issue with not checking a retry limit here,
15232 	 * the problem is determining which retry limit to check.
15233 	 */
15234 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
15235 		/* Don't retry if the command is flagged as non-retryable */
15236 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15237 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15238 			    NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter);
15239 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15240 			    "sd_send_request_sense_command: "
15241 			    "at full throttle, retrying exit\n");
15242 		} else {
15243 			sd_return_failed_command(un, bp, EIO);
15244 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15245 			    "sd_send_request_sense_command: "
15246 			    "at full throttle, non-retryable exit\n");
15247 		}
15248 		return;
15249 	}
15250 
15251 	sd_mark_rqs_busy(un, bp);
15252 	sd_start_cmds(un, un->un_rqs_bp);
15253 
15254 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15255 	    "sd_send_request_sense_command: exit\n");
15256 }
15257 
15258 
15259 /*
15260  *    Function: sd_mark_rqs_busy
15261  *
15262  * Description: Indicate that the request sense bp for this instance is
15263  *		in use.
15264  *
15265  *     Context: May be called under interrupt context
15266  */
15267 
15268 static void
15269 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
15270 {
15271 	struct sd_xbuf	*sense_xp;
15272 
15273 	ASSERT(un != NULL);
15274 	ASSERT(bp != NULL);
15275 	ASSERT(mutex_owned(SD_MUTEX(un)));
15276 	ASSERT(un->un_sense_isbusy == 0);
15277 
15278 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
15279 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
15280 
15281 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
15282 	ASSERT(sense_xp != NULL);
15283 
15284 	SD_INFO(SD_LOG_IO, un,
15285 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
15286 
15287 	ASSERT(sense_xp->xb_pktp != NULL);
15288 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
15289 	    == (FLAG_SENSING | FLAG_HEAD));
15290 
15291 	un->un_sense_isbusy = 1;
15292 	un->un_rqs_bp->b_resid = 0;
15293 	sense_xp->xb_pktp->pkt_resid  = 0;
15294 	sense_xp->xb_pktp->pkt_reason = 0;
15295 
15296 	/* So we can get back the bp at interrupt time! */
15297 	sense_xp->xb_sense_bp = bp;
15298 
15299 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
15300 
15301 	/*
15302 	 * Mark this buf as awaiting sense data. (This is already set in
15303 	 * the pkt_flags for the RQS packet.)
15304 	 */
15305 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
15306 
15307 	sense_xp->xb_retry_count	= 0;
15308 	sense_xp->xb_victim_retry_count = 0;
15309 	sense_xp->xb_ua_retry_count	= 0;
15310 	sense_xp->xb_dma_resid  = 0;
15311 
15312 	/* Clean up the fields for auto-request sense */
15313 	sense_xp->xb_sense_status = 0;
15314 	sense_xp->xb_sense_state  = 0;
15315 	sense_xp->xb_sense_resid  = 0;
15316 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
15317 
15318 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
15319 }
15320 
15321 
15322 /*
15323  *    Function: sd_mark_rqs_idle
15324  *
15325  * Description: SD_MUTEX must be held continuously through this routine
15326  *		to prevent reuse of the rqs struct before the caller can
15327  *		complete it's processing.
15328  *
15329  * Return Code: Pointer to the RQS buf
15330  *
15331  *     Context: May be called under interrupt context
15332  */
15333 
15334 static struct buf *
15335 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
15336 {
15337 	struct buf *bp;
15338 	ASSERT(un != NULL);
15339 	ASSERT(sense_xp != NULL);
15340 	ASSERT(mutex_owned(SD_MUTEX(un)));
15341 	ASSERT(un->un_sense_isbusy != 0);
15342 
15343 	un->un_sense_isbusy = 0;
15344 	bp = sense_xp->xb_sense_bp;
15345 	sense_xp->xb_sense_bp = NULL;
15346 
15347 	/* This pkt is no longer interested in getting sense data */
15348 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
15349 
15350 	return (bp);
15351 }
15352 
15353 
15354 
15355 /*
15356  *    Function: sd_alloc_rqs
15357  *
15358  * Description: Set up the unit to receive auto request sense data
15359  *
15360  * Return Code: DDI_SUCCESS or DDI_FAILURE
15361  *
15362  *     Context: Called under attach(9E) context
15363  */
15364 
15365 static int
15366 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
15367 {
15368 	struct sd_xbuf *xp;
15369 
15370 	ASSERT(un != NULL);
15371 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15372 	ASSERT(un->un_rqs_bp == NULL);
15373 	ASSERT(un->un_rqs_pktp == NULL);
15374 
15375 	/*
15376 	 * First allocate the required buf and scsi_pkt structs, then set up
15377 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
15378 	 */
15379 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
15380 	    SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
15381 	if (un->un_rqs_bp == NULL) {
15382 		return (DDI_FAILURE);
15383 	}
15384 
15385 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
15386 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
15387 
15388 	if (un->un_rqs_pktp == NULL) {
15389 		sd_free_rqs(un);
15390 		return (DDI_FAILURE);
15391 	}
15392 
15393 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
15394 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
15395 	    SCMD_REQUEST_SENSE, 0, SENSE_LENGTH, 0);
15396 
15397 	sd_fill_scsi1_lun(un, un->un_rqs_pktp);
15398 
15399 	/* Set up the other needed members in the ARQ scsi_pkt. */
15400 	un->un_rqs_pktp->pkt_comp   = sdintr;
15401 	un->un_rqs_pktp->pkt_time   = sd_io_time;
15402 	un->un_rqs_pktp->pkt_flags |=
15403 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
15404 
15405 	/*
15406 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
15407 	 * provide any intpkt, destroypkt routines as we take care of
15408 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
15409 	 */
15410 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
15411 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
15412 	xp->xb_pktp = un->un_rqs_pktp;
15413 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
15414 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
15415 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
15416 
15417 	/*
15418 	 * Save the pointer to the request sense private bp so it can
15419 	 * be retrieved in sdintr.
15420 	 */
15421 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
15422 	ASSERT(un->un_rqs_bp->b_private == xp);
15423 
15424 	/*
15425 	 * See if the HBA supports auto-request sense for the specified
15426 	 * target/lun. If it does, then try to enable it (if not already
15427 	 * enabled).
15428 	 *
15429 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
15430 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
15431 	 * return success.  However, in both of these cases ARQ is always
15432 	 * enabled and scsi_ifgetcap will always return true. The best approach
15433 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
15434 	 *
15435 	 * The 3rd case is the HBA (adp) always return enabled on
15436 	 * scsi_ifgetgetcap even when it's not enable, the best approach
15437 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
15438 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
15439 	 */
15440 
15441 	if (un->un_f_is_fibre == TRUE) {
15442 		un->un_f_arq_enabled = TRUE;
15443 	} else {
15444 #if defined(__i386) || defined(__amd64)
15445 		/*
15446 		 * Circumvent the Adaptec bug, remove this code when
15447 		 * the bug is fixed
15448 		 */
15449 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
15450 #endif
15451 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
15452 		case 0:
15453 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15454 				"sd_alloc_rqs: HBA supports ARQ\n");
15455 			/*
15456 			 * ARQ is supported by this HBA but currently is not
15457 			 * enabled. Attempt to enable it and if successful then
15458 			 * mark this instance as ARQ enabled.
15459 			 */
15460 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
15461 				== 1) {
15462 				/* Successfully enabled ARQ in the HBA */
15463 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15464 					"sd_alloc_rqs: ARQ enabled\n");
15465 				un->un_f_arq_enabled = TRUE;
15466 			} else {
15467 				/* Could not enable ARQ in the HBA */
15468 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15469 				"sd_alloc_rqs: failed ARQ enable\n");
15470 				un->un_f_arq_enabled = FALSE;
15471 			}
15472 			break;
15473 		case 1:
15474 			/*
15475 			 * ARQ is supported by this HBA and is already enabled.
15476 			 * Just mark ARQ as enabled for this instance.
15477 			 */
15478 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15479 				"sd_alloc_rqs: ARQ already enabled\n");
15480 			un->un_f_arq_enabled = TRUE;
15481 			break;
15482 		default:
15483 			/*
15484 			 * ARQ is not supported by this HBA; disable it for this
15485 			 * instance.
15486 			 */
15487 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15488 				"sd_alloc_rqs: HBA does not support ARQ\n");
15489 			un->un_f_arq_enabled = FALSE;
15490 			break;
15491 		}
15492 	}
15493 
15494 	return (DDI_SUCCESS);
15495 }
15496 
15497 
15498 /*
15499  *    Function: sd_free_rqs
15500  *
15501  * Description: Cleanup for the pre-instance RQS command.
15502  *
15503  *     Context: Kernel thread context
15504  */
15505 
15506 static void
15507 sd_free_rqs(struct sd_lun *un)
15508 {
15509 	ASSERT(un != NULL);
15510 
15511 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
15512 
15513 	/*
15514 	 * If consistent memory is bound to a scsi_pkt, the pkt
15515 	 * has to be destroyed *before* freeing the consistent memory.
15516 	 * Don't change the sequence of this operations.
15517 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
15518 	 * after it was freed in scsi_free_consistent_buf().
15519 	 */
15520 	if (un->un_rqs_pktp != NULL) {
15521 		scsi_destroy_pkt(un->un_rqs_pktp);
15522 		un->un_rqs_pktp = NULL;
15523 	}
15524 
15525 	if (un->un_rqs_bp != NULL) {
15526 		kmem_free(SD_GET_XBUF(un->un_rqs_bp), sizeof (struct sd_xbuf));
15527 		scsi_free_consistent_buf(un->un_rqs_bp);
15528 		un->un_rqs_bp = NULL;
15529 	}
15530 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
15531 }
15532 
15533 
15534 
15535 /*
15536  *    Function: sd_reduce_throttle
15537  *
15538  * Description: Reduces the maximun # of outstanding commands on a
15539  *		target to the current number of outstanding commands.
15540  *		Queues a tiemout(9F) callback to restore the limit
15541  *		after a specified interval has elapsed.
15542  *		Typically used when we get a TRAN_BUSY return code
15543  *		back from scsi_transport().
15544  *
15545  *   Arguments: un - ptr to the sd_lun softstate struct
15546  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
15547  *
15548  *     Context: May be called from interrupt context
15549  */
15550 
15551 static void
15552 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
15553 {
15554 	ASSERT(un != NULL);
15555 	ASSERT(mutex_owned(SD_MUTEX(un)));
15556 	ASSERT(un->un_ncmds_in_transport >= 0);
15557 
15558 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
15559 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
15560 	    un, un->un_throttle, un->un_ncmds_in_transport);
15561 
15562 	if (un->un_throttle > 1) {
15563 		if (un->un_f_use_adaptive_throttle == TRUE) {
15564 			switch (throttle_type) {
15565 			case SD_THROTTLE_TRAN_BUSY:
15566 				if (un->un_busy_throttle == 0) {
15567 					un->un_busy_throttle = un->un_throttle;
15568 				}
15569 				break;
15570 			case SD_THROTTLE_QFULL:
15571 				un->un_busy_throttle = 0;
15572 				break;
15573 			default:
15574 				ASSERT(FALSE);
15575 			}
15576 
15577 			if (un->un_ncmds_in_transport > 0) {
15578 				un->un_throttle = un->un_ncmds_in_transport;
15579 			}
15580 		} else {
15581 			if (un->un_ncmds_in_transport == 0) {
15582 				un->un_throttle = 1;
15583 			} else {
15584 				un->un_throttle = un->un_ncmds_in_transport;
15585 			}
15586 		}
15587 	}
15588 
15589 	/* Reschedule the timeout if none is currently active */
15590 	if (un->un_reset_throttle_timeid == NULL) {
15591 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
15592 		    un, sd_reset_throttle_timeout);
15593 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15594 		    "sd_reduce_throttle: timeout scheduled!\n");
15595 	}
15596 
15597 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
15598 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
15599 }
15600 
15601 
15602 
15603 /*
15604  *    Function: sd_restore_throttle
15605  *
15606  * Description: Callback function for timeout(9F).  Resets the current
15607  *		value of un->un_throttle to its default.
15608  *
15609  *   Arguments: arg - pointer to associated softstate for the device.
15610  *
15611  *     Context: May be called from interrupt context
15612  */
15613 
15614 static void
15615 sd_restore_throttle(void *arg)
15616 {
15617 	struct sd_lun	*un = arg;
15618 
15619 	ASSERT(un != NULL);
15620 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15621 
15622 	mutex_enter(SD_MUTEX(un));
15623 
15624 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
15625 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
15626 
15627 	un->un_reset_throttle_timeid = NULL;
15628 
15629 	if (un->un_f_use_adaptive_throttle == TRUE) {
15630 		/*
15631 		 * If un_busy_throttle is nonzero, then it contains the
15632 		 * value that un_throttle was when we got a TRAN_BUSY back
15633 		 * from scsi_transport(). We want to revert back to this
15634 		 * value.
15635 		 */
15636 		if (un->un_busy_throttle > 0) {
15637 			un->un_throttle = un->un_busy_throttle;
15638 			un->un_busy_throttle = 0;
15639 		}
15640 
15641 		/*
15642 		 * If un_throttle has fallen below the low-water mark, we
15643 		 * restore the maximum value here (and allow it to ratchet
15644 		 * down again if necessary).
15645 		 */
15646 		if (un->un_throttle < un->un_min_throttle) {
15647 			un->un_throttle = un->un_saved_throttle;
15648 		}
15649 	} else {
15650 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
15651 		    "restoring limit from 0x%x to 0x%x\n",
15652 		    un->un_throttle, un->un_saved_throttle);
15653 		un->un_throttle = un->un_saved_throttle;
15654 	}
15655 
15656 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15657 	    "sd_restore_throttle: calling sd_start_cmds!\n");
15658 
15659 	sd_start_cmds(un, NULL);
15660 
15661 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15662 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
15663 	    un, un->un_throttle);
15664 
15665 	mutex_exit(SD_MUTEX(un));
15666 
15667 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
15668 }
15669 
15670 /*
15671  *    Function: sdrunout
15672  *
15673  * Description: Callback routine for scsi_init_pkt when a resource allocation
15674  *		fails.
15675  *
15676  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
15677  *		soft state instance.
15678  *
15679  * Return Code: The scsi_init_pkt routine allows for the callback function to
15680  *		return a 0 indicating the callback should be rescheduled or a 1
15681  *		indicating not to reschedule. This routine always returns 1
15682  *		because the driver always provides a callback function to
15683  *		scsi_init_pkt. This results in a callback always being scheduled
15684  *		(via the scsi_init_pkt callback implementation) if a resource
15685  *		failure occurs.
15686  *
15687  *     Context: This callback function may not block or call routines that block
15688  *
15689  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
15690  *		request persisting at the head of the list which cannot be
15691  *		satisfied even after multiple retries. In the future the driver
15692  *		may implement some time of maximum runout count before failing
15693  *		an I/O.
15694  */
15695 
15696 static int
15697 sdrunout(caddr_t arg)
15698 {
15699 	struct sd_lun	*un = (struct sd_lun *)arg;
15700 
15701 	ASSERT(un != NULL);
15702 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15703 
15704 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
15705 
15706 	mutex_enter(SD_MUTEX(un));
15707 	sd_start_cmds(un, NULL);
15708 	mutex_exit(SD_MUTEX(un));
15709 	/*
15710 	 * This callback routine always returns 1 (i.e. do not reschedule)
15711 	 * because we always specify sdrunout as the callback handler for
15712 	 * scsi_init_pkt inside the call to sd_start_cmds.
15713 	 */
15714 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
15715 	return (1);
15716 }
15717 
15718 
15719 /*
15720  *    Function: sdintr
15721  *
15722  * Description: Completion callback routine for scsi_pkt(9S) structs
15723  *		sent to the HBA driver via scsi_transport(9F).
15724  *
15725  *     Context: Interrupt context
15726  */
15727 
15728 static void
15729 sdintr(struct scsi_pkt *pktp)
15730 {
15731 	struct buf	*bp;
15732 	struct sd_xbuf	*xp;
15733 	struct sd_lun	*un;
15734 
15735 	ASSERT(pktp != NULL);
15736 	bp = (struct buf *)pktp->pkt_private;
15737 	ASSERT(bp != NULL);
15738 	xp = SD_GET_XBUF(bp);
15739 	ASSERT(xp != NULL);
15740 	ASSERT(xp->xb_pktp != NULL);
15741 	un = SD_GET_UN(bp);
15742 	ASSERT(un != NULL);
15743 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15744 
15745 #ifdef SD_FAULT_INJECTION
15746 
15747 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
15748 	/* SD FaultInjection */
15749 	sd_faultinjection(pktp);
15750 
15751 #endif /* SD_FAULT_INJECTION */
15752 
15753 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
15754 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
15755 
15756 	mutex_enter(SD_MUTEX(un));
15757 
15758 	/* Reduce the count of the #commands currently in transport */
15759 	un->un_ncmds_in_transport--;
15760 	ASSERT(un->un_ncmds_in_transport >= 0);
15761 
15762 	/* Increment counter to indicate that the callback routine is active */
15763 	un->un_in_callback++;
15764 
15765 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15766 
15767 #ifdef	SDDEBUG
15768 	if (bp == un->un_retry_bp) {
15769 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
15770 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
15771 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
15772 	}
15773 #endif
15774 
15775 	/*
15776 	 * If pkt_reason is CMD_DEV_GONE, just fail the command
15777 	 */
15778 	if (pktp->pkt_reason == CMD_DEV_GONE) {
15779 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
15780 			    "Device is gone\n");
15781 		sd_return_failed_command(un, bp, EIO);
15782 		goto exit;
15783 	}
15784 
15785 	/*
15786 	 * First see if the pkt has auto-request sense data with it....
15787 	 * Look at the packet state first so we don't take a performance
15788 	 * hit looking at the arq enabled flag unless absolutely necessary.
15789 	 */
15790 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
15791 	    (un->un_f_arq_enabled == TRUE)) {
15792 		/*
15793 		 * The HBA did an auto request sense for this command so check
15794 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
15795 		 * driver command that should not be retried.
15796 		 */
15797 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15798 			/*
15799 			 * Save the relevant sense info into the xp for the
15800 			 * original cmd.
15801 			 */
15802 			struct scsi_arq_status *asp;
15803 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
15804 			xp->xb_sense_status =
15805 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
15806 			xp->xb_sense_state  = asp->sts_rqpkt_state;
15807 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
15808 			bcopy(&asp->sts_sensedata, xp->xb_sense_data,
15809 			    min(sizeof (struct scsi_extended_sense),
15810 			    SENSE_LENGTH));
15811 
15812 			/* fail the command */
15813 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15814 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
15815 			sd_return_failed_command(un, bp, EIO);
15816 			goto exit;
15817 		}
15818 
15819 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
15820 		/*
15821 		 * We want to either retry or fail this command, so free
15822 		 * the DMA resources here.  If we retry the command then
15823 		 * the DMA resources will be reallocated in sd_start_cmds().
15824 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
15825 		 * causes the *entire* transfer to start over again from the
15826 		 * beginning of the request, even for PARTIAL chunks that
15827 		 * have already transferred successfully.
15828 		 */
15829 		if ((un->un_f_is_fibre == TRUE) &&
15830 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
15831 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
15832 			scsi_dmafree(pktp);
15833 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
15834 		}
15835 #endif
15836 
15837 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15838 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
15839 
15840 		sd_handle_auto_request_sense(un, bp, xp, pktp);
15841 		goto exit;
15842 	}
15843 
15844 	/* Next see if this is the REQUEST SENSE pkt for the instance */
15845 	if (pktp->pkt_flags & FLAG_SENSING)  {
15846 		/* This pktp is from the unit's REQUEST_SENSE command */
15847 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15848 		    "sdintr: sd_handle_request_sense\n");
15849 		sd_handle_request_sense(un, bp, xp, pktp);
15850 		goto exit;
15851 	}
15852 
15853 	/*
15854 	 * Check to see if the command successfully completed as requested;
15855 	 * this is the most common case (and also the hot performance path).
15856 	 *
15857 	 * Requirements for successful completion are:
15858 	 * pkt_reason is CMD_CMPLT and packet status is status good.
15859 	 * In addition:
15860 	 * - A residual of zero indicates successful completion no matter what
15861 	 *   the command is.
15862 	 * - If the residual is not zero and the command is not a read or
15863 	 *   write, then it's still defined as successful completion. In other
15864 	 *   words, if the command is a read or write the residual must be
15865 	 *   zero for successful completion.
15866 	 * - If the residual is not zero and the command is a read or
15867 	 *   write, and it's a USCSICMD, then it's still defined as
15868 	 *   successful completion.
15869 	 */
15870 	if ((pktp->pkt_reason == CMD_CMPLT) &&
15871 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
15872 
15873 		/*
15874 		 * Since this command is returned with a good status, we
15875 		 * can reset the count for Sonoma failover.
15876 		 */
15877 		un->un_sonoma_failure_count = 0;
15878 
15879 		/*
15880 		 * Return all USCSI commands on good status
15881 		 */
15882 		if (pktp->pkt_resid == 0) {
15883 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15884 			    "sdintr: returning command for resid == 0\n");
15885 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
15886 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
15887 			SD_UPDATE_B_RESID(bp, pktp);
15888 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15889 			    "sdintr: returning command for resid != 0\n");
15890 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
15891 			SD_UPDATE_B_RESID(bp, pktp);
15892 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15893 				"sdintr: returning uscsi command\n");
15894 		} else {
15895 			goto not_successful;
15896 		}
15897 		sd_return_command(un, bp);
15898 
15899 		/*
15900 		 * Decrement counter to indicate that the callback routine
15901 		 * is done.
15902 		 */
15903 		un->un_in_callback--;
15904 		ASSERT(un->un_in_callback >= 0);
15905 		mutex_exit(SD_MUTEX(un));
15906 
15907 		return;
15908 	}
15909 
15910 not_successful:
15911 
15912 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
15913 	/*
15914 	 * The following is based upon knowledge of the underlying transport
15915 	 * and its use of DMA resources.  This code should be removed when
15916 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
15917 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
15918 	 * and sd_start_cmds().
15919 	 *
15920 	 * Free any DMA resources associated with this command if there
15921 	 * is a chance it could be retried or enqueued for later retry.
15922 	 * If we keep the DMA binding then mpxio cannot reissue the
15923 	 * command on another path whenever a path failure occurs.
15924 	 *
15925 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
15926 	 * causes the *entire* transfer to start over again from the
15927 	 * beginning of the request, even for PARTIAL chunks that
15928 	 * have already transferred successfully.
15929 	 *
15930 	 * This is only done for non-uscsi commands (and also skipped for the
15931 	 * driver's internal RQS command). Also just do this for Fibre Channel
15932 	 * devices as these are the only ones that support mpxio.
15933 	 */
15934 	if ((un->un_f_is_fibre == TRUE) &&
15935 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
15936 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
15937 		scsi_dmafree(pktp);
15938 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
15939 	}
15940 #endif
15941 
15942 	/*
15943 	 * The command did not successfully complete as requested so check
15944 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
15945 	 * driver command that should not be retried so just return. If
15946 	 * FLAG_DIAGNOSE is not set the error will be processed below.
15947 	 */
15948 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15949 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15950 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
15951 		/*
15952 		 * Issue a request sense if a check condition caused the error
15953 		 * (we handle the auto request sense case above), otherwise
15954 		 * just fail the command.
15955 		 */
15956 		if ((pktp->pkt_reason == CMD_CMPLT) &&
15957 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
15958 			sd_send_request_sense_command(un, bp, pktp);
15959 		} else {
15960 			sd_return_failed_command(un, bp, EIO);
15961 		}
15962 		goto exit;
15963 	}
15964 
15965 	/*
15966 	 * The command did not successfully complete as requested so process
15967 	 * the error, retry, and/or attempt recovery.
15968 	 */
15969 	switch (pktp->pkt_reason) {
15970 	case CMD_CMPLT:
15971 		switch (SD_GET_PKT_STATUS(pktp)) {
15972 		case STATUS_GOOD:
15973 			/*
15974 			 * The command completed successfully with a non-zero
15975 			 * residual
15976 			 */
15977 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15978 			    "sdintr: STATUS_GOOD \n");
15979 			sd_pkt_status_good(un, bp, xp, pktp);
15980 			break;
15981 
15982 		case STATUS_CHECK:
15983 		case STATUS_TERMINATED:
15984 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15985 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
15986 			sd_pkt_status_check_condition(un, bp, xp, pktp);
15987 			break;
15988 
15989 		case STATUS_BUSY:
15990 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15991 			    "sdintr: STATUS_BUSY\n");
15992 			sd_pkt_status_busy(un, bp, xp, pktp);
15993 			break;
15994 
15995 		case STATUS_RESERVATION_CONFLICT:
15996 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15997 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
15998 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
15999 			break;
16000 
16001 		case STATUS_QFULL:
16002 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16003 			    "sdintr: STATUS_QFULL\n");
16004 			sd_pkt_status_qfull(un, bp, xp, pktp);
16005 			break;
16006 
16007 		case STATUS_MET:
16008 		case STATUS_INTERMEDIATE:
16009 		case STATUS_SCSI2:
16010 		case STATUS_INTERMEDIATE_MET:
16011 		case STATUS_ACA_ACTIVE:
16012 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16013 			    "Unexpected SCSI status received: 0x%x\n",
16014 			    SD_GET_PKT_STATUS(pktp));
16015 			sd_return_failed_command(un, bp, EIO);
16016 			break;
16017 
16018 		default:
16019 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16020 			    "Invalid SCSI status received: 0x%x\n",
16021 			    SD_GET_PKT_STATUS(pktp));
16022 			sd_return_failed_command(un, bp, EIO);
16023 			break;
16024 
16025 		}
16026 		break;
16027 
16028 	case CMD_INCOMPLETE:
16029 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16030 		    "sdintr:  CMD_INCOMPLETE\n");
16031 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
16032 		break;
16033 	case CMD_TRAN_ERR:
16034 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16035 		    "sdintr: CMD_TRAN_ERR\n");
16036 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
16037 		break;
16038 	case CMD_RESET:
16039 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16040 		    "sdintr: CMD_RESET \n");
16041 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
16042 		break;
16043 	case CMD_ABORTED:
16044 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16045 		    "sdintr: CMD_ABORTED \n");
16046 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
16047 		break;
16048 	case CMD_TIMEOUT:
16049 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16050 		    "sdintr: CMD_TIMEOUT\n");
16051 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
16052 		break;
16053 	case CMD_UNX_BUS_FREE:
16054 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16055 		    "sdintr: CMD_UNX_BUS_FREE \n");
16056 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
16057 		break;
16058 	case CMD_TAG_REJECT:
16059 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16060 		    "sdintr: CMD_TAG_REJECT\n");
16061 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
16062 		break;
16063 	default:
16064 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16065 		    "sdintr: default\n");
16066 		sd_pkt_reason_default(un, bp, xp, pktp);
16067 		break;
16068 	}
16069 
16070 exit:
16071 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
16072 
16073 	/* Decrement counter to indicate that the callback routine is done. */
16074 	un->un_in_callback--;
16075 	ASSERT(un->un_in_callback >= 0);
16076 
16077 	/*
16078 	 * At this point, the pkt has been dispatched, ie, it is either
16079 	 * being re-tried or has been returned to its caller and should
16080 	 * not be referenced.
16081 	 */
16082 
16083 	mutex_exit(SD_MUTEX(un));
16084 }
16085 
16086 
16087 /*
16088  *    Function: sd_print_incomplete_msg
16089  *
16090  * Description: Prints the error message for a CMD_INCOMPLETE error.
16091  *
16092  *   Arguments: un - ptr to associated softstate for the device.
16093  *		bp - ptr to the buf(9S) for the command.
16094  *		arg - message string ptr
16095  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
16096  *			or SD_NO_RETRY_ISSUED.
16097  *
16098  *     Context: May be called under interrupt context
16099  */
16100 
16101 static void
16102 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
16103 {
16104 	struct scsi_pkt	*pktp;
16105 	char	*msgp;
16106 	char	*cmdp = arg;
16107 
16108 	ASSERT(un != NULL);
16109 	ASSERT(mutex_owned(SD_MUTEX(un)));
16110 	ASSERT(bp != NULL);
16111 	ASSERT(arg != NULL);
16112 	pktp = SD_GET_PKTP(bp);
16113 	ASSERT(pktp != NULL);
16114 
16115 	switch (code) {
16116 	case SD_DELAYED_RETRY_ISSUED:
16117 	case SD_IMMEDIATE_RETRY_ISSUED:
16118 		msgp = "retrying";
16119 		break;
16120 	case SD_NO_RETRY_ISSUED:
16121 	default:
16122 		msgp = "giving up";
16123 		break;
16124 	}
16125 
16126 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16127 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16128 		    "incomplete %s- %s\n", cmdp, msgp);
16129 	}
16130 }
16131 
16132 
16133 
16134 /*
16135  *    Function: sd_pkt_status_good
16136  *
16137  * Description: Processing for a STATUS_GOOD code in pkt_status.
16138  *
16139  *     Context: May be called under interrupt context
16140  */
16141 
16142 static void
16143 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
16144 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16145 {
16146 	char	*cmdp;
16147 
16148 	ASSERT(un != NULL);
16149 	ASSERT(mutex_owned(SD_MUTEX(un)));
16150 	ASSERT(bp != NULL);
16151 	ASSERT(xp != NULL);
16152 	ASSERT(pktp != NULL);
16153 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
16154 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
16155 	ASSERT(pktp->pkt_resid != 0);
16156 
16157 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
16158 
16159 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16160 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
16161 	case SCMD_READ:
16162 		cmdp = "read";
16163 		break;
16164 	case SCMD_WRITE:
16165 		cmdp = "write";
16166 		break;
16167 	default:
16168 		SD_UPDATE_B_RESID(bp, pktp);
16169 		sd_return_command(un, bp);
16170 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16171 		return;
16172 	}
16173 
16174 	/*
16175 	 * See if we can retry the read/write, preferrably immediately.
16176 	 * If retries are exhaused, then sd_retry_command() will update
16177 	 * the b_resid count.
16178 	 */
16179 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
16180 	    cmdp, EIO, (clock_t)0, NULL);
16181 
16182 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16183 }
16184 
16185 
16186 
16187 
16188 
16189 /*
16190  *    Function: sd_handle_request_sense
16191  *
16192  * Description: Processing for non-auto Request Sense command.
16193  *
16194  *   Arguments: un - ptr to associated softstate
16195  *		sense_bp - ptr to buf(9S) for the RQS command
16196  *		sense_xp - ptr to the sd_xbuf for the RQS command
16197  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
16198  *
16199  *     Context: May be called under interrupt context
16200  */
16201 
16202 static void
16203 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
16204 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
16205 {
16206 	struct buf	*cmd_bp;	/* buf for the original command */
16207 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
16208 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
16209 
16210 	ASSERT(un != NULL);
16211 	ASSERT(mutex_owned(SD_MUTEX(un)));
16212 	ASSERT(sense_bp != NULL);
16213 	ASSERT(sense_xp != NULL);
16214 	ASSERT(sense_pktp != NULL);
16215 
16216 	/*
16217 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
16218 	 * RQS command and not the original command.
16219 	 */
16220 	ASSERT(sense_pktp == un->un_rqs_pktp);
16221 	ASSERT(sense_bp   == un->un_rqs_bp);
16222 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
16223 	    (FLAG_SENSING | FLAG_HEAD));
16224 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
16225 	    FLAG_SENSING) == FLAG_SENSING);
16226 
16227 	/* These are the bp, xp, and pktp for the original command */
16228 	cmd_bp = sense_xp->xb_sense_bp;
16229 	cmd_xp = SD_GET_XBUF(cmd_bp);
16230 	cmd_pktp = SD_GET_PKTP(cmd_bp);
16231 
16232 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
16233 		/*
16234 		 * The REQUEST SENSE command failed.  Release the REQUEST
16235 		 * SENSE command for re-use, get back the bp for the original
16236 		 * command, and attempt to re-try the original command if
16237 		 * FLAG_DIAGNOSE is not set in the original packet.
16238 		 */
16239 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16240 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16241 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
16242 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
16243 			    NULL, NULL, EIO, (clock_t)0, NULL);
16244 			return;
16245 		}
16246 	}
16247 
16248 	/*
16249 	 * Save the relevant sense info into the xp for the original cmd.
16250 	 *
16251 	 * Note: if the request sense failed the state info will be zero
16252 	 * as set in sd_mark_rqs_busy()
16253 	 */
16254 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
16255 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
16256 	cmd_xp->xb_sense_resid  = sense_pktp->pkt_resid;
16257 	bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, SENSE_LENGTH);
16258 
16259 	/*
16260 	 *  Free up the RQS command....
16261 	 *  NOTE:
16262 	 *	Must do this BEFORE calling sd_validate_sense_data!
16263 	 *	sd_validate_sense_data may return the original command in
16264 	 *	which case the pkt will be freed and the flags can no
16265 	 *	longer be touched.
16266 	 *	SD_MUTEX is held through this process until the command
16267 	 *	is dispatched based upon the sense data, so there are
16268 	 *	no race conditions.
16269 	 */
16270 	(void) sd_mark_rqs_idle(un, sense_xp);
16271 
16272 	/*
16273 	 * For a retryable command see if we have valid sense data, if so then
16274 	 * turn it over to sd_decode_sense() to figure out the right course of
16275 	 * action. Just fail a non-retryable command.
16276 	 */
16277 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16278 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp) ==
16279 		    SD_SENSE_DATA_IS_VALID) {
16280 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
16281 		}
16282 	} else {
16283 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
16284 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
16285 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
16286 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
16287 		sd_return_failed_command(un, cmd_bp, EIO);
16288 	}
16289 }
16290 
16291 
16292 
16293 
16294 /*
16295  *    Function: sd_handle_auto_request_sense
16296  *
16297  * Description: Processing for auto-request sense information.
16298  *
16299  *   Arguments: un - ptr to associated softstate
16300  *		bp - ptr to buf(9S) for the command
16301  *		xp - ptr to the sd_xbuf for the command
16302  *		pktp - ptr to the scsi_pkt(9S) for the command
16303  *
16304  *     Context: May be called under interrupt context
16305  */
16306 
16307 static void
16308 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
16309 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16310 {
16311 	struct scsi_arq_status *asp;
16312 
16313 	ASSERT(un != NULL);
16314 	ASSERT(mutex_owned(SD_MUTEX(un)));
16315 	ASSERT(bp != NULL);
16316 	ASSERT(xp != NULL);
16317 	ASSERT(pktp != NULL);
16318 	ASSERT(pktp != un->un_rqs_pktp);
16319 	ASSERT(bp   != un->un_rqs_bp);
16320 
16321 	/*
16322 	 * For auto-request sense, we get a scsi_arq_status back from
16323 	 * the HBA, with the sense data in the sts_sensedata member.
16324 	 * The pkt_scbp of the packet points to this scsi_arq_status.
16325 	 */
16326 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16327 
16328 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
16329 		/*
16330 		 * The auto REQUEST SENSE failed; see if we can re-try
16331 		 * the original command.
16332 		 */
16333 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16334 		    "auto request sense failed (reason=%s)\n",
16335 		    scsi_rname(asp->sts_rqpkt_reason));
16336 
16337 		sd_reset_target(un, pktp);
16338 
16339 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16340 		    NULL, NULL, EIO, (clock_t)0, NULL);
16341 		return;
16342 	}
16343 
16344 	/* Save the relevant sense info into the xp for the original cmd. */
16345 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
16346 	xp->xb_sense_state  = asp->sts_rqpkt_state;
16347 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16348 	bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16349 	    min(sizeof (struct scsi_extended_sense), SENSE_LENGTH));
16350 
16351 	/*
16352 	 * See if we have valid sense data, if so then turn it over to
16353 	 * sd_decode_sense() to figure out the right course of action.
16354 	 */
16355 	if (sd_validate_sense_data(un, bp, xp) == SD_SENSE_DATA_IS_VALID) {
16356 		sd_decode_sense(un, bp, xp, pktp);
16357 	}
16358 }
16359 
16360 
16361 /*
16362  *    Function: sd_print_sense_failed_msg
16363  *
16364  * Description: Print log message when RQS has failed.
16365  *
16366  *   Arguments: un - ptr to associated softstate
16367  *		bp - ptr to buf(9S) for the command
16368  *		arg - generic message string ptr
16369  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16370  *			or SD_NO_RETRY_ISSUED
16371  *
16372  *     Context: May be called from interrupt context
16373  */
16374 
16375 static void
16376 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
16377 	int code)
16378 {
16379 	char	*msgp = arg;
16380 
16381 	ASSERT(un != NULL);
16382 	ASSERT(mutex_owned(SD_MUTEX(un)));
16383 	ASSERT(bp != NULL);
16384 
16385 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
16386 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
16387 	}
16388 }
16389 
16390 
16391 /*
16392  *    Function: sd_validate_sense_data
16393  *
16394  * Description: Check the given sense data for validity.
16395  *		If the sense data is not valid, the command will
16396  *		be either failed or retried!
16397  *
16398  * Return Code: SD_SENSE_DATA_IS_INVALID
16399  *		SD_SENSE_DATA_IS_VALID
16400  *
16401  *     Context: May be called from interrupt context
16402  */
16403 
16404 static int
16405 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp)
16406 {
16407 	struct scsi_extended_sense *esp;
16408 	struct	scsi_pkt *pktp;
16409 	size_t	actual_len;
16410 	char	*msgp = NULL;
16411 
16412 	ASSERT(un != NULL);
16413 	ASSERT(mutex_owned(SD_MUTEX(un)));
16414 	ASSERT(bp != NULL);
16415 	ASSERT(bp != un->un_rqs_bp);
16416 	ASSERT(xp != NULL);
16417 
16418 	pktp = SD_GET_PKTP(bp);
16419 	ASSERT(pktp != NULL);
16420 
16421 	/*
16422 	 * Check the status of the RQS command (auto or manual).
16423 	 */
16424 	switch (xp->xb_sense_status & STATUS_MASK) {
16425 	case STATUS_GOOD:
16426 		break;
16427 
16428 	case STATUS_RESERVATION_CONFLICT:
16429 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16430 		return (SD_SENSE_DATA_IS_INVALID);
16431 
16432 	case STATUS_BUSY:
16433 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16434 		    "Busy Status on REQUEST SENSE\n");
16435 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
16436 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
16437 		return (SD_SENSE_DATA_IS_INVALID);
16438 
16439 	case STATUS_QFULL:
16440 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16441 		    "QFULL Status on REQUEST SENSE\n");
16442 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
16443 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
16444 		return (SD_SENSE_DATA_IS_INVALID);
16445 
16446 	case STATUS_CHECK:
16447 	case STATUS_TERMINATED:
16448 		msgp = "Check Condition on REQUEST SENSE\n";
16449 		goto sense_failed;
16450 
16451 	default:
16452 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
16453 		goto sense_failed;
16454 	}
16455 
16456 	/*
16457 	 * See if we got the minimum required amount of sense data.
16458 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
16459 	 * or less.
16460 	 */
16461 	actual_len = (int)(SENSE_LENGTH - xp->xb_sense_resid);
16462 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
16463 	    (actual_len == 0)) {
16464 		msgp = "Request Sense couldn't get sense data\n";
16465 		goto sense_failed;
16466 	}
16467 
16468 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
16469 		msgp = "Not enough sense information\n";
16470 		goto sense_failed;
16471 	}
16472 
16473 	/*
16474 	 * We require the extended sense data
16475 	 */
16476 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
16477 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
16478 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16479 			static char tmp[8];
16480 			static char buf[148];
16481 			char *p = (char *)(xp->xb_sense_data);
16482 			int i;
16483 
16484 			mutex_enter(&sd_sense_mutex);
16485 			(void) strcpy(buf, "undecodable sense information:");
16486 			for (i = 0; i < actual_len; i++) {
16487 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
16488 				(void) strcpy(&buf[strlen(buf)], tmp);
16489 			}
16490 			i = strlen(buf);
16491 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
16492 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf);
16493 			mutex_exit(&sd_sense_mutex);
16494 		}
16495 		/* Note: Legacy behavior, fail the command with no retry */
16496 		sd_return_failed_command(un, bp, EIO);
16497 		return (SD_SENSE_DATA_IS_INVALID);
16498 	}
16499 
16500 	/*
16501 	 * Check that es_code is valid (es_class concatenated with es_code
16502 	 * make up the "response code" field.  es_class will always be 7, so
16503 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
16504 	 * format.
16505 	 */
16506 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
16507 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
16508 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
16509 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
16510 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
16511 		goto sense_failed;
16512 	}
16513 
16514 	return (SD_SENSE_DATA_IS_VALID);
16515 
16516 sense_failed:
16517 	/*
16518 	 * If the request sense failed (for whatever reason), attempt
16519 	 * to retry the original command.
16520 	 */
16521 #if defined(__i386) || defined(__amd64)
16522 	/*
16523 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
16524 	 * sddef.h for Sparc platform, and x86 uses 1 binary
16525 	 * for both SCSI/FC.
16526 	 * The SD_RETRY_DELAY value need to be adjusted here
16527 	 * when SD_RETRY_DELAY change in sddef.h
16528 	 */
16529 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16530 	    sd_print_sense_failed_msg, msgp, EIO,
16531 		un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
16532 #else
16533 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16534 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
16535 #endif
16536 
16537 	return (SD_SENSE_DATA_IS_INVALID);
16538 }
16539 
16540 
16541 
16542 /*
16543  *    Function: sd_decode_sense
16544  *
16545  * Description: Take recovery action(s) when SCSI Sense Data is received.
16546  *
16547  *     Context: Interrupt context.
16548  */
16549 
16550 static void
16551 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
16552 	struct scsi_pkt *pktp)
16553 {
16554 	struct scsi_extended_sense *esp;
16555 	struct scsi_descr_sense_hdr *sdsp;
16556 	uint8_t asc, ascq, sense_key;
16557 
16558 	ASSERT(un != NULL);
16559 	ASSERT(mutex_owned(SD_MUTEX(un)));
16560 	ASSERT(bp != NULL);
16561 	ASSERT(bp != un->un_rqs_bp);
16562 	ASSERT(xp != NULL);
16563 	ASSERT(pktp != NULL);
16564 
16565 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
16566 
16567 	switch (esp->es_code) {
16568 	case CODE_FMT_DESCR_CURRENT:
16569 	case CODE_FMT_DESCR_DEFERRED:
16570 		sdsp = (struct scsi_descr_sense_hdr *)xp->xb_sense_data;
16571 		sense_key = sdsp->ds_key;
16572 		asc = sdsp->ds_add_code;
16573 		ascq = sdsp->ds_qual_code;
16574 		break;
16575 	case CODE_FMT_VENDOR_SPECIFIC:
16576 	case CODE_FMT_FIXED_CURRENT:
16577 	case CODE_FMT_FIXED_DEFERRED:
16578 	default:
16579 		sense_key = esp->es_key;
16580 		asc = esp->es_add_code;
16581 		ascq = esp->es_qual_code;
16582 		break;
16583 	}
16584 
16585 	switch (sense_key) {
16586 	case KEY_NO_SENSE:
16587 		sd_sense_key_no_sense(un, bp, xp, pktp);
16588 		break;
16589 	case KEY_RECOVERABLE_ERROR:
16590 		sd_sense_key_recoverable_error(un, asc, bp, xp, pktp);
16591 		break;
16592 	case KEY_NOT_READY:
16593 		sd_sense_key_not_ready(un, asc, ascq, bp, xp, pktp);
16594 		break;
16595 	case KEY_MEDIUM_ERROR:
16596 	case KEY_HARDWARE_ERROR:
16597 		sd_sense_key_medium_or_hardware_error(un,
16598 		    sense_key, asc, bp, xp, pktp);
16599 		break;
16600 	case KEY_ILLEGAL_REQUEST:
16601 		sd_sense_key_illegal_request(un, bp, xp, pktp);
16602 		break;
16603 	case KEY_UNIT_ATTENTION:
16604 		sd_sense_key_unit_attention(un, asc, bp, xp, pktp);
16605 		break;
16606 	case KEY_WRITE_PROTECT:
16607 	case KEY_VOLUME_OVERFLOW:
16608 	case KEY_MISCOMPARE:
16609 		sd_sense_key_fail_command(un, bp, xp, pktp);
16610 		break;
16611 	case KEY_BLANK_CHECK:
16612 		sd_sense_key_blank_check(un, bp, xp, pktp);
16613 		break;
16614 	case KEY_ABORTED_COMMAND:
16615 		sd_sense_key_aborted_command(un, bp, xp, pktp);
16616 		break;
16617 	case KEY_VENDOR_UNIQUE:
16618 	case KEY_COPY_ABORTED:
16619 	case KEY_EQUAL:
16620 	case KEY_RESERVED:
16621 	default:
16622 		sd_sense_key_default(un, sense_key, bp, xp, pktp);
16623 		break;
16624 	}
16625 }
16626 
16627 
16628 /*
16629  *    Function: sd_dump_memory
16630  *
16631  * Description: Debug logging routine to print the contents of a user provided
16632  *		buffer. The output of the buffer is broken up into 256 byte
16633  *		segments due to a size constraint of the scsi_log.
16634  *		implementation.
16635  *
16636  *   Arguments: un - ptr to softstate
16637  *		comp - component mask
16638  *		title - "title" string to preceed data when printed
16639  *		data - ptr to data block to be printed
16640  *		len - size of data block to be printed
16641  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
16642  *
16643  *     Context: May be called from interrupt context
16644  */
16645 
16646 #define	SD_DUMP_MEMORY_BUF_SIZE	256
16647 
16648 static char *sd_dump_format_string[] = {
16649 		" 0x%02x",
16650 		" %c"
16651 };
16652 
16653 static void
16654 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
16655     int len, int fmt)
16656 {
16657 	int	i, j;
16658 	int	avail_count;
16659 	int	start_offset;
16660 	int	end_offset;
16661 	size_t	entry_len;
16662 	char	*bufp;
16663 	char	*local_buf;
16664 	char	*format_string;
16665 
16666 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
16667 
16668 	/*
16669 	 * In the debug version of the driver, this function is called from a
16670 	 * number of places which are NOPs in the release driver.
16671 	 * The debug driver therefore has additional methods of filtering
16672 	 * debug output.
16673 	 */
16674 #ifdef SDDEBUG
16675 	/*
16676 	 * In the debug version of the driver we can reduce the amount of debug
16677 	 * messages by setting sd_error_level to something other than
16678 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
16679 	 * sd_component_mask.
16680 	 */
16681 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
16682 	    (sd_error_level != SCSI_ERR_ALL)) {
16683 		return;
16684 	}
16685 	if (((sd_component_mask & comp) == 0) ||
16686 	    (sd_error_level != SCSI_ERR_ALL)) {
16687 		return;
16688 	}
16689 #else
16690 	if (sd_error_level != SCSI_ERR_ALL) {
16691 		return;
16692 	}
16693 #endif
16694 
16695 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
16696 	bufp = local_buf;
16697 	/*
16698 	 * Available length is the length of local_buf[], minus the
16699 	 * length of the title string, minus one for the ":", minus
16700 	 * one for the newline, minus one for the NULL terminator.
16701 	 * This gives the #bytes available for holding the printed
16702 	 * values from the given data buffer.
16703 	 */
16704 	if (fmt == SD_LOG_HEX) {
16705 		format_string = sd_dump_format_string[0];
16706 	} else /* SD_LOG_CHAR */ {
16707 		format_string = sd_dump_format_string[1];
16708 	}
16709 	/*
16710 	 * Available count is the number of elements from the given
16711 	 * data buffer that we can fit into the available length.
16712 	 * This is based upon the size of the format string used.
16713 	 * Make one entry and find it's size.
16714 	 */
16715 	(void) sprintf(bufp, format_string, data[0]);
16716 	entry_len = strlen(bufp);
16717 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
16718 
16719 	j = 0;
16720 	while (j < len) {
16721 		bufp = local_buf;
16722 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
16723 		start_offset = j;
16724 
16725 		end_offset = start_offset + avail_count;
16726 
16727 		(void) sprintf(bufp, "%s:", title);
16728 		bufp += strlen(bufp);
16729 		for (i = start_offset; ((i < end_offset) && (j < len));
16730 		    i++, j++) {
16731 			(void) sprintf(bufp, format_string, data[i]);
16732 			bufp += entry_len;
16733 		}
16734 		(void) sprintf(bufp, "\n");
16735 
16736 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
16737 	}
16738 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
16739 }
16740 
16741 /*
16742  *    Function: sd_print_sense_msg
16743  *
16744  * Description: Log a message based upon the given sense data.
16745  *
16746  *   Arguments: un - ptr to associated softstate
16747  *		bp - ptr to buf(9S) for the command
16748  *		arg - ptr to associate sd_sense_info struct
16749  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16750  *			or SD_NO_RETRY_ISSUED
16751  *
16752  *     Context: May be called from interrupt context
16753  */
16754 
16755 static void
16756 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
16757 {
16758 	struct sd_xbuf	*xp;
16759 	struct scsi_pkt	*pktp;
16760 	struct scsi_extended_sense *sensep;
16761 	daddr_t request_blkno;
16762 	diskaddr_t err_blkno;
16763 	int severity;
16764 	int pfa_flag;
16765 	int fixed_format = TRUE;
16766 	extern struct scsi_key_strings scsi_cmds[];
16767 
16768 	ASSERT(un != NULL);
16769 	ASSERT(mutex_owned(SD_MUTEX(un)));
16770 	ASSERT(bp != NULL);
16771 	xp = SD_GET_XBUF(bp);
16772 	ASSERT(xp != NULL);
16773 	pktp = SD_GET_PKTP(bp);
16774 	ASSERT(pktp != NULL);
16775 	ASSERT(arg != NULL);
16776 
16777 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
16778 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
16779 
16780 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
16781 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
16782 		severity = SCSI_ERR_RETRYABLE;
16783 	}
16784 
16785 	/* Use absolute block number for the request block number */
16786 	request_blkno = xp->xb_blkno;
16787 
16788 	/*
16789 	 * Now try to get the error block number from the sense data
16790 	 */
16791 	sensep = (struct scsi_extended_sense *)xp->xb_sense_data;
16792 	switch (sensep->es_code) {
16793 	case CODE_FMT_DESCR_CURRENT:
16794 	case CODE_FMT_DESCR_DEFERRED:
16795 		err_blkno =
16796 		    sd_extract_sense_info_descr(
16797 			(struct scsi_descr_sense_hdr *)sensep);
16798 		fixed_format = FALSE;
16799 		break;
16800 	case CODE_FMT_FIXED_CURRENT:
16801 	case CODE_FMT_FIXED_DEFERRED:
16802 	case CODE_FMT_VENDOR_SPECIFIC:
16803 	default:
16804 		/*
16805 		 * With the es_valid bit set, we assume that the error
16806 		 * blkno is in the sense data.  Also, if xp->xb_blkno is
16807 		 * greater than 0xffffffff then the target *should* have used
16808 		 * a descriptor sense format (or it shouldn't have set
16809 		 * the es_valid bit), and we may as well ignore the
16810 		 * 32-bit value.
16811 		 */
16812 		if ((sensep->es_valid != 0) && (xp->xb_blkno <= 0xffffffff)) {
16813 			err_blkno = (diskaddr_t)
16814 			    ((sensep->es_info_1 << 24) |
16815 			    (sensep->es_info_2 << 16) |
16816 			    (sensep->es_info_3 << 8)  |
16817 			    (sensep->es_info_4));
16818 		} else {
16819 			err_blkno = (diskaddr_t)-1;
16820 		}
16821 		break;
16822 	}
16823 
16824 	if (err_blkno == (diskaddr_t)-1) {
16825 		/*
16826 		 * Without the es_valid bit set (for fixed format) or an
16827 		 * information descriptor (for descriptor format) we cannot
16828 		 * be certain of the error blkno, so just use the
16829 		 * request_blkno.
16830 		 */
16831 		err_blkno = (diskaddr_t)request_blkno;
16832 	} else {
16833 		/*
16834 		 * We retrieved the error block number from the information
16835 		 * portion of the sense data.
16836 		 *
16837 		 * For USCSI commands we are better off using the error
16838 		 * block no. as the requested block no. (This is the best
16839 		 * we can estimate.)
16840 		 */
16841 		if ((SD_IS_BUFIO(xp) == FALSE) &&
16842 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
16843 			request_blkno = err_blkno;
16844 		}
16845 	}
16846 
16847 	/*
16848 	 * The following will log the buffer contents for the release driver
16849 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
16850 	 * level is set to verbose.
16851 	 */
16852 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
16853 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
16854 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
16855 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
16856 
16857 	if (pfa_flag == FALSE) {
16858 		/* This is normally only set for USCSI */
16859 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
16860 			return;
16861 		}
16862 
16863 		if ((SD_IS_BUFIO(xp) == TRUE) &&
16864 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
16865 		    (severity < sd_error_level))) {
16866 			return;
16867 		}
16868 	}
16869 
16870 	/*
16871 	 * If the data is fixed format then check for Sonoma Failover,
16872 	 * and keep a count of how many failed I/O's.  We should not have
16873 	 * to worry about Sonoma returning descriptor format sense data,
16874 	 * and asc/ascq are in a different location in descriptor format.
16875 	 */
16876 	if (fixed_format &&
16877 	    (SD_IS_LSI(un)) && (sensep->es_key == KEY_ILLEGAL_REQUEST) &&
16878 	    (sensep->es_add_code == 0x94) && (sensep->es_qual_code == 0x01)) {
16879 		un->un_sonoma_failure_count++;
16880 		if (un->un_sonoma_failure_count > 1) {
16881 			return;
16882 		}
16883 	}
16884 
16885 	scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
16886 	    request_blkno, err_blkno, scsi_cmds, sensep,
16887 	    un->un_additional_codes, NULL);
16888 }
16889 
16890 /*
16891  *    Function: sd_extract_sense_info_descr
16892  *
16893  * Description: Retrieve "information" field from descriptor format
16894  *              sense data.  Iterates through each sense descriptor
16895  *              looking for the information descriptor and returns
16896  *              the information field from that descriptor.
16897  *
16898  *     Context: May be called from interrupt context
16899  */
16900 
16901 static diskaddr_t
16902 sd_extract_sense_info_descr(struct scsi_descr_sense_hdr *sdsp)
16903 {
16904 	diskaddr_t result;
16905 	uint8_t *descr_offset;
16906 	int valid_sense_length;
16907 	struct scsi_information_sense_descr *isd;
16908 
16909 	/*
16910 	 * Initialize result to -1 indicating there is no information
16911 	 * descriptor
16912 	 */
16913 	result = (diskaddr_t)-1;
16914 
16915 	/*
16916 	 * The first descriptor will immediately follow the header
16917 	 */
16918 	descr_offset = (uint8_t *)(sdsp+1); /* Pointer arithmetic */
16919 
16920 	/*
16921 	 * Calculate the amount of valid sense data
16922 	 */
16923 	valid_sense_length =
16924 	    min((sizeof (struct scsi_descr_sense_hdr) +
16925 	    sdsp->ds_addl_sense_length),
16926 	    SENSE_LENGTH);
16927 
16928 	/*
16929 	 * Iterate through the list of descriptors, stopping when we
16930 	 * run out of sense data
16931 	 */
16932 	while ((descr_offset + sizeof (struct scsi_information_sense_descr)) <=
16933 	    (uint8_t *)sdsp + valid_sense_length) {
16934 		/*
16935 		 * Check if this is an information descriptor.  We can
16936 		 * use the scsi_information_sense_descr structure as a
16937 		 * template sense the first two fields are always the
16938 		 * same
16939 		 */
16940 		isd = (struct scsi_information_sense_descr *)descr_offset;
16941 		if (isd->isd_descr_type == DESCR_INFORMATION) {
16942 			/*
16943 			 * Found an information descriptor.  Copy the
16944 			 * information field.  There will only be one
16945 			 * information descriptor so we can stop looking.
16946 			 */
16947 			result =
16948 			    (((diskaddr_t)isd->isd_information[0] << 56) |
16949 				((diskaddr_t)isd->isd_information[1] << 48) |
16950 				((diskaddr_t)isd->isd_information[2] << 40) |
16951 				((diskaddr_t)isd->isd_information[3] << 32) |
16952 				((diskaddr_t)isd->isd_information[4] << 24) |
16953 				((diskaddr_t)isd->isd_information[5] << 16) |
16954 				((diskaddr_t)isd->isd_information[6] << 8)  |
16955 				((diskaddr_t)isd->isd_information[7]));
16956 			break;
16957 		}
16958 
16959 		/*
16960 		 * Get pointer to the next descriptor.  The "additional
16961 		 * length" field holds the length of the descriptor except
16962 		 * for the "type" and "additional length" fields, so
16963 		 * we need to add 2 to get the total length.
16964 		 */
16965 		descr_offset += (isd->isd_addl_length + 2);
16966 	}
16967 
16968 	return (result);
16969 }
16970 
16971 /*
16972  *    Function: sd_sense_key_no_sense
16973  *
16974  * Description: Recovery action when sense data was not received.
16975  *
16976  *     Context: May be called from interrupt context
16977  */
16978 
16979 static void
16980 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
16981 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16982 {
16983 	struct sd_sense_info	si;
16984 
16985 	ASSERT(un != NULL);
16986 	ASSERT(mutex_owned(SD_MUTEX(un)));
16987 	ASSERT(bp != NULL);
16988 	ASSERT(xp != NULL);
16989 	ASSERT(pktp != NULL);
16990 
16991 	si.ssi_severity = SCSI_ERR_FATAL;
16992 	si.ssi_pfa_flag = FALSE;
16993 
16994 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
16995 
16996 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16997 		&si, EIO, (clock_t)0, NULL);
16998 }
16999 
17000 
17001 /*
17002  *    Function: sd_sense_key_recoverable_error
17003  *
17004  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
17005  *
17006  *     Context: May be called from interrupt context
17007  */
17008 
17009 static void
17010 sd_sense_key_recoverable_error(struct sd_lun *un,
17011 	uint8_t asc,
17012 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17013 {
17014 	struct sd_sense_info	si;
17015 
17016 	ASSERT(un != NULL);
17017 	ASSERT(mutex_owned(SD_MUTEX(un)));
17018 	ASSERT(bp != NULL);
17019 	ASSERT(xp != NULL);
17020 	ASSERT(pktp != NULL);
17021 
17022 	/*
17023 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
17024 	 */
17025 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
17026 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17027 		si.ssi_severity = SCSI_ERR_INFO;
17028 		si.ssi_pfa_flag = TRUE;
17029 	} else {
17030 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
17031 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
17032 		si.ssi_severity = SCSI_ERR_RECOVERED;
17033 		si.ssi_pfa_flag = FALSE;
17034 	}
17035 
17036 	if (pktp->pkt_resid == 0) {
17037 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17038 		sd_return_command(un, bp);
17039 		return;
17040 	}
17041 
17042 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17043 	    &si, EIO, (clock_t)0, NULL);
17044 }
17045 
17046 
17047 
17048 
17049 /*
17050  *    Function: sd_sense_key_not_ready
17051  *
17052  * Description: Recovery actions for a SCSI "Not Ready" sense key.
17053  *
17054  *     Context: May be called from interrupt context
17055  */
17056 
17057 static void
17058 sd_sense_key_not_ready(struct sd_lun *un,
17059 	uint8_t asc, uint8_t ascq,
17060 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17061 {
17062 	struct sd_sense_info	si;
17063 
17064 	ASSERT(un != NULL);
17065 	ASSERT(mutex_owned(SD_MUTEX(un)));
17066 	ASSERT(bp != NULL);
17067 	ASSERT(xp != NULL);
17068 	ASSERT(pktp != NULL);
17069 
17070 	si.ssi_severity = SCSI_ERR_FATAL;
17071 	si.ssi_pfa_flag = FALSE;
17072 
17073 	/*
17074 	 * Update error stats after first NOT READY error. Disks may have
17075 	 * been powered down and may need to be restarted.  For CDROMs,
17076 	 * report NOT READY errors only if media is present.
17077 	 */
17078 	if ((ISCD(un) && (un->un_f_geometry_is_valid == TRUE)) ||
17079 	    (xp->xb_retry_count > 0)) {
17080 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17081 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
17082 	}
17083 
17084 	/*
17085 	 * Just fail if the "not ready" retry limit has been reached.
17086 	 */
17087 	if (xp->xb_retry_count >= un->un_notready_retry_count) {
17088 		/* Special check for error message printing for removables. */
17089 		if ((ISREMOVABLE(un)) && (asc == 0x04) &&
17090 		    (ascq >= 0x04)) {
17091 			si.ssi_severity = SCSI_ERR_ALL;
17092 		}
17093 		goto fail_command;
17094 	}
17095 
17096 	/*
17097 	 * Check the ASC and ASCQ in the sense data as needed, to determine
17098 	 * what to do.
