xref: /titanic_51/usr/src/uts/common/io/scsi/targets/sd.c (revision b48b4ad70157f504f1e9b62203d1cc83a5c03104)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * SCSI disk target driver.
30  */
31 #include <sys/scsi/scsi.h>
32 #include <sys/dkbad.h>
33 #include <sys/dklabel.h>
34 #include <sys/dkio.h>
35 #include <sys/fdio.h>
36 #include <sys/cdio.h>
37 #include <sys/mhd.h>
38 #include <sys/vtoc.h>
39 #include <sys/dktp/fdisk.h>
40 #include <sys/kstat.h>
41 #include <sys/vtrace.h>
42 #include <sys/note.h>
43 #include <sys/thread.h>
44 #include <sys/proc.h>
45 #include <sys/efi_partition.h>
46 #include <sys/var.h>
47 #include <sys/aio_req.h>
48 
49 #ifdef __lock_lint
50 #define	_LP64
51 #define	__amd64
52 #endif
53 
54 #if (defined(__fibre))
55 /* Note: is there a leadville version of the following? */
56 #include <sys/fc4/fcal_linkapp.h>
57 #endif
58 #include <sys/taskq.h>
59 #include <sys/uuid.h>
60 #include <sys/byteorder.h>
61 #include <sys/sdt.h>
62 
63 #include "sd_xbuf.h"
64 
65 #include <sys/scsi/targets/sddef.h>
66 #include <sys/cmlb.h>
67 
68 
69 /*
70  * Loadable module info.
71  */
72 #if (defined(__fibre))
73 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver %I%"
74 char _depends_on[]	= "misc/scsi misc/cmlb drv/fcp";
75 #else
76 #define	SD_MODULE_NAME	"SCSI Disk Driver %I%"
77 char _depends_on[]	= "misc/scsi misc/cmlb";
78 #endif
79 
80 /*
81  * Define the interconnect type, to allow the driver to distinguish
82  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
83  *
84  * This is really for backward compatibility. In the future, the driver
85  * should actually check the "interconnect-type" property as reported by
86  * the HBA; however at present this property is not defined by all HBAs,
87  * so we will use this #define (1) to permit the driver to run in
88  * backward-compatibility mode; and (2) to print a notification message
89  * if an FC HBA does not support the "interconnect-type" property.  The
90  * behavior of the driver will be to assume parallel SCSI behaviors unless
91  * the "interconnect-type" property is defined by the HBA **AND** has a
92  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
93  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
94  * Channel behaviors (as per the old ssd).  (Note that the
95  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
96  * will result in the driver assuming parallel SCSI behaviors.)
97  *
98  * (see common/sys/scsi/impl/services.h)
99  *
100  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
101  * since some FC HBAs may already support that, and there is some code in
102  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
103  * default would confuse that code, and besides things should work fine
104  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
105  * "interconnect_type" property.
106  *
107  */
108 #if (defined(__fibre))
109 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
110 #else
111 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
112 #endif
113 
114 /*
115  * The name of the driver, established from the module name in _init.
116  */
117 static	char *sd_label			= NULL;
118 
119 /*
120  * Driver name is unfortunately prefixed on some driver.conf properties.
121  */
122 #if (defined(__fibre))
123 #define	sd_max_xfer_size		ssd_max_xfer_size
124 #define	sd_config_list			ssd_config_list
125 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
126 static	char *sd_config_list		= "ssd-config-list";
127 #else
128 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
129 static	char *sd_config_list		= "sd-config-list";
130 #endif
131 
132 /*
133  * Driver global variables
134  */
135 
136 #if (defined(__fibre))
137 /*
138  * These #defines are to avoid namespace collisions that occur because this
139  * code is currently used to compile two separate driver modules: sd and ssd.
140  * All global variables need to be treated this way (even if declared static)
141  * in order to allow the debugger to resolve the names properly.
142  * It is anticipated that in the near future the ssd module will be obsoleted,
143  * at which time this namespace issue should go away.
144  */
145 #define	sd_state			ssd_state
146 #define	sd_io_time			ssd_io_time
147 #define	sd_failfast_enable		ssd_failfast_enable
148 #define	sd_ua_retry_count		ssd_ua_retry_count
149 #define	sd_report_pfa			ssd_report_pfa
150 #define	sd_max_throttle			ssd_max_throttle
151 #define	sd_min_throttle			ssd_min_throttle
152 #define	sd_rot_delay			ssd_rot_delay
153 
154 #define	sd_retry_on_reservation_conflict	\
155 					ssd_retry_on_reservation_conflict
156 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
157 #define	sd_resv_conflict_name		ssd_resv_conflict_name
158 
159 #define	sd_component_mask		ssd_component_mask
160 #define	sd_level_mask			ssd_level_mask
161 #define	sd_debug_un			ssd_debug_un
162 #define	sd_error_level			ssd_error_level
163 
164 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
165 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
166 
167 #define	sd_tr				ssd_tr
168 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
169 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
170 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
171 #define	sd_check_media_time		ssd_check_media_time
172 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
173 #define	sd_label_mutex			ssd_label_mutex
174 #define	sd_detach_mutex			ssd_detach_mutex
175 #define	sd_log_buf			ssd_log_buf
176 #define	sd_log_mutex			ssd_log_mutex
177 
178 #define	sd_disk_table			ssd_disk_table
179 #define	sd_disk_table_size		ssd_disk_table_size
180 #define	sd_sense_mutex			ssd_sense_mutex
181 #define	sd_cdbtab			ssd_cdbtab
182 
183 #define	sd_cb_ops			ssd_cb_ops
184 #define	sd_ops				ssd_ops
185 #define	sd_additional_codes		ssd_additional_codes
186 #define	sd_tgops			ssd_tgops
187 
188 #define	sd_minor_data			ssd_minor_data
189 #define	sd_minor_data_efi		ssd_minor_data_efi
190 
191 #define	sd_tq				ssd_tq
192 #define	sd_wmr_tq			ssd_wmr_tq
193 #define	sd_taskq_name			ssd_taskq_name
194 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
195 #define	sd_taskq_minalloc		ssd_taskq_minalloc
196 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
197 
198 #define	sd_dump_format_string		ssd_dump_format_string
199 
200 #define	sd_iostart_chain		ssd_iostart_chain
201 #define	sd_iodone_chain			ssd_iodone_chain
202 
203 #define	sd_pm_idletime			ssd_pm_idletime
204 
205 #define	sd_force_pm_supported		ssd_force_pm_supported
206 
207 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
208 
209 #endif
210 
211 
212 #ifdef	SDDEBUG
213 int	sd_force_pm_supported		= 0;
214 #endif	/* SDDEBUG */
215 
216 void *sd_state				= NULL;
217 int sd_io_time				= SD_IO_TIME;
218 int sd_failfast_enable			= 1;
219 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
220 int sd_report_pfa			= 1;
221 int sd_max_throttle			= SD_MAX_THROTTLE;
222 int sd_min_throttle			= SD_MIN_THROTTLE;
223 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
224 int sd_qfull_throttle_enable		= TRUE;
225 
226 int sd_retry_on_reservation_conflict	= 1;
227 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
228 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
229 
230 static int sd_dtype_optical_bind	= -1;
231 
232 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
233 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
234 
235 /*
236  * Global data for debug logging. To enable debug printing, sd_component_mask
237  * and sd_level_mask should be set to the desired bit patterns as outlined in
238  * sddef.h.
239  */
240 uint_t	sd_component_mask		= 0x0;
241 uint_t	sd_level_mask			= 0x0;
242 struct	sd_lun *sd_debug_un		= NULL;
243 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
244 
245 /* Note: these may go away in the future... */
246 static uint32_t	sd_xbuf_active_limit	= 512;
247 static uint32_t sd_xbuf_reserve_limit	= 16;
248 
249 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
250 
251 /*
252  * Timer value used to reset the throttle after it has been reduced
253  * (typically in response to TRAN_BUSY or STATUS_QFULL)
254  */
255 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
256 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
257 
258 /*
259  * Interval value associated with the media change scsi watch.
260  */
261 static int sd_check_media_time		= 3000000;
262 
263 /*
264  * Wait value used for in progress operations during a DDI_SUSPEND
265  */
266 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
267 
268 /*
269  * sd_label_mutex protects a static buffer used in the disk label
270  * component of the driver
271  */
272 static kmutex_t sd_label_mutex;
273 
274 /*
275  * sd_detach_mutex protects un_layer_count, un_detach_count, and
276  * un_opens_in_progress in the sd_lun structure.
277  */
278 static kmutex_t sd_detach_mutex;
279 
280 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
281 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
282 
283 /*
284  * Global buffer and mutex for debug logging
285  */
286 static char	sd_log_buf[1024];
287 static kmutex_t	sd_log_mutex;
288 
289 /*
290  * Structs and globals for recording attached lun information.
291  * This maintains a chain. Each node in the chain represents a SCSI controller.
292  * The structure records the number of luns attached to each target connected
293  * with the controller.
294  * For parallel scsi device only.
295  */
296 struct sd_scsi_hba_tgt_lun {
297 	struct sd_scsi_hba_tgt_lun	*next;
298 	dev_info_t			*pdip;
299 	int				nlun[NTARGETS_WIDE];
300 };
301 
302 /*
303  * Flag to indicate the lun is attached or detached
304  */
305 #define	SD_SCSI_LUN_ATTACH	0
306 #define	SD_SCSI_LUN_DETACH	1
307 
308 static kmutex_t	sd_scsi_target_lun_mutex;
309 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
310 
311 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
312     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
313 
314 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
315     sd_scsi_target_lun_head))
316 
317 /*
318  * "Smart" Probe Caching structs, globals, #defines, etc.
319  * For parallel scsi and non-self-identify device only.
320  */
321 
322 /*
323  * The following resources and routines are implemented to support
324  * "smart" probing, which caches the scsi_probe() results in an array,
325  * in order to help avoid long probe times.
326  */
327 struct sd_scsi_probe_cache {
328 	struct	sd_scsi_probe_cache	*next;
329 	dev_info_t	*pdip;
330 	int		cache[NTARGETS_WIDE];
331 };
332 
333 static kmutex_t	sd_scsi_probe_cache_mutex;
334 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
335 
336 /*
337  * Really we only need protection on the head of the linked list, but
338  * better safe than sorry.
339  */
340 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
341     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
342 
343 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
344     sd_scsi_probe_cache_head))
345 
346 
347 /*
348  * Vendor specific data name property declarations
349  */
350 
351 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
352 
353 static sd_tunables seagate_properties = {
354 	SEAGATE_THROTTLE_VALUE,
355 	0,
356 	0,
357 	0,
358 	0,
359 	0,
360 	0,
361 	0,
362 	0
363 };
364 
365 
366 static sd_tunables fujitsu_properties = {
367 	FUJITSU_THROTTLE_VALUE,
368 	0,
369 	0,
370 	0,
371 	0,
372 	0,
373 	0,
374 	0,
375 	0
376 };
377 
378 static sd_tunables ibm_properties = {
379 	IBM_THROTTLE_VALUE,
380 	0,
381 	0,
382 	0,
383 	0,
384 	0,
385 	0,
386 	0,
387 	0
388 };
389 
390 static sd_tunables purple_properties = {
391 	PURPLE_THROTTLE_VALUE,
392 	0,
393 	0,
394 	PURPLE_BUSY_RETRIES,
395 	PURPLE_RESET_RETRY_COUNT,
396 	PURPLE_RESERVE_RELEASE_TIME,
397 	0,
398 	0,
399 	0
400 };
401 
402 static sd_tunables sve_properties = {
403 	SVE_THROTTLE_VALUE,
404 	0,
405 	0,
406 	SVE_BUSY_RETRIES,
407 	SVE_RESET_RETRY_COUNT,
408 	SVE_RESERVE_RELEASE_TIME,
409 	SVE_MIN_THROTTLE_VALUE,
410 	SVE_DISKSORT_DISABLED_FLAG,
411 	0
412 };
413 
414 static sd_tunables maserati_properties = {
415 	0,
416 	0,
417 	0,
418 	0,
419 	0,
420 	0,
421 	0,
422 	MASERATI_DISKSORT_DISABLED_FLAG,
423 	MASERATI_LUN_RESET_ENABLED_FLAG
424 };
425 
426 static sd_tunables pirus_properties = {
427 	PIRUS_THROTTLE_VALUE,
428 	0,
429 	PIRUS_NRR_COUNT,
430 	PIRUS_BUSY_RETRIES,
431 	PIRUS_RESET_RETRY_COUNT,
432 	0,
433 	PIRUS_MIN_THROTTLE_VALUE,
434 	PIRUS_DISKSORT_DISABLED_FLAG,
435 	PIRUS_LUN_RESET_ENABLED_FLAG
436 };
437 
438 #endif
439 
440 #if (defined(__sparc) && !defined(__fibre)) || \
441 	(defined(__i386) || defined(__amd64))
442 
443 
444 static sd_tunables elite_properties = {
445 	ELITE_THROTTLE_VALUE,
446 	0,
447 	0,
448 	0,
449 	0,
450 	0,
451 	0,
452 	0,
453 	0
454 };
455 
456 static sd_tunables st31200n_properties = {
457 	ST31200N_THROTTLE_VALUE,
458 	0,
459 	0,
460 	0,
461 	0,
462 	0,
463 	0,
464 	0,
465 	0
466 };
467 
468 #endif /* Fibre or not */
469 
470 static sd_tunables lsi_properties_scsi = {
471 	LSI_THROTTLE_VALUE,
472 	0,
473 	LSI_NOTREADY_RETRIES,
474 	0,
475 	0,
476 	0,
477 	0,
478 	0,
479 	0
480 };
481 
482 static sd_tunables symbios_properties = {
483 	SYMBIOS_THROTTLE_VALUE,
484 	0,
485 	SYMBIOS_NOTREADY_RETRIES,
486 	0,
487 	0,
488 	0,
489 	0,
490 	0,
491 	0
492 };
493 
494 static sd_tunables lsi_properties = {
495 	0,
496 	0,
497 	LSI_NOTREADY_RETRIES,
498 	0,
499 	0,
500 	0,
501 	0,
502 	0,
503 	0
504 };
505 
506 static sd_tunables lsi_oem_properties = {
507 	0,
508 	0,
509 	LSI_OEM_NOTREADY_RETRIES,
510 	0,
511 	0,
512 	0,
513 	0,
514 	0,
515 	0
516 };
517 
518 
519 
520 #if (defined(SD_PROP_TST))
521 
522 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
523 #define	SD_TST_THROTTLE_VAL	16
524 #define	SD_TST_NOTREADY_VAL	12
525 #define	SD_TST_BUSY_VAL		60
526 #define	SD_TST_RST_RETRY_VAL	36
527 #define	SD_TST_RSV_REL_TIME	60
528 
529 static sd_tunables tst_properties = {
530 	SD_TST_THROTTLE_VAL,
531 	SD_TST_CTYPE_VAL,
532 	SD_TST_NOTREADY_VAL,
533 	SD_TST_BUSY_VAL,
534 	SD_TST_RST_RETRY_VAL,
535 	SD_TST_RSV_REL_TIME,
536 	0,
537 	0,
538 	0
539 };
540 #endif
541 
542 /* This is similar to the ANSI toupper implementation */
543 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
544 
545 /*
546  * Static Driver Configuration Table
547  *
548  * This is the table of disks which need throttle adjustment (or, perhaps
549  * something else as defined by the flags at a future time.)  device_id
550  * is a string consisting of concatenated vid (vendor), pid (product/model)
551  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
552  * the parts of the string are as defined by the sizes in the scsi_inquiry
553  * structure.  Device type is searched as far as the device_id string is
554  * defined.  Flags defines which values are to be set in the driver from the
555  * properties list.
556  *
557  * Entries below which begin and end with a "*" are a special case.
558  * These do not have a specific vendor, and the string which follows
559  * can appear anywhere in the 16 byte PID portion of the inquiry data.
560  *
561  * Entries below which begin and end with a " " (blank) are a special
562  * case. The comparison function will treat multiple consecutive blanks
563  * as equivalent to a single blank. For example, this causes a
564  * sd_disk_table entry of " NEC CDROM " to match a device's id string
565  * of  "NEC       CDROM".
566  *
567  * Note: The MD21 controller type has been obsoleted.
568  *	 ST318202F is a Legacy device
569  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
570  *	 made with an FC connection. The entries here are a legacy.
571  */
572 static sd_disk_config_t sd_disk_table[] = {
573 #if defined(__fibre) || defined(__i386) || defined(__amd64)
574 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
575 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
576 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
577 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
578 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
579 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
580 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
581 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
582 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
583 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
584 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
585 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
586 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
587 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
588 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
589 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
590 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
591 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
592 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
593 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
594 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
595 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
596 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
597 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
598 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
599 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
600 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
601 	{ "IBM     1724-100",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
602 	{ "IBM     1726-2xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
603 	{ "IBM     1726-4xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
604 	{ "IBM     1726-3xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
605 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
606 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
607 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
608 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
609 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
610 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
611 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
612 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
613 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
614 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
615 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
616 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
617 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
618 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
619 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
620 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
621 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
622 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
623 			SD_CONF_BSET_BSY_RETRY_COUNT|
624 			SD_CONF_BSET_RST_RETRIES|
625 			SD_CONF_BSET_RSV_REL_TIME,
626 		&purple_properties },
627 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
628 		SD_CONF_BSET_BSY_RETRY_COUNT|
629 		SD_CONF_BSET_RST_RETRIES|
630 		SD_CONF_BSET_RSV_REL_TIME|
631 		SD_CONF_BSET_MIN_THROTTLE|
632 		SD_CONF_BSET_DISKSORT_DISABLED,
633 		&sve_properties },
634 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
635 			SD_CONF_BSET_BSY_RETRY_COUNT|
636 			SD_CONF_BSET_RST_RETRIES|
637 			SD_CONF_BSET_RSV_REL_TIME,
638 		&purple_properties },
639 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
640 		SD_CONF_BSET_LUN_RESET_ENABLED,
641 		&maserati_properties },
642 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
643 		SD_CONF_BSET_NRR_COUNT|
644 		SD_CONF_BSET_BSY_RETRY_COUNT|
645 		SD_CONF_BSET_RST_RETRIES|
646 		SD_CONF_BSET_MIN_THROTTLE|
647 		SD_CONF_BSET_DISKSORT_DISABLED|
648 		SD_CONF_BSET_LUN_RESET_ENABLED,
649 		&pirus_properties },
650 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
651 		SD_CONF_BSET_NRR_COUNT|
652 		SD_CONF_BSET_BSY_RETRY_COUNT|
653 		SD_CONF_BSET_RST_RETRIES|
654 		SD_CONF_BSET_MIN_THROTTLE|
655 		SD_CONF_BSET_DISKSORT_DISABLED|
656 		SD_CONF_BSET_LUN_RESET_ENABLED,
657 		&pirus_properties },
658 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
659 		SD_CONF_BSET_NRR_COUNT|
660 		SD_CONF_BSET_BSY_RETRY_COUNT|
661 		SD_CONF_BSET_RST_RETRIES|
662 		SD_CONF_BSET_MIN_THROTTLE|
663 		SD_CONF_BSET_DISKSORT_DISABLED|
664 		SD_CONF_BSET_LUN_RESET_ENABLED,
665 		&pirus_properties },
666 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
667 		SD_CONF_BSET_NRR_COUNT|
668 		SD_CONF_BSET_BSY_RETRY_COUNT|
669 		SD_CONF_BSET_RST_RETRIES|
670 		SD_CONF_BSET_MIN_THROTTLE|
671 		SD_CONF_BSET_DISKSORT_DISABLED|
672 		SD_CONF_BSET_LUN_RESET_ENABLED,
673 		&pirus_properties },
674 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
675 		SD_CONF_BSET_NRR_COUNT|
676 		SD_CONF_BSET_BSY_RETRY_COUNT|
677 		SD_CONF_BSET_RST_RETRIES|
678 		SD_CONF_BSET_MIN_THROTTLE|
679 		SD_CONF_BSET_DISKSORT_DISABLED|
680 		SD_CONF_BSET_LUN_RESET_ENABLED,
681 		&pirus_properties },
682 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
683 		SD_CONF_BSET_NRR_COUNT|
684 		SD_CONF_BSET_BSY_RETRY_COUNT|
685 		SD_CONF_BSET_RST_RETRIES|
686 		SD_CONF_BSET_MIN_THROTTLE|
687 		SD_CONF_BSET_DISKSORT_DISABLED|
688 		SD_CONF_BSET_LUN_RESET_ENABLED,
689 		&pirus_properties },
690 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
691 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
692 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
693 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
694 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
695 #endif /* fibre or NON-sparc platforms */
696 #if ((defined(__sparc) && !defined(__fibre)) ||\
697 	(defined(__i386) || defined(__amd64)))
698 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
699 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
700 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
701 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
702 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
703 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
704 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
705 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
706 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
707 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
708 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
709 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
710 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
711 	    &symbios_properties },
712 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
713 	    &lsi_properties_scsi },
714 #if defined(__i386) || defined(__amd64)
715 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
716 				    | SD_CONF_BSET_READSUB_BCD
717 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
718 				    | SD_CONF_BSET_NO_READ_HEADER
719 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
720 
721 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
722 				    | SD_CONF_BSET_READSUB_BCD
723 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
724 				    | SD_CONF_BSET_NO_READ_HEADER
725 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
726 #endif /* __i386 || __amd64 */
727 #endif /* sparc NON-fibre or NON-sparc platforms */
728 
729 #if (defined(SD_PROP_TST))
730 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
731 				| SD_CONF_BSET_CTYPE
732 				| SD_CONF_BSET_NRR_COUNT
733 				| SD_CONF_BSET_FAB_DEVID
734 				| SD_CONF_BSET_NOCACHE
735 				| SD_CONF_BSET_BSY_RETRY_COUNT
736 				| SD_CONF_BSET_PLAYMSF_BCD
737 				| SD_CONF_BSET_READSUB_BCD
738 				| SD_CONF_BSET_READ_TOC_TRK_BCD
739 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
740 				| SD_CONF_BSET_NO_READ_HEADER
741 				| SD_CONF_BSET_READ_CD_XD4
742 				| SD_CONF_BSET_RST_RETRIES
743 				| SD_CONF_BSET_RSV_REL_TIME
744 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
745 #endif
746 };
747 
748 static const int sd_disk_table_size =
749 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
750 
751 
752 
753 #define	SD_INTERCONNECT_PARALLEL	0
754 #define	SD_INTERCONNECT_FABRIC		1
755 #define	SD_INTERCONNECT_FIBRE		2
756 #define	SD_INTERCONNECT_SSA		3
757 #define	SD_INTERCONNECT_SATA		4
758 #define	SD_IS_PARALLEL_SCSI(un)		\
759 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
760 #define	SD_IS_SERIAL(un)		\
761 	((un)->un_interconnect_type == SD_INTERCONNECT_SATA)
762 
763 /*
764  * Definitions used by device id registration routines
765  */
766 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
767 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
768 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
769 
770 static kmutex_t sd_sense_mutex = {0};
771 
772 /*
773  * Macros for updates of the driver state
774  */
775 #define	New_state(un, s)        \
776 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
777 #define	Restore_state(un)	\
778 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
779 
780 static struct sd_cdbinfo sd_cdbtab[] = {
781 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
782 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
783 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
784 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
785 };
786 
787 /*
788  * Specifies the number of seconds that must have elapsed since the last
789  * cmd. has completed for a device to be declared idle to the PM framework.
790  */
791 static int sd_pm_idletime = 1;
792 
793 /*
794  * Internal function prototypes
795  */
796 
797 #if (defined(__fibre))
798 /*
799  * These #defines are to avoid namespace collisions that occur because this
800  * code is currently used to compile two separate driver modules: sd and ssd.
801  * All function names need to be treated this way (even if declared static)
802  * in order to allow the debugger to resolve the names properly.
803  * It is anticipated that in the near future the ssd module will be obsoleted,
804  * at which time this ugliness should go away.
805  */
806 #define	sd_log_trace			ssd_log_trace
807 #define	sd_log_info			ssd_log_info
808 #define	sd_log_err			ssd_log_err
809 #define	sdprobe				ssdprobe
810 #define	sdinfo				ssdinfo
811 #define	sd_prop_op			ssd_prop_op
812 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
813 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
814 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
815 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
816 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
817 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
818 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
819 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
820 #define	sd_spin_up_unit			ssd_spin_up_unit
821 #define	sd_enable_descr_sense		ssd_enable_descr_sense
822 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
823 #define	sd_set_mmc_caps			ssd_set_mmc_caps
824 #define	sd_read_unit_properties		ssd_read_unit_properties
825 #define	sd_process_sdconf_file		ssd_process_sdconf_file
826 #define	sd_process_sdconf_table		ssd_process_sdconf_table
827 #define	sd_sdconf_id_match		ssd_sdconf_id_match
828 #define	sd_blank_cmp			ssd_blank_cmp
829 #define	sd_chk_vers1_data		ssd_chk_vers1_data
830 #define	sd_set_vers1_properties		ssd_set_vers1_properties
831 
832 #define	sd_get_physical_geometry	ssd_get_physical_geometry
833 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
834 #define	sd_update_block_info		ssd_update_block_info
835 #define	sd_register_devid		ssd_register_devid
836 #define	sd_get_devid			ssd_get_devid
837 #define	sd_create_devid			ssd_create_devid
838 #define	sd_write_deviceid		ssd_write_deviceid
839 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
840 #define	sd_setup_pm			ssd_setup_pm
841 #define	sd_create_pm_components		ssd_create_pm_components
842 #define	sd_ddi_suspend			ssd_ddi_suspend
843 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
844 #define	sd_ddi_resume			ssd_ddi_resume
845 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
846 #define	sdpower				ssdpower
847 #define	sdattach			ssdattach
848 #define	sddetach			ssddetach
849 #define	sd_unit_attach			ssd_unit_attach
850 #define	sd_unit_detach			ssd_unit_detach
851 #define	sd_set_unit_attributes		ssd_set_unit_attributes
852 #define	sd_create_errstats		ssd_create_errstats
853 #define	sd_set_errstats			ssd_set_errstats
854 #define	sd_set_pstats			ssd_set_pstats
855 #define	sddump				ssddump
856 #define	sd_scsi_poll			ssd_scsi_poll
857 #define	sd_send_polled_RQS		ssd_send_polled_RQS
858 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
859 #define	sd_init_event_callbacks		ssd_init_event_callbacks
860 #define	sd_event_callback		ssd_event_callback
861 #define	sd_cache_control		ssd_cache_control
862 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
863 #define	sd_make_device			ssd_make_device
864 #define	sdopen				ssdopen
865 #define	sdclose				ssdclose
866 #define	sd_ready_and_valid		ssd_ready_and_valid
867 #define	sdmin				ssdmin
868 #define	sdread				ssdread
869 #define	sdwrite				ssdwrite
870 #define	sdaread				ssdaread
871 #define	sdawrite			ssdawrite
872 #define	sdstrategy			ssdstrategy
873 #define	sdioctl				ssdioctl
874 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
875 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
876 #define	sd_checksum_iostart		ssd_checksum_iostart
877 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
878 #define	sd_pm_iostart			ssd_pm_iostart
879 #define	sd_core_iostart			ssd_core_iostart
880 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
881 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
882 #define	sd_checksum_iodone		ssd_checksum_iodone
883 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
884 #define	sd_pm_iodone			ssd_pm_iodone
885 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
886 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
887 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
888 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
889 #define	sd_buf_iodone			ssd_buf_iodone
890 #define	sd_uscsi_strategy		ssd_uscsi_strategy
891 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
892 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
893 #define	sd_uscsi_iodone			ssd_uscsi_iodone
894 #define	sd_xbuf_strategy		ssd_xbuf_strategy
895 #define	sd_xbuf_init			ssd_xbuf_init
896 #define	sd_pm_entry			ssd_pm_entry
897 #define	sd_pm_exit			ssd_pm_exit
898 
899 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
900 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
901 
902 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
903 #define	sdintr				ssdintr
904 #define	sd_start_cmds			ssd_start_cmds
905 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
906 #define	sd_bioclone_alloc		ssd_bioclone_alloc
907 #define	sd_bioclone_free		ssd_bioclone_free
908 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
909 #define	sd_shadow_buf_free		ssd_shadow_buf_free
910 #define	sd_print_transport_rejected_message	\
911 					ssd_print_transport_rejected_message
912 #define	sd_retry_command		ssd_retry_command
913 #define	sd_set_retry_bp			ssd_set_retry_bp
914 #define	sd_send_request_sense_command	ssd_send_request_sense_command
915 #define	sd_start_retry_command		ssd_start_retry_command
916 #define	sd_start_direct_priority_command	\
917 					ssd_start_direct_priority_command
918 #define	sd_return_failed_command	ssd_return_failed_command
919 #define	sd_return_failed_command_no_restart	\
920 					ssd_return_failed_command_no_restart
921 #define	sd_return_command		ssd_return_command
922 #define	sd_sync_with_callback		ssd_sync_with_callback
923 #define	sdrunout			ssdrunout
924 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
925 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
926 #define	sd_reduce_throttle		ssd_reduce_throttle
927 #define	sd_restore_throttle		ssd_restore_throttle
928 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
929 #define	sd_init_cdb_limits		ssd_init_cdb_limits
930 #define	sd_pkt_status_good		ssd_pkt_status_good
931 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
932 #define	sd_pkt_status_busy		ssd_pkt_status_busy
933 #define	sd_pkt_status_reservation_conflict	\
934 					ssd_pkt_status_reservation_conflict
935 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
936 #define	sd_handle_request_sense		ssd_handle_request_sense
937 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
938 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
939 #define	sd_validate_sense_data		ssd_validate_sense_data
940 #define	sd_decode_sense			ssd_decode_sense
941 #define	sd_print_sense_msg		ssd_print_sense_msg
942 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
943 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
944 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
945 #define	sd_sense_key_medium_or_hardware_error	\
946 					ssd_sense_key_medium_or_hardware_error
947 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
948 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
949 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
950 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
951 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
952 #define	sd_sense_key_default		ssd_sense_key_default
953 #define	sd_print_retry_msg		ssd_print_retry_msg
954 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
955 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
956 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
957 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
958 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
959 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
960 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
961 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
962 #define	sd_pkt_reason_default		ssd_pkt_reason_default
963 #define	sd_reset_target			ssd_reset_target
964 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
965 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
966 #define	sd_taskq_create			ssd_taskq_create
967 #define	sd_taskq_delete			ssd_taskq_delete
968 #define	sd_media_change_task		ssd_media_change_task
969 #define	sd_handle_mchange		ssd_handle_mchange
970 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
971 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
972 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
973 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
974 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
975 					sd_send_scsi_feature_GET_CONFIGURATION
976 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
977 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
978 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
979 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
980 					ssd_send_scsi_PERSISTENT_RESERVE_IN
981 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
982 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
983 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
984 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
985 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
986 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
987 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
988 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
989 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
990 #define	sd_alloc_rqs			ssd_alloc_rqs
991 #define	sd_free_rqs			ssd_free_rqs
992 #define	sd_dump_memory			ssd_dump_memory
993 #define	sd_get_media_info		ssd_get_media_info
994 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
995 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
996 #define	sd_setup_next_xfer		ssd_setup_next_xfer
997 #define	sd_dkio_get_temp		ssd_dkio_get_temp
998 #define	sd_check_mhd			ssd_check_mhd
999 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1000 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1001 #define	sd_sname			ssd_sname
1002 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1003 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1004 #define	sd_take_ownership		ssd_take_ownership
1005 #define	sd_reserve_release		ssd_reserve_release
1006 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1007 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1008 #define	sd_persistent_reservation_in_read_keys	\
1009 					ssd_persistent_reservation_in_read_keys
1010 #define	sd_persistent_reservation_in_read_resv	\
1011 					ssd_persistent_reservation_in_read_resv
1012 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1013 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1014 #define	sd_mhdioc_release		ssd_mhdioc_release
1015 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1016 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1017 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1018 #define	sr_change_blkmode		ssr_change_blkmode
1019 #define	sr_change_speed			ssr_change_speed
1020 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1021 #define	sr_pause_resume			ssr_pause_resume
1022 #define	sr_play_msf			ssr_play_msf
1023 #define	sr_play_trkind			ssr_play_trkind
1024 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1025 #define	sr_read_subchannel		ssr_read_subchannel
1026 #define	sr_read_tocentry		ssr_read_tocentry
1027 #define	sr_read_tochdr			ssr_read_tochdr
1028 #define	sr_read_cdda			ssr_read_cdda
1029 #define	sr_read_cdxa			ssr_read_cdxa
1030 #define	sr_read_mode1			ssr_read_mode1
1031 #define	sr_read_mode2			ssr_read_mode2
1032 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1033 #define	sr_sector_mode			ssr_sector_mode
1034 #define	sr_eject			ssr_eject
1035 #define	sr_ejected			ssr_ejected
1036 #define	sr_check_wp			ssr_check_wp
1037 #define	sd_check_media			ssd_check_media
1038 #define	sd_media_watch_cb		ssd_media_watch_cb
1039 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1040 #define	sr_volume_ctrl			ssr_volume_ctrl
1041 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1042 #define	sd_log_page_supported		ssd_log_page_supported
1043 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1044 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1045 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1046 #define	sd_range_lock			ssd_range_lock
1047 #define	sd_get_range			ssd_get_range
1048 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1049 #define	sd_range_unlock			ssd_range_unlock
1050 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1051 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1052 
1053 #define	sd_iostart_chain		ssd_iostart_chain
1054 #define	sd_iodone_chain			ssd_iodone_chain
1055 #define	sd_initpkt_map			ssd_initpkt_map
1056 #define	sd_destroypkt_map		ssd_destroypkt_map
1057 #define	sd_chain_type_map		ssd_chain_type_map
1058 #define	sd_chain_index_map		ssd_chain_index_map
1059 
1060 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1061 #define	sd_failfast_flushq		ssd_failfast_flushq
1062 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1063 
1064 #define	sd_is_lsi			ssd_is_lsi
1065 #define	sd_tg_rdwr			ssd_tg_rdwr
1066 #define	sd_tg_getinfo			ssd_tg_getinfo
1067 
1068 #endif	/* #if (defined(__fibre)) */
1069 
1070 
1071 int _init(void);
1072 int _fini(void);
1073 int _info(struct modinfo *modinfop);
1074 
1075 /*PRINTFLIKE3*/
1076 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1077 /*PRINTFLIKE3*/
1078 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1079 /*PRINTFLIKE3*/
1080 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1081 
1082 static int sdprobe(dev_info_t *devi);
1083 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1084     void **result);
1085 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1086     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1087 
1088 /*
1089  * Smart probe for parallel scsi
1090  */
1091 static void sd_scsi_probe_cache_init(void);
1092 static void sd_scsi_probe_cache_fini(void);
1093 static void sd_scsi_clear_probe_cache(void);
1094 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1095 
1096 /*
1097  * Attached luns on target for parallel scsi
1098  */
1099 static void sd_scsi_target_lun_init(void);
1100 static void sd_scsi_target_lun_fini(void);
1101 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1102 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1103 
1104 static int	sd_spin_up_unit(struct sd_lun *un);
1105 #ifdef _LP64
1106 static void	sd_enable_descr_sense(struct sd_lun *un);
1107 static void	sd_reenable_dsense_task(void *arg);
1108 #endif /* _LP64 */
1109 
1110 static void	sd_set_mmc_caps(struct sd_lun *un);
1111 
1112 static void sd_read_unit_properties(struct sd_lun *un);
1113 static int  sd_process_sdconf_file(struct sd_lun *un);
1114 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1115     int *data_list, sd_tunables *values);
1116 static void sd_process_sdconf_table(struct sd_lun *un);
1117 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1118 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1119 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1120 	int list_len, char *dataname_ptr);
1121 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1122     sd_tunables *prop_list);
1123 
1124 static void sd_register_devid(struct sd_lun *un, dev_info_t *devi,
1125     int reservation_flag);
1126 static int  sd_get_devid(struct sd_lun *un);
1127 static int  sd_get_serialnum(struct sd_lun *un, uchar_t *wwn, int *len);
1128 static ddi_devid_t sd_create_devid(struct sd_lun *un);
1129 static int  sd_write_deviceid(struct sd_lun *un);
1130 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1131 static int  sd_check_vpd_page_support(struct sd_lun *un);
1132 
1133 static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi);
1134 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1135 
1136 static int  sd_ddi_suspend(dev_info_t *devi);
1137 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1138 static int  sd_ddi_resume(dev_info_t *devi);
1139 static int  sd_ddi_pm_resume(struct sd_lun *un);
1140 static int  sdpower(dev_info_t *devi, int component, int level);
1141 
1142 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1143 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1144 static int  sd_unit_attach(dev_info_t *devi);
1145 static int  sd_unit_detach(dev_info_t *devi);
1146 
1147 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1148 static void sd_create_errstats(struct sd_lun *un, int instance);
1149 static void sd_set_errstats(struct sd_lun *un);
1150 static void sd_set_pstats(struct sd_lun *un);
1151 
1152 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1153 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1154 static int  sd_send_polled_RQS(struct sd_lun *un);
1155 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1156 
1157 #if (defined(__fibre))
1158 /*
1159  * Event callbacks (photon)
1160  */
1161 static void sd_init_event_callbacks(struct sd_lun *un);
1162 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1163 #endif
1164 
1165 /*
1166  * Defines for sd_cache_control
1167  */
1168 
1169 #define	SD_CACHE_ENABLE		1
1170 #define	SD_CACHE_DISABLE	0
1171 #define	SD_CACHE_NOCHANGE	-1
1172 
1173 static int   sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag);
1174 static int   sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled);
1175 static dev_t sd_make_device(dev_info_t *devi);
1176 
1177 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1178 	uint64_t capacity);
1179 
1180 /*
1181  * Driver entry point functions.
1182  */
1183 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1184 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1185 static int  sd_ready_and_valid(struct sd_lun *un);
1186 
1187 static void sdmin(struct buf *bp);
1188 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1189 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1190 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1191 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1192 
1193 static int sdstrategy(struct buf *bp);
1194 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1195 
1196 /*
1197  * Function prototypes for layering functions in the iostart chain.
1198  */
1199 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1200 	struct buf *bp);
1201 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1202 	struct buf *bp);
1203 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1204 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1205 	struct buf *bp);
1206 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1207 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1208 
1209 /*
1210  * Function prototypes for layering functions in the iodone chain.
1211  */
1212 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1213 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1214 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1215 	struct buf *bp);
1216 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1217 	struct buf *bp);
1218 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1219 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1220 	struct buf *bp);
1221 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1222 
1223 /*
1224  * Prototypes for functions to support buf(9S) based IO.
1225  */
1226 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1227 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1228 static void sd_destroypkt_for_buf(struct buf *);
1229 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1230 	struct buf *bp, int flags,
1231 	int (*callback)(caddr_t), caddr_t callback_arg,
1232 	diskaddr_t lba, uint32_t blockcount);
1233 #if defined(__i386) || defined(__amd64)
1234 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1235 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1236 #endif /* defined(__i386) || defined(__amd64) */
1237 
1238 /*
1239  * Prototypes for functions to support USCSI IO.
1240  */
1241 static int sd_uscsi_strategy(struct buf *bp);
1242 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1243 static void sd_destroypkt_for_uscsi(struct buf *);
1244 
1245 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1246 	uchar_t chain_type, void *pktinfop);
1247 
1248 static int  sd_pm_entry(struct sd_lun *un);
1249 static void sd_pm_exit(struct sd_lun *un);
1250 
1251 static void sd_pm_idletimeout_handler(void *arg);
1252 
1253 /*
1254  * sd_core internal functions (used at the sd_core_io layer).
1255  */
1256 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1257 static void sdintr(struct scsi_pkt *pktp);
1258 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1259 
1260 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1261 	enum uio_seg dataspace, int path_flag);
1262 
1263 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1264 	daddr_t blkno, int (*func)(struct buf *));
1265 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1266 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1267 static void sd_bioclone_free(struct buf *bp);
1268 static void sd_shadow_buf_free(struct buf *bp);
1269 
1270 static void sd_print_transport_rejected_message(struct sd_lun *un,
1271 	struct sd_xbuf *xp, int code);
1272 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1273     void *arg, int code);
1274 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1275     void *arg, int code);
1276 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1277     void *arg, int code);
1278 
1279 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1280 	int retry_check_flag,
1281 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1282 		int c),
1283 	void *user_arg, int failure_code,  clock_t retry_delay,
1284 	void (*statp)(kstat_io_t *));
1285 
1286 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1287 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1288 
1289 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1290 	struct scsi_pkt *pktp);
1291 static void sd_start_retry_command(void *arg);
1292 static void sd_start_direct_priority_command(void *arg);
1293 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1294 	int errcode);
1295 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1296 	struct buf *bp, int errcode);
1297 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1298 static void sd_sync_with_callback(struct sd_lun *un);
1299 static int sdrunout(caddr_t arg);
1300 
1301 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1302 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1303 
1304 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1305 static void sd_restore_throttle(void *arg);
1306 
1307 static void sd_init_cdb_limits(struct sd_lun *un);
1308 
1309 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1310 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1311 
1312 /*
1313  * Error handling functions
1314  */
1315 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1316 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1317 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1318 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1319 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1320 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1321 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1322 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1323 
1324 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1325 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1326 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1327 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1328 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1329 	struct sd_xbuf *xp);
1330 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1331 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1332 
1333 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1334 	void *arg, int code);
1335 
1336 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1337 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1338 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1339 	uint8_t *sense_datap,
1340 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1341 static void sd_sense_key_not_ready(struct sd_lun *un,
1342 	uint8_t *sense_datap,
1343 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1344 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1345 	uint8_t *sense_datap,
1346 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1347 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1348 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1349 static void sd_sense_key_unit_attention(struct sd_lun *un,
1350 	uint8_t *sense_datap,
1351 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1352 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1353 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1354 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1355 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1356 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1357 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1358 static void sd_sense_key_default(struct sd_lun *un,
1359 	uint8_t *sense_datap,
1360 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1361 
1362 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1363 	void *arg, int flag);
1364 
1365 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1366 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1367 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1368 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1369 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1370 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1371 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1372 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1373 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1374 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1375 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1376 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1377 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1378 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1379 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1380 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1381 
1382 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1383 
1384 static void sd_start_stop_unit_callback(void *arg);
1385 static void sd_start_stop_unit_task(void *arg);
1386 
1387 static void sd_taskq_create(void);
1388 static void sd_taskq_delete(void);
1389 static void sd_media_change_task(void *arg);
1390 
1391 static int sd_handle_mchange(struct sd_lun *un);
1392 static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag);
1393 static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp,
1394 	uint32_t *lbap, int path_flag);
1395 static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
1396 	uint32_t *lbap, int path_flag);
1397 static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag,
1398 	int path_flag);
1399 static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr,
1400 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1401 static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag);
1402 static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un,
1403 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1404 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un,
1405 	uchar_t usr_cmd, uchar_t *usr_bufp);
1406 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1407 	struct dk_callback *dkc);
1408 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1409 static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un,
1410 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1411 	uchar_t *bufaddr, uint_t buflen, int path_flag);
1412 static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
1413 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1414 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag);
1415 static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize,
1416 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1417 static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize,
1418 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1419 static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
1420 	size_t buflen, daddr_t start_block, int path_flag);
1421 #define	sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag)	\
1422 	sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \
1423 	path_flag)
1424 #define	sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag)	\
1425 	sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\
1426 	path_flag)
1427 
1428 static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr,
1429 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1430 	uint16_t param_ptr, int path_flag);
1431 
1432 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1433 static void sd_free_rqs(struct sd_lun *un);
1434 
1435 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1436 	uchar_t *data, int len, int fmt);
1437 static void sd_panic_for_res_conflict(struct sd_lun *un);
1438 
1439 /*
1440  * Disk Ioctl Function Prototypes
1441  */
1442 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1443 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1444 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1445 
1446 /*
1447  * Multi-host Ioctl Prototypes
1448  */
1449 static int sd_check_mhd(dev_t dev, int interval);
1450 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1451 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1452 static char *sd_sname(uchar_t status);
1453 static void sd_mhd_resvd_recover(void *arg);
1454 static void sd_resv_reclaim_thread();
1455 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1456 static int sd_reserve_release(dev_t dev, int cmd);
1457 static void sd_rmv_resv_reclaim_req(dev_t dev);
1458 static void sd_mhd_reset_notify_cb(caddr_t arg);
1459 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1460 	mhioc_inkeys_t *usrp, int flag);
1461 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1462 	mhioc_inresvs_t *usrp, int flag);
1463 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1464 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1465 static int sd_mhdioc_release(dev_t dev);
1466 static int sd_mhdioc_register_devid(dev_t dev);
1467 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1468 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1469 
1470 /*
1471  * SCSI removable prototypes
1472  */
1473 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1474 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1475 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1476 static int sr_pause_resume(dev_t dev, int mode);
1477 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1478 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1479 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1480 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1481 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1482 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1483 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1484 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1485 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1486 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1487 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1488 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1489 static int sr_eject(dev_t dev);
1490 static void sr_ejected(register struct sd_lun *un);
1491 static int sr_check_wp(dev_t dev);
1492 static int sd_check_media(dev_t dev, enum dkio_state state);
1493 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1494 static void sd_delayed_cv_broadcast(void *arg);
1495 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1496 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1497 
1498 static int sd_log_page_supported(struct sd_lun *un, int log_page);
1499 
1500 /*
1501  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1502  */
1503 static void sd_check_for_writable_cd(struct sd_lun *un, int path_flag);
1504 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1505 static void sd_wm_cache_destructor(void *wm, void *un);
1506 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1507 	daddr_t endb, ushort_t typ);
1508 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1509 	daddr_t endb);
1510 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1511 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1512 static void sd_read_modify_write_task(void * arg);
1513 static int
1514 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1515 	struct buf **bpp);
1516 
1517 
1518 /*
1519  * Function prototypes for failfast support.
1520  */
1521 static void sd_failfast_flushq(struct sd_lun *un);
1522 static int sd_failfast_flushq_callback(struct buf *bp);
1523 
1524 /*
1525  * Function prototypes to check for lsi devices
1526  */
1527 static void sd_is_lsi(struct sd_lun *un);
1528 
1529 /*
1530  * Function prototypes for x86 support
1531  */
1532 #if defined(__i386) || defined(__amd64)
1533 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1534 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1535 #endif
1536 
1537 
1538 /* Function prototypes for cmlb */
1539 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
1540     diskaddr_t start_block, size_t reqlength, void *tg_cookie);
1541 
1542 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie);
1543 
1544 /*
1545  * Constants for failfast support:
1546  *
1547  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1548  * failfast processing being performed.
1549  *
1550  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1551  * failfast processing on all bufs with B_FAILFAST set.
1552  */
1553 
1554 #define	SD_FAILFAST_INACTIVE		0
1555 #define	SD_FAILFAST_ACTIVE		1
1556 
1557 /*
1558  * Bitmask to control behavior of buf(9S) flushes when a transition to
1559  * the failfast state occurs. Optional bits include:
1560  *
1561  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1562  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1563  * be flushed.
1564  *
1565  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1566  * driver, in addition to the regular wait queue. This includes the xbuf
1567  * queues. When clear, only the driver's wait queue will be flushed.
1568  */
1569 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1570 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1571 
1572 /*
1573  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1574  * to flush all queues within the driver.
1575  */
1576 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1577 
1578 
1579 /*
1580  * SD Testing Fault Injection
1581  */
1582 #ifdef SD_FAULT_INJECTION
1583 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1584 static void sd_faultinjection(struct scsi_pkt *pktp);
1585 static void sd_injection_log(char *buf, struct sd_lun *un);
1586 #endif
1587 
1588 /*
1589  * Device driver ops vector
1590  */
1591 static struct cb_ops sd_cb_ops = {
1592 	sdopen,			/* open */
1593 	sdclose,		/* close */
1594 	sdstrategy,		/* strategy */
1595 	nodev,			/* print */
1596 	sddump,			/* dump */
1597 	sdread,			/* read */
1598 	sdwrite,		/* write */
1599 	sdioctl,		/* ioctl */
1600 	nodev,			/* devmap */
1601 	nodev,			/* mmap */
1602 	nodev,			/* segmap */
1603 	nochpoll,		/* poll */
1604 	sd_prop_op,		/* cb_prop_op */
1605 	0,			/* streamtab  */
1606 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1607 	CB_REV,			/* cb_rev */
1608 	sdaread, 		/* async I/O read entry point */
1609 	sdawrite		/* async I/O write entry point */
1610 };
1611 
1612 static struct dev_ops sd_ops = {
1613 	DEVO_REV,		/* devo_rev, */
1614 	0,			/* refcnt  */
1615 	sdinfo,			/* info */
1616 	nulldev,		/* identify */
1617 	sdprobe,		/* probe */
1618 	sdattach,		/* attach */
1619 	sddetach,		/* detach */
1620 	nodev,			/* reset */
1621 	&sd_cb_ops,		/* driver operations */
1622 	NULL,			/* bus operations */
1623 	sdpower			/* power */
1624 };
1625 
1626 
1627 /*
1628  * This is the loadable module wrapper.
1629  */
1630 #include <sys/modctl.h>
1631 
1632 static struct modldrv modldrv = {
1633 	&mod_driverops,		/* Type of module. This one is a driver */
1634 	SD_MODULE_NAME,		/* Module name. */
1635 	&sd_ops			/* driver ops */
1636 };
1637 
1638 
1639 static struct modlinkage modlinkage = {
1640 	MODREV_1,
1641 	&modldrv,
1642 	NULL
1643 };
1644 
1645 static cmlb_tg_ops_t sd_tgops = {
1646 	TG_DK_OPS_VERSION_1,
1647 	sd_tg_rdwr,
1648 	sd_tg_getinfo
1649 	};
1650 
1651 static struct scsi_asq_key_strings sd_additional_codes[] = {
1652 	0x81, 0, "Logical Unit is Reserved",
1653 	0x85, 0, "Audio Address Not Valid",
1654 	0xb6, 0, "Media Load Mechanism Failed",
1655 	0xB9, 0, "Audio Play Operation Aborted",
1656 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1657 	0x53, 2, "Medium removal prevented",
1658 	0x6f, 0, "Authentication failed during key exchange",
1659 	0x6f, 1, "Key not present",
1660 	0x6f, 2, "Key not established",
1661 	0x6f, 3, "Read without proper authentication",
1662 	0x6f, 4, "Mismatched region to this logical unit",
1663 	0x6f, 5, "Region reset count error",
1664 	0xffff, 0x0, NULL
1665 };
1666 
1667 
1668 /*
1669  * Struct for passing printing information for sense data messages
1670  */
1671 struct sd_sense_info {
1672 	int	ssi_severity;
1673 	int	ssi_pfa_flag;
1674 };
1675 
1676 /*
1677  * Table of function pointers for iostart-side routines. Separate "chains"
1678  * of layered function calls are formed by placing the function pointers
1679  * sequentially in the desired order. Functions are called according to an
1680  * incrementing table index ordering. The last function in each chain must
1681  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1682  * in the sd_iodone_chain[] array.
1683  *
1684  * Note: It may seem more natural to organize both the iostart and iodone
1685  * functions together, into an array of structures (or some similar
1686  * organization) with a common index, rather than two separate arrays which
1687  * must be maintained in synchronization. The purpose of this division is
1688  * to achieve improved performance: individual arrays allows for more
1689  * effective cache line utilization on certain platforms.
1690  */
1691 
1692 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1693 
1694 
1695 static sd_chain_t sd_iostart_chain[] = {
1696 
1697 	/* Chain for buf IO for disk drive targets (PM enabled) */
1698 	sd_mapblockaddr_iostart,	/* Index: 0 */
1699 	sd_pm_iostart,			/* Index: 1 */
1700 	sd_core_iostart,		/* Index: 2 */
1701 
1702 	/* Chain for buf IO for disk drive targets (PM disabled) */
1703 	sd_mapblockaddr_iostart,	/* Index: 3 */
1704 	sd_core_iostart,		/* Index: 4 */
1705 
1706 	/* Chain for buf IO for removable-media targets (PM enabled) */
1707 	sd_mapblockaddr_iostart,	/* Index: 5 */
1708 	sd_mapblocksize_iostart,	/* Index: 6 */
1709 	sd_pm_iostart,			/* Index: 7 */
1710 	sd_core_iostart,		/* Index: 8 */
1711 
1712 	/* Chain for buf IO for removable-media targets (PM disabled) */
1713 	sd_mapblockaddr_iostart,	/* Index: 9 */
1714 	sd_mapblocksize_iostart,	/* Index: 10 */
1715 	sd_core_iostart,		/* Index: 11 */
1716 
1717 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1718 	sd_mapblockaddr_iostart,	/* Index: 12 */
1719 	sd_checksum_iostart,		/* Index: 13 */
1720 	sd_pm_iostart,			/* Index: 14 */
1721 	sd_core_iostart,		/* Index: 15 */
1722 
1723 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1724 	sd_mapblockaddr_iostart,	/* Index: 16 */
1725 	sd_checksum_iostart,		/* Index: 17 */
1726 	sd_core_iostart,		/* Index: 18 */
1727 
1728 	/* Chain for USCSI commands (all targets) */
1729 	sd_pm_iostart,			/* Index: 19 */
1730 	sd_core_iostart,		/* Index: 20 */
1731 
1732 	/* Chain for checksumming USCSI commands (all targets) */
1733 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1734 	sd_pm_iostart,			/* Index: 22 */
1735 	sd_core_iostart,		/* Index: 23 */
1736 
1737 	/* Chain for "direct" USCSI commands (all targets) */
1738 	sd_core_iostart,		/* Index: 24 */
1739 
1740 	/* Chain for "direct priority" USCSI commands (all targets) */
1741 	sd_core_iostart,		/* Index: 25 */
1742 };
1743 
1744 /*
1745  * Macros to locate the first function of each iostart chain in the
1746  * sd_iostart_chain[] array. These are located by the index in the array.
1747  */
1748 #define	SD_CHAIN_DISK_IOSTART			0
1749 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1750 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1751 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1752 #define	SD_CHAIN_CHKSUM_IOSTART			12
1753 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1754 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1755 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1756 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1757 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1758 
1759 
1760 /*
1761  * Table of function pointers for the iodone-side routines for the driver-
1762  * internal layering mechanism.  The calling sequence for iodone routines
1763  * uses a decrementing table index, so the last routine called in a chain
1764  * must be at the lowest array index location for that chain.  The last
1765  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1766  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1767  * of the functions in an iodone side chain must correspond to the ordering
1768  * of the iostart routines for that chain.  Note that there is no iodone
1769  * side routine that corresponds to sd_core_iostart(), so there is no
1770  * entry in the table for this.
1771  */
1772 
1773 static sd_chain_t sd_iodone_chain[] = {
1774 
1775 	/* Chain for buf IO for disk drive targets (PM enabled) */
1776 	sd_buf_iodone,			/* Index: 0 */
1777 	sd_mapblockaddr_iodone,		/* Index: 1 */
1778 	sd_pm_iodone,			/* Index: 2 */
1779 
1780 	/* Chain for buf IO for disk drive targets (PM disabled) */
1781 	sd_buf_iodone,			/* Index: 3 */
1782 	sd_mapblockaddr_iodone,		/* Index: 4 */
1783 
1784 	/* Chain for buf IO for removable-media targets (PM enabled) */
1785 	sd_buf_iodone,			/* Index: 5 */
1786 	sd_mapblockaddr_iodone,		/* Index: 6 */
1787 	sd_mapblocksize_iodone,		/* Index: 7 */
1788 	sd_pm_iodone,			/* Index: 8 */
1789 
1790 	/* Chain for buf IO for removable-media targets (PM disabled) */
1791 	sd_buf_iodone,			/* Index: 9 */
1792 	sd_mapblockaddr_iodone,		/* Index: 10 */
1793 	sd_mapblocksize_iodone,		/* Index: 11 */
1794 
1795 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1796 	sd_buf_iodone,			/* Index: 12 */
1797 	sd_mapblockaddr_iodone,		/* Index: 13 */
1798 	sd_checksum_iodone,		/* Index: 14 */
1799 	sd_pm_iodone,			/* Index: 15 */
1800 
1801 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1802 	sd_buf_iodone,			/* Index: 16 */
1803 	sd_mapblockaddr_iodone,		/* Index: 17 */
1804 	sd_checksum_iodone,		/* Index: 18 */
1805 
1806 	/* Chain for USCSI commands (non-checksum targets) */
1807 	sd_uscsi_iodone,		/* Index: 19 */
1808 	sd_pm_iodone,			/* Index: 20 */
1809 
1810 	/* Chain for USCSI commands (checksum targets) */
1811 	sd_uscsi_iodone,		/* Index: 21 */
1812 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1813 	sd_pm_iodone,			/* Index: 22 */
1814 
1815 	/* Chain for "direct" USCSI commands (all targets) */
1816 	sd_uscsi_iodone,		/* Index: 24 */
1817 
1818 	/* Chain for "direct priority" USCSI commands (all targets) */
1819 	sd_uscsi_iodone,		/* Index: 25 */
1820 };
1821 
1822 
1823 /*
1824  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1825  * each iodone-side chain. These are located by the array index, but as the
1826  * iodone side functions are called in a decrementing-index order, the
1827  * highest index number in each chain must be specified (as these correspond
1828  * to the first function in the iodone chain that will be called by the core
1829  * at IO completion time).
1830  */
1831 
1832 #define	SD_CHAIN_DISK_IODONE			2
1833 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1834 #define	SD_CHAIN_RMMEDIA_IODONE			8
1835 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1836 #define	SD_CHAIN_CHKSUM_IODONE			15
1837 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1838 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1839 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1840 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1841 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1842 
1843 
1844 
1845 
1846 /*
1847  * Array to map a layering chain index to the appropriate initpkt routine.
1848  * The redundant entries are present so that the index used for accessing
1849  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1850  * with this table as well.
1851  */
1852 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1853 
1854 static sd_initpkt_t	sd_initpkt_map[] = {
1855 
1856 	/* Chain for buf IO for disk drive targets (PM enabled) */
1857 	sd_initpkt_for_buf,		/* Index: 0 */
1858 	sd_initpkt_for_buf,		/* Index: 1 */
1859 	sd_initpkt_for_buf,		/* Index: 2 */
1860 
1861 	/* Chain for buf IO for disk drive targets (PM disabled) */
1862 	sd_initpkt_for_buf,		/* Index: 3 */
1863 	sd_initpkt_for_buf,		/* Index: 4 */
1864 
1865 	/* Chain for buf IO for removable-media targets (PM enabled) */
1866 	sd_initpkt_for_buf,		/* Index: 5 */
1867 	sd_initpkt_for_buf,		/* Index: 6 */
1868 	sd_initpkt_for_buf,		/* Index: 7 */
1869 	sd_initpkt_for_buf,		/* Index: 8 */
1870 
1871 	/* Chain for buf IO for removable-media targets (PM disabled) */
1872 	sd_initpkt_for_buf,		/* Index: 9 */
1873 	sd_initpkt_for_buf,		/* Index: 10 */
1874 	sd_initpkt_for_buf,		/* Index: 11 */
1875 
1876 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1877 	sd_initpkt_for_buf,		/* Index: 12 */
1878 	sd_initpkt_for_buf,		/* Index: 13 */
1879 	sd_initpkt_for_buf,		/* Index: 14 */
1880 	sd_initpkt_for_buf,		/* Index: 15 */
1881 
1882 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1883 	sd_initpkt_for_buf,		/* Index: 16 */
1884 	sd_initpkt_for_buf,		/* Index: 17 */
1885 	sd_initpkt_for_buf,		/* Index: 18 */
1886 
1887 	/* Chain for USCSI commands (non-checksum targets) */
1888 	sd_initpkt_for_uscsi,		/* Index: 19 */
1889 	sd_initpkt_for_uscsi,		/* Index: 20 */
1890 
1891 	/* Chain for USCSI commands (checksum targets) */
1892 	sd_initpkt_for_uscsi,		/* Index: 21 */
1893 	sd_initpkt_for_uscsi,		/* Index: 22 */
1894 	sd_initpkt_for_uscsi,		/* Index: 22 */
1895 
1896 	/* Chain for "direct" USCSI commands (all targets) */
1897 	sd_initpkt_for_uscsi,		/* Index: 24 */
1898 
1899 	/* Chain for "direct priority" USCSI commands (all targets) */
1900 	sd_initpkt_for_uscsi,		/* Index: 25 */
1901 
1902 };
1903 
1904 
1905 /*
1906  * Array to map a layering chain index to the appropriate destroypktpkt routine.
1907  * The redundant entries are present so that the index used for accessing
1908  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1909  * with this table as well.
1910  */
1911 typedef void (*sd_destroypkt_t)(struct buf *);
1912 
1913 static sd_destroypkt_t	sd_destroypkt_map[] = {
1914 
1915 	/* Chain for buf IO for disk drive targets (PM enabled) */
1916 	sd_destroypkt_for_buf,		/* Index: 0 */
1917 	sd_destroypkt_for_buf,		/* Index: 1 */
1918 	sd_destroypkt_for_buf,		/* Index: 2 */
1919 
1920 	/* Chain for buf IO for disk drive targets (PM disabled) */
1921 	sd_destroypkt_for_buf,		/* Index: 3 */
1922 	sd_destroypkt_for_buf,		/* Index: 4 */
1923 
1924 	/* Chain for buf IO for removable-media targets (PM enabled) */
1925 	sd_destroypkt_for_buf,		/* Index: 5 */
1926 	sd_destroypkt_for_buf,		/* Index: 6 */
1927 	sd_destroypkt_for_buf,		/* Index: 7 */
1928 	sd_destroypkt_for_buf,		/* Index: 8 */
1929 
1930 	/* Chain for buf IO for removable-media targets (PM disabled) */
1931 	sd_destroypkt_for_buf,		/* Index: 9 */
1932 	sd_destroypkt_for_buf,		/* Index: 10 */
1933 	sd_destroypkt_for_buf,		/* Index: 11 */
1934 
1935 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1936 	sd_destroypkt_for_buf,		/* Index: 12 */
1937 	sd_destroypkt_for_buf,		/* Index: 13 */
1938 	sd_destroypkt_for_buf,		/* Index: 14 */
1939 	sd_destroypkt_for_buf,		/* Index: 15 */
1940 
1941 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1942 	sd_destroypkt_for_buf,		/* Index: 16 */
1943 	sd_destroypkt_for_buf,		/* Index: 17 */
1944 	sd_destroypkt_for_buf,		/* Index: 18 */
1945 
1946 	/* Chain for USCSI commands (non-checksum targets) */
1947 	sd_destroypkt_for_uscsi,	/* Index: 19 */
1948 	sd_destroypkt_for_uscsi,	/* Index: 20 */
1949 
1950 	/* Chain for USCSI commands (checksum targets) */
1951 	sd_destroypkt_for_uscsi,	/* Index: 21 */
1952 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1953 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1954 
1955 	/* Chain for "direct" USCSI commands (all targets) */
1956 	sd_destroypkt_for_uscsi,	/* Index: 24 */
1957 
1958 	/* Chain for "direct priority" USCSI commands (all targets) */
1959 	sd_destroypkt_for_uscsi,	/* Index: 25 */
1960 
1961 };
1962 
1963 
1964 
1965 /*
1966  * Array to map a layering chain index to the appropriate chain "type".
1967  * The chain type indicates a specific property/usage of the chain.
1968  * The redundant entries are present so that the index used for accessing
1969  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1970  * with this table as well.
1971  */
1972 
1973 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
1974 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
1975 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
1976 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
1977 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
1978 						/* (for error recovery) */
1979 
1980 static int sd_chain_type_map[] = {
1981 
1982 	/* Chain for buf IO for disk drive targets (PM enabled) */
1983 	SD_CHAIN_BUFIO,			/* Index: 0 */
1984 	SD_CHAIN_BUFIO,			/* Index: 1 */
1985 	SD_CHAIN_BUFIO,			/* Index: 2 */
1986 
1987 	/* Chain for buf IO for disk drive targets (PM disabled) */
1988 	SD_CHAIN_BUFIO,			/* Index: 3 */
1989 	SD_CHAIN_BUFIO,			/* Index: 4 */
1990 
1991 	/* Chain for buf IO for removable-media targets (PM enabled) */
1992 	SD_CHAIN_BUFIO,			/* Index: 5 */
1993 	SD_CHAIN_BUFIO,			/* Index: 6 */
1994 	SD_CHAIN_BUFIO,			/* Index: 7 */
1995 	SD_CHAIN_BUFIO,			/* Index: 8 */
1996 
1997 	/* Chain for buf IO for removable-media targets (PM disabled) */
1998 	SD_CHAIN_BUFIO,			/* Index: 9 */
1999 	SD_CHAIN_BUFIO,			/* Index: 10 */
2000 	SD_CHAIN_BUFIO,			/* Index: 11 */
2001 
2002 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2003 	SD_CHAIN_BUFIO,			/* Index: 12 */
2004 	SD_CHAIN_BUFIO,			/* Index: 13 */
2005 	SD_CHAIN_BUFIO,			/* Index: 14 */
2006 	SD_CHAIN_BUFIO,			/* Index: 15 */
2007 
2008 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2009 	SD_CHAIN_BUFIO,			/* Index: 16 */
2010 	SD_CHAIN_BUFIO,			/* Index: 17 */
2011 	SD_CHAIN_BUFIO,			/* Index: 18 */
2012 
2013 	/* Chain for USCSI commands (non-checksum targets) */
2014 	SD_CHAIN_USCSI,			/* Index: 19 */
2015 	SD_CHAIN_USCSI,			/* Index: 20 */
2016 
2017 	/* Chain for USCSI commands (checksum targets) */
2018 	SD_CHAIN_USCSI,			/* Index: 21 */
2019 	SD_CHAIN_USCSI,			/* Index: 22 */
2020 	SD_CHAIN_USCSI,			/* Index: 22 */
2021 
2022 	/* Chain for "direct" USCSI commands (all targets) */
2023 	SD_CHAIN_DIRECT,		/* Index: 24 */
2024 
2025 	/* Chain for "direct priority" USCSI commands (all targets) */
2026 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2027 };
2028 
2029 
2030 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2031 #define	SD_IS_BUFIO(xp)			\
2032 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2033 
2034 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2035 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2036 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2037 
2038 
2039 
2040 /*
2041  * Struct, array, and macros to map a specific chain to the appropriate
2042  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2043  *
2044  * The sd_chain_index_map[] array is used at attach time to set the various
2045  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2046  * chain to be used with the instance. This allows different instances to use
2047  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2048  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2049  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2050  * dynamically & without the use of locking; and (2) a layer may update the
2051  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2052  * to allow for deferred processing of an IO within the same chain from a
2053  * different execution context.
2054  */
2055 
2056 struct sd_chain_index {
2057 	int	sci_iostart_index;
2058 	int	sci_iodone_index;
2059 };
2060 
2061 static struct sd_chain_index	sd_chain_index_map[] = {
2062 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2063 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2064 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2065 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2066 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2067 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2068 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2069 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2070 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2071 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2072 };
2073 
2074 
2075 /*
2076  * The following are indexes into the sd_chain_index_map[] array.
2077  */
2078 
2079 /* un->un_buf_chain_type must be set to one of these */
2080 #define	SD_CHAIN_INFO_DISK		0
2081 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2082 #define	SD_CHAIN_INFO_RMMEDIA		2
2083 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2084 #define	SD_CHAIN_INFO_CHKSUM		4
2085 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2086 
2087 /* un->un_uscsi_chain_type must be set to one of these */
2088 #define	SD_CHAIN_INFO_USCSI_CMD		6
2089 /* USCSI with PM disabled is the same as DIRECT */
2090 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2091 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2092 
2093 /* un->un_direct_chain_type must be set to one of these */
2094 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2095 
2096 /* un->un_priority_chain_type must be set to one of these */
2097 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2098 
2099 /* size for devid inquiries */
2100 #define	MAX_INQUIRY_SIZE		0xF0
2101 
2102 /*
2103  * Macros used by functions to pass a given buf(9S) struct along to the
2104  * next function in the layering chain for further processing.
2105  *
2106  * In the following macros, passing more than three arguments to the called
2107  * routines causes the optimizer for the SPARC compiler to stop doing tail
2108  * call elimination which results in significant performance degradation.
2109  */
2110 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2111 	((*(sd_iostart_chain[index]))(index, un, bp))
2112 
2113 #define	SD_BEGIN_IODONE(index, un, bp)	\
2114 	((*(sd_iodone_chain[index]))(index, un, bp))
2115 
2116 #define	SD_NEXT_IOSTART(index, un, bp)				\
2117 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2118 
2119 #define	SD_NEXT_IODONE(index, un, bp)				\
2120 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2121 
2122 /*
2123  *    Function: _init
2124  *
2125  * Description: This is the driver _init(9E) entry point.
2126  *
2127  * Return Code: Returns the value from mod_install(9F) or
2128  *		ddi_soft_state_init(9F) as appropriate.
2129  *
2130  *     Context: Called when driver module loaded.
2131  */
2132 
2133 int
2134 _init(void)
2135 {
2136 	int	err;
2137 
2138 	/* establish driver name from module name */
2139 	sd_label = mod_modname(&modlinkage);
2140 
2141 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2142 	    SD_MAXUNIT);
2143 
2144 	if (err != 0) {
2145 		return (err);
2146 	}
2147 
2148 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2149 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2150 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2151 
2152 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2153 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2154 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2155 
2156 	/*
2157 	 * it's ok to init here even for fibre device
2158 	 */
2159 	sd_scsi_probe_cache_init();
2160 
2161 	sd_scsi_target_lun_init();
2162 
2163 	/*
2164 	 * Creating taskq before mod_install ensures that all callers (threads)
2165 	 * that enter the module after a successfull mod_install encounter
2166 	 * a valid taskq.
2167 	 */
2168 	sd_taskq_create();
2169 
2170 	err = mod_install(&modlinkage);
2171 	if (err != 0) {
2172 		/* delete taskq if install fails */
2173 		sd_taskq_delete();
2174 
2175 		mutex_destroy(&sd_detach_mutex);
2176 		mutex_destroy(&sd_log_mutex);
2177 		mutex_destroy(&sd_label_mutex);
2178 
2179 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2180 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2181 		cv_destroy(&sd_tr.srq_inprocess_cv);
2182 
2183 		sd_scsi_probe_cache_fini();
2184 
2185 		sd_scsi_target_lun_fini();
2186 
2187 		ddi_soft_state_fini(&sd_state);
2188 		return (err);
2189 	}
2190 
2191 	return (err);
2192 }
2193 
2194 
2195 /*
2196  *    Function: _fini
2197  *
2198  * Description: This is the driver _fini(9E) entry point.
2199  *
2200  * Return Code: Returns the value from mod_remove(9F)
2201  *
2202  *     Context: Called when driver module is unloaded.
2203  */
2204 
2205 int
2206 _fini(void)
2207 {
2208 	int err;
2209 
2210 	if ((err = mod_remove(&modlinkage)) != 0) {
2211 		return (err);
2212 	}
2213 
2214 	sd_taskq_delete();
2215 
2216 	mutex_destroy(&sd_detach_mutex);
2217 	mutex_destroy(&sd_log_mutex);
2218 	mutex_destroy(&sd_label_mutex);
2219 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2220 
2221 	sd_scsi_probe_cache_fini();
2222 
2223 	sd_scsi_target_lun_fini();
2224 
2225 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2226 	cv_destroy(&sd_tr.srq_inprocess_cv);
2227 
2228 	ddi_soft_state_fini(&sd_state);
2229 
2230 	return (err);
2231 }
2232 
2233 
2234 /*
2235  *    Function: _info
2236  *
2237  * Description: This is the driver _info(9E) entry point.
2238  *
2239  *   Arguments: modinfop - pointer to the driver modinfo structure
2240  *
2241  * Return Code: Returns the value from mod_info(9F).
2242  *
2243  *     Context: Kernel thread context
2244  */
2245 
2246 int
2247 _info(struct modinfo *modinfop)
2248 {
2249 	return (mod_info(&modlinkage, modinfop));
2250 }
2251 
2252 
2253 /*
2254  * The following routines implement the driver message logging facility.
2255  * They provide component- and level- based debug output filtering.
2256  * Output may also be restricted to messages for a single instance by
2257  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2258  * to NULL, then messages for all instances are printed.
2259  *
2260  * These routines have been cloned from each other due to the language
2261  * constraints of macros and variable argument list processing.
2262  */
2263 
2264 
2265 /*
2266  *    Function: sd_log_err
2267  *
2268  * Description: This routine is called by the SD_ERROR macro for debug
2269  *		logging of error conditions.
2270  *
2271  *   Arguments: comp - driver component being logged
2272  *		dev  - pointer to driver info structure
2273  *		fmt  - error string and format to be logged
2274  */
2275 
2276 static void
2277 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2278 {
2279 	va_list		ap;
2280 	dev_info_t	*dev;
2281 
2282 	ASSERT(un != NULL);
2283 	dev = SD_DEVINFO(un);
2284 	ASSERT(dev != NULL);
2285 
2286 	/*
2287 	 * Filter messages based on the global component and level masks.
2288 	 * Also print if un matches the value of sd_debug_un, or if
2289 	 * sd_debug_un is set to NULL.
2290 	 */
2291 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2292 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2293 		mutex_enter(&sd_log_mutex);
2294 		va_start(ap, fmt);
2295 		(void) vsprintf(sd_log_buf, fmt, ap);
2296 		va_end(ap);
2297 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2298 		mutex_exit(&sd_log_mutex);
2299 	}
2300 #ifdef SD_FAULT_INJECTION
2301 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2302 	if (un->sd_injection_mask & comp) {
2303 		mutex_enter(&sd_log_mutex);
2304 		va_start(ap, fmt);
2305 		(void) vsprintf(sd_log_buf, fmt, ap);
2306 		va_end(ap);
2307 		sd_injection_log(sd_log_buf, un);
2308 		mutex_exit(&sd_log_mutex);
2309 	}
2310 #endif
2311 }
2312 
2313 
2314 /*
2315  *    Function: sd_log_info
2316  *
2317  * Description: This routine is called by the SD_INFO macro for debug
2318  *		logging of general purpose informational conditions.
2319  *
2320  *   Arguments: comp - driver component being logged
2321  *		dev  - pointer to driver info structure
2322  *		fmt  - info string and format to be logged
2323  */
2324 
2325 static void
2326 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2327 {
2328 	va_list		ap;
2329 	dev_info_t	*dev;
2330 
2331 	ASSERT(un != NULL);
2332 	dev = SD_DEVINFO(un);
2333 	ASSERT(dev != NULL);
2334 
2335 	/*
2336 	 * Filter messages based on the global component and level masks.
2337 	 * Also print if un matches the value of sd_debug_un, or if
2338 	 * sd_debug_un is set to NULL.
2339 	 */
2340 	if ((sd_component_mask & component) &&
2341 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2342 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2343 		mutex_enter(&sd_log_mutex);
2344 		va_start(ap, fmt);
2345 		(void) vsprintf(sd_log_buf, fmt, ap);
2346 		va_end(ap);
2347 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2348 		mutex_exit(&sd_log_mutex);
2349 	}
2350 #ifdef SD_FAULT_INJECTION
2351 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2352 	if (un->sd_injection_mask & component) {
2353 		mutex_enter(&sd_log_mutex);
2354 		va_start(ap, fmt);
2355 		(void) vsprintf(sd_log_buf, fmt, ap);
2356 		va_end(ap);
2357 		sd_injection_log(sd_log_buf, un);
2358 		mutex_exit(&sd_log_mutex);
2359 	}
2360 #endif
2361 }
2362 
2363 
2364 /*
2365  *    Function: sd_log_trace
2366  *
2367  * Description: This routine is called by the SD_TRACE macro for debug
2368  *		logging of trace conditions (i.e. function entry/exit).
2369  *
2370  *   Arguments: comp - driver component being logged
2371  *		dev  - pointer to driver info structure
2372  *		fmt  - trace string and format to be logged
2373  */
2374 
2375 static void
2376 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2377 {
2378 	va_list		ap;
2379 	dev_info_t	*dev;
2380 
2381 	ASSERT(un != NULL);
2382 	dev = SD_DEVINFO(un);
2383 	ASSERT(dev != NULL);
2384 
2385 	/*
2386 	 * Filter messages based on the global component and level masks.
2387 	 * Also print if un matches the value of sd_debug_un, or if
2388 	 * sd_debug_un is set to NULL.
2389 	 */
2390 	if ((sd_component_mask & component) &&
2391 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2392 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2393 		mutex_enter(&sd_log_mutex);
2394 		va_start(ap, fmt);
2395 		(void) vsprintf(sd_log_buf, fmt, ap);
2396 		va_end(ap);
2397 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2398 		mutex_exit(&sd_log_mutex);
2399 	}
2400 #ifdef SD_FAULT_INJECTION
2401 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2402 	if (un->sd_injection_mask & component) {
2403 		mutex_enter(&sd_log_mutex);
2404 		va_start(ap, fmt);
2405 		(void) vsprintf(sd_log_buf, fmt, ap);
2406 		va_end(ap);
2407 		sd_injection_log(sd_log_buf, un);
2408 		mutex_exit(&sd_log_mutex);
2409 	}
2410 #endif
2411 }
2412 
2413 
2414 /*
2415  *    Function: sdprobe
2416  *
2417  * Description: This is the driver probe(9e) entry point function.
2418  *
2419  *   Arguments: devi - opaque device info handle
2420  *
2421  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2422  *              DDI_PROBE_FAILURE: If the probe failed.
2423  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2424  *				   but may be present in the future.
2425  */
2426 
2427 static int
2428 sdprobe(dev_info_t *devi)
2429 {
2430 	struct scsi_device	*devp;
2431 	int			rval;
2432 	int			instance;
2433 
2434 	/*
2435 	 * if it wasn't for pln, sdprobe could actually be nulldev
2436 	 * in the "__fibre" case.
2437 	 */
2438 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2439 		return (DDI_PROBE_DONTCARE);
2440 	}
2441 
2442 	devp = ddi_get_driver_private(devi);
2443 
2444 	if (devp == NULL) {
2445 		/* Ooops... nexus driver is mis-configured... */
2446 		return (DDI_PROBE_FAILURE);
2447 	}
2448 
2449 	instance = ddi_get_instance(devi);
2450 
2451 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2452 		return (DDI_PROBE_PARTIAL);
2453 	}
2454 
2455 	/*
2456 	 * Call the SCSA utility probe routine to see if we actually
2457 	 * have a target at this SCSI nexus.
2458 	 */
2459 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2460 	case SCSIPROBE_EXISTS:
2461 		switch (devp->sd_inq->inq_dtype) {
2462 		case DTYPE_DIRECT:
2463 			rval = DDI_PROBE_SUCCESS;
2464 			break;
2465 		case DTYPE_RODIRECT:
2466 			/* CDs etc. Can be removable media */
2467 			rval = DDI_PROBE_SUCCESS;
2468 			break;
2469 		case DTYPE_OPTICAL:
2470 			/*
2471 			 * Rewritable optical driver HP115AA
2472 			 * Can also be removable media
2473 			 */
2474 
2475 			/*
2476 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2477 			 * pre solaris 9 sparc sd behavior is required
2478 			 *
2479 			 * If first time through and sd_dtype_optical_bind
2480 			 * has not been set in /etc/system check properties
2481 			 */
2482 
2483 			if (sd_dtype_optical_bind  < 0) {
2484 				sd_dtype_optical_bind = ddi_prop_get_int
2485 				    (DDI_DEV_T_ANY, devi, 0,
2486 				    "optical-device-bind", 1);
2487 			}
2488 
2489 			if (sd_dtype_optical_bind == 0) {
2490 				rval = DDI_PROBE_FAILURE;
2491 			} else {
2492 				rval = DDI_PROBE_SUCCESS;
2493 			}
2494 			break;
2495 
2496 		case DTYPE_NOTPRESENT:
2497 		default:
2498 			rval = DDI_PROBE_FAILURE;
2499 			break;
2500 		}
2501 		break;
2502 	default:
2503 		rval = DDI_PROBE_PARTIAL;
2504 		break;
2505 	}
2506 
2507 	/*
2508 	 * This routine checks for resource allocation prior to freeing,
2509 	 * so it will take care of the "smart probing" case where a
2510 	 * scsi_probe() may or may not have been issued and will *not*
2511 	 * free previously-freed resources.
2512 	 */
2513 	scsi_unprobe(devp);
2514 	return (rval);
2515 }
2516 
2517 
2518 /*
2519  *    Function: sdinfo
2520  *
2521  * Description: This is the driver getinfo(9e) entry point function.
2522  * 		Given the device number, return the devinfo pointer from
2523  *		the scsi_device structure or the instance number
2524  *		associated with the dev_t.
2525  *
2526  *   Arguments: dip     - pointer to device info structure
2527  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2528  *			  DDI_INFO_DEVT2INSTANCE)
2529  *		arg     - driver dev_t
2530  *		resultp - user buffer for request response
2531  *
2532  * Return Code: DDI_SUCCESS
2533  *              DDI_FAILURE
2534  */
2535 /* ARGSUSED */
2536 static int
2537 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2538 {
2539 	struct sd_lun	*un;
2540 	dev_t		dev;
2541 	int		instance;
2542 	int		error;
2543 
2544 	switch (infocmd) {
2545 	case DDI_INFO_DEVT2DEVINFO:
2546 		dev = (dev_t)arg;
2547 		instance = SDUNIT(dev);
2548 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2549 			return (DDI_FAILURE);
2550 		}
2551 		*result = (void *) SD_DEVINFO(un);
2552 		error = DDI_SUCCESS;
2553 		break;
2554 	case DDI_INFO_DEVT2INSTANCE:
2555 		dev = (dev_t)arg;
2556 		instance = SDUNIT(dev);
2557 		*result = (void *)(uintptr_t)instance;
2558 		error = DDI_SUCCESS;
2559 		break;
2560 	default:
2561 		error = DDI_FAILURE;
2562 	}
2563 	return (error);
2564 }
2565 
2566 /*
2567  *    Function: sd_prop_op
2568  *
2569  * Description: This is the driver prop_op(9e) entry point function.
2570  *		Return the number of blocks for the partition in question
2571  *		or forward the request to the property facilities.
2572  *
2573  *   Arguments: dev       - device number
2574  *		dip       - pointer to device info structure
2575  *		prop_op   - property operator
2576  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2577  *		name      - pointer to property name
2578  *		valuep    - pointer or address of the user buffer
2579  *		lengthp   - property length
2580  *
2581  * Return Code: DDI_PROP_SUCCESS
2582  *              DDI_PROP_NOT_FOUND
2583  *              DDI_PROP_UNDEFINED
2584  *              DDI_PROP_NO_MEMORY
2585  *              DDI_PROP_BUF_TOO_SMALL
2586  */
2587 
2588 static int
2589 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2590 	char *name, caddr_t valuep, int *lengthp)
2591 {
2592 	int		instance = ddi_get_instance(dip);
2593 	struct sd_lun	*un;
2594 	uint64_t	nblocks64;
2595 
2596 	/*
2597 	 * Our dynamic properties are all device specific and size oriented.
2598 	 * Requests issued under conditions where size is valid are passed
2599 	 * to ddi_prop_op_nblocks with the size information, otherwise the
2600 	 * request is passed to ddi_prop_op. Size depends on valid geometry.
2601 	 */
2602 	un = ddi_get_soft_state(sd_state, instance);
2603 	if ((dev == DDI_DEV_T_ANY) || (un == NULL)) {
2604 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2605 		    name, valuep, lengthp));
2606 	} else if (!SD_IS_VALID_LABEL(un)) {
2607 		return (ddi_prop_op(dev, dip, prop_op, mod_flags, name,
2608 		    valuep, lengthp));
2609 	}
2610 
2611 	/* get nblocks value */
2612 	ASSERT(!mutex_owned(SD_MUTEX(un)));
2613 
2614 	(void) cmlb_partinfo(un->un_cmlbhandle, SDPART(dev),
2615 	    (diskaddr_t *)&nblocks64, NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
2616 
2617 	return (ddi_prop_op_nblocks(dev, dip, prop_op, mod_flags,
2618 	    name, valuep, lengthp, nblocks64));
2619 }
2620 
2621 /*
2622  * The following functions are for smart probing:
2623  * sd_scsi_probe_cache_init()
2624  * sd_scsi_probe_cache_fini()
2625  * sd_scsi_clear_probe_cache()
2626  * sd_scsi_probe_with_cache()
2627  */
2628 
2629 /*
2630  *    Function: sd_scsi_probe_cache_init
2631  *
2632  * Description: Initializes the probe response cache mutex and head pointer.
2633  *
2634  *     Context: Kernel thread context
2635  */
2636 
2637 static void
2638 sd_scsi_probe_cache_init(void)
2639 {
2640 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2641 	sd_scsi_probe_cache_head = NULL;
2642 }
2643 
2644 
2645 /*
2646  *    Function: sd_scsi_probe_cache_fini
2647  *
2648  * Description: Frees all resources associated with the probe response cache.
2649  *
2650  *     Context: Kernel thread context
2651  */
2652 
2653 static void
2654 sd_scsi_probe_cache_fini(void)
2655 {
2656 	struct sd_scsi_probe_cache *cp;
2657 	struct sd_scsi_probe_cache *ncp;
2658 
2659 	/* Clean up our smart probing linked list */
2660 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2661 		ncp = cp->next;
2662 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2663 	}
2664 	sd_scsi_probe_cache_head = NULL;
2665 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2666 }
2667 
2668 
2669 /*
2670  *    Function: sd_scsi_clear_probe_cache
2671  *
2672  * Description: This routine clears the probe response cache. This is
2673  *		done when open() returns ENXIO so that when deferred
2674  *		attach is attempted (possibly after a device has been
2675  *		turned on) we will retry the probe. Since we don't know
2676  *		which target we failed to open, we just clear the
2677  *		entire cache.
2678  *
2679  *     Context: Kernel thread context
2680  */
2681 
2682 static void
2683 sd_scsi_clear_probe_cache(void)
2684 {
2685 	struct sd_scsi_probe_cache	*cp;
2686 	int				i;
2687 
2688 	mutex_enter(&sd_scsi_probe_cache_mutex);
2689 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2690 		/*
2691 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2692 		 * force probing to be performed the next time
2693 		 * sd_scsi_probe_with_cache is called.
2694 		 */
2695 		for (i = 0; i < NTARGETS_WIDE; i++) {
2696 			cp->cache[i] = SCSIPROBE_EXISTS;
2697 		}
2698 	}
2699 	mutex_exit(&sd_scsi_probe_cache_mutex);
2700 }
2701 
2702 
2703 /*
2704  *    Function: sd_scsi_probe_with_cache
2705  *
2706  * Description: This routine implements support for a scsi device probe
2707  *		with cache. The driver maintains a cache of the target
2708  *		responses to scsi probes. If we get no response from a
2709  *		target during a probe inquiry, we remember that, and we
2710  *		avoid additional calls to scsi_probe on non-zero LUNs
2711  *		on the same target until the cache is cleared. By doing
2712  *		so we avoid the 1/4 sec selection timeout for nonzero
2713  *		LUNs. lun0 of a target is always probed.
2714  *
2715  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2716  *              waitfunc - indicates what the allocator routines should
2717  *			   do when resources are not available. This value
2718  *			   is passed on to scsi_probe() when that routine
2719  *			   is called.
2720  *
2721  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2722  *		otherwise the value returned by scsi_probe(9F).
2723  *
2724  *     Context: Kernel thread context
2725  */
2726 
2727 static int
2728 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2729 {
2730 	struct sd_scsi_probe_cache	*cp;
2731 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2732 	int		lun, tgt;
2733 
2734 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2735 	    SCSI_ADDR_PROP_LUN, 0);
2736 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2737 	    SCSI_ADDR_PROP_TARGET, -1);
2738 
2739 	/* Make sure caching enabled and target in range */
2740 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2741 		/* do it the old way (no cache) */
2742 		return (scsi_probe(devp, waitfn));
2743 	}
2744 
2745 	mutex_enter(&sd_scsi_probe_cache_mutex);
2746 
2747 	/* Find the cache for this scsi bus instance */
2748 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2749 		if (cp->pdip == pdip) {
2750 			break;
2751 		}
2752 	}
2753 
2754 	/* If we can't find a cache for this pdip, create one */
2755 	if (cp == NULL) {
2756 		int i;
2757 
2758 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2759 		    KM_SLEEP);
2760 		cp->pdip = pdip;
2761 		cp->next = sd_scsi_probe_cache_head;
2762 		sd_scsi_probe_cache_head = cp;
2763 		for (i = 0; i < NTARGETS_WIDE; i++) {
2764 			cp->cache[i] = SCSIPROBE_EXISTS;
2765 		}
2766 	}
2767 
2768 	mutex_exit(&sd_scsi_probe_cache_mutex);
2769 
2770 	/* Recompute the cache for this target if LUN zero */
2771 	if (lun == 0) {
2772 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2773 	}
2774 
2775 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2776 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2777 		return (SCSIPROBE_NORESP);
2778 	}
2779 
2780 	/* Do the actual probe; save & return the result */
2781 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2782 }
2783 
2784 
2785 /*
2786  *    Function: sd_scsi_target_lun_init
2787  *
2788  * Description: Initializes the attached lun chain mutex and head pointer.
2789  *
2790  *     Context: Kernel thread context
2791  */
2792 
2793 static void
2794 sd_scsi_target_lun_init(void)
2795 {
2796 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
2797 	sd_scsi_target_lun_head = NULL;
2798 }
2799 
2800 
2801 /*
2802  *    Function: sd_scsi_target_lun_fini
2803  *
2804  * Description: Frees all resources associated with the attached lun
2805  *              chain
2806  *
2807  *     Context: Kernel thread context
2808  */
2809 
2810 static void
2811 sd_scsi_target_lun_fini(void)
2812 {
2813 	struct sd_scsi_hba_tgt_lun	*cp;
2814 	struct sd_scsi_hba_tgt_lun	*ncp;
2815 
2816 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
2817 		ncp = cp->next;
2818 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
2819 	}
2820 	sd_scsi_target_lun_head = NULL;
2821 	mutex_destroy(&sd_scsi_target_lun_mutex);
2822 }
2823 
2824 
2825 /*
2826  *    Function: sd_scsi_get_target_lun_count
2827  *
2828  * Description: This routine will check in the attached lun chain to see
2829  * 		how many luns are attached on the required SCSI controller
2830  * 		and target. Currently, some capabilities like tagged queue
2831  *		are supported per target based by HBA. So all luns in a
2832  *		target have the same capabilities. Based on this assumption,
2833  * 		sd should only set these capabilities once per target. This
2834  *		function is called when sd needs to decide how many luns
2835  *		already attached on a target.
2836  *
2837  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
2838  *			  controller device.
2839  *              target	- The target ID on the controller's SCSI bus.
2840  *
2841  * Return Code: The number of luns attached on the required target and
2842  *		controller.
2843  *		-1 if target ID is not in parallel SCSI scope or the given
2844  * 		dip is not in the chain.
2845  *
2846  *     Context: Kernel thread context
2847  */
2848 
2849 static int
2850 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
2851 {
2852 	struct sd_scsi_hba_tgt_lun	*cp;
2853 
2854 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
2855 		return (-1);
2856 	}
2857 
2858 	mutex_enter(&sd_scsi_target_lun_mutex);
2859 
2860 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2861 		if (cp->pdip == dip) {
2862 			break;
2863 		}
2864 	}
2865 
2866 	mutex_exit(&sd_scsi_target_lun_mutex);
2867 
2868 	if (cp == NULL) {
2869 		return (-1);
2870 	}
2871 
2872 	return (cp->nlun[target]);
2873 }
2874 
2875 
2876 /*
2877  *    Function: sd_scsi_update_lun_on_target
2878  *
2879  * Description: This routine is used to update the attached lun chain when a
2880  *		lun is attached or detached on a target.
2881  *
2882  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
2883  *                        controller device.
2884  *              target  - The target ID on the controller's SCSI bus.
2885  *		flag	- Indicate the lun is attached or detached.
2886  *
2887  *     Context: Kernel thread context
2888  */
2889 
2890 static void
2891 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
2892 {
2893 	struct sd_scsi_hba_tgt_lun	*cp;
2894 
2895 	mutex_enter(&sd_scsi_target_lun_mutex);
2896 
2897 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2898 		if (cp->pdip == dip) {
2899 			break;
2900 		}
2901 	}
2902 
2903 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
2904 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
2905 		    KM_SLEEP);
2906 		cp->pdip = dip;
2907 		cp->next = sd_scsi_target_lun_head;
2908 		sd_scsi_target_lun_head = cp;
2909 	}
2910 
2911 	mutex_exit(&sd_scsi_target_lun_mutex);
2912 
2913 	if (cp != NULL) {
2914 		if (flag == SD_SCSI_LUN_ATTACH) {
2915 			cp->nlun[target] ++;
2916 		} else {
2917 			cp->nlun[target] --;
2918 		}
2919 	}
2920 }
2921 
2922 
2923 /*
2924  *    Function: sd_spin_up_unit
2925  *
2926  * Description: Issues the following commands to spin-up the device:
2927  *		START STOP UNIT, and INQUIRY.
2928  *
2929  *   Arguments: un - driver soft state (unit) structure
2930  *
2931  * Return Code: 0 - success
2932  *		EIO - failure
2933  *		EACCES - reservation conflict
2934  *
2935  *     Context: Kernel thread context
2936  */
2937 
2938 static int
2939 sd_spin_up_unit(struct sd_lun *un)
2940 {
2941 	size_t	resid		= 0;
2942 	int	has_conflict	= FALSE;
2943 	uchar_t *bufaddr;
2944 
2945 	ASSERT(un != NULL);
2946 
2947 	/*
2948 	 * Send a throwaway START UNIT command.
2949 	 *
2950 	 * If we fail on this, we don't care presently what precisely
2951 	 * is wrong.  EMC's arrays will also fail this with a check
2952 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
2953 	 * we don't want to fail the attach because it may become
2954 	 * "active" later.
2955 	 */
2956 	if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT)
2957 	    == EACCES)
2958 		has_conflict = TRUE;
2959 
2960 	/*
2961 	 * Send another INQUIRY command to the target. This is necessary for
2962 	 * non-removable media direct access devices because their INQUIRY data
2963 	 * may not be fully qualified until they are spun up (perhaps via the
2964 	 * START command above).  Note: This seems to be needed for some
2965 	 * legacy devices only.) The INQUIRY command should succeed even if a
2966 	 * Reservation Conflict is present.
2967 	 */
2968 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
2969 	if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) {
2970 		kmem_free(bufaddr, SUN_INQSIZE);
2971 		return (EIO);
2972 	}
2973 
2974 	/*
2975 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
2976 	 * Note that this routine does not return a failure here even if the
2977 	 * INQUIRY command did not return any data.  This is a legacy behavior.
2978 	 */
2979 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
2980 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
2981 	}
2982 
2983 	kmem_free(bufaddr, SUN_INQSIZE);
2984 
2985 	/* If we hit a reservation conflict above, tell the caller. */
2986 	if (has_conflict == TRUE) {
2987 		return (EACCES);
2988 	}
2989 
2990 	return (0);
2991 }
2992 
2993 #ifdef _LP64
2994 /*
2995  *    Function: sd_enable_descr_sense
2996  *
2997  * Description: This routine attempts to select descriptor sense format
2998  *		using the Control mode page.  Devices that support 64 bit
2999  *		LBAs (for >2TB luns) should also implement descriptor
3000  *		sense data so we will call this function whenever we see
3001  *		a lun larger than 2TB.  If for some reason the device
3002  *		supports 64 bit LBAs but doesn't support descriptor sense
3003  *		presumably the mode select will fail.  Everything will
3004  *		continue to work normally except that we will not get
3005  *		complete sense data for commands that fail with an LBA
3006  *		larger than 32 bits.
3007  *
3008  *   Arguments: un - driver soft state (unit) structure
3009  *
3010  *     Context: Kernel thread context only
3011  */
3012 
3013 static void
3014 sd_enable_descr_sense(struct sd_lun *un)
3015 {
3016 	uchar_t			*header;
3017 	struct mode_control_scsi3 *ctrl_bufp;
3018 	size_t			buflen;
3019 	size_t			bd_len;
3020 
3021 	/*
3022 	 * Read MODE SENSE page 0xA, Control Mode Page
3023 	 */
3024 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3025 	    sizeof (struct mode_control_scsi3);
3026 	header = kmem_zalloc(buflen, KM_SLEEP);
3027 	if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
3028 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) {
3029 		SD_ERROR(SD_LOG_COMMON, un,
3030 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3031 		goto eds_exit;
3032 	}
3033 
3034 	/*
3035 	 * Determine size of Block Descriptors in order to locate
3036 	 * the mode page data. ATAPI devices return 0, SCSI devices
3037 	 * should return MODE_BLK_DESC_LENGTH.
3038 	 */
3039 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3040 
3041 	/* Clear the mode data length field for MODE SELECT */
3042 	((struct mode_header *)header)->length = 0;
3043 
3044 	ctrl_bufp = (struct mode_control_scsi3 *)
3045 	    (header + MODE_HEADER_LENGTH + bd_len);
3046 
3047 	/*
3048 	 * If the page length is smaller than the expected value,
3049 	 * the target device doesn't support D_SENSE. Bail out here.
3050 	 */
3051 	if (ctrl_bufp->mode_page.length <
3052 	    sizeof (struct mode_control_scsi3) - 2) {
3053 		SD_ERROR(SD_LOG_COMMON, un,
3054 		    "sd_enable_descr_sense: enable D_SENSE failed\n");
3055 		goto eds_exit;
3056 	}
3057 
3058 	/*
3059 	 * Clear PS bit for MODE SELECT
3060 	 */
3061 	ctrl_bufp->mode_page.ps = 0;
3062 
3063 	/*
3064 	 * Set D_SENSE to enable descriptor sense format.
3065 	 */
3066 	ctrl_bufp->d_sense = 1;
3067 
3068 	/*
3069 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3070 	 */
3071 	if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
3072 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) {
3073 		SD_INFO(SD_LOG_COMMON, un,
3074 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3075 		goto eds_exit;
3076 	}
3077 
3078 eds_exit:
3079 	kmem_free(header, buflen);
3080 }
3081 
3082 /*
3083  *    Function: sd_reenable_dsense_task
3084  *
3085  * Description: Re-enable descriptor sense after device or bus reset
3086  *
3087  *     Context: Executes in a taskq() thread context
3088  */
3089 static void
3090 sd_reenable_dsense_task(void *arg)
3091 {
3092 	struct	sd_lun	*un = arg;
3093 
3094 	ASSERT(un != NULL);
3095 	sd_enable_descr_sense(un);
3096 }
3097 #endif /* _LP64 */
3098 
3099 /*
3100  *    Function: sd_set_mmc_caps
3101  *
3102  * Description: This routine determines if the device is MMC compliant and if
3103  *		the device supports CDDA via a mode sense of the CDVD
3104  *		capabilities mode page. Also checks if the device is a
3105  *		dvdram writable device.
3106  *
3107  *   Arguments: un - driver soft state (unit) structure
3108  *
3109  *     Context: Kernel thread context only
3110  */
3111 
3112 static void
3113 sd_set_mmc_caps(struct sd_lun *un)
3114 {
3115 	struct mode_header_grp2		*sense_mhp;
3116 	uchar_t				*sense_page;
3117 	caddr_t				buf;
3118 	int				bd_len;
3119 	int				status;
3120 	struct uscsi_cmd		com;
3121 	int				rtn;
3122 	uchar_t				*out_data_rw, *out_data_hd;
3123 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3124 
3125 	ASSERT(un != NULL);
3126 
3127 	/*
3128 	 * The flags which will be set in this function are - mmc compliant,
3129 	 * dvdram writable device, cdda support. Initialize them to FALSE
3130 	 * and if a capability is detected - it will be set to TRUE.
3131 	 */
3132 	un->un_f_mmc_cap = FALSE;
3133 	un->un_f_dvdram_writable_device = FALSE;
3134 	un->un_f_cfg_cdda = FALSE;
3135 
3136 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3137 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3138 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3139 
3140 	if (status != 0) {
3141 		/* command failed; just return */
3142 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3143 		return;
3144 	}
3145 	/*
3146 	 * If the mode sense request for the CDROM CAPABILITIES
3147 	 * page (0x2A) succeeds the device is assumed to be MMC.
3148 	 */
3149 	un->un_f_mmc_cap = TRUE;
3150 
3151 	/* Get to the page data */
3152 	sense_mhp = (struct mode_header_grp2 *)buf;
3153 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3154 	    sense_mhp->bdesc_length_lo;
3155 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3156 		/*
3157 		 * We did not get back the expected block descriptor
3158 		 * length so we cannot determine if the device supports
3159 		 * CDDA. However, we still indicate the device is MMC
3160 		 * according to the successful response to the page
3161 		 * 0x2A mode sense request.
3162 		 */
3163 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3164 		    "sd_set_mmc_caps: Mode Sense returned "
3165 		    "invalid block descriptor length\n");
3166 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3167 		return;
3168 	}
3169 
3170 	/* See if read CDDA is supported */
3171 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3172 	    bd_len);
3173 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3174 
3175 	/* See if writing DVD RAM is supported. */
3176 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3177 	if (un->un_f_dvdram_writable_device == TRUE) {
3178 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3179 		return;
3180 	}
3181 
3182 	/*
3183 	 * If the device presents DVD or CD capabilities in the mode
3184 	 * page, we can return here since a RRD will not have
3185 	 * these capabilities.
3186 	 */
3187 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3188 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3189 		return;
3190 	}
3191 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3192 
3193 	/*
3194 	 * If un->un_f_dvdram_writable_device is still FALSE,
3195 	 * check for a Removable Rigid Disk (RRD).  A RRD
3196 	 * device is identified by the features RANDOM_WRITABLE and
3197 	 * HARDWARE_DEFECT_MANAGEMENT.
3198 	 */
3199 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3200 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3201 
3202 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3203 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3204 	    RANDOM_WRITABLE, SD_PATH_STANDARD);
3205 	if (rtn != 0) {
3206 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3207 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3208 		return;
3209 	}
3210 
3211 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3212 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3213 
3214 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3215 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3216 	    HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD);
3217 	if (rtn == 0) {
3218 		/*
3219 		 * We have good information, check for random writable
3220 		 * and hardware defect features.
3221 		 */
3222 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3223 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3224 			un->un_f_dvdram_writable_device = TRUE;
3225 		}
3226 	}
3227 
3228 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3229 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3230 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3231 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3232 }
3233 
3234 /*
3235  *    Function: sd_check_for_writable_cd
3236  *
3237  * Description: This routine determines if the media in the device is
3238  *		writable or not. It uses the get configuration command (0x46)
3239  *		to determine if the media is writable
3240  *
3241  *   Arguments: un - driver soft state (unit) structure
3242  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct"
3243  *                           chain and the normal command waitq, or
3244  *                           SD_PATH_DIRECT_PRIORITY to use the USCSI
3245  *                           "direct" chain and bypass the normal command
3246  *                           waitq.
3247  *
3248  *     Context: Never called at interrupt context.
3249  */
3250 
3251 static void
3252 sd_check_for_writable_cd(struct sd_lun *un, int path_flag)
3253 {
3254 	struct uscsi_cmd		com;
3255 	uchar_t				*out_data;
3256 	uchar_t				*rqbuf;
3257 	int				rtn;
3258 	uchar_t				*out_data_rw, *out_data_hd;
3259 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3260 	struct mode_header_grp2		*sense_mhp;
3261 	uchar_t				*sense_page;
3262 	caddr_t				buf;
3263 	int				bd_len;
3264 	int				status;
3265 
3266 	ASSERT(un != NULL);
3267 	ASSERT(mutex_owned(SD_MUTEX(un)));
3268 
3269 	/*
3270 	 * Initialize the writable media to false, if configuration info.
3271 	 * tells us otherwise then only we will set it.
3272 	 */
3273 	un->un_f_mmc_writable_media = FALSE;
3274 	mutex_exit(SD_MUTEX(un));
3275 
3276 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3277 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3278 
3279 	rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH,
3280 	    out_data, SD_PROFILE_HEADER_LEN, path_flag);
3281 
3282 	mutex_enter(SD_MUTEX(un));
3283 	if (rtn == 0) {
3284 		/*
3285 		 * We have good information, check for writable DVD.
3286 		 */
3287 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3288 			un->un_f_mmc_writable_media = TRUE;
3289 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3290 			kmem_free(rqbuf, SENSE_LENGTH);
3291 			return;
3292 		}
3293 	}
3294 
3295 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3296 	kmem_free(rqbuf, SENSE_LENGTH);
3297 
3298 	/*
3299 	 * Determine if this is a RRD type device.
3300 	 */
3301 	mutex_exit(SD_MUTEX(un));
3302 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3303 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3304 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag);
3305 	mutex_enter(SD_MUTEX(un));
3306 	if (status != 0) {
3307 		/* command failed; just return */
3308 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3309 		return;
3310 	}
3311 
3312 	/* Get to the page data */
3313 	sense_mhp = (struct mode_header_grp2 *)buf;
3314 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3315 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3316 		/*
3317 		 * We did not get back the expected block descriptor length so
3318 		 * we cannot check the mode page.
3319 		 */
3320 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3321 		    "sd_check_for_writable_cd: Mode Sense returned "
3322 		    "invalid block descriptor length\n");
3323 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3324 		return;
3325 	}
3326 
3327 	/*
3328 	 * If the device presents DVD or CD capabilities in the mode
3329 	 * page, we can return here since a RRD device will not have
3330 	 * these capabilities.
3331 	 */
3332 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3333 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3334 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3335 		return;
3336 	}
3337 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3338 
3339 	/*
3340 	 * If un->un_f_mmc_writable_media is still FALSE,
3341 	 * check for RRD type media.  A RRD device is identified
3342 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3343 	 */
3344 	mutex_exit(SD_MUTEX(un));
3345 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3346 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3347 
3348 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3349 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3350 	    RANDOM_WRITABLE, path_flag);
3351 	if (rtn != 0) {
3352 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3353 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3354 		mutex_enter(SD_MUTEX(un));
3355 		return;
3356 	}
3357 
3358 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3359 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3360 
3361 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3362 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3363 	    HARDWARE_DEFECT_MANAGEMENT, path_flag);
3364 	mutex_enter(SD_MUTEX(un));
3365 	if (rtn == 0) {
3366 		/*
3367 		 * We have good information, check for random writable
3368 		 * and hardware defect features as current.
3369 		 */
3370 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3371 		    (out_data_rw[10] & 0x1) &&
3372 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3373 		    (out_data_hd[10] & 0x1)) {
3374 			un->un_f_mmc_writable_media = TRUE;
3375 		}
3376 	}
3377 
3378 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3379 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3380 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3381 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3382 }
3383 
3384 /*
3385  *    Function: sd_read_unit_properties
3386  *
3387  * Description: The following implements a property lookup mechanism.
3388  *		Properties for particular disks (keyed on vendor, model
3389  *		and rev numbers) are sought in the sd.conf file via
3390  *		sd_process_sdconf_file(), and if not found there, are
3391  *		looked for in a list hardcoded in this driver via
3392  *		sd_process_sdconf_table() Once located the properties
3393  *		are used to update the driver unit structure.
3394  *
3395  *   Arguments: un - driver soft state (unit) structure
3396  */
3397 
3398 static void
3399 sd_read_unit_properties(struct sd_lun *un)
3400 {
3401 	/*
3402 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3403 	 * the "sd-config-list" property (from the sd.conf file) or if
3404 	 * there was not a match for the inquiry vid/pid. If this event
3405 	 * occurs the static driver configuration table is searched for
3406 	 * a match.
3407 	 */
3408 	ASSERT(un != NULL);
3409 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3410 		sd_process_sdconf_table(un);
3411 	}
3412 
3413 	/* check for LSI device */
3414 	sd_is_lsi(un);
3415 
3416 
3417 }
3418 
3419 
3420 /*
3421  *    Function: sd_process_sdconf_file
3422  *
3423  * Description: Use ddi_getlongprop to obtain the properties from the
3424  *		driver's config file (ie, sd.conf) and update the driver
3425  *		soft state structure accordingly.
3426  *
3427  *   Arguments: un - driver soft state (unit) structure
3428  *
3429  * Return Code: SD_SUCCESS - The properties were successfully set according
3430  *			     to the driver configuration file.
3431  *		SD_FAILURE - The driver config list was not obtained or
3432  *			     there was no vid/pid match. This indicates that
3433  *			     the static config table should be used.
3434  *
3435  * The config file has a property, "sd-config-list", which consists of
3436  * one or more duplets as follows:
3437  *
3438  *  sd-config-list=
3439  *	<duplet>,
3440  *	[<duplet>,]
3441  *	[<duplet>];
3442  *
3443  * The structure of each duplet is as follows:
3444  *
3445  *  <duplet>:= <vid+pid>,<data-property-name_list>
3446  *
3447  * The first entry of the duplet is the device ID string (the concatenated
3448  * vid & pid; not to be confused with a device_id).  This is defined in
3449  * the same way as in the sd_disk_table.
3450  *
3451  * The second part of the duplet is a string that identifies a
3452  * data-property-name-list. The data-property-name-list is defined as
3453  * follows:
3454  *
3455  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3456  *
3457  * The syntax of <data-property-name> depends on the <version> field.
3458  *
3459  * If version = SD_CONF_VERSION_1 we have the following syntax:
3460  *
3461  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3462  *
3463  * where the prop0 value will be used to set prop0 if bit0 set in the
3464  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3465  *
3466  */
3467 
3468 static int
3469 sd_process_sdconf_file(struct sd_lun *un)
3470 {
3471 	char	*config_list = NULL;
3472 	int	config_list_len;
3473 	int	len;
3474 	int	dupletlen = 0;
3475 	char	*vidptr;
3476 	int	vidlen;
3477 	char	*dnlist_ptr;
3478 	char	*dataname_ptr;
3479 	int	dnlist_len;
3480 	int	dataname_len;
3481 	int	*data_list;
3482 	int	data_list_len;
3483 	int	rval = SD_FAILURE;
3484 	int	i;
3485 
3486 	ASSERT(un != NULL);
3487 
3488 	/* Obtain the configuration list associated with the .conf file */
3489 	if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS,
3490 	    sd_config_list, (caddr_t)&config_list, &config_list_len)
3491 	    != DDI_PROP_SUCCESS) {
3492 		return (SD_FAILURE);
3493 	}
3494 
3495 	/*
3496 	 * Compare vids in each duplet to the inquiry vid - if a match is
3497 	 * made, get the data value and update the soft state structure
3498 	 * accordingly.
3499 	 *
3500 	 * Note: This algorithm is complex and difficult to maintain. It should
3501 	 * be replaced with a more robust implementation.
3502 	 */
3503 	for (len = config_list_len, vidptr = config_list; len > 0;
3504 	    vidptr += dupletlen, len -= dupletlen) {
3505 		/*
3506 		 * Note: The assumption here is that each vid entry is on
3507 		 * a unique line from its associated duplet.
3508 		 */
3509 		vidlen = dupletlen = (int)strlen(vidptr);
3510 		if ((vidlen == 0) ||
3511 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3512 			dupletlen++;
3513 			continue;
3514 		}
3515 
3516 		/*
3517 		 * dnlist contains 1 or more blank separated
3518 		 * data-property-name entries
3519 		 */
3520 		dnlist_ptr = vidptr + vidlen + 1;
3521 		dnlist_len = (int)strlen(dnlist_ptr);
3522 		dupletlen += dnlist_len + 2;
3523 
3524 		/*
3525 		 * Set a pointer for the first data-property-name
3526 		 * entry in the list
3527 		 */
3528 		dataname_ptr = dnlist_ptr;
3529 		dataname_len = 0;
3530 
3531 		/*
3532 		 * Loop through all data-property-name entries in the
3533 		 * data-property-name-list setting the properties for each.
