1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * SCSI disk target driver. 29 */ 30 #include <sys/scsi/scsi.h> 31 #include <sys/dkbad.h> 32 #include <sys/dklabel.h> 33 #include <sys/dkio.h> 34 #include <sys/fdio.h> 35 #include <sys/cdio.h> 36 #include <sys/mhd.h> 37 #include <sys/vtoc.h> 38 #include <sys/dktp/fdisk.h> 39 #include <sys/kstat.h> 40 #include <sys/vtrace.h> 41 #include <sys/note.h> 42 #include <sys/thread.h> 43 #include <sys/proc.h> 44 #include <sys/efi_partition.h> 45 #include <sys/var.h> 46 #include <sys/aio_req.h> 47 48 #ifdef __lock_lint 49 #define _LP64 50 #define __amd64 51 #endif 52 53 #if (defined(__fibre)) 54 /* Note: is there a leadville version of the following? */ 55 #include <sys/fc4/fcal_linkapp.h> 56 #endif 57 #include <sys/taskq.h> 58 #include <sys/uuid.h> 59 #include <sys/byteorder.h> 60 #include <sys/sdt.h> 61 62 #include "sd_xbuf.h" 63 64 #include <sys/scsi/targets/sddef.h> 65 #include <sys/cmlb.h> 66 #include <sys/sysevent/eventdefs.h> 67 #include <sys/sysevent/dev.h> 68 69 #include <sys/fm/protocol.h> 70 71 /* 72 * Loadable module info. 73 */ 74 #if (defined(__fibre)) 75 #define SD_MODULE_NAME "SCSI SSA/FCAL Disk Driver" 76 char _depends_on[] = "misc/scsi misc/cmlb drv/fcp"; 77 #else /* !__fibre */ 78 #define SD_MODULE_NAME "SCSI Disk Driver" 79 char _depends_on[] = "misc/scsi misc/cmlb"; 80 #endif /* !__fibre */ 81 82 /* 83 * Define the interconnect type, to allow the driver to distinguish 84 * between parallel SCSI (sd) and fibre channel (ssd) behaviors. 85 * 86 * This is really for backward compatibility. In the future, the driver 87 * should actually check the "interconnect-type" property as reported by 88 * the HBA; however at present this property is not defined by all HBAs, 89 * so we will use this #define (1) to permit the driver to run in 90 * backward-compatibility mode; and (2) to print a notification message 91 * if an FC HBA does not support the "interconnect-type" property. The 92 * behavior of the driver will be to assume parallel SCSI behaviors unless 93 * the "interconnect-type" property is defined by the HBA **AND** has a 94 * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or 95 * INTERCONNECT_FABRIC, in which case the driver will assume Fibre 96 * Channel behaviors (as per the old ssd). (Note that the 97 * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and 98 * will result in the driver assuming parallel SCSI behaviors.) 99 * 100 * (see common/sys/scsi/impl/services.h) 101 * 102 * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default 103 * since some FC HBAs may already support that, and there is some code in 104 * the driver that already looks for it. Using INTERCONNECT_FABRIC as the 105 * default would confuse that code, and besides things should work fine 106 * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the 107 * "interconnect_type" property. 108 * 109 */ 110 #if (defined(__fibre)) 111 #define SD_DEFAULT_INTERCONNECT_TYPE SD_INTERCONNECT_FIBRE 112 #else 113 #define SD_DEFAULT_INTERCONNECT_TYPE SD_INTERCONNECT_PARALLEL 114 #endif 115 116 /* 117 * The name of the driver, established from the module name in _init. 118 */ 119 static char *sd_label = NULL; 120 121 /* 122 * Driver name is unfortunately prefixed on some driver.conf properties. 123 */ 124 #if (defined(__fibre)) 125 #define sd_max_xfer_size ssd_max_xfer_size 126 #define sd_config_list ssd_config_list 127 static char *sd_max_xfer_size = "ssd_max_xfer_size"; 128 static char *sd_config_list = "ssd-config-list"; 129 #else 130 static char *sd_max_xfer_size = "sd_max_xfer_size"; 131 static char *sd_config_list = "sd-config-list"; 132 #endif 133 134 /* 135 * Driver global variables 136 */ 137 138 #if (defined(__fibre)) 139 /* 140 * These #defines are to avoid namespace collisions that occur because this 141 * code is currently used to compile two separate driver modules: sd and ssd. 142 * All global variables need to be treated this way (even if declared static) 143 * in order to allow the debugger to resolve the names properly. 144 * It is anticipated that in the near future the ssd module will be obsoleted, 145 * at which time this namespace issue should go away. 146 */ 147 #define sd_state ssd_state 148 #define sd_io_time ssd_io_time 149 #define sd_failfast_enable ssd_failfast_enable 150 #define sd_ua_retry_count ssd_ua_retry_count 151 #define sd_report_pfa ssd_report_pfa 152 #define sd_max_throttle ssd_max_throttle 153 #define sd_min_throttle ssd_min_throttle 154 #define sd_rot_delay ssd_rot_delay 155 156 #define sd_retry_on_reservation_conflict \ 157 ssd_retry_on_reservation_conflict 158 #define sd_reinstate_resv_delay ssd_reinstate_resv_delay 159 #define sd_resv_conflict_name ssd_resv_conflict_name 160 161 #define sd_component_mask ssd_component_mask 162 #define sd_level_mask ssd_level_mask 163 #define sd_debug_un ssd_debug_un 164 #define sd_error_level ssd_error_level 165 166 #define sd_xbuf_active_limit ssd_xbuf_active_limit 167 #define sd_xbuf_reserve_limit ssd_xbuf_reserve_limit 168 169 #define sd_tr ssd_tr 170 #define sd_reset_throttle_timeout ssd_reset_throttle_timeout 171 #define sd_qfull_throttle_timeout ssd_qfull_throttle_timeout 172 #define sd_qfull_throttle_enable ssd_qfull_throttle_enable 173 #define sd_check_media_time ssd_check_media_time 174 #define sd_wait_cmds_complete ssd_wait_cmds_complete 175 #define sd_label_mutex ssd_label_mutex 176 #define sd_detach_mutex ssd_detach_mutex 177 #define sd_log_buf ssd_log_buf 178 #define sd_log_mutex ssd_log_mutex 179 180 #define sd_disk_table ssd_disk_table 181 #define sd_disk_table_size ssd_disk_table_size 182 #define sd_sense_mutex ssd_sense_mutex 183 #define sd_cdbtab ssd_cdbtab 184 185 #define sd_cb_ops ssd_cb_ops 186 #define sd_ops ssd_ops 187 #define sd_additional_codes ssd_additional_codes 188 #define sd_tgops ssd_tgops 189 190 #define sd_minor_data ssd_minor_data 191 #define sd_minor_data_efi ssd_minor_data_efi 192 193 #define sd_tq ssd_tq 194 #define sd_wmr_tq ssd_wmr_tq 195 #define sd_taskq_name ssd_taskq_name 196 #define sd_wmr_taskq_name ssd_wmr_taskq_name 197 #define sd_taskq_minalloc ssd_taskq_minalloc 198 #define sd_taskq_maxalloc ssd_taskq_maxalloc 199 200 #define sd_dump_format_string ssd_dump_format_string 201 202 #define sd_iostart_chain ssd_iostart_chain 203 #define sd_iodone_chain ssd_iodone_chain 204 205 #define sd_pm_idletime ssd_pm_idletime 206 207 #define sd_force_pm_supported ssd_force_pm_supported 208 209 #define sd_dtype_optical_bind ssd_dtype_optical_bind 210 211 #define sd_ssc_init ssd_ssc_init 212 #define sd_ssc_send ssd_ssc_send 213 #define sd_ssc_fini ssd_ssc_fini 214 #define sd_ssc_assessment ssd_ssc_assessment 215 #define sd_ssc_post ssd_ssc_post 216 #define sd_ssc_print ssd_ssc_print 217 #define sd_ssc_ereport_post ssd_ssc_ereport_post 218 #define sd_ssc_set_info ssd_ssc_set_info 219 #define sd_ssc_extract_info ssd_ssc_extract_info 220 221 #endif 222 223 #ifdef SDDEBUG 224 int sd_force_pm_supported = 0; 225 #endif /* SDDEBUG */ 226 227 void *sd_state = NULL; 228 int sd_io_time = SD_IO_TIME; 229 int sd_failfast_enable = 1; 230 int sd_ua_retry_count = SD_UA_RETRY_COUNT; 231 int sd_report_pfa = 1; 232 int sd_max_throttle = SD_MAX_THROTTLE; 233 int sd_min_throttle = SD_MIN_THROTTLE; 234 int sd_rot_delay = 4; /* Default 4ms Rotation delay */ 235 int sd_qfull_throttle_enable = TRUE; 236 237 int sd_retry_on_reservation_conflict = 1; 238 int sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY; 239 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay)) 240 241 static int sd_dtype_optical_bind = -1; 242 243 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */ 244 static char *sd_resv_conflict_name = "sd_retry_on_reservation_conflict"; 245 246 /* 247 * Global data for debug logging. To enable debug printing, sd_component_mask 248 * and sd_level_mask should be set to the desired bit patterns as outlined in 249 * sddef.h. 250 */ 251 uint_t sd_component_mask = 0x0; 252 uint_t sd_level_mask = 0x0; 253 struct sd_lun *sd_debug_un = NULL; 254 uint_t sd_error_level = SCSI_ERR_RETRYABLE; 255 256 /* Note: these may go away in the future... */ 257 static uint32_t sd_xbuf_active_limit = 512; 258 static uint32_t sd_xbuf_reserve_limit = 16; 259 260 static struct sd_resv_reclaim_request sd_tr = { NULL, NULL, NULL, 0, 0, 0 }; 261 262 /* 263 * Timer value used to reset the throttle after it has been reduced 264 * (typically in response to TRAN_BUSY or STATUS_QFULL) 265 */ 266 static int sd_reset_throttle_timeout = SD_RESET_THROTTLE_TIMEOUT; 267 static int sd_qfull_throttle_timeout = SD_QFULL_THROTTLE_TIMEOUT; 268 269 /* 270 * Interval value associated with the media change scsi watch. 271 */ 272 static int sd_check_media_time = 3000000; 273 274 /* 275 * Wait value used for in progress operations during a DDI_SUSPEND 276 */ 277 static int sd_wait_cmds_complete = SD_WAIT_CMDS_COMPLETE; 278 279 /* 280 * sd_label_mutex protects a static buffer used in the disk label 281 * component of the driver 282 */ 283 static kmutex_t sd_label_mutex; 284 285 /* 286 * sd_detach_mutex protects un_layer_count, un_detach_count, and 287 * un_opens_in_progress in the sd_lun structure. 288 */ 289 static kmutex_t sd_detach_mutex; 290 291 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex, 292 sd_lun::{un_layer_count un_detach_count un_opens_in_progress})) 293 294 /* 295 * Global buffer and mutex for debug logging 296 */ 297 static char sd_log_buf[1024]; 298 static kmutex_t sd_log_mutex; 299 300 /* 301 * Structs and globals for recording attached lun information. 302 * This maintains a chain. Each node in the chain represents a SCSI controller. 303 * The structure records the number of luns attached to each target connected 304 * with the controller. 305 * For parallel scsi device only. 306 */ 307 struct sd_scsi_hba_tgt_lun { 308 struct sd_scsi_hba_tgt_lun *next; 309 dev_info_t *pdip; 310 int nlun[NTARGETS_WIDE]; 311 }; 312 313 /* 314 * Flag to indicate the lun is attached or detached 315 */ 316 #define SD_SCSI_LUN_ATTACH 0 317 #define SD_SCSI_LUN_DETACH 1 318 319 static kmutex_t sd_scsi_target_lun_mutex; 320 static struct sd_scsi_hba_tgt_lun *sd_scsi_target_lun_head = NULL; 321 322 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex, 323 sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip)) 324 325 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex, 326 sd_scsi_target_lun_head)) 327 328 /* 329 * "Smart" Probe Caching structs, globals, #defines, etc. 330 * For parallel scsi and non-self-identify device only. 331 */ 332 333 /* 334 * The following resources and routines are implemented to support 335 * "smart" probing, which caches the scsi_probe() results in an array, 336 * in order to help avoid long probe times. 337 */ 338 struct sd_scsi_probe_cache { 339 struct sd_scsi_probe_cache *next; 340 dev_info_t *pdip; 341 int cache[NTARGETS_WIDE]; 342 }; 343 344 static kmutex_t sd_scsi_probe_cache_mutex; 345 static struct sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL; 346 347 /* 348 * Really we only need protection on the head of the linked list, but 349 * better safe than sorry. 350 */ 351 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex, 352 sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip)) 353 354 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex, 355 sd_scsi_probe_cache_head)) 356 357 /* 358 * Power attribute table 359 */ 360 static sd_power_attr_ss sd_pwr_ss = { 361 { "NAME=spindle-motor", "0=off", "1=on", NULL }, 362 {0, 100}, 363 {30, 0}, 364 {20000, 0} 365 }; 366 367 static sd_power_attr_pc sd_pwr_pc = { 368 { "NAME=spindle-motor", "0=stopped", "1=standby", "2=idle", 369 "3=active", NULL }, 370 {0, 0, 0, 100}, 371 {90, 90, 20, 0}, 372 {15000, 15000, 1000, 0} 373 }; 374 375 /* 376 * Power level to power condition 377 */ 378 static int sd_pl2pc[] = { 379 SD_TARGET_START_VALID, 380 SD_TARGET_STANDBY, 381 SD_TARGET_IDLE, 382 SD_TARGET_ACTIVE 383 }; 384 385 /* 386 * Vendor specific data name property declarations 387 */ 388 389 #if defined(__fibre) || defined(__i386) ||defined(__amd64) 390 391 static sd_tunables seagate_properties = { 392 SEAGATE_THROTTLE_VALUE, 393 0, 394 0, 395 0, 396 0, 397 0, 398 0, 399 0, 400 0 401 }; 402 403 404 static sd_tunables fujitsu_properties = { 405 FUJITSU_THROTTLE_VALUE, 406 0, 407 0, 408 0, 409 0, 410 0, 411 0, 412 0, 413 0 414 }; 415 416 static sd_tunables ibm_properties = { 417 IBM_THROTTLE_VALUE, 418 0, 419 0, 420 0, 421 0, 422 0, 423 0, 424 0, 425 0 426 }; 427 428 static sd_tunables purple_properties = { 429 PURPLE_THROTTLE_VALUE, 430 0, 431 0, 432 PURPLE_BUSY_RETRIES, 433 PURPLE_RESET_RETRY_COUNT, 434 PURPLE_RESERVE_RELEASE_TIME, 435 0, 436 0, 437 0 438 }; 439 440 static sd_tunables sve_properties = { 441 SVE_THROTTLE_VALUE, 442 0, 443 0, 444 SVE_BUSY_RETRIES, 445 SVE_RESET_RETRY_COUNT, 446 SVE_RESERVE_RELEASE_TIME, 447 SVE_MIN_THROTTLE_VALUE, 448 SVE_DISKSORT_DISABLED_FLAG, 449 0 450 }; 451 452 static sd_tunables maserati_properties = { 453 0, 454 0, 455 0, 456 0, 457 0, 458 0, 459 0, 460 MASERATI_DISKSORT_DISABLED_FLAG, 461 MASERATI_LUN_RESET_ENABLED_FLAG 462 }; 463 464 static sd_tunables pirus_properties = { 465 PIRUS_THROTTLE_VALUE, 466 0, 467 PIRUS_NRR_COUNT, 468 PIRUS_BUSY_RETRIES, 469 PIRUS_RESET_RETRY_COUNT, 470 0, 471 PIRUS_MIN_THROTTLE_VALUE, 472 PIRUS_DISKSORT_DISABLED_FLAG, 473 PIRUS_LUN_RESET_ENABLED_FLAG 474 }; 475 476 #endif 477 478 #if (defined(__sparc) && !defined(__fibre)) || \ 479 (defined(__i386) || defined(__amd64)) 480 481 482 static sd_tunables elite_properties = { 483 ELITE_THROTTLE_VALUE, 484 0, 485 0, 486 0, 487 0, 488 0, 489 0, 490 0, 491 0 492 }; 493 494 static sd_tunables st31200n_properties = { 495 ST31200N_THROTTLE_VALUE, 496 0, 497 0, 498 0, 499 0, 500 0, 501 0, 502 0, 503 0 504 }; 505 506 #endif /* Fibre or not */ 507 508 static sd_tunables lsi_properties_scsi = { 509 LSI_THROTTLE_VALUE, 510 0, 511 LSI_NOTREADY_RETRIES, 512 0, 513 0, 514 0, 515 0, 516 0, 517 0 518 }; 519 520 static sd_tunables symbios_properties = { 521 SYMBIOS_THROTTLE_VALUE, 522 0, 523 SYMBIOS_NOTREADY_RETRIES, 524 0, 525 0, 526 0, 527 0, 528 0, 529 0 530 }; 531 532 static sd_tunables lsi_properties = { 533 0, 534 0, 535 LSI_NOTREADY_RETRIES, 536 0, 537 0, 538 0, 539 0, 540 0, 541 0 542 }; 543 544 static sd_tunables lsi_oem_properties = { 545 0, 546 0, 547 LSI_OEM_NOTREADY_RETRIES, 548 0, 549 0, 550 0, 551 0, 552 0, 553 0, 554 1 555 }; 556 557 558 559 #if (defined(SD_PROP_TST)) 560 561 #define SD_TST_CTYPE_VAL CTYPE_CDROM 562 #define SD_TST_THROTTLE_VAL 16 563 #define SD_TST_NOTREADY_VAL 12 564 #define SD_TST_BUSY_VAL 60 565 #define SD_TST_RST_RETRY_VAL 36 566 #define SD_TST_RSV_REL_TIME 60 567 568 static sd_tunables tst_properties = { 569 SD_TST_THROTTLE_VAL, 570 SD_TST_CTYPE_VAL, 571 SD_TST_NOTREADY_VAL, 572 SD_TST_BUSY_VAL, 573 SD_TST_RST_RETRY_VAL, 574 SD_TST_RSV_REL_TIME, 575 0, 576 0, 577 0 578 }; 579 #endif 580 581 /* This is similar to the ANSI toupper implementation */ 582 #define SD_TOUPPER(C) (((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C)) 583 584 /* 585 * Static Driver Configuration Table 586 * 587 * This is the table of disks which need throttle adjustment (or, perhaps 588 * something else as defined by the flags at a future time.) device_id 589 * is a string consisting of concatenated vid (vendor), pid (product/model) 590 * and revision strings as defined in the scsi_inquiry structure. Offsets of 591 * the parts of the string are as defined by the sizes in the scsi_inquiry 592 * structure. Device type is searched as far as the device_id string is 593 * defined. Flags defines which values are to be set in the driver from the 594 * properties list. 595 * 596 * Entries below which begin and end with a "*" are a special case. 597 * These do not have a specific vendor, and the string which follows 598 * can appear anywhere in the 16 byte PID portion of the inquiry data. 599 * 600 * Entries below which begin and end with a " " (blank) are a special 601 * case. The comparison function will treat multiple consecutive blanks 602 * as equivalent to a single blank. For example, this causes a 603 * sd_disk_table entry of " NEC CDROM " to match a device's id string 604 * of "NEC CDROM". 605 * 606 * Note: The MD21 controller type has been obsoleted. 607 * ST318202F is a Legacy device 608 * MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been 609 * made with an FC connection. The entries here are a legacy. 610 */ 611 static sd_disk_config_t sd_disk_table[] = { 612 #if defined(__fibre) || defined(__i386) || defined(__amd64) 613 { "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 614 { "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 615 { "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 616 { "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 617 { "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 618 { "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 619 { "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 620 { "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 621 { "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 622 { "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 623 { "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 624 { "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 625 { "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 626 { "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 627 { "FUJITSU MAG3091F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 628 { "FUJITSU MAG3182F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 629 { "FUJITSU MAA3182F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 630 { "FUJITSU MAF3364F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 631 { "FUJITSU MAL3364F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 632 { "FUJITSU MAL3738F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 633 { "FUJITSU MAM3182FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 634 { "FUJITSU MAM3364FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 635 { "FUJITSU MAM3738FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 636 { "IBM DDYFT1835", SD_CONF_BSET_THROTTLE, &ibm_properties }, 637 { "IBM DDYFT3695", SD_CONF_BSET_THROTTLE, &ibm_properties }, 638 { "IBM IC35LF2D2", SD_CONF_BSET_THROTTLE, &ibm_properties }, 639 { "IBM IC35LF2PR", SD_CONF_BSET_THROTTLE, &ibm_properties }, 640 { "IBM 1724-100", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 641 { "IBM 1726-2xx", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 642 { "IBM 1726-22x", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 643 { "IBM 1726-4xx", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 644 { "IBM 1726-42x", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 645 { "IBM 1726-3xx", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 646 { "IBM 3526", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 647 { "IBM 3542", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 648 { "IBM 3552", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 649 { "IBM 1722", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 650 { "IBM 1742", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 651 { "IBM 1815", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 652 { "IBM FAStT", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 653 { "IBM 1814", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 654 { "IBM 1814-200", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 655 { "IBM 1818", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 656 { "DELL MD3000", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 657 { "DELL MD3000i", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 658 { "LSI INF", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 659 { "ENGENIO INF", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 660 { "SGI TP", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 661 { "SGI IS", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 662 { "*CSM100_*", SD_CONF_BSET_NRR_COUNT | 663 SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties }, 664 { "*CSM200_*", SD_CONF_BSET_NRR_COUNT | 665 SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties }, 666 { "Fujitsu SX300", SD_CONF_BSET_THROTTLE, &lsi_oem_properties }, 667 { "LSI", SD_CONF_BSET_NRR_COUNT, &lsi_properties }, 668 { "SUN T3", SD_CONF_BSET_THROTTLE | 669 SD_CONF_BSET_BSY_RETRY_COUNT| 670 SD_CONF_BSET_RST_RETRIES| 671 SD_CONF_BSET_RSV_REL_TIME, 672 &purple_properties }, 673 { "SUN SESS01", SD_CONF_BSET_THROTTLE | 674 SD_CONF_BSET_BSY_RETRY_COUNT| 675 SD_CONF_BSET_RST_RETRIES| 676 SD_CONF_BSET_RSV_REL_TIME| 677 SD_CONF_BSET_MIN_THROTTLE| 678 SD_CONF_BSET_DISKSORT_DISABLED, 679 &sve_properties }, 680 { "SUN T4", SD_CONF_BSET_THROTTLE | 681 SD_CONF_BSET_BSY_RETRY_COUNT| 682 SD_CONF_BSET_RST_RETRIES| 683 SD_CONF_BSET_RSV_REL_TIME, 684 &purple_properties }, 685 { "SUN SVE01", SD_CONF_BSET_DISKSORT_DISABLED | 686 SD_CONF_BSET_LUN_RESET_ENABLED, 687 &maserati_properties }, 688 { "SUN SE6920", SD_CONF_BSET_THROTTLE | 689 SD_CONF_BSET_NRR_COUNT| 690 SD_CONF_BSET_BSY_RETRY_COUNT| 691 SD_CONF_BSET_RST_RETRIES| 692 SD_CONF_BSET_MIN_THROTTLE| 693 SD_CONF_BSET_DISKSORT_DISABLED| 694 SD_CONF_BSET_LUN_RESET_ENABLED, 695 &pirus_properties }, 696 { "SUN SE6940", SD_CONF_BSET_THROTTLE | 697 SD_CONF_BSET_NRR_COUNT| 698 SD_CONF_BSET_BSY_RETRY_COUNT| 699 SD_CONF_BSET_RST_RETRIES| 700 SD_CONF_BSET_MIN_THROTTLE| 701 SD_CONF_BSET_DISKSORT_DISABLED| 702 SD_CONF_BSET_LUN_RESET_ENABLED, 703 &pirus_properties }, 704 { "SUN StorageTek 6920", SD_CONF_BSET_THROTTLE | 705 SD_CONF_BSET_NRR_COUNT| 706 SD_CONF_BSET_BSY_RETRY_COUNT| 707 SD_CONF_BSET_RST_RETRIES| 708 SD_CONF_BSET_MIN_THROTTLE| 709 SD_CONF_BSET_DISKSORT_DISABLED| 710 SD_CONF_BSET_LUN_RESET_ENABLED, 711 &pirus_properties }, 712 { "SUN StorageTek 6940", SD_CONF_BSET_THROTTLE | 713 SD_CONF_BSET_NRR_COUNT| 714 SD_CONF_BSET_BSY_RETRY_COUNT| 715 SD_CONF_BSET_RST_RETRIES| 716 SD_CONF_BSET_MIN_THROTTLE| 717 SD_CONF_BSET_DISKSORT_DISABLED| 718 SD_CONF_BSET_LUN_RESET_ENABLED, 719 &pirus_properties }, 720 { "SUN PSX1000", SD_CONF_BSET_THROTTLE | 721 SD_CONF_BSET_NRR_COUNT| 722 SD_CONF_BSET_BSY_RETRY_COUNT| 723 SD_CONF_BSET_RST_RETRIES| 724 SD_CONF_BSET_MIN_THROTTLE| 725 SD_CONF_BSET_DISKSORT_DISABLED| 726 SD_CONF_BSET_LUN_RESET_ENABLED, 727 &pirus_properties }, 728 { "SUN SE6330", SD_CONF_BSET_THROTTLE | 729 SD_CONF_BSET_NRR_COUNT| 730 SD_CONF_BSET_BSY_RETRY_COUNT| 731 SD_CONF_BSET_RST_RETRIES| 732 SD_CONF_BSET_MIN_THROTTLE| 733 SD_CONF_BSET_DISKSORT_DISABLED| 734 SD_CONF_BSET_LUN_RESET_ENABLED, 735 &pirus_properties }, 736 { "SUN STK6580_6780", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 737 { "SUN SUN_6180", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 738 { "STK OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 739 { "STK OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 740 { "STK BladeCtlr", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 741 { "STK FLEXLINE", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 742 { "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties }, 743 #endif /* fibre or NON-sparc platforms */ 744 #if ((defined(__sparc) && !defined(__fibre)) ||\ 745 (defined(__i386) || defined(__amd64))) 746 { "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties }, 747 { "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties }, 748 { "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL }, 749 { "CONNER CP30540", SD_CONF_BSET_NOCACHE, NULL }, 750 { "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL }, 751 { "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL }, 752 { "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL }, 753 { "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL }, 754 { "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL }, 755 { "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL }, 756 { "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL }, 757 { "SYMBIOS INF-01-00 ", SD_CONF_BSET_FAB_DEVID, NULL }, 758 { "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT, 759 &symbios_properties }, 760 { "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT, 761 &lsi_properties_scsi }, 762 #if defined(__i386) || defined(__amd64) 763 { " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD 764 | SD_CONF_BSET_READSUB_BCD 765 | SD_CONF_BSET_READ_TOC_ADDR_BCD 766 | SD_CONF_BSET_NO_READ_HEADER 767 | SD_CONF_BSET_READ_CD_XD4), NULL }, 768 769 { " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD 770 | SD_CONF_BSET_READSUB_BCD 771 | SD_CONF_BSET_READ_TOC_ADDR_BCD 772 | SD_CONF_BSET_NO_READ_HEADER 773 | SD_CONF_BSET_READ_CD_XD4), NULL }, 774 #endif /* __i386 || __amd64 */ 775 #endif /* sparc NON-fibre or NON-sparc platforms */ 776 777 #if (defined(SD_PROP_TST)) 778 { "VENDOR PRODUCT ", (SD_CONF_BSET_THROTTLE 779 | SD_CONF_BSET_CTYPE 780 | SD_CONF_BSET_NRR_COUNT 781 | SD_CONF_BSET_FAB_DEVID 782 | SD_CONF_BSET_NOCACHE 783 | SD_CONF_BSET_BSY_RETRY_COUNT 784 | SD_CONF_BSET_PLAYMSF_BCD 785 | SD_CONF_BSET_READSUB_BCD 786 | SD_CONF_BSET_READ_TOC_TRK_BCD 787 | SD_CONF_BSET_READ_TOC_ADDR_BCD 788 | SD_CONF_BSET_NO_READ_HEADER 789 | SD_CONF_BSET_READ_CD_XD4 790 | SD_CONF_BSET_RST_RETRIES 791 | SD_CONF_BSET_RSV_REL_TIME 792 | SD_CONF_BSET_TUR_CHECK), &tst_properties}, 793 #endif 794 }; 795 796 static const int sd_disk_table_size = 797 sizeof (sd_disk_table)/ sizeof (sd_disk_config_t); 798 799 800 801 #define SD_INTERCONNECT_PARALLEL 0 802 #define SD_INTERCONNECT_FABRIC 1 803 #define SD_INTERCONNECT_FIBRE 2 804 #define SD_INTERCONNECT_SSA 3 805 #define SD_INTERCONNECT_SATA 4 806 #define SD_INTERCONNECT_SAS 5 807 808 #define SD_IS_PARALLEL_SCSI(un) \ 809 ((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL) 810 #define SD_IS_SERIAL(un) \ 811 (((un)->un_interconnect_type == SD_INTERCONNECT_SATA) ||\ 812 ((un)->un_interconnect_type == SD_INTERCONNECT_SAS)) 813 814 /* 815 * Definitions used by device id registration routines 816 */ 817 #define VPD_HEAD_OFFSET 3 /* size of head for vpd page */ 818 #define VPD_PAGE_LENGTH 3 /* offset for pge length data */ 819 #define VPD_MODE_PAGE 1 /* offset into vpd pg for "page code" */ 820 821 static kmutex_t sd_sense_mutex = {0}; 822 823 /* 824 * Macros for updates of the driver state 825 */ 826 #define New_state(un, s) \ 827 (un)->un_last_state = (un)->un_state, (un)->un_state = (s) 828 #define Restore_state(un) \ 829 { uchar_t tmp = (un)->un_last_state; New_state((un), tmp); } 830 831 static struct sd_cdbinfo sd_cdbtab[] = { 832 { CDB_GROUP0, 0x00, 0x1FFFFF, 0xFF, }, 833 { CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF, }, 834 { CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF, }, 835 { CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, }, 836 }; 837 838 /* 839 * Specifies the number of seconds that must have elapsed since the last 840 * cmd. has completed for a device to be declared idle to the PM framework. 841 */ 842 static int sd_pm_idletime = 1; 843 844 /* 845 * Internal function prototypes 846 */ 847 848 #if (defined(__fibre)) 849 /* 850 * These #defines are to avoid namespace collisions that occur because this 851 * code is currently used to compile two separate driver modules: sd and ssd. 852 * All function names need to be treated this way (even if declared static) 853 * in order to allow the debugger to resolve the names properly. 854 * It is anticipated that in the near future the ssd module will be obsoleted, 855 * at which time this ugliness should go away. 856 */ 857 #define sd_log_trace ssd_log_trace 858 #define sd_log_info ssd_log_info 859 #define sd_log_err ssd_log_err 860 #define sdprobe ssdprobe 861 #define sdinfo ssdinfo 862 #define sd_prop_op ssd_prop_op 863 #define sd_scsi_probe_cache_init ssd_scsi_probe_cache_init 864 #define sd_scsi_probe_cache_fini ssd_scsi_probe_cache_fini 865 #define sd_scsi_clear_probe_cache ssd_scsi_clear_probe_cache 866 #define sd_scsi_probe_with_cache ssd_scsi_probe_with_cache 867 #define sd_scsi_target_lun_init ssd_scsi_target_lun_init 868 #define sd_scsi_target_lun_fini ssd_scsi_target_lun_fini 869 #define sd_scsi_get_target_lun_count ssd_scsi_get_target_lun_count 870 #define sd_scsi_update_lun_on_target ssd_scsi_update_lun_on_target 871 #define sd_spin_up_unit ssd_spin_up_unit 872 #define sd_enable_descr_sense ssd_enable_descr_sense 873 #define sd_reenable_dsense_task ssd_reenable_dsense_task 874 #define sd_set_mmc_caps ssd_set_mmc_caps 875 #define sd_read_unit_properties ssd_read_unit_properties 876 #define sd_process_sdconf_file ssd_process_sdconf_file 877 #define sd_process_sdconf_table ssd_process_sdconf_table 878 #define sd_sdconf_id_match ssd_sdconf_id_match 879 #define sd_blank_cmp ssd_blank_cmp 880 #define sd_chk_vers1_data ssd_chk_vers1_data 881 #define sd_set_vers1_properties ssd_set_vers1_properties 882 #define sd_check_solid_state ssd_check_solid_state 883 884 #define sd_get_physical_geometry ssd_get_physical_geometry 885 #define sd_get_virtual_geometry ssd_get_virtual_geometry 886 #define sd_update_block_info ssd_update_block_info 887 #define sd_register_devid ssd_register_devid 888 #define sd_get_devid ssd_get_devid 889 #define sd_create_devid ssd_create_devid 890 #define sd_write_deviceid ssd_write_deviceid 891 #define sd_check_vpd_page_support ssd_check_vpd_page_support 892 #define sd_setup_pm ssd_setup_pm 893 #define sd_create_pm_components ssd_create_pm_components 894 #define sd_ddi_suspend ssd_ddi_suspend 895 #define sd_ddi_resume ssd_ddi_resume 896 #define sd_pm_state_change ssd_pm_state_change 897 #define sdpower ssdpower 898 #define sdattach ssdattach 899 #define sddetach ssddetach 900 #define sd_unit_attach ssd_unit_attach 901 #define sd_unit_detach ssd_unit_detach 902 #define sd_set_unit_attributes ssd_set_unit_attributes 903 #define sd_create_errstats ssd_create_errstats 904 #define sd_set_errstats ssd_set_errstats 905 #define sd_set_pstats ssd_set_pstats 906 #define sddump ssddump 907 #define sd_scsi_poll ssd_scsi_poll 908 #define sd_send_polled_RQS ssd_send_polled_RQS 909 #define sd_ddi_scsi_poll ssd_ddi_scsi_poll 910 #define sd_init_event_callbacks ssd_init_event_callbacks 911 #define sd_event_callback ssd_event_callback 912 #define sd_cache_control ssd_cache_control 913 #define sd_get_write_cache_enabled ssd_get_write_cache_enabled 914 #define sd_get_nv_sup ssd_get_nv_sup 915 #define sd_make_device ssd_make_device 916 #define sdopen ssdopen 917 #define sdclose ssdclose 918 #define sd_ready_and_valid ssd_ready_and_valid 919 #define sdmin ssdmin 920 #define sdread ssdread 921 #define sdwrite ssdwrite 922 #define sdaread ssdaread 923 #define sdawrite ssdawrite 924 #define sdstrategy ssdstrategy 925 #define sdioctl ssdioctl 926 #define sd_mapblockaddr_iostart ssd_mapblockaddr_iostart 927 #define sd_mapblocksize_iostart ssd_mapblocksize_iostart 928 #define sd_checksum_iostart ssd_checksum_iostart 929 #define sd_checksum_uscsi_iostart ssd_checksum_uscsi_iostart 930 #define sd_pm_iostart ssd_pm_iostart 931 #define sd_core_iostart ssd_core_iostart 932 #define sd_mapblockaddr_iodone ssd_mapblockaddr_iodone 933 #define sd_mapblocksize_iodone ssd_mapblocksize_iodone 934 #define sd_checksum_iodone ssd_checksum_iodone 935 #define sd_checksum_uscsi_iodone ssd_checksum_uscsi_iodone 936 #define sd_pm_iodone ssd_pm_iodone 937 #define sd_initpkt_for_buf ssd_initpkt_for_buf 938 #define sd_destroypkt_for_buf ssd_destroypkt_for_buf 939 #define sd_setup_rw_pkt ssd_setup_rw_pkt 940 #define sd_setup_next_rw_pkt ssd_setup_next_rw_pkt 941 #define sd_buf_iodone ssd_buf_iodone 942 #define sd_uscsi_strategy ssd_uscsi_strategy 943 #define sd_initpkt_for_uscsi ssd_initpkt_for_uscsi 944 #define sd_destroypkt_for_uscsi ssd_destroypkt_for_uscsi 945 #define sd_uscsi_iodone ssd_uscsi_iodone 946 #define sd_xbuf_strategy ssd_xbuf_strategy 947 #define sd_xbuf_init ssd_xbuf_init 948 #define sd_pm_entry ssd_pm_entry 949 #define sd_pm_exit ssd_pm_exit 950 951 #define sd_pm_idletimeout_handler ssd_pm_idletimeout_handler 952 #define sd_pm_timeout_handler ssd_pm_timeout_handler 953 954 #define sd_add_buf_to_waitq ssd_add_buf_to_waitq 955 #define sdintr ssdintr 956 #define sd_start_cmds ssd_start_cmds 957 #define sd_send_scsi_cmd ssd_send_scsi_cmd 958 #define sd_bioclone_alloc ssd_bioclone_alloc 959 #define sd_bioclone_free ssd_bioclone_free 960 #define sd_shadow_buf_alloc ssd_shadow_buf_alloc 961 #define sd_shadow_buf_free ssd_shadow_buf_free 962 #define sd_print_transport_rejected_message \ 963 ssd_print_transport_rejected_message 964 #define sd_retry_command ssd_retry_command 965 #define sd_set_retry_bp ssd_set_retry_bp 966 #define sd_send_request_sense_command ssd_send_request_sense_command 967 #define sd_start_retry_command ssd_start_retry_command 968 #define sd_start_direct_priority_command \ 969 ssd_start_direct_priority_command 970 #define sd_return_failed_command ssd_return_failed_command 971 #define sd_return_failed_command_no_restart \ 972 ssd_return_failed_command_no_restart 973 #define sd_return_command ssd_return_command 974 #define sd_sync_with_callback ssd_sync_with_callback 975 #define sdrunout ssdrunout 976 #define sd_mark_rqs_busy ssd_mark_rqs_busy 977 #define sd_mark_rqs_idle ssd_mark_rqs_idle 978 #define sd_reduce_throttle ssd_reduce_throttle 979 #define sd_restore_throttle ssd_restore_throttle 980 #define sd_print_incomplete_msg ssd_print_incomplete_msg 981 #define sd_init_cdb_limits ssd_init_cdb_limits 982 #define sd_pkt_status_good ssd_pkt_status_good 983 #define sd_pkt_status_check_condition ssd_pkt_status_check_condition 984 #define sd_pkt_status_busy ssd_pkt_status_busy 985 #define sd_pkt_status_reservation_conflict \ 986 ssd_pkt_status_reservation_conflict 987 #define sd_pkt_status_qfull ssd_pkt_status_qfull 988 #define sd_handle_request_sense ssd_handle_request_sense 989 #define sd_handle_auto_request_sense ssd_handle_auto_request_sense 990 #define sd_print_sense_failed_msg ssd_print_sense_failed_msg 991 #define sd_validate_sense_data ssd_validate_sense_data 992 #define sd_decode_sense ssd_decode_sense 993 #define sd_print_sense_msg ssd_print_sense_msg 994 #define sd_sense_key_no_sense ssd_sense_key_no_sense 995 #define sd_sense_key_recoverable_error ssd_sense_key_recoverable_error 996 #define sd_sense_key_not_ready ssd_sense_key_not_ready 997 #define sd_sense_key_medium_or_hardware_error \ 998 ssd_sense_key_medium_or_hardware_error 999 #define sd_sense_key_illegal_request ssd_sense_key_illegal_request 1000 #define sd_sense_key_unit_attention ssd_sense_key_unit_attention 1001 #define sd_sense_key_fail_command ssd_sense_key_fail_command 1002 #define sd_sense_key_blank_check ssd_sense_key_blank_check 1003 #define sd_sense_key_aborted_command ssd_sense_key_aborted_command 1004 #define sd_sense_key_default ssd_sense_key_default 1005 #define sd_print_retry_msg ssd_print_retry_msg 1006 #define sd_print_cmd_incomplete_msg ssd_print_cmd_incomplete_msg 1007 #define sd_pkt_reason_cmd_incomplete ssd_pkt_reason_cmd_incomplete 1008 #define sd_pkt_reason_cmd_tran_err ssd_pkt_reason_cmd_tran_err 1009 #define sd_pkt_reason_cmd_reset ssd_pkt_reason_cmd_reset 1010 #define sd_pkt_reason_cmd_aborted ssd_pkt_reason_cmd_aborted 1011 #define sd_pkt_reason_cmd_timeout ssd_pkt_reason_cmd_timeout 1012 #define sd_pkt_reason_cmd_unx_bus_free ssd_pkt_reason_cmd_unx_bus_free 1013 #define sd_pkt_reason_cmd_tag_reject ssd_pkt_reason_cmd_tag_reject 1014 #define sd_pkt_reason_default ssd_pkt_reason_default 1015 #define sd_reset_target ssd_reset_target 1016 #define sd_start_stop_unit_callback ssd_start_stop_unit_callback 1017 #define sd_start_stop_unit_task ssd_start_stop_unit_task 1018 #define sd_taskq_create ssd_taskq_create 1019 #define sd_taskq_delete ssd_taskq_delete 1020 #define sd_target_change_task ssd_target_change_task 1021 #define sd_log_lun_expansion_event ssd_log_lun_expansion_event 1022 #define sd_media_change_task ssd_media_change_task 1023 #define sd_handle_mchange ssd_handle_mchange 1024 #define sd_send_scsi_DOORLOCK ssd_send_scsi_DOORLOCK 1025 #define sd_send_scsi_READ_CAPACITY ssd_send_scsi_READ_CAPACITY 1026 #define sd_send_scsi_READ_CAPACITY_16 ssd_send_scsi_READ_CAPACITY_16 1027 #define sd_send_scsi_GET_CONFIGURATION ssd_send_scsi_GET_CONFIGURATION 1028 #define sd_send_scsi_feature_GET_CONFIGURATION \ 1029 sd_send_scsi_feature_GET_CONFIGURATION 1030 #define sd_send_scsi_START_STOP_UNIT ssd_send_scsi_START_STOP_UNIT 1031 #define sd_send_scsi_INQUIRY ssd_send_scsi_INQUIRY 1032 #define sd_send_scsi_TEST_UNIT_READY ssd_send_scsi_TEST_UNIT_READY 1033 #define sd_send_scsi_PERSISTENT_RESERVE_IN \ 1034 ssd_send_scsi_PERSISTENT_RESERVE_IN 1035 #define sd_send_scsi_PERSISTENT_RESERVE_OUT \ 1036 ssd_send_scsi_PERSISTENT_RESERVE_OUT 1037 #define sd_send_scsi_SYNCHRONIZE_CACHE ssd_send_scsi_SYNCHRONIZE_CACHE 1038 #define sd_send_scsi_SYNCHRONIZE_CACHE_biodone \ 1039 ssd_send_scsi_SYNCHRONIZE_CACHE_biodone 1040 #define sd_send_scsi_MODE_SENSE ssd_send_scsi_MODE_SENSE 1041 #define sd_send_scsi_MODE_SELECT ssd_send_scsi_MODE_SELECT 1042 #define sd_send_scsi_RDWR ssd_send_scsi_RDWR 1043 #define sd_send_scsi_LOG_SENSE ssd_send_scsi_LOG_SENSE 1044 #define sd_alloc_rqs ssd_alloc_rqs 1045 #define sd_free_rqs ssd_free_rqs 1046 #define sd_dump_memory ssd_dump_memory 1047 #define sd_get_media_info ssd_get_media_info 1048 #define sd_get_media_info_ext ssd_get_media_info_ext 1049 #define sd_dkio_ctrl_info ssd_dkio_ctrl_info 1050 #define sd_nvpair_str_decode ssd_nvpair_str_decode 1051 #define sd_strtok_r ssd_strtok_r 1052 #define sd_set_properties ssd_set_properties 1053 #define sd_get_tunables_from_conf ssd_get_tunables_from_conf 1054 #define sd_setup_next_xfer ssd_setup_next_xfer 1055 #define sd_dkio_get_temp ssd_dkio_get_temp 1056 #define sd_check_mhd ssd_check_mhd 1057 #define sd_mhd_watch_cb ssd_mhd_watch_cb 1058 #define sd_mhd_watch_incomplete ssd_mhd_watch_incomplete 1059 #define sd_sname ssd_sname 1060 #define sd_mhd_resvd_recover ssd_mhd_resvd_recover 1061 #define sd_resv_reclaim_thread ssd_resv_reclaim_thread 1062 #define sd_take_ownership ssd_take_ownership 1063 #define sd_reserve_release ssd_reserve_release 1064 #define sd_rmv_resv_reclaim_req ssd_rmv_resv_reclaim_req 1065 #define sd_mhd_reset_notify_cb ssd_mhd_reset_notify_cb 1066 #define sd_persistent_reservation_in_read_keys \ 1067 ssd_persistent_reservation_in_read_keys 1068 #define sd_persistent_reservation_in_read_resv \ 1069 ssd_persistent_reservation_in_read_resv 1070 #define sd_mhdioc_takeown ssd_mhdioc_takeown 1071 #define sd_mhdioc_failfast ssd_mhdioc_failfast 1072 #define sd_mhdioc_release ssd_mhdioc_release 1073 #define sd_mhdioc_register_devid ssd_mhdioc_register_devid 1074 #define sd_mhdioc_inkeys ssd_mhdioc_inkeys 1075 #define sd_mhdioc_inresv ssd_mhdioc_inresv 1076 #define sr_change_blkmode ssr_change_blkmode 1077 #define sr_change_speed ssr_change_speed 1078 #define sr_atapi_change_speed ssr_atapi_change_speed 1079 #define sr_pause_resume ssr_pause_resume 1080 #define sr_play_msf ssr_play_msf 1081 #define sr_play_trkind ssr_play_trkind 1082 #define sr_read_all_subcodes ssr_read_all_subcodes 1083 #define sr_read_subchannel ssr_read_subchannel 1084 #define sr_read_tocentry ssr_read_tocentry 1085 #define sr_read_tochdr ssr_read_tochdr 1086 #define sr_read_cdda ssr_read_cdda 1087 #define sr_read_cdxa ssr_read_cdxa 1088 #define sr_read_mode1 ssr_read_mode1 1089 #define sr_read_mode2 ssr_read_mode2 1090 #define sr_read_cd_mode2 ssr_read_cd_mode2 1091 #define sr_sector_mode ssr_sector_mode 1092 #define sr_eject ssr_eject 1093 #define sr_ejected ssr_ejected 1094 #define sr_check_wp ssr_check_wp 1095 #define sd_check_media ssd_check_media 1096 #define sd_media_watch_cb ssd_media_watch_cb 1097 #define sd_delayed_cv_broadcast ssd_delayed_cv_broadcast 1098 #define sr_volume_ctrl ssr_volume_ctrl 1099 #define sr_read_sony_session_offset ssr_read_sony_session_offset 1100 #define sd_log_page_supported ssd_log_page_supported 1101 #define sd_check_for_writable_cd ssd_check_for_writable_cd 1102 #define sd_wm_cache_constructor ssd_wm_cache_constructor 1103 #define sd_wm_cache_destructor ssd_wm_cache_destructor 1104 #define sd_range_lock ssd_range_lock 1105 #define sd_get_range ssd_get_range 1106 #define sd_free_inlist_wmap ssd_free_inlist_wmap 1107 #define sd_range_unlock ssd_range_unlock 1108 #define sd_read_modify_write_task ssd_read_modify_write_task 1109 #define sddump_do_read_of_rmw ssddump_do_read_of_rmw 1110 1111 #define sd_iostart_chain ssd_iostart_chain 1112 #define sd_iodone_chain ssd_iodone_chain 1113 #define sd_initpkt_map ssd_initpkt_map 1114 #define sd_destroypkt_map ssd_destroypkt_map 1115 #define sd_chain_type_map ssd_chain_type_map 1116 #define sd_chain_index_map ssd_chain_index_map 1117 1118 #define sd_failfast_flushctl ssd_failfast_flushctl 1119 #define sd_failfast_flushq ssd_failfast_flushq 1120 #define sd_failfast_flushq_callback ssd_failfast_flushq_callback 1121 1122 #define sd_is_lsi ssd_is_lsi 1123 #define sd_tg_rdwr ssd_tg_rdwr 1124 #define sd_tg_getinfo ssd_tg_getinfo 1125 #define sd_rmw_msg_print_handler ssd_rmw_msg_print_handler 1126 1127 #endif /* #if (defined(__fibre)) */ 1128 1129 1130 int _init(void); 1131 int _fini(void); 1132 int _info(struct modinfo *modinfop); 1133 1134 /*PRINTFLIKE3*/ 1135 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1136 /*PRINTFLIKE3*/ 1137 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1138 /*PRINTFLIKE3*/ 1139 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1140 1141 static int sdprobe(dev_info_t *devi); 1142 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, 1143 void **result); 1144 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 1145 int mod_flags, char *name, caddr_t valuep, int *lengthp); 1146 1147 /* 1148 * Smart probe for parallel scsi 1149 */ 1150 static void sd_scsi_probe_cache_init(void); 1151 static void sd_scsi_probe_cache_fini(void); 1152 static void sd_scsi_clear_probe_cache(void); 1153 static int sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)()); 1154 1155 /* 1156 * Attached luns on target for parallel scsi 1157 */ 1158 static void sd_scsi_target_lun_init(void); 1159 static void sd_scsi_target_lun_fini(void); 1160 static int sd_scsi_get_target_lun_count(dev_info_t *dip, int target); 1161 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag); 1162 1163 static int sd_spin_up_unit(sd_ssc_t *ssc); 1164 1165 /* 1166 * Using sd_ssc_init to establish sd_ssc_t struct 1167 * Using sd_ssc_send to send uscsi internal command 1168 * Using sd_ssc_fini to free sd_ssc_t struct 1169 */ 1170 static sd_ssc_t *sd_ssc_init(struct sd_lun *un); 1171 static int sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd, 1172 int flag, enum uio_seg dataspace, int path_flag); 1173 static void sd_ssc_fini(sd_ssc_t *ssc); 1174 1175 /* 1176 * Using sd_ssc_assessment to set correct type-of-assessment 1177 * Using sd_ssc_post to post ereport & system log 1178 * sd_ssc_post will call sd_ssc_print to print system log 1179 * sd_ssc_post will call sd_ssd_ereport_post to post ereport 1180 */ 1181 static void sd_ssc_assessment(sd_ssc_t *ssc, 1182 enum sd_type_assessment tp_assess); 1183 1184 static void sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess); 1185 static void sd_ssc_print(sd_ssc_t *ssc, int sd_severity); 1186 static void sd_ssc_ereport_post(sd_ssc_t *ssc, 1187 enum sd_driver_assessment drv_assess); 1188 1189 /* 1190 * Using sd_ssc_set_info to mark an un-decodable-data error. 1191 * Using sd_ssc_extract_info to transfer information from internal 1192 * data structures to sd_ssc_t. 1193 */ 1194 static void sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp, 1195 const char *fmt, ...); 1196 static void sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un, 1197 struct scsi_pkt *pktp, struct buf *bp, struct sd_xbuf *xp); 1198 1199 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag, 1200 enum uio_seg dataspace, int path_flag); 1201 1202 #ifdef _LP64 1203 static void sd_enable_descr_sense(sd_ssc_t *ssc); 1204 static void sd_reenable_dsense_task(void *arg); 1205 #endif /* _LP64 */ 1206 1207 static void sd_set_mmc_caps(sd_ssc_t *ssc); 1208 1209 static void sd_read_unit_properties(struct sd_lun *un); 1210 static int sd_process_sdconf_file(struct sd_lun *un); 1211 static void sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str); 1212 static char *sd_strtok_r(char *string, const char *sepset, char **lasts); 1213 static void sd_set_properties(struct sd_lun *un, char *name, char *value); 1214 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags, 1215 int *data_list, sd_tunables *values); 1216 static void sd_process_sdconf_table(struct sd_lun *un); 1217 static int sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen); 1218 static int sd_blank_cmp(struct sd_lun *un, char *id, int idlen); 1219 static int sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list, 1220 int list_len, char *dataname_ptr); 1221 static void sd_set_vers1_properties(struct sd_lun *un, int flags, 1222 sd_tunables *prop_list); 1223 1224 static void sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi, 1225 int reservation_flag); 1226 static int sd_get_devid(sd_ssc_t *ssc); 1227 static ddi_devid_t sd_create_devid(sd_ssc_t *ssc); 1228 static int sd_write_deviceid(sd_ssc_t *ssc); 1229 static int sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len); 1230 static int sd_check_vpd_page_support(sd_ssc_t *ssc); 1231 1232 static void sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi); 1233 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un); 1234 1235 static int sd_ddi_suspend(dev_info_t *devi); 1236 static int sd_ddi_resume(dev_info_t *devi); 1237 static int sd_pm_state_change(struct sd_lun *un, int level, int flag); 1238 static int sdpower(dev_info_t *devi, int component, int level); 1239 1240 static int sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd); 1241 static int sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd); 1242 static int sd_unit_attach(dev_info_t *devi); 1243 static int sd_unit_detach(dev_info_t *devi); 1244 1245 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi); 1246 static void sd_create_errstats(struct sd_lun *un, int instance); 1247 static void sd_set_errstats(struct sd_lun *un); 1248 static void sd_set_pstats(struct sd_lun *un); 1249 1250 static int sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk); 1251 static int sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt); 1252 static int sd_send_polled_RQS(struct sd_lun *un); 1253 static int sd_ddi_scsi_poll(struct scsi_pkt *pkt); 1254 1255 #if (defined(__fibre)) 1256 /* 1257 * Event callbacks (photon) 1258 */ 1259 static void sd_init_event_callbacks(struct sd_lun *un); 1260 static void sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *); 1261 #endif 1262 1263 /* 1264 * Defines for sd_cache_control 1265 */ 1266 1267 #define SD_CACHE_ENABLE 1 1268 #define SD_CACHE_DISABLE 0 1269 #define SD_CACHE_NOCHANGE -1 1270 1271 static int sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag); 1272 static int sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled); 1273 static void sd_get_nv_sup(sd_ssc_t *ssc); 1274 static dev_t sd_make_device(dev_info_t *devi); 1275 static void sd_check_solid_state(sd_ssc_t *ssc); 1276 1277 static void sd_update_block_info(struct sd_lun *un, uint32_t lbasize, 1278 uint64_t capacity); 1279 1280 /* 1281 * Driver entry point functions. 1282 */ 1283 static int sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p); 1284 static int sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p); 1285 static int sd_ready_and_valid(sd_ssc_t *ssc, int part); 1286 1287 static void sdmin(struct buf *bp); 1288 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p); 1289 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p); 1290 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p); 1291 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p); 1292 1293 static int sdstrategy(struct buf *bp); 1294 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *); 1295 1296 /* 1297 * Function prototypes for layering functions in the iostart chain. 1298 */ 1299 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un, 1300 struct buf *bp); 1301 static void sd_mapblocksize_iostart(int index, struct sd_lun *un, 1302 struct buf *bp); 1303 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp); 1304 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un, 1305 struct buf *bp); 1306 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp); 1307 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp); 1308 1309 /* 1310 * Function prototypes for layering functions in the iodone chain. 1311 */ 1312 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp); 1313 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp); 1314 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un, 1315 struct buf *bp); 1316 static void sd_mapblocksize_iodone(int index, struct sd_lun *un, 1317 struct buf *bp); 1318 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp); 1319 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un, 1320 struct buf *bp); 1321 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp); 1322 1323 /* 1324 * Prototypes for functions to support buf(9S) based IO. 1325 */ 1326 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg); 1327 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **); 1328 static void sd_destroypkt_for_buf(struct buf *); 1329 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp, 1330 struct buf *bp, int flags, 1331 int (*callback)(caddr_t), caddr_t callback_arg, 1332 diskaddr_t lba, uint32_t blockcount); 1333 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp, 1334 struct buf *bp, diskaddr_t lba, uint32_t blockcount); 1335 1336 /* 1337 * Prototypes for functions to support USCSI IO. 1338 */ 1339 static int sd_uscsi_strategy(struct buf *bp); 1340 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **); 1341 static void sd_destroypkt_for_uscsi(struct buf *); 1342 1343 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 1344 uchar_t chain_type, void *pktinfop); 1345 1346 static int sd_pm_entry(struct sd_lun *un); 1347 static void sd_pm_exit(struct sd_lun *un); 1348 1349 static void sd_pm_idletimeout_handler(void *arg); 1350 1351 /* 1352 * sd_core internal functions (used at the sd_core_io layer). 1353 */ 1354 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp); 1355 static void sdintr(struct scsi_pkt *pktp); 1356 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp); 1357 1358 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag, 1359 enum uio_seg dataspace, int path_flag); 1360 1361 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen, 1362 daddr_t blkno, int (*func)(struct buf *)); 1363 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen, 1364 uint_t bflags, daddr_t blkno, int (*func)(struct buf *)); 1365 static void sd_bioclone_free(struct buf *bp); 1366 static void sd_shadow_buf_free(struct buf *bp); 1367 1368 static void sd_print_transport_rejected_message(struct sd_lun *un, 1369 struct sd_xbuf *xp, int code); 1370 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, 1371 void *arg, int code); 1372 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, 1373 void *arg, int code); 1374 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, 1375 void *arg, int code); 1376 1377 static void sd_retry_command(struct sd_lun *un, struct buf *bp, 1378 int retry_check_flag, 1379 void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, 1380 int c), 1381 void *user_arg, int failure_code, clock_t retry_delay, 1382 void (*statp)(kstat_io_t *)); 1383 1384 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp, 1385 clock_t retry_delay, void (*statp)(kstat_io_t *)); 1386 1387 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp, 1388 struct scsi_pkt *pktp); 1389 static void sd_start_retry_command(void *arg); 1390 static void sd_start_direct_priority_command(void *arg); 1391 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp, 1392 int errcode); 1393 static void sd_return_failed_command_no_restart(struct sd_lun *un, 1394 struct buf *bp, int errcode); 1395 static void sd_return_command(struct sd_lun *un, struct buf *bp); 1396 static void sd_sync_with_callback(struct sd_lun *un); 1397 static int sdrunout(caddr_t arg); 1398 1399 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp); 1400 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp); 1401 1402 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type); 1403 static void sd_restore_throttle(void *arg); 1404 1405 static void sd_init_cdb_limits(struct sd_lun *un); 1406 1407 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp, 1408 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1409 1410 /* 1411 * Error handling functions 1412 */ 1413 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp, 1414 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1415 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, 1416 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1417 static void sd_pkt_status_reservation_conflict(struct sd_lun *un, 1418 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1419 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp, 1420 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1421 1422 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp, 1423 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1424 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp, 1425 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1426 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp, 1427 struct sd_xbuf *xp, size_t actual_len); 1428 static void sd_decode_sense(struct sd_lun *un, struct buf *bp, 1429 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1430 1431 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp, 1432 void *arg, int code); 1433 1434 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp, 1435 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1436 static void sd_sense_key_recoverable_error(struct sd_lun *un, 1437 uint8_t *sense_datap, 1438 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1439 static void sd_sense_key_not_ready(struct sd_lun *un, 1440 uint8_t *sense_datap, 1441 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1442 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un, 1443 uint8_t *sense_datap, 1444 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1445 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp, 1446 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1447 static void sd_sense_key_unit_attention(struct sd_lun *un, 1448 uint8_t *sense_datap, 1449 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1450 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp, 1451 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1452 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp, 1453 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1454 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp, 1455 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1456 static void sd_sense_key_default(struct sd_lun *un, 1457 uint8_t *sense_datap, 1458 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1459 1460 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp, 1461 void *arg, int flag); 1462 1463 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp, 1464 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1465 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp, 1466 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1467 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp, 1468 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1469 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp, 1470 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1471 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp, 1472 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1473 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp, 1474 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1475 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp, 1476 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1477 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp, 1478 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1479 1480 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp); 1481 1482 static void sd_start_stop_unit_callback(void *arg); 1483 static void sd_start_stop_unit_task(void *arg); 1484 1485 static void sd_taskq_create(void); 1486 static void sd_taskq_delete(void); 1487 static void sd_target_change_task(void *arg); 1488 static void sd_log_lun_expansion_event(struct sd_lun *un, int km_flag); 1489 static void sd_media_change_task(void *arg); 1490 1491 static int sd_handle_mchange(struct sd_lun *un); 1492 static int sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag); 1493 static int sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp, 1494 uint32_t *lbap, int path_flag); 1495 static int sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp, 1496 uint32_t *lbap, uint32_t *psp, int path_flag); 1497 static int sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag, 1498 int flag, int path_flag); 1499 static int sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr, 1500 size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp); 1501 static int sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag); 1502 static int sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc, 1503 uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp); 1504 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc, 1505 uchar_t usr_cmd, uchar_t *usr_bufp); 1506 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, 1507 struct dk_callback *dkc); 1508 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp); 1509 static int sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc, 1510 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 1511 uchar_t *bufaddr, uint_t buflen, int path_flag); 1512 static int sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc, 1513 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 1514 uchar_t *bufaddr, uint_t buflen, char feature, int path_flag); 1515 static int sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize, 1516 uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag); 1517 static int sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize, 1518 uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag); 1519 static int sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr, 1520 size_t buflen, daddr_t start_block, int path_flag); 1521 #define sd_send_scsi_READ(ssc, bufaddr, buflen, start_block, path_flag) \ 1522 sd_send_scsi_RDWR(ssc, SCMD_READ, bufaddr, buflen, start_block, \ 1523 path_flag) 1524 #define sd_send_scsi_WRITE(ssc, bufaddr, buflen, start_block, path_flag)\ 1525 sd_send_scsi_RDWR(ssc, SCMD_WRITE, bufaddr, buflen, start_block,\ 1526 path_flag) 1527 1528 static int sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr, 1529 uint16_t buflen, uchar_t page_code, uchar_t page_control, 1530 uint16_t param_ptr, int path_flag); 1531 1532 static int sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un); 1533 static void sd_free_rqs(struct sd_lun *un); 1534 1535 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, 1536 uchar_t *data, int len, int fmt); 1537 static void sd_panic_for_res_conflict(struct sd_lun *un); 1538 1539 /* 1540 * Disk Ioctl Function Prototypes 1541 */ 1542 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag); 1543 static int sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag); 1544 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag); 1545 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag); 1546 1547 /* 1548 * Multi-host Ioctl Prototypes 1549 */ 1550 static int sd_check_mhd(dev_t dev, int interval); 1551 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp); 1552 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt); 1553 static char *sd_sname(uchar_t status); 1554 static void sd_mhd_resvd_recover(void *arg); 1555 static void sd_resv_reclaim_thread(); 1556 static int sd_take_ownership(dev_t dev, struct mhioctkown *p); 1557 static int sd_reserve_release(dev_t dev, int cmd); 1558 static void sd_rmv_resv_reclaim_req(dev_t dev); 1559 static void sd_mhd_reset_notify_cb(caddr_t arg); 1560 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un, 1561 mhioc_inkeys_t *usrp, int flag); 1562 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un, 1563 mhioc_inresvs_t *usrp, int flag); 1564 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag); 1565 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag); 1566 static int sd_mhdioc_release(dev_t dev); 1567 static int sd_mhdioc_register_devid(dev_t dev); 1568 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag); 1569 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag); 1570 1571 /* 1572 * SCSI removable prototypes 1573 */ 1574 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag); 1575 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag); 1576 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag); 1577 static int sr_pause_resume(dev_t dev, int mode); 1578 static int sr_play_msf(dev_t dev, caddr_t data, int flag); 1579 static int sr_play_trkind(dev_t dev, caddr_t data, int flag); 1580 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag); 1581 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag); 1582 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag); 1583 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag); 1584 static int sr_read_cdda(dev_t dev, caddr_t data, int flag); 1585 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag); 1586 static int sr_read_mode1(dev_t dev, caddr_t data, int flag); 1587 static int sr_read_mode2(dev_t dev, caddr_t data, int flag); 1588 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag); 1589 static int sr_sector_mode(dev_t dev, uint32_t blksize); 1590 static int sr_eject(dev_t dev); 1591 static void sr_ejected(register struct sd_lun *un); 1592 static int sr_check_wp(dev_t dev); 1593 static int sd_check_media(dev_t dev, enum dkio_state state); 1594 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp); 1595 static void sd_delayed_cv_broadcast(void *arg); 1596 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag); 1597 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag); 1598 1599 static int sd_log_page_supported(sd_ssc_t *ssc, int log_page); 1600 1601 /* 1602 * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions. 1603 */ 1604 static void sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag); 1605 static int sd_wm_cache_constructor(void *wm, void *un, int flags); 1606 static void sd_wm_cache_destructor(void *wm, void *un); 1607 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb, 1608 daddr_t endb, ushort_t typ); 1609 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb, 1610 daddr_t endb); 1611 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp); 1612 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm); 1613 static void sd_read_modify_write_task(void * arg); 1614 static int 1615 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk, 1616 struct buf **bpp); 1617 1618 1619 /* 1620 * Function prototypes for failfast support. 1621 */ 1622 static void sd_failfast_flushq(struct sd_lun *un); 1623 static int sd_failfast_flushq_callback(struct buf *bp); 1624 1625 /* 1626 * Function prototypes to check for lsi devices 1627 */ 1628 static void sd_is_lsi(struct sd_lun *un); 1629 1630 /* 1631 * Function prototypes for partial DMA support 1632 */ 1633 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp, 1634 struct scsi_pkt *pkt, struct sd_xbuf *xp); 1635 1636 1637 /* Function prototypes for cmlb */ 1638 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr, 1639 diskaddr_t start_block, size_t reqlength, void *tg_cookie); 1640 1641 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie); 1642 1643 /* 1644 * For printing RMW warning message timely 1645 */ 1646 static void sd_rmw_msg_print_handler(void *arg); 1647 1648 /* 1649 * Constants for failfast support: 1650 * 1651 * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO 1652 * failfast processing being performed. 1653 * 1654 * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing 1655 * failfast processing on all bufs with B_FAILFAST set. 1656 */ 1657 1658 #define SD_FAILFAST_INACTIVE 0 1659 #define SD_FAILFAST_ACTIVE 1 1660 1661 /* 1662 * Bitmask to control behavior of buf(9S) flushes when a transition to 1663 * the failfast state occurs. Optional bits include: 1664 * 1665 * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that 1666 * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will 1667 * be flushed. 1668 * 1669 * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the 1670 * driver, in addition to the regular wait queue. This includes the xbuf 1671 * queues. When clear, only the driver's wait queue will be flushed. 1672 */ 1673 #define SD_FAILFAST_FLUSH_ALL_BUFS 0x01 1674 #define SD_FAILFAST_FLUSH_ALL_QUEUES 0x02 1675 1676 /* 1677 * The default behavior is to only flush bufs that have B_FAILFAST set, but 1678 * to flush all queues within the driver. 1679 */ 1680 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES; 1681 1682 1683 /* 1684 * SD Testing Fault Injection 1685 */ 1686 #ifdef SD_FAULT_INJECTION 1687 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un); 1688 static void sd_faultinjection(struct scsi_pkt *pktp); 1689 static void sd_injection_log(char *buf, struct sd_lun *un); 1690 #endif 1691 1692 /* 1693 * Device driver ops vector 1694 */ 1695 static struct cb_ops sd_cb_ops = { 1696 sdopen, /* open */ 1697 sdclose, /* close */ 1698 sdstrategy, /* strategy */ 1699 nodev, /* print */ 1700 sddump, /* dump */ 1701 sdread, /* read */ 1702 sdwrite, /* write */ 1703 sdioctl, /* ioctl */ 1704 nodev, /* devmap */ 1705 nodev, /* mmap */ 1706 nodev, /* segmap */ 1707 nochpoll, /* poll */ 1708 sd_prop_op, /* cb_prop_op */ 1709 0, /* streamtab */ 1710 D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */ 1711 CB_REV, /* cb_rev */ 1712 sdaread, /* async I/O read entry point */ 1713 sdawrite /* async I/O write entry point */ 1714 }; 1715 1716 struct dev_ops sd_ops = { 1717 DEVO_REV, /* devo_rev, */ 1718 0, /* refcnt */ 1719 sdinfo, /* info */ 1720 nulldev, /* identify */ 1721 sdprobe, /* probe */ 1722 sdattach, /* attach */ 1723 sddetach, /* detach */ 1724 nodev, /* reset */ 1725 &sd_cb_ops, /* driver operations */ 1726 NULL, /* bus operations */ 1727 sdpower, /* power */ 1728 ddi_quiesce_not_needed, /* quiesce */ 1729 }; 1730 1731 /* 1732 * This is the loadable module wrapper. 1733 */ 1734 #include <sys/modctl.h> 1735 1736 #ifndef XPV_HVM_DRIVER 1737 static struct modldrv modldrv = { 1738 &mod_driverops, /* Type of module. This one is a driver */ 1739 SD_MODULE_NAME, /* Module name. */ 1740 &sd_ops /* driver ops */ 1741 }; 1742 1743 static struct modlinkage modlinkage = { 1744 MODREV_1, &modldrv, NULL 1745 }; 1746 1747 #else /* XPV_HVM_DRIVER */ 1748 static struct modlmisc modlmisc = { 1749 &mod_miscops, /* Type of module. This one is a misc */ 1750 "HVM " SD_MODULE_NAME, /* Module name. */ 1751 }; 1752 1753 static struct modlinkage modlinkage = { 1754 MODREV_1, &modlmisc, NULL 1755 }; 1756 1757 #endif /* XPV_HVM_DRIVER */ 1758 1759 static cmlb_tg_ops_t sd_tgops = { 1760 TG_DK_OPS_VERSION_1, 1761 sd_tg_rdwr, 1762 sd_tg_getinfo 1763 }; 1764 1765 static struct scsi_asq_key_strings sd_additional_codes[] = { 1766 0x81, 0, "Logical Unit is Reserved", 1767 0x85, 0, "Audio Address Not Valid", 1768 0xb6, 0, "Media Load Mechanism Failed", 1769 0xB9, 0, "Audio Play Operation Aborted", 1770 0xbf, 0, "Buffer Overflow for Read All Subcodes Command", 1771 0x53, 2, "Medium removal prevented", 1772 0x6f, 0, "Authentication failed during key exchange", 1773 0x6f, 1, "Key not present", 1774 0x6f, 2, "Key not established", 1775 0x6f, 3, "Read without proper authentication", 1776 0x6f, 4, "Mismatched region to this logical unit", 1777 0x6f, 5, "Region reset count error", 1778 0xffff, 0x0, NULL 1779 }; 1780 1781 1782 /* 1783 * Struct for passing printing information for sense data messages 1784 */ 1785 struct sd_sense_info { 1786 int ssi_severity; 1787 int ssi_pfa_flag; 1788 }; 1789 1790 /* 1791 * Table of function pointers for iostart-side routines. Separate "chains" 1792 * of layered function calls are formed by placing the function pointers 1793 * sequentially in the desired order. Functions are called according to an 1794 * incrementing table index ordering. The last function in each chain must 1795 * be sd_core_iostart(). The corresponding iodone-side routines are expected 1796 * in the sd_iodone_chain[] array. 1797 * 1798 * Note: It may seem more natural to organize both the iostart and iodone 1799 * functions together, into an array of structures (or some similar 1800 * organization) with a common index, rather than two separate arrays which 1801 * must be maintained in synchronization. The purpose of this division is 1802 * to achieve improved performance: individual arrays allows for more 1803 * effective cache line utilization on certain platforms. 1804 */ 1805 1806 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp); 1807 1808 1809 static sd_chain_t sd_iostart_chain[] = { 1810 1811 /* Chain for buf IO for disk drive targets (PM enabled) */ 1812 sd_mapblockaddr_iostart, /* Index: 0 */ 1813 sd_pm_iostart, /* Index: 1 */ 1814 sd_core_iostart, /* Index: 2 */ 1815 1816 /* Chain for buf IO for disk drive targets (PM disabled) */ 1817 sd_mapblockaddr_iostart, /* Index: 3 */ 1818 sd_core_iostart, /* Index: 4 */ 1819 1820 /* 1821 * Chain for buf IO for removable-media or large sector size 1822 * disk drive targets with RMW needed (PM enabled) 1823 */ 1824 sd_mapblockaddr_iostart, /* Index: 5 */ 1825 sd_mapblocksize_iostart, /* Index: 6 */ 1826 sd_pm_iostart, /* Index: 7 */ 1827 sd_core_iostart, /* Index: 8 */ 1828 1829 /* 1830 * Chain for buf IO for removable-media or large sector size 1831 * disk drive targets with RMW needed (PM disabled) 1832 */ 1833 sd_mapblockaddr_iostart, /* Index: 9 */ 1834 sd_mapblocksize_iostart, /* Index: 10 */ 1835 sd_core_iostart, /* Index: 11 */ 1836 1837 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 1838 sd_mapblockaddr_iostart, /* Index: 12 */ 1839 sd_checksum_iostart, /* Index: 13 */ 1840 sd_pm_iostart, /* Index: 14 */ 1841 sd_core_iostart, /* Index: 15 */ 1842 1843 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 1844 sd_mapblockaddr_iostart, /* Index: 16 */ 1845 sd_checksum_iostart, /* Index: 17 */ 1846 sd_core_iostart, /* Index: 18 */ 1847 1848 /* Chain for USCSI commands (all targets) */ 1849 sd_pm_iostart, /* Index: 19 */ 1850 sd_core_iostart, /* Index: 20 */ 1851 1852 /* Chain for checksumming USCSI commands (all targets) */ 1853 sd_checksum_uscsi_iostart, /* Index: 21 */ 1854 sd_pm_iostart, /* Index: 22 */ 1855 sd_core_iostart, /* Index: 23 */ 1856 1857 /* Chain for "direct" USCSI commands (all targets) */ 1858 sd_core_iostart, /* Index: 24 */ 1859 1860 /* Chain for "direct priority" USCSI commands (all targets) */ 1861 sd_core_iostart, /* Index: 25 */ 1862 1863 /* 1864 * Chain for buf IO for large sector size disk drive targets 1865 * with RMW needed with checksumming (PM enabled) 1866 */ 1867 sd_mapblockaddr_iostart, /* Index: 26 */ 1868 sd_mapblocksize_iostart, /* Index: 27 */ 1869 sd_checksum_iostart, /* Index: 28 */ 1870 sd_pm_iostart, /* Index: 29 */ 1871 sd_core_iostart, /* Index: 30 */ 1872 1873 /* 1874 * Chain for buf IO for large sector size disk drive targets 1875 * with RMW needed with checksumming (PM disabled) 1876 */ 1877 sd_mapblockaddr_iostart, /* Index: 31 */ 1878 sd_mapblocksize_iostart, /* Index: 32 */ 1879 sd_checksum_iostart, /* Index: 33 */ 1880 sd_core_iostart, /* Index: 34 */ 1881 1882 }; 1883 1884 /* 1885 * Macros to locate the first function of each iostart chain in the 1886 * sd_iostart_chain[] array. These are located by the index in the array. 