17099 	 */
17100 	switch (asc) {
17101 	case 0x04:	/* LOGICAL UNIT NOT READY */
17102 		/*
17103 		 * disk drives that don't spin up result in a very long delay
17104 		 * in format without warning messages. We will log a message
17105 		 * if the error level is set to verbose.
17106 		 */
17107 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17108 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17109 			    "logical unit not ready, resetting disk\n");
17110 		}
17111 
17112 		/*
17113 		 * There are different requirements for CDROMs and disks for
17114 		 * the number of retries.  If a CD-ROM is giving this, it is
17115 		 * probably reading TOC and is in the process of getting
17116 		 * ready, so we should keep on trying for a long time to make
17117 		 * sure that all types of media are taken in account (for
17118 		 * some media the drive takes a long time to read TOC).  For
17119 		 * disks we do not want to retry this too many times as this
17120 		 * can cause a long hang in format when the drive refuses to
17121 		 * spin up (a very common failure).
17122 		 */
17123 		switch (ascq) {
17124 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
17125 			/*
17126 			 * Disk drives frequently refuse to spin up which
17127 			 * results in a very long hang in format without
17128 			 * warning messages.
17129 			 *
17130 			 * Note: This code preserves the legacy behavior of
17131 			 * comparing xb_retry_count against zero for fibre
17132 			 * channel targets instead of comparing against the
17133 			 * un_reset_retry_count value.  The reason for this
17134 			 * discrepancy has been so utterly lost beneath the
17135 			 * Sands of Time that even Indiana Jones could not
17136 			 * find it.
17137 			 */
17138 			if (un->un_f_is_fibre == TRUE) {
17139 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17140 					(xp->xb_retry_count > 0)) &&
17141 					(un->un_startstop_timeid == NULL)) {
17142 					scsi_log(SD_DEVINFO(un), sd_label,
17143 					CE_WARN, "logical unit not ready, "
17144 					"resetting disk\n");
17145 					sd_reset_target(un, pktp);
17146 				}
17147 			} else {
17148 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17149 					(xp->xb_retry_count >
17150 					un->un_reset_retry_count)) &&
17151 					(un->un_startstop_timeid == NULL)) {
17152 					scsi_log(SD_DEVINFO(un), sd_label,
17153 					CE_WARN, "logical unit not ready, "
17154 					"resetting disk\n");
17155 					sd_reset_target(un, pktp);
17156 				}
17157 			}
17158 			break;
17159 
17160 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
17161 			/*
17162 			 * If the target is in the process of becoming
17163 			 * ready, just proceed with the retry. This can
17164 			 * happen with CD-ROMs that take a long time to
17165 			 * read TOC after a power cycle or reset.
17166 			 */
17167 			goto do_retry;
17168 
17169 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
17170 			break;
17171 
17172 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
17173 			/*
17174 			 * Retries cannot help here so just fail right away.
17175 			 */
17176 			goto fail_command;
17177 
17178 		case 0x88:
17179 			/*
17180 			 * Vendor-unique code for T3/T4: it indicates a
17181 			 * path problem in a mutipathed config, but as far as
17182 			 * the target driver is concerned it equates to a fatal
17183 			 * error, so we should just fail the command right away
17184 			 * (without printing anything to the console). If this
17185 			 * is not a T3/T4, fall thru to the default recovery
17186 			 * action.
17187 			 * T3/T4 is FC only, don't need to check is_fibre
17188 			 */
17189 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
17190 				sd_return_failed_command(un, bp, EIO);
17191 				return;
17192 			}
17193 			/* FALLTHRU */
17194 
17195 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
17196 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
17197 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
17198 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
17199 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
17200 		default:    /* Possible future codes in SCSI spec? */
17201 			/*
17202 			 * For removable-media devices, do not retry if
17203 			 * ASCQ > 2 as these result mostly from USCSI commands
17204 			 * on MMC devices issued to check status of an
17205 			 * operation initiated in immediate mode.  Also for
17206 			 * ASCQ >= 4 do not print console messages as these
17207 			 * mainly represent a user-initiated operation
17208 			 * instead of a system failure.
17209 			 */
17210 			if (ISREMOVABLE(un)) {
17211 				si.ssi_severity = SCSI_ERR_ALL;
17212 				goto fail_command;
17213 			}
17214 			break;
17215 		}
17216 
17217 		/*
17218 		 * As part of our recovery attempt for the NOT READY
17219 		 * condition, we issue a START STOP UNIT command. However
17220 		 * we want to wait for a short delay before attempting this
17221 		 * as there may still be more commands coming back from the
17222 		 * target with the check condition. To do this we use
17223 		 * timeout(9F) to call sd_start_stop_unit_callback() after
17224 		 * the delay interval expires. (sd_start_stop_unit_callback()
17225 		 * dispatches sd_start_stop_unit_task(), which will issue
17226 		 * the actual START STOP UNIT command. The delay interval
17227 		 * is one-half of the delay that we will use to retry the
17228 		 * command that generated the NOT READY condition.
17229 		 *
17230 		 * Note that we could just dispatch sd_start_stop_unit_task()
17231 		 * from here and allow it to sleep for the delay interval,
17232 		 * but then we would be tying up the taskq thread
17233 		 * uncesessarily for the duration of the delay.
17234 		 *
17235 		 * Do not issue the START STOP UNIT if the current command
17236 		 * is already a START STOP UNIT.
17237 		 */
17238 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
17239 			break;
17240 		}
17241 
17242 		/*
17243 		 * Do not schedule the timeout if one is already pending.
17244 		 */
17245 		if (un->un_startstop_timeid != NULL) {
17246 			SD_INFO(SD_LOG_ERROR, un,
17247 			    "sd_sense_key_not_ready: restart already issued to"
17248 			    " 0x%x : 0x%x\n", SD_TARGET(un), SD_LUN(un));
17249 			break;
17250 		}
17251 
17252 		/*
17253 		 * Schedule the START STOP UNIT command, then queue the command
17254 		 * for a retry.
17255 		 *
17256 		 * Note: A timeout is not scheduled for this retry because we
17257 		 * want the retry to be serial with the START_STOP_UNIT. The
17258 		 * retry will be started when the START_STOP_UNIT is completed
17259 		 * in sd_start_stop_unit_task.
17260 		 */
17261 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
17262 		    un, SD_BSY_TIMEOUT / 2);
17263 		xp->xb_retry_count++;
17264 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
17265 		return;
17266 
17267 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
17268 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17269 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17270 			    "unit does not respond to selection\n");
17271 		}
17272 		break;
17273 
17274 	case 0x3A:	/* MEDIUM NOT PRESENT */
17275 		if (sd_error_level >= SCSI_ERR_FATAL) {
17276 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17277 			    "Caddy not inserted in drive\n");
17278 		}
17279 
17280 		sr_ejected(un);
17281 		un->un_mediastate = DKIO_EJECTED;
17282 		/* The state has changed, inform the media watch routines */
17283 		cv_broadcast(&un->un_state_cv);
17284 		/* Just fail if no media is present in the drive. */
17285 		goto fail_command;
17286 
17287 	default:
17288 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17289 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
17290 			    "Unit not Ready. Additional sense code 0x%x\n",
17291 			    asc);
17292 		}
17293 		break;
17294 	}
17295 
17296 do_retry:
17297 
17298 	/*
17299 	 * Retry the command, as some targets may report NOT READY for
17300 	 * several seconds after being reset.
17301 	 */
17302 	xp->xb_retry_count++;
17303 	si.ssi_severity = SCSI_ERR_RETRYABLE;
17304 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
17305 	    &si, EIO, SD_BSY_TIMEOUT, NULL);
17306 
17307 	return;
17308 
17309 fail_command:
17310 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17311 	sd_return_failed_command(un, bp, EIO);
17312 }
17313 
17314 
17315 
17316 /*
17317  *    Function: sd_sense_key_medium_or_hardware_error
17318  *
17319  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
17320  *		sense key.
17321  *
17322  *     Context: May be called from interrupt context
17323  */
17324 
17325 static void
17326 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
17327 	int sense_key, uint8_t asc,
17328 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17329 {
17330 	struct sd_sense_info	si;
17331 
17332 	ASSERT(un != NULL);
17333 	ASSERT(mutex_owned(SD_MUTEX(un)));
17334 	ASSERT(bp != NULL);
17335 	ASSERT(xp != NULL);
17336 	ASSERT(pktp != NULL);
17337 
17338 	si.ssi_severity = SCSI_ERR_FATAL;
17339 	si.ssi_pfa_flag = FALSE;
17340 
17341 	if (sense_key == KEY_MEDIUM_ERROR) {
17342 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
17343 	}
17344 
17345 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17346 
17347 	if ((un->un_reset_retry_count != 0) &&
17348 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
17349 		mutex_exit(SD_MUTEX(un));
17350 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
17351 		if (un->un_f_allow_bus_device_reset == TRUE) {
17352 
17353 			boolean_t try_resetting_target = B_TRUE;
17354 
17355 			/*
17356 			 * We need to be able to handle specific ASC when we are
17357 			 * handling a KEY_HARDWARE_ERROR. In particular
17358 			 * taking the default action of resetting the target may
17359 			 * not be the appropriate way to attempt recovery.
17360 			 * Resetting a target because of a single LUN failure
17361 			 * victimizes all LUNs on that target.
17362 			 *
17363 			 * This is true for the LSI arrays, if an LSI
17364 			 * array controller returns an ASC of 0x84 (LUN Dead) we
17365 			 * should trust it.
17366 			 */
17367 
17368 			if (sense_key == KEY_HARDWARE_ERROR) {
17369 				switch (asc) {
17370 				case 0x84:
17371 					if (SD_IS_LSI(un)) {
17372 						try_resetting_target = B_FALSE;
17373 					}
17374 					break;
17375 				default:
17376 					break;
17377 				}
17378 			}
17379 
17380 			if (try_resetting_target == B_TRUE) {
17381 				int reset_retval = 0;
17382 				if (un->un_f_lun_reset_enabled == TRUE) {
17383 					SD_TRACE(SD_LOG_IO_CORE, un,
17384 					    "sd_sense_key_medium_or_hardware_"
17385 					    "error: issuing RESET_LUN\n");
17386 					reset_retval =
17387 					    scsi_reset(SD_ADDRESS(un),
17388 					    RESET_LUN);
17389 				}
17390 				if (reset_retval == 0) {
17391 					SD_TRACE(SD_LOG_IO_CORE, un,
17392 					    "sd_sense_key_medium_or_hardware_"
17393 					    "error: issuing RESET_TARGET\n");
17394 					(void) scsi_reset(SD_ADDRESS(un),
17395 					    RESET_TARGET);
17396 				}
17397 			}
17398 		}
17399 		mutex_enter(SD_MUTEX(un));
17400 	}
17401 
17402 	/*
17403 	 * This really ought to be a fatal error, but we will retry anyway
17404 	 * as some drives report this as a spurious error.
17405 	 */
17406 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17407 	    &si, EIO, (clock_t)0, NULL);
17408 }
17409 
17410 
17411 
17412 /*
17413  *    Function: sd_sense_key_illegal_request
17414  *
17415  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
17416  *
17417  *     Context: May be called from interrupt context
17418  */
17419 
17420 static void
17421 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
17422 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17423 {
17424 	struct sd_sense_info	si;
17425 
17426 	ASSERT(un != NULL);
17427 	ASSERT(mutex_owned(SD_MUTEX(un)));
17428 	ASSERT(bp != NULL);
17429 	ASSERT(xp != NULL);
17430 	ASSERT(pktp != NULL);
17431 
17432 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
17433 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
17434 
17435 	si.ssi_severity = SCSI_ERR_INFO;
17436 	si.ssi_pfa_flag = FALSE;
17437 
17438 	/* Pointless to retry if the target thinks it's an illegal request */
17439 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17440 	sd_return_failed_command(un, bp, EIO);
17441 }
17442 
17443 
17444 
17445 
17446 /*
17447  *    Function: sd_sense_key_unit_attention
17448  *
17449  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
17450  *
17451  *     Context: May be called from interrupt context
17452  */
17453 
17454 static void
17455 sd_sense_key_unit_attention(struct sd_lun *un,
17456 	uint8_t asc,
17457 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17458 {
17459 	/*
17460 	 * For UNIT ATTENTION we allow retries for one minute. Devices
17461 	 * like Sonoma can return UNIT ATTENTION close to a minute
17462 	 * under certain conditions.
17463 	 */
17464 	int	retry_check_flag = SD_RETRIES_UA;
17465 	struct	sd_sense_info		si;
17466 
17467 	ASSERT(un != NULL);
17468 	ASSERT(mutex_owned(SD_MUTEX(un)));
17469 	ASSERT(bp != NULL);
17470 	ASSERT(xp != NULL);
17471 	ASSERT(pktp != NULL);
17472 
17473 	si.ssi_severity = SCSI_ERR_INFO;
17474 	si.ssi_pfa_flag = FALSE;
17475 
17476 
17477 	switch (asc) {
17478 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
17479 		if (sd_report_pfa != 0) {
17480 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17481 			si.ssi_pfa_flag = TRUE;
17482 			retry_check_flag = SD_RETRIES_STANDARD;
17483 			goto do_retry;
17484 		}
17485 		break;
17486 
17487 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
17488 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
17489 			un->un_resvd_status |=
17490 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
17491 		}
17492 		/* FALLTHRU */
17493 
17494 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
17495 		if (!ISREMOVABLE(un)) {
17496 			break;
17497 		}
17498 
17499 		/*
17500 		 * When we get a unit attention from a removable-media device,
17501 		 * it may be in a state that will take a long time to recover
17502 		 * (e.g., from a reset).  Since we are executing in interrupt
17503 		 * context here, we cannot wait around for the device to come
17504 		 * back. So hand this command off to sd_media_change_task()
17505 		 * for deferred processing under taskq thread context. (Note
17506 		 * that the command still may be failed if a problem is
17507 		 * encountered at a later time.)
17508 		 */
17509 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
17510 		    KM_NOSLEEP) == 0) {
17511 			/*
17512 			 * Cannot dispatch the request so fail the command.
17513 			 */
17514 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
17515 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17516 			si.ssi_severity = SCSI_ERR_FATAL;
17517 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17518 			sd_return_failed_command(un, bp, EIO);
17519 		}
17520 		/*
17521 		 * Either the command has been successfully dispatched to a
17522 		 * task Q for retrying, or the dispatch failed. In either case
17523 		 * do NOT retry again by calling sd_retry_command. This sets up
17524 		 * two retries of the same command and when one completes and
17525 		 * frees the resources the other will access freed memory,
17526 		 * a bad thing.
17527 		 */
17528 		return;
17529 
17530 	default:
17531 		break;
17532 	}
17533 
17534 	if (!ISREMOVABLE(un)) {
17535 		/*
17536 		 * Do not update these here for removables. For removables
17537 		 * these stats are updated (1) above if we failed to dispatch
17538 		 * sd_media_change_task(), or (2) sd_media_change_task() may
17539 		 * update these later if it encounters an error.
17540 		 */
17541 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17542 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17543 	}
17544 
17545 do_retry:
17546 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
17547 	    EIO, SD_UA_RETRY_DELAY, NULL);
17548 }
17549 
17550 
17551 
17552 /*
17553  *    Function: sd_sense_key_fail_command
17554  *
17555  * Description: Use to fail a command when we don't like the sense key that
17556  *		was returned.
17557  *
17558  *     Context: May be called from interrupt context
17559  */
17560 
17561 static void
17562 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
17563 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17564 {
17565 	struct sd_sense_info	si;
17566 
17567 	ASSERT(un != NULL);
17568 	ASSERT(mutex_owned(SD_MUTEX(un)));
17569 	ASSERT(bp != NULL);
17570 	ASSERT(xp != NULL);
17571 	ASSERT(pktp != NULL);
17572 
17573 	si.ssi_severity = SCSI_ERR_FATAL;
17574 	si.ssi_pfa_flag = FALSE;
17575 
17576 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17577 	sd_return_failed_command(un, bp, EIO);
17578 }
17579 
17580 
17581 
17582 /*
17583  *    Function: sd_sense_key_blank_check
17584  *
17585  * Description: Recovery actions for a SCSI "Blank Check" sense key.
17586  *		Has no monetary connotation.
17587  *
17588  *     Context: May be called from interrupt context
17589  */
17590 
17591 static void
17592 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
17593 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17594 {
17595 	struct sd_sense_info	si;
17596 
17597 	ASSERT(un != NULL);
17598 	ASSERT(mutex_owned(SD_MUTEX(un)));
17599 	ASSERT(bp != NULL);
17600 	ASSERT(xp != NULL);
17601 	ASSERT(pktp != NULL);
17602 
17603 	/*
17604 	 * Blank check is not fatal for removable devices, therefore
17605 	 * it does not require a console message.
17606 	 */
17607 	si.ssi_severity = (ISREMOVABLE(un)) ? SCSI_ERR_ALL : SCSI_ERR_FATAL;
17608 	si.ssi_pfa_flag = FALSE;
17609 
17610 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17611 	sd_return_failed_command(un, bp, EIO);
17612 }
17613 
17614 
17615 
17616 
17617 /*
17618  *    Function: sd_sense_key_aborted_command
17619  *
17620  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
17621  *
17622  *     Context: May be called from interrupt context
17623  */
17624 
17625 static void
17626 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
17627 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17628 {
17629 	struct sd_sense_info	si;
17630 
17631 	ASSERT(un != NULL);
17632 	ASSERT(mutex_owned(SD_MUTEX(un)));
17633 	ASSERT(bp != NULL);
17634 	ASSERT(xp != NULL);
17635 	ASSERT(pktp != NULL);
17636 
17637 	si.ssi_severity = SCSI_ERR_FATAL;
17638 	si.ssi_pfa_flag = FALSE;
17639 
17640 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17641 
17642 	/*
17643 	 * This really ought to be a fatal error, but we will retry anyway
17644 	 * as some drives report this as a spurious error.
17645 	 */
17646 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17647 	    &si, EIO, (clock_t)0, NULL);
17648 }
17649 
17650 
17651 
17652 /*
17653  *    Function: sd_sense_key_default
17654  *
17655  * Description: Default recovery action for several SCSI sense keys (basically
17656  *		attempts a retry).
17657  *
17658  *     Context: May be called from interrupt context
17659  */
17660 
17661 static void
17662 sd_sense_key_default(struct sd_lun *un,
17663 	int sense_key,
17664 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17665 {
17666 	struct sd_sense_info	si;
17667 
17668 	ASSERT(un != NULL);
17669 	ASSERT(mutex_owned(SD_MUTEX(un)));
17670 	ASSERT(bp != NULL);
17671 	ASSERT(xp != NULL);
17672 	ASSERT(pktp != NULL);
17673 
17674 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17675 
17676 	/*
17677 	 * Undecoded sense key.	Attempt retries and hope that will fix
17678 	 * the problem.  Otherwise, we're dead.
17679 	 */
17680 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17681 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17682 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
17683 	}
17684 
17685 	si.ssi_severity = SCSI_ERR_FATAL;
17686 	si.ssi_pfa_flag = FALSE;
17687 
17688 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17689 	    &si, EIO, (clock_t)0, NULL);
17690 }
17691 
17692 
17693 
17694 /*
17695  *    Function: sd_print_retry_msg
17696  *
17697  * Description: Print a message indicating the retry action being taken.
17698  *
17699  *   Arguments: un - ptr to associated softstate
17700  *		bp - ptr to buf(9S) for the command
17701  *		arg - not used.
17702  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17703  *			or SD_NO_RETRY_ISSUED
17704  *
17705  *     Context: May be called from interrupt context
17706  */
17707 /* ARGSUSED */
17708 static void
17709 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
17710 {
17711 	struct sd_xbuf	*xp;
17712 	struct scsi_pkt *pktp;
17713 	char *reasonp;
17714 	char *msgp;
17715 
17716 	ASSERT(un != NULL);
17717 	ASSERT(mutex_owned(SD_MUTEX(un)));
17718 	ASSERT(bp != NULL);
17719 	pktp = SD_GET_PKTP(bp);
17720 	ASSERT(pktp != NULL);
17721 	xp = SD_GET_XBUF(bp);
17722 	ASSERT(xp != NULL);
17723 
17724 	ASSERT(!mutex_owned(&un->un_pm_mutex));
17725 	mutex_enter(&un->un_pm_mutex);
17726 	if ((un->un_state == SD_STATE_SUSPENDED) ||
17727 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
17728 	    (pktp->pkt_flags & FLAG_SILENT)) {
17729 		mutex_exit(&un->un_pm_mutex);
17730 		goto update_pkt_reason;
17731 	}
17732 	mutex_exit(&un->un_pm_mutex);
17733 
17734 	/*
17735 	 * Suppress messages if they are all the same pkt_reason; with
17736 	 * TQ, many (up to 256) are returned with the same pkt_reason.
17737 	 * If we are in panic, then suppress the retry messages.
17738 	 */
17739 	switch (flag) {
17740 	case SD_NO_RETRY_ISSUED:
17741 		msgp = "giving up";
17742 		break;
17743 	case SD_IMMEDIATE_RETRY_ISSUED:
17744 	case SD_DELAYED_RETRY_ISSUED:
17745 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
17746 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
17747 		    (sd_error_level != SCSI_ERR_ALL))) {
17748 			return;
17749 		}
17750 		msgp = "retrying command";
17751 		break;
17752 	default:
17753 		goto update_pkt_reason;
17754 	}
17755 
17756 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
17757 	    scsi_rname(pktp->pkt_reason));
17758 
17759 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17760 	    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
17761 
17762 update_pkt_reason:
17763 	/*
17764 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
17765 	 * This is to prevent multiple console messages for the same failure
17766 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
17767 	 * when the command is retried successfully because there still may be
17768 	 * more commands coming back with the same value of pktp->pkt_reason.
17769 	 */
17770 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
17771 		un->un_last_pkt_reason = pktp->pkt_reason;
17772 	}
17773 }
17774 
17775 
17776 /*
17777  *    Function: sd_print_cmd_incomplete_msg
17778  *
17779  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
17780  *
17781  *   Arguments: un - ptr to associated softstate
17782  *		bp - ptr to buf(9S) for the command
17783  *		arg - passed to sd_print_retry_msg()
17784  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17785  *			or SD_NO_RETRY_ISSUED
17786  *
17787  *     Context: May be called from interrupt context
17788  */
17789 
17790 static void
17791 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
17792 	int code)
17793 {
17794 	dev_info_t	*dip;
17795 
17796 	ASSERT(un != NULL);
17797 	ASSERT(mutex_owned(SD_MUTEX(un)));
17798 	ASSERT(bp != NULL);
17799 
17800 	switch (code) {
17801 	case SD_NO_RETRY_ISSUED:
17802 		/* Command was failed. Someone turned off this target? */
17803 		if (un->un_state != SD_STATE_OFFLINE) {
17804 			/*
17805 			 * Suppress message if we are detaching and
17806 			 * device has been disconnected
17807 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
17808 			 * private interface and not part of the DDI
17809 			 */
17810 			dip = un->un_sd->sd_dev;
17811 			if (!(DEVI_IS_DETACHING(dip) &&
17812 			    DEVI_IS_DEVICE_REMOVED(dip))) {
17813 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17814 				"disk not responding to selection\n");
17815 			}
17816 			New_state(un, SD_STATE_OFFLINE);
17817 		}
17818 		break;
17819 
17820 	case SD_DELAYED_RETRY_ISSUED:
17821 	case SD_IMMEDIATE_RETRY_ISSUED:
17822 	default:
17823 		/* Command was successfully queued for retry */
17824 		sd_print_retry_msg(un, bp, arg, code);
17825 		break;
17826 	}
17827 }
17828 
17829 
17830 /*
17831  *    Function: sd_pkt_reason_cmd_incomplete
17832  *
17833  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
17834  *
17835  *     Context: May be called from interrupt context
17836  */
17837 
17838 static void
17839 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
17840 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17841 {
17842 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
17843 
17844 	ASSERT(un != NULL);
17845 	ASSERT(mutex_owned(SD_MUTEX(un)));
17846 	ASSERT(bp != NULL);
17847 	ASSERT(xp != NULL);
17848 	ASSERT(pktp != NULL);
17849 
17850 	/* Do not do a reset if selection did not complete */
17851 	/* Note: Should this not just check the bit? */
17852 	if (pktp->pkt_state != STATE_GOT_BUS) {
17853 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
17854 		sd_reset_target(un, pktp);
17855 	}
17856 
17857 	/*
17858 	 * If the target was not successfully selected, then set
17859 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
17860 	 * with the target, and further retries and/or commands are
17861 	 * likely to take a long time.
17862 	 */
17863 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
17864 		flag |= SD_RETRIES_FAILFAST;
17865 	}
17866 
17867 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17868 
17869 	sd_retry_command(un, bp, flag,
17870 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17871 }
17872 
17873 
17874 
17875 /*
17876  *    Function: sd_pkt_reason_cmd_tran_err
17877  *
17878  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
17879  *
17880  *     Context: May be called from interrupt context
17881  */
17882 
17883 static void
17884 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
17885 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17886 {
17887 	ASSERT(un != NULL);
17888 	ASSERT(mutex_owned(SD_MUTEX(un)));
17889 	ASSERT(bp != NULL);
17890 	ASSERT(xp != NULL);
17891 	ASSERT(pktp != NULL);
17892 
17893 	/*
17894 	 * Do not reset if we got a parity error, or if
17895 	 * selection did not complete.
17896 	 */
17897 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17898 	/* Note: Should this not just check the bit for pkt_state? */
17899 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
17900 	    (pktp->pkt_state != STATE_GOT_BUS)) {
17901 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
17902 		sd_reset_target(un, pktp);
17903 	}
17904 
17905 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17906 
17907 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
17908 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17909 }
17910 
17911 
17912 
17913 /*
17914  *    Function: sd_pkt_reason_cmd_reset
17915  *
17916  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
17917  *
17918  *     Context: May be called from interrupt context
17919  */
17920 
17921 static void
17922 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
17923 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17924 {
17925 	ASSERT(un != NULL);
17926 	ASSERT(mutex_owned(SD_MUTEX(un)));
17927 	ASSERT(bp != NULL);
17928 	ASSERT(xp != NULL);
17929 	ASSERT(pktp != NULL);
17930 
17931 	/* The target may still be running the command, so try to reset. */
17932 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
17933 	sd_reset_target(un, pktp);
17934 
17935 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17936 
17937 	/*
17938 	 * If pkt_reason is CMD_RESET chances are that this pkt got
17939 	 * reset because another target on this bus caused it. The target
17940 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
17941 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
17942 	 */
17943 
17944 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
17945 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17946 }
17947 
17948 
17949 
17950 
17951 /*
17952  *    Function: sd_pkt_reason_cmd_aborted
17953  *
17954  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
17955  *
17956  *     Context: May be called from interrupt context
17957  */
17958 
17959 static void
17960 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
17961 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17962 {
17963 	ASSERT(un != NULL);
17964 	ASSERT(mutex_owned(SD_MUTEX(un)));
17965 	ASSERT(bp != NULL);
17966 	ASSERT(xp != NULL);
17967 	ASSERT(pktp != NULL);
17968 
17969 	/* The target may still be running the command, so try to reset. */
17970 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
17971 	sd_reset_target(un, pktp);
17972 
17973 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17974 
17975 	/*
17976 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
17977 	 * aborted because another target on this bus caused it. The target
17978 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
17979 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
17980 	 */
17981 
17982 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
17983 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17984 }
17985 
17986 
17987 
17988 /*
17989  *    Function: sd_pkt_reason_cmd_timeout
17990  *
17991  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
17992  *
17993  *     Context: May be called from interrupt context
17994  */
17995 
17996 static void
17997 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
17998 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17999 {
18000 	ASSERT(un != NULL);
18001 	ASSERT(mutex_owned(SD_MUTEX(un)));
18002 	ASSERT(bp != NULL);
18003 	ASSERT(xp != NULL);
18004 	ASSERT(pktp != NULL);
18005 
18006 
18007 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18008 	sd_reset_target(un, pktp);
18009 
18010 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18011 
18012 	/*
18013 	 * A command timeout indicates that we could not establish
18014 	 * communication with the target, so set SD_RETRIES_FAILFAST
18015 	 * as further retries/commands are likely to take a long time.
18016 	 */
18017 	sd_retry_command(un, bp,
18018 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
18019 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18020 }
18021 
18022 
18023 
18024 /*
18025  *    Function: sd_pkt_reason_cmd_unx_bus_free
18026  *
18027  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
18028  *
18029  *     Context: May be called from interrupt context
18030  */
18031 
18032 static void
18033 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
18034 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18035 {
18036 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
18037 
18038 	ASSERT(un != NULL);
18039 	ASSERT(mutex_owned(SD_MUTEX(un)));
18040 	ASSERT(bp != NULL);
18041 	ASSERT(xp != NULL);
18042 	ASSERT(pktp != NULL);
18043 
18044 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18045 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18046 
18047 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
18048 	    sd_print_retry_msg : NULL;
18049 
18050 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18051 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18052 }
18053 
18054 
18055 /*
18056  *    Function: sd_pkt_reason_cmd_tag_reject
18057  *
18058  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
18059  *
18060  *     Context: May be called from interrupt context
18061  */
18062 
18063 static void
18064 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
18065 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18066 {
18067 	ASSERT(un != NULL);
18068 	ASSERT(mutex_owned(SD_MUTEX(un)));
18069 	ASSERT(bp != NULL);
18070 	ASSERT(xp != NULL);
18071 	ASSERT(pktp != NULL);
18072 
18073 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18074 	pktp->pkt_flags = 0;
18075 	un->un_tagflags = 0;
18076 	if (un->un_f_opt_queueing == TRUE) {
18077 		un->un_throttle = min(un->un_throttle, 3);
18078 	} else {
18079 		un->un_throttle = 1;
18080 	}
18081 	mutex_exit(SD_MUTEX(un));
18082 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
18083 	mutex_enter(SD_MUTEX(un));
18084 
18085 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18086 
18087 	/* Legacy behavior not to check retry counts here. */
18088 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
18089 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18090 }
18091 
18092 
18093 /*
18094  *    Function: sd_pkt_reason_default
18095  *
18096  * Description: Default recovery actions for SCSA pkt_reason values that
18097  *		do not have more explicit recovery actions.
18098  *
18099  *     Context: May be called from interrupt context
18100  */
18101 
18102 static void
18103 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
18104 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18105 {
18106 	ASSERT(un != NULL);
18107 	ASSERT(mutex_owned(SD_MUTEX(un)));
18108 	ASSERT(bp != NULL);
18109 	ASSERT(xp != NULL);
18110 	ASSERT(pktp != NULL);
18111 
18112 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18113 	sd_reset_target(un, pktp);
18114 
18115 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18116 
18117 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18118 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18119 }
18120 
18121 
18122 
18123 /*
18124  *    Function: sd_pkt_status_check_condition
18125  *
18126  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
18127  *
18128  *     Context: May be called from interrupt context
18129  */
18130 
18131 static void
18132 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
18133 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18134 {
18135 	ASSERT(un != NULL);
18136 	ASSERT(mutex_owned(SD_MUTEX(un)));
18137 	ASSERT(bp != NULL);
18138 	ASSERT(xp != NULL);
18139 	ASSERT(pktp != NULL);
18140 
18141 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
18142 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
18143 
18144 	/*
18145 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
18146 	 * command will be retried after the request sense). Otherwise, retry
18147 	 * the command. Note: we are issuing the request sense even though the
18148 	 * retry limit may have been reached for the failed command.
18149 	 */
18150 	if (un->un_f_arq_enabled == FALSE) {
18151 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18152 		    "no ARQ, sending request sense command\n");
18153 		sd_send_request_sense_command(un, bp, pktp);
18154 	} else {
18155 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18156 		    "ARQ,retrying request sense command\n");
18157 #if defined(__i386) || defined(__amd64)
18158 		/*
18159 		 * The SD_RETRY_DELAY value need to be adjusted here
18160 		 * when SD_RETRY_DELAY change in sddef.h
18161 		 */
18162 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, 0,
18163 			un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
18164 			NULL);
18165 #else
18166 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
18167 		    0, SD_RETRY_DELAY, NULL);
18168 #endif
18169 	}
18170 
18171 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
18172 }
18173 
18174 
18175 /*
18176  *    Function: sd_pkt_status_busy
18177  *
18178  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
18179  *
18180  *     Context: May be called from interrupt context
18181  */
18182 
18183 static void
18184 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
18185 	struct scsi_pkt *pktp)
18186 {
18187 	ASSERT(un != NULL);
18188 	ASSERT(mutex_owned(SD_MUTEX(un)));
18189 	ASSERT(bp != NULL);
18190 	ASSERT(xp != NULL);
18191 	ASSERT(pktp != NULL);
18192 
18193 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18194 	    "sd_pkt_status_busy: entry\n");
18195 
18196 	/* If retries are exhausted, just fail the command. */
18197 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
18198 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18199 		    "device busy too long\n");
18200 		sd_return_failed_command(un, bp, EIO);
18201 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18202 		    "sd_pkt_status_busy: exit\n");
18203 		return;
18204 	}
18205 	xp->xb_retry_count++;
18206 
18207 	/*
18208 	 * Try to reset the target. However, we do not want to perform
18209 	 * more than one reset if the device continues to fail. The reset
18210 	 * will be performed when the retry count reaches the reset
18211 	 * threshold.  This threshold should be set such that at least
18212 	 * one retry is issued before the reset is performed.
18213 	 */
18214 	if (xp->xb_retry_count ==
18215 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
18216 		int rval = 0;
18217 		mutex_exit(SD_MUTEX(un));
18218 		if (un->un_f_allow_bus_device_reset == TRUE) {
18219 			/*
18220 			 * First try to reset the LUN; if we cannot then
18221 			 * try to reset the target.
18222 			 */
18223 			if (un->un_f_lun_reset_enabled == TRUE) {
18224 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18225 				    "sd_pkt_status_busy: RESET_LUN\n");
18226 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18227 			}
18228 			if (rval == 0) {
18229 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18230 				    "sd_pkt_status_busy: RESET_TARGET\n");
18231 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18232 			}
18233 		}
18234 		if (rval == 0) {
18235 			/*
18236 			 * If the RESET_LUN and/or RESET_TARGET failed,
18237 			 * try RESET_ALL
18238 			 */
18239 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18240 			    "sd_pkt_status_busy: RESET_ALL\n");
18241 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
18242 		}
18243 		mutex_enter(SD_MUTEX(un));
18244 		if (rval == 0) {
18245 			/*
18246 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
18247 			 * At this point we give up & fail the command.
18248 			 */
18249 			sd_return_failed_command(un, bp, EIO);
18250 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18251 			    "sd_pkt_status_busy: exit (failed cmd)\n");
18252 			return;
18253 		}
18254 	}
18255 
18256 	/*
18257 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
18258 	 * we have already checked the retry counts above.
18259 	 */
18260 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
18261 	    EIO, SD_BSY_TIMEOUT, NULL);
18262 
18263 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18264 	    "sd_pkt_status_busy: exit\n");
18265 }
18266 
18267 
18268 /*
18269  *    Function: sd_pkt_status_reservation_conflict
18270  *
18271  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
18272  *		command status.
18273  *
18274  *     Context: May be called from interrupt context
18275  */
18276 
18277 static void
18278 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
18279 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18280 {
18281 	ASSERT(un != NULL);
18282 	ASSERT(mutex_owned(SD_MUTEX(un)));
18283 	ASSERT(bp != NULL);
18284 	ASSERT(xp != NULL);
18285 	ASSERT(pktp != NULL);
18286 
18287 	/*
18288 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
18289 	 * conflict could be due to various reasons like incorrect keys, not
18290 	 * registered or not reserved etc. So, we return EACCES to the caller.
18291 	 */
18292 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
18293 		int cmd = SD_GET_PKT_OPCODE(pktp);
18294 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
18295 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
18296 			sd_return_failed_command(un, bp, EACCES);
18297 			return;
18298 		}
18299 	}
18300 
18301 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
18302 
18303 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
18304 		if (sd_failfast_enable != 0) {
18305 			/* By definition, we must panic here.... */
18306 			panic("Reservation Conflict");
18307 			/*NOTREACHED*/
18308 		}
18309 		SD_ERROR(SD_LOG_IO, un,
18310 		    "sd_handle_resv_conflict: Disk Reserved\n");
18311 		sd_return_failed_command(un, bp, EACCES);
18312 		return;
18313 	}
18314 
18315 	/*
18316 	 * 1147670: retry only if sd_retry_on_reservation_conflict
18317 	 * property is set (default is 1). Retries will not succeed
18318 	 * on a disk reserved by another initiator. HA systems
18319 	 * may reset this via sd.conf to avoid these retries.
18320 	 *
18321 	 * Note: The legacy return code for this failure is EIO, however EACCES
18322 	 * seems more appropriate for a reservation conflict.
18323 	 */
18324 	if (sd_retry_on_reservation_conflict == 0) {
18325 		SD_ERROR(SD_LOG_IO, un,
18326 		    "sd_handle_resv_conflict: Device Reserved\n");
18327 		sd_return_failed_command(un, bp, EIO);
18328 		return;
18329 	}
18330 
18331 	/*
18332 	 * Retry the command if we can.
18333 	 *
18334 	 * Note: The legacy return code for this failure is EIO, however EACCES
18335 	 * seems more appropriate for a reservation conflict.
18336 	 */
18337 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18338 	    (clock_t)2, NULL);
18339 }
18340 
18341 
18342 
18343 /*
18344  *    Function: sd_pkt_status_qfull
18345  *
18346  * Description: Handle a QUEUE FULL condition from the target.  This can
18347  *		occur if the HBA does not handle the queue full condition.
18348  *		(Basically this means third-party HBAs as Sun HBAs will
18349  *		handle the queue full condition.)  Note that if there are
18350  *		some commands already in the transport, then the queue full
18351  *		has occurred because the queue for this nexus is actually
18352  *		full. If there are no commands in the transport, then the
18353  *		queue full is resulting from some other initiator or lun
18354  *		consuming all the resources at the target.
18355  *
18356  *     Context: May be called from interrupt context
18357  */
18358 
18359 static void
18360 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
18361 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18362 {
18363 	ASSERT(un != NULL);
18364 	ASSERT(mutex_owned(SD_MUTEX(un)));
18365 	ASSERT(bp != NULL);
18366 	ASSERT(xp != NULL);
18367 	ASSERT(pktp != NULL);
18368 
18369 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18370 	    "sd_pkt_status_qfull: entry\n");
18371 
18372 	/*
18373 	 * Just lower the QFULL throttle and retry the command.  Note that
18374 	 * we do not limit the number of retries here.
18375 	 */
18376 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
18377 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
18378 	    SD_RESTART_TIMEOUT, NULL);
18379 
18380 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18381 	    "sd_pkt_status_qfull: exit\n");
18382 }
18383 
18384 
18385 /*
18386  *    Function: sd_reset_target
18387  *
18388  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
18389  *		RESET_TARGET, or RESET_ALL.
18390  *
18391  *     Context: May be called under interrupt context.
18392  */
18393 
18394 static void
18395 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
18396 {
18397 	int rval = 0;
18398 
18399 	ASSERT(un != NULL);
18400 	ASSERT(mutex_owned(SD_MUTEX(un)));
18401 	ASSERT(pktp != NULL);
18402 
18403 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
18404 
18405 	/*
18406 	 * No need to reset if the transport layer has already done so.
18407 	 */
18408 	if ((pktp->pkt_statistics &
18409 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
18410 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18411 		    "sd_reset_target: no reset\n");
18412 		return;
18413 	}
18414 
18415 	mutex_exit(SD_MUTEX(un));
18416 
18417 	if (un->un_f_allow_bus_device_reset == TRUE) {
18418 		if (un->un_f_lun_reset_enabled == TRUE) {
18419 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18420 			    "sd_reset_target: RESET_LUN\n");
18421 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18422 		}
18423 		if (rval == 0) {
18424 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18425 			    "sd_reset_target: RESET_TARGET\n");
18426 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18427 		}
18428 	}
18429 
18430 	if (rval == 0) {
18431 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18432 		    "sd_reset_target: RESET_ALL\n");
18433 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
18434 	}
18435 
18436 	mutex_enter(SD_MUTEX(un));
18437 
18438 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
18439 }
18440 
18441 
18442 /*
18443  *    Function: sd_media_change_task
18444  *
18445  * Description: Recovery action for CDROM to become available.
18446  *
18447  *     Context: Executes in a taskq() thread context
18448  */
18449 
18450 static void
18451 sd_media_change_task(void *arg)
18452 {
18453 	struct	scsi_pkt	*pktp = arg;
18454 	struct	sd_lun		*un;
18455 	struct	buf		*bp;
18456 	struct	sd_xbuf		*xp;
18457 	int	err		= 0;
18458 	int	retry_count	= 0;
18459 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
18460 	struct	sd_sense_info	si;
18461 
18462 	ASSERT(pktp != NULL);
18463 	bp = (struct buf *)pktp->pkt_private;
18464 	ASSERT(bp != NULL);
18465 	xp = SD_GET_XBUF(bp);
18466 	ASSERT(xp != NULL);
18467 	un = SD_GET_UN(bp);
18468 	ASSERT(un != NULL);
18469 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18470 	ASSERT(ISREMOVABLE(un));
18471 
18472 	si.ssi_severity = SCSI_ERR_INFO;
18473 	si.ssi_pfa_flag = FALSE;
18474 
18475 	/*
18476 	 * When a reset is issued on a CDROM, it takes a long time to
18477 	 * recover. First few attempts to read capacity and other things
18478 	 * related to handling unit attention fail (with a ASC 0x4 and
18479 	 * ASCQ 0x1). In that case we want to do enough retries and we want
18480 	 * to limit the retries in other cases of genuine failures like
18481 	 * no media in drive.
18482 	 */
18483 	while (retry_count++ < retry_limit) {
18484 		if ((err = sd_handle_mchange(un)) == 0) {
18485 			break;
18486 		}
18487 		if (err == EAGAIN) {
18488 			retry_limit = SD_UNIT_ATTENTION_RETRY;
18489 		}
18490 		/* Sleep for 0.5 sec. & try again */
18491 		delay(drv_usectohz(500000));
18492 	}
18493 
18494 	/*
18495 	 * Dispatch (retry or fail) the original command here,
18496 	 * along with appropriate console messages....
18497 	 *
18498 	 * Must grab the mutex before calling sd_retry_command,
18499 	 * sd_print_sense_msg and sd_return_failed_command.
18500 	 */
18501 	mutex_enter(SD_MUTEX(un));
18502 	if (err != SD_CMD_SUCCESS) {
18503 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18504 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18505 		si.ssi_severity = SCSI_ERR_FATAL;
18506 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18507 		sd_return_failed_command(un, bp, EIO);
18508 	} else {
18509 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
18510 		    &si, EIO, (clock_t)0, NULL);
18511 	}
18512 	mutex_exit(SD_MUTEX(un));
18513 }
18514 
18515 
18516 
18517 /*
18518  *    Function: sd_handle_mchange
18519  *
18520  * Description: Perform geometry validation & other recovery when CDROM
18521  *		has been removed from drive.
18522  *
18523  * Return Code: 0 for success
18524  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
18525  *		sd_send_scsi_READ_CAPACITY()
18526  *
18527  *     Context: Executes in a taskq() thread context
18528  */
18529 
18530 static int
18531 sd_handle_mchange(struct sd_lun *un)
18532 {
18533 	uint64_t	capacity;
18534 	uint32_t	lbasize;
18535 	int		rval;
18536 
18537 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18538 	ASSERT(ISREMOVABLE(un));
18539 
18540 	if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
18541 	    SD_PATH_DIRECT_PRIORITY)) != 0) {
18542 		return (rval);
18543 	}
18544 
18545 	mutex_enter(SD_MUTEX(un));
18546 	sd_update_block_info(un, lbasize, capacity);
18547 
18548 	if (un->un_errstats != NULL) {
18549 		struct	sd_errstats *stp =
18550 		    (struct sd_errstats *)un->un_errstats->ks_data;
18551 		stp->sd_capacity.value.ui64 = (uint64_t)
18552 		    ((uint64_t)un->un_blockcount *
18553 		    (uint64_t)un->un_tgt_blocksize);
18554 	}
18555 
18556 	/*
18557 	 * Note: Maybe let the strategy/partitioning chain worry about getting
18558 	 * valid geometry.
18559 	 */
18560 	un->un_f_geometry_is_valid = FALSE;
18561 	(void) sd_validate_geometry(un, SD_PATH_DIRECT_PRIORITY);
18562 	if (un->un_f_geometry_is_valid == FALSE) {
18563 		mutex_exit(SD_MUTEX(un));
18564 		return (EIO);
18565 	}
18566 
18567 	mutex_exit(SD_MUTEX(un));
18568 
18569 	/*
18570 	 * Try to lock the door
18571 	 */
18572 	return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
18573 	    SD_PATH_DIRECT_PRIORITY));
18574 }
18575 
18576 
18577 /*
18578  *    Function: sd_send_scsi_DOORLOCK
18579  *
18580  * Description: Issue the scsi DOOR LOCK command
18581  *
18582  *   Arguments: un    - pointer to driver soft state (unit) structure for
18583  *			this target.
18584  *		flag  - SD_REMOVAL_ALLOW
18585  *			SD_REMOVAL_PREVENT
18586  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18587  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18588  *			to use the USCSI "direct" chain and bypass the normal
18589  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
18590  *			command is issued as part of an error recovery action.
18591  *
18592  * Return Code: 0   - Success
18593  *		errno return code from sd_send_scsi_cmd()
18594  *
18595  *     Context: Can sleep.
18596  */
18597 
18598 static int
18599 sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag)
18600 {
18601 	uchar_t			cdb_buf[CDB_GROUP0];
18602 	struct uscsi_cmd	ucmd_buf;
18603 	struct scsi_extended_sense	sense_buf;
18604 	int			status;
18605 
18606 	ASSERT(un != NULL);
18607 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18608 
18609 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
18610 
18611 	/* already determined doorlock is not supported, fake success */
18612 	if (un->un_f_doorlock_supported == FALSE) {
18613 		return (0);
18614 	}
18615 
18616 	bzero(cdb_buf, sizeof (cdb_buf));
18617 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18618 
18619 	cdb_buf[0] = SCMD_DOORLOCK;
18620 	cdb_buf[4] = (uchar_t)flag;
18621 
18622 	ucmd_buf.uscsi_cdb	= (char *)cdb_buf;
18623 	ucmd_buf.uscsi_cdblen	= sizeof (cdb_buf);
18624 	ucmd_buf.uscsi_bufaddr	= NULL;
18625 	ucmd_buf.uscsi_buflen	= 0;
18626 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18627 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
18628 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
18629 	ucmd_buf.uscsi_timeout	= 15;
18630 
18631 	SD_TRACE(SD_LOG_IO, un,
18632 	    "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n");
18633 
18634 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
18635 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
18636 
18637 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
18638 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18639 	    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
18640 		/* fake success and skip subsequent doorlock commands */
18641 		un->un_f_doorlock_supported = FALSE;
18642 		return (0);
18643 	}
18644 
18645 	return (status);
18646 }
18647 
18648 
18649 /*
18650  *    Function: sd_send_scsi_READ_CAPACITY
18651  *
18652  * Description: This routine uses the scsi READ CAPACITY command to determine
18653  *		the device capacity in number of blocks and the device native
18654  *		block size. If this function returns a failure, then the
18655  *		values in *capp and *lbap are undefined.  If the capacity
18656  *		returned is 0xffffffff then the lun is too large for a
18657  *		normal READ CAPACITY command and the results of a
18658  *		READ CAPACITY 16 will be used instead.
18659  *
18660  *   Arguments: un   - ptr to soft state struct for the target
18661  *		capp - ptr to unsigned 64-bit variable to receive the
18662  *			capacity value from the command.
18663  *		lbap - ptr to unsigned 32-bit varaible to receive the
18664  *			block size value from the command
18665  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18666  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18667  *			to use the USCSI "direct" chain and bypass the normal
18668  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
18669  *			command is issued as part of an error recovery action.
18670  *
18671  * Return Code: 0   - Success
18672  *		EIO - IO error
18673  *		EACCES - Reservation conflict detected
18674  *		EAGAIN - Device is becoming ready
18675  *		errno return code from sd_send_scsi_cmd()
18676  *
18677  *     Context: Can sleep.  Blocks until command completes.
18678  */
18679 
18680 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
18681 
18682 static int
18683 sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap,
18684 	int path_flag)
18685 {
18686 	struct	scsi_extended_sense	sense_buf;
18687 	struct	uscsi_cmd	ucmd_buf;
18688 	uchar_t			cdb_buf[CDB_GROUP1];
18689 	uint32_t		*capacity_buf;
18690 	uint64_t		capacity;
18691 	uint32_t		lbasize;
18692 	int			status;
18693 
18694 	ASSERT(un != NULL);
18695 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18696 	ASSERT(capp != NULL);
18697 	ASSERT(lbap != NULL);
18698 
18699 	SD_TRACE(SD_LOG_IO, un,
18700 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
18701 
18702 	/*
18703 	 * First send a READ_CAPACITY command to the target.
18704 	 * (This command is mandatory under SCSI-2.)
18705 	 *
18706 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
18707 	 * Medium Indicator bit is cleared.  The address field must be
18708 	 * zero if the PMI bit is zero.
18709 	 */
18710 	bzero(cdb_buf, sizeof (cdb_buf));
18711 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18712 
18713 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
18714 
18715 	cdb_buf[0] = SCMD_READ_CAPACITY;
18716 
18717 	ucmd_buf.uscsi_cdb	= (char *)cdb_buf;
18718 	ucmd_buf.uscsi_cdblen	= sizeof (cdb_buf);
18719 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
18720 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
18721 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18722 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
18723 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
18724 	ucmd_buf.uscsi_timeout	= 60;
18725 
18726 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
18727 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
18728 
18729 	switch (status) {
18730 	case 0:
18731 		/* Return failure if we did not get valid capacity data. */
18732 		if (ucmd_buf.uscsi_resid != 0) {
18733 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
18734 			return (EIO);
18735 		}
18736 
18737 		/*
18738 		 * Read capacity and block size from the READ CAPACITY 10 data.
18739 		 * This data may be adjusted later due to device specific
18740 		 * issues.
18741 		 *
18742 		 * According to the SCSI spec, the READ CAPACITY 10
18743 		 * command returns the following:
18744 		 *
18745 		 *  bytes 0-3: Maximum logical block address available.
18746 		 *		(MSB in byte:0 & LSB in byte:3)
18747 		 *
18748 		 *  bytes 4-7: Block length in bytes
18749 		 *		(MSB in byte:4 & LSB in byte:7)
18750 		 *
18751 		 */
18752 		capacity = BE_32(capacity_buf[0]);
18753 		lbasize = BE_32(capacity_buf[1]);
18754 
18755 		/*
18756 		 * Done with capacity_buf
18757 		 */
18758 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
18759 
18760 		/*
18761 		 * if the reported capacity is set to all 0xf's, then
18762 		 * this disk is too large and requires SBC-2 commands.
18763 		 * Reissue the request using READ CAPACITY 16.
18764 		 */
18765 		if (capacity == 0xffffffff) {
18766 			status = sd_send_scsi_READ_CAPACITY_16(un, &capacity,
18767 			    &lbasize, path_flag);
18768 			if (status != 0) {
18769 				return (status);
18770 			}
18771 		}
18772 		break;	/* Success! */
18773 	case EIO:
18774 		switch (ucmd_buf.uscsi_status) {
18775 		case STATUS_RESERVATION_CONFLICT:
18776 			status = EACCES;
18777 			break;
18778 		case STATUS_CHECK:
18779 			/*
18780 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
18781 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
18782 			 */
18783 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18784 			    (sense_buf.es_add_code  == 0x04) &&
18785 			    (sense_buf.es_qual_code == 0x01)) {
18786 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
18787 				return (EAGAIN);
18788 			}
18789 			break;
18790 		default:
18791 			break;
18792 		}
18793 		/* FALLTHRU */
18794 	default:
18795 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
18796 		return (status);
18797 	}
18798 
18799 	/*
18800 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
18801 	 * (2352 and 0 are common) so for these devices always force the value
18802 	 * to 2048 as required by the ATAPI specs.
18803 	 */
18804 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
18805 		lbasize = 2048;
18806 	}
18807 
18808 	/*
18809 	 * Get the maximum LBA value from the READ CAPACITY data.
18810 	 * Here we assume that the Partial Medium Indicator (PMI) bit
18811 	 * was cleared when issuing the command. This means that the LBA
18812 	 * returned from the device is the LBA of the last logical block
18813 	 * on the logical unit.  The actual logical block count will be
18814 	 * this value plus one.
18815 	 *
18816 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
18817 	 * so scale the capacity value to reflect this.
18818 	 */
18819 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
18820 
18821 #if defined(__i386) || defined(__amd64)
18822 	/*
18823 	 * On x86, compensate for off-by-1 error (number of sectors on
18824 	 * media)  (1175930)
18825 	 */
18826 	if (!ISREMOVABLE(un) && (lbasize == un->un_sys_blocksize)) {
18827 		capacity -= 1;
18828 	}
18829 #endif
18830 
18831 	/*
18832 	 * Copy the values from the READ CAPACITY command into the space
18833 	 * provided by the caller.
18834 	 */
18835 	*capp = capacity;
18836 	*lbap = lbasize;
18837 
18838 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
18839 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
18840 
18841 	/*
18842 	 * Both the lbasize and capacity from the device must be nonzero,
18843 	 * otherwise we assume that the values are not valid and return
18844 	 * failure to the caller. (4203735)
18845 	 */
18846 	if ((capacity == 0) || (lbasize == 0)) {
18847 		return (EIO);
18848 	}
18849 
18850 	return (0);
18851 }
18852 
18853 /*
18854  *    Function: sd_send_scsi_READ_CAPACITY_16
18855  *
18856  * Description: This routine uses the scsi READ CAPACITY 16 command to
18857  *		determine the device capacity in number of blocks and the
18858  *		device native block size.  If this function returns a failure,
18859  *		then the values in *capp and *lbap are undefined.
18860  *		This routine should always be called by
18861  *		sd_send_scsi_READ_CAPACITY which will appy any device
18862  *		specific adjustments to capacity and lbasize.
18863  *
18864  *   Arguments: un   - ptr to soft state struct for the target
18865  *		capp - ptr to unsigned 64-bit variable to receive the
18866  *			capacity value from the command.
18867  *		lbap - ptr to unsigned 32-bit varaible to receive the
18868  *			block size value from the command
18869  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18870  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18871  *			to use the USCSI "direct" chain and bypass the normal
18872  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
18873  *			this command is issued as part of an error recovery
18874  *			action.
18875  *
18876  * Return Code: 0   - Success
18877  *		EIO - IO error
18878  *		EACCES - Reservation conflict detected
18879  *		EAGAIN - Device is becoming ready
18880  *		errno return code from sd_send_scsi_cmd()
18881  *
18882  *     Context: Can sleep.  Blocks until command completes.
18883  */
18884 
18885 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
18886 
18887 static int
18888 sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
18889 	uint32_t *lbap, int path_flag)
18890 {
18891 	struct	scsi_extended_sense	sense_buf;
18892 	struct	uscsi_cmd	ucmd_buf;
18893 	uchar_t			cdb_buf[CDB_GROUP4];
18894 	uint64_t		*capacity16_buf;
18895 	uint64_t		capacity;
18896 	uint32_t		lbasize;
18897 	int			status;
18898 
18899 	ASSERT(un != NULL);
18900 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18901 	ASSERT(capp != NULL);
18902 	ASSERT(lbap != NULL);
18903 
18904 	SD_TRACE(SD_LOG_IO, un,
18905 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
18906 
18907 	/*
18908 	 * First send a READ_CAPACITY_16 command to the target.
18909 	 *
18910 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
18911 	 * Medium Indicator bit is cleared.  The address field must be
18912 	 * zero if the PMI bit is zero.
18913 	 */
18914 	bzero(cdb_buf, sizeof (cdb_buf));
18915 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18916 
18917 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
18918 
18919 	ucmd_buf.uscsi_cdb	= (char *)cdb_buf;
18920 	ucmd_buf.uscsi_cdblen	= sizeof (cdb_buf);
18921 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
18922 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
18923 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18924 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
18925 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
18926 	ucmd_buf.uscsi_timeout	= 60;
18927 
18928 	/*
18929 	 * Read Capacity (16) is a Service Action In command.  One
18930 	 * command byte (0x9E) is overloaded for multiple operations,
18931 	 * with the second CDB byte specifying the desired operation
18932 	 */
18933 	cdb_buf[0] = SCMD_SVC_ACTION_IN_G4;
18934 	cdb_buf[1] = SSVC_ACTION_READ_CAPACITY_G4;
18935 
18936 	/*
18937 	 * Fill in allocation length field
18938 	 */
18939 	cdb_buf[10] = (uchar_t)((ucmd_buf.uscsi_buflen & 0xff000000) >> 24);
18940 	cdb_buf[11] = (uchar_t)((ucmd_buf.uscsi_buflen & 0x00ff0000) >> 16);
18941 	cdb_buf[12] = (uchar_t)((ucmd_buf.uscsi_buflen & 0x0000ff00) >> 8);
18942 	cdb_buf[13] = (uchar_t)(ucmd_buf.uscsi_buflen & 0x000000ff);
18943 
18944 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
18945 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
18946 
18947 	switch (status) {
18948 	case 0:
18949 		/* Return failure if we did not get valid capacity data. */
18950 		if (ucmd_buf.uscsi_resid > 20) {
18951 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
18952 			return (EIO);
18953 		}
18954 
18955 		/*
18956 		 * Read capacity and block size from the READ CAPACITY 10 data.
18957 		 * This data may be adjusted later due to device specific
18958 		 * issues.
18959 		 *
18960 		 * According to the SCSI spec, the READ CAPACITY 10
18961 		 * command returns the following:
18962 		 *
18963 		 *  bytes 0-7: Maximum logical block address available.
18964 		 *		(MSB in byte:0 & LSB in byte:7)
18965 		 *
18966 		 *  bytes 8-11: Block length in bytes
18967 		 *		(MSB in byte:8 & LSB in byte:11)
18968 		 *
18969 		 */
18970 		capacity = BE_64(capacity16_buf[0]);
18971 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
18972 
18973 		/*
18974 		 * Done with capacity16_buf
18975 		 */
18976 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
18977 
18978 		/*
18979 		 * if the reported capacity is set to all 0xf's, then
18980 		 * this disk is too large.  This could only happen with
18981 		 * a device that supports LBAs larger than 64 bits which
18982 		 * are not defined by any current T10 standards.
18983 		 */
18984 		if (capacity == 0xffffffffffffffff) {
18985 			return (EIO);
18986 		}
18987 		break;	/* Success! */
18988 	case EIO:
18989 		switch (ucmd_buf.uscsi_status) {
18990 		case STATUS_RESERVATION_CONFLICT:
18991 			status = EACCES;
18992 			break;
18993 		case STATUS_CHECK:
18994 			/*
18995 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
18996 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
18997 			 */
18998 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18999 			    (sense_buf.es_add_code  == 0x04) &&
19000 			    (sense_buf.es_qual_code == 0x01)) {
19001 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19002 				return (EAGAIN);
19003 			}
19004 			break;
19005 		default:
19006 			break;
19007 		}
19008 		/* FALLTHRU */
19009 	default:
19010 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19011 		return (status);
19012 	}
19013 
19014 	*capp = capacity;
19015 	*lbap = lbasize;
19016 
19017 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
19018 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19019 
19020 	return (0);
19021 }
19022 
19023 
19024 /*
19025  *    Function: sd_send_scsi_START_STOP_UNIT
19026  *
19027  * Description: Issue a scsi START STOP UNIT command to the target.
19028  *
19029  *   Arguments: un    - pointer to driver soft state (unit) structure for
19030  *			this target.
19031  *		flag  - SD_TARGET_START
19032  *			SD_TARGET_STOP
19033  *			SD_TARGET_EJECT
19034  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19035  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19036  *			to use the USCSI "direct" chain and bypass the normal
19037  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19038  *			command is issued as part of an error recovery action.
19039  *
19040  * Return Code: 0   - Success
19041  *		EIO - IO error
19042  *		EACCES - Reservation conflict detected
19043  *		ENXIO  - Not Ready, medium not present
19044  *		errno return code from sd_send_scsi_cmd()
19045  *
19046  *     Context: Can sleep.