3534 		 */
3535 		while (dataname_len < dnlist_len) {
3536 			int version;
3537 
3538 			/*
3539 			 * Determine the length of the current
3540 			 * data-property-name entry by indexing until a
3541 			 * blank or NULL is encountered. When the space is
3542 			 * encountered reset it to a NULL for compliance
3543 			 * with ddi_getlongprop().
3544 			 */
3545 			for (i = 0; ((dataname_ptr[i] != ' ') &&
3546 			    (dataname_ptr[i] != '\0')); i++) {
3547 				;
3548 			}
3549 
3550 			dataname_len += i;
3551 			/* If not null terminated, Make it so */
3552 			if (dataname_ptr[i] == ' ') {
3553 				dataname_ptr[i] = '\0';
3554 			}
3555 			dataname_len++;
3556 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3557 			    "sd_process_sdconf_file: disk:%s, data:%s\n",
3558 			    vidptr, dataname_ptr);
3559 
3560 			/* Get the data list */
3561 			if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0,
3562 			    dataname_ptr, (caddr_t)&data_list, &data_list_len)
3563 			    != DDI_PROP_SUCCESS) {
3564 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3565 				    "sd_process_sdconf_file: data property (%s)"
3566 				    " has no value\n", dataname_ptr);
3567 				dataname_ptr = dnlist_ptr + dataname_len;
3568 				continue;
3569 			}
3570 
3571 			version = data_list[0];
3572 
3573 			if (version == SD_CONF_VERSION_1) {
3574 				sd_tunables values;
3575 
3576 				/* Set the properties */
3577 				if (sd_chk_vers1_data(un, data_list[1],
3578 				    &data_list[2], data_list_len, dataname_ptr)
3579 				    == SD_SUCCESS) {
3580 					sd_get_tunables_from_conf(un,
3581 					    data_list[1], &data_list[2],
3582 					    &values);
3583 					sd_set_vers1_properties(un,
3584 					    data_list[1], &values);
3585 					rval = SD_SUCCESS;
3586 				} else {
3587 					rval = SD_FAILURE;
3588 				}
3589 			} else {
3590 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3591 				    "data property %s version 0x%x is invalid.",
3592 				    dataname_ptr, version);
3593 				rval = SD_FAILURE;
3594 			}
3595 			kmem_free(data_list, data_list_len);
3596 			dataname_ptr = dnlist_ptr + dataname_len;
3597 		}
3598 	}
3599 
3600 	/* free up the memory allocated by ddi_getlongprop */
3601 	if (config_list) {
3602 		kmem_free(config_list, config_list_len);
3603 	}
3604 
3605 	return (rval);
3606 }
3607 
3608 /*
3609  *    Function: sd_get_tunables_from_conf()
3610  *
3611  *
3612  *    This function reads the data list from the sd.conf file and pulls
3613  *    the values that can have numeric values as arguments and places
3614  *    the values in the appropriate sd_tunables member.
3615  *    Since the order of the data list members varies across platforms
3616  *    This function reads them from the data list in a platform specific
3617  *    order and places them into the correct sd_tunable member that is
3618  *    consistent across all platforms.
3619  */
3620 static void
3621 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3622     sd_tunables *values)
3623 {
3624 	int i;
3625 	int mask;
3626 
3627 	bzero(values, sizeof (sd_tunables));
3628 
3629 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3630 
3631 		mask = 1 << i;
3632 		if (mask > flags) {
3633 			break;
3634 		}
3635 
3636 		switch (mask & flags) {
3637 		case 0:	/* This mask bit not set in flags */
3638 			continue;
3639 		case SD_CONF_BSET_THROTTLE:
3640 			values->sdt_throttle = data_list[i];
3641 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3642 			    "sd_get_tunables_from_conf: throttle = %d\n",
3643 			    values->sdt_throttle);
3644 			break;
3645 		case SD_CONF_BSET_CTYPE:
3646 			values->sdt_ctype = data_list[i];
3647 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3648 			    "sd_get_tunables_from_conf: ctype = %d\n",
3649 			    values->sdt_ctype);
3650 			break;
3651 		case SD_CONF_BSET_NRR_COUNT:
3652 			values->sdt_not_rdy_retries = data_list[i];
3653 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3654 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
3655 			    values->sdt_not_rdy_retries);
3656 			break;
3657 		case SD_CONF_BSET_BSY_RETRY_COUNT:
3658 			values->sdt_busy_retries = data_list[i];
3659 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3660 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
3661 			    values->sdt_busy_retries);
3662 			break;
3663 		case SD_CONF_BSET_RST_RETRIES:
3664 			values->sdt_reset_retries = data_list[i];
3665 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3666 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
3667 			    values->sdt_reset_retries);
3668 			break;
3669 		case SD_CONF_BSET_RSV_REL_TIME:
3670 			values->sdt_reserv_rel_time = data_list[i];
3671 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3672 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
3673 			    values->sdt_reserv_rel_time);
3674 			break;
3675 		case SD_CONF_BSET_MIN_THROTTLE:
3676 			values->sdt_min_throttle = data_list[i];
3677 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3678 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
3679 			    values->sdt_min_throttle);
3680 			break;
3681 		case SD_CONF_BSET_DISKSORT_DISABLED:
3682 			values->sdt_disk_sort_dis = data_list[i];
3683 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3684 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
3685 			    values->sdt_disk_sort_dis);
3686 			break;
3687 		case SD_CONF_BSET_LUN_RESET_ENABLED:
3688 			values->sdt_lun_reset_enable = data_list[i];
3689 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3690 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
3691 			    "\n", values->sdt_lun_reset_enable);
3692 			break;
3693 		}
3694 	}
3695 }
3696 
3697 /*
3698  *    Function: sd_process_sdconf_table
3699  *
3700  * Description: Search the static configuration table for a match on the
3701  *		inquiry vid/pid and update the driver soft state structure
3702  *		according to the table property values for the device.
3703  *
3704  *		The form of a configuration table entry is:
3705  *		  <vid+pid>,<flags>,<property-data>
3706  *		  "SEAGATE ST42400N",1,63,0,0			(Fibre)
3707  *		  "SEAGATE ST42400N",1,63,0,0,0,0		(Sparc)
3708  *		  "SEAGATE ST42400N",1,63,0,0,0,0,0,0,0,0,0,0	(Intel)
3709  *
3710  *   Arguments: un - driver soft state (unit) structure
3711  */
3712 
3713 static void
3714 sd_process_sdconf_table(struct sd_lun *un)
3715 {
3716 	char	*id = NULL;
3717 	int	table_index;
3718 	int	idlen;
3719 
3720 	ASSERT(un != NULL);
3721 	for (table_index = 0; table_index < sd_disk_table_size;
3722 	    table_index++) {
3723 		id = sd_disk_table[table_index].device_id;
3724 		idlen = strlen(id);
3725 		if (idlen == 0) {
3726 			continue;
3727 		}
3728 
3729 		/*
3730 		 * The static configuration table currently does not
3731 		 * implement version 10 properties. Additionally,
3732 		 * multiple data-property-name entries are not
3733 		 * implemented in the static configuration table.
3734 		 */
3735 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
3736 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3737 			    "sd_process_sdconf_table: disk %s\n", id);
3738 			sd_set_vers1_properties(un,
3739 			    sd_disk_table[table_index].flags,
3740 			    sd_disk_table[table_index].properties);
3741 			break;
3742 		}
3743 	}
3744 }
3745 
3746 
3747 /*
3748  *    Function: sd_sdconf_id_match
3749  *
3750  * Description: This local function implements a case sensitive vid/pid
3751  *		comparison as well as the boundary cases of wild card and
3752  *		multiple blanks.
3753  *
3754  *		Note: An implicit assumption made here is that the scsi
3755  *		inquiry structure will always keep the vid, pid and
3756  *		revision strings in consecutive sequence, so they can be
3757  *		read as a single string. If this assumption is not the
3758  *		case, a separate string, to be used for the check, needs
3759  *		to be built with these strings concatenated.
3760  *
3761  *   Arguments: un - driver soft state (unit) structure
3762  *		id - table or config file vid/pid
3763  *		idlen  - length of the vid/pid (bytes)
3764  *
3765  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3766  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3767  */
3768 
3769 static int
3770 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
3771 {
3772 	struct scsi_inquiry	*sd_inq;
3773 	int 			rval = SD_SUCCESS;
3774 
3775 	ASSERT(un != NULL);
3776 	sd_inq = un->un_sd->sd_inq;
3777 	ASSERT(id != NULL);
3778 
3779 	/*
3780 	 * We use the inq_vid as a pointer to a buffer containing the
3781 	 * vid and pid and use the entire vid/pid length of the table
3782 	 * entry for the comparison. This works because the inq_pid
3783 	 * data member follows inq_vid in the scsi_inquiry structure.
3784 	 */
3785 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
3786 		/*
3787 		 * The user id string is compared to the inquiry vid/pid
3788 		 * using a case insensitive comparison and ignoring
3789 		 * multiple spaces.
3790 		 */
3791 		rval = sd_blank_cmp(un, id, idlen);
3792 		if (rval != SD_SUCCESS) {
3793 			/*
3794 			 * User id strings that start and end with a "*"
3795 			 * are a special case. These do not have a
3796 			 * specific vendor, and the product string can
3797 			 * appear anywhere in the 16 byte PID portion of
3798 			 * the inquiry data. This is a simple strstr()
3799 			 * type search for the user id in the inquiry data.
3800 			 */
3801 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
3802 				char	*pidptr = &id[1];
3803 				int	i;
3804 				int	j;
3805 				int	pidstrlen = idlen - 2;
3806 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
3807 				    pidstrlen;
3808 
3809 				if (j < 0) {
3810 					return (SD_FAILURE);
3811 				}
3812 				for (i = 0; i < j; i++) {
3813 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
3814 					    pidptr, pidstrlen) == 0) {
3815 						rval = SD_SUCCESS;
3816 						break;
3817 					}
3818 				}
3819 			}
3820 		}
3821 	}
3822 	return (rval);
3823 }
3824 
3825 
3826 /*
3827  *    Function: sd_blank_cmp
3828  *
3829  * Description: If the id string starts and ends with a space, treat
3830  *		multiple consecutive spaces as equivalent to a single
3831  *		space. For example, this causes a sd_disk_table entry
3832  *		of " NEC CDROM " to match a device's id string of
3833  *		"NEC       CDROM".
3834  *
3835  *		Note: The success exit condition for this routine is if
3836  *		the pointer to the table entry is '\0' and the cnt of
3837  *		the inquiry length is zero. This will happen if the inquiry
3838  *		string returned by the device is padded with spaces to be
3839  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
3840  *		SCSI spec states that the inquiry string is to be padded with
3841  *		spaces.
3842  *
3843  *   Arguments: un - driver soft state (unit) structure
3844  *		id - table or config file vid/pid
3845  *		idlen  - length of the vid/pid (bytes)
3846  *
3847  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3848  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3849  */
3850 
3851 static int
3852 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
3853 {
3854 	char		*p1;
3855 	char		*p2;
3856 	int		cnt;
3857 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
3858 	    sizeof (SD_INQUIRY(un)->inq_pid);
3859 
3860 	ASSERT(un != NULL);
3861 	p2 = un->un_sd->sd_inq->inq_vid;
3862 	ASSERT(id != NULL);
3863 	p1 = id;
3864 
3865 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
3866 		/*
3867 		 * Note: string p1 is terminated by a NUL but string p2
3868 		 * isn't.  The end of p2 is determined by cnt.
3869 		 */
3870 		for (;;) {
3871 			/* skip over any extra blanks in both strings */
3872 			while ((*p1 != '\0') && (*p1 == ' ')) {
3873 				p1++;
3874 			}
3875 			while ((cnt != 0) && (*p2 == ' ')) {
3876 				p2++;
3877 				cnt--;
3878 			}
3879 
3880 			/* compare the two strings */
3881 			if ((cnt == 0) ||
3882 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
3883 				break;
3884 			}
3885 			while ((cnt > 0) &&
3886 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
3887 				p1++;
3888 				p2++;
3889 				cnt--;
3890 			}
3891 		}
3892 	}
3893 
3894 	/* return SD_SUCCESS if both strings match */
3895 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
3896 }
3897 
3898 
3899 /*
3900  *    Function: sd_chk_vers1_data
3901  *
3902  * Description: Verify the version 1 device properties provided by the
3903  *		user via the configuration file
3904  *
3905  *   Arguments: un	     - driver soft state (unit) structure
3906  *		flags	     - integer mask indicating properties to be set
3907  *		prop_list    - integer list of property values
3908  *		list_len     - length of user provided data
3909  *
3910  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
3911  *		SD_FAILURE - Indicates the user provided data is invalid
3912  */
3913 
3914 static int
3915 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
3916     int list_len, char *dataname_ptr)
3917 {
3918 	int i;
3919 	int mask = 1;
3920 	int index = 0;
3921 
3922 	ASSERT(un != NULL);
3923 
3924 	/* Check for a NULL property name and list */
3925 	if (dataname_ptr == NULL) {
3926 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3927 		    "sd_chk_vers1_data: NULL data property name.");
3928 		return (SD_FAILURE);
3929 	}
3930 	if (prop_list == NULL) {
3931 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3932 		    "sd_chk_vers1_data: %s NULL data property list.",
3933 		    dataname_ptr);
3934 		return (SD_FAILURE);
3935 	}
3936 
3937 	/* Display a warning if undefined bits are set in the flags */
3938 	if (flags & ~SD_CONF_BIT_MASK) {
3939 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3940 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
3941 		    "Properties not set.",
3942 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
3943 		return (SD_FAILURE);
3944 	}
3945 
3946 	/*
3947 	 * Verify the length of the list by identifying the highest bit set
3948 	 * in the flags and validating that the property list has a length
3949 	 * up to the index of this bit.
3950 	 */
3951 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3952 		if (flags & mask) {
3953 			index++;
3954 		}
3955 		mask = 1 << i;
3956 	}
3957 	if ((list_len / sizeof (int)) < (index + 2)) {
3958 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3959 		    "sd_chk_vers1_data: "
3960 		    "Data property list %s size is incorrect. "
3961 		    "Properties not set.", dataname_ptr);
3962 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
3963 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
3964 		return (SD_FAILURE);
3965 	}
3966 	return (SD_SUCCESS);
3967 }
3968 
3969 
3970 /*
3971  *    Function: sd_set_vers1_properties
3972  *
3973  * Description: Set version 1 device properties based on a property list
3974  *		retrieved from the driver configuration file or static
3975  *		configuration table. Version 1 properties have the format:
3976  *
3977  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3978  *
3979  *		where the prop0 value will be used to set prop0 if bit0
3980  *		is set in the flags
3981  *
3982  *   Arguments: un	     - driver soft state (unit) structure
3983  *		flags	     - integer mask indicating properties to be set
3984  *		prop_list    - integer list of property values
3985  */
3986 
3987 static void
3988 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
3989 {
3990 	ASSERT(un != NULL);
3991 
3992 	/*
3993 	 * Set the flag to indicate cache is to be disabled. An attempt
3994 	 * to disable the cache via sd_cache_control() will be made
3995 	 * later during attach once the basic initialization is complete.
3996 	 */
3997 	if (flags & SD_CONF_BSET_NOCACHE) {
3998 		un->un_f_opt_disable_cache = TRUE;
3999 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4000 		    "sd_set_vers1_properties: caching disabled flag set\n");
4001 	}
4002 
4003 	/* CD-specific configuration parameters */
4004 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4005 		un->un_f_cfg_playmsf_bcd = TRUE;
4006 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4007 		    "sd_set_vers1_properties: playmsf_bcd set\n");
4008 	}
4009 	if (flags & SD_CONF_BSET_READSUB_BCD) {
4010 		un->un_f_cfg_readsub_bcd = TRUE;
4011 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4012 		    "sd_set_vers1_properties: readsub_bcd set\n");
4013 	}
4014 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4015 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4016 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4017 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4018 	}
4019 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4020 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4021 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4022 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4023 	}
4024 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4025 		un->un_f_cfg_no_read_header = TRUE;
4026 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4027 		    "sd_set_vers1_properties: no_read_header set\n");
4028 	}
4029 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4030 		un->un_f_cfg_read_cd_xd4 = TRUE;
4031 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4032 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4033 	}
4034 
4035 	/* Support for devices which do not have valid/unique serial numbers */
4036 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4037 		un->un_f_opt_fab_devid = TRUE;
4038 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4039 		    "sd_set_vers1_properties: fab_devid bit set\n");
4040 	}
4041 
4042 	/* Support for user throttle configuration */
4043 	if (flags & SD_CONF_BSET_THROTTLE) {
4044 		ASSERT(prop_list != NULL);
4045 		un->un_saved_throttle = un->un_throttle =
4046 		    prop_list->sdt_throttle;
4047 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4048 		    "sd_set_vers1_properties: throttle set to %d\n",
4049 		    prop_list->sdt_throttle);
4050 	}
4051 
4052 	/* Set the per disk retry count according to the conf file or table. */
4053 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4054 		ASSERT(prop_list != NULL);
4055 		if (prop_list->sdt_not_rdy_retries) {
4056 			un->un_notready_retry_count =
4057 			    prop_list->sdt_not_rdy_retries;
4058 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4059 			    "sd_set_vers1_properties: not ready retry count"
4060 			    " set to %d\n", un->un_notready_retry_count);
4061 		}
4062 	}
4063 
4064 	/* The controller type is reported for generic disk driver ioctls */
4065 	if (flags & SD_CONF_BSET_CTYPE) {
4066 		ASSERT(prop_list != NULL);
4067 		switch (prop_list->sdt_ctype) {
4068 		case CTYPE_CDROM:
4069 			un->un_ctype = prop_list->sdt_ctype;
4070 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4071 			    "sd_set_vers1_properties: ctype set to "
4072 			    "CTYPE_CDROM\n");
4073 			break;
4074 		case CTYPE_CCS:
4075 			un->un_ctype = prop_list->sdt_ctype;
4076 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4077 			    "sd_set_vers1_properties: ctype set to "
4078 			    "CTYPE_CCS\n");
4079 			break;
4080 		case CTYPE_ROD:		/* RW optical */
4081 			un->un_ctype = prop_list->sdt_ctype;
4082 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4083 			    "sd_set_vers1_properties: ctype set to "
4084 			    "CTYPE_ROD\n");
4085 			break;
4086 		default:
4087 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4088 			    "sd_set_vers1_properties: Could not set "
4089 			    "invalid ctype value (%d)",
4090 			    prop_list->sdt_ctype);
4091 		}
4092 	}
4093 
4094 	/* Purple failover timeout */
4095 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4096 		ASSERT(prop_list != NULL);
4097 		un->un_busy_retry_count =
4098 		    prop_list->sdt_busy_retries;
4099 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4100 		    "sd_set_vers1_properties: "
4101 		    "busy retry count set to %d\n",
4102 		    un->un_busy_retry_count);
4103 	}
4104 
4105 	/* Purple reset retry count */
4106 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4107 		ASSERT(prop_list != NULL);
4108 		un->un_reset_retry_count =
4109 		    prop_list->sdt_reset_retries;
4110 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4111 		    "sd_set_vers1_properties: "
4112 		    "reset retry count set to %d\n",
4113 		    un->un_reset_retry_count);
4114 	}
4115 
4116 	/* Purple reservation release timeout */
4117 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4118 		ASSERT(prop_list != NULL);
4119 		un->un_reserve_release_time =
4120 		    prop_list->sdt_reserv_rel_time;
4121 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4122 		    "sd_set_vers1_properties: "
4123 		    "reservation release timeout set to %d\n",
4124 		    un->un_reserve_release_time);
4125 	}
4126 
4127 	/*
4128 	 * Driver flag telling the driver to verify that no commands are pending
4129 	 * for a device before issuing a Test Unit Ready. This is a workaround
4130 	 * for a firmware bug in some Seagate eliteI drives.
4131 	 */
4132 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4133 		un->un_f_cfg_tur_check = TRUE;
4134 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4135 		    "sd_set_vers1_properties: tur queue check set\n");
4136 	}
4137 
4138 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4139 		un->un_min_throttle = prop_list->sdt_min_throttle;
4140 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4141 		    "sd_set_vers1_properties: min throttle set to %d\n",
4142 		    un->un_min_throttle);
4143 	}
4144 
4145 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4146 		un->un_f_disksort_disabled =
4147 		    (prop_list->sdt_disk_sort_dis != 0) ?
4148 		    TRUE : FALSE;
4149 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4150 		    "sd_set_vers1_properties: disksort disabled "
4151 		    "flag set to %d\n",
4152 		    prop_list->sdt_disk_sort_dis);
4153 	}
4154 
4155 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4156 		un->un_f_lun_reset_enabled =
4157 		    (prop_list->sdt_lun_reset_enable != 0) ?
4158 		    TRUE : FALSE;
4159 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4160 		    "sd_set_vers1_properties: lun reset enabled "
4161 		    "flag set to %d\n",
4162 		    prop_list->sdt_lun_reset_enable);
4163 	}
4164 
4165 	/*
4166 	 * Validate the throttle values.
4167 	 * If any of the numbers are invalid, set everything to defaults.
4168 	 */
4169 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4170 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4171 	    (un->un_min_throttle > un->un_throttle)) {
4172 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4173 		un->un_min_throttle = sd_min_throttle;
4174 	}
4175 }
4176 
4177 /*
4178  *   Function: sd_is_lsi()
4179  *
4180  *   Description: Check for lsi devices, step through the static device
4181  *	table to match vid/pid.
4182  *
4183  *   Args: un - ptr to sd_lun
4184  *
4185  *   Notes:  When creating new LSI property, need to add the new LSI property
4186  *		to this function.
4187  */
4188 static void
4189 sd_is_lsi(struct sd_lun *un)
4190 {
4191 	char	*id = NULL;
4192 	int	table_index;
4193 	int	idlen;
4194 	void	*prop;
4195 
4196 	ASSERT(un != NULL);
4197 	for (table_index = 0; table_index < sd_disk_table_size;
4198 	    table_index++) {
4199 		id = sd_disk_table[table_index].device_id;
4200 		idlen = strlen(id);
4201 		if (idlen == 0) {
4202 			continue;
4203 		}
4204 
4205 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4206 			prop = sd_disk_table[table_index].properties;
4207 			if (prop == &lsi_properties ||
4208 			    prop == &lsi_oem_properties ||
4209 			    prop == &lsi_properties_scsi ||
4210 			    prop == &symbios_properties) {
4211 				un->un_f_cfg_is_lsi = TRUE;
4212 			}
4213 			break;
4214 		}
4215 	}
4216 }
4217 
4218 /*
4219  *    Function: sd_get_physical_geometry
4220  *
4221  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4222  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4223  *		target, and use this information to initialize the physical
4224  *		geometry cache specified by pgeom_p.
4225  *
4226  *		MODE SENSE is an optional command, so failure in this case
4227  *		does not necessarily denote an error. We want to use the
4228  *		MODE SENSE commands to derive the physical geometry of the
4229  *		device, but if either command fails, the logical geometry is
4230  *		used as the fallback for disk label geometry in cmlb.
4231  *
4232  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4233  *		have already been initialized for the current target and
4234  *		that the current values be passed as args so that we don't
4235  *		end up ever trying to use -1 as a valid value. This could
4236  *		happen if either value is reset while we're not holding
4237  *		the mutex.
4238  *
4239  *   Arguments: un - driver soft state (unit) structure
4240  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4241  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4242  *			to use the USCSI "direct" chain and bypass the normal
4243  *			command waitq.
4244  *
4245  *     Context: Kernel thread only (can sleep).
4246  */
4247 
4248 static int
4249 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p,
4250 	diskaddr_t capacity, int lbasize, int path_flag)
4251 {
4252 	struct	mode_format	*page3p;
4253 	struct	mode_geometry	*page4p;
4254 	struct	mode_header	*headerp;
4255 	int	sector_size;
4256 	int	nsect;
4257 	int	nhead;
4258 	int	ncyl;
4259 	int	intrlv;
4260 	int	spc;
4261 	diskaddr_t	modesense_capacity;
4262 	int	rpm;
4263 	int	bd_len;
4264 	int	mode_header_length;
4265 	uchar_t	*p3bufp;
4266 	uchar_t	*p4bufp;
4267 	int	cdbsize;
4268 	int 	ret = EIO;
4269 
4270 	ASSERT(un != NULL);
4271 
4272 	if (lbasize == 0) {
4273 		if (ISCD(un)) {
4274 			lbasize = 2048;
4275 		} else {
4276 			lbasize = un->un_sys_blocksize;
4277 		}
4278 	}
4279 	pgeom_p->g_secsize = (unsigned short)lbasize;
4280 
4281 	/*
4282 	 * If the unit is a cd/dvd drive MODE SENSE page three
4283 	 * and MODE SENSE page four are reserved (see SBC spec
4284 	 * and MMC spec). To prevent soft errors just return
4285 	 * using the default LBA size.
4286 	 */
4287 	if (ISCD(un))
4288 		return (ret);
4289 
4290 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4291 
4292 	/*
4293 	 * Retrieve MODE SENSE page 3 - Format Device Page
4294 	 */
4295 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4296 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp,
4297 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag)
4298 	    != 0) {
4299 		SD_ERROR(SD_LOG_COMMON, un,
4300 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4301 		goto page3_exit;
4302 	}
4303 
4304 	/*
4305 	 * Determine size of Block Descriptors in order to locate the mode
4306 	 * page data.  ATAPI devices return 0, SCSI devices should return
4307 	 * MODE_BLK_DESC_LENGTH.
4308 	 */
4309 	headerp = (struct mode_header *)p3bufp;
4310 	if (un->un_f_cfg_is_atapi == TRUE) {
4311 		struct mode_header_grp2 *mhp =
4312 		    (struct mode_header_grp2 *)headerp;
4313 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4314 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4315 	} else {
4316 		mode_header_length = MODE_HEADER_LENGTH;
4317 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4318 	}
4319 
4320 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4321 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4322 		    "received unexpected bd_len of %d, page3\n", bd_len);
4323 		goto page3_exit;
4324 	}
4325 
4326 	page3p = (struct mode_format *)
4327 	    ((caddr_t)headerp + mode_header_length + bd_len);
4328 
4329 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
4330 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4331 		    "mode sense pg3 code mismatch %d\n",
4332 		    page3p->mode_page.code);
4333 		goto page3_exit;
4334 	}
4335 
4336 	/*
4337 	 * Use this physical geometry data only if BOTH MODE SENSE commands
4338 	 * complete successfully; otherwise, revert to the logical geometry.
4339 	 * So, we need to save everything in temporary variables.
4340 	 */
4341 	sector_size = BE_16(page3p->data_bytes_sect);
4342 
4343 	/*
4344 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
4345 	 */
4346 	if (sector_size == 0) {
4347 		sector_size = un->un_sys_blocksize;
4348 	} else {
4349 		sector_size &= ~(un->un_sys_blocksize - 1);
4350 	}
4351 
4352 	nsect  = BE_16(page3p->sect_track);
4353 	intrlv = BE_16(page3p->interleave);
4354 
4355 	SD_INFO(SD_LOG_COMMON, un,
4356 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
4357 	SD_INFO(SD_LOG_COMMON, un,
4358 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
4359 	    page3p->mode_page.code, nsect, sector_size);
4360 	SD_INFO(SD_LOG_COMMON, un,
4361 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
4362 	    BE_16(page3p->track_skew),
4363 	    BE_16(page3p->cylinder_skew));
4364 
4365 
4366 	/*
4367 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
4368 	 */
4369 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
4370 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp,
4371 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag)
4372 	    != 0) {
4373 		SD_ERROR(SD_LOG_COMMON, un,
4374 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
4375 		goto page4_exit;
4376 	}
4377 
4378 	/*
4379 	 * Determine size of Block Descriptors in order to locate the mode
4380 	 * page data.  ATAPI devices return 0, SCSI devices should return
4381 	 * MODE_BLK_DESC_LENGTH.
4382 	 */
4383 	headerp = (struct mode_header *)p4bufp;
4384 	if (un->un_f_cfg_is_atapi == TRUE) {
4385 		struct mode_header_grp2 *mhp =
4386 		    (struct mode_header_grp2 *)headerp;
4387 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4388 	} else {
4389 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4390 	}
4391 
4392 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4393 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4394 		    "received unexpected bd_len of %d, page4\n", bd_len);
4395 		goto page4_exit;
4396 	}
4397 
4398 	page4p = (struct mode_geometry *)
4399 	    ((caddr_t)headerp + mode_header_length + bd_len);
4400 
4401 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
4402 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4403 		    "mode sense pg4 code mismatch %d\n",
4404 		    page4p->mode_page.code);
4405 		goto page4_exit;
4406 	}
4407 
4408 	/*
4409 	 * Stash the data now, after we know that both commands completed.
4410 	 */
4411 
4412 
4413 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
4414 	spc   = nhead * nsect;
4415 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
4416 	rpm   = BE_16(page4p->rpm);
4417 
4418 	modesense_capacity = spc * ncyl;
4419 
4420 	SD_INFO(SD_LOG_COMMON, un,
4421 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
4422 	SD_INFO(SD_LOG_COMMON, un,
4423 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
4424 	SD_INFO(SD_LOG_COMMON, un,
4425 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
4426 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
4427 	    (void *)pgeom_p, capacity);
4428 
4429 	/*
4430 	 * Compensate if the drive's geometry is not rectangular, i.e.,
4431 	 * the product of C * H * S returned by MODE SENSE >= that returned
4432 	 * by read capacity. This is an idiosyncrasy of the original x86
4433 	 * disk subsystem.
4434 	 */
4435 	if (modesense_capacity >= capacity) {
4436 		SD_INFO(SD_LOG_COMMON, un,
4437 		    "sd_get_physical_geometry: adjusting acyl; "
4438 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
4439 		    (modesense_capacity - capacity + spc - 1) / spc);
4440 		if (sector_size != 0) {
4441 			/* 1243403: NEC D38x7 drives don't support sec size */
4442 			pgeom_p->g_secsize = (unsigned short)sector_size;
4443 		}
4444 		pgeom_p->g_nsect    = (unsigned short)nsect;
4445 		pgeom_p->g_nhead    = (unsigned short)nhead;
4446 		pgeom_p->g_capacity = capacity;
4447 		pgeom_p->g_acyl	    =
4448 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
4449 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
4450 	}
4451 
4452 	pgeom_p->g_rpm    = (unsigned short)rpm;
4453 	pgeom_p->g_intrlv = (unsigned short)intrlv;
4454 	ret = 0;
4455 
4456 	SD_INFO(SD_LOG_COMMON, un,
4457 	    "sd_get_physical_geometry: mode sense geometry:\n");
4458 	SD_INFO(SD_LOG_COMMON, un,
4459 	    "   nsect: %d; sector size: %d; interlv: %d\n",
4460 	    nsect, sector_size, intrlv);
4461 	SD_INFO(SD_LOG_COMMON, un,
4462 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
4463 	    nhead, ncyl, rpm, modesense_capacity);
4464 	SD_INFO(SD_LOG_COMMON, un,
4465 	    "sd_get_physical_geometry: (cached)\n");
4466 	SD_INFO(SD_LOG_COMMON, un,
4467 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4468 	    pgeom_p->g_ncyl,  pgeom_p->g_acyl,
4469 	    pgeom_p->g_nhead, pgeom_p->g_nsect);
4470 	SD_INFO(SD_LOG_COMMON, un,
4471 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
4472 	    pgeom_p->g_secsize, pgeom_p->g_capacity,
4473 	    pgeom_p->g_intrlv, pgeom_p->g_rpm);
4474 
4475 page4_exit:
4476 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
4477 page3_exit:
4478 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
4479 
4480 	return (ret);
4481 }
4482 
4483 /*
4484  *    Function: sd_get_virtual_geometry
4485  *
4486  * Description: Ask the controller to tell us about the target device.
4487  *
4488  *   Arguments: un - pointer to softstate
4489  *		capacity - disk capacity in #blocks
4490  *		lbasize - disk block size in bytes
4491  *
4492  *     Context: Kernel thread only
4493  */
4494 
4495 static int
4496 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p,
4497     diskaddr_t capacity, int lbasize)
4498 {
4499 	uint_t	geombuf;
4500 	int	spc;
4501 
4502 	ASSERT(un != NULL);
4503 
4504 	/* Set sector size, and total number of sectors */
4505 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
4506 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
4507 
4508 	/* Let the HBA tell us its geometry */
4509 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
4510 
4511 	/* A value of -1 indicates an undefined "geometry" property */
4512 	if (geombuf == (-1)) {
4513 		return (EINVAL);
4514 	}
4515 
4516 	/* Initialize the logical geometry cache. */
4517 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
4518 	lgeom_p->g_nsect   = geombuf & 0xffff;
4519 	lgeom_p->g_secsize = un->un_sys_blocksize;
4520 
4521 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
4522 
4523 	/*
4524 	 * Note: The driver originally converted the capacity value from
4525 	 * target blocks to system blocks. However, the capacity value passed
4526 	 * to this routine is already in terms of system blocks (this scaling
4527 	 * is done when the READ CAPACITY command is issued and processed).
4528 	 * This 'error' may have gone undetected because the usage of g_ncyl
4529 	 * (which is based upon g_capacity) is very limited within the driver
4530 	 */
4531 	lgeom_p->g_capacity = capacity;
4532 
4533 	/*
4534 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
4535 	 * hba may return zero values if the device has been removed.
4536 	 */
4537 	if (spc == 0) {
4538 		lgeom_p->g_ncyl = 0;
4539 	} else {
4540 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
4541 	}
4542 	lgeom_p->g_acyl = 0;
4543 
4544 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
4545 	return (0);
4546 
4547 }
4548 /*
4549  *    Function: sd_update_block_info
4550  *
4551  * Description: Calculate a byte count to sector count bitshift value
4552  *		from sector size.
4553  *
4554  *   Arguments: un: unit struct.
4555  *		lbasize: new target sector size
4556  *		capacity: new target capacity, ie. block count
4557  *
4558  *     Context: Kernel thread context
4559  */
4560 
4561 static void
4562 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
4563 {
4564 	if (lbasize != 0) {
4565 		un->un_tgt_blocksize = lbasize;
4566 		un->un_f_tgt_blocksize_is_valid	= TRUE;
4567 	}
4568 
4569 	if (capacity != 0) {
4570 		un->un_blockcount		= capacity;
4571 		un->un_f_blockcount_is_valid	= TRUE;
4572 	}
4573 }
4574 
4575 
4576 /*
4577  *    Function: sd_register_devid
4578  *
4579  * Description: This routine will obtain the device id information from the
4580  *		target, obtain the serial number, and register the device
4581  *		id with the ddi framework.
4582  *
4583  *   Arguments: devi - the system's dev_info_t for the device.
4584  *		un - driver soft state (unit) structure
4585  *		reservation_flag - indicates if a reservation conflict
4586  *		occurred during attach
4587  *
4588  *     Context: Kernel Thread
4589  */
4590 static void
4591 sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag)
4592 {
4593 	int		rval		= 0;
4594 	uchar_t		*inq80		= NULL;
4595 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
4596 	size_t		inq80_resid	= 0;
4597 	uchar_t		*inq83		= NULL;
4598 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
4599 	size_t		inq83_resid	= 0;
4600 
4601 	ASSERT(un != NULL);
4602 	ASSERT(mutex_owned(SD_MUTEX(un)));
4603 	ASSERT((SD_DEVINFO(un)) == devi);
4604 
4605 	/*
4606 	 * This is the case of antiquated Sun disk drives that have the
4607 	 * FAB_DEVID property set in the disk_table.  These drives
4608 	 * manage the devid's by storing them in last 2 available sectors
4609 	 * on the drive and have them fabricated by the ddi layer by calling
4610 	 * ddi_devid_init and passing the DEVID_FAB flag.
4611 	 */
4612 	if (un->un_f_opt_fab_devid == TRUE) {
4613 		/*
4614 		 * Depending on EINVAL isn't reliable, since a reserved disk
4615 		 * may result in invalid geometry, so check to make sure a
4616 		 * reservation conflict did not occur during attach.
4617 		 */
4618 		if ((sd_get_devid(un) == EINVAL) &&
4619 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
4620 			/*
4621 			 * The devid is invalid AND there is no reservation
4622 			 * conflict.  Fabricate a new devid.
4623 			 */
4624 			(void) sd_create_devid(un);
4625 		}
4626 
4627 		/* Register the devid if it exists */
4628 		if (un->un_devid != NULL) {
4629 			(void) ddi_devid_register(SD_DEVINFO(un),
4630 			    un->un_devid);
4631 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4632 			    "sd_register_devid: Devid Fabricated\n");
4633 		}
4634 		return;
4635 	}
4636 
4637 	/*
4638 	 * We check the availibility of the World Wide Name (0x83) and Unit
4639 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
4640 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
4641 	 * 0x83 is availible, that is the best choice.  Our next choice is
4642 	 * 0x80.  If neither are availible, we munge the devid from the device
4643 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
4644 	 * to fabricate a devid for non-Sun qualified disks.
4645 	 */
4646 	if (sd_check_vpd_page_support(un) == 0) {
4647 		/* collect page 80 data if available */
4648 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
4649 
4650 			mutex_exit(SD_MUTEX(un));
4651 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
4652 			rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len,
4653 			    0x01, 0x80, &inq80_resid);
4654 
4655 			if (rval != 0) {
4656 				kmem_free(inq80, inq80_len);
4657 				inq80 = NULL;
4658 				inq80_len = 0;
4659 			}
4660 			mutex_enter(SD_MUTEX(un));
4661 		}
4662 
4663 		/* collect page 83 data if available */
4664 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
4665 			mutex_exit(SD_MUTEX(un));
4666 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
4667 			rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len,
4668 			    0x01, 0x83, &inq83_resid);
4669 
4670 			if (rval != 0) {
4671 				kmem_free(inq83, inq83_len);
4672 				inq83 = NULL;
4673 				inq83_len = 0;
4674 			}
4675 			mutex_enter(SD_MUTEX(un));
4676 		}
4677 	}
4678 
4679 	/* encode best devid possible based on data available */
4680 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
4681 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
4682 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
4683 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
4684 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
4685 
4686 		/* devid successfully encoded, register devid */
4687 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
4688 
4689 	} else {
4690 		/*
4691 		 * Unable to encode a devid based on data available.
4692 		 * This is not a Sun qualified disk.  Older Sun disk
4693 		 * drives that have the SD_FAB_DEVID property
4694 		 * set in the disk_table and non Sun qualified
4695 		 * disks are treated in the same manner.  These
4696 		 * drives manage the devid's by storing them in
4697 		 * last 2 available sectors on the drive and
4698 		 * have them fabricated by the ddi layer by
4699 		 * calling ddi_devid_init and passing the
4700 		 * DEVID_FAB flag.
4701 		 * Create a fabricate devid only if there's no
4702 		 * fabricate devid existed.
4703 		 */
4704 		if (sd_get_devid(un) == EINVAL) {
4705 			(void) sd_create_devid(un);
4706 		}
4707 		un->un_f_opt_fab_devid = TRUE;
4708 
4709 		/* Register the devid if it exists */
4710 		if (un->un_devid != NULL) {
4711 			(void) ddi_devid_register(SD_DEVINFO(un),
4712 			    un->un_devid);
4713 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4714 			    "sd_register_devid: devid fabricated using "
4715 			    "ddi framework\n");
4716 		}
4717 	}
4718 
4719 	/* clean up resources */
4720 	if (inq80 != NULL) {
4721 		kmem_free(inq80, inq80_len);
4722 	}
4723 	if (inq83 != NULL) {
4724 		kmem_free(inq83, inq83_len);
4725 	}
4726 }
4727 
4728 
4729 
4730 /*
4731  *    Function: sd_get_devid
4732  *
4733  * Description: This routine will return 0 if a valid device id has been
4734  *		obtained from the target and stored in the soft state. If a
4735  *		valid device id has not been previously read and stored, a
4736  *		read attempt will be made.
4737  *
4738  *   Arguments: un - driver soft state (unit) structure
4739  *
4740  * Return Code: 0 if we successfully get the device id
4741  *
4742  *     Context: Kernel Thread
4743  */
4744 
4745 static int
4746 sd_get_devid(struct sd_lun *un)
4747 {
4748 	struct dk_devid		*dkdevid;
4749 	ddi_devid_t		tmpid;
4750 	uint_t			*ip;
4751 	size_t			sz;
4752 	diskaddr_t		blk;
4753 	int			status;
4754 	int			chksum;
4755 	int			i;
4756 	size_t			buffer_size;
4757 
4758 	ASSERT(un != NULL);
4759 	ASSERT(mutex_owned(SD_MUTEX(un)));
4760 
4761 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
4762 	    un);
4763 
4764 	if (un->un_devid != NULL) {
4765 		return (0);
4766 	}
4767 
4768 	mutex_exit(SD_MUTEX(un));
4769 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
4770 	    (void *)SD_PATH_DIRECT) != 0) {
4771 		mutex_enter(SD_MUTEX(un));
4772 		return (EINVAL);
4773 	}
4774 
4775 	/*
4776 	 * Read and verify device id, stored in the reserved cylinders at the
4777 	 * end of the disk. Backup label is on the odd sectors of the last
4778 	 * track of the last cylinder. Device id will be on track of the next
4779 	 * to last cylinder.
4780 	 */
4781 	mutex_enter(SD_MUTEX(un));
4782 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
4783 	mutex_exit(SD_MUTEX(un));
4784 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
4785 	status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk,
4786 	    SD_PATH_DIRECT);
4787 	if (status != 0) {
4788 		goto error;
4789 	}
4790 
4791 	/* Validate the revision */
4792 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
4793 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
4794 		status = EINVAL;
4795 		goto error;
4796 	}
4797 
4798 	/* Calculate the checksum */
4799 	chksum = 0;
4800 	ip = (uint_t *)dkdevid;
4801 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
4802 	    i++) {
4803 		chksum ^= ip[i];
4804 	}
4805 
4806 	/* Compare the checksums */
4807 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
4808 		status = EINVAL;
4809 		goto error;
4810 	}
4811 
4812 	/* Validate the device id */
4813 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
4814 		status = EINVAL;
4815 		goto error;
4816 	}
4817 
4818 	/*
4819 	 * Store the device id in the driver soft state
4820 	 */
4821 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
4822 	tmpid = kmem_alloc(sz, KM_SLEEP);
4823 
4824 	mutex_enter(SD_MUTEX(un));
4825 
4826 	un->un_devid = tmpid;
4827 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
4828 
4829 	kmem_free(dkdevid, buffer_size);
4830 
4831 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
4832 
4833 	return (status);
4834 error:
4835 	mutex_enter(SD_MUTEX(un));
4836 	kmem_free(dkdevid, buffer_size);
4837 	return (status);
4838 }
4839 
4840 
4841 /*
4842  *    Function: sd_create_devid
4843  *
4844  * Description: This routine will fabricate the device id and write it
4845  *		to the disk.
4846  *
4847  *   Arguments: un - driver soft state (unit) structure
4848  *
4849  * Return Code: value of the fabricated device id
4850  *
4851  *     Context: Kernel Thread
4852  */
4853 
4854 static ddi_devid_t
4855 sd_create_devid(struct sd_lun *un)
4856 {
4857 	ASSERT(un != NULL);
4858 
4859 	/* Fabricate the devid */
4860 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
4861 	    == DDI_FAILURE) {
4862 		return (NULL);
4863 	}
4864 
4865 	/* Write the devid to disk */
4866 	if (sd_write_deviceid(un) != 0) {
4867 		ddi_devid_free(un->un_devid);
4868 		un->un_devid = NULL;
4869 	}
4870 
4871 	return (un->un_devid);
4872 }
4873 
4874 
4875 /*
4876  *    Function: sd_write_deviceid
4877  *
4878  * Description: This routine will write the device id to the disk
4879  *		reserved sector.
4880  *
4881  *   Arguments: un - driver soft state (unit) structure
4882  *
4883  * Return Code: EINVAL
4884  *		value returned by sd_send_scsi_cmd
4885  *
4886  *     Context: Kernel Thread
4887  */
4888 
4889 static int
4890 sd_write_deviceid(struct sd_lun *un)
4891 {
4892 	struct dk_devid		*dkdevid;
4893 	diskaddr_t		blk;
4894 	uint_t			*ip, chksum;
4895 	int			status;
4896 	int			i;
4897 
4898 	ASSERT(mutex_owned(SD_MUTEX(un)));
4899 
4900 	mutex_exit(SD_MUTEX(un));
4901 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
4902 	    (void *)SD_PATH_DIRECT) != 0) {
4903 		mutex_enter(SD_MUTEX(un));
4904 		return (-1);
4905 	}
4906 
4907 
4908 	/* Allocate the buffer */
4909 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
4910 
4911 	/* Fill in the revision */
4912 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
4913 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
4914 
4915 	/* Copy in the device id */
4916 	mutex_enter(SD_MUTEX(un));
4917 	bcopy(un->un_devid, &dkdevid->dkd_devid,
4918 	    ddi_devid_sizeof(un->un_devid));
4919 	mutex_exit(SD_MUTEX(un));
4920 
4921 	/* Calculate the checksum */
4922 	chksum = 0;
4923 	ip = (uint_t *)dkdevid;
4924 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
4925 	    i++) {
4926 		chksum ^= ip[i];
4927 	}
4928 
4929 	/* Fill-in checksum */
4930 	DKD_FORMCHKSUM(chksum, dkdevid);
4931 
4932 	/* Write the reserved sector */
4933 	status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk,
4934 	    SD_PATH_DIRECT);
4935 
4936 	kmem_free(dkdevid, un->un_sys_blocksize);
4937 
4938 	mutex_enter(SD_MUTEX(un));
4939 	return (status);
4940 }
4941 
4942 
4943 /*
4944  *    Function: sd_check_vpd_page_support
4945  *
4946  * Description: This routine sends an inquiry command with the EVPD bit set and
4947  *		a page code of 0x00 to the device. It is used to determine which
4948  *		vital product pages are availible to find the devid. We are
4949  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
4950  *		device does not support that command.
4951  *
4952  *   Arguments: un  - driver soft state (unit) structure
4953  *
4954  * Return Code: 0 - success
4955  *		1 - check condition
4956  *
4957  *     Context: This routine can sleep.
4958  */
4959 
4960 static int
4961 sd_check_vpd_page_support(struct sd_lun *un)
4962 {
4963 	uchar_t	*page_list	= NULL;
4964 	uchar_t	page_length	= 0xff;	/* Use max possible length */
4965 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
4966 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
4967 	int    	rval		= 0;
4968 	int	counter;
4969 
4970 	ASSERT(un != NULL);
4971 	ASSERT(mutex_owned(SD_MUTEX(un)));
4972 
4973 	mutex_exit(SD_MUTEX(un));
4974 
4975 	/*
4976 	 * We'll set the page length to the maximum to save figuring it out
4977 	 * with an additional call.
4978 	 */
4979 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
4980 
4981 	rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd,
4982 	    page_code, NULL);
4983 
4984 	mutex_enter(SD_MUTEX(un));
4985 
4986 	/*
4987 	 * Now we must validate that the device accepted the command, as some
4988 	 * drives do not support it.  If the drive does support it, we will
4989 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
4990 	 * not, we return -1.
4991 	 */
4992 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
4993 		/* Loop to find one of the 2 pages we need */
4994 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
4995 
4996 		/*
4997 		 * Pages are returned in ascending order, and 0x83 is what we
4998 		 * are hoping for.
4999 		 */
5000 		while ((page_list[counter] <= 0x83) &&
5001 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
5002 		    VPD_HEAD_OFFSET))) {
5003 			/*
5004 			 * Add 3 because page_list[3] is the number of
5005 			 * pages minus 3
5006 			 */
5007 
5008 			switch (page_list[counter]) {
5009 			case 0x00:
5010 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
5011 				break;
5012 			case 0x80:
5013 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
5014 				break;
5015 			case 0x81:
5016 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
5017 				break;
5018 			case 0x82:
5019 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
5020 				break;
5021 			case 0x83:
5022 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
5023 				break;
5024 			}
5025 			counter++;
5026 		}
5027 
5028 	} else {
5029 		rval = -1;
5030 
5031 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
5032 		    "sd_check_vpd_page_support: This drive does not implement "
5033 		    "VPD pages.\n");
5034 	}
5035 
5036 	kmem_free(page_list, page_length);
5037 
5038 	return (rval);
5039 }
5040 
5041 
5042 /*
5043  *    Function: sd_setup_pm
5044  *
5045  * Description: Initialize Power Management on the device
5046  *
5047  *     Context: Kernel Thread
5048  */
5049 
5050 static void
5051 sd_setup_pm(struct sd_lun *un, dev_info_t *devi)
5052 {
5053 	uint_t	log_page_size;
5054 	uchar_t	*log_page_data;
5055 	int	rval;
5056 
5057 	/*
5058 	 * Since we are called from attach, holding a mutex for
5059 	 * un is unnecessary. Because some of the routines called
5060 	 * from here require SD_MUTEX to not be held, assert this
5061 	 * right up front.
5062 	 */
5063 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5064 	/*
5065 	 * Since the sd device does not have the 'reg' property,
5066 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
5067 	 * The following code is to tell cpr that this device
5068 	 * DOES need to be suspended and resumed.
5069 	 */
5070 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
5071 	    "pm-hardware-state", "needs-suspend-resume");
5072 
5073 	/*
5074 	 * This complies with the new power management framework
5075 	 * for certain desktop machines. Create the pm_components
5076 	 * property as a string array property.
5077 	 */
5078 	if (un->un_f_pm_supported) {
5079 		/*
5080 		 * not all devices have a motor, try it first.
5081 		 * some devices may return ILLEGAL REQUEST, some
5082 		 * will hang
5083 		 * The following START_STOP_UNIT is used to check if target
5084 		 * device has a motor.
5085 		 */
5086 		un->un_f_start_stop_supported = TRUE;
5087 		if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
5088 		    SD_PATH_DIRECT) != 0) {
5089 			un->un_f_start_stop_supported = FALSE;
5090 		}
5091 
5092 		/*
5093 		 * create pm properties anyways otherwise the parent can't
5094 		 * go to sleep
5095 		 */
5096 		(void) sd_create_pm_components(devi, un);
5097 		un->un_f_pm_is_enabled = TRUE;
5098 		return;
5099 	}
5100 
5101 	if (!un->un_f_log_sense_supported) {
5102 		un->un_power_level = SD_SPINDLE_ON;
5103 		un->un_f_pm_is_enabled = FALSE;
5104 		return;
5105 	}
5106 
5107 	rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE);
5108 
5109 #ifdef	SDDEBUG
5110 	if (sd_force_pm_supported) {
5111 		/* Force a successful result */
5112 		rval = 1;
5113 	}
5114 #endif
5115 
5116 	/*
5117 	 * If the start-stop cycle counter log page is not supported
5118 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
5119 	 * then we should not create the pm_components property.
5120 	 */
5121 	if (rval == -1) {
5122 		/*
5123 		 * Error.
5124 		 * Reading log sense failed, most likely this is
5125 		 * an older drive that does not support log sense.
5126 		 * If this fails auto-pm is not supported.
5127 		 */
5128 		un->un_power_level = SD_SPINDLE_ON;
5129 		un->un_f_pm_is_enabled = FALSE;
5130 
5131 	} else if (rval == 0) {
5132 		/*
5133 		 * Page not found.
5134 		 * The start stop cycle counter is implemented as page
5135 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
5136 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
5137 		 */
5138 		if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) {
5139 			/*
5140 			 * Page found, use this one.
5141 			 */
5142 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
5143 			un->un_f_pm_is_enabled = TRUE;
5144 		} else {
5145 			/*
5146 			 * Error or page not found.
5147 			 * auto-pm is not supported for this device.
5148 			 */
5149 			un->un_power_level = SD_SPINDLE_ON;
5150 			un->un_f_pm_is_enabled = FALSE;
5151 		}
5152 	} else {
5153 		/*
5154 		 * Page found, use it.
5155 		 */
5156 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
5157 		un->un_f_pm_is_enabled = TRUE;
5158 	}
5159 
5160 
5161 	if (un->un_f_pm_is_enabled == TRUE) {
5162 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5163 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5164 
5165 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
5166 		    log_page_size, un->un_start_stop_cycle_page,
5167 		    0x01, 0, SD_PATH_DIRECT);
5168 #ifdef	SDDEBUG
5169 		if (sd_force_pm_supported) {
5170 			/* Force a successful result */
5171 			rval = 0;
5172 		}
5173 #endif
5174 
5175 		/*
5176 		 * If the Log sense for Page( Start/stop cycle counter page)
5177 		 * succeeds, then power managment is supported and we can
5178 		 * enable auto-pm.
5179 		 */
5180 		if (rval == 0)  {
5181 			(void) sd_create_pm_components(devi, un);
5182 		} else {
5183 			un->un_power_level = SD_SPINDLE_ON;
5184 			un->un_f_pm_is_enabled = FALSE;
5185 		}
5186 
5187 		kmem_free(log_page_data, log_page_size);
5188 	}
5189 }
5190 
5191 
5192 /*
5193  *    Function: sd_create_pm_components
5194  *
5195  * Description: Initialize PM property.
5196  *
5197  *     Context: Kernel thread context
5198  */
5199 
5200 static void
5201 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
5202 {
5203 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
5204 
5205 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5206 
5207 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
5208 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
5209 		/*
5210 		 * When components are initially created they are idle,
5211 		 * power up any non-removables.
5212 		 * Note: the return value of pm_raise_power can't be used
5213 		 * for determining if PM should be enabled for this device.
5214 		 * Even if you check the return values and remove this
5215 		 * property created above, the PM framework will not honor the
5216 		 * change after the first call to pm_raise_power. Hence,
5217 		 * removal of that property does not help if pm_raise_power
5218 		 * fails. In the case of removable media, the start/stop
5219 		 * will fail if the media is not present.
5220 		 */
5221 		if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
5222 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
5223 			mutex_enter(SD_MUTEX(un));
5224 			un->un_power_level = SD_SPINDLE_ON;
5225 			mutex_enter(&un->un_pm_mutex);
5226 			/* Set to on and not busy. */
5227 			un->un_pm_count = 0;
5228 		} else {
5229 			mutex_enter(SD_MUTEX(un));
5230 			un->un_power_level = SD_SPINDLE_OFF;
5231 			mutex_enter(&un->un_pm_mutex);
5232 			/* Set to off. */
5233 			un->un_pm_count = -1;
5234 		}
5235 		mutex_exit(&un->un_pm_mutex);
5236 		mutex_exit(SD_MUTEX(un));
5237 	} else {
5238 		un->un_power_level = SD_SPINDLE_ON;
5239 		un->un_f_pm_is_enabled = FALSE;
5240 	}
5241 }
5242 
5243 
5244 /*
5245  *    Function: sd_ddi_suspend
5246  *
5247  * Description: Performs system power-down operations. This includes
5248  *		setting the drive state to indicate its suspended so
5249  *		that no new commands will be accepted. Also, wait for
5250  *		all commands that are in transport or queued to a timer
5251  *		for retry to complete. All timeout threads are cancelled.
5252  *
5253  * Return Code: DDI_FAILURE or DDI_SUCCESS
5254  *
5255  *     Context: Kernel thread context
5256  */
5257 
5258 static int
5259 sd_ddi_suspend(dev_info_t *devi)
5260 {
5261 	struct	sd_lun	*un;
5262 	clock_t		wait_cmds_complete;
5263 
5264 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5265 	if (un == NULL) {
5266 		return (DDI_FAILURE);
5267 	}
5268 
5269 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
5270 
5271 	mutex_enter(SD_MUTEX(un));
5272 
5273 	/* Return success if the device is already suspended. */
5274 	if (un->un_state == SD_STATE_SUSPENDED) {
5275 		mutex_exit(SD_MUTEX(un));
5276 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5277 		    "device already suspended, exiting\n");
5278 		return (DDI_SUCCESS);
5279 	}
5280 
5281 	/* Return failure if the device is being used by HA */
5282 	if (un->un_resvd_status &
5283 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
5284 		mutex_exit(SD_MUTEX(un));
5285 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5286 		    "device in use by HA, exiting\n");
5287 		return (DDI_FAILURE);
5288 	}
5289 
5290 	/*
5291 	 * Return failure if the device is in a resource wait
5292 	 * or power changing state.
5293 	 */
5294 	if ((un->un_state == SD_STATE_RWAIT) ||
5295 	    (un->un_state == SD_STATE_PM_CHANGING)) {
5296 		mutex_exit(SD_MUTEX(un));
5297 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5298 		    "device in resource wait state, exiting\n");
5299 		return (DDI_FAILURE);
5300 	}
5301 
5302 
5303 	un->un_save_state = un->un_last_state;
5304 	New_state(un, SD_STATE_SUSPENDED);
5305 
5306 	/*
5307 	 * Wait for all commands that are in transport or queued to a timer
5308 	 * for retry to complete.
5309 	 *
5310 	 * While waiting, no new commands will be accepted or sent because of
5311 	 * the new state we set above.
5312 	 *
5313 	 * Wait till current operation has completed. If we are in the resource
5314 	 * wait state (with an intr outstanding) then we need to wait till the
5315 	 * intr completes and starts the next cmd. We want to wait for
5316 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
5317 	 */
5318 	wait_cmds_complete = ddi_get_lbolt() +
5319 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
5320 
5321 	while (un->un_ncmds_in_transport != 0) {
5322 		/*
5323 		 * Fail if commands do not finish in the specified time.
5324 		 */
5325 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
5326 		    wait_cmds_complete) == -1) {
5327 			/*
5328 			 * Undo the state changes made above. Everything
5329 			 * must go back to it's original value.
5330 			 */
5331 			Restore_state(un);
5332 			un->un_last_state = un->un_save_state;
5333 			/* Wake up any threads that might be waiting. */
5334 			cv_broadcast(&un->un_suspend_cv);
5335 			mutex_exit(SD_MUTEX(un));
5336 			SD_ERROR(SD_LOG_IO_PM, un,
5337 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
5338 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
5339 			return (DDI_FAILURE);
5340 		}
5341 	}
5342 
5343 	/*
5344 	 * Cancel SCSI watch thread and timeouts, if any are active
5345 	 */
5346 
5347 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
5348 		opaque_t temp_token = un->un_swr_token;
5349 		mutex_exit(SD_MUTEX(un));
5350 		scsi_watch_suspend(temp_token);
5351 		mutex_enter(SD_MUTEX(un));
5352 	}
5353 
5354 	if (un->un_reset_throttle_timeid != NULL) {
5355 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
5356 		un->un_reset_throttle_timeid = NULL;
5357 		mutex_exit(SD_MUTEX(un));
5358 		(void) untimeout(temp_id);
5359 		mutex_enter(SD_MUTEX(un));
5360 	}
5361 
5362 	if (un->un_dcvb_timeid != NULL) {
5363 		timeout_id_t temp_id = un->un_dcvb_timeid;
5364 		un->un_dcvb_timeid = NULL;
5365 		mutex_exit(SD_MUTEX(un));
5366 		(void) untimeout(temp_id);
5367 		mutex_enter(SD_MUTEX(un));
5368 	}
5369 
5370 	mutex_enter(&un->un_pm_mutex);
5371 	if (un->un_pm_timeid != NULL) {
5372 		timeout_id_t temp_id = un->un_pm_timeid;
5373 		un->un_pm_timeid = NULL;
5374 		mutex_exit(&un->un_pm_mutex);
5375 		mutex_exit(SD_MUTEX(un));
5376 		(void) untimeout(temp_id);
5377 		mutex_enter(SD_MUTEX(un));
5378 	} else {
5379 		mutex_exit(&un->un_pm_mutex);
5380 	}
5381 
5382 	if (un->un_retry_timeid != NULL) {
5383 		timeout_id_t temp_id = un->un_retry_timeid;
5384 		un->un_retry_timeid = NULL;
5385 		mutex_exit(SD_MUTEX(un));
5386 		(void) untimeout(temp_id);
5387 		mutex_enter(SD_MUTEX(un));
5388 	}
5389 
5390 	if (un->un_direct_priority_timeid != NULL) {
5391 		timeout_id_t temp_id = un->un_direct_priority_timeid;
5392 		un->un_direct_priority_timeid = NULL;
5393 		mutex_exit(SD_MUTEX(un));
5394 		(void) untimeout(temp_id);
5395 		mutex_enter(SD_MUTEX(un));
5396 	}
5397 
5398 	if (un->un_f_is_fibre == TRUE) {
5399 		/*
5400 		 * Remove callbacks for insert and remove events
5401 		 */
5402 		if (un->un_insert_event != NULL) {
5403 			mutex_exit(SD_MUTEX(un));
5404 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
5405 			mutex_enter(SD_MUTEX(un));
5406 			un->un_insert_event = NULL;
5407 		}
5408 
5409 		if (un->un_remove_event != NULL) {
5410 			mutex_exit(SD_MUTEX(un));
5411 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
5412 			mutex_enter(SD_MUTEX(un));
5413 			un->un_remove_event = NULL;
5414 		}
5415 	}
5416 
5417 	mutex_exit(SD_MUTEX(un));
5418 
5419 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
5420 
5421 	return (DDI_SUCCESS);
5422 }
5423 
5424 
5425 /*
5426  *    Function: sd_ddi_pm_suspend
5427  *
5428  * Description: Set the drive state to low power.
5429  *		Someone else is required to actually change the drive
5430  *		power level.
5431  *
5432  *   Arguments: un - driver soft state (unit) structure
5433  *
5434  * Return Code: DDI_FAILURE or DDI_SUCCESS
5435  *
5436  *     Context: Kernel thread context
5437  */
5438 
5439 static int
5440 sd_ddi_pm_suspend(struct sd_lun *un)
5441 {
5442 	ASSERT(un != NULL);
5443 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
5444 
5445 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5446 	mutex_enter(SD_MUTEX(un));
5447 
5448 	/*
5449 	 * Exit if power management is not enabled for this device, or if
5450 	 * the device is being used by HA.
5451 	 */
5452 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
5453 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
5454 		mutex_exit(SD_MUTEX(un));
5455 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
5456 		return (DDI_SUCCESS);
5457 	}
5458 
5459 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
5460 	    un->un_ncmds_in_driver);
5461 
5462 	/*
5463 	 * See if the device is not busy, ie.:
5464 	 *    - we have no commands in the driver for this device
5465 	 *    - not waiting for resources
5466 	 */
5467 	if ((un->un_ncmds_in_driver == 0) &&
5468 	    (un->un_state != SD_STATE_RWAIT)) {
5469 		/*
5470 		 * The device is not busy, so it is OK to go to low power state.
5471 		 * Indicate low power, but rely on someone else to actually
5472 		 * change it.
5473 		 */
5474 		mutex_enter(&un->un_pm_mutex);
5475 		un->un_pm_count = -1;
5476 		mutex_exit(&un->un_pm_mutex);
5477 		un->un_power_level = SD_SPINDLE_OFF;
5478 	}
5479 
5480 	mutex_exit(SD_MUTEX(un));
5481 
5482 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
5483 
5484 	return (DDI_SUCCESS);
5485 }
5486 
5487 
5488 /*
5489  *    Function: sd_ddi_resume
5490  *
5491  * Description: Performs system power-up operations..
5492  *
5493  * Return Code: DDI_SUCCESS
5494  *		DDI_FAILURE
5495  *
5496  *     Context: Kernel thread context
5497  */
5498 
5499 static int
5500 sd_ddi_resume(dev_info_t *devi)
5501 {
5502 	struct	sd_lun	*un;
5503 
5504 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5505 	if (un == NULL) {
5506 		return (DDI_FAILURE);
5507 	}
5508 
5509 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
5510 
5511 	mutex_enter(SD_MUTEX(un));
5512 	Restore_state(un);
5513 
5514 	/*
5515 	 * Restore the state which was saved to give the
5516 	 * the right state in un_last_state
5517 	 */
5518 	un->un_last_state = un->un_save_state;
5519 	/*
5520 	 * Note: throttle comes back at full.
5521 	 * Also note: this MUST be done before calling pm_raise_power
5522 	 * otherwise the system can get hung in biowait. The scenario where
5523 	 * this'll happen is under cpr suspend. Writing of the system
5524 	 * state goes through sddump, which writes 0 to un_throttle. If
5525 	 * writing the system state then fails, example if the partition is
5526 	 * too small, then cpr attempts a resume. If throttle isn't restored
5527 	 * from the saved value until after calling pm_raise_power then
5528 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
5529 	 * in biowait.
5530 	 */
5531 	un->un_throttle = un->un_saved_throttle;
5532 
5533 	/*
5534 	 * The chance of failure is very rare as the only command done in power
5535 	 * entry point is START command when you transition from 0->1 or
5536 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
5537 	 * which suspend was done. Ignore the return value as the resume should
5538 	 * not be failed. In the case of removable media the media need not be
5539 	 * inserted and hence there is a chance that raise power will fail with
5540 	 * media not present.
5541 	 */
5542 	if (un->un_f_attach_spinup) {
5543 		mutex_exit(SD_MUTEX(un));
5544 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
5545 		mutex_enter(SD_MUTEX(un));
5546 	}
5547 
5548 	/*
5549 	 * Don't broadcast to the suspend cv and therefore possibly
5550 	 * start I/O until after power has been restored.
5551 	 */
5552 	cv_broadcast(&un->un_suspend_cv);
5553 	cv_broadcast(&un->un_state_cv);
5554 
5555 	/* restart thread */
5556 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
5557 		scsi_watch_resume(un->un_swr_token);
5558 	}
5559 
5560 #if (defined(__fibre))
5561 	if (un->un_f_is_fibre == TRUE) {
5562 		/*
5563 		 * Add callbacks for insert and remove events
5564 		 */
5565 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
5566 			sd_init_event_callbacks(un);
5567 		}
5568 	}
5569 #endif
5570 
5571 	/*
5572 	 * Transport any pending commands to the target.
5573 	 *
5574 	 * If this is a low-activity device commands in queue will have to wait
5575 	 * until new commands come in, which may take awhile. Also, we
5576 	 * specifically don't check un_ncmds_in_transport because we know that
5577 	 * there really are no commands in progress after the unit was
5578 	 * suspended and we could have reached the throttle level, been
5579 	 * suspended, and have no new commands coming in for awhile. Highly
5580 	 * unlikely, but so is the low-activity disk scenario.
5581 	 */
5582 	ddi_xbuf_dispatch(un->un_xbuf_attr);
5583 
5584 	sd_start_cmds(un, NULL);
5585 	mutex_exit(SD_MUTEX(un));
5586 
5587 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
5588 
5589 	return (DDI_SUCCESS);
5590 }
5591 
5592 
5593 /*
5594  *    Function: sd_ddi_pm_resume
5595  *
5596  * Description: Set the drive state to powered on.
5597  *		Someone else is required to actually change the drive
5598  *		power level.
5599  *
5600  *   Arguments: un - driver soft state (unit) structure
5601  *
5602  * Return Code: DDI_SUCCESS
5603  *
5604  *     Context: Kernel thread context
5605  */
5606 
5607 static int
5608 sd_ddi_pm_resume(struct sd_lun *un)
5609 {
5610 	ASSERT(un != NULL);
5611 
5612 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5613 	mutex_enter(SD_MUTEX(un));
5614 	un->un_power_level = SD_SPINDLE_ON;
5615 
5616 	ASSERT(!mutex_owned(&un->un_pm_mutex));
5617 	mutex_enter(&un->un_pm_mutex);
5618 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
5619 		un->un_pm_count++;
5620 		ASSERT(un->un_pm_count == 0);
5621 		/*
5622 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
5623 		 * un_suspend_cv is for a system resume, not a power management
5624 		 * device resume. (4297749)
5625 		 *	 cv_broadcast(&un->un_suspend_cv);
5626 		 */
5627 	}
5628 	mutex_exit(&un->un_pm_mutex);
5629 	mutex_exit(SD_MUTEX(un));
5630 
5631 	return (DDI_SUCCESS);
5632 }
5633 
5634 
5635 /*
5636  *    Function: sd_pm_idletimeout_handler
5637  *
5638  * Description: A timer routine that's active only while a device is busy.
5639  *		The purpose is to extend slightly the pm framework's busy
5640  *		view of the device to prevent busy/idle thrashing for
5641  *		back-to-back commands. Do this by comparing the current time
5642  *		to the time at which the last command completed and when the
5643  *		difference is greater than sd_pm_idletime, call
5644  *		pm_idle_component. In addition to indicating idle to the pm
5645  *		framework, update the chain type to again use the internal pm
5646  *		layers of the driver.
5647  *
5648  *   Arguments: arg - driver soft state (unit) structure
5649  *
5650  *     Context: Executes in a timeout(9F) thread context
5651  */
5652 
5653 static void
5654 sd_pm_idletimeout_handler(void *arg)
5655 {
5656 	struct sd_lun *un = arg;
5657 
5658 	time_t	now;
5659 
5660 	mutex_enter(&sd_detach_mutex);
5661 	if (un->un_detach_count != 0) {
5662 		/* Abort if the instance is detaching */
5663 		mutex_exit(&sd_detach_mutex);
5664 		return;
5665 	}
5666 	mutex_exit(&sd_detach_mutex);
5667 
5668 	now = ddi_get_time();
5669 	/*
5670 	 * Grab both mutexes, in the proper order, since we're accessing
5671 	 * both PM and softstate variables.
5672 	 */
5673 	mutex_enter(SD_MUTEX(un));
5674 	mutex_enter(&un->un_pm_mutex);
5675 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
5676 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
5677 		/*
5678 		 * Update the chain types.
5679 		 * This takes affect on the next new command received.
5680 		 */
5681 		if (un->un_f_non_devbsize_supported) {
5682 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
5683 		} else {
5684 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
5685 		}
5686 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
5687 
5688 		SD_TRACE(SD_LOG_IO_PM, un,
5689 		    "sd_pm_idletimeout_handler: idling device\n");
5690 		(void) pm_idle_component(SD_DEVINFO(un), 0);
5691 		un->un_pm_idle_timeid = NULL;
5692 	} else {
5693 		un->un_pm_idle_timeid =
5694 		    timeout(sd_pm_idletimeout_handler, un,
5695 		    (drv_usectohz((clock_t)300000))); /* 300 ms. */
5696 	}
5697 	mutex_exit(&un->un_pm_mutex);
5698 	mutex_exit(SD_MUTEX(un));
5699 }
5700 
5701 
5702 /*
5703  *    Function: sd_pm_timeout_handler
5704  *
5705  * Description: Callback to tell framework we are idle.
5706  *
5707  *     Context: timeout(9f) thread context.
5708  */
5709 
5710 static void
5711 sd_pm_timeout_handler(void *arg)
5712 {
5713 	struct sd_lun *un = arg;
5714 
5715 	(void) pm_idle_component(SD_DEVINFO(un), 0);
5716 	mutex_enter(&un->un_pm_mutex);
5717 	un->un_pm_timeid = NULL;
5718 	mutex_exit(&un->un_pm_mutex);
5719 }
5720 
5721 
5722 /*
5723  *    Function: sdpower
5724  *
5725  * Description: PM entry point.
5726  *
5727  * Return Code: DDI_SUCCESS
5728  *		DDI_FAILURE
5729  *
5730  *     Context: Kernel thread context
5731  */
5732 
5733 static int
5734 sdpower(dev_info_t *devi, int component, int level)
5735 {
5736 	struct sd_lun	*un;
5737 	int		instance;
5738 	int		rval = DDI_SUCCESS;
5739 	uint_t		i, log_page_size, maxcycles, ncycles;
5740 	uchar_t		*log_page_data;
5741 	int		log_sense_page;
5742 	int		medium_present;
5743 	time_t		intvlp;
5744 	dev_t		dev;
5745 	struct pm_trans_data	sd_pm_tran_data;
5746 	uchar_t		save_state;
5747 	int		sval;
5748 	uchar_t		state_before_pm;
5749 	int		got_semaphore_here;
5750 
5751 	instance = ddi_get_instance(devi);
5752 
5753 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
5754 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
5755 	    component != 0) {
5756 		return (DDI_FAILURE);
5757 	}
5758 
5759 	dev = sd_make_device(SD_DEVINFO(un));
5760 
5761 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
5762 
5763 	/*
5764 	 * Must synchronize power down with close.
5765 	 * Attempt to decrement/acquire the open/close semaphore,
5766 	 * but do NOT wait on it. If it's not greater than zero,
5767 	 * ie. it can't be decremented without waiting, then
5768 	 * someone else, either open or close, already has it
5769 	 * and the try returns 0. Use that knowledge here to determine
5770 	 * if it's OK to change the device power level.
5771 	 * Also, only increment it on exit if it was decremented, ie. gotten,
5772 	 * here.
5773 	 */
5774 	got_semaphore_here = sema_tryp(&un->un_semoclose);
5775 
5776 	mutex_enter(SD_MUTEX(un));
5777 
5778 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
5779 	    un->un_ncmds_in_driver);
5780 
5781 	/*
5782 	 * If un_ncmds_in_driver is non-zero it indicates commands are
5783 	 * already being processed in the driver, or if the semaphore was
5784 	 * not gotten here it indicates an open or close is being processed.
5785 	 * At the same time somebody is requesting to go low power which
5786 	 * can't happen, therefore we need to return failure.
5787 	 */
5788 	if ((level == SD_SPINDLE_OFF) &&
5789 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
5790 		mutex_exit(SD_MUTEX(un));
5791 
5792 		if (got_semaphore_here != 0) {
5793 			sema_v(&un->un_semoclose);
5794 		}
5795 		SD_TRACE(SD_LOG_IO_PM, un,
5796 		    "sdpower: exit, device has queued cmds.\n");
5797 		return (DDI_FAILURE);
5798 	}
5799 
5800 	/*
5801 	 * if it is OFFLINE that means the disk is completely dead
5802 	 * in our case we have to put the disk in on or off by sending commands
5803 	 * Of course that will fail anyway so return back here.
5804 	 *
5805 	 * Power changes to a device that's OFFLINE or SUSPENDED
5806 	 * are not allowed.
5807 	 */
5808 	if ((un->un_state == SD_STATE_OFFLINE) ||
5809 	    (un->un_state == SD_STATE_SUSPENDED)) {
5810 		mutex_exit(SD_MUTEX(un));
5811 
5812 		if (got_semaphore_here != 0) {
5813 			sema_v(&un->un_semoclose);
5814 		}
5815 		SD_TRACE(SD_LOG_IO_PM, un,
5816 		    "sdpower: exit, device is off-line.\n");
5817 		return (DDI_FAILURE);
5818 	}
5819 
5820 	/*
5821 	 * Change the device's state to indicate it's power level
5822 	 * is being changed. Do this to prevent a power off in the
5823 	 * middle of commands, which is especially bad on devices
5824 	 * that are really powered off instead of just spun down.
5825 	 */
5826 	state_before_pm = un->un_state;
5827 	un->un_state = SD_STATE_PM_CHANGING;
5828 
5829 	mutex_exit(SD_MUTEX(un));
5830 
5831 	/*
5832 	 * If "pm-capable" property is set to TRUE by HBA drivers,
5833 	 * bypass the following checking, otherwise, check the log
5834 	 * sense information for this device
5835 	 */
5836 	if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) {
5837 		/*
5838 		 * Get the log sense information to understand whether the
5839 		 * the powercycle counts have gone beyond the threshhold.
5840 		 */
5841 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5842 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5843 
5844 		mutex_enter(SD_MUTEX(un));
5845 		log_sense_page = un->un_start_stop_cycle_page;
5846 		mutex_exit(SD_MUTEX(un));
5847 
5848 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
5849 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
5850 #ifdef	SDDEBUG
5851 		if (sd_force_pm_supported) {
5852 			/* Force a successful result */
5853 			rval = 0;
5854 		}
5855 #endif
5856 		if (rval != 0) {
5857 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5858 			    "Log Sense Failed\n");
5859 			kmem_free(log_page_data, log_page_size);
5860 			/* Cannot support power management on those drives */
5861 
5862 			if (got_semaphore_here != 0) {
5863 				sema_v(&un->un_semoclose);
5864 			}
5865 			/*
5866 			 * On exit put the state back to it's original value
5867 			 * and broadcast to anyone waiting for the power
5868 			 * change completion.
5869 			 */
5870 			mutex_enter(SD_MUTEX(un));
5871 			un->un_state = state_before_pm;
5872 			cv_broadcast(&un->un_suspend_cv);
5873 			mutex_exit(SD_MUTEX(un));
5874 			SD_TRACE(SD_LOG_IO_PM, un,
5875 			    "sdpower: exit, Log Sense Failed.\n");
5876 			return (DDI_FAILURE);
5877 		}
5878 
5879 		/*
5880 		 * From the page data - Convert the essential information to
5881 		 * pm_trans_data
5882 		 */
5883 		maxcycles =
5884 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
5885 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
5886 
5887 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
5888 
5889 		ncycles =
5890 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
5891 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
5892 
5893 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
5894 
5895 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
5896 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
5897 			    log_page_data[8+i];
5898 		}
5899 
5900 		kmem_free(log_page_data, log_page_size);
5901 
5902 		/*
5903 		 * Call pm_trans_check routine to get the Ok from
5904 		 * the global policy
5905 		 */
5906 
5907 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
5908 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
5909 
5910 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
5911 #ifdef	SDDEBUG
5912 		if (sd_force_pm_supported) {
5913 			/* Force a successful result */
5914 			rval = 1;
5915 		}
5916 #endif
5917 		switch (rval) {
5918 		case 0:
5919 			/*
5920 			 * Not Ok to Power cycle or error in parameters passed
5921 			 * Would have given the advised time to consider power
5922 			 * cycle. Based on the new intvlp parameter we are
5923 			 * supposed to pretend we are busy so that pm framework
5924 			 * will never call our power entry point. Because of
5925 			 * that install a timeout handler and wait for the
5926 			 * recommended time to elapse so that power management
5927 			 * can be effective again.
5928 			 *
5929 			 * To effect this behavior, call pm_busy_component to
5930 			 * indicate to the framework this device is busy.
5931 			 * By not adjusting un_pm_count the rest of PM in
5932 			 * the driver will function normally, and independant
5933 			 * of this but because the framework is told the device
5934 			 * is busy it won't attempt powering down until it gets
5935 			 * a matching idle. The timeout handler sends this.
5936 			 * Note: sd_pm_entry can't be called here to do this
5937 			 * because sdpower may have been called as a result
5938 			 * of a call to pm_raise_power from within sd_pm_entry.
5939 			 *
5940 			 * If a timeout handler is already active then
5941 			 * don't install another.
5942 			 */
5943 			mutex_enter(&un->un_pm_mutex);
5944 			if (un->un_pm_timeid == NULL) {
5945 				un->un_pm_timeid =
5946 				    timeout(sd_pm_timeout_handler,
5947 				    un, intvlp * drv_usectohz(1000000));
5948 				mutex_exit(&un->un_pm_mutex);
5949 				(void) pm_busy_component(SD_DEVINFO(un), 0);
5950 			} else {
5951 				mutex_exit(&un->un_pm_mutex);
5952 			}
5953 			if (got_semaphore_here != 0) {
5954 				sema_v(&un->un_semoclose);
5955 			}
5956 			/*
5957 			 * On exit put the state back to it's original value
5958 			 * and broadcast to anyone waiting for the power
5959 			 * change completion.
5960 			 */
5961 			mutex_enter(SD_MUTEX(un));
5962 			un->un_state = state_before_pm;
5963 			cv_broadcast(&un->un_suspend_cv);
5964 			mutex_exit(SD_MUTEX(un));
5965 
5966 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
5967 			    "trans check Failed, not ok to power cycle.\n");
5968 			return (DDI_FAILURE);
5969 
5970 		case -1:
5971 			if (got_semaphore_here != 0) {
5972 				sema_v(&un->un_semoclose);
5973 			}
5974 			/*
5975 			 * On exit put the state back to it's original value
5976 			 * and broadcast to anyone waiting for the power
5977 			 * change completion.
5978 			 */
5979 			mutex_enter(SD_MUTEX(un));
5980 			un->un_state = state_before_pm;
5981 			cv_broadcast(&un->un_suspend_cv);
5982 			mutex_exit(SD_MUTEX(un));
5983 			SD_TRACE(SD_LOG_IO_PM, un,
5984 			    "sdpower: exit, trans check command Failed.\n");
5985 			return (DDI_FAILURE);
5986 		}
5987 	}
5988 
5989 	if (level == SD_SPINDLE_OFF) {
5990 		/*
5991 		 * Save the last state... if the STOP FAILS we need it
5992 		 * for restoring
5993 		 */
5994 		mutex_enter(SD_MUTEX(un));
5995 		save_state = un->un_last_state;
5996 		/*
5997 		 * There must not be any cmds. getting processed
5998 		 * in the driver when we get here. Power to the
5999 		 * device is potentially going off.
6000 		 */
6001 		ASSERT(un->un_ncmds_in_driver == 0);
6002 		mutex_exit(SD_MUTEX(un));
6003 
6004 		/*
6005 		 * For now suspend the device completely before spindle is
6006 		 * turned off
6007 		 */
6008 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
6009 			if (got_semaphore_here != 0) {
6010 				sema_v(&un->un_semoclose);
6011 			}
6012 			/*
6013 			 * On exit put the state back to it's original value
6014 			 * and broadcast to anyone waiting for the power
6015 			 * change completion.
6016 			 */
6017 			mutex_enter(SD_MUTEX(un));
6018 			un->un_state = state_before_pm;
6019 			cv_broadcast(&un->un_suspend_cv);
6020 			mutex_exit(SD_MUTEX(un));
6021 			SD_TRACE(SD_LOG_IO_PM, un,
6022 			    "sdpower: exit, PM suspend Failed.\n");
6023 			return (DDI_FAILURE);
6024 		}
6025 	}
6026 
6027 	/*
6028 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
6029 	 * close, or strategy. Dump no long uses this routine, it uses it's
6030 	 * own code so it can be done in polled mode.
6031 	 */
6032 
6033 	medium_present = TRUE;
6034 
6035 	/*
6036 	 * When powering up, issue a TUR in case the device is at unit
6037 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
6038 	 * a deadlock on un_pm_busy_cv will occur.
6039 	 */
6040 	if (level == SD_SPINDLE_ON) {
6041 		(void) sd_send_scsi_TEST_UNIT_READY(un,
6042 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
6043 	}
6044 
6045 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
6046 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
6047 
6048 	sval = sd_send_scsi_START_STOP_UNIT(un,
6049 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
6050 	    SD_PATH_DIRECT);
6051 	/* Command failed, check for media present. */
6052 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
6053 		medium_present = FALSE;
6054 	}
6055 
6056 	/*
6057 	 * The conditions of interest here are:
6058 	 *   if a spindle off with media present fails,
6059 	 *	then restore the state and return an error.
6060 	 *   else if a spindle on fails,
6061 	 *	then return an error (there's no state to restore).
6062 	 * In all other cases we setup for the new state
6063 	 * and return success.
6064 	 */
6065 	switch (level) {
6066 	case SD_SPINDLE_OFF:
6067 		if ((medium_present == TRUE) && (sval != 0)) {
6068 			/* The stop command from above failed */
6069 			rval = DDI_FAILURE;
6070 			/*
6071 			 * The stop command failed, and we have media
6072 			 * present. Put the level back by calling the
6073 			 * sd_pm_resume() and set the state back to
6074 			 * it's previous value.
6075 			 */
6076 			(void) sd_ddi_pm_resume(un);
6077 			mutex_enter(SD_MUTEX(un));
6078 			un->un_last_state = save_state;
6079 			mutex_exit(SD_MUTEX(un));
6080 			break;
6081 		}
6082 		/*
6083 		 * The stop command from above succeeded.
6084 		 */
6085 		if (un->un_f_monitor_media_state) {
6086 			/*
6087 			 * Terminate watch thread in case of removable media
6088 			 * devices going into low power state. This is as per
6089 			 * the requirements of pm framework, otherwise commands
6090 			 * will be generated for the device (through watch
6091 			 * thread), even when the device is in low power state.
6092 			 */
6093 			mutex_enter(SD_MUTEX(un));
6094 			un->un_f_watcht_stopped = FALSE;
6095 			if (un->un_swr_token != NULL) {
6096 				opaque_t temp_token = un->un_swr_token;
6097 				un->un_f_watcht_stopped = TRUE;
6098 				un->un_swr_token = NULL;
6099 				mutex_exit(SD_MUTEX(un));
6100 				(void) scsi_watch_request_terminate(temp_token,
6101 				    SCSI_WATCH_TERMINATE_WAIT);
6102 			} else {
6103 				mutex_exit(SD_MUTEX(un));
6104 			}
6105 		}
6106 		break;
6107 
6108 	default:	/* The level requested is spindle on... */
6109 		/*
6110 		 * Legacy behavior: return success on a failed spinup
6111 		 * if there is no media in the drive.
6112 		 * Do this by looking at medium_present here.
6113 		 */
6114 		if ((sval != 0) && medium_present) {
6115 			/* The start command from above failed */
6116 			rval = DDI_FAILURE;
6117 			break;
6118 		}
6119 		/*
6120 		 * The start command from above succeeded
6121 		 * Resume the devices now that we have
6122 		 * started the disks
6123 		 */
6124 		(void) sd_ddi_pm_resume(un);
6125 
6126 		/*
6127 		 * Resume the watch thread since it was suspended
6128 		 * when the device went into low power mode.
6129 		 */
6130 		if (un->un_f_monitor_media_state) {
6131 			mutex_enter(SD_MUTEX(un));
6132 			if (un->un_f_watcht_stopped == TRUE) {
6133 				opaque_t temp_token;
6134 
6135 				un->un_f_watcht_stopped = FALSE;
6136 				mutex_exit(SD_MUTEX(un));
6137 				temp_token = scsi_watch_request_submit(
6138 				    SD_SCSI_DEVP(un),
6139 				    sd_check_media_time,
6140 				    SENSE_LENGTH, sd_media_watch_cb,
6141 				    (caddr_t)dev);
6142 				mutex_enter(SD_MUTEX(un));
6143 				un->un_swr_token = temp_token;
6144 			}
6145 			mutex_exit(SD_MUTEX(un));
6146 		}
6147 	}
6148 	if (got_semaphore_here != 0) {
6149 		sema_v(&un->un_semoclose);
6150 	}
6151 	/*
6152 	 * On exit put the state back to it's original value
6153 	 * and broadcast to anyone waiting for the power
6154 	 * change completion.
6155 	 */
6156 	mutex_enter(SD_MUTEX(un));
6157 	un->un_state = state_before_pm;
6158 	cv_broadcast(&un->un_suspend_cv);
6159 	mutex_exit(SD_MUTEX(un));
6160 
6161 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
6162 
6163 	return (rval);
6164 }
6165 
6166 
6167 
6168 /*
6169  *    Function: sdattach
6170  *
6171  * Description: Driver's attach(9e) entry point function.
6172  *
6173  *   Arguments: devi - opaque device info handle
6174  *		cmd  - attach  type
6175  *
6176  * Return Code: DDI_SUCCESS
6177  *		DDI_FAILURE
6178  *
6179  *     Context: Kernel thread context
6180  */
6181 
6182 static int
6183 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
6184 {
6185 	switch (cmd) {
6186 	case DDI_ATTACH:
6187 		return (sd_unit_attach(devi));
6188 	case DDI_RESUME:
6189 		return (sd_ddi_resume(devi));
6190 	default:
6191 		break;
6192 	}
6193 	return (DDI_FAILURE);
6194 }
6195 
6196 
6197 /*
6198  *    Function: sddetach
6199  *
6200  * Description: Driver's detach(9E) entry point function.
6201  *
6202  *   Arguments: devi - opaque device info handle
6203  *		cmd  - detach  type
6204  *
6205  * Return Code: DDI_SUCCESS
6206  *		DDI_FAILURE
6207  *
6208  *     Context: Kernel thread context
6209  */
6210 
6211 static int
6212 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
6213 {
6214 	switch (cmd) {
6215 	case DDI_DETACH:
6216 		return (sd_unit_detach(devi));
6217 	case DDI_SUSPEND:
6218 		return (sd_ddi_suspend(devi));
6219 	default:
6220 		break;
6221 	}
6222 	return (DDI_FAILURE);
6223 }
6224 
6225 
6226 /*
6227  *     Function: sd_sync_with_callback
6228  *
6229  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
6230  *		 state while the callback routine is active.
6231  *
6232  *    Arguments: un: softstate structure for the instance
6233  *
6234  *	Context: Kernel thread context
6235  */
6236 
6237 static void
6238 sd_sync_with_callback(struct sd_lun *un)
6239 {
6240 	ASSERT(un != NULL);
6241 
6242 	mutex_enter(SD_MUTEX(un));
6243 
6244 	ASSERT(un->un_in_callback >= 0);
6245 
6246 	while (un->un_in_callback > 0) {
6247 		mutex_exit(SD_MUTEX(un));
6248 		delay(2);
6249 		mutex_enter(SD_MUTEX(un));
6250 	}
6251 
6252 	mutex_exit(SD_MUTEX(un));
6253 }
6254 
6255 /*
6256  *    Function: sd_unit_attach
6257  *
6258  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
6259  *		the soft state structure for the device and performs
6260  *		all necessary structure and device initializations.
6261  *
6262  *   Arguments: devi: the system's dev_info_t for the device.
6263  *
6264  * Return Code: DDI_SUCCESS if attach is successful.
6265  *		DDI_FAILURE if any part of the attach fails.
6266  *
6267  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
6268  *		Kernel thread context only.  Can sleep.
6269  */
6270 
6271 static int
6272 sd_unit_attach(dev_info_t *devi)
6273 {
6274 	struct	scsi_device	*devp;
6275 	struct	sd_lun		*un;
6276 	char			*variantp;
6277 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
6278 	int	instance;
6279 	int	rval;
6280 	int	wc_enabled;
6281 	int	tgt;
6282 	uint64_t	capacity;
6283 	uint_t		lbasize = 0;
6284 	dev_info_t	*pdip = ddi_get_parent(devi);
6285 	int		offbyone = 0;
6286 	int		geom_label_valid = 0;
6287 
6288 	/*
6289 	 * Retrieve the target driver's private data area. This was set
6290 	 * up by the HBA.
6291 	 */
6292 	devp = ddi_get_driver_private(devi);
6293 
6294 	/*
6295 	 * Retrieve the target ID of the device.
6296 	 */
6297 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6298 	    SCSI_ADDR_PROP_TARGET, -1);
6299 
6300 	/*
6301 	 * Since we have no idea what state things were left in by the last
6302 	 * user of the device, set up some 'default' settings, ie. turn 'em
6303 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
6304 	 * Do this before the scsi_probe, which sends an inquiry.
6305 	 * This is a fix for bug (4430280).
6306 	 * Of special importance is wide-xfer. The drive could have been left
6307 	 * in wide transfer mode by the last driver to communicate with it,
6308 	 * this includes us. If that's the case, and if the following is not
6309 	 * setup properly or we don't re-negotiate with the drive prior to
6310 	 * transferring data to/from the drive, it causes bus parity errors,
6311 	 * data overruns, and unexpected interrupts. This first occurred when
6312 	 * the fix for bug (4378686) was made.
6313 	 */
6314 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
6315 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
6316 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
6317 
6318 	/*
6319 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
6320 	 * on a target. Setting it per lun instance actually sets the
6321 	 * capability of this target, which affects those luns already
6322 	 * attached on the same target. So during attach, we can only disable
6323 	 * this capability only when no other lun has been attached on this
6324 	 * target. By doing this, we assume a target has the same tagged-qing
6325 	 * capability for every lun. The condition can be removed when HBA
6326 	 * is changed to support per lun based tagged-qing capability.
6327 	 */
6328 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
6329 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
6330 	}
6331 
6332 	/*
6333 	 * Use scsi_probe() to issue an INQUIRY command to the device.
6334 	 * This call will allocate and fill in the scsi_inquiry structure
6335 	 * and point the sd_inq member of the scsi_device structure to it.
6336 	 * If the attach succeeds, then this memory will not be de-allocated
6337 	 * (via scsi_unprobe()) until the instance is detached.
6338 	 */
6339 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
6340 		goto probe_failed;
6341 	}
6342 
6343 	/*
6344 	 * Check the device type as specified in the inquiry data and
6345 	 * claim it if it is of a type that we support.
6346 	 */
6347 	switch (devp->sd_inq->inq_dtype) {
6348 	case DTYPE_DIRECT:
6349 		break;
6350 	case DTYPE_RODIRECT:
6351 		break;
6352 	case DTYPE_OPTICAL:
6353 		break;
6354 	case DTYPE_NOTPRESENT:
6355 	default:
6356 		/* Unsupported device type; fail the attach. */
6357 		goto probe_failed;
6358 	}
6359 
6360 	/*
6361 	 * Allocate the soft state structure for this unit.
6362 	 *
6363 	 * We rely upon this memory being set to all zeroes by
6364 	 * ddi_soft_state_zalloc().  We assume that any member of the
6365 	 * soft state structure that is not explicitly initialized by
6366 	 * this routine will have a value of zero.
6367 	 */
6368 	instance = ddi_get_instance(devp->sd_dev);
6369 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
6370 		goto probe_failed;
6371 	}
6372 
6373 	/*
6374 	 * Retrieve a pointer to the newly-allocated soft state.
6375 	 *
6376 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
6377 	 * was successful, unless something has gone horribly wrong and the
6378 	 * ddi's soft state internals are corrupt (in which case it is
6379 	 * probably better to halt here than just fail the attach....)
6380 	 */
6381 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
6382 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
6383 		    instance);
6384 		/*NOTREACHED*/
6385 	}
6386 
6387 	/*
6388 	 * Link the back ptr of the driver soft state to the scsi_device
6389 	 * struct for this lun.
6390 	 * Save a pointer to the softstate in the driver-private area of
6391 	 * the scsi_device struct.
6392 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
6393 	 * we first set un->un_sd below.
6394 	 */
6395 	un->un_sd = devp;
6396 	devp->sd_private = (opaque_t)un;
6397 
6398 	/*
6399 	 * The following must be after devp is stored in the soft state struct.
6400 	 */
6401 #ifdef SDDEBUG
6402 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6403 	    "%s_unit_attach: un:0x%p instance:%d\n",
6404 	    ddi_driver_name(devi), un, instance);
6405 #endif
6406 
6407 	/*
6408 	 * Set up the device type and node type (for the minor nodes).
6409 	 * By default we assume that the device can at least support the
6410 	 * Common Command Set. Call it a CD-ROM if it reports itself
6411 	 * as a RODIRECT device.
6412 	 */
6413 	switch (devp->sd_inq->inq_dtype) {
6414 	case DTYPE_RODIRECT:
6415 		un->un_node_type = DDI_NT_CD_CHAN;
6416 		un->un_ctype	 = CTYPE_CDROM;
6417 		break;
6418 	case DTYPE_OPTICAL:
6419 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6420 		un->un_ctype	 = CTYPE_ROD;
6421 		break;
6422 	default:
6423 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6424 		un->un_ctype	 = CTYPE_CCS;
6425 		break;
6426 	}
6427 
6428 	/*
6429 	 * Try to read the interconnect type from the HBA.
6430 	 *
6431 	 * Note: This driver is currently compiled as two binaries, a parallel
6432 	 * scsi version (sd) and a fibre channel version (ssd). All functional
6433 	 * differences are determined at compile time. In the future a single
6434 	 * binary will be provided and the inteconnect type will be used to
6435 	 * differentiate between fibre and parallel scsi behaviors. At that time
6436 	 * it will be necessary for all fibre channel HBAs to support this
6437 	 * property.
6438 	 *
6439 	 * set un_f_is_fiber to TRUE ( default fiber )
6440 	 */
6441 	un->un_f_is_fibre = TRUE;
6442 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
6443 	case INTERCONNECT_SSA:
6444 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
6445 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6446 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
6447 		break;
6448 	case INTERCONNECT_PARALLEL:
6449 		un->un_f_is_fibre = FALSE;
6450 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
6451 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6452 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
6453 		break;
6454 	case INTERCONNECT_SATA:
6455 		un->un_f_is_fibre = FALSE;
6456 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
6457 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6458 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
6459 		break;
6460 	case INTERCONNECT_FIBRE:
6461 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
6462 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6463 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
6464 		break;
6465 	case INTERCONNECT_FABRIC:
6466 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
6467 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
6468 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6469 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
6470 		break;
6471 	default:
6472 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
6473 		/*
6474 		 * The HBA does not support the "interconnect-type" property
6475 		 * (or did not provide a recognized type).
6476 		 *
6477 		 * Note: This will be obsoleted when a single fibre channel
6478 		 * and parallel scsi driver is delivered. In the meantime the
6479 		 * interconnect type will be set to the platform default.If that
6480 		 * type is not parallel SCSI, it means that we should be
6481 		 * assuming "ssd" semantics. However, here this also means that
6482 		 * the FC HBA is not supporting the "interconnect-type" property
6483 		 * like we expect it to, so log this occurrence.
6484 		 */
6485 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
6486 		if (!SD_IS_PARALLEL_SCSI(un)) {
6487 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6488 			    "sd_unit_attach: un:0x%p Assuming "
6489 			    "INTERCONNECT_FIBRE\n", un);
6490 		} else {
6491 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6492 			    "sd_unit_attach: un:0x%p Assuming "
6493 			    "INTERCONNECT_PARALLEL\n", un);
6494 			un->un_f_is_fibre = FALSE;
6495 		}
6496 #else
6497 		/*
6498 		 * Note: This source will be implemented when a single fibre
6499 		 * channel and parallel scsi driver is delivered. The default
6500 		 * will be to assume that if a device does not support the
6501 		 * "interconnect-type" property it is a parallel SCSI HBA and
6502 		 * we will set the interconnect type for parallel scsi.
6503 		 */
6504 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
6505 		un->un_f_is_fibre = FALSE;
6506 #endif
6507 		break;
6508 	}
6509 
6510 	if (un->un_f_is_fibre == TRUE) {
6511 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
6512 		    SCSI_VERSION_3) {
6513 			switch (un->un_interconnect_type) {
6514 			case SD_INTERCONNECT_FIBRE:
6515 			case SD_INTERCONNECT_SSA:
6516 				un->un_node_type = DDI_NT_BLOCK_WWN;
6517 				break;
6518 			default:
6519 				break;
6520 			}
6521 		}
6522 	}
6523 
6524 	/*
6525 	 * Initialize the Request Sense command for the target
6526 	 */
6527 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
6528 		goto alloc_rqs_failed;
6529 	}
6530 
6531 	/*
6532 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
6533 	 * with separate binary for sd and ssd.
6534 	 *
6535 	 * x86 has 1 binary, un_retry_count is set base on connection type.
6536 	 * The hardcoded values will go away when Sparc uses 1 binary
6537 	 * for sd and ssd.  This hardcoded values need to match
6538 	 * SD_RETRY_COUNT in sddef.h
6539 	 * The value used is base on interconnect type.
6540 	 * fibre = 3, parallel = 5
6541 	 */
6542 #if defined(__i386) || defined(__amd64)
6543 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
6544 #else
6545 	un->un_retry_count = SD_RETRY_COUNT;
6546 #endif
6547 
6548 	/*
6549 	 * Set the per disk retry count to the default number of retries
6550 	 * for disks and CDROMs. This value can be overridden by the
6551 	 * disk property list or an entry in sd.conf.
6552 	 */
6553 	un->un_notready_retry_count =
6554 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
6555 	    : DISK_NOT_READY_RETRY_COUNT(un);
6556 
6557 	/*
6558 	 * Set the busy retry count to the default value of un_retry_count.
6559 	 * This can be overridden by entries in sd.conf or the device
6560 	 * config table.
6561 	 */
6562 	un->un_busy_retry_count = un->un_retry_count;
6563 
6564 	/*
6565 	 * Init the reset threshold for retries.  This number determines
6566 	 * how many retries must be performed before a reset can be issued
6567 	 * (for certain error conditions). This can be overridden by entries
6568 	 * in sd.conf or the device config table.
6569 	 */
6570 	un->un_reset_retry_count = (un->un_retry_count / 2);
6571 
6572 	/*
6573 	 * Set the victim_retry_count to the default un_retry_count
6574 	 */
6575 	un->un_victim_retry_count = (2 * un->un_retry_count);
6576 
6577 	/*
6578 	 * Set the reservation release timeout to the default value of
6579 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
6580 	 * device config table.
6581 	 */
6582 	un->un_reserve_release_time = 5;
6583 
6584 	/*
6585 	 * Set up the default maximum transfer size. Note that this may
6586 	 * get updated later in the attach, when setting up default wide
6587 	 * operations for disks.
6588 	 */
6589 #if defined(__i386) || defined(__amd64)
6590 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
6591 #else
6592 	un->un_max_xfer_size = (uint_t)maxphys;
6593 #endif
6594 
6595 	/*
6596 	 * Get "allow bus device reset" property (defaults to "enabled" if
6597 	 * the property was not defined). This is to disable bus resets for
6598 	 * certain kinds of error recovery. Note: In the future when a run-time
6599 	 * fibre check is available the soft state flag should default to
6600 	 * enabled.
6601 	 */
6602 	if (un->un_f_is_fibre == TRUE) {
6603 		un->un_f_allow_bus_device_reset = TRUE;
6604 	} else {
6605 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6606 		    "allow-bus-device-reset", 1) != 0) {
6607 			un->un_f_allow_bus_device_reset = TRUE;
6608 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6609 			    "sd_unit_attach: un:0x%p Bus device reset "
6610 			    "enabled\n", un);
6611 		} else {
6612 			un->un_f_allow_bus_device_reset = FALSE;
6613 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6614 			    "sd_unit_attach: un:0x%p Bus device reset "
6615 			    "disabled\n", un);
6616 		}
6617 	}
6618 
6619 	/*
6620 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
6621 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
6622 	 *
6623 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
6624 	 * property. The new "variant" property with a value of "atapi" has been
6625 	 * introduced so that future 'variants' of standard SCSI behavior (like
6626 	 * atapi) could be specified by the underlying HBA drivers by supplying
6627 	 * a new value for the "variant" property, instead of having to define a
6628 	 * new property.
6629 	 */
6630 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
6631 		un->un_f_cfg_is_atapi = TRUE;
6632 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6633 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
6634 	}
6635 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
6636 	    &variantp) == DDI_PROP_SUCCESS) {
6637 		if (strcmp(variantp, "atapi") == 0) {
6638 			un->un_f_cfg_is_atapi = TRUE;
6639 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6640 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
6641 		}
6642 		ddi_prop_free(variantp);
6643 	}
6644 
6645 	un->un_cmd_timeout	= SD_IO_TIME;
6646 
6647 	/* Info on current states, statuses, etc. (Updated frequently) */
6648 	un->un_state		= SD_STATE_NORMAL;
6649 	un->un_last_state	= SD_STATE_NORMAL;
6650 
6651 	/* Control & status info for command throttling */
6652 	un->un_throttle		= sd_max_throttle;
6653 	un->un_saved_throttle	= sd_max_throttle;
6654 	un->un_min_throttle	= sd_min_throttle;
6655 
6656 	if (un->un_f_is_fibre == TRUE) {
6657 		un->un_f_use_adaptive_throttle = TRUE;
6658 	} else {
6659 		un->un_f_use_adaptive_throttle = FALSE;
6660 	}
6661 
6662 	/* Removable media support. */
6663 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
6664 	un->un_mediastate		= DKIO_NONE;
6665 	un->un_specified_mediastate	= DKIO_NONE;
6666 
6667 	/* CVs for suspend/resume (PM or DR) */
6668 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
6669 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
6670 
6671 	/* Power management support. */
6672 	un->un_power_level = SD_SPINDLE_UNINIT;
6673 
6674 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
6675 	un->un_f_wcc_inprog = 0;
6676 
6677 	/*
6678 	 * The open/close semaphore is used to serialize threads executing
6679 	 * in the driver's open & close entry point routines for a given
6680 	 * instance.
6681 	 */
6682 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
6683 
6684 	/*
6685 	 * The conf file entry and softstate variable is a forceful override,
6686 	 * meaning a non-zero value must be entered to change the default.
6687 	 */
6688 	un->un_f_disksort_disabled = FALSE;
6689 
6690 	/*
6691 	 * Retrieve the properties from the static driver table or the driver
6692 	 * configuration file (.conf) for this unit and update the soft state
6693 	 * for the device as needed for the indicated properties.
6694 	 * Note: the property configuration needs to occur here as some of the
6695 	 * following routines may have dependancies on soft state flags set
6696 	 * as part of the driver property configuration.
6697 	 */
6698 	sd_read_unit_properties(un);
6699 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6700 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
6701 
6702 	/*
6703 	 * Only if a device has "hotpluggable" property, it is
6704 	 * treated as hotpluggable device. Otherwise, it is
6705 	 * regarded as non-hotpluggable one.
6706 	 */
6707 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
6708 	    -1) != -1) {
6709 		un->un_f_is_hotpluggable = TRUE;
6710 	}
6711 
6712 	/*
6713 	 * set unit's attributes(flags) according to "hotpluggable" and
6714 	 * RMB bit in INQUIRY data.
6715 	 */
6716 	sd_set_unit_attributes(un, devi);
6717 
6718 	/*
6719 	 * By default, we mark the capacity, lbasize, and geometry
6720 	 * as invalid. Only if we successfully read a valid capacity
6721 	 * will we update the un_blockcount and un_tgt_blocksize with the
6722 	 * valid values (the geometry will be validated later).
6723 	 */
6724 	un->un_f_blockcount_is_valid	= FALSE;
6725 	un->un_f_tgt_blocksize_is_valid	= FALSE;
6726 
6727 	/*
6728 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
6729 	 * otherwise.
6730 	 */
6731 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
6732 	un->un_blockcount = 0;
6733 
6734 	/*
6735 	 * Set up the per-instance info needed to determine the correct
6736 	 * CDBs and other info for issuing commands to the target.
6737 	 */
6738 	sd_init_cdb_limits(un);
6739 
6740 	/*
6741 	 * Set up the IO chains to use, based upon the target type.
6742 	 */
6743 	if (un->un_f_non_devbsize_supported) {
6744 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
6745 	} else {
6746 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
6747 	}
6748 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
6749 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
6750 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
6751 
6752 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
6753 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
6754 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
6755 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
6756 
6757 
6758 	if (ISCD(un)) {
6759 		un->un_additional_codes = sd_additional_codes;
6760 	} else {
6761 		un->un_additional_codes = NULL;
6762 	}
6763 
6764 	/*
6765 	 * Create the kstats here so they can be available for attach-time
6766 	 * routines that send commands to the unit (either polled or via
6767 	 * sd_send_scsi_cmd).
6768 	 *
6769 	 * Note: This is a critical sequence that needs to be maintained:
6770 	 *	1) Instantiate the kstats here, before any routines using the
6771 	 *	   iopath (i.e. sd_send_scsi_cmd).
6772 	 *	2) Instantiate and initialize the partition stats
6773 	 *	   (sd_set_pstats).
6774 	 *	3) Initialize the error stats (sd_set_errstats), following
6775 	 *	   sd_validate_geometry(),sd_register_devid(),
6776 	 *	   and sd_cache_control().
6777 	 */
6778 
6779 	un->un_stats = kstat_create(sd_label, instance,
6780 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
6781 	if (un->un_stats != NULL) {
6782 		un->un_stats->ks_lock = SD_MUTEX(un);
6783 		kstat_install(un->un_stats);
6784 	}
6785 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6786 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
6787 
6788 	sd_create_errstats(un, instance);
6789 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6790 	    "sd_unit_attach: un:0x%p errstats created\n", un);
6791 
6792 	/*
6793 	 * The following if/else code was relocated here from below as part
6794 	 * of the fix for bug (4430280). However with the default setup added
6795 	 * on entry to this routine, it's no longer absolutely necessary for
6796 	 * this to be before the call to sd_spin_up_unit.
6797 	 */
6798 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
6799 		/*
6800 		 * If SCSI-2 tagged queueing is supported by the target
6801 		 * and by the host adapter then we will enable it.
6802 		 */
6803 		un->un_tagflags = 0;
6804 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
6805 		    (devp->sd_inq->inq_cmdque) &&
6806 		    (un->un_f_arq_enabled == TRUE)) {
6807 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
6808 			    1, 1) == 1) {
6809 				un->un_tagflags = FLAG_STAG;
6810 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6811 				    "sd_unit_attach: un:0x%p tag queueing "
6812 				    "enabled\n", un);
6813 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
6814 			    "untagged-qing", 0) == 1) {
6815 				un->un_f_opt_queueing = TRUE;
6816 				un->un_saved_throttle = un->un_throttle =
6817 				    min(un->un_throttle, 3);
6818 			} else {
6819 				un->un_f_opt_queueing = FALSE;
6820 				un->un_saved_throttle = un->un_throttle = 1;
6821 			}
6822 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
6823 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
6824 			/* The Host Adapter supports internal queueing. */
6825 			un->un_f_opt_queueing = TRUE;
6826 			un->un_saved_throttle = un->un_throttle =
6827 			    min(un->un_throttle, 3);
6828 		} else {
6829 			un->un_f_opt_queueing = FALSE;
6830 			un->un_saved_throttle = un->un_throttle = 1;
6831 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6832 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
6833 		}
6834 
6835 		/*
6836 		 * Enable large transfers for SATA/SAS drives
6837 		 */
6838 		if (SD_IS_SERIAL(un)) {
6839 			un->un_max_xfer_size =
6840 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
6841 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
6842 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6843 			    "sd_unit_attach: un:0x%p max transfer "
6844 			    "size=0x%x\n", un, un->un_max_xfer_size);
6845 
6846 		}
6847 
6848 		/* Setup or tear down default wide operations for disks */
6849 
6850 		/*
6851 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
6852 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
6853 		 * system and be set to different values. In the future this
6854 		 * code may need to be updated when the ssd module is
6855 		 * obsoleted and removed from the system. (4299588)
6856 		 */
6857 		if (SD_IS_PARALLEL_SCSI(un) &&
6858 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
6859 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
6860 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
6861 			    1, 1) == 1) {
6862 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6863 				    "sd_unit_attach: un:0x%p Wide Transfer "
6864 				    "enabled\n", un);
6865 			}
6866 
6867 			/*
6868 			 * If tagged queuing has also been enabled, then
6869 			 * enable large xfers
6870 			 */
6871 			if (un->un_saved_throttle == sd_max_throttle) {
6872 				un->un_max_xfer_size =
6873 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
6874 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
6875 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6876 				    "sd_unit_attach: un:0x%p max transfer "
6877 				    "size=0x%x\n", un, un->un_max_xfer_size);
6878 			}
6879 		} else {
6880 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
6881 			    0, 1) == 1) {
6882 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6883 				    "sd_unit_attach: un:0x%p "
6884 				    "Wide Transfer disabled\n", un);
6885 			}
6886 		}
6887 	} else {
6888 		un->un_tagflags = FLAG_STAG;
6889 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
6890 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
6891 	}
6892 
6893 	/*
6894 	 * If this target supports LUN reset, try to enable it.
6895 	 */
6896 	if (un->un_f_lun_reset_enabled) {
6897 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
6898 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
6899 			    "un:0x%p lun_reset capability set\n", un);
6900 		} else {
6901 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
6902 			    "un:0x%p lun-reset capability not set\n", un);
6903 		}
6904 	}
6905 
6906 	/*
6907 	 * At this point in the attach, we have enough info in the
6908 	 * soft state to be able to issue commands to the target.
6909 	 *
6910 	 * All command paths used below MUST issue their commands as
6911 	 * SD_PATH_DIRECT. This is important as intermediate layers
6912 	 * are not all initialized yet (such as PM).
6913 	 */
6914 
6915 	/*
6916 	 * Send a TEST UNIT READY command to the device. This should clear
6917 	 * any outstanding UNIT ATTENTION that may be present.
6918 	 *
6919 	 * Note: Don't check for success, just track if there is a reservation,
6920 	 * this is a throw away command to clear any unit attentions.
6921 	 *
6922 	 * Note: This MUST be the first command issued to the target during
6923 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
6924 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
6925 	 * with attempts at spinning up a device with no media.