1887 */ 1888 #define SD_CHAIN_DISK_IOSTART 0 1889 #define SD_CHAIN_DISK_IOSTART_NO_PM 3 1890 #define SD_CHAIN_MSS_DISK_IOSTART 5 1891 #define SD_CHAIN_RMMEDIA_IOSTART 5 1892 #define SD_CHAIN_MSS_DISK_IOSTART_NO_PM 9 1893 #define SD_CHAIN_RMMEDIA_IOSTART_NO_PM 9 1894 #define SD_CHAIN_CHKSUM_IOSTART 12 1895 #define SD_CHAIN_CHKSUM_IOSTART_NO_PM 16 1896 #define SD_CHAIN_USCSI_CMD_IOSTART 19 1897 #define SD_CHAIN_USCSI_CHKSUM_IOSTART 21 1898 #define SD_CHAIN_DIRECT_CMD_IOSTART 24 1899 #define SD_CHAIN_PRIORITY_CMD_IOSTART 25 1900 #define SD_CHAIN_MSS_CHKSUM_IOSTART 26 1901 #define SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM 31 1902 1903 1904 /* 1905 * Table of function pointers for the iodone-side routines for the driver- 1906 * internal layering mechanism. The calling sequence for iodone routines 1907 * uses a decrementing table index, so the last routine called in a chain 1908 * must be at the lowest array index location for that chain. The last 1909 * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs) 1910 * or sd_uscsi_iodone() (for uscsi IOs). Other than this, the ordering 1911 * of the functions in an iodone side chain must correspond to the ordering 1912 * of the iostart routines for that chain. Note that there is no iodone 1913 * side routine that corresponds to sd_core_iostart(), so there is no 1914 * entry in the table for this. 1915 */ 1916 1917 static sd_chain_t sd_iodone_chain[] = { 1918 1919 /* Chain for buf IO for disk drive targets (PM enabled) */ 1920 sd_buf_iodone, /* Index: 0 */ 1921 sd_mapblockaddr_iodone, /* Index: 1 */ 1922 sd_pm_iodone, /* Index: 2 */ 1923 1924 /* Chain for buf IO for disk drive targets (PM disabled) */ 1925 sd_buf_iodone, /* Index: 3 */ 1926 sd_mapblockaddr_iodone, /* Index: 4 */ 1927 1928 /* 1929 * Chain for buf IO for removable-media or large sector size 1930 * disk drive targets with RMW needed (PM enabled) 1931 */ 1932 sd_buf_iodone, /* Index: 5 */ 1933 sd_mapblockaddr_iodone, /* Index: 6 */ 1934 sd_mapblocksize_iodone, /* Index: 7 */ 1935 sd_pm_iodone, /* Index: 8 */ 1936 1937 /* 1938 * Chain for buf IO for removable-media or large sector size 1939 * disk drive targets with RMW needed (PM disabled) 1940 */ 1941 sd_buf_iodone, /* Index: 9 */ 1942 sd_mapblockaddr_iodone, /* Index: 10 */ 1943 sd_mapblocksize_iodone, /* Index: 11 */ 1944 1945 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 1946 sd_buf_iodone, /* Index: 12 */ 1947 sd_mapblockaddr_iodone, /* Index: 13 */ 1948 sd_checksum_iodone, /* Index: 14 */ 1949 sd_pm_iodone, /* Index: 15 */ 1950 1951 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 1952 sd_buf_iodone, /* Index: 16 */ 1953 sd_mapblockaddr_iodone, /* Index: 17 */ 1954 sd_checksum_iodone, /* Index: 18 */ 1955 1956 /* Chain for USCSI commands (non-checksum targets) */ 1957 sd_uscsi_iodone, /* Index: 19 */ 1958 sd_pm_iodone, /* Index: 20 */ 1959 1960 /* Chain for USCSI commands (checksum targets) */ 1961 sd_uscsi_iodone, /* Index: 21 */ 1962 sd_checksum_uscsi_iodone, /* Index: 22 */ 1963 sd_pm_iodone, /* Index: 22 */ 1964 1965 /* Chain for "direct" USCSI commands (all targets) */ 1966 sd_uscsi_iodone, /* Index: 24 */ 1967 1968 /* Chain for "direct priority" USCSI commands (all targets) */ 1969 sd_uscsi_iodone, /* Index: 25 */ 1970 1971 /* 1972 * Chain for buf IO for large sector size disk drive targets 1973 * with checksumming (PM enabled) 1974 */ 1975 sd_buf_iodone, /* Index: 26 */ 1976 sd_mapblockaddr_iodone, /* Index: 27 */ 1977 sd_mapblocksize_iodone, /* Index: 28 */ 1978 sd_checksum_iodone, /* Index: 29 */ 1979 sd_pm_iodone, /* Index: 30 */ 1980 1981 /* 1982 * Chain for buf IO for large sector size disk drive targets 1983 * with checksumming (PM disabled) 1984 */ 1985 sd_buf_iodone, /* Index: 31 */ 1986 sd_mapblockaddr_iodone, /* Index: 32 */ 1987 sd_mapblocksize_iodone, /* Index: 33 */ 1988 sd_checksum_iodone, /* Index: 34 */ 1989 }; 1990 1991 1992 /* 1993 * Macros to locate the "first" function in the sd_iodone_chain[] array for 1994 * each iodone-side chain. These are located by the array index, but as the 1995 * iodone side functions are called in a decrementing-index order, the 1996 * highest index number in each chain must be specified (as these correspond 1997 * to the first function in the iodone chain that will be called by the core 1998 * at IO completion time). 1999 */ 2000 2001 #define SD_CHAIN_DISK_IODONE 2 2002 #define SD_CHAIN_DISK_IODONE_NO_PM 4 2003 #define SD_CHAIN_RMMEDIA_IODONE 8 2004 #define SD_CHAIN_MSS_DISK_IODONE 8 2005 #define SD_CHAIN_RMMEDIA_IODONE_NO_PM 11 2006 #define SD_CHAIN_MSS_DISK_IODONE_NO_PM 11 2007 #define SD_CHAIN_CHKSUM_IODONE 15 2008 #define SD_CHAIN_CHKSUM_IODONE_NO_PM 18 2009 #define SD_CHAIN_USCSI_CMD_IODONE 20 2010 #define SD_CHAIN_USCSI_CHKSUM_IODONE 22 2011 #define SD_CHAIN_DIRECT_CMD_IODONE 24 2012 #define SD_CHAIN_PRIORITY_CMD_IODONE 25 2013 #define SD_CHAIN_MSS_CHKSUM_IODONE 30 2014 #define SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM 34 2015 2016 2017 2018 /* 2019 * Array to map a layering chain index to the appropriate initpkt routine. 2020 * The redundant entries are present so that the index used for accessing 2021 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 2022 * with this table as well. 2023 */ 2024 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **); 2025 2026 static sd_initpkt_t sd_initpkt_map[] = { 2027 2028 /* Chain for buf IO for disk drive targets (PM enabled) */ 2029 sd_initpkt_for_buf, /* Index: 0 */ 2030 sd_initpkt_for_buf, /* Index: 1 */ 2031 sd_initpkt_for_buf, /* Index: 2 */ 2032 2033 /* Chain for buf IO for disk drive targets (PM disabled) */ 2034 sd_initpkt_for_buf, /* Index: 3 */ 2035 sd_initpkt_for_buf, /* Index: 4 */ 2036 2037 /* 2038 * Chain for buf IO for removable-media or large sector size 2039 * disk drive targets (PM enabled) 2040 */ 2041 sd_initpkt_for_buf, /* Index: 5 */ 2042 sd_initpkt_for_buf, /* Index: 6 */ 2043 sd_initpkt_for_buf, /* Index: 7 */ 2044 sd_initpkt_for_buf, /* Index: 8 */ 2045 2046 /* 2047 * Chain for buf IO for removable-media or large sector size 2048 * disk drive targets (PM disabled) 2049 */ 2050 sd_initpkt_for_buf, /* Index: 9 */ 2051 sd_initpkt_for_buf, /* Index: 10 */ 2052 sd_initpkt_for_buf, /* Index: 11 */ 2053 2054 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 2055 sd_initpkt_for_buf, /* Index: 12 */ 2056 sd_initpkt_for_buf, /* Index: 13 */ 2057 sd_initpkt_for_buf, /* Index: 14 */ 2058 sd_initpkt_for_buf, /* Index: 15 */ 2059 2060 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 2061 sd_initpkt_for_buf, /* Index: 16 */ 2062 sd_initpkt_for_buf, /* Index: 17 */ 2063 sd_initpkt_for_buf, /* Index: 18 */ 2064 2065 /* Chain for USCSI commands (non-checksum targets) */ 2066 sd_initpkt_for_uscsi, /* Index: 19 */ 2067 sd_initpkt_for_uscsi, /* Index: 20 */ 2068 2069 /* Chain for USCSI commands (checksum targets) */ 2070 sd_initpkt_for_uscsi, /* Index: 21 */ 2071 sd_initpkt_for_uscsi, /* Index: 22 */ 2072 sd_initpkt_for_uscsi, /* Index: 22 */ 2073 2074 /* Chain for "direct" USCSI commands (all targets) */ 2075 sd_initpkt_for_uscsi, /* Index: 24 */ 2076 2077 /* Chain for "direct priority" USCSI commands (all targets) */ 2078 sd_initpkt_for_uscsi, /* Index: 25 */ 2079 2080 /* 2081 * Chain for buf IO for large sector size disk drive targets 2082 * with checksumming (PM enabled) 2083 */ 2084 sd_initpkt_for_buf, /* Index: 26 */ 2085 sd_initpkt_for_buf, /* Index: 27 */ 2086 sd_initpkt_for_buf, /* Index: 28 */ 2087 sd_initpkt_for_buf, /* Index: 29 */ 2088 sd_initpkt_for_buf, /* Index: 30 */ 2089 2090 /* 2091 * Chain for buf IO for large sector size disk drive targets 2092 * with checksumming (PM disabled) 2093 */ 2094 sd_initpkt_for_buf, /* Index: 31 */ 2095 sd_initpkt_for_buf, /* Index: 32 */ 2096 sd_initpkt_for_buf, /* Index: 33 */ 2097 sd_initpkt_for_buf, /* Index: 34 */ 2098 }; 2099 2100 2101 /* 2102 * Array to map a layering chain index to the appropriate destroypktpkt routine. 2103 * The redundant entries are present so that the index used for accessing 2104 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 2105 * with this table as well. 2106 */ 2107 typedef void (*sd_destroypkt_t)(struct buf *); 2108 2109 static sd_destroypkt_t sd_destroypkt_map[] = { 2110 2111 /* Chain for buf IO for disk drive targets (PM enabled) */ 2112 sd_destroypkt_for_buf, /* Index: 0 */ 2113 sd_destroypkt_for_buf, /* Index: 1 */ 2114 sd_destroypkt_for_buf, /* Index: 2 */ 2115 2116 /* Chain for buf IO for disk drive targets (PM disabled) */ 2117 sd_destroypkt_for_buf, /* Index: 3 */ 2118 sd_destroypkt_for_buf, /* Index: 4 */ 2119 2120 /* 2121 * Chain for buf IO for removable-media or large sector size 2122 * disk drive targets (PM enabled) 2123 */ 2124 sd_destroypkt_for_buf, /* Index: 5 */ 2125 sd_destroypkt_for_buf, /* Index: 6 */ 2126 sd_destroypkt_for_buf, /* Index: 7 */ 2127 sd_destroypkt_for_buf, /* Index: 8 */ 2128 2129 /* 2130 * Chain for buf IO for removable-media or large sector size 2131 * disk drive targets (PM disabled) 2132 */ 2133 sd_destroypkt_for_buf, /* Index: 9 */ 2134 sd_destroypkt_for_buf, /* Index: 10 */ 2135 sd_destroypkt_for_buf, /* Index: 11 */ 2136 2137 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 2138 sd_destroypkt_for_buf, /* Index: 12 */ 2139 sd_destroypkt_for_buf, /* Index: 13 */ 2140 sd_destroypkt_for_buf, /* Index: 14 */ 2141 sd_destroypkt_for_buf, /* Index: 15 */ 2142 2143 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 2144 sd_destroypkt_for_buf, /* Index: 16 */ 2145 sd_destroypkt_for_buf, /* Index: 17 */ 2146 sd_destroypkt_for_buf, /* Index: 18 */ 2147 2148 /* Chain for USCSI commands (non-checksum targets) */ 2149 sd_destroypkt_for_uscsi, /* Index: 19 */ 2150 sd_destroypkt_for_uscsi, /* Index: 20 */ 2151 2152 /* Chain for USCSI commands (checksum targets) */ 2153 sd_destroypkt_for_uscsi, /* Index: 21 */ 2154 sd_destroypkt_for_uscsi, /* Index: 22 */ 2155 sd_destroypkt_for_uscsi, /* Index: 22 */ 2156 2157 /* Chain for "direct" USCSI commands (all targets) */ 2158 sd_destroypkt_for_uscsi, /* Index: 24 */ 2159 2160 /* Chain for "direct priority" USCSI commands (all targets) */ 2161 sd_destroypkt_for_uscsi, /* Index: 25 */ 2162 2163 /* 2164 * Chain for buf IO for large sector size disk drive targets 2165 * with checksumming (PM disabled) 2166 */ 2167 sd_destroypkt_for_buf, /* Index: 26 */ 2168 sd_destroypkt_for_buf, /* Index: 27 */ 2169 sd_destroypkt_for_buf, /* Index: 28 */ 2170 sd_destroypkt_for_buf, /* Index: 29 */ 2171 sd_destroypkt_for_buf, /* Index: 30 */ 2172 2173 /* 2174 * Chain for buf IO for large sector size disk drive targets 2175 * with checksumming (PM enabled) 2176 */ 2177 sd_destroypkt_for_buf, /* Index: 31 */ 2178 sd_destroypkt_for_buf, /* Index: 32 */ 2179 sd_destroypkt_for_buf, /* Index: 33 */ 2180 sd_destroypkt_for_buf, /* Index: 34 */ 2181 }; 2182 2183 2184 2185 /* 2186 * Array to map a layering chain index to the appropriate chain "type". 2187 * The chain type indicates a specific property/usage of the chain. 2188 * The redundant entries are present so that the index used for accessing 2189 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 2190 * with this table as well. 2191 */ 2192 2193 #define SD_CHAIN_NULL 0 /* for the special RQS cmd */ 2194 #define SD_CHAIN_BUFIO 1 /* regular buf IO */ 2195 #define SD_CHAIN_USCSI 2 /* regular USCSI commands */ 2196 #define SD_CHAIN_DIRECT 3 /* uscsi, w/ bypass power mgt */ 2197 #define SD_CHAIN_DIRECT_PRIORITY 4 /* uscsi, w/ bypass power mgt */ 2198 /* (for error recovery) */ 2199 2200 static int sd_chain_type_map[] = { 2201 2202 /* Chain for buf IO for disk drive targets (PM enabled) */ 2203 SD_CHAIN_BUFIO, /* Index: 0 */ 2204 SD_CHAIN_BUFIO, /* Index: 1 */ 2205 SD_CHAIN_BUFIO, /* Index: 2 */ 2206 2207 /* Chain for buf IO for disk drive targets (PM disabled) */ 2208 SD_CHAIN_BUFIO, /* Index: 3 */ 2209 SD_CHAIN_BUFIO, /* Index: 4 */ 2210 2211 /* 2212 * Chain for buf IO for removable-media or large sector size 2213 * disk drive targets (PM enabled) 2214 */ 2215 SD_CHAIN_BUFIO, /* Index: 5 */ 2216 SD_CHAIN_BUFIO, /* Index: 6 */ 2217 SD_CHAIN_BUFIO, /* Index: 7 */ 2218 SD_CHAIN_BUFIO, /* Index: 8 */ 2219 2220 /* 2221 * Chain for buf IO for removable-media or large sector size 2222 * disk drive targets (PM disabled) 2223 */ 2224 SD_CHAIN_BUFIO, /* Index: 9 */ 2225 SD_CHAIN_BUFIO, /* Index: 10 */ 2226 SD_CHAIN_BUFIO, /* Index: 11 */ 2227 2228 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 2229 SD_CHAIN_BUFIO, /* Index: 12 */ 2230 SD_CHAIN_BUFIO, /* Index: 13 */ 2231 SD_CHAIN_BUFIO, /* Index: 14 */ 2232 SD_CHAIN_BUFIO, /* Index: 15 */ 2233 2234 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 2235 SD_CHAIN_BUFIO, /* Index: 16 */ 2236 SD_CHAIN_BUFIO, /* Index: 17 */ 2237 SD_CHAIN_BUFIO, /* Index: 18 */ 2238 2239 /* Chain for USCSI commands (non-checksum targets) */ 2240 SD_CHAIN_USCSI, /* Index: 19 */ 2241 SD_CHAIN_USCSI, /* Index: 20 */ 2242 2243 /* Chain for USCSI commands (checksum targets) */ 2244 SD_CHAIN_USCSI, /* Index: 21 */ 2245 SD_CHAIN_USCSI, /* Index: 22 */ 2246 SD_CHAIN_USCSI, /* Index: 23 */ 2247 2248 /* Chain for "direct" USCSI commands (all targets) */ 2249 SD_CHAIN_DIRECT, /* Index: 24 */ 2250 2251 /* Chain for "direct priority" USCSI commands (all targets) */ 2252 SD_CHAIN_DIRECT_PRIORITY, /* Index: 25 */ 2253 2254 /* 2255 * Chain for buf IO for large sector size disk drive targets 2256 * with checksumming (PM enabled) 2257 */ 2258 SD_CHAIN_BUFIO, /* Index: 26 */ 2259 SD_CHAIN_BUFIO, /* Index: 27 */ 2260 SD_CHAIN_BUFIO, /* Index: 28 */ 2261 SD_CHAIN_BUFIO, /* Index: 29 */ 2262 SD_CHAIN_BUFIO, /* Index: 30 */ 2263 2264 /* 2265 * Chain for buf IO for large sector size disk drive targets 2266 * with checksumming (PM disabled) 2267 */ 2268 SD_CHAIN_BUFIO, /* Index: 31 */ 2269 SD_CHAIN_BUFIO, /* Index: 32 */ 2270 SD_CHAIN_BUFIO, /* Index: 33 */ 2271 SD_CHAIN_BUFIO, /* Index: 34 */ 2272 }; 2273 2274 2275 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */ 2276 #define SD_IS_BUFIO(xp) \ 2277 (sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO) 2278 2279 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */ 2280 #define SD_IS_DIRECT_PRIORITY(xp) \ 2281 (sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY) 2282 2283 2284 2285 /* 2286 * Struct, array, and macros to map a specific chain to the appropriate 2287 * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays. 2288 * 2289 * The sd_chain_index_map[] array is used at attach time to set the various 2290 * un_xxx_chain type members of the sd_lun softstate to the specific layering 2291 * chain to be used with the instance. This allows different instances to use 2292 * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart 2293 * and xb_chain_iodone index values in the sd_xbuf are initialized to these 2294 * values at sd_xbuf init time, this allows (1) layering chains may be changed 2295 * dynamically & without the use of locking; and (2) a layer may update the 2296 * xb_chain_io[start|done] member in a given xbuf with its current index value, 2297 * to allow for deferred processing of an IO within the same chain from a 2298 * different execution context. 2299 */ 2300 2301 struct sd_chain_index { 2302 int sci_iostart_index; 2303 int sci_iodone_index; 2304 }; 2305 2306 static struct sd_chain_index sd_chain_index_map[] = { 2307 { SD_CHAIN_DISK_IOSTART, SD_CHAIN_DISK_IODONE }, 2308 { SD_CHAIN_DISK_IOSTART_NO_PM, SD_CHAIN_DISK_IODONE_NO_PM }, 2309 { SD_CHAIN_RMMEDIA_IOSTART, SD_CHAIN_RMMEDIA_IODONE }, 2310 { SD_CHAIN_RMMEDIA_IOSTART_NO_PM, SD_CHAIN_RMMEDIA_IODONE_NO_PM }, 2311 { SD_CHAIN_CHKSUM_IOSTART, SD_CHAIN_CHKSUM_IODONE }, 2312 { SD_CHAIN_CHKSUM_IOSTART_NO_PM, SD_CHAIN_CHKSUM_IODONE_NO_PM }, 2313 { SD_CHAIN_USCSI_CMD_IOSTART, SD_CHAIN_USCSI_CMD_IODONE }, 2314 { SD_CHAIN_USCSI_CHKSUM_IOSTART, SD_CHAIN_USCSI_CHKSUM_IODONE }, 2315 { SD_CHAIN_DIRECT_CMD_IOSTART, SD_CHAIN_DIRECT_CMD_IODONE }, 2316 { SD_CHAIN_PRIORITY_CMD_IOSTART, SD_CHAIN_PRIORITY_CMD_IODONE }, 2317 { SD_CHAIN_MSS_CHKSUM_IOSTART, SD_CHAIN_MSS_CHKSUM_IODONE }, 2318 { SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM, SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM }, 2319 2320 }; 2321 2322 2323 /* 2324 * The following are indexes into the sd_chain_index_map[] array. 2325 */ 2326 2327 /* un->un_buf_chain_type must be set to one of these */ 2328 #define SD_CHAIN_INFO_DISK 0 2329 #define SD_CHAIN_INFO_DISK_NO_PM 1 2330 #define SD_CHAIN_INFO_RMMEDIA 2 2331 #define SD_CHAIN_INFO_MSS_DISK 2 2332 #define SD_CHAIN_INFO_RMMEDIA_NO_PM 3 2333 #define SD_CHAIN_INFO_MSS_DSK_NO_PM 3 2334 #define SD_CHAIN_INFO_CHKSUM 4 2335 #define SD_CHAIN_INFO_CHKSUM_NO_PM 5 2336 #define SD_CHAIN_INFO_MSS_DISK_CHKSUM 10 2337 #define SD_CHAIN_INFO_MSS_DISK_CHKSUM_NO_PM 11 2338 2339 /* un->un_uscsi_chain_type must be set to one of these */ 2340 #define SD_CHAIN_INFO_USCSI_CMD 6 2341 /* USCSI with PM disabled is the same as DIRECT */ 2342 #define SD_CHAIN_INFO_USCSI_CMD_NO_PM 8 2343 #define SD_CHAIN_INFO_USCSI_CHKSUM 7 2344 2345 /* un->un_direct_chain_type must be set to one of these */ 2346 #define SD_CHAIN_INFO_DIRECT_CMD 8 2347 2348 /* un->un_priority_chain_type must be set to one of these */ 2349 #define SD_CHAIN_INFO_PRIORITY_CMD 9 2350 2351 /* size for devid inquiries */ 2352 #define MAX_INQUIRY_SIZE 0xF0 2353 2354 /* 2355 * Macros used by functions to pass a given buf(9S) struct along to the 2356 * next function in the layering chain for further processing. 2357 * 2358 * In the following macros, passing more than three arguments to the called 2359 * routines causes the optimizer for the SPARC compiler to stop doing tail 2360 * call elimination which results in significant performance degradation. 2361 */ 2362 #define SD_BEGIN_IOSTART(index, un, bp) \ 2363 ((*(sd_iostart_chain[index]))(index, un, bp)) 2364 2365 #define SD_BEGIN_IODONE(index, un, bp) \ 2366 ((*(sd_iodone_chain[index]))(index, un, bp)) 2367 2368 #define SD_NEXT_IOSTART(index, un, bp) \ 2369 ((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp)) 2370 2371 #define SD_NEXT_IODONE(index, un, bp) \ 2372 ((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp)) 2373 2374 /* 2375 * Function: _init 2376 * 2377 * Description: This is the driver _init(9E) entry point. 2378 * 2379 * Return Code: Returns the value from mod_install(9F) or 2380 * ddi_soft_state_init(9F) as appropriate. 2381 * 2382 * Context: Called when driver module loaded. 2383 */ 2384 2385 int 2386 _init(void) 2387 { 2388 int err; 2389 2390 /* establish driver name from module name */ 2391 sd_label = (char *)mod_modname(&modlinkage); 2392 2393 #ifndef XPV_HVM_DRIVER 2394 err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun), 2395 SD_MAXUNIT); 2396 if (err != 0) { 2397 return (err); 2398 } 2399 2400 #else /* XPV_HVM_DRIVER */ 2401 /* Remove the leading "hvm_" from the module name */ 2402 ASSERT(strncmp(sd_label, "hvm_", strlen("hvm_")) == 0); 2403 sd_label += strlen("hvm_"); 2404 2405 #endif /* XPV_HVM_DRIVER */ 2406 2407 mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL); 2408 mutex_init(&sd_log_mutex, NULL, MUTEX_DRIVER, NULL); 2409 mutex_init(&sd_label_mutex, NULL, MUTEX_DRIVER, NULL); 2410 2411 mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL); 2412 cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL); 2413 cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL); 2414 2415 /* 2416 * it's ok to init here even for fibre device 2417 */ 2418 sd_scsi_probe_cache_init(); 2419 2420 sd_scsi_target_lun_init(); 2421 2422 /* 2423 * Creating taskq before mod_install ensures that all callers (threads) 2424 * that enter the module after a successful mod_install encounter 2425 * a valid taskq. 2426 */ 2427 sd_taskq_create(); 2428 2429 err = mod_install(&modlinkage); 2430 if (err != 0) { 2431 /* delete taskq if install fails */ 2432 sd_taskq_delete(); 2433 2434 mutex_destroy(&sd_detach_mutex); 2435 mutex_destroy(&sd_log_mutex); 2436 mutex_destroy(&sd_label_mutex); 2437 2438 mutex_destroy(&sd_tr.srq_resv_reclaim_mutex); 2439 cv_destroy(&sd_tr.srq_resv_reclaim_cv); 2440 cv_destroy(&sd_tr.srq_inprocess_cv); 2441 2442 sd_scsi_probe_cache_fini(); 2443 2444 sd_scsi_target_lun_fini(); 2445 2446 #ifndef XPV_HVM_DRIVER 2447 ddi_soft_state_fini(&sd_state); 2448 #endif /* !XPV_HVM_DRIVER */ 2449 return (err); 2450 } 2451 2452 return (err); 2453 } 2454 2455 2456 /* 2457 * Function: _fini 2458 * 2459 * Description: This is the driver _fini(9E) entry point. 2460 * 2461 * Return Code: Returns the value from mod_remove(9F) 2462 * 2463 * Context: Called when driver module is unloaded. 2464 */ 2465 2466 int 2467 _fini(void) 2468 { 2469 int err; 2470 2471 if ((err = mod_remove(&modlinkage)) != 0) { 2472 return (err); 2473 } 2474 2475 sd_taskq_delete(); 2476 2477 mutex_destroy(&sd_detach_mutex); 2478 mutex_destroy(&sd_log_mutex); 2479 mutex_destroy(&sd_label_mutex); 2480 mutex_destroy(&sd_tr.srq_resv_reclaim_mutex); 2481 2482 sd_scsi_probe_cache_fini(); 2483 2484 sd_scsi_target_lun_fini(); 2485 2486 cv_destroy(&sd_tr.srq_resv_reclaim_cv); 2487 cv_destroy(&sd_tr.srq_inprocess_cv); 2488 2489 #ifndef XPV_HVM_DRIVER 2490 ddi_soft_state_fini(&sd_state); 2491 #endif /* !XPV_HVM_DRIVER */ 2492 2493 return (err); 2494 } 2495 2496 2497 /* 2498 * Function: _info 2499 * 2500 * Description: This is the driver _info(9E) entry point. 2501 * 2502 * Arguments: modinfop - pointer to the driver modinfo structure 2503 * 2504 * Return Code: Returns the value from mod_info(9F). 2505 * 2506 * Context: Kernel thread context 2507 */ 2508 2509 int 2510 _info(struct modinfo *modinfop) 2511 { 2512 return (mod_info(&modlinkage, modinfop)); 2513 } 2514 2515 2516 /* 2517 * The following routines implement the driver message logging facility. 2518 * They provide component- and level- based debug output filtering. 2519 * Output may also be restricted to messages for a single instance by 2520 * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set 2521 * to NULL, then messages for all instances are printed. 2522 * 2523 * These routines have been cloned from each other due to the language 2524 * constraints of macros and variable argument list processing. 2525 */ 2526 2527 2528 /* 2529 * Function: sd_log_err 2530 * 2531 * Description: This routine is called by the SD_ERROR macro for debug 2532 * logging of error conditions. 2533 * 2534 * Arguments: comp - driver component being logged 2535 * dev - pointer to driver info structure 2536 * fmt - error string and format to be logged 2537 */ 2538 2539 static void 2540 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...) 2541 { 2542 va_list ap; 2543 dev_info_t *dev; 2544 2545 ASSERT(un != NULL); 2546 dev = SD_DEVINFO(un); 2547 ASSERT(dev != NULL); 2548 2549 /* 2550 * Filter messages based on the global component and level masks. 2551 * Also print if un matches the value of sd_debug_un, or if 2552 * sd_debug_un is set to NULL. 2553 */ 2554 if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) && 2555 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2556 mutex_enter(&sd_log_mutex); 2557 va_start(ap, fmt); 2558 (void) vsprintf(sd_log_buf, fmt, ap); 2559 va_end(ap); 2560 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2561 mutex_exit(&sd_log_mutex); 2562 } 2563 #ifdef SD_FAULT_INJECTION 2564 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2565 if (un->sd_injection_mask & comp) { 2566 mutex_enter(&sd_log_mutex); 2567 va_start(ap, fmt); 2568 (void) vsprintf(sd_log_buf, fmt, ap); 2569 va_end(ap); 2570 sd_injection_log(sd_log_buf, un); 2571 mutex_exit(&sd_log_mutex); 2572 } 2573 #endif 2574 } 2575 2576 2577 /* 2578 * Function: sd_log_info 2579 * 2580 * Description: This routine is called by the SD_INFO macro for debug 2581 * logging of general purpose informational conditions. 2582 * 2583 * Arguments: comp - driver component being logged 2584 * dev - pointer to driver info structure 2585 * fmt - info string and format to be logged 2586 */ 2587 2588 static void 2589 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...) 2590 { 2591 va_list ap; 2592 dev_info_t *dev; 2593 2594 ASSERT(un != NULL); 2595 dev = SD_DEVINFO(un); 2596 ASSERT(dev != NULL); 2597 2598 /* 2599 * Filter messages based on the global component and level masks. 2600 * Also print if un matches the value of sd_debug_un, or if 2601 * sd_debug_un is set to NULL. 2602 */ 2603 if ((sd_component_mask & component) && 2604 (sd_level_mask & SD_LOGMASK_INFO) && 2605 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2606 mutex_enter(&sd_log_mutex); 2607 va_start(ap, fmt); 2608 (void) vsprintf(sd_log_buf, fmt, ap); 2609 va_end(ap); 2610 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2611 mutex_exit(&sd_log_mutex); 2612 } 2613 #ifdef SD_FAULT_INJECTION 2614 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2615 if (un->sd_injection_mask & component) { 2616 mutex_enter(&sd_log_mutex); 2617 va_start(ap, fmt); 2618 (void) vsprintf(sd_log_buf, fmt, ap); 2619 va_end(ap); 2620 sd_injection_log(sd_log_buf, un); 2621 mutex_exit(&sd_log_mutex); 2622 } 2623 #endif 2624 } 2625 2626 2627 /* 2628 * Function: sd_log_trace 2629 * 2630 * Description: This routine is called by the SD_TRACE macro for debug 2631 * logging of trace conditions (i.e. function entry/exit). 2632 * 2633 * Arguments: comp - driver component being logged 2634 * dev - pointer to driver info structure 2635 * fmt - trace string and format to be logged 2636 */ 2637 2638 static void 2639 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...) 2640 { 2641 va_list ap; 2642 dev_info_t *dev; 2643 2644 ASSERT(un != NULL); 2645 dev = SD_DEVINFO(un); 2646 ASSERT(dev != NULL); 2647 2648 /* 2649 * Filter messages based on the global component and level masks. 2650 * Also print if un matches the value of sd_debug_un, or if 2651 * sd_debug_un is set to NULL. 2652 */ 2653 if ((sd_component_mask & component) && 2654 (sd_level_mask & SD_LOGMASK_TRACE) && 2655 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2656 mutex_enter(&sd_log_mutex); 2657 va_start(ap, fmt); 2658 (void) vsprintf(sd_log_buf, fmt, ap); 2659 va_end(ap); 2660 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2661 mutex_exit(&sd_log_mutex); 2662 } 2663 #ifdef SD_FAULT_INJECTION 2664 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2665 if (un->sd_injection_mask & component) { 2666 mutex_enter(&sd_log_mutex); 2667 va_start(ap, fmt); 2668 (void) vsprintf(sd_log_buf, fmt, ap); 2669 va_end(ap); 2670 sd_injection_log(sd_log_buf, un); 2671 mutex_exit(&sd_log_mutex); 2672 } 2673 #endif 2674 } 2675 2676 2677 /* 2678 * Function: sdprobe 2679 * 2680 * Description: This is the driver probe(9e) entry point function. 2681 * 2682 * Arguments: devi - opaque device info handle 2683 * 2684 * Return Code: DDI_PROBE_SUCCESS: If the probe was successful. 2685 * DDI_PROBE_FAILURE: If the probe failed. 2686 * DDI_PROBE_PARTIAL: If the instance is not present now, 2687 * but may be present in the future. 2688 */ 2689 2690 static int 2691 sdprobe(dev_info_t *devi) 2692 { 2693 struct scsi_device *devp; 2694 int rval; 2695 #ifndef XPV_HVM_DRIVER 2696 int instance = ddi_get_instance(devi); 2697 #endif /* !XPV_HVM_DRIVER */ 2698 2699 /* 2700 * if it wasn't for pln, sdprobe could actually be nulldev 2701 * in the "__fibre" case. 2702 */ 2703 if (ddi_dev_is_sid(devi) == DDI_SUCCESS) { 2704 return (DDI_PROBE_DONTCARE); 2705 } 2706 2707 devp = ddi_get_driver_private(devi); 2708 2709 if (devp == NULL) { 2710 /* Ooops... nexus driver is mis-configured... */ 2711 return (DDI_PROBE_FAILURE); 2712 } 2713 2714 #ifndef XPV_HVM_DRIVER 2715 if (ddi_get_soft_state(sd_state, instance) != NULL) { 2716 return (DDI_PROBE_PARTIAL); 2717 } 2718 #endif /* !XPV_HVM_DRIVER */ 2719 2720 /* 2721 * Call the SCSA utility probe routine to see if we actually 2722 * have a target at this SCSI nexus. 2723 */ 2724 switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) { 2725 case SCSIPROBE_EXISTS: 2726 switch (devp->sd_inq->inq_dtype) { 2727 case DTYPE_DIRECT: 2728 rval = DDI_PROBE_SUCCESS; 2729 break; 2730 case DTYPE_RODIRECT: 2731 /* CDs etc. Can be removable media */ 2732 rval = DDI_PROBE_SUCCESS; 2733 break; 2734 case DTYPE_OPTICAL: 2735 /* 2736 * Rewritable optical driver HP115AA 2737 * Can also be removable media 2738 */ 2739 2740 /* 2741 * Do not attempt to bind to DTYPE_OPTICAL if 2742 * pre solaris 9 sparc sd behavior is required 2743 * 2744 * If first time through and sd_dtype_optical_bind 2745 * has not been set in /etc/system check properties 2746 */ 2747 2748 if (sd_dtype_optical_bind < 0) { 2749 sd_dtype_optical_bind = ddi_prop_get_int 2750 (DDI_DEV_T_ANY, devi, 0, 2751 "optical-device-bind", 1); 2752 } 2753 2754 if (sd_dtype_optical_bind == 0) { 2755 rval = DDI_PROBE_FAILURE; 2756 } else { 2757 rval = DDI_PROBE_SUCCESS; 2758 } 2759 break; 2760 2761 case DTYPE_NOTPRESENT: 2762 default: 2763 rval = DDI_PROBE_FAILURE; 2764 break; 2765 } 2766 break; 2767 default: 2768 rval = DDI_PROBE_PARTIAL; 2769 break; 2770 } 2771 2772 /* 2773 * This routine checks for resource allocation prior to freeing, 2774 * so it will take care of the "smart probing" case where a 2775 * scsi_probe() may or may not have been issued and will *not* 2776 * free previously-freed resources. 2777 */ 2778 scsi_unprobe(devp); 2779 return (rval); 2780 } 2781 2782 2783 /* 2784 * Function: sdinfo 2785 * 2786 * Description: This is the driver getinfo(9e) entry point function. 2787 * Given the device number, return the devinfo pointer from 2788 * the scsi_device structure or the instance number 2789 * associated with the dev_t. 2790 * 2791 * Arguments: dip - pointer to device info structure 2792 * infocmd - command argument (DDI_INFO_DEVT2DEVINFO, 2793 * DDI_INFO_DEVT2INSTANCE) 2794 * arg - driver dev_t 2795 * resultp - user buffer for request response 2796 * 2797 * Return Code: DDI_SUCCESS 2798 * DDI_FAILURE 2799 */ 2800 /* ARGSUSED */ 2801 static int 2802 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 2803 { 2804 struct sd_lun *un; 2805 dev_t dev; 2806 int instance; 2807 int error; 2808 2809 switch (infocmd) { 2810 case DDI_INFO_DEVT2DEVINFO: 2811 dev = (dev_t)arg; 2812 instance = SDUNIT(dev); 2813 if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) { 2814 return (DDI_FAILURE); 2815 } 2816 *result = (void *) SD_DEVINFO(un); 2817 error = DDI_SUCCESS; 2818 break; 2819 case DDI_INFO_DEVT2INSTANCE: 2820 dev = (dev_t)arg; 2821 instance = SDUNIT(dev); 2822 *result = (void *)(uintptr_t)instance; 2823 error = DDI_SUCCESS; 2824 break; 2825 default: 2826 error = DDI_FAILURE; 2827 } 2828 return (error); 2829 } 2830 2831 /* 2832 * Function: sd_prop_op 2833 * 2834 * Description: This is the driver prop_op(9e) entry point function. 2835 * Return the number of blocks for the partition in question 2836 * or forward the request to the property facilities. 2837 * 2838 * Arguments: dev - device number 2839 * dip - pointer to device info structure 2840 * prop_op - property operator 2841 * mod_flags - DDI_PROP_DONTPASS, don't pass to parent 2842 * name - pointer to property name 2843 * valuep - pointer or address of the user buffer 2844 * lengthp - property length 2845 * 2846 * Return Code: DDI_PROP_SUCCESS 2847 * DDI_PROP_NOT_FOUND 2848 * DDI_PROP_UNDEFINED 2849 * DDI_PROP_NO_MEMORY 2850 * DDI_PROP_BUF_TOO_SMALL 2851 */ 2852 2853 static int 2854 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, 2855 char *name, caddr_t valuep, int *lengthp) 2856 { 2857 struct sd_lun *un; 2858 2859 if ((un = ddi_get_soft_state(sd_state, ddi_get_instance(dip))) == NULL) 2860 return (ddi_prop_op(dev, dip, prop_op, mod_flags, 2861 name, valuep, lengthp)); 2862 2863 return (cmlb_prop_op(un->un_cmlbhandle, 2864 dev, dip, prop_op, mod_flags, name, valuep, lengthp, 2865 SDPART(dev), (void *)SD_PATH_DIRECT)); 2866 } 2867 2868 /* 2869 * The following functions are for smart probing: 2870 * sd_scsi_probe_cache_init() 2871 * sd_scsi_probe_cache_fini() 2872 * sd_scsi_clear_probe_cache() 2873 * sd_scsi_probe_with_cache() 2874 */ 2875 2876 /* 2877 * Function: sd_scsi_probe_cache_init 2878 * 2879 * Description: Initializes the probe response cache mutex and head pointer. 2880 * 2881 * Context: Kernel thread context 2882 */ 2883 2884 static void 2885 sd_scsi_probe_cache_init(void) 2886 { 2887 mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL); 2888 sd_scsi_probe_cache_head = NULL; 2889 } 2890 2891 2892 /* 2893 * Function: sd_scsi_probe_cache_fini 2894 * 2895 * Description: Frees all resources associated with the probe response cache. 2896 * 2897 * Context: Kernel thread context 2898 */ 2899 2900 static void 2901 sd_scsi_probe_cache_fini(void) 2902 { 2903 struct sd_scsi_probe_cache *cp; 2904 struct sd_scsi_probe_cache *ncp; 2905 2906 /* Clean up our smart probing linked list */ 2907 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) { 2908 ncp = cp->next; 2909 kmem_free(cp, sizeof (struct sd_scsi_probe_cache)); 2910 } 2911 sd_scsi_probe_cache_head = NULL; 2912 mutex_destroy(&sd_scsi_probe_cache_mutex); 2913 } 2914 2915 2916 /* 2917 * Function: sd_scsi_clear_probe_cache 2918 * 2919 * Description: This routine clears the probe response cache. This is 2920 * done when open() returns ENXIO so that when deferred 2921 * attach is attempted (possibly after a device has been 2922 * turned on) we will retry the probe. Since we don't know 2923 * which target we failed to open, we just clear the 2924 * entire cache. 2925 * 2926 * Context: Kernel thread context 2927 */ 2928 2929 static void 2930 sd_scsi_clear_probe_cache(void) 2931 { 2932 struct sd_scsi_probe_cache *cp; 2933 int i; 2934 2935 mutex_enter(&sd_scsi_probe_cache_mutex); 2936 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) { 2937 /* 2938 * Reset all entries to SCSIPROBE_EXISTS. This will 2939 * force probing to be performed the next time 2940 * sd_scsi_probe_with_cache is called. 2941 */ 2942 for (i = 0; i < NTARGETS_WIDE; i++) { 2943 cp->cache[i] = SCSIPROBE_EXISTS; 2944 } 2945 } 2946 mutex_exit(&sd_scsi_probe_cache_mutex); 2947 } 2948 2949 2950 /* 2951 * Function: sd_scsi_probe_with_cache 2952 * 2953 * Description: This routine implements support for a scsi device probe 2954 * with cache. The driver maintains a cache of the target 2955 * responses to scsi probes. If we get no response from a 2956 * target during a probe inquiry, we remember that, and we 2957 * avoid additional calls to scsi_probe on non-zero LUNs 2958 * on the same target until the cache is cleared. By doing 2959 * so we avoid the 1/4 sec selection timeout for nonzero 2960 * LUNs. lun0 of a target is always probed. 2961 * 2962 * Arguments: devp - Pointer to a scsi_device(9S) structure 2963 * waitfunc - indicates what the allocator routines should 2964 * do when resources are not available. This value 2965 * is passed on to scsi_probe() when that routine 2966 * is called. 2967 * 2968 * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache; 2969 * otherwise the value returned by scsi_probe(9F). 2970 * 2971 * Context: Kernel thread context 2972 */ 2973 2974 static int 2975 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)()) 2976 { 2977 struct sd_scsi_probe_cache *cp; 2978 dev_info_t *pdip = ddi_get_parent(devp->sd_dev); 2979 int lun, tgt; 2980 2981 lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS, 2982 SCSI_ADDR_PROP_LUN, 0); 2983 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS, 2984 SCSI_ADDR_PROP_TARGET, -1); 2985 2986 /* Make sure caching enabled and target in range */ 2987 if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) { 2988 /* do it the old way (no cache) */ 2989 return (scsi_probe(devp, waitfn)); 2990 } 2991 2992 mutex_enter(&sd_scsi_probe_cache_mutex); 2993 2994 /* Find the cache for this scsi bus instance */ 2995 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) { 2996 if (cp->pdip == pdip) { 2997 break; 2998 } 2999 } 3000 3001 /* If we can't find a cache for this pdip, create one */ 3002 if (cp == NULL) { 3003 int i; 3004 3005 cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache), 3006 KM_SLEEP); 3007 cp->pdip = pdip; 3008 cp->next = sd_scsi_probe_cache_head; 3009 sd_scsi_probe_cache_head = cp; 3010 for (i = 0; i < NTARGETS_WIDE; i++) { 3011 cp->cache[i] = SCSIPROBE_EXISTS; 3012 } 3013 } 3014 3015 mutex_exit(&sd_scsi_probe_cache_mutex); 3016 3017 /* Recompute the cache for this target if LUN zero */ 3018 if (lun == 0) { 3019 cp->cache[tgt] = SCSIPROBE_EXISTS; 3020 } 3021 3022 /* Don't probe if cache remembers a NORESP from a previous LUN. */ 3023 if (cp->cache[tgt] != SCSIPROBE_EXISTS) { 3024 return (SCSIPROBE_NORESP); 3025 } 3026 3027 /* Do the actual probe; save & return the result */ 3028 return (cp->cache[tgt] = scsi_probe(devp, waitfn)); 3029 } 3030 3031 3032 /* 3033 * Function: sd_scsi_target_lun_init 3034 * 3035 * Description: Initializes the attached lun chain mutex and head pointer. 3036 * 3037 * Context: Kernel thread context 3038 */ 3039 3040 static void 3041 sd_scsi_target_lun_init(void) 3042 { 3043 mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL); 3044 sd_scsi_target_lun_head = NULL; 3045 } 3046 3047 3048 /* 3049 * Function: sd_scsi_target_lun_fini 3050 * 3051 * Description: Frees all resources associated with the attached lun 3052 * chain 3053 * 3054 * Context: Kernel thread context 3055 */ 3056 3057 static void 3058 sd_scsi_target_lun_fini(void) 3059 { 3060 struct sd_scsi_hba_tgt_lun *cp; 3061 struct sd_scsi_hba_tgt_lun *ncp; 3062 3063 for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) { 3064 ncp = cp->next; 3065 kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun)); 3066 } 3067 sd_scsi_target_lun_head = NULL; 3068 mutex_destroy(&sd_scsi_target_lun_mutex); 3069 } 3070 3071 3072 /* 3073 * Function: sd_scsi_get_target_lun_count 3074 * 3075 * Description: This routine will check in the attached lun chain to see 3076 * how many luns are attached on the required SCSI controller 3077 * and target. Currently, some capabilities like tagged queue 3078 * are supported per target based by HBA. So all luns in a 3079 * target have the same capabilities. Based on this assumption, 3080 * sd should only set these capabilities once per target. This 3081 * function is called when sd needs to decide how many luns 3082 * already attached on a target. 3083 * 3084 * Arguments: dip - Pointer to the system's dev_info_t for the SCSI 3085 * controller device. 3086 * target - The target ID on the controller's SCSI bus. 3087 * 3088 * Return Code: The number of luns attached on the required target and 3089 * controller. 3090 * -1 if target ID is not in parallel SCSI scope or the given 3091 * dip is not in the chain. 3092 * 3093 * Context: Kernel thread context 3094 */ 3095 3096 static int 3097 sd_scsi_get_target_lun_count(dev_info_t *dip, int target) 3098 { 3099 struct sd_scsi_hba_tgt_lun *cp; 3100 3101 if ((target < 0) || (target >= NTARGETS_WIDE)) { 3102 return (-1); 3103 } 3104 3105 mutex_enter(&sd_scsi_target_lun_mutex); 3106 3107 for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) { 3108 if (cp->pdip == dip) { 3109 break; 3110 } 3111 } 3112 3113 mutex_exit(&sd_scsi_target_lun_mutex); 3114 3115 if (cp == NULL) { 3116 return (-1); 3117 } 3118 3119 return (cp->nlun[target]); 3120 } 3121 3122 3123 /* 3124 * Function: sd_scsi_update_lun_on_target 3125 * 3126 * Description: This routine is used to update the attached lun chain when a 3127 * lun is attached or detached on a target. 3128 * 3129 * Arguments: dip - Pointer to the system's dev_info_t for the SCSI 3130 * controller device. 3131 * target - The target ID on the controller's SCSI bus. 3132 * flag - Indicate the lun is attached or detached. 3133 * 3134 * Context: Kernel thread context 3135 */ 3136 3137 static void 3138 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag) 3139 { 3140 struct sd_scsi_hba_tgt_lun *cp; 3141 3142 mutex_enter(&sd_scsi_target_lun_mutex); 3143 3144 for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) { 3145 if (cp->pdip == dip) { 3146 break; 3147 } 3148 } 3149 3150 if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) { 3151 cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun), 3152 KM_SLEEP); 3153 cp->pdip = dip; 3154 cp->next = sd_scsi_target_lun_head; 3155 sd_scsi_target_lun_head = cp; 3156 } 3157 3158 mutex_exit(&sd_scsi_target_lun_mutex); 3159 3160 if (cp != NULL) { 3161 if (flag == SD_SCSI_LUN_ATTACH) { 3162 cp->nlun[target] ++; 3163 } else { 3164 cp->nlun[target] --; 3165 } 3166 } 3167 } 3168 3169 3170 /* 3171 * Function: sd_spin_up_unit 3172 * 3173 * Description: Issues the following commands to spin-up the device: 3174 * START STOP UNIT, and INQUIRY. 3175 * 3176 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 3177 * structure for this target. 3178 * 3179 * Return Code: 0 - success 3180 * EIO - failure 3181 * EACCES - reservation conflict 3182 * 3183 * Context: Kernel thread context 3184 */ 3185 3186 static int 3187 sd_spin_up_unit(sd_ssc_t *ssc) 3188 { 3189 size_t resid = 0; 3190 int has_conflict = FALSE; 3191 uchar_t *bufaddr; 3192 int status; 3193 struct sd_lun *un; 3194 3195 ASSERT(ssc != NULL); 3196 un = ssc->ssc_un; 3197 ASSERT(un != NULL); 3198 3199 /* 3200 * Send a throwaway START UNIT command. 3201 * 3202 * If we fail on this, we don't care presently what precisely 3203 * is wrong. EMC's arrays will also fail this with a check 3204 * condition (0x2/0x4/0x3) if the device is "inactive," but 3205 * we don't want to fail the attach because it may become 3206 * "active" later. 3207 * We don't know if power condition is supported or not at 3208 * this stage, use START STOP bit. 3209 */ 3210 status = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 3211 SD_TARGET_START, SD_PATH_DIRECT); 3212 3213 if (status != 0) { 3214 if (status == EACCES) 3215 has_conflict = TRUE; 3216 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3217 } 3218 3219 /* 3220 * Send another INQUIRY command to the target. This is necessary for 3221 * non-removable media direct access devices because their INQUIRY data 3222 * may not be fully qualified until they are spun up (perhaps via the 3223 * START command above). Note: This seems to be needed for some 3224 * legacy devices only.) The INQUIRY command should succeed even if a 3225 * Reservation Conflict is present. 3226 */ 3227 bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP); 3228 3229 if (sd_send_scsi_INQUIRY(ssc, bufaddr, SUN_INQSIZE, 0, 0, &resid) 3230 != 0) { 3231 kmem_free(bufaddr, SUN_INQSIZE); 3232 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 3233 return (EIO); 3234 } 3235 3236 /* 3237 * If we got enough INQUIRY data, copy it over the old INQUIRY data. 3238 * Note that this routine does not return a failure here even if the 3239 * INQUIRY command did not return any data. This is a legacy behavior. 3240 */ 3241 if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) { 3242 bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE); 3243 } 3244 3245 kmem_free(bufaddr, SUN_INQSIZE); 3246 3247 /* If we hit a reservation conflict above, tell the caller. */ 3248 if (has_conflict == TRUE) { 3249 return (EACCES); 3250 } 3251 3252 return (0); 3253 } 3254 3255 #ifdef _LP64 3256 /* 3257 * Function: sd_enable_descr_sense 3258 * 3259 * Description: This routine attempts to select descriptor sense format 3260 * using the Control mode page. Devices that support 64 bit 3261 * LBAs (for >2TB luns) should also implement descriptor 3262 * sense data so we will call this function whenever we see 3263 * a lun larger than 2TB. If for some reason the device 3264 * supports 64 bit LBAs but doesn't support descriptor sense 3265 * presumably the mode select will fail. Everything will 3266 * continue to work normally except that we will not get 3267 * complete sense data for commands that fail with an LBA 3268 * larger than 32 bits. 3269 * 3270 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 3271 * structure for this target. 3272 * 3273 * Context: Kernel thread context only 3274 */ 3275 3276 static void 3277 sd_enable_descr_sense(sd_ssc_t *ssc) 3278 { 3279 uchar_t *header; 3280 struct mode_control_scsi3 *ctrl_bufp; 3281 size_t buflen; 3282 size_t bd_len; 3283 int status; 3284 struct sd_lun *un; 3285 3286 ASSERT(ssc != NULL); 3287 un = ssc->ssc_un; 3288 ASSERT(un != NULL); 3289 3290 /* 3291 * Read MODE SENSE page 0xA, Control Mode Page 3292 */ 3293 buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH + 3294 sizeof (struct mode_control_scsi3); 3295 header = kmem_zalloc(buflen, KM_SLEEP); 3296 3297 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen, 3298 MODEPAGE_CTRL_MODE, SD_PATH_DIRECT); 3299 3300 if (status != 0) { 3301 SD_ERROR(SD_LOG_COMMON, un, 3302 "sd_enable_descr_sense: mode sense ctrl page failed\n"); 3303 goto eds_exit; 3304 } 3305 3306 /* 3307 * Determine size of Block Descriptors in order to locate 3308 * the mode page data. ATAPI devices return 0, SCSI devices 3309 * should return MODE_BLK_DESC_LENGTH. 3310 */ 3311 bd_len = ((struct mode_header *)header)->bdesc_length; 3312 3313 /* Clear the mode data length field for MODE SELECT */ 3314 ((struct mode_header *)header)->length = 0; 3315 3316 ctrl_bufp = (struct mode_control_scsi3 *) 3317 (header + MODE_HEADER_LENGTH + bd_len); 3318 3319 /* 3320 * If the page length is smaller than the expected value, 3321 * the target device doesn't support D_SENSE. Bail out here. 3322 */ 3323 if (ctrl_bufp->mode_page.length < 3324 sizeof (struct mode_control_scsi3) - 2) { 3325 SD_ERROR(SD_LOG_COMMON, un, 3326 "sd_enable_descr_sense: enable D_SENSE failed\n"); 3327 goto eds_exit; 3328 } 3329 3330 /* 3331 * Clear PS bit for MODE SELECT 3332 */ 3333 ctrl_bufp->mode_page.ps = 0; 3334 3335 /* 3336 * Set D_SENSE to enable descriptor sense format. 3337 */ 3338 ctrl_bufp->d_sense = 1; 3339 3340 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3341 3342 /* 3343 * Use MODE SELECT to commit the change to the D_SENSE bit 3344 */ 3345 status = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header, 3346 buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT); 3347 3348 if (status != 0) { 3349 SD_INFO(SD_LOG_COMMON, un, 3350 "sd_enable_descr_sense: mode select ctrl page failed\n"); 3351 } else { 3352 kmem_free(header, buflen); 3353 return; 3354 } 3355 3356 eds_exit: 3357 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3358 kmem_free(header, buflen); 3359 } 3360 3361 /* 3362 * Function: sd_reenable_dsense_task 3363 * 3364 * Description: Re-enable descriptor sense after device or bus reset 3365 * 3366 * Context: Executes in a taskq() thread context 3367 */ 3368 static void 3369 sd_reenable_dsense_task(void *arg) 3370 { 3371 struct sd_lun *un = arg; 3372 sd_ssc_t *ssc; 3373 3374 ASSERT(un != NULL); 3375 3376 ssc = sd_ssc_init(un); 3377 sd_enable_descr_sense(ssc); 3378 sd_ssc_fini(ssc); 3379 } 3380 #endif /* _LP64 */ 3381 3382 /* 3383 * Function: sd_set_mmc_caps 3384 * 3385 * Description: This routine determines if the device is MMC compliant and if 3386 * the device supports CDDA via a mode sense of the CDVD 3387 * capabilities mode page. Also checks if the device is a 3388 * dvdram writable device. 3389 * 3390 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 3391 * structure for this target. 3392 * 3393 * Context: Kernel thread context only 3394 */ 3395 3396 static void 3397 sd_set_mmc_caps(sd_ssc_t *ssc) 3398 { 3399 struct mode_header_grp2 *sense_mhp; 3400 uchar_t *sense_page; 3401 caddr_t buf; 3402 int bd_len; 3403 int status; 3404 struct uscsi_cmd com; 3405 int rtn; 3406 uchar_t *out_data_rw, *out_data_hd; 3407 uchar_t *rqbuf_rw, *rqbuf_hd; 3408 struct sd_lun *un; 3409 3410 ASSERT(ssc != NULL); 3411 un = ssc->ssc_un; 3412 ASSERT(un != NULL); 3413 3414 /* 3415 * The flags which will be set in this function are - mmc compliant, 3416 * dvdram writable device, cdda support. Initialize them to FALSE 3417 * and if a capability is detected - it will be set to TRUE. 3418 */ 3419 un->un_f_mmc_cap = FALSE; 3420 un->un_f_dvdram_writable_device = FALSE; 3421 un->un_f_cfg_cdda = FALSE; 3422 3423 buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 3424 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf, 3425 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT); 3426 3427 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3428 3429 if (status != 0) { 3430 /* command failed; just return */ 3431 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3432 return; 3433 } 3434 /* 3435 * If the mode sense request for the CDROM CAPABILITIES 3436 * page (0x2A) succeeds the device is assumed to be MMC. 3437 */ 3438 un->un_f_mmc_cap = TRUE; 3439 3440 /* Get to the page data */ 3441 sense_mhp = (struct mode_header_grp2 *)buf; 3442 bd_len = (sense_mhp->bdesc_length_hi << 8) | 3443 sense_mhp->bdesc_length_lo; 3444 if (bd_len > MODE_BLK_DESC_LENGTH) { 3445 /* 3446 * We did not get back the expected block descriptor 3447 * length so we cannot determine if the device supports 3448 * CDDA. However, we still indicate the device is MMC 3449 * according to the successful response to the page 3450 * 0x2A mode sense request. 3451 */ 3452 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3453 "sd_set_mmc_caps: Mode Sense returned " 3454 "invalid block descriptor length\n"); 3455 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3456 return; 3457 } 3458 3459 /* See if read CDDA is supported */ 3460 sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + 3461 bd_len); 3462 un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE; 3463 3464 /* See if writing DVD RAM is supported. */ 3465 un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE; 3466 if (un->un_f_dvdram_writable_device == TRUE) { 3467 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3468 return; 3469 } 3470 3471 /* 3472 * If the device presents DVD or CD capabilities in the mode 3473 * page, we can return here since a RRD will not have 3474 * these capabilities. 3475 */ 3476 if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) { 3477 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3478 return; 3479 } 3480 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3481 3482 /* 3483 * If un->un_f_dvdram_writable_device is still FALSE, 3484 * check for a Removable Rigid Disk (RRD). A RRD 3485 * device is identified by the features RANDOM_WRITABLE and 3486 * HARDWARE_DEFECT_MANAGEMENT. 3487 */ 3488 out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3489 rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3490 3491 rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw, 3492 SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN, 3493 RANDOM_WRITABLE, SD_PATH_STANDARD); 3494 3495 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3496 3497 if (rtn != 0) { 3498 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3499 kmem_free(rqbuf_rw, SENSE_LENGTH); 3500 return; 3501 } 3502 3503 out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3504 rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3505 3506 rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd, 3507 SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN, 3508 HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD); 3509 3510 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3511 3512 if (rtn == 0) { 3513 /* 3514 * We have good information, check for random writable 3515 * and hardware defect features. 3516 */ 3517 if ((out_data_rw[9] & RANDOM_WRITABLE) && 3518 (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) { 3519 un->un_f_dvdram_writable_device = TRUE; 3520 } 3521 } 3522 3523 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3524 kmem_free(rqbuf_rw, SENSE_LENGTH); 3525 kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN); 3526 kmem_free(rqbuf_hd, SENSE_LENGTH); 3527 } 3528 3529 /* 3530 * Function: sd_check_for_writable_cd 3531 * 3532 * Description: This routine determines if the media in the device is 3533 * writable or not. It uses the get configuration command (0x46) 3534 * to determine if the media is writable 3535 * 3536 * Arguments: un - driver soft state (unit) structure 3537 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" 3538 * chain and the normal command waitq, or 3539 * SD_PATH_DIRECT_PRIORITY to use the USCSI 3540 * "direct" chain and bypass the normal command 3541 * waitq. 3542 * 3543 * Context: Never called at interrupt context. 3544 */ 3545 3546 static void 3547 sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag) 3548 { 3549 struct uscsi_cmd com; 3550 uchar_t *out_data; 3551 uchar_t *rqbuf; 3552 int rtn; 3553 uchar_t *out_data_rw, *out_data_hd; 3554 uchar_t *rqbuf_rw, *rqbuf_hd; 3555 struct mode_header_grp2 *sense_mhp; 3556 uchar_t *sense_page; 3557 caddr_t buf; 3558 int bd_len; 3559 int status; 3560 struct sd_lun *un; 3561 3562 ASSERT(ssc != NULL); 3563 un = ssc->ssc_un; 3564 ASSERT(un != NULL); 3565 ASSERT(mutex_owned(SD_MUTEX(un))); 3566 3567 /* 3568 * Initialize the writable media to false, if configuration info. 3569 * tells us otherwise then only we will set it. 3570 */ 3571 un->un_f_mmc_writable_media = FALSE; 3572 mutex_exit(SD_MUTEX(un)); 3573 3574 out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP); 3575 rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3576 3577 rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, SENSE_LENGTH, 3578 out_data, SD_PROFILE_HEADER_LEN, path_flag); 3579 3580 if (rtn != 0) 3581 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3582 3583 mutex_enter(SD_MUTEX(un)); 3584 if (rtn == 0) { 3585 /* 3586 * We have good information, check for writable DVD. 3587 */ 3588 if ((out_data[6] == 0) && (out_data[7] == 0x12)) { 3589 un->un_f_mmc_writable_media = TRUE; 3590 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 3591 kmem_free(rqbuf, SENSE_LENGTH); 3592 return; 3593 } 3594 } 3595 3596 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 3597 kmem_free(rqbuf, SENSE_LENGTH); 3598 3599 /* 3600 * Determine if this is a RRD type device. 3601 */ 3602 mutex_exit(SD_MUTEX(un)); 3603 buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 3604 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf, 3605 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag); 3606 3607 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3608 3609 mutex_enter(SD_MUTEX(un)); 3610 if (status != 0) { 3611 /* command failed; just return */ 3612 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3613 return; 3614 } 3615 3616 /* Get to the page data */ 3617 sense_mhp = (struct mode_header_grp2 *)buf; 3618 bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo; 3619 if (bd_len > MODE_BLK_DESC_LENGTH) { 3620 /* 3621 * We did not get back the expected block descriptor length so 3622 * we cannot check the mode page. 3623 */ 3624 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3625 "sd_check_for_writable_cd: Mode Sense returned " 3626 "invalid block descriptor length\n"); 3627 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3628 return; 3629 } 3630 3631 /* 3632 * If the device presents DVD or CD capabilities in the mode 3633 * page, we can return here since a RRD device will not have 3634 * these capabilities. 3635 */ 3636 sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len); 3637 if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) { 3638 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3639 return; 3640 } 3641 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3642 3643 /* 3644 * If un->un_f_mmc_writable_media is still FALSE, 3645 * check for RRD type media. A RRD device is identified 3646 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT. 3647 */ 3648 mutex_exit(SD_MUTEX(un)); 3649 out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3650 rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3651 3652 rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw, 3653 SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN, 3654 RANDOM_WRITABLE, path_flag); 3655 3656 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3657 if (rtn != 0) { 3658 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3659 kmem_free(rqbuf_rw, SENSE_LENGTH); 3660 mutex_enter(SD_MUTEX(un)); 3661 return; 3662 } 3663 3664 out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3665 rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3666 3667 rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd, 3668 SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN, 3669 HARDWARE_DEFECT_MANAGEMENT, path_flag); 3670 3671 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3672 mutex_enter(SD_MUTEX(un)); 3673 if (rtn == 0) { 3674 /* 3675 * We have good information, check for random writable 3676 * and hardware defect features as current. 3677 */ 3678 if ((out_data_rw[9] & RANDOM_WRITABLE) && 3679 (out_data_rw[10] & 0x1) && 3680 (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) && 3681 (out_data_hd[10] & 0x1)) { 3682 un->un_f_mmc_writable_media = TRUE; 3683 } 3684 } 3685 3686 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3687 kmem_free(rqbuf_rw, SENSE_LENGTH); 3688 kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN); 3689 kmem_free(rqbuf_hd, SENSE_LENGTH); 3690 } 3691 3692 /* 3693 * Function: sd_read_unit_properties 3694 * 3695 * Description: The following implements a property lookup mechanism. 3696 * Properties for particular disks (keyed on vendor, model 3697 * and rev numbers) are sought in the sd.conf file via 3698 * sd_process_sdconf_file(), and if not found there, are 3699 * looked for in a list hardcoded in this driver via 3700 * sd_process_sdconf_table() Once located the properties 3701 * are used to update the driver unit structure. 3702 * 3703 * Arguments: un - driver soft state (unit) structure 3704 */ 3705 3706 static void 3707 sd_read_unit_properties(struct sd_lun *un) 3708 { 3709 /* 3710 * sd_process_sdconf_file returns SD_FAILURE if it cannot find 3711 * the "sd-config-list" property (from the sd.conf file) or if 3712 * there was not a match for the inquiry vid/pid. If this event 3713 * occurs the static driver configuration table is searched for 3714 * a match. 3715 */ 3716 ASSERT(un != NULL); 3717 if (sd_process_sdconf_file(un) == SD_FAILURE) { 3718 sd_process_sdconf_table(un); 3719 } 3720 3721 /* check for LSI device */ 3722 sd_is_lsi(un); 3723 3724 3725 } 3726 3727 3728 /* 3729 * Function: sd_process_sdconf_file 3730 * 3731 * Description: Use ddi_prop_lookup(9F) to obtain the properties from the 3732 * driver's config file (ie, sd.conf) and update the driver 3733 * soft state structure accordingly. 3734 * 3735 * Arguments: un - driver soft state (unit) structure 3736 * 3737 * Return Code: SD_SUCCESS - The properties were successfully set according 3738 * to the driver configuration file. 3739 * SD_FAILURE - The driver config list was not obtained or 3740 * there was no vid/pid match. This indicates that 3741 * the static config table should be used. 3742 * 3743 * The config file has a property, "sd-config-list". Currently we support 3744 * two kinds of formats. For both formats, the value of this property 3745 * is a list of duplets: 3746 * 3747 * sd-config-list= 3748 * <duplet>, 3749 * [,<duplet>]*; 3750 * 3751 * For the improved format, where 3752 * 3753 * <duplet>:= "<vid+pid>","<tunable-list>" 3754 * 3755 * and 3756 * 3757 * <tunable-list>:= <tunable> [, <tunable> ]*; 3758 * <tunable> = <name> : <value> 3759 * 3760 * The <vid+pid> is the string that is returned by the target device on a 3761 * SCSI inquiry command, the <tunable-list> contains one or more tunables 3762 * to apply to all target devices with the specified <vid+pid>. 3763 * 3764 * Each <tunable> is a "<name> : <value>" pair. 3765 * 3766 * For the old format, the structure of each duplet is as follows: 3767 * 3768 * <duplet>:= "<vid+pid>","<data-property-name_list>" 3769 * 3770 * The first entry of the duplet is the device ID string (the concatenated 3771 * vid & pid; not to be confused with a device_id). This is defined in 3772 * the same way as in the sd_disk_table. 3773 * 3774 * The second part of the duplet is a string that identifies a 3775 * data-property-name-list. The data-property-name-list is defined as 3776 * follows: 3777 * 3778 * <data-property-name-list>:=<data-property-name> [<data-property-name>] 3779 * 3780 * The syntax of <data-property-name> depends on the <version> field. 3781 * 3782 * If version = SD_CONF_VERSION_1 we have the following syntax: 3783 * 3784 * <data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN> 3785 * 3786 * where the prop0 value will be used to set prop0 if bit0 set in the 3787 * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1 3788 * 3789 */ 3790 3791 static int 3792 sd_process_sdconf_file(struct sd_lun *un) 3793 { 3794 char **config_list = NULL; 3795 uint_t nelements; 3796 char *vidptr; 3797 int vidlen; 3798 char *dnlist_ptr; 3799 char *dataname_ptr; 3800 char *dataname_lasts; 3801 int *data_list = NULL; 3802 uint_t data_list_len; 3803 int rval = SD_FAILURE; 3804 int i; 3805 3806 ASSERT(un != NULL); 3807 3808 /* Obtain the configuration list associated with the .conf file */ 3809 if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, SD_DEVINFO(un), 3810 DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, sd_config_list, 3811 &config_list, &nelements) != DDI_PROP_SUCCESS) { 3812 return (SD_FAILURE); 3813 } 3814 3815 /* 3816 * Compare vids in each duplet to the inquiry vid - if a match is 3817 * made, get the data value and update the soft state structure 3818 * accordingly. 3819 * 3820 * Each duplet should show as a pair of strings, return SD_FAILURE 3821 * otherwise. 3822 */ 3823 if (nelements & 1) { 3824 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3825 "sd-config-list should show as pairs of strings.\n"); 3826 if (config_list) 3827 ddi_prop_free(config_list); 3828 return (SD_FAILURE); 3829 } 3830 3831 for (i = 0; i < nelements; i += 2) { 3832 /* 3833 * Note: The assumption here is that each vid entry is on 3834 * a unique line from its associated duplet. 3835 */ 3836 vidptr = config_list[i]; 3837 vidlen = (int)strlen(vidptr); 3838 if ((vidlen == 0) || 3839 (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) { 3840 continue; 3841 } 3842 3843 /* 3844 * dnlist contains 1 or more blank separated 3845 * data-property-name entries 3846 */ 3847 dnlist_ptr = config_list[i + 1]; 3848 3849 if (strchr(dnlist_ptr, ':') != NULL) { 3850 /* 3851 * Decode the improved format sd-config-list. 3852 */ 3853 sd_nvpair_str_decode(un, dnlist_ptr); 3854 } else { 3855 /* 3856 * The old format sd-config-list, loop through all 3857 * data-property-name entries in the 3858 * data-property-name-list 3859 * setting the properties for each. 3860 */ 3861 for (dataname_ptr = sd_strtok_r(dnlist_ptr, " \t", 3862 &dataname_lasts); dataname_ptr != NULL; 3863 dataname_ptr = sd_strtok_r(NULL, " \t", 3864 &dataname_lasts)) { 3865 int version; 3866 3867 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3868 "sd_process_sdconf_file: disk:%s, " 3869 "data:%s\n", vidptr, dataname_ptr); 3870 3871 /* Get the data list */ 3872 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, 3873 SD_DEVINFO(un), 0, dataname_ptr, &data_list, 3874 &data_list_len) != DDI_PROP_SUCCESS) { 3875 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3876 "sd_process_sdconf_file: data " 3877 "property (%s) has no value\n", 3878 dataname_ptr); 3879 continue; 3880 } 3881 3882 version = data_list[0]; 3883 3884 if (version == SD_CONF_VERSION_1) { 3885 sd_tunables values; 3886 3887 /* Set the properties */ 3888 if (sd_chk_vers1_data(un, data_list[1], 3889 &data_list[2], data_list_len, 3890 dataname_ptr) == SD_SUCCESS) { 3891 sd_get_tunables_from_conf(un, 3892 data_list[1], &data_list[2], 3893 &values); 3894 sd_set_vers1_properties(un, 3895 data_list[1], &values); 3896 rval = SD_SUCCESS; 3897 } else { 3898 rval = SD_FAILURE; 3899 } 3900 } else { 3901 scsi_log(SD_DEVINFO(un), sd_label, 3902 CE_WARN, "data property %s version " 3903 "0x%x is invalid.", 3904 dataname_ptr, version); 3905 rval = SD_FAILURE; 3906 } 3907 if (data_list) 3908 ddi_prop_free(data_list); 3909 } 3910 } 3911 } 3912 3913 /* free up the memory allocated by ddi_prop_lookup_string_array(). */ 3914 if (config_list) { 3915 ddi_prop_free(config_list); 3916 } 3917 3918 return (rval); 3919 } 3920 3921 /* 3922 * Function: sd_nvpair_str_decode() 3923 * 3924 * Description: Parse the improved format sd-config-list to get 3925 * each entry of tunable, which includes a name-value pair. 3926 * Then call sd_set_properties() to set the property. 3927 * 3928 * Arguments: un - driver soft state (unit) structure 3929 * nvpair_str - the tunable list 3930 */ 3931 static void 3932 sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str) 3933 { 3934 char *nv, *name, *value, *token; 3935 char *nv_lasts, *v_lasts, *x_lasts; 3936 3937 for (nv = sd_strtok_r(nvpair_str, ",", &nv_lasts); nv != NULL; 3938 nv = sd_strtok_r(NULL, ",", &nv_lasts)) { 3939 token = sd_strtok_r(nv, ":", &v_lasts); 3940 name = sd_strtok_r(token, " \t", &x_lasts); 3941 token = sd_strtok_r(NULL, ":", &v_lasts); 3942 value = sd_strtok_r(token, " \t", &x_lasts); 3943 if (name == NULL || value == NULL) { 3944 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3945 "sd_nvpair_str_decode: " 3946 "name or value is not valid!\n"); 3947 } else { 3948 sd_set_properties(un, name, value); 3949 } 3950 } 3951 } 3952 3953 /* 3954 * Function: sd_strtok_r() 3955 * 3956 * Description: This function uses strpbrk and strspn to break 3957 * string into tokens on sequentially subsequent calls. Return 3958 * NULL when no non-separator characters remain. The first 3959 * argument is NULL for subsequent calls. 3960 */ 3961 static char * 3962 sd_strtok_r(char *string, const char *sepset, char **lasts) 3963 { 3964 char *q, *r; 3965 3966 /* First or subsequent call */ 3967 if (string == NULL) 3968 string = *lasts; 3969 3970 if (string == NULL) 3971 return (NULL); 3972 3973 /* Skip leading separators */ 3974 q = string + strspn(string, sepset); 3975 3976 if (*q == '\0') 3977 return (NULL); 3978 3979 if ((r = strpbrk(q, sepset)) == NULL) 3980 *lasts = NULL; 3981 else { 3982 *r = '\0'; 3983 *lasts = r + 1; 3984 } 3985 return (q); 3986 } 3987 3988 /* 3989 * Function: sd_set_properties() 3990 * 3991 * Description: Set device properties based on the improved 3992 * format sd-config-list. 3993 * 3994 * Arguments: un - driver soft state (unit) structure 3995 * name - supported tunable name 3996 * value - tunable value 3997 */ 3998 static void 3999 sd_set_properties(struct sd_lun *un, char *name, char *value) 4000 { 4001 char *endptr = NULL; 4002 long val = 0; 4003 4004 if (strcasecmp(name, "cache-nonvolatile") == 0) { 4005 if (strcasecmp(value, "true") == 0) { 4006 un->un_f_suppress_cache_flush = TRUE; 4007 } else if (strcasecmp(value, "false") == 0) { 4008 un->un_f_suppress_cache_flush = FALSE; 4009 } else { 4010 goto value_invalid; 4011 } 4012 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4013 "suppress_cache_flush flag set to %d\n", 4014 un->un_f_suppress_cache_flush); 4015 return; 4016 } 4017 4018 if (strcasecmp(name, "controller-type") == 0) { 4019 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4020 un->un_ctype = val; 4021 } else { 4022 goto value_invalid; 4023 } 4024 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4025 "ctype set to %d\n", un->un_ctype); 4026 return; 4027 } 4028 4029 if (strcasecmp(name, "delay-busy") == 0) { 4030 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4031 un->un_busy_timeout = drv_usectohz(val / 1000); 4032 } else { 4033 goto value_invalid; 4034 } 4035 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4036 "busy_timeout set to %d\n", un->un_busy_timeout); 4037 return; 4038 } 4039 4040 if (strcasecmp(name, "disksort") == 0) { 4041 if (strcasecmp(value, "true") == 0) { 4042 un->un_f_disksort_disabled = FALSE; 4043 } else if (strcasecmp(value, "false") == 0) { 4044 un->un_f_disksort_disabled = TRUE; 4045 } else { 4046 goto value_invalid; 4047 } 4048 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4049 "disksort disabled flag set to %d\n", 4050 un->un_f_disksort_disabled); 4051 return; 4052 } 4053 4054 if (strcasecmp(name, "power-condition") == 0) { 4055 if (strcasecmp(value, "true") == 0) { 4056 un->un_f_power_condition_disabled = FALSE; 4057 } else if (strcasecmp(value, "false") == 0) { 4058 un->un_f_power_condition_disabled = TRUE; 4059 } else { 4060 goto value_invalid; 4061 } 4062 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4063 "power condition disabled flag set to %d\n", 4064 un->un_f_power_condition_disabled); 4065 return; 4066 } 4067 4068 if (strcasecmp(name, "timeout-releasereservation") == 0) { 4069 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4070 un->un_reserve_release_time = val; 4071 } else { 4072 goto value_invalid; 4073 } 4074 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4075 "reservation release timeout set to %d\n", 4076 un->un_reserve_release_time); 4077 return; 4078 } 4079 4080 if (strcasecmp(name, "reset-lun") == 0) { 4081 if (strcasecmp(value, "true") == 0) { 4082 un->un_f_lun_reset_enabled = TRUE; 4083 } else if (strcasecmp(value, "false") == 0) { 4084 un->un_f_lun_reset_enabled = FALSE; 4085 } else { 4086 goto value_invalid; 4087 } 4088 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4089 "lun reset enabled flag set to %d\n", 4090 un->un_f_lun_reset_enabled); 4091 return; 4092 } 4093 4094 if (strcasecmp(name, "retries-busy") == 0) { 4095 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4096 un->un_busy_retry_count = val; 4097 } else { 4098 goto value_invalid; 4099 } 4100 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4101 "busy retry count set to %d\n", un->un_busy_retry_count); 4102 return; 4103 } 4104 4105 if (strcasecmp(name, "retries-timeout") == 0) { 4106 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4107 un->un_retry_count = val; 4108 } else { 4109 goto value_invalid; 4110 } 4111 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4112 "timeout retry count set to %d\n", un->un_retry_count); 4113 return; 4114 } 4115 4116 if (strcasecmp(name, "retries-notready") == 0) { 4117 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4118 un->un_notready_retry_count = val; 4119 } else { 4120 goto value_invalid; 4121 } 4122 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4123 "notready retry count set to %d\n", 4124 un->un_notready_retry_count); 4125 return; 4126 } 4127 4128 if (strcasecmp(name, "retries-reset") == 0) { 4129 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4130 un->un_reset_retry_count = val; 4131 } else { 4132 goto value_invalid; 4133 } 4134 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4135 "reset retry count set to %d\n", 4136 un->un_reset_retry_count); 4137 return; 4138 } 4139 4140 if (strcasecmp(name, "throttle-max") == 0) { 4141 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4142 un->un_saved_throttle = un->un_throttle = val; 4143 } else { 4144 goto value_invalid; 4145 } 4146 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4147 "throttle set to %d\n", un->un_throttle); 4148 } 4149 4150 if (strcasecmp(name, "throttle-min") == 0) { 4151 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4152 un->un_min_throttle = val; 4153 } else { 4154 goto value_invalid; 4155 } 4156 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4157 "min throttle set to %d\n", un->un_min_throttle); 4158 } 4159 4160 if (strcasecmp(name, "rmw-type") == 0) { 4161 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4162 un->un_f_rmw_type = val; 4163 } else { 4164 goto value_invalid; 4165 } 4166 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4167 "RMW type set to %d\n", un->un_f_rmw_type); 4168 } 4169 4170 /* 4171 * Validate the throttle values. 4172 * If any of the numbers are invalid, set everything to defaults. 4173 */ 4174 if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) || 4175 (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) || 4176 (un->un_min_throttle > un->un_throttle)) { 4177 un->un_saved_throttle = un->un_throttle = sd_max_throttle; 4178 un->un_min_throttle = sd_min_throttle; 4179 } 4180 return; 4181 4182 value_invalid: 4183 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4184 "value of prop %s is invalid\n", name); 4185 } 4186 4187 /* 4188 * Function: sd_get_tunables_from_conf() 4189 * 4190 * 4191 * This function reads the data list from the sd.conf file and pulls 4192 * the values that can have numeric values as arguments and places 4193 * the values in the appropriate sd_tunables member. 4194 * Since the order of the data list members varies across platforms 4195 * This function reads them from the data list in a platform specific 4196 * order and places them into the correct sd_tunable member that is 4197 * consistent across all platforms. 