19047  */
19048 
19049 static int
19050 sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag)
19051 {
19052 	struct	scsi_extended_sense	sense_buf;
19053 	uchar_t			cdb_buf[CDB_GROUP0];
19054 	struct uscsi_cmd	ucmd_buf;
19055 	int			status;
19056 
19057 	ASSERT(un != NULL);
19058 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19059 
19060 	SD_TRACE(SD_LOG_IO, un,
19061 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
19062 
19063 	if (ISREMOVABLE(un) &&
19064 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
19065 	    (un->un_f_start_stop_supported != TRUE)) {
19066 		return (0);
19067 	}
19068 
19069 	bzero(cdb_buf, sizeof (cdb_buf));
19070 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19071 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19072 
19073 	cdb_buf[0] = SCMD_START_STOP;
19074 	cdb_buf[4] |= (uchar_t)flag;
19075 
19076 	ucmd_buf.uscsi_cdb	= (char *)cdb_buf;
19077 	ucmd_buf.uscsi_cdblen	= sizeof (cdb_buf);
19078 	ucmd_buf.uscsi_bufaddr	= NULL;
19079 	ucmd_buf.uscsi_buflen	= 0;
19080 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19081 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19082 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19083 	ucmd_buf.uscsi_timeout	= 200;
19084 
19085 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19086 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19087 
19088 	switch (status) {
19089 	case 0:
19090 		break;	/* Success! */
19091 	case EIO:
19092 		switch (ucmd_buf.uscsi_status) {
19093 		case STATUS_RESERVATION_CONFLICT:
19094 			status = EACCES;
19095 			break;
19096 		case STATUS_CHECK:
19097 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
19098 				switch (sense_buf.es_key) {
19099 				case KEY_ILLEGAL_REQUEST:
19100 					status = ENOTSUP;
19101 					break;
19102 				case KEY_NOT_READY:
19103 					if (sense_buf.es_add_code == 0x3A) {
19104 						status = ENXIO;
19105 					}
19106 					break;
19107 				default:
19108 					break;
19109 				}
19110 			}
19111 			break;
19112 		default:
19113 			break;
19114 		}
19115 		break;
19116 	default:
19117 		break;
19118 	}
19119 
19120 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
19121 
19122 	return (status);
19123 }
19124 
19125 
19126 /*
19127  *    Function: sd_start_stop_unit_callback
19128  *
19129  * Description: timeout(9F) callback to begin recovery process for a
19130  *		device that has spun down.
19131  *
19132  *   Arguments: arg - pointer to associated softstate struct.
19133  *
19134  *     Context: Executes in a timeout(9F) thread context
19135  */
19136 
19137 static void
19138 sd_start_stop_unit_callback(void *arg)
19139 {
19140 	struct sd_lun	*un = arg;
19141 	ASSERT(un != NULL);
19142 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19143 
19144 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
19145 
19146 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
19147 }
19148 
19149 
19150 /*
19151  *    Function: sd_start_stop_unit_task
19152  *
19153  * Description: Recovery procedure when a drive is spun down.
19154  *
19155  *   Arguments: arg - pointer to associated softstate struct.
19156  *
19157  *     Context: Executes in a taskq() thread context
19158  */
19159 
19160 static void
19161 sd_start_stop_unit_task(void *arg)
19162 {
19163 	struct sd_lun	*un = arg;
19164 
19165 	ASSERT(un != NULL);
19166 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19167 
19168 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
19169 
19170 	/*
19171 	 * Some unformatted drives report not ready error, no need to
19172 	 * restart if format has been initiated.
19173 	 */
19174 	mutex_enter(SD_MUTEX(un));
19175 	if (un->un_f_format_in_progress == TRUE) {
19176 		mutex_exit(SD_MUTEX(un));
19177 		return;
19178 	}
19179 	mutex_exit(SD_MUTEX(un));
19180 
19181 	/*
19182 	 * When a START STOP command is issued from here, it is part of a
19183 	 * failure recovery operation and must be issued before any other
19184 	 * commands, including any pending retries. Thus it must be sent
19185 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
19186 	 * succeeds or not, we will start I/O after the attempt.
19187 	 */
19188 	(void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
19189 	    SD_PATH_DIRECT_PRIORITY);
19190 
19191 	/*
19192 	 * The above call blocks until the START_STOP_UNIT command completes.
19193 	 * Now that it has completed, we must re-try the original IO that
19194 	 * received the NOT READY condition in the first place. There are
19195 	 * three possible conditions here:
19196 	 *
19197 	 *  (1) The original IO is on un_retry_bp.
19198 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
19199 	 *	is NULL.
19200 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
19201 	 *	points to some other, unrelated bp.
19202 	 *
19203 	 * For each case, we must call sd_start_cmds() with un_retry_bp
19204 	 * as the argument. If un_retry_bp is NULL, this will initiate
19205 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
19206 	 * then this will process the bp on un_retry_bp. That may or may not
19207 	 * be the original IO, but that does not matter: the important thing
19208 	 * is to keep the IO processing going at this point.
19209 	 *
19210 	 * Note: This is a very specific error recovery sequence associated
19211 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
19212 	 * serialize the I/O with completion of the spin-up.
19213 	 */
19214 	mutex_enter(SD_MUTEX(un));
19215 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19216 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
19217 	    un, un->un_retry_bp);
19218 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
19219 	sd_start_cmds(un, un->un_retry_bp);
19220 	mutex_exit(SD_MUTEX(un));
19221 
19222 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
19223 }
19224 
19225 
19226 /*
19227  *    Function: sd_send_scsi_INQUIRY
19228  *
19229  * Description: Issue the scsi INQUIRY command.
19230  *
19231  *   Arguments: un
19232  *		bufaddr
19233  *		buflen
19234  *		evpd
19235  *		page_code
19236  *		page_length
19237  *
19238  * Return Code: 0   - Success
19239  *		errno return code from sd_send_scsi_cmd()
19240  *
19241  *     Context: Can sleep. Does not return until command is completed.
19242  */
19243 
19244 static int
19245 sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen,
19246 	uchar_t evpd, uchar_t page_code, size_t *residp)
19247 {
19248 	uchar_t			cdb_buf[CDB_GROUP0];
19249 	struct uscsi_cmd	ucmd_buf;
19250 	int			status;
19251 
19252 	ASSERT(un != NULL);
19253 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19254 	ASSERT(bufaddr != NULL);
19255 
19256 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
19257 
19258 	bzero(cdb_buf, sizeof (cdb_buf));
19259 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19260 	bzero(bufaddr, buflen);
19261 
19262 	cdb_buf[0] = SCMD_INQUIRY;
19263 	cdb_buf[1] = evpd;
19264 	cdb_buf[2] = page_code;
19265 	cdb_buf[4] = buflen;
19266 
19267 	ucmd_buf.uscsi_cdb	= (char *)cdb_buf;
19268 	ucmd_buf.uscsi_cdblen	= sizeof (cdb_buf);
19269 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19270 	ucmd_buf.uscsi_buflen	= buflen;
19271 	ucmd_buf.uscsi_rqbuf	= NULL;
19272 	ucmd_buf.uscsi_rqlen	= 0;
19273 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
19274 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
19275 
19276 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19277 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_DIRECT);
19278 
19279 	if ((status == 0) && (residp != NULL)) {
19280 		*residp = ucmd_buf.uscsi_resid;
19281 	}
19282 
19283 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
19284 
19285 	return (status);
19286 }
19287 
19288 
19289 /*
19290  *    Function: sd_send_scsi_TEST_UNIT_READY
19291  *
19292  * Description: Issue the scsi TEST UNIT READY command.
19293  *		This routine can be told to set the flag USCSI_DIAGNOSE to
19294  *		prevent retrying failed commands. Use this when the intent
19295  *		is either to check for device readiness, to clear a Unit
19296  *		Attention, or to clear any outstanding sense data.
19297  *		However under specific conditions the expected behavior
19298  *		is for retries to bring a device ready, so use the flag
19299  *		with caution.
19300  *
19301  *   Arguments: un
19302  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
19303  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
19304  *			0: dont check for media present, do retries on cmd.
19305  *
19306  * Return Code: 0   - Success
19307  *		EIO - IO error
19308  *		EACCES - Reservation conflict detected
19309  *		ENXIO  - Not Ready, medium not present
19310  *		errno return code from sd_send_scsi_cmd()
19311  *
19312  *     Context: Can sleep. Does not return until command is completed.
19313  */
19314 
19315 static int
19316 sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag)
19317 {
19318 	struct	scsi_extended_sense	sense_buf;
19319 	uchar_t			cdb_buf[CDB_GROUP0];
19320 	struct uscsi_cmd	ucmd_buf;
19321 	int			status;
19322 
19323 	ASSERT(un != NULL);
19324 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19325 
19326 	SD_TRACE(SD_LOG_IO, un,
19327 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
19328 
19329 	/*
19330 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
19331 	 * timeouts when they receive a TUR and the queue is not empty. Check
19332 	 * the configuration flag set during attach (indicating the drive has
19333 	 * this firmware bug) and un_ncmds_in_transport before issuing the
19334 	 * TUR. If there are
19335 	 * pending commands return success, this is a bit arbitrary but is ok
19336 	 * for non-removables (i.e. the eliteI disks) and non-clustering
19337 	 * configurations.
19338 	 */
19339 	if (un->un_f_cfg_tur_check == TRUE) {
19340 		mutex_enter(SD_MUTEX(un));
19341 		if (un->un_ncmds_in_transport != 0) {
19342 			mutex_exit(SD_MUTEX(un));
19343 			return (0);
19344 		}
19345 		mutex_exit(SD_MUTEX(un));
19346 	}
19347 
19348 	bzero(cdb_buf, sizeof (cdb_buf));
19349 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19350 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19351 
19352 	cdb_buf[0] = SCMD_TEST_UNIT_READY;
19353 
19354 	ucmd_buf.uscsi_cdb	= (char *)cdb_buf;
19355 	ucmd_buf.uscsi_cdblen	= sizeof (cdb_buf);
19356 	ucmd_buf.uscsi_bufaddr	= NULL;
19357 	ucmd_buf.uscsi_buflen	= 0;
19358 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19359 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19360 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19361 
19362 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
19363 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
19364 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
19365 	}
19366 	ucmd_buf.uscsi_timeout	= 60;
19367 
19368 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19369 	    UIO_SYSSPACE, UIO_SYSSPACE,
19370 	    ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT : SD_PATH_STANDARD));
19371 
19372 	switch (status) {
19373 	case 0:
19374 		break;	/* Success! */
19375 	case EIO:
19376 		switch (ucmd_buf.uscsi_status) {
19377 		case STATUS_RESERVATION_CONFLICT:
19378 			status = EACCES;
19379 			break;
19380 		case STATUS_CHECK:
19381 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
19382 				break;
19383 			}
19384 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19385 			    (sense_buf.es_key == KEY_NOT_READY) &&
19386 			    (sense_buf.es_add_code == 0x3A)) {
19387 				status = ENXIO;
19388 			}
19389 			break;
19390 		default:
19391 			break;
19392 		}
19393 		break;
19394 	default:
19395 		break;
19396 	}
19397 
19398 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
19399 
19400 	return (status);
19401 }
19402 
19403 
19404 /*
19405  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
19406  *
19407  * Description: Issue the scsi PERSISTENT RESERVE IN command.
19408  *
19409  *   Arguments: un
19410  *
19411  * Return Code: 0   - Success
19412  *		EACCES
19413  *		ENOTSUP
19414  *		errno return code from sd_send_scsi_cmd()
19415  *
19416  *     Context: Can sleep. Does not return until command is completed.
19417  */
19418 
19419 static int
19420 sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t  usr_cmd,
19421 	uint16_t data_len, uchar_t *data_bufp)
19422 {
19423 	struct scsi_extended_sense	sense_buf;
19424 	struct uscsi_cmd	ucmd_buf;
19425 	uchar_t			cdb_buf[CDB_GROUP1];
19426 	int			status;
19427 	int			no_caller_buf = FALSE;
19428 
19429 	ASSERT(un != NULL);
19430 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19431 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
19432 
19433 	SD_TRACE(SD_LOG_IO, un,
19434 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
19435 
19436 	bzero(cdb_buf, sizeof (cdb_buf));
19437 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19438 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19439 	if (data_bufp == NULL) {
19440 		/* Allocate a default buf if the caller did not give one */
19441 		ASSERT(data_len == 0);
19442 		data_len  = MHIOC_RESV_KEY_SIZE;
19443 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
19444 		no_caller_buf = TRUE;
19445 	}
19446 
19447 	cdb_buf[0] = SCMD_PERSISTENT_RESERVE_IN;
19448 	cdb_buf[1] = usr_cmd;
19449 	cdb_buf[7] = (uchar_t)(data_len >> 8);
19450 	cdb_buf[8] = (uchar_t)data_len;
19451 
19452 	ucmd_buf.uscsi_cdb	= (char *)cdb_buf;
19453 	ucmd_buf.uscsi_cdblen	= sizeof (cdb_buf);
19454 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
19455 	ucmd_buf.uscsi_buflen	= data_len;
19456 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19457 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19458 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19459 	ucmd_buf.uscsi_timeout	= 60;
19460 
19461 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19462 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
19463 
19464 	switch (status) {
19465 	case 0:
19466 		break;	/* Success! */
19467 	case EIO:
19468 		switch (ucmd_buf.uscsi_status) {
19469 		case STATUS_RESERVATION_CONFLICT:
19470 			status = EACCES;
19471 			break;
19472 		case STATUS_CHECK:
19473 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19474 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
19475 				status = ENOTSUP;
19476 			}
19477 			break;
19478 		default:
19479 			break;
19480 		}
19481 		break;
19482 	default:
19483 		break;
19484 	}
19485 
19486 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
19487 
19488 	if (no_caller_buf == TRUE) {
19489 		kmem_free(data_bufp, data_len);
19490 	}
19491 
19492 	return (status);
19493 }
19494 
19495 
19496 /*
19497  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
19498  *
19499  * Description: This routine is the driver entry point for handling CD-ROM
19500  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
19501  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
19502  *		device.
19503  *
19504  *   Arguments: un  -   Pointer to soft state struct for the target.
19505  *		usr_cmd SCSI-3 reservation facility command (one of
19506  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
19507  *			SD_SCSI3_PREEMPTANDABORT)
19508  *		usr_bufp - user provided pointer register, reserve descriptor or
19509  *			preempt and abort structure (mhioc_register_t,
19510  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
19511  *
19512  * Return Code: 0   - Success
19513  *		EACCES
19514  *		ENOTSUP
19515  *		errno return code from sd_send_scsi_cmd()
19516  *
19517  *     Context: Can sleep. Does not return until command is completed.
19518  */
19519 
19520 static int
19521 sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd,
19522 	uchar_t	*usr_bufp)
19523 {
19524 	struct scsi_extended_sense	sense_buf;
19525 	struct uscsi_cmd	ucmd_buf;
19526 	uchar_t			cdb_buf[CDB_GROUP1];
19527 	int			status;
19528 	uchar_t			data_len = sizeof (sd_prout_t);
19529 	sd_prout_t		*prp;
19530 
19531 	ASSERT(un != NULL);
19532 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19533 	ASSERT(data_len == 24);	/* required by scsi spec */
19534 
19535 	SD_TRACE(SD_LOG_IO, un,
19536 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
19537 
19538 	if (usr_bufp == NULL) {
19539 		return (EINVAL);
19540 	}
19541 
19542 	bzero(cdb_buf, sizeof (cdb_buf));
19543 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19544 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19545 	prp = kmem_zalloc(data_len, KM_SLEEP);
19546 
19547 	cdb_buf[0] = SCMD_PERSISTENT_RESERVE_OUT;
19548 	cdb_buf[1] = usr_cmd;
19549 	cdb_buf[8] = data_len;
19550 
19551 	ucmd_buf.uscsi_cdb	= (char *)cdb_buf;
19552 	ucmd_buf.uscsi_cdblen	= sizeof (cdb_buf);
19553 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
19554 	ucmd_buf.uscsi_buflen	= data_len;
19555 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19556 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19557 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
19558 	ucmd_buf.uscsi_timeout	= 60;
19559 
19560 	switch (usr_cmd) {
19561 	case SD_SCSI3_REGISTER: {
19562 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
19563 
19564 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
19565 		bcopy(ptr->newkey.key, prp->service_key,
19566 		    MHIOC_RESV_KEY_SIZE);
19567 		prp->aptpl = ptr->aptpl;
19568 		break;
19569 	}
19570 	case SD_SCSI3_RESERVE:
19571 	case SD_SCSI3_RELEASE: {
19572 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
19573 
19574 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
19575 		prp->scope_address = BE_32(ptr->scope_specific_addr);
19576 		cdb_buf[2] = ptr->type;
19577 		break;
19578 	}
19579 	case SD_SCSI3_PREEMPTANDABORT: {
19580 		mhioc_preemptandabort_t *ptr =
19581 		    (mhioc_preemptandabort_t *)usr_bufp;
19582 
19583 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
19584 		bcopy(ptr->victim_key.key, prp->service_key,
19585 		    MHIOC_RESV_KEY_SIZE);
19586 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
19587 		cdb_buf[2] = ptr->resvdesc.type;
19588 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
19589 		break;
19590 	}
19591 	case SD_SCSI3_REGISTERANDIGNOREKEY:
19592 	{
19593 		mhioc_registerandignorekey_t *ptr;
19594 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
19595 		bcopy(ptr->newkey.key,
19596 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
19597 		prp->aptpl = ptr->aptpl;
19598 		break;
19599 	}
19600 	default:
19601 		ASSERT(FALSE);
19602 		break;
19603 	}
19604 
19605 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19606 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
19607 
19608 	switch (status) {
19609 	case 0:
19610 		break;	/* Success! */
19611 	case EIO:
19612 		switch (ucmd_buf.uscsi_status) {
19613 		case STATUS_RESERVATION_CONFLICT:
19614 			status = EACCES;
19615 			break;
19616 		case STATUS_CHECK:
19617 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19618 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
19619 				status = ENOTSUP;
19620 			}
19621 			break;
19622 		default:
19623 			break;
19624 		}
19625 		break;
19626 	default:
19627 		break;
19628 	}
19629 
19630 	kmem_free(prp, data_len);
19631 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
19632 	return (status);
19633 }
19634 
19635 
19636 /*
19637  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
19638  *
19639  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
19640  *
19641  *   Arguments: un - pointer to the target's soft state struct
19642  *
19643  * Return Code: 0 - success
19644  *		errno-type error code
19645  *
19646  *     Context: kernel thread context only.
19647  */
19648 
19649 static int
19650 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un)
19651 {
19652 	struct	scsi_extended_sense	sense_buf;
19653 	uchar_t			cdb_buf[CDB_GROUP1];
19654 	struct uscsi_cmd	ucmd_buf;
19655 	int			status;
19656 
19657 	ASSERT(un != NULL);
19658 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19659 
19660 	SD_TRACE(SD_LOG_IO, un,
19661 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
19662 
19663 	bzero(cdb_buf, sizeof (cdb_buf));
19664 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19665 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19666 
19667 	cdb_buf[0] = SCMD_SYNCHRONIZE_CACHE;
19668 
19669 	ucmd_buf.uscsi_cdb	= (char *)cdb_buf;
19670 	ucmd_buf.uscsi_cdblen	= sizeof (cdb_buf);
19671 	ucmd_buf.uscsi_bufaddr	= NULL;
19672 	ucmd_buf.uscsi_buflen	= 0;
19673 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19674 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19675 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19676 	ucmd_buf.uscsi_timeout	= 240;
19677 
19678 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19679 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_DIRECT);
19680 
19681 	switch (status) {
19682 	case 0:
19683 		break;	/* Success! */
19684 	case EIO:
19685 		switch (ucmd_buf.uscsi_status) {
19686 		case STATUS_RESERVATION_CONFLICT:
19687 			/* Ignore reservation conflict */
19688 			status = 0;
19689 			goto done;
19690 
19691 		case STATUS_CHECK:
19692 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19693 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
19694 				/* Ignore Illegal Request error */
19695 				status = 0;
19696 				goto done;
19697 			}
19698 			break;
19699 		default:
19700 			break;
19701 		}
19702 		/* FALLTHRU */
19703 	default:
19704 		/* Ignore error if the media is not present. */
19705 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
19706 			status = 0;
19707 			goto done;
19708 		}
19709 		/* If we reach this, we had an error */
19710 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
19711 		    "SYNCHRONIZE CACHE command failed (%d)\n", status);
19712 		break;
19713 	}
19714 
19715 done:
19716 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: exit\n");
19717 
19718 	return (status);
19719 }
19720 
19721 
19722 /*
19723  *    Function: sd_send_scsi_GET_CONFIGURATION
19724  *
19725  * Description: Issues the get configuration command to the device.
19726  *		Called from sd_check_for_writable_cd & sd_get_media_info
19727  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
19728  *   Arguments: un
19729  *		ucmdbuf
19730  *		rqbuf
19731  *		rqbuflen
19732  *		bufaddr
19733  *		buflen
19734  *
19735  * Return Code: 0   - Success
19736  *		errno return code from sd_send_scsi_cmd()
19737  *
19738  *     Context: Can sleep. Does not return until command is completed.
19739  *
19740  */
19741 
19742 static int
19743 sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf,
19744 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen)
19745 {
19746 	char	cdb[CDB_GROUP1];
19747 	int	status;
19748 
19749 	ASSERT(un != NULL);
19750 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19751 	ASSERT(bufaddr != NULL);
19752 	ASSERT(ucmdbuf != NULL);
19753 	ASSERT(rqbuf != NULL);
19754 
19755 	SD_TRACE(SD_LOG_IO, un,
19756 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
19757 
19758 	bzero(cdb, sizeof (cdb));
19759 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
19760 	bzero(rqbuf, rqbuflen);
19761 	bzero(bufaddr, buflen);
19762 
19763 	/*
19764 	 * Set up cdb field for the get configuration command.
19765 	 */
19766 	cdb[0] = SCMD_GET_CONFIGURATION;
19767 	cdb[1] = 0x02;  /* Requested Type */
19768 	cdb[8] = SD_PROFILE_HEADER_LEN;
19769 	ucmdbuf->uscsi_cdb = cdb;
19770 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
19771 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
19772 	ucmdbuf->uscsi_buflen = buflen;
19773 	ucmdbuf->uscsi_timeout = sd_io_time;
19774 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
19775 	ucmdbuf->uscsi_rqlen = rqbuflen;
19776 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
19777 
19778 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE,
19779 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
19780 
19781 	switch (status) {
19782 	case 0:
19783 		break;  /* Success! */
19784 	case EIO:
19785 		switch (ucmdbuf->uscsi_status) {
19786 		case STATUS_RESERVATION_CONFLICT:
19787 			status = EACCES;
19788 			break;
19789 		default:
19790 			break;
19791 		}
19792 		break;
19793 	default:
19794 		break;
19795 	}
19796 
19797 	if (status == 0) {
19798 		SD_DUMP_MEMORY(un, SD_LOG_IO,
19799 		    "sd_send_scsi_GET_CONFIGURATION: data",
19800 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
19801 	}
19802 
19803 	SD_TRACE(SD_LOG_IO, un,
19804 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
19805 
19806 	return (status);
19807 }
19808 
19809 /*
19810  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
19811  *
19812  * Description: Issues the get configuration command to the device to
19813  *              retrieve a specfic feature. Called from
19814  *		sd_check_for_writable_cd & sd_set_mmc_caps.
19815  *   Arguments: un
19816  *              ucmdbuf
19817  *              rqbuf
19818  *              rqbuflen
19819  *              bufaddr
19820  *              buflen
19821  *		feature
19822  *
19823  * Return Code: 0   - Success
19824  *              errno return code from sd_send_scsi_cmd()
19825  *
19826  *     Context: Can sleep. Does not return until command is completed.
19827  *
19828  */
19829 static int
19830 sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
19831 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
19832 	uchar_t *bufaddr, uint_t buflen, char feature)
19833 {
19834 	char    cdb[CDB_GROUP1];
19835 	int	status;
19836 
19837 	ASSERT(un != NULL);
19838 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19839 	ASSERT(bufaddr != NULL);
19840 	ASSERT(ucmdbuf != NULL);
19841 	ASSERT(rqbuf != NULL);
19842 
19843 	SD_TRACE(SD_LOG_IO, un,
19844 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
19845 
19846 	bzero(cdb, sizeof (cdb));
19847 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
19848 	bzero(rqbuf, rqbuflen);
19849 	bzero(bufaddr, buflen);
19850 
19851 	/*
19852 	 * Set up cdb field for the get configuration command.
19853 	 */
19854 	cdb[0] = SCMD_GET_CONFIGURATION;
19855 	cdb[1] = 0x02;  /* Requested Type */
19856 	cdb[3] = feature;
19857 	cdb[8] = buflen;
19858 	ucmdbuf->uscsi_cdb = cdb;
19859 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
19860 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
19861 	ucmdbuf->uscsi_buflen = buflen;
19862 	ucmdbuf->uscsi_timeout = sd_io_time;
19863 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
19864 	ucmdbuf->uscsi_rqlen = rqbuflen;
19865 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
19866 
19867 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE,
19868 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
19869 
19870 	switch (status) {
19871 	case 0:
19872 		break;  /* Success! */
19873 	case EIO:
19874 		switch (ucmdbuf->uscsi_status) {
19875 		case STATUS_RESERVATION_CONFLICT:
19876 			status = EACCES;
19877 			break;
19878 		default:
19879 			break;
19880 		}
19881 		break;
19882 	default:
19883 		break;
19884 	}
19885 
19886 	if (status == 0) {
19887 		SD_DUMP_MEMORY(un, SD_LOG_IO,
19888 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
19889 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
19890 	}
19891 
19892 	SD_TRACE(SD_LOG_IO, un,
19893 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
19894 
19895 	return (status);
19896 }
19897 
19898 
19899 /*
19900  *    Function: sd_send_scsi_MODE_SENSE
19901  *
19902  * Description: Utility function for issuing a scsi MODE SENSE command.
19903  *		Note: This routine uses a consistent implementation for Group0,
19904  *		Group1, and Group2 commands across all platforms. ATAPI devices
19905  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
19906  *
19907  *   Arguments: un - pointer to the softstate struct for the target.
19908  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
19909  *			  CDB_GROUP[1|2] (10 byte).
19910  *		bufaddr - buffer for page data retrieved from the target.
19911  *		buflen - size of page to be retrieved.
19912  *		page_code - page code of data to be retrieved from the target.
19913  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19914  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19915  *			to use the USCSI "direct" chain and bypass the normal
19916  *			command waitq.
19917  *
19918  * Return Code: 0   - Success
19919  *		errno return code from sd_send_scsi_cmd()
19920  *
19921  *     Context: Can sleep. Does not return until command is completed.
19922  */
19923 
19924 static int
19925 sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
19926 	size_t buflen,  uchar_t page_code, int path_flag)
19927 {
19928 	struct	scsi_extended_sense	sense_buf;
19929 	uchar_t			cdb_buf[CDB_GROUP1];
19930 	struct uscsi_cmd	ucmd_buf;
19931 	int			status;
19932 
19933 	ASSERT(un != NULL);
19934 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19935 	ASSERT(bufaddr != NULL);
19936 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
19937 	    (cdbsize == CDB_GROUP2));
19938 
19939 	SD_TRACE(SD_LOG_IO, un,
19940 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
19941 
19942 	bzero(cdb_buf, sizeof (cdb_buf));
19943 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19944 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19945 	bzero(bufaddr, buflen);
19946 
19947 	if (cdbsize == CDB_GROUP0) {
19948 		cdb_buf[0] = SCMD_MODE_SENSE;
19949 		cdb_buf[2] = page_code;
19950 		cdb_buf[4] = buflen;
19951 	} else {
19952 		cdb_buf[0] = SCMD_MODE_SENSE_G1;
19953 		cdb_buf[2] = page_code;
19954 		cdb_buf[7] = (uchar_t)((buflen & 0xFF00) >> 8);
19955 		cdb_buf[8] = (uchar_t)(buflen & 0xFF);
19956 	}
19957 
19958 	if ((SD_LUN(un) > 0) &&	(un->un_sd->sd_inq->inq_ansi == 0x01)) {
19959 		cdb_buf[1] |= (SD_LUN(un) << 5);
19960 	}
19961 
19962 	ucmd_buf.uscsi_cdb	= (char *)cdb_buf;
19963 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
19964 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19965 	ucmd_buf.uscsi_buflen	= buflen;
19966 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19967 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19968 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19969 	ucmd_buf.uscsi_timeout	= 60;
19970 
19971 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19972 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19973 
19974 	switch (status) {
19975 	case 0:
19976 		break;	/* Success! */
19977 	case EIO:
19978 		switch (ucmd_buf.uscsi_status) {
19979 		case STATUS_RESERVATION_CONFLICT:
19980 			status = EACCES;
19981 			break;
19982 		default:
19983 			break;
19984 		}
19985 		break;
19986 	default:
19987 		break;
19988 	}
19989 
19990 	if (status == 0) {
19991 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
19992 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19993 	}
19994 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
19995 
19996 	return (status);
19997 }
19998 
19999 
20000 /*
20001  *    Function: sd_send_scsi_MODE_SELECT
20002  *
20003  * Description: Utility function for issuing a scsi MODE SELECT command.
20004  *		Note: This routine uses a consistent implementation for Group0,
20005  *		Group1, and Group2 commands across all platforms. ATAPI devices
20006  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20007  *
20008  *   Arguments: un - pointer to the softstate struct for the target.
20009  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20010  *			  CDB_GROUP[1|2] (10 byte).
20011  *		bufaddr - buffer for page data retrieved from the target.
20012  *		buflen - size of page to be retrieved.
20013  *		save_page - boolean to determin if SP bit should be set.
20014  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20015  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20016  *			to use the USCSI "direct" chain and bypass the normal
20017  *			command waitq.
20018  *
20019  * Return Code: 0   - Success
20020  *		errno return code from sd_send_scsi_cmd()
20021  *
20022  *     Context: Can sleep. Does not return until command is completed.
20023  */
20024 
20025 static int
20026 sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
20027 	size_t buflen,  uchar_t save_page, int path_flag)
20028 {
20029 	struct	scsi_extended_sense	sense_buf;
20030 	uchar_t			cdb_buf[CDB_GROUP1];
20031 	struct uscsi_cmd	ucmd_buf;
20032 	int			status;
20033 
20034 	ASSERT(un != NULL);
20035 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20036 	ASSERT(bufaddr != NULL);
20037 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20038 	    (cdbsize == CDB_GROUP2));
20039 
20040 	SD_TRACE(SD_LOG_IO, un,
20041 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
20042 
20043 	bzero(cdb_buf, sizeof (cdb_buf));
20044 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20045 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20046 
20047 	cdb_buf[1] = 0x10;	/* Set the PF bit for many third party drives */
20048 
20049 	if (save_page == SD_SAVE_PAGE) {
20050 		cdb_buf[1] |= 0x01;	/* Set the savepage(SP) bit if given */
20051 	}
20052 
20053 	if (cdbsize == CDB_GROUP0) {
20054 		cdb_buf[0] = SCMD_MODE_SELECT;
20055 		cdb_buf[4] = buflen;
20056 	} else {
20057 		cdb_buf[0] = SCMD_MODE_SELECT_G1;
20058 		cdb_buf[7] = (uchar_t)((buflen & 0xFF00) >> 8);
20059 		cdb_buf[8] = (uchar_t)(buflen & 0xFF);
20060 	}
20061 
20062 	if ((SD_LUN(un) > 0) &&	(un->un_sd->sd_inq->inq_ansi == 0x01)) {
20063 		cdb_buf[1] |= (SD_LUN(un) << 5);
20064 	}
20065 
20066 	ucmd_buf.uscsi_cdb	= (char *)cdb_buf;
20067 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20068 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20069 	ucmd_buf.uscsi_buflen	= buflen;
20070 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20071 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20072 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20073 	ucmd_buf.uscsi_timeout	= 60;
20074 
20075 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20076 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20077 
20078 	switch (status) {
20079 	case 0:
20080 		break;	/* Success! */
20081 	case EIO:
20082 		switch (ucmd_buf.uscsi_status) {
20083 		case STATUS_RESERVATION_CONFLICT:
20084 			status = EACCES;
20085 			break;
20086 		default:
20087 			break;
20088 		}
20089 		break;
20090 	default:
20091 		break;
20092 	}
20093 
20094 	if (status == 0) {
20095 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
20096 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20097 	}
20098 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
20099 
20100 	return (status);
20101 }
20102 
20103 
20104 /*
20105  *    Function: sd_send_scsi_RDWR
20106  *
20107  * Description: Issue a scsi READ or WRITE command with the given parameters.
20108  *
20109  *   Arguments: un:      Pointer to the sd_lun struct for the target.
20110  *		cmd:	 SCMD_READ or SCMD_WRITE
20111  *		bufaddr: Address of caller's buffer to receive the RDWR data
20112  *		buflen:  Length of caller's buffer receive the RDWR data.
20113  *		start_block: Block number for the start of the RDWR operation.
20114  *			 (Assumes target-native block size.)
20115  *		residp:  Pointer to variable to receive the redisual of the
20116  *			 RDWR operation (may be NULL of no residual requested).
20117  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20118  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20119  *			to use the USCSI "direct" chain and bypass the normal
20120  *			command waitq.
20121  *
20122  * Return Code: 0   - Success
20123  *		errno return code from sd_send_scsi_cmd()
20124  *
20125  *     Context: Can sleep. Does not return until command is completed.
20126  */
20127 
20128 static int
20129 sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
20130 	size_t buflen, daddr_t start_block, int path_flag)
20131 {
20132 	struct	scsi_extended_sense	sense_buf;
20133 	uchar_t			cdb_buf[CDB_GROUP4];	/* Use max size */
20134 	struct uscsi_cmd	ucmd_buf;
20135 	uint32_t		block_count;
20136 	int			status;
20137 	int			cdbsize;
20138 	uchar_t			flag;
20139 	int			i;
20140 
20141 	ASSERT(un != NULL);
20142 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20143 	ASSERT(bufaddr != NULL);
20144 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
20145 
20146 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
20147 
20148 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
20149 		return (EINVAL);
20150 	}
20151 
20152 	mutex_enter(SD_MUTEX(un));
20153 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
20154 	mutex_exit(SD_MUTEX(un));
20155 
20156 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
20157 
20158 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
20159 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
20160 	    bufaddr, buflen, start_block, block_count);
20161 
20162 	bzero(cdb_buf, sizeof (cdb_buf));
20163 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20164 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20165 
20166 	/* Compute CDB size to use */
20167 	if (start_block > 0xffffffff)
20168 		cdbsize = CDB_GROUP4;
20169 	else if ((start_block & 0xFFE00000) ||
20170 	    (un->un_f_cfg_is_atapi == TRUE))
20171 		cdbsize = CDB_GROUP1;
20172 	else
20173 		cdbsize = CDB_GROUP0;
20174 
20175 	switch (cdbsize) {
20176 	case CDB_GROUP0:	/* 6-byte CDBs */
20177 		cdb_buf[0] = cmd;
20178 		cdb_buf[1] = (uchar_t)((start_block & 0x001F0000) >> 16);
20179 		cdb_buf[2] = (uchar_t)((start_block & 0x0000FF00) >> 8);
20180 		cdb_buf[3] = (uchar_t)(start_block  & 0x000000FF);
20181 		cdb_buf[4] = (uchar_t)(block_count  & 0xFF);
20182 		break;
20183 	case CDB_GROUP1:	/* 10-byte CDBs */
20184 		cdb_buf[0] = cmd | SCMD_GROUP1;
20185 		cdb_buf[2] = (uchar_t)((start_block & 0xFF000000) >> 24);
20186 		cdb_buf[3] = (uchar_t)((start_block & 0x00FF0000) >> 16);
20187 		cdb_buf[4] = (uchar_t)((start_block & 0x0000FF00) >> 8);
20188 		cdb_buf[5] = (uchar_t)(start_block  & 0x000000FF);
20189 		cdb_buf[7] = (uchar_t)((block_count & 0xFF00) >> 8);
20190 		cdb_buf[8] = (uchar_t)(block_count  & 0xFF);
20191 		break;
20192 	case CDB_GROUP4:	/* 16-byte CDBs */
20193 		cdb_buf[0] = cmd | SCMD_GROUP4;
20194 		/* Block address is in bytes 2 - 9 */
20195 		for (i = 9; i > 1; i--) {
20196 			cdb_buf[i] = (uchar_t)(start_block & 0xFF);
20197 			start_block >>= 8;
20198 		}
20199 		/* Block count is in bytes 10 - 13 */
20200 		for (i = 13; i > 9; i--) {
20201 			cdb_buf[i] = (uchar_t)(block_count & 0xFF);
20202 			block_count >>= 8;
20203 		}
20204 		break;
20205 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
20206 	default:
20207 		/* All others reserved */
20208 		return (EINVAL);
20209 	}
20210 
20211 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
20212 	if ((SD_LUN(un) > 0) &&	(un->un_sd->sd_inq->inq_ansi == 0x01)) {
20213 		cdb_buf[1] |= (SD_LUN(un) << 5);
20214 	}
20215 
20216 	ucmd_buf.uscsi_cdb	= (char *)cdb_buf;
20217 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20218 	ucmd_buf.uscsi_bufaddr	= bufaddr;
20219 	ucmd_buf.uscsi_buflen	= buflen;
20220 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20221 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20222 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
20223 	ucmd_buf.uscsi_timeout	= 60;
20224 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20225 				UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20226 	switch (status) {
20227 	case 0:
20228 		break;	/* Success! */
20229 	case EIO:
20230 		switch (ucmd_buf.uscsi_status) {
20231 		case STATUS_RESERVATION_CONFLICT:
20232 			status = EACCES;
20233 			break;
20234 		default:
20235 			break;
20236 		}
20237 		break;
20238 	default:
20239 		break;
20240 	}
20241 
20242 	if (status == 0) {
20243 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
20244 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20245 	}
20246 
20247 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
20248 
20249 	return (status);
20250 }
20251 
20252 
20253 /*
20254  *    Function: sd_send_scsi_LOG_SENSE
20255  *
20256  * Description: Issue a scsi LOG_SENSE command with the given parameters.
20257  *
20258  *   Arguments: un:      Pointer to the sd_lun struct for the target.
20259  *
20260  * Return Code: 0   - Success
20261  *		errno return code from sd_send_scsi_cmd()
20262  *
20263  *     Context: Can sleep. Does not return until command is completed.
20264  */
20265 
20266 static int
20267 sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen,
20268 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
20269 	int path_flag)
20270 
20271 {
20272 	struct	scsi_extended_sense	sense_buf;
20273 	uchar_t			cdb_buf[CDB_GROUP1];
20274 	struct uscsi_cmd	ucmd_buf;
20275 	int			status;
20276 
20277 	ASSERT(un != NULL);
20278 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20279 
20280 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
20281 
20282 	bzero(cdb_buf, sizeof (cdb_buf));
20283 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20284 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20285 
20286 	cdb_buf[0] = SCMD_LOG_SENSE_G1;
20287 	cdb_buf[2] = (page_control << 6) | page_code;
20288 	cdb_buf[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
20289 	cdb_buf[6] = (uchar_t)(param_ptr  & 0x00FF);
20290 	cdb_buf[7] = (uchar_t)((buflen & 0xFF00) >> 8);
20291 	cdb_buf[8] = (uchar_t)(buflen  & 0x00FF);
20292 
20293 	ucmd_buf.uscsi_cdb	= (char *)cdb_buf;
20294 	ucmd_buf.uscsi_cdblen	= sizeof (cdb_buf);
20295 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20296 	ucmd_buf.uscsi_buflen	= buflen;
20297 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20298 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20299 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20300 	ucmd_buf.uscsi_timeout	= 60;
20301 
20302 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20303 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20304 
20305 	switch (status) {
20306 	case 0:
20307 		break;
20308 	case EIO:
20309 		switch (ucmd_buf.uscsi_status) {
20310 		case STATUS_RESERVATION_CONFLICT:
20311 			status = EACCES;
20312 			break;
20313 		case STATUS_CHECK:
20314 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20315 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST) &&
20316 			    (sense_buf.es_add_code == 0x24)) {
20317 				/*
20318 				 * ASC 0x24: INVALID FIELD IN CDB
20319 				 */
20320 				switch (page_code) {
20321 				case START_STOP_CYCLE_PAGE:
20322 					/*
20323 					 * The start stop cycle counter is
20324 					 * implemented as page 0x31 in earlier
20325 					 * generation disks. In new generation
20326 					 * disks the start stop cycle counter is
20327 					 * implemented as page 0xE. To properly
20328 					 * handle this case if an attempt for
20329 					 * log page 0xE is made and fails we
20330 					 * will try again using page 0x31.
20331 					 *
20332 					 * Network storage BU committed to
20333 					 * maintain the page 0x31 for this
20334 					 * purpose and will not have any other
20335 					 * page implemented with page code 0x31
20336 					 * until all disks transition to the
20337 					 * standard page.
20338 					 */
20339 					mutex_enter(SD_MUTEX(un));
20340 					un->un_start_stop_cycle_page =
20341 					    START_STOP_CYCLE_VU_PAGE;
20342 					cdb_buf[2] = (char)(page_control << 6) |
20343 					    un->un_start_stop_cycle_page;
20344 					mutex_exit(SD_MUTEX(un));
20345 					status = sd_send_scsi_cmd(
20346 					    SD_GET_DEV(un), &ucmd_buf,
20347 					    UIO_SYSSPACE, UIO_SYSSPACE,
20348 					    UIO_SYSSPACE, path_flag);
20349 
20350 					break;
20351 				case TEMPERATURE_PAGE:
20352 					status = ENOTTY;
20353 					break;
20354 				default:
20355 					break;
20356 				}
20357 			}
20358 			break;
20359 		default:
20360 			break;
20361 		}
20362 		break;
20363 	default:
20364 		break;
20365 	}
20366 
20367 	if (status == 0) {
20368 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
20369 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20370 	}
20371 
20372 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
20373 
20374 	return (status);
20375 }
20376 
20377 
20378 /*
20379  *    Function: sdioctl
20380  *
20381  * Description: Driver's ioctl(9e) entry point function.
20382  *
20383  *   Arguments: dev     - device number
20384  *		cmd     - ioctl operation to be performed
20385  *		arg     - user argument, contains data to be set or reference
20386  *			  parameter for get
20387  *		flag    - bit flag, indicating open settings, 32/64 bit type
20388  *		cred_p  - user credential pointer
20389  *		rval_p  - calling process return value (OPT)
20390  *
20391  * Return Code: EINVAL
20392  *		ENOTTY
20393  *		ENXIO
20394  *		EIO
20395  *		EFAULT
20396  *		ENOTSUP
20397  *		EPERM
20398  *
20399  *     Context: Called from the device switch at normal priority.
20400  */
20401 
20402 static int
20403 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
20404 {
20405 	struct sd_lun	*un = NULL;
20406 	int		geom_validated = FALSE;
20407 	int		err = 0;
20408 	int		i = 0;
20409 	cred_t		*cr;
20410 
20411 	/*
20412 	 * All device accesses go thru sdstrategy where we check on suspend
20413 	 * status
20414 	 */
20415 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20416 		return (ENXIO);
20417 	}
20418 
20419 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20420 
20421 	/*
20422 	 * Moved this wait from sd_uscsi_strategy to here for
20423 	 * reasons of deadlock prevention. Internal driver commands,
20424 	 * specifically those to change a devices power level, result
20425 	 * in a call to sd_uscsi_strategy.
20426 	 */
20427 	mutex_enter(SD_MUTEX(un));
20428 	while ((un->un_state == SD_STATE_SUSPENDED) ||
20429 	    (un->un_state == SD_STATE_PM_CHANGING)) {
20430 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
20431 	}
20432 	/*
20433 	 * Twiddling the counter here protects commands from now
20434 	 * through to the top of sd_uscsi_strategy. Without the
20435 	 * counter inc. a power down, for example, could get in
20436 	 * after the above check for state is made and before
20437 	 * execution gets to the top of sd_uscsi_strategy.
20438 	 * That would cause problems.
20439 	 */
20440 	un->un_ncmds_in_driver++;
20441 
20442 	if ((un->un_f_geometry_is_valid == FALSE) &&
20443 	    (flag & (FNDELAY | FNONBLOCK))) {
20444 		switch (cmd) {
20445 		case CDROMPAUSE:
20446 		case CDROMRESUME:
20447 		case CDROMPLAYMSF:
20448 		case CDROMPLAYTRKIND:
20449 		case CDROMREADTOCHDR:
20450 		case CDROMREADTOCENTRY:
20451 		case CDROMSTOP:
20452 		case CDROMSTART:
20453 		case CDROMVOLCTRL:
20454 		case CDROMSUBCHNL:
20455 		case CDROMREADMODE2:
20456 		case CDROMREADMODE1:
20457 		case CDROMREADOFFSET:
20458 		case CDROMSBLKMODE:
20459 		case CDROMGBLKMODE:
20460 		case CDROMGDRVSPEED:
20461 		case CDROMSDRVSPEED:
20462 		case CDROMCDDA:
20463 		case CDROMCDXA:
20464 		case CDROMSUBCODE:
20465 			if (!ISCD(un)) {
20466 				un->un_ncmds_in_driver--;
20467 				ASSERT(un->un_ncmds_in_driver >= 0);
20468 				mutex_exit(SD_MUTEX(un));
20469 				return (ENOTTY);
20470 			}
20471 			break;
20472 		case FDEJECT:
20473 		case DKIOCEJECT:
20474 		case CDROMEJECT:
20475 			if (!ISREMOVABLE(un)) {
20476 				un->un_ncmds_in_driver--;
20477 				ASSERT(un->un_ncmds_in_driver >= 0);
20478 				mutex_exit(SD_MUTEX(un));
20479 				return (ENOTTY);
20480 			}
20481 			break;
20482 		case DKIOCSVTOC:
20483 		case DKIOCSETEFI:
20484 		case DKIOCSMBOOT:
20485 			mutex_exit(SD_MUTEX(un));
20486 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
20487 			if (err != 0) {
20488 				mutex_enter(SD_MUTEX(un));
20489 				un->un_ncmds_in_driver--;
20490 				ASSERT(un->un_ncmds_in_driver >= 0);
20491 				mutex_exit(SD_MUTEX(un));
20492 				return (EIO);
20493 			}
20494 			mutex_enter(SD_MUTEX(un));
20495 			/* FALLTHROUGH */
20496 		case DKIOCREMOVABLE:
20497 		case DKIOCINFO:
20498 		case DKIOCGMEDIAINFO:
20499 		case MHIOCENFAILFAST:
20500 		case MHIOCSTATUS:
20501 		case MHIOCTKOWN:
20502 		case MHIOCRELEASE:
20503 		case MHIOCGRP_INKEYS:
20504 		case MHIOCGRP_INRESV:
20505 		case MHIOCGRP_REGISTER:
20506 		case MHIOCGRP_RESERVE:
20507 		case MHIOCGRP_PREEMPTANDABORT:
20508 		case MHIOCGRP_REGISTERANDIGNOREKEY:
20509 		case CDROMCLOSETRAY:
20510 		case USCSICMD:
20511 			goto skip_ready_valid;
20512 		default:
20513 			break;
20514 		}
20515 
20516 		mutex_exit(SD_MUTEX(un));
20517 		err = sd_ready_and_valid(un);
20518 		mutex_enter(SD_MUTEX(un));
20519 		if (err == SD_READY_NOT_VALID) {
20520 			switch (cmd) {
20521 			case DKIOCGAPART:
20522 			case DKIOCGGEOM:
20523 			case DKIOCSGEOM:
20524 			case DKIOCGVTOC:
20525 			case DKIOCSVTOC:
20526 			case DKIOCSAPART:
20527 			case DKIOCG_PHYGEOM:
20528 			case DKIOCG_VIRTGEOM:
20529 				err = ENOTSUP;
20530 				un->un_ncmds_in_driver--;
20531 				ASSERT(un->un_ncmds_in_driver >= 0);
20532 				mutex_exit(SD_MUTEX(un));
20533 				return (err);
20534 			}
20535 		}
20536 		if (err != SD_READY_VALID) {
20537 			switch (cmd) {
20538 			case DKIOCSTATE:
20539 			case CDROMGDRVSPEED:
20540 			case CDROMSDRVSPEED:
20541 			case FDEJECT:	/* for eject command */
20542 			case DKIOCEJECT:
20543 			case CDROMEJECT:
20544 			case DKIOCGETEFI:
20545 			case DKIOCSGEOM:
20546 			case DKIOCREMOVABLE:
20547 			case DKIOCSAPART:
20548 			case DKIOCSETEFI:
20549 				break;
20550 			default:
20551 				if (ISREMOVABLE(un)) {
20552 					err = ENXIO;
20553 				} else {
20554 					/* Do not map EACCES to EIO */
20555 					if (err != EACCES)
20556 						err = EIO;
20557 				}
20558 				un->un_ncmds_in_driver--;
20559 				ASSERT(un->un_ncmds_in_driver >= 0);
20560 				mutex_exit(SD_MUTEX(un));
20561 				return (err);
20562 			}
20563 		}
20564 		geom_validated = TRUE;
20565 	}
20566 	if ((un->un_f_geometry_is_valid == TRUE) &&
20567 	    (un->un_solaris_size > 0)) {
20568 		/*
20569 		 * the "geometry_is_valid" flag could be true if we
20570 		 * have an fdisk table but no Solaris partition
20571 		 */
20572 		if (un->un_vtoc.v_sanity != VTOC_SANE) {
20573 			/* it is EFI, so return ENOTSUP for these */
20574 			switch (cmd) {
20575 			case DKIOCGAPART:
20576 			case DKIOCGGEOM:
20577 			case DKIOCGVTOC:
20578 			case DKIOCSVTOC:
20579 			case DKIOCSAPART:
20580 				err = ENOTSUP;
20581 				un->un_ncmds_in_driver--;
20582 				ASSERT(un->un_ncmds_in_driver >= 0);
20583 				mutex_exit(SD_MUTEX(un));
20584 				return (err);
20585 			}
20586 		}
20587 	}
20588 
20589 skip_ready_valid:
20590 	mutex_exit(SD_MUTEX(un));
20591 
20592 	switch (cmd) {
20593 	case DKIOCINFO:
20594 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
20595 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
20596 		break;
20597 
20598 	case DKIOCGMEDIAINFO:
20599 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
20600 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
20601 		break;
20602 
20603 	case DKIOCGGEOM:
20604 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGGEOM\n");
20605 		err = sd_dkio_get_geometry(dev, (caddr_t)arg, flag,
20606 		    geom_validated);
20607 		break;
20608 
20609 	case DKIOCSGEOM:
20610 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSGEOM\n");
20611 		err = sd_dkio_set_geometry(dev, (caddr_t)arg, flag);
20612 		break;
20613 
20614 	case DKIOCGAPART:
20615 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGAPART\n");
20616 		err = sd_dkio_get_partition(dev, (caddr_t)arg, flag,
20617 		    geom_validated);
20618 		break;
20619 
20620 	case DKIOCSAPART:
20621 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSAPART\n");
20622 		err = sd_dkio_set_partition(dev, (caddr_t)arg, flag);
20623 		break;
20624 
20625 	case DKIOCGVTOC:
20626 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGVTOC\n");
20627 		err = sd_dkio_get_vtoc(dev, (caddr_t)arg, flag,
20628 		    geom_validated);
20629 		break;
20630 
20631 	case DKIOCGETEFI:
20632 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGETEFI\n");
20633 		err = sd_dkio_get_efi(dev, (caddr_t)arg, flag);
20634 		break;
20635 
20636 	case DKIOCPARTITION:
20637 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTITION\n");
20638 		err = sd_dkio_partition(dev, (caddr_t)arg, flag);
20639 		break;
20640 
20641 	case DKIOCSVTOC:
20642 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSVTOC\n");
20643 		err = sd_dkio_set_vtoc(dev, (caddr_t)arg, flag);
20644 		break;
20645 
20646 	case DKIOCSETEFI:
20647 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSETEFI\n");
20648 		err = sd_dkio_set_efi(dev, (caddr_t)arg, flag);
20649 		break;
20650 
20651 	case DKIOCGMBOOT:
20652 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMBOOT\n");
20653 		err = sd_dkio_get_mboot(dev, (caddr_t)arg, flag);
20654 		break;
20655 
20656 	case DKIOCSMBOOT:
20657 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSMBOOT\n");
20658 		err = sd_dkio_set_mboot(dev, (caddr_t)arg, flag);
20659 		break;
20660 
20661 	case DKIOCLOCK:
20662 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
20663 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
20664 		    SD_PATH_STANDARD);
20665 		break;
20666 
20667 	case DKIOCUNLOCK:
20668 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
20669 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
20670 		    SD_PATH_STANDARD);
20671 		break;
20672 
20673 	case DKIOCSTATE: {
20674 		enum dkio_state		state;
20675 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
20676 
20677 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
20678 			err = EFAULT;
20679 		} else {
20680 			err = sd_check_media(dev, state);
20681 			if (err == 0) {
20682 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
20683 				    sizeof (int), flag) != 0)
20684 					err = EFAULT;
20685 			}
20686 		}
20687 		break;
20688 	}
20689 
20690 	case DKIOCREMOVABLE:
20691 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
20692 		if (ISREMOVABLE(un)) {
20693 			i = 1;
20694 		} else {
20695 			i = 0;
20696 		}
20697 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
20698 			err = EFAULT;
20699 		} else {
20700 			err = 0;
20701 		}
20702 		break;
20703 
20704 	case DKIOCGTEMPERATURE:
20705 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
20706 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
20707 		break;
20708 
20709 	case MHIOCENFAILFAST:
20710 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
20711 		if ((err = drv_priv(cred_p)) == 0) {
20712 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
20713 		}
20714 		break;
20715 
20716 	case MHIOCTKOWN:
20717 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
20718 		if ((err = drv_priv(cred_p)) == 0) {
20719 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
20720 		}
20721 		break;
20722 
20723 	case MHIOCRELEASE:
20724 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
20725 		if ((err = drv_priv(cred_p)) == 0) {
20726 			err = sd_mhdioc_release(dev);
20727 		}
20728 		break;
20729 
20730 	case MHIOCSTATUS:
20731 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
20732 		if ((err = drv_priv(cred_p)) == 0) {
20733 			switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) {
20734 			case 0:
20735 				err = 0;
20736 				break;
20737 			case EACCES:
20738 				*rval_p = 1;
20739 				err = 0;
20740 				break;
20741 			default:
20742 				err = EIO;
20743 				break;
20744 			}
20745 		}
20746 		break;
20747 
20748 	case MHIOCQRESERVE:
20749 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
20750 		if ((err = drv_priv(cred_p)) == 0) {
20751 			err = sd_reserve_release(dev, SD_RESERVE);
20752 		}
20753 		break;
20754 
20755 	case MHIOCREREGISTERDEVID:
20756 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
20757 		if (drv_priv(cred_p) == EPERM) {
20758 			err = EPERM;
20759 		} else if (ISREMOVABLE(un) || ISCD(un)) {
20760 			err = ENOTTY;
20761 		} else {
20762 			err = sd_mhdioc_register_devid(dev);
20763 		}
20764 		break;
20765 
20766 	case MHIOCGRP_INKEYS:
20767 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
20768 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
20769 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20770 				err = ENOTSUP;
20771 			} else {
20772 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
20773 				    flag);
20774 			}
20775 		}
20776 		break;
20777 
20778 	case MHIOCGRP_INRESV:
20779 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
20780 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
20781 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20782 				err = ENOTSUP;
20783 			} else {
20784 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
20785 			}
20786 		}
20787 		break;
20788 
20789 	case MHIOCGRP_REGISTER:
20790 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
20791 		if ((err = drv_priv(cred_p)) != EPERM) {
20792 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20793 				err = ENOTSUP;
20794 			} else if (arg != NULL) {
20795 				mhioc_register_t reg;
20796 				if (ddi_copyin((void *)arg, &reg,
20797 				    sizeof (mhioc_register_t), flag) != 0) {
20798 					err = EFAULT;
20799 				} else {
20800 					err =
20801 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20802 					    un, SD_SCSI3_REGISTER,
20803 					    (uchar_t *)&reg);
20804 				}
20805 			}
20806 		}
20807 		break;
20808 
20809 	case MHIOCGRP_RESERVE:
20810 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
20811 		if ((err = drv_priv(cred_p)) != EPERM) {
20812 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20813 				err = ENOTSUP;
20814 			} else if (arg != NULL) {
20815 				mhioc_resv_desc_t resv_desc;
20816 				if (ddi_copyin((void *)arg, &resv_desc,
20817 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
20818 					err = EFAULT;
20819 				} else {
20820 					err =
20821 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20822 					    un, SD_SCSI3_RESERVE,
20823 					    (uchar_t *)&resv_desc);
20824 				}
20825 			}
20826 		}
20827 		break;
20828 
20829 	case MHIOCGRP_PREEMPTANDABORT:
20830 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
20831 		if ((err = drv_priv(cred_p)) != EPERM) {
20832 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20833 				err = ENOTSUP;
20834 			} else if (arg != NULL) {
20835 				mhioc_preemptandabort_t preempt_abort;
20836 				if (ddi_copyin((void *)arg, &preempt_abort,
20837 				    sizeof (mhioc_preemptandabort_t),
20838 				    flag) != 0) {
20839 					err = EFAULT;
20840 				} else {
20841 					err =
20842 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20843 					    un, SD_SCSI3_PREEMPTANDABORT,
20844 					    (uchar_t *)&preempt_abort);
20845 				}
20846 			}
20847 		}
20848 		break;
20849 
20850 	case MHIOCGRP_REGISTERANDIGNOREKEY:
20851 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
20852 		if ((err = drv_priv(cred_p)) != EPERM) {
20853 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20854 				err = ENOTSUP;
20855 			} else if (arg != NULL) {
20856 				mhioc_registerandignorekey_t r_and_i;
20857 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
20858 				    sizeof (mhioc_registerandignorekey_t),
20859 				    flag) != 0) {
20860 					err = EFAULT;
20861 				} else {
20862 					err =
20863 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20864 					    un, SD_SCSI3_REGISTERANDIGNOREKEY,
20865 					    (uchar_t *)&r_and_i);
20866 				}
20867 			}
20868 		}
20869 		break;
20870 
20871 	case USCSICMD:
20872 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
20873 		cr = ddi_get_cred();
20874 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
20875 			err = EPERM;
20876 		} else {
20877 			err = sd_uscsi_ioctl(dev, (caddr_t)arg, flag);
20878 		}
20879 		break;
20880 
20881 	case CDROMPAUSE:
20882 	case CDROMRESUME:
20883 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
20884 		if (!ISCD(un)) {
20885 			err = ENOTTY;
20886 		} else {
20887 			err = sr_pause_resume(dev, cmd);
20888 		}
20889 		break;
20890 
20891 	case CDROMPLAYMSF:
20892 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
20893 		if (!ISCD(un)) {
20894 			err = ENOTTY;
20895 		} else {
20896 			err = sr_play_msf(dev, (caddr_t)arg, flag);
20897 		}
20898 		break;
20899 
20900 	case CDROMPLAYTRKIND:
20901 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
20902 #if defined(__i386) || defined(__amd64)
20903 		/*
20904 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
20905 		 */
20906 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
20907 #else
20908 		if (!ISCD(un)) {
20909 #endif
20910 			err = ENOTTY;
20911 		} else {
20912 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
20913 		}
20914 		break;
20915 
20916 	case CDROMREADTOCHDR:
20917 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
20918 		if (!ISCD(un)) {
20919 			err = ENOTTY;
20920 		} else {
20921 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
20922 		}
20923 		break;
20924 
20925 	case CDROMREADTOCENTRY:
20926 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
20927 		if (!ISCD(un)) {
20928 			err = ENOTTY;
20929 		} else {
20930 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
20931 		}
20932 		break;
20933 
20934 	case CDROMSTOP:
20935 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
20936 		if (!ISCD(un)) {
20937 			err = ENOTTY;
20938 		} else {
20939 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP,
20940 			    SD_PATH_STANDARD);
20941 		}
20942 		break;
20943 
20944 	case CDROMSTART:
20945 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
20946 		if (!ISCD(un)) {
20947 			err = ENOTTY;
20948 		} else {
20949 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
20950 			    SD_PATH_STANDARD);
20951 		}
20952 		break;
20953 
20954 	case CDROMCLOSETRAY:
20955 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
20956 		if (!ISCD(un)) {
20957 			err = ENOTTY;
20958 		} else {
20959 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE,
20960 			    SD_PATH_STANDARD);
20961 		}
20962 		break;
20963 
20964 	case FDEJECT:	/* for eject command */
20965 	case DKIOCEJECT:
20966 	case CDROMEJECT:
20967 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
20968 		if (!ISREMOVABLE(un)) {
20969 			err = ENOTTY;
20970 		} else {
20971 			err = sr_eject(dev);
20972 		}
20973 		break;
20974 
20975 	case CDROMVOLCTRL:
20976 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
20977 		if (!ISCD(un)) {
20978 			err = ENOTTY;
20979 		} else {
20980 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
20981 		}
20982 		break;
20983 
20984 	case CDROMSUBCHNL:
20985 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
20986 		if (!ISCD(un)) {
20987 			err = ENOTTY;
20988 		} else {
20989 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
20990 		}
20991 		break;
20992 
20993 	case CDROMREADMODE2:
20994 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
20995 		if (!ISCD(un)) {
20996 			err = ENOTTY;
20997 		} else if (un->un_f_cfg_is_atapi == TRUE) {
20998 			/*
20999 			 * If the drive supports READ CD, use that instead of
21000 			 * switching the LBA size via a MODE SELECT
21001 			 * Block Descriptor
21002 			 */
21003 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
21004 		} else {
21005 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
21006 		}
21007 		break;
21008 
21009 	case CDROMREADMODE1:
21010 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
21011 		if (!ISCD(un)) {
21012 			err = ENOTTY;
21013 		} else {
21014 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
21015 		}
21016 		break;
21017 
21018 	case CDROMREADOFFSET:
21019 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
21020 		if (!ISCD(un)) {
21021 			err = ENOTTY;
21022 		} else {
21023 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
21024 			    flag);
21025 		}
21026 		break;
21027 
21028 	case CDROMSBLKMODE:
21029 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
21030 		/*
21031 		 * There is no means of changing block size in case of atapi
21032 		 * drives, thus return ENOTTY if drive type is atapi
21033 		 */
21034 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21035 			err = ENOTTY;
21036 		} else if (un->un_f_mmc_cap == TRUE) {
21037 
21038 			/*
21039 			 * MMC Devices do not support changing the
21040 			 * logical block size
21041 			 *
21042 			 * Note: EINVAL is being returned instead of ENOTTY to
21043 			 * maintain consistancy with the original mmc
21044 			 * driver update.
