xref: /titanic_51/usr/src/uts/common/io/scsi/targets/sd.c (revision 91d632c867159b669d90fc7e172295433d0519ef)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * SCSI disk target driver.
30  */
31 #include <sys/scsi/scsi.h>
32 #include <sys/dkbad.h>
33 #include <sys/dklabel.h>
34 #include <sys/dkio.h>
35 #include <sys/fdio.h>
36 #include <sys/cdio.h>
37 #include <sys/mhd.h>
38 #include <sys/vtoc.h>
39 #include <sys/dktp/fdisk.h>
40 #include <sys/kstat.h>
41 #include <sys/vtrace.h>
42 #include <sys/note.h>
43 #include <sys/thread.h>
44 #include <sys/proc.h>
45 #include <sys/efi_partition.h>
46 #include <sys/var.h>
47 #include <sys/aio_req.h>
48 
49 #ifdef __lock_lint
50 #define	_LP64
51 #define	__amd64
52 #endif
53 
54 #if (defined(__fibre))
55 /* Note: is there a leadville version of the following? */
56 #include <sys/fc4/fcal_linkapp.h>
57 #endif
58 #include <sys/taskq.h>
59 #include <sys/uuid.h>
60 #include <sys/byteorder.h>
61 #include <sys/sdt.h>
62 
63 #include "sd_xbuf.h"
64 
65 #include <sys/scsi/targets/sddef.h>
66 #include <sys/cmlb.h>
67 #include <sys/sysevent/eventdefs.h>
68 #include <sys/sysevent/dev.h>
69 
70 
71 /*
72  * Loadable module info.
73  */
74 #if (defined(__fibre))
75 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver %I%"
76 char _depends_on[]	= "misc/scsi misc/cmlb drv/fcp";
77 #else
78 #define	SD_MODULE_NAME	"SCSI Disk Driver %I%"
79 char _depends_on[]	= "misc/scsi misc/cmlb";
80 #endif
81 
82 /*
83  * Define the interconnect type, to allow the driver to distinguish
84  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
85  *
86  * This is really for backward compatibility. In the future, the driver
87  * should actually check the "interconnect-type" property as reported by
88  * the HBA; however at present this property is not defined by all HBAs,
89  * so we will use this #define (1) to permit the driver to run in
90  * backward-compatibility mode; and (2) to print a notification message
91  * if an FC HBA does not support the "interconnect-type" property.  The
92  * behavior of the driver will be to assume parallel SCSI behaviors unless
93  * the "interconnect-type" property is defined by the HBA **AND** has a
94  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
95  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
96  * Channel behaviors (as per the old ssd).  (Note that the
97  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
98  * will result in the driver assuming parallel SCSI behaviors.)
99  *
100  * (see common/sys/scsi/impl/services.h)
101  *
102  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
103  * since some FC HBAs may already support that, and there is some code in
104  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
105  * default would confuse that code, and besides things should work fine
106  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
107  * "interconnect_type" property.
108  *
109  */
110 #if (defined(__fibre))
111 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
112 #else
113 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
114 #endif
115 
116 /*
117  * The name of the driver, established from the module name in _init.
118  */
119 static	char *sd_label			= NULL;
120 
121 /*
122  * Driver name is unfortunately prefixed on some driver.conf properties.
123  */
124 #if (defined(__fibre))
125 #define	sd_max_xfer_size		ssd_max_xfer_size
126 #define	sd_config_list			ssd_config_list
127 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
128 static	char *sd_config_list		= "ssd-config-list";
129 #else
130 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
131 static	char *sd_config_list		= "sd-config-list";
132 #endif
133 
134 /*
135  * Driver global variables
136  */
137 
138 #if (defined(__fibre))
139 /*
140  * These #defines are to avoid namespace collisions that occur because this
141  * code is currently used to compile two separate driver modules: sd and ssd.
142  * All global variables need to be treated this way (even if declared static)
143  * in order to allow the debugger to resolve the names properly.
144  * It is anticipated that in the near future the ssd module will be obsoleted,
145  * at which time this namespace issue should go away.
146  */
147 #define	sd_state			ssd_state
148 #define	sd_io_time			ssd_io_time
149 #define	sd_failfast_enable		ssd_failfast_enable
150 #define	sd_ua_retry_count		ssd_ua_retry_count
151 #define	sd_report_pfa			ssd_report_pfa
152 #define	sd_max_throttle			ssd_max_throttle
153 #define	sd_min_throttle			ssd_min_throttle
154 #define	sd_rot_delay			ssd_rot_delay
155 
156 #define	sd_retry_on_reservation_conflict	\
157 					ssd_retry_on_reservation_conflict
158 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
159 #define	sd_resv_conflict_name		ssd_resv_conflict_name
160 
161 #define	sd_component_mask		ssd_component_mask
162 #define	sd_level_mask			ssd_level_mask
163 #define	sd_debug_un			ssd_debug_un
164 #define	sd_error_level			ssd_error_level
165 
166 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
167 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
168 
169 #define	sd_tr				ssd_tr
170 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
171 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
172 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
173 #define	sd_check_media_time		ssd_check_media_time
174 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
175 #define	sd_label_mutex			ssd_label_mutex
176 #define	sd_detach_mutex			ssd_detach_mutex
177 #define	sd_log_buf			ssd_log_buf
178 #define	sd_log_mutex			ssd_log_mutex
179 
180 #define	sd_disk_table			ssd_disk_table
181 #define	sd_disk_table_size		ssd_disk_table_size
182 #define	sd_sense_mutex			ssd_sense_mutex
183 #define	sd_cdbtab			ssd_cdbtab
184 
185 #define	sd_cb_ops			ssd_cb_ops
186 #define	sd_ops				ssd_ops
187 #define	sd_additional_codes		ssd_additional_codes
188 #define	sd_tgops			ssd_tgops
189 
190 #define	sd_minor_data			ssd_minor_data
191 #define	sd_minor_data_efi		ssd_minor_data_efi
192 
193 #define	sd_tq				ssd_tq
194 #define	sd_wmr_tq			ssd_wmr_tq
195 #define	sd_taskq_name			ssd_taskq_name
196 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
197 #define	sd_taskq_minalloc		ssd_taskq_minalloc
198 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
199 
200 #define	sd_dump_format_string		ssd_dump_format_string
201 
202 #define	sd_iostart_chain		ssd_iostart_chain
203 #define	sd_iodone_chain			ssd_iodone_chain
204 
205 #define	sd_pm_idletime			ssd_pm_idletime
206 
207 #define	sd_force_pm_supported		ssd_force_pm_supported
208 
209 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
210 
211 #endif
212 
213 
214 #ifdef	SDDEBUG
215 int	sd_force_pm_supported		= 0;
216 #endif	/* SDDEBUG */
217 
218 void *sd_state				= NULL;
219 int sd_io_time				= SD_IO_TIME;
220 int sd_failfast_enable			= 1;
221 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
222 int sd_report_pfa			= 1;
223 int sd_max_throttle			= SD_MAX_THROTTLE;
224 int sd_min_throttle			= SD_MIN_THROTTLE;
225 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
226 int sd_qfull_throttle_enable		= TRUE;
227 
228 int sd_retry_on_reservation_conflict	= 1;
229 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
230 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
231 
232 static int sd_dtype_optical_bind	= -1;
233 
234 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
235 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
236 
237 /*
238  * Global data for debug logging. To enable debug printing, sd_component_mask
239  * and sd_level_mask should be set to the desired bit patterns as outlined in
240  * sddef.h.
241  */
242 uint_t	sd_component_mask		= 0x0;
243 uint_t	sd_level_mask			= 0x0;
244 struct	sd_lun *sd_debug_un		= NULL;
245 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
246 
247 /* Note: these may go away in the future... */
248 static uint32_t	sd_xbuf_active_limit	= 512;
249 static uint32_t sd_xbuf_reserve_limit	= 16;
250 
251 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
252 
253 /*
254  * Timer value used to reset the throttle after it has been reduced
255  * (typically in response to TRAN_BUSY or STATUS_QFULL)
256  */
257 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
258 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
259 
260 /*
261  * Interval value associated with the media change scsi watch.
262  */
263 static int sd_check_media_time		= 3000000;
264 
265 /*
266  * Wait value used for in progress operations during a DDI_SUSPEND
267  */
268 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
269 
270 /*
271  * sd_label_mutex protects a static buffer used in the disk label
272  * component of the driver
273  */
274 static kmutex_t sd_label_mutex;
275 
276 /*
277  * sd_detach_mutex protects un_layer_count, un_detach_count, and
278  * un_opens_in_progress in the sd_lun structure.
279  */
280 static kmutex_t sd_detach_mutex;
281 
282 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
283 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
284 
285 /*
286  * Global buffer and mutex for debug logging
287  */
288 static char	sd_log_buf[1024];
289 static kmutex_t	sd_log_mutex;
290 
291 /*
292  * Structs and globals for recording attached lun information.
293  * This maintains a chain. Each node in the chain represents a SCSI controller.
294  * The structure records the number of luns attached to each target connected
295  * with the controller.
296  * For parallel scsi device only.
297  */
298 struct sd_scsi_hba_tgt_lun {
299 	struct sd_scsi_hba_tgt_lun	*next;
300 	dev_info_t			*pdip;
301 	int				nlun[NTARGETS_WIDE];
302 };
303 
304 /*
305  * Flag to indicate the lun is attached or detached
306  */
307 #define	SD_SCSI_LUN_ATTACH	0
308 #define	SD_SCSI_LUN_DETACH	1
309 
310 static kmutex_t	sd_scsi_target_lun_mutex;
311 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
312 
313 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
314     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
315 
316 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
317     sd_scsi_target_lun_head))
318 
319 /*
320  * "Smart" Probe Caching structs, globals, #defines, etc.
321  * For parallel scsi and non-self-identify device only.
322  */
323 
324 /*
325  * The following resources and routines are implemented to support
326  * "smart" probing, which caches the scsi_probe() results in an array,
327  * in order to help avoid long probe times.
328  */
329 struct sd_scsi_probe_cache {
330 	struct	sd_scsi_probe_cache	*next;
331 	dev_info_t	*pdip;
332 	int		cache[NTARGETS_WIDE];
333 };
334 
335 static kmutex_t	sd_scsi_probe_cache_mutex;
336 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
337 
338 /*
339  * Really we only need protection on the head of the linked list, but
340  * better safe than sorry.
341  */
342 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
343     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
344 
345 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
346     sd_scsi_probe_cache_head))
347 
348 
349 /*
350  * Vendor specific data name property declarations
351  */
352 
353 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
354 
355 static sd_tunables seagate_properties = {
356 	SEAGATE_THROTTLE_VALUE,
357 	0,
358 	0,
359 	0,
360 	0,
361 	0,
362 	0,
363 	0,
364 	0
365 };
366 
367 
368 static sd_tunables fujitsu_properties = {
369 	FUJITSU_THROTTLE_VALUE,
370 	0,
371 	0,
372 	0,
373 	0,
374 	0,
375 	0,
376 	0,
377 	0
378 };
379 
380 static sd_tunables ibm_properties = {
381 	IBM_THROTTLE_VALUE,
382 	0,
383 	0,
384 	0,
385 	0,
386 	0,
387 	0,
388 	0,
389 	0
390 };
391 
392 static sd_tunables purple_properties = {
393 	PURPLE_THROTTLE_VALUE,
394 	0,
395 	0,
396 	PURPLE_BUSY_RETRIES,
397 	PURPLE_RESET_RETRY_COUNT,
398 	PURPLE_RESERVE_RELEASE_TIME,
399 	0,
400 	0,
401 	0
402 };
403 
404 static sd_tunables sve_properties = {
405 	SVE_THROTTLE_VALUE,
406 	0,
407 	0,
408 	SVE_BUSY_RETRIES,
409 	SVE_RESET_RETRY_COUNT,
410 	SVE_RESERVE_RELEASE_TIME,
411 	SVE_MIN_THROTTLE_VALUE,
412 	SVE_DISKSORT_DISABLED_FLAG,
413 	0
414 };
415 
416 static sd_tunables maserati_properties = {
417 	0,
418 	0,
419 	0,
420 	0,
421 	0,
422 	0,
423 	0,
424 	MASERATI_DISKSORT_DISABLED_FLAG,
425 	MASERATI_LUN_RESET_ENABLED_FLAG
426 };
427 
428 static sd_tunables pirus_properties = {
429 	PIRUS_THROTTLE_VALUE,
430 	0,
431 	PIRUS_NRR_COUNT,
432 	PIRUS_BUSY_RETRIES,
433 	PIRUS_RESET_RETRY_COUNT,
434 	0,
435 	PIRUS_MIN_THROTTLE_VALUE,
436 	PIRUS_DISKSORT_DISABLED_FLAG,
437 	PIRUS_LUN_RESET_ENABLED_FLAG
438 };
439 
440 #endif
441 
442 #if (defined(__sparc) && !defined(__fibre)) || \
443 	(defined(__i386) || defined(__amd64))
444 
445 
446 static sd_tunables elite_properties = {
447 	ELITE_THROTTLE_VALUE,
448 	0,
449 	0,
450 	0,
451 	0,
452 	0,
453 	0,
454 	0,
455 	0
456 };
457 
458 static sd_tunables st31200n_properties = {
459 	ST31200N_THROTTLE_VALUE,
460 	0,
461 	0,
462 	0,
463 	0,
464 	0,
465 	0,
466 	0,
467 	0
468 };
469 
470 #endif /* Fibre or not */
471 
472 static sd_tunables lsi_properties_scsi = {
473 	LSI_THROTTLE_VALUE,
474 	0,
475 	LSI_NOTREADY_RETRIES,
476 	0,
477 	0,
478 	0,
479 	0,
480 	0,
481 	0
482 };
483 
484 static sd_tunables symbios_properties = {
485 	SYMBIOS_THROTTLE_VALUE,
486 	0,
487 	SYMBIOS_NOTREADY_RETRIES,
488 	0,
489 	0,
490 	0,
491 	0,
492 	0,
493 	0
494 };
495 
496 static sd_tunables lsi_properties = {
497 	0,
498 	0,
499 	LSI_NOTREADY_RETRIES,
500 	0,
501 	0,
502 	0,
503 	0,
504 	0,
505 	0
506 };
507 
508 static sd_tunables lsi_oem_properties = {
509 	0,
510 	0,
511 	LSI_OEM_NOTREADY_RETRIES,
512 	0,
513 	0,
514 	0,
515 	0,
516 	0,
517 	0,
518 	1
519 };
520 
521 
522 
523 #if (defined(SD_PROP_TST))
524 
525 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
526 #define	SD_TST_THROTTLE_VAL	16
527 #define	SD_TST_NOTREADY_VAL	12
528 #define	SD_TST_BUSY_VAL		60
529 #define	SD_TST_RST_RETRY_VAL	36
530 #define	SD_TST_RSV_REL_TIME	60
531 
532 static sd_tunables tst_properties = {
533 	SD_TST_THROTTLE_VAL,
534 	SD_TST_CTYPE_VAL,
535 	SD_TST_NOTREADY_VAL,
536 	SD_TST_BUSY_VAL,
537 	SD_TST_RST_RETRY_VAL,
538 	SD_TST_RSV_REL_TIME,
539 	0,
540 	0,
541 	0
542 };
543 #endif
544 
545 /* This is similar to the ANSI toupper implementation */
546 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
547 
548 /*
549  * Static Driver Configuration Table
550  *
551  * This is the table of disks which need throttle adjustment (or, perhaps
552  * something else as defined by the flags at a future time.)  device_id
553  * is a string consisting of concatenated vid (vendor), pid (product/model)
554  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
555  * the parts of the string are as defined by the sizes in the scsi_inquiry
556  * structure.  Device type is searched as far as the device_id string is
557  * defined.  Flags defines which values are to be set in the driver from the
558  * properties list.
559  *
560  * Entries below which begin and end with a "*" are a special case.
561  * These do not have a specific vendor, and the string which follows
562  * can appear anywhere in the 16 byte PID portion of the inquiry data.
563  *
564  * Entries below which begin and end with a " " (blank) are a special
565  * case. The comparison function will treat multiple consecutive blanks
566  * as equivalent to a single blank. For example, this causes a
567  * sd_disk_table entry of " NEC CDROM " to match a device's id string
568  * of  "NEC       CDROM".
569  *
570  * Note: The MD21 controller type has been obsoleted.
571  *	 ST318202F is a Legacy device
572  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
573  *	 made with an FC connection. The entries here are a legacy.
574  */
575 static sd_disk_config_t sd_disk_table[] = {
576 #if defined(__fibre) || defined(__i386) || defined(__amd64)
577 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
578 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
579 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
580 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
581 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
582 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
583 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
584 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
585 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
586 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
587 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
588 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
589 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
590 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
591 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
592 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
593 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
594 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
595 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
596 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
597 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
598 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
599 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
600 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
601 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
602 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
603 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
604 	{ "IBM     1724-100",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
605 	{ "IBM     1726-2xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
606 	{ "IBM     1726-22x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
607 	{ "IBM     1726-4xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
608 	{ "IBM     1726-42x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
609 	{ "IBM     1726-3xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
610 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
611 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
612 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
613 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
614 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
615 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
616 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
617 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
618 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
619 	{ "IBM     1818",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
620 	{ "DELL    MD3000",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
621 	{ "DELL    MD3000i",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
622 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
623 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
624 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
625 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
626 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT |
627 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
628 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT |
629 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
630 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
631 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
632 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
633 			SD_CONF_BSET_BSY_RETRY_COUNT|
634 			SD_CONF_BSET_RST_RETRIES|
635 			SD_CONF_BSET_RSV_REL_TIME,
636 		&purple_properties },
637 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
638 		SD_CONF_BSET_BSY_RETRY_COUNT|
639 		SD_CONF_BSET_RST_RETRIES|
640 		SD_CONF_BSET_RSV_REL_TIME|
641 		SD_CONF_BSET_MIN_THROTTLE|
642 		SD_CONF_BSET_DISKSORT_DISABLED,
643 		&sve_properties },
644 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
645 			SD_CONF_BSET_BSY_RETRY_COUNT|
646 			SD_CONF_BSET_RST_RETRIES|
647 			SD_CONF_BSET_RSV_REL_TIME,
648 		&purple_properties },
649 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
650 		SD_CONF_BSET_LUN_RESET_ENABLED,
651 		&maserati_properties },
652 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
653 		SD_CONF_BSET_NRR_COUNT|
654 		SD_CONF_BSET_BSY_RETRY_COUNT|
655 		SD_CONF_BSET_RST_RETRIES|
656 		SD_CONF_BSET_MIN_THROTTLE|
657 		SD_CONF_BSET_DISKSORT_DISABLED|
658 		SD_CONF_BSET_LUN_RESET_ENABLED,
659 		&pirus_properties },
660 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
661 		SD_CONF_BSET_NRR_COUNT|
662 		SD_CONF_BSET_BSY_RETRY_COUNT|
663 		SD_CONF_BSET_RST_RETRIES|
664 		SD_CONF_BSET_MIN_THROTTLE|
665 		SD_CONF_BSET_DISKSORT_DISABLED|
666 		SD_CONF_BSET_LUN_RESET_ENABLED,
667 		&pirus_properties },
668 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
669 		SD_CONF_BSET_NRR_COUNT|
670 		SD_CONF_BSET_BSY_RETRY_COUNT|
671 		SD_CONF_BSET_RST_RETRIES|
672 		SD_CONF_BSET_MIN_THROTTLE|
673 		SD_CONF_BSET_DISKSORT_DISABLED|
674 		SD_CONF_BSET_LUN_RESET_ENABLED,
675 		&pirus_properties },
676 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
677 		SD_CONF_BSET_NRR_COUNT|
678 		SD_CONF_BSET_BSY_RETRY_COUNT|
679 		SD_CONF_BSET_RST_RETRIES|
680 		SD_CONF_BSET_MIN_THROTTLE|
681 		SD_CONF_BSET_DISKSORT_DISABLED|
682 		SD_CONF_BSET_LUN_RESET_ENABLED,
683 		&pirus_properties },
684 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
685 		SD_CONF_BSET_NRR_COUNT|
686 		SD_CONF_BSET_BSY_RETRY_COUNT|
687 		SD_CONF_BSET_RST_RETRIES|
688 		SD_CONF_BSET_MIN_THROTTLE|
689 		SD_CONF_BSET_DISKSORT_DISABLED|
690 		SD_CONF_BSET_LUN_RESET_ENABLED,
691 		&pirus_properties },
692 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
693 		SD_CONF_BSET_NRR_COUNT|
694 		SD_CONF_BSET_BSY_RETRY_COUNT|
695 		SD_CONF_BSET_RST_RETRIES|
696 		SD_CONF_BSET_MIN_THROTTLE|
697 		SD_CONF_BSET_DISKSORT_DISABLED|
698 		SD_CONF_BSET_LUN_RESET_ENABLED,
699 		&pirus_properties },
700 	{ "SUN     STK6580_6780", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
701 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
702 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
703 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
704 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
705 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
706 #endif /* fibre or NON-sparc platforms */
707 #if ((defined(__sparc) && !defined(__fibre)) ||\
708 	(defined(__i386) || defined(__amd64)))
709 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
710 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
711 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
712 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
713 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
714 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
715 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
716 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
717 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
718 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
719 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
720 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
721 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
722 	    &symbios_properties },
723 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
724 	    &lsi_properties_scsi },
725 #if defined(__i386) || defined(__amd64)
726 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
727 				    | SD_CONF_BSET_READSUB_BCD
728 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
729 				    | SD_CONF_BSET_NO_READ_HEADER
730 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
731 
732 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
733 				    | SD_CONF_BSET_READSUB_BCD
734 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
735 				    | SD_CONF_BSET_NO_READ_HEADER
736 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
737 #endif /* __i386 || __amd64 */
738 #endif /* sparc NON-fibre or NON-sparc platforms */
739 
740 #if (defined(SD_PROP_TST))
741 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
742 				| SD_CONF_BSET_CTYPE
743 				| SD_CONF_BSET_NRR_COUNT
744 				| SD_CONF_BSET_FAB_DEVID
745 				| SD_CONF_BSET_NOCACHE
746 				| SD_CONF_BSET_BSY_RETRY_COUNT
747 				| SD_CONF_BSET_PLAYMSF_BCD
748 				| SD_CONF_BSET_READSUB_BCD
749 				| SD_CONF_BSET_READ_TOC_TRK_BCD
750 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
751 				| SD_CONF_BSET_NO_READ_HEADER
752 				| SD_CONF_BSET_READ_CD_XD4
753 				| SD_CONF_BSET_RST_RETRIES
754 				| SD_CONF_BSET_RSV_REL_TIME
755 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
756 #endif
757 };
758 
759 static const int sd_disk_table_size =
760 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
761 
762 
763 
764 #define	SD_INTERCONNECT_PARALLEL	0
765 #define	SD_INTERCONNECT_FABRIC		1
766 #define	SD_INTERCONNECT_FIBRE		2
767 #define	SD_INTERCONNECT_SSA		3
768 #define	SD_INTERCONNECT_SATA		4
769 #define	SD_IS_PARALLEL_SCSI(un)		\
770 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
771 #define	SD_IS_SERIAL(un)		\
772 	((un)->un_interconnect_type == SD_INTERCONNECT_SATA)
773 
774 /*
775  * Definitions used by device id registration routines
776  */
777 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
778 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
779 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
780 
781 static kmutex_t sd_sense_mutex = {0};
782 
783 /*
784  * Macros for updates of the driver state
785  */
786 #define	New_state(un, s)        \
787 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
788 #define	Restore_state(un)	\
789 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
790 
791 static struct sd_cdbinfo sd_cdbtab[] = {
792 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
793 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
794 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
795 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
796 };
797 
798 /*
799  * Specifies the number of seconds that must have elapsed since the last
800  * cmd. has completed for a device to be declared idle to the PM framework.
801  */
802 static int sd_pm_idletime = 1;
803 
804 /*
805  * Internal function prototypes
806  */
807 
808 #if (defined(__fibre))
809 /*
810  * These #defines are to avoid namespace collisions that occur because this
811  * code is currently used to compile two separate driver modules: sd and ssd.
812  * All function names need to be treated this way (even if declared static)
813  * in order to allow the debugger to resolve the names properly.
814  * It is anticipated that in the near future the ssd module will be obsoleted,
815  * at which time this ugliness should go away.
816  */
817 #define	sd_log_trace			ssd_log_trace
818 #define	sd_log_info			ssd_log_info
819 #define	sd_log_err			ssd_log_err
820 #define	sdprobe				ssdprobe
821 #define	sdinfo				ssdinfo
822 #define	sd_prop_op			ssd_prop_op
823 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
824 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
825 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
826 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
827 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
828 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
829 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
830 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
831 #define	sd_spin_up_unit			ssd_spin_up_unit
832 #define	sd_enable_descr_sense		ssd_enable_descr_sense
833 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
834 #define	sd_set_mmc_caps			ssd_set_mmc_caps
835 #define	sd_read_unit_properties		ssd_read_unit_properties
836 #define	sd_process_sdconf_file		ssd_process_sdconf_file
837 #define	sd_process_sdconf_table		ssd_process_sdconf_table
838 #define	sd_sdconf_id_match		ssd_sdconf_id_match
839 #define	sd_blank_cmp			ssd_blank_cmp
840 #define	sd_chk_vers1_data		ssd_chk_vers1_data
841 #define	sd_set_vers1_properties		ssd_set_vers1_properties
842 
843 #define	sd_get_physical_geometry	ssd_get_physical_geometry
844 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
845 #define	sd_update_block_info		ssd_update_block_info
846 #define	sd_register_devid		ssd_register_devid
847 #define	sd_get_devid			ssd_get_devid
848 #define	sd_create_devid			ssd_create_devid
849 #define	sd_write_deviceid		ssd_write_deviceid
850 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
851 #define	sd_setup_pm			ssd_setup_pm
852 #define	sd_create_pm_components		ssd_create_pm_components
853 #define	sd_ddi_suspend			ssd_ddi_suspend
854 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
855 #define	sd_ddi_resume			ssd_ddi_resume
856 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
857 #define	sdpower				ssdpower
858 #define	sdattach			ssdattach
859 #define	sddetach			ssddetach
860 #define	sd_unit_attach			ssd_unit_attach
861 #define	sd_unit_detach			ssd_unit_detach
862 #define	sd_set_unit_attributes		ssd_set_unit_attributes
863 #define	sd_create_errstats		ssd_create_errstats
864 #define	sd_set_errstats			ssd_set_errstats
865 #define	sd_set_pstats			ssd_set_pstats
866 #define	sddump				ssddump
867 #define	sd_scsi_poll			ssd_scsi_poll
868 #define	sd_send_polled_RQS		ssd_send_polled_RQS
869 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
870 #define	sd_init_event_callbacks		ssd_init_event_callbacks
871 #define	sd_event_callback		ssd_event_callback
872 #define	sd_cache_control		ssd_cache_control
873 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
874 #define	sd_get_nv_sup			ssd_get_nv_sup
875 #define	sd_make_device			ssd_make_device
876 #define	sdopen				ssdopen
877 #define	sdclose				ssdclose
878 #define	sd_ready_and_valid		ssd_ready_and_valid
879 #define	sdmin				ssdmin
880 #define	sdread				ssdread
881 #define	sdwrite				ssdwrite
882 #define	sdaread				ssdaread
883 #define	sdawrite			ssdawrite
884 #define	sdstrategy			ssdstrategy
885 #define	sdioctl				ssdioctl
886 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
887 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
888 #define	sd_checksum_iostart		ssd_checksum_iostart
889 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
890 #define	sd_pm_iostart			ssd_pm_iostart
891 #define	sd_core_iostart			ssd_core_iostart
892 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
893 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
894 #define	sd_checksum_iodone		ssd_checksum_iodone
895 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
896 #define	sd_pm_iodone			ssd_pm_iodone
897 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
898 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
899 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
900 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
901 #define	sd_buf_iodone			ssd_buf_iodone
902 #define	sd_uscsi_strategy		ssd_uscsi_strategy
903 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
904 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
905 #define	sd_uscsi_iodone			ssd_uscsi_iodone
906 #define	sd_xbuf_strategy		ssd_xbuf_strategy
907 #define	sd_xbuf_init			ssd_xbuf_init
908 #define	sd_pm_entry			ssd_pm_entry
909 #define	sd_pm_exit			ssd_pm_exit
910 
911 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
912 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
913 
914 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
915 #define	sdintr				ssdintr
916 #define	sd_start_cmds			ssd_start_cmds
917 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
918 #define	sd_bioclone_alloc		ssd_bioclone_alloc
919 #define	sd_bioclone_free		ssd_bioclone_free
920 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
921 #define	sd_shadow_buf_free		ssd_shadow_buf_free
922 #define	sd_print_transport_rejected_message	\
923 					ssd_print_transport_rejected_message
924 #define	sd_retry_command		ssd_retry_command
925 #define	sd_set_retry_bp			ssd_set_retry_bp
926 #define	sd_send_request_sense_command	ssd_send_request_sense_command
927 #define	sd_start_retry_command		ssd_start_retry_command
928 #define	sd_start_direct_priority_command	\
929 					ssd_start_direct_priority_command
930 #define	sd_return_failed_command	ssd_return_failed_command
931 #define	sd_return_failed_command_no_restart	\
932 					ssd_return_failed_command_no_restart
933 #define	sd_return_command		ssd_return_command
934 #define	sd_sync_with_callback		ssd_sync_with_callback
935 #define	sdrunout			ssdrunout
936 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
937 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
938 #define	sd_reduce_throttle		ssd_reduce_throttle
939 #define	sd_restore_throttle		ssd_restore_throttle
940 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
941 #define	sd_init_cdb_limits		ssd_init_cdb_limits
942 #define	sd_pkt_status_good		ssd_pkt_status_good
943 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
944 #define	sd_pkt_status_busy		ssd_pkt_status_busy
945 #define	sd_pkt_status_reservation_conflict	\
946 					ssd_pkt_status_reservation_conflict
947 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
948 #define	sd_handle_request_sense		ssd_handle_request_sense
949 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
950 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
951 #define	sd_validate_sense_data		ssd_validate_sense_data
952 #define	sd_decode_sense			ssd_decode_sense
953 #define	sd_print_sense_msg		ssd_print_sense_msg
954 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
955 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
956 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
957 #define	sd_sense_key_medium_or_hardware_error	\
958 					ssd_sense_key_medium_or_hardware_error
959 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
960 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
961 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
962 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
963 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
964 #define	sd_sense_key_default		ssd_sense_key_default
965 #define	sd_print_retry_msg		ssd_print_retry_msg
966 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
967 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
968 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
969 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
970 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
971 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
972 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
973 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
974 #define	sd_pkt_reason_default		ssd_pkt_reason_default
975 #define	sd_reset_target			ssd_reset_target
976 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
977 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
978 #define	sd_taskq_create			ssd_taskq_create
979 #define	sd_taskq_delete			ssd_taskq_delete
980 #define	sd_target_change_task		ssd_target_change_task
981 #define	sd_log_lun_expansion_event	ssd_log_lun_expansion_event
982 #define	sd_media_change_task		ssd_media_change_task
983 #define	sd_handle_mchange		ssd_handle_mchange
984 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
985 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
986 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
987 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
988 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
989 					sd_send_scsi_feature_GET_CONFIGURATION
990 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
991 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
992 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
993 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
994 					ssd_send_scsi_PERSISTENT_RESERVE_IN
995 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
996 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
997 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
998 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
999 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
1000 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
1001 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
1002 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
1003 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
1004 #define	sd_alloc_rqs			ssd_alloc_rqs
1005 #define	sd_free_rqs			ssd_free_rqs
1006 #define	sd_dump_memory			ssd_dump_memory
1007 #define	sd_get_media_info		ssd_get_media_info
1008 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
1009 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
1010 #define	sd_setup_next_xfer		ssd_setup_next_xfer
1011 #define	sd_dkio_get_temp		ssd_dkio_get_temp
1012 #define	sd_check_mhd			ssd_check_mhd
1013 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1014 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1015 #define	sd_sname			ssd_sname
1016 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1017 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1018 #define	sd_take_ownership		ssd_take_ownership
1019 #define	sd_reserve_release		ssd_reserve_release
1020 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1021 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1022 #define	sd_persistent_reservation_in_read_keys	\
1023 					ssd_persistent_reservation_in_read_keys
1024 #define	sd_persistent_reservation_in_read_resv	\
1025 					ssd_persistent_reservation_in_read_resv
1026 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1027 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1028 #define	sd_mhdioc_release		ssd_mhdioc_release
1029 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1030 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1031 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1032 #define	sr_change_blkmode		ssr_change_blkmode
1033 #define	sr_change_speed			ssr_change_speed
1034 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1035 #define	sr_pause_resume			ssr_pause_resume
1036 #define	sr_play_msf			ssr_play_msf
1037 #define	sr_play_trkind			ssr_play_trkind
1038 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1039 #define	sr_read_subchannel		ssr_read_subchannel
1040 #define	sr_read_tocentry		ssr_read_tocentry
1041 #define	sr_read_tochdr			ssr_read_tochdr
1042 #define	sr_read_cdda			ssr_read_cdda
1043 #define	sr_read_cdxa			ssr_read_cdxa
1044 #define	sr_read_mode1			ssr_read_mode1
1045 #define	sr_read_mode2			ssr_read_mode2
1046 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1047 #define	sr_sector_mode			ssr_sector_mode
1048 #define	sr_eject			ssr_eject
1049 #define	sr_ejected			ssr_ejected
1050 #define	sr_check_wp			ssr_check_wp
1051 #define	sd_check_media			ssd_check_media
1052 #define	sd_media_watch_cb		ssd_media_watch_cb
1053 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1054 #define	sr_volume_ctrl			ssr_volume_ctrl
1055 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1056 #define	sd_log_page_supported		ssd_log_page_supported
1057 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1058 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1059 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1060 #define	sd_range_lock			ssd_range_lock
1061 #define	sd_get_range			ssd_get_range
1062 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1063 #define	sd_range_unlock			ssd_range_unlock
1064 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1065 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1066 
1067 #define	sd_iostart_chain		ssd_iostart_chain
1068 #define	sd_iodone_chain			ssd_iodone_chain
1069 #define	sd_initpkt_map			ssd_initpkt_map
1070 #define	sd_destroypkt_map		ssd_destroypkt_map
1071 #define	sd_chain_type_map		ssd_chain_type_map
1072 #define	sd_chain_index_map		ssd_chain_index_map
1073 
1074 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1075 #define	sd_failfast_flushq		ssd_failfast_flushq
1076 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1077 
1078 #define	sd_is_lsi			ssd_is_lsi
1079 #define	sd_tg_rdwr			ssd_tg_rdwr
1080 #define	sd_tg_getinfo			ssd_tg_getinfo
1081 
1082 #endif	/* #if (defined(__fibre)) */
1083 
1084 
1085 int _init(void);
1086 int _fini(void);
1087 int _info(struct modinfo *modinfop);
1088 
1089 /*PRINTFLIKE3*/
1090 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1091 /*PRINTFLIKE3*/
1092 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1093 /*PRINTFLIKE3*/
1094 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1095 
1096 static int sdprobe(dev_info_t *devi);
1097 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1098     void **result);
1099 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1100     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1101 
1102 /*
1103  * Smart probe for parallel scsi
1104  */
1105 static void sd_scsi_probe_cache_init(void);
1106 static void sd_scsi_probe_cache_fini(void);
1107 static void sd_scsi_clear_probe_cache(void);
1108 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1109 
1110 /*
1111  * Attached luns on target for parallel scsi
1112  */
1113 static void sd_scsi_target_lun_init(void);
1114 static void sd_scsi_target_lun_fini(void);
1115 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1116 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1117 
1118 static int	sd_spin_up_unit(struct sd_lun *un);
1119 #ifdef _LP64
1120 static void	sd_enable_descr_sense(struct sd_lun *un);
1121 static void	sd_reenable_dsense_task(void *arg);
1122 #endif /* _LP64 */
1123 
1124 static void	sd_set_mmc_caps(struct sd_lun *un);
1125 
1126 static void sd_read_unit_properties(struct sd_lun *un);
1127 static int  sd_process_sdconf_file(struct sd_lun *un);
1128 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1129     int *data_list, sd_tunables *values);
1130 static void sd_process_sdconf_table(struct sd_lun *un);
1131 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1132 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1133 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1134 	int list_len, char *dataname_ptr);
1135 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1136     sd_tunables *prop_list);
1137 
1138 static void sd_register_devid(struct sd_lun *un, dev_info_t *devi,
1139     int reservation_flag);
1140 static int  sd_get_devid(struct sd_lun *un);
1141 static ddi_devid_t sd_create_devid(struct sd_lun *un);
1142 static int  sd_write_deviceid(struct sd_lun *un);
1143 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1144 static int  sd_check_vpd_page_support(struct sd_lun *un);
1145 
1146 static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi);
1147 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1148 
1149 static int  sd_ddi_suspend(dev_info_t *devi);
1150 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1151 static int  sd_ddi_resume(dev_info_t *devi);
1152 static int  sd_ddi_pm_resume(struct sd_lun *un);
1153 static int  sdpower(dev_info_t *devi, int component, int level);
1154 
1155 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1156 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1157 static int  sd_unit_attach(dev_info_t *devi);
1158 static int  sd_unit_detach(dev_info_t *devi);
1159 
1160 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1161 static void sd_create_errstats(struct sd_lun *un, int instance);
1162 static void sd_set_errstats(struct sd_lun *un);
1163 static void sd_set_pstats(struct sd_lun *un);
1164 
1165 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1166 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1167 static int  sd_send_polled_RQS(struct sd_lun *un);
1168 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1169 
1170 #if (defined(__fibre))
1171 /*
1172  * Event callbacks (photon)
1173  */
1174 static void sd_init_event_callbacks(struct sd_lun *un);
1175 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1176 #endif
1177 
1178 /*
1179  * Defines for sd_cache_control
1180  */
1181 
1182 #define	SD_CACHE_ENABLE		1
1183 #define	SD_CACHE_DISABLE	0
1184 #define	SD_CACHE_NOCHANGE	-1
1185 
1186 static int   sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag);
1187 static int   sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled);
1188 static void  sd_get_nv_sup(struct sd_lun *un);
1189 static dev_t sd_make_device(dev_info_t *devi);
1190 
1191 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1192 	uint64_t capacity);
1193 
1194 /*
1195  * Driver entry point functions.
1196  */
1197 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1198 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1199 static int  sd_ready_and_valid(struct sd_lun *un);
1200 
1201 static void sdmin(struct buf *bp);
1202 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1203 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1204 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1205 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1206 
1207 static int sdstrategy(struct buf *bp);
1208 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1209 
1210 /*
1211  * Function prototypes for layering functions in the iostart chain.
1212  */
1213 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1214 	struct buf *bp);
1215 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1216 	struct buf *bp);
1217 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1218 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1219 	struct buf *bp);
1220 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1221 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1222 
1223 /*
1224  * Function prototypes for layering functions in the iodone chain.
1225  */
1226 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1227 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1228 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1229 	struct buf *bp);
1230 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1231 	struct buf *bp);
1232 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1233 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1234 	struct buf *bp);
1235 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1236 
1237 /*
1238  * Prototypes for functions to support buf(9S) based IO.
1239  */
1240 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1241 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1242 static void sd_destroypkt_for_buf(struct buf *);
1243 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1244 	struct buf *bp, int flags,
1245 	int (*callback)(caddr_t), caddr_t callback_arg,
1246 	diskaddr_t lba, uint32_t blockcount);
1247 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1248 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1249 
1250 /*
1251  * Prototypes for functions to support USCSI IO.
1252  */
1253 static int sd_uscsi_strategy(struct buf *bp);
1254 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1255 static void sd_destroypkt_for_uscsi(struct buf *);
1256 
1257 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1258 	uchar_t chain_type, void *pktinfop);
1259 
1260 static int  sd_pm_entry(struct sd_lun *un);
1261 static void sd_pm_exit(struct sd_lun *un);
1262 
1263 static void sd_pm_idletimeout_handler(void *arg);
1264 
1265 /*
1266  * sd_core internal functions (used at the sd_core_io layer).
1267  */
1268 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1269 static void sdintr(struct scsi_pkt *pktp);
1270 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1271 
1272 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1273 	enum uio_seg dataspace, int path_flag);
1274 
1275 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1276 	daddr_t blkno, int (*func)(struct buf *));
1277 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1278 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1279 static void sd_bioclone_free(struct buf *bp);
1280 static void sd_shadow_buf_free(struct buf *bp);
1281 
1282 static void sd_print_transport_rejected_message(struct sd_lun *un,
1283 	struct sd_xbuf *xp, int code);
1284 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1285     void *arg, int code);
1286 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1287     void *arg, int code);
1288 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1289     void *arg, int code);
1290 
1291 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1292 	int retry_check_flag,
1293 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1294 		int c),
1295 	void *user_arg, int failure_code,  clock_t retry_delay,
1296 	void (*statp)(kstat_io_t *));
1297 
1298 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1299 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1300 
1301 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1302 	struct scsi_pkt *pktp);
1303 static void sd_start_retry_command(void *arg);
1304 static void sd_start_direct_priority_command(void *arg);
1305 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1306 	int errcode);
1307 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1308 	struct buf *bp, int errcode);
1309 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1310 static void sd_sync_with_callback(struct sd_lun *un);
1311 static int sdrunout(caddr_t arg);
1312 
1313 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1314 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1315 
1316 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1317 static void sd_restore_throttle(void *arg);
1318 
1319 static void sd_init_cdb_limits(struct sd_lun *un);
1320 
1321 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1322 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1323 
1324 /*
1325  * Error handling functions
1326  */
1327 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1328 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1329 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1330 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1331 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1332 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1333 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1334 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1335 
1336 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1337 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1338 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1339 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1340 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1341 	struct sd_xbuf *xp, size_t actual_len);
1342 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1343 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1344 
1345 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1346 	void *arg, int code);
1347 
1348 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1349 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1350 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1351 	uint8_t *sense_datap,
1352 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1353 static void sd_sense_key_not_ready(struct sd_lun *un,
1354 	uint8_t *sense_datap,
1355 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1356 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1357 	uint8_t *sense_datap,
1358 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1359 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1360 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1361 static void sd_sense_key_unit_attention(struct sd_lun *un,
1362 	uint8_t *sense_datap,
1363 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1364 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1365 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1366 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1367 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1368 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1369 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1370 static void sd_sense_key_default(struct sd_lun *un,
1371 	uint8_t *sense_datap,
1372 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1373 
1374 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1375 	void *arg, int flag);
1376 
1377 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1378 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1379 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1380 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1381 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1382 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1383 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1384 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1385 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1386 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1387 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1388 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1389 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1390 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1391 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1392 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1393 
1394 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1395 
1396 static void sd_start_stop_unit_callback(void *arg);
1397 static void sd_start_stop_unit_task(void *arg);
1398 
1399 static void sd_taskq_create(void);
1400 static void sd_taskq_delete(void);
1401 static void sd_target_change_task(void *arg);
1402 static void sd_log_lun_expansion_event(struct sd_lun *un, int km_flag);
1403 static void sd_media_change_task(void *arg);
1404 
1405 static int sd_handle_mchange(struct sd_lun *un);
1406 static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag);
1407 static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp,
1408 	uint32_t *lbap, int path_flag);
1409 static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
1410 	uint32_t *lbap, int path_flag);
1411 static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag,
1412 	int path_flag);
1413 static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr,
1414 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1415 static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag);
1416 static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un,
1417 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1418 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un,
1419 	uchar_t usr_cmd, uchar_t *usr_bufp);
1420 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1421 	struct dk_callback *dkc);
1422 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1423 static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un,
1424 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1425 	uchar_t *bufaddr, uint_t buflen, int path_flag);
1426 static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
1427 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1428 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag);
1429 static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize,
1430 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1431 static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize,
1432 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1433 static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
1434 	size_t buflen, daddr_t start_block, int path_flag);
1435 #define	sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag)	\
1436 	sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \
1437 	path_flag)
1438 #define	sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag)	\
1439 	sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\
1440 	path_flag)
1441 
1442 static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr,
1443 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1444 	uint16_t param_ptr, int path_flag);
1445 
1446 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1447 static void sd_free_rqs(struct sd_lun *un);
1448 
1449 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1450 	uchar_t *data, int len, int fmt);
1451 static void sd_panic_for_res_conflict(struct sd_lun *un);
1452 
1453 /*
1454  * Disk Ioctl Function Prototypes
1455  */
1456 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1457 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1458 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1459 
1460 /*
1461  * Multi-host Ioctl Prototypes
1462  */
1463 static int sd_check_mhd(dev_t dev, int interval);
1464 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1465 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1466 static char *sd_sname(uchar_t status);
1467 static void sd_mhd_resvd_recover(void *arg);
1468 static void sd_resv_reclaim_thread();
1469 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1470 static int sd_reserve_release(dev_t dev, int cmd);
1471 static void sd_rmv_resv_reclaim_req(dev_t dev);
1472 static void sd_mhd_reset_notify_cb(caddr_t arg);
1473 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1474 	mhioc_inkeys_t *usrp, int flag);
1475 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1476 	mhioc_inresvs_t *usrp, int flag);
1477 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1478 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1479 static int sd_mhdioc_release(dev_t dev);
1480 static int sd_mhdioc_register_devid(dev_t dev);
1481 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1482 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1483 
1484 /*
1485  * SCSI removable prototypes
1486  */
1487 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1488 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1489 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1490 static int sr_pause_resume(dev_t dev, int mode);
1491 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1492 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1493 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1494 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1495 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1496 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1497 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1498 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1499 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1500 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1501 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1502 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1503 static int sr_eject(dev_t dev);
1504 static void sr_ejected(register struct sd_lun *un);
1505 static int sr_check_wp(dev_t dev);
1506 static int sd_check_media(dev_t dev, enum dkio_state state);
1507 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1508 static void sd_delayed_cv_broadcast(void *arg);
1509 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1510 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1511 
1512 static int sd_log_page_supported(struct sd_lun *un, int log_page);
1513 
1514 /*
1515  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1516  */
1517 static void sd_check_for_writable_cd(struct sd_lun *un, int path_flag);
1518 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1519 static void sd_wm_cache_destructor(void *wm, void *un);
1520 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1521 	daddr_t endb, ushort_t typ);
1522 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1523 	daddr_t endb);
1524 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1525 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1526 static void sd_read_modify_write_task(void * arg);
1527 static int
1528 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1529 	struct buf **bpp);
1530 
1531 
1532 /*
1533  * Function prototypes for failfast support.
1534  */
1535 static void sd_failfast_flushq(struct sd_lun *un);
1536 static int sd_failfast_flushq_callback(struct buf *bp);
1537 
1538 /*
1539  * Function prototypes to check for lsi devices
1540  */
1541 static void sd_is_lsi(struct sd_lun *un);
1542 
1543 /*
1544  * Function prototypes for partial DMA support
1545  */
1546 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1547 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1548 
1549 
1550 /* Function prototypes for cmlb */
1551 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
1552     diskaddr_t start_block, size_t reqlength, void *tg_cookie);
1553 
1554 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie);
1555 
1556 /*
1557  * Constants for failfast support:
1558  *
1559  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1560  * failfast processing being performed.
1561  *
1562  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1563  * failfast processing on all bufs with B_FAILFAST set.
1564  */
1565 
1566 #define	SD_FAILFAST_INACTIVE		0
1567 #define	SD_FAILFAST_ACTIVE		1
1568 
1569 /*
1570  * Bitmask to control behavior of buf(9S) flushes when a transition to
1571  * the failfast state occurs. Optional bits include:
1572  *
1573  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1574  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1575  * be flushed.
1576  *
1577  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1578  * driver, in addition to the regular wait queue. This includes the xbuf
1579  * queues. When clear, only the driver's wait queue will be flushed.
1580  */
1581 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1582 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1583 
1584 /*
1585  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1586  * to flush all queues within the driver.
1587  */
1588 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1589 
1590 
1591 /*
1592  * SD Testing Fault Injection
1593  */
1594 #ifdef SD_FAULT_INJECTION
1595 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1596 static void sd_faultinjection(struct scsi_pkt *pktp);
1597 static void sd_injection_log(char *buf, struct sd_lun *un);
1598 #endif
1599 
1600 /*
1601  * Device driver ops vector
1602  */
1603 static struct cb_ops sd_cb_ops = {
1604 	sdopen,			/* open */
1605 	sdclose,		/* close */
1606 	sdstrategy,		/* strategy */
1607 	nodev,			/* print */
1608 	sddump,			/* dump */
1609 	sdread,			/* read */
1610 	sdwrite,		/* write */
1611 	sdioctl,		/* ioctl */
1612 	nodev,			/* devmap */
1613 	nodev,			/* mmap */
1614 	nodev,			/* segmap */
1615 	nochpoll,		/* poll */
1616 	sd_prop_op,		/* cb_prop_op */
1617 	0,			/* streamtab  */
1618 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1619 	CB_REV,			/* cb_rev */
1620 	sdaread, 		/* async I/O read entry point */
1621 	sdawrite		/* async I/O write entry point */
1622 };
1623 
1624 static struct dev_ops sd_ops = {
1625 	DEVO_REV,		/* devo_rev, */
1626 	0,			/* refcnt  */
1627 	sdinfo,			/* info */
1628 	nulldev,		/* identify */
1629 	sdprobe,		/* probe */
1630 	sdattach,		/* attach */
1631 	sddetach,		/* detach */
1632 	nodev,			/* reset */
1633 	&sd_cb_ops,		/* driver operations */
1634 	NULL,			/* bus operations */
1635 	sdpower			/* power */
1636 };
1637 
1638 
1639 /*
1640  * This is the loadable module wrapper.
1641  */
1642 #include <sys/modctl.h>
1643 
1644 static struct modldrv modldrv = {
1645 	&mod_driverops,		/* Type of module. This one is a driver */
1646 	SD_MODULE_NAME,		/* Module name. */
1647 	&sd_ops			/* driver ops */
1648 };
1649 
1650 
1651 static struct modlinkage modlinkage = {
1652 	MODREV_1,
1653 	&modldrv,
1654 	NULL
1655 };
1656 
1657 static cmlb_tg_ops_t sd_tgops = {
1658 	TG_DK_OPS_VERSION_1,
1659 	sd_tg_rdwr,
1660 	sd_tg_getinfo
1661 	};
1662 
1663 static struct scsi_asq_key_strings sd_additional_codes[] = {
1664 	0x81, 0, "Logical Unit is Reserved",
1665 	0x85, 0, "Audio Address Not Valid",
1666 	0xb6, 0, "Media Load Mechanism Failed",
1667 	0xB9, 0, "Audio Play Operation Aborted",
1668 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1669 	0x53, 2, "Medium removal prevented",
1670 	0x6f, 0, "Authentication failed during key exchange",
1671 	0x6f, 1, "Key not present",
1672 	0x6f, 2, "Key not established",
1673 	0x6f, 3, "Read without proper authentication",
1674 	0x6f, 4, "Mismatched region to this logical unit",
1675 	0x6f, 5, "Region reset count error",
1676 	0xffff, 0x0, NULL
1677 };
1678 
1679 
1680 /*
1681  * Struct for passing printing information for sense data messages
1682  */
1683 struct sd_sense_info {
1684 	int	ssi_severity;
1685 	int	ssi_pfa_flag;
1686 };
1687 
1688 /*
1689  * Table of function pointers for iostart-side routines. Separate "chains"
1690  * of layered function calls are formed by placing the function pointers
1691  * sequentially in the desired order. Functions are called according to an
1692  * incrementing table index ordering. The last function in each chain must
1693  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1694  * in the sd_iodone_chain[] array.
1695  *
1696  * Note: It may seem more natural to organize both the iostart and iodone
1697  * functions together, into an array of structures (or some similar
1698  * organization) with a common index, rather than two separate arrays which
1699  * must be maintained in synchronization. The purpose of this division is
1700  * to achieve improved performance: individual arrays allows for more
1701  * effective cache line utilization on certain platforms.
1702  */
1703 
1704 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1705 
1706 
1707 static sd_chain_t sd_iostart_chain[] = {
1708 
1709 	/* Chain for buf IO for disk drive targets (PM enabled) */
1710 	sd_mapblockaddr_iostart,	/* Index: 0 */
1711 	sd_pm_iostart,			/* Index: 1 */
1712 	sd_core_iostart,		/* Index: 2 */
1713 
1714 	/* Chain for buf IO for disk drive targets (PM disabled) */
1715 	sd_mapblockaddr_iostart,	/* Index: 3 */
1716 	sd_core_iostart,		/* Index: 4 */
1717 
1718 	/* Chain for buf IO for removable-media targets (PM enabled) */
1719 	sd_mapblockaddr_iostart,	/* Index: 5 */
1720 	sd_mapblocksize_iostart,	/* Index: 6 */
1721 	sd_pm_iostart,			/* Index: 7 */
1722 	sd_core_iostart,		/* Index: 8 */
1723 
1724 	/* Chain for buf IO for removable-media targets (PM disabled) */
1725 	sd_mapblockaddr_iostart,	/* Index: 9 */
1726 	sd_mapblocksize_iostart,	/* Index: 10 */
1727 	sd_core_iostart,		/* Index: 11 */
1728 
1729 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1730 	sd_mapblockaddr_iostart,	/* Index: 12 */
1731 	sd_checksum_iostart,		/* Index: 13 */
1732 	sd_pm_iostart,			/* Index: 14 */
1733 	sd_core_iostart,		/* Index: 15 */
1734 
1735 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1736 	sd_mapblockaddr_iostart,	/* Index: 16 */
1737 	sd_checksum_iostart,		/* Index: 17 */
1738 	sd_core_iostart,		/* Index: 18 */
1739 
1740 	/* Chain for USCSI commands (all targets) */
1741 	sd_pm_iostart,			/* Index: 19 */
1742 	sd_core_iostart,		/* Index: 20 */
1743 
1744 	/* Chain for checksumming USCSI commands (all targets) */
1745 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1746 	sd_pm_iostart,			/* Index: 22 */
1747 	sd_core_iostart,		/* Index: 23 */
1748 
1749 	/* Chain for "direct" USCSI commands (all targets) */
1750 	sd_core_iostart,		/* Index: 24 */
1751 
1752 	/* Chain for "direct priority" USCSI commands (all targets) */
1753 	sd_core_iostart,		/* Index: 25 */
1754 };
1755 
1756 /*
1757  * Macros to locate the first function of each iostart chain in the
1758  * sd_iostart_chain[] array. These are located by the index in the array.
1759  */
1760 #define	SD_CHAIN_DISK_IOSTART			0
1761 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1762 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1763 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1764 #define	SD_CHAIN_CHKSUM_IOSTART			12
1765 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1766 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1767 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1768 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1769 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1770 
1771 
1772 /*
1773  * Table of function pointers for the iodone-side routines for the driver-
1774  * internal layering mechanism.  The calling sequence for iodone routines
1775  * uses a decrementing table index, so the last routine called in a chain
1776  * must be at the lowest array index location for that chain.  The last
1777  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1778  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1779  * of the functions in an iodone side chain must correspond to the ordering
1780  * of the iostart routines for that chain.  Note that there is no iodone
1781  * side routine that corresponds to sd_core_iostart(), so there is no
1782  * entry in the table for this.
1783  */
1784 
1785 static sd_chain_t sd_iodone_chain[] = {
1786 
1787 	/* Chain for buf IO for disk drive targets (PM enabled) */
1788 	sd_buf_iodone,			/* Index: 0 */
1789 	sd_mapblockaddr_iodone,		/* Index: 1 */
1790 	sd_pm_iodone,			/* Index: 2 */
1791 
1792 	/* Chain for buf IO for disk drive targets (PM disabled) */
1793 	sd_buf_iodone,			/* Index: 3 */
1794 	sd_mapblockaddr_iodone,		/* Index: 4 */
1795 
1796 	/* Chain for buf IO for removable-media targets (PM enabled) */
1797 	sd_buf_iodone,			/* Index: 5 */
1798 	sd_mapblockaddr_iodone,		/* Index: 6 */
1799 	sd_mapblocksize_iodone,		/* Index: 7 */
1800 	sd_pm_iodone,			/* Index: 8 */
1801 
1802 	/* Chain for buf IO for removable-media targets (PM disabled) */
1803 	sd_buf_iodone,			/* Index: 9 */
1804 	sd_mapblockaddr_iodone,		/* Index: 10 */
1805 	sd_mapblocksize_iodone,		/* Index: 11 */
1806 
1807 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1808 	sd_buf_iodone,			/* Index: 12 */
1809 	sd_mapblockaddr_iodone,		/* Index: 13 */
1810 	sd_checksum_iodone,		/* Index: 14 */
1811 	sd_pm_iodone,			/* Index: 15 */
1812 
1813 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1814 	sd_buf_iodone,			/* Index: 16 */
1815 	sd_mapblockaddr_iodone,		/* Index: 17 */
1816 	sd_checksum_iodone,		/* Index: 18 */
1817 
1818 	/* Chain for USCSI commands (non-checksum targets) */
1819 	sd_uscsi_iodone,		/* Index: 19 */
1820 	sd_pm_iodone,			/* Index: 20 */
1821 
1822 	/* Chain for USCSI commands (checksum targets) */
1823 	sd_uscsi_iodone,		/* Index: 21 */
1824 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1825 	sd_pm_iodone,			/* Index: 22 */
1826 
1827 	/* Chain for "direct" USCSI commands (all targets) */
1828 	sd_uscsi_iodone,		/* Index: 24 */
1829 
1830 	/* Chain for "direct priority" USCSI commands (all targets) */
1831 	sd_uscsi_iodone,		/* Index: 25 */
1832 };
1833 
1834 
1835 /*
1836  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1837  * each iodone-side chain. These are located by the array index, but as the
1838  * iodone side functions are called in a decrementing-index order, the
1839  * highest index number in each chain must be specified (as these correspond
1840  * to the first function in the iodone chain that will be called by the core
1841  * at IO completion time).
1842  */
1843 
1844 #define	SD_CHAIN_DISK_IODONE			2
1845 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1846 #define	SD_CHAIN_RMMEDIA_IODONE			8
1847 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1848 #define	SD_CHAIN_CHKSUM_IODONE			15
1849 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1850 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1851 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1852 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1853 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1854 
1855 
1856 
1857 
1858 /*
1859  * Array to map a layering chain index to the appropriate initpkt routine.
1860  * The redundant entries are present so that the index used for accessing
1861  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1862  * with this table as well.
1863  */
1864 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1865 
1866 static sd_initpkt_t	sd_initpkt_map[] = {
1867 
1868 	/* Chain for buf IO for disk drive targets (PM enabled) */
1869 	sd_initpkt_for_buf,		/* Index: 0 */
1870 	sd_initpkt_for_buf,		/* Index: 1 */
1871 	sd_initpkt_for_buf,		/* Index: 2 */
1872 
1873 	/* Chain for buf IO for disk drive targets (PM disabled) */
1874 	sd_initpkt_for_buf,		/* Index: 3 */
1875 	sd_initpkt_for_buf,		/* Index: 4 */
1876 
1877 	/* Chain for buf IO for removable-media targets (PM enabled) */
1878 	sd_initpkt_for_buf,		/* Index: 5 */
1879 	sd_initpkt_for_buf,		/* Index: 6 */
1880 	sd_initpkt_for_buf,		/* Index: 7 */
1881 	sd_initpkt_for_buf,		/* Index: 8 */
1882 
1883 	/* Chain for buf IO for removable-media targets (PM disabled) */
1884 	sd_initpkt_for_buf,		/* Index: 9 */
1885 	sd_initpkt_for_buf,		/* Index: 10 */
1886 	sd_initpkt_for_buf,		/* Index: 11 */
1887 
1888 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1889 	sd_initpkt_for_buf,		/* Index: 12 */
1890 	sd_initpkt_for_buf,		/* Index: 13 */
1891 	sd_initpkt_for_buf,		/* Index: 14 */
1892 	sd_initpkt_for_buf,		/* Index: 15 */
1893 
1894 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1895 	sd_initpkt_for_buf,		/* Index: 16 */
1896 	sd_initpkt_for_buf,		/* Index: 17 */
1897 	sd_initpkt_for_buf,		/* Index: 18 */
1898 
1899 	/* Chain for USCSI commands (non-checksum targets) */
1900 	sd_initpkt_for_uscsi,		/* Index: 19 */
1901 	sd_initpkt_for_uscsi,		/* Index: 20 */
1902 
1903 	/* Chain for USCSI commands (checksum targets) */
1904 	sd_initpkt_for_uscsi,		/* Index: 21 */
1905 	sd_initpkt_for_uscsi,		/* Index: 22 */
1906 	sd_initpkt_for_uscsi,		/* Index: 22 */
1907 
1908 	/* Chain for "direct" USCSI commands (all targets) */
1909 	sd_initpkt_for_uscsi,		/* Index: 24 */
1910 
1911 	/* Chain for "direct priority" USCSI commands (all targets) */
1912 	sd_initpkt_for_uscsi,		/* Index: 25 */
1913 
1914 };
1915 
1916 
1917 /*
1918  * Array to map a layering chain index to the appropriate destroypktpkt routine.
1919  * The redundant entries are present so that the index used for accessing
1920  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1921  * with this table as well.
1922  */
1923 typedef void (*sd_destroypkt_t)(struct buf *);
1924 
1925 static sd_destroypkt_t	sd_destroypkt_map[] = {
1926 
1927 	/* Chain for buf IO for disk drive targets (PM enabled) */
1928 	sd_destroypkt_for_buf,		/* Index: 0 */
1929 	sd_destroypkt_for_buf,		/* Index: 1 */
1930 	sd_destroypkt_for_buf,		/* Index: 2 */
1931 
1932 	/* Chain for buf IO for disk drive targets (PM disabled) */
1933 	sd_destroypkt_for_buf,		/* Index: 3 */
1934 	sd_destroypkt_for_buf,		/* Index: 4 */
1935 
1936 	/* Chain for buf IO for removable-media targets (PM enabled) */
1937 	sd_destroypkt_for_buf,		/* Index: 5 */
1938 	sd_destroypkt_for_buf,		/* Index: 6 */
1939 	sd_destroypkt_for_buf,		/* Index: 7 */
1940 	sd_destroypkt_for_buf,		/* Index: 8 */
1941 
1942 	/* Chain for buf IO for removable-media targets (PM disabled) */
1943 	sd_destroypkt_for_buf,		/* Index: 9 */
1944 	sd_destroypkt_for_buf,		/* Index: 10 */
1945 	sd_destroypkt_for_buf,		/* Index: 11 */
1946 
1947 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1948 	sd_destroypkt_for_buf,		/* Index: 12 */
1949 	sd_destroypkt_for_buf,		/* Index: 13 */
1950 	sd_destroypkt_for_buf,		/* Index: 14 */
1951 	sd_destroypkt_for_buf,		/* Index: 15 */
1952 
1953 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1954 	sd_destroypkt_for_buf,		/* Index: 16 */
1955 	sd_destroypkt_for_buf,		/* Index: 17 */
1956 	sd_destroypkt_for_buf,		/* Index: 18 */
1957 
1958 	/* Chain for USCSI commands (non-checksum targets) */
1959 	sd_destroypkt_for_uscsi,	/* Index: 19 */
1960 	sd_destroypkt_for_uscsi,	/* Index: 20 */
1961 
1962 	/* Chain for USCSI commands (checksum targets) */
1963 	sd_destroypkt_for_uscsi,	/* Index: 21 */
1964 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1965 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1966 
1967 	/* Chain for "direct" USCSI commands (all targets) */
1968 	sd_destroypkt_for_uscsi,	/* Index: 24 */
1969 
1970 	/* Chain for "direct priority" USCSI commands (all targets) */
1971 	sd_destroypkt_for_uscsi,	/* Index: 25 */
1972 
1973 };
1974 
1975 
1976 
1977 /*
1978  * Array to map a layering chain index to the appropriate chain "type".
1979  * The chain type indicates a specific property/usage of the chain.
1980  * The redundant entries are present so that the index used for accessing
1981  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1982  * with this table as well.
1983  */
1984 
1985 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
1986 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
1987 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
1988 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
1989 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
1990 						/* (for error recovery) */
1991 
1992 static int sd_chain_type_map[] = {
1993 
1994 	/* Chain for buf IO for disk drive targets (PM enabled) */
1995 	SD_CHAIN_BUFIO,			/* Index: 0 */
1996 	SD_CHAIN_BUFIO,			/* Index: 1 */
1997 	SD_CHAIN_BUFIO,			/* Index: 2 */
1998 
1999 	/* Chain for buf IO for disk drive targets (PM disabled) */
2000 	SD_CHAIN_BUFIO,			/* Index: 3 */
2001 	SD_CHAIN_BUFIO,			/* Index: 4 */
2002 
2003 	/* Chain for buf IO for removable-media targets (PM enabled) */
2004 	SD_CHAIN_BUFIO,			/* Index: 5 */
2005 	SD_CHAIN_BUFIO,			/* Index: 6 */
2006 	SD_CHAIN_BUFIO,			/* Index: 7 */
2007 	SD_CHAIN_BUFIO,			/* Index: 8 */
2008 
2009 	/* Chain for buf IO for removable-media targets (PM disabled) */
2010 	SD_CHAIN_BUFIO,			/* Index: 9 */
2011 	SD_CHAIN_BUFIO,			/* Index: 10 */
2012 	SD_CHAIN_BUFIO,			/* Index: 11 */
2013 
2014 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2015 	SD_CHAIN_BUFIO,			/* Index: 12 */
2016 	SD_CHAIN_BUFIO,			/* Index: 13 */
2017 	SD_CHAIN_BUFIO,			/* Index: 14 */
2018 	SD_CHAIN_BUFIO,			/* Index: 15 */
2019 
2020 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2021 	SD_CHAIN_BUFIO,			/* Index: 16 */
2022 	SD_CHAIN_BUFIO,			/* Index: 17 */
2023 	SD_CHAIN_BUFIO,			/* Index: 18 */
2024 
2025 	/* Chain for USCSI commands (non-checksum targets) */
2026 	SD_CHAIN_USCSI,			/* Index: 19 */
2027 	SD_CHAIN_USCSI,			/* Index: 20 */
2028 
2029 	/* Chain for USCSI commands (checksum targets) */
2030 	SD_CHAIN_USCSI,			/* Index: 21 */
2031 	SD_CHAIN_USCSI,			/* Index: 22 */
2032 	SD_CHAIN_USCSI,			/* Index: 22 */
2033 
2034 	/* Chain for "direct" USCSI commands (all targets) */
2035 	SD_CHAIN_DIRECT,		/* Index: 24 */
2036 
2037 	/* Chain for "direct priority" USCSI commands (all targets) */
2038 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2039 };
2040 
2041 
2042 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2043 #define	SD_IS_BUFIO(xp)			\
2044 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2045 
2046 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2047 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2048 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2049 
2050 
2051 
2052 /*
2053  * Struct, array, and macros to map a specific chain to the appropriate
2054  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2055  *
2056  * The sd_chain_index_map[] array is used at attach time to set the various
2057  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2058  * chain to be used with the instance. This allows different instances to use
2059  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2060  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2061  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2062  * dynamically & without the use of locking; and (2) a layer may update the
2063  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2064  * to allow for deferred processing of an IO within the same chain from a
2065  * different execution context.
2066  */
2067 
2068 struct sd_chain_index {
2069 	int	sci_iostart_index;
2070 	int	sci_iodone_index;
2071 };
2072 
2073 static struct sd_chain_index	sd_chain_index_map[] = {
2074 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2075 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2076 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2077 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2078 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2079 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2080 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2081 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2082 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2083 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2084 };
2085 
2086 
2087 /*
2088  * The following are indexes into the sd_chain_index_map[] array.
2089  */
2090 
2091 /* un->un_buf_chain_type must be set to one of these */
2092 #define	SD_CHAIN_INFO_DISK		0
2093 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2094 #define	SD_CHAIN_INFO_RMMEDIA		2
2095 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2096 #define	SD_CHAIN_INFO_CHKSUM		4
2097 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2098 
2099 /* un->un_uscsi_chain_type must be set to one of these */
2100 #define	SD_CHAIN_INFO_USCSI_CMD		6
2101 /* USCSI with PM disabled is the same as DIRECT */
2102 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2103 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2104 
2105 /* un->un_direct_chain_type must be set to one of these */
2106 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2107 
2108 /* un->un_priority_chain_type must be set to one of these */
2109 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2110 
2111 /* size for devid inquiries */
2112 #define	MAX_INQUIRY_SIZE		0xF0
2113 
2114 /*
2115  * Macros used by functions to pass a given buf(9S) struct along to the
2116  * next function in the layering chain for further processing.
2117  *
2118  * In the following macros, passing more than three arguments to the called
2119  * routines causes the optimizer for the SPARC compiler to stop doing tail
2120  * call elimination which results in significant performance degradation.
2121  */
2122 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2123 	((*(sd_iostart_chain[index]))(index, un, bp))
2124 
2125 #define	SD_BEGIN_IODONE(index, un, bp)	\
2126 	((*(sd_iodone_chain[index]))(index, un, bp))
2127 
2128 #define	SD_NEXT_IOSTART(index, un, bp)				\
2129 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2130 
2131 #define	SD_NEXT_IODONE(index, un, bp)				\
2132 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2133 
2134 /*
2135  *    Function: _init
2136  *
2137  * Description: This is the driver _init(9E) entry point.
2138  *
2139  * Return Code: Returns the value from mod_install(9F) or
2140  *		ddi_soft_state_init(9F) as appropriate.
2141  *
2142  *     Context: Called when driver module loaded.
2143  */
2144 
2145 int
2146 _init(void)
2147 {
2148 	int	err;
2149 
2150 	/* establish driver name from module name */
2151 	sd_label = (char *)mod_modname(&modlinkage);
2152 
2153 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2154 	    SD_MAXUNIT);
2155 
2156 	if (err != 0) {
2157 		return (err);
2158 	}
2159 
2160 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2161 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2162 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2163 
2164 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2165 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2166 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2167 
2168 	/*
2169 	 * it's ok to init here even for fibre device
2170 	 */
2171 	sd_scsi_probe_cache_init();
2172 
2173 	sd_scsi_target_lun_init();
2174 
2175 	/*
2176 	 * Creating taskq before mod_install ensures that all callers (threads)
2177 	 * that enter the module after a successfull mod_install encounter
2178 	 * a valid taskq.
2179 	 */
2180 	sd_taskq_create();
2181 
2182 	err = mod_install(&modlinkage);
2183 	if (err != 0) {
2184 		/* delete taskq if install fails */
2185 		sd_taskq_delete();
2186 
2187 		mutex_destroy(&sd_detach_mutex);
2188 		mutex_destroy(&sd_log_mutex);
2189 		mutex_destroy(&sd_label_mutex);
2190 
2191 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2192 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2193 		cv_destroy(&sd_tr.srq_inprocess_cv);
2194 
2195 		sd_scsi_probe_cache_fini();
2196 
2197 		sd_scsi_target_lun_fini();
2198 
2199 		ddi_soft_state_fini(&sd_state);
2200 		return (err);
2201 	}
2202 
2203 	return (err);
2204 }
2205 
2206 
2207 /*
2208  *    Function: _fini
2209  *
2210  * Description: This is the driver _fini(9E) entry point.
2211  *
2212  * Return Code: Returns the value from mod_remove(9F)
2213  *
2214  *     Context: Called when driver module is unloaded.
2215  */
2216 
2217 int
2218 _fini(void)
2219 {
2220 	int err;
2221 
2222 	if ((err = mod_remove(&modlinkage)) != 0) {
2223 		return (err);
2224 	}
2225 
2226 	sd_taskq_delete();
2227 
2228 	mutex_destroy(&sd_detach_mutex);
2229 	mutex_destroy(&sd_log_mutex);
2230 	mutex_destroy(&sd_label_mutex);
2231 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2232 
2233 	sd_scsi_probe_cache_fini();
2234 
2235 	sd_scsi_target_lun_fini();
2236 
2237 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2238 	cv_destroy(&sd_tr.srq_inprocess_cv);
2239 
2240 	ddi_soft_state_fini(&sd_state);
2241 
2242 	return (err);
2243 }
2244 
2245 
2246 /*
2247  *    Function: _info
2248  *
2249  * Description: This is the driver _info(9E) entry point.
2250  *
2251  *   Arguments: modinfop - pointer to the driver modinfo structure
2252  *
2253  * Return Code: Returns the value from mod_info(9F).
2254  *
2255  *     Context: Kernel thread context
2256  */
2257 
2258 int
2259 _info(struct modinfo *modinfop)
2260 {
2261 	return (mod_info(&modlinkage, modinfop));
2262 }
2263 
2264 
2265 /*
2266  * The following routines implement the driver message logging facility.
2267  * They provide component- and level- based debug output filtering.
2268  * Output may also be restricted to messages for a single instance by
2269  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2270  * to NULL, then messages for all instances are printed.
2271  *
2272  * These routines have been cloned from each other due to the language
2273  * constraints of macros and variable argument list processing.
2274  */
2275 
2276 
2277 /*
2278  *    Function: sd_log_err
2279  *
2280  * Description: This routine is called by the SD_ERROR macro for debug
2281  *		logging of error conditions.
2282  *
2283  *   Arguments: comp - driver component being logged
2284  *		dev  - pointer to driver info structure
2285  *		fmt  - error string and format to be logged
2286  */
2287 
2288 static void
2289 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2290 {
2291 	va_list		ap;
2292 	dev_info_t	*dev;
2293 
2294 	ASSERT(un != NULL);
2295 	dev = SD_DEVINFO(un);
2296 	ASSERT(dev != NULL);
2297 
2298 	/*
2299 	 * Filter messages based on the global component and level masks.
2300 	 * Also print if un matches the value of sd_debug_un, or if
2301 	 * sd_debug_un is set to NULL.
2302 	 */
2303 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2304 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2305 		mutex_enter(&sd_log_mutex);
2306 		va_start(ap, fmt);
2307 		(void) vsprintf(sd_log_buf, fmt, ap);
2308 		va_end(ap);
2309 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2310 		mutex_exit(&sd_log_mutex);
2311 	}
2312 #ifdef SD_FAULT_INJECTION
2313 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2314 	if (un->sd_injection_mask & comp) {
2315 		mutex_enter(&sd_log_mutex);
2316 		va_start(ap, fmt);
2317 		(void) vsprintf(sd_log_buf, fmt, ap);
2318 		va_end(ap);
2319 		sd_injection_log(sd_log_buf, un);
2320 		mutex_exit(&sd_log_mutex);
2321 	}
2322 #endif
2323 }
2324 
2325 
2326 /*
2327  *    Function: sd_log_info
2328  *
2329  * Description: This routine is called by the SD_INFO macro for debug
2330  *		logging of general purpose informational conditions.
2331  *
2332  *   Arguments: comp - driver component being logged
2333  *		dev  - pointer to driver info structure
2334  *		fmt  - info string and format to be logged
2335  */
2336 
2337 static void
2338 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2339 {
2340 	va_list		ap;
2341 	dev_info_t	*dev;
2342 
2343 	ASSERT(un != NULL);
2344 	dev = SD_DEVINFO(un);
2345 	ASSERT(dev != NULL);
2346 
2347 	/*
2348 	 * Filter messages based on the global component and level masks.
2349 	 * Also print if un matches the value of sd_debug_un, or if
2350 	 * sd_debug_un is set to NULL.
2351 	 */
2352 	if ((sd_component_mask & component) &&
2353 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2354 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2355 		mutex_enter(&sd_log_mutex);
2356 		va_start(ap, fmt);
2357 		(void) vsprintf(sd_log_buf, fmt, ap);
2358 		va_end(ap);
2359 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2360 		mutex_exit(&sd_log_mutex);
2361 	}
2362 #ifdef SD_FAULT_INJECTION
2363 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2364 	if (un->sd_injection_mask & component) {
2365 		mutex_enter(&sd_log_mutex);
2366 		va_start(ap, fmt);
2367 		(void) vsprintf(sd_log_buf, fmt, ap);
2368 		va_end(ap);
2369 		sd_injection_log(sd_log_buf, un);
2370 		mutex_exit(&sd_log_mutex);
2371 	}
2372 #endif
2373 }
2374 
2375 
2376 /*
2377  *    Function: sd_log_trace
2378  *
2379  * Description: This routine is called by the SD_TRACE macro for debug
2380  *		logging of trace conditions (i.e. function entry/exit).
2381  *
2382  *   Arguments: comp - driver component being logged
2383  *		dev  - pointer to driver info structure
2384  *		fmt  - trace string and format to be logged
2385  */
2386 
2387 static void
2388 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2389 {
2390 	va_list		ap;
2391 	dev_info_t	*dev;
2392 
2393 	ASSERT(un != NULL);
2394 	dev = SD_DEVINFO(un);
2395 	ASSERT(dev != NULL);
2396 
2397 	/*
2398 	 * Filter messages based on the global component and level masks.
2399 	 * Also print if un matches the value of sd_debug_un, or if
2400 	 * sd_debug_un is set to NULL.
2401 	 */
2402 	if ((sd_component_mask & component) &&
2403 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2404 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2405 		mutex_enter(&sd_log_mutex);
2406 		va_start(ap, fmt);
2407 		(void) vsprintf(sd_log_buf, fmt, ap);
2408 		va_end(ap);
2409 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2410 		mutex_exit(&sd_log_mutex);
2411 	}
2412 #ifdef SD_FAULT_INJECTION
2413 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2414 	if (un->sd_injection_mask & component) {
2415 		mutex_enter(&sd_log_mutex);
2416 		va_start(ap, fmt);
2417 		(void) vsprintf(sd_log_buf, fmt, ap);
2418 		va_end(ap);
2419 		sd_injection_log(sd_log_buf, un);
2420 		mutex_exit(&sd_log_mutex);
2421 	}
2422 #endif
2423 }
2424 
2425 
2426 /*
2427  *    Function: sdprobe
2428  *
2429  * Description: This is the driver probe(9e) entry point function.
2430  *
2431  *   Arguments: devi - opaque device info handle
2432  *
2433  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2434  *              DDI_PROBE_FAILURE: If the probe failed.
2435  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2436  *				   but may be present in the future.
2437  */
2438 
2439 static int
2440 sdprobe(dev_info_t *devi)
2441 {
2442 	struct scsi_device	*devp;
2443 	int			rval;
2444 	int			instance;
2445 
2446 	/*
2447 	 * if it wasn't for pln, sdprobe could actually be nulldev
2448 	 * in the "__fibre" case.
2449 	 */
2450 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2451 		return (DDI_PROBE_DONTCARE);
2452 	}
2453 
2454 	devp = ddi_get_driver_private(devi);
2455 
2456 	if (devp == NULL) {
2457 		/* Ooops... nexus driver is mis-configured... */
2458 		return (DDI_PROBE_FAILURE);
2459 	}
2460 
2461 	instance = ddi_get_instance(devi);
2462 
2463 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2464 		return (DDI_PROBE_PARTIAL);
2465 	}
2466 
2467 	/*
2468 	 * Call the SCSA utility probe routine to see if we actually
2469 	 * have a target at this SCSI nexus.
2470 	 */
2471 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2472 	case SCSIPROBE_EXISTS:
2473 		switch (devp->sd_inq->inq_dtype) {
2474 		case DTYPE_DIRECT:
2475 			rval = DDI_PROBE_SUCCESS;
2476 			break;
2477 		case DTYPE_RODIRECT:
2478 			/* CDs etc. Can be removable media */
2479 			rval = DDI_PROBE_SUCCESS;
2480 			break;
2481 		case DTYPE_OPTICAL:
2482 			/*
2483 			 * Rewritable optical driver HP115AA
2484 			 * Can also be removable media
2485 			 */
2486 
2487 			/*
2488 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2489 			 * pre solaris 9 sparc sd behavior is required
2490 			 *
2491 			 * If first time through and sd_dtype_optical_bind
2492 			 * has not been set in /etc/system check properties
2493 			 */
2494 
2495 			if (sd_dtype_optical_bind  < 0) {
2496 				sd_dtype_optical_bind = ddi_prop_get_int
2497 				    (DDI_DEV_T_ANY, devi, 0,
2498 				    "optical-device-bind", 1);
2499 			}
2500 
2501 			if (sd_dtype_optical_bind == 0) {
2502 				rval = DDI_PROBE_FAILURE;
2503 			} else {
2504 				rval = DDI_PROBE_SUCCESS;
2505 			}
2506 			break;
2507 
2508 		case DTYPE_NOTPRESENT:
2509 		default:
2510 			rval = DDI_PROBE_FAILURE;
2511 			break;
2512 		}
2513 		break;
2514 	default:
2515 		rval = DDI_PROBE_PARTIAL;
2516 		break;
2517 	}
2518 
2519 	/*
2520 	 * This routine checks for resource allocation prior to freeing,
2521 	 * so it will take care of the "smart probing" case where a
2522 	 * scsi_probe() may or may not have been issued and will *not*
2523 	 * free previously-freed resources.
2524 	 */
2525 	scsi_unprobe(devp);
2526 	return (rval);
2527 }
2528 
2529 
2530 /*
2531  *    Function: sdinfo
2532  *
2533  * Description: This is the driver getinfo(9e) entry point function.
2534  * 		Given the device number, return the devinfo pointer from
2535  *		the scsi_device structure or the instance number
2536  *		associated with the dev_t.
2537  *
2538  *   Arguments: dip     - pointer to device info structure
2539  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2540  *			  DDI_INFO_DEVT2INSTANCE)
2541  *		arg     - driver dev_t
2542  *		resultp - user buffer for request response
2543  *
2544  * Return Code: DDI_SUCCESS
2545  *              DDI_FAILURE
2546  */
2547 /* ARGSUSED */
2548 static int
2549 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2550 {
2551 	struct sd_lun	*un;
2552 	dev_t		dev;
2553 	int		instance;
2554 	int		error;
2555 
2556 	switch (infocmd) {
2557 	case DDI_INFO_DEVT2DEVINFO:
2558 		dev = (dev_t)arg;
2559 		instance = SDUNIT(dev);
2560 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2561 			return (DDI_FAILURE);
2562 		}
2563 		*result = (void *) SD_DEVINFO(un);
2564 		error = DDI_SUCCESS;
2565 		break;
2566 	case DDI_INFO_DEVT2INSTANCE:
2567 		dev = (dev_t)arg;
2568 		instance = SDUNIT(dev);
2569 		*result = (void *)(uintptr_t)instance;
2570 		error = DDI_SUCCESS;
2571 		break;
2572 	default:
2573 		error = DDI_FAILURE;
2574 	}
2575 	return (error);
2576 }
2577 
2578 /*
2579  *    Function: sd_prop_op
2580  *
2581  * Description: This is the driver prop_op(9e) entry point function.
2582  *		Return the number of blocks for the partition in question
2583  *		or forward the request to the property facilities.
2584  *
2585  *   Arguments: dev       - device number
2586  *		dip       - pointer to device info structure
2587  *		prop_op   - property operator
2588  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2589  *		name      - pointer to property name
2590  *		valuep    - pointer or address of the user buffer
2591  *		lengthp   - property length
2592  *
2593  * Return Code: DDI_PROP_SUCCESS
2594  *              DDI_PROP_NOT_FOUND
2595  *              DDI_PROP_UNDEFINED
2596  *              DDI_PROP_NO_MEMORY
2597  *              DDI_PROP_BUF_TOO_SMALL
2598  */
2599 
2600 static int
2601 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2602 	char *name, caddr_t valuep, int *lengthp)
2603 {
2604 	int		instance = ddi_get_instance(dip);
2605 	struct sd_lun	*un;
2606 	uint64_t	nblocks64;
2607 	uint_t		dblk;
2608 
2609 	/*
2610 	 * Our dynamic properties are all device specific and size oriented.
2611 	 * Requests issued under conditions where size is valid are passed
2612 	 * to ddi_prop_op_nblocks with the size information, otherwise the
2613 	 * request is passed to ddi_prop_op. Size depends on valid geometry.
2614 	 */
2615 	un = ddi_get_soft_state(sd_state, instance);
2616 	if ((dev == DDI_DEV_T_ANY) || (un == NULL)) {
2617 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2618 		    name, valuep, lengthp));
2619 	} else if (!SD_IS_VALID_LABEL(un)) {
2620 		return (ddi_prop_op(dev, dip, prop_op, mod_flags, name,
2621 		    valuep, lengthp));
2622 	}
2623 
2624 	/* get nblocks value */
2625 	ASSERT(!mutex_owned(SD_MUTEX(un)));
2626 
2627 	(void) cmlb_partinfo(un->un_cmlbhandle, SDPART(dev),
2628 	    (diskaddr_t *)&nblocks64, NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
2629 
2630 	/* report size in target size blocks */
2631 	dblk = un->un_tgt_blocksize / un->un_sys_blocksize;
2632 	return (ddi_prop_op_nblocks_blksize(dev, dip, prop_op, mod_flags,
2633 	    name, valuep, lengthp, nblocks64 / dblk, un->un_tgt_blocksize));
2634 }
2635 
2636 /*
2637  * The following functions are for smart probing:
2638  * sd_scsi_probe_cache_init()
2639  * sd_scsi_probe_cache_fini()
2640  * sd_scsi_clear_probe_cache()
2641  * sd_scsi_probe_with_cache()
2642  */
2643 
2644 /*
2645  *    Function: sd_scsi_probe_cache_init
2646  *
2647  * Description: Initializes the probe response cache mutex and head pointer.
2648  *
2649  *     Context: Kernel thread context
2650  */
2651 
2652 static void
2653 sd_scsi_probe_cache_init(void)
2654 {
2655 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2656 	sd_scsi_probe_cache_head = NULL;
2657 }
2658 
2659 
2660 /*
2661  *    Function: sd_scsi_probe_cache_fini
2662  *
2663  * Description: Frees all resources associated with the probe response cache.
2664  *
2665  *     Context: Kernel thread context
2666  */
2667 
2668 static void
2669 sd_scsi_probe_cache_fini(void)
2670 {
2671 	struct sd_scsi_probe_cache *cp;
2672 	struct sd_scsi_probe_cache *ncp;
2673 
2674 	/* Clean up our smart probing linked list */
2675 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2676 		ncp = cp->next;
2677 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2678 	}
2679 	sd_scsi_probe_cache_head = NULL;
2680 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2681 }
2682 
2683 
2684 /*
2685  *    Function: sd_scsi_clear_probe_cache
2686  *
2687  * Description: This routine clears the probe response cache. This is
2688  *		done when open() returns ENXIO so that when deferred
2689  *		attach is attempted (possibly after a device has been
2690  *		turned on) we will retry the probe. Since we don't know
2691  *		which target we failed to open, we just clear the
2692  *		entire cache.
2693  *
2694  *     Context: Kernel thread context
2695  */
2696 
2697 static void
2698 sd_scsi_clear_probe_cache(void)
2699 {
2700 	struct sd_scsi_probe_cache	*cp;
2701 	int				i;
2702 
2703 	mutex_enter(&sd_scsi_probe_cache_mutex);
2704 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2705 		/*
2706 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2707 		 * force probing to be performed the next time
2708 		 * sd_scsi_probe_with_cache is called.
2709 		 */
2710 		for (i = 0; i < NTARGETS_WIDE; i++) {
2711 			cp->cache[i] = SCSIPROBE_EXISTS;
2712 		}
2713 	}
2714 	mutex_exit(&sd_scsi_probe_cache_mutex);
2715 }
2716 
2717 
2718 /*
2719  *    Function: sd_scsi_probe_with_cache
2720  *
2721  * Description: This routine implements support for a scsi device probe
2722  *		with cache. The driver maintains a cache of the target
2723  *		responses to scsi probes. If we get no response from a
2724  *		target during a probe inquiry, we remember that, and we
2725  *		avoid additional calls to scsi_probe on non-zero LUNs
2726  *		on the same target until the cache is cleared. By doing
2727  *		so we avoid the 1/4 sec selection timeout for nonzero
2728  *		LUNs. lun0 of a target is always probed.
2729  *
2730  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2731  *              waitfunc - indicates what the allocator routines should
2732  *			   do when resources are not available. This value
2733  *			   is passed on to scsi_probe() when that routine
2734  *			   is called.
2735  *
2736  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2737  *		otherwise the value returned by scsi_probe(9F).
2738  *
2739  *     Context: Kernel thread context
2740  */
2741 
2742 static int
2743 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2744 {
2745 	struct sd_scsi_probe_cache	*cp;
2746 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2747 	int		lun, tgt;
2748 
2749 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2750 	    SCSI_ADDR_PROP_LUN, 0);
2751 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2752 	    SCSI_ADDR_PROP_TARGET, -1);
2753 
2754 	/* Make sure caching enabled and target in range */
2755 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2756 		/* do it the old way (no cache) */
2757 		return (scsi_probe(devp, waitfn));
2758 	}
2759 
2760 	mutex_enter(&sd_scsi_probe_cache_mutex);
2761 
2762 	/* Find the cache for this scsi bus instance */
2763 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2764 		if (cp->pdip == pdip) {
2765 			break;
2766 		}
2767 	}
2768 
2769 	/* If we can't find a cache for this pdip, create one */
2770 	if (cp == NULL) {
2771 		int i;
2772 
2773 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2774 		    KM_SLEEP);
2775 		cp->pdip = pdip;
2776 		cp->next = sd_scsi_probe_cache_head;
2777 		sd_scsi_probe_cache_head = cp;
2778 		for (i = 0; i < NTARGETS_WIDE; i++) {
2779 			cp->cache[i] = SCSIPROBE_EXISTS;
2780 		}
2781 	}
2782 
2783 	mutex_exit(&sd_scsi_probe_cache_mutex);
2784 
2785 	/* Recompute the cache for this target if LUN zero */
2786 	if (lun == 0) {
2787 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2788 	}
2789 
2790 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2791 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2792 		return (SCSIPROBE_NORESP);
2793 	}
2794 
2795 	/* Do the actual probe; save & return the result */
2796 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2797 }
2798 
2799 
2800 /*
2801  *    Function: sd_scsi_target_lun_init
2802  *
2803  * Description: Initializes the attached lun chain mutex and head pointer.
2804  *
2805  *     Context: Kernel thread context
2806  */
2807 
2808 static void
2809 sd_scsi_target_lun_init(void)
2810 {
2811 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
2812 	sd_scsi_target_lun_head = NULL;
2813 }
2814 
2815 
2816 /*
2817  *    Function: sd_scsi_target_lun_fini
2818  *
2819  * Description: Frees all resources associated with the attached lun
2820  *              chain
2821  *
2822  *     Context: Kernel thread context
2823  */
2824 
2825 static void
2826 sd_scsi_target_lun_fini(void)
2827 {
2828 	struct sd_scsi_hba_tgt_lun	*cp;
2829 	struct sd_scsi_hba_tgt_lun	*ncp;
2830 
2831 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
2832 		ncp = cp->next;
2833 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
2834 	}
2835 	sd_scsi_target_lun_head = NULL;
2836 	mutex_destroy(&sd_scsi_target_lun_mutex);
2837 }
2838 
2839 
2840 /*
2841  *    Function: sd_scsi_get_target_lun_count
2842  *
2843  * Description: This routine will check in the attached lun chain to see
2844  * 		how many luns are attached on the required SCSI controller
2845  * 		and target. Currently, some capabilities like tagged queue
2846  *		are supported per target based by HBA. So all luns in a
2847  *		target have the same capabilities. Based on this assumption,
2848  * 		sd should only set these capabilities once per target. This
2849  *		function is called when sd needs to decide how many luns
2850  *		already attached on a target.
2851  *
2852  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
2853  *			  controller device.
2854  *              target	- The target ID on the controller's SCSI bus.
2855  *
2856  * Return Code: The number of luns attached on the required target and
2857  *		controller.
2858  *		-1 if target ID is not in parallel SCSI scope or the given
2859  * 		dip is not in the chain.
2860  *
2861  *     Context: Kernel thread context
2862  */
2863 
2864 static int
2865 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
2866 {
2867 	struct sd_scsi_hba_tgt_lun	*cp;
2868 
2869 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
2870 		return (-1);
2871 	}
2872 
2873 	mutex_enter(&sd_scsi_target_lun_mutex);
2874 
2875 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2876 		if (cp->pdip == dip) {
2877 			break;
2878 		}
2879 	}
2880 
2881 	mutex_exit(&sd_scsi_target_lun_mutex);
2882 
2883 	if (cp == NULL) {
2884 		return (-1);
2885 	}
2886 
2887 	return (cp->nlun[target]);
2888 }
2889 
2890 
2891 /*
2892  *    Function: sd_scsi_update_lun_on_target
2893  *
2894  * Description: This routine is used to update the attached lun chain when a
2895  *		lun is attached or detached on a target.
2896  *
2897  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
2898  *                        controller device.
2899  *              target  - The target ID on the controller's SCSI bus.
2900  *		flag	- Indicate the lun is attached or detached.
2901  *
2902  *     Context: Kernel thread context
2903  */
2904 
2905 static void
2906 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
2907 {
2908 	struct sd_scsi_hba_tgt_lun	*cp;
2909 
2910 	mutex_enter(&sd_scsi_target_lun_mutex);
2911 
2912 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2913 		if (cp->pdip == dip) {
2914 			break;
2915 		}
2916 	}
2917 
2918 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
2919 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
2920 		    KM_SLEEP);
2921 		cp->pdip = dip;
2922 		cp->next = sd_scsi_target_lun_head;
2923 		sd_scsi_target_lun_head = cp;
2924 	}
2925 
2926 	mutex_exit(&sd_scsi_target_lun_mutex);
2927 
2928 	if (cp != NULL) {
2929 		if (flag == SD_SCSI_LUN_ATTACH) {
2930 			cp->nlun[target] ++;
2931 		} else {
2932 			cp->nlun[target] --;
2933 		}
2934 	}
2935 }
2936 
2937 
2938 /*
2939  *    Function: sd_spin_up_unit
2940  *
2941  * Description: Issues the following commands to spin-up the device:
2942  *		START STOP UNIT, and INQUIRY.
2943  *
2944  *   Arguments: un - driver soft state (unit) structure
2945  *
2946  * Return Code: 0 - success
2947  *		EIO - failure
2948  *		EACCES - reservation conflict
2949  *
2950  *     Context: Kernel thread context
2951  */
2952 
2953 static int
2954 sd_spin_up_unit(struct sd_lun *un)
2955 {
2956 	size_t	resid		= 0;
2957 	int	has_conflict	= FALSE;
2958 	uchar_t *bufaddr;
2959 
2960 	ASSERT(un != NULL);
2961 
2962 	/*
2963 	 * Send a throwaway START UNIT command.
2964 	 *
2965 	 * If we fail on this, we don't care presently what precisely
2966 	 * is wrong.  EMC's arrays will also fail this with a check
2967 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
2968 	 * we don't want to fail the attach because it may become
2969 	 * "active" later.
2970 	 */
2971 	if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT)
2972 	    == EACCES)
2973 		has_conflict = TRUE;
2974 
2975 	/*
2976 	 * Send another INQUIRY command to the target. This is necessary for
2977 	 * non-removable media direct access devices because their INQUIRY data
2978 	 * may not be fully qualified until they are spun up (perhaps via the
2979 	 * START command above).  Note: This seems to be needed for some
2980 	 * legacy devices only.) The INQUIRY command should succeed even if a
2981 	 * Reservation Conflict is present.
2982 	 */
2983 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
2984 	if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) {
2985 		kmem_free(bufaddr, SUN_INQSIZE);
2986 		return (EIO);
2987 	}
2988 
2989 	/*
2990 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
2991 	 * Note that this routine does not return a failure here even if the
2992 	 * INQUIRY command did not return any data.  This is a legacy behavior.
2993 	 */
2994 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
2995 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
2996 	}
2997 
2998 	kmem_free(bufaddr, SUN_INQSIZE);
2999 
3000 	/* If we hit a reservation conflict above, tell the caller. */
3001 	if (has_conflict == TRUE) {
3002 		return (EACCES);
3003 	}
3004 
3005 	return (0);
3006 }
3007 
3008 #ifdef _LP64
3009 /*
3010  *    Function: sd_enable_descr_sense
3011  *
3012  * Description: This routine attempts to select descriptor sense format
3013  *		using the Control mode page.  Devices that support 64 bit
3014  *		LBAs (for >2TB luns) should also implement descriptor
3015  *		sense data so we will call this function whenever we see
3016  *		a lun larger than 2TB.  If for some reason the device
3017  *		supports 64 bit LBAs but doesn't support descriptor sense
3018  *		presumably the mode select will fail.  Everything will
3019  *		continue to work normally except that we will not get
3020  *		complete sense data for commands that fail with an LBA
3021  *		larger than 32 bits.
3022  *
3023  *   Arguments: un - driver soft state (unit) structure
3024  *
3025  *     Context: Kernel thread context only
3026  */
3027 
3028 static void
3029 sd_enable_descr_sense(struct sd_lun *un)
3030 {
3031 	uchar_t			*header;
3032 	struct mode_control_scsi3 *ctrl_bufp;
3033 	size_t			buflen;
3034 	size_t			bd_len;
3035 
3036 	/*
3037 	 * Read MODE SENSE page 0xA, Control Mode Page
3038 	 */
3039 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3040 	    sizeof (struct mode_control_scsi3);
3041 	header = kmem_zalloc(buflen, KM_SLEEP);
3042 	if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
3043 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) {
3044 		SD_ERROR(SD_LOG_COMMON, un,
3045 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3046 		goto eds_exit;
3047 	}
3048 
3049 	/*
3050 	 * Determine size of Block Descriptors in order to locate
3051 	 * the mode page data. ATAPI devices return 0, SCSI devices
3052 	 * should return MODE_BLK_DESC_LENGTH.
3053 	 */
3054 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3055 
3056 	/* Clear the mode data length field for MODE SELECT */
3057 	((struct mode_header *)header)->length = 0;
3058 
3059 	ctrl_bufp = (struct mode_control_scsi3 *)
3060 	    (header + MODE_HEADER_LENGTH + bd_len);
3061 
3062 	/*
3063 	 * If the page length is smaller than the expected value,
3064 	 * the target device doesn't support D_SENSE. Bail out here.
3065 	 */
3066 	if (ctrl_bufp->mode_page.length <
3067 	    sizeof (struct mode_control_scsi3) - 2) {
3068 		SD_ERROR(SD_LOG_COMMON, un,
3069 		    "sd_enable_descr_sense: enable D_SENSE failed\n");
3070 		goto eds_exit;
3071 	}
3072 
3073 	/*
3074 	 * Clear PS bit for MODE SELECT
3075 	 */
3076 	ctrl_bufp->mode_page.ps = 0;
3077 
3078 	/*
3079 	 * Set D_SENSE to enable descriptor sense format.
3080 	 */
3081 	ctrl_bufp->d_sense = 1;
3082 
3083 	/*
3084 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3085 	 */
3086 	if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
3087 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) {
3088 		SD_INFO(SD_LOG_COMMON, un,
3089 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3090 		goto eds_exit;
3091 	}
3092 
3093 eds_exit:
3094 	kmem_free(header, buflen);
3095 }
3096 
3097 /*
3098  *    Function: sd_reenable_dsense_task
3099  *
3100  * Description: Re-enable descriptor sense after device or bus reset
3101  *
3102  *     Context: Executes in a taskq() thread context
3103  */
3104 static void
3105 sd_reenable_dsense_task(void *arg)
3106 {
3107 	struct	sd_lun	*un = arg;
3108 
3109 	ASSERT(un != NULL);
3110 	sd_enable_descr_sense(un);
3111 }
3112 #endif /* _LP64 */
3113 
3114 /*
3115  *    Function: sd_set_mmc_caps
3116  *
3117  * Description: This routine determines if the device is MMC compliant and if
3118  *		the device supports CDDA via a mode sense of the CDVD
3119  *		capabilities mode page. Also checks if the device is a
3120  *		dvdram writable device.
3121  *
3122  *   Arguments: un - driver soft state (unit) structure
3123  *
3124  *     Context: Kernel thread context only
3125  */
3126 
3127 static void
3128 sd_set_mmc_caps(struct sd_lun *un)
3129 {
3130 	struct mode_header_grp2		*sense_mhp;
3131 	uchar_t				*sense_page;
3132 	caddr_t				buf;
3133 	int				bd_len;
3134 	int				status;
3135 	struct uscsi_cmd		com;
3136 	int				rtn;
3137 	uchar_t				*out_data_rw, *out_data_hd;
3138 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3139 
3140 	ASSERT(un != NULL);
3141 
3142 	/*
3143 	 * The flags which will be set in this function are - mmc compliant,
3144 	 * dvdram writable device, cdda support. Initialize them to FALSE
3145 	 * and if a capability is detected - it will be set to TRUE.
3146 	 */
3147 	un->un_f_mmc_cap = FALSE;
3148 	un->un_f_dvdram_writable_device = FALSE;
3149 	un->un_f_cfg_cdda = FALSE;
3150 
3151 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3152 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3153 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3154 
3155 	if (status != 0) {
3156 		/* command failed; just return */
3157 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3158 		return;
3159 	}
3160 	/*
3161 	 * If the mode sense request for the CDROM CAPABILITIES
3162 	 * page (0x2A) succeeds the device is assumed to be MMC.
3163 	 */
3164 	un->un_f_mmc_cap = TRUE;
3165 
3166 	/* Get to the page data */
3167 	sense_mhp = (struct mode_header_grp2 *)buf;
3168 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3169 	    sense_mhp->bdesc_length_lo;
3170 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3171 		/*
3172 		 * We did not get back the expected block descriptor
3173 		 * length so we cannot determine if the device supports
3174 		 * CDDA. However, we still indicate the device is MMC
3175 		 * according to the successful response to the page
3176 		 * 0x2A mode sense request.
3177 		 */
3178 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3179 		    "sd_set_mmc_caps: Mode Sense returned "
3180 		    "invalid block descriptor length\n");
3181 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3182 		return;
3183 	}
3184 
3185 	/* See if read CDDA is supported */
3186 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3187 	    bd_len);
3188 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3189 
3190 	/* See if writing DVD RAM is supported. */
3191 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3192 	if (un->un_f_dvdram_writable_device == TRUE) {
3193 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3194 		return;
3195 	}
3196 
3197 	/*
3198 	 * If the device presents DVD or CD capabilities in the mode
3199 	 * page, we can return here since a RRD will not have
3200 	 * these capabilities.
3201 	 */
3202 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3203 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3204 		return;
3205 	}
3206 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3207 
3208 	/*
3209 	 * If un->un_f_dvdram_writable_device is still FALSE,
3210 	 * check for a Removable Rigid Disk (RRD).  A RRD
3211 	 * device is identified by the features RANDOM_WRITABLE and
3212 	 * HARDWARE_DEFECT_MANAGEMENT.
3213 	 */
3214 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3215 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3216 
3217 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3218 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3219 	    RANDOM_WRITABLE, SD_PATH_STANDARD);
3220 	if (rtn != 0) {
3221 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3222 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3223 		return;
3224 	}
3225 
3226 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3227 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3228 
3229 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3230 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3231 	    HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD);
3232 	if (rtn == 0) {
3233 		/*
3234 		 * We have good information, check for random writable
3235 		 * and hardware defect features.
3236 		 */
3237 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3238 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3239 			un->un_f_dvdram_writable_device = TRUE;
3240 		}
3241 	}
3242 
3243 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3244 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3245 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3246 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3247 }
3248 
3249 /*
3250  *    Function: sd_check_for_writable_cd
3251  *
3252  * Description: This routine determines if the media in the device is
3253  *		writable or not. It uses the get configuration command (0x46)
3254  *		to determine if the media is writable
3255  *
3256  *   Arguments: un - driver soft state (unit) structure
3257  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct"
3258  *                           chain and the normal command waitq, or
3259  *                           SD_PATH_DIRECT_PRIORITY to use the USCSI
3260  *                           "direct" chain and bypass the normal command
3261  *                           waitq.
3262  *
3263  *     Context: Never called at interrupt context.
3264  */
3265 
3266 static void
3267 sd_check_for_writable_cd(struct sd_lun *un, int path_flag)
3268 {
3269 	struct uscsi_cmd		com;
3270 	uchar_t				*out_data;
3271 	uchar_t				*rqbuf;
3272 	int				rtn;
3273 	uchar_t				*out_data_rw, *out_data_hd;
3274 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3275 	struct mode_header_grp2		*sense_mhp;
3276 	uchar_t				*sense_page;
3277 	caddr_t				buf;
3278 	int				bd_len;
3279 	int				status;
3280 
3281 	ASSERT(un != NULL);
3282 	ASSERT(mutex_owned(SD_MUTEX(un)));
3283 
3284 	/*
3285 	 * Initialize the writable media to false, if configuration info.
3286 	 * tells us otherwise then only we will set it.
3287 	 */
3288 	un->un_f_mmc_writable_media = FALSE;
3289 	mutex_exit(SD_MUTEX(un));
3290 
3291 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3292 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3293 
3294 	rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH,
3295 	    out_data, SD_PROFILE_HEADER_LEN, path_flag);
3296 
3297 	mutex_enter(SD_MUTEX(un));
3298 	if (rtn == 0) {
3299 		/*
3300 		 * We have good information, check for writable DVD.
3301 		 */
3302 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3303 			un->un_f_mmc_writable_media = TRUE;
3304 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3305 			kmem_free(rqbuf, SENSE_LENGTH);
3306 			return;
3307 		}
3308 	}
3309 
3310 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3311 	kmem_free(rqbuf, SENSE_LENGTH);
3312 
3313 	/*
3314 	 * Determine if this is a RRD type device.
3315 	 */
3316 	mutex_exit(SD_MUTEX(un));
3317 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3318 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3319 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag);
3320 	mutex_enter(SD_MUTEX(un));
3321 	if (status != 0) {
3322 		/* command failed; just return */
3323 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3324 		return;
3325 	}
3326 
3327 	/* Get to the page data */
3328 	sense_mhp = (struct mode_header_grp2 *)buf;
3329 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3330 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3331 		/*
3332 		 * We did not get back the expected block descriptor length so
3333 		 * we cannot check the mode page.
3334 		 */
3335 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3336 		    "sd_check_for_writable_cd: Mode Sense returned "
3337 		    "invalid block descriptor length\n");
3338 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3339 		return;
3340 	}
3341 
3342 	/*
3343 	 * If the device presents DVD or CD capabilities in the mode
3344 	 * page, we can return here since a RRD device will not have
3345 	 * these capabilities.
3346 	 */
3347 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3348 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3349 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3350 		return;
3351 	}
3352 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3353 
3354 	/*
3355 	 * If un->un_f_mmc_writable_media is still FALSE,
3356 	 * check for RRD type media.  A RRD device is identified
3357 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3358 	 */
3359 	mutex_exit(SD_MUTEX(un));
3360 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3361 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3362 
3363 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3364 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3365 	    RANDOM_WRITABLE, path_flag);
3366 	if (rtn != 0) {
3367 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3368 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3369 		mutex_enter(SD_MUTEX(un));
3370 		return;
3371 	}
3372 
3373 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3374 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3375 
3376 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3377 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3378 	    HARDWARE_DEFECT_MANAGEMENT, path_flag);
3379 	mutex_enter(SD_MUTEX(un));
3380 	if (rtn == 0) {
3381 		/*
3382 		 * We have good information, check for random writable
3383 		 * and hardware defect features as current.
3384 		 */
3385 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3386 		    (out_data_rw[10] & 0x1) &&
3387 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3388 		    (out_data_hd[10] & 0x1)) {
3389 			un->un_f_mmc_writable_media = TRUE;
3390 		}
3391 	}
3392 
3393 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3394 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3395 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3396 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3397 }
3398 
3399 /*
3400  *    Function: sd_read_unit_properties
3401  *
3402  * Description: The following implements a property lookup mechanism.
3403  *		Properties for particular disks (keyed on vendor, model
3404  *		and rev numbers) are sought in the sd.conf file via
3405  *		sd_process_sdconf_file(), and if not found there, are
3406  *		looked for in a list hardcoded in this driver via
3407  *		sd_process_sdconf_table() Once located the properties
3408  *		are used to update the driver unit structure.
3409  *
3410  *   Arguments: un - driver soft state (unit) structure
3411  */
3412 
3413 static void
3414 sd_read_unit_properties(struct sd_lun *un)
3415 {
3416 	/*
3417 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3418 	 * the "sd-config-list" property (from the sd.conf file) or if
3419 	 * there was not a match for the inquiry vid/pid. If this event
3420 	 * occurs the static driver configuration table is searched for
3421 	 * a match.
3422 	 */
3423 	ASSERT(un != NULL);
3424 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3425 		sd_process_sdconf_table(un);
3426 	}
3427 
3428 	/* check for LSI device */
3429 	sd_is_lsi(un);
3430 
3431 
3432 }
3433 
3434 
3435 /*
3436  *    Function: sd_process_sdconf_file
3437  *
3438  * Description: Use ddi_getlongprop to obtain the properties from the
3439  *		driver's config file (ie, sd.conf) and update the driver
3440  *		soft state structure accordingly.
3441  *
3442  *   Arguments: un - driver soft state (unit) structure
3443  *
3444  * Return Code: SD_SUCCESS - The properties were successfully set according
3445  *			     to the driver configuration file.
3446  *		SD_FAILURE - The driver config list was not obtained or
3447  *			     there was no vid/pid match. This indicates that
3448  *			     the static config table should be used.
3449  *
3450  * The config file has a property, "sd-config-list", which consists of
3451  * one or more duplets as follows:
3452  *
3453  *  sd-config-list=
3454  *	<duplet>,
3455  *	[<duplet>,]
3456  *	[<duplet>];
3457  *
3458  * The structure of each duplet is as follows:
3459  *
3460  *  <duplet>:= <vid+pid>,<data-property-name_list>
3461  *
3462  * The first entry of the duplet is the device ID string (the concatenated
3463  * vid & pid; not to be confused with a device_id).  This is defined in
3464  * the same way as in the sd_disk_table.
3465  *
3466  * The second part of the duplet is a string that identifies a
3467  * data-property-name-list. The data-property-name-list is defined as
3468  * follows:
3469  *
3470  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3471  *
3472  * The syntax of <data-property-name> depends on the <version> field.
3473  *
3474  * If version = SD_CONF_VERSION_1 we have the following syntax:
3475  *
3476  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3477  *
3478  * where the prop0 value will be used to set prop0 if bit0 set in the
3479  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3480  *
3481  */
3482 
3483 static int
3484 sd_process_sdconf_file(struct sd_lun *un)
3485 {
3486 	char	*config_list = NULL;
3487 	int	config_list_len;
3488 	int	len;
3489 	int	dupletlen = 0;
3490 	char	*vidptr;
3491 	int	vidlen;
3492 	char	*dnlist_ptr;
3493 	char	*dataname_ptr;
3494 	int	dnlist_len;
3495 	int	dataname_len;
3496 	int	*data_list;
3497 	int	data_list_len;
3498 	int	rval = SD_FAILURE;
3499 	int	i;
3500 
3501 	ASSERT(un != NULL);
3502 
3503 	/* Obtain the configuration list associated with the .conf file */
3504 	if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS,
3505 	    sd_config_list, (caddr_t)&config_list, &config_list_len)
3506 	    != DDI_PROP_SUCCESS) {
3507 		return (SD_FAILURE);
3508 	}
3509 
3510 	/*
3511 	 * Compare vids in each duplet to the inquiry vid - if a match is
3512 	 * made, get the data value and update the soft state structure
3513 	 * accordingly.
3514 	 *
3515 	 * Note: This algorithm is complex and difficult to maintain. It should
3516 	 * be replaced with a more robust implementation.
3517 	 */
3518 	for (len = config_list_len, vidptr = config_list; len > 0;
3519 	    vidptr += dupletlen, len -= dupletlen) {
3520 		/*
3521 		 * Note: The assumption here is that each vid entry is on
3522 		 * a unique line from its associated duplet.
3523 		 */
3524 		vidlen = dupletlen = (int)strlen(vidptr);
3525 		if ((vidlen == 0) ||
3526 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3527 			dupletlen++;
3528 			continue;
3529 		}
3530 
3531 		/*
3532 		 * dnlist contains 1 or more blank separated
3533 		 * data-property-name entries
3534 		 */
3535 		dnlist_ptr = vidptr + vidlen + 1;
3536 		dnlist_len = (int)strlen(dnlist_ptr);
3537 		dupletlen += dnlist_len + 2;
3538 
3539 		/*
3540 		 * Set a pointer for the first data-property-name
3541 		 * entry in the list
3542 		 */
3543 		dataname_ptr = dnlist_ptr;
3544 		dataname_len = 0;
3545 
3546 		/*
3547 		 * Loop through all data-property-name entries in the
3548 		 * data-property-name-list setting the properties for each.
3549 		 */
3550 		while (dataname_len < dnlist_len) {
3551 			int version;
3552 
3553 			/*
3554 			 * Determine the length of the current
3555 			 * data-property-name entry by indexing until a
3556 			 * blank or NULL is encountered. When the space is
3557 			 * encountered reset it to a NULL for compliance
3558 			 * with ddi_getlongprop().
3559 			 */
3560 			for (i = 0; ((dataname_ptr[i] != ' ') &&
3561 			    (dataname_ptr[i] != '\0')); i++) {
3562 				;
3563 			}
3564 
3565 			dataname_len += i;
3566 			/* If not null terminated, Make it so */
3567 			if (dataname_ptr[i] == ' ') {
3568 				dataname_ptr[i] = '\0';
3569 			}
3570 			dataname_len++;
3571 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3572 			    "sd_process_sdconf_file: disk:%s, data:%s\n",
3573 			    vidptr, dataname_ptr);
3574 
3575 			/* Get the data list */
3576 			if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0,
3577 			    dataname_ptr, (caddr_t)&data_list, &data_list_len)
3578 			    != DDI_PROP_SUCCESS) {
3579 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3580 				    "sd_process_sdconf_file: data property (%s)"
3581 				    " has no value\n", dataname_ptr);
3582 				dataname_ptr = dnlist_ptr + dataname_len;
3583 				continue;
3584 			}
3585 
3586 			version = data_list[0];
3587 
3588 			if (version == SD_CONF_VERSION_1) {
3589 				sd_tunables values;
3590 
3591 				/* Set the properties */
3592 				if (sd_chk_vers1_data(un, data_list[1],
3593 				    &data_list[2], data_list_len, dataname_ptr)
3594 				    == SD_SUCCESS) {
3595 					sd_get_tunables_from_conf(un,
3596 					    data_list[1], &data_list[2],
3597 					    &values);
3598 					sd_set_vers1_properties(un,
3599 					    data_list[1], &values);
3600 					rval = SD_SUCCESS;
3601 				} else {
3602 					rval = SD_FAILURE;
3603 				}
3604 			} else {
3605 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3606 				    "data property %s version 0x%x is invalid.",
3607 				    dataname_ptr, version);
3608 				rval = SD_FAILURE;
3609 			}
3610 			kmem_free(data_list, data_list_len);
3611 			dataname_ptr = dnlist_ptr + dataname_len;
3612 		}
3613 	}
3614 
3615 	/* free up the memory allocated by ddi_getlongprop */
3616 	if (config_list) {
3617 		kmem_free(config_list, config_list_len);
3618 	}
3619 
3620 	return (rval);
3621 }
3622 
3623 /*
3624  *    Function: sd_get_tunables_from_conf()
3625  *
3626  *
3627  *    This function reads the data list from the sd.conf file and pulls
3628  *    the values that can have numeric values as arguments and places
3629  *    the values in the appropriate sd_tunables member.