4198 */ 4199 static void 4200 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list, 4201 sd_tunables *values) 4202 { 4203 int i; 4204 int mask; 4205 4206 bzero(values, sizeof (sd_tunables)); 4207 4208 for (i = 0; i < SD_CONF_MAX_ITEMS; i++) { 4209 4210 mask = 1 << i; 4211 if (mask > flags) { 4212 break; 4213 } 4214 4215 switch (mask & flags) { 4216 case 0: /* This mask bit not set in flags */ 4217 continue; 4218 case SD_CONF_BSET_THROTTLE: 4219 values->sdt_throttle = data_list[i]; 4220 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4221 "sd_get_tunables_from_conf: throttle = %d\n", 4222 values->sdt_throttle); 4223 break; 4224 case SD_CONF_BSET_CTYPE: 4225 values->sdt_ctype = data_list[i]; 4226 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4227 "sd_get_tunables_from_conf: ctype = %d\n", 4228 values->sdt_ctype); 4229 break; 4230 case SD_CONF_BSET_NRR_COUNT: 4231 values->sdt_not_rdy_retries = data_list[i]; 4232 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4233 "sd_get_tunables_from_conf: not_rdy_retries = %d\n", 4234 values->sdt_not_rdy_retries); 4235 break; 4236 case SD_CONF_BSET_BSY_RETRY_COUNT: 4237 values->sdt_busy_retries = data_list[i]; 4238 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4239 "sd_get_tunables_from_conf: busy_retries = %d\n", 4240 values->sdt_busy_retries); 4241 break; 4242 case SD_CONF_BSET_RST_RETRIES: 4243 values->sdt_reset_retries = data_list[i]; 4244 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4245 "sd_get_tunables_from_conf: reset_retries = %d\n", 4246 values->sdt_reset_retries); 4247 break; 4248 case SD_CONF_BSET_RSV_REL_TIME: 4249 values->sdt_reserv_rel_time = data_list[i]; 4250 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4251 "sd_get_tunables_from_conf: reserv_rel_time = %d\n", 4252 values->sdt_reserv_rel_time); 4253 break; 4254 case SD_CONF_BSET_MIN_THROTTLE: 4255 values->sdt_min_throttle = data_list[i]; 4256 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4257 "sd_get_tunables_from_conf: min_throttle = %d\n", 4258 values->sdt_min_throttle); 4259 break; 4260 case SD_CONF_BSET_DISKSORT_DISABLED: 4261 values->sdt_disk_sort_dis = data_list[i]; 4262 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4263 "sd_get_tunables_from_conf: disk_sort_dis = %d\n", 4264 values->sdt_disk_sort_dis); 4265 break; 4266 case SD_CONF_BSET_LUN_RESET_ENABLED: 4267 values->sdt_lun_reset_enable = data_list[i]; 4268 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4269 "sd_get_tunables_from_conf: lun_reset_enable = %d" 4270 "\n", values->sdt_lun_reset_enable); 4271 break; 4272 case SD_CONF_BSET_CACHE_IS_NV: 4273 values->sdt_suppress_cache_flush = data_list[i]; 4274 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4275 "sd_get_tunables_from_conf: \ 4276 suppress_cache_flush = %d" 4277 "\n", values->sdt_suppress_cache_flush); 4278 break; 4279 case SD_CONF_BSET_PC_DISABLED: 4280 values->sdt_disk_sort_dis = data_list[i]; 4281 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4282 "sd_get_tunables_from_conf: power_condition_dis = " 4283 "%d\n", values->sdt_power_condition_dis); 4284 break; 4285 } 4286 } 4287 } 4288 4289 /* 4290 * Function: sd_process_sdconf_table 4291 * 4292 * Description: Search the static configuration table for a match on the 4293 * inquiry vid/pid and update the driver soft state structure 4294 * according to the table property values for the device. 4295 * 4296 * The form of a configuration table entry is: 4297 * <vid+pid>,<flags>,<property-data> 4298 * "SEAGATE ST42400N",1,0x40000, 4299 * 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1; 4300 * 4301 * Arguments: un - driver soft state (unit) structure 4302 */ 4303 4304 static void 4305 sd_process_sdconf_table(struct sd_lun *un) 4306 { 4307 char *id = NULL; 4308 int table_index; 4309 int idlen; 4310 4311 ASSERT(un != NULL); 4312 for (table_index = 0; table_index < sd_disk_table_size; 4313 table_index++) { 4314 id = sd_disk_table[table_index].device_id; 4315 idlen = strlen(id); 4316 if (idlen == 0) { 4317 continue; 4318 } 4319 4320 /* 4321 * The static configuration table currently does not 4322 * implement version 10 properties. Additionally, 4323 * multiple data-property-name entries are not 4324 * implemented in the static configuration table. 4325 */ 4326 if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) { 4327 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4328 "sd_process_sdconf_table: disk %s\n", id); 4329 sd_set_vers1_properties(un, 4330 sd_disk_table[table_index].flags, 4331 sd_disk_table[table_index].properties); 4332 break; 4333 } 4334 } 4335 } 4336 4337 4338 /* 4339 * Function: sd_sdconf_id_match 4340 * 4341 * Description: This local function implements a case sensitive vid/pid 4342 * comparison as well as the boundary cases of wild card and 4343 * multiple blanks. 4344 * 4345 * Note: An implicit assumption made here is that the scsi 4346 * inquiry structure will always keep the vid, pid and 4347 * revision strings in consecutive sequence, so they can be 4348 * read as a single string. If this assumption is not the 4349 * case, a separate string, to be used for the check, needs 4350 * to be built with these strings concatenated. 4351 * 4352 * Arguments: un - driver soft state (unit) structure 4353 * id - table or config file vid/pid 4354 * idlen - length of the vid/pid (bytes) 4355 * 4356 * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid 4357 * SD_FAILURE - Indicates no match with the inquiry vid/pid 4358 */ 4359 4360 static int 4361 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen) 4362 { 4363 struct scsi_inquiry *sd_inq; 4364 int rval = SD_SUCCESS; 4365 4366 ASSERT(un != NULL); 4367 sd_inq = un->un_sd->sd_inq; 4368 ASSERT(id != NULL); 4369 4370 /* 4371 * We use the inq_vid as a pointer to a buffer containing the 4372 * vid and pid and use the entire vid/pid length of the table 4373 * entry for the comparison. This works because the inq_pid 4374 * data member follows inq_vid in the scsi_inquiry structure. 4375 */ 4376 if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) { 4377 /* 4378 * The user id string is compared to the inquiry vid/pid 4379 * using a case insensitive comparison and ignoring 4380 * multiple spaces. 4381 */ 4382 rval = sd_blank_cmp(un, id, idlen); 4383 if (rval != SD_SUCCESS) { 4384 /* 4385 * User id strings that start and end with a "*" 4386 * are a special case. These do not have a 4387 * specific vendor, and the product string can 4388 * appear anywhere in the 16 byte PID portion of 4389 * the inquiry data. This is a simple strstr() 4390 * type search for the user id in the inquiry data. 4391 */ 4392 if ((id[0] == '*') && (id[idlen - 1] == '*')) { 4393 char *pidptr = &id[1]; 4394 int i; 4395 int j; 4396 int pidstrlen = idlen - 2; 4397 j = sizeof (SD_INQUIRY(un)->inq_pid) - 4398 pidstrlen; 4399 4400 if (j < 0) { 4401 return (SD_FAILURE); 4402 } 4403 for (i = 0; i < j; i++) { 4404 if (bcmp(&SD_INQUIRY(un)->inq_pid[i], 4405 pidptr, pidstrlen) == 0) { 4406 rval = SD_SUCCESS; 4407 break; 4408 } 4409 } 4410 } 4411 } 4412 } 4413 return (rval); 4414 } 4415 4416 4417 /* 4418 * Function: sd_blank_cmp 4419 * 4420 * Description: If the id string starts and ends with a space, treat 4421 * multiple consecutive spaces as equivalent to a single 4422 * space. For example, this causes a sd_disk_table entry 4423 * of " NEC CDROM " to match a device's id string of 4424 * "NEC CDROM". 4425 * 4426 * Note: The success exit condition for this routine is if 4427 * the pointer to the table entry is '\0' and the cnt of 4428 * the inquiry length is zero. This will happen if the inquiry 4429 * string returned by the device is padded with spaces to be 4430 * exactly 24 bytes in length (8 byte vid + 16 byte pid). The 4431 * SCSI spec states that the inquiry string is to be padded with 4432 * spaces. 4433 * 4434 * Arguments: un - driver soft state (unit) structure 4435 * id - table or config file vid/pid 4436 * idlen - length of the vid/pid (bytes) 4437 * 4438 * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid 4439 * SD_FAILURE - Indicates no match with the inquiry vid/pid 4440 */ 4441 4442 static int 4443 sd_blank_cmp(struct sd_lun *un, char *id, int idlen) 4444 { 4445 char *p1; 4446 char *p2; 4447 int cnt; 4448 cnt = sizeof (SD_INQUIRY(un)->inq_vid) + 4449 sizeof (SD_INQUIRY(un)->inq_pid); 4450 4451 ASSERT(un != NULL); 4452 p2 = un->un_sd->sd_inq->inq_vid; 4453 ASSERT(id != NULL); 4454 p1 = id; 4455 4456 if ((id[0] == ' ') && (id[idlen - 1] == ' ')) { 4457 /* 4458 * Note: string p1 is terminated by a NUL but string p2 4459 * isn't. The end of p2 is determined by cnt. 4460 */ 4461 for (;;) { 4462 /* skip over any extra blanks in both strings */ 4463 while ((*p1 != '\0') && (*p1 == ' ')) { 4464 p1++; 4465 } 4466 while ((cnt != 0) && (*p2 == ' ')) { 4467 p2++; 4468 cnt--; 4469 } 4470 4471 /* compare the two strings */ 4472 if ((cnt == 0) || 4473 (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) { 4474 break; 4475 } 4476 while ((cnt > 0) && 4477 (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) { 4478 p1++; 4479 p2++; 4480 cnt--; 4481 } 4482 } 4483 } 4484 4485 /* return SD_SUCCESS if both strings match */ 4486 return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE); 4487 } 4488 4489 4490 /* 4491 * Function: sd_chk_vers1_data 4492 * 4493 * Description: Verify the version 1 device properties provided by the 4494 * user via the configuration file 4495 * 4496 * Arguments: un - driver soft state (unit) structure 4497 * flags - integer mask indicating properties to be set 4498 * prop_list - integer list of property values 4499 * list_len - number of the elements 4500 * 4501 * Return Code: SD_SUCCESS - Indicates the user provided data is valid 4502 * SD_FAILURE - Indicates the user provided data is invalid 4503 */ 4504 4505 static int 4506 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list, 4507 int list_len, char *dataname_ptr) 4508 { 4509 int i; 4510 int mask = 1; 4511 int index = 0; 4512 4513 ASSERT(un != NULL); 4514 4515 /* Check for a NULL property name and list */ 4516 if (dataname_ptr == NULL) { 4517 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4518 "sd_chk_vers1_data: NULL data property name."); 4519 return (SD_FAILURE); 4520 } 4521 if (prop_list == NULL) { 4522 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4523 "sd_chk_vers1_data: %s NULL data property list.", 4524 dataname_ptr); 4525 return (SD_FAILURE); 4526 } 4527 4528 /* Display a warning if undefined bits are set in the flags */ 4529 if (flags & ~SD_CONF_BIT_MASK) { 4530 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4531 "sd_chk_vers1_data: invalid bits 0x%x in data list %s. " 4532 "Properties not set.", 4533 (flags & ~SD_CONF_BIT_MASK), dataname_ptr); 4534 return (SD_FAILURE); 4535 } 4536 4537 /* 4538 * Verify the length of the list by identifying the highest bit set 4539 * in the flags and validating that the property list has a length 4540 * up to the index of this bit. 4541 */ 4542 for (i = 0; i < SD_CONF_MAX_ITEMS; i++) { 4543 if (flags & mask) { 4544 index++; 4545 } 4546 mask = 1 << i; 4547 } 4548 if (list_len < (index + 2)) { 4549 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4550 "sd_chk_vers1_data: " 4551 "Data property list %s size is incorrect. " 4552 "Properties not set.", dataname_ptr); 4553 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: " 4554 "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS); 4555 return (SD_FAILURE); 4556 } 4557 return (SD_SUCCESS); 4558 } 4559 4560 4561 /* 4562 * Function: sd_set_vers1_properties 4563 * 4564 * Description: Set version 1 device properties based on a property list 4565 * retrieved from the driver configuration file or static 4566 * configuration table. Version 1 properties have the format: 4567 * 4568 * <data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN> 4569 * 4570 * where the prop0 value will be used to set prop0 if bit0 4571 * is set in the flags 4572 * 4573 * Arguments: un - driver soft state (unit) structure 4574 * flags - integer mask indicating properties to be set 4575 * prop_list - integer list of property values 4576 */ 4577 4578 static void 4579 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list) 4580 { 4581 ASSERT(un != NULL); 4582 4583 /* 4584 * Set the flag to indicate cache is to be disabled. An attempt 4585 * to disable the cache via sd_cache_control() will be made 4586 * later during attach once the basic initialization is complete. 4587 */ 4588 if (flags & SD_CONF_BSET_NOCACHE) { 4589 un->un_f_opt_disable_cache = TRUE; 4590 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4591 "sd_set_vers1_properties: caching disabled flag set\n"); 4592 } 4593 4594 /* CD-specific configuration parameters */ 4595 if (flags & SD_CONF_BSET_PLAYMSF_BCD) { 4596 un->un_f_cfg_playmsf_bcd = TRUE; 4597 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4598 "sd_set_vers1_properties: playmsf_bcd set\n"); 4599 } 4600 if (flags & SD_CONF_BSET_READSUB_BCD) { 4601 un->un_f_cfg_readsub_bcd = TRUE; 4602 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4603 "sd_set_vers1_properties: readsub_bcd set\n"); 4604 } 4605 if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) { 4606 un->un_f_cfg_read_toc_trk_bcd = TRUE; 4607 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4608 "sd_set_vers1_properties: read_toc_trk_bcd set\n"); 4609 } 4610 if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) { 4611 un->un_f_cfg_read_toc_addr_bcd = TRUE; 4612 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4613 "sd_set_vers1_properties: read_toc_addr_bcd set\n"); 4614 } 4615 if (flags & SD_CONF_BSET_NO_READ_HEADER) { 4616 un->un_f_cfg_no_read_header = TRUE; 4617 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4618 "sd_set_vers1_properties: no_read_header set\n"); 4619 } 4620 if (flags & SD_CONF_BSET_READ_CD_XD4) { 4621 un->un_f_cfg_read_cd_xd4 = TRUE; 4622 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4623 "sd_set_vers1_properties: read_cd_xd4 set\n"); 4624 } 4625 4626 /* Support for devices which do not have valid/unique serial numbers */ 4627 if (flags & SD_CONF_BSET_FAB_DEVID) { 4628 un->un_f_opt_fab_devid = TRUE; 4629 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4630 "sd_set_vers1_properties: fab_devid bit set\n"); 4631 } 4632 4633 /* Support for user throttle configuration */ 4634 if (flags & SD_CONF_BSET_THROTTLE) { 4635 ASSERT(prop_list != NULL); 4636 un->un_saved_throttle = un->un_throttle = 4637 prop_list->sdt_throttle; 4638 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4639 "sd_set_vers1_properties: throttle set to %d\n", 4640 prop_list->sdt_throttle); 4641 } 4642 4643 /* Set the per disk retry count according to the conf file or table. */ 4644 if (flags & SD_CONF_BSET_NRR_COUNT) { 4645 ASSERT(prop_list != NULL); 4646 if (prop_list->sdt_not_rdy_retries) { 4647 un->un_notready_retry_count = 4648 prop_list->sdt_not_rdy_retries; 4649 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4650 "sd_set_vers1_properties: not ready retry count" 4651 " set to %d\n", un->un_notready_retry_count); 4652 } 4653 } 4654 4655 /* The controller type is reported for generic disk driver ioctls */ 4656 if (flags & SD_CONF_BSET_CTYPE) { 4657 ASSERT(prop_list != NULL); 4658 switch (prop_list->sdt_ctype) { 4659 case CTYPE_CDROM: 4660 un->un_ctype = prop_list->sdt_ctype; 4661 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4662 "sd_set_vers1_properties: ctype set to " 4663 "CTYPE_CDROM\n"); 4664 break; 4665 case CTYPE_CCS: 4666 un->un_ctype = prop_list->sdt_ctype; 4667 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4668 "sd_set_vers1_properties: ctype set to " 4669 "CTYPE_CCS\n"); 4670 break; 4671 case CTYPE_ROD: /* RW optical */ 4672 un->un_ctype = prop_list->sdt_ctype; 4673 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4674 "sd_set_vers1_properties: ctype set to " 4675 "CTYPE_ROD\n"); 4676 break; 4677 default: 4678 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4679 "sd_set_vers1_properties: Could not set " 4680 "invalid ctype value (%d)", 4681 prop_list->sdt_ctype); 4682 } 4683 } 4684 4685 /* Purple failover timeout */ 4686 if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) { 4687 ASSERT(prop_list != NULL); 4688 un->un_busy_retry_count = 4689 prop_list->sdt_busy_retries; 4690 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4691 "sd_set_vers1_properties: " 4692 "busy retry count set to %d\n", 4693 un->un_busy_retry_count); 4694 } 4695 4696 /* Purple reset retry count */ 4697 if (flags & SD_CONF_BSET_RST_RETRIES) { 4698 ASSERT(prop_list != NULL); 4699 un->un_reset_retry_count = 4700 prop_list->sdt_reset_retries; 4701 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4702 "sd_set_vers1_properties: " 4703 "reset retry count set to %d\n", 4704 un->un_reset_retry_count); 4705 } 4706 4707 /* Purple reservation release timeout */ 4708 if (flags & SD_CONF_BSET_RSV_REL_TIME) { 4709 ASSERT(prop_list != NULL); 4710 un->un_reserve_release_time = 4711 prop_list->sdt_reserv_rel_time; 4712 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4713 "sd_set_vers1_properties: " 4714 "reservation release timeout set to %d\n", 4715 un->un_reserve_release_time); 4716 } 4717 4718 /* 4719 * Driver flag telling the driver to verify that no commands are pending 4720 * for a device before issuing a Test Unit Ready. This is a workaround 4721 * for a firmware bug in some Seagate eliteI drives. 4722 */ 4723 if (flags & SD_CONF_BSET_TUR_CHECK) { 4724 un->un_f_cfg_tur_check = TRUE; 4725 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4726 "sd_set_vers1_properties: tur queue check set\n"); 4727 } 4728 4729 if (flags & SD_CONF_BSET_MIN_THROTTLE) { 4730 un->un_min_throttle = prop_list->sdt_min_throttle; 4731 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4732 "sd_set_vers1_properties: min throttle set to %d\n", 4733 un->un_min_throttle); 4734 } 4735 4736 if (flags & SD_CONF_BSET_DISKSORT_DISABLED) { 4737 un->un_f_disksort_disabled = 4738 (prop_list->sdt_disk_sort_dis != 0) ? 4739 TRUE : FALSE; 4740 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4741 "sd_set_vers1_properties: disksort disabled " 4742 "flag set to %d\n", 4743 prop_list->sdt_disk_sort_dis); 4744 } 4745 4746 if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) { 4747 un->un_f_lun_reset_enabled = 4748 (prop_list->sdt_lun_reset_enable != 0) ? 4749 TRUE : FALSE; 4750 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4751 "sd_set_vers1_properties: lun reset enabled " 4752 "flag set to %d\n", 4753 prop_list->sdt_lun_reset_enable); 4754 } 4755 4756 if (flags & SD_CONF_BSET_CACHE_IS_NV) { 4757 un->un_f_suppress_cache_flush = 4758 (prop_list->sdt_suppress_cache_flush != 0) ? 4759 TRUE : FALSE; 4760 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4761 "sd_set_vers1_properties: suppress_cache_flush " 4762 "flag set to %d\n", 4763 prop_list->sdt_suppress_cache_flush); 4764 } 4765 4766 if (flags & SD_CONF_BSET_PC_DISABLED) { 4767 un->un_f_power_condition_disabled = 4768 (prop_list->sdt_power_condition_dis != 0) ? 4769 TRUE : FALSE; 4770 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4771 "sd_set_vers1_properties: power_condition_disabled " 4772 "flag set to %d\n", 4773 prop_list->sdt_power_condition_dis); 4774 } 4775 4776 /* 4777 * Validate the throttle values. 4778 * If any of the numbers are invalid, set everything to defaults. 4779 */ 4780 if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) || 4781 (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) || 4782 (un->un_min_throttle > un->un_throttle)) { 4783 un->un_saved_throttle = un->un_throttle = sd_max_throttle; 4784 un->un_min_throttle = sd_min_throttle; 4785 } 4786 } 4787 4788 /* 4789 * Function: sd_is_lsi() 4790 * 4791 * Description: Check for lsi devices, step through the static device 4792 * table to match vid/pid. 4793 * 4794 * Args: un - ptr to sd_lun 4795 * 4796 * Notes: When creating new LSI property, need to add the new LSI property 4797 * to this function. 4798 */ 4799 static void 4800 sd_is_lsi(struct sd_lun *un) 4801 { 4802 char *id = NULL; 4803 int table_index; 4804 int idlen; 4805 void *prop; 4806 4807 ASSERT(un != NULL); 4808 for (table_index = 0; table_index < sd_disk_table_size; 4809 table_index++) { 4810 id = sd_disk_table[table_index].device_id; 4811 idlen = strlen(id); 4812 if (idlen == 0) { 4813 continue; 4814 } 4815 4816 if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) { 4817 prop = sd_disk_table[table_index].properties; 4818 if (prop == &lsi_properties || 4819 prop == &lsi_oem_properties || 4820 prop == &lsi_properties_scsi || 4821 prop == &symbios_properties) { 4822 un->un_f_cfg_is_lsi = TRUE; 4823 } 4824 break; 4825 } 4826 } 4827 } 4828 4829 /* 4830 * Function: sd_get_physical_geometry 4831 * 4832 * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and 4833 * MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the 4834 * target, and use this information to initialize the physical 4835 * geometry cache specified by pgeom_p. 4836 * 4837 * MODE SENSE is an optional command, so failure in this case 4838 * does not necessarily denote an error. We want to use the 4839 * MODE SENSE commands to derive the physical geometry of the 4840 * device, but if either command fails, the logical geometry is 4841 * used as the fallback for disk label geometry in cmlb. 4842 * 4843 * This requires that un->un_blockcount and un->un_tgt_blocksize 4844 * have already been initialized for the current target and 4845 * that the current values be passed as args so that we don't 4846 * end up ever trying to use -1 as a valid value. This could 4847 * happen if either value is reset while we're not holding 4848 * the mutex. 4849 * 4850 * Arguments: un - driver soft state (unit) structure 4851 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 4852 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 4853 * to use the USCSI "direct" chain and bypass the normal 4854 * command waitq. 4855 * 4856 * Context: Kernel thread only (can sleep). 4857 */ 4858 4859 static int 4860 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p, 4861 diskaddr_t capacity, int lbasize, int path_flag) 4862 { 4863 struct mode_format *page3p; 4864 struct mode_geometry *page4p; 4865 struct mode_header *headerp; 4866 int sector_size; 4867 int nsect; 4868 int nhead; 4869 int ncyl; 4870 int intrlv; 4871 int spc; 4872 diskaddr_t modesense_capacity; 4873 int rpm; 4874 int bd_len; 4875 int mode_header_length; 4876 uchar_t *p3bufp; 4877 uchar_t *p4bufp; 4878 int cdbsize; 4879 int ret = EIO; 4880 sd_ssc_t *ssc; 4881 int status; 4882 4883 ASSERT(un != NULL); 4884 4885 if (lbasize == 0) { 4886 if (ISCD(un)) { 4887 lbasize = 2048; 4888 } else { 4889 lbasize = un->un_sys_blocksize; 4890 } 4891 } 4892 pgeom_p->g_secsize = (unsigned short)lbasize; 4893 4894 /* 4895 * If the unit is a cd/dvd drive MODE SENSE page three 4896 * and MODE SENSE page four are reserved (see SBC spec 4897 * and MMC spec). To prevent soft errors just return 4898 * using the default LBA size. 4899 */ 4900 if (ISCD(un)) 4901 return (ret); 4902 4903 cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0; 4904 4905 /* 4906 * Retrieve MODE SENSE page 3 - Format Device Page 4907 */ 4908 p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP); 4909 ssc = sd_ssc_init(un); 4910 status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p3bufp, 4911 SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag); 4912 if (status != 0) { 4913 SD_ERROR(SD_LOG_COMMON, un, 4914 "sd_get_physical_geometry: mode sense page 3 failed\n"); 4915 goto page3_exit; 4916 } 4917 4918 /* 4919 * Determine size of Block Descriptors in order to locate the mode 4920 * page data. ATAPI devices return 0, SCSI devices should return 4921 * MODE_BLK_DESC_LENGTH. 4922 */ 4923 headerp = (struct mode_header *)p3bufp; 4924 if (un->un_f_cfg_is_atapi == TRUE) { 4925 struct mode_header_grp2 *mhp = 4926 (struct mode_header_grp2 *)headerp; 4927 mode_header_length = MODE_HEADER_LENGTH_GRP2; 4928 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 4929 } else { 4930 mode_header_length = MODE_HEADER_LENGTH; 4931 bd_len = ((struct mode_header *)headerp)->bdesc_length; 4932 } 4933 4934 if (bd_len > MODE_BLK_DESC_LENGTH) { 4935 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 4936 "sd_get_physical_geometry: received unexpected bd_len " 4937 "of %d, page3\n", bd_len); 4938 status = EIO; 4939 goto page3_exit; 4940 } 4941 4942 page3p = (struct mode_format *) 4943 ((caddr_t)headerp + mode_header_length + bd_len); 4944 4945 if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) { 4946 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 4947 "sd_get_physical_geometry: mode sense pg3 code mismatch " 4948 "%d\n", page3p->mode_page.code); 4949 status = EIO; 4950 goto page3_exit; 4951 } 4952 4953 /* 4954 * Use this physical geometry data only if BOTH MODE SENSE commands 4955 * complete successfully; otherwise, revert to the logical geometry. 4956 * So, we need to save everything in temporary variables. 4957 */ 4958 sector_size = BE_16(page3p->data_bytes_sect); 4959 4960 /* 4961 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size 4962 */ 4963 if (sector_size == 0) { 4964 sector_size = un->un_sys_blocksize; 4965 } else { 4966 sector_size &= ~(un->un_sys_blocksize - 1); 4967 } 4968 4969 nsect = BE_16(page3p->sect_track); 4970 intrlv = BE_16(page3p->interleave); 4971 4972 SD_INFO(SD_LOG_COMMON, un, 4973 "sd_get_physical_geometry: Format Parameters (page 3)\n"); 4974 SD_INFO(SD_LOG_COMMON, un, 4975 " mode page: %d; nsect: %d; sector size: %d;\n", 4976 page3p->mode_page.code, nsect, sector_size); 4977 SD_INFO(SD_LOG_COMMON, un, 4978 " interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv, 4979 BE_16(page3p->track_skew), 4980 BE_16(page3p->cylinder_skew)); 4981 4982 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 4983 4984 /* 4985 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page 4986 */ 4987 p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP); 4988 status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p4bufp, 4989 SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag); 4990 if (status != 0) { 4991 SD_ERROR(SD_LOG_COMMON, un, 4992 "sd_get_physical_geometry: mode sense page 4 failed\n"); 4993 goto page4_exit; 4994 } 4995 4996 /* 4997 * Determine size of Block Descriptors in order to locate the mode 4998 * page data. ATAPI devices return 0, SCSI devices should return 4999 * MODE_BLK_DESC_LENGTH. 5000 */ 5001 headerp = (struct mode_header *)p4bufp; 5002 if (un->un_f_cfg_is_atapi == TRUE) { 5003 struct mode_header_grp2 *mhp = 5004 (struct mode_header_grp2 *)headerp; 5005 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 5006 } else { 5007 bd_len = ((struct mode_header *)headerp)->bdesc_length; 5008 } 5009 5010 if (bd_len > MODE_BLK_DESC_LENGTH) { 5011 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 5012 "sd_get_physical_geometry: received unexpected bd_len of " 5013 "%d, page4\n", bd_len); 5014 status = EIO; 5015 goto page4_exit; 5016 } 5017 5018 page4p = (struct mode_geometry *) 5019 ((caddr_t)headerp + mode_header_length + bd_len); 5020 5021 if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) { 5022 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 5023 "sd_get_physical_geometry: mode sense pg4 code mismatch " 5024 "%d\n", page4p->mode_page.code); 5025 status = EIO; 5026 goto page4_exit; 5027 } 5028 5029 /* 5030 * Stash the data now, after we know that both commands completed. 5031 */ 5032 5033 5034 nhead = (int)page4p->heads; /* uchar, so no conversion needed */ 5035 spc = nhead * nsect; 5036 ncyl = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb; 5037 rpm = BE_16(page4p->rpm); 5038 5039 modesense_capacity = spc * ncyl; 5040 5041 SD_INFO(SD_LOG_COMMON, un, 5042 "sd_get_physical_geometry: Geometry Parameters (page 4)\n"); 5043 SD_INFO(SD_LOG_COMMON, un, 5044 " cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm); 5045 SD_INFO(SD_LOG_COMMON, un, 5046 " computed capacity(h*s*c): %d;\n", modesense_capacity); 5047 SD_INFO(SD_LOG_COMMON, un, " pgeom_p: %p; read cap: %d\n", 5048 (void *)pgeom_p, capacity); 5049 5050 /* 5051 * Compensate if the drive's geometry is not rectangular, i.e., 5052 * the product of C * H * S returned by MODE SENSE >= that returned 5053 * by read capacity. This is an idiosyncrasy of the original x86 5054 * disk subsystem. 5055 */ 5056 if (modesense_capacity >= capacity) { 5057 SD_INFO(SD_LOG_COMMON, un, 5058 "sd_get_physical_geometry: adjusting acyl; " 5059 "old: %d; new: %d\n", pgeom_p->g_acyl, 5060 (modesense_capacity - capacity + spc - 1) / spc); 5061 if (sector_size != 0) { 5062 /* 1243403: NEC D38x7 drives don't support sec size */ 5063 pgeom_p->g_secsize = (unsigned short)sector_size; 5064 } 5065 pgeom_p->g_nsect = (unsigned short)nsect; 5066 pgeom_p->g_nhead = (unsigned short)nhead; 5067 pgeom_p->g_capacity = capacity; 5068 pgeom_p->g_acyl = 5069 (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc; 5070 pgeom_p->g_ncyl = ncyl - pgeom_p->g_acyl; 5071 } 5072 5073 pgeom_p->g_rpm = (unsigned short)rpm; 5074 pgeom_p->g_intrlv = (unsigned short)intrlv; 5075 ret = 0; 5076 5077 SD_INFO(SD_LOG_COMMON, un, 5078 "sd_get_physical_geometry: mode sense geometry:\n"); 5079 SD_INFO(SD_LOG_COMMON, un, 5080 " nsect: %d; sector size: %d; interlv: %d\n", 5081 nsect, sector_size, intrlv); 5082 SD_INFO(SD_LOG_COMMON, un, 5083 " nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n", 5084 nhead, ncyl, rpm, modesense_capacity); 5085 SD_INFO(SD_LOG_COMMON, un, 5086 "sd_get_physical_geometry: (cached)\n"); 5087 SD_INFO(SD_LOG_COMMON, un, 5088 " ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n", 5089 pgeom_p->g_ncyl, pgeom_p->g_acyl, 5090 pgeom_p->g_nhead, pgeom_p->g_nsect); 5091 SD_INFO(SD_LOG_COMMON, un, 5092 " lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n", 5093 pgeom_p->g_secsize, pgeom_p->g_capacity, 5094 pgeom_p->g_intrlv, pgeom_p->g_rpm); 5095 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 5096 5097 page4_exit: 5098 kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH); 5099 5100 page3_exit: 5101 kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH); 5102 5103 if (status != 0) { 5104 if (status == EIO) { 5105 /* 5106 * Some disks do not support mode sense(6), we 5107 * should ignore this kind of error(sense key is 5108 * 0x5 - illegal request). 5109 */ 5110 uint8_t *sensep; 5111 int senlen; 5112 5113 sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf; 5114 senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen - 5115 ssc->ssc_uscsi_cmd->uscsi_rqresid); 5116 5117 if (senlen > 0 && 5118 scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) { 5119 sd_ssc_assessment(ssc, 5120 SD_FMT_IGNORE_COMPROMISE); 5121 } else { 5122 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 5123 } 5124 } else { 5125 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5126 } 5127 } 5128 sd_ssc_fini(ssc); 5129 return (ret); 5130 } 5131 5132 /* 5133 * Function: sd_get_virtual_geometry 5134 * 5135 * Description: Ask the controller to tell us about the target device. 5136 * 5137 * Arguments: un - pointer to softstate 5138 * capacity - disk capacity in #blocks 5139 * lbasize - disk block size in bytes 5140 * 5141 * Context: Kernel thread only 5142 */ 5143 5144 static int 5145 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p, 5146 diskaddr_t capacity, int lbasize) 5147 { 5148 uint_t geombuf; 5149 int spc; 5150 5151 ASSERT(un != NULL); 5152 5153 /* Set sector size, and total number of sectors */ 5154 (void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size", lbasize, 1); 5155 (void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1); 5156 5157 /* Let the HBA tell us its geometry */ 5158 geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1); 5159 5160 /* A value of -1 indicates an undefined "geometry" property */ 5161 if (geombuf == (-1)) { 5162 return (EINVAL); 5163 } 5164 5165 /* Initialize the logical geometry cache. */ 5166 lgeom_p->g_nhead = (geombuf >> 16) & 0xffff; 5167 lgeom_p->g_nsect = geombuf & 0xffff; 5168 lgeom_p->g_secsize = un->un_sys_blocksize; 5169 5170 spc = lgeom_p->g_nhead * lgeom_p->g_nsect; 5171 5172 /* 5173 * Note: The driver originally converted the capacity value from 5174 * target blocks to system blocks. However, the capacity value passed 5175 * to this routine is already in terms of system blocks (this scaling 5176 * is done when the READ CAPACITY command is issued and processed). 5177 * This 'error' may have gone undetected because the usage of g_ncyl 5178 * (which is based upon g_capacity) is very limited within the driver 5179 */ 5180 lgeom_p->g_capacity = capacity; 5181 5182 /* 5183 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The 5184 * hba may return zero values if the device has been removed. 5185 */ 5186 if (spc == 0) { 5187 lgeom_p->g_ncyl = 0; 5188 } else { 5189 lgeom_p->g_ncyl = lgeom_p->g_capacity / spc; 5190 } 5191 lgeom_p->g_acyl = 0; 5192 5193 SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n"); 5194 return (0); 5195 5196 } 5197 /* 5198 * Function: sd_update_block_info 5199 * 5200 * Description: Calculate a byte count to sector count bitshift value 5201 * from sector size. 5202 * 5203 * Arguments: un: unit struct. 5204 * lbasize: new target sector size 5205 * capacity: new target capacity, ie. block count 5206 * 5207 * Context: Kernel thread context 5208 */ 5209 5210 static void 5211 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity) 5212 { 5213 if (lbasize != 0) { 5214 un->un_tgt_blocksize = lbasize; 5215 un->un_f_tgt_blocksize_is_valid = TRUE; 5216 if (!un->un_f_has_removable_media) { 5217 un->un_sys_blocksize = lbasize; 5218 } 5219 } 5220 5221 if (capacity != 0) { 5222 un->un_blockcount = capacity; 5223 un->un_f_blockcount_is_valid = TRUE; 5224 } 5225 } 5226 5227 5228 /* 5229 * Function: sd_register_devid 5230 * 5231 * Description: This routine will obtain the device id information from the 5232 * target, obtain the serial number, and register the device 5233 * id with the ddi framework. 5234 * 5235 * Arguments: devi - the system's dev_info_t for the device. 5236 * un - driver soft state (unit) structure 5237 * reservation_flag - indicates if a reservation conflict 5238 * occurred during attach 5239 * 5240 * Context: Kernel Thread 5241 */ 5242 static void 5243 sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi, int reservation_flag) 5244 { 5245 int rval = 0; 5246 uchar_t *inq80 = NULL; 5247 size_t inq80_len = MAX_INQUIRY_SIZE; 5248 size_t inq80_resid = 0; 5249 uchar_t *inq83 = NULL; 5250 size_t inq83_len = MAX_INQUIRY_SIZE; 5251 size_t inq83_resid = 0; 5252 int dlen, len; 5253 char *sn; 5254 struct sd_lun *un; 5255 5256 ASSERT(ssc != NULL); 5257 un = ssc->ssc_un; 5258 ASSERT(un != NULL); 5259 ASSERT(mutex_owned(SD_MUTEX(un))); 5260 ASSERT((SD_DEVINFO(un)) == devi); 5261 5262 5263 /* 5264 * We check the availability of the World Wide Name (0x83) and Unit 5265 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using 5266 * un_vpd_page_mask from them, we decide which way to get the WWN. If 5267 * 0x83 is available, that is the best choice. Our next choice is 5268 * 0x80. If neither are available, we munge the devid from the device 5269 * vid/pid/serial # for Sun qualified disks, or use the ddi framework 5270 * to fabricate a devid for non-Sun qualified disks. 5271 */ 5272 if (sd_check_vpd_page_support(ssc) == 0) { 5273 /* collect page 80 data if available */ 5274 if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) { 5275 5276 mutex_exit(SD_MUTEX(un)); 5277 inq80 = kmem_zalloc(inq80_len, KM_SLEEP); 5278 5279 rval = sd_send_scsi_INQUIRY(ssc, inq80, inq80_len, 5280 0x01, 0x80, &inq80_resid); 5281 5282 if (rval != 0) { 5283 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5284 kmem_free(inq80, inq80_len); 5285 inq80 = NULL; 5286 inq80_len = 0; 5287 } else if (ddi_prop_exists( 5288 DDI_DEV_T_NONE, SD_DEVINFO(un), 5289 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 5290 INQUIRY_SERIAL_NO) == 0) { 5291 /* 5292 * If we don't already have a serial number 5293 * property, do quick verify of data returned 5294 * and define property. 5295 */ 5296 dlen = inq80_len - inq80_resid; 5297 len = (size_t)inq80[3]; 5298 if ((dlen >= 4) && ((len + 4) <= dlen)) { 5299 /* 5300 * Ensure sn termination, skip leading 5301 * blanks, and create property 5302 * 'inquiry-serial-no'. 5303 */ 5304 sn = (char *)&inq80[4]; 5305 sn[len] = 0; 5306 while (*sn && (*sn == ' ')) 5307 sn++; 5308 if (*sn) { 5309 (void) ddi_prop_update_string( 5310 DDI_DEV_T_NONE, 5311 SD_DEVINFO(un), 5312 INQUIRY_SERIAL_NO, sn); 5313 } 5314 } 5315 } 5316 mutex_enter(SD_MUTEX(un)); 5317 } 5318 5319 /* collect page 83 data if available */ 5320 if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) { 5321 mutex_exit(SD_MUTEX(un)); 5322 inq83 = kmem_zalloc(inq83_len, KM_SLEEP); 5323 5324 rval = sd_send_scsi_INQUIRY(ssc, inq83, inq83_len, 5325 0x01, 0x83, &inq83_resid); 5326 5327 if (rval != 0) { 5328 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5329 kmem_free(inq83, inq83_len); 5330 inq83 = NULL; 5331 inq83_len = 0; 5332 } 5333 mutex_enter(SD_MUTEX(un)); 5334 } 5335 } 5336 5337 /* 5338 * If transport has already registered a devid for this target 5339 * then that takes precedence over the driver's determination 5340 * of the devid. 5341 * 5342 * NOTE: The reason this check is done here instead of at the beginning 5343 * of the function is to allow the code above to create the 5344 * 'inquiry-serial-no' property. 5345 */ 5346 if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) { 5347 ASSERT(un->un_devid); 5348 un->un_f_devid_transport_defined = TRUE; 5349 goto cleanup; /* use devid registered by the transport */ 5350 } 5351 5352 /* 5353 * This is the case of antiquated Sun disk drives that have the 5354 * FAB_DEVID property set in the disk_table. These drives 5355 * manage the devid's by storing them in last 2 available sectors 5356 * on the drive and have them fabricated by the ddi layer by calling 5357 * ddi_devid_init and passing the DEVID_FAB flag. 5358 */ 5359 if (un->un_f_opt_fab_devid == TRUE) { 5360 /* 5361 * Depending on EINVAL isn't reliable, since a reserved disk 5362 * may result in invalid geometry, so check to make sure a 5363 * reservation conflict did not occur during attach. 5364 */ 5365 if ((sd_get_devid(ssc) == EINVAL) && 5366 (reservation_flag != SD_TARGET_IS_RESERVED)) { 5367 /* 5368 * The devid is invalid AND there is no reservation 5369 * conflict. Fabricate a new devid. 5370 */ 5371 (void) sd_create_devid(ssc); 5372 } 5373 5374 /* Register the devid if it exists */ 5375 if (un->un_devid != NULL) { 5376 (void) ddi_devid_register(SD_DEVINFO(un), 5377 un->un_devid); 5378 SD_INFO(SD_LOG_ATTACH_DETACH, un, 5379 "sd_register_devid: Devid Fabricated\n"); 5380 } 5381 goto cleanup; 5382 } 5383 5384 /* encode best devid possible based on data available */ 5385 if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST, 5386 (char *)ddi_driver_name(SD_DEVINFO(un)), 5387 (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)), 5388 inq80, inq80_len - inq80_resid, inq83, inq83_len - 5389 inq83_resid, &un->un_devid) == DDI_SUCCESS) { 5390 5391 /* devid successfully encoded, register devid */ 5392 (void) ddi_devid_register(SD_DEVINFO(un), un->un_devid); 5393 5394 } else { 5395 /* 5396 * Unable to encode a devid based on data available. 5397 * This is not a Sun qualified disk. Older Sun disk 5398 * drives that have the SD_FAB_DEVID property 5399 * set in the disk_table and non Sun qualified 5400 * disks are treated in the same manner. These 5401 * drives manage the devid's by storing them in 5402 * last 2 available sectors on the drive and 5403 * have them fabricated by the ddi layer by 5404 * calling ddi_devid_init and passing the 5405 * DEVID_FAB flag. 5406 * Create a fabricate devid only if there's no 5407 * fabricate devid existed. 5408 */ 5409 if (sd_get_devid(ssc) == EINVAL) { 5410 (void) sd_create_devid(ssc); 5411 } 5412 un->un_f_opt_fab_devid = TRUE; 5413 5414 /* Register the devid if it exists */ 5415 if (un->un_devid != NULL) { 5416 (void) ddi_devid_register(SD_DEVINFO(un), 5417 un->un_devid); 5418 SD_INFO(SD_LOG_ATTACH_DETACH, un, 5419 "sd_register_devid: devid fabricated using " 5420 "ddi framework\n"); 5421 } 5422 } 5423 5424 cleanup: 5425 /* clean up resources */ 5426 if (inq80 != NULL) { 5427 kmem_free(inq80, inq80_len); 5428 } 5429 if (inq83 != NULL) { 5430 kmem_free(inq83, inq83_len); 5431 } 5432 } 5433 5434 5435 5436 /* 5437 * Function: sd_get_devid 5438 * 5439 * Description: This routine will return 0 if a valid device id has been 5440 * obtained from the target and stored in the soft state. If a 5441 * valid device id has not been previously read and stored, a 5442 * read attempt will be made. 5443 * 5444 * Arguments: un - driver soft state (unit) structure 5445 * 5446 * Return Code: 0 if we successfully get the device id 5447 * 5448 * Context: Kernel Thread 5449 */ 5450 5451 static int 5452 sd_get_devid(sd_ssc_t *ssc) 5453 { 5454 struct dk_devid *dkdevid; 5455 ddi_devid_t tmpid; 5456 uint_t *ip; 5457 size_t sz; 5458 diskaddr_t blk; 5459 int status; 5460 int chksum; 5461 int i; 5462 size_t buffer_size; 5463 struct sd_lun *un; 5464 5465 ASSERT(ssc != NULL); 5466 un = ssc->ssc_un; 5467 ASSERT(un != NULL); 5468 ASSERT(mutex_owned(SD_MUTEX(un))); 5469 5470 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n", 5471 un); 5472 5473 if (un->un_devid != NULL) { 5474 return (0); 5475 } 5476 5477 mutex_exit(SD_MUTEX(un)); 5478 if (cmlb_get_devid_block(un->un_cmlbhandle, &blk, 5479 (void *)SD_PATH_DIRECT) != 0) { 5480 mutex_enter(SD_MUTEX(un)); 5481 return (EINVAL); 5482 } 5483 5484 /* 5485 * Read and verify device id, stored in the reserved cylinders at the 5486 * end of the disk. Backup label is on the odd sectors of the last 5487 * track of the last cylinder. Device id will be on track of the next 5488 * to last cylinder. 5489 */ 5490 mutex_enter(SD_MUTEX(un)); 5491 buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid)); 5492 mutex_exit(SD_MUTEX(un)); 5493 dkdevid = kmem_alloc(buffer_size, KM_SLEEP); 5494 status = sd_send_scsi_READ(ssc, dkdevid, buffer_size, blk, 5495 SD_PATH_DIRECT); 5496 5497 if (status != 0) { 5498 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5499 goto error; 5500 } 5501 5502 /* Validate the revision */ 5503 if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) || 5504 (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) { 5505 status = EINVAL; 5506 goto error; 5507 } 5508 5509 /* Calculate the checksum */ 5510 chksum = 0; 5511 ip = (uint_t *)dkdevid; 5512 for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); 5513 i++) { 5514 chksum ^= ip[i]; 5515 } 5516 5517 /* Compare the checksums */ 5518 if (DKD_GETCHKSUM(dkdevid) != chksum) { 5519 status = EINVAL; 5520 goto error; 5521 } 5522 5523 /* Validate the device id */ 5524 if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) { 5525 status = EINVAL; 5526 goto error; 5527 } 5528 5529 /* 5530 * Store the device id in the driver soft state 5531 */ 5532 sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid); 5533 tmpid = kmem_alloc(sz, KM_SLEEP); 5534 5535 mutex_enter(SD_MUTEX(un)); 5536 5537 un->un_devid = tmpid; 5538 bcopy(&dkdevid->dkd_devid, un->un_devid, sz); 5539 5540 kmem_free(dkdevid, buffer_size); 5541 5542 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un); 5543 5544 return (status); 5545 error: 5546 mutex_enter(SD_MUTEX(un)); 5547 kmem_free(dkdevid, buffer_size); 5548 return (status); 5549 } 5550 5551 5552 /* 5553 * Function: sd_create_devid 5554 * 5555 * Description: This routine will fabricate the device id and write it 5556 * to the disk. 5557 * 5558 * Arguments: un - driver soft state (unit) structure 5559 * 5560 * Return Code: value of the fabricated device id 5561 * 5562 * Context: Kernel Thread 5563 */ 5564 5565 static ddi_devid_t 5566 sd_create_devid(sd_ssc_t *ssc) 5567 { 5568 struct sd_lun *un; 5569 5570 ASSERT(ssc != NULL); 5571 un = ssc->ssc_un; 5572 ASSERT(un != NULL); 5573 5574 /* Fabricate the devid */ 5575 if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid) 5576 == DDI_FAILURE) { 5577 return (NULL); 5578 } 5579 5580 /* Write the devid to disk */ 5581 if (sd_write_deviceid(ssc) != 0) { 5582 ddi_devid_free(un->un_devid); 5583 un->un_devid = NULL; 5584 } 5585 5586 return (un->un_devid); 5587 } 5588 5589 5590 /* 5591 * Function: sd_write_deviceid 5592 * 5593 * Description: This routine will write the device id to the disk 5594 * reserved sector. 5595 * 5596 * Arguments: un - driver soft state (unit) structure 5597 * 5598 * Return Code: EINVAL 5599 * value returned by sd_send_scsi_cmd 5600 * 5601 * Context: Kernel Thread 5602 */ 5603 5604 static int 5605 sd_write_deviceid(sd_ssc_t *ssc) 5606 { 5607 struct dk_devid *dkdevid; 5608 uchar_t *buf; 5609 diskaddr_t blk; 5610 uint_t *ip, chksum; 5611 int status; 5612 int i; 5613 struct sd_lun *un; 5614 5615 ASSERT(ssc != NULL); 5616 un = ssc->ssc_un; 5617 ASSERT(un != NULL); 5618 ASSERT(mutex_owned(SD_MUTEX(un))); 5619 5620 mutex_exit(SD_MUTEX(un)); 5621 if (cmlb_get_devid_block(un->un_cmlbhandle, &blk, 5622 (void *)SD_PATH_DIRECT) != 0) { 5623 mutex_enter(SD_MUTEX(un)); 5624 return (-1); 5625 } 5626 5627 5628 /* Allocate the buffer */ 5629 buf = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP); 5630 dkdevid = (struct dk_devid *)buf; 5631 5632 /* Fill in the revision */ 5633 dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB; 5634 dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB; 5635 5636 /* Copy in the device id */ 5637 mutex_enter(SD_MUTEX(un)); 5638 bcopy(un->un_devid, &dkdevid->dkd_devid, 5639 ddi_devid_sizeof(un->un_devid)); 5640 mutex_exit(SD_MUTEX(un)); 5641 5642 /* Calculate the checksum */ 5643 chksum = 0; 5644 ip = (uint_t *)dkdevid; 5645 for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); 5646 i++) { 5647 chksum ^= ip[i]; 5648 } 5649 5650 /* Fill-in checksum */ 5651 DKD_FORMCHKSUM(chksum, dkdevid); 5652 5653 /* Write the reserved sector */ 5654 status = sd_send_scsi_WRITE(ssc, buf, un->un_sys_blocksize, blk, 5655 SD_PATH_DIRECT); 5656 if (status != 0) 5657 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5658 5659 kmem_free(buf, un->un_sys_blocksize); 5660 5661 mutex_enter(SD_MUTEX(un)); 5662 return (status); 5663 } 5664 5665 5666 /* 5667 * Function: sd_check_vpd_page_support 5668 * 5669 * Description: This routine sends an inquiry command with the EVPD bit set and 5670 * a page code of 0x00 to the device. It is used to determine which 5671 * vital product pages are available to find the devid. We are 5672 * looking for pages 0x83 0x80 or 0xB1. If we return a negative 1, 5673 * the device does not support that command. 5674 * 5675 * Arguments: un - driver soft state (unit) structure 5676 * 5677 * Return Code: 0 - success 5678 * 1 - check condition 5679 * 5680 * Context: This routine can sleep. 5681 */ 5682 5683 static int 5684 sd_check_vpd_page_support(sd_ssc_t *ssc) 5685 { 5686 uchar_t *page_list = NULL; 5687 uchar_t page_length = 0xff; /* Use max possible length */ 5688 uchar_t evpd = 0x01; /* Set the EVPD bit */ 5689 uchar_t page_code = 0x00; /* Supported VPD Pages */ 5690 int rval = 0; 5691 int counter; 5692 struct sd_lun *un; 5693 5694 ASSERT(ssc != NULL); 5695 un = ssc->ssc_un; 5696 ASSERT(un != NULL); 5697 ASSERT(mutex_owned(SD_MUTEX(un))); 5698 5699 mutex_exit(SD_MUTEX(un)); 5700 5701 /* 5702 * We'll set the page length to the maximum to save figuring it out 5703 * with an additional call. 5704 */ 5705 page_list = kmem_zalloc(page_length, KM_SLEEP); 5706 5707 rval = sd_send_scsi_INQUIRY(ssc, page_list, page_length, evpd, 5708 page_code, NULL); 5709 5710 if (rval != 0) 5711 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5712 5713 mutex_enter(SD_MUTEX(un)); 5714 5715 /* 5716 * Now we must validate that the device accepted the command, as some 5717 * drives do not support it. If the drive does support it, we will 5718 * return 0, and the supported pages will be in un_vpd_page_mask. If 5719 * not, we return -1. 5720 */ 5721 if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) { 5722 /* Loop to find one of the 2 pages we need */ 5723 counter = 4; /* Supported pages start at byte 4, with 0x00 */ 5724 5725 /* 5726 * Pages are returned in ascending order, and 0x83 is what we 5727 * are hoping for. 5728 */ 5729 while ((page_list[counter] <= 0xB1) && 5730 (counter <= (page_list[VPD_PAGE_LENGTH] + 5731 VPD_HEAD_OFFSET))) { 5732 /* 5733 * Add 3 because page_list[3] is the number of 5734 * pages minus 3 5735 */ 5736 5737 switch (page_list[counter]) { 5738 case 0x00: 5739 un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG; 5740 break; 5741 case 0x80: 5742 un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG; 5743 break; 5744 case 0x81: 5745 un->un_vpd_page_mask |= SD_VPD_OPERATING_PG; 5746 break; 5747 case 0x82: 5748 un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG; 5749 break; 5750 case 0x83: 5751 un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG; 5752 break; 5753 case 0x86: 5754 un->un_vpd_page_mask |= SD_VPD_EXTENDED_DATA_PG; 5755 break; 5756 case 0xB1: 5757 un->un_vpd_page_mask |= SD_VPD_DEV_CHARACTER_PG; 5758 break; 5759 } 5760 counter++; 5761 } 5762 5763 } else { 5764 rval = -1; 5765 5766 SD_INFO(SD_LOG_ATTACH_DETACH, un, 5767 "sd_check_vpd_page_support: This drive does not implement " 5768 "VPD pages.\n"); 5769 } 5770 5771 kmem_free(page_list, page_length); 5772 5773 return (rval); 5774 } 5775 5776 5777 /* 5778 * Function: sd_setup_pm 5779 * 5780 * Description: Initialize Power Management on the device 5781 * 5782 * Context: Kernel Thread 5783 */ 5784 5785 static void 5786 sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi) 5787 { 5788 uint_t log_page_size; 5789 uchar_t *log_page_data; 5790 int rval = 0; 5791 struct sd_lun *un; 5792 5793 ASSERT(ssc != NULL); 5794 un = ssc->ssc_un; 5795 ASSERT(un != NULL); 5796 5797 /* 5798 * Since we are called from attach, holding a mutex for 5799 * un is unnecessary. Because some of the routines called 5800 * from here require SD_MUTEX to not be held, assert this 5801 * right up front. 5802 */ 5803 ASSERT(!mutex_owned(SD_MUTEX(un))); 5804 /* 5805 * Since the sd device does not have the 'reg' property, 5806 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries. 5807 * The following code is to tell cpr that this device 5808 * DOES need to be suspended and resumed. 5809 */ 5810 (void) ddi_prop_update_string(DDI_DEV_T_NONE, devi, 5811 "pm-hardware-state", "needs-suspend-resume"); 5812 5813 /* 5814 * This complies with the new power management framework 5815 * for certain desktop machines. Create the pm_components 5816 * property as a string array property. 5817 * If un_f_pm_supported is TRUE, that means the disk 5818 * attached HBA has set the "pm-capable" property and 5819 * the value of this property is bigger than 0. 5820 */ 5821 if (un->un_f_pm_supported) { 5822 /* 5823 * not all devices have a motor, try it first. 5824 * some devices may return ILLEGAL REQUEST, some 5825 * will hang 5826 * The following START_STOP_UNIT is used to check if target 5827 * device has a motor. 5828 */ 5829 un->un_f_start_stop_supported = TRUE; 5830 5831 if (un->un_f_power_condition_supported) { 5832 rval = sd_send_scsi_START_STOP_UNIT(ssc, 5833 SD_POWER_CONDITION, SD_TARGET_ACTIVE, 5834 SD_PATH_DIRECT); 5835 if (rval != 0) { 5836 un->un_f_power_condition_supported = FALSE; 5837 } 5838 } 5839 if (!un->un_f_power_condition_supported) { 5840 rval = sd_send_scsi_START_STOP_UNIT(ssc, 5841 SD_START_STOP, SD_TARGET_START, SD_PATH_DIRECT); 5842 } 5843 if (rval != 0) { 5844 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5845 un->un_f_start_stop_supported = FALSE; 5846 } 5847 5848 /* 5849 * create pm properties anyways otherwise the parent can't 5850 * go to sleep 5851 */ 5852 un->un_f_pm_is_enabled = TRUE; 5853 (void) sd_create_pm_components(devi, un); 5854 5855 /* 5856 * If it claims that log sense is supported, check it out. 5857 */ 5858 if (un->un_f_log_sense_supported) { 5859 rval = sd_log_page_supported(ssc, 5860 START_STOP_CYCLE_PAGE); 5861 if (rval == 1) { 5862 /* Page found, use it. */ 5863 un->un_start_stop_cycle_page = 5864 START_STOP_CYCLE_PAGE; 5865 } else { 5866 /* 5867 * Page not found or log sense is not 5868 * supported. 5869 * Notice we do not check the old style 5870 * START_STOP_CYCLE_VU_PAGE because this 5871 * code path does not apply to old disks. 5872 */ 5873 un->un_f_log_sense_supported = FALSE; 5874 un->un_f_pm_log_sense_smart = FALSE; 5875 } 5876 } 5877 5878 return; 5879 } 5880 5881 /* 5882 * For the disk whose attached HBA has not set the "pm-capable" 5883 * property, check if it supports the power management. 5884 */ 5885 if (!un->un_f_log_sense_supported) { 5886 un->un_power_level = SD_SPINDLE_ON; 5887 un->un_f_pm_is_enabled = FALSE; 5888 return; 5889 } 5890 5891 rval = sd_log_page_supported(ssc, START_STOP_CYCLE_PAGE); 5892 5893 #ifdef SDDEBUG 5894 if (sd_force_pm_supported) { 5895 /* Force a successful result */ 5896 rval = 1; 5897 } 5898 #endif 5899 5900 /* 5901 * If the start-stop cycle counter log page is not supported 5902 * or if the pm-capable property is set to be false (0), 5903 * then we should not create the pm_components property. 5904 */ 5905 if (rval == -1) { 5906 /* 5907 * Error. 5908 * Reading log sense failed, most likely this is 5909 * an older drive that does not support log sense. 5910 * If this fails auto-pm is not supported. 5911 */ 5912 un->un_power_level = SD_SPINDLE_ON; 5913 un->un_f_pm_is_enabled = FALSE; 5914 5915 } else if (rval == 0) { 5916 /* 5917 * Page not found. 5918 * The start stop cycle counter is implemented as page 5919 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For 5920 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE). 5921 */ 5922 if (sd_log_page_supported(ssc, START_STOP_CYCLE_VU_PAGE) == 1) { 5923 /* 5924 * Page found, use this one. 5925 */ 5926 un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE; 5927 un->un_f_pm_is_enabled = TRUE; 5928 } else { 5929 /* 5930 * Error or page not found. 5931 * auto-pm is not supported for this device. 5932 */ 5933 un->un_power_level = SD_SPINDLE_ON; 5934 un->un_f_pm_is_enabled = FALSE; 5935 } 5936 } else { 5937 /* 5938 * Page found, use it. 5939 */ 5940 un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE; 5941 un->un_f_pm_is_enabled = TRUE; 5942 } 5943 5944 5945 if (un->un_f_pm_is_enabled == TRUE) { 5946 log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE; 5947 log_page_data = kmem_zalloc(log_page_size, KM_SLEEP); 5948 5949 rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 5950 log_page_size, un->un_start_stop_cycle_page, 5951 0x01, 0, SD_PATH_DIRECT); 5952 5953 if (rval != 0) { 5954 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5955 } 5956 5957 #ifdef SDDEBUG 5958 if (sd_force_pm_supported) { 5959 /* Force a successful result */ 5960 rval = 0; 5961 } 5962 #endif 5963 5964 /* 5965 * If the Log sense for Page( Start/stop cycle counter page) 5966 * succeeds, then power management is supported and we can 5967 * enable auto-pm. 5968 */ 5969 if (rval == 0) { 5970 (void) sd_create_pm_components(devi, un); 5971 } else { 5972 un->un_power_level = SD_SPINDLE_ON; 5973 un->un_f_pm_is_enabled = FALSE; 5974 } 5975 5976 kmem_free(log_page_data, log_page_size); 5977 } 5978 } 5979 5980 5981 /* 5982 * Function: sd_create_pm_components 5983 * 5984 * Description: Initialize PM property. 5985 * 5986 * Context: Kernel thread context 5987 */ 5988 5989 static void 5990 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un) 5991 { 5992 ASSERT(!mutex_owned(SD_MUTEX(un))); 5993 5994 if (un->un_f_power_condition_supported) { 5995 if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi, 5996 "pm-components", sd_pwr_pc.pm_comp, 5) 5997 != DDI_PROP_SUCCESS) { 5998 un->un_power_level = SD_SPINDLE_ACTIVE; 5999 un->un_f_pm_is_enabled = FALSE; 6000 return; 6001 } 6002 } else { 6003 if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi, 6004 "pm-components", sd_pwr_ss.pm_comp, 3) 6005 != DDI_PROP_SUCCESS) { 6006 un->un_power_level = SD_SPINDLE_ON; 6007 un->un_f_pm_is_enabled = FALSE; 6008 return; 6009 } 6010 } 6011 /* 6012 * When components are initially created they are idle, 6013 * power up any non-removables. 6014 * Note: the return value of pm_raise_power can't be used 6015 * for determining if PM should be enabled for this device. 6016 * Even if you check the return values and remove this 6017 * property created above, the PM framework will not honor the 6018 * change after the first call to pm_raise_power. Hence, 6019 * removal of that property does not help if pm_raise_power 6020 * fails. In the case of removable media, the start/stop 6021 * will fail if the media is not present. 6022 */ 6023 if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0, 6024 SD_PM_STATE_ACTIVE(un)) == DDI_SUCCESS)) { 6025 mutex_enter(SD_MUTEX(un)); 6026 un->un_power_level = SD_PM_STATE_ACTIVE(un); 6027 mutex_enter(&un->un_pm_mutex); 6028 /* Set to on and not busy. */ 6029 un->un_pm_count = 0; 6030 } else { 6031 mutex_enter(SD_MUTEX(un)); 6032 un->un_power_level = SD_PM_STATE_STOPPED(un); 6033 mutex_enter(&un->un_pm_mutex); 6034 /* Set to off. */ 6035 un->un_pm_count = -1; 6036 } 6037 mutex_exit(&un->un_pm_mutex); 6038 mutex_exit(SD_MUTEX(un)); 6039 } 6040 6041 6042 /* 6043 * Function: sd_ddi_suspend 6044 * 6045 * Description: Performs system power-down operations. This includes 6046 * setting the drive state to indicate its suspended so 6047 * that no new commands will be accepted. Also, wait for 6048 * all commands that are in transport or queued to a timer 6049 * for retry to complete. All timeout threads are cancelled. 6050 * 6051 * Return Code: DDI_FAILURE or DDI_SUCCESS 6052 * 6053 * Context: Kernel thread context 6054 */ 6055 6056 static int 6057 sd_ddi_suspend(dev_info_t *devi) 6058 { 6059 struct sd_lun *un; 6060 clock_t wait_cmds_complete; 6061 6062 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 6063 if (un == NULL) { 6064 return (DDI_FAILURE); 6065 } 6066 6067 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n"); 6068 6069 mutex_enter(SD_MUTEX(un)); 6070 6071 /* Return success if the device is already suspended. */ 6072 if (un->un_state == SD_STATE_SUSPENDED) { 6073 mutex_exit(SD_MUTEX(un)); 6074 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 6075 "device already suspended, exiting\n"); 6076 return (DDI_SUCCESS); 6077 } 6078 6079 /* Return failure if the device is being used by HA */ 6080 if (un->un_resvd_status & 6081 (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) { 6082 mutex_exit(SD_MUTEX(un)); 6083 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 6084 "device in use by HA, exiting\n"); 6085 return (DDI_FAILURE); 6086 } 6087 6088 /* 6089 * Return failure if the device is in a resource wait 6090 * or power changing state. 6091 */ 6092 if ((un->un_state == SD_STATE_RWAIT) || 6093 (un->un_state == SD_STATE_PM_CHANGING)) { 6094 mutex_exit(SD_MUTEX(un)); 6095 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 6096 "device in resource wait state, exiting\n"); 6097 return (DDI_FAILURE); 6098 } 6099 6100 6101 un->un_save_state = un->un_last_state; 6102 New_state(un, SD_STATE_SUSPENDED); 6103 6104 /* 6105 * Wait for all commands that are in transport or queued to a timer 6106 * for retry to complete. 6107 * 6108 * While waiting, no new commands will be accepted or sent because of 6109 * the new state we set above. 6110 * 6111 * Wait till current operation has completed. If we are in the resource 6112 * wait state (with an intr outstanding) then we need to wait till the 6113 * intr completes and starts the next cmd. We want to wait for 6114 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND. 6115 */ 6116 wait_cmds_complete = ddi_get_lbolt() + 6117 (sd_wait_cmds_complete * drv_usectohz(1000000)); 6118 6119 while (un->un_ncmds_in_transport != 0) { 6120 /* 6121 * Fail if commands do not finish in the specified time. 6122 */ 6123 if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un), 6124 wait_cmds_complete) == -1) { 6125 /* 6126 * Undo the state changes made above. Everything 6127 * must go back to it's original value. 6128 */ 6129 Restore_state(un); 6130 un->un_last_state = un->un_save_state; 6131 /* Wake up any threads that might be waiting. */ 6132 cv_broadcast(&un->un_suspend_cv); 6133 mutex_exit(SD_MUTEX(un)); 6134 SD_ERROR(SD_LOG_IO_PM, un, 6135 "sd_ddi_suspend: failed due to outstanding cmds\n"); 6136 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n"); 6137 return (DDI_FAILURE); 6138 } 6139 } 6140 6141 /* 6142 * Cancel SCSI watch thread and timeouts, if any are active 6143 */ 6144 6145 if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) { 6146 opaque_t temp_token = un->un_swr_token; 6147 mutex_exit(SD_MUTEX(un)); 6148 scsi_watch_suspend(temp_token); 6149 mutex_enter(SD_MUTEX(un)); 6150 } 6151 6152 if (un->un_reset_throttle_timeid != NULL) { 6153 timeout_id_t temp_id = un->un_reset_throttle_timeid; 6154 un->un_reset_throttle_timeid = NULL; 6155 mutex_exit(SD_MUTEX(un)); 6156 (void) untimeout(temp_id); 6157 mutex_enter(SD_MUTEX(un)); 6158 } 6159 6160 if (un->un_dcvb_timeid != NULL) { 6161 timeout_id_t temp_id = un->un_dcvb_timeid; 6162 un->un_dcvb_timeid = NULL; 6163 mutex_exit(SD_MUTEX(un)); 6164 (void) untimeout(temp_id); 6165 mutex_enter(SD_MUTEX(un)); 6166 } 6167 6168 mutex_enter(&un->un_pm_mutex); 6169 if (un->un_pm_timeid != NULL) { 6170 timeout_id_t temp_id = un->un_pm_timeid; 6171 un->un_pm_timeid = NULL; 6172 mutex_exit(&un->un_pm_mutex); 6173 mutex_exit(SD_MUTEX(un)); 6174 (void) untimeout(temp_id); 6175 mutex_enter(SD_MUTEX(un)); 6176 } else { 6177 mutex_exit(&un->un_pm_mutex); 6178 } 6179 6180 if (un->un_rmw_msg_timeid != NULL) { 6181 timeout_id_t temp_id = un->un_rmw_msg_timeid; 6182 un->un_rmw_msg_timeid = NULL; 6183 mutex_exit(SD_MUTEX(un)); 6184 (void) untimeout(temp_id); 6185 mutex_enter(SD_MUTEX(un)); 6186 } 6187 6188 if (un->un_retry_timeid != NULL) { 6189 timeout_id_t temp_id = un->un_retry_timeid; 6190 un->un_retry_timeid = NULL; 6191 mutex_exit(SD_MUTEX(un)); 6192 (void) untimeout(temp_id); 6193 mutex_enter(SD_MUTEX(un)); 6194 6195 if (un->un_retry_bp != NULL) { 6196 un->un_retry_bp->av_forw = un->un_waitq_headp; 6197 un->un_waitq_headp = un->un_retry_bp; 6198 if (un->un_waitq_tailp == NULL) { 6199 un->un_waitq_tailp = un->un_retry_bp; 6200 } 6201 un->un_retry_bp = NULL; 6202 un->un_retry_statp = NULL; 6203 } 6204 } 6205 6206 if (un->un_direct_priority_timeid != NULL) { 6207 timeout_id_t temp_id = un->un_direct_priority_timeid; 6208 un->un_direct_priority_timeid = NULL; 6209 mutex_exit(SD_MUTEX(un)); 6210 (void) untimeout(temp_id); 6211 mutex_enter(SD_MUTEX(un)); 6212 } 6213 6214 if (un->un_f_is_fibre == TRUE) { 6215 /* 6216 * Remove callbacks for insert and remove events 6217 */ 6218 if (un->un_insert_event != NULL) { 6219 mutex_exit(SD_MUTEX(un)); 6220 (void) ddi_remove_event_handler(un->un_insert_cb_id); 6221 mutex_enter(SD_MUTEX(un)); 6222 un->un_insert_event = NULL; 6223 } 6224 6225 if (un->un_remove_event != NULL) { 6226 mutex_exit(SD_MUTEX(un)); 6227 (void) ddi_remove_event_handler(un->un_remove_cb_id); 6228 mutex_enter(SD_MUTEX(un)); 6229 un->un_remove_event = NULL; 6230 } 6231 } 6232 6233 mutex_exit(SD_MUTEX(un)); 6234 6235 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n"); 6236 6237 return (DDI_SUCCESS); 6238 } 6239 6240 6241 /* 6242 * Function: sd_ddi_resume 6243 * 6244 * Description: Performs system power-up operations.. 6245 * 6246 * Return Code: DDI_SUCCESS 6247 * DDI_FAILURE 6248 * 6249 * Context: Kernel thread context 6250 */ 6251 6252 static int 6253 sd_ddi_resume(dev_info_t *devi) 6254 { 6255 struct sd_lun *un; 6256 6257 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 6258 if (un == NULL) { 6259 return (DDI_FAILURE); 6260 } 6261 6262 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n"); 6263 6264 mutex_enter(SD_MUTEX(un)); 6265 Restore_state(un); 6266 6267 /* 6268 * Restore the state which was saved to give the 6269 * the right state in un_last_state 6270 */ 6271 un->un_last_state = un->un_save_state; 6272 /* 6273 * Note: throttle comes back at full. 6274 * Also note: this MUST be done before calling pm_raise_power 6275 * otherwise the system can get hung in biowait. The scenario where 6276 * this'll happen is under cpr suspend. Writing of the system 6277 * state goes through sddump, which writes 0 to un_throttle. If 6278 * writing the system state then fails, example if the partition is 6279 * too small, then cpr attempts a resume. If throttle isn't restored 6280 * from the saved value until after calling pm_raise_power then 6281 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs 6282 * in biowait. 6283 */ 6284 un->un_throttle = un->un_saved_throttle; 6285 6286 /* 6287 * The chance of failure is very rare as the only command done in power 6288 * entry point is START command when you transition from 0->1 or 6289 * unknown->1. Put it to SPINDLE ON state irrespective of the state at 6290 * which suspend was done. Ignore the return value as the resume should 6291 * not be failed. In the case of removable media the media need not be 6292 * inserted and hence there is a chance that raise power will fail with 6293 * media not present. 6294 */ 6295 if (un->un_f_attach_spinup) { 6296 mutex_exit(SD_MUTEX(un)); 6297 (void) pm_raise_power(SD_DEVINFO(un), 0, 6298 SD_PM_STATE_ACTIVE(un)); 6299 mutex_enter(SD_MUTEX(un)); 6300 } 6301 6302 /* 6303 * Don't broadcast to the suspend cv and therefore possibly 6304 * start I/O until after power has been restored. 6305 */ 6306 cv_broadcast(&un->un_suspend_cv); 6307 cv_broadcast(&un->un_state_cv); 6308 6309 /* restart thread */ 6310 if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) { 6311 scsi_watch_resume(un->un_swr_token); 6312 } 6313 6314 #if (defined(__fibre)) 6315 if (un->un_f_is_fibre == TRUE) { 6316 /* 6317 * Add callbacks for insert and remove events 6318 */ 6319 if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) { 6320 sd_init_event_callbacks(un); 6321 } 6322 } 6323 #endif 6324 6325 /* 6326 * Transport any pending commands to the target. 6327 * 6328 * If this is a low-activity device commands in queue will have to wait 6329 * until new commands come in, which may take awhile. Also, we 6330 * specifically don't check un_ncmds_in_transport because we know that 6331 * there really are no commands in progress after the unit was 6332 * suspended and we could have reached the throttle level, been 6333 * suspended, and have no new commands coming in for awhile. Highly 6334 * unlikely, but so is the low-activity disk scenario. 6335 */ 6336 ddi_xbuf_dispatch(un->un_xbuf_attr); 6337 6338 sd_start_cmds(un, NULL); 6339 mutex_exit(SD_MUTEX(un)); 6340 6341 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n"); 6342 6343 return (DDI_SUCCESS); 6344 } 6345 6346 6347 /* 6348 * Function: sd_pm_state_change 6349 * 6350 * Description: Change the driver power state. 6351 * Someone else is required to actually change the driver 6352 * power level. 6353 * 6354 * Arguments: un - driver soft state (unit) structure 6355 * level - the power level that is changed to 6356 * flag - to decide how to change the power state 6357 * 6358 * Return Code: DDI_SUCCESS 6359 * 6360 * Context: Kernel thread context 6361 */ 6362 static int 6363 sd_pm_state_change(struct sd_lun *un, int level, int flag) 6364 { 6365 ASSERT(un != NULL); 6366 SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: entry\n"); 6367 6368 ASSERT(!mutex_owned(SD_MUTEX(un))); 6369 mutex_enter(SD_MUTEX(un)); 6370 6371 if (flag == SD_PM_STATE_ROLLBACK || SD_PM_IS_IO_CAPABLE(un, level)) { 6372 un->un_power_level = level; 6373 ASSERT(!mutex_owned(&un->un_pm_mutex)); 6374 mutex_enter(&un->un_pm_mutex); 6375 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 6376 un->un_pm_count++; 6377 ASSERT(un->un_pm_count == 0); 6378 } 6379 mutex_exit(&un->un_pm_mutex); 6380 } else { 6381 /* 6382 * Exit if power management is not enabled for this device, 6383 * or if the device is being used by HA. 6384 */ 6385 if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status & 6386 (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) { 6387 mutex_exit(SD_MUTEX(un)); 6388 SD_TRACE(SD_LOG_POWER, un, 6389 "sd_pm_state_change: exiting\n"); 6390 return (DDI_FAILURE); 6391 } 6392 6393 SD_INFO(SD_LOG_POWER, un, "sd_pm_state_change: " 6394 "un_ncmds_in_driver=%ld\n", un->un_ncmds_in_driver); 6395 6396 /* 6397 * See if the device is not busy, ie.: 6398 * - we have no commands in the driver for this device 6399 * - not waiting for resources 6400 */ 6401 if ((un->un_ncmds_in_driver == 0) && 6402 (un->un_state != SD_STATE_RWAIT)) { 6403 /* 6404 * The device is not busy, so it is OK to go to low 6405 * power state. Indicate low power, but rely on someone 6406 * else to actually change it. 6407 */ 6408 mutex_enter(&un->un_pm_mutex); 6409 un->un_pm_count = -1; 6410 mutex_exit(&un->un_pm_mutex); 6411 un->un_power_level = level; 6412 } 6413 } 6414 6415 mutex_exit(SD_MUTEX(un)); 6416 6417 SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: exit\n"); 6418 6419 return (DDI_SUCCESS); 6420 } 6421 6422 6423 /* 6424 * Function: sd_pm_idletimeout_handler 6425 * 6426 * Description: A timer routine that's active only while a device is busy. 6427 * The purpose is to extend slightly the pm framework's busy 6428 * view of the device to prevent busy/idle thrashing for 6429 * back-to-back commands. Do this by comparing the current time 6430 * to the time at which the last command completed and when the 6431 * difference is greater than sd_pm_idletime, call 6432 * pm_idle_component. In addition to indicating idle to the pm 6433 * framework, update the chain type to again use the internal pm 6434 * layers of the driver. 6435 * 6436 * Arguments: arg - driver soft state (unit) structure 6437 * 6438 * Context: Executes in a timeout(9F) thread context 6439 */ 6440 6441 static void 6442 sd_pm_idletimeout_handler(void *arg) 6443 { 6444 struct sd_lun *un = arg; 6445 6446 time_t now; 6447 6448 mutex_enter(&sd_detach_mutex); 6449 if (un->un_detach_count != 0) { 6450 /* Abort if the instance is detaching */ 6451 mutex_exit(&sd_detach_mutex); 6452 return; 6453 } 6454 mutex_exit(&sd_detach_mutex); 6455 6456 now = ddi_get_time(); 6457 /* 6458 * Grab both mutexes, in the proper order, since we're accessing 6459 * both PM and softstate variables. 6460 */ 6461 mutex_enter(SD_MUTEX(un)); 6462 mutex_enter(&un->un_pm_mutex); 6463 if (((now - un->un_pm_idle_time) > sd_pm_idletime) && 6464 (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) { 6465 /* 6466 * Update the chain types. 6467 * This takes affect on the next new command received. 6468 */ 6469 if (un->un_f_non_devbsize_supported) { 6470 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA; 6471 } else { 6472 un->un_buf_chain_type = SD_CHAIN_INFO_DISK; 6473 } 6474 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD; 6475 6476 SD_TRACE(SD_LOG_IO_PM, un, 6477 "sd_pm_idletimeout_handler: idling device\n"); 6478 (void) pm_idle_component(SD_DEVINFO(un), 0); 6479 un->un_pm_idle_timeid = NULL; 6480 } else { 6481 un->un_pm_idle_timeid = 6482 timeout(sd_pm_idletimeout_handler, un, 6483 (drv_usectohz((clock_t)300000))); /* 300 ms. */ 6484 } 6485 mutex_exit(&un->un_pm_mutex); 6486 mutex_exit(SD_MUTEX(un)); 6487 } 6488 6489 6490 /* 6491 * Function: sd_pm_timeout_handler 6492 * 6493 * Description: Callback to tell framework we are idle. 6494 * 6495 * Context: timeout(9f) thread context. 6496 */ 6497 6498 static void 6499 sd_pm_timeout_handler(void *arg) 6500 { 6501 struct sd_lun *un = arg; 6502 6503 (void) pm_idle_component(SD_DEVINFO(un), 0); 6504 mutex_enter(&un->un_pm_mutex); 6505 un->un_pm_timeid = NULL; 6506 mutex_exit(&un->un_pm_mutex); 6507 } 6508 6509 6510 /* 6511 * Function: sdpower 6512 * 6513 * Description: PM entry point. 6514 * 6515 * Return Code: DDI_SUCCESS 6516 * DDI_FAILURE 6517 * 6518 * Context: Kernel thread context 6519 */ 6520 6521 static int 6522 sdpower(dev_info_t *devi, int component, int level) 6523 { 6524 struct sd_lun *un; 6525 int instance; 6526 int rval = DDI_SUCCESS; 6527 uint_t i, log_page_size, maxcycles, ncycles; 6528 uchar_t *log_page_data; 6529 int log_sense_page; 6530 int medium_present; 6531 time_t intvlp; 6532 dev_t dev; 6533 struct pm_trans_data sd_pm_tran_data; 6534 uchar_t save_state; 6535 int sval; 6536 uchar_t state_before_pm; 6537 int got_semaphore_here; 6538 sd_ssc_t *ssc; 6539 int last_power_level; 6540 6541 instance = ddi_get_instance(devi); 6542 6543 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 6544 !SD_PM_IS_LEVEL_VALID(un, level) || component != 0) { 6545 return (DDI_FAILURE); 6546 } 6547 6548 dev = sd_make_device(SD_DEVINFO(un)); 6549 ssc = sd_ssc_init(un); 6550 6551 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level); 6552 6553 /* 6554 * Must synchronize power down with close. 6555 * Attempt to decrement/acquire the open/close semaphore, 6556 * but do NOT wait on it. If it's not greater than zero, 6557 * ie. it can't be decremented without waiting, then 6558 * someone else, either open or close, already has it 6559 * and the try returns 0. Use that knowledge here to determine 6560 * if it's OK to change the device power level. 