21045 			 */
21046 			err = EINVAL;
21047 		} else {
21048 			mutex_enter(SD_MUTEX(un));
21049 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
21050 			    (un->un_ncmds_in_transport > 0)) {
21051 				mutex_exit(SD_MUTEX(un));
21052 				err = EINVAL;
21053 			} else {
21054 				mutex_exit(SD_MUTEX(un));
21055 				err = sr_change_blkmode(dev, cmd, arg, flag);
21056 			}
21057 		}
21058 		break;
21059 
21060 	case CDROMGBLKMODE:
21061 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
21062 		if (!ISCD(un)) {
21063 			err = ENOTTY;
21064 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
21065 		    (un->un_f_blockcount_is_valid != FALSE)) {
21066 			/*
21067 			 * Drive is an ATAPI drive so return target block
21068 			 * size for ATAPI drives since we cannot change the
21069 			 * blocksize on ATAPI drives. Used primarily to detect
21070 			 * if an ATAPI cdrom is present.
21071 			 */
21072 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
21073 			    sizeof (int), flag) != 0) {
21074 				err = EFAULT;
21075 			} else {
21076 				err = 0;
21077 			}
21078 
21079 		} else {
21080 			/*
21081 			 * Drive supports changing block sizes via a Mode
21082 			 * Select.
21083 			 */
21084 			err = sr_change_blkmode(dev, cmd, arg, flag);
21085 		}
21086 		break;
21087 
21088 	case CDROMGDRVSPEED:
21089 	case CDROMSDRVSPEED:
21090 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
21091 		if (!ISCD(un)) {
21092 			err = ENOTTY;
21093 		} else if (un->un_f_mmc_cap == TRUE) {
21094 			/*
21095 			 * Note: In the future the driver implementation
21096 			 * for getting and
21097 			 * setting cd speed should entail:
21098 			 * 1) If non-mmc try the Toshiba mode page
21099 			 *    (sr_change_speed)
21100 			 * 2) If mmc but no support for Real Time Streaming try
21101 			 *    the SET CD SPEED (0xBB) command
21102 			 *   (sr_atapi_change_speed)
21103 			 * 3) If mmc and support for Real Time Streaming
21104 			 *    try the GET PERFORMANCE and SET STREAMING
21105 			 *    commands (not yet implemented, 4380808)
21106 			 */
21107 			/*
21108 			 * As per recent MMC spec, CD-ROM speed is variable
21109 			 * and changes with LBA. Since there is no such
21110 			 * things as drive speed now, fail this ioctl.
21111 			 *
21112 			 * Note: EINVAL is returned for consistancy of original
21113 			 * implementation which included support for getting
21114 			 * the drive speed of mmc devices but not setting
21115 			 * the drive speed. Thus EINVAL would be returned
21116 			 * if a set request was made for an mmc device.
21117 			 * We no longer support get or set speed for
21118 			 * mmc but need to remain consistant with regard
21119 			 * to the error code returned.
21120 			 */
21121 			err = EINVAL;
21122 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21123 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
21124 		} else {
21125 			err = sr_change_speed(dev, cmd, arg, flag);
21126 		}
21127 		break;
21128 
21129 	case CDROMCDDA:
21130 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
21131 		if (!ISCD(un)) {
21132 			err = ENOTTY;
21133 		} else {
21134 			err = sr_read_cdda(dev, (void *)arg, flag);
21135 		}
21136 		break;
21137 
21138 	case CDROMCDXA:
21139 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
21140 		if (!ISCD(un)) {
21141 			err = ENOTTY;
21142 		} else {
21143 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
21144 		}
21145 		break;
21146 
21147 	case CDROMSUBCODE:
21148 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
21149 		if (!ISCD(un)) {
21150 			err = ENOTTY;
21151 		} else {
21152 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
21153 		}
21154 		break;
21155 
21156 	case DKIOCPARTINFO: {
21157 		/*
21158 		 * Return parameters describing the selected disk slice.
21159 		 * Note: this ioctl is for the intel platform only
21160 		 */
21161 #if defined(__i386) || defined(__amd64)
21162 		int part;
21163 
21164 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n");
21165 		part = SDPART(dev);
21166 
21167 		/* don't check un_solaris_size for pN */
21168 		if (part < P0_RAW_DISK && un->un_solaris_size == 0) {
21169 			err = EIO;
21170 		} else {
21171 			struct part_info p;
21172 
21173 			p.p_start = (daddr_t)un->un_offset[part];
21174 			p.p_length = (int)un->un_map[part].dkl_nblk;
21175 #ifdef _MULTI_DATAMODEL
21176 			switch (ddi_model_convert_from(flag & FMODELS)) {
21177 			case DDI_MODEL_ILP32:
21178 			{
21179 				struct part_info32 p32;
21180 
21181 				p32.p_start = (daddr32_t)p.p_start;
21182 				p32.p_length = p.p_length;
21183 				if (ddi_copyout(&p32, (void *)arg,
21184 				    sizeof (p32), flag))
21185 					err = EFAULT;
21186 				break;
21187 			}
21188 
21189 			case DDI_MODEL_NONE:
21190 			{
21191 				if (ddi_copyout(&p, (void *)arg, sizeof (p),
21192 				    flag))
21193 					err = EFAULT;
21194 				break;
21195 			}
21196 			}
21197 #else /* ! _MULTI_DATAMODEL */
21198 			if (ddi_copyout(&p, (void *)arg, sizeof (p), flag))
21199 				err = EFAULT;
21200 #endif /* _MULTI_DATAMODEL */
21201 		}
21202 #else
21203 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n");
21204 		err = ENOTTY;
21205 #endif
21206 		break;
21207 	}
21208 
21209 	case DKIOCG_PHYGEOM: {
21210 		/* Return the driver's notion of the media physical geometry */
21211 #if defined(__i386) || defined(__amd64)
21212 		struct dk_geom	disk_geom;
21213 		struct dk_geom	*dkgp = &disk_geom;
21214 
21215 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n");
21216 		mutex_enter(SD_MUTEX(un));
21217 
21218 		if (un->un_g.dkg_nhead != 0 &&
21219 		    un->un_g.dkg_nsect != 0) {
21220 			/*
21221 			 * We succeeded in getting a geometry, but
21222 			 * right now it is being reported as just the
21223 			 * Solaris fdisk partition, just like for
21224 			 * DKIOCGGEOM. We need to change that to be
21225 			 * correct for the entire disk now.
21226 			 */
21227 			bcopy(&un->un_g, dkgp, sizeof (*dkgp));
21228 			dkgp->dkg_acyl = 0;
21229 			dkgp->dkg_ncyl = un->un_blockcount /
21230 			    (dkgp->dkg_nhead * dkgp->dkg_nsect);
21231 		} else {
21232 			bzero(dkgp, sizeof (struct dk_geom));
21233 			/*
21234 			 * This disk does not have a Solaris VTOC
21235 			 * so we must present a physical geometry
21236 			 * that will remain consistent regardless
21237 			 * of how the disk is used. This will ensure
21238 			 * that the geometry does not change regardless
21239 			 * of the fdisk partition type (ie. EFI, FAT32,
21240 			 * Solaris, etc).
21241 			 */
21242 			if (ISCD(un)) {
21243 				dkgp->dkg_nhead = un->un_pgeom.g_nhead;
21244 				dkgp->dkg_nsect = un->un_pgeom.g_nsect;
21245 				dkgp->dkg_ncyl = un->un_pgeom.g_ncyl;
21246 				dkgp->dkg_acyl = un->un_pgeom.g_acyl;
21247 			} else {
21248 				sd_convert_geometry(un->un_blockcount, dkgp);
21249 				dkgp->dkg_acyl = 0;
21250 				dkgp->dkg_ncyl = un->un_blockcount /
21251 				    (dkgp->dkg_nhead * dkgp->dkg_nsect);
21252 			}
21253 		}
21254 		dkgp->dkg_pcyl = dkgp->dkg_ncyl + dkgp->dkg_acyl;
21255 
21256 		if (ddi_copyout(dkgp, (void *)arg,
21257 		    sizeof (struct dk_geom), flag)) {
21258 			mutex_exit(SD_MUTEX(un));
21259 			err = EFAULT;
21260 		} else {
21261 			mutex_exit(SD_MUTEX(un));
21262 			err = 0;
21263 		}
21264 #else
21265 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n");
21266 		err = ENOTTY;
21267 #endif
21268 		break;
21269 	}
21270 
21271 	case DKIOCG_VIRTGEOM: {
21272 		/* Return the driver's notion of the media's logical geometry */
21273 #if defined(__i386) || defined(__amd64)
21274 		struct dk_geom	disk_geom;
21275 		struct dk_geom	*dkgp = &disk_geom;
21276 
21277 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n");
21278 		mutex_enter(SD_MUTEX(un));
21279 		/*
21280 		 * If there is no HBA geometry available, or
21281 		 * if the HBA returned us something that doesn't
21282 		 * really fit into an Int 13/function 8 geometry
21283 		 * result, just fail the ioctl.  See PSARC 1998/313.
21284 		 */
21285 		if (un->un_lgeom.g_nhead == 0 ||
21286 		    un->un_lgeom.g_nsect == 0 ||
21287 		    un->un_lgeom.g_ncyl > 1024) {
21288 			mutex_exit(SD_MUTEX(un));
21289 			err = EINVAL;
21290 		} else {
21291 			dkgp->dkg_ncyl	= un->un_lgeom.g_ncyl;
21292 			dkgp->dkg_acyl	= un->un_lgeom.g_acyl;
21293 			dkgp->dkg_pcyl	= dkgp->dkg_ncyl + dkgp->dkg_acyl;
21294 			dkgp->dkg_nhead	= un->un_lgeom.g_nhead;
21295 			dkgp->dkg_nsect	= un->un_lgeom.g_nsect;
21296 
21297 			if (ddi_copyout(dkgp, (void *)arg,
21298 			    sizeof (struct dk_geom), flag)) {
21299 				mutex_exit(SD_MUTEX(un));
21300 				err = EFAULT;
21301 			} else {
21302 				mutex_exit(SD_MUTEX(un));
21303 				err = 0;
21304 			}
21305 		}
21306 #else
21307 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n");
21308 		err = ENOTTY;
21309 #endif
21310 		break;
21311 	}
21312 #ifdef SDDEBUG
21313 /* RESET/ABORTS testing ioctls */
21314 	case DKIOCRESET: {
21315 		int	reset_level;
21316 
21317 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
21318 			err = EFAULT;
21319 		} else {
21320 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
21321 			    "reset_level = 0x%lx\n", reset_level);
21322 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
21323 				err = 0;
21324 			} else {
21325 				err = EIO;
21326 			}
21327 		}
21328 		break;
21329 	}
21330 
21331 	case DKIOCABORT:
21332 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
21333 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
21334 			err = 0;
21335 		} else {
21336 			err = EIO;
21337 		}
21338 		break;
21339 #endif
21340 
21341 #ifdef SD_FAULT_INJECTION
21342 /* SDIOC FaultInjection testing ioctls */
21343 	case SDIOCSTART:
21344 	case SDIOCSTOP:
21345 	case SDIOCINSERTPKT:
21346 	case SDIOCINSERTXB:
21347 	case SDIOCINSERTUN:
21348 	case SDIOCINSERTARQ:
21349 	case SDIOCPUSH:
21350 	case SDIOCRETRIEVE:
21351 	case SDIOCRUN:
21352 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
21353 		    "SDIOC detected cmd:0x%X:\n", cmd);
21354 		/* call error generator */
21355 		sd_faultinjection_ioctl(cmd, arg, un);
21356 		err = 0;
21357 		break;
21358 
21359 #endif /* SD_FAULT_INJECTION */
21360 
21361 	default:
21362 		err = ENOTTY;
21363 		break;
21364 	}
21365 	mutex_enter(SD_MUTEX(un));
21366 	un->un_ncmds_in_driver--;
21367 	ASSERT(un->un_ncmds_in_driver >= 0);
21368 	mutex_exit(SD_MUTEX(un));
21369 
21370 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
21371 	return (err);
21372 }
21373 
21374 
21375 /*
21376  *    Function: sd_uscsi_ioctl
21377  *
21378  * Description: This routine is the driver entry point for handling USCSI ioctl
21379  *		requests (USCSICMD).
21380  *
21381  *   Arguments: dev	- the device number
21382  *		arg	- user provided scsi command
21383  *		flag	- this argument is a pass through to ddi_copyxxx()
21384  *			  directly from the mode argument of ioctl().
21385  *
21386  * Return Code: code returned by sd_send_scsi_cmd
21387  *		ENXIO
21388  *		EFAULT
21389  *		EAGAIN
21390  */
21391 
21392 static int
21393 sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag)
21394 {
21395 #ifdef _MULTI_DATAMODEL
21396 	/*
21397 	 * For use when a 32 bit app makes a call into a
21398 	 * 64 bit ioctl
21399 	 */
21400 	struct uscsi_cmd32	uscsi_cmd_32_for_64;
21401 	struct uscsi_cmd32	*ucmd32 = &uscsi_cmd_32_for_64;
21402 	model_t			model;
21403 #endif /* _MULTI_DATAMODEL */
21404 	struct uscsi_cmd	*scmd = NULL;
21405 	struct sd_lun		*un = NULL;
21406 	enum uio_seg		uioseg;
21407 	char			cdb[CDB_GROUP0];
21408 	int			rval = 0;
21409 
21410 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21411 		return (ENXIO);
21412 	}
21413 
21414 	SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: entry: un:0x%p\n", un);
21415 
21416 	scmd = (struct uscsi_cmd *)
21417 	    kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
21418 
21419 #ifdef _MULTI_DATAMODEL
21420 	switch (model = ddi_model_convert_from(flag & FMODELS)) {
21421 	case DDI_MODEL_ILP32:
21422 	{
21423 		if (ddi_copyin((void *)arg, ucmd32, sizeof (*ucmd32), flag)) {
21424 			rval = EFAULT;
21425 			goto done;
21426 		}
21427 		/*
21428 		 * Convert the ILP32 uscsi data from the
21429 		 * application to LP64 for internal use.
21430 		 */
21431 		uscsi_cmd32touscsi_cmd(ucmd32, scmd);
21432 		break;
21433 	}
21434 	case DDI_MODEL_NONE:
21435 		if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) {
21436 			rval = EFAULT;
21437 			goto done;
21438 		}
21439 		break;
21440 	}
21441 #else /* ! _MULTI_DATAMODEL */
21442 	if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) {
21443 		rval = EFAULT;
21444 		goto done;
21445 	}
21446 #endif /* _MULTI_DATAMODEL */
21447 
21448 	scmd->uscsi_flags &= ~USCSI_NOINTR;
21449 	uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE : UIO_USERSPACE;
21450 	if (un->un_f_format_in_progress == TRUE) {
21451 		rval = EAGAIN;
21452 		goto done;
21453 	}
21454 
21455 	/*
21456 	 * Gotta do the ddi_copyin() here on the uscsi_cdb so that
21457 	 * we will have a valid cdb[0] to test.
21458 	 */
21459 	if ((ddi_copyin(scmd->uscsi_cdb, cdb, CDB_GROUP0, flag) == 0) &&
21460 	    (cdb[0] == SCMD_FORMAT)) {
21461 		SD_TRACE(SD_LOG_IOCTL, un,
21462 		    "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]);
21463 		mutex_enter(SD_MUTEX(un));
21464 		un->un_f_format_in_progress = TRUE;
21465 		mutex_exit(SD_MUTEX(un));
21466 		rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg,
21467 		    SD_PATH_STANDARD);
21468 		mutex_enter(SD_MUTEX(un));
21469 		un->un_f_format_in_progress = FALSE;
21470 		mutex_exit(SD_MUTEX(un));
21471 	} else {
21472 		SD_TRACE(SD_LOG_IOCTL, un,
21473 		    "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]);
21474 		/*
21475 		 * It's OK to fall into here even if the ddi_copyin()
21476 		 * on the uscsi_cdb above fails, because sd_send_scsi_cmd()
21477 		 * does this same copyin and will return the EFAULT
21478 		 * if it fails.
21479 		 */
21480 		rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg,
21481 		    SD_PATH_STANDARD);
21482 	}
21483 #ifdef _MULTI_DATAMODEL
21484 	switch (model) {
21485 	case DDI_MODEL_ILP32:
21486 		/*
21487 		 * Convert back to ILP32 before copyout to the
21488 		 * application
21489 		 */
21490 		uscsi_cmdtouscsi_cmd32(scmd, ucmd32);
21491 		if (ddi_copyout(ucmd32, (void *)arg, sizeof (*ucmd32), flag)) {
21492 			if (rval != 0) {
21493 				rval = EFAULT;
21494 			}
21495 		}
21496 		break;
21497 	case DDI_MODEL_NONE:
21498 		if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) {
21499 			if (rval != 0) {
21500 				rval = EFAULT;
21501 			}
21502 		}
21503 		break;
21504 	}
21505 #else /* ! _MULTI_DATAMODE */
21506 	if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) {
21507 		if (rval != 0) {
21508 			rval = EFAULT;
21509 		}
21510 	}
21511 #endif /* _MULTI_DATAMODE */
21512 done:
21513 	kmem_free(scmd, sizeof (struct uscsi_cmd));
21514 
21515 	SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: exit: un:0x%p\n", un);
21516 
21517 	return (rval);
21518 }
21519 
21520 
21521 /*
21522  *    Function: sd_dkio_ctrl_info
21523  *
21524  * Description: This routine is the driver entry point for handling controller
21525  *		information ioctl requests (DKIOCINFO).
21526  *
21527  *   Arguments: dev  - the device number
21528  *		arg  - pointer to user provided dk_cinfo structure
21529  *		       specifying the controller type and attributes.
21530  *		flag - this argument is a pass through to ddi_copyxxx()
21531  *		       directly from the mode argument of ioctl().
21532  *
21533  * Return Code: 0
21534  *		EFAULT
21535  *		ENXIO
21536  */
21537 
21538 static int
21539 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
21540 {
21541 	struct sd_lun	*un = NULL;
21542 	struct dk_cinfo	*info;
21543 	dev_info_t	*pdip;
21544 
21545 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21546 		return (ENXIO);
21547 	}
21548 
21549 	info = (struct dk_cinfo *)
21550 		kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
21551 
21552 	switch (un->un_ctype) {
21553 	case CTYPE_CDROM:
21554 		info->dki_ctype = DKC_CDROM;
21555 		break;
21556 	default:
21557 		info->dki_ctype = DKC_SCSI_CCS;
21558 		break;
21559 	}
21560 	pdip = ddi_get_parent(SD_DEVINFO(un));
21561 	info->dki_cnum = ddi_get_instance(pdip);
21562 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
21563 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
21564 	} else {
21565 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
21566 		    DK_DEVLEN - 1);
21567 	}
21568 
21569 	/* Unit Information */
21570 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
21571 	info->dki_slave = ((SD_TARGET(un) << 3) | SD_LUN(un));
21572 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
21573 	    DK_DEVLEN - 1);
21574 	info->dki_flags = DKI_FMTVOL;
21575 	info->dki_partition = SDPART(dev);
21576 
21577 	/* Max Transfer size of this device in blocks */
21578 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
21579 	info->dki_addr = 0;
21580 	info->dki_space = 0;
21581 	info->dki_prio = 0;
21582 	info->dki_vec = 0;
21583 
21584 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
21585 		kmem_free(info, sizeof (struct dk_cinfo));
21586 		return (EFAULT);
21587 	} else {
21588 		kmem_free(info, sizeof (struct dk_cinfo));
21589 		return (0);
21590 	}
21591 }
21592 
21593 
21594 /*
21595  *    Function: sd_get_media_info
21596  *
21597  * Description: This routine is the driver entry point for handling ioctl
21598  *		requests for the media type or command set profile used by the
21599  *		drive to operate on the media (DKIOCGMEDIAINFO).
21600  *
21601  *   Arguments: dev	- the device number
21602  *		arg	- pointer to user provided dk_minfo structure
21603  *			  specifying the media type, logical block size and
21604  *			  drive capacity.
21605  *		flag	- this argument is a pass through to ddi_copyxxx()
21606  *			  directly from the mode argument of ioctl().
21607  *
21608  * Return Code: 0
21609  *		EACCESS
21610  *		EFAULT
21611  *		ENXIO
21612  *		EIO
21613  */
21614 
21615 static int
21616 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
21617 {
21618 	struct sd_lun		*un = NULL;
21619 	struct uscsi_cmd	com;
21620 	struct scsi_inquiry	*sinq;
21621 	struct dk_minfo		media_info;
21622 	u_longlong_t		media_capacity;
21623 	uint64_t		capacity;
21624 	uint_t			lbasize;
21625 	uchar_t			*out_data;
21626 	uchar_t			*rqbuf;
21627 	int			rval = 0;
21628 	int			rtn;
21629 
21630 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
21631 	    (un->un_state == SD_STATE_OFFLINE)) {
21632 		return (ENXIO);
21633 	}
21634 
21635 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
21636 
21637 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
21638 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
21639 
21640 	/* Issue a TUR to determine if the drive is ready with media present */
21641 	rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA);
21642 	if (rval == ENXIO) {
21643 		goto done;
21644 	}
21645 
21646 	/* Now get configuration data */
21647 	if (ISCD(un)) {
21648 		media_info.dki_media_type = DK_CDROM;
21649 
21650 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
21651 		if (un->un_f_mmc_cap == TRUE) {
21652 			rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf,
21653 				SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN);
21654 
21655 			if (rtn) {
21656 				/*
21657 				 * Failed for other than an illegal request
21658 				 * or command not supported
21659 				 */
21660 				if ((com.uscsi_status == STATUS_CHECK) &&
21661 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
21662 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
21663 					    (rqbuf[12] != 0x20)) {
21664 						rval = EIO;
21665 						goto done;
21666 					}
21667 				}
21668 			} else {
21669 				/*
21670 				 * The GET CONFIGURATION command succeeded
21671 				 * so set the media type according to the
21672 				 * returned data
21673 				 */
21674 				media_info.dki_media_type = out_data[6];
21675 				media_info.dki_media_type <<= 8;
21676 				media_info.dki_media_type |= out_data[7];
21677 			}
21678 		}
21679 	} else {
21680 		/*
21681 		 * The profile list is not available, so we attempt to identify
21682 		 * the media type based on the inquiry data
21683 		 */
21684 		sinq = un->un_sd->sd_inq;
21685 		if (sinq->inq_qual == 0) {
21686 			/* This is a direct access device */
21687 			media_info.dki_media_type = DK_FIXED_DISK;
21688 
21689 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
21690 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
21691 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
21692 					media_info.dki_media_type = DK_ZIP;
21693 				} else if (
21694 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
21695 					media_info.dki_media_type = DK_JAZ;
21696 				}
21697 			}
21698 		} else {
21699 			/* Not a CD or direct access so return unknown media */
21700 			media_info.dki_media_type = DK_UNKNOWN;
21701 		}
21702 	}
21703 
21704 	/* Now read the capacity so we can provide the lbasize and capacity */
21705 	switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
21706 	    SD_PATH_DIRECT)) {
21707 	case 0:
21708 		break;
21709 	case EACCES:
21710 		rval = EACCES;
21711 		goto done;
21712 	default:
21713 		rval = EIO;
21714 		goto done;
21715 	}
21716 
21717 	media_info.dki_lbsize = lbasize;
21718 	media_capacity = capacity;
21719 
21720 	/*
21721 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
21722 	 * un->un_sys_blocksize chunks. So we need to convert it into
21723 	 * cap.lbasize chunks.
21724 	 */
21725 	media_capacity *= un->un_sys_blocksize;
21726 	media_capacity /= lbasize;
21727 	media_info.dki_capacity = media_capacity;
21728 
21729 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
21730 		rval = EFAULT;
21731 		/* Put goto. Anybody might add some code below in future */
21732 		goto done;
21733 	}
21734 done:
21735 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
21736 	kmem_free(rqbuf, SENSE_LENGTH);
21737 	return (rval);
21738 }
21739 
21740 
21741 /*
21742  *    Function: sd_dkio_get_geometry
21743  *
21744  * Description: This routine is the driver entry point for handling user
21745  *		requests to get the device geometry (DKIOCGGEOM).
21746  *
21747  *   Arguments: dev  - the device number
21748  *		arg  - pointer to user provided dk_geom structure specifying
21749  *			the controller's notion of the current geometry.
21750  *		flag - this argument is a pass through to ddi_copyxxx()
21751  *		       directly from the mode argument of ioctl().
21752  *		geom_validated - flag indicating if the device geometry has been
21753  *				 previously validated in the sdioctl routine.
21754  *
21755  * Return Code: 0
21756  *		EFAULT
21757  *		ENXIO
21758  *		EIO
21759  */
21760 
21761 static int
21762 sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag, int geom_validated)
21763 {
21764 	struct sd_lun	*un = NULL;
21765 	struct dk_geom	*tmp_geom = NULL;
21766 	int		rval = 0;
21767 
21768 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21769 		return (ENXIO);
21770 	}
21771 
21772 #if defined(__i386) || defined(__amd64)
21773 	if (un->un_solaris_size == 0) {
21774 		return (EIO);
21775 	}
21776 #endif
21777 	if (geom_validated == FALSE) {
21778 		/*
21779 		 * sd_validate_geometry does not spin a disk up
21780 		 * if it was spun down. We need to make sure it
21781 		 * is ready.
21782 		 */
21783 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
21784 			return (rval);
21785 		}
21786 		mutex_enter(SD_MUTEX(un));
21787 		rval = sd_validate_geometry(un, SD_PATH_DIRECT);
21788 		mutex_exit(SD_MUTEX(un));
21789 	}
21790 	if (rval)
21791 		return (rval);
21792 
21793 	/*
21794 	 * Make a local copy of the soft state geometry to avoid some potential
21795 	 * race conditions associated with holding the mutex and updating the
21796 	 * write_reinstruct value
21797 	 */
21798 	tmp_geom = kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
21799 	mutex_enter(SD_MUTEX(un));
21800 	bcopy(&un->un_g, tmp_geom, sizeof (struct dk_geom));
21801 	mutex_exit(SD_MUTEX(un));
21802 
21803 	if (tmp_geom->dkg_write_reinstruct == 0) {
21804 		tmp_geom->dkg_write_reinstruct =
21805 		    (int)((int)(tmp_geom->dkg_nsect * tmp_geom->dkg_rpm *
21806 		    sd_rot_delay) / (int)60000);
21807 	}
21808 
21809 	rval = ddi_copyout(tmp_geom, (void *)arg, sizeof (struct dk_geom),
21810 	    flag);
21811 	if (rval != 0) {
21812 		rval = EFAULT;
21813 	}
21814 
21815 	kmem_free(tmp_geom, sizeof (struct dk_geom));
21816 	return (rval);
21817 
21818 }
21819 
21820 
21821 /*
21822  *    Function: sd_dkio_set_geometry
21823  *
21824  * Description: This routine is the driver entry point for handling user
21825  *		requests to set the device geometry (DKIOCSGEOM). The actual
21826  *		device geometry is not updated, just the driver "notion" of it.
21827  *
21828  *   Arguments: dev  - the device number
21829  *		arg  - pointer to user provided dk_geom structure used to set
21830  *			the controller's notion of the current geometry.
21831  *		flag - this argument is a pass through to ddi_copyxxx()
21832  *		       directly from the mode argument of ioctl().
21833  *
21834  * Return Code: 0
21835  *		EFAULT
21836  *		ENXIO
21837  *		EIO
21838  */
21839 
21840 static int
21841 sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag)
21842 {
21843 	struct sd_lun	*un = NULL;
21844 	struct dk_geom	*tmp_geom;
21845 	struct dk_map	*lp;
21846 	int		rval = 0;
21847 	int		i;
21848 
21849 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21850 		return (ENXIO);
21851 	}
21852 
21853 #if defined(__i386) || defined(__amd64)
21854 	if (un->un_solaris_size == 0) {
21855 		return (EIO);
21856 	}
21857 #endif
21858 	/*
21859 	 * We need to copy the user specified geometry into local
21860 	 * storage and then update the softstate. We don't want to hold
21861 	 * the mutex and copyin directly from the user to the soft state
21862 	 */
21863 	tmp_geom = (struct dk_geom *)
21864 	    kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
21865 	rval = ddi_copyin(arg, tmp_geom, sizeof (struct dk_geom), flag);
21866 	if (rval != 0) {
21867 		kmem_free(tmp_geom, sizeof (struct dk_geom));
21868 		return (EFAULT);
21869 	}
21870 
21871 	mutex_enter(SD_MUTEX(un));
21872 	bcopy(tmp_geom, &un->un_g, sizeof (struct dk_geom));
21873 	for (i = 0; i < NDKMAP; i++) {
21874 		lp  = &un->un_map[i];
21875 		un->un_offset[i] =
21876 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
21877 #if defined(__i386) || defined(__amd64)
21878 		un->un_offset[i] += un->un_solaris_offset;
21879 #endif
21880 	}
21881 	un->un_f_geometry_is_valid = FALSE;
21882 	mutex_exit(SD_MUTEX(un));
21883 	kmem_free(tmp_geom, sizeof (struct dk_geom));
21884 
21885 	return (rval);
21886 }
21887 
21888 
21889 /*
21890  *    Function: sd_dkio_get_partition
21891  *
21892  * Description: This routine is the driver entry point for handling user
21893  *		requests to get the partition table (DKIOCGAPART).
21894  *
21895  *   Arguments: dev  - the device number
21896  *		arg  - pointer to user provided dk_allmap structure specifying
21897  *			the controller's notion of the current partition table.
21898  *		flag - this argument is a pass through to ddi_copyxxx()
21899  *		       directly from the mode argument of ioctl().
21900  *		geom_validated - flag indicating if the device geometry has been
21901  *				 previously validated in the sdioctl routine.
21902  *
21903  * Return Code: 0
21904  *		EFAULT
21905  *		ENXIO
21906  *		EIO
21907  */
21908 
21909 static int
21910 sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag, int geom_validated)
21911 {
21912 	struct sd_lun	*un = NULL;
21913 	int		rval = 0;
21914 	int		size;
21915 
21916 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21917 		return (ENXIO);
21918 	}
21919 
21920 #if defined(__i386) || defined(__amd64)
21921 	if (un->un_solaris_size == 0) {
21922 		return (EIO);
21923 	}
21924 #endif
21925 	/*
21926 	 * Make sure the geometry is valid before getting the partition
21927 	 * information.
21928 	 */
21929 	mutex_enter(SD_MUTEX(un));
21930 	if (geom_validated == FALSE) {
21931 		/*
21932 		 * sd_validate_geometry does not spin a disk up
21933 		 * if it was spun down. We need to make sure it
21934 		 * is ready before validating the geometry.
21935 		 */
21936 		mutex_exit(SD_MUTEX(un));
21937 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
21938 			return (rval);
21939 		}
21940 		mutex_enter(SD_MUTEX(un));
21941 
21942 		if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) {
21943 			mutex_exit(SD_MUTEX(un));
21944 			return (rval);
21945 		}
21946 	}
21947 	mutex_exit(SD_MUTEX(un));
21948 
21949 #ifdef _MULTI_DATAMODEL
21950 	switch (ddi_model_convert_from(flag & FMODELS)) {
21951 	case DDI_MODEL_ILP32: {
21952 		struct dk_map32 dk_map32[NDKMAP];
21953 		int		i;
21954 
21955 		for (i = 0; i < NDKMAP; i++) {
21956 			dk_map32[i].dkl_cylno = un->un_map[i].dkl_cylno;
21957 			dk_map32[i].dkl_nblk  = un->un_map[i].dkl_nblk;
21958 		}
21959 		size = NDKMAP * sizeof (struct dk_map32);
21960 		rval = ddi_copyout(dk_map32, (void *)arg, size, flag);
21961 		if (rval != 0) {
21962 			rval = EFAULT;
21963 		}
21964 		break;
21965 	}
21966 	case DDI_MODEL_NONE:
21967 		size = NDKMAP * sizeof (struct dk_map);
21968 		rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
21969 		if (rval != 0) {
21970 			rval = EFAULT;
21971 		}
21972 		break;
21973 	}
21974 #else /* ! _MULTI_DATAMODEL */
21975 	size = NDKMAP * sizeof (struct dk_map);
21976 	rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
21977 	if (rval != 0) {
21978 		rval = EFAULT;
21979 	}
21980 #endif /* _MULTI_DATAMODEL */
21981 	return (rval);
21982 }
21983 
21984 
21985 /*
21986  *    Function: sd_dkio_set_partition
21987  *
21988  * Description: This routine is the driver entry point for handling user
21989  *		requests to set the partition table (DKIOCSAPART). The actual
21990  *		device partition is not updated.
21991  *
21992  *   Arguments: dev  - the device number
21993  *		arg  - pointer to user provided dk_allmap structure used to set
21994  *			the controller's notion of the partition table.
21995  *		flag - this argument is a pass through to ddi_copyxxx()
21996  *		       directly from the mode argument of ioctl().
21997  *
21998  * Return Code: 0
21999  *		EINVAL
22000  *		EFAULT
22001  *		ENXIO
22002  *		EIO
22003  */
22004 
22005 static int
22006 sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag)
22007 {
22008 	struct sd_lun	*un = NULL;
22009 	struct dk_map	dk_map[NDKMAP];
22010 	struct dk_map	*lp;
22011 	int		rval = 0;
22012 	int		size;
22013 	int		i;
22014 #if defined(_SUNOS_VTOC_16)
22015 	struct dkl_partition	*vp;
22016 #endif
22017 
22018 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22019 		return (ENXIO);
22020 	}
22021 
22022 	/*
22023 	 * Set the map for all logical partitions.  We lock
22024 	 * the priority just to make sure an interrupt doesn't
22025 	 * come in while the map is half updated.
22026 	 */
22027 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_solaris_size))
22028 	mutex_enter(SD_MUTEX(un));
22029 	if (un->un_blockcount > DK_MAX_BLOCKS) {
22030 		mutex_exit(SD_MUTEX(un));
22031 		return (ENOTSUP);
22032 	}
22033 	mutex_exit(SD_MUTEX(un));
22034 	if (un->un_solaris_size == 0) {
22035 		return (EIO);
22036 	}
22037 
22038 #ifdef _MULTI_DATAMODEL
22039 	switch (ddi_model_convert_from(flag & FMODELS)) {
22040 	case DDI_MODEL_ILP32: {
22041 		struct dk_map32 dk_map32[NDKMAP];
22042 
22043 		size = NDKMAP * sizeof (struct dk_map32);
22044 		rval = ddi_copyin((void *)arg, dk_map32, size, flag);
22045 		if (rval != 0) {
22046 			return (EFAULT);
22047 		}
22048 		for (i = 0; i < NDKMAP; i++) {
22049 			dk_map[i].dkl_cylno = dk_map32[i].dkl_cylno;
22050 			dk_map[i].dkl_nblk  = dk_map32[i].dkl_nblk;
22051 		}
22052 		break;
22053 	}
22054 	case DDI_MODEL_NONE:
22055 		size = NDKMAP * sizeof (struct dk_map);
22056 		rval = ddi_copyin((void *)arg, dk_map, size, flag);
22057 		if (rval != 0) {
22058 			return (EFAULT);
22059 		}
22060 		break;
22061 	}
22062 #else /* ! _MULTI_DATAMODEL */
22063 	size = NDKMAP * sizeof (struct dk_map);
22064 	rval = ddi_copyin((void *)arg, dk_map, size, flag);
22065 	if (rval != 0) {
22066 		return (EFAULT);
22067 	}
22068 #endif /* _MULTI_DATAMODEL */
22069 
22070 	mutex_enter(SD_MUTEX(un));
22071 	/* Note: The size used in this bcopy is set based upon the data model */
22072 	bcopy(dk_map, un->un_map, size);
22073 #if defined(_SUNOS_VTOC_16)
22074 	vp = (struct dkl_partition *)&(un->un_vtoc);
22075 #endif	/* defined(_SUNOS_VTOC_16) */
22076 	for (i = 0; i < NDKMAP; i++) {
22077 		lp  = &un->un_map[i];
22078 		un->un_offset[i] =
22079 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
22080 #if defined(_SUNOS_VTOC_16)
22081 		vp->p_start = un->un_offset[i];
22082 		vp->p_size = lp->dkl_nblk;
22083 		vp++;
22084 #endif	/* defined(_SUNOS_VTOC_16) */
22085 #if defined(__i386) || defined(__amd64)
22086 		un->un_offset[i] += un->un_solaris_offset;
22087 #endif
22088 	}
22089 	mutex_exit(SD_MUTEX(un));
22090 	return (rval);
22091 }
22092 
22093 
22094 /*
22095  *    Function: sd_dkio_get_vtoc
22096  *
22097  * Description: This routine is the driver entry point for handling user
22098  *		requests to get the current volume table of contents
22099  *		(DKIOCGVTOC).
22100  *
22101  *   Arguments: dev  - the device number
22102  *		arg  - pointer to user provided vtoc structure specifying
22103  *			the current vtoc.
22104  *		flag - this argument is a pass through to ddi_copyxxx()
22105  *		       directly from the mode argument of ioctl().
22106  *		geom_validated - flag indicating if the device geometry has been
22107  *				 previously validated in the sdioctl routine.
22108  *
22109  * Return Code: 0
22110  *		EFAULT
22111  *		ENXIO
22112  *		EIO
22113  */
22114 
22115 static int
22116 sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag, int geom_validated)
22117 {
22118 	struct sd_lun	*un = NULL;
22119 #if defined(_SUNOS_VTOC_8)
22120 	struct vtoc	user_vtoc;
22121 #endif	/* defined(_SUNOS_VTOC_8) */
22122 	int		rval = 0;
22123 
22124 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22125 		return (ENXIO);
22126 	}
22127 
22128 	mutex_enter(SD_MUTEX(un));
22129 	if (geom_validated == FALSE) {
22130 		/*
22131 		 * sd_validate_geometry does not spin a disk up
22132 		 * if it was spun down. We need to make sure it
22133 		 * is ready.
22134 		 */
22135 		mutex_exit(SD_MUTEX(un));
22136 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
22137 			return (rval);
22138 		}
22139 		mutex_enter(SD_MUTEX(un));
22140 		if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) {
22141 			mutex_exit(SD_MUTEX(un));
22142 			return (rval);
22143 		}
22144 	}
22145 
22146 #if defined(_SUNOS_VTOC_8)
22147 	sd_build_user_vtoc(un, &user_vtoc);
22148 	mutex_exit(SD_MUTEX(un));
22149 
22150 #ifdef _MULTI_DATAMODEL
22151 	switch (ddi_model_convert_from(flag & FMODELS)) {
22152 	case DDI_MODEL_ILP32: {
22153 		struct vtoc32 user_vtoc32;
22154 
22155 		vtoctovtoc32(user_vtoc, user_vtoc32);
22156 		if (ddi_copyout(&user_vtoc32, (void *)arg,
22157 		    sizeof (struct vtoc32), flag)) {
22158 			return (EFAULT);
22159 		}
22160 		break;
22161 	}
22162 
22163 	case DDI_MODEL_NONE:
22164 		if (ddi_copyout(&user_vtoc, (void *)arg,
22165 		    sizeof (struct vtoc), flag)) {
22166 			return (EFAULT);
22167 		}
22168 		break;
22169 	}
22170 #else /* ! _MULTI_DATAMODEL */
22171 	if (ddi_copyout(&user_vtoc, (void *)arg, sizeof (struct vtoc), flag)) {
22172 		return (EFAULT);
22173 	}
22174 #endif /* _MULTI_DATAMODEL */
22175 
22176 #elif defined(_SUNOS_VTOC_16)
22177 	mutex_exit(SD_MUTEX(un));
22178 
22179 #ifdef _MULTI_DATAMODEL
22180 	/*
22181 	 * The un_vtoc structure is a "struct dk_vtoc"  which is always
22182 	 * 32-bit to maintain compatibility with existing on-disk
22183 	 * structures.  Thus, we need to convert the structure when copying
22184 	 * it out to a datamodel-dependent "struct vtoc" in a 64-bit
22185 	 * program.  If the target is a 32-bit program, then no conversion
22186 	 * is necessary.
22187 	 */
22188 	/* LINTED: logical expression always true: op "||" */
22189 	ASSERT(sizeof (un->un_vtoc) == sizeof (struct vtoc32));
22190 	switch (ddi_model_convert_from(flag & FMODELS)) {
22191 	case DDI_MODEL_ILP32:
22192 		if (ddi_copyout(&(un->un_vtoc), (void *)arg,
22193 		    sizeof (un->un_vtoc), flag)) {
22194 			return (EFAULT);
22195 		}
22196 		break;
22197 
22198 	case DDI_MODEL_NONE: {
22199 		struct vtoc user_vtoc;
22200 
22201 		vtoc32tovtoc(un->un_vtoc, user_vtoc);
22202 		if (ddi_copyout(&user_vtoc, (void *)arg,
22203 		    sizeof (struct vtoc), flag)) {
22204 			return (EFAULT);
22205 		}
22206 		break;
22207 	}
22208 	}
22209 #else /* ! _MULTI_DATAMODEL */
22210 	if (ddi_copyout(&(un->un_vtoc), (void *)arg, sizeof (un->un_vtoc),
22211 	    flag)) {
22212 		return (EFAULT);
22213 	}
22214 #endif /* _MULTI_DATAMODEL */
22215 #else
22216 #error "No VTOC format defined."
22217 #endif
22218 
22219 	return (rval);
22220 }
22221 
22222 static int
22223 sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag)
22224 {
22225 	struct sd_lun	*un = NULL;
22226 	dk_efi_t	user_efi;
22227 	int		rval = 0;
22228 	void		*buffer;
22229 
22230 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL)
22231 		return (ENXIO);
22232 
22233 	if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
22234 		return (EFAULT);
22235 
22236 	user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
22237 
22238 	if ((user_efi.dki_length % un->un_tgt_blocksize) ||
22239 	    (user_efi.dki_length > un->un_max_xfer_size))
22240 		return (EINVAL);
22241 
22242 	buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
22243 	rval = sd_send_scsi_READ(un, buffer, user_efi.dki_length,
22244 	    user_efi.dki_lba, SD_PATH_DIRECT);
22245 	if (rval == 0 && ddi_copyout(buffer, user_efi.dki_data,
22246 	    user_efi.dki_length, flag) != 0)
22247 		rval = EFAULT;
22248 
22249 	kmem_free(buffer, user_efi.dki_length);
22250 	return (rval);
22251 }
22252 
22253 /*
22254  *    Function: sd_build_user_vtoc
22255  *
22256  * Description: This routine populates a pass by reference variable with the
22257  *		current volume table of contents.
22258  *
22259  *   Arguments: un - driver soft state (unit) structure
22260  *		user_vtoc - pointer to vtoc structure to be populated
22261  */
22262 
22263 static void
22264 sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc)
22265 {
22266 	struct dk_map2		*lpart;
22267 	struct dk_map		*lmap;
22268 	struct partition	*vpart;
22269 	int			nblks;
22270 	int			i;
22271 
22272 	ASSERT(mutex_owned(SD_MUTEX(un)));
22273 
22274 	/*
22275 	 * Return vtoc structure fields in the provided VTOC area, addressed
22276 	 * by *vtoc.
22277 	 */
22278 	bzero(user_vtoc, sizeof (struct vtoc));
22279 	user_vtoc->v_bootinfo[0] = un->un_vtoc.v_bootinfo[0];
22280 	user_vtoc->v_bootinfo[1] = un->un_vtoc.v_bootinfo[1];
22281 	user_vtoc->v_bootinfo[2] = un->un_vtoc.v_bootinfo[2];
22282 	user_vtoc->v_sanity	= VTOC_SANE;
22283 	user_vtoc->v_version	= un->un_vtoc.v_version;
22284 	bcopy(un->un_vtoc.v_volume, user_vtoc->v_volume, LEN_DKL_VVOL);
22285 	user_vtoc->v_sectorsz = un->un_sys_blocksize;
22286 	user_vtoc->v_nparts = un->un_vtoc.v_nparts;
22287 	bcopy(un->un_vtoc.v_reserved, user_vtoc->v_reserved,
22288 	    sizeof (un->un_vtoc.v_reserved));
22289 	/*
22290 	 * Convert partitioning information.
22291 	 *
22292 	 * Note the conversion from starting cylinder number
22293 	 * to starting sector number.
22294 	 */
22295 	lmap = un->un_map;
22296 	lpart = (struct dk_map2 *)un->un_vtoc.v_part;
22297 	vpart = user_vtoc->v_part;
22298 
22299 	nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
22300 
22301 	for (i = 0; i < V_NUMPAR; i++) {
22302 		vpart->p_tag	= lpart->p_tag;
22303 		vpart->p_flag	= lpart->p_flag;
22304 		vpart->p_start	= lmap->dkl_cylno * nblks;
22305 		vpart->p_size	= lmap->dkl_nblk;
22306 		lmap++;
22307 		lpart++;
22308 		vpart++;
22309 
22310 		/* (4364927) */
22311 		user_vtoc->timestamp[i] = (time_t)un->un_vtoc.v_timestamp[i];
22312 	}
22313 
22314 	bcopy(un->un_asciilabel, user_vtoc->v_asciilabel, LEN_DKL_ASCII);
22315 }
22316 
22317 static int
22318 sd_dkio_partition(dev_t dev, caddr_t arg, int flag)
22319 {
22320 	struct sd_lun		*un = NULL;
22321 	struct partition64	p64;
22322 	int			rval = 0;
22323 	uint_t			nparts;
22324 	efi_gpe_t		*partitions;
22325 	efi_gpt_t		*buffer;
22326 	diskaddr_t		gpe_lba;
22327 
22328 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22329 		return (ENXIO);
22330 	}
22331 
22332 	if (ddi_copyin((const void *)arg, &p64,
22333 	    sizeof (struct partition64), flag)) {
22334 		return (EFAULT);
22335 	}
22336 
22337 	buffer = kmem_alloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
22338 	rval = sd_send_scsi_READ(un, buffer, DEV_BSIZE,
22339 		1, SD_PATH_DIRECT);
22340 	if (rval != 0)
22341 		goto done_error;
22342 
22343 	sd_swap_efi_gpt(buffer);
22344 
22345 	if ((rval = sd_validate_efi(buffer)) != 0)
22346 		goto done_error;
22347 
22348 	nparts = buffer->efi_gpt_NumberOfPartitionEntries;
22349 	gpe_lba = buffer->efi_gpt_PartitionEntryLBA;
22350 	if (p64.p_partno > nparts) {
22351 		/* couldn't find it */
22352 		rval = ESRCH;
22353 		goto done_error;
22354 	}
22355 	/*
22356 	 * if we're dealing with a partition that's out of the normal
22357 	 * 16K block, adjust accordingly
22358 	 */
22359 	gpe_lba += p64.p_partno / sizeof (efi_gpe_t);
22360 	rval = sd_send_scsi_READ(un, buffer, EFI_MIN_ARRAY_SIZE,
22361 			gpe_lba, SD_PATH_DIRECT);
22362 	if (rval) {
22363 		goto done_error;
22364 	}
22365 	partitions = (efi_gpe_t *)buffer;
22366 
22367 	sd_swap_efi_gpe(nparts, partitions);
22368 
22369 	partitions += p64.p_partno;
22370 	bcopy(&partitions->efi_gpe_PartitionTypeGUID, &p64.p_type,
22371 	    sizeof (struct uuid));
22372 	p64.p_start = partitions->efi_gpe_StartingLBA;
22373 	p64.p_size = partitions->efi_gpe_EndingLBA -
22374 			p64.p_start + 1;
22375 
22376 	if (ddi_copyout(&p64, (void *)arg, sizeof (struct partition64), flag))
22377 		rval = EFAULT;
22378 
22379 done_error:
22380 	kmem_free(buffer, EFI_MIN_ARRAY_SIZE);
22381 	return (rval);
22382 }
22383 
22384 
22385 /*
22386  *    Function: sd_dkio_set_vtoc
22387  *
22388  * Description: This routine is the driver entry point for handling user
22389  *		requests to set the current volume table of contents
22390  *		(DKIOCSVTOC).
22391  *
22392  *   Arguments: dev  - the device number
22393  *		arg  - pointer to user provided vtoc structure used to set the
22394  *			current vtoc.
22395  *		flag - this argument is a pass through to ddi_copyxxx()
22396  *		       directly from the mode argument of ioctl().
22397  *
22398  * Return Code: 0
22399  *		EFAULT
22400  *		ENXIO
22401  *		EINVAL
22402  *		ENOTSUP
22403  */
22404 
22405 static int
22406 sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag)
22407 {
22408 	struct sd_lun	*un = NULL;
22409 	struct vtoc	user_vtoc;
22410 	int		rval = 0;
22411 
22412 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22413 		return (ENXIO);
22414 	}
22415 
22416 #if defined(__i386) || defined(__amd64)
22417 	if (un->un_tgt_blocksize != un->un_sys_blocksize) {
22418 		return (EINVAL);
22419 	}
22420 #endif
22421 
22422 #ifdef _MULTI_DATAMODEL
22423 	switch (ddi_model_convert_from(flag & FMODELS)) {
22424 	case DDI_MODEL_ILP32: {
22425 		struct vtoc32 user_vtoc32;
22426 
22427 		if (ddi_copyin((const void *)arg, &user_vtoc32,
22428 		    sizeof (struct vtoc32), flag)) {
22429 			return (EFAULT);
22430 		}
22431 		vtoc32tovtoc(user_vtoc32, user_vtoc);
22432 		break;
22433 	}
22434 
22435 	case DDI_MODEL_NONE:
22436 		if (ddi_copyin((const void *)arg, &user_vtoc,
22437 		    sizeof (struct vtoc), flag)) {
22438 			return (EFAULT);
22439 		}
22440 		break;
22441 	}
22442 #else /* ! _MULTI_DATAMODEL */
22443 	if (ddi_copyin((const void *)arg, &user_vtoc,
22444 	    sizeof (struct vtoc), flag)) {
22445 		return (EFAULT);
22446 	}
22447 #endif /* _MULTI_DATAMODEL */
22448 
22449 	mutex_enter(SD_MUTEX(un));
22450 	if (un->un_blockcount > DK_MAX_BLOCKS) {
22451 		mutex_exit(SD_MUTEX(un));
22452 		return (ENOTSUP);
22453 	}
22454 	if (un->un_g.dkg_ncyl == 0) {
22455 		mutex_exit(SD_MUTEX(un));
22456 		return (EINVAL);
22457 	}
22458 
22459 	mutex_exit(SD_MUTEX(un));
22460 	sd_clear_efi(un);
22461 	ddi_remove_minor_node(SD_DEVINFO(un), "wd");
22462 	ddi_remove_minor_node(SD_DEVINFO(un), "wd,raw");
22463 	(void) ddi_create_minor_node(SD_DEVINFO(un), "h",
22464 	    S_IFBLK, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
22465 	    un->un_node_type, NULL);
22466 	(void) ddi_create_minor_node(SD_DEVINFO(un), "h,raw",
22467 	    S_IFCHR, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
22468 	    un->un_node_type, NULL);
22469 	mutex_enter(SD_MUTEX(un));
22470 
22471 	if ((rval = sd_build_label_vtoc(un, &user_vtoc)) == 0) {
22472 		if ((rval = sd_write_label(dev)) == 0) {
22473 			if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT))
22474 			    != 0) {
22475 				SD_ERROR(SD_LOG_IOCTL_DKIO, un,
22476 				    "sd_dkio_set_vtoc: "
22477 				    "Failed validate geometry\n");
22478 			}
22479 		}
22480 	}
22481 
22482 	/*
22483 	 * If sd_build_label_vtoc, or sd_write_label failed above write the
22484 	 * devid anyway, what can it hurt? Also preserve the device id by
22485 	 * writing to the disk acyl for the case where a devid has been
22486 	 * fabricated.
22487 	 */
22488 	if (!ISREMOVABLE(un) && !ISCD(un) &&
22489 	    (un->un_f_opt_fab_devid == TRUE)) {
22490 		if (un->un_devid == NULL) {
22491 			sd_register_devid(un, SD_DEVINFO(un),
22492 			    SD_TARGET_IS_UNRESERVED);
22493 		} else {
22494 			/*
22495 			 * The device id for this disk has been
22496 			 * fabricated. Fabricated device id's are
22497 			 * managed by storing them in the last 2
22498 			 * available sectors on the drive. The device
22499 			 * id must be preserved by writing it back out
22500 			 * to this location.
22501 			 */
22502 			if (sd_write_deviceid(un) != 0) {
22503 				ddi_devid_free(un->un_devid);
22504 				un->un_devid = NULL;
22505 			}
22506 		}
22507 	}
22508 	mutex_exit(SD_MUTEX(un));
22509 	return (rval);
22510 }
22511 
22512 
22513 /*
22514  *    Function: sd_build_label_vtoc
22515  *
22516  * Description: This routine updates the driver soft state current volume table
22517  *		of contents based on a user specified vtoc.
22518  *
22519  *   Arguments: un - driver soft state (unit) structure
22520  *		user_vtoc - pointer to vtoc structure specifying vtoc to be used
22521  *			    to update the driver soft state.
22522  *
22523  * Return Code: 0
22524  *		EINVAL
22525  */
22526 
22527 static int
22528 sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc)
22529 {
22530 	struct dk_map		*lmap;
22531 	struct partition	*vpart;
22532 	int			nblks;
22533 #if defined(_SUNOS_VTOC_8)
22534 	int			ncyl;
22535 	struct dk_map2		*lpart;
22536 #endif	/* defined(_SUNOS_VTOC_8) */
22537 	int			i;
22538 
22539 	ASSERT(mutex_owned(SD_MUTEX(un)));
22540 
22541 	/* Sanity-check the vtoc */
22542 	if (user_vtoc->v_sanity != VTOC_SANE ||
22543 	    user_vtoc->v_sectorsz != un->un_sys_blocksize ||
22544 	    user_vtoc->v_nparts != V_NUMPAR) {
22545 		return (EINVAL);
22546 	}
22547 
22548 	nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
22549 	if (nblks == 0) {
22550 		return (EINVAL);
22551 	}
22552 
22553 #if defined(_SUNOS_VTOC_8)
22554 	vpart = user_vtoc->v_part;
22555 	for (i = 0; i < V_NUMPAR; i++) {
22556 		if ((vpart->p_start % nblks) != 0) {
22557 			return (EINVAL);
22558 		}
22559 		ncyl = vpart->p_start / nblks;
22560 		ncyl += vpart->p_size / nblks;
22561 		if ((vpart->p_size % nblks) != 0) {
22562 			ncyl++;
22563 		}
22564 		if (ncyl > (int)un->un_g.dkg_ncyl) {
22565 			return (EINVAL);
22566 		}
22567 		vpart++;
22568 	}
22569 #endif	/* defined(_SUNOS_VTOC_8) */
22570 
22571 	/* Put appropriate vtoc structure fields into the disk label */
22572 #if defined(_SUNOS_VTOC_16)
22573 	/*
22574 	 * The vtoc is always a 32bit data structure to maintain the
22575 	 * on-disk format. Convert "in place" instead of bcopying it.
22576 	 */
22577 	vtoctovtoc32((*user_vtoc), (*((struct vtoc32 *)&(un->un_vtoc))));
22578 
22579 	/*
22580 	 * in the 16-slice vtoc, starting sectors are expressed in
22581 	 * numbers *relative* to the start of the Solaris fdisk partition.
22582 	 */
22583 	lmap = un->un_map;
22584 	vpart = user_vtoc->v_part;
22585 
22586 	for (i = 0; i < (int)user_vtoc->v_nparts; i++, lmap++, vpart++) {
22587 		lmap->dkl_cylno = vpart->p_start / nblks;
22588 		lmap->dkl_nblk = vpart->p_size;
22589 	}
22590 
22591 #elif defined(_SUNOS_VTOC_8)
22592 
22593 	un->un_vtoc.v_bootinfo[0] = (uint32_t)user_vtoc->v_bootinfo[0];
22594 	un->un_vtoc.v_bootinfo[1] = (uint32_t)user_vtoc->v_bootinfo[1];
22595 	un->un_vtoc.v_bootinfo[2] = (uint32_t)user_vtoc->v_bootinfo[2];
22596 
22597 	un->un_vtoc.v_sanity = (uint32_t)user_vtoc->v_sanity;
22598 	un->un_vtoc.v_version = (uint32_t)user_vtoc->v_version;
22599 
22600 	bcopy(user_vtoc->v_volume, un->un_vtoc.v_volume, LEN_DKL_VVOL);
22601 
22602 	un->un_vtoc.v_nparts = user_vtoc->v_nparts;
22603 
22604 	bcopy(user_vtoc->v_reserved, un->un_vtoc.v_reserved,
22605 	    sizeof (un->un_vtoc.v_reserved));
22606 
22607 	/*
22608 	 * Note the conversion from starting sector number
22609 	 * to starting cylinder number.
22610 	 * Return error if division results in a remainder.
22611 	 */
22612 	lmap = un->un_map;
22613 	lpart = un->un_vtoc.v_part;
22614 	vpart = user_vtoc->v_part;
22615 
22616 	for (i = 0; i < (int)user_vtoc->v_nparts; i++) {
22617 		lpart->p_tag  = vpart->p_tag;
22618 		lpart->p_flag = vpart->p_flag;
22619 		lmap->dkl_cylno = vpart->p_start / nblks;
22620 		lmap->dkl_nblk = vpart->p_size;
22621 
22622 		lmap++;
22623 		lpart++;
22624 		vpart++;
22625 
22626 		/* (4387723) */
22627 #ifdef _LP64
22628 		if (user_vtoc->timestamp[i] > TIME32_MAX) {
22629 			un->un_vtoc.v_timestamp[i] = TIME32_MAX;
22630 		} else {
22631 			un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
22632 		}
22633 #else
22634 		un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
22635 #endif
22636 	}
22637 
22638 	bcopy(user_vtoc->v_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
22639 #else
22640 #error "No VTOC format defined."
22641 #endif
22642 	return (0);
22643 }
22644 
22645 /*
22646  *    Function: sd_clear_efi
22647  *
22648  * Description: This routine clears all EFI labels.