3630  *    Since the order of the data list members varies across platforms
3631  *    This function reads them from the data list in a platform specific
3632  *    order and places them into the correct sd_tunable member that is
3633  *    consistent across all platforms.
3634  */
3635 static void
3636 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3637     sd_tunables *values)
3638 {
3639 	int i;
3640 	int mask;
3641 
3642 	bzero(values, sizeof (sd_tunables));
3643 
3644 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3645 
3646 		mask = 1 << i;
3647 		if (mask > flags) {
3648 			break;
3649 		}
3650 
3651 		switch (mask & flags) {
3652 		case 0:	/* This mask bit not set in flags */
3653 			continue;
3654 		case SD_CONF_BSET_THROTTLE:
3655 			values->sdt_throttle = data_list[i];
3656 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3657 			    "sd_get_tunables_from_conf: throttle = %d\n",
3658 			    values->sdt_throttle);
3659 			break;
3660 		case SD_CONF_BSET_CTYPE:
3661 			values->sdt_ctype = data_list[i];
3662 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3663 			    "sd_get_tunables_from_conf: ctype = %d\n",
3664 			    values->sdt_ctype);
3665 			break;
3666 		case SD_CONF_BSET_NRR_COUNT:
3667 			values->sdt_not_rdy_retries = data_list[i];
3668 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3669 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
3670 			    values->sdt_not_rdy_retries);
3671 			break;
3672 		case SD_CONF_BSET_BSY_RETRY_COUNT:
3673 			values->sdt_busy_retries = data_list[i];
3674 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3675 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
3676 			    values->sdt_busy_retries);
3677 			break;
3678 		case SD_CONF_BSET_RST_RETRIES:
3679 			values->sdt_reset_retries = data_list[i];
3680 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3681 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
3682 			    values->sdt_reset_retries);
3683 			break;
3684 		case SD_CONF_BSET_RSV_REL_TIME:
3685 			values->sdt_reserv_rel_time = data_list[i];
3686 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3687 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
3688 			    values->sdt_reserv_rel_time);
3689 			break;
3690 		case SD_CONF_BSET_MIN_THROTTLE:
3691 			values->sdt_min_throttle = data_list[i];
3692 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3693 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
3694 			    values->sdt_min_throttle);
3695 			break;
3696 		case SD_CONF_BSET_DISKSORT_DISABLED:
3697 			values->sdt_disk_sort_dis = data_list[i];
3698 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3699 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
3700 			    values->sdt_disk_sort_dis);
3701 			break;
3702 		case SD_CONF_BSET_LUN_RESET_ENABLED:
3703 			values->sdt_lun_reset_enable = data_list[i];
3704 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3705 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
3706 			    "\n", values->sdt_lun_reset_enable);
3707 			break;
3708 		case SD_CONF_BSET_CACHE_IS_NV:
3709 			values->sdt_suppress_cache_flush = data_list[i];
3710 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3711 			    "sd_get_tunables_from_conf: \
3712 			    suppress_cache_flush = %d"
3713 			    "\n", values->sdt_suppress_cache_flush);
3714 			break;
3715 		}
3716 	}
3717 }
3718 
3719 /*
3720  *    Function: sd_process_sdconf_table
3721  *
3722  * Description: Search the static configuration table for a match on the
3723  *		inquiry vid/pid and update the driver soft state structure
3724  *		according to the table property values for the device.
3725  *
3726  *		The form of a configuration table entry is:
3727  *		  <vid+pid>,<flags>,<property-data>
3728  *		  "SEAGATE ST42400N",1,0x40000,
3729  *		  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
3730  *
3731  *   Arguments: un - driver soft state (unit) structure
3732  */
3733 
3734 static void
3735 sd_process_sdconf_table(struct sd_lun *un)
3736 {
3737 	char	*id = NULL;
3738 	int	table_index;
3739 	int	idlen;
3740 
3741 	ASSERT(un != NULL);
3742 	for (table_index = 0; table_index < sd_disk_table_size;
3743 	    table_index++) {
3744 		id = sd_disk_table[table_index].device_id;
3745 		idlen = strlen(id);
3746 		if (idlen == 0) {
3747 			continue;
3748 		}
3749 
3750 		/*
3751 		 * The static configuration table currently does not
3752 		 * implement version 10 properties. Additionally,
3753 		 * multiple data-property-name entries are not
3754 		 * implemented in the static configuration table.
3755 		 */
3756 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
3757 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3758 			    "sd_process_sdconf_table: disk %s\n", id);
3759 			sd_set_vers1_properties(un,
3760 			    sd_disk_table[table_index].flags,
3761 			    sd_disk_table[table_index].properties);
3762 			break;
3763 		}
3764 	}
3765 }
3766 
3767 
3768 /*
3769  *    Function: sd_sdconf_id_match
3770  *
3771  * Description: This local function implements a case sensitive vid/pid
3772  *		comparison as well as the boundary cases of wild card and
3773  *		multiple blanks.
3774  *
3775  *		Note: An implicit assumption made here is that the scsi
3776  *		inquiry structure will always keep the vid, pid and
3777  *		revision strings in consecutive sequence, so they can be
3778  *		read as a single string. If this assumption is not the
3779  *		case, a separate string, to be used for the check, needs
3780  *		to be built with these strings concatenated.
3781  *
3782  *   Arguments: un - driver soft state (unit) structure
3783  *		id - table or config file vid/pid
3784  *		idlen  - length of the vid/pid (bytes)
3785  *
3786  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3787  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3788  */
3789 
3790 static int
3791 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
3792 {
3793 	struct scsi_inquiry	*sd_inq;
3794 	int 			rval = SD_SUCCESS;
3795 
3796 	ASSERT(un != NULL);
3797 	sd_inq = un->un_sd->sd_inq;
3798 	ASSERT(id != NULL);
3799 
3800 	/*
3801 	 * We use the inq_vid as a pointer to a buffer containing the
3802 	 * vid and pid and use the entire vid/pid length of the table
3803 	 * entry for the comparison. This works because the inq_pid
3804 	 * data member follows inq_vid in the scsi_inquiry structure.
3805 	 */
3806 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
3807 		/*
3808 		 * The user id string is compared to the inquiry vid/pid
3809 		 * using a case insensitive comparison and ignoring
3810 		 * multiple spaces.
3811 		 */
3812 		rval = sd_blank_cmp(un, id, idlen);
3813 		if (rval != SD_SUCCESS) {
3814 			/*
3815 			 * User id strings that start and end with a "*"
3816 			 * are a special case. These do not have a
3817 			 * specific vendor, and the product string can
3818 			 * appear anywhere in the 16 byte PID portion of
3819 			 * the inquiry data. This is a simple strstr()
3820 			 * type search for the user id in the inquiry data.
3821 			 */
3822 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
3823 				char	*pidptr = &id[1];
3824 				int	i;
3825 				int	j;
3826 				int	pidstrlen = idlen - 2;
3827 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
3828 				    pidstrlen;
3829 
3830 				if (j < 0) {
3831 					return (SD_FAILURE);
3832 				}
3833 				for (i = 0; i < j; i++) {
3834 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
3835 					    pidptr, pidstrlen) == 0) {
3836 						rval = SD_SUCCESS;
3837 						break;
3838 					}
3839 				}
3840 			}
3841 		}
3842 	}
3843 	return (rval);
3844 }
3845 
3846 
3847 /*
3848  *    Function: sd_blank_cmp
3849  *
3850  * Description: If the id string starts and ends with a space, treat
3851  *		multiple consecutive spaces as equivalent to a single
3852  *		space. For example, this causes a sd_disk_table entry
3853  *		of " NEC CDROM " to match a device's id string of
3854  *		"NEC       CDROM".
3855  *
3856  *		Note: The success exit condition for this routine is if
3857  *		the pointer to the table entry is '\0' and the cnt of
3858  *		the inquiry length is zero. This will happen if the inquiry
3859  *		string returned by the device is padded with spaces to be
3860  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
3861  *		SCSI spec states that the inquiry string is to be padded with
3862  *		spaces.
3863  *
3864  *   Arguments: un - driver soft state (unit) structure
3865  *		id - table or config file vid/pid
3866  *		idlen  - length of the vid/pid (bytes)
3867  *
3868  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3869  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3870  */
3871 
3872 static int
3873 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
3874 {
3875 	char		*p1;
3876 	char		*p2;
3877 	int		cnt;
3878 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
3879 	    sizeof (SD_INQUIRY(un)->inq_pid);
3880 
3881 	ASSERT(un != NULL);
3882 	p2 = un->un_sd->sd_inq->inq_vid;
3883 	ASSERT(id != NULL);
3884 	p1 = id;
3885 
3886 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
3887 		/*
3888 		 * Note: string p1 is terminated by a NUL but string p2
3889 		 * isn't.  The end of p2 is determined by cnt.
3890 		 */
3891 		for (;;) {
3892 			/* skip over any extra blanks in both strings */
3893 			while ((*p1 != '\0') && (*p1 == ' ')) {
3894 				p1++;
3895 			}
3896 			while ((cnt != 0) && (*p2 == ' ')) {
3897 				p2++;
3898 				cnt--;
3899 			}
3900 
3901 			/* compare the two strings */
3902 			if ((cnt == 0) ||
3903 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
3904 				break;
3905 			}
3906 			while ((cnt > 0) &&
3907 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
3908 				p1++;
3909 				p2++;
3910 				cnt--;
3911 			}
3912 		}
3913 	}
3914 
3915 	/* return SD_SUCCESS if both strings match */
3916 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
3917 }
3918 
3919 
3920 /*
3921  *    Function: sd_chk_vers1_data
3922  *
3923  * Description: Verify the version 1 device properties provided by the
3924  *		user via the configuration file
3925  *
3926  *   Arguments: un	     - driver soft state (unit) structure
3927  *		flags	     - integer mask indicating properties to be set
3928  *		prop_list    - integer list of property values
3929  *		list_len     - length of user provided data
3930  *
3931  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
3932  *		SD_FAILURE - Indicates the user provided data is invalid
3933  */
3934 
3935 static int
3936 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
3937     int list_len, char *dataname_ptr)
3938 {
3939 	int i;
3940 	int mask = 1;
3941 	int index = 0;
3942 
3943 	ASSERT(un != NULL);
3944 
3945 	/* Check for a NULL property name and list */
3946 	if (dataname_ptr == NULL) {
3947 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3948 		    "sd_chk_vers1_data: NULL data property name.");
3949 		return (SD_FAILURE);
3950 	}
3951 	if (prop_list == NULL) {
3952 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3953 		    "sd_chk_vers1_data: %s NULL data property list.",
3954 		    dataname_ptr);
3955 		return (SD_FAILURE);
3956 	}
3957 
3958 	/* Display a warning if undefined bits are set in the flags */
3959 	if (flags & ~SD_CONF_BIT_MASK) {
3960 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3961 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
3962 		    "Properties not set.",
3963 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
3964 		return (SD_FAILURE);
3965 	}
3966 
3967 	/*
3968 	 * Verify the length of the list by identifying the highest bit set
3969 	 * in the flags and validating that the property list has a length
3970 	 * up to the index of this bit.
3971 	 */
3972 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3973 		if (flags & mask) {
3974 			index++;
3975 		}
3976 		mask = 1 << i;
3977 	}
3978 	if ((list_len / sizeof (int)) < (index + 2)) {
3979 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3980 		    "sd_chk_vers1_data: "
3981 		    "Data property list %s size is incorrect. "
3982 		    "Properties not set.", dataname_ptr);
3983 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
3984 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
3985 		return (SD_FAILURE);
3986 	}
3987 	return (SD_SUCCESS);
3988 }
3989 
3990 
3991 /*
3992  *    Function: sd_set_vers1_properties
3993  *
3994  * Description: Set version 1 device properties based on a property list
3995  *		retrieved from the driver configuration file or static
3996  *		configuration table. Version 1 properties have the format:
3997  *
3998  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3999  *
4000  *		where the prop0 value will be used to set prop0 if bit0
4001  *		is set in the flags
4002  *
4003  *   Arguments: un	     - driver soft state (unit) structure
4004  *		flags	     - integer mask indicating properties to be set
4005  *		prop_list    - integer list of property values
4006  */
4007 
4008 static void
4009 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
4010 {
4011 	ASSERT(un != NULL);
4012 
4013 	/*
4014 	 * Set the flag to indicate cache is to be disabled. An attempt
4015 	 * to disable the cache via sd_cache_control() will be made
4016 	 * later during attach once the basic initialization is complete.
4017 	 */
4018 	if (flags & SD_CONF_BSET_NOCACHE) {
4019 		un->un_f_opt_disable_cache = TRUE;
4020 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4021 		    "sd_set_vers1_properties: caching disabled flag set\n");
4022 	}
4023 
4024 	/* CD-specific configuration parameters */
4025 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4026 		un->un_f_cfg_playmsf_bcd = TRUE;
4027 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4028 		    "sd_set_vers1_properties: playmsf_bcd set\n");
4029 	}
4030 	if (flags & SD_CONF_BSET_READSUB_BCD) {
4031 		un->un_f_cfg_readsub_bcd = TRUE;
4032 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4033 		    "sd_set_vers1_properties: readsub_bcd set\n");
4034 	}
4035 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4036 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4037 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4038 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4039 	}
4040 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4041 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4042 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4043 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4044 	}
4045 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4046 		un->un_f_cfg_no_read_header = TRUE;
4047 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4048 		    "sd_set_vers1_properties: no_read_header set\n");
4049 	}
4050 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4051 		un->un_f_cfg_read_cd_xd4 = TRUE;
4052 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4053 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4054 	}
4055 
4056 	/* Support for devices which do not have valid/unique serial numbers */
4057 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4058 		un->un_f_opt_fab_devid = TRUE;
4059 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4060 		    "sd_set_vers1_properties: fab_devid bit set\n");
4061 	}
4062 
4063 	/* Support for user throttle configuration */
4064 	if (flags & SD_CONF_BSET_THROTTLE) {
4065 		ASSERT(prop_list != NULL);
4066 		un->un_saved_throttle = un->un_throttle =
4067 		    prop_list->sdt_throttle;
4068 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4069 		    "sd_set_vers1_properties: throttle set to %d\n",
4070 		    prop_list->sdt_throttle);
4071 	}
4072 
4073 	/* Set the per disk retry count according to the conf file or table. */
4074 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4075 		ASSERT(prop_list != NULL);
4076 		if (prop_list->sdt_not_rdy_retries) {
4077 			un->un_notready_retry_count =
4078 			    prop_list->sdt_not_rdy_retries;
4079 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4080 			    "sd_set_vers1_properties: not ready retry count"
4081 			    " set to %d\n", un->un_notready_retry_count);
4082 		}
4083 	}
4084 
4085 	/* The controller type is reported for generic disk driver ioctls */
4086 	if (flags & SD_CONF_BSET_CTYPE) {
4087 		ASSERT(prop_list != NULL);
4088 		switch (prop_list->sdt_ctype) {
4089 		case CTYPE_CDROM:
4090 			un->un_ctype = prop_list->sdt_ctype;
4091 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4092 			    "sd_set_vers1_properties: ctype set to "
4093 			    "CTYPE_CDROM\n");
4094 			break;
4095 		case CTYPE_CCS:
4096 			un->un_ctype = prop_list->sdt_ctype;
4097 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4098 			    "sd_set_vers1_properties: ctype set to "
4099 			    "CTYPE_CCS\n");
4100 			break;
4101 		case CTYPE_ROD:		/* RW optical */
4102 			un->un_ctype = prop_list->sdt_ctype;
4103 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4104 			    "sd_set_vers1_properties: ctype set to "
4105 			    "CTYPE_ROD\n");
4106 			break;
4107 		default:
4108 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4109 			    "sd_set_vers1_properties: Could not set "
4110 			    "invalid ctype value (%d)",
4111 			    prop_list->sdt_ctype);
4112 		}
4113 	}
4114 
4115 	/* Purple failover timeout */
4116 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4117 		ASSERT(prop_list != NULL);
4118 		un->un_busy_retry_count =
4119 		    prop_list->sdt_busy_retries;
4120 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4121 		    "sd_set_vers1_properties: "
4122 		    "busy retry count set to %d\n",
4123 		    un->un_busy_retry_count);
4124 	}
4125 
4126 	/* Purple reset retry count */
4127 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4128 		ASSERT(prop_list != NULL);
4129 		un->un_reset_retry_count =
4130 		    prop_list->sdt_reset_retries;
4131 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4132 		    "sd_set_vers1_properties: "
4133 		    "reset retry count set to %d\n",
4134 		    un->un_reset_retry_count);
4135 	}
4136 
4137 	/* Purple reservation release timeout */
4138 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4139 		ASSERT(prop_list != NULL);
4140 		un->un_reserve_release_time =
4141 		    prop_list->sdt_reserv_rel_time;
4142 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4143 		    "sd_set_vers1_properties: "
4144 		    "reservation release timeout set to %d\n",
4145 		    un->un_reserve_release_time);
4146 	}
4147 
4148 	/*
4149 	 * Driver flag telling the driver to verify that no commands are pending
4150 	 * for a device before issuing a Test Unit Ready. This is a workaround
4151 	 * for a firmware bug in some Seagate eliteI drives.
4152 	 */
4153 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4154 		un->un_f_cfg_tur_check = TRUE;
4155 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4156 		    "sd_set_vers1_properties: tur queue check set\n");
4157 	}
4158 
4159 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4160 		un->un_min_throttle = prop_list->sdt_min_throttle;
4161 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4162 		    "sd_set_vers1_properties: min throttle set to %d\n",
4163 		    un->un_min_throttle);
4164 	}
4165 
4166 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4167 		un->un_f_disksort_disabled =
4168 		    (prop_list->sdt_disk_sort_dis != 0) ?
4169 		    TRUE : FALSE;
4170 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4171 		    "sd_set_vers1_properties: disksort disabled "
4172 		    "flag set to %d\n",
4173 		    prop_list->sdt_disk_sort_dis);
4174 	}
4175 
4176 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4177 		un->un_f_lun_reset_enabled =
4178 		    (prop_list->sdt_lun_reset_enable != 0) ?
4179 		    TRUE : FALSE;
4180 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4181 		    "sd_set_vers1_properties: lun reset enabled "
4182 		    "flag set to %d\n",
4183 		    prop_list->sdt_lun_reset_enable);
4184 	}
4185 
4186 	if (flags & SD_CONF_BSET_CACHE_IS_NV) {
4187 		un->un_f_suppress_cache_flush =
4188 		    (prop_list->sdt_suppress_cache_flush != 0) ?
4189 		    TRUE : FALSE;
4190 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4191 		    "sd_set_vers1_properties: suppress_cache_flush "
4192 		    "flag set to %d\n",
4193 		    prop_list->sdt_suppress_cache_flush);
4194 	}
4195 
4196 	/*
4197 	 * Validate the throttle values.
4198 	 * If any of the numbers are invalid, set everything to defaults.
4199 	 */
4200 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4201 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4202 	    (un->un_min_throttle > un->un_throttle)) {
4203 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4204 		un->un_min_throttle = sd_min_throttle;
4205 	}
4206 }
4207 
4208 /*
4209  *   Function: sd_is_lsi()
4210  *
4211  *   Description: Check for lsi devices, step through the static device
4212  *	table to match vid/pid.
4213  *
4214  *   Args: un - ptr to sd_lun
4215  *
4216  *   Notes:  When creating new LSI property, need to add the new LSI property
4217  *		to this function.
4218  */
4219 static void
4220 sd_is_lsi(struct sd_lun *un)
4221 {
4222 	char	*id = NULL;
4223 	int	table_index;
4224 	int	idlen;
4225 	void	*prop;
4226 
4227 	ASSERT(un != NULL);
4228 	for (table_index = 0; table_index < sd_disk_table_size;
4229 	    table_index++) {
4230 		id = sd_disk_table[table_index].device_id;
4231 		idlen = strlen(id);
4232 		if (idlen == 0) {
4233 			continue;
4234 		}
4235 
4236 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4237 			prop = sd_disk_table[table_index].properties;
4238 			if (prop == &lsi_properties ||
4239 			    prop == &lsi_oem_properties ||
4240 			    prop == &lsi_properties_scsi ||
4241 			    prop == &symbios_properties) {
4242 				un->un_f_cfg_is_lsi = TRUE;
4243 			}
4244 			break;
4245 		}
4246 	}
4247 }
4248 
4249 /*
4250  *    Function: sd_get_physical_geometry
4251  *
4252  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4253  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4254  *		target, and use this information to initialize the physical
4255  *		geometry cache specified by pgeom_p.
4256  *
4257  *		MODE SENSE is an optional command, so failure in this case
4258  *		does not necessarily denote an error. We want to use the
4259  *		MODE SENSE commands to derive the physical geometry of the
4260  *		device, but if either command fails, the logical geometry is
4261  *		used as the fallback for disk label geometry in cmlb.
4262  *
4263  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4264  *		have already been initialized for the current target and
4265  *		that the current values be passed as args so that we don't
4266  *		end up ever trying to use -1 as a valid value. This could
4267  *		happen if either value is reset while we're not holding
4268  *		the mutex.
4269  *
4270  *   Arguments: un - driver soft state (unit) structure
4271  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4272  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4273  *			to use the USCSI "direct" chain and bypass the normal
4274  *			command waitq.
4275  *
4276  *     Context: Kernel thread only (can sleep).
4277  */
4278 
4279 static int
4280 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p,
4281 	diskaddr_t capacity, int lbasize, int path_flag)
4282 {
4283 	struct	mode_format	*page3p;
4284 	struct	mode_geometry	*page4p;
4285 	struct	mode_header	*headerp;
4286 	int	sector_size;
4287 	int	nsect;
4288 	int	nhead;
4289 	int	ncyl;
4290 	int	intrlv;
4291 	int	spc;
4292 	diskaddr_t	modesense_capacity;
4293 	int	rpm;
4294 	int	bd_len;
4295 	int	mode_header_length;
4296 	uchar_t	*p3bufp;
4297 	uchar_t	*p4bufp;
4298 	int	cdbsize;
4299 	int 	ret = EIO;
4300 
4301 	ASSERT(un != NULL);
4302 
4303 	if (lbasize == 0) {
4304 		if (ISCD(un)) {
4305 			lbasize = 2048;
4306 		} else {
4307 			lbasize = un->un_sys_blocksize;
4308 		}
4309 	}
4310 	pgeom_p->g_secsize = (unsigned short)lbasize;
4311 
4312 	/*
4313 	 * If the unit is a cd/dvd drive MODE SENSE page three
4314 	 * and MODE SENSE page four are reserved (see SBC spec
4315 	 * and MMC spec). To prevent soft errors just return
4316 	 * using the default LBA size.
4317 	 */
4318 	if (ISCD(un))
4319 		return (ret);
4320 
4321 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4322 
4323 	/*
4324 	 * Retrieve MODE SENSE page 3 - Format Device Page
4325 	 */
4326 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4327 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp,
4328 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag)
4329 	    != 0) {
4330 		SD_ERROR(SD_LOG_COMMON, un,
4331 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4332 		goto page3_exit;
4333 	}
4334 
4335 	/*
4336 	 * Determine size of Block Descriptors in order to locate the mode
4337 	 * page data.  ATAPI devices return 0, SCSI devices should return
4338 	 * MODE_BLK_DESC_LENGTH.
4339 	 */
4340 	headerp = (struct mode_header *)p3bufp;
4341 	if (un->un_f_cfg_is_atapi == TRUE) {
4342 		struct mode_header_grp2 *mhp =
4343 		    (struct mode_header_grp2 *)headerp;
4344 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4345 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4346 	} else {
4347 		mode_header_length = MODE_HEADER_LENGTH;
4348 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4349 	}
4350 
4351 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4352 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4353 		    "received unexpected bd_len of %d, page3\n", bd_len);
4354 		goto page3_exit;
4355 	}
4356 
4357 	page3p = (struct mode_format *)
4358 	    ((caddr_t)headerp + mode_header_length + bd_len);
4359 
4360 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
4361 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4362 		    "mode sense pg3 code mismatch %d\n",
4363 		    page3p->mode_page.code);
4364 		goto page3_exit;
4365 	}
4366 
4367 	/*
4368 	 * Use this physical geometry data only if BOTH MODE SENSE commands
4369 	 * complete successfully; otherwise, revert to the logical geometry.
4370 	 * So, we need to save everything in temporary variables.
4371 	 */
4372 	sector_size = BE_16(page3p->data_bytes_sect);
4373 
4374 	/*
4375 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
4376 	 */
4377 	if (sector_size == 0) {
4378 		sector_size = un->un_sys_blocksize;
4379 	} else {
4380 		sector_size &= ~(un->un_sys_blocksize - 1);
4381 	}
4382 
4383 	nsect  = BE_16(page3p->sect_track);
4384 	intrlv = BE_16(page3p->interleave);
4385 
4386 	SD_INFO(SD_LOG_COMMON, un,
4387 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
4388 	SD_INFO(SD_LOG_COMMON, un,
4389 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
4390 	    page3p->mode_page.code, nsect, sector_size);
4391 	SD_INFO(SD_LOG_COMMON, un,
4392 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
4393 	    BE_16(page3p->track_skew),
4394 	    BE_16(page3p->cylinder_skew));
4395 
4396 
4397 	/*
4398 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
4399 	 */
4400 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
4401 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp,
4402 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag)
4403 	    != 0) {
4404 		SD_ERROR(SD_LOG_COMMON, un,
4405 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
4406 		goto page4_exit;
4407 	}
4408 
4409 	/*
4410 	 * Determine size of Block Descriptors in order to locate the mode
4411 	 * page data.  ATAPI devices return 0, SCSI devices should return
4412 	 * MODE_BLK_DESC_LENGTH.
4413 	 */
4414 	headerp = (struct mode_header *)p4bufp;
4415 	if (un->un_f_cfg_is_atapi == TRUE) {
4416 		struct mode_header_grp2 *mhp =
4417 		    (struct mode_header_grp2 *)headerp;
4418 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4419 	} else {
4420 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4421 	}
4422 
4423 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4424 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4425 		    "received unexpected bd_len of %d, page4\n", bd_len);
4426 		goto page4_exit;
4427 	}
4428 
4429 	page4p = (struct mode_geometry *)
4430 	    ((caddr_t)headerp + mode_header_length + bd_len);
4431 
4432 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
4433 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4434 		    "mode sense pg4 code mismatch %d\n",
4435 		    page4p->mode_page.code);
4436 		goto page4_exit;
4437 	}
4438 
4439 	/*
4440 	 * Stash the data now, after we know that both commands completed.
4441 	 */
4442 
4443 
4444 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
4445 	spc   = nhead * nsect;
4446 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
4447 	rpm   = BE_16(page4p->rpm);
4448 
4449 	modesense_capacity = spc * ncyl;
4450 
4451 	SD_INFO(SD_LOG_COMMON, un,
4452 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
4453 	SD_INFO(SD_LOG_COMMON, un,
4454 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
4455 	SD_INFO(SD_LOG_COMMON, un,
4456 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
4457 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
4458 	    (void *)pgeom_p, capacity);
4459 
4460 	/*
4461 	 * Compensate if the drive's geometry is not rectangular, i.e.,
4462 	 * the product of C * H * S returned by MODE SENSE >= that returned
4463 	 * by read capacity. This is an idiosyncrasy of the original x86
4464 	 * disk subsystem.
4465 	 */
4466 	if (modesense_capacity >= capacity) {
4467 		SD_INFO(SD_LOG_COMMON, un,
4468 		    "sd_get_physical_geometry: adjusting acyl; "
4469 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
4470 		    (modesense_capacity - capacity + spc - 1) / spc);
4471 		if (sector_size != 0) {
4472 			/* 1243403: NEC D38x7 drives don't support sec size */
4473 			pgeom_p->g_secsize = (unsigned short)sector_size;
4474 		}
4475 		pgeom_p->g_nsect    = (unsigned short)nsect;
4476 		pgeom_p->g_nhead    = (unsigned short)nhead;
4477 		pgeom_p->g_capacity = capacity;
4478 		pgeom_p->g_acyl	    =
4479 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
4480 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
4481 	}
4482 
4483 	pgeom_p->g_rpm    = (unsigned short)rpm;
4484 	pgeom_p->g_intrlv = (unsigned short)intrlv;
4485 	ret = 0;
4486 
4487 	SD_INFO(SD_LOG_COMMON, un,
4488 	    "sd_get_physical_geometry: mode sense geometry:\n");
4489 	SD_INFO(SD_LOG_COMMON, un,
4490 	    "   nsect: %d; sector size: %d; interlv: %d\n",
4491 	    nsect, sector_size, intrlv);
4492 	SD_INFO(SD_LOG_COMMON, un,
4493 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
4494 	    nhead, ncyl, rpm, modesense_capacity);
4495 	SD_INFO(SD_LOG_COMMON, un,
4496 	    "sd_get_physical_geometry: (cached)\n");
4497 	SD_INFO(SD_LOG_COMMON, un,
4498 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4499 	    pgeom_p->g_ncyl,  pgeom_p->g_acyl,
4500 	    pgeom_p->g_nhead, pgeom_p->g_nsect);
4501 	SD_INFO(SD_LOG_COMMON, un,
4502 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
4503 	    pgeom_p->g_secsize, pgeom_p->g_capacity,
4504 	    pgeom_p->g_intrlv, pgeom_p->g_rpm);
4505 
4506 page4_exit:
4507 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
4508 page3_exit:
4509 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
4510 
4511 	return (ret);
4512 }
4513 
4514 /*
4515  *    Function: sd_get_virtual_geometry
4516  *
4517  * Description: Ask the controller to tell us about the target device.
4518  *
4519  *   Arguments: un - pointer to softstate
4520  *		capacity - disk capacity in #blocks
4521  *		lbasize - disk block size in bytes
4522  *
4523  *     Context: Kernel thread only
4524  */
4525 
4526 static int
4527 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p,
4528     diskaddr_t capacity, int lbasize)
4529 {
4530 	uint_t	geombuf;
4531 	int	spc;
4532 
4533 	ASSERT(un != NULL);
4534 
4535 	/* Set sector size, and total number of sectors */
4536 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
4537 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
4538 
4539 	/* Let the HBA tell us its geometry */
4540 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
4541 
4542 	/* A value of -1 indicates an undefined "geometry" property */
4543 	if (geombuf == (-1)) {
4544 		return (EINVAL);
4545 	}
4546 
4547 	/* Initialize the logical geometry cache. */
4548 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
4549 	lgeom_p->g_nsect   = geombuf & 0xffff;
4550 	lgeom_p->g_secsize = un->un_sys_blocksize;
4551 
4552 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
4553 
4554 	/*
4555 	 * Note: The driver originally converted the capacity value from
4556 	 * target blocks to system blocks. However, the capacity value passed
4557 	 * to this routine is already in terms of system blocks (this scaling
4558 	 * is done when the READ CAPACITY command is issued and processed).
4559 	 * This 'error' may have gone undetected because the usage of g_ncyl
4560 	 * (which is based upon g_capacity) is very limited within the driver
4561 	 */
4562 	lgeom_p->g_capacity = capacity;
4563 
4564 	/*
4565 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
4566 	 * hba may return zero values if the device has been removed.
4567 	 */
4568 	if (spc == 0) {
4569 		lgeom_p->g_ncyl = 0;
4570 	} else {
4571 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
4572 	}
4573 	lgeom_p->g_acyl = 0;
4574 
4575 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
4576 	return (0);
4577 
4578 }
4579 /*
4580  *    Function: sd_update_block_info
4581  *
4582  * Description: Calculate a byte count to sector count bitshift value
4583  *		from sector size.
4584  *
4585  *   Arguments: un: unit struct.
4586  *		lbasize: new target sector size
4587  *		capacity: new target capacity, ie. block count
4588  *
4589  *     Context: Kernel thread context
4590  */
4591 
4592 static void
4593 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
4594 {
4595 	uint_t		dblk;
4596 
4597 	if (lbasize != 0) {
4598 		un->un_tgt_blocksize = lbasize;
4599 		un->un_f_tgt_blocksize_is_valid	= TRUE;
4600 	}
4601 
4602 	if (capacity != 0) {
4603 		un->un_blockcount		= capacity;
4604 		un->un_f_blockcount_is_valid	= TRUE;
4605 	}
4606 
4607 	/*
4608 	 * Update device capacity properties.
4609 	 *
4610 	 *   'device-nblocks'	number of blocks in target's units
4611 	 *   'device-blksize'	data bearing size of target's block
4612 	 *
4613 	 * NOTE: math is complicated by the fact that un_tgt_blocksize may
4614 	 * not be a power of two for checksumming disks with 520/528 byte
4615 	 * sectors.
4616 	 */
4617 	if (un->un_f_tgt_blocksize_is_valid &&
4618 	    un->un_f_blockcount_is_valid &&
4619 	    un->un_sys_blocksize) {
4620 		dblk = un->un_tgt_blocksize / un->un_sys_blocksize;
4621 		(void) ddi_prop_update_int64(DDI_DEV_T_NONE, SD_DEVINFO(un),
4622 		    "device-nblocks", un->un_blockcount / dblk);
4623 		/*
4624 		 * To save memory, only define "device-blksize" when its
4625 		 * value is differnet than the default DEV_BSIZE value.
4626 		 */
4627 		if ((un->un_sys_blocksize * dblk) != DEV_BSIZE)
4628 			(void) ddi_prop_update_int(DDI_DEV_T_NONE,
4629 			    SD_DEVINFO(un), "device-blksize",
4630 			    un->un_sys_blocksize * dblk);
4631 	}
4632 }
4633 
4634 
4635 /*
4636  *    Function: sd_register_devid
4637  *
4638  * Description: This routine will obtain the device id information from the
4639  *		target, obtain the serial number, and register the device
4640  *		id with the ddi framework.
4641  *
4642  *   Arguments: devi - the system's dev_info_t for the device.
4643  *		un - driver soft state (unit) structure
4644  *		reservation_flag - indicates if a reservation conflict
4645  *		occurred during attach
4646  *
4647  *     Context: Kernel Thread
4648  */
4649 static void
4650 sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag)
4651 {
4652 	int		rval		= 0;
4653 	uchar_t		*inq80		= NULL;
4654 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
4655 	size_t		inq80_resid	= 0;
4656 	uchar_t		*inq83		= NULL;
4657 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
4658 	size_t		inq83_resid	= 0;
4659 	int		dlen, len;
4660 	char		*sn;
4661 
4662 	ASSERT(un != NULL);
4663 	ASSERT(mutex_owned(SD_MUTEX(un)));
4664 	ASSERT((SD_DEVINFO(un)) == devi);
4665 
4666 	/*
4667 	 * If transport has already registered a devid for this target
4668 	 * then that takes precedence over the driver's determination
4669 	 * of the devid.
4670 	 */
4671 	if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) {
4672 		ASSERT(un->un_devid);
4673 		return; /* use devid registered by the transport */
4674 	}
4675 
4676 	/*
4677 	 * This is the case of antiquated Sun disk drives that have the
4678 	 * FAB_DEVID property set in the disk_table.  These drives
4679 	 * manage the devid's by storing them in last 2 available sectors
4680 	 * on the drive and have them fabricated by the ddi layer by calling
4681 	 * ddi_devid_init and passing the DEVID_FAB flag.
4682 	 */
4683 	if (un->un_f_opt_fab_devid == TRUE) {
4684 		/*
4685 		 * Depending on EINVAL isn't reliable, since a reserved disk
4686 		 * may result in invalid geometry, so check to make sure a
4687 		 * reservation conflict did not occur during attach.
4688 		 */
4689 		if ((sd_get_devid(un) == EINVAL) &&
4690 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
4691 			/*
4692 			 * The devid is invalid AND there is no reservation
4693 			 * conflict.  Fabricate a new devid.
4694 			 */
4695 			(void) sd_create_devid(un);
4696 		}
4697 
4698 		/* Register the devid if it exists */
4699 		if (un->un_devid != NULL) {
4700 			(void) ddi_devid_register(SD_DEVINFO(un),
4701 			    un->un_devid);
4702 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4703 			    "sd_register_devid: Devid Fabricated\n");
4704 		}
4705 		return;
4706 	}
4707 
4708 	/*
4709 	 * We check the availibility of the World Wide Name (0x83) and Unit
4710 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
4711 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
4712 	 * 0x83 is availible, that is the best choice.  Our next choice is
4713 	 * 0x80.  If neither are availible, we munge the devid from the device
4714 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
4715 	 * to fabricate a devid for non-Sun qualified disks.
4716 	 */
4717 	if (sd_check_vpd_page_support(un) == 0) {
4718 		/* collect page 80 data if available */
4719 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
4720 
4721 			mutex_exit(SD_MUTEX(un));
4722 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
4723 			rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len,
4724 			    0x01, 0x80, &inq80_resid);
4725 
4726 			if (rval != 0) {
4727 				kmem_free(inq80, inq80_len);
4728 				inq80 = NULL;
4729 				inq80_len = 0;
4730 			} else if (ddi_prop_exists(
4731 			    DDI_DEV_T_NONE, SD_DEVINFO(un),
4732 			    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
4733 			    INQUIRY_SERIAL_NO) == 0) {
4734 				/*
4735 				 * If we don't already have a serial number
4736 				 * property, do quick verify of data returned
4737 				 * and define property.
4738 				 */
4739 				dlen = inq80_len - inq80_resid;
4740 				len = (size_t)inq80[3];
4741 				if ((dlen >= 4) && ((len + 4) <= dlen)) {
4742 					/*
4743 					 * Ensure sn termination, skip leading
4744 					 * blanks, and create property
4745 					 * 'inquiry-serial-no'.
4746 					 */
4747 					sn = (char *)&inq80[4];
4748 					sn[len] = 0;
4749 					while (*sn && (*sn == ' '))
4750 						sn++;
4751 					if (*sn) {
4752 						(void) ddi_prop_update_string(
4753 						    DDI_DEV_T_NONE,
4754 						    SD_DEVINFO(un),
4755 						    INQUIRY_SERIAL_NO, sn);
4756 					}
4757 				}
4758 			}
4759 			mutex_enter(SD_MUTEX(un));
4760 		}
4761 
4762 		/* collect page 83 data if available */
4763 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
4764 			mutex_exit(SD_MUTEX(un));
4765 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
4766 			rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len,
4767 			    0x01, 0x83, &inq83_resid);
4768 
4769 			if (rval != 0) {
4770 				kmem_free(inq83, inq83_len);
4771 				inq83 = NULL;
4772 				inq83_len = 0;
4773 			}
4774 			mutex_enter(SD_MUTEX(un));
4775 		}
4776 	}
4777 
4778 	/* encode best devid possible based on data available */
4779 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
4780 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
4781 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
4782 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
4783 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
4784 
4785 		/* devid successfully encoded, register devid */
4786 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
4787 
4788 	} else {
4789 		/*
4790 		 * Unable to encode a devid based on data available.
4791 		 * This is not a Sun qualified disk.  Older Sun disk
4792 		 * drives that have the SD_FAB_DEVID property
4793 		 * set in the disk_table and non Sun qualified
4794 		 * disks are treated in the same manner.  These
4795 		 * drives manage the devid's by storing them in
4796 		 * last 2 available sectors on the drive and
4797 		 * have them fabricated by the ddi layer by
4798 		 * calling ddi_devid_init and passing the
4799 		 * DEVID_FAB flag.
4800 		 * Create a fabricate devid only if there's no
4801 		 * fabricate devid existed.
4802 		 */
4803 		if (sd_get_devid(un) == EINVAL) {
4804 			(void) sd_create_devid(un);
4805 		}
4806 		un->un_f_opt_fab_devid = TRUE;
4807 
4808 		/* Register the devid if it exists */
4809 		if (un->un_devid != NULL) {
4810 			(void) ddi_devid_register(SD_DEVINFO(un),
4811 			    un->un_devid);
4812 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4813 			    "sd_register_devid: devid fabricated using "
4814 			    "ddi framework\n");
4815 		}
4816 	}
4817 
4818 	/* clean up resources */
4819 	if (inq80 != NULL) {
4820 		kmem_free(inq80, inq80_len);
4821 	}
4822 	if (inq83 != NULL) {
4823 		kmem_free(inq83, inq83_len);
4824 	}
4825 }
4826 
4827 
4828 
4829 /*
4830  *    Function: sd_get_devid
4831  *
4832  * Description: This routine will return 0 if a valid device id has been
4833  *		obtained from the target and stored in the soft state. If a
4834  *		valid device id has not been previously read and stored, a
4835  *		read attempt will be made.
4836  *
4837  *   Arguments: un - driver soft state (unit) structure
4838  *
4839  * Return Code: 0 if we successfully get the device id
4840  *
4841  *     Context: Kernel Thread
4842  */
4843 
4844 static int
4845 sd_get_devid(struct sd_lun *un)
4846 {
4847 	struct dk_devid		*dkdevid;
4848 	ddi_devid_t		tmpid;
4849 	uint_t			*ip;
4850 	size_t			sz;
4851 	diskaddr_t		blk;
4852 	int			status;
4853 	int			chksum;
4854 	int			i;
4855 	size_t			buffer_size;
4856 
4857 	ASSERT(un != NULL);
4858 	ASSERT(mutex_owned(SD_MUTEX(un)));
4859 
4860 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
4861 	    un);
4862 
4863 	if (un->un_devid != NULL) {
4864 		return (0);
4865 	}
4866 
4867 	mutex_exit(SD_MUTEX(un));
4868 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
4869 	    (void *)SD_PATH_DIRECT) != 0) {
4870 		mutex_enter(SD_MUTEX(un));
4871 		return (EINVAL);
4872 	}
4873 
4874 	/*
4875 	 * Read and verify device id, stored in the reserved cylinders at the
4876 	 * end of the disk. Backup label is on the odd sectors of the last
4877 	 * track of the last cylinder. Device id will be on track of the next
4878 	 * to last cylinder.
4879 	 */
4880 	mutex_enter(SD_MUTEX(un));
4881 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
4882 	mutex_exit(SD_MUTEX(un));
4883 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
4884 	status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk,
4885 	    SD_PATH_DIRECT);
4886 	if (status != 0) {
4887 		goto error;
4888 	}
4889 
4890 	/* Validate the revision */
4891 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
4892 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
4893 		status = EINVAL;
4894 		goto error;
4895 	}
4896 
4897 	/* Calculate the checksum */
4898 	chksum = 0;
4899 	ip = (uint_t *)dkdevid;
4900 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
4901 	    i++) {
4902 		chksum ^= ip[i];
4903 	}
4904 
4905 	/* Compare the checksums */
4906 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
4907 		status = EINVAL;
4908 		goto error;
4909 	}
4910 
4911 	/* Validate the device id */
4912 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
4913 		status = EINVAL;
4914 		goto error;
4915 	}
4916 
4917 	/*
4918 	 * Store the device id in the driver soft state
4919 	 */
4920 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
4921 	tmpid = kmem_alloc(sz, KM_SLEEP);
4922 
4923 	mutex_enter(SD_MUTEX(un));
4924 
4925 	un->un_devid = tmpid;
4926 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
4927 
4928 	kmem_free(dkdevid, buffer_size);
4929 
4930 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
4931 
4932 	return (status);
4933 error:
4934 	mutex_enter(SD_MUTEX(un));
4935 	kmem_free(dkdevid, buffer_size);
4936 	return (status);
4937 }
4938 
4939 
4940 /*
4941  *    Function: sd_create_devid
4942  *
4943  * Description: This routine will fabricate the device id and write it
4944  *		to the disk.
4945  *
4946  *   Arguments: un - driver soft state (unit) structure
4947  *
4948  * Return Code: value of the fabricated device id
4949  *
4950  *     Context: Kernel Thread
4951  */
4952 
4953 static ddi_devid_t
4954 sd_create_devid(struct sd_lun *un)
4955 {
4956 	ASSERT(un != NULL);
4957 
4958 	/* Fabricate the devid */
4959 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
4960 	    == DDI_FAILURE) {
4961 		return (NULL);
4962 	}
4963 
4964 	/* Write the devid to disk */
4965 	if (sd_write_deviceid(un) != 0) {
4966 		ddi_devid_free(un->un_devid);
4967 		un->un_devid = NULL;
4968 	}
4969 
4970 	return (un->un_devid);
4971 }
4972 
4973 
4974 /*
4975  *    Function: sd_write_deviceid
4976  *
4977  * Description: This routine will write the device id to the disk
4978  *		reserved sector.
4979  *
4980  *   Arguments: un - driver soft state (unit) structure
4981  *
4982  * Return Code: EINVAL
4983  *		value returned by sd_send_scsi_cmd
4984  *
4985  *     Context: Kernel Thread
4986  */
4987 
4988 static int
4989 sd_write_deviceid(struct sd_lun *un)
4990 {
4991 	struct dk_devid		*dkdevid;
4992 	diskaddr_t		blk;
4993 	uint_t			*ip, chksum;
4994 	int			status;
4995 	int			i;
4996 
4997 	ASSERT(mutex_owned(SD_MUTEX(un)));
4998 
4999 	mutex_exit(SD_MUTEX(un));
5000 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5001 	    (void *)SD_PATH_DIRECT) != 0) {
5002 		mutex_enter(SD_MUTEX(un));
5003 		return (-1);
5004 	}
5005 
5006 
5007 	/* Allocate the buffer */
5008 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
5009 
5010 	/* Fill in the revision */
5011 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
5012 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
5013 
5014 	/* Copy in the device id */
5015 	mutex_enter(SD_MUTEX(un));
5016 	bcopy(un->un_devid, &dkdevid->dkd_devid,
5017 	    ddi_devid_sizeof(un->un_devid));
5018 	mutex_exit(SD_MUTEX(un));
5019 
5020 	/* Calculate the checksum */
5021 	chksum = 0;
5022 	ip = (uint_t *)dkdevid;
5023 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
5024 	    i++) {
5025 		chksum ^= ip[i];
5026 	}
5027 
5028 	/* Fill-in checksum */
5029 	DKD_FORMCHKSUM(chksum, dkdevid);
5030 
5031 	/* Write the reserved sector */
5032 	status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk,
5033 	    SD_PATH_DIRECT);
5034 
5035 	kmem_free(dkdevid, un->un_sys_blocksize);
5036 
5037 	mutex_enter(SD_MUTEX(un));
5038 	return (status);
5039 }
5040 
5041 
5042 /*
5043  *    Function: sd_check_vpd_page_support
5044  *
5045  * Description: This routine sends an inquiry command with the EVPD bit set and
5046  *		a page code of 0x00 to the device. It is used to determine which
5047  *		vital product pages are availible to find the devid. We are
5048  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
5049  *		device does not support that command.
5050  *
5051  *   Arguments: un  - driver soft state (unit) structure
5052  *
5053  * Return Code: 0 - success
5054  *		1 - check condition
5055  *
5056  *     Context: This routine can sleep.
5057  */
5058 
5059 static int
5060 sd_check_vpd_page_support(struct sd_lun *un)
5061 {
5062 	uchar_t	*page_list	= NULL;
5063 	uchar_t	page_length	= 0xff;	/* Use max possible length */
5064 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
5065 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
5066 	int    	rval		= 0;
5067 	int	counter;
5068 
5069 	ASSERT(un != NULL);
5070 	ASSERT(mutex_owned(SD_MUTEX(un)));
5071 
5072 	mutex_exit(SD_MUTEX(un));
5073 
5074 	/*
5075 	 * We'll set the page length to the maximum to save figuring it out
5076 	 * with an additional call.
5077 	 */
5078 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
5079 
5080 	rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd,
5081 	    page_code, NULL);
5082 
5083 	mutex_enter(SD_MUTEX(un));
5084 
5085 	/*
5086 	 * Now we must validate that the device accepted the command, as some
5087 	 * drives do not support it.  If the drive does support it, we will
5088 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
5089 	 * not, we return -1.
5090 	 */
5091 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
5092 		/* Loop to find one of the 2 pages we need */
5093 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
5094 
5095 		/*
5096 		 * Pages are returned in ascending order, and 0x83 is what we
5097 		 * are hoping for.
5098 		 */
5099 		while ((page_list[counter] <= 0x86) &&
5100 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
5101 		    VPD_HEAD_OFFSET))) {
5102 			/*
5103 			 * Add 3 because page_list[3] is the number of
5104 			 * pages minus 3
5105 			 */
5106 
5107 			switch (page_list[counter]) {
5108 			case 0x00:
5109 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
5110 				break;
5111 			case 0x80:
5112 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
5113 				break;
5114 			case 0x81:
5115 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
5116 				break;
5117 			case 0x82:
5118 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
5119 				break;
5120 			case 0x83:
5121 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
5122 				break;
5123 			case 0x86:
5124 				un->un_vpd_page_mask |= SD_VPD_EXTENDED_DATA_PG;
5125 				break;
5126 			}
5127 			counter++;
5128 		}
5129 
5130 	} else {
5131 		rval = -1;
5132 
5133 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
5134 		    "sd_check_vpd_page_support: This drive does not implement "
5135 		    "VPD pages.\n");
5136 	}
5137 
5138 	kmem_free(page_list, page_length);
5139 
5140 	return (rval);
5141 }
5142 
5143 
5144 /*
5145  *    Function: sd_setup_pm
5146  *
5147  * Description: Initialize Power Management on the device
5148  *
5149  *     Context: Kernel Thread
5150  */
5151 
5152 static void
5153 sd_setup_pm(struct sd_lun *un, dev_info_t *devi)
5154 {
5155 	uint_t	log_page_size;
5156 	uchar_t	*log_page_data;
5157 	int	rval;
5158 
5159 	/*
5160 	 * Since we are called from attach, holding a mutex for
5161 	 * un is unnecessary. Because some of the routines called
5162 	 * from here require SD_MUTEX to not be held, assert this
5163 	 * right up front.
5164 	 */
5165 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5166 	/*
5167 	 * Since the sd device does not have the 'reg' property,
5168 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
5169 	 * The following code is to tell cpr that this device
5170 	 * DOES need to be suspended and resumed.
5171 	 */
5172 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
5173 	    "pm-hardware-state", "needs-suspend-resume");
5174 
5175 	/*
5176 	 * This complies with the new power management framework
5177 	 * for certain desktop machines. Create the pm_components
5178 	 * property as a string array property.
5179 	 */
5180 	if (un->un_f_pm_supported) {
5181 		/*
5182 		 * not all devices have a motor, try it first.
5183 		 * some devices may return ILLEGAL REQUEST, some
5184 		 * will hang
5185 		 * The following START_STOP_UNIT is used to check if target
5186 		 * device has a motor.
5187 		 */
5188 		un->un_f_start_stop_supported = TRUE;
5189 		if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
5190 		    SD_PATH_DIRECT) != 0) {
5191 			un->un_f_start_stop_supported = FALSE;
5192 		}
5193 
5194 		/*
5195 		 * create pm properties anyways otherwise the parent can't
5196 		 * go to sleep
5197 		 */
5198 		(void) sd_create_pm_components(devi, un);
5199 		un->un_f_pm_is_enabled = TRUE;
5200 		return;
5201 	}
5202 
5203 	if (!un->un_f_log_sense_supported) {
5204 		un->un_power_level = SD_SPINDLE_ON;
5205 		un->un_f_pm_is_enabled = FALSE;
5206 		return;
5207 	}
5208 
5209 	rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE);
5210 
5211 #ifdef	SDDEBUG
5212 	if (sd_force_pm_supported) {
5213 		/* Force a successful result */
5214 		rval = 1;
5215 	}
5216 #endif
5217 
5218 	/*
5219 	 * If the start-stop cycle counter log page is not supported
5220 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
5221 	 * then we should not create the pm_components property.
5222 	 */
5223 	if (rval == -1) {
5224 		/*
5225 		 * Error.
5226 		 * Reading log sense failed, most likely this is
5227 		 * an older drive that does not support log sense.
5228 		 * If this fails auto-pm is not supported.
5229 		 */
5230 		un->un_power_level = SD_SPINDLE_ON;
5231 		un->un_f_pm_is_enabled = FALSE;
5232 
5233 	} else if (rval == 0) {
5234 		/*
5235 		 * Page not found.
5236 		 * The start stop cycle counter is implemented as page
5237 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
5238 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
5239 		 */
5240 		if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) {
5241 			/*
5242 			 * Page found, use this one.
5243 			 */
5244 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
5245 			un->un_f_pm_is_enabled = TRUE;
5246 		} else {
5247 			/*
5248 			 * Error or page not found.
5249 			 * auto-pm is not supported for this device.
5250 			 */
5251 			un->un_power_level = SD_SPINDLE_ON;
5252 			un->un_f_pm_is_enabled = FALSE;
5253 		}
5254 	} else {
5255 		/*
5256 		 * Page found, use it.
5257 		 */
5258 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
5259 		un->un_f_pm_is_enabled = TRUE;
5260 	}
5261 
5262 
5263 	if (un->un_f_pm_is_enabled == TRUE) {
5264 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5265 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5266 
5267 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
5268 		    log_page_size, un->un_start_stop_cycle_page,
5269 		    0x01, 0, SD_PATH_DIRECT);
5270 #ifdef	SDDEBUG
5271 		if (sd_force_pm_supported) {
5272 			/* Force a successful result */
5273 			rval = 0;
5274 		}
5275 #endif
5276 
5277 		/*
5278 		 * If the Log sense for Page( Start/stop cycle counter page)
5279 		 * succeeds, then power managment is supported and we can
5280 		 * enable auto-pm.
5281 		 */
5282 		if (rval == 0)  {
5283 			(void) sd_create_pm_components(devi, un);
5284 		} else {
5285 			un->un_power_level = SD_SPINDLE_ON;
5286 			un->un_f_pm_is_enabled = FALSE;
5287 		}
5288 
5289 		kmem_free(log_page_data, log_page_size);
5290 	}
5291 }
5292 
5293 
5294 /*
5295  *    Function: sd_create_pm_components
5296  *
5297  * Description: Initialize PM property.
5298  *
5299  *     Context: Kernel thread context
5300  */
5301 
5302 static void
5303 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
5304 {
5305 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
5306 
5307 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5308 
5309 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
5310 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
5311 		/*
5312 		 * When components are initially created they are idle,
5313 		 * power up any non-removables.
5314 		 * Note: the return value of pm_raise_power can't be used
5315 		 * for determining if PM should be enabled for this device.
5316 		 * Even if you check the return values and remove this
5317 		 * property created above, the PM framework will not honor the
5318 		 * change after the first call to pm_raise_power. Hence,
5319 		 * removal of that property does not help if pm_raise_power
5320 		 * fails. In the case of removable media, the start/stop
5321 		 * will fail if the media is not present.
5322 		 */
5323 		if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
5324 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
5325 			mutex_enter(SD_MUTEX(un));
5326 			un->un_power_level = SD_SPINDLE_ON;
5327 			mutex_enter(&un->un_pm_mutex);
5328 			/* Set to on and not busy. */
5329 			un->un_pm_count = 0;
5330 		} else {
5331 			mutex_enter(SD_MUTEX(un));
5332 			un->un_power_level = SD_SPINDLE_OFF;
5333 			mutex_enter(&un->un_pm_mutex);
5334 			/* Set to off. */
5335 			un->un_pm_count = -1;
5336 		}
5337 		mutex_exit(&un->un_pm_mutex);
5338 		mutex_exit(SD_MUTEX(un));
5339 	} else {
5340 		un->un_power_level = SD_SPINDLE_ON;
5341 		un->un_f_pm_is_enabled = FALSE;
5342 	}
5343 }
5344 
5345 
5346 /*
5347  *    Function: sd_ddi_suspend
5348  *
5349  * Description: Performs system power-down operations. This includes
5350  *		setting the drive state to indicate its suspended so
5351  *		that no new commands will be accepted. Also, wait for
5352  *		all commands that are in transport or queued to a timer
5353  *		for retry to complete. All timeout threads are cancelled.
5354  *
5355  * Return Code: DDI_FAILURE or DDI_SUCCESS
5356  *
5357  *     Context: Kernel thread context
5358  */
5359 
5360 static int
5361 sd_ddi_suspend(dev_info_t *devi)
5362 {
5363 	struct	sd_lun	*un;
5364 	clock_t		wait_cmds_complete;
5365 
5366 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5367 	if (un == NULL) {
5368 		return (DDI_FAILURE);
5369 	}
5370 
5371 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
5372 
5373 	mutex_enter(SD_MUTEX(un));
5374 
5375 	/* Return success if the device is already suspended. */
5376 	if (un->un_state == SD_STATE_SUSPENDED) {
5377 		mutex_exit(SD_MUTEX(un));
5378 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5379 		    "device already suspended, exiting\n");
5380 		return (DDI_SUCCESS);
5381 	}
5382 
5383 	/* Return failure if the device is being used by HA */
5384 	if (un->un_resvd_status &
5385 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
5386 		mutex_exit(SD_MUTEX(un));
5387 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5388 		    "device in use by HA, exiting\n");
5389 		return (DDI_FAILURE);
5390 	}
5391 
5392 	/*
5393 	 * Return failure if the device is in a resource wait
5394 	 * or power changing state.
5395 	 */
5396 	if ((un->un_state == SD_STATE_RWAIT) ||
5397 	    (un->un_state == SD_STATE_PM_CHANGING)) {
5398 		mutex_exit(SD_MUTEX(un));
5399 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5400 		    "device in resource wait state, exiting\n");
5401 		return (DDI_FAILURE);
5402 	}
5403 
5404 
5405 	un->un_save_state = un->un_last_state;
5406 	New_state(un, SD_STATE_SUSPENDED);
5407 
5408 	/*
5409 	 * Wait for all commands that are in transport or queued to a timer
5410 	 * for retry to complete.
5411 	 *
5412 	 * While waiting, no new commands will be accepted or sent because of
5413 	 * the new state we set above.
5414 	 *
5415 	 * Wait till current operation has completed. If we are in the resource
5416 	 * wait state (with an intr outstanding) then we need to wait till the
5417 	 * intr completes and starts the next cmd. We want to wait for
5418 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
5419 	 */
5420 	wait_cmds_complete = ddi_get_lbolt() +
5421 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
5422 
5423 	while (un->un_ncmds_in_transport != 0) {
5424 		/*
5425 		 * Fail if commands do not finish in the specified time.
5426 		 */
5427 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
5428 		    wait_cmds_complete) == -1) {
5429 			/*
5430 			 * Undo the state changes made above. Everything
5431 			 * must go back to it's original value.
5432 			 */
5433 			Restore_state(un);
5434 			un->un_last_state = un->un_save_state;
5435 			/* Wake up any threads that might be waiting. */
5436 			cv_broadcast(&un->un_suspend_cv);
5437 			mutex_exit(SD_MUTEX(un));
5438 			SD_ERROR(SD_LOG_IO_PM, un,
5439 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
5440 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
5441 			return (DDI_FAILURE);
5442 		}
5443 	}
5444 
5445 	/*
5446 	 * Cancel SCSI watch thread and timeouts, if any are active
5447 	 */
5448 
5449 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
5450 		opaque_t temp_token = un->un_swr_token;
5451 		mutex_exit(SD_MUTEX(un));
5452 		scsi_watch_suspend(temp_token);
5453 		mutex_enter(SD_MUTEX(un));
5454 	}
5455 
5456 	if (un->un_reset_throttle_timeid != NULL) {
5457 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
5458 		un->un_reset_throttle_timeid = NULL;
5459 		mutex_exit(SD_MUTEX(un));
5460 		(void) untimeout(temp_id);
5461 		mutex_enter(SD_MUTEX(un));
5462 	}
5463 
5464 	if (un->un_dcvb_timeid != NULL) {
5465 		timeout_id_t temp_id = un->un_dcvb_timeid;
5466 		un->un_dcvb_timeid = NULL;
5467 		mutex_exit(SD_MUTEX(un));
5468 		(void) untimeout(temp_id);
5469 		mutex_enter(SD_MUTEX(un));
5470 	}
5471 
5472 	mutex_enter(&un->un_pm_mutex);
5473 	if (un->un_pm_timeid != NULL) {
5474 		timeout_id_t temp_id = un->un_pm_timeid;
5475 		un->un_pm_timeid = NULL;
5476 		mutex_exit(&un->un_pm_mutex);
5477 		mutex_exit(SD_MUTEX(un));
5478 		(void) untimeout(temp_id);
5479 		mutex_enter(SD_MUTEX(un));
5480 	} else {
5481 		mutex_exit(&un->un_pm_mutex);
5482 	}
5483 
5484 	if (un->un_retry_timeid != NULL) {
5485 		timeout_id_t temp_id = un->un_retry_timeid;
5486 		un->un_retry_timeid = NULL;
5487 		mutex_exit(SD_MUTEX(un));
5488 		(void) untimeout(temp_id);
5489 		mutex_enter(SD_MUTEX(un));
5490 
5491 		if (un->un_retry_bp != NULL) {
5492 			un->un_retry_bp->av_forw = un->un_waitq_headp;
5493 			un->un_waitq_headp = un->un_retry_bp;
5494 			if (un->un_waitq_tailp == NULL) {
5495 				un->un_waitq_tailp = un->un_retry_bp;
5496 			}
5497 			un->un_retry_bp = NULL;
5498 			un->un_retry_statp = NULL;
5499 		}
5500 	}
5501 
5502 	if (un->un_direct_priority_timeid != NULL) {
5503 		timeout_id_t temp_id = un->un_direct_priority_timeid;
5504 		un->un_direct_priority_timeid = NULL;
5505 		mutex_exit(SD_MUTEX(un));
5506 		(void) untimeout(temp_id);
5507 		mutex_enter(SD_MUTEX(un));
5508 	}
5509 
5510 	if (un->un_f_is_fibre == TRUE) {
5511 		/*
5512 		 * Remove callbacks for insert and remove events
5513 		 */
5514 		if (un->un_insert_event != NULL) {
5515 			mutex_exit(SD_MUTEX(un));
5516 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
5517 			mutex_enter(SD_MUTEX(un));
5518 			un->un_insert_event = NULL;
5519 		}
5520 
5521 		if (un->un_remove_event != NULL) {
5522 			mutex_exit(SD_MUTEX(un));
5523 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
5524 			mutex_enter(SD_MUTEX(un));
5525 			un->un_remove_event = NULL;
5526 		}
5527 	}
5528 
5529 	mutex_exit(SD_MUTEX(un));
5530 
5531 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
5532 
5533 	return (DDI_SUCCESS);
5534 }
5535 
5536 
5537 /*
5538  *    Function: sd_ddi_pm_suspend
5539  *
5540  * Description: Set the drive state to low power.
5541  *		Someone else is required to actually change the drive
5542  *		power level.
5543  *
5544  *   Arguments: un - driver soft state (unit) structure
5545  *
5546  * Return Code: DDI_FAILURE or DDI_SUCCESS
5547  *
5548  *     Context: Kernel thread context
5549  */
5550 
5551 static int
5552 sd_ddi_pm_suspend(struct sd_lun *un)
5553 {
5554 	ASSERT(un != NULL);
5555 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
5556 
5557 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5558 	mutex_enter(SD_MUTEX(un));
5559 
5560 	/*
5561 	 * Exit if power management is not enabled for this device, or if
5562 	 * the device is being used by HA.
5563 	 */
5564 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
5565 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
5566 		mutex_exit(SD_MUTEX(un));
5567 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
5568 		return (DDI_SUCCESS);
5569 	}
5570 
5571 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
5572 	    un->un_ncmds_in_driver);
5573 
5574 	/*
5575 	 * See if the device is not busy, ie.:
5576 	 *    - we have no commands in the driver for this device
5577 	 *    - not waiting for resources
5578 	 */
5579 	if ((un->un_ncmds_in_driver == 0) &&
5580 	    (un->un_state != SD_STATE_RWAIT)) {
5581 		/*
5582 		 * The device is not busy, so it is OK to go to low power state.
5583 		 * Indicate low power, but rely on someone else to actually
5584 		 * change it.
5585 		 */
5586 		mutex_enter(&un->un_pm_mutex);
5587 		un->un_pm_count = -1;
5588 		mutex_exit(&un->un_pm_mutex);
5589 		un->un_power_level = SD_SPINDLE_OFF;
5590 	}
5591 
5592 	mutex_exit(SD_MUTEX(un));
5593 
5594 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
5595 
5596 	return (DDI_SUCCESS);
5597 }
5598 
5599 
5600 /*
5601  *    Function: sd_ddi_resume
5602  *
5603  * Description: Performs system power-up operations..
5604  *
5605  * Return Code: DDI_SUCCESS
5606  *		DDI_FAILURE
5607  *
5608  *     Context: Kernel thread context
5609  */
5610 
5611 static int
5612 sd_ddi_resume(dev_info_t *devi)
5613 {
5614 	struct	sd_lun	*un;
5615 
5616 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5617 	if (un == NULL) {
5618 		return (DDI_FAILURE);
5619 	}
5620 
5621 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
5622 
5623 	mutex_enter(SD_MUTEX(un));
5624 	Restore_state(un);
5625 
5626 	/*
5627 	 * Restore the state which was saved to give the
5628 	 * the right state in un_last_state
5629 	 */
5630 	un->un_last_state = un->un_save_state;
5631 	/*
5632 	 * Note: throttle comes back at full.
5633 	 * Also note: this MUST be done before calling pm_raise_power
5634 	 * otherwise the system can get hung in biowait. The scenario where
5635 	 * this'll happen is under cpr suspend. Writing of the system
5636 	 * state goes through sddump, which writes 0 to un_throttle. If
5637 	 * writing the system state then fails, example if the partition is
5638 	 * too small, then cpr attempts a resume. If throttle isn't restored
5639 	 * from the saved value until after calling pm_raise_power then
5640 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
5641 	 * in biowait.
5642 	 */
5643 	un->un_throttle = un->un_saved_throttle;
5644 
5645 	/*
5646 	 * The chance of failure is very rare as the only command done in power
5647 	 * entry point is START command when you transition from 0->1 or
5648 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
5649 	 * which suspend was done. Ignore the return value as the resume should
5650 	 * not be failed. In the case of removable media the media need not be
5651 	 * inserted and hence there is a chance that raise power will fail with
5652 	 * media not present.
5653 	 */
5654 	if (un->un_f_attach_spinup) {
5655 		mutex_exit(SD_MUTEX(un));
5656 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
5657 		mutex_enter(SD_MUTEX(un));
5658 	}
5659 
5660 	/*
5661 	 * Don't broadcast to the suspend cv and therefore possibly
5662 	 * start I/O until after power has been restored.
5663 	 */
5664 	cv_broadcast(&un->un_suspend_cv);
5665 	cv_broadcast(&un->un_state_cv);
5666 
5667 	/* restart thread */
5668 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
5669 		scsi_watch_resume(un->un_swr_token);
5670 	}
5671 
5672 #if (defined(__fibre))
5673 	if (un->un_f_is_fibre == TRUE) {
5674 		/*
5675 		 * Add callbacks for insert and remove events
5676 		 */
5677 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
5678 			sd_init_event_callbacks(un);
5679 		}
5680 	}
5681 #endif
5682 
5683 	/*
5684 	 * Transport any pending commands to the target.
5685 	 *
5686 	 * If this is a low-activity device commands in queue will have to wait
5687 	 * until new commands come in, which may take awhile. Also, we
5688 	 * specifically don't check un_ncmds_in_transport because we know that
5689 	 * there really are no commands in progress after the unit was
5690 	 * suspended and we could have reached the throttle level, been
5691 	 * suspended, and have no new commands coming in for awhile. Highly
5692 	 * unlikely, but so is the low-activity disk scenario.
5693 	 */
5694 	ddi_xbuf_dispatch(un->un_xbuf_attr);
5695 
5696 	sd_start_cmds(un, NULL);
5697 	mutex_exit(SD_MUTEX(un));
5698 
5699 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
5700 
5701 	return (DDI_SUCCESS);
5702 }
5703 
5704 
5705 /*
5706  *    Function: sd_ddi_pm_resume
5707  *
5708  * Description: Set the drive state to powered on.
5709  *		Someone else is required to actually change the drive
5710  *		power level.
5711  *
5712  *   Arguments: un - driver soft state (unit) structure
5713  *
5714  * Return Code: DDI_SUCCESS
5715  *
5716  *     Context: Kernel thread context
5717  */
5718 
5719 static int
5720 sd_ddi_pm_resume(struct sd_lun *un)
5721 {
5722 	ASSERT(un != NULL);
5723 
5724 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5725 	mutex_enter(SD_MUTEX(un));
5726 	un->un_power_level = SD_SPINDLE_ON;
5727 
5728 	ASSERT(!mutex_owned(&un->un_pm_mutex));
5729 	mutex_enter(&un->un_pm_mutex);
5730 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
5731 		un->un_pm_count++;
5732 		ASSERT(un->un_pm_count == 0);
5733 		/*
5734 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
5735 		 * un_suspend_cv is for a system resume, not a power management
5736 		 * device resume. (4297749)
5737 		 *	 cv_broadcast(&un->un_suspend_cv);
5738 		 */
5739 	}
5740 	mutex_exit(&un->un_pm_mutex);
5741 	mutex_exit(SD_MUTEX(un));
5742 
5743 	return (DDI_SUCCESS);
5744 }
5745 
5746 
5747 /*
5748  *    Function: sd_pm_idletimeout_handler
5749  *
5750  * Description: A timer routine that's active only while a device is busy.
5751  *		The purpose is to extend slightly the pm framework's busy
5752  *		view of the device to prevent busy/idle thrashing for
5753  *		back-to-back commands. Do this by comparing the current time
5754  *		to the time at which the last command completed and when the
5755  *		difference is greater than sd_pm_idletime, call
5756  *		pm_idle_component. In addition to indicating idle to the pm
5757  *		framework, update the chain type to again use the internal pm
5758  *		layers of the driver.
5759  *
5760  *   Arguments: arg - driver soft state (unit) structure
5761  *
5762  *     Context: Executes in a timeout(9F) thread context
5763  */
5764 
5765 static void
5766 sd_pm_idletimeout_handler(void *arg)
5767 {
5768 	struct sd_lun *un = arg;
5769 
5770 	time_t	now;
5771 
5772 	mutex_enter(&sd_detach_mutex);
5773 	if (un->un_detach_count != 0) {
5774 		/* Abort if the instance is detaching */
5775 		mutex_exit(&sd_detach_mutex);
5776 		return;
5777 	}
5778 	mutex_exit(&sd_detach_mutex);
5779 
5780 	now = ddi_get_time();
5781 	/*
5782 	 * Grab both mutexes, in the proper order, since we're accessing
5783 	 * both PM and softstate variables.
5784 	 */
5785 	mutex_enter(SD_MUTEX(un));
5786 	mutex_enter(&un->un_pm_mutex);
5787 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
5788 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
5789 		/*
5790 		 * Update the chain types.
5791 		 * This takes affect on the next new command received.
5792 		 */
5793 		if (un->un_f_non_devbsize_supported) {
5794 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
5795 		} else {
5796 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
5797 		}
5798 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
5799 
5800 		SD_TRACE(SD_LOG_IO_PM, un,
5801 		    "sd_pm_idletimeout_handler: idling device\n");
5802 		(void) pm_idle_component(SD_DEVINFO(un), 0);
5803 		un->un_pm_idle_timeid = NULL;
5804 	} else {
5805 		un->un_pm_idle_timeid =
5806 		    timeout(sd_pm_idletimeout_handler, un,
5807 		    (drv_usectohz((clock_t)300000))); /* 300 ms. */
5808 	}
5809 	mutex_exit(&un->un_pm_mutex);
5810 	mutex_exit(SD_MUTEX(un));
5811 }
5812 
5813 
5814 /*
5815  *    Function: sd_pm_timeout_handler
5816  *
5817  * Description: Callback to tell framework we are idle.
5818  *
5819  *     Context: timeout(9f) thread context.
5820  */
5821 
5822 static void
5823 sd_pm_timeout_handler(void *arg)
5824 {
5825 	struct sd_lun *un = arg;
5826 
5827 	(void) pm_idle_component(SD_DEVINFO(un), 0);
5828 	mutex_enter(&un->un_pm_mutex);
5829 	un->un_pm_timeid = NULL;
5830 	mutex_exit(&un->un_pm_mutex);
5831 }
5832 
5833 
5834 /*
5835  *    Function: sdpower
5836  *
5837  * Description: PM entry point.
5838  *
5839  * Return Code: DDI_SUCCESS
5840  *		DDI_FAILURE
5841  *
5842  *     Context: Kernel thread context
5843  */
5844 
5845 static int
5846 sdpower(dev_info_t *devi, int component, int level)
5847 {
5848 	struct sd_lun	*un;
5849 	int		instance;
5850 	int		rval = DDI_SUCCESS;
5851 	uint_t		i, log_page_size, maxcycles, ncycles;
5852 	uchar_t		*log_page_data;
5853 	int		log_sense_page;
5854 	int		medium_present;
5855 	time_t		intvlp;
5856 	dev_t		dev;
5857 	struct pm_trans_data	sd_pm_tran_data;
5858 	uchar_t		save_state;
5859 	int		sval;
5860 	uchar_t		state_before_pm;
5861 	int		got_semaphore_here;
5862 
5863 	instance = ddi_get_instance(devi);
5864 
5865 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
5866 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
5867 	    component != 0) {
5868 		return (DDI_FAILURE);
5869 	}
5870 
5871 	dev = sd_make_device(SD_DEVINFO(un));
5872 
5873 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
5874 
5875 	/*
5876 	 * Must synchronize power down with close.
5877 	 * Attempt to decrement/acquire the open/close semaphore,
5878 	 * but do NOT wait on it. If it's not greater than zero,
5879 	 * ie. it can't be decremented without waiting, then
5880 	 * someone else, either open or close, already has it
5881 	 * and the try returns 0. Use that knowledge here to determine
5882 	 * if it's OK to change the device power level.
5883 	 * Also, only increment it on exit if it was decremented, ie. gotten,
5884 	 * here.
5885 	 */
5886 	got_semaphore_here = sema_tryp(&un->un_semoclose);
5887 
5888 	mutex_enter(SD_MUTEX(un));
5889 
5890 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
5891 	    un->un_ncmds_in_driver);
5892 
5893 	/*
5894 	 * If un_ncmds_in_driver is non-zero it indicates commands are
5895 	 * already being processed in the driver, or if the semaphore was
5896 	 * not gotten here it indicates an open or close is being processed.
5897 	 * At the same time somebody is requesting to go low power which
5898 	 * can't happen, therefore we need to return failure.
5899 	 */
5900 	if ((level == SD_SPINDLE_OFF) &&
5901 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
5902 		mutex_exit(SD_MUTEX(un));
5903 
5904 		if (got_semaphore_here != 0) {
5905 			sema_v(&un->un_semoclose);
5906 		}
5907 		SD_TRACE(SD_LOG_IO_PM, un,
5908 		    "sdpower: exit, device has queued cmds.\n");
5909 		return (DDI_FAILURE);
5910 	}
5911 
5912 	/*
5913 	 * if it is OFFLINE that means the disk is completely dead
5914 	 * in our case we have to put the disk in on or off by sending commands
5915 	 * Of course that will fail anyway so return back here.
5916 	 *
5917 	 * Power changes to a device that's OFFLINE or SUSPENDED
5918 	 * are not allowed.
5919 	 */
5920 	if ((un->un_state == SD_STATE_OFFLINE) ||
5921 	    (un->un_state == SD_STATE_SUSPENDED)) {
5922 		mutex_exit(SD_MUTEX(un));
5923 
5924 		if (got_semaphore_here != 0) {
5925 			sema_v(&un->un_semoclose);
5926 		}
5927 		SD_TRACE(SD_LOG_IO_PM, un,
5928 		    "sdpower: exit, device is off-line.\n");
5929 		return (DDI_FAILURE);
5930 	}
5931 
5932 	/*
5933 	 * Change the device's state to indicate it's power level
5934 	 * is being changed. Do this to prevent a power off in the
5935 	 * middle of commands, which is especially bad on devices
5936 	 * that are really powered off instead of just spun down.
5937 	 */
5938 	state_before_pm = un->un_state;
5939 	un->un_state = SD_STATE_PM_CHANGING;
5940 
5941 	mutex_exit(SD_MUTEX(un));
5942 
5943 	/*
5944 	 * If "pm-capable" property is set to TRUE by HBA drivers,
5945 	 * bypass the following checking, otherwise, check the log
5946 	 * sense information for this device
5947 	 */
5948 	if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) {
5949 		/*
5950 		 * Get the log sense information to understand whether the
5951 		 * the powercycle counts have gone beyond the threshhold.
5952 		 */
5953 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5954 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5955 
5956 		mutex_enter(SD_MUTEX(un));
5957 		log_sense_page = un->un_start_stop_cycle_page;
5958 		mutex_exit(SD_MUTEX(un));
5959 
5960 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
5961 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
5962 #ifdef	SDDEBUG
5963 		if (sd_force_pm_supported) {
5964 			/* Force a successful result */
5965 			rval = 0;
5966 		}
5967 #endif
5968 		if (rval != 0) {
5969 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5970 			    "Log Sense Failed\n");
5971 			kmem_free(log_page_data, log_page_size);
5972 			/* Cannot support power management on those drives */
5973 
5974 			if (got_semaphore_here != 0) {
5975 				sema_v(&un->un_semoclose);
5976 			}
5977 			/*
5978 			 * On exit put the state back to it's original value
5979 			 * and broadcast to anyone waiting for the power
5980 			 * change completion.
5981 			 */
5982 			mutex_enter(SD_MUTEX(un));
5983 			un->un_state = state_before_pm;
5984 			cv_broadcast(&un->un_suspend_cv);
5985 			mutex_exit(SD_MUTEX(un));
5986 			SD_TRACE(SD_LOG_IO_PM, un,
5987 			    "sdpower: exit, Log Sense Failed.\n");
5988 			return (DDI_FAILURE);
5989 		}
5990 
5991 		/*
5992 		 * From the page data - Convert the essential information to
5993 		 * pm_trans_data
5994 		 */
5995 		maxcycles =
5996 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
5997 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
5998 
5999 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
6000 
6001 		ncycles =
6002 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
6003 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
6004 
6005 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
6006 
6007 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
6008 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
6009 			    log_page_data[8+i];
6010 		}
6011 
6012 		kmem_free(log_page_data, log_page_size);
6013 
6014 		/*
6015 		 * Call pm_trans_check routine to get the Ok from
6016 		 * the global policy
6017 		 */
6018 
6019 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
6020 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
6021 
6022 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
6023 #ifdef	SDDEBUG
6024 		if (sd_force_pm_supported) {
6025 			/* Force a successful result */
6026 			rval = 1;
6027 		}
6028 #endif
6029 		switch (rval) {
6030 		case 0:
6031 			/*
6032 			 * Not Ok to Power cycle or error in parameters passed
6033 			 * Would have given the advised time to consider power
6034 			 * cycle. Based on the new intvlp parameter we are
6035 			 * supposed to pretend we are busy so that pm framework
6036 			 * will never call our power entry point. Because of
6037 			 * that install a timeout handler and wait for the
6038 			 * recommended time to elapse so that power management
6039 			 * can be effective again.
6040 			 *
6041 			 * To effect this behavior, call pm_busy_component to
6042 			 * indicate to the framework this device is busy.
6043 			 * By not adjusting un_pm_count the rest of PM in
6044 			 * the driver will function normally, and independant
6045 			 * of this but because the framework is told the device
6046 			 * is busy it won't attempt powering down until it gets
6047 			 * a matching idle. The timeout handler sends this.
6048 			 * Note: sd_pm_entry can't be called here to do this
6049 			 * because sdpower may have been called as a result
6050 			 * of a call to pm_raise_power from within sd_pm_entry.
6051 			 *
6052 			 * If a timeout handler is already active then
6053 			 * don't install another.
6054 			 */
6055 			mutex_enter(&un->un_pm_mutex);
6056 			if (un->un_pm_timeid == NULL) {
6057 				un->un_pm_timeid =
6058 				    timeout(sd_pm_timeout_handler,
6059 				    un, intvlp * drv_usectohz(1000000));
6060 				mutex_exit(&un->un_pm_mutex);
6061 				(void) pm_busy_component(SD_DEVINFO(un), 0);
6062 			} else {
6063 				mutex_exit(&un->un_pm_mutex);
6064 			}
6065 			if (got_semaphore_here != 0) {
6066 				sema_v(&un->un_semoclose);
6067 			}
6068 			/*
6069 			 * On exit put the state back to it's original value
6070 			 * and broadcast to anyone waiting for the power
6071 			 * change completion.
6072 			 */
6073 			mutex_enter(SD_MUTEX(un));
6074 			un->un_state = state_before_pm;
6075 			cv_broadcast(&un->un_suspend_cv);
6076 			mutex_exit(SD_MUTEX(un));
6077 
6078 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
6079 			    "trans check Failed, not ok to power cycle.\n");
6080 			return (DDI_FAILURE);
6081 
6082 		case -1:
6083 			if (got_semaphore_here != 0) {
6084 				sema_v(&un->un_semoclose);
6085 			}
6086 			/*
6087 			 * On exit put the state back to it's original value
6088 			 * and broadcast to anyone waiting for the power
6089 			 * change completion.
6090 			 */
6091 			mutex_enter(SD_MUTEX(un));
6092 			un->un_state = state_before_pm;
6093 			cv_broadcast(&un->un_suspend_cv);
6094 			mutex_exit(SD_MUTEX(un));
6095 			SD_TRACE(SD_LOG_IO_PM, un,
6096 			    "sdpower: exit, trans check command Failed.\n");
6097 			return (DDI_FAILURE);
6098 		}
6099 	}
6100 
6101 	if (level == SD_SPINDLE_OFF) {
6102 		/*
6103 		 * Save the last state... if the STOP FAILS we need it
6104 		 * for restoring
6105 		 */
6106 		mutex_enter(SD_MUTEX(un));
6107 		save_state = un->un_last_state;
6108 		/*
6109 		 * There must not be any cmds. getting processed
6110 		 * in the driver when we get here. Power to the
6111 		 * device is potentially going off.
6112 		 */
6113 		ASSERT(un->un_ncmds_in_driver == 0);
6114 		mutex_exit(SD_MUTEX(un));
6115 
6116 		/*
6117 		 * For now suspend the device completely before spindle is
6118 		 * turned off
6119 		 */
6120 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
6121 			if (got_semaphore_here != 0) {
6122 				sema_v(&un->un_semoclose);
6123 			}
6124 			/*
6125 			 * On exit put the state back to it's original value
6126 			 * and broadcast to anyone waiting for the power
6127 			 * change completion.
6128 			 */
6129 			mutex_enter(SD_MUTEX(un));
6130 			un->un_state = state_before_pm;
6131 			cv_broadcast(&un->un_suspend_cv);
6132 			mutex_exit(SD_MUTEX(un));
6133 			SD_TRACE(SD_LOG_IO_PM, un,
6134 			    "sdpower: exit, PM suspend Failed.\n");
6135 			return (DDI_FAILURE);
6136 		}
6137 	}
6138 
6139 	/*
6140 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
6141 	 * close, or strategy. Dump no long uses this routine, it uses it's
6142 	 * own code so it can be done in polled mode.
6143 	 */
6144 
6145 	medium_present = TRUE;
6146 
6147 	/*
6148 	 * When powering up, issue a TUR in case the device is at unit
6149 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
6150 	 * a deadlock on un_pm_busy_cv will occur.
6151 	 */
6152 	if (level == SD_SPINDLE_ON) {
6153 		(void) sd_send_scsi_TEST_UNIT_READY(un,
6154 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
6155 	}
6156 
6157 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
6158 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
6159 
6160 	sval = sd_send_scsi_START_STOP_UNIT(un,
6161 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
6162 	    SD_PATH_DIRECT);
6163 	/* Command failed, check for media present. */
6164 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
6165 		medium_present = FALSE;
6166 	}
6167 
6168 	/*
6169 	 * The conditions of interest here are:
6170 	 *   if a spindle off with media present fails,
6171 	 *	then restore the state and return an error.
6172 	 *   else if a spindle on fails,
6173 	 *	then return an error (there's no state to restore).
6174 	 * In all other cases we setup for the new state
6175 	 * and return success.
6176 	 */
6177 	switch (level) {
6178 	case SD_SPINDLE_OFF:
6179 		if ((medium_present == TRUE) && (sval != 0)) {
6180 			/* The stop command from above failed */
6181 			rval = DDI_FAILURE;
6182 			/*
6183 			 * The stop command failed, and we have media
6184 			 * present. Put the level back by calling the
6185 			 * sd_pm_resume() and set the state back to
6186 			 * it's previous value.
6187 			 */
6188 			(void) sd_ddi_pm_resume(un);
6189 			mutex_enter(SD_MUTEX(un));
6190 			un->un_last_state = save_state;
6191 			mutex_exit(SD_MUTEX(un));
6192 			break;
6193 		}
6194 		/*
6195 		 * The stop command from above succeeded.
6196 		 */
6197 		if (un->un_f_monitor_media_state) {
6198 			/*
6199 			 * Terminate watch thread in case of removable media
6200 			 * devices going into low power state. This is as per
6201 			 * the requirements of pm framework, otherwise commands
6202 			 * will be generated for the device (through watch
6203 			 * thread), even when the device is in low power state.
6204 			 */
6205 			mutex_enter(SD_MUTEX(un));
6206 			un->un_f_watcht_stopped = FALSE;
6207 			if (un->un_swr_token != NULL) {
6208 				opaque_t temp_token = un->un_swr_token;
6209 				un->un_f_watcht_stopped = TRUE;
6210 				un->un_swr_token = NULL;
6211 				mutex_exit(SD_MUTEX(un));
6212 				(void) scsi_watch_request_terminate(temp_token,
6213 				    SCSI_WATCH_TERMINATE_WAIT);
6214 			} else {
6215 				mutex_exit(SD_MUTEX(un));
6216 			}
6217 		}
6218 		break;
6219 
6220 	default:	/* The level requested is spindle on... */
6221 		/*
6222 		 * Legacy behavior: return success on a failed spinup
6223 		 * if there is no media in the drive.
6224 		 * Do this by looking at medium_present here.
6225 		 */
6226 		if ((sval != 0) && medium_present) {
6227 			/* The start command from above failed */
6228 			rval = DDI_FAILURE;
6229 			break;
6230 		}
6231 		/*
6232 		 * The start command from above succeeded
6233 		 * Resume the devices now that we have
6234 		 * started the disks
6235 		 */
6236 		(void) sd_ddi_pm_resume(un);
6237 
6238 		/*
6239 		 * Resume the watch thread since it was suspended
6240 		 * when the device went into low power mode.
6241 		 */
6242 		if (un->un_f_monitor_media_state) {
6243 			mutex_enter(SD_MUTEX(un));
6244 			if (un->un_f_watcht_stopped == TRUE) {
6245 				opaque_t temp_token;
6246 
6247 				un->un_f_watcht_stopped = FALSE;
6248 				mutex_exit(SD_MUTEX(un));
6249 				temp_token = scsi_watch_request_submit(
6250 				    SD_SCSI_DEVP(un),
6251 				    sd_check_media_time,
6252 				    SENSE_LENGTH, sd_media_watch_cb,
6253 				    (caddr_t)dev);
6254 				mutex_enter(SD_MUTEX(un));
6255 				un->un_swr_token = temp_token;
6256 			}
6257 			mutex_exit(SD_MUTEX(un));
6258 		}
6259 	}
6260 	if (got_semaphore_here != 0) {
6261 		sema_v(&un->un_semoclose);
6262 	}
6263 	/*
6264 	 * On exit put the state back to it's original value
6265 	 * and broadcast to anyone waiting for the power
6266 	 * change completion.
6267 	 */
6268 	mutex_enter(SD_MUTEX(un));
6269 	un->un_state = state_before_pm;
6270 	cv_broadcast(&un->un_suspend_cv);
6271 	mutex_exit(SD_MUTEX(un));
6272 
6273 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
6274 
6275 	return (rval);
6276 }
6277 
6278 
6279 
6280 /*
6281  *    Function: sdattach
6282  *
6283  * Description: Driver's attach(9e) entry point function.
6284  *
6285  *   Arguments: devi - opaque device info handle
6286  *		cmd  - attach  type
6287  *
6288  * Return Code: DDI_SUCCESS
6289  *		DDI_FAILURE
6290  *
6291  *     Context: Kernel thread context
6292  */
6293 
6294 static int
6295 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
6296 {
6297 	switch (cmd) {
6298 	case DDI_ATTACH:
6299 		return (sd_unit_attach(devi));
6300 	case DDI_RESUME:
6301 		return (sd_ddi_resume(devi));
6302 	default:
6303 		break;
6304 	}
6305 	return (DDI_FAILURE);
6306 }
6307 
6308 
6309 /*
6310  *    Function: sddetach
6311  *
6312  * Description: Driver's detach(9E) entry point function.
6313  *
6314  *   Arguments: devi - opaque device info handle
6315  *		cmd  - detach  type
6316  *
6317  * Return Code: DDI_SUCCESS
6318  *		DDI_FAILURE
6319  *
6320  *     Context: Kernel thread context
6321  */
6322 
6323 static int
6324 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
6325 {
6326 	switch (cmd) {
6327 	case DDI_DETACH:
6328 		return (sd_unit_detach(devi));
6329 	case DDI_SUSPEND:
6330 		return (sd_ddi_suspend(devi));
6331 	default:
6332 		break;
6333 	}
6334 	return (DDI_FAILURE);
6335 }
6336 
6337 
6338 /*
6339  *     Function: sd_sync_with_callback
6340  *
6341  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
6342  *		 state while the callback routine is active.
6343  *
6344  *    Arguments: un: softstate structure for the instance
6345  *
6346  *	Context: Kernel thread context
6347  */
6348 
6349 static void
6350 sd_sync_with_callback(struct sd_lun *un)
6351 {
6352 	ASSERT(un != NULL);
6353 
6354 	mutex_enter(SD_MUTEX(un));
6355 
6356 	ASSERT(un->un_in_callback >= 0);
6357 
6358 	while (un->un_in_callback > 0) {
6359 		mutex_exit(SD_MUTEX(un));
6360 		delay(2);
6361 		mutex_enter(SD_MUTEX(un));
6362 	}
6363 
6364 	mutex_exit(SD_MUTEX(un));
6365 }
6366 
6367 /*
6368  *    Function: sd_unit_attach
6369  *
6370  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
6371  *		the soft state structure for the device and performs
6372  *		all necessary structure and device initializations.
6373  *
6374  *   Arguments: devi: the system's dev_info_t for the device.
6375  *
6376  * Return Code: DDI_SUCCESS if attach is successful.
6377  *		DDI_FAILURE if any part of the attach fails.
6378  *
6379  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
6380  *		Kernel thread context only.  Can sleep.
6381  */
6382 
6383 static int
6384 sd_unit_attach(dev_info_t *devi)
6385 {
6386 	struct	scsi_device	*devp;
6387 	struct	sd_lun		*un;
6388 	char			*variantp;
6389 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
6390 	int	instance;
6391 	int	rval;
6392 	int	wc_enabled;
6393 	int	tgt;
6394 	uint64_t	capacity;
6395 	uint_t		lbasize = 0;
6396 	dev_info_t	*pdip = ddi_get_parent(devi);
6397 	int		offbyone = 0;
6398 	int		geom_label_valid = 0;
6399 #if defined(__sparc)
6400 	int		max_xfer_size;
6401 #endif
6402 
6403 	/*
6404 	 * Retrieve the target driver's private data area. This was set
6405 	 * up by the HBA.
6406 	 */
6407 	devp = ddi_get_driver_private(devi);
6408 
6409 	/*
6410 	 * Retrieve the target ID of the device.
6411 	 */
6412 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6413 	    SCSI_ADDR_PROP_TARGET, -1);
6414 
6415 	/*
6416 	 * Since we have no idea what state things were left in by the last
6417 	 * user of the device, set up some 'default' settings, ie. turn 'em
6418 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
6419 	 * Do this before the scsi_probe, which sends an inquiry.
6420 	 * This is a fix for bug (4430280).
6421 	 * Of special importance is wide-xfer. The drive could have been left
6422 	 * in wide transfer mode by the last driver to communicate with it,
6423 	 * this includes us. If that's the case, and if the following is not
6424 	 * setup properly or we don't re-negotiate with the drive prior to
6425 	 * transferring data to/from the drive, it causes bus parity errors,
6426 	 * data overruns, and unexpected interrupts. This first occurred when
6427 	 * the fix for bug (4378686) was made.
6428 	 */
6429 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
6430 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
6431 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
6432 
6433 	/*
6434 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
6435 	 * on a target. Setting it per lun instance actually sets the
6436 	 * capability of this target, which affects those luns already
6437 	 * attached on the same target. So during attach, we can only disable
6438 	 * this capability only when no other lun has been attached on this
6439 	 * target. By doing this, we assume a target has the same tagged-qing
6440 	 * capability for every lun. The condition can be removed when HBA
6441 	 * is changed to support per lun based tagged-qing capability.
6442 	 */
6443 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
6444 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
6445 	}
6446 
6447 	/*
6448 	 * Use scsi_probe() to issue an INQUIRY command to the device.
6449 	 * This call will allocate and fill in the scsi_inquiry structure
6450 	 * and point the sd_inq member of the scsi_device structure to it.
6451 	 * If the attach succeeds, then this memory will not be de-allocated
6452 	 * (via scsi_unprobe()) until the instance is detached.
6453 	 */
6454 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
6455 		goto probe_failed;
6456 	}
6457 
6458 	/*
6459 	 * Check the device type as specified in the inquiry data and
6460 	 * claim it if it is of a type that we support.
6461 	 */
6462 	switch (devp->sd_inq->inq_dtype) {
6463 	case DTYPE_DIRECT:
6464 		break;
6465 	case DTYPE_RODIRECT:
6466 		break;
6467 	case DTYPE_OPTICAL:
6468 		break;
6469 	case DTYPE_NOTPRESENT:
6470 	default:
6471 		/* Unsupported device type; fail the attach. */
6472 		goto probe_failed;
6473 	}
6474 
6475 	/*
6476 	 * Allocate the soft state structure for this unit.
6477 	 *
6478 	 * We rely upon this memory being set to all zeroes by
6479 	 * ddi_soft_state_zalloc().  We assume that any member of the
6480 	 * soft state structure that is not explicitly initialized by
6481 	 * this routine will have a value of zero.
6482 	 */
6483 	instance = ddi_get_instance(devp->sd_dev);
6484 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
6485 		goto probe_failed;
6486 	}
6487 
6488 	/*
6489 	 * Retrieve a pointer to the newly-allocated soft state.
6490 	 *
6491 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
6492 	 * was successful, unless something has gone horribly wrong and the
6493 	 * ddi's soft state internals are corrupt (in which case it is
6494 	 * probably better to halt here than just fail the attach....)
6495 	 */
6496 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
6497 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
6498 		    instance);
6499 		/*NOTREACHED*/
6500 	}
6501 
6502 	/*
6503 	 * Link the back ptr of the driver soft state to the scsi_device
6504 	 * struct for this lun.
6505 	 * Save a pointer to the softstate in the driver-private area of
6506 	 * the scsi_device struct.
6507 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
6508 	 * we first set un->un_sd below.
6509 	 */
6510 	un->un_sd = devp;
6511 	devp->sd_private = (opaque_t)un;
6512 
6513 	/*
6514 	 * The following must be after devp is stored in the soft state struct.
6515 	 */
6516 #ifdef SDDEBUG
6517 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6518 	    "%s_unit_attach: un:0x%p instance:%d\n",
6519 	    ddi_driver_name(devi), un, instance);
6520 #endif
6521 
6522 	/*
6523 	 * Set up the device type and node type (for the minor nodes).
6524 	 * By default we assume that the device can at least support the
6525 	 * Common Command Set. Call it a CD-ROM if it reports itself
6526 	 * as a RODIRECT device.
6527 	 */
6528 	switch (devp->sd_inq->inq_dtype) {
6529 	case DTYPE_RODIRECT:
6530 		un->un_node_type = DDI_NT_CD_CHAN;
6531 		un->un_ctype	 = CTYPE_CDROM;
6532 		break;
6533 	case DTYPE_OPTICAL:
6534 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6535 		un->un_ctype	 = CTYPE_ROD;
6536 		break;
6537 	default:
6538 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6539 		un->un_ctype	 = CTYPE_CCS;
6540 		break;
6541 	}
6542 
6543 	/*
6544 	 * Try to read the interconnect type from the HBA.
6545 	 *
6546 	 * Note: This driver is currently compiled as two binaries, a parallel
6547 	 * scsi version (sd) and a fibre channel version (ssd). All functional
6548 	 * differences are determined at compile time. In the future a single
6549 	 * binary will be provided and the inteconnect type will be used to
6550 	 * differentiate between fibre and parallel scsi behaviors. At that time
6551 	 * it will be necessary for all fibre channel HBAs to support this
6552 	 * property.
6553 	 *
6554 	 * set un_f_is_fiber to TRUE ( default fiber )
6555 	 */
6556 	un->un_f_is_fibre = TRUE;
6557 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
6558 	case INTERCONNECT_SSA:
6559 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
6560 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6561 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
6562 		break;
6563 	case INTERCONNECT_PARALLEL:
6564 		un->un_f_is_fibre = FALSE;
6565 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
6566 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6567 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
6568 		break;
6569 	case INTERCONNECT_SATA:
6570 		un->un_f_is_fibre = FALSE;
6571 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
6572 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6573 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
6574 		break;
6575 	case INTERCONNECT_FIBRE:
6576 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
6577 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6578 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
6579 		break;
6580 	case INTERCONNECT_FABRIC:
6581 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
6582 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
6583 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6584 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
6585 		break;
6586 	default:
6587 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
6588 		/*
6589 		 * The HBA does not support the "interconnect-type" property
6590 		 * (or did not provide a recognized type).
6591 		 *
6592 		 * Note: This will be obsoleted when a single fibre channel
6593 		 * and parallel scsi driver is delivered. In the meantime the
6594 		 * interconnect type will be set to the platform default.If that
6595 		 * type is not parallel SCSI, it means that we should be
6596 		 * assuming "ssd" semantics. However, here this also means that
6597 		 * the FC HBA is not supporting the "interconnect-type" property
6598 		 * like we expect it to, so log this occurrence.
6599 		 */
6600 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
6601 		if (!SD_IS_PARALLEL_SCSI(un)) {
6602 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6603 			    "sd_unit_attach: un:0x%p Assuming "
6604 			    "INTERCONNECT_FIBRE\n", un);
6605 		} else {
6606 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6607 			    "sd_unit_attach: un:0x%p Assuming "
6608 			    "INTERCONNECT_PARALLEL\n", un);
6609 			un->un_f_is_fibre = FALSE;
6610 		}
6611 #else
6612 		/*
6613 		 * Note: This source will be implemented when a single fibre
6614 		 * channel and parallel scsi driver is delivered. The default
6615 		 * will be to assume that if a device does not support the
6616 		 * "interconnect-type" property it is a parallel SCSI HBA and
6617 		 * we will set the interconnect type for parallel scsi.
6618 		 */
6619 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
6620 		un->un_f_is_fibre = FALSE;
6621 #endif
6622 		break;
6623 	}
6624 
6625 	if (un->un_f_is_fibre == TRUE) {
6626 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
6627 		    SCSI_VERSION_3) {
6628 			switch (un->un_interconnect_type) {
6629 			case SD_INTERCONNECT_FIBRE:
6630 			case SD_INTERCONNECT_SSA:
6631 				un->un_node_type = DDI_NT_BLOCK_WWN;
6632 				break;
6633 			default:
6634 				break;
6635 			}
6636 		}
6637 	}
6638 
6639 	/*
6640 	 * Initialize the Request Sense command for the target
6641 	 */
6642 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
6643 		goto alloc_rqs_failed;
6644 	}
6645 
6646 	/*
6647 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
6648 	 * with separate binary for sd and ssd.
6649 	 *
6650 	 * x86 has 1 binary, un_retry_count is set base on connection type.
6651 	 * The hardcoded values will go away when Sparc uses 1 binary
6652 	 * for sd and ssd.  This hardcoded values need to match
6653 	 * SD_RETRY_COUNT in sddef.h
6654 	 * The value used is base on interconnect type.
6655 	 * fibre = 3, parallel = 5
6656 	 */
6657 #if defined(__i386) || defined(__amd64)
6658 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
6659 #else
6660 	un->un_retry_count = SD_RETRY_COUNT;
6661 #endif
6662 
6663 	/*
6664 	 * Set the per disk retry count to the default number of retries
6665 	 * for disks and CDROMs. This value can be overridden by the
6666 	 * disk property list or an entry in sd.conf.
6667 	 */
6668 	un->un_notready_retry_count =
6669 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
6670 	    : DISK_NOT_READY_RETRY_COUNT(un);
6671 
6672 	/*
6673 	 * Set the busy retry count to the default value of un_retry_count.
6674 	 * This can be overridden by entries in sd.conf or the device
6675 	 * config table.
6676 	 */
6677 	un->un_busy_retry_count = un->un_retry_count;
6678 
6679 	/*
6680 	 * Init the reset threshold for retries.  This number determines
6681 	 * how many retries must be performed before a reset can be issued
6682 	 * (for certain error conditions). This can be overridden by entries
6683 	 * in sd.conf or the device config table.
6684 	 */
6685 	un->un_reset_retry_count = (un->un_retry_count / 2);
6686 
6687 	/*
6688 	 * Set the victim_retry_count to the default un_retry_count
6689 	 */
6690 	un->un_victim_retry_count = (2 * un->un_retry_count);
6691 
6692 	/*
6693 	 * Set the reservation release timeout to the default value of
6694 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
6695 	 * device config table.
6696 	 */
6697 	un->un_reserve_release_time = 5;
6698 
6699 	/*
6700 	 * Set up the default maximum transfer size. Note that this may
6701 	 * get updated later in the attach, when setting up default wide
6702 	 * operations for disks.
6703 	 */
6704 #if defined(__i386) || defined(__amd64)
6705 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
6706 	un->un_partial_dma_supported = 1;
6707 #else
6708 	un->un_max_xfer_size = (uint_t)maxphys;
6709 #endif
6710 
6711 	/*
6712 	 * Get "allow bus device reset" property (defaults to "enabled" if
6713 	 * the property was not defined). This is to disable bus resets for
6714 	 * certain kinds of error recovery. Note: In the future when a run-time
6715 	 * fibre check is available the soft state flag should default to
6716 	 * enabled.
6717 	 */
6718 	if (un->un_f_is_fibre == TRUE) {
6719 		un->un_f_allow_bus_device_reset = TRUE;
6720 	} else {
6721 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6722 		    "allow-bus-device-reset", 1) != 0) {
6723 			un->un_f_allow_bus_device_reset = TRUE;
6724 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6725 			    "sd_unit_attach: un:0x%p Bus device reset "
6726 			    "enabled\n", un);
6727 		} else {
6728 			un->un_f_allow_bus_device_reset = FALSE;
6729 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6730 			    "sd_unit_attach: un:0x%p Bus device reset "
6731 			    "disabled\n", un);
6732 		}
6733 	}
6734 
6735 	/*
6736 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
6737 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
6738 	 *
6739 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
6740 	 * property. The new "variant" property with a value of "atapi" has been
6741 	 * introduced so that future 'variants' of standard SCSI behavior (like
6742 	 * atapi) could be specified by the underlying HBA drivers by supplying
6743 	 * a new value for the "variant" property, instead of having to define a
6744 	 * new property.
6745 	 */
6746 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
6747 		un->un_f_cfg_is_atapi = TRUE;
6748 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6749 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
6750 	}
6751 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
6752 	    &variantp) == DDI_PROP_SUCCESS) {
6753 		if (strcmp(variantp, "atapi") == 0) {
6754 			un->un_f_cfg_is_atapi = TRUE;
6755 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6756 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
6757 		}
6758 		ddi_prop_free(variantp);
6759 	}
6760 
6761 	un->un_cmd_timeout	= SD_IO_TIME;
6762 
6763 	/* Info on current states, statuses, etc. (Updated frequently) */
6764 	un->un_state		= SD_STATE_NORMAL;
6765 	un->un_last_state	= SD_STATE_NORMAL;
6766 
6767 	/* Control & status info for command throttling */
6768 	un->un_throttle		= sd_max_throttle;
6769 	un->un_saved_throttle	= sd_max_throttle;
6770 	un->un_min_throttle	= sd_min_throttle;
6771 
6772 	if (un->un_f_is_fibre == TRUE) {
6773 		un->un_f_use_adaptive_throttle = TRUE;
6774 	} else {
6775 		un->un_f_use_adaptive_throttle = FALSE;
6776 	}
6777 
6778 	/* Removable media support. */
6779 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
6780 	un->un_mediastate		= DKIO_NONE;
6781 	un->un_specified_mediastate	= DKIO_NONE;
6782 
6783 	/* CVs for suspend/resume (PM or DR) */
6784 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
6785 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
6786 
6787 	/* Power management support. */
6788 	un->un_power_level = SD_SPINDLE_UNINIT;
6789 
6790 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
6791 	un->un_f_wcc_inprog = 0;
6792 
6793 	/*
6794 	 * The open/close semaphore is used to serialize threads executing
6795 	 * in the driver's open & close entry point routines for a given
6796 	 * instance.
6797 	 */
6798 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
6799 
6800 	/*
6801 	 * The conf file entry and softstate variable is a forceful override,
6802 	 * meaning a non-zero value must be entered to change the default.
6803 	 */
6804 	un->un_f_disksort_disabled = FALSE;
6805 
6806 	/*
6807 	 * Retrieve the properties from the static driver table or the driver
6808 	 * configuration file (.conf) for this unit and update the soft state
6809 	 * for the device as needed for the indicated properties.
6810 	 * Note: the property configuration needs to occur here as some of the
6811 	 * following routines may have dependancies on soft state flags set
6812 	 * as part of the driver property configuration.
6813 	 */
6814 	sd_read_unit_properties(un);
6815 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6816 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
6817 
6818 	/*
6819 	 * Only if a device has "hotpluggable" property, it is
6820 	 * treated as hotpluggable device. Otherwise, it is
6821 	 * regarded as non-hotpluggable one.
6822 	 */
6823 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
6824 	    -1) != -1) {
6825 		un->un_f_is_hotpluggable = TRUE;
6826 	}
6827 
6828 	/*
6829 	 * set unit's attributes(flags) according to "hotpluggable" and
6830 	 * RMB bit in INQUIRY data.
6831 	 */
6832 	sd_set_unit_attributes(un, devi);
6833 
6834 	/*
6835 	 * By default, we mark the capacity, lbasize, and geometry
6836 	 * as invalid. Only if we successfully read a valid capacity
6837 	 * will we update the un_blockcount and un_tgt_blocksize with the
6838 	 * valid values (the geometry will be validated later).
6839 	 */
6840 	un->un_f_blockcount_is_valid	= FALSE;
6841 	un->un_f_tgt_blocksize_is_valid	= FALSE;
6842 
6843 	/*
6844 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
6845 	 * otherwise.
6846 	 */
6847 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
6848 	un->un_blockcount = 0;
6849 
6850 	/*
6851 	 * Set up the per-instance info needed to determine the correct
6852 	 * CDBs and other info for issuing commands to the target.
6853 	 */
6854 	sd_init_cdb_limits(un);
6855 
6856 	/*
6857 	 * Set up the IO chains to use, based upon the target type.
6858 	 */
6859 	if (un->un_f_non_devbsize_supported) {
6860 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
6861 	} else {
6862 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
6863 	}
6864 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
6865 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
6866 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
6867 
6868 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
6869 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
6870 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
6871 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
6872 
6873 
6874 	if (ISCD(un)) {
6875 		un->un_additional_codes = sd_additional_codes;
6876 	} else {
6877 		un->un_additional_codes = NULL;
6878 	}
6879 
6880 	/*
6881 	 * Create the kstats here so they can be available for attach-time
6882 	 * routines that send commands to the unit (either polled or via
6883 	 * sd_send_scsi_cmd).
6884 	 *
6885 	 * Note: This is a critical sequence that needs to be maintained:
6886 	 *	1) Instantiate the kstats here, before any routines using the
6887 	 *	   iopath (i.e. sd_send_scsi_cmd).
6888 	 *	2) Instantiate and initialize the partition stats
6889 	 *	   (sd_set_pstats).
6890 	 *	3) Initialize the error stats (sd_set_errstats), following
6891 	 *	   sd_validate_geometry(),sd_register_devid(),
6892 	 *	   and sd_cache_control().
6893 	 */
6894 
6895 	un->un_stats = kstat_create(sd_label, instance,
6896 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
6897 	if (un->un_stats != NULL) {
6898 		un->un_stats->ks_lock = SD_MUTEX(un);
6899 		kstat_install(un->un_stats);
6900 	}
6901 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6902 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
6903 
6904 	sd_create_errstats(un, instance);
6905 	if (un->un_errstats == NULL) {
6906 		goto create_errstats_failed;
6907 	}
6908 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6909 	    "sd_unit_attach: un:0x%p errstats created\n", un);
6910 
6911 	/*
6912 	 * The following if/else code was relocated here from below as part
6913 	 * of the fix for bug (4430280). However with the default setup added
6914 	 * on entry to this routine, it's no longer absolutely necessary for
6915 	 * this to be before the call to sd_spin_up_unit.
6916 	 */
6917 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
6918 		int tq_trigger_flag = (((devp->sd_inq->inq_ansi == 4) ||
6919 		    (devp->sd_inq->inq_ansi == 5)) &&
6920 		    devp->sd_inq->inq_bque) || devp->sd_inq->inq_cmdque;
6921 
6922 		/*
6923 		 * If tagged queueing is supported by the target
6924 		 * and by the host adapter then we will enable it
6925 		 */
6926 		un->un_tagflags = 0;
6927 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && tq_trigger_flag &&
6928 		    (un->un_f_arq_enabled == TRUE)) {
6929 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
6930 			    1, 1) == 1) {
6931 				un->un_tagflags = FLAG_STAG;
6932 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6933 				    "sd_unit_attach: un:0x%p tag queueing "
6934 				    "enabled\n", un);
6935 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
6936 			    "untagged-qing", 0) == 1) {
6937 				un->un_f_opt_queueing = TRUE;
6938 				un->un_saved_throttle = un->un_throttle =
6939 				    min(un->un_throttle, 3);
6940 			} else {
6941 				un->un_f_opt_queueing = FALSE;
6942 				un->un_saved_throttle = un->un_throttle = 1;
6943 			}
6944 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
6945 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
6946 			/* The Host Adapter supports internal queueing. */
6947 			un->un_f_opt_queueing = TRUE;
6948 			un->un_saved_throttle = un->un_throttle =
6949 			    min(un->un_throttle, 3);
6950 		} else {
6951 			un->un_f_opt_queueing = FALSE;
6952 			un->un_saved_throttle = un->un_throttle = 1;
6953 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6954 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
6955 		}
6956 
6957 		/*
6958 		 * Enable large transfers for SATA/SAS drives
6959 		 */
6960 		if (SD_IS_SERIAL(un)) {
6961 			un->un_max_xfer_size =
6962 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
6963 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
6964 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6965 			    "sd_unit_attach: un:0x%p max transfer "
6966 			    "size=0x%x\n", un, un->un_max_xfer_size);
6967 
6968 		}
6969 
6970 		/* Setup or tear down default wide operations for disks */
6971 
6972 		/*
6973 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
6974 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
6975 		 * system and be set to different values. In the future this
6976 		 * code may need to be updated when the ssd module is
6977 		 * obsoleted and removed from the system. (4299588)
6978 		 */
6979 		if (SD_IS_PARALLEL_SCSI(un) &&
6980 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
6981 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
6982 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
6983 			    1, 1) == 1) {
6984 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6985 				    "sd_unit_attach: un:0x%p Wide Transfer "
6986 				    "enabled\n", un);
6987 			}
6988 
6989 			/*
6990 			 * If tagged queuing has also been enabled, then
6991 			 * enable large xfers
6992 			 */
6993 			if (un->un_saved_throttle == sd_max_throttle) {
6994 				un->un_max_xfer_size =
6995 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
6996 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
6997 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6998 				    "sd_unit_attach: un:0x%p max transfer "
6999 				    "size=0x%x\n", un, un->un_max_xfer_size);
7000 			}
7001 		} else {
7002 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7003 			    0, 1) == 1) {
7004 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7005 				    "sd_unit_attach: un:0x%p "
7006 				    "Wide Transfer disabled\n", un);
7007 			}
7008 		}
7009 	} else {
7010 		un->un_tagflags = FLAG_STAG;
7011 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
7012 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
7013 	}
7014 
7015 	/*
7016 	 * If this target supports LUN reset, try to enable it.
7017 	 */
7018 	if (un->un_f_lun_reset_enabled) {
7019 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
7020 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7021 			    "un:0x%p lun_reset capability set\n", un);
7022 		} else {
7023 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7024 			    "un:0x%p lun-reset capability not set\n", un);
7025 		}
7026 	}
7027 
7028 	/*
7029 	 * Adjust the maximum transfer size. This is to fix
7030 	 * the problem of partial DMA support on SPARC. Some
7031 	 * HBA driver, like aac, has very small dma_attr_maxxfer
7032 	 * size, which requires partial DMA support on SPARC.
7033 	 * In the future the SPARC pci nexus driver may solve
7034 	 * the problem instead of this fix.
7035 	 */
7036 #if defined(__sparc)
7037 	max_xfer_size = scsi_ifgetcap(SD_ADDRESS(un), "dma-max", 1);
7038 	if ((max_xfer_size > 0) && (max_xfer_size < un->un_max_xfer_size)) {
7039 		un->un_max_xfer_size = max_xfer_size;
7040 		un->un_partial_dma_supported = 1;
7041 	}
7042 #endif
7043 
7044 	/*
7045 	 * Set PKT_DMA_PARTIAL flag.
7046 	 */
7047 	if (un->un_partial_dma_supported == 1) {
7048 		un->un_pkt_flags = PKT_DMA_PARTIAL;
7049 	} else {
7050 		un->un_pkt_flags = 0;
7051 	}
7052 
7053 	/*
7054 	 * At this point in the attach, we have enough info in the
7055 	 * soft state to be able to issue commands to the target.
7056 	 *
7057 	 * All command paths used below MUST issue their commands as
7058 	 * SD_PATH_DIRECT. This is important as intermediate layers
7059 	 * are not all initialized yet (such as PM).
7060 	 */
7061 
7062 	/*
7063 	 * Send a TEST UNIT READY command to the device. This should clear
7064 	 * any outstanding UNIT ATTENTION that may be present.
7065 	 *
7066 	 * Note: Don't check for success, just track if there is a reservation,
7067 	 * this is a throw away command to clear any unit attentions.
7068 	 *
7069 	 * Note: This MUST be the first command issued to the target during
7070 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
7071 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
7072 	 * with attempts at spinning up a device with no media.
7073 	 */
7074 	if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) {
7075 		reservation_flag = SD_TARGET_IS_RESERVED;
7076 	}
7077 
7078 	/*
7079 	 * If the device is NOT a removable media device, attempt to spin
7080 	 * it up (using the START_STOP_UNIT command) and read its capacity
7081 	 * (using the READ CAPACITY command).  Note, however, that either
7082 	 * of these could fail and in some cases we would continue with
7083 	 * the attach despite the failure (see below).
7084 	 */
7085 	if (un->un_f_descr_format_supported) {
7086 		switch (sd_spin_up_unit(un)) {
7087 		case 0:
7088 			/*
7089 			 * Spin-up was successful; now try to read the
7090 			 * capacity.  If successful then save the results
7091 			 * and mark the capacity & lbasize as valid.