6926 	 */
6927 	if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) {
6928 		reservation_flag = SD_TARGET_IS_RESERVED;
6929 	}
6930 
6931 	/*
6932 	 * If the device is NOT a removable media device, attempt to spin
6933 	 * it up (using the START_STOP_UNIT command) and read its capacity
6934 	 * (using the READ CAPACITY command).  Note, however, that either
6935 	 * of these could fail and in some cases we would continue with
6936 	 * the attach despite the failure (see below).
6937 	 */
6938 	if (un->un_f_descr_format_supported) {
6939 		switch (sd_spin_up_unit(un)) {
6940 		case 0:
6941 			/*
6942 			 * Spin-up was successful; now try to read the
6943 			 * capacity.  If successful then save the results
6944 			 * and mark the capacity & lbasize as valid.
6945 			 */
6946 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6947 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
6948 
6949 			switch (sd_send_scsi_READ_CAPACITY(un, &capacity,
6950 			    &lbasize, SD_PATH_DIRECT)) {
6951 			case 0: {
6952 				if (capacity > DK_MAX_BLOCKS) {
6953 #ifdef _LP64
6954 					if (capacity + 1 >
6955 					    SD_GROUP1_MAX_ADDRESS) {
6956 						/*
6957 						 * Enable descriptor format
6958 						 * sense data so that we can
6959 						 * get 64 bit sense data
6960 						 * fields.
6961 						 */
6962 						sd_enable_descr_sense(un);
6963 					}
6964 #else
6965 					/* 32-bit kernels can't handle this */
6966 					scsi_log(SD_DEVINFO(un),
6967 					    sd_label, CE_WARN,
6968 					    "disk has %llu blocks, which "
6969 					    "is too large for a 32-bit "
6970 					    "kernel", capacity);
6971 
6972 #if defined(__i386) || defined(__amd64)
6973 					/*
6974 					 * 1TB disk was treated as (1T - 512)B
6975 					 * in the past, so that it might have
6976 					 * valid VTOC and solaris partitions,
6977 					 * we have to allow it to continue to
6978 					 * work.
6979 					 */
6980 					if (capacity -1 > DK_MAX_BLOCKS)
6981 #endif
6982 					goto spinup_failed;
6983 #endif
6984 				}
6985 
6986 				/*
6987 				 * Here it's not necessary to check the case:
6988 				 * the capacity of the device is bigger than
6989 				 * what the max hba cdb can support. Because
6990 				 * sd_send_scsi_READ_CAPACITY will retrieve
6991 				 * the capacity by sending USCSI command, which
6992 				 * is constrained by the max hba cdb. Actually,
6993 				 * sd_send_scsi_READ_CAPACITY will return
6994 				 * EINVAL when using bigger cdb than required
6995 				 * cdb length. Will handle this case in
6996 				 * "case EINVAL".
6997 				 */
6998 
6999 				/*
7000 				 * The following relies on
7001 				 * sd_send_scsi_READ_CAPACITY never
7002 				 * returning 0 for capacity and/or lbasize.
7003 				 */
7004 				sd_update_block_info(un, lbasize, capacity);
7005 
7006 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7007 				    "sd_unit_attach: un:0x%p capacity = %ld "
7008 				    "blocks; lbasize= %ld.\n", un,
7009 				    un->un_blockcount, un->un_tgt_blocksize);
7010 
7011 				break;
7012 			}
7013 			case EINVAL:
7014 				/*
7015 				 * In the case where the max-cdb-length property
7016 				 * is smaller than the required CDB length for
7017 				 * a SCSI device, a target driver can fail to
7018 				 * attach to that device.
7019 				 */
7020 				scsi_log(SD_DEVINFO(un),
7021 				    sd_label, CE_WARN,
7022 				    "disk capacity is too large "
7023 				    "for current cdb length");
7024 				goto spinup_failed;
7025 			case EACCES:
7026 				/*
7027 				 * Should never get here if the spin-up
7028 				 * succeeded, but code it in anyway.
7029 				 * From here, just continue with the attach...
7030 				 */
7031 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7032 				    "sd_unit_attach: un:0x%p "
7033 				    "sd_send_scsi_READ_CAPACITY "
7034 				    "returned reservation conflict\n", un);
7035 				reservation_flag = SD_TARGET_IS_RESERVED;
7036 				break;
7037 			default:
7038 				/*
7039 				 * Likewise, should never get here if the
7040 				 * spin-up succeeded. Just continue with
7041 				 * the attach...
7042 				 */
7043 				break;
7044 			}
7045 			break;
7046 		case EACCES:
7047 			/*
7048 			 * Device is reserved by another host.  In this case
7049 			 * we could not spin it up or read the capacity, but
7050 			 * we continue with the attach anyway.
7051 			 */
7052 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7053 			    "sd_unit_attach: un:0x%p spin-up reservation "
7054 			    "conflict.\n", un);
7055 			reservation_flag = SD_TARGET_IS_RESERVED;
7056 			break;
7057 		default:
7058 			/* Fail the attach if the spin-up failed. */
7059 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7060 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
7061 			goto spinup_failed;
7062 		}
7063 	}
7064 
7065 	/*
7066 	 * Check to see if this is a MMC drive
7067 	 */
7068 	if (ISCD(un)) {
7069 		sd_set_mmc_caps(un);
7070 	}
7071 
7072 
7073 	/*
7074 	 * Add a zero-length attribute to tell the world we support
7075 	 * kernel ioctls (for layered drivers)
7076 	 */
7077 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7078 	    DDI_KERNEL_IOCTL, NULL, 0);
7079 
7080 	/*
7081 	 * Add a boolean property to tell the world we support
7082 	 * the B_FAILFAST flag (for layered drivers)
7083 	 */
7084 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7085 	    "ddi-failfast-supported", NULL, 0);
7086 
7087 	/*
7088 	 * Initialize power management
7089 	 */
7090 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
7091 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
7092 	sd_setup_pm(un, devi);
7093 	if (un->un_f_pm_is_enabled == FALSE) {
7094 		/*
7095 		 * For performance, point to a jump table that does
7096 		 * not include pm.
7097 		 * The direct and priority chains don't change with PM.
7098 		 *
7099 		 * Note: this is currently done based on individual device
7100 		 * capabilities. When an interface for determining system
7101 		 * power enabled state becomes available, or when additional
7102 		 * layers are added to the command chain, these values will
7103 		 * have to be re-evaluated for correctness.
7104 		 */
7105 		if (un->un_f_non_devbsize_supported) {
7106 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
7107 		} else {
7108 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
7109 		}
7110 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
7111 	}
7112 
7113 	/*
7114 	 * This property is set to 0 by HA software to avoid retries
7115 	 * on a reserved disk. (The preferred property name is
7116 	 * "retry-on-reservation-conflict") (1189689)
7117 	 *
7118 	 * Note: The use of a global here can have unintended consequences. A
7119 	 * per instance variable is preferrable to match the capabilities of
7120 	 * different underlying hba's (4402600)
7121 	 */
7122 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
7123 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
7124 	    sd_retry_on_reservation_conflict);
7125 	if (sd_retry_on_reservation_conflict != 0) {
7126 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
7127 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
7128 		    sd_retry_on_reservation_conflict);
7129 	}
7130 
7131 	/* Set up options for QFULL handling. */
7132 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7133 	    "qfull-retries", -1)) != -1) {
7134 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
7135 		    rval, 1);
7136 	}
7137 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7138 	    "qfull-retry-interval", -1)) != -1) {
7139 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
7140 		    rval, 1);
7141 	}
7142 
7143 	/*
7144 	 * This just prints a message that announces the existence of the
7145 	 * device. The message is always printed in the system logfile, but
7146 	 * only appears on the console if the system is booted with the
7147 	 * -v (verbose) argument.
7148 	 */
7149 	ddi_report_dev(devi);
7150 
7151 	un->un_mediastate = DKIO_NONE;
7152 
7153 	cmlb_alloc_handle(&un->un_cmlbhandle);
7154 
7155 #if defined(__i386) || defined(__amd64)
7156 	/*
7157 	 * On x86, compensate for off-by-1 legacy error
7158 	 */
7159 	if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
7160 	    (lbasize == un->un_sys_blocksize))
7161 		offbyone = CMLB_OFF_BY_ONE;
7162 #endif
7163 
7164 	if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype,
7165 	    un->un_f_has_removable_media, un->un_f_is_hotpluggable,
7166 	    un->un_node_type, offbyone, un->un_cmlbhandle,
7167 	    (void *)SD_PATH_DIRECT) != 0) {
7168 		goto cmlb_attach_failed;
7169 	}
7170 
7171 
7172 	/*
7173 	 * Read and validate the device's geometry (ie, disk label)
7174 	 * A new unformatted drive will not have a valid geometry, but
7175 	 * the driver needs to successfully attach to this device so
7176 	 * the drive can be formatted via ioctls.
7177 	 */
7178 	geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0,
7179 	    (void *)SD_PATH_DIRECT) == 0) ? 1: 0;
7180 
7181 	mutex_enter(SD_MUTEX(un));
7182 
7183 	/*
7184 	 * Read and initialize the devid for the unit.
7185 	 */
7186 	ASSERT(un->un_errstats != NULL);
7187 	if (un->un_f_devid_supported) {
7188 		sd_register_devid(un, devi, reservation_flag);
7189 	}
7190 	mutex_exit(SD_MUTEX(un));
7191 
7192 #if (defined(__fibre))
7193 	/*
7194 	 * Register callbacks for fibre only.  You can't do this soley
7195 	 * on the basis of the devid_type because this is hba specific.
7196 	 * We need to query our hba capabilities to find out whether to
7197 	 * register or not.
7198 	 */
7199 	if (un->un_f_is_fibre) {
7200 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
7201 			sd_init_event_callbacks(un);
7202 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7203 			    "sd_unit_attach: un:0x%p event callbacks inserted",
7204 			    un);
7205 		}
7206 	}
7207 #endif
7208 
7209 	if (un->un_f_opt_disable_cache == TRUE) {
7210 		/*
7211 		 * Disable both read cache and write cache.  This is
7212 		 * the historic behavior of the keywords in the config file.
7213 		 */
7214 		if (sd_cache_control(un, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
7215 		    0) {
7216 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7217 			    "sd_unit_attach: un:0x%p Could not disable "
7218 			    "caching", un);
7219 			goto devid_failed;
7220 		}
7221 	}
7222 
7223 	/*
7224 	 * Check the value of the WCE bit now and
7225 	 * set un_f_write_cache_enabled accordingly.
7226 	 */
7227 	(void) sd_get_write_cache_enabled(un, &wc_enabled);
7228 	mutex_enter(SD_MUTEX(un));
7229 	un->un_f_write_cache_enabled = (wc_enabled != 0);
7230 	mutex_exit(SD_MUTEX(un));
7231 
7232 	/*
7233 	 * Find out what type of reservation this disk supports.
7234 	 */
7235 	switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) {
7236 	case 0:
7237 		/*
7238 		 * SCSI-3 reservations are supported.
7239 		 */
7240 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7241 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7242 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
7243 		break;
7244 	case ENOTSUP:
7245 		/*
7246 		 * The PERSISTENT RESERVE IN command would not be recognized by
7247 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
7248 		 */
7249 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7250 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
7251 		un->un_reservation_type = SD_SCSI2_RESERVATION;
7252 		break;
7253 	default:
7254 		/*
7255 		 * default to SCSI-3 reservations
7256 		 */
7257 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7258 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
7259 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7260 		break;
7261 	}
7262 
7263 	/*
7264 	 * Set the pstat and error stat values here, so data obtained during the
7265 	 * previous attach-time routines is available.
7266 	 *
7267 	 * Note: This is a critical sequence that needs to be maintained:
7268 	 *	1) Instantiate the kstats before any routines using the iopath
7269 	 *	   (i.e. sd_send_scsi_cmd).
7270 	 *	2) Initialize the error stats (sd_set_errstats) and partition
7271 	 *	   stats (sd_set_pstats)here, following
7272 	 *	   cmlb_validate_geometry(), sd_register_devid(), and
7273 	 *	   sd_cache_control().
7274 	 */
7275 
7276 	if (un->un_f_pkstats_enabled && geom_label_valid) {
7277 		sd_set_pstats(un);
7278 		SD_TRACE(SD_LOG_IO_PARTITION, un,
7279 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
7280 	}
7281 
7282 	sd_set_errstats(un);
7283 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7284 	    "sd_unit_attach: un:0x%p errstats set\n", un);
7285 
7286 
7287 	/*
7288 	 * After successfully attaching an instance, we record the information
7289 	 * of how many luns have been attached on the relative target and
7290 	 * controller for parallel SCSI. This information is used when sd tries
7291 	 * to set the tagged queuing capability in HBA.
7292 	 */
7293 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
7294 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
7295 	}
7296 
7297 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7298 	    "sd_unit_attach: un:0x%p exit success\n", un);
7299 
7300 	return (DDI_SUCCESS);
7301 
7302 	/*
7303 	 * An error occurred during the attach; clean up & return failure.
7304 	 */
7305 
7306 devid_failed:
7307 
7308 setup_pm_failed:
7309 	ddi_remove_minor_node(devi, NULL);
7310 
7311 cmlb_attach_failed:
7312 	/*
7313 	 * Cleanup from the scsi_ifsetcap() calls (437868)
7314 	 */
7315 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7316 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7317 
7318 	/*
7319 	 * Refer to the comments of setting tagged-qing in the beginning of
7320 	 * sd_unit_attach. We can only disable tagged queuing when there is
7321 	 * no lun attached on the target.
7322 	 */
7323 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
7324 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
7325 	}
7326 
7327 	if (un->un_f_is_fibre == FALSE) {
7328 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
7329 	}
7330 
7331 spinup_failed:
7332 
7333 	mutex_enter(SD_MUTEX(un));
7334 
7335 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
7336 	if (un->un_direct_priority_timeid != NULL) {
7337 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7338 		un->un_direct_priority_timeid = NULL;
7339 		mutex_exit(SD_MUTEX(un));
7340 		(void) untimeout(temp_id);
7341 		mutex_enter(SD_MUTEX(un));
7342 	}
7343 
7344 	/* Cancel any pending start/stop timeouts */
7345 	if (un->un_startstop_timeid != NULL) {
7346 		timeout_id_t temp_id = un->un_startstop_timeid;
7347 		un->un_startstop_timeid = NULL;
7348 		mutex_exit(SD_MUTEX(un));
7349 		(void) untimeout(temp_id);
7350 		mutex_enter(SD_MUTEX(un));
7351 	}
7352 
7353 	/* Cancel any pending reset-throttle timeouts */
7354 	if (un->un_reset_throttle_timeid != NULL) {
7355 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7356 		un->un_reset_throttle_timeid = NULL;
7357 		mutex_exit(SD_MUTEX(un));
7358 		(void) untimeout(temp_id);
7359 		mutex_enter(SD_MUTEX(un));
7360 	}
7361 
7362 	/* Cancel any pending retry timeouts */
7363 	if (un->un_retry_timeid != NULL) {
7364 		timeout_id_t temp_id = un->un_retry_timeid;
7365 		un->un_retry_timeid = NULL;
7366 		mutex_exit(SD_MUTEX(un));
7367 		(void) untimeout(temp_id);
7368 		mutex_enter(SD_MUTEX(un));
7369 	}
7370 
7371 	/* Cancel any pending delayed cv broadcast timeouts */
7372 	if (un->un_dcvb_timeid != NULL) {
7373 		timeout_id_t temp_id = un->un_dcvb_timeid;
7374 		un->un_dcvb_timeid = NULL;
7375 		mutex_exit(SD_MUTEX(un));
7376 		(void) untimeout(temp_id);
7377 		mutex_enter(SD_MUTEX(un));
7378 	}
7379 
7380 	mutex_exit(SD_MUTEX(un));
7381 
7382 	/* There should not be any in-progress I/O so ASSERT this check */
7383 	ASSERT(un->un_ncmds_in_transport == 0);
7384 	ASSERT(un->un_ncmds_in_driver == 0);
7385 
7386 	/* Do not free the softstate if the callback routine is active */
7387 	sd_sync_with_callback(un);
7388 
7389 	/*
7390 	 * Partition stats apparently are not used with removables. These would
7391 	 * not have been created during attach, so no need to clean them up...
7392 	 */
7393 	if (un->un_stats != NULL) {
7394 		kstat_delete(un->un_stats);
7395 		un->un_stats = NULL;
7396 	}
7397 	if (un->un_errstats != NULL) {
7398 		kstat_delete(un->un_errstats);
7399 		un->un_errstats = NULL;
7400 	}
7401 
7402 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
7403 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
7404 
7405 	ddi_prop_remove_all(devi);
7406 	sema_destroy(&un->un_semoclose);
7407 	cv_destroy(&un->un_state_cv);
7408 
7409 getrbuf_failed:
7410 
7411 	sd_free_rqs(un);
7412 
7413 alloc_rqs_failed:
7414 
7415 	devp->sd_private = NULL;
7416 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
7417 
7418 get_softstate_failed:
7419 	/*
7420 	 * Note: the man pages are unclear as to whether or not doing a
7421 	 * ddi_soft_state_free(sd_state, instance) is the right way to
7422 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
7423 	 * ddi_get_soft_state() fails.  The implication seems to be
7424 	 * that the get_soft_state cannot fail if the zalloc succeeds.
7425 	 */
7426 	ddi_soft_state_free(sd_state, instance);
7427 
7428 probe_failed:
7429 	scsi_unprobe(devp);
7430 #ifdef SDDEBUG
7431 	if ((sd_component_mask & SD_LOG_ATTACH_DETACH) &&
7432 	    (sd_level_mask & SD_LOGMASK_TRACE)) {
7433 		cmn_err(CE_CONT, "sd_unit_attach: un:0x%p exit failure\n",
7434 		    (void *)un);
7435 	}
7436 #endif
7437 	return (DDI_FAILURE);
7438 }
7439 
7440 
7441 /*
7442  *    Function: sd_unit_detach
7443  *
7444  * Description: Performs DDI_DETACH processing for sddetach().
7445  *
7446  * Return Code: DDI_SUCCESS
7447  *		DDI_FAILURE
7448  *
7449  *     Context: Kernel thread context
7450  */
7451 
7452 static int
7453 sd_unit_detach(dev_info_t *devi)
7454 {
7455 	struct scsi_device	*devp;
7456 	struct sd_lun		*un;
7457 	int			i;
7458 	int			tgt;
7459 	dev_t			dev;
7460 	dev_info_t		*pdip = ddi_get_parent(devi);
7461 	int			instance = ddi_get_instance(devi);
7462 
7463 	mutex_enter(&sd_detach_mutex);
7464 
7465 	/*
7466 	 * Fail the detach for any of the following:
7467 	 *  - Unable to get the sd_lun struct for the instance
7468 	 *  - A layered driver has an outstanding open on the instance
7469 	 *  - Another thread is already detaching this instance
7470 	 *  - Another thread is currently performing an open
7471 	 */
7472 	devp = ddi_get_driver_private(devi);
7473 	if ((devp == NULL) ||
7474 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
7475 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
7476 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
7477 		mutex_exit(&sd_detach_mutex);
7478 		return (DDI_FAILURE);
7479 	}
7480 
7481 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
7482 
7483 	/*
7484 	 * Mark this instance as currently in a detach, to inhibit any
7485 	 * opens from a layered driver.
7486 	 */
7487 	un->un_detach_count++;
7488 	mutex_exit(&sd_detach_mutex);
7489 
7490 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7491 	    SCSI_ADDR_PROP_TARGET, -1);
7492 
7493 	dev = sd_make_device(SD_DEVINFO(un));
7494 
7495 #ifndef lint
7496 	_NOTE(COMPETING_THREADS_NOW);
7497 #endif
7498 
7499 	mutex_enter(SD_MUTEX(un));
7500 
7501 	/*
7502 	 * Fail the detach if there are any outstanding layered
7503 	 * opens on this device.
7504 	 */
7505 	for (i = 0; i < NDKMAP; i++) {
7506 		if (un->un_ocmap.lyropen[i] != 0) {
7507 			goto err_notclosed;
7508 		}
7509 	}
7510 
7511 	/*
7512 	 * Verify there are NO outstanding commands issued to this device.
7513 	 * ie, un_ncmds_in_transport == 0.
7514 	 * It's possible to have outstanding commands through the physio
7515 	 * code path, even though everything's closed.
7516 	 */
7517 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
7518 	    (un->un_direct_priority_timeid != NULL) ||
7519 	    (un->un_state == SD_STATE_RWAIT)) {
7520 		mutex_exit(SD_MUTEX(un));
7521 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7522 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
7523 		goto err_stillbusy;
7524 	}
7525 
7526 	/*
7527 	 * If we have the device reserved, release the reservation.
7528 	 */
7529 	if ((un->un_resvd_status & SD_RESERVE) &&
7530 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
7531 		mutex_exit(SD_MUTEX(un));
7532 		/*
7533 		 * Note: sd_reserve_release sends a command to the device
7534 		 * via the sd_ioctlcmd() path, and can sleep.
7535 		 */
7536 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
7537 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7538 			    "sd_dr_detach: Cannot release reservation \n");
7539 		}
7540 	} else {
7541 		mutex_exit(SD_MUTEX(un));
7542 	}
7543 
7544 	/*
7545 	 * Untimeout any reserve recover, throttle reset, restart unit
7546 	 * and delayed broadcast timeout threads. Protect the timeout pointer
7547 	 * from getting nulled by their callback functions.
7548 	 */
7549 	mutex_enter(SD_MUTEX(un));
7550 	if (un->un_resvd_timeid != NULL) {
7551 		timeout_id_t temp_id = un->un_resvd_timeid;
7552 		un->un_resvd_timeid = NULL;
7553 		mutex_exit(SD_MUTEX(un));
7554 		(void) untimeout(temp_id);
7555 		mutex_enter(SD_MUTEX(un));
7556 	}
7557 
7558 	if (un->un_reset_throttle_timeid != NULL) {
7559 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7560 		un->un_reset_throttle_timeid = NULL;
7561 		mutex_exit(SD_MUTEX(un));
7562 		(void) untimeout(temp_id);
7563 		mutex_enter(SD_MUTEX(un));
7564 	}
7565 
7566 	if (un->un_startstop_timeid != NULL) {
7567 		timeout_id_t temp_id = un->un_startstop_timeid;
7568 		un->un_startstop_timeid = NULL;
7569 		mutex_exit(SD_MUTEX(un));
7570 		(void) untimeout(temp_id);
7571 		mutex_enter(SD_MUTEX(un));
7572 	}
7573 
7574 	if (un->un_dcvb_timeid != NULL) {
7575 		timeout_id_t temp_id = un->un_dcvb_timeid;
7576 		un->un_dcvb_timeid = NULL;
7577 		mutex_exit(SD_MUTEX(un));
7578 		(void) untimeout(temp_id);
7579 	} else {
7580 		mutex_exit(SD_MUTEX(un));
7581 	}
7582 
7583 	/* Remove any pending reservation reclaim requests for this device */
7584 	sd_rmv_resv_reclaim_req(dev);
7585 
7586 	mutex_enter(SD_MUTEX(un));
7587 
7588 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
7589 	if (un->un_direct_priority_timeid != NULL) {
7590 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7591 		un->un_direct_priority_timeid = NULL;
7592 		mutex_exit(SD_MUTEX(un));
7593 		(void) untimeout(temp_id);
7594 		mutex_enter(SD_MUTEX(un));
7595 	}
7596 
7597 	/* Cancel any active multi-host disk watch thread requests */
7598 	if (un->un_mhd_token != NULL) {
7599 		mutex_exit(SD_MUTEX(un));
7600 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
7601 		if (scsi_watch_request_terminate(un->un_mhd_token,
7602 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
7603 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7604 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
7605 			/*
7606 			 * Note: We are returning here after having removed
7607 			 * some driver timeouts above. This is consistent with
7608 			 * the legacy implementation but perhaps the watch
7609 			 * terminate call should be made with the wait flag set.
7610 			 */
7611 			goto err_stillbusy;
7612 		}
7613 		mutex_enter(SD_MUTEX(un));
7614 		un->un_mhd_token = NULL;
7615 	}
7616 
7617 	if (un->un_swr_token != NULL) {
7618 		mutex_exit(SD_MUTEX(un));
7619 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
7620 		if (scsi_watch_request_terminate(un->un_swr_token,
7621 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
7622 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7623 			    "sd_dr_detach: Cannot cancel swr watch request\n");
7624 			/*
7625 			 * Note: We are returning here after having removed
7626 			 * some driver timeouts above. This is consistent with
7627 			 * the legacy implementation but perhaps the watch
7628 			 * terminate call should be made with the wait flag set.
7629 			 */
7630 			goto err_stillbusy;
7631 		}
7632 		mutex_enter(SD_MUTEX(un));
7633 		un->un_swr_token = NULL;
7634 	}
7635 
7636 	mutex_exit(SD_MUTEX(un));
7637 
7638 	/*
7639 	 * Clear any scsi_reset_notifies. We clear the reset notifies
7640 	 * if we have not registered one.
7641 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
7642 	 */
7643 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
7644 	    sd_mhd_reset_notify_cb, (caddr_t)un);
7645 
7646 	/*
7647 	 * protect the timeout pointers from getting nulled by
7648 	 * their callback functions during the cancellation process.
7649 	 * In such a scenario untimeout can be invoked with a null value.
7650 	 */
7651 	_NOTE(NO_COMPETING_THREADS_NOW);
7652 
7653 	mutex_enter(&un->un_pm_mutex);
7654 	if (un->un_pm_idle_timeid != NULL) {
7655 		timeout_id_t temp_id = un->un_pm_idle_timeid;
7656 		un->un_pm_idle_timeid = NULL;
7657 		mutex_exit(&un->un_pm_mutex);
7658 
7659 		/*
7660 		 * Timeout is active; cancel it.
7661 		 * Note that it'll never be active on a device
7662 		 * that does not support PM therefore we don't
7663 		 * have to check before calling pm_idle_component.
7664 		 */
7665 		(void) untimeout(temp_id);
7666 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7667 		mutex_enter(&un->un_pm_mutex);
7668 	}
7669 
7670 	/*
7671 	 * Check whether there is already a timeout scheduled for power
7672 	 * management. If yes then don't lower the power here, that's.
7673 	 * the timeout handler's job.
7674 	 */
7675 	if (un->un_pm_timeid != NULL) {
7676 		timeout_id_t temp_id = un->un_pm_timeid;
7677 		un->un_pm_timeid = NULL;
7678 		mutex_exit(&un->un_pm_mutex);
7679 		/*
7680 		 * Timeout is active; cancel it.
7681 		 * Note that it'll never be active on a device
7682 		 * that does not support PM therefore we don't
7683 		 * have to check before calling pm_idle_component.
7684 		 */
7685 		(void) untimeout(temp_id);
7686 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7687 
7688 	} else {
7689 		mutex_exit(&un->un_pm_mutex);
7690 		if ((un->un_f_pm_is_enabled == TRUE) &&
7691 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
7692 		    DDI_SUCCESS)) {
7693 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7694 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
7695 			/*
7696 			 * Fix for bug: 4297749, item # 13
7697 			 * The above test now includes a check to see if PM is
7698 			 * supported by this device before call
7699 			 * pm_lower_power().
7700 			 * Note, the following is not dead code. The call to
7701 			 * pm_lower_power above will generate a call back into
7702 			 * our sdpower routine which might result in a timeout
7703 			 * handler getting activated. Therefore the following
7704 			 * code is valid and necessary.
7705 			 */
7706 			mutex_enter(&un->un_pm_mutex);
7707 			if (un->un_pm_timeid != NULL) {
7708 				timeout_id_t temp_id = un->un_pm_timeid;
7709 				un->un_pm_timeid = NULL;
7710 				mutex_exit(&un->un_pm_mutex);
7711 				(void) untimeout(temp_id);
7712 				(void) pm_idle_component(SD_DEVINFO(un), 0);
7713 			} else {
7714 				mutex_exit(&un->un_pm_mutex);
7715 			}
7716 		}
7717 	}
7718 
7719 	/*
7720 	 * Cleanup from the scsi_ifsetcap() calls (437868)
7721 	 * Relocated here from above to be after the call to
7722 	 * pm_lower_power, which was getting errors.
7723 	 */
7724 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7725 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7726 
7727 	/*
7728 	 * Currently, tagged queuing is supported per target based by HBA.
7729 	 * Setting this per lun instance actually sets the capability of this
7730 	 * target in HBA, which affects those luns already attached on the
7731 	 * same target. So during detach, we can only disable this capability
7732 	 * only when this is the only lun left on this target. By doing
7733 	 * this, we assume a target has the same tagged queuing capability
7734 	 * for every lun. The condition can be removed when HBA is changed to
7735 	 * support per lun based tagged queuing capability.
7736 	 */
7737 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
7738 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
7739 	}
7740 
7741 	if (un->un_f_is_fibre == FALSE) {
7742 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
7743 	}
7744 
7745 	/*
7746 	 * Remove any event callbacks, fibre only
7747 	 */
7748 	if (un->un_f_is_fibre == TRUE) {
7749 		if ((un->un_insert_event != NULL) &&
7750 		    (ddi_remove_event_handler(un->un_insert_cb_id) !=
7751 		    DDI_SUCCESS)) {
7752 			/*
7753 			 * Note: We are returning here after having done
7754 			 * substantial cleanup above. This is consistent
7755 			 * with the legacy implementation but this may not
7756 			 * be the right thing to do.
7757 			 */
7758 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7759 			    "sd_dr_detach: Cannot cancel insert event\n");
7760 			goto err_remove_event;
7761 		}
7762 		un->un_insert_event = NULL;
7763 
7764 		if ((un->un_remove_event != NULL) &&
7765 		    (ddi_remove_event_handler(un->un_remove_cb_id) !=
7766 		    DDI_SUCCESS)) {
7767 			/*
7768 			 * Note: We are returning here after having done
7769 			 * substantial cleanup above. This is consistent
7770 			 * with the legacy implementation but this may not
7771 			 * be the right thing to do.
7772 			 */
7773 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7774 			    "sd_dr_detach: Cannot cancel remove event\n");
7775 			goto err_remove_event;
7776 		}
7777 		un->un_remove_event = NULL;
7778 	}
7779 
7780 	/* Do not free the softstate if the callback routine is active */
7781 	sd_sync_with_callback(un);
7782 
7783 	cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
7784 	cmlb_free_handle(&un->un_cmlbhandle);
7785 
7786 	/*
7787 	 * Hold the detach mutex here, to make sure that no other threads ever
7788 	 * can access a (partially) freed soft state structure.
7789 	 */
7790 	mutex_enter(&sd_detach_mutex);
7791 
7792 	/*
7793 	 * Clean up the soft state struct.
7794 	 * Cleanup is done in reverse order of allocs/inits.
7795 	 * At this point there should be no competing threads anymore.
7796 	 */
7797 
7798 	/* Unregister and free device id. */
7799 	ddi_devid_unregister(devi);
7800 	if (un->un_devid) {
7801 		ddi_devid_free(un->un_devid);
7802 		un->un_devid = NULL;
7803 	}
7804 
7805 	/*
7806 	 * Destroy wmap cache if it exists.
7807 	 */
7808 	if (un->un_wm_cache != NULL) {
7809 		kmem_cache_destroy(un->un_wm_cache);
7810 		un->un_wm_cache = NULL;
7811 	}
7812 
7813 	/*
7814 	 * kstat cleanup is done in detach for all device types (4363169).
7815 	 * We do not want to fail detach if the device kstats are not deleted
7816 	 * since there is a confusion about the devo_refcnt for the device.
7817 	 * We just delete the kstats and let detach complete successfully.
7818 	 */
7819 	if (un->un_stats != NULL) {
7820 		kstat_delete(un->un_stats);
7821 		un->un_stats = NULL;
7822 	}
7823 	if (un->un_errstats != NULL) {
7824 		kstat_delete(un->un_errstats);
7825 		un->un_errstats = NULL;
7826 	}
7827 
7828 	/* Remove partition stats */
7829 	if (un->un_f_pkstats_enabled) {
7830 		for (i = 0; i < NSDMAP; i++) {
7831 			if (un->un_pstats[i] != NULL) {
7832 				kstat_delete(un->un_pstats[i]);
7833 				un->un_pstats[i] = NULL;
7834 			}
7835 		}
7836 	}
7837 
7838 	/* Remove xbuf registration */
7839 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
7840 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
7841 
7842 	/* Remove driver properties */
7843 	ddi_prop_remove_all(devi);
7844 
7845 	mutex_destroy(&un->un_pm_mutex);
7846 	cv_destroy(&un->un_pm_busy_cv);
7847 
7848 	cv_destroy(&un->un_wcc_cv);
7849 
7850 	/* Open/close semaphore */
7851 	sema_destroy(&un->un_semoclose);
7852 
7853 	/* Removable media condvar. */
7854 	cv_destroy(&un->un_state_cv);
7855 
7856 	/* Suspend/resume condvar. */
7857 	cv_destroy(&un->un_suspend_cv);
7858 	cv_destroy(&un->un_disk_busy_cv);
7859 
7860 	sd_free_rqs(un);
7861 
7862 	/* Free up soft state */
7863 	devp->sd_private = NULL;
7864 
7865 	bzero(un, sizeof (struct sd_lun));
7866 	ddi_soft_state_free(sd_state, instance);
7867 
7868 	mutex_exit(&sd_detach_mutex);
7869 
7870 	/* This frees up the INQUIRY data associated with the device. */
7871 	scsi_unprobe(devp);
7872 
7873 	/*
7874 	 * After successfully detaching an instance, we update the information
7875 	 * of how many luns have been attached in the relative target and
7876 	 * controller for parallel SCSI. This information is used when sd tries
7877 	 * to set the tagged queuing capability in HBA.
7878 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
7879 	 * check if the device is parallel SCSI. However, we don't need to
7880 	 * check here because we've already checked during attach. No device
7881 	 * that is not parallel SCSI is in the chain.
7882 	 */
7883 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
7884 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
7885 	}
7886 
7887 	return (DDI_SUCCESS);
7888 
7889 err_notclosed:
7890 	mutex_exit(SD_MUTEX(un));
7891 
7892 err_stillbusy:
7893 	_NOTE(NO_COMPETING_THREADS_NOW);
7894 
7895 err_remove_event:
7896 	mutex_enter(&sd_detach_mutex);
7897 	un->un_detach_count--;
7898 	mutex_exit(&sd_detach_mutex);
7899 
7900 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
7901 	return (DDI_FAILURE);
7902 }
7903 
7904 
7905 /*
7906  *    Function: sd_create_errstats
7907  *
7908  * Description: This routine instantiates the device error stats.
7909  *
7910  *		Note: During attach the stats are instantiated first so they are
7911  *		available for attach-time routines that utilize the driver
7912  *		iopath to send commands to the device. The stats are initialized
7913  *		separately so data obtained during some attach-time routines is
7914  *		available. (4362483)
7915  *
7916  *   Arguments: un - driver soft state (unit) structure
7917  *		instance - driver instance
7918  *
7919  *     Context: Kernel thread context
7920  */
7921 
7922 static void
7923 sd_create_errstats(struct sd_lun *un, int instance)
7924 {
7925 	struct	sd_errstats	*stp;
7926 	char	kstatmodule_err[KSTAT_STRLEN];
7927 	char	kstatname[KSTAT_STRLEN];
7928 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
7929 
7930 	ASSERT(un != NULL);
7931 
7932 	if (un->un_errstats != NULL) {
7933 		return;
7934 	}
7935 
7936 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
7937 	    "%serr", sd_label);
7938 	(void) snprintf(kstatname, sizeof (kstatname),
7939 	    "%s%d,err", sd_label, instance);
7940 
7941 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
7942 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
7943 
7944 	if (un->un_errstats == NULL) {
7945 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7946 		    "sd_create_errstats: Failed kstat_create\n");
7947 		return;
7948 	}
7949 
7950 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
7951 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
7952 	    KSTAT_DATA_UINT32);
7953 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
7954 	    KSTAT_DATA_UINT32);
7955 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
7956 	    KSTAT_DATA_UINT32);
7957 	kstat_named_init(&stp->sd_vid,		"Vendor",
7958 	    KSTAT_DATA_CHAR);
7959 	kstat_named_init(&stp->sd_pid,		"Product",
7960 	    KSTAT_DATA_CHAR);
7961 	kstat_named_init(&stp->sd_revision,	"Revision",
7962 	    KSTAT_DATA_CHAR);
7963 	kstat_named_init(&stp->sd_serial,	"Serial No",
7964 	    KSTAT_DATA_CHAR);
7965 	kstat_named_init(&stp->sd_capacity,	"Size",
7966 	    KSTAT_DATA_ULONGLONG);
7967 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
7968 	    KSTAT_DATA_UINT32);
7969 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
7970 	    KSTAT_DATA_UINT32);
7971 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
7972 	    KSTAT_DATA_UINT32);
7973 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
7974 	    KSTAT_DATA_UINT32);
7975 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
7976 	    KSTAT_DATA_UINT32);
7977 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
7978 	    KSTAT_DATA_UINT32);
7979 
7980 	un->un_errstats->ks_private = un;
7981 	un->un_errstats->ks_update  = nulldev;
7982 
7983 	kstat_install(un->un_errstats);
7984 }
7985 
7986 
7987 /*
7988  *    Function: sd_set_errstats
7989  *
7990  * Description: This routine sets the value of the vendor id, product id,
7991  *		revision, serial number, and capacity device error stats.
7992  *
7993  *		Note: During attach the stats are instantiated first so they are
7994  *		available for attach-time routines that utilize the driver
7995  *		iopath to send commands to the device. The stats are initialized
7996  *		separately so data obtained during some attach-time routines is
7997  *		available. (4362483)
7998  *
7999  *   Arguments: un - driver soft state (unit) structure
8000  *
8001  *     Context: Kernel thread context
8002  */
8003 
8004 static void
8005 sd_set_errstats(struct sd_lun *un)
8006 {
8007 	struct	sd_errstats	*stp;
8008 
8009 	ASSERT(un != NULL);
8010 	ASSERT(un->un_errstats != NULL);
8011 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8012 	ASSERT(stp != NULL);
8013 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
8014 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
8015 	(void) strncpy(stp->sd_revision.value.c,
8016 	    un->un_sd->sd_inq->inq_revision, 4);
8017 
8018 	/*
8019 	 * All the errstats are persistent across detach/attach,
8020 	 * so reset all the errstats here in case of the hot
8021 	 * replacement of disk drives, except for not changed
8022 	 * Sun qualified drives.
8023 	 */
8024 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
8025 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8026 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
8027 		stp->sd_softerrs.value.ui32 = 0;
8028 		stp->sd_harderrs.value.ui32 = 0;
8029 		stp->sd_transerrs.value.ui32 = 0;
8030 		stp->sd_rq_media_err.value.ui32 = 0;
8031 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
8032 		stp->sd_rq_nodev_err.value.ui32 = 0;
8033 		stp->sd_rq_recov_err.value.ui32 = 0;
8034 		stp->sd_rq_illrq_err.value.ui32 = 0;
8035 		stp->sd_rq_pfa_err.value.ui32 = 0;
8036 	}
8037 
8038 	/*
8039 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
8040 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
8041 	 * (4376302))
8042 	 */
8043 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
8044 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8045 		    sizeof (SD_INQUIRY(un)->inq_serial));
8046 	}
8047 
8048 	if (un->un_f_blockcount_is_valid != TRUE) {
8049 		/*
8050 		 * Set capacity error stat to 0 for no media. This ensures
8051 		 * a valid capacity is displayed in response to 'iostat -E'
8052 		 * when no media is present in the device.
8053 		 */
8054 		stp->sd_capacity.value.ui64 = 0;
8055 	} else {
8056 		/*
8057 		 * Multiply un_blockcount by un->un_sys_blocksize to get
8058 		 * capacity.
8059 		 *
8060 		 * Note: for non-512 blocksize devices "un_blockcount" has been
8061 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
8062 		 * (un_tgt_blocksize / un->un_sys_blocksize).
8063 		 */
8064 		stp->sd_capacity.value.ui64 = (uint64_t)
8065 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
8066 	}
8067 }
8068 
8069 
8070 /*
8071  *    Function: sd_set_pstats
8072  *
8073  * Description: This routine instantiates and initializes the partition
8074  *              stats for each partition with more than zero blocks.
8075  *		(4363169)
8076  *
8077  *   Arguments: un - driver soft state (unit) structure
8078  *
8079  *     Context: Kernel thread context
8080  */
8081 
8082 static void
8083 sd_set_pstats(struct sd_lun *un)
8084 {
8085 	char	kstatname[KSTAT_STRLEN];
8086 	int	instance;
8087 	int	i;
8088 	diskaddr_t	nblks = 0;
8089 	char	*partname = NULL;
8090 
8091 	ASSERT(un != NULL);
8092 
8093 	instance = ddi_get_instance(SD_DEVINFO(un));
8094 
8095 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
8096 	for (i = 0; i < NSDMAP; i++) {
8097 
8098 		if (cmlb_partinfo(un->un_cmlbhandle, i,
8099 		    &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0)
8100 			continue;
8101 		mutex_enter(SD_MUTEX(un));
8102 
8103 		if ((un->un_pstats[i] == NULL) &&
8104 		    (nblks != 0)) {
8105 
8106 			(void) snprintf(kstatname, sizeof (kstatname),
8107 			    "%s%d,%s", sd_label, instance,
8108 			    partname);
8109 
8110 			un->un_pstats[i] = kstat_create(sd_label,
8111 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
8112 			    1, KSTAT_FLAG_PERSISTENT);
8113 			if (un->un_pstats[i] != NULL) {
8114 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
8115 				kstat_install(un->un_pstats[i]);
8116 			}
8117 		}
8118 		mutex_exit(SD_MUTEX(un));
8119 	}
8120 }
8121 
8122 
8123 #if (defined(__fibre))
8124 /*
8125  *    Function: sd_init_event_callbacks
8126  *
8127  * Description: This routine initializes the insertion and removal event
8128  *		callbacks. (fibre only)
8129  *
8130  *   Arguments: un - driver soft state (unit) structure
8131  *
8132  *     Context: Kernel thread context
8133  */
8134 
8135 static void
8136 sd_init_event_callbacks(struct sd_lun *un)
8137 {
8138 	ASSERT(un != NULL);
8139 
8140 	if ((un->un_insert_event == NULL) &&
8141 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
8142 	    &un->un_insert_event) == DDI_SUCCESS)) {
8143 		/*
8144 		 * Add the callback for an insertion event
8145 		 */
8146 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8147 		    un->un_insert_event, sd_event_callback, (void *)un,
8148 		    &(un->un_insert_cb_id));
8149 	}
8150 
8151 	if ((un->un_remove_event == NULL) &&
8152 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
8153 	    &un->un_remove_event) == DDI_SUCCESS)) {
8154 		/*
8155 		 * Add the callback for a removal event
8156 		 */
8157 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8158 		    un->un_remove_event, sd_event_callback, (void *)un,
8159 		    &(un->un_remove_cb_id));
8160 	}
8161 }
8162 
8163 
8164 /*
8165  *    Function: sd_event_callback
8166  *
8167  * Description: This routine handles insert/remove events (photon). The
8168  *		state is changed to OFFLINE which can be used to supress
8169  *		error msgs. (fibre only)
8170  *
8171  *   Arguments: un - driver soft state (unit) structure
8172  *
8173  *     Context: Callout thread context
8174  */
8175 /* ARGSUSED */
8176 static void
8177 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
8178     void *bus_impldata)
8179 {
8180 	struct sd_lun *un = (struct sd_lun *)arg;
8181 
8182 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
8183 	if (event == un->un_insert_event) {
8184 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
8185 		mutex_enter(SD_MUTEX(un));
8186 		if (un->un_state == SD_STATE_OFFLINE) {
8187 			if (un->un_last_state != SD_STATE_SUSPENDED) {
8188 				un->un_state = un->un_last_state;
8189 			} else {
8190 				/*
8191 				 * We have gone through SUSPEND/RESUME while
8192 				 * we were offline. Restore the last state
8193 				 */
8194 				un->un_state = un->un_save_state;
8195 			}
8196 		}
8197 		mutex_exit(SD_MUTEX(un));
8198 
8199 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
8200 	} else if (event == un->un_remove_event) {
8201 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
8202 		mutex_enter(SD_MUTEX(un));
8203 		/*
8204 		 * We need to handle an event callback that occurs during
8205 		 * the suspend operation, since we don't prevent it.
8206 		 */
8207 		if (un->un_state != SD_STATE_OFFLINE) {
8208 			if (un->un_state != SD_STATE_SUSPENDED) {
8209 				New_state(un, SD_STATE_OFFLINE);
8210 			} else {
8211 				un->un_last_state = SD_STATE_OFFLINE;
8212 			}
8213 		}
8214 		mutex_exit(SD_MUTEX(un));
8215 	} else {
8216 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
8217 		    "!Unknown event\n");
8218 	}
8219 
8220 }
8221 #endif
8222 
8223 /*
8224  *    Function: sd_cache_control()
8225  *
8226  * Description: This routine is the driver entry point for setting
8227  *		read and write caching by modifying the WCE (write cache
8228  *		enable) and RCD (read cache disable) bits of mode
8229  *		page 8 (MODEPAGE_CACHING).
8230  *
8231  *   Arguments: un - driver soft state (unit) structure
8232  *		rcd_flag - flag for controlling the read cache
8233  *		wce_flag - flag for controlling the write cache
8234  *
8235  * Return Code: EIO
8236  *		code returned by sd_send_scsi_MODE_SENSE and
8237  *		sd_send_scsi_MODE_SELECT
8238  *
8239  *     Context: Kernel Thread
8240  */
8241 
8242 static int
8243 sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag)
8244 {
8245 	struct mode_caching	*mode_caching_page;
8246 	uchar_t			*header;
8247 	size_t			buflen;
8248 	int			hdrlen;
8249 	int			bd_len;
8250 	int			rval = 0;
8251 	struct mode_header_grp2	*mhp;
8252 
8253 	ASSERT(un != NULL);
8254 
8255 	/*
8256 	 * Do a test unit ready, otherwise a mode sense may not work if this
8257 	 * is the first command sent to the device after boot.
8258 	 */
8259 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
8260 
8261 	if (un->un_f_cfg_is_atapi == TRUE) {
8262 		hdrlen = MODE_HEADER_LENGTH_GRP2;
8263 	} else {
8264 		hdrlen = MODE_HEADER_LENGTH;
8265 	}
8266 
8267 	/*
8268 	 * Allocate memory for the retrieved mode page and its headers.  Set
8269 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
8270 	 * we get all of the mode sense data otherwise, the mode select
8271 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
8272 	 */
8273 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
8274 	    sizeof (struct mode_cache_scsi3);
8275 
8276 	header = kmem_zalloc(buflen, KM_SLEEP);
8277 
8278 	/* Get the information from the device. */
8279 	if (un->un_f_cfg_is_atapi == TRUE) {
8280 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
8281 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8282 	} else {
8283 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
8284 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8285 	}
8286 	if (rval != 0) {
8287 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8288 		    "sd_cache_control: Mode Sense Failed\n");
8289 		kmem_free(header, buflen);
8290 		return (rval);
8291 	}
8292 
8293 	/*
8294 	 * Determine size of Block Descriptors in order to locate
8295 	 * the mode page data. ATAPI devices return 0, SCSI devices
8296 	 * should return MODE_BLK_DESC_LENGTH.
8297 	 */
8298 	if (un->un_f_cfg_is_atapi == TRUE) {
8299 		mhp	= (struct mode_header_grp2 *)header;
8300 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
8301 	} else {
8302 		bd_len  = ((struct mode_header *)header)->bdesc_length;
8303 	}
8304 
8305 	if (bd_len > MODE_BLK_DESC_LENGTH) {
8306 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
8307 		    "sd_cache_control: Mode Sense returned invalid "
8308 		    "block descriptor length\n");
8309 		kmem_free(header, buflen);
8310 		return (EIO);
8311 	}
8312 
8313 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
8314 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
8315 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
8316 		    " caching page code mismatch %d\n",
8317 		    mode_caching_page->mode_page.code);
8318 		kmem_free(header, buflen);
8319 		return (EIO);
8320 	}
8321 
8322 	/* Check the relevant bits on successful mode sense. */
8323 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
8324 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
8325 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
8326 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
8327 
8328 		size_t sbuflen;
8329 		uchar_t save_pg;
8330 
8331 		/*
8332 		 * Construct select buffer length based on the
8333 		 * length of the sense data returned.
8334 		 */
8335 		sbuflen =  hdrlen + MODE_BLK_DESC_LENGTH +
8336 		    sizeof (struct mode_page) +
8337 		    (int)mode_caching_page->mode_page.length;
8338 
8339 		/*
8340 		 * Set the caching bits as requested.
8341 		 */
8342 		if (rcd_flag == SD_CACHE_ENABLE)
8343 			mode_caching_page->rcd = 0;
8344 		else if (rcd_flag == SD_CACHE_DISABLE)
8345 			mode_caching_page->rcd = 1;
8346 
8347 		if (wce_flag == SD_CACHE_ENABLE)
8348 			mode_caching_page->wce = 1;
8349 		else if (wce_flag == SD_CACHE_DISABLE)
8350 			mode_caching_page->wce = 0;
8351 
8352 		/*
8353 		 * Save the page if the mode sense says the
8354 		 * drive supports it.
8355 		 */
8356 		save_pg = mode_caching_page->mode_page.ps ?
8357 		    SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
8358 
8359 		/* Clear reserved bits before mode select. */
8360 		mode_caching_page->mode_page.ps = 0;
8361 
8362 		/*
8363 		 * Clear out mode header for mode select.
8364 		 * The rest of the retrieved page will be reused.
8365 		 */
8366 		bzero(header, hdrlen);
8367 
8368 		if (un->un_f_cfg_is_atapi == TRUE) {
8369 			mhp = (struct mode_header_grp2 *)header;
8370 			mhp->bdesc_length_hi = bd_len >> 8;
8371 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
8372 		} else {
8373 			((struct mode_header *)header)->bdesc_length = bd_len;
8374 		}
8375 
8376 		/* Issue mode select to change the cache settings */
8377 		if (un->un_f_cfg_is_atapi == TRUE) {
8378 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header,
8379 			    sbuflen, save_pg, SD_PATH_DIRECT);
8380 		} else {
8381 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
8382 			    sbuflen, save_pg, SD_PATH_DIRECT);
8383 		}
8384 	}
8385 
8386 	kmem_free(header, buflen);
8387 	return (rval);
8388 }
8389 
8390 
8391 /*
8392  *    Function: sd_get_write_cache_enabled()
8393  *
8394  * Description: This routine is the driver entry point for determining if
8395  *		write caching is enabled.  It examines the WCE (write cache
8396  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
8397  *
8398  *   Arguments: un - driver soft state (unit) structure
8399  *		is_enabled - pointer to int where write cache enabled state
8400  *		is returned (non-zero -> write cache enabled)
8401  *
8402  *
8403  * Return Code: EIO
8404  *		code returned by sd_send_scsi_MODE_SENSE
8405  *
8406  *     Context: Kernel Thread
8407  *
8408  * NOTE: If ioctl is added to disable write cache, this sequence should
8409  * be followed so that no locking is required for accesses to
8410  * un->un_f_write_cache_enabled:
8411  * 	do mode select to clear wce
8412  * 	do synchronize cache to flush cache
8413  * 	set un->un_f_write_cache_enabled = FALSE
8414  *
8415  * Conversely, an ioctl to enable the write cache should be done
8416  * in this order:
8417  * 	set un->un_f_write_cache_enabled = TRUE
8418  * 	do mode select to set wce
8419  */
8420 
8421 static int
8422 sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled)
8423 {
8424 	struct mode_caching	*mode_caching_page;
8425 	uchar_t			*header;
8426 	size_t			buflen;
8427 	int			hdrlen;
8428 	int			bd_len;
8429 	int			rval = 0;
8430 
8431 	ASSERT(un != NULL);
8432 	ASSERT(is_enabled != NULL);
8433 
8434 	/* in case of error, flag as enabled */
8435 	*is_enabled = TRUE;
8436 
8437 	/*
8438 	 * Do a test unit ready, otherwise a mode sense may not work if this
8439 	 * is the first command sent to the device after boot.
8440 	 */
8441 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
8442 
8443 	if (un->un_f_cfg_is_atapi == TRUE) {
8444 		hdrlen = MODE_HEADER_LENGTH_GRP2;
8445 	} else {
8446 		hdrlen = MODE_HEADER_LENGTH;
8447 	}
8448 
8449 	/*
8450 	 * Allocate memory for the retrieved mode page and its headers.  Set
8451 	 * a pointer to the page itself.
8452 	 */
8453 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
8454 	header = kmem_zalloc(buflen, KM_SLEEP);
8455 
8456 	/* Get the information from the device. */
8457 	if (un->un_f_cfg_is_atapi == TRUE) {
8458 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
8459 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8460 	} else {
8461 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
8462 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8463 	}
8464 	if (rval != 0) {
8465 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8466 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
8467 		kmem_free(header, buflen);
8468 		return (rval);
8469 	}
8470 
8471 	/*
8472 	 * Determine size of Block Descriptors in order to locate
8473 	 * the mode page data. ATAPI devices return 0, SCSI devices
8474 	 * should return MODE_BLK_DESC_LENGTH.
8475 	 */
8476 	if (un->un_f_cfg_is_atapi == TRUE) {
8477 		struct mode_header_grp2	*mhp;
8478 		mhp	= (struct mode_header_grp2 *)header;
8479 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
8480 	} else {
8481 		bd_len  = ((struct mode_header *)header)->bdesc_length;
8482 	}
8483 
8484 	if (bd_len > MODE_BLK_DESC_LENGTH) {
8485 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
8486 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
8487 		    "block descriptor length\n");
8488 		kmem_free(header, buflen);
8489 		return (EIO);
8490 	}
8491 
8492 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
8493 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
8494 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
8495 		    " caching page code mismatch %d\n",
8496 		    mode_caching_page->mode_page.code);
8497 		kmem_free(header, buflen);
8498 		return (EIO);
8499 	}
8500 	*is_enabled = mode_caching_page->wce;
8501 
8502 	kmem_free(header, buflen);
8503 	return (0);
8504 }
8505 
8506 
8507 /*
8508  *    Function: sd_make_device
8509  *
8510  * Description: Utility routine to return the Solaris device number from
8511  *		the data in the device's dev_info structure.
8512  *
8513  * Return Code: The Solaris device number
8514  *
8515  *     Context: Any
8516  */
8517 
8518 static dev_t
8519 sd_make_device(dev_info_t *devi)
8520 {
8521 	return (makedevice(ddi_name_to_major(ddi_get_name(devi)),
8522 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
8523 }
8524 
8525 
8526 /*
8527  *    Function: sd_pm_entry
8528  *
8529  * Description: Called at the start of a new command to manage power
8530  *		and busy status of a device. This includes determining whether
8531  *		the current power state of the device is sufficient for
8532  *		performing the command or whether it must be changed.
8533  *		The PM framework is notified appropriately.
8534  *		Only with a return status of DDI_SUCCESS will the
8535  *		component be busy to the framework.
8536  *
8537  *		All callers of sd_pm_entry must check the return status
8538  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
8539  *		of DDI_FAILURE indicates the device failed to power up.
8540  *		In this case un_pm_count has been adjusted so the result
8541  *		on exit is still powered down, ie. count is less than 0.
8542  *		Calling sd_pm_exit with this count value hits an ASSERT.
8543  *
8544  * Return Code: DDI_SUCCESS or DDI_FAILURE
8545  *
8546  *     Context: Kernel thread context.
8547  */
8548 
8549 static int
8550 sd_pm_entry(struct sd_lun *un)
8551 {
8552 	int return_status = DDI_SUCCESS;
8553 
8554 	ASSERT(!mutex_owned(SD_MUTEX(un)));
8555 	ASSERT(!mutex_owned(&un->un_pm_mutex));
8556 
8557 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
8558 
8559 	if (un->un_f_pm_is_enabled == FALSE) {
8560 		SD_TRACE(SD_LOG_IO_PM, un,
8561 		    "sd_pm_entry: exiting, PM not enabled\n");
8562 		return (return_status);
8563 	}
8564 
8565 	/*
8566 	 * Just increment a counter if PM is enabled. On the transition from
8567 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
8568 	 * the count with each IO and mark the device as idle when the count
8569 	 * hits 0.
8570 	 *
8571 	 * If the count is less than 0 the device is powered down. If a powered
8572 	 * down device is successfully powered up then the count must be
8573 	 * incremented to reflect the power up. Note that it'll get incremented
8574 	 * a second time to become busy.
8575 	 *
8576 	 * Because the following has the potential to change the device state
8577 	 * and must release the un_pm_mutex to do so, only one thread can be
8578 	 * allowed through at a time.
8579 	 */
8580 
8581 	mutex_enter(&un->un_pm_mutex);
8582 	while (un->un_pm_busy == TRUE) {
8583 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
8584 	}
8585 	un->un_pm_busy = TRUE;
8586 
8587 	if (un->un_pm_count < 1) {
8588 
8589 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
8590 
8591 		/*
8592 		 * Indicate we are now busy so the framework won't attempt to
8593 		 * power down the device. This call will only fail if either
8594 		 * we passed a bad component number or the device has no
8595 		 * components. Neither of these should ever happen.
8596 		 */
8597 		mutex_exit(&un->un_pm_mutex);
8598 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
8599 		ASSERT(return_status == DDI_SUCCESS);
8600 
8601 		mutex_enter(&un->un_pm_mutex);
8602 
8603 		if (un->un_pm_count < 0) {
8604 			mutex_exit(&un->un_pm_mutex);
8605 
8606 			SD_TRACE(SD_LOG_IO_PM, un,
8607 			    "sd_pm_entry: power up component\n");
8608 
8609 			/*
8610 			 * pm_raise_power will cause sdpower to be called
8611 			 * which brings the device power level to the
8612 			 * desired state, ON in this case. If successful,
8613 			 * un_pm_count and un_power_level will be updated
8614 			 * appropriately.
8615 			 */
8616 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
8617 			    SD_SPINDLE_ON);
8618 
8619 			mutex_enter(&un->un_pm_mutex);
8620 
8621 			if (return_status != DDI_SUCCESS) {
8622 				/*
8623 				 * Power up failed.
8624 				 * Idle the device and adjust the count
8625 				 * so the result on exit is that we're
8626 				 * still powered down, ie. count is less than 0.
8627 				 */
8628 				SD_TRACE(SD_LOG_IO_PM, un,
8629 				    "sd_pm_entry: power up failed,"
8630 				    " idle the component\n");
8631 
8632 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8633 				un->un_pm_count--;
8634 			} else {
8635 				/*
8636 				 * Device is powered up, verify the
8637 				 * count is non-negative.
8638 				 * This is debug only.
8639 				 */
8640 				ASSERT(un->un_pm_count == 0);
8641 			}
8642 		}
8643 
8644 		if (return_status == DDI_SUCCESS) {
8645 			/*
8646 			 * For performance, now that the device has been tagged
8647 			 * as busy, and it's known to be powered up, update the
8648 			 * chain types to use jump tables that do not include
8649 			 * pm. This significantly lowers the overhead and
8650 			 * therefore improves performance.
8651 			 */
8652 
8653 			mutex_exit(&un->un_pm_mutex);
8654 			mutex_enter(SD_MUTEX(un));
8655 			SD_TRACE(SD_LOG_IO_PM, un,
8656 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
8657 			    un->un_uscsi_chain_type);
8658 
8659 			if (un->un_f_non_devbsize_supported) {
8660 				un->un_buf_chain_type =
8661 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
8662 			} else {
8663 				un->un_buf_chain_type =
8664 				    SD_CHAIN_INFO_DISK_NO_PM;
8665 			}
8666 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8667 
8668 			SD_TRACE(SD_LOG_IO_PM, un,
8669 			    "             changed  uscsi_chain_type to   %d\n",
8670 			    un->un_uscsi_chain_type);
8671 			mutex_exit(SD_MUTEX(un));
8672 			mutex_enter(&un->un_pm_mutex);
8673 
8674 			if (un->un_pm_idle_timeid == NULL) {
8675 				/* 300 ms. */
8676 				un->un_pm_idle_timeid =
8677 				    timeout(sd_pm_idletimeout_handler, un,
8678 				    (drv_usectohz((clock_t)300000)));
8679 				/*
8680 				 * Include an extra call to busy which keeps the
8681 				 * device busy with-respect-to the PM layer
8682 				 * until the timer fires, at which time it'll
8683 				 * get the extra idle call.
8684 				 */
8685 				(void) pm_busy_component(SD_DEVINFO(un), 0);
8686 			}
8687 		}
8688 	}
8689 	un->un_pm_busy = FALSE;
8690 	/* Next... */
8691 	cv_signal(&un->un_pm_busy_cv);
8692 
8693 	un->un_pm_count++;
8694 
8695 	SD_TRACE(SD_LOG_IO_PM, un,
8696 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
8697 
8698 	mutex_exit(&un->un_pm_mutex);
8699 
8700 	return (return_status);
8701 }
8702 
8703 
8704 /*
8705  *    Function: sd_pm_exit
8706  *
8707  * Description: Called at the completion of a command to manage busy
8708  *		status for the device. If the device becomes idle the
8709  *		PM framework is notified.
8710  *
8711  *     Context: Kernel thread context
8712  */
8713 
8714 static void
8715 sd_pm_exit(struct sd_lun *un)
8716 {
8717 	ASSERT(!mutex_owned(SD_MUTEX(un)));
8718 	ASSERT(!mutex_owned(&un->un_pm_mutex));
8719 
8720 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
8721 
8722 	/*
8723 	 * After attach the following flag is only read, so don't
8724 	 * take the penalty of acquiring a mutex for it.
8725 	 */
8726 	if (un->un_f_pm_is_enabled == TRUE) {
8727 
8728 		mutex_enter(&un->un_pm_mutex);
8729 		un->un_pm_count--;
8730 
8731 		SD_TRACE(SD_LOG_IO_PM, un,
8732 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
8733 
8734 		ASSERT(un->un_pm_count >= 0);
8735 		if (un->un_pm_count == 0) {
8736 			mutex_exit(&un->un_pm_mutex);
8737 
8738 			SD_TRACE(SD_LOG_IO_PM, un,
8739 			    "sd_pm_exit: idle component\n");
8740 
8741 			(void) pm_idle_component(SD_DEVINFO(un), 0);
8742 
8743 		} else {
8744 			mutex_exit(&un->un_pm_mutex);
8745 		}
8746 	}
8747 
8748 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
8749 }
8750 
8751 
8752 /*
8753  *    Function: sdopen
8754  *
8755  * Description: Driver's open(9e) entry point function.
8756  *
8757  *   Arguments: dev_i   - pointer to device number
8758  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
8759  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
8760  *		cred_p  - user credential pointer
8761  *
8762  * Return Code: EINVAL
8763  *		ENXIO
8764  *		EIO
8765  *		EROFS
8766  *		EBUSY
8767  *
8768  *     Context: Kernel thread context
8769  */
8770 /* ARGSUSED */
8771 static int
8772 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
8773 {
8774 	struct sd_lun	*un;
8775 	int		nodelay;
8776 	int		part;
8777 	uint64_t	partmask;
8778 	int		instance;
8779 	dev_t		dev;
8780 	int		rval = EIO;
8781 	diskaddr_t	nblks = 0;
8782 
8783 	/* Validate the open type */
8784 	if (otyp >= OTYPCNT) {
8785 		return (EINVAL);
8786 	}
8787 
8788 	dev = *dev_p;
8789 	instance = SDUNIT(dev);
8790 	mutex_enter(&sd_detach_mutex);
8791 
8792 	/*
8793 	 * Fail the open if there is no softstate for the instance, or
8794 	 * if another thread somewhere is trying to detach the instance.
8795 	 */
8796 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
8797 	    (un->un_detach_count != 0)) {
8798 		mutex_exit(&sd_detach_mutex);
8799 		/*
8800 		 * The probe cache only needs to be cleared when open (9e) fails
8801 		 * with ENXIO (4238046).
8802 		 */
8803 		/*
8804 		 * un-conditionally clearing probe cache is ok with
8805 		 * separate sd/ssd binaries
8806 		 * x86 platform can be an issue with both parallel
8807 		 * and fibre in 1 binary
8808 		 */
8809 		sd_scsi_clear_probe_cache();
8810 		return (ENXIO);
8811 	}
8812 
8813 	/*
8814 	 * The un_layer_count is to prevent another thread in specfs from
8815 	 * trying to detach the instance, which can happen when we are
8816 	 * called from a higher-layer driver instead of thru specfs.
8817 	 * This will not be needed when DDI provides a layered driver
8818 	 * interface that allows specfs to know that an instance is in
8819 	 * use by a layered driver & should not be detached.
8820 	 *
8821 	 * Note: the semantics for layered driver opens are exactly one
8822 	 * close for every open.
8823 	 */
8824 	if (otyp == OTYP_LYR) {
8825 		un->un_layer_count++;
8826 	}
8827 
8828 	/*
8829 	 * Keep a count of the current # of opens in progress. This is because
8830 	 * some layered drivers try to call us as a regular open. This can
8831 	 * cause problems that we cannot prevent, however by keeping this count
8832 	 * we can at least keep our open and detach routines from racing against
8833 	 * each other under such conditions.
8834 	 */
8835 	un->un_opens_in_progress++;
8836 	mutex_exit(&sd_detach_mutex);
8837 
8838 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
8839 	part	 = SDPART(dev);
8840 	partmask = 1 << part;
8841 
8842 	/*
8843 	 * We use a semaphore here in order to serialize
8844 	 * open and close requests on the device.
8845 	 */
8846 	sema_p(&un->un_semoclose);
8847 
8848 	mutex_enter(SD_MUTEX(un));
8849 
8850 	/*
8851 	 * All device accesses go thru sdstrategy() where we check
8852 	 * on suspend status but there could be a scsi_poll command,
8853 	 * which bypasses sdstrategy(), so we need to check pm
8854 	 * status.
8855 	 */
8856 
8857 	if (!nodelay) {
8858 		while ((un->un_state == SD_STATE_SUSPENDED) ||
8859 		    (un->un_state == SD_STATE_PM_CHANGING)) {
8860 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
8861 		}
8862 
8863 		mutex_exit(SD_MUTEX(un));
8864 		if (sd_pm_entry(un) != DDI_SUCCESS) {
8865 			rval = EIO;
8866 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
8867 			    "sdopen: sd_pm_entry failed\n");
8868 			goto open_failed_with_pm;
8869 		}
8870 		mutex_enter(SD_MUTEX(un));
8871 	}
8872 
8873 	/* check for previous exclusive open */
8874 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
8875 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
8876 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
8877 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
8878 
8879 	if (un->un_exclopen & (partmask)) {
8880 		goto excl_open_fail;
8881 	}
8882 
8883 	if (flag & FEXCL) {
8884 		int i;
8885 		if (un->un_ocmap.lyropen[part]) {
8886 			goto excl_open_fail;
8887 		}
8888 		for (i = 0; i < (OTYPCNT - 1); i++) {
8889 			if (un->un_ocmap.regopen[i] & (partmask)) {
8890 				goto excl_open_fail;
8891 			}
8892 		}
8893 	}
8894 
8895 	/*
8896 	 * Check the write permission if this is a removable media device,
8897 	 * NDELAY has not been set, and writable permission is requested.
8898 	 *
8899 	 * Note: If NDELAY was set and this is write-protected media the WRITE
8900 	 * attempt will fail with EIO as part of the I/O processing. This is a
8901 	 * more permissive implementation that allows the open to succeed and
8902 	 * WRITE attempts to fail when appropriate.
8903 	 */
8904 	if (un->un_f_chk_wp_open) {
8905 		if ((flag & FWRITE) && (!nodelay)) {
8906 			mutex_exit(SD_MUTEX(un));
8907 			/*
8908 			 * Defer the check for write permission on writable
8909 			 * DVD drive till sdstrategy and will not fail open even
8910 			 * if FWRITE is set as the device can be writable
8911 			 * depending upon the media and the media can change
8912 			 * after the call to open().
8913 			 */
8914 			if (un->un_f_dvdram_writable_device == FALSE) {
8915 				if (ISCD(un) || sr_check_wp(dev)) {
8916 				rval = EROFS;
8917 				mutex_enter(SD_MUTEX(un));
8918 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
8919 				    "write to cd or write protected media\n");
8920 				goto open_fail;
8921 				}
8922 			}
8923 			mutex_enter(SD_MUTEX(un));
8924 		}
8925 	}
8926 
8927 	/*
8928 	 * If opening in NDELAY/NONBLOCK mode, just return.
8929 	 * Check if disk is ready and has a valid geometry later.
8930 	 */
8931 	if (!nodelay) {
8932 		mutex_exit(SD_MUTEX(un));
8933 		rval = sd_ready_and_valid(un);
8934 		mutex_enter(SD_MUTEX(un));
8935 		/*
8936 		 * Fail if device is not ready or if the number of disk
8937 		 * blocks is zero or negative for non CD devices.
8938 		 */
8939 
8940 		nblks = 0;
8941 
8942 		if (rval == SD_READY_VALID && (!ISCD(un))) {
8943 			/* if cmlb_partinfo fails, nblks remains 0 */
8944 			mutex_exit(SD_MUTEX(un));
8945 			(void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks,
8946 			    NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
8947 			mutex_enter(SD_MUTEX(un));
8948 		}
8949 
8950 		if ((rval != SD_READY_VALID) ||
8951 		    (!ISCD(un) && nblks <= 0)) {
8952 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
8953 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
8954 			    "device not ready or invalid disk block value\n");
8955 			goto open_fail;
8956 		}
8957 #if defined(__i386) || defined(__amd64)
8958 	} else {
8959 		uchar_t *cp;
8960 		/*
8961 		 * x86 requires special nodelay handling, so that p0 is
8962 		 * always defined and accessible.
8963 		 * Invalidate geometry only if device is not already open.
8964 		 */
8965 		cp = &un->un_ocmap.chkd[0];
8966 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
8967 			if (*cp != (uchar_t)0) {
8968 				break;
8969 			}
8970 			cp++;
8971 		}
8972 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
8973 			mutex_exit(SD_MUTEX(un));
8974 			cmlb_invalidate(un->un_cmlbhandle,
8975 			    (void *)SD_PATH_DIRECT);
8976 			mutex_enter(SD_MUTEX(un));
8977 		}
8978 
8979 #endif
8980 	}
8981 
8982 	if (otyp == OTYP_LYR) {
8983 		un->un_ocmap.lyropen[part]++;
8984 	} else {
8985 		un->un_ocmap.regopen[otyp] |= partmask;
8986 	}
8987 
8988 	/* Set up open and exclusive open flags */
8989 	if (flag & FEXCL) {
8990 		un->un_exclopen |= (partmask);
8991 	}
8992 
8993 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
8994 	    "open of part %d type %d\n", part, otyp);
8995 
8996 	mutex_exit(SD_MUTEX(un));
8997 	if (!nodelay) {
8998 		sd_pm_exit(un);
8999 	}
9000 
9001 	sema_v(&un->un_semoclose);
9002 
9003 	mutex_enter(&sd_detach_mutex);
9004 	un->un_opens_in_progress--;
9005 	mutex_exit(&sd_detach_mutex);
9006 
9007 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
9008 	return (DDI_SUCCESS);
9009 
9010 excl_open_fail:
9011 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
9012 	rval = EBUSY;
9013 
9014 open_fail:
9015 	mutex_exit(SD_MUTEX(un));
9016 
9017 	/*
9018 	 * On a failed open we must exit the pm management.
9019 	 */
9020 	if (!nodelay) {
9021 		sd_pm_exit(un);
9022 	}
9023 open_failed_with_pm:
9024 	sema_v(&un->un_semoclose);
9025 
9026 	mutex_enter(&sd_detach_mutex);
9027 	un->un_opens_in_progress--;
9028 	if (otyp == OTYP_LYR) {
9029 		un->un_layer_count--;
9030 	}
9031 	mutex_exit(&sd_detach_mutex);
9032 
9033 	return (rval);
9034 }
9035 
9036 
9037 /*
9038  *    Function: sdclose
9039  *
9040  * Description: Driver's close(9e) entry point function.
9041  *
9042  *   Arguments: dev    - device number
9043  *		flag   - file status flag, informational only
9044  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9045  *		cred_p - user credential pointer
9046  *
9047  * Return Code: ENXIO
9048  *
9049  *     Context: Kernel thread context
9050  */
9051 /* ARGSUSED */
9052 static int
9053 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
9054 {
9055 	struct sd_lun	*un;
9056 	uchar_t		*cp;
9057 	int		part;
9058 	int		nodelay;
9059 	int		rval = 0;
9060 
9061 	/* Validate the open type */
9062 	if (otyp >= OTYPCNT) {
9063 		return (ENXIO);
9064 	}
9065 
9066 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9067 		return (ENXIO);
9068 	}
9069 
9070 	part = SDPART(dev);
9071 	nodelay = flag & (FNDELAY | FNONBLOCK);
9072 
9073 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9074 	    "sdclose: close of part %d type %d\n", part, otyp);
9075 
9076 	/*
9077 	 * We use a semaphore here in order to serialize
9078 	 * open and close requests on the device.
9079 	 */
9080 	sema_p(&un->un_semoclose);
9081 
9082 	mutex_enter(SD_MUTEX(un));
9083 
9084 	/* Don't proceed if power is being changed. */
9085 	while (un->un_state == SD_STATE_PM_CHANGING) {
9086 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9087 	}
9088 
9089 	if (un->un_exclopen & (1 << part)) {
9090 		un->un_exclopen &= ~(1 << part);
9091 	}
9092 
9093 	/* Update the open partition map */
9094 	if (otyp == OTYP_LYR) {
9095 		un->un_ocmap.lyropen[part] -= 1;
9096 	} else {
9097 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
9098 	}
9099 
9100 	cp = &un->un_ocmap.chkd[0];
9101 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9102 		if (*cp != NULL) {
9103 			break;
9104 		}
9105 		cp++;
9106 	}
9107 
9108 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9109 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
9110 
9111 		/*
9112 		 * We avoid persistance upon the last close, and set
9113 		 * the throttle back to the maximum.
9114 		 */
9115 		un->un_throttle = un->un_saved_throttle;
9116 
9117 		if (un->un_state == SD_STATE_OFFLINE) {
9118 			if (un->un_f_is_fibre == FALSE) {
9119 				scsi_log(SD_DEVINFO(un), sd_label,
9120 				    CE_WARN, "offline\n");
9121 			}
9122 			mutex_exit(SD_MUTEX(un));
9123 			cmlb_invalidate(un->un_cmlbhandle,
9124 			    (void *)SD_PATH_DIRECT);
9125 			mutex_enter(SD_MUTEX(un));
9126 
9127 		} else {
9128 			/*
9129 			 * Flush any outstanding writes in NVRAM cache.
9130 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
9131 			 * cmd, it may not work for non-Pluto devices.
9132 			 * SYNCHRONIZE CACHE is not required for removables,
9133 			 * except DVD-RAM drives.
9134 			 *
9135 			 * Also note: because SYNCHRONIZE CACHE is currently
9136 			 * the only command issued here that requires the
9137 			 * drive be powered up, only do the power up before
9138 			 * sending the Sync Cache command. If additional
9139 			 * commands are added which require a powered up
9140 			 * drive, the following sequence may have to change.
9141 			 *
9142 			 * And finally, note that parallel SCSI on SPARC
9143 			 * only issues a Sync Cache to DVD-RAM, a newly
9144 			 * supported device.
9145 			 */
9146 #if defined(__i386) || defined(__amd64)
9147 			if (un->un_f_sync_cache_supported ||
9148 			    un->un_f_dvdram_writable_device == TRUE) {
9149 #else
9150 			if (un->un_f_dvdram_writable_device == TRUE) {
9151 #endif
9152 				mutex_exit(SD_MUTEX(un));
9153 				if (sd_pm_entry(un) == DDI_SUCCESS) {
9154 					rval =
9155 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
9156 					    NULL);
9157 					/* ignore error if not supported */
9158 					if (rval == ENOTSUP) {
9159 						rval = 0;
9160 					} else if (rval != 0) {
9161 						rval = EIO;
9162 					}
9163 					sd_pm_exit(un);
9164 				} else {
9165 					rval = EIO;
9166 				}
9167 				mutex_enter(SD_MUTEX(un));
9168 			}
9169 
9170 			/*
9171 			 * For devices which supports DOOR_LOCK, send an ALLOW
9172 			 * MEDIA REMOVAL command, but don't get upset if it
9173 			 * fails. We need to raise the power of the drive before
9174 			 * we can call sd_send_scsi_DOORLOCK()
9175 			 */
9176 			if (un->un_f_doorlock_supported) {
9177 				mutex_exit(SD_MUTEX(un));
9178 				if (sd_pm_entry(un) == DDI_SUCCESS) {
9179 					rval = sd_send_scsi_DOORLOCK(un,
9180 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
9181 
9182 					sd_pm_exit(un);
9183 					if (ISCD(un) && (rval != 0) &&
9184 					    (nodelay != 0)) {
9185 						rval = ENXIO;
9186 					}
9187 				} else {
9188 					rval = EIO;
9189 				}
9190 				mutex_enter(SD_MUTEX(un));
9191 			}
9192 
9193 			/*
9194 			 * If a device has removable media, invalidate all
9195 			 * parameters related to media, such as geometry,
9196 			 * blocksize, and blockcount.
9197 			 */
9198 			if (un->un_f_has_removable_media) {
9199 				sr_ejected(un);
9200 			}
9201 
9202 			/*
9203 			 * Destroy the cache (if it exists) which was
9204 			 * allocated for the write maps since this is
9205 			 * the last close for this media.
9206 			 */
9207 			if (un->un_wm_cache) {
9208 				/*
9209 				 * Check if there are pending commands.
9210 				 * and if there are give a warning and
9211 				 * do not destroy the cache.
9212 				 */
9213 				if (un->un_ncmds_in_driver > 0) {
9214 					scsi_log(SD_DEVINFO(un),
9215 					    sd_label, CE_WARN,
9216 					    "Unable to clean up memory "
9217 					    "because of pending I/O\n");
9218 				} else {
9219 					kmem_cache_destroy(
9220 					    un->un_wm_cache);
9221 					un->un_wm_cache = NULL;
9222 				}
9223 			}
9224 		}
9225 	}
9226 
9227 	mutex_exit(SD_MUTEX(un));
9228 	sema_v(&un->un_semoclose);
9229 
9230 	if (otyp == OTYP_LYR) {
9231 		mutex_enter(&sd_detach_mutex);
9232 		/*
9233 		 * The detach routine may run when the layer count
9234 		 * drops to zero.
9235 		 */
9236 		un->un_layer_count--;
9237 		mutex_exit(&sd_detach_mutex);
9238 	}
9239 
9240 	return (rval);
9241 }
9242 
9243 
9244 /*
9245  *    Function: sd_ready_and_valid
9246  *
9247  * Description: Test if device is ready and has a valid geometry.
9248  *
9249  *   Arguments: dev - device number
9250  *		un  - driver soft state (unit) structure
9251  *
9252  * Return Code: SD_READY_VALID		ready and valid label
9253  *		SD_NOT_READY_VALID	not ready, no label
9254  *		SD_RESERVED_BY_OTHERS	reservation conflict
9255  *
9256  *     Context: Never called at interrupt context.
9257  */
9258 
9259 static int
9260 sd_ready_and_valid(struct sd_lun *un)
9261 {
9262 	struct sd_errstats	*stp;
9263 	uint64_t		capacity;
9264 	uint_t			lbasize;
9265 	int			rval = SD_READY_VALID;
9266 	char			name_str[48];
9267 	int			is_valid;
9268 
9269 	ASSERT(un != NULL);
9270 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9271 
9272 	mutex_enter(SD_MUTEX(un));
9273 	/*
9274 	 * If a device has removable media, we must check if media is
9275 	 * ready when checking if this device is ready and valid.
9276 	 */
9277 	if (un->un_f_has_removable_media) {
9278 		mutex_exit(SD_MUTEX(un));
9279 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
9280 			rval = SD_NOT_READY_VALID;
9281 			mutex_enter(SD_MUTEX(un));
9282 			goto done;
9283 		}
9284 
9285 		is_valid = SD_IS_VALID_LABEL(un);
9286 		mutex_enter(SD_MUTEX(un));
9287 		if (!is_valid ||
9288 		    (un->un_f_blockcount_is_valid == FALSE) ||
9289 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
9290 
9291 			/* capacity has to be read every open. */
9292 			mutex_exit(SD_MUTEX(un));
9293 			if (sd_send_scsi_READ_CAPACITY(un, &capacity,
9294 			    &lbasize, SD_PATH_DIRECT) != 0) {
9295 				cmlb_invalidate(un->un_cmlbhandle,
9296 				    (void *)SD_PATH_DIRECT);
9297 				mutex_enter(SD_MUTEX(un));
9298 				rval = SD_NOT_READY_VALID;
9299 				goto done;
9300 			} else {
9301 				mutex_enter(SD_MUTEX(un));
9302 				sd_update_block_info(un, lbasize, capacity);
9303 			}
9304 		}
9305 
9306 		/*
9307 		 * Check if the media in the device is writable or not.
9308 		 */
9309 		if (!is_valid && ISCD(un)) {
9310 			sd_check_for_writable_cd(un, SD_PATH_DIRECT);
9311 		}
9312 
9313 	} else {
9314 		/*
9315 		 * Do a test unit ready to clear any unit attention from non-cd
9316 		 * devices.
9317 		 */
9318 		mutex_exit(SD_MUTEX(un));
9319 		(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
9320 		mutex_enter(SD_MUTEX(un));
9321 	}
9322 
9323 
9324 	/*
9325 	 * If this is a non 512 block device, allocate space for
9326 	 * the wmap cache. This is being done here since every time
9327 	 * a media is changed this routine will be called and the
9328 	 * block size is a function of media rather than device.
9329 	 */
9330 	if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) {
9331 		if (!(un->un_wm_cache)) {
9332 			(void) snprintf(name_str, sizeof (name_str),
9333 			    "%s%d_cache",
9334 			    ddi_driver_name(SD_DEVINFO(un)),
9335 			    ddi_get_instance(SD_DEVINFO(un)));
9336 			un->un_wm_cache = kmem_cache_create(
9337 			    name_str, sizeof (struct sd_w_map),
9338 			    8, sd_wm_cache_constructor,
9339 			    sd_wm_cache_destructor, NULL,
9340 			    (void *)un, NULL, 0);
9341 			if (!(un->un_wm_cache)) {
9342 					rval = ENOMEM;
9343 					goto done;
9344 			}
9345 		}
9346 	}
9347 
9348 	if (un->un_state == SD_STATE_NORMAL) {
9349 		/*
9350 		 * If the target is not yet ready here (defined by a TUR
9351 		 * failure), invalidate the geometry and print an 'offline'
9352 		 * message. This is a legacy message, as the state of the
9353 		 * target is not actually changed to SD_STATE_OFFLINE.
9354 		 *
9355 		 * If the TUR fails for EACCES (Reservation Conflict),
9356 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
9357 		 * reservation conflict. If the TUR fails for other
9358 		 * reasons, SD_NOT_READY_VALID will be returned.
9359 		 */
9360 		int err;
9361 
9362 		mutex_exit(SD_MUTEX(un));
9363 		err = sd_send_scsi_TEST_UNIT_READY(un, 0);
9364 		mutex_enter(SD_MUTEX(un));
9365 
9366 		if (err != 0) {
9367 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9368 			    "offline or reservation conflict\n");
9369 			mutex_exit(SD_MUTEX(un));
9370 			cmlb_invalidate(un->un_cmlbhandle,
9371 			    (void *)SD_PATH_DIRECT);
9372 			mutex_enter(SD_MUTEX(un));
9373 			if (err == EACCES) {
9374 				rval = SD_RESERVED_BY_OTHERS;
9375 			} else {
9376 				rval = SD_NOT_READY_VALID;
9377 			}
9378 			goto done;
9379 		}
9380 	}
9381 
9382 	if (un->un_f_format_in_progress == FALSE) {
9383 		mutex_exit(SD_MUTEX(un));
9384 		if (cmlb_validate(un->un_cmlbhandle, 0,
9385 		    (void *)SD_PATH_DIRECT) != 0) {
9386 			rval = SD_NOT_READY_VALID;
9387 			mutex_enter(SD_MUTEX(un));
9388 			goto done;
9389 		}
9390 		if (un->un_f_pkstats_enabled) {
9391 			sd_set_pstats(un);
9392 			SD_TRACE(SD_LOG_IO_PARTITION, un,
9393 			    "sd_ready_and_valid: un:0x%p pstats created and "
9394 			    "set\n", un);
9395 		}
9396 		mutex_enter(SD_MUTEX(un));
9397 	}
9398 
9399 	/*
9400 	 * If this device supports DOOR_LOCK command, try and send
9401 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
9402 	 * if it fails. For a CD, however, it is an error
9403 	 */
9404 	if (un->un_f_doorlock_supported) {
9405 		mutex_exit(SD_MUTEX(un));
9406 		if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
9407 		    SD_PATH_DIRECT) != 0) && ISCD(un)) {
9408 			rval = SD_NOT_READY_VALID;
9409 			mutex_enter(SD_MUTEX(un));
9410 			goto done;
9411 		}
9412 		mutex_enter(SD_MUTEX(un));
9413 	}
9414 
9415 	/* The state has changed, inform the media watch routines */
9416 	un->un_mediastate = DKIO_INSERTED;
9417 	cv_broadcast(&un->un_state_cv);
9418 	rval = SD_READY_VALID;
9419 
9420 done:
9421 
9422 	/*
9423 	 * Initialize the capacity kstat value, if no media previously
9424 	 * (capacity kstat is 0) and a media has been inserted
9425 	 * (un_blockcount > 0).
9426 	 */
9427 	if (un->un_errstats != NULL) {
9428 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
9429 		if ((stp->sd_capacity.value.ui64 == 0) &&
9430 		    (un->un_f_blockcount_is_valid == TRUE)) {
9431 			stp->sd_capacity.value.ui64 =
9432 			    (uint64_t)((uint64_t)un->un_blockcount *
9433 			    un->un_sys_blocksize);
9434 		}
9435 	}
9436 
9437 	mutex_exit(SD_MUTEX(un));
9438 	return (rval);
9439 }
9440 
9441 
9442 /*
9443  *    Function: sdmin
9444  *
9445  * Description: Routine to limit the size of a data transfer. Used in
9446  *		conjunction with physio(9F).
9447  *
9448  *   Arguments: bp - pointer to the indicated buf(9S) struct.
9449  *
9450  *     Context: Kernel thread context.
9451  */
9452 
9453 static void
9454 sdmin(struct buf *bp)
9455 {
9456 	struct sd_lun	*un;
9457 	int		instance;
9458 
9459 	instance = SDUNIT(bp->b_edev);
9460 
9461 	un = ddi_get_soft_state(sd_state, instance);
9462 	ASSERT(un != NULL);
9463 
9464 	if (bp->b_bcount > un->un_max_xfer_size) {
9465 		bp->b_bcount = un->un_max_xfer_size;
9466 	}
9467 }
9468 
9469 
9470 /*
9471  *    Function: sdread
9472  *
9473  * Description: Driver's read(9e) entry point function.
9474  *
9475  *   Arguments: dev   - device number
9476  *		uio   - structure pointer describing where data is to be stored
9477  *			in user's space
9478  *		cred_p  - user credential pointer
9479  *
9480  * Return Code: ENXIO
9481  *		EIO
9482  *		EINVAL
9483  *		value returned by physio
9484  *
9485  *     Context: Kernel thread context.
9486  */
9487 /* ARGSUSED */
9488 static int
9489 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
9490 {
9491 	struct sd_lun	*un = NULL;
9492 	int		secmask;
9493 	int		err;
9494 
9495 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9496 		return (ENXIO);
9497 	}
9498 
9499 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9500 
9501 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9502 		mutex_enter(SD_MUTEX(un));
9503 		/*
9504 		 * Because the call to sd_ready_and_valid will issue I/O we
9505 		 * must wait here if either the device is suspended or
9506 		 * if it's power level is changing.
9507 		 */
9508 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9509 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9510 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9511 		}
9512 		un->un_ncmds_in_driver++;
9513 		mutex_exit(SD_MUTEX(un));
9514 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9515 			mutex_enter(SD_MUTEX(un));
9516 			un->un_ncmds_in_driver--;
9517 			ASSERT(un->un_ncmds_in_driver >= 0);
9518 			mutex_exit(SD_MUTEX(un));
9519 			return (EIO);
9520 		}
9521 		mutex_enter(SD_MUTEX(un));
9522 		un->un_ncmds_in_driver--;
9523 		ASSERT(un->un_ncmds_in_driver >= 0);
9524 		mutex_exit(SD_MUTEX(un));
9525 	}
9526 
9527 	/*
9528 	 * Read requests are restricted to multiples of the system block size.
9529 	 */
9530 	secmask = un->un_sys_blocksize - 1;
9531 
9532 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9533 		SD_ERROR(SD_LOG_READ_WRITE, un,
9534 		    "sdread: file offset not modulo %d\n",
9535 		    un->un_sys_blocksize);
9536 		err = EINVAL;
9537 	} else if (uio->uio_iov->iov_len & (secmask)) {
9538 		SD_ERROR(SD_LOG_READ_WRITE, un,
9539 		    "sdread: transfer length not modulo %d\n",
9540 		    un->un_sys_blocksize);
9541 		err = EINVAL;
9542 	} else {
9543 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
9544 	}
9545 	return (err);
9546 }
9547 
9548 
9549 /*
9550  *    Function: sdwrite
9551  *
9552  * Description: Driver's write(9e) entry point function.
9553  *
9554  *   Arguments: dev   - device number
9555  *		uio   - structure pointer describing where data is stored in
9556  *			user's space
9557  *		cred_p  - user credential pointer
9558  *
9559  * Return Code: ENXIO
9560  *		EIO
9561  *		EINVAL
9562  *		value returned by physio
9563  *
9564  *     Context: Kernel thread context.
9565  */
9566 /* ARGSUSED */
9567 static int
9568 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
9569 {
9570 	struct sd_lun	*un = NULL;
9571 	int		secmask;
9572 	int		err;
9573 
9574 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9575 		return (ENXIO);
9576 	}
9577 
9578 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9579 
9580 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9581 		mutex_enter(SD_MUTEX(un));
9582 		/*
9583 		 * Because the call to sd_ready_and_valid will issue I/O we
9584 		 * must wait here if either the device is suspended or
9585 		 * if it's power level is changing.
9586 		 */
9587 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9588 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9589 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9590 		}
9591 		un->un_ncmds_in_driver++;
9592 		mutex_exit(SD_MUTEX(un));
9593 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9594 			mutex_enter(SD_MUTEX(un));
9595 			un->un_ncmds_in_driver--;
9596 			ASSERT(un->un_ncmds_in_driver >= 0);
9597 			mutex_exit(SD_MUTEX(un));
9598 			return (EIO);
9599 		}
9600 		mutex_enter(SD_MUTEX(un));
9601 		un->un_ncmds_in_driver--;
9602 		ASSERT(un->un_ncmds_in_driver >= 0);
9603 		mutex_exit(SD_MUTEX(un));
9604 	}
9605 
9606 	/*
9607 	 * Write requests are restricted to multiples of the system block size.
9608 	 */
9609 	secmask = un->un_sys_blocksize - 1;
9610 
9611 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9612 		SD_ERROR(SD_LOG_READ_WRITE, un,
9613 		    "sdwrite: file offset not modulo %d\n",
9614 		    un->un_sys_blocksize);
9615 		err = EINVAL;
9616 	} else if (uio->uio_iov->iov_len & (secmask)) {
9617 		SD_ERROR(SD_LOG_READ_WRITE, un,
9618 		    "sdwrite: transfer length not modulo %d\n",
9619 		    un->un_sys_blocksize);
9620 		err = EINVAL;
9621 	} else {
9622 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
9623 	}
9624 	return (err);
9625 }
9626 
9627 
9628 /*
9629  *    Function: sdaread
9630  *
9631  * Description: Driver's aread(9e) entry point function.
9632  *
9633  *   Arguments: dev   - device number
9634  *		aio   - structure pointer describing where data is to be stored
9635  *		cred_p  - user credential pointer
9636  *
9637  * Return Code: ENXIO
9638  *		EIO
9639  *		EINVAL
9640  *		value returned by aphysio
9641  *
9642  *     Context: Kernel thread context.
9643  */
9644 /* ARGSUSED */
9645 static int
9646 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
9647 {
9648 	struct sd_lun	*un = NULL;
9649 	struct uio	*uio = aio->aio_uio;
9650 	int		secmask;
9651 	int		err;
9652 
9653 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9654 		return (ENXIO);
9655 	}
9656 
9657 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9658 
9659 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9660 		mutex_enter(SD_MUTEX(un));
9661 		/*
9662 		 * Because the call to sd_ready_and_valid will issue I/O we
9663 		 * must wait here if either the device is suspended or
9664 		 * if it's power level is changing.
9665 		 */
9666 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9667 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9668 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9669 		}
9670 		un->un_ncmds_in_driver++;
9671 		mutex_exit(SD_MUTEX(un));
9672 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9673 			mutex_enter(SD_MUTEX(un));
9674 			un->un_ncmds_in_driver--;
9675 			ASSERT(un->un_ncmds_in_driver >= 0);
9676 			mutex_exit(SD_MUTEX(un));
9677 			return (EIO);
9678 		}
9679 		mutex_enter(SD_MUTEX(un));
9680 		un->un_ncmds_in_driver--;
9681 		ASSERT(un->un_ncmds_in_driver >= 0);
9682 		mutex_exit(SD_MUTEX(un));
9683 	}
9684 
9685 	/*
9686 	 * Read requests are restricted to multiples of the system block size.
9687 	 */
9688 	secmask = un->un_sys_blocksize - 1;
9689 
9690 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9691 		SD_ERROR(SD_LOG_READ_WRITE, un,
9692 		    "sdaread: file offset not modulo %d\n",
9693 		    un->un_sys_blocksize);
9694 		err = EINVAL;
9695 	} else if (uio->uio_iov->iov_len & (secmask)) {
9696 		SD_ERROR(SD_LOG_READ_WRITE, un,
9697 		    "sdaread: transfer length not modulo %d\n",
9698 		    un->un_sys_blocksize);
9699 		err = EINVAL;
9700 	} else {
9701 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
9702 	}
9703 	return (err);
9704 }
9705 
9706 
9707 /*
9708  *    Function: sdawrite
9709  *
9710  * Description: Driver's awrite(9e) entry point function.
9711  *
9712  *   Arguments: dev   - device number
9713  *		aio   - structure pointer describing where data is stored
9714  *		cred_p  - user credential pointer
9715  *
9716  * Return Code: ENXIO
9717  *		EIO
9718  *		EINVAL
9719  *		value returned by aphysio
9720  *
9721  *     Context: Kernel thread context.
9722  */
9723 /* ARGSUSED */
9724 static int
9725 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
9726 {
9727 	struct sd_lun	*un = NULL;
9728 	struct uio	*uio = aio->aio_uio;
9729 	int		secmask;
9730 	int		err;
9731 
9732 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9733 		return (ENXIO);
9734 	}
9735 
9736 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9737 
9738 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9739 		mutex_enter(SD_MUTEX(un));
9740 		/*
9741 		 * Because the call to sd_ready_and_valid will issue I/O we
9742 		 * must wait here if either the device is suspended or
9743 		 * if it's power level is changing.
9744 		 */
9745 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9746 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9747 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9748 		}
9749 		un->un_ncmds_in_driver++;
9750 		mutex_exit(SD_MUTEX(un));
9751 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9752 			mutex_enter(SD_MUTEX(un));
9753 			un->un_ncmds_in_driver--;
9754 			ASSERT(un->un_ncmds_in_driver >= 0);
9755 			mutex_exit(SD_MUTEX(un));
9756 			return (EIO);
9757 		}
9758 		mutex_enter(SD_MUTEX(un));
9759 		un->un_ncmds_in_driver--;
9760 		ASSERT(un->un_ncmds_in_driver >= 0);
9761 		mutex_exit(SD_MUTEX(un));
9762 	}
9763 
9764 	/*
9765 	 * Write requests are restricted to multiples of the system block size.
9766 	 */
9767 	secmask = un->un_sys_blocksize - 1;
9768 
9769 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9770 		SD_ERROR(SD_LOG_READ_WRITE, un,
9771 		    "sdawrite: file offset not modulo %d\n",
9772 		    un->un_sys_blocksize);
9773 		err = EINVAL;
9774 	} else if (uio->uio_iov->iov_len & (secmask)) {
9775 		SD_ERROR(SD_LOG_READ_WRITE, un,
9776 		    "sdawrite: transfer length not modulo %d\n",
9777 		    un->un_sys_blocksize);
9778 		err = EINVAL;
9779 	} else {
9780 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
9781 	}
9782 	return (err);
9783 }
9784 
9785 
9786 
9787 
9788 
9789 /*
9790  * Driver IO processing follows the following sequence:
9791  *
9792  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
9793  *         |                |                     ^
9794  *         v                v                     |
9795  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
9796  *         |                |                     |                   |
9797  *         v                |                     |                   |
9798  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
9799  *         |                |                     ^                   ^
9800  *         v                v                     |                   |
9801  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
9802  *         |                |                     |                   |
9803  *     +---+                |                     +------------+      +-------+
9804  *     |                    |                                  |              |
9805  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
9806  *     |                    v                                  |              |
9807  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
9808  *     |                    |                                  ^              |
9809  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
9810  *     |                    v                                  |              |
9811  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
9812  *     |                    |                                  ^              |
9813  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
9814  *     |                    v                                  |              |
9815  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
9816  *     |                    |                                  ^              |
9817  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
9818  *     |                    v                                  |              |
9819  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
9820  *     |                    |                                  ^              |
9821  *     |                    |                                  |              |
9822  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
9823  *                          |                           ^
9824  *                          v                           |
9825  *                   sd_core_iostart()                  |
9826  *                          |                           |
9827  *                          |                           +------>(*destroypkt)()
9828  *                          +-> sd_start_cmds() <-+     |           |
9829  *                          |                     |     |           v
9830  *                          |                     |     |  scsi_destroy_pkt(9F)
9831  *                          |                     |     |
9832  *                          +->(*initpkt)()       +- sdintr()
9833  *                          |  |                        |  |
9834  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
9835  *                          |  +-> scsi_setup_cdb(9F)   |
9836  *                          |                           |
9837  *                          +--> scsi_transport(9F)     |
9838  *                                     |                |
9839  *                                     +----> SCSA ---->+
9840  *
9841  *
9842  * This code is based upon the following presumptions:
9843  *
9844  *   - iostart and iodone functions operate on buf(9S) structures. These
9845  *     functions perform the necessary operations on the buf(9S) and pass
9846  *     them along to the next function in the chain by using the macros
9847  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
9848  *     (for iodone side functions).
9849  *
9850  *   - The iostart side functions may sleep. The iodone side functions
9851  *     are called under interrupt context and may NOT sleep. Therefore
9852  *     iodone side functions also may not call iostart side functions.
9853  *     (NOTE: iostart side functions should NOT sleep for memory, as
9854  *     this could result in deadlock.)
9855  *
9856  *   - An iostart side function may call its corresponding iodone side
9857  *     function directly (if necessary).
9858  *
9859  *   - In the event of an error, an iostart side function can return a buf(9S)
9860  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
9861  *     b_error in the usual way of course).
9862  *
9863  *   - The taskq mechanism may be used by the iodone side functions to dispatch
9864  *     requests to the iostart side functions.  The iostart side functions in
9865  *     this case would be called under the context of a taskq thread, so it's
9866  *     OK for them to block/sleep/spin in this case.
9867  *
9868  *   - iostart side functions may allocate "shadow" buf(9S) structs and
9869  *     pass them along to the next function in the chain.  The corresponding
9870  *     iodone side functions must coalesce the "shadow" bufs and return
9871  *     the "original" buf to the next higher layer.
9872  *
9873  *   - The b_private field of the buf(9S) struct holds a pointer to
9874  *     an sd_xbuf struct, which contains information needed to
9875  *     construct the scsi_pkt for the command.
9876  *
9877  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
9878  *     layer must acquire & release the SD_MUTEX(un) as needed.
9879  */
9880 
9881 
9882 /*
9883  * Create taskq for all targets in the system. This is created at
9884  * _init(9E) and destroyed at _fini(9E).
9885  *
9886  * Note: here we set the minalloc to a reasonably high number to ensure that
9887  * we will have an adequate supply of task entries available at interrupt time.
9888  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
9889  * sd_create_taskq().  Since we do not want to sleep for allocations at
9890  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
9891  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
9892  * requests any one instant in time.
9893  */
9894 #define	SD_TASKQ_NUMTHREADS	8
9895 #define	SD_TASKQ_MINALLOC	256
9896 #define	SD_TASKQ_MAXALLOC	256
9897 
9898 static taskq_t	*sd_tq = NULL;
9899 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
9900 
9901 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
9902 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
9903 
9904 /*
9905  * The following task queue is being created for the write part of
9906  * read-modify-write of non-512 block size devices.
9907  * Limit the number of threads to 1 for now. This number has been chosen
9908  * considering the fact that it applies only to dvd ram drives/MO drives
9909  * currently. Performance for which is not main criteria at this stage.
9910  * Note: It needs to be explored if we can use a single taskq in future
9911  */
9912 #define	SD_WMR_TASKQ_NUMTHREADS	1
9913 static taskq_t	*sd_wmr_tq = NULL;
9914 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
9915 
9916 /*
9917  *    Function: sd_taskq_create
9918  *
9919  * Description: Create taskq thread(s) and preallocate task entries
9920  *
9921  * Return Code: Returns a pointer to the allocated taskq_t.
9922  *
9923  *     Context: Can sleep. Requires blockable context.
9924  *
9925  *       Notes: - The taskq() facility currently is NOT part of the DDI.
9926  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
9927  *		- taskq_create() will block for memory, also it will panic
9928  *		  if it cannot create the requested number of threads.
9929  *		- Currently taskq_create() creates threads that cannot be
9930  *		  swapped.
9931  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
9932  *		  supply of taskq entries at interrupt time (ie, so that we
9933  *		  do not have to sleep for memory)
9934  */
9935 
9936 static void
9937 sd_taskq_create(void)
9938 {
9939 	char	taskq_name[TASKQ_NAMELEN];
9940 
9941 	ASSERT(sd_tq == NULL);
9942 	ASSERT(sd_wmr_tq == NULL);
9943 
9944 	(void) snprintf(taskq_name, sizeof (taskq_name),
9945 	    "%s_drv_taskq", sd_label);
9946 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
9947 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
9948 	    TASKQ_PREPOPULATE));
9949 
9950 	(void) snprintf(taskq_name, sizeof (taskq_name),
9951 	    "%s_rmw_taskq", sd_label);
9952 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
9953 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
9954 	    TASKQ_PREPOPULATE));
9955 }
9956 
9957 
9958 /*
9959  *    Function: sd_taskq_delete
9960  *
9961  * Description: Complementary cleanup routine for sd_taskq_create().
9962  *
9963  *     Context: Kernel thread context.
9964  */
9965 
9966 static void
9967 sd_taskq_delete(void)
9968 {
9969 	ASSERT(sd_tq != NULL);
9970 	ASSERT(sd_wmr_tq != NULL);
9971 	taskq_destroy(sd_tq);
9972 	taskq_destroy(sd_wmr_tq);
9973 	sd_tq = NULL;
9974 	sd_wmr_tq = NULL;
9975 }
9976 
9977 
9978 /*
9979  *    Function: sdstrategy
9980  *
9981  * Description: Driver's strategy (9E) entry point function.
9982  *
9983  *   Arguments: bp - pointer to buf(9S)
9984  *
9985  * Return Code: Always returns zero
9986  *
9987  *     Context: Kernel thread context.
9988  */
9989 
9990 static int
9991 sdstrategy(struct buf *bp)
9992 {
9993 	struct sd_lun *un;
9994 
9995 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
9996 	if (un == NULL) {
9997 		bioerror(bp, EIO);
9998 		bp->b_resid = bp->b_bcount;
9999 		biodone(bp);
10000 		return (0);
10001 	}
10002 	/* As was done in the past, fail new cmds. if state is dumping. */
10003 	if (un->un_state == SD_STATE_DUMPING) {
10004 		bioerror(bp, ENXIO);
10005 		bp->b_resid = bp->b_bcount;
10006 		biodone(bp);
10007 		return (0);
10008 	}
10009 
10010 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10011 
10012 	/*
10013 	 * Commands may sneak in while we released the mutex in
10014 	 * DDI_SUSPEND, we should block new commands. However, old
10015 	 * commands that are still in the driver at this point should
10016 	 * still be allowed to drain.
10017 	 */
10018 	mutex_enter(SD_MUTEX(un));
10019 	/*
10020 	 * Must wait here if either the device is suspended or
10021 	 * if it's power level is changing.
10022 	 */
10023 	while ((un->un_state == SD_STATE_SUSPENDED) ||
10024 	    (un->un_state == SD_STATE_PM_CHANGING)) {
10025 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10026 	}
10027 
10028 	un->un_ncmds_in_driver++;
10029 
10030 	/*
10031 	 * atapi: Since we are running the CD for now in PIO mode we need to
10032 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
10033 	 * the HBA's init_pkt routine.
10034 	 */
10035 	if (un->un_f_cfg_is_atapi == TRUE) {
10036 		mutex_exit(SD_MUTEX(un));
10037 		bp_mapin(bp);
10038 		mutex_enter(SD_MUTEX(un));
10039 	}
10040 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
10041 	    un->un_ncmds_in_driver);
10042 
10043 	mutex_exit(SD_MUTEX(un));
10044 
10045 	/*
10046 	 * This will (eventually) allocate the sd_xbuf area and
10047 	 * call sd_xbuf_strategy().  We just want to return the
10048 	 * result of ddi_xbuf_qstrategy so that we have an opt-
10049 	 * imized tail call which saves us a stack frame.
10050 	 */
10051 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
10052 }
10053 
10054 
10055 /*
10056  *    Function: sd_xbuf_strategy
10057  *
10058  * Description: Function for initiating IO operations via the
10059  *		ddi_xbuf_qstrategy() mechanism.
10060  *
10061  *     Context: Kernel thread context.
10062  */
10063 
10064 static void
10065 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
10066 {
10067 	struct sd_lun *un = arg;
10068 
10069 	ASSERT(bp != NULL);
10070 	ASSERT(xp != NULL);
10071 	ASSERT(un != NULL);
10072 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10073 
10074 	/*
10075 	 * Initialize the fields in the xbuf and save a pointer to the
10076 	 * xbuf in bp->b_private.
10077 	 */
10078 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
10079 
10080 	/* Send the buf down the iostart chain */
10081 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
10082 }
10083 
10084 
10085 /*
10086  *    Function: sd_xbuf_init
10087  *
10088  * Description: Prepare the given sd_xbuf struct for use.
10089  *
10090  *   Arguments: un - ptr to softstate
10091  *		bp - ptr to associated buf(9S)
10092  *		xp - ptr to associated sd_xbuf
10093  *		chain_type - IO chain type to use:
10094  *			SD_CHAIN_NULL
10095  *			SD_CHAIN_BUFIO
10096  *			SD_CHAIN_USCSI
10097  *			SD_CHAIN_DIRECT
10098  *			SD_CHAIN_DIRECT_PRIORITY
10099  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
10100  *			initialization; may be NULL if none.
10101  *
10102  *     Context: Kernel thread context
10103  */
10104 
10105 static void
10106 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
10107 	uchar_t chain_type, void *pktinfop)
10108 {
10109 	int index;
10110 
10111 	ASSERT(un != NULL);
10112 	ASSERT(bp != NULL);
10113 	ASSERT(xp != NULL);
10114 
10115 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
10116 	    bp, chain_type);
10117 
10118 	xp->xb_un	= un;
10119 	xp->xb_pktp	= NULL;
10120 	xp->xb_pktinfo	= pktinfop;
10121 	xp->xb_private	= bp->b_private;
10122 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
10123 
10124 	/*
10125 	 * Set up the iostart and iodone chain indexes in the xbuf, based
10126 	 * upon the specified chain type to use.
10127 	 */
10128 	switch (chain_type) {
10129 	case SD_CHAIN_NULL:
10130 		/*
10131 		 * Fall thru to just use the values for the buf type, even
10132 		 * tho for the NULL chain these values will never be used.
10133 		 */
10134 		/* FALLTHRU */
10135 	case SD_CHAIN_BUFIO:
10136 		index = un->un_buf_chain_type;
10137 		break;
10138 	case SD_CHAIN_USCSI:
10139 		index = un->un_uscsi_chain_type;
10140 		break;
10141 	case SD_CHAIN_DIRECT:
10142 		index = un->un_direct_chain_type;
10143 		break;
10144 	case SD_CHAIN_DIRECT_PRIORITY:
10145 		index = un->un_priority_chain_type;
10146 		break;
10147 	default:
10148 		/* We're really broken if we ever get here... */
10149 		panic("sd_xbuf_init: illegal chain type!");
10150 		/*NOTREACHED*/
10151 	}
10152 
10153 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
10154 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
10155 
10156 	/*
10157 	 * It might be a bit easier to simply bzero the entire xbuf above,
10158 	 * but it turns out that since we init a fair number of members anyway,
10159 	 * we save a fair number cycles by doing explicit assignment of zero.
10160 	 */
10161 	xp->xb_pkt_flags	= 0;
10162 	xp->xb_dma_resid	= 0;
10163 	xp->xb_retry_count	= 0;
10164 	xp->xb_victim_retry_count = 0;
10165 	xp->xb_ua_retry_count	= 0;
10166 	xp->xb_sense_bp		= NULL;
10167 	xp->xb_sense_status	= 0;
10168 	xp->xb_sense_state	= 0;
10169 	xp->xb_sense_resid	= 0;
10170 
10171 	bp->b_private	= xp;
10172 	bp->b_flags	&= ~(B_DONE | B_ERROR);
10173 	bp->b_resid	= 0;
10174 	bp->av_forw	= NULL;
10175 	bp->av_back	= NULL;
10176 	bioerror(bp, 0);
10177 
10178 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
10179 }
10180 
10181 
10182 /*
10183  *    Function: sd_uscsi_strategy
10184  *
10185  * Description: Wrapper for calling into the USCSI chain via physio(9F)
10186  *
10187  *   Arguments: bp - buf struct ptr
10188  *
10189  * Return Code: Always returns 0
10190  *
10191  *     Context: Kernel thread context
10192  */
10193 
10194 static int
10195 sd_uscsi_strategy(struct buf *bp)
10196 {
10197 	struct sd_lun		*un;
10198 	struct sd_uscsi_info	*uip;
10199 	struct sd_xbuf		*xp;
10200 	uchar_t			chain_type;
10201 
10202 	ASSERT(bp != NULL);
10203 
10204 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
10205 	if (un == NULL) {
10206 		bioerror(bp, EIO);
10207 		bp->b_resid = bp->b_bcount;
10208 		biodone(bp);
10209 		return (0);
10210 	}
10211 
10212 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10213 
10214 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
10215 
10216 	mutex_enter(SD_MUTEX(un));
10217 	/*
10218 	 * atapi: Since we are running the CD for now in PIO mode we need to
10219 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
10220 	 * the HBA's init_pkt routine.