22649  *
22650  *   Arguments: un - driver soft state (unit) structure
22651  *
22652  * Return Code: void
22653  */
22654 
22655 static void
22656 sd_clear_efi(struct sd_lun *un)
22657 {
22658 	efi_gpt_t	*gpt;
22659 	uint_t		lbasize;
22660 	uint64_t	cap;
22661 	int rval;
22662 
22663 	ASSERT(!mutex_owned(SD_MUTEX(un)));
22664 
22665 	gpt = kmem_alloc(sizeof (efi_gpt_t), KM_SLEEP);
22666 
22667 	if (sd_send_scsi_READ(un, gpt, DEV_BSIZE, 1, SD_PATH_DIRECT) != 0) {
22668 		goto done;
22669 	}
22670 
22671 	sd_swap_efi_gpt(gpt);
22672 	rval = sd_validate_efi(gpt);
22673 	if (rval == 0) {
22674 		/* clear primary */
22675 		bzero(gpt, sizeof (efi_gpt_t));
22676 		if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE, 1,
22677 			SD_PATH_DIRECT))) {
22678 			SD_INFO(SD_LOG_IO_PARTITION, un,
22679 				"sd_clear_efi: clear primary label failed\n");
22680 		}
22681 	}
22682 	/* the backup */
22683 	rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
22684 	    SD_PATH_DIRECT);
22685 	if (rval) {
22686 		goto done;
22687 	}
22688 	if ((rval = sd_send_scsi_READ(un, gpt, lbasize,
22689 	    cap - 1, SD_PATH_DIRECT)) != 0) {
22690 		goto done;
22691 	}
22692 	sd_swap_efi_gpt(gpt);
22693 	rval = sd_validate_efi(gpt);
22694 	if (rval == 0) {
22695 		/* clear backup */
22696 		SD_TRACE(SD_LOG_IOCTL, un, "sd_clear_efi clear backup@%lu\n",
22697 			cap-1);
22698 		bzero(gpt, sizeof (efi_gpt_t));
22699 		if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE,
22700 		    cap-1, SD_PATH_DIRECT))) {
22701 			SD_INFO(SD_LOG_IO_PARTITION, un,
22702 				"sd_clear_efi: clear backup label failed\n");
22703 		}
22704 	}
22705 
22706 done:
22707 	kmem_free(gpt, sizeof (efi_gpt_t));
22708 }
22709 
22710 /*
22711  *    Function: sd_set_vtoc
22712  *
22713  * Description: This routine writes data to the appropriate positions
22714  *
22715  *   Arguments: un - driver soft state (unit) structure
22716  *              dkl  - the data to be written
22717  *
22718  * Return: void
22719  */
22720 
22721 static int
22722 sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl)
22723 {
22724 	void			*shadow_buf;
22725 	uint_t			label_addr;
22726 	int			sec;
22727 	int			blk;
22728 	int			head;
22729 	int			cyl;
22730 	int			rval;
22731 
22732 #if defined(__i386) || defined(__amd64)
22733 	label_addr = un->un_solaris_offset + DK_LABEL_LOC;
22734 #else
22735 	/* Write the primary label at block 0 of the solaris partition. */
22736 	label_addr = 0;
22737 #endif
22738 
22739 	if (NOT_DEVBSIZE(un)) {
22740 		shadow_buf = kmem_zalloc(un->un_tgt_blocksize, KM_SLEEP);
22741 		/*
22742 		 * Read the target's first block.
22743 		 */
22744 		if ((rval = sd_send_scsi_READ(un, shadow_buf,
22745 		    un->un_tgt_blocksize, label_addr,
22746 		    SD_PATH_STANDARD)) != 0) {
22747 			goto exit;
22748 		}
22749 		/*
22750 		 * Copy the contents of the label into the shadow buffer
22751 		 * which is of the size of target block size.
22752 		 */
22753 		bcopy(dkl, shadow_buf, sizeof (struct dk_label));
22754 	}
22755 
22756 	/* Write the primary label */
22757 	if (NOT_DEVBSIZE(un)) {
22758 		rval = sd_send_scsi_WRITE(un, shadow_buf, un->un_tgt_blocksize,
22759 		    label_addr, SD_PATH_STANDARD);
22760 	} else {
22761 		rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize,
22762 		    label_addr, SD_PATH_STANDARD);
22763 	}
22764 	if (rval != 0) {
22765 		return (rval);
22766 	}
22767 
22768 	/*
22769 	 * Calculate where the backup labels go.  They are always on
22770 	 * the last alternate cylinder, but some older drives put them
22771 	 * on head 2 instead of the last head.	They are always on the
22772 	 * first 5 odd sectors of the appropriate track.
22773 	 *
22774 	 * We have no choice at this point, but to believe that the
22775 	 * disk label is valid.	 Use the geometry of the disk
22776 	 * as described in the label.
22777 	 */
22778 	cyl  = dkl->dkl_ncyl  + dkl->dkl_acyl - 1;
22779 	head = dkl->dkl_nhead - 1;
22780 
22781 	/*
22782 	 * Write and verify the backup labels. Make sure we don't try to
22783 	 * write past the last cylinder.
22784 	 */
22785 	for (sec = 1; ((sec < 5 * 2 + 1) && (sec < dkl->dkl_nsect)); sec += 2) {
22786 		blk = (daddr_t)(
22787 		    (cyl * ((dkl->dkl_nhead * dkl->dkl_nsect) - dkl->dkl_apc)) +
22788 		    (head * dkl->dkl_nsect) + sec);
22789 #if defined(__i386) || defined(__amd64)
22790 		blk += un->un_solaris_offset;
22791 #endif
22792 		if (NOT_DEVBSIZE(un)) {
22793 			uint64_t	tblk;
22794 			/*
22795 			 * Need to read the block first for read modify write.
22796 			 */
22797 			tblk = (uint64_t)blk;
22798 			blk = (int)((tblk * un->un_sys_blocksize) /
22799 			    un->un_tgt_blocksize);
22800 			if ((rval = sd_send_scsi_READ(un, shadow_buf,
22801 			    un->un_tgt_blocksize, blk,
22802 			    SD_PATH_STANDARD)) != 0) {
22803 				goto exit;
22804 			}
22805 			/*
22806 			 * Modify the shadow buffer with the label.
22807 			 */
22808 			bcopy(dkl, shadow_buf, sizeof (struct dk_label));
22809 			rval = sd_send_scsi_WRITE(un, shadow_buf,
22810 			    un->un_tgt_blocksize, blk, SD_PATH_STANDARD);
22811 		} else {
22812 			rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize,
22813 			    blk, SD_PATH_STANDARD);
22814 			SD_INFO(SD_LOG_IO_PARTITION, un,
22815 			"sd_set_vtoc: wrote backup label %d\n", blk);
22816 		}
22817 		if (rval != 0) {
22818 			goto exit;
22819 		}
22820 	}
22821 exit:
22822 	if (NOT_DEVBSIZE(un)) {
22823 		kmem_free(shadow_buf, un->un_tgt_blocksize);
22824 	}
22825 	return (rval);
22826 }
22827 
22828 /*
22829  *    Function: sd_clear_vtoc
22830  *
22831  * Description: This routine clears out the VTOC labels.
22832  *
22833  *   Arguments: un - driver soft state (unit) structure
22834  *
22835  * Return: void
22836  */
22837 
22838 static void
22839 sd_clear_vtoc(struct sd_lun *un)
22840 {
22841 	struct dk_label		*dkl;
22842 
22843 	mutex_exit(SD_MUTEX(un));
22844 	dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
22845 	mutex_enter(SD_MUTEX(un));
22846 	/*
22847 	 * sd_set_vtoc uses these fields in order to figure out
22848 	 * where to overwrite the backup labels
22849 	 */
22850 	dkl->dkl_apc    = un->un_g.dkg_apc;
22851 	dkl->dkl_ncyl   = un->un_g.dkg_ncyl;
22852 	dkl->dkl_acyl   = un->un_g.dkg_acyl;
22853 	dkl->dkl_nhead  = un->un_g.dkg_nhead;
22854 	dkl->dkl_nsect  = un->un_g.dkg_nsect;
22855 	mutex_exit(SD_MUTEX(un));
22856 	(void) sd_set_vtoc(un, dkl);
22857 	kmem_free(dkl, sizeof (struct dk_label));
22858 
22859 	mutex_enter(SD_MUTEX(un));
22860 }
22861 
22862 /*
22863  *    Function: sd_write_label
22864  *
22865  * Description: This routine will validate and write the driver soft state vtoc
22866  *		contents to the device.
22867  *
22868  *   Arguments: dev - the device number
22869  *
22870  * Return Code: the code returned by sd_send_scsi_cmd()
22871  *		0
22872  *		EINVAL
22873  *		ENXIO
22874  *		ENOMEM
22875  */
22876 
22877 static int
22878 sd_write_label(dev_t dev)
22879 {
22880 	struct sd_lun		*un;
22881 	struct dk_label		*dkl;
22882 	short			sum;
22883 	short			*sp;
22884 	int			i;
22885 	int			rval;
22886 
22887 	if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) ||
22888 	    (un->un_state == SD_STATE_OFFLINE)) {
22889 		return (ENXIO);
22890 	}
22891 	ASSERT(mutex_owned(SD_MUTEX(un)));
22892 	mutex_exit(SD_MUTEX(un));
22893 	dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
22894 	mutex_enter(SD_MUTEX(un));
22895 
22896 	bcopy(&un->un_vtoc, &dkl->dkl_vtoc, sizeof (struct dk_vtoc));
22897 	dkl->dkl_rpm	= un->un_g.dkg_rpm;
22898 	dkl->dkl_pcyl	= un->un_g.dkg_pcyl;
22899 	dkl->dkl_apc	= un->un_g.dkg_apc;
22900 	dkl->dkl_intrlv = un->un_g.dkg_intrlv;
22901 	dkl->dkl_ncyl	= un->un_g.dkg_ncyl;
22902 	dkl->dkl_acyl	= un->un_g.dkg_acyl;
22903 	dkl->dkl_nhead	= un->un_g.dkg_nhead;
22904 	dkl->dkl_nsect	= un->un_g.dkg_nsect;
22905 
22906 #if defined(_SUNOS_VTOC_8)
22907 	dkl->dkl_obs1	= un->un_g.dkg_obs1;
22908 	dkl->dkl_obs2	= un->un_g.dkg_obs2;
22909 	dkl->dkl_obs3	= un->un_g.dkg_obs3;
22910 	for (i = 0; i < NDKMAP; i++) {
22911 		dkl->dkl_map[i].dkl_cylno = un->un_map[i].dkl_cylno;
22912 		dkl->dkl_map[i].dkl_nblk  = un->un_map[i].dkl_nblk;
22913 	}
22914 	bcopy(un->un_asciilabel, dkl->dkl_asciilabel, LEN_DKL_ASCII);
22915 #elif defined(_SUNOS_VTOC_16)
22916 	dkl->dkl_skew	= un->un_dkg_skew;
22917 #else
22918 #error "No VTOC format defined."
22919 #endif
22920 
22921 	dkl->dkl_magic			= DKL_MAGIC;
22922 	dkl->dkl_write_reinstruct	= un->un_g.dkg_write_reinstruct;
22923 	dkl->dkl_read_reinstruct	= un->un_g.dkg_read_reinstruct;
22924 
22925 	/* Construct checksum for the new disk label */
22926 	sum = 0;
22927 	sp = (short *)dkl;
22928 	i = sizeof (struct dk_label) / sizeof (short);
22929 	while (i--) {
22930 		sum ^= *sp++;
22931 	}
22932 	dkl->dkl_cksum = sum;
22933 
22934 	mutex_exit(SD_MUTEX(un));
22935 
22936 	rval = sd_set_vtoc(un, dkl);
22937 exit:
22938 	kmem_free(dkl, sizeof (struct dk_label));
22939 	mutex_enter(SD_MUTEX(un));
22940 	return (rval);
22941 }
22942 
22943 static int
22944 sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag)
22945 {
22946 	struct sd_lun	*un = NULL;
22947 	dk_efi_t	user_efi;
22948 	int		rval = 0;
22949 	void		*buffer;
22950 
22951 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL)
22952 		return (ENXIO);
22953 
22954 	if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
22955 		return (EFAULT);
22956 
22957 	user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
22958 
22959 	if ((user_efi.dki_length % un->un_tgt_blocksize) ||
22960 	    (user_efi.dki_length > un->un_max_xfer_size))
22961 		return (EINVAL);
22962 
22963 	buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
22964 	if (ddi_copyin(user_efi.dki_data, buffer, user_efi.dki_length, flag)) {
22965 		rval = EFAULT;
22966 	} else {
22967 		/*
22968 		 * let's clear the vtoc labels and clear the softstate
22969 		 * vtoc.
22970 		 */
22971 		mutex_enter(SD_MUTEX(un));
22972 		if (un->un_vtoc.v_sanity == VTOC_SANE) {
22973 			SD_TRACE(SD_LOG_IO_PARTITION, un,
22974 				"sd_dkio_set_efi: CLEAR VTOC\n");
22975 			sd_clear_vtoc(un);
22976 			bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
22977 			mutex_exit(SD_MUTEX(un));
22978 			ddi_remove_minor_node(SD_DEVINFO(un), "h");
22979 			ddi_remove_minor_node(SD_DEVINFO(un), "h,raw");
22980 			(void) ddi_create_minor_node(SD_DEVINFO(un), "wd",
22981 			    S_IFBLK,
22982 			    (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
22983 			    un->un_node_type, NULL);
22984 			(void) ddi_create_minor_node(SD_DEVINFO(un), "wd,raw",
22985 			    S_IFCHR,
22986 			    (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
22987 			    un->un_node_type, NULL);
22988 		} else
22989 			mutex_exit(SD_MUTEX(un));
22990 		rval = sd_send_scsi_WRITE(un, buffer, user_efi.dki_length,
22991 		    user_efi.dki_lba, SD_PATH_DIRECT);
22992 		if (rval == 0) {
22993 			mutex_enter(SD_MUTEX(un));
22994 			un->un_f_geometry_is_valid = FALSE;
22995 			mutex_exit(SD_MUTEX(un));
22996 		}
22997 	}
22998 	kmem_free(buffer, user_efi.dki_length);
22999 	return (rval);
23000 }
23001 
23002 /*
23003  *    Function: sd_dkio_get_mboot
23004  *
23005  * Description: This routine is the driver entry point for handling user
23006  *		requests to get the current device mboot (DKIOCGMBOOT)
23007  *
23008  *   Arguments: dev  - the device number
23009  *		arg  - pointer to user provided mboot structure specifying
23010  *			the current mboot.
23011  *		flag - this argument is a pass through to ddi_copyxxx()
23012  *		       directly from the mode argument of ioctl().
23013  *
23014  * Return Code: 0
23015  *		EINVAL
23016  *		EFAULT
23017  *		ENXIO
23018  */
23019 
23020 static int
23021 sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag)
23022 {
23023 	struct sd_lun	*un;
23024 	struct mboot	*mboot;
23025 	int		rval;
23026 	size_t		buffer_size;
23027 
23028 	if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) ||
23029 	    (un->un_state == SD_STATE_OFFLINE)) {
23030 		return (ENXIO);
23031 	}
23032 
23033 #if defined(_SUNOS_VTOC_8)
23034 	if ((!ISREMOVABLE(un)) || (arg == NULL)) {
23035 #elif defined(_SUNOS_VTOC_16)
23036 	if (arg == NULL) {
23037 #endif
23038 		return (EINVAL);
23039 	}
23040 
23041 	/*
23042 	 * Read the mboot block, located at absolute block 0 on the target.
23043 	 */
23044 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct mboot));
23045 
23046 	SD_TRACE(SD_LOG_IO_PARTITION, un,
23047 	    "sd_dkio_get_mboot: allocation size: 0x%x\n", buffer_size);
23048 
23049 	mboot = kmem_zalloc(buffer_size, KM_SLEEP);
23050 	if ((rval = sd_send_scsi_READ(un, mboot, buffer_size, 0,
23051 	    SD_PATH_STANDARD)) == 0) {
23052 		if (ddi_copyout(mboot, (void *)arg,
23053 		    sizeof (struct mboot), flag) != 0) {
23054 			rval = EFAULT;
23055 		}
23056 	}
23057 	kmem_free(mboot, buffer_size);
23058 	return (rval);
23059 }
23060 
23061 
23062 /*
23063  *    Function: sd_dkio_set_mboot
23064  *
23065  * Description: This routine is the driver entry point for handling user
23066  *		requests to validate and set the device master boot
23067  *		(DKIOCSMBOOT).
23068  *
23069  *   Arguments: dev  - the device number
23070  *		arg  - pointer to user provided mboot structure used to set the
23071  *			master boot.
23072  *		flag - this argument is a pass through to ddi_copyxxx()
23073  *		       directly from the mode argument of ioctl().
23074  *
23075  * Return Code: 0
23076  *		EINVAL
23077  *		EFAULT
23078  *		ENXIO
23079  */
23080 
23081 static int
23082 sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag)
23083 {
23084 	struct sd_lun	*un = NULL;
23085 	struct mboot	*mboot = NULL;
23086 	int		rval;
23087 	ushort_t	magic;
23088 
23089 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23090 		return (ENXIO);
23091 	}
23092 
23093 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23094 
23095 #if defined(_SUNOS_VTOC_8)
23096 	if (!ISREMOVABLE(un)) {
23097 		return (EINVAL);
23098 	}
23099 #endif
23100 
23101 	if (arg == NULL) {
23102 		return (EINVAL);
23103 	}
23104 
23105 	mboot = kmem_zalloc(sizeof (struct mboot), KM_SLEEP);
23106 
23107 	if (ddi_copyin((const void *)arg, mboot,
23108 	    sizeof (struct mboot), flag) != 0) {
23109 		kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23110 		return (EFAULT);
23111 	}
23112 
23113 	/* Is this really a master boot record? */
23114 	magic = LE_16(mboot->signature);
23115 	if (magic != MBB_MAGIC) {
23116 		kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23117 		return (EINVAL);
23118 	}
23119 
23120 	rval = sd_send_scsi_WRITE(un, mboot, un->un_sys_blocksize, 0,
23121 	    SD_PATH_STANDARD);
23122 
23123 	mutex_enter(SD_MUTEX(un));
23124 #if defined(__i386) || defined(__amd64)
23125 	if (rval == 0) {
23126 		/*
23127 		 * mboot has been written successfully.
23128 		 * update the fdisk and vtoc tables in memory
23129 		 */
23130 		rval = sd_update_fdisk_and_vtoc(un);
23131 		if ((un->un_f_geometry_is_valid == FALSE) || (rval != 0)) {
23132 			mutex_exit(SD_MUTEX(un));
23133 			kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23134 			return (rval);
23135 		}
23136 	}
23137 
23138 	/*
23139 	 * If the mboot write fails, write the devid anyway, what can it hurt?
23140 	 * Also preserve the device id by writing to the disk acyl for the case
23141 	 * where a devid has been fabricated.
23142 	 */
23143 	if (!ISREMOVABLE(un) && !ISCD(un) &&
23144 	    (un->un_f_opt_fab_devid == TRUE)) {
23145 		if (un->un_devid == NULL) {
23146 			sd_register_devid(un, SD_DEVINFO(un),
23147 			    SD_TARGET_IS_UNRESERVED);
23148 		} else {
23149 			/*
23150 			 * The device id for this disk has been
23151 			 * fabricated. Fabricated device id's are
23152 			 * managed by storing them in the last 2
23153 			 * available sectors on the drive. The device
23154 			 * id must be preserved by writing it back out
23155 			 * to this location.
23156 			 */
23157 			if (sd_write_deviceid(un) != 0) {
23158 				ddi_devid_free(un->un_devid);
23159 				un->un_devid = NULL;
23160 			}
23161 		}
23162 	}
23163 #else
23164 	if (rval == 0) {
23165 		/*
23166 		 * mboot has been written successfully.
23167 		 * set up the default geometry and VTOC
23168 		 */
23169 		if (un->un_blockcount <= DK_MAX_BLOCKS)
23170 			sd_setup_default_geometry(un);
23171 	}
23172 #endif
23173 	mutex_exit(SD_MUTEX(un));
23174 	kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23175 	return (rval);
23176 }
23177 
23178 
23179 /*
23180  *    Function: sd_setup_default_geometry
23181  *
23182  * Description: This local utility routine sets the default geometry as part of
23183  *		setting the device mboot.
23184  *
23185  *   Arguments: un - driver soft state (unit) structure
23186  *
23187  * Note: This may be redundant with sd_build_default_label.
23188  */
23189 
23190 static void
23191 sd_setup_default_geometry(struct sd_lun *un)
23192 {
23193 	/* zero out the soft state geometry and partition table. */
23194 	bzero(&un->un_g, sizeof (struct dk_geom));
23195 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
23196 	bzero(un->un_map, NDKMAP * (sizeof (struct dk_map)));
23197 	un->un_asciilabel[0] = '\0';
23198 
23199 	/*
23200 	 * For the rpm, we use the minimum for the disk.
23201 	 * For the head, cyl and number of sector per track,
23202 	 * if the capacity <= 1GB, head = 64, sect = 32.
23203 	 * else head = 255, sect 63
23204 	 * Note: the capacity should be equal to C*H*S values.
23205 	 * This will cause some truncation of size due to
23206 	 * round off errors. For CD-ROMs, this truncation can
23207 	 * have adverse side effects, so returning ncyl and
23208 	 * nhead as 1. The nsect will overflow for most of
23209 	 * CD-ROMs as nsect is of type ushort.
23210 	 */
23211 	if (ISCD(un)) {
23212 		un->un_g.dkg_ncyl = 1;
23213 		un->un_g.dkg_nhead = 1;
23214 		un->un_g.dkg_nsect = un->un_blockcount;
23215 	} else {
23216 		if (un->un_blockcount <= 0x1000) {
23217 			/* Needed for unlabeled SCSI floppies. */
23218 			un->un_g.dkg_nhead = 2;
23219 			un->un_g.dkg_ncyl = 80;
23220 			un->un_g.dkg_pcyl = 80;
23221 			un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
23222 		} else if (un->un_blockcount <= 0x200000) {
23223 			un->un_g.dkg_nhead = 64;
23224 			un->un_g.dkg_nsect = 32;
23225 			un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
23226 		} else {
23227 			un->un_g.dkg_nhead = 255;
23228 			un->un_g.dkg_nsect = 63;
23229 			un->un_g.dkg_ncyl = un->un_blockcount / (255 * 63);
23230 		}
23231 		un->un_blockcount = un->un_g.dkg_ncyl *
23232 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect;
23233 	}
23234 	un->un_g.dkg_acyl = 0;
23235 	un->un_g.dkg_bcyl = 0;
23236 	un->un_g.dkg_intrlv = 1;
23237 	un->un_g.dkg_rpm = 200;
23238 	un->un_g.dkg_read_reinstruct = 0;
23239 	un->un_g.dkg_write_reinstruct = 0;
23240 	if (un->un_g.dkg_pcyl == 0) {
23241 		un->un_g.dkg_pcyl = un->un_g.dkg_ncyl + un->un_g.dkg_acyl;
23242 	}
23243 
23244 	un->un_map['a'-'a'].dkl_cylno = 0;
23245 	un->un_map['a'-'a'].dkl_nblk = un->un_blockcount;
23246 	un->un_map['c'-'a'].dkl_cylno = 0;
23247 	un->un_map['c'-'a'].dkl_nblk = un->un_blockcount;
23248 	un->un_f_geometry_is_valid = FALSE;
23249 }
23250 
23251 
23252 #if defined(__i386) || defined(__amd64)
23253 /*
23254  *    Function: sd_update_fdisk_and_vtoc
23255  *
23256  * Description: This local utility routine updates the device fdisk and vtoc
23257  *		as part of setting the device mboot.
23258  *
23259  *   Arguments: un - driver soft state (unit) structure
23260  *
23261  * Return Code: 0 for success or errno-type return code.
23262  *
23263  *    Note:x86: This looks like a duplicate of sd_validate_geometry(), but
23264  *		these did exist seperately in x86 sd.c!!!
23265  */
23266 
23267 static int
23268 sd_update_fdisk_and_vtoc(struct sd_lun *un)
23269 {
23270 	static char	labelstring[128];
23271 	static char	buf[256];
23272 	char		*label = 0;
23273 	int		count;
23274 	int		label_rc = 0;
23275 	int		gvalid = un->un_f_geometry_is_valid;
23276 	int		fdisk_rval;
23277 	int		lbasize;
23278 	int		capacity;
23279 
23280 	ASSERT(mutex_owned(SD_MUTEX(un)));
23281 
23282 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
23283 		return (EINVAL);
23284 	}
23285 
23286 	if (un->un_f_blockcount_is_valid == FALSE) {
23287 		return (EINVAL);
23288 	}
23289 
23290 #if defined(_SUNOS_VTOC_16)
23291 	/*
23292 	 * Set up the "whole disk" fdisk partition; this should always
23293 	 * exist, regardless of whether the disk contains an fdisk table
23294 	 * or vtoc.
23295 	 */
23296 	un->un_map[P0_RAW_DISK].dkl_cylno = 0;
23297 	un->un_map[P0_RAW_DISK].dkl_nblk = un->un_blockcount;
23298 #endif	/* defined(_SUNOS_VTOC_16) */
23299 
23300 	/*
23301 	 * copy the lbasize and capacity so that if they're
23302 	 * reset while we're not holding the SD_MUTEX(un), we will
23303 	 * continue to use valid values after the SD_MUTEX(un) is
23304 	 * reacquired.
23305 	 */
23306 	lbasize  = un->un_tgt_blocksize;
23307 	capacity = un->un_blockcount;
23308 
23309 	/*
23310 	 * refresh the logical and physical geometry caches.
23311 	 * (data from mode sense format/rigid disk geometry pages,
23312 	 * and scsi_ifgetcap("geometry").
23313 	 */
23314 	sd_resync_geom_caches(un, capacity, lbasize, SD_PATH_DIRECT);
23315 
23316 	/*
23317 	 * Only DIRECT ACCESS devices will have Sun labels.
23318 	 * CD's supposedly have a Sun label, too
23319 	 */
23320 	if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT || ISREMOVABLE(un)) {
23321 		fdisk_rval = sd_read_fdisk(un, capacity, lbasize,
23322 		    SD_PATH_DIRECT);
23323 		if (fdisk_rval == SD_CMD_FAILURE) {
23324 			ASSERT(mutex_owned(SD_MUTEX(un)));
23325 			return (EIO);
23326 		}
23327 
23328 		if (fdisk_rval == SD_CMD_RESERVATION_CONFLICT) {
23329 			ASSERT(mutex_owned(SD_MUTEX(un)));
23330 			return (EACCES);
23331 		}
23332 
23333 		if (un->un_solaris_size <= DK_LABEL_LOC) {
23334 			/*
23335 			 * Found fdisk table but no Solaris partition entry,
23336 			 * so don't call sd_uselabel() and don't create
23337 			 * a default label.
23338 			 */
23339 			label_rc = 0;
23340 			un->un_f_geometry_is_valid = TRUE;
23341 			goto no_solaris_partition;
23342 		}
23343 
23344 #if defined(_SUNOS_VTOC_8)
23345 		label = (char *)un->un_asciilabel;
23346 #elif defined(_SUNOS_VTOC_16)
23347 		label = (char *)un->un_vtoc.v_asciilabel;
23348 #else
23349 #error "No VTOC format defined."
23350 #endif
23351 	} else if (capacity < 0) {
23352 		ASSERT(mutex_owned(SD_MUTEX(un)));
23353 		return (EINVAL);
23354 	}
23355 
23356 	/*
23357 	 * For Removable media We reach here if we have found a
23358 	 * SOLARIS PARTITION.
23359 	 * If un_f_geometry_is_valid is FALSE it indicates that the SOLARIS
23360 	 * PARTITION has changed from the previous one, hence we will setup a
23361 	 * default VTOC in this case.
23362 	 */
23363 	if (un->un_f_geometry_is_valid == FALSE) {
23364 		sd_build_default_label(un);
23365 		label_rc = 0;
23366 	}
23367 
23368 no_solaris_partition:
23369 	if ((!ISREMOVABLE(un) ||
23370 	    (ISREMOVABLE(un) && un->un_mediastate == DKIO_EJECTED)) &&
23371 	    (un->un_state == SD_STATE_NORMAL && gvalid == FALSE)) {
23372 		/*
23373 		 * Print out a message indicating who and what we are.
23374 		 * We do this only when we happen to really validate the
23375 		 * geometry. We may call sd_validate_geometry() at other
23376 		 * times, ioctl()'s like Get VTOC in which case we
23377 		 * don't want to print the label.
23378 		 * If the geometry is valid, print the label string,
23379 		 * else print vendor and product info, if available
23380 		 */
23381 		if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) {
23382 			SD_INFO(SD_LOG_IOCTL_DKIO, un, "?<%s>\n", label);
23383 		} else {
23384 			mutex_enter(&sd_label_mutex);
23385 			sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX,
23386 			    labelstring);
23387 			sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX,
23388 			    &labelstring[64]);
23389 			(void) sprintf(buf, "?Vendor '%s', product '%s'",
23390 			    labelstring, &labelstring[64]);
23391 			if (un->un_f_blockcount_is_valid == TRUE) {
23392 				(void) sprintf(&buf[strlen(buf)],
23393 				    ", %" PRIu64 " %u byte blocks\n",
23394 				    un->un_blockcount,
23395 				    un->un_tgt_blocksize);
23396 			} else {
23397 				(void) sprintf(&buf[strlen(buf)],
23398 				    ", (unknown capacity)\n");
23399 			}
23400 			SD_INFO(SD_LOG_IOCTL_DKIO, un, buf);
23401 			mutex_exit(&sd_label_mutex);
23402 		}
23403 	}
23404 
23405 #if defined(_SUNOS_VTOC_16)
23406 	/*
23407 	 * If we have valid geometry, set up the remaining fdisk partitions.
23408 	 * Note that dkl_cylno is not used for the fdisk map entries, so
23409 	 * we set it to an entirely bogus value.
23410 	 */
23411 	for (count = 0; count < FD_NUMPART; count++) {
23412 		un->un_map[FDISK_P1 + count].dkl_cylno = -1;
23413 		un->un_map[FDISK_P1 + count].dkl_nblk =
23414 		    un->un_fmap[count].fmap_nblk;
23415 		un->un_offset[FDISK_P1 + count] =
23416 		    un->un_fmap[count].fmap_start;
23417 	}
23418 #endif
23419 
23420 	for (count = 0; count < NDKMAP; count++) {
23421 #if defined(_SUNOS_VTOC_8)
23422 		struct dk_map *lp  = &un->un_map[count];
23423 		un->un_offset[count] =
23424 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
23425 #elif defined(_SUNOS_VTOC_16)
23426 		struct dkl_partition *vp = &un->un_vtoc.v_part[count];
23427 		un->un_offset[count] = vp->p_start + un->un_solaris_offset;
23428 #else
23429 #error "No VTOC format defined."
23430 #endif
23431 	}
23432 
23433 	ASSERT(mutex_owned(SD_MUTEX(un)));
23434 	return (label_rc);
23435 }
23436 #endif
23437 
23438 
23439 /*
23440  *    Function: sd_check_media
23441  *
23442  * Description: This utility routine implements the functionality for the
23443  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
23444  *		driver state changes from that specified by the user
23445  *		(inserted or ejected). For example, if the user specifies
23446  *		DKIO_EJECTED and the current media state is inserted this
23447  *		routine will immediately return DKIO_INSERTED. However, if the
23448  *		current media state is not inserted the user thread will be
23449  *		blocked until the drive state changes. If DKIO_NONE is specified
23450  *		the user thread will block until a drive state change occurs.
23451  *
23452  *   Arguments: dev  - the device number
23453  *		state  - user pointer to a dkio_state, updated with the current
23454  *			drive state at return.
23455  *
23456  * Return Code: ENXIO
23457  *		EIO
23458  *		EAGAIN
23459  *		EINTR
23460  */
23461 
23462 static int
23463 sd_check_media(dev_t dev, enum dkio_state state)
23464 {
23465 	struct sd_lun		*un = NULL;
23466 	enum dkio_state		prev_state;
23467 	opaque_t		token = NULL;
23468 	int			rval = 0;
23469 
23470 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23471 		return (ENXIO);
23472 	}
23473 
23474 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
23475 
23476 	mutex_enter(SD_MUTEX(un));
23477 
23478 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
23479 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
23480 
23481 	prev_state = un->un_mediastate;
23482 
23483 	/* is there anything to do? */
23484 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
23485 		/*
23486 		 * submit the request to the scsi_watch service;
23487 		 * scsi_media_watch_cb() does the real work
23488 		 */
23489 		mutex_exit(SD_MUTEX(un));
23490 
23491 		/*
23492 		 * This change handles the case where a scsi watch request is
23493 		 * added to a device that is powered down. To accomplish this
23494 		 * we power up the device before adding the scsi watch request,
23495 		 * since the scsi watch sends a TUR directly to the device
23496 		 * which the device cannot handle if it is powered down.
23497 		 */
23498 		if (sd_pm_entry(un) != DDI_SUCCESS) {
23499 			mutex_enter(SD_MUTEX(un));
23500 			goto done;
23501 		}
23502 
23503 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
23504 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
23505 		    (caddr_t)dev);
23506 
23507 		sd_pm_exit(un);
23508 
23509 		mutex_enter(SD_MUTEX(un));
23510 		if (token == NULL) {
23511 			rval = EAGAIN;
23512 			goto done;
23513 		}
23514 
23515 		/*
23516 		 * This is a special case IOCTL that doesn't return
23517 		 * until the media state changes. Routine sdpower
23518 		 * knows about and handles this so don't count it
23519 		 * as an active cmd in the driver, which would
23520 		 * keep the device busy to the pm framework.
23521 		 * If the count isn't decremented the device can't
23522 		 * be powered down.
23523 		 */
23524 		un->un_ncmds_in_driver--;
23525 		ASSERT(un->un_ncmds_in_driver >= 0);
23526 
23527 		/*
23528 		 * if a prior request had been made, this will be the same
23529 		 * token, as scsi_watch was designed that way.
23530 		 */
23531 		un->un_swr_token = token;
23532 		un->un_specified_mediastate = state;
23533 
23534 		/*
23535 		 * now wait for media change
23536 		 * we will not be signalled unless mediastate == state but it is
23537 		 * still better to test for this condition, since there is a
23538 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
23539 		 */
23540 		SD_TRACE(SD_LOG_COMMON, un,
23541 		    "sd_check_media: waiting for media state change\n");
23542 		while (un->un_mediastate == state) {
23543 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
23544 				SD_TRACE(SD_LOG_COMMON, un,
23545 				    "sd_check_media: waiting for media state "
23546 				    "was interrupted\n");
23547 				un->un_ncmds_in_driver++;
23548 				rval = EINTR;
23549 				goto done;
23550 			}
23551 			SD_TRACE(SD_LOG_COMMON, un,
23552 			    "sd_check_media: received signal, state=%x\n",
23553 			    un->un_mediastate);
23554 		}
23555 		/*
23556 		 * Inc the counter to indicate the device once again
23557 		 * has an active outstanding cmd.
23558 		 */
23559 		un->un_ncmds_in_driver++;
23560 	}
23561 
23562 	/* invalidate geometry */
23563 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
23564 		sr_ejected(un);
23565 	}
23566 
23567 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
23568 		uint64_t	capacity;
23569 		uint_t		lbasize;
23570 
23571 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
23572 		mutex_exit(SD_MUTEX(un));
23573 		/*
23574 		 * Since the following routines use SD_PATH_DIRECT, we must
23575 		 * call PM directly before the upcoming disk accesses. This
23576 		 * may cause the disk to be power/spin up.
23577 		 */
23578 
23579 		if (sd_pm_entry(un) == DDI_SUCCESS) {
23580 			rval = sd_send_scsi_READ_CAPACITY(un,
23581 			    &capacity,
23582 			    &lbasize, SD_PATH_DIRECT);
23583 			if (rval != 0) {
23584 				sd_pm_exit(un);
23585 				mutex_enter(SD_MUTEX(un));
23586 				goto done;
23587 			}
23588 		} else {
23589 			rval = EIO;
23590 			mutex_enter(SD_MUTEX(un));
23591 			goto done;
23592 		}
23593 		mutex_enter(SD_MUTEX(un));
23594 
23595 		sd_update_block_info(un, lbasize, capacity);
23596 
23597 		un->un_f_geometry_is_valid	= FALSE;
23598 		(void) sd_validate_geometry(un, SD_PATH_DIRECT);
23599 
23600 		mutex_exit(SD_MUTEX(un));
23601 		rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
23602 		    SD_PATH_DIRECT);
23603 		sd_pm_exit(un);
23604 
23605 		mutex_enter(SD_MUTEX(un));
23606 	}
23607 done:
23608 	un->un_f_watcht_stopped = FALSE;
23609 	if (un->un_swr_token) {
23610 		/*
23611 		 * Use of this local token and the mutex ensures that we avoid
23612 		 * some race conditions associated with terminating the
23613 		 * scsi watch.
23614 		 */
23615 		token = un->un_swr_token;
23616 		un->un_swr_token = (opaque_t)NULL;
23617 		mutex_exit(SD_MUTEX(un));
23618 		(void) scsi_watch_request_terminate(token,
23619 		    SCSI_WATCH_TERMINATE_WAIT);
23620 		mutex_enter(SD_MUTEX(un));
23621 	}
23622 
23623 	/*
23624 	 * Update the capacity kstat value, if no media previously
23625 	 * (capacity kstat is 0) and a media has been inserted
23626 	 * (un_f_blockcount_is_valid == TRUE)
23627 	 * This is a more generic way then checking for ISREMOVABLE.
23628 	 */
23629 	if (un->un_errstats) {
23630 		struct sd_errstats	*stp = NULL;
23631 
23632 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
23633 		if ((stp->sd_capacity.value.ui64 == 0) &&
23634 		    (un->un_f_blockcount_is_valid == TRUE)) {
23635 			stp->sd_capacity.value.ui64 =
23636 			    (uint64_t)((uint64_t)un->un_blockcount *
23637 			    un->un_sys_blocksize);
23638 		}
23639 	}
23640 	mutex_exit(SD_MUTEX(un));
23641 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
23642 	return (rval);
23643 }
23644 
23645 
23646 /*
23647  *    Function: sd_delayed_cv_broadcast
23648  *
23649  * Description: Delayed cv_broadcast to allow for target to recover from media
23650  *		insertion.
23651  *
23652  *   Arguments: arg - driver soft state (unit) structure
23653  */
23654 
23655 static void
23656 sd_delayed_cv_broadcast(void *arg)
23657 {
23658 	struct sd_lun *un = arg;
23659 
23660 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
23661 
23662 	mutex_enter(SD_MUTEX(un));
23663 	un->un_dcvb_timeid = NULL;
23664 	cv_broadcast(&un->un_state_cv);
23665 	mutex_exit(SD_MUTEX(un));
23666 }
23667 
23668 
23669 /*
23670  *    Function: sd_media_watch_cb
23671  *
23672  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
23673  *		routine processes the TUR sense data and updates the driver
23674  *		state if a transition has occurred. The user thread
23675  *		(sd_check_media) is then signalled.
23676  *
23677  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
23678  *			among multiple watches that share this callback function
23679  *		resultp - scsi watch facility result packet containing scsi
23680  *			  packet, status byte and sense data
23681  *
23682  * Return Code: 0 for success, -1 for failure
23683  */
23684 
23685 static int
23686 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
23687 {
23688 	struct sd_lun			*un;
23689 	struct scsi_status		*statusp = resultp->statusp;
23690 	struct scsi_extended_sense	*sensep = resultp->sensep;
23691 	enum dkio_state			state = DKIO_NONE;
23692 	dev_t				dev = (dev_t)arg;
23693 	uchar_t				actual_sense_length;
23694 
23695 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23696 		return (-1);
23697 	}
23698 	actual_sense_length = resultp->actual_sense_length;
23699 
23700 	mutex_enter(SD_MUTEX(un));
23701 	SD_TRACE(SD_LOG_COMMON, un,
23702 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
23703 	    *((char *)statusp), (void *)sensep, actual_sense_length);
23704 
23705 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
23706 		un->un_mediastate = DKIO_DEV_GONE;
23707 		printf("sd_media_watch_cb: dev gone\n");
23708 		cv_broadcast(&un->un_state_cv);
23709 		mutex_exit(SD_MUTEX(un));
23710 
23711 		return (0);
23712 	}
23713 
23714 	/*
23715 	 * If there was a check condition then sensep points to valid sense data
23716 	 * If status was not a check condition but a reservation or busy status
23717 	 * then the new state is DKIO_NONE
23718 	 */
23719 	if (sensep != NULL) {
23720 		SD_INFO(SD_LOG_COMMON, un,
23721 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
23722 		    sensep->es_key, sensep->es_add_code, sensep->es_qual_code);
23723 		/* This routine only uses up to 13 bytes of sense data. */
23724 		if (actual_sense_length >= 13) {
23725 			if (sensep->es_key == KEY_UNIT_ATTENTION) {
23726 				if (sensep->es_add_code == 0x28) {
23727 					state = DKIO_INSERTED;
23728 				}
23729 			} else {
23730 				/*
23731 				 * if 02/04/02  means that the host
23732 				 * should send start command. Explicitly
23733 				 * leave the media state as is
23734 				 * (inserted) as the media is inserted
23735 				 * and host has stopped device for PM
23736 				 * reasons. Upon next true read/write
23737 				 * to this media will bring the
23738 				 * device to the right state good for
23739 				 * media access.
23740 				 */
23741 				if ((sensep->es_key == KEY_NOT_READY) &&
23742 				    (sensep->es_add_code == 0x3a)) {
23743 					state = DKIO_EJECTED;
23744 				}
23745 
23746 				/*
23747 				 * If the drivge is busy with an operation
23748 				 * or long write, keep the media in an
23749 				 * inserted state.
23750 				 */
23751 
23752 				if ((sensep->es_key == KEY_NOT_READY) &&
23753 				    (sensep->es_add_code == 0x04) &&
23754 				    ((sensep->es_qual_code == 0x02) ||
23755 				    (sensep->es_qual_code == 0x07) ||
23756 				    (sensep->es_qual_code == 0x08))) {
23757 					state = DKIO_INSERTED;
23758 				}
23759 			}
23760 		}
23761 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
23762 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
23763 		state = DKIO_INSERTED;
23764 	}
23765 
23766 	SD_TRACE(SD_LOG_COMMON, un,
23767 	    "sd_media_watch_cb: state=%x, specified=%x\n",
23768 	    state, un->un_specified_mediastate);
23769 
23770 	/*
23771 	 * now signal the waiting thread if this is *not* the specified state;
23772 	 * delay the signal if the state is DKIO_INSERTED to allow the target
23773 	 * to recover
23774 	 */
23775 	if (state != un->un_specified_mediastate) {
23776 		un->un_mediastate = state;
23777 		if (state == DKIO_INSERTED) {
23778 			/*
23779 			 * delay the signal to give the drive a chance
23780 			 * to do what it apparently needs to do
23781 			 */
23782 			SD_TRACE(SD_LOG_COMMON, un,
23783 			    "sd_media_watch_cb: delayed cv_broadcast\n");
23784 			if (un->un_dcvb_timeid == NULL) {
23785 				un->un_dcvb_timeid =
23786 				    timeout(sd_delayed_cv_broadcast, un,
23787 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
23788 			}
23789 		} else {
23790 			SD_TRACE(SD_LOG_COMMON, un,
23791 			    "sd_media_watch_cb: immediate cv_broadcast\n");
23792 			cv_broadcast(&un->un_state_cv);
23793 		}
23794 	}
23795 	mutex_exit(SD_MUTEX(un));
23796 	return (0);
23797 }
23798 
23799 
23800 /*
23801  *    Function: sd_dkio_get_temp
23802  *
23803  * Description: This routine is the driver entry point for handling ioctl
23804  *		requests to get the disk temperature.
23805  *
23806  *   Arguments: dev  - the device number
23807  *		arg  - pointer to user provided dk_temperature structure.
23808  *		flag - this argument is a pass through to ddi_copyxxx()
23809  *		       directly from the mode argument of ioctl().
23810  *
23811  * Return Code: 0
23812  *		EFAULT
23813  *		ENXIO
23814  *		EAGAIN
23815  */
23816 
23817 static int
23818 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
23819 {
23820 	struct sd_lun		*un = NULL;
23821 	struct dk_temperature	*dktemp = NULL;
23822 	uchar_t			*temperature_page;
23823 	int			rval = 0;
23824 	int			path_flag = SD_PATH_STANDARD;
23825 
23826 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23827 		return (ENXIO);
23828 	}
23829 
23830 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
23831 
23832 	/* copyin the disk temp argument to get the user flags */
23833 	if (ddi_copyin((void *)arg, dktemp,
23834 	    sizeof (struct dk_temperature), flag) != 0) {
23835 		rval = EFAULT;
23836 		goto done;
23837 	}
23838 
23839 	/* Initialize the temperature to invalid. */
23840 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
23841 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
23842 
23843 	/*
23844 	 * Note: Investigate removing the "bypass pm" semantic.
23845 	 * Can we just bypass PM always?
23846 	 */
23847 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
23848 		path_flag = SD_PATH_DIRECT;
23849 		ASSERT(!mutex_owned(&un->un_pm_mutex));
23850 		mutex_enter(&un->un_pm_mutex);
23851 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
23852 			/*
23853 			 * If DKT_BYPASS_PM is set, and the drive happens to be
23854 			 * in low power mode, we can not wake it up, Need to
23855 			 * return EAGAIN.
23856 			 */
23857 			mutex_exit(&un->un_pm_mutex);
23858 			rval = EAGAIN;
23859 			goto done;
23860 		} else {
23861 			/*
23862 			 * Indicate to PM the device is busy. This is required
23863 			 * to avoid a race - i.e. the ioctl is issuing a
23864 			 * command and the pm framework brings down the device
23865 			 * to low power mode (possible power cut-off on some
23866 			 * platforms).
23867 			 */
23868 			mutex_exit(&un->un_pm_mutex);
23869 			if (sd_pm_entry(un) != DDI_SUCCESS) {
23870 				rval = EAGAIN;
23871 				goto done;
23872 			}
23873 		}
23874 	}
23875 
23876 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
23877 
23878 	if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page,
23879 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) {
23880 		goto done2;
23881 	}
23882 
23883 	/*
23884 	 * For the current temperature verify that the parameter length is 0x02
23885 	 * and the parameter code is 0x00
23886 	 */
23887 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
23888 	    (temperature_page[5] == 0x00)) {
23889 		if (temperature_page[9] == 0xFF) {
23890 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
23891 		} else {
23892 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
23893 		}
23894 	}
23895 
23896 	/*
23897 	 * For the reference temperature verify that the parameter
23898 	 * length is 0x02 and the parameter code is 0x01
23899 	 */
23900 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
23901 	    (temperature_page[11] == 0x01)) {
23902 		if (temperature_page[15] == 0xFF) {
23903 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
23904 		} else {
23905 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
23906 		}
23907 	}
23908 
23909 	/* Do the copyout regardless of the temperature commands status. */
23910 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
23911 	    flag) != 0) {
23912 		rval = EFAULT;
23913 	}
23914 
23915 done2:
23916 	if (path_flag == SD_PATH_DIRECT) {
23917 		sd_pm_exit(un);
23918 	}
23919 
23920 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
23921 done:
23922 	if (dktemp != NULL) {
23923 		kmem_free(dktemp, sizeof (struct dk_temperature));
23924 	}
23925 
23926 	return (rval);
23927 }
23928 
23929 
23930 /*
23931  *    Function: sd_log_page_supported
23932  *
23933  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
23934  *		supported log pages.
23935  *
23936  *   Arguments: un -
23937  *		log_page -
23938  *
23939  * Return Code: -1 - on error (log sense is optional and may not be supported).
23940  *		0  - log page not found.
23941  *  		1  - log page found.
23942  */
23943 
23944 static int
23945 sd_log_page_supported(struct sd_lun *un, int log_page)
23946 {
23947 	uchar_t *log_page_data;
23948 	int	i;
23949 	int	match = 0;
23950 	int	log_size;
23951 
23952 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
23953 
23954 	if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0,
23955 	    SD_PATH_DIRECT) != 0) {
23956 		SD_ERROR(SD_LOG_COMMON, un,
23957 		    "sd_log_page_supported: failed log page retrieval\n");
23958 		kmem_free(log_page_data, 0xFF);
23959 		return (-1);
23960 	}
23961 	log_size = log_page_data[3];
23962 
23963 	/*
23964 	 * The list of supported log pages start from the fourth byte. Check
23965 	 * until we run out of log pages or a match is found.
23966 	 */
23967 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
23968 		if (log_page_data[i] == log_page) {
23969 			match++;
23970 		}
23971 	}
23972 	kmem_free(log_page_data, 0xFF);
23973 	return (match);
23974 }
23975 
23976 
23977 /*
23978  *    Function: sd_mhdioc_failfast
23979  *
23980  * Description: This routine is the driver entry point for handling ioctl
23981  *		requests to enable/disable the multihost failfast option.
23982  *		(MHIOCENFAILFAST)
23983  *
23984  *   Arguments: dev	- the device number
23985  *		arg	- user specified probing interval.
23986  *		flag	- this argument is a pass through to ddi_copyxxx()
23987  *			  directly from the mode argument of ioctl().
23988  *
23989  * Return Code: 0
23990  *		EFAULT
23991  *		ENXIO
23992  */
23993 
23994 static int
23995 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
23996 {
23997 	struct sd_lun	*un = NULL;
23998 	int		mh_time;
23999 	int		rval = 0;
24000 
24001 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24002 		return (ENXIO);
24003 	}
24004 
24005 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
24006 		return (EFAULT);
24007 
24008 	if (mh_time) {
24009 		mutex_enter(SD_MUTEX(un));
24010 		un->un_resvd_status |= SD_FAILFAST;
24011 		mutex_exit(SD_MUTEX(un));
24012 		/*
24013 		 * If mh_time is INT_MAX, then this ioctl is being used for
24014 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
24015 		 */
24016 		if (mh_time != INT_MAX) {
24017 			rval = sd_check_mhd(dev, mh_time);
24018 		}
24019 	} else {
24020 		(void) sd_check_mhd(dev, 0);
24021 		mutex_enter(SD_MUTEX(un));
24022 		un->un_resvd_status &= ~SD_FAILFAST;
24023 		mutex_exit(SD_MUTEX(un));
24024 	}
24025 	return (rval);
24026 }
24027 
24028 
24029 /*
24030  *    Function: sd_mhdioc_takeown
24031  *
24032  * Description: This routine is the driver entry point for handling ioctl
24033  *		requests to forcefully acquire exclusive access rights to the
24034  *		multihost disk (MHIOCTKOWN).
24035  *
24036  *   Arguments: dev	- the device number
24037  *		arg	- user provided structure specifying the delay
24038  *			  parameters in milliseconds
24039  *		flag	- this argument is a pass through to ddi_copyxxx()
24040  *			  directly from the mode argument of ioctl().
24041  *
24042  * Return Code: 0
24043  *		EFAULT
24044  *		ENXIO
24045  */
24046 
24047 static int
24048 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
24049 {
24050 	struct sd_lun		*un = NULL;
24051 	struct mhioctkown	*tkown = NULL;
24052 	int			rval = 0;
24053 
24054 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24055 		return (ENXIO);
24056 	}
24057 
24058 	if (arg != NULL) {
24059 		tkown = (struct mhioctkown *)
24060 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
24061 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
24062 		if (rval != 0) {
24063 			rval = EFAULT;
24064 			goto error;
24065 		}
24066 	}
24067 
24068 	rval = sd_take_ownership(dev, tkown);
24069 	mutex_enter(SD_MUTEX(un));
24070 	if (rval == 0) {
24071 		un->un_resvd_status |= SD_RESERVE;
24072 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
24073 			sd_reinstate_resv_delay =
24074 			    tkown->reinstate_resv_delay * 1000;
24075 		} else {
24076 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
24077 		}
24078 		/*
24079 		 * Give the scsi_watch routine interval set by
24080 		 * the MHIOCENFAILFAST ioctl precedence here.
24081 		 */
24082 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
24083 			mutex_exit(SD_MUTEX(un));
24084 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
24085 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
24086 			    "sd_mhdioc_takeown : %d\n",
24087 			    sd_reinstate_resv_delay);
24088 		} else {
24089 			mutex_exit(SD_MUTEX(un));
24090 		}
24091 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
24092 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24093 	} else {
24094 		un->un_resvd_status &= ~SD_RESERVE;
24095 		mutex_exit(SD_MUTEX(un));
24096 	}
24097 
24098 error:
24099 	if (tkown != NULL) {
24100 		kmem_free(tkown, sizeof (struct mhioctkown));
24101 	}
24102 	return (rval);
24103 }
24104 
24105 
24106 /*
24107  *    Function: sd_mhdioc_release
24108  *
24109  * Description: This routine is the driver entry point for handling ioctl
24110  *		requests to release exclusive access rights to the multihost
24111  *		disk (MHIOCRELEASE).
24112  *
24113  *   Arguments: dev	- the device number
24114  *
24115  * Return Code: 0
24116  *		ENXIO
24117  */
24118 
24119 static int
24120 sd_mhdioc_release(dev_t dev)
24121 {
24122 	struct sd_lun		*un = NULL;
24123 	timeout_id_t		resvd_timeid_save;
24124 	int			resvd_status_save;
24125 	int			rval = 0;
24126 
24127 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24128 		return (ENXIO);
24129 	}
24130 
24131 	mutex_enter(SD_MUTEX(un));
24132 	resvd_status_save = un->un_resvd_status;
24133 	un->un_resvd_status &=
24134 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
24135 	if (un->un_resvd_timeid) {
24136 		resvd_timeid_save = un->un_resvd_timeid;
24137 		un->un_resvd_timeid = NULL;
24138 		mutex_exit(SD_MUTEX(un));
24139 		(void) untimeout(resvd_timeid_save);
24140 	} else {
24141 		mutex_exit(SD_MUTEX(un));
24142 	}
24143 
24144 	/*
24145 	 * destroy any pending timeout thread that may be attempting to
24146 	 * reinstate reservation on this device.
24147 	 */
24148 	sd_rmv_resv_reclaim_req(dev);
24149 
24150 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
24151 		mutex_enter(SD_MUTEX(un));
24152 		if ((un->un_mhd_token) &&
24153 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
24154 			mutex_exit(SD_MUTEX(un));
24155 			(void) sd_check_mhd(dev, 0);
24156 		} else {
24157 			mutex_exit(SD_MUTEX(un));
24158 		}
24159 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
24160 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24161 	} else {
24162 		/*
24163 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
24164 		 */
24165 		mutex_enter(SD_MUTEX(un));
24166 		un->un_resvd_status = resvd_status_save;
24167 		mutex_exit(SD_MUTEX(un));
24168 	}
24169 	return (rval);
24170 }
24171 
24172 
24173 /*
24174  *    Function: sd_mhdioc_register_devid
24175  *
24176  * Description: This routine is the driver entry point for handling ioctl
24177  *		requests to register the device id (MHIOCREREGISTERDEVID).
24178  *
24179  *		Note: The implementation for this ioctl has been updated to
24180  *		be consistent with the original PSARC case (1999/357)
24181  *		(4375899, 4241671, 4220005)
24182  *
24183  *   Arguments: dev	- the device number
24184  *
24185  * Return Code: 0
24186  *		ENXIO
24187  */
24188 
24189 static int
24190 sd_mhdioc_register_devid(dev_t dev)
24191 {
24192 	struct sd_lun	*un = NULL;
24193 	int		rval = 0;
24194 
24195 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24196 		return (ENXIO);
24197 	}
24198 
24199 	ASSERT(!mutex_owned(SD_MUTEX(un)));
24200 
24201 	mutex_enter(SD_MUTEX(un));
24202 
24203 	/* If a devid already exists, de-register it */
24204 	if (un->un_devid != NULL) {
24205 		ddi_devid_unregister(SD_DEVINFO(un));
24206 		/*
24207 		 * After unregister devid, needs to free devid memory
24208 		 */
24209 		ddi_devid_free(un->un_devid);
24210 		un->un_devid = NULL;
24211 	}
24212 
24213 	/* Check for reservation conflict */
24214 	mutex_exit(SD_MUTEX(un));
24215 	rval = sd_send_scsi_TEST_UNIT_READY(un, 0);
24216 	mutex_enter(SD_MUTEX(un));
24217 
24218 	switch (rval) {
24219 	case 0:
24220 		sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
24221 		break;
24222 	case EACCES:
24223 		break;
24224 	default:
24225 		rval = EIO;
24226 	}
24227 
24228 	mutex_exit(SD_MUTEX(un));
24229 	return (rval);
24230 }
24231 
24232 
24233 /*
24234  *    Function: sd_mhdioc_inkeys
24235  *
24236  * Description: This routine is the driver entry point for handling ioctl
24237  *		requests to issue the SCSI-3 Persistent In Read Keys command
24238  *		to the device (MHIOCGRP_INKEYS).
24239  *
24240  *   Arguments: dev	- the device number
24241  *		arg	- user provided in_keys structure
24242  *		flag	- this argument is a pass through to ddi_copyxxx()
24243  *			  directly from the mode argument of ioctl().
24244  *
24245  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
24246  *		ENXIO
24247  *		EFAULT
24248  */
24249 
24250 static int
24251 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
24252 {
24253 	struct sd_lun		*un;
24254 	mhioc_inkeys_t		inkeys;
24255 	int			rval = 0;
24256 
24257 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24258 		return (ENXIO);
24259 	}
24260 
24261 #ifdef _MULTI_DATAMODEL
24262 	switch (ddi_model_convert_from(flag & FMODELS)) {
24263 	case DDI_MODEL_ILP32: {
24264 		struct mhioc_inkeys32	inkeys32;
24265 
24266 		if (ddi_copyin(arg, &inkeys32,
24267 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
24268 			return (EFAULT);
24269 		}
24270 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
24271 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24272 		    &inkeys, flag)) != 0) {
24273 			return (rval);
24274 		}
24275 		inkeys32.generation = inkeys.generation;
24276 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
24277 		    flag) != 0) {
24278 			return (EFAULT);
24279 		}
24280 		break;
24281 	}
24282 	case DDI_MODEL_NONE:
24283 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
24284 		    flag) != 0) {
24285 			return (EFAULT);
24286 		}
24287 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24288 		    &inkeys, flag)) != 0) {
24289 			return (rval);
24290 		}
24291 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
24292 		    flag) != 0) {
24293 			return (EFAULT);
24294 		}
24295 		break;
24296 	}
24297 
24298 #else /* ! _MULTI_DATAMODEL */
24299 
24300 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
24301 		return (EFAULT);
24302 	}
24303 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
24304 	if (rval != 0) {
24305 		return (rval);
24306 	}
24307 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
24308 		return (EFAULT);
24309 	}
24310 
24311 #endif /* _MULTI_DATAMODEL */
24312 
24313 	return (rval);
24314 }
24315 
24316 
24317 /*
24318  *    Function: sd_mhdioc_inresv
24319  *
24320  * Description: This routine is the driver entry point for handling ioctl
24321  *		requests to issue the SCSI-3 Persistent In Read Reservations
24322  *		command to the device (MHIOCGRP_INKEYS).
24323  *
24324  *   Arguments: dev	- the device number
24325  *		arg	- user provided in_resv structure
24326  *		flag	- this argument is a pass through to ddi_copyxxx()
24327  *			  directly from the mode argument of ioctl().
24328  *
24329  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
24330  *		ENXIO
24331  *		EFAULT
24332  */
24333 
24334 static int
24335 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
24336 {
24337 	struct sd_lun		*un;
24338 	mhioc_inresvs_t		inresvs;
24339 	int			rval = 0;
24340 
24341 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24342 		return (ENXIO);
24343 	}
24344 
24345 #ifdef _MULTI_DATAMODEL
24346 
24347 	switch (ddi_model_convert_from(flag & FMODELS)) {
24348 	case DDI_MODEL_ILP32: {
24349 		struct mhioc_inresvs32	inresvs32;
24350 
24351 		if (ddi_copyin(arg, &inresvs32,
24352 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24353 			return (EFAULT);
24354 		}
24355 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
24356 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24357 		    &inresvs, flag)) != 0) {
24358 			return (rval);
24359 		}
24360 		inresvs32.generation = inresvs.generation;
24361 		if (ddi_copyout(&inresvs32, arg,
24362 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24363 			return (EFAULT);
24364 		}
24365 		break;
24366 	}
24367 	case DDI_MODEL_NONE:
24368 		if (ddi_copyin(arg, &inresvs,
24369 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24370 			return (EFAULT);
24371 		}
24372 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24373 		    &inresvs, flag)) != 0) {
24374 			return (rval);
24375 		}
24376 		if (ddi_copyout(&inresvs, arg,
24377 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24378 			return (EFAULT);
24379 		}
24380 		break;
24381 	}
24382 
24383 #else /* ! _MULTI_DATAMODEL */
24384 
24385 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
24386 		return (EFAULT);
24387 	}
24388 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
24389 	if (rval != 0) {
24390 		return (rval);
24391 	}
24392 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
24393 		return (EFAULT);
24394 	}
24395 
24396 #endif /* ! _MULTI_DATAMODEL */
24397 
24398 	return (rval);
24399 }
24400 
24401 
24402 /*
24403  * The following routines support the clustering functionality described below
24404  * and implement lost reservation reclaim functionality.