7092 			 */
7093 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7094 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
7095 
7096 			switch (sd_send_scsi_READ_CAPACITY(un, &capacity,
7097 			    &lbasize, SD_PATH_DIRECT)) {
7098 			case 0: {
7099 				if (capacity > DK_MAX_BLOCKS) {
7100 #ifdef _LP64
7101 					if (capacity + 1 >
7102 					    SD_GROUP1_MAX_ADDRESS) {
7103 						/*
7104 						 * Enable descriptor format
7105 						 * sense data so that we can
7106 						 * get 64 bit sense data
7107 						 * fields.
7108 						 */
7109 						sd_enable_descr_sense(un);
7110 					}
7111 #else
7112 					/* 32-bit kernels can't handle this */
7113 					scsi_log(SD_DEVINFO(un),
7114 					    sd_label, CE_WARN,
7115 					    "disk has %llu blocks, which "
7116 					    "is too large for a 32-bit "
7117 					    "kernel", capacity);
7118 
7119 #if defined(__i386) || defined(__amd64)
7120 					/*
7121 					 * 1TB disk was treated as (1T - 512)B
7122 					 * in the past, so that it might have
7123 					 * valid VTOC and solaris partitions,
7124 					 * we have to allow it to continue to
7125 					 * work.
7126 					 */
7127 					if (capacity -1 > DK_MAX_BLOCKS)
7128 #endif
7129 					goto spinup_failed;
7130 #endif
7131 				}
7132 
7133 				/*
7134 				 * Here it's not necessary to check the case:
7135 				 * the capacity of the device is bigger than
7136 				 * what the max hba cdb can support. Because
7137 				 * sd_send_scsi_READ_CAPACITY will retrieve
7138 				 * the capacity by sending USCSI command, which
7139 				 * is constrained by the max hba cdb. Actually,
7140 				 * sd_send_scsi_READ_CAPACITY will return
7141 				 * EINVAL when using bigger cdb than required
7142 				 * cdb length. Will handle this case in
7143 				 * "case EINVAL".
7144 				 */
7145 
7146 				/*
7147 				 * The following relies on
7148 				 * sd_send_scsi_READ_CAPACITY never
7149 				 * returning 0 for capacity and/or lbasize.
7150 				 */
7151 				sd_update_block_info(un, lbasize, capacity);
7152 
7153 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7154 				    "sd_unit_attach: un:0x%p capacity = %ld "
7155 				    "blocks; lbasize= %ld.\n", un,
7156 				    un->un_blockcount, un->un_tgt_blocksize);
7157 
7158 				break;
7159 			}
7160 			case EINVAL:
7161 				/*
7162 				 * In the case where the max-cdb-length property
7163 				 * is smaller than the required CDB length for
7164 				 * a SCSI device, a target driver can fail to
7165 				 * attach to that device.
7166 				 */
7167 				scsi_log(SD_DEVINFO(un),
7168 				    sd_label, CE_WARN,
7169 				    "disk capacity is too large "
7170 				    "for current cdb length");
7171 				goto spinup_failed;
7172 			case EACCES:
7173 				/*
7174 				 * Should never get here if the spin-up
7175 				 * succeeded, but code it in anyway.
7176 				 * From here, just continue with the attach...
7177 				 */
7178 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7179 				    "sd_unit_attach: un:0x%p "
7180 				    "sd_send_scsi_READ_CAPACITY "
7181 				    "returned reservation conflict\n", un);
7182 				reservation_flag = SD_TARGET_IS_RESERVED;
7183 				break;
7184 			default:
7185 				/*
7186 				 * Likewise, should never get here if the
7187 				 * spin-up succeeded. Just continue with
7188 				 * the attach...
7189 				 */
7190 				break;
7191 			}
7192 			break;
7193 		case EACCES:
7194 			/*
7195 			 * Device is reserved by another host.  In this case
7196 			 * we could not spin it up or read the capacity, but
7197 			 * we continue with the attach anyway.
7198 			 */
7199 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7200 			    "sd_unit_attach: un:0x%p spin-up reservation "
7201 			    "conflict.\n", un);
7202 			reservation_flag = SD_TARGET_IS_RESERVED;
7203 			break;
7204 		default:
7205 			/* Fail the attach if the spin-up failed. */
7206 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7207 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
7208 			goto spinup_failed;
7209 		}
7210 	}
7211 
7212 	/*
7213 	 * Check to see if this is a MMC drive
7214 	 */
7215 	if (ISCD(un)) {
7216 		sd_set_mmc_caps(un);
7217 	}
7218 
7219 
7220 	/*
7221 	 * Add a zero-length attribute to tell the world we support
7222 	 * kernel ioctls (for layered drivers)
7223 	 */
7224 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7225 	    DDI_KERNEL_IOCTL, NULL, 0);
7226 
7227 	/*
7228 	 * Add a boolean property to tell the world we support
7229 	 * the B_FAILFAST flag (for layered drivers)
7230 	 */
7231 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7232 	    "ddi-failfast-supported", NULL, 0);
7233 
7234 	/*
7235 	 * Initialize power management
7236 	 */
7237 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
7238 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
7239 	sd_setup_pm(un, devi);
7240 	if (un->un_f_pm_is_enabled == FALSE) {
7241 		/*
7242 		 * For performance, point to a jump table that does
7243 		 * not include pm.
7244 		 * The direct and priority chains don't change with PM.
7245 		 *
7246 		 * Note: this is currently done based on individual device
7247 		 * capabilities. When an interface for determining system
7248 		 * power enabled state becomes available, or when additional
7249 		 * layers are added to the command chain, these values will
7250 		 * have to be re-evaluated for correctness.
7251 		 */
7252 		if (un->un_f_non_devbsize_supported) {
7253 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
7254 		} else {
7255 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
7256 		}
7257 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
7258 	}
7259 
7260 	/*
7261 	 * This property is set to 0 by HA software to avoid retries
7262 	 * on a reserved disk. (The preferred property name is
7263 	 * "retry-on-reservation-conflict") (1189689)
7264 	 *
7265 	 * Note: The use of a global here can have unintended consequences. A
7266 	 * per instance variable is preferrable to match the capabilities of
7267 	 * different underlying hba's (4402600)
7268 	 */
7269 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
7270 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
7271 	    sd_retry_on_reservation_conflict);
7272 	if (sd_retry_on_reservation_conflict != 0) {
7273 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
7274 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
7275 		    sd_retry_on_reservation_conflict);
7276 	}
7277 
7278 	/* Set up options for QFULL handling. */
7279 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7280 	    "qfull-retries", -1)) != -1) {
7281 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
7282 		    rval, 1);
7283 	}
7284 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7285 	    "qfull-retry-interval", -1)) != -1) {
7286 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
7287 		    rval, 1);
7288 	}
7289 
7290 	/*
7291 	 * This just prints a message that announces the existence of the
7292 	 * device. The message is always printed in the system logfile, but
7293 	 * only appears on the console if the system is booted with the
7294 	 * -v (verbose) argument.
7295 	 */
7296 	ddi_report_dev(devi);
7297 
7298 	un->un_mediastate = DKIO_NONE;
7299 
7300 	cmlb_alloc_handle(&un->un_cmlbhandle);
7301 
7302 #if defined(__i386) || defined(__amd64)
7303 	/*
7304 	 * On x86, compensate for off-by-1 legacy error
7305 	 */
7306 	if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
7307 	    (lbasize == un->un_sys_blocksize))
7308 		offbyone = CMLB_OFF_BY_ONE;
7309 #endif
7310 
7311 	if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype,
7312 	    un->un_f_has_removable_media, un->un_f_is_hotpluggable,
7313 	    un->un_node_type, offbyone, un->un_cmlbhandle,
7314 	    (void *)SD_PATH_DIRECT) != 0) {
7315 		goto cmlb_attach_failed;
7316 	}
7317 
7318 
7319 	/*
7320 	 * Read and validate the device's geometry (ie, disk label)
7321 	 * A new unformatted drive will not have a valid geometry, but
7322 	 * the driver needs to successfully attach to this device so
7323 	 * the drive can be formatted via ioctls.
7324 	 */
7325 	geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0,
7326 	    (void *)SD_PATH_DIRECT) == 0) ? 1: 0;
7327 
7328 	mutex_enter(SD_MUTEX(un));
7329 
7330 	/*
7331 	 * Read and initialize the devid for the unit.
7332 	 */
7333 	if (un->un_f_devid_supported) {
7334 		sd_register_devid(un, devi, reservation_flag);
7335 	}
7336 	mutex_exit(SD_MUTEX(un));
7337 
7338 #if (defined(__fibre))
7339 	/*
7340 	 * Register callbacks for fibre only.  You can't do this soley
7341 	 * on the basis of the devid_type because this is hba specific.
7342 	 * We need to query our hba capabilities to find out whether to
7343 	 * register or not.
7344 	 */
7345 	if (un->un_f_is_fibre) {
7346 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
7347 			sd_init_event_callbacks(un);
7348 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7349 			    "sd_unit_attach: un:0x%p event callbacks inserted",
7350 			    un);
7351 		}
7352 	}
7353 #endif
7354 
7355 	if (un->un_f_opt_disable_cache == TRUE) {
7356 		/*
7357 		 * Disable both read cache and write cache.  This is
7358 		 * the historic behavior of the keywords in the config file.
7359 		 */
7360 		if (sd_cache_control(un, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
7361 		    0) {
7362 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7363 			    "sd_unit_attach: un:0x%p Could not disable "
7364 			    "caching", un);
7365 			goto devid_failed;
7366 		}
7367 	}
7368 
7369 	/*
7370 	 * Check the value of the WCE bit now and
7371 	 * set un_f_write_cache_enabled accordingly.
7372 	 */
7373 	(void) sd_get_write_cache_enabled(un, &wc_enabled);
7374 	mutex_enter(SD_MUTEX(un));
7375 	un->un_f_write_cache_enabled = (wc_enabled != 0);
7376 	mutex_exit(SD_MUTEX(un));
7377 
7378 	/*
7379 	 * Check the value of the NV_SUP bit and set
7380 	 * un_f_suppress_cache_flush accordingly.
7381 	 */
7382 	sd_get_nv_sup(un);
7383 
7384 	/*
7385 	 * Find out what type of reservation this disk supports.
7386 	 */
7387 	switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) {
7388 	case 0:
7389 		/*
7390 		 * SCSI-3 reservations are supported.
7391 		 */
7392 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7393 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7394 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
7395 		break;
7396 	case ENOTSUP:
7397 		/*
7398 		 * The PERSISTENT RESERVE IN command would not be recognized by
7399 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
7400 		 */
7401 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7402 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
7403 		un->un_reservation_type = SD_SCSI2_RESERVATION;
7404 		break;
7405 	default:
7406 		/*
7407 		 * default to SCSI-3 reservations
7408 		 */
7409 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7410 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
7411 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7412 		break;
7413 	}
7414 
7415 	/*
7416 	 * Set the pstat and error stat values here, so data obtained during the
7417 	 * previous attach-time routines is available.
7418 	 *
7419 	 * Note: This is a critical sequence that needs to be maintained:
7420 	 *	1) Instantiate the kstats before any routines using the iopath
7421 	 *	   (i.e. sd_send_scsi_cmd).
7422 	 *	2) Initialize the error stats (sd_set_errstats) and partition
7423 	 *	   stats (sd_set_pstats)here, following
7424 	 *	   cmlb_validate_geometry(), sd_register_devid(), and
7425 	 *	   sd_cache_control().
7426 	 */
7427 
7428 	if (un->un_f_pkstats_enabled && geom_label_valid) {
7429 		sd_set_pstats(un);
7430 		SD_TRACE(SD_LOG_IO_PARTITION, un,
7431 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
7432 	}
7433 
7434 	sd_set_errstats(un);
7435 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7436 	    "sd_unit_attach: un:0x%p errstats set\n", un);
7437 
7438 
7439 	/*
7440 	 * After successfully attaching an instance, we record the information
7441 	 * of how many luns have been attached on the relative target and
7442 	 * controller for parallel SCSI. This information is used when sd tries
7443 	 * to set the tagged queuing capability in HBA.
7444 	 */
7445 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
7446 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
7447 	}
7448 
7449 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7450 	    "sd_unit_attach: un:0x%p exit success\n", un);
7451 
7452 	return (DDI_SUCCESS);
7453 
7454 	/*
7455 	 * An error occurred during the attach; clean up & return failure.
7456 	 */
7457 
7458 devid_failed:
7459 
7460 setup_pm_failed:
7461 	ddi_remove_minor_node(devi, NULL);
7462 
7463 cmlb_attach_failed:
7464 	/*
7465 	 * Cleanup from the scsi_ifsetcap() calls (437868)
7466 	 */
7467 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7468 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7469 
7470 	/*
7471 	 * Refer to the comments of setting tagged-qing in the beginning of
7472 	 * sd_unit_attach. We can only disable tagged queuing when there is
7473 	 * no lun attached on the target.
7474 	 */
7475 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
7476 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
7477 	}
7478 
7479 	if (un->un_f_is_fibre == FALSE) {
7480 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
7481 	}
7482 
7483 spinup_failed:
7484 
7485 	mutex_enter(SD_MUTEX(un));
7486 
7487 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
7488 	if (un->un_direct_priority_timeid != NULL) {
7489 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7490 		un->un_direct_priority_timeid = NULL;
7491 		mutex_exit(SD_MUTEX(un));
7492 		(void) untimeout(temp_id);
7493 		mutex_enter(SD_MUTEX(un));
7494 	}
7495 
7496 	/* Cancel any pending start/stop timeouts */
7497 	if (un->un_startstop_timeid != NULL) {
7498 		timeout_id_t temp_id = un->un_startstop_timeid;
7499 		un->un_startstop_timeid = NULL;
7500 		mutex_exit(SD_MUTEX(un));
7501 		(void) untimeout(temp_id);
7502 		mutex_enter(SD_MUTEX(un));
7503 	}
7504 
7505 	/* Cancel any pending reset-throttle timeouts */
7506 	if (un->un_reset_throttle_timeid != NULL) {
7507 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7508 		un->un_reset_throttle_timeid = NULL;
7509 		mutex_exit(SD_MUTEX(un));
7510 		(void) untimeout(temp_id);
7511 		mutex_enter(SD_MUTEX(un));
7512 	}
7513 
7514 	/* Cancel any pending retry timeouts */
7515 	if (un->un_retry_timeid != NULL) {
7516 		timeout_id_t temp_id = un->un_retry_timeid;
7517 		un->un_retry_timeid = NULL;
7518 		mutex_exit(SD_MUTEX(un));
7519 		(void) untimeout(temp_id);
7520 		mutex_enter(SD_MUTEX(un));
7521 	}
7522 
7523 	/* Cancel any pending delayed cv broadcast timeouts */
7524 	if (un->un_dcvb_timeid != NULL) {
7525 		timeout_id_t temp_id = un->un_dcvb_timeid;
7526 		un->un_dcvb_timeid = NULL;
7527 		mutex_exit(SD_MUTEX(un));
7528 		(void) untimeout(temp_id);
7529 		mutex_enter(SD_MUTEX(un));
7530 	}
7531 
7532 	mutex_exit(SD_MUTEX(un));
7533 
7534 	/* There should not be any in-progress I/O so ASSERT this check */
7535 	ASSERT(un->un_ncmds_in_transport == 0);
7536 	ASSERT(un->un_ncmds_in_driver == 0);
7537 
7538 	/* Do not free the softstate if the callback routine is active */
7539 	sd_sync_with_callback(un);
7540 
7541 	/*
7542 	 * Partition stats apparently are not used with removables. These would
7543 	 * not have been created during attach, so no need to clean them up...
7544 	 */
7545 	if (un->un_errstats != NULL) {
7546 		kstat_delete(un->un_errstats);
7547 		un->un_errstats = NULL;
7548 	}
7549 
7550 create_errstats_failed:
7551 
7552 	if (un->un_stats != NULL) {
7553 		kstat_delete(un->un_stats);
7554 		un->un_stats = NULL;
7555 	}
7556 
7557 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
7558 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
7559 
7560 	ddi_prop_remove_all(devi);
7561 	sema_destroy(&un->un_semoclose);
7562 	cv_destroy(&un->un_state_cv);
7563 
7564 getrbuf_failed:
7565 
7566 	sd_free_rqs(un);
7567 
7568 alloc_rqs_failed:
7569 
7570 	devp->sd_private = NULL;
7571 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
7572 
7573 get_softstate_failed:
7574 	/*
7575 	 * Note: the man pages are unclear as to whether or not doing a
7576 	 * ddi_soft_state_free(sd_state, instance) is the right way to
7577 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
7578 	 * ddi_get_soft_state() fails.  The implication seems to be
7579 	 * that the get_soft_state cannot fail if the zalloc succeeds.
7580 	 */
7581 	ddi_soft_state_free(sd_state, instance);
7582 
7583 probe_failed:
7584 	scsi_unprobe(devp);
7585 
7586 	return (DDI_FAILURE);
7587 }
7588 
7589 
7590 /*
7591  *    Function: sd_unit_detach
7592  *
7593  * Description: Performs DDI_DETACH processing for sddetach().
7594  *
7595  * Return Code: DDI_SUCCESS
7596  *		DDI_FAILURE
7597  *
7598  *     Context: Kernel thread context
7599  */
7600 
7601 static int
7602 sd_unit_detach(dev_info_t *devi)
7603 {
7604 	struct scsi_device	*devp;
7605 	struct sd_lun		*un;
7606 	int			i;
7607 	int			tgt;
7608 	dev_t			dev;
7609 	dev_info_t		*pdip = ddi_get_parent(devi);
7610 	int			instance = ddi_get_instance(devi);
7611 
7612 	mutex_enter(&sd_detach_mutex);
7613 
7614 	/*
7615 	 * Fail the detach for any of the following:
7616 	 *  - Unable to get the sd_lun struct for the instance
7617 	 *  - A layered driver has an outstanding open on the instance
7618 	 *  - Another thread is already detaching this instance
7619 	 *  - Another thread is currently performing an open
7620 	 */
7621 	devp = ddi_get_driver_private(devi);
7622 	if ((devp == NULL) ||
7623 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
7624 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
7625 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
7626 		mutex_exit(&sd_detach_mutex);
7627 		return (DDI_FAILURE);
7628 	}
7629 
7630 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
7631 
7632 	/*
7633 	 * Mark this instance as currently in a detach, to inhibit any
7634 	 * opens from a layered driver.
7635 	 */
7636 	un->un_detach_count++;
7637 	mutex_exit(&sd_detach_mutex);
7638 
7639 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7640 	    SCSI_ADDR_PROP_TARGET, -1);
7641 
7642 	dev = sd_make_device(SD_DEVINFO(un));
7643 
7644 #ifndef lint
7645 	_NOTE(COMPETING_THREADS_NOW);
7646 #endif
7647 
7648 	mutex_enter(SD_MUTEX(un));
7649 
7650 	/*
7651 	 * Fail the detach if there are any outstanding layered
7652 	 * opens on this device.
7653 	 */
7654 	for (i = 0; i < NDKMAP; i++) {
7655 		if (un->un_ocmap.lyropen[i] != 0) {
7656 			goto err_notclosed;
7657 		}
7658 	}
7659 
7660 	/*
7661 	 * Verify there are NO outstanding commands issued to this device.
7662 	 * ie, un_ncmds_in_transport == 0.
7663 	 * It's possible to have outstanding commands through the physio
7664 	 * code path, even though everything's closed.
7665 	 */
7666 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
7667 	    (un->un_direct_priority_timeid != NULL) ||
7668 	    (un->un_state == SD_STATE_RWAIT)) {
7669 		mutex_exit(SD_MUTEX(un));
7670 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7671 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
7672 		goto err_stillbusy;
7673 	}
7674 
7675 	/*
7676 	 * If we have the device reserved, release the reservation.
7677 	 */
7678 	if ((un->un_resvd_status & SD_RESERVE) &&
7679 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
7680 		mutex_exit(SD_MUTEX(un));
7681 		/*
7682 		 * Note: sd_reserve_release sends a command to the device
7683 		 * via the sd_ioctlcmd() path, and can sleep.
7684 		 */
7685 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
7686 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7687 			    "sd_dr_detach: Cannot release reservation \n");
7688 		}
7689 	} else {
7690 		mutex_exit(SD_MUTEX(un));
7691 	}
7692 
7693 	/*
7694 	 * Untimeout any reserve recover, throttle reset, restart unit
7695 	 * and delayed broadcast timeout threads. Protect the timeout pointer
7696 	 * from getting nulled by their callback functions.
7697 	 */
7698 	mutex_enter(SD_MUTEX(un));
7699 	if (un->un_resvd_timeid != NULL) {
7700 		timeout_id_t temp_id = un->un_resvd_timeid;
7701 		un->un_resvd_timeid = NULL;
7702 		mutex_exit(SD_MUTEX(un));
7703 		(void) untimeout(temp_id);
7704 		mutex_enter(SD_MUTEX(un));
7705 	}
7706 
7707 	if (un->un_reset_throttle_timeid != NULL) {
7708 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7709 		un->un_reset_throttle_timeid = NULL;
7710 		mutex_exit(SD_MUTEX(un));
7711 		(void) untimeout(temp_id);
7712 		mutex_enter(SD_MUTEX(un));
7713 	}
7714 
7715 	if (un->un_startstop_timeid != NULL) {
7716 		timeout_id_t temp_id = un->un_startstop_timeid;
7717 		un->un_startstop_timeid = NULL;
7718 		mutex_exit(SD_MUTEX(un));
7719 		(void) untimeout(temp_id);
7720 		mutex_enter(SD_MUTEX(un));
7721 	}
7722 
7723 	if (un->un_dcvb_timeid != NULL) {
7724 		timeout_id_t temp_id = un->un_dcvb_timeid;
7725 		un->un_dcvb_timeid = NULL;
7726 		mutex_exit(SD_MUTEX(un));
7727 		(void) untimeout(temp_id);
7728 	} else {
7729 		mutex_exit(SD_MUTEX(un));
7730 	}
7731 
7732 	/* Remove any pending reservation reclaim requests for this device */
7733 	sd_rmv_resv_reclaim_req(dev);
7734 
7735 	mutex_enter(SD_MUTEX(un));
7736 
7737 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
7738 	if (un->un_direct_priority_timeid != NULL) {
7739 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7740 		un->un_direct_priority_timeid = NULL;
7741 		mutex_exit(SD_MUTEX(un));
7742 		(void) untimeout(temp_id);
7743 		mutex_enter(SD_MUTEX(un));
7744 	}
7745 
7746 	/* Cancel any active multi-host disk watch thread requests */
7747 	if (un->un_mhd_token != NULL) {
7748 		mutex_exit(SD_MUTEX(un));
7749 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
7750 		if (scsi_watch_request_terminate(un->un_mhd_token,
7751 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
7752 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7753 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
7754 			/*
7755 			 * Note: We are returning here after having removed
7756 			 * some driver timeouts above. This is consistent with
7757 			 * the legacy implementation but perhaps the watch
7758 			 * terminate call should be made with the wait flag set.
7759 			 */
7760 			goto err_stillbusy;
7761 		}
7762 		mutex_enter(SD_MUTEX(un));
7763 		un->un_mhd_token = NULL;
7764 	}
7765 
7766 	if (un->un_swr_token != NULL) {
7767 		mutex_exit(SD_MUTEX(un));
7768 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
7769 		if (scsi_watch_request_terminate(un->un_swr_token,
7770 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
7771 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7772 			    "sd_dr_detach: Cannot cancel swr watch request\n");
7773 			/*
7774 			 * Note: We are returning here after having removed
7775 			 * some driver timeouts above. This is consistent with
7776 			 * the legacy implementation but perhaps the watch
7777 			 * terminate call should be made with the wait flag set.
7778 			 */
7779 			goto err_stillbusy;
7780 		}
7781 		mutex_enter(SD_MUTEX(un));
7782 		un->un_swr_token = NULL;
7783 	}
7784 
7785 	mutex_exit(SD_MUTEX(un));
7786 
7787 	/*
7788 	 * Clear any scsi_reset_notifies. We clear the reset notifies
7789 	 * if we have not registered one.
7790 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
7791 	 */
7792 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
7793 	    sd_mhd_reset_notify_cb, (caddr_t)un);
7794 
7795 	/*
7796 	 * protect the timeout pointers from getting nulled by
7797 	 * their callback functions during the cancellation process.
7798 	 * In such a scenario untimeout can be invoked with a null value.
7799 	 */
7800 	_NOTE(NO_COMPETING_THREADS_NOW);
7801 
7802 	mutex_enter(&un->un_pm_mutex);
7803 	if (un->un_pm_idle_timeid != NULL) {
7804 		timeout_id_t temp_id = un->un_pm_idle_timeid;
7805 		un->un_pm_idle_timeid = NULL;
7806 		mutex_exit(&un->un_pm_mutex);
7807 
7808 		/*
7809 		 * Timeout is active; cancel it.
7810 		 * Note that it'll never be active on a device
7811 		 * that does not support PM therefore we don't
7812 		 * have to check before calling pm_idle_component.
7813 		 */
7814 		(void) untimeout(temp_id);
7815 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7816 		mutex_enter(&un->un_pm_mutex);
7817 	}
7818 
7819 	/*
7820 	 * Check whether there is already a timeout scheduled for power
7821 	 * management. If yes then don't lower the power here, that's.
7822 	 * the timeout handler's job.
7823 	 */
7824 	if (un->un_pm_timeid != NULL) {
7825 		timeout_id_t temp_id = un->un_pm_timeid;
7826 		un->un_pm_timeid = NULL;
7827 		mutex_exit(&un->un_pm_mutex);
7828 		/*
7829 		 * Timeout is active; cancel it.
7830 		 * Note that it'll never be active on a device
7831 		 * that does not support PM therefore we don't
7832 		 * have to check before calling pm_idle_component.
7833 		 */
7834 		(void) untimeout(temp_id);
7835 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7836 
7837 	} else {
7838 		mutex_exit(&un->un_pm_mutex);
7839 		if ((un->un_f_pm_is_enabled == TRUE) &&
7840 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
7841 		    DDI_SUCCESS)) {
7842 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7843 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
7844 			/*
7845 			 * Fix for bug: 4297749, item # 13
7846 			 * The above test now includes a check to see if PM is
7847 			 * supported by this device before call
7848 			 * pm_lower_power().
7849 			 * Note, the following is not dead code. The call to
7850 			 * pm_lower_power above will generate a call back into
7851 			 * our sdpower routine which might result in a timeout
7852 			 * handler getting activated. Therefore the following
7853 			 * code is valid and necessary.
7854 			 */
7855 			mutex_enter(&un->un_pm_mutex);
7856 			if (un->un_pm_timeid != NULL) {
7857 				timeout_id_t temp_id = un->un_pm_timeid;
7858 				un->un_pm_timeid = NULL;
7859 				mutex_exit(&un->un_pm_mutex);
7860 				(void) untimeout(temp_id);
7861 				(void) pm_idle_component(SD_DEVINFO(un), 0);
7862 			} else {
7863 				mutex_exit(&un->un_pm_mutex);
7864 			}
7865 		}
7866 	}
7867 
7868 	/*
7869 	 * Cleanup from the scsi_ifsetcap() calls (437868)
7870 	 * Relocated here from above to be after the call to
7871 	 * pm_lower_power, which was getting errors.
7872 	 */
7873 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7874 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7875 
7876 	/*
7877 	 * Currently, tagged queuing is supported per target based by HBA.
7878 	 * Setting this per lun instance actually sets the capability of this
7879 	 * target in HBA, which affects those luns already attached on the
7880 	 * same target. So during detach, we can only disable this capability
7881 	 * only when this is the only lun left on this target. By doing
7882 	 * this, we assume a target has the same tagged queuing capability
7883 	 * for every lun. The condition can be removed when HBA is changed to
7884 	 * support per lun based tagged queuing capability.
7885 	 */
7886 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
7887 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
7888 	}
7889 
7890 	if (un->un_f_is_fibre == FALSE) {
7891 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
7892 	}
7893 
7894 	/*
7895 	 * Remove any event callbacks, fibre only
7896 	 */
7897 	if (un->un_f_is_fibre == TRUE) {
7898 		if ((un->un_insert_event != NULL) &&
7899 		    (ddi_remove_event_handler(un->un_insert_cb_id) !=
7900 		    DDI_SUCCESS)) {
7901 			/*
7902 			 * Note: We are returning here after having done
7903 			 * substantial cleanup above. This is consistent
7904 			 * with the legacy implementation but this may not
7905 			 * be the right thing to do.
7906 			 */
7907 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7908 			    "sd_dr_detach: Cannot cancel insert event\n");
7909 			goto err_remove_event;
7910 		}
7911 		un->un_insert_event = NULL;
7912 
7913 		if ((un->un_remove_event != NULL) &&
7914 		    (ddi_remove_event_handler(un->un_remove_cb_id) !=
7915 		    DDI_SUCCESS)) {
7916 			/*
7917 			 * Note: We are returning here after having done
7918 			 * substantial cleanup above. This is consistent
7919 			 * with the legacy implementation but this may not
7920 			 * be the right thing to do.
7921 			 */
7922 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7923 			    "sd_dr_detach: Cannot cancel remove event\n");
7924 			goto err_remove_event;
7925 		}
7926 		un->un_remove_event = NULL;
7927 	}
7928 
7929 	/* Do not free the softstate if the callback routine is active */
7930 	sd_sync_with_callback(un);
7931 
7932 	cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
7933 	cmlb_free_handle(&un->un_cmlbhandle);
7934 
7935 	/*
7936 	 * Hold the detach mutex here, to make sure that no other threads ever
7937 	 * can access a (partially) freed soft state structure.
7938 	 */
7939 	mutex_enter(&sd_detach_mutex);
7940 
7941 	/*
7942 	 * Clean up the soft state struct.
7943 	 * Cleanup is done in reverse order of allocs/inits.
7944 	 * At this point there should be no competing threads anymore.
7945 	 */
7946 
7947 	/* Unregister and free device id. */
7948 	ddi_devid_unregister(devi);
7949 	if (un->un_devid) {
7950 		ddi_devid_free(un->un_devid);
7951 		un->un_devid = NULL;
7952 	}
7953 
7954 	/*
7955 	 * Destroy wmap cache if it exists.
7956 	 */
7957 	if (un->un_wm_cache != NULL) {
7958 		kmem_cache_destroy(un->un_wm_cache);
7959 		un->un_wm_cache = NULL;
7960 	}
7961 
7962 	/*
7963 	 * kstat cleanup is done in detach for all device types (4363169).
7964 	 * We do not want to fail detach if the device kstats are not deleted
7965 	 * since there is a confusion about the devo_refcnt for the device.
7966 	 * We just delete the kstats and let detach complete successfully.
7967 	 */
7968 	if (un->un_stats != NULL) {
7969 		kstat_delete(un->un_stats);
7970 		un->un_stats = NULL;
7971 	}
7972 	if (un->un_errstats != NULL) {
7973 		kstat_delete(un->un_errstats);
7974 		un->un_errstats = NULL;
7975 	}
7976 
7977 	/* Remove partition stats */
7978 	if (un->un_f_pkstats_enabled) {
7979 		for (i = 0; i < NSDMAP; i++) {
7980 			if (un->un_pstats[i] != NULL) {
7981 				kstat_delete(un->un_pstats[i]);
7982 				un->un_pstats[i] = NULL;
7983 			}
7984 		}
7985 	}
7986 
7987 	/* Remove xbuf registration */
7988 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
7989 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
7990 
7991 	/* Remove driver properties */
7992 	ddi_prop_remove_all(devi);
7993 
7994 	mutex_destroy(&un->un_pm_mutex);
7995 	cv_destroy(&un->un_pm_busy_cv);
7996 
7997 	cv_destroy(&un->un_wcc_cv);
7998 
7999 	/* Open/close semaphore */
8000 	sema_destroy(&un->un_semoclose);
8001 
8002 	/* Removable media condvar. */
8003 	cv_destroy(&un->un_state_cv);
8004 
8005 	/* Suspend/resume condvar. */
8006 	cv_destroy(&un->un_suspend_cv);
8007 	cv_destroy(&un->un_disk_busy_cv);
8008 
8009 	sd_free_rqs(un);
8010 
8011 	/* Free up soft state */
8012 	devp->sd_private = NULL;
8013 
8014 	bzero(un, sizeof (struct sd_lun));
8015 	ddi_soft_state_free(sd_state, instance);
8016 
8017 	mutex_exit(&sd_detach_mutex);
8018 
8019 	/* This frees up the INQUIRY data associated with the device. */
8020 	scsi_unprobe(devp);
8021 
8022 	/*
8023 	 * After successfully detaching an instance, we update the information
8024 	 * of how many luns have been attached in the relative target and
8025 	 * controller for parallel SCSI. This information is used when sd tries
8026 	 * to set the tagged queuing capability in HBA.
8027 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
8028 	 * check if the device is parallel SCSI. However, we don't need to
8029 	 * check here because we've already checked during attach. No device
8030 	 * that is not parallel SCSI is in the chain.
8031 	 */
8032 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
8033 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
8034 	}
8035 
8036 	return (DDI_SUCCESS);
8037 
8038 err_notclosed:
8039 	mutex_exit(SD_MUTEX(un));
8040 
8041 err_stillbusy:
8042 	_NOTE(NO_COMPETING_THREADS_NOW);
8043 
8044 err_remove_event:
8045 	mutex_enter(&sd_detach_mutex);
8046 	un->un_detach_count--;
8047 	mutex_exit(&sd_detach_mutex);
8048 
8049 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
8050 	return (DDI_FAILURE);
8051 }
8052 
8053 
8054 /*
8055  *    Function: sd_create_errstats
8056  *
8057  * Description: This routine instantiates the device error stats.
8058  *
8059  *		Note: During attach the stats are instantiated first so they are
8060  *		available for attach-time routines that utilize the driver
8061  *		iopath to send commands to the device. The stats are initialized
8062  *		separately so data obtained during some attach-time routines is
8063  *		available. (4362483)
8064  *
8065  *   Arguments: un - driver soft state (unit) structure
8066  *		instance - driver instance
8067  *
8068  *     Context: Kernel thread context
8069  */
8070 
8071 static void
8072 sd_create_errstats(struct sd_lun *un, int instance)
8073 {
8074 	struct	sd_errstats	*stp;
8075 	char	kstatmodule_err[KSTAT_STRLEN];
8076 	char	kstatname[KSTAT_STRLEN];
8077 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
8078 
8079 	ASSERT(un != NULL);
8080 
8081 	if (un->un_errstats != NULL) {
8082 		return;
8083 	}
8084 
8085 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
8086 	    "%serr", sd_label);
8087 	(void) snprintf(kstatname, sizeof (kstatname),
8088 	    "%s%d,err", sd_label, instance);
8089 
8090 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
8091 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
8092 
8093 	if (un->un_errstats == NULL) {
8094 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8095 		    "sd_create_errstats: Failed kstat_create\n");
8096 		return;
8097 	}
8098 
8099 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8100 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
8101 	    KSTAT_DATA_UINT32);
8102 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
8103 	    KSTAT_DATA_UINT32);
8104 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
8105 	    KSTAT_DATA_UINT32);
8106 	kstat_named_init(&stp->sd_vid,		"Vendor",
8107 	    KSTAT_DATA_CHAR);
8108 	kstat_named_init(&stp->sd_pid,		"Product",
8109 	    KSTAT_DATA_CHAR);
8110 	kstat_named_init(&stp->sd_revision,	"Revision",
8111 	    KSTAT_DATA_CHAR);
8112 	kstat_named_init(&stp->sd_serial,	"Serial No",
8113 	    KSTAT_DATA_CHAR);
8114 	kstat_named_init(&stp->sd_capacity,	"Size",
8115 	    KSTAT_DATA_ULONGLONG);
8116 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
8117 	    KSTAT_DATA_UINT32);
8118 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
8119 	    KSTAT_DATA_UINT32);
8120 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
8121 	    KSTAT_DATA_UINT32);
8122 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
8123 	    KSTAT_DATA_UINT32);
8124 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
8125 	    KSTAT_DATA_UINT32);
8126 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
8127 	    KSTAT_DATA_UINT32);
8128 
8129 	un->un_errstats->ks_private = un;
8130 	un->un_errstats->ks_update  = nulldev;
8131 
8132 	kstat_install(un->un_errstats);
8133 }
8134 
8135 
8136 /*
8137  *    Function: sd_set_errstats
8138  *
8139  * Description: This routine sets the value of the vendor id, product id,
8140  *		revision, serial number, and capacity device error stats.
8141  *
8142  *		Note: During attach the stats are instantiated first so they are
8143  *		available for attach-time routines that utilize the driver
8144  *		iopath to send commands to the device. The stats are initialized
8145  *		separately so data obtained during some attach-time routines is
8146  *		available. (4362483)
8147  *
8148  *   Arguments: un - driver soft state (unit) structure
8149  *
8150  *     Context: Kernel thread context
8151  */
8152 
8153 static void
8154 sd_set_errstats(struct sd_lun *un)
8155 {
8156 	struct	sd_errstats	*stp;
8157 
8158 	ASSERT(un != NULL);
8159 	ASSERT(un->un_errstats != NULL);
8160 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8161 	ASSERT(stp != NULL);
8162 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
8163 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
8164 	(void) strncpy(stp->sd_revision.value.c,
8165 	    un->un_sd->sd_inq->inq_revision, 4);
8166 
8167 	/*
8168 	 * All the errstats are persistent across detach/attach,
8169 	 * so reset all the errstats here in case of the hot
8170 	 * replacement of disk drives, except for not changed
8171 	 * Sun qualified drives.
8172 	 */
8173 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
8174 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8175 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
8176 		stp->sd_softerrs.value.ui32 = 0;
8177 		stp->sd_harderrs.value.ui32 = 0;
8178 		stp->sd_transerrs.value.ui32 = 0;
8179 		stp->sd_rq_media_err.value.ui32 = 0;
8180 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
8181 		stp->sd_rq_nodev_err.value.ui32 = 0;
8182 		stp->sd_rq_recov_err.value.ui32 = 0;
8183 		stp->sd_rq_illrq_err.value.ui32 = 0;
8184 		stp->sd_rq_pfa_err.value.ui32 = 0;
8185 	}
8186 
8187 	/*
8188 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
8189 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
8190 	 * (4376302))
8191 	 */
8192 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
8193 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8194 		    sizeof (SD_INQUIRY(un)->inq_serial));
8195 	}
8196 
8197 	if (un->un_f_blockcount_is_valid != TRUE) {
8198 		/*
8199 		 * Set capacity error stat to 0 for no media. This ensures
8200 		 * a valid capacity is displayed in response to 'iostat -E'
8201 		 * when no media is present in the device.
8202 		 */
8203 		stp->sd_capacity.value.ui64 = 0;
8204 	} else {
8205 		/*
8206 		 * Multiply un_blockcount by un->un_sys_blocksize to get
8207 		 * capacity.
8208 		 *
8209 		 * Note: for non-512 blocksize devices "un_blockcount" has been
8210 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
8211 		 * (un_tgt_blocksize / un->un_sys_blocksize).
8212 		 */
8213 		stp->sd_capacity.value.ui64 = (uint64_t)
8214 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
8215 	}
8216 }
8217 
8218 
8219 /*
8220  *    Function: sd_set_pstats
8221  *
8222  * Description: This routine instantiates and initializes the partition
8223  *              stats for each partition with more than zero blocks.
8224  *		(4363169)
8225  *
8226  *   Arguments: un - driver soft state (unit) structure
8227  *
8228  *     Context: Kernel thread context
8229  */
8230 
8231 static void
8232 sd_set_pstats(struct sd_lun *un)
8233 {
8234 	char	kstatname[KSTAT_STRLEN];
8235 	int	instance;
8236 	int	i;
8237 	diskaddr_t	nblks = 0;
8238 	char	*partname = NULL;
8239 
8240 	ASSERT(un != NULL);
8241 
8242 	instance = ddi_get_instance(SD_DEVINFO(un));
8243 
8244 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
8245 	for (i = 0; i < NSDMAP; i++) {
8246 
8247 		if (cmlb_partinfo(un->un_cmlbhandle, i,
8248 		    &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0)
8249 			continue;
8250 		mutex_enter(SD_MUTEX(un));
8251 
8252 		if ((un->un_pstats[i] == NULL) &&
8253 		    (nblks != 0)) {
8254 
8255 			(void) snprintf(kstatname, sizeof (kstatname),
8256 			    "%s%d,%s", sd_label, instance,
8257 			    partname);
8258 
8259 			un->un_pstats[i] = kstat_create(sd_label,
8260 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
8261 			    1, KSTAT_FLAG_PERSISTENT);
8262 			if (un->un_pstats[i] != NULL) {
8263 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
8264 				kstat_install(un->un_pstats[i]);
8265 			}
8266 		}
8267 		mutex_exit(SD_MUTEX(un));
8268 	}
8269 }
8270 
8271 
8272 #if (defined(__fibre))
8273 /*
8274  *    Function: sd_init_event_callbacks
8275  *
8276  * Description: This routine initializes the insertion and removal event
8277  *		callbacks. (fibre only)
8278  *
8279  *   Arguments: un - driver soft state (unit) structure
8280  *
8281  *     Context: Kernel thread context
8282  */
8283 
8284 static void
8285 sd_init_event_callbacks(struct sd_lun *un)
8286 {
8287 	ASSERT(un != NULL);
8288 
8289 	if ((un->un_insert_event == NULL) &&
8290 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
8291 	    &un->un_insert_event) == DDI_SUCCESS)) {
8292 		/*
8293 		 * Add the callback for an insertion event
8294 		 */
8295 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8296 		    un->un_insert_event, sd_event_callback, (void *)un,
8297 		    &(un->un_insert_cb_id));
8298 	}
8299 
8300 	if ((un->un_remove_event == NULL) &&
8301 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
8302 	    &un->un_remove_event) == DDI_SUCCESS)) {
8303 		/*
8304 		 * Add the callback for a removal event
8305 		 */
8306 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8307 		    un->un_remove_event, sd_event_callback, (void *)un,
8308 		    &(un->un_remove_cb_id));
8309 	}
8310 }
8311 
8312 
8313 /*
8314  *    Function: sd_event_callback
8315  *
8316  * Description: This routine handles insert/remove events (photon). The
8317  *		state is changed to OFFLINE which can be used to supress
8318  *		error msgs. (fibre only)
8319  *
8320  *   Arguments: un - driver soft state (unit) structure
8321  *
8322  *     Context: Callout thread context
8323  */
8324 /* ARGSUSED */
8325 static void
8326 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
8327     void *bus_impldata)
8328 {
8329 	struct sd_lun *un = (struct sd_lun *)arg;
8330 
8331 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
8332 	if (event == un->un_insert_event) {
8333 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
8334 		mutex_enter(SD_MUTEX(un));
8335 		if (un->un_state == SD_STATE_OFFLINE) {
8336 			if (un->un_last_state != SD_STATE_SUSPENDED) {
8337 				un->un_state = un->un_last_state;
8338 			} else {
8339 				/*
8340 				 * We have gone through SUSPEND/RESUME while
8341 				 * we were offline. Restore the last state
8342 				 */
8343 				un->un_state = un->un_save_state;
8344 			}
8345 		}
8346 		mutex_exit(SD_MUTEX(un));
8347 
8348 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
8349 	} else if (event == un->un_remove_event) {
8350 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
8351 		mutex_enter(SD_MUTEX(un));
8352 		/*
8353 		 * We need to handle an event callback that occurs during
8354 		 * the suspend operation, since we don't prevent it.
8355 		 */
8356 		if (un->un_state != SD_STATE_OFFLINE) {
8357 			if (un->un_state != SD_STATE_SUSPENDED) {
8358 				New_state(un, SD_STATE_OFFLINE);
8359 			} else {
8360 				un->un_last_state = SD_STATE_OFFLINE;
8361 			}
8362 		}
8363 		mutex_exit(SD_MUTEX(un));
8364 	} else {
8365 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
8366 		    "!Unknown event\n");
8367 	}
8368 
8369 }
8370 #endif
8371 
8372 /*
8373  *    Function: sd_cache_control()
8374  *
8375  * Description: This routine is the driver entry point for setting
8376  *		read and write caching by modifying the WCE (write cache
8377  *		enable) and RCD (read cache disable) bits of mode
8378  *		page 8 (MODEPAGE_CACHING).
8379  *
8380  *   Arguments: un - driver soft state (unit) structure
8381  *		rcd_flag - flag for controlling the read cache
8382  *		wce_flag - flag for controlling the write cache
8383  *
8384  * Return Code: EIO
8385  *		code returned by sd_send_scsi_MODE_SENSE and
8386  *		sd_send_scsi_MODE_SELECT
8387  *
8388  *     Context: Kernel Thread
8389  */
8390 
8391 static int
8392 sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag)
8393 {
8394 	struct mode_caching	*mode_caching_page;
8395 	uchar_t			*header;
8396 	size_t			buflen;
8397 	int			hdrlen;
8398 	int			bd_len;
8399 	int			rval = 0;
8400 	struct mode_header_grp2	*mhp;
8401 
8402 	ASSERT(un != NULL);
8403 
8404 	/*
8405 	 * Do a test unit ready, otherwise a mode sense may not work if this
8406 	 * is the first command sent to the device after boot.
8407 	 */
8408 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
8409 
8410 	if (un->un_f_cfg_is_atapi == TRUE) {
8411 		hdrlen = MODE_HEADER_LENGTH_GRP2;
8412 	} else {
8413 		hdrlen = MODE_HEADER_LENGTH;
8414 	}
8415 
8416 	/*
8417 	 * Allocate memory for the retrieved mode page and its headers.  Set
8418 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
8419 	 * we get all of the mode sense data otherwise, the mode select
8420 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
8421 	 */
8422 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
8423 	    sizeof (struct mode_cache_scsi3);
8424 
8425 	header = kmem_zalloc(buflen, KM_SLEEP);
8426 
8427 	/* Get the information from the device. */
8428 	if (un->un_f_cfg_is_atapi == TRUE) {
8429 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
8430 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8431 	} else {
8432 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
8433 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8434 	}
8435 	if (rval != 0) {
8436 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8437 		    "sd_cache_control: Mode Sense Failed\n");
8438 		kmem_free(header, buflen);
8439 		return (rval);
8440 	}
8441 
8442 	/*
8443 	 * Determine size of Block Descriptors in order to locate
8444 	 * the mode page data. ATAPI devices return 0, SCSI devices
8445 	 * should return MODE_BLK_DESC_LENGTH.
8446 	 */
8447 	if (un->un_f_cfg_is_atapi == TRUE) {
8448 		mhp	= (struct mode_header_grp2 *)header;
8449 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
8450 	} else {
8451 		bd_len  = ((struct mode_header *)header)->bdesc_length;
8452 	}
8453 
8454 	if (bd_len > MODE_BLK_DESC_LENGTH) {
8455 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
8456 		    "sd_cache_control: Mode Sense returned invalid "
8457 		    "block descriptor length\n");
8458 		kmem_free(header, buflen);
8459 		return (EIO);
8460 	}
8461 
8462 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
8463 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
8464 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
8465 		    " caching page code mismatch %d\n",
8466 		    mode_caching_page->mode_page.code);
8467 		kmem_free(header, buflen);
8468 		return (EIO);
8469 	}
8470 
8471 	/* Check the relevant bits on successful mode sense. */
8472 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
8473 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
8474 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
8475 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
8476 
8477 		size_t sbuflen;
8478 		uchar_t save_pg;
8479 
8480 		/*
8481 		 * Construct select buffer length based on the
8482 		 * length of the sense data returned.
8483 		 */
8484 		sbuflen =  hdrlen + MODE_BLK_DESC_LENGTH +
8485 		    sizeof (struct mode_page) +
8486 		    (int)mode_caching_page->mode_page.length;
8487 
8488 		/*
8489 		 * Set the caching bits as requested.
8490 		 */
8491 		if (rcd_flag == SD_CACHE_ENABLE)
8492 			mode_caching_page->rcd = 0;
8493 		else if (rcd_flag == SD_CACHE_DISABLE)
8494 			mode_caching_page->rcd = 1;
8495 
8496 		if (wce_flag == SD_CACHE_ENABLE)
8497 			mode_caching_page->wce = 1;
8498 		else if (wce_flag == SD_CACHE_DISABLE)
8499 			mode_caching_page->wce = 0;
8500 
8501 		/*
8502 		 * Save the page if the mode sense says the
8503 		 * drive supports it.
8504 		 */
8505 		save_pg = mode_caching_page->mode_page.ps ?
8506 		    SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
8507 
8508 		/* Clear reserved bits before mode select. */
8509 		mode_caching_page->mode_page.ps = 0;
8510 
8511 		/*
8512 		 * Clear out mode header for mode select.
8513 		 * The rest of the retrieved page will be reused.
8514 		 */
8515 		bzero(header, hdrlen);
8516 
8517 		if (un->un_f_cfg_is_atapi == TRUE) {
8518 			mhp = (struct mode_header_grp2 *)header;
8519 			mhp->bdesc_length_hi = bd_len >> 8;
8520 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
8521 		} else {
8522 			((struct mode_header *)header)->bdesc_length = bd_len;
8523 		}
8524 
8525 		/* Issue mode select to change the cache settings */
8526 		if (un->un_f_cfg_is_atapi == TRUE) {
8527 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header,
8528 			    sbuflen, save_pg, SD_PATH_DIRECT);
8529 		} else {
8530 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
8531 			    sbuflen, save_pg, SD_PATH_DIRECT);
8532 		}
8533 	}
8534 
8535 	kmem_free(header, buflen);
8536 	return (rval);
8537 }
8538 
8539 
8540 /*
8541  *    Function: sd_get_write_cache_enabled()
8542  *
8543  * Description: This routine is the driver entry point for determining if
8544  *		write caching is enabled.  It examines the WCE (write cache
8545  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
8546  *
8547  *   Arguments: un - driver soft state (unit) structure
8548  *		is_enabled - pointer to int where write cache enabled state
8549  *		is returned (non-zero -> write cache enabled)
8550  *
8551  *
8552  * Return Code: EIO
8553  *		code returned by sd_send_scsi_MODE_SENSE
8554  *
8555  *     Context: Kernel Thread
8556  *
8557  * NOTE: If ioctl is added to disable write cache, this sequence should
8558  * be followed so that no locking is required for accesses to
8559  * un->un_f_write_cache_enabled:
8560  * 	do mode select to clear wce
8561  * 	do synchronize cache to flush cache
8562  * 	set un->un_f_write_cache_enabled = FALSE
8563  *
8564  * Conversely, an ioctl to enable the write cache should be done
8565  * in this order:
8566  * 	set un->un_f_write_cache_enabled = TRUE
8567  * 	do mode select to set wce
8568  */
8569 
8570 static int
8571 sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled)
8572 {
8573 	struct mode_caching	*mode_caching_page;
8574 	uchar_t			*header;
8575 	size_t			buflen;
8576 	int			hdrlen;
8577 	int			bd_len;
8578 	int			rval = 0;
8579 
8580 	ASSERT(un != NULL);
8581 	ASSERT(is_enabled != NULL);
8582 
8583 	/* in case of error, flag as enabled */
8584 	*is_enabled = TRUE;
8585 
8586 	/*
8587 	 * Do a test unit ready, otherwise a mode sense may not work if this
8588 	 * is the first command sent to the device after boot.
8589 	 */
8590 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
8591 
8592 	if (un->un_f_cfg_is_atapi == TRUE) {
8593 		hdrlen = MODE_HEADER_LENGTH_GRP2;
8594 	} else {
8595 		hdrlen = MODE_HEADER_LENGTH;
8596 	}
8597 
8598 	/*
8599 	 * Allocate memory for the retrieved mode page and its headers.  Set
8600 	 * a pointer to the page itself.
8601 	 */
8602 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
8603 	header = kmem_zalloc(buflen, KM_SLEEP);
8604 
8605 	/* Get the information from the device. */
8606 	if (un->un_f_cfg_is_atapi == TRUE) {
8607 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
8608 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8609 	} else {
8610 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
8611 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8612 	}
8613 	if (rval != 0) {
8614 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8615 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
8616 		kmem_free(header, buflen);
8617 		return (rval);
8618 	}
8619 
8620 	/*
8621 	 * Determine size of Block Descriptors in order to locate
8622 	 * the mode page data. ATAPI devices return 0, SCSI devices
8623 	 * should return MODE_BLK_DESC_LENGTH.
8624 	 */
8625 	if (un->un_f_cfg_is_atapi == TRUE) {
8626 		struct mode_header_grp2	*mhp;
8627 		mhp	= (struct mode_header_grp2 *)header;
8628 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
8629 	} else {
8630 		bd_len  = ((struct mode_header *)header)->bdesc_length;
8631 	}
8632 
8633 	if (bd_len > MODE_BLK_DESC_LENGTH) {
8634 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
8635 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
8636 		    "block descriptor length\n");
8637 		kmem_free(header, buflen);
8638 		return (EIO);
8639 	}
8640 
8641 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
8642 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
8643 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
8644 		    " caching page code mismatch %d\n",
8645 		    mode_caching_page->mode_page.code);
8646 		kmem_free(header, buflen);
8647 		return (EIO);
8648 	}
8649 	*is_enabled = mode_caching_page->wce;
8650 
8651 	kmem_free(header, buflen);
8652 	return (0);
8653 }
8654 
8655 /*
8656  *    Function: sd_get_nv_sup()
8657  *
8658  * Description: This routine is the driver entry point for
8659  * determining whether non-volatile cache is supported. This
8660  * determination process works as follows:
8661  *
8662  * 1. sd first queries sd.conf on whether
8663  * suppress_cache_flush bit is set for this device.
8664  *
8665  * 2. if not there, then queries the internal disk table.
8666  *
8667  * 3. if either sd.conf or internal disk table specifies
8668  * cache flush be suppressed, we don't bother checking
8669  * NV_SUP bit.
8670  *
8671  * If SUPPRESS_CACHE_FLUSH bit is not set to 1, sd queries
8672  * the optional INQUIRY VPD page 0x86. If the device
8673  * supports VPD page 0x86, sd examines the NV_SUP
8674  * (non-volatile cache support) bit in the INQUIRY VPD page
8675  * 0x86:
8676  *   o If NV_SUP bit is set, sd assumes the device has a
8677  *   non-volatile cache and set the
8678  *   un_f_sync_nv_supported to TRUE.
8679  *   o Otherwise cache is not non-volatile,
8680  *   un_f_sync_nv_supported is set to FALSE.
8681  *
8682  * Arguments: un - driver soft state (unit) structure
8683  *
8684  * Return Code:
8685  *
8686  *     Context: Kernel Thread
8687  */
8688 
8689 static void
8690 sd_get_nv_sup(struct sd_lun *un)
8691 {
8692 	int		rval		= 0;
8693 	uchar_t		*inq86		= NULL;
8694 	size_t		inq86_len	= MAX_INQUIRY_SIZE;
8695 	size_t		inq86_resid	= 0;
8696 	struct		dk_callback *dkc;
8697 
8698 	ASSERT(un != NULL);
8699 
8700 	mutex_enter(SD_MUTEX(un));
8701 
8702 	/*
8703 	 * Be conservative on the device's support of
8704 	 * SYNC_NV bit: un_f_sync_nv_supported is
8705 	 * initialized to be false.
8706 	 */
8707 	un->un_f_sync_nv_supported = FALSE;
8708 
8709 	/*
8710 	 * If either sd.conf or internal disk table
8711 	 * specifies cache flush be suppressed, then
8712 	 * we don't bother checking NV_SUP bit.
8713 	 */
8714 	if (un->un_f_suppress_cache_flush == TRUE) {
8715 		mutex_exit(SD_MUTEX(un));
8716 		return;
8717 	}
8718 
8719 	if (sd_check_vpd_page_support(un) == 0 &&
8720 	    un->un_vpd_page_mask & SD_VPD_EXTENDED_DATA_PG) {
8721 		mutex_exit(SD_MUTEX(un));
8722 		/* collect page 86 data if available */
8723 		inq86 = kmem_zalloc(inq86_len, KM_SLEEP);
8724 		rval = sd_send_scsi_INQUIRY(un, inq86, inq86_len,
8725 		    0x01, 0x86, &inq86_resid);
8726 
8727 		if (rval == 0 && (inq86_len - inq86_resid > 6)) {
8728 			SD_TRACE(SD_LOG_COMMON, un,
8729 			    "sd_get_nv_sup: \
8730 			    successfully get VPD page: %x \
8731 			    PAGE LENGTH: %x BYTE 6: %x\n",
8732 			    inq86[1], inq86[3], inq86[6]);
8733 
8734 			mutex_enter(SD_MUTEX(un));
8735 			/*
8736 			 * check the value of NV_SUP bit: only if the device
8737 			 * reports NV_SUP bit to be 1, the
8738 			 * un_f_sync_nv_supported bit will be set to true.
8739 			 */
8740 			if (inq86[6] & SD_VPD_NV_SUP) {
8741 				un->un_f_sync_nv_supported = TRUE;
8742 			}
8743 			mutex_exit(SD_MUTEX(un));
8744 		}
8745 		kmem_free(inq86, inq86_len);
8746 	} else {
8747 		mutex_exit(SD_MUTEX(un));
8748 	}
8749 
8750 	/*
8751 	 * Send a SYNC CACHE command to check whether
8752 	 * SYNC_NV bit is supported. This command should have
8753 	 * un_f_sync_nv_supported set to correct value.
8754 	 */
8755 	mutex_enter(SD_MUTEX(un));
8756 	if (un->un_f_sync_nv_supported) {
8757 		mutex_exit(SD_MUTEX(un));
8758 		dkc = kmem_zalloc(sizeof (struct dk_callback), KM_SLEEP);
8759 		dkc->dkc_flag = FLUSH_VOLATILE;
8760 		(void) sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
8761 
8762 		/*
8763 		 * Send a TEST UNIT READY command to the device. This should
8764 		 * clear any outstanding UNIT ATTENTION that may be present.
8765 		 */
8766 		(void) sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR);
8767 
8768 		kmem_free(dkc, sizeof (struct dk_callback));
8769 	} else {
8770 		mutex_exit(SD_MUTEX(un));
8771 	}
8772 
8773 	SD_TRACE(SD_LOG_COMMON, un, "sd_get_nv_sup: \
8774 	    un_f_suppress_cache_flush is set to %d\n",
8775 	    un->un_f_suppress_cache_flush);
8776 }
8777 
8778 /*
8779  *    Function: sd_make_device
8780  *
8781  * Description: Utility routine to return the Solaris device number from
8782  *		the data in the device's dev_info structure.
8783  *
8784  * Return Code: The Solaris device number
8785  *
8786  *     Context: Any
8787  */
8788 
8789 static dev_t
8790 sd_make_device(dev_info_t *devi)
8791 {
8792 	return (makedevice(ddi_name_to_major(ddi_get_name(devi)),
8793 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
8794 }
8795 
8796 
8797 /*
8798  *    Function: sd_pm_entry
8799  *
8800  * Description: Called at the start of a new command to manage power
8801  *		and busy status of a device. This includes determining whether
8802  *		the current power state of the device is sufficient for
8803  *		performing the command or whether it must be changed.
8804  *		The PM framework is notified appropriately.
8805  *		Only with a return status of DDI_SUCCESS will the
8806  *		component be busy to the framework.
8807  *
8808  *		All callers of sd_pm_entry must check the return status
8809  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
8810  *		of DDI_FAILURE indicates the device failed to power up.
8811  *		In this case un_pm_count has been adjusted so the result
8812  *		on exit is still powered down, ie. count is less than 0.
8813  *		Calling sd_pm_exit with this count value hits an ASSERT.
8814  *
8815  * Return Code: DDI_SUCCESS or DDI_FAILURE
8816  *
8817  *     Context: Kernel thread context.
8818  */
8819 
8820 static int
8821 sd_pm_entry(struct sd_lun *un)
8822 {
8823 	int return_status = DDI_SUCCESS;
8824 
8825 	ASSERT(!mutex_owned(SD_MUTEX(un)));
8826 	ASSERT(!mutex_owned(&un->un_pm_mutex));
8827 
8828 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
8829 
8830 	if (un->un_f_pm_is_enabled == FALSE) {
8831 		SD_TRACE(SD_LOG_IO_PM, un,
8832 		    "sd_pm_entry: exiting, PM not enabled\n");
8833 		return (return_status);
8834 	}
8835 
8836 	/*
8837 	 * Just increment a counter if PM is enabled. On the transition from
8838 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
8839 	 * the count with each IO and mark the device as idle when the count
8840 	 * hits 0.
8841 	 *
8842 	 * If the count is less than 0 the device is powered down. If a powered
8843 	 * down device is successfully powered up then the count must be
8844 	 * incremented to reflect the power up. Note that it'll get incremented
8845 	 * a second time to become busy.
8846 	 *
8847 	 * Because the following has the potential to change the device state
8848 	 * and must release the un_pm_mutex to do so, only one thread can be
8849 	 * allowed through at a time.
8850 	 */
8851 
8852 	mutex_enter(&un->un_pm_mutex);
8853 	while (un->un_pm_busy == TRUE) {
8854 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
8855 	}
8856 	un->un_pm_busy = TRUE;
8857 
8858 	if (un->un_pm_count < 1) {
8859 
8860 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
8861 
8862 		/*
8863 		 * Indicate we are now busy so the framework won't attempt to
8864 		 * power down the device. This call will only fail if either
8865 		 * we passed a bad component number or the device has no
8866 		 * components. Neither of these should ever happen.
8867 		 */
8868 		mutex_exit(&un->un_pm_mutex);
8869 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
8870 		ASSERT(return_status == DDI_SUCCESS);
8871 
8872 		mutex_enter(&un->un_pm_mutex);
8873 
8874 		if (un->un_pm_count < 0) {
8875 			mutex_exit(&un->un_pm_mutex);
8876 
8877 			SD_TRACE(SD_LOG_IO_PM, un,
8878 			    "sd_pm_entry: power up component\n");
8879 
8880 			/*
8881 			 * pm_raise_power will cause sdpower to be called
8882 			 * which brings the device power level to the
8883 			 * desired state, ON in this case. If successful,
8884 			 * un_pm_count and un_power_level will be updated
8885 			 * appropriately.
8886 			 */
8887 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
8888 			    SD_SPINDLE_ON);
8889 
8890 			mutex_enter(&un->un_pm_mutex);
8891 
8892 			if (return_status != DDI_SUCCESS) {
8893 				/*
8894 				 * Power up failed.
8895 				 * Idle the device and adjust the count
8896 				 * so the result on exit is that we're
8897 				 * still powered down, ie. count is less than 0.
8898 				 */
8899 				SD_TRACE(SD_LOG_IO_PM, un,
8900 				    "sd_pm_entry: power up failed,"
8901 				    " idle the component\n");
8902 
8903 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8904 				un->un_pm_count--;
8905 			} else {
8906 				/*
8907 				 * Device is powered up, verify the
8908 				 * count is non-negative.
8909 				 * This is debug only.
8910 				 */
8911 				ASSERT(un->un_pm_count == 0);
8912 			}
8913 		}
8914 
8915 		if (return_status == DDI_SUCCESS) {
8916 			/*
8917 			 * For performance, now that the device has been tagged
8918 			 * as busy, and it's known to be powered up, update the
8919 			 * chain types to use jump tables that do not include
8920 			 * pm. This significantly lowers the overhead and
8921 			 * therefore improves performance.
8922 			 */
8923 
8924 			mutex_exit(&un->un_pm_mutex);
8925 			mutex_enter(SD_MUTEX(un));
8926 			SD_TRACE(SD_LOG_IO_PM, un,
8927 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
8928 			    un->un_uscsi_chain_type);
8929 
8930 			if (un->un_f_non_devbsize_supported) {
8931 				un->un_buf_chain_type =
8932 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
8933 			} else {
8934 				un->un_buf_chain_type =
8935 				    SD_CHAIN_INFO_DISK_NO_PM;
8936 			}
8937 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8938 
8939 			SD_TRACE(SD_LOG_IO_PM, un,
8940 			    "             changed  uscsi_chain_type to   %d\n",
8941 			    un->un_uscsi_chain_type);
8942 			mutex_exit(SD_MUTEX(un));
8943 			mutex_enter(&un->un_pm_mutex);
8944 
8945 			if (un->un_pm_idle_timeid == NULL) {
8946 				/* 300 ms. */
8947 				un->un_pm_idle_timeid =
8948 				    timeout(sd_pm_idletimeout_handler, un,
8949 				    (drv_usectohz((clock_t)300000)));
8950 				/*
8951 				 * Include an extra call to busy which keeps the
8952 				 * device busy with-respect-to the PM layer
8953 				 * until the timer fires, at which time it'll
8954 				 * get the extra idle call.
8955 				 */
8956 				(void) pm_busy_component(SD_DEVINFO(un), 0);
8957 			}
8958 		}
8959 	}
8960 	un->un_pm_busy = FALSE;
8961 	/* Next... */
8962 	cv_signal(&un->un_pm_busy_cv);
8963 
8964 	un->un_pm_count++;
8965 
8966 	SD_TRACE(SD_LOG_IO_PM, un,
8967 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
8968 
8969 	mutex_exit(&un->un_pm_mutex);
8970 
8971 	return (return_status);
8972 }
8973 
8974 
8975 /*
8976  *    Function: sd_pm_exit
8977  *
8978  * Description: Called at the completion of a command to manage busy
8979  *		status for the device. If the device becomes idle the
8980  *		PM framework is notified.
8981  *
8982  *     Context: Kernel thread context
8983  */
8984 
8985 static void
8986 sd_pm_exit(struct sd_lun *un)
8987 {
8988 	ASSERT(!mutex_owned(SD_MUTEX(un)));
8989 	ASSERT(!mutex_owned(&un->un_pm_mutex));
8990 
8991 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
8992 
8993 	/*
8994 	 * After attach the following flag is only read, so don't
8995 	 * take the penalty of acquiring a mutex for it.
8996 	 */
8997 	if (un->un_f_pm_is_enabled == TRUE) {
8998 
8999 		mutex_enter(&un->un_pm_mutex);
9000 		un->un_pm_count--;
9001 
9002 		SD_TRACE(SD_LOG_IO_PM, un,
9003 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
9004 
9005 		ASSERT(un->un_pm_count >= 0);
9006 		if (un->un_pm_count == 0) {
9007 			mutex_exit(&un->un_pm_mutex);
9008 
9009 			SD_TRACE(SD_LOG_IO_PM, un,
9010 			    "sd_pm_exit: idle component\n");
9011 
9012 			(void) pm_idle_component(SD_DEVINFO(un), 0);
9013 
9014 		} else {
9015 			mutex_exit(&un->un_pm_mutex);
9016 		}
9017 	}
9018 
9019 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
9020 }
9021 
9022 
9023 /*
9024  *    Function: sdopen
9025  *
9026  * Description: Driver's open(9e) entry point function.
9027  *
9028  *   Arguments: dev_i   - pointer to device number
9029  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
9030  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9031  *		cred_p  - user credential pointer
9032  *
9033  * Return Code: EINVAL
9034  *		ENXIO
9035  *		EIO
9036  *		EROFS
9037  *		EBUSY
9038  *
9039  *     Context: Kernel thread context
9040  */
9041 /* ARGSUSED */
9042 static int
9043 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
9044 {
9045 	struct sd_lun	*un;
9046 	int		nodelay;
9047 	int		part;
9048 	uint64_t	partmask;
9049 	int		instance;
9050 	dev_t		dev;
9051 	int		rval = EIO;
9052 	diskaddr_t	nblks = 0;
9053 	diskaddr_t	label_cap;
9054 
9055 	/* Validate the open type */
9056 	if (otyp >= OTYPCNT) {
9057 		return (EINVAL);
9058 	}
9059 
9060 	dev = *dev_p;
9061 	instance = SDUNIT(dev);
9062 	mutex_enter(&sd_detach_mutex);
9063 
9064 	/*
9065 	 * Fail the open if there is no softstate for the instance, or
9066 	 * if another thread somewhere is trying to detach the instance.
9067 	 */
9068 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
9069 	    (un->un_detach_count != 0)) {
9070 		mutex_exit(&sd_detach_mutex);
9071 		/*
9072 		 * The probe cache only needs to be cleared when open (9e) fails
9073 		 * with ENXIO (4238046).
9074 		 */
9075 		/*
9076 		 * un-conditionally clearing probe cache is ok with
9077 		 * separate sd/ssd binaries
9078 		 * x86 platform can be an issue with both parallel
9079 		 * and fibre in 1 binary
9080 		 */
9081 		sd_scsi_clear_probe_cache();
9082 		return (ENXIO);
9083 	}
9084 
9085 	/*
9086 	 * The un_layer_count is to prevent another thread in specfs from
9087 	 * trying to detach the instance, which can happen when we are
9088 	 * called from a higher-layer driver instead of thru specfs.
9089 	 * This will not be needed when DDI provides a layered driver
9090 	 * interface that allows specfs to know that an instance is in
9091 	 * use by a layered driver & should not be detached.
9092 	 *
9093 	 * Note: the semantics for layered driver opens are exactly one
9094 	 * close for every open.
9095 	 */
9096 	if (otyp == OTYP_LYR) {
9097 		un->un_layer_count++;
9098 	}
9099 
9100 	/*
9101 	 * Keep a count of the current # of opens in progress. This is because
9102 	 * some layered drivers try to call us as a regular open. This can
9103 	 * cause problems that we cannot prevent, however by keeping this count
9104 	 * we can at least keep our open and detach routines from racing against
9105 	 * each other under such conditions.
9106 	 */
9107 	un->un_opens_in_progress++;
9108 	mutex_exit(&sd_detach_mutex);
9109 
9110 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
9111 	part	 = SDPART(dev);
9112 	partmask = 1 << part;
9113 
9114 	/*
9115 	 * We use a semaphore here in order to serialize
9116 	 * open and close requests on the device.
9117 	 */
9118 	sema_p(&un->un_semoclose);
9119 
9120 	mutex_enter(SD_MUTEX(un));
9121 
9122 	/*
9123 	 * All device accesses go thru sdstrategy() where we check
9124 	 * on suspend status but there could be a scsi_poll command,
9125 	 * which bypasses sdstrategy(), so we need to check pm
9126 	 * status.
9127 	 */
9128 
9129 	if (!nodelay) {
9130 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9131 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9132 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9133 		}
9134 
9135 		mutex_exit(SD_MUTEX(un));
9136 		if (sd_pm_entry(un) != DDI_SUCCESS) {
9137 			rval = EIO;
9138 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
9139 			    "sdopen: sd_pm_entry failed\n");
9140 			goto open_failed_with_pm;
9141 		}
9142 		mutex_enter(SD_MUTEX(un));
9143 	}
9144 
9145 	/* check for previous exclusive open */
9146 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
9147 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9148 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
9149 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
9150 
9151 	if (un->un_exclopen & (partmask)) {
9152 		goto excl_open_fail;
9153 	}
9154 
9155 	if (flag & FEXCL) {
9156 		int i;
9157 		if (un->un_ocmap.lyropen[part]) {
9158 			goto excl_open_fail;
9159 		}
9160 		for (i = 0; i < (OTYPCNT - 1); i++) {
9161 			if (un->un_ocmap.regopen[i] & (partmask)) {
9162 				goto excl_open_fail;
9163 			}
9164 		}
9165 	}
9166 
9167 	/*
9168 	 * Check the write permission if this is a removable media device,
9169 	 * NDELAY has not been set, and writable permission is requested.
9170 	 *
9171 	 * Note: If NDELAY was set and this is write-protected media the WRITE
9172 	 * attempt will fail with EIO as part of the I/O processing. This is a
9173 	 * more permissive implementation that allows the open to succeed and
9174 	 * WRITE attempts to fail when appropriate.
9175 	 */
9176 	if (un->un_f_chk_wp_open) {
9177 		if ((flag & FWRITE) && (!nodelay)) {
9178 			mutex_exit(SD_MUTEX(un));
9179 			/*
9180 			 * Defer the check for write permission on writable
9181 			 * DVD drive till sdstrategy and will not fail open even
9182 			 * if FWRITE is set as the device can be writable
9183 			 * depending upon the media and the media can change
9184 			 * after the call to open().
9185 			 */
9186 			if (un->un_f_dvdram_writable_device == FALSE) {
9187 				if (ISCD(un) || sr_check_wp(dev)) {
9188 				rval = EROFS;
9189 				mutex_enter(SD_MUTEX(un));
9190 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9191 				    "write to cd or write protected media\n");
9192 				goto open_fail;
9193 				}
9194 			}
9195 			mutex_enter(SD_MUTEX(un));
9196 		}
9197 	}
9198 
9199 	/*
9200 	 * If opening in NDELAY/NONBLOCK mode, just return.
9201 	 * Check if disk is ready and has a valid geometry later.
9202 	 */
9203 	if (!nodelay) {
9204 		mutex_exit(SD_MUTEX(un));
9205 		rval = sd_ready_and_valid(un);
9206 		mutex_enter(SD_MUTEX(un));
9207 		/*
9208 		 * Fail if device is not ready or if the number of disk
9209 		 * blocks is zero or negative for non CD devices.
9210 		 */
9211 
9212 		nblks = 0;
9213 
9214 		if (rval == SD_READY_VALID && (!ISCD(un))) {
9215 			/* if cmlb_partinfo fails, nblks remains 0 */
9216 			mutex_exit(SD_MUTEX(un));
9217 			(void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks,
9218 			    NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
9219 			mutex_enter(SD_MUTEX(un));
9220 		}
9221 
9222 		if ((rval != SD_READY_VALID) ||
9223 		    (!ISCD(un) && nblks <= 0)) {
9224 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
9225 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9226 			    "device not ready or invalid disk block value\n");
9227 			goto open_fail;
9228 		}
9229 #if defined(__i386) || defined(__amd64)
9230 	} else {
9231 		uchar_t *cp;
9232 		/*
9233 		 * x86 requires special nodelay handling, so that p0 is
9234 		 * always defined and accessible.
9235 		 * Invalidate geometry only if device is not already open.
9236 		 */
9237 		cp = &un->un_ocmap.chkd[0];
9238 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9239 			if (*cp != (uchar_t)0) {
9240 				break;
9241 			}
9242 			cp++;
9243 		}
9244 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9245 			mutex_exit(SD_MUTEX(un));
9246 			cmlb_invalidate(un->un_cmlbhandle,
9247 			    (void *)SD_PATH_DIRECT);
9248 			mutex_enter(SD_MUTEX(un));
9249 		}
9250 
9251 #endif
9252 	}
9253 
9254 	if (otyp == OTYP_LYR) {
9255 		un->un_ocmap.lyropen[part]++;
9256 	} else {
9257 		un->un_ocmap.regopen[otyp] |= partmask;
9258 	}
9259 
9260 	/* Set up open and exclusive open flags */
9261 	if (flag & FEXCL) {
9262 		un->un_exclopen |= (partmask);
9263 	}
9264 
9265 	/*
9266 	 * If the lun is EFI labeled and lun capacity is greater than the
9267 	 * capacity contained in the label, log a sys-event to notify the
9268 	 * interested module.
9269 	 * To avoid an infinite loop of logging sys-event, we only log the
9270 	 * event when the lun is not opened in NDELAY mode. The event handler
9271 	 * should open the lun in NDELAY mode.
9272 	 */
9273 	if (!(flag & FNDELAY)) {
9274 		mutex_exit(SD_MUTEX(un));
9275 		if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
9276 		    (void*)SD_PATH_DIRECT) == 0) {
9277 			mutex_enter(SD_MUTEX(un));
9278 			if (un->un_f_blockcount_is_valid &&
9279 			    un->un_blockcount > label_cap) {
9280 				mutex_exit(SD_MUTEX(un));
9281 				sd_log_lun_expansion_event(un,
9282 				    (nodelay ? KM_NOSLEEP : KM_SLEEP));
9283 				mutex_enter(SD_MUTEX(un));
9284 			}
9285 		} else {
9286 			mutex_enter(SD_MUTEX(un));
9287 		}
9288 	}
9289 
9290 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9291 	    "open of part %d type %d\n", part, otyp);
9292 
9293 	mutex_exit(SD_MUTEX(un));
9294 	if (!nodelay) {
9295 		sd_pm_exit(un);
9296 	}
9297 
9298 	sema_v(&un->un_semoclose);
9299 
9300 	mutex_enter(&sd_detach_mutex);
9301 	un->un_opens_in_progress--;
9302 	mutex_exit(&sd_detach_mutex);
9303 
9304 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
9305 	return (DDI_SUCCESS);
9306 
9307 excl_open_fail:
9308 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
9309 	rval = EBUSY;
9310 
9311 open_fail:
9312 	mutex_exit(SD_MUTEX(un));
9313 
9314 	/*
9315 	 * On a failed open we must exit the pm management.
9316 	 */
9317 	if (!nodelay) {
9318 		sd_pm_exit(un);
9319 	}
9320 open_failed_with_pm:
9321 	sema_v(&un->un_semoclose);
9322 
9323 	mutex_enter(&sd_detach_mutex);
9324 	un->un_opens_in_progress--;
9325 	if (otyp == OTYP_LYR) {
9326 		un->un_layer_count--;
9327 	}
9328 	mutex_exit(&sd_detach_mutex);
9329 
9330 	return (rval);
9331 }
9332 
9333 
9334 /*
9335  *    Function: sdclose
9336  *
9337  * Description: Driver's close(9e) entry point function.
9338  *
9339  *   Arguments: dev    - device number
9340  *		flag   - file status flag, informational only
9341  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9342  *		cred_p - user credential pointer
9343  *
9344  * Return Code: ENXIO
9345  *
9346  *     Context: Kernel thread context
9347  */
9348 /* ARGSUSED */
9349 static int
9350 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
9351 {
9352 	struct sd_lun	*un;
9353 	uchar_t		*cp;
9354 	int		part;
9355 	int		nodelay;
9356 	int		rval = 0;
9357 
9358 	/* Validate the open type */
9359 	if (otyp >= OTYPCNT) {
9360 		return (ENXIO);
9361 	}
9362 
9363 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9364 		return (ENXIO);
9365 	}
9366 
9367 	part = SDPART(dev);
9368 	nodelay = flag & (FNDELAY | FNONBLOCK);
9369 
9370 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9371 	    "sdclose: close of part %d type %d\n", part, otyp);
9372 
9373 	/*
9374 	 * We use a semaphore here in order to serialize
9375 	 * open and close requests on the device.
9376 	 */
9377 	sema_p(&un->un_semoclose);
9378 
9379 	mutex_enter(SD_MUTEX(un));
9380 
9381 	/* Don't proceed if power is being changed. */
9382 	while (un->un_state == SD_STATE_PM_CHANGING) {
9383 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9384 	}
9385 
9386 	if (un->un_exclopen & (1 << part)) {
9387 		un->un_exclopen &= ~(1 << part);
9388 	}
9389 
9390 	/* Update the open partition map */
9391 	if (otyp == OTYP_LYR) {
9392 		un->un_ocmap.lyropen[part] -= 1;
9393 	} else {
9394 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
9395 	}
9396 
9397 	cp = &un->un_ocmap.chkd[0];
9398 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9399 		if (*cp != NULL) {
9400 			break;
9401 		}
9402 		cp++;
9403 	}
9404 
9405 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9406 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
9407 
9408 		/*
9409 		 * We avoid persistance upon the last close, and set
9410 		 * the throttle back to the maximum.
9411 		 */
9412 		un->un_throttle = un->un_saved_throttle;
9413 
9414 		if (un->un_state == SD_STATE_OFFLINE) {
9415 			if (un->un_f_is_fibre == FALSE) {
9416 				scsi_log(SD_DEVINFO(un), sd_label,
9417 				    CE_WARN, "offline\n");
9418 			}
9419 			mutex_exit(SD_MUTEX(un));
9420 			cmlb_invalidate(un->un_cmlbhandle,
9421 			    (void *)SD_PATH_DIRECT);
9422 			mutex_enter(SD_MUTEX(un));
9423 
9424 		} else {
9425 			/*
9426 			 * Flush any outstanding writes in NVRAM cache.
9427 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
9428 			 * cmd, it may not work for non-Pluto devices.
9429 			 * SYNCHRONIZE CACHE is not required for removables,
9430 			 * except DVD-RAM drives.
9431 			 *
9432 			 * Also note: because SYNCHRONIZE CACHE is currently
9433 			 * the only command issued here that requires the
9434 			 * drive be powered up, only do the power up before
9435 			 * sending the Sync Cache command. If additional
9436 			 * commands are added which require a powered up
9437 			 * drive, the following sequence may have to change.
9438 			 *
9439 			 * And finally, note that parallel SCSI on SPARC
9440 			 * only issues a Sync Cache to DVD-RAM, a newly
9441 			 * supported device.
9442 			 */
9443 #if defined(__i386) || defined(__amd64)
9444 			if (un->un_f_sync_cache_supported ||
9445 			    un->un_f_dvdram_writable_device == TRUE) {
9446 #else
9447 			if (un->un_f_dvdram_writable_device == TRUE) {
9448 #endif
9449 				mutex_exit(SD_MUTEX(un));
9450 				if (sd_pm_entry(un) == DDI_SUCCESS) {
9451 					rval =
9452 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
9453 					    NULL);
9454 					/* ignore error if not supported */
9455 					if (rval == ENOTSUP) {
9456 						rval = 0;
9457 					} else if (rval != 0) {
9458 						rval = EIO;
9459 					}
9460 					sd_pm_exit(un);
9461 				} else {
9462 					rval = EIO;
9463 				}
9464 				mutex_enter(SD_MUTEX(un));
9465 			}
9466 
9467 			/*
9468 			 * For devices which supports DOOR_LOCK, send an ALLOW
9469 			 * MEDIA REMOVAL command, but don't get upset if it
9470 			 * fails. We need to raise the power of the drive before
9471 			 * we can call sd_send_scsi_DOORLOCK()
9472 			 */
9473 			if (un->un_f_doorlock_supported) {
9474 				mutex_exit(SD_MUTEX(un));
9475 				if (sd_pm_entry(un) == DDI_SUCCESS) {
9476 					rval = sd_send_scsi_DOORLOCK(un,
9477 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
9478 
9479 					sd_pm_exit(un);
9480 					if (ISCD(un) && (rval != 0) &&
9481 					    (nodelay != 0)) {
9482 						rval = ENXIO;
9483 					}
9484 				} else {
9485 					rval = EIO;
9486 				}
9487 				mutex_enter(SD_MUTEX(un));
9488 			}
9489 
9490 			/*
9491 			 * If a device has removable media, invalidate all
9492 			 * parameters related to media, such as geometry,
9493 			 * blocksize, and blockcount.
9494 			 */
9495 			if (un->un_f_has_removable_media) {
9496 				sr_ejected(un);
9497 			}
9498 
9499 			/*
9500 			 * Destroy the cache (if it exists) which was
9501 			 * allocated for the write maps since this is
9502 			 * the last close for this media.
9503 			 */
9504 			if (un->un_wm_cache) {
9505 				/*
9506 				 * Check if there are pending commands.
9507 				 * and if there are give a warning and
9508 				 * do not destroy the cache.
9509 				 */
9510 				if (un->un_ncmds_in_driver > 0) {
9511 					scsi_log(SD_DEVINFO(un),
9512 					    sd_label, CE_WARN,
9513 					    "Unable to clean up memory "
9514 					    "because of pending I/O\n");
9515 				} else {
9516 					kmem_cache_destroy(
9517 					    un->un_wm_cache);
9518 					un->un_wm_cache = NULL;
9519 				}
9520 			}
9521 		}
9522 	}
9523 
9524 	mutex_exit(SD_MUTEX(un));
9525 	sema_v(&un->un_semoclose);
9526 
9527 	if (otyp == OTYP_LYR) {
9528 		mutex_enter(&sd_detach_mutex);
9529 		/*
9530 		 * The detach routine may run when the layer count
9531 		 * drops to zero.
9532 		 */
9533 		un->un_layer_count--;
9534 		mutex_exit(&sd_detach_mutex);
9535 	}
9536 
9537 	return (rval);
9538 }
9539 
9540 
9541 /*
9542  *    Function: sd_ready_and_valid
9543  *
9544  * Description: Test if device is ready and has a valid geometry.
9545  *
9546  *   Arguments: dev - device number
9547  *		un  - driver soft state (unit) structure
9548  *
9549  * Return Code: SD_READY_VALID		ready and valid label
9550  *		SD_NOT_READY_VALID	not ready, no label
9551  *		SD_RESERVED_BY_OTHERS	reservation conflict
9552  *
9553  *     Context: Never called at interrupt context.
9554  */
9555 
9556 static int
9557 sd_ready_and_valid(struct sd_lun *un)
9558 {
9559 	struct sd_errstats	*stp;
9560 	uint64_t		capacity;
9561 	uint_t			lbasize;
9562 	int			rval = SD_READY_VALID;
9563 	char			name_str[48];
9564 	int			is_valid;
9565 
9566 	ASSERT(un != NULL);
9567 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9568 
9569 	mutex_enter(SD_MUTEX(un));
9570 	/*
9571 	 * If a device has removable media, we must check if media is
9572 	 * ready when checking if this device is ready and valid.
9573 	 */
9574 	if (un->un_f_has_removable_media) {
9575 		mutex_exit(SD_MUTEX(un));
9576 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
9577 			rval = SD_NOT_READY_VALID;
9578 			mutex_enter(SD_MUTEX(un));
9579 			goto done;
9580 		}
9581 
9582 		is_valid = SD_IS_VALID_LABEL(un);
9583 		mutex_enter(SD_MUTEX(un));
9584 		if (!is_valid ||
9585 		    (un->un_f_blockcount_is_valid == FALSE) ||
9586 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
9587 
9588 			/* capacity has to be read every open. */
9589 			mutex_exit(SD_MUTEX(un));
9590 			if (sd_send_scsi_READ_CAPACITY(un, &capacity,
9591 			    &lbasize, SD_PATH_DIRECT) != 0) {
9592 				cmlb_invalidate(un->un_cmlbhandle,
9593 				    (void *)SD_PATH_DIRECT);
9594 				mutex_enter(SD_MUTEX(un));
9595 				rval = SD_NOT_READY_VALID;
9596 				goto done;
9597 			} else {
9598 				mutex_enter(SD_MUTEX(un));
9599 				sd_update_block_info(un, lbasize, capacity);
9600 			}
9601 		}
9602 
9603 		/*
9604 		 * Check if the media in the device is writable or not.
9605 		 */
9606 		if (!is_valid && ISCD(un)) {
9607 			sd_check_for_writable_cd(un, SD_PATH_DIRECT);
9608 		}
9609 
9610 	} else {
9611 		/*
9612 		 * Do a test unit ready to clear any unit attention from non-cd
9613 		 * devices.
9614 		 */
9615 		mutex_exit(SD_MUTEX(un));
9616 		(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
9617 		mutex_enter(SD_MUTEX(un));
9618 	}
9619 
9620 
9621 	/*
9622 	 * If this is a non 512 block device, allocate space for
9623 	 * the wmap cache. This is being done here since every time
9624 	 * a media is changed this routine will be called and the
9625 	 * block size is a function of media rather than device.
9626 	 */
9627 	if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) {
9628 		if (!(un->un_wm_cache)) {
9629 			(void) snprintf(name_str, sizeof (name_str),
9630 			    "%s%d_cache",
9631 			    ddi_driver_name(SD_DEVINFO(un)),
9632 			    ddi_get_instance(SD_DEVINFO(un)));
9633 			un->un_wm_cache = kmem_cache_create(
9634 			    name_str, sizeof (struct sd_w_map),
9635 			    8, sd_wm_cache_constructor,
9636 			    sd_wm_cache_destructor, NULL,
9637 			    (void *)un, NULL, 0);
9638 			if (!(un->un_wm_cache)) {
9639 					rval = ENOMEM;
9640 					goto done;
9641 			}
9642 		}
9643 	}
9644 
9645 	if (un->un_state == SD_STATE_NORMAL) {
9646 		/*
9647 		 * If the target is not yet ready here (defined by a TUR
9648 		 * failure), invalidate the geometry and print an 'offline'
9649 		 * message. This is a legacy message, as the state of the
9650 		 * target is not actually changed to SD_STATE_OFFLINE.
9651 		 *
9652 		 * If the TUR fails for EACCES (Reservation Conflict),
9653 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
9654 		 * reservation conflict. If the TUR fails for other
9655 		 * reasons, SD_NOT_READY_VALID will be returned.
9656 		 */
9657 		int err;
9658 
9659 		mutex_exit(SD_MUTEX(un));
9660 		err = sd_send_scsi_TEST_UNIT_READY(un, 0);
9661 		mutex_enter(SD_MUTEX(un));
9662 
9663 		if (err != 0) {
9664 			mutex_exit(SD_MUTEX(un));
9665 			cmlb_invalidate(un->un_cmlbhandle,
9666 			    (void *)SD_PATH_DIRECT);
9667 			mutex_enter(SD_MUTEX(un));
9668 			if (err == EACCES) {
9669 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9670 				    "reservation conflict\n");
9671 				rval = SD_RESERVED_BY_OTHERS;
9672 			} else {
9673 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9674 				    "drive offline\n");
9675 				rval = SD_NOT_READY_VALID;
9676 			}
9677 			goto done;
9678 		}
9679 	}
9680 
9681 	if (un->un_f_format_in_progress == FALSE) {
9682 		mutex_exit(SD_MUTEX(un));
9683 		if (cmlb_validate(un->un_cmlbhandle, 0,
9684 		    (void *)SD_PATH_DIRECT) != 0) {
9685 			rval = SD_NOT_READY_VALID;
9686 			mutex_enter(SD_MUTEX(un));
9687 			goto done;
9688 		}
9689 		if (un->un_f_pkstats_enabled) {
9690 			sd_set_pstats(un);
9691 			SD_TRACE(SD_LOG_IO_PARTITION, un,
9692 			    "sd_ready_and_valid: un:0x%p pstats created and "
9693 			    "set\n", un);
9694 		}
9695 		mutex_enter(SD_MUTEX(un));
9696 	}
9697 
9698 	/*
9699 	 * If this device supports DOOR_LOCK command, try and send
9700 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
9701 	 * if it fails. For a CD, however, it is an error
9702 	 */
9703 	if (un->un_f_doorlock_supported) {
9704 		mutex_exit(SD_MUTEX(un));
9705 		if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
9706 		    SD_PATH_DIRECT) != 0) && ISCD(un)) {
9707 			rval = SD_NOT_READY_VALID;
9708 			mutex_enter(SD_MUTEX(un));
9709 			goto done;
9710 		}
9711 		mutex_enter(SD_MUTEX(un));
9712 	}
9713 
9714 	/* The state has changed, inform the media watch routines */
9715 	un->un_mediastate = DKIO_INSERTED;
9716 	cv_broadcast(&un->un_state_cv);
9717 	rval = SD_READY_VALID;
9718 
9719 done:
9720 
9721 	/*
9722 	 * Initialize the capacity kstat value, if no media previously
9723 	 * (capacity kstat is 0) and a media has been inserted
9724 	 * (un_blockcount > 0).
9725 	 */
9726 	if (un->un_errstats != NULL) {
9727 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
9728 		if ((stp->sd_capacity.value.ui64 == 0) &&
9729 		    (un->un_f_blockcount_is_valid == TRUE)) {
9730 			stp->sd_capacity.value.ui64 =
9731 			    (uint64_t)((uint64_t)un->un_blockcount *
9732 			    un->un_sys_blocksize);
9733 		}
9734 	}
9735 
9736 	mutex_exit(SD_MUTEX(un));
9737 	return (rval);
9738 }
9739 
9740 
9741 /*
9742  *    Function: sdmin
9743  *
9744  * Description: Routine to limit the size of a data transfer. Used in
9745  *		conjunction with physio(9F).
9746  *
9747  *   Arguments: bp - pointer to the indicated buf(9S) struct.
9748  *
9749  *     Context: Kernel thread context.
9750  */
9751 
9752 static void
9753 sdmin(struct buf *bp)
9754 {
9755 	struct sd_lun	*un;
9756 	int		instance;
9757 
9758 	instance = SDUNIT(bp->b_edev);
9759 
9760 	un = ddi_get_soft_state(sd_state, instance);
9761 	ASSERT(un != NULL);
9762 
9763 	if (bp->b_bcount > un->un_max_xfer_size) {
9764 		bp->b_bcount = un->un_max_xfer_size;
9765 	}
9766 }
9767 
9768 
9769 /*
9770  *    Function: sdread
9771  *
9772  * Description: Driver's read(9e) entry point function.
9773  *
9774  *   Arguments: dev   - device number
9775  *		uio   - structure pointer describing where data is to be stored
9776  *			in user's space
9777  *		cred_p  - user credential pointer
9778  *
9779  * Return Code: ENXIO
9780  *		EIO
9781  *		EINVAL
9782  *		value returned by physio
9783  *
9784  *     Context: Kernel thread context.
9785  */
9786 /* ARGSUSED */
9787 static int
9788 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
9789 {
9790 	struct sd_lun	*un = NULL;
9791 	int		secmask;
9792 	int		err;
9793 
9794 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9795 		return (ENXIO);
9796 	}
9797 
9798 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9799 
9800 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9801 		mutex_enter(SD_MUTEX(un));
9802 		/*
9803 		 * Because the call to sd_ready_and_valid will issue I/O we
9804 		 * must wait here if either the device is suspended or
9805 		 * if it's power level is changing.
9806 		 */
9807 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9808 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9809 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9810 		}
9811 		un->un_ncmds_in_driver++;
9812 		mutex_exit(SD_MUTEX(un));
9813 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9814 			mutex_enter(SD_MUTEX(un));
9815 			un->un_ncmds_in_driver--;
9816 			ASSERT(un->un_ncmds_in_driver >= 0);
9817 			mutex_exit(SD_MUTEX(un));
9818 			return (EIO);
9819 		}
9820 		mutex_enter(SD_MUTEX(un));
9821 		un->un_ncmds_in_driver--;
9822 		ASSERT(un->un_ncmds_in_driver >= 0);
9823 		mutex_exit(SD_MUTEX(un));
9824 	}
9825 
9826 	/*
9827 	 * Read requests are restricted to multiples of the system block size.
9828 	 */
9829 	secmask = un->un_sys_blocksize - 1;
9830 
9831 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9832 		SD_ERROR(SD_LOG_READ_WRITE, un,
9833 		    "sdread: file offset not modulo %d\n",
9834 		    un->un_sys_blocksize);
9835 		err = EINVAL;
9836 	} else if (uio->uio_iov->iov_len & (secmask)) {
9837 		SD_ERROR(SD_LOG_READ_WRITE, un,
9838 		    "sdread: transfer length not modulo %d\n",
9839 		    un->un_sys_blocksize);
9840 		err = EINVAL;
9841 	} else {
9842 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
9843 	}
9844 	return (err);
9845 }
9846 
9847 
9848 /*
9849  *    Function: sdwrite
9850  *
9851  * Description: Driver's write(9e) entry point function.
9852  *
9853  *   Arguments: dev   - device number
9854  *		uio   - structure pointer describing where data is stored in
9855  *			user's space
9856  *		cred_p  - user credential pointer
9857  *
9858  * Return Code: ENXIO
9859  *		EIO
9860  *		EINVAL
9861  *		value returned by physio
9862  *
9863  *     Context: Kernel thread context.
9864  */
9865 /* ARGSUSED */
9866 static int
9867 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
9868 {
9869 	struct sd_lun	*un = NULL;
9870 	int		secmask;
9871 	int		err;
9872 
9873 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9874 		return (ENXIO);
9875 	}
9876 
9877 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9878 
9879 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9880 		mutex_enter(SD_MUTEX(un));
9881 		/*
9882 		 * Because the call to sd_ready_and_valid will issue I/O we
9883 		 * must wait here if either the device is suspended or
9884 		 * if it's power level is changing.
9885 		 */
9886 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9887 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9888 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9889 		}
9890 		un->un_ncmds_in_driver++;
9891 		mutex_exit(SD_MUTEX(un));
9892 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9893 			mutex_enter(SD_MUTEX(un));
9894 			un->un_ncmds_in_driver--;
9895 			ASSERT(un->un_ncmds_in_driver >= 0);
9896 			mutex_exit(SD_MUTEX(un));
9897 			return (EIO);
9898 		}
9899 		mutex_enter(SD_MUTEX(un));
9900 		un->un_ncmds_in_driver--;
9901 		ASSERT(un->un_ncmds_in_driver >= 0);
9902 		mutex_exit(SD_MUTEX(un));
9903 	}
9904 
9905 	/*
9906 	 * Write requests are restricted to multiples of the system block size.
9907 	 */
9908 	secmask = un->un_sys_blocksize - 1;
9909 
9910 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9911 		SD_ERROR(SD_LOG_READ_WRITE, un,
9912 		    "sdwrite: file offset not modulo %d\n",
9913 		    un->un_sys_blocksize);
9914 		err = EINVAL;
9915 	} else if (uio->uio_iov->iov_len & (secmask)) {
9916 		SD_ERROR(SD_LOG_READ_WRITE, un,
9917 		    "sdwrite: transfer length not modulo %d\n",
9918 		    un->un_sys_blocksize);
9919 		err = EINVAL;
9920 	} else {
9921 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
9922 	}
9923 	return (err);
9924 }
9925 
9926 
9927 /*
9928  *    Function: sdaread
9929  *
9930  * Description: Driver's aread(9e) entry point function.
9931  *
9932  *   Arguments: dev   - device number
9933  *		aio   - structure pointer describing where data is to be stored
9934  *		cred_p  - user credential pointer
9935  *
9936  * Return Code: ENXIO
9937  *		EIO
9938  *		EINVAL
9939  *		value returned by aphysio
9940  *
9941  *     Context: Kernel thread context.
9942  */
9943 /* ARGSUSED */
9944 static int
9945 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
9946 {
9947 	struct sd_lun	*un = NULL;
9948 	struct uio	*uio = aio->aio_uio;
9949 	int		secmask;
9950 	int		err;
9951 
9952 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9953 		return (ENXIO);
9954 	}
9955 
9956 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9957 
9958 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9959 		mutex_enter(SD_MUTEX(un));
9960 		/*
9961 		 * Because the call to sd_ready_and_valid will issue I/O we
9962 		 * must wait here if either the device is suspended or
9963 		 * if it's power level is changing.
9964 		 */
9965 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9966 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9967 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9968 		}
9969 		un->un_ncmds_in_driver++;
9970 		mutex_exit(SD_MUTEX(un));
9971 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9972 			mutex_enter(SD_MUTEX(un));
9973 			un->un_ncmds_in_driver--;
9974 			ASSERT(un->un_ncmds_in_driver >= 0);
9975 			mutex_exit(SD_MUTEX(un));
9976 			return (EIO);
9977 		}
9978 		mutex_enter(SD_MUTEX(un));
9979 		un->un_ncmds_in_driver--;
9980 		ASSERT(un->un_ncmds_in_driver >= 0);
9981 		mutex_exit(SD_MUTEX(un));
9982 	}
9983 
9984 	/*
9985 	 * Read requests are restricted to multiples of the system block size.
9986 	 */
9987 	secmask = un->un_sys_blocksize - 1;
9988 
9989 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9990 		SD_ERROR(SD_LOG_READ_WRITE, un,
9991 		    "sdaread: file offset not modulo %d\n",
9992 		    un->un_sys_blocksize);
9993 		err = EINVAL;
9994 	} else if (uio->uio_iov->iov_len & (secmask)) {
9995 		SD_ERROR(SD_LOG_READ_WRITE, un,
9996 		    "sdaread: transfer length not modulo %d\n",
9997 		    un->un_sys_blocksize);
9998 		err = EINVAL;
9999 	} else {
10000 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
10001 	}
10002 	return (err);
10003 }
10004 
10005 
10006 /*
10007  *    Function: sdawrite
10008  *
10009  * Description: Driver's awrite(9e) entry point function.
10010  *
10011  *   Arguments: dev   - device number
10012  *		aio   - structure pointer describing where data is stored
10013  *		cred_p  - user credential pointer
10014  *
10015  * Return Code: ENXIO
10016  *		EIO
10017  *		EINVAL
10018  *		value returned by aphysio
10019  *
10020  *     Context: Kernel thread context.
10021  */
10022 /* ARGSUSED */
10023 static int
10024 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
10025 {
10026 	struct sd_lun	*un = NULL;
10027 	struct uio	*uio = aio->aio_uio;
10028 	int		secmask;
10029 	int		err;
10030 
10031 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10032 		return (ENXIO);
10033 	}
10034 
10035 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10036 
10037 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10038 		mutex_enter(SD_MUTEX(un));
10039 		/*
10040 		 * Because the call to sd_ready_and_valid will issue I/O we
10041 		 * must wait here if either the device is suspended or
10042 		 * if it's power level is changing.
10043 		 */
10044 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10045 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10046 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10047 		}
10048 		un->un_ncmds_in_driver++;
10049 		mutex_exit(SD_MUTEX(un));
10050 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10051 			mutex_enter(SD_MUTEX(un));
10052 			un->un_ncmds_in_driver--;
10053 			ASSERT(un->un_ncmds_in_driver >= 0);
10054 			mutex_exit(SD_MUTEX(un));
10055 			return (EIO);
10056 		}
10057 		mutex_enter(SD_MUTEX(un));
10058 		un->un_ncmds_in_driver--;
10059 		ASSERT(un->un_ncmds_in_driver >= 0);
10060 		mutex_exit(SD_MUTEX(un));
10061 	}
10062 
10063 	/*
10064 	 * Write requests are restricted to multiples of the system block size.
10065 	 */
10066 	secmask = un->un_sys_blocksize - 1;
10067 
10068 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10069 		SD_ERROR(SD_LOG_READ_WRITE, un,
10070 		    "sdawrite: file offset not modulo %d\n",
10071 		    un->un_sys_blocksize);
10072 		err = EINVAL;
10073 	} else if (uio->uio_iov->iov_len & (secmask)) {
10074 		SD_ERROR(SD_LOG_READ_WRITE, un,
10075 		    "sdawrite: transfer length not modulo %d\n",
10076 		    un->un_sys_blocksize);
10077 		err = EINVAL;
10078 	} else {
10079 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
10080 	}
10081 	return (err);
10082 }
10083 
10084 
10085 
10086 
10087 
10088 /*
10089  * Driver IO processing follows the following sequence:
10090  *
10091  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
10092  *         |                |                     ^
10093  *         v                v                     |
10094  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
10095  *         |                |                     |                   |
10096  *         v                |                     |                   |
10097  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
10098  *         |                |                     ^                   ^
10099  *         v                v                     |                   |
10100  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
10101  *         |                |                     |                   |
10102  *     +---+                |                     +------------+      +-------+
10103  *     |                    |                                  |              |
10104  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10105  *     |                    v                                  |              |
10106  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
10107  *     |                    |                                  ^              |
10108  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10109  *     |                    v                                  |              |
10110  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
10111  *     |                    |                                  ^              |
10112  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10113  *     |                    v                                  |              |
10114  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
10115  *     |                    |                                  ^              |
10116  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
10117  *     |                    v                                  |              |
10118  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
10119  *     |                    |                                  ^              |
10120  *     |                    |                                  |              |
10121  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
10122  *                          |                           ^
10123  *                          v                           |
10124  *                   sd_core_iostart()                  |
10125  *                          |                           |
10126  *                          |                           +------>(*destroypkt)()
10127  *                          +-> sd_start_cmds() <-+     |           |
10128  *                          |                     |     |           v
10129  *                          |                     |     |  scsi_destroy_pkt(9F)
10130  *                          |                     |     |
10131  *                          +->(*initpkt)()       +- sdintr()
10132  *                          |  |                        |  |
10133  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
10134  *                          |  +-> scsi_setup_cdb(9F)   |
10135  *                          |                           |
10136  *                          +--> scsi_transport(9F)     |
10137  *                                     |                |
10138  *                                     +----> SCSA ---->+
10139  *
10140  *
10141  * This code is based upon the following presumptions:
10142  *
10143  *   - iostart and iodone functions operate on buf(9S) structures. These
10144  *     functions perform the necessary operations on the buf(9S) and pass
10145  *     them along to the next function in the chain by using the macros
10146  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
10147  *     (for iodone side functions).
10148  *
10149  *   - The iostart side functions may sleep. The iodone side functions
10150  *     are called under interrupt context and may NOT sleep. Therefore
10151  *     iodone side functions also may not call iostart side functions.
10152  *     (NOTE: iostart side functions should NOT sleep for memory, as
10153  *     this could result in deadlock.)
10154  *
10155  *   - An iostart side function may call its corresponding iodone side
10156  *     function directly (if necessary).
10157  *
10158  *   - In the event of an error, an iostart side function can return a buf(9S)
10159  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
10160  *     b_error in the usual way of course).
10161  *
10162  *   - The taskq mechanism may be used by the iodone side functions to dispatch
10163  *     requests to the iostart side functions.  The iostart side functions in
10164  *     this case would be called under the context of a taskq thread, so it's
10165  *     OK for them to block/sleep/spin in this case.
10166  *
10167  *   - iostart side functions may allocate "shadow" buf(9S) structs and
10168  *     pass them along to the next function in the chain.  The corresponding
10169  *     iodone side functions must coalesce the "shadow" bufs and return
10170  *     the "original" buf to the next higher layer.
10171  *
10172  *   - The b_private field of the buf(9S) struct holds a pointer to
10173  *     an sd_xbuf struct, which contains information needed to
10174  *     construct the scsi_pkt for the command.
10175  *
10176  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
10177  *     layer must acquire & release the SD_MUTEX(un) as needed.
10178  */
10179 
10180 
10181 /*
10182  * Create taskq for all targets in the system. This is created at
10183  * _init(9E) and destroyed at _fini(9E).
10184  *
10185  * Note: here we set the minalloc to a reasonably high number to ensure that
10186  * we will have an adequate supply of task entries available at interrupt time.
10187  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
10188  * sd_create_taskq().  Since we do not want to sleep for allocations at
10189  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
10190  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
10191  * requests any one instant in time.
10192  */
10193 #define	SD_TASKQ_NUMTHREADS	8
10194 #define	SD_TASKQ_MINALLOC	256
10195 #define	SD_TASKQ_MAXALLOC	256
10196 
10197 static taskq_t	*sd_tq = NULL;
10198 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
10199 
10200 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
10201 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
10202 
10203 /*
10204  * The following task queue is being created for the write part of
10205  * read-modify-write of non-512 block size devices.
10206  * Limit the number of threads to 1 for now. This number has been chosen
10207  * considering the fact that it applies only to dvd ram drives/MO drives
10208  * currently. Performance for which is not main criteria at this stage.
10209  * Note: It needs to be explored if we can use a single taskq in future
10210  */
10211 #define	SD_WMR_TASKQ_NUMTHREADS	1
10212 static taskq_t	*sd_wmr_tq = NULL;
10213 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
10214 
10215 /*
10216  *    Function: sd_taskq_create
10217  *
10218  * Description: Create taskq thread(s) and preallocate task entries
10219  *
10220  * Return Code: Returns a pointer to the allocated taskq_t.
10221  *
10222  *     Context: Can sleep. Requires blockable context.
10223  *
10224  *       Notes: - The taskq() facility currently is NOT part of the DDI.
10225  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
10226  *		- taskq_create() will block for memory, also it will panic
10227  *		  if it cannot create the requested number of threads.
10228  *		- Currently taskq_create() creates threads that cannot be
10229  *		  swapped.
10230  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
10231  *		  supply of taskq entries at interrupt time (ie, so that we
10232  *		  do not have to sleep for memory)
10233  */
10234 
10235 static void
10236 sd_taskq_create(void)
10237 {
10238 	char	taskq_name[TASKQ_NAMELEN];
10239 
10240 	ASSERT(sd_tq == NULL);
10241 	ASSERT(sd_wmr_tq == NULL);
10242 
10243 	(void) snprintf(taskq_name, sizeof (taskq_name),
10244 	    "%s_drv_taskq", sd_label);
10245 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
10246 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10247 	    TASKQ_PREPOPULATE));
10248 
10249 	(void) snprintf(taskq_name, sizeof (taskq_name),
10250 	    "%s_rmw_taskq", sd_label);
10251 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
10252 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10253 	    TASKQ_PREPOPULATE));
10254 }
10255 
10256 
10257 /*
10258  *    Function: sd_taskq_delete
10259  *
10260  * Description: Complementary cleanup routine for sd_taskq_create().
10261  *
10262  *     Context: Kernel thread context.
10263  */
10264 
10265 static void
10266 sd_taskq_delete(void)
10267 {
10268 	ASSERT(sd_tq != NULL);
10269 	ASSERT(sd_wmr_tq != NULL);
10270 	taskq_destroy(sd_tq);
10271 	taskq_destroy(sd_wmr_tq);
10272 	sd_tq = NULL;
10273 	sd_wmr_tq = NULL;
10274 }
10275 
10276 
10277 /*
10278  *    Function: sdstrategy
10279  *
10280  * Description: Driver's strategy (9E) entry point function.
10281  *
10282  *   Arguments: bp - pointer to buf(9S)
10283  *
10284  * Return Code: Always returns zero
10285  *
10286  *     Context: Kernel thread context.
10287  */
10288 
10289 static int
10290 sdstrategy(struct buf *bp)
10291 {
10292 	struct sd_lun *un;
10293 
10294 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
10295 	if (un == NULL) {
10296 		bioerror(bp, EIO);
10297 		bp->b_resid = bp->b_bcount;
10298 		biodone(bp);
10299 		return (0);
10300 	}
10301 	/* As was done in the past, fail new cmds. if state is dumping. */
10302 	if (un->un_state == SD_STATE_DUMPING) {
10303 		bioerror(bp, ENXIO);
10304 		bp->b_resid = bp->b_bcount;
10305 		biodone(bp);
10306 		return (0);
10307 	}
10308 
10309 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10310 
10311 	/*
10312 	 * Commands may sneak in while we released the mutex in
10313 	 * DDI_SUSPEND, we should block new commands. However, old
10314 	 * commands that are still in the driver at this point should
10315 	 * still be allowed to drain.
10316 	 */
10317 	mutex_enter(SD_MUTEX(un));
10318 	/*
10319 	 * Must wait here if either the device is suspended or
10320 	 * if it's power level is changing.
10321 	 */
10322 	while ((un->un_state == SD_STATE_SUSPENDED) ||
10323 	    (un->un_state == SD_STATE_PM_CHANGING)) {
10324 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10325 	}
10326 
10327 	un->un_ncmds_in_driver++;
10328 
10329 	/*
10330 	 * atapi: Since we are running the CD for now in PIO mode we need to
10331 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
10332 	 * the HBA's init_pkt routine.
10333 	 */
10334 	if (un->un_f_cfg_is_atapi == TRUE) {
10335 		mutex_exit(SD_MUTEX(un));
10336 		bp_mapin(bp);
10337 		mutex_enter(SD_MUTEX(un));
10338 	}
10339 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
10340 	    un->un_ncmds_in_driver);
10341 
10342 	mutex_exit(SD_MUTEX(un));
10343 
10344 	/*
10345 	 * This will (eventually) allocate the sd_xbuf area and
10346 	 * call sd_xbuf_strategy().  We just want to return the
10347 	 * result of ddi_xbuf_qstrategy so that we have an opt-
10348 	 * imized tail call which saves us a stack frame.
10349 	 */
10350 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
10351 }
10352 
10353 
10354 /*
10355  *    Function: sd_xbuf_strategy
10356  *
10357  * Description: Function for initiating IO operations via the
10358  *		ddi_xbuf_qstrategy() mechanism.
10359  *
10360  *     Context: Kernel thread context.
10361  */
10362 
10363 static void
10364 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
10365 {
10366 	struct sd_lun *un = arg;
10367 
10368 	ASSERT(bp != NULL);
10369 	ASSERT(xp != NULL);
10370 	ASSERT(un != NULL);
10371 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10372 
10373 	/*
10374 	 * Initialize the fields in the xbuf and save a pointer to the
10375 	 * xbuf in bp->b_private.
10376 	 */
10377 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
10378 
10379 	/* Send the buf down the iostart chain */
10380 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
10381 }
10382 
10383 
10384 /*
10385  *    Function: sd_xbuf_init
10386  *
10387  * Description: Prepare the given sd_xbuf struct for use.
10388  *
10389  *   Arguments: un - ptr to softstate
10390  *		bp - ptr to associated buf(9S)
10391  *		xp - ptr to associated sd_xbuf
10392  *		chain_type - IO chain type to use:
10393  *			SD_CHAIN_NULL
10394  *			SD_CHAIN_BUFIO
10395  *			SD_CHAIN_USCSI
10396  *			SD_CHAIN_DIRECT
10397  *			SD_CHAIN_DIRECT_PRIORITY
10398  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
10399  *			initialization; may be NULL if none.
10400  *
10401  *     Context: Kernel thread context
10402  */
10403 
10404 static void
10405 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
10406 	uchar_t chain_type, void *pktinfop)
10407 {
10408 	int index;
10409 
10410 	ASSERT(un != NULL);
10411 	ASSERT(bp != NULL);
10412 	ASSERT(xp != NULL);
10413 
10414 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
10415 	    bp, chain_type);
10416 
10417 	xp->xb_un	= un;
10418 	xp->xb_pktp	= NULL;
10419 	xp->xb_pktinfo	= pktinfop;
10420 	xp->xb_private	= bp->b_private;
10421 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
10422 
10423 	/*
10424 	 * Set up the iostart and iodone chain indexes in the xbuf, based
10425 	 * upon the specified chain type to use.
10426 	 */
10427 	switch (chain_type) {
10428 	case SD_CHAIN_NULL:
10429 		/*
10430 		 * Fall thru to just use the values for the buf type, even
10431 		 * tho for the NULL chain these values will never be used.
10432 		 */
10433 		/* FALLTHRU */
10434 	case SD_CHAIN_BUFIO:
10435 		index = un->un_buf_chain_type;
10436 		break;
10437 	case SD_CHAIN_USCSI:
10438 		index = un->un_uscsi_chain_type;
10439 		break;
10440 	case SD_CHAIN_DIRECT:
10441 		index = un->un_direct_chain_type;
10442 		break;
10443 	case SD_CHAIN_DIRECT_PRIORITY:
10444 		index = un->un_priority_chain_type;
10445 		break;
10446 	default:
10447 		/* We're really broken if we ever get here... */
10448 		panic("sd_xbuf_init: illegal chain type!");
10449 		/*NOTREACHED*/
10450 	}
10451 
10452 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
10453 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
10454 
10455 	/*
10456 	 * It might be a bit easier to simply bzero the entire xbuf above,
10457 	 * but it turns out that since we init a fair number of members anyway,
10458 	 * we save a fair number cycles by doing explicit assignment of zero.