10221 	 */
10222 	if (un->un_f_cfg_is_atapi == TRUE) {
10223 		mutex_exit(SD_MUTEX(un));
10224 		bp_mapin(bp);
10225 		mutex_enter(SD_MUTEX(un));
10226 	}
10227 	un->un_ncmds_in_driver++;
10228 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
10229 	    un->un_ncmds_in_driver);
10230 	mutex_exit(SD_MUTEX(un));
10231 
10232 	/*
10233 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
10234 	 */
10235 	ASSERT(bp->b_private != NULL);
10236 	uip = (struct sd_uscsi_info *)bp->b_private;
10237 
10238 	switch (uip->ui_flags) {
10239 	case SD_PATH_DIRECT:
10240 		chain_type = SD_CHAIN_DIRECT;
10241 		break;
10242 	case SD_PATH_DIRECT_PRIORITY:
10243 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
10244 		break;
10245 	default:
10246 		chain_type = SD_CHAIN_USCSI;
10247 		break;
10248 	}
10249 
10250 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
10251 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
10252 
10253 	/* Use the index obtained within xbuf_init */
10254 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
10255 
10256 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
10257 
10258 	return (0);
10259 }
10260 
10261 /*
10262  *    Function: sd_send_scsi_cmd
10263  *
10264  * Description: Runs a USCSI command for user (when called thru sdioctl),
10265  *		or for the driver
10266  *
10267  *   Arguments: dev - the dev_t for the device
10268  *		incmd - ptr to a valid uscsi_cmd struct
10269  *		flag - bit flag, indicating open settings, 32/64 bit type
10270  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
10271  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
10272  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
10273  *			to use the USCSI "direct" chain and bypass the normal
10274  *			command waitq.
10275  *
10276  * Return Code: 0 -  successful completion of the given command
10277  *		EIO - scsi_uscsi_handle_command() failed
10278  *		ENXIO  - soft state not found for specified dev
10279  *		EINVAL
10280  *		EFAULT - copyin/copyout error
10281  *		return code of scsi_uscsi_handle_command():
10282  *			EIO
10283  *			ENXIO
10284  *			EACCES
10285  *
10286  *     Context: Waits for command to complete. Can sleep.
10287  */
10288 
10289 static int
10290 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
10291 	enum uio_seg dataspace, int path_flag)
10292 {
10293 	struct sd_uscsi_info	*uip;
10294 	struct uscsi_cmd	*uscmd;
10295 	struct sd_lun	*un;
10296 	int	format = 0;
10297 	int	rval;
10298 
10299 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
10300 	if (un == NULL) {
10301 		return (ENXIO);
10302 	}
10303 
10304 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10305 
10306 #ifdef SDDEBUG
10307 	switch (dataspace) {
10308 	case UIO_USERSPACE:
10309 		SD_TRACE(SD_LOG_IO, un,
10310 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un);
10311 		break;
10312 	case UIO_SYSSPACE:
10313 		SD_TRACE(SD_LOG_IO, un,
10314 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un);
10315 		break;
10316 	default:
10317 		SD_TRACE(SD_LOG_IO, un,
10318 		    "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un);
10319 		break;
10320 	}
10321 #endif
10322 
10323 	rval = scsi_uscsi_alloc_and_copyin((intptr_t)incmd, flag,
10324 	    SD_ADDRESS(un), &uscmd);
10325 	if (rval != 0) {
10326 		SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: "
10327 		    "scsi_uscsi_alloc_and_copyin failed\n", un);
10328 		return (rval);
10329 	}
10330 
10331 	if ((uscmd->uscsi_cdb != NULL) &&
10332 	    (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) {
10333 		mutex_enter(SD_MUTEX(un));
10334 		un->un_f_format_in_progress = TRUE;
10335 		mutex_exit(SD_MUTEX(un));
10336 		format = 1;
10337 	}
10338 
10339 	/*
10340 	 * Allocate an sd_uscsi_info struct and fill it with the info
10341 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
10342 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
10343 	 * since we allocate the buf here in this function, we do not
10344 	 * need to preserve the prior contents of b_private.
10345 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
10346 	 */
10347 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
10348 	uip->ui_flags = path_flag;
10349 	uip->ui_cmdp = uscmd;
10350 
10351 	/*
10352 	 * Commands sent with priority are intended for error recovery
10353 	 * situations, and do not have retries performed.
10354 	 */
10355 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
10356 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
10357 	}
10358 	uscmd->uscsi_flags &= ~USCSI_NOINTR;
10359 
10360 	rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd,
10361 	    sd_uscsi_strategy, NULL, uip);
10362 
10363 #ifdef SDDEBUG
10364 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
10365 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
10366 	    uscmd->uscsi_status, uscmd->uscsi_resid);
10367 	if (uscmd->uscsi_bufaddr != NULL) {
10368 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
10369 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
10370 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
10371 		if (dataspace == UIO_SYSSPACE) {
10372 			SD_DUMP_MEMORY(un, SD_LOG_IO,
10373 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
10374 			    uscmd->uscsi_buflen, SD_LOG_HEX);
10375 		}
10376 	}
10377 #endif
10378 
10379 	if (format == 1) {
10380 		mutex_enter(SD_MUTEX(un));
10381 		un->un_f_format_in_progress = FALSE;
10382 		mutex_exit(SD_MUTEX(un));
10383 	}
10384 
10385 	(void) scsi_uscsi_copyout_and_free((intptr_t)incmd, uscmd);
10386 	kmem_free(uip, sizeof (struct sd_uscsi_info));
10387 
10388 	return (rval);
10389 }
10390 
10391 
10392 /*
10393  *    Function: sd_buf_iodone
10394  *
10395  * Description: Frees the sd_xbuf & returns the buf to its originator.
10396  *
10397  *     Context: May be called from interrupt context.
10398  */
10399 /* ARGSUSED */
10400 static void
10401 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
10402 {
10403 	struct sd_xbuf *xp;
10404 
10405 	ASSERT(un != NULL);
10406 	ASSERT(bp != NULL);
10407 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10408 
10409 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
10410 
10411 	xp = SD_GET_XBUF(bp);
10412 	ASSERT(xp != NULL);
10413 
10414 	mutex_enter(SD_MUTEX(un));
10415 
10416 	/*
10417 	 * Grab time when the cmd completed.
10418 	 * This is used for determining if the system has been
10419 	 * idle long enough to make it idle to the PM framework.
10420 	 * This is for lowering the overhead, and therefore improving
10421 	 * performance per I/O operation.
10422 	 */
10423 	un->un_pm_idle_time = ddi_get_time();
10424 
10425 	un->un_ncmds_in_driver--;
10426 	ASSERT(un->un_ncmds_in_driver >= 0);
10427 	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
10428 	    un->un_ncmds_in_driver);
10429 
10430 	mutex_exit(SD_MUTEX(un));
10431 
10432 	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
10433 	biodone(bp);				/* bp is gone after this */
10434 
10435 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
10436 }
10437 
10438 
10439 /*
10440  *    Function: sd_uscsi_iodone
10441  *
10442  * Description: Frees the sd_xbuf & returns the buf to its originator.
10443  *
10444  *     Context: May be called from interrupt context.
10445  */
10446 /* ARGSUSED */
10447 static void
10448 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
10449 {
10450 	struct sd_xbuf *xp;
10451 
10452 	ASSERT(un != NULL);
10453 	ASSERT(bp != NULL);
10454 
10455 	xp = SD_GET_XBUF(bp);
10456 	ASSERT(xp != NULL);
10457 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10458 
10459 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
10460 
10461 	bp->b_private = xp->xb_private;
10462 
10463 	mutex_enter(SD_MUTEX(un));
10464 
10465 	/*
10466 	 * Grab time when the cmd completed.
10467 	 * This is used for determining if the system has been
10468 	 * idle long enough to make it idle to the PM framework.
10469 	 * This is for lowering the overhead, and therefore improving
10470 	 * performance per I/O operation.
10471 	 */
10472 	un->un_pm_idle_time = ddi_get_time();
10473 
10474 	un->un_ncmds_in_driver--;
10475 	ASSERT(un->un_ncmds_in_driver >= 0);
10476 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
10477 	    un->un_ncmds_in_driver);
10478 
10479 	mutex_exit(SD_MUTEX(un));
10480 
10481 	kmem_free(xp, sizeof (struct sd_xbuf));
10482 	biodone(bp);
10483 
10484 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
10485 }
10486 
10487 
10488 /*
10489  *    Function: sd_mapblockaddr_iostart
10490  *
10491  * Description: Verify request lies within the partition limits for
10492  *		the indicated minor device.  Issue "overrun" buf if
10493  *		request would exceed partition range.  Converts
10494  *		partition-relative block address to absolute.
10495  *
10496  *     Context: Can sleep
10497  *
10498  *      Issues: This follows what the old code did, in terms of accessing
10499  *		some of the partition info in the unit struct without holding
10500  *		the mutext.  This is a general issue, if the partition info
10501  *		can be altered while IO is in progress... as soon as we send
10502  *		a buf, its partitioning can be invalid before it gets to the
10503  *		device.  Probably the right fix is to move partitioning out
10504  *		of the driver entirely.
10505  */
10506 
10507 static void
10508 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
10509 {
10510 	diskaddr_t	nblocks;	/* #blocks in the given partition */
10511 	daddr_t	blocknum;	/* Block number specified by the buf */
10512 	size_t	requested_nblocks;
10513 	size_t	available_nblocks;
10514 	int	partition;
10515 	diskaddr_t	partition_offset;
10516 	struct sd_xbuf *xp;
10517 
10518 
10519 	ASSERT(un != NULL);
10520 	ASSERT(bp != NULL);
10521 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10522 
10523 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10524 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
10525 
10526 	xp = SD_GET_XBUF(bp);
10527 	ASSERT(xp != NULL);
10528 
10529 	/*
10530 	 * If the geometry is not indicated as valid, attempt to access
10531 	 * the unit & verify the geometry/label. This can be the case for
10532 	 * removable-media devices, of if the device was opened in
10533 	 * NDELAY/NONBLOCK mode.
10534 	 */
10535 	if (!SD_IS_VALID_LABEL(un) &&
10536 	    (sd_ready_and_valid(un) != SD_READY_VALID)) {
10537 		/*
10538 		 * For removable devices it is possible to start an I/O
10539 		 * without a media by opening the device in nodelay mode.
10540 		 * Also for writable CDs there can be many scenarios where
10541 		 * there is no geometry yet but volume manager is trying to
10542 		 * issue a read() just because it can see TOC on the CD. So
10543 		 * do not print a message for removables.
10544 		 */
10545 		if (!un->un_f_has_removable_media) {
10546 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10547 			    "i/o to invalid geometry\n");
10548 		}
10549 		bioerror(bp, EIO);
10550 		bp->b_resid = bp->b_bcount;
10551 		SD_BEGIN_IODONE(index, un, bp);
10552 		return;
10553 	}
10554 
10555 	partition = SDPART(bp->b_edev);
10556 
10557 	nblocks = 0;
10558 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
10559 	    &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT);
10560 
10561 	/*
10562 	 * blocknum is the starting block number of the request. At this
10563 	 * point it is still relative to the start of the minor device.
10564 	 */
10565 	blocknum = xp->xb_blkno;
10566 
10567 	/*
10568 	 * Legacy: If the starting block number is one past the last block
10569 	 * in the partition, do not set B_ERROR in the buf.
10570 	 */
10571 	if (blocknum == nblocks)  {
10572 		goto error_exit;
10573 	}
10574 
10575 	/*
10576 	 * Confirm that the first block of the request lies within the
10577 	 * partition limits. Also the requested number of bytes must be
10578 	 * a multiple of the system block size.
10579 	 */
10580 	if ((blocknum < 0) || (blocknum >= nblocks) ||
10581 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
10582 		bp->b_flags |= B_ERROR;
10583 		goto error_exit;
10584 	}
10585 
10586 	/*
10587 	 * If the requsted # blocks exceeds the available # blocks, that
10588 	 * is an overrun of the partition.
10589 	 */
10590 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
10591 	available_nblocks = (size_t)(nblocks - blocknum);
10592 	ASSERT(nblocks >= blocknum);
10593 
10594 	if (requested_nblocks > available_nblocks) {
10595 		/*
10596 		 * Allocate an "overrun" buf to allow the request to proceed
10597 		 * for the amount of space available in the partition. The
10598 		 * amount not transferred will be added into the b_resid
10599 		 * when the operation is complete. The overrun buf
10600 		 * replaces the original buf here, and the original buf
10601 		 * is saved inside the overrun buf, for later use.
10602 		 */
10603 		size_t resid = SD_SYSBLOCKS2BYTES(un,
10604 		    (offset_t)(requested_nblocks - available_nblocks));
10605 		size_t count = bp->b_bcount - resid;
10606 		/*
10607 		 * Note: count is an unsigned entity thus it'll NEVER
10608 		 * be less than 0 so ASSERT the original values are
10609 		 * correct.
10610 		 */
10611 		ASSERT(bp->b_bcount >= resid);
10612 
10613 		bp = sd_bioclone_alloc(bp, count, blocknum,
10614 		    (int (*)(struct buf *)) sd_mapblockaddr_iodone);
10615 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
10616 		ASSERT(xp != NULL);
10617 	}
10618 
10619 	/* At this point there should be no residual for this buf. */
10620 	ASSERT(bp->b_resid == 0);
10621 
10622 	/* Convert the block number to an absolute address. */
10623 	xp->xb_blkno += partition_offset;
10624 
10625 	SD_NEXT_IOSTART(index, un, bp);
10626 
10627 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10628 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
10629 
10630 	return;
10631 
10632 error_exit:
10633 	bp->b_resid = bp->b_bcount;
10634 	SD_BEGIN_IODONE(index, un, bp);
10635 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10636 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
10637 }
10638 
10639 
10640 /*
10641  *    Function: sd_mapblockaddr_iodone
10642  *
10643  * Description: Completion-side processing for partition management.
10644  *
10645  *     Context: May be called under interrupt context
10646  */
10647 
10648 static void
10649 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
10650 {
10651 	/* int	partition; */	/* Not used, see below. */
10652 	ASSERT(un != NULL);
10653 	ASSERT(bp != NULL);
10654 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10655 
10656 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10657 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
10658 
10659 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
10660 		/*
10661 		 * We have an "overrun" buf to deal with...
10662 		 */
10663 		struct sd_xbuf	*xp;
10664 		struct buf	*obp;	/* ptr to the original buf */
10665 
10666 		xp = SD_GET_XBUF(bp);
10667 		ASSERT(xp != NULL);
10668 
10669 		/* Retrieve the pointer to the original buf */
10670 		obp = (struct buf *)xp->xb_private;
10671 		ASSERT(obp != NULL);
10672 
10673 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
10674 		bioerror(obp, bp->b_error);
10675 
10676 		sd_bioclone_free(bp);
10677 
10678 		/*
10679 		 * Get back the original buf.
10680 		 * Note that since the restoration of xb_blkno below
10681 		 * was removed, the sd_xbuf is not needed.
10682 		 */
10683 		bp = obp;
10684 		/*
10685 		 * xp = SD_GET_XBUF(bp);
10686 		 * ASSERT(xp != NULL);
10687 		 */
10688 	}
10689 
10690 	/*
10691 	 * Convert sd->xb_blkno back to a minor-device relative value.
10692 	 * Note: this has been commented out, as it is not needed in the
10693 	 * current implementation of the driver (ie, since this function
10694 	 * is at the top of the layering chains, so the info will be
10695 	 * discarded) and it is in the "hot" IO path.
10696 	 *
10697 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
10698 	 * xp->xb_blkno -= un->un_offset[partition];
10699 	 */
10700 
10701 	SD_NEXT_IODONE(index, un, bp);
10702 
10703 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10704 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
10705 }
10706 
10707 
10708 /*
10709  *    Function: sd_mapblocksize_iostart
10710  *
10711  * Description: Convert between system block size (un->un_sys_blocksize)
10712  *		and target block size (un->un_tgt_blocksize).
10713  *
10714  *     Context: Can sleep to allocate resources.
10715  *
10716  * Assumptions: A higher layer has already performed any partition validation,
10717  *		and converted the xp->xb_blkno to an absolute value relative
10718  *		to the start of the device.
10719  *
10720  *		It is also assumed that the higher layer has implemented
10721  *		an "overrun" mechanism for the case where the request would
10722  *		read/write beyond the end of a partition.  In this case we
10723  *		assume (and ASSERT) that bp->b_resid == 0.
10724  *
10725  *		Note: The implementation for this routine assumes the target
10726  *		block size remains constant between allocation and transport.
10727  */
10728 
10729 static void
10730 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
10731 {
10732 	struct sd_mapblocksize_info	*bsp;
10733 	struct sd_xbuf			*xp;
10734 	offset_t first_byte;
10735 	daddr_t	start_block, end_block;
10736 	daddr_t	request_bytes;
10737 	ushort_t is_aligned = FALSE;
10738 
10739 	ASSERT(un != NULL);
10740 	ASSERT(bp != NULL);
10741 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10742 	ASSERT(bp->b_resid == 0);
10743 
10744 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
10745 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
10746 
10747 	/*
10748 	 * For a non-writable CD, a write request is an error
10749 	 */
10750 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
10751 	    (un->un_f_mmc_writable_media == FALSE)) {
10752 		bioerror(bp, EIO);
10753 		bp->b_resid = bp->b_bcount;
10754 		SD_BEGIN_IODONE(index, un, bp);
10755 		return;
10756 	}
10757 
10758 	/*
10759 	 * We do not need a shadow buf if the device is using
10760 	 * un->un_sys_blocksize as its block size or if bcount == 0.
10761 	 * In this case there is no layer-private data block allocated.
10762 	 */
10763 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
10764 	    (bp->b_bcount == 0)) {
10765 		goto done;
10766 	}
10767 
10768 #if defined(__i386) || defined(__amd64)
10769 	/* We do not support non-block-aligned transfers for ROD devices */
10770 	ASSERT(!ISROD(un));
10771 #endif
10772 
10773 	xp = SD_GET_XBUF(bp);
10774 	ASSERT(xp != NULL);
10775 
10776 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
10777 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
10778 	    un->un_tgt_blocksize, un->un_sys_blocksize);
10779 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
10780 	    "request start block:0x%x\n", xp->xb_blkno);
10781 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
10782 	    "request len:0x%x\n", bp->b_bcount);
10783 
10784 	/*
10785 	 * Allocate the layer-private data area for the mapblocksize layer.
10786 	 * Layers are allowed to use the xp_private member of the sd_xbuf
10787 	 * struct to store the pointer to their layer-private data block, but
10788 	 * each layer also has the responsibility of restoring the prior
10789 	 * contents of xb_private before returning the buf/xbuf to the
10790 	 * higher layer that sent it.
10791 	 *
10792 	 * Here we save the prior contents of xp->xb_private into the
10793 	 * bsp->mbs_oprivate field of our layer-private data area. This value
10794 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
10795 	 * the layer-private area and returning the buf/xbuf to the layer
10796 	 * that sent it.
10797 	 *
10798 	 * Note that here we use kmem_zalloc for the allocation as there are
10799 	 * parts of the mapblocksize code that expect certain fields to be
10800 	 * zero unless explicitly set to a required value.
10801 	 */
10802 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
10803 	bsp->mbs_oprivate = xp->xb_private;
10804 	xp->xb_private = bsp;
10805 
10806 	/*
10807 	 * This treats the data on the disk (target) as an array of bytes.
10808 	 * first_byte is the byte offset, from the beginning of the device,
10809 	 * to the location of the request. This is converted from a
10810 	 * un->un_sys_blocksize block address to a byte offset, and then back
10811 	 * to a block address based upon a un->un_tgt_blocksize block size.
10812 	 *
10813 	 * xp->xb_blkno should be absolute upon entry into this function,
10814 	 * but, but it is based upon partitions that use the "system"
10815 	 * block size. It must be adjusted to reflect the block size of
10816 	 * the target.
10817 	 *
10818 	 * Note that end_block is actually the block that follows the last
10819 	 * block of the request, but that's what is needed for the computation.
10820 	 */
10821 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
10822 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
10823 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
10824 	    un->un_tgt_blocksize;
10825 
10826 	/* request_bytes is rounded up to a multiple of the target block size */
10827 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
10828 
10829 	/*
10830 	 * See if the starting address of the request and the request
10831 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
10832 	 * then we do not need to allocate a shadow buf to handle the request.
10833 	 */
10834 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
10835 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
10836 		is_aligned = TRUE;
10837 	}
10838 
10839 	if ((bp->b_flags & B_READ) == 0) {
10840 		/*
10841 		 * Lock the range for a write operation. An aligned request is
10842 		 * considered a simple write; otherwise the request must be a
10843 		 * read-modify-write.
10844 		 */
10845 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
10846 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
10847 	}
10848 
10849 	/*
10850 	 * Alloc a shadow buf if the request is not aligned. Also, this is
10851 	 * where the READ command is generated for a read-modify-write. (The
10852 	 * write phase is deferred until after the read completes.)
10853 	 */
10854 	if (is_aligned == FALSE) {
10855 
10856 		struct sd_mapblocksize_info	*shadow_bsp;
10857 		struct sd_xbuf	*shadow_xp;
10858 		struct buf	*shadow_bp;
10859 
10860 		/*
10861 		 * Allocate the shadow buf and it associated xbuf. Note that
10862 		 * after this call the xb_blkno value in both the original
10863 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
10864 		 * same: absolute relative to the start of the device, and
10865 		 * adjusted for the target block size. The b_blkno in the
10866 		 * shadow buf will also be set to this value. We should never
10867 		 * change b_blkno in the original bp however.
10868 		 *
10869 		 * Note also that the shadow buf will always need to be a
10870 		 * READ command, regardless of whether the incoming command
10871 		 * is a READ or a WRITE.
10872 		 */
10873 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
10874 		    xp->xb_blkno,
10875 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
10876 
10877 		shadow_xp = SD_GET_XBUF(shadow_bp);
10878 
10879 		/*
10880 		 * Allocate the layer-private data for the shadow buf.
10881 		 * (No need to preserve xb_private in the shadow xbuf.)
10882 		 */
10883 		shadow_xp->xb_private = shadow_bsp =
10884 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
10885 
10886 		/*
10887 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
10888 		 * to figure out where the start of the user data is (based upon
10889 		 * the system block size) in the data returned by the READ
10890 		 * command (which will be based upon the target blocksize). Note
10891 		 * that this is only really used if the request is unaligned.
10892 		 */
10893 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
10894 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
10895 		ASSERT((bsp->mbs_copy_offset >= 0) &&
10896 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
10897 
10898 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
10899 
10900 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
10901 
10902 		/* Transfer the wmap (if any) to the shadow buf */
10903 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
10904 		bsp->mbs_wmp = NULL;
10905 
10906 		/*
10907 		 * The shadow buf goes on from here in place of the
10908 		 * original buf.
10909 		 */
10910 		shadow_bsp->mbs_orig_bp = bp;
10911 		bp = shadow_bp;
10912 	}
10913 
10914 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
10915 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
10916 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
10917 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
10918 	    request_bytes);
10919 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
10920 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
10921 
10922 done:
10923 	SD_NEXT_IOSTART(index, un, bp);
10924 
10925 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
10926 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
10927 }
10928 
10929 
10930 /*
10931  *    Function: sd_mapblocksize_iodone
10932  *
10933  * Description: Completion side processing for block-size mapping.
10934  *
10935  *     Context: May be called under interrupt context
10936  */
10937 
10938 static void
10939 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
10940 {
10941 	struct sd_mapblocksize_info	*bsp;
10942 	struct sd_xbuf	*xp;
10943 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
10944 	struct buf	*orig_bp;	/* ptr to the original buf */
10945 	offset_t	shadow_end;
10946 	offset_t	request_end;
10947 	offset_t	shadow_start;
10948 	ssize_t		copy_offset;
10949 	size_t		copy_length;
10950 	size_t		shortfall;
10951 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
10952 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
10953 
10954 	ASSERT(un != NULL);
10955 	ASSERT(bp != NULL);
10956 
10957 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
10958 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
10959 
10960 	/*
10961 	 * There is no shadow buf or layer-private data if the target is
10962 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
10963 	 */
10964 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
10965 	    (bp->b_bcount == 0)) {
10966 		goto exit;
10967 	}
10968 
10969 	xp = SD_GET_XBUF(bp);
10970 	ASSERT(xp != NULL);
10971 
10972 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
10973 	bsp = xp->xb_private;
10974 
10975 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
10976 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
10977 
10978 	if (is_write) {
10979 		/*
10980 		 * For a WRITE request we must free up the block range that
10981 		 * we have locked up.  This holds regardless of whether this is
10982 		 * an aligned write request or a read-modify-write request.
10983 		 */
10984 		sd_range_unlock(un, bsp->mbs_wmp);
10985 		bsp->mbs_wmp = NULL;
10986 	}
10987 
10988 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
10989 		/*
10990 		 * An aligned read or write command will have no shadow buf;
10991 		 * there is not much else to do with it.
10992 		 */
10993 		goto done;
10994 	}
10995 
10996 	orig_bp = bsp->mbs_orig_bp;
10997 	ASSERT(orig_bp != NULL);
10998 	orig_xp = SD_GET_XBUF(orig_bp);
10999 	ASSERT(orig_xp != NULL);
11000 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11001 
11002 	if (!is_write && has_wmap) {
11003 		/*
11004 		 * A READ with a wmap means this is the READ phase of a
11005 		 * read-modify-write. If an error occurred on the READ then
11006 		 * we do not proceed with the WRITE phase or copy any data.
11007 		 * Just release the write maps and return with an error.
11008 		 */
11009 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
11010 			orig_bp->b_resid = orig_bp->b_bcount;
11011 			bioerror(orig_bp, bp->b_error);
11012 			sd_range_unlock(un, bsp->mbs_wmp);
11013 			goto freebuf_done;
11014 		}
11015 	}
11016 
11017 	/*
11018 	 * Here is where we set up to copy the data from the shadow buf
11019 	 * into the space associated with the original buf.
11020 	 *
11021 	 * To deal with the conversion between block sizes, these
11022 	 * computations treat the data as an array of bytes, with the
11023 	 * first byte (byte 0) corresponding to the first byte in the
11024 	 * first block on the disk.
11025 	 */
11026 
11027 	/*
11028 	 * shadow_start and shadow_len indicate the location and size of
11029 	 * the data returned with the shadow IO request.
11030 	 */
11031 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
11032 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
11033 
11034 	/*
11035 	 * copy_offset gives the offset (in bytes) from the start of the first
11036 	 * block of the READ request to the beginning of the data.  We retrieve
11037 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
11038 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
11039 	 * data to be copied (in bytes).
11040 	 */
11041 	copy_offset  = bsp->mbs_copy_offset;
11042 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
11043 	copy_length  = orig_bp->b_bcount;
11044 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
11045 
11046 	/*
11047 	 * Set up the resid and error fields of orig_bp as appropriate.
11048 	 */
11049 	if (shadow_end >= request_end) {
11050 		/* We got all the requested data; set resid to zero */
11051 		orig_bp->b_resid = 0;
11052 	} else {
11053 		/*
11054 		 * We failed to get enough data to fully satisfy the original
11055 		 * request. Just copy back whatever data we got and set
11056 		 * up the residual and error code as required.
11057 		 *
11058 		 * 'shortfall' is the amount by which the data received with the
11059 		 * shadow buf has "fallen short" of the requested amount.
11060 		 */
11061 		shortfall = (size_t)(request_end - shadow_end);
11062 
11063 		if (shortfall > orig_bp->b_bcount) {
11064 			/*
11065 			 * We did not get enough data to even partially
11066 			 * fulfill the original request.  The residual is
11067 			 * equal to the amount requested.
11068 			 */
11069 			orig_bp->b_resid = orig_bp->b_bcount;
11070 		} else {
11071 			/*
11072 			 * We did not get all the data that we requested
11073 			 * from the device, but we will try to return what
11074 			 * portion we did get.
11075 			 */
11076 			orig_bp->b_resid = shortfall;
11077 		}
11078 		ASSERT(copy_length >= orig_bp->b_resid);
11079 		copy_length  -= orig_bp->b_resid;
11080 	}
11081 
11082 	/* Propagate the error code from the shadow buf to the original buf */
11083 	bioerror(orig_bp, bp->b_error);
11084 
11085 	if (is_write) {
11086 		goto freebuf_done;	/* No data copying for a WRITE */
11087 	}
11088 
11089 	if (has_wmap) {
11090 		/*
11091 		 * This is a READ command from the READ phase of a
11092 		 * read-modify-write request. We have to copy the data given
11093 		 * by the user OVER the data returned by the READ command,
11094 		 * then convert the command from a READ to a WRITE and send
11095 		 * it back to the target.
11096 		 */
11097 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
11098 		    copy_length);
11099 
11100 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
11101 
11102 		/*
11103 		 * Dispatch the WRITE command to the taskq thread, which
11104 		 * will in turn send the command to the target. When the
11105 		 * WRITE command completes, we (sd_mapblocksize_iodone())
11106 		 * will get called again as part of the iodone chain
11107 		 * processing for it. Note that we will still be dealing
11108 		 * with the shadow buf at that point.
11109 		 */
11110 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
11111 		    KM_NOSLEEP) != 0) {
11112 			/*
11113 			 * Dispatch was successful so we are done. Return
11114 			 * without going any higher up the iodone chain. Do
11115 			 * not free up any layer-private data until after the
11116 			 * WRITE completes.
11117 			 */
11118 			return;
11119 		}
11120 
11121 		/*
11122 		 * Dispatch of the WRITE command failed; set up the error
11123 		 * condition and send this IO back up the iodone chain.
11124 		 */
11125 		bioerror(orig_bp, EIO);
11126 		orig_bp->b_resid = orig_bp->b_bcount;
11127 
11128 	} else {
11129 		/*
11130 		 * This is a regular READ request (ie, not a RMW). Copy the
11131 		 * data from the shadow buf into the original buf. The
11132 		 * copy_offset compensates for any "misalignment" between the
11133 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
11134 		 * original buf (with its un->un_sys_blocksize blocks).
11135 		 */
11136 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
11137 		    copy_length);
11138 	}
11139 
11140 freebuf_done:
11141 
11142 	/*
11143 	 * At this point we still have both the shadow buf AND the original
11144 	 * buf to deal with, as well as the layer-private data area in each.
11145 	 * Local variables are as follows:
11146 	 *
11147 	 * bp -- points to shadow buf
11148 	 * xp -- points to xbuf of shadow buf
11149 	 * bsp -- points to layer-private data area of shadow buf
11150 	 * orig_bp -- points to original buf
11151 	 *
11152 	 * First free the shadow buf and its associated xbuf, then free the
11153 	 * layer-private data area from the shadow buf. There is no need to
11154 	 * restore xb_private in the shadow xbuf.
11155 	 */
11156 	sd_shadow_buf_free(bp);
11157 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
11158 
11159 	/*
11160 	 * Now update the local variables to point to the original buf, xbuf,
11161 	 * and layer-private area.
11162 	 */
11163 	bp = orig_bp;
11164 	xp = SD_GET_XBUF(bp);
11165 	ASSERT(xp != NULL);
11166 	ASSERT(xp == orig_xp);
11167 	bsp = xp->xb_private;
11168 	ASSERT(bsp != NULL);
11169 
11170 done:
11171 	/*
11172 	 * Restore xb_private to whatever it was set to by the next higher
11173 	 * layer in the chain, then free the layer-private data area.
11174 	 */
11175 	xp->xb_private = bsp->mbs_oprivate;
11176 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
11177 
11178 exit:
11179 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
11180 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
11181 
11182 	SD_NEXT_IODONE(index, un, bp);
11183 }
11184 
11185 
11186 /*
11187  *    Function: sd_checksum_iostart
11188  *
11189  * Description: A stub function for a layer that's currently not used.
11190  *		For now just a placeholder.
11191  *
11192  *     Context: Kernel thread context
11193  */
11194 
11195 static void
11196 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
11197 {
11198 	ASSERT(un != NULL);
11199 	ASSERT(bp != NULL);
11200 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11201 	SD_NEXT_IOSTART(index, un, bp);
11202 }
11203 
11204 
11205 /*
11206  *    Function: sd_checksum_iodone
11207  *
11208  * Description: A stub function for a layer that's currently not used.
11209  *		For now just a placeholder.
11210  *
11211  *     Context: May be called under interrupt context
11212  */
11213 
11214 static void
11215 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
11216 {
11217 	ASSERT(un != NULL);
11218 	ASSERT(bp != NULL);
11219 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11220 	SD_NEXT_IODONE(index, un, bp);
11221 }
11222 
11223 
11224 /*
11225  *    Function: sd_checksum_uscsi_iostart
11226  *
11227  * Description: A stub function for a layer that's currently not used.
11228  *		For now just a placeholder.
11229  *
11230  *     Context: Kernel thread context
11231  */
11232 
11233 static void
11234 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
11235 {
11236 	ASSERT(un != NULL);
11237 	ASSERT(bp != NULL);
11238 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11239 	SD_NEXT_IOSTART(index, un, bp);
11240 }
11241 
11242 
11243 /*
11244  *    Function: sd_checksum_uscsi_iodone
11245  *
11246  * Description: A stub function for a layer that's currently not used.
11247  *		For now just a placeholder.
11248  *
11249  *     Context: May be called under interrupt context
11250  */
11251 
11252 static void
11253 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
11254 {
11255 	ASSERT(un != NULL);
11256 	ASSERT(bp != NULL);
11257 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11258 	SD_NEXT_IODONE(index, un, bp);
11259 }
11260 
11261 
11262 /*
11263  *    Function: sd_pm_iostart
11264  *
11265  * Description: iostart-side routine for Power mangement.
11266  *
11267  *     Context: Kernel thread context
11268  */
11269 
11270 static void
11271 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
11272 {
11273 	ASSERT(un != NULL);
11274 	ASSERT(bp != NULL);
11275 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11276 	ASSERT(!mutex_owned(&un->un_pm_mutex));
11277 
11278 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
11279 
11280 	if (sd_pm_entry(un) != DDI_SUCCESS) {
11281 		/*
11282 		 * Set up to return the failed buf back up the 'iodone'
11283 		 * side of the calling chain.
11284 		 */
11285 		bioerror(bp, EIO);
11286 		bp->b_resid = bp->b_bcount;
11287 
11288 		SD_BEGIN_IODONE(index, un, bp);
11289 
11290 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
11291 		return;
11292 	}
11293 
11294 	SD_NEXT_IOSTART(index, un, bp);
11295 
11296 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
11297 }
11298 
11299 
11300 /*
11301  *    Function: sd_pm_iodone
11302  *
11303  * Description: iodone-side routine for power mangement.
11304  *
11305  *     Context: may be called from interrupt context
11306  */
11307 
11308 static void
11309 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
11310 {
11311 	ASSERT(un != NULL);
11312 	ASSERT(bp != NULL);
11313 	ASSERT(!mutex_owned(&un->un_pm_mutex));
11314 
11315 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
11316 
11317 	/*
11318 	 * After attach the following flag is only read, so don't
11319 	 * take the penalty of acquiring a mutex for it.
11320 	 */
11321 	if (un->un_f_pm_is_enabled == TRUE) {
11322 		sd_pm_exit(un);
11323 	}
11324 
11325 	SD_NEXT_IODONE(index, un, bp);
11326 
11327 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
11328 }
11329 
11330 
11331 /*
11332  *    Function: sd_core_iostart
11333  *
11334  * Description: Primary driver function for enqueuing buf(9S) structs from
11335  *		the system and initiating IO to the target device
11336  *
11337  *     Context: Kernel thread context. Can sleep.
11338  *
11339  * Assumptions:  - The given xp->xb_blkno is absolute
11340  *		   (ie, relative to the start of the device).
11341  *		 - The IO is to be done using the native blocksize of
11342  *		   the device, as specified in un->un_tgt_blocksize.
11343  */
11344 /* ARGSUSED */
11345 static void
11346 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
11347 {
11348 	struct sd_xbuf *xp;
11349 
11350 	ASSERT(un != NULL);
11351 	ASSERT(bp != NULL);
11352 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11353 	ASSERT(bp->b_resid == 0);
11354 
11355 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
11356 
11357 	xp = SD_GET_XBUF(bp);
11358 	ASSERT(xp != NULL);
11359 
11360 	mutex_enter(SD_MUTEX(un));
11361 
11362 	/*
11363 	 * If we are currently in the failfast state, fail any new IO
11364 	 * that has B_FAILFAST set, then return.
11365 	 */
11366 	if ((bp->b_flags & B_FAILFAST) &&
11367 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
11368 		mutex_exit(SD_MUTEX(un));
11369 		bioerror(bp, EIO);
11370 		bp->b_resid = bp->b_bcount;
11371 		SD_BEGIN_IODONE(index, un, bp);
11372 		return;
11373 	}
11374 
11375 	if (SD_IS_DIRECT_PRIORITY(xp)) {
11376 		/*
11377 		 * Priority command -- transport it immediately.
11378 		 *
11379 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
11380 		 * because all direct priority commands should be associated
11381 		 * with error recovery actions which we don't want to retry.
11382 		 */
11383 		sd_start_cmds(un, bp);
11384 	} else {
11385 		/*
11386 		 * Normal command -- add it to the wait queue, then start
11387 		 * transporting commands from the wait queue.
11388 		 */
11389 		sd_add_buf_to_waitq(un, bp);
11390 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
11391 		sd_start_cmds(un, NULL);
11392 	}
11393 
11394 	mutex_exit(SD_MUTEX(un));
11395 
11396 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
11397 }
11398 
11399 
11400 /*
11401  *    Function: sd_init_cdb_limits
11402  *
11403  * Description: This is to handle scsi_pkt initialization differences
11404  *		between the driver platforms.
11405  *
11406  *		Legacy behaviors:
11407  *
11408  *		If the block number or the sector count exceeds the
11409  *		capabilities of a Group 0 command, shift over to a
11410  *		Group 1 command. We don't blindly use Group 1
11411  *		commands because a) some drives (CDC Wren IVs) get a
11412  *		bit confused, and b) there is probably a fair amount
11413  *		of speed difference for a target to receive and decode
11414  *		a 10 byte command instead of a 6 byte command.
11415  *
11416  *		The xfer time difference of 6 vs 10 byte CDBs is
11417  *		still significant so this code is still worthwhile.
11418  *		10 byte CDBs are very inefficient with the fas HBA driver
11419  *		and older disks. Each CDB byte took 1 usec with some
11420  *		popular disks.
11421  *
11422  *     Context: Must be called at attach time
11423  */
11424 
11425 static void
11426 sd_init_cdb_limits(struct sd_lun *un)
11427 {
11428 	int hba_cdb_limit;
11429 
11430 	/*
11431 	 * Use CDB_GROUP1 commands for most devices except for
11432 	 * parallel SCSI fixed drives in which case we get better
11433 	 * performance using CDB_GROUP0 commands (where applicable).
11434 	 */
11435 	un->un_mincdb = SD_CDB_GROUP1;
11436 #if !defined(__fibre)
11437 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
11438 	    !un->un_f_has_removable_media) {
11439 		un->un_mincdb = SD_CDB_GROUP0;
11440 	}
11441 #endif
11442 
11443 	/*
11444 	 * Try to read the max-cdb-length supported by HBA.
11445 	 */
11446 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
11447 	if (0 >= un->un_max_hba_cdb) {
11448 		un->un_max_hba_cdb = CDB_GROUP4;
11449 		hba_cdb_limit = SD_CDB_GROUP4;
11450 	} else if (0 < un->un_max_hba_cdb &&
11451 	    un->un_max_hba_cdb < CDB_GROUP1) {
11452 		hba_cdb_limit = SD_CDB_GROUP0;
11453 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
11454 	    un->un_max_hba_cdb < CDB_GROUP5) {
11455 		hba_cdb_limit = SD_CDB_GROUP1;
11456 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
11457 	    un->un_max_hba_cdb < CDB_GROUP4) {
11458 		hba_cdb_limit = SD_CDB_GROUP5;
11459 	} else {
11460 		hba_cdb_limit = SD_CDB_GROUP4;
11461 	}
11462 
11463 	/*
11464 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
11465 	 * commands for fixed disks unless we are building for a 32 bit
11466 	 * kernel.
11467 	 */
11468 #ifdef _LP64
11469 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
11470 	    min(hba_cdb_limit, SD_CDB_GROUP4);
11471 #else
11472 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
11473 	    min(hba_cdb_limit, SD_CDB_GROUP1);
11474 #endif
11475 
11476 	/*
11477 	 * x86 systems require the PKT_DMA_PARTIAL flag
11478 	 */
11479 #if defined(__x86)
11480 	un->un_pkt_flags = PKT_DMA_PARTIAL;
11481 #else
11482 	un->un_pkt_flags = 0;
11483 #endif
11484 
11485 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
11486 	    ? sizeof (struct scsi_arq_status) : 1);
11487 	un->un_cmd_timeout = (ushort_t)sd_io_time;
11488 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
11489 }
11490 
11491 
11492 /*
11493  *    Function: sd_initpkt_for_buf
11494  *
11495  * Description: Allocate and initialize for transport a scsi_pkt struct,
11496  *		based upon the info specified in the given buf struct.
11497  *
11498  *		Assumes the xb_blkno in the request is absolute (ie,
11499  *		relative to the start of the device (NOT partition!).
11500  *		Also assumes that the request is using the native block
11501  *		size of the device (as returned by the READ CAPACITY
11502  *		command).
11503  *
11504  * Return Code: SD_PKT_ALLOC_SUCCESS
11505  *		SD_PKT_ALLOC_FAILURE
11506  *		SD_PKT_ALLOC_FAILURE_NO_DMA
11507  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
11508  *
11509  *     Context: Kernel thread and may be called from software interrupt context
11510  *		as part of a sdrunout callback. This function may not block or
11511  *		call routines that block
11512  */
11513 
11514 static int
11515 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
11516 {
11517 	struct sd_xbuf	*xp;
11518 	struct scsi_pkt *pktp = NULL;
11519 	struct sd_lun	*un;
11520 	size_t		blockcount;
11521 	daddr_t		startblock;
11522 	int		rval;
11523 	int		cmd_flags;
11524 
11525 	ASSERT(bp != NULL);
11526 	ASSERT(pktpp != NULL);
11527 	xp = SD_GET_XBUF(bp);
11528 	ASSERT(xp != NULL);
11529 	un = SD_GET_UN(bp);
11530 	ASSERT(un != NULL);
11531 	ASSERT(mutex_owned(SD_MUTEX(un)));
11532 	ASSERT(bp->b_resid == 0);
11533 
11534 	SD_TRACE(SD_LOG_IO_CORE, un,
11535 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
11536 
11537 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11538 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
11539 		/*
11540 		 * Already have a scsi_pkt -- just need DMA resources.
11541 		 * We must recompute the CDB in case the mapping returns
11542 		 * a nonzero pkt_resid.
11543 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
11544 		 * that is being retried, the unmap/remap of the DMA resouces
11545 		 * will result in the entire transfer starting over again
11546 		 * from the very first block.
11547 		 */
11548 		ASSERT(xp->xb_pktp != NULL);
11549 		pktp = xp->xb_pktp;
11550 	} else {
11551 		pktp = NULL;
11552 	}
11553 #endif /* __i386 || __amd64 */
11554 
11555 	startblock = xp->xb_blkno;	/* Absolute block num. */
11556 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
11557 
11558 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11559 
11560 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
11561 
11562 #else
11563 
11564 	cmd_flags = un->un_pkt_flags | xp->xb_pkt_flags;
11565 
11566 #endif
11567 
11568 	/*
11569 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
11570 	 * call scsi_init_pkt, and build the CDB.
11571 	 */
11572 	rval = sd_setup_rw_pkt(un, &pktp, bp,
11573 	    cmd_flags, sdrunout, (caddr_t)un,
11574 	    startblock, blockcount);
11575 
11576 	if (rval == 0) {
11577 		/*
11578 		 * Success.
11579 		 *
11580 		 * If partial DMA is being used and required for this transfer.
11581 		 * set it up here.
11582 		 */
11583 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
11584 		    (pktp->pkt_resid != 0)) {
11585 
11586 			/*
11587 			 * Save the CDB length and pkt_resid for the
11588 			 * next xfer
11589 			 */
11590 			xp->xb_dma_resid = pktp->pkt_resid;
11591 
11592 			/* rezero resid */
11593 			pktp->pkt_resid = 0;
11594 
11595 		} else {
11596 			xp->xb_dma_resid = 0;
11597 		}
11598 
11599 		pktp->pkt_flags = un->un_tagflags;
11600 		pktp->pkt_time  = un->un_cmd_timeout;
11601 		pktp->pkt_comp  = sdintr;
11602 
11603 		pktp->pkt_private = bp;
11604 		*pktpp = pktp;
11605 
11606 		SD_TRACE(SD_LOG_IO_CORE, un,
11607 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
11608 
11609 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11610 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
11611 #endif
11612 
11613 		return (SD_PKT_ALLOC_SUCCESS);
11614 
11615 	}
11616 
11617 	/*
11618 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
11619 	 * from sd_setup_rw_pkt.
11620 	 */
11621 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
11622 
11623 	if (rval == SD_PKT_ALLOC_FAILURE) {
11624 		*pktpp = NULL;
11625 		/*
11626 		 * Set the driver state to RWAIT to indicate the driver
11627 		 * is waiting on resource allocations. The driver will not
11628 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
11629 		 */
11630 		New_state(un, SD_STATE_RWAIT);
11631 
11632 		SD_ERROR(SD_LOG_IO_CORE, un,
11633 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
11634 
11635 		if ((bp->b_flags & B_ERROR) != 0) {
11636 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
11637 		}
11638 		return (SD_PKT_ALLOC_FAILURE);
11639 	} else {
11640 		/*
11641 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
11642 		 *
11643 		 * This should never happen.  Maybe someone messed with the
11644 		 * kernel's minphys?
11645 		 */
11646 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
11647 		    "Request rejected: too large for CDB: "
11648 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
11649 		SD_ERROR(SD_LOG_IO_CORE, un,
11650 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
11651 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
11652 
11653 	}
11654 }
11655 
11656 
11657 /*
11658  *    Function: sd_destroypkt_for_buf
11659  *
11660  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
11661  *
11662  *     Context: Kernel thread or interrupt context
11663  */
11664 
11665 static void
11666 sd_destroypkt_for_buf(struct buf *bp)
11667 {
11668 	ASSERT(bp != NULL);
11669 	ASSERT(SD_GET_UN(bp) != NULL);
11670 
11671 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
11672 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
11673 
11674 	ASSERT(SD_GET_PKTP(bp) != NULL);
11675 	scsi_destroy_pkt(SD_GET_PKTP(bp));
11676 
11677 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
11678 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
11679 }
11680 
11681 /*
11682  *    Function: sd_setup_rw_pkt
11683  *
11684  * Description: Determines appropriate CDB group for the requested LBA
11685  *		and transfer length, calls scsi_init_pkt, and builds
11686  *		the CDB.  Do not use for partial DMA transfers except
11687  *		for the initial transfer since the CDB size must
11688  *		remain constant.
11689  *
11690  *     Context: Kernel thread and may be called from software interrupt
11691  *		context as part of a sdrunout callback. This function may not
11692  *		block or call routines that block
11693  */
11694 
11695 
11696 int
11697 sd_setup_rw_pkt(struct sd_lun *un,
11698     struct scsi_pkt **pktpp, struct buf *bp, int flags,
11699     int (*callback)(caddr_t), caddr_t callback_arg,
11700     diskaddr_t lba, uint32_t blockcount)
11701 {
11702 	struct scsi_pkt *return_pktp;
11703 	union scsi_cdb *cdbp;
11704 	struct sd_cdbinfo *cp = NULL;
11705 	int i;
11706 
11707 	/*
11708 	 * See which size CDB to use, based upon the request.
11709 	 */
11710 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
11711 
11712 		/*
11713 		 * Check lba and block count against sd_cdbtab limits.
11714 		 * In the partial DMA case, we have to use the same size
11715 		 * CDB for all the transfers.  Check lba + blockcount
11716 		 * against the max LBA so we know that segment of the
11717 		 * transfer can use the CDB we select.
11718 		 */
11719 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
11720 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
11721 
11722 			/*
11723 			 * The command will fit into the CDB type
11724 			 * specified by sd_cdbtab[i].
11725 			 */
11726 			cp = sd_cdbtab + i;
11727 
11728 			/*
11729 			 * Call scsi_init_pkt so we can fill in the
11730 			 * CDB.
11731 			 */
11732 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
11733 			    bp, cp->sc_grpcode, un->un_status_len, 0,
11734 			    flags, callback, callback_arg);
11735 
11736 			if (return_pktp != NULL) {
11737 
11738 				/*
11739 				 * Return new value of pkt
11740 				 */
11741 				*pktpp = return_pktp;
11742 
11743 				/*
11744 				 * To be safe, zero the CDB insuring there is
11745 				 * no leftover data from a previous command.
11746 				 */
11747 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
11748 
11749 				/*
11750 				 * Handle partial DMA mapping
11751 				 */
11752 				if (return_pktp->pkt_resid != 0) {
11753 
11754 					/*
11755 					 * Not going to xfer as many blocks as
11756 					 * originally expected
11757 					 */
11758 					blockcount -=
11759 					    SD_BYTES2TGTBLOCKS(un,
11760 					    return_pktp->pkt_resid);
11761 				}
11762 
11763 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
11764 
11765 				/*
11766 				 * Set command byte based on the CDB
11767 				 * type we matched.
11768 				 */
11769 				cdbp->scc_cmd = cp->sc_grpmask |
11770 				    ((bp->b_flags & B_READ) ?
11771 				    SCMD_READ : SCMD_WRITE);
11772 
11773 				SD_FILL_SCSI1_LUN(un, return_pktp);
11774 
11775 				/*
11776 				 * Fill in LBA and length
11777 				 */
11778 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
11779 				    (cp->sc_grpcode == CDB_GROUP4) ||
11780 				    (cp->sc_grpcode == CDB_GROUP0) ||
11781 				    (cp->sc_grpcode == CDB_GROUP5));
11782 
11783 				if (cp->sc_grpcode == CDB_GROUP1) {
11784 					FORMG1ADDR(cdbp, lba);
11785 					FORMG1COUNT(cdbp, blockcount);
11786 					return (0);
11787 				} else if (cp->sc_grpcode == CDB_GROUP4) {
11788 					FORMG4LONGADDR(cdbp, lba);
11789 					FORMG4COUNT(cdbp, blockcount);
11790 					return (0);
11791 				} else if (cp->sc_grpcode == CDB_GROUP0) {
11792 					FORMG0ADDR(cdbp, lba);
11793 					FORMG0COUNT(cdbp, blockcount);
11794 					return (0);
11795 				} else if (cp->sc_grpcode == CDB_GROUP5) {
11796 					FORMG5ADDR(cdbp, lba);
11797 					FORMG5COUNT(cdbp, blockcount);
11798 					return (0);
11799 				}
11800 
11801 				/*
11802 				 * It should be impossible to not match one
11803 				 * of the CDB types above, so we should never
11804 				 * reach this point.  Set the CDB command byte
11805 				 * to test-unit-ready to avoid writing
11806 				 * to somewhere we don't intend.
11807 				 */
11808 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
11809 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
11810 			} else {
11811 				/*
11812 				 * Couldn't get scsi_pkt
11813 				 */
11814 				return (SD_PKT_ALLOC_FAILURE);
11815 			}
11816 		}
11817 	}
11818 
11819 	/*
11820 	 * None of the available CDB types were suitable.  This really
11821 	 * should never happen:  on a 64 bit system we support
11822 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
11823 	 * and on a 32 bit system we will refuse to bind to a device
11824 	 * larger than 2TB so addresses will never be larger than 32 bits.
11825 	 */
11826 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
11827 }
11828 
11829 #if defined(__i386) || defined(__amd64)
11830 /*
11831  *    Function: sd_setup_next_rw_pkt
11832  *
11833  * Description: Setup packet for partial DMA transfers, except for the
11834  * 		initial transfer.  sd_setup_rw_pkt should be used for
11835  *		the initial transfer.
11836  *
11837  *     Context: Kernel thread and may be called from interrupt context.
11838  */
11839 
11840 int
11841 sd_setup_next_rw_pkt(struct sd_lun *un,
11842     struct scsi_pkt *pktp, struct buf *bp,
11843     diskaddr_t lba, uint32_t blockcount)
11844 {
11845 	uchar_t com;
11846 	union scsi_cdb *cdbp;
11847 	uchar_t cdb_group_id;
11848 
11849 	ASSERT(pktp != NULL);
11850 	ASSERT(pktp->pkt_cdbp != NULL);
11851 
11852 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
11853 	com = cdbp->scc_cmd;
11854 	cdb_group_id = CDB_GROUPID(com);
11855 
11856 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
11857 	    (cdb_group_id == CDB_GROUPID_1) ||
11858 	    (cdb_group_id == CDB_GROUPID_4) ||
11859 	    (cdb_group_id == CDB_GROUPID_5));
11860 
11861 	/*
11862 	 * Move pkt to the next portion of the xfer.
11863 	 * func is NULL_FUNC so we do not have to release
11864 	 * the disk mutex here.
11865 	 */
11866 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
11867 	    NULL_FUNC, NULL) == pktp) {
11868 		/* Success.  Handle partial DMA */
11869 		if (pktp->pkt_resid != 0) {
11870 			blockcount -=
11871 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
11872 		}
11873 
11874 		cdbp->scc_cmd = com;
11875 		SD_FILL_SCSI1_LUN(un, pktp);
11876 		if (cdb_group_id == CDB_GROUPID_1) {
11877 			FORMG1ADDR(cdbp, lba);
11878 			FORMG1COUNT(cdbp, blockcount);
11879 			return (0);
11880 		} else if (cdb_group_id == CDB_GROUPID_4) {
11881 			FORMG4LONGADDR(cdbp, lba);
11882 			FORMG4COUNT(cdbp, blockcount);
11883 			return (0);
11884 		} else if (cdb_group_id == CDB_GROUPID_0) {
11885 			FORMG0ADDR(cdbp, lba);
11886 			FORMG0COUNT(cdbp, blockcount);
11887 			return (0);
11888 		} else if (cdb_group_id == CDB_GROUPID_5) {
11889 			FORMG5ADDR(cdbp, lba);
11890 			FORMG5COUNT(cdbp, blockcount);
11891 			return (0);
11892 		}
11893 
11894 		/* Unreachable */
11895 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
11896 	}
11897 
11898 	/*
11899 	 * Error setting up next portion of cmd transfer.
11900 	 * Something is definitely very wrong and this
11901 	 * should not happen.
11902 	 */
11903 	return (SD_PKT_ALLOC_FAILURE);
11904 }
11905 #endif /* defined(__i386) || defined(__amd64) */
11906 
11907 /*
11908  *    Function: sd_initpkt_for_uscsi
11909  *
11910  * Description: Allocate and initialize for transport a scsi_pkt struct,
11911  *		based upon the info specified in the given uscsi_cmd struct.
11912  *
11913  * Return Code: SD_PKT_ALLOC_SUCCESS
11914  *		SD_PKT_ALLOC_FAILURE
11915  *		SD_PKT_ALLOC_FAILURE_NO_DMA
11916  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
11917  *
11918  *     Context: Kernel thread and may be called from software interrupt context
11919  *		as part of a sdrunout callback. This function may not block or
11920  *		call routines that block
11921  */
11922 
11923 static int
11924 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
11925 {
11926 	struct uscsi_cmd *uscmd;
11927 	struct sd_xbuf	*xp;
11928 	struct scsi_pkt	*pktp;
11929 	struct sd_lun	*un;
11930 	uint32_t	flags = 0;
11931 
11932 	ASSERT(bp != NULL);
11933 	ASSERT(pktpp != NULL);
11934 	xp = SD_GET_XBUF(bp);
11935 	ASSERT(xp != NULL);
11936 	un = SD_GET_UN(bp);
11937 	ASSERT(un != NULL);
11938 	ASSERT(mutex_owned(SD_MUTEX(un)));
11939 
11940 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
11941 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
11942 	ASSERT(uscmd != NULL);
11943 
11944 	SD_TRACE(SD_LOG_IO_CORE, un,
11945 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
11946 
11947 	/*
11948 	 * Allocate the scsi_pkt for the command.
11949 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
11950 	 *	 during scsi_init_pkt time and will continue to use the
11951 	 *	 same path as long as the same scsi_pkt is used without
11952 	 *	 intervening scsi_dma_free(). Since uscsi command does
11953 	 *	 not call scsi_dmafree() before retry failed command, it
11954 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
11955 	 *	 set such that scsi_vhci can use other available path for
11956 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
11957 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
11958 	 */
11959 	pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
11960 	    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
11961 	    sizeof (struct scsi_arq_status), 0,
11962 	    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
11963 	    sdrunout, (caddr_t)un);
11964 
11965 	if (pktp == NULL) {
11966 		*pktpp = NULL;
11967 		/*
11968 		 * Set the driver state to RWAIT to indicate the driver
11969 		 * is waiting on resource allocations. The driver will not
11970 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
11971 		 */
11972 		New_state(un, SD_STATE_RWAIT);
11973 
11974 		SD_ERROR(SD_LOG_IO_CORE, un,
11975 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
11976 
11977 		if ((bp->b_flags & B_ERROR) != 0) {
11978 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
11979 		}
11980 		return (SD_PKT_ALLOC_FAILURE);
11981 	}
11982 
11983 	/*
11984 	 * We do not do DMA breakup for USCSI commands, so return failure
11985 	 * here if all the needed DMA resources were not allocated.
11986 	 */
11987 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
11988 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
11989 		scsi_destroy_pkt(pktp);
11990 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
11991 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
11992 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
11993 	}
11994 
11995 	/* Init the cdb from the given uscsi struct */
11996 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
11997 	    uscmd->uscsi_cdb[0], 0, 0, 0);
11998 
11999 	SD_FILL_SCSI1_LUN(un, pktp);
12000 
12001 	/*
12002 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
12003 	 * for listing of the supported flags.
12004 	 */
12005 
12006 	if (uscmd->uscsi_flags & USCSI_SILENT) {
12007 		flags |= FLAG_SILENT;
12008 	}
12009 
12010 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
12011 		flags |= FLAG_DIAGNOSE;
12012 	}
12013 
12014 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
12015 		flags |= FLAG_ISOLATE;
12016 	}
12017 
12018 	if (un->un_f_is_fibre == FALSE) {
12019 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
12020 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
12021 		}
12022 	}
12023 
12024 	/*
12025 	 * Set the pkt flags here so we save time later.
12026 	 * Note: These flags are NOT in the uscsi man page!!!
12027 	 */
12028 	if (uscmd->uscsi_flags & USCSI_HEAD) {
12029 		flags |= FLAG_HEAD;
12030 	}
12031 
12032 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
12033 		flags |= FLAG_NOINTR;
12034 	}
12035 
12036 	/*
12037 	 * For tagged queueing, things get a bit complicated.
12038 	 * Check first for head of queue and last for ordered queue.
12039 	 * If neither head nor order, use the default driver tag flags.
12040 	 */
12041 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
12042 		if (uscmd->uscsi_flags & USCSI_HTAG) {
12043 			flags |= FLAG_HTAG;
12044 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
12045 			flags |= FLAG_OTAG;
12046 		} else {
12047 			flags |= un->un_tagflags & FLAG_TAGMASK;
12048 		}
12049 	}
12050 
12051 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
12052 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
12053 	}
12054 
12055 	pktp->pkt_flags = flags;
12056 
12057 	/* Copy the caller's CDB into the pkt... */
12058 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
12059 
12060 	if (uscmd->uscsi_timeout == 0) {
12061 		pktp->pkt_time = un->un_uscsi_timeout;
12062 	} else {
12063 		pktp->pkt_time = uscmd->uscsi_timeout;
12064 	}
12065 
12066 	/* need it later to identify USCSI request in sdintr */
12067 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
12068 
12069 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
12070 
12071 	pktp->pkt_private = bp;
12072 	pktp->pkt_comp = sdintr;
12073 	*pktpp = pktp;
12074 
12075 	SD_TRACE(SD_LOG_IO_CORE, un,
12076 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
12077 
12078 	return (SD_PKT_ALLOC_SUCCESS);
12079 }
12080 
12081 
12082 /*
12083  *    Function: sd_destroypkt_for_uscsi
12084  *
12085  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
12086  *		IOs.. Also saves relevant info into the associated uscsi_cmd
12087  *		struct.
12088  *
12089  *     Context: May be called under interrupt context
12090  */
12091 
12092 static void
12093 sd_destroypkt_for_uscsi(struct buf *bp)
12094 {
12095 	struct uscsi_cmd *uscmd;
12096 	struct sd_xbuf	*xp;
12097 	struct scsi_pkt	*pktp;
12098 	struct sd_lun	*un;
12099 
12100 	ASSERT(bp != NULL);
12101 	xp = SD_GET_XBUF(bp);
12102 	ASSERT(xp != NULL);
12103 	un = SD_GET_UN(bp);
12104 	ASSERT(un != NULL);
12105 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12106 	pktp = SD_GET_PKTP(bp);
12107 	ASSERT(pktp != NULL);
12108 
12109 	SD_TRACE(SD_LOG_IO_CORE, un,
12110 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
12111 
12112 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
12113 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
12114 	ASSERT(uscmd != NULL);
12115 
12116 	/* Save the status and the residual into the uscsi_cmd struct */
12117 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
12118 	uscmd->uscsi_resid  = bp->b_resid;
12119 
12120 	/*
12121 	 * If enabled, copy any saved sense data into the area specified
12122 	 * by the uscsi command.
12123 	 */
12124 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
12125 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
12126 		/*
12127 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
12128 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
12129 		 */
12130 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
12131 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
12132 		bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, SENSE_LENGTH);
12133 	}
12134 
12135 	/* We are done with the scsi_pkt; free it now */
12136 	ASSERT(SD_GET_PKTP(bp) != NULL);
12137 	scsi_destroy_pkt(SD_GET_PKTP(bp));
12138 
12139 	SD_TRACE(SD_LOG_IO_CORE, un,
12140 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
12141 }
12142 
12143 
12144 /*
12145  *    Function: sd_bioclone_alloc
12146  *
12147  * Description: Allocate a buf(9S) and init it as per the given buf
12148  *		and the various arguments.  The associated sd_xbuf
12149  *		struct is (nearly) duplicated.  The struct buf *bp
12150  *		argument is saved in new_xp->xb_private.
12151  *
12152  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
12153  *		datalen - size of data area for the shadow bp
12154  *		blkno - starting LBA
12155  *		func - function pointer for b_iodone in the shadow buf. (May
12156  *			be NULL if none.)
12157  *
12158  * Return Code: Pointer to allocates buf(9S) struct
12159  *
12160  *     Context: Can sleep.
12161  */
12162 
12163 static struct buf *
12164 sd_bioclone_alloc(struct buf *bp, size_t datalen,
12165 	daddr_t blkno, int (*func)(struct buf *))
12166 {
12167 	struct	sd_lun	*un;
12168 	struct	sd_xbuf	*xp;
12169 	struct	sd_xbuf	*new_xp;
12170 	struct	buf	*new_bp;
12171 
12172 	ASSERT(bp != NULL);
12173 	xp = SD_GET_XBUF(bp);
12174 	ASSERT(xp != NULL);
12175 	un = SD_GET_UN(bp);
12176 	ASSERT(un != NULL);
12177 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12178 
12179 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
12180 	    NULL, KM_SLEEP);
12181 
12182 	new_bp->b_lblkno	= blkno;
12183 
12184 	/*
12185 	 * Allocate an xbuf for the shadow bp and copy the contents of the
12186 	 * original xbuf into it.
12187 	 */
12188 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
12189 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
12190 
12191 	/*
12192 	 * The given bp is automatically saved in the xb_private member
12193 	 * of the new xbuf.  Callers are allowed to depend on this.
12194 	 */
12195 	new_xp->xb_private = bp;
12196 
12197 	new_bp->b_private  = new_xp;
12198 
12199 	return (new_bp);
12200 }
12201 
12202 /*
12203  *    Function: sd_shadow_buf_alloc
12204  *
12205  * Description: Allocate a buf(9S) and init it as per the given buf
12206  *		and the various arguments.  The associated sd_xbuf
12207  *		struct is (nearly) duplicated.  The struct buf *bp
12208  *		argument is saved in new_xp->xb_private.
12209  *
12210  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
12211  *		datalen - size of data area for the shadow bp
12212  *		bflags - B_READ or B_WRITE (pseudo flag)
12213  *		blkno - starting LBA
12214  *		func - function pointer for b_iodone in the shadow buf. (May
12215  *			be NULL if none.)
12216  *
12217  * Return Code: Pointer to allocates buf(9S) struct
12218  *
12219  *     Context: Can sleep.
12220  */
12221 
12222 static struct buf *
12223 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
12224 	daddr_t blkno, int (*func)(struct buf *))
12225 {
12226 	struct	sd_lun	*un;
12227 	struct	sd_xbuf	*xp;
12228 	struct	sd_xbuf	*new_xp;
12229 	struct	buf	*new_bp;
12230 
12231 	ASSERT(bp != NULL);
12232 	xp = SD_GET_XBUF(bp);
12233 	ASSERT(xp != NULL);
12234 	un = SD_GET_UN(bp);
12235 	ASSERT(un != NULL);
12236 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12237 
12238 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
12239 		bp_mapin(bp);
12240 	}
12241 
12242 	bflags &= (B_READ | B_WRITE);
12243 #if defined(__i386) || defined(__amd64)
12244 	new_bp = getrbuf(KM_SLEEP);
12245 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
12246 	new_bp->b_bcount = datalen;
12247 	new_bp->b_flags = bflags |
12248 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
12249 #else
12250 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
12251 	    datalen, bflags, SLEEP_FUNC, NULL);
12252 #endif
12253 	new_bp->av_forw	= NULL;
12254 	new_bp->av_back	= NULL;
12255 	new_bp->b_dev	= bp->b_dev;
12256 	new_bp->b_blkno	= blkno;
12257 	new_bp->b_iodone = func;
12258 	new_bp->b_edev	= bp->b_edev;
12259 	new_bp->b_resid	= 0;
12260 
12261 	/* We need to preserve the B_FAILFAST flag */
12262 	if (bp->b_flags & B_FAILFAST) {
12263 		new_bp->b_flags |= B_FAILFAST;
12264 	}
12265 
12266 	/*
12267 	 * Allocate an xbuf for the shadow bp and copy the contents of the
12268 	 * original xbuf into it.
12269 	 */
12270 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
12271 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
12272 
12273 	/* Need later to copy data between the shadow buf & original buf! */
12274 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
12275 
12276 	/*
12277 	 * The given bp is automatically saved in the xb_private member
12278 	 * of the new xbuf.  Callers are allowed to depend on this.
12279 	 */
12280 	new_xp->xb_private = bp;
12281 
12282 	new_bp->b_private  = new_xp;
12283 
12284 	return (new_bp);
12285 }
12286 
12287 /*
12288  *    Function: sd_bioclone_free
12289  *
12290  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
12291  *		in the larger than partition operation.
12292  *
12293  *     Context: May be called under interrupt context
12294  */
12295 
12296 static void
12297 sd_bioclone_free(struct buf *bp)
12298 {
12299 	struct sd_xbuf	*xp;
12300 
12301 	ASSERT(bp != NULL);
12302 	xp = SD_GET_XBUF(bp);
12303 	ASSERT(xp != NULL);
12304 
12305 	/*
12306 	 * Call bp_mapout() before freeing the buf,  in case a lower
12307 	 * layer or HBA  had done a bp_mapin().  we must do this here
12308 	 * as we are the "originator" of the shadow buf.
12309 	 */
12310 	bp_mapout(bp);
12311 
12312 	/*
12313 	 * Null out b_iodone before freeing the bp, to ensure that the driver
12314 	 * never gets confused by a stale value in this field. (Just a little
12315 	 * extra defensiveness here.)
12316 	 */
12317 	bp->b_iodone = NULL;
12318 
12319 	freerbuf(bp);
12320 
12321 	kmem_free(xp, sizeof (struct sd_xbuf));
12322 }
12323 
12324 /*
12325  *    Function: sd_shadow_buf_free
12326  *
12327  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
12328  *
12329  *     Context: May be called under interrupt context
12330  */
12331 
12332 static void
12333 sd_shadow_buf_free(struct buf *bp)
12334 {
12335 	struct sd_xbuf	*xp;
12336 
12337 	ASSERT(bp != NULL);
12338 	xp = SD_GET_XBUF(bp);
12339 	ASSERT(xp != NULL);
12340 
12341 #if defined(__sparc)
12342 	/*
12343 	 * Call bp_mapout() before freeing the buf,  in case a lower
12344 	 * layer or HBA  had done a bp_mapin().  we must do this here
12345 	 * as we are the "originator" of the shadow buf.
12346 	 */
12347 	bp_mapout(bp);
12348 #endif
12349 
12350 	/*
12351 	 * Null out b_iodone before freeing the bp, to ensure that the driver
12352 	 * never gets confused by a stale value in this field. (Just a little
12353 	 * extra defensiveness here.)
12354 	 */
12355 	bp->b_iodone = NULL;
12356 
12357 #if defined(__i386) || defined(__amd64)
12358 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
12359 	freerbuf(bp);
12360 #else
12361 	scsi_free_consistent_buf(bp);
12362 #endif
12363 
12364 	kmem_free(xp, sizeof (struct sd_xbuf));
12365 }
12366 
12367 
12368 /*
12369  *    Function: sd_print_transport_rejected_message
12370  *
12371  * Description: This implements the ludicrously complex rules for printing
12372  *		a "transport rejected" message.  This is to address the
12373  *		specific problem of having a flood of this error message
12374  *		produced when a failover occurs.
12375  *
12376  *     Context: Any.
12377  */
12378 
12379 static void
12380 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
12381 	int code)
12382 {
12383 	ASSERT(un != NULL);
12384 	ASSERT(mutex_owned(SD_MUTEX(un)));
12385 	ASSERT(xp != NULL);
12386 
12387 	/*
12388 	 * Print the "transport rejected" message under the following
12389 	 * conditions:
12390 	 *
12391 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
12392 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
12393 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
12394 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
12395 	 *   scsi_transport(9F) (which indicates that the target might have
12396 	 *   gone off-line).  This uses the un->un_tran_fatal_count
12397 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
12398 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
12399 	 *   from scsi_transport().
12400 	 *
12401 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
12402 	 * the preceeding cases in order for the message to be printed.
12403 	 */
12404 	if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) {
12405 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
12406 		    (code != TRAN_FATAL_ERROR) ||
12407 		    (un->un_tran_fatal_count == 1)) {
12408 			switch (code) {
12409 			case TRAN_BADPKT:
12410 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12411 				    "transport rejected bad packet\n");
12412 				break;
12413 			case TRAN_FATAL_ERROR:
12414 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12415 				    "transport rejected fatal error\n");
12416 				break;
12417 			default:
12418 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12419 				    "transport rejected (%d)\n", code);
12420 				break;
12421 			}
12422 		}
12423 	}
12424 }
12425 
12426 
12427 /*
12428  *    Function: sd_add_buf_to_waitq
12429  *
12430  * Description: Add the given buf(9S) struct to the wait queue for the
12431  *		instance.  If sorting is enabled, then the buf is added
12432  *		to the queue via an elevator sort algorithm (a la
12433  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
12434  *		If sorting is not enabled, then the buf is just added
12435  *		to the end of the wait queue.
12436  *
12437  * Return Code: void
12438  *
12439  *     Context: Does not sleep/block, therefore technically can be called
12440  *		from any context.  However if sorting is enabled then the
12441  *		execution time is indeterminate, and may take long if
12442  *		the wait queue grows large.
12443  */
12444 
12445 static void
12446 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
12447 {
12448 	struct buf *ap;
12449 
12450 	ASSERT(bp != NULL);
12451 	ASSERT(un != NULL);
12452 	ASSERT(mutex_owned(SD_MUTEX(un)));
12453 
12454 	/* If the queue is empty, add the buf as the only entry & return. */
12455 	if (un->un_waitq_headp == NULL) {
12456 		ASSERT(un->un_waitq_tailp == NULL);
12457 		un->un_waitq_headp = un->un_waitq_tailp = bp;
12458 		bp->av_forw = NULL;
12459 		return;
12460 	}
12461 
12462 	ASSERT(un->un_waitq_tailp != NULL);
12463 
12464 	/*
12465 	 * If sorting is disabled, just add the buf to the tail end of
12466 	 * the wait queue and return.
12467 	 */
12468 	if (un->un_f_disksort_disabled) {
12469 		un->un_waitq_tailp->av_forw = bp;
12470 		un->un_waitq_tailp = bp;
12471 		bp->av_forw = NULL;
12472 		return;
12473 	}
12474 
12475 	/*
12476 	 * Sort thru the list of requests currently on the wait queue
12477 	 * and add the new buf request at the appropriate position.
12478 	 *
12479 	 * The un->un_waitq_headp is an activity chain pointer on which
12480 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
12481 	 * first queue holds those requests which are positioned after
12482 	 * the current SD_GET_BLKNO() (in the first request); the second holds
12483 	 * requests which came in after their SD_GET_BLKNO() number was passed.
12484 	 * Thus we implement a one way scan, retracting after reaching
12485 	 * the end of the drive to the first request on the second
12486 	 * queue, at which time it becomes the first queue.
12487 	 * A one-way scan is natural because of the way UNIX read-ahead
12488 	 * blocks are allocated.
12489 	 *
12490 	 * If we lie after the first request, then we must locate the
12491 	 * second request list and add ourselves to it.
12492 	 */
12493 	ap = un->un_waitq_headp;
12494 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
12495 		while (ap->av_forw != NULL) {
12496 			/*
12497 			 * Look for an "inversion" in the (normally
12498 			 * ascending) block numbers. This indicates
12499 			 * the start of the second request list.
12500 			 */
12501 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
12502 				/*
12503 				 * Search the second request list for the
12504 				 * first request at a larger block number.
12505 				 * We go before that; however if there is
12506 				 * no such request, we go at the end.
12507 				 */
12508 				do {
12509 					if (SD_GET_BLKNO(bp) <
12510 					    SD_GET_BLKNO(ap->av_forw)) {
12511 						goto insert;
12512 					}
12513 					ap = ap->av_forw;
12514 				} while (ap->av_forw != NULL);
12515 				goto insert;		/* after last */
12516 			}
12517 			ap = ap->av_forw;
12518 		}
12519 
12520 		/*
12521 		 * No inversions... we will go after the last, and
12522 		 * be the first request in the second request list.
12523 		 */
12524 		goto insert;
12525 	}
12526 
12527 	/*
12528 	 * Request is at/after the current request...
12529 	 * sort in the first request list.
12530 	 */
12531 	while (ap->av_forw != NULL) {
12532 		/*
12533 		 * We want to go after the current request (1) if
12534 		 * there is an inversion after it (i.e. it is the end
12535 		 * of the first request list), or (2) if the next
12536 		 * request is a larger block no. than our request.
12537 		 */
12538 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
12539 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
12540 			goto insert;
12541 		}
12542 		ap = ap->av_forw;
12543 	}
12544 
12545 	/*
12546 	 * Neither a second list nor a larger request, therefore
12547 	 * we go at the end of the first list (which is the same
12548 	 * as the end of the whole schebang).
12549 	 */
12550 insert:
12551 	bp->av_forw = ap->av_forw;
12552 	ap->av_forw = bp;
12553 
12554 	/*
12555 	 * If we inserted onto the tail end of the waitq, make sure the
12556 	 * tail pointer is updated.
12557 	 */
12558 	if (ap == un->un_waitq_tailp) {
12559 		un->un_waitq_tailp = bp;
12560 	}
12561 }
12562 
12563 
12564 /*
12565  *    Function: sd_start_cmds
12566  *
12567  * Description: Remove and transport cmds from the driver queues.
12568  *
12569  *   Arguments: un - pointer to the unit (soft state) struct for the target.
12570  *
12571  *		immed_bp - ptr to a buf to be transported immediately. Only
12572  *		the immed_bp is transported; bufs on the waitq are not
12573  *		processed and the un_retry_bp is not checked.  If immed_bp is
12574  *		NULL, then normal queue processing is performed.
12575  *
12576  *     Context: May be called from kernel thread context, interrupt context,
12577  *		or runout callback context. This function may not block or
12578  *		call routines that block.
12579  */
12580 
12581 static void
12582 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
12583 {
12584 	struct	sd_xbuf	*xp;
12585 	struct	buf	*bp;
12586 	void	(*statp)(kstat_io_t *);
12587 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12588 	void	(*saved_statp)(kstat_io_t *);
12589 #endif
12590 	int	rval;
12591 
12592 	ASSERT(un != NULL);
12593 	ASSERT(mutex_owned(SD_MUTEX(un)));
12594 	ASSERT(un->un_ncmds_in_transport >= 0);
12595 	ASSERT(un->un_throttle >= 0);
12596 
12597 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
12598 
12599 	do {
12600 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12601 		saved_statp = NULL;
12602 #endif
12603 
12604 		/*
12605 		 * If we are syncing or dumping, fail the command to
12606 		 * avoid recursively calling back into scsi_transport().
12607 		 * The dump I/O itself uses a separate code path so this
12608 		 * only prevents non-dump I/O from being sent while dumping.
12609 		 * File system sync takes place before dumping begins.
12610 		 * During panic, filesystem I/O is allowed provided
12611 		 * un_in_callback is <= 1.  This is to prevent recursion
12612 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
12613 		 * sd_start_cmds and so on.  See panic.c for more information
12614 		 * about the states the system can be in during panic.
12615 		 */
12616 		if ((un->un_state == SD_STATE_DUMPING) ||
12617 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
12618 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12619 			    "sd_start_cmds: panicking\n");
12620 			goto exit;
12621 		}
12622 
12623 		if ((bp = immed_bp) != NULL) {
12624 			/*
12625 			 * We have a bp that must be transported immediately.
12626 			 * It's OK to transport the immed_bp here without doing
12627 			 * the throttle limit check because the immed_bp is
12628 			 * always used in a retry/recovery case. This means
12629 			 * that we know we are not at the throttle limit by
12630 			 * virtue of the fact that to get here we must have
12631 			 * already gotten a command back via sdintr(). This also
12632 			 * relies on (1) the command on un_retry_bp preventing
12633 			 * further commands from the waitq from being issued;
12634 			 * and (2) the code in sd_retry_command checking the
12635 			 * throttle limit before issuing a delayed or immediate
12636 			 * retry. This holds even if the throttle limit is
12637 			 * currently ratcheted down from its maximum value.
12638 			 */
12639 			statp = kstat_runq_enter;
12640 			if (bp == un->un_retry_bp) {
12641 				ASSERT((un->un_retry_statp == NULL) ||
12642 				    (un->un_retry_statp == kstat_waitq_enter) ||
12643 				    (un->un_retry_statp ==
12644 				    kstat_runq_back_to_waitq));
12645 				/*
12646 				 * If the waitq kstat was incremented when
12647 				 * sd_set_retry_bp() queued this bp for a retry,
12648 				 * then we must set up statp so that the waitq
12649 				 * count will get decremented correctly below.
12650 				 * Also we must clear un->un_retry_statp to
12651 				 * ensure that we do not act on a stale value
12652 				 * in this field.
12653 				 */
12654 				if ((un->un_retry_statp == kstat_waitq_enter) ||
12655 				    (un->un_retry_statp ==
12656 				    kstat_runq_back_to_waitq)) {
12657 					statp = kstat_waitq_to_runq;
12658 				}
12659 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12660 				saved_statp = un->un_retry_statp;
12661 #endif
12662 				un->un_retry_statp = NULL;
12663 
12664 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
12665 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
12666 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
12667 				    un, un->un_retry_bp, un->un_throttle,
12668 				    un->un_ncmds_in_transport);
12669 			} else {
12670 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
12671 				    "processing priority bp:0x%p\n", bp);
12672 			}
12673 
12674 		} else if ((bp = un->un_waitq_headp) != NULL) {
12675 			/*
12676 			 * A command on the waitq is ready to go, but do not
12677 			 * send it if:
12678 			 *
12679 			 * (1) the throttle limit has been reached, or
12680 			 * (2) a retry is pending, or
12681 			 * (3) a START_STOP_UNIT callback pending, or
12682 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
12683 			 *	command is pending.
12684 			 *
12685 			 * For all of these conditions, IO processing will
12686 			 * restart after the condition is cleared.
12687 			 */
12688 			if (un->un_ncmds_in_transport >= un->un_throttle) {
12689 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12690 				    "sd_start_cmds: exiting, "
12691 				    "throttle limit reached!\n");
12692 				goto exit;
12693 			}
12694 			if (un->un_retry_bp != NULL) {
12695 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12696 				    "sd_start_cmds: exiting, retry pending!\n");
12697 				goto exit;
12698 			}
12699 			if (un->un_startstop_timeid != NULL) {
12700 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12701 				    "sd_start_cmds: exiting, "
12702 				    "START_STOP pending!\n");
12703 				goto exit;
12704 			}
12705 			if (un->un_direct_priority_timeid != NULL) {
12706 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12707 				    "sd_start_cmds: exiting, "
12708 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
12709 				goto exit;
12710 			}
12711 
12712 			/* Dequeue the command */
12713 			un->un_waitq_headp = bp->av_forw;
12714 			if (un->un_waitq_headp == NULL) {
12715 				un->un_waitq_tailp = NULL;
12716 			}
12717 			bp->av_forw = NULL;
12718 			statp = kstat_waitq_to_runq;
12719 			SD_TRACE(SD_LOG_IO_CORE, un,
12720 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
12721 
12722 		} else {
12723 			/* No work to do so bail out now */
12724 			SD_TRACE(SD_LOG_IO_CORE, un,
12725 			    "sd_start_cmds: no more work, exiting!\n");
12726 			goto exit;
12727 		}
12728 
12729 		/*
12730 		 * Reset the state to normal. This is the mechanism by which
12731 		 * the state transitions from either SD_STATE_RWAIT or
12732 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
12733 		 * If state is SD_STATE_PM_CHANGING then this command is
12734 		 * part of the device power control and the state must
12735 		 * not be put back to normal. Doing so would would
12736 		 * allow new commands to proceed when they shouldn't,
12737 		 * the device may be going off.
12738 		 */
12739 		if ((un->un_state != SD_STATE_SUSPENDED) &&
12740 		    (un->un_state != SD_STATE_PM_CHANGING)) {
12741 			New_state(un, SD_STATE_NORMAL);
12742 		}
12743 
12744 		xp = SD_GET_XBUF(bp);
12745 		ASSERT(xp != NULL);
12746 
12747 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12748 		/*
12749 		 * Allocate the scsi_pkt if we need one, or attach DMA
12750 		 * resources if we have a scsi_pkt that needs them. The
12751 		 * latter should only occur for commands that are being
12752 		 * retried.
12753 		 */
12754 		if ((xp->xb_pktp == NULL) ||
12755 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
12756 #else
12757 		if (xp->xb_pktp == NULL) {
12758 #endif
12759 			/*
12760 			 * There is no scsi_pkt allocated for this buf. Call
12761 			 * the initpkt function to allocate & init one.
12762 			 *
12763 			 * The scsi_init_pkt runout callback functionality is
12764 			 * implemented as follows:
12765 			 *
12766 			 * 1) The initpkt function always calls
12767 			 *    scsi_init_pkt(9F) with sdrunout specified as the
12768 			 *    callback routine.
12769 			 * 2) A successful packet allocation is initialized and
12770 			 *    the I/O is transported.
12771 			 * 3) The I/O associated with an allocation resource
12772 			 *    failure is left on its queue to be retried via
12773 			 *    runout or the next I/O.
12774 			 * 4) The I/O associated with a DMA error is removed
12775 			 *    from the queue and failed with EIO. Processing of
12776 			 *    the transport queues is also halted to be
12777 			 *    restarted via runout or the next I/O.
12778 			 * 5) The I/O associated with a CDB size or packet
12779 			 *    size error is removed from the queue and failed
12780 			 *    with EIO. Processing of the transport queues is
12781 			 *    continued.
12782 			 *
12783 			 * Note: there is no interface for canceling a runout
12784 			 * callback. To prevent the driver from detaching or
12785 			 * suspending while a runout is pending the driver
12786 			 * state is set to SD_STATE_RWAIT
12787 			 *
12788 			 * Note: using the scsi_init_pkt callback facility can
12789 			 * result in an I/O request persisting at the head of
12790 			 * the list which cannot be satisfied even after
12791 			 * multiple retries. In the future the driver may
12792 			 * implement some kind of maximum runout count before
12793 			 * failing an I/O.
12794 			 *
12795 			 * Note: the use of funcp below may seem superfluous,
12796 			 * but it helps warlock figure out the correct
12797 			 * initpkt function calls (see [s]sd.wlcmd).
12798 			 */
12799 			struct scsi_pkt	*pktp;
12800 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
12801 
12802 			ASSERT(bp != un->un_rqs_bp);
12803 
12804 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
12805 			switch ((*funcp)(bp, &pktp)) {
12806 			case  SD_PKT_ALLOC_SUCCESS:
12807 				xp->xb_pktp = pktp;
12808 				SD_TRACE(SD_LOG_IO_CORE, un,
12809 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
12810 				    pktp);
12811 				goto got_pkt;
12812 
12813 			case SD_PKT_ALLOC_FAILURE:
12814 				/*
12815 				 * Temporary (hopefully) resource depletion.
12816 				 * Since retries and RQS commands always have a
12817 				 * scsi_pkt allocated, these cases should never
12818 				 * get here. So the only cases this needs to
12819 				 * handle is a bp from the waitq (which we put
12820 				 * back onto the waitq for sdrunout), or a bp
12821 				 * sent as an immed_bp (which we just fail).
12822 				 */
12823 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12824 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
12825 
12826 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12827 
12828 				if (bp == immed_bp) {
12829 					/*
12830 					 * If SD_XB_DMA_FREED is clear, then
12831 					 * this is a failure to allocate a
12832 					 * scsi_pkt, and we must fail the
12833 					 * command.
12834 					 */
12835 					if ((xp->xb_pkt_flags &
12836 					    SD_XB_DMA_FREED) == 0) {
12837 						break;
12838 					}
12839 
12840 					/*
12841 					 * If this immediate command is NOT our
12842 					 * un_retry_bp, then we must fail it.
12843 					 */
12844 					if (bp != un->un_retry_bp) {
12845 						break;
12846 					}
12847 
12848 					/*
12849 					 * We get here if this cmd is our
12850 					 * un_retry_bp that was DMAFREED, but
12851 					 * scsi_init_pkt() failed to reallocate
12852 					 * DMA resources when we attempted to
12853 					 * retry it. This can happen when an
12854 					 * mpxio failover is in progress, but
12855 					 * we don't want to just fail the
12856 					 * command in this case.
12857 					 *
12858 					 * Use timeout(9F) to restart it after
12859 					 * a 100ms delay.  We don't want to
12860 					 * let sdrunout() restart it, because
12861 					 * sdrunout() is just supposed to start
12862 					 * commands that are sitting on the
12863 					 * wait queue.  The un_retry_bp stays
12864 					 * set until the command completes, but
12865 					 * sdrunout can be called many times
12866 					 * before that happens.  Since sdrunout
12867 					 * cannot tell if the un_retry_bp is
12868 					 * already in the transport, it could
12869 					 * end up calling scsi_transport() for
12870 					 * the un_retry_bp multiple times.
12871 					 *
12872 					 * Also: don't schedule the callback
12873 					 * if some other callback is already
12874 					 * pending.
12875 					 */
12876 					if (un->un_retry_statp == NULL) {
12877 						/*
12878 						 * restore the kstat pointer to
12879 						 * keep kstat counts coherent
12880 						 * when we do retry the command.
12881 						 */
12882 						un->un_retry_statp =
12883 						    saved_statp;
12884 					}
12885 
12886 					if ((un->un_startstop_timeid == NULL) &&
12887 					    (un->un_retry_timeid == NULL) &&
12888 					    (un->un_direct_priority_timeid ==
12889 					    NULL)) {
12890 
12891 						un->un_retry_timeid =
12892 						    timeout(
12893 						    sd_start_retry_command,
12894 						    un, SD_RESTART_TIMEOUT);
12895 					}
12896 					goto exit;
12897 				}
12898 
12899 #else
12900 				if (bp == immed_bp) {
12901 					break;	/* Just fail the command */
12902 				}
12903 #endif
12904 
12905 				/* Add the buf back to the head of the waitq */
12906 				bp->av_forw = un->un_waitq_headp;
12907 				un->un_waitq_headp = bp;
12908 				if (un->un_waitq_tailp == NULL) {
12909 					un->un_waitq_tailp = bp;
12910 				}
12911 				goto exit;
12912 
12913 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
12914 				/*
12915 				 * HBA DMA resource failure. Fail the command
12916 				 * and continue processing of the queues.
12917 				 */
12918 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12919 				    "sd_start_cmds: "
12920 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
12921 				break;
12922 
12923 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
12924 				/*
12925 				 * Note:x86: Partial DMA mapping not supported
12926 				 * for USCSI commands, and all the needed DMA
12927 				 * resources were not allocated.
12928 				 */
12929 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12930 				    "sd_start_cmds: "
12931 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
12932 				break;
12933 
12934 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
12935 				/*
12936 				 * Note:x86: Request cannot fit into CDB based
12937 				 * on lba and len.
12938 				 */
12939 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12940 				    "sd_start_cmds: "
12941 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
12942 				break;
12943 
12944 			default:
12945 				/* Should NEVER get here! */
12946 				panic("scsi_initpkt error");
12947 				/*NOTREACHED*/
12948 			}
12949 
12950 			/*
12951 			 * Fatal error in allocating a scsi_pkt for this buf.
12952 			 * Update kstats & return the buf with an error code.
12953 			 * We must use sd_return_failed_command_no_restart() to
12954 			 * avoid a recursive call back into sd_start_cmds().
12955 			 * However this also means that we must keep processing
12956 			 * the waitq here in order to avoid stalling.
12957 			 */
12958 			if (statp == kstat_waitq_to_runq) {
12959 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
12960 			}
12961 			sd_return_failed_command_no_restart(un, bp, EIO);
12962 			if (bp == immed_bp) {
12963 				/* immed_bp is gone by now, so clear this */
12964 				immed_bp = NULL;
12965 			}
12966 			continue;
12967 		}
12968 got_pkt:
12969 		if (bp == immed_bp) {
12970 			/* goto the head of the class.... */
12971 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
12972 		}
12973 
12974 		un->un_ncmds_in_transport++;
12975 		SD_UPDATE_KSTATS(un, statp, bp);
12976 
12977 		/*
12978 		 * Call scsi_transport() to send the command to the target.
12979 		 * According to SCSA architecture, we must drop the mutex here
12980 		 * before calling scsi_transport() in order to avoid deadlock.
12981 		 * Note that the scsi_pkt's completion routine can be executed
12982 		 * (from interrupt context) even before the call to
12983 		 * scsi_transport() returns.
12984 		 */
12985 		SD_TRACE(SD_LOG_IO_CORE, un,
12986 		    "sd_start_cmds: calling scsi_transport()\n");
12987 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
12988 
12989 		mutex_exit(SD_MUTEX(un));
12990 		rval = scsi_transport(xp->xb_pktp);
12991 		mutex_enter(SD_MUTEX(un));
12992 
12993 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12994 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
12995 
12996 		switch (rval) {
12997 		case TRAN_ACCEPT:
12998 			/* Clear this with every pkt accepted by the HBA */
12999 			un->un_tran_fatal_count = 0;
13000 			break;	/* Success; try the next cmd (if any) */
13001 
13002 		case TRAN_BUSY:
13003 			un->un_ncmds_in_transport--;
13004 			ASSERT(un->un_ncmds_in_transport >= 0);
13005 
13006 			/*
13007 			 * Don't retry request sense, the sense data
13008 			 * is lost when another request is sent.
13009 			 * Free up the rqs buf and retry
13010 			 * the original failed cmd.  Update kstat.
13011 			 */
13012 			if (bp == un->un_rqs_bp) {
13013 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13014 				bp = sd_mark_rqs_idle(un, xp);
13015 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
13016 				    NULL, NULL, EIO, SD_BSY_TIMEOUT / 500,
13017 				    kstat_waitq_enter);
13018 				goto exit;
13019 			}
13020 
13021 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13022 			/*
13023 			 * Free the DMA resources for the  scsi_pkt. This will
13024 			 * allow mpxio to select another path the next time
13025 			 * we call scsi_transport() with this scsi_pkt.
13026 			 * See sdintr() for the rationalization behind this.
13027 			 */
13028 			if ((un->un_f_is_fibre == TRUE) &&
13029 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
13030 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
13031 				scsi_dmafree(xp->xb_pktp);
13032 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
13033 			}
13034 #endif
13035 
13036 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
13037 				/*
13038 				 * Commands that are SD_PATH_DIRECT_PRIORITY
13039 				 * are for error recovery situations. These do
13040 				 * not use the normal command waitq, so if they
13041 				 * get a TRAN_BUSY we cannot put them back onto
13042 				 * the waitq for later retry. One possible
13043 				 * problem is that there could already be some
13044 				 * other command on un_retry_bp that is waiting
13045 				 * for this one to complete, so we would be
13046 				 * deadlocked if we put this command back onto
13047 				 * the waitq for later retry (since un_retry_bp
13048 				 * must complete before the driver gets back to
13049 				 * commands on the waitq).
13050 				 *
13051 				 * To avoid deadlock we must schedule a callback
13052 				 * that will restart this command after a set
13053 				 * interval.  This should keep retrying for as
13054 				 * long as the underlying transport keeps
13055 				 * returning TRAN_BUSY (just like for other
13056 				 * commands).  Use the same timeout interval as
13057 				 * for the ordinary TRAN_BUSY retry.
13058 				 */
13059 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13060 				    "sd_start_cmds: scsi_transport() returned "
13061 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
13062 
13063 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13064 				un->un_direct_priority_timeid =
13065 				    timeout(sd_start_direct_priority_command,
13066 				    bp, SD_BSY_TIMEOUT / 500);
13067 
13068 				goto exit;
13069 			}
13070 
13071 			/*
13072 			 * For TRAN_BUSY, we want to reduce the throttle value,
13073 			 * unless we are retrying a command.
13074 			 */
13075 			if (bp != un->un_retry_bp) {
13076 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
13077 			}
13078 
13079 			/*
13080 			 * Set up the bp to be tried again 10 ms later.
13081 			 * Note:x86: Is there a timeout value in the sd_lun
13082 			 * for this condition?
13083 			 */
13084 			sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500,
13085 			    kstat_runq_back_to_waitq);
13086 			goto exit;
13087 
13088 		case TRAN_FATAL_ERROR:
13089 			un->un_tran_fatal_count++;
13090 			/* FALLTHRU */
13091 
13092 		case TRAN_BADPKT:
13093 		default:
13094 			un->un_ncmds_in_transport--;
13095 			ASSERT(un->un_ncmds_in_transport >= 0);
13096 
13097 			/*
13098 			 * If this is our REQUEST SENSE command with a
13099 			 * transport error, we must get back the pointers
13100 			 * to the original buf, and mark the REQUEST
13101 			 * SENSE command as "available".
13102 			 */
13103 			if (bp == un->un_rqs_bp) {
13104 				bp = sd_mark_rqs_idle(un, xp);
13105 				xp = SD_GET_XBUF(bp);
13106 			} else {
13107 				/*
13108 				 * Legacy behavior: do not update transport
13109 				 * error count for request sense commands.
13110 				 */
13111 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
13112 			}
13113 
13114 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13115 			sd_print_transport_rejected_message(un, xp, rval);
13116 
13117 			/*
13118 			 * We must use sd_return_failed_command_no_restart() to
13119 			 * avoid a recursive call back into sd_start_cmds().
13120 			 * However this also means that we must keep processing
13121 			 * the waitq here in order to avoid stalling.
13122 			 */
13123 			sd_return_failed_command_no_restart(un, bp, EIO);
13124 
13125 			/*
13126 			 * Notify any threads waiting in sd_ddi_suspend() that
13127 			 * a command completion has occurred.
13128 			 */
13129 			if (un->un_state == SD_STATE_SUSPENDED) {
13130 				cv_broadcast(&un->un_disk_busy_cv);
13131 			}
13132 
13133 			if (bp == immed_bp) {
13134 				/* immed_bp is gone by now, so clear this */
13135 				immed_bp = NULL;
13136 			}
13137 			break;
13138 		}
13139 
13140 	} while (immed_bp == NULL);
13141 
13142 exit:
13143 	ASSERT(mutex_owned(SD_MUTEX(un)));
13144 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
13145 }
13146 
13147 
13148 /*
13149  *    Function: sd_return_command
13150  *
13151  * Description: Returns a command to its originator (with or without an
13152  *		error).  Also starts commands waiting to be transported
13153  *		to the target.
13154  *
13155  *     Context: May be called from interrupt, kernel, or timeout context
13156  */
13157 
13158 static void
13159 sd_return_command(struct sd_lun *un, struct buf *bp)
13160 {
13161 	struct sd_xbuf *xp;
13162 #if defined(__i386) || defined(__amd64)
13163 	struct scsi_pkt *pktp;
13164 #endif
13165 
13166 	ASSERT(bp != NULL);
13167 	ASSERT(un != NULL);
13168 	ASSERT(mutex_owned(SD_MUTEX(un)));
13169 	ASSERT(bp != un->un_rqs_bp);
13170 	xp = SD_GET_XBUF(bp);
13171 	ASSERT(xp != NULL);
13172 
13173 #if defined(__i386) || defined(__amd64)
13174 	pktp = SD_GET_PKTP(bp);
13175 #endif
13176 
13177 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
13178 
13179 #if defined(__i386) || defined(__amd64)
13180 	/*
13181 	 * Note:x86: check for the "sdrestart failed" case.
13182 	 */
13183 	if (((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
13184 	    (geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
13185 	    (xp->xb_pktp->pkt_resid == 0)) {
13186 
13187 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
13188 			/*
13189 			 * Successfully set up next portion of cmd
13190 			 * transfer, try sending it
13191 			 */
13192 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
13193 			    NULL, NULL, 0, (clock_t)0, NULL);
13194 			sd_start_cmds(un, NULL);
13195 			return;	/* Note:x86: need a return here? */
13196 		}
13197 	}
13198 #endif
13199 
13200 	/*
13201 	 * If this is the failfast bp, clear it from un_failfast_bp. This
13202 	 * can happen if upon being re-tried the failfast bp either
13203 	 * succeeded or encountered another error (possibly even a different
13204 	 * error than the one that precipitated the failfast state, but in
13205 	 * that case it would have had to exhaust retries as well). Regardless,
13206 	 * this should not occur whenever the instance is in the active
13207 	 * failfast state.
13208 	 */
13209 	if (bp == un->un_failfast_bp) {
13210 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
13211 		un->un_failfast_bp = NULL;
13212 	}
13213 
13214 	/*
13215 	 * Clear the failfast state upon successful completion of ANY cmd.
13216 	 */
13217 	if (bp->b_error == 0) {
13218 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
13219 	}
13220 
13221 	/*
13222 	 * This is used if the command was retried one or more times. Show that
13223 	 * we are done with it, and allow processing of the waitq to resume.
13224 	 */
13225 	if (bp == un->un_retry_bp) {
13226 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13227 		    "sd_return_command: un:0x%p: "
13228 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
13229 		un->un_retry_bp = NULL;
13230 		un->un_retry_statp = NULL;
13231 	}
13232 
13233 	SD_UPDATE_RDWR_STATS(un, bp);
13234 	SD_UPDATE_PARTITION_STATS(un, bp);
13235 
13236 	switch (un->un_state) {
13237 	case SD_STATE_SUSPENDED:
13238 		/*
13239 		 * Notify any threads waiting in sd_ddi_suspend() that
13240 		 * a command completion has occurred.
13241 		 */
13242 		cv_broadcast(&un->un_disk_busy_cv);
13243 		break;
13244 	default:
13245 		sd_start_cmds(un, NULL);
13246 		break;
13247 	}
13248 
13249 	/* Return this command up the iodone chain to its originator. */
13250 	mutex_exit(SD_MUTEX(un));
13251 
13252 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
13253 	xp->xb_pktp = NULL;
13254 
13255 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
13256 
13257 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13258 	mutex_enter(SD_MUTEX(un));
13259 
13260 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
13261 }
13262 
13263 
13264 /*
13265  *    Function: sd_return_failed_command
13266  *
13267  * Description: Command completion when an error occurred.
13268  *
13269  *     Context: May be called from interrupt context
13270  */
13271 
13272 static void
13273 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
13274 {
13275 	ASSERT(bp != NULL);
13276 	ASSERT(un != NULL);
13277 	ASSERT(mutex_owned(SD_MUTEX(un)));
13278 
13279 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13280 	    "sd_return_failed_command: entry\n");
13281 
13282 	/*
13283 	 * b_resid could already be nonzero due to a partial data
13284 	 * transfer, so do not change it here.
13285 	 */
13286 	SD_BIOERROR(bp, errcode);
13287 
13288 	sd_return_command(un, bp);
13289 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13290 	    "sd_return_failed_command: exit\n");
13291 }
13292 
13293 
13294 /*
13295  *    Function: sd_return_failed_command_no_restart
13296  *
13297  * Description: Same as sd_return_failed_command, but ensures that no
13298  *		call back into sd_start_cmds will be issued.
13299  *
13300  *     Context: May be called from interrupt context
13301  */
13302 
13303 static void
13304 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
13305 	int errcode)
13306 {
13307 	struct sd_xbuf *xp;
13308 
13309 	ASSERT(bp != NULL);
13310 	ASSERT(un != NULL);
13311 	ASSERT(mutex_owned(SD_MUTEX(un)));
13312 	xp = SD_GET_XBUF(bp);
13313 	ASSERT(xp != NULL);
13314 	ASSERT(errcode != 0);
13315 
13316 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13317 	    "sd_return_failed_command_no_restart: entry\n");
13318 
13319 	/*
13320 	 * b_resid could already be nonzero due to a partial data
13321 	 * transfer, so do not change it here.
13322 	 */
13323 	SD_BIOERROR(bp, errcode);
13324 
13325 	/*
13326 	 * If this is the failfast bp, clear it. This can happen if the
13327 	 * failfast bp encounterd a fatal error when we attempted to
13328 	 * re-try it (such as a scsi_transport(9F) failure).  However
13329 	 * we should NOT be in an active failfast state if the failfast
13330 	 * bp is not NULL.
13331 	 */
13332 	if (bp == un->un_failfast_bp) {
13333 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
13334 		un->un_failfast_bp = NULL;
13335 	}
13336 
13337 	if (bp == un->un_retry_bp) {
13338 		/*
13339 		 * This command was retried one or more times. Show that we are
13340 		 * done with it, and allow processing of the waitq to resume.
13341 		 */
13342 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13343 		    "sd_return_failed_command_no_restart: "
13344 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
13345 		un->un_retry_bp = NULL;
13346 		un->un_retry_statp = NULL;
13347 	}
13348 
13349 	SD_UPDATE_RDWR_STATS(un, bp);
13350 	SD_UPDATE_PARTITION_STATS(un, bp);
13351 
13352 	mutex_exit(SD_MUTEX(un));
13353 
13354 	if (xp->xb_pktp != NULL) {
13355 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
13356 		xp->xb_pktp = NULL;
13357 	}
13358 
13359 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
13360 
13361 	mutex_enter(SD_MUTEX(un));
13362 
13363 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13364 	    "sd_return_failed_command_no_restart: exit\n");
13365 }
13366 
13367 
13368 /*
13369  *    Function: sd_retry_command
13370  *
13371  * Description: queue up a command for retry, or (optionally) fail it
13372  *		if retry counts are exhausted.
13373  *
13374  *   Arguments: un - Pointer to the sd_lun struct for the target.
13375  *
13376  *		bp - Pointer to the buf for the command to be retried.
13377  *
13378  *		retry_check_flag - Flag to see which (if any) of the retry
13379  *		   counts should be decremented/checked. If the indicated
13380  *		   retry count is exhausted, then the command will not be
13381  *		   retried; it will be failed instead. This should use a
13382  *		   value equal to one of the following:
13383  *
13384  *			SD_RETRIES_NOCHECK
13385  *			SD_RESD_RETRIES_STANDARD
13386  *			SD_RETRIES_VICTIM
13387  *
13388  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
13389  *		   if the check should be made to see of FLAG_ISOLATE is set
13390  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
13391  *		   not retried, it is simply failed.
13392  *
13393  *		user_funcp - Ptr to function to call before dispatching the
13394  *		   command. May be NULL if no action needs to be performed.
13395  *		   (Primarily intended for printing messages.)
13396  *
13397  *		user_arg - Optional argument to be passed along to
13398  *		   the user_funcp call.
13399  *
13400  *		failure_code - errno return code to set in the bp if the
13401  *		   command is going to be failed.
13402  *
13403  *		retry_delay - Retry delay interval in (clock_t) units. May
13404  *		   be zero which indicates that the retry should be retried
13405  *		   immediately (ie, without an intervening delay).
13406  *
13407  *		statp - Ptr to kstat function to be updated if the command
13408  *		   is queued for a delayed retry. May be NULL if no kstat
13409  *		   update is desired.
13410  *
13411  *     Context: May be called from interrupt context.
13412  */
13413 
13414 static void
13415 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
13416 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
13417 	code), void *user_arg, int failure_code,  clock_t retry_delay,
13418 	void (*statp)(kstat_io_t *))
13419 {
13420 	struct sd_xbuf	*xp;
13421 	struct scsi_pkt	*pktp;
13422 
13423 	ASSERT(un != NULL);
13424 	ASSERT(mutex_owned(SD_MUTEX(un)));
13425 	ASSERT(bp != NULL);
13426 	xp = SD_GET_XBUF(bp);
13427 	ASSERT(xp != NULL);
13428 	pktp = SD_GET_PKTP(bp);
13429 	ASSERT(pktp != NULL);
13430 
13431 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
13432 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
13433 
13434 	/*
13435 	 * If we are syncing or dumping, fail the command to avoid
13436 	 * recursively calling back into scsi_transport().
13437 	 */
13438 	if (ddi_in_panic()) {
13439 		goto fail_command_no_log;
13440 	}
13441 
13442 	/*
13443 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
13444 	 * log an error and fail the command.
13445 	 */
13446 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
13447 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
13448 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
13449 		sd_dump_memory(un, SD_LOG_IO, "CDB",
13450 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
13451 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
13452 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
13453 		goto fail_command;
13454 	}
13455 
13456 	/*
13457 	 * If we are suspended, then put the command onto head of the
13458 	 * wait queue since we don't want to start more commands, and
13459 	 * clear the un_retry_bp. Next time when we are resumed, will
13460 	 * handle the command in the wait queue.
13461 	 */
13462 	switch (un->un_state) {
13463 	case SD_STATE_SUSPENDED:
13464 	case SD_STATE_DUMPING:
13465 		bp->av_forw = un->un_waitq_headp;
13466 		un->un_waitq_headp = bp;
13467 		if (un->un_waitq_tailp == NULL) {
13468 			un->un_waitq_tailp = bp;
13469 		}
13470 		if (bp == un->un_retry_bp) {
13471 			un->un_retry_bp = NULL;
13472 			un->un_retry_statp = NULL;
13473 		}
13474 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
13475 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
13476 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
13477 		return;
13478 	default:
13479 		break;
13480 	}
13481 
13482 	/*
13483 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
13484 	 * is set; if it is then we do not want to retry the command.
13485 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
13486 	 */
13487 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
13488 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
13489 			goto fail_command;
13490 		}
13491 	}
13492 
13493 
13494 	/*
13495 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
13496 	 * command timeout or a selection timeout has occurred. This means
13497 	 * that we were unable to establish an kind of communication with
13498 	 * the target, and subsequent retries and/or commands are likely
13499 	 * to encounter similar results and take a long time to complete.
13500 	 *
13501 	 * If this is a failfast error condition, we need to update the
13502 	 * failfast state, even if this bp does not have B_FAILFAST set.
13503 	 */
13504 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
13505 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
13506 			ASSERT(un->un_failfast_bp == NULL);
13507 			/*
13508 			 * If we are already in the active failfast state, and
13509 			 * another failfast error condition has been detected,
13510 			 * then fail this command if it has B_FAILFAST set.
13511 			 * If B_FAILFAST is clear, then maintain the legacy
13512 			 * behavior of retrying heroically, even tho this will
13513 			 * take a lot more time to fail the command.
13514 			 */
13515 			if (bp->b_flags & B_FAILFAST) {
13516 				goto fail_command;
13517 			}
13518 		} else {
13519 			/*
13520 			 * We're not in the active failfast state, but we
13521 			 * have a failfast error condition, so we must begin
13522 			 * transition to the next state. We do this regardless
13523 			 * of whether or not this bp has B_FAILFAST set.
13524 			 */
13525 			if (un->un_failfast_bp == NULL) {
13526 				/*
13527 				 * This is the first bp to meet a failfast
13528 				 * condition so save it on un_failfast_bp &
13529 				 * do normal retry processing. Do not enter
13530 				 * active failfast state yet. This marks
13531 				 * entry into the "failfast pending" state.
13532 				 */
13533 				un->un_failfast_bp = bp;
13534 
13535 			} else if (un->un_failfast_bp == bp) {
13536 				/*
13537 				 * This is the second time *this* bp has
13538 				 * encountered a failfast error condition,
13539 				 * so enter active failfast state & flush
13540 				 * queues as appropriate.
13541 				 */
13542 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
13543 				un->un_failfast_bp = NULL;
13544 				sd_failfast_flushq(un);
13545 
13546 				/*
13547 				 * Fail this bp now if B_FAILFAST set;
13548 				 * otherwise continue with retries. (It would
13549 				 * be pretty ironic if this bp succeeded on a
13550 				 * subsequent retry after we just flushed all
13551 				 * the queues).
13552 				 */
13553 				if (bp->b_flags & B_FAILFAST) {
13554 					goto fail_command;
13555 				}
13556 
13557 #if !defined(lint) && !defined(__lint)
13558 			} else {
13559 				/*
13560 				 * If neither of the preceeding conditionals
13561 				 * was true, it means that there is some
13562 				 * *other* bp that has met an inital failfast
13563 				 * condition and is currently either being
13564 				 * retried or is waiting to be retried. In
13565 				 * that case we should perform normal retry
13566 				 * processing on *this* bp, since there is a
13567 				 * chance that the current failfast condition
13568 				 * is transient and recoverable. If that does
13569 				 * not turn out to be the case, then retries
13570 				 * will be cleared when the wait queue is
13571 				 * flushed anyway.
13572 				 */
13573 #endif
13574 			}
13575 		}
13576 	} else {
13577 		/*
13578 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
13579 		 * likely were able to at least establish some level of
13580 		 * communication with the target and subsequent commands
13581 		 * and/or retries are likely to get through to the target,
13582 		 * In this case we want to be aggressive about clearing
13583 		 * the failfast state. Note that this does not affect
13584 		 * the "failfast pending" condition.
13585 		 */
13586 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
13587 	}
13588 
13589 
13590 	/*
13591 	 * Check the specified retry count to see if we can still do
13592 	 * any retries with this pkt before we should fail it.
13593 	 */
13594 	switch (retry_check_flag & SD_RETRIES_MASK) {
13595 	case SD_RETRIES_VICTIM:
13596 		/*
13597 		 * Check the victim retry count. If exhausted, then fall
13598 		 * thru & check against the standard retry count.
13599 		 */
13600 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
13601 			/* Increment count & proceed with the retry */
13602 			xp->xb_victim_retry_count++;
13603 			break;
13604 		}
13605 		/* Victim retries exhausted, fall back to std. retries... */
13606 		/* FALLTHRU */
13607 
13608 	case SD_RETRIES_STANDARD:
13609 		if (xp->xb_retry_count >= un->un_retry_count) {
13610 			/* Retries exhausted, fail the command */
13611 			SD_TRACE(SD_LOG_IO_CORE, un,
13612 			    "sd_retry_command: retries exhausted!\n");
13613 			/*
13614 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
13615 			 * commands with nonzero pkt_resid.