6561 * Also, only increment it on exit if it was decremented, ie. gotten, 6562 * here. 6563 */ 6564 got_semaphore_here = sema_tryp(&un->un_semoclose); 6565 6566 mutex_enter(SD_MUTEX(un)); 6567 6568 SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n", 6569 un->un_ncmds_in_driver); 6570 6571 /* 6572 * If un_ncmds_in_driver is non-zero it indicates commands are 6573 * already being processed in the driver, or if the semaphore was 6574 * not gotten here it indicates an open or close is being processed. 6575 * At the same time somebody is requesting to go to a lower power 6576 * that can't perform I/O, which can't happen, therefore we need to 6577 * return failure. 6578 */ 6579 if ((!SD_PM_IS_IO_CAPABLE(un, level)) && 6580 ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) { 6581 mutex_exit(SD_MUTEX(un)); 6582 6583 if (got_semaphore_here != 0) { 6584 sema_v(&un->un_semoclose); 6585 } 6586 SD_TRACE(SD_LOG_IO_PM, un, 6587 "sdpower: exit, device has queued cmds.\n"); 6588 6589 goto sdpower_failed; 6590 } 6591 6592 /* 6593 * if it is OFFLINE that means the disk is completely dead 6594 * in our case we have to put the disk in on or off by sending commands 6595 * Of course that will fail anyway so return back here. 6596 * 6597 * Power changes to a device that's OFFLINE or SUSPENDED 6598 * are not allowed. 6599 */ 6600 if ((un->un_state == SD_STATE_OFFLINE) || 6601 (un->un_state == SD_STATE_SUSPENDED)) { 6602 mutex_exit(SD_MUTEX(un)); 6603 6604 if (got_semaphore_here != 0) { 6605 sema_v(&un->un_semoclose); 6606 } 6607 SD_TRACE(SD_LOG_IO_PM, un, 6608 "sdpower: exit, device is off-line.\n"); 6609 6610 goto sdpower_failed; 6611 } 6612 6613 /* 6614 * Change the device's state to indicate it's power level 6615 * is being changed. Do this to prevent a power off in the 6616 * middle of commands, which is especially bad on devices 6617 * that are really powered off instead of just spun down. 6618 */ 6619 state_before_pm = un->un_state; 6620 un->un_state = SD_STATE_PM_CHANGING; 6621 6622 mutex_exit(SD_MUTEX(un)); 6623 6624 /* 6625 * If log sense command is not supported, bypass the 6626 * following checking, otherwise, check the log sense 6627 * information for this device. 6628 */ 6629 if (SD_PM_STOP_MOTOR_NEEDED(un, level) && 6630 un->un_f_log_sense_supported) { 6631 /* 6632 * Get the log sense information to understand whether the 6633 * the powercycle counts have gone beyond the threshhold. 6634 */ 6635 log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE; 6636 log_page_data = kmem_zalloc(log_page_size, KM_SLEEP); 6637 6638 mutex_enter(SD_MUTEX(un)); 6639 log_sense_page = un->un_start_stop_cycle_page; 6640 mutex_exit(SD_MUTEX(un)); 6641 6642 rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 6643 log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT); 6644 6645 if (rval != 0) { 6646 if (rval == EIO) 6647 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 6648 else 6649 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 6650 } 6651 6652 #ifdef SDDEBUG 6653 if (sd_force_pm_supported) { 6654 /* Force a successful result */ 6655 rval = 0; 6656 } 6657 #endif 6658 if (rval != 0) { 6659 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 6660 "Log Sense Failed\n"); 6661 6662 kmem_free(log_page_data, log_page_size); 6663 /* Cannot support power management on those drives */ 6664 6665 if (got_semaphore_here != 0) { 6666 sema_v(&un->un_semoclose); 6667 } 6668 /* 6669 * On exit put the state back to it's original value 6670 * and broadcast to anyone waiting for the power 6671 * change completion. 6672 */ 6673 mutex_enter(SD_MUTEX(un)); 6674 un->un_state = state_before_pm; 6675 cv_broadcast(&un->un_suspend_cv); 6676 mutex_exit(SD_MUTEX(un)); 6677 SD_TRACE(SD_LOG_IO_PM, un, 6678 "sdpower: exit, Log Sense Failed.\n"); 6679 6680 goto sdpower_failed; 6681 } 6682 6683 /* 6684 * From the page data - Convert the essential information to 6685 * pm_trans_data 6686 */ 6687 maxcycles = 6688 (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) | 6689 (log_page_data[0x1E] << 8) | log_page_data[0x1F]; 6690 6691 ncycles = 6692 (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) | 6693 (log_page_data[0x26] << 8) | log_page_data[0x27]; 6694 6695 if (un->un_f_pm_log_sense_smart) { 6696 sd_pm_tran_data.un.smart_count.allowed = maxcycles; 6697 sd_pm_tran_data.un.smart_count.consumed = ncycles; 6698 sd_pm_tran_data.un.smart_count.flag = 0; 6699 sd_pm_tran_data.format = DC_SMART_FORMAT; 6700 } else { 6701 sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles; 6702 sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles; 6703 for (i = 0; i < DC_SCSI_MFR_LEN; i++) { 6704 sd_pm_tran_data.un.scsi_cycles.svc_date[i] = 6705 log_page_data[8+i]; 6706 } 6707 sd_pm_tran_data.un.scsi_cycles.flag = 0; 6708 sd_pm_tran_data.format = DC_SCSI_FORMAT; 6709 } 6710 6711 kmem_free(log_page_data, log_page_size); 6712 6713 /* 6714 * Call pm_trans_check routine to get the Ok from 6715 * the global policy 6716 */ 6717 rval = pm_trans_check(&sd_pm_tran_data, &intvlp); 6718 #ifdef SDDEBUG 6719 if (sd_force_pm_supported) { 6720 /* Force a successful result */ 6721 rval = 1; 6722 } 6723 #endif 6724 switch (rval) { 6725 case 0: 6726 /* 6727 * Not Ok to Power cycle or error in parameters passed 6728 * Would have given the advised time to consider power 6729 * cycle. Based on the new intvlp parameter we are 6730 * supposed to pretend we are busy so that pm framework 6731 * will never call our power entry point. Because of 6732 * that install a timeout handler and wait for the 6733 * recommended time to elapse so that power management 6734 * can be effective again. 6735 * 6736 * To effect this behavior, call pm_busy_component to 6737 * indicate to the framework this device is busy. 6738 * By not adjusting un_pm_count the rest of PM in 6739 * the driver will function normally, and independent 6740 * of this but because the framework is told the device 6741 * is busy it won't attempt powering down until it gets 6742 * a matching idle. The timeout handler sends this. 6743 * Note: sd_pm_entry can't be called here to do this 6744 * because sdpower may have been called as a result 6745 * of a call to pm_raise_power from within sd_pm_entry. 6746 * 6747 * If a timeout handler is already active then 6748 * don't install another. 6749 */ 6750 mutex_enter(&un->un_pm_mutex); 6751 if (un->un_pm_timeid == NULL) { 6752 un->un_pm_timeid = 6753 timeout(sd_pm_timeout_handler, 6754 un, intvlp * drv_usectohz(1000000)); 6755 mutex_exit(&un->un_pm_mutex); 6756 (void) pm_busy_component(SD_DEVINFO(un), 0); 6757 } else { 6758 mutex_exit(&un->un_pm_mutex); 6759 } 6760 if (got_semaphore_here != 0) { 6761 sema_v(&un->un_semoclose); 6762 } 6763 /* 6764 * On exit put the state back to it's original value 6765 * and broadcast to anyone waiting for the power 6766 * change completion. 6767 */ 6768 mutex_enter(SD_MUTEX(un)); 6769 un->un_state = state_before_pm; 6770 cv_broadcast(&un->un_suspend_cv); 6771 mutex_exit(SD_MUTEX(un)); 6772 6773 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, " 6774 "trans check Failed, not ok to power cycle.\n"); 6775 6776 goto sdpower_failed; 6777 case -1: 6778 if (got_semaphore_here != 0) { 6779 sema_v(&un->un_semoclose); 6780 } 6781 /* 6782 * On exit put the state back to it's original value 6783 * and broadcast to anyone waiting for the power 6784 * change completion. 6785 */ 6786 mutex_enter(SD_MUTEX(un)); 6787 un->un_state = state_before_pm; 6788 cv_broadcast(&un->un_suspend_cv); 6789 mutex_exit(SD_MUTEX(un)); 6790 SD_TRACE(SD_LOG_IO_PM, un, 6791 "sdpower: exit, trans check command Failed.\n"); 6792 6793 goto sdpower_failed; 6794 } 6795 } 6796 6797 if (!SD_PM_IS_IO_CAPABLE(un, level)) { 6798 /* 6799 * Save the last state... if the STOP FAILS we need it 6800 * for restoring 6801 */ 6802 mutex_enter(SD_MUTEX(un)); 6803 save_state = un->un_last_state; 6804 last_power_level = un->un_power_level; 6805 /* 6806 * There must not be any cmds. getting processed 6807 * in the driver when we get here. Power to the 6808 * device is potentially going off. 6809 */ 6810 ASSERT(un->un_ncmds_in_driver == 0); 6811 mutex_exit(SD_MUTEX(un)); 6812 6813 /* 6814 * For now PM suspend the device completely before spindle is 6815 * turned off 6816 */ 6817 if ((rval = sd_pm_state_change(un, level, SD_PM_STATE_CHANGE)) 6818 == DDI_FAILURE) { 6819 if (got_semaphore_here != 0) { 6820 sema_v(&un->un_semoclose); 6821 } 6822 /* 6823 * On exit put the state back to it's original value 6824 * and broadcast to anyone waiting for the power 6825 * change completion. 6826 */ 6827 mutex_enter(SD_MUTEX(un)); 6828 un->un_state = state_before_pm; 6829 un->un_power_level = last_power_level; 6830 cv_broadcast(&un->un_suspend_cv); 6831 mutex_exit(SD_MUTEX(un)); 6832 SD_TRACE(SD_LOG_IO_PM, un, 6833 "sdpower: exit, PM suspend Failed.\n"); 6834 6835 goto sdpower_failed; 6836 } 6837 } 6838 6839 /* 6840 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open, 6841 * close, or strategy. Dump no long uses this routine, it uses it's 6842 * own code so it can be done in polled mode. 6843 */ 6844 6845 medium_present = TRUE; 6846 6847 /* 6848 * When powering up, issue a TUR in case the device is at unit 6849 * attention. Don't do retries. Bypass the PM layer, otherwise 6850 * a deadlock on un_pm_busy_cv will occur. 6851 */ 6852 if (SD_PM_IS_IO_CAPABLE(un, level)) { 6853 sval = sd_send_scsi_TEST_UNIT_READY(ssc, 6854 SD_DONT_RETRY_TUR | SD_BYPASS_PM); 6855 if (sval != 0) 6856 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 6857 } 6858 6859 if (un->un_f_power_condition_supported) { 6860 char *pm_condition_name[] = {"STOPPED", "STANDBY", 6861 "IDLE", "ACTIVE"}; 6862 SD_TRACE(SD_LOG_IO_PM, un, 6863 "sdpower: sending \'%s\' power condition", 6864 pm_condition_name[level]); 6865 sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION, 6866 sd_pl2pc[level], SD_PATH_DIRECT); 6867 } else { 6868 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n", 6869 ((level == SD_SPINDLE_ON) ? "START" : "STOP")); 6870 sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 6871 ((level == SD_SPINDLE_ON) ? SD_TARGET_START : 6872 SD_TARGET_STOP), SD_PATH_DIRECT); 6873 } 6874 if (sval != 0) { 6875 if (sval == EIO) 6876 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 6877 else 6878 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 6879 } 6880 6881 /* Command failed, check for media present. */ 6882 if ((sval == ENXIO) && un->un_f_has_removable_media) { 6883 medium_present = FALSE; 6884 } 6885 6886 /* 6887 * The conditions of interest here are: 6888 * if a spindle off with media present fails, 6889 * then restore the state and return an error. 6890 * else if a spindle on fails, 6891 * then return an error (there's no state to restore). 6892 * In all other cases we setup for the new state 6893 * and return success. 6894 */ 6895 if (!SD_PM_IS_IO_CAPABLE(un, level)) { 6896 if ((medium_present == TRUE) && (sval != 0)) { 6897 /* The stop command from above failed */ 6898 rval = DDI_FAILURE; 6899 /* 6900 * The stop command failed, and we have media 6901 * present. Put the level back by calling the 6902 * sd_pm_resume() and set the state back to 6903 * it's previous value. 6904 */ 6905 (void) sd_pm_state_change(un, last_power_level, 6906 SD_PM_STATE_ROLLBACK); 6907 mutex_enter(SD_MUTEX(un)); 6908 un->un_last_state = save_state; 6909 mutex_exit(SD_MUTEX(un)); 6910 } else if (un->un_f_monitor_media_state) { 6911 /* 6912 * The stop command from above succeeded. 6913 * Terminate watch thread in case of removable media 6914 * devices going into low power state. This is as per 6915 * the requirements of pm framework, otherwise commands 6916 * will be generated for the device (through watch 6917 * thread), even when the device is in low power state. 6918 */ 6919 mutex_enter(SD_MUTEX(un)); 6920 un->un_f_watcht_stopped = FALSE; 6921 if (un->un_swr_token != NULL) { 6922 opaque_t temp_token = un->un_swr_token; 6923 un->un_f_watcht_stopped = TRUE; 6924 un->un_swr_token = NULL; 6925 mutex_exit(SD_MUTEX(un)); 6926 (void) scsi_watch_request_terminate(temp_token, 6927 SCSI_WATCH_TERMINATE_ALL_WAIT); 6928 } else { 6929 mutex_exit(SD_MUTEX(un)); 6930 } 6931 } 6932 } else { 6933 /* 6934 * The level requested is I/O capable. 6935 * Legacy behavior: return success on a failed spinup 6936 * if there is no media in the drive. 6937 * Do this by looking at medium_present here. 6938 */ 6939 if ((sval != 0) && medium_present) { 6940 /* The start command from above failed */ 6941 rval = DDI_FAILURE; 6942 } else { 6943 /* 6944 * The start command from above succeeded 6945 * PM resume the devices now that we have 6946 * started the disks 6947 */ 6948 (void) sd_pm_state_change(un, level, 6949 SD_PM_STATE_CHANGE); 6950 6951 /* 6952 * Resume the watch thread since it was suspended 6953 * when the device went into low power mode. 6954 */ 6955 if (un->un_f_monitor_media_state) { 6956 mutex_enter(SD_MUTEX(un)); 6957 if (un->un_f_watcht_stopped == TRUE) { 6958 opaque_t temp_token; 6959 6960 un->un_f_watcht_stopped = FALSE; 6961 mutex_exit(SD_MUTEX(un)); 6962 temp_token = scsi_watch_request_submit( 6963 SD_SCSI_DEVP(un), 6964 sd_check_media_time, 6965 SENSE_LENGTH, sd_media_watch_cb, 6966 (caddr_t)dev); 6967 mutex_enter(SD_MUTEX(un)); 6968 un->un_swr_token = temp_token; 6969 } 6970 mutex_exit(SD_MUTEX(un)); 6971 } 6972 } 6973 } 6974 6975 if (got_semaphore_here != 0) { 6976 sema_v(&un->un_semoclose); 6977 } 6978 /* 6979 * On exit put the state back to it's original value 6980 * and broadcast to anyone waiting for the power 6981 * change completion. 6982 */ 6983 mutex_enter(SD_MUTEX(un)); 6984 un->un_state = state_before_pm; 6985 cv_broadcast(&un->un_suspend_cv); 6986 mutex_exit(SD_MUTEX(un)); 6987 6988 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval); 6989 6990 sd_ssc_fini(ssc); 6991 return (rval); 6992 6993 sdpower_failed: 6994 6995 sd_ssc_fini(ssc); 6996 return (DDI_FAILURE); 6997 } 6998 6999 7000 7001 /* 7002 * Function: sdattach 7003 * 7004 * Description: Driver's attach(9e) entry point function. 7005 * 7006 * Arguments: devi - opaque device info handle 7007 * cmd - attach type 7008 * 7009 * Return Code: DDI_SUCCESS 7010 * DDI_FAILURE 7011 * 7012 * Context: Kernel thread context 7013 */ 7014 7015 static int 7016 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd) 7017 { 7018 switch (cmd) { 7019 case DDI_ATTACH: 7020 return (sd_unit_attach(devi)); 7021 case DDI_RESUME: 7022 return (sd_ddi_resume(devi)); 7023 default: 7024 break; 7025 } 7026 return (DDI_FAILURE); 7027 } 7028 7029 7030 /* 7031 * Function: sddetach 7032 * 7033 * Description: Driver's detach(9E) entry point function. 7034 * 7035 * Arguments: devi - opaque device info handle 7036 * cmd - detach type 7037 * 7038 * Return Code: DDI_SUCCESS 7039 * DDI_FAILURE 7040 * 7041 * Context: Kernel thread context 7042 */ 7043 7044 static int 7045 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd) 7046 { 7047 switch (cmd) { 7048 case DDI_DETACH: 7049 return (sd_unit_detach(devi)); 7050 case DDI_SUSPEND: 7051 return (sd_ddi_suspend(devi)); 7052 default: 7053 break; 7054 } 7055 return (DDI_FAILURE); 7056 } 7057 7058 7059 /* 7060 * Function: sd_sync_with_callback 7061 * 7062 * Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft 7063 * state while the callback routine is active. 7064 * 7065 * Arguments: un: softstate structure for the instance 7066 * 7067 * Context: Kernel thread context 7068 */ 7069 7070 static void 7071 sd_sync_with_callback(struct sd_lun *un) 7072 { 7073 ASSERT(un != NULL); 7074 7075 mutex_enter(SD_MUTEX(un)); 7076 7077 ASSERT(un->un_in_callback >= 0); 7078 7079 while (un->un_in_callback > 0) { 7080 mutex_exit(SD_MUTEX(un)); 7081 delay(2); 7082 mutex_enter(SD_MUTEX(un)); 7083 } 7084 7085 mutex_exit(SD_MUTEX(un)); 7086 } 7087 7088 /* 7089 * Function: sd_unit_attach 7090 * 7091 * Description: Performs DDI_ATTACH processing for sdattach(). Allocates 7092 * the soft state structure for the device and performs 7093 * all necessary structure and device initializations. 7094 * 7095 * Arguments: devi: the system's dev_info_t for the device. 7096 * 7097 * Return Code: DDI_SUCCESS if attach is successful. 7098 * DDI_FAILURE if any part of the attach fails. 7099 * 7100 * Context: Called at attach(9e) time for the DDI_ATTACH flag. 7101 * Kernel thread context only. Can sleep. 7102 */ 7103 7104 static int 7105 sd_unit_attach(dev_info_t *devi) 7106 { 7107 struct scsi_device *devp; 7108 struct sd_lun *un; 7109 char *variantp; 7110 char name_str[48]; 7111 int reservation_flag = SD_TARGET_IS_UNRESERVED; 7112 int instance; 7113 int rval; 7114 int wc_enabled; 7115 int tgt; 7116 uint64_t capacity; 7117 uint_t lbasize = 0; 7118 dev_info_t *pdip = ddi_get_parent(devi); 7119 int offbyone = 0; 7120 int geom_label_valid = 0; 7121 sd_ssc_t *ssc; 7122 int status; 7123 struct sd_fm_internal *sfip = NULL; 7124 int max_xfer_size; 7125 7126 /* 7127 * Retrieve the target driver's private data area. This was set 7128 * up by the HBA. 7129 */ 7130 devp = ddi_get_driver_private(devi); 7131 7132 /* 7133 * Retrieve the target ID of the device. 7134 */ 7135 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 7136 SCSI_ADDR_PROP_TARGET, -1); 7137 7138 /* 7139 * Since we have no idea what state things were left in by the last 7140 * user of the device, set up some 'default' settings, ie. turn 'em 7141 * off. The scsi_ifsetcap calls force re-negotiations with the drive. 7142 * Do this before the scsi_probe, which sends an inquiry. 7143 * This is a fix for bug (4430280). 7144 * Of special importance is wide-xfer. The drive could have been left 7145 * in wide transfer mode by the last driver to communicate with it, 7146 * this includes us. If that's the case, and if the following is not 7147 * setup properly or we don't re-negotiate with the drive prior to 7148 * transferring data to/from the drive, it causes bus parity errors, 7149 * data overruns, and unexpected interrupts. This first occurred when 7150 * the fix for bug (4378686) was made. 7151 */ 7152 (void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1); 7153 (void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1); 7154 (void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1); 7155 7156 /* 7157 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs 7158 * on a target. Setting it per lun instance actually sets the 7159 * capability of this target, which affects those luns already 7160 * attached on the same target. So during attach, we can only disable 7161 * this capability only when no other lun has been attached on this 7162 * target. By doing this, we assume a target has the same tagged-qing 7163 * capability for every lun. The condition can be removed when HBA 7164 * is changed to support per lun based tagged-qing capability. 7165 */ 7166 if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) { 7167 (void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1); 7168 } 7169 7170 /* 7171 * Use scsi_probe() to issue an INQUIRY command to the device. 7172 * This call will allocate and fill in the scsi_inquiry structure 7173 * and point the sd_inq member of the scsi_device structure to it. 7174 * If the attach succeeds, then this memory will not be de-allocated 7175 * (via scsi_unprobe()) until the instance is detached. 7176 */ 7177 if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) { 7178 goto probe_failed; 7179 } 7180 7181 /* 7182 * Check the device type as specified in the inquiry data and 7183 * claim it if it is of a type that we support. 7184 */ 7185 switch (devp->sd_inq->inq_dtype) { 7186 case DTYPE_DIRECT: 7187 break; 7188 case DTYPE_RODIRECT: 7189 break; 7190 case DTYPE_OPTICAL: 7191 break; 7192 case DTYPE_NOTPRESENT: 7193 default: 7194 /* Unsupported device type; fail the attach. */ 7195 goto probe_failed; 7196 } 7197 7198 /* 7199 * Allocate the soft state structure for this unit. 7200 * 7201 * We rely upon this memory being set to all zeroes by 7202 * ddi_soft_state_zalloc(). We assume that any member of the 7203 * soft state structure that is not explicitly initialized by 7204 * this routine will have a value of zero. 7205 */ 7206 instance = ddi_get_instance(devp->sd_dev); 7207 #ifndef XPV_HVM_DRIVER 7208 if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) { 7209 goto probe_failed; 7210 } 7211 #endif /* !XPV_HVM_DRIVER */ 7212 7213 /* 7214 * Retrieve a pointer to the newly-allocated soft state. 7215 * 7216 * This should NEVER fail if the ddi_soft_state_zalloc() call above 7217 * was successful, unless something has gone horribly wrong and the 7218 * ddi's soft state internals are corrupt (in which case it is 7219 * probably better to halt here than just fail the attach....) 7220 */ 7221 if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) { 7222 panic("sd_unit_attach: NULL soft state on instance:0x%x", 7223 instance); 7224 /*NOTREACHED*/ 7225 } 7226 7227 /* 7228 * Link the back ptr of the driver soft state to the scsi_device 7229 * struct for this lun. 7230 * Save a pointer to the softstate in the driver-private area of 7231 * the scsi_device struct. 7232 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until 7233 * we first set un->un_sd below. 7234 */ 7235 un->un_sd = devp; 7236 devp->sd_private = (opaque_t)un; 7237 7238 /* 7239 * The following must be after devp is stored in the soft state struct. 7240 */ 7241 #ifdef SDDEBUG 7242 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7243 "%s_unit_attach: un:0x%p instance:%d\n", 7244 ddi_driver_name(devi), un, instance); 7245 #endif 7246 7247 /* 7248 * Set up the device type and node type (for the minor nodes). 7249 * By default we assume that the device can at least support the 7250 * Common Command Set. Call it a CD-ROM if it reports itself 7251 * as a RODIRECT device. 7252 */ 7253 switch (devp->sd_inq->inq_dtype) { 7254 case DTYPE_RODIRECT: 7255 un->un_node_type = DDI_NT_CD_CHAN; 7256 un->un_ctype = CTYPE_CDROM; 7257 break; 7258 case DTYPE_OPTICAL: 7259 un->un_node_type = DDI_NT_BLOCK_CHAN; 7260 un->un_ctype = CTYPE_ROD; 7261 break; 7262 default: 7263 un->un_node_type = DDI_NT_BLOCK_CHAN; 7264 un->un_ctype = CTYPE_CCS; 7265 break; 7266 } 7267 7268 /* 7269 * Try to read the interconnect type from the HBA. 7270 * 7271 * Note: This driver is currently compiled as two binaries, a parallel 7272 * scsi version (sd) and a fibre channel version (ssd). All functional 7273 * differences are determined at compile time. In the future a single 7274 * binary will be provided and the interconnect type will be used to 7275 * differentiate between fibre and parallel scsi behaviors. At that time 7276 * it will be necessary for all fibre channel HBAs to support this 7277 * property. 7278 * 7279 * set un_f_is_fiber to TRUE ( default fiber ) 7280 */ 7281 un->un_f_is_fibre = TRUE; 7282 switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) { 7283 case INTERCONNECT_SSA: 7284 un->un_interconnect_type = SD_INTERCONNECT_SSA; 7285 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7286 "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un); 7287 break; 7288 case INTERCONNECT_PARALLEL: 7289 un->un_f_is_fibre = FALSE; 7290 un->un_interconnect_type = SD_INTERCONNECT_PARALLEL; 7291 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7292 "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un); 7293 break; 7294 case INTERCONNECT_SAS: 7295 un->un_f_is_fibre = FALSE; 7296 un->un_interconnect_type = SD_INTERCONNECT_SAS; 7297 un->un_node_type = DDI_NT_BLOCK_SAS; 7298 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7299 "sd_unit_attach: un:0x%p SD_INTERCONNECT_SAS\n", un); 7300 break; 7301 case INTERCONNECT_SATA: 7302 un->un_f_is_fibre = FALSE; 7303 un->un_interconnect_type = SD_INTERCONNECT_SATA; 7304 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7305 "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un); 7306 break; 7307 case INTERCONNECT_FIBRE: 7308 un->un_interconnect_type = SD_INTERCONNECT_FIBRE; 7309 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7310 "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un); 7311 break; 7312 case INTERCONNECT_FABRIC: 7313 un->un_interconnect_type = SD_INTERCONNECT_FABRIC; 7314 un->un_node_type = DDI_NT_BLOCK_FABRIC; 7315 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7316 "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un); 7317 break; 7318 default: 7319 #ifdef SD_DEFAULT_INTERCONNECT_TYPE 7320 /* 7321 * The HBA does not support the "interconnect-type" property 7322 * (or did not provide a recognized type). 7323 * 7324 * Note: This will be obsoleted when a single fibre channel 7325 * and parallel scsi driver is delivered. In the meantime the 7326 * interconnect type will be set to the platform default.If that 7327 * type is not parallel SCSI, it means that we should be 7328 * assuming "ssd" semantics. However, here this also means that 7329 * the FC HBA is not supporting the "interconnect-type" property 7330 * like we expect it to, so log this occurrence. 7331 */ 7332 un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE; 7333 if (!SD_IS_PARALLEL_SCSI(un)) { 7334 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7335 "sd_unit_attach: un:0x%p Assuming " 7336 "INTERCONNECT_FIBRE\n", un); 7337 } else { 7338 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7339 "sd_unit_attach: un:0x%p Assuming " 7340 "INTERCONNECT_PARALLEL\n", un); 7341 un->un_f_is_fibre = FALSE; 7342 } 7343 #else 7344 /* 7345 * Note: This source will be implemented when a single fibre 7346 * channel and parallel scsi driver is delivered. The default 7347 * will be to assume that if a device does not support the 7348 * "interconnect-type" property it is a parallel SCSI HBA and 7349 * we will set the interconnect type for parallel scsi. 7350 */ 7351 un->un_interconnect_type = SD_INTERCONNECT_PARALLEL; 7352 un->un_f_is_fibre = FALSE; 7353 #endif 7354 break; 7355 } 7356 7357 if (un->un_f_is_fibre == TRUE) { 7358 if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) == 7359 SCSI_VERSION_3) { 7360 switch (un->un_interconnect_type) { 7361 case SD_INTERCONNECT_FIBRE: 7362 case SD_INTERCONNECT_SSA: 7363 un->un_node_type = DDI_NT_BLOCK_WWN; 7364 break; 7365 default: 7366 break; 7367 } 7368 } 7369 } 7370 7371 /* 7372 * Initialize the Request Sense command for the target 7373 */ 7374 if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) { 7375 goto alloc_rqs_failed; 7376 } 7377 7378 /* 7379 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc 7380 * with separate binary for sd and ssd. 7381 * 7382 * x86 has 1 binary, un_retry_count is set base on connection type. 7383 * The hardcoded values will go away when Sparc uses 1 binary 7384 * for sd and ssd. This hardcoded values need to match 7385 * SD_RETRY_COUNT in sddef.h 7386 * The value used is base on interconnect type. 7387 * fibre = 3, parallel = 5 7388 */ 7389 #if defined(__i386) || defined(__amd64) 7390 un->un_retry_count = un->un_f_is_fibre ? 3 : 5; 7391 #else 7392 un->un_retry_count = SD_RETRY_COUNT; 7393 #endif 7394 7395 /* 7396 * Set the per disk retry count to the default number of retries 7397 * for disks and CDROMs. This value can be overridden by the 7398 * disk property list or an entry in sd.conf. 7399 */ 7400 un->un_notready_retry_count = 7401 ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un) 7402 : DISK_NOT_READY_RETRY_COUNT(un); 7403 7404 /* 7405 * Set the busy retry count to the default value of un_retry_count. 7406 * This can be overridden by entries in sd.conf or the device 7407 * config table. 7408 */ 7409 un->un_busy_retry_count = un->un_retry_count; 7410 7411 /* 7412 * Init the reset threshold for retries. This number determines 7413 * how many retries must be performed before a reset can be issued 7414 * (for certain error conditions). This can be overridden by entries 7415 * in sd.conf or the device config table. 7416 */ 7417 un->un_reset_retry_count = (un->un_retry_count / 2); 7418 7419 /* 7420 * Set the victim_retry_count to the default un_retry_count 7421 */ 7422 un->un_victim_retry_count = (2 * un->un_retry_count); 7423 7424 /* 7425 * Set the reservation release timeout to the default value of 7426 * 5 seconds. This can be overridden by entries in ssd.conf or the 7427 * device config table. 7428 */ 7429 un->un_reserve_release_time = 5; 7430 7431 /* 7432 * Set up the default maximum transfer size. Note that this may 7433 * get updated later in the attach, when setting up default wide 7434 * operations for disks. 7435 */ 7436 #if defined(__i386) || defined(__amd64) 7437 un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE; 7438 un->un_partial_dma_supported = 1; 7439 #else 7440 un->un_max_xfer_size = (uint_t)maxphys; 7441 #endif 7442 7443 /* 7444 * Get "allow bus device reset" property (defaults to "enabled" if 7445 * the property was not defined). This is to disable bus resets for 7446 * certain kinds of error recovery. Note: In the future when a run-time 7447 * fibre check is available the soft state flag should default to 7448 * enabled. 7449 */ 7450 if (un->un_f_is_fibre == TRUE) { 7451 un->un_f_allow_bus_device_reset = TRUE; 7452 } else { 7453 if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 7454 "allow-bus-device-reset", 1) != 0) { 7455 un->un_f_allow_bus_device_reset = TRUE; 7456 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7457 "sd_unit_attach: un:0x%p Bus device reset " 7458 "enabled\n", un); 7459 } else { 7460 un->un_f_allow_bus_device_reset = FALSE; 7461 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7462 "sd_unit_attach: un:0x%p Bus device reset " 7463 "disabled\n", un); 7464 } 7465 } 7466 7467 /* 7468 * Check if this is an ATAPI device. ATAPI devices use Group 1 7469 * Read/Write commands and Group 2 Mode Sense/Select commands. 7470 * 7471 * Note: The "obsolete" way of doing this is to check for the "atapi" 7472 * property. The new "variant" property with a value of "atapi" has been 7473 * introduced so that future 'variants' of standard SCSI behavior (like 7474 * atapi) could be specified by the underlying HBA drivers by supplying 7475 * a new value for the "variant" property, instead of having to define a 7476 * new property. 7477 */ 7478 if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) { 7479 un->un_f_cfg_is_atapi = TRUE; 7480 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7481 "sd_unit_attach: un:0x%p Atapi device\n", un); 7482 } 7483 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant", 7484 &variantp) == DDI_PROP_SUCCESS) { 7485 if (strcmp(variantp, "atapi") == 0) { 7486 un->un_f_cfg_is_atapi = TRUE; 7487 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7488 "sd_unit_attach: un:0x%p Atapi device\n", un); 7489 } 7490 ddi_prop_free(variantp); 7491 } 7492 7493 un->un_cmd_timeout = SD_IO_TIME; 7494 7495 un->un_busy_timeout = SD_BSY_TIMEOUT; 7496 7497 /* Info on current states, statuses, etc. (Updated frequently) */ 7498 un->un_state = SD_STATE_NORMAL; 7499 un->un_last_state = SD_STATE_NORMAL; 7500 7501 /* Control & status info for command throttling */ 7502 un->un_throttle = sd_max_throttle; 7503 un->un_saved_throttle = sd_max_throttle; 7504 un->un_min_throttle = sd_min_throttle; 7505 7506 if (un->un_f_is_fibre == TRUE) { 7507 un->un_f_use_adaptive_throttle = TRUE; 7508 } else { 7509 un->un_f_use_adaptive_throttle = FALSE; 7510 } 7511 7512 /* Removable media support. */ 7513 cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL); 7514 un->un_mediastate = DKIO_NONE; 7515 un->un_specified_mediastate = DKIO_NONE; 7516 7517 /* CVs for suspend/resume (PM or DR) */ 7518 cv_init(&un->un_suspend_cv, NULL, CV_DRIVER, NULL); 7519 cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL); 7520 7521 /* Power management support. */ 7522 un->un_power_level = SD_SPINDLE_UNINIT; 7523 7524 cv_init(&un->un_wcc_cv, NULL, CV_DRIVER, NULL); 7525 un->un_f_wcc_inprog = 0; 7526 7527 /* 7528 * The open/close semaphore is used to serialize threads executing 7529 * in the driver's open & close entry point routines for a given 7530 * instance. 7531 */ 7532 (void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL); 7533 7534 /* 7535 * The conf file entry and softstate variable is a forceful override, 7536 * meaning a non-zero value must be entered to change the default. 7537 */ 7538 un->un_f_disksort_disabled = FALSE; 7539 un->un_f_rmw_type = SD_RMW_TYPE_DEFAULT; 7540 7541 /* 7542 * Retrieve the properties from the static driver table or the driver 7543 * configuration file (.conf) for this unit and update the soft state 7544 * for the device as needed for the indicated properties. 7545 * Note: the property configuration needs to occur here as some of the 7546 * following routines may have dependencies on soft state flags set 7547 * as part of the driver property configuration. 7548 */ 7549 sd_read_unit_properties(un); 7550 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7551 "sd_unit_attach: un:0x%p property configuration complete.\n", un); 7552 7553 /* 7554 * Only if a device has "hotpluggable" property, it is 7555 * treated as hotpluggable device. Otherwise, it is 7556 * regarded as non-hotpluggable one. 7557 */ 7558 if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable", 7559 -1) != -1) { 7560 un->un_f_is_hotpluggable = TRUE; 7561 } 7562 7563 /* 7564 * set unit's attributes(flags) according to "hotpluggable" and 7565 * RMB bit in INQUIRY data. 7566 */ 7567 sd_set_unit_attributes(un, devi); 7568 7569 /* 7570 * By default, we mark the capacity, lbasize, and geometry 7571 * as invalid. Only if we successfully read a valid capacity 7572 * will we update the un_blockcount and un_tgt_blocksize with the 7573 * valid values (the geometry will be validated later). 7574 */ 7575 un->un_f_blockcount_is_valid = FALSE; 7576 un->un_f_tgt_blocksize_is_valid = FALSE; 7577 7578 /* 7579 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine 7580 * otherwise. 7581 */ 7582 un->un_tgt_blocksize = un->un_sys_blocksize = DEV_BSIZE; 7583 un->un_blockcount = 0; 7584 7585 /* 7586 * Set up the per-instance info needed to determine the correct 7587 * CDBs and other info for issuing commands to the target. 7588 */ 7589 sd_init_cdb_limits(un); 7590 7591 /* 7592 * Set up the IO chains to use, based upon the target type. 7593 */ 7594 if (un->un_f_non_devbsize_supported) { 7595 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA; 7596 } else { 7597 un->un_buf_chain_type = SD_CHAIN_INFO_DISK; 7598 } 7599 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD; 7600 un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD; 7601 un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD; 7602 7603 un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf), 7604 sd_xbuf_strategy, un, sd_xbuf_active_limit, sd_xbuf_reserve_limit, 7605 ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER); 7606 ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi); 7607 7608 7609 if (ISCD(un)) { 7610 un->un_additional_codes = sd_additional_codes; 7611 } else { 7612 un->un_additional_codes = NULL; 7613 } 7614 7615 /* 7616 * Create the kstats here so they can be available for attach-time 7617 * routines that send commands to the unit (either polled or via 7618 * sd_send_scsi_cmd). 7619 * 7620 * Note: This is a critical sequence that needs to be maintained: 7621 * 1) Instantiate the kstats here, before any routines using the 7622 * iopath (i.e. sd_send_scsi_cmd). 7623 * 2) Instantiate and initialize the partition stats 7624 * (sd_set_pstats). 7625 * 3) Initialize the error stats (sd_set_errstats), following 7626 * sd_validate_geometry(),sd_register_devid(), 7627 * and sd_cache_control(). 7628 */ 7629 7630 un->un_stats = kstat_create(sd_label, instance, 7631 NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT); 7632 if (un->un_stats != NULL) { 7633 un->un_stats->ks_lock = SD_MUTEX(un); 7634 kstat_install(un->un_stats); 7635 } 7636 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7637 "sd_unit_attach: un:0x%p un_stats created\n", un); 7638 7639 sd_create_errstats(un, instance); 7640 if (un->un_errstats == NULL) { 7641 goto create_errstats_failed; 7642 } 7643 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7644 "sd_unit_attach: un:0x%p errstats created\n", un); 7645 7646 /* 7647 * The following if/else code was relocated here from below as part 7648 * of the fix for bug (4430280). However with the default setup added 7649 * on entry to this routine, it's no longer absolutely necessary for 7650 * this to be before the call to sd_spin_up_unit. 7651 */ 7652 if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) { 7653 int tq_trigger_flag = (((devp->sd_inq->inq_ansi == 4) || 7654 (devp->sd_inq->inq_ansi == 5)) && 7655 devp->sd_inq->inq_bque) || devp->sd_inq->inq_cmdque; 7656 7657 /* 7658 * If tagged queueing is supported by the target 7659 * and by the host adapter then we will enable it 7660 */ 7661 un->un_tagflags = 0; 7662 if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && tq_trigger_flag && 7663 (un->un_f_arq_enabled == TRUE)) { 7664 if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 7665 1, 1) == 1) { 7666 un->un_tagflags = FLAG_STAG; 7667 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7668 "sd_unit_attach: un:0x%p tag queueing " 7669 "enabled\n", un); 7670 } else if (scsi_ifgetcap(SD_ADDRESS(un), 7671 "untagged-qing", 0) == 1) { 7672 un->un_f_opt_queueing = TRUE; 7673 un->un_saved_throttle = un->un_throttle = 7674 min(un->un_throttle, 3); 7675 } else { 7676 un->un_f_opt_queueing = FALSE; 7677 un->un_saved_throttle = un->un_throttle = 1; 7678 } 7679 } else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0) 7680 == 1) && (un->un_f_arq_enabled == TRUE)) { 7681 /* The Host Adapter supports internal queueing. */ 7682 un->un_f_opt_queueing = TRUE; 7683 un->un_saved_throttle = un->un_throttle = 7684 min(un->un_throttle, 3); 7685 } else { 7686 un->un_f_opt_queueing = FALSE; 7687 un->un_saved_throttle = un->un_throttle = 1; 7688 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7689 "sd_unit_attach: un:0x%p no tag queueing\n", un); 7690 } 7691 7692 /* 7693 * Enable large transfers for SATA/SAS drives 7694 */ 7695 if (SD_IS_SERIAL(un)) { 7696 un->un_max_xfer_size = 7697 ddi_getprop(DDI_DEV_T_ANY, devi, 0, 7698 sd_max_xfer_size, SD_MAX_XFER_SIZE); 7699 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7700 "sd_unit_attach: un:0x%p max transfer " 7701 "size=0x%x\n", un, un->un_max_xfer_size); 7702 7703 } 7704 7705 /* Setup or tear down default wide operations for disks */ 7706 7707 /* 7708 * Note: Legacy: it may be possible for both "sd_max_xfer_size" 7709 * and "ssd_max_xfer_size" to exist simultaneously on the same 7710 * system and be set to different values. In the future this 7711 * code may need to be updated when the ssd module is 7712 * obsoleted and removed from the system. (4299588) 7713 */ 7714 if (SD_IS_PARALLEL_SCSI(un) && 7715 (devp->sd_inq->inq_rdf == RDF_SCSI2) && 7716 (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) { 7717 if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 7718 1, 1) == 1) { 7719 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7720 "sd_unit_attach: un:0x%p Wide Transfer " 7721 "enabled\n", un); 7722 } 7723 7724 /* 7725 * If tagged queuing has also been enabled, then 7726 * enable large xfers 7727 */ 7728 if (un->un_saved_throttle == sd_max_throttle) { 7729 un->un_max_xfer_size = 7730 ddi_getprop(DDI_DEV_T_ANY, devi, 0, 7731 sd_max_xfer_size, SD_MAX_XFER_SIZE); 7732 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7733 "sd_unit_attach: un:0x%p max transfer " 7734 "size=0x%x\n", un, un->un_max_xfer_size); 7735 } 7736 } else { 7737 if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 7738 0, 1) == 1) { 7739 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7740 "sd_unit_attach: un:0x%p " 7741 "Wide Transfer disabled\n", un); 7742 } 7743 } 7744 } else { 7745 un->un_tagflags = FLAG_STAG; 7746 un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY, 7747 devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE); 7748 } 7749 7750 /* 7751 * If this target supports LUN reset, try to enable it. 7752 */ 7753 if (un->un_f_lun_reset_enabled) { 7754 if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) { 7755 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: " 7756 "un:0x%p lun_reset capability set\n", un); 7757 } else { 7758 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: " 7759 "un:0x%p lun-reset capability not set\n", un); 7760 } 7761 } 7762 7763 /* 7764 * Adjust the maximum transfer size. This is to fix 7765 * the problem of partial DMA support on SPARC. Some 7766 * HBA driver, like aac, has very small dma_attr_maxxfer 7767 * size, which requires partial DMA support on SPARC. 7768 * In the future the SPARC pci nexus driver may solve 7769 * the problem instead of this fix. 7770 */ 7771 max_xfer_size = scsi_ifgetcap(SD_ADDRESS(un), "dma-max", 1); 7772 if ((max_xfer_size > 0) && (max_xfer_size < un->un_max_xfer_size)) { 7773 /* We need DMA partial even on sparc to ensure sddump() works */ 7774 un->un_max_xfer_size = max_xfer_size; 7775 if (un->un_partial_dma_supported == 0) 7776 un->un_partial_dma_supported = 1; 7777 } 7778 if (ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 7779 DDI_PROP_DONTPASS, "buf_break", 0) == 1) { 7780 if (ddi_xbuf_attr_setup_brk(un->un_xbuf_attr, 7781 un->un_max_xfer_size) == 1) { 7782 un->un_buf_breakup_supported = 1; 7783 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: " 7784 "un:0x%p Buf breakup enabled\n", un); 7785 } 7786 } 7787 7788 /* 7789 * Set PKT_DMA_PARTIAL flag. 7790 */ 7791 if (un->un_partial_dma_supported == 1) { 7792 un->un_pkt_flags = PKT_DMA_PARTIAL; 7793 } else { 7794 un->un_pkt_flags = 0; 7795 } 7796 7797 /* Initialize sd_ssc_t for internal uscsi commands */ 7798 ssc = sd_ssc_init(un); 7799 scsi_fm_init(devp); 7800 7801 /* 7802 * Allocate memory for SCSI FMA stuffs. 7803 */ 7804 un->un_fm_private = 7805 kmem_zalloc(sizeof (struct sd_fm_internal), KM_SLEEP); 7806 sfip = (struct sd_fm_internal *)un->un_fm_private; 7807 sfip->fm_ssc.ssc_uscsi_cmd = &sfip->fm_ucmd; 7808 sfip->fm_ssc.ssc_uscsi_info = &sfip->fm_uinfo; 7809 sfip->fm_ssc.ssc_un = un; 7810 7811 if (ISCD(un) || 7812 un->un_f_has_removable_media || 7813 devp->sd_fm_capable == DDI_FM_NOT_CAPABLE) { 7814 /* 7815 * We don't touch CDROM or the DDI_FM_NOT_CAPABLE device. 7816 * Their log are unchanged. 7817 */ 7818 sfip->fm_log_level = SD_FM_LOG_NSUP; 7819 } else { 7820 /* 7821 * If enter here, it should be non-CDROM and FM-capable 7822 * device, and it will not keep the old scsi_log as before 7823 * in /var/adm/messages. However, the property 7824 * "fm-scsi-log" will control whether the FM telemetry will 7825 * be logged in /var/adm/messages. 7826 */ 7827 int fm_scsi_log; 7828 fm_scsi_log = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 7829 DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "fm-scsi-log", 0); 7830 7831 if (fm_scsi_log) 7832 sfip->fm_log_level = SD_FM_LOG_EREPORT; 7833 else 7834 sfip->fm_log_level = SD_FM_LOG_SILENT; 7835 } 7836 7837 /* 7838 * At this point in the attach, we have enough info in the 7839 * soft state to be able to issue commands to the target. 7840 * 7841 * All command paths used below MUST issue their commands as 7842 * SD_PATH_DIRECT. This is important as intermediate layers 7843 * are not all initialized yet (such as PM). 7844 */ 7845 7846 /* 7847 * Send a TEST UNIT READY command to the device. This should clear 7848 * any outstanding UNIT ATTENTION that may be present. 7849 * 7850 * Note: Don't check for success, just track if there is a reservation, 7851 * this is a throw away command to clear any unit attentions. 7852 * 7853 * Note: This MUST be the first command issued to the target during 7854 * attach to ensure power on UNIT ATTENTIONS are cleared. 7855 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated 7856 * with attempts at spinning up a device with no media. 7857 */ 7858 status = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR); 7859 if (status != 0) { 7860 if (status == EACCES) 7861 reservation_flag = SD_TARGET_IS_RESERVED; 7862 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 7863 } 7864 7865 /* 7866 * If the device is NOT a removable media device, attempt to spin 7867 * it up (using the START_STOP_UNIT command) and read its capacity 7868 * (using the READ CAPACITY command). Note, however, that either 7869 * of these could fail and in some cases we would continue with 7870 * the attach despite the failure (see below). 7871 */ 7872 if (un->un_f_descr_format_supported) { 7873 7874 switch (sd_spin_up_unit(ssc)) { 7875 case 0: 7876 /* 7877 * Spin-up was successful; now try to read the 7878 * capacity. If successful then save the results 7879 * and mark the capacity & lbasize as valid. 7880 */ 7881 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7882 "sd_unit_attach: un:0x%p spin-up successful\n", un); 7883 7884 status = sd_send_scsi_READ_CAPACITY(ssc, &capacity, 7885 &lbasize, SD_PATH_DIRECT); 7886 7887 switch (status) { 7888 case 0: { 7889 if (capacity > DK_MAX_BLOCKS) { 7890 #ifdef _LP64 7891 if ((capacity + 1) > 7892 SD_GROUP1_MAX_ADDRESS) { 7893 /* 7894 * Enable descriptor format 7895 * sense data so that we can 7896 * get 64 bit sense data 7897 * fields. 7898 */ 7899 sd_enable_descr_sense(ssc); 7900 } 7901 #else 7902 /* 32-bit kernels can't handle this */ 7903 scsi_log(SD_DEVINFO(un), 7904 sd_label, CE_WARN, 7905 "disk has %llu blocks, which " 7906 "is too large for a 32-bit " 7907 "kernel", capacity); 7908 7909 #if defined(__i386) || defined(__amd64) 7910 /* 7911 * 1TB disk was treated as (1T - 512)B 7912 * in the past, so that it might have 7913 * valid VTOC and solaris partitions, 7914 * we have to allow it to continue to 7915 * work. 7916 */ 7917 if (capacity -1 > DK_MAX_BLOCKS) 7918 #endif 7919 goto spinup_failed; 7920 #endif 7921 } 7922 7923 /* 7924 * Here it's not necessary to check the case: 7925 * the capacity of the device is bigger than 7926 * what the max hba cdb can support. Because 7927 * sd_send_scsi_READ_CAPACITY will retrieve 7928 * the capacity by sending USCSI command, which 7929 * is constrained by the max hba cdb. Actually, 7930 * sd_send_scsi_READ_CAPACITY will return 7931 * EINVAL when using bigger cdb than required 7932 * cdb length. Will handle this case in 7933 * "case EINVAL". 7934 */ 7935 7936 /* 7937 * The following relies on 7938 * sd_send_scsi_READ_CAPACITY never 7939 * returning 0 for capacity and/or lbasize. 7940 */ 7941 sd_update_block_info(un, lbasize, capacity); 7942 7943 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7944 "sd_unit_attach: un:0x%p capacity = %ld " 7945 "blocks; lbasize= %ld.\n", un, 7946 un->un_blockcount, un->un_tgt_blocksize); 7947 7948 break; 7949 } 7950 case EINVAL: 7951 /* 7952 * In the case where the max-cdb-length property 7953 * is smaller than the required CDB length for 7954 * a SCSI device, a target driver can fail to 7955 * attach to that device. 7956 */ 7957 scsi_log(SD_DEVINFO(un), 7958 sd_label, CE_WARN, 7959 "disk capacity is too large " 7960 "for current cdb length"); 7961 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 7962 7963 goto spinup_failed; 7964 case EACCES: 7965 /* 7966 * Should never get here if the spin-up 7967 * succeeded, but code it in anyway. 7968 * From here, just continue with the attach... 7969 */ 7970 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7971 "sd_unit_attach: un:0x%p " 7972 "sd_send_scsi_READ_CAPACITY " 7973 "returned reservation conflict\n", un); 7974 reservation_flag = SD_TARGET_IS_RESERVED; 7975 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 7976 break; 7977 default: 7978 /* 7979 * Likewise, should never get here if the 7980 * spin-up succeeded. Just continue with 7981 * the attach... 7982 */ 7983 if (status == EIO) 7984 sd_ssc_assessment(ssc, 7985 SD_FMT_STATUS_CHECK); 7986 else 7987 sd_ssc_assessment(ssc, 7988 SD_FMT_IGNORE); 7989 break; 7990 } 7991 break; 7992 case EACCES: 7993 /* 7994 * Device is reserved by another host. In this case 7995 * we could not spin it up or read the capacity, but 7996 * we continue with the attach anyway. 7997 */ 7998 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7999 "sd_unit_attach: un:0x%p spin-up reservation " 8000 "conflict.\n", un); 8001 reservation_flag = SD_TARGET_IS_RESERVED; 8002 break; 8003 default: 8004 /* Fail the attach if the spin-up failed. */ 8005 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8006 "sd_unit_attach: un:0x%p spin-up failed.", un); 8007 goto spinup_failed; 8008 } 8009 8010 } 8011 8012 /* 8013 * Check to see if this is a MMC drive 8014 */ 8015 if (ISCD(un)) { 8016 sd_set_mmc_caps(ssc); 8017 } 8018 8019 8020 /* 8021 * Add a zero-length attribute to tell the world we support 8022 * kernel ioctls (for layered drivers) 8023 */ 8024 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP, 8025 DDI_KERNEL_IOCTL, NULL, 0); 8026 8027 /* 8028 * Add a boolean property to tell the world we support 8029 * the B_FAILFAST flag (for layered drivers) 8030 */ 8031 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP, 8032 "ddi-failfast-supported", NULL, 0); 8033 8034 /* 8035 * Initialize power management 8036 */ 8037 mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL); 8038 cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL); 8039 sd_setup_pm(ssc, devi); 8040 if (un->un_f_pm_is_enabled == FALSE) { 8041 /* 8042 * For performance, point to a jump table that does 8043 * not include pm. 8044 * The direct and priority chains don't change with PM. 8045 * 8046 * Note: this is currently done based on individual device 8047 * capabilities. When an interface for determining system 8048 * power enabled state becomes available, or when additional 8049 * layers are added to the command chain, these values will 8050 * have to be re-evaluated for correctness. 8051 */ 8052 if (un->un_f_non_devbsize_supported) { 8053 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM; 8054 } else { 8055 un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM; 8056 } 8057 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM; 8058 } 8059 8060 /* 8061 * This property is set to 0 by HA software to avoid retries 8062 * on a reserved disk. (The preferred property name is 8063 * "retry-on-reservation-conflict") (1189689) 8064 * 8065 * Note: The use of a global here can have unintended consequences. A 8066 * per instance variable is preferable to match the capabilities of 8067 * different underlying hba's (4402600) 8068 */ 8069 sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi, 8070 DDI_PROP_DONTPASS, "retry-on-reservation-conflict", 8071 sd_retry_on_reservation_conflict); 8072 if (sd_retry_on_reservation_conflict != 0) { 8073 sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, 8074 devi, DDI_PROP_DONTPASS, sd_resv_conflict_name, 8075 sd_retry_on_reservation_conflict); 8076 } 8077 8078 /* Set up options for QFULL handling. */ 8079 if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0, 8080 "qfull-retries", -1)) != -1) { 8081 (void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries", 8082 rval, 1); 8083 } 8084 if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0, 8085 "qfull-retry-interval", -1)) != -1) { 8086 (void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval", 8087 rval, 1); 8088 } 8089 8090 /* 8091 * This just prints a message that announces the existence of the 8092 * device. The message is always printed in the system logfile, but 8093 * only appears on the console if the system is booted with the 8094 * -v (verbose) argument. 8095 */ 8096 ddi_report_dev(devi); 8097 8098 un->un_mediastate = DKIO_NONE; 8099 8100 /* 8101 * Check if this is a SSD(Solid State Drive). 8102 */ 8103 sd_check_solid_state(ssc); 8104 8105 cmlb_alloc_handle(&un->un_cmlbhandle); 8106 8107 #if defined(__i386) || defined(__amd64) 8108 /* 8109 * On x86, compensate for off-by-1 legacy error 8110 */ 8111 if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable && 8112 (lbasize == un->un_sys_blocksize)) 8113 offbyone = CMLB_OFF_BY_ONE; 8114 #endif 8115 8116 if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype, 8117 VOID2BOOLEAN(un->un_f_has_removable_media != 0), 8118 VOID2BOOLEAN(un->un_f_is_hotpluggable != 0), 8119 un->un_node_type, offbyone, un->un_cmlbhandle, 8120 (void *)SD_PATH_DIRECT) != 0) { 8121 goto cmlb_attach_failed; 8122 } 8123 8124 8125 /* 8126 * Read and validate the device's geometry (ie, disk label) 8127 * A new unformatted drive will not have a valid geometry, but 8128 * the driver needs to successfully attach to this device so 8129 * the drive can be formatted via ioctls. 8130 */ 8131 geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0, 8132 (void *)SD_PATH_DIRECT) == 0) ? 1: 0; 8133 8134 mutex_enter(SD_MUTEX(un)); 8135 8136 /* 8137 * Read and initialize the devid for the unit. 8138 */ 8139 if (un->un_f_devid_supported) { 8140 sd_register_devid(ssc, devi, reservation_flag); 8141 } 8142 mutex_exit(SD_MUTEX(un)); 8143 8144 #if (defined(__fibre)) 8145 /* 8146 * Register callbacks for fibre only. You can't do this solely 8147 * on the basis of the devid_type because this is hba specific. 8148 * We need to query our hba capabilities to find out whether to 8149 * register or not. 8150 */ 8151 if (un->un_f_is_fibre) { 8152 if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) { 8153 sd_init_event_callbacks(un); 8154 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8155 "sd_unit_attach: un:0x%p event callbacks inserted", 8156 un); 8157 } 8158 } 8159 #endif 8160 8161 if (un->un_f_opt_disable_cache == TRUE) { 8162 /* 8163 * Disable both read cache and write cache. This is 8164 * the historic behavior of the keywords in the config file. 8165 */ 8166 if (sd_cache_control(ssc, SD_CACHE_DISABLE, SD_CACHE_DISABLE) != 8167 0) { 8168 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8169 "sd_unit_attach: un:0x%p Could not disable " 8170 "caching", un); 8171 goto devid_failed; 8172 } 8173 } 8174 8175 /* 8176 * Check the value of the WCE bit now and 8177 * set un_f_write_cache_enabled accordingly. 8178 */ 8179 (void) sd_get_write_cache_enabled(ssc, &wc_enabled); 8180 mutex_enter(SD_MUTEX(un)); 8181 un->un_f_write_cache_enabled = (wc_enabled != 0); 8182 mutex_exit(SD_MUTEX(un)); 8183 8184 if (un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR && 8185 un->un_tgt_blocksize != DEV_BSIZE) { 8186 if (!(un->un_wm_cache)) { 8187 (void) snprintf(name_str, sizeof (name_str), 8188 "%s%d_cache", 8189 ddi_driver_name(SD_DEVINFO(un)), 8190 ddi_get_instance(SD_DEVINFO(un))); 8191 un->un_wm_cache = kmem_cache_create( 8192 name_str, sizeof (struct sd_w_map), 8193 8, sd_wm_cache_constructor, 8194 sd_wm_cache_destructor, NULL, 8195 (void *)un, NULL, 0); 8196 if (!(un->un_wm_cache)) { 8197 goto wm_cache_failed; 8198 } 8199 } 8200 } 8201 8202 /* 8203 * Check the value of the NV_SUP bit and set 8204 * un_f_suppress_cache_flush accordingly. 8205 */ 8206 sd_get_nv_sup(ssc); 8207 8208 /* 8209 * Find out what type of reservation this disk supports. 8210 */ 8211 status = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS, 0, NULL); 8212 8213 switch (status) { 8214 case 0: 8215 /* 8216 * SCSI-3 reservations are supported. 8217 */ 8218 un->un_reservation_type = SD_SCSI3_RESERVATION; 8219 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8220 "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un); 8221 break; 8222 case ENOTSUP: 8223 /* 8224 * The PERSISTENT RESERVE IN command would not be recognized by 8225 * a SCSI-2 device, so assume the reservation type is SCSI-2. 8226 */ 8227 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8228 "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un); 8229 un->un_reservation_type = SD_SCSI2_RESERVATION; 8230 8231 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 8232 break; 8233 default: 8234 /* 8235 * default to SCSI-3 reservations 8236 */ 8237 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8238 "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un); 8239 un->un_reservation_type = SD_SCSI3_RESERVATION; 8240 8241 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 8242 break; 8243 } 8244 8245 /* 8246 * Set the pstat and error stat values here, so data obtained during the 8247 * previous attach-time routines is available. 8248 * 8249 * Note: This is a critical sequence that needs to be maintained: 8250 * 1) Instantiate the kstats before any routines using the iopath 8251 * (i.e. sd_send_scsi_cmd). 8252 * 2) Initialize the error stats (sd_set_errstats) and partition 8253 * stats (sd_set_pstats)here, following 8254 * cmlb_validate_geometry(), sd_register_devid(), and 8255 * sd_cache_control(). 8256 */ 8257 8258 if (un->un_f_pkstats_enabled && geom_label_valid) { 8259 sd_set_pstats(un); 8260 SD_TRACE(SD_LOG_IO_PARTITION, un, 8261 "sd_unit_attach: un:0x%p pstats created and set\n", un); 8262 } 8263 8264 sd_set_errstats(un); 8265 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8266 "sd_unit_attach: un:0x%p errstats set\n", un); 8267 8268 8269 /* 8270 * After successfully attaching an instance, we record the information 8271 * of how many luns have been attached on the relative target and 8272 * controller for parallel SCSI. This information is used when sd tries 8273 * to set the tagged queuing capability in HBA. 8274 */ 8275 if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) { 8276 sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH); 8277 } 8278 8279 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8280 "sd_unit_attach: un:0x%p exit success\n", un); 8281 8282 /* Uninitialize sd_ssc_t pointer */ 8283 sd_ssc_fini(ssc); 8284 8285 return (DDI_SUCCESS); 8286 8287 /* 8288 * An error occurred during the attach; clean up & return failure. 8289 */ 8290 wm_cache_failed: 8291 devid_failed: 8292 8293 setup_pm_failed: 8294 ddi_remove_minor_node(devi, NULL); 8295 8296 cmlb_attach_failed: 8297 /* 8298 * Cleanup from the scsi_ifsetcap() calls (437868) 8299 */ 8300 (void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1); 8301 (void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1); 8302 8303 /* 8304 * Refer to the comments of setting tagged-qing in the beginning of 8305 * sd_unit_attach. We can only disable tagged queuing when there is 8306 * no lun attached on the target. 8307 */ 8308 if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) { 8309 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 8310 } 8311 8312 if (un->un_f_is_fibre == FALSE) { 8313 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1); 8314 } 8315 8316 spinup_failed: 8317 8318 /* Uninitialize sd_ssc_t pointer */ 8319 sd_ssc_fini(ssc); 8320 8321 mutex_enter(SD_MUTEX(un)); 8322 8323 /* Deallocate SCSI FMA memory spaces */ 8324 kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal)); 8325 8326 /* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */ 8327 if (un->un_direct_priority_timeid != NULL) { 8328 timeout_id_t temp_id = un->un_direct_priority_timeid; 8329 un->un_direct_priority_timeid = NULL; 8330 mutex_exit(SD_MUTEX(un)); 8331 (void) untimeout(temp_id); 8332 mutex_enter(SD_MUTEX(un)); 8333 } 8334 8335 /* Cancel any pending start/stop timeouts */ 8336 if (un->un_startstop_timeid != NULL) { 8337 timeout_id_t temp_id = un->un_startstop_timeid; 8338 un->un_startstop_timeid = NULL; 8339 mutex_exit(SD_MUTEX(un)); 8340 (void) untimeout(temp_id); 8341 mutex_enter(SD_MUTEX(un)); 8342 } 8343 8344 /* Cancel any pending reset-throttle timeouts */ 8345 if (un->un_reset_throttle_timeid != NULL) { 8346 timeout_id_t temp_id = un->un_reset_throttle_timeid; 8347 un->un_reset_throttle_timeid = NULL; 8348 mutex_exit(SD_MUTEX(un)); 8349 (void) untimeout(temp_id); 8350 mutex_enter(SD_MUTEX(un)); 8351 } 8352 8353 /* Cancel rmw warning message timeouts */ 8354 if (un->un_rmw_msg_timeid != NULL) { 8355 timeout_id_t temp_id = un->un_rmw_msg_timeid; 8356 un->un_rmw_msg_timeid = NULL; 8357 mutex_exit(SD_MUTEX(un)); 8358 (void) untimeout(temp_id); 8359 mutex_enter(SD_MUTEX(un)); 8360 } 8361 8362 /* Cancel any pending retry timeouts */ 8363 if (un->un_retry_timeid != NULL) { 8364 timeout_id_t temp_id = un->un_retry_timeid; 8365 un->un_retry_timeid = NULL; 8366 mutex_exit(SD_MUTEX(un)); 8367 (void) untimeout(temp_id); 8368 mutex_enter(SD_MUTEX(un)); 8369 } 8370 8371 /* Cancel any pending delayed cv broadcast timeouts */ 8372 if (un->un_dcvb_timeid != NULL) { 8373 timeout_id_t temp_id = un->un_dcvb_timeid; 8374 un->un_dcvb_timeid = NULL; 8375 mutex_exit(SD_MUTEX(un)); 8376 (void) untimeout(temp_id); 8377 mutex_enter(SD_MUTEX(un)); 8378 } 8379 8380 mutex_exit(SD_MUTEX(un)); 8381 8382 /* There should not be any in-progress I/O so ASSERT this check */ 8383 ASSERT(un->un_ncmds_in_transport == 0); 8384 ASSERT(un->un_ncmds_in_driver == 0); 8385 8386 /* Do not free the softstate if the callback routine is active */ 8387 sd_sync_with_callback(un); 8388 8389 /* 8390 * Partition stats apparently are not used with removables. These would 8391 * not have been created during attach, so no need to clean them up... 8392 */ 8393 if (un->un_errstats != NULL) { 8394 kstat_delete(un->un_errstats); 8395 un->un_errstats = NULL; 8396 } 8397 8398 create_errstats_failed: 8399 8400 if (un->un_stats != NULL) { 8401 kstat_delete(un->un_stats); 8402 un->un_stats = NULL; 8403 } 8404 8405 ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi); 8406 ddi_xbuf_attr_destroy(un->un_xbuf_attr); 8407 8408 ddi_prop_remove_all(devi); 8409 sema_destroy(&un->un_semoclose); 8410 cv_destroy(&un->un_state_cv); 8411 8412 getrbuf_failed: 8413 8414 sd_free_rqs(un); 8415 8416 alloc_rqs_failed: 8417 8418 devp->sd_private = NULL; 8419 bzero(un, sizeof (struct sd_lun)); /* Clear any stale data! */ 8420 8421 get_softstate_failed: 8422 /* 8423 * Note: the man pages are unclear as to whether or not doing a 8424 * ddi_soft_state_free(sd_state, instance) is the right way to 8425 * clean up after the ddi_soft_state_zalloc() if the subsequent 8426 * ddi_get_soft_state() fails. The implication seems to be 8427 * that the get_soft_state cannot fail if the zalloc succeeds. 8428 */ 8429 #ifndef XPV_HVM_DRIVER 8430 ddi_soft_state_free(sd_state, instance); 8431 #endif /* !XPV_HVM_DRIVER */ 8432 8433 probe_failed: 8434 scsi_unprobe(devp); 8435 8436 return (DDI_FAILURE); 8437 } 8438 8439 8440 /* 8441 * Function: sd_unit_detach 8442 * 8443 * Description: Performs DDI_DETACH processing for sddetach(). 8444 * 8445 * Return Code: DDI_SUCCESS 8446 * DDI_FAILURE 8447 * 8448 * Context: Kernel thread context 8449 */ 8450 8451 static int 8452 sd_unit_detach(dev_info_t *devi) 8453 { 8454 struct scsi_device *devp; 8455 struct sd_lun *un; 8456 int i; 8457 int tgt; 8458 dev_t dev; 8459 dev_info_t *pdip = ddi_get_parent(devi); 8460 #ifndef XPV_HVM_DRIVER 8461 int instance = ddi_get_instance(devi); 8462 #endif /* !XPV_HVM_DRIVER */ 8463 8464 mutex_enter(&sd_detach_mutex); 8465 8466 /* 8467 * Fail the detach for any of the following: 8468 * - Unable to get the sd_lun struct for the instance 8469 * - A layered driver has an outstanding open on the instance 8470 * - Another thread is already detaching this instance 8471 * - Another thread is currently performing an open 8472 */ 8473 devp = ddi_get_driver_private(devi); 8474 if ((devp == NULL) || 8475 ((un = (struct sd_lun *)devp->sd_private) == NULL) || 8476 (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) || 8477 (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) { 8478 mutex_exit(&sd_detach_mutex); 8479 return (DDI_FAILURE); 8480 } 8481 8482 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un); 8483 8484 /* 8485 * Mark this instance as currently in a detach, to inhibit any 8486 * opens from a layered driver. 8487 */ 8488 un->un_detach_count++; 8489 mutex_exit(&sd_detach_mutex); 8490 8491 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 8492 SCSI_ADDR_PROP_TARGET, -1); 8493 8494 dev = sd_make_device(SD_DEVINFO(un)); 8495 8496 #ifndef lint 8497 _NOTE(COMPETING_THREADS_NOW); 8498 #endif 8499 8500 mutex_enter(SD_MUTEX(un)); 8501 8502 /* 8503 * Fail the detach if there are any outstanding layered 8504 * opens on this device. 8505 */ 8506 for (i = 0; i < NDKMAP; i++) { 8507 if (un->un_ocmap.lyropen[i] != 0) { 8508 goto err_notclosed; 8509 } 8510 } 8511 8512 /* 8513 * Verify there are NO outstanding commands issued to this device. 8514 * ie, un_ncmds_in_transport == 0. 8515 * It's possible to have outstanding commands through the physio 8516 * code path, even though everything's closed. 8517 */ 8518 if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) || 8519 (un->un_direct_priority_timeid != NULL) || 8520 (un->un_state == SD_STATE_RWAIT)) { 8521 mutex_exit(SD_MUTEX(un)); 8522 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8523 "sd_dr_detach: Detach failure due to outstanding cmds\n"); 8524 goto err_stillbusy; 8525 } 8526 8527 /* 8528 * If we have the device reserved, release the reservation. 8529 */ 8530 if ((un->un_resvd_status & SD_RESERVE) && 8531 !(un->un_resvd_status & SD_LOST_RESERVE)) { 8532 mutex_exit(SD_MUTEX(un)); 8533 /* 8534 * Note: sd_reserve_release sends a command to the device 8535 * via the sd_ioctlcmd() path, and can sleep. 8536 */ 8537 if (sd_reserve_release(dev, SD_RELEASE) != 0) { 8538 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8539 "sd_dr_detach: Cannot release reservation \n"); 8540 } 8541 } else { 8542 mutex_exit(SD_MUTEX(un)); 8543 } 8544 8545 /* 8546 * Untimeout any reserve recover, throttle reset, restart unit 8547 * and delayed broadcast timeout threads. Protect the timeout pointer 8548 * from getting nulled by their callback functions. 8549 */ 8550 mutex_enter(SD_MUTEX(un)); 8551 if (un->un_resvd_timeid != NULL) { 8552 timeout_id_t temp_id = un->un_resvd_timeid; 8553 un->un_resvd_timeid = NULL; 8554 mutex_exit(SD_MUTEX(un)); 8555 (void) untimeout(temp_id); 8556 mutex_enter(SD_MUTEX(un)); 8557 } 8558 8559 if (un->un_reset_throttle_timeid != NULL) { 8560 timeout_id_t temp_id = un->un_reset_throttle_timeid; 8561 un->un_reset_throttle_timeid = NULL; 8562 mutex_exit(SD_MUTEX(un)); 8563 (void) untimeout(temp_id); 8564 mutex_enter(SD_MUTEX(un)); 8565 } 8566 8567 if (un->un_startstop_timeid != NULL) { 8568 timeout_id_t temp_id = un->un_startstop_timeid; 8569 un->un_startstop_timeid = NULL; 8570 mutex_exit(SD_MUTEX(un)); 8571 (void) untimeout(temp_id); 8572 mutex_enter(SD_MUTEX(un)); 8573 } 8574 8575 if (un->un_rmw_msg_timeid != NULL) { 8576 timeout_id_t temp_id = un->un_rmw_msg_timeid; 8577 un->un_rmw_msg_timeid = NULL; 8578 mutex_exit(SD_MUTEX(un)); 8579 (void) untimeout(temp_id); 8580 mutex_enter(SD_MUTEX(un)); 8581 } 8582 8583 if (un->un_dcvb_timeid != NULL) { 8584 timeout_id_t temp_id = un->un_dcvb_timeid; 8585 un->un_dcvb_timeid = NULL; 8586 mutex_exit(SD_MUTEX(un)); 8587 (void) untimeout(temp_id); 8588 } else { 8589 mutex_exit(SD_MUTEX(un)); 8590 } 8591 8592 /* Remove any pending reservation reclaim requests for this device */ 8593 sd_rmv_resv_reclaim_req(dev); 8594 8595 mutex_enter(SD_MUTEX(un)); 8596 8597 /* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */ 8598 if (un->un_direct_priority_timeid != NULL) { 8599 timeout_id_t temp_id = un->un_direct_priority_timeid; 8600 un->un_direct_priority_timeid = NULL; 8601 mutex_exit(SD_MUTEX(un)); 8602 (void) untimeout(temp_id); 8603 mutex_enter(SD_MUTEX(un)); 8604 } 8605 8606 /* Cancel any active multi-host disk watch thread requests */ 8607 if (un->un_mhd_token != NULL) { 8608 mutex_exit(SD_MUTEX(un)); 8609 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token)); 8610 if (scsi_watch_request_terminate(un->un_mhd_token, 8611 SCSI_WATCH_TERMINATE_NOWAIT)) { 8612 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8613 "sd_dr_detach: Cannot cancel mhd watch request\n"); 8614 /* 8615 * Note: We are returning here after having removed 8616 * some driver timeouts above. This is consistent with 8617 * the legacy implementation but perhaps the watch 8618 * terminate call should be made with the wait flag set. 8619 */ 8620 goto err_stillbusy; 8621 } 8622 mutex_enter(SD_MUTEX(un)); 8623 un->un_mhd_token = NULL; 8624 } 8625 8626 if (un->un_swr_token != NULL) { 8627 mutex_exit(SD_MUTEX(un)); 8628 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token)); 8629 if (scsi_watch_request_terminate(un->un_swr_token, 8630 SCSI_WATCH_TERMINATE_NOWAIT)) { 8631 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8632 "sd_dr_detach: Cannot cancel swr watch request\n"); 8633 /* 8634 * Note: We are returning here after having removed 8635 * some driver timeouts above. This is consistent with 8636 * the legacy implementation but perhaps the watch 8637 * terminate call should be made with the wait flag set. 8638 */ 8639 goto err_stillbusy; 8640 } 8641 mutex_enter(SD_MUTEX(un)); 8642 un->un_swr_token = NULL; 8643 } 8644 8645 mutex_exit(SD_MUTEX(un)); 8646 8647 /* 8648 * Clear any scsi_reset_notifies. We clear the reset notifies 8649 * if we have not registered one. 8650 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX! 8651 */ 8652 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL, 8653 sd_mhd_reset_notify_cb, (caddr_t)un); 8654 8655 /* 8656 * protect the timeout pointers from getting nulled by 8657 * their callback functions during the cancellation process. 8658 * In such a scenario untimeout can be invoked with a null value. 8659 */ 8660 _NOTE(NO_COMPETING_THREADS_NOW); 8661 8662 mutex_enter(&un->un_pm_mutex); 8663 if (un->un_pm_idle_timeid != NULL) { 8664 timeout_id_t temp_id = un->un_pm_idle_timeid; 8665 un->un_pm_idle_timeid = NULL; 8666 mutex_exit(&un->un_pm_mutex); 8667 8668 /* 8669 * Timeout is active; cancel it. 8670 * Note that it'll never be active on a device 8671 * that does not support PM therefore we don't 8672 * have to check before calling pm_idle_component. 8673 */ 8674 (void) untimeout(temp_id); 8675 (void) pm_idle_component(SD_DEVINFO(un), 0); 8676 mutex_enter(&un->un_pm_mutex); 8677 } 8678 8679 /* 8680 * Check whether there is already a timeout scheduled for power 8681 * management. If yes then don't lower the power here, that's. 8682 * the timeout handler's job. 8683 */ 8684 if (un->un_pm_timeid != NULL) { 8685 timeout_id_t temp_id = un->un_pm_timeid; 8686 un->un_pm_timeid = NULL; 8687 mutex_exit(&un->un_pm_mutex); 8688 /* 8689 * Timeout is active; cancel it. 8690 * Note that it'll never be active on a device 8691 * that does not support PM therefore we don't 8692 * have to check before calling pm_idle_component. 8693 */ 8694 (void) untimeout(temp_id); 8695 (void) pm_idle_component(SD_DEVINFO(un), 0); 8696 8697 } else { 8698 mutex_exit(&un->un_pm_mutex); 8699 if ((un->un_f_pm_is_enabled == TRUE) && 8700 (pm_lower_power(SD_DEVINFO(un), 0, SD_PM_STATE_STOPPED(un)) 8701 != DDI_SUCCESS)) { 8702 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8703 "sd_dr_detach: Lower power request failed, ignoring.\n"); 8704 /* 8705 * Fix for bug: 4297749, item # 13 8706 * The above test now includes a check to see if PM is 8707 * supported by this device before call 8708 * pm_lower_power(). 8709 * Note, the following is not dead code. The call to 8710 * pm_lower_power above will generate a call back into 8711 * our sdpower routine which might result in a timeout 8712 * handler getting activated. Therefore the following 8713 * code is valid and necessary. 8714 */ 8715 mutex_enter(&un->un_pm_mutex); 8716 if (un->un_pm_timeid != NULL) { 8717 timeout_id_t temp_id = un->un_pm_timeid; 8718 un->un_pm_timeid = NULL; 8719 mutex_exit(&un->un_pm_mutex); 8720 (void) untimeout(temp_id); 8721 (void) pm_idle_component(SD_DEVINFO(un), 0); 8722 } else { 8723 mutex_exit(&un->un_pm_mutex); 8724 } 8725 } 8726 } 8727 8728 /* 8729 * Cleanup from the scsi_ifsetcap() calls (437868) 8730 * Relocated here from above to be after the call to 8731 * pm_lower_power, which was getting errors. 8732 */ 8733 (void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1); 8734 (void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1); 8735 8736 /* 8737 * Currently, tagged queuing is supported per target based by HBA. 8738 * Setting this per lun instance actually sets the capability of this 8739 * target in HBA, which affects those luns already attached on the 8740 * same target. So during detach, we can only disable this capability 8741 * only when this is the only lun left on this target. By doing 8742 * this, we assume a target has the same tagged queuing capability 8743 * for every lun. The condition can be removed when HBA is changed to 8744 * support per lun based tagged queuing capability. 