10459 	 */
10460 	xp->xb_pkt_flags	= 0;
10461 	xp->xb_dma_resid	= 0;
10462 	xp->xb_retry_count	= 0;
10463 	xp->xb_victim_retry_count = 0;
10464 	xp->xb_ua_retry_count	= 0;
10465 	xp->xb_nr_retry_count	= 0;
10466 	xp->xb_sense_bp		= NULL;
10467 	xp->xb_sense_status	= 0;
10468 	xp->xb_sense_state	= 0;
10469 	xp->xb_sense_resid	= 0;
10470 
10471 	bp->b_private	= xp;
10472 	bp->b_flags	&= ~(B_DONE | B_ERROR);
10473 	bp->b_resid	= 0;
10474 	bp->av_forw	= NULL;
10475 	bp->av_back	= NULL;
10476 	bioerror(bp, 0);
10477 
10478 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
10479 }
10480 
10481 
10482 /*
10483  *    Function: sd_uscsi_strategy
10484  *
10485  * Description: Wrapper for calling into the USCSI chain via physio(9F)
10486  *
10487  *   Arguments: bp - buf struct ptr
10488  *
10489  * Return Code: Always returns 0
10490  *
10491  *     Context: Kernel thread context
10492  */
10493 
10494 static int
10495 sd_uscsi_strategy(struct buf *bp)
10496 {
10497 	struct sd_lun		*un;
10498 	struct sd_uscsi_info	*uip;
10499 	struct sd_xbuf		*xp;
10500 	uchar_t			chain_type;
10501 
10502 	ASSERT(bp != NULL);
10503 
10504 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
10505 	if (un == NULL) {
10506 		bioerror(bp, EIO);
10507 		bp->b_resid = bp->b_bcount;
10508 		biodone(bp);
10509 		return (0);
10510 	}
10511 
10512 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10513 
10514 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
10515 
10516 	mutex_enter(SD_MUTEX(un));
10517 	/*
10518 	 * atapi: Since we are running the CD for now in PIO mode we need to
10519 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
10520 	 * the HBA's init_pkt routine.
10521 	 */
10522 	if (un->un_f_cfg_is_atapi == TRUE) {
10523 		mutex_exit(SD_MUTEX(un));
10524 		bp_mapin(bp);
10525 		mutex_enter(SD_MUTEX(un));
10526 	}
10527 	un->un_ncmds_in_driver++;
10528 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
10529 	    un->un_ncmds_in_driver);
10530 	mutex_exit(SD_MUTEX(un));
10531 
10532 	/*
10533 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
10534 	 */
10535 	ASSERT(bp->b_private != NULL);
10536 	uip = (struct sd_uscsi_info *)bp->b_private;
10537 
10538 	switch (uip->ui_flags) {
10539 	case SD_PATH_DIRECT:
10540 		chain_type = SD_CHAIN_DIRECT;
10541 		break;
10542 	case SD_PATH_DIRECT_PRIORITY:
10543 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
10544 		break;
10545 	default:
10546 		chain_type = SD_CHAIN_USCSI;
10547 		break;
10548 	}
10549 
10550 	/*
10551 	 * We may allocate extra buf for external USCSI commands. If the
10552 	 * application asks for bigger than 20-byte sense data via USCSI,
10553 	 * SCSA layer will allocate 252 bytes sense buf for that command.
10554 	 */
10555 	if (((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_rqlen >
10556 	    SENSE_LENGTH) {
10557 		xp = kmem_zalloc(sizeof (struct sd_xbuf) - SENSE_LENGTH +
10558 		    MAX_SENSE_LENGTH, KM_SLEEP);
10559 	} else {
10560 		xp = kmem_zalloc(sizeof (struct sd_xbuf), KM_SLEEP);
10561 	}
10562 
10563 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
10564 
10565 	/* Use the index obtained within xbuf_init */
10566 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
10567 
10568 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
10569 
10570 	return (0);
10571 }
10572 
10573 /*
10574  *    Function: sd_send_scsi_cmd
10575  *
10576  * Description: Runs a USCSI command for user (when called thru sdioctl),
10577  *		or for the driver
10578  *
10579  *   Arguments: dev - the dev_t for the device
10580  *		incmd - ptr to a valid uscsi_cmd struct
10581  *		flag - bit flag, indicating open settings, 32/64 bit type
10582  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
10583  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
10584  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
10585  *			to use the USCSI "direct" chain and bypass the normal
10586  *			command waitq.
10587  *
10588  * Return Code: 0 -  successful completion of the given command
10589  *		EIO - scsi_uscsi_handle_command() failed
10590  *		ENXIO  - soft state not found for specified dev
10591  *		EINVAL
10592  *		EFAULT - copyin/copyout error
10593  *		return code of scsi_uscsi_handle_command():
10594  *			EIO
10595  *			ENXIO
10596  *			EACCES
10597  *
10598  *     Context: Waits for command to complete. Can sleep.
10599  */
10600 
10601 static int
10602 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
10603 	enum uio_seg dataspace, int path_flag)
10604 {
10605 	struct sd_uscsi_info	*uip;
10606 	struct uscsi_cmd	*uscmd;
10607 	struct sd_lun	*un;
10608 	int	format = 0;
10609 	int	rval;
10610 
10611 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
10612 	if (un == NULL) {
10613 		return (ENXIO);
10614 	}
10615 
10616 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10617 
10618 #ifdef SDDEBUG
10619 	switch (dataspace) {
10620 	case UIO_USERSPACE:
10621 		SD_TRACE(SD_LOG_IO, un,
10622 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un);
10623 		break;
10624 	case UIO_SYSSPACE:
10625 		SD_TRACE(SD_LOG_IO, un,
10626 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un);
10627 		break;
10628 	default:
10629 		SD_TRACE(SD_LOG_IO, un,
10630 		    "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un);
10631 		break;
10632 	}
10633 #endif
10634 
10635 	rval = scsi_uscsi_alloc_and_copyin((intptr_t)incmd, flag,
10636 	    SD_ADDRESS(un), &uscmd);
10637 	if (rval != 0) {
10638 		SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: "
10639 		    "scsi_uscsi_alloc_and_copyin failed\n", un);
10640 		return (rval);
10641 	}
10642 
10643 	if ((uscmd->uscsi_cdb != NULL) &&
10644 	    (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) {
10645 		mutex_enter(SD_MUTEX(un));
10646 		un->un_f_format_in_progress = TRUE;
10647 		mutex_exit(SD_MUTEX(un));
10648 		format = 1;
10649 	}
10650 
10651 	/*
10652 	 * Allocate an sd_uscsi_info struct and fill it with the info
10653 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
10654 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
10655 	 * since we allocate the buf here in this function, we do not
10656 	 * need to preserve the prior contents of b_private.
10657 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
10658 	 */
10659 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
10660 	uip->ui_flags = path_flag;
10661 	uip->ui_cmdp = uscmd;
10662 
10663 	/*
10664 	 * Commands sent with priority are intended for error recovery
10665 	 * situations, and do not have retries performed.
10666 	 */
10667 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
10668 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
10669 	}
10670 	uscmd->uscsi_flags &= ~USCSI_NOINTR;
10671 
10672 	rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd,
10673 	    sd_uscsi_strategy, NULL, uip);
10674 
10675 #ifdef SDDEBUG
10676 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
10677 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
10678 	    uscmd->uscsi_status, uscmd->uscsi_resid);
10679 	if (uscmd->uscsi_bufaddr != NULL) {
10680 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
10681 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
10682 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
10683 		if (dataspace == UIO_SYSSPACE) {
10684 			SD_DUMP_MEMORY(un, SD_LOG_IO,
10685 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
10686 			    uscmd->uscsi_buflen, SD_LOG_HEX);
10687 		}
10688 	}
10689 #endif
10690 
10691 	if (format == 1) {
10692 		mutex_enter(SD_MUTEX(un));
10693 		un->un_f_format_in_progress = FALSE;
10694 		mutex_exit(SD_MUTEX(un));
10695 	}
10696 
10697 	(void) scsi_uscsi_copyout_and_free((intptr_t)incmd, uscmd);
10698 	kmem_free(uip, sizeof (struct sd_uscsi_info));
10699 
10700 	return (rval);
10701 }
10702 
10703 
10704 /*
10705  *    Function: sd_buf_iodone
10706  *
10707  * Description: Frees the sd_xbuf & returns the buf to its originator.
10708  *
10709  *     Context: May be called from interrupt context.
10710  */
10711 /* ARGSUSED */
10712 static void
10713 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
10714 {
10715 	struct sd_xbuf *xp;
10716 
10717 	ASSERT(un != NULL);
10718 	ASSERT(bp != NULL);
10719 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10720 
10721 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
10722 
10723 	xp = SD_GET_XBUF(bp);
10724 	ASSERT(xp != NULL);
10725 
10726 	mutex_enter(SD_MUTEX(un));
10727 
10728 	/*
10729 	 * Grab time when the cmd completed.
10730 	 * This is used for determining if the system has been
10731 	 * idle long enough to make it idle to the PM framework.
10732 	 * This is for lowering the overhead, and therefore improving
10733 	 * performance per I/O operation.
10734 	 */
10735 	un->un_pm_idle_time = ddi_get_time();
10736 
10737 	un->un_ncmds_in_driver--;
10738 	ASSERT(un->un_ncmds_in_driver >= 0);
10739 	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
10740 	    un->un_ncmds_in_driver);
10741 
10742 	mutex_exit(SD_MUTEX(un));
10743 
10744 	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
10745 	biodone(bp);				/* bp is gone after this */
10746 
10747 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
10748 }
10749 
10750 
10751 /*
10752  *    Function: sd_uscsi_iodone
10753  *
10754  * Description: Frees the sd_xbuf & returns the buf to its originator.
10755  *
10756  *     Context: May be called from interrupt context.
10757  */
10758 /* ARGSUSED */
10759 static void
10760 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
10761 {
10762 	struct sd_xbuf *xp;
10763 
10764 	ASSERT(un != NULL);
10765 	ASSERT(bp != NULL);
10766 
10767 	xp = SD_GET_XBUF(bp);
10768 	ASSERT(xp != NULL);
10769 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10770 
10771 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
10772 
10773 	bp->b_private = xp->xb_private;
10774 
10775 	mutex_enter(SD_MUTEX(un));
10776 
10777 	/*
10778 	 * Grab time when the cmd completed.
10779 	 * This is used for determining if the system has been
10780 	 * idle long enough to make it idle to the PM framework.
10781 	 * This is for lowering the overhead, and therefore improving
10782 	 * performance per I/O operation.
10783 	 */
10784 	un->un_pm_idle_time = ddi_get_time();
10785 
10786 	un->un_ncmds_in_driver--;
10787 	ASSERT(un->un_ncmds_in_driver >= 0);
10788 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
10789 	    un->un_ncmds_in_driver);
10790 
10791 	mutex_exit(SD_MUTEX(un));
10792 
10793 	if (((struct uscsi_cmd *)(xp->xb_pktinfo))->uscsi_rqlen >
10794 	    SENSE_LENGTH) {
10795 		kmem_free(xp, sizeof (struct sd_xbuf) - SENSE_LENGTH +
10796 		    MAX_SENSE_LENGTH);
10797 	} else {
10798 		kmem_free(xp, sizeof (struct sd_xbuf));
10799 	}
10800 
10801 	biodone(bp);
10802 
10803 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
10804 }
10805 
10806 
10807 /*
10808  *    Function: sd_mapblockaddr_iostart
10809  *
10810  * Description: Verify request lies within the partition limits for
10811  *		the indicated minor device.  Issue "overrun" buf if
10812  *		request would exceed partition range.  Converts
10813  *		partition-relative block address to absolute.
10814  *
10815  *     Context: Can sleep
10816  *
10817  *      Issues: This follows what the old code did, in terms of accessing
10818  *		some of the partition info in the unit struct without holding
10819  *		the mutext.  This is a general issue, if the partition info
10820  *		can be altered while IO is in progress... as soon as we send
10821  *		a buf, its partitioning can be invalid before it gets to the
10822  *		device.  Probably the right fix is to move partitioning out
10823  *		of the driver entirely.
10824  */
10825 
10826 static void
10827 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
10828 {
10829 	diskaddr_t	nblocks;	/* #blocks in the given partition */
10830 	daddr_t	blocknum;	/* Block number specified by the buf */
10831 	size_t	requested_nblocks;
10832 	size_t	available_nblocks;
10833 	int	partition;
10834 	diskaddr_t	partition_offset;
10835 	struct sd_xbuf *xp;
10836 
10837 
10838 	ASSERT(un != NULL);
10839 	ASSERT(bp != NULL);
10840 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10841 
10842 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10843 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
10844 
10845 	xp = SD_GET_XBUF(bp);
10846 	ASSERT(xp != NULL);
10847 
10848 	/*
10849 	 * If the geometry is not indicated as valid, attempt to access
10850 	 * the unit & verify the geometry/label. This can be the case for
10851 	 * removable-media devices, of if the device was opened in
10852 	 * NDELAY/NONBLOCK mode.
10853 	 */
10854 	if (!SD_IS_VALID_LABEL(un) &&
10855 	    (sd_ready_and_valid(un) != SD_READY_VALID)) {
10856 		/*
10857 		 * For removable devices it is possible to start an I/O
10858 		 * without a media by opening the device in nodelay mode.
10859 		 * Also for writable CDs there can be many scenarios where
10860 		 * there is no geometry yet but volume manager is trying to
10861 		 * issue a read() just because it can see TOC on the CD. So
10862 		 * do not print a message for removables.
10863 		 */
10864 		if (!un->un_f_has_removable_media) {
10865 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10866 			    "i/o to invalid geometry\n");
10867 		}
10868 		bioerror(bp, EIO);
10869 		bp->b_resid = bp->b_bcount;
10870 		SD_BEGIN_IODONE(index, un, bp);
10871 		return;
10872 	}
10873 
10874 	partition = SDPART(bp->b_edev);
10875 
10876 	nblocks = 0;
10877 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
10878 	    &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT);
10879 
10880 	/*
10881 	 * blocknum is the starting block number of the request. At this
10882 	 * point it is still relative to the start of the minor device.
10883 	 */
10884 	blocknum = xp->xb_blkno;
10885 
10886 	/*
10887 	 * Legacy: If the starting block number is one past the last block
10888 	 * in the partition, do not set B_ERROR in the buf.
10889 	 */
10890 	if (blocknum == nblocks)  {
10891 		goto error_exit;
10892 	}
10893 
10894 	/*
10895 	 * Confirm that the first block of the request lies within the
10896 	 * partition limits. Also the requested number of bytes must be
10897 	 * a multiple of the system block size.
10898 	 */
10899 	if ((blocknum < 0) || (blocknum >= nblocks) ||
10900 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
10901 		bp->b_flags |= B_ERROR;
10902 		goto error_exit;
10903 	}
10904 
10905 	/*
10906 	 * If the requsted # blocks exceeds the available # blocks, that
10907 	 * is an overrun of the partition.
10908 	 */
10909 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
10910 	available_nblocks = (size_t)(nblocks - blocknum);
10911 	ASSERT(nblocks >= blocknum);
10912 
10913 	if (requested_nblocks > available_nblocks) {
10914 		/*
10915 		 * Allocate an "overrun" buf to allow the request to proceed
10916 		 * for the amount of space available in the partition. The
10917 		 * amount not transferred will be added into the b_resid
10918 		 * when the operation is complete. The overrun buf
10919 		 * replaces the original buf here, and the original buf
10920 		 * is saved inside the overrun buf, for later use.
10921 		 */
10922 		size_t resid = SD_SYSBLOCKS2BYTES(un,
10923 		    (offset_t)(requested_nblocks - available_nblocks));
10924 		size_t count = bp->b_bcount - resid;
10925 		/*
10926 		 * Note: count is an unsigned entity thus it'll NEVER
10927 		 * be less than 0 so ASSERT the original values are
10928 		 * correct.
10929 		 */
10930 		ASSERT(bp->b_bcount >= resid);
10931 
10932 		bp = sd_bioclone_alloc(bp, count, blocknum,
10933 		    (int (*)(struct buf *)) sd_mapblockaddr_iodone);
10934 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
10935 		ASSERT(xp != NULL);
10936 	}
10937 
10938 	/* At this point there should be no residual for this buf. */
10939 	ASSERT(bp->b_resid == 0);
10940 
10941 	/* Convert the block number to an absolute address. */
10942 	xp->xb_blkno += partition_offset;
10943 
10944 	SD_NEXT_IOSTART(index, un, bp);
10945 
10946 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10947 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
10948 
10949 	return;
10950 
10951 error_exit:
10952 	bp->b_resid = bp->b_bcount;
10953 	SD_BEGIN_IODONE(index, un, bp);
10954 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10955 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
10956 }
10957 
10958 
10959 /*
10960  *    Function: sd_mapblockaddr_iodone
10961  *
10962  * Description: Completion-side processing for partition management.
10963  *
10964  *     Context: May be called under interrupt context
10965  */
10966 
10967 static void
10968 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
10969 {
10970 	/* int	partition; */	/* Not used, see below. */
10971 	ASSERT(un != NULL);
10972 	ASSERT(bp != NULL);
10973 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10974 
10975 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10976 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
10977 
10978 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
10979 		/*
10980 		 * We have an "overrun" buf to deal with...
10981 		 */
10982 		struct sd_xbuf	*xp;
10983 		struct buf	*obp;	/* ptr to the original buf */
10984 
10985 		xp = SD_GET_XBUF(bp);
10986 		ASSERT(xp != NULL);
10987 
10988 		/* Retrieve the pointer to the original buf */
10989 		obp = (struct buf *)xp->xb_private;
10990 		ASSERT(obp != NULL);
10991 
10992 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
10993 		bioerror(obp, bp->b_error);
10994 
10995 		sd_bioclone_free(bp);
10996 
10997 		/*
10998 		 * Get back the original buf.
10999 		 * Note that since the restoration of xb_blkno below
11000 		 * was removed, the sd_xbuf is not needed.
11001 		 */
11002 		bp = obp;
11003 		/*
11004 		 * xp = SD_GET_XBUF(bp);
11005 		 * ASSERT(xp != NULL);
11006 		 */
11007 	}
11008 
11009 	/*
11010 	 * Convert sd->xb_blkno back to a minor-device relative value.
11011 	 * Note: this has been commented out, as it is not needed in the
11012 	 * current implementation of the driver (ie, since this function
11013 	 * is at the top of the layering chains, so the info will be
11014 	 * discarded) and it is in the "hot" IO path.
11015 	 *
11016 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
11017 	 * xp->xb_blkno -= un->un_offset[partition];
11018 	 */
11019 
11020 	SD_NEXT_IODONE(index, un, bp);
11021 
11022 	SD_TRACE(SD_LOG_IO_PARTITION, un,
11023 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
11024 }
11025 
11026 
11027 /*
11028  *    Function: sd_mapblocksize_iostart
11029  *
11030  * Description: Convert between system block size (un->un_sys_blocksize)
11031  *		and target block size (un->un_tgt_blocksize).
11032  *
11033  *     Context: Can sleep to allocate resources.
11034  *
11035  * Assumptions: A higher layer has already performed any partition validation,
11036  *		and converted the xp->xb_blkno to an absolute value relative
11037  *		to the start of the device.
11038  *
11039  *		It is also assumed that the higher layer has implemented
11040  *		an "overrun" mechanism for the case where the request would
11041  *		read/write beyond the end of a partition.  In this case we
11042  *		assume (and ASSERT) that bp->b_resid == 0.
11043  *
11044  *		Note: The implementation for this routine assumes the target
11045  *		block size remains constant between allocation and transport.
11046  */
11047 
11048 static void
11049 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
11050 {
11051 	struct sd_mapblocksize_info	*bsp;
11052 	struct sd_xbuf			*xp;
11053 	offset_t first_byte;
11054 	daddr_t	start_block, end_block;
11055 	daddr_t	request_bytes;
11056 	ushort_t is_aligned = FALSE;
11057 
11058 	ASSERT(un != NULL);
11059 	ASSERT(bp != NULL);
11060 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11061 	ASSERT(bp->b_resid == 0);
11062 
11063 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
11064 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
11065 
11066 	/*
11067 	 * For a non-writable CD, a write request is an error
11068 	 */
11069 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
11070 	    (un->un_f_mmc_writable_media == FALSE)) {
11071 		bioerror(bp, EIO);
11072 		bp->b_resid = bp->b_bcount;
11073 		SD_BEGIN_IODONE(index, un, bp);
11074 		return;
11075 	}
11076 
11077 	/*
11078 	 * We do not need a shadow buf if the device is using
11079 	 * un->un_sys_blocksize as its block size or if bcount == 0.
11080 	 * In this case there is no layer-private data block allocated.
11081 	 */
11082 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
11083 	    (bp->b_bcount == 0)) {
11084 		goto done;
11085 	}
11086 
11087 #if defined(__i386) || defined(__amd64)
11088 	/* We do not support non-block-aligned transfers for ROD devices */
11089 	ASSERT(!ISROD(un));
11090 #endif
11091 
11092 	xp = SD_GET_XBUF(bp);
11093 	ASSERT(xp != NULL);
11094 
11095 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
11096 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
11097 	    un->un_tgt_blocksize, un->un_sys_blocksize);
11098 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
11099 	    "request start block:0x%x\n", xp->xb_blkno);
11100 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
11101 	    "request len:0x%x\n", bp->b_bcount);
11102 
11103 	/*
11104 	 * Allocate the layer-private data area for the mapblocksize layer.
11105 	 * Layers are allowed to use the xp_private member of the sd_xbuf
11106 	 * struct to store the pointer to their layer-private data block, but
11107 	 * each layer also has the responsibility of restoring the prior
11108 	 * contents of xb_private before returning the buf/xbuf to the
11109 	 * higher layer that sent it.
11110 	 *
11111 	 * Here we save the prior contents of xp->xb_private into the
11112 	 * bsp->mbs_oprivate field of our layer-private data area. This value
11113 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
11114 	 * the layer-private area and returning the buf/xbuf to the layer
11115 	 * that sent it.
11116 	 *
11117 	 * Note that here we use kmem_zalloc for the allocation as there are
11118 	 * parts of the mapblocksize code that expect certain fields to be
11119 	 * zero unless explicitly set to a required value.
11120 	 */
11121 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
11122 	bsp->mbs_oprivate = xp->xb_private;
11123 	xp->xb_private = bsp;
11124 
11125 	/*
11126 	 * This treats the data on the disk (target) as an array of bytes.
11127 	 * first_byte is the byte offset, from the beginning of the device,
11128 	 * to the location of the request. This is converted from a
11129 	 * un->un_sys_blocksize block address to a byte offset, and then back
11130 	 * to a block address based upon a un->un_tgt_blocksize block size.
11131 	 *
11132 	 * xp->xb_blkno should be absolute upon entry into this function,
11133 	 * but, but it is based upon partitions that use the "system"
11134 	 * block size. It must be adjusted to reflect the block size of
11135 	 * the target.
11136 	 *
11137 	 * Note that end_block is actually the block that follows the last
11138 	 * block of the request, but that's what is needed for the computation.
11139 	 */
11140 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
11141 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
11142 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
11143 	    un->un_tgt_blocksize;
11144 
11145 	/* request_bytes is rounded up to a multiple of the target block size */
11146 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
11147 
11148 	/*
11149 	 * See if the starting address of the request and the request
11150 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
11151 	 * then we do not need to allocate a shadow buf to handle the request.
11152 	 */
11153 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
11154 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
11155 		is_aligned = TRUE;
11156 	}
11157 
11158 	if ((bp->b_flags & B_READ) == 0) {
11159 		/*
11160 		 * Lock the range for a write operation. An aligned request is
11161 		 * considered a simple write; otherwise the request must be a
11162 		 * read-modify-write.
11163 		 */
11164 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
11165 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
11166 	}
11167 
11168 	/*
11169 	 * Alloc a shadow buf if the request is not aligned. Also, this is
11170 	 * where the READ command is generated for a read-modify-write. (The
11171 	 * write phase is deferred until after the read completes.)
11172 	 */
11173 	if (is_aligned == FALSE) {
11174 
11175 		struct sd_mapblocksize_info	*shadow_bsp;
11176 		struct sd_xbuf	*shadow_xp;
11177 		struct buf	*shadow_bp;
11178 
11179 		/*
11180 		 * Allocate the shadow buf and it associated xbuf. Note that
11181 		 * after this call the xb_blkno value in both the original
11182 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
11183 		 * same: absolute relative to the start of the device, and
11184 		 * adjusted for the target block size. The b_blkno in the
11185 		 * shadow buf will also be set to this value. We should never
11186 		 * change b_blkno in the original bp however.
11187 		 *
11188 		 * Note also that the shadow buf will always need to be a
11189 		 * READ command, regardless of whether the incoming command
11190 		 * is a READ or a WRITE.
11191 		 */
11192 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
11193 		    xp->xb_blkno,
11194 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
11195 
11196 		shadow_xp = SD_GET_XBUF(shadow_bp);
11197 
11198 		/*
11199 		 * Allocate the layer-private data for the shadow buf.
11200 		 * (No need to preserve xb_private in the shadow xbuf.)
11201 		 */
11202 		shadow_xp->xb_private = shadow_bsp =
11203 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
11204 
11205 		/*
11206 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
11207 		 * to figure out where the start of the user data is (based upon
11208 		 * the system block size) in the data returned by the READ
11209 		 * command (which will be based upon the target blocksize). Note
11210 		 * that this is only really used if the request is unaligned.
11211 		 */
11212 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
11213 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
11214 		ASSERT((bsp->mbs_copy_offset >= 0) &&
11215 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
11216 
11217 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
11218 
11219 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
11220 
11221 		/* Transfer the wmap (if any) to the shadow buf */
11222 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
11223 		bsp->mbs_wmp = NULL;
11224 
11225 		/*
11226 		 * The shadow buf goes on from here in place of the
11227 		 * original buf.
11228 		 */
11229 		shadow_bsp->mbs_orig_bp = bp;
11230 		bp = shadow_bp;
11231 	}
11232 
11233 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
11234 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
11235 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
11236 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
11237 	    request_bytes);
11238 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
11239 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
11240 
11241 done:
11242 	SD_NEXT_IOSTART(index, un, bp);
11243 
11244 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
11245 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
11246 }
11247 
11248 
11249 /*
11250  *    Function: sd_mapblocksize_iodone
11251  *
11252  * Description: Completion side processing for block-size mapping.
11253  *
11254  *     Context: May be called under interrupt context
11255  */
11256 
11257 static void
11258 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
11259 {
11260 	struct sd_mapblocksize_info	*bsp;
11261 	struct sd_xbuf	*xp;
11262 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
11263 	struct buf	*orig_bp;	/* ptr to the original buf */
11264 	offset_t	shadow_end;
11265 	offset_t	request_end;
11266 	offset_t	shadow_start;
11267 	ssize_t		copy_offset;
11268 	size_t		copy_length;
11269 	size_t		shortfall;
11270 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
11271 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
11272 
11273 	ASSERT(un != NULL);
11274 	ASSERT(bp != NULL);
11275 
11276 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
11277 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
11278 
11279 	/*
11280 	 * There is no shadow buf or layer-private data if the target is
11281 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
11282 	 */
11283 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
11284 	    (bp->b_bcount == 0)) {
11285 		goto exit;
11286 	}
11287 
11288 	xp = SD_GET_XBUF(bp);
11289 	ASSERT(xp != NULL);
11290 
11291 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
11292 	bsp = xp->xb_private;
11293 
11294 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
11295 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
11296 
11297 	if (is_write) {
11298 		/*
11299 		 * For a WRITE request we must free up the block range that
11300 		 * we have locked up.  This holds regardless of whether this is
11301 		 * an aligned write request or a read-modify-write request.
11302 		 */
11303 		sd_range_unlock(un, bsp->mbs_wmp);
11304 		bsp->mbs_wmp = NULL;
11305 	}
11306 
11307 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
11308 		/*
11309 		 * An aligned read or write command will have no shadow buf;
11310 		 * there is not much else to do with it.
11311 		 */
11312 		goto done;
11313 	}
11314 
11315 	orig_bp = bsp->mbs_orig_bp;
11316 	ASSERT(orig_bp != NULL);
11317 	orig_xp = SD_GET_XBUF(orig_bp);
11318 	ASSERT(orig_xp != NULL);
11319 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11320 
11321 	if (!is_write && has_wmap) {
11322 		/*
11323 		 * A READ with a wmap means this is the READ phase of a
11324 		 * read-modify-write. If an error occurred on the READ then
11325 		 * we do not proceed with the WRITE phase or copy any data.
11326 		 * Just release the write maps and return with an error.
11327 		 */
11328 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
11329 			orig_bp->b_resid = orig_bp->b_bcount;
11330 			bioerror(orig_bp, bp->b_error);
11331 			sd_range_unlock(un, bsp->mbs_wmp);
11332 			goto freebuf_done;
11333 		}
11334 	}
11335 
11336 	/*
11337 	 * Here is where we set up to copy the data from the shadow buf
11338 	 * into the space associated with the original buf.
11339 	 *
11340 	 * To deal with the conversion between block sizes, these
11341 	 * computations treat the data as an array of bytes, with the
11342 	 * first byte (byte 0) corresponding to the first byte in the
11343 	 * first block on the disk.
11344 	 */
11345 
11346 	/*
11347 	 * shadow_start and shadow_len indicate the location and size of
11348 	 * the data returned with the shadow IO request.
11349 	 */
11350 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
11351 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
11352 
11353 	/*
11354 	 * copy_offset gives the offset (in bytes) from the start of the first
11355 	 * block of the READ request to the beginning of the data.  We retrieve
11356 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
11357 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
11358 	 * data to be copied (in bytes).
11359 	 */
11360 	copy_offset  = bsp->mbs_copy_offset;
11361 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
11362 	copy_length  = orig_bp->b_bcount;
11363 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
11364 
11365 	/*
11366 	 * Set up the resid and error fields of orig_bp as appropriate.
11367 	 */
11368 	if (shadow_end >= request_end) {
11369 		/* We got all the requested data; set resid to zero */
11370 		orig_bp->b_resid = 0;
11371 	} else {
11372 		/*
11373 		 * We failed to get enough data to fully satisfy the original
11374 		 * request. Just copy back whatever data we got and set
11375 		 * up the residual and error code as required.
11376 		 *
11377 		 * 'shortfall' is the amount by which the data received with the
11378 		 * shadow buf has "fallen short" of the requested amount.
11379 		 */
11380 		shortfall = (size_t)(request_end - shadow_end);
11381 
11382 		if (shortfall > orig_bp->b_bcount) {
11383 			/*
11384 			 * We did not get enough data to even partially
11385 			 * fulfill the original request.  The residual is
11386 			 * equal to the amount requested.
11387 			 */
11388 			orig_bp->b_resid = orig_bp->b_bcount;
11389 		} else {
11390 			/*
11391 			 * We did not get all the data that we requested
11392 			 * from the device, but we will try to return what
11393 			 * portion we did get.
11394 			 */
11395 			orig_bp->b_resid = shortfall;
11396 		}
11397 		ASSERT(copy_length >= orig_bp->b_resid);
11398 		copy_length  -= orig_bp->b_resid;
11399 	}
11400 
11401 	/* Propagate the error code from the shadow buf to the original buf */
11402 	bioerror(orig_bp, bp->b_error);
11403 
11404 	if (is_write) {
11405 		goto freebuf_done;	/* No data copying for a WRITE */
11406 	}
11407 
11408 	if (has_wmap) {
11409 		/*
11410 		 * This is a READ command from the READ phase of a
11411 		 * read-modify-write request. We have to copy the data given
11412 		 * by the user OVER the data returned by the READ command,
11413 		 * then convert the command from a READ to a WRITE and send
11414 		 * it back to the target.
11415 		 */
11416 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
11417 		    copy_length);
11418 
11419 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
11420 
11421 		/*
11422 		 * Dispatch the WRITE command to the taskq thread, which
11423 		 * will in turn send the command to the target. When the
11424 		 * WRITE command completes, we (sd_mapblocksize_iodone())
11425 		 * will get called again as part of the iodone chain
11426 		 * processing for it. Note that we will still be dealing
11427 		 * with the shadow buf at that point.
11428 		 */
11429 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
11430 		    KM_NOSLEEP) != 0) {
11431 			/*
11432 			 * Dispatch was successful so we are done. Return
11433 			 * without going any higher up the iodone chain. Do
11434 			 * not free up any layer-private data until after the
11435 			 * WRITE completes.
11436 			 */
11437 			return;
11438 		}
11439 
11440 		/*
11441 		 * Dispatch of the WRITE command failed; set up the error
11442 		 * condition and send this IO back up the iodone chain.
11443 		 */
11444 		bioerror(orig_bp, EIO);
11445 		orig_bp->b_resid = orig_bp->b_bcount;
11446 
11447 	} else {
11448 		/*
11449 		 * This is a regular READ request (ie, not a RMW). Copy the
11450 		 * data from the shadow buf into the original buf. The
11451 		 * copy_offset compensates for any "misalignment" between the
11452 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
11453 		 * original buf (with its un->un_sys_blocksize blocks).
11454 		 */
11455 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
11456 		    copy_length);
11457 	}
11458 
11459 freebuf_done:
11460 
11461 	/*
11462 	 * At this point we still have both the shadow buf AND the original
11463 	 * buf to deal with, as well as the layer-private data area in each.
11464 	 * Local variables are as follows:
11465 	 *
11466 	 * bp -- points to shadow buf
11467 	 * xp -- points to xbuf of shadow buf
11468 	 * bsp -- points to layer-private data area of shadow buf
11469 	 * orig_bp -- points to original buf
11470 	 *
11471 	 * First free the shadow buf and its associated xbuf, then free the
11472 	 * layer-private data area from the shadow buf. There is no need to
11473 	 * restore xb_private in the shadow xbuf.
11474 	 */
11475 	sd_shadow_buf_free(bp);
11476 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
11477 
11478 	/*
11479 	 * Now update the local variables to point to the original buf, xbuf,
11480 	 * and layer-private area.
11481 	 */
11482 	bp = orig_bp;
11483 	xp = SD_GET_XBUF(bp);
11484 	ASSERT(xp != NULL);
11485 	ASSERT(xp == orig_xp);
11486 	bsp = xp->xb_private;
11487 	ASSERT(bsp != NULL);
11488 
11489 done:
11490 	/*
11491 	 * Restore xb_private to whatever it was set to by the next higher
11492 	 * layer in the chain, then free the layer-private data area.
11493 	 */
11494 	xp->xb_private = bsp->mbs_oprivate;
11495 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
11496 
11497 exit:
11498 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
11499 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
11500 
11501 	SD_NEXT_IODONE(index, un, bp);
11502 }
11503 
11504 
11505 /*
11506  *    Function: sd_checksum_iostart
11507  *
11508  * Description: A stub function for a layer that's currently not used.
11509  *		For now just a placeholder.
11510  *
11511  *     Context: Kernel thread context
11512  */
11513 
11514 static void
11515 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
11516 {
11517 	ASSERT(un != NULL);
11518 	ASSERT(bp != NULL);
11519 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11520 	SD_NEXT_IOSTART(index, un, bp);
11521 }
11522 
11523 
11524 /*
11525  *    Function: sd_checksum_iodone
11526  *
11527  * Description: A stub function for a layer that's currently not used.
11528  *		For now just a placeholder.
11529  *
11530  *     Context: May be called under interrupt context
11531  */
11532 
11533 static void
11534 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
11535 {
11536 	ASSERT(un != NULL);
11537 	ASSERT(bp != NULL);
11538 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11539 	SD_NEXT_IODONE(index, un, bp);
11540 }
11541 
11542 
11543 /*
11544  *    Function: sd_checksum_uscsi_iostart
11545  *
11546  * Description: A stub function for a layer that's currently not used.
11547  *		For now just a placeholder.
11548  *
11549  *     Context: Kernel thread context
11550  */
11551 
11552 static void
11553 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
11554 {
11555 	ASSERT(un != NULL);
11556 	ASSERT(bp != NULL);
11557 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11558 	SD_NEXT_IOSTART(index, un, bp);
11559 }
11560 
11561 
11562 /*
11563  *    Function: sd_checksum_uscsi_iodone
11564  *
11565  * Description: A stub function for a layer that's currently not used.
11566  *		For now just a placeholder.
11567  *
11568  *     Context: May be called under interrupt context
11569  */
11570 
11571 static void
11572 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
11573 {
11574 	ASSERT(un != NULL);
11575 	ASSERT(bp != NULL);
11576 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11577 	SD_NEXT_IODONE(index, un, bp);
11578 }
11579 
11580 
11581 /*
11582  *    Function: sd_pm_iostart
11583  *
11584  * Description: iostart-side routine for Power mangement.
11585  *
11586  *     Context: Kernel thread context
11587  */
11588 
11589 static void
11590 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
11591 {
11592 	ASSERT(un != NULL);
11593 	ASSERT(bp != NULL);
11594 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11595 	ASSERT(!mutex_owned(&un->un_pm_mutex));
11596 
11597 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
11598 
11599 	if (sd_pm_entry(un) != DDI_SUCCESS) {
11600 		/*
11601 		 * Set up to return the failed buf back up the 'iodone'
11602 		 * side of the calling chain.
11603 		 */
11604 		bioerror(bp, EIO);
11605 		bp->b_resid = bp->b_bcount;
11606 
11607 		SD_BEGIN_IODONE(index, un, bp);
11608 
11609 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
11610 		return;
11611 	}
11612 
11613 	SD_NEXT_IOSTART(index, un, bp);
11614 
11615 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
11616 }
11617 
11618 
11619 /*
11620  *    Function: sd_pm_iodone
11621  *
11622  * Description: iodone-side routine for power mangement.
11623  *
11624  *     Context: may be called from interrupt context
11625  */
11626 
11627 static void
11628 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
11629 {
11630 	ASSERT(un != NULL);
11631 	ASSERT(bp != NULL);
11632 	ASSERT(!mutex_owned(&un->un_pm_mutex));
11633 
11634 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
11635 
11636 	/*
11637 	 * After attach the following flag is only read, so don't
11638 	 * take the penalty of acquiring a mutex for it.
11639 	 */
11640 	if (un->un_f_pm_is_enabled == TRUE) {
11641 		sd_pm_exit(un);
11642 	}
11643 
11644 	SD_NEXT_IODONE(index, un, bp);
11645 
11646 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
11647 }
11648 
11649 
11650 /*
11651  *    Function: sd_core_iostart
11652  *
11653  * Description: Primary driver function for enqueuing buf(9S) structs from
11654  *		the system and initiating IO to the target device
11655  *
11656  *     Context: Kernel thread context. Can sleep.
11657  *
11658  * Assumptions:  - The given xp->xb_blkno is absolute
11659  *		   (ie, relative to the start of the device).
11660  *		 - The IO is to be done using the native blocksize of
11661  *		   the device, as specified in un->un_tgt_blocksize.
11662  */
11663 /* ARGSUSED */
11664 static void
11665 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
11666 {
11667 	struct sd_xbuf *xp;
11668 
11669 	ASSERT(un != NULL);
11670 	ASSERT(bp != NULL);
11671 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11672 	ASSERT(bp->b_resid == 0);
11673 
11674 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
11675 
11676 	xp = SD_GET_XBUF(bp);
11677 	ASSERT(xp != NULL);
11678 
11679 	mutex_enter(SD_MUTEX(un));
11680 
11681 	/*
11682 	 * If we are currently in the failfast state, fail any new IO
11683 	 * that has B_FAILFAST set, then return.
11684 	 */
11685 	if ((bp->b_flags & B_FAILFAST) &&
11686 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
11687 		mutex_exit(SD_MUTEX(un));
11688 		bioerror(bp, EIO);
11689 		bp->b_resid = bp->b_bcount;
11690 		SD_BEGIN_IODONE(index, un, bp);
11691 		return;
11692 	}
11693 
11694 	if (SD_IS_DIRECT_PRIORITY(xp)) {
11695 		/*
11696 		 * Priority command -- transport it immediately.
11697 		 *
11698 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
11699 		 * because all direct priority commands should be associated
11700 		 * with error recovery actions which we don't want to retry.
11701 		 */
11702 		sd_start_cmds(un, bp);
11703 	} else {
11704 		/*
11705 		 * Normal command -- add it to the wait queue, then start
11706 		 * transporting commands from the wait queue.
11707 		 */
11708 		sd_add_buf_to_waitq(un, bp);
11709 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
11710 		sd_start_cmds(un, NULL);
11711 	}
11712 
11713 	mutex_exit(SD_MUTEX(un));
11714 
11715 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
11716 }
11717 
11718 
11719 /*
11720  *    Function: sd_init_cdb_limits
11721  *
11722  * Description: This is to handle scsi_pkt initialization differences
11723  *		between the driver platforms.
11724  *
11725  *		Legacy behaviors:
11726  *
11727  *		If the block number or the sector count exceeds the
11728  *		capabilities of a Group 0 command, shift over to a
11729  *		Group 1 command. We don't blindly use Group 1
11730  *		commands because a) some drives (CDC Wren IVs) get a
11731  *		bit confused, and b) there is probably a fair amount
11732  *		of speed difference for a target to receive and decode
11733  *		a 10 byte command instead of a 6 byte command.
11734  *
11735  *		The xfer time difference of 6 vs 10 byte CDBs is
11736  *		still significant so this code is still worthwhile.
11737  *		10 byte CDBs are very inefficient with the fas HBA driver
11738  *		and older disks. Each CDB byte took 1 usec with some
11739  *		popular disks.
11740  *
11741  *     Context: Must be called at attach time
11742  */
11743 
11744 static void
11745 sd_init_cdb_limits(struct sd_lun *un)
11746 {
11747 	int hba_cdb_limit;
11748 
11749 	/*
11750 	 * Use CDB_GROUP1 commands for most devices except for
11751 	 * parallel SCSI fixed drives in which case we get better
11752 	 * performance using CDB_GROUP0 commands (where applicable).
11753 	 */
11754 	un->un_mincdb = SD_CDB_GROUP1;
11755 #if !defined(__fibre)
11756 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
11757 	    !un->un_f_has_removable_media) {
11758 		un->un_mincdb = SD_CDB_GROUP0;
11759 	}
11760 #endif
11761 
11762 	/*
11763 	 * Try to read the max-cdb-length supported by HBA.
11764 	 */
11765 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
11766 	if (0 >= un->un_max_hba_cdb) {
11767 		un->un_max_hba_cdb = CDB_GROUP4;
11768 		hba_cdb_limit = SD_CDB_GROUP4;
11769 	} else if (0 < un->un_max_hba_cdb &&
11770 	    un->un_max_hba_cdb < CDB_GROUP1) {
11771 		hba_cdb_limit = SD_CDB_GROUP0;
11772 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
11773 	    un->un_max_hba_cdb < CDB_GROUP5) {
11774 		hba_cdb_limit = SD_CDB_GROUP1;
11775 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
11776 	    un->un_max_hba_cdb < CDB_GROUP4) {
11777 		hba_cdb_limit = SD_CDB_GROUP5;
11778 	} else {
11779 		hba_cdb_limit = SD_CDB_GROUP4;
11780 	}
11781 
11782 	/*
11783 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
11784 	 * commands for fixed disks unless we are building for a 32 bit
11785 	 * kernel.
11786 	 */
11787 #ifdef _LP64
11788 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
11789 	    min(hba_cdb_limit, SD_CDB_GROUP4);
11790 #else
11791 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
11792 	    min(hba_cdb_limit, SD_CDB_GROUP1);
11793 #endif
11794 
11795 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
11796 	    ? sizeof (struct scsi_arq_status) : 1);
11797 	un->un_cmd_timeout = (ushort_t)sd_io_time;
11798 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
11799 }
11800 
11801 
11802 /*
11803  *    Function: sd_initpkt_for_buf
11804  *
11805  * Description: Allocate and initialize for transport a scsi_pkt struct,
11806  *		based upon the info specified in the given buf struct.
11807  *
11808  *		Assumes the xb_blkno in the request is absolute (ie,
11809  *		relative to the start of the device (NOT partition!).
11810  *		Also assumes that the request is using the native block
11811  *		size of the device (as returned by the READ CAPACITY
11812  *		command).
11813  *
11814  * Return Code: SD_PKT_ALLOC_SUCCESS
11815  *		SD_PKT_ALLOC_FAILURE
11816  *		SD_PKT_ALLOC_FAILURE_NO_DMA
11817  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
11818  *
11819  *     Context: Kernel thread and may be called from software interrupt context
11820  *		as part of a sdrunout callback. This function may not block or
11821  *		call routines that block
11822  */
11823 
11824 static int
11825 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
11826 {
11827 	struct sd_xbuf	*xp;
11828 	struct scsi_pkt *pktp = NULL;
11829 	struct sd_lun	*un;
11830 	size_t		blockcount;
11831 	daddr_t		startblock;
11832 	int		rval;
11833 	int		cmd_flags;
11834 
11835 	ASSERT(bp != NULL);
11836 	ASSERT(pktpp != NULL);
11837 	xp = SD_GET_XBUF(bp);
11838 	ASSERT(xp != NULL);
11839 	un = SD_GET_UN(bp);
11840 	ASSERT(un != NULL);
11841 	ASSERT(mutex_owned(SD_MUTEX(un)));
11842 	ASSERT(bp->b_resid == 0);
11843 
11844 	SD_TRACE(SD_LOG_IO_CORE, un,
11845 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
11846 
11847 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11848 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
11849 		/*
11850 		 * Already have a scsi_pkt -- just need DMA resources.
11851 		 * We must recompute the CDB in case the mapping returns
11852 		 * a nonzero pkt_resid.
11853 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
11854 		 * that is being retried, the unmap/remap of the DMA resouces
11855 		 * will result in the entire transfer starting over again
11856 		 * from the very first block.
11857 		 */
11858 		ASSERT(xp->xb_pktp != NULL);
11859 		pktp = xp->xb_pktp;
11860 	} else {
11861 		pktp = NULL;
11862 	}
11863 #endif /* __i386 || __amd64 */
11864 
11865 	startblock = xp->xb_blkno;	/* Absolute block num. */
11866 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
11867 
11868 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11869 
11870 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
11871 
11872 #else
11873 
11874 	cmd_flags = un->un_pkt_flags | xp->xb_pkt_flags;
11875 
11876 #endif
11877 
11878 	/*
11879 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
11880 	 * call scsi_init_pkt, and build the CDB.
11881 	 */
11882 	rval = sd_setup_rw_pkt(un, &pktp, bp,
11883 	    cmd_flags, sdrunout, (caddr_t)un,
11884 	    startblock, blockcount);
11885 
11886 	if (rval == 0) {
11887 		/*
11888 		 * Success.
11889 		 *
11890 		 * If partial DMA is being used and required for this transfer.
11891 		 * set it up here.
11892 		 */
11893 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
11894 		    (pktp->pkt_resid != 0)) {
11895 
11896 			/*
11897 			 * Save the CDB length and pkt_resid for the
11898 			 * next xfer
11899 			 */
11900 			xp->xb_dma_resid = pktp->pkt_resid;
11901 
11902 			/* rezero resid */
11903 			pktp->pkt_resid = 0;
11904 
11905 		} else {
11906 			xp->xb_dma_resid = 0;
11907 		}
11908 
11909 		pktp->pkt_flags = un->un_tagflags;
11910 		pktp->pkt_time  = un->un_cmd_timeout;
11911 		pktp->pkt_comp  = sdintr;
11912 
11913 		pktp->pkt_private = bp;
11914 		*pktpp = pktp;
11915 
11916 		SD_TRACE(SD_LOG_IO_CORE, un,
11917 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
11918 
11919 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11920 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
11921 #endif
11922 
11923 		return (SD_PKT_ALLOC_SUCCESS);
11924 
11925 	}
11926 
11927 	/*
11928 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
11929 	 * from sd_setup_rw_pkt.
11930 	 */
11931 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
11932 
11933 	if (rval == SD_PKT_ALLOC_FAILURE) {
11934 		*pktpp = NULL;
11935 		/*
11936 		 * Set the driver state to RWAIT to indicate the driver
11937 		 * is waiting on resource allocations. The driver will not
11938 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
11939 		 */
11940 		New_state(un, SD_STATE_RWAIT);
11941 
11942 		SD_ERROR(SD_LOG_IO_CORE, un,
11943 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
11944 
11945 		if ((bp->b_flags & B_ERROR) != 0) {
11946 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
11947 		}
11948 		return (SD_PKT_ALLOC_FAILURE);
11949 	} else {
11950 		/*
11951 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
11952 		 *
11953 		 * This should never happen.  Maybe someone messed with the
11954 		 * kernel's minphys?
11955 		 */
11956 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
11957 		    "Request rejected: too large for CDB: "
11958 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
11959 		SD_ERROR(SD_LOG_IO_CORE, un,
11960 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
11961 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
11962 
11963 	}
11964 }
11965 
11966 
11967 /*
11968  *    Function: sd_destroypkt_for_buf
11969  *
11970  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
11971  *
11972  *     Context: Kernel thread or interrupt context
11973  */
11974 
11975 static void
11976 sd_destroypkt_for_buf(struct buf *bp)
11977 {
11978 	ASSERT(bp != NULL);
11979 	ASSERT(SD_GET_UN(bp) != NULL);
11980 
11981 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
11982 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
11983 
11984 	ASSERT(SD_GET_PKTP(bp) != NULL);
11985 	scsi_destroy_pkt(SD_GET_PKTP(bp));
11986 
11987 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
11988 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
11989 }
11990 
11991 /*
11992  *    Function: sd_setup_rw_pkt
11993  *
11994  * Description: Determines appropriate CDB group for the requested LBA
11995  *		and transfer length, calls scsi_init_pkt, and builds
11996  *		the CDB.  Do not use for partial DMA transfers except
11997  *		for the initial transfer since the CDB size must
11998  *		remain constant.
11999  *
12000  *     Context: Kernel thread and may be called from software interrupt
12001  *		context as part of a sdrunout callback. This function may not
12002  *		block or call routines that block
12003  */
12004 
12005 
12006 int
12007 sd_setup_rw_pkt(struct sd_lun *un,
12008     struct scsi_pkt **pktpp, struct buf *bp, int flags,
12009     int (*callback)(caddr_t), caddr_t callback_arg,
12010     diskaddr_t lba, uint32_t blockcount)
12011 {
12012 	struct scsi_pkt *return_pktp;
12013 	union scsi_cdb *cdbp;
12014 	struct sd_cdbinfo *cp = NULL;
12015 	int i;
12016 
12017 	/*
12018 	 * See which size CDB to use, based upon the request.
12019 	 */
12020 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
12021 
12022 		/*
12023 		 * Check lba and block count against sd_cdbtab limits.
12024 		 * In the partial DMA case, we have to use the same size
12025 		 * CDB for all the transfers.  Check lba + blockcount
12026 		 * against the max LBA so we know that segment of the
12027 		 * transfer can use the CDB we select.
12028 		 */
12029 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
12030 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
12031 
12032 			/*
12033 			 * The command will fit into the CDB type
12034 			 * specified by sd_cdbtab[i].
12035 			 */
12036 			cp = sd_cdbtab + i;
12037 
12038 			/*
12039 			 * Call scsi_init_pkt so we can fill in the
12040 			 * CDB.
12041 			 */
12042 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
12043 			    bp, cp->sc_grpcode, un->un_status_len, 0,
12044 			    flags, callback, callback_arg);
12045 
12046 			if (return_pktp != NULL) {
12047 
12048 				/*
12049 				 * Return new value of pkt
12050 				 */
12051 				*pktpp = return_pktp;
12052 
12053 				/*
12054 				 * To be safe, zero the CDB insuring there is
12055 				 * no leftover data from a previous command.
12056 				 */
12057 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
12058 
12059 				/*
12060 				 * Handle partial DMA mapping
12061 				 */
12062 				if (return_pktp->pkt_resid != 0) {
12063 
12064 					/*
12065 					 * Not going to xfer as many blocks as
12066 					 * originally expected
12067 					 */
12068 					blockcount -=
12069 					    SD_BYTES2TGTBLOCKS(un,
12070 					    return_pktp->pkt_resid);
12071 				}
12072 
12073 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
12074 
12075 				/*
12076 				 * Set command byte based on the CDB
12077 				 * type we matched.
12078 				 */
12079 				cdbp->scc_cmd = cp->sc_grpmask |
12080 				    ((bp->b_flags & B_READ) ?
12081 				    SCMD_READ : SCMD_WRITE);
12082 
12083 				SD_FILL_SCSI1_LUN(un, return_pktp);
12084 
12085 				/*
12086 				 * Fill in LBA and length
12087 				 */
12088 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
12089 				    (cp->sc_grpcode == CDB_GROUP4) ||
12090 				    (cp->sc_grpcode == CDB_GROUP0) ||
12091 				    (cp->sc_grpcode == CDB_GROUP5));
12092 
12093 				if (cp->sc_grpcode == CDB_GROUP1) {
12094 					FORMG1ADDR(cdbp, lba);
12095 					FORMG1COUNT(cdbp, blockcount);
12096 					return (0);
12097 				} else if (cp->sc_grpcode == CDB_GROUP4) {
12098 					FORMG4LONGADDR(cdbp, lba);
12099 					FORMG4COUNT(cdbp, blockcount);
12100 					return (0);
12101 				} else if (cp->sc_grpcode == CDB_GROUP0) {
12102 					FORMG0ADDR(cdbp, lba);
12103 					FORMG0COUNT(cdbp, blockcount);
12104 					return (0);
12105 				} else if (cp->sc_grpcode == CDB_GROUP5) {
12106 					FORMG5ADDR(cdbp, lba);
12107 					FORMG5COUNT(cdbp, blockcount);
12108 					return (0);
12109 				}
12110 
12111 				/*
12112 				 * It should be impossible to not match one
12113 				 * of the CDB types above, so we should never
12114 				 * reach this point.  Set the CDB command byte
12115 				 * to test-unit-ready to avoid writing
12116 				 * to somewhere we don't intend.
12117 				 */
12118 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
12119 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
12120 			} else {
12121 				/*
12122 				 * Couldn't get scsi_pkt
12123 				 */
12124 				return (SD_PKT_ALLOC_FAILURE);
12125 			}
12126 		}
12127 	}
12128 
12129 	/*
12130 	 * None of the available CDB types were suitable.  This really
12131 	 * should never happen:  on a 64 bit system we support
12132 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
12133 	 * and on a 32 bit system we will refuse to bind to a device
12134 	 * larger than 2TB so addresses will never be larger than 32 bits.
12135 	 */
12136 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
12137 }
12138 
12139 /*
12140  *    Function: sd_setup_next_rw_pkt
12141  *
12142  * Description: Setup packet for partial DMA transfers, except for the
12143  * 		initial transfer.  sd_setup_rw_pkt should be used for
12144  *		the initial transfer.
12145  *
12146  *     Context: Kernel thread and may be called from interrupt context.
12147  */
12148 
12149 int
12150 sd_setup_next_rw_pkt(struct sd_lun *un,
12151     struct scsi_pkt *pktp, struct buf *bp,
12152     diskaddr_t lba, uint32_t blockcount)
12153 {
12154 	uchar_t com;
12155 	union scsi_cdb *cdbp;
12156 	uchar_t cdb_group_id;
12157 
12158 	ASSERT(pktp != NULL);
12159 	ASSERT(pktp->pkt_cdbp != NULL);
12160 
12161 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
12162 	com = cdbp->scc_cmd;
12163 	cdb_group_id = CDB_GROUPID(com);
12164 
12165 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
12166 	    (cdb_group_id == CDB_GROUPID_1) ||
12167 	    (cdb_group_id == CDB_GROUPID_4) ||
12168 	    (cdb_group_id == CDB_GROUPID_5));
12169 
12170 	/*
12171 	 * Move pkt to the next portion of the xfer.
12172 	 * func is NULL_FUNC so we do not have to release
12173 	 * the disk mutex here.
12174 	 */
12175 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
12176 	    NULL_FUNC, NULL) == pktp) {
12177 		/* Success.  Handle partial DMA */
12178 		if (pktp->pkt_resid != 0) {
12179 			blockcount -=
12180 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
12181 		}
12182 
12183 		cdbp->scc_cmd = com;
12184 		SD_FILL_SCSI1_LUN(un, pktp);
12185 		if (cdb_group_id == CDB_GROUPID_1) {
12186 			FORMG1ADDR(cdbp, lba);
12187 			FORMG1COUNT(cdbp, blockcount);
12188 			return (0);
12189 		} else if (cdb_group_id == CDB_GROUPID_4) {
12190 			FORMG4LONGADDR(cdbp, lba);
12191 			FORMG4COUNT(cdbp, blockcount);
12192 			return (0);
12193 		} else if (cdb_group_id == CDB_GROUPID_0) {
12194 			FORMG0ADDR(cdbp, lba);
12195 			FORMG0COUNT(cdbp, blockcount);
12196 			return (0);
12197 		} else if (cdb_group_id == CDB_GROUPID_5) {
12198 			FORMG5ADDR(cdbp, lba);
12199 			FORMG5COUNT(cdbp, blockcount);
12200 			return (0);
12201 		}
12202 
12203 		/* Unreachable */
12204 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
12205 	}
12206 
12207 	/*
12208 	 * Error setting up next portion of cmd transfer.
12209 	 * Something is definitely very wrong and this
12210 	 * should not happen.
12211 	 */
12212 	return (SD_PKT_ALLOC_FAILURE);
12213 }
12214 
12215 /*
12216  *    Function: sd_initpkt_for_uscsi
12217  *
12218  * Description: Allocate and initialize for transport a scsi_pkt struct,
12219  *		based upon the info specified in the given uscsi_cmd struct.
12220  *
12221  * Return Code: SD_PKT_ALLOC_SUCCESS
12222  *		SD_PKT_ALLOC_FAILURE
12223  *		SD_PKT_ALLOC_FAILURE_NO_DMA
12224  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
12225  *
12226  *     Context: Kernel thread and may be called from software interrupt context
12227  *		as part of a sdrunout callback. This function may not block or
12228  *		call routines that block
12229  */
12230 
12231 static int
12232 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
12233 {
12234 	struct uscsi_cmd *uscmd;
12235 	struct sd_xbuf	*xp;
12236 	struct scsi_pkt	*pktp;
12237 	struct sd_lun	*un;
12238 	uint32_t	flags = 0;
12239 
12240 	ASSERT(bp != NULL);
12241 	ASSERT(pktpp != NULL);
12242 	xp = SD_GET_XBUF(bp);
12243 	ASSERT(xp != NULL);
12244 	un = SD_GET_UN(bp);
12245 	ASSERT(un != NULL);
12246 	ASSERT(mutex_owned(SD_MUTEX(un)));
12247 
12248 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
12249 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
12250 	ASSERT(uscmd != NULL);
12251 
12252 	SD_TRACE(SD_LOG_IO_CORE, un,
12253 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
12254 
12255 	/*
12256 	 * Allocate the scsi_pkt for the command.
12257 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
12258 	 *	 during scsi_init_pkt time and will continue to use the
12259 	 *	 same path as long as the same scsi_pkt is used without
12260 	 *	 intervening scsi_dma_free(). Since uscsi command does
12261 	 *	 not call scsi_dmafree() before retry failed command, it
12262 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
12263 	 *	 set such that scsi_vhci can use other available path for
12264 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
12265 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
12266 	 */
12267 	if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
12268 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
12269 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
12270 		    ((int)(uscmd->uscsi_rqlen) + sizeof (struct scsi_arq_status)
12271 		    - sizeof (struct scsi_extended_sense)), 0,
12272 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL) | PKT_XARQ,
12273 		    sdrunout, (caddr_t)un);
12274 	} else {
12275 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
12276 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
12277 		    sizeof (struct scsi_arq_status), 0,
12278 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
12279 		    sdrunout, (caddr_t)un);
12280 	}
12281 
12282 	if (pktp == NULL) {
12283 		*pktpp = NULL;
12284 		/*
12285 		 * Set the driver state to RWAIT to indicate the driver
12286 		 * is waiting on resource allocations. The driver will not
12287 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
12288 		 */
12289 		New_state(un, SD_STATE_RWAIT);
12290 
12291 		SD_ERROR(SD_LOG_IO_CORE, un,
12292 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
12293 
12294 		if ((bp->b_flags & B_ERROR) != 0) {
12295 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
12296 		}
12297 		return (SD_PKT_ALLOC_FAILURE);
12298 	}
12299 
12300 	/*
12301 	 * We do not do DMA breakup for USCSI commands, so return failure
12302 	 * here if all the needed DMA resources were not allocated.
12303 	 */
12304 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
12305 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
12306 		scsi_destroy_pkt(pktp);
12307 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
12308 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
12309 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
12310 	}
12311 
12312 	/* Init the cdb from the given uscsi struct */
12313 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
12314 	    uscmd->uscsi_cdb[0], 0, 0, 0);
12315 
12316 	SD_FILL_SCSI1_LUN(un, pktp);
12317 
12318 	/*
12319 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
12320 	 * for listing of the supported flags.
12321 	 */
12322 
12323 	if (uscmd->uscsi_flags & USCSI_SILENT) {
12324 		flags |= FLAG_SILENT;
12325 	}
12326 
12327 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
12328 		flags |= FLAG_DIAGNOSE;
12329 	}
12330 
12331 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
12332 		flags |= FLAG_ISOLATE;
12333 	}
12334 
12335 	if (un->un_f_is_fibre == FALSE) {
12336 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
12337 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
12338 		}
12339 	}
12340 
12341 	/*
12342 	 * Set the pkt flags here so we save time later.
12343 	 * Note: These flags are NOT in the uscsi man page!!!
12344 	 */
12345 	if (uscmd->uscsi_flags & USCSI_HEAD) {
12346 		flags |= FLAG_HEAD;
12347 	}
12348 
12349 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
12350 		flags |= FLAG_NOINTR;
12351 	}
12352 
12353 	/*
12354 	 * For tagged queueing, things get a bit complicated.
12355 	 * Check first for head of queue and last for ordered queue.
12356 	 * If neither head nor order, use the default driver tag flags.
12357 	 */
12358 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
12359 		if (uscmd->uscsi_flags & USCSI_HTAG) {
12360 			flags |= FLAG_HTAG;
12361 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
12362 			flags |= FLAG_OTAG;
12363 		} else {
12364 			flags |= un->un_tagflags & FLAG_TAGMASK;
12365 		}
12366 	}
12367 
12368 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
12369 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
12370 	}
12371 
12372 	pktp->pkt_flags = flags;
12373 
12374 	/* Transfer uscsi information to scsi_pkt */
12375 	(void) scsi_uscsi_pktinit(uscmd, pktp);
12376 
12377 	/* Copy the caller's CDB into the pkt... */
12378 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
12379 
12380 	if (uscmd->uscsi_timeout == 0) {
12381 		pktp->pkt_time = un->un_uscsi_timeout;
12382 	} else {
12383 		pktp->pkt_time = uscmd->uscsi_timeout;
12384 	}
12385 
12386 	/* need it later to identify USCSI request in sdintr */
12387 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
12388 
12389 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
12390 
12391 	pktp->pkt_private = bp;
12392 	pktp->pkt_comp = sdintr;
12393 	*pktpp = pktp;
12394 
12395 	SD_TRACE(SD_LOG_IO_CORE, un,
12396 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
12397 
12398 	return (SD_PKT_ALLOC_SUCCESS);
12399 }
12400 
12401 
12402 /*
12403  *    Function: sd_destroypkt_for_uscsi
12404  *
12405  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
12406  *		IOs.. Also saves relevant info into the associated uscsi_cmd
12407  *		struct.
12408  *
12409  *     Context: May be called under interrupt context
12410  */
12411 
12412 static void
12413 sd_destroypkt_for_uscsi(struct buf *bp)
12414 {
12415 	struct uscsi_cmd *uscmd;
12416 	struct sd_xbuf	*xp;
12417 	struct scsi_pkt	*pktp;
12418 	struct sd_lun	*un;
12419 
12420 	ASSERT(bp != NULL);
12421 	xp = SD_GET_XBUF(bp);
12422 	ASSERT(xp != NULL);
12423 	un = SD_GET_UN(bp);
12424 	ASSERT(un != NULL);
12425 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12426 	pktp = SD_GET_PKTP(bp);
12427 	ASSERT(pktp != NULL);
12428 
12429 	SD_TRACE(SD_LOG_IO_CORE, un,
12430 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
12431 
12432 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
12433 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
12434 	ASSERT(uscmd != NULL);
12435 
12436 	/* Save the status and the residual into the uscsi_cmd struct */
12437 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
12438 	uscmd->uscsi_resid  = bp->b_resid;
12439 
12440 	/* Transfer scsi_pkt information to uscsi */
12441 	(void) scsi_uscsi_pktfini(pktp, uscmd);
12442 
12443 	/*
12444 	 * If enabled, copy any saved sense data into the area specified
12445 	 * by the uscsi command.
12446 	 */
12447 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
12448 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
12449 		/*
12450 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
12451 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
12452 		 */
12453 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
12454 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
12455 		if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
12456 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
12457 			    MAX_SENSE_LENGTH);
12458 		} else {
12459 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
12460 			    SENSE_LENGTH);
12461 		}
12462 	}
12463 
12464 	/* We are done with the scsi_pkt; free it now */
12465 	ASSERT(SD_GET_PKTP(bp) != NULL);
12466 	scsi_destroy_pkt(SD_GET_PKTP(bp));
12467 
12468 	SD_TRACE(SD_LOG_IO_CORE, un,
12469 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
12470 }
12471 
12472 
12473 /*
12474  *    Function: sd_bioclone_alloc
12475  *
12476  * Description: Allocate a buf(9S) and init it as per the given buf
12477  *		and the various arguments.  The associated sd_xbuf
12478  *		struct is (nearly) duplicated.  The struct buf *bp
12479  *		argument is saved in new_xp->xb_private.
12480  *
12481  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
12482  *		datalen - size of data area for the shadow bp
12483  *		blkno - starting LBA
12484  *		func - function pointer for b_iodone in the shadow buf. (May
12485  *			be NULL if none.)
12486  *
12487  * Return Code: Pointer to allocates buf(9S) struct
12488  *
12489  *     Context: Can sleep.
12490  */
12491 
12492 static struct buf *
12493 sd_bioclone_alloc(struct buf *bp, size_t datalen,
12494 	daddr_t blkno, int (*func)(struct buf *))
12495 {
12496 	struct	sd_lun	*un;
12497 	struct	sd_xbuf	*xp;
12498 	struct	sd_xbuf	*new_xp;
12499 	struct	buf	*new_bp;
12500 
12501 	ASSERT(bp != NULL);
12502 	xp = SD_GET_XBUF(bp);
12503 	ASSERT(xp != NULL);
12504 	un = SD_GET_UN(bp);
12505 	ASSERT(un != NULL);
12506 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12507 
12508 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
12509 	    NULL, KM_SLEEP);
12510 
12511 	new_bp->b_lblkno	= blkno;
12512 
12513 	/*
12514 	 * Allocate an xbuf for the shadow bp and copy the contents of the
12515 	 * original xbuf into it.
12516 	 */
12517 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
12518 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
12519 
12520 	/*
12521 	 * The given bp is automatically saved in the xb_private member
12522 	 * of the new xbuf.  Callers are allowed to depend on this.
12523 	 */
12524 	new_xp->xb_private = bp;
12525 
12526 	new_bp->b_private  = new_xp;
12527 
12528 	return (new_bp);
12529 }
12530 
12531 /*
12532  *    Function: sd_shadow_buf_alloc
12533  *
12534  * Description: Allocate a buf(9S) and init it as per the given buf
12535  *		and the various arguments.  The associated sd_xbuf
12536  *		struct is (nearly) duplicated.  The struct buf *bp
12537  *		argument is saved in new_xp->xb_private.
12538  *
12539  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
12540  *		datalen - size of data area for the shadow bp
12541  *		bflags - B_READ or B_WRITE (pseudo flag)
12542  *		blkno - starting LBA
12543  *		func - function pointer for b_iodone in the shadow buf. (May
12544  *			be NULL if none.)
12545  *
12546  * Return Code: Pointer to allocates buf(9S) struct
12547  *
12548  *     Context: Can sleep.
12549  */
12550 
12551 static struct buf *
12552 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
12553 	daddr_t blkno, int (*func)(struct buf *))
12554 {
12555 	struct	sd_lun	*un;
12556 	struct	sd_xbuf	*xp;
12557 	struct	sd_xbuf	*new_xp;
12558 	struct	buf	*new_bp;
12559 
12560 	ASSERT(bp != NULL);
12561 	xp = SD_GET_XBUF(bp);
12562 	ASSERT(xp != NULL);
12563 	un = SD_GET_UN(bp);
12564 	ASSERT(un != NULL);
12565 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12566 
12567 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
12568 		bp_mapin(bp);
12569 	}
12570 
12571 	bflags &= (B_READ | B_WRITE);
12572 #if defined(__i386) || defined(__amd64)
12573 	new_bp = getrbuf(KM_SLEEP);
12574 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
12575 	new_bp->b_bcount = datalen;
12576 	new_bp->b_flags = bflags |
12577 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
12578 #else
12579 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
12580 	    datalen, bflags, SLEEP_FUNC, NULL);
12581 #endif
12582 	new_bp->av_forw	= NULL;
12583 	new_bp->av_back	= NULL;
12584 	new_bp->b_dev	= bp->b_dev;
12585 	new_bp->b_blkno	= blkno;
12586 	new_bp->b_iodone = func;
12587 	new_bp->b_edev	= bp->b_edev;
12588 	new_bp->b_resid	= 0;
12589 
12590 	/* We need to preserve the B_FAILFAST flag */
12591 	if (bp->b_flags & B_FAILFAST) {
12592 		new_bp->b_flags |= B_FAILFAST;
12593 	}
12594 
12595 	/*
12596 	 * Allocate an xbuf for the shadow bp and copy the contents of the
12597 	 * original xbuf into it.
12598 	 */
12599 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
12600 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
12601 
12602 	/* Need later to copy data between the shadow buf & original buf! */
12603 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
12604 
12605 	/*
12606 	 * The given bp is automatically saved in the xb_private member
12607 	 * of the new xbuf.  Callers are allowed to depend on this.
12608 	 */
12609 	new_xp->xb_private = bp;
12610 
12611 	new_bp->b_private  = new_xp;
12612 
12613 	return (new_bp);
12614 }
12615 
12616 /*
12617  *    Function: sd_bioclone_free
12618  *
12619  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
12620  *		in the larger than partition operation.
12621  *
12622  *     Context: May be called under interrupt context
12623  */
12624 
12625 static void
12626 sd_bioclone_free(struct buf *bp)
12627 {
12628 	struct sd_xbuf	*xp;
12629 
12630 	ASSERT(bp != NULL);
12631 	xp = SD_GET_XBUF(bp);
12632 	ASSERT(xp != NULL);
12633 
12634 	/*
12635 	 * Call bp_mapout() before freeing the buf,  in case a lower
12636 	 * layer or HBA  had done a bp_mapin().  we must do this here
12637 	 * as we are the "originator" of the shadow buf.
12638 	 */
12639 	bp_mapout(bp);
12640 
12641 	/*
12642 	 * Null out b_iodone before freeing the bp, to ensure that the driver
12643 	 * never gets confused by a stale value in this field. (Just a little
12644 	 * extra defensiveness here.)
12645 	 */
12646 	bp->b_iodone = NULL;
12647 
12648 	freerbuf(bp);
12649 
12650 	kmem_free(xp, sizeof (struct sd_xbuf));
12651 }
12652 
12653 /*
12654  *    Function: sd_shadow_buf_free
12655  *
12656  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
12657  *
12658  *     Context: May be called under interrupt context
12659  */
12660 
12661 static void
12662 sd_shadow_buf_free(struct buf *bp)
12663 {
12664 	struct sd_xbuf	*xp;
12665 
12666 	ASSERT(bp != NULL);
12667 	xp = SD_GET_XBUF(bp);
12668 	ASSERT(xp != NULL);
12669 
12670 #if defined(__sparc)
12671 	/*
12672 	 * Call bp_mapout() before freeing the buf,  in case a lower
12673 	 * layer or HBA  had done a bp_mapin().  we must do this here
12674 	 * as we are the "originator" of the shadow buf.
12675 	 */
12676 	bp_mapout(bp);
12677 #endif
12678 
12679 	/*
12680 	 * Null out b_iodone before freeing the bp, to ensure that the driver
12681 	 * never gets confused by a stale value in this field. (Just a little
12682 	 * extra defensiveness here.)
12683 	 */
12684 	bp->b_iodone = NULL;
12685 
12686 #if defined(__i386) || defined(__amd64)
12687 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
12688 	freerbuf(bp);
12689 #else
12690 	scsi_free_consistent_buf(bp);
12691 #endif
12692 
12693 	kmem_free(xp, sizeof (struct sd_xbuf));
12694 }
12695 
12696 
12697 /*
12698  *    Function: sd_print_transport_rejected_message
12699  *
12700  * Description: This implements the ludicrously complex rules for printing
12701  *		a "transport rejected" message.  This is to address the
12702  *		specific problem of having a flood of this error message
12703  *		produced when a failover occurs.
12704  *
12705  *     Context: Any.
12706  */
12707 
12708 static void
12709 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
12710 	int code)
12711 {
12712 	ASSERT(un != NULL);
12713 	ASSERT(mutex_owned(SD_MUTEX(un)));
12714 	ASSERT(xp != NULL);
12715 
12716 	/*
12717 	 * Print the "transport rejected" message under the following
12718 	 * conditions:
12719 	 *
12720 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
12721 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
12722 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
12723 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
12724 	 *   scsi_transport(9F) (which indicates that the target might have
12725 	 *   gone off-line).  This uses the un->un_tran_fatal_count
12726 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
12727 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
12728 	 *   from scsi_transport().
12729 	 *
12730 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
12731 	 * the preceeding cases in order for the message to be printed.
12732 	 */
12733 	if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) {
12734 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
12735 		    (code != TRAN_FATAL_ERROR) ||
12736 		    (un->un_tran_fatal_count == 1)) {
12737 			switch (code) {
12738 			case TRAN_BADPKT:
12739 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12740 				    "transport rejected bad packet\n");
12741 				break;
12742 			case TRAN_FATAL_ERROR:
12743 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12744 				    "transport rejected fatal error\n");
12745 				break;
12746 			default:
12747 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12748 				    "transport rejected (%d)\n", code);
12749 				break;
12750 			}
12751 		}
12752 	}
12753 }
12754 
12755 
12756 /*
12757  *    Function: sd_add_buf_to_waitq
12758  *
12759  * Description: Add the given buf(9S) struct to the wait queue for the
12760  *		instance.  If sorting is enabled, then the buf is added
12761  *		to the queue via an elevator sort algorithm (a la
12762  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
12763  *		If sorting is not enabled, then the buf is just added
12764  *		to the end of the wait queue.
12765  *
12766  * Return Code: void
12767  *
12768  *     Context: Does not sleep/block, therefore technically can be called
12769  *		from any context.  However if sorting is enabled then the
12770  *		execution time is indeterminate, and may take long if
12771  *		the wait queue grows large.
12772  */
12773 
12774 static void
12775 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
12776 {
12777 	struct buf *ap;
12778 
12779 	ASSERT(bp != NULL);
12780 	ASSERT(un != NULL);
12781 	ASSERT(mutex_owned(SD_MUTEX(un)));
12782 
12783 	/* If the queue is empty, add the buf as the only entry & return. */
12784 	if (un->un_waitq_headp == NULL) {
12785 		ASSERT(un->un_waitq_tailp == NULL);
12786 		un->un_waitq_headp = un->un_waitq_tailp = bp;
12787 		bp->av_forw = NULL;
12788 		return;
12789 	}
12790 
12791 	ASSERT(un->un_waitq_tailp != NULL);
12792 
12793 	/*
12794 	 * If sorting is disabled, just add the buf to the tail end of
12795 	 * the wait queue and return.
12796 	 */
12797 	if (un->un_f_disksort_disabled) {
12798 		un->un_waitq_tailp->av_forw = bp;
12799 		un->un_waitq_tailp = bp;
12800 		bp->av_forw = NULL;
12801 		return;
12802 	}
12803 
12804 	/*
12805 	 * Sort thru the list of requests currently on the wait queue
12806 	 * and add the new buf request at the appropriate position.
12807 	 *
12808 	 * The un->un_waitq_headp is an activity chain pointer on which
12809 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
12810 	 * first queue holds those requests which are positioned after
12811 	 * the current SD_GET_BLKNO() (in the first request); the second holds
12812 	 * requests which came in after their SD_GET_BLKNO() number was passed.
12813 	 * Thus we implement a one way scan, retracting after reaching
12814 	 * the end of the drive to the first request on the second
12815 	 * queue, at which time it becomes the first queue.
12816 	 * A one-way scan is natural because of the way UNIX read-ahead
12817 	 * blocks are allocated.
12818 	 *
12819 	 * If we lie after the first request, then we must locate the
12820 	 * second request list and add ourselves to it.
12821 	 */
12822 	ap = un->un_waitq_headp;
12823 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
12824 		while (ap->av_forw != NULL) {
12825 			/*
12826 			 * Look for an "inversion" in the (normally
12827 			 * ascending) block numbers. This indicates
12828 			 * the start of the second request list.
12829 			 */
12830 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
12831 				/*
12832 				 * Search the second request list for the
12833 				 * first request at a larger block number.
12834 				 * We go before that; however if there is
12835 				 * no such request, we go at the end.
12836 				 */
12837 				do {
12838 					if (SD_GET_BLKNO(bp) <
12839 					    SD_GET_BLKNO(ap->av_forw)) {
12840 						goto insert;
12841 					}
12842 					ap = ap->av_forw;
12843 				} while (ap->av_forw != NULL);
12844 				goto insert;		/* after last */
12845 			}
12846 			ap = ap->av_forw;
12847 		}
12848 
12849 		/*
12850 		 * No inversions... we will go after the last, and
12851 		 * be the first request in the second request list.
12852 		 */
12853 		goto insert;
12854 	}
12855 
12856 	/*
12857 	 * Request is at/after the current request...
12858 	 * sort in the first request list.
12859 	 */
12860 	while (ap->av_forw != NULL) {
12861 		/*
12862 		 * We want to go after the current request (1) if
12863 		 * there is an inversion after it (i.e. it is the end
12864 		 * of the first request list), or (2) if the next
12865 		 * request is a larger block no. than our request.
12866 		 */
12867 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
12868 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
12869 			goto insert;
12870 		}
12871 		ap = ap->av_forw;
12872 	}
12873 
12874 	/*
12875 	 * Neither a second list nor a larger request, therefore
12876 	 * we go at the end of the first list (which is the same
12877 	 * as the end of the whole schebang).
12878 	 */
12879 insert:
12880 	bp->av_forw = ap->av_forw;
12881 	ap->av_forw = bp;
12882 
12883 	/*
12884 	 * If we inserted onto the tail end of the waitq, make sure the
12885 	 * tail pointer is updated.
12886 	 */
12887 	if (ap == un->un_waitq_tailp) {
12888 		un->un_waitq_tailp = bp;
12889 	}
12890 }
12891 
12892 
12893 /*
12894  *    Function: sd_start_cmds
12895  *
12896  * Description: Remove and transport cmds from the driver queues.
12897  *
12898  *   Arguments: un - pointer to the unit (soft state) struct for the target.
12899  *
12900  *		immed_bp - ptr to a buf to be transported immediately. Only
12901  *		the immed_bp is transported; bufs on the waitq are not
12902  *		processed and the un_retry_bp is not checked.  If immed_bp is
12903  *		NULL, then normal queue processing is performed.
12904  *
12905  *     Context: May be called from kernel thread context, interrupt context,
12906  *		or runout callback context. This function may not block or
12907  *		call routines that block.
12908  */
12909 
12910 static void
12911 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
12912 {
12913 	struct	sd_xbuf	*xp;
12914 	struct	buf	*bp;
12915 	void	(*statp)(kstat_io_t *);
12916 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12917 	void	(*saved_statp)(kstat_io_t *);
12918 #endif
12919 	int	rval;
12920 
12921 	ASSERT(un != NULL);
12922 	ASSERT(mutex_owned(SD_MUTEX(un)));
12923 	ASSERT(un->un_ncmds_in_transport >= 0);
12924 	ASSERT(un->un_throttle >= 0);
12925 
12926 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
12927 
12928 	do {
12929 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12930 		saved_statp = NULL;
12931 #endif
12932 
12933 		/*
12934 		 * If we are syncing or dumping, fail the command to
12935 		 * avoid recursively calling back into scsi_transport().
12936 		 * The dump I/O itself uses a separate code path so this
12937 		 * only prevents non-dump I/O from being sent while dumping.
12938 		 * File system sync takes place before dumping begins.
12939 		 * During panic, filesystem I/O is allowed provided
12940 		 * un_in_callback is <= 1.  This is to prevent recursion
12941 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
12942 		 * sd_start_cmds and so on.  See panic.c for more information
12943 		 * about the states the system can be in during panic.
12944 		 */
12945 		if ((un->un_state == SD_STATE_DUMPING) ||
12946 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
12947 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12948 			    "sd_start_cmds: panicking\n");
12949 			goto exit;
12950 		}
12951 
12952 		if ((bp = immed_bp) != NULL) {
12953 			/*
12954 			 * We have a bp that must be transported immediately.
12955 			 * It's OK to transport the immed_bp here without doing
12956 			 * the throttle limit check because the immed_bp is
12957 			 * always used in a retry/recovery case. This means
12958 			 * that we know we are not at the throttle limit by
12959 			 * virtue of the fact that to get here we must have
12960 			 * already gotten a command back via sdintr(). This also
12961 			 * relies on (1) the command on un_retry_bp preventing
12962 			 * further commands from the waitq from being issued;
12963 			 * and (2) the code in sd_retry_command checking the
12964 			 * throttle limit before issuing a delayed or immediate
12965 			 * retry. This holds even if the throttle limit is
12966 			 * currently ratcheted down from its maximum value.
12967 			 */
12968 			statp = kstat_runq_enter;
12969 			if (bp == un->un_retry_bp) {
12970 				ASSERT((un->un_retry_statp == NULL) ||
12971 				    (un->un_retry_statp == kstat_waitq_enter) ||
12972 				    (un->un_retry_statp ==
12973 				    kstat_runq_back_to_waitq));
12974 				/*
12975 				 * If the waitq kstat was incremented when
12976 				 * sd_set_retry_bp() queued this bp for a retry,
12977 				 * then we must set up statp so that the waitq
12978 				 * count will get decremented correctly below.
12979 				 * Also we must clear un->un_retry_statp to
12980 				 * ensure that we do not act on a stale value
12981 				 * in this field.
12982 				 */
12983 				if ((un->un_retry_statp == kstat_waitq_enter) ||
12984 				    (un->un_retry_statp ==
12985 				    kstat_runq_back_to_waitq)) {
12986 					statp = kstat_waitq_to_runq;
12987 				}
12988 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12989 				saved_statp = un->un_retry_statp;
12990 #endif
12991 				un->un_retry_statp = NULL;
12992 
12993 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
12994 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
12995 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
12996 				    un, un->un_retry_bp, un->un_throttle,
12997 				    un->un_ncmds_in_transport);
12998 			} else {
12999 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
13000 				    "processing priority bp:0x%p\n", bp);
13001 			}
13002 
13003 		} else if ((bp = un->un_waitq_headp) != NULL) {
13004 			/*
13005 			 * A command on the waitq is ready to go, but do not
13006 			 * send it if:
13007 			 *
13008 			 * (1) the throttle limit has been reached, or
13009 			 * (2) a retry is pending, or
13010 			 * (3) a START_STOP_UNIT callback pending, or
13011 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
13012 			 *	command is pending.
13013 			 *
13014 			 * For all of these conditions, IO processing will
13015 			 * restart after the condition is cleared.
13016 			 */
13017 			if (un->un_ncmds_in_transport >= un->un_throttle) {
13018 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13019 				    "sd_start_cmds: exiting, "
13020 				    "throttle limit reached!\n");
13021 				goto exit;
13022 			}
13023 			if (un->un_retry_bp != NULL) {
13024 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13025 				    "sd_start_cmds: exiting, retry pending!\n");
13026 				goto exit;
13027 			}
13028 			if (un->un_startstop_timeid != NULL) {
13029 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13030 				    "sd_start_cmds: exiting, "
13031 				    "START_STOP pending!\n");
13032 				goto exit;
13033 			}
13034 			if (un->un_direct_priority_timeid != NULL) {
13035 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13036 				    "sd_start_cmds: exiting, "
13037 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
13038 				goto exit;
13039 			}
13040 
13041 			/* Dequeue the command */
13042 			un->un_waitq_headp = bp->av_forw;
13043 			if (un->un_waitq_headp == NULL) {
13044 				un->un_waitq_tailp = NULL;
13045 			}
13046 			bp->av_forw = NULL;
13047 			statp = kstat_waitq_to_runq;
13048 			SD_TRACE(SD_LOG_IO_CORE, un,
13049 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
13050 
13051 		} else {
13052 			/* No work to do so bail out now */
13053 			SD_TRACE(SD_LOG_IO_CORE, un,
13054 			    "sd_start_cmds: no more work, exiting!\n");
13055 			goto exit;
13056 		}
13057 
13058 		/*
13059 		 * Reset the state to normal. This is the mechanism by which
13060 		 * the state transitions from either SD_STATE_RWAIT or
13061 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
13062 		 * If state is SD_STATE_PM_CHANGING then this command is
13063 		 * part of the device power control and the state must
13064 		 * not be put back to normal. Doing so would would
13065 		 * allow new commands to proceed when they shouldn't,
13066 		 * the device may be going off.
13067 		 */
13068 		if ((un->un_state != SD_STATE_SUSPENDED) &&
13069 		    (un->un_state != SD_STATE_PM_CHANGING)) {
13070 			New_state(un, SD_STATE_NORMAL);
13071 		}
13072 
13073 		xp = SD_GET_XBUF(bp);
13074 		ASSERT(xp != NULL);
13075 
13076 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13077 		/*
13078 		 * Allocate the scsi_pkt if we need one, or attach DMA
13079 		 * resources if we have a scsi_pkt that needs them. The
13080 		 * latter should only occur for commands that are being
13081 		 * retried.
13082 		 */
13083 		if ((xp->xb_pktp == NULL) ||
13084 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
13085 #else
13086 		if (xp->xb_pktp == NULL) {
13087 #endif
13088 			/*
13089 			 * There is no scsi_pkt allocated for this buf. Call
13090 			 * the initpkt function to allocate & init one.
13091 			 *
13092 			 * The scsi_init_pkt runout callback functionality is
13093 			 * implemented as follows:
13094 			 *
13095 			 * 1) The initpkt function always calls
13096 			 *    scsi_init_pkt(9F) with sdrunout specified as the
13097 			 *    callback routine.
13098 			 * 2) A successful packet allocation is initialized and
13099 			 *    the I/O is transported.
13100 			 * 3) The I/O associated with an allocation resource
13101 			 *    failure is left on its queue to be retried via
13102 			 *    runout or the next I/O.
13103 			 * 4) The I/O associated with a DMA error is removed
13104 			 *    from the queue and failed with EIO. Processing of
13105 			 *    the transport queues is also halted to be
13106 			 *    restarted via runout or the next I/O.
13107 			 * 5) The I/O associated with a CDB size or packet
13108 			 *    size error is removed from the queue and failed
13109 			 *    with EIO. Processing of the transport queues is
13110 			 *    continued.
13111 			 *
13112 			 * Note: there is no interface for canceling a runout
13113 			 * callback. To prevent the driver from detaching or
13114 			 * suspending while a runout is pending the driver
13115 			 * state is set to SD_STATE_RWAIT
13116 			 *
13117 			 * Note: using the scsi_init_pkt callback facility can
13118 			 * result in an I/O request persisting at the head of
13119 			 * the list which cannot be satisfied even after
13120 			 * multiple retries. In the future the driver may
13121 			 * implement some kind of maximum runout count before
13122 			 * failing an I/O.
13123 			 *
13124 			 * Note: the use of funcp below may seem superfluous,
13125 			 * but it helps warlock figure out the correct
13126 			 * initpkt function calls (see [s]sd.wlcmd).
13127 			 */
13128 			struct scsi_pkt	*pktp;
13129 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
13130 
13131 			ASSERT(bp != un->un_rqs_bp);
13132 
13133 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
13134 			switch ((*funcp)(bp, &pktp)) {
13135 			case  SD_PKT_ALLOC_SUCCESS:
13136 				xp->xb_pktp = pktp;
13137 				SD_TRACE(SD_LOG_IO_CORE, un,
13138 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
13139 				    pktp);
13140 				goto got_pkt;
13141 
13142 			case SD_PKT_ALLOC_FAILURE:
13143 				/*
13144 				 * Temporary (hopefully) resource depletion.
13145 				 * Since retries and RQS commands always have a
13146 				 * scsi_pkt allocated, these cases should never
13147 				 * get here. So the only cases this needs to
13148 				 * handle is a bp from the waitq (which we put
13149 				 * back onto the waitq for sdrunout), or a bp
13150 				 * sent as an immed_bp (which we just fail).
13151 				 */
13152 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13153 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
13154 
13155 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13156 
13157 				if (bp == immed_bp) {
13158 					/*
13159 					 * If SD_XB_DMA_FREED is clear, then
13160 					 * this is a failure to allocate a
13161 					 * scsi_pkt, and we must fail the
13162 					 * command.
13163 					 */
13164 					if ((xp->xb_pkt_flags &
13165 					    SD_XB_DMA_FREED) == 0) {
13166 						break;
13167 					}
13168 
13169 					/*
13170 					 * If this immediate command is NOT our
13171 					 * un_retry_bp, then we must fail it.
13172 					 */
13173 					if (bp != un->un_retry_bp) {
13174 						break;
13175 					}
13176 
13177 					/*
13178 					 * We get here if this cmd is our
13179 					 * un_retry_bp that was DMAFREED, but
13180 					 * scsi_init_pkt() failed to reallocate
13181 					 * DMA resources when we attempted to
13182 					 * retry it. This can happen when an
13183 					 * mpxio failover is in progress, but
13184 					 * we don't want to just fail the
13185 					 * command in this case.
13186 					 *
13187 					 * Use timeout(9F) to restart it after
13188 					 * a 100ms delay.  We don't want to
13189 					 * let sdrunout() restart it, because
13190 					 * sdrunout() is just supposed to start
13191 					 * commands that are sitting on the
13192 					 * wait queue.  The un_retry_bp stays
13193 					 * set until the command completes, but
13194 					 * sdrunout can be called many times
13195 					 * before that happens.  Since sdrunout
13196 					 * cannot tell if the un_retry_bp is
13197 					 * already in the transport, it could
13198 					 * end up calling scsi_transport() for
13199 					 * the un_retry_bp multiple times.
13200 					 *
13201 					 * Also: don't schedule the callback
13202 					 * if some other callback is already
13203 					 * pending.
13204 					 */
13205 					if (un->un_retry_statp == NULL) {
13206 						/*
13207 						 * restore the kstat pointer to
13208 						 * keep kstat counts coherent
13209 						 * when we do retry the command.
13210 						 */
13211 						un->un_retry_statp =
13212 						    saved_statp;
13213 					}
13214 
13215 					if ((un->un_startstop_timeid == NULL) &&
13216 					    (un->un_retry_timeid == NULL) &&
13217 					    (un->un_direct_priority_timeid ==
13218 					    NULL)) {
13219 
13220 						un->un_retry_timeid =
13221 						    timeout(
13222 						    sd_start_retry_command,
13223 						    un, SD_RESTART_TIMEOUT);
13224 					}
13225 					goto exit;
13226 				}
13227 
13228 #else
13229 				if (bp == immed_bp) {
13230 					break;	/* Just fail the command */
13231 				}
13232 #endif
13233 
13234 				/* Add the buf back to the head of the waitq */
13235 				bp->av_forw = un->un_waitq_headp;
13236 				un->un_waitq_headp = bp;
13237 				if (un->un_waitq_tailp == NULL) {
13238 					un->un_waitq_tailp = bp;
13239 				}
13240 				goto exit;
13241 
13242 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
13243 				/*
13244 				 * HBA DMA resource failure. Fail the command
13245 				 * and continue processing of the queues.
13246 				 */
13247 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13248 				    "sd_start_cmds: "
13249 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
13250 				break;
13251 
13252 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
13253 				/*
13254 				 * Note:x86: Partial DMA mapping not supported
13255 				 * for USCSI commands, and all the needed DMA
13256 				 * resources were not allocated.
13257 				 */
13258 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13259 				    "sd_start_cmds: "
13260 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
13261 				break;
13262 
13263 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
13264 				/*
13265 				 * Note:x86: Request cannot fit into CDB based
13266 				 * on lba and len.
13267 				 */
13268 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13269 				    "sd_start_cmds: "
13270 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
13271 				break;
13272 
13273 			default:
13274 				/* Should NEVER get here! */
13275 				panic("scsi_initpkt error");
13276 				/*NOTREACHED*/
13277 			}
13278 
13279 			/*
13280 			 * Fatal error in allocating a scsi_pkt for this buf.
13281 			 * Update kstats & return the buf with an error code.
13282 			 * We must use sd_return_failed_command_no_restart() to
13283 			 * avoid a recursive call back into sd_start_cmds().
13284 			 * However this also means that we must keep processing
13285 			 * the waitq here in order to avoid stalling.
13286 			 */
13287 			if (statp == kstat_waitq_to_runq) {
13288 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
13289 			}
13290 			sd_return_failed_command_no_restart(un, bp, EIO);
13291 			if (bp == immed_bp) {
13292 				/* immed_bp is gone by now, so clear this */
13293 				immed_bp = NULL;
13294 			}
13295 			continue;
13296 		}
13297 got_pkt:
13298 		if (bp == immed_bp) {
13299 			/* goto the head of the class.... */
13300 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
13301 		}
13302 
13303 		un->un_ncmds_in_transport++;
13304 		SD_UPDATE_KSTATS(un, statp, bp);
13305 
13306 		/*
13307 		 * Call scsi_transport() to send the command to the target.
13308 		 * According to SCSA architecture, we must drop the mutex here
13309 		 * before calling scsi_transport() in order to avoid deadlock.
13310 		 * Note that the scsi_pkt's completion routine can be executed
13311 		 * (from interrupt context) even before the call to
13312 		 * scsi_transport() returns.
13313 		 */
13314 		SD_TRACE(SD_LOG_IO_CORE, un,
13315 		    "sd_start_cmds: calling scsi_transport()\n");
13316 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
13317 
13318 		mutex_exit(SD_MUTEX(un));
13319 		rval = scsi_transport(xp->xb_pktp);
13320 		mutex_enter(SD_MUTEX(un));
13321 
13322 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13323 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
13324 
13325 		switch (rval) {
13326 		case TRAN_ACCEPT:
13327 			/* Clear this with every pkt accepted by the HBA */
13328 			un->un_tran_fatal_count = 0;
13329 			break;	/* Success; try the next cmd (if any) */
13330 
13331 		case TRAN_BUSY:
13332 			un->un_ncmds_in_transport--;
13333 			ASSERT(un->un_ncmds_in_transport >= 0);
13334 
13335 			/*
13336 			 * Don't retry request sense, the sense data
13337 			 * is lost when another request is sent.
13338 			 * Free up the rqs buf and retry
13339 			 * the original failed cmd.  Update kstat.
13340 			 */
13341 			if (bp == un->un_rqs_bp) {
13342 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13343 				bp = sd_mark_rqs_idle(un, xp);
13344 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
13345 				    NULL, NULL, EIO, SD_BSY_TIMEOUT / 500,
13346 				    kstat_waitq_enter);
13347 				goto exit;
13348 			}
13349 
13350 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13351 			/*
13352 			 * Free the DMA resources for the  scsi_pkt. This will
13353 			 * allow mpxio to select another path the next time
13354 			 * we call scsi_transport() with this scsi_pkt.
13355 			 * See sdintr() for the rationalization behind this.
13356 			 */
13357 			if ((un->un_f_is_fibre == TRUE) &&
13358 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
13359 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
13360 				scsi_dmafree(xp->xb_pktp);
13361 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
13362 			}
13363 #endif
13364 
13365 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
13366 				/*
13367 				 * Commands that are SD_PATH_DIRECT_PRIORITY
13368 				 * are for error recovery situations. These do
13369 				 * not use the normal command waitq, so if they
13370 				 * get a TRAN_BUSY we cannot put them back onto
13371 				 * the waitq for later retry. One possible
13372 				 * problem is that there could already be some
13373 				 * other command on un_retry_bp that is waiting
13374 				 * for this one to complete, so we would be
13375 				 * deadlocked if we put this command back onto
13376 				 * the waitq for later retry (since un_retry_bp
13377 				 * must complete before the driver gets back to
13378 				 * commands on the waitq).
13379 				 *
13380 				 * To avoid deadlock we must schedule a callback
13381 				 * that will restart this command after a set
13382 				 * interval.  This should keep retrying for as
13383 				 * long as the underlying transport keeps
13384 				 * returning TRAN_BUSY (just like for other
13385 				 * commands).  Use the same timeout interval as
13386 				 * for the ordinary TRAN_BUSY retry.
13387 				 */
13388 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13389 				    "sd_start_cmds: scsi_transport() returned "
13390 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
13391 
13392 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13393 				un->un_direct_priority_timeid =
13394 				    timeout(sd_start_direct_priority_command,
13395 				    bp, SD_BSY_TIMEOUT / 500);
13396 
13397 				goto exit;
13398 			}
13399 
13400 			/*
13401 			 * For TRAN_BUSY, we want to reduce the throttle value,
13402 			 * unless we are retrying a command.
13403 			 */
13404 			if (bp != un->un_retry_bp) {
13405 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
13406 			}
13407 
13408 			/*
13409 			 * Set up the bp to be tried again 10 ms later.
13410 			 * Note:x86: Is there a timeout value in the sd_lun
13411 			 * for this condition?
13412 			 */
13413 			sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500,
13414 			    kstat_runq_back_to_waitq);
13415 			goto exit;
13416 
13417 		case TRAN_FATAL_ERROR:
13418 			un->un_tran_fatal_count++;
13419 			/* FALLTHRU */
13420 
13421 		case TRAN_BADPKT:
13422 		default:
13423 			un->un_ncmds_in_transport--;
13424 			ASSERT(un->un_ncmds_in_transport >= 0);
13425 
13426 			/*
13427 			 * If this is our REQUEST SENSE command with a
13428 			 * transport error, we must get back the pointers
13429 			 * to the original buf, and mark the REQUEST
13430 			 * SENSE command as "available".
13431 			 */
13432 			if (bp == un->un_rqs_bp) {
13433 				bp = sd_mark_rqs_idle(un, xp);
13434 				xp = SD_GET_XBUF(bp);
13435 			} else {
13436 				/*
13437 				 * Legacy behavior: do not update transport
13438 				 * error count for request sense commands.
13439 				 */
13440 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
13441 			}
13442 
13443 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13444 			sd_print_transport_rejected_message(un, xp, rval);
13445 
13446 			/*
13447 			 * We must use sd_return_failed_command_no_restart() to
13448 			 * avoid a recursive call back into sd_start_cmds().
13449 			 * However this also means that we must keep processing
13450 			 * the waitq here in order to avoid stalling.
13451 			 */
13452 			sd_return_failed_command_no_restart(un, bp, EIO);
13453 
13454 			/*
13455 			 * Notify any threads waiting in sd_ddi_suspend() that
13456 			 * a command completion has occurred.
13457 			 */
13458 			if (un->un_state == SD_STATE_SUSPENDED) {
13459 				cv_broadcast(&un->un_disk_busy_cv);
13460 			}
13461 
13462 			if (bp == immed_bp) {
13463 				/* immed_bp is gone by now, so clear this */
13464 				immed_bp = NULL;
13465 			}
13466 			break;
13467 		}
13468 
13469 	} while (immed_bp == NULL);
13470 
13471 exit:
13472 	ASSERT(mutex_owned(SD_MUTEX(un)));
13473 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
13474 }
13475 
13476 
13477 /*
13478  *    Function: sd_return_command
13479  *
13480  * Description: Returns a command to its originator (with or without an
13481  *		error).  Also starts commands waiting to be transported
13482  *		to the target.
13483  *
13484  *     Context: May be called from interrupt, kernel, or timeout context
13485  */
13486 
13487 static void
13488 sd_return_command(struct sd_lun *un, struct buf *bp)
13489 {
13490 	struct sd_xbuf *xp;
13491 	struct scsi_pkt *pktp;
13492 
13493 	ASSERT(bp != NULL);
13494 	ASSERT(un != NULL);
13495 	ASSERT(mutex_owned(SD_MUTEX(un)));
13496 	ASSERT(bp != un->un_rqs_bp);
13497 	xp = SD_GET_XBUF(bp);
13498 	ASSERT(xp != NULL);
13499 
13500 	pktp = SD_GET_PKTP(bp);
13501 
13502 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
13503 
13504 	/*
13505 	 * Note: check for the "sdrestart failed" case.
13506 	 */
13507 	if ((un->un_partial_dma_supported == 1) &&
13508 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
13509 	    (geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
13510 	    (xp->xb_pktp->pkt_resid == 0)) {
13511 
13512 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
13513 			/*
13514 			 * Successfully set up next portion of cmd
13515 			 * transfer, try sending it
13516 			 */
13517 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
13518 			    NULL, NULL, 0, (clock_t)0, NULL);
13519 			sd_start_cmds(un, NULL);
13520 			return;	/* Note:x86: need a return here? */
13521 		}
13522 	}
13523 
13524 	/*
13525 	 * If this is the failfast bp, clear it from un_failfast_bp. This
13526 	 * can happen if upon being re-tried the failfast bp either
13527 	 * succeeded or encountered another error (possibly even a different
13528 	 * error than the one that precipitated the failfast state, but in
13529 	 * that case it would have had to exhaust retries as well). Regardless,
13530 	 * this should not occur whenever the instance is in the active
13531 	 * failfast state.
13532 	 */
13533 	if (bp == un->un_failfast_bp) {
13534 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
13535 		un->un_failfast_bp = NULL;
13536 	}
13537 
13538 	/*
13539 	 * Clear the failfast state upon successful completion of ANY cmd.
13540 	 */
13541 	if (bp->b_error == 0) {
13542 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
13543 	}
13544 
13545 	/*
13546 	 * This is used if the command was retried one or more times. Show that
13547 	 * we are done with it, and allow processing of the waitq to resume.
13548 	 */
13549 	if (bp == un->un_retry_bp) {
13550 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13551 		    "sd_return_command: un:0x%p: "
13552 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
13553 		un->un_retry_bp = NULL;
13554 		un->un_retry_statp = NULL;
13555 	}
13556 
13557 	SD_UPDATE_RDWR_STATS(un, bp);
13558 	SD_UPDATE_PARTITION_STATS(un, bp);
13559 
13560 	switch (un->un_state) {
13561 	case SD_STATE_SUSPENDED:
13562 		/*
13563 		 * Notify any threads waiting in sd_ddi_suspend() that
13564 		 * a command completion has occurred.
13565 		 */
13566 		cv_broadcast(&un->un_disk_busy_cv);
13567 		break;
13568 	default:
13569 		sd_start_cmds(un, NULL);
13570 		break;
13571 	}
13572 
13573 	/* Return this command up the iodone chain to its originator. */
13574 	mutex_exit(SD_MUTEX(un));
13575 
13576 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
13577 	xp->xb_pktp = NULL;
13578 
13579 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
13580 
13581 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13582 	mutex_enter(SD_MUTEX(un));
13583 
13584 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
13585 }
13586 
13587 
13588 /*
13589  *    Function: sd_return_failed_command
13590  *
13591  * Description: Command completion when an error occurred.
13592  *
13593  *     Context: May be called from interrupt context
13594  */
13595 
13596 static void
13597 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
13598 {
13599 	ASSERT(bp != NULL);
13600 	ASSERT(un != NULL);
13601 	ASSERT(mutex_owned(SD_MUTEX(un)));
13602 
13603 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13604 	    "sd_return_failed_command: entry\n");
13605 
13606 	/*
13607 	 * b_resid could already be nonzero due to a partial data
13608 	 * transfer, so do not change it here.
13609 	 */
13610 	SD_BIOERROR(bp, errcode);
13611 
13612 	sd_return_command(un, bp);
13613 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13614 	    "sd_return_failed_command: exit\n");
13615 }
13616 
13617 
13618 /*
13619  *    Function: sd_return_failed_command_no_restart
13620  *
13621  * Description: Same as sd_return_failed_command, but ensures that no
13622  *		call back into sd_start_cmds will be issued.
13623  *
13624  *     Context: May be called from interrupt context
13625  */
13626 
13627 static void
13628 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
13629 	int errcode)
13630 {
13631 	struct sd_xbuf *xp;
13632 
13633 	ASSERT(bp != NULL);
13634 	ASSERT(un != NULL);
13635 	ASSERT(mutex_owned(SD_MUTEX(un)));
13636 	xp = SD_GET_XBUF(bp);
13637 	ASSERT(xp != NULL);
13638 	ASSERT(errcode != 0);
13639 
13640 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13641 	    "sd_return_failed_command_no_restart: entry\n");
13642 
13643 	/*
13644 	 * b_resid could already be nonzero due to a partial data
13645 	 * transfer, so do not change it here.
13646 	 */
13647 	SD_BIOERROR(bp, errcode);
13648 
13649 	/*
13650 	 * If this is the failfast bp, clear it. This can happen if the
13651 	 * failfast bp encounterd a fatal error when we attempted to
13652 	 * re-try it (such as a scsi_transport(9F) failure).  However
13653 	 * we should NOT be in an active failfast state if the failfast
13654 	 * bp is not NULL.
13655 	 */
13656 	if (bp == un->un_failfast_bp) {
13657 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
13658 		un->un_failfast_bp = NULL;
13659 	}
13660 
13661 	if (bp == un->un_retry_bp) {
13662 		/*
13663 		 * This command was retried one or more times. Show that we are
13664 		 * done with it, and allow processing of the waitq to resume.
13665 		 */
13666 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13667 		    "sd_return_failed_command_no_restart: "
13668 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
13669 		un->un_retry_bp = NULL;
13670 		un->un_retry_statp = NULL;
13671 	}
13672 
13673 	SD_UPDATE_RDWR_STATS(un, bp);
13674 	SD_UPDATE_PARTITION_STATS(un, bp);
13675 
13676 	mutex_exit(SD_MUTEX(un));
13677 
13678 	if (xp->xb_pktp != NULL) {
13679 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
13680 		xp->xb_pktp = NULL;
13681 	}
13682 
13683 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
13684 
13685 	mutex_enter(SD_MUTEX(un));
13686 
13687 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13688 	    "sd_return_failed_command_no_restart: exit\n");
13689 }
13690 
13691 
13692 /*
13693  *    Function: sd_retry_command
13694  *
13695  * Description: queue up a command for retry, or (optionally) fail it
13696  *		if retry counts are exhausted.
13697  *
13698  *   Arguments: un - Pointer to the sd_lun struct for the target.
13699  *
13700  *		bp - Pointer to the buf for the command to be retried.
13701  *
13702  *		retry_check_flag - Flag to see which (if any) of the retry
13703  *		   counts should be decremented/checked. If the indicated
13704  *		   retry count is exhausted, then the command will not be
13705  *		   retried; it will be failed instead. This should use a
13706  *		   value equal to one of the following:
13707  *
13708  *			SD_RETRIES_NOCHECK
13709  *			SD_RESD_RETRIES_STANDARD
13710  *			SD_RETRIES_VICTIM
13711  *
13712  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
13713  *		   if the check should be made to see of FLAG_ISOLATE is set
13714  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
13715  *		   not retried, it is simply failed.
13716  *
13717  *		user_funcp - Ptr to function to call before dispatching the
13718  *		   command. May be NULL if no action needs to be performed.
13719  *		   (Primarily intended for printing messages.)
13720  *
13721  *		user_arg - Optional argument to be passed along to
13722  *		   the user_funcp call.
13723  *
13724  *		failure_code - errno return code to set in the bp if the
13725  *		   command is going to be failed.
13726  *
13727  *		retry_delay - Retry delay interval in (clock_t) units. May
13728  *		   be zero which indicates that the retry should be retried
13729  *		   immediately (ie, without an intervening delay).
13730  *
13731  *		statp - Ptr to kstat function to be updated if the command
13732  *		   is queued for a delayed retry. May be NULL if no kstat
13733  *		   update is desired.
13734  *
13735  *     Context: May be called from interrupt context.
13736  */
13737 
13738 static void
13739 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
13740 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
13741 	code), void *user_arg, int failure_code,  clock_t retry_delay,
13742 	void (*statp)(kstat_io_t *))
13743 {
13744 	struct sd_xbuf	*xp;
13745 	struct scsi_pkt	*pktp;
13746 
13747 	ASSERT(un != NULL);
13748 	ASSERT(mutex_owned(SD_MUTEX(un)));
13749 	ASSERT(bp != NULL);
13750 	xp = SD_GET_XBUF(bp);
13751 	ASSERT(xp != NULL);
13752 	pktp = SD_GET_PKTP(bp);
13753 	ASSERT(pktp != NULL);
13754 
13755 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
13756 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
13757 
13758 	/*
13759 	 * If we are syncing or dumping, fail the command to avoid
13760 	 * recursively calling back into scsi_transport().
13761 	 */
13762 	if (ddi_in_panic()) {
13763 		goto fail_command_no_log;
13764 	}
13765 
13766 	/*
13767 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
13768 	 * log an error and fail the command.
13769 	 */
13770 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
13771 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
13772 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
13773 		sd_dump_memory(un, SD_LOG_IO, "CDB",
13774 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
13775 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
13776 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
13777 		goto fail_command;
13778 	}
13779 
13780 	/*
13781 	 * If we are suspended, then put the command onto head of the
13782 	 * wait queue since we don't want to start more commands, and
13783 	 * clear the un_retry_bp. Next time when we are resumed, will
13784 	 * handle the command in the wait queue.
13785 	 */
13786 	switch (un->un_state) {
13787 	case SD_STATE_SUSPENDED:
13788 	case SD_STATE_DUMPING:
13789 		bp->av_forw = un->un_waitq_headp;
13790 		un->un_waitq_headp = bp;
13791 		if (un->un_waitq_tailp == NULL) {
13792 			un->un_waitq_tailp = bp;
13793 		}
13794 		if (bp == un->un_retry_bp) {
13795 			un->un_retry_bp = NULL;
13796 			un->un_retry_statp = NULL;
13797 		}
13798 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
13799 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
13800 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
13801 		return;
13802 	default:
13803 		break;
13804 	}
13805 
13806 	/*
13807 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
13808 	 * is set; if it is then we do not want to retry the command.
13809 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
13810 	 */
13811 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
13812 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
13813 			goto fail_command;
13814 		}
13815 	}
13816 
13817 
13818 	/*
13819 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
13820 	 * command timeout or a selection timeout has occurred. This means
13821 	 * that we were unable to establish an kind of communication with
13822 	 * the target, and subsequent retries and/or commands are likely
13823 	 * to encounter similar results and take a long time to complete.
13824 	 *
13825 	 * If this is a failfast error condition, we need to update the
13826 	 * failfast state, even if this bp does not have B_FAILFAST set.
13827 	 */
13828 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
13829 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
13830 			ASSERT(un->un_failfast_bp == NULL);
13831 			/*
13832 			 * If we are already in the active failfast state, and
13833 			 * another failfast error condition has been detected,
13834 			 * then fail this command if it has B_FAILFAST set.
13835 			 * If B_FAILFAST is clear, then maintain the legacy
13836 			 * behavior of retrying heroically, even tho this will
13837 			 * take a lot more time to fail the command.
13838 			 */
13839 			if (bp->b_flags & B_FAILFAST) {
13840 				goto fail_command;
13841 			}
13842 		} else {
13843 			/*
13844 			 * We're not in the active failfast state, but we
13845 			 * have a failfast error condition, so we must begin
13846 			 * transition to the next state. We do this regardless
13847 			 * of whether or not this bp has B_FAILFAST set.
13848 			 */
13849 			if (un->un_failfast_bp == NULL) {
13850 				/*
13851 				 * This is the first bp to meet a failfast
13852 				 * condition so save it on un_failfast_bp &
13853 				 * do normal retry processing. Do not enter
13854 				 * active failfast state yet. This marks
13855 				 * entry into the "failfast pending" state.
13856 				 */
13857 				un->un_failfast_bp = bp;
13858 
13859 			} else if (un->un_failfast_bp == bp) {
13860 				/*
13861 				 * This is the second time *this* bp has
13862 				 * encountered a failfast error condition,
13863 				 * so enter active failfast state & flush
13864 				 * queues as appropriate.
13865 				 */
13866 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
13867 				un->un_failfast_bp = NULL;
13868 				sd_failfast_flushq(un);
13869 
13870 				/*
13871 				 * Fail this bp now if B_FAILFAST set;
13872 				 * otherwise continue with retries. (It would
13873 				 * be pretty ironic if this bp succeeded on a
13874 				 * subsequent retry after we just flushed all
13875 				 * the queues).
13876 				 */
13877 				if (bp->b_flags & B_FAILFAST) {
13878 					goto fail_command;
13879 				}
13880 
13881 #if !defined(lint) && !defined(__lint)
13882 			} else {
13883 				/*
13884 				 * If neither of the preceeding conditionals
13885 				 * was true, it means that there is some
13886 				 * *other* bp that has met an inital failfast
13887 				 * condition and is currently either being
13888 				 * retried or is waiting to be retried. In
13889 				 * that case we should perform normal retry
13890 				 * processing on *this* bp, since there is a
13891 				 * chance that the current failfast condition
13892 				 * is transient and recoverable. If that does
13893 				 * not turn out to be the case, then retries
13894 				 * will be cleared when the wait queue is
13895 				 * flushed anyway.
13896 				 */
13897 #endif
13898 			}
13899 		}
13900 	} else {
13901 		/*
13902 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
13903 		 * likely were able to at least establish some level of
13904 		 * communication with the target and subsequent commands
13905 		 * and/or retries are likely to get through to the target,
13906 		 * In this case we want to be aggressive about clearing
13907 		 * the failfast state. Note that this does not affect
13908 		 * the "failfast pending" condition.
13909 		 */
13910 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
13911 	}
13912 
13913 
13914 	/*
13915 	 * Check the specified retry count to see if we can still do
13916 	 * any retries with this pkt before we should fail it.
13917 	 */
13918 	switch (retry_check_flag & SD_RETRIES_MASK) {
13919 	case SD_RETRIES_VICTIM:
13920 		/*
13921 		 * Check the victim retry count. If exhausted, then fall
13922 		 * thru & check against the standard retry count.
13923 		 */
13924 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
13925 			/* Increment count & proceed with the retry */
13926 			xp->xb_victim_retry_count++;
13927 			break;
13928 		}
13929 		/* Victim retries exhausted, fall back to std. retries... */
13930 		/* FALLTHRU */
13931 
13932 	case SD_RETRIES_STANDARD:
13933 		if (xp->xb_retry_count >= un->un_retry_count) {
13934 			/* Retries exhausted, fail the command */
13935 			SD_TRACE(SD_LOG_IO_CORE, un,
13936 			    "sd_retry_command: retries exhausted!\n");
13937 			/*
13938 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
13939 			 * commands with nonzero pkt_resid.
13940 			 */
13941 			if ((pktp->pkt_reason == CMD_CMPLT) &&
13942 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
13943 			    (pktp->pkt_resid != 0)) {
13944 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
13945 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
13946 					SD_UPDATE_B_RESID(bp, pktp);
13947 				}
13948 			}
13949 			goto fail_command;
13950 		}
13951 		xp->xb_retry_count++;
13952 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13953 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
13954 		break;
13955 
13956 	case SD_RETRIES_UA:
13957 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
13958 			/* Retries exhausted, fail the command */
13959 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13960 			    "Unit Attention retries exhausted. "
13961 			    "Check the target.\n");
13962 			goto fail_command;
13963 		}
13964 		xp->xb_ua_retry_count++;
13965 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13966 		    "sd_retry_command: retry count:%d\n",
13967 		    xp->xb_ua_retry_count);
13968 		break;
13969 
13970 	case SD_RETRIES_BUSY:
13971 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
13972 			/* Retries exhausted, fail the command */
13973 			SD_TRACE(SD_LOG_IO_CORE, un,
13974 			    "sd_retry_command: retries exhausted!\n");
13975 			goto fail_command;
13976 		}
13977 		xp->xb_retry_count++;
13978 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13979 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
13980 		break;
13981 
13982 	case SD_RETRIES_NOCHECK:
13983 	default:
13984 		/* No retry count to check. Just proceed with the retry */
13985 		break;
13986 	}
13987 
13988 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
13989 
13990 	/*
13991 	 * If we were given a zero timeout, we must attempt to retry the
13992 	 * command immediately (ie, without a delay).