24405  *
24406  * Clustering
24407  * ----------
24408  * The clustering code uses two different, independent forms of SCSI
24409  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
24410  * Persistent Group Reservations. For any particular disk, it will use either
24411  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
24412  *
24413  * SCSI-2
24414  * The cluster software takes ownership of a multi-hosted disk by issuing the
24415  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
24416  * MHIOCRELEASE ioctl.Closely related is the MHIOCENFAILFAST ioctl -- a cluster,
24417  * just after taking ownership of the disk with the MHIOCTKOWN ioctl then issues
24418  * the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the driver. The
24419  * meaning of failfast is that if the driver (on this host) ever encounters the
24420  * scsi error return code RESERVATION_CONFLICT from the device, it should
24421  * immediately panic the host. The motivation for this ioctl is that if this
24422  * host does encounter reservation conflict, the underlying cause is that some
24423  * other host of the cluster has decided that this host is no longer in the
24424  * cluster and has seized control of the disks for itself. Since this host is no
24425  * longer in the cluster, it ought to panic itself. The MHIOCENFAILFAST ioctl
24426  * does two things:
24427  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
24428  *      error to panic the host
24429  *      (b) it sets up a periodic timer to test whether this host still has
24430  *      "access" (in that no other host has reserved the device):  if the
24431  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
24432  *      purpose of that periodic timer is to handle scenarios where the host is
24433  *      otherwise temporarily quiescent, temporarily doing no real i/o.
24434  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
24435  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
24436  * the device itself.
24437  *
24438  * SCSI-3 PGR
24439  * A direct semantic implementation of the SCSI-3 Persistent Reservation
24440  * facility is supported through the shared multihost disk ioctls
24441  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
24442  * MHIOCGRP_PREEMPTANDABORT)
24443  *
24444  * Reservation Reclaim:
24445  * --------------------
24446  * To support the lost reservation reclaim operations this driver creates a
24447  * single thread to handle reinstating reservations on all devices that have
24448  * lost reservations sd_resv_reclaim_requests are logged for all devices that
24449  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
24450  * and the reservation reclaim thread loops through the requests to regain the
24451  * lost reservations.
24452  */
24453 
24454 /*
24455  *    Function: sd_check_mhd()
24456  *
24457  * Description: This function sets up and submits a scsi watch request or
24458  *		terminates an existing watch request. This routine is used in
24459  *		support of reservation reclaim.
24460  *
24461  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
24462  *			 among multiple watches that share the callback function
24463  *		interval - the number of microseconds specifying the watch
24464  *			   interval for issuing TEST UNIT READY commands. If
24465  *			   set to 0 the watch should be terminated. If the
24466  *			   interval is set to 0 and if the device is required
24467  *			   to hold reservation while disabling failfast, the
24468  *			   watch is restarted with an interval of
24469  *			   reinstate_resv_delay.
24470  *
24471  * Return Code: 0	   - Successful submit/terminate of scsi watch request
24472  *		ENXIO      - Indicates an invalid device was specified
24473  *		EAGAIN     - Unable to submit the scsi watch request
24474  */
24475 
24476 static int
24477 sd_check_mhd(dev_t dev, int interval)
24478 {
24479 	struct sd_lun	*un;
24480 	opaque_t	token;
24481 
24482 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24483 		return (ENXIO);
24484 	}
24485 
24486 	/* is this a watch termination request? */
24487 	if (interval == 0) {
24488 		mutex_enter(SD_MUTEX(un));
24489 		/* if there is an existing watch task then terminate it */
24490 		if (un->un_mhd_token) {
24491 			token = un->un_mhd_token;
24492 			un->un_mhd_token = NULL;
24493 			mutex_exit(SD_MUTEX(un));
24494 			(void) scsi_watch_request_terminate(token,
24495 			    SCSI_WATCH_TERMINATE_WAIT);
24496 			mutex_enter(SD_MUTEX(un));
24497 		} else {
24498 			mutex_exit(SD_MUTEX(un));
24499 			/*
24500 			 * Note: If we return here we don't check for the
24501 			 * failfast case. This is the original legacy
24502 			 * implementation but perhaps we should be checking
24503 			 * the failfast case.
24504 			 */
24505 			return (0);
24506 		}
24507 		/*
24508 		 * If the device is required to hold reservation while
24509 		 * disabling failfast, we need to restart the scsi_watch
24510 		 * routine with an interval of reinstate_resv_delay.
24511 		 */
24512 		if (un->un_resvd_status & SD_RESERVE) {
24513 			interval = sd_reinstate_resv_delay/1000;
24514 		} else {
24515 			/* no failfast so bail */
24516 			mutex_exit(SD_MUTEX(un));
24517 			return (0);
24518 		}
24519 		mutex_exit(SD_MUTEX(un));
24520 	}
24521 
24522 	/*
24523 	 * adjust minimum time interval to 1 second,
24524 	 * and convert from msecs to usecs
24525 	 */
24526 	if (interval > 0 && interval < 1000) {
24527 		interval = 1000;
24528 	}
24529 	interval *= 1000;
24530 
24531 	/*
24532 	 * submit the request to the scsi_watch service
24533 	 */
24534 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
24535 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
24536 	if (token == NULL) {
24537 		return (EAGAIN);
24538 	}
24539 
24540 	/*
24541 	 * save token for termination later on
24542 	 */
24543 	mutex_enter(SD_MUTEX(un));
24544 	un->un_mhd_token = token;
24545 	mutex_exit(SD_MUTEX(un));
24546 	return (0);
24547 }
24548 
24549 
24550 /*
24551  *    Function: sd_mhd_watch_cb()
24552  *
24553  * Description: This function is the call back function used by the scsi watch
24554  *		facility. The scsi watch facility sends the "Test Unit Ready"
24555  *		and processes the status. If applicable (i.e. a "Unit Attention"
24556  *		status and automatic "Request Sense" not used) the scsi watch
24557  *		facility will send a "Request Sense" and retrieve the sense data
24558  *		to be passed to this callback function. In either case the
24559  *		automatic "Request Sense" or the facility submitting one, this
24560  *		callback is passed the status and sense data.
24561  *
24562  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24563  *			among multiple watches that share this callback function
24564  *		resultp - scsi watch facility result packet containing scsi
24565  *			  packet, status byte and sense data
24566  *
24567  * Return Code: 0 - continue the watch task
24568  *		non-zero - terminate the watch task
24569  */
24570 
24571 static int
24572 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
24573 {
24574 	struct sd_lun			*un;
24575 	struct scsi_status		*statusp;
24576 	struct scsi_extended_sense	*sensep;
24577 	struct scsi_pkt			*pkt;
24578 	uchar_t				actual_sense_length;
24579 	dev_t  				dev = (dev_t)arg;
24580 
24581 	ASSERT(resultp != NULL);
24582 	statusp			= resultp->statusp;
24583 	sensep			= resultp->sensep;
24584 	pkt			= resultp->pkt;
24585 	actual_sense_length	= resultp->actual_sense_length;
24586 
24587 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24588 		return (ENXIO);
24589 	}
24590 
24591 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
24592 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
24593 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
24594 
24595 	/* Begin processing of the status and/or sense data */
24596 	if (pkt->pkt_reason != CMD_CMPLT) {
24597 		/* Handle the incomplete packet */
24598 		sd_mhd_watch_incomplete(un, pkt);
24599 		return (0);
24600 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
24601 		if (*((unsigned char *)statusp)
24602 		    == STATUS_RESERVATION_CONFLICT) {
24603 			/*
24604 			 * Handle a reservation conflict by panicking if
24605 			 * configured for failfast or by logging the conflict
24606 			 * and updating the reservation status
24607 			 */
24608 			mutex_enter(SD_MUTEX(un));
24609 			if ((un->un_resvd_status & SD_FAILFAST) &&
24610 			    (sd_failfast_enable)) {
24611 				panic("Reservation Conflict");
24612 				/*NOTREACHED*/
24613 			}
24614 			SD_INFO(SD_LOG_IOCTL_MHD, un,
24615 			    "sd_mhd_watch_cb: Reservation Conflict\n");
24616 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
24617 			mutex_exit(SD_MUTEX(un));
24618 		}
24619 	}
24620 
24621 	if (sensep != NULL) {
24622 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
24623 			mutex_enter(SD_MUTEX(un));
24624 			if ((sensep->es_add_code == SD_SCSI_RESET_SENSE_CODE) &&
24625 			    (un->un_resvd_status & SD_RESERVE)) {
24626 				/*
24627 				 * The additional sense code indicates a power
24628 				 * on or bus device reset has occurred; update
24629 				 * the reservation status.
24630 				 */
24631 				un->un_resvd_status |=
24632 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
24633 				SD_INFO(SD_LOG_IOCTL_MHD, un,
24634 				    "sd_mhd_watch_cb: Lost Reservation\n");
24635 			}
24636 		} else {
24637 			return (0);
24638 		}
24639 	} else {
24640 		mutex_enter(SD_MUTEX(un));
24641 	}
24642 
24643 	if ((un->un_resvd_status & SD_RESERVE) &&
24644 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
24645 		if (un->un_resvd_status & SD_WANT_RESERVE) {
24646 			/*
24647 			 * A reset occurred in between the last probe and this
24648 			 * one so if a timeout is pending cancel it.
24649 			 */
24650 			if (un->un_resvd_timeid) {
24651 				timeout_id_t temp_id = un->un_resvd_timeid;
24652 				un->un_resvd_timeid = NULL;
24653 				mutex_exit(SD_MUTEX(un));
24654 				(void) untimeout(temp_id);
24655 				mutex_enter(SD_MUTEX(un));
24656 			}
24657 			un->un_resvd_status &= ~SD_WANT_RESERVE;
24658 		}
24659 		if (un->un_resvd_timeid == 0) {
24660 			/* Schedule a timeout to handle the lost reservation */
24661 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
24662 			    (void *)dev,
24663 			    drv_usectohz(sd_reinstate_resv_delay));
24664 		}
24665 	}
24666 	mutex_exit(SD_MUTEX(un));
24667 	return (0);
24668 }
24669 
24670 
24671 /*
24672  *    Function: sd_mhd_watch_incomplete()
24673  *
24674  * Description: This function is used to find out why a scsi pkt sent by the
24675  *		scsi watch facility was not completed. Under some scenarios this
24676  *		routine will return. Otherwise it will send a bus reset to see
24677  *		if the drive is still online.
24678  *
24679  *   Arguments: un  - driver soft state (unit) structure
24680  *		pkt - incomplete scsi pkt
24681  */
24682 
24683 static void
24684 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
24685 {
24686 	int	be_chatty;
24687 	int	perr;
24688 
24689 	ASSERT(pkt != NULL);
24690 	ASSERT(un != NULL);
24691 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
24692 	perr		= (pkt->pkt_statistics & STAT_PERR);
24693 
24694 	mutex_enter(SD_MUTEX(un));
24695 	if (un->un_state == SD_STATE_DUMPING) {
24696 		mutex_exit(SD_MUTEX(un));
24697 		return;
24698 	}
24699 
24700 	switch (pkt->pkt_reason) {
24701 	case CMD_UNX_BUS_FREE:
24702 		/*
24703 		 * If we had a parity error that caused the target to drop BSY*,
24704 		 * don't be chatty about it.
24705 		 */
24706 		if (perr && be_chatty) {
24707 			be_chatty = 0;
24708 		}
24709 		break;
24710 	case CMD_TAG_REJECT:
24711 		/*
24712 		 * The SCSI-2 spec states that a tag reject will be sent by the
24713 		 * target if tagged queuing is not supported. A tag reject may
24714 		 * also be sent during certain initialization periods or to
24715 		 * control internal resources. For the latter case the target
24716 		 * may also return Queue Full.
24717 		 *
24718 		 * If this driver receives a tag reject from a target that is
24719 		 * going through an init period or controlling internal
24720 		 * resources tagged queuing will be disabled. This is a less
24721 		 * than optimal behavior but the driver is unable to determine
24722 		 * the target state and assumes tagged queueing is not supported
24723 		 */
24724 		pkt->pkt_flags = 0;
24725 		un->un_tagflags = 0;
24726 
24727 		if (un->un_f_opt_queueing == TRUE) {
24728 			un->un_throttle = min(un->un_throttle, 3);
24729 		} else {
24730 			un->un_throttle = 1;
24731 		}
24732 		mutex_exit(SD_MUTEX(un));
24733 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
24734 		mutex_enter(SD_MUTEX(un));
24735 		break;
24736 	case CMD_INCOMPLETE:
24737 		/*
24738 		 * The transport stopped with an abnormal state, fallthrough and
24739 		 * reset the target and/or bus unless selection did not complete
24740 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
24741 		 * go through a target/bus reset
24742 		 */
24743 		if (pkt->pkt_state == STATE_GOT_BUS) {
24744 			break;
24745 		}
24746 		/*FALLTHROUGH*/
24747 
24748 	case CMD_TIMEOUT:
24749 	default:
24750 		/*
24751 		 * The lun may still be running the command, so a lun reset
24752 		 * should be attempted. If the lun reset fails or cannot be
24753 		 * issued, than try a target reset. Lastly try a bus reset.
24754 		 */
24755 		if ((pkt->pkt_statistics &
24756 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
24757 			int reset_retval = 0;
24758 			mutex_exit(SD_MUTEX(un));
24759 			if (un->un_f_allow_bus_device_reset == TRUE) {
24760 				if (un->un_f_lun_reset_enabled == TRUE) {
24761 					reset_retval =
24762 					    scsi_reset(SD_ADDRESS(un),
24763 					    RESET_LUN);
24764 				}
24765 				if (reset_retval == 0) {
24766 					reset_retval =
24767 					    scsi_reset(SD_ADDRESS(un),
24768 					    RESET_TARGET);
24769 				}
24770 			}
24771 			if (reset_retval == 0) {
24772 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
24773 			}
24774 			mutex_enter(SD_MUTEX(un));
24775 		}
24776 		break;
24777 	}
24778 
24779 	/* A device/bus reset has occurred; update the reservation status. */
24780 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
24781 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
24782 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
24783 			un->un_resvd_status |=
24784 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
24785 			SD_INFO(SD_LOG_IOCTL_MHD, un,
24786 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
24787 		}
24788 	}
24789 
24790 	/*
24791 	 * The disk has been turned off; Update the device state.
24792 	 *
24793 	 * Note: Should we be offlining the disk here?
24794 	 */
24795 	if (pkt->pkt_state == STATE_GOT_BUS) {
24796 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
24797 		    "Disk not responding to selection\n");
24798 		if (un->un_state != SD_STATE_OFFLINE) {
24799 			New_state(un, SD_STATE_OFFLINE);
24800 		}
24801 	} else if (be_chatty) {
24802 		/*
24803 		 * suppress messages if they are all the same pkt reason;
24804 		 * with TQ, many (up to 256) are returned with the same
24805 		 * pkt_reason
24806 		 */
24807 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
24808 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
24809 			    "sd_mhd_watch_incomplete: "
24810 			    "SCSI transport failed: reason '%s'\n",
24811 			    scsi_rname(pkt->pkt_reason));
24812 		}
24813 	}
24814 	un->un_last_pkt_reason = pkt->pkt_reason;
24815 	mutex_exit(SD_MUTEX(un));
24816 }
24817 
24818 
24819 /*
24820  *    Function: sd_sname()
24821  *
24822  * Description: This is a simple little routine to return a string containing
24823  *		a printable description of command status byte for use in
24824  *		logging.
24825  *
24826  *   Arguments: status - pointer to a status byte
24827  *
24828  * Return Code: char * - string containing status description.
24829  */
24830 
24831 static char *
24832 sd_sname(uchar_t status)
24833 {
24834 	switch (status & STATUS_MASK) {
24835 	case STATUS_GOOD:
24836 		return ("good status");
24837 	case STATUS_CHECK:
24838 		return ("check condition");
24839 	case STATUS_MET:
24840 		return ("condition met");
24841 	case STATUS_BUSY:
24842 		return ("busy");
24843 	case STATUS_INTERMEDIATE:
24844 		return ("intermediate");
24845 	case STATUS_INTERMEDIATE_MET:
24846 		return ("intermediate - condition met");
24847 	case STATUS_RESERVATION_CONFLICT:
24848 		return ("reservation_conflict");
24849 	case STATUS_TERMINATED:
24850 		return ("command terminated");
24851 	case STATUS_QFULL:
24852 		return ("queue full");
24853 	default:
24854 		return ("<unknown status>");
24855 	}
24856 }
24857 
24858 
24859 /*
24860  *    Function: sd_mhd_resvd_recover()
24861  *
24862  * Description: This function adds a reservation entry to the
24863  *		sd_resv_reclaim_request list and signals the reservation
24864  *		reclaim thread that there is work pending. If the reservation
24865  *		reclaim thread has not been previously created this function
24866  *		will kick it off.
24867  *
24868  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24869  *			among multiple watches that share this callback function
24870  *
24871  *     Context: This routine is called by timeout() and is run in interrupt
24872  *		context. It must not sleep or call other functions which may
24873  *		sleep.
24874  */
24875 
24876 static void
24877 sd_mhd_resvd_recover(void *arg)
24878 {
24879 	dev_t			dev = (dev_t)arg;
24880 	struct sd_lun		*un;
24881 	struct sd_thr_request	*sd_treq = NULL;
24882 	struct sd_thr_request	*sd_cur = NULL;
24883 	struct sd_thr_request	*sd_prev = NULL;
24884 	int			already_there = 0;
24885 
24886 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24887 		return;
24888 	}
24889 
24890 	mutex_enter(SD_MUTEX(un));
24891 	un->un_resvd_timeid = NULL;
24892 	if (un->un_resvd_status & SD_WANT_RESERVE) {
24893 		/*
24894 		 * There was a reset so don't issue the reserve, allow the
24895 		 * sd_mhd_watch_cb callback function to notice this and
24896 		 * reschedule the timeout for reservation.
24897 		 */
24898 		mutex_exit(SD_MUTEX(un));
24899 		return;
24900 	}
24901 	mutex_exit(SD_MUTEX(un));
24902 
24903 	/*
24904 	 * Add this device to the sd_resv_reclaim_request list and the
24905 	 * sd_resv_reclaim_thread should take care of the rest.
24906 	 *
24907 	 * Note: We can't sleep in this context so if the memory allocation
24908 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
24909 	 * reschedule the timeout for reservation.  (4378460)
24910 	 */
24911 	sd_treq = (struct sd_thr_request *)
24912 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
24913 	if (sd_treq == NULL) {
24914 		return;
24915 	}
24916 
24917 	sd_treq->sd_thr_req_next = NULL;
24918 	sd_treq->dev = dev;
24919 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
24920 	if (sd_tr.srq_thr_req_head == NULL) {
24921 		sd_tr.srq_thr_req_head = sd_treq;
24922 	} else {
24923 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
24924 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
24925 			if (sd_cur->dev == dev) {
24926 				/*
24927 				 * already in Queue so don't log
24928 				 * another request for the device
24929 				 */
24930 				already_there = 1;
24931 				break;
24932 			}
24933 			sd_prev = sd_cur;
24934 		}
24935 		if (!already_there) {
24936 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
24937 			    "logging request for %lx\n", dev);
24938 			sd_prev->sd_thr_req_next = sd_treq;
24939 		} else {
24940 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
24941 		}
24942 	}
24943 
24944 	/*
24945 	 * Create a kernel thread to do the reservation reclaim and free up this
24946 	 * thread. We cannot block this thread while we go away to do the
24947 	 * reservation reclaim
24948 	 */
24949 	if (sd_tr.srq_resv_reclaim_thread == NULL)
24950 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
24951 		    sd_resv_reclaim_thread, NULL,
24952 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
24953 
24954 	/* Tell the reservation reclaim thread that it has work to do */
24955 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
24956 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24957 }
24958 
24959 /*
24960  *    Function: sd_resv_reclaim_thread()
24961  *
24962  * Description: This function implements the reservation reclaim operations
24963  *
24964  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
24965  *		      among multiple watches that share this callback function
24966  */
24967 
24968 static void
24969 sd_resv_reclaim_thread()
24970 {
24971 	struct sd_lun		*un;
24972 	struct sd_thr_request	*sd_mhreq;
24973 
24974 	/* Wait for work */
24975 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
24976 	if (sd_tr.srq_thr_req_head == NULL) {
24977 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
24978 		    &sd_tr.srq_resv_reclaim_mutex);
24979 	}
24980 
24981 	/* Loop while we have work */
24982 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
24983 		un = ddi_get_soft_state(sd_state,
24984 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
24985 		if (un == NULL) {
24986 			/*
24987 			 * softstate structure is NULL so just
24988 			 * dequeue the request and continue
24989 			 */
24990 			sd_tr.srq_thr_req_head =
24991 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
24992 			kmem_free(sd_tr.srq_thr_cur_req,
24993 			    sizeof (struct sd_thr_request));
24994 			continue;
24995 		}
24996 
24997 		/* dequeue the request */
24998 		sd_mhreq = sd_tr.srq_thr_cur_req;
24999 		sd_tr.srq_thr_req_head =
25000 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25001 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25002 
25003 		/*
25004 		 * Reclaim reservation only if SD_RESERVE is still set. There
25005 		 * may have been a call to MHIOCRELEASE before we got here.
25006 		 */
25007 		mutex_enter(SD_MUTEX(un));
25008 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25009 			/*
25010 			 * Note: The SD_LOST_RESERVE flag is cleared before
25011 			 * reclaiming the reservation. If this is done after the
25012 			 * call to sd_reserve_release a reservation loss in the
25013 			 * window between pkt completion of reserve cmd and
25014 			 * mutex_enter below may not be recognized
25015 			 */
25016 			un->un_resvd_status &= ~SD_LOST_RESERVE;
25017 			mutex_exit(SD_MUTEX(un));
25018 
25019 			if (sd_reserve_release(sd_mhreq->dev,
25020 			    SD_RESERVE) == 0) {
25021 				mutex_enter(SD_MUTEX(un));
25022 				un->un_resvd_status |= SD_RESERVE;
25023 				mutex_exit(SD_MUTEX(un));
25024 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25025 				    "sd_resv_reclaim_thread: "
25026 				    "Reservation Recovered\n");
25027 			} else {
25028 				mutex_enter(SD_MUTEX(un));
25029 				un->un_resvd_status |= SD_LOST_RESERVE;
25030 				mutex_exit(SD_MUTEX(un));
25031 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25032 				    "sd_resv_reclaim_thread: Failed "
25033 				    "Reservation Recovery\n");
25034 			}
25035 		} else {
25036 			mutex_exit(SD_MUTEX(un));
25037 		}
25038 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25039 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
25040 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25041 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
25042 		/*
25043 		 * wakeup the destroy thread if anyone is waiting on
25044 		 * us to complete.
25045 		 */
25046 		cv_signal(&sd_tr.srq_inprocess_cv);
25047 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
25048 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
25049 	}
25050 
25051 	/*
25052 	 * cleanup the sd_tr structure now that this thread will not exist
25053 	 */
25054 	ASSERT(sd_tr.srq_thr_req_head == NULL);
25055 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
25056 	sd_tr.srq_resv_reclaim_thread = NULL;
25057 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25058 	thread_exit();
25059 }
25060 
25061 
25062 /*
25063  *    Function: sd_rmv_resv_reclaim_req()
25064  *
25065  * Description: This function removes any pending reservation reclaim requests
25066  *		for the specified device.
25067  *
25068  *   Arguments: dev - the device 'dev_t'
25069  */
25070 
25071 static void
25072 sd_rmv_resv_reclaim_req(dev_t dev)
25073 {
25074 	struct sd_thr_request *sd_mhreq;
25075 	struct sd_thr_request *sd_prev;
25076 
25077 	/* Remove a reservation reclaim request from the list */
25078 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25079 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
25080 		/*
25081 		 * We are attempting to reinstate reservation for
25082 		 * this device. We wait for sd_reserve_release()
25083 		 * to return before we return.
25084 		 */
25085 		cv_wait(&sd_tr.srq_inprocess_cv,
25086 		    &sd_tr.srq_resv_reclaim_mutex);
25087 	} else {
25088 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
25089 		if (sd_mhreq && sd_mhreq->dev == dev) {
25090 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
25091 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25092 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25093 			return;
25094 		}
25095 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
25096 			if (sd_mhreq && sd_mhreq->dev == dev) {
25097 				break;
25098 			}
25099 			sd_prev = sd_mhreq;
25100 		}
25101 		if (sd_mhreq != NULL) {
25102 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
25103 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25104 		}
25105 	}
25106 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25107 }
25108 
25109 
25110 /*
25111  *    Function: sd_mhd_reset_notify_cb()
25112  *
25113  * Description: This is a call back function for scsi_reset_notify. This
25114  *		function updates the softstate reserved status and logs the
25115  *		reset. The driver scsi watch facility callback function
25116  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
25117  *		will reclaim the reservation.
25118  *
25119  *   Arguments: arg  - driver soft state (unit) structure
25120  */
25121 
25122 static void
25123 sd_mhd_reset_notify_cb(caddr_t arg)
25124 {
25125 	struct sd_lun *un = (struct sd_lun *)arg;
25126 
25127 	mutex_enter(SD_MUTEX(un));
25128 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25129 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
25130 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25131 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
25132 	}
25133 	mutex_exit(SD_MUTEX(un));
25134 }
25135 
25136 
25137 /*
25138  *    Function: sd_take_ownership()
25139  *
25140  * Description: This routine implements an algorithm to achieve a stable
25141  *		reservation on disks which don't implement priority reserve,
25142  *		and makes sure that other host lose re-reservation attempts.
25143  *		This algorithm contains of a loop that keeps issuing the RESERVE
25144  *		for some period of time (min_ownership_delay, default 6 seconds)
25145  *		During that loop, it looks to see if there has been a bus device
25146  *		reset or bus reset (both of which cause an existing reservation
25147  *		to be lost). If the reservation is lost issue RESERVE until a
25148  *		period of min_ownership_delay with no resets has gone by, or
25149  *		until max_ownership_delay has expired. This loop ensures that
25150  *		the host really did manage to reserve the device, in spite of
25151  *		resets. The looping for min_ownership_delay (default six
25152  *		seconds) is important to early generation clustering products,
25153  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
25154  *		MHIOCENFAILFAST periodic timer of two seconds. By having
25155  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
25156  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
25157  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
25158  *		have already noticed, via the MHIOCENFAILFAST polling, that it
25159  *		no longer "owns" the disk and will have panicked itself.  Thus,
25160  *		the host issuing the MHIOCTKOWN is assured (with timing
25161  *		dependencies) that by the time it actually starts to use the
25162  *		disk for real work, the old owner is no longer accessing it.
25163  *
25164  *		min_ownership_delay is the minimum amount of time for which the
25165  *		disk must be reserved continuously devoid of resets before the
25166  *		MHIOCTKOWN ioctl will return success.
25167  *
25168  *		max_ownership_delay indicates the amount of time by which the
25169  *		take ownership should succeed or timeout with an error.
25170  *
25171  *   Arguments: dev - the device 'dev_t'
25172  *		*p  - struct containing timing info.
25173  *
25174  * Return Code: 0 for success or error code
25175  */
25176 
25177 static int
25178 sd_take_ownership(dev_t dev, struct mhioctkown *p)
25179 {
25180 	struct sd_lun	*un;
25181 	int		rval;
25182 	int		err;
25183 	int		reservation_count   = 0;
25184 	int		min_ownership_delay =  6000000; /* in usec */
25185 	int		max_ownership_delay = 30000000; /* in usec */
25186 	clock_t		start_time;	/* starting time of this algorithm */
25187 	clock_t		end_time;	/* time limit for giving up */
25188 	clock_t		ownership_time;	/* time limit for stable ownership */
25189 	clock_t		current_time;
25190 	clock_t		previous_current_time;
25191 
25192 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25193 		return (ENXIO);
25194 	}
25195 
25196 	/*
25197 	 * Attempt a device reservation. A priority reservation is requested.
25198 	 */
25199 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
25200 	    != SD_SUCCESS) {
25201 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25202 		    "sd_take_ownership: return(1)=%d\n", rval);
25203 		return (rval);
25204 	}
25205 
25206 	/* Update the softstate reserved status to indicate the reservation */
25207 	mutex_enter(SD_MUTEX(un));
25208 	un->un_resvd_status |= SD_RESERVE;
25209 	un->un_resvd_status &=
25210 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
25211 	mutex_exit(SD_MUTEX(un));
25212 
25213 	if (p != NULL) {
25214 		if (p->min_ownership_delay != 0) {
25215 			min_ownership_delay = p->min_ownership_delay * 1000;
25216 		}
25217 		if (p->max_ownership_delay != 0) {
25218 			max_ownership_delay = p->max_ownership_delay * 1000;
25219 		}
25220 	}
25221 	SD_INFO(SD_LOG_IOCTL_MHD, un,
25222 	    "sd_take_ownership: min, max delays: %d, %d\n",
25223 	    min_ownership_delay, max_ownership_delay);
25224 
25225 	start_time = ddi_get_lbolt();
25226 	current_time	= start_time;
25227 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
25228 	end_time	= start_time + drv_usectohz(max_ownership_delay);
25229 
25230 	while (current_time - end_time < 0) {
25231 		delay(drv_usectohz(500000));
25232 
25233 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
25234 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
25235 				mutex_enter(SD_MUTEX(un));
25236 				rval = (un->un_resvd_status &
25237 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
25238 				mutex_exit(SD_MUTEX(un));
25239 				break;
25240 			}
25241 		}
25242 		previous_current_time = current_time;
25243 		current_time = ddi_get_lbolt();
25244 		mutex_enter(SD_MUTEX(un));
25245 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
25246 			ownership_time = ddi_get_lbolt() +
25247 			    drv_usectohz(min_ownership_delay);
25248 			reservation_count = 0;
25249 		} else {
25250 			reservation_count++;
25251 		}
25252 		un->un_resvd_status |= SD_RESERVE;
25253 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
25254 		mutex_exit(SD_MUTEX(un));
25255 
25256 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25257 		    "sd_take_ownership: ticks for loop iteration=%ld, "
25258 		    "reservation=%s\n", (current_time - previous_current_time),
25259 		    reservation_count ? "ok" : "reclaimed");
25260 
25261 		if (current_time - ownership_time >= 0 &&
25262 		    reservation_count >= 4) {
25263 			rval = 0; /* Achieved a stable ownership */
25264 			break;
25265 		}
25266 		if (current_time - end_time >= 0) {
25267 			rval = EACCES; /* No ownership in max possible time */
25268 			break;
25269 		}
25270 	}
25271 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
25272 	    "sd_take_ownership: return(2)=%d\n", rval);
25273 	return (rval);
25274 }
25275 
25276 
25277 /*
25278  *    Function: sd_reserve_release()
25279  *
25280  * Description: This function builds and sends scsi RESERVE, RELEASE, and
25281  *		PRIORITY RESERVE commands based on a user specified command type
25282  *
25283  *   Arguments: dev - the device 'dev_t'
25284  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
25285  *		      SD_RESERVE, SD_RELEASE
25286  *
25287  * Return Code: 0 or Error Code
25288  */
25289 
25290 static int
25291 sd_reserve_release(dev_t dev, int cmd)
25292 {
25293 	struct uscsi_cmd	*com = NULL;
25294 	struct sd_lun		*un = NULL;
25295 	char			cdb[CDB_GROUP0];
25296 	int			rval;
25297 
25298 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
25299 	    (cmd == SD_PRIORITY_RESERVE));
25300 
25301 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25302 		return (ENXIO);
25303 	}
25304 
25305 	/* instantiate and initialize the command and cdb */
25306 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25307 	bzero(cdb, CDB_GROUP0);
25308 	com->uscsi_flags   = USCSI_SILENT;
25309 	com->uscsi_timeout = un->un_reserve_release_time;
25310 	com->uscsi_cdblen  = CDB_GROUP0;
25311 	com->uscsi_cdb	   = cdb;
25312 	if (cmd == SD_RELEASE) {
25313 		cdb[0] = SCMD_RELEASE;
25314 	} else {
25315 		cdb[0] = SCMD_RESERVE;
25316 	}
25317 
25318 	/* Send the command. */
25319 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
25320 	    UIO_SYSSPACE, SD_PATH_STANDARD);
25321 
25322 	/*
25323 	 * "break" a reservation that is held by another host, by issuing a
25324 	 * reset if priority reserve is desired, and we could not get the
25325 	 * device.
25326 	 */
25327 	if ((cmd == SD_PRIORITY_RESERVE) &&
25328 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25329 		/*
25330 		 * First try to reset the LUN. If we cannot, then try a target
25331 		 * reset, followed by a bus reset if the target reset fails.
25332 		 */
25333 		int reset_retval = 0;
25334 		if (un->un_f_lun_reset_enabled == TRUE) {
25335 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
25336 		}
25337 		if (reset_retval == 0) {
25338 			/* The LUN reset either failed or was not issued */
25339 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
25340 		}
25341 		if ((reset_retval == 0) &&
25342 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
25343 			rval = EIO;
25344 			kmem_free(com, sizeof (*com));
25345 			return (rval);
25346 		}
25347 
25348 		bzero(com, sizeof (struct uscsi_cmd));
25349 		com->uscsi_flags   = USCSI_SILENT;
25350 		com->uscsi_cdb	   = cdb;
25351 		com->uscsi_cdblen  = CDB_GROUP0;
25352 		com->uscsi_timeout = 5;
25353 
25354 		/*
25355 		 * Reissue the last reserve command, this time without request
25356 		 * sense.  Assume that it is just a regular reserve command.
25357 		 */
25358 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
25359 		    UIO_SYSSPACE, SD_PATH_STANDARD);
25360 	}
25361 
25362 	/* Return an error if still getting a reservation conflict. */
25363 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25364 		rval = EACCES;
25365 	}
25366 
25367 	kmem_free(com, sizeof (*com));
25368 	return (rval);
25369 }
25370 
25371 
25372 #define	SD_NDUMP_RETRIES	12
25373 /*
25374  *	System Crash Dump routine
25375  */
25376 
25377 static int
25378 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
25379 {
25380 	int		instance;
25381 	int		partition;
25382 	int		i;
25383 	int		err;
25384 	struct sd_lun	*un;
25385 	struct dk_map	*lp;
25386 	struct scsi_pkt *wr_pktp;
25387 	struct buf	*wr_bp;
25388 	struct buf	wr_buf;
25389 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
25390 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
25391 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
25392 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
25393 	size_t		io_start_offset;
25394 	int		doing_rmw = FALSE;
25395 	int		rval;
25396 #if defined(__i386) || defined(__amd64)
25397 	ssize_t dma_resid;
25398 	daddr_t oblkno;
25399 #endif
25400 
25401 	instance = SDUNIT(dev);
25402 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
25403 	    (!un->un_f_geometry_is_valid) || ISCD(un)) {
25404 		return (ENXIO);
25405 	}
25406 
25407 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
25408 
25409 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
25410 
25411 	partition = SDPART(dev);
25412 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
25413 
25414 	/* Validate blocks to dump at against partition size. */
25415 	lp = &un->un_map[partition];
25416 	if ((blkno + nblk) > lp->dkl_nblk) {
25417 		SD_TRACE(SD_LOG_DUMP, un,
25418 		    "sddump: dump range larger than partition: "
25419 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
25420 		    blkno, nblk, lp->dkl_nblk);
25421 		return (EINVAL);
25422 	}
25423 
25424 	mutex_enter(&un->un_pm_mutex);
25425 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
25426 		struct scsi_pkt *start_pktp;
25427 
25428 		mutex_exit(&un->un_pm_mutex);
25429 
25430 		/*
25431 		 * use pm framework to power on HBA 1st
25432 		 */
25433 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
25434 
25435 		/*
25436 		 * Dump no long uses sdpower to power on a device, it's
25437 		 * in-line here so it can be done in polled mode.
25438 		 */
25439 
25440 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
25441 
25442 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
25443 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
25444 
25445 		if (start_pktp == NULL) {
25446 			/* We were not given a SCSI packet, fail. */
25447 			return (EIO);
25448 		}
25449 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
25450 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
25451 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
25452 		start_pktp->pkt_flags = FLAG_NOINTR;
25453 
25454 		mutex_enter(SD_MUTEX(un));
25455 		sd_fill_scsi1_lun(un, start_pktp);
25456 		mutex_exit(SD_MUTEX(un));
25457 		/*
25458 		 * Scsi_poll returns 0 (success) if the command completes and
25459 		 * the status block is STATUS_GOOD.
25460 		 */
25461 		if (sd_scsi_poll(un, start_pktp) != 0) {
25462 			scsi_destroy_pkt(start_pktp);
25463 			return (EIO);
25464 		}
25465 		scsi_destroy_pkt(start_pktp);
25466 		(void) sd_ddi_pm_resume(un);
25467 	} else {
25468 		mutex_exit(&un->un_pm_mutex);
25469 	}
25470 
25471 	mutex_enter(SD_MUTEX(un));
25472 	un->un_throttle = 0;
25473 
25474 	/*
25475 	 * The first time through, reset the specific target device.
25476 	 * However, when cpr calls sddump we know that sd is in a
25477 	 * a good state so no bus reset is required.
25478 	 * Clear sense data via Request Sense cmd.
25479 	 * In sddump we don't care about allow_bus_device_reset anymore
25480 	 */
25481 
25482 	if ((un->un_state != SD_STATE_SUSPENDED) &&
25483 	    (un->un_state != SD_STATE_DUMPING)) {
25484 
25485 		New_state(un, SD_STATE_DUMPING);
25486 
25487 		if (un->un_f_is_fibre == FALSE) {
25488 			mutex_exit(SD_MUTEX(un));
25489 			/*
25490 			 * Attempt a bus reset for parallel scsi.
25491 			 *
25492 			 * Note: A bus reset is required because on some host
25493 			 * systems (i.e. E420R) a bus device reset is
25494 			 * insufficient to reset the state of the target.
25495 			 *
25496 			 * Note: Don't issue the reset for fibre-channel,
25497 			 * because this tends to hang the bus (loop) for
25498 			 * too long while everyone is logging out and in
25499 			 * and the deadman timer for dumping will fire
25500 			 * before the dump is complete.
25501 			 */
25502 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
25503 				mutex_enter(SD_MUTEX(un));
25504 				Restore_state(un);
25505 				mutex_exit(SD_MUTEX(un));
25506 				return (EIO);
25507 			}
25508 
25509 			/* Delay to give the device some recovery time. */
25510 			drv_usecwait(10000);
25511 
25512 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
25513 				SD_INFO(SD_LOG_DUMP, un,
25514 					"sddump: sd_send_polled_RQS failed\n");
25515 			}
25516 			mutex_enter(SD_MUTEX(un));
25517 		}
25518 	}
25519 
25520 	/*
25521 	 * Convert the partition-relative block number to a
25522 	 * disk physical block number.
25523 	 */
25524 	blkno += un->un_offset[partition];
25525 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
25526 
25527 
25528 	/*
25529 	 * Check if the device has a non-512 block size.
25530 	 */
25531 	wr_bp = NULL;
25532 	if (NOT_DEVBSIZE(un)) {
25533 		tgt_byte_offset = blkno * un->un_sys_blocksize;
25534 		tgt_byte_count = nblk * un->un_sys_blocksize;
25535 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
25536 		    (tgt_byte_count % un->un_tgt_blocksize)) {
25537 			doing_rmw = TRUE;
25538 			/*
25539 			 * Calculate the block number and number of block
25540 			 * in terms of the media block size.
25541 			 */
25542 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
25543 			tgt_nblk =
25544 			    ((tgt_byte_offset + tgt_byte_count +
25545 				(un->un_tgt_blocksize - 1)) /
25546 				un->un_tgt_blocksize) - tgt_blkno;
25547 
25548 			/*
25549 			 * Invoke the routine which is going to do read part
25550 			 * of read-modify-write.
25551 			 * Note that this routine returns a pointer to
25552 			 * a valid bp in wr_bp.
25553 			 */
25554 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
25555 			    &wr_bp);
25556 			if (err) {
25557 				mutex_exit(SD_MUTEX(un));
25558 				return (err);
25559 			}
25560 			/*
25561 			 * Offset is being calculated as -
25562 			 * (original block # * system block size) -
25563 			 * (new block # * target block size)
25564 			 */
25565 			io_start_offset =
25566 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
25567 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
25568 
25569 			ASSERT((io_start_offset >= 0) &&
25570 			    (io_start_offset < un->un_tgt_blocksize));
25571 			/*
25572 			 * Do the modify portion of read modify write.
25573 			 */
25574 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
25575 			    (size_t)nblk * un->un_sys_blocksize);
25576 		} else {
25577 			doing_rmw = FALSE;
25578 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
25579 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
25580 		}
25581 
25582 		/* Convert blkno and nblk to target blocks */
25583 		blkno = tgt_blkno;
25584 		nblk = tgt_nblk;
25585 	} else {
25586 		wr_bp = &wr_buf;
25587 		bzero(wr_bp, sizeof (struct buf));
25588 		wr_bp->b_flags		= B_BUSY;
25589 		wr_bp->b_un.b_addr	= addr;
25590 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
25591 		wr_bp->b_resid		= 0;
25592 	}
25593 
25594 	mutex_exit(SD_MUTEX(un));
25595 
25596 	/*
25597 	 * Obtain a SCSI packet for the write command.
25598 	 * It should be safe to call the allocator here without
25599 	 * worrying about being locked for DVMA mapping because
25600 	 * the address we're passed is already a DVMA mapping
25601 	 *
25602 	 * We are also not going to worry about semaphore ownership
25603 	 * in the dump buffer. Dumping is single threaded at present.
25604 	 */
25605 
25606 	wr_pktp = NULL;
25607 
25608 #if defined(__i386) || defined(__amd64)
25609 	dma_resid = wr_bp->b_bcount;
25610 	oblkno = blkno;
25611 	while (dma_resid != 0) {
25612 #endif
25613 
25614 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
25615 		wr_bp->b_flags &= ~B_ERROR;
25616 
25617 #if defined(__i386) || defined(__amd64)
25618 		blkno = oblkno +
25619 			((wr_bp->b_bcount - dma_resid) /
25620 			    un->un_tgt_blocksize);
25621 		nblk = dma_resid / un->un_tgt_blocksize;
25622 
25623 		if (wr_pktp) {
25624 			/* Partial DMA transfers after initial transfer */
25625 			rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
25626 			    blkno, nblk);
25627 		} else {
25628 			/* Initial transfer */
25629 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
25630 			    un->un_pkt_flags, NULL_FUNC, NULL,
25631 			    blkno, nblk);
25632 		}
25633 #else
25634 		rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
25635 		    0, NULL_FUNC, NULL, blkno, nblk);
25636 #endif
25637 
25638 		if (rval == 0) {
25639 			/* We were given a SCSI packet, continue. */
25640 			break;
25641 		}
25642 
25643 		if (i == 0) {
25644 			if (wr_bp->b_flags & B_ERROR) {
25645 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25646 				    "no resources for dumping; "
25647 				    "error code: 0x%x, retrying",
25648 				    geterror(wr_bp));
25649 			} else {
25650 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25651 				    "no resources for dumping; retrying");
25652 			}
25653 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
25654 			if (wr_bp->b_flags & B_ERROR) {
25655 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
25656 				    "no resources for dumping; error code: "
25657 				    "0x%x, retrying\n", geterror(wr_bp));
25658 			}
25659 		} else {
25660 			if (wr_bp->b_flags & B_ERROR) {
25661 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
25662 				    "no resources for dumping; "
25663 				    "error code: 0x%x, retries failed, "
25664 				    "giving up.\n", geterror(wr_bp));
25665 			} else {
25666 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
25667 				    "no resources for dumping; "
25668 				    "retries failed, giving up.\n");
25669 			}
25670 			mutex_enter(SD_MUTEX(un));
25671 			Restore_state(un);
25672 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
25673 				mutex_exit(SD_MUTEX(un));
25674 				scsi_free_consistent_buf(wr_bp);
25675 			} else {
25676 				mutex_exit(SD_MUTEX(un));
25677 			}
25678 			return (EIO);
25679 		}
25680 		drv_usecwait(10000);
25681 	}
25682 
25683 #if defined(__i386) || defined(__amd64)
25684 	/*
25685 	 * save the resid from PARTIAL_DMA
25686 	 */
25687 	dma_resid = wr_pktp->pkt_resid;
25688 	if (dma_resid != 0)
25689 		nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
25690 	wr_pktp->pkt_resid = 0;
25691 #endif
25692 
25693 	/* SunBug 1222170 */
25694 	wr_pktp->pkt_flags = FLAG_NOINTR;
25695 
25696 	err = EIO;
25697 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
25698 
25699 		/*
25700 		 * Scsi_poll returns 0 (success) if the command completes and
25701 		 * the status block is STATUS_GOOD.  We should only check
25702 		 * errors if this condition is not true.  Even then we should
25703 		 * send our own request sense packet only if we have a check
25704 		 * condition and auto request sense has not been performed by
25705 		 * the hba.
25706 		 */
25707 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
25708 
25709 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
25710 		    (wr_pktp->pkt_resid == 0)) {
25711 			err = SD_SUCCESS;
25712 			break;
25713 		}
25714 
25715 		/*
25716 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
25717 		 */
25718 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
25719 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
25720 			    "Device is gone\n");
25721 			break;
25722 		}
25723 
25724 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
25725 			SD_INFO(SD_LOG_DUMP, un,
25726 			    "sddump: write failed with CHECK, try # %d\n", i);
25727 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
25728 				(void) sd_send_polled_RQS(un);
25729 			}
25730 
25731 			continue;
25732 		}
25733 
25734 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
25735 			int reset_retval = 0;
25736 
25737 			SD_INFO(SD_LOG_DUMP, un,
25738 			    "sddump: write failed with BUSY, try # %d\n", i);
25739 
25740 			if (un->un_f_lun_reset_enabled == TRUE) {
25741 				reset_retval = scsi_reset(SD_ADDRESS(un),
25742 				    RESET_LUN);
25743 			}
25744 			if (reset_retval == 0) {
25745 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
25746 			}
25747 			(void) sd_send_polled_RQS(un);
25748 
25749 		} else {
25750 			SD_INFO(SD_LOG_DUMP, un,
25751 			    "sddump: write failed with 0x%x, try # %d\n",
25752 			    SD_GET_PKT_STATUS(wr_pktp), i);
25753 			mutex_enter(SD_MUTEX(un));
25754 			sd_reset_target(un, wr_pktp);
25755 			mutex_exit(SD_MUTEX(un));
25756 		}
25757 
25758 		/*
25759 		 * If we are not getting anywhere with lun/target resets,
25760 		 * let's reset the bus.
25761 		 */
25762 		if (i == SD_NDUMP_RETRIES/2) {
25763 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
25764 			(void) sd_send_polled_RQS(un);
25765 		}
25766 
25767 	}
25768 #if defined(__i386) || defined(__amd64)
25769 	}	/* dma_resid */
25770 #endif
25771 
25772 	scsi_destroy_pkt(wr_pktp);
25773 	mutex_enter(SD_MUTEX(un));
25774 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
25775 		mutex_exit(SD_MUTEX(un));
25776 		scsi_free_consistent_buf(wr_bp);
25777 	} else {
25778 		mutex_exit(SD_MUTEX(un));
25779 	}
25780 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
25781 	return (err);
25782 }
25783 
25784 /*
25785  *    Function: sd_scsi_poll()
25786  *
25787  * Description: This is a wrapper for the scsi_poll call.
25788  *
25789  *   Arguments: sd_lun - The unit structure
25790  *              scsi_pkt - The scsi packet being sent to the device.
25791  *
25792  * Return Code: 0 - Command completed successfully with good status
25793  *             -1 - Command failed.  This could indicate a check condition
25794  *                  or other status value requiring recovery action.
25795  *
25796  */
25797 
25798 static int
25799 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
25800 {
25801 	int status;
25802 
25803 	ASSERT(un != NULL);
25804 	ASSERT(!mutex_owned(SD_MUTEX(un)));
25805 	ASSERT(pktp != NULL);
25806 
25807 	status = SD_SUCCESS;
25808 
25809 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
25810 		pktp->pkt_flags |= un->un_tagflags;
25811 		pktp->pkt_flags &= ~FLAG_NODISCON;
25812 	}
25813 
25814 	status = sd_ddi_scsi_poll(pktp);
25815 	/*
25816 	 * Scsi_poll returns 0 (success) if the command completes and the
25817 	 * status block is STATUS_GOOD.  We should only check errors if this
25818 	 * condition is not true.  Even then we should send our own request
25819 	 * sense packet only if we have a check condition and auto
25820 	 * request sense has not been performed by the hba.
25821 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
25822 	 */
25823 	if ((status != SD_SUCCESS) &&
25824 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
25825 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
25826 	    (pktp->pkt_reason != CMD_DEV_GONE))
25827 		(void) sd_send_polled_RQS(un);
25828 
25829 	return (status);
25830 }
25831 
25832 /*
25833  *    Function: sd_send_polled_RQS()
25834  *
25835  * Description: This sends the request sense command to a device.
25836  *
25837  *   Arguments: sd_lun - The unit structure
25838  *
25839  * Return Code: 0 - Command completed successfully with good status
25840  *             -1 - Command failed.
25841  *
25842  */
25843 
25844 static int
25845 sd_send_polled_RQS(struct sd_lun *un)
25846 {
25847 	int	ret_val;
25848 	struct	scsi_pkt	*rqs_pktp;
25849 	struct	buf		*rqs_bp;
25850 
25851 	ASSERT(un != NULL);
25852 	ASSERT(!mutex_owned(SD_MUTEX(un)));
25853 
25854 	ret_val = SD_SUCCESS;
25855 
25856 	rqs_pktp = un->un_rqs_pktp;
25857 	rqs_bp	 = un->un_rqs_bp;
25858 
25859 	mutex_enter(SD_MUTEX(un));
25860 
25861 	if (un->un_sense_isbusy) {
25862 		ret_val = SD_FAILURE;
25863 		mutex_exit(SD_MUTEX(un));
25864 		return (ret_val);
25865 	}
25866 
25867 	/*
25868 	 * If the request sense buffer (and packet) is not in use,
25869 	 * let's set the un_sense_isbusy and send our packet
25870 	 */
25871 	un->un_sense_isbusy 	= 1;
25872 	rqs_pktp->pkt_resid  	= 0;
25873 	rqs_pktp->pkt_reason 	= 0;
25874 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
25875 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
25876 
25877 	mutex_exit(SD_MUTEX(un));
25878 
25879 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
25880 	    " 0x%p\n", rqs_bp->b_un.b_addr);
25881 
25882 	/*
25883 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
25884 	 * axle - it has a call into us!
25885 	 */
25886 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
25887 		SD_INFO(SD_LOG_COMMON, un,
25888 		    "sd_send_polled_RQS: RQS failed\n");
25889 	}
25890 
25891 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
25892 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
25893 
25894 	mutex_enter(SD_MUTEX(un));
25895 	un->un_sense_isbusy = 0;
25896 	mutex_exit(SD_MUTEX(un));
25897 
25898 	return (ret_val);
25899 }
25900 
25901 /*
25902  * Defines needed for localized version of the scsi_poll routine.
25903  */
25904 #define	SD_CSEC		10000			/* usecs */
25905 #define	SD_SEC_TO_CSEC	(1000000/SD_CSEC)
25906 
25907 
25908 /*
25909  *    Function: sd_ddi_scsi_poll()
25910  *
25911  * Description: Localized version of the scsi_poll routine.  The purpose is to
25912  *		send a scsi_pkt to a device as a polled command.  This version
25913  *		is to ensure more robust handling of transport errors.
25914  *		Specifically this routine cures not ready, coming ready
25915  *		transition for power up and reset of sonoma's.  This can take
25916  *		up to 45 seconds for power-on and 20 seconds for reset of a
25917  * 		sonoma lun.
25918  *
25919  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
25920  *
25921  * Return Code: 0 - Command completed successfully with good status
25922  *             -1 - Command failed.
25923  *
25924  */
25925 
25926 static int
25927 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
25928 {
25929 	int busy_count;
25930 	int timeout;
25931 	int rval = SD_FAILURE;
25932 	int savef;
25933 	struct scsi_extended_sense *sensep;
25934 	long savet;
25935 	void (*savec)();
25936 	/*
25937 	 * The following is defined in machdep.c and is used in determining if
25938 	 * the scsi transport system will do polled I/O instead of interrupt
25939 	 * I/O when called from xx_dump().
25940 	 */
25941 	extern int do_polled_io;
25942 
25943 	/*
25944 	 * save old flags in pkt, to restore at end
25945 	 */
25946 	savef = pkt->pkt_flags;
25947 	savec = pkt->pkt_comp;
25948 	savet = pkt->pkt_time;
25949 
25950 	pkt->pkt_flags |= FLAG_NOINTR;
25951 
25952 	/*
25953 	 * XXX there is nothing in the SCSA spec that states that we should not
25954 	 * do a callback for polled cmds; however, removing this will break sd
25955 	 * and probably other target drivers
25956 	 */
25957 	pkt->pkt_comp = NULL;
25958 
25959 	/*
25960 	 * we don't like a polled command without timeout.
25961 	 * 60 seconds seems long enough.
25962 	 */
25963 	if (pkt->pkt_time == 0) {
25964 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
25965 	}
25966 
25967 	/*
25968 	 * Send polled cmd.
25969 	 *
25970 	 * We do some error recovery for various errors.  Tran_busy,
25971 	 * queue full, and non-dispatched commands are retried every 10 msec.
25972 	 * as they are typically transient failures.  Busy status and Not
25973 	 * Ready are retried every second as this status takes a while to
25974 	 * change.  Unit attention is retried for pkt_time (60) times
25975 	 * with no delay.
25976 	 */
25977 	timeout = pkt->pkt_time * SD_SEC_TO_CSEC;
25978 
25979 	for (busy_count = 0; busy_count < timeout; busy_count++) {
25980 		int rc;
25981 		int poll_delay;
25982 
25983 		/*
25984 		 * Initialize pkt status variables.
25985 		 */
25986 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
25987 
25988 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
25989 			if (rc != TRAN_BUSY) {
25990 				/* Transport failed - give up. */
25991 				break;
25992 			} else {
25993 				/* Transport busy - try again. */
25994 				poll_delay = 1 * SD_CSEC; /* 10 msec */
25995 			}
25996 		} else {
25997 			/*
25998 			 * Transport accepted - check pkt status.
25999 			 */
26000 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
26001 			if (pkt->pkt_reason == CMD_CMPLT &&
26002 			    rc == STATUS_CHECK &&
26003 			    pkt->pkt_state & STATE_ARQ_DONE) {
26004 				struct scsi_arq_status *arqstat =
26005 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
26006 
26007 				sensep = &arqstat->sts_sensedata;
26008 			} else {
26009 				sensep = NULL;
26010 			}
26011 
26012 			if ((pkt->pkt_reason == CMD_CMPLT) &&
26013 			    (rc == STATUS_GOOD)) {
26014 				/* No error - we're done */
26015 				rval = SD_SUCCESS;
26016 				break;
26017 
26018 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
26019 				/* Lost connection - give up */
26020 				break;
26021 
26022 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
26023 			    (pkt->pkt_state == 0)) {
26024 				/* Pkt not dispatched - try again. */
26025 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
26026 
26027 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26028 			    (rc == STATUS_QFULL)) {
26029 				/* Queue full - try again. */
26030 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
26031 
26032 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26033 			    (rc == STATUS_BUSY)) {
26034 				/* Busy - try again. */
26035 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
26036 				busy_count += (SD_SEC_TO_CSEC - 1);
26037 
26038 			} else if ((sensep != NULL) &&
26039 			    (sensep->es_key == KEY_UNIT_ATTENTION)) {
26040 				/* Unit Attention - try again */
26041 				busy_count += (SD_SEC_TO_CSEC - 1); /* 1 */
26042 				continue;
26043 
26044 			} else if ((sensep != NULL) &&
26045 			    (sensep->es_key == KEY_NOT_READY) &&
26046 			    (sensep->es_add_code == 0x04) &&
26047 			    (sensep->es_qual_code == 0x01)) {
26048 				/* Not ready -> ready - try again. */
26049 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
26050 				busy_count += (SD_SEC_TO_CSEC - 1);
26051 
26052 			} else {
26053 				/* BAD status - give up. */
26054 				break;
26055 			}
26056 		}
26057 
26058 		if ((curthread->t_flag & T_INTR_THREAD) == 0 &&
26059 		    !do_polled_io) {
26060 			delay(drv_usectohz(poll_delay));
26061 		} else {
26062 			/* we busy wait during cpr_dump or interrupt threads */
26063 			drv_usecwait(poll_delay);
26064 		}
26065 	}
26066 
26067 	pkt->pkt_flags = savef;
26068 	pkt->pkt_comp = savec;
26069 	pkt->pkt_time = savet;
26070 	return (rval);
26071 }
26072 
26073 
26074 /*
26075  *    Function: sd_persistent_reservation_in_read_keys
26076  *
26077  * Description: This routine is the driver entry point for handling CD-ROM
26078  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
26079  *		by sending the SCSI-3 PRIN commands to the device.
26080  *		Processes the read keys command response by copying the
26081  *		reservation key information into the user provided buffer.
26082  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
26083  *
26084  *   Arguments: un   -  Pointer to soft state struct for the target.
26085  *		usrp -	user provided pointer to multihost Persistent In Read
26086  *			Keys structure (mhioc_inkeys_t)
26087  *		flag -	this argument is a pass through to ddi_copyxxx()
26088  *			directly from the mode argument of ioctl().
26089  *
26090  * Return Code: 0   - Success
26091  *		EACCES
26092  *		ENOTSUP
26093  *		errno return code from sd_send_scsi_cmd()
26094  *
26095  *     Context: Can sleep. Does not return until command is completed.
26096  */
26097 
26098 static int
26099 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
26100     mhioc_inkeys_t *usrp, int flag)
26101 {
26102 #ifdef _MULTI_DATAMODEL
26103 	struct mhioc_key_list32	li32;
26104 #endif
26105 	sd_prin_readkeys_t	*in;
26106 	mhioc_inkeys_t		*ptr;
26107 	mhioc_key_list_t	li;
26108 	uchar_t			*data_bufp;
26109 	int 			data_len;
26110 	int			rval;
26111 	size_t			copysz;
26112 
26113 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
26114 		return (EINVAL);
26115 	}
26116 	bzero(&li, sizeof (mhioc_key_list_t));
26117 
26118 	/*
26119 	 * Get the listsize from user
26120 	 */
26121 #ifdef _MULTI_DATAMODEL
26122 
26123 	switch (ddi_model_convert_from(flag & FMODELS)) {
26124 	case DDI_MODEL_ILP32:
26125 		copysz = sizeof (struct mhioc_key_list32);
26126 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
26127 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26128 			    "sd_persistent_reservation_in_read_keys: "
26129 			    "failed ddi_copyin: mhioc_key_list32_t\n");
26130 			rval = EFAULT;
26131 			goto done;
26132 		}
26133 		li.listsize = li32.listsize;
26134 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
26135 		break;
26136 
26137 	case DDI_MODEL_NONE:
26138 		copysz = sizeof (mhioc_key_list_t);
26139 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26140 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26141 			    "sd_persistent_reservation_in_read_keys: "
26142 			    "failed ddi_copyin: mhioc_key_list_t\n");
26143 			rval = EFAULT;
26144 			goto done;
26145 		}
26146 		break;
26147 	}
26148 
26149 #else /* ! _MULTI_DATAMODEL */
26150 	copysz = sizeof (mhioc_key_list_t);
26151 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26152 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26153 		    "sd_persistent_reservation_in_read_keys: "
26154 		    "failed ddi_copyin: mhioc_key_list_t\n");
26155 		rval = EFAULT;
26156 		goto done;
26157 	}
26158 #endif
26159 
26160 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
26161 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
26162 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26163 
26164 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS,
26165 	    data_len, data_bufp)) != 0) {
26166 		goto done;
26167 	}
26168 	in = (sd_prin_readkeys_t *)data_bufp;
26169 	ptr->generation = BE_32(in->generation);
26170 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
26171 
26172 	/*
26173 	 * Return the min(listsize, listlen) keys
26174 	 */
26175 #ifdef _MULTI_DATAMODEL
26176 
26177 	switch (ddi_model_convert_from(flag & FMODELS)) {
26178 	case DDI_MODEL_ILP32:
26179 		li32.listlen = li.listlen;
26180 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
26181 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26182 			    "sd_persistent_reservation_in_read_keys: "
26183 			    "failed ddi_copyout: mhioc_key_list32_t\n");
26184 			rval = EFAULT;
26185 			goto done;
26186 		}
26187 		break;
26188 
26189 	case DDI_MODEL_NONE:
26190 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26191 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26192 			    "sd_persistent_reservation_in_read_keys: "
26193 			    "failed ddi_copyout: mhioc_key_list_t\n");
26194 			rval = EFAULT;
26195 			goto done;
26196 		}
26197 		break;
26198 	}
26199 
26200 #else /* ! _MULTI_DATAMODEL */
26201 
26202 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26203 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26204 		    "sd_persistent_reservation_in_read_keys: "
26205 		    "failed ddi_copyout: mhioc_key_list_t\n");
26206 		rval = EFAULT;
26207 		goto done;
26208 	}
26209 
26210 #endif /* _MULTI_DATAMODEL */
26211 
26212 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
26213 	    li.listsize * MHIOC_RESV_KEY_SIZE);
26214 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
26215 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26216 		    "sd_persistent_reservation_in_read_keys: "
26217 		    "failed ddi_copyout: keylist\n");
26218 		rval = EFAULT;
26219 	}
26220 done:
26221 	kmem_free(data_bufp, data_len);
26222 	return (rval);
26223 }
26224 
26225 
26226 /*
26227  *    Function: sd_persistent_reservation_in_read_resv
26228  *
26229  * Description: This routine is the driver entry point for handling CD-ROM
26230  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
26231  *		by sending the SCSI-3 PRIN commands to the device.