13616 			 */
13617 			if ((pktp->pkt_reason == CMD_CMPLT) &&
13618 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
13619 			    (pktp->pkt_resid != 0)) {
13620 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
13621 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
13622 					SD_UPDATE_B_RESID(bp, pktp);
13623 				}
13624 			}
13625 			goto fail_command;
13626 		}
13627 		xp->xb_retry_count++;
13628 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13629 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
13630 		break;
13631 
13632 	case SD_RETRIES_UA:
13633 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
13634 			/* Retries exhausted, fail the command */
13635 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13636 			    "Unit Attention retries exhausted. "
13637 			    "Check the target.\n");
13638 			goto fail_command;
13639 		}
13640 		xp->xb_ua_retry_count++;
13641 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13642 		    "sd_retry_command: retry count:%d\n",
13643 		    xp->xb_ua_retry_count);
13644 		break;
13645 
13646 	case SD_RETRIES_BUSY:
13647 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
13648 			/* Retries exhausted, fail the command */
13649 			SD_TRACE(SD_LOG_IO_CORE, un,
13650 			    "sd_retry_command: retries exhausted!\n");
13651 			goto fail_command;
13652 		}
13653 		xp->xb_retry_count++;
13654 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13655 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
13656 		break;
13657 
13658 	case SD_RETRIES_NOCHECK:
13659 	default:
13660 		/* No retry count to check. Just proceed with the retry */
13661 		break;
13662 	}
13663 
13664 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
13665 
13666 	/*
13667 	 * If we were given a zero timeout, we must attempt to retry the
13668 	 * command immediately (ie, without a delay).
13669 	 */
13670 	if (retry_delay == 0) {
13671 		/*
13672 		 * Check some limiting conditions to see if we can actually
13673 		 * do the immediate retry.  If we cannot, then we must
13674 		 * fall back to queueing up a delayed retry.
13675 		 */
13676 		if (un->un_ncmds_in_transport >= un->un_throttle) {
13677 			/*
13678 			 * We are at the throttle limit for the target,
13679 			 * fall back to delayed retry.
13680 			 */
13681 			retry_delay = SD_BSY_TIMEOUT;
13682 			statp = kstat_waitq_enter;
13683 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13684 			    "sd_retry_command: immed. retry hit "
13685 			    "throttle!\n");
13686 		} else {
13687 			/*
13688 			 * We're clear to proceed with the immediate retry.
13689 			 * First call the user-provided function (if any)
13690 			 */
13691 			if (user_funcp != NULL) {
13692 				(*user_funcp)(un, bp, user_arg,
13693 				    SD_IMMEDIATE_RETRY_ISSUED);
13694 #ifdef __lock_lint
13695 				sd_print_incomplete_msg(un, bp, user_arg,
13696 				    SD_IMMEDIATE_RETRY_ISSUED);
13697 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
13698 				    SD_IMMEDIATE_RETRY_ISSUED);
13699 				sd_print_sense_failed_msg(un, bp, user_arg,
13700 				    SD_IMMEDIATE_RETRY_ISSUED);
13701 #endif
13702 			}
13703 
13704 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13705 			    "sd_retry_command: issuing immediate retry\n");
13706 
13707 			/*
13708 			 * Call sd_start_cmds() to transport the command to
13709 			 * the target.
13710 			 */
13711 			sd_start_cmds(un, bp);
13712 
13713 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13714 			    "sd_retry_command exit\n");
13715 			return;
13716 		}
13717 	}
13718 
13719 	/*
13720 	 * Set up to retry the command after a delay.
13721 	 * First call the user-provided function (if any)
13722 	 */
13723 	if (user_funcp != NULL) {
13724 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
13725 	}
13726 
13727 	sd_set_retry_bp(un, bp, retry_delay, statp);
13728 
13729 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
13730 	return;
13731 
13732 fail_command:
13733 
13734 	if (user_funcp != NULL) {
13735 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
13736 	}
13737 
13738 fail_command_no_log:
13739 
13740 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13741 	    "sd_retry_command: returning failed command\n");
13742 
13743 	sd_return_failed_command(un, bp, failure_code);
13744 
13745 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
13746 }
13747 
13748 
13749 /*
13750  *    Function: sd_set_retry_bp
13751  *
13752  * Description: Set up the given bp for retry.
13753  *
13754  *   Arguments: un - ptr to associated softstate
13755  *		bp - ptr to buf(9S) for the command
13756  *		retry_delay - time interval before issuing retry (may be 0)
13757  *		statp - optional pointer to kstat function
13758  *
13759  *     Context: May be called under interrupt context
13760  */
13761 
13762 static void
13763 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
13764 	void (*statp)(kstat_io_t *))
13765 {
13766 	ASSERT(un != NULL);
13767 	ASSERT(mutex_owned(SD_MUTEX(un)));
13768 	ASSERT(bp != NULL);
13769 
13770 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
13771 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
13772 
13773 	/*
13774 	 * Indicate that the command is being retried. This will not allow any
13775 	 * other commands on the wait queue to be transported to the target
13776 	 * until this command has been completed (success or failure). The
13777 	 * "retry command" is not transported to the target until the given
13778 	 * time delay expires, unless the user specified a 0 retry_delay.
13779 	 *
13780 	 * Note: the timeout(9F) callback routine is what actually calls
13781 	 * sd_start_cmds() to transport the command, with the exception of a
13782 	 * zero retry_delay. The only current implementor of a zero retry delay
13783 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
13784 	 */
13785 	if (un->un_retry_bp == NULL) {
13786 		ASSERT(un->un_retry_statp == NULL);
13787 		un->un_retry_bp = bp;
13788 
13789 		/*
13790 		 * If the user has not specified a delay the command should
13791 		 * be queued and no timeout should be scheduled.
13792 		 */
13793 		if (retry_delay == 0) {
13794 			/*
13795 			 * Save the kstat pointer that will be used in the
13796 			 * call to SD_UPDATE_KSTATS() below, so that
13797 			 * sd_start_cmds() can correctly decrement the waitq
13798 			 * count when it is time to transport this command.
13799 			 */
13800 			un->un_retry_statp = statp;
13801 			goto done;
13802 		}
13803 	}
13804 
13805 	if (un->un_retry_bp == bp) {
13806 		/*
13807 		 * Save the kstat pointer that will be used in the call to
13808 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
13809 		 * correctly decrement the waitq count when it is time to
13810 		 * transport this command.
13811 		 */
13812 		un->un_retry_statp = statp;
13813 
13814 		/*
13815 		 * Schedule a timeout if:
13816 		 *   1) The user has specified a delay.
13817 		 *   2) There is not a START_STOP_UNIT callback pending.
13818 		 *
13819 		 * If no delay has been specified, then it is up to the caller
13820 		 * to ensure that IO processing continues without stalling.
13821 		 * Effectively, this means that the caller will issue the
13822 		 * required call to sd_start_cmds(). The START_STOP_UNIT
13823 		 * callback does this after the START STOP UNIT command has
13824 		 * completed. In either of these cases we should not schedule
13825 		 * a timeout callback here.  Also don't schedule the timeout if
13826 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
13827 		 */
13828 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
13829 		    (un->un_direct_priority_timeid == NULL)) {
13830 			un->un_retry_timeid =
13831 			    timeout(sd_start_retry_command, un, retry_delay);
13832 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13833 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
13834 			    " bp:0x%p un_retry_timeid:0x%p\n",
13835 			    un, bp, un->un_retry_timeid);
13836 		}
13837 	} else {
13838 		/*
13839 		 * We only get in here if there is already another command
13840 		 * waiting to be retried.  In this case, we just put the
13841 		 * given command onto the wait queue, so it can be transported
13842 		 * after the current retry command has completed.
13843 		 *
13844 		 * Also we have to make sure that if the command at the head
13845 		 * of the wait queue is the un_failfast_bp, that we do not
13846 		 * put ahead of it any other commands that are to be retried.
13847 		 */
13848 		if ((un->un_failfast_bp != NULL) &&
13849 		    (un->un_failfast_bp == un->un_waitq_headp)) {
13850 			/*
13851 			 * Enqueue this command AFTER the first command on
13852 			 * the wait queue (which is also un_failfast_bp).
13853 			 */
13854 			bp->av_forw = un->un_waitq_headp->av_forw;
13855 			un->un_waitq_headp->av_forw = bp;
13856 			if (un->un_waitq_headp == un->un_waitq_tailp) {
13857 				un->un_waitq_tailp = bp;
13858 			}
13859 		} else {
13860 			/* Enqueue this command at the head of the waitq. */
13861 			bp->av_forw = un->un_waitq_headp;
13862 			un->un_waitq_headp = bp;
13863 			if (un->un_waitq_tailp == NULL) {
13864 				un->un_waitq_tailp = bp;
13865 			}
13866 		}
13867 
13868 		if (statp == NULL) {
13869 			statp = kstat_waitq_enter;
13870 		}
13871 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13872 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
13873 	}
13874 
13875 done:
13876 	if (statp != NULL) {
13877 		SD_UPDATE_KSTATS(un, statp, bp);
13878 	}
13879 
13880 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13881 	    "sd_set_retry_bp: exit un:0x%p\n", un);
13882 }
13883 
13884 
13885 /*
13886  *    Function: sd_start_retry_command
13887  *
13888  * Description: Start the command that has been waiting on the target's
13889  *		retry queue.  Called from timeout(9F) context after the
13890  *		retry delay interval has expired.
13891  *
13892  *   Arguments: arg - pointer to associated softstate for the device.
13893  *
13894  *     Context: timeout(9F) thread context.  May not sleep.
13895  */
13896 
13897 static void
13898 sd_start_retry_command(void *arg)
13899 {
13900 	struct sd_lun *un = arg;
13901 
13902 	ASSERT(un != NULL);
13903 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13904 
13905 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13906 	    "sd_start_retry_command: entry\n");
13907 
13908 	mutex_enter(SD_MUTEX(un));
13909 
13910 	un->un_retry_timeid = NULL;
13911 
13912 	if (un->un_retry_bp != NULL) {
13913 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13914 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
13915 		    un, un->un_retry_bp);
13916 		sd_start_cmds(un, un->un_retry_bp);
13917 	}
13918 
13919 	mutex_exit(SD_MUTEX(un));
13920 
13921 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13922 	    "sd_start_retry_command: exit\n");
13923 }
13924 
13925 
13926 /*
13927  *    Function: sd_start_direct_priority_command
13928  *
13929  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
13930  *		received TRAN_BUSY when we called scsi_transport() to send it
13931  *		to the underlying HBA. This function is called from timeout(9F)
13932  *		context after the delay interval has expired.
13933  *
13934  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
13935  *
13936  *     Context: timeout(9F) thread context.  May not sleep.
13937  */
13938 
13939 static void
13940 sd_start_direct_priority_command(void *arg)
13941 {
13942 	struct buf	*priority_bp = arg;
13943 	struct sd_lun	*un;
13944 
13945 	ASSERT(priority_bp != NULL);
13946 	un = SD_GET_UN(priority_bp);
13947 	ASSERT(un != NULL);
13948 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13949 
13950 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13951 	    "sd_start_direct_priority_command: entry\n");
13952 
13953 	mutex_enter(SD_MUTEX(un));
13954 	un->un_direct_priority_timeid = NULL;
13955 	sd_start_cmds(un, priority_bp);
13956 	mutex_exit(SD_MUTEX(un));
13957 
13958 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13959 	    "sd_start_direct_priority_command: exit\n");
13960 }
13961 
13962 
13963 /*
13964  *    Function: sd_send_request_sense_command
13965  *
13966  * Description: Sends a REQUEST SENSE command to the target
13967  *
13968  *     Context: May be called from interrupt context.
13969  */
13970 
13971 static void
13972 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
13973 	struct scsi_pkt *pktp)
13974 {
13975 	ASSERT(bp != NULL);
13976 	ASSERT(un != NULL);
13977 	ASSERT(mutex_owned(SD_MUTEX(un)));
13978 
13979 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
13980 	    "entry: buf:0x%p\n", bp);
13981 
13982 	/*
13983 	 * If we are syncing or dumping, then fail the command to avoid a
13984 	 * recursive callback into scsi_transport(). Also fail the command
13985 	 * if we are suspended (legacy behavior).
13986 	 */
13987 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
13988 	    (un->un_state == SD_STATE_DUMPING)) {
13989 		sd_return_failed_command(un, bp, EIO);
13990 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13991 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
13992 		return;
13993 	}
13994 
13995 	/*
13996 	 * Retry the failed command and don't issue the request sense if:
13997 	 *    1) the sense buf is busy
13998 	 *    2) we have 1 or more outstanding commands on the target
13999 	 *    (the sense data will be cleared or invalidated any way)
14000 	 *
14001 	 * Note: There could be an issue with not checking a retry limit here,
14002 	 * the problem is determining which retry limit to check.
14003 	 */
14004 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
14005 		/* Don't retry if the command is flagged as non-retryable */
14006 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
14007 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
14008 			    NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter);
14009 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14010 			    "sd_send_request_sense_command: "
14011 			    "at full throttle, retrying exit\n");
14012 		} else {
14013 			sd_return_failed_command(un, bp, EIO);
14014 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14015 			    "sd_send_request_sense_command: "
14016 			    "at full throttle, non-retryable exit\n");
14017 		}
14018 		return;
14019 	}
14020 
14021 	sd_mark_rqs_busy(un, bp);
14022 	sd_start_cmds(un, un->un_rqs_bp);
14023 
14024 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14025 	    "sd_send_request_sense_command: exit\n");
14026 }
14027 
14028 
14029 /*
14030  *    Function: sd_mark_rqs_busy
14031  *
14032  * Description: Indicate that the request sense bp for this instance is
14033  *		in use.
14034  *
14035  *     Context: May be called under interrupt context
14036  */
14037 
14038 static void
14039 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
14040 {
14041 	struct sd_xbuf	*sense_xp;
14042 
14043 	ASSERT(un != NULL);
14044 	ASSERT(bp != NULL);
14045 	ASSERT(mutex_owned(SD_MUTEX(un)));
14046 	ASSERT(un->un_sense_isbusy == 0);
14047 
14048 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
14049 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
14050 
14051 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
14052 	ASSERT(sense_xp != NULL);
14053 
14054 	SD_INFO(SD_LOG_IO, un,
14055 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
14056 
14057 	ASSERT(sense_xp->xb_pktp != NULL);
14058 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
14059 	    == (FLAG_SENSING | FLAG_HEAD));
14060 
14061 	un->un_sense_isbusy = 1;
14062 	un->un_rqs_bp->b_resid = 0;
14063 	sense_xp->xb_pktp->pkt_resid  = 0;
14064 	sense_xp->xb_pktp->pkt_reason = 0;
14065 
14066 	/* So we can get back the bp at interrupt time! */
14067 	sense_xp->xb_sense_bp = bp;
14068 
14069 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
14070 
14071 	/*
14072 	 * Mark this buf as awaiting sense data. (This is already set in
14073 	 * the pkt_flags for the RQS packet.)
14074 	 */
14075 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
14076 
14077 	sense_xp->xb_retry_count	= 0;
14078 	sense_xp->xb_victim_retry_count = 0;
14079 	sense_xp->xb_ua_retry_count	= 0;
14080 	sense_xp->xb_dma_resid  = 0;
14081 
14082 	/* Clean up the fields for auto-request sense */
14083 	sense_xp->xb_sense_status = 0;
14084 	sense_xp->xb_sense_state  = 0;
14085 	sense_xp->xb_sense_resid  = 0;
14086 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
14087 
14088 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
14089 }
14090 
14091 
14092 /*
14093  *    Function: sd_mark_rqs_idle
14094  *
14095  * Description: SD_MUTEX must be held continuously through this routine
14096  *		to prevent reuse of the rqs struct before the caller can
14097  *		complete it's processing.
14098  *
14099  * Return Code: Pointer to the RQS buf
14100  *
14101  *     Context: May be called under interrupt context
14102  */
14103 
14104 static struct buf *
14105 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
14106 {
14107 	struct buf *bp;
14108 	ASSERT(un != NULL);
14109 	ASSERT(sense_xp != NULL);
14110 	ASSERT(mutex_owned(SD_MUTEX(un)));
14111 	ASSERT(un->un_sense_isbusy != 0);
14112 
14113 	un->un_sense_isbusy = 0;
14114 	bp = sense_xp->xb_sense_bp;
14115 	sense_xp->xb_sense_bp = NULL;
14116 
14117 	/* This pkt is no longer interested in getting sense data */
14118 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
14119 
14120 	return (bp);
14121 }
14122 
14123 
14124 
14125 /*
14126  *    Function: sd_alloc_rqs
14127  *
14128  * Description: Set up the unit to receive auto request sense data
14129  *
14130  * Return Code: DDI_SUCCESS or DDI_FAILURE
14131  *
14132  *     Context: Called under attach(9E) context
14133  */
14134 
14135 static int
14136 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
14137 {
14138 	struct sd_xbuf *xp;
14139 
14140 	ASSERT(un != NULL);
14141 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14142 	ASSERT(un->un_rqs_bp == NULL);
14143 	ASSERT(un->un_rqs_pktp == NULL);
14144 
14145 	/*
14146 	 * First allocate the required buf and scsi_pkt structs, then set up
14147 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
14148 	 */
14149 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
14150 	    SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
14151 	if (un->un_rqs_bp == NULL) {
14152 		return (DDI_FAILURE);
14153 	}
14154 
14155 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
14156 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
14157 
14158 	if (un->un_rqs_pktp == NULL) {
14159 		sd_free_rqs(un);
14160 		return (DDI_FAILURE);
14161 	}
14162 
14163 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
14164 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
14165 	    SCMD_REQUEST_SENSE, 0, SENSE_LENGTH, 0);
14166 
14167 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
14168 
14169 	/* Set up the other needed members in the ARQ scsi_pkt. */
14170 	un->un_rqs_pktp->pkt_comp   = sdintr;
14171 	un->un_rqs_pktp->pkt_time   = sd_io_time;
14172 	un->un_rqs_pktp->pkt_flags |=
14173 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
14174 
14175 	/*
14176 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
14177 	 * provide any intpkt, destroypkt routines as we take care of
14178 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
14179 	 */
14180 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14181 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
14182 	xp->xb_pktp = un->un_rqs_pktp;
14183 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
14184 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
14185 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
14186 
14187 	/*
14188 	 * Save the pointer to the request sense private bp so it can
14189 	 * be retrieved in sdintr.
14190 	 */
14191 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
14192 	ASSERT(un->un_rqs_bp->b_private == xp);
14193 
14194 	/*
14195 	 * See if the HBA supports auto-request sense for the specified
14196 	 * target/lun. If it does, then try to enable it (if not already
14197 	 * enabled).
14198 	 *
14199 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
14200 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
14201 	 * return success.  However, in both of these cases ARQ is always
14202 	 * enabled and scsi_ifgetcap will always return true. The best approach
14203 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
14204 	 *
14205 	 * The 3rd case is the HBA (adp) always return enabled on
14206 	 * scsi_ifgetgetcap even when it's not enable, the best approach
14207 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
14208 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
14209 	 */
14210 
14211 	if (un->un_f_is_fibre == TRUE) {
14212 		un->un_f_arq_enabled = TRUE;
14213 	} else {
14214 #if defined(__i386) || defined(__amd64)
14215 		/*
14216 		 * Circumvent the Adaptec bug, remove this code when
14217 		 * the bug is fixed
14218 		 */
14219 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
14220 #endif
14221 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
14222 		case 0:
14223 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14224 			    "sd_alloc_rqs: HBA supports ARQ\n");
14225 			/*
14226 			 * ARQ is supported by this HBA but currently is not
14227 			 * enabled. Attempt to enable it and if successful then
14228 			 * mark this instance as ARQ enabled.
14229 			 */
14230 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
14231 			    == 1) {
14232 				/* Successfully enabled ARQ in the HBA */
14233 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
14234 				    "sd_alloc_rqs: ARQ enabled\n");
14235 				un->un_f_arq_enabled = TRUE;
14236 			} else {
14237 				/* Could not enable ARQ in the HBA */
14238 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
14239 				    "sd_alloc_rqs: failed ARQ enable\n");
14240 				un->un_f_arq_enabled = FALSE;
14241 			}
14242 			break;
14243 		case 1:
14244 			/*
14245 			 * ARQ is supported by this HBA and is already enabled.
14246 			 * Just mark ARQ as enabled for this instance.
14247 			 */
14248 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14249 			    "sd_alloc_rqs: ARQ already enabled\n");
14250 			un->un_f_arq_enabled = TRUE;
14251 			break;
14252 		default:
14253 			/*
14254 			 * ARQ is not supported by this HBA; disable it for this
14255 			 * instance.
14256 			 */
14257 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14258 			    "sd_alloc_rqs: HBA does not support ARQ\n");
14259 			un->un_f_arq_enabled = FALSE;
14260 			break;
14261 		}
14262 	}
14263 
14264 	return (DDI_SUCCESS);
14265 }
14266 
14267 
14268 /*
14269  *    Function: sd_free_rqs
14270  *
14271  * Description: Cleanup for the pre-instance RQS command.
14272  *
14273  *     Context: Kernel thread context
14274  */
14275 
14276 static void
14277 sd_free_rqs(struct sd_lun *un)
14278 {
14279 	ASSERT(un != NULL);
14280 
14281 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
14282 
14283 	/*
14284 	 * If consistent memory is bound to a scsi_pkt, the pkt
14285 	 * has to be destroyed *before* freeing the consistent memory.
14286 	 * Don't change the sequence of this operations.
14287 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
14288 	 * after it was freed in scsi_free_consistent_buf().
14289 	 */
14290 	if (un->un_rqs_pktp != NULL) {
14291 		scsi_destroy_pkt(un->un_rqs_pktp);
14292 		un->un_rqs_pktp = NULL;
14293 	}
14294 
14295 	if (un->un_rqs_bp != NULL) {
14296 		kmem_free(SD_GET_XBUF(un->un_rqs_bp), sizeof (struct sd_xbuf));
14297 		scsi_free_consistent_buf(un->un_rqs_bp);
14298 		un->un_rqs_bp = NULL;
14299 	}
14300 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
14301 }
14302 
14303 
14304 
14305 /*
14306  *    Function: sd_reduce_throttle
14307  *
14308  * Description: Reduces the maximum # of outstanding commands on a
14309  *		target to the current number of outstanding commands.
14310  *		Queues a tiemout(9F) callback to restore the limit
14311  *		after a specified interval has elapsed.
14312  *		Typically used when we get a TRAN_BUSY return code
14313  *		back from scsi_transport().
14314  *
14315  *   Arguments: un - ptr to the sd_lun softstate struct
14316  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
14317  *
14318  *     Context: May be called from interrupt context
14319  */
14320 
14321 static void
14322 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
14323 {
14324 	ASSERT(un != NULL);
14325 	ASSERT(mutex_owned(SD_MUTEX(un)));
14326 	ASSERT(un->un_ncmds_in_transport >= 0);
14327 
14328 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
14329 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
14330 	    un, un->un_throttle, un->un_ncmds_in_transport);
14331 
14332 	if (un->un_throttle > 1) {
14333 		if (un->un_f_use_adaptive_throttle == TRUE) {
14334 			switch (throttle_type) {
14335 			case SD_THROTTLE_TRAN_BUSY:
14336 				if (un->un_busy_throttle == 0) {
14337 					un->un_busy_throttle = un->un_throttle;
14338 				}
14339 				break;
14340 			case SD_THROTTLE_QFULL:
14341 				un->un_busy_throttle = 0;
14342 				break;
14343 			default:
14344 				ASSERT(FALSE);
14345 			}
14346 
14347 			if (un->un_ncmds_in_transport > 0) {
14348 				un->un_throttle = un->un_ncmds_in_transport;
14349 			}
14350 
14351 		} else {
14352 			if (un->un_ncmds_in_transport == 0) {
14353 				un->un_throttle = 1;
14354 			} else {
14355 				un->un_throttle = un->un_ncmds_in_transport;
14356 			}
14357 		}
14358 	}
14359 
14360 	/* Reschedule the timeout if none is currently active */
14361 	if (un->un_reset_throttle_timeid == NULL) {
14362 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
14363 		    un, SD_THROTTLE_RESET_INTERVAL);
14364 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14365 		    "sd_reduce_throttle: timeout scheduled!\n");
14366 	}
14367 
14368 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
14369 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
14370 }
14371 
14372 
14373 
14374 /*
14375  *    Function: sd_restore_throttle
14376  *
14377  * Description: Callback function for timeout(9F).  Resets the current
14378  *		value of un->un_throttle to its default.
14379  *
14380  *   Arguments: arg - pointer to associated softstate for the device.
14381  *
14382  *     Context: May be called from interrupt context
14383  */
14384 
14385 static void
14386 sd_restore_throttle(void *arg)
14387 {
14388 	struct sd_lun	*un = arg;
14389 
14390 	ASSERT(un != NULL);
14391 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14392 
14393 	mutex_enter(SD_MUTEX(un));
14394 
14395 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
14396 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
14397 
14398 	un->un_reset_throttle_timeid = NULL;
14399 
14400 	if (un->un_f_use_adaptive_throttle == TRUE) {
14401 		/*
14402 		 * If un_busy_throttle is nonzero, then it contains the
14403 		 * value that un_throttle was when we got a TRAN_BUSY back
14404 		 * from scsi_transport(). We want to revert back to this
14405 		 * value.
14406 		 *
14407 		 * In the QFULL case, the throttle limit will incrementally
14408 		 * increase until it reaches max throttle.
14409 		 */
14410 		if (un->un_busy_throttle > 0) {
14411 			un->un_throttle = un->un_busy_throttle;
14412 			un->un_busy_throttle = 0;
14413 		} else {
14414 			/*
14415 			 * increase throttle by 10% open gate slowly, schedule
14416 			 * another restore if saved throttle has not been
14417 			 * reached
14418 			 */
14419 			short throttle;
14420 			if (sd_qfull_throttle_enable) {
14421 				throttle = un->un_throttle +
14422 				    max((un->un_throttle / 10), 1);
14423 				un->un_throttle =
14424 				    (throttle < un->un_saved_throttle) ?
14425 				    throttle : un->un_saved_throttle;
14426 				if (un->un_throttle < un->un_saved_throttle) {
14427 					un->un_reset_throttle_timeid =
14428 					    timeout(sd_restore_throttle,
14429 					    un,
14430 					    SD_QFULL_THROTTLE_RESET_INTERVAL);
14431 				}
14432 			}
14433 		}
14434 
14435 		/*
14436 		 * If un_throttle has fallen below the low-water mark, we
14437 		 * restore the maximum value here (and allow it to ratchet
14438 		 * down again if necessary).
14439 		 */
14440 		if (un->un_throttle < un->un_min_throttle) {
14441 			un->un_throttle = un->un_saved_throttle;
14442 		}
14443 	} else {
14444 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
14445 		    "restoring limit from 0x%x to 0x%x\n",
14446 		    un->un_throttle, un->un_saved_throttle);
14447 		un->un_throttle = un->un_saved_throttle;
14448 	}
14449 
14450 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14451 	    "sd_restore_throttle: calling sd_start_cmds!\n");
14452 
14453 	sd_start_cmds(un, NULL);
14454 
14455 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14456 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
14457 	    un, un->un_throttle);
14458 
14459 	mutex_exit(SD_MUTEX(un));
14460 
14461 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
14462 }
14463 
14464 /*
14465  *    Function: sdrunout
14466  *
14467  * Description: Callback routine for scsi_init_pkt when a resource allocation
14468  *		fails.
14469  *
14470  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
14471  *		soft state instance.
14472  *
14473  * Return Code: The scsi_init_pkt routine allows for the callback function to
14474  *		return a 0 indicating the callback should be rescheduled or a 1
14475  *		indicating not to reschedule. This routine always returns 1
14476  *		because the driver always provides a callback function to
14477  *		scsi_init_pkt. This results in a callback always being scheduled
14478  *		(via the scsi_init_pkt callback implementation) if a resource
14479  *		failure occurs.
14480  *
14481  *     Context: This callback function may not block or call routines that block
14482  *
14483  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
14484  *		request persisting at the head of the list which cannot be
14485  *		satisfied even after multiple retries. In the future the driver
14486  *		may implement some time of maximum runout count before failing
14487  *		an I/O.
14488  */
14489 
14490 static int
14491 sdrunout(caddr_t arg)
14492 {
14493 	struct sd_lun	*un = (struct sd_lun *)arg;
14494 
14495 	ASSERT(un != NULL);
14496 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14497 
14498 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
14499 
14500 	mutex_enter(SD_MUTEX(un));
14501 	sd_start_cmds(un, NULL);
14502 	mutex_exit(SD_MUTEX(un));
14503 	/*
14504 	 * This callback routine always returns 1 (i.e. do not reschedule)
14505 	 * because we always specify sdrunout as the callback handler for
14506 	 * scsi_init_pkt inside the call to sd_start_cmds.
14507 	 */
14508 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
14509 	return (1);
14510 }
14511 
14512 
14513 /*
14514  *    Function: sdintr
14515  *
14516  * Description: Completion callback routine for scsi_pkt(9S) structs
14517  *		sent to the HBA driver via scsi_transport(9F).
14518  *
14519  *     Context: Interrupt context
14520  */
14521 
14522 static void
14523 sdintr(struct scsi_pkt *pktp)
14524 {
14525 	struct buf	*bp;
14526 	struct sd_xbuf	*xp;
14527 	struct sd_lun	*un;
14528 
14529 	ASSERT(pktp != NULL);
14530 	bp = (struct buf *)pktp->pkt_private;
14531 	ASSERT(bp != NULL);
14532 	xp = SD_GET_XBUF(bp);
14533 	ASSERT(xp != NULL);
14534 	ASSERT(xp->xb_pktp != NULL);
14535 	un = SD_GET_UN(bp);
14536 	ASSERT(un != NULL);
14537 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14538 
14539 #ifdef SD_FAULT_INJECTION
14540 
14541 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
14542 	/* SD FaultInjection */
14543 	sd_faultinjection(pktp);
14544 
14545 #endif /* SD_FAULT_INJECTION */
14546 
14547 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
14548 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
14549 
14550 	mutex_enter(SD_MUTEX(un));
14551 
14552 	/* Reduce the count of the #commands currently in transport */
14553 	un->un_ncmds_in_transport--;
14554 	ASSERT(un->un_ncmds_in_transport >= 0);
14555 
14556 	/* Increment counter to indicate that the callback routine is active */
14557 	un->un_in_callback++;
14558 
14559 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14560 
14561 #ifdef	SDDEBUG
14562 	if (bp == un->un_retry_bp) {
14563 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
14564 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
14565 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
14566 	}
14567 #endif
14568 
14569 	/*
14570 	 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media
14571 	 * state if needed.
14572 	 */
14573 	if (pktp->pkt_reason == CMD_DEV_GONE) {
14574 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
14575 		    "Device is gone\n");
14576 		if (un->un_mediastate != DKIO_DEV_GONE) {
14577 			un->un_mediastate = DKIO_DEV_GONE;
14578 			cv_broadcast(&un->un_state_cv);
14579 		}
14580 		sd_return_failed_command(un, bp, EIO);
14581 		goto exit;
14582 	}
14583 
14584 	/*
14585 	 * First see if the pkt has auto-request sense data with it....
14586 	 * Look at the packet state first so we don't take a performance
14587 	 * hit looking at the arq enabled flag unless absolutely necessary.
14588 	 */
14589 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
14590 	    (un->un_f_arq_enabled == TRUE)) {
14591 		/*
14592 		 * The HBA did an auto request sense for this command so check
14593 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
14594 		 * driver command that should not be retried.
14595 		 */
14596 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
14597 			/*
14598 			 * Save the relevant sense info into the xp for the
14599 			 * original cmd.
14600 			 */
14601 			struct scsi_arq_status *asp;
14602 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
14603 			xp->xb_sense_status =
14604 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
14605 			xp->xb_sense_state  = asp->sts_rqpkt_state;
14606 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
14607 			bcopy(&asp->sts_sensedata, xp->xb_sense_data,
14608 			    min(sizeof (struct scsi_extended_sense),
14609 			    SENSE_LENGTH));
14610 
14611 			/* fail the command */
14612 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14613 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
14614 			sd_return_failed_command(un, bp, EIO);
14615 			goto exit;
14616 		}
14617 
14618 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
14619 		/*
14620 		 * We want to either retry or fail this command, so free
14621 		 * the DMA resources here.  If we retry the command then
14622 		 * the DMA resources will be reallocated in sd_start_cmds().
14623 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
14624 		 * causes the *entire* transfer to start over again from the
14625 		 * beginning of the request, even for PARTIAL chunks that
14626 		 * have already transferred successfully.
14627 		 */
14628 		if ((un->un_f_is_fibre == TRUE) &&
14629 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14630 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
14631 			scsi_dmafree(pktp);
14632 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14633 		}
14634 #endif
14635 
14636 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14637 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
14638 
14639 		sd_handle_auto_request_sense(un, bp, xp, pktp);
14640 		goto exit;
14641 	}
14642 
14643 	/* Next see if this is the REQUEST SENSE pkt for the instance */
14644 	if (pktp->pkt_flags & FLAG_SENSING)  {
14645 		/* This pktp is from the unit's REQUEST_SENSE command */
14646 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14647 		    "sdintr: sd_handle_request_sense\n");
14648 		sd_handle_request_sense(un, bp, xp, pktp);
14649 		goto exit;
14650 	}
14651 
14652 	/*
14653 	 * Check to see if the command successfully completed as requested;
14654 	 * this is the most common case (and also the hot performance path).
14655 	 *
14656 	 * Requirements for successful completion are:
14657 	 * pkt_reason is CMD_CMPLT and packet status is status good.
14658 	 * In addition:
14659 	 * - A residual of zero indicates successful completion no matter what
14660 	 *   the command is.
14661 	 * - If the residual is not zero and the command is not a read or
14662 	 *   write, then it's still defined as successful completion. In other
14663 	 *   words, if the command is a read or write the residual must be
14664 	 *   zero for successful completion.
14665 	 * - If the residual is not zero and the command is a read or
14666 	 *   write, and it's a USCSICMD, then it's still defined as
14667 	 *   successful completion.
14668 	 */
14669 	if ((pktp->pkt_reason == CMD_CMPLT) &&
14670 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
14671 
14672 		/*
14673 		 * Since this command is returned with a good status, we
14674 		 * can reset the count for Sonoma failover.
14675 		 */
14676 		un->un_sonoma_failure_count = 0;
14677 
14678 		/*
14679 		 * Return all USCSI commands on good status
14680 		 */
14681 		if (pktp->pkt_resid == 0) {
14682 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14683 			    "sdintr: returning command for resid == 0\n");
14684 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
14685 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
14686 			SD_UPDATE_B_RESID(bp, pktp);
14687 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14688 			    "sdintr: returning command for resid != 0\n");
14689 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
14690 			SD_UPDATE_B_RESID(bp, pktp);
14691 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14692 			    "sdintr: returning uscsi command\n");
14693 		} else {
14694 			goto not_successful;
14695 		}
14696 		sd_return_command(un, bp);
14697 
14698 		/*
14699 		 * Decrement counter to indicate that the callback routine
14700 		 * is done.
14701 		 */
14702 		un->un_in_callback--;
14703 		ASSERT(un->un_in_callback >= 0);
14704 		mutex_exit(SD_MUTEX(un));
14705 
14706 		return;
14707 	}
14708 
14709 not_successful:
14710 
14711 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
14712 	/*
14713 	 * The following is based upon knowledge of the underlying transport
14714 	 * and its use of DMA resources.  This code should be removed when
14715 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
14716 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
14717 	 * and sd_start_cmds().
14718 	 *
14719 	 * Free any DMA resources associated with this command if there
14720 	 * is a chance it could be retried or enqueued for later retry.
14721 	 * If we keep the DMA binding then mpxio cannot reissue the
14722 	 * command on another path whenever a path failure occurs.
14723 	 *
14724 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
14725 	 * causes the *entire* transfer to start over again from the
14726 	 * beginning of the request, even for PARTIAL chunks that
14727 	 * have already transferred successfully.
14728 	 *
14729 	 * This is only done for non-uscsi commands (and also skipped for the
14730 	 * driver's internal RQS command). Also just do this for Fibre Channel
14731 	 * devices as these are the only ones that support mpxio.
14732 	 */
14733 	if ((un->un_f_is_fibre == TRUE) &&
14734 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14735 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
14736 		scsi_dmafree(pktp);
14737 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14738 	}
14739 #endif
14740 
14741 	/*
14742 	 * The command did not successfully complete as requested so check
14743 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
14744 	 * driver command that should not be retried so just return. If
14745 	 * FLAG_DIAGNOSE is not set the error will be processed below.
14746 	 */
14747 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
14748 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14749 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
14750 		/*
14751 		 * Issue a request sense if a check condition caused the error
14752 		 * (we handle the auto request sense case above), otherwise
14753 		 * just fail the command.
14754 		 */
14755 		if ((pktp->pkt_reason == CMD_CMPLT) &&
14756 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
14757 			sd_send_request_sense_command(un, bp, pktp);
14758 		} else {
14759 			sd_return_failed_command(un, bp, EIO);
14760 		}
14761 		goto exit;
14762 	}
14763 
14764 	/*
14765 	 * The command did not successfully complete as requested so process
14766 	 * the error, retry, and/or attempt recovery.
14767 	 */
14768 	switch (pktp->pkt_reason) {
14769 	case CMD_CMPLT:
14770 		switch (SD_GET_PKT_STATUS(pktp)) {
14771 		case STATUS_GOOD:
14772 			/*
14773 			 * The command completed successfully with a non-zero
14774 			 * residual
14775 			 */
14776 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14777 			    "sdintr: STATUS_GOOD \n");
14778 			sd_pkt_status_good(un, bp, xp, pktp);
14779 			break;
14780 
14781 		case STATUS_CHECK:
14782 		case STATUS_TERMINATED:
14783 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14784 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
14785 			sd_pkt_status_check_condition(un, bp, xp, pktp);
14786 			break;
14787 
14788 		case STATUS_BUSY:
14789 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14790 			    "sdintr: STATUS_BUSY\n");
14791 			sd_pkt_status_busy(un, bp, xp, pktp);
14792 			break;
14793 
14794 		case STATUS_RESERVATION_CONFLICT:
14795 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14796 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
14797 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
14798 			break;
14799 
14800 		case STATUS_QFULL:
14801 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14802 			    "sdintr: STATUS_QFULL\n");
14803 			sd_pkt_status_qfull(un, bp, xp, pktp);
14804 			break;
14805 
14806 		case STATUS_MET:
14807 		case STATUS_INTERMEDIATE:
14808 		case STATUS_SCSI2:
14809 		case STATUS_INTERMEDIATE_MET:
14810 		case STATUS_ACA_ACTIVE:
14811 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
14812 			    "Unexpected SCSI status received: 0x%x\n",
14813 			    SD_GET_PKT_STATUS(pktp));
14814 			sd_return_failed_command(un, bp, EIO);
14815 			break;
14816 
14817 		default:
14818 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
14819 			    "Invalid SCSI status received: 0x%x\n",
14820 			    SD_GET_PKT_STATUS(pktp));
14821 			sd_return_failed_command(un, bp, EIO);
14822 			break;
14823 
14824 		}
14825 		break;
14826 
14827 	case CMD_INCOMPLETE:
14828 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14829 		    "sdintr:  CMD_INCOMPLETE\n");
14830 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
14831 		break;
14832 	case CMD_TRAN_ERR:
14833 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14834 		    "sdintr: CMD_TRAN_ERR\n");
14835 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
14836 		break;
14837 	case CMD_RESET:
14838 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14839 		    "sdintr: CMD_RESET \n");
14840 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
14841 		break;
14842 	case CMD_ABORTED:
14843 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14844 		    "sdintr: CMD_ABORTED \n");
14845 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
14846 		break;
14847 	case CMD_TIMEOUT:
14848 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14849 		    "sdintr: CMD_TIMEOUT\n");
14850 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
14851 		break;
14852 	case CMD_UNX_BUS_FREE:
14853 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14854 		    "sdintr: CMD_UNX_BUS_FREE \n");
14855 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
14856 		break;
14857 	case CMD_TAG_REJECT:
14858 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14859 		    "sdintr: CMD_TAG_REJECT\n");
14860 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
14861 		break;
14862 	default:
14863 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14864 		    "sdintr: default\n");
14865 		sd_pkt_reason_default(un, bp, xp, pktp);
14866 		break;
14867 	}
14868 
14869 exit:
14870 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
14871 
14872 	/* Decrement counter to indicate that the callback routine is done. */
14873 	un->un_in_callback--;
14874 	ASSERT(un->un_in_callback >= 0);
14875 
14876 	/*
14877 	 * At this point, the pkt has been dispatched, ie, it is either
14878 	 * being re-tried or has been returned to its caller and should
14879 	 * not be referenced.
14880 	 */
14881 
14882 	mutex_exit(SD_MUTEX(un));
14883 }
14884 
14885 
14886 /*
14887  *    Function: sd_print_incomplete_msg
14888  *
14889  * Description: Prints the error message for a CMD_INCOMPLETE error.
14890  *
14891  *   Arguments: un - ptr to associated softstate for the device.
14892  *		bp - ptr to the buf(9S) for the command.
14893  *		arg - message string ptr
14894  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
14895  *			or SD_NO_RETRY_ISSUED.
14896  *
14897  *     Context: May be called under interrupt context
14898  */
14899 
14900 static void
14901 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
14902 {
14903 	struct scsi_pkt	*pktp;
14904 	char	*msgp;
14905 	char	*cmdp = arg;
14906 
14907 	ASSERT(un != NULL);
14908 	ASSERT(mutex_owned(SD_MUTEX(un)));
14909 	ASSERT(bp != NULL);
14910 	ASSERT(arg != NULL);
14911 	pktp = SD_GET_PKTP(bp);
14912 	ASSERT(pktp != NULL);
14913 
14914 	switch (code) {
14915 	case SD_DELAYED_RETRY_ISSUED:
14916 	case SD_IMMEDIATE_RETRY_ISSUED:
14917 		msgp = "retrying";
14918 		break;
14919 	case SD_NO_RETRY_ISSUED:
14920 	default:
14921 		msgp = "giving up";
14922 		break;
14923 	}
14924 
14925 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
14926 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14927 		    "incomplete %s- %s\n", cmdp, msgp);
14928 	}
14929 }
14930 
14931 
14932 
14933 /*
14934  *    Function: sd_pkt_status_good
14935  *
14936  * Description: Processing for a STATUS_GOOD code in pkt_status.
14937  *
14938  *     Context: May be called under interrupt context
14939  */
14940 
14941 static void
14942 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
14943 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
14944 {
14945 	char	*cmdp;
14946 
14947 	ASSERT(un != NULL);
14948 	ASSERT(mutex_owned(SD_MUTEX(un)));
14949 	ASSERT(bp != NULL);
14950 	ASSERT(xp != NULL);
14951 	ASSERT(pktp != NULL);
14952 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
14953 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
14954 	ASSERT(pktp->pkt_resid != 0);
14955 
14956 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
14957 
14958 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
14959 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
14960 	case SCMD_READ:
14961 		cmdp = "read";
14962 		break;
14963 	case SCMD_WRITE:
14964 		cmdp = "write";
14965 		break;
14966 	default:
14967 		SD_UPDATE_B_RESID(bp, pktp);
14968 		sd_return_command(un, bp);
14969 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
14970 		return;
14971 	}
14972 
14973 	/*
14974 	 * See if we can retry the read/write, preferrably immediately.
14975 	 * If retries are exhaused, then sd_retry_command() will update
14976 	 * the b_resid count.
14977 	 */
14978 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
14979 	    cmdp, EIO, (clock_t)0, NULL);
14980 
14981 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
14982 }
14983 
14984 
14985 
14986 
14987 
14988 /*
14989  *    Function: sd_handle_request_sense
14990  *
14991  * Description: Processing for non-auto Request Sense command.
14992  *
14993  *   Arguments: un - ptr to associated softstate
14994  *		sense_bp - ptr to buf(9S) for the RQS command
14995  *		sense_xp - ptr to the sd_xbuf for the RQS command
14996  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
14997  *
14998  *     Context: May be called under interrupt context
14999  */
15000 
15001 static void
15002 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
15003 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
15004 {
15005 	struct buf	*cmd_bp;	/* buf for the original command */
15006 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
15007 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
15008 
15009 	ASSERT(un != NULL);
15010 	ASSERT(mutex_owned(SD_MUTEX(un)));
15011 	ASSERT(sense_bp != NULL);
15012 	ASSERT(sense_xp != NULL);
15013 	ASSERT(sense_pktp != NULL);
15014 
15015 	/*
15016 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
15017 	 * RQS command and not the original command.
15018 	 */
15019 	ASSERT(sense_pktp == un->un_rqs_pktp);
15020 	ASSERT(sense_bp   == un->un_rqs_bp);
15021 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
15022 	    (FLAG_SENSING | FLAG_HEAD));
15023 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
15024 	    FLAG_SENSING) == FLAG_SENSING);
15025 
15026 	/* These are the bp, xp, and pktp for the original command */
15027 	cmd_bp = sense_xp->xb_sense_bp;
15028 	cmd_xp = SD_GET_XBUF(cmd_bp);
15029 	cmd_pktp = SD_GET_PKTP(cmd_bp);
15030 
15031 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
15032 		/*
15033 		 * The REQUEST SENSE command failed.  Release the REQUEST
15034 		 * SENSE command for re-use, get back the bp for the original
15035 		 * command, and attempt to re-try the original command if
15036 		 * FLAG_DIAGNOSE is not set in the original packet.
15037 		 */
15038 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
15039 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15040 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
15041 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
15042 			    NULL, NULL, EIO, (clock_t)0, NULL);
15043 			return;
15044 		}
15045 	}
15046 
15047 	/*
15048 	 * Save the relevant sense info into the xp for the original cmd.
15049 	 *
15050 	 * Note: if the request sense failed the state info will be zero
15051 	 * as set in sd_mark_rqs_busy()
15052 	 */
15053 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
15054 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
15055 	cmd_xp->xb_sense_resid  = sense_pktp->pkt_resid;
15056 	bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, SENSE_LENGTH);
15057 
15058 	/*
15059 	 *  Free up the RQS command....
15060 	 *  NOTE:
15061 	 *	Must do this BEFORE calling sd_validate_sense_data!
15062 	 *	sd_validate_sense_data may return the original command in
15063 	 *	which case the pkt will be freed and the flags can no
15064 	 *	longer be touched.
15065 	 *	SD_MUTEX is held through this process until the command
15066 	 *	is dispatched based upon the sense data, so there are
15067 	 *	no race conditions.
15068 	 */
15069 	(void) sd_mark_rqs_idle(un, sense_xp);
15070 
15071 	/*
15072 	 * For a retryable command see if we have valid sense data, if so then
15073 	 * turn it over to sd_decode_sense() to figure out the right course of
15074 	 * action. Just fail a non-retryable command.
15075 	 */
15076 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15077 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp) ==
15078 		    SD_SENSE_DATA_IS_VALID) {
15079 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
15080 		}
15081 	} else {
15082 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
15083 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15084 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
15085 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15086 		sd_return_failed_command(un, cmd_bp, EIO);
15087 	}
15088 }
15089 
15090 
15091 
15092 
15093 /*
15094  *    Function: sd_handle_auto_request_sense
15095  *
15096  * Description: Processing for auto-request sense information.
15097  *
15098  *   Arguments: un - ptr to associated softstate
15099  *		bp - ptr to buf(9S) for the command
15100  *		xp - ptr to the sd_xbuf for the command
15101  *		pktp - ptr to the scsi_pkt(9S) for the command
15102  *
15103  *     Context: May be called under interrupt context
15104  */
15105 
15106 static void
15107 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
15108 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15109 {
15110 	struct scsi_arq_status *asp;
15111 
15112 	ASSERT(un != NULL);
15113 	ASSERT(mutex_owned(SD_MUTEX(un)));
15114 	ASSERT(bp != NULL);
15115 	ASSERT(xp != NULL);
15116 	ASSERT(pktp != NULL);
15117 	ASSERT(pktp != un->un_rqs_pktp);
15118 	ASSERT(bp   != un->un_rqs_bp);
15119 
15120 	/*
15121 	 * For auto-request sense, we get a scsi_arq_status back from
15122 	 * the HBA, with the sense data in the sts_sensedata member.
15123 	 * The pkt_scbp of the packet points to this scsi_arq_status.
15124 	 */
15125 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
15126 
15127 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
15128 		/*
15129 		 * The auto REQUEST SENSE failed; see if we can re-try
15130 		 * the original command.
15131 		 */
15132 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15133 		    "auto request sense failed (reason=%s)\n",
15134 		    scsi_rname(asp->sts_rqpkt_reason));
15135 
15136 		sd_reset_target(un, pktp);
15137 
15138 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15139 		    NULL, NULL, EIO, (clock_t)0, NULL);
15140 		return;
15141 	}
15142 
15143 	/* Save the relevant sense info into the xp for the original cmd. */
15144 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
15145 	xp->xb_sense_state  = asp->sts_rqpkt_state;
15146 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
15147 	bcopy(&asp->sts_sensedata, xp->xb_sense_data,
15148 	    min(sizeof (struct scsi_extended_sense), SENSE_LENGTH));
15149 
15150 	/*
15151 	 * See if we have valid sense data, if so then turn it over to
15152 	 * sd_decode_sense() to figure out the right course of action.
15153 	 */
15154 	if (sd_validate_sense_data(un, bp, xp) == SD_SENSE_DATA_IS_VALID) {
15155 		sd_decode_sense(un, bp, xp, pktp);
15156 	}
15157 }
15158 
15159 
15160 /*
15161  *    Function: sd_print_sense_failed_msg
15162  *
15163  * Description: Print log message when RQS has failed.
15164  *
15165  *   Arguments: un - ptr to associated softstate
15166  *		bp - ptr to buf(9S) for the command
15167  *		arg - generic message string ptr
15168  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
15169  *			or SD_NO_RETRY_ISSUED
15170  *
15171  *     Context: May be called from interrupt context
15172  */
15173 
15174 static void
15175 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
15176 	int code)
15177 {
15178 	char	*msgp = arg;
15179 
15180 	ASSERT(un != NULL);
15181 	ASSERT(mutex_owned(SD_MUTEX(un)));
15182 	ASSERT(bp != NULL);
15183 
15184 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
15185 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
15186 	}
15187 }
15188 
15189 
15190 /*
15191  *    Function: sd_validate_sense_data
15192  *
15193  * Description: Check the given sense data for validity.
15194  *		If the sense data is not valid, the command will
15195  *		be either failed or retried!
15196  *
15197  * Return Code: SD_SENSE_DATA_IS_INVALID
15198  *		SD_SENSE_DATA_IS_VALID
15199  *
15200  *     Context: May be called from interrupt context
15201  */
15202 
15203 static int
15204 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp)
15205 {
15206 	struct scsi_extended_sense *esp;
15207 	struct	scsi_pkt *pktp;
15208 	size_t	actual_len;
15209 	char	*msgp = NULL;
15210 
15211 	ASSERT(un != NULL);
15212 	ASSERT(mutex_owned(SD_MUTEX(un)));
15213 	ASSERT(bp != NULL);
15214 	ASSERT(bp != un->un_rqs_bp);
15215 	ASSERT(xp != NULL);
15216 
15217 	pktp = SD_GET_PKTP(bp);
15218 	ASSERT(pktp != NULL);
15219 
15220 	/*
15221 	 * Check the status of the RQS command (auto or manual).
15222 	 */
15223 	switch (xp->xb_sense_status & STATUS_MASK) {
15224 	case STATUS_GOOD:
15225 		break;
15226 
15227 	case STATUS_RESERVATION_CONFLICT:
15228 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
15229 		return (SD_SENSE_DATA_IS_INVALID);
15230 
15231 	case STATUS_BUSY:
15232 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15233 		    "Busy Status on REQUEST SENSE\n");
15234 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
15235 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
15236 		return (SD_SENSE_DATA_IS_INVALID);
15237 
15238 	case STATUS_QFULL:
15239 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15240 		    "QFULL Status on REQUEST SENSE\n");
15241 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
15242 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
15243 		return (SD_SENSE_DATA_IS_INVALID);
15244 
15245 	case STATUS_CHECK:
15246 	case STATUS_TERMINATED:
15247 		msgp = "Check Condition on REQUEST SENSE\n";
15248 		goto sense_failed;
15249 
15250 	default:
15251 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
15252 		goto sense_failed;
15253 	}
15254 
15255 	/*
15256 	 * See if we got the minimum required amount of sense data.
15257 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
15258 	 * or less.
15259 	 */
15260 	actual_len = (int)(SENSE_LENGTH - xp->xb_sense_resid);
15261 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
15262 	    (actual_len == 0)) {
15263 		msgp = "Request Sense couldn't get sense data\n";
15264 		goto sense_failed;
15265 	}
15266 
15267 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
15268 		msgp = "Not enough sense information\n";
15269 		goto sense_failed;
15270 	}
15271 
15272 	/*
15273 	 * We require the extended sense data
15274 	 */
15275 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
15276 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
15277 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
15278 			static char tmp[8];
15279 			static char buf[148];
15280 			char *p = (char *)(xp->xb_sense_data);
15281 			int i;
15282 
15283 			mutex_enter(&sd_sense_mutex);
15284 			(void) strcpy(buf, "undecodable sense information:");
15285 			for (i = 0; i < actual_len; i++) {
15286 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
15287 				(void) strcpy(&buf[strlen(buf)], tmp);
15288 			}
15289 			i = strlen(buf);
15290 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
15291 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf);
15292 			mutex_exit(&sd_sense_mutex);
15293 		}
15294 		/* Note: Legacy behavior, fail the command with no retry */
15295 		sd_return_failed_command(un, bp, EIO);
15296 		return (SD_SENSE_DATA_IS_INVALID);
15297 	}
15298 
15299 	/*
15300 	 * Check that es_code is valid (es_class concatenated with es_code
15301 	 * make up the "response code" field.  es_class will always be 7, so
15302 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
15303 	 * format.
15304 	 */
15305 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
15306 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
15307 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
15308 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
15309 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
15310 		goto sense_failed;
15311 	}
15312 
15313 	return (SD_SENSE_DATA_IS_VALID);
15314 
15315 sense_failed:
15316 	/*
15317 	 * If the request sense failed (for whatever reason), attempt
15318 	 * to retry the original command.
15319 	 */
15320 #if defined(__i386) || defined(__amd64)
15321 	/*
15322 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
15323 	 * sddef.h for Sparc platform, and x86 uses 1 binary
15324 	 * for both SCSI/FC.
15325 	 * The SD_RETRY_DELAY value need to be adjusted here
15326 	 * when SD_RETRY_DELAY change in sddef.h
15327 	 */
15328 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15329 	    sd_print_sense_failed_msg, msgp, EIO,
15330 	    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
15331 #else
15332 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15333 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
15334 #endif
15335 
15336 	return (SD_SENSE_DATA_IS_INVALID);
15337 }
15338 
15339 
15340 
15341 /*
15342  *    Function: sd_decode_sense
15343  *
15344  * Description: Take recovery action(s) when SCSI Sense Data is received.
15345  *
15346  *     Context: Interrupt context.
15347  */
15348 
15349 static void
15350 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
15351 	struct scsi_pkt *pktp)
15352 {
15353 	uint8_t sense_key;
15354 
15355 	ASSERT(un != NULL);
15356 	ASSERT(mutex_owned(SD_MUTEX(un)));
15357 	ASSERT(bp != NULL);
15358 	ASSERT(bp != un->un_rqs_bp);
15359 	ASSERT(xp != NULL);
15360 	ASSERT(pktp != NULL);
15361 
15362 	sense_key = scsi_sense_key(xp->xb_sense_data);
15363 
15364 	switch (sense_key) {
15365 	case KEY_NO_SENSE:
15366 		sd_sense_key_no_sense(un, bp, xp, pktp);
15367 		break;
15368 	case KEY_RECOVERABLE_ERROR:
15369 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
15370 		    bp, xp, pktp);
15371 		break;
15372 	case KEY_NOT_READY:
15373 		sd_sense_key_not_ready(un, xp->xb_sense_data,
15374 		    bp, xp, pktp);
15375 		break;
15376 	case KEY_MEDIUM_ERROR:
15377 	case KEY_HARDWARE_ERROR:
15378 		sd_sense_key_medium_or_hardware_error(un,
15379 		    xp->xb_sense_data, bp, xp, pktp);
15380 		break;
15381 	case KEY_ILLEGAL_REQUEST:
15382 		sd_sense_key_illegal_request(un, bp, xp, pktp);
15383 		break;
15384 	case KEY_UNIT_ATTENTION:
15385 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
15386 		    bp, xp, pktp);
15387 		break;
15388 	case KEY_WRITE_PROTECT:
15389 	case KEY_VOLUME_OVERFLOW:
15390 	case KEY_MISCOMPARE:
15391 		sd_sense_key_fail_command(un, bp, xp, pktp);
15392 		break;
15393 	case KEY_BLANK_CHECK:
15394 		sd_sense_key_blank_check(un, bp, xp, pktp);
15395 		break;
15396 	case KEY_ABORTED_COMMAND:
15397 		sd_sense_key_aborted_command(un, bp, xp, pktp);
15398 		break;
15399 	case KEY_VENDOR_UNIQUE:
15400 	case KEY_COPY_ABORTED:
15401 	case KEY_EQUAL:
15402 	case KEY_RESERVED:
15403 	default:
15404 		sd_sense_key_default(un, xp->xb_sense_data,
15405 		    bp, xp, pktp);
15406 		break;
15407 	}
15408 }
15409 
15410 
15411 /*
15412  *    Function: sd_dump_memory
15413  *
15414  * Description: Debug logging routine to print the contents of a user provided
15415  *		buffer. The output of the buffer is broken up into 256 byte
15416  *		segments due to a size constraint of the scsi_log.
15417  *		implementation.
15418  *
15419  *   Arguments: un - ptr to softstate
15420  *		comp - component mask
15421  *		title - "title" string to preceed data when printed
15422  *		data - ptr to data block to be printed
15423  *		len - size of data block to be printed
15424  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
15425  *
15426  *     Context: May be called from interrupt context
15427  */
15428 
15429 #define	SD_DUMP_MEMORY_BUF_SIZE	256
15430 
15431 static char *sd_dump_format_string[] = {
15432 		" 0x%02x",
15433 		" %c"
15434 };
15435 
15436 static void
15437 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
15438     int len, int fmt)
15439 {
15440 	int	i, j;
15441 	int	avail_count;
15442 	int	start_offset;
15443 	int	end_offset;
15444 	size_t	entry_len;
15445 	char	*bufp;
15446 	char	*local_buf;
15447 	char	*format_string;
15448 
15449 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
15450 
15451 	/*
15452 	 * In the debug version of the driver, this function is called from a
15453 	 * number of places which are NOPs in the release driver.
15454 	 * The debug driver therefore has additional methods of filtering
15455 	 * debug output.
15456 	 */
15457 #ifdef SDDEBUG
15458 	/*
15459 	 * In the debug version of the driver we can reduce the amount of debug
15460 	 * messages by setting sd_error_level to something other than
15461 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
15462 	 * sd_component_mask.
15463 	 */
15464 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
15465 	    (sd_error_level != SCSI_ERR_ALL)) {
15466 		return;
15467 	}
15468 	if (((sd_component_mask & comp) == 0) ||
15469 	    (sd_error_level != SCSI_ERR_ALL)) {
15470 		return;
15471 	}
15472 #else
15473 	if (sd_error_level != SCSI_ERR_ALL) {
15474 		return;
15475 	}
15476 #endif
15477 
15478 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
15479 	bufp = local_buf;
15480 	/*
15481 	 * Available length is the length of local_buf[], minus the
15482 	 * length of the title string, minus one for the ":", minus
15483 	 * one for the newline, minus one for the NULL terminator.
15484 	 * This gives the #bytes available for holding the printed
15485 	 * values from the given data buffer.
15486 	 */
15487 	if (fmt == SD_LOG_HEX) {
15488 		format_string = sd_dump_format_string[0];
15489 	} else /* SD_LOG_CHAR */ {
15490 		format_string = sd_dump_format_string[1];
15491 	}
15492 	/*
15493 	 * Available count is the number of elements from the given
15494 	 * data buffer that we can fit into the available length.
15495 	 * This is based upon the size of the format string used.
15496 	 * Make one entry and find it's size.
15497 	 */
15498 	(void) sprintf(bufp, format_string, data[0]);
15499 	entry_len = strlen(bufp);
15500 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
15501 
15502 	j = 0;
15503 	while (j < len) {
15504 		bufp = local_buf;
15505 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
15506 		start_offset = j;
15507 
15508 		end_offset = start_offset + avail_count;
15509 
15510 		(void) sprintf(bufp, "%s:", title);
15511 		bufp += strlen(bufp);
15512 		for (i = start_offset; ((i < end_offset) && (j < len));
15513 		    i++, j++) {
15514 			(void) sprintf(bufp, format_string, data[i]);
15515 			bufp += entry_len;
15516 		}
15517 		(void) sprintf(bufp, "\n");
15518 
15519 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
15520 	}
15521 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
15522 }
15523 
15524 /*
15525  *    Function: sd_print_sense_msg
15526  *
15527  * Description: Log a message based upon the given sense data.
15528  *
15529  *   Arguments: un - ptr to associated softstate
15530  *		bp - ptr to buf(9S) for the command
15531  *		arg - ptr to associate sd_sense_info struct
15532  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
15533  *			or SD_NO_RETRY_ISSUED
15534  *
15535  *     Context: May be called from interrupt context
15536  */
15537 
15538 static void
15539 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
15540 {
15541 	struct sd_xbuf	*xp;
15542 	struct scsi_pkt	*pktp;
15543 	uint8_t *sensep;
15544 	daddr_t request_blkno;
15545 	diskaddr_t err_blkno;
15546 	int severity;
15547 	int pfa_flag;
15548 	extern struct scsi_key_strings scsi_cmds[];
15549 
15550 	ASSERT(un != NULL);
15551 	ASSERT(mutex_owned(SD_MUTEX(un)));
15552 	ASSERT(bp != NULL);
15553 	xp = SD_GET_XBUF(bp);
15554 	ASSERT(xp != NULL);
15555 	pktp = SD_GET_PKTP(bp);
15556 	ASSERT(pktp != NULL);
15557 	ASSERT(arg != NULL);
15558 
15559 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
15560 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
15561 
15562 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
15563 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
15564 		severity = SCSI_ERR_RETRYABLE;
15565 	}
15566 
15567 	/* Use absolute block number for the request block number */
15568 	request_blkno = xp->xb_blkno;
15569 
15570 	/*
15571 	 * Now try to get the error block number from the sense data
15572 	 */
15573 	sensep = xp->xb_sense_data;
15574 
15575 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
15576 	    (uint64_t *)&err_blkno)) {
15577 		/*
15578 		 * We retrieved the error block number from the information
15579 		 * portion of the sense data.
15580 		 *
15581 		 * For USCSI commands we are better off using the error
15582 		 * block no. as the requested block no. (This is the best
15583 		 * we can estimate.)
15584 		 */
15585 		if ((SD_IS_BUFIO(xp) == FALSE) &&
15586 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
15587 			request_blkno = err_blkno;
15588 		}
15589 	} else {
15590 		/*
15591 		 * Without the es_valid bit set (for fixed format) or an
15592 		 * information descriptor (for descriptor format) we cannot
15593 		 * be certain of the error blkno, so just use the
15594 		 * request_blkno.
15595 		 */
15596 		err_blkno = (diskaddr_t)request_blkno;
15597 	}
15598 
15599 	/*
15600 	 * The following will log the buffer contents for the release driver
15601 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
15602 	 * level is set to verbose.
15603 	 */
15604 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
15605 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15606 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
15607 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
15608 
15609 	if (pfa_flag == FALSE) {
15610 		/* This is normally only set for USCSI */
15611 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
15612 			return;
15613 		}
15614 
15615 		if ((SD_IS_BUFIO(xp) == TRUE) &&
15616 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
15617 		    (severity < sd_error_level))) {
15618 			return;
15619 		}
15620 	}
15621 
15622 	/*
15623 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
15624 	 */
15625 	if ((SD_IS_LSI(un)) &&
15626 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
15627 	    (scsi_sense_asc(sensep) == 0x94) &&
15628 	    (scsi_sense_ascq(sensep) == 0x01)) {
15629 		un->un_sonoma_failure_count++;
15630 		if (un->un_sonoma_failure_count > 1) {
15631 			return;
15632 		}
15633 	}
15634 
15635 	scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
15636 	    request_blkno, err_blkno, scsi_cmds,
15637 	    (struct scsi_extended_sense *)sensep,
15638 	    un->un_additional_codes, NULL);
15639 }
15640 
15641 /*
15642  *    Function: sd_sense_key_no_sense
15643  *
15644  * Description: Recovery action when sense data was not received.
15645  *
15646  *     Context: May be called from interrupt context
15647  */
15648 
15649 static void
15650 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
15651 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15652 {
15653 	struct sd_sense_info	si;
15654 
15655 	ASSERT(un != NULL);
15656 	ASSERT(mutex_owned(SD_MUTEX(un)));
15657 	ASSERT(bp != NULL);
15658 	ASSERT(xp != NULL);
15659 	ASSERT(pktp != NULL);
15660 
15661 	si.ssi_severity = SCSI_ERR_FATAL;
15662 	si.ssi_pfa_flag = FALSE;
15663 
15664 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
15665 
15666 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
15667 	    &si, EIO, (clock_t)0, NULL);
15668 }
15669 
15670 
15671 /*
15672  *    Function: sd_sense_key_recoverable_error
15673  *
15674  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
15675  *
15676  *     Context: May be called from interrupt context
15677  */
15678 
15679 static void
15680 sd_sense_key_recoverable_error(struct sd_lun *un,
15681 	uint8_t *sense_datap,
15682 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
15683 {
15684 	struct sd_sense_info	si;
15685 	uint8_t asc = scsi_sense_asc(sense_datap);
15686 
15687 	ASSERT(un != NULL);
15688 	ASSERT(mutex_owned(SD_MUTEX(un)));
15689 	ASSERT(bp != NULL);
15690 	ASSERT(xp != NULL);
15691 	ASSERT(pktp != NULL);
15692 
15693 	/*
15694 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
15695 	 */
15696 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
15697 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
15698 		si.ssi_severity = SCSI_ERR_INFO;
15699 		si.ssi_pfa_flag = TRUE;
15700 	} else {
15701 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
15702 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
15703 		si.ssi_severity = SCSI_ERR_RECOVERED;
15704 		si.ssi_pfa_flag = FALSE;
15705 	}
15706 
15707 	if (pktp->pkt_resid == 0) {
15708 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
15709 		sd_return_command(un, bp);
15710 		return;
15711 	}
15712 
15713 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
15714 	    &si, EIO, (clock_t)0, NULL);
15715 }
15716 
15717 
15718 
15719 
15720 /*
15721  *    Function: sd_sense_key_not_ready
15722  *
15723  * Description: Recovery actions for a SCSI "Not Ready" sense key.
15724  *
15725  *     Context: May be called from interrupt context
15726  */
15727 
15728 static void
15729 sd_sense_key_not_ready(struct sd_lun *un,
15730 	uint8_t *sense_datap,
15731 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
15732 {
15733 	struct sd_sense_info	si;
15734 	uint8_t asc = scsi_sense_asc(sense_datap);
15735 	uint8_t ascq = scsi_sense_ascq(sense_datap);
15736 
15737 	ASSERT(un != NULL);
15738 	ASSERT(mutex_owned(SD_MUTEX(un)));
15739 	ASSERT(bp != NULL);
15740 	ASSERT(xp != NULL);
15741 	ASSERT(pktp != NULL);
15742 
15743 	si.ssi_severity = SCSI_ERR_FATAL;
15744 	si.ssi_pfa_flag = FALSE;
15745 
15746 	/*
15747 	 * Update error stats after first NOT READY error. Disks may have
15748 	 * been powered down and may need to be restarted.  For CDROMs,
15749 	 * report NOT READY errors only if media is present.
15750 	 */
15751 	if ((ISCD(un) && (asc == 0x3A)) ||
15752 	    (xp->xb_retry_count > 0)) {
15753 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
15754 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
15755 	}
15756 
15757 	/*
15758 	 * Just fail if the "not ready" retry limit has been reached.
15759 	 */
15760 	if (xp->xb_retry_count >= un->un_notready_retry_count) {
15761 		/* Special check for error message printing for removables. */
15762 		if (un->un_f_has_removable_media && (asc == 0x04) &&
15763 		    (ascq >= 0x04)) {
15764 			si.ssi_severity = SCSI_ERR_ALL;
15765 		}
15766 		goto fail_command;
15767 	}
15768 
15769 	/*
15770 	 * Check the ASC and ASCQ in the sense data as needed, to determine
15771 	 * what to do.
15772 	 */
15773 	switch (asc) {
15774 	case 0x04:	/* LOGICAL UNIT NOT READY */
15775 		/*
15776 		 * disk drives that don't spin up result in a very long delay
15777 		 * in format without warning messages. We will log a message
15778 		 * if the error level is set to verbose.
15779 		 */
15780 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
15781 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15782 			    "logical unit not ready, resetting disk\n");
15783 		}
15784 
15785 		/*
15786 		 * There are different requirements for CDROMs and disks for
15787 		 * the number of retries.  If a CD-ROM is giving this, it is
15788 		 * probably reading TOC and is in the process of getting
15789 		 * ready, so we should keep on trying for a long time to make
15790 		 * sure that all types of media are taken in account (for
15791 		 * some media the drive takes a long time to read TOC).  For
15792 		 * disks we do not want to retry this too many times as this
15793 		 * can cause a long hang in format when the drive refuses to
15794 		 * spin up (a very common failure).
15795 		 */
15796 		switch (ascq) {
15797 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
15798 			/*
15799 			 * Disk drives frequently refuse to spin up which
15800 			 * results in a very long hang in format without
15801 			 * warning messages.
15802 			 *
15803 			 * Note: This code preserves the legacy behavior of
15804 			 * comparing xb_retry_count against zero for fibre
15805 			 * channel targets instead of comparing against the
15806 			 * un_reset_retry_count value.  The reason for this
15807 			 * discrepancy has been so utterly lost beneath the
15808 			 * Sands of Time that even Indiana Jones could not
15809 			 * find it.
15810 			 */
15811 			if (un->un_f_is_fibre == TRUE) {
15812 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
15813 				    (xp->xb_retry_count > 0)) &&
15814 				    (un->un_startstop_timeid == NULL)) {
15815 					scsi_log(SD_DEVINFO(un), sd_label,
15816 					    CE_WARN, "logical unit not ready, "
15817 					    "resetting disk\n");
15818 					sd_reset_target(un, pktp);
15819 				}
15820 			} else {
15821 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
15822 				    (xp->xb_retry_count >
15823 				    un->un_reset_retry_count)) &&
15824 				    (un->un_startstop_timeid == NULL)) {
15825 					scsi_log(SD_DEVINFO(un), sd_label,
15826 					    CE_WARN, "logical unit not ready, "
15827 					    "resetting disk\n");
15828 					sd_reset_target(un, pktp);
15829 				}
15830 			}
15831 			break;
15832 
15833 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
15834 			/*
15835 			 * If the target is in the process of becoming
15836 			 * ready, just proceed with the retry. This can
15837 			 * happen with CD-ROMs that take a long time to
15838 			 * read TOC after a power cycle or reset.
15839 			 */
15840 			goto do_retry;
15841 
15842 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
15843 			break;
15844 
15845 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
15846 			/*
15847 			 * Retries cannot help here so just fail right away.
15848 			 */
15849 			goto fail_command;
15850 
15851 		case 0x88:
15852 			/*
15853 			 * Vendor-unique code for T3/T4: it indicates a
15854 			 * path problem in a mutipathed config, but as far as
15855 			 * the target driver is concerned it equates to a fatal
15856 			 * error, so we should just fail the command right away
15857 			 * (without printing anything to the console). If this
15858 			 * is not a T3/T4, fall thru to the default recovery
15859 			 * action.
15860 			 * T3/T4 is FC only, don't need to check is_fibre
15861 			 */
15862 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
15863 				sd_return_failed_command(un, bp, EIO);
15864 				return;
15865 			}
15866 			/* FALLTHRU */
15867 
15868 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
15869 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
15870 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
15871 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
15872 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
15873 		default:    /* Possible future codes in SCSI spec? */
15874 			/*
15875 			 * For removable-media devices, do not retry if
15876 			 * ASCQ > 2 as these result mostly from USCSI commands
15877 			 * on MMC devices issued to check status of an
15878 			 * operation initiated in immediate mode.  Also for
15879 			 * ASCQ >= 4 do not print console messages as these
15880 			 * mainly represent a user-initiated operation
15881 			 * instead of a system failure.
15882 			 */
15883 			if (un->un_f_has_removable_media) {
15884 				si.ssi_severity = SCSI_ERR_ALL;
15885 				goto fail_command;
15886 			}
15887 			break;
15888 		}
15889 
15890 		/*
15891 		 * As part of our recovery attempt for the NOT READY
15892 		 * condition, we issue a START STOP UNIT command. However
15893 		 * we want to wait for a short delay before attempting this
15894 		 * as there may still be more commands coming back from the
15895 		 * target with the check condition. To do this we use
15896 		 * timeout(9F) to call sd_start_stop_unit_callback() after
15897 		 * the delay interval expires. (sd_start_stop_unit_callback()
15898 		 * dispatches sd_start_stop_unit_task(), which will issue
15899 		 * the actual START STOP UNIT command. The delay interval
15900 		 * is one-half of the delay that we will use to retry the
15901 		 * command that generated the NOT READY condition.
15902 		 *
15903 		 * Note that we could just dispatch sd_start_stop_unit_task()
15904 		 * from here and allow it to sleep for the delay interval,
15905 		 * but then we would be tying up the taskq thread
15906 		 * uncesessarily for the duration of the delay.
15907 		 *
15908 		 * Do not issue the START STOP UNIT if the current command
15909 		 * is already a START STOP UNIT.
15910 		 */
15911 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
15912 			break;
15913 		}
15914 
15915 		/*
15916 		 * Do not schedule the timeout if one is already pending.
15917 		 */
15918 		if (un->un_startstop_timeid != NULL) {
15919 			SD_INFO(SD_LOG_ERROR, un,
15920 			    "sd_sense_key_not_ready: restart already issued to"
15921 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
15922 			    ddi_get_instance(SD_DEVINFO(un)));
15923 			break;
15924 		}
15925 
15926 		/*
15927 		 * Schedule the START STOP UNIT command, then queue the command
15928 		 * for a retry.
15929 		 *
15930 		 * Note: A timeout is not scheduled for this retry because we
15931 		 * want the retry to be serial with the START_STOP_UNIT. The
15932 		 * retry will be started when the START_STOP_UNIT is completed
15933 		 * in sd_start_stop_unit_task.
15934 		 */
15935 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
15936 		    un, SD_BSY_TIMEOUT / 2);
15937 		xp->xb_retry_count++;
15938 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
15939 		return;
15940 
15941 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
15942 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
15943 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15944 			    "unit does not respond to selection\n");
15945 		}
15946 		break;
15947 
15948 	case 0x3A:	/* MEDIUM NOT PRESENT */
15949 		if (sd_error_level >= SCSI_ERR_FATAL) {
15950 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15951 			    "Caddy not inserted in drive\n");
15952 		}
15953 
15954 		sr_ejected(un);
15955 		un->un_mediastate = DKIO_EJECTED;
15956 		/* The state has changed, inform the media watch routines */
15957 		cv_broadcast(&un->un_state_cv);
15958 		/* Just fail if no media is present in the drive. */
15959 		goto fail_command;
15960 
15961 	default:
15962 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
15963 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
15964 			    "Unit not Ready. Additional sense code 0x%x\n",
15965 			    asc);
15966 		}
15967 		break;
15968 	}
15969 
15970 do_retry:
15971 
15972 	/*
15973 	 * Retry the command, as some targets may report NOT READY for
15974 	 * several seconds after being reset.
15975 	 */
15976 	xp->xb_retry_count++;
15977 	si.ssi_severity = SCSI_ERR_RETRYABLE;
15978 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
15979 	    &si, EIO, SD_BSY_TIMEOUT, NULL);
15980 
15981 	return;
15982 
15983 fail_command:
15984 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
15985 	sd_return_failed_command(un, bp, EIO);
15986 }
15987 
15988 
15989 
15990 /*
15991  *    Function: sd_sense_key_medium_or_hardware_error
15992  *
15993  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
15994  *		sense key.
15995  *
15996  *     Context: May be called from interrupt context
15997  */
15998 
15999 static void
16000 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
16001 	uint8_t *sense_datap,
16002 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16003 {
16004 	struct sd_sense_info	si;
16005 	uint8_t sense_key = scsi_sense_key(sense_datap);
16006 	uint8_t asc = scsi_sense_asc(sense_datap);
16007 
16008 	ASSERT(un != NULL);
16009 	ASSERT(mutex_owned(SD_MUTEX(un)));
16010 	ASSERT(bp != NULL);
16011 	ASSERT(xp != NULL);
16012 	ASSERT(pktp != NULL);
16013 
16014 	si.ssi_severity = SCSI_ERR_FATAL;
16015 	si.ssi_pfa_flag = FALSE;
16016 
16017 	if (sense_key == KEY_MEDIUM_ERROR) {
16018 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
16019 	}
16020 
16021 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16022 
16023 	if ((un->un_reset_retry_count != 0) &&
16024 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
16025 		mutex_exit(SD_MUTEX(un));
16026 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
16027 		if (un->un_f_allow_bus_device_reset == TRUE) {
16028 
16029 			boolean_t try_resetting_target = B_TRUE;
16030 
16031 			/*
16032 			 * We need to be able to handle specific ASC when we are
16033 			 * handling a KEY_HARDWARE_ERROR. In particular
16034 			 * taking the default action of resetting the target may
16035 			 * not be the appropriate way to attempt recovery.
16036 			 * Resetting a target because of a single LUN failure
16037 			 * victimizes all LUNs on that target.
16038 			 *
16039 			 * This is true for the LSI arrays, if an LSI
16040 			 * array controller returns an ASC of 0x84 (LUN Dead) we
16041 			 * should trust it.
16042 			 */
16043 
16044 			if (sense_key == KEY_HARDWARE_ERROR) {
16045 				switch (asc) {
16046 				case 0x84:
16047 					if (SD_IS_LSI(un)) {
16048 						try_resetting_target = B_FALSE;
16049 					}
16050 					break;
16051 				default:
16052 					break;
16053 				}
16054 			}
16055 
16056 			if (try_resetting_target == B_TRUE) {
16057 				int reset_retval = 0;
16058 				if (un->un_f_lun_reset_enabled == TRUE) {
16059 					SD_TRACE(SD_LOG_IO_CORE, un,
16060 					    "sd_sense_key_medium_or_hardware_"
16061 					    "error: issuing RESET_LUN\n");
16062 					reset_retval =
16063 					    scsi_reset(SD_ADDRESS(un),
16064 					    RESET_LUN);
16065 				}
16066 				if (reset_retval == 0) {
16067 					SD_TRACE(SD_LOG_IO_CORE, un,
16068 					    "sd_sense_key_medium_or_hardware_"
16069 					    "error: issuing RESET_TARGET\n");
16070 					(void) scsi_reset(SD_ADDRESS(un),
16071 					    RESET_TARGET);
16072 				}
16073 			}
16074 		}
16075 		mutex_enter(SD_MUTEX(un));
16076 	}
16077 
16078 	/*
16079 	 * This really ought to be a fatal error, but we will retry anyway
16080 	 * as some drives report this as a spurious error.
16081 	 */
16082 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16083 	    &si, EIO, (clock_t)0, NULL);
16084 }
16085 
16086 
16087 
16088 /*
16089  *    Function: sd_sense_key_illegal_request
16090  *
16091  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
16092  *
16093  *     Context: May be called from interrupt context
16094  */
16095 
16096 static void
16097 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
16098 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16099 {
16100 	struct sd_sense_info	si;
16101 
16102 	ASSERT(un != NULL);
16103 	ASSERT(mutex_owned(SD_MUTEX(un)));
16104 	ASSERT(bp != NULL);
16105 	ASSERT(xp != NULL);
16106 	ASSERT(pktp != NULL);
16107 
16108 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
16109 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
16110 
16111 	si.ssi_severity = SCSI_ERR_INFO;
16112 	si.ssi_pfa_flag = FALSE;
16113 
16114 	/* Pointless to retry if the target thinks it's an illegal request */
16115 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16116 	sd_return_failed_command(un, bp, EIO);
16117 }
16118 
16119 
16120 
16121 
16122 /*
16123  *    Function: sd_sense_key_unit_attention
16124  *
16125  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
16126  *
16127  *     Context: May be called from interrupt context
16128  */
16129 
16130 static void
16131 sd_sense_key_unit_attention(struct sd_lun *un,
16132 	uint8_t *sense_datap,
16133 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16134 {
16135 	/*
16136 	 * For UNIT ATTENTION we allow retries for one minute. Devices
16137 	 * like Sonoma can return UNIT ATTENTION close to a minute
16138 	 * under certain conditions.
16139 	 */
16140 	int	retry_check_flag = SD_RETRIES_UA;
16141 	boolean_t	kstat_updated = B_FALSE;
16142 	struct	sd_sense_info		si;
16143 	uint8_t asc = scsi_sense_asc(sense_datap);
16144 
16145 	ASSERT(un != NULL);
16146 	ASSERT(mutex_owned(SD_MUTEX(un)));
16147 	ASSERT(bp != NULL);
16148 	ASSERT(xp != NULL);
16149 	ASSERT(pktp != NULL);
16150 
16151 	si.ssi_severity = SCSI_ERR_INFO;
16152 	si.ssi_pfa_flag = FALSE;
16153 
16154 
16155 	switch (asc) {
16156 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
16157 		if (sd_report_pfa != 0) {
16158 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
16159 			si.ssi_pfa_flag = TRUE;
16160 			retry_check_flag = SD_RETRIES_STANDARD;
16161 			goto do_retry;
16162 		}
16163 
16164 		break;
16165 
16166 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
16167 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
16168 			un->un_resvd_status |=
16169 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
16170 		}
16171 #ifdef _LP64
16172 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
16173 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
16174 			    un, KM_NOSLEEP) == 0) {
16175 				/*
16176 				 * If we can't dispatch the task we'll just
16177 				 * live without descriptor sense.  We can
16178 				 * try again on the next "unit attention"
16179 				 */
16180 				SD_ERROR(SD_LOG_ERROR, un,
16181 				    "sd_sense_key_unit_attention: "
16182 				    "Could not dispatch "
16183 				    "sd_reenable_dsense_task\n");
16184 			}
16185 		}
16186 #endif /* _LP64 */
16187 		/* FALLTHRU */
16188 
16189 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
16190 		if (!un->un_f_has_removable_media) {
16191 			break;
16192 		}
16193 
16194 		/*
16195 		 * When we get a unit attention from a removable-media device,
16196 		 * it may be in a state that will take a long time to recover
16197 		 * (e.g., from a reset).  Since we are executing in interrupt
16198 		 * context here, we cannot wait around for the device to come
16199 		 * back. So hand this command off to sd_media_change_task()
16200 		 * for deferred processing under taskq thread context. (Note
16201 		 * that the command still may be failed if a problem is
16202 		 * encountered at a later time.)
16203 		 */
16204 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
16205 		    KM_NOSLEEP) == 0) {
16206 			/*
16207 			 * Cannot dispatch the request so fail the command.
16208 			 */
16209 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
16210 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
16211 			si.ssi_severity = SCSI_ERR_FATAL;
16212 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16213 			sd_return_failed_command(un, bp, EIO);
16214 		}
16215 
16216 		/*
16217 		 * If failed to dispatch sd_media_change_task(), we already
16218 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
16219 		 * we should update kstat later if it encounters an error. So,
16220 		 * we update kstat_updated flag here.
16221 		 */
16222 		kstat_updated = B_TRUE;
16223 
16224 		/*
16225 		 * Either the command has been successfully dispatched to a
16226 		 * task Q for retrying, or the dispatch failed. In either case
16227 		 * do NOT retry again by calling sd_retry_command. This sets up
16228 		 * two retries of the same command and when one completes and
16229 		 * frees the resources the other will access freed memory,
16230 		 * a bad thing.
16231 		 */
16232 		return;
16233 
16234 	default:
16235 		break;
16236 	}
16237 
16238 	/*
16239 	 * Update kstat if we haven't done that.
16240 	 */
16241 	if (!kstat_updated) {
16242 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16243 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
16244 	}
16245 
16246 do_retry:
16247 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
16248 	    EIO, SD_UA_RETRY_DELAY, NULL);
16249 }
16250 
16251 
16252 
16253 /*
16254  *    Function: sd_sense_key_fail_command
16255  *
16256  * Description: Use to fail a command when we don't like the sense key that
16257  *		was returned.
16258  *
16259  *     Context: May be called from interrupt context
16260  */
16261 
16262 static void
16263 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
16264 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16265 {
16266 	struct sd_sense_info	si;
16267 
16268 	ASSERT(un != NULL);
16269 	ASSERT(mutex_owned(SD_MUTEX(un)));
16270 	ASSERT(bp != NULL);
16271 	ASSERT(xp != NULL);
16272 	ASSERT(pktp != NULL);
16273 
16274 	si.ssi_severity = SCSI_ERR_FATAL;
16275 	si.ssi_pfa_flag = FALSE;
16276 
16277 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16278 	sd_return_failed_command(un, bp, EIO);
16279 }
16280 
16281 
16282 
16283 /*
16284  *    Function: sd_sense_key_blank_check
16285  *
16286  * Description: Recovery actions for a SCSI "Blank Check" sense key.
16287  *		Has no monetary connotation.
16288  *
16289  *     Context: May be called from interrupt context
16290  */
16291 
16292 static void
16293 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
16294 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16295 {
16296 	struct sd_sense_info	si;
16297 
16298 	ASSERT(un != NULL);
16299 	ASSERT(mutex_owned(SD_MUTEX(un)));
16300 	ASSERT(bp != NULL);
16301 	ASSERT(xp != NULL);
16302 	ASSERT(pktp != NULL);
16303 
16304 	/*
16305 	 * Blank check is not fatal for removable devices, therefore
16306 	 * it does not require a console message.
16307 	 */
16308 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
16309 	    SCSI_ERR_FATAL;
16310 	si.ssi_pfa_flag = FALSE;
16311 
16312 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16313 	sd_return_failed_command(un, bp, EIO);
16314 }
16315 
16316 
16317 
16318 
16319 /*
16320  *    Function: sd_sense_key_aborted_command
16321  *
16322  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
16323  *
16324  *     Context: May be called from interrupt context
16325  */
16326 
16327 static void
16328 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
16329 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16330 {
16331 	struct sd_sense_info	si;
16332 
16333 	ASSERT(un != NULL);
16334 	ASSERT(mutex_owned(SD_MUTEX(un)));
16335 	ASSERT(bp != NULL);
16336 	ASSERT(xp != NULL);
16337 	ASSERT(pktp != NULL);
16338 
16339 	si.ssi_severity = SCSI_ERR_FATAL;
16340 	si.ssi_pfa_flag = FALSE;
16341 
16342 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16343 
16344 	/*
16345 	 * This really ought to be a fatal error, but we will retry anyway
16346 	 * as some drives report this as a spurious error.
16347 	 */
16348 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16349 	    &si, EIO, (clock_t)0, NULL);
16350 }
16351 
16352 
16353 
16354 /*
16355  *    Function: sd_sense_key_default
16356  *
16357  * Description: Default recovery action for several SCSI sense keys (basically
16358  *		attempts a retry).
16359  *
16360  *     Context: May be called from interrupt context
16361  */
16362 
16363 static void
16364 sd_sense_key_default(struct sd_lun *un,
16365 	uint8_t *sense_datap,
16366 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16367 {
16368 	struct sd_sense_info	si;
16369 	uint8_t sense_key = scsi_sense_key(sense_datap);
16370 
16371 	ASSERT(un != NULL);
16372 	ASSERT(mutex_owned(SD_MUTEX(un)));
16373 	ASSERT(bp != NULL);
16374 	ASSERT(xp != NULL);
16375 	ASSERT(pktp != NULL);
16376 
16377 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16378 
16379 	/*
16380 	 * Undecoded sense key.	Attempt retries and hope that will fix
16381 	 * the problem.  Otherwise, we're dead.
16382 	 */
16383 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16384 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16385 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
16386 	}
16387 
16388 	si.ssi_severity = SCSI_ERR_FATAL;
16389 	si.ssi_pfa_flag = FALSE;
16390 
16391 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16392 	    &si, EIO, (clock_t)0, NULL);
16393 }
16394 
16395 
16396 
16397 /*
16398  *    Function: sd_print_retry_msg
16399  *
16400  * Description: Print a message indicating the retry action being taken.
16401  *
16402  *   Arguments: un - ptr to associated softstate
16403  *		bp - ptr to buf(9S) for the command
16404  *		arg - not used.
16405  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16406  *			or SD_NO_RETRY_ISSUED
16407  *
16408  *     Context: May be called from interrupt context
16409  */
16410 /* ARGSUSED */
16411 static void
16412 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
16413 {
16414 	struct sd_xbuf	*xp;
16415 	struct scsi_pkt *pktp;
16416 	char *reasonp;
16417 	char *msgp;
16418 
16419 	ASSERT(un != NULL);
16420 	ASSERT(mutex_owned(SD_MUTEX(un)));
16421 	ASSERT(bp != NULL);
16422 	pktp = SD_GET_PKTP(bp);
16423 	ASSERT(pktp != NULL);
16424 	xp = SD_GET_XBUF(bp);
16425 	ASSERT(xp != NULL);
16426 
16427 	ASSERT(!mutex_owned(&un->un_pm_mutex));
16428 	mutex_enter(&un->un_pm_mutex);
16429 	if ((un->un_state == SD_STATE_SUSPENDED) ||
16430 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
16431 	    (pktp->pkt_flags & FLAG_SILENT)) {
16432 		mutex_exit(&un->un_pm_mutex);
16433 		goto update_pkt_reason;
16434 	}
16435 	mutex_exit(&un->un_pm_mutex);
16436 
16437 	/*
16438 	 * Suppress messages if they are all the same pkt_reason; with
16439 	 * TQ, many (up to 256) are returned with the same pkt_reason.
16440 	 * If we are in panic, then suppress the retry messages.
16441 	 */
16442 	switch (flag) {
16443 	case SD_NO_RETRY_ISSUED:
16444 		msgp = "giving up";
16445 		break;
16446 	case SD_IMMEDIATE_RETRY_ISSUED:
16447 	case SD_DELAYED_RETRY_ISSUED:
16448 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
16449 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
16450 		    (sd_error_level != SCSI_ERR_ALL))) {
16451 			return;
16452 		}
16453 		msgp = "retrying command";
16454 		break;
16455 	default:
16456 		goto update_pkt_reason;
16457 	}
16458 
16459 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
16460 	    scsi_rname(pktp->pkt_reason));
16461 
16462 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16463 	    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
16464 
16465 update_pkt_reason:
16466 	/*
16467 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
16468 	 * This is to prevent multiple console messages for the same failure
16469 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
16470 	 * when the command is retried successfully because there still may be
16471 	 * more commands coming back with the same value of pktp->pkt_reason.
16472 	 */
16473 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
16474 		un->un_last_pkt_reason = pktp->pkt_reason;
16475 	}
16476 }
16477 
16478 
16479 /*
16480  *    Function: sd_print_cmd_incomplete_msg
16481  *
16482  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
16483  *
16484  *   Arguments: un - ptr to associated softstate
16485  *		bp - ptr to buf(9S) for the command
16486  *		arg - passed to sd_print_retry_msg()
16487  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16488  *			or SD_NO_RETRY_ISSUED
16489  *
16490  *     Context: May be called from interrupt context
16491  */
16492 
16493 static void
16494 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
16495 	int code)
16496 {
16497 	dev_info_t	*dip;
16498 
16499 	ASSERT(un != NULL);
16500 	ASSERT(mutex_owned(SD_MUTEX(un)));
16501 	ASSERT(bp != NULL);
16502 
16503 	switch (code) {
16504 	case SD_NO_RETRY_ISSUED:
16505 		/* Command was failed. Someone turned off this target? */
16506 		if (un->un_state != SD_STATE_OFFLINE) {
16507 			/*
16508 			 * Suppress message if we are detaching and
16509 			 * device has been disconnected
16510 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
16511 			 * private interface and not part of the DDI
16512 			 */
16513 			dip = un->un_sd->sd_dev;
16514 			if (!(DEVI_IS_DETACHING(dip) &&
16515 			    DEVI_IS_DEVICE_REMOVED(dip))) {
16516 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16517 				"disk not responding to selection\n");
16518 			}
16519 			New_state(un, SD_STATE_OFFLINE);
16520 		}
16521 		break;
16522 
16523 	case SD_DELAYED_RETRY_ISSUED:
16524 	case SD_IMMEDIATE_RETRY_ISSUED:
16525 	default:
16526 		/* Command was successfully queued for retry */
16527 		sd_print_retry_msg(un, bp, arg, code);
16528 		break;
16529 	}
16530 }
16531 
16532 
16533 /*
16534  *    Function: sd_pkt_reason_cmd_incomplete
16535  *
16536  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
16537  *
16538  *     Context: May be called from interrupt context
16539  */
16540 
16541 static void
16542 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
16543 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16544 {
16545 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
16546 
16547 	ASSERT(un != NULL);
16548 	ASSERT(mutex_owned(SD_MUTEX(un)));
16549 	ASSERT(bp != NULL);
16550 	ASSERT(xp != NULL);
16551 	ASSERT(pktp != NULL);
16552 
16553 	/* Do not do a reset if selection did not complete */
16554 	/* Note: Should this not just check the bit? */
16555 	if (pktp->pkt_state != STATE_GOT_BUS) {
16556 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
16557 		sd_reset_target(un, pktp);
16558 	}
16559 
16560 	/*
16561 	 * If the target was not successfully selected, then set
16562 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
16563 	 * with the target, and further retries and/or commands are
16564 	 * likely to take a long time.
16565 	 */
16566 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
16567 		flag |= SD_RETRIES_FAILFAST;
16568 	}
16569 
16570 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16571 
16572 	sd_retry_command(un, bp, flag,
16573 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16574 }
16575 
16576 
16577 
16578 /*
16579  *    Function: sd_pkt_reason_cmd_tran_err
16580  *
16581  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
16582  *
16583  *     Context: May be called from interrupt context
16584  */
16585 
16586 static void
16587 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
16588 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16589 {
16590 	ASSERT(un != NULL);
16591 	ASSERT(mutex_owned(SD_MUTEX(un)));
16592 	ASSERT(bp != NULL);
16593 	ASSERT(xp != NULL);
16594 	ASSERT(pktp != NULL);
16595 
16596 	/*
16597 	 * Do not reset if we got a parity error, or if
16598 	 * selection did not complete.
16599 	 */
16600 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16601 	/* Note: Should this not just check the bit for pkt_state? */
16602 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
16603 	    (pktp->pkt_state != STATE_GOT_BUS)) {
16604 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
16605 		sd_reset_target(un, pktp);
16606 	}
16607 
16608 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16609 
16610 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
16611 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16612 }
16613 
16614 
16615 
16616 /*
16617  *    Function: sd_pkt_reason_cmd_reset
16618  *
16619  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
16620  *
16621  *     Context: May be called from interrupt context
16622  */
16623 
16624 static void
16625 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
16626 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16627 {
16628 	ASSERT(un != NULL);
16629 	ASSERT(mutex_owned(SD_MUTEX(un)));
16630 	ASSERT(bp != NULL);
16631 	ASSERT(xp != NULL);
16632 	ASSERT(pktp != NULL);
16633 
16634 	/* The target may still be running the command, so try to reset. */
16635 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
16636 	sd_reset_target(un, pktp);
16637 
16638 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16639 
16640 	/*
16641 	 * If pkt_reason is CMD_RESET chances are that this pkt got
16642 	 * reset because another target on this bus caused it. The target
16643 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
16644 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
16645 	 */
16646 
16647 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
16648 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16649 }
16650 
16651 
16652 
16653 
16654 /*
16655  *    Function: sd_pkt_reason_cmd_aborted
16656  *
16657  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
16658  *
16659  *     Context: May be called from interrupt context
16660  */
16661 
16662 static void
16663 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
16664 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16665 {
16666 	ASSERT(un != NULL);
16667 	ASSERT(mutex_owned(SD_MUTEX(un)));
16668 	ASSERT(bp != NULL);
16669 	ASSERT(xp != NULL);
16670 	ASSERT(pktp != NULL);
16671 
16672 	/* The target may still be running the command, so try to reset. */
16673 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
16674 	sd_reset_target(un, pktp);
16675 
16676 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16677 
16678 	/*
16679 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
16680 	 * aborted because another target on this bus caused it. The target
16681 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
16682 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
16683 	 */
16684 
16685 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
16686 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16687 }
16688 
16689 
16690 
16691 /*
16692  *    Function: sd_pkt_reason_cmd_timeout
16693  *
16694  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
16695  *
16696  *     Context: May be called from interrupt context
16697  */
16698 
16699 static void
16700 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
16701 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16702 {
16703 	ASSERT(un != NULL);
16704 	ASSERT(mutex_owned(SD_MUTEX(un)));
16705 	ASSERT(bp != NULL);
16706 	ASSERT(xp != NULL);
16707 	ASSERT(pktp != NULL);
16708 
16709 
16710 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
16711 	sd_reset_target(un, pktp);
16712 
16713 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16714 
16715 	/*
16716 	 * A command timeout indicates that we could not establish
16717 	 * communication with the target, so set SD_RETRIES_FAILFAST
16718 	 * as further retries/commands are likely to take a long time.
16719 	 */
16720 	sd_retry_command(un, bp,
16721 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
16722 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16723 }
16724 
16725 
16726 
16727 /*
16728  *    Function: sd_pkt_reason_cmd_unx_bus_free
16729  *
16730  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
16731  *
16732  *     Context: May be called from interrupt context
16733  */
16734 
16735 static void
16736 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
16737 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16738 {
16739 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
16740 
16741 	ASSERT(un != NULL);
16742 	ASSERT(mutex_owned(SD_MUTEX(un)));
16743 	ASSERT(bp != NULL);
16744 	ASSERT(xp != NULL);
16745 	ASSERT(pktp != NULL);
16746 
16747 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16748 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16749 
16750 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
16751 	    sd_print_retry_msg : NULL;
16752 
16753 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
16754 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16755 }
16756 
16757 
16758 /*
16759  *    Function: sd_pkt_reason_cmd_tag_reject
16760  *
16761  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
16762  *
16763  *     Context: May be called from interrupt context
16764  */
16765 
16766 static void
16767 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
16768 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16769 {
16770 	ASSERT(un != NULL);
16771 	ASSERT(mutex_owned(SD_MUTEX(un)));
16772 	ASSERT(bp != NULL);
16773 	ASSERT(xp != NULL);
16774 	ASSERT(pktp != NULL);
16775 
16776 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16777 	pktp->pkt_flags = 0;
16778 	un->un_tagflags = 0;
16779 	if (un->un_f_opt_queueing == TRUE) {
16780 		un->un_throttle = min(un->un_throttle, 3);
16781 	} else {
16782 		un->un_throttle = 1;
16783 	}
16784 	mutex_exit(SD_MUTEX(un));
16785 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
16786 	mutex_enter(SD_MUTEX(un));
16787 
16788 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16789 
16790 	/* Legacy behavior not to check retry counts here. */
16791 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
16792 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16793 }
16794 
16795 
16796 /*
16797  *    Function: sd_pkt_reason_default
16798  *
16799  * Description: Default recovery actions for SCSA pkt_reason values that
16800  *		do not have more explicit recovery actions.
16801  *
16802  *     Context: May be called from interrupt context
16803  */
16804 
16805 static void
16806 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
16807 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16808 {
16809 	ASSERT(un != NULL);
16810 	ASSERT(mutex_owned(SD_MUTEX(un)));
16811 	ASSERT(bp != NULL);
16812 	ASSERT(xp != NULL);
16813 	ASSERT(pktp != NULL);
16814 
16815 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
16816 	sd_reset_target(un, pktp);
16817 
16818 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16819 
16820 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
16821 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16822 }
16823 
16824 
16825 
16826 /*
16827  *    Function: sd_pkt_status_check_condition
16828  *
16829  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
16830  *
16831  *     Context: May be called from interrupt context
16832  */
16833 
16834 static void
16835 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
16836 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16837 {
16838 	ASSERT(un != NULL);
16839 	ASSERT(mutex_owned(SD_MUTEX(un)));
16840 	ASSERT(bp != NULL);
16841 	ASSERT(xp != NULL);
16842 	ASSERT(pktp != NULL);
16843 
16844 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
16845 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
16846 
16847 	/*
16848 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
16849 	 * command will be retried after the request sense). Otherwise, retry
16850 	 * the command. Note: we are issuing the request sense even though the
16851 	 * retry limit may have been reached for the failed command.
16852 	 */
16853 	if (un->un_f_arq_enabled == FALSE) {
16854 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
16855 		    "no ARQ, sending request sense command\n");
16856 		sd_send_request_sense_command(un, bp, pktp);
16857 	} else {
16858 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
16859 		    "ARQ,retrying request sense command\n");
16860 #if defined(__i386) || defined(__amd64)
16861 		/*
16862 		 * The SD_RETRY_DELAY value need to be adjusted here
16863 		 * when SD_RETRY_DELAY change in sddef.h
16864 		 */
16865 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
16866 		    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
16867 		    NULL);
16868 #else
16869 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
16870 		    EIO, SD_RETRY_DELAY, NULL);
16871 #endif
16872 	}
16873 
16874 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
16875 }
16876 
16877 
16878 /*
16879  *    Function: sd_pkt_status_busy
16880  *
16881  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
16882  *
16883  *     Context: May be called from interrupt context
16884  */
16885 
16886 static void
16887 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
16888 	struct scsi_pkt *pktp)
16889 {
16890 	ASSERT(un != NULL);
16891 	ASSERT(mutex_owned(SD_MUTEX(un)));
16892 	ASSERT(bp != NULL);
16893 	ASSERT(xp != NULL);
16894 	ASSERT(pktp != NULL);
16895 
16896 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16897 	    "sd_pkt_status_busy: entry\n");
16898 
16899 	/* If retries are exhausted, just fail the command. */
16900 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
16901 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16902 		    "device busy too long\n");
16903 		sd_return_failed_command(un, bp, EIO);
16904 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16905 		    "sd_pkt_status_busy: exit\n");
16906 		return;
16907 	}
16908 	xp->xb_retry_count++;
16909 
16910 	/*
16911 	 * Try to reset the target. However, we do not want to perform
16912 	 * more than one reset if the device continues to fail. The reset
16913 	 * will be performed when the retry count reaches the reset
16914 	 * threshold.  This threshold should be set such that at least
16915 	 * one retry is issued before the reset is performed.
16916 	 */
16917 	if (xp->xb_retry_count ==
16918 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
16919 		int rval = 0;
16920 		mutex_exit(SD_MUTEX(un));
16921 		if (un->un_f_allow_bus_device_reset == TRUE) {
16922 			/*
16923 			 * First try to reset the LUN; if we cannot then
16924 			 * try to reset the target.
16925 			 */
16926 			if (un->un_f_lun_reset_enabled == TRUE) {
16927 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16928 				    "sd_pkt_status_busy: RESET_LUN\n");
16929 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
16930 			}
16931 			if (rval == 0) {
16932 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16933 				    "sd_pkt_status_busy: RESET_TARGET\n");
16934 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
16935 			}
16936 		}
16937 		if (rval == 0) {
16938 			/*
16939 			 * If the RESET_LUN and/or RESET_TARGET failed,
16940 			 * try RESET_ALL
16941 			 */
16942 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16943 			    "sd_pkt_status_busy: RESET_ALL\n");
16944 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
16945 		}
16946 		mutex_enter(SD_MUTEX(un));
16947 		if (rval == 0) {
16948 			/*
16949 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
16950 			 * At this point we give up & fail the command.
16951 			 */
16952 			sd_return_failed_command(un, bp, EIO);
16953 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16954 			    "sd_pkt_status_busy: exit (failed cmd)\n");
16955 			return;
16956 		}
16957 	}
16958 
16959 	/*
16960 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
16961 	 * we have already checked the retry counts above.
16962 	 */
16963 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
16964 	    EIO, SD_BSY_TIMEOUT, NULL);
16965 
16966 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16967 	    "sd_pkt_status_busy: exit\n");
16968 }
16969 
16970 
16971 /*
16972  *    Function: sd_pkt_status_reservation_conflict
16973  *
16974  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
16975  *		command status.
16976  *
16977  *     Context: May be called from interrupt context
16978  */
16979 
16980 static void
16981 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
16982 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16983 {
16984 	ASSERT(un != NULL);
16985 	ASSERT(mutex_owned(SD_MUTEX(un)));
16986 	ASSERT(bp != NULL);
16987 	ASSERT(xp != NULL);
16988 	ASSERT(pktp != NULL);
16989 
16990 	/*
16991 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
16992 	 * conflict could be due to various reasons like incorrect keys, not
16993 	 * registered or not reserved etc. So, we return EACCES to the caller.
16994 	 */
16995 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
16996 		int cmd = SD_GET_PKT_OPCODE(pktp);
16997 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
16998 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
16999 			sd_return_failed_command(un, bp, EACCES);
17000 			return;
17001 		}
17002 	}
17003 
17004 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
17005 
17006 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
17007 		if (sd_failfast_enable != 0) {
17008 			/* By definition, we must panic here.... */
17009 			sd_panic_for_res_conflict(un);
17010 			/*NOTREACHED*/
17011 		}
17012 		SD_ERROR(SD_LOG_IO, un,
17013 		    "sd_handle_resv_conflict: Disk Reserved\n");
17014 		sd_return_failed_command(un, bp, EACCES);
17015 		return;
17016 	}
17017 
17018 	/*
17019 	 * 1147670: retry only if sd_retry_on_reservation_conflict
17020 	 * property is set (default is 1). Retries will not succeed
17021 	 * on a disk reserved by another initiator. HA systems
17022 	 * may reset this via sd.conf to avoid these retries.
17023 	 *
17024 	 * Note: The legacy return code for this failure is EIO, however EACCES
17025 	 * seems more appropriate for a reservation conflict.
17026 	 */
17027 	if (sd_retry_on_reservation_conflict == 0) {
17028 		SD_ERROR(SD_LOG_IO, un,
17029 		    "sd_handle_resv_conflict: Device Reserved\n");
17030 		sd_return_failed_command(un, bp, EIO);
17031 		return;
17032 	}
17033 
17034 	/*
17035 	 * Retry the command if we can.
17036 	 *
17037 	 * Note: The legacy return code for this failure is EIO, however EACCES
17038 	 * seems more appropriate for a reservation conflict.
17039 	 */
17040 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
17041 	    (clock_t)2, NULL);
17042 }
17043 
17044 
17045 
17046 /*
17047  *    Function: sd_pkt_status_qfull
17048  *
17049  * Description: Handle a QUEUE FULL condition from the target.  This can
17050  *		occur if the HBA does not handle the queue full condition.
17051  *		(Basically this means third-party HBAs as Sun HBAs will
17052  *		handle the queue full condition.)  Note that if there are
17053  *		some commands already in the transport, then the queue full
17054  *		has occurred because the queue for this nexus is actually
17055  *		full. If there are no commands in the transport, then the
17056  *		queue full is resulting from some other initiator or lun
17057  *		consuming all the resources at the target.
17058  *
17059  *     Context: May be called from interrupt context
17060  */
17061 
17062 static void
17063 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
17064 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17065 {
17066 	ASSERT(un != NULL);
17067 	ASSERT(mutex_owned(SD_MUTEX(un)));
17068 	ASSERT(bp != NULL);
17069 	ASSERT(xp != NULL);
17070 	ASSERT(pktp != NULL);
17071 
17072 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17073 	    "sd_pkt_status_qfull: entry\n");
17074 
17075 	/*
17076 	 * Just lower the QFULL throttle and retry the command.  Note that
17077 	 * we do not limit the number of retries here.
17078 	 */
17079 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
17080 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
17081 	    SD_RESTART_TIMEOUT, NULL);
17082 
17083 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17084 	    "sd_pkt_status_qfull: exit\n");
17085 }
17086 
17087 
17088 /*
17089  *    Function: sd_reset_target
17090  *
17091  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
17092  *		RESET_TARGET, or RESET_ALL.
17093  *
17094  *     Context: May be called under interrupt context.
17095  */
17096 
17097 static void
17098 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
17099 {
17100 	int rval = 0;
17101 
17102 	ASSERT(un != NULL);
17103 	ASSERT(mutex_owned(SD_MUTEX(un)));
17104 	ASSERT(pktp != NULL);
17105 
17106 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
17107 
17108 	/*
17109 	 * No need to reset if the transport layer has already done so.
17110 	 */
17111 	if ((pktp->pkt_statistics &
17112 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
17113 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17114 		    "sd_reset_target: no reset\n");
17115 		return;
17116 	}
17117 
17118 	mutex_exit(SD_MUTEX(un));
17119 
17120 	if (un->un_f_allow_bus_device_reset == TRUE) {
17121 		if (un->un_f_lun_reset_enabled == TRUE) {
17122 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17123 			    "sd_reset_target: RESET_LUN\n");
17124 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
17125 		}
17126 		if (rval == 0) {
17127 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17128 			    "sd_reset_target: RESET_TARGET\n");
17129 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
17130 		}
17131 	}
17132 
17133 	if (rval == 0) {
17134 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17135 		    "sd_reset_target: RESET_ALL\n");
17136 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
17137 	}
17138 
17139 	mutex_enter(SD_MUTEX(un));
17140 
17141 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
17142 }
17143 
17144 
17145 /*
17146  *    Function: sd_media_change_task
17147  *
17148  * Description: Recovery action for CDROM to become available.
17149  *
17150  *     Context: Executes in a taskq() thread context
17151  */
17152 
17153 static void
17154 sd_media_change_task(void *arg)
17155 {
17156 	struct	scsi_pkt	*pktp = arg;
17157 	struct	sd_lun		*un;
17158 	struct	buf		*bp;
17159 	struct	sd_xbuf		*xp;
17160 	int	err		= 0;
17161 	int	retry_count	= 0;
17162 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
17163 	struct	sd_sense_info	si;
17164 
17165 	ASSERT(pktp != NULL);
17166 	bp = (struct buf *)pktp->pkt_private;
17167 	ASSERT(bp != NULL);
17168 	xp = SD_GET_XBUF(bp);
17169 	ASSERT(xp != NULL);
17170 	un = SD_GET_UN(bp);
17171 	ASSERT(un != NULL);
17172 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17173 	ASSERT(un->un_f_monitor_media_state);
17174 
17175 	si.ssi_severity = SCSI_ERR_INFO;
17176 	si.ssi_pfa_flag = FALSE;
17177 
17178 	/*
17179 	 * When a reset is issued on a CDROM, it takes a long time to
17180 	 * recover. First few attempts to read capacity and other things
17181 	 * related to handling unit attention fail (with a ASC 0x4 and
17182 	 * ASCQ 0x1). In that case we want to do enough retries and we want
17183 	 * to limit the retries in other cases of genuine failures like
17184 	 * no media in drive.
17185 	 */
17186 	while (retry_count++ < retry_limit) {
17187 		if ((err = sd_handle_mchange(un)) == 0) {
17188 			break;
17189 		}
17190 		if (err == EAGAIN) {
17191 			retry_limit = SD_UNIT_ATTENTION_RETRY;
17192 		}
17193 		/* Sleep for 0.5 sec. & try again */
17194 		delay(drv_usectohz(500000));
17195 	}
17196 
17197 	/*
17198 	 * Dispatch (retry or fail) the original command here,
17199 	 * along with appropriate console messages....
17200 	 *
17201 	 * Must grab the mutex before calling sd_retry_command,
17202 	 * sd_print_sense_msg and sd_return_failed_command.