13993 	 */
13994 	if (retry_delay == 0) {
13995 		/*
13996 		 * Check some limiting conditions to see if we can actually
13997 		 * do the immediate retry.  If we cannot, then we must
13998 		 * fall back to queueing up a delayed retry.
13999 		 */
14000 		if (un->un_ncmds_in_transport >= un->un_throttle) {
14001 			/*
14002 			 * We are at the throttle limit for the target,
14003 			 * fall back to delayed retry.
14004 			 */
14005 			retry_delay = SD_BSY_TIMEOUT;
14006 			statp = kstat_waitq_enter;
14007 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14008 			    "sd_retry_command: immed. retry hit "
14009 			    "throttle!\n");
14010 		} else {
14011 			/*
14012 			 * We're clear to proceed with the immediate retry.
14013 			 * First call the user-provided function (if any)
14014 			 */
14015 			if (user_funcp != NULL) {
14016 				(*user_funcp)(un, bp, user_arg,
14017 				    SD_IMMEDIATE_RETRY_ISSUED);
14018 #ifdef __lock_lint
14019 				sd_print_incomplete_msg(un, bp, user_arg,
14020 				    SD_IMMEDIATE_RETRY_ISSUED);
14021 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
14022 				    SD_IMMEDIATE_RETRY_ISSUED);
14023 				sd_print_sense_failed_msg(un, bp, user_arg,
14024 				    SD_IMMEDIATE_RETRY_ISSUED);
14025 #endif
14026 			}
14027 
14028 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14029 			    "sd_retry_command: issuing immediate retry\n");
14030 
14031 			/*
14032 			 * Call sd_start_cmds() to transport the command to
14033 			 * the target.
14034 			 */
14035 			sd_start_cmds(un, bp);
14036 
14037 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14038 			    "sd_retry_command exit\n");
14039 			return;
14040 		}
14041 	}
14042 
14043 	/*
14044 	 * Set up to retry the command after a delay.
14045 	 * First call the user-provided function (if any)
14046 	 */
14047 	if (user_funcp != NULL) {
14048 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
14049 	}
14050 
14051 	sd_set_retry_bp(un, bp, retry_delay, statp);
14052 
14053 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
14054 	return;
14055 
14056 fail_command:
14057 
14058 	if (user_funcp != NULL) {
14059 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
14060 	}
14061 
14062 fail_command_no_log:
14063 
14064 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14065 	    "sd_retry_command: returning failed command\n");
14066 
14067 	sd_return_failed_command(un, bp, failure_code);
14068 
14069 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
14070 }
14071 
14072 
14073 /*
14074  *    Function: sd_set_retry_bp
14075  *
14076  * Description: Set up the given bp for retry.
14077  *
14078  *   Arguments: un - ptr to associated softstate
14079  *		bp - ptr to buf(9S) for the command
14080  *		retry_delay - time interval before issuing retry (may be 0)
14081  *		statp - optional pointer to kstat function
14082  *
14083  *     Context: May be called under interrupt context
14084  */
14085 
14086 static void
14087 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
14088 	void (*statp)(kstat_io_t *))
14089 {
14090 	ASSERT(un != NULL);
14091 	ASSERT(mutex_owned(SD_MUTEX(un)));
14092 	ASSERT(bp != NULL);
14093 
14094 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14095 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
14096 
14097 	/*
14098 	 * Indicate that the command is being retried. This will not allow any
14099 	 * other commands on the wait queue to be transported to the target
14100 	 * until this command has been completed (success or failure). The
14101 	 * "retry command" is not transported to the target until the given
14102 	 * time delay expires, unless the user specified a 0 retry_delay.
14103 	 *
14104 	 * Note: the timeout(9F) callback routine is what actually calls
14105 	 * sd_start_cmds() to transport the command, with the exception of a
14106 	 * zero retry_delay. The only current implementor of a zero retry delay
14107 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
14108 	 */
14109 	if (un->un_retry_bp == NULL) {
14110 		ASSERT(un->un_retry_statp == NULL);
14111 		un->un_retry_bp = bp;
14112 
14113 		/*
14114 		 * If the user has not specified a delay the command should
14115 		 * be queued and no timeout should be scheduled.
14116 		 */
14117 		if (retry_delay == 0) {
14118 			/*
14119 			 * Save the kstat pointer that will be used in the
14120 			 * call to SD_UPDATE_KSTATS() below, so that
14121 			 * sd_start_cmds() can correctly decrement the waitq
14122 			 * count when it is time to transport this command.
14123 			 */
14124 			un->un_retry_statp = statp;
14125 			goto done;
14126 		}
14127 	}
14128 
14129 	if (un->un_retry_bp == bp) {
14130 		/*
14131 		 * Save the kstat pointer that will be used in the call to
14132 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
14133 		 * correctly decrement the waitq count when it is time to
14134 		 * transport this command.
14135 		 */
14136 		un->un_retry_statp = statp;
14137 
14138 		/*
14139 		 * Schedule a timeout if:
14140 		 *   1) The user has specified a delay.
14141 		 *   2) There is not a START_STOP_UNIT callback pending.
14142 		 *
14143 		 * If no delay has been specified, then it is up to the caller
14144 		 * to ensure that IO processing continues without stalling.
14145 		 * Effectively, this means that the caller will issue the
14146 		 * required call to sd_start_cmds(). The START_STOP_UNIT
14147 		 * callback does this after the START STOP UNIT command has
14148 		 * completed. In either of these cases we should not schedule
14149 		 * a timeout callback here.  Also don't schedule the timeout if
14150 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
14151 		 */
14152 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
14153 		    (un->un_direct_priority_timeid == NULL)) {
14154 			un->un_retry_timeid =
14155 			    timeout(sd_start_retry_command, un, retry_delay);
14156 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14157 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
14158 			    " bp:0x%p un_retry_timeid:0x%p\n",
14159 			    un, bp, un->un_retry_timeid);
14160 		}
14161 	} else {
14162 		/*
14163 		 * We only get in here if there is already another command
14164 		 * waiting to be retried.  In this case, we just put the
14165 		 * given command onto the wait queue, so it can be transported
14166 		 * after the current retry command has completed.
14167 		 *
14168 		 * Also we have to make sure that if the command at the head
14169 		 * of the wait queue is the un_failfast_bp, that we do not
14170 		 * put ahead of it any other commands that are to be retried.
14171 		 */
14172 		if ((un->un_failfast_bp != NULL) &&
14173 		    (un->un_failfast_bp == un->un_waitq_headp)) {
14174 			/*
14175 			 * Enqueue this command AFTER the first command on
14176 			 * the wait queue (which is also un_failfast_bp).
14177 			 */
14178 			bp->av_forw = un->un_waitq_headp->av_forw;
14179 			un->un_waitq_headp->av_forw = bp;
14180 			if (un->un_waitq_headp == un->un_waitq_tailp) {
14181 				un->un_waitq_tailp = bp;
14182 			}
14183 		} else {
14184 			/* Enqueue this command at the head of the waitq. */
14185 			bp->av_forw = un->un_waitq_headp;
14186 			un->un_waitq_headp = bp;
14187 			if (un->un_waitq_tailp == NULL) {
14188 				un->un_waitq_tailp = bp;
14189 			}
14190 		}
14191 
14192 		if (statp == NULL) {
14193 			statp = kstat_waitq_enter;
14194 		}
14195 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14196 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
14197 	}
14198 
14199 done:
14200 	if (statp != NULL) {
14201 		SD_UPDATE_KSTATS(un, statp, bp);
14202 	}
14203 
14204 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14205 	    "sd_set_retry_bp: exit un:0x%p\n", un);
14206 }
14207 
14208 
14209 /*
14210  *    Function: sd_start_retry_command
14211  *
14212  * Description: Start the command that has been waiting on the target's
14213  *		retry queue.  Called from timeout(9F) context after the
14214  *		retry delay interval has expired.
14215  *
14216  *   Arguments: arg - pointer to associated softstate for the device.
14217  *
14218  *     Context: timeout(9F) thread context.  May not sleep.
14219  */
14220 
14221 static void
14222 sd_start_retry_command(void *arg)
14223 {
14224 	struct sd_lun *un = arg;
14225 
14226 	ASSERT(un != NULL);
14227 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14228 
14229 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14230 	    "sd_start_retry_command: entry\n");
14231 
14232 	mutex_enter(SD_MUTEX(un));
14233 
14234 	un->un_retry_timeid = NULL;
14235 
14236 	if (un->un_retry_bp != NULL) {
14237 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14238 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
14239 		    un, un->un_retry_bp);
14240 		sd_start_cmds(un, un->un_retry_bp);
14241 	}
14242 
14243 	mutex_exit(SD_MUTEX(un));
14244 
14245 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14246 	    "sd_start_retry_command: exit\n");
14247 }
14248 
14249 
14250 /*
14251  *    Function: sd_start_direct_priority_command
14252  *
14253  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
14254  *		received TRAN_BUSY when we called scsi_transport() to send it
14255  *		to the underlying HBA. This function is called from timeout(9F)
14256  *		context after the delay interval has expired.
14257  *
14258  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
14259  *
14260  *     Context: timeout(9F) thread context.  May not sleep.
14261  */
14262 
14263 static void
14264 sd_start_direct_priority_command(void *arg)
14265 {
14266 	struct buf	*priority_bp = arg;
14267 	struct sd_lun	*un;
14268 
14269 	ASSERT(priority_bp != NULL);
14270 	un = SD_GET_UN(priority_bp);
14271 	ASSERT(un != NULL);
14272 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14273 
14274 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14275 	    "sd_start_direct_priority_command: entry\n");
14276 
14277 	mutex_enter(SD_MUTEX(un));
14278 	un->un_direct_priority_timeid = NULL;
14279 	sd_start_cmds(un, priority_bp);
14280 	mutex_exit(SD_MUTEX(un));
14281 
14282 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14283 	    "sd_start_direct_priority_command: exit\n");
14284 }
14285 
14286 
14287 /*
14288  *    Function: sd_send_request_sense_command
14289  *
14290  * Description: Sends a REQUEST SENSE command to the target
14291  *
14292  *     Context: May be called from interrupt context.
14293  */
14294 
14295 static void
14296 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
14297 	struct scsi_pkt *pktp)
14298 {
14299 	ASSERT(bp != NULL);
14300 	ASSERT(un != NULL);
14301 	ASSERT(mutex_owned(SD_MUTEX(un)));
14302 
14303 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
14304 	    "entry: buf:0x%p\n", bp);
14305 
14306 	/*
14307 	 * If we are syncing or dumping, then fail the command to avoid a
14308 	 * recursive callback into scsi_transport(). Also fail the command
14309 	 * if we are suspended (legacy behavior).
14310 	 */
14311 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
14312 	    (un->un_state == SD_STATE_DUMPING)) {
14313 		sd_return_failed_command(un, bp, EIO);
14314 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14315 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
14316 		return;
14317 	}
14318 
14319 	/*
14320 	 * Retry the failed command and don't issue the request sense if:
14321 	 *    1) the sense buf is busy
14322 	 *    2) we have 1 or more outstanding commands on the target
14323 	 *    (the sense data will be cleared or invalidated any way)
14324 	 *
14325 	 * Note: There could be an issue with not checking a retry limit here,
14326 	 * the problem is determining which retry limit to check.
14327 	 */
14328 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
14329 		/* Don't retry if the command is flagged as non-retryable */
14330 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
14331 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
14332 			    NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter);
14333 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14334 			    "sd_send_request_sense_command: "
14335 			    "at full throttle, retrying exit\n");
14336 		} else {
14337 			sd_return_failed_command(un, bp, EIO);
14338 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14339 			    "sd_send_request_sense_command: "
14340 			    "at full throttle, non-retryable exit\n");
14341 		}
14342 		return;
14343 	}
14344 
14345 	sd_mark_rqs_busy(un, bp);
14346 	sd_start_cmds(un, un->un_rqs_bp);
14347 
14348 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14349 	    "sd_send_request_sense_command: exit\n");
14350 }
14351 
14352 
14353 /*
14354  *    Function: sd_mark_rqs_busy
14355  *
14356  * Description: Indicate that the request sense bp for this instance is
14357  *		in use.
14358  *
14359  *     Context: May be called under interrupt context
14360  */
14361 
14362 static void
14363 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
14364 {
14365 	struct sd_xbuf	*sense_xp;
14366 
14367 	ASSERT(un != NULL);
14368 	ASSERT(bp != NULL);
14369 	ASSERT(mutex_owned(SD_MUTEX(un)));
14370 	ASSERT(un->un_sense_isbusy == 0);
14371 
14372 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
14373 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
14374 
14375 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
14376 	ASSERT(sense_xp != NULL);
14377 
14378 	SD_INFO(SD_LOG_IO, un,
14379 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
14380 
14381 	ASSERT(sense_xp->xb_pktp != NULL);
14382 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
14383 	    == (FLAG_SENSING | FLAG_HEAD));
14384 
14385 	un->un_sense_isbusy = 1;
14386 	un->un_rqs_bp->b_resid = 0;
14387 	sense_xp->xb_pktp->pkt_resid  = 0;
14388 	sense_xp->xb_pktp->pkt_reason = 0;
14389 
14390 	/* So we can get back the bp at interrupt time! */
14391 	sense_xp->xb_sense_bp = bp;
14392 
14393 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
14394 
14395 	/*
14396 	 * Mark this buf as awaiting sense data. (This is already set in
14397 	 * the pkt_flags for the RQS packet.)
14398 	 */
14399 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
14400 
14401 	sense_xp->xb_retry_count	= 0;
14402 	sense_xp->xb_victim_retry_count = 0;
14403 	sense_xp->xb_ua_retry_count	= 0;
14404 	sense_xp->xb_nr_retry_count 	= 0;
14405 	sense_xp->xb_dma_resid  = 0;
14406 
14407 	/* Clean up the fields for auto-request sense */
14408 	sense_xp->xb_sense_status = 0;
14409 	sense_xp->xb_sense_state  = 0;
14410 	sense_xp->xb_sense_resid  = 0;
14411 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
14412 
14413 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
14414 }
14415 
14416 
14417 /*
14418  *    Function: sd_mark_rqs_idle
14419  *
14420  * Description: SD_MUTEX must be held continuously through this routine
14421  *		to prevent reuse of the rqs struct before the caller can
14422  *		complete it's processing.
14423  *
14424  * Return Code: Pointer to the RQS buf
14425  *
14426  *     Context: May be called under interrupt context
14427  */
14428 
14429 static struct buf *
14430 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
14431 {
14432 	struct buf *bp;
14433 	ASSERT(un != NULL);
14434 	ASSERT(sense_xp != NULL);
14435 	ASSERT(mutex_owned(SD_MUTEX(un)));
14436 	ASSERT(un->un_sense_isbusy != 0);
14437 
14438 	un->un_sense_isbusy = 0;
14439 	bp = sense_xp->xb_sense_bp;
14440 	sense_xp->xb_sense_bp = NULL;
14441 
14442 	/* This pkt is no longer interested in getting sense data */
14443 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
14444 
14445 	return (bp);
14446 }
14447 
14448 
14449 
14450 /*
14451  *    Function: sd_alloc_rqs
14452  *
14453  * Description: Set up the unit to receive auto request sense data
14454  *
14455  * Return Code: DDI_SUCCESS or DDI_FAILURE
14456  *
14457  *     Context: Called under attach(9E) context
14458  */
14459 
14460 static int
14461 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
14462 {
14463 	struct sd_xbuf *xp;
14464 
14465 	ASSERT(un != NULL);
14466 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14467 	ASSERT(un->un_rqs_bp == NULL);
14468 	ASSERT(un->un_rqs_pktp == NULL);
14469 
14470 	/*
14471 	 * First allocate the required buf and scsi_pkt structs, then set up
14472 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
14473 	 */
14474 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
14475 	    MAX_SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
14476 	if (un->un_rqs_bp == NULL) {
14477 		return (DDI_FAILURE);
14478 	}
14479 
14480 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
14481 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
14482 
14483 	if (un->un_rqs_pktp == NULL) {
14484 		sd_free_rqs(un);
14485 		return (DDI_FAILURE);
14486 	}
14487 
14488 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
14489 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
14490 	    SCMD_REQUEST_SENSE, 0, MAX_SENSE_LENGTH, 0);
14491 
14492 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
14493 
14494 	/* Set up the other needed members in the ARQ scsi_pkt. */
14495 	un->un_rqs_pktp->pkt_comp   = sdintr;
14496 	un->un_rqs_pktp->pkt_time   = sd_io_time;
14497 	un->un_rqs_pktp->pkt_flags |=
14498 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
14499 
14500 	/*
14501 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
14502 	 * provide any intpkt, destroypkt routines as we take care of
14503 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
14504 	 */
14505 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14506 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
14507 	xp->xb_pktp = un->un_rqs_pktp;
14508 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
14509 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
14510 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
14511 
14512 	/*
14513 	 * Save the pointer to the request sense private bp so it can
14514 	 * be retrieved in sdintr.
14515 	 */
14516 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
14517 	ASSERT(un->un_rqs_bp->b_private == xp);
14518 
14519 	/*
14520 	 * See if the HBA supports auto-request sense for the specified
14521 	 * target/lun. If it does, then try to enable it (if not already
14522 	 * enabled).
14523 	 *
14524 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
14525 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
14526 	 * return success.  However, in both of these cases ARQ is always
14527 	 * enabled and scsi_ifgetcap will always return true. The best approach
14528 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
14529 	 *
14530 	 * The 3rd case is the HBA (adp) always return enabled on
14531 	 * scsi_ifgetgetcap even when it's not enable, the best approach
14532 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
14533 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
14534 	 */
14535 
14536 	if (un->un_f_is_fibre == TRUE) {
14537 		un->un_f_arq_enabled = TRUE;
14538 	} else {
14539 #if defined(__i386) || defined(__amd64)
14540 		/*
14541 		 * Circumvent the Adaptec bug, remove this code when
14542 		 * the bug is fixed
14543 		 */
14544 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
14545 #endif
14546 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
14547 		case 0:
14548 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14549 			    "sd_alloc_rqs: HBA supports ARQ\n");
14550 			/*
14551 			 * ARQ is supported by this HBA but currently is not
14552 			 * enabled. Attempt to enable it and if successful then
14553 			 * mark this instance as ARQ enabled.
14554 			 */
14555 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
14556 			    == 1) {
14557 				/* Successfully enabled ARQ in the HBA */
14558 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
14559 				    "sd_alloc_rqs: ARQ enabled\n");
14560 				un->un_f_arq_enabled = TRUE;
14561 			} else {
14562 				/* Could not enable ARQ in the HBA */
14563 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
14564 				    "sd_alloc_rqs: failed ARQ enable\n");
14565 				un->un_f_arq_enabled = FALSE;
14566 			}
14567 			break;
14568 		case 1:
14569 			/*
14570 			 * ARQ is supported by this HBA and is already enabled.
14571 			 * Just mark ARQ as enabled for this instance.
14572 			 */
14573 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14574 			    "sd_alloc_rqs: ARQ already enabled\n");
14575 			un->un_f_arq_enabled = TRUE;
14576 			break;
14577 		default:
14578 			/*
14579 			 * ARQ is not supported by this HBA; disable it for this
14580 			 * instance.
14581 			 */
14582 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14583 			    "sd_alloc_rqs: HBA does not support ARQ\n");
14584 			un->un_f_arq_enabled = FALSE;
14585 			break;
14586 		}
14587 	}
14588 
14589 	return (DDI_SUCCESS);
14590 }
14591 
14592 
14593 /*
14594  *    Function: sd_free_rqs
14595  *
14596  * Description: Cleanup for the pre-instance RQS command.
14597  *
14598  *     Context: Kernel thread context
14599  */
14600 
14601 static void
14602 sd_free_rqs(struct sd_lun *un)
14603 {
14604 	ASSERT(un != NULL);
14605 
14606 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
14607 
14608 	/*
14609 	 * If consistent memory is bound to a scsi_pkt, the pkt
14610 	 * has to be destroyed *before* freeing the consistent memory.
14611 	 * Don't change the sequence of this operations.
14612 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
14613 	 * after it was freed in scsi_free_consistent_buf().
14614 	 */
14615 	if (un->un_rqs_pktp != NULL) {
14616 		scsi_destroy_pkt(un->un_rqs_pktp);
14617 		un->un_rqs_pktp = NULL;
14618 	}
14619 
14620 	if (un->un_rqs_bp != NULL) {
14621 		struct sd_xbuf *xp = SD_GET_XBUF(un->un_rqs_bp);
14622 		if (xp != NULL) {
14623 			kmem_free(xp, sizeof (struct sd_xbuf));
14624 		}
14625 		scsi_free_consistent_buf(un->un_rqs_bp);
14626 		un->un_rqs_bp = NULL;
14627 	}
14628 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
14629 }
14630 
14631 
14632 
14633 /*
14634  *    Function: sd_reduce_throttle
14635  *
14636  * Description: Reduces the maximum # of outstanding commands on a
14637  *		target to the current number of outstanding commands.
14638  *		Queues a tiemout(9F) callback to restore the limit
14639  *		after a specified interval has elapsed.
14640  *		Typically used when we get a TRAN_BUSY return code
14641  *		back from scsi_transport().
14642  *
14643  *   Arguments: un - ptr to the sd_lun softstate struct
14644  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
14645  *
14646  *     Context: May be called from interrupt context
14647  */
14648 
14649 static void
14650 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
14651 {
14652 	ASSERT(un != NULL);
14653 	ASSERT(mutex_owned(SD_MUTEX(un)));
14654 	ASSERT(un->un_ncmds_in_transport >= 0);
14655 
14656 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
14657 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
14658 	    un, un->un_throttle, un->un_ncmds_in_transport);
14659 
14660 	if (un->un_throttle > 1) {
14661 		if (un->un_f_use_adaptive_throttle == TRUE) {
14662 			switch (throttle_type) {
14663 			case SD_THROTTLE_TRAN_BUSY:
14664 				if (un->un_busy_throttle == 0) {
14665 					un->un_busy_throttle = un->un_throttle;
14666 				}
14667 				break;
14668 			case SD_THROTTLE_QFULL:
14669 				un->un_busy_throttle = 0;
14670 				break;
14671 			default:
14672 				ASSERT(FALSE);
14673 			}
14674 
14675 			if (un->un_ncmds_in_transport > 0) {
14676 				un->un_throttle = un->un_ncmds_in_transport;
14677 			}
14678 
14679 		} else {
14680 			if (un->un_ncmds_in_transport == 0) {
14681 				un->un_throttle = 1;
14682 			} else {
14683 				un->un_throttle = un->un_ncmds_in_transport;
14684 			}
14685 		}
14686 	}
14687 
14688 	/* Reschedule the timeout if none is currently active */
14689 	if (un->un_reset_throttle_timeid == NULL) {
14690 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
14691 		    un, SD_THROTTLE_RESET_INTERVAL);
14692 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14693 		    "sd_reduce_throttle: timeout scheduled!\n");
14694 	}
14695 
14696 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
14697 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
14698 }
14699 
14700 
14701 
14702 /*
14703  *    Function: sd_restore_throttle
14704  *
14705  * Description: Callback function for timeout(9F).  Resets the current
14706  *		value of un->un_throttle to its default.
14707  *
14708  *   Arguments: arg - pointer to associated softstate for the device.
14709  *
14710  *     Context: May be called from interrupt context
14711  */
14712 
14713 static void
14714 sd_restore_throttle(void *arg)
14715 {
14716 	struct sd_lun	*un = arg;
14717 
14718 	ASSERT(un != NULL);
14719 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14720 
14721 	mutex_enter(SD_MUTEX(un));
14722 
14723 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
14724 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
14725 
14726 	un->un_reset_throttle_timeid = NULL;
14727 
14728 	if (un->un_f_use_adaptive_throttle == TRUE) {
14729 		/*
14730 		 * If un_busy_throttle is nonzero, then it contains the
14731 		 * value that un_throttle was when we got a TRAN_BUSY back
14732 		 * from scsi_transport(). We want to revert back to this
14733 		 * value.
14734 		 *
14735 		 * In the QFULL case, the throttle limit will incrementally
14736 		 * increase until it reaches max throttle.
14737 		 */
14738 		if (un->un_busy_throttle > 0) {
14739 			un->un_throttle = un->un_busy_throttle;
14740 			un->un_busy_throttle = 0;
14741 		} else {
14742 			/*
14743 			 * increase throttle by 10% open gate slowly, schedule
14744 			 * another restore if saved throttle has not been
14745 			 * reached
14746 			 */
14747 			short throttle;
14748 			if (sd_qfull_throttle_enable) {
14749 				throttle = un->un_throttle +
14750 				    max((un->un_throttle / 10), 1);
14751 				un->un_throttle =
14752 				    (throttle < un->un_saved_throttle) ?
14753 				    throttle : un->un_saved_throttle;
14754 				if (un->un_throttle < un->un_saved_throttle) {
14755 					un->un_reset_throttle_timeid =
14756 					    timeout(sd_restore_throttle,
14757 					    un,
14758 					    SD_QFULL_THROTTLE_RESET_INTERVAL);
14759 				}
14760 			}
14761 		}
14762 
14763 		/*
14764 		 * If un_throttle has fallen below the low-water mark, we
14765 		 * restore the maximum value here (and allow it to ratchet
14766 		 * down again if necessary).
14767 		 */
14768 		if (un->un_throttle < un->un_min_throttle) {
14769 			un->un_throttle = un->un_saved_throttle;
14770 		}
14771 	} else {
14772 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
14773 		    "restoring limit from 0x%x to 0x%x\n",
14774 		    un->un_throttle, un->un_saved_throttle);
14775 		un->un_throttle = un->un_saved_throttle;
14776 	}
14777 
14778 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14779 	    "sd_restore_throttle: calling sd_start_cmds!\n");
14780 
14781 	sd_start_cmds(un, NULL);
14782 
14783 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14784 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
14785 	    un, un->un_throttle);
14786 
14787 	mutex_exit(SD_MUTEX(un));
14788 
14789 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
14790 }
14791 
14792 /*
14793  *    Function: sdrunout
14794  *
14795  * Description: Callback routine for scsi_init_pkt when a resource allocation
14796  *		fails.
14797  *
14798  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
14799  *		soft state instance.
14800  *
14801  * Return Code: The scsi_init_pkt routine allows for the callback function to
14802  *		return a 0 indicating the callback should be rescheduled or a 1
14803  *		indicating not to reschedule. This routine always returns 1
14804  *		because the driver always provides a callback function to
14805  *		scsi_init_pkt. This results in a callback always being scheduled
14806  *		(via the scsi_init_pkt callback implementation) if a resource
14807  *		failure occurs.
14808  *
14809  *     Context: This callback function may not block or call routines that block
14810  *
14811  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
14812  *		request persisting at the head of the list which cannot be
14813  *		satisfied even after multiple retries. In the future the driver
14814  *		may implement some time of maximum runout count before failing
14815  *		an I/O.
14816  */
14817 
14818 static int
14819 sdrunout(caddr_t arg)
14820 {
14821 	struct sd_lun	*un = (struct sd_lun *)arg;
14822 
14823 	ASSERT(un != NULL);
14824 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14825 
14826 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
14827 
14828 	mutex_enter(SD_MUTEX(un));
14829 	sd_start_cmds(un, NULL);
14830 	mutex_exit(SD_MUTEX(un));
14831 	/*
14832 	 * This callback routine always returns 1 (i.e. do not reschedule)
14833 	 * because we always specify sdrunout as the callback handler for
14834 	 * scsi_init_pkt inside the call to sd_start_cmds.
14835 	 */
14836 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
14837 	return (1);
14838 }
14839 
14840 
14841 /*
14842  *    Function: sdintr
14843  *
14844  * Description: Completion callback routine for scsi_pkt(9S) structs
14845  *		sent to the HBA driver via scsi_transport(9F).
14846  *
14847  *     Context: Interrupt context
14848  */
14849 
14850 static void
14851 sdintr(struct scsi_pkt *pktp)
14852 {
14853 	struct buf	*bp;
14854 	struct sd_xbuf	*xp;
14855 	struct sd_lun	*un;
14856 	size_t		actual_len;
14857 
14858 	ASSERT(pktp != NULL);
14859 	bp = (struct buf *)pktp->pkt_private;
14860 	ASSERT(bp != NULL);
14861 	xp = SD_GET_XBUF(bp);
14862 	ASSERT(xp != NULL);
14863 	ASSERT(xp->xb_pktp != NULL);
14864 	un = SD_GET_UN(bp);
14865 	ASSERT(un != NULL);
14866 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14867 
14868 #ifdef SD_FAULT_INJECTION
14869 
14870 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
14871 	/* SD FaultInjection */
14872 	sd_faultinjection(pktp);
14873 
14874 #endif /* SD_FAULT_INJECTION */
14875 
14876 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
14877 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
14878 
14879 	mutex_enter(SD_MUTEX(un));
14880 
14881 	/* Reduce the count of the #commands currently in transport */
14882 	un->un_ncmds_in_transport--;
14883 	ASSERT(un->un_ncmds_in_transport >= 0);
14884 
14885 	/* Increment counter to indicate that the callback routine is active */
14886 	un->un_in_callback++;
14887 
14888 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14889 
14890 #ifdef	SDDEBUG
14891 	if (bp == un->un_retry_bp) {
14892 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
14893 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
14894 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
14895 	}
14896 #endif
14897 
14898 	/*
14899 	 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media
14900 	 * state if needed.
14901 	 */
14902 	if (pktp->pkt_reason == CMD_DEV_GONE) {
14903 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14904 		    "Command failed to complete...Device is gone\n");
14905 		if (un->un_mediastate != DKIO_DEV_GONE) {
14906 			un->un_mediastate = DKIO_DEV_GONE;
14907 			cv_broadcast(&un->un_state_cv);
14908 		}
14909 		sd_return_failed_command(un, bp, EIO);
14910 		goto exit;
14911 	}
14912 
14913 	if (pktp->pkt_state & STATE_XARQ_DONE) {
14914 		SD_TRACE(SD_LOG_COMMON, un,
14915 		    "sdintr: extra sense data received. pkt=%p\n", pktp);
14916 	}
14917 
14918 	/*
14919 	 * First see if the pkt has auto-request sense data with it....
14920 	 * Look at the packet state first so we don't take a performance
14921 	 * hit looking at the arq enabled flag unless absolutely necessary.
14922 	 */
14923 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
14924 	    (un->un_f_arq_enabled == TRUE)) {
14925 		/*
14926 		 * The HBA did an auto request sense for this command so check
14927 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
14928 		 * driver command that should not be retried.
14929 		 */
14930 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
14931 			/*
14932 			 * Save the relevant sense info into the xp for the
14933 			 * original cmd.
14934 			 */
14935 			struct scsi_arq_status *asp;
14936 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
14937 			xp->xb_sense_status =
14938 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
14939 			xp->xb_sense_state  = asp->sts_rqpkt_state;
14940 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
14941 			if (pktp->pkt_state & STATE_XARQ_DONE) {
14942 				actual_len = MAX_SENSE_LENGTH -
14943 				    xp->xb_sense_resid;
14944 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
14945 				    MAX_SENSE_LENGTH);
14946 			} else {
14947 				if (xp->xb_sense_resid > SENSE_LENGTH) {
14948 					actual_len = MAX_SENSE_LENGTH -
14949 					    xp->xb_sense_resid;
14950 				} else {
14951 					actual_len = SENSE_LENGTH -
14952 					    xp->xb_sense_resid;
14953 				}
14954 				if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
14955 					if ((((struct uscsi_cmd *)
14956 					    (xp->xb_pktinfo))->uscsi_rqlen) >
14957 					    actual_len) {
14958 						xp->xb_sense_resid =
14959 						    (((struct uscsi_cmd *)
14960 						    (xp->xb_pktinfo))->
14961 						    uscsi_rqlen) - actual_len;
14962 					} else {
14963 						xp->xb_sense_resid = 0;
14964 					}
14965 				}
14966 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
14967 				    SENSE_LENGTH);
14968 			}
14969 
14970 			/* fail the command */
14971 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14972 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
14973 			sd_return_failed_command(un, bp, EIO);
14974 			goto exit;
14975 		}
14976 
14977 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
14978 		/*
14979 		 * We want to either retry or fail this command, so free
14980 		 * the DMA resources here.  If we retry the command then
14981 		 * the DMA resources will be reallocated in sd_start_cmds().
14982 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
14983 		 * causes the *entire* transfer to start over again from the
14984 		 * beginning of the request, even for PARTIAL chunks that
14985 		 * have already transferred successfully.
14986 		 */
14987 		if ((un->un_f_is_fibre == TRUE) &&
14988 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14989 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
14990 			scsi_dmafree(pktp);
14991 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14992 		}
14993 #endif
14994 
14995 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14996 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
14997 
14998 		sd_handle_auto_request_sense(un, bp, xp, pktp);
14999 		goto exit;
15000 	}
15001 
15002 	/* Next see if this is the REQUEST SENSE pkt for the instance */
15003 	if (pktp->pkt_flags & FLAG_SENSING)  {
15004 		/* This pktp is from the unit's REQUEST_SENSE command */
15005 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15006 		    "sdintr: sd_handle_request_sense\n");
15007 		sd_handle_request_sense(un, bp, xp, pktp);
15008 		goto exit;
15009 	}
15010 
15011 	/*
15012 	 * Check to see if the command successfully completed as requested;
15013 	 * this is the most common case (and also the hot performance path).
15014 	 *
15015 	 * Requirements for successful completion are:
15016 	 * pkt_reason is CMD_CMPLT and packet status is status good.
15017 	 * In addition:
15018 	 * - A residual of zero indicates successful completion no matter what
15019 	 *   the command is.
15020 	 * - If the residual is not zero and the command is not a read or
15021 	 *   write, then it's still defined as successful completion. In other
15022 	 *   words, if the command is a read or write the residual must be
15023 	 *   zero for successful completion.
15024 	 * - If the residual is not zero and the command is a read or
15025 	 *   write, and it's a USCSICMD, then it's still defined as
15026 	 *   successful completion.
15027 	 */
15028 	if ((pktp->pkt_reason == CMD_CMPLT) &&
15029 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
15030 
15031 		/*
15032 		 * Since this command is returned with a good status, we
15033 		 * can reset the count for Sonoma failover.
15034 		 */
15035 		un->un_sonoma_failure_count = 0;
15036 
15037 		/*
15038 		 * Return all USCSI commands on good status
15039 		 */
15040 		if (pktp->pkt_resid == 0) {
15041 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15042 			    "sdintr: returning command for resid == 0\n");
15043 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
15044 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
15045 			SD_UPDATE_B_RESID(bp, pktp);
15046 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15047 			    "sdintr: returning command for resid != 0\n");
15048 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
15049 			SD_UPDATE_B_RESID(bp, pktp);
15050 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15051 			    "sdintr: returning uscsi command\n");
15052 		} else {
15053 			goto not_successful;
15054 		}
15055 		sd_return_command(un, bp);
15056 
15057 		/*
15058 		 * Decrement counter to indicate that the callback routine
15059 		 * is done.
15060 		 */
15061 		un->un_in_callback--;
15062 		ASSERT(un->un_in_callback >= 0);
15063 		mutex_exit(SD_MUTEX(un));
15064 
15065 		return;
15066 	}
15067 
15068 not_successful:
15069 
15070 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
15071 	/*
15072 	 * The following is based upon knowledge of the underlying transport
15073 	 * and its use of DMA resources.  This code should be removed when
15074 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
15075 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
15076 	 * and sd_start_cmds().
15077 	 *
15078 	 * Free any DMA resources associated with this command if there
15079 	 * is a chance it could be retried or enqueued for later retry.
15080 	 * If we keep the DMA binding then mpxio cannot reissue the
15081 	 * command on another path whenever a path failure occurs.
15082 	 *
15083 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
15084 	 * causes the *entire* transfer to start over again from the
15085 	 * beginning of the request, even for PARTIAL chunks that
15086 	 * have already transferred successfully.
15087 	 *
15088 	 * This is only done for non-uscsi commands (and also skipped for the
15089 	 * driver's internal RQS command). Also just do this for Fibre Channel
15090 	 * devices as these are the only ones that support mpxio.
15091 	 */
15092 	if ((un->un_f_is_fibre == TRUE) &&
15093 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
15094 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
15095 		scsi_dmafree(pktp);
15096 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
15097 	}
15098 #endif
15099 
15100 	/*
15101 	 * The command did not successfully complete as requested so check
15102 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
15103 	 * driver command that should not be retried so just return. If
15104 	 * FLAG_DIAGNOSE is not set the error will be processed below.
15105 	 */
15106 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15107 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15108 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
15109 		/*
15110 		 * Issue a request sense if a check condition caused the error
15111 		 * (we handle the auto request sense case above), otherwise
15112 		 * just fail the command.
15113 		 */
15114 		if ((pktp->pkt_reason == CMD_CMPLT) &&
15115 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
15116 			sd_send_request_sense_command(un, bp, pktp);
15117 		} else {
15118 			sd_return_failed_command(un, bp, EIO);
15119 		}
15120 		goto exit;
15121 	}
15122 
15123 	/*
15124 	 * The command did not successfully complete as requested so process
15125 	 * the error, retry, and/or attempt recovery.
15126 	 */
15127 	switch (pktp->pkt_reason) {
15128 	case CMD_CMPLT:
15129 		switch (SD_GET_PKT_STATUS(pktp)) {
15130 		case STATUS_GOOD:
15131 			/*
15132 			 * The command completed successfully with a non-zero
15133 			 * residual
15134 			 */
15135 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15136 			    "sdintr: STATUS_GOOD \n");
15137 			sd_pkt_status_good(un, bp, xp, pktp);
15138 			break;
15139 
15140 		case STATUS_CHECK:
15141 		case STATUS_TERMINATED:
15142 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15143 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
15144 			sd_pkt_status_check_condition(un, bp, xp, pktp);
15145 			break;
15146 
15147 		case STATUS_BUSY:
15148 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15149 			    "sdintr: STATUS_BUSY\n");
15150 			sd_pkt_status_busy(un, bp, xp, pktp);
15151 			break;
15152 
15153 		case STATUS_RESERVATION_CONFLICT:
15154 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15155 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
15156 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
15157 			break;
15158 
15159 		case STATUS_QFULL:
15160 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15161 			    "sdintr: STATUS_QFULL\n");
15162 			sd_pkt_status_qfull(un, bp, xp, pktp);
15163 			break;
15164 
15165 		case STATUS_MET:
15166 		case STATUS_INTERMEDIATE:
15167 		case STATUS_SCSI2:
15168 		case STATUS_INTERMEDIATE_MET:
15169 		case STATUS_ACA_ACTIVE:
15170 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
15171 			    "Unexpected SCSI status received: 0x%x\n",
15172 			    SD_GET_PKT_STATUS(pktp));
15173 			sd_return_failed_command(un, bp, EIO);
15174 			break;
15175 
15176 		default:
15177 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
15178 			    "Invalid SCSI status received: 0x%x\n",
15179 			    SD_GET_PKT_STATUS(pktp));
15180 			sd_return_failed_command(un, bp, EIO);
15181 			break;
15182 
15183 		}
15184 		break;
15185 
15186 	case CMD_INCOMPLETE:
15187 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15188 		    "sdintr:  CMD_INCOMPLETE\n");
15189 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
15190 		break;
15191 	case CMD_TRAN_ERR:
15192 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15193 		    "sdintr: CMD_TRAN_ERR\n");
15194 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
15195 		break;
15196 	case CMD_RESET:
15197 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15198 		    "sdintr: CMD_RESET \n");
15199 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
15200 		break;
15201 	case CMD_ABORTED:
15202 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15203 		    "sdintr: CMD_ABORTED \n");
15204 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
15205 		break;
15206 	case CMD_TIMEOUT:
15207 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15208 		    "sdintr: CMD_TIMEOUT\n");
15209 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
15210 		break;
15211 	case CMD_UNX_BUS_FREE:
15212 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15213 		    "sdintr: CMD_UNX_BUS_FREE \n");
15214 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
15215 		break;
15216 	case CMD_TAG_REJECT:
15217 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15218 		    "sdintr: CMD_TAG_REJECT\n");
15219 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
15220 		break;
15221 	default:
15222 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15223 		    "sdintr: default\n");
15224 		sd_pkt_reason_default(un, bp, xp, pktp);
15225 		break;
15226 	}
15227 
15228 exit:
15229 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
15230 
15231 	/* Decrement counter to indicate that the callback routine is done. */
15232 	un->un_in_callback--;
15233 	ASSERT(un->un_in_callback >= 0);
15234 
15235 	/*
15236 	 * At this point, the pkt has been dispatched, ie, it is either
15237 	 * being re-tried or has been returned to its caller and should
15238 	 * not be referenced.
15239 	 */
15240 
15241 	mutex_exit(SD_MUTEX(un));
15242 }
15243 
15244 
15245 /*
15246  *    Function: sd_print_incomplete_msg
15247  *
15248  * Description: Prints the error message for a CMD_INCOMPLETE error.
15249  *
15250  *   Arguments: un - ptr to associated softstate for the device.
15251  *		bp - ptr to the buf(9S) for the command.
15252  *		arg - message string ptr
15253  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
15254  *			or SD_NO_RETRY_ISSUED.
15255  *
15256  *     Context: May be called under interrupt context
15257  */
15258 
15259 static void
15260 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
15261 {
15262 	struct scsi_pkt	*pktp;
15263 	char	*msgp;
15264 	char	*cmdp = arg;
15265 
15266 	ASSERT(un != NULL);
15267 	ASSERT(mutex_owned(SD_MUTEX(un)));
15268 	ASSERT(bp != NULL);
15269 	ASSERT(arg != NULL);
15270 	pktp = SD_GET_PKTP(bp);
15271 	ASSERT(pktp != NULL);
15272 
15273 	switch (code) {
15274 	case SD_DELAYED_RETRY_ISSUED:
15275 	case SD_IMMEDIATE_RETRY_ISSUED:
15276 		msgp = "retrying";
15277 		break;
15278 	case SD_NO_RETRY_ISSUED:
15279 	default:
15280 		msgp = "giving up";
15281 		break;
15282 	}
15283 
15284 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
15285 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15286 		    "incomplete %s- %s\n", cmdp, msgp);
15287 	}
15288 }
15289 
15290 
15291 
15292 /*
15293  *    Function: sd_pkt_status_good
15294  *
15295  * Description: Processing for a STATUS_GOOD code in pkt_status.
15296  *
15297  *     Context: May be called under interrupt context
15298  */
15299 
15300 static void
15301 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
15302 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15303 {
15304 	char	*cmdp;
15305 
15306 	ASSERT(un != NULL);
15307 	ASSERT(mutex_owned(SD_MUTEX(un)));
15308 	ASSERT(bp != NULL);
15309 	ASSERT(xp != NULL);
15310 	ASSERT(pktp != NULL);
15311 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
15312 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
15313 	ASSERT(pktp->pkt_resid != 0);
15314 
15315 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
15316 
15317 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
15318 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
15319 	case SCMD_READ:
15320 		cmdp = "read";
15321 		break;
15322 	case SCMD_WRITE:
15323 		cmdp = "write";
15324 		break;
15325 	default:
15326 		SD_UPDATE_B_RESID(bp, pktp);
15327 		sd_return_command(un, bp);
15328 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
15329 		return;
15330 	}
15331 
15332 	/*
15333 	 * See if we can retry the read/write, preferrably immediately.
15334 	 * If retries are exhaused, then sd_retry_command() will update
15335 	 * the b_resid count.
15336 	 */
15337 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
15338 	    cmdp, EIO, (clock_t)0, NULL);
15339 
15340 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
15341 }
15342 
15343 
15344 
15345 
15346 
15347 /*
15348  *    Function: sd_handle_request_sense
15349  *
15350  * Description: Processing for non-auto Request Sense command.
15351  *
15352  *   Arguments: un - ptr to associated softstate
15353  *		sense_bp - ptr to buf(9S) for the RQS command
15354  *		sense_xp - ptr to the sd_xbuf for the RQS command
15355  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
15356  *
15357  *     Context: May be called under interrupt context
15358  */
15359 
15360 static void
15361 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
15362 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
15363 {
15364 	struct buf	*cmd_bp;	/* buf for the original command */
15365 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
15366 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
15367 	size_t		actual_len;	/* actual sense data length */
15368 
15369 	ASSERT(un != NULL);
15370 	ASSERT(mutex_owned(SD_MUTEX(un)));
15371 	ASSERT(sense_bp != NULL);
15372 	ASSERT(sense_xp != NULL);
15373 	ASSERT(sense_pktp != NULL);
15374 
15375 	/*
15376 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
15377 	 * RQS command and not the original command.
15378 	 */
15379 	ASSERT(sense_pktp == un->un_rqs_pktp);
15380 	ASSERT(sense_bp   == un->un_rqs_bp);
15381 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
15382 	    (FLAG_SENSING | FLAG_HEAD));
15383 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
15384 	    FLAG_SENSING) == FLAG_SENSING);
15385 
15386 	/* These are the bp, xp, and pktp for the original command */
15387 	cmd_bp = sense_xp->xb_sense_bp;
15388 	cmd_xp = SD_GET_XBUF(cmd_bp);
15389 	cmd_pktp = SD_GET_PKTP(cmd_bp);
15390 
15391 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
15392 		/*
15393 		 * The REQUEST SENSE command failed.  Release the REQUEST
15394 		 * SENSE command for re-use, get back the bp for the original
15395 		 * command, and attempt to re-try the original command if
15396 		 * FLAG_DIAGNOSE is not set in the original packet.
15397 		 */
15398 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
15399 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15400 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
15401 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
15402 			    NULL, NULL, EIO, (clock_t)0, NULL);
15403 			return;
15404 		}
15405 	}
15406 
15407 	/*
15408 	 * Save the relevant sense info into the xp for the original cmd.
15409 	 *
15410 	 * Note: if the request sense failed the state info will be zero
15411 	 * as set in sd_mark_rqs_busy()
15412 	 */
15413 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
15414 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
15415 	actual_len = MAX_SENSE_LENGTH - sense_pktp->pkt_resid;
15416 	if ((cmd_xp->xb_pkt_flags & SD_XB_USCSICMD) &&
15417 	    (((struct uscsi_cmd *)cmd_xp->xb_pktinfo)->uscsi_rqlen >
15418 	    SENSE_LENGTH)) {
15419 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
15420 		    MAX_SENSE_LENGTH);
15421 		cmd_xp->xb_sense_resid = sense_pktp->pkt_resid;
15422 	} else {
15423 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
15424 		    SENSE_LENGTH);
15425 		if (actual_len < SENSE_LENGTH) {
15426 			cmd_xp->xb_sense_resid = SENSE_LENGTH - actual_len;
15427 		} else {
15428 			cmd_xp->xb_sense_resid = 0;
15429 		}
15430 	}
15431 
15432 	/*
15433 	 *  Free up the RQS command....
15434 	 *  NOTE:
15435 	 *	Must do this BEFORE calling sd_validate_sense_data!
15436 	 *	sd_validate_sense_data may return the original command in
15437 	 *	which case the pkt will be freed and the flags can no
15438 	 *	longer be touched.
15439 	 *	SD_MUTEX is held through this process until the command
15440 	 *	is dispatched based upon the sense data, so there are
15441 	 *	no race conditions.
15442 	 */
15443 	(void) sd_mark_rqs_idle(un, sense_xp);
15444 
15445 	/*
15446 	 * For a retryable command see if we have valid sense data, if so then
15447 	 * turn it over to sd_decode_sense() to figure out the right course of
15448 	 * action. Just fail a non-retryable command.
15449 	 */
15450 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15451 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp, actual_len) ==
15452 		    SD_SENSE_DATA_IS_VALID) {
15453 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
15454 		}
15455 	} else {
15456 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
15457 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15458 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
15459 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15460 		sd_return_failed_command(un, cmd_bp, EIO);
15461 	}
15462 }
15463 
15464 
15465 
15466 
15467 /*
15468  *    Function: sd_handle_auto_request_sense
15469  *
15470  * Description: Processing for auto-request sense information.
15471  *
15472  *   Arguments: un - ptr to associated softstate
15473  *		bp - ptr to buf(9S) for the command
15474  *		xp - ptr to the sd_xbuf for the command
15475  *		pktp - ptr to the scsi_pkt(9S) for the command
15476  *
15477  *     Context: May be called under interrupt context
15478  */
15479 
15480 static void
15481 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
15482 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15483 {
15484 	struct scsi_arq_status *asp;
15485 	size_t actual_len;
15486 
15487 	ASSERT(un != NULL);
15488 	ASSERT(mutex_owned(SD_MUTEX(un)));
15489 	ASSERT(bp != NULL);
15490 	ASSERT(xp != NULL);
15491 	ASSERT(pktp != NULL);
15492 	ASSERT(pktp != un->un_rqs_pktp);
15493 	ASSERT(bp   != un->un_rqs_bp);
15494 
15495 	/*
15496 	 * For auto-request sense, we get a scsi_arq_status back from
15497 	 * the HBA, with the sense data in the sts_sensedata member.
15498 	 * The pkt_scbp of the packet points to this scsi_arq_status.
15499 	 */
15500 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
15501 
15502 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
15503 		/*
15504 		 * The auto REQUEST SENSE failed; see if we can re-try
15505 		 * the original command.
15506 		 */
15507 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15508 		    "auto request sense failed (reason=%s)\n",
15509 		    scsi_rname(asp->sts_rqpkt_reason));
15510 
15511 		sd_reset_target(un, pktp);
15512 
15513 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15514 		    NULL, NULL, EIO, (clock_t)0, NULL);
15515 		return;
15516 	}
15517 
15518 	/* Save the relevant sense info into the xp for the original cmd. */
15519 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
15520 	xp->xb_sense_state  = asp->sts_rqpkt_state;
15521 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
15522 	if (xp->xb_sense_state & STATE_XARQ_DONE) {
15523 		actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
15524 		bcopy(&asp->sts_sensedata, xp->xb_sense_data,
15525 		    MAX_SENSE_LENGTH);
15526 	} else {
15527 		if (xp->xb_sense_resid > SENSE_LENGTH) {
15528 			actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
15529 		} else {
15530 			actual_len = SENSE_LENGTH - xp->xb_sense_resid;
15531 		}
15532 		if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
15533 			if ((((struct uscsi_cmd *)
15534 			    (xp->xb_pktinfo))->uscsi_rqlen) > actual_len) {
15535 				xp->xb_sense_resid = (((struct uscsi_cmd *)
15536 				    (xp->xb_pktinfo))->uscsi_rqlen) -
15537 				    actual_len;
15538 			} else {
15539 				xp->xb_sense_resid = 0;
15540 			}
15541 		}
15542 		bcopy(&asp->sts_sensedata, xp->xb_sense_data, SENSE_LENGTH);
15543 	}
15544 
15545 	/*
15546 	 * See if we have valid sense data, if so then turn it over to
15547 	 * sd_decode_sense() to figure out the right course of action.
15548 	 */
15549 	if (sd_validate_sense_data(un, bp, xp, actual_len) ==
15550 	    SD_SENSE_DATA_IS_VALID) {
15551 		sd_decode_sense(un, bp, xp, pktp);
15552 	}
15553 }
15554 
15555 
15556 /*
15557  *    Function: sd_print_sense_failed_msg
15558  *
15559  * Description: Print log message when RQS has failed.
15560  *
15561  *   Arguments: un - ptr to associated softstate
15562  *		bp - ptr to buf(9S) for the command
15563  *		arg - generic message string ptr
15564  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
15565  *			or SD_NO_RETRY_ISSUED
15566  *
15567  *     Context: May be called from interrupt context
15568  */
15569 
15570 static void
15571 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
15572 	int code)
15573 {
15574 	char	*msgp = arg;
15575 
15576 	ASSERT(un != NULL);
15577 	ASSERT(mutex_owned(SD_MUTEX(un)));
15578 	ASSERT(bp != NULL);
15579 
15580 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
15581 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
15582 	}
15583 }
15584 
15585 
15586 /*
15587  *    Function: sd_validate_sense_data
15588  *
15589  * Description: Check the given sense data for validity.
15590  *		If the sense data is not valid, the command will
15591  *		be either failed or retried!
15592  *
15593  * Return Code: SD_SENSE_DATA_IS_INVALID
15594  *		SD_SENSE_DATA_IS_VALID
15595  *
15596  *     Context: May be called from interrupt context
15597  */
15598 
15599 static int
15600 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
15601 	size_t actual_len)
15602 {
15603 	struct scsi_extended_sense *esp;
15604 	struct	scsi_pkt *pktp;
15605 	char	*msgp = NULL;
15606 
15607 	ASSERT(un != NULL);
15608 	ASSERT(mutex_owned(SD_MUTEX(un)));
15609 	ASSERT(bp != NULL);
15610 	ASSERT(bp != un->un_rqs_bp);
15611 	ASSERT(xp != NULL);
15612 
15613 	pktp = SD_GET_PKTP(bp);
15614 	ASSERT(pktp != NULL);
15615 
15616 	/*
15617 	 * Check the status of the RQS command (auto or manual).
15618 	 */
15619 	switch (xp->xb_sense_status & STATUS_MASK) {
15620 	case STATUS_GOOD:
15621 		break;
15622 
15623 	case STATUS_RESERVATION_CONFLICT:
15624 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
15625 		return (SD_SENSE_DATA_IS_INVALID);
15626 
15627 	case STATUS_BUSY:
15628 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15629 		    "Busy Status on REQUEST SENSE\n");
15630 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
15631 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
15632 		return (SD_SENSE_DATA_IS_INVALID);
15633 
15634 	case STATUS_QFULL:
15635 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15636 		    "QFULL Status on REQUEST SENSE\n");
15637 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
15638 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
15639 		return (SD_SENSE_DATA_IS_INVALID);
15640 
15641 	case STATUS_CHECK:
15642 	case STATUS_TERMINATED:
15643 		msgp = "Check Condition on REQUEST SENSE\n";
15644 		goto sense_failed;
15645 
15646 	default:
15647 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
15648 		goto sense_failed;
15649 	}
15650 
15651 	/*
15652 	 * See if we got the minimum required amount of sense data.
15653 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
15654 	 * or less.
15655 	 */
15656 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
15657 	    (actual_len == 0)) {
15658 		msgp = "Request Sense couldn't get sense data\n";
15659 		goto sense_failed;
15660 	}
15661 
15662 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
15663 		msgp = "Not enough sense information\n";
15664 		goto sense_failed;
15665 	}
15666 
15667 	/*
15668 	 * We require the extended sense data
15669 	 */
15670 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
15671 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
15672 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
15673 			static char tmp[8];
15674 			static char buf[148];
15675 			char *p = (char *)(xp->xb_sense_data);
15676 			int i;
15677 
15678 			mutex_enter(&sd_sense_mutex);
15679 			(void) strcpy(buf, "undecodable sense information:");
15680 			for (i = 0; i < actual_len; i++) {
15681 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
15682 				(void) strcpy(&buf[strlen(buf)], tmp);
15683 			}
15684 			i = strlen(buf);
15685 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
15686 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf);
15687 			mutex_exit(&sd_sense_mutex);
15688 		}
15689 		/* Note: Legacy behavior, fail the command with no retry */
15690 		sd_return_failed_command(un, bp, EIO);
15691 		return (SD_SENSE_DATA_IS_INVALID);
15692 	}
15693 
15694 	/*
15695 	 * Check that es_code is valid (es_class concatenated with es_code
15696 	 * make up the "response code" field.  es_class will always be 7, so
15697 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
15698 	 * format.
15699 	 */
15700 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
15701 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
15702 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
15703 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
15704 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
15705 		goto sense_failed;
15706 	}
15707 
15708 	return (SD_SENSE_DATA_IS_VALID);
15709 
15710 sense_failed:
15711 	/*
15712 	 * If the request sense failed (for whatever reason), attempt
15713 	 * to retry the original command.
15714 	 */
15715 #if defined(__i386) || defined(__amd64)
15716 	/*
15717 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
15718 	 * sddef.h for Sparc platform, and x86 uses 1 binary
15719 	 * for both SCSI/FC.
15720 	 * The SD_RETRY_DELAY value need to be adjusted here
15721 	 * when SD_RETRY_DELAY change in sddef.h
15722 	 */
15723 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15724 	    sd_print_sense_failed_msg, msgp, EIO,
15725 	    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
15726 #else
15727 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15728 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
15729 #endif
15730 
15731 	return (SD_SENSE_DATA_IS_INVALID);
15732 }
15733 
15734 
15735 
15736 /*
15737  *    Function: sd_decode_sense
15738  *
15739  * Description: Take recovery action(s) when SCSI Sense Data is received.
15740  *
15741  *     Context: Interrupt context.
15742  */
15743 
15744 static void
15745 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
15746 	struct scsi_pkt *pktp)
15747 {
15748 	uint8_t sense_key;
15749 
15750 	ASSERT(un != NULL);
15751 	ASSERT(mutex_owned(SD_MUTEX(un)));
15752 	ASSERT(bp != NULL);
15753 	ASSERT(bp != un->un_rqs_bp);
15754 	ASSERT(xp != NULL);
15755 	ASSERT(pktp != NULL);
15756 
15757 	sense_key = scsi_sense_key(xp->xb_sense_data);
15758 
15759 	switch (sense_key) {
15760 	case KEY_NO_SENSE:
15761 		sd_sense_key_no_sense(un, bp, xp, pktp);
15762 		break;
15763 	case KEY_RECOVERABLE_ERROR:
15764 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
15765 		    bp, xp, pktp);
15766 		break;
15767 	case KEY_NOT_READY:
15768 		sd_sense_key_not_ready(un, xp->xb_sense_data,
15769 		    bp, xp, pktp);
15770 		break;
15771 	case KEY_MEDIUM_ERROR:
15772 	case KEY_HARDWARE_ERROR:
15773 		sd_sense_key_medium_or_hardware_error(un,
15774 		    xp->xb_sense_data, bp, xp, pktp);
15775 		break;
15776 	case KEY_ILLEGAL_REQUEST:
15777 		sd_sense_key_illegal_request(un, bp, xp, pktp);
15778 		break;
15779 	case KEY_UNIT_ATTENTION:
15780 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
15781 		    bp, xp, pktp);
15782 		break;
15783 	case KEY_WRITE_PROTECT:
15784 	case KEY_VOLUME_OVERFLOW:
15785 	case KEY_MISCOMPARE:
15786 		sd_sense_key_fail_command(un, bp, xp, pktp);
15787 		break;
15788 	case KEY_BLANK_CHECK:
15789 		sd_sense_key_blank_check(un, bp, xp, pktp);
15790 		break;
15791 	case KEY_ABORTED_COMMAND:
15792 		sd_sense_key_aborted_command(un, bp, xp, pktp);
15793 		break;
15794 	case KEY_VENDOR_UNIQUE:
15795 	case KEY_COPY_ABORTED:
15796 	case KEY_EQUAL:
15797 	case KEY_RESERVED:
15798 	default:
15799 		sd_sense_key_default(un, xp->xb_sense_data,
15800 		    bp, xp, pktp);
15801 		break;
15802 	}
15803 }
15804 
15805 
15806 /*
15807  *    Function: sd_dump_memory
15808  *
15809  * Description: Debug logging routine to print the contents of a user provided
15810  *		buffer. The output of the buffer is broken up into 256 byte
15811  *		segments due to a size constraint of the scsi_log.
15812  *		implementation.
15813  *
15814  *   Arguments: un - ptr to softstate
15815  *		comp - component mask
15816  *		title - "title" string to preceed data when printed
15817  *		data - ptr to data block to be printed
15818  *		len - size of data block to be printed
15819  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
15820  *
15821  *     Context: May be called from interrupt context
15822  */
15823 
15824 #define	SD_DUMP_MEMORY_BUF_SIZE	256
15825 
15826 static char *sd_dump_format_string[] = {
15827 		" 0x%02x",
15828 		" %c"
15829 };
15830 
15831 static void
15832 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
15833     int len, int fmt)
15834 {
15835 	int	i, j;
15836 	int	avail_count;
15837 	int	start_offset;
15838 	int	end_offset;
15839 	size_t	entry_len;
15840 	char	*bufp;
15841 	char	*local_buf;
15842 	char	*format_string;
15843 
15844 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
15845 
15846 	/*
15847 	 * In the debug version of the driver, this function is called from a
15848 	 * number of places which are NOPs in the release driver.
15849 	 * The debug driver therefore has additional methods of filtering
15850 	 * debug output.
15851 	 */
15852 #ifdef SDDEBUG
15853 	/*
15854 	 * In the debug version of the driver we can reduce the amount of debug
15855 	 * messages by setting sd_error_level to something other than
15856 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
15857 	 * sd_component_mask.
15858 	 */
15859 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
15860 	    (sd_error_level != SCSI_ERR_ALL)) {
15861 		return;
15862 	}
15863 	if (((sd_component_mask & comp) == 0) ||
15864 	    (sd_error_level != SCSI_ERR_ALL)) {
15865 		return;
15866 	}
15867 #else
15868 	if (sd_error_level != SCSI_ERR_ALL) {
15869 		return;
15870 	}
15871 #endif
15872 
15873 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
15874 	bufp = local_buf;
15875 	/*
15876 	 * Available length is the length of local_buf[], minus the
15877 	 * length of the title string, minus one for the ":", minus
15878 	 * one for the newline, minus one for the NULL terminator.
15879 	 * This gives the #bytes available for holding the printed
15880 	 * values from the given data buffer.
15881 	 */
15882 	if (fmt == SD_LOG_HEX) {
15883 		format_string = sd_dump_format_string[0];
15884 	} else /* SD_LOG_CHAR */ {
15885 		format_string = sd_dump_format_string[1];
15886 	}
15887 	/*
15888 	 * Available count is the number of elements from the given
15889 	 * data buffer that we can fit into the available length.
15890 	 * This is based upon the size of the format string used.
15891 	 * Make one entry and find it's size.
15892 	 */
15893 	(void) sprintf(bufp, format_string, data[0]);
15894 	entry_len = strlen(bufp);
15895 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
15896 
15897 	j = 0;
15898 	while (j < len) {
15899 		bufp = local_buf;
15900 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
15901 		start_offset = j;
15902 
15903 		end_offset = start_offset + avail_count;
15904 
15905 		(void) sprintf(bufp, "%s:", title);
15906 		bufp += strlen(bufp);
15907 		for (i = start_offset; ((i < end_offset) && (j < len));
15908 		    i++, j++) {
15909 			(void) sprintf(bufp, format_string, data[i]);
15910 			bufp += entry_len;
15911 		}
15912 		(void) sprintf(bufp, "\n");
15913 
15914 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
15915 	}
15916 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
15917 }
15918 
15919 /*
15920  *    Function: sd_print_sense_msg
15921  *
15922  * Description: Log a message based upon the given sense data.
15923  *
15924  *   Arguments: un - ptr to associated softstate
15925  *		bp - ptr to buf(9S) for the command
15926  *		arg - ptr to associate sd_sense_info struct
15927  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
15928  *			or SD_NO_RETRY_ISSUED
15929  *
15930  *     Context: May be called from interrupt context
15931  */
15932 
15933 static void
15934 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
15935 {
15936 	struct sd_xbuf	*xp;
15937 	struct scsi_pkt	*pktp;
15938 	uint8_t *sensep;
15939 	daddr_t request_blkno;
15940 	diskaddr_t err_blkno;
15941 	int severity;
15942 	int pfa_flag;
15943 	extern struct scsi_key_strings scsi_cmds[];
15944 
15945 	ASSERT(un != NULL);
15946 	ASSERT(mutex_owned(SD_MUTEX(un)));
15947 	ASSERT(bp != NULL);
15948 	xp = SD_GET_XBUF(bp);
15949 	ASSERT(xp != NULL);
15950 	pktp = SD_GET_PKTP(bp);
15951 	ASSERT(pktp != NULL);
15952 	ASSERT(arg != NULL);
15953 
15954 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
15955 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
15956 
15957 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
15958 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
15959 		severity = SCSI_ERR_RETRYABLE;
15960 	}
15961 
15962 	/* Use absolute block number for the request block number */
15963 	request_blkno = xp->xb_blkno;
15964 
15965 	/*
15966 	 * Now try to get the error block number from the sense data
15967 	 */
15968 	sensep = xp->xb_sense_data;
15969 
15970 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
15971 	    (uint64_t *)&err_blkno)) {
15972 		/*
15973 		 * We retrieved the error block number from the information
15974 		 * portion of the sense data.
15975 		 *
15976 		 * For USCSI commands we are better off using the error
15977 		 * block no. as the requested block no. (This is the best
15978 		 * we can estimate.)
15979 		 */
15980 		if ((SD_IS_BUFIO(xp) == FALSE) &&
15981 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
15982 			request_blkno = err_blkno;
15983 		}
15984 	} else {
15985 		/*
15986 		 * Without the es_valid bit set (for fixed format) or an
15987 		 * information descriptor (for descriptor format) we cannot
15988 		 * be certain of the error blkno, so just use the
15989 		 * request_blkno.
15990 		 */
15991 		err_blkno = (diskaddr_t)request_blkno;
15992 	}
15993 
15994 	/*
15995 	 * The following will log the buffer contents for the release driver
15996 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
15997 	 * level is set to verbose.
15998 	 */
15999 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
16000 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
16001 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
16002 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
16003 
16004 	if (pfa_flag == FALSE) {
16005 		/* This is normally only set for USCSI */
16006 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
16007 			return;
16008 		}
16009 
16010 		if ((SD_IS_BUFIO(xp) == TRUE) &&
16011 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
16012 		    (severity < sd_error_level))) {
16013 			return;
16014 		}
16015 	}
16016 
16017 	/*
16018 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
16019 	 */
16020 	if ((SD_IS_LSI(un)) &&
16021 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
16022 	    (scsi_sense_asc(sensep) == 0x94) &&
16023 	    (scsi_sense_ascq(sensep) == 0x01)) {
16024 		un->un_sonoma_failure_count++;
16025 		if (un->un_sonoma_failure_count > 1) {
16026 			return;
16027 		}
16028 	}
16029 
16030 	scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
16031 	    request_blkno, err_blkno, scsi_cmds,
16032 	    (struct scsi_extended_sense *)sensep,
16033 	    un->un_additional_codes, NULL);
16034 }
16035 
16036 /*
16037  *    Function: sd_sense_key_no_sense
16038  *
16039  * Description: Recovery action when sense data was not received.
16040  *
16041  *     Context: May be called from interrupt context
16042  */
16043 
16044 static void
16045 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
16046 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16047 {
16048 	struct sd_sense_info	si;
16049 
16050 	ASSERT(un != NULL);
16051 	ASSERT(mutex_owned(SD_MUTEX(un)));
16052 	ASSERT(bp != NULL);
16053 	ASSERT(xp != NULL);
16054 	ASSERT(pktp != NULL);
16055 
16056 	si.ssi_severity = SCSI_ERR_FATAL;
16057 	si.ssi_pfa_flag = FALSE;
16058 
16059 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
16060 
16061 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16062 	    &si, EIO, (clock_t)0, NULL);
16063 }
16064 
16065 
16066 /*
16067  *    Function: sd_sense_key_recoverable_error
16068  *
16069  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
16070  *
16071  *     Context: May be called from interrupt context
16072  */
16073 
16074 static void
16075 sd_sense_key_recoverable_error(struct sd_lun *un,
16076 	uint8_t *sense_datap,
16077 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16078 {
16079 	struct sd_sense_info	si;
16080 	uint8_t asc = scsi_sense_asc(sense_datap);
16081 
16082 	ASSERT(un != NULL);
16083 	ASSERT(mutex_owned(SD_MUTEX(un)));
16084 	ASSERT(bp != NULL);
16085 	ASSERT(xp != NULL);
16086 	ASSERT(pktp != NULL);
16087 
16088 	/*
16089 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
16090 	 */
16091 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
16092 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
16093 		si.ssi_severity = SCSI_ERR_INFO;
16094 		si.ssi_pfa_flag = TRUE;
16095 	} else {
16096 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
16097 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
16098 		si.ssi_severity = SCSI_ERR_RECOVERED;
16099 		si.ssi_pfa_flag = FALSE;
16100 	}
16101 
16102 	if (pktp->pkt_resid == 0) {
16103 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16104 		sd_return_command(un, bp);
16105 		return;
16106 	}
16107 
16108 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16109 	    &si, EIO, (clock_t)0, NULL);
16110 }
16111 
16112 
16113 
16114 
16115 /*
16116  *    Function: sd_sense_key_not_ready
16117  *
16118  * Description: Recovery actions for a SCSI "Not Ready" sense key.
16119  *
16120  *     Context: May be called from interrupt context
16121  */
16122 
16123 static void
16124 sd_sense_key_not_ready(struct sd_lun *un,
16125 	uint8_t *sense_datap,
16126 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16127 {
16128 	struct sd_sense_info	si;
16129 	uint8_t asc = scsi_sense_asc(sense_datap);
16130 	uint8_t ascq = scsi_sense_ascq(sense_datap);
16131 
16132 	ASSERT(un != NULL);
16133 	ASSERT(mutex_owned(SD_MUTEX(un)));
16134 	ASSERT(bp != NULL);
16135 	ASSERT(xp != NULL);
16136 	ASSERT(pktp != NULL);
16137 
16138 	si.ssi_severity = SCSI_ERR_FATAL;
16139 	si.ssi_pfa_flag = FALSE;
16140 
16141 	/*
16142 	 * Update error stats after first NOT READY error. Disks may have
16143 	 * been powered down and may need to be restarted.  For CDROMs,
16144 	 * report NOT READY errors only if media is present.
16145 	 */
16146 	if ((ISCD(un) && (asc == 0x3A)) ||
16147 	    (xp->xb_nr_retry_count > 0)) {
16148 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16149 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
16150 	}
16151 
16152 	/*
16153 	 * Just fail if the "not ready" retry limit has been reached.
16154 	 */
16155 	if (xp->xb_nr_retry_count >= un->un_notready_retry_count) {
16156 		/* Special check for error message printing for removables. */
16157 		if (un->un_f_has_removable_media && (asc == 0x04) &&
16158 		    (ascq >= 0x04)) {
16159 			si.ssi_severity = SCSI_ERR_ALL;
16160 		}
16161 		goto fail_command;
16162 	}
16163 
16164 	/*
16165 	 * Check the ASC and ASCQ in the sense data as needed, to determine
16166 	 * what to do.
16167 	 */
16168 	switch (asc) {
16169 	case 0x04:	/* LOGICAL UNIT NOT READY */
16170 		/*
16171 		 * disk drives that don't spin up result in a very long delay
16172 		 * in format without warning messages. We will log a message
16173 		 * if the error level is set to verbose.
16174 		 */
16175 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
16176 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16177 			    "logical unit not ready, resetting disk\n");
16178 		}
16179 
16180 		/*
16181 		 * There are different requirements for CDROMs and disks for
16182 		 * the number of retries.  If a CD-ROM is giving this, it is
16183 		 * probably reading TOC and is in the process of getting
16184 		 * ready, so we should keep on trying for a long time to make
16185 		 * sure that all types of media are taken in account (for
16186 		 * some media the drive takes a long time to read TOC).  For
16187 		 * disks we do not want to retry this too many times as this
16188 		 * can cause a long hang in format when the drive refuses to
16189 		 * spin up (a very common failure).
16190 		 */
16191 		switch (ascq) {
16192 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
16193 			/*
16194 			 * Disk drives frequently refuse to spin up which
16195 			 * results in a very long hang in format without
16196 			 * warning messages.
16197 			 *
16198 			 * Note: This code preserves the legacy behavior of
16199 			 * comparing xb_nr_retry_count against zero for fibre
16200 			 * channel targets instead of comparing against the
16201 			 * un_reset_retry_count value.  The reason for this
16202 			 * discrepancy has been so utterly lost beneath the
16203 			 * Sands of Time that even Indiana Jones could not
16204 			 * find it.
16205 			 */
16206 			if (un->un_f_is_fibre == TRUE) {
16207 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
16208 				    (xp->xb_nr_retry_count > 0)) &&
16209 				    (un->un_startstop_timeid == NULL)) {
16210 					scsi_log(SD_DEVINFO(un), sd_label,
16211 					    CE_WARN, "logical unit not ready, "
16212 					    "resetting disk\n");
16213 					sd_reset_target(un, pktp);
16214 				}
16215 			} else {
16216 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
16217 				    (xp->xb_nr_retry_count >
16218 				    un->un_reset_retry_count)) &&
16219 				    (un->un_startstop_timeid == NULL)) {
16220 					scsi_log(SD_DEVINFO(un), sd_label,
16221 					    CE_WARN, "logical unit not ready, "
16222 					    "resetting disk\n");
16223 					sd_reset_target(un, pktp);
16224 				}
16225 			}
16226 			break;
16227 
16228 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
16229 			/*
16230 			 * If the target is in the process of becoming
16231 			 * ready, just proceed with the retry. This can
16232 			 * happen with CD-ROMs that take a long time to
16233 			 * read TOC after a power cycle or reset.
16234 			 */
16235 			goto do_retry;
16236 
16237 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
16238 			break;
16239 
16240 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
16241 			/*
16242 			 * Retries cannot help here so just fail right away.
16243 			 */
16244 			goto fail_command;
16245 
16246 		case 0x88:
16247 			/*
16248 			 * Vendor-unique code for T3/T4: it indicates a
16249 			 * path problem in a mutipathed config, but as far as
16250 			 * the target driver is concerned it equates to a fatal
16251 			 * error, so we should just fail the command right away
16252 			 * (without printing anything to the console). If this
16253 			 * is not a T3/T4, fall thru to the default recovery
16254 			 * action.
16255 			 * T3/T4 is FC only, don't need to check is_fibre
16256 			 */
16257 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
16258 				sd_return_failed_command(un, bp, EIO);
16259 				return;
16260 			}
16261 			/* FALLTHRU */
16262 
16263 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
16264 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
16265 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
16266 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
16267 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
16268 		default:    /* Possible future codes in SCSI spec? */
16269 			/*
16270 			 * For removable-media devices, do not retry if
16271 			 * ASCQ > 2 as these result mostly from USCSI commands
16272 			 * on MMC devices issued to check status of an
16273 			 * operation initiated in immediate mode.  Also for
16274 			 * ASCQ >= 4 do not print console messages as these
16275 			 * mainly represent a user-initiated operation
16276 			 * instead of a system failure.
16277 			 */
16278 			if (un->un_f_has_removable_media) {
16279 				si.ssi_severity = SCSI_ERR_ALL;
16280 				goto fail_command;
16281 			}
16282 			break;
16283 		}
16284 
16285 		/*
16286 		 * As part of our recovery attempt for the NOT READY
16287 		 * condition, we issue a START STOP UNIT command. However
16288 		 * we want to wait for a short delay before attempting this
16289 		 * as there may still be more commands coming back from the
16290 		 * target with the check condition. To do this we use
16291 		 * timeout(9F) to call sd_start_stop_unit_callback() after
16292 		 * the delay interval expires. (sd_start_stop_unit_callback()
16293 		 * dispatches sd_start_stop_unit_task(), which will issue
16294 		 * the actual START STOP UNIT command. The delay interval
16295 		 * is one-half of the delay that we will use to retry the
16296 		 * command that generated the NOT READY condition.
16297 		 *
16298 		 * Note that we could just dispatch sd_start_stop_unit_task()
16299 		 * from here and allow it to sleep for the delay interval,
16300 		 * but then we would be tying up the taskq thread
16301 		 * uncesessarily for the duration of the delay.
16302 		 *
16303 		 * Do not issue the START STOP UNIT if the current command
16304 		 * is already a START STOP UNIT.
16305 		 */
16306 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
16307 			break;
16308 		}
16309 
16310 		/*
16311 		 * Do not schedule the timeout if one is already pending.
16312 		 */
16313 		if (un->un_startstop_timeid != NULL) {
16314 			SD_INFO(SD_LOG_ERROR, un,
16315 			    "sd_sense_key_not_ready: restart already issued to"
16316 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
16317 			    ddi_get_instance(SD_DEVINFO(un)));
16318 			break;
16319 		}
16320 
16321 		/*
16322 		 * Schedule the START STOP UNIT command, then queue the command
16323 		 * for a retry.
16324 		 *
16325 		 * Note: A timeout is not scheduled for this retry because we
16326 		 * want the retry to be serial with the START_STOP_UNIT. The
16327 		 * retry will be started when the START_STOP_UNIT is completed
16328 		 * in sd_start_stop_unit_task.
16329 		 */
16330 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
16331 		    un, SD_BSY_TIMEOUT / 2);
16332 		xp->xb_nr_retry_count++;
16333 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
16334 		return;
16335 
16336 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
16337 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
16338 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16339 			    "unit does not respond to selection\n");
16340 		}
16341 		break;
16342 
16343 	case 0x3A:	/* MEDIUM NOT PRESENT */
16344 		if (sd_error_level >= SCSI_ERR_FATAL) {
16345 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16346 			    "Caddy not inserted in drive\n");
16347 		}
16348 
16349 		sr_ejected(un);
16350 		un->un_mediastate = DKIO_EJECTED;
16351 		/* The state has changed, inform the media watch routines */
16352 		cv_broadcast(&un->un_state_cv);
16353 		/* Just fail if no media is present in the drive. */
16354 		goto fail_command;
16355 
16356 	default:
16357 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
16358 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
16359 			    "Unit not Ready. Additional sense code 0x%x\n",
16360 			    asc);
16361 		}
16362 		break;
16363 	}
16364 
16365 do_retry:
16366 
16367 	/*
16368 	 * Retry the command, as some targets may report NOT READY for
16369 	 * several seconds after being reset.
16370 	 */
16371 	xp->xb_nr_retry_count++;
16372 	si.ssi_severity = SCSI_ERR_RETRYABLE;
16373 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
16374 	    &si, EIO, SD_BSY_TIMEOUT, NULL);
16375 
16376 	return;
16377 
16378 fail_command:
16379 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16380 	sd_return_failed_command(un, bp, EIO);
16381 }
16382 
16383 
16384 
16385 /*
16386  *    Function: sd_sense_key_medium_or_hardware_error
16387  *
16388  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
16389  *		sense key.
16390  *
16391  *     Context: May be called from interrupt context
16392  */
16393 
16394 static void
16395 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
16396 	uint8_t *sense_datap,
16397 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16398 {
16399 	struct sd_sense_info	si;
16400 	uint8_t sense_key = scsi_sense_key(sense_datap);
16401 	uint8_t asc = scsi_sense_asc(sense_datap);
16402 
16403 	ASSERT(un != NULL);
16404 	ASSERT(mutex_owned(SD_MUTEX(un)));
16405 	ASSERT(bp != NULL);
16406 	ASSERT(xp != NULL);
16407 	ASSERT(pktp != NULL);
16408 
16409 	si.ssi_severity = SCSI_ERR_FATAL;
16410 	si.ssi_pfa_flag = FALSE;
16411 
16412 	if (sense_key == KEY_MEDIUM_ERROR) {
16413 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
16414 	}
16415 
16416 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16417 
16418 	if ((un->un_reset_retry_count != 0) &&
16419 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
16420 		mutex_exit(SD_MUTEX(un));
16421 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
16422 		if (un->un_f_allow_bus_device_reset == TRUE) {
16423 
16424 			boolean_t try_resetting_target = B_TRUE;
16425 
16426 			/*
16427 			 * We need to be able to handle specific ASC when we are
16428 			 * handling a KEY_HARDWARE_ERROR. In particular
16429 			 * taking the default action of resetting the target may
16430 			 * not be the appropriate way to attempt recovery.
16431 			 * Resetting a target because of a single LUN failure
16432 			 * victimizes all LUNs on that target.
16433 			 *
16434 			 * This is true for the LSI arrays, if an LSI
16435 			 * array controller returns an ASC of 0x84 (LUN Dead) we
16436 			 * should trust it.
16437 			 */
16438 
16439 			if (sense_key == KEY_HARDWARE_ERROR) {
16440 				switch (asc) {
16441 				case 0x84:
16442 					if (SD_IS_LSI(un)) {
16443 						try_resetting_target = B_FALSE;
16444 					}
16445 					break;
16446 				default:
16447 					break;
16448 				}
16449 			}
16450 
16451 			if (try_resetting_target == B_TRUE) {
16452 				int reset_retval = 0;
16453 				if (un->un_f_lun_reset_enabled == TRUE) {
16454 					SD_TRACE(SD_LOG_IO_CORE, un,
16455 					    "sd_sense_key_medium_or_hardware_"
16456 					    "error: issuing RESET_LUN\n");
16457 					reset_retval =
16458 					    scsi_reset(SD_ADDRESS(un),
16459 					    RESET_LUN);
16460 				}
16461 				if (reset_retval == 0) {
16462 					SD_TRACE(SD_LOG_IO_CORE, un,
16463 					    "sd_sense_key_medium_or_hardware_"
16464 					    "error: issuing RESET_TARGET\n");
16465 					(void) scsi_reset(SD_ADDRESS(un),
16466 					    RESET_TARGET);
16467 				}
16468 			}
16469 		}
16470 		mutex_enter(SD_MUTEX(un));
16471 	}
16472 
16473 	/*
16474 	 * This really ought to be a fatal error, but we will retry anyway
16475 	 * as some drives report this as a spurious error.
16476 	 */
16477 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16478 	    &si, EIO, (clock_t)0, NULL);
16479 }
16480 
16481 
16482 
16483 /*
16484  *    Function: sd_sense_key_illegal_request
16485  *
16486  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
16487  *
16488  *     Context: May be called from interrupt context
16489  */
16490 
16491 static void
16492 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
16493 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16494 {
16495 	struct sd_sense_info	si;
16496 
16497 	ASSERT(un != NULL);
16498 	ASSERT(mutex_owned(SD_MUTEX(un)));
16499 	ASSERT(bp != NULL);
16500 	ASSERT(xp != NULL);
16501 	ASSERT(pktp != NULL);
16502 
16503 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
16504 
16505 	si.ssi_severity = SCSI_ERR_INFO;
16506 	si.ssi_pfa_flag = FALSE;
16507 
16508 	/* Pointless to retry if the target thinks it's an illegal request */
16509 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16510 	sd_return_failed_command(un, bp, EIO);
16511 }
16512 
16513 
16514 
16515 
16516 /*
16517  *    Function: sd_sense_key_unit_attention
16518  *
16519  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
16520  *
16521  *     Context: May be called from interrupt context
16522  */
16523 
16524 static void
16525 sd_sense_key_unit_attention(struct sd_lun *un,
16526 	uint8_t *sense_datap,
16527 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16528 {
16529 	/*
16530 	 * For UNIT ATTENTION we allow retries for one minute. Devices
16531 	 * like Sonoma can return UNIT ATTENTION close to a minute
16532 	 * under certain conditions.
16533 	 */
16534 	int	retry_check_flag = SD_RETRIES_UA;
16535 	boolean_t	kstat_updated = B_FALSE;
16536 	struct	sd_sense_info		si;
16537 	uint8_t asc = scsi_sense_asc(sense_datap);
16538 	uint8_t	ascq = scsi_sense_ascq(sense_datap);
16539 
16540 	ASSERT(un != NULL);
16541 	ASSERT(mutex_owned(SD_MUTEX(un)));
16542 	ASSERT(bp != NULL);
16543 	ASSERT(xp != NULL);
16544 	ASSERT(pktp != NULL);
16545 
16546 	si.ssi_severity = SCSI_ERR_INFO;
16547 	si.ssi_pfa_flag = FALSE;
16548 
16549 
16550 	switch (asc) {
16551 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
16552 		if (sd_report_pfa != 0) {
16553 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
16554 			si.ssi_pfa_flag = TRUE;
16555 			retry_check_flag = SD_RETRIES_STANDARD;
16556 			goto do_retry;
16557 		}
16558 
16559 		break;
16560 
16561 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
16562 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
16563 			un->un_resvd_status |=
16564 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
16565 		}
16566 #ifdef _LP64
16567 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
16568 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
16569 			    un, KM_NOSLEEP) == 0) {
16570 				/*
16571 				 * If we can't dispatch the task we'll just
16572 				 * live without descriptor sense.  We can
16573 				 * try again on the next "unit attention"
16574 				 */
16575 				SD_ERROR(SD_LOG_ERROR, un,
16576 				    "sd_sense_key_unit_attention: "
16577 				    "Could not dispatch "
16578 				    "sd_reenable_dsense_task\n");
16579 			}
16580 		}
16581 #endif /* _LP64 */
16582 		/* FALLTHRU */
16583 
16584 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
16585 		if (!un->un_f_has_removable_media) {
16586 			break;
16587 		}
16588 
16589 		/*
16590 		 * When we get a unit attention from a removable-media device,
16591 		 * it may be in a state that will take a long time to recover
16592 		 * (e.g., from a reset).  Since we are executing in interrupt
16593 		 * context here, we cannot wait around for the device to come
16594 		 * back. So hand this command off to sd_media_change_task()
16595 		 * for deferred processing under taskq thread context. (Note
16596 		 * that the command still may be failed if a problem is
16597 		 * encountered at a later time.)
16598 		 */
16599 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
16600 		    KM_NOSLEEP) == 0) {
16601 			/*
16602 			 * Cannot dispatch the request so fail the command.
16603 			 */
16604 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
16605 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
16606 			si.ssi_severity = SCSI_ERR_FATAL;
16607 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16608 			sd_return_failed_command(un, bp, EIO);
16609 		}
16610 
16611 		/*
16612 		 * If failed to dispatch sd_media_change_task(), we already
16613 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
16614 		 * we should update kstat later if it encounters an error. So,
16615 		 * we update kstat_updated flag here.
16616 		 */
16617 		kstat_updated = B_TRUE;
16618 
16619 		/*
16620 		 * Either the command has been successfully dispatched to a
16621 		 * task Q for retrying, or the dispatch failed. In either case
16622 		 * do NOT retry again by calling sd_retry_command. This sets up
16623 		 * two retries of the same command and when one completes and
16624 		 * frees the resources the other will access freed memory,
16625 		 * a bad thing.
16626 		 */
16627 		return;
16628 
16629 	default:
16630 		break;
16631 	}
16632 
16633 	/*
16634 	 * ASC  ASCQ
16635 	 *  2A   09	Capacity data has changed
16636 	 *  2A   01	Mode parameters changed
16637 	 *  3F   0E	Reported luns data has changed
16638 	 * Arrays that support logical unit expansion should report
16639 	 * capacity changes(2Ah/09). Mode parameters changed and
16640 	 * reported luns data has changed are the approximation.
16641 	 */
16642 	if (((asc == 0x2a) && (ascq == 0x09)) ||
16643 	    ((asc == 0x2a) && (ascq == 0x01)) ||
16644 	    ((asc == 0x3f) && (ascq == 0x0e))) {
16645 		if (taskq_dispatch(sd_tq, sd_target_change_task, un,
16646 		    KM_NOSLEEP) == 0) {
16647 			SD_ERROR(SD_LOG_ERROR, un,
16648 			    "sd_sense_key_unit_attention: "
16649 			    "Could not dispatch sd_target_change_task\n");
16650 		}
16651 	}
16652 
16653 	/*
16654 	 * Update kstat if we haven't done that.
16655 	 */
16656 	if (!kstat_updated) {
16657 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16658 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
16659 	}
16660 
16661 do_retry:
16662 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
16663 	    EIO, SD_UA_RETRY_DELAY, NULL);
16664 }
16665 
16666 
16667 
16668 /*
16669  *    Function: sd_sense_key_fail_command
16670  *
16671  * Description: Use to fail a command when we don't like the sense key that
16672  *		was returned.
16673  *
16674  *     Context: May be called from interrupt context
16675  */
16676 
16677 static void
16678 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
16679 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16680 {
16681 	struct sd_sense_info	si;
16682 
16683 	ASSERT(un != NULL);
16684 	ASSERT(mutex_owned(SD_MUTEX(un)));
16685 	ASSERT(bp != NULL);
16686 	ASSERT(xp != NULL);
16687 	ASSERT(pktp != NULL);
16688 
16689 	si.ssi_severity = SCSI_ERR_FATAL;
16690 	si.ssi_pfa_flag = FALSE;
16691 
16692 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16693 	sd_return_failed_command(un, bp, EIO);
16694 }
16695 
16696 
16697 
16698 /*
16699  *    Function: sd_sense_key_blank_check
16700  *
16701  * Description: Recovery actions for a SCSI "Blank Check" sense key.
16702  *		Has no monetary connotation.
16703  *
16704  *     Context: May be called from interrupt context
16705  */
16706 
16707 static void
16708 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
16709 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16710 {
16711 	struct sd_sense_info	si;
16712 
16713 	ASSERT(un != NULL);
16714 	ASSERT(mutex_owned(SD_MUTEX(un)));
16715 	ASSERT(bp != NULL);
16716 	ASSERT(xp != NULL);
16717 	ASSERT(pktp != NULL);
16718 
16719 	/*
16720 	 * Blank check is not fatal for removable devices, therefore
16721 	 * it does not require a console message.
16722 	 */
16723 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
16724 	    SCSI_ERR_FATAL;
16725 	si.ssi_pfa_flag = FALSE;
16726 
16727 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16728 	sd_return_failed_command(un, bp, EIO);
16729 }
16730 
16731 
16732 
16733 
16734 /*
16735  *    Function: sd_sense_key_aborted_command
16736  *
16737  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
16738  *
16739  *     Context: May be called from interrupt context
16740  */
16741 
16742 static void
16743 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
16744 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16745 {
16746 	struct sd_sense_info	si;
16747 
16748 	ASSERT(un != NULL);
16749 	ASSERT(mutex_owned(SD_MUTEX(un)));
16750 	ASSERT(bp != NULL);
16751 	ASSERT(xp != NULL);
16752 	ASSERT(pktp != NULL);
16753 
16754 	si.ssi_severity = SCSI_ERR_FATAL;
16755 	si.ssi_pfa_flag = FALSE;
16756 
16757 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16758 
16759 	/*
16760 	 * This really ought to be a fatal error, but we will retry anyway
16761 	 * as some drives report this as a spurious error.
16762 	 */
16763 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16764 	    &si, EIO, drv_usectohz(100000), NULL);
16765 }
16766 
16767 
16768 
16769 /*
16770  *    Function: sd_sense_key_default
16771  *
16772  * Description: Default recovery action for several SCSI sense keys (basically
16773  *		attempts a retry).
16774  *
16775  *     Context: May be called from interrupt context
16776  */
16777 
16778 static void
16779 sd_sense_key_default(struct sd_lun *un,
16780 	uint8_t *sense_datap,
16781 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16782 {
16783 	struct sd_sense_info	si;
16784 	uint8_t sense_key = scsi_sense_key(sense_datap);
16785 
16786 	ASSERT(un != NULL);
16787 	ASSERT(mutex_owned(SD_MUTEX(un)));
16788 	ASSERT(bp != NULL);
16789 	ASSERT(xp != NULL);
16790 	ASSERT(pktp != NULL);
16791 
16792 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16793 
16794 	/*
16795 	 * Undecoded sense key.	Attempt retries and hope that will fix
16796 	 * the problem.  Otherwise, we're dead.
16797 	 */
16798 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16799 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16800 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
16801 	}
16802 
16803 	si.ssi_severity = SCSI_ERR_FATAL;
16804 	si.ssi_pfa_flag = FALSE;
16805 
16806 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16807 	    &si, EIO, (clock_t)0, NULL);
16808 }
16809 
16810 
16811 
16812 /*
16813  *    Function: sd_print_retry_msg
16814  *
16815  * Description: Print a message indicating the retry action being taken.
16816  *
16817  *   Arguments: un - ptr to associated softstate
16818  *		bp - ptr to buf(9S) for the command
16819  *		arg - not used.
16820  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16821  *			or SD_NO_RETRY_ISSUED
16822  *
16823  *     Context: May be called from interrupt context
16824  */
16825 /* ARGSUSED */
16826 static void
16827 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
16828 {
16829 	struct sd_xbuf	*xp;
16830 	struct scsi_pkt *pktp;
16831 	char *reasonp;
16832 	char *msgp;
16833 
16834 	ASSERT(un != NULL);
16835 	ASSERT(mutex_owned(SD_MUTEX(un)));
16836 	ASSERT(bp != NULL);
16837 	pktp = SD_GET_PKTP(bp);
16838 	ASSERT(pktp != NULL);
16839 	xp = SD_GET_XBUF(bp);
16840 	ASSERT(xp != NULL);
16841 
16842 	ASSERT(!mutex_owned(&un->un_pm_mutex));
16843 	mutex_enter(&un->un_pm_mutex);
16844 	if ((un->un_state == SD_STATE_SUSPENDED) ||
16845 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
16846 	    (pktp->pkt_flags & FLAG_SILENT)) {
16847 		mutex_exit(&un->un_pm_mutex);
16848 		goto update_pkt_reason;
16849 	}
16850 	mutex_exit(&un->un_pm_mutex);
16851 
16852 	/*
16853 	 * Suppress messages if they are all the same pkt_reason; with
16854 	 * TQ, many (up to 256) are returned with the same pkt_reason.
16855 	 * If we are in panic, then suppress the retry messages.
16856 	 */
16857 	switch (flag) {
16858 	case SD_NO_RETRY_ISSUED:
16859 		msgp = "giving up";
16860 		break;
16861 	case SD_IMMEDIATE_RETRY_ISSUED:
16862 	case SD_DELAYED_RETRY_ISSUED:
16863 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
16864 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
16865 		    (sd_error_level != SCSI_ERR_ALL))) {
16866 			return;
16867 		}
16868 		msgp = "retrying command";
16869 		break;
16870 	default:
16871 		goto update_pkt_reason;
16872 	}
16873 
16874 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
16875 	    scsi_rname(pktp->pkt_reason));
16876 
16877 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16878 	    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
16879 
16880 update_pkt_reason:
16881 	/*
16882 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
16883 	 * This is to prevent multiple console messages for the same failure
16884 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
16885 	 * when the command is retried successfully because there still may be
16886 	 * more commands coming back with the same value of pktp->pkt_reason.
16887 	 */
16888 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
16889 		un->un_last_pkt_reason = pktp->pkt_reason;
16890 	}
16891 }
16892 
16893 
16894 /*
16895  *    Function: sd_print_cmd_incomplete_msg
16896  *
16897  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
16898  *
16899  *   Arguments: un - ptr to associated softstate
16900  *		bp - ptr to buf(9S) for the command
16901  *		arg - passed to sd_print_retry_msg()
16902  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16903  *			or SD_NO_RETRY_ISSUED
16904  *
16905  *     Context: May be called from interrupt context
16906  */
16907 
16908 static void
16909 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
16910 	int code)
16911 {
16912 	dev_info_t	*dip;
16913 
16914 	ASSERT(un != NULL);
16915 	ASSERT(mutex_owned(SD_MUTEX(un)));
16916 	ASSERT(bp != NULL);
16917 
16918 	switch (code) {
16919 	case SD_NO_RETRY_ISSUED:
16920 		/* Command was failed. Someone turned off this target? */
16921 		if (un->un_state != SD_STATE_OFFLINE) {
16922 			/*
16923 			 * Suppress message if we are detaching and
16924 			 * device has been disconnected
16925 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
16926 			 * private interface and not part of the DDI
16927 			 */
16928 			dip = un->un_sd->sd_dev;
16929 			if (!(DEVI_IS_DETACHING(dip) &&
16930 			    DEVI_IS_DEVICE_REMOVED(dip))) {
16931 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16932 				"disk not responding to selection\n");
16933 			}
16934 			New_state(un, SD_STATE_OFFLINE);
16935 		}
16936 		break;
16937 
16938 	case SD_DELAYED_RETRY_ISSUED:
16939 	case SD_IMMEDIATE_RETRY_ISSUED:
16940 	default:
16941 		/* Command was successfully queued for retry */
16942 		sd_print_retry_msg(un, bp, arg, code);
16943 		break;
16944 	}
16945 }
16946 
16947 
16948 /*
16949  *    Function: sd_pkt_reason_cmd_incomplete
16950  *
16951  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
16952  *
16953  *     Context: May be called from interrupt context
16954  */
16955 
16956 static void
16957 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
16958 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16959 {
16960 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
16961 
16962 	ASSERT(un != NULL);
16963 	ASSERT(mutex_owned(SD_MUTEX(un)));
16964 	ASSERT(bp != NULL);
16965 	ASSERT(xp != NULL);
16966 	ASSERT(pktp != NULL);
16967 
16968 	/* Do not do a reset if selection did not complete */
16969 	/* Note: Should this not just check the bit? */
16970 	if (pktp->pkt_state != STATE_GOT_BUS) {
16971 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
16972 		sd_reset_target(un, pktp);
16973 	}
16974 
16975 	/*
16976 	 * If the target was not successfully selected, then set
16977 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
16978 	 * with the target, and further retries and/or commands are
16979 	 * likely to take a long time.
16980 	 */
16981 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
16982 		flag |= SD_RETRIES_FAILFAST;
16983 	}
16984 
16985 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16986 
16987 	sd_retry_command(un, bp, flag,
16988 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16989 }
16990 
16991 
16992 
16993 /*
16994  *    Function: sd_pkt_reason_cmd_tran_err
16995  *
16996  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
16997  *
16998  *     Context: May be called from interrupt context
16999  */
17000 
17001 static void
17002 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
17003 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17004 {
17005 	ASSERT(un != NULL);
17006 	ASSERT(mutex_owned(SD_MUTEX(un)));
17007 	ASSERT(bp != NULL);
17008 	ASSERT(xp != NULL);
17009 	ASSERT(pktp != NULL);
17010 
17011 	/*
17012 	 * Do not reset if we got a parity error, or if
17013 	 * selection did not complete.
17014 	 */
17015 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17016 	/* Note: Should this not just check the bit for pkt_state? */
17017 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
17018 	    (pktp->pkt_state != STATE_GOT_BUS)) {
17019 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
17020 		sd_reset_target(un, pktp);
17021 	}
17022 
17023 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17024 
17025 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
17026 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17027 }
17028 
17029 
17030 
17031 /*
17032  *    Function: sd_pkt_reason_cmd_reset
17033  *
17034  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
17035  *
17036  *     Context: May be called from interrupt context
17037  */
17038 
17039 static void
17040 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
17041 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17042 {
17043 	ASSERT(un != NULL);
17044 	ASSERT(mutex_owned(SD_MUTEX(un)));
17045 	ASSERT(bp != NULL);
17046 	ASSERT(xp != NULL);
17047 	ASSERT(pktp != NULL);
17048 
17049 	/* The target may still be running the command, so try to reset. */
17050 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
17051 	sd_reset_target(un, pktp);
17052 
17053 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17054 
17055 	/*
17056 	 * If pkt_reason is CMD_RESET chances are that this pkt got
17057 	 * reset because another target on this bus caused it. The target
17058 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
17059 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
17060 	 */
17061 
17062 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
17063 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17064 }
17065 
17066 
17067 
17068 
17069 /*
17070  *    Function: sd_pkt_reason_cmd_aborted
17071  *
17072  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
17073  *
17074  *     Context: May be called from interrupt context
17075  */
17076 
17077 static void
17078 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
17079 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17080 {
17081 	ASSERT(un != NULL);
17082 	ASSERT(mutex_owned(SD_MUTEX(un)));
17083 	ASSERT(bp != NULL);
17084 	ASSERT(xp != NULL);
17085 	ASSERT(pktp != NULL);
17086 
17087 	/* The target may still be running the command, so try to reset. */
17088 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
17089 	sd_reset_target(un, pktp);
17090 
17091 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17092 
17093 	/*
17094 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
17095 	 * aborted because another target on this bus caused it. The target
17096 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
17097 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
17098 	 */
17099 
17100 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
17101 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17102 }
17103 
17104 
17105 
17106 /*
17107  *    Function: sd_pkt_reason_cmd_timeout
17108  *
17109  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
17110  *
17111  *     Context: May be called from interrupt context
17112  */
17113 
17114 static void
17115 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
17116 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17117 {
17118 	ASSERT(un != NULL);
17119 	ASSERT(mutex_owned(SD_MUTEX(un)));
17120 	ASSERT(bp != NULL);
17121 	ASSERT(xp != NULL);
17122 	ASSERT(pktp != NULL);
17123 
17124 
17125 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
17126 	sd_reset_target(un, pktp);
17127 
17128 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17129 
17130 	/*
17131 	 * A command timeout indicates that we could not establish
17132 	 * communication with the target, so set SD_RETRIES_FAILFAST
17133 	 * as further retries/commands are likely to take a long time.
17134 	 */
17135 	sd_retry_command(un, bp,
17136 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
17137 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17138 }
17139 
17140 
17141 
17142 /*
17143  *    Function: sd_pkt_reason_cmd_unx_bus_free
17144  *
17145  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
17146  *
17147  *     Context: May be called from interrupt context
17148  */
17149 
17150 static void
17151 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
17152 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17153 {
17154 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
17155 
17156 	ASSERT(un != NULL);
17157 	ASSERT(mutex_owned(SD_MUTEX(un)));
17158 	ASSERT(bp != NULL);
17159 	ASSERT(xp != NULL);
17160 	ASSERT(pktp != NULL);
17161 
17162 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17163 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17164 
17165 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
17166 	    sd_print_retry_msg : NULL;
17167 
17168 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
17169 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17170 }
17171 
17172 
17173 /*
17174  *    Function: sd_pkt_reason_cmd_tag_reject
17175  *
17176  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
17177  *
17178  *     Context: May be called from interrupt context
17179  */
17180 
17181 static void
17182 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
17183 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17184 {
17185 	ASSERT(un != NULL);
17186 	ASSERT(mutex_owned(SD_MUTEX(un)));
17187 	ASSERT(bp != NULL);
17188 	ASSERT(xp != NULL);
17189 	ASSERT(pktp != NULL);
17190 
17191 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17192 	pktp->pkt_flags = 0;
17193 	un->un_tagflags = 0;
17194 	if (un->un_f_opt_queueing == TRUE) {
17195 		un->un_throttle = min(un->un_throttle, 3);
17196 	} else {
17197 		un->un_throttle = 1;
17198 	}
17199 	mutex_exit(SD_MUTEX(un));
17200 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
17201 	mutex_enter(SD_MUTEX(un));
17202 
17203 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17204 
17205 	/* Legacy behavior not to check retry counts here. */
17206 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
17207 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17208 }
17209 
17210 
17211 /*
17212  *    Function: sd_pkt_reason_default
17213  *
17214  * Description: Default recovery actions for SCSA pkt_reason values that
17215  *		do not have more explicit recovery actions.
17216  *
17217  *     Context: May be called from interrupt context
17218  */
17219 
17220 static void
17221 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
17222 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17223 {
17224 	ASSERT(un != NULL);
17225 	ASSERT(mutex_owned(SD_MUTEX(un)));
17226 	ASSERT(bp != NULL);
17227 	ASSERT(xp != NULL);
17228 	ASSERT(pktp != NULL);
17229 
17230 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
17231 	sd_reset_target(un, pktp);
17232 
17233 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17234 
17235 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
17236 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17237 }
17238 
17239 
17240 
17241 /*
17242  *    Function: sd_pkt_status_check_condition
17243  *
17244  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
17245  *
17246  *     Context: May be called from interrupt context
17247  */
17248 
17249 static void
17250 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
17251 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17252 {
17253 	ASSERT(un != NULL);
17254 	ASSERT(mutex_owned(SD_MUTEX(un)));
17255 	ASSERT(bp != NULL);
17256 	ASSERT(xp != NULL);
17257 	ASSERT(pktp != NULL);
17258 
17259 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
17260 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
17261 
17262 	/*
17263 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
17264 	 * command will be retried after the request sense). Otherwise, retry
17265 	 * the command. Note: we are issuing the request sense even though the
17266 	 * retry limit may have been reached for the failed command.
17267 	 */
17268 	if (un->un_f_arq_enabled == FALSE) {
17269 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
17270 		    "no ARQ, sending request sense command\n");
17271 		sd_send_request_sense_command(un, bp, pktp);
17272 	} else {
17273 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
17274 		    "ARQ,retrying request sense command\n");
17275 #if defined(__i386) || defined(__amd64)
17276 		/*
17277 		 * The SD_RETRY_DELAY value need to be adjusted here
17278 		 * when SD_RETRY_DELAY change in sddef.h
17279 		 */
17280 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
17281 		    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
17282 		    NULL);
17283 #else
17284 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
17285 		    EIO, SD_RETRY_DELAY, NULL);
17286 #endif
17287 	}
17288 
17289 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
17290 }
17291 
17292 
17293 /*
17294  *    Function: sd_pkt_status_busy
17295  *
17296  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
17297  *
17298  *     Context: May be called from interrupt context
17299  */
17300 
17301 static void
17302 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17303 	struct scsi_pkt *pktp)
17304 {
17305 	ASSERT(un != NULL);
17306 	ASSERT(mutex_owned(SD_MUTEX(un)));
17307 	ASSERT(bp != NULL);
17308 	ASSERT(xp != NULL);
17309 	ASSERT(pktp != NULL);
17310 
17311 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17312 	    "sd_pkt_status_busy: entry\n");
17313 
17314 	/* If retries are exhausted, just fail the command. */
17315 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
17316 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17317 		    "device busy too long\n");
17318 		sd_return_failed_command(un, bp, EIO);
17319 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17320 		    "sd_pkt_status_busy: exit\n");
17321 		return;
17322 	}
17323 	xp->xb_retry_count++;
17324 
17325 	/*
17326 	 * Try to reset the target. However, we do not want to perform
17327 	 * more than one reset if the device continues to fail. The reset
17328 	 * will be performed when the retry count reaches the reset
17329 	 * threshold.  This threshold should be set such that at least
17330 	 * one retry is issued before the reset is performed.
17331 	 */
17332 	if (xp->xb_retry_count ==
17333 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
17334 		int rval = 0;
17335 		mutex_exit(SD_MUTEX(un));
17336 		if (un->un_f_allow_bus_device_reset == TRUE) {
17337 			/*
17338 			 * First try to reset the LUN; if we cannot then
17339 			 * try to reset the target.
17340 			 */
17341 			if (un->un_f_lun_reset_enabled == TRUE) {
17342 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17343 				    "sd_pkt_status_busy: RESET_LUN\n");
17344 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
17345 			}
17346 			if (rval == 0) {
17347 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17348 				    "sd_pkt_status_busy: RESET_TARGET\n");
17349 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
17350 			}
17351 		}
17352 		if (rval == 0) {
17353 			/*
17354 			 * If the RESET_LUN and/or RESET_TARGET failed,
17355 			 * try RESET_ALL
17356 			 */
17357 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17358 			    "sd_pkt_status_busy: RESET_ALL\n");
17359 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
17360 		}
17361 		mutex_enter(SD_MUTEX(un));
17362 		if (rval == 0) {
17363 			/*
17364 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
17365 			 * At this point we give up & fail the command.
17366 			 */
17367 			sd_return_failed_command(un, bp, EIO);
17368 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17369 			    "sd_pkt_status_busy: exit (failed cmd)\n");
17370 			return;
17371 		}
17372 	}
17373 
17374 	/*
17375 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
17376 	 * we have already checked the retry counts above.
17377 	 */
17378 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
17379 	    EIO, SD_BSY_TIMEOUT, NULL);
17380 
17381 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17382 	    "sd_pkt_status_busy: exit\n");
17383 }
17384 
17385 
17386 /*
17387  *    Function: sd_pkt_status_reservation_conflict
17388  *
17389  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
17390  *		command status.
17391  *
17392  *     Context: May be called from interrupt context
17393  */
17394 
17395 static void
17396 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
17397 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17398 {
17399 	ASSERT(un != NULL);
17400 	ASSERT(mutex_owned(SD_MUTEX(un)));
17401 	ASSERT(bp != NULL);
17402 	ASSERT(xp != NULL);
17403 	ASSERT(pktp != NULL);
17404 
17405 	/*
17406 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
17407 	 * conflict could be due to various reasons like incorrect keys, not
17408 	 * registered or not reserved etc. So, we return EACCES to the caller.
17409 	 */
17410 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
17411 		int cmd = SD_GET_PKT_OPCODE(pktp);
17412 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
17413 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
17414 			sd_return_failed_command(un, bp, EACCES);
17415 			return;
17416 		}
17417 	}
17418 
17419 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
17420 
17421 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
17422 		if (sd_failfast_enable != 0) {
17423 			/* By definition, we must panic here.... */
17424 			sd_panic_for_res_conflict(un);
17425 			/*NOTREACHED*/
17426 		}
17427 		SD_ERROR(SD_LOG_IO, un,
17428 		    "sd_handle_resv_conflict: Disk Reserved\n");
17429 		sd_return_failed_command(un, bp, EACCES);
17430 		return;
17431 	}
17432 
17433 	/*
17434 	 * 1147670: retry only if sd_retry_on_reservation_conflict
17435 	 * property is set (default is 1). Retries will not succeed
17436 	 * on a disk reserved by another initiator. HA systems
17437 	 * may reset this via sd.conf to avoid these retries.
17438 	 *
17439 	 * Note: The legacy return code for this failure is EIO, however EACCES
17440 	 * seems more appropriate for a reservation conflict.
17441 	 */
17442 	if (sd_retry_on_reservation_conflict == 0) {
17443 		SD_ERROR(SD_LOG_IO, un,
17444 		    "sd_handle_resv_conflict: Device Reserved\n");
17445 		sd_return_failed_command(un, bp, EIO);
17446 		return;
17447 	}
17448 
17449 	/*
17450 	 * Retry the command if we can.
17451 	 *
17452 	 * Note: The legacy return code for this failure is EIO, however EACCES
17453 	 * seems more appropriate for a reservation conflict.
17454 	 */
17455 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
17456 	    (clock_t)2, NULL);
17457 }
17458 
17459 
17460 
17461 /*
17462  *    Function: sd_pkt_status_qfull
17463  *
17464  * Description: Handle a QUEUE FULL condition from the target.  This can
17465  *		occur if the HBA does not handle the queue full condition.
17466  *		(Basically this means third-party HBAs as Sun HBAs will
17467  *		handle the queue full condition.)  Note that if there are
17468  *		some commands already in the transport, then the queue full
17469  *		has occurred because the queue for this nexus is actually
17470  *		full. If there are no commands in the transport, then the
17471  *		queue full is resulting from some other initiator or lun
17472  *		consuming all the resources at the target.
17473  *
17474  *     Context: May be called from interrupt context
17475  */
17476 
17477 static void
17478 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
17479 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17480 {
17481 	ASSERT(un != NULL);
17482 	ASSERT(mutex_owned(SD_MUTEX(un)));
17483 	ASSERT(bp != NULL);
17484 	ASSERT(xp != NULL);
17485 	ASSERT(pktp != NULL);
17486 
17487 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17488 	    "sd_pkt_status_qfull: entry\n");
17489 
17490 	/*
17491 	 * Just lower the QFULL throttle and retry the command.  Note that
17492 	 * we do not limit the number of retries here.
17493 	 */
17494 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
17495 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
17496 	    SD_RESTART_TIMEOUT, NULL);
17497 
17498 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17499 	    "sd_pkt_status_qfull: exit\n");
17500 }
17501 
17502 
17503 /*
17504  *    Function: sd_reset_target
17505  *
17506  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
17507  *		RESET_TARGET, or RESET_ALL.
17508  *
17509  *     Context: May be called under interrupt context.
17510  */
17511 
17512 static void
17513 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
17514 {
17515 	int rval = 0;
17516 
17517 	ASSERT(un != NULL);
17518 	ASSERT(mutex_owned(SD_MUTEX(un)));
17519 	ASSERT(pktp != NULL);
17520 
17521 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
17522 
17523 	/*
17524 	 * No need to reset if the transport layer has already done so.
17525 	 */
17526 	if ((pktp->pkt_statistics &
17527 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
17528 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17529 		    "sd_reset_target: no reset\n");
17530 		return;
17531 	}
17532 
17533 	mutex_exit(SD_MUTEX(un));
17534 
17535 	if (un->un_f_allow_bus_device_reset == TRUE) {
17536 		if (un->un_f_lun_reset_enabled == TRUE) {
17537 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17538 			    "sd_reset_target: RESET_LUN\n");
17539 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
17540 		}
17541 		if (rval == 0) {
17542 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17543 			    "sd_reset_target: RESET_TARGET\n");
17544 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
17545 		}
17546 	}
17547 
17548 	if (rval == 0) {
17549 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17550 		    "sd_reset_target: RESET_ALL\n");
17551 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
17552 	}
17553 
17554 	mutex_enter(SD_MUTEX(un));
17555 
17556 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
17557 }
17558 
17559 /*
17560  *    Function: sd_target_change_task
17561  *
17562  * Description: Handle dynamic target change
17563  *
17564  *     Context: Executes in a taskq() thread context
17565  */
17566 static void
17567 sd_target_change_task(void *arg)
17568 {
17569 	struct sd_lun		*un = arg;
17570 	uint64_t		capacity;
17571 	diskaddr_t		label_cap;
17572 	uint_t			lbasize;
17573 
17574 	ASSERT(un != NULL);
17575 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17576 
17577 	if ((un->un_f_blockcount_is_valid == FALSE) ||
17578 	    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
17579 		return;
17580 	}
17581 
17582 	if (sd_send_scsi_READ_CAPACITY(un, &capacity,
17583 	    &lbasize, SD_PATH_DIRECT) != 0) {
17584 		SD_ERROR(SD_LOG_ERROR, un,
17585 		    "sd_target_change_task: fail to read capacity\n");
17586 		return;
17587 	}
17588 
17589 	mutex_enter(SD_MUTEX(un));
17590 	if (capacity <= un->un_blockcount) {
17591 		mutex_exit(SD_MUTEX(un));
17592 		return;
17593 	}
17594 
17595 	sd_update_block_info(un, lbasize, capacity);
17596 	mutex_exit(SD_MUTEX(un));
17597 
17598 	/*
17599 	 * If lun is EFI labeled and lun capacity is greater than the
17600 	 * capacity contained in the label, log a sys event.
17601 	 */
17602 	if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
17603 	    (void*)SD_PATH_DIRECT) == 0) {
17604 		mutex_enter(SD_MUTEX(un));
17605 		if (un->un_f_blockcount_is_valid &&
17606 		    un->un_blockcount > label_cap) {
17607 			mutex_exit(SD_MUTEX(un));
17608 			sd_log_lun_expansion_event(un, KM_SLEEP);
17609 		} else {
17610 			mutex_exit(SD_MUTEX(un));
17611 		}
17612 	}
17613 }
17614 
17615 /*
17616  *    Function: sd_log_lun_expansion_event
17617  *
17618  * Description: Log lun expansion sys event
17619  *
17620  *     Context: Never called from interrupt context
17621  */
17622 static void
17623 sd_log_lun_expansion_event(struct sd_lun *un, int km_flag)
17624 {
17625 	int err;
17626 	char			*path;
17627 	nvlist_t		*dle_attr_list;
17628 
17629 	/* Allocate and build sysevent attribute list */
17630 	err = nvlist_alloc(&dle_attr_list, NV_UNIQUE_NAME_TYPE, km_flag);
17631 	if (err != 0) {
17632 		SD_ERROR(SD_LOG_ERROR, un,
17633 		    "sd_log_lun_expansion_event: fail to allocate space\n");
17634 		return;
17635 	}
17636 
17637 	path = kmem_alloc(MAXPATHLEN, km_flag);
17638 	if (path == NULL) {
17639 		nvlist_free(dle_attr_list);
17640 		SD_ERROR(SD_LOG_ERROR, un,
17641 		    "sd_log_lun_expansion_event: fail to allocate space\n");
17642 		return;
17643 	}
17644 	/*
17645 	 * Add path attribute to identify the lun.