8745 */ 8746 if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) { 8747 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 8748 } 8749 8750 if (un->un_f_is_fibre == FALSE) { 8751 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1); 8752 } 8753 8754 /* 8755 * Remove any event callbacks, fibre only 8756 */ 8757 if (un->un_f_is_fibre == TRUE) { 8758 if ((un->un_insert_event != NULL) && 8759 (ddi_remove_event_handler(un->un_insert_cb_id) != 8760 DDI_SUCCESS)) { 8761 /* 8762 * Note: We are returning here after having done 8763 * substantial cleanup above. This is consistent 8764 * with the legacy implementation but this may not 8765 * be the right thing to do. 8766 */ 8767 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8768 "sd_dr_detach: Cannot cancel insert event\n"); 8769 goto err_remove_event; 8770 } 8771 un->un_insert_event = NULL; 8772 8773 if ((un->un_remove_event != NULL) && 8774 (ddi_remove_event_handler(un->un_remove_cb_id) != 8775 DDI_SUCCESS)) { 8776 /* 8777 * Note: We are returning here after having done 8778 * substantial cleanup above. This is consistent 8779 * with the legacy implementation but this may not 8780 * be the right thing to do. 8781 */ 8782 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8783 "sd_dr_detach: Cannot cancel remove event\n"); 8784 goto err_remove_event; 8785 } 8786 un->un_remove_event = NULL; 8787 } 8788 8789 /* Do not free the softstate if the callback routine is active */ 8790 sd_sync_with_callback(un); 8791 8792 cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT); 8793 cmlb_free_handle(&un->un_cmlbhandle); 8794 8795 /* 8796 * Hold the detach mutex here, to make sure that no other threads ever 8797 * can access a (partially) freed soft state structure. 8798 */ 8799 mutex_enter(&sd_detach_mutex); 8800 8801 /* 8802 * Clean up the soft state struct. 8803 * Cleanup is done in reverse order of allocs/inits. 8804 * At this point there should be no competing threads anymore. 8805 */ 8806 8807 scsi_fm_fini(devp); 8808 8809 /* 8810 * Deallocate memory for SCSI FMA. 8811 */ 8812 kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal)); 8813 8814 /* 8815 * Unregister and free device id if it was not registered 8816 * by the transport. 8817 */ 8818 if (un->un_f_devid_transport_defined == FALSE) 8819 ddi_devid_unregister(devi); 8820 8821 /* 8822 * free the devid structure if allocated before (by ddi_devid_init() 8823 * or ddi_devid_get()). 8824 */ 8825 if (un->un_devid) { 8826 ddi_devid_free(un->un_devid); 8827 un->un_devid = NULL; 8828 } 8829 8830 /* 8831 * Destroy wmap cache if it exists. 8832 */ 8833 if (un->un_wm_cache != NULL) { 8834 kmem_cache_destroy(un->un_wm_cache); 8835 un->un_wm_cache = NULL; 8836 } 8837 8838 /* 8839 * kstat cleanup is done in detach for all device types (4363169). 8840 * We do not want to fail detach if the device kstats are not deleted 8841 * since there is a confusion about the devo_refcnt for the device. 8842 * We just delete the kstats and let detach complete successfully. 8843 */ 8844 if (un->un_stats != NULL) { 8845 kstat_delete(un->un_stats); 8846 un->un_stats = NULL; 8847 } 8848 if (un->un_errstats != NULL) { 8849 kstat_delete(un->un_errstats); 8850 un->un_errstats = NULL; 8851 } 8852 8853 /* Remove partition stats */ 8854 if (un->un_f_pkstats_enabled) { 8855 for (i = 0; i < NSDMAP; i++) { 8856 if (un->un_pstats[i] != NULL) { 8857 kstat_delete(un->un_pstats[i]); 8858 un->un_pstats[i] = NULL; 8859 } 8860 } 8861 } 8862 8863 /* Remove xbuf registration */ 8864 ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi); 8865 ddi_xbuf_attr_destroy(un->un_xbuf_attr); 8866 8867 /* Remove driver properties */ 8868 ddi_prop_remove_all(devi); 8869 8870 mutex_destroy(&un->un_pm_mutex); 8871 cv_destroy(&un->un_pm_busy_cv); 8872 8873 cv_destroy(&un->un_wcc_cv); 8874 8875 /* Open/close semaphore */ 8876 sema_destroy(&un->un_semoclose); 8877 8878 /* Removable media condvar. */ 8879 cv_destroy(&un->un_state_cv); 8880 8881 /* Suspend/resume condvar. */ 8882 cv_destroy(&un->un_suspend_cv); 8883 cv_destroy(&un->un_disk_busy_cv); 8884 8885 sd_free_rqs(un); 8886 8887 /* Free up soft state */ 8888 devp->sd_private = NULL; 8889 8890 bzero(un, sizeof (struct sd_lun)); 8891 #ifndef XPV_HVM_DRIVER 8892 ddi_soft_state_free(sd_state, instance); 8893 #endif /* !XPV_HVM_DRIVER */ 8894 8895 mutex_exit(&sd_detach_mutex); 8896 8897 /* This frees up the INQUIRY data associated with the device. */ 8898 scsi_unprobe(devp); 8899 8900 /* 8901 * After successfully detaching an instance, we update the information 8902 * of how many luns have been attached in the relative target and 8903 * controller for parallel SCSI. This information is used when sd tries 8904 * to set the tagged queuing capability in HBA. 8905 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to 8906 * check if the device is parallel SCSI. However, we don't need to 8907 * check here because we've already checked during attach. No device 8908 * that is not parallel SCSI is in the chain. 8909 */ 8910 if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) { 8911 sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH); 8912 } 8913 8914 return (DDI_SUCCESS); 8915 8916 err_notclosed: 8917 mutex_exit(SD_MUTEX(un)); 8918 8919 err_stillbusy: 8920 _NOTE(NO_COMPETING_THREADS_NOW); 8921 8922 err_remove_event: 8923 mutex_enter(&sd_detach_mutex); 8924 un->un_detach_count--; 8925 mutex_exit(&sd_detach_mutex); 8926 8927 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n"); 8928 return (DDI_FAILURE); 8929 } 8930 8931 8932 /* 8933 * Function: sd_create_errstats 8934 * 8935 * Description: This routine instantiates the device error stats. 8936 * 8937 * Note: During attach the stats are instantiated first so they are 8938 * available for attach-time routines that utilize the driver 8939 * iopath to send commands to the device. The stats are initialized 8940 * separately so data obtained during some attach-time routines is 8941 * available. (4362483) 8942 * 8943 * Arguments: un - driver soft state (unit) structure 8944 * instance - driver instance 8945 * 8946 * Context: Kernel thread context 8947 */ 8948 8949 static void 8950 sd_create_errstats(struct sd_lun *un, int instance) 8951 { 8952 struct sd_errstats *stp; 8953 char kstatmodule_err[KSTAT_STRLEN]; 8954 char kstatname[KSTAT_STRLEN]; 8955 int ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t)); 8956 8957 ASSERT(un != NULL); 8958 8959 if (un->un_errstats != NULL) { 8960 return; 8961 } 8962 8963 (void) snprintf(kstatmodule_err, sizeof (kstatmodule_err), 8964 "%serr", sd_label); 8965 (void) snprintf(kstatname, sizeof (kstatname), 8966 "%s%d,err", sd_label, instance); 8967 8968 un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname, 8969 "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT); 8970 8971 if (un->un_errstats == NULL) { 8972 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8973 "sd_create_errstats: Failed kstat_create\n"); 8974 return; 8975 } 8976 8977 stp = (struct sd_errstats *)un->un_errstats->ks_data; 8978 kstat_named_init(&stp->sd_softerrs, "Soft Errors", 8979 KSTAT_DATA_UINT32); 8980 kstat_named_init(&stp->sd_harderrs, "Hard Errors", 8981 KSTAT_DATA_UINT32); 8982 kstat_named_init(&stp->sd_transerrs, "Transport Errors", 8983 KSTAT_DATA_UINT32); 8984 kstat_named_init(&stp->sd_vid, "Vendor", 8985 KSTAT_DATA_CHAR); 8986 kstat_named_init(&stp->sd_pid, "Product", 8987 KSTAT_DATA_CHAR); 8988 kstat_named_init(&stp->sd_revision, "Revision", 8989 KSTAT_DATA_CHAR); 8990 kstat_named_init(&stp->sd_serial, "Serial No", 8991 KSTAT_DATA_CHAR); 8992 kstat_named_init(&stp->sd_capacity, "Size", 8993 KSTAT_DATA_ULONGLONG); 8994 kstat_named_init(&stp->sd_rq_media_err, "Media Error", 8995 KSTAT_DATA_UINT32); 8996 kstat_named_init(&stp->sd_rq_ntrdy_err, "Device Not Ready", 8997 KSTAT_DATA_UINT32); 8998 kstat_named_init(&stp->sd_rq_nodev_err, "No Device", 8999 KSTAT_DATA_UINT32); 9000 kstat_named_init(&stp->sd_rq_recov_err, "Recoverable", 9001 KSTAT_DATA_UINT32); 9002 kstat_named_init(&stp->sd_rq_illrq_err, "Illegal Request", 9003 KSTAT_DATA_UINT32); 9004 kstat_named_init(&stp->sd_rq_pfa_err, "Predictive Failure Analysis", 9005 KSTAT_DATA_UINT32); 9006 9007 un->un_errstats->ks_private = un; 9008 un->un_errstats->ks_update = nulldev; 9009 9010 kstat_install(un->un_errstats); 9011 } 9012 9013 9014 /* 9015 * Function: sd_set_errstats 9016 * 9017 * Description: This routine sets the value of the vendor id, product id, 9018 * revision, serial number, and capacity device error stats. 9019 * 9020 * Note: During attach the stats are instantiated first so they are 9021 * available for attach-time routines that utilize the driver 9022 * iopath to send commands to the device. The stats are initialized 9023 * separately so data obtained during some attach-time routines is 9024 * available. (4362483) 9025 * 9026 * Arguments: un - driver soft state (unit) structure 9027 * 9028 * Context: Kernel thread context 9029 */ 9030 9031 static void 9032 sd_set_errstats(struct sd_lun *un) 9033 { 9034 struct sd_errstats *stp; 9035 9036 ASSERT(un != NULL); 9037 ASSERT(un->un_errstats != NULL); 9038 stp = (struct sd_errstats *)un->un_errstats->ks_data; 9039 ASSERT(stp != NULL); 9040 (void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8); 9041 (void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16); 9042 (void) strncpy(stp->sd_revision.value.c, 9043 un->un_sd->sd_inq->inq_revision, 4); 9044 9045 /* 9046 * All the errstats are persistent across detach/attach, 9047 * so reset all the errstats here in case of the hot 9048 * replacement of disk drives, except for not changed 9049 * Sun qualified drives. 9050 */ 9051 if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) || 9052 (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c, 9053 sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) { 9054 stp->sd_softerrs.value.ui32 = 0; 9055 stp->sd_harderrs.value.ui32 = 0; 9056 stp->sd_transerrs.value.ui32 = 0; 9057 stp->sd_rq_media_err.value.ui32 = 0; 9058 stp->sd_rq_ntrdy_err.value.ui32 = 0; 9059 stp->sd_rq_nodev_err.value.ui32 = 0; 9060 stp->sd_rq_recov_err.value.ui32 = 0; 9061 stp->sd_rq_illrq_err.value.ui32 = 0; 9062 stp->sd_rq_pfa_err.value.ui32 = 0; 9063 } 9064 9065 /* 9066 * Set the "Serial No" kstat for Sun qualified drives (indicated by 9067 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid) 9068 * (4376302)) 9069 */ 9070 if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) { 9071 bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c, 9072 sizeof (SD_INQUIRY(un)->inq_serial)); 9073 } 9074 9075 if (un->un_f_blockcount_is_valid != TRUE) { 9076 /* 9077 * Set capacity error stat to 0 for no media. This ensures 9078 * a valid capacity is displayed in response to 'iostat -E' 9079 * when no media is present in the device. 9080 */ 9081 stp->sd_capacity.value.ui64 = 0; 9082 } else { 9083 /* 9084 * Multiply un_blockcount by un->un_sys_blocksize to get 9085 * capacity. 9086 * 9087 * Note: for non-512 blocksize devices "un_blockcount" has been 9088 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by 9089 * (un_tgt_blocksize / un->un_sys_blocksize). 9090 */ 9091 stp->sd_capacity.value.ui64 = (uint64_t) 9092 ((uint64_t)un->un_blockcount * un->un_sys_blocksize); 9093 } 9094 } 9095 9096 9097 /* 9098 * Function: sd_set_pstats 9099 * 9100 * Description: This routine instantiates and initializes the partition 9101 * stats for each partition with more than zero blocks. 9102 * (4363169) 9103 * 9104 * Arguments: un - driver soft state (unit) structure 9105 * 9106 * Context: Kernel thread context 9107 */ 9108 9109 static void 9110 sd_set_pstats(struct sd_lun *un) 9111 { 9112 char kstatname[KSTAT_STRLEN]; 9113 int instance; 9114 int i; 9115 diskaddr_t nblks = 0; 9116 char *partname = NULL; 9117 9118 ASSERT(un != NULL); 9119 9120 instance = ddi_get_instance(SD_DEVINFO(un)); 9121 9122 /* Note:x86: is this a VTOC8/VTOC16 difference? */ 9123 for (i = 0; i < NSDMAP; i++) { 9124 9125 if (cmlb_partinfo(un->un_cmlbhandle, i, 9126 &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0) 9127 continue; 9128 mutex_enter(SD_MUTEX(un)); 9129 9130 if ((un->un_pstats[i] == NULL) && 9131 (nblks != 0)) { 9132 9133 (void) snprintf(kstatname, sizeof (kstatname), 9134 "%s%d,%s", sd_label, instance, 9135 partname); 9136 9137 un->un_pstats[i] = kstat_create(sd_label, 9138 instance, kstatname, "partition", KSTAT_TYPE_IO, 9139 1, KSTAT_FLAG_PERSISTENT); 9140 if (un->un_pstats[i] != NULL) { 9141 un->un_pstats[i]->ks_lock = SD_MUTEX(un); 9142 kstat_install(un->un_pstats[i]); 9143 } 9144 } 9145 mutex_exit(SD_MUTEX(un)); 9146 } 9147 } 9148 9149 9150 #if (defined(__fibre)) 9151 /* 9152 * Function: sd_init_event_callbacks 9153 * 9154 * Description: This routine initializes the insertion and removal event 9155 * callbacks. (fibre only) 9156 * 9157 * Arguments: un - driver soft state (unit) structure 9158 * 9159 * Context: Kernel thread context 9160 */ 9161 9162 static void 9163 sd_init_event_callbacks(struct sd_lun *un) 9164 { 9165 ASSERT(un != NULL); 9166 9167 if ((un->un_insert_event == NULL) && 9168 (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT, 9169 &un->un_insert_event) == DDI_SUCCESS)) { 9170 /* 9171 * Add the callback for an insertion event 9172 */ 9173 (void) ddi_add_event_handler(SD_DEVINFO(un), 9174 un->un_insert_event, sd_event_callback, (void *)un, 9175 &(un->un_insert_cb_id)); 9176 } 9177 9178 if ((un->un_remove_event == NULL) && 9179 (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT, 9180 &un->un_remove_event) == DDI_SUCCESS)) { 9181 /* 9182 * Add the callback for a removal event 9183 */ 9184 (void) ddi_add_event_handler(SD_DEVINFO(un), 9185 un->un_remove_event, sd_event_callback, (void *)un, 9186 &(un->un_remove_cb_id)); 9187 } 9188 } 9189 9190 9191 /* 9192 * Function: sd_event_callback 9193 * 9194 * Description: This routine handles insert/remove events (photon). The 9195 * state is changed to OFFLINE which can be used to supress 9196 * error msgs. (fibre only) 9197 * 9198 * Arguments: un - driver soft state (unit) structure 9199 * 9200 * Context: Callout thread context 9201 */ 9202 /* ARGSUSED */ 9203 static void 9204 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg, 9205 void *bus_impldata) 9206 { 9207 struct sd_lun *un = (struct sd_lun *)arg; 9208 9209 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event)); 9210 if (event == un->un_insert_event) { 9211 SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event"); 9212 mutex_enter(SD_MUTEX(un)); 9213 if (un->un_state == SD_STATE_OFFLINE) { 9214 if (un->un_last_state != SD_STATE_SUSPENDED) { 9215 un->un_state = un->un_last_state; 9216 } else { 9217 /* 9218 * We have gone through SUSPEND/RESUME while 9219 * we were offline. Restore the last state 9220 */ 9221 un->un_state = un->un_save_state; 9222 } 9223 } 9224 mutex_exit(SD_MUTEX(un)); 9225 9226 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event)); 9227 } else if (event == un->un_remove_event) { 9228 SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event"); 9229 mutex_enter(SD_MUTEX(un)); 9230 /* 9231 * We need to handle an event callback that occurs during 9232 * the suspend operation, since we don't prevent it. 9233 */ 9234 if (un->un_state != SD_STATE_OFFLINE) { 9235 if (un->un_state != SD_STATE_SUSPENDED) { 9236 New_state(un, SD_STATE_OFFLINE); 9237 } else { 9238 un->un_last_state = SD_STATE_OFFLINE; 9239 } 9240 } 9241 mutex_exit(SD_MUTEX(un)); 9242 } else { 9243 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 9244 "!Unknown event\n"); 9245 } 9246 9247 } 9248 #endif 9249 9250 /* 9251 * Function: sd_cache_control() 9252 * 9253 * Description: This routine is the driver entry point for setting 9254 * read and write caching by modifying the WCE (write cache 9255 * enable) and RCD (read cache disable) bits of mode 9256 * page 8 (MODEPAGE_CACHING). 9257 * 9258 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 9259 * structure for this target. 9260 * rcd_flag - flag for controlling the read cache 9261 * wce_flag - flag for controlling the write cache 9262 * 9263 * Return Code: EIO 9264 * code returned by sd_send_scsi_MODE_SENSE and 9265 * sd_send_scsi_MODE_SELECT 9266 * 9267 * Context: Kernel Thread 9268 */ 9269 9270 static int 9271 sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag) 9272 { 9273 struct mode_caching *mode_caching_page; 9274 uchar_t *header; 9275 size_t buflen; 9276 int hdrlen; 9277 int bd_len; 9278 int rval = 0; 9279 struct mode_header_grp2 *mhp; 9280 struct sd_lun *un; 9281 int status; 9282 9283 ASSERT(ssc != NULL); 9284 un = ssc->ssc_un; 9285 ASSERT(un != NULL); 9286 9287 /* 9288 * Do a test unit ready, otherwise a mode sense may not work if this 9289 * is the first command sent to the device after boot. 9290 */ 9291 status = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 9292 if (status != 0) 9293 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9294 9295 if (un->un_f_cfg_is_atapi == TRUE) { 9296 hdrlen = MODE_HEADER_LENGTH_GRP2; 9297 } else { 9298 hdrlen = MODE_HEADER_LENGTH; 9299 } 9300 9301 /* 9302 * Allocate memory for the retrieved mode page and its headers. Set 9303 * a pointer to the page itself. Use mode_cache_scsi3 to insure 9304 * we get all of the mode sense data otherwise, the mode select 9305 * will fail. mode_cache_scsi3 is a superset of mode_caching. 9306 */ 9307 buflen = hdrlen + MODE_BLK_DESC_LENGTH + 9308 sizeof (struct mode_cache_scsi3); 9309 9310 header = kmem_zalloc(buflen, KM_SLEEP); 9311 9312 /* Get the information from the device. */ 9313 if (un->un_f_cfg_is_atapi == TRUE) { 9314 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen, 9315 MODEPAGE_CACHING, SD_PATH_DIRECT); 9316 } else { 9317 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen, 9318 MODEPAGE_CACHING, SD_PATH_DIRECT); 9319 } 9320 9321 if (rval != 0) { 9322 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 9323 "sd_cache_control: Mode Sense Failed\n"); 9324 goto mode_sense_failed; 9325 } 9326 9327 /* 9328 * Determine size of Block Descriptors in order to locate 9329 * the mode page data. ATAPI devices return 0, SCSI devices 9330 * should return MODE_BLK_DESC_LENGTH. 9331 */ 9332 if (un->un_f_cfg_is_atapi == TRUE) { 9333 mhp = (struct mode_header_grp2 *)header; 9334 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 9335 } else { 9336 bd_len = ((struct mode_header *)header)->bdesc_length; 9337 } 9338 9339 if (bd_len > MODE_BLK_DESC_LENGTH) { 9340 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0, 9341 "sd_cache_control: Mode Sense returned invalid block " 9342 "descriptor length\n"); 9343 rval = EIO; 9344 goto mode_sense_failed; 9345 } 9346 9347 mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len); 9348 if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) { 9349 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 9350 "sd_cache_control: Mode Sense caching page code mismatch " 9351 "%d\n", mode_caching_page->mode_page.code); 9352 rval = EIO; 9353 goto mode_sense_failed; 9354 } 9355 9356 /* Check the relevant bits on successful mode sense. */ 9357 if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) || 9358 (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) || 9359 (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) || 9360 (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) { 9361 9362 size_t sbuflen; 9363 uchar_t save_pg; 9364 9365 /* 9366 * Construct select buffer length based on the 9367 * length of the sense data returned. 9368 */ 9369 sbuflen = hdrlen + bd_len + 9370 sizeof (struct mode_page) + 9371 (int)mode_caching_page->mode_page.length; 9372 9373 /* 9374 * Set the caching bits as requested. 9375 */ 9376 if (rcd_flag == SD_CACHE_ENABLE) 9377 mode_caching_page->rcd = 0; 9378 else if (rcd_flag == SD_CACHE_DISABLE) 9379 mode_caching_page->rcd = 1; 9380 9381 if (wce_flag == SD_CACHE_ENABLE) 9382 mode_caching_page->wce = 1; 9383 else if (wce_flag == SD_CACHE_DISABLE) 9384 mode_caching_page->wce = 0; 9385 9386 /* 9387 * Save the page if the mode sense says the 9388 * drive supports it. 9389 */ 9390 save_pg = mode_caching_page->mode_page.ps ? 9391 SD_SAVE_PAGE : SD_DONTSAVE_PAGE; 9392 9393 /* Clear reserved bits before mode select. */ 9394 mode_caching_page->mode_page.ps = 0; 9395 9396 /* 9397 * Clear out mode header for mode select. 9398 * The rest of the retrieved page will be reused. 9399 */ 9400 bzero(header, hdrlen); 9401 9402 if (un->un_f_cfg_is_atapi == TRUE) { 9403 mhp = (struct mode_header_grp2 *)header; 9404 mhp->bdesc_length_hi = bd_len >> 8; 9405 mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff; 9406 } else { 9407 ((struct mode_header *)header)->bdesc_length = bd_len; 9408 } 9409 9410 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9411 9412 /* Issue mode select to change the cache settings */ 9413 if (un->un_f_cfg_is_atapi == TRUE) { 9414 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, header, 9415 sbuflen, save_pg, SD_PATH_DIRECT); 9416 } else { 9417 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header, 9418 sbuflen, save_pg, SD_PATH_DIRECT); 9419 } 9420 9421 } 9422 9423 9424 mode_sense_failed: 9425 9426 kmem_free(header, buflen); 9427 9428 if (rval != 0) { 9429 if (rval == EIO) 9430 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 9431 else 9432 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9433 } 9434 return (rval); 9435 } 9436 9437 9438 /* 9439 * Function: sd_get_write_cache_enabled() 9440 * 9441 * Description: This routine is the driver entry point for determining if 9442 * write caching is enabled. It examines the WCE (write cache 9443 * enable) bits of mode page 8 (MODEPAGE_CACHING). 9444 * 9445 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 9446 * structure for this target. 9447 * is_enabled - pointer to int where write cache enabled state 9448 * is returned (non-zero -> write cache enabled) 9449 * 9450 * 9451 * Return Code: EIO 9452 * code returned by sd_send_scsi_MODE_SENSE 9453 * 9454 * Context: Kernel Thread 9455 * 9456 * NOTE: If ioctl is added to disable write cache, this sequence should 9457 * be followed so that no locking is required for accesses to 9458 * un->un_f_write_cache_enabled: 9459 * do mode select to clear wce 9460 * do synchronize cache to flush cache 9461 * set un->un_f_write_cache_enabled = FALSE 9462 * 9463 * Conversely, an ioctl to enable the write cache should be done 9464 * in this order: 9465 * set un->un_f_write_cache_enabled = TRUE 9466 * do mode select to set wce 9467 */ 9468 9469 static int 9470 sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled) 9471 { 9472 struct mode_caching *mode_caching_page; 9473 uchar_t *header; 9474 size_t buflen; 9475 int hdrlen; 9476 int bd_len; 9477 int rval = 0; 9478 struct sd_lun *un; 9479 int status; 9480 9481 ASSERT(ssc != NULL); 9482 un = ssc->ssc_un; 9483 ASSERT(un != NULL); 9484 ASSERT(is_enabled != NULL); 9485 9486 /* in case of error, flag as enabled */ 9487 *is_enabled = TRUE; 9488 9489 /* 9490 * Do a test unit ready, otherwise a mode sense may not work if this 9491 * is the first command sent to the device after boot. 9492 */ 9493 status = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 9494 9495 if (status != 0) 9496 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9497 9498 if (un->un_f_cfg_is_atapi == TRUE) { 9499 hdrlen = MODE_HEADER_LENGTH_GRP2; 9500 } else { 9501 hdrlen = MODE_HEADER_LENGTH; 9502 } 9503 9504 /* 9505 * Allocate memory for the retrieved mode page and its headers. Set 9506 * a pointer to the page itself. 9507 */ 9508 buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching); 9509 header = kmem_zalloc(buflen, KM_SLEEP); 9510 9511 /* Get the information from the device. */ 9512 if (un->un_f_cfg_is_atapi == TRUE) { 9513 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen, 9514 MODEPAGE_CACHING, SD_PATH_DIRECT); 9515 } else { 9516 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen, 9517 MODEPAGE_CACHING, SD_PATH_DIRECT); 9518 } 9519 9520 if (rval != 0) { 9521 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 9522 "sd_get_write_cache_enabled: Mode Sense Failed\n"); 9523 goto mode_sense_failed; 9524 } 9525 9526 /* 9527 * Determine size of Block Descriptors in order to locate 9528 * the mode page data. ATAPI devices return 0, SCSI devices 9529 * should return MODE_BLK_DESC_LENGTH. 9530 */ 9531 if (un->un_f_cfg_is_atapi == TRUE) { 9532 struct mode_header_grp2 *mhp; 9533 mhp = (struct mode_header_grp2 *)header; 9534 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 9535 } else { 9536 bd_len = ((struct mode_header *)header)->bdesc_length; 9537 } 9538 9539 if (bd_len > MODE_BLK_DESC_LENGTH) { 9540 /* FMA should make upset complain here */ 9541 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0, 9542 "sd_get_write_cache_enabled: Mode Sense returned invalid " 9543 "block descriptor length\n"); 9544 rval = EIO; 9545 goto mode_sense_failed; 9546 } 9547 9548 mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len); 9549 if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) { 9550 /* FMA could make upset complain here */ 9551 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 9552 "sd_get_write_cache_enabled: Mode Sense caching page " 9553 "code mismatch %d\n", mode_caching_page->mode_page.code); 9554 rval = EIO; 9555 goto mode_sense_failed; 9556 } 9557 *is_enabled = mode_caching_page->wce; 9558 9559 mode_sense_failed: 9560 if (rval == 0) { 9561 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 9562 } else if (rval == EIO) { 9563 /* 9564 * Some disks do not support mode sense(6), we 9565 * should ignore this kind of error(sense key is 9566 * 0x5 - illegal request). 9567 */ 9568 uint8_t *sensep; 9569 int senlen; 9570 9571 sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf; 9572 senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen - 9573 ssc->ssc_uscsi_cmd->uscsi_rqresid); 9574 9575 if (senlen > 0 && 9576 scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) { 9577 sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE); 9578 } else { 9579 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 9580 } 9581 } else { 9582 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9583 } 9584 kmem_free(header, buflen); 9585 return (rval); 9586 } 9587 9588 /* 9589 * Function: sd_get_nv_sup() 9590 * 9591 * Description: This routine is the driver entry point for 9592 * determining whether non-volatile cache is supported. This 9593 * determination process works as follows: 9594 * 9595 * 1. sd first queries sd.conf on whether 9596 * suppress_cache_flush bit is set for this device. 9597 * 9598 * 2. if not there, then queries the internal disk table. 9599 * 9600 * 3. if either sd.conf or internal disk table specifies 9601 * cache flush be suppressed, we don't bother checking 9602 * NV_SUP bit. 9603 * 9604 * If SUPPRESS_CACHE_FLUSH bit is not set to 1, sd queries 9605 * the optional INQUIRY VPD page 0x86. If the device 9606 * supports VPD page 0x86, sd examines the NV_SUP 9607 * (non-volatile cache support) bit in the INQUIRY VPD page 9608 * 0x86: 9609 * o If NV_SUP bit is set, sd assumes the device has a 9610 * non-volatile cache and set the 9611 * un_f_sync_nv_supported to TRUE. 9612 * o Otherwise cache is not non-volatile, 9613 * un_f_sync_nv_supported is set to FALSE. 9614 * 9615 * Arguments: un - driver soft state (unit) structure 9616 * 9617 * Return Code: 9618 * 9619 * Context: Kernel Thread 9620 */ 9621 9622 static void 9623 sd_get_nv_sup(sd_ssc_t *ssc) 9624 { 9625 int rval = 0; 9626 uchar_t *inq86 = NULL; 9627 size_t inq86_len = MAX_INQUIRY_SIZE; 9628 size_t inq86_resid = 0; 9629 struct dk_callback *dkc; 9630 struct sd_lun *un; 9631 9632 ASSERT(ssc != NULL); 9633 un = ssc->ssc_un; 9634 ASSERT(un != NULL); 9635 9636 mutex_enter(SD_MUTEX(un)); 9637 9638 /* 9639 * Be conservative on the device's support of 9640 * SYNC_NV bit: un_f_sync_nv_supported is 9641 * initialized to be false. 9642 */ 9643 un->un_f_sync_nv_supported = FALSE; 9644 9645 /* 9646 * If either sd.conf or internal disk table 9647 * specifies cache flush be suppressed, then 9648 * we don't bother checking NV_SUP bit. 9649 */ 9650 if (un->un_f_suppress_cache_flush == TRUE) { 9651 mutex_exit(SD_MUTEX(un)); 9652 return; 9653 } 9654 9655 if (sd_check_vpd_page_support(ssc) == 0 && 9656 un->un_vpd_page_mask & SD_VPD_EXTENDED_DATA_PG) { 9657 mutex_exit(SD_MUTEX(un)); 9658 /* collect page 86 data if available */ 9659 inq86 = kmem_zalloc(inq86_len, KM_SLEEP); 9660 9661 rval = sd_send_scsi_INQUIRY(ssc, inq86, inq86_len, 9662 0x01, 0x86, &inq86_resid); 9663 9664 if (rval == 0 && (inq86_len - inq86_resid > 6)) { 9665 SD_TRACE(SD_LOG_COMMON, un, 9666 "sd_get_nv_sup: \ 9667 successfully get VPD page: %x \ 9668 PAGE LENGTH: %x BYTE 6: %x\n", 9669 inq86[1], inq86[3], inq86[6]); 9670 9671 mutex_enter(SD_MUTEX(un)); 9672 /* 9673 * check the value of NV_SUP bit: only if the device 9674 * reports NV_SUP bit to be 1, the 9675 * un_f_sync_nv_supported bit will be set to true. 9676 */ 9677 if (inq86[6] & SD_VPD_NV_SUP) { 9678 un->un_f_sync_nv_supported = TRUE; 9679 } 9680 mutex_exit(SD_MUTEX(un)); 9681 } else if (rval != 0) { 9682 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9683 } 9684 9685 kmem_free(inq86, inq86_len); 9686 } else { 9687 mutex_exit(SD_MUTEX(un)); 9688 } 9689 9690 /* 9691 * Send a SYNC CACHE command to check whether 9692 * SYNC_NV bit is supported. This command should have 9693 * un_f_sync_nv_supported set to correct value. 9694 */ 9695 mutex_enter(SD_MUTEX(un)); 9696 if (un->un_f_sync_nv_supported) { 9697 mutex_exit(SD_MUTEX(un)); 9698 dkc = kmem_zalloc(sizeof (struct dk_callback), KM_SLEEP); 9699 dkc->dkc_flag = FLUSH_VOLATILE; 9700 (void) sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc); 9701 9702 /* 9703 * Send a TEST UNIT READY command to the device. This should 9704 * clear any outstanding UNIT ATTENTION that may be present. 9705 */ 9706 rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR); 9707 if (rval != 0) 9708 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9709 9710 kmem_free(dkc, sizeof (struct dk_callback)); 9711 } else { 9712 mutex_exit(SD_MUTEX(un)); 9713 } 9714 9715 SD_TRACE(SD_LOG_COMMON, un, "sd_get_nv_sup: \ 9716 un_f_suppress_cache_flush is set to %d\n", 9717 un->un_f_suppress_cache_flush); 9718 } 9719 9720 /* 9721 * Function: sd_make_device 9722 * 9723 * Description: Utility routine to return the Solaris device number from 9724 * the data in the device's dev_info structure. 9725 * 9726 * Return Code: The Solaris device number 9727 * 9728 * Context: Any 9729 */ 9730 9731 static dev_t 9732 sd_make_device(dev_info_t *devi) 9733 { 9734 return (makedevice(ddi_driver_major(devi), 9735 ddi_get_instance(devi) << SDUNIT_SHIFT)); 9736 } 9737 9738 9739 /* 9740 * Function: sd_pm_entry 9741 * 9742 * Description: Called at the start of a new command to manage power 9743 * and busy status of a device. This includes determining whether 9744 * the current power state of the device is sufficient for 9745 * performing the command or whether it must be changed. 9746 * The PM framework is notified appropriately. 9747 * Only with a return status of DDI_SUCCESS will the 9748 * component be busy to the framework. 9749 * 9750 * All callers of sd_pm_entry must check the return status 9751 * and only call sd_pm_exit it it was DDI_SUCCESS. A status 9752 * of DDI_FAILURE indicates the device failed to power up. 9753 * In this case un_pm_count has been adjusted so the result 9754 * on exit is still powered down, ie. count is less than 0. 9755 * Calling sd_pm_exit with this count value hits an ASSERT. 9756 * 9757 * Return Code: DDI_SUCCESS or DDI_FAILURE 9758 * 9759 * Context: Kernel thread context. 9760 */ 9761 9762 static int 9763 sd_pm_entry(struct sd_lun *un) 9764 { 9765 int return_status = DDI_SUCCESS; 9766 9767 ASSERT(!mutex_owned(SD_MUTEX(un))); 9768 ASSERT(!mutex_owned(&un->un_pm_mutex)); 9769 9770 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n"); 9771 9772 if (un->un_f_pm_is_enabled == FALSE) { 9773 SD_TRACE(SD_LOG_IO_PM, un, 9774 "sd_pm_entry: exiting, PM not enabled\n"); 9775 return (return_status); 9776 } 9777 9778 /* 9779 * Just increment a counter if PM is enabled. On the transition from 9780 * 0 ==> 1, mark the device as busy. The iodone side will decrement 9781 * the count with each IO and mark the device as idle when the count 9782 * hits 0. 9783 * 9784 * If the count is less than 0 the device is powered down. If a powered 9785 * down device is successfully powered up then the count must be 9786 * incremented to reflect the power up. Note that it'll get incremented 9787 * a second time to become busy. 9788 * 9789 * Because the following has the potential to change the device state 9790 * and must release the un_pm_mutex to do so, only one thread can be 9791 * allowed through at a time. 9792 */ 9793 9794 mutex_enter(&un->un_pm_mutex); 9795 while (un->un_pm_busy == TRUE) { 9796 cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex); 9797 } 9798 un->un_pm_busy = TRUE; 9799 9800 if (un->un_pm_count < 1) { 9801 9802 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n"); 9803 9804 /* 9805 * Indicate we are now busy so the framework won't attempt to 9806 * power down the device. This call will only fail if either 9807 * we passed a bad component number or the device has no 9808 * components. Neither of these should ever happen. 9809 */ 9810 mutex_exit(&un->un_pm_mutex); 9811 return_status = pm_busy_component(SD_DEVINFO(un), 0); 9812 ASSERT(return_status == DDI_SUCCESS); 9813 9814 mutex_enter(&un->un_pm_mutex); 9815 9816 if (un->un_pm_count < 0) { 9817 mutex_exit(&un->un_pm_mutex); 9818 9819 SD_TRACE(SD_LOG_IO_PM, un, 9820 "sd_pm_entry: power up component\n"); 9821 9822 /* 9823 * pm_raise_power will cause sdpower to be called 9824 * which brings the device power level to the 9825 * desired state, If successful, un_pm_count and 9826 * un_power_level will be updated appropriately. 9827 */ 9828 return_status = pm_raise_power(SD_DEVINFO(un), 0, 9829 SD_PM_STATE_ACTIVE(un)); 9830 9831 mutex_enter(&un->un_pm_mutex); 9832 9833 if (return_status != DDI_SUCCESS) { 9834 /* 9835 * Power up failed. 9836 * Idle the device and adjust the count 9837 * so the result on exit is that we're 9838 * still powered down, ie. count is less than 0. 9839 */ 9840 SD_TRACE(SD_LOG_IO_PM, un, 9841 "sd_pm_entry: power up failed," 9842 " idle the component\n"); 9843 9844 (void) pm_idle_component(SD_DEVINFO(un), 0); 9845 un->un_pm_count--; 9846 } else { 9847 /* 9848 * Device is powered up, verify the 9849 * count is non-negative. 9850 * This is debug only. 9851 */ 9852 ASSERT(un->un_pm_count == 0); 9853 } 9854 } 9855 9856 if (return_status == DDI_SUCCESS) { 9857 /* 9858 * For performance, now that the device has been tagged 9859 * as busy, and it's known to be powered up, update the 9860 * chain types to use jump tables that do not include 9861 * pm. This significantly lowers the overhead and 9862 * therefore improves performance. 9863 */ 9864 9865 mutex_exit(&un->un_pm_mutex); 9866 mutex_enter(SD_MUTEX(un)); 9867 SD_TRACE(SD_LOG_IO_PM, un, 9868 "sd_pm_entry: changing uscsi_chain_type from %d\n", 9869 un->un_uscsi_chain_type); 9870 9871 if (un->un_f_non_devbsize_supported) { 9872 un->un_buf_chain_type = 9873 SD_CHAIN_INFO_RMMEDIA_NO_PM; 9874 } else { 9875 un->un_buf_chain_type = 9876 SD_CHAIN_INFO_DISK_NO_PM; 9877 } 9878 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM; 9879 9880 SD_TRACE(SD_LOG_IO_PM, un, 9881 " changed uscsi_chain_type to %d\n", 9882 un->un_uscsi_chain_type); 9883 mutex_exit(SD_MUTEX(un)); 9884 mutex_enter(&un->un_pm_mutex); 9885 9886 if (un->un_pm_idle_timeid == NULL) { 9887 /* 300 ms. */ 9888 un->un_pm_idle_timeid = 9889 timeout(sd_pm_idletimeout_handler, un, 9890 (drv_usectohz((clock_t)300000))); 9891 /* 9892 * Include an extra call to busy which keeps the 9893 * device busy with-respect-to the PM layer 9894 * until the timer fires, at which time it'll 9895 * get the extra idle call. 9896 */ 9897 (void) pm_busy_component(SD_DEVINFO(un), 0); 9898 } 9899 } 9900 } 9901 un->un_pm_busy = FALSE; 9902 /* Next... */ 9903 cv_signal(&un->un_pm_busy_cv); 9904 9905 un->un_pm_count++; 9906 9907 SD_TRACE(SD_LOG_IO_PM, un, 9908 "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count); 9909 9910 mutex_exit(&un->un_pm_mutex); 9911 9912 return (return_status); 9913 } 9914 9915 9916 /* 9917 * Function: sd_pm_exit 9918 * 9919 * Description: Called at the completion of a command to manage busy 9920 * status for the device. If the device becomes idle the 9921 * PM framework is notified. 9922 * 9923 * Context: Kernel thread context 9924 */ 9925 9926 static void 9927 sd_pm_exit(struct sd_lun *un) 9928 { 9929 ASSERT(!mutex_owned(SD_MUTEX(un))); 9930 ASSERT(!mutex_owned(&un->un_pm_mutex)); 9931 9932 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n"); 9933 9934 /* 9935 * After attach the following flag is only read, so don't 9936 * take the penalty of acquiring a mutex for it. 9937 */ 9938 if (un->un_f_pm_is_enabled == TRUE) { 9939 9940 mutex_enter(&un->un_pm_mutex); 9941 un->un_pm_count--; 9942 9943 SD_TRACE(SD_LOG_IO_PM, un, 9944 "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count); 9945 9946 ASSERT(un->un_pm_count >= 0); 9947 if (un->un_pm_count == 0) { 9948 mutex_exit(&un->un_pm_mutex); 9949 9950 SD_TRACE(SD_LOG_IO_PM, un, 9951 "sd_pm_exit: idle component\n"); 9952 9953 (void) pm_idle_component(SD_DEVINFO(un), 0); 9954 9955 } else { 9956 mutex_exit(&un->un_pm_mutex); 9957 } 9958 } 9959 9960 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n"); 9961 } 9962 9963 9964 /* 9965 * Function: sdopen 9966 * 9967 * Description: Driver's open(9e) entry point function. 9968 * 9969 * Arguments: dev_i - pointer to device number 9970 * flag - how to open file (FEXCL, FNDELAY, FREAD, FWRITE) 9971 * otyp - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR) 9972 * cred_p - user credential pointer 9973 * 9974 * Return Code: EINVAL 9975 * ENXIO 9976 * EIO 9977 * EROFS 9978 * EBUSY 9979 * 9980 * Context: Kernel thread context 9981 */ 9982 /* ARGSUSED */ 9983 static int 9984 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p) 9985 { 9986 struct sd_lun *un; 9987 int nodelay; 9988 int part; 9989 uint64_t partmask; 9990 int instance; 9991 dev_t dev; 9992 int rval = EIO; 9993 diskaddr_t nblks = 0; 9994 diskaddr_t label_cap; 9995 9996 /* Validate the open type */ 9997 if (otyp >= OTYPCNT) { 9998 return (EINVAL); 9999 } 10000 10001 dev = *dev_p; 10002 instance = SDUNIT(dev); 10003 mutex_enter(&sd_detach_mutex); 10004 10005 /* 10006 * Fail the open if there is no softstate for the instance, or 10007 * if another thread somewhere is trying to detach the instance. 10008 */ 10009 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 10010 (un->un_detach_count != 0)) { 10011 mutex_exit(&sd_detach_mutex); 10012 /* 10013 * The probe cache only needs to be cleared when open (9e) fails 10014 * with ENXIO (4238046). 10015 */ 10016 /* 10017 * un-conditionally clearing probe cache is ok with 10018 * separate sd/ssd binaries 10019 * x86 platform can be an issue with both parallel 10020 * and fibre in 1 binary 10021 */ 10022 sd_scsi_clear_probe_cache(); 10023 return (ENXIO); 10024 } 10025 10026 /* 10027 * The un_layer_count is to prevent another thread in specfs from 10028 * trying to detach the instance, which can happen when we are 10029 * called from a higher-layer driver instead of thru specfs. 10030 * This will not be needed when DDI provides a layered driver 10031 * interface that allows specfs to know that an instance is in 10032 * use by a layered driver & should not be detached. 10033 * 10034 * Note: the semantics for layered driver opens are exactly one 10035 * close for every open. 10036 */ 10037 if (otyp == OTYP_LYR) { 10038 un->un_layer_count++; 10039 } 10040 10041 /* 10042 * Keep a count of the current # of opens in progress. This is because 10043 * some layered drivers try to call us as a regular open. This can 10044 * cause problems that we cannot prevent, however by keeping this count 10045 * we can at least keep our open and detach routines from racing against 10046 * each other under such conditions. 10047 */ 10048 un->un_opens_in_progress++; 10049 mutex_exit(&sd_detach_mutex); 10050 10051 nodelay = (flag & (FNDELAY | FNONBLOCK)); 10052 part = SDPART(dev); 10053 partmask = 1 << part; 10054 10055 /* 10056 * We use a semaphore here in order to serialize 10057 * open and close requests on the device. 10058 */ 10059 sema_p(&un->un_semoclose); 10060 10061 mutex_enter(SD_MUTEX(un)); 10062 10063 /* 10064 * All device accesses go thru sdstrategy() where we check 10065 * on suspend status but there could be a scsi_poll command, 10066 * which bypasses sdstrategy(), so we need to check pm 10067 * status. 10068 */ 10069 10070 if (!nodelay) { 10071 while ((un->un_state == SD_STATE_SUSPENDED) || 10072 (un->un_state == SD_STATE_PM_CHANGING)) { 10073 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10074 } 10075 10076 mutex_exit(SD_MUTEX(un)); 10077 if (sd_pm_entry(un) != DDI_SUCCESS) { 10078 rval = EIO; 10079 SD_ERROR(SD_LOG_OPEN_CLOSE, un, 10080 "sdopen: sd_pm_entry failed\n"); 10081 goto open_failed_with_pm; 10082 } 10083 mutex_enter(SD_MUTEX(un)); 10084 } 10085 10086 /* check for previous exclusive open */ 10087 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un); 10088 SD_TRACE(SD_LOG_OPEN_CLOSE, un, 10089 "sdopen: exclopen=%x, flag=%x, regopen=%x\n", 10090 un->un_exclopen, flag, un->un_ocmap.regopen[otyp]); 10091 10092 if (un->un_exclopen & (partmask)) { 10093 goto excl_open_fail; 10094 } 10095 10096 if (flag & FEXCL) { 10097 int i; 10098 if (un->un_ocmap.lyropen[part]) { 10099 goto excl_open_fail; 10100 } 10101 for (i = 0; i < (OTYPCNT - 1); i++) { 10102 if (un->un_ocmap.regopen[i] & (partmask)) { 10103 goto excl_open_fail; 10104 } 10105 } 10106 } 10107 10108 /* 10109 * Check the write permission if this is a removable media device, 10110 * NDELAY has not been set, and writable permission is requested. 10111 * 10112 * Note: If NDELAY was set and this is write-protected media the WRITE 10113 * attempt will fail with EIO as part of the I/O processing. This is a 10114 * more permissive implementation that allows the open to succeed and 10115 * WRITE attempts to fail when appropriate. 10116 */ 10117 if (un->un_f_chk_wp_open) { 10118 if ((flag & FWRITE) && (!nodelay)) { 10119 mutex_exit(SD_MUTEX(un)); 10120 /* 10121 * Defer the check for write permission on writable 10122 * DVD drive till sdstrategy and will not fail open even 10123 * if FWRITE is set as the device can be writable 10124 * depending upon the media and the media can change 10125 * after the call to open(). 10126 */ 10127 if (un->un_f_dvdram_writable_device == FALSE) { 10128 if (ISCD(un) || sr_check_wp(dev)) { 10129 rval = EROFS; 10130 mutex_enter(SD_MUTEX(un)); 10131 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: " 10132 "write to cd or write protected media\n"); 10133 goto open_fail; 10134 } 10135 } 10136 mutex_enter(SD_MUTEX(un)); 10137 } 10138 } 10139 10140 /* 10141 * If opening in NDELAY/NONBLOCK mode, just return. 10142 * Check if disk is ready and has a valid geometry later. 10143 */ 10144 if (!nodelay) { 10145 sd_ssc_t *ssc; 10146 10147 mutex_exit(SD_MUTEX(un)); 10148 ssc = sd_ssc_init(un); 10149 rval = sd_ready_and_valid(ssc, part); 10150 sd_ssc_fini(ssc); 10151 mutex_enter(SD_MUTEX(un)); 10152 /* 10153 * Fail if device is not ready or if the number of disk 10154 * blocks is zero or negative for non CD devices. 10155 */ 10156 10157 nblks = 0; 10158 10159 if (rval == SD_READY_VALID && (!ISCD(un))) { 10160 /* if cmlb_partinfo fails, nblks remains 0 */ 10161 mutex_exit(SD_MUTEX(un)); 10162 (void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks, 10163 NULL, NULL, NULL, (void *)SD_PATH_DIRECT); 10164 mutex_enter(SD_MUTEX(un)); 10165 } 10166 10167 if ((rval != SD_READY_VALID) || 10168 (!ISCD(un) && nblks <= 0)) { 10169 rval = un->un_f_has_removable_media ? ENXIO : EIO; 10170 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: " 10171 "device not ready or invalid disk block value\n"); 10172 goto open_fail; 10173 } 10174 #if defined(__i386) || defined(__amd64) 10175 } else { 10176 uchar_t *cp; 10177 /* 10178 * x86 requires special nodelay handling, so that p0 is 10179 * always defined and accessible. 10180 * Invalidate geometry only if device is not already open. 10181 */ 10182 cp = &un->un_ocmap.chkd[0]; 10183 while (cp < &un->un_ocmap.chkd[OCSIZE]) { 10184 if (*cp != (uchar_t)0) { 10185 break; 10186 } 10187 cp++; 10188 } 10189 if (cp == &un->un_ocmap.chkd[OCSIZE]) { 10190 mutex_exit(SD_MUTEX(un)); 10191 cmlb_invalidate(un->un_cmlbhandle, 10192 (void *)SD_PATH_DIRECT); 10193 mutex_enter(SD_MUTEX(un)); 10194 } 10195 10196 #endif 10197 } 10198 10199 if (otyp == OTYP_LYR) { 10200 un->un_ocmap.lyropen[part]++; 10201 } else { 10202 un->un_ocmap.regopen[otyp] |= partmask; 10203 } 10204 10205 /* Set up open and exclusive open flags */ 10206 if (flag & FEXCL) { 10207 un->un_exclopen |= (partmask); 10208 } 10209 10210 /* 10211 * If the lun is EFI labeled and lun capacity is greater than the 10212 * capacity contained in the label, log a sys-event to notify the 10213 * interested module. 10214 * To avoid an infinite loop of logging sys-event, we only log the 10215 * event when the lun is not opened in NDELAY mode. The event handler 10216 * should open the lun in NDELAY mode. 10217 */ 10218 if (!(flag & FNDELAY)) { 10219 mutex_exit(SD_MUTEX(un)); 10220 if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap, 10221 (void*)SD_PATH_DIRECT) == 0) { 10222 mutex_enter(SD_MUTEX(un)); 10223 if (un->un_f_blockcount_is_valid && 10224 un->un_blockcount > label_cap) { 10225 mutex_exit(SD_MUTEX(un)); 10226 sd_log_lun_expansion_event(un, 10227 (nodelay ? KM_NOSLEEP : KM_SLEEP)); 10228 mutex_enter(SD_MUTEX(un)); 10229 } 10230 } else { 10231 mutex_enter(SD_MUTEX(un)); 10232 } 10233 } 10234 10235 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: " 10236 "open of part %d type %d\n", part, otyp); 10237 10238 mutex_exit(SD_MUTEX(un)); 10239 if (!nodelay) { 10240 sd_pm_exit(un); 10241 } 10242 10243 sema_v(&un->un_semoclose); 10244 10245 mutex_enter(&sd_detach_mutex); 10246 un->un_opens_in_progress--; 10247 mutex_exit(&sd_detach_mutex); 10248 10249 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n"); 10250 return (DDI_SUCCESS); 10251 10252 excl_open_fail: 10253 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n"); 10254 rval = EBUSY; 10255 10256 open_fail: 10257 mutex_exit(SD_MUTEX(un)); 10258 10259 /* 10260 * On a failed open we must exit the pm management. 10261 */ 10262 if (!nodelay) { 10263 sd_pm_exit(un); 10264 } 10265 open_failed_with_pm: 10266 sema_v(&un->un_semoclose); 10267 10268 mutex_enter(&sd_detach_mutex); 10269 un->un_opens_in_progress--; 10270 if (otyp == OTYP_LYR) { 10271 un->un_layer_count--; 10272 } 10273 mutex_exit(&sd_detach_mutex); 10274 10275 return (rval); 10276 } 10277 10278 10279 /* 10280 * Function: sdclose 10281 * 10282 * Description: Driver's close(9e) entry point function. 10283 * 10284 * Arguments: dev - device number 10285 * flag - file status flag, informational only 10286 * otyp - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR) 10287 * cred_p - user credential pointer 10288 * 10289 * Return Code: ENXIO 10290 * 10291 * Context: Kernel thread context 10292 */ 10293 /* ARGSUSED */ 10294 static int 10295 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p) 10296 { 10297 struct sd_lun *un; 10298 uchar_t *cp; 10299 int part; 10300 int nodelay; 10301 int rval = 0; 10302 10303 /* Validate the open type */ 10304 if (otyp >= OTYPCNT) { 10305 return (ENXIO); 10306 } 10307 10308 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 10309 return (ENXIO); 10310 } 10311 10312 part = SDPART(dev); 10313 nodelay = flag & (FNDELAY | FNONBLOCK); 10314 10315 SD_TRACE(SD_LOG_OPEN_CLOSE, un, 10316 "sdclose: close of part %d type %d\n", part, otyp); 10317 10318 /* 10319 * We use a semaphore here in order to serialize 10320 * open and close requests on the device. 10321 */ 10322 sema_p(&un->un_semoclose); 10323 10324 mutex_enter(SD_MUTEX(un)); 10325 10326 /* Don't proceed if power is being changed. */ 10327 while (un->un_state == SD_STATE_PM_CHANGING) { 10328 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10329 } 10330 10331 if (un->un_exclopen & (1 << part)) { 10332 un->un_exclopen &= ~(1 << part); 10333 } 10334 10335 /* Update the open partition map */ 10336 if (otyp == OTYP_LYR) { 10337 un->un_ocmap.lyropen[part] -= 1; 10338 } else { 10339 un->un_ocmap.regopen[otyp] &= ~(1 << part); 10340 } 10341 10342 cp = &un->un_ocmap.chkd[0]; 10343 while (cp < &un->un_ocmap.chkd[OCSIZE]) { 10344 if (*cp != NULL) { 10345 break; 10346 } 10347 cp++; 10348 } 10349 10350 if (cp == &un->un_ocmap.chkd[OCSIZE]) { 10351 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n"); 10352 10353 /* 10354 * We avoid persistance upon the last close, and set 10355 * the throttle back to the maximum. 10356 */ 10357 un->un_throttle = un->un_saved_throttle; 10358 10359 if (un->un_state == SD_STATE_OFFLINE) { 10360 if (un->un_f_is_fibre == FALSE) { 10361 scsi_log(SD_DEVINFO(un), sd_label, 10362 CE_WARN, "offline\n"); 10363 } 10364 mutex_exit(SD_MUTEX(un)); 10365 cmlb_invalidate(un->un_cmlbhandle, 10366 (void *)SD_PATH_DIRECT); 10367 mutex_enter(SD_MUTEX(un)); 10368 10369 } else { 10370 /* 10371 * Flush any outstanding writes in NVRAM cache. 10372 * Note: SYNCHRONIZE CACHE is an optional SCSI-2 10373 * cmd, it may not work for non-Pluto devices. 10374 * SYNCHRONIZE CACHE is not required for removables, 10375 * except DVD-RAM drives. 10376 * 10377 * Also note: because SYNCHRONIZE CACHE is currently 10378 * the only command issued here that requires the 10379 * drive be powered up, only do the power up before 10380 * sending the Sync Cache command. If additional 10381 * commands are added which require a powered up 10382 * drive, the following sequence may have to change. 10383 * 10384 * And finally, note that parallel SCSI on SPARC 10385 * only issues a Sync Cache to DVD-RAM, a newly 10386 * supported device. 10387 */ 10388 #if defined(__i386) || defined(__amd64) 10389 if ((un->un_f_sync_cache_supported && 10390 un->un_f_sync_cache_required) || 10391 un->un_f_dvdram_writable_device == TRUE) { 10392 #else 10393 if (un->un_f_dvdram_writable_device == TRUE) { 10394 #endif 10395 mutex_exit(SD_MUTEX(un)); 10396 if (sd_pm_entry(un) == DDI_SUCCESS) { 10397 rval = 10398 sd_send_scsi_SYNCHRONIZE_CACHE(un, 10399 NULL); 10400 /* ignore error if not supported */ 10401 if (rval == ENOTSUP) { 10402 rval = 0; 10403 } else if (rval != 0) { 10404 rval = EIO; 10405 } 10406 sd_pm_exit(un); 10407 } else { 10408 rval = EIO; 10409 } 10410 mutex_enter(SD_MUTEX(un)); 10411 } 10412 10413 /* 10414 * For devices which supports DOOR_LOCK, send an ALLOW 10415 * MEDIA REMOVAL command, but don't get upset if it 10416 * fails. We need to raise the power of the drive before 10417 * we can call sd_send_scsi_DOORLOCK() 10418 */ 10419 if (un->un_f_doorlock_supported) { 10420 mutex_exit(SD_MUTEX(un)); 10421 if (sd_pm_entry(un) == DDI_SUCCESS) { 10422 sd_ssc_t *ssc; 10423 10424 ssc = sd_ssc_init(un); 10425 rval = sd_send_scsi_DOORLOCK(ssc, 10426 SD_REMOVAL_ALLOW, SD_PATH_DIRECT); 10427 if (rval != 0) 10428 sd_ssc_assessment(ssc, 10429 SD_FMT_IGNORE); 10430 sd_ssc_fini(ssc); 10431 10432 sd_pm_exit(un); 10433 if (ISCD(un) && (rval != 0) && 10434 (nodelay != 0)) { 10435 rval = ENXIO; 10436 } 10437 } else { 10438 rval = EIO; 10439 } 10440 mutex_enter(SD_MUTEX(un)); 10441 } 10442 10443 /* 10444 * If a device has removable media, invalidate all 10445 * parameters related to media, such as geometry, 10446 * blocksize, and blockcount. 10447 */ 10448 if (un->un_f_has_removable_media) { 10449 sr_ejected(un); 10450 } 10451 10452 /* 10453 * Destroy the cache (if it exists) which was 10454 * allocated for the write maps since this is 10455 * the last close for this media. 10456 */ 10457 if (un->un_wm_cache) { 10458 /* 10459 * Check if there are pending commands. 10460 * and if there are give a warning and 10461 * do not destroy the cache. 10462 */ 10463 if (un->un_ncmds_in_driver > 0) { 10464 scsi_log(SD_DEVINFO(un), 10465 sd_label, CE_WARN, 10466 "Unable to clean up memory " 10467 "because of pending I/O\n"); 10468 } else { 10469 kmem_cache_destroy( 10470 un->un_wm_cache); 10471 un->un_wm_cache = NULL; 10472 } 10473 } 10474 } 10475 } 10476 10477 mutex_exit(SD_MUTEX(un)); 10478 sema_v(&un->un_semoclose); 10479 10480 if (otyp == OTYP_LYR) { 10481 mutex_enter(&sd_detach_mutex); 10482 /* 10483 * The detach routine may run when the layer count 10484 * drops to zero. 10485 */ 10486 un->un_layer_count--; 10487 mutex_exit(&sd_detach_mutex); 10488 } 10489 10490 return (rval); 10491 } 10492 10493 10494 /* 10495 * Function: sd_ready_and_valid 10496 * 10497 * Description: Test if device is ready and has a valid geometry. 10498 * 10499 * Arguments: ssc - sd_ssc_t will contain un 10500 * un - driver soft state (unit) structure 10501 * 10502 * Return Code: SD_READY_VALID ready and valid label 10503 * SD_NOT_READY_VALID not ready, no label 10504 * SD_RESERVED_BY_OTHERS reservation conflict 10505 * 10506 * Context: Never called at interrupt context. 10507 */ 10508 10509 static int 10510 sd_ready_and_valid(sd_ssc_t *ssc, int part) 10511 { 10512 struct sd_errstats *stp; 10513 uint64_t capacity; 10514 uint_t lbasize; 10515 int rval = SD_READY_VALID; 10516 char name_str[48]; 10517 boolean_t is_valid; 10518 struct sd_lun *un; 10519 int status; 10520 10521 ASSERT(ssc != NULL); 10522 un = ssc->ssc_un; 10523 ASSERT(un != NULL); 10524 ASSERT(!mutex_owned(SD_MUTEX(un))); 10525 10526 mutex_enter(SD_MUTEX(un)); 10527 /* 10528 * If a device has removable media, we must check if media is 10529 * ready when checking if this device is ready and valid. 10530 */ 10531 if (un->un_f_has_removable_media) { 10532 mutex_exit(SD_MUTEX(un)); 10533 status = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 10534 10535 if (status != 0) { 10536 rval = SD_NOT_READY_VALID; 10537 mutex_enter(SD_MUTEX(un)); 10538 10539 /* Ignore all failed status for removalbe media */ 10540 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10541 10542 goto done; 10543 } 10544 10545 is_valid = SD_IS_VALID_LABEL(un); 10546 mutex_enter(SD_MUTEX(un)); 10547 if (!is_valid || 10548 (un->un_f_blockcount_is_valid == FALSE) || 10549 (un->un_f_tgt_blocksize_is_valid == FALSE)) { 10550 10551 /* capacity has to be read every open. */ 10552 mutex_exit(SD_MUTEX(un)); 10553 status = sd_send_scsi_READ_CAPACITY(ssc, &capacity, 10554 &lbasize, SD_PATH_DIRECT); 10555 10556 if (status != 0) { 10557 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10558 10559 cmlb_invalidate(un->un_cmlbhandle, 10560 (void *)SD_PATH_DIRECT); 10561 mutex_enter(SD_MUTEX(un)); 10562 rval = SD_NOT_READY_VALID; 10563 10564 goto done; 10565 } else { 10566 mutex_enter(SD_MUTEX(un)); 10567 sd_update_block_info(un, lbasize, capacity); 10568 } 10569 } 10570 10571 /* 10572 * Check if the media in the device is writable or not. 10573 */ 10574 if (!is_valid && ISCD(un)) { 10575 sd_check_for_writable_cd(ssc, SD_PATH_DIRECT); 10576 } 10577 10578 } else { 10579 /* 10580 * Do a test unit ready to clear any unit attention from non-cd 10581 * devices. 10582 */ 10583 mutex_exit(SD_MUTEX(un)); 10584 10585 status = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 10586 if (status != 0) { 10587 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10588 } 10589 10590 mutex_enter(SD_MUTEX(un)); 10591 } 10592 10593 10594 /* 10595 * If this is a non 512 block device, allocate space for 10596 * the wmap cache. This is being done here since every time 10597 * a media is changed this routine will be called and the 10598 * block size is a function of media rather than device. 10599 */ 10600 if ((un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR || 10601 un->un_f_non_devbsize_supported) && 10602 un->un_tgt_blocksize != DEV_BSIZE) { 10603 if (!(un->un_wm_cache)) { 10604 (void) snprintf(name_str, sizeof (name_str), 10605 "%s%d_cache", 10606 ddi_driver_name(SD_DEVINFO(un)), 10607 ddi_get_instance(SD_DEVINFO(un))); 10608 un->un_wm_cache = kmem_cache_create( 10609 name_str, sizeof (struct sd_w_map), 10610 8, sd_wm_cache_constructor, 10611 sd_wm_cache_destructor, NULL, 10612 (void *)un, NULL, 0); 10613 if (!(un->un_wm_cache)) { 10614 rval = ENOMEM; 10615 goto done; 10616 } 10617 } 10618 } 10619 10620 if (un->un_state == SD_STATE_NORMAL) { 10621 /* 10622 * If the target is not yet ready here (defined by a TUR 10623 * failure), invalidate the geometry and print an 'offline' 10624 * message. This is a legacy message, as the state of the 10625 * target is not actually changed to SD_STATE_OFFLINE. 10626 * 10627 * If the TUR fails for EACCES (Reservation Conflict), 10628 * SD_RESERVED_BY_OTHERS will be returned to indicate 10629 * reservation conflict. If the TUR fails for other 10630 * reasons, SD_NOT_READY_VALID will be returned. 10631 */ 10632 int err; 10633 10634 mutex_exit(SD_MUTEX(un)); 10635 err = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 10636 mutex_enter(SD_MUTEX(un)); 10637 10638 if (err != 0) { 10639 mutex_exit(SD_MUTEX(un)); 10640 cmlb_invalidate(un->un_cmlbhandle, 10641 (void *)SD_PATH_DIRECT); 10642 mutex_enter(SD_MUTEX(un)); 10643 if (err == EACCES) { 10644 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 10645 "reservation conflict\n"); 10646 rval = SD_RESERVED_BY_OTHERS; 10647 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10648 } else { 10649 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 10650 "drive offline\n"); 10651 rval = SD_NOT_READY_VALID; 10652 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 10653 } 10654 goto done; 10655 } 10656 } 10657 10658 if (un->un_f_format_in_progress == FALSE) { 10659 mutex_exit(SD_MUTEX(un)); 10660 10661 (void) cmlb_validate(un->un_cmlbhandle, 0, 10662 (void *)SD_PATH_DIRECT); 10663 if (cmlb_partinfo(un->un_cmlbhandle, part, NULL, NULL, NULL, 10664 NULL, (void *) SD_PATH_DIRECT) != 0) { 10665 rval = SD_NOT_READY_VALID; 10666 mutex_enter(SD_MUTEX(un)); 10667 10668 goto done; 10669 } 10670 if (un->un_f_pkstats_enabled) { 10671 sd_set_pstats(un); 10672 SD_TRACE(SD_LOG_IO_PARTITION, un, 10673 "sd_ready_and_valid: un:0x%p pstats created and " 10674 "set\n", un); 10675 } 10676 mutex_enter(SD_MUTEX(un)); 10677 } 10678 10679 /* 10680 * If this device supports DOOR_LOCK command, try and send 10681 * this command to PREVENT MEDIA REMOVAL, but don't get upset 10682 * if it fails. For a CD, however, it is an error 10683 */ 10684 if (un->un_f_doorlock_supported) { 10685 mutex_exit(SD_MUTEX(un)); 10686 status = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT, 10687 SD_PATH_DIRECT); 10688 10689 if ((status != 0) && ISCD(un)) { 10690 rval = SD_NOT_READY_VALID; 10691 mutex_enter(SD_MUTEX(un)); 10692 10693 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10694 10695 goto done; 10696 } else if (status != 0) 10697 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10698 mutex_enter(SD_MUTEX(un)); 10699 } 10700 10701 /* The state has changed, inform the media watch routines */ 10702 un->un_mediastate = DKIO_INSERTED; 10703 cv_broadcast(&un->un_state_cv); 10704 rval = SD_READY_VALID; 10705 10706 done: 10707 10708 /* 10709 * Initialize the capacity kstat value, if no media previously 10710 * (capacity kstat is 0) and a media has been inserted 10711 * (un_blockcount > 0). 10712 */ 10713 if (un->un_errstats != NULL) { 10714 stp = (struct sd_errstats *)un->un_errstats->ks_data; 10715 if ((stp->sd_capacity.value.ui64 == 0) && 10716 (un->un_f_blockcount_is_valid == TRUE)) { 10717 stp->sd_capacity.value.ui64 = 10718 (uint64_t)((uint64_t)un->un_blockcount * 10719 un->un_sys_blocksize); 10720 } 10721 } 10722 10723 mutex_exit(SD_MUTEX(un)); 10724 return (rval); 10725 } 10726 10727 10728 /* 10729 * Function: sdmin 10730 * 10731 * Description: Routine to limit the size of a data transfer. Used in 10732 * conjunction with physio(9F). 10733 * 10734 * Arguments: bp - pointer to the indicated buf(9S) struct. 10735 * 10736 * Context: Kernel thread context. 10737 */ 10738 10739 static void 10740 sdmin(struct buf *bp) 10741 { 10742 struct sd_lun *un; 10743 int instance; 10744 10745 instance = SDUNIT(bp->b_edev); 10746 10747 un = ddi_get_soft_state(sd_state, instance); 10748 ASSERT(un != NULL); 10749 10750 /* 10751 * We depend on DMA partial or buf breakup to restrict 10752 * IO size if any of them enabled. 10753 */ 10754 if (un->un_partial_dma_supported || 10755 un->un_buf_breakup_supported) { 10756 return; 10757 } 10758 10759 if (bp->b_bcount > un->un_max_xfer_size) { 10760 bp->b_bcount = un->un_max_xfer_size; 10761 } 10762 } 10763 10764 10765 /* 10766 * Function: sdread 10767 * 10768 * Description: Driver's read(9e) entry point function. 10769 * 10770 * Arguments: dev - device number 10771 * uio - structure pointer describing where data is to be stored 10772 * in user's space 10773 * cred_p - user credential pointer 10774 * 10775 * Return Code: ENXIO 10776 * EIO 10777 * EINVAL 10778 * value returned by physio 10779 * 10780 * Context: Kernel thread context. 10781 */ 10782 /* ARGSUSED */ 10783 static int 10784 sdread(dev_t dev, struct uio *uio, cred_t *cred_p) 10785 { 10786 struct sd_lun *un = NULL; 10787 int secmask; 10788 int err = 0; 10789 sd_ssc_t *ssc; 10790 10791 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 10792 return (ENXIO); 10793 } 10794 10795 ASSERT(!mutex_owned(SD_MUTEX(un))); 10796 10797 10798 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 10799 mutex_enter(SD_MUTEX(un)); 10800 /* 10801 * Because the call to sd_ready_and_valid will issue I/O we 10802 * must wait here if either the device is suspended or 10803 * if it's power level is changing. 10804 */ 10805 while ((un->un_state == SD_STATE_SUSPENDED) || 10806 (un->un_state == SD_STATE_PM_CHANGING)) { 10807 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10808 } 10809 un->un_ncmds_in_driver++; 10810 mutex_exit(SD_MUTEX(un)); 10811 10812 /* Initialize sd_ssc_t for internal uscsi commands */ 10813 ssc = sd_ssc_init(un); 10814 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) { 10815 err = EIO; 10816 } else { 10817 err = 0; 10818 } 10819 sd_ssc_fini(ssc); 10820 10821 mutex_enter(SD_MUTEX(un)); 10822 un->un_ncmds_in_driver--; 10823 ASSERT(un->un_ncmds_in_driver >= 0); 10824 mutex_exit(SD_MUTEX(un)); 10825 if (err != 0) 10826 return (err); 10827 } 10828 10829 /* 10830 * Read requests are restricted to multiples of the system block size. 10831 */ 10832 if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR) 10833 secmask = un->un_tgt_blocksize - 1; 10834 else 10835 secmask = DEV_BSIZE - 1; 10836 10837 if (uio->uio_loffset & ((offset_t)(secmask))) { 10838 SD_ERROR(SD_LOG_READ_WRITE, un, 10839 "sdread: file offset not modulo %d\n", 10840 secmask + 1); 10841 err = EINVAL; 10842 } else if (uio->uio_iov->iov_len & (secmask)) { 10843 SD_ERROR(SD_LOG_READ_WRITE, un, 10844 "sdread: transfer length not modulo %d\n", 10845 secmask + 1); 10846 err = EINVAL; 10847 } else { 10848 err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio); 10849 } 10850 10851 return (err); 10852 } 10853 10854 10855 /* 10856 * Function: sdwrite 10857 * 10858 * Description: Driver's write(9e) entry point function. 10859 * 10860 * Arguments: dev - device number 10861 * uio - structure pointer describing where data is stored in 10862 * user's space 10863 * cred_p - user credential pointer 10864 * 10865 * Return Code: ENXIO 10866 * EIO 10867 * EINVAL 10868 * value returned by physio 10869 * 10870 * Context: Kernel thread context. 10871 */ 10872 /* ARGSUSED */ 10873 static int 10874 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p) 10875 { 10876 struct sd_lun *un = NULL; 10877 int secmask; 10878 int err = 0; 10879 sd_ssc_t *ssc; 10880 10881 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 10882 return (ENXIO); 10883 } 10884 10885 ASSERT(!mutex_owned(SD_MUTEX(un))); 10886 10887 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 10888 mutex_enter(SD_MUTEX(un)); 10889 /* 10890 * Because the call to sd_ready_and_valid will issue I/O we 10891 * must wait here if either the device is suspended or 10892 * if it's power level is changing. 10893 */ 10894 while ((un->un_state == SD_STATE_SUSPENDED) || 10895 (un->un_state == SD_STATE_PM_CHANGING)) { 10896 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10897 } 10898 un->un_ncmds_in_driver++; 10899 mutex_exit(SD_MUTEX(un)); 10900 10901 /* Initialize sd_ssc_t for internal uscsi commands */ 10902 ssc = sd_ssc_init(un); 10903 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) { 10904 err = EIO; 10905 } else { 10906 err = 0; 10907 } 10908 sd_ssc_fini(ssc); 10909 10910 mutex_enter(SD_MUTEX(un)); 10911 un->un_ncmds_in_driver--; 10912 ASSERT(un->un_ncmds_in_driver >= 0); 10913 mutex_exit(SD_MUTEX(un)); 10914 if (err != 0) 10915 return (err); 10916 } 10917 10918 /* 10919 * Write requests are restricted to multiples of the system block size. 10920 */ 10921 if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR) 10922 secmask = un->un_tgt_blocksize - 1; 10923 else 10924 secmask = DEV_BSIZE - 1; 10925 10926 if (uio->uio_loffset & ((offset_t)(secmask))) { 10927 SD_ERROR(SD_LOG_READ_WRITE, un, 10928 "sdwrite: file offset not modulo %d\n", 10929 secmask + 1); 10930 err = EINVAL; 10931 } else if (uio->uio_iov->iov_len & (secmask)) { 10932 SD_ERROR(SD_LOG_READ_WRITE, un, 10933 "sdwrite: transfer length not modulo %d\n", 10934 secmask + 1); 10935 err = EINVAL; 10936 } else { 10937 err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio); 10938 } 10939 10940 return (err); 10941 } 10942 10943 10944 /* 10945 * Function: sdaread 10946 * 10947 * Description: Driver's aread(9e) entry point function. 10948 * 10949 * Arguments: dev - device number 10950 * aio - structure pointer describing where data is to be stored 10951 * cred_p - user credential pointer 10952 * 10953 * Return Code: ENXIO 10954 * EIO 10955 * EINVAL 10956 * value returned by aphysio 10957 * 10958 * Context: Kernel thread context. 10959 */ 10960 /* ARGSUSED */ 10961 static int 10962 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p) 10963 { 10964 struct sd_lun *un = NULL; 10965 struct uio *uio = aio->aio_uio; 10966 int secmask; 10967 int err = 0; 10968 sd_ssc_t *ssc; 10969 10970 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 10971 return (ENXIO); 10972 } 10973 10974 ASSERT(!mutex_owned(SD_MUTEX(un))); 10975 10976 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 10977 mutex_enter(SD_MUTEX(un)); 10978 /* 10979 * Because the call to sd_ready_and_valid will issue I/O we 10980 * must wait here if either the device is suspended or 10981 * if it's power level is changing. 10982 */ 10983 while ((un->un_state == SD_STATE_SUSPENDED) || 10984 (un->un_state == SD_STATE_PM_CHANGING)) { 10985 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10986 } 10987 un->un_ncmds_in_driver++; 10988 mutex_exit(SD_MUTEX(un)); 10989 10990 /* Initialize sd_ssc_t for internal uscsi commands */ 10991 ssc = sd_ssc_init(un); 10992 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) { 10993 err = EIO; 10994 } else { 10995 err = 0; 10996 } 10997 sd_ssc_fini(ssc); 10998 10999 mutex_enter(SD_MUTEX(un)); 11000 un->un_ncmds_in_driver--; 11001 ASSERT(un->un_ncmds_in_driver >= 0); 11002 mutex_exit(SD_MUTEX(un)); 11003 if (err != 0) 11004 return (err); 11005 } 11006 11007 /* 11008 * Read requests are restricted to multiples of the system block size. 11009 */ 11010 if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR) 11011 secmask = un->un_tgt_blocksize - 1; 11012 else 11013 secmask = DEV_BSIZE - 1; 11014 11015 if (uio->uio_loffset & ((offset_t)(secmask))) { 11016 SD_ERROR(SD_LOG_READ_WRITE, un, 11017 "sdaread: file offset not modulo %d\n", 11018 secmask + 1); 11019 err = EINVAL; 11020 } else if (uio->uio_iov->iov_len & (secmask)) { 11021 SD_ERROR(SD_LOG_READ_WRITE, un, 11022 "sdaread: transfer length not modulo %d\n", 11023 secmask + 1); 11024 err = EINVAL; 11025 } else { 11026 err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio); 11027 } 11028 11029 return (err); 11030 } 11031 11032 11033 /* 11034 * Function: sdawrite 11035 * 11036 * Description: Driver's awrite(9e) entry point function. 11037 * 11038 * Arguments: dev - device number 11039 * aio - structure pointer describing where data is stored 11040 * cred_p - user credential pointer 11041 * 11042 * Return Code: ENXIO 11043 * EIO 11044 * EINVAL 11045 * value returned by aphysio 11046 * 11047 * Context: Kernel thread context. 11048 */ 11049 /* ARGSUSED */ 11050 static int 11051 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p) 11052 { 11053 struct sd_lun *un = NULL; 11054 struct uio *uio = aio->aio_uio; 11055 int secmask; 11056 int err = 0; 11057 sd_ssc_t *ssc; 11058 11059 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 11060 return (ENXIO); 11061 } 11062 11063 ASSERT(!mutex_owned(SD_MUTEX(un))); 11064 11065 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 11066 mutex_enter(SD_MUTEX(un)); 11067 /* 11068 * Because the call to sd_ready_and_valid will issue I/O we 11069 * must wait here if either the device is suspended or 11070 * if it's power level is changing. 11071 */ 11072 while ((un->un_state == SD_STATE_SUSPENDED) || 11073 (un->un_state == SD_STATE_PM_CHANGING)) { 11074 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 11075 } 11076 un->un_ncmds_in_driver++; 11077 mutex_exit(SD_MUTEX(un)); 11078 11079 /* Initialize sd_ssc_t for internal uscsi commands */ 11080 ssc = sd_ssc_init(un); 11081 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) { 11082 err = EIO; 11083 } else { 11084 err = 0; 11085 } 11086 sd_ssc_fini(ssc); 11087 11088 mutex_enter(SD_MUTEX(un)); 11089 un->un_ncmds_in_driver--; 11090 ASSERT(un->un_ncmds_in_driver >= 0); 11091 mutex_exit(SD_MUTEX(un)); 11092 if (err != 0) 11093 return (err); 11094 } 11095 11096 /* 11097 * Write requests are restricted to multiples of the system block size. 11098 */ 11099 if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR) 11100 secmask = un->un_tgt_blocksize - 1; 11101 else 11102 secmask = DEV_BSIZE - 1; 11103 11104 if (uio->uio_loffset & ((offset_t)(secmask))) { 11105 SD_ERROR(SD_LOG_READ_WRITE, un, 11106 "sdawrite: file offset not modulo %d\n", 11107 secmask + 1); 11108 err = EINVAL; 11109 } else if (uio->uio_iov->iov_len & (secmask)) { 11110 SD_ERROR(SD_LOG_READ_WRITE, un, 11111 "sdawrite: transfer length not modulo %d\n", 11112 secmask + 1); 11113 err = EINVAL; 11114 } else { 11115 err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio); 11116 } 11117 11118 return (err); 11119 } 11120 11121 11122 11123 11124 11125 /* 11126 * Driver IO processing follows the following sequence: 11127 * 11128 * sdioctl(9E) sdstrategy(9E) biodone(9F) 11129 * | | ^ 11130 * v v | 11131 * sd_send_scsi_cmd() ddi_xbuf_qstrategy() +-------------------+ 11132 * | | | | 11133 * v | | | 11134 * sd_uscsi_strategy() sd_xbuf_strategy() sd_buf_iodone() sd_uscsi_iodone() 11135 * | | ^ ^ 11136 * v v | | 11137 * SD_BEGIN_IOSTART() SD_BEGIN_IOSTART() | | 11138 * | | | | 11139 * +---+ | +------------+ +-------+ 11140 * | | | | 11141 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 11142 * | v | | 11143 * | sd_mapblockaddr_iostart() sd_mapblockaddr_iodone() | 11144 * | | ^ | 11145 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 11146 * | v | | 11147 * | sd_mapblocksize_iostart() sd_mapblocksize_iodone() | 11148 * | | ^ | 11149 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 11150 * | v | | 11151 * | sd_checksum_iostart() sd_checksum_iodone() | 11152 * | | ^ | 11153 * +-> SD_NEXT_IOSTART()| SD_NEXT_IODONE()+------------->+ 11154 * | v | | 11155 * | sd_pm_iostart() sd_pm_iodone() | 11156 * | | ^ | 11157 * | | | | 11158 * +-> SD_NEXT_IOSTART()| SD_BEGIN_IODONE()--+--------------+ 11159 * | ^ 11160 * v | 11161 * sd_core_iostart() | 11162 * | | 11163 * | +------>(*destroypkt)() 11164 * +-> sd_start_cmds() <-+ | | 11165 * | | | v 11166 * | | | scsi_destroy_pkt(9F) 11167 * | | | 11168 * +->(*initpkt)() +- sdintr() 11169 * | | | | 11170 * | +-> scsi_init_pkt(9F) | +-> sd_handle_xxx() 11171 * | +-> scsi_setup_cdb(9F) | 11172 * | | 11173 * +--> scsi_transport(9F) | 11174 * | | 11175 * +----> SCSA ---->+ 11176 * 11177 * 11178 * This code is based upon the following presumptions: 11179 * 11180 * - iostart and iodone functions operate on buf(9S) structures. These 11181 * functions perform the necessary operations on the buf(9S) and pass 11182 * them along to the next function in the chain by using the macros 11183 * SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE() 11184 * (for iodone side functions). 