17203 	 */
17204 	mutex_enter(SD_MUTEX(un));
17205 	if (err != SD_CMD_SUCCESS) {
17206 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17207 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17208 		si.ssi_severity = SCSI_ERR_FATAL;
17209 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17210 		sd_return_failed_command(un, bp, EIO);
17211 	} else {
17212 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
17213 		    &si, EIO, (clock_t)0, NULL);
17214 	}
17215 	mutex_exit(SD_MUTEX(un));
17216 }
17217 
17218 
17219 
17220 /*
17221  *    Function: sd_handle_mchange
17222  *
17223  * Description: Perform geometry validation & other recovery when CDROM
17224  *		has been removed from drive.
17225  *
17226  * Return Code: 0 for success
17227  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
17228  *		sd_send_scsi_READ_CAPACITY()
17229  *
17230  *     Context: Executes in a taskq() thread context
17231  */
17232 
17233 static int
17234 sd_handle_mchange(struct sd_lun *un)
17235 {
17236 	uint64_t	capacity;
17237 	uint32_t	lbasize;
17238 	int		rval;
17239 
17240 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17241 	ASSERT(un->un_f_monitor_media_state);
17242 
17243 	if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
17244 	    SD_PATH_DIRECT_PRIORITY)) != 0) {
17245 		return (rval);
17246 	}
17247 
17248 	mutex_enter(SD_MUTEX(un));
17249 	sd_update_block_info(un, lbasize, capacity);
17250 
17251 	if (un->un_errstats != NULL) {
17252 		struct	sd_errstats *stp =
17253 		    (struct sd_errstats *)un->un_errstats->ks_data;
17254 		stp->sd_capacity.value.ui64 = (uint64_t)
17255 		    ((uint64_t)un->un_blockcount *
17256 		    (uint64_t)un->un_tgt_blocksize);
17257 	}
17258 
17259 
17260 	/*
17261 	 * Check if the media in the device is writable or not
17262 	 */
17263 	if (ISCD(un))
17264 		sd_check_for_writable_cd(un, SD_PATH_DIRECT_PRIORITY);
17265 
17266 	/*
17267 	 * Note: Maybe let the strategy/partitioning chain worry about getting
17268 	 * valid geometry.
17269 	 */
17270 	mutex_exit(SD_MUTEX(un));
17271 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
17272 
17273 
17274 	if (cmlb_validate(un->un_cmlbhandle, 0,
17275 	    (void *)SD_PATH_DIRECT_PRIORITY) != 0) {
17276 		return (EIO);
17277 	} else {
17278 		if (un->un_f_pkstats_enabled) {
17279 			sd_set_pstats(un);
17280 			SD_TRACE(SD_LOG_IO_PARTITION, un,
17281 			    "sd_handle_mchange: un:0x%p pstats created and "
17282 			    "set\n", un);
17283 		}
17284 	}
17285 
17286 
17287 	/*
17288 	 * Try to lock the door
17289 	 */
17290 	return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
17291 	    SD_PATH_DIRECT_PRIORITY));
17292 }
17293 
17294 
17295 /*
17296  *    Function: sd_send_scsi_DOORLOCK
17297  *
17298  * Description: Issue the scsi DOOR LOCK command
17299  *
17300  *   Arguments: un    - pointer to driver soft state (unit) structure for
17301  *			this target.
17302  *		flag  - SD_REMOVAL_ALLOW
17303  *			SD_REMOVAL_PREVENT
17304  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17305  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17306  *			to use the USCSI "direct" chain and bypass the normal
17307  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17308  *			command is issued as part of an error recovery action.
17309  *
17310  * Return Code: 0   - Success
17311  *		errno return code from sd_send_scsi_cmd()
17312  *
17313  *     Context: Can sleep.
17314  */
17315 
17316 static int
17317 sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag)
17318 {
17319 	union scsi_cdb		cdb;
17320 	struct uscsi_cmd	ucmd_buf;
17321 	struct scsi_extended_sense	sense_buf;
17322 	int			status;
17323 
17324 	ASSERT(un != NULL);
17325 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17326 
17327 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
17328 
17329 	/* already determined doorlock is not supported, fake success */
17330 	if (un->un_f_doorlock_supported == FALSE) {
17331 		return (0);
17332 	}
17333 
17334 	/*
17335 	 * If we are ejecting and see an SD_REMOVAL_PREVENT
17336 	 * ignore the command so we can complete the eject
17337 	 * operation.
17338 	 */
17339 	if (flag == SD_REMOVAL_PREVENT) {
17340 		mutex_enter(SD_MUTEX(un));
17341 		if (un->un_f_ejecting == TRUE) {
17342 			mutex_exit(SD_MUTEX(un));
17343 			return (EAGAIN);
17344 		}
17345 		mutex_exit(SD_MUTEX(un));
17346 	}
17347 
17348 	bzero(&cdb, sizeof (cdb));
17349 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17350 
17351 	cdb.scc_cmd = SCMD_DOORLOCK;
17352 	cdb.cdb_opaque[4] = (uchar_t)flag;
17353 
17354 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17355 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
17356 	ucmd_buf.uscsi_bufaddr	= NULL;
17357 	ucmd_buf.uscsi_buflen	= 0;
17358 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17359 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17360 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
17361 	ucmd_buf.uscsi_timeout	= 15;
17362 
17363 	SD_TRACE(SD_LOG_IO, un,
17364 	    "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n");
17365 
17366 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17367 	    UIO_SYSSPACE, path_flag);
17368 
17369 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
17370 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
17371 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
17372 		/* fake success and skip subsequent doorlock commands */
17373 		un->un_f_doorlock_supported = FALSE;
17374 		return (0);
17375 	}
17376 
17377 	return (status);
17378 }
17379 
17380 /*
17381  *    Function: sd_send_scsi_READ_CAPACITY
17382  *
17383  * Description: This routine uses the scsi READ CAPACITY command to determine
17384  *		the device capacity in number of blocks and the device native
17385  *		block size. If this function returns a failure, then the
17386  *		values in *capp and *lbap are undefined.  If the capacity
17387  *		returned is 0xffffffff then the lun is too large for a
17388  *		normal READ CAPACITY command and the results of a
17389  *		READ CAPACITY 16 will be used instead.
17390  *
17391  *   Arguments: un   - ptr to soft state struct for the target
17392  *		capp - ptr to unsigned 64-bit variable to receive the
17393  *			capacity value from the command.
17394  *		lbap - ptr to unsigned 32-bit varaible to receive the
17395  *			block size value from the command
17396  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17397  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17398  *			to use the USCSI "direct" chain and bypass the normal
17399  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17400  *			command is issued as part of an error recovery action.
17401  *
17402  * Return Code: 0   - Success
17403  *		EIO - IO error
17404  *		EACCES - Reservation conflict detected
17405  *		EAGAIN - Device is becoming ready
17406  *		errno return code from sd_send_scsi_cmd()
17407  *
17408  *     Context: Can sleep.  Blocks until command completes.
17409  */
17410 
17411 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
17412 
17413 static int
17414 sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap,
17415 	int path_flag)
17416 {
17417 	struct	scsi_extended_sense	sense_buf;
17418 	struct	uscsi_cmd	ucmd_buf;
17419 	union	scsi_cdb	cdb;
17420 	uint32_t		*capacity_buf;
17421 	uint64_t		capacity;
17422 	uint32_t		lbasize;
17423 	int			status;
17424 
17425 	ASSERT(un != NULL);
17426 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17427 	ASSERT(capp != NULL);
17428 	ASSERT(lbap != NULL);
17429 
17430 	SD_TRACE(SD_LOG_IO, un,
17431 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
17432 
17433 	/*
17434 	 * First send a READ_CAPACITY command to the target.
17435 	 * (This command is mandatory under SCSI-2.)
17436 	 *
17437 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
17438 	 * Medium Indicator bit is cleared.  The address field must be
17439 	 * zero if the PMI bit is zero.
17440 	 */
17441 	bzero(&cdb, sizeof (cdb));
17442 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17443 
17444 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
17445 
17446 	cdb.scc_cmd = SCMD_READ_CAPACITY;
17447 
17448 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17449 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
17450 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
17451 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
17452 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17453 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17454 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
17455 	ucmd_buf.uscsi_timeout	= 60;
17456 
17457 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17458 	    UIO_SYSSPACE, path_flag);
17459 
17460 	switch (status) {
17461 	case 0:
17462 		/* Return failure if we did not get valid capacity data. */
17463 		if (ucmd_buf.uscsi_resid != 0) {
17464 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17465 			return (EIO);
17466 		}
17467 
17468 		/*
17469 		 * Read capacity and block size from the READ CAPACITY 10 data.
17470 		 * This data may be adjusted later due to device specific
17471 		 * issues.
17472 		 *
17473 		 * According to the SCSI spec, the READ CAPACITY 10
17474 		 * command returns the following:
17475 		 *
17476 		 *  bytes 0-3: Maximum logical block address available.
17477 		 *		(MSB in byte:0 & LSB in byte:3)
17478 		 *
17479 		 *  bytes 4-7: Block length in bytes
17480 		 *		(MSB in byte:4 & LSB in byte:7)
17481 		 *
17482 		 */
17483 		capacity = BE_32(capacity_buf[0]);
17484 		lbasize = BE_32(capacity_buf[1]);
17485 
17486 		/*
17487 		 * Done with capacity_buf
17488 		 */
17489 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17490 
17491 		/*
17492 		 * if the reported capacity is set to all 0xf's, then
17493 		 * this disk is too large and requires SBC-2 commands.
17494 		 * Reissue the request using READ CAPACITY 16.
17495 		 */
17496 		if (capacity == 0xffffffff) {
17497 			status = sd_send_scsi_READ_CAPACITY_16(un, &capacity,
17498 			    &lbasize, path_flag);
17499 			if (status != 0) {
17500 				return (status);
17501 			}
17502 		}
17503 		break;	/* Success! */
17504 	case EIO:
17505 		switch (ucmd_buf.uscsi_status) {
17506 		case STATUS_RESERVATION_CONFLICT:
17507 			status = EACCES;
17508 			break;
17509 		case STATUS_CHECK:
17510 			/*
17511 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
17512 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
17513 			 */
17514 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
17515 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
17516 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
17517 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17518 				return (EAGAIN);
17519 			}
17520 			break;
17521 		default:
17522 			break;
17523 		}
17524 		/* FALLTHRU */
17525 	default:
17526 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17527 		return (status);
17528 	}
17529 
17530 	/*
17531 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
17532 	 * (2352 and 0 are common) so for these devices always force the value
17533 	 * to 2048 as required by the ATAPI specs.
17534 	 */
17535 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
17536 		lbasize = 2048;
17537 	}
17538 
17539 	/*
17540 	 * Get the maximum LBA value from the READ CAPACITY data.
17541 	 * Here we assume that the Partial Medium Indicator (PMI) bit
17542 	 * was cleared when issuing the command. This means that the LBA
17543 	 * returned from the device is the LBA of the last logical block
17544 	 * on the logical unit.  The actual logical block count will be
17545 	 * this value plus one.
17546 	 *
17547 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
17548 	 * so scale the capacity value to reflect this.
17549 	 */
17550 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
17551 
17552 	/*
17553 	 * Copy the values from the READ CAPACITY command into the space
17554 	 * provided by the caller.
17555 	 */
17556 	*capp = capacity;
17557 	*lbap = lbasize;
17558 
17559 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
17560 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
17561 
17562 	/*
17563 	 * Both the lbasize and capacity from the device must be nonzero,
17564 	 * otherwise we assume that the values are not valid and return
17565 	 * failure to the caller. (4203735)
17566 	 */
17567 	if ((capacity == 0) || (lbasize == 0)) {
17568 		return (EIO);
17569 	}
17570 
17571 	return (0);
17572 }
17573 
17574 /*
17575  *    Function: sd_send_scsi_READ_CAPACITY_16
17576  *
17577  * Description: This routine uses the scsi READ CAPACITY 16 command to
17578  *		determine the device capacity in number of blocks and the
17579  *		device native block size.  If this function returns a failure,
17580  *		then the values in *capp and *lbap are undefined.
17581  *		This routine should always be called by
17582  *		sd_send_scsi_READ_CAPACITY which will appy any device
17583  *		specific adjustments to capacity and lbasize.
17584  *
17585  *   Arguments: un   - ptr to soft state struct for the target
17586  *		capp - ptr to unsigned 64-bit variable to receive the
17587  *			capacity value from the command.
17588  *		lbap - ptr to unsigned 32-bit varaible to receive the
17589  *			block size value from the command
17590  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17591  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17592  *			to use the USCSI "direct" chain and bypass the normal
17593  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
17594  *			this command is issued as part of an error recovery
17595  *			action.
17596  *
17597  * Return Code: 0   - Success
17598  *		EIO - IO error
17599  *		EACCES - Reservation conflict detected
17600  *		EAGAIN - Device is becoming ready
17601  *		errno return code from sd_send_scsi_cmd()
17602  *
17603  *     Context: Can sleep.  Blocks until command completes.
17604  */
17605 
17606 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
17607 
17608 static int
17609 sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
17610 	uint32_t *lbap, int path_flag)
17611 {
17612 	struct	scsi_extended_sense	sense_buf;
17613 	struct	uscsi_cmd	ucmd_buf;
17614 	union	scsi_cdb	cdb;
17615 	uint64_t		*capacity16_buf;
17616 	uint64_t		capacity;
17617 	uint32_t		lbasize;
17618 	int			status;
17619 
17620 	ASSERT(un != NULL);
17621 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17622 	ASSERT(capp != NULL);
17623 	ASSERT(lbap != NULL);
17624 
17625 	SD_TRACE(SD_LOG_IO, un,
17626 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
17627 
17628 	/*
17629 	 * First send a READ_CAPACITY_16 command to the target.
17630 	 *
17631 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
17632 	 * Medium Indicator bit is cleared.  The address field must be
17633 	 * zero if the PMI bit is zero.
17634 	 */
17635 	bzero(&cdb, sizeof (cdb));
17636 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17637 
17638 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
17639 
17640 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17641 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
17642 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
17643 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
17644 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17645 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17646 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
17647 	ucmd_buf.uscsi_timeout	= 60;
17648 
17649 	/*
17650 	 * Read Capacity (16) is a Service Action In command.  One
17651 	 * command byte (0x9E) is overloaded for multiple operations,
17652 	 * with the second CDB byte specifying the desired operation
17653 	 */
17654 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
17655 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
17656 
17657 	/*
17658 	 * Fill in allocation length field
17659 	 */
17660 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
17661 
17662 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17663 	    UIO_SYSSPACE, path_flag);
17664 
17665 	switch (status) {
17666 	case 0:
17667 		/* Return failure if we did not get valid capacity data. */
17668 		if (ucmd_buf.uscsi_resid > 20) {
17669 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
17670 			return (EIO);
17671 		}
17672 
17673 		/*
17674 		 * Read capacity and block size from the READ CAPACITY 10 data.
17675 		 * This data may be adjusted later due to device specific
17676 		 * issues.
17677 		 *
17678 		 * According to the SCSI spec, the READ CAPACITY 10
17679 		 * command returns the following:
17680 		 *
17681 		 *  bytes 0-7: Maximum logical block address available.
17682 		 *		(MSB in byte:0 & LSB in byte:7)
17683 		 *
17684 		 *  bytes 8-11: Block length in bytes
17685 		 *		(MSB in byte:8 & LSB in byte:11)
17686 		 *
17687 		 */
17688 		capacity = BE_64(capacity16_buf[0]);
17689 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
17690 
17691 		/*
17692 		 * Done with capacity16_buf
17693 		 */
17694 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
17695 
17696 		/*
17697 		 * if the reported capacity is set to all 0xf's, then
17698 		 * this disk is too large.  This could only happen with
17699 		 * a device that supports LBAs larger than 64 bits which
17700 		 * are not defined by any current T10 standards.
17701 		 */
17702 		if (capacity == 0xffffffffffffffff) {
17703 			return (EIO);
17704 		}
17705 		break;	/* Success! */
17706 	case EIO:
17707 		switch (ucmd_buf.uscsi_status) {
17708 		case STATUS_RESERVATION_CONFLICT:
17709 			status = EACCES;
17710 			break;
17711 		case STATUS_CHECK:
17712 			/*
17713 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
17714 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
17715 			 */
17716 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
17717 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
17718 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
17719 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
17720 				return (EAGAIN);
17721 			}
17722 			break;
17723 		default:
17724 			break;
17725 		}
17726 		/* FALLTHRU */
17727 	default:
17728 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
17729 		return (status);
17730 	}
17731 
17732 	*capp = capacity;
17733 	*lbap = lbasize;
17734 
17735 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
17736 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
17737 
17738 	return (0);
17739 }
17740 
17741 
17742 /*
17743  *    Function: sd_send_scsi_START_STOP_UNIT
17744  *
17745  * Description: Issue a scsi START STOP UNIT command to the target.
17746  *
17747  *   Arguments: un    - pointer to driver soft state (unit) structure for
17748  *			this target.
17749  *		flag  - SD_TARGET_START
17750  *			SD_TARGET_STOP
17751  *			SD_TARGET_EJECT
17752  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17753  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17754  *			to use the USCSI "direct" chain and bypass the normal
17755  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17756  *			command is issued as part of an error recovery action.
17757  *
17758  * Return Code: 0   - Success
17759  *		EIO - IO error
17760  *		EACCES - Reservation conflict detected
17761  *		ENXIO  - Not Ready, medium not present
17762  *		errno return code from sd_send_scsi_cmd()
17763  *
17764  *     Context: Can sleep.
17765  */
17766 
17767 static int
17768 sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag)
17769 {
17770 	struct	scsi_extended_sense	sense_buf;
17771 	union scsi_cdb		cdb;
17772 	struct uscsi_cmd	ucmd_buf;
17773 	int			status;
17774 
17775 	ASSERT(un != NULL);
17776 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17777 
17778 	SD_TRACE(SD_LOG_IO, un,
17779 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
17780 
17781 	if (un->un_f_check_start_stop &&
17782 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
17783 	    (un->un_f_start_stop_supported != TRUE)) {
17784 		return (0);
17785 	}
17786 
17787 	/*
17788 	 * If we are performing an eject operation and
17789 	 * we receive any command other than SD_TARGET_EJECT
17790 	 * we should immediately return.
17791 	 */
17792 	if (flag != SD_TARGET_EJECT) {
17793 		mutex_enter(SD_MUTEX(un));
17794 		if (un->un_f_ejecting == TRUE) {
17795 			mutex_exit(SD_MUTEX(un));
17796 			return (EAGAIN);
17797 		}
17798 		mutex_exit(SD_MUTEX(un));
17799 	}
17800 
17801 	bzero(&cdb, sizeof (cdb));
17802 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17803 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
17804 
17805 	cdb.scc_cmd = SCMD_START_STOP;
17806 	cdb.cdb_opaque[4] = (uchar_t)flag;
17807 
17808 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17809 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
17810 	ucmd_buf.uscsi_bufaddr	= NULL;
17811 	ucmd_buf.uscsi_buflen	= 0;
17812 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17813 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
17814 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
17815 	ucmd_buf.uscsi_timeout	= 200;
17816 
17817 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17818 	    UIO_SYSSPACE, path_flag);
17819 
17820 	switch (status) {
17821 	case 0:
17822 		break;	/* Success! */
17823 	case EIO:
17824 		switch (ucmd_buf.uscsi_status) {
17825 		case STATUS_RESERVATION_CONFLICT:
17826 			status = EACCES;
17827 			break;
17828 		case STATUS_CHECK:
17829 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
17830 				switch (scsi_sense_key(
17831 				    (uint8_t *)&sense_buf)) {
17832 				case KEY_ILLEGAL_REQUEST:
17833 					status = ENOTSUP;
17834 					break;
17835 				case KEY_NOT_READY:
17836 					if (scsi_sense_asc(
17837 					    (uint8_t *)&sense_buf)
17838 					    == 0x3A) {
17839 						status = ENXIO;
17840 					}
17841 					break;
17842 				default:
17843 					break;
17844 				}
17845 			}
17846 			break;
17847 		default:
17848 			break;
17849 		}
17850 		break;
17851 	default:
17852 		break;
17853 	}
17854 
17855 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
17856 
17857 	return (status);
17858 }
17859 
17860 
17861 /*
17862  *    Function: sd_start_stop_unit_callback
17863  *
17864  * Description: timeout(9F) callback to begin recovery process for a
17865  *		device that has spun down.
17866  *
17867  *   Arguments: arg - pointer to associated softstate struct.
17868  *
17869  *     Context: Executes in a timeout(9F) thread context
17870  */
17871 
17872 static void
17873 sd_start_stop_unit_callback(void *arg)
17874 {
17875 	struct sd_lun	*un = arg;
17876 	ASSERT(un != NULL);
17877 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17878 
17879 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
17880 
17881 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
17882 }
17883 
17884 
17885 /*
17886  *    Function: sd_start_stop_unit_task
17887  *
17888  * Description: Recovery procedure when a drive is spun down.
17889  *
17890  *   Arguments: arg - pointer to associated softstate struct.
17891  *
17892  *     Context: Executes in a taskq() thread context
17893  */
17894 
17895 static void
17896 sd_start_stop_unit_task(void *arg)
17897 {
17898 	struct sd_lun	*un = arg;
17899 
17900 	ASSERT(un != NULL);
17901 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17902 
17903 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
17904 
17905 	/*
17906 	 * Some unformatted drives report not ready error, no need to
17907 	 * restart if format has been initiated.
17908 	 */
17909 	mutex_enter(SD_MUTEX(un));
17910 	if (un->un_f_format_in_progress == TRUE) {
17911 		mutex_exit(SD_MUTEX(un));
17912 		return;
17913 	}
17914 	mutex_exit(SD_MUTEX(un));
17915 
17916 	/*
17917 	 * When a START STOP command is issued from here, it is part of a
17918 	 * failure recovery operation and must be issued before any other
17919 	 * commands, including any pending retries. Thus it must be sent
17920 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
17921 	 * succeeds or not, we will start I/O after the attempt.
17922 	 */
17923 	(void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
17924 	    SD_PATH_DIRECT_PRIORITY);
17925 
17926 	/*
17927 	 * The above call blocks until the START_STOP_UNIT command completes.
17928 	 * Now that it has completed, we must re-try the original IO that
17929 	 * received the NOT READY condition in the first place. There are
17930 	 * three possible conditions here:
17931 	 *
17932 	 *  (1) The original IO is on un_retry_bp.
17933 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
17934 	 *	is NULL.
17935 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
17936 	 *	points to some other, unrelated bp.
17937 	 *
17938 	 * For each case, we must call sd_start_cmds() with un_retry_bp
17939 	 * as the argument. If un_retry_bp is NULL, this will initiate
17940 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
17941 	 * then this will process the bp on un_retry_bp. That may or may not
17942 	 * be the original IO, but that does not matter: the important thing
17943 	 * is to keep the IO processing going at this point.
17944 	 *
17945 	 * Note: This is a very specific error recovery sequence associated
17946 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
17947 	 * serialize the I/O with completion of the spin-up.
17948 	 */
17949 	mutex_enter(SD_MUTEX(un));
17950 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17951 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
17952 	    un, un->un_retry_bp);
17953 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
17954 	sd_start_cmds(un, un->un_retry_bp);
17955 	mutex_exit(SD_MUTEX(un));
17956 
17957 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
17958 }
17959 
17960 
17961 /*
17962  *    Function: sd_send_scsi_INQUIRY
17963  *
17964  * Description: Issue the scsi INQUIRY command.
17965  *
17966  *   Arguments: un
17967  *		bufaddr
17968  *		buflen
17969  *		evpd
17970  *		page_code
17971  *		page_length
17972  *
17973  * Return Code: 0   - Success
17974  *		errno return code from sd_send_scsi_cmd()
17975  *
17976  *     Context: Can sleep. Does not return until command is completed.
17977  */
17978 
17979 static int
17980 sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen,
17981 	uchar_t evpd, uchar_t page_code, size_t *residp)
17982 {
17983 	union scsi_cdb		cdb;
17984 	struct uscsi_cmd	ucmd_buf;
17985 	int			status;
17986 
17987 	ASSERT(un != NULL);
17988 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17989 	ASSERT(bufaddr != NULL);
17990 
17991 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
17992 
17993 	bzero(&cdb, sizeof (cdb));
17994 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17995 	bzero(bufaddr, buflen);
17996 
17997 	cdb.scc_cmd = SCMD_INQUIRY;
17998 	cdb.cdb_opaque[1] = evpd;
17999 	cdb.cdb_opaque[2] = page_code;
18000 	FORMG0COUNT(&cdb, buflen);
18001 
18002 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18003 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18004 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
18005 	ucmd_buf.uscsi_buflen	= buflen;
18006 	ucmd_buf.uscsi_rqbuf	= NULL;
18007 	ucmd_buf.uscsi_rqlen	= 0;
18008 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
18009 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
18010 
18011 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18012 	    UIO_SYSSPACE, SD_PATH_DIRECT);
18013 
18014 	if ((status == 0) && (residp != NULL)) {
18015 		*residp = ucmd_buf.uscsi_resid;
18016 	}
18017 
18018 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
18019 
18020 	return (status);
18021 }
18022 
18023 
18024 /*
18025  *    Function: sd_send_scsi_TEST_UNIT_READY
18026  *
18027  * Description: Issue the scsi TEST UNIT READY command.
18028  *		This routine can be told to set the flag USCSI_DIAGNOSE to
18029  *		prevent retrying failed commands. Use this when the intent
18030  *		is either to check for device readiness, to clear a Unit
18031  *		Attention, or to clear any outstanding sense data.
18032  *		However under specific conditions the expected behavior
18033  *		is for retries to bring a device ready, so use the flag
18034  *		with caution.
18035  *
18036  *   Arguments: un
18037  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
18038  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
18039  *			0: dont check for media present, do retries on cmd.
18040  *
18041  * Return Code: 0   - Success
18042  *		EIO - IO error
18043  *		EACCES - Reservation conflict detected
18044  *		ENXIO  - Not Ready, medium not present
18045  *		errno return code from sd_send_scsi_cmd()
18046  *
18047  *     Context: Can sleep. Does not return until command is completed.
18048  */
18049 
18050 static int
18051 sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag)
18052 {
18053 	struct	scsi_extended_sense	sense_buf;
18054 	union scsi_cdb		cdb;
18055 	struct uscsi_cmd	ucmd_buf;
18056 	int			status;
18057 
18058 	ASSERT(un != NULL);
18059 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18060 
18061 	SD_TRACE(SD_LOG_IO, un,
18062 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
18063 
18064 	/*
18065 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
18066 	 * timeouts when they receive a TUR and the queue is not empty. Check
18067 	 * the configuration flag set during attach (indicating the drive has
18068 	 * this firmware bug) and un_ncmds_in_transport before issuing the
18069 	 * TUR. If there are
18070 	 * pending commands return success, this is a bit arbitrary but is ok
18071 	 * for non-removables (i.e. the eliteI disks) and non-clustering
18072 	 * configurations.
18073 	 */
18074 	if (un->un_f_cfg_tur_check == TRUE) {
18075 		mutex_enter(SD_MUTEX(un));
18076 		if (un->un_ncmds_in_transport != 0) {
18077 			mutex_exit(SD_MUTEX(un));
18078 			return (0);
18079 		}
18080 		mutex_exit(SD_MUTEX(un));
18081 	}
18082 
18083 	bzero(&cdb, sizeof (cdb));
18084 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18085 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18086 
18087 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
18088 
18089 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18090 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18091 	ucmd_buf.uscsi_bufaddr	= NULL;
18092 	ucmd_buf.uscsi_buflen	= 0;
18093 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18094 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18095 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
18096 
18097 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
18098 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
18099 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
18100 	}
18101 	ucmd_buf.uscsi_timeout	= 60;
18102 
18103 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18104 	    UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT :
18105 	    SD_PATH_STANDARD));
18106 
18107 	switch (status) {
18108 	case 0:
18109 		break;	/* Success! */
18110 	case EIO:
18111 		switch (ucmd_buf.uscsi_status) {
18112 		case STATUS_RESERVATION_CONFLICT:
18113 			status = EACCES;
18114 			break;
18115 		case STATUS_CHECK:
18116 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
18117 				break;
18118 			}
18119 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18120 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18121 			    KEY_NOT_READY) &&
18122 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
18123 				status = ENXIO;
18124 			}
18125 			break;
18126 		default:
18127 			break;
18128 		}
18129 		break;
18130 	default:
18131 		break;
18132 	}
18133 
18134 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
18135 
18136 	return (status);
18137 }
18138 
18139 
18140 /*
18141  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
18142  *
18143  * Description: Issue the scsi PERSISTENT RESERVE IN command.
18144  *
18145  *   Arguments: un
18146  *
18147  * Return Code: 0   - Success
18148  *		EACCES
18149  *		ENOTSUP
18150  *		errno return code from sd_send_scsi_cmd()
18151  *
18152  *     Context: Can sleep. Does not return until command is completed.
18153  */
18154 
18155 static int
18156 sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t  usr_cmd,
18157 	uint16_t data_len, uchar_t *data_bufp)
18158 {
18159 	struct scsi_extended_sense	sense_buf;
18160 	union scsi_cdb		cdb;
18161 	struct uscsi_cmd	ucmd_buf;
18162 	int			status;
18163 	int			no_caller_buf = FALSE;
18164 
18165 	ASSERT(un != NULL);
18166 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18167 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
18168 
18169 	SD_TRACE(SD_LOG_IO, un,
18170 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
18171 
18172 	bzero(&cdb, sizeof (cdb));
18173 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18174 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18175 	if (data_bufp == NULL) {
18176 		/* Allocate a default buf if the caller did not give one */
18177 		ASSERT(data_len == 0);
18178 		data_len  = MHIOC_RESV_KEY_SIZE;
18179 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
18180 		no_caller_buf = TRUE;
18181 	}
18182 
18183 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
18184 	cdb.cdb_opaque[1] = usr_cmd;
18185 	FORMG1COUNT(&cdb, data_len);
18186 
18187 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18188 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
18189 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
18190 	ucmd_buf.uscsi_buflen	= data_len;
18191 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18192 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18193 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
18194 	ucmd_buf.uscsi_timeout	= 60;
18195 
18196 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18197 	    UIO_SYSSPACE, SD_PATH_STANDARD);
18198 
18199 	switch (status) {
18200 	case 0:
18201 		break;	/* Success! */
18202 	case EIO:
18203 		switch (ucmd_buf.uscsi_status) {
18204 		case STATUS_RESERVATION_CONFLICT:
18205 			status = EACCES;
18206 			break;
18207 		case STATUS_CHECK:
18208 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18209 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18210 			    KEY_ILLEGAL_REQUEST)) {
18211 				status = ENOTSUP;
18212 			}
18213 			break;
18214 		default:
18215 			break;
18216 		}
18217 		break;
18218 	default:
18219 		break;
18220 	}
18221 
18222 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
18223 
18224 	if (no_caller_buf == TRUE) {
18225 		kmem_free(data_bufp, data_len);
18226 	}
18227 
18228 	return (status);
18229 }
18230 
18231 
18232 /*
18233  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
18234  *
18235  * Description: This routine is the driver entry point for handling CD-ROM
18236  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
18237  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
18238  *		device.
18239  *
18240  *   Arguments: un  -   Pointer to soft state struct for the target.
18241  *		usr_cmd SCSI-3 reservation facility command (one of
18242  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
18243  *			SD_SCSI3_PREEMPTANDABORT)
18244  *		usr_bufp - user provided pointer register, reserve descriptor or
18245  *			preempt and abort structure (mhioc_register_t,
18246  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
18247  *
18248  * Return Code: 0   - Success
18249  *		EACCES
18250  *		ENOTSUP
18251  *		errno return code from sd_send_scsi_cmd()
18252  *
18253  *     Context: Can sleep. Does not return until command is completed.
18254  */
18255 
18256 static int
18257 sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd,
18258 	uchar_t	*usr_bufp)
18259 {
18260 	struct scsi_extended_sense	sense_buf;
18261 	union scsi_cdb		cdb;
18262 	struct uscsi_cmd	ucmd_buf;
18263 	int			status;
18264 	uchar_t			data_len = sizeof (sd_prout_t);
18265 	sd_prout_t		*prp;
18266 
18267 	ASSERT(un != NULL);
18268 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18269 	ASSERT(data_len == 24);	/* required by scsi spec */
18270 
18271 	SD_TRACE(SD_LOG_IO, un,
18272 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
18273 
18274 	if (usr_bufp == NULL) {
18275 		return (EINVAL);
18276 	}
18277 
18278 	bzero(&cdb, sizeof (cdb));
18279 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18280 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18281 	prp = kmem_zalloc(data_len, KM_SLEEP);
18282 
18283 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
18284 	cdb.cdb_opaque[1] = usr_cmd;
18285 	FORMG1COUNT(&cdb, data_len);
18286 
18287 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18288 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
18289 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
18290 	ucmd_buf.uscsi_buflen	= data_len;
18291 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18292 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18293 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
18294 	ucmd_buf.uscsi_timeout	= 60;
18295 
18296 	switch (usr_cmd) {
18297 	case SD_SCSI3_REGISTER: {
18298 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
18299 
18300 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18301 		bcopy(ptr->newkey.key, prp->service_key,
18302 		    MHIOC_RESV_KEY_SIZE);
18303 		prp->aptpl = ptr->aptpl;
18304 		break;
18305 	}
18306 	case SD_SCSI3_RESERVE:
18307 	case SD_SCSI3_RELEASE: {
18308 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
18309 
18310 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18311 		prp->scope_address = BE_32(ptr->scope_specific_addr);
18312 		cdb.cdb_opaque[2] = ptr->type;
18313 		break;
18314 	}
18315 	case SD_SCSI3_PREEMPTANDABORT: {
18316 		mhioc_preemptandabort_t *ptr =
18317 		    (mhioc_preemptandabort_t *)usr_bufp;
18318 
18319 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18320 		bcopy(ptr->victim_key.key, prp->service_key,
18321 		    MHIOC_RESV_KEY_SIZE);
18322 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
18323 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
18324 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
18325 		break;
18326 	}
18327 	case SD_SCSI3_REGISTERANDIGNOREKEY:
18328 	{
18329 		mhioc_registerandignorekey_t *ptr;
18330 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
18331 		bcopy(ptr->newkey.key,
18332 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
18333 		prp->aptpl = ptr->aptpl;
18334 		break;
18335 	}
18336 	default:
18337 		ASSERT(FALSE);
18338 		break;
18339 	}
18340 
18341 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18342 	    UIO_SYSSPACE, SD_PATH_STANDARD);
18343 
18344 	switch (status) {
18345 	case 0:
18346 		break;	/* Success! */
18347 	case EIO:
18348 		switch (ucmd_buf.uscsi_status) {
18349 		case STATUS_RESERVATION_CONFLICT:
18350 			status = EACCES;
18351 			break;
18352 		case STATUS_CHECK:
18353 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18354 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18355 			    KEY_ILLEGAL_REQUEST)) {
18356 				status = ENOTSUP;
18357 			}
18358 			break;
18359 		default:
18360 			break;
18361 		}
18362 		break;
18363 	default:
18364 		break;
18365 	}
18366 
18367 	kmem_free(prp, data_len);
18368 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
18369 	return (status);
18370 }
18371 
18372 
18373 /*
18374  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
18375  *
18376  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
18377  *
18378  *   Arguments: un - pointer to the target's soft state struct
18379  *
18380  * Return Code: 0 - success
18381  *		errno-type error code
18382  *
18383  *     Context: kernel thread context only.
18384  */
18385 
18386 static int
18387 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
18388 {
18389 	struct sd_uscsi_info	*uip;
18390 	struct uscsi_cmd	*uscmd;
18391 	union scsi_cdb		*cdb;
18392 	struct buf		*bp;
18393 	int			rval = 0;
18394 
18395 	SD_TRACE(SD_LOG_IO, un,
18396 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
18397 
18398 	ASSERT(un != NULL);
18399 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18400 
18401 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
18402 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
18403 
18404 	/*
18405 	 * First get some memory for the uscsi_cmd struct and cdb
18406 	 * and initialize for SYNCHRONIZE_CACHE cmd.
18407 	 */
18408 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
18409 	uscmd->uscsi_cdblen = CDB_GROUP1;
18410 	uscmd->uscsi_cdb = (caddr_t)cdb;
18411 	uscmd->uscsi_bufaddr = NULL;
18412 	uscmd->uscsi_buflen = 0;
18413 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
18414 	uscmd->uscsi_rqlen = SENSE_LENGTH;
18415 	uscmd->uscsi_rqresid = SENSE_LENGTH;
18416 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
18417 	uscmd->uscsi_timeout = sd_io_time;
18418 
18419 	/*
18420 	 * Allocate an sd_uscsi_info struct and fill it with the info
18421 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
18422 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
18423 	 * since we allocate the buf here in this function, we do not
18424 	 * need to preserve the prior contents of b_private.
18425 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
18426 	 */
18427 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
18428 	uip->ui_flags = SD_PATH_DIRECT;
18429 	uip->ui_cmdp  = uscmd;
18430 
18431 	bp = getrbuf(KM_SLEEP);
18432 	bp->b_private = uip;
18433 
18434 	/*
18435 	 * Setup buffer to carry uscsi request.
18436 	 */
18437 	bp->b_flags  = B_BUSY;
18438 	bp->b_bcount = 0;
18439 	bp->b_blkno  = 0;
18440 
18441 	if (dkc != NULL) {
18442 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
18443 		uip->ui_dkc = *dkc;
18444 	}
18445 
18446 	bp->b_edev = SD_GET_DEV(un);
18447 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
18448 
18449 	(void) sd_uscsi_strategy(bp);
18450 
18451 	/*
18452 	 * If synchronous request, wait for completion
18453 	 * If async just return and let b_iodone callback
18454 	 * cleanup.
18455 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
18456 	 * but it was also incremented in sd_uscsi_strategy(), so
18457 	 * we should be ok.
18458 	 */
18459 	if (dkc == NULL) {
18460 		(void) biowait(bp);
18461 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
18462 	}
18463 
18464 	return (rval);
18465 }
18466 
18467 
18468 static int
18469 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
18470 {
18471 	struct sd_uscsi_info *uip;
18472 	struct uscsi_cmd *uscmd;
18473 	uint8_t *sense_buf;
18474 	struct sd_lun *un;
18475 	int status;
18476 
18477 	uip = (struct sd_uscsi_info *)(bp->b_private);
18478 	ASSERT(uip != NULL);
18479 
18480 	uscmd = uip->ui_cmdp;
18481 	ASSERT(uscmd != NULL);
18482 
18483 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
18484 	ASSERT(sense_buf != NULL);
18485 
18486 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
18487 	ASSERT(un != NULL);
18488 
18489 	status = geterror(bp);
18490 	switch (status) {
18491 	case 0:
18492 		break;	/* Success! */
18493 	case EIO:
18494 		switch (uscmd->uscsi_status) {
18495 		case STATUS_RESERVATION_CONFLICT:
18496 			/* Ignore reservation conflict */
18497 			status = 0;
18498 			goto done;
18499 
18500 		case STATUS_CHECK:
18501 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
18502 			    (scsi_sense_key(sense_buf) ==
18503 			    KEY_ILLEGAL_REQUEST)) {
18504 				/* Ignore Illegal Request error */
18505 				mutex_enter(SD_MUTEX(un));
18506 				un->un_f_sync_cache_supported = FALSE;
18507 				mutex_exit(SD_MUTEX(un));
18508 				status = ENOTSUP;
18509 				goto done;
18510 			}
18511 			break;
18512 		default:
18513 			break;
18514 		}
18515 		/* FALLTHRU */
18516 	default:
18517 		/*
18518 		 * Don't log an error message if this device
18519 		 * has removable media.
18520 		 */
18521 		if (!un->un_f_has_removable_media) {
18522 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18523 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
18524 		}
18525 		break;
18526 	}
18527 
18528 done:
18529 	if (uip->ui_dkc.dkc_callback != NULL) {
18530 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
18531 	}
18532 
18533 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
18534 	freerbuf(bp);
18535 	kmem_free(uip, sizeof (struct sd_uscsi_info));
18536 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
18537 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
18538 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
18539 
18540 	return (status);
18541 }
18542 
18543 
18544 /*
18545  *    Function: sd_send_scsi_GET_CONFIGURATION
18546  *
18547  * Description: Issues the get configuration command to the device.
18548  *		Called from sd_check_for_writable_cd & sd_get_media_info
18549  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
18550  *   Arguments: un
18551  *		ucmdbuf
18552  *		rqbuf
18553  *		rqbuflen
18554  *		bufaddr
18555  *		buflen
18556  *		path_flag
18557  *
18558  * Return Code: 0   - Success
18559  *		errno return code from sd_send_scsi_cmd()
18560  *
18561  *     Context: Can sleep. Does not return until command is completed.
18562  *
18563  */
18564 
18565 static int
18566 sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf,
18567 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen,
18568 	int path_flag)
18569 {
18570 	char	cdb[CDB_GROUP1];
18571 	int	status;
18572 
18573 	ASSERT(un != NULL);
18574 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18575 	ASSERT(bufaddr != NULL);
18576 	ASSERT(ucmdbuf != NULL);
18577 	ASSERT(rqbuf != NULL);
18578 
18579 	SD_TRACE(SD_LOG_IO, un,
18580 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
18581 
18582 	bzero(cdb, sizeof (cdb));
18583 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
18584 	bzero(rqbuf, rqbuflen);
18585 	bzero(bufaddr, buflen);
18586 
18587 	/*
18588 	 * Set up cdb field for the get configuration command.
18589 	 */
18590 	cdb[0] = SCMD_GET_CONFIGURATION;
18591 	cdb[1] = 0x02;  /* Requested Type */
18592 	cdb[8] = SD_PROFILE_HEADER_LEN;
18593 	ucmdbuf->uscsi_cdb = cdb;
18594 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
18595 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
18596 	ucmdbuf->uscsi_buflen = buflen;
18597 	ucmdbuf->uscsi_timeout = sd_io_time;
18598 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
18599 	ucmdbuf->uscsi_rqlen = rqbuflen;
18600 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
18601 
18602 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL,
18603 	    UIO_SYSSPACE, path_flag);
18604 
18605 	switch (status) {
18606 	case 0:
18607 		break;  /* Success! */
18608 	case EIO:
18609 		switch (ucmdbuf->uscsi_status) {
18610 		case STATUS_RESERVATION_CONFLICT:
18611 			status = EACCES;
18612 			break;
18613 		default:
18614 			break;
18615 		}
18616 		break;
18617 	default:
18618 		break;
18619 	}
18620 
18621 	if (status == 0) {
18622 		SD_DUMP_MEMORY(un, SD_LOG_IO,
18623 		    "sd_send_scsi_GET_CONFIGURATION: data",
18624 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
18625 	}
18626 
18627 	SD_TRACE(SD_LOG_IO, un,
18628 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
18629 
18630 	return (status);
18631 }
18632 
18633 /*
18634  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
18635  *
18636  * Description: Issues the get configuration command to the device to
18637  *              retrieve a specific feature. Called from
18638  *		sd_check_for_writable_cd & sd_set_mmc_caps.
18639  *   Arguments: un
18640  *              ucmdbuf
18641  *              rqbuf
18642  *              rqbuflen
18643  *              bufaddr
18644  *              buflen
18645  *		feature
18646  *
18647  * Return Code: 0   - Success
18648  *              errno return code from sd_send_scsi_cmd()
18649  *
18650  *     Context: Can sleep. Does not return until command is completed.
18651  *
18652  */
18653 static int
18654 sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
18655 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
18656 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag)
18657 {
18658 	char    cdb[CDB_GROUP1];
18659 	int	status;
18660 
18661 	ASSERT(un != NULL);
18662 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18663 	ASSERT(bufaddr != NULL);
18664 	ASSERT(ucmdbuf != NULL);
18665 	ASSERT(rqbuf != NULL);
18666 
18667 	SD_TRACE(SD_LOG_IO, un,
18668 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
18669 
18670 	bzero(cdb, sizeof (cdb));
18671 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
18672 	bzero(rqbuf, rqbuflen);
18673 	bzero(bufaddr, buflen);
18674 
18675 	/*
18676 	 * Set up cdb field for the get configuration command.
18677 	 */
18678 	cdb[0] = SCMD_GET_CONFIGURATION;
18679 	cdb[1] = 0x02;  /* Requested Type */
18680 	cdb[3] = feature;
18681 	cdb[8] = buflen;
18682 	ucmdbuf->uscsi_cdb = cdb;
18683 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
18684 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
18685 	ucmdbuf->uscsi_buflen = buflen;
18686 	ucmdbuf->uscsi_timeout = sd_io_time;
18687 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
18688 	ucmdbuf->uscsi_rqlen = rqbuflen;
18689 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
18690 
18691 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL,
18692 	    UIO_SYSSPACE, path_flag);
18693 
18694 	switch (status) {
18695 	case 0:
18696 		break;  /* Success! */
18697 	case EIO:
18698 		switch (ucmdbuf->uscsi_status) {
18699 		case STATUS_RESERVATION_CONFLICT:
18700 			status = EACCES;
18701 			break;
18702 		default:
18703 			break;
18704 		}
18705 		break;
18706 	default:
18707 		break;
18708 	}
18709 
18710 	if (status == 0) {
18711 		SD_DUMP_MEMORY(un, SD_LOG_IO,
18712 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
18713 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
18714 	}
18715 
18716 	SD_TRACE(SD_LOG_IO, un,
18717 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
18718 
18719 	return (status);
18720 }
18721 
18722 
18723 /*
18724  *    Function: sd_send_scsi_MODE_SENSE
18725  *
18726  * Description: Utility function for issuing a scsi MODE SENSE command.
18727  *		Note: This routine uses a consistent implementation for Group0,
18728  *		Group1, and Group2 commands across all platforms. ATAPI devices
18729  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
18730  *
18731  *   Arguments: un - pointer to the softstate struct for the target.
18732  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
18733  *			  CDB_GROUP[1|2] (10 byte).
18734  *		bufaddr - buffer for page data retrieved from the target.
18735  *		buflen - size of page to be retrieved.
18736  *		page_code - page code of data to be retrieved from the target.
18737  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18738  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18739  *			to use the USCSI "direct" chain and bypass the normal
18740  *			command waitq.
18741  *
18742  * Return Code: 0   - Success
18743  *		errno return code from sd_send_scsi_cmd()
18744  *
18745  *     Context: Can sleep. Does not return until command is completed.
18746  */
18747 
18748 static int
18749 sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
18750 	size_t buflen,  uchar_t page_code, int path_flag)
18751 {
18752 	struct	scsi_extended_sense	sense_buf;
18753 	union scsi_cdb		cdb;
18754 	struct uscsi_cmd	ucmd_buf;
18755 	int			status;
18756 	int			headlen;
18757 
18758 	ASSERT(un != NULL);
18759 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18760 	ASSERT(bufaddr != NULL);
18761 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
18762 	    (cdbsize == CDB_GROUP2));
18763 
18764 	SD_TRACE(SD_LOG_IO, un,
18765 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
18766 
18767 	bzero(&cdb, sizeof (cdb));
18768 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18769 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18770 	bzero(bufaddr, buflen);
18771 
18772 	if (cdbsize == CDB_GROUP0) {
18773 		cdb.scc_cmd = SCMD_MODE_SENSE;
18774 		cdb.cdb_opaque[2] = page_code;
18775 		FORMG0COUNT(&cdb, buflen);
18776 		headlen = MODE_HEADER_LENGTH;
18777 	} else {
18778 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
18779 		cdb.cdb_opaque[2] = page_code;
18780 		FORMG1COUNT(&cdb, buflen);
18781 		headlen = MODE_HEADER_LENGTH_GRP2;
18782 	}
18783 
18784 	ASSERT(headlen <= buflen);
18785 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
18786 
18787 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18788 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
18789 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
18790 	ucmd_buf.uscsi_buflen	= buflen;
18791 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18792 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18793 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
18794 	ucmd_buf.uscsi_timeout	= 60;
18795 
18796 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18797 	    UIO_SYSSPACE, path_flag);
18798 
18799 	switch (status) {
18800 	case 0:
18801 		/*
18802 		 * sr_check_wp() uses 0x3f page code and check the header of
18803 		 * mode page to determine if target device is write-protected.
18804 		 * But some USB devices return 0 bytes for 0x3f page code. For
18805 		 * this case, make sure that mode page header is returned at
18806 		 * least.
18807 		 */
18808 		if (buflen - ucmd_buf.uscsi_resid <  headlen)
18809 			status = EIO;
18810 		break;	/* Success! */
18811 	case EIO:
18812 		switch (ucmd_buf.uscsi_status) {
18813 		case STATUS_RESERVATION_CONFLICT:
18814 			status = EACCES;
18815 			break;
18816 		default:
18817 			break;
18818 		}
18819 		break;
18820 	default:
18821 		break;
18822 	}
18823 
18824 	if (status == 0) {
18825 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
18826 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
18827 	}
18828 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
18829 
18830 	return (status);
18831 }
18832 
18833 
18834 /*
18835  *    Function: sd_send_scsi_MODE_SELECT
18836  *
18837  * Description: Utility function for issuing a scsi MODE SELECT command.
18838  *		Note: This routine uses a consistent implementation for Group0,
18839  *		Group1, and Group2 commands across all platforms. ATAPI devices
18840  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
18841  *
18842  *   Arguments: un - pointer to the softstate struct for the target.
18843  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
18844  *			  CDB_GROUP[1|2] (10 byte).
18845  *		bufaddr - buffer for page data retrieved from the target.
18846  *		buflen - size of page to be retrieved.
18847  *		save_page - boolean to determin if SP bit should be set.
18848  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18849  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18850  *			to use the USCSI "direct" chain and bypass the normal
18851  *			command waitq.
18852  *
18853  * Return Code: 0   - Success
18854  *		errno return code from sd_send_scsi_cmd()
18855  *
18856  *     Context: Can sleep. Does not return until command is completed.
18857  */
18858 
18859 static int
18860 sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
18861 	size_t buflen,  uchar_t save_page, int path_flag)
18862 {
18863 	struct	scsi_extended_sense	sense_buf;
18864 	union scsi_cdb		cdb;
18865 	struct uscsi_cmd	ucmd_buf;
18866 	int			status;
18867 
18868 	ASSERT(un != NULL);
18869 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18870 	ASSERT(bufaddr != NULL);
18871 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
18872 	    (cdbsize == CDB_GROUP2));
18873 
18874 	SD_TRACE(SD_LOG_IO, un,
18875 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
18876 
18877 	bzero(&cdb, sizeof (cdb));
18878 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18879 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18880 
18881 	/* Set the PF bit for many third party drives */
18882 	cdb.cdb_opaque[1] = 0x10;
18883 
18884 	/* Set the savepage(SP) bit if given */
18885 	if (save_page == SD_SAVE_PAGE) {
18886 		cdb.cdb_opaque[1] |= 0x01;
18887 	}
18888 
18889 	if (cdbsize == CDB_GROUP0) {
18890 		cdb.scc_cmd = SCMD_MODE_SELECT;
18891 		FORMG0COUNT(&cdb, buflen);
18892 	} else {
18893 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
18894 		FORMG1COUNT(&cdb, buflen);
18895 	}
18896 
18897 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
18898 
18899 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18900 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
18901 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
18902 	ucmd_buf.uscsi_buflen	= buflen;
18903 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18904 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18905 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
18906 	ucmd_buf.uscsi_timeout	= 60;
18907 
18908 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18909 	    UIO_SYSSPACE, path_flag);
18910 
18911 	switch (status) {
18912 	case 0:
18913 		break;	/* Success! */
18914 	case EIO:
18915 		switch (ucmd_buf.uscsi_status) {
18916 		case STATUS_RESERVATION_CONFLICT:
18917 			status = EACCES;
18918 			break;
18919 		default:
18920 			break;
18921 		}
18922 		break;
18923 	default:
18924 		break;
18925 	}
18926 
18927 	if (status == 0) {
18928 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
18929 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
18930 	}
18931 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
18932 
18933 	return (status);
18934 }
18935 
18936 
18937 /*
18938  *    Function: sd_send_scsi_RDWR
18939  *
18940  * Description: Issue a scsi READ or WRITE command with the given parameters.
18941  *
18942  *   Arguments: un:      Pointer to the sd_lun struct for the target.
18943  *		cmd:	 SCMD_READ or SCMD_WRITE
18944  *		bufaddr: Address of caller's buffer to receive the RDWR data
18945  *		buflen:  Length of caller's buffer receive the RDWR data.
18946  *		start_block: Block number for the start of the RDWR operation.
18947  *			 (Assumes target-native block size.)
18948  *		residp:  Pointer to variable to receive the redisual of the
18949  *			 RDWR operation (may be NULL of no residual requested).
18950  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18951  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18952  *			to use the USCSI "direct" chain and bypass the normal
18953  *			command waitq.
18954  *
18955  * Return Code: 0   - Success
18956  *		errno return code from sd_send_scsi_cmd()
18957  *
18958  *     Context: Can sleep. Does not return until command is completed.
18959  */
18960 
18961 static int
18962 sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
18963 	size_t buflen, daddr_t start_block, int path_flag)
18964 {
18965 	struct	scsi_extended_sense	sense_buf;
18966 	union scsi_cdb		cdb;
18967 	struct uscsi_cmd	ucmd_buf;
18968 	uint32_t		block_count;
18969 	int			status;
18970 	int			cdbsize;
18971 	uchar_t			flag;
18972 
18973 	ASSERT(un != NULL);
18974 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18975 	ASSERT(bufaddr != NULL);
18976 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
18977 
18978 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
18979 
18980 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
18981 		return (EINVAL);
18982 	}
18983 
18984 	mutex_enter(SD_MUTEX(un));
18985 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
18986 	mutex_exit(SD_MUTEX(un));
18987 
18988 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
18989 
18990 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
18991 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
18992 	    bufaddr, buflen, start_block, block_count);
18993 
18994 	bzero(&cdb, sizeof (cdb));
18995 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18996 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18997 
18998 	/* Compute CDB size to use */
18999 	if (start_block > 0xffffffff)
19000 		cdbsize = CDB_GROUP4;
19001 	else if ((start_block & 0xFFE00000) ||
19002 	    (un->un_f_cfg_is_atapi == TRUE))
19003 		cdbsize = CDB_GROUP1;
19004 	else
19005 		cdbsize = CDB_GROUP0;
19006 
19007 	switch (cdbsize) {
19008 	case CDB_GROUP0:	/* 6-byte CDBs */
19009 		cdb.scc_cmd = cmd;
19010 		FORMG0ADDR(&cdb, start_block);
19011 		FORMG0COUNT(&cdb, block_count);
19012 		break;
19013 	case CDB_GROUP1:	/* 10-byte CDBs */
19014 		cdb.scc_cmd = cmd | SCMD_GROUP1;
19015 		FORMG1ADDR(&cdb, start_block);
19016 		FORMG1COUNT(&cdb, block_count);
19017 		break;
19018 	case CDB_GROUP4:	/* 16-byte CDBs */
19019 		cdb.scc_cmd = cmd | SCMD_GROUP4;
19020 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
19021 		FORMG4COUNT(&cdb, block_count);
19022 		break;
19023 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
19024 	default:
19025 		/* All others reserved */
19026 		return (EINVAL);
19027 	}
19028 
19029 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
19030 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
19031 
19032 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19033 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
19034 	ucmd_buf.uscsi_bufaddr	= bufaddr;
19035 	ucmd_buf.uscsi_buflen	= buflen;
19036 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19037 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19038 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
19039 	ucmd_buf.uscsi_timeout	= 60;
19040 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19041 	    UIO_SYSSPACE, path_flag);
19042 	switch (status) {
19043 	case 0:
19044 		break;	/* Success! */
19045 	case EIO:
19046 		switch (ucmd_buf.uscsi_status) {
19047 		case STATUS_RESERVATION_CONFLICT:
19048 			status = EACCES;
19049 			break;
19050 		default:
19051 			break;
19052 		}
19053 		break;
19054 	default:
19055 		break;
19056 	}
19057 
19058 	if (status == 0) {
19059 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
19060 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19061 	}
19062 
19063 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
19064 
19065 	return (status);
19066 }
19067 
19068 
19069 /*
19070  *    Function: sd_send_scsi_LOG_SENSE
19071  *
19072  * Description: Issue a scsi LOG_SENSE command with the given parameters.
19073  *
19074  *   Arguments: un:      Pointer to the sd_lun struct for the target.
19075  *
19076  * Return Code: 0   - Success
19077  *		errno return code from sd_send_scsi_cmd()
19078  *
19079  *     Context: Can sleep. Does not return until command is completed.
19080  */
19081 
19082 static int
19083 sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen,
19084 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
19085 	int path_flag)
19086 
19087 {
19088 	struct	scsi_extended_sense	sense_buf;
19089 	union scsi_cdb		cdb;
19090 	struct uscsi_cmd	ucmd_buf;
19091 	int			status;
19092 
19093 	ASSERT(un != NULL);
19094 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19095 
19096 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
19097 
19098 	bzero(&cdb, sizeof (cdb));
19099 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19100 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19101 
19102 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
19103 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
19104 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
19105 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
19106 	FORMG1COUNT(&cdb, buflen);
19107 
19108 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19109 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19110 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19111 	ucmd_buf.uscsi_buflen	= buflen;
19112 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19113 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19114 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19115 	ucmd_buf.uscsi_timeout	= 60;
19116 
19117 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19118 	    UIO_SYSSPACE, path_flag);
19119 
19120 	switch (status) {
19121 	case 0:
19122 		break;
19123 	case EIO:
19124 		switch (ucmd_buf.uscsi_status) {
19125 		case STATUS_RESERVATION_CONFLICT:
19126 			status = EACCES;
19127 			break;
19128 		case STATUS_CHECK:
19129 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19130 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
19131 				KEY_ILLEGAL_REQUEST) &&
19132 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
19133 				/*
19134 				 * ASC 0x24: INVALID FIELD IN CDB
19135 				 */
19136 				switch (page_code) {
19137 				case START_STOP_CYCLE_PAGE:
19138 					/*
19139 					 * The start stop cycle counter is
19140 					 * implemented as page 0x31 in earlier
19141 					 * generation disks. In new generation
19142 					 * disks the start stop cycle counter is
19143 					 * implemented as page 0xE. To properly
19144 					 * handle this case if an attempt for
19145 					 * log page 0xE is made and fails we
19146 					 * will try again using page 0x31.
19147 					 *
19148 					 * Network storage BU committed to
19149 					 * maintain the page 0x31 for this
19150 					 * purpose and will not have any other
19151 					 * page implemented with page code 0x31
19152 					 * until all disks transition to the
19153 					 * standard page.
19154 					 */
19155 					mutex_enter(SD_MUTEX(un));
19156 					un->un_start_stop_cycle_page =
19157 					    START_STOP_CYCLE_VU_PAGE;
19158 					cdb.cdb_opaque[2] =
19159 					    (char)(page_control << 6) |
19160 					    un->un_start_stop_cycle_page;
19161 					mutex_exit(SD_MUTEX(un));
19162 					status = sd_send_scsi_cmd(
19163 					    SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19164 					    UIO_SYSSPACE, path_flag);
19165 
19166 					break;
19167 				case TEMPERATURE_PAGE:
19168 					status = ENOTTY;
19169 					break;
19170 				default:
19171 					break;
19172 				}
19173 			}
19174 			break;
19175 		default:
19176 			break;
19177 		}
19178 		break;
19179 	default:
19180 		break;
19181 	}
19182 
19183 	if (status == 0) {
19184 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
19185 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19186 	}
19187 
19188 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
19189 
19190 	return (status);
19191 }
19192 
19193 
19194 /*
19195  *    Function: sdioctl
19196  *
19197  * Description: Driver's ioctl(9e) entry point function.
19198  *
19199  *   Arguments: dev     - device number
19200  *		cmd     - ioctl operation to be performed
19201  *		arg     - user argument, contains data to be set or reference
19202  *			  parameter for get
19203  *		flag    - bit flag, indicating open settings, 32/64 bit type
19204  *		cred_p  - user credential pointer
19205  *		rval_p  - calling process return value (OPT)
19206  *
19207  * Return Code: EINVAL
19208  *		ENOTTY
19209  *		ENXIO
19210  *		EIO
19211  *		EFAULT
19212  *		ENOTSUP
19213  *		EPERM
19214  *
19215  *     Context: Called from the device switch at normal priority.
19216  */
19217 
19218 static int
19219 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
19220 {
19221 	struct sd_lun	*un = NULL;
19222 	int		err = 0;
19223 	int		i = 0;
19224 	cred_t		*cr;
19225 	int		tmprval = EINVAL;
19226 	int 		is_valid;
19227 
19228 	/*
19229 	 * All device accesses go thru sdstrategy where we check on suspend
19230 	 * status
19231 	 */
19232 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
19233 		return (ENXIO);
19234 	}
19235 
19236 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19237 
19238 
19239 	is_valid = SD_IS_VALID_LABEL(un);
19240 
19241 	/*
19242 	 * Moved this wait from sd_uscsi_strategy to here for
19243 	 * reasons of deadlock prevention. Internal driver commands,
19244 	 * specifically those to change a devices power level, result
19245 	 * in a call to sd_uscsi_strategy.
19246 	 */
19247 	mutex_enter(SD_MUTEX(un));
19248 	while ((un->un_state == SD_STATE_SUSPENDED) ||
19249 	    (un->un_state == SD_STATE_PM_CHANGING)) {
19250 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
19251 	}
19252 	/*
19253 	 * Twiddling the counter here protects commands from now
19254 	 * through to the top of sd_uscsi_strategy. Without the
19255 	 * counter inc. a power down, for example, could get in
19256 	 * after the above check for state is made and before
19257 	 * execution gets to the top of sd_uscsi_strategy.
19258 	 * That would cause problems.
19259 	 */
19260 	un->un_ncmds_in_driver++;
19261 
19262 	if (!is_valid &&
19263 	    (flag & (FNDELAY | FNONBLOCK))) {
19264 		switch (cmd) {
19265 		case DKIOCGGEOM:	/* SD_PATH_DIRECT */
19266 		case DKIOCGVTOC:
19267 		case DKIOCGAPART:
19268 		case DKIOCPARTINFO:
19269 		case DKIOCSGEOM:
19270 		case DKIOCSAPART:
19271 		case DKIOCGETEFI:
19272 		case DKIOCPARTITION:
19273 		case DKIOCSVTOC:
19274 		case DKIOCSETEFI:
19275 		case DKIOCGMBOOT:
19276 		case DKIOCSMBOOT:
19277 		case DKIOCG_PHYGEOM:
19278 		case DKIOCG_VIRTGEOM:
19279 			/* let cmlb handle it */
19280 			goto skip_ready_valid;
19281 
19282 		case CDROMPAUSE:
19283 		case CDROMRESUME:
19284 		case CDROMPLAYMSF:
19285 		case CDROMPLAYTRKIND:
19286 		case CDROMREADTOCHDR:
19287 		case CDROMREADTOCENTRY:
19288 		case CDROMSTOP:
19289 		case CDROMSTART:
19290 		case CDROMVOLCTRL:
19291 		case CDROMSUBCHNL:
19292 		case CDROMREADMODE2:
19293 		case CDROMREADMODE1:
19294 		case CDROMREADOFFSET:
19295 		case CDROMSBLKMODE:
19296 		case CDROMGBLKMODE:
19297 		case CDROMGDRVSPEED:
19298 		case CDROMSDRVSPEED:
19299 		case CDROMCDDA:
19300 		case CDROMCDXA:
19301 		case CDROMSUBCODE:
19302 			if (!ISCD(un)) {
19303 				un->un_ncmds_in_driver--;
19304 				ASSERT(un->un_ncmds_in_driver >= 0);
19305 				mutex_exit(SD_MUTEX(un));
19306 				return (ENOTTY);
19307 			}
19308 			break;
19309 		case FDEJECT:
19310 		case DKIOCEJECT:
19311 		case CDROMEJECT:
19312 			if (!un->un_f_eject_media_supported) {
19313 				un->un_ncmds_in_driver--;
19314 				ASSERT(un->un_ncmds_in_driver >= 0);
19315 				mutex_exit(SD_MUTEX(un));
19316 				return (ENOTTY);
19317 			}
19318 			break;
19319 		case DKIOCFLUSHWRITECACHE:
19320 			mutex_exit(SD_MUTEX(un));
19321 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
19322 			if (err != 0) {
19323 				mutex_enter(SD_MUTEX(un));
19324 				un->un_ncmds_in_driver--;
19325 				ASSERT(un->un_ncmds_in_driver >= 0);
19326 				mutex_exit(SD_MUTEX(un));
19327 				return (EIO);
19328 			}
19329 			mutex_enter(SD_MUTEX(un));
19330 			/* FALLTHROUGH */
19331 		case DKIOCREMOVABLE:
19332 		case DKIOCHOTPLUGGABLE:
19333 		case DKIOCINFO:
19334 		case DKIOCGMEDIAINFO:
19335 		case MHIOCENFAILFAST:
19336 		case MHIOCSTATUS:
19337 		case MHIOCTKOWN:
19338 		case MHIOCRELEASE:
19339 		case MHIOCGRP_INKEYS:
19340 		case MHIOCGRP_INRESV:
19341 		case MHIOCGRP_REGISTER:
19342 		case MHIOCGRP_RESERVE:
19343 		case MHIOCGRP_PREEMPTANDABORT:
19344 		case MHIOCGRP_REGISTERANDIGNOREKEY:
19345 		case CDROMCLOSETRAY:
19346 		case USCSICMD:
19347 			goto skip_ready_valid;
19348 		default:
19349 			break;
19350 		}
19351 
19352 		mutex_exit(SD_MUTEX(un));
19353 		err = sd_ready_and_valid(un);
19354 		mutex_enter(SD_MUTEX(un));
19355 
19356 		if (err != SD_READY_VALID) {
19357 			switch (cmd) {
19358 			case DKIOCSTATE:
19359 			case CDROMGDRVSPEED:
19360 			case CDROMSDRVSPEED:
19361 			case FDEJECT:	/* for eject command */
19362 			case DKIOCEJECT:
19363 			case CDROMEJECT:
19364 			case DKIOCREMOVABLE:
19365 			case DKIOCHOTPLUGGABLE:
19366 				break;
19367 			default:
19368 				if (un->un_f_has_removable_media) {
19369 					err = ENXIO;
19370 				} else {
19371 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
19372 					if (err == SD_RESERVED_BY_OTHERS) {
19373 						err = EACCES;
19374 					} else {
19375 						err = EIO;
19376 					}
19377 				}
19378 				un->un_ncmds_in_driver--;
19379 				ASSERT(un->un_ncmds_in_driver >= 0);
19380 				mutex_exit(SD_MUTEX(un));
19381 				return (err);
19382 			}
19383 		}
19384 	}
19385 
19386 skip_ready_valid:
19387 	mutex_exit(SD_MUTEX(un));
19388 
19389 	switch (cmd) {
19390 	case DKIOCINFO:
19391 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
19392 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
19393 		break;
19394 
19395 	case DKIOCGMEDIAINFO:
19396 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
19397 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
19398 		break;
19399 
19400 	case DKIOCGGEOM:
19401 	case DKIOCGVTOC:
19402 	case DKIOCGAPART:
19403 	case DKIOCPARTINFO:
19404 	case DKIOCSGEOM:
19405 	case DKIOCSAPART:
19406 	case DKIOCGETEFI:
19407 	case DKIOCPARTITION:
19408 	case DKIOCSVTOC:
19409 	case DKIOCSETEFI:
19410 	case DKIOCGMBOOT:
19411 	case DKIOCSMBOOT:
19412 	case DKIOCG_PHYGEOM:
19413 	case DKIOCG_VIRTGEOM:
19414 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd);
19415 
19416 		/* TUR should spin up */
19417 
19418 		if (un->un_f_has_removable_media)
19419 			err = sd_send_scsi_TEST_UNIT_READY(un,
19420 			    SD_CHECK_FOR_MEDIA);
19421 		else
19422 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
19423 
19424 		if (err != 0)
19425 			break;
19426 
19427 		err = cmlb_ioctl(un->un_cmlbhandle, dev,
19428 		    cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT);
19429 
19430 		if ((err == 0) &&
19431 		    ((cmd == DKIOCSETEFI) ||
19432 		    (un->un_f_pkstats_enabled) &&
19433 		    (cmd == DKIOCSAPART || cmd == DKIOCSVTOC))) {
19434 
19435 			tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT,
19436 			    (void *)SD_PATH_DIRECT);
19437 			if ((tmprval == 0) && un->un_f_pkstats_enabled) {
19438 				sd_set_pstats(un);
19439 				SD_TRACE(SD_LOG_IO_PARTITION, un,
19440 				    "sd_ioctl: un:0x%p pstats created and "
19441 				    "set\n", un);
19442 			}
19443 		}
19444 
19445 		if ((cmd == DKIOCSVTOC) ||
19446 		    ((cmd == DKIOCSETEFI) && (tmprval == 0))) {
19447 
19448 			mutex_enter(SD_MUTEX(un));
19449 			if (un->un_f_devid_supported &&
19450 			    (un->un_f_opt_fab_devid == TRUE)) {
19451 				if (un->un_devid == NULL) {
19452 					sd_register_devid(un, SD_DEVINFO(un),
19453 					    SD_TARGET_IS_UNRESERVED);
19454 				} else {
19455 					/*
19456 					 * The device id for this disk
19457 					 * has been fabricated. The
19458 					 * device id must be preserved
19459 					 * by writing it back out to
19460 					 * disk.
19461 					 */
19462 					if (sd_write_deviceid(un) != 0) {
19463 						ddi_devid_free(un->un_devid);
19464 						un->un_devid = NULL;
19465 					}
19466 				}
19467 			}
19468 			mutex_exit(SD_MUTEX(un));
19469 		}
19470 
19471 		break;
19472 
19473 	case DKIOCLOCK:
19474 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
19475 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
19476 		    SD_PATH_STANDARD);
19477 		break;
19478 
19479 	case DKIOCUNLOCK:
19480 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
19481 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
19482 		    SD_PATH_STANDARD);
19483 		break;
19484 
19485 	case DKIOCSTATE: {
19486 		enum dkio_state		state;
19487 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
19488 
19489 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
19490 			err = EFAULT;
19491 		} else {
19492 			err = sd_check_media(dev, state);
19493 			if (err == 0) {
19494 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
19495 				    sizeof (int), flag) != 0)
19496 					err = EFAULT;
19497 			}
19498 		}
19499 		break;
19500 	}
19501 
19502 	case DKIOCREMOVABLE:
19503 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
19504 		i = un->un_f_has_removable_media ? 1 : 0;
19505 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
19506 			err = EFAULT;
19507 		} else {
19508 			err = 0;
19509 		}
19510 		break;
19511 
19512 	case DKIOCHOTPLUGGABLE:
19513 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
19514 		i = un->un_f_is_hotpluggable ? 1 : 0;
19515 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
19516 			err = EFAULT;
19517 		} else {
19518 			err = 0;
19519 		}
19520 		break;
19521 
19522 	case DKIOCGTEMPERATURE:
19523 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
19524 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
19525 		break;
19526 
19527 	case MHIOCENFAILFAST:
19528 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
19529 		if ((err = drv_priv(cred_p)) == 0) {
19530 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
19531 		}
19532 		break;
19533 
19534 	case MHIOCTKOWN:
19535 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
19536 		if ((err = drv_priv(cred_p)) == 0) {
19537 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
19538 		}
19539 		break;
19540 
19541 	case MHIOCRELEASE:
19542 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
19543 		if ((err = drv_priv(cred_p)) == 0) {
19544 			err = sd_mhdioc_release(dev);
19545 		}
19546 		break;
19547 
19548 	case MHIOCSTATUS:
19549 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
19550 		if ((err = drv_priv(cred_p)) == 0) {
19551 			switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) {
19552 			case 0:
19553 				err = 0;
19554 				break;
19555 			case EACCES:
19556 				*rval_p = 1;
19557 				err = 0;
19558 				break;
19559 			default:
19560 				err = EIO;
19561 				break;
19562 			}
19563 		}
19564 		break;
19565 
19566 	case MHIOCQRESERVE:
19567 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
19568 		if ((err = drv_priv(cred_p)) == 0) {
19569 			err = sd_reserve_release(dev, SD_RESERVE);
19570 		}
19571 		break;
19572 
19573 	case MHIOCREREGISTERDEVID:
19574 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
19575 		if (drv_priv(cred_p) == EPERM) {
19576 			err = EPERM;
19577 		} else if (!un->un_f_devid_supported) {
19578 			err = ENOTTY;
19579 		} else {
19580 			err = sd_mhdioc_register_devid(dev);
19581 		}
19582 		break;
19583 
19584 	case MHIOCGRP_INKEYS:
19585 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
19586 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
19587 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19588 				err = ENOTSUP;
19589 			} else {
19590 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
19591 				    flag);
19592 			}
19593 		}
19594 		break;
19595 
19596 	case MHIOCGRP_INRESV:
19597 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
19598 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
19599 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19600 				err = ENOTSUP;
19601 			} else {
19602 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
19603 			}
19604 		}
19605 		break;
19606 
19607 	case MHIOCGRP_REGISTER:
19608 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
19609 		if ((err = drv_priv(cred_p)) != EPERM) {
19610 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19611 				err = ENOTSUP;
19612 			} else if (arg != NULL) {
19613 				mhioc_register_t reg;
19614 				if (ddi_copyin((void *)arg, &reg,
19615 				    sizeof (mhioc_register_t), flag) != 0) {
19616 					err = EFAULT;
19617 				} else {
19618 					err =
19619 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
19620 					    un, SD_SCSI3_REGISTER,
19621 					    (uchar_t *)&reg);
19622 				}
19623 			}
19624 		}
19625 		break;
19626 
19627 	case MHIOCGRP_RESERVE:
19628 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
19629 		if ((err = drv_priv(cred_p)) != EPERM) {
19630 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19631 				err = ENOTSUP;
19632 			} else if (arg != NULL) {
19633 				mhioc_resv_desc_t resv_desc;
19634 				if (ddi_copyin((void *)arg, &resv_desc,
19635 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
19636 					err = EFAULT;
19637 				} else {
19638 					err =
19639 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
19640 					    un, SD_SCSI3_RESERVE,
19641 					    (uchar_t *)&resv_desc);
19642 				}
19643 			}
19644 		}
19645 		break;
19646 
19647 	case MHIOCGRP_PREEMPTANDABORT:
19648 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
19649 		if ((err = drv_priv(cred_p)) != EPERM) {
19650 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19651 				err = ENOTSUP;
19652 			} else if (arg != NULL) {
19653 				mhioc_preemptandabort_t preempt_abort;
19654 				if (ddi_copyin((void *)arg, &preempt_abort,
19655 				    sizeof (mhioc_preemptandabort_t),
19656 				    flag) != 0) {
19657 					err = EFAULT;
19658 				} else {
19659 					err =
19660 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
19661 					    un, SD_SCSI3_PREEMPTANDABORT,
19662 					    (uchar_t *)&preempt_abort);
19663 				}
19664 			}
19665 		}
19666 		break;
19667 
19668 	case MHIOCGRP_REGISTERANDIGNOREKEY:
19669 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n");
19670 		if ((err = drv_priv(cred_p)) != EPERM) {
19671 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19672 				err = ENOTSUP;
19673 			} else if (arg != NULL) {
19674 				mhioc_registerandignorekey_t r_and_i;
19675 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
19676 				    sizeof (mhioc_registerandignorekey_t),
19677 				    flag) != 0) {
19678 					err = EFAULT;
19679 				} else {
19680 					err =
19681 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
19682 					    un, SD_SCSI3_REGISTERANDIGNOREKEY,
19683 					    (uchar_t *)&r_and_i);
19684 				}
19685 			}
19686 		}
19687 		break;
19688 
19689 	case USCSICMD:
19690 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
19691 		cr = ddi_get_cred();
19692 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
19693 			err = EPERM;
19694 		} else {
19695 			enum uio_seg	uioseg;
19696 			uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE :
19697 			    UIO_USERSPACE;
19698 			if (un->un_f_format_in_progress == TRUE) {
19699 				err = EAGAIN;
19700 				break;
19701 			}
19702 			err = sd_send_scsi_cmd(dev, (struct uscsi_cmd *)arg,
19703 			    flag, uioseg, SD_PATH_STANDARD);
19704 		}
19705 		break;
19706 
19707 	case CDROMPAUSE:
19708 	case CDROMRESUME:
19709 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
19710 		if (!ISCD(un)) {
19711 			err = ENOTTY;
19712 		} else {
19713 			err = sr_pause_resume(dev, cmd);
19714 		}
19715 		break;
19716 
19717 	case CDROMPLAYMSF:
19718 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
19719 		if (!ISCD(un)) {
19720 			err = ENOTTY;
19721 		} else {
19722 			err = sr_play_msf(dev, (caddr_t)arg, flag);
19723 		}
19724 		break;
19725 
19726 	case CDROMPLAYTRKIND:
19727 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
19728 #if defined(__i386) || defined(__amd64)
19729 		/*
19730 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
19731 		 */
19732 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
19733 #else
19734 		if (!ISCD(un)) {
19735 #endif
19736 			err = ENOTTY;
19737 		} else {
19738 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
19739 		}
19740 		break;
19741 
19742 	case CDROMREADTOCHDR:
19743 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
19744 		if (!ISCD(un)) {
19745 			err = ENOTTY;
19746 		} else {
19747 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
19748 		}
19749 		break;
19750 
19751 	case CDROMREADTOCENTRY:
19752 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
19753 		if (!ISCD(un)) {
19754 			err = ENOTTY;
19755 		} else {
19756 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
19757 		}
19758 		break;
19759 
19760 	case CDROMSTOP:
19761 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
19762 		if (!ISCD(un)) {
19763 			err = ENOTTY;
19764 		} else {
19765 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP,
19766 			    SD_PATH_STANDARD);
19767 		}
19768 		break;
19769 
19770 	case CDROMSTART:
19771 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
19772 		if (!ISCD(un)) {
19773 			err = ENOTTY;
19774 		} else {
19775 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
19776 			    SD_PATH_STANDARD);
19777 		}
19778 		break;
19779 
19780 	case CDROMCLOSETRAY:
19781 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
19782 		if (!ISCD(un)) {
19783 			err = ENOTTY;
19784 		} else {
19785 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE,
19786 			    SD_PATH_STANDARD);
19787 		}
19788 		break;
19789 
19790 	case FDEJECT:	/* for eject command */
19791 	case DKIOCEJECT:
19792 	case CDROMEJECT:
19793 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
19794 		if (!un->un_f_eject_media_supported) {
19795 			err = ENOTTY;
19796 		} else {
19797 			err = sr_eject(dev);
19798 		}
19799 		break;
19800 
19801 	case CDROMVOLCTRL:
19802 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
19803 		if (!ISCD(un)) {
19804 			err = ENOTTY;
19805 		} else {
19806 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
19807 		}
19808 		break;
19809 
19810 	case CDROMSUBCHNL:
19811 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
19812 		if (!ISCD(un)) {
19813 			err = ENOTTY;
19814 		} else {
19815 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
19816 		}
19817 		break;
19818 
19819 	case CDROMREADMODE2:
19820 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
19821 		if (!ISCD(un)) {
19822 			err = ENOTTY;
19823 		} else if (un->un_f_cfg_is_atapi == TRUE) {
19824 			/*
19825 			 * If the drive supports READ CD, use that instead of
19826 			 * switching the LBA size via a MODE SELECT
19827 			 * Block Descriptor
19828 			 */
19829 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
19830 		} else {
19831 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
19832 		}
19833 		break;
19834 
19835 	case CDROMREADMODE1:
19836 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
19837 		if (!ISCD(un)) {
19838 			err = ENOTTY;
19839 		} else {
19840 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
19841 		}
19842 		break;
19843 
19844 	case CDROMREADOFFSET:
19845 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
19846 		if (!ISCD(un)) {
19847 			err = ENOTTY;
19848 		} else {
19849 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
19850 			    flag);
19851 		}
19852 		break;
19853 
19854 	case CDROMSBLKMODE:
19855 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
19856 		/*
19857 		 * There is no means of changing block size in case of atapi
19858 		 * drives, thus return ENOTTY if drive type is atapi
19859 		 */
19860 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
19861 			err = ENOTTY;
19862 		} else if (un->un_f_mmc_cap == TRUE) {
19863 
19864 			/*
19865 			 * MMC Devices do not support changing the
19866 			 * logical block size
19867 			 *
19868 			 * Note: EINVAL is being returned instead of ENOTTY to
19869 			 * maintain consistancy with the original mmc
19870 			 * driver update.
19871 			 */
19872 			err = EINVAL;
19873 		} else {
19874 			mutex_enter(SD_MUTEX(un));
19875 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
19876 			    (un->un_ncmds_in_transport > 0)) {
19877 				mutex_exit(SD_MUTEX(un));
19878 				err = EINVAL;
19879 			} else {
19880 				mutex_exit(SD_MUTEX(un));
19881 				err = sr_change_blkmode(dev, cmd, arg, flag);
19882 			}
19883 		}
19884 		break;
19885 
19886 	case CDROMGBLKMODE:
19887 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
19888 		if (!ISCD(un)) {
19889 			err = ENOTTY;
19890 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
19891 		    (un->un_f_blockcount_is_valid != FALSE)) {
19892 			/*
19893 			 * Drive is an ATAPI drive so return target block
19894 			 * size for ATAPI drives since we cannot change the
19895 			 * blocksize on ATAPI drives. Used primarily to detect
19896 			 * if an ATAPI cdrom is present.
19897 			 */
19898 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
19899 			    sizeof (int), flag) != 0) {
19900 				err = EFAULT;
19901 			} else {
19902 				err = 0;
19903 			}
19904 
19905 		} else {
19906 			/*
19907 			 * Drive supports changing block sizes via a Mode
19908 			 * Select.
19909 			 */
19910 			err = sr_change_blkmode(dev, cmd, arg, flag);
19911 		}
19912 		break;
19913 
19914 	case CDROMGDRVSPEED:
19915 	case CDROMSDRVSPEED:
19916 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
19917 		if (!ISCD(un)) {
19918 			err = ENOTTY;
19919 		} else if (un->un_f_mmc_cap == TRUE) {
19920 			/*
19921 			 * Note: In the future the driver implementation
19922 			 * for getting and
19923 			 * setting cd speed should entail:
19924 			 * 1) If non-mmc try the Toshiba mode page
19925 			 *    (sr_change_speed)
19926 			 * 2) If mmc but no support for Real Time Streaming try
19927 			 *    the SET CD SPEED (0xBB) command
19928 			 *   (sr_atapi_change_speed)
19929 			 * 3) If mmc and support for Real Time Streaming
19930 			 *    try the GET PERFORMANCE and SET STREAMING
19931 			 *    commands (not yet implemented, 4380808)
19932 			 */
19933 			/*
19934 			 * As per recent MMC spec, CD-ROM speed is variable
19935 			 * and changes with LBA. Since there is no such
19936 			 * things as drive speed now, fail this ioctl.
19937 			 *
19938 			 * Note: EINVAL is returned for consistancy of original
19939 			 * implementation which included support for getting
19940 			 * the drive speed of mmc devices but not setting
19941 			 * the drive speed. Thus EINVAL would be returned
19942 			 * if a set request was made for an mmc device.
19943 			 * We no longer support get or set speed for
19944 			 * mmc but need to remain consistent with regard
19945 			 * to the error code returned.
19946 			 */
19947 			err = EINVAL;
19948 		} else if (un->un_f_cfg_is_atapi == TRUE) {
19949 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
19950 		} else {
19951 			err = sr_change_speed(dev, cmd, arg, flag);
19952 		}
19953 		break;
19954 
19955 	case CDROMCDDA:
19956 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
19957 		if (!ISCD(un)) {
19958 			err = ENOTTY;
19959 		} else {
19960 			err = sr_read_cdda(dev, (void *)arg, flag);
19961 		}
19962 		break;
19963 
19964 	case CDROMCDXA:
19965 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
19966 		if (!ISCD(un)) {
19967 			err = ENOTTY;
19968 		} else {
19969 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
19970 		}
19971 		break;
19972 
19973 	case CDROMSUBCODE:
19974 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
19975 		if (!ISCD(un)) {
19976 			err = ENOTTY;
19977 		} else {
19978 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
19979 		}
19980 		break;
19981 
19982 
19983 #ifdef SDDEBUG
19984 /* RESET/ABORTS testing ioctls */
19985 	case DKIOCRESET: {
19986 		int	reset_level;
19987 
19988 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
19989 			err = EFAULT;
19990 		} else {
19991 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
19992 			    "reset_level = 0x%lx\n", reset_level);
19993 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
19994 				err = 0;
19995 			} else {
19996 				err = EIO;
19997 			}
19998 		}
19999 		break;
20000 	}
20001 
20002 	case DKIOCABORT:
20003 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
20004 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
20005 			err = 0;
20006 		} else {
20007 			err = EIO;
20008 		}
20009 		break;
20010 #endif
20011 
20012 #ifdef SD_FAULT_INJECTION
20013 /* SDIOC FaultInjection testing ioctls */
20014 	case SDIOCSTART:
20015 	case SDIOCSTOP:
20016 	case SDIOCINSERTPKT:
20017 	case SDIOCINSERTXB:
20018 	case SDIOCINSERTUN:
20019 	case SDIOCINSERTARQ:
20020 	case SDIOCPUSH:
20021 	case SDIOCRETRIEVE:
20022 	case SDIOCRUN:
20023 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
20024 		    "SDIOC detected cmd:0x%X:\n", cmd);
20025 		/* call error generator */
20026 		sd_faultinjection_ioctl(cmd, arg, un);
20027 		err = 0;
20028 		break;
20029 
20030 #endif /* SD_FAULT_INJECTION */
20031 
20032 	case DKIOCFLUSHWRITECACHE:
20033 		{
20034 			struct dk_callback *dkc = (struct dk_callback *)arg;
20035 
20036 			mutex_enter(SD_MUTEX(un));
20037 			if (!un->un_f_sync_cache_supported ||
20038 			    !un->un_f_write_cache_enabled) {
20039 				err = un->un_f_sync_cache_supported ?
20040 				    0 : ENOTSUP;
20041 				mutex_exit(SD_MUTEX(un));
20042 				if ((flag & FKIOCTL) && dkc != NULL &&
20043 				    dkc->dkc_callback != NULL) {
20044 					(*dkc->dkc_callback)(dkc->dkc_cookie,
20045 					    err);
20046 					/*
20047 					 * Did callback and reported error.
20048 					 * Since we did a callback, ioctl
20049 					 * should return 0.
20050 					 */
20051 					err = 0;
20052 				}
20053 				break;
20054 			}
20055 			mutex_exit(SD_MUTEX(un));
20056 
20057 			if ((flag & FKIOCTL) && dkc != NULL &&
20058 			    dkc->dkc_callback != NULL) {
20059 				/* async SYNC CACHE request */
20060 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
20061 			} else {
20062 				/* synchronous SYNC CACHE request */
20063 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
20064 			}
20065 		}
20066 		break;
20067 
20068 	case DKIOCGETWCE: {
20069 
20070 		int wce;
20071 
20072 		if ((err = sd_get_write_cache_enabled(un, &wce)) != 0) {
20073 			break;
20074 		}
20075 
20076 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
20077 			err = EFAULT;
20078 		}
20079 		break;
20080 	}
20081 
20082 	case DKIOCSETWCE: {
20083 
20084 		int wce, sync_supported;
20085 
20086 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
20087 			err = EFAULT;
20088 			break;
20089 		}
20090 
20091 		/*
20092 		 * Synchronize multiple threads trying to enable
20093 		 * or disable the cache via the un_f_wcc_cv
20094 		 * condition variable.
20095 		 */
20096 		mutex_enter(SD_MUTEX(un));
20097 
20098 		/*
20099 		 * Don't allow the cache to be enabled if the
20100 		 * config file has it disabled.
20101 		 */
20102 		if (un->un_f_opt_disable_cache && wce) {
20103 			mutex_exit(SD_MUTEX(un));
20104 			err = EINVAL;
20105 			break;
20106 		}
20107 
20108 		/*
20109 		 * Wait for write cache change in progress
20110 		 * bit to be clear before proceeding.
20111 		 */
20112 		while (un->un_f_wcc_inprog)
20113 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
20114 
20115 		un->un_f_wcc_inprog = 1;
20116 
20117 		if (un->un_f_write_cache_enabled && wce == 0) {
20118 			/*
20119 			 * Disable the write cache.  Don't clear
20120 			 * un_f_write_cache_enabled until after
20121 			 * the mode select and flush are complete.
20122 			 */
20123 			sync_supported = un->un_f_sync_cache_supported;
20124 			mutex_exit(SD_MUTEX(un));
20125 			if ((err = sd_cache_control(un, SD_CACHE_NOCHANGE,
20126 			    SD_CACHE_DISABLE)) == 0 && sync_supported) {
20127 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
20128 			}
20129 
20130 			mutex_enter(SD_MUTEX(un));
20131 			if (err == 0) {
20132 				un->un_f_write_cache_enabled = 0;
20133 			}
20134 
20135 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
20136 			/*
20137 			 * Set un_f_write_cache_enabled first, so there is
20138 			 * no window where the cache is enabled, but the
20139 			 * bit says it isn't.
20140 			 */
20141 			un->un_f_write_cache_enabled = 1;
20142 			mutex_exit(SD_MUTEX(un));
20143 
20144 			err = sd_cache_control(un, SD_CACHE_NOCHANGE,
20145 			    SD_CACHE_ENABLE);
20146 
20147 			mutex_enter(SD_MUTEX(un));
20148 
20149 			if (err) {
20150 				un->un_f_write_cache_enabled = 0;
20151 			}
20152 		}
20153 
20154 		un->un_f_wcc_inprog = 0;
20155 		cv_broadcast(&un->un_wcc_cv);
20156 		mutex_exit(SD_MUTEX(un));
20157 		break;
20158 	}
20159 
20160 	default:
20161 		err = ENOTTY;
20162 		break;
20163 	}
20164 	mutex_enter(SD_MUTEX(un));
20165 	un->un_ncmds_in_driver--;
20166 	ASSERT(un->un_ncmds_in_driver >= 0);
20167 	mutex_exit(SD_MUTEX(un));
20168 
20169 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
20170 	return (err);
20171 }
20172 
20173 
20174 /*
20175  *    Function: sd_dkio_ctrl_info
20176  *
20177  * Description: This routine is the driver entry point for handling controller
20178  *		information ioctl requests (DKIOCINFO).
20179  *
20180  *   Arguments: dev  - the device number
20181  *		arg  - pointer to user provided dk_cinfo structure
20182  *		       specifying the controller type and attributes.
20183  *		flag - this argument is a pass through to ddi_copyxxx()
20184  *		       directly from the mode argument of ioctl().
20185  *
20186  * Return Code: 0
20187  *		EFAULT
20188  *		ENXIO
20189  */
20190 
20191 static int
20192 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
20193 {
20194 	struct sd_lun	*un = NULL;
20195 	struct dk_cinfo	*info;
20196 	dev_info_t	*pdip;
20197 	int		lun, tgt;
20198 
20199 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20200 		return (ENXIO);
20201 	}
20202 
20203 	info = (struct dk_cinfo *)
20204 	    kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
20205 
20206 	switch (un->un_ctype) {
20207 	case CTYPE_CDROM:
20208 		info->dki_ctype = DKC_CDROM;
20209 		break;
20210 	default:
20211 		info->dki_ctype = DKC_SCSI_CCS;
20212 		break;
20213 	}
20214 	pdip = ddi_get_parent(SD_DEVINFO(un));
20215 	info->dki_cnum = ddi_get_instance(pdip);
20216 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
20217 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
20218 	} else {
20219 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
20220 		    DK_DEVLEN - 1);
20221 	}
20222 
20223 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
20224 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
20225 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
20226 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
20227 
20228 	/* Unit Information */
20229 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
20230 	info->dki_slave = ((tgt << 3) | lun);
20231 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
20232 	    DK_DEVLEN - 1);
20233 	info->dki_flags = DKI_FMTVOL;
20234 	info->dki_partition = SDPART(dev);
20235 
20236 	/* Max Transfer size of this device in blocks */
20237 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
20238 	info->dki_addr = 0;
20239 	info->dki_space = 0;
20240 	info->dki_prio = 0;
20241 	info->dki_vec = 0;
20242 
20243 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
20244 		kmem_free(info, sizeof (struct dk_cinfo));
20245 		return (EFAULT);
20246 	} else {
20247 		kmem_free(info, sizeof (struct dk_cinfo));
20248 		return (0);
20249 	}
20250 }
20251 
20252 
20253 /*
20254  *    Function: sd_get_media_info
20255  *
20256  * Description: This routine is the driver entry point for handling ioctl
20257  *		requests for the media type or command set profile used by the
20258  *		drive to operate on the media (DKIOCGMEDIAINFO).
20259  *
20260  *   Arguments: dev	- the device number
20261  *		arg	- pointer to user provided dk_minfo structure
20262  *			  specifying the media type, logical block size and
20263  *			  drive capacity.
20264  *		flag	- this argument is a pass through to ddi_copyxxx()
20265  *			  directly from the mode argument of ioctl().
20266  *
20267  * Return Code: 0
20268  *		EACCESS
20269  *		EFAULT
20270  *		ENXIO
20271  *		EIO
20272  */
20273 
20274 static int
20275 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
20276 {
20277 	struct sd_lun		*un = NULL;
20278 	struct uscsi_cmd	com;
20279 	struct scsi_inquiry	*sinq;
20280 	struct dk_minfo		media_info;
20281 	u_longlong_t		media_capacity;
20282 	uint64_t		capacity;
20283 	uint_t			lbasize;
20284 	uchar_t			*out_data;
20285 	uchar_t			*rqbuf;
20286 	int			rval = 0;
20287 	int			rtn;
20288 
20289 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
20290 	    (un->un_state == SD_STATE_OFFLINE)) {
20291 		return (ENXIO);
20292 	}
20293 
20294 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
20295 
20296 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
20297 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
20298 
20299 	/* Issue a TUR to determine if the drive is ready with media present */
20300 	rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA);
20301 	if (rval == ENXIO) {
20302 		goto done;
20303 	}
20304 
20305 	/* Now get configuration data */
20306 	if (ISCD(un)) {
20307 		media_info.dki_media_type = DK_CDROM;
20308 
20309 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
20310 		if (un->un_f_mmc_cap == TRUE) {
20311 			rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf,
20312 			    SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN,
20313 			    SD_PATH_STANDARD);
20314 
20315 			if (rtn) {
20316 				/*
20317 				 * Failed for other than an illegal request
20318 				 * or command not supported
20319 				 */
20320 				if ((com.uscsi_status == STATUS_CHECK) &&
20321 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
20322 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
20323 					    (rqbuf[12] != 0x20)) {
20324 						rval = EIO;
20325 						goto done;
20326 					}
20327 				}
20328 			} else {
20329 				/*
20330 				 * The GET CONFIGURATION command succeeded
20331 				 * so set the media type according to the
20332 				 * returned data
20333 				 */
20334 				media_info.dki_media_type = out_data[6];
20335 				media_info.dki_media_type <<= 8;
20336 				media_info.dki_media_type |= out_data[7];
20337 			}
20338 		}
20339 	} else {
20340 		/*
20341 		 * The profile list is not available, so we attempt to identify
20342 		 * the media type based on the inquiry data
20343 		 */
20344 		sinq = un->un_sd->sd_inq;
20345 		if ((sinq->inq_dtype == DTYPE_DIRECT) ||
20346 		    (sinq->inq_dtype == DTYPE_OPTICAL)) {
20347 			/* This is a direct access device  or optical disk */
20348 			media_info.dki_media_type = DK_FIXED_DISK;
20349 
20350 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
20351 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
20352 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
20353 					media_info.dki_media_type = DK_ZIP;
20354 				} else if (
20355 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
20356 					media_info.dki_media_type = DK_JAZ;
20357 				}
20358 			}
20359 		} else {
20360 			/*
20361 			 * Not a CD, direct access or optical disk so return
20362 			 * unknown media
20363 			 */
20364 			media_info.dki_media_type = DK_UNKNOWN;
20365 		}
20366 	}
20367 
20368 	/* Now read the capacity so we can provide the lbasize and capacity */
20369 	switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
20370 	    SD_PATH_DIRECT)) {
20371 	case 0:
20372 		break;
20373 	case EACCES:
20374 		rval = EACCES;
20375 		goto done;
20376 	default:
20377 		rval = EIO;
20378 		goto done;
20379 	}
20380 
20381 	media_info.dki_lbsize = lbasize;
20382 	media_capacity = capacity;
20383 
20384 	/*
20385 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
20386 	 * un->un_sys_blocksize chunks. So we need to convert it into
20387 	 * cap.lbasize chunks.
20388 	 */
20389 	media_capacity *= un->un_sys_blocksize;
20390 	media_capacity /= lbasize;
20391 	media_info.dki_capacity = media_capacity;
20392 
20393 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
20394 		rval = EFAULT;
20395 		/* Put goto. Anybody might add some code below in future */
20396 		goto done;
20397 	}
20398 done:
20399 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
20400 	kmem_free(rqbuf, SENSE_LENGTH);
20401 	return (rval);
20402 }
20403 
20404 
20405 /*
20406  *    Function: sd_check_media
20407  *
20408  * Description: This utility routine implements the functionality for the
20409  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
20410  *		driver state changes from that specified by the user
20411  *		(inserted or ejected). For example, if the user specifies
20412  *		DKIO_EJECTED and the current media state is inserted this
20413  *		routine will immediately return DKIO_INSERTED. However, if the
20414  *		current media state is not inserted the user thread will be
20415  *		blocked until the drive state changes. If DKIO_NONE is specified
20416  *		the user thread will block until a drive state change occurs.
20417  *
20418  *   Arguments: dev  - the device number
20419  *		state  - user pointer to a dkio_state, updated with the current
20420  *			drive state at return.
20421  *
20422  * Return Code: ENXIO
20423  *		EIO
20424  *		EAGAIN
20425  *		EINTR
20426  */
20427 
20428 static int
20429 sd_check_media(dev_t dev, enum dkio_state state)
20430 {
20431 	struct sd_lun		*un = NULL;
20432 	enum dkio_state		prev_state;
20433 	opaque_t		token = NULL;
20434 	int			rval = 0;
20435 
20436 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20437 		return (ENXIO);
20438 	}
20439 
20440 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
20441 
20442 	mutex_enter(SD_MUTEX(un));
20443 
20444 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
20445 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
20446 
20447 	prev_state = un->un_mediastate;
20448 
20449 	/* is there anything to do? */
20450 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
20451 		/*
20452 		 * submit the request to the scsi_watch service;
20453 		 * scsi_media_watch_cb() does the real work
20454 		 */
20455 		mutex_exit(SD_MUTEX(un));
20456 
20457 		/*
20458 		 * This change handles the case where a scsi watch request is
20459 		 * added to a device that is powered down. To accomplish this
20460 		 * we power up the device before adding the scsi watch request,
20461 		 * since the scsi watch sends a TUR directly to the device
20462 		 * which the device cannot handle if it is powered down.
20463 		 */
20464 		if (sd_pm_entry(un) != DDI_SUCCESS) {
20465 			mutex_enter(SD_MUTEX(un));
20466 			goto done;
20467 		}
20468 
20469 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
20470 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
20471 		    (caddr_t)dev);
20472 
20473 		sd_pm_exit(un);
20474 
20475 		mutex_enter(SD_MUTEX(un));
20476 		if (token == NULL) {
20477 			rval = EAGAIN;
20478 			goto done;
20479 		}
20480 
20481 		/*
20482 		 * This is a special case IOCTL that doesn't return
20483 		 * until the media state changes. Routine sdpower
20484 		 * knows about and handles this so don't count it
20485 		 * as an active cmd in the driver, which would
20486 		 * keep the device busy to the pm framework.
20487 		 * If the count isn't decremented the device can't
20488 		 * be powered down.
20489 		 */
20490 		un->un_ncmds_in_driver--;
20491 		ASSERT(un->un_ncmds_in_driver >= 0);
20492 
20493 		/*
20494 		 * if a prior request had been made, this will be the same
20495 		 * token, as scsi_watch was designed that way.
20496 		 */
20497 		un->un_swr_token = token;
20498 		un->un_specified_mediastate = state;
20499 
20500 		/*
20501 		 * now wait for media change
20502 		 * we will not be signalled unless mediastate == state but it is
20503 		 * still better to test for this condition, since there is a
20504 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
20505 		 */
20506 		SD_TRACE(SD_LOG_COMMON, un,
20507 		    "sd_check_media: waiting for media state change\n");
20508 		while (un->un_mediastate == state) {
20509 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
20510 				SD_TRACE(SD_LOG_COMMON, un,
20511 				    "sd_check_media: waiting for media state "
20512 				    "was interrupted\n");
20513 				un->un_ncmds_in_driver++;
20514 				rval = EINTR;
20515 				goto done;
20516 			}
20517 			SD_TRACE(SD_LOG_COMMON, un,
20518 			    "sd_check_media: received signal, state=%x\n",
20519 			    un->un_mediastate);
20520 		}
20521 		/*
20522 		 * Inc the counter to indicate the device once again
20523 		 * has an active outstanding cmd.
20524 		 */
20525 		un->un_ncmds_in_driver++;
20526 	}
20527 
20528 	/* invalidate geometry */
20529 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
20530 		sr_ejected(un);
20531 	}
20532 
20533 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
20534 		uint64_t	capacity;
20535 		uint_t		lbasize;
20536 
20537 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
20538 		mutex_exit(SD_MUTEX(un));
20539 		/*
20540 		 * Since the following routines use SD_PATH_DIRECT, we must
20541 		 * call PM directly before the upcoming disk accesses. This
20542 		 * may cause the disk to be power/spin up.
20543 		 */
20544 
20545 		if (sd_pm_entry(un) == DDI_SUCCESS) {
20546 			rval = sd_send_scsi_READ_CAPACITY(un,
20547 			    &capacity,
20548 			    &lbasize, SD_PATH_DIRECT);
20549 			if (rval != 0) {
20550 				sd_pm_exit(un);
20551 				mutex_enter(SD_MUTEX(un));
20552 				goto done;
20553 			}
20554 		} else {
20555 			rval = EIO;
20556 			mutex_enter(SD_MUTEX(un));
20557 			goto done;
20558 		}
20559 		mutex_enter(SD_MUTEX(un));
20560 
20561 		sd_update_block_info(un, lbasize, capacity);
20562 
20563 		/*
20564 		 *  Check if the media in the device is writable or not
20565 		 */
20566 		if (ISCD(un))
20567 			sd_check_for_writable_cd(un, SD_PATH_DIRECT);
20568 
20569 		mutex_exit(SD_MUTEX(un));
20570 		cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
20571 		if ((cmlb_validate(un->un_cmlbhandle, 0,
20572 		    (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) {
20573 			sd_set_pstats(un);
20574 			SD_TRACE(SD_LOG_IO_PARTITION, un,
20575 			    "sd_check_media: un:0x%p pstats created and "
20576 			    "set\n", un);
20577 		}
20578 
20579 		rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
20580 		    SD_PATH_DIRECT);
20581 		sd_pm_exit(un);
20582 
20583 		mutex_enter(SD_MUTEX(un));
20584 	}
20585 done:
20586 	un->un_f_watcht_stopped = FALSE;
20587 	if (un->un_swr_token) {
20588 		/*
20589 		 * Use of this local token and the mutex ensures that we avoid
20590 		 * some race conditions associated with terminating the
20591 		 * scsi watch.
20592 		 */
20593 		token = un->un_swr_token;
20594 		un->un_swr_token = (opaque_t)NULL;
20595 		mutex_exit(SD_MUTEX(un));
20596 		(void) scsi_watch_request_terminate(token,
20597 		    SCSI_WATCH_TERMINATE_WAIT);
20598 		mutex_enter(SD_MUTEX(un));
20599 	}
20600 
20601 	/*
20602 	 * Update the capacity kstat value, if no media previously
20603 	 * (capacity kstat is 0) and a media has been inserted
20604 	 * (un_f_blockcount_is_valid == TRUE)
20605 	 */
20606 	if (un->un_errstats) {
20607 		struct sd_errstats	*stp = NULL;
20608 
20609 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
20610 		if ((stp->sd_capacity.value.ui64 == 0) &&
20611 		    (un->un_f_blockcount_is_valid == TRUE)) {
20612 			stp->sd_capacity.value.ui64 =
20613 			    (uint64_t)((uint64_t)un->un_blockcount *
20614 			    un->un_sys_blocksize);
20615 		}
20616 	}
20617 	mutex_exit(SD_MUTEX(un));
20618 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
20619 	return (rval);
20620 }
20621 
20622 
20623 /*
20624  *    Function: sd_delayed_cv_broadcast
20625  *
20626  * Description: Delayed cv_broadcast to allow for target to recover from media
20627  *		insertion.
20628  *
20629  *   Arguments: arg - driver soft state (unit) structure
20630  */
20631 
20632 static void
20633 sd_delayed_cv_broadcast(void *arg)
20634 {
20635 	struct sd_lun *un = arg;
20636 
20637 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
20638 
20639 	mutex_enter(SD_MUTEX(un));
20640 	un->un_dcvb_timeid = NULL;
20641 	cv_broadcast(&un->un_state_cv);
20642 	mutex_exit(SD_MUTEX(un));
20643 }
20644 
20645 
20646 /*
20647  *    Function: sd_media_watch_cb
20648  *
20649  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
20650  *		routine processes the TUR sense data and updates the driver
20651  *		state if a transition has occurred. The user thread
20652  *		(sd_check_media) is then signalled.
20653  *
20654  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
20655  *			among multiple watches that share this callback function
20656  *		resultp - scsi watch facility result packet containing scsi
20657  *			  packet, status byte and sense data
20658  *
20659  * Return Code: 0 for success, -1 for failure
20660  */
20661 
20662 static int
20663 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
20664 {
20665 	struct sd_lun			*un;
20666 	struct scsi_status		*statusp = resultp->statusp;
20667 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
20668 	enum dkio_state			state = DKIO_NONE;
20669 	dev_t				dev = (dev_t)arg;
20670 	uchar_t				actual_sense_length;
20671 	uint8_t				skey, asc, ascq;
20672 
20673 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20674 		return (-1);
20675 	}
20676 	actual_sense_length = resultp->actual_sense_length;
20677 
20678 	mutex_enter(SD_MUTEX(un));
20679 	SD_TRACE(SD_LOG_COMMON, un,
20680 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
20681 	    *((char *)statusp), (void *)sensep, actual_sense_length);
20682 
20683 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
20684 		un->un_mediastate = DKIO_DEV_GONE;
20685 		cv_broadcast(&un->un_state_cv);
20686 		mutex_exit(SD_MUTEX(un));
20687 
20688 		return (0);
20689 	}
20690 
20691 	/*
20692 	 * If there was a check condition then sensep points to valid sense data
20693 	 * If status was not a check condition but a reservation or busy status
20694 	 * then the new state is DKIO_NONE
20695 	 */
20696 	if (sensep != NULL) {
20697 		skey = scsi_sense_key(sensep);
20698 		asc = scsi_sense_asc(sensep);
20699 		ascq = scsi_sense_ascq(sensep);
20700 
20701 		SD_INFO(SD_LOG_COMMON, un,
20702 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
20703 		    skey, asc, ascq);
20704 		/* This routine only uses up to 13 bytes of sense data. */
20705 		if (actual_sense_length >= 13) {
20706 			if (skey == KEY_UNIT_ATTENTION) {
20707 				if (asc == 0x28) {
20708 					state = DKIO_INSERTED;
20709 				}
20710 			} else if (skey == KEY_NOT_READY) {
20711 				/*
20712 				 * if 02/04/02  means that the host
20713 				 * should send start command. Explicitly
20714 				 * leave the media state as is
20715 				 * (inserted) as the media is inserted
20716 				 * and host has stopped device for PM
20717 				 * reasons. Upon next true read/write
20718 				 * to this media will bring the
20719 				 * device to the right state good for
20720 				 * media access.
20721 				 */
20722 				if (asc == 0x3a) {
20723 					state = DKIO_EJECTED;
20724 				} else {
20725 					/*
20726 					 * If the drive is busy with an
20727 					 * operation or long write, keep the
20728 					 * media in an inserted state.
20729 					 */
20730 
20731 					if ((asc == 0x04) &&
20732 					    ((ascq == 0x02) ||
20733 					    (ascq == 0x07) ||
20734 					    (ascq == 0x08))) {
20735 						state = DKIO_INSERTED;
20736 					}
20737 				}
20738 			} else if (skey == KEY_NO_SENSE) {
20739 				if ((asc == 0x00) && (ascq == 0x00)) {
20740 					/*
20741 					 * Sense Data 00/00/00 does not provide
20742 					 * any information about the state of
20743 					 * the media. Ignore it.
20744 					 */
20745 					mutex_exit(SD_MUTEX(un));
20746 					return (0);
20747 				}
20748 			}
20749 		}
20750 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
20751 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
20752 		state = DKIO_INSERTED;
20753 	}
20754 
20755 	SD_TRACE(SD_LOG_COMMON, un,
20756 	    "sd_media_watch_cb: state=%x, specified=%x\n",
20757 	    state, un->un_specified_mediastate);
20758 
20759 	/*
20760 	 * now signal the waiting thread if this is *not* the specified state;
20761 	 * delay the signal if the state is DKIO_INSERTED to allow the target
20762 	 * to recover
20763 	 */
20764 	if (state != un->un_specified_mediastate) {
20765 		un->un_mediastate = state;
20766 		if (state == DKIO_INSERTED) {
20767 			/*
20768 			 * delay the signal to give the drive a chance
20769 			 * to do what it apparently needs to do
20770 			 */
20771 			SD_TRACE(SD_LOG_COMMON, un,
20772 			    "sd_media_watch_cb: delayed cv_broadcast\n");
20773 			if (un->un_dcvb_timeid == NULL) {
20774 				un->un_dcvb_timeid =
20775 				    timeout(sd_delayed_cv_broadcast, un,
20776 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
20777 			}
20778 		} else {
20779 			SD_TRACE(SD_LOG_COMMON, un,
20780 			    "sd_media_watch_cb: immediate cv_broadcast\n");
20781 			cv_broadcast(&un->un_state_cv);
20782 		}
20783 	}
20784 	mutex_exit(SD_MUTEX(un));
20785 	return (0);
20786 }
20787 
20788 
20789 /*
20790  *    Function: sd_dkio_get_temp
20791  *
20792  * Description: This routine is the driver entry point for handling ioctl
20793  *		requests to get the disk temperature.
20794  *
20795  *   Arguments: dev  - the device number
20796  *		arg  - pointer to user provided dk_temperature structure.
20797  *		flag - this argument is a pass through to ddi_copyxxx()
20798  *		       directly from the mode argument of ioctl().
20799  *
20800  * Return Code: 0
20801  *		EFAULT
20802  *		ENXIO
20803  *		EAGAIN
20804  */
20805 
20806 static int
20807 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
20808 {
20809 	struct sd_lun		*un = NULL;
20810 	struct dk_temperature	*dktemp = NULL;
20811 	uchar_t			*temperature_page;
20812 	int			rval = 0;
20813 	int			path_flag = SD_PATH_STANDARD;
20814 
20815 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20816 		return (ENXIO);
20817 	}
20818 
20819 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
20820 
20821 	/* copyin the disk temp argument to get the user flags */
20822 	if (ddi_copyin((void *)arg, dktemp,
20823 	    sizeof (struct dk_temperature), flag) != 0) {
20824 		rval = EFAULT;
20825 		goto done;
20826 	}
20827 
20828 	/* Initialize the temperature to invalid. */
20829 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
20830 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
20831 
20832 	/*
20833 	 * Note: Investigate removing the "bypass pm" semantic.
20834 	 * Can we just bypass PM always?
20835 	 */
20836 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
20837 		path_flag = SD_PATH_DIRECT;
20838 		ASSERT(!mutex_owned(&un->un_pm_mutex));
20839 		mutex_enter(&un->un_pm_mutex);
20840 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
20841 			/*
20842 			 * If DKT_BYPASS_PM is set, and the drive happens to be
20843 			 * in low power mode, we can not wake it up, Need to
20844 			 * return EAGAIN.