17646 	 * We are using minor node 'a' as the sysevent attribute.
17647 	 */
17648 	(void) snprintf(path, MAXPATHLEN, "/devices");
17649 	(void) ddi_pathname(SD_DEVINFO(un), path + strlen(path));
17650 	(void) snprintf(path + strlen(path), MAXPATHLEN - strlen(path),
17651 	    ":a");
17652 
17653 	err = nvlist_add_string(dle_attr_list, DEV_PHYS_PATH, path);
17654 	if (err != 0) {
17655 		nvlist_free(dle_attr_list);
17656 		kmem_free(path, MAXPATHLEN);
17657 		SD_ERROR(SD_LOG_ERROR, un,
17658 		    "sd_log_lun_expansion_event: fail to add attribute\n");
17659 		return;
17660 	}
17661 
17662 	/* Log dynamic lun expansion sysevent */
17663 	err = ddi_log_sysevent(SD_DEVINFO(un), SUNW_VENDOR, EC_DEV_STATUS,
17664 	    ESC_DEV_DLE, dle_attr_list, NULL, km_flag);
17665 	if (err != DDI_SUCCESS) {
17666 		SD_ERROR(SD_LOG_ERROR, un,
17667 		    "sd_log_lun_expansion_event: fail to log sysevent\n");
17668 	}
17669 
17670 	nvlist_free(dle_attr_list);
17671 	kmem_free(path, MAXPATHLEN);
17672 }
17673 
17674 /*
17675  *    Function: sd_media_change_task
17676  *
17677  * Description: Recovery action for CDROM to become available.
17678  *
17679  *     Context: Executes in a taskq() thread context
17680  */
17681 
17682 static void
17683 sd_media_change_task(void *arg)
17684 {
17685 	struct	scsi_pkt	*pktp = arg;
17686 	struct	sd_lun		*un;
17687 	struct	buf		*bp;
17688 	struct	sd_xbuf		*xp;
17689 	int	err		= 0;
17690 	int	retry_count	= 0;
17691 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
17692 	struct	sd_sense_info	si;
17693 
17694 	ASSERT(pktp != NULL);
17695 	bp = (struct buf *)pktp->pkt_private;
17696 	ASSERT(bp != NULL);
17697 	xp = SD_GET_XBUF(bp);
17698 	ASSERT(xp != NULL);
17699 	un = SD_GET_UN(bp);
17700 	ASSERT(un != NULL);
17701 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17702 	ASSERT(un->un_f_monitor_media_state);
17703 
17704 	si.ssi_severity = SCSI_ERR_INFO;
17705 	si.ssi_pfa_flag = FALSE;
17706 
17707 	/*
17708 	 * When a reset is issued on a CDROM, it takes a long time to
17709 	 * recover. First few attempts to read capacity and other things
17710 	 * related to handling unit attention fail (with a ASC 0x4 and
17711 	 * ASCQ 0x1). In that case we want to do enough retries and we want
17712 	 * to limit the retries in other cases of genuine failures like
17713 	 * no media in drive.
17714 	 */
17715 	while (retry_count++ < retry_limit) {
17716 		if ((err = sd_handle_mchange(un)) == 0) {
17717 			break;
17718 		}
17719 		if (err == EAGAIN) {
17720 			retry_limit = SD_UNIT_ATTENTION_RETRY;
17721 		}
17722 		/* Sleep for 0.5 sec. & try again */
17723 		delay(drv_usectohz(500000));
17724 	}
17725 
17726 	/*
17727 	 * Dispatch (retry or fail) the original command here,
17728 	 * along with appropriate console messages....
17729 	 *
17730 	 * Must grab the mutex before calling sd_retry_command,
17731 	 * sd_print_sense_msg and sd_return_failed_command.
17732 	 */
17733 	mutex_enter(SD_MUTEX(un));
17734 	if (err != SD_CMD_SUCCESS) {
17735 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17736 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17737 		si.ssi_severity = SCSI_ERR_FATAL;
17738 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17739 		sd_return_failed_command(un, bp, EIO);
17740 	} else {
17741 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
17742 		    &si, EIO, (clock_t)0, NULL);
17743 	}
17744 	mutex_exit(SD_MUTEX(un));
17745 }
17746 
17747 
17748 
17749 /*
17750  *    Function: sd_handle_mchange
17751  *
17752  * Description: Perform geometry validation & other recovery when CDROM
17753  *		has been removed from drive.
17754  *
17755  * Return Code: 0 for success
17756  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
17757  *		sd_send_scsi_READ_CAPACITY()
17758  *
17759  *     Context: Executes in a taskq() thread context
17760  */
17761 
17762 static int
17763 sd_handle_mchange(struct sd_lun *un)
17764 {
17765 	uint64_t	capacity;
17766 	uint32_t	lbasize;
17767 	int		rval;
17768 
17769 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17770 	ASSERT(un->un_f_monitor_media_state);
17771 
17772 	if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
17773 	    SD_PATH_DIRECT_PRIORITY)) != 0) {
17774 		return (rval);
17775 	}
17776 
17777 	mutex_enter(SD_MUTEX(un));
17778 	sd_update_block_info(un, lbasize, capacity);
17779 
17780 	if (un->un_errstats != NULL) {
17781 		struct	sd_errstats *stp =
17782 		    (struct sd_errstats *)un->un_errstats->ks_data;
17783 		stp->sd_capacity.value.ui64 = (uint64_t)
17784 		    ((uint64_t)un->un_blockcount *
17785 		    (uint64_t)un->un_tgt_blocksize);
17786 	}
17787 
17788 
17789 	/*
17790 	 * Check if the media in the device is writable or not
17791 	 */
17792 	if (ISCD(un))
17793 		sd_check_for_writable_cd(un, SD_PATH_DIRECT_PRIORITY);
17794 
17795 	/*
17796 	 * Note: Maybe let the strategy/partitioning chain worry about getting
17797 	 * valid geometry.
17798 	 */
17799 	mutex_exit(SD_MUTEX(un));
17800 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
17801 
17802 
17803 	if (cmlb_validate(un->un_cmlbhandle, 0,
17804 	    (void *)SD_PATH_DIRECT_PRIORITY) != 0) {
17805 		return (EIO);
17806 	} else {
17807 		if (un->un_f_pkstats_enabled) {
17808 			sd_set_pstats(un);
17809 			SD_TRACE(SD_LOG_IO_PARTITION, un,
17810 			    "sd_handle_mchange: un:0x%p pstats created and "
17811 			    "set\n", un);
17812 		}
17813 	}
17814 
17815 
17816 	/*
17817 	 * Try to lock the door
17818 	 */
17819 	return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
17820 	    SD_PATH_DIRECT_PRIORITY));
17821 }
17822 
17823 
17824 /*
17825  *    Function: sd_send_scsi_DOORLOCK
17826  *
17827  * Description: Issue the scsi DOOR LOCK command
17828  *
17829  *   Arguments: un    - pointer to driver soft state (unit) structure for
17830  *			this target.
17831  *		flag  - SD_REMOVAL_ALLOW
17832  *			SD_REMOVAL_PREVENT
17833  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17834  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17835  *			to use the USCSI "direct" chain and bypass the normal
17836  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17837  *			command is issued as part of an error recovery action.
17838  *
17839  * Return Code: 0   - Success
17840  *		errno return code from sd_send_scsi_cmd()
17841  *
17842  *     Context: Can sleep.
17843  */
17844 
17845 static int
17846 sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag)
17847 {
17848 	union scsi_cdb		cdb;
17849 	struct uscsi_cmd	ucmd_buf;
17850 	struct scsi_extended_sense	sense_buf;
17851 	int			status;
17852 
17853 	ASSERT(un != NULL);
17854 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17855 
17856 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
17857 
17858 	/* already determined doorlock is not supported, fake success */
17859 	if (un->un_f_doorlock_supported == FALSE) {
17860 		return (0);
17861 	}
17862 
17863 	/*
17864 	 * If we are ejecting and see an SD_REMOVAL_PREVENT
17865 	 * ignore the command so we can complete the eject
17866 	 * operation.
17867 	 */
17868 	if (flag == SD_REMOVAL_PREVENT) {
17869 		mutex_enter(SD_MUTEX(un));
17870 		if (un->un_f_ejecting == TRUE) {
17871 			mutex_exit(SD_MUTEX(un));
17872 			return (EAGAIN);
17873 		}
17874 		mutex_exit(SD_MUTEX(un));
17875 	}
17876 
17877 	bzero(&cdb, sizeof (cdb));
17878 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17879 
17880 	cdb.scc_cmd = SCMD_DOORLOCK;
17881 	cdb.cdb_opaque[4] = (uchar_t)flag;
17882 
17883 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17884 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
17885 	ucmd_buf.uscsi_bufaddr	= NULL;
17886 	ucmd_buf.uscsi_buflen	= 0;
17887 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17888 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17889 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
17890 	ucmd_buf.uscsi_timeout	= 15;
17891 
17892 	SD_TRACE(SD_LOG_IO, un,
17893 	    "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n");
17894 
17895 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17896 	    UIO_SYSSPACE, path_flag);
17897 
17898 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
17899 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
17900 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
17901 		/* fake success and skip subsequent doorlock commands */
17902 		un->un_f_doorlock_supported = FALSE;
17903 		return (0);
17904 	}
17905 
17906 	return (status);
17907 }
17908 
17909 /*
17910  *    Function: sd_send_scsi_READ_CAPACITY
17911  *
17912  * Description: This routine uses the scsi READ CAPACITY command to determine
17913  *		the device capacity in number of blocks and the device native
17914  *		block size. If this function returns a failure, then the
17915  *		values in *capp and *lbap are undefined.  If the capacity
17916  *		returned is 0xffffffff then the lun is too large for a
17917  *		normal READ CAPACITY command and the results of a
17918  *		READ CAPACITY 16 will be used instead.
17919  *
17920  *   Arguments: un   - ptr to soft state struct for the target
17921  *		capp - ptr to unsigned 64-bit variable to receive the
17922  *			capacity value from the command.
17923  *		lbap - ptr to unsigned 32-bit varaible to receive the
17924  *			block size value from the command
17925  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17926  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17927  *			to use the USCSI "direct" chain and bypass the normal
17928  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17929  *			command is issued as part of an error recovery action.
17930  *
17931  * Return Code: 0   - Success
17932  *		EIO - IO error
17933  *		EACCES - Reservation conflict detected
17934  *		EAGAIN - Device is becoming ready
17935  *		errno return code from sd_send_scsi_cmd()
17936  *
17937  *     Context: Can sleep.  Blocks until command completes.
17938  */
17939 
17940 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
17941 
17942 static int
17943 sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap,
17944 	int path_flag)
17945 {
17946 	struct	scsi_extended_sense	sense_buf;
17947 	struct	uscsi_cmd	ucmd_buf;
17948 	union	scsi_cdb	cdb;
17949 	uint32_t		*capacity_buf;
17950 	uint64_t		capacity;
17951 	uint32_t		lbasize;
17952 	int			status;
17953 
17954 	ASSERT(un != NULL);
17955 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17956 	ASSERT(capp != NULL);
17957 	ASSERT(lbap != NULL);
17958 
17959 	SD_TRACE(SD_LOG_IO, un,
17960 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
17961 
17962 	/*
17963 	 * First send a READ_CAPACITY command to the target.
17964 	 * (This command is mandatory under SCSI-2.)
17965 	 *
17966 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
17967 	 * Medium Indicator bit is cleared.  The address field must be
17968 	 * zero if the PMI bit is zero.
17969 	 */
17970 	bzero(&cdb, sizeof (cdb));
17971 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17972 
17973 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
17974 
17975 	cdb.scc_cmd = SCMD_READ_CAPACITY;
17976 
17977 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17978 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
17979 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
17980 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
17981 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17982 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17983 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
17984 	ucmd_buf.uscsi_timeout	= 60;
17985 
17986 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17987 	    UIO_SYSSPACE, path_flag);
17988 
17989 	switch (status) {
17990 	case 0:
17991 		/* Return failure if we did not get valid capacity data. */
17992 		if (ucmd_buf.uscsi_resid != 0) {
17993 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17994 			return (EIO);
17995 		}
17996 
17997 		/*
17998 		 * Read capacity and block size from the READ CAPACITY 10 data.
17999 		 * This data may be adjusted later due to device specific
18000 		 * issues.
18001 		 *
18002 		 * According to the SCSI spec, the READ CAPACITY 10
18003 		 * command returns the following:
18004 		 *
18005 		 *  bytes 0-3: Maximum logical block address available.
18006 		 *		(MSB in byte:0 & LSB in byte:3)
18007 		 *
18008 		 *  bytes 4-7: Block length in bytes
18009 		 *		(MSB in byte:4 & LSB in byte:7)
18010 		 *
18011 		 */
18012 		capacity = BE_32(capacity_buf[0]);
18013 		lbasize = BE_32(capacity_buf[1]);
18014 
18015 		/*
18016 		 * Done with capacity_buf
18017 		 */
18018 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
18019 
18020 		/*
18021 		 * if the reported capacity is set to all 0xf's, then
18022 		 * this disk is too large and requires SBC-2 commands.
18023 		 * Reissue the request using READ CAPACITY 16.
18024 		 */
18025 		if (capacity == 0xffffffff) {
18026 			status = sd_send_scsi_READ_CAPACITY_16(un, &capacity,
18027 			    &lbasize, path_flag);
18028 			if (status != 0) {
18029 				return (status);
18030 			}
18031 		}
18032 		break;	/* Success! */
18033 	case EIO:
18034 		switch (ucmd_buf.uscsi_status) {
18035 		case STATUS_RESERVATION_CONFLICT:
18036 			status = EACCES;
18037 			break;
18038 		case STATUS_CHECK:
18039 			/*
18040 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
18041 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
18042 			 */
18043 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18044 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
18045 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
18046 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
18047 				return (EAGAIN);
18048 			}
18049 			break;
18050 		default:
18051 			break;
18052 		}
18053 		/* FALLTHRU */
18054 	default:
18055 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
18056 		return (status);
18057 	}
18058 
18059 	/*
18060 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
18061 	 * (2352 and 0 are common) so for these devices always force the value
18062 	 * to 2048 as required by the ATAPI specs.
18063 	 */
18064 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
18065 		lbasize = 2048;
18066 	}
18067 
18068 	/*
18069 	 * Get the maximum LBA value from the READ CAPACITY data.
18070 	 * Here we assume that the Partial Medium Indicator (PMI) bit
18071 	 * was cleared when issuing the command. This means that the LBA
18072 	 * returned from the device is the LBA of the last logical block
18073 	 * on the logical unit.  The actual logical block count will be
18074 	 * this value plus one.
18075 	 *
18076 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
18077 	 * so scale the capacity value to reflect this.
18078 	 */
18079 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
18080 
18081 	/*
18082 	 * Copy the values from the READ CAPACITY command into the space
18083 	 * provided by the caller.
18084 	 */
18085 	*capp = capacity;
18086 	*lbap = lbasize;
18087 
18088 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
18089 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
18090 
18091 	/*
18092 	 * Both the lbasize and capacity from the device must be nonzero,
18093 	 * otherwise we assume that the values are not valid and return
18094 	 * failure to the caller. (4203735)
18095 	 */
18096 	if ((capacity == 0) || (lbasize == 0)) {
18097 		return (EIO);
18098 	}
18099 
18100 	return (0);
18101 }
18102 
18103 /*
18104  *    Function: sd_send_scsi_READ_CAPACITY_16
18105  *
18106  * Description: This routine uses the scsi READ CAPACITY 16 command to
18107  *		determine the device capacity in number of blocks and the
18108  *		device native block size.  If this function returns a failure,
18109  *		then the values in *capp and *lbap are undefined.
18110  *		This routine should always be called by
18111  *		sd_send_scsi_READ_CAPACITY which will appy any device
18112  *		specific adjustments to capacity and lbasize.
18113  *
18114  *   Arguments: un   - ptr to soft state struct for the target
18115  *		capp - ptr to unsigned 64-bit variable to receive the
18116  *			capacity value from the command.
18117  *		lbap - ptr to unsigned 32-bit varaible to receive the
18118  *			block size value from the command
18119  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18120  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18121  *			to use the USCSI "direct" chain and bypass the normal
18122  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
18123  *			this command is issued as part of an error recovery
18124  *			action.
18125  *
18126  * Return Code: 0   - Success
18127  *		EIO - IO error
18128  *		EACCES - Reservation conflict detected
18129  *		EAGAIN - Device is becoming ready
18130  *		errno return code from sd_send_scsi_cmd()
18131  *
18132  *     Context: Can sleep.  Blocks until command completes.
18133  */
18134 
18135 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
18136 
18137 static int
18138 sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
18139 	uint32_t *lbap, int path_flag)
18140 {
18141 	struct	scsi_extended_sense	sense_buf;
18142 	struct	uscsi_cmd	ucmd_buf;
18143 	union	scsi_cdb	cdb;
18144 	uint64_t		*capacity16_buf;
18145 	uint64_t		capacity;
18146 	uint32_t		lbasize;
18147 	int			status;
18148 
18149 	ASSERT(un != NULL);
18150 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18151 	ASSERT(capp != NULL);
18152 	ASSERT(lbap != NULL);
18153 
18154 	SD_TRACE(SD_LOG_IO, un,
18155 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
18156 
18157 	/*
18158 	 * First send a READ_CAPACITY_16 command to the target.
18159 	 *
18160 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
18161 	 * Medium Indicator bit is cleared.  The address field must be
18162 	 * zero if the PMI bit is zero.
18163 	 */
18164 	bzero(&cdb, sizeof (cdb));
18165 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18166 
18167 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
18168 
18169 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18170 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
18171 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
18172 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
18173 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18174 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
18175 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
18176 	ucmd_buf.uscsi_timeout	= 60;
18177 
18178 	/*
18179 	 * Read Capacity (16) is a Service Action In command.  One
18180 	 * command byte (0x9E) is overloaded for multiple operations,
18181 	 * with the second CDB byte specifying the desired operation
18182 	 */
18183 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
18184 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
18185 
18186 	/*
18187 	 * Fill in allocation length field
18188 	 */
18189 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
18190 
18191 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18192 	    UIO_SYSSPACE, path_flag);
18193 
18194 	switch (status) {
18195 	case 0:
18196 		/* Return failure if we did not get valid capacity data. */
18197 		if (ucmd_buf.uscsi_resid > 20) {
18198 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
18199 			return (EIO);
18200 		}
18201 
18202 		/*
18203 		 * Read capacity and block size from the READ CAPACITY 10 data.
18204 		 * This data may be adjusted later due to device specific
18205 		 * issues.
18206 		 *
18207 		 * According to the SCSI spec, the READ CAPACITY 10
18208 		 * command returns the following:
18209 		 *
18210 		 *  bytes 0-7: Maximum logical block address available.
18211 		 *		(MSB in byte:0 & LSB in byte:7)
18212 		 *
18213 		 *  bytes 8-11: Block length in bytes
18214 		 *		(MSB in byte:8 & LSB in byte:11)
18215 		 *
18216 		 */
18217 		capacity = BE_64(capacity16_buf[0]);
18218 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
18219 
18220 		/*
18221 		 * Done with capacity16_buf
18222 		 */
18223 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
18224 
18225 		/*
18226 		 * if the reported capacity is set to all 0xf's, then
18227 		 * this disk is too large.  This could only happen with
18228 		 * a device that supports LBAs larger than 64 bits which
18229 		 * are not defined by any current T10 standards.
18230 		 */
18231 		if (capacity == 0xffffffffffffffff) {
18232 			return (EIO);
18233 		}
18234 		break;	/* Success! */
18235 	case EIO:
18236 		switch (ucmd_buf.uscsi_status) {
18237 		case STATUS_RESERVATION_CONFLICT:
18238 			status = EACCES;
18239 			break;
18240 		case STATUS_CHECK:
18241 			/*
18242 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
18243 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
18244 			 */
18245 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18246 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
18247 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
18248 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
18249 				return (EAGAIN);
18250 			}
18251 			break;
18252 		default:
18253 			break;
18254 		}
18255 		/* FALLTHRU */
18256 	default:
18257 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
18258 		return (status);
18259 	}
18260 
18261 	*capp = capacity;
18262 	*lbap = lbasize;
18263 
18264 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
18265 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
18266 
18267 	return (0);
18268 }
18269 
18270 
18271 /*
18272  *    Function: sd_send_scsi_START_STOP_UNIT
18273  *
18274  * Description: Issue a scsi START STOP UNIT command to the target.
18275  *
18276  *   Arguments: un    - pointer to driver soft state (unit) structure for
18277  *			this target.
18278  *		flag  - SD_TARGET_START
18279  *			SD_TARGET_STOP
18280  *			SD_TARGET_EJECT
18281  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18282  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18283  *			to use the USCSI "direct" chain and bypass the normal
18284  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
18285  *			command is issued as part of an error recovery action.
18286  *
18287  * Return Code: 0   - Success
18288  *		EIO - IO error
18289  *		EACCES - Reservation conflict detected
18290  *		ENXIO  - Not Ready, medium not present
18291  *		errno return code from sd_send_scsi_cmd()
18292  *
18293  *     Context: Can sleep.
18294  */
18295 
18296 static int
18297 sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag)
18298 {
18299 	struct	scsi_extended_sense	sense_buf;
18300 	union scsi_cdb		cdb;
18301 	struct uscsi_cmd	ucmd_buf;
18302 	int			status;
18303 
18304 	ASSERT(un != NULL);
18305 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18306 
18307 	SD_TRACE(SD_LOG_IO, un,
18308 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
18309 
18310 	if (un->un_f_check_start_stop &&
18311 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
18312 	    (un->un_f_start_stop_supported != TRUE)) {
18313 		return (0);
18314 	}
18315 
18316 	/*
18317 	 * If we are performing an eject operation and
18318 	 * we receive any command other than SD_TARGET_EJECT
18319 	 * we should immediately return.
18320 	 */
18321 	if (flag != SD_TARGET_EJECT) {
18322 		mutex_enter(SD_MUTEX(un));
18323 		if (un->un_f_ejecting == TRUE) {
18324 			mutex_exit(SD_MUTEX(un));
18325 			return (EAGAIN);
18326 		}
18327 		mutex_exit(SD_MUTEX(un));
18328 	}
18329 
18330 	bzero(&cdb, sizeof (cdb));
18331 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18332 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18333 
18334 	cdb.scc_cmd = SCMD_START_STOP;
18335 	cdb.cdb_opaque[4] = (uchar_t)flag;
18336 
18337 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18338 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18339 	ucmd_buf.uscsi_bufaddr	= NULL;
18340 	ucmd_buf.uscsi_buflen	= 0;
18341 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18342 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18343 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
18344 	ucmd_buf.uscsi_timeout	= 200;
18345 
18346 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18347 	    UIO_SYSSPACE, path_flag);
18348 
18349 	switch (status) {
18350 	case 0:
18351 		break;	/* Success! */
18352 	case EIO:
18353 		switch (ucmd_buf.uscsi_status) {
18354 		case STATUS_RESERVATION_CONFLICT:
18355 			status = EACCES;
18356 			break;
18357 		case STATUS_CHECK:
18358 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
18359 				switch (scsi_sense_key(
18360 				    (uint8_t *)&sense_buf)) {
18361 				case KEY_ILLEGAL_REQUEST:
18362 					status = ENOTSUP;
18363 					break;
18364 				case KEY_NOT_READY:
18365 					if (scsi_sense_asc(
18366 					    (uint8_t *)&sense_buf)
18367 					    == 0x3A) {
18368 						status = ENXIO;
18369 					}
18370 					break;
18371 				default:
18372 					break;
18373 				}
18374 			}
18375 			break;
18376 		default:
18377 			break;
18378 		}
18379 		break;
18380 	default:
18381 		break;
18382 	}
18383 
18384 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
18385 
18386 	return (status);
18387 }
18388 
18389 
18390 /*
18391  *    Function: sd_start_stop_unit_callback
18392  *
18393  * Description: timeout(9F) callback to begin recovery process for a
18394  *		device that has spun down.
18395  *
18396  *   Arguments: arg - pointer to associated softstate struct.
18397  *
18398  *     Context: Executes in a timeout(9F) thread context
18399  */
18400 
18401 static void
18402 sd_start_stop_unit_callback(void *arg)
18403 {
18404 	struct sd_lun	*un = arg;
18405 	ASSERT(un != NULL);
18406 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18407 
18408 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
18409 
18410 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
18411 }
18412 
18413 
18414 /*
18415  *    Function: sd_start_stop_unit_task
18416  *
18417  * Description: Recovery procedure when a drive is spun down.
18418  *
18419  *   Arguments: arg - pointer to associated softstate struct.
18420  *
18421  *     Context: Executes in a taskq() thread context
18422  */
18423 
18424 static void
18425 sd_start_stop_unit_task(void *arg)
18426 {
18427 	struct sd_lun	*un = arg;
18428 
18429 	ASSERT(un != NULL);
18430 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18431 
18432 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
18433 
18434 	/*
18435 	 * Some unformatted drives report not ready error, no need to
18436 	 * restart if format has been initiated.
18437 	 */
18438 	mutex_enter(SD_MUTEX(un));
18439 	if (un->un_f_format_in_progress == TRUE) {
18440 		mutex_exit(SD_MUTEX(un));
18441 		return;
18442 	}
18443 	mutex_exit(SD_MUTEX(un));
18444 
18445 	/*
18446 	 * When a START STOP command is issued from here, it is part of a
18447 	 * failure recovery operation and must be issued before any other
18448 	 * commands, including any pending retries. Thus it must be sent
18449 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
18450 	 * succeeds or not, we will start I/O after the attempt.
18451 	 */
18452 	(void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
18453 	    SD_PATH_DIRECT_PRIORITY);
18454 
18455 	/*
18456 	 * The above call blocks until the START_STOP_UNIT command completes.
18457 	 * Now that it has completed, we must re-try the original IO that
18458 	 * received the NOT READY condition in the first place. There are
18459 	 * three possible conditions here:
18460 	 *
18461 	 *  (1) The original IO is on un_retry_bp.
18462 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
18463 	 *	is NULL.
18464 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
18465 	 *	points to some other, unrelated bp.
18466 	 *
18467 	 * For each case, we must call sd_start_cmds() with un_retry_bp
18468 	 * as the argument. If un_retry_bp is NULL, this will initiate
18469 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
18470 	 * then this will process the bp on un_retry_bp. That may or may not
18471 	 * be the original IO, but that does not matter: the important thing
18472 	 * is to keep the IO processing going at this point.
18473 	 *
18474 	 * Note: This is a very specific error recovery sequence associated
18475 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
18476 	 * serialize the I/O with completion of the spin-up.
18477 	 */
18478 	mutex_enter(SD_MUTEX(un));
18479 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18480 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
18481 	    un, un->un_retry_bp);
18482 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
18483 	sd_start_cmds(un, un->un_retry_bp);
18484 	mutex_exit(SD_MUTEX(un));
18485 
18486 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
18487 }
18488 
18489 
18490 /*
18491  *    Function: sd_send_scsi_INQUIRY
18492  *
18493  * Description: Issue the scsi INQUIRY command.
18494  *
18495  *   Arguments: un
18496  *		bufaddr
18497  *		buflen
18498  *		evpd
18499  *		page_code
18500  *		page_length
18501  *
18502  * Return Code: 0   - Success
18503  *		errno return code from sd_send_scsi_cmd()
18504  *
18505  *     Context: Can sleep. Does not return until command is completed.
18506  */
18507 
18508 static int
18509 sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen,
18510 	uchar_t evpd, uchar_t page_code, size_t *residp)
18511 {
18512 	union scsi_cdb		cdb;
18513 	struct uscsi_cmd	ucmd_buf;
18514 	int			status;
18515 
18516 	ASSERT(un != NULL);
18517 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18518 	ASSERT(bufaddr != NULL);
18519 
18520 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
18521 
18522 	bzero(&cdb, sizeof (cdb));
18523 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18524 	bzero(bufaddr, buflen);
18525 
18526 	cdb.scc_cmd = SCMD_INQUIRY;
18527 	cdb.cdb_opaque[1] = evpd;
18528 	cdb.cdb_opaque[2] = page_code;
18529 	FORMG0COUNT(&cdb, buflen);
18530 
18531 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18532 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18533 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
18534 	ucmd_buf.uscsi_buflen	= buflen;
18535 	ucmd_buf.uscsi_rqbuf	= NULL;
18536 	ucmd_buf.uscsi_rqlen	= 0;
18537 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
18538 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
18539 
18540 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18541 	    UIO_SYSSPACE, SD_PATH_DIRECT);
18542 
18543 	if ((status == 0) && (residp != NULL)) {
18544 		*residp = ucmd_buf.uscsi_resid;
18545 	}
18546 
18547 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
18548 
18549 	return (status);
18550 }
18551 
18552 
18553 /*
18554  *    Function: sd_send_scsi_TEST_UNIT_READY
18555  *
18556  * Description: Issue the scsi TEST UNIT READY command.
18557  *		This routine can be told to set the flag USCSI_DIAGNOSE to
18558  *		prevent retrying failed commands. Use this when the intent
18559  *		is either to check for device readiness, to clear a Unit
18560  *		Attention, or to clear any outstanding sense data.
18561  *		However under specific conditions the expected behavior
18562  *		is for retries to bring a device ready, so use the flag
18563  *		with caution.
18564  *
18565  *   Arguments: un
18566  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
18567  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
18568  *			0: dont check for media present, do retries on cmd.
18569  *
18570  * Return Code: 0   - Success
18571  *		EIO - IO error
18572  *		EACCES - Reservation conflict detected
18573  *		ENXIO  - Not Ready, medium not present
18574  *		errno return code from sd_send_scsi_cmd()
18575  *
18576  *     Context: Can sleep. Does not return until command is completed.
18577  */
18578 
18579 static int
18580 sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag)
18581 {
18582 	struct	scsi_extended_sense	sense_buf;
18583 	union scsi_cdb		cdb;
18584 	struct uscsi_cmd	ucmd_buf;
18585 	int			status;
18586 
18587 	ASSERT(un != NULL);
18588 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18589 
18590 	SD_TRACE(SD_LOG_IO, un,
18591 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
18592 
18593 	/*
18594 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
18595 	 * timeouts when they receive a TUR and the queue is not empty. Check
18596 	 * the configuration flag set during attach (indicating the drive has
18597 	 * this firmware bug) and un_ncmds_in_transport before issuing the
18598 	 * TUR. If there are
18599 	 * pending commands return success, this is a bit arbitrary but is ok
18600 	 * for non-removables (i.e. the eliteI disks) and non-clustering
18601 	 * configurations.
18602 	 */
18603 	if (un->un_f_cfg_tur_check == TRUE) {
18604 		mutex_enter(SD_MUTEX(un));
18605 		if (un->un_ncmds_in_transport != 0) {
18606 			mutex_exit(SD_MUTEX(un));
18607 			return (0);
18608 		}
18609 		mutex_exit(SD_MUTEX(un));
18610 	}
18611 
18612 	bzero(&cdb, sizeof (cdb));
18613 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18614 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18615 
18616 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
18617 
18618 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18619 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18620 	ucmd_buf.uscsi_bufaddr	= NULL;
18621 	ucmd_buf.uscsi_buflen	= 0;
18622 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18623 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18624 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
18625 
18626 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
18627 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
18628 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
18629 	}
18630 	ucmd_buf.uscsi_timeout	= 60;
18631 
18632 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18633 	    UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT :
18634 	    SD_PATH_STANDARD));
18635 
18636 	switch (status) {
18637 	case 0:
18638 		break;	/* Success! */
18639 	case EIO:
18640 		switch (ucmd_buf.uscsi_status) {
18641 		case STATUS_RESERVATION_CONFLICT:
18642 			status = EACCES;
18643 			break;
18644 		case STATUS_CHECK:
18645 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
18646 				break;
18647 			}
18648 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18649 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18650 			    KEY_NOT_READY) &&
18651 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
18652 				status = ENXIO;
18653 			}
18654 			break;
18655 		default:
18656 			break;
18657 		}
18658 		break;
18659 	default:
18660 		break;
18661 	}
18662 
18663 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
18664 
18665 	return (status);
18666 }
18667 
18668 
18669 /*
18670  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
18671  *
18672  * Description: Issue the scsi PERSISTENT RESERVE IN command.
18673  *
18674  *   Arguments: un
18675  *
18676  * Return Code: 0   - Success
18677  *		EACCES
18678  *		ENOTSUP
18679  *		errno return code from sd_send_scsi_cmd()
18680  *
18681  *     Context: Can sleep. Does not return until command is completed.
18682  */
18683 
18684 static int
18685 sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t  usr_cmd,
18686 	uint16_t data_len, uchar_t *data_bufp)
18687 {
18688 	struct scsi_extended_sense	sense_buf;
18689 	union scsi_cdb		cdb;
18690 	struct uscsi_cmd	ucmd_buf;
18691 	int			status;
18692 	int			no_caller_buf = FALSE;
18693 
18694 	ASSERT(un != NULL);
18695 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18696 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
18697 
18698 	SD_TRACE(SD_LOG_IO, un,
18699 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
18700 
18701 	bzero(&cdb, sizeof (cdb));
18702 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18703 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18704 	if (data_bufp == NULL) {
18705 		/* Allocate a default buf if the caller did not give one */
18706 		ASSERT(data_len == 0);
18707 		data_len  = MHIOC_RESV_KEY_SIZE;
18708 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
18709 		no_caller_buf = TRUE;
18710 	}
18711 
18712 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
18713 	cdb.cdb_opaque[1] = usr_cmd;
18714 	FORMG1COUNT(&cdb, data_len);
18715 
18716 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18717 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
18718 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
18719 	ucmd_buf.uscsi_buflen	= data_len;
18720 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18721 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18722 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
18723 	ucmd_buf.uscsi_timeout	= 60;
18724 
18725 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18726 	    UIO_SYSSPACE, SD_PATH_STANDARD);
18727 
18728 	switch (status) {
18729 	case 0:
18730 		break;	/* Success! */
18731 	case EIO:
18732 		switch (ucmd_buf.uscsi_status) {
18733 		case STATUS_RESERVATION_CONFLICT:
18734 			status = EACCES;
18735 			break;
18736 		case STATUS_CHECK:
18737 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18738 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18739 			    KEY_ILLEGAL_REQUEST)) {
18740 				status = ENOTSUP;
18741 			}
18742 			break;
18743 		default:
18744 			break;
18745 		}
18746 		break;
18747 	default:
18748 		break;
18749 	}
18750 
18751 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
18752 
18753 	if (no_caller_buf == TRUE) {
18754 		kmem_free(data_bufp, data_len);
18755 	}
18756 
18757 	return (status);
18758 }
18759 
18760 
18761 /*
18762  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
18763  *
18764  * Description: This routine is the driver entry point for handling CD-ROM
18765  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
18766  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
18767  *		device.
18768  *
18769  *   Arguments: un  -   Pointer to soft state struct for the target.
18770  *		usr_cmd SCSI-3 reservation facility command (one of
18771  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
18772  *			SD_SCSI3_PREEMPTANDABORT)
18773  *		usr_bufp - user provided pointer register, reserve descriptor or
18774  *			preempt and abort structure (mhioc_register_t,
18775  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
18776  *
18777  * Return Code: 0   - Success
18778  *		EACCES
18779  *		ENOTSUP
18780  *		errno return code from sd_send_scsi_cmd()
18781  *
18782  *     Context: Can sleep. Does not return until command is completed.
18783  */
18784 
18785 static int
18786 sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd,
18787 	uchar_t	*usr_bufp)
18788 {
18789 	struct scsi_extended_sense	sense_buf;
18790 	union scsi_cdb		cdb;
18791 	struct uscsi_cmd	ucmd_buf;
18792 	int			status;
18793 	uchar_t			data_len = sizeof (sd_prout_t);
18794 	sd_prout_t		*prp;
18795 
18796 	ASSERT(un != NULL);
18797 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18798 	ASSERT(data_len == 24);	/* required by scsi spec */
18799 
18800 	SD_TRACE(SD_LOG_IO, un,
18801 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
18802 
18803 	if (usr_bufp == NULL) {
18804 		return (EINVAL);
18805 	}
18806 
18807 	bzero(&cdb, sizeof (cdb));
18808 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18809 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18810 	prp = kmem_zalloc(data_len, KM_SLEEP);
18811 
18812 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
18813 	cdb.cdb_opaque[1] = usr_cmd;
18814 	FORMG1COUNT(&cdb, data_len);
18815 
18816 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18817 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
18818 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
18819 	ucmd_buf.uscsi_buflen	= data_len;
18820 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18821 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18822 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
18823 	ucmd_buf.uscsi_timeout	= 60;
18824 
18825 	switch (usr_cmd) {
18826 	case SD_SCSI3_REGISTER: {
18827 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
18828 
18829 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18830 		bcopy(ptr->newkey.key, prp->service_key,
18831 		    MHIOC_RESV_KEY_SIZE);
18832 		prp->aptpl = ptr->aptpl;
18833 		break;
18834 	}
18835 	case SD_SCSI3_RESERVE:
18836 	case SD_SCSI3_RELEASE: {
18837 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
18838 
18839 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18840 		prp->scope_address = BE_32(ptr->scope_specific_addr);
18841 		cdb.cdb_opaque[2] = ptr->type;
18842 		break;
18843 	}
18844 	case SD_SCSI3_PREEMPTANDABORT: {
18845 		mhioc_preemptandabort_t *ptr =
18846 		    (mhioc_preemptandabort_t *)usr_bufp;
18847 
18848 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18849 		bcopy(ptr->victim_key.key, prp->service_key,
18850 		    MHIOC_RESV_KEY_SIZE);
18851 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
18852 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
18853 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
18854 		break;
18855 	}
18856 	case SD_SCSI3_REGISTERANDIGNOREKEY:
18857 	{
18858 		mhioc_registerandignorekey_t *ptr;
18859 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
18860 		bcopy(ptr->newkey.key,
18861 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
18862 		prp->aptpl = ptr->aptpl;
18863 		break;
18864 	}
18865 	default:
18866 		ASSERT(FALSE);
18867 		break;
18868 	}
18869 
18870 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18871 	    UIO_SYSSPACE, SD_PATH_STANDARD);
18872 
18873 	switch (status) {
18874 	case 0:
18875 		break;	/* Success! */
18876 	case EIO:
18877 		switch (ucmd_buf.uscsi_status) {
18878 		case STATUS_RESERVATION_CONFLICT:
18879 			status = EACCES;
18880 			break;
18881 		case STATUS_CHECK:
18882 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18883 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18884 			    KEY_ILLEGAL_REQUEST)) {
18885 				status = ENOTSUP;
18886 			}
18887 			break;
18888 		default:
18889 			break;
18890 		}
18891 		break;
18892 	default:
18893 		break;
18894 	}
18895 
18896 	kmem_free(prp, data_len);
18897 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
18898 	return (status);
18899 }
18900 
18901 
18902 /*
18903  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
18904  *
18905  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
18906  *
18907  *   Arguments: un - pointer to the target's soft state struct
18908  *              dkc - pointer to the callback structure
18909  *
18910  * Return Code: 0 - success
18911  *		errno-type error code
18912  *
18913  *     Context: kernel thread context only.
18914  *
18915  *  _______________________________________________________________
18916  * | dkc_flag &   | dkc_callback | DKIOCFLUSHWRITECACHE            |
18917  * |FLUSH_VOLATILE|              | operation                       |
18918  * |______________|______________|_________________________________|
18919  * | 0            | NULL         | Synchronous flush on both       |
18920  * |              |              | volatile and non-volatile cache |
18921  * |______________|______________|_________________________________|
18922  * | 1            | NULL         | Synchronous flush on volatile   |
18923  * |              |              | cache; disk drivers may suppress|
18924  * |              |              | flush if disk table indicates   |
18925  * |              |              | non-volatile cache              |
18926  * |______________|______________|_________________________________|
18927  * | 0            | !NULL        | Asynchronous flush on both      |
18928  * |              |              | volatile and non-volatile cache;|
18929  * |______________|______________|_________________________________|
18930  * | 1            | !NULL        | Asynchronous flush on volatile  |
18931  * |              |              | cache; disk drivers may suppress|
18932  * |              |              | flush if disk table indicates   |
18933  * |              |              | non-volatile cache              |
18934  * |______________|______________|_________________________________|
18935  *
18936  */
18937 
18938 static int
18939 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
18940 {
18941 	struct sd_uscsi_info	*uip;
18942 	struct uscsi_cmd	*uscmd;
18943 	union scsi_cdb		*cdb;
18944 	struct buf		*bp;
18945 	int			rval = 0;
18946 	int			is_async;
18947 
18948 	SD_TRACE(SD_LOG_IO, un,
18949 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
18950 
18951 	ASSERT(un != NULL);
18952 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18953 
18954 	if (dkc == NULL || dkc->dkc_callback == NULL) {
18955 		is_async = FALSE;
18956 	} else {
18957 		is_async = TRUE;
18958 	}
18959 
18960 	mutex_enter(SD_MUTEX(un));
18961 	/* check whether cache flush should be suppressed */
18962 	if (un->un_f_suppress_cache_flush == TRUE) {
18963 		mutex_exit(SD_MUTEX(un));
18964 		/*
18965 		 * suppress the cache flush if the device is told to do
18966 		 * so by sd.conf or disk table
18967 		 */
18968 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: \
18969 		    skip the cache flush since suppress_cache_flush is %d!\n",
18970 		    un->un_f_suppress_cache_flush);
18971 
18972 		if (is_async == TRUE) {
18973 			/* invoke callback for asynchronous flush */
18974 			(*dkc->dkc_callback)(dkc->dkc_cookie, 0);
18975 		}
18976 		return (rval);
18977 	}
18978 	mutex_exit(SD_MUTEX(un));
18979 
18980 	/*
18981 	 * check dkc_flag & FLUSH_VOLATILE so SYNC_NV bit can be
18982 	 * set properly
18983 	 */
18984 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
18985 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
18986 
18987 	mutex_enter(SD_MUTEX(un));
18988 	if (dkc != NULL && un->un_f_sync_nv_supported &&
18989 	    (dkc->dkc_flag & FLUSH_VOLATILE)) {
18990 		/*
18991 		 * if the device supports SYNC_NV bit, turn on
18992 		 * the SYNC_NV bit to only flush volatile cache
18993 		 */
18994 		cdb->cdb_un.tag |= SD_SYNC_NV_BIT;
18995 	}
18996 	mutex_exit(SD_MUTEX(un));
18997 
18998 	/*
18999 	 * First get some memory for the uscsi_cmd struct and cdb
19000 	 * and initialize for SYNCHRONIZE_CACHE cmd.
19001 	 */
19002 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
19003 	uscmd->uscsi_cdblen = CDB_GROUP1;
19004 	uscmd->uscsi_cdb = (caddr_t)cdb;
19005 	uscmd->uscsi_bufaddr = NULL;
19006 	uscmd->uscsi_buflen = 0;
19007 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
19008 	uscmd->uscsi_rqlen = SENSE_LENGTH;
19009 	uscmd->uscsi_rqresid = SENSE_LENGTH;
19010 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
19011 	uscmd->uscsi_timeout = sd_io_time;
19012 
19013 	/*
19014 	 * Allocate an sd_uscsi_info struct and fill it with the info
19015 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
19016 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
19017 	 * since we allocate the buf here in this function, we do not
19018 	 * need to preserve the prior contents of b_private.
19019 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
19020 	 */
19021 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
19022 	uip->ui_flags = SD_PATH_DIRECT;
19023 	uip->ui_cmdp  = uscmd;
19024 
19025 	bp = getrbuf(KM_SLEEP);
19026 	bp->b_private = uip;
19027 
19028 	/*
19029 	 * Setup buffer to carry uscsi request.
19030 	 */
19031 	bp->b_flags  = B_BUSY;
19032 	bp->b_bcount = 0;
19033 	bp->b_blkno  = 0;
19034 
19035 	if (is_async == TRUE) {
19036 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
19037 		uip->ui_dkc = *dkc;
19038 	}
19039 
19040 	bp->b_edev = SD_GET_DEV(un);
19041 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
19042 
19043 	(void) sd_uscsi_strategy(bp);
19044 
19045 	/*
19046 	 * If synchronous request, wait for completion
19047 	 * If async just return and let b_iodone callback
19048 	 * cleanup.
19049 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
19050 	 * but it was also incremented in sd_uscsi_strategy(), so
19051 	 * we should be ok.
19052 	 */
19053 	if (is_async == FALSE) {
19054 		(void) biowait(bp);
19055 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
19056 	}
19057 
19058 	return (rval);
19059 }
19060 
19061 
19062 static int
19063 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
19064 {
19065 	struct sd_uscsi_info *uip;
19066 	struct uscsi_cmd *uscmd;
19067 	uint8_t *sense_buf;
19068 	struct sd_lun *un;
19069 	int status;
19070 	union scsi_cdb *cdb;
19071 
19072 	uip = (struct sd_uscsi_info *)(bp->b_private);
19073 	ASSERT(uip != NULL);
19074 
19075 	uscmd = uip->ui_cmdp;
19076 	ASSERT(uscmd != NULL);
19077 
19078 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
19079 	ASSERT(sense_buf != NULL);
19080 
19081 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
19082 	ASSERT(un != NULL);
19083 
19084 	cdb = (union scsi_cdb *)uscmd->uscsi_cdb;
19085 
19086 	status = geterror(bp);
19087 	switch (status) {
19088 	case 0:
19089 		break;	/* Success! */
19090 	case EIO:
19091 		switch (uscmd->uscsi_status) {
19092 		case STATUS_RESERVATION_CONFLICT:
19093 			/* Ignore reservation conflict */
19094 			status = 0;
19095 			goto done;
19096 
19097 		case STATUS_CHECK:
19098 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
19099 			    (scsi_sense_key(sense_buf) ==
19100 			    KEY_ILLEGAL_REQUEST)) {
19101 				/* Ignore Illegal Request error */
19102 				if (cdb->cdb_un.tag&SD_SYNC_NV_BIT) {
19103 					mutex_enter(SD_MUTEX(un));
19104 					un->un_f_sync_nv_supported = FALSE;
19105 					mutex_exit(SD_MUTEX(un));
19106 					status = 0;
19107 					SD_TRACE(SD_LOG_IO, un,
19108 					    "un_f_sync_nv_supported \
19109 					    is set to false.\n");
19110 					goto done;
19111 				}
19112 
19113 				mutex_enter(SD_MUTEX(un));
19114 				un->un_f_sync_cache_supported = FALSE;
19115 				mutex_exit(SD_MUTEX(un));
19116 				SD_TRACE(SD_LOG_IO, un,
19117 				    "sd_send_scsi_SYNCHRONIZE_CACHE_biodone: \
19118 				    un_f_sync_cache_supported set to false \
19119 				    with asc = %x, ascq = %x\n",
19120 				    scsi_sense_asc(sense_buf),
19121 				    scsi_sense_ascq(sense_buf));
19122 				status = ENOTSUP;
19123 				goto done;
19124 			}
19125 			break;
19126 		default:
19127 			break;
19128 		}
19129 		/* FALLTHRU */
19130 	default:
19131 		/*
19132 		 * Don't log an error message if this device
19133 		 * has removable media.
19134 		 */
19135 		if (!un->un_f_has_removable_media) {
19136 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
19137 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
19138 		}
19139 		break;
19140 	}
19141 
19142 done:
19143 	if (uip->ui_dkc.dkc_callback != NULL) {
19144 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
19145 	}
19146 
19147 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
19148 	freerbuf(bp);
19149 	kmem_free(uip, sizeof (struct sd_uscsi_info));
19150 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
19151 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
19152 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
19153 
19154 	return (status);
19155 }
19156 
19157 
19158 /*
19159  *    Function: sd_send_scsi_GET_CONFIGURATION
19160  *
19161  * Description: Issues the get configuration command to the device.
19162  *		Called from sd_check_for_writable_cd & sd_get_media_info
19163  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
19164  *   Arguments: un
19165  *		ucmdbuf
19166  *		rqbuf
19167  *		rqbuflen
19168  *		bufaddr
19169  *		buflen
19170  *		path_flag
19171  *
19172  * Return Code: 0   - Success
19173  *		errno return code from sd_send_scsi_cmd()
19174  *
19175  *     Context: Can sleep. Does not return until command is completed.
19176  *
19177  */
19178 
19179 static int
19180 sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf,
19181 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen,
19182 	int path_flag)
19183 {
19184 	char	cdb[CDB_GROUP1];
19185 	int	status;
19186 
19187 	ASSERT(un != NULL);
19188 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19189 	ASSERT(bufaddr != NULL);
19190 	ASSERT(ucmdbuf != NULL);
19191 	ASSERT(rqbuf != NULL);
19192 
19193 	SD_TRACE(SD_LOG_IO, un,
19194 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
19195 
19196 	bzero(cdb, sizeof (cdb));
19197 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
19198 	bzero(rqbuf, rqbuflen);
19199 	bzero(bufaddr, buflen);
19200 
19201 	/*
19202 	 * Set up cdb field for the get configuration command.
19203 	 */
19204 	cdb[0] = SCMD_GET_CONFIGURATION;
19205 	cdb[1] = 0x02;  /* Requested Type */
19206 	cdb[8] = SD_PROFILE_HEADER_LEN;
19207 	ucmdbuf->uscsi_cdb = cdb;
19208 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
19209 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
19210 	ucmdbuf->uscsi_buflen = buflen;
19211 	ucmdbuf->uscsi_timeout = sd_io_time;
19212 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
19213 	ucmdbuf->uscsi_rqlen = rqbuflen;
19214 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
19215 
19216 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL,
19217 	    UIO_SYSSPACE, path_flag);
19218 
19219 	switch (status) {
19220 	case 0:
19221 		break;  /* Success! */
19222 	case EIO:
19223 		switch (ucmdbuf->uscsi_status) {
19224 		case STATUS_RESERVATION_CONFLICT:
19225 			status = EACCES;
19226 			break;
19227 		default:
19228 			break;
19229 		}
19230 		break;
19231 	default:
19232 		break;
19233 	}
19234 
19235 	if (status == 0) {
19236 		SD_DUMP_MEMORY(un, SD_LOG_IO,
19237 		    "sd_send_scsi_GET_CONFIGURATION: data",
19238 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
19239 	}
19240 
19241 	SD_TRACE(SD_LOG_IO, un,
19242 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
19243 
19244 	return (status);
19245 }
19246 
19247 /*
19248  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
19249  *
19250  * Description: Issues the get configuration command to the device to
19251  *              retrieve a specific feature. Called from
19252  *		sd_check_for_writable_cd & sd_set_mmc_caps.
19253  *   Arguments: un
19254  *              ucmdbuf
19255  *              rqbuf
19256  *              rqbuflen
19257  *              bufaddr
19258  *              buflen
19259  *		feature
19260  *
19261  * Return Code: 0   - Success
19262  *              errno return code from sd_send_scsi_cmd()
19263  *
19264  *     Context: Can sleep. Does not return until command is completed.
19265  *
19266  */
19267 static int
19268 sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
19269 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
19270 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag)
19271 {
19272 	char    cdb[CDB_GROUP1];
19273 	int	status;
19274 
19275 	ASSERT(un != NULL);
19276 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19277 	ASSERT(bufaddr != NULL);
19278 	ASSERT(ucmdbuf != NULL);
19279 	ASSERT(rqbuf != NULL);
19280 
19281 	SD_TRACE(SD_LOG_IO, un,
19282 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
19283 
19284 	bzero(cdb, sizeof (cdb));
19285 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
19286 	bzero(rqbuf, rqbuflen);
19287 	bzero(bufaddr, buflen);
19288 
19289 	/*
19290 	 * Set up cdb field for the get configuration command.
19291 	 */
19292 	cdb[0] = SCMD_GET_CONFIGURATION;
19293 	cdb[1] = 0x02;  /* Requested Type */
19294 	cdb[3] = feature;
19295 	cdb[8] = buflen;
19296 	ucmdbuf->uscsi_cdb = cdb;
19297 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
19298 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
19299 	ucmdbuf->uscsi_buflen = buflen;
19300 	ucmdbuf->uscsi_timeout = sd_io_time;
19301 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
19302 	ucmdbuf->uscsi_rqlen = rqbuflen;
19303 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
19304 
19305 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL,
19306 	    UIO_SYSSPACE, path_flag);
19307 
19308 	switch (status) {
19309 	case 0:
19310 		break;  /* Success! */
19311 	case EIO:
19312 		switch (ucmdbuf->uscsi_status) {
19313 		case STATUS_RESERVATION_CONFLICT:
19314 			status = EACCES;
19315 			break;
19316 		default:
19317 			break;
19318 		}
19319 		break;
19320 	default:
19321 		break;
19322 	}
19323 
19324 	if (status == 0) {
19325 		SD_DUMP_MEMORY(un, SD_LOG_IO,
19326 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
19327 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
19328 	}
19329 
19330 	SD_TRACE(SD_LOG_IO, un,
19331 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
19332 
19333 	return (status);
19334 }
19335 
19336 
19337 /*
19338  *    Function: sd_send_scsi_MODE_SENSE
19339  *
19340  * Description: Utility function for issuing a scsi MODE SENSE command.
19341  *		Note: This routine uses a consistent implementation for Group0,
19342  *		Group1, and Group2 commands across all platforms. ATAPI devices
19343  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
19344  *
19345  *   Arguments: un - pointer to the softstate struct for the target.
19346  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
19347  *			  CDB_GROUP[1|2] (10 byte).
19348  *		bufaddr - buffer for page data retrieved from the target.
19349  *		buflen - size of page to be retrieved.
19350  *		page_code - page code of data to be retrieved from the target.
19351  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19352  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19353  *			to use the USCSI "direct" chain and bypass the normal
19354  *			command waitq.
19355  *
19356  * Return Code: 0   - Success
19357  *		errno return code from sd_send_scsi_cmd()
19358  *
19359  *     Context: Can sleep. Does not return until command is completed.
19360  */
19361 
19362 static int
19363 sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
19364 	size_t buflen,  uchar_t page_code, int path_flag)
19365 {
19366 	struct	scsi_extended_sense	sense_buf;
19367 	union scsi_cdb		cdb;
19368 	struct uscsi_cmd	ucmd_buf;
19369 	int			status;
19370 	int			headlen;
19371 
19372 	ASSERT(un != NULL);
19373 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19374 	ASSERT(bufaddr != NULL);
19375 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
19376 	    (cdbsize == CDB_GROUP2));
19377 
19378 	SD_TRACE(SD_LOG_IO, un,
19379 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
19380 
19381 	bzero(&cdb, sizeof (cdb));
19382 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19383 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19384 	bzero(bufaddr, buflen);
19385 
19386 	if (cdbsize == CDB_GROUP0) {
19387 		cdb.scc_cmd = SCMD_MODE_SENSE;
19388 		cdb.cdb_opaque[2] = page_code;
19389 		FORMG0COUNT(&cdb, buflen);
19390 		headlen = MODE_HEADER_LENGTH;
19391 	} else {
19392 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
19393 		cdb.cdb_opaque[2] = page_code;
19394 		FORMG1COUNT(&cdb, buflen);
19395 		headlen = MODE_HEADER_LENGTH_GRP2;
19396 	}
19397 
19398 	ASSERT(headlen <= buflen);
19399 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
19400 
19401 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19402 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
19403 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19404 	ucmd_buf.uscsi_buflen	= buflen;
19405 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19406 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19407 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19408 	ucmd_buf.uscsi_timeout	= 60;
19409 
19410 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19411 	    UIO_SYSSPACE, path_flag);
19412 
19413 	switch (status) {
19414 	case 0:
19415 		/*
19416 		 * sr_check_wp() uses 0x3f page code and check the header of
19417 		 * mode page to determine if target device is write-protected.
19418 		 * But some USB devices return 0 bytes for 0x3f page code. For
19419 		 * this case, make sure that mode page header is returned at
19420 		 * least.
19421 		 */
19422 		if (buflen - ucmd_buf.uscsi_resid <  headlen)
19423 			status = EIO;
19424 		break;	/* Success! */
19425 	case EIO:
19426 		switch (ucmd_buf.uscsi_status) {
19427 		case STATUS_RESERVATION_CONFLICT:
19428 			status = EACCES;
19429 			break;
19430 		default:
19431 			break;
19432 		}
19433 		break;
19434 	default:
19435 		break;
19436 	}
19437 
19438 	if (status == 0) {
19439 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
19440 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19441 	}
19442 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
19443 
19444 	return (status);
19445 }
19446 
19447 
19448 /*
19449  *    Function: sd_send_scsi_MODE_SELECT
19450  *
19451  * Description: Utility function for issuing a scsi MODE SELECT command.
19452  *		Note: This routine uses a consistent implementation for Group0,
19453  *		Group1, and Group2 commands across all platforms. ATAPI devices
19454  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
19455  *
19456  *   Arguments: un - pointer to the softstate struct for the target.
19457  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
19458  *			  CDB_GROUP[1|2] (10 byte).
19459  *		bufaddr - buffer for page data retrieved from the target.
19460  *		buflen - size of page to be retrieved.
19461  *		save_page - boolean to determin if SP bit should be set.
19462  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19463  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19464  *			to use the USCSI "direct" chain and bypass the normal
19465  *			command waitq.
19466  *
19467  * Return Code: 0   - Success
19468  *		errno return code from sd_send_scsi_cmd()
19469  *
19470  *     Context: Can sleep. Does not return until command is completed.
19471  */
19472 
19473 static int
19474 sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
19475 	size_t buflen,  uchar_t save_page, int path_flag)
19476 {
19477 	struct	scsi_extended_sense	sense_buf;
19478 	union scsi_cdb		cdb;
19479 	struct uscsi_cmd	ucmd_buf;
19480 	int			status;
19481 
19482 	ASSERT(un != NULL);
19483 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19484 	ASSERT(bufaddr != NULL);
19485 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
19486 	    (cdbsize == CDB_GROUP2));
19487 
19488 	SD_TRACE(SD_LOG_IO, un,
19489 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
19490 
19491 	bzero(&cdb, sizeof (cdb));
19492 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19493 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19494 
19495 	/* Set the PF bit for many third party drives */
19496 	cdb.cdb_opaque[1] = 0x10;
19497 
19498 	/* Set the savepage(SP) bit if given */
19499 	if (save_page == SD_SAVE_PAGE) {
19500 		cdb.cdb_opaque[1] |= 0x01;
19501 	}
19502 
19503 	if (cdbsize == CDB_GROUP0) {
19504 		cdb.scc_cmd = SCMD_MODE_SELECT;
19505 		FORMG0COUNT(&cdb, buflen);
19506 	} else {
19507 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
19508 		FORMG1COUNT(&cdb, buflen);
19509 	}
19510 
19511 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
19512 
19513 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19514 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
19515 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19516 	ucmd_buf.uscsi_buflen	= buflen;
19517 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19518 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19519 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
19520 	ucmd_buf.uscsi_timeout	= 60;
19521 
19522 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19523 	    UIO_SYSSPACE, path_flag);
19524 
19525 	switch (status) {
19526 	case 0:
19527 		break;	/* Success! */
19528 	case EIO:
19529 		switch (ucmd_buf.uscsi_status) {
19530 		case STATUS_RESERVATION_CONFLICT:
19531 			status = EACCES;
19532 			break;
19533 		default:
19534 			break;
19535 		}
19536 		break;
19537 	default:
19538 		break;
19539 	}
19540 
19541 	if (status == 0) {
19542 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
19543 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19544 	}
19545 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
19546 
19547 	return (status);
19548 }
19549 
19550 
19551 /*
19552  *    Function: sd_send_scsi_RDWR
19553  *
19554  * Description: Issue a scsi READ or WRITE command with the given parameters.
19555  *
19556  *   Arguments: un:      Pointer to the sd_lun struct for the target.
19557  *		cmd:	 SCMD_READ or SCMD_WRITE
19558  *		bufaddr: Address of caller's buffer to receive the RDWR data
19559  *		buflen:  Length of caller's buffer receive the RDWR data.
19560  *		start_block: Block number for the start of the RDWR operation.
19561  *			 (Assumes target-native block size.)
19562  *		residp:  Pointer to variable to receive the redisual of the
19563  *			 RDWR operation (may be NULL of no residual requested).
19564  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19565  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19566  *			to use the USCSI "direct" chain and bypass the normal
19567  *			command waitq.
19568  *
19569  * Return Code: 0   - Success
19570  *		errno return code from sd_send_scsi_cmd()
19571  *
19572  *     Context: Can sleep. Does not return until command is completed.
19573  */
19574 
19575 static int
19576 sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
19577 	size_t buflen, daddr_t start_block, int path_flag)
19578 {
19579 	struct	scsi_extended_sense	sense_buf;
19580 	union scsi_cdb		cdb;
19581 	struct uscsi_cmd	ucmd_buf;
19582 	uint32_t		block_count;
19583 	int			status;
19584 	int			cdbsize;
19585 	uchar_t			flag;
19586 
19587 	ASSERT(un != NULL);
19588 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19589 	ASSERT(bufaddr != NULL);
19590 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
19591 
19592 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
19593 
19594 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
19595 		return (EINVAL);
19596 	}
19597 
19598 	mutex_enter(SD_MUTEX(un));
19599 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
19600 	mutex_exit(SD_MUTEX(un));
19601 
19602 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
19603 
19604 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
19605 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
19606 	    bufaddr, buflen, start_block, block_count);
19607 
19608 	bzero(&cdb, sizeof (cdb));
19609 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19610 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19611 
19612 	/* Compute CDB size to use */
19613 	if (start_block > 0xffffffff)
19614 		cdbsize = CDB_GROUP4;
19615 	else if ((start_block & 0xFFE00000) ||
19616 	    (un->un_f_cfg_is_atapi == TRUE))
19617 		cdbsize = CDB_GROUP1;
19618 	else
19619 		cdbsize = CDB_GROUP0;
19620 
19621 	switch (cdbsize) {
19622 	case CDB_GROUP0:	/* 6-byte CDBs */
19623 		cdb.scc_cmd = cmd;
19624 		FORMG0ADDR(&cdb, start_block);
19625 		FORMG0COUNT(&cdb, block_count);
19626 		break;
19627 	case CDB_GROUP1:	/* 10-byte CDBs */
19628 		cdb.scc_cmd = cmd | SCMD_GROUP1;
19629 		FORMG1ADDR(&cdb, start_block);
19630 		FORMG1COUNT(&cdb, block_count);
19631 		break;
19632 	case CDB_GROUP4:	/* 16-byte CDBs */
19633 		cdb.scc_cmd = cmd | SCMD_GROUP4;
19634 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
19635 		FORMG4COUNT(&cdb, block_count);
19636 		break;
19637 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
19638 	default:
19639 		/* All others reserved */
19640 		return (EINVAL);
19641 	}
19642 
19643 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
19644 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
19645 
19646 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19647 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
19648 	ucmd_buf.uscsi_bufaddr	= bufaddr;
19649 	ucmd_buf.uscsi_buflen	= buflen;
19650 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19651 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19652 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
19653 	ucmd_buf.uscsi_timeout	= 60;
19654 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19655 	    UIO_SYSSPACE, path_flag);
19656 	switch (status) {
19657 	case 0:
19658 		break;	/* Success! */
19659 	case EIO:
19660 		switch (ucmd_buf.uscsi_status) {
19661 		case STATUS_RESERVATION_CONFLICT:
19662 			status = EACCES;
19663 			break;
19664 		default:
19665 			break;
19666 		}
19667 		break;
19668 	default:
19669 		break;
19670 	}
19671 
19672 	if (status == 0) {
19673 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
19674 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19675 	}
19676 
19677 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
19678 
19679 	return (status);
19680 }
19681 
19682 
19683 /*
19684  *    Function: sd_send_scsi_LOG_SENSE
19685  *
19686  * Description: Issue a scsi LOG_SENSE command with the given parameters.
19687  *
19688  *   Arguments: un:      Pointer to the sd_lun struct for the target.
19689  *
19690  * Return Code: 0   - Success
19691  *		errno return code from sd_send_scsi_cmd()
19692  *
19693  *     Context: Can sleep. Does not return until command is completed.
19694  */
19695 
19696 static int
19697 sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen,
19698 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
19699 	int path_flag)
19700 
19701 {
19702 	struct	scsi_extended_sense	sense_buf;
19703 	union scsi_cdb		cdb;
19704 	struct uscsi_cmd	ucmd_buf;
19705 	int			status;
19706 
19707 	ASSERT(un != NULL);
19708 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19709 
19710 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
19711 
19712 	bzero(&cdb, sizeof (cdb));
19713 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19714 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19715 
19716 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
19717 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
19718 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
19719 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
19720 	FORMG1COUNT(&cdb, buflen);
19721 
19722 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19723 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19724 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19725 	ucmd_buf.uscsi_buflen	= buflen;
19726 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19727 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19728 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19729 	ucmd_buf.uscsi_timeout	= 60;
19730 
19731 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19732 	    UIO_SYSSPACE, path_flag);
19733 
19734 	switch (status) {
19735 	case 0:
19736 		break;
19737 	case EIO:
19738 		switch (ucmd_buf.uscsi_status) {
19739 		case STATUS_RESERVATION_CONFLICT:
19740 			status = EACCES;
19741 			break;
19742 		case STATUS_CHECK:
19743 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19744 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
19745 				KEY_ILLEGAL_REQUEST) &&
19746 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
19747 				/*
19748 				 * ASC 0x24: INVALID FIELD IN CDB
19749 				 */
19750 				switch (page_code) {
19751 				case START_STOP_CYCLE_PAGE:
19752 					/*
19753 					 * The start stop cycle counter is
19754 					 * implemented as page 0x31 in earlier
19755 					 * generation disks. In new generation
19756 					 * disks the start stop cycle counter is
19757 					 * implemented as page 0xE. To properly
19758 					 * handle this case if an attempt for
19759 					 * log page 0xE is made and fails we
19760 					 * will try again using page 0x31.
19761 					 *
19762 					 * Network storage BU committed to
19763 					 * maintain the page 0x31 for this
19764 					 * purpose and will not have any other
19765 					 * page implemented with page code 0x31
19766 					 * until all disks transition to the
19767 					 * standard page.
19768 					 */
19769 					mutex_enter(SD_MUTEX(un));
19770 					un->un_start_stop_cycle_page =
19771 					    START_STOP_CYCLE_VU_PAGE;
19772 					cdb.cdb_opaque[2] =
19773 					    (char)(page_control << 6) |
19774 					    un->un_start_stop_cycle_page;
19775 					mutex_exit(SD_MUTEX(un));
19776 					status = sd_send_scsi_cmd(
19777 					    SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19778 					    UIO_SYSSPACE, path_flag);
19779 
19780 					break;
19781 				case TEMPERATURE_PAGE:
19782 					status = ENOTTY;
19783 					break;
19784 				default:
19785 					break;
19786 				}
19787 			}
19788 			break;
19789 		default:
19790 			break;
19791 		}
19792 		break;
19793 	default:
19794 		break;
19795 	}
19796 
19797 	if (status == 0) {
19798 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
19799 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19800 	}
19801 
19802 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
19803 
19804 	return (status);
19805 }
19806 
19807 
19808 /*
19809  *    Function: sdioctl
19810  *
19811  * Description: Driver's ioctl(9e) entry point function.
19812  *
19813  *   Arguments: dev     - device number
19814  *		cmd     - ioctl operation to be performed
19815  *		arg     - user argument, contains data to be set or reference
19816  *			  parameter for get
19817  *		flag    - bit flag, indicating open settings, 32/64 bit type
19818  *		cred_p  - user credential pointer
19819  *		rval_p  - calling process return value (OPT)
19820  *
19821  * Return Code: EINVAL
19822  *		ENOTTY
19823  *		ENXIO
19824  *		EIO
19825  *		EFAULT
19826  *		ENOTSUP
19827  *		EPERM
19828  *
19829  *     Context: Called from the device switch at normal priority.
19830  */
19831 
19832 static int
19833 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
19834 {
19835 	struct sd_lun	*un = NULL;
19836 	int		err = 0;
19837 	int		i = 0;
19838 	cred_t		*cr;
19839 	int		tmprval = EINVAL;
19840 	int 		is_valid;
19841 
19842 	/*
19843 	 * All device accesses go thru sdstrategy where we check on suspend
19844 	 * status
19845 	 */
19846 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
19847 		return (ENXIO);
19848 	}
19849 
19850 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19851 
19852 
19853 	is_valid = SD_IS_VALID_LABEL(un);
19854 
19855 	/*
19856 	 * Moved this wait from sd_uscsi_strategy to here for
19857 	 * reasons of deadlock prevention. Internal driver commands,
19858 	 * specifically those to change a devices power level, result
19859 	 * in a call to sd_uscsi_strategy.
19860 	 */
19861 	mutex_enter(SD_MUTEX(un));
19862 	while ((un->un_state == SD_STATE_SUSPENDED) ||
19863 	    (un->un_state == SD_STATE_PM_CHANGING)) {
19864 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
19865 	}
19866 	/*
19867 	 * Twiddling the counter here protects commands from now
19868 	 * through to the top of sd_uscsi_strategy. Without the
19869 	 * counter inc. a power down, for example, could get in
19870 	 * after the above check for state is made and before
19871 	 * execution gets to the top of sd_uscsi_strategy.
19872 	 * That would cause problems.
19873 	 */
19874 	un->un_ncmds_in_driver++;
19875 
19876 	if (!is_valid &&
19877 	    (flag & (FNDELAY | FNONBLOCK))) {
19878 		switch (cmd) {
19879 		case DKIOCGGEOM:	/* SD_PATH_DIRECT */
19880 		case DKIOCGVTOC:
19881 		case DKIOCGAPART:
19882 		case DKIOCPARTINFO:
19883 		case DKIOCSGEOM:
19884 		case DKIOCSAPART:
19885 		case DKIOCGETEFI:
19886 		case DKIOCPARTITION:
19887 		case DKIOCSVTOC:
19888 		case DKIOCSETEFI:
19889 		case DKIOCGMBOOT:
19890 		case DKIOCSMBOOT:
19891 		case DKIOCG_PHYGEOM:
19892 		case DKIOCG_VIRTGEOM:
19893 			/* let cmlb handle it */
19894 			goto skip_ready_valid;
19895 
19896 		case CDROMPAUSE:
19897 		case CDROMRESUME:
19898 		case CDROMPLAYMSF:
19899 		case CDROMPLAYTRKIND:
19900 		case CDROMREADTOCHDR:
19901 		case CDROMREADTOCENTRY:
19902 		case CDROMSTOP:
19903 		case CDROMSTART:
19904 		case CDROMVOLCTRL:
19905 		case CDROMSUBCHNL:
19906 		case CDROMREADMODE2:
19907 		case CDROMREADMODE1:
19908 		case CDROMREADOFFSET:
19909 		case CDROMSBLKMODE:
19910 		case CDROMGBLKMODE:
19911 		case CDROMGDRVSPEED:
19912 		case CDROMSDRVSPEED:
19913 		case CDROMCDDA:
19914 		case CDROMCDXA:
19915 		case CDROMSUBCODE:
19916 			if (!ISCD(un)) {
19917 				un->un_ncmds_in_driver--;
19918 				ASSERT(un->un_ncmds_in_driver >= 0);
19919 				mutex_exit(SD_MUTEX(un));
19920 				return (ENOTTY);
19921 			}
19922 			break;
19923 		case FDEJECT:
19924 		case DKIOCEJECT:
19925 		case CDROMEJECT:
19926 			if (!un->un_f_eject_media_supported) {
19927 				un->un_ncmds_in_driver--;
19928 				ASSERT(un->un_ncmds_in_driver >= 0);
19929 				mutex_exit(SD_MUTEX(un));
19930 				return (ENOTTY);
19931 			}
19932 			break;
19933 		case DKIOCFLUSHWRITECACHE:
19934 			mutex_exit(SD_MUTEX(un));
19935 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
19936 			if (err != 0) {
19937 				mutex_enter(SD_MUTEX(un));
19938 				un->un_ncmds_in_driver--;
19939 				ASSERT(un->un_ncmds_in_driver >= 0);
19940 				mutex_exit(SD_MUTEX(un));
19941 				return (EIO);
19942 			}
19943 			mutex_enter(SD_MUTEX(un));
19944 			/* FALLTHROUGH */
19945 		case DKIOCREMOVABLE:
19946 		case DKIOCHOTPLUGGABLE:
19947 		case DKIOCINFO:
19948 		case DKIOCGMEDIAINFO:
19949 		case MHIOCENFAILFAST:
19950 		case MHIOCSTATUS:
19951 		case MHIOCTKOWN:
19952 		case MHIOCRELEASE:
19953 		case MHIOCGRP_INKEYS:
19954 		case MHIOCGRP_INRESV:
19955 		case MHIOCGRP_REGISTER:
19956 		case MHIOCGRP_RESERVE:
19957 		case MHIOCGRP_PREEMPTANDABORT:
19958 		case MHIOCGRP_REGISTERANDIGNOREKEY:
19959 		case CDROMCLOSETRAY:
19960 		case USCSICMD:
19961 			goto skip_ready_valid;
19962 		default:
19963 			break;
19964 		}
19965 
19966 		mutex_exit(SD_MUTEX(un));
19967 		err = sd_ready_and_valid(un);
19968 		mutex_enter(SD_MUTEX(un));
19969 
19970 		if (err != SD_READY_VALID) {
19971 			switch (cmd) {
19972 			case DKIOCSTATE:
19973 			case CDROMGDRVSPEED:
19974 			case CDROMSDRVSPEED:
19975 			case FDEJECT:	/* for eject command */
19976 			case DKIOCEJECT:
19977 			case CDROMEJECT:
19978 			case DKIOCREMOVABLE:
19979 			case DKIOCHOTPLUGGABLE:
19980 				break;
19981 			default:
19982 				if (un->un_f_has_removable_media) {
19983 					err = ENXIO;
19984 				} else {
19985 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
19986 					if (err == SD_RESERVED_BY_OTHERS) {
19987 						err = EACCES;
19988 					} else {
19989 						err = EIO;
19990 					}
19991 				}
19992 				un->un_ncmds_in_driver--;
19993 				ASSERT(un->un_ncmds_in_driver >= 0);
19994 				mutex_exit(SD_MUTEX(un));
19995 				return (err);
19996 			}
19997 		}
19998 	}
19999 
20000 skip_ready_valid:
20001 	mutex_exit(SD_MUTEX(un));
20002 
20003 	switch (cmd) {
20004 	case DKIOCINFO:
20005 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
20006 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
20007 		break;
20008 
20009 	case DKIOCGMEDIAINFO:
20010 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
20011 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
20012 		break;
20013 
20014 	case DKIOCGGEOM:
20015 	case DKIOCGVTOC:
20016 	case DKIOCGAPART:
20017 	case DKIOCPARTINFO:
20018 	case DKIOCSGEOM:
20019 	case DKIOCSAPART:
20020 	case DKIOCGETEFI:
20021 	case DKIOCPARTITION:
20022 	case DKIOCSVTOC:
20023 	case DKIOCSETEFI:
20024 	case DKIOCGMBOOT:
20025 	case DKIOCSMBOOT:
20026 	case DKIOCG_PHYGEOM:
20027 	case DKIOCG_VIRTGEOM:
20028 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd);
20029 
20030 		/* TUR should spin up */
20031 
20032 		if (un->un_f_has_removable_media)
20033 			err = sd_send_scsi_TEST_UNIT_READY(un,
20034 			    SD_CHECK_FOR_MEDIA);
20035 		else
20036 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
20037 
20038 		if (err != 0)
20039 			break;
20040 
20041 		err = cmlb_ioctl(un->un_cmlbhandle, dev,
20042 		    cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT);
20043 
20044 		if ((err == 0) &&
20045 		    ((cmd == DKIOCSETEFI) ||
20046 		    (un->un_f_pkstats_enabled) &&
20047 		    (cmd == DKIOCSAPART || cmd == DKIOCSVTOC))) {
20048 
20049 			tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT,
20050 			    (void *)SD_PATH_DIRECT);
20051 			if ((tmprval == 0) && un->un_f_pkstats_enabled) {
20052 				sd_set_pstats(un);
20053 				SD_TRACE(SD_LOG_IO_PARTITION, un,
20054 				    "sd_ioctl: un:0x%p pstats created and "
20055 				    "set\n", un);
20056 			}
20057 		}
20058 
20059 		if ((cmd == DKIOCSVTOC) ||
20060 		    ((cmd == DKIOCSETEFI) && (tmprval == 0))) {
20061 
20062 			mutex_enter(SD_MUTEX(un));
20063 			if (un->un_f_devid_supported &&
20064 			    (un->un_f_opt_fab_devid == TRUE)) {
20065 				if (un->un_devid == NULL) {
20066 					sd_register_devid(un, SD_DEVINFO(un),
20067 					    SD_TARGET_IS_UNRESERVED);
20068 				} else {
20069 					/*
20070 					 * The device id for this disk
20071 					 * has been fabricated. The
20072 					 * device id must be preserved
20073 					 * by writing it back out to
20074 					 * disk.
20075 					 */
20076 					if (sd_write_deviceid(un) != 0) {
20077 						ddi_devid_free(un->un_devid);
20078 						un->un_devid = NULL;
20079 					}
20080 				}
20081 			}
20082 			mutex_exit(SD_MUTEX(un));
20083 		}
20084 
20085 		break;
20086 
20087 	case DKIOCLOCK:
20088 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
20089 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
20090 		    SD_PATH_STANDARD);
20091 		break;
20092 
20093 	case DKIOCUNLOCK:
20094 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
20095 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
20096 		    SD_PATH_STANDARD);
20097 		break;
20098 
20099 	case DKIOCSTATE: {
20100 		enum dkio_state		state;
20101 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
20102 
20103 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
20104 			err = EFAULT;
20105 		} else {
20106 			err = sd_check_media(dev, state);
20107 			if (err == 0) {
20108 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
20109 				    sizeof (int), flag) != 0)
20110 					err = EFAULT;
20111 			}
20112 		}
20113 		break;
20114 	}
20115 
20116 	case DKIOCREMOVABLE:
20117 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
20118 		i = un->un_f_has_removable_media ? 1 : 0;
20119 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
20120 			err = EFAULT;
20121 		} else {
20122 			err = 0;
20123 		}
20124 		break;
20125 
20126 	case DKIOCHOTPLUGGABLE:
20127 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
20128 		i = un->un_f_is_hotpluggable ? 1 : 0;
20129 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
20130 			err = EFAULT;
20131 		} else {
20132 			err = 0;
20133 		}
20134 		break;
20135 
20136 	case DKIOCGTEMPERATURE:
20137 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
20138 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
20139 		break;
20140 
20141 	case MHIOCENFAILFAST:
20142 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
20143 		if ((err = drv_priv(cred_p)) == 0) {
20144 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
20145 		}
20146 		break;
20147 
20148 	case MHIOCTKOWN:
20149 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
20150 		if ((err = drv_priv(cred_p)) == 0) {
20151 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
20152 		}
20153 		break;
20154 
20155 	case MHIOCRELEASE:
20156 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
20157 		if ((err = drv_priv(cred_p)) == 0) {
20158 			err = sd_mhdioc_release(dev);
20159 		}
20160 		break;
20161 
20162 	case MHIOCSTATUS:
20163 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
20164 		if ((err = drv_priv(cred_p)) == 0) {
20165 			switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) {
20166 			case 0:
20167 				err = 0;
20168 				break;
20169 			case EACCES:
20170 				*rval_p = 1;
20171 				err = 0;
20172 				break;
20173 			default:
20174 				err = EIO;
20175 				break;
20176 			}
20177 		}
20178 		break;
20179 
20180 	case MHIOCQRESERVE:
20181 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
20182 		if ((err = drv_priv(cred_p)) == 0) {
20183 			err = sd_reserve_release(dev, SD_RESERVE);
20184 		}
20185 		break;
20186 
20187 	case MHIOCREREGISTERDEVID:
20188 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
20189 		if (drv_priv(cred_p) == EPERM) {
20190 			err = EPERM;
20191 		} else if (!un->un_f_devid_supported) {
20192 			err = ENOTTY;
20193 		} else {
20194 			err = sd_mhdioc_register_devid(dev);
20195 		}
20196 		break;
20197 
20198 	case MHIOCGRP_INKEYS:
20199 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
20200 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
20201 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20202 				err = ENOTSUP;
20203 			} else {
20204 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
20205 				    flag);
20206 			}
20207 		}
20208 		break;
20209 
20210 	case MHIOCGRP_INRESV:
20211 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
20212 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
20213 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20214 				err = ENOTSUP;
20215 			} else {
20216 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
20217 			}
20218 		}
20219 		break;
20220 
20221 	case MHIOCGRP_REGISTER:
20222 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
20223 		if ((err = drv_priv(cred_p)) != EPERM) {
20224 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20225 				err = ENOTSUP;
20226 			} else if (arg != NULL) {
20227 				mhioc_register_t reg;
20228 				if (ddi_copyin((void *)arg, &reg,
20229 				    sizeof (mhioc_register_t), flag) != 0) {
20230 					err = EFAULT;
20231 				} else {
20232 					err =
20233 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20234 					    un, SD_SCSI3_REGISTER,
20235 					    (uchar_t *)&reg);
20236 				}
20237 			}
20238 		}
20239 		break;
20240 
20241 	case MHIOCGRP_RESERVE:
20242 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
20243 		if ((err = drv_priv(cred_p)) != EPERM) {
20244 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20245 				err = ENOTSUP;
20246 			} else if (arg != NULL) {
20247 				mhioc_resv_desc_t resv_desc;
20248 				if (ddi_copyin((void *)arg, &resv_desc,
20249 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
20250 					err = EFAULT;
20251 				} else {
20252 					err =
20253 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20254 					    un, SD_SCSI3_RESERVE,
20255 					    (uchar_t *)&resv_desc);
20256 				}
20257 			}
20258 		}
20259 		break;
20260 
20261 	case MHIOCGRP_PREEMPTANDABORT:
20262 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
20263 		if ((err = drv_priv(cred_p)) != EPERM) {
20264 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20265 				err = ENOTSUP;
20266 			} else if (arg != NULL) {
20267 				mhioc_preemptandabort_t preempt_abort;
20268 				if (ddi_copyin((void *)arg, &preempt_abort,
20269 				    sizeof (mhioc_preemptandabort_t),
20270 				    flag) != 0) {
20271 					err = EFAULT;
20272 				} else {
20273 					err =
20274 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20275 					    un, SD_SCSI3_PREEMPTANDABORT,
20276 					    (uchar_t *)&preempt_abort);
20277 				}
20278 			}
20279 		}
20280 		break;
20281 
20282 	case MHIOCGRP_REGISTERANDIGNOREKEY:
20283 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n");
20284 		if ((err = drv_priv(cred_p)) != EPERM) {
20285 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20286 				err = ENOTSUP;
20287 			} else if (arg != NULL) {
20288 				mhioc_registerandignorekey_t r_and_i;
20289 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
20290 				    sizeof (mhioc_registerandignorekey_t),
20291 				    flag) != 0) {
20292 					err = EFAULT;
20293 				} else {
20294 					err =
20295 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20296 					    un, SD_SCSI3_REGISTERANDIGNOREKEY,
20297 					    (uchar_t *)&r_and_i);
20298 				}
20299 			}
20300 		}
20301 		break;
20302 
20303 	case USCSICMD:
20304 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
20305 		cr = ddi_get_cred();
20306 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
20307 			err = EPERM;
20308 		} else {
20309 			enum uio_seg	uioseg;
20310 			uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE :
20311 			    UIO_USERSPACE;
20312 			if (un->un_f_format_in_progress == TRUE) {
20313 				err = EAGAIN;
20314 				break;
20315 			}
20316 			err = sd_send_scsi_cmd(dev, (struct uscsi_cmd *)arg,
20317 			    flag, uioseg, SD_PATH_STANDARD);
20318 		}
20319 		break;
20320 
20321 	case CDROMPAUSE:
20322 	case CDROMRESUME:
20323 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
20324 		if (!ISCD(un)) {
20325 			err = ENOTTY;
20326 		} else {
20327 			err = sr_pause_resume(dev, cmd);
20328 		}
20329 		break;
20330 
20331 	case CDROMPLAYMSF:
20332 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
20333 		if (!ISCD(un)) {
20334 			err = ENOTTY;
20335 		} else {
20336 			err = sr_play_msf(dev, (caddr_t)arg, flag);
20337 		}
20338 		break;
20339 
20340 	case CDROMPLAYTRKIND:
20341 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
20342 #if defined(__i386) || defined(__amd64)
20343 		/*
20344 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
20345 		 */
20346 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
20347 #else
20348 		if (!ISCD(un)) {
20349 #endif
20350 			err = ENOTTY;
20351 		} else {
20352 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
20353 		}
20354 		break;
20355 
20356 	case CDROMREADTOCHDR:
20357 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
20358 		if (!ISCD(un)) {
20359 			err = ENOTTY;
20360 		} else {
20361 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
20362 		}
20363 		break;
20364 
20365 	case CDROMREADTOCENTRY:
20366 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
20367 		if (!ISCD(un)) {
20368 			err = ENOTTY;
20369 		} else {
20370 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
20371 		}
20372 		break;
20373 
20374 	case CDROMSTOP:
20375 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
20376 		if (!ISCD(un)) {
20377 			err = ENOTTY;
20378 		} else {
20379 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP,
20380 			    SD_PATH_STANDARD);
20381 		}
20382 		break;
20383 
20384 	case CDROMSTART:
20385 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
20386 		if (!ISCD(un)) {
20387 			err = ENOTTY;
20388 		} else {
20389 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
20390 			    SD_PATH_STANDARD);
20391 		}
20392 		break;
20393 
20394 	case CDROMCLOSETRAY:
20395 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
20396 		if (!ISCD(un)) {
20397 			err = ENOTTY;
20398 		} else {
20399 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE,
20400 			    SD_PATH_STANDARD);
20401 		}
20402 		break;
20403 
20404 	case FDEJECT:	/* for eject command */
20405 	case DKIOCEJECT:
20406 	case CDROMEJECT:
20407 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
20408 		if (!un->un_f_eject_media_supported) {
20409 			err = ENOTTY;
20410 		} else {
20411 			err = sr_eject(dev);
20412 		}
20413 		break;
20414 
20415 	case CDROMVOLCTRL:
20416 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
20417 		if (!ISCD(un)) {
20418 			err = ENOTTY;
20419 		} else {
20420 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
20421 		}
20422 		break;
20423 
20424 	case CDROMSUBCHNL:
20425 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
20426 		if (!ISCD(un)) {
20427 			err = ENOTTY;
20428 		} else {
20429 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
20430 		}
20431 		break;
20432 
20433 	case CDROMREADMODE2:
20434 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
20435 		if (!ISCD(un)) {
20436 			err = ENOTTY;
20437 		} else if (un->un_f_cfg_is_atapi == TRUE) {
20438 			/*
20439 			 * If the drive supports READ CD, use that instead of
20440 			 * switching the LBA size via a MODE SELECT
20441 			 * Block Descriptor
20442 			 */
20443 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
20444 		} else {
20445 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
20446 		}
20447 		break;
20448 
20449 	case CDROMREADMODE1:
20450 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
20451 		if (!ISCD(un)) {
20452 			err = ENOTTY;
20453 		} else {
20454 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
20455 		}
20456 		break;
20457 
20458 	case CDROMREADOFFSET:
20459 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
20460 		if (!ISCD(un)) {
20461 			err = ENOTTY;
20462 		} else {
20463 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
20464 			    flag);
20465 		}
20466 		break;
20467 
20468 	case CDROMSBLKMODE:
20469 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
20470 		/*
20471 		 * There is no means of changing block size in case of atapi
20472 		 * drives, thus return ENOTTY if drive type is atapi
20473 		 */
20474 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
20475 			err = ENOTTY;
20476 		} else if (un->un_f_mmc_cap == TRUE) {
20477 
20478 			/*
20479 			 * MMC Devices do not support changing the
20480 			 * logical block size
20481 			 *
20482 			 * Note: EINVAL is being returned instead of ENOTTY to
20483 			 * maintain consistancy with the original mmc
20484 			 * driver update.
20485 			 */
20486 			err = EINVAL;
20487 		} else {
20488 			mutex_enter(SD_MUTEX(un));
20489 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
20490 			    (un->un_ncmds_in_transport > 0)) {
20491 				mutex_exit(SD_MUTEX(un));
20492 				err = EINVAL;
20493 			} else {
20494 				mutex_exit(SD_MUTEX(un));
20495 				err = sr_change_blkmode(dev, cmd, arg, flag);
20496 			}
20497 		}
20498 		break;
20499 
20500 	case CDROMGBLKMODE:
20501 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
20502 		if (!ISCD(un)) {
20503 			err = ENOTTY;
20504 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
20505 		    (un->un_f_blockcount_is_valid != FALSE)) {
20506 			/*
20507 			 * Drive is an ATAPI drive so return target block
20508 			 * size for ATAPI drives since we cannot change the
20509 			 * blocksize on ATAPI drives. Used primarily to detect
20510 			 * if an ATAPI cdrom is present.
20511 			 */
20512 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
20513 			    sizeof (int), flag) != 0) {
20514 				err = EFAULT;
20515 			} else {
20516 				err = 0;
20517 			}
20518 
20519 		} else {
20520 			/*
20521 			 * Drive supports changing block sizes via a Mode
20522 			 * Select.
20523 			 */
20524 			err = sr_change_blkmode(dev, cmd, arg, flag);
20525 		}
20526 		break;
20527 
20528 	case CDROMGDRVSPEED:
20529 	case CDROMSDRVSPEED:
20530 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
20531 		if (!ISCD(un)) {
20532 			err = ENOTTY;
20533 		} else if (un->un_f_mmc_cap == TRUE) {
20534 			/*
20535 			 * Note: In the future the driver implementation
20536 			 * for getting and
20537 			 * setting cd speed should entail:
20538 			 * 1) If non-mmc try the Toshiba mode page
20539 			 *    (sr_change_speed)
20540 			 * 2) If mmc but no support for Real Time Streaming try
20541 			 *    the SET CD SPEED (0xBB) command
20542 			 *   (sr_atapi_change_speed)
20543 			 * 3) If mmc and support for Real Time Streaming
20544 			 *    try the GET PERFORMANCE and SET STREAMING
20545 			 *    commands (not yet implemented, 4380808)
20546 			 */
20547 			/*
20548 			 * As per recent MMC spec, CD-ROM speed is variable
20549 			 * and changes with LBA. Since there is no such
20550 			 * things as drive speed now, fail this ioctl.
20551 			 *
20552 			 * Note: EINVAL is returned for consistancy of original
20553 			 * implementation which included support for getting
20554 			 * the drive speed of mmc devices but not setting
20555 			 * the drive speed. Thus EINVAL would be returned
20556 			 * if a set request was made for an mmc device.
20557 			 * We no longer support get or set speed for
20558 			 * mmc but need to remain consistent with regard
20559 			 * to the error code returned.
20560 			 */
20561 			err = EINVAL;
20562 		} else if (un->un_f_cfg_is_atapi == TRUE) {
20563 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
20564 		} else {
20565 			err = sr_change_speed(dev, cmd, arg, flag);
20566 		}
20567 		break;
20568 
20569 	case CDROMCDDA:
20570 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
20571 		if (!ISCD(un)) {
20572 			err = ENOTTY;
20573 		} else {
20574 			err = sr_read_cdda(dev, (void *)arg, flag);
20575 		}
20576 		break;
20577 
20578 	case CDROMCDXA:
20579 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
20580 		if (!ISCD(un)) {
20581 			err = ENOTTY;
20582 		} else {
20583 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
20584 		}
20585 		break;
20586 
20587 	case CDROMSUBCODE:
20588 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
20589 		if (!ISCD(un)) {
20590 			err = ENOTTY;
20591 		} else {
20592 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
20593 		}
20594 		break;
20595 
20596 
20597 #ifdef SDDEBUG
20598 /* RESET/ABORTS testing ioctls */
20599 	case DKIOCRESET: {
20600 		int	reset_level;
20601 
20602 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
20603 			err = EFAULT;
20604 		} else {
20605 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
20606 			    "reset_level = 0x%lx\n", reset_level);
20607 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
20608 				err = 0;
20609 			} else {
20610 				err = EIO;
20611 			}
20612 		}
20613 		break;
20614 	}
20615 
20616 	case DKIOCABORT:
20617 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
20618 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
20619 			err = 0;
20620 		} else {
20621 			err = EIO;
20622 		}
20623 		break;
20624 #endif
20625 
20626 #ifdef SD_FAULT_INJECTION
20627 /* SDIOC FaultInjection testing ioctls */
20628 	case SDIOCSTART:
20629 	case SDIOCSTOP:
20630 	case SDIOCINSERTPKT:
20631 	case SDIOCINSERTXB:
20632 	case SDIOCINSERTUN:
20633 	case SDIOCINSERTARQ:
20634 	case SDIOCPUSH:
20635 	case SDIOCRETRIEVE:
20636 	case SDIOCRUN:
20637 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
20638 		    "SDIOC detected cmd:0x%X:\n", cmd);
20639 		/* call error generator */
20640 		sd_faultinjection_ioctl(cmd, arg, un);
20641 		err = 0;
20642 		break;
20643 
20644 #endif /* SD_FAULT_INJECTION */
20645 
20646 	case DKIOCFLUSHWRITECACHE:
20647 		{
20648 			struct dk_callback *dkc = (struct dk_callback *)arg;
20649 
20650 			mutex_enter(SD_MUTEX(un));
20651 			if (!un->un_f_sync_cache_supported ||
20652 			    !un->un_f_write_cache_enabled) {
20653 				err = un->un_f_sync_cache_supported ?
20654 				    0 : ENOTSUP;
20655 				mutex_exit(SD_MUTEX(un));
20656 				if ((flag & FKIOCTL) && dkc != NULL &&
20657 				    dkc->dkc_callback != NULL) {
20658 					(*dkc->dkc_callback)(dkc->dkc_cookie,
20659 					    err);
20660 					/*
20661 					 * Did callback and reported error.
20662 					 * Since we did a callback, ioctl
20663 					 * should return 0.
20664 					 */
20665 					err = 0;
20666 				}
20667 				break;
20668 			}
20669 			mutex_exit(SD_MUTEX(un));
20670 
20671 			if ((flag & FKIOCTL) && dkc != NULL &&
20672 			    dkc->dkc_callback != NULL) {
20673 				/* async SYNC CACHE request */
20674 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
20675 			} else {
20676 				/* synchronous SYNC CACHE request */
20677 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
20678 			}
20679 		}
20680 		break;
20681 
20682 	case DKIOCGETWCE: {
20683 
20684 		int wce;
20685 
20686 		if ((err = sd_get_write_cache_enabled(un, &wce)) != 0) {
20687 			break;
20688 		}
20689 
20690 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
20691 			err = EFAULT;
20692 		}
20693 		break;
20694 	}
20695 
20696 	case DKIOCSETWCE: {
20697 
20698 		int wce, sync_supported;
20699 
20700 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
20701 			err = EFAULT;
20702 			break;
20703 		}
20704 
20705 		/*
20706 		 * Synchronize multiple threads trying to enable
20707 		 * or disable the cache via the un_f_wcc_cv
20708 		 * condition variable.
20709 		 */
20710 		mutex_enter(SD_MUTEX(un));
20711 
20712 		/*
20713 		 * Don't allow the cache to be enabled if the
20714 		 * config file has it disabled.
20715 		 */
20716 		if (un->un_f_opt_disable_cache && wce) {
20717 			mutex_exit(SD_MUTEX(un));
20718 			err = EINVAL;
20719 			break;
20720 		}
20721 
20722 		/*
20723 		 * Wait for write cache change in progress
20724 		 * bit to be clear before proceeding.
20725 		 */
20726 		while (un->un_f_wcc_inprog)
20727 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
20728 
20729 		un->un_f_wcc_inprog = 1;
20730 
20731 		if (un->un_f_write_cache_enabled && wce == 0) {
20732 			/*
20733 			 * Disable the write cache.  Don't clear
20734 			 * un_f_write_cache_enabled until after
20735 			 * the mode select and flush are complete.
20736 			 */
20737 			sync_supported = un->un_f_sync_cache_supported;
20738 
20739 			/*
20740 			 * If cache flush is suppressed, we assume that the
20741 			 * controller firmware will take care of managing the
20742 			 * write cache for us: no need to explicitly
20743 			 * disable it.
20744 			 */
20745 			if (!un->un_f_suppress_cache_flush) {
20746 				mutex_exit(SD_MUTEX(un));
20747 				if ((err = sd_cache_control(un,
20748 				    SD_CACHE_NOCHANGE,
20749 				    SD_CACHE_DISABLE)) == 0 &&
20750 				    sync_supported) {
20751 					err = sd_send_scsi_SYNCHRONIZE_CACHE(un,
20752 					    NULL);
20753 				}
20754 			} else {
20755 				mutex_exit(SD_MUTEX(un));
20756 			}
20757 
20758 			mutex_enter(SD_MUTEX(un));
20759 			if (err == 0) {
20760 				un->un_f_write_cache_enabled = 0;
20761 			}
20762 
20763 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
20764 			/*
20765 			 * Set un_f_write_cache_enabled first, so there is
20766 			 * no window where the cache is enabled, but the
20767 			 * bit says it isn't.
20768 			 */
20769 			un->un_f_write_cache_enabled = 1;
20770 
20771 			/*
20772 			 * If cache flush is suppressed, we assume that the
20773 			 * controller firmware will take care of managing the
20774 			 * write cache for us: no need to explicitly
20775 			 * enable it.
20776 			 */
20777 			if (!un->un_f_suppress_cache_flush) {
20778 				mutex_exit(SD_MUTEX(un));
20779 				err = sd_cache_control(un, SD_CACHE_NOCHANGE,
20780 				    SD_CACHE_ENABLE);
20781 			} else {
20782 				mutex_exit(SD_MUTEX(un));
20783 			}
20784 
20785 			mutex_enter(SD_MUTEX(un));
20786 
20787 			if (err) {
20788 				un->un_f_write_cache_enabled = 0;
20789 			}
20790 		}
20791 
20792 		un->un_f_wcc_inprog = 0;
20793 		cv_broadcast(&un->un_wcc_cv);
20794 		mutex_exit(SD_MUTEX(un));
20795 		break;
20796 	}
20797 
20798 	default:
20799 		err = ENOTTY;
20800 		break;
20801 	}
20802 	mutex_enter(SD_MUTEX(un));
20803 	un->un_ncmds_in_driver--;
20804 	ASSERT(un->un_ncmds_in_driver >= 0);
20805 	mutex_exit(SD_MUTEX(un));
20806 
20807 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
20808 	return (err);
20809 }
20810 
20811 
20812 /*
20813  *    Function: sd_dkio_ctrl_info
20814  *
20815  * Description: This routine is the driver entry point for handling controller
20816  *		information ioctl requests (DKIOCINFO).
20817  *
20818  *   Arguments: dev  - the device number
20819  *		arg  - pointer to user provided dk_cinfo structure
20820  *		       specifying the controller type and attributes.
20821  *		flag - this argument is a pass through to ddi_copyxxx()
20822  *		       directly from the mode argument of ioctl().
20823  *
20824  * Return Code: 0
20825  *		EFAULT
20826  *		ENXIO
20827  */
20828 
20829 static int
20830 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
20831 {
20832 	struct sd_lun	*un = NULL;
20833 	struct dk_cinfo	*info;
20834 	dev_info_t	*pdip;
20835 	int		lun, tgt;
20836 
20837 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20838 		return (ENXIO);
20839 	}
20840 
20841 	info = (struct dk_cinfo *)
20842 	    kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
20843 
20844 	switch (un->un_ctype) {
20845 	case CTYPE_CDROM:
20846 		info->dki_ctype = DKC_CDROM;
20847 		break;
20848 	default:
20849 		info->dki_ctype = DKC_SCSI_CCS;
20850 		break;
20851 	}
20852 	pdip = ddi_get_parent(SD_DEVINFO(un));
20853 	info->dki_cnum = ddi_get_instance(pdip);
20854 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
20855 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
20856 	} else {
20857 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
20858 		    DK_DEVLEN - 1);
20859 	}
20860 
20861 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
20862 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
20863 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
20864 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
20865 
20866 	/* Unit Information */
20867 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
20868 	info->dki_slave = ((tgt << 3) | lun);
20869 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
20870 	    DK_DEVLEN - 1);
20871 	info->dki_flags = DKI_FMTVOL;
20872 	info->dki_partition = SDPART(dev);
20873 
20874 	/* Max Transfer size of this device in blocks */
20875 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
20876 	info->dki_addr = 0;
20877 	info->dki_space = 0;
20878 	info->dki_prio = 0;
20879 	info->dki_vec = 0;
20880 
20881 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
20882 		kmem_free(info, sizeof (struct dk_cinfo));
20883 		return (EFAULT);
20884 	} else {
20885 		kmem_free(info, sizeof (struct dk_cinfo));
20886 		return (0);
20887 	}
20888 }
20889 
20890 
20891 /*
20892  *    Function: sd_get_media_info
20893  *
20894  * Description: This routine is the driver entry point for handling ioctl
20895  *		requests for the media type or command set profile used by the
20896  *		drive to operate on the media (DKIOCGMEDIAINFO).
20897  *
20898  *   Arguments: dev	- the device number
20899  *		arg	- pointer to user provided dk_minfo structure
20900  *			  specifying the media type, logical block size and
20901  *			  drive capacity.
20902  *		flag	- this argument is a pass through to ddi_copyxxx()
20903  *			  directly from the mode argument of ioctl().
20904  *
20905  * Return Code: 0
20906  *		EACCESS
20907  *		EFAULT
20908  *		ENXIO
20909  *		EIO
20910  */
20911 
20912 static int
20913 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
20914 {
20915 	struct sd_lun		*un = NULL;
20916 	struct uscsi_cmd	com;
20917 	struct scsi_inquiry	*sinq;
20918 	struct dk_minfo		media_info;
20919 	u_longlong_t		media_capacity;
20920 	uint64_t		capacity;
20921 	uint_t			lbasize;
20922 	uchar_t			*out_data;
20923 	uchar_t			*rqbuf;
20924 	int			rval = 0;
20925 	int			rtn;
20926 
20927 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
20928 	    (un->un_state == SD_STATE_OFFLINE)) {
20929 		return (ENXIO);
20930 	}
20931 
20932 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
20933 
20934 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
20935 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
20936 
20937 	/* Issue a TUR to determine if the drive is ready with media present */
20938 	rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA);
20939 	if (rval == ENXIO) {
20940 		goto done;
20941 	}
20942 
20943 	/* Now get configuration data */
20944 	if (ISCD(un)) {
20945 		media_info.dki_media_type = DK_CDROM;
20946 
20947 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
20948 		if (un->un_f_mmc_cap == TRUE) {
20949 			rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf,
20950 			    SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN,
20951 			    SD_PATH_STANDARD);
20952 
20953 			if (rtn) {
20954 				/*
20955 				 * Failed for other than an illegal request
20956 				 * or command not supported
20957 				 */
20958 				if ((com.uscsi_status == STATUS_CHECK) &&
20959 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
20960 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
20961 					    (rqbuf[12] != 0x20)) {
20962 						rval = EIO;
20963 						goto done;
20964 					}
20965 				}
20966 			} else {
20967 				/*
20968 				 * The GET CONFIGURATION command succeeded
20969 				 * so set the media type according to the
20970 				 * returned data
20971 				 */
20972 				media_info.dki_media_type = out_data[6];
20973 				media_info.dki_media_type <<= 8;
20974 				media_info.dki_media_type |= out_data[7];
20975 			}
20976 		}
20977 	} else {
20978 		/*
20979 		 * The profile list is not available, so we attempt to identify
20980 		 * the media type based on the inquiry data
20981 		 */
20982 		sinq = un->un_sd->sd_inq;
20983 		if ((sinq->inq_dtype == DTYPE_DIRECT) ||
20984 		    (sinq->inq_dtype == DTYPE_OPTICAL)) {
20985 			/* This is a direct access device  or optical disk */
20986 			media_info.dki_media_type = DK_FIXED_DISK;
20987 
20988 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
20989 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
20990 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
20991 					media_info.dki_media_type = DK_ZIP;
20992 				} else if (
20993 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
20994 					media_info.dki_media_type = DK_JAZ;
20995 				}
20996 			}
20997 		} else {
20998 			/*
20999 			 * Not a CD, direct access or optical disk so return
21000 			 * unknown media
21001 			 */
21002 			media_info.dki_media_type = DK_UNKNOWN;
21003 		}
21004 	}
21005 
21006 	/* Now read the capacity so we can provide the lbasize and capacity */
21007 	switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
21008 	    SD_PATH_DIRECT)) {
21009 	case 0:
21010 		break;
21011 	case EACCES:
21012 		rval = EACCES;
21013 		goto done;
21014 	default:
21015 		rval = EIO;
21016 		goto done;
21017 	}
21018 
21019 	/*
21020 	 * If lun is expanded dynamically, update the un structure.
21021 	 */
21022 	mutex_enter(SD_MUTEX(un));
21023 	if ((un->un_f_blockcount_is_valid == TRUE) &&
21024 	    (un->un_f_tgt_blocksize_is_valid == TRUE) &&
21025 	    (capacity > un->un_blockcount)) {
21026 		sd_update_block_info(un, lbasize, capacity);
21027 	}
21028 	mutex_exit(SD_MUTEX(un));
21029 
21030 	media_info.dki_lbsize = lbasize;
21031 	media_capacity = capacity;
21032 
21033 	/*
21034 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
21035 	 * un->un_sys_blocksize chunks. So we need to convert it into
21036 	 * cap.lbasize chunks.
21037 	 */
21038 	media_capacity *= un->un_sys_blocksize;
21039 	media_capacity /= lbasize;
21040 	media_info.dki_capacity = media_capacity;
21041 
21042 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
21043 		rval = EFAULT;
21044 		/* Put goto. Anybody might add some code below in future */
21045 		goto done;
21046 	}
21047 done:
21048 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
21049 	kmem_free(rqbuf, SENSE_LENGTH);
21050 	return (rval);
21051 }
21052 
21053 
21054 /*
21055  *    Function: sd_check_media
21056  *
21057  * Description: This utility routine implements the functionality for the
21058  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
21059  *		driver state changes from that specified by the user
21060  *		(inserted or ejected). For example, if the user specifies
21061  *		DKIO_EJECTED and the current media state is inserted this
21062  *		routine will immediately return DKIO_INSERTED. However, if the
21063  *		current media state is not inserted the user thread will be
21064  *		blocked until the drive state changes. If DKIO_NONE is specified
21065  *		the user thread will block until a drive state change occurs.
21066  *
21067  *   Arguments: dev  - the device number
21068  *		state  - user pointer to a dkio_state, updated with the current
21069  *			drive state at return.
21070  *
21071  * Return Code: ENXIO
21072  *		EIO
21073  *		EAGAIN
21074  *		EINTR
21075  */
21076 
21077 static int
21078 sd_check_media(dev_t dev, enum dkio_state state)
21079 {
21080 	struct sd_lun		*un = NULL;
21081 	enum dkio_state		prev_state;
21082 	opaque_t		token = NULL;
21083 	int			rval = 0;
21084 
21085 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21086 		return (ENXIO);
21087 	}
21088 
21089 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
21090 
21091 	mutex_enter(SD_MUTEX(un));
21092 
21093 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
21094 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
21095 
21096 	prev_state = un->un_mediastate;
21097 
21098 	/* is there anything to do? */
21099 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
21100 		/*
21101 		 * submit the request to the scsi_watch service;
21102 		 * scsi_media_watch_cb() does the real work
21103 		 */
21104 		mutex_exit(SD_MUTEX(un));
21105 
21106 		/*
21107 		 * This change handles the case where a scsi watch request is
21108 		 * added to a device that is powered down. To accomplish this
21109 		 * we power up the device before adding the scsi watch request,
21110 		 * since the scsi watch sends a TUR directly to the device
21111 		 * which the device cannot handle if it is powered down.
21112 		 */
21113 		if (sd_pm_entry(un) != DDI_SUCCESS) {
21114 			mutex_enter(SD_MUTEX(un));
21115 			goto done;
21116 		}
21117 
21118 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
21119 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
21120 		    (caddr_t)dev);
21121 
21122 		sd_pm_exit(un);
21123 
21124 		mutex_enter(SD_MUTEX(un));
21125 		if (token == NULL) {
21126 			rval = EAGAIN;
21127 			goto done;
21128 		}
21129 
21130 		/*
21131 		 * This is a special case IOCTL that doesn't return
21132 		 * until the media state changes. Routine sdpower
21133 		 * knows about and handles this so don't count it
21134 		 * as an active cmd in the driver, which would
21135 		 * keep the device busy to the pm framework.
21136 		 * If the count isn't decremented the device can't
21137 		 * be powered down.
21138 		 */
21139 		un->un_ncmds_in_driver--;
21140 		ASSERT(un->un_ncmds_in_driver >= 0);
21141 
21142 		/*
21143 		 * if a prior request had been made, this will be the same
21144 		 * token, as scsi_watch was designed that way.
21145 		 */
21146 		un->un_swr_token = token;
21147 		un->un_specified_mediastate = state;
21148 
21149 		/*
21150 		 * now wait for media change
21151 		 * we will not be signalled unless mediastate == state but it is
21152 		 * still better to test for this condition, since there is a
21153 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
21154 		 */
21155 		SD_TRACE(SD_LOG_COMMON, un,
21156 		    "sd_check_media: waiting for media state change\n");
21157 		while (un->un_mediastate == state) {
21158 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
21159 				SD_TRACE(SD_LOG_COMMON, un,
21160 				    "sd_check_media: waiting for media state "
21161 				    "was interrupted\n");
21162 				un->un_ncmds_in_driver++;
21163 				rval = EINTR;
21164 				goto done;
21165 			}
21166 			SD_TRACE(SD_LOG_COMMON, un,
21167 			    "sd_check_media: received signal, state=%x\n",
21168 			    un->un_mediastate);
21169 		}
21170 		/*
21171 		 * Inc the counter to indicate the device once again
21172 		 * has an active outstanding cmd.
21173 		 */
21174 		un->un_ncmds_in_driver++;
21175 	}
21176 
21177 	/* invalidate geometry */
21178 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
21179 		sr_ejected(un);
21180 	}
21181 
21182 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
21183 		uint64_t	capacity;
21184 		uint_t		lbasize;
21185 
21186 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
21187 		mutex_exit(SD_MUTEX(un));
21188 		/*
21189 		 * Since the following routines use SD_PATH_DIRECT, we must
21190 		 * call PM directly before the upcoming disk accesses. This
21191 		 * may cause the disk to be power/spin up.
21192 		 */
21193 
21194 		if (sd_pm_entry(un) == DDI_SUCCESS) {
21195 			rval = sd_send_scsi_READ_CAPACITY(un,
21196 			    &capacity,
21197 			    &lbasize, SD_PATH_DIRECT);
21198 			if (rval != 0) {
21199 				sd_pm_exit(un);
21200 				mutex_enter(SD_MUTEX(un));
21201 				goto done;
21202 			}
21203 		} else {
21204 			rval = EIO;
21205 			mutex_enter(SD_MUTEX(un));
21206 			goto done;
21207 		}
21208 		mutex_enter(SD_MUTEX(un));
21209 
21210 		sd_update_block_info(un, lbasize, capacity);
21211 
21212 		/*
21213 		 *  Check if the media in the device is writable or not
21214 		 */
21215 		if (ISCD(un))
21216 			sd_check_for_writable_cd(un, SD_PATH_DIRECT);
21217 
21218 		mutex_exit(SD_MUTEX(un));
21219 		cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
21220 		if ((cmlb_validate(un->un_cmlbhandle, 0,
21221 		    (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) {
21222 			sd_set_pstats(un);
21223 			SD_TRACE(SD_LOG_IO_PARTITION, un,
21224 			    "sd_check_media: un:0x%p pstats created and "
21225 			    "set\n", un);
21226 		}
21227 
21228 		rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
21229 		    SD_PATH_DIRECT);
21230 		sd_pm_exit(un);
21231 
21232 		mutex_enter(SD_MUTEX(un));
21233 	}
21234 done:
21235 	un->un_f_watcht_stopped = FALSE;
21236 	if (un->un_swr_token) {
21237 		/*
21238 		 * Use of this local token and the mutex ensures that we avoid
21239 		 * some race conditions associated with terminating the
21240 		 * scsi watch.
21241 		 */
21242 		token = un->un_swr_token;
21243 		un->un_swr_token = (opaque_t)NULL;
21244 		mutex_exit(SD_MUTEX(un));
21245 		(void) scsi_watch_request_terminate(token,
21246 		    SCSI_WATCH_TERMINATE_WAIT);
21247 		mutex_enter(SD_MUTEX(un));
21248 	}
21249 
21250 	/*
21251 	 * Update the capacity kstat value, if no media previously
21252 	 * (capacity kstat is 0) and a media has been inserted
21253 	 * (un_f_blockcount_is_valid == TRUE)
21254 	 */
21255 	if (un->un_errstats) {
21256 		struct sd_errstats	*stp = NULL;
21257 
21258 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
21259 		if ((stp->sd_capacity.value.ui64 == 0) &&
21260 		    (un->un_f_blockcount_is_valid == TRUE)) {
21261 			stp->sd_capacity.value.ui64 =
21262 			    (uint64_t)((uint64_t)un->un_blockcount *
21263 			    un->un_sys_blocksize);
21264 		}
21265 	}
21266 	mutex_exit(SD_MUTEX(un));
21267 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
21268 	return (rval);
21269 }
21270 
21271 
21272 /*
21273  *    Function: sd_delayed_cv_broadcast
21274  *
21275  * Description: Delayed cv_broadcast to allow for target to recover from media
21276  *		insertion.
21277  *
21278  *   Arguments: arg - driver soft state (unit) structure
21279  */
21280 
21281 static void
21282 sd_delayed_cv_broadcast(void *arg)
21283 {
21284 	struct sd_lun *un = arg;
21285 
21286 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
21287 
21288 	mutex_enter(SD_MUTEX(un));
21289 	un->un_dcvb_timeid = NULL;
21290 	cv_broadcast(&un->un_state_cv);
21291 	mutex_exit(SD_MUTEX(un));
21292 }
21293 
21294 
21295 /*
21296  *    Function: sd_media_watch_cb
21297  *
21298  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
21299  *		routine processes the TUR sense data and updates the driver
21300  *		state if a transition has occurred. The user thread
21301  *		(sd_check_media) is then signalled.