26232  *		Process the read persistent reservations command response by
26233  *		copying the reservation information into the user provided
26234  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
26235  *
26236  *   Arguments: un   -  Pointer to soft state struct for the target.
26237  *		usrp -	user provided pointer to multihost Persistent In Read
26238  *			Keys structure (mhioc_inkeys_t)
26239  *		flag -	this argument is a pass through to ddi_copyxxx()
26240  *			directly from the mode argument of ioctl().
26241  *
26242  * Return Code: 0   - Success
26243  *		EACCES
26244  *		ENOTSUP
26245  *		errno return code from sd_send_scsi_cmd()
26246  *
26247  *     Context: Can sleep. Does not return until command is completed.
26248  */
26249 
26250 static int
26251 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
26252     mhioc_inresvs_t *usrp, int flag)
26253 {
26254 #ifdef _MULTI_DATAMODEL
26255 	struct mhioc_resv_desc_list32 resvlist32;
26256 #endif
26257 	sd_prin_readresv_t	*in;
26258 	mhioc_inresvs_t		*ptr;
26259 	sd_readresv_desc_t	*readresv_ptr;
26260 	mhioc_resv_desc_list_t	resvlist;
26261 	mhioc_resv_desc_t 	resvdesc;
26262 	uchar_t			*data_bufp;
26263 	int 			data_len;
26264 	int			rval;
26265 	int			i;
26266 	size_t			copysz;
26267 	mhioc_resv_desc_t	*bufp;
26268 
26269 	if ((ptr = usrp) == NULL) {
26270 		return (EINVAL);
26271 	}
26272 
26273 	/*
26274 	 * Get the listsize from user
26275 	 */
26276 #ifdef _MULTI_DATAMODEL
26277 	switch (ddi_model_convert_from(flag & FMODELS)) {
26278 	case DDI_MODEL_ILP32:
26279 		copysz = sizeof (struct mhioc_resv_desc_list32);
26280 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
26281 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26282 			    "sd_persistent_reservation_in_read_resv: "
26283 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26284 			rval = EFAULT;
26285 			goto done;
26286 		}
26287 		resvlist.listsize = resvlist32.listsize;
26288 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
26289 		break;
26290 
26291 	case DDI_MODEL_NONE:
26292 		copysz = sizeof (mhioc_resv_desc_list_t);
26293 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26294 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26295 			    "sd_persistent_reservation_in_read_resv: "
26296 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26297 			rval = EFAULT;
26298 			goto done;
26299 		}
26300 		break;
26301 	}
26302 #else /* ! _MULTI_DATAMODEL */
26303 	copysz = sizeof (mhioc_resv_desc_list_t);
26304 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26305 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26306 		    "sd_persistent_reservation_in_read_resv: "
26307 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26308 		rval = EFAULT;
26309 		goto done;
26310 	}
26311 #endif /* ! _MULTI_DATAMODEL */
26312 
26313 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
26314 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
26315 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26316 
26317 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV,
26318 	    data_len, data_bufp)) != 0) {
26319 		goto done;
26320 	}
26321 	in = (sd_prin_readresv_t *)data_bufp;
26322 	ptr->generation = BE_32(in->generation);
26323 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
26324 
26325 	/*
26326 	 * Return the min(listsize, listlen( keys
26327 	 */
26328 #ifdef _MULTI_DATAMODEL
26329 
26330 	switch (ddi_model_convert_from(flag & FMODELS)) {
26331 	case DDI_MODEL_ILP32:
26332 		resvlist32.listlen = resvlist.listlen;
26333 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
26334 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26335 			    "sd_persistent_reservation_in_read_resv: "
26336 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26337 			rval = EFAULT;
26338 			goto done;
26339 		}
26340 		break;
26341 
26342 	case DDI_MODEL_NONE:
26343 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26344 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26345 			    "sd_persistent_reservation_in_read_resv: "
26346 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26347 			rval = EFAULT;
26348 			goto done;
26349 		}
26350 		break;
26351 	}
26352 
26353 #else /* ! _MULTI_DATAMODEL */
26354 
26355 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26356 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26357 		    "sd_persistent_reservation_in_read_resv: "
26358 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26359 		rval = EFAULT;
26360 		goto done;
26361 	}
26362 
26363 #endif /* ! _MULTI_DATAMODEL */
26364 
26365 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
26366 	bufp = resvlist.list;
26367 	copysz = sizeof (mhioc_resv_desc_t);
26368 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
26369 	    i++, readresv_ptr++, bufp++) {
26370 
26371 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
26372 		    MHIOC_RESV_KEY_SIZE);
26373 		resvdesc.type  = readresv_ptr->type;
26374 		resvdesc.scope = readresv_ptr->scope;
26375 		resvdesc.scope_specific_addr =
26376 		    BE_32(readresv_ptr->scope_specific_addr);
26377 
26378 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
26379 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26380 			    "sd_persistent_reservation_in_read_resv: "
26381 			    "failed ddi_copyout: resvlist\n");
26382 			rval = EFAULT;
26383 			goto done;
26384 		}
26385 	}
26386 done:
26387 	kmem_free(data_bufp, data_len);
26388 	return (rval);
26389 }
26390 
26391 
26392 /*
26393  *    Function: sr_change_blkmode()
26394  *
26395  * Description: This routine is the driver entry point for handling CD-ROM
26396  *		block mode ioctl requests. Support for returning and changing
26397  *		the current block size in use by the device is implemented. The
26398  *		LBA size is changed via a MODE SELECT Block Descriptor.
26399  *
26400  *		This routine issues a mode sense with an allocation length of
26401  *		12 bytes for the mode page header and a single block descriptor.
26402  *
26403  *   Arguments: dev - the device 'dev_t'
26404  *		cmd - the request type; one of CDROMGBLKMODE (get) or
26405  *		      CDROMSBLKMODE (set)
26406  *		data - current block size or requested block size
26407  *		flag - this argument is a pass through to ddi_copyxxx() directly
26408  *		       from the mode argument of ioctl().
26409  *
26410  * Return Code: the code returned by sd_send_scsi_cmd()
26411  *		EINVAL if invalid arguments are provided
26412  *		EFAULT if ddi_copyxxx() fails
26413  *		ENXIO if fail ddi_get_soft_state
26414  *		EIO if invalid mode sense block descriptor length
26415  *
26416  */
26417 
26418 static int
26419 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
26420 {
26421 	struct sd_lun			*un = NULL;
26422 	struct mode_header		*sense_mhp, *select_mhp;
26423 	struct block_descriptor		*sense_desc, *select_desc;
26424 	int				current_bsize;
26425 	int				rval = EINVAL;
26426 	uchar_t				*sense = NULL;
26427 	uchar_t				*select = NULL;
26428 
26429 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
26430 
26431 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26432 		return (ENXIO);
26433 	}
26434 
26435 	/*
26436 	 * The block length is changed via the Mode Select block descriptor, the
26437 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
26438 	 * required as part of this routine. Therefore the mode sense allocation
26439 	 * length is specified to be the length of a mode page header and a
26440 	 * block descriptor.
26441 	 */
26442 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26443 
26444 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
26445 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) {
26446 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26447 		    "sr_change_blkmode: Mode Sense Failed\n");
26448 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26449 		return (rval);
26450 	}
26451 
26452 	/* Check the block descriptor len to handle only 1 block descriptor */
26453 	sense_mhp = (struct mode_header *)sense;
26454 	if ((sense_mhp->bdesc_length == 0) ||
26455 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
26456 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26457 		    "sr_change_blkmode: Mode Sense returned invalid block"
26458 		    " descriptor length\n");
26459 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26460 		return (EIO);
26461 	}
26462 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
26463 	current_bsize = ((sense_desc->blksize_hi << 16) |
26464 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
26465 
26466 	/* Process command */
26467 	switch (cmd) {
26468 	case CDROMGBLKMODE:
26469 		/* Return the block size obtained during the mode sense */
26470 		if (ddi_copyout(&current_bsize, (void *)data,
26471 		    sizeof (int), flag) != 0)
26472 			rval = EFAULT;
26473 		break;
26474 	case CDROMSBLKMODE:
26475 		/* Validate the requested block size */
26476 		switch (data) {
26477 		case CDROM_BLK_512:
26478 		case CDROM_BLK_1024:
26479 		case CDROM_BLK_2048:
26480 		case CDROM_BLK_2056:
26481 		case CDROM_BLK_2336:
26482 		case CDROM_BLK_2340:
26483 		case CDROM_BLK_2352:
26484 		case CDROM_BLK_2368:
26485 		case CDROM_BLK_2448:
26486 		case CDROM_BLK_2646:
26487 		case CDROM_BLK_2647:
26488 			break;
26489 		default:
26490 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26491 			    "sr_change_blkmode: "
26492 			    "Block Size '%ld' Not Supported\n", data);
26493 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26494 			return (EINVAL);
26495 		}
26496 
26497 		/*
26498 		 * The current block size matches the requested block size so
26499 		 * there is no need to send the mode select to change the size
26500 		 */
26501 		if (current_bsize == data) {
26502 			break;
26503 		}
26504 
26505 		/* Build the select data for the requested block size */
26506 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26507 		select_mhp = (struct mode_header *)select;
26508 		select_desc =
26509 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
26510 		/*
26511 		 * The LBA size is changed via the block descriptor, so the
26512 		 * descriptor is built according to the user data
26513 		 */
26514 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
26515 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
26516 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
26517 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
26518 
26519 		/* Send the mode select for the requested block size */
26520 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
26521 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
26522 		    SD_PATH_STANDARD)) != 0) {
26523 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26524 			    "sr_change_blkmode: Mode Select Failed\n");
26525 			/*
26526 			 * The mode select failed for the requested block size,
26527 			 * so reset the data for the original block size and
26528 			 * send it to the target. The error is indicated by the
26529 			 * return value for the failed mode select.
26530 			 */
26531 			select_desc->blksize_hi  = sense_desc->blksize_hi;
26532 			select_desc->blksize_mid = sense_desc->blksize_mid;
26533 			select_desc->blksize_lo  = sense_desc->blksize_lo;
26534 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
26535 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
26536 			    SD_PATH_STANDARD);
26537 		} else {
26538 			ASSERT(!mutex_owned(SD_MUTEX(un)));
26539 			mutex_enter(SD_MUTEX(un));
26540 			sd_update_block_info(un, (uint32_t)data, 0);
26541 
26542 			mutex_exit(SD_MUTEX(un));
26543 		}
26544 		break;
26545 	default:
26546 		/* should not reach here, but check anyway */
26547 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26548 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
26549 		rval = EINVAL;
26550 		break;
26551 	}
26552 
26553 	if (select) {
26554 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
26555 	}
26556 	if (sense) {
26557 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26558 	}
26559 	return (rval);
26560 }
26561 
26562 
26563 /*
26564  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
26565  * implement driver support for getting and setting the CD speed. The command
26566  * set used will be based on the device type. If the device has not been
26567  * identified as MMC the Toshiba vendor specific mode page will be used. If
26568  * the device is MMC but does not support the Real Time Streaming feature
26569  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
26570  * be used to read the speed.
26571  */
26572 
26573 /*
26574  *    Function: sr_change_speed()
26575  *
26576  * Description: This routine is the driver entry point for handling CD-ROM
26577  *		drive speed ioctl requests for devices supporting the Toshiba
26578  *		vendor specific drive speed mode page. Support for returning
26579  *		and changing the current drive speed in use by the device is
26580  *		implemented.
26581  *
26582  *   Arguments: dev - the device 'dev_t'
26583  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
26584  *		      CDROMSDRVSPEED (set)
26585  *		data - current drive speed or requested drive speed
26586  *		flag - this argument is a pass through to ddi_copyxxx() directly
26587  *		       from the mode argument of ioctl().
26588  *
26589  * Return Code: the code returned by sd_send_scsi_cmd()
26590  *		EINVAL if invalid arguments are provided
26591  *		EFAULT if ddi_copyxxx() fails
26592  *		ENXIO if fail ddi_get_soft_state
26593  *		EIO if invalid mode sense block descriptor length
26594  */
26595 
26596 static int
26597 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
26598 {
26599 	struct sd_lun			*un = NULL;
26600 	struct mode_header		*sense_mhp, *select_mhp;
26601 	struct mode_speed		*sense_page, *select_page;
26602 	int				current_speed;
26603 	int				rval = EINVAL;
26604 	int				bd_len;
26605 	uchar_t				*sense = NULL;
26606 	uchar_t				*select = NULL;
26607 
26608 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
26609 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26610 		return (ENXIO);
26611 	}
26612 
26613 	/*
26614 	 * Note: The drive speed is being modified here according to a Toshiba
26615 	 * vendor specific mode page (0x31).
26616 	 */
26617 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
26618 
26619 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
26620 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
26621 	    SD_PATH_STANDARD)) != 0) {
26622 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26623 		    "sr_change_speed: Mode Sense Failed\n");
26624 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
26625 		return (rval);
26626 	}
26627 	sense_mhp  = (struct mode_header *)sense;
26628 
26629 	/* Check the block descriptor len to handle only 1 block descriptor */
26630 	bd_len = sense_mhp->bdesc_length;
26631 	if (bd_len > MODE_BLK_DESC_LENGTH) {
26632 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26633 		    "sr_change_speed: Mode Sense returned invalid block "
26634 		    "descriptor length\n");
26635 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
26636 		return (EIO);
26637 	}
26638 
26639 	sense_page = (struct mode_speed *)
26640 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
26641 	current_speed = sense_page->speed;
26642 
26643 	/* Process command */
26644 	switch (cmd) {
26645 	case CDROMGDRVSPEED:
26646 		/* Return the drive speed obtained during the mode sense */
26647 		if (current_speed == 0x2) {
26648 			current_speed = CDROM_TWELVE_SPEED;
26649 		}
26650 		if (ddi_copyout(&current_speed, (void *)data,
26651 		    sizeof (int), flag) != 0) {
26652 			rval = EFAULT;
26653 		}
26654 		break;
26655 	case CDROMSDRVSPEED:
26656 		/* Validate the requested drive speed */
26657 		switch ((uchar_t)data) {
26658 		case CDROM_TWELVE_SPEED:
26659 			data = 0x2;
26660 			/*FALLTHROUGH*/
26661 		case CDROM_NORMAL_SPEED:
26662 		case CDROM_DOUBLE_SPEED:
26663 		case CDROM_QUAD_SPEED:
26664 		case CDROM_MAXIMUM_SPEED:
26665 			break;
26666 		default:
26667 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26668 			    "sr_change_speed: "
26669 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
26670 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
26671 			return (EINVAL);
26672 		}
26673 
26674 		/*
26675 		 * The current drive speed matches the requested drive speed so
26676 		 * there is no need to send the mode select to change the speed
26677 		 */
26678 		if (current_speed == data) {
26679 			break;
26680 		}
26681 
26682 		/* Build the select data for the requested drive speed */
26683 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
26684 		select_mhp = (struct mode_header *)select;
26685 		select_mhp->bdesc_length = 0;
26686 		select_page =
26687 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
26688 		select_page =
26689 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
26690 		select_page->mode_page.code = CDROM_MODE_SPEED;
26691 		select_page->mode_page.length = 2;
26692 		select_page->speed = (uchar_t)data;
26693 
26694 		/* Send the mode select for the requested block size */
26695 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
26696 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
26697 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
26698 			/*
26699 			 * The mode select failed for the requested drive speed,
26700 			 * so reset the data for the original drive speed and
26701 			 * send it to the target. The error is indicated by the
26702 			 * return value for the failed mode select.
26703 			 */
26704 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26705 			    "sr_drive_speed: Mode Select Failed\n");
26706 			select_page->speed = sense_page->speed;
26707 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
26708 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
26709 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
26710 		}
26711 		break;
26712 	default:
26713 		/* should not reach here, but check anyway */
26714 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26715 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
26716 		rval = EINVAL;
26717 		break;
26718 	}
26719 
26720 	if (select) {
26721 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
26722 	}
26723 	if (sense) {
26724 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
26725 	}
26726 
26727 	return (rval);
26728 }
26729 
26730 
26731 /*
26732  *    Function: sr_atapi_change_speed()
26733  *
26734  * Description: This routine is the driver entry point for handling CD-ROM
26735  *		drive speed ioctl requests for MMC devices that do not support
26736  *		the Real Time Streaming feature (0x107).
26737  *
26738  *		Note: This routine will use the SET SPEED command which may not
26739  *		be supported by all devices.
26740  *
26741  *   Arguments: dev- the device 'dev_t'
26742  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
26743  *		     CDROMSDRVSPEED (set)
26744  *		data- current drive speed or requested drive speed
26745  *		flag- this argument is a pass through to ddi_copyxxx() directly
26746  *		      from the mode argument of ioctl().
26747  *
26748  * Return Code: the code returned by sd_send_scsi_cmd()
26749  *		EINVAL if invalid arguments are provided
26750  *		EFAULT if ddi_copyxxx() fails
26751  *		ENXIO if fail ddi_get_soft_state
26752  *		EIO if invalid mode sense block descriptor length
26753  */
26754 
26755 static int
26756 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
26757 {
26758 	struct sd_lun			*un;
26759 	struct uscsi_cmd		*com = NULL;
26760 	struct mode_header_grp2		*sense_mhp;
26761 	uchar_t				*sense_page;
26762 	uchar_t				*sense = NULL;
26763 	char				cdb[CDB_GROUP5];
26764 	int				bd_len;
26765 	int				current_speed = 0;
26766 	int				max_speed = 0;
26767 	int				rval;
26768 
26769 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
26770 
26771 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26772 		return (ENXIO);
26773 	}
26774 
26775 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
26776 
26777 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
26778 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
26779 	    SD_PATH_STANDARD)) != 0) {
26780 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26781 		    "sr_atapi_change_speed: Mode Sense Failed\n");
26782 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26783 		return (rval);
26784 	}
26785 
26786 	/* Check the block descriptor len to handle only 1 block descriptor */
26787 	sense_mhp = (struct mode_header_grp2 *)sense;
26788 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
26789 	if (bd_len > MODE_BLK_DESC_LENGTH) {
26790 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26791 		    "sr_atapi_change_speed: Mode Sense returned invalid "
26792 		    "block descriptor length\n");
26793 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26794 		return (EIO);
26795 	}
26796 
26797 	/* Calculate the current and maximum drive speeds */
26798 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
26799 	current_speed = (sense_page[14] << 8) | sense_page[15];
26800 	max_speed = (sense_page[8] << 8) | sense_page[9];
26801 
26802 	/* Process the command */
26803 	switch (cmd) {
26804 	case CDROMGDRVSPEED:
26805 		current_speed /= SD_SPEED_1X;
26806 		if (ddi_copyout(&current_speed, (void *)data,
26807 		    sizeof (int), flag) != 0)
26808 			rval = EFAULT;
26809 		break;
26810 	case CDROMSDRVSPEED:
26811 		/* Convert the speed code to KB/sec */
26812 		switch ((uchar_t)data) {
26813 		case CDROM_NORMAL_SPEED:
26814 			current_speed = SD_SPEED_1X;
26815 			break;
26816 		case CDROM_DOUBLE_SPEED:
26817 			current_speed = 2 * SD_SPEED_1X;
26818 			break;
26819 		case CDROM_QUAD_SPEED:
26820 			current_speed = 4 * SD_SPEED_1X;
26821 			break;
26822 		case CDROM_TWELVE_SPEED:
26823 			current_speed = 12 * SD_SPEED_1X;
26824 			break;
26825 		case CDROM_MAXIMUM_SPEED:
26826 			current_speed = 0xffff;
26827 			break;
26828 		default:
26829 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26830 			    "sr_atapi_change_speed: invalid drive speed %d\n",
26831 			    (uchar_t)data);
26832 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26833 			return (EINVAL);
26834 		}
26835 
26836 		/* Check the request against the drive's max speed. */
26837 		if (current_speed != 0xffff) {
26838 			if (current_speed > max_speed) {
26839 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26840 				return (EINVAL);
26841 			}
26842 		}
26843 
26844 		/*
26845 		 * Build and send the SET SPEED command
26846 		 *
26847 		 * Note: The SET SPEED (0xBB) command used in this routine is
26848 		 * obsolete per the SCSI MMC spec but still supported in the
26849 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
26850 		 * therefore the command is still implemented in this routine.
26851 		 */
26852 		bzero(cdb, sizeof (cdb));
26853 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
26854 		cdb[2] = (uchar_t)(current_speed >> 8);
26855 		cdb[3] = (uchar_t)current_speed;
26856 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26857 		com->uscsi_cdb	   = (caddr_t)cdb;
26858 		com->uscsi_cdblen  = CDB_GROUP5;
26859 		com->uscsi_bufaddr = NULL;
26860 		com->uscsi_buflen  = 0;
26861 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
26862 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, 0,
26863 		    UIO_SYSSPACE, SD_PATH_STANDARD);
26864 		break;
26865 	default:
26866 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26867 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
26868 		rval = EINVAL;
26869 	}
26870 
26871 	if (sense) {
26872 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26873 	}
26874 	if (com) {
26875 		kmem_free(com, sizeof (*com));
26876 	}
26877 	return (rval);
26878 }
26879 
26880 
26881 /*
26882  *    Function: sr_pause_resume()
26883  *
26884  * Description: This routine is the driver entry point for handling CD-ROM
26885  *		pause/resume ioctl requests. This only affects the audio play
26886  *		operation.
26887  *
26888  *   Arguments: dev - the device 'dev_t'
26889  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
26890  *		      for setting the resume bit of the cdb.
26891  *
26892  * Return Code: the code returned by sd_send_scsi_cmd()
26893  *		EINVAL if invalid mode specified
26894  *
26895  */
26896 
26897 static int
26898 sr_pause_resume(dev_t dev, int cmd)
26899 {
26900 	struct sd_lun		*un;
26901 	struct uscsi_cmd	*com;
26902 	char			cdb[CDB_GROUP1];
26903 	int			rval;
26904 
26905 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26906 		return (ENXIO);
26907 	}
26908 
26909 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26910 	bzero(cdb, CDB_GROUP1);
26911 	cdb[0] = SCMD_PAUSE_RESUME;
26912 	switch (cmd) {
26913 	case CDROMRESUME:
26914 		cdb[8] = 1;
26915 		break;
26916 	case CDROMPAUSE:
26917 		cdb[8] = 0;
26918 		break;
26919 	default:
26920 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
26921 		    " Command '%x' Not Supported\n", cmd);
26922 		rval = EINVAL;
26923 		goto done;
26924 	}
26925 
26926 	com->uscsi_cdb    = cdb;
26927 	com->uscsi_cdblen = CDB_GROUP1;
26928 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
26929 
26930 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
26931 	    UIO_SYSSPACE, SD_PATH_STANDARD);
26932 
26933 done:
26934 	kmem_free(com, sizeof (*com));
26935 	return (rval);
26936 }
26937 
26938 
26939 /*
26940  *    Function: sr_play_msf()
26941  *
26942  * Description: This routine is the driver entry point for handling CD-ROM
26943  *		ioctl requests to output the audio signals at the specified
26944  *		starting address and continue the audio play until the specified
26945  *		ending address (CDROMPLAYMSF) The address is in Minute Second
26946  *		Frame (MSF) format.
26947  *
26948  *   Arguments: dev	- the device 'dev_t'
26949  *		data	- pointer to user provided audio msf structure,
26950  *		          specifying start/end addresses.
26951  *		flag	- this argument is a pass through to ddi_copyxxx()
26952  *		          directly from the mode argument of ioctl().
26953  *
26954  * Return Code: the code returned by sd_send_scsi_cmd()
26955  *		EFAULT if ddi_copyxxx() fails
26956  *		ENXIO if fail ddi_get_soft_state
26957  *		EINVAL if data pointer is NULL
26958  */
26959 
26960 static int
26961 sr_play_msf(dev_t dev, caddr_t data, int flag)
26962 {
26963 	struct sd_lun		*un;
26964 	struct uscsi_cmd	*com;
26965 	struct cdrom_msf	msf_struct;
26966 	struct cdrom_msf	*msf = &msf_struct;
26967 	char			cdb[CDB_GROUP1];
26968 	int			rval;
26969 
26970 	if (data == NULL) {
26971 		return (EINVAL);
26972 	}
26973 
26974 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26975 		return (ENXIO);
26976 	}
26977 
26978 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
26979 		return (EFAULT);
26980 	}
26981 
26982 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26983 	bzero(cdb, CDB_GROUP1);
26984 	cdb[0] = SCMD_PLAYAUDIO_MSF;
26985 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
26986 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
26987 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
26988 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
26989 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
26990 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
26991 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
26992 	} else {
26993 		cdb[3] = msf->cdmsf_min0;
26994 		cdb[4] = msf->cdmsf_sec0;
26995 		cdb[5] = msf->cdmsf_frame0;
26996 		cdb[6] = msf->cdmsf_min1;
26997 		cdb[7] = msf->cdmsf_sec1;
26998 		cdb[8] = msf->cdmsf_frame1;
26999 	}
27000 	com->uscsi_cdb    = cdb;
27001 	com->uscsi_cdblen = CDB_GROUP1;
27002 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27003 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27004 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27005 	kmem_free(com, sizeof (*com));
27006 	return (rval);
27007 }
27008 
27009 
27010 /*
27011  *    Function: sr_play_trkind()
27012  *
27013  * Description: This routine is the driver entry point for handling CD-ROM
27014  *		ioctl requests to output the audio signals at the specified
27015  *		starting address and continue the audio play until the specified
27016  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
27017  *		format.
27018  *
27019  *   Arguments: dev	- the device 'dev_t'
27020  *		data	- pointer to user provided audio track/index structure,
27021  *		          specifying start/end addresses.
27022  *		flag	- this argument is a pass through to ddi_copyxxx()
27023  *		          directly from the mode argument of ioctl().
27024  *
27025  * Return Code: the code returned by sd_send_scsi_cmd()
27026  *		EFAULT if ddi_copyxxx() fails
27027  *		ENXIO if fail ddi_get_soft_state
27028  *		EINVAL if data pointer is NULL
27029  */
27030 
27031 static int
27032 sr_play_trkind(dev_t dev, caddr_t data, int flag)
27033 {
27034 	struct cdrom_ti		ti_struct;
27035 	struct cdrom_ti		*ti = &ti_struct;
27036 	struct uscsi_cmd	*com = NULL;
27037 	char			cdb[CDB_GROUP1];
27038 	int			rval;
27039 
27040 	if (data == NULL) {
27041 		return (EINVAL);
27042 	}
27043 
27044 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
27045 		return (EFAULT);
27046 	}
27047 
27048 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27049 	bzero(cdb, CDB_GROUP1);
27050 	cdb[0] = SCMD_PLAYAUDIO_TI;
27051 	cdb[4] = ti->cdti_trk0;
27052 	cdb[5] = ti->cdti_ind0;
27053 	cdb[7] = ti->cdti_trk1;
27054 	cdb[8] = ti->cdti_ind1;
27055 	com->uscsi_cdb    = cdb;
27056 	com->uscsi_cdblen = CDB_GROUP1;
27057 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27058 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27059 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27060 	kmem_free(com, sizeof (*com));
27061 	return (rval);
27062 }
27063 
27064 
27065 /*
27066  *    Function: sr_read_all_subcodes()
27067  *
27068  * Description: This routine is the driver entry point for handling CD-ROM
27069  *		ioctl requests to return raw subcode data while the target is
27070  *		playing audio (CDROMSUBCODE).
27071  *
27072  *   Arguments: dev	- the device 'dev_t'
27073  *		data	- pointer to user provided cdrom subcode structure,
27074  *		          specifying the transfer length and address.
27075  *		flag	- this argument is a pass through to ddi_copyxxx()
27076  *		          directly from the mode argument of ioctl().
27077  *
27078  * Return Code: the code returned by sd_send_scsi_cmd()
27079  *		EFAULT if ddi_copyxxx() fails
27080  *		ENXIO if fail ddi_get_soft_state
27081  *		EINVAL if data pointer is NULL
27082  */
27083 
27084 static int
27085 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
27086 {
27087 	struct sd_lun		*un = NULL;
27088 	struct uscsi_cmd	*com = NULL;
27089 	struct cdrom_subcode	*subcode = NULL;
27090 	int			rval;
27091 	size_t			buflen;
27092 	char			cdb[CDB_GROUP5];
27093 
27094 #ifdef _MULTI_DATAMODEL
27095 	/* To support ILP32 applications in an LP64 world */
27096 	struct cdrom_subcode32		cdrom_subcode32;
27097 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
27098 #endif
27099 	if (data == NULL) {
27100 		return (EINVAL);
27101 	}
27102 
27103 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27104 		return (ENXIO);
27105 	}
27106 
27107 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
27108 
27109 #ifdef _MULTI_DATAMODEL
27110 	switch (ddi_model_convert_from(flag & FMODELS)) {
27111 	case DDI_MODEL_ILP32:
27112 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
27113 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27114 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27115 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27116 			return (EFAULT);
27117 		}
27118 		/* Convert the ILP32 uscsi data from the application to LP64 */
27119 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
27120 		break;
27121 	case DDI_MODEL_NONE:
27122 		if (ddi_copyin(data, subcode,
27123 		    sizeof (struct cdrom_subcode), flag)) {
27124 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27125 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27126 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27127 			return (EFAULT);
27128 		}
27129 		break;
27130 	}
27131 #else /* ! _MULTI_DATAMODEL */
27132 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
27133 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27134 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
27135 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27136 		return (EFAULT);
27137 	}
27138 #endif /* _MULTI_DATAMODEL */
27139 
27140 	/*
27141 	 * Since MMC-2 expects max 3 bytes for length, check if the
27142 	 * length input is greater than 3 bytes
27143 	 */
27144 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
27145 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27146 		    "sr_read_all_subcodes: "
27147 		    "cdrom transfer length too large: %d (limit %d)\n",
27148 		    subcode->cdsc_length, 0xFFFFFF);
27149 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27150 		return (EINVAL);
27151 	}
27152 
27153 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
27154 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27155 	bzero(cdb, CDB_GROUP5);
27156 
27157 	if (un->un_f_mmc_cap == TRUE) {
27158 		cdb[0] = (char)SCMD_READ_CD;
27159 		cdb[2] = (char)0xff;
27160 		cdb[3] = (char)0xff;
27161 		cdb[4] = (char)0xff;
27162 		cdb[5] = (char)0xff;
27163 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27164 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27165 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
27166 		cdb[10] = 1;
27167 	} else {
27168 		/*
27169 		 * Note: A vendor specific command (0xDF) is being used her to
27170 		 * request a read of all subcodes.
27171 		 */
27172 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
27173 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
27174 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27175 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27176 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
27177 	}
27178 	com->uscsi_cdb	   = cdb;
27179 	com->uscsi_cdblen  = CDB_GROUP5;
27180 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
27181 	com->uscsi_buflen  = buflen;
27182 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27183 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
27184 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27185 	kmem_free(subcode, sizeof (struct cdrom_subcode));
27186 	kmem_free(com, sizeof (*com));
27187 	return (rval);
27188 }
27189 
27190 
27191 /*
27192  *    Function: sr_read_subchannel()
27193  *
27194  * Description: This routine is the driver entry point for handling CD-ROM
27195  *		ioctl requests to return the Q sub-channel data of the CD
27196  *		current position block. (CDROMSUBCHNL) The data includes the
27197  *		track number, index number, absolute CD-ROM address (LBA or MSF
27198  *		format per the user) , track relative CD-ROM address (LBA or MSF
27199  *		format per the user), control data and audio status.
27200  *
27201  *   Arguments: dev	- the device 'dev_t'
27202  *		data	- pointer to user provided cdrom sub-channel structure
27203  *		flag	- this argument is a pass through to ddi_copyxxx()
27204  *		          directly from the mode argument of ioctl().
27205  *
27206  * Return Code: the code returned by sd_send_scsi_cmd()
27207  *		EFAULT if ddi_copyxxx() fails
27208  *		ENXIO if fail ddi_get_soft_state
27209  *		EINVAL if data pointer is NULL
27210  */
27211 
27212 static int
27213 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
27214 {
27215 	struct sd_lun		*un;
27216 	struct uscsi_cmd	*com;
27217 	struct cdrom_subchnl	subchanel;
27218 	struct cdrom_subchnl	*subchnl = &subchanel;
27219 	char			cdb[CDB_GROUP1];
27220 	caddr_t			buffer;
27221 	int			rval;
27222 
27223 	if (data == NULL) {
27224 		return (EINVAL);
27225 	}
27226 
27227 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27228 	    (un->un_state == SD_STATE_OFFLINE)) {
27229 		return (ENXIO);
27230 	}
27231 
27232 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
27233 		return (EFAULT);
27234 	}
27235 
27236 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
27237 	bzero(cdb, CDB_GROUP1);
27238 	cdb[0] = SCMD_READ_SUBCHANNEL;
27239 	/* Set the MSF bit based on the user requested address format */
27240 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
27241 	/*
27242 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
27243 	 * returned
27244 	 */
27245 	cdb[2] = 0x40;
27246 	/*
27247 	 * Set byte 3 to specify the return data format. A value of 0x01
27248 	 * indicates that the CD-ROM current position should be returned.
27249 	 */
27250 	cdb[3] = 0x01;
27251 	cdb[8] = 0x10;
27252 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27253 	com->uscsi_cdb	   = cdb;
27254 	com->uscsi_cdblen  = CDB_GROUP1;
27255 	com->uscsi_bufaddr = buffer;
27256 	com->uscsi_buflen  = 16;
27257 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27258 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27259 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27260 	if (rval != 0) {
27261 		kmem_free(buffer, 16);
27262 		kmem_free(com, sizeof (*com));
27263 		return (rval);
27264 	}
27265 
27266 	/* Process the returned Q sub-channel data */
27267 	subchnl->cdsc_audiostatus = buffer[1];
27268 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
27269 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
27270 	subchnl->cdsc_trk	= buffer[6];
27271 	subchnl->cdsc_ind	= buffer[7];
27272 	if (subchnl->cdsc_format & CDROM_LBA) {
27273 		subchnl->cdsc_absaddr.lba =
27274 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27275 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27276 		subchnl->cdsc_reladdr.lba =
27277 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
27278 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
27279 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
27280 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
27281 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
27282 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
27283 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
27284 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
27285 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
27286 	} else {
27287 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
27288 		subchnl->cdsc_absaddr.msf.second = buffer[10];
27289 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
27290 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
27291 		subchnl->cdsc_reladdr.msf.second = buffer[14];
27292 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
27293 	}
27294 	kmem_free(buffer, 16);
27295 	kmem_free(com, sizeof (*com));
27296 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
27297 	    != 0) {
27298 		return (EFAULT);
27299 	}
27300 	return (rval);
27301 }
27302 
27303 
27304 /*
27305  *    Function: sr_read_tocentry()
27306  *
27307  * Description: This routine is the driver entry point for handling CD-ROM
27308  *		ioctl requests to read from the Table of Contents (TOC)
27309  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
27310  *		fields, the starting address (LBA or MSF format per the user)
27311  *		and the data mode if the user specified track is a data track.
27312  *
27313  *		Note: The READ HEADER (0x44) command used in this routine is
27314  *		obsolete per the SCSI MMC spec but still supported in the
27315  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27316  *		therefore the command is still implemented in this routine.
27317  *
27318  *   Arguments: dev	- the device 'dev_t'
27319  *		data	- pointer to user provided toc entry structure,
27320  *			  specifying the track # and the address format
27321  *			  (LBA or MSF).
27322  *		flag	- this argument is a pass through to ddi_copyxxx()
27323  *		          directly from the mode argument of ioctl().
27324  *
27325  * Return Code: the code returned by sd_send_scsi_cmd()
27326  *		EFAULT if ddi_copyxxx() fails
27327  *		ENXIO if fail ddi_get_soft_state
27328  *		EINVAL if data pointer is NULL
27329  */
27330 
27331 static int
27332 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
27333 {
27334 	struct sd_lun		*un = NULL;
27335 	struct uscsi_cmd	*com;
27336 	struct cdrom_tocentry	toc_entry;
27337 	struct cdrom_tocentry	*entry = &toc_entry;
27338 	caddr_t			buffer;
27339 	int			rval;
27340 	char			cdb[CDB_GROUP1];
27341 
27342 	if (data == NULL) {
27343 		return (EINVAL);
27344 	}
27345 
27346 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27347 	    (un->un_state == SD_STATE_OFFLINE)) {
27348 		return (ENXIO);
27349 	}
27350 
27351 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
27352 		return (EFAULT);
27353 	}
27354 
27355 	/* Validate the requested track and address format */
27356 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
27357 		return (EINVAL);
27358 	}
27359 
27360 	if (entry->cdte_track == 0) {
27361 		return (EINVAL);
27362 	}
27363 
27364 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
27365 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27366 	bzero(cdb, CDB_GROUP1);
27367 
27368 	cdb[0] = SCMD_READ_TOC;
27369 	/* Set the MSF bit based on the user requested address format  */
27370 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
27371 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
27372 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
27373 	} else {
27374 		cdb[6] = entry->cdte_track;
27375 	}
27376 
27377 	/*
27378 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
27379 	 * (4 byte TOC response header + 8 byte track descriptor)
27380 	 */
27381 	cdb[8] = 12;
27382 	com->uscsi_cdb	   = cdb;
27383 	com->uscsi_cdblen  = CDB_GROUP1;
27384 	com->uscsi_bufaddr = buffer;
27385 	com->uscsi_buflen  = 0x0C;
27386 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
27387 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27388 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27389 	if (rval != 0) {
27390 		kmem_free(buffer, 12);
27391 		kmem_free(com, sizeof (*com));
27392 		return (rval);
27393 	}
27394 
27395 	/* Process the toc entry */
27396 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
27397 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
27398 	if (entry->cdte_format & CDROM_LBA) {
27399 		entry->cdte_addr.lba =
27400 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27401 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27402 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
27403 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
27404 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
27405 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
27406 		/*
27407 		 * Send a READ TOC command using the LBA address format to get
27408 		 * the LBA for the track requested so it can be used in the
27409 		 * READ HEADER request
27410 		 *
27411 		 * Note: The MSF bit of the READ HEADER command specifies the
27412 		 * output format. The block address specified in that command
27413 		 * must be in LBA format.
27414 		 */
27415 		cdb[1] = 0;
27416 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27417 		    UIO_SYSSPACE, SD_PATH_STANDARD);
27418 		if (rval != 0) {
27419 			kmem_free(buffer, 12);
27420 			kmem_free(com, sizeof (*com));
27421 			return (rval);
27422 		}
27423 	} else {
27424 		entry->cdte_addr.msf.minute	= buffer[9];
27425 		entry->cdte_addr.msf.second	= buffer[10];
27426 		entry->cdte_addr.msf.frame	= buffer[11];
27427 		/*
27428 		 * Send a READ TOC command using the LBA address format to get
27429 		 * the LBA for the track requested so it can be used in the
27430 		 * READ HEADER request
27431 		 *
27432 		 * Note: The MSF bit of the READ HEADER command specifies the
27433 		 * output format. The block address specified in that command
27434 		 * must be in LBA format.
27435 		 */
27436 		cdb[1] = 0;
27437 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27438 		    UIO_SYSSPACE, SD_PATH_STANDARD);
27439 		if (rval != 0) {
27440 			kmem_free(buffer, 12);
27441 			kmem_free(com, sizeof (*com));
27442 			return (rval);
27443 		}
27444 	}
27445 
27446 	/*
27447 	 * Build and send the READ HEADER command to determine the data mode of
27448 	 * the user specified track.
27449 	 */
27450 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
27451 	    (entry->cdte_track != CDROM_LEADOUT)) {
27452 		bzero(cdb, CDB_GROUP1);
27453 		cdb[0] = SCMD_READ_HEADER;
27454 		cdb[2] = buffer[8];
27455 		cdb[3] = buffer[9];
27456 		cdb[4] = buffer[10];
27457 		cdb[5] = buffer[11];
27458 		cdb[8] = 0x08;
27459 		com->uscsi_buflen = 0x08;
27460 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27461 		    UIO_SYSSPACE, SD_PATH_STANDARD);
27462 		if (rval == 0) {
27463 			entry->cdte_datamode = buffer[0];
27464 		} else {
27465 			/*
27466 			 * READ HEADER command failed, since this is
27467 			 * obsoleted in one spec, its better to return
27468 			 * -1 for an invlid track so that we can still
27469 			 * recieve the rest of the TOC data.
27470 			 */
27471 			entry->cdte_datamode = (uchar_t)-1;
27472 		}
27473 	} else {
27474 		entry->cdte_datamode = (uchar_t)-1;
27475 	}
27476 
27477 	kmem_free(buffer, 12);
27478 	kmem_free(com, sizeof (*com));
27479 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
27480 		return (EFAULT);
27481 
27482 	return (rval);
27483 }
27484 
27485 
27486 /*
27487  *    Function: sr_read_tochdr()
27488  *
27489  * Description: This routine is the driver entry point for handling CD-ROM
27490  * 		ioctl requests to read the Table of Contents (TOC) header
27491  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
27492  *		and ending track numbers
27493  *
27494  *   Arguments: dev	- the device 'dev_t'
27495  *		data	- pointer to user provided toc header structure,
27496  *			  specifying the starting and ending track numbers.
27497  *		flag	- this argument is a pass through to ddi_copyxxx()
27498  *			  directly from the mode argument of ioctl().
27499  *
27500  * Return Code: the code returned by sd_send_scsi_cmd()
27501  *		EFAULT if ddi_copyxxx() fails
27502  *		ENXIO if fail ddi_get_soft_state
27503  *		EINVAL if data pointer is NULL
27504  */
27505 
27506 static int
27507 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
27508 {
27509 	struct sd_lun		*un;
27510 	struct uscsi_cmd	*com;
27511 	struct cdrom_tochdr	toc_header;
27512 	struct cdrom_tochdr	*hdr = &toc_header;
27513 	char			cdb[CDB_GROUP1];
27514 	int			rval;
27515 	caddr_t			buffer;
27516 
27517 	if (data == NULL) {
27518 		return (EINVAL);
27519 	}
27520 
27521 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27522 	    (un->un_state == SD_STATE_OFFLINE)) {
27523 		return (ENXIO);
27524 	}
27525 
27526 	buffer = kmem_zalloc(4, KM_SLEEP);
27527 	bzero(cdb, CDB_GROUP1);
27528 	cdb[0] = SCMD_READ_TOC;
27529 	/*
27530 	 * Specifying a track number of 0x00 in the READ TOC command indicates
27531 	 * that the TOC header should be returned
27532 	 */
27533 	cdb[6] = 0x00;
27534 	/*
27535 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
27536 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
27537 	 */
27538 	cdb[8] = 0x04;
27539 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27540 	com->uscsi_cdb	   = cdb;
27541 	com->uscsi_cdblen  = CDB_GROUP1;
27542 	com->uscsi_bufaddr = buffer;
27543 	com->uscsi_buflen  = 0x04;
27544 	com->uscsi_timeout = 300;
27545 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27546 
27547 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27548 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27549 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
27550 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
27551 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
27552 	} else {
27553 		hdr->cdth_trk0 = buffer[2];
27554 		hdr->cdth_trk1 = buffer[3];
27555 	}
27556 	kmem_free(buffer, 4);
27557 	kmem_free(com, sizeof (*com));
27558 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
27559 		return (EFAULT);
27560 	}
27561 	return (rval);
27562 }
27563 
27564 
27565 /*
27566  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
27567  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
27568  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
27569  * digital audio and extended architecture digital audio. These modes are
27570  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
27571  * MMC specs.
27572  *
27573  * In addition to support for the various data formats these routines also
27574  * include support for devices that implement only the direct access READ
27575  * commands (0x08, 0x28), devices that implement the READ_CD commands
27576  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
27577  * READ CDXA commands (0xD8, 0xDB)
27578  */
27579 
27580 /*
27581  *    Function: sr_read_mode1()
27582  *
27583  * Description: This routine is the driver entry point for handling CD-ROM
27584  *		ioctl read mode1 requests (CDROMREADMODE1).
27585  *
27586  *   Arguments: dev	- the device 'dev_t'
27587  *		data	- pointer to user provided cd read structure specifying
27588  *			  the lba buffer address and length.
27589  *		flag	- this argument is a pass through to ddi_copyxxx()
27590  *			  directly from the mode argument of ioctl().
27591  *
27592  * Return Code: the code returned by sd_send_scsi_cmd()
27593  *		EFAULT if ddi_copyxxx() fails
27594  *		ENXIO if fail ddi_get_soft_state
27595  *		EINVAL if data pointer is NULL
27596  */
27597 
27598 static int
27599 sr_read_mode1(dev_t dev, caddr_t data, int flag)
27600 {
27601 	struct sd_lun		*un;
27602 	struct cdrom_read	mode1_struct;
27603 	struct cdrom_read	*mode1 = &mode1_struct;
27604 	int			rval;
27605 #ifdef _MULTI_DATAMODEL
27606 	/* To support ILP32 applications in an LP64 world */
27607 	struct cdrom_read32	cdrom_read32;
27608 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
27609 #endif /* _MULTI_DATAMODEL */
27610 
27611 	if (data == NULL) {
27612 		return (EINVAL);
27613 	}
27614 
27615 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27616 	    (un->un_state == SD_STATE_OFFLINE)) {
27617 		return (ENXIO);
27618 	}
27619 
27620 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
27621 	    "sd_read_mode1: entry: un:0x%p\n", un);
27622 
27623 #ifdef _MULTI_DATAMODEL
27624 	switch (ddi_model_convert_from(flag & FMODELS)) {
27625 	case DDI_MODEL_ILP32:
27626 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
27627 			return (EFAULT);
27628 		}
27629 		/* Convert the ILP32 uscsi data from the application to LP64 */
27630 		cdrom_read32tocdrom_read(cdrd32, mode1);
27631 		break;
27632 	case DDI_MODEL_NONE:
27633 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
27634 			return (EFAULT);
27635 		}
27636 	}
27637 #else /* ! _MULTI_DATAMODEL */
27638 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
27639 		return (EFAULT);
27640 	}
27641 #endif /* _MULTI_DATAMODEL */
27642 
27643 	rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr,
27644 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
27645 
27646 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
27647 	    "sd_read_mode1: exit: un:0x%p\n", un);
27648 
27649 	return (rval);
27650 }
27651 
27652 
27653 /*
27654  *    Function: sr_read_cd_mode2()
27655  *
27656  * Description: This routine is the driver entry point for handling CD-ROM
27657  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
27658  *		support the READ CD (0xBE) command or the 1st generation
27659  *		READ CD (0xD4) command.
27660  *
27661  *   Arguments: dev	- the device 'dev_t'
27662  *		data	- pointer to user provided cd read structure specifying
27663  *			  the lba buffer address and length.
27664  *		flag	- this argument is a pass through to ddi_copyxxx()
27665  *			  directly from the mode argument of ioctl().
27666  *
27667  * Return Code: the code returned by sd_send_scsi_cmd()
27668  *		EFAULT if ddi_copyxxx() fails
27669  *		ENXIO if fail ddi_get_soft_state
27670  *		EINVAL if data pointer is NULL
27671  */
27672 
27673 static int
27674 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
27675 {
27676 	struct sd_lun		*un;
27677 	struct uscsi_cmd	*com;
27678 	struct cdrom_read	mode2_struct;
27679 	struct cdrom_read	*mode2 = &mode2_struct;
27680 	uchar_t			cdb[CDB_GROUP5];
27681 	int			nblocks;
27682 	int			rval;
27683 #ifdef _MULTI_DATAMODEL
27684 	/*  To support ILP32 applications in an LP64 world */
27685 	struct cdrom_read32	cdrom_read32;
27686 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
27687 #endif /* _MULTI_DATAMODEL */
27688 
27689 	if (data == NULL) {
27690 		return (EINVAL);
27691 	}
27692 
27693 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27694 	    (un->un_state == SD_STATE_OFFLINE)) {
27695 		return (ENXIO);
27696 	}
27697 
27698 #ifdef _MULTI_DATAMODEL
27699 	switch (ddi_model_convert_from(flag & FMODELS)) {
27700 	case DDI_MODEL_ILP32:
27701 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
27702 			return (EFAULT);
27703 		}
27704 		/* Convert the ILP32 uscsi data from the application to LP64 */
27705 		cdrom_read32tocdrom_read(cdrd32, mode2);
27706 		break;
27707 	case DDI_MODEL_NONE:
27708 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
27709 			return (EFAULT);
27710 		}
27711 		break;
27712 	}
27713 
27714 #else /* ! _MULTI_DATAMODEL */
27715 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
27716 		return (EFAULT);
27717 	}
27718 #endif /* _MULTI_DATAMODEL */
27719 
27720 	bzero(cdb, sizeof (cdb));
27721 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
27722 		/* Read command supported by 1st generation atapi drives */
27723 		cdb[0] = SCMD_READ_CDD4;
27724 	} else {
27725 		/* Universal CD Access Command */
27726 		cdb[0] = SCMD_READ_CD;
27727 	}
27728 
27729 	/*
27730 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
27731 	 */
27732 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
27733 
27734 	/* set the start address */
27735 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
27736 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
27737 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
27738 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
27739 
27740 	/* set the transfer length */
27741 	nblocks = mode2->cdread_buflen / 2336;
27742 	cdb[6] = (uchar_t)(nblocks >> 16);
27743 	cdb[7] = (uchar_t)(nblocks >> 8);
27744 	cdb[8] = (uchar_t)nblocks;
27745 
27746 	/* set the filter bits */
27747 	cdb[9] = CDROM_READ_CD_USERDATA;
27748 
27749 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27750 	com->uscsi_cdb = (caddr_t)cdb;
27751 	com->uscsi_cdblen = sizeof (cdb);
27752 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
27753 	com->uscsi_buflen = mode2->cdread_buflen;
27754 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27755 
27756 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
27757 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27758 	kmem_free(com, sizeof (*com));
27759 	return (rval);
27760 }
27761 
27762 
27763 /*
27764  *    Function: sr_read_mode2()
27765  *
27766  * Description: This routine is the driver entry point for handling CD-ROM
27767  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
27768  *		do not support the READ CD (0xBE) command.
27769  *
27770  *   Arguments: dev	- the device 'dev_t'
27771  *		data	- pointer to user provided cd read structure specifying
27772  *			  the lba buffer address and length.
27773  *		flag	- this argument is a pass through to ddi_copyxxx()
27774  *			  directly from the mode argument of ioctl().
27775  *
27776  * Return Code: the code returned by sd_send_scsi_cmd()
27777  *		EFAULT if ddi_copyxxx() fails
27778  *		ENXIO if fail ddi_get_soft_state
27779  *		EINVAL if data pointer is NULL
27780  *		EIO if fail to reset block size
27781  *		EAGAIN if commands are in progress in the driver
27782  */
27783 
27784 static int
27785 sr_read_mode2(dev_t dev, caddr_t data, int flag)
27786 {
27787 	struct sd_lun		*un;
27788 	struct cdrom_read	mode2_struct;
27789 	struct cdrom_read	*mode2 = &mode2_struct;
27790 	int			rval;
27791 	uint32_t		restore_blksize;
27792 	struct uscsi_cmd	*com;
27793 	uchar_t			cdb[CDB_GROUP0];
27794 	int			nblocks;
27795 
27796 #ifdef _MULTI_DATAMODEL
27797 	/* To support ILP32 applications in an LP64 world */
27798 	struct cdrom_read32	cdrom_read32;
27799 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
27800 #endif /* _MULTI_DATAMODEL */
27801 
27802 	if (data == NULL) {
27803 		return (EINVAL);
27804 	}
27805 
27806 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27807 	    (un->un_state == SD_STATE_OFFLINE)) {
27808 		return (ENXIO);
27809 	}
27810 
27811 	/*
27812 	 * Because this routine will update the device and driver block size
27813 	 * being used we want to make sure there are no commands in progress.
27814 	 * If commands are in progress the user will have to try again.
27815 	 *
27816 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
27817 	 * in sdioctl to protect commands from sdioctl through to the top of
27818 	 * sd_uscsi_strategy. See sdioctl for details.
27819 	 */
27820 	mutex_enter(SD_MUTEX(un));
27821 	if (un->un_ncmds_in_driver != 1) {
27822 		mutex_exit(SD_MUTEX(un));
27823 		return (EAGAIN);
27824 	}
27825 	mutex_exit(SD_MUTEX(un));
27826 
27827 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
27828 	    "sd_read_mode2: entry: un:0x%p\n", un);
27829 
27830 #ifdef _MULTI_DATAMODEL
27831 	switch (ddi_model_convert_from(flag & FMODELS)) {
27832 	case DDI_MODEL_ILP32:
27833 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
27834 			return (EFAULT);
27835 		}
27836 		/* Convert the ILP32 uscsi data from the application to LP64 */
27837 		cdrom_read32tocdrom_read(cdrd32, mode2);
27838 		break;
27839 	case DDI_MODEL_NONE:
27840 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
27841 			return (EFAULT);
27842 		}
27843 		break;
27844 	}
27845 #else /* ! _MULTI_DATAMODEL */
27846 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
27847 		return (EFAULT);
27848 	}
27849 #endif /* _MULTI_DATAMODEL */
27850 
27851 	/* Store the current target block size for restoration later */
27852 	restore_blksize = un->un_tgt_blocksize;
27853 
27854 	/* Change the device and soft state target block size to 2336 */
27855 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
27856 		rval = EIO;
27857 		goto done;
27858 	}
27859 
27860 
27861 	bzero(cdb, sizeof (cdb));
27862 
27863 	/* set READ operation */
27864 	cdb[0] = SCMD_READ;
27865 
27866 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
27867 	mode2->cdread_lba >>= 2;
27868 
27869 	/* set the start address */
27870 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
27871 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
27872 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
27873 
27874 	/* set the transfer length */
27875 	nblocks = mode2->cdread_buflen / 2336;
27876 	cdb[4] = (uchar_t)nblocks & 0xFF;
27877 
27878 	/* build command */
27879 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27880 	com->uscsi_cdb = (caddr_t)cdb;
27881 	com->uscsi_cdblen = sizeof (cdb);
27882 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
27883 	com->uscsi_buflen = mode2->cdread_buflen;
27884 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27885 
27886 	/*
27887 	 * Issue SCSI command with user space address for read buffer.
27888 	 *
27889 	 * This sends the command through main channel in the driver.
27890 	 *
27891 	 * Since this is accessed via an IOCTL call, we go through the
27892 	 * standard path, so that if the device was powered down, then
27893 	 * it would be 'awakened' to handle the command.
27894 	 */
27895 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
27896 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27897 
27898 	kmem_free(com, sizeof (*com));
27899 
27900 	/* Restore the device and soft state target block size */
27901 	if (sr_sector_mode(dev, restore_blksize) != 0) {
27902 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27903 		    "can't do switch back to mode 1\n");
27904 		/*
27905 		 * If sd_send_scsi_READ succeeded we still need to report
27906 		 * an error because we failed to reset the block size
27907 		 */
27908 		if (rval == 0) {
27909 			rval = EIO;
27910 		}
27911 	}
27912 
27913 done:
27914 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
27915 	    "sd_read_mode2: exit: un:0x%p\n", un);
27916 
27917 	return (rval);
27918 }
27919 
27920 
27921 /*
27922  *    Function: sr_sector_mode()
27923  *
27924  * Description: This utility function is used by sr_read_mode2 to set the target
27925  *		block size based on the user specified size. This is a legacy
27926  *		implementation based upon a vendor specific mode page
27927  *
27928  *   Arguments: dev	- the device 'dev_t'
27929  *		data	- flag indicating if block size is being set to 2336 or
27930  *			  512.
27931  *
27932  * Return Code: the code returned by sd_send_scsi_cmd()
27933  *		EFAULT if ddi_copyxxx() fails
27934  *		ENXIO if fail ddi_get_soft_state
27935  *		EINVAL if data pointer is NULL
27936  */
27937 
27938 static int
27939 sr_sector_mode(dev_t dev, uint32_t blksize)
27940 {
27941 	struct sd_lun	*un;
27942 	uchar_t		*sense;
27943 	uchar_t		*select;
27944 	int		rval;
27945 
27946 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27947 	    (un->un_state == SD_STATE_OFFLINE)) {
27948 		return (ENXIO);
27949 	}
27950 
27951 	sense = kmem_zalloc(20, KM_SLEEP);
27952 
27953 	/* Note: This is a vendor specific mode page (0x81) */
27954 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81,
27955 	    SD_PATH_STANDARD)) != 0) {
27956 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
27957 		    "sr_sector_mode: Mode Sense failed\n");
27958 		kmem_free(sense, 20);
27959 		return (rval);
27960 	}
27961 	select = kmem_zalloc(20, KM_SLEEP);
27962 	select[3] = 0x08;
27963 	select[10] = ((blksize >> 8) & 0xff);
27964 	select[11] = (blksize & 0xff);
27965 	select[12] = 0x01;
27966 	select[13] = 0x06;
27967 	select[14] = sense[14];
27968 	select[15] = sense[15];
27969 	if (blksize == SD_MODE2_BLKSIZE) {
27970 		select[14] |= 0x01;
27971 	}
27972 
27973 	if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20,
27974 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
27975 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
27976 		    "sr_sector_mode: Mode Select failed\n");
27977 	} else {
27978 		/*
27979 		 * Only update the softstate block size if we successfully
27980 		 * changed the device block mode.
27981 		 */
27982 		mutex_enter(SD_MUTEX(un));
27983 		sd_update_block_info(un, blksize, 0);
27984 		mutex_exit(SD_MUTEX(un));
27985 	}
27986 	kmem_free(sense, 20);
27987 	kmem_free(select, 20);
27988 	return (rval);
27989 }
27990 
27991 
27992 /*
27993  *    Function: sr_read_cdda()
27994  *
27995  * Description: This routine is the driver entry point for handling CD-ROM
27996  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
27997  *		the target supports CDDA these requests are handled via a vendor
27998  *		specific command (0xD8) If the target does not support CDDA
27999  *		these requests are handled via the READ CD command (0xBE).
28000  *
28001  *   Arguments: dev	- the device 'dev_t'
28002  *		data	- pointer to user provided CD-DA structure specifying
28003  *			  the track starting address, transfer length, and
28004  *			  subcode options.
28005  *		flag	- this argument is a pass through to ddi_copyxxx()
28006  *			  directly from the mode argument of ioctl().