11185 * 11186 * - The iostart side functions may sleep. The iodone side functions 11187 * are called under interrupt context and may NOT sleep. Therefore 11188 * iodone side functions also may not call iostart side functions. 11189 * (NOTE: iostart side functions should NOT sleep for memory, as 11190 * this could result in deadlock.) 11191 * 11192 * - An iostart side function may call its corresponding iodone side 11193 * function directly (if necessary). 11194 * 11195 * - In the event of an error, an iostart side function can return a buf(9S) 11196 * to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and 11197 * b_error in the usual way of course). 11198 * 11199 * - The taskq mechanism may be used by the iodone side functions to dispatch 11200 * requests to the iostart side functions. The iostart side functions in 11201 * this case would be called under the context of a taskq thread, so it's 11202 * OK for them to block/sleep/spin in this case. 11203 * 11204 * - iostart side functions may allocate "shadow" buf(9S) structs and 11205 * pass them along to the next function in the chain. The corresponding 11206 * iodone side functions must coalesce the "shadow" bufs and return 11207 * the "original" buf to the next higher layer. 11208 * 11209 * - The b_private field of the buf(9S) struct holds a pointer to 11210 * an sd_xbuf struct, which contains information needed to 11211 * construct the scsi_pkt for the command. 11212 * 11213 * - The SD_MUTEX(un) is NOT held across calls to the next layer. Each 11214 * layer must acquire & release the SD_MUTEX(un) as needed. 11215 */ 11216 11217 11218 /* 11219 * Create taskq for all targets in the system. This is created at 11220 * _init(9E) and destroyed at _fini(9E). 11221 * 11222 * Note: here we set the minalloc to a reasonably high number to ensure that 11223 * we will have an adequate supply of task entries available at interrupt time. 11224 * This is used in conjunction with the TASKQ_PREPOPULATE flag in 11225 * sd_create_taskq(). Since we do not want to sleep for allocations at 11226 * interrupt time, set maxalloc equal to minalloc. That way we will just fail 11227 * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq 11228 * requests any one instant in time. 11229 */ 11230 #define SD_TASKQ_NUMTHREADS 8 11231 #define SD_TASKQ_MINALLOC 256 11232 #define SD_TASKQ_MAXALLOC 256 11233 11234 static taskq_t *sd_tq = NULL; 11235 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq)) 11236 11237 static int sd_taskq_minalloc = SD_TASKQ_MINALLOC; 11238 static int sd_taskq_maxalloc = SD_TASKQ_MAXALLOC; 11239 11240 /* 11241 * The following task queue is being created for the write part of 11242 * read-modify-write of non-512 block size devices. 11243 * Limit the number of threads to 1 for now. This number has been chosen 11244 * considering the fact that it applies only to dvd ram drives/MO drives 11245 * currently. Performance for which is not main criteria at this stage. 11246 * Note: It needs to be explored if we can use a single taskq in future 11247 */ 11248 #define SD_WMR_TASKQ_NUMTHREADS 1 11249 static taskq_t *sd_wmr_tq = NULL; 11250 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq)) 11251 11252 /* 11253 * Function: sd_taskq_create 11254 * 11255 * Description: Create taskq thread(s) and preallocate task entries 11256 * 11257 * Return Code: Returns a pointer to the allocated taskq_t. 11258 * 11259 * Context: Can sleep. Requires blockable context. 11260 * 11261 * Notes: - The taskq() facility currently is NOT part of the DDI. 11262 * (definitely NOT recommeded for 3rd-party drivers!) :-) 11263 * - taskq_create() will block for memory, also it will panic 11264 * if it cannot create the requested number of threads. 11265 * - Currently taskq_create() creates threads that cannot be 11266 * swapped. 11267 * - We use TASKQ_PREPOPULATE to ensure we have an adequate 11268 * supply of taskq entries at interrupt time (ie, so that we 11269 * do not have to sleep for memory) 11270 */ 11271 11272 static void 11273 sd_taskq_create(void) 11274 { 11275 char taskq_name[TASKQ_NAMELEN]; 11276 11277 ASSERT(sd_tq == NULL); 11278 ASSERT(sd_wmr_tq == NULL); 11279 11280 (void) snprintf(taskq_name, sizeof (taskq_name), 11281 "%s_drv_taskq", sd_label); 11282 sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS, 11283 (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc, 11284 TASKQ_PREPOPULATE)); 11285 11286 (void) snprintf(taskq_name, sizeof (taskq_name), 11287 "%s_rmw_taskq", sd_label); 11288 sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS, 11289 (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc, 11290 TASKQ_PREPOPULATE)); 11291 } 11292 11293 11294 /* 11295 * Function: sd_taskq_delete 11296 * 11297 * Description: Complementary cleanup routine for sd_taskq_create(). 11298 * 11299 * Context: Kernel thread context. 11300 */ 11301 11302 static void 11303 sd_taskq_delete(void) 11304 { 11305 ASSERT(sd_tq != NULL); 11306 ASSERT(sd_wmr_tq != NULL); 11307 taskq_destroy(sd_tq); 11308 taskq_destroy(sd_wmr_tq); 11309 sd_tq = NULL; 11310 sd_wmr_tq = NULL; 11311 } 11312 11313 11314 /* 11315 * Function: sdstrategy 11316 * 11317 * Description: Driver's strategy (9E) entry point function. 11318 * 11319 * Arguments: bp - pointer to buf(9S) 11320 * 11321 * Return Code: Always returns zero 11322 * 11323 * Context: Kernel thread context. 11324 */ 11325 11326 static int 11327 sdstrategy(struct buf *bp) 11328 { 11329 struct sd_lun *un; 11330 11331 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 11332 if (un == NULL) { 11333 bioerror(bp, EIO); 11334 bp->b_resid = bp->b_bcount; 11335 biodone(bp); 11336 return (0); 11337 } 11338 11339 /* As was done in the past, fail new cmds. if state is dumping. */ 11340 if (un->un_state == SD_STATE_DUMPING) { 11341 bioerror(bp, ENXIO); 11342 bp->b_resid = bp->b_bcount; 11343 biodone(bp); 11344 return (0); 11345 } 11346 11347 ASSERT(!mutex_owned(SD_MUTEX(un))); 11348 11349 /* 11350 * Commands may sneak in while we released the mutex in 11351 * DDI_SUSPEND, we should block new commands. However, old 11352 * commands that are still in the driver at this point should 11353 * still be allowed to drain. 11354 */ 11355 mutex_enter(SD_MUTEX(un)); 11356 /* 11357 * Must wait here if either the device is suspended or 11358 * if it's power level is changing. 11359 */ 11360 while ((un->un_state == SD_STATE_SUSPENDED) || 11361 (un->un_state == SD_STATE_PM_CHANGING)) { 11362 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 11363 } 11364 11365 un->un_ncmds_in_driver++; 11366 11367 /* 11368 * atapi: Since we are running the CD for now in PIO mode we need to 11369 * call bp_mapin here to avoid bp_mapin called interrupt context under 11370 * the HBA's init_pkt routine. 11371 */ 11372 if (un->un_f_cfg_is_atapi == TRUE) { 11373 mutex_exit(SD_MUTEX(un)); 11374 bp_mapin(bp); 11375 mutex_enter(SD_MUTEX(un)); 11376 } 11377 SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n", 11378 un->un_ncmds_in_driver); 11379 11380 if (bp->b_flags & B_WRITE) 11381 un->un_f_sync_cache_required = TRUE; 11382 11383 mutex_exit(SD_MUTEX(un)); 11384 11385 /* 11386 * This will (eventually) allocate the sd_xbuf area and 11387 * call sd_xbuf_strategy(). We just want to return the 11388 * result of ddi_xbuf_qstrategy so that we have an opt- 11389 * imized tail call which saves us a stack frame. 11390 */ 11391 return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr)); 11392 } 11393 11394 11395 /* 11396 * Function: sd_xbuf_strategy 11397 * 11398 * Description: Function for initiating IO operations via the 11399 * ddi_xbuf_qstrategy() mechanism. 11400 * 11401 * Context: Kernel thread context. 11402 */ 11403 11404 static void 11405 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg) 11406 { 11407 struct sd_lun *un = arg; 11408 11409 ASSERT(bp != NULL); 11410 ASSERT(xp != NULL); 11411 ASSERT(un != NULL); 11412 ASSERT(!mutex_owned(SD_MUTEX(un))); 11413 11414 /* 11415 * Initialize the fields in the xbuf and save a pointer to the 11416 * xbuf in bp->b_private. 11417 */ 11418 sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL); 11419 11420 /* Send the buf down the iostart chain */ 11421 SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp); 11422 } 11423 11424 11425 /* 11426 * Function: sd_xbuf_init 11427 * 11428 * Description: Prepare the given sd_xbuf struct for use. 11429 * 11430 * Arguments: un - ptr to softstate 11431 * bp - ptr to associated buf(9S) 11432 * xp - ptr to associated sd_xbuf 11433 * chain_type - IO chain type to use: 11434 * SD_CHAIN_NULL 11435 * SD_CHAIN_BUFIO 11436 * SD_CHAIN_USCSI 11437 * SD_CHAIN_DIRECT 11438 * SD_CHAIN_DIRECT_PRIORITY 11439 * pktinfop - ptr to private data struct for scsi_pkt(9S) 11440 * initialization; may be NULL if none. 11441 * 11442 * Context: Kernel thread context 11443 */ 11444 11445 static void 11446 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 11447 uchar_t chain_type, void *pktinfop) 11448 { 11449 int index; 11450 11451 ASSERT(un != NULL); 11452 ASSERT(bp != NULL); 11453 ASSERT(xp != NULL); 11454 11455 SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n", 11456 bp, chain_type); 11457 11458 xp->xb_un = un; 11459 xp->xb_pktp = NULL; 11460 xp->xb_pktinfo = pktinfop; 11461 xp->xb_private = bp->b_private; 11462 xp->xb_blkno = (daddr_t)bp->b_blkno; 11463 11464 /* 11465 * Set up the iostart and iodone chain indexes in the xbuf, based 11466 * upon the specified chain type to use. 11467 */ 11468 switch (chain_type) { 11469 case SD_CHAIN_NULL: 11470 /* 11471 * Fall thru to just use the values for the buf type, even 11472 * tho for the NULL chain these values will never be used. 11473 */ 11474 /* FALLTHRU */ 11475 case SD_CHAIN_BUFIO: 11476 index = un->un_buf_chain_type; 11477 if ((!un->un_f_has_removable_media) && 11478 (un->un_tgt_blocksize != 0) && 11479 (un->un_tgt_blocksize != DEV_BSIZE)) { 11480 int secmask = 0, blknomask = 0; 11481 blknomask = 11482 (un->un_tgt_blocksize / DEV_BSIZE) - 1; 11483 secmask = un->un_tgt_blocksize - 1; 11484 11485 if ((bp->b_lblkno & (blknomask)) || 11486 (bp->b_bcount & (secmask))) { 11487 if (un->un_f_rmw_type != 11488 SD_RMW_TYPE_RETURN_ERROR) { 11489 if (un->un_f_pm_is_enabled == FALSE) 11490 index = 11491 SD_CHAIN_INFO_MSS_DSK_NO_PM; 11492 else 11493 index = 11494 SD_CHAIN_INFO_MSS_DISK; 11495 } 11496 } 11497 } 11498 break; 11499 case SD_CHAIN_USCSI: 11500 index = un->un_uscsi_chain_type; 11501 break; 11502 case SD_CHAIN_DIRECT: 11503 index = un->un_direct_chain_type; 11504 break; 11505 case SD_CHAIN_DIRECT_PRIORITY: 11506 index = un->un_priority_chain_type; 11507 break; 11508 default: 11509 /* We're really broken if we ever get here... */ 11510 panic("sd_xbuf_init: illegal chain type!"); 11511 /*NOTREACHED*/ 11512 } 11513 11514 xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index; 11515 xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index; 11516 11517 /* 11518 * It might be a bit easier to simply bzero the entire xbuf above, 11519 * but it turns out that since we init a fair number of members anyway, 11520 * we save a fair number cycles by doing explicit assignment of zero. 11521 */ 11522 xp->xb_pkt_flags = 0; 11523 xp->xb_dma_resid = 0; 11524 xp->xb_retry_count = 0; 11525 xp->xb_victim_retry_count = 0; 11526 xp->xb_ua_retry_count = 0; 11527 xp->xb_nr_retry_count = 0; 11528 xp->xb_sense_bp = NULL; 11529 xp->xb_sense_status = 0; 11530 xp->xb_sense_state = 0; 11531 xp->xb_sense_resid = 0; 11532 xp->xb_ena = 0; 11533 11534 bp->b_private = xp; 11535 bp->b_flags &= ~(B_DONE | B_ERROR); 11536 bp->b_resid = 0; 11537 bp->av_forw = NULL; 11538 bp->av_back = NULL; 11539 bioerror(bp, 0); 11540 11541 SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n"); 11542 } 11543 11544 11545 /* 11546 * Function: sd_uscsi_strategy 11547 * 11548 * Description: Wrapper for calling into the USCSI chain via physio(9F) 11549 * 11550 * Arguments: bp - buf struct ptr 11551 * 11552 * Return Code: Always returns 0 11553 * 11554 * Context: Kernel thread context 11555 */ 11556 11557 static int 11558 sd_uscsi_strategy(struct buf *bp) 11559 { 11560 struct sd_lun *un; 11561 struct sd_uscsi_info *uip; 11562 struct sd_xbuf *xp; 11563 uchar_t chain_type; 11564 uchar_t cmd; 11565 11566 ASSERT(bp != NULL); 11567 11568 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 11569 if (un == NULL) { 11570 bioerror(bp, EIO); 11571 bp->b_resid = bp->b_bcount; 11572 biodone(bp); 11573 return (0); 11574 } 11575 11576 ASSERT(!mutex_owned(SD_MUTEX(un))); 11577 11578 SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp); 11579 11580 /* 11581 * A pointer to a struct sd_uscsi_info is expected in bp->b_private 11582 */ 11583 ASSERT(bp->b_private != NULL); 11584 uip = (struct sd_uscsi_info *)bp->b_private; 11585 cmd = ((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_cdb[0]; 11586 11587 mutex_enter(SD_MUTEX(un)); 11588 /* 11589 * atapi: Since we are running the CD for now in PIO mode we need to 11590 * call bp_mapin here to avoid bp_mapin called interrupt context under 11591 * the HBA's init_pkt routine. 11592 */ 11593 if (un->un_f_cfg_is_atapi == TRUE) { 11594 mutex_exit(SD_MUTEX(un)); 11595 bp_mapin(bp); 11596 mutex_enter(SD_MUTEX(un)); 11597 } 11598 un->un_ncmds_in_driver++; 11599 SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n", 11600 un->un_ncmds_in_driver); 11601 11602 if ((bp->b_flags & B_WRITE) && (bp->b_bcount != 0) && 11603 (cmd != SCMD_MODE_SELECT) && (cmd != SCMD_MODE_SELECT_G1)) 11604 un->un_f_sync_cache_required = TRUE; 11605 11606 mutex_exit(SD_MUTEX(un)); 11607 11608 switch (uip->ui_flags) { 11609 case SD_PATH_DIRECT: 11610 chain_type = SD_CHAIN_DIRECT; 11611 break; 11612 case SD_PATH_DIRECT_PRIORITY: 11613 chain_type = SD_CHAIN_DIRECT_PRIORITY; 11614 break; 11615 default: 11616 chain_type = SD_CHAIN_USCSI; 11617 break; 11618 } 11619 11620 /* 11621 * We may allocate extra buf for external USCSI commands. If the 11622 * application asks for bigger than 20-byte sense data via USCSI, 11623 * SCSA layer will allocate 252 bytes sense buf for that command. 11624 */ 11625 if (((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_rqlen > 11626 SENSE_LENGTH) { 11627 xp = kmem_zalloc(sizeof (struct sd_xbuf) - SENSE_LENGTH + 11628 MAX_SENSE_LENGTH, KM_SLEEP); 11629 } else { 11630 xp = kmem_zalloc(sizeof (struct sd_xbuf), KM_SLEEP); 11631 } 11632 11633 sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp); 11634 11635 /* Use the index obtained within xbuf_init */ 11636 SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp); 11637 11638 SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp); 11639 11640 return (0); 11641 } 11642 11643 /* 11644 * Function: sd_send_scsi_cmd 11645 * 11646 * Description: Runs a USCSI command for user (when called thru sdioctl), 11647 * or for the driver 11648 * 11649 * Arguments: dev - the dev_t for the device 11650 * incmd - ptr to a valid uscsi_cmd struct 11651 * flag - bit flag, indicating open settings, 32/64 bit type 11652 * dataspace - UIO_USERSPACE or UIO_SYSSPACE 11653 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 11654 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 11655 * to use the USCSI "direct" chain and bypass the normal 11656 * command waitq. 11657 * 11658 * Return Code: 0 - successful completion of the given command 11659 * EIO - scsi_uscsi_handle_command() failed 11660 * ENXIO - soft state not found for specified dev 11661 * EINVAL 11662 * EFAULT - copyin/copyout error 11663 * return code of scsi_uscsi_handle_command(): 11664 * EIO 11665 * ENXIO 11666 * EACCES 11667 * 11668 * Context: Waits for command to complete. Can sleep. 11669 */ 11670 11671 static int 11672 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag, 11673 enum uio_seg dataspace, int path_flag) 11674 { 11675 struct sd_lun *un; 11676 sd_ssc_t *ssc; 11677 int rval; 11678 11679 un = ddi_get_soft_state(sd_state, SDUNIT(dev)); 11680 if (un == NULL) { 11681 return (ENXIO); 11682 } 11683 11684 /* 11685 * Using sd_ssc_send to handle uscsi cmd 11686 */ 11687 ssc = sd_ssc_init(un); 11688 rval = sd_ssc_send(ssc, incmd, flag, dataspace, path_flag); 11689 sd_ssc_fini(ssc); 11690 11691 return (rval); 11692 } 11693 11694 /* 11695 * Function: sd_ssc_init 11696 * 11697 * Description: Uscsi end-user call this function to initialize necessary 11698 * fields, such as uscsi_cmd and sd_uscsi_info struct. 11699 * 11700 * The return value of sd_send_scsi_cmd will be treated as a 11701 * fault in various conditions. Even it is not Zero, some 11702 * callers may ignore the return value. That is to say, we can 11703 * not make an accurate assessment in sdintr, since if a 11704 * command is failed in sdintr it does not mean the caller of 11705 * sd_send_scsi_cmd will treat it as a real failure. 11706 * 11707 * To avoid printing too many error logs for a failed uscsi 11708 * packet that the caller may not treat it as a failure, the 11709 * sd will keep silent for handling all uscsi commands. 11710 * 11711 * During detach->attach and attach-open, for some types of 11712 * problems, the driver should be providing information about 11713 * the problem encountered. Device use USCSI_SILENT, which 11714 * suppresses all driver information. The result is that no 11715 * information about the problem is available. Being 11716 * completely silent during this time is inappropriate. The 11717 * driver needs a more selective filter than USCSI_SILENT, so 11718 * that information related to faults is provided. 11719 * 11720 * To make the accurate accessment, the caller of 11721 * sd_send_scsi_USCSI_CMD should take the ownership and 11722 * get necessary information to print error messages. 11723 * 11724 * If we want to print necessary info of uscsi command, we need to 11725 * keep the uscsi_cmd and sd_uscsi_info till we can make the 11726 * assessment. We use sd_ssc_init to alloc necessary 11727 * structs for sending an uscsi command and we are also 11728 * responsible for free the memory by calling 11729 * sd_ssc_fini. 11730 * 11731 * The calling secquences will look like: 11732 * sd_ssc_init-> 11733 * 11734 * ... 11735 * 11736 * sd_send_scsi_USCSI_CMD-> 11737 * sd_ssc_send-> - - - sdintr 11738 * ... 11739 * 11740 * if we think the return value should be treated as a 11741 * failure, we make the accessment here and print out 11742 * necessary by retrieving uscsi_cmd and sd_uscsi_info' 11743 * 11744 * ... 11745 * 11746 * sd_ssc_fini 11747 * 11748 * 11749 * Arguments: un - pointer to driver soft state (unit) structure for this 11750 * target. 11751 * 11752 * Return code: sd_ssc_t - pointer to allocated sd_ssc_t struct, it contains 11753 * uscsi_cmd and sd_uscsi_info. 11754 * NULL - if can not alloc memory for sd_ssc_t struct 11755 * 11756 * Context: Kernel Thread. 11757 */ 11758 static sd_ssc_t * 11759 sd_ssc_init(struct sd_lun *un) 11760 { 11761 sd_ssc_t *ssc; 11762 struct uscsi_cmd *ucmdp; 11763 struct sd_uscsi_info *uip; 11764 11765 ASSERT(un != NULL); 11766 ASSERT(!mutex_owned(SD_MUTEX(un))); 11767 11768 /* 11769 * Allocate sd_ssc_t structure 11770 */ 11771 ssc = kmem_zalloc(sizeof (sd_ssc_t), KM_SLEEP); 11772 11773 /* 11774 * Allocate uscsi_cmd by calling scsi_uscsi_alloc common routine 11775 */ 11776 ucmdp = scsi_uscsi_alloc(); 11777 11778 /* 11779 * Allocate sd_uscsi_info structure 11780 */ 11781 uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP); 11782 11783 ssc->ssc_uscsi_cmd = ucmdp; 11784 ssc->ssc_uscsi_info = uip; 11785 ssc->ssc_un = un; 11786 11787 return (ssc); 11788 } 11789 11790 /* 11791 * Function: sd_ssc_fini 11792 * 11793 * Description: To free sd_ssc_t and it's hanging off 11794 * 11795 * Arguments: ssc - struct pointer of sd_ssc_t. 11796 */ 11797 static void 11798 sd_ssc_fini(sd_ssc_t *ssc) 11799 { 11800 scsi_uscsi_free(ssc->ssc_uscsi_cmd); 11801 11802 if (ssc->ssc_uscsi_info != NULL) { 11803 kmem_free(ssc->ssc_uscsi_info, sizeof (struct sd_uscsi_info)); 11804 ssc->ssc_uscsi_info = NULL; 11805 } 11806 11807 kmem_free(ssc, sizeof (sd_ssc_t)); 11808 ssc = NULL; 11809 } 11810 11811 /* 11812 * Function: sd_ssc_send 11813 * 11814 * Description: Runs a USCSI command for user when called through sdioctl, 11815 * or for the driver. 11816 * 11817 * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and 11818 * sd_uscsi_info in. 11819 * incmd - ptr to a valid uscsi_cmd struct 11820 * flag - bit flag, indicating open settings, 32/64 bit type 11821 * dataspace - UIO_USERSPACE or UIO_SYSSPACE 11822 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 11823 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 11824 * to use the USCSI "direct" chain and bypass the normal 11825 * command waitq. 11826 * 11827 * Return Code: 0 - successful completion of the given command 11828 * EIO - scsi_uscsi_handle_command() failed 11829 * ENXIO - soft state not found for specified dev 11830 * ECANCELED - command cancelled due to low power 11831 * EINVAL 11832 * EFAULT - copyin/copyout error 11833 * return code of scsi_uscsi_handle_command(): 11834 * EIO 11835 * ENXIO 11836 * EACCES 11837 * 11838 * Context: Kernel Thread; 11839 * Waits for command to complete. Can sleep. 11840 */ 11841 static int 11842 sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd, int flag, 11843 enum uio_seg dataspace, int path_flag) 11844 { 11845 struct sd_uscsi_info *uip; 11846 struct uscsi_cmd *uscmd; 11847 struct sd_lun *un; 11848 dev_t dev; 11849 11850 int format = 0; 11851 int rval; 11852 11853 ASSERT(ssc != NULL); 11854 un = ssc->ssc_un; 11855 ASSERT(un != NULL); 11856 uscmd = ssc->ssc_uscsi_cmd; 11857 ASSERT(uscmd != NULL); 11858 ASSERT(!mutex_owned(SD_MUTEX(un))); 11859 if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) { 11860 /* 11861 * If enter here, it indicates that the previous uscsi 11862 * command has not been processed by sd_ssc_assessment. 11863 * This is violating our rules of FMA telemetry processing. 11864 * We should print out this message and the last undisposed 11865 * uscsi command. 11866 */ 11867 if (uscmd->uscsi_cdb != NULL) { 11868 SD_INFO(SD_LOG_SDTEST, un, 11869 "sd_ssc_send is missing the alternative " 11870 "sd_ssc_assessment when running command 0x%x.\n", 11871 uscmd->uscsi_cdb[0]); 11872 } 11873 /* 11874 * Set the ssc_flags to SSC_FLAGS_UNKNOWN, which should be 11875 * the initial status. 11876 */ 11877 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 11878 } 11879 11880 /* 11881 * We need to make sure sd_ssc_send will have sd_ssc_assessment 11882 * followed to avoid missing FMA telemetries. 11883 */ 11884 ssc->ssc_flags |= SSC_FLAGS_NEED_ASSESSMENT; 11885 11886 /* 11887 * if USCSI_PMFAILFAST is set and un is in low power, fail the 11888 * command immediately. 11889 */ 11890 mutex_enter(SD_MUTEX(un)); 11891 mutex_enter(&un->un_pm_mutex); 11892 if ((uscmd->uscsi_flags & USCSI_PMFAILFAST) && 11893 SD_DEVICE_IS_IN_LOW_POWER(un)) { 11894 SD_TRACE(SD_LOG_IO, un, "sd_ssc_send:" 11895 "un:0x%p is in low power\n", un); 11896 mutex_exit(&un->un_pm_mutex); 11897 mutex_exit(SD_MUTEX(un)); 11898 return (ECANCELED); 11899 } 11900 mutex_exit(&un->un_pm_mutex); 11901 mutex_exit(SD_MUTEX(un)); 11902 11903 #ifdef SDDEBUG 11904 switch (dataspace) { 11905 case UIO_USERSPACE: 11906 SD_TRACE(SD_LOG_IO, un, 11907 "sd_ssc_send: entry: un:0x%p UIO_USERSPACE\n", un); 11908 break; 11909 case UIO_SYSSPACE: 11910 SD_TRACE(SD_LOG_IO, un, 11911 "sd_ssc_send: entry: un:0x%p UIO_SYSSPACE\n", un); 11912 break; 11913 default: 11914 SD_TRACE(SD_LOG_IO, un, 11915 "sd_ssc_send: entry: un:0x%p UNEXPECTED SPACE\n", un); 11916 break; 11917 } 11918 #endif 11919 11920 rval = scsi_uscsi_copyin((intptr_t)incmd, flag, 11921 SD_ADDRESS(un), &uscmd); 11922 if (rval != 0) { 11923 SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: " 11924 "scsi_uscsi_alloc_and_copyin failed\n", un); 11925 return (rval); 11926 } 11927 11928 if ((uscmd->uscsi_cdb != NULL) && 11929 (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) { 11930 mutex_enter(SD_MUTEX(un)); 11931 un->un_f_format_in_progress = TRUE; 11932 mutex_exit(SD_MUTEX(un)); 11933 format = 1; 11934 } 11935 11936 /* 11937 * Allocate an sd_uscsi_info struct and fill it with the info 11938 * needed by sd_initpkt_for_uscsi(). Then put the pointer into 11939 * b_private in the buf for sd_initpkt_for_uscsi(). Note that 11940 * since we allocate the buf here in this function, we do not 11941 * need to preserve the prior contents of b_private. 11942 * The sd_uscsi_info struct is also used by sd_uscsi_strategy() 11943 */ 11944 uip = ssc->ssc_uscsi_info; 11945 uip->ui_flags = path_flag; 11946 uip->ui_cmdp = uscmd; 11947 11948 /* 11949 * Commands sent with priority are intended for error recovery 11950 * situations, and do not have retries performed. 11951 */ 11952 if (path_flag == SD_PATH_DIRECT_PRIORITY) { 11953 uscmd->uscsi_flags |= USCSI_DIAGNOSE; 11954 } 11955 uscmd->uscsi_flags &= ~USCSI_NOINTR; 11956 11957 dev = SD_GET_DEV(un); 11958 rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd, 11959 sd_uscsi_strategy, NULL, uip); 11960 11961 /* 11962 * mark ssc_flags right after handle_cmd to make sure 11963 * the uscsi has been sent 11964 */ 11965 ssc->ssc_flags |= SSC_FLAGS_CMD_ISSUED; 11966 11967 #ifdef SDDEBUG 11968 SD_INFO(SD_LOG_IO, un, "sd_ssc_send: " 11969 "uscsi_status: 0x%02x uscsi_resid:0x%x\n", 11970 uscmd->uscsi_status, uscmd->uscsi_resid); 11971 if (uscmd->uscsi_bufaddr != NULL) { 11972 SD_INFO(SD_LOG_IO, un, "sd_ssc_send: " 11973 "uscmd->uscsi_bufaddr: 0x%p uscmd->uscsi_buflen:%d\n", 11974 uscmd->uscsi_bufaddr, uscmd->uscsi_buflen); 11975 if (dataspace == UIO_SYSSPACE) { 11976 SD_DUMP_MEMORY(un, SD_LOG_IO, 11977 "data", (uchar_t *)uscmd->uscsi_bufaddr, 11978 uscmd->uscsi_buflen, SD_LOG_HEX); 11979 } 11980 } 11981 #endif 11982 11983 if (format == 1) { 11984 mutex_enter(SD_MUTEX(un)); 11985 un->un_f_format_in_progress = FALSE; 11986 mutex_exit(SD_MUTEX(un)); 11987 } 11988 11989 (void) scsi_uscsi_copyout((intptr_t)incmd, uscmd); 11990 11991 return (rval); 11992 } 11993 11994 /* 11995 * Function: sd_ssc_print 11996 * 11997 * Description: Print information available to the console. 11998 * 11999 * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and 12000 * sd_uscsi_info in. 12001 * sd_severity - log level. 12002 * Context: Kernel thread or interrupt context. 12003 */ 12004 static void 12005 sd_ssc_print(sd_ssc_t *ssc, int sd_severity) 12006 { 12007 struct uscsi_cmd *ucmdp; 12008 struct scsi_device *devp; 12009 dev_info_t *devinfo; 12010 uchar_t *sensep; 12011 int senlen; 12012 union scsi_cdb *cdbp; 12013 uchar_t com; 12014 extern struct scsi_key_strings scsi_cmds[]; 12015 12016 ASSERT(ssc != NULL); 12017 ASSERT(ssc->ssc_un != NULL); 12018 12019 if (SD_FM_LOG(ssc->ssc_un) != SD_FM_LOG_EREPORT) 12020 return; 12021 ucmdp = ssc->ssc_uscsi_cmd; 12022 devp = SD_SCSI_DEVP(ssc->ssc_un); 12023 devinfo = SD_DEVINFO(ssc->ssc_un); 12024 ASSERT(ucmdp != NULL); 12025 ASSERT(devp != NULL); 12026 ASSERT(devinfo != NULL); 12027 sensep = (uint8_t *)ucmdp->uscsi_rqbuf; 12028 senlen = ucmdp->uscsi_rqlen - ucmdp->uscsi_rqresid; 12029 cdbp = (union scsi_cdb *)ucmdp->uscsi_cdb; 12030 12031 /* In certain case (like DOORLOCK), the cdb could be NULL. */ 12032 if (cdbp == NULL) 12033 return; 12034 /* We don't print log if no sense data available. */ 12035 if (senlen == 0) 12036 sensep = NULL; 12037 com = cdbp->scc_cmd; 12038 scsi_generic_errmsg(devp, sd_label, sd_severity, 0, 0, com, 12039 scsi_cmds, sensep, ssc->ssc_un->un_additional_codes, NULL); 12040 } 12041 12042 /* 12043 * Function: sd_ssc_assessment 12044 * 12045 * Description: We use this function to make an assessment at the point 12046 * where SD driver may encounter a potential error. 12047 * 12048 * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and 12049 * sd_uscsi_info in. 12050 * tp_assess - a hint of strategy for ereport posting. 12051 * Possible values of tp_assess include: 12052 * SD_FMT_IGNORE - we don't post any ereport because we're 12053 * sure that it is ok to ignore the underlying problems. 12054 * SD_FMT_IGNORE_COMPROMISE - we don't post any ereport for now 12055 * but it might be not correct to ignore the underlying hardware 12056 * error. 12057 * SD_FMT_STATUS_CHECK - we will post an ereport with the 12058 * payload driver-assessment of value "fail" or 12059 * "fatal"(depending on what information we have here). This 12060 * assessment value is usually set when SD driver think there 12061 * is a potential error occurred(Typically, when return value 12062 * of the SCSI command is EIO). 12063 * SD_FMT_STANDARD - we will post an ereport with the payload 12064 * driver-assessment of value "info". This assessment value is 12065 * set when the SCSI command returned successfully and with 12066 * sense data sent back. 12067 * 12068 * Context: Kernel thread. 12069 */ 12070 static void 12071 sd_ssc_assessment(sd_ssc_t *ssc, enum sd_type_assessment tp_assess) 12072 { 12073 int senlen = 0; 12074 struct uscsi_cmd *ucmdp = NULL; 12075 struct sd_lun *un; 12076 12077 ASSERT(ssc != NULL); 12078 un = ssc->ssc_un; 12079 ASSERT(un != NULL); 12080 ucmdp = ssc->ssc_uscsi_cmd; 12081 ASSERT(ucmdp != NULL); 12082 12083 if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) { 12084 ssc->ssc_flags &= ~SSC_FLAGS_NEED_ASSESSMENT; 12085 } else { 12086 /* 12087 * If enter here, it indicates that we have a wrong 12088 * calling sequence of sd_ssc_send and sd_ssc_assessment, 12089 * both of which should be called in a pair in case of 12090 * loss of FMA telemetries. 12091 */ 12092 if (ucmdp->uscsi_cdb != NULL) { 12093 SD_INFO(SD_LOG_SDTEST, un, 12094 "sd_ssc_assessment is missing the " 12095 "alternative sd_ssc_send when running 0x%x, " 12096 "or there are superfluous sd_ssc_assessment for " 12097 "the same sd_ssc_send.\n", 12098 ucmdp->uscsi_cdb[0]); 12099 } 12100 /* 12101 * Set the ssc_flags to the initial value to avoid passing 12102 * down dirty flags to the following sd_ssc_send function. 12103 */ 12104 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 12105 return; 12106 } 12107 12108 /* 12109 * Only handle an issued command which is waiting for assessment. 12110 * A command which is not issued will not have 12111 * SSC_FLAGS_INVALID_DATA set, so it'ok we just return here. 12112 */ 12113 if (!(ssc->ssc_flags & SSC_FLAGS_CMD_ISSUED)) { 12114 sd_ssc_print(ssc, SCSI_ERR_INFO); 12115 return; 12116 } else { 12117 /* 12118 * For an issued command, we should clear this flag in 12119 * order to make the sd_ssc_t structure be used off 12120 * multiple uscsi commands. 12121 */ 12122 ssc->ssc_flags &= ~SSC_FLAGS_CMD_ISSUED; 12123 } 12124 12125 /* 12126 * We will not deal with non-retryable(flag USCSI_DIAGNOSE set) 12127 * commands here. And we should clear the ssc_flags before return. 12128 */ 12129 if (ucmdp->uscsi_flags & USCSI_DIAGNOSE) { 12130 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 12131 return; 12132 } 12133 12134 switch (tp_assess) { 12135 case SD_FMT_IGNORE: 12136 case SD_FMT_IGNORE_COMPROMISE: 12137 break; 12138 case SD_FMT_STATUS_CHECK: 12139 /* 12140 * For a failed command(including the succeeded command 12141 * with invalid data sent back). 12142 */ 12143 sd_ssc_post(ssc, SD_FM_DRV_FATAL); 12144 break; 12145 case SD_FMT_STANDARD: 12146 /* 12147 * Always for the succeeded commands probably with sense 12148 * data sent back. 12149 * Limitation: 12150 * We can only handle a succeeded command with sense 12151 * data sent back when auto-request-sense is enabled. 12152 */ 12153 senlen = ssc->ssc_uscsi_cmd->uscsi_rqlen - 12154 ssc->ssc_uscsi_cmd->uscsi_rqresid; 12155 if ((ssc->ssc_uscsi_info->ui_pkt_state & STATE_ARQ_DONE) && 12156 (un->un_f_arq_enabled == TRUE) && 12157 senlen > 0 && 12158 ssc->ssc_uscsi_cmd->uscsi_rqbuf != NULL) { 12159 sd_ssc_post(ssc, SD_FM_DRV_NOTICE); 12160 } 12161 break; 12162 default: 12163 /* 12164 * Should not have other type of assessment. 12165 */ 12166 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 12167 "sd_ssc_assessment got wrong " 12168 "sd_type_assessment %d.\n", tp_assess); 12169 break; 12170 } 12171 /* 12172 * Clear up the ssc_flags before return. 12173 */ 12174 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 12175 } 12176 12177 /* 12178 * Function: sd_ssc_post 12179 * 12180 * Description: 1. read the driver property to get fm-scsi-log flag. 12181 * 2. print log if fm_log_capable is non-zero. 12182 * 3. call sd_ssc_ereport_post to post ereport if possible. 12183 * 12184 * Context: May be called from kernel thread or interrupt context. 12185 */ 12186 static void 12187 sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess) 12188 { 12189 struct sd_lun *un; 12190 int sd_severity; 12191 12192 ASSERT(ssc != NULL); 12193 un = ssc->ssc_un; 12194 ASSERT(un != NULL); 12195 12196 /* 12197 * We may enter here from sd_ssc_assessment(for USCSI command) or 12198 * by directly called from sdintr context. 12199 * We don't handle a non-disk drive(CD-ROM, removable media). 12200 * Clear the ssc_flags before return in case we've set 12201 * SSC_FLAGS_INVALID_XXX which should be skipped for a non-disk 12202 * driver. 12203 */ 12204 if (ISCD(un) || un->un_f_has_removable_media) { 12205 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 12206 return; 12207 } 12208 12209 switch (sd_assess) { 12210 case SD_FM_DRV_FATAL: 12211 sd_severity = SCSI_ERR_FATAL; 12212 break; 12213 case SD_FM_DRV_RECOVERY: 12214 sd_severity = SCSI_ERR_RECOVERED; 12215 break; 12216 case SD_FM_DRV_RETRY: 12217 sd_severity = SCSI_ERR_RETRYABLE; 12218 break; 12219 case SD_FM_DRV_NOTICE: 12220 sd_severity = SCSI_ERR_INFO; 12221 break; 12222 default: 12223 sd_severity = SCSI_ERR_UNKNOWN; 12224 } 12225 /* print log */ 12226 sd_ssc_print(ssc, sd_severity); 12227 12228 /* always post ereport */ 12229 sd_ssc_ereport_post(ssc, sd_assess); 12230 } 12231 12232 /* 12233 * Function: sd_ssc_set_info 12234 * 12235 * Description: Mark ssc_flags and set ssc_info which would be the 12236 * payload of uderr ereport. This function will cause 12237 * sd_ssc_ereport_post to post uderr ereport only. 12238 * Besides, when ssc_flags == SSC_FLAGS_INVALID_DATA(USCSI), 12239 * the function will also call SD_ERROR or scsi_log for a 12240 * CDROM/removable-media/DDI_FM_NOT_CAPABLE device. 12241 * 12242 * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and 12243 * sd_uscsi_info in. 12244 * ssc_flags - indicate the sub-category of a uderr. 12245 * comp - this argument is meaningful only when 12246 * ssc_flags == SSC_FLAGS_INVALID_DATA, and its possible 12247 * values include: 12248 * > 0, SD_ERROR is used with comp as the driver logging 12249 * component; 12250 * = 0, scsi-log is used to log error telemetries; 12251 * < 0, no log available for this telemetry. 12252 * 12253 * Context: Kernel thread or interrupt context 12254 */ 12255 static void 12256 sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp, const char *fmt, ...) 12257 { 12258 va_list ap; 12259 12260 ASSERT(ssc != NULL); 12261 ASSERT(ssc->ssc_un != NULL); 12262 12263 ssc->ssc_flags |= ssc_flags; 12264 va_start(ap, fmt); 12265 (void) vsnprintf(ssc->ssc_info, sizeof (ssc->ssc_info), fmt, ap); 12266 va_end(ap); 12267 12268 /* 12269 * If SSC_FLAGS_INVALID_DATA is set, it should be a uscsi command 12270 * with invalid data sent back. For non-uscsi command, the 12271 * following code will be bypassed. 12272 */ 12273 if (ssc_flags & SSC_FLAGS_INVALID_DATA) { 12274 if (SD_FM_LOG(ssc->ssc_un) == SD_FM_LOG_NSUP) { 12275 /* 12276 * If the error belong to certain component and we 12277 * do not want it to show up on the console, we 12278 * will use SD_ERROR, otherwise scsi_log is 12279 * preferred. 12280 */ 12281 if (comp > 0) { 12282 SD_ERROR(comp, ssc->ssc_un, ssc->ssc_info); 12283 } else if (comp == 0) { 12284 scsi_log(SD_DEVINFO(ssc->ssc_un), sd_label, 12285 CE_WARN, ssc->ssc_info); 12286 } 12287 } 12288 } 12289 } 12290 12291 /* 12292 * Function: sd_buf_iodone 12293 * 12294 * Description: Frees the sd_xbuf & returns the buf to its originator. 12295 * 12296 * Context: May be called from interrupt context. 12297 */ 12298 /* ARGSUSED */ 12299 static void 12300 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp) 12301 { 12302 struct sd_xbuf *xp; 12303 12304 ASSERT(un != NULL); 12305 ASSERT(bp != NULL); 12306 ASSERT(!mutex_owned(SD_MUTEX(un))); 12307 12308 SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n"); 12309 12310 xp = SD_GET_XBUF(bp); 12311 ASSERT(xp != NULL); 12312 12313 /* xbuf is gone after this */ 12314 if (ddi_xbuf_done(bp, un->un_xbuf_attr)) { 12315 mutex_enter(SD_MUTEX(un)); 12316 12317 /* 12318 * Grab time when the cmd completed. 12319 * This is used for determining if the system has been 12320 * idle long enough to make it idle to the PM framework. 12321 * This is for lowering the overhead, and therefore improving 12322 * performance per I/O operation. 12323 */ 12324 un->un_pm_idle_time = ddi_get_time(); 12325 12326 un->un_ncmds_in_driver--; 12327 ASSERT(un->un_ncmds_in_driver >= 0); 12328 SD_INFO(SD_LOG_IO, un, 12329 "sd_buf_iodone: un_ncmds_in_driver = %ld\n", 12330 un->un_ncmds_in_driver); 12331 12332 mutex_exit(SD_MUTEX(un)); 12333 } 12334 12335 biodone(bp); /* bp is gone after this */ 12336 12337 SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n"); 12338 } 12339 12340 12341 /* 12342 * Function: sd_uscsi_iodone 12343 * 12344 * Description: Frees the sd_xbuf & returns the buf to its originator. 12345 * 12346 * Context: May be called from interrupt context. 12347 */ 12348 /* ARGSUSED */ 12349 static void 12350 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp) 12351 { 12352 struct sd_xbuf *xp; 12353 12354 ASSERT(un != NULL); 12355 ASSERT(bp != NULL); 12356 12357 xp = SD_GET_XBUF(bp); 12358 ASSERT(xp != NULL); 12359 ASSERT(!mutex_owned(SD_MUTEX(un))); 12360 12361 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n"); 12362 12363 bp->b_private = xp->xb_private; 12364 12365 mutex_enter(SD_MUTEX(un)); 12366 12367 /* 12368 * Grab time when the cmd completed. 12369 * This is used for determining if the system has been 12370 * idle long enough to make it idle to the PM framework. 12371 * This is for lowering the overhead, and therefore improving 12372 * performance per I/O operation. 12373 */ 12374 un->un_pm_idle_time = ddi_get_time(); 12375 12376 un->un_ncmds_in_driver--; 12377 ASSERT(un->un_ncmds_in_driver >= 0); 12378 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n", 12379 un->un_ncmds_in_driver); 12380 12381 mutex_exit(SD_MUTEX(un)); 12382 12383 if (((struct uscsi_cmd *)(xp->xb_pktinfo))->uscsi_rqlen > 12384 SENSE_LENGTH) { 12385 kmem_free(xp, sizeof (struct sd_xbuf) - SENSE_LENGTH + 12386 MAX_SENSE_LENGTH); 12387 } else { 12388 kmem_free(xp, sizeof (struct sd_xbuf)); 12389 } 12390 12391 biodone(bp); 12392 12393 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n"); 12394 } 12395 12396 12397 /* 12398 * Function: sd_mapblockaddr_iostart 12399 * 12400 * Description: Verify request lies within the partition limits for 12401 * the indicated minor device. Issue "overrun" buf if 12402 * request would exceed partition range. Converts 12403 * partition-relative block address to absolute. 12404 * 12405 * Upon exit of this function: 12406 * 1.I/O is aligned 12407 * xp->xb_blkno represents the absolute sector address 12408 * 2.I/O is misaligned 12409 * xp->xb_blkno represents the absolute logical block address 12410 * based on DEV_BSIZE. The logical block address will be 12411 * converted to physical sector address in sd_mapblocksize_\ 12412 * iostart. 12413 * 3.I/O is misaligned but is aligned in "overrun" buf 12414 * xp->xb_blkno represents the absolute logical block address 12415 * based on DEV_BSIZE. The logical block address will be 12416 * converted to physical sector address in sd_mapblocksize_\ 12417 * iostart. But no RMW will be issued in this case. 12418 * 12419 * Context: Can sleep 12420 * 12421 * Issues: This follows what the old code did, in terms of accessing 12422 * some of the partition info in the unit struct without holding 12423 * the mutext. This is a general issue, if the partition info 12424 * can be altered while IO is in progress... as soon as we send 12425 * a buf, its partitioning can be invalid before it gets to the 12426 * device. Probably the right fix is to move partitioning out 12427 * of the driver entirely. 12428 */ 12429 12430 static void 12431 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp) 12432 { 12433 diskaddr_t nblocks; /* #blocks in the given partition */ 12434 daddr_t blocknum; /* Block number specified by the buf */ 12435 size_t requested_nblocks; 12436 size_t available_nblocks; 12437 int partition; 12438 diskaddr_t partition_offset; 12439 struct sd_xbuf *xp; 12440 int secmask = 0, blknomask = 0; 12441 ushort_t is_aligned = TRUE; 12442 12443 ASSERT(un != NULL); 12444 ASSERT(bp != NULL); 12445 ASSERT(!mutex_owned(SD_MUTEX(un))); 12446 12447 SD_TRACE(SD_LOG_IO_PARTITION, un, 12448 "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp); 12449 12450 xp = SD_GET_XBUF(bp); 12451 ASSERT(xp != NULL); 12452 12453 /* 12454 * If the geometry is not indicated as valid, attempt to access 12455 * the unit & verify the geometry/label. This can be the case for 12456 * removable-media devices, of if the device was opened in 12457 * NDELAY/NONBLOCK mode. 12458 */ 12459 partition = SDPART(bp->b_edev); 12460 12461 if (!SD_IS_VALID_LABEL(un)) { 12462 sd_ssc_t *ssc; 12463 /* 12464 * Initialize sd_ssc_t for internal uscsi commands 12465 * In case of potential porformance issue, we need 12466 * to alloc memory only if there is invalid label 12467 */ 12468 ssc = sd_ssc_init(un); 12469 12470 if (sd_ready_and_valid(ssc, partition) != SD_READY_VALID) { 12471 /* 12472 * For removable devices it is possible to start an 12473 * I/O without a media by opening the device in nodelay 12474 * mode. Also for writable CDs there can be many 12475 * scenarios where there is no geometry yet but volume 12476 * manager is trying to issue a read() just because 12477 * it can see TOC on the CD. So do not print a message 12478 * for removables. 12479 */ 12480 if (!un->un_f_has_removable_media) { 12481 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 12482 "i/o to invalid geometry\n"); 12483 } 12484 bioerror(bp, EIO); 12485 bp->b_resid = bp->b_bcount; 12486 SD_BEGIN_IODONE(index, un, bp); 12487 12488 sd_ssc_fini(ssc); 12489 return; 12490 } 12491 sd_ssc_fini(ssc); 12492 } 12493 12494 nblocks = 0; 12495 (void) cmlb_partinfo(un->un_cmlbhandle, partition, 12496 &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT); 12497 12498 blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1; 12499 secmask = un->un_tgt_blocksize - 1; 12500 12501 if ((bp->b_lblkno & (blknomask)) || (bp->b_bcount & (secmask))) { 12502 is_aligned = FALSE; 12503 } 12504 12505 if (!(NOT_DEVBSIZE(un))) { 12506 /* 12507 * If I/O is aligned, no need to involve RMW(Read Modify Write) 12508 * Convert the logical block number to target's physical sector 12509 * number. 12510 */ 12511 if (is_aligned) { 12512 xp->xb_blkno = SD_SYS2TGTBLOCK(un, xp->xb_blkno); 12513 } else { 12514 switch (un->un_f_rmw_type) { 12515 case SD_RMW_TYPE_RETURN_ERROR: 12516 bp->b_flags |= B_ERROR; 12517 goto error_exit; 12518 12519 case SD_RMW_TYPE_DEFAULT: 12520 mutex_enter(SD_MUTEX(un)); 12521 if (un->un_rmw_msg_timeid == NULL) { 12522 scsi_log(SD_DEVINFO(un), sd_label, 12523 CE_WARN, "I/O request is not " 12524 "aligned with %d disk sector size. " 12525 "It is handled through Read Modify " 12526 "Write but the performance is " 12527 "very low.\n", 12528 un->un_tgt_blocksize); 12529 un->un_rmw_msg_timeid = 12530 timeout(sd_rmw_msg_print_handler, 12531 un, SD_RMW_MSG_PRINT_TIMEOUT); 12532 } else { 12533 un->un_rmw_incre_count ++; 12534 } 12535 mutex_exit(SD_MUTEX(un)); 12536 break; 12537 12538 case SD_RMW_TYPE_NO_WARNING: 12539 default: 12540 break; 12541 } 12542 12543 nblocks = SD_TGT2SYSBLOCK(un, nblocks); 12544 partition_offset = SD_TGT2SYSBLOCK(un, 12545 partition_offset); 12546 } 12547 } 12548 12549 /* 12550 * blocknum is the starting block number of the request. At this 12551 * point it is still relative to the start of the minor device. 12552 */ 12553 blocknum = xp->xb_blkno; 12554 12555 /* 12556 * Legacy: If the starting block number is one past the last block 12557 * in the partition, do not set B_ERROR in the buf. 12558 */ 12559 if (blocknum == nblocks) { 12560 goto error_exit; 12561 } 12562 12563 /* 12564 * Confirm that the first block of the request lies within the 12565 * partition limits. Also the requested number of bytes must be 12566 * a multiple of the system block size. 12567 */ 12568 if ((blocknum < 0) || (blocknum >= nblocks) || 12569 ((bp->b_bcount & (DEV_BSIZE - 1)) != 0)) { 12570 bp->b_flags |= B_ERROR; 12571 goto error_exit; 12572 } 12573 12574 /* 12575 * If the requsted # blocks exceeds the available # blocks, that 12576 * is an overrun of the partition. 12577 */ 12578 if ((!NOT_DEVBSIZE(un)) && is_aligned) { 12579 requested_nblocks = SD_BYTES2TGTBLOCKS(un, bp->b_bcount); 12580 } else { 12581 requested_nblocks = SD_BYTES2SYSBLOCKS(bp->b_bcount); 12582 } 12583 12584 available_nblocks = (size_t)(nblocks - blocknum); 12585 ASSERT(nblocks >= blocknum); 12586 12587 if (requested_nblocks > available_nblocks) { 12588 size_t resid; 12589 12590 /* 12591 * Allocate an "overrun" buf to allow the request to proceed 12592 * for the amount of space available in the partition. The 12593 * amount not transferred will be added into the b_resid 12594 * when the operation is complete. The overrun buf 12595 * replaces the original buf here, and the original buf 12596 * is saved inside the overrun buf, for later use. 12597 */ 12598 if ((!NOT_DEVBSIZE(un)) && is_aligned) { 12599 resid = SD_TGTBLOCKS2BYTES(un, 12600 (offset_t)(requested_nblocks - available_nblocks)); 12601 } else { 12602 resid = SD_SYSBLOCKS2BYTES( 12603 (offset_t)(requested_nblocks - available_nblocks)); 12604 } 12605 12606 size_t count = bp->b_bcount - resid; 12607 /* 12608 * Note: count is an unsigned entity thus it'll NEVER 12609 * be less than 0 so ASSERT the original values are 12610 * correct. 12611 */ 12612 ASSERT(bp->b_bcount >= resid); 12613 12614 bp = sd_bioclone_alloc(bp, count, blocknum, 12615 (int (*)(struct buf *)) sd_mapblockaddr_iodone); 12616 xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */ 12617 ASSERT(xp != NULL); 12618 } 12619 12620 /* At this point there should be no residual for this buf. */ 12621 ASSERT(bp->b_resid == 0); 12622 12623 /* Convert the block number to an absolute address. */ 12624 xp->xb_blkno += partition_offset; 12625 12626 SD_NEXT_IOSTART(index, un, bp); 12627 12628 SD_TRACE(SD_LOG_IO_PARTITION, un, 12629 "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp); 12630 12631 return; 12632 12633 error_exit: 12634 bp->b_resid = bp->b_bcount; 12635 SD_BEGIN_IODONE(index, un, bp); 12636 SD_TRACE(SD_LOG_IO_PARTITION, un, 12637 "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp); 12638 } 12639 12640 12641 /* 12642 * Function: sd_mapblockaddr_iodone 12643 * 12644 * Description: Completion-side processing for partition management. 12645 * 12646 * Context: May be called under interrupt context 12647 */ 12648 12649 static void 12650 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp) 12651 { 12652 /* int partition; */ /* Not used, see below. */ 12653 ASSERT(un != NULL); 12654 ASSERT(bp != NULL); 12655 ASSERT(!mutex_owned(SD_MUTEX(un))); 12656 12657 SD_TRACE(SD_LOG_IO_PARTITION, un, 12658 "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp); 12659 12660 if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) { 12661 /* 12662 * We have an "overrun" buf to deal with... 12663 */ 12664 struct sd_xbuf *xp; 12665 struct buf *obp; /* ptr to the original buf */ 12666 12667 xp = SD_GET_XBUF(bp); 12668 ASSERT(xp != NULL); 12669 12670 /* Retrieve the pointer to the original buf */ 12671 obp = (struct buf *)xp->xb_private; 12672 ASSERT(obp != NULL); 12673 12674 obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid); 12675 bioerror(obp, bp->b_error); 12676 12677 sd_bioclone_free(bp); 12678 12679 /* 12680 * Get back the original buf. 12681 * Note that since the restoration of xb_blkno below 12682 * was removed, the sd_xbuf is not needed. 12683 */ 12684 bp = obp; 12685 /* 12686 * xp = SD_GET_XBUF(bp); 12687 * ASSERT(xp != NULL); 12688 */ 12689 } 12690 12691 /* 12692 * Convert sd->xb_blkno back to a minor-device relative value. 12693 * Note: this has been commented out, as it is not needed in the 12694 * current implementation of the driver (ie, since this function 12695 * is at the top of the layering chains, so the info will be 12696 * discarded) and it is in the "hot" IO path. 12697 * 12698 * partition = getminor(bp->b_edev) & SDPART_MASK; 12699 * xp->xb_blkno -= un->un_offset[partition]; 12700 */ 12701 12702 SD_NEXT_IODONE(index, un, bp); 12703 12704 SD_TRACE(SD_LOG_IO_PARTITION, un, 12705 "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp); 12706 } 12707 12708 12709 /* 12710 * Function: sd_mapblocksize_iostart 12711 * 12712 * Description: Convert between system block size (un->un_sys_blocksize) 12713 * and target block size (un->un_tgt_blocksize). 12714 * 12715 * Context: Can sleep to allocate resources. 12716 * 12717 * Assumptions: A higher layer has already performed any partition validation, 12718 * and converted the xp->xb_blkno to an absolute value relative 12719 * to the start of the device. 12720 * 12721 * It is also assumed that the higher layer has implemented 12722 * an "overrun" mechanism for the case where the request would 12723 * read/write beyond the end of a partition. In this case we 12724 * assume (and ASSERT) that bp->b_resid == 0. 12725 * 12726 * Note: The implementation for this routine assumes the target 12727 * block size remains constant between allocation and transport. 12728 */ 12729 12730 static void 12731 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp) 12732 { 12733 struct sd_mapblocksize_info *bsp; 12734 struct sd_xbuf *xp; 12735 offset_t first_byte; 12736 daddr_t start_block, end_block; 12737 daddr_t request_bytes; 12738 ushort_t is_aligned = FALSE; 12739 12740 ASSERT(un != NULL); 12741 ASSERT(bp != NULL); 12742 ASSERT(!mutex_owned(SD_MUTEX(un))); 12743 ASSERT(bp->b_resid == 0); 12744 12745 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 12746 "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp); 12747 12748 /* 12749 * For a non-writable CD, a write request is an error 12750 */ 12751 if (ISCD(un) && ((bp->b_flags & B_READ) == 0) && 12752 (un->un_f_mmc_writable_media == FALSE)) { 12753 bioerror(bp, EIO); 12754 bp->b_resid = bp->b_bcount; 12755 SD_BEGIN_IODONE(index, un, bp); 12756 return; 12757 } 12758 12759 /* 12760 * We do not need a shadow buf if the device is using 12761 * un->un_sys_blocksize as its block size or if bcount == 0. 12762 * In this case there is no layer-private data block allocated. 12763 */ 12764 if ((un->un_tgt_blocksize == DEV_BSIZE) || 12765 (bp->b_bcount == 0)) { 12766 goto done; 12767 } 12768 12769 #if defined(__i386) || defined(__amd64) 12770 /* We do not support non-block-aligned transfers for ROD devices */ 12771 ASSERT(!ISROD(un)); 12772 #endif 12773 12774 xp = SD_GET_XBUF(bp); 12775 ASSERT(xp != NULL); 12776 12777 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 12778 "tgt_blocksize:0x%x sys_blocksize: 0x%x\n", 12779 un->un_tgt_blocksize, DEV_BSIZE); 12780 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 12781 "request start block:0x%x\n", xp->xb_blkno); 12782 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 12783 "request len:0x%x\n", bp->b_bcount); 12784 12785 /* 12786 * Allocate the layer-private data area for the mapblocksize layer. 12787 * Layers are allowed to use the xp_private member of the sd_xbuf 12788 * struct to store the pointer to their layer-private data block, but 12789 * each layer also has the responsibility of restoring the prior 12790 * contents of xb_private before returning the buf/xbuf to the 12791 * higher layer that sent it. 12792 * 12793 * Here we save the prior contents of xp->xb_private into the 12794 * bsp->mbs_oprivate field of our layer-private data area. This value 12795 * is restored by sd_mapblocksize_iodone() just prior to freeing up 12796 * the layer-private area and returning the buf/xbuf to the layer 12797 * that sent it. 12798 * 12799 * Note that here we use kmem_zalloc for the allocation as there are 12800 * parts of the mapblocksize code that expect certain fields to be 12801 * zero unless explicitly set to a required value. 12802 */ 12803 bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP); 12804 bsp->mbs_oprivate = xp->xb_private; 12805 xp->xb_private = bsp; 12806 12807 /* 12808 * This treats the data on the disk (target) as an array of bytes. 12809 * first_byte is the byte offset, from the beginning of the device, 12810 * to the location of the request. This is converted from a 12811 * un->un_sys_blocksize block address to a byte offset, and then back 12812 * to a block address based upon a un->un_tgt_blocksize block size. 12813 * 12814 * xp->xb_blkno should be absolute upon entry into this function, 12815 * but, but it is based upon partitions that use the "system" 12816 * block size. It must be adjusted to reflect the block size of 12817 * the target. 12818 * 12819 * Note that end_block is actually the block that follows the last 12820 * block of the request, but that's what is needed for the computation. 12821 */ 12822 first_byte = SD_SYSBLOCKS2BYTES((offset_t)xp->xb_blkno); 12823 start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize; 12824 end_block = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) / 12825 un->un_tgt_blocksize; 12826 12827 /* request_bytes is rounded up to a multiple of the target block size */ 12828 request_bytes = (end_block - start_block) * un->un_tgt_blocksize; 12829 12830 /* 12831 * See if the starting address of the request and the request 12832 * length are aligned on a un->un_tgt_blocksize boundary. If aligned 12833 * then we do not need to allocate a shadow buf to handle the request. 12834 */ 12835 if (((first_byte % un->un_tgt_blocksize) == 0) && 12836 ((bp->b_bcount % un->un_tgt_blocksize) == 0)) { 12837 is_aligned = TRUE; 12838 } 12839 12840 if ((bp->b_flags & B_READ) == 0) { 12841 /* 12842 * Lock the range for a write operation. An aligned request is 12843 * considered a simple write; otherwise the request must be a 12844 * read-modify-write. 12845 */ 12846 bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1, 12847 (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW); 12848 } 12849 12850 /* 12851 * Alloc a shadow buf if the request is not aligned. Also, this is 12852 * where the READ command is generated for a read-modify-write. (The 12853 * write phase is deferred until after the read completes.) 12854 */ 12855 if (is_aligned == FALSE) { 12856 12857 struct sd_mapblocksize_info *shadow_bsp; 12858 struct sd_xbuf *shadow_xp; 12859 struct buf *shadow_bp; 12860 12861 /* 12862 * Allocate the shadow buf and it associated xbuf. Note that 12863 * after this call the xb_blkno value in both the original 12864 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the 12865 * same: absolute relative to the start of the device, and 12866 * adjusted for the target block size. The b_blkno in the 12867 * shadow buf will also be set to this value. We should never 12868 * change b_blkno in the original bp however. 12869 * 12870 * Note also that the shadow buf will always need to be a 12871 * READ command, regardless of whether the incoming command 12872 * is a READ or a WRITE. 12873 */ 12874 shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ, 12875 xp->xb_blkno, 12876 (int (*)(struct buf *)) sd_mapblocksize_iodone); 12877 12878 shadow_xp = SD_GET_XBUF(shadow_bp); 12879 12880 /* 12881 * Allocate the layer-private data for the shadow buf. 12882 * (No need to preserve xb_private in the shadow xbuf.) 12883 */ 12884 shadow_xp->xb_private = shadow_bsp = 12885 kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP); 12886 12887 /* 12888 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone 12889 * to figure out where the start of the user data is (based upon 12890 * the system block size) in the data returned by the READ 12891 * command (which will be based upon the target blocksize). Note 12892 * that this is only really used if the request is unaligned. 12893 */ 12894 bsp->mbs_copy_offset = (ssize_t)(first_byte - 12895 ((offset_t)xp->xb_blkno * un->un_tgt_blocksize)); 12896 ASSERT((bsp->mbs_copy_offset >= 0) && 12897 (bsp->mbs_copy_offset < un->un_tgt_blocksize)); 12898 12899 shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset; 12900 12901 shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index; 12902 12903 /* Transfer the wmap (if any) to the shadow buf */ 12904 shadow_bsp->mbs_wmp = bsp->mbs_wmp; 12905 bsp->mbs_wmp = NULL; 12906 12907 /* 12908 * The shadow buf goes on from here in place of the 12909 * original buf. 12910 */ 12911 shadow_bsp->mbs_orig_bp = bp; 12912 bp = shadow_bp; 12913 } 12914 12915 SD_INFO(SD_LOG_IO_RMMEDIA, un, 12916 "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno); 12917 SD_INFO(SD_LOG_IO_RMMEDIA, un, 12918 "sd_mapblocksize_iostart: tgt request len:0x%x\n", 12919 request_bytes); 12920 SD_INFO(SD_LOG_IO_RMMEDIA, un, 12921 "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp); 12922 12923 done: 12924 SD_NEXT_IOSTART(index, un, bp); 12925 12926 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 12927 "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp); 12928 } 12929 12930 12931 /* 12932 * Function: sd_mapblocksize_iodone 12933 * 12934 * Description: Completion side processing for block-size mapping. 12935 * 12936 * Context: May be called under interrupt context 12937 */ 12938 12939 static void 12940 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp) 12941 { 12942 struct sd_mapblocksize_info *bsp; 12943 struct sd_xbuf *xp; 12944 struct sd_xbuf *orig_xp; /* sd_xbuf for the original buf */ 12945 struct buf *orig_bp; /* ptr to the original buf */ 12946 offset_t shadow_end; 12947 offset_t request_end; 12948 offset_t shadow_start; 12949 ssize_t copy_offset; 12950 size_t copy_length; 12951 size_t shortfall; 12952 uint_t is_write; /* TRUE if this bp is a WRITE */ 12953 uint_t has_wmap; /* TRUE is this bp has a wmap */ 12954 12955 ASSERT(un != NULL); 12956 ASSERT(bp != NULL); 12957 12958 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 12959 "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp); 12960 12961 /* 12962 * There is no shadow buf or layer-private data if the target is 12963 * using un->un_sys_blocksize as its block size or if bcount == 0. 12964 */ 12965 if ((un->un_tgt_blocksize == DEV_BSIZE) || 12966 (bp->b_bcount == 0)) { 12967 goto exit; 12968 } 12969 12970 xp = SD_GET_XBUF(bp); 12971 ASSERT(xp != NULL); 12972 12973 /* Retrieve the pointer to the layer-private data area from the xbuf. */ 12974 bsp = xp->xb_private; 12975 12976 is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE; 12977 has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE; 12978 12979 if (is_write) { 12980 /* 12981 * For a WRITE request we must free up the block range that 12982 * we have locked up. This holds regardless of whether this is 12983 * an aligned write request or a read-modify-write request. 12984 */ 12985 sd_range_unlock(un, bsp->mbs_wmp); 12986 bsp->mbs_wmp = NULL; 12987 } 12988 12989 if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) { 12990 /* 12991 * An aligned read or write command will have no shadow buf; 12992 * there is not much else to do with it. 12993 */ 12994 goto done; 12995 } 12996 12997 orig_bp = bsp->mbs_orig_bp; 12998 ASSERT(orig_bp != NULL); 12999 orig_xp = SD_GET_XBUF(orig_bp); 13000 ASSERT(orig_xp != NULL); 13001 ASSERT(!mutex_owned(SD_MUTEX(un))); 13002 13003 if (!is_write && has_wmap) { 13004 /* 13005 * A READ with a wmap means this is the READ phase of a 13006 * read-modify-write. If an error occurred on the READ then 13007 * we do not proceed with the WRITE phase or copy any data. 13008 * Just release the write maps and return with an error. 13009 */ 13010 if ((bp->b_resid != 0) || (bp->b_error != 0)) { 13011 orig_bp->b_resid = orig_bp->b_bcount; 13012 bioerror(orig_bp, bp->b_error); 13013 sd_range_unlock(un, bsp->mbs_wmp); 13014 goto freebuf_done; 13015 } 13016 } 13017 13018 /* 13019 * Here is where we set up to copy the data from the shadow buf 13020 * into the space associated with the original buf. 13021 * 13022 * To deal with the conversion between block sizes, these 13023 * computations treat the data as an array of bytes, with the 13024 * first byte (byte 0) corresponding to the first byte in the 13025 * first block on the disk. 13026 */ 13027 13028 /* 13029 * shadow_start and shadow_len indicate the location and size of 13030 * the data returned with the shadow IO request. 13031 */ 13032 shadow_start = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno); 13033 shadow_end = shadow_start + bp->b_bcount - bp->b_resid; 13034 13035 /* 13036 * copy_offset gives the offset (in bytes) from the start of the first 13037 * block of the READ request to the beginning of the data. We retrieve 13038 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved 13039 * there by sd_mapblockize_iostart(). copy_length gives the amount of 13040 * data to be copied (in bytes). 13041 */ 13042 copy_offset = bsp->mbs_copy_offset; 13043 ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize)); 13044 copy_length = orig_bp->b_bcount; 13045 request_end = shadow_start + copy_offset + orig_bp->b_bcount; 13046 13047 /* 13048 * Set up the resid and error fields of orig_bp as appropriate. 13049 */ 13050 if (shadow_end >= request_end) { 13051 /* We got all the requested data; set resid to zero */ 13052 orig_bp->b_resid = 0; 13053 } else { 13054 /* 13055 * We failed to get enough data to fully satisfy the original 13056 * request. Just copy back whatever data we got and set 13057 * up the residual and error code as required. 13058 * 13059 * 'shortfall' is the amount by which the data received with the 13060 * shadow buf has "fallen short" of the requested amount. 13061 */ 13062 shortfall = (size_t)(request_end - shadow_end); 13063 13064 if (shortfall > orig_bp->b_bcount) { 13065 /* 13066 * We did not get enough data to even partially 13067 * fulfill the original request. The residual is 13068 * equal to the amount requested. 13069 */ 13070 orig_bp->b_resid = orig_bp->b_bcount; 13071 } else { 13072 /* 13073 * We did not get all the data that we requested 13074 * from the device, but we will try to return what 13075 * portion we did get. 13076 */ 13077 orig_bp->b_resid = shortfall; 13078 } 13079 ASSERT(copy_length >= orig_bp->b_resid); 13080 copy_length -= orig_bp->b_resid; 13081 } 13082 13083 /* Propagate the error code from the shadow buf to the original buf */ 13084 bioerror(orig_bp, bp->b_error); 13085 13086 if (is_write) { 13087 goto freebuf_done; /* No data copying for a WRITE */ 13088 } 13089 13090 if (has_wmap) { 13091 /* 13092 * This is a READ command from the READ phase of a 13093 * read-modify-write request. We have to copy the data given 13094 * by the user OVER the data returned by the READ command, 13095 * then convert the command from a READ to a WRITE and send 13096 * it back to the target. 13097 */ 13098 bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset, 13099 copy_length); 13100 13101 bp->b_flags &= ~((int)B_READ); /* Convert to a WRITE */ 13102 13103 /* 13104 * Dispatch the WRITE command to the taskq thread, which 13105 * will in turn send the command to the target. When the 13106 * WRITE command completes, we (sd_mapblocksize_iodone()) 13107 * will get called again as part of the iodone chain 13108 * processing for it. Note that we will still be dealing 13109 * with the shadow buf at that point. 13110 */ 13111 if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp, 13112 KM_NOSLEEP) != 0) { 13113 /* 13114 * Dispatch was successful so we are done. Return 13115 * without going any higher up the iodone chain. Do 13116 * not free up any layer-private data until after the 13117 * WRITE completes. 13118 */ 13119 return; 13120 } 13121 13122 /* 13123 * Dispatch of the WRITE command failed; set up the error 13124 * condition and send this IO back up the iodone chain. 13125 */ 13126 bioerror(orig_bp, EIO); 13127 orig_bp->b_resid = orig_bp->b_bcount; 13128 13129 } else { 13130 /* 13131 * This is a regular READ request (ie, not a RMW). Copy the 13132 * data from the shadow buf into the original buf. The 13133 * copy_offset compensates for any "misalignment" between the 13134 * shadow buf (with its un->un_tgt_blocksize blocks) and the 13135 * original buf (with its un->un_sys_blocksize blocks). 13136 */ 13137 bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr, 13138 copy_length); 13139 } 13140 13141 freebuf_done: 13142 13143 /* 13144 * At this point we still have both the shadow buf AND the original 13145 * buf to deal with, as well as the layer-private data area in each. 13146 * Local variables are as follows: 13147 * 13148 * bp -- points to shadow buf 13149 * xp -- points to xbuf of shadow buf 13150 * bsp -- points to layer-private data area of shadow buf 13151 * orig_bp -- points to original buf 13152 * 13153 * First free the shadow buf and its associated xbuf, then free the 13154 * layer-private data area from the shadow buf. There is no need to 13155 * restore xb_private in the shadow xbuf. 13156 */ 13157 sd_shadow_buf_free(bp); 13158 kmem_free(bsp, sizeof (struct sd_mapblocksize_info)); 13159 13160 /* 13161 * Now update the local variables to point to the original buf, xbuf, 13162 * and layer-private area. 13163 */ 13164 bp = orig_bp; 13165 xp = SD_GET_XBUF(bp); 13166 ASSERT(xp != NULL); 13167 ASSERT(xp == orig_xp); 13168 bsp = xp->xb_private; 13169 ASSERT(bsp != NULL); 13170 13171 done: 13172 /* 13173 * Restore xb_private to whatever it was set to by the next higher 13174 * layer in the chain, then free the layer-private data area. 13175 */ 13176 xp->xb_private = bsp->mbs_oprivate; 13177 kmem_free(bsp, sizeof (struct sd_mapblocksize_info)); 13178 13179 exit: 13180 SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp), 13181 "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp); 13182 13183 SD_NEXT_IODONE(index, un, bp); 13184 } 13185 13186 13187 /* 13188 * Function: sd_checksum_iostart 13189 * 13190 * Description: A stub function for a layer that's currently not used. 13191 * For now just a placeholder. 13192 * 13193 * Context: Kernel thread context 13194 */ 13195 13196 static void 13197 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp) 13198 { 13199 ASSERT(un != NULL); 13200 ASSERT(bp != NULL); 13201 ASSERT(!mutex_owned(SD_MUTEX(un))); 13202 SD_NEXT_IOSTART(index, un, bp); 13203 } 13204 13205 13206 /* 13207 * Function: sd_checksum_iodone 13208 * 13209 * Description: A stub function for a layer that's currently not used. 13210 * For now just a placeholder. 13211 * 13212 * Context: May be called under interrupt context 13213 */ 13214 13215 static void 13216 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp) 13217 { 13218 ASSERT(un != NULL); 13219 ASSERT(bp != NULL); 13220 ASSERT(!mutex_owned(SD_MUTEX(un))); 13221 SD_NEXT_IODONE(index, un, bp); 13222 } 13223 13224 13225 /* 13226 * Function: sd_checksum_uscsi_iostart 13227 * 13228 * Description: A stub function for a layer that's currently not used. 13229 * For now just a placeholder. 13230 * 13231 * Context: Kernel thread context 13232 */ 13233 13234 static void 13235 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp) 13236 { 13237 ASSERT(un != NULL); 13238 ASSERT(bp != NULL); 13239 ASSERT(!mutex_owned(SD_MUTEX(un))); 13240 SD_NEXT_IOSTART(index, un, bp); 13241 } 13242 13243 13244 /* 13245 * Function: sd_checksum_uscsi_iodone 13246 * 13247 * Description: A stub function for a layer that's currently not used. 13248 * For now just a placeholder. 13249 * 13250 * Context: May be called under interrupt context 13251 */ 13252 13253 static void 13254 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp) 13255 { 13256 ASSERT(un != NULL); 13257 ASSERT(bp != NULL); 13258 ASSERT(!mutex_owned(SD_MUTEX(un))); 13259 SD_NEXT_IODONE(index, un, bp); 13260 } 13261 13262 13263 /* 13264 * Function: sd_pm_iostart 13265 * 13266 * Description: iostart-side routine for Power mangement. 13267 * 13268 * Context: Kernel thread context 13269 */ 13270 13271 static void 13272 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp) 13273 { 13274 ASSERT(un != NULL); 13275 ASSERT(bp != NULL); 13276 ASSERT(!mutex_owned(SD_MUTEX(un))); 13277 ASSERT(!mutex_owned(&un->un_pm_mutex)); 13278 13279 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n"); 13280 13281 if (sd_pm_entry(un) != DDI_SUCCESS) { 13282 /* 13283 * Set up to return the failed buf back up the 'iodone' 13284 * side of the calling chain. 13285 */ 13286 bioerror(bp, EIO); 13287 bp->b_resid = bp->b_bcount; 13288 13289 SD_BEGIN_IODONE(index, un, bp); 13290 13291 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n"); 13292 return; 13293 } 13294 13295 SD_NEXT_IOSTART(index, un, bp); 13296 13297 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n"); 13298 } 13299 13300 13301 /* 13302 * Function: sd_pm_iodone 13303 * 13304 * Description: iodone-side routine for power mangement. 13305 * 13306 * Context: may be called from interrupt context 13307 */ 13308 13309 static void 13310 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp) 13311 { 13312 ASSERT(un != NULL); 13313 ASSERT(bp != NULL); 13314 ASSERT(!mutex_owned(&un->un_pm_mutex)); 13315 13316 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n"); 13317 13318 /* 13319 * After attach the following flag is only read, so don't 13320 * take the penalty of acquiring a mutex for it. 13321 */ 13322 if (un->un_f_pm_is_enabled == TRUE) { 13323 sd_pm_exit(un); 13324 } 13325 13326 SD_NEXT_IODONE(index, un, bp); 13327 13328 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n"); 13329 } 13330 13331 13332 /* 13333 * Function: sd_core_iostart 13334 * 13335 * Description: Primary driver function for enqueuing buf(9S) structs from 13336 * the system and initiating IO to the target device 13337 * 13338 * Context: Kernel thread context. Can sleep. 13339 * 13340 * Assumptions: - The given xp->xb_blkno is absolute 13341 * (ie, relative to the start of the device). 13342 * - The IO is to be done using the native blocksize of 13343 * the device, as specified in un->un_tgt_blocksize. 13344 */ 13345 /* ARGSUSED */ 13346 static void 13347 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp) 13348 { 13349 struct sd_xbuf *xp; 13350 13351 ASSERT(un != NULL); 13352 ASSERT(bp != NULL); 13353 ASSERT(!mutex_owned(SD_MUTEX(un))); 13354 ASSERT(bp->b_resid == 0); 13355 13356 SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp); 13357 13358 xp = SD_GET_XBUF(bp); 13359 ASSERT(xp != NULL); 13360 13361 mutex_enter(SD_MUTEX(un)); 13362 13363 /* 13364 * If we are currently in the failfast state, fail any new IO 13365 * that has B_FAILFAST set, then return. 13366 */ 13367 if ((bp->b_flags & B_FAILFAST) && 13368 (un->un_failfast_state == SD_FAILFAST_ACTIVE)) { 13369 mutex_exit(SD_MUTEX(un)); 13370 bioerror(bp, EIO); 13371 bp->b_resid = bp->b_bcount; 13372 SD_BEGIN_IODONE(index, un, bp); 13373 return; 13374 } 13375 13376 if (SD_IS_DIRECT_PRIORITY(xp)) { 13377 /* 13378 * Priority command -- transport it immediately. 13379 * 13380 * Note: We may want to assert that USCSI_DIAGNOSE is set, 13381 * because all direct priority commands should be associated 13382 * with error recovery actions which we don't want to retry. 13383 */ 13384 sd_start_cmds(un, bp); 13385 } else { 13386 /* 13387 * Normal command -- add it to the wait queue, then start 13388 * transporting commands from the wait queue. 13389 */ 13390 sd_add_buf_to_waitq(un, bp); 13391 SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp); 13392 sd_start_cmds(un, NULL); 13393 } 13394 13395 mutex_exit(SD_MUTEX(un)); 13396 13397 SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp); 13398 } 13399 13400 13401 /* 13402 * Function: sd_init_cdb_limits 13403 * 13404 * Description: This is to handle scsi_pkt initialization differences 13405 * between the driver platforms. 13406 * 13407 * Legacy behaviors: 13408 * 13409 * If the block number or the sector count exceeds the 13410 * capabilities of a Group 0 command, shift over to a 13411 * Group 1 command. We don't blindly use Group 1 13412 * commands because a) some drives (CDC Wren IVs) get a 13413 * bit confused, and b) there is probably a fair amount 13414 * of speed difference for a target to receive and decode 13415 * a 10 byte command instead of a 6 byte command. 