20845 			 */
20846 			mutex_exit(&un->un_pm_mutex);
20847 			rval = EAGAIN;
20848 			goto done;
20849 		} else {
20850 			/*
20851 			 * Indicate to PM the device is busy. This is required
20852 			 * to avoid a race - i.e. the ioctl is issuing a
20853 			 * command and the pm framework brings down the device
20854 			 * to low power mode (possible power cut-off on some
20855 			 * platforms).
20856 			 */
20857 			mutex_exit(&un->un_pm_mutex);
20858 			if (sd_pm_entry(un) != DDI_SUCCESS) {
20859 				rval = EAGAIN;
20860 				goto done;
20861 			}
20862 		}
20863 	}
20864 
20865 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
20866 
20867 	if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page,
20868 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) {
20869 		goto done2;
20870 	}
20871 
20872 	/*
20873 	 * For the current temperature verify that the parameter length is 0x02
20874 	 * and the parameter code is 0x00
20875 	 */
20876 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
20877 	    (temperature_page[5] == 0x00)) {
20878 		if (temperature_page[9] == 0xFF) {
20879 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
20880 		} else {
20881 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
20882 		}
20883 	}
20884 
20885 	/*
20886 	 * For the reference temperature verify that the parameter
20887 	 * length is 0x02 and the parameter code is 0x01
20888 	 */
20889 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
20890 	    (temperature_page[11] == 0x01)) {
20891 		if (temperature_page[15] == 0xFF) {
20892 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
20893 		} else {
20894 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
20895 		}
20896 	}
20897 
20898 	/* Do the copyout regardless of the temperature commands status. */
20899 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
20900 	    flag) != 0) {
20901 		rval = EFAULT;
20902 	}
20903 
20904 done2:
20905 	if (path_flag == SD_PATH_DIRECT) {
20906 		sd_pm_exit(un);
20907 	}
20908 
20909 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
20910 done:
20911 	if (dktemp != NULL) {
20912 		kmem_free(dktemp, sizeof (struct dk_temperature));
20913 	}
20914 
20915 	return (rval);
20916 }
20917 
20918 
20919 /*
20920  *    Function: sd_log_page_supported
20921  *
20922  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
20923  *		supported log pages.
20924  *
20925  *   Arguments: un -
20926  *		log_page -
20927  *
20928  * Return Code: -1 - on error (log sense is optional and may not be supported).
20929  *		0  - log page not found.
20930  *  		1  - log page found.
20931  */
20932 
20933 static int
20934 sd_log_page_supported(struct sd_lun *un, int log_page)
20935 {
20936 	uchar_t *log_page_data;
20937 	int	i;
20938 	int	match = 0;
20939 	int	log_size;
20940 
20941 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
20942 
20943 	if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0,
20944 	    SD_PATH_DIRECT) != 0) {
20945 		SD_ERROR(SD_LOG_COMMON, un,
20946 		    "sd_log_page_supported: failed log page retrieval\n");
20947 		kmem_free(log_page_data, 0xFF);
20948 		return (-1);
20949 	}
20950 	log_size = log_page_data[3];
20951 
20952 	/*
20953 	 * The list of supported log pages start from the fourth byte. Check
20954 	 * until we run out of log pages or a match is found.
20955 	 */
20956 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
20957 		if (log_page_data[i] == log_page) {
20958 			match++;
20959 		}
20960 	}
20961 	kmem_free(log_page_data, 0xFF);
20962 	return (match);
20963 }
20964 
20965 
20966 /*
20967  *    Function: sd_mhdioc_failfast
20968  *
20969  * Description: This routine is the driver entry point for handling ioctl
20970  *		requests to enable/disable the multihost failfast option.
20971  *		(MHIOCENFAILFAST)
20972  *
20973  *   Arguments: dev	- the device number
20974  *		arg	- user specified probing interval.
20975  *		flag	- this argument is a pass through to ddi_copyxxx()
20976  *			  directly from the mode argument of ioctl().
20977  *
20978  * Return Code: 0
20979  *		EFAULT
20980  *		ENXIO
20981  */
20982 
20983 static int
20984 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
20985 {
20986 	struct sd_lun	*un = NULL;
20987 	int		mh_time;
20988 	int		rval = 0;
20989 
20990 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20991 		return (ENXIO);
20992 	}
20993 
20994 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
20995 		return (EFAULT);
20996 
20997 	if (mh_time) {
20998 		mutex_enter(SD_MUTEX(un));
20999 		un->un_resvd_status |= SD_FAILFAST;
21000 		mutex_exit(SD_MUTEX(un));
21001 		/*
21002 		 * If mh_time is INT_MAX, then this ioctl is being used for
21003 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
21004 		 */
21005 		if (mh_time != INT_MAX) {
21006 			rval = sd_check_mhd(dev, mh_time);
21007 		}
21008 	} else {
21009 		(void) sd_check_mhd(dev, 0);
21010 		mutex_enter(SD_MUTEX(un));
21011 		un->un_resvd_status &= ~SD_FAILFAST;
21012 		mutex_exit(SD_MUTEX(un));
21013 	}
21014 	return (rval);
21015 }
21016 
21017 
21018 /*
21019  *    Function: sd_mhdioc_takeown
21020  *
21021  * Description: This routine is the driver entry point for handling ioctl
21022  *		requests to forcefully acquire exclusive access rights to the
21023  *		multihost disk (MHIOCTKOWN).
21024  *
21025  *   Arguments: dev	- the device number
21026  *		arg	- user provided structure specifying the delay
21027  *			  parameters in milliseconds
21028  *		flag	- this argument is a pass through to ddi_copyxxx()
21029  *			  directly from the mode argument of ioctl().
21030  *
21031  * Return Code: 0
21032  *		EFAULT
21033  *		ENXIO
21034  */
21035 
21036 static int
21037 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
21038 {
21039 	struct sd_lun		*un = NULL;
21040 	struct mhioctkown	*tkown = NULL;
21041 	int			rval = 0;
21042 
21043 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21044 		return (ENXIO);
21045 	}
21046 
21047 	if (arg != NULL) {
21048 		tkown = (struct mhioctkown *)
21049 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
21050 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
21051 		if (rval != 0) {
21052 			rval = EFAULT;
21053 			goto error;
21054 		}
21055 	}
21056 
21057 	rval = sd_take_ownership(dev, tkown);
21058 	mutex_enter(SD_MUTEX(un));
21059 	if (rval == 0) {
21060 		un->un_resvd_status |= SD_RESERVE;
21061 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
21062 			sd_reinstate_resv_delay =
21063 			    tkown->reinstate_resv_delay * 1000;
21064 		} else {
21065 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
21066 		}
21067 		/*
21068 		 * Give the scsi_watch routine interval set by
21069 		 * the MHIOCENFAILFAST ioctl precedence here.
21070 		 */
21071 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
21072 			mutex_exit(SD_MUTEX(un));
21073 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
21074 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
21075 			    "sd_mhdioc_takeown : %d\n",
21076 			    sd_reinstate_resv_delay);
21077 		} else {
21078 			mutex_exit(SD_MUTEX(un));
21079 		}
21080 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
21081 		    sd_mhd_reset_notify_cb, (caddr_t)un);
21082 	} else {
21083 		un->un_resvd_status &= ~SD_RESERVE;
21084 		mutex_exit(SD_MUTEX(un));
21085 	}
21086 
21087 error:
21088 	if (tkown != NULL) {
21089 		kmem_free(tkown, sizeof (struct mhioctkown));
21090 	}
21091 	return (rval);
21092 }
21093 
21094 
21095 /*
21096  *    Function: sd_mhdioc_release
21097  *
21098  * Description: This routine is the driver entry point for handling ioctl
21099  *		requests to release exclusive access rights to the multihost
21100  *		disk (MHIOCRELEASE).
21101  *
21102  *   Arguments: dev	- the device number
21103  *
21104  * Return Code: 0
21105  *		ENXIO
21106  */
21107 
21108 static int
21109 sd_mhdioc_release(dev_t dev)
21110 {
21111 	struct sd_lun		*un = NULL;
21112 	timeout_id_t		resvd_timeid_save;
21113 	int			resvd_status_save;
21114 	int			rval = 0;
21115 
21116 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21117 		return (ENXIO);
21118 	}
21119 
21120 	mutex_enter(SD_MUTEX(un));
21121 	resvd_status_save = un->un_resvd_status;
21122 	un->un_resvd_status &=
21123 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
21124 	if (un->un_resvd_timeid) {
21125 		resvd_timeid_save = un->un_resvd_timeid;
21126 		un->un_resvd_timeid = NULL;
21127 		mutex_exit(SD_MUTEX(un));
21128 		(void) untimeout(resvd_timeid_save);
21129 	} else {
21130 		mutex_exit(SD_MUTEX(un));
21131 	}
21132 
21133 	/*
21134 	 * destroy any pending timeout thread that may be attempting to
21135 	 * reinstate reservation on this device.
21136 	 */
21137 	sd_rmv_resv_reclaim_req(dev);
21138 
21139 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
21140 		mutex_enter(SD_MUTEX(un));
21141 		if ((un->un_mhd_token) &&
21142 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
21143 			mutex_exit(SD_MUTEX(un));
21144 			(void) sd_check_mhd(dev, 0);
21145 		} else {
21146 			mutex_exit(SD_MUTEX(un));
21147 		}
21148 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
21149 		    sd_mhd_reset_notify_cb, (caddr_t)un);
21150 	} else {
21151 		/*
21152 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
21153 		 */
21154 		mutex_enter(SD_MUTEX(un));
21155 		un->un_resvd_status = resvd_status_save;
21156 		mutex_exit(SD_MUTEX(un));
21157 	}
21158 	return (rval);
21159 }
21160 
21161 
21162 /*
21163  *    Function: sd_mhdioc_register_devid
21164  *
21165  * Description: This routine is the driver entry point for handling ioctl
21166  *		requests to register the device id (MHIOCREREGISTERDEVID).
21167  *
21168  *		Note: The implementation for this ioctl has been updated to
21169  *		be consistent with the original PSARC case (1999/357)
21170  *		(4375899, 4241671, 4220005)
21171  *
21172  *   Arguments: dev	- the device number
21173  *
21174  * Return Code: 0
21175  *		ENXIO
21176  */
21177 
21178 static int
21179 sd_mhdioc_register_devid(dev_t dev)
21180 {
21181 	struct sd_lun	*un = NULL;
21182 	int		rval = 0;
21183 
21184 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21185 		return (ENXIO);
21186 	}
21187 
21188 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21189 
21190 	mutex_enter(SD_MUTEX(un));
21191 
21192 	/* If a devid already exists, de-register it */
21193 	if (un->un_devid != NULL) {
21194 		ddi_devid_unregister(SD_DEVINFO(un));
21195 		/*
21196 		 * After unregister devid, needs to free devid memory
21197 		 */
21198 		ddi_devid_free(un->un_devid);
21199 		un->un_devid = NULL;
21200 	}
21201 
21202 	/* Check for reservation conflict */
21203 	mutex_exit(SD_MUTEX(un));
21204 	rval = sd_send_scsi_TEST_UNIT_READY(un, 0);
21205 	mutex_enter(SD_MUTEX(un));
21206 
21207 	switch (rval) {
21208 	case 0:
21209 		sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
21210 		break;
21211 	case EACCES:
21212 		break;
21213 	default:
21214 		rval = EIO;
21215 	}
21216 
21217 	mutex_exit(SD_MUTEX(un));
21218 	return (rval);
21219 }
21220 
21221 
21222 /*
21223  *    Function: sd_mhdioc_inkeys
21224  *
21225  * Description: This routine is the driver entry point for handling ioctl
21226  *		requests to issue the SCSI-3 Persistent In Read Keys command
21227  *		to the device (MHIOCGRP_INKEYS).
21228  *
21229  *   Arguments: dev	- the device number
21230  *		arg	- user provided in_keys structure
21231  *		flag	- this argument is a pass through to ddi_copyxxx()
21232  *			  directly from the mode argument of ioctl().
21233  *
21234  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
21235  *		ENXIO
21236  *		EFAULT
21237  */
21238 
21239 static int
21240 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
21241 {
21242 	struct sd_lun		*un;
21243 	mhioc_inkeys_t		inkeys;
21244 	int			rval = 0;
21245 
21246 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21247 		return (ENXIO);
21248 	}
21249 
21250 #ifdef _MULTI_DATAMODEL
21251 	switch (ddi_model_convert_from(flag & FMODELS)) {
21252 	case DDI_MODEL_ILP32: {
21253 		struct mhioc_inkeys32	inkeys32;
21254 
21255 		if (ddi_copyin(arg, &inkeys32,
21256 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
21257 			return (EFAULT);
21258 		}
21259 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
21260 		if ((rval = sd_persistent_reservation_in_read_keys(un,
21261 		    &inkeys, flag)) != 0) {
21262 			return (rval);
21263 		}
21264 		inkeys32.generation = inkeys.generation;
21265 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
21266 		    flag) != 0) {
21267 			return (EFAULT);
21268 		}
21269 		break;
21270 	}
21271 	case DDI_MODEL_NONE:
21272 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
21273 		    flag) != 0) {
21274 			return (EFAULT);
21275 		}
21276 		if ((rval = sd_persistent_reservation_in_read_keys(un,
21277 		    &inkeys, flag)) != 0) {
21278 			return (rval);
21279 		}
21280 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
21281 		    flag) != 0) {
21282 			return (EFAULT);
21283 		}
21284 		break;
21285 	}
21286 
21287 #else /* ! _MULTI_DATAMODEL */
21288 
21289 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
21290 		return (EFAULT);
21291 	}
21292 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
21293 	if (rval != 0) {
21294 		return (rval);
21295 	}
21296 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
21297 		return (EFAULT);
21298 	}
21299 
21300 #endif /* _MULTI_DATAMODEL */
21301 
21302 	return (rval);
21303 }
21304 
21305 
21306 /*
21307  *    Function: sd_mhdioc_inresv
21308  *
21309  * Description: This routine is the driver entry point for handling ioctl
21310  *		requests to issue the SCSI-3 Persistent In Read Reservations
21311  *		command to the device (MHIOCGRP_INKEYS).
21312  *
21313  *   Arguments: dev	- the device number
21314  *		arg	- user provided in_resv structure
21315  *		flag	- this argument is a pass through to ddi_copyxxx()
21316  *			  directly from the mode argument of ioctl().
21317  *
21318  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
21319  *		ENXIO
21320  *		EFAULT
21321  */
21322 
21323 static int
21324 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
21325 {
21326 	struct sd_lun		*un;
21327 	mhioc_inresvs_t		inresvs;
21328 	int			rval = 0;
21329 
21330 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21331 		return (ENXIO);
21332 	}
21333 
21334 #ifdef _MULTI_DATAMODEL
21335 
21336 	switch (ddi_model_convert_from(flag & FMODELS)) {
21337 	case DDI_MODEL_ILP32: {
21338 		struct mhioc_inresvs32	inresvs32;
21339 
21340 		if (ddi_copyin(arg, &inresvs32,
21341 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
21342 			return (EFAULT);
21343 		}
21344 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
21345 		if ((rval = sd_persistent_reservation_in_read_resv(un,
21346 		    &inresvs, flag)) != 0) {
21347 			return (rval);
21348 		}
21349 		inresvs32.generation = inresvs.generation;
21350 		if (ddi_copyout(&inresvs32, arg,
21351 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
21352 			return (EFAULT);
21353 		}
21354 		break;
21355 	}
21356 	case DDI_MODEL_NONE:
21357 		if (ddi_copyin(arg, &inresvs,
21358 		    sizeof (mhioc_inresvs_t), flag) != 0) {
21359 			return (EFAULT);
21360 		}
21361 		if ((rval = sd_persistent_reservation_in_read_resv(un,
21362 		    &inresvs, flag)) != 0) {
21363 			return (rval);
21364 		}
21365 		if (ddi_copyout(&inresvs, arg,
21366 		    sizeof (mhioc_inresvs_t), flag) != 0) {
21367 			return (EFAULT);
21368 		}
21369 		break;
21370 	}
21371 
21372 #else /* ! _MULTI_DATAMODEL */
21373 
21374 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
21375 		return (EFAULT);
21376 	}
21377 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
21378 	if (rval != 0) {
21379 		return (rval);
21380 	}
21381 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
21382 		return (EFAULT);
21383 	}
21384 
21385 #endif /* ! _MULTI_DATAMODEL */
21386 
21387 	return (rval);
21388 }
21389 
21390 
21391 /*
21392  * The following routines support the clustering functionality described below
21393  * and implement lost reservation reclaim functionality.
21394  *
21395  * Clustering
21396  * ----------
21397  * The clustering code uses two different, independent forms of SCSI
21398  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
21399  * Persistent Group Reservations. For any particular disk, it will use either
21400  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
21401  *
21402  * SCSI-2
21403  * The cluster software takes ownership of a multi-hosted disk by issuing the
21404  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
21405  * MHIOCRELEASE ioctl.  Closely related is the MHIOCENFAILFAST ioctl -- a
21406  * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl
21407  * then issues the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the
21408  * driver. The meaning of failfast is that if the driver (on this host) ever
21409  * encounters the scsi error return code RESERVATION_CONFLICT from the device,
21410  * it should immediately panic the host. The motivation for this ioctl is that
21411  * if this host does encounter reservation conflict, the underlying cause is
21412  * that some other host of the cluster has decided that this host is no longer
21413  * in the cluster and has seized control of the disks for itself. Since this
21414  * host is no longer in the cluster, it ought to panic itself. The
21415  * MHIOCENFAILFAST ioctl does two things:
21416  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
21417  *      error to panic the host
21418  *      (b) it sets up a periodic timer to test whether this host still has
21419  *      "access" (in that no other host has reserved the device):  if the
21420  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
21421  *      purpose of that periodic timer is to handle scenarios where the host is
21422  *      otherwise temporarily quiescent, temporarily doing no real i/o.
21423  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
21424  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
21425  * the device itself.
21426  *
21427  * SCSI-3 PGR
21428  * A direct semantic implementation of the SCSI-3 Persistent Reservation
21429  * facility is supported through the shared multihost disk ioctls
21430  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
21431  * MHIOCGRP_PREEMPTANDABORT)
21432  *
21433  * Reservation Reclaim:
21434  * --------------------
21435  * To support the lost reservation reclaim operations this driver creates a
21436  * single thread to handle reinstating reservations on all devices that have
21437  * lost reservations sd_resv_reclaim_requests are logged for all devices that
21438  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
21439  * and the reservation reclaim thread loops through the requests to regain the
21440  * lost reservations.
21441  */
21442 
21443 /*
21444  *    Function: sd_check_mhd()
21445  *
21446  * Description: This function sets up and submits a scsi watch request or
21447  *		terminates an existing watch request. This routine is used in
21448  *		support of reservation reclaim.
21449  *
21450  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
21451  *			 among multiple watches that share the callback function
21452  *		interval - the number of microseconds specifying the watch
21453  *			   interval for issuing TEST UNIT READY commands. If
21454  *			   set to 0 the watch should be terminated. If the
21455  *			   interval is set to 0 and if the device is required
21456  *			   to hold reservation while disabling failfast, the
21457  *			   watch is restarted with an interval of
21458  *			   reinstate_resv_delay.
21459  *
21460  * Return Code: 0	   - Successful submit/terminate of scsi watch request
21461  *		ENXIO      - Indicates an invalid device was specified
21462  *		EAGAIN     - Unable to submit the scsi watch request
21463  */
21464 
21465 static int
21466 sd_check_mhd(dev_t dev, int interval)
21467 {
21468 	struct sd_lun	*un;
21469 	opaque_t	token;
21470 
21471 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21472 		return (ENXIO);
21473 	}
21474 
21475 	/* is this a watch termination request? */
21476 	if (interval == 0) {
21477 		mutex_enter(SD_MUTEX(un));
21478 		/* if there is an existing watch task then terminate it */
21479 		if (un->un_mhd_token) {
21480 			token = un->un_mhd_token;
21481 			un->un_mhd_token = NULL;
21482 			mutex_exit(SD_MUTEX(un));
21483 			(void) scsi_watch_request_terminate(token,
21484 			    SCSI_WATCH_TERMINATE_WAIT);
21485 			mutex_enter(SD_MUTEX(un));
21486 		} else {
21487 			mutex_exit(SD_MUTEX(un));
21488 			/*
21489 			 * Note: If we return here we don't check for the
21490 			 * failfast case. This is the original legacy
21491 			 * implementation but perhaps we should be checking
21492 			 * the failfast case.
21493 			 */
21494 			return (0);
21495 		}
21496 		/*
21497 		 * If the device is required to hold reservation while
21498 		 * disabling failfast, we need to restart the scsi_watch
21499 		 * routine with an interval of reinstate_resv_delay.
21500 		 */
21501 		if (un->un_resvd_status & SD_RESERVE) {
21502 			interval = sd_reinstate_resv_delay/1000;
21503 		} else {
21504 			/* no failfast so bail */
21505 			mutex_exit(SD_MUTEX(un));
21506 			return (0);
21507 		}
21508 		mutex_exit(SD_MUTEX(un));
21509 	}
21510 
21511 	/*
21512 	 * adjust minimum time interval to 1 second,
21513 	 * and convert from msecs to usecs
21514 	 */
21515 	if (interval > 0 && interval < 1000) {
21516 		interval = 1000;
21517 	}
21518 	interval *= 1000;
21519 
21520 	/*
21521 	 * submit the request to the scsi_watch service
21522 	 */
21523 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
21524 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
21525 	if (token == NULL) {
21526 		return (EAGAIN);
21527 	}
21528 
21529 	/*
21530 	 * save token for termination later on
21531 	 */
21532 	mutex_enter(SD_MUTEX(un));
21533 	un->un_mhd_token = token;
21534 	mutex_exit(SD_MUTEX(un));
21535 	return (0);
21536 }
21537 
21538 
21539 /*
21540  *    Function: sd_mhd_watch_cb()
21541  *
21542  * Description: This function is the call back function used by the scsi watch
21543  *		facility. The scsi watch facility sends the "Test Unit Ready"
21544  *		and processes the status. If applicable (i.e. a "Unit Attention"
21545  *		status and automatic "Request Sense" not used) the scsi watch
21546  *		facility will send a "Request Sense" and retrieve the sense data
21547  *		to be passed to this callback function. In either case the
21548  *		automatic "Request Sense" or the facility submitting one, this
21549  *		callback is passed the status and sense data.
21550  *
21551  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
21552  *			among multiple watches that share this callback function
21553  *		resultp - scsi watch facility result packet containing scsi
21554  *			  packet, status byte and sense data
21555  *
21556  * Return Code: 0 - continue the watch task
21557  *		non-zero - terminate the watch task
21558  */
21559 
21560 static int
21561 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
21562 {
21563 	struct sd_lun			*un;
21564 	struct scsi_status		*statusp;
21565 	uint8_t				*sensep;
21566 	struct scsi_pkt			*pkt;
21567 	uchar_t				actual_sense_length;
21568 	dev_t  				dev = (dev_t)arg;
21569 
21570 	ASSERT(resultp != NULL);
21571 	statusp			= resultp->statusp;
21572 	sensep			= (uint8_t *)resultp->sensep;
21573 	pkt			= resultp->pkt;
21574 	actual_sense_length	= resultp->actual_sense_length;
21575 
21576 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21577 		return (ENXIO);
21578 	}
21579 
21580 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
21581 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
21582 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
21583 
21584 	/* Begin processing of the status and/or sense data */
21585 	if (pkt->pkt_reason != CMD_CMPLT) {
21586 		/* Handle the incomplete packet */
21587 		sd_mhd_watch_incomplete(un, pkt);
21588 		return (0);
21589 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
21590 		if (*((unsigned char *)statusp)
21591 		    == STATUS_RESERVATION_CONFLICT) {
21592 			/*
21593 			 * Handle a reservation conflict by panicking if
21594 			 * configured for failfast or by logging the conflict
21595 			 * and updating the reservation status
21596 			 */
21597 			mutex_enter(SD_MUTEX(un));
21598 			if ((un->un_resvd_status & SD_FAILFAST) &&
21599 			    (sd_failfast_enable)) {
21600 				sd_panic_for_res_conflict(un);
21601 				/*NOTREACHED*/
21602 			}
21603 			SD_INFO(SD_LOG_IOCTL_MHD, un,
21604 			    "sd_mhd_watch_cb: Reservation Conflict\n");
21605 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
21606 			mutex_exit(SD_MUTEX(un));
21607 		}
21608 	}
21609 
21610 	if (sensep != NULL) {
21611 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
21612 			mutex_enter(SD_MUTEX(un));
21613 			if ((scsi_sense_asc(sensep) ==
21614 			    SD_SCSI_RESET_SENSE_CODE) &&
21615 			    (un->un_resvd_status & SD_RESERVE)) {
21616 				/*
21617 				 * The additional sense code indicates a power
21618 				 * on or bus device reset has occurred; update
21619 				 * the reservation status.
21620 				 */
21621 				un->un_resvd_status |=
21622 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
21623 				SD_INFO(SD_LOG_IOCTL_MHD, un,
21624 				    "sd_mhd_watch_cb: Lost Reservation\n");
21625 			}
21626 		} else {
21627 			return (0);
21628 		}
21629 	} else {
21630 		mutex_enter(SD_MUTEX(un));
21631 	}
21632 
21633 	if ((un->un_resvd_status & SD_RESERVE) &&
21634 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
21635 		if (un->un_resvd_status & SD_WANT_RESERVE) {
21636 			/*
21637 			 * A reset occurred in between the last probe and this
21638 			 * one so if a timeout is pending cancel it.
21639 			 */
21640 			if (un->un_resvd_timeid) {
21641 				timeout_id_t temp_id = un->un_resvd_timeid;
21642 				un->un_resvd_timeid = NULL;
21643 				mutex_exit(SD_MUTEX(un));
21644 				(void) untimeout(temp_id);
21645 				mutex_enter(SD_MUTEX(un));
21646 			}
21647 			un->un_resvd_status &= ~SD_WANT_RESERVE;
21648 		}
21649 		if (un->un_resvd_timeid == 0) {
21650 			/* Schedule a timeout to handle the lost reservation */
21651 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
21652 			    (void *)dev,
21653 			    drv_usectohz(sd_reinstate_resv_delay));
21654 		}
21655 	}
21656 	mutex_exit(SD_MUTEX(un));
21657 	return (0);
21658 }
21659 
21660 
21661 /*
21662  *    Function: sd_mhd_watch_incomplete()
21663  *
21664  * Description: This function is used to find out why a scsi pkt sent by the
21665  *		scsi watch facility was not completed. Under some scenarios this
21666  *		routine will return. Otherwise it will send a bus reset to see
21667  *		if the drive is still online.
21668  *
21669  *   Arguments: un  - driver soft state (unit) structure
21670  *		pkt - incomplete scsi pkt
21671  */
21672 
21673 static void
21674 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
21675 {
21676 	int	be_chatty;
21677 	int	perr;
21678 
21679 	ASSERT(pkt != NULL);
21680 	ASSERT(un != NULL);
21681 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
21682 	perr		= (pkt->pkt_statistics & STAT_PERR);
21683 
21684 	mutex_enter(SD_MUTEX(un));
21685 	if (un->un_state == SD_STATE_DUMPING) {
21686 		mutex_exit(SD_MUTEX(un));
21687 		return;
21688 	}
21689 
21690 	switch (pkt->pkt_reason) {
21691 	case CMD_UNX_BUS_FREE:
21692 		/*
21693 		 * If we had a parity error that caused the target to drop BSY*,
21694 		 * don't be chatty about it.
21695 		 */
21696 		if (perr && be_chatty) {
21697 			be_chatty = 0;
21698 		}
21699 		break;
21700 	case CMD_TAG_REJECT:
21701 		/*
21702 		 * The SCSI-2 spec states that a tag reject will be sent by the
21703 		 * target if tagged queuing is not supported. A tag reject may
21704 		 * also be sent during certain initialization periods or to
21705 		 * control internal resources. For the latter case the target
21706 		 * may also return Queue Full.
21707 		 *
21708 		 * If this driver receives a tag reject from a target that is
21709 		 * going through an init period or controlling internal
21710 		 * resources tagged queuing will be disabled. This is a less
21711 		 * than optimal behavior but the driver is unable to determine
21712 		 * the target state and assumes tagged queueing is not supported
21713 		 */
21714 		pkt->pkt_flags = 0;
21715 		un->un_tagflags = 0;
21716 
21717 		if (un->un_f_opt_queueing == TRUE) {
21718 			un->un_throttle = min(un->un_throttle, 3);
21719 		} else {
21720 			un->un_throttle = 1;
21721 		}
21722 		mutex_exit(SD_MUTEX(un));
21723 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
21724 		mutex_enter(SD_MUTEX(un));
21725 		break;
21726 	case CMD_INCOMPLETE:
21727 		/*
21728 		 * The transport stopped with an abnormal state, fallthrough and
21729 		 * reset the target and/or bus unless selection did not complete
21730 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
21731 		 * go through a target/bus reset
21732 		 */
21733 		if (pkt->pkt_state == STATE_GOT_BUS) {
21734 			break;
21735 		}
21736 		/*FALLTHROUGH*/
21737 
21738 	case CMD_TIMEOUT:
21739 	default:
21740 		/*
21741 		 * The lun may still be running the command, so a lun reset
21742 		 * should be attempted. If the lun reset fails or cannot be
21743 		 * issued, than try a target reset. Lastly try a bus reset.
21744 		 */
21745 		if ((pkt->pkt_statistics &
21746 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
21747 			int reset_retval = 0;
21748 			mutex_exit(SD_MUTEX(un));
21749 			if (un->un_f_allow_bus_device_reset == TRUE) {
21750 				if (un->un_f_lun_reset_enabled == TRUE) {
21751 					reset_retval =
21752 					    scsi_reset(SD_ADDRESS(un),
21753 					    RESET_LUN);
21754 				}
21755 				if (reset_retval == 0) {
21756 					reset_retval =
21757 					    scsi_reset(SD_ADDRESS(un),
21758 					    RESET_TARGET);
21759 				}
21760 			}
21761 			if (reset_retval == 0) {
21762 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
21763 			}
21764 			mutex_enter(SD_MUTEX(un));
21765 		}
21766 		break;
21767 	}
21768 
21769 	/* A device/bus reset has occurred; update the reservation status. */
21770 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
21771 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
21772 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
21773 			un->un_resvd_status |=
21774 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
21775 			SD_INFO(SD_LOG_IOCTL_MHD, un,
21776 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
21777 		}
21778 	}
21779 
21780 	/*
21781 	 * The disk has been turned off; Update the device state.
21782 	 *
21783 	 * Note: Should we be offlining the disk here?
21784 	 */
21785 	if (pkt->pkt_state == STATE_GOT_BUS) {
21786 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
21787 		    "Disk not responding to selection\n");
21788 		if (un->un_state != SD_STATE_OFFLINE) {
21789 			New_state(un, SD_STATE_OFFLINE);
21790 		}
21791 	} else if (be_chatty) {
21792 		/*
21793 		 * suppress messages if they are all the same pkt reason;
21794 		 * with TQ, many (up to 256) are returned with the same
21795 		 * pkt_reason
21796 		 */
21797 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
21798 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
21799 			    "sd_mhd_watch_incomplete: "
21800 			    "SCSI transport failed: reason '%s'\n",
21801 			    scsi_rname(pkt->pkt_reason));
21802 		}
21803 	}
21804 	un->un_last_pkt_reason = pkt->pkt_reason;
21805 	mutex_exit(SD_MUTEX(un));
21806 }
21807 
21808 
21809 /*
21810  *    Function: sd_sname()
21811  *
21812  * Description: This is a simple little routine to return a string containing
21813  *		a printable description of command status byte for use in
21814  *		logging.
21815  *
21816  *   Arguments: status - pointer to a status byte
21817  *
21818  * Return Code: char * - string containing status description.
21819  */
21820 
21821 static char *
21822 sd_sname(uchar_t status)
21823 {
21824 	switch (status & STATUS_MASK) {
21825 	case STATUS_GOOD:
21826 		return ("good status");
21827 	case STATUS_CHECK:
21828 		return ("check condition");
21829 	case STATUS_MET:
21830 		return ("condition met");
21831 	case STATUS_BUSY:
21832 		return ("busy");
21833 	case STATUS_INTERMEDIATE:
21834 		return ("intermediate");
21835 	case STATUS_INTERMEDIATE_MET:
21836 		return ("intermediate - condition met");
21837 	case STATUS_RESERVATION_CONFLICT:
21838 		return ("reservation_conflict");
21839 	case STATUS_TERMINATED:
21840 		return ("command terminated");
21841 	case STATUS_QFULL:
21842 		return ("queue full");
21843 	default:
21844 		return ("<unknown status>");
21845 	}
21846 }
21847 
21848 
21849 /*
21850  *    Function: sd_mhd_resvd_recover()
21851  *
21852  * Description: This function adds a reservation entry to the
21853  *		sd_resv_reclaim_request list and signals the reservation
21854  *		reclaim thread that there is work pending. If the reservation
21855  *		reclaim thread has not been previously created this function
21856  *		will kick it off.
21857  *
21858  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
21859  *			among multiple watches that share this callback function
21860  *
21861  *     Context: This routine is called by timeout() and is run in interrupt
21862  *		context. It must not sleep or call other functions which may
21863  *		sleep.
21864  */
21865 
21866 static void
21867 sd_mhd_resvd_recover(void *arg)
21868 {
21869 	dev_t			dev = (dev_t)arg;
21870 	struct sd_lun		*un;
21871 	struct sd_thr_request	*sd_treq = NULL;
21872 	struct sd_thr_request	*sd_cur = NULL;
21873 	struct sd_thr_request	*sd_prev = NULL;
21874 	int			already_there = 0;
21875 
21876 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21877 		return;
21878 	}
21879 
21880 	mutex_enter(SD_MUTEX(un));
21881 	un->un_resvd_timeid = NULL;
21882 	if (un->un_resvd_status & SD_WANT_RESERVE) {
21883 		/*
21884 		 * There was a reset so don't issue the reserve, allow the
21885 		 * sd_mhd_watch_cb callback function to notice this and
21886 		 * reschedule the timeout for reservation.
21887 		 */
21888 		mutex_exit(SD_MUTEX(un));
21889 		return;
21890 	}
21891 	mutex_exit(SD_MUTEX(un));
21892 
21893 	/*
21894 	 * Add this device to the sd_resv_reclaim_request list and the
21895 	 * sd_resv_reclaim_thread should take care of the rest.
21896 	 *
21897 	 * Note: We can't sleep in this context so if the memory allocation
21898 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
21899 	 * reschedule the timeout for reservation.  (4378460)
21900 	 */
21901 	sd_treq = (struct sd_thr_request *)
21902 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
21903 	if (sd_treq == NULL) {
21904 		return;
21905 	}
21906 
21907 	sd_treq->sd_thr_req_next = NULL;
21908 	sd_treq->dev = dev;
21909 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
21910 	if (sd_tr.srq_thr_req_head == NULL) {
21911 		sd_tr.srq_thr_req_head = sd_treq;
21912 	} else {
21913 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
21914 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
21915 			if (sd_cur->dev == dev) {
21916 				/*
21917 				 * already in Queue so don't log
21918 				 * another request for the device
21919 				 */
21920 				already_there = 1;
21921 				break;
21922 			}
21923 			sd_prev = sd_cur;
21924 		}
21925 		if (!already_there) {
21926 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
21927 			    "logging request for %lx\n", dev);
21928 			sd_prev->sd_thr_req_next = sd_treq;
21929 		} else {
21930 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
21931 		}
21932 	}
21933 
21934 	/*
21935 	 * Create a kernel thread to do the reservation reclaim and free up this
21936 	 * thread. We cannot block this thread while we go away to do the
21937 	 * reservation reclaim
21938 	 */
21939 	if (sd_tr.srq_resv_reclaim_thread == NULL)
21940 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
21941 		    sd_resv_reclaim_thread, NULL,
21942 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
21943 
21944 	/* Tell the reservation reclaim thread that it has work to do */
21945 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
21946 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
21947 }
21948 
21949 /*
21950  *    Function: sd_resv_reclaim_thread()
21951  *
21952  * Description: This function implements the reservation reclaim operations
21953  *
21954  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
21955  *		      among multiple watches that share this callback function
21956  */
21957 
21958 static void
21959 sd_resv_reclaim_thread()
21960 {
21961 	struct sd_lun		*un;
21962 	struct sd_thr_request	*sd_mhreq;
21963 
21964 	/* Wait for work */
21965 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
21966 	if (sd_tr.srq_thr_req_head == NULL) {
21967 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
21968 		    &sd_tr.srq_resv_reclaim_mutex);
21969 	}
21970 
21971 	/* Loop while we have work */
21972 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
21973 		un = ddi_get_soft_state(sd_state,
21974 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
21975 		if (un == NULL) {
21976 			/*
21977 			 * softstate structure is NULL so just
21978 			 * dequeue the request and continue
21979 			 */
21980 			sd_tr.srq_thr_req_head =
21981 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
21982 			kmem_free(sd_tr.srq_thr_cur_req,
21983 			    sizeof (struct sd_thr_request));
21984 			continue;
21985 		}
21986 
21987 		/* dequeue the request */
21988 		sd_mhreq = sd_tr.srq_thr_cur_req;
21989 		sd_tr.srq_thr_req_head =
21990 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
21991 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
21992 
21993 		/*
21994 		 * Reclaim reservation only if SD_RESERVE is still set. There
21995 		 * may have been a call to MHIOCRELEASE before we got here.
21996 		 */
21997 		mutex_enter(SD_MUTEX(un));
21998 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
21999 			/*
22000 			 * Note: The SD_LOST_RESERVE flag is cleared before
22001 			 * reclaiming the reservation. If this is done after the
22002 			 * call to sd_reserve_release a reservation loss in the
22003 			 * window between pkt completion of reserve cmd and
22004 			 * mutex_enter below may not be recognized
22005 			 */
22006 			un->un_resvd_status &= ~SD_LOST_RESERVE;
22007 			mutex_exit(SD_MUTEX(un));
22008 
22009 			if (sd_reserve_release(sd_mhreq->dev,
22010 			    SD_RESERVE) == 0) {
22011 				mutex_enter(SD_MUTEX(un));
22012 				un->un_resvd_status |= SD_RESERVE;
22013 				mutex_exit(SD_MUTEX(un));
22014 				SD_INFO(SD_LOG_IOCTL_MHD, un,
22015 				    "sd_resv_reclaim_thread: "
22016 				    "Reservation Recovered\n");
22017 			} else {
22018 				mutex_enter(SD_MUTEX(un));
22019 				un->un_resvd_status |= SD_LOST_RESERVE;
22020 				mutex_exit(SD_MUTEX(un));
22021 				SD_INFO(SD_LOG_IOCTL_MHD, un,
22022 				    "sd_resv_reclaim_thread: Failed "
22023 				    "Reservation Recovery\n");
22024 			}
22025 		} else {
22026 			mutex_exit(SD_MUTEX(un));
22027 		}
22028 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22029 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
22030 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22031 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
22032 		/*
22033 		 * wakeup the destroy thread if anyone is waiting on
22034 		 * us to complete.
22035 		 */
22036 		cv_signal(&sd_tr.srq_inprocess_cv);
22037 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
22038 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
22039 	}
22040 
22041 	/*
22042 	 * cleanup the sd_tr structure now that this thread will not exist
22043 	 */
22044 	ASSERT(sd_tr.srq_thr_req_head == NULL);
22045 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
22046 	sd_tr.srq_resv_reclaim_thread = NULL;
22047 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22048 	thread_exit();
22049 }
22050 
22051 
22052 /*
22053  *    Function: sd_rmv_resv_reclaim_req()
22054  *
22055  * Description: This function removes any pending reservation reclaim requests
22056  *		for the specified device.
22057  *
22058  *   Arguments: dev - the device 'dev_t'
22059  */
22060 
22061 static void
22062 sd_rmv_resv_reclaim_req(dev_t dev)
22063 {
22064 	struct sd_thr_request *sd_mhreq;
22065 	struct sd_thr_request *sd_prev;
22066 
22067 	/* Remove a reservation reclaim request from the list */
22068 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22069 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
22070 		/*
22071 		 * We are attempting to reinstate reservation for
22072 		 * this device. We wait for sd_reserve_release()
22073 		 * to return before we return.
22074 		 */
22075 		cv_wait(&sd_tr.srq_inprocess_cv,
22076 		    &sd_tr.srq_resv_reclaim_mutex);
22077 	} else {
22078 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
22079 		if (sd_mhreq && sd_mhreq->dev == dev) {
22080 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
22081 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22082 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22083 			return;
22084 		}
22085 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
22086 			if (sd_mhreq && sd_mhreq->dev == dev) {
22087 				break;
22088 			}
22089 			sd_prev = sd_mhreq;
22090 		}
22091 		if (sd_mhreq != NULL) {
22092 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
22093 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22094 		}
22095 	}
22096 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22097 }
22098 
22099 
22100 /*
22101  *    Function: sd_mhd_reset_notify_cb()
22102  *
22103  * Description: This is a call back function for scsi_reset_notify. This
22104  *		function updates the softstate reserved status and logs the
22105  *		reset. The driver scsi watch facility callback function
22106  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
22107  *		will reclaim the reservation.
22108  *
22109  *   Arguments: arg  - driver soft state (unit) structure
22110  */
22111 
22112 static void
22113 sd_mhd_reset_notify_cb(caddr_t arg)
22114 {
22115 	struct sd_lun *un = (struct sd_lun *)arg;
22116 
22117 	mutex_enter(SD_MUTEX(un));
22118 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
22119 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
22120 		SD_INFO(SD_LOG_IOCTL_MHD, un,
22121 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
22122 	}
22123 	mutex_exit(SD_MUTEX(un));
22124 }
22125 
22126 
22127 /*
22128  *    Function: sd_take_ownership()
22129  *
22130  * Description: This routine implements an algorithm to achieve a stable
22131  *		reservation on disks which don't implement priority reserve,
22132  *		and makes sure that other host lose re-reservation attempts.
22133  *		This algorithm contains of a loop that keeps issuing the RESERVE
22134  *		for some period of time (min_ownership_delay, default 6 seconds)
22135  *		During that loop, it looks to see if there has been a bus device
22136  *		reset or bus reset (both of which cause an existing reservation
22137  *		to be lost). If the reservation is lost issue RESERVE until a
22138  *		period of min_ownership_delay with no resets has gone by, or
22139  *		until max_ownership_delay has expired. This loop ensures that
22140  *		the host really did manage to reserve the device, in spite of
22141  *		resets. The looping for min_ownership_delay (default six
22142  *		seconds) is important to early generation clustering products,
22143  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
22144  *		MHIOCENFAILFAST periodic timer of two seconds. By having
22145  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
22146  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
22147  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
22148  *		have already noticed, via the MHIOCENFAILFAST polling, that it
22149  *		no longer "owns" the disk and will have panicked itself.  Thus,
22150  *		the host issuing the MHIOCTKOWN is assured (with timing
22151  *		dependencies) that by the time it actually starts to use the
22152  *		disk for real work, the old owner is no longer accessing it.
22153  *
22154  *		min_ownership_delay is the minimum amount of time for which the
22155  *		disk must be reserved continuously devoid of resets before the
22156  *		MHIOCTKOWN ioctl will return success.
22157  *
22158  *		max_ownership_delay indicates the amount of time by which the
22159  *		take ownership should succeed or timeout with an error.
22160  *
22161  *   Arguments: dev - the device 'dev_t'
22162  *		*p  - struct containing timing info.
22163  *
22164  * Return Code: 0 for success or error code
22165  */
22166 
22167 static int
22168 sd_take_ownership(dev_t dev, struct mhioctkown *p)
22169 {
22170 	struct sd_lun	*un;
22171 	int		rval;
22172 	int		err;
22173 	int		reservation_count   = 0;
22174 	int		min_ownership_delay =  6000000; /* in usec */
22175 	int		max_ownership_delay = 30000000; /* in usec */
22176 	clock_t		start_time;	/* starting time of this algorithm */
22177 	clock_t		end_time;	/* time limit for giving up */
22178 	clock_t		ownership_time;	/* time limit for stable ownership */
22179 	clock_t		current_time;
22180 	clock_t		previous_current_time;
22181 
22182 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22183 		return (ENXIO);
22184 	}
22185 
22186 	/*
22187 	 * Attempt a device reservation. A priority reservation is requested.
22188 	 */
22189 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
22190 	    != SD_SUCCESS) {
22191 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
22192 		    "sd_take_ownership: return(1)=%d\n", rval);
22193 		return (rval);
22194 	}
22195 
22196 	/* Update the softstate reserved status to indicate the reservation */
22197 	mutex_enter(SD_MUTEX(un));
22198 	un->un_resvd_status |= SD_RESERVE;
22199 	un->un_resvd_status &=
22200 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
22201 	mutex_exit(SD_MUTEX(un));
22202 
22203 	if (p != NULL) {
22204 		if (p->min_ownership_delay != 0) {
22205 			min_ownership_delay = p->min_ownership_delay * 1000;
22206 		}
22207 		if (p->max_ownership_delay != 0) {
22208 			max_ownership_delay = p->max_ownership_delay * 1000;
22209 		}
22210 	}
22211 	SD_INFO(SD_LOG_IOCTL_MHD, un,
22212 	    "sd_take_ownership: min, max delays: %d, %d\n",
22213 	    min_ownership_delay, max_ownership_delay);
22214 
22215 	start_time = ddi_get_lbolt();
22216 	current_time	= start_time;
22217 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
22218 	end_time	= start_time + drv_usectohz(max_ownership_delay);
22219 
22220 	while (current_time - end_time < 0) {
22221 		delay(drv_usectohz(500000));
22222 
22223 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
22224 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
22225 				mutex_enter(SD_MUTEX(un));
22226 				rval = (un->un_resvd_status &
22227 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
22228 				mutex_exit(SD_MUTEX(un));
22229 				break;
22230 			}
22231 		}
22232 		previous_current_time = current_time;
22233 		current_time = ddi_get_lbolt();
22234 		mutex_enter(SD_MUTEX(un));
22235 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
22236 			ownership_time = ddi_get_lbolt() +
22237 			    drv_usectohz(min_ownership_delay);
22238 			reservation_count = 0;
22239 		} else {
22240 			reservation_count++;
22241 		}
22242 		un->un_resvd_status |= SD_RESERVE;
22243 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
22244 		mutex_exit(SD_MUTEX(un));
22245 
22246 		SD_INFO(SD_LOG_IOCTL_MHD, un,
22247 		    "sd_take_ownership: ticks for loop iteration=%ld, "
22248 		    "reservation=%s\n", (current_time - previous_current_time),
22249 		    reservation_count ? "ok" : "reclaimed");
22250 
22251 		if (current_time - ownership_time >= 0 &&
22252 		    reservation_count >= 4) {
22253 			rval = 0; /* Achieved a stable ownership */
22254 			break;
22255 		}
22256 		if (current_time - end_time >= 0) {
22257 			rval = EACCES; /* No ownership in max possible time */
22258 			break;
22259 		}
22260 	}
22261 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
22262 	    "sd_take_ownership: return(2)=%d\n", rval);
22263 	return (rval);
22264 }
22265 
22266 
22267 /*
22268  *    Function: sd_reserve_release()
22269  *
22270  * Description: This function builds and sends scsi RESERVE, RELEASE, and
22271  *		PRIORITY RESERVE commands based on a user specified command type
22272  *
22273  *   Arguments: dev - the device 'dev_t'
22274  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
22275  *		      SD_RESERVE, SD_RELEASE
22276  *
22277  * Return Code: 0 or Error Code
22278  */
22279 
22280 static int
22281 sd_reserve_release(dev_t dev, int cmd)
22282 {
22283 	struct uscsi_cmd	*com = NULL;
22284 	struct sd_lun		*un = NULL;
22285 	char			cdb[CDB_GROUP0];
22286 	int			rval;
22287 
22288 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
22289 	    (cmd == SD_PRIORITY_RESERVE));
22290 
22291 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22292 		return (ENXIO);
22293 	}
22294 
22295 	/* instantiate and initialize the command and cdb */
22296 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
22297 	bzero(cdb, CDB_GROUP0);
22298 	com->uscsi_flags   = USCSI_SILENT;
22299 	com->uscsi_timeout = un->un_reserve_release_time;
22300 	com->uscsi_cdblen  = CDB_GROUP0;
22301 	com->uscsi_cdb	   = cdb;
22302 	if (cmd == SD_RELEASE) {
22303 		cdb[0] = SCMD_RELEASE;
22304 	} else {
22305 		cdb[0] = SCMD_RESERVE;
22306 	}
22307 
22308 	/* Send the command. */
22309 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
22310 	    SD_PATH_STANDARD);
22311 
22312 	/*
22313 	 * "break" a reservation that is held by another host, by issuing a
22314 	 * reset if priority reserve is desired, and we could not get the
22315 	 * device.
22316 	 */
22317 	if ((cmd == SD_PRIORITY_RESERVE) &&
22318 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
22319 		/*
22320 		 * First try to reset the LUN. If we cannot, then try a target
22321 		 * reset, followed by a bus reset if the target reset fails.
22322 		 */
22323 		int reset_retval = 0;
22324 		if (un->un_f_lun_reset_enabled == TRUE) {
22325 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
22326 		}
22327 		if (reset_retval == 0) {
22328 			/* The LUN reset either failed or was not issued */
22329 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
22330 		}
22331 		if ((reset_retval == 0) &&
22332 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
22333 			rval = EIO;
22334 			kmem_free(com, sizeof (*com));
22335 			return (rval);
22336 		}
22337 
22338 		bzero(com, sizeof (struct uscsi_cmd));
22339 		com->uscsi_flags   = USCSI_SILENT;
22340 		com->uscsi_cdb	   = cdb;
22341 		com->uscsi_cdblen  = CDB_GROUP0;
22342 		com->uscsi_timeout = 5;
22343 
22344 		/*
22345 		 * Reissue the last reserve command, this time without request
22346 		 * sense.  Assume that it is just a regular reserve command.
22347 		 */
22348 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
22349 		    SD_PATH_STANDARD);
22350 	}
22351 
22352 	/* Return an error if still getting a reservation conflict. */
22353 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
22354 		rval = EACCES;
22355 	}
22356 
22357 	kmem_free(com, sizeof (*com));
22358 	return (rval);
22359 }
22360 
22361 
22362 #define	SD_NDUMP_RETRIES	12
22363 /*
22364  *	System Crash Dump routine
22365  */
22366 
22367 static int
22368 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
22369 {
22370 	int		instance;
22371 	int		partition;
22372 	int		i;
22373 	int		err;
22374 	struct sd_lun	*un;
22375 	struct scsi_pkt *wr_pktp;
22376 	struct buf	*wr_bp;
22377 	struct buf	wr_buf;
22378 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
22379 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
22380 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
22381 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
22382 	size_t		io_start_offset;
22383 	int		doing_rmw = FALSE;
22384 	int		rval;
22385 #if defined(__i386) || defined(__amd64)
22386 	ssize_t dma_resid;
22387 	daddr_t oblkno;
22388 #endif
22389 	diskaddr_t	nblks = 0;
22390 	diskaddr_t	start_block;
22391 
22392 	instance = SDUNIT(dev);
22393 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
22394 	    !SD_IS_VALID_LABEL(un) || ISCD(un)) {
22395 		return (ENXIO);
22396 	}
22397 
22398 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
22399 
22400 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
22401 
22402 	partition = SDPART(dev);
22403 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
22404 
22405 	/* Validate blocks to dump at against partition size. */
22406 
22407 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
22408 	    &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT);
22409 
22410 	if ((blkno + nblk) > nblks) {
22411 		SD_TRACE(SD_LOG_DUMP, un,
22412 		    "sddump: dump range larger than partition: "
22413 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
22414 		    blkno, nblk, nblks);
22415 		return (EINVAL);
22416 	}
22417 
22418 	mutex_enter(&un->un_pm_mutex);
22419 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
22420 		struct scsi_pkt *start_pktp;
22421 
22422 		mutex_exit(&un->un_pm_mutex);
22423 
22424 		/*
22425 		 * use pm framework to power on HBA 1st
22426 		 */
22427 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
22428 
22429 		/*
22430 		 * Dump no long uses sdpower to power on a device, it's
22431 		 * in-line here so it can be done in polled mode.
22432 		 */
22433 
22434 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
22435 
22436 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
22437 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
22438 
22439 		if (start_pktp == NULL) {
22440 			/* We were not given a SCSI packet, fail. */
22441 			return (EIO);
22442 		}
22443 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
22444 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
22445 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
22446 		start_pktp->pkt_flags = FLAG_NOINTR;
22447 
22448 		mutex_enter(SD_MUTEX(un));
22449 		SD_FILL_SCSI1_LUN(un, start_pktp);
22450 		mutex_exit(SD_MUTEX(un));
22451 		/*
22452 		 * Scsi_poll returns 0 (success) if the command completes and
22453 		 * the status block is STATUS_GOOD.
22454 		 */
22455 		if (sd_scsi_poll(un, start_pktp) != 0) {
22456 			scsi_destroy_pkt(start_pktp);
22457 			return (EIO);
22458 		}
22459 		scsi_destroy_pkt(start_pktp);
22460 		(void) sd_ddi_pm_resume(un);
22461 	} else {
22462 		mutex_exit(&un->un_pm_mutex);
22463 	}
22464 
22465 	mutex_enter(SD_MUTEX(un));
22466 	un->un_throttle = 0;
22467 
22468 	/*
22469 	 * The first time through, reset the specific target device.
22470 	 * However, when cpr calls sddump we know that sd is in a
22471 	 * a good state so no bus reset is required.
22472 	 * Clear sense data via Request Sense cmd.
22473 	 * In sddump we don't care about allow_bus_device_reset anymore
22474 	 */
22475 
22476 	if ((un->un_state != SD_STATE_SUSPENDED) &&
22477 	    (un->un_state != SD_STATE_DUMPING)) {
22478 
22479 		New_state(un, SD_STATE_DUMPING);
22480 
22481 		if (un->un_f_is_fibre == FALSE) {
22482 			mutex_exit(SD_MUTEX(un));
22483 			/*
22484 			 * Attempt a bus reset for parallel scsi.
22485 			 *
22486 			 * Note: A bus reset is required because on some host
22487 			 * systems (i.e. E420R) a bus device reset is
22488 			 * insufficient to reset the state of the target.
22489 			 *
22490 			 * Note: Don't issue the reset for fibre-channel,
22491 			 * because this tends to hang the bus (loop) for
22492 			 * too long while everyone is logging out and in
22493 			 * and the deadman timer for dumping will fire
22494 			 * before the dump is complete.
22495 			 */
22496 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
22497 				mutex_enter(SD_MUTEX(un));
22498 				Restore_state(un);
22499 				mutex_exit(SD_MUTEX(un));
22500 				return (EIO);
22501 			}
22502 
22503 			/* Delay to give the device some recovery time. */
22504 			drv_usecwait(10000);
22505 
22506 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
22507 				SD_INFO(SD_LOG_DUMP, un,
22508 				    "sddump: sd_send_polled_RQS failed\n");
22509 			}
22510 			mutex_enter(SD_MUTEX(un));
22511 		}
22512 	}
22513 
22514 	/*
22515 	 * Convert the partition-relative block number to a
22516 	 * disk physical block number.
22517 	 */
22518 	blkno += start_block;
22519 
22520 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
22521 
22522 
22523 	/*
22524 	 * Check if the device has a non-512 block size.
22525 	 */
22526 	wr_bp = NULL;
22527 	if (NOT_DEVBSIZE(un)) {
22528 		tgt_byte_offset = blkno * un->un_sys_blocksize;
22529 		tgt_byte_count = nblk * un->un_sys_blocksize;
22530 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
22531 		    (tgt_byte_count % un->un_tgt_blocksize)) {
22532 			doing_rmw = TRUE;
22533 			/*
22534 			 * Calculate the block number and number of block
22535 			 * in terms of the media block size.
22536 			 */
22537 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
22538 			tgt_nblk =
22539 			    ((tgt_byte_offset + tgt_byte_count +
22540 			    (un->un_tgt_blocksize - 1)) /
22541 			    un->un_tgt_blocksize) - tgt_blkno;
22542 
22543 			/*
22544 			 * Invoke the routine which is going to do read part
22545 			 * of read-modify-write.
22546 			 * Note that this routine returns a pointer to
22547 			 * a valid bp in wr_bp.
22548 			 */
22549 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
22550 			    &wr_bp);
22551 			if (err) {
22552 				mutex_exit(SD_MUTEX(un));
22553 				return (err);
22554 			}
22555 			/*
22556 			 * Offset is being calculated as -
22557 			 * (original block # * system block size) -
22558 			 * (new block # * target block size)
22559 			 */
22560 			io_start_offset =
22561 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
22562 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
22563 
22564 			ASSERT((io_start_offset >= 0) &&
22565 			    (io_start_offset < un->un_tgt_blocksize));
22566 			/*
22567 			 * Do the modify portion of read modify write.
22568 			 */
22569 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
22570 			    (size_t)nblk * un->un_sys_blocksize);
22571 		} else {
22572 			doing_rmw = FALSE;
22573 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
22574 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
22575 		}
22576 
22577 		/* Convert blkno and nblk to target blocks */
22578 		blkno = tgt_blkno;
22579 		nblk = tgt_nblk;
22580 	} else {
22581 		wr_bp = &wr_buf;
22582 		bzero(wr_bp, sizeof (struct buf));
22583 		wr_bp->b_flags		= B_BUSY;
22584 		wr_bp->b_un.b_addr	= addr;
22585 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
22586 		wr_bp->b_resid		= 0;
22587 	}
22588 
22589 	mutex_exit(SD_MUTEX(un));
22590 
22591 	/*
22592 	 * Obtain a SCSI packet for the write command.
22593 	 * It should be safe to call the allocator here without
22594 	 * worrying about being locked for DVMA mapping because
22595 	 * the address we're passed is already a DVMA mapping
22596 	 *
22597 	 * We are also not going to worry about semaphore ownership
22598 	 * in the dump buffer. Dumping is single threaded at present.
22599 	 */
22600 
22601 	wr_pktp = NULL;
22602 
22603 #if defined(__i386) || defined(__amd64)
22604 	dma_resid = wr_bp->b_bcount;
22605 	oblkno = blkno;
22606 	while (dma_resid != 0) {
22607 #endif
22608 
22609 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
22610 		wr_bp->b_flags &= ~B_ERROR;
22611 
22612 #if defined(__i386) || defined(__amd64)
22613 		blkno = oblkno +
22614 		    ((wr_bp->b_bcount - dma_resid) /
22615 		    un->un_tgt_blocksize);
22616 		nblk = dma_resid / un->un_tgt_blocksize;
22617 
22618 		if (wr_pktp) {
22619 			/* Partial DMA transfers after initial transfer */
22620 			rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
22621 			    blkno, nblk);
22622 		} else {
22623 			/* Initial transfer */
22624 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
22625 			    un->un_pkt_flags, NULL_FUNC, NULL,
22626 			    blkno, nblk);
22627 		}
22628 #else
22629 		rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
22630 		    0, NULL_FUNC, NULL, blkno, nblk);
22631 #endif
22632 
22633 		if (rval == 0) {
22634 			/* We were given a SCSI packet, continue. */
22635 			break;
22636 		}
22637 
22638 		if (i == 0) {
22639 			if (wr_bp->b_flags & B_ERROR) {
22640 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
22641 				    "no resources for dumping; "
22642 				    "error code: 0x%x, retrying",
22643 				    geterror(wr_bp));
22644 			} else {
22645 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
22646 				    "no resources for dumping; retrying");
22647 			}
22648 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
22649 			if (wr_bp->b_flags & B_ERROR) {
22650 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
22651 				    "no resources for dumping; error code: "
22652 				    "0x%x, retrying\n", geterror(wr_bp));
22653 			}
22654 		} else {
22655 			if (wr_bp->b_flags & B_ERROR) {
22656 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
22657 				    "no resources for dumping; "
22658 				    "error code: 0x%x, retries failed, "
22659 				    "giving up.\n", geterror(wr_bp));
22660 			} else {
22661 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
22662 				    "no resources for dumping; "
22663 				    "retries failed, giving up.\n");
22664 			}
22665 			mutex_enter(SD_MUTEX(un));
22666 			Restore_state(un);
22667 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
22668 				mutex_exit(SD_MUTEX(un));
22669 				scsi_free_consistent_buf(wr_bp);
22670 			} else {
22671 				mutex_exit(SD_MUTEX(un));
22672 			}
22673 			return (EIO);
22674 		}
22675 		drv_usecwait(10000);
22676 	}
22677 
22678 #if defined(__i386) || defined(__amd64)
22679 	/*
22680 	 * save the resid from PARTIAL_DMA
22681 	 */
22682 	dma_resid = wr_pktp->pkt_resid;
22683 	if (dma_resid != 0)
22684 		nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
22685 	wr_pktp->pkt_resid = 0;
22686 #endif
22687 
22688 	/* SunBug 1222170 */
22689 	wr_pktp->pkt_flags = FLAG_NOINTR;
22690 
22691 	err = EIO;
22692 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
22693 
22694 		/*
22695 		 * Scsi_poll returns 0 (success) if the command completes and
22696 		 * the status block is STATUS_GOOD.  We should only check
22697 		 * errors if this condition is not true.  Even then we should
22698 		 * send our own request sense packet only if we have a check
22699 		 * condition and auto request sense has not been performed by
22700 		 * the hba.
22701 		 */
22702 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
22703 
22704 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
22705 		    (wr_pktp->pkt_resid == 0)) {
22706 			err = SD_SUCCESS;
22707 			break;
22708 		}
22709 
22710 		/*
22711 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
22712 		 */
22713 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
22714 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
22715 			    "Device is gone\n");
22716 			break;
22717 		}
22718 
22719 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
22720 			SD_INFO(SD_LOG_DUMP, un,
22721 			    "sddump: write failed with CHECK, try # %d\n", i);
22722 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
22723 				(void) sd_send_polled_RQS(un);
22724 			}
22725 
22726 			continue;
22727 		}
22728 
22729 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
22730 			int reset_retval = 0;
22731 
22732 			SD_INFO(SD_LOG_DUMP, un,
22733 			    "sddump: write failed with BUSY, try # %d\n", i);
22734 
22735 			if (un->un_f_lun_reset_enabled == TRUE) {
22736 				reset_retval = scsi_reset(SD_ADDRESS(un),
22737 				    RESET_LUN);
22738 			}
22739 			if (reset_retval == 0) {
22740 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
22741 			}
22742 			(void) sd_send_polled_RQS(un);
22743 
22744 		} else {
22745 			SD_INFO(SD_LOG_DUMP, un,
22746 			    "sddump: write failed with 0x%x, try # %d\n",
22747 			    SD_GET_PKT_STATUS(wr_pktp), i);
22748 			mutex_enter(SD_MUTEX(un));
22749 			sd_reset_target(un, wr_pktp);
22750 			mutex_exit(SD_MUTEX(un));
22751 		}
22752 
22753 		/*
22754 		 * If we are not getting anywhere with lun/target resets,
22755 		 * let's reset the bus.
22756 		 */
22757 		if (i == SD_NDUMP_RETRIES/2) {
22758 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
22759 			(void) sd_send_polled_RQS(un);
22760 		}
22761 
22762 	}
22763 #if defined(__i386) || defined(__amd64)
22764 	}	/* dma_resid */
22765 #endif
22766 
22767 	scsi_destroy_pkt(wr_pktp);
22768 	mutex_enter(SD_MUTEX(un));
22769 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
22770 		mutex_exit(SD_MUTEX(un));
22771 		scsi_free_consistent_buf(wr_bp);
22772 	} else {
22773 		mutex_exit(SD_MUTEX(un));
22774 	}
22775 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
22776 	return (err);
22777 }
22778 
22779 /*
22780  *    Function: sd_scsi_poll()
22781  *
22782  * Description: This is a wrapper for the scsi_poll call.
22783  *
22784  *   Arguments: sd_lun - The unit structure
22785  *              scsi_pkt - The scsi packet being sent to the device.
22786  *
22787  * Return Code: 0 - Command completed successfully with good status
22788  *             -1 - Command failed.  This could indicate a check condition
22789  *                  or other status value requiring recovery action.
22790  *
22791  */
22792 
22793 static int
22794 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
22795 {
22796 	int status;
22797 
22798 	ASSERT(un != NULL);
22799 	ASSERT(!mutex_owned(SD_MUTEX(un)));
22800 	ASSERT(pktp != NULL);
22801 
22802 	status = SD_SUCCESS;
22803 
22804 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
22805 		pktp->pkt_flags |= un->un_tagflags;
22806 		pktp->pkt_flags &= ~FLAG_NODISCON;
22807 	}
22808 
22809 	status = sd_ddi_scsi_poll(pktp);
22810 	/*
22811 	 * Scsi_poll returns 0 (success) if the command completes and the
22812 	 * status block is STATUS_GOOD.  We should only check errors if this
22813 	 * condition is not true.  Even then we should send our own request
22814 	 * sense packet only if we have a check condition and auto
22815 	 * request sense has not been performed by the hba.
22816 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
22817 	 */
22818 	if ((status != SD_SUCCESS) &&
22819 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
22820 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
22821 	    (pktp->pkt_reason != CMD_DEV_GONE))
22822 		(void) sd_send_polled_RQS(un);
22823 
22824 	return (status);
22825 }
22826 
22827 /*
22828  *    Function: sd_send_polled_RQS()
22829  *
22830  * Description: This sends the request sense command to a device.
22831  *
22832  *   Arguments: sd_lun - The unit structure
22833  *
22834  * Return Code: 0 - Command completed successfully with good status
22835  *             -1 - Command failed.
22836  *
22837  */
22838 
22839 static int
22840 sd_send_polled_RQS(struct sd_lun *un)
22841 {
22842 	int	ret_val;
22843 	struct	scsi_pkt	*rqs_pktp;
22844 	struct	buf		*rqs_bp;
22845 
22846 	ASSERT(un != NULL);
22847 	ASSERT(!mutex_owned(SD_MUTEX(un)));
22848 
22849 	ret_val = SD_SUCCESS;
22850 
22851 	rqs_pktp = un->un_rqs_pktp;
22852 	rqs_bp	 = un->un_rqs_bp;
22853 
22854 	mutex_enter(SD_MUTEX(un));
22855 
22856 	if (un->un_sense_isbusy) {
22857 		ret_val = SD_FAILURE;
22858 		mutex_exit(SD_MUTEX(un));
22859 		return (ret_val);
22860 	}
22861 
22862 	/*
22863 	 * If the request sense buffer (and packet) is not in use,
22864 	 * let's set the un_sense_isbusy and send our packet
22865 	 */
22866 	un->un_sense_isbusy 	= 1;
22867 	rqs_pktp->pkt_resid  	= 0;
22868 	rqs_pktp->pkt_reason 	= 0;
22869 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
22870 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
22871 
22872 	mutex_exit(SD_MUTEX(un));
22873 
22874 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
22875 	    " 0x%p\n", rqs_bp->b_un.b_addr);
22876 
22877 	/*
22878 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
22879 	 * axle - it has a call into us!
22880 	 */
22881 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
22882 		SD_INFO(SD_LOG_COMMON, un,
22883 		    "sd_send_polled_RQS: RQS failed\n");
22884 	}
22885 
22886 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
22887 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
22888 
22889 	mutex_enter(SD_MUTEX(un));
22890 	un->un_sense_isbusy = 0;
22891 	mutex_exit(SD_MUTEX(un));
22892 
22893 	return (ret_val);
22894 }
22895 
22896 /*
22897  * Defines needed for localized version of the scsi_poll routine.
22898  */
22899 #define	SD_CSEC		10000			/* usecs */
22900 #define	SD_SEC_TO_CSEC	(1000000/SD_CSEC)
22901 
22902 
22903 /*
22904  *    Function: sd_ddi_scsi_poll()
22905  *
22906  * Description: Localized version of the scsi_poll routine.  The purpose is to
22907  *		send a scsi_pkt to a device as a polled command.  This version
22908  *		is to ensure more robust handling of transport errors.
22909  *		Specifically this routine cures not ready, coming ready
22910  *		transition for power up and reset of sonoma's.  This can take
22911  *		up to 45 seconds for power-on and 20 seconds for reset of a
22912  * 		sonoma lun.
22913  *
22914  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
22915  *
22916  * Return Code: 0 - Command completed successfully with good status
22917  *             -1 - Command failed.
22918  *
22919  */
22920 
22921 static int
22922 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
22923 {
22924 	int busy_count;
22925 	int timeout;
22926 	int rval = SD_FAILURE;
22927 	int savef;
22928 	uint8_t *sensep;
22929 	long savet;
22930 	void (*savec)();
22931 	/*
22932 	 * The following is defined in machdep.c and is used in determining if
22933 	 * the scsi transport system will do polled I/O instead of interrupt
22934 	 * I/O when called from xx_dump().
22935 	 */
22936 	extern int do_polled_io;
22937 
22938 	/*
22939 	 * save old flags in pkt, to restore at end
22940 	 */
22941 	savef = pkt->pkt_flags;
22942 	savec = pkt->pkt_comp;
22943 	savet = pkt->pkt_time;
22944 
22945 	pkt->pkt_flags |= FLAG_NOINTR;
22946 
22947 	/*
22948 	 * XXX there is nothing in the SCSA spec that states that we should not
22949 	 * do a callback for polled cmds; however, removing this will break sd
22950 	 * and probably other target drivers
22951 	 */
22952 	pkt->pkt_comp = NULL;
22953 
22954 	/*
22955 	 * we don't like a polled command without timeout.
22956 	 * 60 seconds seems long enough.
22957 	 */
22958 	if (pkt->pkt_time == 0) {
22959 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
22960 	}
22961 
22962 	/*
22963 	 * Send polled cmd.
22964 	 *
22965 	 * We do some error recovery for various errors.  Tran_busy,
22966 	 * queue full, and non-dispatched commands are retried every 10 msec.
22967 	 * as they are typically transient failures.  Busy status and Not
22968 	 * Ready are retried every second as this status takes a while to
22969 	 * change.  Unit attention is retried for pkt_time (60) times
22970 	 * with no delay.
22971 	 */
22972 	timeout = pkt->pkt_time * SD_SEC_TO_CSEC;
22973 
22974 	for (busy_count = 0; busy_count < timeout; busy_count++) {
22975 		int rc;
22976 		int poll_delay;
22977 
22978 		/*
22979 		 * Initialize pkt status variables.
22980 		 */
22981 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
22982 
22983 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
22984 			if (rc != TRAN_BUSY) {
22985 				/* Transport failed - give up. */
22986 				break;
22987 			} else {
22988 				/* Transport busy - try again. */
22989 				poll_delay = 1 * SD_CSEC; /* 10 msec */
22990 			}
22991 		} else {
22992 			/*
22993 			 * Transport accepted - check pkt status.
22994 			 */
22995 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
22996 			if (pkt->pkt_reason == CMD_CMPLT &&
22997 			    rc == STATUS_CHECK &&
22998 			    pkt->pkt_state & STATE_ARQ_DONE) {
22999 				struct scsi_arq_status *arqstat =
23000 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
23001 
23002 				sensep = (uint8_t *)&arqstat->sts_sensedata;
23003 			} else {
23004 				sensep = NULL;
23005 			}
23006 
23007 			if ((pkt->pkt_reason == CMD_CMPLT) &&
23008 			    (rc == STATUS_GOOD)) {
23009 				/* No error - we're done */
23010 				rval = SD_SUCCESS;
23011 				break;
23012 
23013 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
23014 				/* Lost connection - give up */
23015 				break;
23016 
23017 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
23018 			    (pkt->pkt_state == 0)) {
23019 				/* Pkt not dispatched - try again. */
23020 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
23021 
23022 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
23023 			    (rc == STATUS_QFULL)) {
23024 				/* Queue full - try again. */
23025 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
23026 
23027 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
23028 			    (rc == STATUS_BUSY)) {
23029 				/* Busy - try again. */
23030 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
23031 				busy_count += (SD_SEC_TO_CSEC - 1);
23032 
23033 			} else if ((sensep != NULL) &&
23034 			    (scsi_sense_key(sensep) ==
23035 			    KEY_UNIT_ATTENTION)) {
23036 				/* Unit Attention - try again */
23037 				busy_count += (SD_SEC_TO_CSEC - 1); /* 1 */
23038 				continue;
23039 
23040 			} else if ((sensep != NULL) &&
23041 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
23042 			    (scsi_sense_asc(sensep) == 0x04) &&
23043 			    (scsi_sense_ascq(sensep) == 0x01)) {
23044 				/* Not ready -> ready - try again. */
23045 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
23046 				busy_count += (SD_SEC_TO_CSEC - 1);
23047 
23048 			} else {
23049 				/* BAD status - give up. */
23050 				break;
23051 			}
23052 		}
23053 
23054 		if ((curthread->t_flag & T_INTR_THREAD) == 0 &&
23055 		    !do_polled_io) {
23056 			delay(drv_usectohz(poll_delay));
23057 		} else {
23058 			/* we busy wait during cpr_dump or interrupt threads */
23059 			drv_usecwait(poll_delay);
23060 		}
23061 	}
23062 
23063 	pkt->pkt_flags = savef;
23064 	pkt->pkt_comp = savec;
23065 	pkt->pkt_time = savet;
23066 	return (rval);
23067 }
23068 
23069 
23070 /*
23071  *    Function: sd_persistent_reservation_in_read_keys
23072  *
23073  * Description: This routine is the driver entry point for handling CD-ROM
23074  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
23075  *		by sending the SCSI-3 PRIN commands to the device.
23076  *		Processes the read keys command response by copying the
23077  *		reservation key information into the user provided buffer.
23078  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
23079  *
23080  *   Arguments: un   -  Pointer to soft state struct for the target.
23081  *		usrp -	user provided pointer to multihost Persistent In Read
23082  *			Keys structure (mhioc_inkeys_t)
23083  *		flag -	this argument is a pass through to ddi_copyxxx()
23084  *			directly from the mode argument of ioctl().
23085  *
23086  * Return Code: 0   - Success
23087  *		EACCES
23088  *		ENOTSUP
23089  *		errno return code from sd_send_scsi_cmd()
23090  *
23091  *     Context: Can sleep. Does not return until command is completed.
23092  */
23093 
23094 static int
23095 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
23096     mhioc_inkeys_t *usrp, int flag)
23097 {
23098 #ifdef _MULTI_DATAMODEL
23099 	struct mhioc_key_list32	li32;
23100 #endif
23101 	sd_prin_readkeys_t	*in;
23102 	mhioc_inkeys_t		*ptr;
23103 	mhioc_key_list_t	li;
23104 	uchar_t			*data_bufp;
23105 	int 			data_len;
23106 	int			rval;
23107 	size_t			copysz;
23108 
23109 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
23110 		return (EINVAL);
23111 	}
23112 	bzero(&li, sizeof (mhioc_key_list_t));
23113 
23114 	/*
23115 	 * Get the listsize from user
23116 	 */
23117 #ifdef _MULTI_DATAMODEL
23118 
23119 	switch (ddi_model_convert_from(flag & FMODELS)) {
23120 	case DDI_MODEL_ILP32:
23121 		copysz = sizeof (struct mhioc_key_list32);
23122 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
23123 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23124 			    "sd_persistent_reservation_in_read_keys: "
23125 			    "failed ddi_copyin: mhioc_key_list32_t\n");
23126 			rval = EFAULT;
23127 			goto done;
23128 		}
23129 		li.listsize = li32.listsize;
23130 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
23131 		break;
23132 
23133 	case DDI_MODEL_NONE:
23134 		copysz = sizeof (mhioc_key_list_t);
23135 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
23136 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23137 			    "sd_persistent_reservation_in_read_keys: "
23138 			    "failed ddi_copyin: mhioc_key_list_t\n");
23139 			rval = EFAULT;
23140 			goto done;
23141 		}
23142 		break;
23143 	}
23144 
23145 #else /* ! _MULTI_DATAMODEL */
23146 	copysz = sizeof (mhioc_key_list_t);
23147 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
23148 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23149 		    "sd_persistent_reservation_in_read_keys: "
23150 		    "failed ddi_copyin: mhioc_key_list_t\n");
23151 		rval = EFAULT;
23152 		goto done;
23153 	}
23154 #endif
23155 
23156 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
23157 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
23158 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
23159 
23160 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS,
23161 	    data_len, data_bufp)) != 0) {
23162 		goto done;
23163 	}
23164 	in = (sd_prin_readkeys_t *)data_bufp;
23165 	ptr->generation = BE_32(in->generation);
23166 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
23167 
23168 	/*
23169 	 * Return the min(listsize, listlen) keys
23170 	 */
23171 #ifdef _MULTI_DATAMODEL
23172 
23173 	switch (ddi_model_convert_from(flag & FMODELS)) {
23174 	case DDI_MODEL_ILP32:
23175 		li32.listlen = li.listlen;
23176 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
23177 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23178 			    "sd_persistent_reservation_in_read_keys: "
23179 			    "failed ddi_copyout: mhioc_key_list32_t\n");
23180 			rval = EFAULT;
23181 			goto done;
23182 		}
23183 		break;
23184 
23185 	case DDI_MODEL_NONE:
23186 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
23187 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23188 			    "sd_persistent_reservation_in_read_keys: "
23189 			    "failed ddi_copyout: mhioc_key_list_t\n");
23190 			rval = EFAULT;
23191 			goto done;
23192 		}
23193 		break;
23194 	}
23195 
23196 #else /* ! _MULTI_DATAMODEL */
23197 
23198 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
23199 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23200 		    "sd_persistent_reservation_in_read_keys: "
23201 		    "failed ddi_copyout: mhioc_key_list_t\n");
23202 		rval = EFAULT;
23203 		goto done;
23204 	}
23205 
23206 #endif /* _MULTI_DATAMODEL */
23207 
23208 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
23209 	    li.listsize * MHIOC_RESV_KEY_SIZE);
23210 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
23211 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23212 		    "sd_persistent_reservation_in_read_keys: "
23213 		    "failed ddi_copyout: keylist\n");
23214 		rval = EFAULT;
23215 	}
23216 done:
23217 	kmem_free(data_bufp, data_len);
23218 	return (rval);
23219 }
23220 
23221 
23222 /*
23223  *    Function: sd_persistent_reservation_in_read_resv
23224  *
23225  * Description: This routine is the driver entry point for handling CD-ROM
23226  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
23227  *		by sending the SCSI-3 PRIN commands to the device.
23228  *		Process the read persistent reservations command response by
23229  *		copying the reservation information into the user provided
23230  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
23231  *
23232  *   Arguments: un   -  Pointer to soft state struct for the target.
23233  *		usrp -	user provided pointer to multihost Persistent In Read
23234  *			Keys structure (mhioc_inkeys_t)
23235  *		flag -	this argument is a pass through to ddi_copyxxx()
23236  *			directly from the mode argument of ioctl().
23237  *
23238  * Return Code: 0   - Success
23239  *		EACCES
23240  *		ENOTSUP
23241  *		errno return code from sd_send_scsi_cmd()
23242  *
23243  *     Context: Can sleep. Does not return until command is completed.
23244  */
23245 
23246 static int
23247 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
23248     mhioc_inresvs_t *usrp, int flag)
23249 {
23250 #ifdef _MULTI_DATAMODEL
23251 	struct mhioc_resv_desc_list32 resvlist32;
23252 #endif
23253 	sd_prin_readresv_t	*in;
23254 	mhioc_inresvs_t		*ptr;
23255 	sd_readresv_desc_t	*readresv_ptr;
23256 	mhioc_resv_desc_list_t	resvlist;
23257 	mhioc_resv_desc_t 	resvdesc;
23258 	uchar_t			*data_bufp;
23259 	int 			data_len;
23260 	int			rval;
23261 	int			i;
23262 	size_t			copysz;
23263 	mhioc_resv_desc_t	*bufp;
23264 
23265 	if ((ptr = usrp) == NULL) {
23266 		return (EINVAL);
23267 	}
23268 
23269 	/*
23270 	 * Get the listsize from user
23271 	 */
23272 #ifdef _MULTI_DATAMODEL
23273 	switch (ddi_model_convert_from(flag & FMODELS)) {
23274 	case DDI_MODEL_ILP32:
23275 		copysz = sizeof (struct mhioc_resv_desc_list32);
23276 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
23277 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23278 			    "sd_persistent_reservation_in_read_resv: "
23279 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23280 			rval = EFAULT;
23281 			goto done;
23282 		}
23283 		resvlist.listsize = resvlist32.listsize;
23284 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
23285 		break;
23286 
23287 	case DDI_MODEL_NONE:
23288 		copysz = sizeof (mhioc_resv_desc_list_t);
23289 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
23290 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23291 			    "sd_persistent_reservation_in_read_resv: "
23292 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23293 			rval = EFAULT;
23294 			goto done;
23295 		}
23296 		break;
23297 	}
23298 #else /* ! _MULTI_DATAMODEL */
23299 	copysz = sizeof (mhioc_resv_desc_list_t);
23300 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
23301 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23302 		    "sd_persistent_reservation_in_read_resv: "
23303 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23304 		rval = EFAULT;
23305 		goto done;
23306 	}
23307 #endif /* ! _MULTI_DATAMODEL */
23308 
23309 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
23310 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
23311 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
23312 
23313 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV,
23314 	    data_len, data_bufp)) != 0) {
23315 		goto done;
23316 	}
23317 	in = (sd_prin_readresv_t *)data_bufp;
23318 	ptr->generation = BE_32(in->generation);
23319 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
23320 
23321 	/*
23322 	 * Return the min(listsize, listlen( keys
23323 	 */
23324 #ifdef _MULTI_DATAMODEL
23325 
23326 	switch (ddi_model_convert_from(flag & FMODELS)) {
23327 	case DDI_MODEL_ILP32:
23328 		resvlist32.listlen = resvlist.listlen;
23329 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
23330 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23331 			    "sd_persistent_reservation_in_read_resv: "
23332 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23333 			rval = EFAULT;
23334 			goto done;
23335 		}
23336 		break;
23337 
23338 	case DDI_MODEL_NONE:
23339 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
23340 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23341 			    "sd_persistent_reservation_in_read_resv: "
23342 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23343 			rval = EFAULT;
23344 			goto done;
23345 		}
23346 		break;
23347 	}
23348 
23349 #else /* ! _MULTI_DATAMODEL */
23350 
23351 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
23352 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23353 		    "sd_persistent_reservation_in_read_resv: "
23354 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23355 		rval = EFAULT;
23356 		goto done;
23357 	}
23358 
23359 #endif /* ! _MULTI_DATAMODEL */
23360 
23361 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
23362 	bufp = resvlist.list;
23363 	copysz = sizeof (mhioc_resv_desc_t);
23364 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
23365 	    i++, readresv_ptr++, bufp++) {
23366 
23367 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
23368 		    MHIOC_RESV_KEY_SIZE);
23369 		resvdesc.type  = readresv_ptr->type;
23370 		resvdesc.scope = readresv_ptr->scope;
23371 		resvdesc.scope_specific_addr =
23372 		    BE_32(readresv_ptr->scope_specific_addr);
23373 
23374 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
23375 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23376 			    "sd_persistent_reservation_in_read_resv: "
23377 			    "failed ddi_copyout: resvlist\n");
23378 			rval = EFAULT;
23379 			goto done;
23380 		}
23381 	}
23382 done:
23383 	kmem_free(data_bufp, data_len);
23384 	return (rval);
23385 }
23386 
23387 
23388 /*
23389  *    Function: sr_change_blkmode()
23390  *
23391  * Description: This routine is the driver entry point for handling CD-ROM
23392  *		block mode ioctl requests. Support for returning and changing
23393  *		the current block size in use by the device is implemented. The
23394  *		LBA size is changed via a MODE SELECT Block Descriptor.
23395  *
23396  *		This routine issues a mode sense with an allocation length of
23397  *		12 bytes for the mode page header and a single block descriptor.
23398  *
23399  *   Arguments: dev - the device 'dev_t'
23400  *		cmd - the request type; one of CDROMGBLKMODE (get) or
23401  *		      CDROMSBLKMODE (set)
23402  *		data - current block size or requested block size
23403  *		flag - this argument is a pass through to ddi_copyxxx() directly
23404  *		       from the mode argument of ioctl().
23405  *
23406  * Return Code: the code returned by sd_send_scsi_cmd()
23407  *		EINVAL if invalid arguments are provided
23408  *		EFAULT if ddi_copyxxx() fails
23409  *		ENXIO if fail ddi_get_soft_state
23410  *		EIO if invalid mode sense block descriptor length
23411  *
23412  */
23413 
23414 static int
23415 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
23416 {
23417 	struct sd_lun			*un = NULL;
23418 	struct mode_header		*sense_mhp, *select_mhp;
23419 	struct block_descriptor		*sense_desc, *select_desc;
23420 	int				current_bsize;
23421 	int				rval = EINVAL;
23422 	uchar_t				*sense = NULL;
23423 	uchar_t				*select = NULL;
23424 
23425 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
23426 
23427 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23428 		return (ENXIO);
23429 	}
23430 
23431 	/*
23432 	 * The block length is changed via the Mode Select block descriptor, the
23433 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
23434 	 * required as part of this routine. Therefore the mode sense allocation
23435 	 * length is specified to be the length of a mode page header and a
23436 	 * block descriptor.
23437 	 */
23438 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
23439 
23440 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
23441 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) {
23442 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23443 		    "sr_change_blkmode: Mode Sense Failed\n");
23444 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23445 		return (rval);
23446 	}
23447 
23448 	/* Check the block descriptor len to handle only 1 block descriptor */
23449 	sense_mhp = (struct mode_header *)sense;
23450 	if ((sense_mhp->bdesc_length == 0) ||
23451 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
23452 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23453 		    "sr_change_blkmode: Mode Sense returned invalid block"
23454 		    " descriptor length\n");
23455 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23456 		return (EIO);
23457 	}
23458 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
23459 	current_bsize = ((sense_desc->blksize_hi << 16) |
23460 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
23461 
23462 	/* Process command */
23463 	switch (cmd) {
23464 	case CDROMGBLKMODE:
23465 		/* Return the block size obtained during the mode sense */
23466 		if (ddi_copyout(&current_bsize, (void *)data,
23467 		    sizeof (int), flag) != 0)
23468 			rval = EFAULT;
23469 		break;
23470 	case CDROMSBLKMODE:
23471 		/* Validate the requested block size */
23472 		switch (data) {
23473 		case CDROM_BLK_512:
23474 		case CDROM_BLK_1024:
23475 		case CDROM_BLK_2048:
23476 		case CDROM_BLK_2056:
23477 		case CDROM_BLK_2336:
23478 		case CDROM_BLK_2340:
23479 		case CDROM_BLK_2352:
23480 		case CDROM_BLK_2368:
23481 		case CDROM_BLK_2448:
23482 		case CDROM_BLK_2646:
23483 		case CDROM_BLK_2647:
23484 			break;
23485 		default:
23486 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23487 			    "sr_change_blkmode: "
23488 			    "Block Size '%ld' Not Supported\n", data);
23489 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23490 			return (EINVAL);
23491 		}
23492 
23493 		/*
23494 		 * The current block size matches the requested block size so
23495 		 * there is no need to send the mode select to change the size
23496 		 */
23497 		if (current_bsize == data) {
23498 			break;
23499 		}
23500 
23501 		/* Build the select data for the requested block size */
23502 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
23503 		select_mhp = (struct mode_header *)select;
23504 		select_desc =
23505 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
23506 		/*
23507 		 * The LBA size is changed via the block descriptor, so the
23508 		 * descriptor is built according to the user data
23509 		 */
23510 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
23511 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
23512 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
23513 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
23514 
23515 		/* Send the mode select for the requested block size */
23516 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
23517 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
23518 		    SD_PATH_STANDARD)) != 0) {
23519 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23520 			    "sr_change_blkmode: Mode Select Failed\n");
23521 			/*
23522 			 * The mode select failed for the requested block size,
23523 			 * so reset the data for the original block size and
23524 			 * send it to the target. The error is indicated by the
23525 			 * return value for the failed mode select.
23526 			 */
23527 			select_desc->blksize_hi  = sense_desc->blksize_hi;
23528 			select_desc->blksize_mid = sense_desc->blksize_mid;
23529 			select_desc->blksize_lo  = sense_desc->blksize_lo;
23530 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
23531 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
23532 			    SD_PATH_STANDARD);
23533 		} else {
23534 			ASSERT(!mutex_owned(SD_MUTEX(un)));
23535 			mutex_enter(SD_MUTEX(un));
23536 			sd_update_block_info(un, (uint32_t)data, 0);
23537 			mutex_exit(SD_MUTEX(un));
23538 		}
23539 		break;
23540 	default:
23541 		/* should not reach here, but check anyway */
23542 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23543 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
23544 		rval = EINVAL;
23545 		break;
23546 	}
23547 
23548 	if (select) {
23549 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
23550 	}
23551 	if (sense) {
23552 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23553 	}
23554 	return (rval);
23555 }
23556 
23557 
23558 /*
23559  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
23560  * implement driver support for getting and setting the CD speed. The command
23561  * set used will be based on the device type. If the device has not been
23562  * identified as MMC the Toshiba vendor specific mode page will be used. If
23563  * the device is MMC but does not support the Real Time Streaming feature
23564  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
23565  * be used to read the speed.
23566  */
23567 
23568 /*
23569  *    Function: sr_change_speed()
23570  *
23571  * Description: This routine is the driver entry point for handling CD-ROM
23572  *		drive speed ioctl requests for devices supporting the Toshiba
23573  *		vendor specific drive speed mode page. Support for returning
23574  *		and changing the current drive speed in use by the device is
23575  *		implemented.
23576  *
23577  *   Arguments: dev - the device 'dev_t'
23578  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
23579  *		      CDROMSDRVSPEED (set)
23580  *		data - current drive speed or requested drive speed
23581  *		flag - this argument is a pass through to ddi_copyxxx() directly
23582  *		       from the mode argument of ioctl().
23583  *
23584  * Return Code: the code returned by sd_send_scsi_cmd()
23585  *		EINVAL if invalid arguments are provided
23586  *		EFAULT if ddi_copyxxx() fails
23587  *		ENXIO if fail ddi_get_soft_state
23588  *		EIO if invalid mode sense block descriptor length
23589  */
23590 
23591 static int
23592 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
23593 {
23594 	struct sd_lun			*un = NULL;
23595 	struct mode_header		*sense_mhp, *select_mhp;
23596 	struct mode_speed		*sense_page, *select_page;
23597 	int				current_speed;
23598 	int				rval = EINVAL;
23599 	int				bd_len;
23600 	uchar_t				*sense = NULL;
23601 	uchar_t				*select = NULL;
23602 
23603 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
23604 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23605 		return (ENXIO);
23606 	}
23607 
23608 	/*
23609 	 * Note: The drive speed is being modified here according to a Toshiba
23610 	 * vendor specific mode page (0x31).
23611 	 */
23612 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
23613 
23614 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
23615 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
23616 	    SD_PATH_STANDARD)) != 0) {
23617 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23618 		    "sr_change_speed: Mode Sense Failed\n");
23619 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
23620 		return (rval);
23621 	}
23622 	sense_mhp  = (struct mode_header *)sense;
23623 
23624 	/* Check the block descriptor len to handle only 1 block descriptor */
23625 	bd_len = sense_mhp->bdesc_length;
23626 	if (bd_len > MODE_BLK_DESC_LENGTH) {
23627 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23628 		    "sr_change_speed: Mode Sense returned invalid block "
23629 		    "descriptor length\n");
23630 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
23631 		return (EIO);
23632 	}
23633 
23634 	sense_page = (struct mode_speed *)
23635 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
23636 	current_speed = sense_page->speed;
23637 
23638 	/* Process command */
23639 	switch (cmd) {
23640 	case CDROMGDRVSPEED:
23641 		/* Return the drive speed obtained during the mode sense */
23642 		if (current_speed == 0x2) {
23643 			current_speed = CDROM_TWELVE_SPEED;
23644 		}
23645 		if (ddi_copyout(&current_speed, (void *)data,
23646 		    sizeof (int), flag) != 0) {
23647 			rval = EFAULT;
23648 		}
23649 		break;
23650 	case CDROMSDRVSPEED:
23651 		/* Validate the requested drive speed */
23652 		switch ((uchar_t)data) {
23653 		case CDROM_TWELVE_SPEED:
23654 			data = 0x2;
23655 			/*FALLTHROUGH*/
23656 		case CDROM_NORMAL_SPEED:
23657 		case CDROM_DOUBLE_SPEED:
23658 		case CDROM_QUAD_SPEED:
23659 		case CDROM_MAXIMUM_SPEED:
23660 			break;
23661 		default:
23662 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23663 			    "sr_change_speed: "
23664 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
23665 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
23666 			return (EINVAL);
23667 		}
23668 
23669 		/*
23670 		 * The current drive speed matches the requested drive speed so
23671 		 * there is no need to send the mode select to change the speed
23672 		 */
23673 		if (current_speed == data) {
23674 			break;
23675 		}
23676 
23677 		/* Build the select data for the requested drive speed */
23678 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
23679 		select_mhp = (struct mode_header *)select;
23680 		select_mhp->bdesc_length = 0;
23681 		select_page =
23682 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
23683 		select_page =
23684 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
23685 		select_page->mode_page.code = CDROM_MODE_SPEED;
23686 		select_page->mode_page.length = 2;
23687 		select_page->speed = (uchar_t)data;
23688 
23689 		/* Send the mode select for the requested block size */
23690 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
23691 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
23692 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
23693 			/*
23694 			 * The mode select failed for the requested drive speed,
23695 			 * so reset the data for the original drive speed and
23696 			 * send it to the target. The error is indicated by the
23697 			 * return value for the failed mode select.
23698 			 */
23699 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23700 			    "sr_drive_speed: Mode Select Failed\n");
23701 			select_page->speed = sense_page->speed;
23702 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
23703 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
23704 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
23705 		}
23706 		break;
23707 	default:
23708 		/* should not reach here, but check anyway */
23709 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23710 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
23711 		rval = EINVAL;
23712 		break;
23713 	}
23714 
23715 	if (select) {
23716 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
23717 	}
23718 	if (sense) {
23719 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
23720 	}
23721 
23722 	return (rval);
23723 }
23724 
23725 
23726 /*
23727  *    Function: sr_atapi_change_speed()
23728  *
23729  * Description: This routine is the driver entry point for handling CD-ROM
23730  *		drive speed ioctl requests for MMC devices that do not support
23731  *		the Real Time Streaming feature (0x107).
23732  *
23733  *		Note: This routine will use the SET SPEED command which may not
23734  *		be supported by all devices.
23735  *
23736  *   Arguments: dev- the device 'dev_t'
23737  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
23738  *		     CDROMSDRVSPEED (set)
23739  *		data- current drive speed or requested drive speed
23740  *		flag- this argument is a pass through to ddi_copyxxx() directly
23741  *		      from the mode argument of ioctl().
23742  *
23743  * Return Code: the code returned by sd_send_scsi_cmd()
23744  *		EINVAL if invalid arguments are provided
23745  *		EFAULT if ddi_copyxxx() fails
23746  *		ENXIO if fail ddi_get_soft_state
23747  *		EIO if invalid mode sense block descriptor length
23748  */
23749 
23750 static int
23751 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
23752 {
23753 	struct sd_lun			*un;
23754 	struct uscsi_cmd		*com = NULL;
23755 	struct mode_header_grp2		*sense_mhp;
23756 	uchar_t				*sense_page;
23757 	uchar_t				*sense = NULL;
23758 	char				cdb[CDB_GROUP5];
23759 	int				bd_len;
23760 	int				current_speed = 0;
23761 	int				max_speed = 0;
23762 	int				rval;
23763 
23764 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
23765 
23766 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23767 		return (ENXIO);
23768 	}
23769 
23770 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
23771 
23772 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
23773 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
23774 	    SD_PATH_STANDARD)) != 0) {
23775 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23776 		    "sr_atapi_change_speed: Mode Sense Failed\n");
23777 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
23778 		return (rval);
23779 	}
23780 
23781 	/* Check the block descriptor len to handle only 1 block descriptor */
23782 	sense_mhp = (struct mode_header_grp2 *)sense;
23783 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
23784 	if (bd_len > MODE_BLK_DESC_LENGTH) {
23785 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23786 		    "sr_atapi_change_speed: Mode Sense returned invalid "
23787 		    "block descriptor length\n");
23788 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
23789 		return (EIO);
23790 	}
23791 
23792 	/* Calculate the current and maximum drive speeds */
23793 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
23794 	current_speed = (sense_page[14] << 8) | sense_page[15];
23795 	max_speed = (sense_page[8] << 8) | sense_page[9];
23796 
23797 	/* Process the command */
23798 	switch (cmd) {
23799 	case CDROMGDRVSPEED:
23800 		current_speed /= SD_SPEED_1X;
23801 		if (ddi_copyout(&current_speed, (void *)data,
23802 		    sizeof (int), flag) != 0)
23803 			rval = EFAULT;
23804 		break;
23805 	case CDROMSDRVSPEED:
23806 		/* Convert the speed code to KB/sec */
23807 		switch ((uchar_t)data) {
23808 		case CDROM_NORMAL_SPEED:
23809 			current_speed = SD_SPEED_1X;
23810 			break;
23811 		case CDROM_DOUBLE_SPEED:
23812 			current_speed = 2 * SD_SPEED_1X;
23813 			break;
23814 		case CDROM_QUAD_SPEED:
23815 			current_speed = 4 * SD_SPEED_1X;
23816 			break;
23817 		case CDROM_TWELVE_SPEED:
23818 			current_speed = 12 * SD_SPEED_1X;
23819 			break;
23820 		case CDROM_MAXIMUM_SPEED:
23821 			current_speed = 0xffff;
23822 			break;
23823 		default:
23824 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23825 			    "sr_atapi_change_speed: invalid drive speed %d\n",
23826 			    (uchar_t)data);
23827 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
23828 			return (EINVAL);
23829 		}
23830 
23831 		/* Check the request against the drive's max speed. */
23832 		if (current_speed != 0xffff) {
23833 			if (current_speed > max_speed) {
23834 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
23835 				return (EINVAL);
23836 			}
23837 		}
23838 
23839 		/*
23840 		 * Build and send the SET SPEED command
23841 		 *
23842 		 * Note: The SET SPEED (0xBB) command used in this routine is
23843 		 * obsolete per the SCSI MMC spec but still supported in the
23844 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
23845 		 * therefore the command is still implemented in this routine.
23846 		 */
23847 		bzero(cdb, sizeof (cdb));
23848 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
23849 		cdb[2] = (uchar_t)(current_speed >> 8);
23850 		cdb[3] = (uchar_t)current_speed;
23851 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
23852 		com->uscsi_cdb	   = (caddr_t)cdb;
23853 		com->uscsi_cdblen  = CDB_GROUP5;
23854 		com->uscsi_bufaddr = NULL;
23855 		com->uscsi_buflen  = 0;
23856 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
23857 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD);
23858 		break;
23859 	default:
23860 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23861 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
23862 		rval = EINVAL;
23863 	}
23864 
23865 	if (sense) {
23866 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
23867 	}
23868 	if (com) {
23869 		kmem_free(com, sizeof (*com));
23870 	}
23871 	return (rval);
23872 }
23873 
23874 
23875 /*
23876  *    Function: sr_pause_resume()
23877  *
23878  * Description: This routine is the driver entry point for handling CD-ROM
23879  *		pause/resume ioctl requests. This only affects the audio play
23880  *		operation.
23881  *
23882  *   Arguments: dev - the device 'dev_t'
23883  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
23884  *		      for setting the resume bit of the cdb.
23885  *
23886  * Return Code: the code returned by sd_send_scsi_cmd()
23887  *		EINVAL if invalid mode specified
23888  *
23889  */
23890 
23891 static int
23892 sr_pause_resume(dev_t dev, int cmd)
23893 {
23894 	struct sd_lun		*un;
23895 	struct uscsi_cmd	*com;
23896 	char			cdb[CDB_GROUP1];
23897 	int			rval;
23898 
23899 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23900 		return (ENXIO);
23901 	}
23902 
23903 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
23904 	bzero(cdb, CDB_GROUP1);
23905 	cdb[0] = SCMD_PAUSE_RESUME;
23906 	switch (cmd) {
23907 	case CDROMRESUME:
23908 		cdb[8] = 1;
23909 		break;
23910 	case CDROMPAUSE:
23911 		cdb[8] = 0;
23912 		break;
23913 	default:
23914 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
23915 		    " Command '%x' Not Supported\n", cmd);
23916 		rval = EINVAL;
23917 		goto done;
23918 	}
23919 
23920 	com->uscsi_cdb    = cdb;
23921 	com->uscsi_cdblen = CDB_GROUP1;
23922 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
23923 
23924 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
23925 	    SD_PATH_STANDARD);
23926 
23927 done:
23928 	kmem_free(com, sizeof (*com));
23929 	return (rval);
23930 }
23931 
23932 
23933 /*
23934  *    Function: sr_play_msf()
23935  *
23936  * Description: This routine is the driver entry point for handling CD-ROM
23937  *		ioctl requests to output the audio signals at the specified
23938  *		starting address and continue the audio play until the specified
23939  *		ending address (CDROMPLAYMSF) The address is in Minute Second
23940  *		Frame (MSF) format.
23941  *
23942  *   Arguments: dev	- the device 'dev_t'
23943  *		data	- pointer to user provided audio msf structure,
23944  *		          specifying start/end addresses.
23945  *		flag	- this argument is a pass through to ddi_copyxxx()
23946  *		          directly from the mode argument of ioctl().
23947  *
23948  * Return Code: the code returned by sd_send_scsi_cmd()
23949  *		EFAULT if ddi_copyxxx() fails
23950  *		ENXIO if fail ddi_get_soft_state
23951  *		EINVAL if data pointer is NULL
23952  */
23953 
23954 static int
23955 sr_play_msf(dev_t dev, caddr_t data, int flag)
23956 {
23957 	struct sd_lun		*un;
23958 	struct uscsi_cmd	*com;
23959 	struct cdrom_msf	msf_struct;
23960 	struct cdrom_msf	*msf = &msf_struct;
23961 	char			cdb[CDB_GROUP1];
23962 	int			rval;
23963 
23964 	if (data == NULL) {
23965 		return (EINVAL);
23966 	}
23967 
23968 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23969 		return (ENXIO);
23970 	}
23971 
23972 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
23973 		return (EFAULT);
23974 	}
23975 
23976 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
23977 	bzero(cdb, CDB_GROUP1);
23978 	cdb[0] = SCMD_PLAYAUDIO_MSF;
23979 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
23980 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
23981 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
23982 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
23983 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
23984 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
23985 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
23986 	} else {
23987 		cdb[3] = msf->cdmsf_min0;
23988 		cdb[4] = msf->cdmsf_sec0;
23989 		cdb[5] = msf->cdmsf_frame0;
23990 		cdb[6] = msf->cdmsf_min1;
23991 		cdb[7] = msf->cdmsf_sec1;
23992 		cdb[8] = msf->cdmsf_frame1;
23993 	}
23994 	com->uscsi_cdb    = cdb;
23995 	com->uscsi_cdblen = CDB_GROUP1;
23996 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
23997 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
23998 	    SD_PATH_STANDARD);
23999 	kmem_free(com, sizeof (*com));
24000 	return (rval);
24001 }
24002 
24003 
24004 /*
24005  *    Function: sr_play_trkind()
24006  *
24007  * Description: This routine is the driver entry point for handling CD-ROM
24008  *		ioctl requests to output the audio signals at the specified
24009  *		starting address and continue the audio play until the specified
24010  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
24011  *		format.
24012  *
24013  *   Arguments: dev	- the device 'dev_t'
24014  *		data	- pointer to user provided audio track/index structure,
24015  *		          specifying start/end addresses.
24016  *		flag	- this argument is a pass through to ddi_copyxxx()
24017  *		          directly from the mode argument of ioctl().
24018  *
24019  * Return Code: the code returned by sd_send_scsi_cmd()
24020  *		EFAULT if ddi_copyxxx() fails
24021  *		ENXIO if fail ddi_get_soft_state
24022  *		EINVAL if data pointer is NULL
24023  */
24024 
24025 static int
24026 sr_play_trkind(dev_t dev, caddr_t data, int flag)
24027 {
24028 	struct cdrom_ti		ti_struct;
24029 	struct cdrom_ti		*ti = &ti_struct;
24030 	struct uscsi_cmd	*com = NULL;
24031 	char			cdb[CDB_GROUP1];
24032 	int			rval;
24033 
24034 	if (data == NULL) {
24035 		return (EINVAL);
24036 	}
24037 
24038 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
24039 		return (EFAULT);
24040 	}
24041 
24042 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24043 	bzero(cdb, CDB_GROUP1);
24044 	cdb[0] = SCMD_PLAYAUDIO_TI;
24045 	cdb[4] = ti->cdti_trk0;
24046 	cdb[5] = ti->cdti_ind0;
24047 	cdb[7] = ti->cdti_trk1;
24048 	cdb[8] = ti->cdti_ind1;
24049 	com->uscsi_cdb    = cdb;
24050 	com->uscsi_cdblen = CDB_GROUP1;
24051 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
24052 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24053 	    SD_PATH_STANDARD);
24054 	kmem_free(com, sizeof (*com));
24055 	return (rval);
24056 }
24057 
24058 
24059 /*
24060  *    Function: sr_read_all_subcodes()
24061  *
24062  * Description: This routine is the driver entry point for handling CD-ROM
24063  *		ioctl requests to return raw subcode data while the target is
24064  *		playing audio (CDROMSUBCODE).
24065  *
24066  *   Arguments: dev	- the device 'dev_t'
24067  *		data	- pointer to user provided cdrom subcode structure,
24068  *		          specifying the transfer length and address.
24069  *		flag	- this argument is a pass through to ddi_copyxxx()
24070  *		          directly from the mode argument of ioctl().
24071  *
24072  * Return Code: the code returned by sd_send_scsi_cmd()
24073  *		EFAULT if ddi_copyxxx() fails
24074  *		ENXIO if fail ddi_get_soft_state
24075  *		EINVAL if data pointer is NULL
24076  */
24077 
24078 static int
24079 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
24080 {
24081 	struct sd_lun		*un = NULL;
24082 	struct uscsi_cmd	*com = NULL;
24083 	struct cdrom_subcode	*subcode = NULL;
24084 	int			rval;
24085 	size_t			buflen;
24086 	char			cdb[CDB_GROUP5];
24087 
24088 #ifdef _MULTI_DATAMODEL
24089 	/* To support ILP32 applications in an LP64 world */
24090 	struct cdrom_subcode32		cdrom_subcode32;
24091 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
24092 #endif
24093 	if (data == NULL) {
24094 		return (EINVAL);
24095 	}
24096 
24097 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24098 		return (ENXIO);
24099 	}
24100 
24101 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
24102 
24103 #ifdef _MULTI_DATAMODEL
24104 	switch (ddi_model_convert_from(flag & FMODELS)) {
24105 	case DDI_MODEL_ILP32:
24106 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
24107 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24108 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
24109 			kmem_free(subcode, sizeof (struct cdrom_subcode));
24110 			return (EFAULT);
24111 		}
24112 		/* Convert the ILP32 uscsi data from the application to LP64 */
24113 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
24114 		break;
24115 	case DDI_MODEL_NONE:
24116 		if (ddi_copyin(data, subcode,
24117 		    sizeof (struct cdrom_subcode), flag)) {
24118 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24119 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
24120 			kmem_free(subcode, sizeof (struct cdrom_subcode));
24121 			return (EFAULT);
24122 		}
24123 		break;
24124 	}
24125 #else /* ! _MULTI_DATAMODEL */
24126 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
24127 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24128 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
24129 		kmem_free(subcode, sizeof (struct cdrom_subcode));
24130 		return (EFAULT);
24131 	}
24132 #endif /* _MULTI_DATAMODEL */
24133 
24134 	/*
24135 	 * Since MMC-2 expects max 3 bytes for length, check if the
24136 	 * length input is greater than 3 bytes
24137 	 */
24138 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
24139 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24140 		    "sr_read_all_subcodes: "
24141 		    "cdrom transfer length too large: %d (limit %d)\n",
24142 		    subcode->cdsc_length, 0xFFFFFF);
24143 		kmem_free(subcode, sizeof (struct cdrom_subcode));
24144 		return (EINVAL);
24145 	}
24146 
24147 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
24148 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24149 	bzero(cdb, CDB_GROUP5);
24150 
24151 	if (un->un_f_mmc_cap == TRUE) {
24152 		cdb[0] = (char)SCMD_READ_CD;
24153 		cdb[2] = (char)0xff;
24154 		cdb[3] = (char)0xff;
24155 		cdb[4] = (char)0xff;
24156 		cdb[5] = (char)0xff;
24157 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
24158 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
24159 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
24160 		cdb[10] = 1;
24161 	} else {
24162 		/*
24163 		 * Note: A vendor specific command (0xDF) is being used her to
24164 		 * request a read of all subcodes.
24165 		 */
24166 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
24167 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
24168 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
24169 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
24170 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
24171 	}
24172 	com->uscsi_cdb	   = cdb;
24173 	com->uscsi_cdblen  = CDB_GROUP5;
24174 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
24175 	com->uscsi_buflen  = buflen;
24176 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24177 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
24178 	    SD_PATH_STANDARD);
24179 	kmem_free(subcode, sizeof (struct cdrom_subcode));
24180 	kmem_free(com, sizeof (*com));
24181 	return (rval);
24182 }
24183 
24184 
24185 /*
24186  *    Function: sr_read_subchannel()
24187  *
24188  * Description: This routine is the driver entry point for handling CD-ROM
24189  *		ioctl requests to return the Q sub-channel data of the CD
24190  *		current position block. (CDROMSUBCHNL) The data includes the
24191  *		track number, index number, absolute CD-ROM address (LBA or MSF
24192  *		format per the user) , track relative CD-ROM address (LBA or MSF
24193  *		format per the user), control data and audio status.
24194  *
24195  *   Arguments: dev	- the device 'dev_t'
24196  *		data	- pointer to user provided cdrom sub-channel structure
24197  *		flag	- this argument is a pass through to ddi_copyxxx()
24198  *		          directly from the mode argument of ioctl().
24199  *
24200  * Return Code: the code returned by sd_send_scsi_cmd()
24201  *		EFAULT if ddi_copyxxx() fails
24202  *		ENXIO if fail ddi_get_soft_state
24203  *		EINVAL if data pointer is NULL
24204  */
24205 
24206 static int
24207 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
24208 {
24209 	struct sd_lun		*un;
24210 	struct uscsi_cmd	*com;
24211 	struct cdrom_subchnl	subchanel;
24212 	struct cdrom_subchnl	*subchnl = &subchanel;
24213 	char			cdb[CDB_GROUP1];
24214 	caddr_t			buffer;
24215 	int			rval;
24216 
24217 	if (data == NULL) {
24218 		return (EINVAL);
24219 	}
24220 
24221 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24222 	    (un->un_state == SD_STATE_OFFLINE)) {
24223 		return (ENXIO);
24224 	}
24225 
24226 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
24227 		return (EFAULT);
24228 	}
24229 
24230 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
24231 	bzero(cdb, CDB_GROUP1);
24232 	cdb[0] = SCMD_READ_SUBCHANNEL;
24233 	/* Set the MSF bit based on the user requested address format */
24234 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
24235 	/*
24236 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
24237 	 * returned
24238 	 */
24239 	cdb[2] = 0x40;
24240 	/*
24241 	 * Set byte 3 to specify the return data format. A value of 0x01
24242 	 * indicates that the CD-ROM current position should be returned.