21302  *
21303  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
21304  *			among multiple watches that share this callback function
21305  *		resultp - scsi watch facility result packet containing scsi
21306  *			  packet, status byte and sense data
21307  *
21308  * Return Code: 0 for success, -1 for failure
21309  */
21310 
21311 static int
21312 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
21313 {
21314 	struct sd_lun			*un;
21315 	struct scsi_status		*statusp = resultp->statusp;
21316 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
21317 	enum dkio_state			state = DKIO_NONE;
21318 	dev_t				dev = (dev_t)arg;
21319 	uchar_t				actual_sense_length;
21320 	uint8_t				skey, asc, ascq;
21321 
21322 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21323 		return (-1);
21324 	}
21325 	actual_sense_length = resultp->actual_sense_length;
21326 
21327 	mutex_enter(SD_MUTEX(un));
21328 	SD_TRACE(SD_LOG_COMMON, un,
21329 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
21330 	    *((char *)statusp), (void *)sensep, actual_sense_length);
21331 
21332 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
21333 		un->un_mediastate = DKIO_DEV_GONE;
21334 		cv_broadcast(&un->un_state_cv);
21335 		mutex_exit(SD_MUTEX(un));
21336 
21337 		return (0);
21338 	}
21339 
21340 	/*
21341 	 * If there was a check condition then sensep points to valid sense data
21342 	 * If status was not a check condition but a reservation or busy status
21343 	 * then the new state is DKIO_NONE
21344 	 */
21345 	if (sensep != NULL) {
21346 		skey = scsi_sense_key(sensep);
21347 		asc = scsi_sense_asc(sensep);
21348 		ascq = scsi_sense_ascq(sensep);
21349 
21350 		SD_INFO(SD_LOG_COMMON, un,
21351 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
21352 		    skey, asc, ascq);
21353 		/* This routine only uses up to 13 bytes of sense data. */
21354 		if (actual_sense_length >= 13) {
21355 			if (skey == KEY_UNIT_ATTENTION) {
21356 				if (asc == 0x28) {
21357 					state = DKIO_INSERTED;
21358 				}
21359 			} else if (skey == KEY_NOT_READY) {
21360 				/*
21361 				 * if 02/04/02  means that the host
21362 				 * should send start command. Explicitly
21363 				 * leave the media state as is
21364 				 * (inserted) as the media is inserted
21365 				 * and host has stopped device for PM
21366 				 * reasons. Upon next true read/write
21367 				 * to this media will bring the
21368 				 * device to the right state good for
21369 				 * media access.
21370 				 */
21371 				if (asc == 0x3a) {
21372 					state = DKIO_EJECTED;
21373 				} else {
21374 					/*
21375 					 * If the drive is busy with an
21376 					 * operation or long write, keep the
21377 					 * media in an inserted state.
21378 					 */
21379 
21380 					if ((asc == 0x04) &&
21381 					    ((ascq == 0x02) ||
21382 					    (ascq == 0x07) ||
21383 					    (ascq == 0x08))) {
21384 						state = DKIO_INSERTED;
21385 					}
21386 				}
21387 			} else if (skey == KEY_NO_SENSE) {
21388 				if ((asc == 0x00) && (ascq == 0x00)) {
21389 					/*
21390 					 * Sense Data 00/00/00 does not provide
21391 					 * any information about the state of
21392 					 * the media. Ignore it.
21393 					 */
21394 					mutex_exit(SD_MUTEX(un));
21395 					return (0);
21396 				}
21397 			}
21398 		}
21399 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
21400 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
21401 		state = DKIO_INSERTED;
21402 	}
21403 
21404 	SD_TRACE(SD_LOG_COMMON, un,
21405 	    "sd_media_watch_cb: state=%x, specified=%x\n",
21406 	    state, un->un_specified_mediastate);
21407 
21408 	/*
21409 	 * now signal the waiting thread if this is *not* the specified state;
21410 	 * delay the signal if the state is DKIO_INSERTED to allow the target
21411 	 * to recover
21412 	 */
21413 	if (state != un->un_specified_mediastate) {
21414 		un->un_mediastate = state;
21415 		if (state == DKIO_INSERTED) {
21416 			/*
21417 			 * delay the signal to give the drive a chance
21418 			 * to do what it apparently needs to do
21419 			 */
21420 			SD_TRACE(SD_LOG_COMMON, un,
21421 			    "sd_media_watch_cb: delayed cv_broadcast\n");
21422 			if (un->un_dcvb_timeid == NULL) {
21423 				un->un_dcvb_timeid =
21424 				    timeout(sd_delayed_cv_broadcast, un,
21425 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
21426 			}
21427 		} else {
21428 			SD_TRACE(SD_LOG_COMMON, un,
21429 			    "sd_media_watch_cb: immediate cv_broadcast\n");
21430 			cv_broadcast(&un->un_state_cv);
21431 		}
21432 	}
21433 	mutex_exit(SD_MUTEX(un));
21434 	return (0);
21435 }
21436 
21437 
21438 /*
21439  *    Function: sd_dkio_get_temp
21440  *
21441  * Description: This routine is the driver entry point for handling ioctl
21442  *		requests to get the disk temperature.
21443  *
21444  *   Arguments: dev  - the device number
21445  *		arg  - pointer to user provided dk_temperature structure.
21446  *		flag - this argument is a pass through to ddi_copyxxx()
21447  *		       directly from the mode argument of ioctl().
21448  *
21449  * Return Code: 0
21450  *		EFAULT
21451  *		ENXIO
21452  *		EAGAIN
21453  */
21454 
21455 static int
21456 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
21457 {
21458 	struct sd_lun		*un = NULL;
21459 	struct dk_temperature	*dktemp = NULL;
21460 	uchar_t			*temperature_page;
21461 	int			rval = 0;
21462 	int			path_flag = SD_PATH_STANDARD;
21463 
21464 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21465 		return (ENXIO);
21466 	}
21467 
21468 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
21469 
21470 	/* copyin the disk temp argument to get the user flags */
21471 	if (ddi_copyin((void *)arg, dktemp,
21472 	    sizeof (struct dk_temperature), flag) != 0) {
21473 		rval = EFAULT;
21474 		goto done;
21475 	}
21476 
21477 	/* Initialize the temperature to invalid. */
21478 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
21479 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
21480 
21481 	/*
21482 	 * Note: Investigate removing the "bypass pm" semantic.
21483 	 * Can we just bypass PM always?
21484 	 */
21485 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
21486 		path_flag = SD_PATH_DIRECT;
21487 		ASSERT(!mutex_owned(&un->un_pm_mutex));
21488 		mutex_enter(&un->un_pm_mutex);
21489 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
21490 			/*
21491 			 * If DKT_BYPASS_PM is set, and the drive happens to be
21492 			 * in low power mode, we can not wake it up, Need to
21493 			 * return EAGAIN.
21494 			 */
21495 			mutex_exit(&un->un_pm_mutex);
21496 			rval = EAGAIN;
21497 			goto done;
21498 		} else {
21499 			/*
21500 			 * Indicate to PM the device is busy. This is required
21501 			 * to avoid a race - i.e. the ioctl is issuing a
21502 			 * command and the pm framework brings down the device
21503 			 * to low power mode (possible power cut-off on some
21504 			 * platforms).
21505 			 */
21506 			mutex_exit(&un->un_pm_mutex);
21507 			if (sd_pm_entry(un) != DDI_SUCCESS) {
21508 				rval = EAGAIN;
21509 				goto done;
21510 			}
21511 		}
21512 	}
21513 
21514 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
21515 
21516 	if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page,
21517 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) {
21518 		goto done2;
21519 	}
21520 
21521 	/*
21522 	 * For the current temperature verify that the parameter length is 0x02
21523 	 * and the parameter code is 0x00
21524 	 */
21525 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
21526 	    (temperature_page[5] == 0x00)) {
21527 		if (temperature_page[9] == 0xFF) {
21528 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
21529 		} else {
21530 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
21531 		}
21532 	}
21533 
21534 	/*
21535 	 * For the reference temperature verify that the parameter
21536 	 * length is 0x02 and the parameter code is 0x01
21537 	 */
21538 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
21539 	    (temperature_page[11] == 0x01)) {
21540 		if (temperature_page[15] == 0xFF) {
21541 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
21542 		} else {
21543 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
21544 		}
21545 	}
21546 
21547 	/* Do the copyout regardless of the temperature commands status. */
21548 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
21549 	    flag) != 0) {
21550 		rval = EFAULT;
21551 	}
21552 
21553 done2:
21554 	if (path_flag == SD_PATH_DIRECT) {
21555 		sd_pm_exit(un);
21556 	}
21557 
21558 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
21559 done:
21560 	if (dktemp != NULL) {
21561 		kmem_free(dktemp, sizeof (struct dk_temperature));
21562 	}
21563 
21564 	return (rval);
21565 }
21566 
21567 
21568 /*
21569  *    Function: sd_log_page_supported
21570  *
21571  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
21572  *		supported log pages.
21573  *
21574  *   Arguments: un -
21575  *		log_page -
21576  *
21577  * Return Code: -1 - on error (log sense is optional and may not be supported).
21578  *		0  - log page not found.
21579  *  		1  - log page found.
21580  */
21581 
21582 static int
21583 sd_log_page_supported(struct sd_lun *un, int log_page)
21584 {
21585 	uchar_t *log_page_data;
21586 	int	i;
21587 	int	match = 0;
21588 	int	log_size;
21589 
21590 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
21591 
21592 	if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0,
21593 	    SD_PATH_DIRECT) != 0) {
21594 		SD_ERROR(SD_LOG_COMMON, un,
21595 		    "sd_log_page_supported: failed log page retrieval\n");
21596 		kmem_free(log_page_data, 0xFF);
21597 		return (-1);
21598 	}
21599 	log_size = log_page_data[3];
21600 
21601 	/*
21602 	 * The list of supported log pages start from the fourth byte. Check
21603 	 * until we run out of log pages or a match is found.
21604 	 */
21605 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
21606 		if (log_page_data[i] == log_page) {
21607 			match++;
21608 		}
21609 	}
21610 	kmem_free(log_page_data, 0xFF);
21611 	return (match);
21612 }
21613 
21614 
21615 /*
21616  *    Function: sd_mhdioc_failfast
21617  *
21618  * Description: This routine is the driver entry point for handling ioctl
21619  *		requests to enable/disable the multihost failfast option.
21620  *		(MHIOCENFAILFAST)
21621  *
21622  *   Arguments: dev	- the device number
21623  *		arg	- user specified probing interval.
21624  *		flag	- this argument is a pass through to ddi_copyxxx()
21625  *			  directly from the mode argument of ioctl().
21626  *
21627  * Return Code: 0
21628  *		EFAULT
21629  *		ENXIO
21630  */
21631 
21632 static int
21633 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
21634 {
21635 	struct sd_lun	*un = NULL;
21636 	int		mh_time;
21637 	int		rval = 0;
21638 
21639 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21640 		return (ENXIO);
21641 	}
21642 
21643 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
21644 		return (EFAULT);
21645 
21646 	if (mh_time) {
21647 		mutex_enter(SD_MUTEX(un));
21648 		un->un_resvd_status |= SD_FAILFAST;
21649 		mutex_exit(SD_MUTEX(un));
21650 		/*
21651 		 * If mh_time is INT_MAX, then this ioctl is being used for
21652 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
21653 		 */
21654 		if (mh_time != INT_MAX) {
21655 			rval = sd_check_mhd(dev, mh_time);
21656 		}
21657 	} else {
21658 		(void) sd_check_mhd(dev, 0);
21659 		mutex_enter(SD_MUTEX(un));
21660 		un->un_resvd_status &= ~SD_FAILFAST;
21661 		mutex_exit(SD_MUTEX(un));
21662 	}
21663 	return (rval);
21664 }
21665 
21666 
21667 /*
21668  *    Function: sd_mhdioc_takeown
21669  *
21670  * Description: This routine is the driver entry point for handling ioctl
21671  *		requests to forcefully acquire exclusive access rights to the
21672  *		multihost disk (MHIOCTKOWN).
21673  *
21674  *   Arguments: dev	- the device number
21675  *		arg	- user provided structure specifying the delay
21676  *			  parameters in milliseconds
21677  *		flag	- this argument is a pass through to ddi_copyxxx()
21678  *			  directly from the mode argument of ioctl().
21679  *
21680  * Return Code: 0
21681  *		EFAULT
21682  *		ENXIO
21683  */
21684 
21685 static int
21686 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
21687 {
21688 	struct sd_lun		*un = NULL;
21689 	struct mhioctkown	*tkown = NULL;
21690 	int			rval = 0;
21691 
21692 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21693 		return (ENXIO);
21694 	}
21695 
21696 	if (arg != NULL) {
21697 		tkown = (struct mhioctkown *)
21698 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
21699 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
21700 		if (rval != 0) {
21701 			rval = EFAULT;
21702 			goto error;
21703 		}
21704 	}
21705 
21706 	rval = sd_take_ownership(dev, tkown);
21707 	mutex_enter(SD_MUTEX(un));
21708 	if (rval == 0) {
21709 		un->un_resvd_status |= SD_RESERVE;
21710 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
21711 			sd_reinstate_resv_delay =
21712 			    tkown->reinstate_resv_delay * 1000;
21713 		} else {
21714 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
21715 		}
21716 		/*
21717 		 * Give the scsi_watch routine interval set by
21718 		 * the MHIOCENFAILFAST ioctl precedence here.
21719 		 */
21720 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
21721 			mutex_exit(SD_MUTEX(un));
21722 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
21723 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
21724 			    "sd_mhdioc_takeown : %d\n",
21725 			    sd_reinstate_resv_delay);
21726 		} else {
21727 			mutex_exit(SD_MUTEX(un));
21728 		}
21729 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
21730 		    sd_mhd_reset_notify_cb, (caddr_t)un);
21731 	} else {
21732 		un->un_resvd_status &= ~SD_RESERVE;
21733 		mutex_exit(SD_MUTEX(un));
21734 	}
21735 
21736 error:
21737 	if (tkown != NULL) {
21738 		kmem_free(tkown, sizeof (struct mhioctkown));
21739 	}
21740 	return (rval);
21741 }
21742 
21743 
21744 /*
21745  *    Function: sd_mhdioc_release
21746  *
21747  * Description: This routine is the driver entry point for handling ioctl
21748  *		requests to release exclusive access rights to the multihost
21749  *		disk (MHIOCRELEASE).
21750  *
21751  *   Arguments: dev	- the device number
21752  *
21753  * Return Code: 0
21754  *		ENXIO
21755  */
21756 
21757 static int
21758 sd_mhdioc_release(dev_t dev)
21759 {
21760 	struct sd_lun		*un = NULL;
21761 	timeout_id_t		resvd_timeid_save;
21762 	int			resvd_status_save;
21763 	int			rval = 0;
21764 
21765 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21766 		return (ENXIO);
21767 	}
21768 
21769 	mutex_enter(SD_MUTEX(un));
21770 	resvd_status_save = un->un_resvd_status;
21771 	un->un_resvd_status &=
21772 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
21773 	if (un->un_resvd_timeid) {
21774 		resvd_timeid_save = un->un_resvd_timeid;
21775 		un->un_resvd_timeid = NULL;
21776 		mutex_exit(SD_MUTEX(un));
21777 		(void) untimeout(resvd_timeid_save);
21778 	} else {
21779 		mutex_exit(SD_MUTEX(un));
21780 	}
21781 
21782 	/*
21783 	 * destroy any pending timeout thread that may be attempting to
21784 	 * reinstate reservation on this device.
21785 	 */
21786 	sd_rmv_resv_reclaim_req(dev);
21787 
21788 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
21789 		mutex_enter(SD_MUTEX(un));
21790 		if ((un->un_mhd_token) &&
21791 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
21792 			mutex_exit(SD_MUTEX(un));
21793 			(void) sd_check_mhd(dev, 0);
21794 		} else {
21795 			mutex_exit(SD_MUTEX(un));
21796 		}
21797 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
21798 		    sd_mhd_reset_notify_cb, (caddr_t)un);
21799 	} else {
21800 		/*
21801 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
21802 		 */
21803 		mutex_enter(SD_MUTEX(un));
21804 		un->un_resvd_status = resvd_status_save;
21805 		mutex_exit(SD_MUTEX(un));
21806 	}
21807 	return (rval);
21808 }
21809 
21810 
21811 /*
21812  *    Function: sd_mhdioc_register_devid
21813  *
21814  * Description: This routine is the driver entry point for handling ioctl
21815  *		requests to register the device id (MHIOCREREGISTERDEVID).
21816  *
21817  *		Note: The implementation for this ioctl has been updated to
21818  *		be consistent with the original PSARC case (1999/357)
21819  *		(4375899, 4241671, 4220005)
21820  *
21821  *   Arguments: dev	- the device number
21822  *
21823  * Return Code: 0
21824  *		ENXIO
21825  */
21826 
21827 static int
21828 sd_mhdioc_register_devid(dev_t dev)
21829 {
21830 	struct sd_lun	*un = NULL;
21831 	int		rval = 0;
21832 
21833 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21834 		return (ENXIO);
21835 	}
21836 
21837 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21838 
21839 	mutex_enter(SD_MUTEX(un));
21840 
21841 	/* If a devid already exists, de-register it */
21842 	if (un->un_devid != NULL) {
21843 		ddi_devid_unregister(SD_DEVINFO(un));
21844 		/*
21845 		 * After unregister devid, needs to free devid memory
21846 		 */
21847 		ddi_devid_free(un->un_devid);
21848 		un->un_devid = NULL;
21849 	}
21850 
21851 	/* Check for reservation conflict */
21852 	mutex_exit(SD_MUTEX(un));
21853 	rval = sd_send_scsi_TEST_UNIT_READY(un, 0);
21854 	mutex_enter(SD_MUTEX(un));
21855 
21856 	switch (rval) {
21857 	case 0:
21858 		sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
21859 		break;
21860 	case EACCES:
21861 		break;
21862 	default:
21863 		rval = EIO;
21864 	}
21865 
21866 	mutex_exit(SD_MUTEX(un));
21867 	return (rval);
21868 }
21869 
21870 
21871 /*
21872  *    Function: sd_mhdioc_inkeys
21873  *
21874  * Description: This routine is the driver entry point for handling ioctl
21875  *		requests to issue the SCSI-3 Persistent In Read Keys command
21876  *		to the device (MHIOCGRP_INKEYS).
21877  *
21878  *   Arguments: dev	- the device number
21879  *		arg	- user provided in_keys structure
21880  *		flag	- this argument is a pass through to ddi_copyxxx()
21881  *			  directly from the mode argument of ioctl().
21882  *
21883  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
21884  *		ENXIO
21885  *		EFAULT
21886  */
21887 
21888 static int
21889 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
21890 {
21891 	struct sd_lun		*un;
21892 	mhioc_inkeys_t		inkeys;
21893 	int			rval = 0;
21894 
21895 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21896 		return (ENXIO);
21897 	}
21898 
21899 #ifdef _MULTI_DATAMODEL
21900 	switch (ddi_model_convert_from(flag & FMODELS)) {
21901 	case DDI_MODEL_ILP32: {
21902 		struct mhioc_inkeys32	inkeys32;
21903 
21904 		if (ddi_copyin(arg, &inkeys32,
21905 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
21906 			return (EFAULT);
21907 		}
21908 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
21909 		if ((rval = sd_persistent_reservation_in_read_keys(un,
21910 		    &inkeys, flag)) != 0) {
21911 			return (rval);
21912 		}
21913 		inkeys32.generation = inkeys.generation;
21914 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
21915 		    flag) != 0) {
21916 			return (EFAULT);
21917 		}
21918 		break;
21919 	}
21920 	case DDI_MODEL_NONE:
21921 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
21922 		    flag) != 0) {
21923 			return (EFAULT);
21924 		}
21925 		if ((rval = sd_persistent_reservation_in_read_keys(un,
21926 		    &inkeys, flag)) != 0) {
21927 			return (rval);
21928 		}
21929 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
21930 		    flag) != 0) {
21931 			return (EFAULT);
21932 		}
21933 		break;
21934 	}
21935 
21936 #else /* ! _MULTI_DATAMODEL */
21937 
21938 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
21939 		return (EFAULT);
21940 	}
21941 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
21942 	if (rval != 0) {
21943 		return (rval);
21944 	}
21945 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
21946 		return (EFAULT);
21947 	}
21948 
21949 #endif /* _MULTI_DATAMODEL */
21950 
21951 	return (rval);
21952 }
21953 
21954 
21955 /*
21956  *    Function: sd_mhdioc_inresv
21957  *
21958  * Description: This routine is the driver entry point for handling ioctl
21959  *		requests to issue the SCSI-3 Persistent In Read Reservations
21960  *		command to the device (MHIOCGRP_INKEYS).
21961  *
21962  *   Arguments: dev	- the device number
21963  *		arg	- user provided in_resv structure
21964  *		flag	- this argument is a pass through to ddi_copyxxx()
21965  *			  directly from the mode argument of ioctl().
21966  *
21967  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
21968  *		ENXIO
21969  *		EFAULT
21970  */
21971 
21972 static int
21973 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
21974 {
21975 	struct sd_lun		*un;
21976 	mhioc_inresvs_t		inresvs;
21977 	int			rval = 0;
21978 
21979 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21980 		return (ENXIO);
21981 	}
21982 
21983 #ifdef _MULTI_DATAMODEL
21984 
21985 	switch (ddi_model_convert_from(flag & FMODELS)) {
21986 	case DDI_MODEL_ILP32: {
21987 		struct mhioc_inresvs32	inresvs32;
21988 
21989 		if (ddi_copyin(arg, &inresvs32,
21990 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
21991 			return (EFAULT);
21992 		}
21993 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
21994 		if ((rval = sd_persistent_reservation_in_read_resv(un,
21995 		    &inresvs, flag)) != 0) {
21996 			return (rval);
21997 		}
21998 		inresvs32.generation = inresvs.generation;
21999 		if (ddi_copyout(&inresvs32, arg,
22000 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
22001 			return (EFAULT);
22002 		}
22003 		break;
22004 	}
22005 	case DDI_MODEL_NONE:
22006 		if (ddi_copyin(arg, &inresvs,
22007 		    sizeof (mhioc_inresvs_t), flag) != 0) {
22008 			return (EFAULT);
22009 		}
22010 		if ((rval = sd_persistent_reservation_in_read_resv(un,
22011 		    &inresvs, flag)) != 0) {
22012 			return (rval);
22013 		}
22014 		if (ddi_copyout(&inresvs, arg,
22015 		    sizeof (mhioc_inresvs_t), flag) != 0) {
22016 			return (EFAULT);
22017 		}
22018 		break;
22019 	}
22020 
22021 #else /* ! _MULTI_DATAMODEL */
22022 
22023 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
22024 		return (EFAULT);
22025 	}
22026 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
22027 	if (rval != 0) {
22028 		return (rval);
22029 	}
22030 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
22031 		return (EFAULT);
22032 	}
22033 
22034 #endif /* ! _MULTI_DATAMODEL */
22035 
22036 	return (rval);
22037 }
22038 
22039 
22040 /*
22041  * The following routines support the clustering functionality described below
22042  * and implement lost reservation reclaim functionality.
22043  *
22044  * Clustering
22045  * ----------
22046  * The clustering code uses two different, independent forms of SCSI
22047  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
22048  * Persistent Group Reservations. For any particular disk, it will use either
22049  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
22050  *
22051  * SCSI-2
22052  * The cluster software takes ownership of a multi-hosted disk by issuing the
22053  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
22054  * MHIOCRELEASE ioctl.  Closely related is the MHIOCENFAILFAST ioctl -- a
22055  * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl
22056  * then issues the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the
22057  * driver. The meaning of failfast is that if the driver (on this host) ever
22058  * encounters the scsi error return code RESERVATION_CONFLICT from the device,
22059  * it should immediately panic the host. The motivation for this ioctl is that
22060  * if this host does encounter reservation conflict, the underlying cause is
22061  * that some other host of the cluster has decided that this host is no longer
22062  * in the cluster and has seized control of the disks for itself. Since this
22063  * host is no longer in the cluster, it ought to panic itself. The
22064  * MHIOCENFAILFAST ioctl does two things:
22065  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
22066  *      error to panic the host
22067  *      (b) it sets up a periodic timer to test whether this host still has
22068  *      "access" (in that no other host has reserved the device):  if the
22069  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
22070  *      purpose of that periodic timer is to handle scenarios where the host is
22071  *      otherwise temporarily quiescent, temporarily doing no real i/o.
22072  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
22073  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
22074  * the device itself.
22075  *
22076  * SCSI-3 PGR
22077  * A direct semantic implementation of the SCSI-3 Persistent Reservation
22078  * facility is supported through the shared multihost disk ioctls
22079  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
22080  * MHIOCGRP_PREEMPTANDABORT)
22081  *
22082  * Reservation Reclaim:
22083  * --------------------
22084  * To support the lost reservation reclaim operations this driver creates a
22085  * single thread to handle reinstating reservations on all devices that have
22086  * lost reservations sd_resv_reclaim_requests are logged for all devices that
22087  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
22088  * and the reservation reclaim thread loops through the requests to regain the
22089  * lost reservations.
22090  */
22091 
22092 /*
22093  *    Function: sd_check_mhd()
22094  *
22095  * Description: This function sets up and submits a scsi watch request or
22096  *		terminates an existing watch request. This routine is used in
22097  *		support of reservation reclaim.
22098  *
22099  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
22100  *			 among multiple watches that share the callback function
22101  *		interval - the number of microseconds specifying the watch
22102  *			   interval for issuing TEST UNIT READY commands. If
22103  *			   set to 0 the watch should be terminated. If the
22104  *			   interval is set to 0 and if the device is required
22105  *			   to hold reservation while disabling failfast, the
22106  *			   watch is restarted with an interval of
22107  *			   reinstate_resv_delay.
22108  *
22109  * Return Code: 0	   - Successful submit/terminate of scsi watch request
22110  *		ENXIO      - Indicates an invalid device was specified
22111  *		EAGAIN     - Unable to submit the scsi watch request
22112  */
22113 
22114 static int
22115 sd_check_mhd(dev_t dev, int interval)
22116 {
22117 	struct sd_lun	*un;
22118 	opaque_t	token;
22119 
22120 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22121 		return (ENXIO);
22122 	}
22123 
22124 	/* is this a watch termination request? */
22125 	if (interval == 0) {
22126 		mutex_enter(SD_MUTEX(un));
22127 		/* if there is an existing watch task then terminate it */
22128 		if (un->un_mhd_token) {
22129 			token = un->un_mhd_token;
22130 			un->un_mhd_token = NULL;
22131 			mutex_exit(SD_MUTEX(un));
22132 			(void) scsi_watch_request_terminate(token,
22133 			    SCSI_WATCH_TERMINATE_WAIT);
22134 			mutex_enter(SD_MUTEX(un));
22135 		} else {
22136 			mutex_exit(SD_MUTEX(un));
22137 			/*
22138 			 * Note: If we return here we don't check for the
22139 			 * failfast case. This is the original legacy
22140 			 * implementation but perhaps we should be checking
22141 			 * the failfast case.
22142 			 */
22143 			return (0);
22144 		}
22145 		/*
22146 		 * If the device is required to hold reservation while
22147 		 * disabling failfast, we need to restart the scsi_watch
22148 		 * routine with an interval of reinstate_resv_delay.
22149 		 */
22150 		if (un->un_resvd_status & SD_RESERVE) {
22151 			interval = sd_reinstate_resv_delay/1000;
22152 		} else {
22153 			/* no failfast so bail */
22154 			mutex_exit(SD_MUTEX(un));
22155 			return (0);
22156 		}
22157 		mutex_exit(SD_MUTEX(un));
22158 	}
22159 
22160 	/*
22161 	 * adjust minimum time interval to 1 second,
22162 	 * and convert from msecs to usecs
22163 	 */
22164 	if (interval > 0 && interval < 1000) {
22165 		interval = 1000;
22166 	}
22167 	interval *= 1000;
22168 
22169 	/*
22170 	 * submit the request to the scsi_watch service
22171 	 */
22172 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
22173 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
22174 	if (token == NULL) {
22175 		return (EAGAIN);
22176 	}
22177 
22178 	/*
22179 	 * save token for termination later on
22180 	 */
22181 	mutex_enter(SD_MUTEX(un));
22182 	un->un_mhd_token = token;
22183 	mutex_exit(SD_MUTEX(un));
22184 	return (0);
22185 }
22186 
22187 
22188 /*
22189  *    Function: sd_mhd_watch_cb()
22190  *
22191  * Description: This function is the call back function used by the scsi watch
22192  *		facility. The scsi watch facility sends the "Test Unit Ready"
22193  *		and processes the status. If applicable (i.e. a "Unit Attention"
22194  *		status and automatic "Request Sense" not used) the scsi watch
22195  *		facility will send a "Request Sense" and retrieve the sense data
22196  *		to be passed to this callback function. In either case the
22197  *		automatic "Request Sense" or the facility submitting one, this
22198  *		callback is passed the status and sense data.
22199  *
22200  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
22201  *			among multiple watches that share this callback function
22202  *		resultp - scsi watch facility result packet containing scsi
22203  *			  packet, status byte and sense data
22204  *
22205  * Return Code: 0 - continue the watch task
22206  *		non-zero - terminate the watch task
22207  */
22208 
22209 static int
22210 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
22211 {
22212 	struct sd_lun			*un;
22213 	struct scsi_status		*statusp;
22214 	uint8_t				*sensep;
22215 	struct scsi_pkt			*pkt;
22216 	uchar_t				actual_sense_length;
22217 	dev_t  				dev = (dev_t)arg;
22218 
22219 	ASSERT(resultp != NULL);
22220 	statusp			= resultp->statusp;
22221 	sensep			= (uint8_t *)resultp->sensep;
22222 	pkt			= resultp->pkt;
22223 	actual_sense_length	= resultp->actual_sense_length;
22224 
22225 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22226 		return (ENXIO);
22227 	}
22228 
22229 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
22230 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
22231 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
22232 
22233 	/* Begin processing of the status and/or sense data */
22234 	if (pkt->pkt_reason != CMD_CMPLT) {
22235 		/* Handle the incomplete packet */
22236 		sd_mhd_watch_incomplete(un, pkt);
22237 		return (0);
22238 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
22239 		if (*((unsigned char *)statusp)
22240 		    == STATUS_RESERVATION_CONFLICT) {
22241 			/*
22242 			 * Handle a reservation conflict by panicking if
22243 			 * configured for failfast or by logging the conflict
22244 			 * and updating the reservation status
22245 			 */
22246 			mutex_enter(SD_MUTEX(un));
22247 			if ((un->un_resvd_status & SD_FAILFAST) &&
22248 			    (sd_failfast_enable)) {
22249 				sd_panic_for_res_conflict(un);
22250 				/*NOTREACHED*/
22251 			}
22252 			SD_INFO(SD_LOG_IOCTL_MHD, un,
22253 			    "sd_mhd_watch_cb: Reservation Conflict\n");
22254 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
22255 			mutex_exit(SD_MUTEX(un));
22256 		}
22257 	}
22258 
22259 	if (sensep != NULL) {
22260 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
22261 			mutex_enter(SD_MUTEX(un));
22262 			if ((scsi_sense_asc(sensep) ==
22263 			    SD_SCSI_RESET_SENSE_CODE) &&
22264 			    (un->un_resvd_status & SD_RESERVE)) {
22265 				/*
22266 				 * The additional sense code indicates a power
22267 				 * on or bus device reset has occurred; update
22268 				 * the reservation status.
22269 				 */
22270 				un->un_resvd_status |=
22271 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
22272 				SD_INFO(SD_LOG_IOCTL_MHD, un,
22273 				    "sd_mhd_watch_cb: Lost Reservation\n");
22274 			}
22275 		} else {
22276 			return (0);
22277 		}
22278 	} else {
22279 		mutex_enter(SD_MUTEX(un));
22280 	}
22281 
22282 	if ((un->un_resvd_status & SD_RESERVE) &&
22283 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
22284 		if (un->un_resvd_status & SD_WANT_RESERVE) {
22285 			/*
22286 			 * A reset occurred in between the last probe and this
22287 			 * one so if a timeout is pending cancel it.
22288 			 */
22289 			if (un->un_resvd_timeid) {
22290 				timeout_id_t temp_id = un->un_resvd_timeid;
22291 				un->un_resvd_timeid = NULL;
22292 				mutex_exit(SD_MUTEX(un));
22293 				(void) untimeout(temp_id);
22294 				mutex_enter(SD_MUTEX(un));
22295 			}
22296 			un->un_resvd_status &= ~SD_WANT_RESERVE;
22297 		}
22298 		if (un->un_resvd_timeid == 0) {
22299 			/* Schedule a timeout to handle the lost reservation */
22300 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
22301 			    (void *)dev,
22302 			    drv_usectohz(sd_reinstate_resv_delay));
22303 		}
22304 	}
22305 	mutex_exit(SD_MUTEX(un));
22306 	return (0);
22307 }
22308 
22309 
22310 /*
22311  *    Function: sd_mhd_watch_incomplete()
22312  *
22313  * Description: This function is used to find out why a scsi pkt sent by the
22314  *		scsi watch facility was not completed. Under some scenarios this
22315  *		routine will return. Otherwise it will send a bus reset to see
22316  *		if the drive is still online.
22317  *
22318  *   Arguments: un  - driver soft state (unit) structure
22319  *		pkt - incomplete scsi pkt
22320  */
22321 
22322 static void
22323 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
22324 {
22325 	int	be_chatty;
22326 	int	perr;
22327 
22328 	ASSERT(pkt != NULL);
22329 	ASSERT(un != NULL);
22330 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
22331 	perr		= (pkt->pkt_statistics & STAT_PERR);
22332 
22333 	mutex_enter(SD_MUTEX(un));
22334 	if (un->un_state == SD_STATE_DUMPING) {
22335 		mutex_exit(SD_MUTEX(un));
22336 		return;
22337 	}
22338 
22339 	switch (pkt->pkt_reason) {
22340 	case CMD_UNX_BUS_FREE:
22341 		/*
22342 		 * If we had a parity error that caused the target to drop BSY*,
22343 		 * don't be chatty about it.
22344 		 */
22345 		if (perr && be_chatty) {
22346 			be_chatty = 0;
22347 		}
22348 		break;
22349 	case CMD_TAG_REJECT:
22350 		/*
22351 		 * The SCSI-2 spec states that a tag reject will be sent by the
22352 		 * target if tagged queuing is not supported. A tag reject may
22353 		 * also be sent during certain initialization periods or to
22354 		 * control internal resources. For the latter case the target
22355 		 * may also return Queue Full.
22356 		 *
22357 		 * If this driver receives a tag reject from a target that is
22358 		 * going through an init period or controlling internal
22359 		 * resources tagged queuing will be disabled. This is a less
22360 		 * than optimal behavior but the driver is unable to determine
22361 		 * the target state and assumes tagged queueing is not supported
22362 		 */
22363 		pkt->pkt_flags = 0;
22364 		un->un_tagflags = 0;
22365 
22366 		if (un->un_f_opt_queueing == TRUE) {
22367 			un->un_throttle = min(un->un_throttle, 3);
22368 		} else {
22369 			un->un_throttle = 1;
22370 		}
22371 		mutex_exit(SD_MUTEX(un));
22372 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
22373 		mutex_enter(SD_MUTEX(un));
22374 		break;
22375 	case CMD_INCOMPLETE:
22376 		/*
22377 		 * The transport stopped with an abnormal state, fallthrough and
22378 		 * reset the target and/or bus unless selection did not complete
22379 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
22380 		 * go through a target/bus reset
22381 		 */
22382 		if (pkt->pkt_state == STATE_GOT_BUS) {
22383 			break;
22384 		}
22385 		/*FALLTHROUGH*/
22386 
22387 	case CMD_TIMEOUT:
22388 	default:
22389 		/*
22390 		 * The lun may still be running the command, so a lun reset
22391 		 * should be attempted. If the lun reset fails or cannot be
22392 		 * issued, than try a target reset. Lastly try a bus reset.
22393 		 */
22394 		if ((pkt->pkt_statistics &
22395 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
22396 			int reset_retval = 0;
22397 			mutex_exit(SD_MUTEX(un));
22398 			if (un->un_f_allow_bus_device_reset == TRUE) {
22399 				if (un->un_f_lun_reset_enabled == TRUE) {
22400 					reset_retval =
22401 					    scsi_reset(SD_ADDRESS(un),
22402 					    RESET_LUN);
22403 				}
22404 				if (reset_retval == 0) {
22405 					reset_retval =
22406 					    scsi_reset(SD_ADDRESS(un),
22407 					    RESET_TARGET);
22408 				}
22409 			}
22410 			if (reset_retval == 0) {
22411 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
22412 			}
22413 			mutex_enter(SD_MUTEX(un));
22414 		}
22415 		break;
22416 	}
22417 
22418 	/* A device/bus reset has occurred; update the reservation status. */
22419 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
22420 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
22421 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
22422 			un->un_resvd_status |=
22423 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
22424 			SD_INFO(SD_LOG_IOCTL_MHD, un,
22425 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
22426 		}
22427 	}
22428 
22429 	/*
22430 	 * The disk has been turned off; Update the device state.
22431 	 *
22432 	 * Note: Should we be offlining the disk here?
22433 	 */
22434 	if (pkt->pkt_state == STATE_GOT_BUS) {
22435 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
22436 		    "Disk not responding to selection\n");
22437 		if (un->un_state != SD_STATE_OFFLINE) {
22438 			New_state(un, SD_STATE_OFFLINE);
22439 		}
22440 	} else if (be_chatty) {
22441 		/*
22442 		 * suppress messages if they are all the same pkt reason;
22443 		 * with TQ, many (up to 256) are returned with the same
22444 		 * pkt_reason
22445 		 */
22446 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
22447 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
22448 			    "sd_mhd_watch_incomplete: "
22449 			    "SCSI transport failed: reason '%s'\n",
22450 			    scsi_rname(pkt->pkt_reason));
22451 		}
22452 	}
22453 	un->un_last_pkt_reason = pkt->pkt_reason;
22454 	mutex_exit(SD_MUTEX(un));
22455 }
22456 
22457 
22458 /*
22459  *    Function: sd_sname()
22460  *
22461  * Description: This is a simple little routine to return a string containing
22462  *		a printable description of command status byte for use in
22463  *		logging.
22464  *
22465  *   Arguments: status - pointer to a status byte
22466  *
22467  * Return Code: char * - string containing status description.
22468  */
22469 
22470 static char *
22471 sd_sname(uchar_t status)
22472 {
22473 	switch (status & STATUS_MASK) {
22474 	case STATUS_GOOD:
22475 		return ("good status");
22476 	case STATUS_CHECK:
22477 		return ("check condition");
22478 	case STATUS_MET:
22479 		return ("condition met");
22480 	case STATUS_BUSY:
22481 		return ("busy");
22482 	case STATUS_INTERMEDIATE:
22483 		return ("intermediate");
22484 	case STATUS_INTERMEDIATE_MET:
22485 		return ("intermediate - condition met");
22486 	case STATUS_RESERVATION_CONFLICT:
22487 		return ("reservation_conflict");
22488 	case STATUS_TERMINATED:
22489 		return ("command terminated");
22490 	case STATUS_QFULL:
22491 		return ("queue full");
22492 	default:
22493 		return ("<unknown status>");
22494 	}
22495 }
22496 
22497 
22498 /*
22499  *    Function: sd_mhd_resvd_recover()
22500  *
22501  * Description: This function adds a reservation entry to the
22502  *		sd_resv_reclaim_request list and signals the reservation
22503  *		reclaim thread that there is work pending. If the reservation
22504  *		reclaim thread has not been previously created this function
22505  *		will kick it off.
22506  *
22507  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
22508  *			among multiple watches that share this callback function
22509  *
22510  *     Context: This routine is called by timeout() and is run in interrupt
22511  *		context. It must not sleep or call other functions which may
22512  *		sleep.
22513  */
22514 
22515 static void
22516 sd_mhd_resvd_recover(void *arg)
22517 {
22518 	dev_t			dev = (dev_t)arg;
22519 	struct sd_lun		*un;
22520 	struct sd_thr_request	*sd_treq = NULL;
22521 	struct sd_thr_request	*sd_cur = NULL;
22522 	struct sd_thr_request	*sd_prev = NULL;
22523 	int			already_there = 0;
22524 
22525 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22526 		return;
22527 	}
22528 
22529 	mutex_enter(SD_MUTEX(un));
22530 	un->un_resvd_timeid = NULL;
22531 	if (un->un_resvd_status & SD_WANT_RESERVE) {
22532 		/*
22533 		 * There was a reset so don't issue the reserve, allow the
22534 		 * sd_mhd_watch_cb callback function to notice this and
22535 		 * reschedule the timeout for reservation.
22536 		 */
22537 		mutex_exit(SD_MUTEX(un));
22538 		return;
22539 	}
22540 	mutex_exit(SD_MUTEX(un));
22541 
22542 	/*
22543 	 * Add this device to the sd_resv_reclaim_request list and the
22544 	 * sd_resv_reclaim_thread should take care of the rest.
22545 	 *
22546 	 * Note: We can't sleep in this context so if the memory allocation
22547 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
22548 	 * reschedule the timeout for reservation.  (4378460)
22549 	 */
22550 	sd_treq = (struct sd_thr_request *)
22551 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
22552 	if (sd_treq == NULL) {
22553 		return;
22554 	}
22555 
22556 	sd_treq->sd_thr_req_next = NULL;
22557 	sd_treq->dev = dev;
22558 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22559 	if (sd_tr.srq_thr_req_head == NULL) {
22560 		sd_tr.srq_thr_req_head = sd_treq;
22561 	} else {
22562 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
22563 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
22564 			if (sd_cur->dev == dev) {
22565 				/*
22566 				 * already in Queue so don't log
22567 				 * another request for the device
22568 				 */
22569 				already_there = 1;
22570 				break;
22571 			}
22572 			sd_prev = sd_cur;
22573 		}
22574 		if (!already_there) {
22575 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
22576 			    "logging request for %lx\n", dev);
22577 			sd_prev->sd_thr_req_next = sd_treq;
22578 		} else {
22579 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
22580 		}
22581 	}
22582 
22583 	/*
22584 	 * Create a kernel thread to do the reservation reclaim and free up this
22585 	 * thread. We cannot block this thread while we go away to do the
22586 	 * reservation reclaim
22587 	 */
22588 	if (sd_tr.srq_resv_reclaim_thread == NULL)
22589 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
22590 		    sd_resv_reclaim_thread, NULL,
22591 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
22592 
22593 	/* Tell the reservation reclaim thread that it has work to do */
22594 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
22595 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22596 }
22597 
22598 /*
22599  *    Function: sd_resv_reclaim_thread()
22600  *
22601  * Description: This function implements the reservation reclaim operations
22602  *
22603  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
22604  *		      among multiple watches that share this callback function
22605  */
22606 
22607 static void
22608 sd_resv_reclaim_thread()
22609 {
22610 	struct sd_lun		*un;
22611 	struct sd_thr_request	*sd_mhreq;
22612 
22613 	/* Wait for work */
22614 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22615 	if (sd_tr.srq_thr_req_head == NULL) {
22616 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
22617 		    &sd_tr.srq_resv_reclaim_mutex);
22618 	}
22619 
22620 	/* Loop while we have work */
22621 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
22622 		un = ddi_get_soft_state(sd_state,
22623 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
22624 		if (un == NULL) {
22625 			/*
22626 			 * softstate structure is NULL so just
22627 			 * dequeue the request and continue
22628 			 */
22629 			sd_tr.srq_thr_req_head =
22630 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
22631 			kmem_free(sd_tr.srq_thr_cur_req,
22632 			    sizeof (struct sd_thr_request));
22633 			continue;
22634 		}
22635 
22636 		/* dequeue the request */
22637 		sd_mhreq = sd_tr.srq_thr_cur_req;
22638 		sd_tr.srq_thr_req_head =
22639 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
22640 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22641 
22642 		/*
22643 		 * Reclaim reservation only if SD_RESERVE is still set. There
22644 		 * may have been a call to MHIOCRELEASE before we got here.
22645 		 */
22646 		mutex_enter(SD_MUTEX(un));
22647 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
22648 			/*
22649 			 * Note: The SD_LOST_RESERVE flag is cleared before
22650 			 * reclaiming the reservation. If this is done after the
22651 			 * call to sd_reserve_release a reservation loss in the
22652 			 * window between pkt completion of reserve cmd and
22653 			 * mutex_enter below may not be recognized
22654 			 */
22655 			un->un_resvd_status &= ~SD_LOST_RESERVE;
22656 			mutex_exit(SD_MUTEX(un));
22657 
22658 			if (sd_reserve_release(sd_mhreq->dev,
22659 			    SD_RESERVE) == 0) {
22660 				mutex_enter(SD_MUTEX(un));
22661 				un->un_resvd_status |= SD_RESERVE;
22662 				mutex_exit(SD_MUTEX(un));
22663 				SD_INFO(SD_LOG_IOCTL_MHD, un,
22664 				    "sd_resv_reclaim_thread: "
22665 				    "Reservation Recovered\n");
22666 			} else {
22667 				mutex_enter(SD_MUTEX(un));
22668 				un->un_resvd_status |= SD_LOST_RESERVE;
22669 				mutex_exit(SD_MUTEX(un));
22670 				SD_INFO(SD_LOG_IOCTL_MHD, un,
22671 				    "sd_resv_reclaim_thread: Failed "
22672 				    "Reservation Recovery\n");
22673 			}
22674 		} else {
22675 			mutex_exit(SD_MUTEX(un));
22676 		}
22677 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22678 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
22679 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22680 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
22681 		/*
22682 		 * wakeup the destroy thread if anyone is waiting on
22683 		 * us to complete.
22684 		 */
22685 		cv_signal(&sd_tr.srq_inprocess_cv);
22686 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
22687 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
22688 	}
22689 
22690 	/*
22691 	 * cleanup the sd_tr structure now that this thread will not exist
22692 	 */
22693 	ASSERT(sd_tr.srq_thr_req_head == NULL);
22694 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
22695 	sd_tr.srq_resv_reclaim_thread = NULL;
22696 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22697 	thread_exit();
22698 }
22699 
22700 
22701 /*
22702  *    Function: sd_rmv_resv_reclaim_req()
22703  *
22704  * Description: This function removes any pending reservation reclaim requests
22705  *		for the specified device.
22706  *
22707  *   Arguments: dev - the device 'dev_t'
22708  */
22709 
22710 static void
22711 sd_rmv_resv_reclaim_req(dev_t dev)
22712 {
22713 	struct sd_thr_request *sd_mhreq;
22714 	struct sd_thr_request *sd_prev;
22715 
22716 	/* Remove a reservation reclaim request from the list */
22717 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22718 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
22719 		/*
22720 		 * We are attempting to reinstate reservation for
22721 		 * this device. We wait for sd_reserve_release()
22722 		 * to return before we return.
22723 		 */
22724 		cv_wait(&sd_tr.srq_inprocess_cv,
22725 		    &sd_tr.srq_resv_reclaim_mutex);
22726 	} else {
22727 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
22728 		if (sd_mhreq && sd_mhreq->dev == dev) {
22729 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
22730 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22731 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22732 			return;
22733 		}
22734 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
22735 			if (sd_mhreq && sd_mhreq->dev == dev) {
22736 				break;
22737 			}
22738 			sd_prev = sd_mhreq;
22739 		}
22740 		if (sd_mhreq != NULL) {
22741 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
22742 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22743 		}
22744 	}
22745 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22746 }
22747 
22748 
22749 /*
22750  *    Function: sd_mhd_reset_notify_cb()
22751  *
22752  * Description: This is a call back function for scsi_reset_notify. This
22753  *		function updates the softstate reserved status and logs the
22754  *		reset. The driver scsi watch facility callback function
22755  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
22756  *		will reclaim the reservation.
22757  *
22758  *   Arguments: arg  - driver soft state (unit) structure
22759  */
22760 
22761 static void
22762 sd_mhd_reset_notify_cb(caddr_t arg)
22763 {
22764 	struct sd_lun *un = (struct sd_lun *)arg;
22765 
22766 	mutex_enter(SD_MUTEX(un));
22767 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
22768 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
22769 		SD_INFO(SD_LOG_IOCTL_MHD, un,
22770 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
22771 	}
22772 	mutex_exit(SD_MUTEX(un));
22773 }
22774 
22775 
22776 /*
22777  *    Function: sd_take_ownership()
22778  *
22779  * Description: This routine implements an algorithm to achieve a stable
22780  *		reservation on disks which don't implement priority reserve,
22781  *		and makes sure that other host lose re-reservation attempts.
22782  *		This algorithm contains of a loop that keeps issuing the RESERVE
22783  *		for some period of time (min_ownership_delay, default 6 seconds)
22784  *		During that loop, it looks to see if there has been a bus device
22785  *		reset or bus reset (both of which cause an existing reservation
22786  *		to be lost). If the reservation is lost issue RESERVE until a
22787  *		period of min_ownership_delay with no resets has gone by, or
22788  *		until max_ownership_delay has expired. This loop ensures that
22789  *		the host really did manage to reserve the device, in spite of
22790  *		resets. The looping for min_ownership_delay (default six
22791  *		seconds) is important to early generation clustering products,
22792  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
22793  *		MHIOCENFAILFAST periodic timer of two seconds. By having
22794  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
22795  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
22796  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
22797  *		have already noticed, via the MHIOCENFAILFAST polling, that it
22798  *		no longer "owns" the disk and will have panicked itself.  Thus,
22799  *		the host issuing the MHIOCTKOWN is assured (with timing
22800  *		dependencies) that by the time it actually starts to use the
22801  *		disk for real work, the old owner is no longer accessing it.
22802  *
22803  *		min_ownership_delay is the minimum amount of time for which the
22804  *		disk must be reserved continuously devoid of resets before the
22805  *		MHIOCTKOWN ioctl will return success.
22806  *
22807  *		max_ownership_delay indicates the amount of time by which the
22808  *		take ownership should succeed or timeout with an error.
22809  *
22810  *   Arguments: dev - the device 'dev_t'
22811  *		*p  - struct containing timing info.
22812  *
22813  * Return Code: 0 for success or error code
22814  */
22815 
22816 static int
22817 sd_take_ownership(dev_t dev, struct mhioctkown *p)
22818 {
22819 	struct sd_lun	*un;
22820 	int		rval;
22821 	int		err;
22822 	int		reservation_count   = 0;
22823 	int		min_ownership_delay =  6000000; /* in usec */
22824 	int		max_ownership_delay = 30000000; /* in usec */
22825 	clock_t		start_time;	/* starting time of this algorithm */
22826 	clock_t		end_time;	/* time limit for giving up */
22827 	clock_t		ownership_time;	/* time limit for stable ownership */
22828 	clock_t		current_time;
22829 	clock_t		previous_current_time;
22830 
22831 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22832 		return (ENXIO);
22833 	}
22834 
22835 	/*
22836 	 * Attempt a device reservation. A priority reservation is requested.
22837 	 */
22838 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
22839 	    != SD_SUCCESS) {
22840 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
22841 		    "sd_take_ownership: return(1)=%d\n", rval);
22842 		return (rval);
22843 	}
22844 
22845 	/* Update the softstate reserved status to indicate the reservation */
22846 	mutex_enter(SD_MUTEX(un));
22847 	un->un_resvd_status |= SD_RESERVE;
22848 	un->un_resvd_status &=
22849 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
22850 	mutex_exit(SD_MUTEX(un));
22851 
22852 	if (p != NULL) {
22853 		if (p->min_ownership_delay != 0) {
22854 			min_ownership_delay = p->min_ownership_delay * 1000;
22855 		}
22856 		if (p->max_ownership_delay != 0) {
22857 			max_ownership_delay = p->max_ownership_delay * 1000;
22858 		}
22859 	}
22860 	SD_INFO(SD_LOG_IOCTL_MHD, un,
22861 	    "sd_take_ownership: min, max delays: %d, %d\n",
22862 	    min_ownership_delay, max_ownership_delay);
22863 
22864 	start_time = ddi_get_lbolt();
22865 	current_time	= start_time;
22866 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
22867 	end_time	= start_time + drv_usectohz(max_ownership_delay);
22868 
22869 	while (current_time - end_time < 0) {
22870 		delay(drv_usectohz(500000));
22871 
22872 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
22873 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
22874 				mutex_enter(SD_MUTEX(un));
22875 				rval = (un->un_resvd_status &
22876 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
22877 				mutex_exit(SD_MUTEX(un));
22878 				break;
22879 			}
22880 		}
22881 		previous_current_time = current_time;
22882 		current_time = ddi_get_lbolt();
22883 		mutex_enter(SD_MUTEX(un));
22884 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
22885 			ownership_time = ddi_get_lbolt() +
22886 			    drv_usectohz(min_ownership_delay);
22887 			reservation_count = 0;
22888 		} else {
22889 			reservation_count++;
22890 		}
22891 		un->un_resvd_status |= SD_RESERVE;
22892 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
22893 		mutex_exit(SD_MUTEX(un));
22894 
22895 		SD_INFO(SD_LOG_IOCTL_MHD, un,
22896 		    "sd_take_ownership: ticks for loop iteration=%ld, "
22897 		    "reservation=%s\n", (current_time - previous_current_time),
22898 		    reservation_count ? "ok" : "reclaimed");
22899 
22900 		if (current_time - ownership_time >= 0 &&
22901 		    reservation_count >= 4) {
22902 			rval = 0; /* Achieved a stable ownership */
22903 			break;
22904 		}
22905 		if (current_time - end_time >= 0) {
22906 			rval = EACCES; /* No ownership in max possible time */
22907 			break;
22908 		}
22909 	}
22910 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
22911 	    "sd_take_ownership: return(2)=%d\n", rval);
22912 	return (rval);
22913 }
22914 
22915 
22916 /*
22917  *    Function: sd_reserve_release()
22918  *
22919  * Description: This function builds and sends scsi RESERVE, RELEASE, and
22920  *		PRIORITY RESERVE commands based on a user specified command type
22921  *
22922  *   Arguments: dev - the device 'dev_t'
22923  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
22924  *		      SD_RESERVE, SD_RELEASE
22925  *
22926  * Return Code: 0 or Error Code
22927  */
22928 
22929 static int
22930 sd_reserve_release(dev_t dev, int cmd)
22931 {
22932 	struct uscsi_cmd	*com = NULL;
22933 	struct sd_lun		*un = NULL;
22934 	char			cdb[CDB_GROUP0];
22935 	int			rval;
22936 
22937 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
22938 	    (cmd == SD_PRIORITY_RESERVE));
22939 
22940 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22941 		return (ENXIO);
22942 	}
22943 
22944 	/* instantiate and initialize the command and cdb */
22945 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
22946 	bzero(cdb, CDB_GROUP0);
22947 	com->uscsi_flags   = USCSI_SILENT;
22948 	com->uscsi_timeout = un->un_reserve_release_time;
22949 	com->uscsi_cdblen  = CDB_GROUP0;
22950 	com->uscsi_cdb	   = cdb;
22951 	if (cmd == SD_RELEASE) {
22952 		cdb[0] = SCMD_RELEASE;
22953 	} else {
22954 		cdb[0] = SCMD_RESERVE;
22955 	}
22956 
22957 	/* Send the command. */
22958 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
22959 	    SD_PATH_STANDARD);
22960 
22961 	/*
22962 	 * "break" a reservation that is held by another host, by issuing a
22963 	 * reset if priority reserve is desired, and we could not get the
22964 	 * device.
22965 	 */
22966 	if ((cmd == SD_PRIORITY_RESERVE) &&
22967 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
22968 		/*
22969 		 * First try to reset the LUN. If we cannot, then try a target
22970 		 * reset, followed by a bus reset if the target reset fails.
22971 		 */
22972 		int reset_retval = 0;
22973 		if (un->un_f_lun_reset_enabled == TRUE) {
22974 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
22975 		}
22976 		if (reset_retval == 0) {
22977 			/* The LUN reset either failed or was not issued */
22978 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
22979 		}
22980 		if ((reset_retval == 0) &&
22981 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
22982 			rval = EIO;
22983 			kmem_free(com, sizeof (*com));
22984 			return (rval);
22985 		}
22986 
22987 		bzero(com, sizeof (struct uscsi_cmd));
22988 		com->uscsi_flags   = USCSI_SILENT;
22989 		com->uscsi_cdb	   = cdb;
22990 		com->uscsi_cdblen  = CDB_GROUP0;
22991 		com->uscsi_timeout = 5;
22992 
22993 		/*
22994 		 * Reissue the last reserve command, this time without request
22995 		 * sense.  Assume that it is just a regular reserve command.
22996 		 */
22997 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
22998 		    SD_PATH_STANDARD);
22999 	}
23000 
23001 	/* Return an error if still getting a reservation conflict. */
23002 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
23003 		rval = EACCES;
23004 	}
23005 
23006 	kmem_free(com, sizeof (*com));
23007 	return (rval);
23008 }
23009 
23010 
23011 #define	SD_NDUMP_RETRIES	12
23012 /*
23013  *	System Crash Dump routine
23014  */
23015 
23016 static int
23017 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
23018 {
23019 	int		instance;
23020 	int		partition;
23021 	int		i;
23022 	int		err;
23023 	struct sd_lun	*un;
23024 	struct scsi_pkt *wr_pktp;
23025 	struct buf	*wr_bp;
23026 	struct buf	wr_buf;
23027 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
23028 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
23029 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
23030 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
23031 	size_t		io_start_offset;
23032 	int		doing_rmw = FALSE;
23033 	int		rval;
23034 	ssize_t		dma_resid;
23035 	daddr_t		oblkno;
23036 	diskaddr_t	nblks = 0;
23037 	diskaddr_t	start_block;
23038 
23039 	instance = SDUNIT(dev);
23040 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
23041 	    !SD_IS_VALID_LABEL(un) || ISCD(un)) {
23042 		return (ENXIO);
23043 	}
23044 
23045 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
23046 
23047 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
23048 
23049 	partition = SDPART(dev);
23050 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
23051 
23052 	/* Validate blocks to dump at against partition size. */
23053 
23054 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
23055 	    &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT);
23056 
23057 	if ((blkno + nblk) > nblks) {
23058 		SD_TRACE(SD_LOG_DUMP, un,
23059 		    "sddump: dump range larger than partition: "
23060 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
23061 		    blkno, nblk, nblks);
23062 		return (EINVAL);
23063 	}
23064 
23065 	mutex_enter(&un->un_pm_mutex);
23066 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
23067 		struct scsi_pkt *start_pktp;
23068 
23069 		mutex_exit(&un->un_pm_mutex);
23070 
23071 		/*
23072 		 * use pm framework to power on HBA 1st
23073 		 */
23074 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
23075 
23076 		/*
23077 		 * Dump no long uses sdpower to power on a device, it's
23078 		 * in-line here so it can be done in polled mode.
23079 		 */
23080 
23081 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
23082 
23083 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
23084 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
23085 
23086 		if (start_pktp == NULL) {
23087 			/* We were not given a SCSI packet, fail. */
23088 			return (EIO);
23089 		}
23090 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
23091 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
23092 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
23093 		start_pktp->pkt_flags = FLAG_NOINTR;
23094 
23095 		mutex_enter(SD_MUTEX(un));
23096 		SD_FILL_SCSI1_LUN(un, start_pktp);
23097 		mutex_exit(SD_MUTEX(un));
23098 		/*
23099 		 * Scsi_poll returns 0 (success) if the command completes and
23100 		 * the status block is STATUS_GOOD.
23101 		 */
23102 		if (sd_scsi_poll(un, start_pktp) != 0) {
23103 			scsi_destroy_pkt(start_pktp);
23104 			return (EIO);
23105 		}
23106 		scsi_destroy_pkt(start_pktp);
23107 		(void) sd_ddi_pm_resume(un);
23108 	} else {
23109 		mutex_exit(&un->un_pm_mutex);
23110 	}
23111 
23112 	mutex_enter(SD_MUTEX(un));
23113 	un->un_throttle = 0;
23114 
23115 	/*
23116 	 * The first time through, reset the specific target device.
23117 	 * However, when cpr calls sddump we know that sd is in a
23118 	 * a good state so no bus reset is required.
23119 	 * Clear sense data via Request Sense cmd.
23120 	 * In sddump we don't care about allow_bus_device_reset anymore
23121 	 */
23122 
23123 	if ((un->un_state != SD_STATE_SUSPENDED) &&
23124 	    (un->un_state != SD_STATE_DUMPING)) {
23125 
23126 		New_state(un, SD_STATE_DUMPING);
23127 
23128 		if (un->un_f_is_fibre == FALSE) {
23129 			mutex_exit(SD_MUTEX(un));
23130 			/*
23131 			 * Attempt a bus reset for parallel scsi.
23132 			 *
23133 			 * Note: A bus reset is required because on some host
23134 			 * systems (i.e. E420R) a bus device reset is
23135 			 * insufficient to reset the state of the target.
23136 			 *
23137 			 * Note: Don't issue the reset for fibre-channel,
23138 			 * because this tends to hang the bus (loop) for
23139 			 * too long while everyone is logging out and in
23140 			 * and the deadman timer for dumping will fire
23141 			 * before the dump is complete.
23142 			 */
23143 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
23144 				mutex_enter(SD_MUTEX(un));
23145 				Restore_state(un);
23146 				mutex_exit(SD_MUTEX(un));
23147 				return (EIO);
23148 			}
23149 
23150 			/* Delay to give the device some recovery time. */
23151 			drv_usecwait(10000);
23152 
23153 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
23154 				SD_INFO(SD_LOG_DUMP, un,
23155 				    "sddump: sd_send_polled_RQS failed\n");
23156 			}
23157 			mutex_enter(SD_MUTEX(un));
23158 		}
23159 	}
23160 
23161 	/*
23162 	 * Convert the partition-relative block number to a
23163 	 * disk physical block number.
23164 	 */
23165 	blkno += start_block;
23166 
23167 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
23168 
23169 
23170 	/*
23171 	 * Check if the device has a non-512 block size.
23172 	 */
23173 	wr_bp = NULL;
23174 	if (NOT_DEVBSIZE(un)) {
23175 		tgt_byte_offset = blkno * un->un_sys_blocksize;
23176 		tgt_byte_count = nblk * un->un_sys_blocksize;
23177 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
23178 		    (tgt_byte_count % un->un_tgt_blocksize)) {
23179 			doing_rmw = TRUE;
23180 			/*
23181 			 * Calculate the block number and number of block
23182 			 * in terms of the media block size.
23183 			 */
23184 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
23185 			tgt_nblk =
23186 			    ((tgt_byte_offset + tgt_byte_count +
23187 			    (un->un_tgt_blocksize - 1)) /
23188 			    un->un_tgt_blocksize) - tgt_blkno;
23189 
23190 			/*
23191 			 * Invoke the routine which is going to do read part
23192 			 * of read-modify-write.
23193 			 * Note that this routine returns a pointer to
23194 			 * a valid bp in wr_bp.
23195 			 */
23196 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
23197 			    &wr_bp);
23198 			if (err) {
23199 				mutex_exit(SD_MUTEX(un));
23200 				return (err);
23201 			}
23202 			/*
23203 			 * Offset is being calculated as -
23204 			 * (original block # * system block size) -
23205 			 * (new block # * target block size)
23206 			 */
23207 			io_start_offset =
23208 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
23209 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
23210 
23211 			ASSERT((io_start_offset >= 0) &&
23212 			    (io_start_offset < un->un_tgt_blocksize));
23213 			/*
23214 			 * Do the modify portion of read modify write.
23215 			 */
23216 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
23217 			    (size_t)nblk * un->un_sys_blocksize);
23218 		} else {
23219 			doing_rmw = FALSE;
23220 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
23221 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
23222 		}
23223 
23224 		/* Convert blkno and nblk to target blocks */
23225 		blkno = tgt_blkno;
23226 		nblk = tgt_nblk;
23227 	} else {
23228 		wr_bp = &wr_buf;
23229 		bzero(wr_bp, sizeof (struct buf));
23230 		wr_bp->b_flags		= B_BUSY;
23231 		wr_bp->b_un.b_addr	= addr;
23232 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
23233 		wr_bp->b_resid		= 0;
23234 	}
23235 
23236 	mutex_exit(SD_MUTEX(un));
23237 
23238 	/*
23239 	 * Obtain a SCSI packet for the write command.
23240 	 * It should be safe to call the allocator here without
23241 	 * worrying about being locked for DVMA mapping because
23242 	 * the address we're passed is already a DVMA mapping
23243 	 *
23244 	 * We are also not going to worry about semaphore ownership
23245 	 * in the dump buffer. Dumping is single threaded at present.
23246 	 */
23247 
23248 	wr_pktp = NULL;
23249 
23250 	dma_resid = wr_bp->b_bcount;
23251 	oblkno = blkno;
23252 
23253 	while (dma_resid != 0) {
23254 
23255 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
23256 		wr_bp->b_flags &= ~B_ERROR;
23257 
23258 		if (un->un_partial_dma_supported == 1) {
23259 			blkno = oblkno +
23260 			    ((wr_bp->b_bcount - dma_resid) /
23261 			    un->un_tgt_blocksize);
23262 			nblk = dma_resid / un->un_tgt_blocksize;
23263 
23264 			if (wr_pktp) {
23265 				/*
23266 				 * Partial DMA transfers after initial transfer
23267 				 */
23268 				rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
23269 				    blkno, nblk);
23270 			} else {
23271 				/* Initial transfer */
23272 				rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
23273 				    un->un_pkt_flags, NULL_FUNC, NULL,
23274 				    blkno, nblk);
23275 			}
23276 		} else {
23277 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
23278 			    0, NULL_FUNC, NULL, blkno, nblk);
23279 		}
23280 
23281 		if (rval == 0) {
23282 			/* We were given a SCSI packet, continue. */
23283 			break;
23284 		}
23285 
23286 		if (i == 0) {
23287 			if (wr_bp->b_flags & B_ERROR) {
23288 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23289 				    "no resources for dumping; "
23290 				    "error code: 0x%x, retrying",
23291 				    geterror(wr_bp));
23292 			} else {
23293 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23294 				    "no resources for dumping; retrying");
23295 			}
23296 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
23297 			if (wr_bp->b_flags & B_ERROR) {
23298 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
23299 				    "no resources for dumping; error code: "
23300 				    "0x%x, retrying\n", geterror(wr_bp));
23301 			}
23302 		} else {
23303 			if (wr_bp->b_flags & B_ERROR) {
23304 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
23305 				    "no resources for dumping; "
23306 				    "error code: 0x%x, retries failed, "
23307 				    "giving up.\n", geterror(wr_bp));
23308 			} else {
23309 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
23310 				    "no resources for dumping; "
23311 				    "retries failed, giving up.\n");
23312 			}
23313 			mutex_enter(SD_MUTEX(un));
23314 			Restore_state(un);
23315 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
23316 				mutex_exit(SD_MUTEX(un));
23317 				scsi_free_consistent_buf(wr_bp);
23318 			} else {
23319 				mutex_exit(SD_MUTEX(un));
23320 			}
23321 			return (EIO);
23322 		}
23323 		drv_usecwait(10000);
23324 	}
23325 
23326 	if (un->un_partial_dma_supported == 1) {
23327 		/*
23328 		 * save the resid from PARTIAL_DMA
23329 		 */
23330 		dma_resid = wr_pktp->pkt_resid;
23331 		if (dma_resid != 0)
23332 			nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
23333 		wr_pktp->pkt_resid = 0;
23334 	} else {
23335 		dma_resid = 0;
23336 	}
23337 
23338 	/* SunBug 1222170 */
23339 	wr_pktp->pkt_flags = FLAG_NOINTR;
23340 
23341 	err = EIO;
23342 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
23343 
23344 		/*
23345 		 * Scsi_poll returns 0 (success) if the command completes and
23346 		 * the status block is STATUS_GOOD.  We should only check
23347 		 * errors if this condition is not true.  Even then we should
23348 		 * send our own request sense packet only if we have a check
23349 		 * condition and auto request sense has not been performed by
23350 		 * the hba.
23351 		 */
23352 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
23353 
23354 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
23355 		    (wr_pktp->pkt_resid == 0)) {
23356 			err = SD_SUCCESS;
23357 			break;
23358 		}
23359 
23360 		/*
23361 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
23362 		 */
23363 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
23364 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23365 			    "Error while dumping state...Device is gone\n");
23366 			break;
23367 		}
23368 
23369 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
23370 			SD_INFO(SD_LOG_DUMP, un,
23371 			    "sddump: write failed with CHECK, try # %d\n", i);
23372 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
23373 				(void) sd_send_polled_RQS(un);
23374 			}
23375 
23376 			continue;
23377 		}
23378 
23379 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
23380 			int reset_retval = 0;
23381 
23382 			SD_INFO(SD_LOG_DUMP, un,
23383 			    "sddump: write failed with BUSY, try # %d\n", i);
23384 
23385 			if (un->un_f_lun_reset_enabled == TRUE) {
23386 				reset_retval = scsi_reset(SD_ADDRESS(un),
23387 				    RESET_LUN);
23388 			}
23389 			if (reset_retval == 0) {
23390 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
23391 			}
23392 			(void) sd_send_polled_RQS(un);
23393 
23394 		} else {
23395 			SD_INFO(SD_LOG_DUMP, un,
23396 			    "sddump: write failed with 0x%x, try # %d\n",
23397 			    SD_GET_PKT_STATUS(wr_pktp), i);
23398 			mutex_enter(SD_MUTEX(un));
23399 			sd_reset_target(un, wr_pktp);
23400 			mutex_exit(SD_MUTEX(un));
23401 		}
23402 
23403 		/*
23404 		 * If we are not getting anywhere with lun/target resets,
23405 		 * let's reset the bus.
23406 		 */
23407 		if (i == SD_NDUMP_RETRIES/2) {
23408 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
23409 			(void) sd_send_polled_RQS(un);
23410 		}
23411 	}
23412 	}
23413 
23414 	scsi_destroy_pkt(wr_pktp);
23415 	mutex_enter(SD_MUTEX(un));
23416 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
23417 		mutex_exit(SD_MUTEX(un));
23418 		scsi_free_consistent_buf(wr_bp);
23419 	} else {
23420 		mutex_exit(SD_MUTEX(un));
23421 	}
23422 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
23423 	return (err);
23424 }
23425 
23426 /*
23427  *    Function: sd_scsi_poll()
23428  *
23429  * Description: This is a wrapper for the scsi_poll call.
23430  *
23431  *   Arguments: sd_lun - The unit structure
23432  *              scsi_pkt - The scsi packet being sent to the device.
23433  *
23434  * Return Code: 0 - Command completed successfully with good status
23435  *             -1 - Command failed.  This could indicate a check condition
23436  *                  or other status value requiring recovery action.
23437  *
23438  * NOTE: This code is only called off sddump().
23439  */
23440 
23441 static int
23442 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
23443 {
23444 	int status;
23445 
23446 	ASSERT(un != NULL);
23447 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23448 	ASSERT(pktp != NULL);
23449 
23450 	status = SD_SUCCESS;
23451 
23452 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
23453 		pktp->pkt_flags |= un->un_tagflags;
23454 		pktp->pkt_flags &= ~FLAG_NODISCON;
23455 	}
23456 
23457 	status = sd_ddi_scsi_poll(pktp);
23458 	/*
23459 	 * Scsi_poll returns 0 (success) if the command completes and the
23460 	 * status block is STATUS_GOOD.  We should only check errors if this
23461 	 * condition is not true.  Even then we should send our own request
23462 	 * sense packet only if we have a check condition and auto
23463 	 * request sense has not been performed by the hba.
23464 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
23465 	 */
23466 	if ((status != SD_SUCCESS) &&
23467 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
23468 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
23469 	    (pktp->pkt_reason != CMD_DEV_GONE))
23470 		(void) sd_send_polled_RQS(un);
23471 
23472 	return (status);
23473 }
23474 
23475 /*
23476  *    Function: sd_send_polled_RQS()
23477  *
23478  * Description: This sends the request sense command to a device.
23479  *
23480  *   Arguments: sd_lun - The unit structure
23481  *
23482  * Return Code: 0 - Command completed successfully with good status
23483  *             -1 - Command failed.
23484  *
23485  */
23486 
23487 static int
23488 sd_send_polled_RQS(struct sd_lun *un)
23489 {
23490 	int	ret_val;
23491 	struct	scsi_pkt	*rqs_pktp;
23492 	struct	buf		*rqs_bp;
23493 
23494 	ASSERT(un != NULL);
23495 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23496 
23497 	ret_val = SD_SUCCESS;
23498 
23499 	rqs_pktp = un->un_rqs_pktp;
23500 	rqs_bp	 = un->un_rqs_bp;
23501 
23502 	mutex_enter(SD_MUTEX(un));
23503 
23504 	if (un->un_sense_isbusy) {
23505 		ret_val = SD_FAILURE;
23506 		mutex_exit(SD_MUTEX(un));
23507 		return (ret_val);
23508 	}
23509 
23510 	/*
23511 	 * If the request sense buffer (and packet) is not in use,
23512 	 * let's set the un_sense_isbusy and send our packet
23513 	 */
23514 	un->un_sense_isbusy 	= 1;
23515 	rqs_pktp->pkt_resid  	= 0;
23516 	rqs_pktp->pkt_reason 	= 0;
23517 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
23518 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
23519 
23520 	mutex_exit(SD_MUTEX(un));
23521 
23522 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
23523 	    " 0x%p\n", rqs_bp->b_un.b_addr);
23524 
23525 	/*
23526 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
23527 	 * axle - it has a call into us!
23528 	 */
23529 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
23530 		SD_INFO(SD_LOG_COMMON, un,
23531 		    "sd_send_polled_RQS: RQS failed\n");
23532 	}
23533 
23534 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
23535 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
23536 
23537 	mutex_enter(SD_MUTEX(un));
23538 	un->un_sense_isbusy = 0;
23539 	mutex_exit(SD_MUTEX(un));
23540 
23541 	return (ret_val);
23542 }
23543 
23544 /*
23545  * Defines needed for localized version of the scsi_poll routine.
23546  */
23547 #define	CSEC		10000			/* usecs */
23548 #define	SEC_TO_CSEC	(1000000/CSEC)
23549 
23550 /*
23551  *    Function: sd_ddi_scsi_poll()
23552  *
23553  * Description: Localized version of the scsi_poll routine.  The purpose is to
23554  *		send a scsi_pkt to a device as a polled command.  This version
23555  *		is to ensure more robust handling of transport errors.
23556  *		Specifically this routine cures not ready, coming ready
23557  *		transition for power up and reset of sonoma's.  This can take
23558  *		up to 45 seconds for power-on and 20 seconds for reset of a
23559  * 		sonoma lun.
23560  *
23561  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
23562  *
23563  * Return Code: 0 - Command completed successfully with good status
23564  *             -1 - Command failed.
23565  *
23566  * NOTE: This code is almost identical to scsi_poll, however before 6668774 can
23567  * be fixed (removing this code), we need to determine how to handle the
23568  * KEY_UNIT_ATTENTION condition below in conditions not as limited as sddump().
23569  *
23570  * NOTE: This code is only called off sddump().
23571  */
23572 static int
23573 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
23574 {
23575 	int			rval = -1;
23576 	int			savef;
23577 	long			savet;
23578 	void			(*savec)();
23579 	int			timeout;
23580 	int			busy_count;
23581 	int			poll_delay;
23582 	int			rc;
23583 	uint8_t			*sensep;
23584 	struct scsi_arq_status	*arqstat;
23585 	extern int		do_polled_io;
23586 
23587 	ASSERT(pkt->pkt_scbp);
23588 
23589 	/*
23590 	 * save old flags..
23591 	 */
23592 	savef = pkt->pkt_flags;
23593 	savec = pkt->pkt_comp;
23594 	savet = pkt->pkt_time;
23595 
23596 	pkt->pkt_flags |= FLAG_NOINTR;
23597 
23598 	/*
23599 	 * XXX there is nothing in the SCSA spec that states that we should not
23600 	 * do a callback for polled cmds; however, removing this will break sd
23601 	 * and probably other target drivers
23602 	 */
23603 	pkt->pkt_comp = NULL;
23604 
23605 	/*
23606 	 * we don't like a polled command without timeout.
23607 	 * 60 seconds seems long enough.
23608 	 */
23609 	if (pkt->pkt_time == 0)
23610 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
23611 
23612 	/*
23613 	 * Send polled cmd.
23614 	 *
23615 	 * We do some error recovery for various errors.  Tran_busy,
23616 	 * queue full, and non-dispatched commands are retried every 10 msec.
23617 	 * as they are typically transient failures.  Busy status and Not
23618 	 * Ready are retried every second as this status takes a while to
23619 	 * change.
23620 	 */
23621 	timeout = pkt->pkt_time * SEC_TO_CSEC;
23622 
23623 	for (busy_count = 0; busy_count < timeout; busy_count++) {
23624 		/*
23625 		 * Initialize pkt status variables.
23626 		 */
23627 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
23628 
23629 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
23630 			if (rc != TRAN_BUSY) {
23631 				/* Transport failed - give up. */
23632 				break;
23633 			} else {
23634 				/* Transport busy - try again. */
23635 				poll_delay = 1 * CSEC;		/* 10 msec. */
23636 			}
23637 		} else {
23638 			/*
23639 			 * Transport accepted - check pkt status.
23640 			 */
23641 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
23642 			if ((pkt->pkt_reason == CMD_CMPLT) &&
23643 			    (rc == STATUS_CHECK) &&
23644 			    (pkt->pkt_state & STATE_ARQ_DONE)) {
23645 				arqstat =
23646 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
23647 				sensep = (uint8_t *)&arqstat->sts_sensedata;
23648 			} else {
23649 				sensep = NULL;
23650 			}
23651 
23652 			if ((pkt->pkt_reason == CMD_CMPLT) &&
23653 			    (rc == STATUS_GOOD)) {
23654 				/* No error - we're done */
23655 				rval = 0;
23656 				break;
23657 
23658 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
23659 				/* Lost connection - give up */
23660 				break;
23661 
23662 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
23663 			    (pkt->pkt_state == 0)) {
23664 				/* Pkt not dispatched - try again. */
23665 				poll_delay = 1 * CSEC;		/* 10 msec. */
23666 
23667 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
23668 			    (rc == STATUS_QFULL)) {
23669 				/* Queue full - try again. */
23670 				poll_delay = 1 * CSEC;		/* 10 msec. */
23671 
23672 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
23673 			    (rc == STATUS_BUSY)) {
23674 				/* Busy - try again. */
23675 				poll_delay = 100 * CSEC;	/* 1 sec. */
23676 				busy_count += (SEC_TO_CSEC - 1);
23677 
23678 			} else if ((sensep != NULL) &&
23679 			    (scsi_sense_key(sensep) == KEY_UNIT_ATTENTION)) {
23680 				/*
23681 				 * Unit Attention - try again.
23682 				 * Pretend it took 1 sec.
23683 				 * NOTE: 'continue' avoids poll_delay
23684 				 */
23685 				busy_count += (SEC_TO_CSEC - 1);
23686 				continue;
23687 
23688 			} else if ((sensep != NULL) &&
23689 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
23690 			    (scsi_sense_asc(sensep) == 0x04) &&
23691 			    (scsi_sense_ascq(sensep) == 0x01)) {
23692 				/*
23693 				 * Not ready -> ready - try again.
23694 				 * 04h/01h: LUN IS IN PROCESS OF BECOMING READY
23695 				 * ...same as STATUS_BUSY
23696 				 */
23697 				poll_delay = 100 * CSEC;	/* 1 sec. */
23698 				busy_count += (SEC_TO_CSEC - 1);
23699 
23700 			} else {
23701 				/* BAD status - give up. */
23702 				break;
23703 			}
23704 		}
23705 
23706 		if (((curthread->t_flag & T_INTR_THREAD) == 0) &&
23707 		    !do_polled_io) {
23708 			delay(drv_usectohz(poll_delay));
23709 		} else {
23710 			/* we busy wait during cpr_dump or interrupt threads */
23711 			drv_usecwait(poll_delay);
23712 		}
23713 	}
23714 
23715 	pkt->pkt_flags = savef;
23716 	pkt->pkt_comp = savec;
23717 	pkt->pkt_time = savet;
23718 
23719 	/* return on error */
23720 	if (rval)
23721 		return (rval);
23722 
23723 	/*
23724 	 * This is not a performance critical code path.
23725 	 *
23726 	 * As an accommodation for scsi_poll callers, to avoid ddi_dma_sync()
23727 	 * issues associated with looking at DMA memory prior to
23728 	 * scsi_pkt_destroy(), we scsi_sync_pkt() prior to return.
23729 	 */
23730 	scsi_sync_pkt(pkt);
23731 	return (0);
23732 }
23733 
23734 
23735 
23736 /*
23737  *    Function: sd_persistent_reservation_in_read_keys
23738  *
23739  * Description: This routine is the driver entry point for handling CD-ROM
23740  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
23741  *		by sending the SCSI-3 PRIN commands to the device.
23742  *		Processes the read keys command response by copying the
23743  *		reservation key information into the user provided buffer.
23744  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
23745  *
23746  *   Arguments: un   -  Pointer to soft state struct for the target.
23747  *		usrp -	user provided pointer to multihost Persistent In Read
23748  *			Keys structure (mhioc_inkeys_t)
23749  *		flag -	this argument is a pass through to ddi_copyxxx()
23750  *			directly from the mode argument of ioctl().
23751  *
23752  * Return Code: 0   - Success
23753  *		EACCES
23754  *		ENOTSUP
23755  *		errno return code from sd_send_scsi_cmd()
23756  *
23757  *     Context: Can sleep. Does not return until command is completed.
23758  */
23759 
23760 static int
23761 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
23762     mhioc_inkeys_t *usrp, int flag)
23763 {
23764 #ifdef _MULTI_DATAMODEL
23765 	struct mhioc_key_list32	li32;
23766 #endif
23767 	sd_prin_readkeys_t	*in;
23768 	mhioc_inkeys_t		*ptr;
23769 	mhioc_key_list_t	li;
23770 	uchar_t			*data_bufp;
23771 	int 			data_len;
23772 	int			rval;
23773 	size_t			copysz;
23774 
23775 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
23776 		return (EINVAL);
23777 	}
23778 	bzero(&li, sizeof (mhioc_key_list_t));
23779 
23780 	/*
23781 	 * Get the listsize from user
23782 	 */
23783 #ifdef _MULTI_DATAMODEL
23784 
23785 	switch (ddi_model_convert_from(flag & FMODELS)) {
23786 	case DDI_MODEL_ILP32:
23787 		copysz = sizeof (struct mhioc_key_list32);
23788 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
23789 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23790 			    "sd_persistent_reservation_in_read_keys: "
23791 			    "failed ddi_copyin: mhioc_key_list32_t\n");
23792 			rval = EFAULT;
23793 			goto done;
23794 		}
23795 		li.listsize = li32.listsize;
23796 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
23797 		break;
23798 
23799 	case DDI_MODEL_NONE:
23800 		copysz = sizeof (mhioc_key_list_t);
23801 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
23802 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23803 			    "sd_persistent_reservation_in_read_keys: "
23804 			    "failed ddi_copyin: mhioc_key_list_t\n");
23805 			rval = EFAULT;
23806 			goto done;
23807 		}
23808 		break;
23809 	}
23810 
23811 #else /* ! _MULTI_DATAMODEL */
23812 	copysz = sizeof (mhioc_key_list_t);
23813 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
23814 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23815 		    "sd_persistent_reservation_in_read_keys: "
23816 		    "failed ddi_copyin: mhioc_key_list_t\n");
23817 		rval = EFAULT;
23818 		goto done;
23819 	}
23820 #endif
23821 
23822 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
23823 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
23824 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
23825 
23826 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS,
23827 	    data_len, data_bufp)) != 0) {
23828 		goto done;
23829 	}
23830 	in = (sd_prin_readkeys_t *)data_bufp;
23831 	ptr->generation = BE_32(in->generation);
23832 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
23833 
23834 	/*
23835 	 * Return the min(listsize, listlen) keys
23836 	 */
23837 #ifdef _MULTI_DATAMODEL
23838 
23839 	switch (ddi_model_convert_from(flag & FMODELS)) {
23840 	case DDI_MODEL_ILP32:
23841 		li32.listlen = li.listlen;
23842 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
23843 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23844 			    "sd_persistent_reservation_in_read_keys: "
23845 			    "failed ddi_copyout: mhioc_key_list32_t\n");
23846 			rval = EFAULT;
23847 			goto done;
23848 		}
23849 		break;
23850 
23851 	case DDI_MODEL_NONE:
23852 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
23853 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23854 			    "sd_persistent_reservation_in_read_keys: "
23855 			    "failed ddi_copyout: mhioc_key_list_t\n");
23856 			rval = EFAULT;
23857 			goto done;
23858 		}
23859 		break;
23860 	}
23861 
23862 #else /* ! _MULTI_DATAMODEL */
23863 
23864 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
23865 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23866 		    "sd_persistent_reservation_in_read_keys: "
23867 		    "failed ddi_copyout: mhioc_key_list_t\n");
23868 		rval = EFAULT;
23869 		goto done;
23870 	}
23871 
23872 #endif /* _MULTI_DATAMODEL */
23873 
23874 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
23875 	    li.listsize * MHIOC_RESV_KEY_SIZE);
23876 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
23877 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23878 		    "sd_persistent_reservation_in_read_keys: "
23879 		    "failed ddi_copyout: keylist\n");
23880 		rval = EFAULT;
23881 	}
23882 done:
23883 	kmem_free(data_bufp, data_len);
23884 	return (rval);
23885 }
23886 
23887 
23888 /*
23889  *    Function: sd_persistent_reservation_in_read_resv
23890  *
23891  * Description: This routine is the driver entry point for handling CD-ROM
23892  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
23893  *		by sending the SCSI-3 PRIN commands to the device.
23894  *		Process the read persistent reservations command response by
23895  *		copying the reservation information into the user provided
23896  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
23897  *
23898  *   Arguments: un   -  Pointer to soft state struct for the target.
23899  *		usrp -	user provided pointer to multihost Persistent In Read
23900  *			Keys structure (mhioc_inkeys_t)
23901  *		flag -	this argument is a pass through to ddi_copyxxx()
23902  *			directly from the mode argument of ioctl().
23903  *
23904  * Return Code: 0   - Success
23905  *		EACCES
23906  *		ENOTSUP
23907  *		errno return code from sd_send_scsi_cmd()
23908  *
23909  *     Context: Can sleep. Does not return until command is completed.
23910  */
23911 
23912 static int
23913 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
23914     mhioc_inresvs_t *usrp, int flag)
23915 {
23916 #ifdef _MULTI_DATAMODEL
23917 	struct mhioc_resv_desc_list32 resvlist32;
23918 #endif
23919 	sd_prin_readresv_t	*in;
23920 	mhioc_inresvs_t		*ptr;
23921 	sd_readresv_desc_t	*readresv_ptr;
23922 	mhioc_resv_desc_list_t	resvlist;
23923 	mhioc_resv_desc_t 	resvdesc;
23924 	uchar_t			*data_bufp;
23925 	int 			data_len;
23926 	int			rval;
23927 	int			i;
23928 	size_t			copysz;
23929 	mhioc_resv_desc_t	*bufp;
23930 
23931 	if ((ptr = usrp) == NULL) {
23932 		return (EINVAL);
23933 	}
23934 
23935 	/*
23936 	 * Get the listsize from user
23937 	 */
23938 #ifdef _MULTI_DATAMODEL
23939 	switch (ddi_model_convert_from(flag & FMODELS)) {
23940 	case DDI_MODEL_ILP32:
23941 		copysz = sizeof (struct mhioc_resv_desc_list32);
23942 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
23943 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23944 			    "sd_persistent_reservation_in_read_resv: "
23945 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23946 			rval = EFAULT;
23947 			goto done;
23948 		}
23949 		resvlist.listsize = resvlist32.listsize;
23950 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
23951 		break;
23952 
23953 	case DDI_MODEL_NONE:
23954 		copysz = sizeof (mhioc_resv_desc_list_t);
23955 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
23956 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23957 			    "sd_persistent_reservation_in_read_resv: "
23958 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23959 			rval = EFAULT;
23960 			goto done;
23961 		}
23962 		break;
23963 	}
23964 #else /* ! _MULTI_DATAMODEL */
23965 	copysz = sizeof (mhioc_resv_desc_list_t);
23966 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
23967 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23968 		    "sd_persistent_reservation_in_read_resv: "
23969 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23970 		rval = EFAULT;
23971 		goto done;
23972 	}
23973 #endif /* ! _MULTI_DATAMODEL */
23974 
23975 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
23976 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
23977 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
23978 
23979 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV,
23980 	    data_len, data_bufp)) != 0) {
23981 		goto done;
23982 	}
23983 	in = (sd_prin_readresv_t *)data_bufp;
23984 	ptr->generation = BE_32(in->generation);
23985 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
23986 
23987 	/*
23988 	 * Return the min(listsize, listlen( keys
23989 	 */
23990 #ifdef _MULTI_DATAMODEL
23991 
23992 	switch (ddi_model_convert_from(flag & FMODELS)) {
23993 	case DDI_MODEL_ILP32:
23994 		resvlist32.listlen = resvlist.listlen;
23995 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
23996 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23997 			    "sd_persistent_reservation_in_read_resv: "
23998 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23999 			rval = EFAULT;
24000 			goto done;
24001 		}
24002 		break;
24003 
24004 	case DDI_MODEL_NONE:
24005 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
24006 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
24007 			    "sd_persistent_reservation_in_read_resv: "
24008 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
24009 			rval = EFAULT;
24010 			goto done;
24011 		}
24012 		break;
24013 	}
24014 
24015 #else /* ! _MULTI_DATAMODEL */
24016 
24017 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
24018 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
24019 		    "sd_persistent_reservation_in_read_resv: "
24020 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
24021 		rval = EFAULT;
24022 		goto done;
24023 	}
24024 
24025 #endif /* ! _MULTI_DATAMODEL */
24026 
24027 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
24028 	bufp = resvlist.list;
24029 	copysz = sizeof (mhioc_resv_desc_t);
24030 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
24031 	    i++, readresv_ptr++, bufp++) {
24032 
24033 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
24034 		    MHIOC_RESV_KEY_SIZE);
24035 		resvdesc.type  = readresv_ptr->type;
24036 		resvdesc.scope = readresv_ptr->scope;
24037 		resvdesc.scope_specific_addr =
24038 		    BE_32(readresv_ptr->scope_specific_addr);
24039 
24040 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
24041 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
24042 			    "sd_persistent_reservation_in_read_resv: "
24043 			    "failed ddi_copyout: resvlist\n");
24044 			rval = EFAULT;
24045 			goto done;
24046 		}
24047 	}
24048 done:
24049 	kmem_free(data_bufp, data_len);
24050 	return (rval);
24051 }
24052 
24053 
24054 /*
24055  *    Function: sr_change_blkmode()
24056  *
24057  * Description: This routine is the driver entry point for handling CD-ROM
24058  *		block mode ioctl requests. Support for returning and changing
24059  *		the current block size in use by the device is implemented. The
24060  *		LBA size is changed via a MODE SELECT Block Descriptor.
24061  *
24062  *		This routine issues a mode sense with an allocation length of
24063  *		12 bytes for the mode page header and a single block descriptor.
24064  *
24065  *   Arguments: dev - the device 'dev_t'
24066  *		cmd - the request type; one of CDROMGBLKMODE (get) or
24067  *		      CDROMSBLKMODE (set)
24068  *		data - current block size or requested block size
24069  *		flag - this argument is a pass through to ddi_copyxxx() directly
24070  *		       from the mode argument of ioctl().
24071  *
24072  * Return Code: the code returned by sd_send_scsi_cmd()
24073  *		EINVAL if invalid arguments are provided
24074  *		EFAULT if ddi_copyxxx() fails
24075  *		ENXIO if fail ddi_get_soft_state
24076  *		EIO if invalid mode sense block descriptor length
24077  *
24078  */
24079 
24080 static int
24081 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
24082 {
24083 	struct sd_lun			*un = NULL;
24084 	struct mode_header		*sense_mhp, *select_mhp;
24085 	struct block_descriptor		*sense_desc, *select_desc;
24086 	int				current_bsize;
24087 	int				rval = EINVAL;
24088 	uchar_t				*sense = NULL;
24089 	uchar_t				*select = NULL;
24090 
24091 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
24092 
24093 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24094 		return (ENXIO);
24095 	}
24096 
24097 	/*
24098 	 * The block length is changed via the Mode Select block descriptor, the
24099 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
24100 	 * required as part of this routine. Therefore the mode sense allocation
24101 	 * length is specified to be the length of a mode page header and a
24102 	 * block descriptor.
24103 	 */
24104 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
24105 
24106 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
24107 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) {
24108 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24109 		    "sr_change_blkmode: Mode Sense Failed\n");
24110 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
24111 		return (rval);
24112 	}
24113 
24114 	/* Check the block descriptor len to handle only 1 block descriptor */
24115 	sense_mhp = (struct mode_header *)sense;
24116 	if ((sense_mhp->bdesc_length == 0) ||
24117 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
24118 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24119 		    "sr_change_blkmode: Mode Sense returned invalid block"
24120 		    " descriptor length\n");
24121 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
24122 		return (EIO);
24123 	}
24124 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
24125 	current_bsize = ((sense_desc->blksize_hi << 16) |
24126 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
24127 
24128 	/* Process command */
24129 	switch (cmd) {
24130 	case CDROMGBLKMODE:
24131 		/* Return the block size obtained during the mode sense */
24132 		if (ddi_copyout(&current_bsize, (void *)data,
24133 		    sizeof (int), flag) != 0)
24134 			rval = EFAULT;
24135 		break;
24136 	case CDROMSBLKMODE:
24137 		/* Validate the requested block size */
24138 		switch (data) {
24139 		case CDROM_BLK_512:
24140 		case CDROM_BLK_1024:
24141 		case CDROM_BLK_2048:
24142 		case CDROM_BLK_2056:
24143 		case CDROM_BLK_2336:
24144 		case CDROM_BLK_2340:
24145 		case CDROM_BLK_2352:
24146 		case CDROM_BLK_2368:
24147 		case CDROM_BLK_2448:
24148 		case CDROM_BLK_2646:
24149 		case CDROM_BLK_2647:
24150 			break;
24151 		default:
24152 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24153 			    "sr_change_blkmode: "
24154 			    "Block Size '%ld' Not Supported\n", data);
24155 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
24156 			return (EINVAL);
24157 		}
24158 
24159 		/*
24160 		 * The current block size matches the requested block size so
24161 		 * there is no need to send the mode select to change the size
24162 		 */
24163 		if (current_bsize == data) {
24164 			break;
24165 		}
24166 
24167 		/* Build the select data for the requested block size */
24168 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
24169 		select_mhp = (struct mode_header *)select;
24170 		select_desc =
24171 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
24172 		/*
24173 		 * The LBA size is changed via the block descriptor, so the
24174 		 * descriptor is built according to the user data
24175 		 */
24176 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
24177 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
24178 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
24179 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
24180 
24181 		/* Send the mode select for the requested block size */
24182 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
24183 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
24184 		    SD_PATH_STANDARD)) != 0) {
24185 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24186 			    "sr_change_blkmode: Mode Select Failed\n");
24187 			/*
24188 			 * The mode select failed for the requested block size,
24189 			 * so reset the data for the original block size and
24190 			 * send it to the target. The error is indicated by the
24191 			 * return value for the failed mode select.
24192 			 */
24193 			select_desc->blksize_hi  = sense_desc->blksize_hi;
24194 			select_desc->blksize_mid = sense_desc->blksize_mid;
24195 			select_desc->blksize_lo  = sense_desc->blksize_lo;
24196 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
24197 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
24198 			    SD_PATH_STANDARD);
24199 		} else {
24200 			ASSERT(!mutex_owned(SD_MUTEX(un)));
24201 			mutex_enter(SD_MUTEX(un));
24202 			sd_update_block_info(un, (uint32_t)data, 0);
24203 			mutex_exit(SD_MUTEX(un));
24204 		}
24205 		break;
24206 	default:
24207 		/* should not reach here, but check anyway */
24208 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24209 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
24210 		rval = EINVAL;
24211 		break;
24212 	}
24213 
24214 	if (select) {
24215 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
24216 	}
24217 	if (sense) {
24218 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
24219 	}
24220 	return (rval);
24221 }
24222 
24223 
24224 /*
24225  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
24226  * implement driver support for getting and setting the CD speed. The command
24227  * set used will be based on the device type. If the device has not been
24228  * identified as MMC the Toshiba vendor specific mode page will be used. If
24229  * the device is MMC but does not support the Real Time Streaming feature
24230  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
24231  * be used to read the speed.
24232  */
24233 
24234 /*
24235  *    Function: sr_change_speed()
24236  *
24237  * Description: This routine is the driver entry point for handling CD-ROM
24238  *		drive speed ioctl requests for devices supporting the Toshiba
24239  *		vendor specific drive speed mode page. Support for returning
24240  *		and changing the current drive speed in use by the device is
24241  *		implemented.
24242  *
24243  *   Arguments: dev - the device 'dev_t'
24244  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
24245  *		      CDROMSDRVSPEED (set)
24246  *		data - current drive speed or requested drive speed
24247  *		flag - this argument is a pass through to ddi_copyxxx() directly
24248  *		       from the mode argument of ioctl().
24249  *
24250  * Return Code: the code returned by sd_send_scsi_cmd()
24251  *		EINVAL if invalid arguments are provided
24252  *		EFAULT if ddi_copyxxx() fails
24253  *		ENXIO if fail ddi_get_soft_state
24254  *		EIO if invalid mode sense block descriptor length
24255  */
24256 
24257 static int
24258 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
24259 {
24260 	struct sd_lun			*un = NULL;
24261 	struct mode_header		*sense_mhp, *select_mhp;
24262 	struct mode_speed		*sense_page, *select_page;
24263 	int				current_speed;
24264 	int				rval = EINVAL;
24265 	int				bd_len;
24266 	uchar_t				*sense = NULL;
24267 	uchar_t				*select = NULL;
24268 
24269 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
24270 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24271 		return (ENXIO);
24272 	}
24273 
24274 	/*
24275 	 * Note: The drive speed is being modified here according to a Toshiba
24276 	 * vendor specific mode page (0x31).
24277 	 */
24278 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
24279 
24280 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
24281 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
24282 	    SD_PATH_STANDARD)) != 0) {
24283 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24284 		    "sr_change_speed: Mode Sense Failed\n");
24285 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
24286 		return (rval);
24287 	}
24288 	sense_mhp  = (struct mode_header *)sense;
24289 
24290 	/* Check the block descriptor len to handle only 1 block descriptor */
24291 	bd_len = sense_mhp->bdesc_length;
24292 	if (bd_len > MODE_BLK_DESC_LENGTH) {
24293 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24294 		    "sr_change_speed: Mode Sense returned invalid block "
24295 		    "descriptor length\n");
24296 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
24297 		return (EIO);
24298 	}
24299 
24300 	sense_page = (struct mode_speed *)
24301 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
24302 	current_speed = sense_page->speed;
24303 
24304 	/* Process command */
24305 	switch (cmd) {
24306 	case CDROMGDRVSPEED:
24307 		/* Return the drive speed obtained during the mode sense */
24308 		if (current_speed == 0x2) {
24309 			current_speed = CDROM_TWELVE_SPEED;
24310 		}
24311 		if (ddi_copyout(&current_speed, (void *)data,
24312 		    sizeof (int), flag) != 0) {
24313 			rval = EFAULT;
24314 		}
24315 		break;
24316 	case CDROMSDRVSPEED:
24317 		/* Validate the requested drive speed */
24318 		switch ((uchar_t)data) {
24319 		case CDROM_TWELVE_SPEED:
24320 			data = 0x2;
24321 			/*FALLTHROUGH*/
24322 		case CDROM_NORMAL_SPEED:
24323 		case CDROM_DOUBLE_SPEED:
24324 		case CDROM_QUAD_SPEED:
24325 		case CDROM_MAXIMUM_SPEED:
24326 			break;
24327 		default:
24328 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24329 			    "sr_change_speed: "
24330 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
24331 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
24332 			return (EINVAL);
24333 		}
24334 
24335 		/*
24336 		 * The current drive speed matches the requested drive speed so
24337 		 * there is no need to send the mode select to change the speed
24338 		 */
24339 		if (current_speed == data) {
24340 			break;
24341 		}
24342 
24343 		/* Build the select data for the requested drive speed */
24344 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
24345 		select_mhp = (struct mode_header *)select;
24346 		select_mhp->bdesc_length = 0;
24347 		select_page =
24348 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
24349 		select_page =
24350 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
24351 		select_page->mode_page.code = CDROM_MODE_SPEED;
24352 		select_page->mode_page.length = 2;
24353 		select_page->speed = (uchar_t)data;
24354 
24355 		/* Send the mode select for the requested block size */
24356 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
24357 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
24358 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
24359 			/*
24360 			 * The mode select failed for the requested drive speed,
24361 			 * so reset the data for the original drive speed and
24362 			 * send it to the target. The error is indicated by the
24363 			 * return value for the failed mode select.
24364 			 */
24365 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24366 			    "sr_drive_speed: Mode Select Failed\n");
24367 			select_page->speed = sense_page->speed;
24368 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
24369 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
24370 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
24371 		}
24372 		break;
24373 	default:
24374 		/* should not reach here, but check anyway */
24375 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24376 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
24377 		rval = EINVAL;
24378 		break;
24379 	}
24380 
24381 	if (select) {
24382 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
24383 	}
24384 	if (sense) {
24385 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
24386 	}
24387 
24388 	return (rval);
24389 }
24390 
24391 
24392 /*
24393  *    Function: sr_atapi_change_speed()
24394  *
24395  * Description: This routine is the driver entry point for handling CD-ROM
24396  *		drive speed ioctl requests for MMC devices that do not support
24397  *		the Real Time Streaming feature (0x107).
24398  *
24399  *		Note: This routine will use the SET SPEED command which may not
24400  *		be supported by all devices.
24401  *
24402  *   Arguments: dev- the device 'dev_t'
24403  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
24404  *		     CDROMSDRVSPEED (set)
24405  *		data- current drive speed or requested drive speed
24406  *		flag- this argument is a pass through to ddi_copyxxx() directly
24407  *		      from the mode argument of ioctl().
24408  *
24409  * Return Code: the code returned by sd_send_scsi_cmd()
24410  *		EINVAL if invalid arguments are provided
24411  *		EFAULT if ddi_copyxxx() fails
24412  *		ENXIO if fail ddi_get_soft_state
24413  *		EIO if invalid mode sense block descriptor length
24414  */
24415 
24416 static int
24417 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
24418 {
24419 	struct sd_lun			*un;
24420 	struct uscsi_cmd		*com = NULL;
24421 	struct mode_header_grp2		*sense_mhp;
24422 	uchar_t				*sense_page;
24423 	uchar_t				*sense = NULL;
24424 	char				cdb[CDB_GROUP5];
24425 	int				bd_len;
24426 	int				current_speed = 0;
24427 	int				max_speed = 0;
24428 	int				rval;
24429 
24430 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
24431 
24432 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24433 		return (ENXIO);
24434 	}
24435 
24436 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
24437 
24438 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
24439 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
24440 	    SD_PATH_STANDARD)) != 0) {
24441 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24442 		    "sr_atapi_change_speed: Mode Sense Failed\n");
24443 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24444 		return (rval);
24445 	}
24446 
24447 	/* Check the block descriptor len to handle only 1 block descriptor */
24448 	sense_mhp = (struct mode_header_grp2 *)sense;
24449 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
24450 	if (bd_len > MODE_BLK_DESC_LENGTH) {
24451 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24452 		    "sr_atapi_change_speed: Mode Sense returned invalid "
24453 		    "block descriptor length\n");
24454 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24455 		return (EIO);
24456 	}
24457 
24458 	/* Calculate the current and maximum drive speeds */
24459 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
24460 	current_speed = (sense_page[14] << 8) | sense_page[15];
24461 	max_speed = (sense_page[8] << 8) | sense_page[9];
24462 
24463 	/* Process the command */
24464 	switch (cmd) {
24465 	case CDROMGDRVSPEED:
24466 		current_speed /= SD_SPEED_1X;
24467 		if (ddi_copyout(&current_speed, (void *)data,
24468 		    sizeof (int), flag) != 0)
24469 			rval = EFAULT;
24470 		break;
24471 	case CDROMSDRVSPEED:
24472 		/* Convert the speed code to KB/sec */
24473 		switch ((uchar_t)data) {
24474 		case CDROM_NORMAL_SPEED:
24475 			current_speed = SD_SPEED_1X;
24476 			break;
24477 		case CDROM_DOUBLE_SPEED:
24478 			current_speed = 2 * SD_SPEED_1X;
24479 			break;
24480 		case CDROM_QUAD_SPEED:
24481 			current_speed = 4 * SD_SPEED_1X;
24482 			break;
24483 		case CDROM_TWELVE_SPEED:
24484 			current_speed = 12 * SD_SPEED_1X;
24485 			break;
24486 		case CDROM_MAXIMUM_SPEED:
24487 			current_speed = 0xffff;
24488 			break;
24489 		default:
24490 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24491 			    "sr_atapi_change_speed: invalid drive speed %d\n",
24492 			    (uchar_t)data);
24493 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24494 			return (EINVAL);
24495 		}
24496 
24497 		/* Check the request against the drive's max speed. */
24498 		if (current_speed != 0xffff) {
24499 			if (current_speed > max_speed) {
24500 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24501 				return (EINVAL);
24502 			}
24503 		}
24504 
24505 		/*
24506 		 * Build and send the SET SPEED command
24507 		 *
24508 		 * Note: The SET SPEED (0xBB) command used in this routine is
24509 		 * obsolete per the SCSI MMC spec but still supported in the
24510 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
24511 		 * therefore the command is still implemented in this routine.
24512 		 */
24513 		bzero(cdb, sizeof (cdb));
24514 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
24515 		cdb[2] = (uchar_t)(current_speed >> 8);
24516 		cdb[3] = (uchar_t)current_speed;
24517 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24518 		com->uscsi_cdb	   = (caddr_t)cdb;
24519 		com->uscsi_cdblen  = CDB_GROUP5;
24520 		com->uscsi_bufaddr = NULL;
24521 		com->uscsi_buflen  = 0;
24522 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
24523 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD);
24524 		break;
24525 	default:
24526 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24527 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
24528 		rval = EINVAL;
24529 	}
24530 
24531 	if (sense) {
24532 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24533 	}
24534 	if (com) {
24535 		kmem_free(com, sizeof (*com));
24536 	}
24537 	return (rval);
24538 }
24539 
24540 
24541 /*
24542  *    Function: sr_pause_resume()
24543  *
24544  * Description: This routine is the driver entry point for handling CD-ROM
24545  *		pause/resume ioctl requests. This only affects the audio play
24546  *		operation.
24547  *
24548  *   Arguments: dev - the device 'dev_t'
24549  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
24550  *		      for setting the resume bit of the cdb.
24551  *
24552  * Return Code: the code returned by sd_send_scsi_cmd()
24553  *		EINVAL if invalid mode specified
24554  *
24555  */
24556 
24557 static int
24558 sr_pause_resume(dev_t dev, int cmd)
24559 {
24560 	struct sd_lun		*un;
24561 	struct uscsi_cmd	*com;
24562 	char			cdb[CDB_GROUP1];
24563 	int			rval;
24564 
24565 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24566 		return (ENXIO);
24567 	}
24568 
24569 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24570 	bzero(cdb, CDB_GROUP1);
24571 	cdb[0] = SCMD_PAUSE_RESUME;
24572 	switch (cmd) {
24573 	case CDROMRESUME:
24574 		cdb[8] = 1;
24575 		break;
24576 	case CDROMPAUSE:
24577 		cdb[8] = 0;
24578 		break;
24579 	default:
24580 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
24581 		    " Command '%x' Not Supported\n", cmd);
24582 		rval = EINVAL;
24583 		goto done;
24584 	}
24585 
24586 	com->uscsi_cdb    = cdb;
24587 	com->uscsi_cdblen = CDB_GROUP1;
24588 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
24589 
24590 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24591 	    SD_PATH_STANDARD);
24592 
24593 done:
24594 	kmem_free(com, sizeof (*com));
24595 	return (rval);
24596 }
24597 
24598 
24599 /*
24600  *    Function: sr_play_msf()
24601  *
24602  * Description: This routine is the driver entry point for handling CD-ROM
24603  *		ioctl requests to output the audio signals at the specified
24604  *		starting address and continue the audio play until the specified
24605  *		ending address (CDROMPLAYMSF) The address is in Minute Second
24606  *		Frame (MSF) format.
24607  *
24608  *   Arguments: dev	- the device 'dev_t'
24609  *		data	- pointer to user provided audio msf structure,
24610  *		          specifying start/end addresses.
24611  *		flag	- this argument is a pass through to ddi_copyxxx()
24612  *		          directly from the mode argument of ioctl().
24613  *
24614  * Return Code: the code returned by sd_send_scsi_cmd()
24615  *		EFAULT if ddi_copyxxx() fails
24616  *		ENXIO if fail ddi_get_soft_state
24617  *		EINVAL if data pointer is NULL
24618  */
24619 
24620 static int
24621 sr_play_msf(dev_t dev, caddr_t data, int flag)
24622 {
24623 	struct sd_lun		*un;
24624 	struct uscsi_cmd	*com;
24625 	struct cdrom_msf	msf_struct;
24626 	struct cdrom_msf	*msf = &msf_struct;
24627 	char			cdb[CDB_GROUP1];
24628 	int			rval;
24629 
24630 	if (data == NULL) {
24631 		return (EINVAL);
24632 	}
24633 
24634 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24635 		return (ENXIO);
24636 	}
24637 
24638 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
24639 		return (EFAULT);
24640 	}
24641 
24642 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24643 	bzero(cdb, CDB_GROUP1);
24644 	cdb[0] = SCMD_PLAYAUDIO_MSF;
24645 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
24646 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
24647 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
24648 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
24649 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
24650 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
24651 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
24652 	} else {
24653 		cdb[3] = msf->cdmsf_min0;
24654 		cdb[4] = msf->cdmsf_sec0;
24655 		cdb[5] = msf->cdmsf_frame0;
24656 		cdb[6] = msf->cdmsf_min1;
24657 		cdb[7] = msf->cdmsf_sec1;
24658 		cdb[8] = msf->cdmsf_frame1;
24659 	}
24660 	com->uscsi_cdb    = cdb;
24661 	com->uscsi_cdblen = CDB_GROUP1;
24662 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
24663 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24664 	    SD_PATH_STANDARD);
24665 	kmem_free(com, sizeof (*com));
24666 	return (rval);
24667 }
24668 
24669 
24670 /*
24671  *    Function: sr_play_trkind()
24672  *
24673  * Description: This routine is the driver entry point for handling CD-ROM
24674  *		ioctl requests to output the audio signals at the specified
24675  *		starting address and continue the audio play until the specified
24676  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
24677  *		format.
24678  *
24679  *   Arguments: dev	- the device 'dev_t'
24680  *		data	- pointer to user provided audio track/index structure,
24681  *		          specifying start/end addresses.
24682  *		flag	- this argument is a pass through to ddi_copyxxx()
24683  *		          directly from the mode argument of ioctl().
24684  *
24685  * Return Code: the code returned by sd_send_scsi_cmd()
24686  *		EFAULT if ddi_copyxxx() fails
24687  *		ENXIO if fail ddi_get_soft_state
24688  *		EINVAL if data pointer is NULL
24689  */
24690 
24691 static int
24692 sr_play_trkind(dev_t dev, caddr_t data, int flag)
24693 {
24694 	struct cdrom_ti		ti_struct;
24695 	struct cdrom_ti		*ti = &ti_struct;
24696 	struct uscsi_cmd	*com = NULL;
24697 	char			cdb[CDB_GROUP1];
24698 	int			rval;
24699 
24700 	if (data == NULL) {
24701 		return (EINVAL);
24702 	}
24703 
24704 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
24705 		return (EFAULT);
24706 	}
24707 
24708 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24709 	bzero(cdb, CDB_GROUP1);
24710 	cdb[0] = SCMD_PLAYAUDIO_TI;
24711 	cdb[4] = ti->cdti_trk0;
24712 	cdb[5] = ti->cdti_ind0;
24713 	cdb[7] = ti->cdti_trk1;
24714 	cdb[8] = ti->cdti_ind1;
24715 	com->uscsi_cdb    = cdb;
24716 	com->uscsi_cdblen = CDB_GROUP1;
24717 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
24718 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24719 	    SD_PATH_STANDARD);
24720 	kmem_free(com, sizeof (*com));
24721 	return (rval);
24722 }
24723 
24724 
24725 /*
24726  *    Function: sr_read_all_subcodes()
24727  *
24728  * Description: This routine is the driver entry point for handling CD-ROM
24729  *		ioctl requests to return raw subcode data while the target is
24730  *		playing audio (CDROMSUBCODE).
24731  *
24732  *   Arguments: dev	- the device 'dev_t'
24733  *		data	- pointer to user provided cdrom subcode structure,
24734  *		          specifying the transfer length and address.
24735  *		flag	- this argument is a pass through to ddi_copyxxx()
24736  *		          directly from the mode argument of ioctl().
24737  *
24738  * Return Code: the code returned by sd_send_scsi_cmd()
24739  *		EFAULT if ddi_copyxxx() fails
24740  *		ENXIO if fail ddi_get_soft_state
24741  *		EINVAL if data pointer is NULL
24742  */
24743 
24744 static int
24745 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
24746 {
24747 	struct sd_lun		*un = NULL;
24748 	struct uscsi_cmd	*com = NULL;
24749 	struct cdrom_subcode	*subcode = NULL;
24750 	int			rval;
24751 	size_t			buflen;
24752 	char			cdb[CDB_GROUP5];
24753 
24754 #ifdef _MULTI_DATAMODEL
24755 	/* To support ILP32 applications in an LP64 world */
24756 	struct cdrom_subcode32		cdrom_subcode32;
24757 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
24758 #endif
24759 	if (data == NULL) {
24760 		return (EINVAL);
24761 	}
24762 
24763 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24764 		return (ENXIO);
24765 	}
24766 
24767 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
24768 
24769 #ifdef _MULTI_DATAMODEL
24770 	switch (ddi_model_convert_from(flag & FMODELS)) {
24771 	case DDI_MODEL_ILP32:
24772 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
24773 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24774 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
24775 			kmem_free(subcode, sizeof (struct cdrom_subcode));
24776 			return (EFAULT);
24777 		}
24778 		/* Convert the ILP32 uscsi data from the application to LP64 */
24779 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
24780 		break;
24781 	case DDI_MODEL_NONE:
24782 		if (ddi_copyin(data, subcode,
24783 		    sizeof (struct cdrom_subcode), flag)) {
24784 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24785 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
24786 			kmem_free(subcode, sizeof (struct cdrom_subcode));
24787 			return (EFAULT);
24788 		}
24789 		break;
24790 	}
24791 #else /* ! _MULTI_DATAMODEL */
24792 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
24793 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24794 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
24795 		kmem_free(subcode, sizeof (struct cdrom_subcode));
24796 		return (EFAULT);
24797 	}
24798 #endif /* _MULTI_DATAMODEL */
24799 
24800 	/*
24801 	 * Since MMC-2 expects max 3 bytes for length, check if the
24802 	 * length input is greater than 3 bytes
24803 	 */
24804 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
24805 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24806 		    "sr_read_all_subcodes: "
24807 		    "cdrom transfer length too large: %d (limit %d)\n",
24808 		    subcode->cdsc_length, 0xFFFFFF);
24809 		kmem_free(subcode, sizeof (struct cdrom_subcode));
24810 		return (EINVAL);
24811 	}
24812 
24813 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
24814 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24815 	bzero(cdb, CDB_GROUP5);
24816 
24817 	if (un->un_f_mmc_cap == TRUE) {
24818 		cdb[0] = (char)SCMD_READ_CD;
24819 		cdb[2] = (char)0xff;
24820 		cdb[3] = (char)0xff;
24821 		cdb[4] = (char)0xff;
24822 		cdb[5] = (char)0xff;
24823 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
24824 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
24825 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
24826 		cdb[10] = 1;
24827 	} else {
24828 		/*
24829 		 * Note: A vendor specific command (0xDF) is being used her to
24830 		 * request a read of all subcodes.