13416 * 13417 * The xfer time difference of 6 vs 10 byte CDBs is 13418 * still significant so this code is still worthwhile. 13419 * 10 byte CDBs are very inefficient with the fas HBA driver 13420 * and older disks. Each CDB byte took 1 usec with some 13421 * popular disks. 13422 * 13423 * Context: Must be called at attach time 13424 */ 13425 13426 static void 13427 sd_init_cdb_limits(struct sd_lun *un) 13428 { 13429 int hba_cdb_limit; 13430 13431 /* 13432 * Use CDB_GROUP1 commands for most devices except for 13433 * parallel SCSI fixed drives in which case we get better 13434 * performance using CDB_GROUP0 commands (where applicable). 13435 */ 13436 un->un_mincdb = SD_CDB_GROUP1; 13437 #if !defined(__fibre) 13438 if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) && 13439 !un->un_f_has_removable_media) { 13440 un->un_mincdb = SD_CDB_GROUP0; 13441 } 13442 #endif 13443 13444 /* 13445 * Try to read the max-cdb-length supported by HBA. 13446 */ 13447 un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1); 13448 if (0 >= un->un_max_hba_cdb) { 13449 un->un_max_hba_cdb = CDB_GROUP4; 13450 hba_cdb_limit = SD_CDB_GROUP4; 13451 } else if (0 < un->un_max_hba_cdb && 13452 un->un_max_hba_cdb < CDB_GROUP1) { 13453 hba_cdb_limit = SD_CDB_GROUP0; 13454 } else if (CDB_GROUP1 <= un->un_max_hba_cdb && 13455 un->un_max_hba_cdb < CDB_GROUP5) { 13456 hba_cdb_limit = SD_CDB_GROUP1; 13457 } else if (CDB_GROUP5 <= un->un_max_hba_cdb && 13458 un->un_max_hba_cdb < CDB_GROUP4) { 13459 hba_cdb_limit = SD_CDB_GROUP5; 13460 } else { 13461 hba_cdb_limit = SD_CDB_GROUP4; 13462 } 13463 13464 /* 13465 * Use CDB_GROUP5 commands for removable devices. Use CDB_GROUP4 13466 * commands for fixed disks unless we are building for a 32 bit 13467 * kernel. 13468 */ 13469 #ifdef _LP64 13470 un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 : 13471 min(hba_cdb_limit, SD_CDB_GROUP4); 13472 #else 13473 un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 : 13474 min(hba_cdb_limit, SD_CDB_GROUP1); 13475 #endif 13476 13477 un->un_status_len = (int)((un->un_f_arq_enabled == TRUE) 13478 ? sizeof (struct scsi_arq_status) : 1); 13479 un->un_cmd_timeout = (ushort_t)sd_io_time; 13480 un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout; 13481 } 13482 13483 13484 /* 13485 * Function: sd_initpkt_for_buf 13486 * 13487 * Description: Allocate and initialize for transport a scsi_pkt struct, 13488 * based upon the info specified in the given buf struct. 13489 * 13490 * Assumes the xb_blkno in the request is absolute (ie, 13491 * relative to the start of the device (NOT partition!). 13492 * Also assumes that the request is using the native block 13493 * size of the device (as returned by the READ CAPACITY 13494 * command). 13495 * 13496 * Return Code: SD_PKT_ALLOC_SUCCESS 13497 * SD_PKT_ALLOC_FAILURE 13498 * SD_PKT_ALLOC_FAILURE_NO_DMA 13499 * SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL 13500 * 13501 * Context: Kernel thread and may be called from software interrupt context 13502 * as part of a sdrunout callback. This function may not block or 13503 * call routines that block 13504 */ 13505 13506 static int 13507 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp) 13508 { 13509 struct sd_xbuf *xp; 13510 struct scsi_pkt *pktp = NULL; 13511 struct sd_lun *un; 13512 size_t blockcount; 13513 daddr_t startblock; 13514 int rval; 13515 int cmd_flags; 13516 13517 ASSERT(bp != NULL); 13518 ASSERT(pktpp != NULL); 13519 xp = SD_GET_XBUF(bp); 13520 ASSERT(xp != NULL); 13521 un = SD_GET_UN(bp); 13522 ASSERT(un != NULL); 13523 ASSERT(mutex_owned(SD_MUTEX(un))); 13524 ASSERT(bp->b_resid == 0); 13525 13526 SD_TRACE(SD_LOG_IO_CORE, un, 13527 "sd_initpkt_for_buf: entry: buf:0x%p\n", bp); 13528 13529 mutex_exit(SD_MUTEX(un)); 13530 13531 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 13532 if (xp->xb_pkt_flags & SD_XB_DMA_FREED) { 13533 /* 13534 * Already have a scsi_pkt -- just need DMA resources. 13535 * We must recompute the CDB in case the mapping returns 13536 * a nonzero pkt_resid. 13537 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer 13538 * that is being retried, the unmap/remap of the DMA resouces 13539 * will result in the entire transfer starting over again 13540 * from the very first block. 13541 */ 13542 ASSERT(xp->xb_pktp != NULL); 13543 pktp = xp->xb_pktp; 13544 } else { 13545 pktp = NULL; 13546 } 13547 #endif /* __i386 || __amd64 */ 13548 13549 startblock = xp->xb_blkno; /* Absolute block num. */ 13550 blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount); 13551 13552 cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK); 13553 13554 /* 13555 * sd_setup_rw_pkt will determine the appropriate CDB group to use, 13556 * call scsi_init_pkt, and build the CDB. 13557 */ 13558 rval = sd_setup_rw_pkt(un, &pktp, bp, 13559 cmd_flags, sdrunout, (caddr_t)un, 13560 startblock, blockcount); 13561 13562 if (rval == 0) { 13563 /* 13564 * Success. 13565 * 13566 * If partial DMA is being used and required for this transfer. 13567 * set it up here. 13568 */ 13569 if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 && 13570 (pktp->pkt_resid != 0)) { 13571 13572 /* 13573 * Save the CDB length and pkt_resid for the 13574 * next xfer 13575 */ 13576 xp->xb_dma_resid = pktp->pkt_resid; 13577 13578 /* rezero resid */ 13579 pktp->pkt_resid = 0; 13580 13581 } else { 13582 xp->xb_dma_resid = 0; 13583 } 13584 13585 pktp->pkt_flags = un->un_tagflags; 13586 pktp->pkt_time = un->un_cmd_timeout; 13587 pktp->pkt_comp = sdintr; 13588 13589 pktp->pkt_private = bp; 13590 *pktpp = pktp; 13591 13592 SD_TRACE(SD_LOG_IO_CORE, un, 13593 "sd_initpkt_for_buf: exit: buf:0x%p\n", bp); 13594 13595 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 13596 xp->xb_pkt_flags &= ~SD_XB_DMA_FREED; 13597 #endif 13598 13599 mutex_enter(SD_MUTEX(un)); 13600 return (SD_PKT_ALLOC_SUCCESS); 13601 13602 } 13603 13604 /* 13605 * SD_PKT_ALLOC_FAILURE is the only expected failure code 13606 * from sd_setup_rw_pkt. 13607 */ 13608 ASSERT(rval == SD_PKT_ALLOC_FAILURE); 13609 13610 if (rval == SD_PKT_ALLOC_FAILURE) { 13611 *pktpp = NULL; 13612 /* 13613 * Set the driver state to RWAIT to indicate the driver 13614 * is waiting on resource allocations. The driver will not 13615 * suspend, pm_suspend, or detatch while the state is RWAIT. 13616 */ 13617 mutex_enter(SD_MUTEX(un)); 13618 New_state(un, SD_STATE_RWAIT); 13619 13620 SD_ERROR(SD_LOG_IO_CORE, un, 13621 "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp); 13622 13623 if ((bp->b_flags & B_ERROR) != 0) { 13624 return (SD_PKT_ALLOC_FAILURE_NO_DMA); 13625 } 13626 return (SD_PKT_ALLOC_FAILURE); 13627 } else { 13628 /* 13629 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL 13630 * 13631 * This should never happen. Maybe someone messed with the 13632 * kernel's minphys? 13633 */ 13634 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 13635 "Request rejected: too large for CDB: " 13636 "lba:0x%08lx len:0x%08lx\n", startblock, blockcount); 13637 SD_ERROR(SD_LOG_IO_CORE, un, 13638 "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp); 13639 mutex_enter(SD_MUTEX(un)); 13640 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13641 13642 } 13643 } 13644 13645 13646 /* 13647 * Function: sd_destroypkt_for_buf 13648 * 13649 * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing). 13650 * 13651 * Context: Kernel thread or interrupt context 13652 */ 13653 13654 static void 13655 sd_destroypkt_for_buf(struct buf *bp) 13656 { 13657 ASSERT(bp != NULL); 13658 ASSERT(SD_GET_UN(bp) != NULL); 13659 13660 SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp), 13661 "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp); 13662 13663 ASSERT(SD_GET_PKTP(bp) != NULL); 13664 scsi_destroy_pkt(SD_GET_PKTP(bp)); 13665 13666 SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp), 13667 "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp); 13668 } 13669 13670 /* 13671 * Function: sd_setup_rw_pkt 13672 * 13673 * Description: Determines appropriate CDB group for the requested LBA 13674 * and transfer length, calls scsi_init_pkt, and builds 13675 * the CDB. Do not use for partial DMA transfers except 13676 * for the initial transfer since the CDB size must 13677 * remain constant. 13678 * 13679 * Context: Kernel thread and may be called from software interrupt 13680 * context as part of a sdrunout callback. This function may not 13681 * block or call routines that block 13682 */ 13683 13684 13685 int 13686 sd_setup_rw_pkt(struct sd_lun *un, 13687 struct scsi_pkt **pktpp, struct buf *bp, int flags, 13688 int (*callback)(caddr_t), caddr_t callback_arg, 13689 diskaddr_t lba, uint32_t blockcount) 13690 { 13691 struct scsi_pkt *return_pktp; 13692 union scsi_cdb *cdbp; 13693 struct sd_cdbinfo *cp = NULL; 13694 int i; 13695 13696 /* 13697 * See which size CDB to use, based upon the request. 13698 */ 13699 for (i = un->un_mincdb; i <= un->un_maxcdb; i++) { 13700 13701 /* 13702 * Check lba and block count against sd_cdbtab limits. 13703 * In the partial DMA case, we have to use the same size 13704 * CDB for all the transfers. Check lba + blockcount 13705 * against the max LBA so we know that segment of the 13706 * transfer can use the CDB we select. 13707 */ 13708 if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) && 13709 (blockcount <= sd_cdbtab[i].sc_maxlen)) { 13710 13711 /* 13712 * The command will fit into the CDB type 13713 * specified by sd_cdbtab[i]. 13714 */ 13715 cp = sd_cdbtab + i; 13716 13717 /* 13718 * Call scsi_init_pkt so we can fill in the 13719 * CDB. 13720 */ 13721 return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp, 13722 bp, cp->sc_grpcode, un->un_status_len, 0, 13723 flags, callback, callback_arg); 13724 13725 if (return_pktp != NULL) { 13726 13727 /* 13728 * Return new value of pkt 13729 */ 13730 *pktpp = return_pktp; 13731 13732 /* 13733 * To be safe, zero the CDB insuring there is 13734 * no leftover data from a previous command. 13735 */ 13736 bzero(return_pktp->pkt_cdbp, cp->sc_grpcode); 13737 13738 /* 13739 * Handle partial DMA mapping 13740 */ 13741 if (return_pktp->pkt_resid != 0) { 13742 13743 /* 13744 * Not going to xfer as many blocks as 13745 * originally expected 13746 */ 13747 blockcount -= 13748 SD_BYTES2TGTBLOCKS(un, 13749 return_pktp->pkt_resid); 13750 } 13751 13752 cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp; 13753 13754 /* 13755 * Set command byte based on the CDB 13756 * type we matched. 13757 */ 13758 cdbp->scc_cmd = cp->sc_grpmask | 13759 ((bp->b_flags & B_READ) ? 13760 SCMD_READ : SCMD_WRITE); 13761 13762 SD_FILL_SCSI1_LUN(un, return_pktp); 13763 13764 /* 13765 * Fill in LBA and length 13766 */ 13767 ASSERT((cp->sc_grpcode == CDB_GROUP1) || 13768 (cp->sc_grpcode == CDB_GROUP4) || 13769 (cp->sc_grpcode == CDB_GROUP0) || 13770 (cp->sc_grpcode == CDB_GROUP5)); 13771 13772 if (cp->sc_grpcode == CDB_GROUP1) { 13773 FORMG1ADDR(cdbp, lba); 13774 FORMG1COUNT(cdbp, blockcount); 13775 return (0); 13776 } else if (cp->sc_grpcode == CDB_GROUP4) { 13777 FORMG4LONGADDR(cdbp, lba); 13778 FORMG4COUNT(cdbp, blockcount); 13779 return (0); 13780 } else if (cp->sc_grpcode == CDB_GROUP0) { 13781 FORMG0ADDR(cdbp, lba); 13782 FORMG0COUNT(cdbp, blockcount); 13783 return (0); 13784 } else if (cp->sc_grpcode == CDB_GROUP5) { 13785 FORMG5ADDR(cdbp, lba); 13786 FORMG5COUNT(cdbp, blockcount); 13787 return (0); 13788 } 13789 13790 /* 13791 * It should be impossible to not match one 13792 * of the CDB types above, so we should never 13793 * reach this point. Set the CDB command byte 13794 * to test-unit-ready to avoid writing 13795 * to somewhere we don't intend. 13796 */ 13797 cdbp->scc_cmd = SCMD_TEST_UNIT_READY; 13798 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13799 } else { 13800 /* 13801 * Couldn't get scsi_pkt 13802 */ 13803 return (SD_PKT_ALLOC_FAILURE); 13804 } 13805 } 13806 } 13807 13808 /* 13809 * None of the available CDB types were suitable. This really 13810 * should never happen: on a 64 bit system we support 13811 * READ16/WRITE16 which will hold an entire 64 bit disk address 13812 * and on a 32 bit system we will refuse to bind to a device 13813 * larger than 2TB so addresses will never be larger than 32 bits. 13814 */ 13815 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13816 } 13817 13818 /* 13819 * Function: sd_setup_next_rw_pkt 13820 * 13821 * Description: Setup packet for partial DMA transfers, except for the 13822 * initial transfer. sd_setup_rw_pkt should be used for 13823 * the initial transfer. 13824 * 13825 * Context: Kernel thread and may be called from interrupt context. 13826 */ 13827 13828 int 13829 sd_setup_next_rw_pkt(struct sd_lun *un, 13830 struct scsi_pkt *pktp, struct buf *bp, 13831 diskaddr_t lba, uint32_t blockcount) 13832 { 13833 uchar_t com; 13834 union scsi_cdb *cdbp; 13835 uchar_t cdb_group_id; 13836 13837 ASSERT(pktp != NULL); 13838 ASSERT(pktp->pkt_cdbp != NULL); 13839 13840 cdbp = (union scsi_cdb *)pktp->pkt_cdbp; 13841 com = cdbp->scc_cmd; 13842 cdb_group_id = CDB_GROUPID(com); 13843 13844 ASSERT((cdb_group_id == CDB_GROUPID_0) || 13845 (cdb_group_id == CDB_GROUPID_1) || 13846 (cdb_group_id == CDB_GROUPID_4) || 13847 (cdb_group_id == CDB_GROUPID_5)); 13848 13849 /* 13850 * Move pkt to the next portion of the xfer. 13851 * func is NULL_FUNC so we do not have to release 13852 * the disk mutex here. 13853 */ 13854 if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0, 13855 NULL_FUNC, NULL) == pktp) { 13856 /* Success. Handle partial DMA */ 13857 if (pktp->pkt_resid != 0) { 13858 blockcount -= 13859 SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid); 13860 } 13861 13862 cdbp->scc_cmd = com; 13863 SD_FILL_SCSI1_LUN(un, pktp); 13864 if (cdb_group_id == CDB_GROUPID_1) { 13865 FORMG1ADDR(cdbp, lba); 13866 FORMG1COUNT(cdbp, blockcount); 13867 return (0); 13868 } else if (cdb_group_id == CDB_GROUPID_4) { 13869 FORMG4LONGADDR(cdbp, lba); 13870 FORMG4COUNT(cdbp, blockcount); 13871 return (0); 13872 } else if (cdb_group_id == CDB_GROUPID_0) { 13873 FORMG0ADDR(cdbp, lba); 13874 FORMG0COUNT(cdbp, blockcount); 13875 return (0); 13876 } else if (cdb_group_id == CDB_GROUPID_5) { 13877 FORMG5ADDR(cdbp, lba); 13878 FORMG5COUNT(cdbp, blockcount); 13879 return (0); 13880 } 13881 13882 /* Unreachable */ 13883 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13884 } 13885 13886 /* 13887 * Error setting up next portion of cmd transfer. 13888 * Something is definitely very wrong and this 13889 * should not happen. 13890 */ 13891 return (SD_PKT_ALLOC_FAILURE); 13892 } 13893 13894 /* 13895 * Function: sd_initpkt_for_uscsi 13896 * 13897 * Description: Allocate and initialize for transport a scsi_pkt struct, 13898 * based upon the info specified in the given uscsi_cmd struct. 13899 * 13900 * Return Code: SD_PKT_ALLOC_SUCCESS 13901 * SD_PKT_ALLOC_FAILURE 13902 * SD_PKT_ALLOC_FAILURE_NO_DMA 13903 * SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL 13904 * 13905 * Context: Kernel thread and may be called from software interrupt context 13906 * as part of a sdrunout callback. This function may not block or 13907 * call routines that block 13908 */ 13909 13910 static int 13911 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp) 13912 { 13913 struct uscsi_cmd *uscmd; 13914 struct sd_xbuf *xp; 13915 struct scsi_pkt *pktp; 13916 struct sd_lun *un; 13917 uint32_t flags = 0; 13918 13919 ASSERT(bp != NULL); 13920 ASSERT(pktpp != NULL); 13921 xp = SD_GET_XBUF(bp); 13922 ASSERT(xp != NULL); 13923 un = SD_GET_UN(bp); 13924 ASSERT(un != NULL); 13925 ASSERT(mutex_owned(SD_MUTEX(un))); 13926 13927 /* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */ 13928 uscmd = (struct uscsi_cmd *)xp->xb_pktinfo; 13929 ASSERT(uscmd != NULL); 13930 13931 SD_TRACE(SD_LOG_IO_CORE, un, 13932 "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp); 13933 13934 /* 13935 * Allocate the scsi_pkt for the command. 13936 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path 13937 * during scsi_init_pkt time and will continue to use the 13938 * same path as long as the same scsi_pkt is used without 13939 * intervening scsi_dma_free(). Since uscsi command does 13940 * not call scsi_dmafree() before retry failed command, it 13941 * is necessary to make sure PKT_DMA_PARTIAL flag is NOT 13942 * set such that scsi_vhci can use other available path for 13943 * retry. Besides, ucsci command does not allow DMA breakup, 13944 * so there is no need to set PKT_DMA_PARTIAL flag. 13945 */ 13946 if (uscmd->uscsi_rqlen > SENSE_LENGTH) { 13947 pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, 13948 ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen, 13949 ((int)(uscmd->uscsi_rqlen) + sizeof (struct scsi_arq_status) 13950 - sizeof (struct scsi_extended_sense)), 0, 13951 (un->un_pkt_flags & ~PKT_DMA_PARTIAL) | PKT_XARQ, 13952 sdrunout, (caddr_t)un); 13953 } else { 13954 pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, 13955 ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen, 13956 sizeof (struct scsi_arq_status), 0, 13957 (un->un_pkt_flags & ~PKT_DMA_PARTIAL), 13958 sdrunout, (caddr_t)un); 13959 } 13960 13961 if (pktp == NULL) { 13962 *pktpp = NULL; 13963 /* 13964 * Set the driver state to RWAIT to indicate the driver 13965 * is waiting on resource allocations. The driver will not 13966 * suspend, pm_suspend, or detatch while the state is RWAIT. 13967 */ 13968 New_state(un, SD_STATE_RWAIT); 13969 13970 SD_ERROR(SD_LOG_IO_CORE, un, 13971 "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp); 13972 13973 if ((bp->b_flags & B_ERROR) != 0) { 13974 return (SD_PKT_ALLOC_FAILURE_NO_DMA); 13975 } 13976 return (SD_PKT_ALLOC_FAILURE); 13977 } 13978 13979 /* 13980 * We do not do DMA breakup for USCSI commands, so return failure 13981 * here if all the needed DMA resources were not allocated. 13982 */ 13983 if ((un->un_pkt_flags & PKT_DMA_PARTIAL) && 13984 (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) { 13985 scsi_destroy_pkt(pktp); 13986 SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: " 13987 "No partial DMA for USCSI. exit: buf:0x%p\n", bp); 13988 return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL); 13989 } 13990 13991 /* Init the cdb from the given uscsi struct */ 13992 (void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp, 13993 uscmd->uscsi_cdb[0], 0, 0, 0); 13994 13995 SD_FILL_SCSI1_LUN(un, pktp); 13996 13997 /* 13998 * Set up the optional USCSI flags. See the uscsi (7I) man page 13999 * for listing of the supported flags. 14000 */ 14001 14002 if (uscmd->uscsi_flags & USCSI_SILENT) { 14003 flags |= FLAG_SILENT; 14004 } 14005 14006 if (uscmd->uscsi_flags & USCSI_DIAGNOSE) { 14007 flags |= FLAG_DIAGNOSE; 14008 } 14009 14010 if (uscmd->uscsi_flags & USCSI_ISOLATE) { 14011 flags |= FLAG_ISOLATE; 14012 } 14013 14014 if (un->un_f_is_fibre == FALSE) { 14015 if (uscmd->uscsi_flags & USCSI_RENEGOT) { 14016 flags |= FLAG_RENEGOTIATE_WIDE_SYNC; 14017 } 14018 } 14019 14020 /* 14021 * Set the pkt flags here so we save time later. 14022 * Note: These flags are NOT in the uscsi man page!!! 14023 */ 14024 if (uscmd->uscsi_flags & USCSI_HEAD) { 14025 flags |= FLAG_HEAD; 14026 } 14027 14028 if (uscmd->uscsi_flags & USCSI_NOINTR) { 14029 flags |= FLAG_NOINTR; 14030 } 14031 14032 /* 14033 * For tagged queueing, things get a bit complicated. 14034 * Check first for head of queue and last for ordered queue. 14035 * If neither head nor order, use the default driver tag flags. 14036 */ 14037 if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) { 14038 if (uscmd->uscsi_flags & USCSI_HTAG) { 14039 flags |= FLAG_HTAG; 14040 } else if (uscmd->uscsi_flags & USCSI_OTAG) { 14041 flags |= FLAG_OTAG; 14042 } else { 14043 flags |= un->un_tagflags & FLAG_TAGMASK; 14044 } 14045 } 14046 14047 if (uscmd->uscsi_flags & USCSI_NODISCON) { 14048 flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON; 14049 } 14050 14051 pktp->pkt_flags = flags; 14052 14053 /* Transfer uscsi information to scsi_pkt */ 14054 (void) scsi_uscsi_pktinit(uscmd, pktp); 14055 14056 /* Copy the caller's CDB into the pkt... */ 14057 bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen); 14058 14059 if (uscmd->uscsi_timeout == 0) { 14060 pktp->pkt_time = un->un_uscsi_timeout; 14061 } else { 14062 pktp->pkt_time = uscmd->uscsi_timeout; 14063 } 14064 14065 /* need it later to identify USCSI request in sdintr */ 14066 xp->xb_pkt_flags |= SD_XB_USCSICMD; 14067 14068 xp->xb_sense_resid = uscmd->uscsi_rqresid; 14069 14070 pktp->pkt_private = bp; 14071 pktp->pkt_comp = sdintr; 14072 *pktpp = pktp; 14073 14074 SD_TRACE(SD_LOG_IO_CORE, un, 14075 "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp); 14076 14077 return (SD_PKT_ALLOC_SUCCESS); 14078 } 14079 14080 14081 /* 14082 * Function: sd_destroypkt_for_uscsi 14083 * 14084 * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi 14085 * IOs.. Also saves relevant info into the associated uscsi_cmd 14086 * struct. 14087 * 14088 * Context: May be called under interrupt context 14089 */ 14090 14091 static void 14092 sd_destroypkt_for_uscsi(struct buf *bp) 14093 { 14094 struct uscsi_cmd *uscmd; 14095 struct sd_xbuf *xp; 14096 struct scsi_pkt *pktp; 14097 struct sd_lun *un; 14098 struct sd_uscsi_info *suip; 14099 14100 ASSERT(bp != NULL); 14101 xp = SD_GET_XBUF(bp); 14102 ASSERT(xp != NULL); 14103 un = SD_GET_UN(bp); 14104 ASSERT(un != NULL); 14105 ASSERT(!mutex_owned(SD_MUTEX(un))); 14106 pktp = SD_GET_PKTP(bp); 14107 ASSERT(pktp != NULL); 14108 14109 SD_TRACE(SD_LOG_IO_CORE, un, 14110 "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp); 14111 14112 /* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */ 14113 uscmd = (struct uscsi_cmd *)xp->xb_pktinfo; 14114 ASSERT(uscmd != NULL); 14115 14116 /* Save the status and the residual into the uscsi_cmd struct */ 14117 uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK); 14118 uscmd->uscsi_resid = bp->b_resid; 14119 14120 /* Transfer scsi_pkt information to uscsi */ 14121 (void) scsi_uscsi_pktfini(pktp, uscmd); 14122 14123 /* 14124 * If enabled, copy any saved sense data into the area specified 14125 * by the uscsi command. 14126 */ 14127 if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) && 14128 (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) { 14129 /* 14130 * Note: uscmd->uscsi_rqbuf should always point to a buffer 14131 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd()) 14132 */ 14133 uscmd->uscsi_rqstatus = xp->xb_sense_status; 14134 uscmd->uscsi_rqresid = xp->xb_sense_resid; 14135 if (uscmd->uscsi_rqlen > SENSE_LENGTH) { 14136 bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, 14137 MAX_SENSE_LENGTH); 14138 } else { 14139 bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, 14140 SENSE_LENGTH); 14141 } 14142 } 14143 /* 14144 * The following assignments are for SCSI FMA. 14145 */ 14146 ASSERT(xp->xb_private != NULL); 14147 suip = (struct sd_uscsi_info *)xp->xb_private; 14148 suip->ui_pkt_reason = pktp->pkt_reason; 14149 suip->ui_pkt_state = pktp->pkt_state; 14150 suip->ui_pkt_statistics = pktp->pkt_statistics; 14151 suip->ui_lba = (uint64_t)SD_GET_BLKNO(bp); 14152 14153 /* We are done with the scsi_pkt; free it now */ 14154 ASSERT(SD_GET_PKTP(bp) != NULL); 14155 scsi_destroy_pkt(SD_GET_PKTP(bp)); 14156 14157 SD_TRACE(SD_LOG_IO_CORE, un, 14158 "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp); 14159 } 14160 14161 14162 /* 14163 * Function: sd_bioclone_alloc 14164 * 14165 * Description: Allocate a buf(9S) and init it as per the given buf 14166 * and the various arguments. The associated sd_xbuf 14167 * struct is (nearly) duplicated. The struct buf *bp 14168 * argument is saved in new_xp->xb_private. 14169 * 14170 * Arguments: bp - ptr the the buf(9S) to be "shadowed" 14171 * datalen - size of data area for the shadow bp 14172 * blkno - starting LBA 14173 * func - function pointer for b_iodone in the shadow buf. (May 14174 * be NULL if none.) 14175 * 14176 * Return Code: Pointer to allocates buf(9S) struct 14177 * 14178 * Context: Can sleep. 14179 */ 14180 14181 static struct buf * 14182 sd_bioclone_alloc(struct buf *bp, size_t datalen, 14183 daddr_t blkno, int (*func)(struct buf *)) 14184 { 14185 struct sd_lun *un; 14186 struct sd_xbuf *xp; 14187 struct sd_xbuf *new_xp; 14188 struct buf *new_bp; 14189 14190 ASSERT(bp != NULL); 14191 xp = SD_GET_XBUF(bp); 14192 ASSERT(xp != NULL); 14193 un = SD_GET_UN(bp); 14194 ASSERT(un != NULL); 14195 ASSERT(!mutex_owned(SD_MUTEX(un))); 14196 14197 new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func, 14198 NULL, KM_SLEEP); 14199 14200 new_bp->b_lblkno = blkno; 14201 14202 /* 14203 * Allocate an xbuf for the shadow bp and copy the contents of the 14204 * original xbuf into it. 14205 */ 14206 new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 14207 bcopy(xp, new_xp, sizeof (struct sd_xbuf)); 14208 14209 /* 14210 * The given bp is automatically saved in the xb_private member 14211 * of the new xbuf. Callers are allowed to depend on this. 14212 */ 14213 new_xp->xb_private = bp; 14214 14215 new_bp->b_private = new_xp; 14216 14217 return (new_bp); 14218 } 14219 14220 /* 14221 * Function: sd_shadow_buf_alloc 14222 * 14223 * Description: Allocate a buf(9S) and init it as per the given buf 14224 * and the various arguments. The associated sd_xbuf 14225 * struct is (nearly) duplicated. The struct buf *bp 14226 * argument is saved in new_xp->xb_private. 14227 * 14228 * Arguments: bp - ptr the the buf(9S) to be "shadowed" 14229 * datalen - size of data area for the shadow bp 14230 * bflags - B_READ or B_WRITE (pseudo flag) 14231 * blkno - starting LBA 14232 * func - function pointer for b_iodone in the shadow buf. (May 14233 * be NULL if none.) 14234 * 14235 * Return Code: Pointer to allocates buf(9S) struct 14236 * 14237 * Context: Can sleep. 14238 */ 14239 14240 static struct buf * 14241 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags, 14242 daddr_t blkno, int (*func)(struct buf *)) 14243 { 14244 struct sd_lun *un; 14245 struct sd_xbuf *xp; 14246 struct sd_xbuf *new_xp; 14247 struct buf *new_bp; 14248 14249 ASSERT(bp != NULL); 14250 xp = SD_GET_XBUF(bp); 14251 ASSERT(xp != NULL); 14252 un = SD_GET_UN(bp); 14253 ASSERT(un != NULL); 14254 ASSERT(!mutex_owned(SD_MUTEX(un))); 14255 14256 if (bp->b_flags & (B_PAGEIO | B_PHYS)) { 14257 bp_mapin(bp); 14258 } 14259 14260 bflags &= (B_READ | B_WRITE); 14261 #if defined(__i386) || defined(__amd64) 14262 new_bp = getrbuf(KM_SLEEP); 14263 new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP); 14264 new_bp->b_bcount = datalen; 14265 new_bp->b_flags = bflags | 14266 (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW)); 14267 #else 14268 new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL, 14269 datalen, bflags, SLEEP_FUNC, NULL); 14270 #endif 14271 new_bp->av_forw = NULL; 14272 new_bp->av_back = NULL; 14273 new_bp->b_dev = bp->b_dev; 14274 new_bp->b_blkno = blkno; 14275 new_bp->b_iodone = func; 14276 new_bp->b_edev = bp->b_edev; 14277 new_bp->b_resid = 0; 14278 14279 /* We need to preserve the B_FAILFAST flag */ 14280 if (bp->b_flags & B_FAILFAST) { 14281 new_bp->b_flags |= B_FAILFAST; 14282 } 14283 14284 /* 14285 * Allocate an xbuf for the shadow bp and copy the contents of the 14286 * original xbuf into it. 14287 */ 14288 new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 14289 bcopy(xp, new_xp, sizeof (struct sd_xbuf)); 14290 14291 /* Need later to copy data between the shadow buf & original buf! */ 14292 new_xp->xb_pkt_flags |= PKT_CONSISTENT; 14293 14294 /* 14295 * The given bp is automatically saved in the xb_private member 14296 * of the new xbuf. Callers are allowed to depend on this. 14297 */ 14298 new_xp->xb_private = bp; 14299 14300 new_bp->b_private = new_xp; 14301 14302 return (new_bp); 14303 } 14304 14305 /* 14306 * Function: sd_bioclone_free 14307 * 14308 * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations 14309 * in the larger than partition operation. 14310 * 14311 * Context: May be called under interrupt context 14312 */ 14313 14314 static void 14315 sd_bioclone_free(struct buf *bp) 14316 { 14317 struct sd_xbuf *xp; 14318 14319 ASSERT(bp != NULL); 14320 xp = SD_GET_XBUF(bp); 14321 ASSERT(xp != NULL); 14322 14323 /* 14324 * Call bp_mapout() before freeing the buf, in case a lower 14325 * layer or HBA had done a bp_mapin(). we must do this here 14326 * as we are the "originator" of the shadow buf. 14327 */ 14328 bp_mapout(bp); 14329 14330 /* 14331 * Null out b_iodone before freeing the bp, to ensure that the driver 14332 * never gets confused by a stale value in this field. (Just a little 14333 * extra defensiveness here.) 14334 */ 14335 bp->b_iodone = NULL; 14336 14337 freerbuf(bp); 14338 14339 kmem_free(xp, sizeof (struct sd_xbuf)); 14340 } 14341 14342 /* 14343 * Function: sd_shadow_buf_free 14344 * 14345 * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations. 14346 * 14347 * Context: May be called under interrupt context 14348 */ 14349 14350 static void 14351 sd_shadow_buf_free(struct buf *bp) 14352 { 14353 struct sd_xbuf *xp; 14354 14355 ASSERT(bp != NULL); 14356 xp = SD_GET_XBUF(bp); 14357 ASSERT(xp != NULL); 14358 14359 #if defined(__sparc) 14360 /* 14361 * Call bp_mapout() before freeing the buf, in case a lower 14362 * layer or HBA had done a bp_mapin(). we must do this here 14363 * as we are the "originator" of the shadow buf. 14364 */ 14365 bp_mapout(bp); 14366 #endif 14367 14368 /* 14369 * Null out b_iodone before freeing the bp, to ensure that the driver 14370 * never gets confused by a stale value in this field. (Just a little 14371 * extra defensiveness here.) 14372 */ 14373 bp->b_iodone = NULL; 14374 14375 #if defined(__i386) || defined(__amd64) 14376 kmem_free(bp->b_un.b_addr, bp->b_bcount); 14377 freerbuf(bp); 14378 #else 14379 scsi_free_consistent_buf(bp); 14380 #endif 14381 14382 kmem_free(xp, sizeof (struct sd_xbuf)); 14383 } 14384 14385 14386 /* 14387 * Function: sd_print_transport_rejected_message 14388 * 14389 * Description: This implements the ludicrously complex rules for printing 14390 * a "transport rejected" message. This is to address the 14391 * specific problem of having a flood of this error message 14392 * produced when a failover occurs. 14393 * 14394 * Context: Any. 14395 */ 14396 14397 static void 14398 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp, 14399 int code) 14400 { 14401 ASSERT(un != NULL); 14402 ASSERT(mutex_owned(SD_MUTEX(un))); 14403 ASSERT(xp != NULL); 14404 14405 /* 14406 * Print the "transport rejected" message under the following 14407 * conditions: 14408 * 14409 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set 14410 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR. 14411 * - If the error code IS a TRAN_FATAL_ERROR, then the message is 14412 * printed the FIRST time a TRAN_FATAL_ERROR is returned from 14413 * scsi_transport(9F) (which indicates that the target might have 14414 * gone off-line). This uses the un->un_tran_fatal_count 14415 * count, which is incremented whenever a TRAN_FATAL_ERROR is 14416 * received, and reset to zero whenver a TRAN_ACCEPT is returned 14417 * from scsi_transport(). 14418 * 14419 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of 14420 * the preceeding cases in order for the message to be printed. 14421 */ 14422 if (((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) && 14423 (SD_FM_LOG(un) == SD_FM_LOG_NSUP)) { 14424 if ((sd_level_mask & SD_LOGMASK_DIAG) || 14425 (code != TRAN_FATAL_ERROR) || 14426 (un->un_tran_fatal_count == 1)) { 14427 switch (code) { 14428 case TRAN_BADPKT: 14429 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 14430 "transport rejected bad packet\n"); 14431 break; 14432 case TRAN_FATAL_ERROR: 14433 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 14434 "transport rejected fatal error\n"); 14435 break; 14436 default: 14437 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 14438 "transport rejected (%d)\n", code); 14439 break; 14440 } 14441 } 14442 } 14443 } 14444 14445 14446 /* 14447 * Function: sd_add_buf_to_waitq 14448 * 14449 * Description: Add the given buf(9S) struct to the wait queue for the 14450 * instance. If sorting is enabled, then the buf is added 14451 * to the queue via an elevator sort algorithm (a la 14452 * disksort(9F)). The SD_GET_BLKNO(bp) is used as the sort key. 14453 * If sorting is not enabled, then the buf is just added 14454 * to the end of the wait queue. 14455 * 14456 * Return Code: void 14457 * 14458 * Context: Does not sleep/block, therefore technically can be called 14459 * from any context. However if sorting is enabled then the 14460 * execution time is indeterminate, and may take long if 14461 * the wait queue grows large. 14462 */ 14463 14464 static void 14465 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp) 14466 { 14467 struct buf *ap; 14468 14469 ASSERT(bp != NULL); 14470 ASSERT(un != NULL); 14471 ASSERT(mutex_owned(SD_MUTEX(un))); 14472 14473 /* If the queue is empty, add the buf as the only entry & return. */ 14474 if (un->un_waitq_headp == NULL) { 14475 ASSERT(un->un_waitq_tailp == NULL); 14476 un->un_waitq_headp = un->un_waitq_tailp = bp; 14477 bp->av_forw = NULL; 14478 return; 14479 } 14480 14481 ASSERT(un->un_waitq_tailp != NULL); 14482 14483 /* 14484 * If sorting is disabled, just add the buf to the tail end of 14485 * the wait queue and return. 14486 */ 14487 if (un->un_f_disksort_disabled) { 14488 un->un_waitq_tailp->av_forw = bp; 14489 un->un_waitq_tailp = bp; 14490 bp->av_forw = NULL; 14491 return; 14492 } 14493 14494 /* 14495 * Sort thru the list of requests currently on the wait queue 14496 * and add the new buf request at the appropriate position. 14497 * 14498 * The un->un_waitq_headp is an activity chain pointer on which 14499 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The 14500 * first queue holds those requests which are positioned after 14501 * the current SD_GET_BLKNO() (in the first request); the second holds 14502 * requests which came in after their SD_GET_BLKNO() number was passed. 14503 * Thus we implement a one way scan, retracting after reaching 14504 * the end of the drive to the first request on the second 14505 * queue, at which time it becomes the first queue. 14506 * A one-way scan is natural because of the way UNIX read-ahead 14507 * blocks are allocated. 14508 * 14509 * If we lie after the first request, then we must locate the 14510 * second request list and add ourselves to it. 14511 */ 14512 ap = un->un_waitq_headp; 14513 if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) { 14514 while (ap->av_forw != NULL) { 14515 /* 14516 * Look for an "inversion" in the (normally 14517 * ascending) block numbers. This indicates 14518 * the start of the second request list. 14519 */ 14520 if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) { 14521 /* 14522 * Search the second request list for the 14523 * first request at a larger block number. 14524 * We go before that; however if there is 14525 * no such request, we go at the end. 14526 */ 14527 do { 14528 if (SD_GET_BLKNO(bp) < 14529 SD_GET_BLKNO(ap->av_forw)) { 14530 goto insert; 14531 } 14532 ap = ap->av_forw; 14533 } while (ap->av_forw != NULL); 14534 goto insert; /* after last */ 14535 } 14536 ap = ap->av_forw; 14537 } 14538 14539 /* 14540 * No inversions... we will go after the last, and 14541 * be the first request in the second request list. 14542 */ 14543 goto insert; 14544 } 14545 14546 /* 14547 * Request is at/after the current request... 14548 * sort in the first request list. 14549 */ 14550 while (ap->av_forw != NULL) { 14551 /* 14552 * We want to go after the current request (1) if 14553 * there is an inversion after it (i.e. it is the end 14554 * of the first request list), or (2) if the next 14555 * request is a larger block no. than our request. 14556 */ 14557 if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) || 14558 (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) { 14559 goto insert; 14560 } 14561 ap = ap->av_forw; 14562 } 14563 14564 /* 14565 * Neither a second list nor a larger request, therefore 14566 * we go at the end of the first list (which is the same 14567 * as the end of the whole schebang). 14568 */ 14569 insert: 14570 bp->av_forw = ap->av_forw; 14571 ap->av_forw = bp; 14572 14573 /* 14574 * If we inserted onto the tail end of the waitq, make sure the 14575 * tail pointer is updated. 14576 */ 14577 if (ap == un->un_waitq_tailp) { 14578 un->un_waitq_tailp = bp; 14579 } 14580 } 14581 14582 14583 /* 14584 * Function: sd_start_cmds 14585 * 14586 * Description: Remove and transport cmds from the driver queues. 14587 * 14588 * Arguments: un - pointer to the unit (soft state) struct for the target. 14589 * 14590 * immed_bp - ptr to a buf to be transported immediately. Only 14591 * the immed_bp is transported; bufs on the waitq are not 14592 * processed and the un_retry_bp is not checked. If immed_bp is 14593 * NULL, then normal queue processing is performed. 14594 * 14595 * Context: May be called from kernel thread context, interrupt context, 14596 * or runout callback context. This function may not block or 14597 * call routines that block. 14598 */ 14599 14600 static void 14601 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp) 14602 { 14603 struct sd_xbuf *xp; 14604 struct buf *bp; 14605 void (*statp)(kstat_io_t *); 14606 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14607 void (*saved_statp)(kstat_io_t *); 14608 #endif 14609 int rval; 14610 struct sd_fm_internal *sfip = NULL; 14611 14612 ASSERT(un != NULL); 14613 ASSERT(mutex_owned(SD_MUTEX(un))); 14614 ASSERT(un->un_ncmds_in_transport >= 0); 14615 ASSERT(un->un_throttle >= 0); 14616 14617 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n"); 14618 14619 do { 14620 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14621 saved_statp = NULL; 14622 #endif 14623 14624 /* 14625 * If we are syncing or dumping, fail the command to 14626 * avoid recursively calling back into scsi_transport(). 14627 * The dump I/O itself uses a separate code path so this 14628 * only prevents non-dump I/O from being sent while dumping. 14629 * File system sync takes place before dumping begins. 14630 * During panic, filesystem I/O is allowed provided 14631 * un_in_callback is <= 1. This is to prevent recursion 14632 * such as sd_start_cmds -> scsi_transport -> sdintr -> 14633 * sd_start_cmds and so on. See panic.c for more information 14634 * about the states the system can be in during panic. 14635 */ 14636 if ((un->un_state == SD_STATE_DUMPING) || 14637 (ddi_in_panic() && (un->un_in_callback > 1))) { 14638 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14639 "sd_start_cmds: panicking\n"); 14640 goto exit; 14641 } 14642 14643 if ((bp = immed_bp) != NULL) { 14644 /* 14645 * We have a bp that must be transported immediately. 14646 * It's OK to transport the immed_bp here without doing 14647 * the throttle limit check because the immed_bp is 14648 * always used in a retry/recovery case. This means 14649 * that we know we are not at the throttle limit by 14650 * virtue of the fact that to get here we must have 14651 * already gotten a command back via sdintr(). This also 14652 * relies on (1) the command on un_retry_bp preventing 14653 * further commands from the waitq from being issued; 14654 * and (2) the code in sd_retry_command checking the 14655 * throttle limit before issuing a delayed or immediate 14656 * retry. This holds even if the throttle limit is 14657 * currently ratcheted down from its maximum value. 14658 */ 14659 statp = kstat_runq_enter; 14660 if (bp == un->un_retry_bp) { 14661 ASSERT((un->un_retry_statp == NULL) || 14662 (un->un_retry_statp == kstat_waitq_enter) || 14663 (un->un_retry_statp == 14664 kstat_runq_back_to_waitq)); 14665 /* 14666 * If the waitq kstat was incremented when 14667 * sd_set_retry_bp() queued this bp for a retry, 14668 * then we must set up statp so that the waitq 14669 * count will get decremented correctly below. 14670 * Also we must clear un->un_retry_statp to 14671 * ensure that we do not act on a stale value 14672 * in this field. 14673 */ 14674 if ((un->un_retry_statp == kstat_waitq_enter) || 14675 (un->un_retry_statp == 14676 kstat_runq_back_to_waitq)) { 14677 statp = kstat_waitq_to_runq; 14678 } 14679 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14680 saved_statp = un->un_retry_statp; 14681 #endif 14682 un->un_retry_statp = NULL; 14683 14684 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 14685 "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p " 14686 "un_throttle:%d un_ncmds_in_transport:%d\n", 14687 un, un->un_retry_bp, un->un_throttle, 14688 un->un_ncmds_in_transport); 14689 } else { 14690 SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: " 14691 "processing priority bp:0x%p\n", bp); 14692 } 14693 14694 } else if ((bp = un->un_waitq_headp) != NULL) { 14695 /* 14696 * A command on the waitq is ready to go, but do not 14697 * send it if: 14698 * 14699 * (1) the throttle limit has been reached, or 14700 * (2) a retry is pending, or 14701 * (3) a START_STOP_UNIT callback pending, or 14702 * (4) a callback for a SD_PATH_DIRECT_PRIORITY 14703 * command is pending. 14704 * 14705 * For all of these conditions, IO processing will 14706 * restart after the condition is cleared. 14707 */ 14708 if (un->un_ncmds_in_transport >= un->un_throttle) { 14709 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14710 "sd_start_cmds: exiting, " 14711 "throttle limit reached!\n"); 14712 goto exit; 14713 } 14714 if (un->un_retry_bp != NULL) { 14715 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14716 "sd_start_cmds: exiting, retry pending!\n"); 14717 goto exit; 14718 } 14719 if (un->un_startstop_timeid != NULL) { 14720 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14721 "sd_start_cmds: exiting, " 14722 "START_STOP pending!\n"); 14723 goto exit; 14724 } 14725 if (un->un_direct_priority_timeid != NULL) { 14726 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14727 "sd_start_cmds: exiting, " 14728 "SD_PATH_DIRECT_PRIORITY cmd. pending!\n"); 14729 goto exit; 14730 } 14731 14732 /* Dequeue the command */ 14733 un->un_waitq_headp = bp->av_forw; 14734 if (un->un_waitq_headp == NULL) { 14735 un->un_waitq_tailp = NULL; 14736 } 14737 bp->av_forw = NULL; 14738 statp = kstat_waitq_to_runq; 14739 SD_TRACE(SD_LOG_IO_CORE, un, 14740 "sd_start_cmds: processing waitq bp:0x%p\n", bp); 14741 14742 } else { 14743 /* No work to do so bail out now */ 14744 SD_TRACE(SD_LOG_IO_CORE, un, 14745 "sd_start_cmds: no more work, exiting!\n"); 14746 goto exit; 14747 } 14748 14749 /* 14750 * Reset the state to normal. This is the mechanism by which 14751 * the state transitions from either SD_STATE_RWAIT or 14752 * SD_STATE_OFFLINE to SD_STATE_NORMAL. 14753 * If state is SD_STATE_PM_CHANGING then this command is 14754 * part of the device power control and the state must 14755 * not be put back to normal. Doing so would would 14756 * allow new commands to proceed when they shouldn't, 14757 * the device may be going off. 14758 */ 14759 if ((un->un_state != SD_STATE_SUSPENDED) && 14760 (un->un_state != SD_STATE_PM_CHANGING)) { 14761 New_state(un, SD_STATE_NORMAL); 14762 } 14763 14764 xp = SD_GET_XBUF(bp); 14765 ASSERT(xp != NULL); 14766 14767 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14768 /* 14769 * Allocate the scsi_pkt if we need one, or attach DMA 14770 * resources if we have a scsi_pkt that needs them. The 14771 * latter should only occur for commands that are being 14772 * retried. 14773 */ 14774 if ((xp->xb_pktp == NULL) || 14775 ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) { 14776 #else 14777 if (xp->xb_pktp == NULL) { 14778 #endif 14779 /* 14780 * There is no scsi_pkt allocated for this buf. Call 14781 * the initpkt function to allocate & init one. 14782 * 14783 * The scsi_init_pkt runout callback functionality is 14784 * implemented as follows: 14785 * 14786 * 1) The initpkt function always calls 14787 * scsi_init_pkt(9F) with sdrunout specified as the 14788 * callback routine. 14789 * 2) A successful packet allocation is initialized and 14790 * the I/O is transported. 14791 * 3) The I/O associated with an allocation resource 14792 * failure is left on its queue to be retried via 14793 * runout or the next I/O. 14794 * 4) The I/O associated with a DMA error is removed 14795 * from the queue and failed with EIO. Processing of 14796 * the transport queues is also halted to be 14797 * restarted via runout or the next I/O. 14798 * 5) The I/O associated with a CDB size or packet 14799 * size error is removed from the queue and failed 14800 * with EIO. Processing of the transport queues is 14801 * continued. 14802 * 14803 * Note: there is no interface for canceling a runout 14804 * callback. To prevent the driver from detaching or 14805 * suspending while a runout is pending the driver 14806 * state is set to SD_STATE_RWAIT 14807 * 14808 * Note: using the scsi_init_pkt callback facility can 14809 * result in an I/O request persisting at the head of 14810 * the list which cannot be satisfied even after 14811 * multiple retries. In the future the driver may 14812 * implement some kind of maximum runout count before 14813 * failing an I/O. 14814 * 14815 * Note: the use of funcp below may seem superfluous, 14816 * but it helps warlock figure out the correct 14817 * initpkt function calls (see [s]sd.wlcmd). 14818 */ 14819 struct scsi_pkt *pktp; 14820 int (*funcp)(struct buf *bp, struct scsi_pkt **pktp); 14821 14822 ASSERT(bp != un->un_rqs_bp); 14823 14824 funcp = sd_initpkt_map[xp->xb_chain_iostart]; 14825 switch ((*funcp)(bp, &pktp)) { 14826 case SD_PKT_ALLOC_SUCCESS: 14827 xp->xb_pktp = pktp; 14828 SD_TRACE(SD_LOG_IO_CORE, un, 14829 "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n", 14830 pktp); 14831 goto got_pkt; 14832 14833 case SD_PKT_ALLOC_FAILURE: 14834 /* 14835 * Temporary (hopefully) resource depletion. 14836 * Since retries and RQS commands always have a 14837 * scsi_pkt allocated, these cases should never 14838 * get here. So the only cases this needs to 14839 * handle is a bp from the waitq (which we put 14840 * back onto the waitq for sdrunout), or a bp 14841 * sent as an immed_bp (which we just fail). 14842 */ 14843 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14844 "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n"); 14845 14846 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14847 14848 if (bp == immed_bp) { 14849 /* 14850 * If SD_XB_DMA_FREED is clear, then 14851 * this is a failure to allocate a 14852 * scsi_pkt, and we must fail the 14853 * command. 14854 */ 14855 if ((xp->xb_pkt_flags & 14856 SD_XB_DMA_FREED) == 0) { 14857 break; 14858 } 14859 14860 /* 14861 * If this immediate command is NOT our 14862 * un_retry_bp, then we must fail it. 14863 */ 14864 if (bp != un->un_retry_bp) { 14865 break; 14866 } 14867 14868 /* 14869 * We get here if this cmd is our 14870 * un_retry_bp that was DMAFREED, but 14871 * scsi_init_pkt() failed to reallocate 14872 * DMA resources when we attempted to 14873 * retry it. This can happen when an 14874 * mpxio failover is in progress, but 14875 * we don't want to just fail the 14876 * command in this case. 14877 * 14878 * Use timeout(9F) to restart it after 14879 * a 100ms delay. We don't want to 14880 * let sdrunout() restart it, because 14881 * sdrunout() is just supposed to start 14882 * commands that are sitting on the 14883 * wait queue. The un_retry_bp stays 14884 * set until the command completes, but 14885 * sdrunout can be called many times 14886 * before that happens. Since sdrunout 14887 * cannot tell if the un_retry_bp is 14888 * already in the transport, it could 14889 * end up calling scsi_transport() for 14890 * the un_retry_bp multiple times. 14891 * 14892 * Also: don't schedule the callback 14893 * if some other callback is already 14894 * pending. 14895 */ 14896 if (un->un_retry_statp == NULL) { 14897 /* 14898 * restore the kstat pointer to 14899 * keep kstat counts coherent 14900 * when we do retry the command. 14901 */ 14902 un->un_retry_statp = 14903 saved_statp; 14904 } 14905 14906 if ((un->un_startstop_timeid == NULL) && 14907 (un->un_retry_timeid == NULL) && 14908 (un->un_direct_priority_timeid == 14909 NULL)) { 14910 14911 un->un_retry_timeid = 14912 timeout( 14913 sd_start_retry_command, 14914 un, SD_RESTART_TIMEOUT); 14915 } 14916 goto exit; 14917 } 14918 14919 #else 14920 if (bp == immed_bp) { 14921 break; /* Just fail the command */ 14922 } 14923 #endif 14924 14925 /* Add the buf back to the head of the waitq */ 14926 bp->av_forw = un->un_waitq_headp; 14927 un->un_waitq_headp = bp; 14928 if (un->un_waitq_tailp == NULL) { 14929 un->un_waitq_tailp = bp; 14930 } 14931 goto exit; 14932 14933 case SD_PKT_ALLOC_FAILURE_NO_DMA: 14934 /* 14935 * HBA DMA resource failure. Fail the command 14936 * and continue processing of the queues. 14937 */ 14938 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14939 "sd_start_cmds: " 14940 "SD_PKT_ALLOC_FAILURE_NO_DMA\n"); 14941 break; 14942 14943 case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL: 14944 /* 14945 * Note:x86: Partial DMA mapping not supported 14946 * for USCSI commands, and all the needed DMA 14947 * resources were not allocated. 14948 */ 14949 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14950 "sd_start_cmds: " 14951 "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n"); 14952 break; 14953 14954 case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL: 14955 /* 14956 * Note:x86: Request cannot fit into CDB based 14957 * on lba and len. 14958 */ 14959 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14960 "sd_start_cmds: " 14961 "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n"); 14962 break; 14963 14964 default: 14965 /* Should NEVER get here! */ 14966 panic("scsi_initpkt error"); 14967 /*NOTREACHED*/ 14968 } 14969 14970 /* 14971 * Fatal error in allocating a scsi_pkt for this buf. 14972 * Update kstats & return the buf with an error code. 14973 * We must use sd_return_failed_command_no_restart() to 14974 * avoid a recursive call back into sd_start_cmds(). 14975 * However this also means that we must keep processing 14976 * the waitq here in order to avoid stalling. 14977 */ 14978 if (statp == kstat_waitq_to_runq) { 14979 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 14980 } 14981 sd_return_failed_command_no_restart(un, bp, EIO); 14982 if (bp == immed_bp) { 14983 /* immed_bp is gone by now, so clear this */ 14984 immed_bp = NULL; 14985 } 14986 continue; 14987 } 14988 got_pkt: 14989 if (bp == immed_bp) { 14990 /* goto the head of the class.... */ 14991 xp->xb_pktp->pkt_flags |= FLAG_HEAD; 14992 } 14993 14994 un->un_ncmds_in_transport++; 14995 SD_UPDATE_KSTATS(un, statp, bp); 14996 14997 /* 14998 * Call scsi_transport() to send the command to the target. 14999 * According to SCSA architecture, we must drop the mutex here 15000 * before calling scsi_transport() in order to avoid deadlock. 15001 * Note that the scsi_pkt's completion routine can be executed 15002 * (from interrupt context) even before the call to 15003 * scsi_transport() returns. 15004 */ 15005 SD_TRACE(SD_LOG_IO_CORE, un, 15006 "sd_start_cmds: calling scsi_transport()\n"); 15007 DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp); 15008 15009 mutex_exit(SD_MUTEX(un)); 15010 rval = scsi_transport(xp->xb_pktp); 15011 mutex_enter(SD_MUTEX(un)); 15012 15013 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15014 "sd_start_cmds: scsi_transport() returned %d\n", rval); 15015 15016 switch (rval) { 15017 case TRAN_ACCEPT: 15018 /* Clear this with every pkt accepted by the HBA */ 15019 un->un_tran_fatal_count = 0; 15020 break; /* Success; try the next cmd (if any) */ 15021 15022 case TRAN_BUSY: 15023 un->un_ncmds_in_transport--; 15024 ASSERT(un->un_ncmds_in_transport >= 0); 15025 15026 /* 15027 * Don't retry request sense, the sense data 15028 * is lost when another request is sent. 15029 * Free up the rqs buf and retry 15030 * the original failed cmd. Update kstat. 15031 */ 15032 if (bp == un->un_rqs_bp) { 15033 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 15034 bp = sd_mark_rqs_idle(un, xp); 15035 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 15036 NULL, NULL, EIO, un->un_busy_timeout / 500, 15037 kstat_waitq_enter); 15038 goto exit; 15039 } 15040 15041 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 15042 /* 15043 * Free the DMA resources for the scsi_pkt. This will 15044 * allow mpxio to select another path the next time 15045 * we call scsi_transport() with this scsi_pkt. 15046 * See sdintr() for the rationalization behind this. 15047 */ 15048 if ((un->un_f_is_fibre == TRUE) && 15049 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 15050 ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) { 15051 scsi_dmafree(xp->xb_pktp); 15052 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 15053 } 15054 #endif 15055 15056 if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) { 15057 /* 15058 * Commands that are SD_PATH_DIRECT_PRIORITY 15059 * are for error recovery situations. These do 15060 * not use the normal command waitq, so if they 15061 * get a TRAN_BUSY we cannot put them back onto 15062 * the waitq for later retry. One possible 15063 * problem is that there could already be some 15064 * other command on un_retry_bp that is waiting 15065 * for this one to complete, so we would be 15066 * deadlocked if we put this command back onto 15067 * the waitq for later retry (since un_retry_bp 15068 * must complete before the driver gets back to 15069 * commands on the waitq). 15070 * 15071 * To avoid deadlock we must schedule a callback 15072 * that will restart this command after a set 15073 * interval. This should keep retrying for as 15074 * long as the underlying transport keeps 15075 * returning TRAN_BUSY (just like for other 15076 * commands). Use the same timeout interval as 15077 * for the ordinary TRAN_BUSY retry. 15078 */ 15079 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15080 "sd_start_cmds: scsi_transport() returned " 15081 "TRAN_BUSY for DIRECT_PRIORITY cmd!\n"); 15082 15083 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 15084 un->un_direct_priority_timeid = 15085 timeout(sd_start_direct_priority_command, 15086 bp, un->un_busy_timeout / 500); 15087 15088 goto exit; 15089 } 15090 15091 /* 15092 * For TRAN_BUSY, we want to reduce the throttle value, 15093 * unless we are retrying a command. 15094 */ 15095 if (bp != un->un_retry_bp) { 15096 sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY); 15097 } 15098 15099 /* 15100 * Set up the bp to be tried again 10 ms later. 15101 * Note:x86: Is there a timeout value in the sd_lun 15102 * for this condition? 15103 */ 15104 sd_set_retry_bp(un, bp, un->un_busy_timeout / 500, 15105 kstat_runq_back_to_waitq); 15106 goto exit; 15107 15108 case TRAN_FATAL_ERROR: 15109 un->un_tran_fatal_count++; 15110 /* FALLTHRU */ 15111 15112 case TRAN_BADPKT: 15113 default: 15114 un->un_ncmds_in_transport--; 15115 ASSERT(un->un_ncmds_in_transport >= 0); 15116 15117 /* 15118 * If this is our REQUEST SENSE command with a 15119 * transport error, we must get back the pointers 15120 * to the original buf, and mark the REQUEST 15121 * SENSE command as "available". 15122 */ 15123 if (bp == un->un_rqs_bp) { 15124 bp = sd_mark_rqs_idle(un, xp); 15125 xp = SD_GET_XBUF(bp); 15126 } else { 15127 /* 15128 * Legacy behavior: do not update transport 15129 * error count for request sense commands. 15130 */ 15131 SD_UPDATE_ERRSTATS(un, sd_transerrs); 15132 } 15133 15134 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 15135 sd_print_transport_rejected_message(un, xp, rval); 15136 15137 /* 15138 * This command will be terminated by SD driver due 15139 * to a fatal transport error. We should post 15140 * ereport.io.scsi.cmd.disk.tran with driver-assessment 15141 * of "fail" for any command to indicate this 15142 * situation. 15143 */ 15144 if (xp->xb_ena > 0) { 15145 ASSERT(un->un_fm_private != NULL); 15146 sfip = un->un_fm_private; 15147 sfip->fm_ssc.ssc_flags |= SSC_FLAGS_TRAN_ABORT; 15148 sd_ssc_extract_info(&sfip->fm_ssc, un, 15149 xp->xb_pktp, bp, xp); 15150 sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL); 15151 } 15152 15153 /* 15154 * We must use sd_return_failed_command_no_restart() to 15155 * avoid a recursive call back into sd_start_cmds(). 15156 * However this also means that we must keep processing 15157 * the waitq here in order to avoid stalling. 15158 */ 15159 sd_return_failed_command_no_restart(un, bp, EIO); 15160 15161 /* 15162 * Notify any threads waiting in sd_ddi_suspend() that 15163 * a command completion has occurred. 15164 */ 15165 if (un->un_state == SD_STATE_SUSPENDED) { 15166 cv_broadcast(&un->un_disk_busy_cv); 15167 } 15168 15169 if (bp == immed_bp) { 15170 /* immed_bp is gone by now, so clear this */ 15171 immed_bp = NULL; 15172 } 15173 break; 15174 } 15175 15176 } while (immed_bp == NULL); 15177 15178 exit: 15179 ASSERT(mutex_owned(SD_MUTEX(un))); 15180 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n"); 15181 } 15182 15183 15184 /* 15185 * Function: sd_return_command 15186 * 15187 * Description: Returns a command to its originator (with or without an 15188 * error). Also starts commands waiting to be transported 15189 * to the target. 15190 * 15191 * Context: May be called from interrupt, kernel, or timeout context 15192 */ 15193 15194 static void 15195 sd_return_command(struct sd_lun *un, struct buf *bp) 15196 { 15197 struct sd_xbuf *xp; 15198 struct scsi_pkt *pktp; 15199 struct sd_fm_internal *sfip; 15200 15201 ASSERT(bp != NULL); 15202 ASSERT(un != NULL); 15203 ASSERT(mutex_owned(SD_MUTEX(un))); 15204 ASSERT(bp != un->un_rqs_bp); 15205 xp = SD_GET_XBUF(bp); 15206 ASSERT(xp != NULL); 15207 15208 pktp = SD_GET_PKTP(bp); 15209 sfip = (struct sd_fm_internal *)un->un_fm_private; 15210 ASSERT(sfip != NULL); 15211 15212 SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n"); 15213 15214 /* 15215 * Note: check for the "sdrestart failed" case. 15216 */ 15217 if ((un->un_partial_dma_supported == 1) && 15218 ((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) && 15219 (geterror(bp) == 0) && (xp->xb_dma_resid != 0) && 15220 (xp->xb_pktp->pkt_resid == 0)) { 15221 15222 if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) { 15223 /* 15224 * Successfully set up next portion of cmd 15225 * transfer, try sending it 15226 */ 15227 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, 15228 NULL, NULL, 0, (clock_t)0, NULL); 15229 sd_start_cmds(un, NULL); 15230 return; /* Note:x86: need a return here? */ 15231 } 15232 } 15233 15234 /* 15235 * If this is the failfast bp, clear it from un_failfast_bp. This 15236 * can happen if upon being re-tried the failfast bp either 15237 * succeeded or encountered another error (possibly even a different 15238 * error than the one that precipitated the failfast state, but in 15239 * that case it would have had to exhaust retries as well). Regardless, 15240 * this should not occur whenever the instance is in the active 15241 * failfast state. 15242 */ 15243 if (bp == un->un_failfast_bp) { 15244 ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE); 15245 un->un_failfast_bp = NULL; 15246 } 15247 15248 /* 15249 * Clear the failfast state upon successful completion of ANY cmd. 15250 */ 15251 if (bp->b_error == 0) { 15252 un->un_failfast_state = SD_FAILFAST_INACTIVE; 15253 /* 15254 * If this is a successful command, but used to be retried, 15255 * we will take it as a recovered command and post an 15256 * ereport with driver-assessment of "recovered". 15257 */ 15258 if (xp->xb_ena > 0) { 15259 sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp); 15260 sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RECOVERY); 15261 } 15262 } else { 15263 /* 15264 * If this is a failed non-USCSI command we will post an 15265 * ereport with driver-assessment set accordingly("fail" or 15266 * "fatal"). 15267 */ 15268 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 15269 sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp); 15270 sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL); 15271 } 15272 } 15273 15274 /* 15275 * This is used if the command was retried one or more times. Show that 15276 * we are done with it, and allow processing of the waitq to resume. 15277 */ 15278 if (bp == un->un_retry_bp) { 15279 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15280 "sd_return_command: un:0x%p: " 15281 "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp); 15282 un->un_retry_bp = NULL; 15283 un->un_retry_statp = NULL; 15284 } 15285 15286 SD_UPDATE_RDWR_STATS(un, bp); 15287 SD_UPDATE_PARTITION_STATS(un, bp); 15288 15289 switch (un->un_state) { 15290 case SD_STATE_SUSPENDED: 15291 /* 15292 * Notify any threads waiting in sd_ddi_suspend() that 15293 * a command completion has occurred. 15294 */ 15295 cv_broadcast(&un->un_disk_busy_cv); 15296 break; 15297 default: 15298 sd_start_cmds(un, NULL); 15299 break; 15300 } 15301 15302 /* Return this command up the iodone chain to its originator. */ 15303 mutex_exit(SD_MUTEX(un)); 15304 15305 (*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp); 15306 xp->xb_pktp = NULL; 15307 15308 SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp); 15309 15310 ASSERT(!mutex_owned(SD_MUTEX(un))); 15311 mutex_enter(SD_MUTEX(un)); 15312 15313 SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n"); 15314 } 15315 15316 15317 /* 15318 * Function: sd_return_failed_command 15319 * 15320 * Description: Command completion when an error occurred. 15321 * 15322 * Context: May be called from interrupt context 15323 */ 15324 15325 static void 15326 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode) 15327 { 15328 ASSERT(bp != NULL); 15329 ASSERT(un != NULL); 15330 ASSERT(mutex_owned(SD_MUTEX(un))); 15331 15332 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15333 "sd_return_failed_command: entry\n"); 15334 15335 /* 15336 * b_resid could already be nonzero due to a partial data 15337 * transfer, so do not change it here. 15338 */ 15339 SD_BIOERROR(bp, errcode); 15340 15341 sd_return_command(un, bp); 15342 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15343 "sd_return_failed_command: exit\n"); 15344 } 15345 15346 15347 /* 15348 * Function: sd_return_failed_command_no_restart 15349 * 15350 * Description: Same as sd_return_failed_command, but ensures that no 15351 * call back into sd_start_cmds will be issued. 15352 * 15353 * Context: May be called from interrupt context 15354 */ 15355 15356 static void 15357 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp, 15358 int errcode) 15359 { 15360 struct sd_xbuf *xp; 15361 15362 ASSERT(bp != NULL); 15363 ASSERT(un != NULL); 15364 ASSERT(mutex_owned(SD_MUTEX(un))); 15365 xp = SD_GET_XBUF(bp); 15366 ASSERT(xp != NULL); 15367 ASSERT(errcode != 0); 15368 15369 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15370 "sd_return_failed_command_no_restart: entry\n"); 15371 15372 /* 15373 * b_resid could already be nonzero due to a partial data 15374 * transfer, so do not change it here. 15375 */ 15376 SD_BIOERROR(bp, errcode); 15377 15378 /* 15379 * If this is the failfast bp, clear it. This can happen if the 15380 * failfast bp encounterd a fatal error when we attempted to 15381 * re-try it (such as a scsi_transport(9F) failure). However 15382 * we should NOT be in an active failfast state if the failfast 15383 * bp is not NULL. 15384 */ 15385 if (bp == un->un_failfast_bp) { 15386 ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE); 15387 un->un_failfast_bp = NULL; 15388 } 15389 15390 if (bp == un->un_retry_bp) { 15391 /* 15392 * This command was retried one or more times. Show that we are 15393 * done with it, and allow processing of the waitq to resume. 15394 */ 15395 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15396 "sd_return_failed_command_no_restart: " 15397 " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp); 15398 un->un_retry_bp = NULL; 15399 un->un_retry_statp = NULL; 15400 } 15401 15402 SD_UPDATE_RDWR_STATS(un, bp); 15403 SD_UPDATE_PARTITION_STATS(un, bp); 15404 15405 mutex_exit(SD_MUTEX(un)); 15406 15407 if (xp->xb_pktp != NULL) { 15408 (*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp); 15409 xp->xb_pktp = NULL; 15410 } 15411 15412 SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp); 15413 15414 mutex_enter(SD_MUTEX(un)); 15415 15416 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15417 "sd_return_failed_command_no_restart: exit\n"); 15418 } 15419 15420 15421 /* 15422 * Function: sd_retry_command 15423 * 15424 * Description: queue up a command for retry, or (optionally) fail it 15425 * if retry counts are exhausted. 15426 * 15427 * Arguments: un - Pointer to the sd_lun struct for the target. 15428 * 15429 * bp - Pointer to the buf for the command to be retried. 15430 * 15431 * retry_check_flag - Flag to see which (if any) of the retry 15432 * counts should be decremented/checked. If the indicated 15433 * retry count is exhausted, then the command will not be 15434 * retried; it will be failed instead. This should use a 15435 * value equal to one of the following: 15436 * 15437 * SD_RETRIES_NOCHECK 15438 * SD_RESD_RETRIES_STANDARD 15439 * SD_RETRIES_VICTIM 15440 * 15441 * Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE 15442 * if the check should be made to see of FLAG_ISOLATE is set 15443 * in the pkt. If FLAG_ISOLATE is set, then the command is 15444 * not retried, it is simply failed. 15445 * 15446 * user_funcp - Ptr to function to call before dispatching the 15447 * command. May be NULL if no action needs to be performed. 15448 * (Primarily intended for printing messages.) 15449 * 15450 * user_arg - Optional argument to be passed along to 15451 * the user_funcp call. 15452 * 15453 * failure_code - errno return code to set in the bp if the 15454 * command is going to be failed. 15455 * 15456 * retry_delay - Retry delay interval in (clock_t) units. May 15457 * be zero which indicates that the retry should be retried 15458 * immediately (ie, without an intervening delay). 15459 * 15460 * statp - Ptr to kstat function to be updated if the command 15461 * is queued for a delayed retry. May be NULL if no kstat 15462 * update is desired. 15463 * 15464 * Context: May be called from interrupt context. 15465 */ 15466 15467 static void 15468 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag, 15469 void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int 15470 code), void *user_arg, int failure_code, clock_t retry_delay, 15471 void (*statp)(kstat_io_t *)) 15472 { 15473 struct sd_xbuf *xp; 15474 struct scsi_pkt *pktp; 15475 struct sd_fm_internal *sfip; 15476 15477 ASSERT(un != NULL); 15478 ASSERT(mutex_owned(SD_MUTEX(un))); 15479 ASSERT(bp != NULL); 15480 xp = SD_GET_XBUF(bp); 15481 ASSERT(xp != NULL); 15482 pktp = SD_GET_PKTP(bp); 15483 ASSERT(pktp != NULL); 15484 15485 sfip = (struct sd_fm_internal *)un->un_fm_private; 15486 ASSERT(sfip != NULL); 15487 15488 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 15489 "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp); 15490 15491 /* 15492 * If we are syncing or dumping, fail the command to avoid 15493 * recursively calling back into scsi_transport(). 15494 */ 15495 if (ddi_in_panic()) { 15496 goto fail_command_no_log; 15497 } 15498 15499 /* 15500 * We should never be be retrying a command with FLAG_DIAGNOSE set, so 15501 * log an error and fail the command. 15502 */ 15503 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 15504 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 15505 "ERROR, retrying FLAG_DIAGNOSE command.\n"); 15506 sd_dump_memory(un, SD_LOG_IO, "CDB", 15507 (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 15508 sd_dump_memory(un, SD_LOG_IO, "Sense Data", 15509 (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX); 15510 goto fail_command; 15511 } 15512 15513 /* 15514 * If we are suspended, then put the command onto head of the 15515 * wait queue since we don't want to start more commands, and 15516 * clear the un_retry_bp. Next time when we are resumed, will 15517 * handle the command in the wait queue. 15518 */ 15519 switch (un->un_state) { 15520 case SD_STATE_SUSPENDED: 15521 case SD_STATE_DUMPING: 15522 bp->av_forw = un->un_waitq_headp; 15523 un->un_waitq_headp = bp; 15524 if (un->un_waitq_tailp == NULL) { 15525 un->un_waitq_tailp = bp; 15526 } 15527 if (bp == un->un_retry_bp) { 15528 un->un_retry_bp = NULL; 15529 un->un_retry_statp = NULL; 15530 } 15531 SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp); 15532 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: " 15533 "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp); 15534 return; 15535 default: 15536 break; 15537 } 15538 15539 /* 15540 * If the caller wants us to check FLAG_ISOLATE, then see if that 15541 * is set; if it is then we do not want to retry the command. 15542 * Normally, FLAG_ISOLATE is only used with USCSI cmds. 15543 */ 15544 if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) { 15545 if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) { 15546 goto fail_command; 15547 } 15548 } 15549 15550 15551 /* 15552 * If SD_RETRIES_FAILFAST is set, it indicates that either a 15553 * command timeout or a selection timeout has occurred. This means 15554 * that we were unable to establish an kind of communication with 15555 * the target, and subsequent retries and/or commands are likely 15556 * to encounter similar results and take a long time to complete. 15557 * 15558 * If this is a failfast error condition, we need to update the 15559 * failfast state, even if this bp does not have B_FAILFAST set. 15560 */ 15561 if (retry_check_flag & SD_RETRIES_FAILFAST) { 15562 if (un->un_failfast_state == SD_FAILFAST_ACTIVE) { 15563 ASSERT(un->un_failfast_bp == NULL); 15564 /* 15565 * If we are already in the active failfast state, and 15566 * another failfast error condition has been detected, 15567 * then fail this command if it has B_FAILFAST set. 15568 * If B_FAILFAST is clear, then maintain the legacy 15569 * behavior of retrying heroically, even tho this will 15570 * take a lot more time to fail the command. 15571 */ 15572 if (bp->b_flags & B_FAILFAST) { 15573 goto fail_command; 15574 } 15575 } else { 15576 /* 15577 * We're not in the active failfast state, but we 15578 * have a failfast error condition, so we must begin 15579 * transition to the next state. We do this regardless 15580 * of whether or not this bp has B_FAILFAST set. 15581 */ 15582 if (un->un_failfast_bp == NULL) { 15583 /* 15584 * This is the first bp to meet a failfast 15585 * condition so save it on un_failfast_bp & 15586 * do normal retry processing. Do not enter 15587 * active failfast state yet. This marks 15588 * entry into the "failfast pending" state. 15589 */ 15590 un->un_failfast_bp = bp; 15591 15592 } else if (un->un_failfast_bp == bp) { 15593 /* 15594 * This is the second time *this* bp has 15595 * encountered a failfast error condition, 15596 * so enter active failfast state & flush 15597 * queues as appropriate. 15598 */ 15599 un->un_failfast_state = SD_FAILFAST_ACTIVE; 15600 un->un_failfast_bp = NULL; 15601 sd_failfast_flushq(un); 15602 15603 /* 15604 * Fail this bp now if B_FAILFAST set; 15605 * otherwise continue with retries. (It would 15606 * be pretty ironic if this bp succeeded on a 15607 * subsequent retry after we just flushed all 15608 * the queues). 15609 */ 15610 if (bp->b_flags & B_FAILFAST) { 15611 goto fail_command; 15612 } 15613 15614 #if !defined(lint) && !defined(__lint) 15615 } else { 15616 /* 15617 * If neither of the preceeding conditionals 15618 * was true, it means that there is some 15619 * *other* bp that has met an inital failfast 15620 * condition and is currently either being 15621 * retried or is waiting to be retried. In 15622 * that case we should perform normal retry 15623 * processing on *this* bp, since there is a 15624 * chance that the current failfast condition 15625 * is transient and recoverable. If that does 15626 * not turn out to be the case, then retries 15627 * will be cleared when the wait queue is 15628 * flushed anyway. 15629 */ 15630 #endif 15631 } 15632 } 15633 } else { 15634 /* 15635 * SD_RETRIES_FAILFAST is clear, which indicates that we 15636 * likely were able to at least establish some level of 15637 * communication with the target and subsequent commands 15638 * and/or retries are likely to get through to the target, 15639 * In this case we want to be aggressive about clearing 15640 * the failfast state. Note that this does not affect 15641 * the "failfast pending" condition. 