28007  *
28008  * Return Code: the code returned by sd_send_scsi_cmd()
28009  *		EFAULT if ddi_copyxxx() fails
28010  *		ENXIO if fail ddi_get_soft_state
28011  *		EINVAL if invalid arguments are provided
28012  *		ENOTTY
28013  */
28014 
28015 static int
28016 sr_read_cdda(dev_t dev, caddr_t data, int flag)
28017 {
28018 	struct sd_lun			*un;
28019 	struct uscsi_cmd		*com;
28020 	struct cdrom_cdda		*cdda;
28021 	int				rval;
28022 	size_t				buflen;
28023 	char				cdb[CDB_GROUP5];
28024 
28025 #ifdef _MULTI_DATAMODEL
28026 	/* To support ILP32 applications in an LP64 world */
28027 	struct cdrom_cdda32	cdrom_cdda32;
28028 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
28029 #endif /* _MULTI_DATAMODEL */
28030 
28031 	if (data == NULL) {
28032 		return (EINVAL);
28033 	}
28034 
28035 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28036 		return (ENXIO);
28037 	}
28038 
28039 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
28040 
28041 #ifdef _MULTI_DATAMODEL
28042 	switch (ddi_model_convert_from(flag & FMODELS)) {
28043 	case DDI_MODEL_ILP32:
28044 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
28045 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28046 			    "sr_read_cdda: ddi_copyin Failed\n");
28047 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28048 			return (EFAULT);
28049 		}
28050 		/* Convert the ILP32 uscsi data from the application to LP64 */
28051 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
28052 		break;
28053 	case DDI_MODEL_NONE:
28054 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28055 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28056 			    "sr_read_cdda: ddi_copyin Failed\n");
28057 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28058 			return (EFAULT);
28059 		}
28060 		break;
28061 	}
28062 #else /* ! _MULTI_DATAMODEL */
28063 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28064 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28065 		    "sr_read_cdda: ddi_copyin Failed\n");
28066 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28067 		return (EFAULT);
28068 	}
28069 #endif /* _MULTI_DATAMODEL */
28070 
28071 	/*
28072 	 * Since MMC-2 expects max 3 bytes for length, check if the
28073 	 * length input is greater than 3 bytes
28074 	 */
28075 	if ((cdda->cdda_length & 0xFF000000) != 0) {
28076 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
28077 		    "cdrom transfer length too large: %d (limit %d)\n",
28078 		    cdda->cdda_length, 0xFFFFFF);
28079 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28080 		return (EINVAL);
28081 	}
28082 
28083 	switch (cdda->cdda_subcode) {
28084 	case CDROM_DA_NO_SUBCODE:
28085 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
28086 		break;
28087 	case CDROM_DA_SUBQ:
28088 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
28089 		break;
28090 	case CDROM_DA_ALL_SUBCODE:
28091 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
28092 		break;
28093 	case CDROM_DA_SUBCODE_ONLY:
28094 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
28095 		break;
28096 	default:
28097 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28098 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
28099 		    cdda->cdda_subcode);
28100 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28101 		return (EINVAL);
28102 	}
28103 
28104 	/* Build and send the command */
28105 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28106 	bzero(cdb, CDB_GROUP5);
28107 
28108 	if (un->un_f_cfg_cdda == TRUE) {
28109 		cdb[0] = (char)SCMD_READ_CD;
28110 		cdb[1] = 0x04;
28111 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28112 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28113 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28114 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28115 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28116 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28117 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
28118 		cdb[9] = 0x10;
28119 		switch (cdda->cdda_subcode) {
28120 		case CDROM_DA_NO_SUBCODE :
28121 			cdb[10] = 0x0;
28122 			break;
28123 		case CDROM_DA_SUBQ :
28124 			cdb[10] = 0x2;
28125 			break;
28126 		case CDROM_DA_ALL_SUBCODE :
28127 			cdb[10] = 0x1;
28128 			break;
28129 		case CDROM_DA_SUBCODE_ONLY :
28130 			/* FALLTHROUGH */
28131 		default :
28132 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28133 			kmem_free(com, sizeof (*com));
28134 			return (ENOTTY);
28135 		}
28136 	} else {
28137 		cdb[0] = (char)SCMD_READ_CDDA;
28138 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28139 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28140 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28141 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28142 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
28143 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28144 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28145 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
28146 		cdb[10] = cdda->cdda_subcode;
28147 	}
28148 
28149 	com->uscsi_cdb = cdb;
28150 	com->uscsi_cdblen = CDB_GROUP5;
28151 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
28152 	com->uscsi_buflen = buflen;
28153 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28154 
28155 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28156 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28157 
28158 	kmem_free(cdda, sizeof (struct cdrom_cdda));
28159 	kmem_free(com, sizeof (*com));
28160 	return (rval);
28161 }
28162 
28163 
28164 /*
28165  *    Function: sr_read_cdxa()
28166  *
28167  * Description: This routine is the driver entry point for handling CD-ROM
28168  *		ioctl requests to return CD-XA (Extended Architecture) data.
28169  *		(CDROMCDXA).
28170  *
28171  *   Arguments: dev	- the device 'dev_t'
28172  *		data	- pointer to user provided CD-XA structure specifying
28173  *			  the data starting address, transfer length, and format
28174  *		flag	- this argument is a pass through to ddi_copyxxx()
28175  *			  directly from the mode argument of ioctl().
28176  *
28177  * Return Code: the code returned by sd_send_scsi_cmd()
28178  *		EFAULT if ddi_copyxxx() fails
28179  *		ENXIO if fail ddi_get_soft_state
28180  *		EINVAL if data pointer is NULL
28181  */
28182 
28183 static int
28184 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
28185 {
28186 	struct sd_lun		*un;
28187 	struct uscsi_cmd	*com;
28188 	struct cdrom_cdxa	*cdxa;
28189 	int			rval;
28190 	size_t			buflen;
28191 	char			cdb[CDB_GROUP5];
28192 	uchar_t			read_flags;
28193 
28194 #ifdef _MULTI_DATAMODEL
28195 	/* To support ILP32 applications in an LP64 world */
28196 	struct cdrom_cdxa32		cdrom_cdxa32;
28197 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
28198 #endif /* _MULTI_DATAMODEL */
28199 
28200 	if (data == NULL) {
28201 		return (EINVAL);
28202 	}
28203 
28204 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28205 		return (ENXIO);
28206 	}
28207 
28208 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
28209 
28210 #ifdef _MULTI_DATAMODEL
28211 	switch (ddi_model_convert_from(flag & FMODELS)) {
28212 	case DDI_MODEL_ILP32:
28213 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
28214 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28215 			return (EFAULT);
28216 		}
28217 		/*
28218 		 * Convert the ILP32 uscsi data from the
28219 		 * application to LP64 for internal use.
28220 		 */
28221 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
28222 		break;
28223 	case DDI_MODEL_NONE:
28224 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28225 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28226 			return (EFAULT);
28227 		}
28228 		break;
28229 	}
28230 #else /* ! _MULTI_DATAMODEL */
28231 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28232 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28233 		return (EFAULT);
28234 	}
28235 #endif /* _MULTI_DATAMODEL */
28236 
28237 	/*
28238 	 * Since MMC-2 expects max 3 bytes for length, check if the
28239 	 * length input is greater than 3 bytes
28240 	 */
28241 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
28242 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
28243 		    "cdrom transfer length too large: %d (limit %d)\n",
28244 		    cdxa->cdxa_length, 0xFFFFFF);
28245 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28246 		return (EINVAL);
28247 	}
28248 
28249 	switch (cdxa->cdxa_format) {
28250 	case CDROM_XA_DATA:
28251 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
28252 		read_flags = 0x10;
28253 		break;
28254 	case CDROM_XA_SECTOR_DATA:
28255 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
28256 		read_flags = 0xf8;
28257 		break;
28258 	case CDROM_XA_DATA_W_ERROR:
28259 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
28260 		read_flags = 0xfc;
28261 		break;
28262 	default:
28263 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28264 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
28265 		    cdxa->cdxa_format);
28266 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28267 		return (EINVAL);
28268 	}
28269 
28270 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28271 	bzero(cdb, CDB_GROUP5);
28272 	if (un->un_f_mmc_cap == TRUE) {
28273 		cdb[0] = (char)SCMD_READ_CD;
28274 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28275 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28276 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28277 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28278 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28279 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28280 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
28281 		cdb[9] = (char)read_flags;
28282 	} else {
28283 		/*
28284 		 * Note: A vendor specific command (0xDB) is being used her to
28285 		 * request a read of all subcodes.
28286 		 */
28287 		cdb[0] = (char)SCMD_READ_CDXA;
28288 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28289 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28290 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28291 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28292 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
28293 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28294 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28295 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
28296 		cdb[10] = cdxa->cdxa_format;
28297 	}
28298 	com->uscsi_cdb	   = cdb;
28299 	com->uscsi_cdblen  = CDB_GROUP5;
28300 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
28301 	com->uscsi_buflen  = buflen;
28302 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28303 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28304 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28305 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28306 	kmem_free(com, sizeof (*com));
28307 	return (rval);
28308 }
28309 
28310 
28311 /*
28312  *    Function: sr_eject()
28313  *
28314  * Description: This routine is the driver entry point for handling CD-ROM
28315  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
28316  *
28317  *   Arguments: dev	- the device 'dev_t'
28318  *
28319  * Return Code: the code returned by sd_send_scsi_cmd()
28320  */
28321 
28322 static int
28323 sr_eject(dev_t dev)
28324 {
28325 	struct sd_lun	*un;
28326 	int		rval;
28327 
28328 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28329 	    (un->un_state == SD_STATE_OFFLINE)) {
28330 		return (ENXIO);
28331 	}
28332 	if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
28333 	    SD_PATH_STANDARD)) != 0) {
28334 		return (rval);
28335 	}
28336 
28337 	rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT,
28338 	    SD_PATH_STANDARD);
28339 
28340 	if (rval == 0) {
28341 		mutex_enter(SD_MUTEX(un));
28342 		sr_ejected(un);
28343 		un->un_mediastate = DKIO_EJECTED;
28344 		cv_broadcast(&un->un_state_cv);
28345 		mutex_exit(SD_MUTEX(un));
28346 	}
28347 	return (rval);
28348 }
28349 
28350 
28351 /*
28352  *    Function: sr_ejected()
28353  *
28354  * Description: This routine updates the soft state structure to invalidate the
28355  *		geometry information after the media has been ejected or a
28356  *		media eject has been detected.
28357  *
28358  *   Arguments: un - driver soft state (unit) structure
28359  */
28360 
28361 static void
28362 sr_ejected(struct sd_lun *un)
28363 {
28364 	struct sd_errstats *stp;
28365 
28366 	ASSERT(un != NULL);
28367 	ASSERT(mutex_owned(SD_MUTEX(un)));
28368 
28369 	un->un_f_blockcount_is_valid	= FALSE;
28370 	un->un_f_tgt_blocksize_is_valid	= FALSE;
28371 	un->un_f_geometry_is_valid	= FALSE;
28372 
28373 	if (un->un_errstats != NULL) {
28374 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
28375 		stp->sd_capacity.value.ui64 = 0;
28376 	}
28377 }
28378 
28379 
28380 /*
28381  *    Function: sr_check_wp()
28382  *
28383  * Description: This routine checks the write protection of a removable media
28384  *		disk via the write protect bit of the Mode Page Header device
28385  *		specific field.  This routine has been implemented to use the
28386  *		error recovery mode page for all device types.
28387  *		Note: In the future use a sd_send_scsi_MODE_SENSE() routine
28388  *
28389  *   Arguments: dev		- the device 'dev_t'
28390  *
28391  * Return Code: int indicating if the device is write protected (1) or not (0)
28392  *
28393  *     Context: Kernel thread.
28394  *
28395  */
28396 
28397 static int
28398 sr_check_wp(dev_t dev)
28399 {
28400 	struct sd_lun	*un;
28401 	uchar_t		device_specific;
28402 	uchar_t		*sense;
28403 	int		hdrlen;
28404 	int		rval;
28405 	int		retry_flag = FALSE;
28406 
28407 	/*
28408 	 * Note: The return codes for this routine should be reworked to
28409 	 * properly handle the case of a NULL softstate.
28410 	 */
28411 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28412 		return (FALSE);
28413 	}
28414 
28415 	if (un->un_f_cfg_is_atapi == TRUE) {
28416 		retry_flag = TRUE;
28417 	}
28418 
28419 retry:
28420 	if (un->un_f_cfg_is_atapi == TRUE) {
28421 		/*
28422 		 * The mode page contents are not required; set the allocation
28423 		 * length for the mode page header only
28424 		 */
28425 		hdrlen = MODE_HEADER_LENGTH_GRP2;
28426 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28427 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen,
28428 		    MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
28429 		device_specific =
28430 		    ((struct mode_header_grp2 *)sense)->device_specific;
28431 	} else {
28432 		hdrlen = MODE_HEADER_LENGTH;
28433 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28434 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen,
28435 		    MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
28436 		device_specific =
28437 		    ((struct mode_header *)sense)->device_specific;
28438 	}
28439 
28440 	if (rval != 0) {
28441 		if ((un->un_f_cfg_is_atapi == TRUE) && (retry_flag)) {
28442 			/*
28443 			 * For an Atapi Zip drive, observed the drive
28444 			 * reporting check condition for the first attempt.
28445 			 * Sense data indicating power on or bus device/reset.
28446 			 * Hence in case of failure need to try at least once
28447 			 * for Atapi devices.
28448 			 */
28449 			retry_flag = FALSE;
28450 			kmem_free(sense, hdrlen);
28451 			goto retry;
28452 		} else {
28453 			/*
28454 			 * Write protect mode sense failed; not all disks
28455 			 * understand this query. Return FALSE assuming that
28456 			 * these devices are not writable.
28457 			 */
28458 			rval = FALSE;
28459 		}
28460 	} else {
28461 		if (device_specific & WRITE_PROTECT) {
28462 			rval = TRUE;
28463 		} else {
28464 			rval = FALSE;
28465 		}
28466 	}
28467 	kmem_free(sense, hdrlen);
28468 	return (rval);
28469 }
28470 
28471 
28472 /*
28473  *    Function: sr_volume_ctrl()
28474  *
28475  * Description: This routine is the driver entry point for handling CD-ROM
28476  *		audio output volume ioctl requests. (CDROMVOLCTRL)
28477  *
28478  *   Arguments: dev	- the device 'dev_t'
28479  *		data	- pointer to user audio volume control structure
28480  *		flag	- this argument is a pass through to ddi_copyxxx()
28481  *			  directly from the mode argument of ioctl().
28482  *
28483  * Return Code: the code returned by sd_send_scsi_cmd()
28484  *		EFAULT if ddi_copyxxx() fails
28485  *		ENXIO if fail ddi_get_soft_state
28486  *		EINVAL if data pointer is NULL
28487  *
28488  */
28489 
28490 static int
28491 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
28492 {
28493 	struct sd_lun		*un;
28494 	struct cdrom_volctrl    volume;
28495 	struct cdrom_volctrl    *vol = &volume;
28496 	uchar_t			*sense_page;
28497 	uchar_t			*select_page;
28498 	uchar_t			*sense;
28499 	uchar_t			*select;
28500 	int			sense_buflen;
28501 	int			select_buflen;
28502 	int			rval;
28503 
28504 	if (data == NULL) {
28505 		return (EINVAL);
28506 	}
28507 
28508 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28509 	    (un->un_state == SD_STATE_OFFLINE)) {
28510 		return (ENXIO);
28511 	}
28512 
28513 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
28514 		return (EFAULT);
28515 	}
28516 
28517 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
28518 		struct mode_header_grp2		*sense_mhp;
28519 		struct mode_header_grp2		*select_mhp;
28520 		int				bd_len;
28521 
28522 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
28523 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
28524 		    MODEPAGE_AUDIO_CTRL_LEN;
28525 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
28526 		select = kmem_zalloc(select_buflen, KM_SLEEP);
28527 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
28528 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
28529 		    SD_PATH_STANDARD)) != 0) {
28530 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28531 			    "sr_volume_ctrl: Mode Sense Failed\n");
28532 			kmem_free(sense, sense_buflen);
28533 			kmem_free(select, select_buflen);
28534 			return (rval);
28535 		}
28536 		sense_mhp = (struct mode_header_grp2 *)sense;
28537 		select_mhp = (struct mode_header_grp2 *)select;
28538 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
28539 		    sense_mhp->bdesc_length_lo;
28540 		if (bd_len > MODE_BLK_DESC_LENGTH) {
28541 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28542 			    "sr_volume_ctrl: Mode Sense returned invalid "
28543 			    "block descriptor length\n");
28544 			kmem_free(sense, sense_buflen);
28545 			kmem_free(select, select_buflen);
28546 			return (EIO);
28547 		}
28548 		sense_page = (uchar_t *)
28549 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
28550 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
28551 		select_mhp->length_msb = 0;
28552 		select_mhp->length_lsb = 0;
28553 		select_mhp->bdesc_length_hi = 0;
28554 		select_mhp->bdesc_length_lo = 0;
28555 	} else {
28556 		struct mode_header		*sense_mhp, *select_mhp;
28557 
28558 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
28559 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
28560 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
28561 		select = kmem_zalloc(select_buflen, KM_SLEEP);
28562 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
28563 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
28564 		    SD_PATH_STANDARD)) != 0) {
28565 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28566 			    "sr_volume_ctrl: Mode Sense Failed\n");
28567 			kmem_free(sense, sense_buflen);
28568 			kmem_free(select, select_buflen);
28569 			return (rval);
28570 		}
28571 		sense_mhp  = (struct mode_header *)sense;
28572 		select_mhp = (struct mode_header *)select;
28573 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
28574 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28575 			    "sr_volume_ctrl: Mode Sense returned invalid "
28576 			    "block descriptor length\n");
28577 			kmem_free(sense, sense_buflen);
28578 			kmem_free(select, select_buflen);
28579 			return (EIO);
28580 		}
28581 		sense_page = (uchar_t *)
28582 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
28583 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
28584 		select_mhp->length = 0;
28585 		select_mhp->bdesc_length = 0;
28586 	}
28587 	/*
28588 	 * Note: An audio control data structure could be created and overlayed
28589 	 * on the following in place of the array indexing method implemented.
28590 	 */
28591 
28592 	/* Build the select data for the user volume data */
28593 	select_page[0] = MODEPAGE_AUDIO_CTRL;
28594 	select_page[1] = 0xE;
28595 	/* Set the immediate bit */
28596 	select_page[2] = 0x04;
28597 	/* Zero out reserved fields */
28598 	select_page[3] = 0x00;
28599 	select_page[4] = 0x00;
28600 	/* Return sense data for fields not to be modified */
28601 	select_page[5] = sense_page[5];
28602 	select_page[6] = sense_page[6];
28603 	select_page[7] = sense_page[7];
28604 	/* Set the user specified volume levels for channel 0 and 1 */
28605 	select_page[8] = 0x01;
28606 	select_page[9] = vol->channel0;
28607 	select_page[10] = 0x02;
28608 	select_page[11] = vol->channel1;
28609 	/* Channel 2 and 3 are currently unsupported so return the sense data */
28610 	select_page[12] = sense_page[12];
28611 	select_page[13] = sense_page[13];
28612 	select_page[14] = sense_page[14];
28613 	select_page[15] = sense_page[15];
28614 
28615 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
28616 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select,
28617 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
28618 	} else {
28619 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
28620 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
28621 	}
28622 
28623 	kmem_free(sense, sense_buflen);
28624 	kmem_free(select, select_buflen);
28625 	return (rval);
28626 }
28627 
28628 
28629 /*
28630  *    Function: sr_read_sony_session_offset()
28631  *
28632  * Description: This routine is the driver entry point for handling CD-ROM
28633  *		ioctl requests for session offset information. (CDROMREADOFFSET)
28634  *		The address of the first track in the last session of a
28635  *		multi-session CD-ROM is returned
28636  *
28637  *		Note: This routine uses a vendor specific key value in the
28638  *		command control field without implementing any vendor check here
28639  *		or in the ioctl routine.
28640  *
28641  *   Arguments: dev	- the device 'dev_t'
28642  *		data	- pointer to an int to hold the requested address
28643  *		flag	- this argument is a pass through to ddi_copyxxx()
28644  *			  directly from the mode argument of ioctl().
28645  *
28646  * Return Code: the code returned by sd_send_scsi_cmd()
28647  *		EFAULT if ddi_copyxxx() fails
28648  *		ENXIO if fail ddi_get_soft_state
28649  *		EINVAL if data pointer is NULL
28650  */
28651 
28652 static int
28653 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
28654 {
28655 	struct sd_lun		*un;
28656 	struct uscsi_cmd	*com;
28657 	caddr_t			buffer;
28658 	char			cdb[CDB_GROUP1];
28659 	int			session_offset = 0;
28660 	int			rval;
28661 
28662 	if (data == NULL) {
28663 		return (EINVAL);
28664 	}
28665 
28666 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28667 	    (un->un_state == SD_STATE_OFFLINE)) {
28668 		return (ENXIO);
28669 	}
28670 
28671 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
28672 	bzero(cdb, CDB_GROUP1);
28673 	cdb[0] = SCMD_READ_TOC;
28674 	/*
28675 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
28676 	 * (4 byte TOC response header + 8 byte response data)
28677 	 */
28678 	cdb[8] = SONY_SESSION_OFFSET_LEN;
28679 	/* Byte 9 is the control byte. A vendor specific value is used */
28680 	cdb[9] = SONY_SESSION_OFFSET_KEY;
28681 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28682 	com->uscsi_cdb = cdb;
28683 	com->uscsi_cdblen = CDB_GROUP1;
28684 	com->uscsi_bufaddr = buffer;
28685 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
28686 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28687 
28688 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28689 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28690 	if (rval != 0) {
28691 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
28692 		kmem_free(com, sizeof (*com));
28693 		return (rval);
28694 	}
28695 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
28696 		session_offset =
28697 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
28698 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
28699 		/*
28700 		 * Offset returned offset in current lbasize block's. Convert to
28701 		 * 2k block's to return to the user
28702 		 */
28703 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
28704 			session_offset >>= 2;
28705 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
28706 			session_offset >>= 1;
28707 		}
28708 	}
28709 
28710 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
28711 		rval = EFAULT;
28712 	}
28713 
28714 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
28715 	kmem_free(com, sizeof (*com));
28716 	return (rval);
28717 }
28718 
28719 
28720 /*
28721  *    Function: sd_wm_cache_constructor()
28722  *
28723  * Description: Cache Constructor for the wmap cache for the read/modify/write
28724  * 		devices.
28725  *
28726  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
28727  *		un	- sd_lun structure for the device.
28728  *		flag	- the km flags passed to constructor
28729  *
28730  * Return Code: 0 on success.
28731  *		-1 on failure.
28732  */
28733 
28734 /*ARGSUSED*/
28735 static int
28736 sd_wm_cache_constructor(void *wm, void *un, int flags)
28737 {
28738 	bzero(wm, sizeof (struct sd_w_map));
28739 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
28740 	return (0);
28741 }
28742 
28743 
28744 /*
28745  *    Function: sd_wm_cache_destructor()
28746  *
28747  * Description: Cache destructor for the wmap cache for the read/modify/write
28748  * 		devices.
28749  *
28750  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
28751  *		un	- sd_lun structure for the device.
28752  */
28753 /*ARGSUSED*/
28754 static void
28755 sd_wm_cache_destructor(void *wm, void *un)
28756 {
28757 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
28758 }
28759 
28760 
28761 /*
28762  *    Function: sd_range_lock()
28763  *
28764  * Description: Lock the range of blocks specified as parameter to ensure
28765  *		that read, modify write is atomic and no other i/o writes
28766  *		to the same location. The range is specified in terms
28767  *		of start and end blocks. Block numbers are the actual
28768  *		media block numbers and not system.
28769  *
28770  *   Arguments: un	- sd_lun structure for the device.
28771  *		startb - The starting block number
28772  *		endb - The end block number
28773  *		typ - type of i/o - simple/read_modify_write
28774  *
28775  * Return Code: wm  - pointer to the wmap structure.
28776  *
28777  *     Context: This routine can sleep.
28778  */
28779 
28780 static struct sd_w_map *
28781 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
28782 {
28783 	struct sd_w_map *wmp = NULL;
28784 	struct sd_w_map *sl_wmp = NULL;
28785 	struct sd_w_map *tmp_wmp;
28786 	wm_state state = SD_WM_CHK_LIST;
28787 
28788 
28789 	ASSERT(un != NULL);
28790 	ASSERT(!mutex_owned(SD_MUTEX(un)));
28791 
28792 	mutex_enter(SD_MUTEX(un));
28793 
28794 	while (state != SD_WM_DONE) {
28795 
28796 		switch (state) {
28797 		case SD_WM_CHK_LIST:
28798 			/*
28799 			 * This is the starting state. Check the wmap list
28800 			 * to see if the range is currently available.
28801 			 */
28802 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
28803 				/*
28804 				 * If this is a simple write and no rmw
28805 				 * i/o is pending then try to lock the
28806 				 * range as the range should be available.
28807 				 */
28808 				state = SD_WM_LOCK_RANGE;
28809 			} else {
28810 				tmp_wmp = sd_get_range(un, startb, endb);
28811 				if (tmp_wmp != NULL) {
28812 					if ((wmp != NULL) && ONLIST(un, wmp)) {
28813 						/*
28814 						 * Should not keep onlist wmps
28815 						 * while waiting this macro
28816 						 * will also do wmp = NULL;
28817 						 */
28818 						FREE_ONLIST_WMAP(un, wmp);
28819 					}
28820 					/*
28821 					 * sl_wmp is the wmap on which wait
28822 					 * is done, since the tmp_wmp points
28823 					 * to the inuse wmap, set sl_wmp to
28824 					 * tmp_wmp and change the state to sleep
28825 					 */
28826 					sl_wmp = tmp_wmp;
28827 					state = SD_WM_WAIT_MAP;
28828 				} else {
28829 					state = SD_WM_LOCK_RANGE;
28830 				}
28831 
28832 			}
28833 			break;
28834 
28835 		case SD_WM_LOCK_RANGE:
28836 			ASSERT(un->un_wm_cache);
28837 			/*
28838 			 * The range need to be locked, try to get a wmap.
28839 			 * First attempt it with NO_SLEEP, want to avoid a sleep
28840 			 * if possible as we will have to release the sd mutex
28841 			 * if we have to sleep.
28842 			 */
28843 			if (wmp == NULL)
28844 				wmp = kmem_cache_alloc(un->un_wm_cache,
28845 				    KM_NOSLEEP);
28846 			if (wmp == NULL) {
28847 				mutex_exit(SD_MUTEX(un));
28848 				_NOTE(DATA_READABLE_WITHOUT_LOCK
28849 				    (sd_lun::un_wm_cache))
28850 				wmp = kmem_cache_alloc(un->un_wm_cache,
28851 				    KM_SLEEP);
28852 				mutex_enter(SD_MUTEX(un));
28853 				/*
28854 				 * we released the mutex so recheck and go to
28855 				 * check list state.
28856 				 */
28857 				state = SD_WM_CHK_LIST;
28858 			} else {
28859 				/*
28860 				 * We exit out of state machine since we
28861 				 * have the wmap. Do the housekeeping first.
28862 				 * place the wmap on the wmap list if it is not
28863 				 * on it already and then set the state to done.
28864 				 */
28865 				wmp->wm_start = startb;
28866 				wmp->wm_end = endb;
28867 				wmp->wm_flags = typ | SD_WM_BUSY;
28868 				if (typ & SD_WTYPE_RMW) {
28869 					un->un_rmw_count++;
28870 				}
28871 				/*
28872 				 * If not already on the list then link
28873 				 */
28874 				if (!ONLIST(un, wmp)) {
28875 					wmp->wm_next = un->un_wm;
28876 					wmp->wm_prev = NULL;
28877 					if (wmp->wm_next)
28878 						wmp->wm_next->wm_prev = wmp;
28879 					un->un_wm = wmp;
28880 				}
28881 				state = SD_WM_DONE;
28882 			}
28883 			break;
28884 
28885 		case SD_WM_WAIT_MAP:
28886 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
28887 			/*
28888 			 * Wait is done on sl_wmp, which is set in the
28889 			 * check_list state.
28890 			 */
28891 			sl_wmp->wm_wanted_count++;
28892 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
28893 			sl_wmp->wm_wanted_count--;
28894 			if (!(sl_wmp->wm_flags & SD_WM_BUSY)) {
28895 				if (wmp != NULL)
28896 					CHK_N_FREEWMP(un, wmp);
28897 				wmp = sl_wmp;
28898 			}
28899 			sl_wmp = NULL;
28900 			/*
28901 			 * After waking up, need to recheck for availability of
28902 			 * range.
28903 			 */
28904 			state = SD_WM_CHK_LIST;
28905 			break;
28906 
28907 		default:
28908 			panic("sd_range_lock: "
28909 			    "Unknown state %d in sd_range_lock", state);
28910 			/*NOTREACHED*/
28911 		} /* switch(state) */
28912 
28913 	} /* while(state != SD_WM_DONE) */
28914 
28915 	mutex_exit(SD_MUTEX(un));
28916 
28917 	ASSERT(wmp != NULL);
28918 
28919 	return (wmp);
28920 }
28921 
28922 
28923 /*
28924  *    Function: sd_get_range()
28925  *
28926  * Description: Find if there any overlapping I/O to this one
28927  *		Returns the write-map of 1st such I/O, NULL otherwise.
28928  *
28929  *   Arguments: un	- sd_lun structure for the device.
28930  *		startb - The starting block number
28931  *		endb - The end block number
28932  *
28933  * Return Code: wm  - pointer to the wmap structure.
28934  */
28935 
28936 static struct sd_w_map *
28937 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
28938 {
28939 	struct sd_w_map *wmp;
28940 
28941 	ASSERT(un != NULL);
28942 
28943 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
28944 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
28945 			continue;
28946 		}
28947 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
28948 			break;
28949 		}
28950 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
28951 			break;
28952 		}
28953 	}
28954 
28955 	return (wmp);
28956 }
28957 
28958 
28959 /*
28960  *    Function: sd_free_inlist_wmap()
28961  *
28962  * Description: Unlink and free a write map struct.
28963  *
28964  *   Arguments: un      - sd_lun structure for the device.
28965  *		wmp	- sd_w_map which needs to be unlinked.
28966  */
28967 
28968 static void
28969 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
28970 {
28971 	ASSERT(un != NULL);
28972 
28973 	if (un->un_wm == wmp) {
28974 		un->un_wm = wmp->wm_next;
28975 	} else {
28976 		wmp->wm_prev->wm_next = wmp->wm_next;
28977 	}
28978 
28979 	if (wmp->wm_next) {
28980 		wmp->wm_next->wm_prev = wmp->wm_prev;
28981 	}
28982 
28983 	wmp->wm_next = wmp->wm_prev = NULL;
28984 
28985 	kmem_cache_free(un->un_wm_cache, wmp);
28986 }
28987 
28988 
28989 /*
28990  *    Function: sd_range_unlock()
28991  *
28992  * Description: Unlock the range locked by wm.
28993  *		Free write map if nobody else is waiting on it.
28994  *
28995  *   Arguments: un      - sd_lun structure for the device.
28996  *              wmp     - sd_w_map which needs to be unlinked.
28997  */
28998 
28999 static void
29000 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
29001 {
29002 	ASSERT(un != NULL);
29003 	ASSERT(wm != NULL);
29004 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29005 
29006 	mutex_enter(SD_MUTEX(un));
29007 
29008 	if (wm->wm_flags & SD_WTYPE_RMW) {
29009 		un->un_rmw_count--;
29010 	}
29011 
29012 	if (wm->wm_wanted_count) {
29013 		wm->wm_flags = 0;
29014 		/*
29015 		 * Broadcast that the wmap is available now.
29016 		 */
29017 		cv_broadcast(&wm->wm_avail);
29018 	} else {
29019 		/*
29020 		 * If no one is waiting on the map, it should be free'ed.
29021 		 */
29022 		sd_free_inlist_wmap(un, wm);
29023 	}
29024 
29025 	mutex_exit(SD_MUTEX(un));
29026 }
29027 
29028 
29029 /*
29030  *    Function: sd_read_modify_write_task
29031  *
29032  * Description: Called from a taskq thread to initiate the write phase of
29033  *		a read-modify-write request.  This is used for targets where
29034  *		un->un_sys_blocksize != un->un_tgt_blocksize.
29035  *
29036  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
29037  *
29038  *     Context: Called under taskq thread context.
29039  */
29040 
29041 static void
29042 sd_read_modify_write_task(void *arg)
29043 {
29044 	struct sd_mapblocksize_info	*bsp;
29045 	struct buf	*bp;
29046 	struct sd_xbuf	*xp;
29047 	struct sd_lun	*un;
29048 
29049 	bp = arg;	/* The bp is given in arg */
29050 	ASSERT(bp != NULL);
29051 
29052 	/* Get the pointer to the layer-private data struct */
29053 	xp = SD_GET_XBUF(bp);
29054 	ASSERT(xp != NULL);
29055 	bsp = xp->xb_private;
29056 	ASSERT(bsp != NULL);
29057 
29058 	un = SD_GET_UN(bp);
29059 	ASSERT(un != NULL);
29060 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29061 
29062 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29063 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
29064 
29065 	/*
29066 	 * This is the write phase of a read-modify-write request, called
29067 	 * under the context of a taskq thread in response to the completion
29068 	 * of the read portion of the rmw request completing under interrupt
29069 	 * context. The write request must be sent from here down the iostart
29070 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
29071 	 * we use the layer index saved in the layer-private data area.
29072 	 */
29073 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
29074 
29075 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29076 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
29077 }
29078 
29079 
29080 /*
29081  *    Function: sddump_do_read_of_rmw()
29082  *
29083  * Description: This routine will be called from sddump, If sddump is called
29084  *		with an I/O which not aligned on device blocksize boundary
29085  *		then the write has to be converted to read-modify-write.
29086  *		Do the read part here in order to keep sddump simple.
29087  *		Note - That the sd_mutex is held across the call to this
29088  *		routine.
29089  *
29090  *   Arguments: un	- sd_lun
29091  *		blkno	- block number in terms of media block size.
29092  *		nblk	- number of blocks.
29093  *		bpp	- pointer to pointer to the buf structure. On return
29094  *			from this function, *bpp points to the valid buffer
29095  *			to which the write has to be done.
29096  *
29097  * Return Code: 0 for success or errno-type return code
29098  */
29099 
29100 static int
29101 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
29102 	struct buf **bpp)
29103 {
29104 	int err;
29105 	int i;
29106 	int rval;
29107 	struct buf *bp;
29108 	struct scsi_pkt *pkt = NULL;
29109 	uint32_t target_blocksize;
29110 
29111 	ASSERT(un != NULL);
29112 	ASSERT(mutex_owned(SD_MUTEX(un)));
29113 
29114 	target_blocksize = un->un_tgt_blocksize;
29115 
29116 	mutex_exit(SD_MUTEX(un));
29117 
29118 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
29119 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
29120 	if (bp == NULL) {
29121 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29122 		    "no resources for dumping; giving up");
29123 		err = ENOMEM;
29124 		goto done;
29125 	}
29126 
29127 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
29128 	    blkno, nblk);
29129 	if (rval != 0) {
29130 		scsi_free_consistent_buf(bp);
29131 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29132 		    "no resources for dumping; giving up");
29133 		err = ENOMEM;
29134 		goto done;
29135 	}
29136 
29137 	pkt->pkt_flags |= FLAG_NOINTR;
29138 
29139 	err = EIO;
29140 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
29141 
29142 		/*
29143 		 * Scsi_poll returns 0 (success) if the command completes and
29144 		 * the status block is STATUS_GOOD.  We should only check
29145 		 * errors if this condition is not true.  Even then we should
29146 		 * send our own request sense packet only if we have a check
29147 		 * condition and auto request sense has not been performed by
29148 		 * the hba.
29149 		 */
29150 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
29151 
29152 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
29153 			err = 0;
29154 			break;
29155 		}
29156 
29157 		/*
29158 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
29159 		 * no need to read RQS data.
29160 		 */
29161 		if (pkt->pkt_reason == CMD_DEV_GONE) {
29162 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29163 			    "Device is gone\n");
29164 			break;
29165 		}
29166 
29167 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
29168 			SD_INFO(SD_LOG_DUMP, un,
29169 			    "sddump: read failed with CHECK, try # %d\n", i);
29170 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
29171 				(void) sd_send_polled_RQS(un);
29172 			}
29173 
29174 			continue;
29175 		}
29176 
29177 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
29178 			int reset_retval = 0;
29179 
29180 			SD_INFO(SD_LOG_DUMP, un,
29181 			    "sddump: read failed with BUSY, try # %d\n", i);
29182 
29183 			if (un->un_f_lun_reset_enabled == TRUE) {
29184 				reset_retval = scsi_reset(SD_ADDRESS(un),
29185 				    RESET_LUN);
29186 			}
29187 			if (reset_retval == 0) {
29188 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
29189 			}
29190 			(void) sd_send_polled_RQS(un);
29191 
29192 		} else {
29193 			SD_INFO(SD_LOG_DUMP, un,
29194 			    "sddump: read failed with 0x%x, try # %d\n",
29195 			    SD_GET_PKT_STATUS(pkt), i);
29196 			mutex_enter(SD_MUTEX(un));
29197 			sd_reset_target(un, pkt);
29198 			mutex_exit(SD_MUTEX(un));
29199 		}
29200 
29201 		/*
29202 		 * If we are not getting anywhere with lun/target resets,
29203 		 * let's reset the bus.
29204 		 */
29205 		if (i > SD_NDUMP_RETRIES/2) {
29206 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
29207 			(void) sd_send_polled_RQS(un);
29208 		}
29209 
29210 	}
29211 	scsi_destroy_pkt(pkt);
29212 
29213 	if (err != 0) {
29214 		scsi_free_consistent_buf(bp);
29215 		*bpp = NULL;
29216 	} else {
29217 		*bpp = bp;
29218 	}
29219 
29220 done:
29221 	mutex_enter(SD_MUTEX(un));
29222 	return (err);
29223 }
29224 
29225 
29226 /*
29227  *    Function: sd_failfast_flushq
29228  *
29229  * Description: Take all bp's on the wait queue that have B_FAILFAST set
29230  *		in b_flags and move them onto the failfast queue, then kick
29231  *		off a thread to return all bp's on the failfast queue to
29232  *		their owners with an error set.
29233  *
29234  *   Arguments: un - pointer to the soft state struct for the instance.
29235  *
29236  *     Context: may execute in interrupt context.
29237  */
29238 
29239 static void
29240 sd_failfast_flushq(struct sd_lun *un)
29241 {
29242 	struct buf *bp;
29243 	struct buf *next_waitq_bp;
29244 	struct buf *prev_waitq_bp = NULL;
29245 
29246 	ASSERT(un != NULL);
29247 	ASSERT(mutex_owned(SD_MUTEX(un)));
29248 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
29249 	ASSERT(un->un_failfast_bp == NULL);
29250 
29251 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29252 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
29253 
29254 	/*
29255 	 * Check if we should flush all bufs when entering failfast state, or
29256 	 * just those with B_FAILFAST set.
29257 	 */
29258 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
29259 		/*
29260 		 * Move *all* bp's on the wait queue to the failfast flush
29261 		 * queue, including those that do NOT have B_FAILFAST set.
29262 		 */
29263 		if (un->un_failfast_headp == NULL) {
29264 			ASSERT(un->un_failfast_tailp == NULL);
29265 			un->un_failfast_headp = un->un_waitq_headp;
29266 		} else {
29267 			ASSERT(un->un_failfast_tailp != NULL);
29268 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
29269 		}
29270 
29271 		un->un_failfast_tailp = un->un_waitq_tailp;
29272 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
29273 
29274 	} else {
29275 		/*
29276 		 * Go thru the wait queue, pick off all entries with
29277 		 * B_FAILFAST set, and move these onto the failfast queue.
29278 		 */
29279 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
29280 			/*
29281 			 * Save the pointer to the next bp on the wait queue,
29282 			 * so we get to it on the next iteration of this loop.
29283 			 */
29284 			next_waitq_bp = bp->av_forw;
29285 
29286 			/*
29287 			 * If this bp from the wait queue does NOT have
29288 			 * B_FAILFAST set, just move on to the next element
29289 			 * in the wait queue. Note, this is the only place
29290 			 * where it is correct to set prev_waitq_bp.
29291 			 */
29292 			if ((bp->b_flags & B_FAILFAST) == 0) {
29293 				prev_waitq_bp = bp;
29294 				continue;
29295 			}
29296 
29297 			/*
29298 			 * Remove the bp from the wait queue.
29299 			 */
29300 			if (bp == un->un_waitq_headp) {
29301 				/* The bp is the first element of the waitq. */
29302 				un->un_waitq_headp = next_waitq_bp;
29303 				if (un->un_waitq_headp == NULL) {
29304 					/* The wait queue is now empty */
29305 					un->un_waitq_tailp = NULL;
29306 				}
29307 			} else {
29308 				/*
29309 				 * The bp is either somewhere in the middle
29310 				 * or at the end of the wait queue.
29311 				 */
29312 				ASSERT(un->un_waitq_headp != NULL);
29313 				ASSERT(prev_waitq_bp != NULL);
29314 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
29315 				    == 0);
29316 				if (bp == un->un_waitq_tailp) {
29317 					/* bp is the last entry on the waitq. */
29318 					ASSERT(next_waitq_bp == NULL);
29319 					un->un_waitq_tailp = prev_waitq_bp;
29320 				}
29321 				prev_waitq_bp->av_forw = next_waitq_bp;
29322 			}
29323 			bp->av_forw = NULL;
29324 
29325 			/*
29326 			 * Now put the bp onto the failfast queue.
29327 			 */
29328 			if (un->un_failfast_headp == NULL) {
29329 				/* failfast queue is currently empty */
29330 				ASSERT(un->un_failfast_tailp == NULL);
29331 				un->un_failfast_headp =
29332 				    un->un_failfast_tailp = bp;
29333 			} else {
29334 				/* Add the bp to the end of the failfast q */
29335 				ASSERT(un->un_failfast_tailp != NULL);
29336 				ASSERT(un->un_failfast_tailp->b_flags &
29337 				    B_FAILFAST);
29338 				un->un_failfast_tailp->av_forw = bp;
29339 				un->un_failfast_tailp = bp;
29340 			}
29341 		}
29342 	}
29343 
29344 	/*
29345 	 * Now return all bp's on the failfast queue to their owners.
29346 	 */
29347 	while ((bp = un->un_failfast_headp) != NULL) {
29348 
29349 		un->un_failfast_headp = bp->av_forw;
29350 		if (un->un_failfast_headp == NULL) {
29351 			un->un_failfast_tailp = NULL;
29352 		}
29353 
29354 		/*
29355 		 * We want to return the bp with a failure error code, but
29356 		 * we do not want a call to sd_start_cmds() to occur here,
29357 		 * so use sd_return_failed_command_no_restart() instead of
29358 		 * sd_return_failed_command().
29359 		 */
29360 		sd_return_failed_command_no_restart(un, bp, EIO);
29361 	}
29362 
29363 	/* Flush the xbuf queues if required. */
29364 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
29365 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
29366 	}
29367 
29368 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29369 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
29370 }
29371 
29372 
29373 /*
29374  *    Function: sd_failfast_flushq_callback
29375  *
29376  * Description: Return TRUE if the given bp meets the criteria for failfast
29377  *		flushing. Used with ddi_xbuf_flushq(9F).
29378  *
29379  *   Arguments: bp - ptr to buf struct to be examined.
29380  *
29381  *     Context: Any
29382  */
29383 
29384 static int
29385 sd_failfast_flushq_callback(struct buf *bp)
29386 {
29387 	/*
29388 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
29389 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
29390 	 */
29391 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
29392 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
29393 }
29394 
29395 
29396 #if defined(__i386) || defined(__amd64)
29397 /*
29398  * Function: sd_setup_next_xfer
29399  *
29400  * Description: Prepare next I/O operation using DMA_PARTIAL
29401  *
29402  */
29403 
29404 static int
29405 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
29406     struct scsi_pkt *pkt, struct sd_xbuf *xp)
29407 {
29408 	ssize_t	num_blks_not_xfered;
29409 	daddr_t	strt_blk_num;
29410 	ssize_t	bytes_not_xfered;
29411 	int	rval;
29412 
29413 	ASSERT(pkt->pkt_resid == 0);
29414 
29415 	/*
29416 	 * Calculate next block number and amount to be transferred.
29417 	 *
29418 	 * How much data NOT transfered to the HBA yet.
29419 	 */
29420 	bytes_not_xfered = xp->xb_dma_resid;
29421 
29422 	/*
29423 	 * figure how many blocks NOT transfered to the HBA yet.
29424 	 */
29425 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
29426 
29427 	/*
29428 	 * set starting block number to the end of what WAS transfered.
29429 	 */
29430 	strt_blk_num = xp->xb_blkno +
29431 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
29432 
29433 	/*
29434 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
29435 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
29436 	 * the disk mutex here.
29437 	 */
29438 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
29439 	    strt_blk_num, num_blks_not_xfered);
29440 
29441 	if (rval == 0) {
29442 
29443 		/*
29444 		 * Success.
29445 		 *
29446 		 * Adjust things if there are still more blocks to be
29447 		 * transfered.
29448 		 */
29449 		xp->xb_dma_resid = pkt->pkt_resid;
29450 		pkt->pkt_resid = 0;
29451 
29452 		return (1);
29453 	}
29454 
29455 	/*
29456 	 * There's really only one possible return value from
29457 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
29458 	 * returns NULL.
29459 	 */
29460 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
29461 
29462 	bp->b_resid = bp->b_bcount;
29463 	bp->b_flags |= B_ERROR;
29464 
29465 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29466 	    "Error setting up next portion of DMA transfer\n");
29467 
29468 	return (0);
29469 }
29470 #endif
29471 
29472 /*
29473  * Note: The following sd_faultinjection_ioctl( ) routines implement
29474  * driver support for handling fault injection for error analysis
29475  * causing faults in multiple layers of the driver.
29476  *
29477  */
29478 
29479 #ifdef SD_FAULT_INJECTION
29480 static uint_t   sd_fault_injection_on = 0;
29481 
29482 /*
29483  *    Function: sd_faultinjection_ioctl()
29484  *
29485  * Description: This routine is the driver entry point for handling
29486  *              faultinjection ioctls to inject errors into the
29487  *              layer model
29488  *
29489  *   Arguments: cmd	- the ioctl cmd recieved
29490  *		arg	- the arguments from user and returns
29491  */
29492 
29493 static void
29494 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
29495 
29496 	uint_t i;
29497 	uint_t rval;
29498 
29499 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
29500 
29501 	mutex_enter(SD_MUTEX(un));
29502 
29503 	switch (cmd) {
29504 	case SDIOCRUN:
29505 		/* Allow pushed faults to be injected */
29506 		SD_INFO(SD_LOG_SDTEST, un,
29507 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
29508 
29509 		sd_fault_injection_on = 1;
29510 
29511 		SD_INFO(SD_LOG_IOERR, un,
29512 		    "sd_faultinjection_ioctl: run finished\n");
29513 		break;
29514 
29515 	case SDIOCSTART:
29516 		/* Start Injection Session */
29517 		SD_INFO(SD_LOG_SDTEST, un,
29518 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
29519 
29520 		sd_fault_injection_on = 0;
29521 		un->sd_injection_mask = 0xFFFFFFFF;
29522 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
29523 			un->sd_fi_fifo_pkt[i] = NULL;
29524 			un->sd_fi_fifo_xb[i] = NULL;
29525 			un->sd_fi_fifo_un[i] = NULL;
29526 			un->sd_fi_fifo_arq[i] = NULL;
29527 		}
29528 		un->sd_fi_fifo_start = 0;
29529 		un->sd_fi_fifo_end = 0;
29530 
29531 		mutex_enter(&(un->un_fi_mutex));
29532 		un->sd_fi_log[0] = '\0';
29533 		un->sd_fi_buf_len = 0;
29534 		mutex_exit(&(un->un_fi_mutex));
29535 
29536 		SD_INFO(SD_LOG_IOERR, un,
29537 		    "sd_faultinjection_ioctl: start finished\n");
29538 		break;
29539 
29540 	case SDIOCSTOP:
29541 		/* Stop Injection Session */
29542 		SD_INFO(SD_LOG_SDTEST, un,
29543 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
29544 		sd_fault_injection_on = 0;
29545 		un->sd_injection_mask = 0x0;
29546 
29547 		/* Empty stray or unuseds structs from fifo */
29548 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
29549 			if (un->sd_fi_fifo_pkt[i] != NULL) {
29550 				kmem_free(un->sd_fi_fifo_pkt[i],
29551 				    sizeof (struct sd_fi_pkt));
29552 			}
29553 			if (un->sd_fi_fifo_xb[i] != NULL) {
29554 				kmem_free(un->sd_fi_fifo_xb[i],
29555 				    sizeof (struct sd_fi_xb));
29556 			}
29557 			if (un->sd_fi_fifo_un[i] != NULL) {
29558 				kmem_free(un->sd_fi_fifo_un[i],
29559 				    sizeof (struct sd_fi_un));
29560 			}
29561 			if (un->sd_fi_fifo_arq[i] != NULL) {
29562 				kmem_free(un->sd_fi_fifo_arq[i],
29563 				    sizeof (struct sd_fi_arq));
29564 			}
29565 			un->sd_fi_fifo_pkt[i] = NULL;
29566 			un->sd_fi_fifo_un[i] = NULL;
29567 			un->sd_fi_fifo_xb[i] = NULL;
29568 			un->sd_fi_fifo_arq[i] = NULL;
29569 		}
29570 		un->sd_fi_fifo_start = 0;
29571 		un->sd_fi_fifo_end = 0;
29572 
29573 		SD_INFO(SD_LOG_IOERR, un,
29574 		    "sd_faultinjection_ioctl: stop finished\n");
29575 		break;
29576 
29577 	case SDIOCINSERTPKT:
29578 		/* Store a packet struct to be pushed onto fifo */
29579 		SD_INFO(SD_LOG_SDTEST, un,
29580 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
29581 
29582 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29583 
29584 		sd_fault_injection_on = 0;
29585 
29586 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
29587 		if (un->sd_fi_fifo_pkt[i] != NULL) {
29588 			kmem_free(un->sd_fi_fifo_pkt[i],
29589 			    sizeof (struct sd_fi_pkt));
29590 		}
29591 		if (arg != NULL) {
29592 			un->sd_fi_fifo_pkt[i] =
29593 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
29594 			if (un->sd_fi_fifo_pkt[i] == NULL) {
29595 				/* Alloc failed don't store anything */
29596 				break;
29597 			}
29598 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
29599 			    sizeof (struct sd_fi_pkt), 0);
29600 			if (rval == -1) {
29601 				kmem_free(un->sd_fi_fifo_pkt[i],
29602 				    sizeof (struct sd_fi_pkt));
29603 				un->sd_fi_fifo_pkt[i] = NULL;
29604 			}
29605 		} else {
29606 			SD_INFO(SD_LOG_IOERR, un,
29607 			    "sd_faultinjection_ioctl: pkt null\n");
29608 		}
29609 		break;
29610 
29611 	case SDIOCINSERTXB:
29612 		/* Store a xb struct to be pushed onto fifo */
29613 		SD_INFO(SD_LOG_SDTEST, un,
29614 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
29615 
29616 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29617 
29618 		sd_fault_injection_on = 0;
29619 
29620 		if (un->sd_fi_fifo_xb[i] != NULL) {
29621 			kmem_free(un->sd_fi_fifo_xb[i],
29622 			    sizeof (struct sd_fi_xb));
29623 			un->sd_fi_fifo_xb[i] = NULL;
29624 		}
29625 		if (arg != NULL) {
29626 			un->sd_fi_fifo_xb[i] =
29627 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
29628 			if (un->sd_fi_fifo_xb[i] == NULL) {
29629 				/* Alloc failed don't store anything */
29630 				break;
29631 			}
29632 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
29633 			    sizeof (struct sd_fi_xb), 0);
29634 
29635 			if (rval == -1) {
29636 				kmem_free(un->sd_fi_fifo_xb[i],
29637 				    sizeof (struct sd_fi_xb));
29638 				un->sd_fi_fifo_xb[i] = NULL;
29639 			}
29640 		} else {
29641 			SD_INFO(SD_LOG_IOERR, un,
29642 			    "sd_faultinjection_ioctl: xb null\n");
29643 		}
29644 		break;
29645 
29646 	case SDIOCINSERTUN:
29647 		/* Store a un struct to be pushed onto fifo */
29648 		SD_INFO(SD_LOG_SDTEST, un,
29649 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
29650 
29651 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29652 
29653 		sd_fault_injection_on = 0;
29654 
29655 		if (un->sd_fi_fifo_un[i] != NULL) {
29656 			kmem_free(un->sd_fi_fifo_un[i],
29657 			    sizeof (struct sd_fi_un));
29658 			un->sd_fi_fifo_un[i] = NULL;
29659 		}
29660 		if (arg != NULL) {
29661 			un->sd_fi_fifo_un[i] =
29662 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
29663 			if (un->sd_fi_fifo_un[i] == NULL) {
29664 				/* Alloc failed don't store anything */
29665 				break;
29666 			}
29667 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
29668 			    sizeof (struct sd_fi_un), 0);
29669 			if (rval == -1) {
29670 				kmem_free(un->sd_fi_fifo_un[i],
29671 				    sizeof (struct sd_fi_un));
29672 				un->sd_fi_fifo_un[i] = NULL;
29673 			}
29674 
29675 		} else {
29676 			SD_INFO(SD_LOG_IOERR, un,
29677 			    "sd_faultinjection_ioctl: un null\n");
29678 		}
29679 
29680 		break;
29681 
29682 	case SDIOCINSERTARQ:
29683 		/* Store a arq struct to be pushed onto fifo */
29684 		SD_INFO(SD_LOG_SDTEST, un,
29685 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
29686 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29687 
29688 		sd_fault_injection_on = 0;
29689 
29690 		if (un->sd_fi_fifo_arq[i] != NULL) {
29691 			kmem_free(un->sd_fi_fifo_arq[i],
29692 			    sizeof (struct sd_fi_arq));
29693 			un->sd_fi_fifo_arq[i] = NULL;
29694 		}
29695 		if (arg != NULL) {
29696 			un->sd_fi_fifo_arq[i] =
29697 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
29698 			if (un->sd_fi_fifo_arq[i] == NULL) {
29699 				/* Alloc failed don't store anything */
29700 				break;
29701 			}
29702 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
29703 			    sizeof (struct sd_fi_arq), 0);
29704 			if (rval == -1) {
29705 				kmem_free(un->sd_fi_fifo_arq[i],
29706 				    sizeof (struct sd_fi_arq));
29707 				un->sd_fi_fifo_arq[i] = NULL;
29708 			}
29709 
29710 		} else {
29711 			SD_INFO(SD_LOG_IOERR, un,
29712 			    "sd_faultinjection_ioctl: arq null\n");
29713 		}
29714 
29715 		break;
29716 
29717 	case SDIOCPUSH:
29718 		/* Push stored xb, pkt, un, and arq onto fifo */
29719 		sd_fault_injection_on = 0;
29720 
29721 		if (arg != NULL) {
29722 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
29723 			if (rval != -1 &&
29724 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
29725 				un->sd_fi_fifo_end += i;
29726 			}
29727 		} else {
29728 			SD_INFO(SD_LOG_IOERR, un,
29729 			    "sd_faultinjection_ioctl: push arg null\n");
29730 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
29731 				un->sd_fi_fifo_end++;
29732 			}
29733 		}
29734 		SD_INFO(SD_LOG_IOERR, un,
29735 		    "sd_faultinjection_ioctl: push to end=%d\n",
29736 		    un->sd_fi_fifo_end);
29737 		break;
29738 
29739 	case SDIOCRETRIEVE:
29740 		/* Return buffer of log from Injection session */
29741 		SD_INFO(SD_LOG_SDTEST, un,
29742 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
29743 
29744 		sd_fault_injection_on = 0;
29745 
29746 		mutex_enter(&(un->un_fi_mutex));
29747 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
29748 		    un->sd_fi_buf_len+1, 0);
29749 		mutex_exit(&(un->un_fi_mutex));
29750 
29751 		if (rval == -1) {
29752 			/*
29753 			 * arg is possibly invalid setting
29754 			 * it to NULL for return
29755 			 */
29756 			arg = NULL;
29757 		}
29758 		break;
29759 	}
29760 
29761 	mutex_exit(SD_MUTEX(un));
29762 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
29763 			    " exit\n");
29764 }
29765 
29766 
29767 /*
29768  *    Function: sd_injection_log()
29769  *
29770  * Description: This routine adds buff to the already existing injection log
29771  *              for retrieval via faultinjection_ioctl for use in fault
29772  *              detection and recovery
29773  *
29774  *   Arguments: buf - the string to add to the log
29775  */
29776 
29777 static void
29778 sd_injection_log(char *buf, struct sd_lun *un)
29779 {
29780 	uint_t len;
29781 
29782 	ASSERT(un != NULL);
29783 	ASSERT(buf != NULL);
29784 
29785 	mutex_enter(&(un->un_fi_mutex));
29786 
29787 	len = min(strlen(buf), 255);
29788 	/* Add logged value to Injection log to be returned later */
29789 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
29790 		uint_t	offset = strlen((char *)un->sd_fi_log);
29791 		char *destp = (char *)un->sd_fi_log + offset;
29792 		int i;
29793 		for (i = 0; i < len; i++) {
29794 			*destp++ = *buf++;
29795 		}
29796 		un->sd_fi_buf_len += len;
29797 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
29798 	}
29799 
29800 	mutex_exit(&(un->un_fi_mutex));
29801 }
29802 
29803 
29804 /*
29805  *    Function: sd_faultinjection()
29806  *
29807  * Description: This routine takes the pkt and changes its
29808  *		content based on error injection scenerio.
29809  *
29810  *   Arguments: pktp	- packet to be changed
29811  */
29812 
29813 static void
29814 sd_faultinjection(struct scsi_pkt *pktp)
29815 {
29816 	uint_t i;
29817 	struct sd_fi_pkt *fi_pkt;
29818 	struct sd_fi_xb *fi_xb;
29819 	struct sd_fi_un *fi_un;
29820 	struct sd_fi_arq *fi_arq;
29821 	struct buf *bp;
29822 	struct sd_xbuf *xb;
29823 	struct sd_lun *un;
29824 
29825 	ASSERT(pktp != NULL);
29826 
29827 	/* pull bp xb and un from pktp */
29828 	bp = (struct buf *)pktp->pkt_private;
29829 	xb = SD_GET_XBUF(bp);
29830 	un = SD_GET_UN(bp);
29831 
29832 	ASSERT(un != NULL);
29833 
29834 	mutex_enter(SD_MUTEX(un));
29835 
29836 	SD_TRACE(SD_LOG_SDTEST, un,
29837 	    "sd_faultinjection: entry Injection from sdintr\n");
29838 
29839 	/* if injection is off return */
29840 	if (sd_fault_injection_on == 0 ||
29841 		un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
29842 		mutex_exit(SD_MUTEX(un));
29843 		return;
29844 	}
29845 
29846 
29847 	/* take next set off fifo */
29848 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
29849 
29850 	fi_pkt = un->sd_fi_fifo_pkt[i];
29851 	fi_xb = un->sd_fi_fifo_xb[i];
29852 	fi_un = un->sd_fi_fifo_un[i];
29853 	fi_arq = un->sd_fi_fifo_arq[i];
29854 
29855 
29856 	/* set variables accordingly */
29857 	/* set pkt if it was on fifo */
29858 	if (fi_pkt != NULL) {
29859 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
29860 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
29861 		SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
29862 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
29863 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
29864 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
29865 
29866 	}
29867 
29868 	/* set xb if it was on fifo */
29869 	if (fi_xb != NULL) {
29870 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
29871 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
29872 		SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
29873 		SD_CONDSET(xb, xb, xb_victim_retry_count,
29874 		    "xb_victim_retry_count");
29875 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
29876 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
29877 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
29878 
29879 		/* copy in block data from sense */
29880 		if (fi_xb->xb_sense_data[0] != -1) {
29881 			bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
29882 			    SENSE_LENGTH);
29883 		}
29884 
29885 		/* copy in extended sense codes */
29886 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code,
29887 		    "es_code");
29888 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key,
29889 		    "es_key");
29890 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code,
29891 		    "es_add_code");
29892 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb,
29893 		    es_qual_code, "es_qual_code");
29894 	}
29895 
29896 	/* set un if it was on fifo */
29897 	if (fi_un != NULL) {
29898 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
29899 		SD_CONDSET(un, un, un_ctype, "un_ctype");
29900 		SD_CONDSET(un, un, un_reset_retry_count,
29901 		    "un_reset_retry_count");
29902 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
29903 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
29904 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
29905 		SD_CONDSET(un, un, un_f_geometry_is_valid,
29906 		    "un_f_geometry_is_valid");
29907 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
29908 		    "un_f_allow_bus_device_reset");
29909 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
29910 
29911 	}
29912 
29913 	/* copy in auto request sense if it was on fifo */
29914 	if (fi_arq != NULL) {
29915 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
29916 	}
29917 
29918 	/* free structs */
29919 	if (un->sd_fi_fifo_pkt[i] != NULL) {
29920 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
29921 	}
29922 	if (un->sd_fi_fifo_xb[i] != NULL) {
29923 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
29924 	}
29925 	if (un->sd_fi_fifo_un[i] != NULL) {
29926 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
29927 	}
29928 	if (un->sd_fi_fifo_arq[i] != NULL) {
29929 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
29930 	}
29931 
29932 	/*
29933 	 * kmem_free does not gurantee to set to NULL
29934 	 * since we uses these to determine if we set
29935 	 * values or not lets confirm they are always
29936 	 * NULL after free
29937 	 */
29938 	un->sd_fi_fifo_pkt[i] = NULL;
29939 	un->sd_fi_fifo_un[i] = NULL;
29940 	un->sd_fi_fifo_xb[i] = NULL;
29941 	un->sd_fi_fifo_arq[i] = NULL;
29942 
29943 	un->sd_fi_fifo_start++;
29944 
29945 	mutex_exit(SD_MUTEX(un));
29946 
29947 	SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
29948 }
29949 
29950 #endif /* SD_FAULT_INJECTION */
29951