24831 		 */
24832 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
24833 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
24834 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
24835 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
24836 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
24837 	}
24838 	com->uscsi_cdb	   = cdb;
24839 	com->uscsi_cdblen  = CDB_GROUP5;
24840 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
24841 	com->uscsi_buflen  = buflen;
24842 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24843 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
24844 	    SD_PATH_STANDARD);
24845 	kmem_free(subcode, sizeof (struct cdrom_subcode));
24846 	kmem_free(com, sizeof (*com));
24847 	return (rval);
24848 }
24849 
24850 
24851 /*
24852  *    Function: sr_read_subchannel()
24853  *
24854  * Description: This routine is the driver entry point for handling CD-ROM
24855  *		ioctl requests to return the Q sub-channel data of the CD
24856  *		current position block. (CDROMSUBCHNL) The data includes the
24857  *		track number, index number, absolute CD-ROM address (LBA or MSF
24858  *		format per the user) , track relative CD-ROM address (LBA or MSF
24859  *		format per the user), control data and audio status.
24860  *
24861  *   Arguments: dev	- the device 'dev_t'
24862  *		data	- pointer to user provided cdrom sub-channel structure
24863  *		flag	- this argument is a pass through to ddi_copyxxx()
24864  *		          directly from the mode argument of ioctl().
24865  *
24866  * Return Code: the code returned by sd_send_scsi_cmd()
24867  *		EFAULT if ddi_copyxxx() fails
24868  *		ENXIO if fail ddi_get_soft_state
24869  *		EINVAL if data pointer is NULL
24870  */
24871 
24872 static int
24873 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
24874 {
24875 	struct sd_lun		*un;
24876 	struct uscsi_cmd	*com;
24877 	struct cdrom_subchnl	subchanel;
24878 	struct cdrom_subchnl	*subchnl = &subchanel;
24879 	char			cdb[CDB_GROUP1];
24880 	caddr_t			buffer;
24881 	int			rval;
24882 
24883 	if (data == NULL) {
24884 		return (EINVAL);
24885 	}
24886 
24887 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24888 	    (un->un_state == SD_STATE_OFFLINE)) {
24889 		return (ENXIO);
24890 	}
24891 
24892 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
24893 		return (EFAULT);
24894 	}
24895 
24896 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
24897 	bzero(cdb, CDB_GROUP1);
24898 	cdb[0] = SCMD_READ_SUBCHANNEL;
24899 	/* Set the MSF bit based on the user requested address format */
24900 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
24901 	/*
24902 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
24903 	 * returned
24904 	 */
24905 	cdb[2] = 0x40;
24906 	/*
24907 	 * Set byte 3 to specify the return data format. A value of 0x01
24908 	 * indicates that the CD-ROM current position should be returned.
24909 	 */
24910 	cdb[3] = 0x01;
24911 	cdb[8] = 0x10;
24912 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24913 	com->uscsi_cdb	   = cdb;
24914 	com->uscsi_cdblen  = CDB_GROUP1;
24915 	com->uscsi_bufaddr = buffer;
24916 	com->uscsi_buflen  = 16;
24917 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24918 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24919 	    SD_PATH_STANDARD);
24920 	if (rval != 0) {
24921 		kmem_free(buffer, 16);
24922 		kmem_free(com, sizeof (*com));
24923 		return (rval);
24924 	}
24925 
24926 	/* Process the returned Q sub-channel data */
24927 	subchnl->cdsc_audiostatus = buffer[1];
24928 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
24929 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
24930 	subchnl->cdsc_trk	= buffer[6];
24931 	subchnl->cdsc_ind	= buffer[7];
24932 	if (subchnl->cdsc_format & CDROM_LBA) {
24933 		subchnl->cdsc_absaddr.lba =
24934 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
24935 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
24936 		subchnl->cdsc_reladdr.lba =
24937 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
24938 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
24939 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
24940 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
24941 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
24942 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
24943 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
24944 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
24945 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
24946 	} else {
24947 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
24948 		subchnl->cdsc_absaddr.msf.second = buffer[10];
24949 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
24950 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
24951 		subchnl->cdsc_reladdr.msf.second = buffer[14];
24952 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
24953 	}
24954 	kmem_free(buffer, 16);
24955 	kmem_free(com, sizeof (*com));
24956 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
24957 	    != 0) {
24958 		return (EFAULT);
24959 	}
24960 	return (rval);
24961 }
24962 
24963 
24964 /*
24965  *    Function: sr_read_tocentry()
24966  *
24967  * Description: This routine is the driver entry point for handling CD-ROM
24968  *		ioctl requests to read from the Table of Contents (TOC)
24969  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
24970  *		fields, the starting address (LBA or MSF format per the user)
24971  *		and the data mode if the user specified track is a data track.
24972  *
24973  *		Note: The READ HEADER (0x44) command used in this routine is
24974  *		obsolete per the SCSI MMC spec but still supported in the
24975  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
24976  *		therefore the command is still implemented in this routine.
24977  *
24978  *   Arguments: dev	- the device 'dev_t'
24979  *		data	- pointer to user provided toc entry structure,
24980  *			  specifying the track # and the address format
24981  *			  (LBA or MSF).
24982  *		flag	- this argument is a pass through to ddi_copyxxx()
24983  *		          directly from the mode argument of ioctl().
24984  *
24985  * Return Code: the code returned by sd_send_scsi_cmd()
24986  *		EFAULT if ddi_copyxxx() fails
24987  *		ENXIO if fail ddi_get_soft_state
24988  *		EINVAL if data pointer is NULL
24989  */
24990 
24991 static int
24992 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
24993 {
24994 	struct sd_lun		*un = NULL;
24995 	struct uscsi_cmd	*com;
24996 	struct cdrom_tocentry	toc_entry;
24997 	struct cdrom_tocentry	*entry = &toc_entry;
24998 	caddr_t			buffer;
24999 	int			rval;
25000 	char			cdb[CDB_GROUP1];
25001 
25002 	if (data == NULL) {
25003 		return (EINVAL);
25004 	}
25005 
25006 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25007 	    (un->un_state == SD_STATE_OFFLINE)) {
25008 		return (ENXIO);
25009 	}
25010 
25011 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
25012 		return (EFAULT);
25013 	}
25014 
25015 	/* Validate the requested track and address format */
25016 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
25017 		return (EINVAL);
25018 	}
25019 
25020 	if (entry->cdte_track == 0) {
25021 		return (EINVAL);
25022 	}
25023 
25024 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
25025 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25026 	bzero(cdb, CDB_GROUP1);
25027 
25028 	cdb[0] = SCMD_READ_TOC;
25029 	/* Set the MSF bit based on the user requested address format  */
25030 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
25031 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
25032 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
25033 	} else {
25034 		cdb[6] = entry->cdte_track;
25035 	}
25036 
25037 	/*
25038 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
25039 	 * (4 byte TOC response header + 8 byte track descriptor)
25040 	 */
25041 	cdb[8] = 12;
25042 	com->uscsi_cdb	   = cdb;
25043 	com->uscsi_cdblen  = CDB_GROUP1;
25044 	com->uscsi_bufaddr = buffer;
25045 	com->uscsi_buflen  = 0x0C;
25046 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
25047 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25048 	    SD_PATH_STANDARD);
25049 	if (rval != 0) {
25050 		kmem_free(buffer, 12);
25051 		kmem_free(com, sizeof (*com));
25052 		return (rval);
25053 	}
25054 
25055 	/* Process the toc entry */
25056 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
25057 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
25058 	if (entry->cdte_format & CDROM_LBA) {
25059 		entry->cdte_addr.lba =
25060 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
25061 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
25062 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
25063 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
25064 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
25065 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
25066 		/*
25067 		 * Send a READ TOC command using the LBA address format to get
25068 		 * the LBA for the track requested so it can be used in the
25069 		 * READ HEADER request
25070 		 *
25071 		 * Note: The MSF bit of the READ HEADER command specifies the
25072 		 * output format. The block address specified in that command
25073 		 * must be in LBA format.
25074 		 */
25075 		cdb[1] = 0;
25076 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25077 		    SD_PATH_STANDARD);
25078 		if (rval != 0) {
25079 			kmem_free(buffer, 12);
25080 			kmem_free(com, sizeof (*com));
25081 			return (rval);
25082 		}
25083 	} else {
25084 		entry->cdte_addr.msf.minute	= buffer[9];
25085 		entry->cdte_addr.msf.second	= buffer[10];
25086 		entry->cdte_addr.msf.frame	= buffer[11];
25087 		/*
25088 		 * Send a READ TOC command using the LBA address format to get
25089 		 * the LBA for the track requested so it can be used in the
25090 		 * READ HEADER request
25091 		 *
25092 		 * Note: The MSF bit of the READ HEADER command specifies the
25093 		 * output format. The block address specified in that command
25094 		 * must be in LBA format.
25095 		 */
25096 		cdb[1] = 0;
25097 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25098 		    SD_PATH_STANDARD);
25099 		if (rval != 0) {
25100 			kmem_free(buffer, 12);
25101 			kmem_free(com, sizeof (*com));
25102 			return (rval);
25103 		}
25104 	}
25105 
25106 	/*
25107 	 * Build and send the READ HEADER command to determine the data mode of
25108 	 * the user specified track.
25109 	 */
25110 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
25111 	    (entry->cdte_track != CDROM_LEADOUT)) {
25112 		bzero(cdb, CDB_GROUP1);
25113 		cdb[0] = SCMD_READ_HEADER;
25114 		cdb[2] = buffer[8];
25115 		cdb[3] = buffer[9];
25116 		cdb[4] = buffer[10];
25117 		cdb[5] = buffer[11];
25118 		cdb[8] = 0x08;
25119 		com->uscsi_buflen = 0x08;
25120 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25121 		    SD_PATH_STANDARD);
25122 		if (rval == 0) {
25123 			entry->cdte_datamode = buffer[0];
25124 		} else {
25125 			/*
25126 			 * READ HEADER command failed, since this is
25127 			 * obsoleted in one spec, its better to return
25128 			 * -1 for an invlid track so that we can still
25129 			 * receive the rest of the TOC data.
25130 			 */
25131 			entry->cdte_datamode = (uchar_t)-1;
25132 		}
25133 	} else {
25134 		entry->cdte_datamode = (uchar_t)-1;
25135 	}
25136 
25137 	kmem_free(buffer, 12);
25138 	kmem_free(com, sizeof (*com));
25139 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
25140 		return (EFAULT);
25141 
25142 	return (rval);
25143 }
25144 
25145 
25146 /*
25147  *    Function: sr_read_tochdr()
25148  *
25149  * Description: This routine is the driver entry point for handling CD-ROM
25150  * 		ioctl requests to read the Table of Contents (TOC) header
25151  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
25152  *		and ending track numbers
25153  *
25154  *   Arguments: dev	- the device 'dev_t'
25155  *		data	- pointer to user provided toc header structure,
25156  *			  specifying the starting and ending track numbers.
25157  *		flag	- this argument is a pass through to ddi_copyxxx()
25158  *			  directly from the mode argument of ioctl().
25159  *
25160  * Return Code: the code returned by sd_send_scsi_cmd()
25161  *		EFAULT if ddi_copyxxx() fails
25162  *		ENXIO if fail ddi_get_soft_state
25163  *		EINVAL if data pointer is NULL
25164  */
25165 
25166 static int
25167 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
25168 {
25169 	struct sd_lun		*un;
25170 	struct uscsi_cmd	*com;
25171 	struct cdrom_tochdr	toc_header;
25172 	struct cdrom_tochdr	*hdr = &toc_header;
25173 	char			cdb[CDB_GROUP1];
25174 	int			rval;
25175 	caddr_t			buffer;
25176 
25177 	if (data == NULL) {
25178 		return (EINVAL);
25179 	}
25180 
25181 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25182 	    (un->un_state == SD_STATE_OFFLINE)) {
25183 		return (ENXIO);
25184 	}
25185 
25186 	buffer = kmem_zalloc(4, KM_SLEEP);
25187 	bzero(cdb, CDB_GROUP1);
25188 	cdb[0] = SCMD_READ_TOC;
25189 	/*
25190 	 * Specifying a track number of 0x00 in the READ TOC command indicates
25191 	 * that the TOC header should be returned
25192 	 */
25193 	cdb[6] = 0x00;
25194 	/*
25195 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
25196 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
25197 	 */
25198 	cdb[8] = 0x04;
25199 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25200 	com->uscsi_cdb	   = cdb;
25201 	com->uscsi_cdblen  = CDB_GROUP1;
25202 	com->uscsi_bufaddr = buffer;
25203 	com->uscsi_buflen  = 0x04;
25204 	com->uscsi_timeout = 300;
25205 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25206 
25207 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25208 	    SD_PATH_STANDARD);
25209 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
25210 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
25211 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
25212 	} else {
25213 		hdr->cdth_trk0 = buffer[2];
25214 		hdr->cdth_trk1 = buffer[3];
25215 	}
25216 	kmem_free(buffer, 4);
25217 	kmem_free(com, sizeof (*com));
25218 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
25219 		return (EFAULT);
25220 	}
25221 	return (rval);
25222 }
25223 
25224 
25225 /*
25226  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
25227  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
25228  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
25229  * digital audio and extended architecture digital audio. These modes are
25230  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
25231  * MMC specs.
25232  *
25233  * In addition to support for the various data formats these routines also
25234  * include support for devices that implement only the direct access READ
25235  * commands (0x08, 0x28), devices that implement the READ_CD commands
25236  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
25237  * READ CDXA commands (0xD8, 0xDB)
25238  */
25239 
25240 /*
25241  *    Function: sr_read_mode1()
25242  *
25243  * Description: This routine is the driver entry point for handling CD-ROM
25244  *		ioctl read mode1 requests (CDROMREADMODE1).
25245  *
25246  *   Arguments: dev	- the device 'dev_t'
25247  *		data	- pointer to user provided cd read structure specifying
25248  *			  the lba buffer address and length.
25249  *		flag	- this argument is a pass through to ddi_copyxxx()
25250  *			  directly from the mode argument of ioctl().
25251  *
25252  * Return Code: the code returned by sd_send_scsi_cmd()
25253  *		EFAULT if ddi_copyxxx() fails
25254  *		ENXIO if fail ddi_get_soft_state
25255  *		EINVAL if data pointer is NULL
25256  */
25257 
25258 static int
25259 sr_read_mode1(dev_t dev, caddr_t data, int flag)
25260 {
25261 	struct sd_lun		*un;
25262 	struct cdrom_read	mode1_struct;
25263 	struct cdrom_read	*mode1 = &mode1_struct;
25264 	int			rval;
25265 #ifdef _MULTI_DATAMODEL
25266 	/* To support ILP32 applications in an LP64 world */
25267 	struct cdrom_read32	cdrom_read32;
25268 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
25269 #endif /* _MULTI_DATAMODEL */
25270 
25271 	if (data == NULL) {
25272 		return (EINVAL);
25273 	}
25274 
25275 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25276 	    (un->un_state == SD_STATE_OFFLINE)) {
25277 		return (ENXIO);
25278 	}
25279 
25280 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
25281 	    "sd_read_mode1: entry: un:0x%p\n", un);
25282 
25283 #ifdef _MULTI_DATAMODEL
25284 	switch (ddi_model_convert_from(flag & FMODELS)) {
25285 	case DDI_MODEL_ILP32:
25286 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
25287 			return (EFAULT);
25288 		}
25289 		/* Convert the ILP32 uscsi data from the application to LP64 */
25290 		cdrom_read32tocdrom_read(cdrd32, mode1);
25291 		break;
25292 	case DDI_MODEL_NONE:
25293 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
25294 			return (EFAULT);
25295 		}
25296 	}
25297 #else /* ! _MULTI_DATAMODEL */
25298 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
25299 		return (EFAULT);
25300 	}
25301 #endif /* _MULTI_DATAMODEL */
25302 
25303 	rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr,
25304 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
25305 
25306 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
25307 	    "sd_read_mode1: exit: un:0x%p\n", un);
25308 
25309 	return (rval);
25310 }
25311 
25312 
25313 /*
25314  *    Function: sr_read_cd_mode2()
25315  *
25316  * Description: This routine is the driver entry point for handling CD-ROM
25317  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
25318  *		support the READ CD (0xBE) command or the 1st generation
25319  *		READ CD (0xD4) command.
25320  *
25321  *   Arguments: dev	- the device 'dev_t'
25322  *		data	- pointer to user provided cd read structure specifying
25323  *			  the lba buffer address and length.
25324  *		flag	- this argument is a pass through to ddi_copyxxx()
25325  *			  directly from the mode argument of ioctl().
25326  *
25327  * Return Code: the code returned by sd_send_scsi_cmd()
25328  *		EFAULT if ddi_copyxxx() fails
25329  *		ENXIO if fail ddi_get_soft_state
25330  *		EINVAL if data pointer is NULL
25331  */
25332 
25333 static int
25334 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
25335 {
25336 	struct sd_lun		*un;
25337 	struct uscsi_cmd	*com;
25338 	struct cdrom_read	mode2_struct;
25339 	struct cdrom_read	*mode2 = &mode2_struct;
25340 	uchar_t			cdb[CDB_GROUP5];
25341 	int			nblocks;
25342 	int			rval;
25343 #ifdef _MULTI_DATAMODEL
25344 	/*  To support ILP32 applications in an LP64 world */
25345 	struct cdrom_read32	cdrom_read32;
25346 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
25347 #endif /* _MULTI_DATAMODEL */
25348 
25349 	if (data == NULL) {
25350 		return (EINVAL);
25351 	}
25352 
25353 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25354 	    (un->un_state == SD_STATE_OFFLINE)) {
25355 		return (ENXIO);
25356 	}
25357 
25358 #ifdef _MULTI_DATAMODEL
25359 	switch (ddi_model_convert_from(flag & FMODELS)) {
25360 	case DDI_MODEL_ILP32:
25361 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
25362 			return (EFAULT);
25363 		}
25364 		/* Convert the ILP32 uscsi data from the application to LP64 */
25365 		cdrom_read32tocdrom_read(cdrd32, mode2);
25366 		break;
25367 	case DDI_MODEL_NONE:
25368 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
25369 			return (EFAULT);
25370 		}
25371 		break;
25372 	}
25373 
25374 #else /* ! _MULTI_DATAMODEL */
25375 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
25376 		return (EFAULT);
25377 	}
25378 #endif /* _MULTI_DATAMODEL */
25379 
25380 	bzero(cdb, sizeof (cdb));
25381 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
25382 		/* Read command supported by 1st generation atapi drives */
25383 		cdb[0] = SCMD_READ_CDD4;
25384 	} else {
25385 		/* Universal CD Access Command */
25386 		cdb[0] = SCMD_READ_CD;
25387 	}
25388 
25389 	/*
25390 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
25391 	 */
25392 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
25393 
25394 	/* set the start address */
25395 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
25396 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
25397 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
25398 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
25399 
25400 	/* set the transfer length */
25401 	nblocks = mode2->cdread_buflen / 2336;
25402 	cdb[6] = (uchar_t)(nblocks >> 16);
25403 	cdb[7] = (uchar_t)(nblocks >> 8);
25404 	cdb[8] = (uchar_t)nblocks;
25405 
25406 	/* set the filter bits */
25407 	cdb[9] = CDROM_READ_CD_USERDATA;
25408 
25409 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25410 	com->uscsi_cdb = (caddr_t)cdb;
25411 	com->uscsi_cdblen = sizeof (cdb);
25412 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
25413 	com->uscsi_buflen = mode2->cdread_buflen;
25414 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25415 
25416 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25417 	    SD_PATH_STANDARD);
25418 	kmem_free(com, sizeof (*com));
25419 	return (rval);
25420 }
25421 
25422 
25423 /*
25424  *    Function: sr_read_mode2()
25425  *
25426  * Description: This routine is the driver entry point for handling CD-ROM
25427  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
25428  *		do not support the READ CD (0xBE) command.
25429  *
25430  *   Arguments: dev	- the device 'dev_t'
25431  *		data	- pointer to user provided cd read structure specifying
25432  *			  the lba buffer address and length.
25433  *		flag	- this argument is a pass through to ddi_copyxxx()
25434  *			  directly from the mode argument of ioctl().
25435  *
25436  * Return Code: the code returned by sd_send_scsi_cmd()
25437  *		EFAULT if ddi_copyxxx() fails
25438  *		ENXIO if fail ddi_get_soft_state
25439  *		EINVAL if data pointer is NULL
25440  *		EIO if fail to reset block size
25441  *		EAGAIN if commands are in progress in the driver
25442  */
25443 
25444 static int
25445 sr_read_mode2(dev_t dev, caddr_t data, int flag)
25446 {
25447 	struct sd_lun		*un;
25448 	struct cdrom_read	mode2_struct;
25449 	struct cdrom_read	*mode2 = &mode2_struct;
25450 	int			rval;
25451 	uint32_t		restore_blksize;
25452 	struct uscsi_cmd	*com;
25453 	uchar_t			cdb[CDB_GROUP0];
25454 	int			nblocks;
25455 
25456 #ifdef _MULTI_DATAMODEL
25457 	/* To support ILP32 applications in an LP64 world */
25458 	struct cdrom_read32	cdrom_read32;
25459 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
25460 #endif /* _MULTI_DATAMODEL */
25461 
25462 	if (data == NULL) {
25463 		return (EINVAL);
25464 	}
25465 
25466 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25467 	    (un->un_state == SD_STATE_OFFLINE)) {
25468 		return (ENXIO);
25469 	}
25470 
25471 	/*
25472 	 * Because this routine will update the device and driver block size
25473 	 * being used we want to make sure there are no commands in progress.
25474 	 * If commands are in progress the user will have to try again.
25475 	 *
25476 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
25477 	 * in sdioctl to protect commands from sdioctl through to the top of
25478 	 * sd_uscsi_strategy. See sdioctl for details.
25479 	 */
25480 	mutex_enter(SD_MUTEX(un));
25481 	if (un->un_ncmds_in_driver != 1) {
25482 		mutex_exit(SD_MUTEX(un));
25483 		return (EAGAIN);
25484 	}
25485 	mutex_exit(SD_MUTEX(un));
25486 
25487 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
25488 	    "sd_read_mode2: entry: un:0x%p\n", un);
25489 
25490 #ifdef _MULTI_DATAMODEL
25491 	switch (ddi_model_convert_from(flag & FMODELS)) {
25492 	case DDI_MODEL_ILP32:
25493 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
25494 			return (EFAULT);
25495 		}
25496 		/* Convert the ILP32 uscsi data from the application to LP64 */
25497 		cdrom_read32tocdrom_read(cdrd32, mode2);
25498 		break;
25499 	case DDI_MODEL_NONE:
25500 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
25501 			return (EFAULT);
25502 		}
25503 		break;
25504 	}
25505 #else /* ! _MULTI_DATAMODEL */
25506 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
25507 		return (EFAULT);
25508 	}
25509 #endif /* _MULTI_DATAMODEL */
25510 
25511 	/* Store the current target block size for restoration later */
25512 	restore_blksize = un->un_tgt_blocksize;
25513 
25514 	/* Change the device and soft state target block size to 2336 */
25515 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
25516 		rval = EIO;
25517 		goto done;
25518 	}
25519 
25520 
25521 	bzero(cdb, sizeof (cdb));
25522 
25523 	/* set READ operation */
25524 	cdb[0] = SCMD_READ;
25525 
25526 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
25527 	mode2->cdread_lba >>= 2;
25528 
25529 	/* set the start address */
25530 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
25531 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
25532 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
25533 
25534 	/* set the transfer length */
25535 	nblocks = mode2->cdread_buflen / 2336;
25536 	cdb[4] = (uchar_t)nblocks & 0xFF;
25537 
25538 	/* build command */
25539 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25540 	com->uscsi_cdb = (caddr_t)cdb;
25541 	com->uscsi_cdblen = sizeof (cdb);
25542 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
25543 	com->uscsi_buflen = mode2->cdread_buflen;
25544 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25545 
25546 	/*
25547 	 * Issue SCSI command with user space address for read buffer.
25548 	 *
25549 	 * This sends the command through main channel in the driver.
25550 	 *
25551 	 * Since this is accessed via an IOCTL call, we go through the
25552 	 * standard path, so that if the device was powered down, then
25553 	 * it would be 'awakened' to handle the command.
25554 	 */
25555 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25556 	    SD_PATH_STANDARD);
25557 
25558 	kmem_free(com, sizeof (*com));
25559 
25560 	/* Restore the device and soft state target block size */
25561 	if (sr_sector_mode(dev, restore_blksize) != 0) {
25562 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25563 		    "can't do switch back to mode 1\n");
25564 		/*
25565 		 * If sd_send_scsi_READ succeeded we still need to report
25566 		 * an error because we failed to reset the block size
25567 		 */
25568 		if (rval == 0) {
25569 			rval = EIO;
25570 		}
25571 	}
25572 
25573 done:
25574 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
25575 	    "sd_read_mode2: exit: un:0x%p\n", un);
25576 
25577 	return (rval);
25578 }
25579 
25580 
25581 /*
25582  *    Function: sr_sector_mode()
25583  *
25584  * Description: This utility function is used by sr_read_mode2 to set the target
25585  *		block size based on the user specified size. This is a legacy
25586  *		implementation based upon a vendor specific mode page
25587  *
25588  *   Arguments: dev	- the device 'dev_t'
25589  *		data	- flag indicating if block size is being set to 2336 or
25590  *			  512.
25591  *
25592  * Return Code: the code returned by sd_send_scsi_cmd()
25593  *		EFAULT if ddi_copyxxx() fails
25594  *		ENXIO if fail ddi_get_soft_state
25595  *		EINVAL if data pointer is NULL
25596  */
25597 
25598 static int
25599 sr_sector_mode(dev_t dev, uint32_t blksize)
25600 {
25601 	struct sd_lun	*un;
25602 	uchar_t		*sense;
25603 	uchar_t		*select;
25604 	int		rval;
25605 
25606 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25607 	    (un->un_state == SD_STATE_OFFLINE)) {
25608 		return (ENXIO);
25609 	}
25610 
25611 	sense = kmem_zalloc(20, KM_SLEEP);
25612 
25613 	/* Note: This is a vendor specific mode page (0x81) */
25614 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81,
25615 	    SD_PATH_STANDARD)) != 0) {
25616 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
25617 		    "sr_sector_mode: Mode Sense failed\n");
25618 		kmem_free(sense, 20);
25619 		return (rval);
25620 	}
25621 	select = kmem_zalloc(20, KM_SLEEP);
25622 	select[3] = 0x08;
25623 	select[10] = ((blksize >> 8) & 0xff);
25624 	select[11] = (blksize & 0xff);
25625 	select[12] = 0x01;
25626 	select[13] = 0x06;
25627 	select[14] = sense[14];
25628 	select[15] = sense[15];
25629 	if (blksize == SD_MODE2_BLKSIZE) {
25630 		select[14] |= 0x01;
25631 	}
25632 
25633 	if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20,
25634 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
25635 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
25636 		    "sr_sector_mode: Mode Select failed\n");
25637 	} else {
25638 		/*
25639 		 * Only update the softstate block size if we successfully
25640 		 * changed the device block mode.
25641 		 */
25642 		mutex_enter(SD_MUTEX(un));
25643 		sd_update_block_info(un, blksize, 0);
25644 		mutex_exit(SD_MUTEX(un));
25645 	}
25646 	kmem_free(sense, 20);
25647 	kmem_free(select, 20);
25648 	return (rval);
25649 }
25650 
25651 
25652 /*
25653  *    Function: sr_read_cdda()
25654  *
25655  * Description: This routine is the driver entry point for handling CD-ROM
25656  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
25657  *		the target supports CDDA these requests are handled via a vendor
25658  *		specific command (0xD8) If the target does not support CDDA
25659  *		these requests are handled via the READ CD command (0xBE).
25660  *
25661  *   Arguments: dev	- the device 'dev_t'
25662  *		data	- pointer to user provided CD-DA structure specifying
25663  *			  the track starting address, transfer length, and
25664  *			  subcode options.
25665  *		flag	- this argument is a pass through to ddi_copyxxx()
25666  *			  directly from the mode argument of ioctl().
25667  *
25668  * Return Code: the code returned by sd_send_scsi_cmd()
25669  *		EFAULT if ddi_copyxxx() fails
25670  *		ENXIO if fail ddi_get_soft_state
25671  *		EINVAL if invalid arguments are provided
25672  *		ENOTTY
25673  */
25674 
25675 static int
25676 sr_read_cdda(dev_t dev, caddr_t data, int flag)
25677 {
25678 	struct sd_lun			*un;
25679 	struct uscsi_cmd		*com;
25680 	struct cdrom_cdda		*cdda;
25681 	int				rval;
25682 	size_t				buflen;
25683 	char				cdb[CDB_GROUP5];
25684 
25685 #ifdef _MULTI_DATAMODEL
25686 	/* To support ILP32 applications in an LP64 world */
25687 	struct cdrom_cdda32	cdrom_cdda32;
25688 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
25689 #endif /* _MULTI_DATAMODEL */
25690 
25691 	if (data == NULL) {
25692 		return (EINVAL);
25693 	}
25694 
25695 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25696 		return (ENXIO);
25697 	}
25698 
25699 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
25700 
25701 #ifdef _MULTI_DATAMODEL
25702 	switch (ddi_model_convert_from(flag & FMODELS)) {
25703 	case DDI_MODEL_ILP32:
25704 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
25705 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25706 			    "sr_read_cdda: ddi_copyin Failed\n");
25707 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25708 			return (EFAULT);
25709 		}
25710 		/* Convert the ILP32 uscsi data from the application to LP64 */
25711 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
25712 		break;
25713 	case DDI_MODEL_NONE:
25714 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
25715 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25716 			    "sr_read_cdda: ddi_copyin Failed\n");
25717 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25718 			return (EFAULT);
25719 		}
25720 		break;
25721 	}
25722 #else /* ! _MULTI_DATAMODEL */
25723 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
25724 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25725 		    "sr_read_cdda: ddi_copyin Failed\n");
25726 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25727 		return (EFAULT);
25728 	}
25729 #endif /* _MULTI_DATAMODEL */
25730 
25731 	/*
25732 	 * Since MMC-2 expects max 3 bytes for length, check if the
25733 	 * length input is greater than 3 bytes
25734 	 */
25735 	if ((cdda->cdda_length & 0xFF000000) != 0) {
25736 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
25737 		    "cdrom transfer length too large: %d (limit %d)\n",
25738 		    cdda->cdda_length, 0xFFFFFF);
25739 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25740 		return (EINVAL);
25741 	}
25742 
25743 	switch (cdda->cdda_subcode) {
25744 	case CDROM_DA_NO_SUBCODE:
25745 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
25746 		break;
25747 	case CDROM_DA_SUBQ:
25748 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
25749 		break;
25750 	case CDROM_DA_ALL_SUBCODE:
25751 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
25752 		break;
25753 	case CDROM_DA_SUBCODE_ONLY:
25754 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
25755 		break;
25756 	default:
25757 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25758 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
25759 		    cdda->cdda_subcode);
25760 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25761 		return (EINVAL);
25762 	}
25763 
25764 	/* Build and send the command */
25765 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25766 	bzero(cdb, CDB_GROUP5);
25767 
25768 	if (un->un_f_cfg_cdda == TRUE) {
25769 		cdb[0] = (char)SCMD_READ_CD;
25770 		cdb[1] = 0x04;
25771 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
25772 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
25773 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
25774 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
25775 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
25776 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
25777 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
25778 		cdb[9] = 0x10;
25779 		switch (cdda->cdda_subcode) {
25780 		case CDROM_DA_NO_SUBCODE :
25781 			cdb[10] = 0x0;
25782 			break;
25783 		case CDROM_DA_SUBQ :
25784 			cdb[10] = 0x2;
25785 			break;
25786 		case CDROM_DA_ALL_SUBCODE :
25787 			cdb[10] = 0x1;
25788 			break;
25789 		case CDROM_DA_SUBCODE_ONLY :
25790 			/* FALLTHROUGH */
25791 		default :
25792 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25793 			kmem_free(com, sizeof (*com));
25794 			return (ENOTTY);
25795 		}
25796 	} else {
25797 		cdb[0] = (char)SCMD_READ_CDDA;
25798 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
25799 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
25800 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
25801 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
25802 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
25803 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
25804 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
25805 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
25806 		cdb[10] = cdda->cdda_subcode;
25807 	}
25808 
25809 	com->uscsi_cdb = cdb;
25810 	com->uscsi_cdblen = CDB_GROUP5;
25811 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
25812 	com->uscsi_buflen = buflen;
25813 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25814 
25815 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25816 	    SD_PATH_STANDARD);
25817 
25818 	kmem_free(cdda, sizeof (struct cdrom_cdda));
25819 	kmem_free(com, sizeof (*com));
25820 	return (rval);
25821 }
25822 
25823 
25824 /*
25825  *    Function: sr_read_cdxa()
25826  *
25827  * Description: This routine is the driver entry point for handling CD-ROM
25828  *		ioctl requests to return CD-XA (Extended Architecture) data.
25829  *		(CDROMCDXA).
25830  *
25831  *   Arguments: dev	- the device 'dev_t'
25832  *		data	- pointer to user provided CD-XA structure specifying
25833  *			  the data starting address, transfer length, and format
25834  *		flag	- this argument is a pass through to ddi_copyxxx()
25835  *			  directly from the mode argument of ioctl().
25836  *
25837  * Return Code: the code returned by sd_send_scsi_cmd()
25838  *		EFAULT if ddi_copyxxx() fails
25839  *		ENXIO if fail ddi_get_soft_state
25840  *		EINVAL if data pointer is NULL
25841  */
25842 
25843 static int
25844 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
25845 {
25846 	struct sd_lun		*un;
25847 	struct uscsi_cmd	*com;
25848 	struct cdrom_cdxa	*cdxa;
25849 	int			rval;
25850 	size_t			buflen;
25851 	char			cdb[CDB_GROUP5];
25852 	uchar_t			read_flags;
25853 
25854 #ifdef _MULTI_DATAMODEL
25855 	/* To support ILP32 applications in an LP64 world */
25856 	struct cdrom_cdxa32		cdrom_cdxa32;
25857 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
25858 #endif /* _MULTI_DATAMODEL */
25859 
25860 	if (data == NULL) {
25861 		return (EINVAL);
25862 	}
25863 
25864 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25865 		return (ENXIO);
25866 	}
25867 
25868 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
25869 
25870 #ifdef _MULTI_DATAMODEL
25871 	switch (ddi_model_convert_from(flag & FMODELS)) {
25872 	case DDI_MODEL_ILP32:
25873 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
25874 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25875 			return (EFAULT);
25876 		}
25877 		/*
25878 		 * Convert the ILP32 uscsi data from the
25879 		 * application to LP64 for internal use.
25880 		 */
25881 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
25882 		break;
25883 	case DDI_MODEL_NONE:
25884 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
25885 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25886 			return (EFAULT);
25887 		}
25888 		break;
25889 	}
25890 #else /* ! _MULTI_DATAMODEL */
25891 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
25892 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25893 		return (EFAULT);
25894 	}
25895 #endif /* _MULTI_DATAMODEL */
25896 
25897 	/*
25898 	 * Since MMC-2 expects max 3 bytes for length, check if the
25899 	 * length input is greater than 3 bytes
25900 	 */
25901 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
25902 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
25903 		    "cdrom transfer length too large: %d (limit %d)\n",
25904 		    cdxa->cdxa_length, 0xFFFFFF);
25905 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25906 		return (EINVAL);
25907 	}
25908 
25909 	switch (cdxa->cdxa_format) {
25910 	case CDROM_XA_DATA:
25911 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
25912 		read_flags = 0x10;
25913 		break;
25914 	case CDROM_XA_SECTOR_DATA:
25915 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
25916 		read_flags = 0xf8;
25917 		break;
25918 	case CDROM_XA_DATA_W_ERROR:
25919 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
25920 		read_flags = 0xfc;
25921 		break;
25922 	default:
25923 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25924 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
25925 		    cdxa->cdxa_format);
25926 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25927 		return (EINVAL);
25928 	}
25929 
25930 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25931 	bzero(cdb, CDB_GROUP5);
25932 	if (un->un_f_mmc_cap == TRUE) {
25933 		cdb[0] = (char)SCMD_READ_CD;
25934 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
25935 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
25936 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
25937 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
25938 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
25939 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
25940 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
25941 		cdb[9] = (char)read_flags;
25942 	} else {
25943 		/*
25944 		 * Note: A vendor specific command (0xDB) is being used her to
25945 		 * request a read of all subcodes.
25946 		 */
25947 		cdb[0] = (char)SCMD_READ_CDXA;
25948 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
25949 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
25950 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
25951 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
25952 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
25953 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
25954 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
25955 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
25956 		cdb[10] = cdxa->cdxa_format;
25957 	}
25958 	com->uscsi_cdb	   = cdb;
25959 	com->uscsi_cdblen  = CDB_GROUP5;
25960 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
25961 	com->uscsi_buflen  = buflen;
25962 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25963 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25964 	    SD_PATH_STANDARD);
25965 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25966 	kmem_free(com, sizeof (*com));
25967 	return (rval);
25968 }
25969 
25970 
25971 /*
25972  *    Function: sr_eject()
25973  *
25974  * Description: This routine is the driver entry point for handling CD-ROM
25975  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
25976  *
25977  *   Arguments: dev	- the device 'dev_t'
25978  *
25979  * Return Code: the code returned by sd_send_scsi_cmd()
25980  */
25981 
25982 static int
25983 sr_eject(dev_t dev)
25984 {
25985 	struct sd_lun	*un;
25986 	int		rval;
25987 
25988 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25989 	    (un->un_state == SD_STATE_OFFLINE)) {
25990 		return (ENXIO);
25991 	}
25992 
25993 	/*
25994 	 * To prevent race conditions with the eject
25995 	 * command, keep track of an eject command as
25996 	 * it progresses. If we are already handling
25997 	 * an eject command in the driver for the given
25998 	 * unit and another request to eject is received
25999 	 * immediately return EAGAIN so we don't lose
26000 	 * the command if the current eject command fails.
26001 	 */
26002 	mutex_enter(SD_MUTEX(un));
26003 	if (un->un_f_ejecting == TRUE) {
26004 		mutex_exit(SD_MUTEX(un));
26005 		return (EAGAIN);
26006 	}
26007 	un->un_f_ejecting = TRUE;
26008 	mutex_exit(SD_MUTEX(un));
26009 
26010 	if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
26011 	    SD_PATH_STANDARD)) != 0) {
26012 		mutex_enter(SD_MUTEX(un));
26013 		un->un_f_ejecting = FALSE;
26014 		mutex_exit(SD_MUTEX(un));
26015 		return (rval);
26016 	}
26017 
26018 	rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT,
26019 	    SD_PATH_STANDARD);
26020 
26021 	if (rval == 0) {
26022 		mutex_enter(SD_MUTEX(un));
26023 		sr_ejected(un);
26024 		un->un_mediastate = DKIO_EJECTED;
26025 		un->un_f_ejecting = FALSE;
26026 		cv_broadcast(&un->un_state_cv);
26027 		mutex_exit(SD_MUTEX(un));
26028 	} else {
26029 		mutex_enter(SD_MUTEX(un));
26030 		un->un_f_ejecting = FALSE;
26031 		mutex_exit(SD_MUTEX(un));
26032 	}
26033 	return (rval);
26034 }
26035 
26036 
26037 /*
26038  *    Function: sr_ejected()
26039  *
26040  * Description: This routine updates the soft state structure to invalidate the
26041  *		geometry information after the media has been ejected or a
26042  *		media eject has been detected.
26043  *
26044  *   Arguments: un - driver soft state (unit) structure
26045  */
26046 
26047 static void
26048 sr_ejected(struct sd_lun *un)
26049 {
26050 	struct sd_errstats *stp;
26051 
26052 	ASSERT(un != NULL);
26053 	ASSERT(mutex_owned(SD_MUTEX(un)));
26054 
26055 	un->un_f_blockcount_is_valid	= FALSE;
26056 	un->un_f_tgt_blocksize_is_valid	= FALSE;
26057 	mutex_exit(SD_MUTEX(un));
26058 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
26059 	mutex_enter(SD_MUTEX(un));
26060 
26061 	if (un->un_errstats != NULL) {
26062 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
26063 		stp->sd_capacity.value.ui64 = 0;
26064 	}
26065 
26066 	/* remove "capacity-of-device" properties */
26067 	(void) ddi_prop_remove(DDI_DEV_T_NONE, SD_DEVINFO(un),
26068 	    "device-nblocks");
26069 	(void) ddi_prop_remove(DDI_DEV_T_NONE, SD_DEVINFO(un),
26070 	    "device-blksize");
26071 }
26072 
26073 
26074 /*
26075  *    Function: sr_check_wp()
26076  *
26077  * Description: This routine checks the write protection of a removable
26078  *      media disk and hotpluggable devices via the write protect bit of
26079  *      the Mode Page Header device specific field. Some devices choke
26080  *      on unsupported mode page. In order to workaround this issue,
26081  *      this routine has been implemented to use 0x3f mode page(request
26082  *      for all pages) for all device types.
26083  *
26084  *   Arguments: dev		- the device 'dev_t'
26085  *
26086  * Return Code: int indicating if the device is write protected (1) or not (0)
26087  *
26088  *     Context: Kernel thread.
26089  *
26090  */
26091 
26092 static int
26093 sr_check_wp(dev_t dev)
26094 {
26095 	struct sd_lun	*un;
26096 	uchar_t		device_specific;
26097 	uchar_t		*sense;
26098 	int		hdrlen;
26099 	int		rval = FALSE;
26100 
26101 	/*
26102 	 * Note: The return codes for this routine should be reworked to
26103 	 * properly handle the case of a NULL softstate.
26104 	 */
26105 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26106 		return (FALSE);
26107 	}
26108 
26109 	if (un->un_f_cfg_is_atapi == TRUE) {
26110 		/*
26111 		 * The mode page contents are not required; set the allocation
26112 		 * length for the mode page header only
26113 		 */
26114 		hdrlen = MODE_HEADER_LENGTH_GRP2;
26115 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
26116 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen,
26117 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
26118 			goto err_exit;
26119 		device_specific =
26120 		    ((struct mode_header_grp2 *)sense)->device_specific;
26121 	} else {
26122 		hdrlen = MODE_HEADER_LENGTH;
26123 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
26124 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen,
26125 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
26126 			goto err_exit;
26127 		device_specific =
26128 		    ((struct mode_header *)sense)->device_specific;
26129 	}
26130 
26131 	/*
26132 	 * Write protect mode sense failed; not all disks
26133 	 * understand this query. Return FALSE assuming that
26134 	 * these devices are not writable.
26135 	 */
26136 	if (device_specific & WRITE_PROTECT) {
26137 		rval = TRUE;
26138 	}
26139 
26140 err_exit:
26141 	kmem_free(sense, hdrlen);
26142 	return (rval);
26143 }
26144 
26145 /*
26146  *    Function: sr_volume_ctrl()
26147  *
26148  * Description: This routine is the driver entry point for handling CD-ROM
26149  *		audio output volume ioctl requests. (CDROMVOLCTRL)
26150  *
26151  *   Arguments: dev	- the device 'dev_t'
26152  *		data	- pointer to user audio volume control structure
26153  *		flag	- this argument is a pass through to ddi_copyxxx()
26154  *			  directly from the mode argument of ioctl().
26155  *
26156  * Return Code: the code returned by sd_send_scsi_cmd()
26157  *		EFAULT if ddi_copyxxx() fails
26158  *		ENXIO if fail ddi_get_soft_state
26159  *		EINVAL if data pointer is NULL
26160  *
26161  */
26162 
26163 static int
26164 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
26165 {
26166 	struct sd_lun		*un;
26167 	struct cdrom_volctrl    volume;
26168 	struct cdrom_volctrl    *vol = &volume;
26169 	uchar_t			*sense_page;
26170 	uchar_t			*select_page;
26171 	uchar_t			*sense;
26172 	uchar_t			*select;
26173 	int			sense_buflen;
26174 	int			select_buflen;
26175 	int			rval;
26176 
26177 	if (data == NULL) {
26178 		return (EINVAL);
26179 	}
26180 
26181 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26182 	    (un->un_state == SD_STATE_OFFLINE)) {
26183 		return (ENXIO);
26184 	}
26185 
26186 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
26187 		return (EFAULT);
26188 	}
26189 
26190 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
26191 		struct mode_header_grp2		*sense_mhp;
26192 		struct mode_header_grp2		*select_mhp;
26193 		int				bd_len;
26194 
26195 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
26196 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
26197 		    MODEPAGE_AUDIO_CTRL_LEN;
26198 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
26199 		select = kmem_zalloc(select_buflen, KM_SLEEP);
26200 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
26201 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
26202 		    SD_PATH_STANDARD)) != 0) {
26203 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
26204 			    "sr_volume_ctrl: Mode Sense Failed\n");
26205 			kmem_free(sense, sense_buflen);
26206 			kmem_free(select, select_buflen);
26207 			return (rval);
26208 		}
26209 		sense_mhp = (struct mode_header_grp2 *)sense;
26210 		select_mhp = (struct mode_header_grp2 *)select;
26211 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
26212 		    sense_mhp->bdesc_length_lo;
26213 		if (bd_len > MODE_BLK_DESC_LENGTH) {
26214 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26215 			    "sr_volume_ctrl: Mode Sense returned invalid "
26216 			    "block descriptor length\n");
26217 			kmem_free(sense, sense_buflen);
26218 			kmem_free(select, select_buflen);
26219 			return (EIO);
26220 		}
26221 		sense_page = (uchar_t *)
26222 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
26223 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
26224 		select_mhp->length_msb = 0;
26225 		select_mhp->length_lsb = 0;
26226 		select_mhp->bdesc_length_hi = 0;
26227 		select_mhp->bdesc_length_lo = 0;
26228 	} else {
26229 		struct mode_header		*sense_mhp, *select_mhp;
26230 
26231 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
26232 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
26233 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
26234 		select = kmem_zalloc(select_buflen, KM_SLEEP);
26235 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
26236 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
26237 		    SD_PATH_STANDARD)) != 0) {
26238 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26239 			    "sr_volume_ctrl: Mode Sense Failed\n");
26240 			kmem_free(sense, sense_buflen);
26241 			kmem_free(select, select_buflen);
26242 			return (rval);
26243 		}
26244 		sense_mhp  = (struct mode_header *)sense;
26245 		select_mhp = (struct mode_header *)select;
26246 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
26247 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26248 			    "sr_volume_ctrl: Mode Sense returned invalid "
26249 			    "block descriptor length\n");
26250 			kmem_free(sense, sense_buflen);
26251 			kmem_free(select, select_buflen);
26252 			return (EIO);
26253 		}
26254 		sense_page = (uchar_t *)
26255 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
26256 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
26257 		select_mhp->length = 0;
26258 		select_mhp->bdesc_length = 0;
26259 	}
26260 	/*
26261 	 * Note: An audio control data structure could be created and overlayed
26262 	 * on the following in place of the array indexing method implemented.
26263 	 */
26264 
26265 	/* Build the select data for the user volume data */
26266 	select_page[0] = MODEPAGE_AUDIO_CTRL;
26267 	select_page[1] = 0xE;
26268 	/* Set the immediate bit */
26269 	select_page[2] = 0x04;
26270 	/* Zero out reserved fields */
26271 	select_page[3] = 0x00;
26272 	select_page[4] = 0x00;
26273 	/* Return sense data for fields not to be modified */
26274 	select_page[5] = sense_page[5];
26275 	select_page[6] = sense_page[6];
26276 	select_page[7] = sense_page[7];
26277 	/* Set the user specified volume levels for channel 0 and 1 */
26278 	select_page[8] = 0x01;
26279 	select_page[9] = vol->channel0;
26280 	select_page[10] = 0x02;
26281 	select_page[11] = vol->channel1;
26282 	/* Channel 2 and 3 are currently unsupported so return the sense data */
26283 	select_page[12] = sense_page[12];
26284 	select_page[13] = sense_page[13];
26285 	select_page[14] = sense_page[14];
26286 	select_page[15] = sense_page[15];
26287 
26288 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
26289 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select,
26290 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
26291 	} else {
26292 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
26293 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
26294 	}
26295 
26296 	kmem_free(sense, sense_buflen);
26297 	kmem_free(select, select_buflen);
26298 	return (rval);
26299 }
26300 
26301 
26302 /*
26303  *    Function: sr_read_sony_session_offset()
26304  *
26305  * Description: This routine is the driver entry point for handling CD-ROM
26306  *		ioctl requests for session offset information. (CDROMREADOFFSET)
26307  *		The address of the first track in the last session of a
26308  *		multi-session CD-ROM is returned
26309  *
26310  *		Note: This routine uses a vendor specific key value in the
26311  *		command control field without implementing any vendor check here
26312  *		or in the ioctl routine.
26313  *
26314  *   Arguments: dev	- the device 'dev_t'
26315  *		data	- pointer to an int to hold the requested address
26316  *		flag	- this argument is a pass through to ddi_copyxxx()
26317  *			  directly from the mode argument of ioctl().
26318  *
26319  * Return Code: the code returned by sd_send_scsi_cmd()
26320  *		EFAULT if ddi_copyxxx() fails
26321  *		ENXIO if fail ddi_get_soft_state
26322  *		EINVAL if data pointer is NULL
26323  */
26324 
26325 static int
26326 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
26327 {
26328 	struct sd_lun		*un;
26329 	struct uscsi_cmd	*com;
26330 	caddr_t			buffer;
26331 	char			cdb[CDB_GROUP1];
26332 	int			session_offset = 0;
26333 	int			rval;
26334 
26335 	if (data == NULL) {
26336 		return (EINVAL);
26337 	}
26338 
26339 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26340 	    (un->un_state == SD_STATE_OFFLINE)) {
26341 		return (ENXIO);
26342 	}
26343 
26344 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
26345 	bzero(cdb, CDB_GROUP1);
26346 	cdb[0] = SCMD_READ_TOC;
26347 	/*
26348 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
26349 	 * (4 byte TOC response header + 8 byte response data)
26350 	 */
26351 	cdb[8] = SONY_SESSION_OFFSET_LEN;
26352 	/* Byte 9 is the control byte. A vendor specific value is used */
26353 	cdb[9] = SONY_SESSION_OFFSET_KEY;
26354 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26355 	com->uscsi_cdb = cdb;
26356 	com->uscsi_cdblen = CDB_GROUP1;
26357 	com->uscsi_bufaddr = buffer;
26358 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
26359 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
26360 
26361 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26362 	    SD_PATH_STANDARD);
26363 	if (rval != 0) {
26364 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
26365 		kmem_free(com, sizeof (*com));
26366 		return (rval);
26367 	}
26368 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
26369 		session_offset =
26370 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
26371 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
26372 		/*
26373 		 * Offset returned offset in current lbasize block's. Convert to
26374 		 * 2k block's to return to the user
26375 		 */
26376 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
26377 			session_offset >>= 2;
26378 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
26379 			session_offset >>= 1;
26380 		}
26381 	}
26382 
26383 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
26384 		rval = EFAULT;
26385 	}
26386 
26387 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
26388 	kmem_free(com, sizeof (*com));
26389 	return (rval);
26390 }
26391 
26392 
26393 /*
26394  *    Function: sd_wm_cache_constructor()
26395  *
26396  * Description: Cache Constructor for the wmap cache for the read/modify/write
26397  * 		devices.
26398  *
26399  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
26400  *		un	- sd_lun structure for the device.
26401  *		flag	- the km flags passed to constructor
26402  *
26403  * Return Code: 0 on success.
26404  *		-1 on failure.
26405  */
26406 
26407 /*ARGSUSED*/
26408 static int
26409 sd_wm_cache_constructor(void *wm, void *un, int flags)
26410 {
26411 	bzero(wm, sizeof (struct sd_w_map));
26412 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
26413 	return (0);
26414 }
26415 
26416 
26417 /*
26418  *    Function: sd_wm_cache_destructor()
26419  *
26420  * Description: Cache destructor for the wmap cache for the read/modify/write
26421  * 		devices.
26422  *
26423  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
26424  *		un	- sd_lun structure for the device.
26425  */
26426 /*ARGSUSED*/
26427 static void
26428 sd_wm_cache_destructor(void *wm, void *un)
26429 {
26430 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
26431 }
26432 
26433 
26434 /*
26435  *    Function: sd_range_lock()
26436  *
26437  * Description: Lock the range of blocks specified as parameter to ensure
26438  *		that read, modify write is atomic and no other i/o writes
26439  *		to the same location. The range is specified in terms
26440  *		of start and end blocks. Block numbers are the actual
26441  *		media block numbers and not system.
26442  *
26443  *   Arguments: un	- sd_lun structure for the device.
26444  *		startb - The starting block number
26445  *		endb - The end block number
26446  *		typ - type of i/o - simple/read_modify_write
26447  *
26448  * Return Code: wm  - pointer to the wmap structure.
26449  *
26450  *     Context: This routine can sleep.
26451  */
26452 
26453 static struct sd_w_map *
26454 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
26455 {
26456 	struct sd_w_map *wmp = NULL;
26457 	struct sd_w_map *sl_wmp = NULL;
26458 	struct sd_w_map *tmp_wmp;
26459 	wm_state state = SD_WM_CHK_LIST;
26460 
26461 
26462 	ASSERT(un != NULL);
26463 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26464 
26465 	mutex_enter(SD_MUTEX(un));
26466 
26467 	while (state != SD_WM_DONE) {
26468 
26469 		switch (state) {
26470 		case SD_WM_CHK_LIST:
26471 			/*
26472 			 * This is the starting state. Check the wmap list
26473 			 * to see if the range is currently available.
26474 			 */
26475 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
26476 				/*
26477 				 * If this is a simple write and no rmw
26478 				 * i/o is pending then try to lock the
26479 				 * range as the range should be available.
26480 				 */
26481 				state = SD_WM_LOCK_RANGE;
26482 			} else {
26483 				tmp_wmp = sd_get_range(un, startb, endb);
26484 				if (tmp_wmp != NULL) {
26485 					if ((wmp != NULL) && ONLIST(un, wmp)) {
26486 						/*
26487 						 * Should not keep onlist wmps
26488 						 * while waiting this macro
26489 						 * will also do wmp = NULL;
26490 						 */
26491 						FREE_ONLIST_WMAP(un, wmp);
26492 					}
26493 					/*
26494 					 * sl_wmp is the wmap on which wait
26495 					 * is done, since the tmp_wmp points
26496 					 * to the inuse wmap, set sl_wmp to
26497 					 * tmp_wmp and change the state to sleep
26498 					 */
26499 					sl_wmp = tmp_wmp;
26500 					state = SD_WM_WAIT_MAP;
26501 				} else {
26502 					state = SD_WM_LOCK_RANGE;
26503 				}
26504 
26505 			}
26506 			break;
26507 
26508 		case SD_WM_LOCK_RANGE:
26509 			ASSERT(un->un_wm_cache);
26510 			/*
26511 			 * The range need to be locked, try to get a wmap.
26512 			 * First attempt it with NO_SLEEP, want to avoid a sleep
26513 			 * if possible as we will have to release the sd mutex
26514 			 * if we have to sleep.
26515 			 */
26516 			if (wmp == NULL)
26517 				wmp = kmem_cache_alloc(un->un_wm_cache,
26518 				    KM_NOSLEEP);
26519 			if (wmp == NULL) {
26520 				mutex_exit(SD_MUTEX(un));
26521 				_NOTE(DATA_READABLE_WITHOUT_LOCK
26522 				    (sd_lun::un_wm_cache))
26523 				wmp = kmem_cache_alloc(un->un_wm_cache,
26524 				    KM_SLEEP);
26525 				mutex_enter(SD_MUTEX(un));
26526 				/*
26527 				 * we released the mutex so recheck and go to
26528 				 * check list state.
26529 				 */
26530 				state = SD_WM_CHK_LIST;
26531 			} else {
26532 				/*
26533 				 * We exit out of state machine since we
26534 				 * have the wmap. Do the housekeeping first.
26535 				 * place the wmap on the wmap list if it is not
26536 				 * on it already and then set the state to done.
26537 				 */
26538 				wmp->wm_start = startb;
26539 				wmp->wm_end = endb;
26540 				wmp->wm_flags = typ | SD_WM_BUSY;
26541 				if (typ & SD_WTYPE_RMW) {
26542 					un->un_rmw_count++;
26543 				}
26544 				/*
26545 				 * If not already on the list then link
26546 				 */
26547 				if (!ONLIST(un, wmp)) {
26548 					wmp->wm_next = un->un_wm;
26549 					wmp->wm_prev = NULL;
26550 					if (wmp->wm_next)
26551 						wmp->wm_next->wm_prev = wmp;
26552 					un->un_wm = wmp;
26553 				}
26554 				state = SD_WM_DONE;
26555 			}
26556 			break;
26557 
26558 		case SD_WM_WAIT_MAP:
26559 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
26560 			/*
26561 			 * Wait is done on sl_wmp, which is set in the
26562 			 * check_list state.
26563 			 */
26564 			sl_wmp->wm_wanted_count++;
26565 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
26566 			sl_wmp->wm_wanted_count--;
26567 			/*
26568 			 * We can reuse the memory from the completed sl_wmp
26569 			 * lock range for our new lock, but only if noone is
26570 			 * waiting for it.
26571 			 */
26572 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
26573 			if (sl_wmp->wm_wanted_count == 0) {
26574 				if (wmp != NULL)
26575 					CHK_N_FREEWMP(un, wmp);
26576 				wmp = sl_wmp;
26577 			}
26578 			sl_wmp = NULL;
26579 			/*
26580 			 * After waking up, need to recheck for availability of
26581 			 * range.
26582 			 */
26583 			state = SD_WM_CHK_LIST;
26584 			break;
26585 
26586 		default:
26587 			panic("sd_range_lock: "
26588 			    "Unknown state %d in sd_range_lock", state);
26589 			/*NOTREACHED*/
26590 		} /* switch(state) */
26591 
26592 	} /* while(state != SD_WM_DONE) */
26593 
26594 	mutex_exit(SD_MUTEX(un));
26595 
26596 	ASSERT(wmp != NULL);
26597 
26598 	return (wmp);
26599 }
26600 
26601 
26602 /*
26603  *    Function: sd_get_range()
26604  *
26605  * Description: Find if there any overlapping I/O to this one
26606  *		Returns the write-map of 1st such I/O, NULL otherwise.
26607  *
26608  *   Arguments: un	- sd_lun structure for the device.
26609  *		startb - The starting block number
26610  *		endb - The end block number
26611  *
26612  * Return Code: wm  - pointer to the wmap structure.
26613  */
26614 
26615 static struct sd_w_map *
26616 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
26617 {
26618 	struct sd_w_map *wmp;
26619 
26620 	ASSERT(un != NULL);
26621 
26622 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
26623 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
26624 			continue;
26625 		}
26626 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
26627 			break;
26628 		}
26629 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
26630 			break;
26631 		}
26632 	}
26633 
26634 	return (wmp);
26635 }
26636 
26637 
26638 /*
26639  *    Function: sd_free_inlist_wmap()
26640  *
26641  * Description: Unlink and free a write map struct.
26642  *
26643  *   Arguments: un      - sd_lun structure for the device.
26644  *		wmp	- sd_w_map which needs to be unlinked.
26645  */
26646 
26647 static void
26648 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
26649 {
26650 	ASSERT(un != NULL);
26651 
26652 	if (un->un_wm == wmp) {
26653 		un->un_wm = wmp->wm_next;
26654 	} else {
26655 		wmp->wm_prev->wm_next = wmp->wm_next;
26656 	}
26657 
26658 	if (wmp->wm_next) {
26659 		wmp->wm_next->wm_prev = wmp->wm_prev;
26660 	}
26661 
26662 	wmp->wm_next = wmp->wm_prev = NULL;
26663 
26664 	kmem_cache_free(un->un_wm_cache, wmp);
26665 }
26666 
26667 
26668 /*
26669  *    Function: sd_range_unlock()
26670  *
26671  * Description: Unlock the range locked by wm.
26672  *		Free write map if nobody else is waiting on it.
26673  *
26674  *   Arguments: un      - sd_lun structure for the device.
26675  *              wmp     - sd_w_map which needs to be unlinked.
26676  */
26677 
26678 static void
26679 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
26680 {
26681 	ASSERT(un != NULL);
26682 	ASSERT(wm != NULL);
26683 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26684 
26685 	mutex_enter(SD_MUTEX(un));
26686 
26687 	if (wm->wm_flags & SD_WTYPE_RMW) {
26688 		un->un_rmw_count--;
26689 	}
26690 
26691 	if (wm->wm_wanted_count) {
26692 		wm->wm_flags = 0;
26693 		/*
26694 		 * Broadcast that the wmap is available now.
26695 		 */
26696 		cv_broadcast(&wm->wm_avail);
26697 	} else {
26698 		/*
26699 		 * If no one is waiting on the map, it should be free'ed.
26700 		 */
26701 		sd_free_inlist_wmap(un, wm);
26702 	}
26703 
26704 	mutex_exit(SD_MUTEX(un));
26705 }
26706 
26707 
26708 /*
26709  *    Function: sd_read_modify_write_task
26710  *
26711  * Description: Called from a taskq thread to initiate the write phase of
26712  *		a read-modify-write request.  This is used for targets where
26713  *		un->un_sys_blocksize != un->un_tgt_blocksize.
26714  *
26715  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
26716  *
26717  *     Context: Called under taskq thread context.
26718  */
26719 
26720 static void
26721 sd_read_modify_write_task(void *arg)
26722 {
26723 	struct sd_mapblocksize_info	*bsp;
26724 	struct buf	*bp;
26725 	struct sd_xbuf	*xp;
26726 	struct sd_lun	*un;
26727 
26728 	bp = arg;	/* The bp is given in arg */
26729 	ASSERT(bp != NULL);
26730 
26731 	/* Get the pointer to the layer-private data struct */
26732 	xp = SD_GET_XBUF(bp);
26733 	ASSERT(xp != NULL);
26734 	bsp = xp->xb_private;
26735 	ASSERT(bsp != NULL);
26736 
26737 	un = SD_GET_UN(bp);
26738 	ASSERT(un != NULL);
26739 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26740 
26741 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
26742 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
26743 
26744 	/*
26745 	 * This is the write phase of a read-modify-write request, called
26746 	 * under the context of a taskq thread in response to the completion
26747 	 * of the read portion of the rmw request completing under interrupt
26748 	 * context. The write request must be sent from here down the iostart
26749 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
26750 	 * we use the layer index saved in the layer-private data area.
26751 	 */
26752 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
26753 
26754 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
26755 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
26756 }
26757 
26758 
26759 /*
26760  *    Function: sddump_do_read_of_rmw()
26761  *
26762  * Description: This routine will be called from sddump, If sddump is called
26763  *		with an I/O which not aligned on device blocksize boundary
26764  *		then the write has to be converted to read-modify-write.
26765  *		Do the read part here in order to keep sddump simple.
26766  *		Note - That the sd_mutex is held across the call to this
26767  *		routine.
26768  *
26769  *   Arguments: un	- sd_lun
26770  *		blkno	- block number in terms of media block size.
26771  *		nblk	- number of blocks.
26772  *		bpp	- pointer to pointer to the buf structure. On return
26773  *			from this function, *bpp points to the valid buffer
26774  *			to which the write has to be done.
26775  *
26776  * Return Code: 0 for success or errno-type return code
26777  */
26778 
26779 static int
26780 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
26781 	struct buf **bpp)
26782 {
26783 	int err;
26784 	int i;
26785 	int rval;
26786 	struct buf *bp;
26787 	struct scsi_pkt *pkt = NULL;
26788 	uint32_t target_blocksize;
26789 
26790 	ASSERT(un != NULL);
26791 	ASSERT(mutex_owned(SD_MUTEX(un)));
26792 
26793 	target_blocksize = un->un_tgt_blocksize;
26794 
26795 	mutex_exit(SD_MUTEX(un));
26796 
26797 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
26798 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
26799 	if (bp == NULL) {
26800 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26801 		    "no resources for dumping; giving up");
26802 		err = ENOMEM;
26803 		goto done;
26804 	}
26805 
26806 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
26807 	    blkno, nblk);
26808 	if (rval != 0) {
26809 		scsi_free_consistent_buf(bp);
26810 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26811 		    "no resources for dumping; giving up");
26812 		err = ENOMEM;
26813 		goto done;
26814 	}
26815 
26816 	pkt->pkt_flags |= FLAG_NOINTR;
26817 
26818 	err = EIO;
26819 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26820 
26821 		/*
26822 		 * Scsi_poll returns 0 (success) if the command completes and
26823 		 * the status block is STATUS_GOOD.  We should only check
26824 		 * errors if this condition is not true.  Even then we should
26825 		 * send our own request sense packet only if we have a check
26826 		 * condition and auto request sense has not been performed by
26827 		 * the hba.
26828 		 */
26829 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
26830 
26831 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
26832 			err = 0;
26833 			break;
26834 		}
26835 
26836 		/*
26837 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
26838 		 * no need to read RQS data.
26839 		 */
26840 		if (pkt->pkt_reason == CMD_DEV_GONE) {
26841 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26842 			    "Error while dumping state with rmw..."
26843 			    "Device is gone\n");
26844 			break;
26845 		}
26846 
26847 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
26848 			SD_INFO(SD_LOG_DUMP, un,
26849 			    "sddump: read failed with CHECK, try # %d\n", i);
26850 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
26851 				(void) sd_send_polled_RQS(un);
26852 			}
26853 
26854 			continue;
26855 		}
26856 
26857 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
26858 			int reset_retval = 0;
26859 
26860 			SD_INFO(SD_LOG_DUMP, un,
26861 			    "sddump: read failed with BUSY, try # %d\n", i);
26862 
26863 			if (un->un_f_lun_reset_enabled == TRUE) {
26864 				reset_retval = scsi_reset(SD_ADDRESS(un),
26865 				    RESET_LUN);
26866 			}
26867 			if (reset_retval == 0) {
26868 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26869 			}
26870 			(void) sd_send_polled_RQS(un);
26871 
26872 		} else {
26873 			SD_INFO(SD_LOG_DUMP, un,
26874 			    "sddump: read failed with 0x%x, try # %d\n",
26875 			    SD_GET_PKT_STATUS(pkt), i);
26876 			mutex_enter(SD_MUTEX(un));
26877 			sd_reset_target(un, pkt);
26878 			mutex_exit(SD_MUTEX(un));
26879 		}
26880 
26881 		/*
26882 		 * If we are not getting anywhere with lun/target resets,
26883 		 * let's reset the bus.
26884 		 */
26885 		if (i > SD_NDUMP_RETRIES/2) {
26886 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26887 			(void) sd_send_polled_RQS(un);
26888 		}
26889 
26890 	}
26891 	scsi_destroy_pkt(pkt);
26892 
26893 	if (err != 0) {
26894 		scsi_free_consistent_buf(bp);
26895 		*bpp = NULL;
26896 	} else {
26897 		*bpp = bp;
26898 	}
26899 
26900 done:
26901 	mutex_enter(SD_MUTEX(un));
26902 	return (err);
26903 }
26904 
26905 
26906 /*
26907  *    Function: sd_failfast_flushq
26908  *
26909  * Description: Take all bp's on the wait queue that have B_FAILFAST set
26910  *		in b_flags and move them onto the failfast queue, then kick
26911  *		off a thread to return all bp's on the failfast queue to
26912  *		their owners with an error set.
26913  *
26914  *   Arguments: un - pointer to the soft state struct for the instance.
26915  *
26916  *     Context: may execute in interrupt context.
26917  */
26918 
26919 static void
26920 sd_failfast_flushq(struct sd_lun *un)
26921 {
26922 	struct buf *bp;
26923 	struct buf *next_waitq_bp;
26924 	struct buf *prev_waitq_bp = NULL;
26925 
26926 	ASSERT(un != NULL);
26927 	ASSERT(mutex_owned(SD_MUTEX(un)));
26928 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
26929 	ASSERT(un->un_failfast_bp == NULL);
26930 
26931 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
26932 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
26933 
26934 	/*
26935 	 * Check if we should flush all bufs when entering failfast state, or
26936 	 * just those with B_FAILFAST set.
26937 	 */
26938 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
26939 		/*
26940 		 * Move *all* bp's on the wait queue to the failfast flush
26941 		 * queue, including those that do NOT have B_FAILFAST set.
26942 		 */
26943 		if (un->un_failfast_headp == NULL) {
26944 			ASSERT(un->un_failfast_tailp == NULL);
26945 			un->un_failfast_headp = un->un_waitq_headp;
26946 		} else {
26947 			ASSERT(un->un_failfast_tailp != NULL);
26948 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
26949 		}
26950 
26951 		un->un_failfast_tailp = un->un_waitq_tailp;
26952 
26953 		/* update kstat for each bp moved out of the waitq */
26954 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
26955 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
26956 		}
26957 
26958 		/* empty the waitq */
26959 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
26960 
26961 	} else {
26962 		/*
26963 		 * Go thru the wait queue, pick off all entries with
26964 		 * B_FAILFAST set, and move these onto the failfast queue.
26965 		 */
26966 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
26967 			/*
26968 			 * Save the pointer to the next bp on the wait queue,
26969 			 * so we get to it on the next iteration of this loop.
26970 			 */
26971 			next_waitq_bp = bp->av_forw;
26972 
26973 			/*
26974 			 * If this bp from the wait queue does NOT have
26975 			 * B_FAILFAST set, just move on to the next element
26976 			 * in the wait queue. Note, this is the only place
26977 			 * where it is correct to set prev_waitq_bp.
26978 			 */
26979 			if ((bp->b_flags & B_FAILFAST) == 0) {
26980 				prev_waitq_bp = bp;
26981 				continue;
26982 			}
26983 
26984 			/*
26985 			 * Remove the bp from the wait queue.
26986 			 */
26987 			if (bp == un->un_waitq_headp) {
26988 				/* The bp is the first element of the waitq. */
26989 				un->un_waitq_headp = next_waitq_bp;
26990 				if (un->un_waitq_headp == NULL) {
26991 					/* The wait queue is now empty */
26992 					un->un_waitq_tailp = NULL;
26993 				}
26994 			} else {
26995 				/*
26996 				 * The bp is either somewhere in the middle
26997 				 * or at the end of the wait queue.
26998 				 */
26999 				ASSERT(un->un_waitq_headp != NULL);
27000 				ASSERT(prev_waitq_bp != NULL);
27001 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
27002 				    == 0);
27003 				if (bp == un->un_waitq_tailp) {
27004 					/* bp is the last entry on the waitq. */
27005 					ASSERT(next_waitq_bp == NULL);
27006 					un->un_waitq_tailp = prev_waitq_bp;
27007 				}
27008 				prev_waitq_bp->av_forw = next_waitq_bp;
27009 			}
27010 			bp->av_forw = NULL;
27011 
27012 			/*
27013 			 * update kstat since the bp is moved out of
27014 			 * the waitq
27015 			 */
27016 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
27017 
27018 			/*
27019 			 * Now put the bp onto the failfast queue.
27020 			 */
27021 			if (un->un_failfast_headp == NULL) {
27022 				/* failfast queue is currently empty */
27023 				ASSERT(un->un_failfast_tailp == NULL);
27024 				un->un_failfast_headp =
27025 				    un->un_failfast_tailp = bp;
27026 			} else {
27027 				/* Add the bp to the end of the failfast q */
27028 				ASSERT(un->un_failfast_tailp != NULL);
27029 				ASSERT(un->un_failfast_tailp->b_flags &
27030 				    B_FAILFAST);
27031 				un->un_failfast_tailp->av_forw = bp;
27032 				un->un_failfast_tailp = bp;
27033 			}
27034 		}
27035 	}
27036 
27037 	/*
27038 	 * Now return all bp's on the failfast queue to their owners.
27039 	 */
27040 	while ((bp = un->un_failfast_headp) != NULL) {
27041 
27042 		un->un_failfast_headp = bp->av_forw;
27043 		if (un->un_failfast_headp == NULL) {
27044 			un->un_failfast_tailp = NULL;
27045 		}
27046 
27047 		/*
27048 		 * We want to return the bp with a failure error code, but
27049 		 * we do not want a call to sd_start_cmds() to occur here,
27050 		 * so use sd_return_failed_command_no_restart() instead of
27051 		 * sd_return_failed_command().
27052 		 */
27053 		sd_return_failed_command_no_restart(un, bp, EIO);
27054 	}
27055 
27056 	/* Flush the xbuf queues if required. */
27057 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
27058 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
27059 	}
27060 
27061 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
27062 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
27063 }
27064 
27065 
27066 /*
27067  *    Function: sd_failfast_flushq_callback
27068  *
27069  * Description: Return TRUE if the given bp meets the criteria for failfast
27070  *		flushing. Used with ddi_xbuf_flushq(9F).
27071  *
27072  *   Arguments: bp - ptr to buf struct to be examined.
27073  *
27074  *     Context: Any
27075  */
27076 
27077 static int
27078 sd_failfast_flushq_callback(struct buf *bp)
27079 {
27080 	/*
27081 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
27082 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
27083 	 */
27084 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
27085 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
27086 }
27087 
27088 
27089 
27090 /*
27091  * Function: sd_setup_next_xfer
27092  *
27093  * Description: Prepare next I/O operation using DMA_PARTIAL
27094  *
27095  */
27096 
27097 static int
27098 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
27099     struct scsi_pkt *pkt, struct sd_xbuf *xp)
27100 {
27101 	ssize_t	num_blks_not_xfered;
27102 	daddr_t	strt_blk_num;
27103 	ssize_t	bytes_not_xfered;
27104 	int	rval;
27105 
27106 	ASSERT(pkt->pkt_resid == 0);
27107 
27108 	/*
27109 	 * Calculate next block number and amount to be transferred.
27110 	 *
27111 	 * How much data NOT transfered to the HBA yet.
27112 	 */
27113 	bytes_not_xfered = xp->xb_dma_resid;
27114 
27115 	/*
27116 	 * figure how many blocks NOT transfered to the HBA yet.
27117 	 */
27118 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
27119 
27120 	/*
27121 	 * set starting block number to the end of what WAS transfered.
27122 	 */
27123 	strt_blk_num = xp->xb_blkno +
27124 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
27125 
27126 	/*
27127 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
27128 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
27129 	 * the disk mutex here.
27130 	 */
27131 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
27132 	    strt_blk_num, num_blks_not_xfered);
27133 
27134 	if (rval == 0) {
27135 
27136 		/*
27137 		 * Success.
27138 		 *
27139 		 * Adjust things if there are still more blocks to be
27140 		 * transfered.
27141 		 */
27142 		xp->xb_dma_resid = pkt->pkt_resid;
27143 		pkt->pkt_resid = 0;
27144 
27145 		return (1);
27146 	}
27147 
27148 	/*
27149 	 * There's really only one possible return value from
27150 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
27151 	 * returns NULL.
27152 	 */
27153 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
27154 
27155 	bp->b_resid = bp->b_bcount;
27156 	bp->b_flags |= B_ERROR;
27157 
27158 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27159 	    "Error setting up next portion of DMA transfer\n");
27160 
27161 	return (0);
27162 }
27163 
27164 /*
27165  *    Function: sd_panic_for_res_conflict
27166  *
27167  * Description: Call panic with a string formatted with "Reservation Conflict"
27168  *		and a human readable identifier indicating the SD instance
27169  *		that experienced the reservation conflict.
27170  *
27171  *   Arguments: un - pointer to the soft state struct for the instance.
27172  *
27173  *     Context: may execute in interrupt context.
27174  */
27175 
27176 #define	SD_RESV_CONFLICT_FMT_LEN 40
27177 void
27178 sd_panic_for_res_conflict(struct sd_lun *un)
27179 {
27180 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
27181 	char path_str[MAXPATHLEN];
27182 
27183 	(void) snprintf(panic_str, sizeof (panic_str),
27184 	    "Reservation Conflict\nDisk: %s",
27185 	    ddi_pathname(SD_DEVINFO(un), path_str));
27186 
27187 	panic(panic_str);
27188 }
27189 
27190 /*
27191  * Note: The following sd_faultinjection_ioctl( ) routines implement
27192  * driver support for handling fault injection for error analysis
27193  * causing faults in multiple layers of the driver.
27194  *
27195  */
27196 
27197 #ifdef SD_FAULT_INJECTION
27198 static uint_t   sd_fault_injection_on = 0;
27199 
27200 /*
27201  *    Function: sd_faultinjection_ioctl()
27202  *
27203  * Description: This routine is the driver entry point for handling
27204  *              faultinjection ioctls to inject errors into the
27205  *              layer model
27206  *
27207  *   Arguments: cmd	- the ioctl cmd received
27208  *		arg	- the arguments from user and returns
27209  */
27210 
27211 static void
27212 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
27213 
27214 	uint_t i;
27215 	uint_t rval;
27216 
27217 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
27218 
27219 	mutex_enter(SD_MUTEX(un));
27220 
27221 	switch (cmd) {
27222 	case SDIOCRUN:
27223 		/* Allow pushed faults to be injected */
27224 		SD_INFO(SD_LOG_SDTEST, un,
27225 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
27226 
27227 		sd_fault_injection_on = 1;
27228 
27229 		SD_INFO(SD_LOG_IOERR, un,
27230 		    "sd_faultinjection_ioctl: run finished\n");
27231 		break;
27232 
27233 	case SDIOCSTART:
27234 		/* Start Injection Session */
27235 		SD_INFO(SD_LOG_SDTEST, un,
27236 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
27237 
27238 		sd_fault_injection_on = 0;
27239 		un->sd_injection_mask = 0xFFFFFFFF;
27240 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
27241 			un->sd_fi_fifo_pkt[i] = NULL;
27242 			un->sd_fi_fifo_xb[i] = NULL;
27243 			un->sd_fi_fifo_un[i] = NULL;
27244 			un->sd_fi_fifo_arq[i] = NULL;
27245 		}
27246 		un->sd_fi_fifo_start = 0;
27247 		un->sd_fi_fifo_end = 0;
27248 
27249 		mutex_enter(&(un->un_fi_mutex));
27250 		un->sd_fi_log[0] = '\0';
27251 		un->sd_fi_buf_len = 0;
27252 		mutex_exit(&(un->un_fi_mutex));
27253 
27254 		SD_INFO(SD_LOG_IOERR, un,
27255 		    "sd_faultinjection_ioctl: start finished\n");
27256 		break;
27257 
27258 	case SDIOCSTOP:
27259 		/* Stop Injection Session */
27260 		SD_INFO(SD_LOG_SDTEST, un,
27261 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
27262 		sd_fault_injection_on = 0;
27263 		un->sd_injection_mask = 0x0;
27264 
27265 		/* Empty stray or unuseds structs from fifo */
27266 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
27267 			if (un->sd_fi_fifo_pkt[i] != NULL) {
27268 				kmem_free(un->sd_fi_fifo_pkt[i],
27269 				    sizeof (struct sd_fi_pkt));
27270 			}
27271 			if (un->sd_fi_fifo_xb[i] != NULL) {
27272 				kmem_free(un->sd_fi_fifo_xb[i],
27273 				    sizeof (struct sd_fi_xb));
27274 			}
27275 			if (un->sd_fi_fifo_un[i] != NULL) {
27276 				kmem_free(un->sd_fi_fifo_un[i],
27277 				    sizeof (struct sd_fi_un));
27278 			}
27279 			if (un->sd_fi_fifo_arq[i] != NULL) {
27280 				kmem_free(un->sd_fi_fifo_arq[i],
27281 				    sizeof (struct sd_fi_arq));
27282 			}
27283 			un->sd_fi_fifo_pkt[i] = NULL;
27284 			un->sd_fi_fifo_un[i] = NULL;
27285 			un->sd_fi_fifo_xb[i] = NULL;
27286 			un->sd_fi_fifo_arq[i] = NULL;
27287 		}
27288 		un->sd_fi_fifo_start = 0;
27289 		un->sd_fi_fifo_end = 0;
27290 
27291 		SD_INFO(SD_LOG_IOERR, un,
27292 		    "sd_faultinjection_ioctl: stop finished\n");
27293 		break;
27294 
27295 	case SDIOCINSERTPKT:
27296 		/* Store a packet struct to be pushed onto fifo */
27297 		SD_INFO(SD_LOG_SDTEST, un,
27298 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
27299 
27300 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
27301 
27302 		sd_fault_injection_on = 0;
27303 
27304 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
27305 		if (un->sd_fi_fifo_pkt[i] != NULL) {
27306 			kmem_free(un->sd_fi_fifo_pkt[i],
27307 			    sizeof (struct sd_fi_pkt));
27308 		}
27309 		if (arg != NULL) {
27310 			un->sd_fi_fifo_pkt[i] =
27311 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
27312 			if (un->sd_fi_fifo_pkt[i] == NULL) {
27313 				/* Alloc failed don't store anything */
27314 				break;
27315 			}
27316 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
27317 			    sizeof (struct sd_fi_pkt), 0);
27318 			if (rval == -1) {
27319 				kmem_free(un->sd_fi_fifo_pkt[i],
27320 				    sizeof (struct sd_fi_pkt));
27321 				un->sd_fi_fifo_pkt[i] = NULL;
27322 			}
27323 		} else {
27324 			SD_INFO(SD_LOG_IOERR, un,
27325 			    "sd_faultinjection_ioctl: pkt null\n");
27326 		}
27327 		break;
27328 
27329 	case SDIOCINSERTXB:
27330 		/* Store a xb struct to be pushed onto fifo */
27331 		SD_INFO(SD_LOG_SDTEST, un,
27332 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
27333 
27334 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
27335 
27336 		sd_fault_injection_on = 0;
27337 
27338 		if (un->sd_fi_fifo_xb[i] != NULL) {
27339 			kmem_free(un->sd_fi_fifo_xb[i],
27340 			    sizeof (struct sd_fi_xb));
27341 			un->sd_fi_fifo_xb[i] = NULL;
27342 		}
27343 		if (arg != NULL) {
27344 			un->sd_fi_fifo_xb[i] =
27345 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
27346 			if (un->sd_fi_fifo_xb[i] == NULL) {
27347 				/* Alloc failed don't store anything */
27348 				break;
27349 			}
27350 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
27351 			    sizeof (struct sd_fi_xb), 0);
27352 
27353 			if (rval == -1) {
27354 				kmem_free(un->sd_fi_fifo_xb[i],
27355 				    sizeof (struct sd_fi_xb));
27356 				un->sd_fi_fifo_xb[i] = NULL;
27357 			}
27358 		} else {
27359 			SD_INFO(SD_LOG_IOERR, un,
27360 			    "sd_faultinjection_ioctl: xb null\n");
27361 		}
27362 		break;
27363 
27364 	case SDIOCINSERTUN:
27365 		/* Store a un struct to be pushed onto fifo */
27366 		SD_INFO(SD_LOG_SDTEST, un,
27367 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
27368 
27369 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
27370 
27371 		sd_fault_injection_on = 0;
27372 
27373 		if (un->sd_fi_fifo_un[i] != NULL) {
27374 			kmem_free(un->sd_fi_fifo_un[i],
27375 			    sizeof (struct sd_fi_un));
27376 			un->sd_fi_fifo_un[i] = NULL;
27377 		}
27378 		if (arg != NULL) {
27379 			un->sd_fi_fifo_un[i] =
27380 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
27381 			if (un->sd_fi_fifo_un[i] == NULL) {
27382 				/* Alloc failed don't store anything */
27383 				break;
27384 			}
27385 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
27386 			    sizeof (struct sd_fi_un), 0);
27387 			if (rval == -1) {
27388 				kmem_free(un->sd_fi_fifo_un[i],
27389 				    sizeof (struct sd_fi_un));
27390 				un->sd_fi_fifo_un[i] = NULL;
27391 			}
27392 
27393 		} else {
27394 			SD_INFO(SD_LOG_IOERR, un,
27395 			    "sd_faultinjection_ioctl: un null\n");
27396 		}
27397 
27398 		break;
27399 
27400 	case SDIOCINSERTARQ:
27401 		/* Store a arq struct to be pushed onto fifo */
27402 		SD_INFO(SD_LOG_SDTEST, un,
27403 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
27404 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
27405 
27406 		sd_fault_injection_on = 0;
27407 
27408 		if (un->sd_fi_fifo_arq[i] != NULL) {
27409 			kmem_free(un->sd_fi_fifo_arq[i],
27410 			    sizeof (struct sd_fi_arq));
27411 			un->sd_fi_fifo_arq[i] = NULL;
27412 		}
27413 		if (arg != NULL) {
27414 			un->sd_fi_fifo_arq[i] =
27415 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
27416 			if (un->sd_fi_fifo_arq[i] == NULL) {
27417 				/* Alloc failed don't store anything */
27418 				break;
27419 			}
27420 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
27421 			    sizeof (struct sd_fi_arq), 0);
27422 			if (rval == -1) {
27423 				kmem_free(un->sd_fi_fifo_arq[i],
27424 				    sizeof (struct sd_fi_arq));
27425 				un->sd_fi_fifo_arq[i] = NULL;
27426 			}
27427 
27428 		} else {
27429 			SD_INFO(SD_LOG_IOERR, un,
27430 			    "sd_faultinjection_ioctl: arq null\n");
27431 		}
27432 
27433 		break;
27434 
27435 	case SDIOCPUSH:
27436 		/* Push stored xb, pkt, un, and arq onto fifo */
27437 		sd_fault_injection_on = 0;
27438 
27439 		if (arg != NULL) {
27440 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
27441 			if (rval != -1 &&
27442 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
27443 				un->sd_fi_fifo_end += i;
27444 			}
27445 		} else {
27446 			SD_INFO(SD_LOG_IOERR, un,
27447 			    "sd_faultinjection_ioctl: push arg null\n");
27448 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
27449 				un->sd_fi_fifo_end++;
27450 			}
27451 		}
27452 		SD_INFO(SD_LOG_IOERR, un,
27453 		    "sd_faultinjection_ioctl: push to end=%d\n",
27454 		    un->sd_fi_fifo_end);
27455 		break;
27456 
27457 	case SDIOCRETRIEVE:
27458 		/* Return buffer of log from Injection session */
27459 		SD_INFO(SD_LOG_SDTEST, un,
27460 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
27461 
27462 		sd_fault_injection_on = 0;
27463 
27464 		mutex_enter(&(un->un_fi_mutex));
27465 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
27466 		    un->sd_fi_buf_len+1, 0);
27467 		mutex_exit(&(un->un_fi_mutex));
27468 
27469 		if (rval == -1) {
27470 			/*
27471 			 * arg is possibly invalid setting
27472 			 * it to NULL for return
27473 			 */
27474 			arg = NULL;
27475 		}
27476 		break;
27477 	}
27478 
27479 	mutex_exit(SD_MUTEX(un));
27480 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
27481 			    " exit\n");
27482 }
27483 
27484 
27485 /*
27486  *    Function: sd_injection_log()
27487  *
27488  * Description: This routine adds buff to the already existing injection log
27489  *              for retrieval via faultinjection_ioctl for use in fault
27490  *              detection and recovery
27491  *
27492  *   Arguments: buf - the string to add to the log
27493  */
27494 
27495 static void
27496 sd_injection_log(char *buf, struct sd_lun *un)
27497 {
27498 	uint_t len;
27499 
27500 	ASSERT(un != NULL);
27501 	ASSERT(buf != NULL);
27502 
27503 	mutex_enter(&(un->un_fi_mutex));
27504 
27505 	len = min(strlen(buf), 255);
27506 	/* Add logged value to Injection log to be returned later */
27507 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
27508 		uint_t	offset = strlen((char *)un->sd_fi_log);
27509 		char *destp = (char *)un->sd_fi_log + offset;
27510 		int i;
27511 		for (i = 0; i < len; i++) {
27512 			*destp++ = *buf++;
27513 		}
27514 		un->sd_fi_buf_len += len;
27515 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
27516 	}
27517 
27518 	mutex_exit(&(un->un_fi_mutex));
27519 }
27520 
27521 
27522 /*
27523  *    Function: sd_faultinjection()
27524  *
27525  * Description: This routine takes the pkt and changes its
27526  *		content based on error injection scenerio.
27527  *
27528  *   Arguments: pktp	- packet to be changed
27529  */
27530 
27531 static void
27532 sd_faultinjection(struct scsi_pkt *pktp)
27533 {
27534 	uint_t i;
27535 	struct sd_fi_pkt *fi_pkt;
27536 	struct sd_fi_xb *fi_xb;
27537 	struct sd_fi_un *fi_un;
27538 	struct sd_fi_arq *fi_arq;
27539 	struct buf *bp;
27540 	struct sd_xbuf *xb;
27541 	struct sd_lun *un;
27542 
27543 	ASSERT(pktp != NULL);
27544 
27545 	/* pull bp xb and un from pktp */
27546 	bp = (struct buf *)pktp->pkt_private;
27547 	xb = SD_GET_XBUF(bp);
27548 	un = SD_GET_UN(bp);
27549 
27550 	ASSERT(un != NULL);
27551 
27552 	mutex_enter(SD_MUTEX(un));
27553 
27554 	SD_TRACE(SD_LOG_SDTEST, un,
27555 	    "sd_faultinjection: entry Injection from sdintr\n");
27556 
27557 	/* if injection is off return */
27558 	if (sd_fault_injection_on == 0 ||
27559 	    un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
27560 		mutex_exit(SD_MUTEX(un));
27561 		return;
27562 	}
27563 
27564 
27565 	/* take next set off fifo */
27566 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
27567 
27568 	fi_pkt = un->sd_fi_fifo_pkt[i];
27569 	fi_xb = un->sd_fi_fifo_xb[i];
27570 	fi_un = un->sd_fi_fifo_un[i];
27571 	fi_arq = un->sd_fi_fifo_arq[i];
27572 
27573 
27574 	/* set variables accordingly */
27575 	/* set pkt if it was on fifo */
27576 	if (fi_pkt != NULL) {
27577 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
27578 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
27579 		SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
27580 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
27581 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
27582 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
27583 
27584 	}
27585 
27586 	/* set xb if it was on fifo */
27587 	if (fi_xb != NULL) {
27588 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
27589 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
27590 		SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
27591 		SD_CONDSET(xb, xb, xb_victim_retry_count,
27592 		    "xb_victim_retry_count");
27593 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
27594 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
27595 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
27596 
27597 		/* copy in block data from sense */
27598 		if (fi_xb->xb_sense_data[0] != -1) {
27599 			bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
27600 			    SENSE_LENGTH);
27601 		}
27602 
27603 		/* copy in extended sense codes */
27604 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code,
27605 		    "es_code");
27606 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key,
27607 		    "es_key");
27608 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code,
27609 		    "es_add_code");
27610 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb,
27611 		    es_qual_code, "es_qual_code");
27612 	}
27613 
27614 	/* set un if it was on fifo */
27615 	if (fi_un != NULL) {
27616 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
27617 		SD_CONDSET(un, un, un_ctype, "un_ctype");
27618 		SD_CONDSET(un, un, un_reset_retry_count,
27619 		    "un_reset_retry_count");
27620 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
27621 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
27622 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
27623 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
27624 		    "un_f_allow_bus_device_reset");
27625 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
27626 
27627 	}
27628 
27629 	/* copy in auto request sense if it was on fifo */
27630 	if (fi_arq != NULL) {
27631 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
27632 	}
27633 
27634 	/* free structs */
27635 	if (un->sd_fi_fifo_pkt[i] != NULL) {
27636 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
27637 	}
27638 	if (un->sd_fi_fifo_xb[i] != NULL) {
27639 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
27640 	}
27641 	if (un->sd_fi_fifo_un[i] != NULL) {
27642 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
27643 	}
27644 	if (un->sd_fi_fifo_arq[i] != NULL) {
27645 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
27646 	}
27647 
27648 	/*
27649 	 * kmem_free does not gurantee to set to NULL
27650 	 * since we uses these to determine if we set
27651 	 * values or not lets confirm they are always
27652 	 * NULL after free
27653 	 */
27654 	un->sd_fi_fifo_pkt[i] = NULL;
27655 	un->sd_fi_fifo_un[i] = NULL;
27656 	un->sd_fi_fifo_xb[i] = NULL;
27657 	un->sd_fi_fifo_arq[i] = NULL;
27658 
27659 	un->sd_fi_fifo_start++;
27660 
27661 	mutex_exit(SD_MUTEX(un));
27662 
27663 	SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
27664 }
27665 
27666 #endif /* SD_FAULT_INJECTION */
27667 
27668 /*
27669  * This routine is invoked in sd_unit_attach(). Before calling it, the
27670  * properties in conf file should be processed already, and "hotpluggable"
27671  * property was processed also.
27672  *
27673  * The sd driver distinguishes 3 different type of devices: removable media,
27674  * non-removable media, and hotpluggable. Below the differences are defined:
27675  *
27676  * 1. Device ID
27677  *
27678  *     The device ID of a device is used to identify this device. Refer to
27679  *     ddi_devid_register(9F).
27680  *
27681  *     For a non-removable media disk device which can provide 0x80 or 0x83
27682  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
27683  *     device ID is created to identify this device. For other non-removable
27684  *     media devices, a default device ID is created only if this device has
27685  *     at least 2 alter cylinders. Otherwise, this device has no devid.
27686  *
27687  *     -------------------------------------------------------
27688  *     removable media   hotpluggable  | Can Have Device ID
27689  *     -------------------------------------------------------
27690  *         false             false     |     Yes
27691  *         false             true      |     Yes
27692  *         true                x       |     No
27693  *     ------------------------------------------------------
27694  *
27695  *
27696  * 2. SCSI group 4 commands
27697  *
27698  *     In SCSI specs, only some commands in group 4 command set can use
27699  *     8-byte addresses that can be used to access >2TB storage spaces.
27700  *     Other commands have no such capability. Without supporting group4,
27701  *     it is impossible to make full use of storage spaces of a disk with
27702  *     capacity larger than 2TB.
27703  *
27704  *     -----------------------------------------------
27705  *     removable media   hotpluggable   LP64  |  Group
27706  *     -----------------------------------------------
27707  *           false          false       false |   1
27708  *           false          false       true  |   4
27709  *           false          true        false |   1
27710  *           false          true        true  |   4
27711  *           true             x           x   |   5
27712  *     -----------------------------------------------
27713  *
27714  *
27715  * 3. Check for VTOC Label
27716  *
27717  *     If a direct-access disk has no EFI label, sd will check if it has a
27718  *     valid VTOC label. Now, sd also does that check for removable media
27719  *     and hotpluggable devices.
27720  *
27721  *     --------------------------------------------------------------
27722  *     Direct-Access   removable media    hotpluggable |  Check Label
27723  *     -------------------------------------------------------------
27724  *         false          false           false        |   No
27725  *         false          false           true         |   No
27726  *         false          true            false        |   Yes
27727  *         false          true            true         |   Yes
27728  *         true            x                x          |   Yes
27729  *     --------------------------------------------------------------
27730  *
27731  *
27732  * 4. Building default VTOC label
27733  *
27734  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
27735  *     If those devices have no valid VTOC label, sd(7d) will attempt to
27736  *     create default VTOC for them. Currently sd creates default VTOC label
27737  *     for all devices on x86 platform (VTOC_16), but only for removable
27738  *     media devices on SPARC (VTOC_8).
27739  *
27740  *     -----------------------------------------------------------
27741  *       removable media hotpluggable platform   |   Default Label
27742  *     -----------------------------------------------------------
27743  *             false          false    sparc     |     No
27744  *             false          true      x86      |     Yes
27745  *             false          true     sparc     |     Yes
27746  *             true             x        x       |     Yes
27747  *     ----------------------------------------------------------
27748  *
27749  *
27750  * 5. Supported blocksizes of target devices
27751  *
27752  *     Sd supports non-512-byte blocksize for removable media devices only.
27753  *     For other devices, only 512-byte blocksize is supported. This may be
27754  *     changed in near future because some RAID devices require non-512-byte
27755  *     blocksize
27756  *
27757  *     -----------------------------------------------------------
27758  *     removable media    hotpluggable    | non-512-byte blocksize
27759  *     -----------------------------------------------------------
27760  *           false          false         |   No
27761  *           false          true          |   No
27762  *           true             x           |   Yes
27763  *     -----------------------------------------------------------
27764  *
27765  *
27766  * 6. Automatic mount & unmount
27767  *
27768  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
27769  *     if a device is removable media device. It return 1 for removable media
27770  *     devices, and 0 for others.
27771  *
27772  *     The automatic mounting subsystem should distinguish between the types
27773  *     of devices and apply automounting policies to each.
27774  *
27775  *
27776  * 7. fdisk partition management
27777  *
27778  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
27779  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
27780  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
27781  *     fdisk partitions on both x86 and SPARC platform.
27782  *
27783  *     -----------------------------------------------------------
27784  *       platform   removable media  USB/1394  |  fdisk supported
27785  *     -----------------------------------------------------------
27786  *        x86         X               X        |       true
27787  *     ------------------------------------------------------------
27788  *        sparc       X               X        |       false
27789  *     ------------------------------------------------------------
27790  *
27791  *
27792  * 8. MBOOT/MBR
27793  *
27794  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
27795  *     read/write mboot for removable media devices on sparc platform.
27796  *
27797  *     -----------------------------------------------------------
27798  *       platform   removable media  USB/1394  |  mboot supported
27799  *     -----------------------------------------------------------
27800  *        x86         X               X        |       true
27801  *     ------------------------------------------------------------
27802  *        sparc      false           false     |       false
27803  *        sparc      false           true      |       true
27804  *        sparc      true            false     |       true
27805  *        sparc      true            true      |       true
27806  *     ------------------------------------------------------------
27807  *
27808  *
27809  * 9.  error handling during opening device
27810  *
27811  *     If failed to open a disk device, an errno is returned. For some kinds
27812  *     of errors, different errno is returned depending on if this device is
27813  *     a removable media device. This brings USB/1394 hard disks in line with
27814  *     expected hard disk behavior. It is not expected that this breaks any
27815  *     application.
27816  *
27817  *     ------------------------------------------------------
27818  *       removable media    hotpluggable   |  errno
27819  *     ------------------------------------------------------
27820  *             false          false        |   EIO
27821  *             false          true         |   EIO
27822  *             true             x          |   ENXIO
27823  *     ------------------------------------------------------
27824  *
27825  *
27826  * 11. ioctls: DKIOCEJECT, CDROMEJECT
27827  *
27828  *     These IOCTLs are applicable only to removable media devices.
27829  *
27830  *     -----------------------------------------------------------
27831  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
27832  *     -----------------------------------------------------------
27833  *             false          false        |     No
27834  *             false          true         |     No
27835  *             true            x           |     Yes
27836  *     -----------------------------------------------------------
27837  *
27838  *
27839  * 12. Kstats for partitions
27840  *
27841  *     sd creates partition kstat for non-removable media devices. USB and
27842  *     Firewire hard disks now have partition kstats
27843  *
27844  *      ------------------------------------------------------
27845  *       removable media    hotpluggable   |   kstat
27846  *      ------------------------------------------------------
27847  *             false          false        |    Yes
27848  *             false          true         |    Yes
27849  *             true             x          |    No
27850  *       ------------------------------------------------------
27851  *
27852  *
27853  * 13. Removable media & hotpluggable properties
27854  *
27855  *     Sd driver creates a "removable-media" property for removable media
27856  *     devices. Parent nexus drivers create a "hotpluggable" property if
27857  *     it supports hotplugging.
27858  *
27859  *     ---------------------------------------------------------------------
27860  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
27861  *     ---------------------------------------------------------------------
27862  *       false            false       |    No                   No
27863  *       false            true        |    No                   Yes
27864  *       true             false       |    Yes                  No
27865  *       true             true        |    Yes                  Yes
27866  *     ---------------------------------------------------------------------
27867  *
27868  *
27869  * 14. Power Management
27870  *
27871  *     sd only power manages removable media devices or devices that support
27872  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
27873  *
27874  *     A parent nexus that supports hotplugging can also set "pm-capable"
27875  *     if the disk can be power managed.
27876  *
27877  *     ------------------------------------------------------------
27878  *       removable media hotpluggable pm-capable  |   power manage
27879  *     ------------------------------------------------------------
27880  *             false          false     false     |     No
27881  *             false          false     true      |     Yes
27882  *             false          true      false     |     No
27883  *             false          true      true      |     Yes
27884  *             true             x        x        |     Yes
27885  *     ------------------------------------------------------------
27886  *
27887  *      USB and firewire hard disks can now be power managed independently
27888  *      of the framebuffer
27889  *
27890  *
27891  * 15. Support for USB disks with capacity larger than 1TB
27892  *
27893  *     Currently, sd doesn't permit a fixed disk device with capacity
27894  *     larger than 1TB to be used in a 32-bit operating system environment.
27895  *     However, sd doesn't do that for removable media devices. Instead, it
27896  *     assumes that removable media devices cannot have a capacity larger
27897  *     than 1TB. Therefore, using those devices on 32-bit system is partially
27898  *     supported, which can cause some unexpected results.
27899  *
27900  *     ---------------------------------------------------------------------
27901  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
27902  *     ---------------------------------------------------------------------
27903  *             false          false  |   true         |     no
27904  *             false          true   |   true         |     no
27905  *             true           false  |   true         |     Yes
27906  *             true           true   |   true         |     Yes
27907  *     ---------------------------------------------------------------------
27908  *
27909  *
27910  * 16. Check write-protection at open time
27911  *
27912  *     When a removable media device is being opened for writing without NDELAY
27913  *     flag, sd will check if this device is writable. If attempting to open
27914  *     without NDELAY flag a write-protected device, this operation will abort.
27915  *
27916  *     ------------------------------------------------------------
27917  *       removable media    USB/1394   |   WP Check
27918  *     ------------------------------------------------------------
27919  *             false          false    |     No
27920  *             false          true     |     No
27921  *             true           false    |     Yes
27922  *             true           true     |     Yes
27923  *     ------------------------------------------------------------
27924  *
27925  *
27926  * 17. syslog when corrupted VTOC is encountered
27927  *
27928  *      Currently, if an invalid VTOC is encountered, sd only print syslog
27929  *      for fixed SCSI disks.
27930  *     ------------------------------------------------------------
27931  *       removable media    USB/1394   |   print syslog
27932  *     ------------------------------------------------------------
27933  *             false          false    |     Yes
27934  *             false          true     |     No
27935  *             true           false    |     No
27936  *             true           true     |     No
27937  *     ------------------------------------------------------------
27938  */
27939 static void
27940 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
27941 {
27942 	int	pm_capable_prop;
27943 
27944 	ASSERT(un->un_sd);
27945 	ASSERT(un->un_sd->sd_inq);
27946 
27947 	/*
27948 	 * Enable SYNC CACHE support for all devices.
27949 	 */
27950 	un->un_f_sync_cache_supported = TRUE;
27951 
27952 	if (un->un_sd->sd_inq->inq_rmb) {
27953 		/*
27954 		 * The media of this device is removable. And for this kind
27955 		 * of devices, it is possible to change medium after opening
27956 		 * devices. Thus we should support this operation.
27957 		 */
27958 		un->un_f_has_removable_media = TRUE;
27959 
27960 		/*
27961 		 * support non-512-byte blocksize of removable media devices
27962 		 */
27963 		un->un_f_non_devbsize_supported = TRUE;
27964 
27965 		/*
27966 		 * Assume that all removable media devices support DOOR_LOCK
27967 		 */
27968 		un->un_f_doorlock_supported = TRUE;
27969 
27970 		/*
27971 		 * For a removable media device, it is possible to be opened
27972 		 * with NDELAY flag when there is no media in drive, in this
27973 		 * case we don't care if device is writable. But if without
27974 		 * NDELAY flag, we need to check if media is write-protected.
27975 		 */
27976 		un->un_f_chk_wp_open = TRUE;
27977 
27978 		/*
27979 		 * need to start a SCSI watch thread to monitor media state,
27980 		 * when media is being inserted or ejected, notify syseventd.
27981 		 */
27982 		un->un_f_monitor_media_state = TRUE;
27983 
27984 		/*
27985 		 * Some devices don't support START_STOP_UNIT command.
27986 		 * Therefore, we'd better check if a device supports it
27987 		 * before sending it.
27988 		 */
27989 		un->un_f_check_start_stop = TRUE;
27990 
27991 		/*
27992 		 * support eject media ioctl:
27993 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
27994 		 */
27995 		un->un_f_eject_media_supported = TRUE;
27996 
27997 		/*
27998 		 * Because many removable-media devices don't support
27999 		 * LOG_SENSE, we couldn't use this command to check if
28000 		 * a removable media device support power-management.
28001 		 * We assume that they support power-management via
28002 		 * START_STOP_UNIT command and can be spun up and down
28003 		 * without limitations.
28004 		 */
28005 		un->un_f_pm_supported = TRUE;
28006 
28007 		/*
28008 		 * Need to create a zero length (Boolean) property
28009 		 * removable-media for the removable media devices.
28010 		 * Note that the return value of the property is not being
28011 		 * checked, since if unable to create the property
28012 		 * then do not want the attach to fail altogether. Consistent
28013 		 * with other property creation in attach.
28014 		 */
28015 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
28016 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
28017 
28018 	} else {
28019 		/*
28020 		 * create device ID for device
28021 		 */
28022 		un->un_f_devid_supported = TRUE;
28023 
28024 		/*
28025 		 * Spin up non-removable-media devices once it is attached
28026 		 */
28027 		un->un_f_attach_spinup = TRUE;
28028 
28029 		/*
28030 		 * According to SCSI specification, Sense data has two kinds of
28031 		 * format: fixed format, and descriptor format. At present, we
28032 		 * don't support descriptor format sense data for removable
28033 		 * media.
28034 		 */
28035 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
28036 			un->un_f_descr_format_supported = TRUE;
28037 		}
28038 
28039 		/*
28040 		 * kstats are created only for non-removable media devices.
28041 		 *
28042 		 * Set this in sd.conf to 0 in order to disable kstats.  The
28043 		 * default is 1, so they are enabled by default.
28044 		 */
28045 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
28046 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
28047 		    "enable-partition-kstats", 1));
28048 
28049 		/*
28050 		 * Check if HBA has set the "pm-capable" property.
28051 		 * If "pm-capable" exists and is non-zero then we can
28052 		 * power manage the device without checking the start/stop
28053 		 * cycle count log sense page.
28054 		 *
28055 		 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
28056 		 * then we should not power manage the device.
28057 		 *
28058 		 * If "pm-capable" doesn't exist then pm_capable_prop will
28059 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
28060 		 * sd will check the start/stop cycle count log sense page
28061 		 * and power manage the device if the cycle count limit has
28062 		 * not been exceeded.
28063 		 */
28064 		pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
28065 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
28066 		if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
28067 			un->un_f_log_sense_supported = TRUE;
28068 		} else {
28069 			/*
28070 			 * pm-capable property exists.
28071 			 *
28072 			 * Convert "TRUE" values for pm_capable_prop to
28073 			 * SD_PM_CAPABLE_TRUE (1) to make it easier to check
28074 			 * later. "TRUE" values are any values except
28075 			 * SD_PM_CAPABLE_FALSE (0) and
28076 			 * SD_PM_CAPABLE_UNDEFINED (-1)
28077 			 */
28078 			if (pm_capable_prop == SD_PM_CAPABLE_FALSE) {
28079 				un->un_f_log_sense_supported = FALSE;
28080 			} else {
28081 				un->un_f_pm_supported = TRUE;
28082 			}
28083 
28084 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
28085 			    "sd_unit_attach: un:0x%p pm-capable "
28086 			    "property set to %d.\n", un, un->un_f_pm_supported);
28087 		}
28088 	}
28089 
28090 	if (un->un_f_is_hotpluggable) {
28091 
28092 		/*
28093 		 * Have to watch hotpluggable devices as well, since
28094 		 * that's the only way for userland applications to
28095 		 * detect hot removal while device is busy/mounted.
28096 		 */
28097 		un->un_f_monitor_media_state = TRUE;
28098 
28099 		un->un_f_check_start_stop = TRUE;
28100 
28101 	}
28102 }
28103 
28104 /*
28105  * sd_tg_rdwr:
28106  * Provides rdwr access for cmlb via sd_tgops. The start_block is
28107  * in sys block size, req_length in bytes.
28108  *
28109  */
28110 static int
28111 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
28112     diskaddr_t start_block, size_t reqlength, void *tg_cookie)
28113 {
28114 	struct sd_lun *un;
28115 	int path_flag = (int)(uintptr_t)tg_cookie;
28116 	char *dkl = NULL;
28117 	diskaddr_t real_addr = start_block;
28118 	diskaddr_t first_byte, end_block;
28119 
28120 	size_t	buffer_size = reqlength;
28121 	int rval;
28122 	diskaddr_t	cap;
28123 	uint32_t	lbasize;
28124 
28125 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
28126 	if (un == NULL)
28127 		return (ENXIO);
28128 
28129 	if (cmd != TG_READ && cmd != TG_WRITE)
28130 		return (EINVAL);
28131 
28132 	mutex_enter(SD_MUTEX(un));
28133 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
28134 		mutex_exit(SD_MUTEX(un));
28135 		rval = sd_send_scsi_READ_CAPACITY(un, (uint64_t *)&cap,
28136 		    &lbasize, path_flag);
28137 		if (rval != 0)
28138 			return (rval);
28139 		mutex_enter(SD_MUTEX(un));
28140 		sd_update_block_info(un, lbasize, cap);
28141 		if ((un->un_f_tgt_blocksize_is_valid == FALSE)) {
28142 			mutex_exit(SD_MUTEX(un));
28143 			return (EIO);
28144 		}
28145 	}
28146 
28147 	if (NOT_DEVBSIZE(un)) {
28148 		/*
28149 		 * sys_blocksize != tgt_blocksize, need to re-adjust
28150 		 * blkno and save the index to beginning of dk_label
28151 		 */
28152 		first_byte  = SD_SYSBLOCKS2BYTES(un, start_block);
28153 		real_addr = first_byte / un->un_tgt_blocksize;
28154 
28155 		end_block = (first_byte + reqlength +
28156 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
28157 
28158 		/* round up buffer size to multiple of target block size */
28159 		buffer_size = (end_block - real_addr) * un->un_tgt_blocksize;
28160 
28161 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr",
28162 		    "label_addr: 0x%x allocation size: 0x%x\n",
28163 		    real_addr, buffer_size);
28164 
28165 		if (((first_byte % un->un_tgt_blocksize) != 0) ||
28166 		    (reqlength % un->un_tgt_blocksize) != 0)
28167 			/* the request is not aligned */
28168 			dkl = kmem_zalloc(buffer_size, KM_SLEEP);
28169 	}
28170 
28171 	/*
28172 	 * The MMC standard allows READ CAPACITY to be
28173 	 * inaccurate by a bounded amount (in the interest of
28174 	 * response latency).  As a result, failed READs are
28175 	 * commonplace (due to the reading of metadata and not
28176 	 * data). Depending on the per-Vendor/drive Sense data,
28177 	 * the failed READ can cause many (unnecessary) retries.
28178 	 */
28179 
28180 	if (ISCD(un) && (cmd == TG_READ) &&
28181 	    (un->un_f_blockcount_is_valid == TRUE) &&
28182 	    ((start_block == (un->un_blockcount - 1))||
28183 	    (start_block == (un->un_blockcount - 2)))) {
28184 			path_flag = SD_PATH_DIRECT_PRIORITY;
28185 	}
28186 
28187 	mutex_exit(SD_MUTEX(un));
28188 	if (cmd == TG_READ) {
28189 		rval = sd_send_scsi_READ(un, (dkl != NULL)? dkl: bufaddr,
28190 		    buffer_size, real_addr, path_flag);
28191 		if (dkl != NULL)
28192 			bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block,
28193 			    real_addr), bufaddr, reqlength);
28194 	} else {
28195 		if (dkl) {
28196 			rval = sd_send_scsi_READ(un, dkl, buffer_size,
28197 			    real_addr, path_flag);
28198 			if (rval) {
28199 				kmem_free(dkl, buffer_size);
28200 				return (rval);
28201 			}
28202 			bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block,
28203 			    real_addr), reqlength);
28204 		}
28205 		rval = sd_send_scsi_WRITE(un, (dkl != NULL)? dkl: bufaddr,
28206 		    buffer_size, real_addr, path_flag);
28207 	}
28208 
28209 	if (dkl != NULL)
28210 		kmem_free(dkl, buffer_size);
28211 
28212 	return (rval);
28213 }
28214 
28215 
28216 static int
28217 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie)
28218 {
28219 
28220 	struct sd_lun *un;
28221 	diskaddr_t	cap;
28222 	uint32_t	lbasize;
28223 	int		path_flag = (int)(uintptr_t)tg_cookie;
28224 	int		ret = 0;
28225 
28226 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
28227 	if (un == NULL)
28228 		return (ENXIO);
28229 
28230 	switch (cmd) {
28231 	case TG_GETPHYGEOM:
28232 	case TG_GETVIRTGEOM:
28233 	case TG_GETCAPACITY:
28234 	case  TG_GETBLOCKSIZE:
28235 		mutex_enter(SD_MUTEX(un));
28236 
28237 		if ((un->un_f_blockcount_is_valid == TRUE) &&
28238 		    (un->un_f_tgt_blocksize_is_valid == TRUE)) {
28239 			cap = un->un_blockcount;
28240 			lbasize = un->un_tgt_blocksize;
28241 			mutex_exit(SD_MUTEX(un));
28242 		} else {
28243 			mutex_exit(SD_MUTEX(un));
28244 			ret = sd_send_scsi_READ_CAPACITY(un, (uint64_t *)&cap,
28245 			    &lbasize, path_flag);
28246 			if (ret != 0)
28247 				return (ret);
28248 			mutex_enter(SD_MUTEX(un));
28249 			sd_update_block_info(un, lbasize, cap);
28250 			if ((un->un_f_blockcount_is_valid == FALSE) ||
28251 			    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
28252 				mutex_exit(SD_MUTEX(un));
28253 				return (EIO);
28254 			}
28255 			mutex_exit(SD_MUTEX(un));
28256 		}
28257 
28258 		if (cmd == TG_GETCAPACITY) {
28259 			*(diskaddr_t *)arg = cap;
28260 			return (0);
28261 		}
28262 
28263 		if (cmd == TG_GETBLOCKSIZE) {
28264 			*(uint32_t *)arg = lbasize;
28265 			return (0);
28266 		}
28267 
28268 		if (cmd == TG_GETPHYGEOM)
28269 			ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg,
28270 			    cap, lbasize, path_flag);
28271 		else
28272 			/* TG_GETVIRTGEOM */
28273 			ret = sd_get_virtual_geometry(un,
28274 			    (cmlb_geom_t *)arg, cap, lbasize);
28275 
28276 		return (ret);
28277 
28278 	case TG_GETATTR:
28279 		mutex_enter(SD_MUTEX(un));
28280 		((tg_attribute_t *)arg)->media_is_writable =
28281 		    un->un_f_mmc_writable_media;
28282 		mutex_exit(SD_MUTEX(un));
28283 		return (0);
28284 	default:
28285 		return (ENOTTY);
28286 
28287 	}
28288 
28289 }
28290