24243 	 */
24244 	cdb[3] = 0x01;
24245 	cdb[8] = 0x10;
24246 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24247 	com->uscsi_cdb	   = cdb;
24248 	com->uscsi_cdblen  = CDB_GROUP1;
24249 	com->uscsi_bufaddr = buffer;
24250 	com->uscsi_buflen  = 16;
24251 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24252 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24253 	    SD_PATH_STANDARD);
24254 	if (rval != 0) {
24255 		kmem_free(buffer, 16);
24256 		kmem_free(com, sizeof (*com));
24257 		return (rval);
24258 	}
24259 
24260 	/* Process the returned Q sub-channel data */
24261 	subchnl->cdsc_audiostatus = buffer[1];
24262 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
24263 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
24264 	subchnl->cdsc_trk	= buffer[6];
24265 	subchnl->cdsc_ind	= buffer[7];
24266 	if (subchnl->cdsc_format & CDROM_LBA) {
24267 		subchnl->cdsc_absaddr.lba =
24268 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
24269 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
24270 		subchnl->cdsc_reladdr.lba =
24271 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
24272 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
24273 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
24274 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
24275 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
24276 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
24277 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
24278 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
24279 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
24280 	} else {
24281 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
24282 		subchnl->cdsc_absaddr.msf.second = buffer[10];
24283 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
24284 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
24285 		subchnl->cdsc_reladdr.msf.second = buffer[14];
24286 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
24287 	}
24288 	kmem_free(buffer, 16);
24289 	kmem_free(com, sizeof (*com));
24290 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
24291 	    != 0) {
24292 		return (EFAULT);
24293 	}
24294 	return (rval);
24295 }
24296 
24297 
24298 /*
24299  *    Function: sr_read_tocentry()
24300  *
24301  * Description: This routine is the driver entry point for handling CD-ROM
24302  *		ioctl requests to read from the Table of Contents (TOC)
24303  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
24304  *		fields, the starting address (LBA or MSF format per the user)
24305  *		and the data mode if the user specified track is a data track.
24306  *
24307  *		Note: The READ HEADER (0x44) command used in this routine is
24308  *		obsolete per the SCSI MMC spec but still supported in the
24309  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
24310  *		therefore the command is still implemented in this routine.
24311  *
24312  *   Arguments: dev	- the device 'dev_t'
24313  *		data	- pointer to user provided toc entry structure,
24314  *			  specifying the track # and the address format
24315  *			  (LBA or MSF).
24316  *		flag	- this argument is a pass through to ddi_copyxxx()
24317  *		          directly from the mode argument of ioctl().
24318  *
24319  * Return Code: the code returned by sd_send_scsi_cmd()
24320  *		EFAULT if ddi_copyxxx() fails
24321  *		ENXIO if fail ddi_get_soft_state
24322  *		EINVAL if data pointer is NULL
24323  */
24324 
24325 static int
24326 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
24327 {
24328 	struct sd_lun		*un = NULL;
24329 	struct uscsi_cmd	*com;
24330 	struct cdrom_tocentry	toc_entry;
24331 	struct cdrom_tocentry	*entry = &toc_entry;
24332 	caddr_t			buffer;
24333 	int			rval;
24334 	char			cdb[CDB_GROUP1];
24335 
24336 	if (data == NULL) {
24337 		return (EINVAL);
24338 	}
24339 
24340 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24341 	    (un->un_state == SD_STATE_OFFLINE)) {
24342 		return (ENXIO);
24343 	}
24344 
24345 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
24346 		return (EFAULT);
24347 	}
24348 
24349 	/* Validate the requested track and address format */
24350 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
24351 		return (EINVAL);
24352 	}
24353 
24354 	if (entry->cdte_track == 0) {
24355 		return (EINVAL);
24356 	}
24357 
24358 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
24359 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24360 	bzero(cdb, CDB_GROUP1);
24361 
24362 	cdb[0] = SCMD_READ_TOC;
24363 	/* Set the MSF bit based on the user requested address format  */
24364 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
24365 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
24366 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
24367 	} else {
24368 		cdb[6] = entry->cdte_track;
24369 	}
24370 
24371 	/*
24372 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
24373 	 * (4 byte TOC response header + 8 byte track descriptor)
24374 	 */
24375 	cdb[8] = 12;
24376 	com->uscsi_cdb	   = cdb;
24377 	com->uscsi_cdblen  = CDB_GROUP1;
24378 	com->uscsi_bufaddr = buffer;
24379 	com->uscsi_buflen  = 0x0C;
24380 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
24381 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24382 	    SD_PATH_STANDARD);
24383 	if (rval != 0) {
24384 		kmem_free(buffer, 12);
24385 		kmem_free(com, sizeof (*com));
24386 		return (rval);
24387 	}
24388 
24389 	/* Process the toc entry */
24390 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
24391 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
24392 	if (entry->cdte_format & CDROM_LBA) {
24393 		entry->cdte_addr.lba =
24394 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
24395 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
24396 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
24397 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
24398 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
24399 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
24400 		/*
24401 		 * Send a READ TOC command using the LBA address format to get
24402 		 * the LBA for the track requested so it can be used in the
24403 		 * READ HEADER request
24404 		 *
24405 		 * Note: The MSF bit of the READ HEADER command specifies the
24406 		 * output format. The block address specified in that command
24407 		 * must be in LBA format.
24408 		 */
24409 		cdb[1] = 0;
24410 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24411 		    SD_PATH_STANDARD);
24412 		if (rval != 0) {
24413 			kmem_free(buffer, 12);
24414 			kmem_free(com, sizeof (*com));
24415 			return (rval);
24416 		}
24417 	} else {
24418 		entry->cdte_addr.msf.minute	= buffer[9];
24419 		entry->cdte_addr.msf.second	= buffer[10];
24420 		entry->cdte_addr.msf.frame	= buffer[11];
24421 		/*
24422 		 * Send a READ TOC command using the LBA address format to get
24423 		 * the LBA for the track requested so it can be used in the
24424 		 * READ HEADER request
24425 		 *
24426 		 * Note: The MSF bit of the READ HEADER command specifies the
24427 		 * output format. The block address specified in that command
24428 		 * must be in LBA format.
24429 		 */
24430 		cdb[1] = 0;
24431 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24432 		    SD_PATH_STANDARD);
24433 		if (rval != 0) {
24434 			kmem_free(buffer, 12);
24435 			kmem_free(com, sizeof (*com));
24436 			return (rval);
24437 		}
24438 	}
24439 
24440 	/*
24441 	 * Build and send the READ HEADER command to determine the data mode of
24442 	 * the user specified track.
24443 	 */
24444 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
24445 	    (entry->cdte_track != CDROM_LEADOUT)) {
24446 		bzero(cdb, CDB_GROUP1);
24447 		cdb[0] = SCMD_READ_HEADER;
24448 		cdb[2] = buffer[8];
24449 		cdb[3] = buffer[9];
24450 		cdb[4] = buffer[10];
24451 		cdb[5] = buffer[11];
24452 		cdb[8] = 0x08;
24453 		com->uscsi_buflen = 0x08;
24454 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24455 		    SD_PATH_STANDARD);
24456 		if (rval == 0) {
24457 			entry->cdte_datamode = buffer[0];
24458 		} else {
24459 			/*
24460 			 * READ HEADER command failed, since this is
24461 			 * obsoleted in one spec, its better to return
24462 			 * -1 for an invlid track so that we can still
24463 			 * receive the rest of the TOC data.
24464 			 */
24465 			entry->cdte_datamode = (uchar_t)-1;
24466 		}
24467 	} else {
24468 		entry->cdte_datamode = (uchar_t)-1;
24469 	}
24470 
24471 	kmem_free(buffer, 12);
24472 	kmem_free(com, sizeof (*com));
24473 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
24474 		return (EFAULT);
24475 
24476 	return (rval);
24477 }
24478 
24479 
24480 /*
24481  *    Function: sr_read_tochdr()
24482  *
24483  * Description: This routine is the driver entry point for handling CD-ROM
24484  * 		ioctl requests to read the Table of Contents (TOC) header
24485  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
24486  *		and ending track numbers
24487  *
24488  *   Arguments: dev	- the device 'dev_t'
24489  *		data	- pointer to user provided toc header structure,
24490  *			  specifying the starting and ending track numbers.
24491  *		flag	- this argument is a pass through to ddi_copyxxx()
24492  *			  directly from the mode argument of ioctl().
24493  *
24494  * Return Code: the code returned by sd_send_scsi_cmd()
24495  *		EFAULT if ddi_copyxxx() fails
24496  *		ENXIO if fail ddi_get_soft_state
24497  *		EINVAL if data pointer is NULL
24498  */
24499 
24500 static int
24501 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
24502 {
24503 	struct sd_lun		*un;
24504 	struct uscsi_cmd	*com;
24505 	struct cdrom_tochdr	toc_header;
24506 	struct cdrom_tochdr	*hdr = &toc_header;
24507 	char			cdb[CDB_GROUP1];
24508 	int			rval;
24509 	caddr_t			buffer;
24510 
24511 	if (data == NULL) {
24512 		return (EINVAL);
24513 	}
24514 
24515 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24516 	    (un->un_state == SD_STATE_OFFLINE)) {
24517 		return (ENXIO);
24518 	}
24519 
24520 	buffer = kmem_zalloc(4, KM_SLEEP);
24521 	bzero(cdb, CDB_GROUP1);
24522 	cdb[0] = SCMD_READ_TOC;
24523 	/*
24524 	 * Specifying a track number of 0x00 in the READ TOC command indicates
24525 	 * that the TOC header should be returned
24526 	 */
24527 	cdb[6] = 0x00;
24528 	/*
24529 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
24530 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
24531 	 */
24532 	cdb[8] = 0x04;
24533 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24534 	com->uscsi_cdb	   = cdb;
24535 	com->uscsi_cdblen  = CDB_GROUP1;
24536 	com->uscsi_bufaddr = buffer;
24537 	com->uscsi_buflen  = 0x04;
24538 	com->uscsi_timeout = 300;
24539 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24540 
24541 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24542 	    SD_PATH_STANDARD);
24543 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
24544 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
24545 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
24546 	} else {
24547 		hdr->cdth_trk0 = buffer[2];
24548 		hdr->cdth_trk1 = buffer[3];
24549 	}
24550 	kmem_free(buffer, 4);
24551 	kmem_free(com, sizeof (*com));
24552 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
24553 		return (EFAULT);
24554 	}
24555 	return (rval);
24556 }
24557 
24558 
24559 /*
24560  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
24561  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
24562  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
24563  * digital audio and extended architecture digital audio. These modes are
24564  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
24565  * MMC specs.
24566  *
24567  * In addition to support for the various data formats these routines also
24568  * include support for devices that implement only the direct access READ
24569  * commands (0x08, 0x28), devices that implement the READ_CD commands
24570  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
24571  * READ CDXA commands (0xD8, 0xDB)
24572  */
24573 
24574 /*
24575  *    Function: sr_read_mode1()
24576  *
24577  * Description: This routine is the driver entry point for handling CD-ROM
24578  *		ioctl read mode1 requests (CDROMREADMODE1).
24579  *
24580  *   Arguments: dev	- the device 'dev_t'
24581  *		data	- pointer to user provided cd read structure specifying
24582  *			  the lba buffer address and length.
24583  *		flag	- this argument is a pass through to ddi_copyxxx()
24584  *			  directly from the mode argument of ioctl().
24585  *
24586  * Return Code: the code returned by sd_send_scsi_cmd()
24587  *		EFAULT if ddi_copyxxx() fails
24588  *		ENXIO if fail ddi_get_soft_state
24589  *		EINVAL if data pointer is NULL
24590  */
24591 
24592 static int
24593 sr_read_mode1(dev_t dev, caddr_t data, int flag)
24594 {
24595 	struct sd_lun		*un;
24596 	struct cdrom_read	mode1_struct;
24597 	struct cdrom_read	*mode1 = &mode1_struct;
24598 	int			rval;
24599 #ifdef _MULTI_DATAMODEL
24600 	/* To support ILP32 applications in an LP64 world */
24601 	struct cdrom_read32	cdrom_read32;
24602 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
24603 #endif /* _MULTI_DATAMODEL */
24604 
24605 	if (data == NULL) {
24606 		return (EINVAL);
24607 	}
24608 
24609 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24610 	    (un->un_state == SD_STATE_OFFLINE)) {
24611 		return (ENXIO);
24612 	}
24613 
24614 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
24615 	    "sd_read_mode1: entry: un:0x%p\n", un);
24616 
24617 #ifdef _MULTI_DATAMODEL
24618 	switch (ddi_model_convert_from(flag & FMODELS)) {
24619 	case DDI_MODEL_ILP32:
24620 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
24621 			return (EFAULT);
24622 		}
24623 		/* Convert the ILP32 uscsi data from the application to LP64 */
24624 		cdrom_read32tocdrom_read(cdrd32, mode1);
24625 		break;
24626 	case DDI_MODEL_NONE:
24627 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
24628 			return (EFAULT);
24629 		}
24630 	}
24631 #else /* ! _MULTI_DATAMODEL */
24632 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
24633 		return (EFAULT);
24634 	}
24635 #endif /* _MULTI_DATAMODEL */
24636 
24637 	rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr,
24638 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
24639 
24640 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
24641 	    "sd_read_mode1: exit: un:0x%p\n", un);
24642 
24643 	return (rval);
24644 }
24645 
24646 
24647 /*
24648  *    Function: sr_read_cd_mode2()
24649  *
24650  * Description: This routine is the driver entry point for handling CD-ROM
24651  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
24652  *		support the READ CD (0xBE) command or the 1st generation
24653  *		READ CD (0xD4) command.
24654  *
24655  *   Arguments: dev	- the device 'dev_t'
24656  *		data	- pointer to user provided cd read structure specifying
24657  *			  the lba buffer address and length.
24658  *		flag	- this argument is a pass through to ddi_copyxxx()
24659  *			  directly from the mode argument of ioctl().
24660  *
24661  * Return Code: the code returned by sd_send_scsi_cmd()
24662  *		EFAULT if ddi_copyxxx() fails
24663  *		ENXIO if fail ddi_get_soft_state
24664  *		EINVAL if data pointer is NULL
24665  */
24666 
24667 static int
24668 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
24669 {
24670 	struct sd_lun		*un;
24671 	struct uscsi_cmd	*com;
24672 	struct cdrom_read	mode2_struct;
24673 	struct cdrom_read	*mode2 = &mode2_struct;
24674 	uchar_t			cdb[CDB_GROUP5];
24675 	int			nblocks;
24676 	int			rval;
24677 #ifdef _MULTI_DATAMODEL
24678 	/*  To support ILP32 applications in an LP64 world */
24679 	struct cdrom_read32	cdrom_read32;
24680 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
24681 #endif /* _MULTI_DATAMODEL */
24682 
24683 	if (data == NULL) {
24684 		return (EINVAL);
24685 	}
24686 
24687 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24688 	    (un->un_state == SD_STATE_OFFLINE)) {
24689 		return (ENXIO);
24690 	}
24691 
24692 #ifdef _MULTI_DATAMODEL
24693 	switch (ddi_model_convert_from(flag & FMODELS)) {
24694 	case DDI_MODEL_ILP32:
24695 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
24696 			return (EFAULT);
24697 		}
24698 		/* Convert the ILP32 uscsi data from the application to LP64 */
24699 		cdrom_read32tocdrom_read(cdrd32, mode2);
24700 		break;
24701 	case DDI_MODEL_NONE:
24702 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
24703 			return (EFAULT);
24704 		}
24705 		break;
24706 	}
24707 
24708 #else /* ! _MULTI_DATAMODEL */
24709 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
24710 		return (EFAULT);
24711 	}
24712 #endif /* _MULTI_DATAMODEL */
24713 
24714 	bzero(cdb, sizeof (cdb));
24715 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
24716 		/* Read command supported by 1st generation atapi drives */
24717 		cdb[0] = SCMD_READ_CDD4;
24718 	} else {
24719 		/* Universal CD Access Command */
24720 		cdb[0] = SCMD_READ_CD;
24721 	}
24722 
24723 	/*
24724 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
24725 	 */
24726 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
24727 
24728 	/* set the start address */
24729 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
24730 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
24731 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
24732 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
24733 
24734 	/* set the transfer length */
24735 	nblocks = mode2->cdread_buflen / 2336;
24736 	cdb[6] = (uchar_t)(nblocks >> 16);
24737 	cdb[7] = (uchar_t)(nblocks >> 8);
24738 	cdb[8] = (uchar_t)nblocks;
24739 
24740 	/* set the filter bits */
24741 	cdb[9] = CDROM_READ_CD_USERDATA;
24742 
24743 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24744 	com->uscsi_cdb = (caddr_t)cdb;
24745 	com->uscsi_cdblen = sizeof (cdb);
24746 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
24747 	com->uscsi_buflen = mode2->cdread_buflen;
24748 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24749 
24750 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
24751 	    SD_PATH_STANDARD);
24752 	kmem_free(com, sizeof (*com));
24753 	return (rval);
24754 }
24755 
24756 
24757 /*
24758  *    Function: sr_read_mode2()
24759  *
24760  * Description: This routine is the driver entry point for handling CD-ROM
24761  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
24762  *		do not support the READ CD (0xBE) command.
24763  *
24764  *   Arguments: dev	- the device 'dev_t'
24765  *		data	- pointer to user provided cd read structure specifying
24766  *			  the lba buffer address and length.
24767  *		flag	- this argument is a pass through to ddi_copyxxx()
24768  *			  directly from the mode argument of ioctl().
24769  *
24770  * Return Code: the code returned by sd_send_scsi_cmd()
24771  *		EFAULT if ddi_copyxxx() fails
24772  *		ENXIO if fail ddi_get_soft_state
24773  *		EINVAL if data pointer is NULL
24774  *		EIO if fail to reset block size
24775  *		EAGAIN if commands are in progress in the driver
24776  */
24777 
24778 static int
24779 sr_read_mode2(dev_t dev, caddr_t data, int flag)
24780 {
24781 	struct sd_lun		*un;
24782 	struct cdrom_read	mode2_struct;
24783 	struct cdrom_read	*mode2 = &mode2_struct;
24784 	int			rval;
24785 	uint32_t		restore_blksize;
24786 	struct uscsi_cmd	*com;
24787 	uchar_t			cdb[CDB_GROUP0];
24788 	int			nblocks;
24789 
24790 #ifdef _MULTI_DATAMODEL
24791 	/* To support ILP32 applications in an LP64 world */
24792 	struct cdrom_read32	cdrom_read32;
24793 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
24794 #endif /* _MULTI_DATAMODEL */
24795 
24796 	if (data == NULL) {
24797 		return (EINVAL);
24798 	}
24799 
24800 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24801 	    (un->un_state == SD_STATE_OFFLINE)) {
24802 		return (ENXIO);
24803 	}
24804 
24805 	/*
24806 	 * Because this routine will update the device and driver block size
24807 	 * being used we want to make sure there are no commands in progress.
24808 	 * If commands are in progress the user will have to try again.
24809 	 *
24810 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
24811 	 * in sdioctl to protect commands from sdioctl through to the top of
24812 	 * sd_uscsi_strategy. See sdioctl for details.
24813 	 */
24814 	mutex_enter(SD_MUTEX(un));
24815 	if (un->un_ncmds_in_driver != 1) {
24816 		mutex_exit(SD_MUTEX(un));
24817 		return (EAGAIN);
24818 	}
24819 	mutex_exit(SD_MUTEX(un));
24820 
24821 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
24822 	    "sd_read_mode2: entry: un:0x%p\n", un);
24823 
24824 #ifdef _MULTI_DATAMODEL
24825 	switch (ddi_model_convert_from(flag & FMODELS)) {
24826 	case DDI_MODEL_ILP32:
24827 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
24828 			return (EFAULT);
24829 		}
24830 		/* Convert the ILP32 uscsi data from the application to LP64 */
24831 		cdrom_read32tocdrom_read(cdrd32, mode2);
24832 		break;
24833 	case DDI_MODEL_NONE:
24834 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
24835 			return (EFAULT);
24836 		}
24837 		break;
24838 	}
24839 #else /* ! _MULTI_DATAMODEL */
24840 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
24841 		return (EFAULT);
24842 	}
24843 #endif /* _MULTI_DATAMODEL */
24844 
24845 	/* Store the current target block size for restoration later */
24846 	restore_blksize = un->un_tgt_blocksize;
24847 
24848 	/* Change the device and soft state target block size to 2336 */
24849 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
24850 		rval = EIO;
24851 		goto done;
24852 	}
24853 
24854 
24855 	bzero(cdb, sizeof (cdb));
24856 
24857 	/* set READ operation */
24858 	cdb[0] = SCMD_READ;
24859 
24860 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
24861 	mode2->cdread_lba >>= 2;
24862 
24863 	/* set the start address */
24864 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
24865 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
24866 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
24867 
24868 	/* set the transfer length */
24869 	nblocks = mode2->cdread_buflen / 2336;
24870 	cdb[4] = (uchar_t)nblocks & 0xFF;
24871 
24872 	/* build command */
24873 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24874 	com->uscsi_cdb = (caddr_t)cdb;
24875 	com->uscsi_cdblen = sizeof (cdb);
24876 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
24877 	com->uscsi_buflen = mode2->cdread_buflen;
24878 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24879 
24880 	/*
24881 	 * Issue SCSI command with user space address for read buffer.
24882 	 *
24883 	 * This sends the command through main channel in the driver.
24884 	 *
24885 	 * Since this is accessed via an IOCTL call, we go through the
24886 	 * standard path, so that if the device was powered down, then
24887 	 * it would be 'awakened' to handle the command.
24888 	 */
24889 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
24890 	    SD_PATH_STANDARD);
24891 
24892 	kmem_free(com, sizeof (*com));
24893 
24894 	/* Restore the device and soft state target block size */
24895 	if (sr_sector_mode(dev, restore_blksize) != 0) {
24896 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24897 		    "can't do switch back to mode 1\n");
24898 		/*
24899 		 * If sd_send_scsi_READ succeeded we still need to report
24900 		 * an error because we failed to reset the block size
24901 		 */
24902 		if (rval == 0) {
24903 			rval = EIO;
24904 		}
24905 	}
24906 
24907 done:
24908 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
24909 	    "sd_read_mode2: exit: un:0x%p\n", un);
24910 
24911 	return (rval);
24912 }
24913 
24914 
24915 /*
24916  *    Function: sr_sector_mode()
24917  *
24918  * Description: This utility function is used by sr_read_mode2 to set the target
24919  *		block size based on the user specified size. This is a legacy
24920  *		implementation based upon a vendor specific mode page
24921  *
24922  *   Arguments: dev	- the device 'dev_t'
24923  *		data	- flag indicating if block size is being set to 2336 or
24924  *			  512.
24925  *
24926  * Return Code: the code returned by sd_send_scsi_cmd()
24927  *		EFAULT if ddi_copyxxx() fails
24928  *		ENXIO if fail ddi_get_soft_state
24929  *		EINVAL if data pointer is NULL
24930  */
24931 
24932 static int
24933 sr_sector_mode(dev_t dev, uint32_t blksize)
24934 {
24935 	struct sd_lun	*un;
24936 	uchar_t		*sense;
24937 	uchar_t		*select;
24938 	int		rval;
24939 
24940 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24941 	    (un->un_state == SD_STATE_OFFLINE)) {
24942 		return (ENXIO);
24943 	}
24944 
24945 	sense = kmem_zalloc(20, KM_SLEEP);
24946 
24947 	/* Note: This is a vendor specific mode page (0x81) */
24948 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81,
24949 	    SD_PATH_STANDARD)) != 0) {
24950 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
24951 		    "sr_sector_mode: Mode Sense failed\n");
24952 		kmem_free(sense, 20);
24953 		return (rval);
24954 	}
24955 	select = kmem_zalloc(20, KM_SLEEP);
24956 	select[3] = 0x08;
24957 	select[10] = ((blksize >> 8) & 0xff);
24958 	select[11] = (blksize & 0xff);
24959 	select[12] = 0x01;
24960 	select[13] = 0x06;
24961 	select[14] = sense[14];
24962 	select[15] = sense[15];
24963 	if (blksize == SD_MODE2_BLKSIZE) {
24964 		select[14] |= 0x01;
24965 	}
24966 
24967 	if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20,
24968 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
24969 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
24970 		    "sr_sector_mode: Mode Select failed\n");
24971 	} else {
24972 		/*
24973 		 * Only update the softstate block size if we successfully
24974 		 * changed the device block mode.
24975 		 */
24976 		mutex_enter(SD_MUTEX(un));
24977 		sd_update_block_info(un, blksize, 0);
24978 		mutex_exit(SD_MUTEX(un));
24979 	}
24980 	kmem_free(sense, 20);
24981 	kmem_free(select, 20);
24982 	return (rval);
24983 }
24984 
24985 
24986 /*
24987  *    Function: sr_read_cdda()
24988  *
24989  * Description: This routine is the driver entry point for handling CD-ROM
24990  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
24991  *		the target supports CDDA these requests are handled via a vendor
24992  *		specific command (0xD8) If the target does not support CDDA
24993  *		these requests are handled via the READ CD command (0xBE).
24994  *
24995  *   Arguments: dev	- the device 'dev_t'
24996  *		data	- pointer to user provided CD-DA structure specifying
24997  *			  the track starting address, transfer length, and
24998  *			  subcode options.
24999  *		flag	- this argument is a pass through to ddi_copyxxx()
25000  *			  directly from the mode argument of ioctl().
25001  *
25002  * Return Code: the code returned by sd_send_scsi_cmd()
25003  *		EFAULT if ddi_copyxxx() fails
25004  *		ENXIO if fail ddi_get_soft_state
25005  *		EINVAL if invalid arguments are provided
25006  *		ENOTTY
25007  */
25008 
25009 static int
25010 sr_read_cdda(dev_t dev, caddr_t data, int flag)
25011 {
25012 	struct sd_lun			*un;
25013 	struct uscsi_cmd		*com;
25014 	struct cdrom_cdda		*cdda;
25015 	int				rval;
25016 	size_t				buflen;
25017 	char				cdb[CDB_GROUP5];
25018 
25019 #ifdef _MULTI_DATAMODEL
25020 	/* To support ILP32 applications in an LP64 world */
25021 	struct cdrom_cdda32	cdrom_cdda32;
25022 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
25023 #endif /* _MULTI_DATAMODEL */
25024 
25025 	if (data == NULL) {
25026 		return (EINVAL);
25027 	}
25028 
25029 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25030 		return (ENXIO);
25031 	}
25032 
25033 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
25034 
25035 #ifdef _MULTI_DATAMODEL
25036 	switch (ddi_model_convert_from(flag & FMODELS)) {
25037 	case DDI_MODEL_ILP32:
25038 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
25039 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25040 			    "sr_read_cdda: ddi_copyin Failed\n");
25041 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25042 			return (EFAULT);
25043 		}
25044 		/* Convert the ILP32 uscsi data from the application to LP64 */
25045 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
25046 		break;
25047 	case DDI_MODEL_NONE:
25048 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
25049 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25050 			    "sr_read_cdda: ddi_copyin Failed\n");
25051 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25052 			return (EFAULT);
25053 		}
25054 		break;
25055 	}
25056 #else /* ! _MULTI_DATAMODEL */
25057 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
25058 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25059 		    "sr_read_cdda: ddi_copyin Failed\n");
25060 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25061 		return (EFAULT);
25062 	}
25063 #endif /* _MULTI_DATAMODEL */
25064 
25065 	/*
25066 	 * Since MMC-2 expects max 3 bytes for length, check if the
25067 	 * length input is greater than 3 bytes
25068 	 */
25069 	if ((cdda->cdda_length & 0xFF000000) != 0) {
25070 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
25071 		    "cdrom transfer length too large: %d (limit %d)\n",
25072 		    cdda->cdda_length, 0xFFFFFF);
25073 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25074 		return (EINVAL);
25075 	}
25076 
25077 	switch (cdda->cdda_subcode) {
25078 	case CDROM_DA_NO_SUBCODE:
25079 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
25080 		break;
25081 	case CDROM_DA_SUBQ:
25082 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
25083 		break;
25084 	case CDROM_DA_ALL_SUBCODE:
25085 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
25086 		break;
25087 	case CDROM_DA_SUBCODE_ONLY:
25088 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
25089 		break;
25090 	default:
25091 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25092 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
25093 		    cdda->cdda_subcode);
25094 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25095 		return (EINVAL);
25096 	}
25097 
25098 	/* Build and send the command */
25099 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25100 	bzero(cdb, CDB_GROUP5);
25101 
25102 	if (un->un_f_cfg_cdda == TRUE) {
25103 		cdb[0] = (char)SCMD_READ_CD;
25104 		cdb[1] = 0x04;
25105 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
25106 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
25107 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
25108 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
25109 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
25110 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
25111 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
25112 		cdb[9] = 0x10;
25113 		switch (cdda->cdda_subcode) {
25114 		case CDROM_DA_NO_SUBCODE :
25115 			cdb[10] = 0x0;
25116 			break;
25117 		case CDROM_DA_SUBQ :
25118 			cdb[10] = 0x2;
25119 			break;
25120 		case CDROM_DA_ALL_SUBCODE :
25121 			cdb[10] = 0x1;
25122 			break;
25123 		case CDROM_DA_SUBCODE_ONLY :
25124 			/* FALLTHROUGH */
25125 		default :
25126 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25127 			kmem_free(com, sizeof (*com));
25128 			return (ENOTTY);
25129 		}
25130 	} else {
25131 		cdb[0] = (char)SCMD_READ_CDDA;
25132 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
25133 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
25134 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
25135 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
25136 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
25137 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
25138 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
25139 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
25140 		cdb[10] = cdda->cdda_subcode;
25141 	}
25142 
25143 	com->uscsi_cdb = cdb;
25144 	com->uscsi_cdblen = CDB_GROUP5;
25145 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
25146 	com->uscsi_buflen = buflen;
25147 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25148 
25149 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25150 	    SD_PATH_STANDARD);
25151 
25152 	kmem_free(cdda, sizeof (struct cdrom_cdda));
25153 	kmem_free(com, sizeof (*com));
25154 	return (rval);
25155 }
25156 
25157 
25158 /*
25159  *    Function: sr_read_cdxa()
25160  *
25161  * Description: This routine is the driver entry point for handling CD-ROM
25162  *		ioctl requests to return CD-XA (Extended Architecture) data.
25163  *		(CDROMCDXA).
25164  *
25165  *   Arguments: dev	- the device 'dev_t'
25166  *		data	- pointer to user provided CD-XA structure specifying
25167  *			  the data starting address, transfer length, and format
25168  *		flag	- this argument is a pass through to ddi_copyxxx()
25169  *			  directly from the mode argument of ioctl().
25170  *
25171  * Return Code: the code returned by sd_send_scsi_cmd()
25172  *		EFAULT if ddi_copyxxx() fails
25173  *		ENXIO if fail ddi_get_soft_state
25174  *		EINVAL if data pointer is NULL
25175  */
25176 
25177 static int
25178 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
25179 {
25180 	struct sd_lun		*un;
25181 	struct uscsi_cmd	*com;
25182 	struct cdrom_cdxa	*cdxa;
25183 	int			rval;
25184 	size_t			buflen;
25185 	char			cdb[CDB_GROUP5];
25186 	uchar_t			read_flags;
25187 
25188 #ifdef _MULTI_DATAMODEL
25189 	/* To support ILP32 applications in an LP64 world */
25190 	struct cdrom_cdxa32		cdrom_cdxa32;
25191 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
25192 #endif /* _MULTI_DATAMODEL */
25193 
25194 	if (data == NULL) {
25195 		return (EINVAL);
25196 	}
25197 
25198 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25199 		return (ENXIO);
25200 	}
25201 
25202 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
25203 
25204 #ifdef _MULTI_DATAMODEL
25205 	switch (ddi_model_convert_from(flag & FMODELS)) {
25206 	case DDI_MODEL_ILP32:
25207 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
25208 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25209 			return (EFAULT);
25210 		}
25211 		/*
25212 		 * Convert the ILP32 uscsi data from the
25213 		 * application to LP64 for internal use.
25214 		 */
25215 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
25216 		break;
25217 	case DDI_MODEL_NONE:
25218 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
25219 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25220 			return (EFAULT);
25221 		}
25222 		break;
25223 	}
25224 #else /* ! _MULTI_DATAMODEL */
25225 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
25226 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25227 		return (EFAULT);
25228 	}
25229 #endif /* _MULTI_DATAMODEL */
25230 
25231 	/*
25232 	 * Since MMC-2 expects max 3 bytes for length, check if the
25233 	 * length input is greater than 3 bytes
25234 	 */
25235 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
25236 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
25237 		    "cdrom transfer length too large: %d (limit %d)\n",
25238 		    cdxa->cdxa_length, 0xFFFFFF);
25239 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25240 		return (EINVAL);
25241 	}
25242 
25243 	switch (cdxa->cdxa_format) {
25244 	case CDROM_XA_DATA:
25245 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
25246 		read_flags = 0x10;
25247 		break;
25248 	case CDROM_XA_SECTOR_DATA:
25249 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
25250 		read_flags = 0xf8;
25251 		break;
25252 	case CDROM_XA_DATA_W_ERROR:
25253 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
25254 		read_flags = 0xfc;
25255 		break;
25256 	default:
25257 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25258 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
25259 		    cdxa->cdxa_format);
25260 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25261 		return (EINVAL);
25262 	}
25263 
25264 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25265 	bzero(cdb, CDB_GROUP5);
25266 	if (un->un_f_mmc_cap == TRUE) {
25267 		cdb[0] = (char)SCMD_READ_CD;
25268 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
25269 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
25270 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
25271 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
25272 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
25273 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
25274 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
25275 		cdb[9] = (char)read_flags;
25276 	} else {
25277 		/*
25278 		 * Note: A vendor specific command (0xDB) is being used her to
25279 		 * request a read of all subcodes.
25280 		 */
25281 		cdb[0] = (char)SCMD_READ_CDXA;
25282 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
25283 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
25284 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
25285 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
25286 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
25287 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
25288 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
25289 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
25290 		cdb[10] = cdxa->cdxa_format;
25291 	}
25292 	com->uscsi_cdb	   = cdb;
25293 	com->uscsi_cdblen  = CDB_GROUP5;
25294 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
25295 	com->uscsi_buflen  = buflen;
25296 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25297 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25298 	    SD_PATH_STANDARD);
25299 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25300 	kmem_free(com, sizeof (*com));
25301 	return (rval);
25302 }
25303 
25304 
25305 /*
25306  *    Function: sr_eject()
25307  *
25308  * Description: This routine is the driver entry point for handling CD-ROM
25309  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
25310  *
25311  *   Arguments: dev	- the device 'dev_t'
25312  *
25313  * Return Code: the code returned by sd_send_scsi_cmd()
25314  */
25315 
25316 static int
25317 sr_eject(dev_t dev)
25318 {
25319 	struct sd_lun	*un;
25320 	int		rval;
25321 
25322 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25323 	    (un->un_state == SD_STATE_OFFLINE)) {
25324 		return (ENXIO);
25325 	}
25326 
25327 	/*
25328 	 * To prevent race conditions with the eject
25329 	 * command, keep track of an eject command as
25330 	 * it progresses. If we are already handling
25331 	 * an eject command in the driver for the given
25332 	 * unit and another request to eject is received
25333 	 * immediately return EAGAIN so we don't lose
25334 	 * the command if the current eject command fails.
25335 	 */
25336 	mutex_enter(SD_MUTEX(un));
25337 	if (un->un_f_ejecting == TRUE) {
25338 		mutex_exit(SD_MUTEX(un));
25339 		return (EAGAIN);
25340 	}
25341 	un->un_f_ejecting = TRUE;
25342 	mutex_exit(SD_MUTEX(un));
25343 
25344 	if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
25345 	    SD_PATH_STANDARD)) != 0) {
25346 		mutex_enter(SD_MUTEX(un));
25347 		un->un_f_ejecting = FALSE;
25348 		mutex_exit(SD_MUTEX(un));
25349 		return (rval);
25350 	}
25351 
25352 	rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT,
25353 	    SD_PATH_STANDARD);
25354 
25355 	if (rval == 0) {
25356 		mutex_enter(SD_MUTEX(un));
25357 		sr_ejected(un);
25358 		un->un_mediastate = DKIO_EJECTED;
25359 		un->un_f_ejecting = FALSE;
25360 		cv_broadcast(&un->un_state_cv);
25361 		mutex_exit(SD_MUTEX(un));
25362 	} else {
25363 		mutex_enter(SD_MUTEX(un));
25364 		un->un_f_ejecting = FALSE;
25365 		mutex_exit(SD_MUTEX(un));
25366 	}
25367 	return (rval);
25368 }
25369 
25370 
25371 /*
25372  *    Function: sr_ejected()
25373  *
25374  * Description: This routine updates the soft state structure to invalidate the
25375  *		geometry information after the media has been ejected or a
25376  *		media eject has been detected.
25377  *
25378  *   Arguments: un - driver soft state (unit) structure
25379  */
25380 
25381 static void
25382 sr_ejected(struct sd_lun *un)
25383 {
25384 	struct sd_errstats *stp;
25385 
25386 	ASSERT(un != NULL);
25387 	ASSERT(mutex_owned(SD_MUTEX(un)));
25388 
25389 	un->un_f_blockcount_is_valid	= FALSE;
25390 	un->un_f_tgt_blocksize_is_valid	= FALSE;
25391 	mutex_exit(SD_MUTEX(un));
25392 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
25393 	mutex_enter(SD_MUTEX(un));
25394 
25395 	if (un->un_errstats != NULL) {
25396 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
25397 		stp->sd_capacity.value.ui64 = 0;
25398 	}
25399 }
25400 
25401 
25402 /*
25403  *    Function: sr_check_wp()
25404  *
25405  * Description: This routine checks the write protection of a removable
25406  *      media disk and hotpluggable devices via the write protect bit of
25407  *      the Mode Page Header device specific field. Some devices choke
25408  *      on unsupported mode page. In order to workaround this issue,
25409  *      this routine has been implemented to use 0x3f mode page(request
25410  *      for all pages) for all device types.
25411  *
25412  *   Arguments: dev		- the device 'dev_t'
25413  *
25414  * Return Code: int indicating if the device is write protected (1) or not (0)
25415  *
25416  *     Context: Kernel thread.
25417  *
25418  */
25419 
25420 static int
25421 sr_check_wp(dev_t dev)
25422 {
25423 	struct sd_lun	*un;
25424 	uchar_t		device_specific;
25425 	uchar_t		*sense;
25426 	int		hdrlen;
25427 	int		rval = FALSE;
25428 
25429 	/*
25430 	 * Note: The return codes for this routine should be reworked to
25431 	 * properly handle the case of a NULL softstate.
25432 	 */
25433 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25434 		return (FALSE);
25435 	}
25436 
25437 	if (un->un_f_cfg_is_atapi == TRUE) {
25438 		/*
25439 		 * The mode page contents are not required; set the allocation
25440 		 * length for the mode page header only
25441 		 */
25442 		hdrlen = MODE_HEADER_LENGTH_GRP2;
25443 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
25444 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen,
25445 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
25446 			goto err_exit;
25447 		device_specific =
25448 		    ((struct mode_header_grp2 *)sense)->device_specific;
25449 	} else {
25450 		hdrlen = MODE_HEADER_LENGTH;
25451 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
25452 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen,
25453 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
25454 			goto err_exit;
25455 		device_specific =
25456 		    ((struct mode_header *)sense)->device_specific;
25457 	}
25458 
25459 	/*
25460 	 * Write protect mode sense failed; not all disks
25461 	 * understand this query. Return FALSE assuming that
25462 	 * these devices are not writable.
25463 	 */
25464 	if (device_specific & WRITE_PROTECT) {
25465 		rval = TRUE;
25466 	}
25467 
25468 err_exit:
25469 	kmem_free(sense, hdrlen);
25470 	return (rval);
25471 }
25472 
25473 /*
25474  *    Function: sr_volume_ctrl()
25475  *
25476  * Description: This routine is the driver entry point for handling CD-ROM
25477  *		audio output volume ioctl requests. (CDROMVOLCTRL)
25478  *
25479  *   Arguments: dev	- the device 'dev_t'
25480  *		data	- pointer to user audio volume control structure
25481  *		flag	- this argument is a pass through to ddi_copyxxx()
25482  *			  directly from the mode argument of ioctl().
25483  *
25484  * Return Code: the code returned by sd_send_scsi_cmd()
25485  *		EFAULT if ddi_copyxxx() fails
25486  *		ENXIO if fail ddi_get_soft_state
25487  *		EINVAL if data pointer is NULL
25488  *
25489  */
25490 
25491 static int
25492 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
25493 {
25494 	struct sd_lun		*un;
25495 	struct cdrom_volctrl    volume;
25496 	struct cdrom_volctrl    *vol = &volume;
25497 	uchar_t			*sense_page;
25498 	uchar_t			*select_page;
25499 	uchar_t			*sense;
25500 	uchar_t			*select;
25501 	int			sense_buflen;
25502 	int			select_buflen;
25503 	int			rval;
25504 
25505 	if (data == NULL) {
25506 		return (EINVAL);
25507 	}
25508 
25509 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25510 	    (un->un_state == SD_STATE_OFFLINE)) {
25511 		return (ENXIO);
25512 	}
25513 
25514 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
25515 		return (EFAULT);
25516 	}
25517 
25518 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
25519 		struct mode_header_grp2		*sense_mhp;
25520 		struct mode_header_grp2		*select_mhp;
25521 		int				bd_len;
25522 
25523 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
25524 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
25525 		    MODEPAGE_AUDIO_CTRL_LEN;
25526 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
25527 		select = kmem_zalloc(select_buflen, KM_SLEEP);
25528 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
25529 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
25530 		    SD_PATH_STANDARD)) != 0) {
25531 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
25532 			    "sr_volume_ctrl: Mode Sense Failed\n");
25533 			kmem_free(sense, sense_buflen);
25534 			kmem_free(select, select_buflen);
25535 			return (rval);
25536 		}
25537 		sense_mhp = (struct mode_header_grp2 *)sense;
25538 		select_mhp = (struct mode_header_grp2 *)select;
25539 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
25540 		    sense_mhp->bdesc_length_lo;
25541 		if (bd_len > MODE_BLK_DESC_LENGTH) {
25542 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25543 			    "sr_volume_ctrl: Mode Sense returned invalid "
25544 			    "block descriptor length\n");
25545 			kmem_free(sense, sense_buflen);
25546 			kmem_free(select, select_buflen);
25547 			return (EIO);
25548 		}
25549 		sense_page = (uchar_t *)
25550 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
25551 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
25552 		select_mhp->length_msb = 0;
25553 		select_mhp->length_lsb = 0;
25554 		select_mhp->bdesc_length_hi = 0;
25555 		select_mhp->bdesc_length_lo = 0;
25556 	} else {
25557 		struct mode_header		*sense_mhp, *select_mhp;
25558 
25559 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
25560 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
25561 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
25562 		select = kmem_zalloc(select_buflen, KM_SLEEP);
25563 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
25564 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
25565 		    SD_PATH_STANDARD)) != 0) {
25566 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25567 			    "sr_volume_ctrl: Mode Sense Failed\n");
25568 			kmem_free(sense, sense_buflen);
25569 			kmem_free(select, select_buflen);
25570 			return (rval);
25571 		}
25572 		sense_mhp  = (struct mode_header *)sense;
25573 		select_mhp = (struct mode_header *)select;
25574 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
25575 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25576 			    "sr_volume_ctrl: Mode Sense returned invalid "
25577 			    "block descriptor length\n");
25578 			kmem_free(sense, sense_buflen);
25579 			kmem_free(select, select_buflen);
25580 			return (EIO);
25581 		}
25582 		sense_page = (uchar_t *)
25583 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
25584 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
25585 		select_mhp->length = 0;
25586 		select_mhp->bdesc_length = 0;
25587 	}
25588 	/*
25589 	 * Note: An audio control data structure could be created and overlayed
25590 	 * on the following in place of the array indexing method implemented.
25591 	 */
25592 
25593 	/* Build the select data for the user volume data */
25594 	select_page[0] = MODEPAGE_AUDIO_CTRL;
25595 	select_page[1] = 0xE;
25596 	/* Set the immediate bit */
25597 	select_page[2] = 0x04;
25598 	/* Zero out reserved fields */
25599 	select_page[3] = 0x00;
25600 	select_page[4] = 0x00;
25601 	/* Return sense data for fields not to be modified */
25602 	select_page[5] = sense_page[5];
25603 	select_page[6] = sense_page[6];
25604 	select_page[7] = sense_page[7];
25605 	/* Set the user specified volume levels for channel 0 and 1 */
25606 	select_page[8] = 0x01;
25607 	select_page[9] = vol->channel0;
25608 	select_page[10] = 0x02;
25609 	select_page[11] = vol->channel1;
25610 	/* Channel 2 and 3 are currently unsupported so return the sense data */
25611 	select_page[12] = sense_page[12];
25612 	select_page[13] = sense_page[13];
25613 	select_page[14] = sense_page[14];
25614 	select_page[15] = sense_page[15];
25615 
25616 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
25617 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select,
25618 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
25619 	} else {
25620 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
25621 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
25622 	}
25623 
25624 	kmem_free(sense, sense_buflen);
25625 	kmem_free(select, select_buflen);
25626 	return (rval);
25627 }
25628 
25629 
25630 /*
25631  *    Function: sr_read_sony_session_offset()
25632  *
25633  * Description: This routine is the driver entry point for handling CD-ROM
25634  *		ioctl requests for session offset information. (CDROMREADOFFSET)
25635  *		The address of the first track in the last session of a
25636  *		multi-session CD-ROM is returned
25637  *
25638  *		Note: This routine uses a vendor specific key value in the
25639  *		command control field without implementing any vendor check here
25640  *		or in the ioctl routine.
25641  *
25642  *   Arguments: dev	- the device 'dev_t'
25643  *		data	- pointer to an int to hold the requested address
25644  *		flag	- this argument is a pass through to ddi_copyxxx()
25645  *			  directly from the mode argument of ioctl().
25646  *
25647  * Return Code: the code returned by sd_send_scsi_cmd()
25648  *		EFAULT if ddi_copyxxx() fails
25649  *		ENXIO if fail ddi_get_soft_state
25650  *		EINVAL if data pointer is NULL
25651  */
25652 
25653 static int
25654 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
25655 {
25656 	struct sd_lun		*un;
25657 	struct uscsi_cmd	*com;
25658 	caddr_t			buffer;
25659 	char			cdb[CDB_GROUP1];
25660 	int			session_offset = 0;
25661 	int			rval;
25662 
25663 	if (data == NULL) {
25664 		return (EINVAL);
25665 	}
25666 
25667 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25668 	    (un->un_state == SD_STATE_OFFLINE)) {
25669 		return (ENXIO);
25670 	}
25671 
25672 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
25673 	bzero(cdb, CDB_GROUP1);
25674 	cdb[0] = SCMD_READ_TOC;
25675 	/*
25676 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
25677 	 * (4 byte TOC response header + 8 byte response data)
25678 	 */
25679 	cdb[8] = SONY_SESSION_OFFSET_LEN;
25680 	/* Byte 9 is the control byte. A vendor specific value is used */
25681 	cdb[9] = SONY_SESSION_OFFSET_KEY;
25682 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25683 	com->uscsi_cdb = cdb;
25684 	com->uscsi_cdblen = CDB_GROUP1;
25685 	com->uscsi_bufaddr = buffer;
25686 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
25687 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25688 
25689 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25690 	    SD_PATH_STANDARD);
25691 	if (rval != 0) {
25692 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
25693 		kmem_free(com, sizeof (*com));
25694 		return (rval);
25695 	}
25696 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
25697 		session_offset =
25698 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
25699 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
25700 		/*
25701 		 * Offset returned offset in current lbasize block's. Convert to
25702 		 * 2k block's to return to the user
25703 		 */
25704 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
25705 			session_offset >>= 2;
25706 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
25707 			session_offset >>= 1;
25708 		}
25709 	}
25710 
25711 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
25712 		rval = EFAULT;
25713 	}
25714 
25715 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
25716 	kmem_free(com, sizeof (*com));
25717 	return (rval);
25718 }
25719 
25720 
25721 /*
25722  *    Function: sd_wm_cache_constructor()
25723  *
25724  * Description: Cache Constructor for the wmap cache for the read/modify/write
25725  * 		devices.
25726  *
25727  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
25728  *		un	- sd_lun structure for the device.
25729  *		flag	- the km flags passed to constructor
25730  *
25731  * Return Code: 0 on success.
25732  *		-1 on failure.
25733  */
25734 
25735 /*ARGSUSED*/
25736 static int
25737 sd_wm_cache_constructor(void *wm, void *un, int flags)
25738 {
25739 	bzero(wm, sizeof (struct sd_w_map));
25740 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
25741 	return (0);
25742 }
25743 
25744 
25745 /*
25746  *    Function: sd_wm_cache_destructor()
25747  *
25748  * Description: Cache destructor for the wmap cache for the read/modify/write
25749  * 		devices.
25750  *
25751  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
25752  *		un	- sd_lun structure for the device.
25753  */
25754 /*ARGSUSED*/
25755 static void
25756 sd_wm_cache_destructor(void *wm, void *un)
25757 {
25758 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
25759 }
25760 
25761 
25762 /*
25763  *    Function: sd_range_lock()
25764  *
25765  * Description: Lock the range of blocks specified as parameter to ensure
25766  *		that read, modify write is atomic and no other i/o writes
25767  *		to the same location. The range is specified in terms
25768  *		of start and end blocks. Block numbers are the actual
25769  *		media block numbers and not system.
25770  *
25771  *   Arguments: un	- sd_lun structure for the device.
25772  *		startb - The starting block number
25773  *		endb - The end block number
25774  *		typ - type of i/o - simple/read_modify_write
25775  *
25776  * Return Code: wm  - pointer to the wmap structure.
25777  *
25778  *     Context: This routine can sleep.
25779  */
25780 
25781 static struct sd_w_map *
25782 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
25783 {
25784 	struct sd_w_map *wmp = NULL;
25785 	struct sd_w_map *sl_wmp = NULL;
25786 	struct sd_w_map *tmp_wmp;
25787 	wm_state state = SD_WM_CHK_LIST;
25788 
25789 
25790 	ASSERT(un != NULL);
25791 	ASSERT(!mutex_owned(SD_MUTEX(un)));
25792 
25793 	mutex_enter(SD_MUTEX(un));
25794 
25795 	while (state != SD_WM_DONE) {
25796 
25797 		switch (state) {
25798 		case SD_WM_CHK_LIST:
25799 			/*
25800 			 * This is the starting state. Check the wmap list
25801 			 * to see if the range is currently available.
25802 			 */
25803 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
25804 				/*
25805 				 * If this is a simple write and no rmw
25806 				 * i/o is pending then try to lock the
25807 				 * range as the range should be available.
25808 				 */
25809 				state = SD_WM_LOCK_RANGE;
25810 			} else {
25811 				tmp_wmp = sd_get_range(un, startb, endb);
25812 				if (tmp_wmp != NULL) {
25813 					if ((wmp != NULL) && ONLIST(un, wmp)) {
25814 						/*
25815 						 * Should not keep onlist wmps
25816 						 * while waiting this macro
25817 						 * will also do wmp = NULL;
25818 						 */
25819 						FREE_ONLIST_WMAP(un, wmp);
25820 					}
25821 					/*
25822 					 * sl_wmp is the wmap on which wait
25823 					 * is done, since the tmp_wmp points
25824 					 * to the inuse wmap, set sl_wmp to
25825 					 * tmp_wmp and change the state to sleep
25826 					 */
25827 					sl_wmp = tmp_wmp;
25828 					state = SD_WM_WAIT_MAP;
25829 				} else {
25830 					state = SD_WM_LOCK_RANGE;
25831 				}
25832 
25833 			}
25834 			break;
25835 
25836 		case SD_WM_LOCK_RANGE:
25837 			ASSERT(un->un_wm_cache);
25838 			/*
25839 			 * The range need to be locked, try to get a wmap.
25840 			 * First attempt it with NO_SLEEP, want to avoid a sleep
25841 			 * if possible as we will have to release the sd mutex
25842 			 * if we have to sleep.
25843 			 */
25844 			if (wmp == NULL)
25845 				wmp = kmem_cache_alloc(un->un_wm_cache,
25846 				    KM_NOSLEEP);
25847 			if (wmp == NULL) {
25848 				mutex_exit(SD_MUTEX(un));
25849 				_NOTE(DATA_READABLE_WITHOUT_LOCK
25850 				    (sd_lun::un_wm_cache))
25851 				wmp = kmem_cache_alloc(un->un_wm_cache,
25852 				    KM_SLEEP);
25853 				mutex_enter(SD_MUTEX(un));
25854 				/*
25855 				 * we released the mutex so recheck and go to
25856 				 * check list state.
25857 				 */
25858 				state = SD_WM_CHK_LIST;
25859 			} else {
25860 				/*
25861 				 * We exit out of state machine since we
25862 				 * have the wmap. Do the housekeeping first.
25863 				 * place the wmap on the wmap list if it is not
25864 				 * on it already and then set the state to done.
25865 				 */
25866 				wmp->wm_start = startb;
25867 				wmp->wm_end = endb;
25868 				wmp->wm_flags = typ | SD_WM_BUSY;
25869 				if (typ & SD_WTYPE_RMW) {
25870 					un->un_rmw_count++;
25871 				}
25872 				/*
25873 				 * If not already on the list then link
25874 				 */
25875 				if (!ONLIST(un, wmp)) {
25876 					wmp->wm_next = un->un_wm;
25877 					wmp->wm_prev = NULL;
25878 					if (wmp->wm_next)
25879 						wmp->wm_next->wm_prev = wmp;
25880 					un->un_wm = wmp;
25881 				}
25882 				state = SD_WM_DONE;
25883 			}
25884 			break;
25885 
25886 		case SD_WM_WAIT_MAP:
25887 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
25888 			/*
25889 			 * Wait is done on sl_wmp, which is set in the
25890 			 * check_list state.
25891 			 */
25892 			sl_wmp->wm_wanted_count++;
25893 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
25894 			sl_wmp->wm_wanted_count--;
25895 			/*
25896 			 * We can reuse the memory from the completed sl_wmp
25897 			 * lock range for our new lock, but only if noone is
25898 			 * waiting for it.
25899 			 */
25900 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
25901 			if (sl_wmp->wm_wanted_count == 0) {
25902 				if (wmp != NULL)
25903 					CHK_N_FREEWMP(un, wmp);
25904 				wmp = sl_wmp;
25905 			}
25906 			sl_wmp = NULL;
25907 			/*
25908 			 * After waking up, need to recheck for availability of
25909 			 * range.
25910 			 */
25911 			state = SD_WM_CHK_LIST;
25912 			break;
25913 
25914 		default:
25915 			panic("sd_range_lock: "
25916 			    "Unknown state %d in sd_range_lock", state);
25917 			/*NOTREACHED*/
25918 		} /* switch(state) */
25919 
25920 	} /* while(state != SD_WM_DONE) */
25921 
25922 	mutex_exit(SD_MUTEX(un));
25923 
25924 	ASSERT(wmp != NULL);
25925 
25926 	return (wmp);
25927 }
25928 
25929 
25930 /*
25931  *    Function: sd_get_range()
25932  *
25933  * Description: Find if there any overlapping I/O to this one
25934  *		Returns the write-map of 1st such I/O, NULL otherwise.
25935  *
25936  *   Arguments: un	- sd_lun structure for the device.
25937  *		startb - The starting block number
25938  *		endb - The end block number
25939  *
25940  * Return Code: wm  - pointer to the wmap structure.
25941  */
25942 
25943 static struct sd_w_map *
25944 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
25945 {
25946 	struct sd_w_map *wmp;
25947 
25948 	ASSERT(un != NULL);
25949 
25950 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
25951 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
25952 			continue;
25953 		}
25954 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
25955 			break;
25956 		}
25957 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
25958 			break;
25959 		}
25960 	}
25961 
25962 	return (wmp);
25963 }
25964 
25965 
25966 /*
25967  *    Function: sd_free_inlist_wmap()
25968  *
25969  * Description: Unlink and free a write map struct.
25970  *
25971  *   Arguments: un      - sd_lun structure for the device.
25972  *		wmp	- sd_w_map which needs to be unlinked.
25973  */
25974 
25975 static void
25976 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
25977 {
25978 	ASSERT(un != NULL);
25979 
25980 	if (un->un_wm == wmp) {
25981 		un->un_wm = wmp->wm_next;
25982 	} else {
25983 		wmp->wm_prev->wm_next = wmp->wm_next;
25984 	}
25985 
25986 	if (wmp->wm_next) {
25987 		wmp->wm_next->wm_prev = wmp->wm_prev;
25988 	}
25989 
25990 	wmp->wm_next = wmp->wm_prev = NULL;
25991 
25992 	kmem_cache_free(un->un_wm_cache, wmp);
25993 }
25994 
25995 
25996 /*
25997  *    Function: sd_range_unlock()
25998  *
25999  * Description: Unlock the range locked by wm.
26000  *		Free write map if nobody else is waiting on it.
26001  *
26002  *   Arguments: un      - sd_lun structure for the device.
26003  *              wmp     - sd_w_map which needs to be unlinked.
26004  */
26005 
26006 static void
26007 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
26008 {
26009 	ASSERT(un != NULL);
26010 	ASSERT(wm != NULL);
26011 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26012 
26013 	mutex_enter(SD_MUTEX(un));
26014 
26015 	if (wm->wm_flags & SD_WTYPE_RMW) {
26016 		un->un_rmw_count--;
26017 	}
26018 
26019 	if (wm->wm_wanted_count) {
26020 		wm->wm_flags = 0;
26021 		/*
26022 		 * Broadcast that the wmap is available now.
26023 		 */
26024 		cv_broadcast(&wm->wm_avail);
26025 	} else {
26026 		/*
26027 		 * If no one is waiting on the map, it should be free'ed.
26028 		 */
26029 		sd_free_inlist_wmap(un, wm);
26030 	}
26031 
26032 	mutex_exit(SD_MUTEX(un));
26033 }
26034 
26035 
26036 /*
26037  *    Function: sd_read_modify_write_task
26038  *
26039  * Description: Called from a taskq thread to initiate the write phase of
26040  *		a read-modify-write request.  This is used for targets where
26041  *		un->un_sys_blocksize != un->un_tgt_blocksize.
26042  *
26043  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
26044  *
26045  *     Context: Called under taskq thread context.
26046  */
26047 
26048 static void
26049 sd_read_modify_write_task(void *arg)
26050 {
26051 	struct sd_mapblocksize_info	*bsp;
26052 	struct buf	*bp;
26053 	struct sd_xbuf	*xp;
26054 	struct sd_lun	*un;
26055 
26056 	bp = arg;	/* The bp is given in arg */
26057 	ASSERT(bp != NULL);
26058 
26059 	/* Get the pointer to the layer-private data struct */
26060 	xp = SD_GET_XBUF(bp);
26061 	ASSERT(xp != NULL);
26062 	bsp = xp->xb_private;
26063 	ASSERT(bsp != NULL);
26064 
26065 	un = SD_GET_UN(bp);
26066 	ASSERT(un != NULL);
26067 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26068 
26069 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
26070 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
26071 
26072 	/*
26073 	 * This is the write phase of a read-modify-write request, called
26074 	 * under the context of a taskq thread in response to the completion
26075 	 * of the read portion of the rmw request completing under interrupt
26076 	 * context. The write request must be sent from here down the iostart
26077 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
26078 	 * we use the layer index saved in the layer-private data area.
26079 	 */
26080 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
26081 
26082 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
26083 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
26084 }
26085 
26086 
26087 /*
26088  *    Function: sddump_do_read_of_rmw()
26089  *
26090  * Description: This routine will be called from sddump, If sddump is called
26091  *		with an I/O which not aligned on device blocksize boundary
26092  *		then the write has to be converted to read-modify-write.
26093  *		Do the read part here in order to keep sddump simple.
26094  *		Note - That the sd_mutex is held across the call to this
26095  *		routine.
26096  *
26097  *   Arguments: un	- sd_lun
26098  *		blkno	- block number in terms of media block size.
26099  *		nblk	- number of blocks.
26100  *		bpp	- pointer to pointer to the buf structure. On return
26101  *			from this function, *bpp points to the valid buffer
26102  *			to which the write has to be done.
26103  *
26104  * Return Code: 0 for success or errno-type return code
26105  */
26106 
26107 static int
26108 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
26109 	struct buf **bpp)
26110 {
26111 	int err;
26112 	int i;
26113 	int rval;
26114 	struct buf *bp;
26115 	struct scsi_pkt *pkt = NULL;
26116 	uint32_t target_blocksize;
26117 
26118 	ASSERT(un != NULL);
26119 	ASSERT(mutex_owned(SD_MUTEX(un)));
26120 
26121 	target_blocksize = un->un_tgt_blocksize;
26122 
26123 	mutex_exit(SD_MUTEX(un));
26124 
26125 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
26126 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
26127 	if (bp == NULL) {
26128 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26129 		    "no resources for dumping; giving up");
26130 		err = ENOMEM;
26131 		goto done;
26132 	}
26133 
26134 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
26135 	    blkno, nblk);
26136 	if (rval != 0) {
26137 		scsi_free_consistent_buf(bp);
26138 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26139 		    "no resources for dumping; giving up");
26140 		err = ENOMEM;
26141 		goto done;
26142 	}
26143 
26144 	pkt->pkt_flags |= FLAG_NOINTR;
26145 
26146 	err = EIO;
26147 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26148 
26149 		/*
26150 		 * Scsi_poll returns 0 (success) if the command completes and
26151 		 * the status block is STATUS_GOOD.  We should only check
26152 		 * errors if this condition is not true.  Even then we should
26153 		 * send our own request sense packet only if we have a check
26154 		 * condition and auto request sense has not been performed by
26155 		 * the hba.
26156 		 */
26157 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
26158 
26159 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
26160 			err = 0;
26161 			break;
26162 		}
26163 
26164 		/*
26165 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
26166 		 * no need to read RQS data.
26167 		 */
26168 		if (pkt->pkt_reason == CMD_DEV_GONE) {
26169 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26170 			    "Device is gone\n");
26171 			break;
26172 		}
26173 
26174 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
26175 			SD_INFO(SD_LOG_DUMP, un,
26176 			    "sddump: read failed with CHECK, try # %d\n", i);
26177 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
26178 				(void) sd_send_polled_RQS(un);
26179 			}
26180 
26181 			continue;
26182 		}
26183 
26184 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
26185 			int reset_retval = 0;
26186 
26187 			SD_INFO(SD_LOG_DUMP, un,
26188 			    "sddump: read failed with BUSY, try # %d\n", i);
26189 
26190 			if (un->un_f_lun_reset_enabled == TRUE) {
26191 				reset_retval = scsi_reset(SD_ADDRESS(un),
26192 				    RESET_LUN);
26193 			}
26194 			if (reset_retval == 0) {
26195 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26196 			}
26197 			(void) sd_send_polled_RQS(un);
26198 
26199 		} else {
26200 			SD_INFO(SD_LOG_DUMP, un,
26201 			    "sddump: read failed with 0x%x, try # %d\n",
26202 			    SD_GET_PKT_STATUS(pkt), i);
26203 			mutex_enter(SD_MUTEX(un));
26204 			sd_reset_target(un, pkt);
26205 			mutex_exit(SD_MUTEX(un));
26206 		}
26207 
26208 		/*
26209 		 * If we are not getting anywhere with lun/target resets,
26210 		 * let's reset the bus.
26211 		 */
26212 		if (i > SD_NDUMP_RETRIES/2) {
26213 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26214 			(void) sd_send_polled_RQS(un);
26215 		}
26216 
26217 	}
26218 	scsi_destroy_pkt(pkt);
26219 
26220 	if (err != 0) {
26221 		scsi_free_consistent_buf(bp);
26222 		*bpp = NULL;
26223 	} else {
26224 		*bpp = bp;
26225 	}
26226 
26227 done:
26228 	mutex_enter(SD_MUTEX(un));
26229 	return (err);
26230 }
26231 
26232 
26233 /*
26234  *    Function: sd_failfast_flushq
26235  *
26236  * Description: Take all bp's on the wait queue that have B_FAILFAST set
26237  *		in b_flags and move them onto the failfast queue, then kick
26238  *		off a thread to return all bp's on the failfast queue to
26239  *		their owners with an error set.
26240  *
26241  *   Arguments: un - pointer to the soft state struct for the instance.
26242  *
26243  *     Context: may execute in interrupt context.
26244  */
26245 
26246 static void
26247 sd_failfast_flushq(struct sd_lun *un)
26248 {
26249 	struct buf *bp;
26250 	struct buf *next_waitq_bp;
26251 	struct buf *prev_waitq_bp = NULL;
26252 
26253 	ASSERT(un != NULL);
26254 	ASSERT(mutex_owned(SD_MUTEX(un)));
26255 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
26256 	ASSERT(un->un_failfast_bp == NULL);
26257 
26258 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
26259 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
26260 
26261 	/*
26262 	 * Check if we should flush all bufs when entering failfast state, or
26263 	 * just those with B_FAILFAST set.
26264 	 */
26265 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
26266 		/*
26267 		 * Move *all* bp's on the wait queue to the failfast flush
26268 		 * queue, including those that do NOT have B_FAILFAST set.
26269 		 */
26270 		if (un->un_failfast_headp == NULL) {
26271 			ASSERT(un->un_failfast_tailp == NULL);
26272 			un->un_failfast_headp = un->un_waitq_headp;
26273 		} else {
26274 			ASSERT(un->un_failfast_tailp != NULL);
26275 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
26276 		}
26277 
26278 		un->un_failfast_tailp = un->un_waitq_tailp;
26279 
26280 		/* update kstat for each bp moved out of the waitq */
26281 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
26282 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
26283 		}
26284 
26285 		/* empty the waitq */
26286 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
26287 
26288 	} else {
26289 		/*
26290 		 * Go thru the wait queue, pick off all entries with
26291 		 * B_FAILFAST set, and move these onto the failfast queue.
26292 		 */
26293 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
26294 			/*
26295 			 * Save the pointer to the next bp on the wait queue,
26296 			 * so we get to it on the next iteration of this loop.
26297 			 */
26298 			next_waitq_bp = bp->av_forw;
26299 
26300 			/*
26301 			 * If this bp from the wait queue does NOT have
26302 			 * B_FAILFAST set, just move on to the next element
26303 			 * in the wait queue. Note, this is the only place
26304 			 * where it is correct to set prev_waitq_bp.
26305 			 */
26306 			if ((bp->b_flags & B_FAILFAST) == 0) {
26307 				prev_waitq_bp = bp;
26308 				continue;
26309 			}
26310 
26311 			/*
26312 			 * Remove the bp from the wait queue.
26313 			 */
26314 			if (bp == un->un_waitq_headp) {
26315 				/* The bp is the first element of the waitq. */
26316 				un->un_waitq_headp = next_waitq_bp;
26317 				if (un->un_waitq_headp == NULL) {
26318 					/* The wait queue is now empty */
26319 					un->un_waitq_tailp = NULL;
26320 				}
26321 			} else {
26322 				/*
26323 				 * The bp is either somewhere in the middle
26324 				 * or at the end of the wait queue.
26325 				 */
26326 				ASSERT(un->un_waitq_headp != NULL);
26327 				ASSERT(prev_waitq_bp != NULL);
26328 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
26329 				    == 0);
26330 				if (bp == un->un_waitq_tailp) {
26331 					/* bp is the last entry on the waitq. */
26332 					ASSERT(next_waitq_bp == NULL);
26333 					un->un_waitq_tailp = prev_waitq_bp;
26334 				}
26335 				prev_waitq_bp->av_forw = next_waitq_bp;
26336 			}
26337 			bp->av_forw = NULL;
26338 
26339 			/*
26340 			 * update kstat since the bp is moved out of
26341 			 * the waitq
26342 			 */
26343 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
26344 
26345 			/*
26346 			 * Now put the bp onto the failfast queue.
26347 			 */
26348 			if (un->un_failfast_headp == NULL) {
26349 				/* failfast queue is currently empty */
26350 				ASSERT(un->un_failfast_tailp == NULL);
26351 				un->un_failfast_headp =
26352 				    un->un_failfast_tailp = bp;
26353 			} else {
26354 				/* Add the bp to the end of the failfast q */
26355 				ASSERT(un->un_failfast_tailp != NULL);
26356 				ASSERT(un->un_failfast_tailp->b_flags &
26357 				    B_FAILFAST);
26358 				un->un_failfast_tailp->av_forw = bp;
26359 				un->un_failfast_tailp = bp;
26360 			}
26361 		}
26362 	}
26363 
26364 	/*
26365 	 * Now return all bp's on the failfast queue to their owners.
26366 	 */
26367 	while ((bp = un->un_failfast_headp) != NULL) {
26368 
26369 		un->un_failfast_headp = bp->av_forw;
26370 		if (un->un_failfast_headp == NULL) {
26371 			un->un_failfast_tailp = NULL;
26372 		}
26373 
26374 		/*
26375 		 * We want to return the bp with a failure error code, but
26376 		 * we do not want a call to sd_start_cmds() to occur here,
26377 		 * so use sd_return_failed_command_no_restart() instead of
26378 		 * sd_return_failed_command().
26379 		 */
26380 		sd_return_failed_command_no_restart(un, bp, EIO);
26381 	}
26382 
26383 	/* Flush the xbuf queues if required. */
26384 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
26385 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
26386 	}
26387 
26388 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
26389 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
26390 }
26391 
26392 
26393 /*
26394  *    Function: sd_failfast_flushq_callback
26395  *
26396  * Description: Return TRUE if the given bp meets the criteria for failfast
26397  *		flushing. Used with ddi_xbuf_flushq(9F).
26398  *
26399  *   Arguments: bp - ptr to buf struct to be examined.
26400  *
26401  *     Context: Any
26402  */
26403 
26404 static int
26405 sd_failfast_flushq_callback(struct buf *bp)
26406 {
26407 	/*
26408 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
26409 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
26410 	 */
26411 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
26412 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
26413 }
26414 
26415 
26416 
26417 #if defined(__i386) || defined(__amd64)
26418 /*
26419  * Function: sd_setup_next_xfer
26420  *
26421  * Description: Prepare next I/O operation using DMA_PARTIAL
26422  *
26423  */
26424 
26425 static int
26426 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
26427     struct scsi_pkt *pkt, struct sd_xbuf *xp)
26428 {
26429 	ssize_t	num_blks_not_xfered;
26430 	daddr_t	strt_blk_num;
26431 	ssize_t	bytes_not_xfered;
26432 	int	rval;
26433 
26434 	ASSERT(pkt->pkt_resid == 0);
26435 
26436 	/*
26437 	 * Calculate next block number and amount to be transferred.
26438 	 *
26439 	 * How much data NOT transfered to the HBA yet.
26440 	 */
26441 	bytes_not_xfered = xp->xb_dma_resid;
26442 
26443 	/*
26444 	 * figure how many blocks NOT transfered to the HBA yet.
26445 	 */
26446 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
26447 
26448 	/*
26449 	 * set starting block number to the end of what WAS transfered.
26450 	 */
26451 	strt_blk_num = xp->xb_blkno +
26452 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
26453 
26454 	/*
26455 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
26456 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
26457 	 * the disk mutex here.
26458 	 */
26459 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
26460 	    strt_blk_num, num_blks_not_xfered);
26461 
26462 	if (rval == 0) {
26463 
26464 		/*
26465 		 * Success.
26466 		 *
26467 		 * Adjust things if there are still more blocks to be
26468 		 * transfered.
26469 		 */
26470 		xp->xb_dma_resid = pkt->pkt_resid;
26471 		pkt->pkt_resid = 0;
26472 
26473 		return (1);
26474 	}
26475 
26476 	/*
26477 	 * There's really only one possible return value from
26478 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
26479 	 * returns NULL.
26480 	 */
26481 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
26482 
26483 	bp->b_resid = bp->b_bcount;
26484 	bp->b_flags |= B_ERROR;
26485 
26486 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26487 	    "Error setting up next portion of DMA transfer\n");
26488 
26489 	return (0);
26490 }
26491 #endif
26492 
26493 /*
26494  *    Function: sd_panic_for_res_conflict
26495  *
26496  * Description: Call panic with a string formatted with "Reservation Conflict"
26497  *		and a human readable identifier indicating the SD instance
26498  *		that experienced the reservation conflict.
26499  *
26500  *   Arguments: un - pointer to the soft state struct for the instance.
26501  *
26502  *     Context: may execute in interrupt context.
26503  */
26504 
26505 #define	SD_RESV_CONFLICT_FMT_LEN 40
26506 void
26507 sd_panic_for_res_conflict(struct sd_lun *un)
26508 {
26509 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
26510 	char path_str[MAXPATHLEN];
26511 
26512 	(void) snprintf(panic_str, sizeof (panic_str),
26513 	    "Reservation Conflict\nDisk: %s",
26514 	    ddi_pathname(SD_DEVINFO(un), path_str));
26515 
26516 	panic(panic_str);
26517 }
26518 
26519 /*
26520  * Note: The following sd_faultinjection_ioctl( ) routines implement
26521  * driver support for handling fault injection for error analysis
26522  * causing faults in multiple layers of the driver.
26523  *
26524  */
26525 
26526 #ifdef SD_FAULT_INJECTION
26527 static uint_t   sd_fault_injection_on = 0;
26528 
26529 /*
26530  *    Function: sd_faultinjection_ioctl()
26531  *
26532  * Description: This routine is the driver entry point for handling
26533  *              faultinjection ioctls to inject errors into the
26534  *              layer model
26535  *
26536  *   Arguments: cmd	- the ioctl cmd received
26537  *		arg	- the arguments from user and returns
26538  */
26539 
26540 static void
26541 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
26542 
26543 	uint_t i;
26544 	uint_t rval;
26545 
26546 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
26547 
26548 	mutex_enter(SD_MUTEX(un));
26549 
26550 	switch (cmd) {
26551 	case SDIOCRUN:
26552 		/* Allow pushed faults to be injected */
26553 		SD_INFO(SD_LOG_SDTEST, un,
26554 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
26555 
26556 		sd_fault_injection_on = 1;
26557 
26558 		SD_INFO(SD_LOG_IOERR, un,
26559 		    "sd_faultinjection_ioctl: run finished\n");
26560 		break;
26561 
26562 	case SDIOCSTART:
26563 		/* Start Injection Session */
26564 		SD_INFO(SD_LOG_SDTEST, un,
26565 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
26566 
26567 		sd_fault_injection_on = 0;
26568 		un->sd_injection_mask = 0xFFFFFFFF;
26569 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
26570 			un->sd_fi_fifo_pkt[i] = NULL;
26571 			un->sd_fi_fifo_xb[i] = NULL;
26572 			un->sd_fi_fifo_un[i] = NULL;
26573 			un->sd_fi_fifo_arq[i] = NULL;
26574 		}
26575 		un->sd_fi_fifo_start = 0;
26576 		un->sd_fi_fifo_end = 0;
26577 
26578 		mutex_enter(&(un->un_fi_mutex));
26579 		un->sd_fi_log[0] = '\0';
26580 		un->sd_fi_buf_len = 0;
26581 		mutex_exit(&(un->un_fi_mutex));
26582 
26583 		SD_INFO(SD_LOG_IOERR, un,
26584 		    "sd_faultinjection_ioctl: start finished\n");
26585 		break;
26586 
26587 	case SDIOCSTOP:
26588 		/* Stop Injection Session */
26589 		SD_INFO(SD_LOG_SDTEST, un,
26590 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
26591 		sd_fault_injection_on = 0;
26592 		un->sd_injection_mask = 0x0;
26593 
26594 		/* Empty stray or unuseds structs from fifo */
26595 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
26596 			if (un->sd_fi_fifo_pkt[i] != NULL) {
26597 				kmem_free(un->sd_fi_fifo_pkt[i],
26598 				    sizeof (struct sd_fi_pkt));
26599 			}
26600 			if (un->sd_fi_fifo_xb[i] != NULL) {
26601 				kmem_free(un->sd_fi_fifo_xb[i],
26602 				    sizeof (struct sd_fi_xb));
26603 			}
26604 			if (un->sd_fi_fifo_un[i] != NULL) {
26605 				kmem_free(un->sd_fi_fifo_un[i],
26606 				    sizeof (struct sd_fi_un));
26607 			}
26608 			if (un->sd_fi_fifo_arq[i] != NULL) {
26609 				kmem_free(un->sd_fi_fifo_arq[i],
26610 				    sizeof (struct sd_fi_arq));
26611 			}
26612 			un->sd_fi_fifo_pkt[i] = NULL;
26613 			un->sd_fi_fifo_un[i] = NULL;
26614 			un->sd_fi_fifo_xb[i] = NULL;
26615 			un->sd_fi_fifo_arq[i] = NULL;
26616 		}
26617 		un->sd_fi_fifo_start = 0;
26618 		un->sd_fi_fifo_end = 0;
26619 
26620 		SD_INFO(SD_LOG_IOERR, un,
26621 		    "sd_faultinjection_ioctl: stop finished\n");
26622 		break;
26623 
26624 	case SDIOCINSERTPKT:
26625 		/* Store a packet struct to be pushed onto fifo */
26626 		SD_INFO(SD_LOG_SDTEST, un,
26627 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
26628 
26629 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
26630 
26631 		sd_fault_injection_on = 0;
26632 
26633 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
26634 		if (un->sd_fi_fifo_pkt[i] != NULL) {
26635 			kmem_free(un->sd_fi_fifo_pkt[i],
26636 			    sizeof (struct sd_fi_pkt));
26637 		}
26638 		if (arg != NULL) {
26639 			un->sd_fi_fifo_pkt[i] =
26640 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
26641 			if (un->sd_fi_fifo_pkt[i] == NULL) {
26642 				/* Alloc failed don't store anything */
26643 				break;
26644 			}
26645 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
26646 			    sizeof (struct sd_fi_pkt), 0);
26647 			if (rval == -1) {
26648 				kmem_free(un->sd_fi_fifo_pkt[i],
26649 				    sizeof (struct sd_fi_pkt));
26650 				un->sd_fi_fifo_pkt[i] = NULL;
26651 			}
26652 		} else {
26653 			SD_INFO(SD_LOG_IOERR, un,
26654 			    "sd_faultinjection_ioctl: pkt null\n");
26655 		}
26656 		break;
26657 
26658 	case SDIOCINSERTXB:
26659 		/* Store a xb struct to be pushed onto fifo */
26660 		SD_INFO(SD_LOG_SDTEST, un,
26661 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
26662 
26663 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
26664 
26665 		sd_fault_injection_on = 0;
26666 
26667 		if (un->sd_fi_fifo_xb[i] != NULL) {
26668 			kmem_free(un->sd_fi_fifo_xb[i],
26669 			    sizeof (struct sd_fi_xb));
26670 			un->sd_fi_fifo_xb[i] = NULL;
26671 		}
26672 		if (arg != NULL) {
26673 			un->sd_fi_fifo_xb[i] =
26674 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
26675 			if (un->sd_fi_fifo_xb[i] == NULL) {
26676 				/* Alloc failed don't store anything */
26677 				break;
26678 			}
26679 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
26680 			    sizeof (struct sd_fi_xb), 0);
26681 
26682 			if (rval == -1) {
26683 				kmem_free(un->sd_fi_fifo_xb[i],
26684 				    sizeof (struct sd_fi_xb));
26685 				un->sd_fi_fifo_xb[i] = NULL;
26686 			}
26687 		} else {
26688 			SD_INFO(SD_LOG_IOERR, un,
26689 			    "sd_faultinjection_ioctl: xb null\n");
26690 		}
26691 		break;
26692 
26693 	case SDIOCINSERTUN:
26694 		/* Store a un struct to be pushed onto fifo */
26695 		SD_INFO(SD_LOG_SDTEST, un,
26696 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
26697 
26698 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
26699 
26700 		sd_fault_injection_on = 0;
26701 
26702 		if (un->sd_fi_fifo_un[i] != NULL) {
26703 			kmem_free(un->sd_fi_fifo_un[i],
26704 			    sizeof (struct sd_fi_un));
26705 			un->sd_fi_fifo_un[i] = NULL;
26706 		}
26707 		if (arg != NULL) {
26708 			un->sd_fi_fifo_un[i] =
26709 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
26710 			if (un->sd_fi_fifo_un[i] == NULL) {
26711 				/* Alloc failed don't store anything */
26712 				break;
26713 			}
26714 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
26715 			    sizeof (struct sd_fi_un), 0);
26716 			if (rval == -1) {
26717 				kmem_free(un->sd_fi_fifo_un[i],
26718 				    sizeof (struct sd_fi_un));
26719 				un->sd_fi_fifo_un[i] = NULL;
26720 			}
26721 
26722 		} else {
26723 			SD_INFO(SD_LOG_IOERR, un,
26724 			    "sd_faultinjection_ioctl: un null\n");
26725 		}
26726 
26727 		break;
26728 
26729 	case SDIOCINSERTARQ:
26730 		/* Store a arq struct to be pushed onto fifo */
26731 		SD_INFO(SD_LOG_SDTEST, un,
26732 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
26733 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
26734 
26735 		sd_fault_injection_on = 0;
26736 
26737 		if (un->sd_fi_fifo_arq[i] != NULL) {
26738 			kmem_free(un->sd_fi_fifo_arq[i],
26739 			    sizeof (struct sd_fi_arq));
26740 			un->sd_fi_fifo_arq[i] = NULL;
26741 		}
26742 		if (arg != NULL) {
26743 			un->sd_fi_fifo_arq[i] =
26744 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
26745 			if (un->sd_fi_fifo_arq[i] == NULL) {
26746 				/* Alloc failed don't store anything */
26747 				break;
26748 			}
26749 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
26750 			    sizeof (struct sd_fi_arq), 0);
26751 			if (rval == -1) {
26752 				kmem_free(un->sd_fi_fifo_arq[i],
26753 				    sizeof (struct sd_fi_arq));
26754 				un->sd_fi_fifo_arq[i] = NULL;
26755 			}
26756 
26757 		} else {
26758 			SD_INFO(SD_LOG_IOERR, un,
26759 			    "sd_faultinjection_ioctl: arq null\n");
26760 		}
26761 
26762 		break;
26763 
26764 	case SDIOCPUSH:
26765 		/* Push stored xb, pkt, un, and arq onto fifo */
26766 		sd_fault_injection_on = 0;
26767 
26768 		if (arg != NULL) {
26769 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
26770 			if (rval != -1 &&
26771 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
26772 				un->sd_fi_fifo_end += i;
26773 			}
26774 		} else {
26775 			SD_INFO(SD_LOG_IOERR, un,
26776 			    "sd_faultinjection_ioctl: push arg null\n");
26777 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
26778 				un->sd_fi_fifo_end++;
26779 			}
26780 		}
26781 		SD_INFO(SD_LOG_IOERR, un,
26782 		    "sd_faultinjection_ioctl: push to end=%d\n",
26783 		    un->sd_fi_fifo_end);
26784 		break;
26785 
26786 	case SDIOCRETRIEVE:
26787 		/* Return buffer of log from Injection session */
26788 		SD_INFO(SD_LOG_SDTEST, un,
26789 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
26790 
26791 		sd_fault_injection_on = 0;
26792 
26793 		mutex_enter(&(un->un_fi_mutex));
26794 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
26795 		    un->sd_fi_buf_len+1, 0);
26796 		mutex_exit(&(un->un_fi_mutex));
26797 
26798 		if (rval == -1) {
26799 			/*
26800 			 * arg is possibly invalid setting
26801 			 * it to NULL for return
26802 			 */
26803 			arg = NULL;
26804 		}
26805 		break;
26806 	}
26807 
26808 	mutex_exit(SD_MUTEX(un));
26809 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
26810 			    " exit\n");
26811 }
26812 
26813 
26814 /*
26815  *    Function: sd_injection_log()
26816  *
26817  * Description: This routine adds buff to the already existing injection log
26818  *              for retrieval via faultinjection_ioctl for use in fault
26819  *              detection and recovery
26820  *
26821  *   Arguments: buf - the string to add to the log
26822  */
26823 
26824 static void
26825 sd_injection_log(char *buf, struct sd_lun *un)
26826 {
26827 	uint_t len;
26828 
26829 	ASSERT(un != NULL);
26830 	ASSERT(buf != NULL);
26831 
26832 	mutex_enter(&(un->un_fi_mutex));
26833 
26834 	len = min(strlen(buf), 255);
26835 	/* Add logged value to Injection log to be returned later */
26836 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
26837 		uint_t	offset = strlen((char *)un->sd_fi_log);
26838 		char *destp = (char *)un->sd_fi_log + offset;
26839 		int i;
26840 		for (i = 0; i < len; i++) {
26841 			*destp++ = *buf++;
26842 		}
26843 		un->sd_fi_buf_len += len;
26844 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
26845 	}
26846 
26847 	mutex_exit(&(un->un_fi_mutex));
26848 }
26849 
26850 
26851 /*
26852  *    Function: sd_faultinjection()
26853  *
26854  * Description: This routine takes the pkt and changes its
26855  *		content based on error injection scenerio.
26856  *
26857  *   Arguments: pktp	- packet to be changed
26858  */
26859 
26860 static void
26861 sd_faultinjection(struct scsi_pkt *pktp)
26862 {
26863 	uint_t i;
26864 	struct sd_fi_pkt *fi_pkt;
26865 	struct sd_fi_xb *fi_xb;
26866 	struct sd_fi_un *fi_un;
26867 	struct sd_fi_arq *fi_arq;
26868 	struct buf *bp;
26869 	struct sd_xbuf *xb;
26870 	struct sd_lun *un;
26871 
26872 	ASSERT(pktp != NULL);
26873 
26874 	/* pull bp xb and un from pktp */
26875 	bp = (struct buf *)pktp->pkt_private;
26876 	xb = SD_GET_XBUF(bp);
26877 	un = SD_GET_UN(bp);
26878 
26879 	ASSERT(un != NULL);
26880 
26881 	mutex_enter(SD_MUTEX(un));
26882 
26883 	SD_TRACE(SD_LOG_SDTEST, un,
26884 	    "sd_faultinjection: entry Injection from sdintr\n");
26885 
26886 	/* if injection is off return */
26887 	if (sd_fault_injection_on == 0 ||
26888 	    un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
26889 		mutex_exit(SD_MUTEX(un));
26890 		return;
26891 	}
26892 
26893 
26894 	/* take next set off fifo */
26895 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
26896 
26897 	fi_pkt = un->sd_fi_fifo_pkt[i];
26898 	fi_xb = un->sd_fi_fifo_xb[i];
26899 	fi_un = un->sd_fi_fifo_un[i];
26900 	fi_arq = un->sd_fi_fifo_arq[i];
26901 
26902 
26903 	/* set variables accordingly */
26904 	/* set pkt if it was on fifo */
26905 	if (fi_pkt != NULL) {
26906 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
26907 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
26908 		SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
26909 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
26910 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
26911 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
26912 
26913 	}
26914 
26915 	/* set xb if it was on fifo */
26916 	if (fi_xb != NULL) {
26917 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
26918 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
26919 		SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
26920 		SD_CONDSET(xb, xb, xb_victim_retry_count,
26921 		    "xb_victim_retry_count");
26922 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
26923 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
26924 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
26925 
26926 		/* copy in block data from sense */
26927 		if (fi_xb->xb_sense_data[0] != -1) {
26928 			bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
26929 			    SENSE_LENGTH);
26930 		}
26931 
26932 		/* copy in extended sense codes */
26933 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code,
26934 		    "es_code");
26935 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key,
26936 		    "es_key");
26937 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code,
26938 		    "es_add_code");
26939 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb,
26940 		    es_qual_code, "es_qual_code");
26941 	}
26942 
26943 	/* set un if it was on fifo */
26944 	if (fi_un != NULL) {
26945 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
26946 		SD_CONDSET(un, un, un_ctype, "un_ctype");
26947 		SD_CONDSET(un, un, un_reset_retry_count,
26948 		    "un_reset_retry_count");
26949 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
26950 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
26951 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
26952 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
26953 		    "un_f_allow_bus_device_reset");
26954 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
26955 
26956 	}
26957 
26958 	/* copy in auto request sense if it was on fifo */
26959 	if (fi_arq != NULL) {
26960 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
26961 	}
26962 
26963 	/* free structs */
26964 	if (un->sd_fi_fifo_pkt[i] != NULL) {
26965 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
26966 	}
26967 	if (un->sd_fi_fifo_xb[i] != NULL) {
26968 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
26969 	}
26970 	if (un->sd_fi_fifo_un[i] != NULL) {
26971 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
26972 	}
26973 	if (un->sd_fi_fifo_arq[i] != NULL) {
26974 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
26975 	}
26976 
26977 	/*
26978 	 * kmem_free does not gurantee to set to NULL
26979 	 * since we uses these to determine if we set
26980 	 * values or not lets confirm they are always
26981 	 * NULL after free
26982 	 */
26983 	un->sd_fi_fifo_pkt[i] = NULL;
26984 	un->sd_fi_fifo_un[i] = NULL;
26985 	un->sd_fi_fifo_xb[i] = NULL;
26986 	un->sd_fi_fifo_arq[i] = NULL;
26987 
26988 	un->sd_fi_fifo_start++;
26989 
26990 	mutex_exit(SD_MUTEX(un));
26991 
26992 	SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
26993 }
26994 
26995 #endif /* SD_FAULT_INJECTION */
26996 
26997 /*
26998  * This routine is invoked in sd_unit_attach(). Before calling it, the
26999  * properties in conf file should be processed already, and "hotpluggable"
27000  * property was processed also.
27001  *
27002  * The sd driver distinguishes 3 different type of devices: removable media,
27003  * non-removable media, and hotpluggable. Below the differences are defined:
27004  *
27005  * 1. Device ID
27006  *
27007  *     The device ID of a device is used to identify this device. Refer to
27008  *     ddi_devid_register(9F).
27009  *
27010  *     For a non-removable media disk device which can provide 0x80 or 0x83
27011  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
27012  *     device ID is created to identify this device. For other non-removable
27013  *     media devices, a default device ID is created only if this device has
27014  *     at least 2 alter cylinders. Otherwise, this device has no devid.
27015  *
27016  *     -------------------------------------------------------
27017  *     removable media   hotpluggable  | Can Have Device ID
27018  *     -------------------------------------------------------
27019  *         false             false     |     Yes
27020  *         false             true      |     Yes
27021  *         true                x       |     No
27022  *     ------------------------------------------------------
27023  *
27024  *
27025  * 2. SCSI group 4 commands
27026  *
27027  *     In SCSI specs, only some commands in group 4 command set can use
27028  *     8-byte addresses that can be used to access >2TB storage spaces.
27029  *     Other commands have no such capability. Without supporting group4,
27030  *     it is impossible to make full use of storage spaces of a disk with
27031  *     capacity larger than 2TB.
27032  *
27033  *     -----------------------------------------------
27034  *     removable media   hotpluggable   LP64  |  Group
27035  *     -----------------------------------------------
27036  *           false          false       false |   1
27037  *           false          false       true  |   4
27038  *           false          true        false |   1
27039  *           false          true        true  |   4
27040  *           true             x           x   |   5
27041  *     -----------------------------------------------
27042  *
27043  *
27044  * 3. Check for VTOC Label
27045  *
27046  *     If a direct-access disk has no EFI label, sd will check if it has a
27047  *     valid VTOC label. Now, sd also does that check for removable media
27048  *     and hotpluggable devices.
27049  *
27050  *     --------------------------------------------------------------
27051  *     Direct-Access   removable media    hotpluggable |  Check Label
27052  *     -------------------------------------------------------------
27053  *         false          false           false        |   No
27054  *         false          false           true         |   No
27055  *         false          true            false        |   Yes
27056  *         false          true            true         |   Yes
27057  *         true            x                x          |   Yes
27058  *     --------------------------------------------------------------
27059  *
27060  *
27061  * 4. Building default VTOC label
27062  *
27063  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
27064  *     If those devices have no valid VTOC label, sd(7d) will attempt to
27065  *     create default VTOC for them. Currently sd creates default VTOC label
27066  *     for all devices on x86 platform (VTOC_16), but only for removable
27067  *     media devices on SPARC (VTOC_8).
27068  *
27069  *     -----------------------------------------------------------
27070  *       removable media hotpluggable platform   |   Default Label
27071  *     -----------------------------------------------------------
27072  *             false          false    sparc     |     No
27073  *             false          true      x86      |     Yes
27074  *             false          true     sparc     |     Yes
27075  *             true             x        x       |     Yes
27076  *     ----------------------------------------------------------
27077  *
27078  *
27079  * 5. Supported blocksizes of target devices
27080  *
27081  *     Sd supports non-512-byte blocksize for removable media devices only.
27082  *     For other devices, only 512-byte blocksize is supported. This may be
27083  *     changed in near future because some RAID devices require non-512-byte
27084  *     blocksize
27085  *
27086  *     -----------------------------------------------------------
27087  *     removable media    hotpluggable    | non-512-byte blocksize
27088  *     -----------------------------------------------------------
27089  *           false          false         |   No
27090  *           false          true          |   No
27091  *           true             x           |   Yes
27092  *     -----------------------------------------------------------
27093  *
27094  *
27095  * 6. Automatic mount & unmount
27096  *
27097  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
27098  *     if a device is removable media device. It return 1 for removable media
27099  *     devices, and 0 for others.
27100  *
27101  *     The automatic mounting subsystem should distinguish between the types
27102  *     of devices and apply automounting policies to each.
27103  *
27104  *
27105  * 7. fdisk partition management
27106  *
27107  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
27108  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
27109  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
27110  *     fdisk partitions on both x86 and SPARC platform.
27111  *
27112  *     -----------------------------------------------------------
27113  *       platform   removable media  USB/1394  |  fdisk supported
27114  *     -----------------------------------------------------------
27115  *        x86         X               X        |       true
27116  *     ------------------------------------------------------------
27117  *        sparc       X               X        |       false
27118  *     ------------------------------------------------------------
27119  *
27120  *
27121  * 8. MBOOT/MBR
27122  *
27123  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
27124  *     read/write mboot for removable media devices on sparc platform.
27125  *
27126  *     -----------------------------------------------------------
27127  *       platform   removable media  USB/1394  |  mboot supported
27128  *     -----------------------------------------------------------
27129  *        x86         X               X        |       true
27130  *     ------------------------------------------------------------
27131  *        sparc      false           false     |       false
27132  *        sparc      false           true      |       true
27133  *        sparc      true            false     |       true
27134  *        sparc      true            true      |       true
27135  *     ------------------------------------------------------------
27136  *
27137  *
27138  * 9.  error handling during opening device
27139  *
27140  *     If failed to open a disk device, an errno is returned. For some kinds
27141  *     of errors, different errno is returned depending on if this device is
27142  *     a removable media device. This brings USB/1394 hard disks in line with
27143  *     expected hard disk behavior. It is not expected that this breaks any
27144  *     application.
27145  *
27146  *     ------------------------------------------------------
27147  *       removable media    hotpluggable   |  errno
27148  *     ------------------------------------------------------
27149  *             false          false        |   EIO
27150  *             false          true         |   EIO
27151  *             true             x          |   ENXIO
27152  *     ------------------------------------------------------
27153  *
27154  *
27155  * 11. ioctls: DKIOCEJECT, CDROMEJECT
27156  *
27157  *     These IOCTLs are applicable only to removable media devices.
27158  *
27159  *     -----------------------------------------------------------
27160  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
27161  *     -----------------------------------------------------------
27162  *             false          false        |     No
27163  *             false          true         |     No
27164  *             true            x           |     Yes
27165  *     -----------------------------------------------------------
27166  *
27167  *
27168  * 12. Kstats for partitions
27169  *
27170  *     sd creates partition kstat for non-removable media devices. USB and
27171  *     Firewire hard disks now have partition kstats
27172  *
27173  *      ------------------------------------------------------
27174  *       removable media    hotpluggable   |   kstat
27175  *      ------------------------------------------------------
27176  *             false          false        |    Yes
27177  *             false          true         |    Yes
27178  *             true             x          |    No
27179  *       ------------------------------------------------------
27180  *
27181  *
27182  * 13. Removable media & hotpluggable properties
27183  *
27184  *     Sd driver creates a "removable-media" property for removable media
27185  *     devices. Parent nexus drivers create a "hotpluggable" property if
27186  *     it supports hotplugging.
27187  *
27188  *     ---------------------------------------------------------------------
27189  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
27190  *     ---------------------------------------------------------------------
27191  *       false            false       |    No                   No
27192  *       false            true        |    No                   Yes
27193  *       true             false       |    Yes                  No
27194  *       true             true        |    Yes                  Yes
27195  *     ---------------------------------------------------------------------
27196  *
27197  *
27198  * 14. Power Management
27199  *
27200  *     sd only power manages removable media devices or devices that support
27201  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
27202  *
27203  *     A parent nexus that supports hotplugging can also set "pm-capable"
27204  *     if the disk can be power managed.
27205  *
27206  *     ------------------------------------------------------------
27207  *       removable media hotpluggable pm-capable  |   power manage
27208  *     ------------------------------------------------------------
27209  *             false          false     false     |     No
27210  *             false          false     true      |     Yes
27211  *             false          true      false     |     No
27212  *             false          true      true      |     Yes
27213  *             true             x        x        |     Yes
27214  *     ------------------------------------------------------------
27215  *
27216  *      USB and firewire hard disks can now be power managed independently
27217  *      of the framebuffer
27218  *
27219  *
27220  * 15. Support for USB disks with capacity larger than 1TB
27221  *
27222  *     Currently, sd doesn't permit a fixed disk device with capacity
27223  *     larger than 1TB to be used in a 32-bit operating system environment.
27224  *     However, sd doesn't do that for removable media devices. Instead, it
27225  *     assumes that removable media devices cannot have a capacity larger
27226  *     than 1TB. Therefore, using those devices on 32-bit system is partially
27227  *     supported, which can cause some unexpected results.
27228  *
27229  *     ---------------------------------------------------------------------
27230  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
27231  *     ---------------------------------------------------------------------
27232  *             false          false  |   true         |     no
27233  *             false          true   |   true         |     no
27234  *             true           false  |   true         |     Yes
27235  *             true           true   |   true         |     Yes
27236  *     ---------------------------------------------------------------------
27237  *
27238  *
27239  * 16. Check write-protection at open time
27240  *
27241  *     When a removable media device is being opened for writing without NDELAY
27242  *     flag, sd will check if this device is writable. If attempting to open
27243  *     without NDELAY flag a write-protected device, this operation will abort.
27244  *
27245  *     ------------------------------------------------------------
27246  *       removable media    USB/1394   |   WP Check
27247  *     ------------------------------------------------------------
27248  *             false          false    |     No
27249  *             false          true     |     No
27250  *             true           false    |     Yes
27251  *             true           true     |     Yes
27252  *     ------------------------------------------------------------
27253  *
27254  *
27255  * 17. syslog when corrupted VTOC is encountered
27256  *
27257  *      Currently, if an invalid VTOC is encountered, sd only print syslog
27258  *      for fixed SCSI disks.
27259  *     ------------------------------------------------------------
27260  *       removable media    USB/1394   |   print syslog
27261  *     ------------------------------------------------------------
27262  *             false          false    |     Yes
27263  *             false          true     |     No
27264  *             true           false    |     No
27265  *             true           true     |     No
27266  *     ------------------------------------------------------------
27267  */
27268 static void
27269 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
27270 {
27271 	int	pm_capable_prop;
27272 
27273 	ASSERT(un->un_sd);
27274 	ASSERT(un->un_sd->sd_inq);
27275 
27276 	/*
27277 	 * Enable SYNC CACHE support for all devices.
27278 	 */
27279 	un->un_f_sync_cache_supported = TRUE;
27280 
27281 	if (un->un_sd->sd_inq->inq_rmb) {
27282 		/*
27283 		 * The media of this device is removable. And for this kind
27284 		 * of devices, it is possible to change medium after opening
27285 		 * devices. Thus we should support this operation.
27286 		 */
27287 		un->un_f_has_removable_media = TRUE;
27288 
27289 		/*
27290 		 * support non-512-byte blocksize of removable media devices
27291 		 */
27292 		un->un_f_non_devbsize_supported = TRUE;
27293 
27294 		/*
27295 		 * Assume that all removable media devices support DOOR_LOCK
27296 		 */
27297 		un->un_f_doorlock_supported = TRUE;
27298 
27299 		/*
27300 		 * For a removable media device, it is possible to be opened
27301 		 * with NDELAY flag when there is no media in drive, in this
27302 		 * case we don't care if device is writable. But if without
27303 		 * NDELAY flag, we need to check if media is write-protected.
27304 		 */
27305 		un->un_f_chk_wp_open = TRUE;
27306 
27307 		/*
27308 		 * need to start a SCSI watch thread to monitor media state,
27309 		 * when media is being inserted or ejected, notify syseventd.
27310 		 */
27311 		un->un_f_monitor_media_state = TRUE;
27312 
27313 		/*
27314 		 * Some devices don't support START_STOP_UNIT command.
27315 		 * Therefore, we'd better check if a device supports it
27316 		 * before sending it.
27317 		 */
27318 		un->un_f_check_start_stop = TRUE;
27319 
27320 		/*
27321 		 * support eject media ioctl:
27322 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
27323 		 */
27324 		un->un_f_eject_media_supported = TRUE;
27325 
27326 		/*
27327 		 * Because many removable-media devices don't support
27328 		 * LOG_SENSE, we couldn't use this command to check if
27329 		 * a removable media device support power-management.
27330 		 * We assume that they support power-management via
27331 		 * START_STOP_UNIT command and can be spun up and down
27332 		 * without limitations.
27333 		 */
27334 		un->un_f_pm_supported = TRUE;
27335 
27336 		/*
27337 		 * Need to create a zero length (Boolean) property
27338 		 * removable-media for the removable media devices.
27339 		 * Note that the return value of the property is not being
27340 		 * checked, since if unable to create the property
27341 		 * then do not want the attach to fail altogether. Consistent
27342 		 * with other property creation in attach.
27343 		 */
27344 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
27345 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
27346 
27347 	} else {
27348 		/*
27349 		 * create device ID for device
27350 		 */
27351 		un->un_f_devid_supported = TRUE;
27352 
27353 		/*
27354 		 * Spin up non-removable-media devices once it is attached
27355 		 */
27356 		un->un_f_attach_spinup = TRUE;
27357 
27358 		/*
27359 		 * According to SCSI specification, Sense data has two kinds of
27360 		 * format: fixed format, and descriptor format. At present, we
27361 		 * don't support descriptor format sense data for removable
27362 		 * media.
27363 		 */
27364 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
27365 			un->un_f_descr_format_supported = TRUE;
27366 		}
27367 
27368 		/*
27369 		 * kstats are created only for non-removable media devices.
27370 		 *
27371 		 * Set this in sd.conf to 0 in order to disable kstats.  The
27372 		 * default is 1, so they are enabled by default.
27373 		 */
27374 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
27375 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
27376 		    "enable-partition-kstats", 1));
27377 
27378 		/*
27379 		 * Check if HBA has set the "pm-capable" property.
27380 		 * If "pm-capable" exists and is non-zero then we can
27381 		 * power manage the device without checking the start/stop
27382 		 * cycle count log sense page.
27383 		 *
27384 		 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
27385 		 * then we should not power manage the device.
27386 		 *
27387 		 * If "pm-capable" doesn't exist then pm_capable_prop will
27388 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
27389 		 * sd will check the start/stop cycle count log sense page
27390 		 * and power manage the device if the cycle count limit has
27391 		 * not been exceeded.
27392 		 */
27393 		pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
27394 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
27395 		if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
27396 			un->un_f_log_sense_supported = TRUE;
27397 		} else {
27398 			/*
27399 			 * pm-capable property exists.
27400 			 *
27401 			 * Convert "TRUE" values for pm_capable_prop to
27402 			 * SD_PM_CAPABLE_TRUE (1) to make it easier to check
27403 			 * later. "TRUE" values are any values except
27404 			 * SD_PM_CAPABLE_FALSE (0) and
27405 			 * SD_PM_CAPABLE_UNDEFINED (-1)
27406 			 */
27407 			if (pm_capable_prop == SD_PM_CAPABLE_FALSE) {
27408 				un->un_f_log_sense_supported = FALSE;
27409 			} else {
27410 				un->un_f_pm_supported = TRUE;
27411 			}
27412 
27413 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
27414 			    "sd_unit_attach: un:0x%p pm-capable "
27415 			    "property set to %d.\n", un, un->un_f_pm_supported);
27416 		}
27417 	}
27418 
27419 	if (un->un_f_is_hotpluggable) {
27420 
27421 		/*
27422 		 * Have to watch hotpluggable devices as well, since
27423 		 * that's the only way for userland applications to
27424 		 * detect hot removal while device is busy/mounted.
27425 		 */
27426 		un->un_f_monitor_media_state = TRUE;
27427 
27428 		un->un_f_check_start_stop = TRUE;
27429 
27430 	}
27431 }
27432 
27433 /*
27434  * sd_tg_rdwr:
27435  * Provides rdwr access for cmlb via sd_tgops. The start_block is
27436  * in sys block size, req_length in bytes.
27437  *
27438  */
27439 static int
27440 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
27441     diskaddr_t start_block, size_t reqlength, void *tg_cookie)
27442 {
27443 	struct sd_lun *un;
27444 	int path_flag = (int)(uintptr_t)tg_cookie;
27445 	char *dkl = NULL;
27446 	diskaddr_t real_addr = start_block;
27447 	diskaddr_t first_byte, end_block;
27448 
27449 	size_t	buffer_size = reqlength;
27450 	int rval;
27451 	diskaddr_t	cap;
27452 	uint32_t	lbasize;
27453 
27454 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
27455 	if (un == NULL)
27456 		return (ENXIO);
27457 
27458 	if (cmd != TG_READ && cmd != TG_WRITE)
27459 		return (EINVAL);
27460 
27461 	mutex_enter(SD_MUTEX(un));
27462 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
27463 		mutex_exit(SD_MUTEX(un));
27464 		rval = sd_send_scsi_READ_CAPACITY(un, (uint64_t *)&cap,
27465 		    &lbasize, path_flag);
27466 		if (rval != 0)
27467 			return (rval);
27468 		mutex_enter(SD_MUTEX(un));
27469 		sd_update_block_info(un, lbasize, cap);
27470 		if ((un->un_f_tgt_blocksize_is_valid == FALSE)) {
27471 			mutex_exit(SD_MUTEX(un));
27472 			return (EIO);
27473 		}
27474 	}
27475 
27476 	if (NOT_DEVBSIZE(un)) {
27477 		/*
27478 		 * sys_blocksize != tgt_blocksize, need to re-adjust
27479 		 * blkno and save the index to beginning of dk_label
27480 		 */
27481 		first_byte  = SD_SYSBLOCKS2BYTES(un, start_block);
27482 		real_addr = first_byte / un->un_tgt_blocksize;
27483 
27484 		end_block = (first_byte + reqlength +
27485 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
27486 
27487 		/* round up buffer size to multiple of target block size */
27488 		buffer_size = (end_block - real_addr) * un->un_tgt_blocksize;
27489 
27490 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr",
27491 		    "label_addr: 0x%x allocation size: 0x%x\n",
27492 		    real_addr, buffer_size);
27493 
27494 		if (((first_byte % un->un_tgt_blocksize) != 0) ||
27495 		    (reqlength % un->un_tgt_blocksize) != 0)
27496 			/* the request is not aligned */
27497 			dkl = kmem_zalloc(buffer_size, KM_SLEEP);
27498 	}
27499 
27500 	/*
27501 	 * The MMC standard allows READ CAPACITY to be
27502 	 * inaccurate by a bounded amount (in the interest of
27503 	 * response latency).  As a result, failed READs are
27504 	 * commonplace (due to the reading of metadata and not
27505 	 * data). Depending on the per-Vendor/drive Sense data,
27506 	 * the failed READ can cause many (unnecessary) retries.
27507 	 */
27508 
27509 	if (ISCD(un) && (cmd == TG_READ) &&
27510 	    (un->un_f_blockcount_is_valid == TRUE) &&
27511 	    ((start_block == (un->un_blockcount - 1))||
27512 	    (start_block == (un->un_blockcount - 2)))) {
27513 			path_flag = SD_PATH_DIRECT_PRIORITY;
27514 	}
27515 
27516 	mutex_exit(SD_MUTEX(un));
27517 	if (cmd == TG_READ) {
27518 		rval = sd_send_scsi_READ(un, (dkl != NULL)? dkl: bufaddr,
27519 		    buffer_size, real_addr, path_flag);
27520 		if (dkl != NULL)
27521 			bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block,
27522 			    real_addr), bufaddr, reqlength);
27523 	} else {
27524 		if (dkl) {
27525 			rval = sd_send_scsi_READ(un, dkl, buffer_size,
27526 			    real_addr, path_flag);
27527 			if (rval) {
27528 				kmem_free(dkl, buffer_size);
27529 				return (rval);
27530 			}
27531 			bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block,
27532 			    real_addr), reqlength);
27533 		}
27534 		rval = sd_send_scsi_WRITE(un, (dkl != NULL)? dkl: bufaddr,
27535 		    buffer_size, real_addr, path_flag);
27536 	}
27537 
27538 	if (dkl != NULL)
27539 		kmem_free(dkl, buffer_size);
27540 
27541 	return (rval);
27542 }
27543 
27544 
27545 static int
27546 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie)
27547 {
27548 
27549 	struct sd_lun *un;
27550 	diskaddr_t	cap;
27551 	uint32_t	lbasize;
27552 	int		path_flag = (int)(uintptr_t)tg_cookie;
27553 	int		ret = 0;
27554 
27555 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
27556 	if (un == NULL)
27557 		return (ENXIO);
27558 
27559 	switch (cmd) {
27560 	case TG_GETPHYGEOM:
27561 	case TG_GETVIRTGEOM:
27562 	case TG_GETCAPACITY:
27563 	case  TG_GETBLOCKSIZE:
27564 		mutex_enter(SD_MUTEX(un));
27565 
27566 		if ((un->un_f_blockcount_is_valid == TRUE) &&
27567 		    (un->un_f_tgt_blocksize_is_valid == TRUE)) {
27568 			cap = un->un_blockcount;
27569 			lbasize = un->un_tgt_blocksize;
27570 			mutex_exit(SD_MUTEX(un));
27571 		} else {
27572 			mutex_exit(SD_MUTEX(un));
27573 			ret = sd_send_scsi_READ_CAPACITY(un, (uint64_t *)&cap,
27574 			    &lbasize, path_flag);
27575 			if (ret != 0)
27576 				return (ret);
27577 			mutex_enter(SD_MUTEX(un));
27578 			sd_update_block_info(un, lbasize, cap);
27579 			if ((un->un_f_blockcount_is_valid == FALSE) ||
27580 			    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
27581 				mutex_exit(SD_MUTEX(un));
27582 				return (EIO);
27583 			}
27584 			mutex_exit(SD_MUTEX(un));
27585 		}
27586 
27587 		if (cmd == TG_GETCAPACITY) {
27588 			*(diskaddr_t *)arg = cap;
27589 			return (0);
27590 		}
27591 
27592 		if (cmd == TG_GETBLOCKSIZE) {
27593 			*(uint32_t *)arg = lbasize;
27594 			return (0);
27595 		}
27596 
27597 		if (cmd == TG_GETPHYGEOM)
27598 			ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg,
27599 			    cap, lbasize, path_flag);
27600 		else
27601 			/* TG_GETVIRTGEOM */
27602 			ret = sd_get_virtual_geometry(un,
27603 			    (cmlb_geom_t *)arg, cap, lbasize);
27604 
27605 		return (ret);
27606 
27607 	case TG_GETATTR:
27608 		mutex_enter(SD_MUTEX(un));
27609 		((tg_attribute_t *)arg)->media_is_writable =
27610 		    un->un_f_mmc_writable_media;
27611 		mutex_exit(SD_MUTEX(un));
27612 		return (0);
27613 	default:
27614 		return (ENOTTY);
27615 
27616 	}
27617 
27618 }
27619