15642 */ 15643 un->un_failfast_state = SD_FAILFAST_INACTIVE; 15644 } 15645 15646 15647 /* 15648 * Check the specified retry count to see if we can still do 15649 * any retries with this pkt before we should fail it. 15650 */ 15651 switch (retry_check_flag & SD_RETRIES_MASK) { 15652 case SD_RETRIES_VICTIM: 15653 /* 15654 * Check the victim retry count. If exhausted, then fall 15655 * thru & check against the standard retry count. 15656 */ 15657 if (xp->xb_victim_retry_count < un->un_victim_retry_count) { 15658 /* Increment count & proceed with the retry */ 15659 xp->xb_victim_retry_count++; 15660 break; 15661 } 15662 /* Victim retries exhausted, fall back to std. retries... */ 15663 /* FALLTHRU */ 15664 15665 case SD_RETRIES_STANDARD: 15666 if (xp->xb_retry_count >= un->un_retry_count) { 15667 /* Retries exhausted, fail the command */ 15668 SD_TRACE(SD_LOG_IO_CORE, un, 15669 "sd_retry_command: retries exhausted!\n"); 15670 /* 15671 * update b_resid for failed SCMD_READ & SCMD_WRITE 15672 * commands with nonzero pkt_resid. 15673 */ 15674 if ((pktp->pkt_reason == CMD_CMPLT) && 15675 (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) && 15676 (pktp->pkt_resid != 0)) { 15677 uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F; 15678 if ((op == SCMD_READ) || (op == SCMD_WRITE)) { 15679 SD_UPDATE_B_RESID(bp, pktp); 15680 } 15681 } 15682 goto fail_command; 15683 } 15684 xp->xb_retry_count++; 15685 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15686 "sd_retry_command: retry count:%d\n", xp->xb_retry_count); 15687 break; 15688 15689 case SD_RETRIES_UA: 15690 if (xp->xb_ua_retry_count >= sd_ua_retry_count) { 15691 /* Retries exhausted, fail the command */ 15692 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 15693 "Unit Attention retries exhausted. " 15694 "Check the target.\n"); 15695 goto fail_command; 15696 } 15697 xp->xb_ua_retry_count++; 15698 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15699 "sd_retry_command: retry count:%d\n", 15700 xp->xb_ua_retry_count); 15701 break; 15702 15703 case SD_RETRIES_BUSY: 15704 if (xp->xb_retry_count >= un->un_busy_retry_count) { 15705 /* Retries exhausted, fail the command */ 15706 SD_TRACE(SD_LOG_IO_CORE, un, 15707 "sd_retry_command: retries exhausted!\n"); 15708 goto fail_command; 15709 } 15710 xp->xb_retry_count++; 15711 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15712 "sd_retry_command: retry count:%d\n", xp->xb_retry_count); 15713 break; 15714 15715 case SD_RETRIES_NOCHECK: 15716 default: 15717 /* No retry count to check. Just proceed with the retry */ 15718 break; 15719 } 15720 15721 xp->xb_pktp->pkt_flags |= FLAG_HEAD; 15722 15723 /* 15724 * If this is a non-USCSI command being retried 15725 * during execution last time, we should post an ereport with 15726 * driver-assessment of the value "retry". 15727 * For partial DMA, request sense and STATUS_QFULL, there are no 15728 * hardware errors, we bypass ereport posting. 15729 */ 15730 if (failure_code != 0) { 15731 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 15732 sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp); 15733 sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RETRY); 15734 } 15735 } 15736 15737 /* 15738 * If we were given a zero timeout, we must attempt to retry the 15739 * command immediately (ie, without a delay). 15740 */ 15741 if (retry_delay == 0) { 15742 /* 15743 * Check some limiting conditions to see if we can actually 15744 * do the immediate retry. If we cannot, then we must 15745 * fall back to queueing up a delayed retry. 15746 */ 15747 if (un->un_ncmds_in_transport >= un->un_throttle) { 15748 /* 15749 * We are at the throttle limit for the target, 15750 * fall back to delayed retry. 15751 */ 15752 retry_delay = un->un_busy_timeout; 15753 statp = kstat_waitq_enter; 15754 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15755 "sd_retry_command: immed. retry hit " 15756 "throttle!\n"); 15757 } else { 15758 /* 15759 * We're clear to proceed with the immediate retry. 15760 * First call the user-provided function (if any) 15761 */ 15762 if (user_funcp != NULL) { 15763 (*user_funcp)(un, bp, user_arg, 15764 SD_IMMEDIATE_RETRY_ISSUED); 15765 #ifdef __lock_lint 15766 sd_print_incomplete_msg(un, bp, user_arg, 15767 SD_IMMEDIATE_RETRY_ISSUED); 15768 sd_print_cmd_incomplete_msg(un, bp, user_arg, 15769 SD_IMMEDIATE_RETRY_ISSUED); 15770 sd_print_sense_failed_msg(un, bp, user_arg, 15771 SD_IMMEDIATE_RETRY_ISSUED); 15772 #endif 15773 } 15774 15775 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15776 "sd_retry_command: issuing immediate retry\n"); 15777 15778 /* 15779 * Call sd_start_cmds() to transport the command to 15780 * the target. 15781 */ 15782 sd_start_cmds(un, bp); 15783 15784 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15785 "sd_retry_command exit\n"); 15786 return; 15787 } 15788 } 15789 15790 /* 15791 * Set up to retry the command after a delay. 15792 * First call the user-provided function (if any) 15793 */ 15794 if (user_funcp != NULL) { 15795 (*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED); 15796 } 15797 15798 sd_set_retry_bp(un, bp, retry_delay, statp); 15799 15800 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n"); 15801 return; 15802 15803 fail_command: 15804 15805 if (user_funcp != NULL) { 15806 (*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED); 15807 } 15808 15809 fail_command_no_log: 15810 15811 SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15812 "sd_retry_command: returning failed command\n"); 15813 15814 sd_return_failed_command(un, bp, failure_code); 15815 15816 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n"); 15817 } 15818 15819 15820 /* 15821 * Function: sd_set_retry_bp 15822 * 15823 * Description: Set up the given bp for retry. 15824 * 15825 * Arguments: un - ptr to associated softstate 15826 * bp - ptr to buf(9S) for the command 15827 * retry_delay - time interval before issuing retry (may be 0) 15828 * statp - optional pointer to kstat function 15829 * 15830 * Context: May be called under interrupt context 15831 */ 15832 15833 static void 15834 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay, 15835 void (*statp)(kstat_io_t *)) 15836 { 15837 ASSERT(un != NULL); 15838 ASSERT(mutex_owned(SD_MUTEX(un))); 15839 ASSERT(bp != NULL); 15840 15841 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 15842 "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp); 15843 15844 /* 15845 * Indicate that the command is being retried. This will not allow any 15846 * other commands on the wait queue to be transported to the target 15847 * until this command has been completed (success or failure). The 15848 * "retry command" is not transported to the target until the given 15849 * time delay expires, unless the user specified a 0 retry_delay. 15850 * 15851 * Note: the timeout(9F) callback routine is what actually calls 15852 * sd_start_cmds() to transport the command, with the exception of a 15853 * zero retry_delay. The only current implementor of a zero retry delay 15854 * is the case where a START_STOP_UNIT is sent to spin-up a device. 15855 */ 15856 if (un->un_retry_bp == NULL) { 15857 ASSERT(un->un_retry_statp == NULL); 15858 un->un_retry_bp = bp; 15859 15860 /* 15861 * If the user has not specified a delay the command should 15862 * be queued and no timeout should be scheduled. 15863 */ 15864 if (retry_delay == 0) { 15865 /* 15866 * Save the kstat pointer that will be used in the 15867 * call to SD_UPDATE_KSTATS() below, so that 15868 * sd_start_cmds() can correctly decrement the waitq 15869 * count when it is time to transport this command. 15870 */ 15871 un->un_retry_statp = statp; 15872 goto done; 15873 } 15874 } 15875 15876 if (un->un_retry_bp == bp) { 15877 /* 15878 * Save the kstat pointer that will be used in the call to 15879 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can 15880 * correctly decrement the waitq count when it is time to 15881 * transport this command. 15882 */ 15883 un->un_retry_statp = statp; 15884 15885 /* 15886 * Schedule a timeout if: 15887 * 1) The user has specified a delay. 15888 * 2) There is not a START_STOP_UNIT callback pending. 15889 * 15890 * If no delay has been specified, then it is up to the caller 15891 * to ensure that IO processing continues without stalling. 15892 * Effectively, this means that the caller will issue the 15893 * required call to sd_start_cmds(). The START_STOP_UNIT 15894 * callback does this after the START STOP UNIT command has 15895 * completed. In either of these cases we should not schedule 15896 * a timeout callback here. Also don't schedule the timeout if 15897 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart. 15898 */ 15899 if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) && 15900 (un->un_direct_priority_timeid == NULL)) { 15901 un->un_retry_timeid = 15902 timeout(sd_start_retry_command, un, retry_delay); 15903 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15904 "sd_set_retry_bp: setting timeout: un: 0x%p" 15905 " bp:0x%p un_retry_timeid:0x%p\n", 15906 un, bp, un->un_retry_timeid); 15907 } 15908 } else { 15909 /* 15910 * We only get in here if there is already another command 15911 * waiting to be retried. In this case, we just put the 15912 * given command onto the wait queue, so it can be transported 15913 * after the current retry command has completed. 15914 * 15915 * Also we have to make sure that if the command at the head 15916 * of the wait queue is the un_failfast_bp, that we do not 15917 * put ahead of it any other commands that are to be retried. 15918 */ 15919 if ((un->un_failfast_bp != NULL) && 15920 (un->un_failfast_bp == un->un_waitq_headp)) { 15921 /* 15922 * Enqueue this command AFTER the first command on 15923 * the wait queue (which is also un_failfast_bp). 15924 */ 15925 bp->av_forw = un->un_waitq_headp->av_forw; 15926 un->un_waitq_headp->av_forw = bp; 15927 if (un->un_waitq_headp == un->un_waitq_tailp) { 15928 un->un_waitq_tailp = bp; 15929 } 15930 } else { 15931 /* Enqueue this command at the head of the waitq. */ 15932 bp->av_forw = un->un_waitq_headp; 15933 un->un_waitq_headp = bp; 15934 if (un->un_waitq_tailp == NULL) { 15935 un->un_waitq_tailp = bp; 15936 } 15937 } 15938 15939 if (statp == NULL) { 15940 statp = kstat_waitq_enter; 15941 } 15942 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15943 "sd_set_retry_bp: un:0x%p already delayed retry\n", un); 15944 } 15945 15946 done: 15947 if (statp != NULL) { 15948 SD_UPDATE_KSTATS(un, statp, bp); 15949 } 15950 15951 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15952 "sd_set_retry_bp: exit un:0x%p\n", un); 15953 } 15954 15955 15956 /* 15957 * Function: sd_start_retry_command 15958 * 15959 * Description: Start the command that has been waiting on the target's 15960 * retry queue. Called from timeout(9F) context after the 15961 * retry delay interval has expired. 15962 * 15963 * Arguments: arg - pointer to associated softstate for the device. 15964 * 15965 * Context: timeout(9F) thread context. May not sleep. 15966 */ 15967 15968 static void 15969 sd_start_retry_command(void *arg) 15970 { 15971 struct sd_lun *un = arg; 15972 15973 ASSERT(un != NULL); 15974 ASSERT(!mutex_owned(SD_MUTEX(un))); 15975 15976 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15977 "sd_start_retry_command: entry\n"); 15978 15979 mutex_enter(SD_MUTEX(un)); 15980 15981 un->un_retry_timeid = NULL; 15982 15983 if (un->un_retry_bp != NULL) { 15984 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15985 "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n", 15986 un, un->un_retry_bp); 15987 sd_start_cmds(un, un->un_retry_bp); 15988 } 15989 15990 mutex_exit(SD_MUTEX(un)); 15991 15992 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15993 "sd_start_retry_command: exit\n"); 15994 } 15995 15996 /* 15997 * Function: sd_rmw_msg_print_handler 15998 * 15999 * Description: If RMW mode is enabled and warning message is triggered 16000 * print I/O count during a fixed interval. 16001 * 16002 * Arguments: arg - pointer to associated softstate for the device. 16003 * 16004 * Context: timeout(9F) thread context. May not sleep. 16005 */ 16006 static void 16007 sd_rmw_msg_print_handler(void *arg) 16008 { 16009 struct sd_lun *un = arg; 16010 16011 ASSERT(un != NULL); 16012 ASSERT(!mutex_owned(SD_MUTEX(un))); 16013 16014 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16015 "sd_rmw_msg_print_handler: entry\n"); 16016 16017 mutex_enter(SD_MUTEX(un)); 16018 16019 if (un->un_rmw_incre_count > 0) { 16020 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16021 "%"PRIu64" I/O requests are not aligned with %d disk " 16022 "sector size in %ld seconds. They are handled through " 16023 "Read Modify Write but the performance is very low!\n", 16024 un->un_rmw_incre_count, un->un_tgt_blocksize, 16025 drv_hztousec(SD_RMW_MSG_PRINT_TIMEOUT) / 1000000); 16026 un->un_rmw_incre_count = 0; 16027 un->un_rmw_msg_timeid = timeout(sd_rmw_msg_print_handler, 16028 un, SD_RMW_MSG_PRINT_TIMEOUT); 16029 } else { 16030 un->un_rmw_msg_timeid = NULL; 16031 } 16032 16033 mutex_exit(SD_MUTEX(un)); 16034 16035 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16036 "sd_rmw_msg_print_handler: exit\n"); 16037 } 16038 16039 /* 16040 * Function: sd_start_direct_priority_command 16041 * 16042 * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had 16043 * received TRAN_BUSY when we called scsi_transport() to send it 16044 * to the underlying HBA. This function is called from timeout(9F) 16045 * context after the delay interval has expired. 16046 * 16047 * Arguments: arg - pointer to associated buf(9S) to be restarted. 16048 * 16049 * Context: timeout(9F) thread context. May not sleep. 16050 */ 16051 16052 static void 16053 sd_start_direct_priority_command(void *arg) 16054 { 16055 struct buf *priority_bp = arg; 16056 struct sd_lun *un; 16057 16058 ASSERT(priority_bp != NULL); 16059 un = SD_GET_UN(priority_bp); 16060 ASSERT(un != NULL); 16061 ASSERT(!mutex_owned(SD_MUTEX(un))); 16062 16063 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16064 "sd_start_direct_priority_command: entry\n"); 16065 16066 mutex_enter(SD_MUTEX(un)); 16067 un->un_direct_priority_timeid = NULL; 16068 sd_start_cmds(un, priority_bp); 16069 mutex_exit(SD_MUTEX(un)); 16070 16071 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16072 "sd_start_direct_priority_command: exit\n"); 16073 } 16074 16075 16076 /* 16077 * Function: sd_send_request_sense_command 16078 * 16079 * Description: Sends a REQUEST SENSE command to the target 16080 * 16081 * Context: May be called from interrupt context. 16082 */ 16083 16084 static void 16085 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp, 16086 struct scsi_pkt *pktp) 16087 { 16088 ASSERT(bp != NULL); 16089 ASSERT(un != NULL); 16090 ASSERT(mutex_owned(SD_MUTEX(un))); 16091 16092 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: " 16093 "entry: buf:0x%p\n", bp); 16094 16095 /* 16096 * If we are syncing or dumping, then fail the command to avoid a 16097 * recursive callback into scsi_transport(). Also fail the command 16098 * if we are suspended (legacy behavior). 16099 */ 16100 if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) || 16101 (un->un_state == SD_STATE_DUMPING)) { 16102 sd_return_failed_command(un, bp, EIO); 16103 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16104 "sd_send_request_sense_command: syncing/dumping, exit\n"); 16105 return; 16106 } 16107 16108 /* 16109 * Retry the failed command and don't issue the request sense if: 16110 * 1) the sense buf is busy 16111 * 2) we have 1 or more outstanding commands on the target 16112 * (the sense data will be cleared or invalidated any way) 16113 * 16114 * Note: There could be an issue with not checking a retry limit here, 16115 * the problem is determining which retry limit to check. 16116 */ 16117 if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) { 16118 /* Don't retry if the command is flagged as non-retryable */ 16119 if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 16120 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, 16121 NULL, NULL, 0, un->un_busy_timeout, 16122 kstat_waitq_enter); 16123 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16124 "sd_send_request_sense_command: " 16125 "at full throttle, retrying exit\n"); 16126 } else { 16127 sd_return_failed_command(un, bp, EIO); 16128 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16129 "sd_send_request_sense_command: " 16130 "at full throttle, non-retryable exit\n"); 16131 } 16132 return; 16133 } 16134 16135 sd_mark_rqs_busy(un, bp); 16136 sd_start_cmds(un, un->un_rqs_bp); 16137 16138 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16139 "sd_send_request_sense_command: exit\n"); 16140 } 16141 16142 16143 /* 16144 * Function: sd_mark_rqs_busy 16145 * 16146 * Description: Indicate that the request sense bp for this instance is 16147 * in use. 16148 * 16149 * Context: May be called under interrupt context 16150 */ 16151 16152 static void 16153 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp) 16154 { 16155 struct sd_xbuf *sense_xp; 16156 16157 ASSERT(un != NULL); 16158 ASSERT(bp != NULL); 16159 ASSERT(mutex_owned(SD_MUTEX(un))); 16160 ASSERT(un->un_sense_isbusy == 0); 16161 16162 SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: " 16163 "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un); 16164 16165 sense_xp = SD_GET_XBUF(un->un_rqs_bp); 16166 ASSERT(sense_xp != NULL); 16167 16168 SD_INFO(SD_LOG_IO, un, 16169 "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp); 16170 16171 ASSERT(sense_xp->xb_pktp != NULL); 16172 ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) 16173 == (FLAG_SENSING | FLAG_HEAD)); 16174 16175 un->un_sense_isbusy = 1; 16176 un->un_rqs_bp->b_resid = 0; 16177 sense_xp->xb_pktp->pkt_resid = 0; 16178 sense_xp->xb_pktp->pkt_reason = 0; 16179 16180 /* So we can get back the bp at interrupt time! */ 16181 sense_xp->xb_sense_bp = bp; 16182 16183 bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH); 16184 16185 /* 16186 * Mark this buf as awaiting sense data. (This is already set in 16187 * the pkt_flags for the RQS packet.) 16188 */ 16189 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING; 16190 16191 /* Request sense down same path */ 16192 if (scsi_pkt_allocated_correctly((SD_GET_XBUF(bp))->xb_pktp) && 16193 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance) 16194 sense_xp->xb_pktp->pkt_path_instance = 16195 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance; 16196 16197 sense_xp->xb_retry_count = 0; 16198 sense_xp->xb_victim_retry_count = 0; 16199 sense_xp->xb_ua_retry_count = 0; 16200 sense_xp->xb_nr_retry_count = 0; 16201 sense_xp->xb_dma_resid = 0; 16202 16203 /* Clean up the fields for auto-request sense */ 16204 sense_xp->xb_sense_status = 0; 16205 sense_xp->xb_sense_state = 0; 16206 sense_xp->xb_sense_resid = 0; 16207 bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data)); 16208 16209 SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n"); 16210 } 16211 16212 16213 /* 16214 * Function: sd_mark_rqs_idle 16215 * 16216 * Description: SD_MUTEX must be held continuously through this routine 16217 * to prevent reuse of the rqs struct before the caller can 16218 * complete it's processing. 16219 * 16220 * Return Code: Pointer to the RQS buf 16221 * 16222 * Context: May be called under interrupt context 16223 */ 16224 16225 static struct buf * 16226 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp) 16227 { 16228 struct buf *bp; 16229 ASSERT(un != NULL); 16230 ASSERT(sense_xp != NULL); 16231 ASSERT(mutex_owned(SD_MUTEX(un))); 16232 ASSERT(un->un_sense_isbusy != 0); 16233 16234 un->un_sense_isbusy = 0; 16235 bp = sense_xp->xb_sense_bp; 16236 sense_xp->xb_sense_bp = NULL; 16237 16238 /* This pkt is no longer interested in getting sense data */ 16239 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING; 16240 16241 return (bp); 16242 } 16243 16244 16245 16246 /* 16247 * Function: sd_alloc_rqs 16248 * 16249 * Description: Set up the unit to receive auto request sense data 16250 * 16251 * Return Code: DDI_SUCCESS or DDI_FAILURE 16252 * 16253 * Context: Called under attach(9E) context 16254 */ 16255 16256 static int 16257 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un) 16258 { 16259 struct sd_xbuf *xp; 16260 16261 ASSERT(un != NULL); 16262 ASSERT(!mutex_owned(SD_MUTEX(un))); 16263 ASSERT(un->un_rqs_bp == NULL); 16264 ASSERT(un->un_rqs_pktp == NULL); 16265 16266 /* 16267 * First allocate the required buf and scsi_pkt structs, then set up 16268 * the CDB in the scsi_pkt for a REQUEST SENSE command. 16269 */ 16270 un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL, 16271 MAX_SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL); 16272 if (un->un_rqs_bp == NULL) { 16273 return (DDI_FAILURE); 16274 } 16275 16276 un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp, 16277 CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL); 16278 16279 if (un->un_rqs_pktp == NULL) { 16280 sd_free_rqs(un); 16281 return (DDI_FAILURE); 16282 } 16283 16284 /* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */ 16285 (void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp, 16286 SCMD_REQUEST_SENSE, 0, MAX_SENSE_LENGTH, 0); 16287 16288 SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp); 16289 16290 /* Set up the other needed members in the ARQ scsi_pkt. */ 16291 un->un_rqs_pktp->pkt_comp = sdintr; 16292 un->un_rqs_pktp->pkt_time = sd_io_time; 16293 un->un_rqs_pktp->pkt_flags |= 16294 (FLAG_SENSING | FLAG_HEAD); /* (1222170) */ 16295 16296 /* 16297 * Allocate & init the sd_xbuf struct for the RQS command. Do not 16298 * provide any intpkt, destroypkt routines as we take care of 16299 * scsi_pkt allocation/freeing here and in sd_free_rqs(). 16300 */ 16301 xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 16302 sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL); 16303 xp->xb_pktp = un->un_rqs_pktp; 16304 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16305 "sd_alloc_rqs: un 0x%p, rqs xp 0x%p, pkt 0x%p, buf 0x%p\n", 16306 un, xp, un->un_rqs_pktp, un->un_rqs_bp); 16307 16308 /* 16309 * Save the pointer to the request sense private bp so it can 16310 * be retrieved in sdintr. 16311 */ 16312 un->un_rqs_pktp->pkt_private = un->un_rqs_bp; 16313 ASSERT(un->un_rqs_bp->b_private == xp); 16314 16315 /* 16316 * See if the HBA supports auto-request sense for the specified 16317 * target/lun. If it does, then try to enable it (if not already 16318 * enabled). 16319 * 16320 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return 16321 * failure, while for other HBAs (pln) scsi_ifsetcap will always 16322 * return success. However, in both of these cases ARQ is always 16323 * enabled and scsi_ifgetcap will always return true. The best approach 16324 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap(). 16325 * 16326 * The 3rd case is the HBA (adp) always return enabled on 16327 * scsi_ifgetgetcap even when it's not enable, the best approach 16328 * is issue a scsi_ifsetcap then a scsi_ifgetcap 16329 * Note: this case is to circumvent the Adaptec bug. (x86 only) 16330 */ 16331 16332 if (un->un_f_is_fibre == TRUE) { 16333 un->un_f_arq_enabled = TRUE; 16334 } else { 16335 #if defined(__i386) || defined(__amd64) 16336 /* 16337 * Circumvent the Adaptec bug, remove this code when 16338 * the bug is fixed 16339 */ 16340 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1); 16341 #endif 16342 switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) { 16343 case 0: 16344 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16345 "sd_alloc_rqs: HBA supports ARQ\n"); 16346 /* 16347 * ARQ is supported by this HBA but currently is not 16348 * enabled. Attempt to enable it and if successful then 16349 * mark this instance as ARQ enabled. 16350 */ 16351 if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1) 16352 == 1) { 16353 /* Successfully enabled ARQ in the HBA */ 16354 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16355 "sd_alloc_rqs: ARQ enabled\n"); 16356 un->un_f_arq_enabled = TRUE; 16357 } else { 16358 /* Could not enable ARQ in the HBA */ 16359 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16360 "sd_alloc_rqs: failed ARQ enable\n"); 16361 un->un_f_arq_enabled = FALSE; 16362 } 16363 break; 16364 case 1: 16365 /* 16366 * ARQ is supported by this HBA and is already enabled. 16367 * Just mark ARQ as enabled for this instance. 16368 */ 16369 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16370 "sd_alloc_rqs: ARQ already enabled\n"); 16371 un->un_f_arq_enabled = TRUE; 16372 break; 16373 default: 16374 /* 16375 * ARQ is not supported by this HBA; disable it for this 16376 * instance. 16377 */ 16378 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16379 "sd_alloc_rqs: HBA does not support ARQ\n"); 16380 un->un_f_arq_enabled = FALSE; 16381 break; 16382 } 16383 } 16384 16385 return (DDI_SUCCESS); 16386 } 16387 16388 16389 /* 16390 * Function: sd_free_rqs 16391 * 16392 * Description: Cleanup for the pre-instance RQS command. 16393 * 16394 * Context: Kernel thread context 16395 */ 16396 16397 static void 16398 sd_free_rqs(struct sd_lun *un) 16399 { 16400 ASSERT(un != NULL); 16401 16402 SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n"); 16403 16404 /* 16405 * If consistent memory is bound to a scsi_pkt, the pkt 16406 * has to be destroyed *before* freeing the consistent memory. 16407 * Don't change the sequence of this operations. 16408 * scsi_destroy_pkt() might access memory, which isn't allowed, 16409 * after it was freed in scsi_free_consistent_buf(). 16410 */ 16411 if (un->un_rqs_pktp != NULL) { 16412 scsi_destroy_pkt(un->un_rqs_pktp); 16413 un->un_rqs_pktp = NULL; 16414 } 16415 16416 if (un->un_rqs_bp != NULL) { 16417 struct sd_xbuf *xp = SD_GET_XBUF(un->un_rqs_bp); 16418 if (xp != NULL) { 16419 kmem_free(xp, sizeof (struct sd_xbuf)); 16420 } 16421 scsi_free_consistent_buf(un->un_rqs_bp); 16422 un->un_rqs_bp = NULL; 16423 } 16424 SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n"); 16425 } 16426 16427 16428 16429 /* 16430 * Function: sd_reduce_throttle 16431 * 16432 * Description: Reduces the maximum # of outstanding commands on a 16433 * target to the current number of outstanding commands. 16434 * Queues a tiemout(9F) callback to restore the limit 16435 * after a specified interval has elapsed. 16436 * Typically used when we get a TRAN_BUSY return code 16437 * back from scsi_transport(). 16438 * 16439 * Arguments: un - ptr to the sd_lun softstate struct 16440 * throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL 16441 * 16442 * Context: May be called from interrupt context 16443 */ 16444 16445 static void 16446 sd_reduce_throttle(struct sd_lun *un, int throttle_type) 16447 { 16448 ASSERT(un != NULL); 16449 ASSERT(mutex_owned(SD_MUTEX(un))); 16450 ASSERT(un->un_ncmds_in_transport >= 0); 16451 16452 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: " 16453 "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n", 16454 un, un->un_throttle, un->un_ncmds_in_transport); 16455 16456 if (un->un_throttle > 1) { 16457 if (un->un_f_use_adaptive_throttle == TRUE) { 16458 switch (throttle_type) { 16459 case SD_THROTTLE_TRAN_BUSY: 16460 if (un->un_busy_throttle == 0) { 16461 un->un_busy_throttle = un->un_throttle; 16462 } 16463 break; 16464 case SD_THROTTLE_QFULL: 16465 un->un_busy_throttle = 0; 16466 break; 16467 default: 16468 ASSERT(FALSE); 16469 } 16470 16471 if (un->un_ncmds_in_transport > 0) { 16472 un->un_throttle = un->un_ncmds_in_transport; 16473 } 16474 16475 } else { 16476 if (un->un_ncmds_in_transport == 0) { 16477 un->un_throttle = 1; 16478 } else { 16479 un->un_throttle = un->un_ncmds_in_transport; 16480 } 16481 } 16482 } 16483 16484 /* Reschedule the timeout if none is currently active */ 16485 if (un->un_reset_throttle_timeid == NULL) { 16486 un->un_reset_throttle_timeid = timeout(sd_restore_throttle, 16487 un, SD_THROTTLE_RESET_INTERVAL); 16488 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16489 "sd_reduce_throttle: timeout scheduled!\n"); 16490 } 16491 16492 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: " 16493 "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle); 16494 } 16495 16496 16497 16498 /* 16499 * Function: sd_restore_throttle 16500 * 16501 * Description: Callback function for timeout(9F). Resets the current 16502 * value of un->un_throttle to its default. 16503 * 16504 * Arguments: arg - pointer to associated softstate for the device. 16505 * 16506 * Context: May be called from interrupt context 16507 */ 16508 16509 static void 16510 sd_restore_throttle(void *arg) 16511 { 16512 struct sd_lun *un = arg; 16513 16514 ASSERT(un != NULL); 16515 ASSERT(!mutex_owned(SD_MUTEX(un))); 16516 16517 mutex_enter(SD_MUTEX(un)); 16518 16519 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: " 16520 "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle); 16521 16522 un->un_reset_throttle_timeid = NULL; 16523 16524 if (un->un_f_use_adaptive_throttle == TRUE) { 16525 /* 16526 * If un_busy_throttle is nonzero, then it contains the 16527 * value that un_throttle was when we got a TRAN_BUSY back 16528 * from scsi_transport(). We want to revert back to this 16529 * value. 16530 * 16531 * In the QFULL case, the throttle limit will incrementally 16532 * increase until it reaches max throttle. 16533 */ 16534 if (un->un_busy_throttle > 0) { 16535 un->un_throttle = un->un_busy_throttle; 16536 un->un_busy_throttle = 0; 16537 } else { 16538 /* 16539 * increase throttle by 10% open gate slowly, schedule 16540 * another restore if saved throttle has not been 16541 * reached 16542 */ 16543 short throttle; 16544 if (sd_qfull_throttle_enable) { 16545 throttle = un->un_throttle + 16546 max((un->un_throttle / 10), 1); 16547 un->un_throttle = 16548 (throttle < un->un_saved_throttle) ? 16549 throttle : un->un_saved_throttle; 16550 if (un->un_throttle < un->un_saved_throttle) { 16551 un->un_reset_throttle_timeid = 16552 timeout(sd_restore_throttle, 16553 un, 16554 SD_QFULL_THROTTLE_RESET_INTERVAL); 16555 } 16556 } 16557 } 16558 16559 /* 16560 * If un_throttle has fallen below the low-water mark, we 16561 * restore the maximum value here (and allow it to ratchet 16562 * down again if necessary). 16563 */ 16564 if (un->un_throttle < un->un_min_throttle) { 16565 un->un_throttle = un->un_saved_throttle; 16566 } 16567 } else { 16568 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: " 16569 "restoring limit from 0x%x to 0x%x\n", 16570 un->un_throttle, un->un_saved_throttle); 16571 un->un_throttle = un->un_saved_throttle; 16572 } 16573 16574 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 16575 "sd_restore_throttle: calling sd_start_cmds!\n"); 16576 16577 sd_start_cmds(un, NULL); 16578 16579 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 16580 "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n", 16581 un, un->un_throttle); 16582 16583 mutex_exit(SD_MUTEX(un)); 16584 16585 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n"); 16586 } 16587 16588 /* 16589 * Function: sdrunout 16590 * 16591 * Description: Callback routine for scsi_init_pkt when a resource allocation 16592 * fails. 16593 * 16594 * Arguments: arg - a pointer to the sd_lun unit struct for the particular 16595 * soft state instance. 16596 * 16597 * Return Code: The scsi_init_pkt routine allows for the callback function to 16598 * return a 0 indicating the callback should be rescheduled or a 1 16599 * indicating not to reschedule. This routine always returns 1 16600 * because the driver always provides a callback function to 16601 * scsi_init_pkt. This results in a callback always being scheduled 16602 * (via the scsi_init_pkt callback implementation) if a resource 16603 * failure occurs. 16604 * 16605 * Context: This callback function may not block or call routines that block 16606 * 16607 * Note: Using the scsi_init_pkt callback facility can result in an I/O 16608 * request persisting at the head of the list which cannot be 16609 * satisfied even after multiple retries. In the future the driver 16610 * may implement some time of maximum runout count before failing 16611 * an I/O. 16612 */ 16613 16614 static int 16615 sdrunout(caddr_t arg) 16616 { 16617 struct sd_lun *un = (struct sd_lun *)arg; 16618 16619 ASSERT(un != NULL); 16620 ASSERT(!mutex_owned(SD_MUTEX(un))); 16621 16622 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n"); 16623 16624 mutex_enter(SD_MUTEX(un)); 16625 sd_start_cmds(un, NULL); 16626 mutex_exit(SD_MUTEX(un)); 16627 /* 16628 * This callback routine always returns 1 (i.e. do not reschedule) 16629 * because we always specify sdrunout as the callback handler for 16630 * scsi_init_pkt inside the call to sd_start_cmds. 16631 */ 16632 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n"); 16633 return (1); 16634 } 16635 16636 16637 /* 16638 * Function: sdintr 16639 * 16640 * Description: Completion callback routine for scsi_pkt(9S) structs 16641 * sent to the HBA driver via scsi_transport(9F). 16642 * 16643 * Context: Interrupt context 16644 */ 16645 16646 static void 16647 sdintr(struct scsi_pkt *pktp) 16648 { 16649 struct buf *bp; 16650 struct sd_xbuf *xp; 16651 struct sd_lun *un; 16652 size_t actual_len; 16653 sd_ssc_t *sscp; 16654 16655 ASSERT(pktp != NULL); 16656 bp = (struct buf *)pktp->pkt_private; 16657 ASSERT(bp != NULL); 16658 xp = SD_GET_XBUF(bp); 16659 ASSERT(xp != NULL); 16660 ASSERT(xp->xb_pktp != NULL); 16661 un = SD_GET_UN(bp); 16662 ASSERT(un != NULL); 16663 ASSERT(!mutex_owned(SD_MUTEX(un))); 16664 16665 #ifdef SD_FAULT_INJECTION 16666 16667 SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n"); 16668 /* SD FaultInjection */ 16669 sd_faultinjection(pktp); 16670 16671 #endif /* SD_FAULT_INJECTION */ 16672 16673 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p," 16674 " xp:0x%p, un:0x%p\n", bp, xp, un); 16675 16676 mutex_enter(SD_MUTEX(un)); 16677 16678 ASSERT(un->un_fm_private != NULL); 16679 sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc; 16680 ASSERT(sscp != NULL); 16681 16682 /* Reduce the count of the #commands currently in transport */ 16683 un->un_ncmds_in_transport--; 16684 ASSERT(un->un_ncmds_in_transport >= 0); 16685 16686 /* Increment counter to indicate that the callback routine is active */ 16687 un->un_in_callback++; 16688 16689 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 16690 16691 #ifdef SDDEBUG 16692 if (bp == un->un_retry_bp) { 16693 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: " 16694 "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n", 16695 un, un->un_retry_bp, un->un_ncmds_in_transport); 16696 } 16697 #endif 16698 16699 /* 16700 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media 16701 * state if needed. 16702 */ 16703 if (pktp->pkt_reason == CMD_DEV_GONE) { 16704 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16705 "Command failed to complete...Device is gone\n"); 16706 if (un->un_mediastate != DKIO_DEV_GONE) { 16707 un->un_mediastate = DKIO_DEV_GONE; 16708 cv_broadcast(&un->un_state_cv); 16709 } 16710 /* 16711 * If the command happens to be the REQUEST SENSE command, 16712 * free up the rqs buf and fail the original command. 16713 */ 16714 if (bp == un->un_rqs_bp) { 16715 bp = sd_mark_rqs_idle(un, xp); 16716 } 16717 sd_return_failed_command(un, bp, EIO); 16718 goto exit; 16719 } 16720 16721 if (pktp->pkt_state & STATE_XARQ_DONE) { 16722 SD_TRACE(SD_LOG_COMMON, un, 16723 "sdintr: extra sense data received. pkt=%p\n", pktp); 16724 } 16725 16726 /* 16727 * First see if the pkt has auto-request sense data with it.... 16728 * Look at the packet state first so we don't take a performance 16729 * hit looking at the arq enabled flag unless absolutely necessary. 16730 */ 16731 if ((pktp->pkt_state & STATE_ARQ_DONE) && 16732 (un->un_f_arq_enabled == TRUE)) { 16733 /* 16734 * The HBA did an auto request sense for this command so check 16735 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal 16736 * driver command that should not be retried. 16737 */ 16738 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 16739 /* 16740 * Save the relevant sense info into the xp for the 16741 * original cmd. 16742 */ 16743 struct scsi_arq_status *asp; 16744 asp = (struct scsi_arq_status *)(pktp->pkt_scbp); 16745 xp->xb_sense_status = 16746 *((uchar_t *)(&(asp->sts_rqpkt_status))); 16747 xp->xb_sense_state = asp->sts_rqpkt_state; 16748 xp->xb_sense_resid = asp->sts_rqpkt_resid; 16749 if (pktp->pkt_state & STATE_XARQ_DONE) { 16750 actual_len = MAX_SENSE_LENGTH - 16751 xp->xb_sense_resid; 16752 bcopy(&asp->sts_sensedata, xp->xb_sense_data, 16753 MAX_SENSE_LENGTH); 16754 } else { 16755 if (xp->xb_sense_resid > SENSE_LENGTH) { 16756 actual_len = MAX_SENSE_LENGTH - 16757 xp->xb_sense_resid; 16758 } else { 16759 actual_len = SENSE_LENGTH - 16760 xp->xb_sense_resid; 16761 } 16762 if (xp->xb_pkt_flags & SD_XB_USCSICMD) { 16763 if ((((struct uscsi_cmd *) 16764 (xp->xb_pktinfo))->uscsi_rqlen) > 16765 actual_len) { 16766 xp->xb_sense_resid = 16767 (((struct uscsi_cmd *) 16768 (xp->xb_pktinfo))-> 16769 uscsi_rqlen) - actual_len; 16770 } else { 16771 xp->xb_sense_resid = 0; 16772 } 16773 } 16774 bcopy(&asp->sts_sensedata, xp->xb_sense_data, 16775 SENSE_LENGTH); 16776 } 16777 16778 /* fail the command */ 16779 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16780 "sdintr: arq done and FLAG_DIAGNOSE set\n"); 16781 sd_return_failed_command(un, bp, EIO); 16782 goto exit; 16783 } 16784 16785 #if (defined(__i386) || defined(__amd64)) /* DMAFREE for x86 only */ 16786 /* 16787 * We want to either retry or fail this command, so free 16788 * the DMA resources here. If we retry the command then 16789 * the DMA resources will be reallocated in sd_start_cmds(). 16790 * Note that when PKT_DMA_PARTIAL is used, this reallocation 16791 * causes the *entire* transfer to start over again from the 16792 * beginning of the request, even for PARTIAL chunks that 16793 * have already transferred successfully. 16794 */ 16795 if ((un->un_f_is_fibre == TRUE) && 16796 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 16797 ((pktp->pkt_flags & FLAG_SENSING) == 0)) { 16798 scsi_dmafree(pktp); 16799 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 16800 } 16801 #endif 16802 16803 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16804 "sdintr: arq done, sd_handle_auto_request_sense\n"); 16805 16806 sd_handle_auto_request_sense(un, bp, xp, pktp); 16807 goto exit; 16808 } 16809 16810 /* Next see if this is the REQUEST SENSE pkt for the instance */ 16811 if (pktp->pkt_flags & FLAG_SENSING) { 16812 /* This pktp is from the unit's REQUEST_SENSE command */ 16813 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16814 "sdintr: sd_handle_request_sense\n"); 16815 sd_handle_request_sense(un, bp, xp, pktp); 16816 goto exit; 16817 } 16818 16819 /* 16820 * Check to see if the command successfully completed as requested; 16821 * this is the most common case (and also the hot performance path). 16822 * 16823 * Requirements for successful completion are: 16824 * pkt_reason is CMD_CMPLT and packet status is status good. 16825 * In addition: 16826 * - A residual of zero indicates successful completion no matter what 16827 * the command is. 16828 * - If the residual is not zero and the command is not a read or 16829 * write, then it's still defined as successful completion. In other 16830 * words, if the command is a read or write the residual must be 16831 * zero for successful completion. 16832 * - If the residual is not zero and the command is a read or 16833 * write, and it's a USCSICMD, then it's still defined as 16834 * successful completion. 16835 */ 16836 if ((pktp->pkt_reason == CMD_CMPLT) && 16837 (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) { 16838 16839 /* 16840 * Since this command is returned with a good status, we 16841 * can reset the count for Sonoma failover. 16842 */ 16843 un->un_sonoma_failure_count = 0; 16844 16845 /* 16846 * Return all USCSI commands on good status 16847 */ 16848 if (pktp->pkt_resid == 0) { 16849 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16850 "sdintr: returning command for resid == 0\n"); 16851 } else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) && 16852 ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) { 16853 SD_UPDATE_B_RESID(bp, pktp); 16854 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16855 "sdintr: returning command for resid != 0\n"); 16856 } else if (xp->xb_pkt_flags & SD_XB_USCSICMD) { 16857 SD_UPDATE_B_RESID(bp, pktp); 16858 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16859 "sdintr: returning uscsi command\n"); 16860 } else { 16861 goto not_successful; 16862 } 16863 sd_return_command(un, bp); 16864 16865 /* 16866 * Decrement counter to indicate that the callback routine 16867 * is done. 16868 */ 16869 un->un_in_callback--; 16870 ASSERT(un->un_in_callback >= 0); 16871 mutex_exit(SD_MUTEX(un)); 16872 16873 return; 16874 } 16875 16876 not_successful: 16877 16878 #if (defined(__i386) || defined(__amd64)) /* DMAFREE for x86 only */ 16879 /* 16880 * The following is based upon knowledge of the underlying transport 16881 * and its use of DMA resources. This code should be removed when 16882 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor 16883 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf() 16884 * and sd_start_cmds(). 16885 * 16886 * Free any DMA resources associated with this command if there 16887 * is a chance it could be retried or enqueued for later retry. 16888 * If we keep the DMA binding then mpxio cannot reissue the 16889 * command on another path whenever a path failure occurs. 16890 * 16891 * Note that when PKT_DMA_PARTIAL is used, free/reallocation 16892 * causes the *entire* transfer to start over again from the 16893 * beginning of the request, even for PARTIAL chunks that 16894 * have already transferred successfully. 16895 * 16896 * This is only done for non-uscsi commands (and also skipped for the 16897 * driver's internal RQS command). Also just do this for Fibre Channel 16898 * devices as these are the only ones that support mpxio. 16899 */ 16900 if ((un->un_f_is_fibre == TRUE) && 16901 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 16902 ((pktp->pkt_flags & FLAG_SENSING) == 0)) { 16903 scsi_dmafree(pktp); 16904 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 16905 } 16906 #endif 16907 16908 /* 16909 * The command did not successfully complete as requested so check 16910 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal 16911 * driver command that should not be retried so just return. If 16912 * FLAG_DIAGNOSE is not set the error will be processed below. 16913 */ 16914 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 16915 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16916 "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n"); 16917 /* 16918 * Issue a request sense if a check condition caused the error 16919 * (we handle the auto request sense case above), otherwise 16920 * just fail the command. 16921 */ 16922 if ((pktp->pkt_reason == CMD_CMPLT) && 16923 (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) { 16924 sd_send_request_sense_command(un, bp, pktp); 16925 } else { 16926 sd_return_failed_command(un, bp, EIO); 16927 } 16928 goto exit; 16929 } 16930 16931 /* 16932 * The command did not successfully complete as requested so process 16933 * the error, retry, and/or attempt recovery. 16934 */ 16935 switch (pktp->pkt_reason) { 16936 case CMD_CMPLT: 16937 switch (SD_GET_PKT_STATUS(pktp)) { 16938 case STATUS_GOOD: 16939 /* 16940 * The command completed successfully with a non-zero 16941 * residual 16942 */ 16943 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16944 "sdintr: STATUS_GOOD \n"); 16945 sd_pkt_status_good(un, bp, xp, pktp); 16946 break; 16947 16948 case STATUS_CHECK: 16949 case STATUS_TERMINATED: 16950 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16951 "sdintr: STATUS_TERMINATED | STATUS_CHECK\n"); 16952 sd_pkt_status_check_condition(un, bp, xp, pktp); 16953 break; 16954 16955 case STATUS_BUSY: 16956 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16957 "sdintr: STATUS_BUSY\n"); 16958 sd_pkt_status_busy(un, bp, xp, pktp); 16959 break; 16960 16961 case STATUS_RESERVATION_CONFLICT: 16962 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16963 "sdintr: STATUS_RESERVATION_CONFLICT\n"); 16964 sd_pkt_status_reservation_conflict(un, bp, xp, pktp); 16965 break; 16966 16967 case STATUS_QFULL: 16968 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16969 "sdintr: STATUS_QFULL\n"); 16970 sd_pkt_status_qfull(un, bp, xp, pktp); 16971 break; 16972 16973 case STATUS_MET: 16974 case STATUS_INTERMEDIATE: 16975 case STATUS_SCSI2: 16976 case STATUS_INTERMEDIATE_MET: 16977 case STATUS_ACA_ACTIVE: 16978 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16979 "Unexpected SCSI status received: 0x%x\n", 16980 SD_GET_PKT_STATUS(pktp)); 16981 /* 16982 * Mark the ssc_flags when detected invalid status 16983 * code for non-USCSI command. 16984 */ 16985 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 16986 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS, 16987 0, "stat-code"); 16988 } 16989 sd_return_failed_command(un, bp, EIO); 16990 break; 16991 16992 default: 16993 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16994 "Invalid SCSI status received: 0x%x\n", 16995 SD_GET_PKT_STATUS(pktp)); 16996 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 16997 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS, 16998 0, "stat-code"); 16999 } 17000 sd_return_failed_command(un, bp, EIO); 17001 break; 17002 17003 } 17004 break; 17005 17006 case CMD_INCOMPLETE: 17007 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17008 "sdintr: CMD_INCOMPLETE\n"); 17009 sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp); 17010 break; 17011 case CMD_TRAN_ERR: 17012 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17013 "sdintr: CMD_TRAN_ERR\n"); 17014 sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp); 17015 break; 17016 case CMD_RESET: 17017 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17018 "sdintr: CMD_RESET \n"); 17019 sd_pkt_reason_cmd_reset(un, bp, xp, pktp); 17020 break; 17021 case CMD_ABORTED: 17022 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17023 "sdintr: CMD_ABORTED \n"); 17024 sd_pkt_reason_cmd_aborted(un, bp, xp, pktp); 17025 break; 17026 case CMD_TIMEOUT: 17027 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17028 "sdintr: CMD_TIMEOUT\n"); 17029 sd_pkt_reason_cmd_timeout(un, bp, xp, pktp); 17030 break; 17031 case CMD_UNX_BUS_FREE: 17032 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17033 "sdintr: CMD_UNX_BUS_FREE \n"); 17034 sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp); 17035 break; 17036 case CMD_TAG_REJECT: 17037 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17038 "sdintr: CMD_TAG_REJECT\n"); 17039 sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp); 17040 break; 17041 default: 17042 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17043 "sdintr: default\n"); 17044 /* 17045 * Mark the ssc_flags for detecting invliad pkt_reason. 17046 */ 17047 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17048 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_PKT_REASON, 17049 0, "pkt-reason"); 17050 } 17051 sd_pkt_reason_default(un, bp, xp, pktp); 17052 break; 17053 } 17054 17055 exit: 17056 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n"); 17057 17058 /* Decrement counter to indicate that the callback routine is done. */ 17059 un->un_in_callback--; 17060 ASSERT(un->un_in_callback >= 0); 17061 17062 /* 17063 * At this point, the pkt has been dispatched, ie, it is either 17064 * being re-tried or has been returned to its caller and should 17065 * not be referenced. 17066 */ 17067 17068 mutex_exit(SD_MUTEX(un)); 17069 } 17070 17071 17072 /* 17073 * Function: sd_print_incomplete_msg 17074 * 17075 * Description: Prints the error message for a CMD_INCOMPLETE error. 17076 * 17077 * Arguments: un - ptr to associated softstate for the device. 17078 * bp - ptr to the buf(9S) for the command. 17079 * arg - message string ptr 17080 * code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED, 17081 * or SD_NO_RETRY_ISSUED. 17082 * 17083 * Context: May be called under interrupt context 17084 */ 17085 17086 static void 17087 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code) 17088 { 17089 struct scsi_pkt *pktp; 17090 char *msgp; 17091 char *cmdp = arg; 17092 17093 ASSERT(un != NULL); 17094 ASSERT(mutex_owned(SD_MUTEX(un))); 17095 ASSERT(bp != NULL); 17096 ASSERT(arg != NULL); 17097 pktp = SD_GET_PKTP(bp); 17098 ASSERT(pktp != NULL); 17099 17100 switch (code) { 17101 case SD_DELAYED_RETRY_ISSUED: 17102 case SD_IMMEDIATE_RETRY_ISSUED: 17103 msgp = "retrying"; 17104 break; 17105 case SD_NO_RETRY_ISSUED: 17106 default: 17107 msgp = "giving up"; 17108 break; 17109 } 17110 17111 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 17112 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17113 "incomplete %s- %s\n", cmdp, msgp); 17114 } 17115 } 17116 17117 17118 17119 /* 17120 * Function: sd_pkt_status_good 17121 * 17122 * Description: Processing for a STATUS_GOOD code in pkt_status. 17123 * 17124 * Context: May be called under interrupt context 17125 */ 17126 17127 static void 17128 sd_pkt_status_good(struct sd_lun *un, struct buf *bp, 17129 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17130 { 17131 char *cmdp; 17132 17133 ASSERT(un != NULL); 17134 ASSERT(mutex_owned(SD_MUTEX(un))); 17135 ASSERT(bp != NULL); 17136 ASSERT(xp != NULL); 17137 ASSERT(pktp != NULL); 17138 ASSERT(pktp->pkt_reason == CMD_CMPLT); 17139 ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD); 17140 ASSERT(pktp->pkt_resid != 0); 17141 17142 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n"); 17143 17144 SD_UPDATE_ERRSTATS(un, sd_harderrs); 17145 switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) { 17146 case SCMD_READ: 17147 cmdp = "read"; 17148 break; 17149 case SCMD_WRITE: 17150 cmdp = "write"; 17151 break; 17152 default: 17153 SD_UPDATE_B_RESID(bp, pktp); 17154 sd_return_command(un, bp); 17155 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n"); 17156 return; 17157 } 17158 17159 /* 17160 * See if we can retry the read/write, preferrably immediately. 17161 * If retries are exhaused, then sd_retry_command() will update 17162 * the b_resid count. 17163 */ 17164 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg, 17165 cmdp, EIO, (clock_t)0, NULL); 17166 17167 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n"); 17168 } 17169 17170 17171 17172 17173 17174 /* 17175 * Function: sd_handle_request_sense 17176 * 17177 * Description: Processing for non-auto Request Sense command. 17178 * 17179 * Arguments: un - ptr to associated softstate 17180 * sense_bp - ptr to buf(9S) for the RQS command 17181 * sense_xp - ptr to the sd_xbuf for the RQS command 17182 * sense_pktp - ptr to the scsi_pkt(9S) for the RQS command 17183 * 17184 * Context: May be called under interrupt context 17185 */ 17186 17187 static void 17188 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp, 17189 struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp) 17190 { 17191 struct buf *cmd_bp; /* buf for the original command */ 17192 struct sd_xbuf *cmd_xp; /* sd_xbuf for the original command */ 17193 struct scsi_pkt *cmd_pktp; /* pkt for the original command */ 17194 size_t actual_len; /* actual sense data length */ 17195 17196 ASSERT(un != NULL); 17197 ASSERT(mutex_owned(SD_MUTEX(un))); 17198 ASSERT(sense_bp != NULL); 17199 ASSERT(sense_xp != NULL); 17200 ASSERT(sense_pktp != NULL); 17201 17202 /* 17203 * Note the sense_bp, sense_xp, and sense_pktp here are for the 17204 * RQS command and not the original command. 17205 */ 17206 ASSERT(sense_pktp == un->un_rqs_pktp); 17207 ASSERT(sense_bp == un->un_rqs_bp); 17208 ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) == 17209 (FLAG_SENSING | FLAG_HEAD)); 17210 ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) & 17211 FLAG_SENSING) == FLAG_SENSING); 17212 17213 /* These are the bp, xp, and pktp for the original command */ 17214 cmd_bp = sense_xp->xb_sense_bp; 17215 cmd_xp = SD_GET_XBUF(cmd_bp); 17216 cmd_pktp = SD_GET_PKTP(cmd_bp); 17217 17218 if (sense_pktp->pkt_reason != CMD_CMPLT) { 17219 /* 17220 * The REQUEST SENSE command failed. Release the REQUEST 17221 * SENSE command for re-use, get back the bp for the original 17222 * command, and attempt to re-try the original command if 17223 * FLAG_DIAGNOSE is not set in the original packet. 17224 */ 17225 SD_UPDATE_ERRSTATS(un, sd_harderrs); 17226 if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 17227 cmd_bp = sd_mark_rqs_idle(un, sense_xp); 17228 sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD, 17229 NULL, NULL, EIO, (clock_t)0, NULL); 17230 return; 17231 } 17232 } 17233 17234 /* 17235 * Save the relevant sense info into the xp for the original cmd. 17236 * 17237 * Note: if the request sense failed the state info will be zero 17238 * as set in sd_mark_rqs_busy() 17239 */ 17240 cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp); 17241 cmd_xp->xb_sense_state = sense_pktp->pkt_state; 17242 actual_len = MAX_SENSE_LENGTH - sense_pktp->pkt_resid; 17243 if ((cmd_xp->xb_pkt_flags & SD_XB_USCSICMD) && 17244 (((struct uscsi_cmd *)cmd_xp->xb_pktinfo)->uscsi_rqlen > 17245 SENSE_LENGTH)) { 17246 bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, 17247 MAX_SENSE_LENGTH); 17248 cmd_xp->xb_sense_resid = sense_pktp->pkt_resid; 17249 } else { 17250 bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, 17251 SENSE_LENGTH); 17252 if (actual_len < SENSE_LENGTH) { 17253 cmd_xp->xb_sense_resid = SENSE_LENGTH - actual_len; 17254 } else { 17255 cmd_xp->xb_sense_resid = 0; 17256 } 17257 } 17258 17259 /* 17260 * Free up the RQS command.... 17261 * NOTE: 17262 * Must do this BEFORE calling sd_validate_sense_data! 17263 * sd_validate_sense_data may return the original command in 17264 * which case the pkt will be freed and the flags can no 17265 * longer be touched. 17266 * SD_MUTEX is held through this process until the command 17267 * is dispatched based upon the sense data, so there are 17268 * no race conditions. 17269 */ 17270 (void) sd_mark_rqs_idle(un, sense_xp); 17271 17272 /* 17273 * For a retryable command see if we have valid sense data, if so then 17274 * turn it over to sd_decode_sense() to figure out the right course of 17275 * action. Just fail a non-retryable command. 17276 */ 17277 if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 17278 if (sd_validate_sense_data(un, cmd_bp, cmd_xp, actual_len) == 17279 SD_SENSE_DATA_IS_VALID) { 17280 sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp); 17281 } 17282 } else { 17283 SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB", 17284 (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 17285 SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data", 17286 (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX); 17287 sd_return_failed_command(un, cmd_bp, EIO); 17288 } 17289 } 17290 17291 17292 17293 17294 /* 17295 * Function: sd_handle_auto_request_sense 17296 * 17297 * Description: Processing for auto-request sense information. 17298 * 17299 * Arguments: un - ptr to associated softstate 17300 * bp - ptr to buf(9S) for the command 17301 * xp - ptr to the sd_xbuf for the command 17302 * pktp - ptr to the scsi_pkt(9S) for the command 17303 * 17304 * Context: May be called under interrupt context 17305 */ 17306 17307 static void 17308 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp, 17309 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17310 { 17311 struct scsi_arq_status *asp; 17312 size_t actual_len; 17313 17314 ASSERT(un != NULL); 17315 ASSERT(mutex_owned(SD_MUTEX(un))); 17316 ASSERT(bp != NULL); 17317 ASSERT(xp != NULL); 17318 ASSERT(pktp != NULL); 17319 ASSERT(pktp != un->un_rqs_pktp); 17320 ASSERT(bp != un->un_rqs_bp); 17321 17322 /* 17323 * For auto-request sense, we get a scsi_arq_status back from 17324 * the HBA, with the sense data in the sts_sensedata member. 17325 * The pkt_scbp of the packet points to this scsi_arq_status. 17326 */ 17327 asp = (struct scsi_arq_status *)(pktp->pkt_scbp); 17328 17329 if (asp->sts_rqpkt_reason != CMD_CMPLT) { 17330 /* 17331 * The auto REQUEST SENSE failed; see if we can re-try 17332 * the original command. 17333 */ 17334 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17335 "auto request sense failed (reason=%s)\n", 17336 scsi_rname(asp->sts_rqpkt_reason)); 17337 17338 sd_reset_target(un, pktp); 17339 17340 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 17341 NULL, NULL, EIO, (clock_t)0, NULL); 17342 return; 17343 } 17344 17345 /* Save the relevant sense info into the xp for the original cmd. */ 17346 xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status))); 17347 xp->xb_sense_state = asp->sts_rqpkt_state; 17348 xp->xb_sense_resid = asp->sts_rqpkt_resid; 17349 if (xp->xb_sense_state & STATE_XARQ_DONE) { 17350 actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid; 17351 bcopy(&asp->sts_sensedata, xp->xb_sense_data, 17352 MAX_SENSE_LENGTH); 17353 } else { 17354 if (xp->xb_sense_resid > SENSE_LENGTH) { 17355 actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid; 17356 } else { 17357 actual_len = SENSE_LENGTH - xp->xb_sense_resid; 17358 } 17359 if (xp->xb_pkt_flags & SD_XB_USCSICMD) { 17360 if ((((struct uscsi_cmd *) 17361 (xp->xb_pktinfo))->uscsi_rqlen) > actual_len) { 17362 xp->xb_sense_resid = (((struct uscsi_cmd *) 17363 (xp->xb_pktinfo))->uscsi_rqlen) - 17364 actual_len; 17365 } else { 17366 xp->xb_sense_resid = 0; 17367 } 17368 } 17369 bcopy(&asp->sts_sensedata, xp->xb_sense_data, SENSE_LENGTH); 17370 } 17371 17372 /* 17373 * See if we have valid sense data, if so then turn it over to 17374 * sd_decode_sense() to figure out the right course of action. 17375 */ 17376 if (sd_validate_sense_data(un, bp, xp, actual_len) == 17377 SD_SENSE_DATA_IS_VALID) { 17378 sd_decode_sense(un, bp, xp, pktp); 17379 } 17380 } 17381 17382 17383 /* 17384 * Function: sd_print_sense_failed_msg 17385 * 17386 * Description: Print log message when RQS has failed. 17387 * 17388 * Arguments: un - ptr to associated softstate 17389 * bp - ptr to buf(9S) for the command 17390 * arg - generic message string ptr 17391 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 17392 * or SD_NO_RETRY_ISSUED 17393 * 17394 * Context: May be called from interrupt context 17395 */ 17396 17397 static void 17398 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg, 17399 int code) 17400 { 17401 char *msgp = arg; 17402 17403 ASSERT(un != NULL); 17404 ASSERT(mutex_owned(SD_MUTEX(un))); 17405 ASSERT(bp != NULL); 17406 17407 if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) { 17408 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp); 17409 } 17410 } 17411 17412 17413 /* 17414 * Function: sd_validate_sense_data 17415 * 17416 * Description: Check the given sense data for validity. 17417 * If the sense data is not valid, the command will 17418 * be either failed or retried! 17419 * 17420 * Return Code: SD_SENSE_DATA_IS_INVALID 17421 * SD_SENSE_DATA_IS_VALID 17422 * 17423 * Context: May be called from interrupt context 17424 */ 17425 17426 static int 17427 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 17428 size_t actual_len) 17429 { 17430 struct scsi_extended_sense *esp; 17431 struct scsi_pkt *pktp; 17432 char *msgp = NULL; 17433 sd_ssc_t *sscp; 17434 17435 ASSERT(un != NULL); 17436 ASSERT(mutex_owned(SD_MUTEX(un))); 17437 ASSERT(bp != NULL); 17438 ASSERT(bp != un->un_rqs_bp); 17439 ASSERT(xp != NULL); 17440 ASSERT(un->un_fm_private != NULL); 17441 17442 pktp = SD_GET_PKTP(bp); 17443 ASSERT(pktp != NULL); 17444 17445 sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc; 17446 ASSERT(sscp != NULL); 17447 17448 /* 17449 * Check the status of the RQS command (auto or manual). 17450 */ 17451 switch (xp->xb_sense_status & STATUS_MASK) { 17452 case STATUS_GOOD: 17453 break; 17454 17455 case STATUS_RESERVATION_CONFLICT: 17456 sd_pkt_status_reservation_conflict(un, bp, xp, pktp); 17457 return (SD_SENSE_DATA_IS_INVALID); 17458 17459 case STATUS_BUSY: 17460 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17461 "Busy Status on REQUEST SENSE\n"); 17462 sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL, 17463 NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter); 17464 return (SD_SENSE_DATA_IS_INVALID); 17465 17466 case STATUS_QFULL: 17467 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17468 "QFULL Status on REQUEST SENSE\n"); 17469 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, 17470 NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter); 17471 return (SD_SENSE_DATA_IS_INVALID); 17472 17473 case STATUS_CHECK: 17474 case STATUS_TERMINATED: 17475 msgp = "Check Condition on REQUEST SENSE\n"; 17476 goto sense_failed; 17477 17478 default: 17479 msgp = "Not STATUS_GOOD on REQUEST_SENSE\n"; 17480 goto sense_failed; 17481 } 17482 17483 /* 17484 * See if we got the minimum required amount of sense data. 17485 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes 17486 * or less. 17487 */ 17488 if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) || 17489 (actual_len == 0)) { 17490 msgp = "Request Sense couldn't get sense data\n"; 17491 goto sense_failed; 17492 } 17493 17494 if (actual_len < SUN_MIN_SENSE_LENGTH) { 17495 msgp = "Not enough sense information\n"; 17496 /* Mark the ssc_flags for detecting invalid sense data */ 17497 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17498 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0, 17499 "sense-data"); 17500 } 17501 goto sense_failed; 17502 } 17503 17504 /* 17505 * We require the extended sense data 17506 */ 17507 esp = (struct scsi_extended_sense *)xp->xb_sense_data; 17508 if (esp->es_class != CLASS_EXTENDED_SENSE) { 17509 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 17510 static char tmp[8]; 17511 static char buf[148]; 17512 char *p = (char *)(xp->xb_sense_data); 17513 int i; 17514 17515 mutex_enter(&sd_sense_mutex); 17516 (void) strcpy(buf, "undecodable sense information:"); 17517 for (i = 0; i < actual_len; i++) { 17518 (void) sprintf(tmp, " 0x%x", *(p++)&0xff); 17519 (void) strcpy(&buf[strlen(buf)], tmp); 17520 } 17521 i = strlen(buf); 17522 (void) strcpy(&buf[i], "-(assumed fatal)\n"); 17523 17524 if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) { 17525 scsi_log(SD_DEVINFO(un), sd_label, 17526 CE_WARN, buf); 17527 } 17528 mutex_exit(&sd_sense_mutex); 17529 } 17530 17531 /* Mark the ssc_flags for detecting invalid sense data */ 17532 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17533 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0, 17534 "sense-data"); 17535 } 17536 17537 /* Note: Legacy behavior, fail the command with no retry */ 17538 sd_return_failed_command(un, bp, EIO); 17539 return (SD_SENSE_DATA_IS_INVALID); 17540 } 17541 17542 /* 17543 * Check that es_code is valid (es_class concatenated with es_code 17544 * make up the "response code" field. es_class will always be 7, so 17545 * make sure es_code is 0, 1, 2, 3 or 0xf. es_code will indicate the 17546 * format. 17547 */ 17548 if ((esp->es_code != CODE_FMT_FIXED_CURRENT) && 17549 (esp->es_code != CODE_FMT_FIXED_DEFERRED) && 17550 (esp->es_code != CODE_FMT_DESCR_CURRENT) && 17551 (esp->es_code != CODE_FMT_DESCR_DEFERRED) && 17552 (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) { 17553 /* Mark the ssc_flags for detecting invalid sense data */ 17554 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17555 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0, 17556 "sense-data"); 17557 } 17558 goto sense_failed; 17559 } 17560 17561 return (SD_SENSE_DATA_IS_VALID); 17562 17563 sense_failed: 17564 /* 17565 * If the request sense failed (for whatever reason), attempt 17566 * to retry the original command. 17567 */ 17568 #if defined(__i386) || defined(__amd64) 17569 /* 17570 * SD_RETRY_DELAY is conditionally compile (#if fibre) in 17571 * sddef.h for Sparc platform, and x86 uses 1 binary 17572 * for both SCSI/FC. 17573 * The SD_RETRY_DELAY value need to be adjusted here 17574 * when SD_RETRY_DELAY change in sddef.h 17575 */ 17576 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 17577 sd_print_sense_failed_msg, msgp, EIO, 17578 un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL); 17579 #else 17580 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 17581 sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL); 17582 #endif 17583 17584 return (SD_SENSE_DATA_IS_INVALID); 17585 } 17586 17587 /* 17588 * Function: sd_decode_sense 17589 * 17590 * Description: Take recovery action(s) when SCSI Sense Data is received. 17591 * 17592 * Context: Interrupt context. 17593 */ 17594 17595 static void 17596 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 17597 struct scsi_pkt *pktp) 17598 { 17599 uint8_t sense_key; 17600 17601 ASSERT(un != NULL); 17602 ASSERT(mutex_owned(SD_MUTEX(un))); 17603 ASSERT(bp != NULL); 17604 ASSERT(bp != un->un_rqs_bp); 17605 ASSERT(xp != NULL); 17606 ASSERT(pktp != NULL); 17607 17608 sense_key = scsi_sense_key(xp->xb_sense_data); 17609 17610 switch (sense_key) { 17611 case KEY_NO_SENSE: 17612 sd_sense_key_no_sense(un, bp, xp, pktp); 17613 break; 17614 case KEY_RECOVERABLE_ERROR: 17615 sd_sense_key_recoverable_error(un, xp->xb_sense_data, 17616 bp, xp, pktp); 17617 break; 17618 case KEY_NOT_READY: 17619 sd_sense_key_not_ready(un, xp->xb_sense_data, 17620 bp, xp, pktp); 17621 break; 17622 case KEY_MEDIUM_ERROR: 17623 case KEY_HARDWARE_ERROR: 17624 sd_sense_key_medium_or_hardware_error(un, 17625 xp->xb_sense_data, bp, xp, pktp); 17626 break; 17627 case KEY_ILLEGAL_REQUEST: 17628 sd_sense_key_illegal_request(un, bp, xp, pktp); 17629 break; 17630 case KEY_UNIT_ATTENTION: 17631 sd_sense_key_unit_attention(un, xp->xb_sense_data, 17632 bp, xp, pktp); 17633 break; 17634 case KEY_WRITE_PROTECT: 17635 case KEY_VOLUME_OVERFLOW: 17636 case KEY_MISCOMPARE: 17637 sd_sense_key_fail_command(un, bp, xp, pktp); 17638 break; 17639 case KEY_BLANK_CHECK: 17640 sd_sense_key_blank_check(un, bp, xp, pktp); 17641 break; 17642 case KEY_ABORTED_COMMAND: 17643 sd_sense_key_aborted_command(un, bp, xp, pktp); 17644 break; 17645 case KEY_VENDOR_UNIQUE: 17646 case KEY_COPY_ABORTED: 17647 case KEY_EQUAL: 17648 case KEY_RESERVED: 17649 default: 17650 sd_sense_key_default(un, xp->xb_sense_data, 17651 bp, xp, pktp); 17652 break; 17653 } 17654 } 17655 17656 17657 /* 17658 * Function: sd_dump_memory 17659 * 17660 * Description: Debug logging routine to print the contents of a user provided 17661 * buffer. The output of the buffer is broken up into 256 byte 17662 * segments due to a size constraint of the scsi_log. 17663 * implementation. 17664 * 17665 * Arguments: un - ptr to softstate 17666 * comp - component mask 17667 * title - "title" string to preceed data when printed 17668 * data - ptr to data block to be printed 17669 * len - size of data block to be printed 17670 * fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c) 17671 * 17672 * Context: May be called from interrupt context 17673 */ 17674 17675 #define SD_DUMP_MEMORY_BUF_SIZE 256 17676 17677 static char *sd_dump_format_string[] = { 17678 " 0x%02x", 17679 " %c" 17680 }; 17681 17682 static void 17683 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data, 17684 int len, int fmt) 17685 { 17686 int i, j; 17687 int avail_count; 17688 int start_offset; 17689 int end_offset; 17690 size_t entry_len; 17691 char *bufp; 17692 char *local_buf; 17693 char *format_string; 17694 17695 ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR)); 17696 17697 /* 17698 * In the debug version of the driver, this function is called from a 17699 * number of places which are NOPs in the release driver. 17700 * The debug driver therefore has additional methods of filtering 17701 * debug output. 17702 */ 17703 #ifdef SDDEBUG 17704 /* 17705 * In the debug version of the driver we can reduce the amount of debug 17706 * messages by setting sd_error_level to something other than 17707 * SCSI_ERR_ALL and clearing bits in sd_level_mask and 17708 * sd_component_mask. 17709 */ 17710 if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) || 17711 (sd_error_level != SCSI_ERR_ALL)) { 17712 return; 17713 } 17714 if (((sd_component_mask & comp) == 0) || 17715 (sd_error_level != SCSI_ERR_ALL)) { 17716 return; 17717 } 17718 #else 17719 if (sd_error_level != SCSI_ERR_ALL) { 17720 return; 17721 } 17722 #endif 17723 17724 local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP); 17725 bufp = local_buf; 17726 /* 17727 * Available length is the length of local_buf[], minus the 17728 * length of the title string, minus one for the ":", minus 17729 * one for the newline, minus one for the NULL terminator. 17730 * This gives the #bytes available for holding the printed 17731 * values from the given data buffer. 17732 */ 17733 if (fmt == SD_LOG_HEX) { 17734 format_string = sd_dump_format_string[0]; 17735 } else /* SD_LOG_CHAR */ { 17736 format_string = sd_dump_format_string[1]; 17737 } 17738 /* 17739 * Available count is the number of elements from the given 17740 * data buffer that we can fit into the available length. 17741 * This is based upon the size of the format string used. 17742 * Make one entry and find it's size. 17743 */ 17744 (void) sprintf(bufp, format_string, data[0]); 17745 entry_len = strlen(bufp); 17746 avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len; 17747 17748 j = 0; 17749 while (j < len) { 17750 bufp = local_buf; 17751 bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE); 17752 start_offset = j; 17753 17754 end_offset = start_offset + avail_count; 17755 17756 (void) sprintf(bufp, "%s:", title); 17757 bufp += strlen(bufp); 17758 for (i = start_offset; ((i < end_offset) && (j < len)); 17759 i++, j++) { 17760 (void) sprintf(bufp, format_string, data[i]); 17761 bufp += entry_len; 17762 } 17763 (void) sprintf(bufp, "\n"); 17764 17765 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf); 17766 } 17767 kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE); 17768 } 17769 17770 /* 17771 * Function: sd_print_sense_msg 17772 * 17773 * Description: Log a message based upon the given sense data. 17774 * 17775 * Arguments: un - ptr to associated softstate 17776 * bp - ptr to buf(9S) for the command 17777 * arg - ptr to associate sd_sense_info struct 17778 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 17779 * or SD_NO_RETRY_ISSUED 17780 * 17781 * Context: May be called from interrupt context 17782 */ 17783 17784 static void 17785 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code) 17786 { 17787 struct sd_xbuf *xp; 17788 struct scsi_pkt *pktp; 17789 uint8_t *sensep; 17790 daddr_t request_blkno; 17791 diskaddr_t err_blkno; 17792 int severity; 17793 int pfa_flag; 17794 extern struct scsi_key_strings scsi_cmds[]; 17795 17796 ASSERT(un != NULL); 17797 ASSERT(mutex_owned(SD_MUTEX(un))); 17798 ASSERT(bp != NULL); 17799 xp = SD_GET_XBUF(bp); 17800 ASSERT(xp != NULL); 17801 pktp = SD_GET_PKTP(bp); 17802 ASSERT(pktp != NULL); 17803 ASSERT(arg != NULL); 17804 17805 severity = ((struct sd_sense_info *)(arg))->ssi_severity; 17806 pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag; 17807 17808 if ((code == SD_DELAYED_RETRY_ISSUED) || 17809 (code == SD_IMMEDIATE_RETRY_ISSUED)) { 17810 severity = SCSI_ERR_RETRYABLE; 17811 } 17812 17813 /* Use absolute block number for the request block number */ 17814 request_blkno = xp->xb_blkno; 17815 17816 /* 17817 * Now try to get the error block number from the sense data 17818 */ 17819 sensep = xp->xb_sense_data; 17820 17821 if (scsi_sense_info_uint64(sensep, SENSE_LENGTH, 17822 (uint64_t *)&err_blkno)) { 17823 /* 17824 * We retrieved the error block number from the information 17825 * portion of the sense data. 17826 * 17827 * For USCSI commands we are better off using the error 17828 * block no. as the requested block no. (This is the best 17829 * we can estimate.) 17830 */ 17831 if ((SD_IS_BUFIO(xp) == FALSE) && 17832 ((pktp->pkt_flags & FLAG_SILENT) == 0)) { 17833 request_blkno = err_blkno; 17834 } 17835 } else { 17836 /* 17837 * Without the es_valid bit set (for fixed format) or an 17838 * information descriptor (for descriptor format) we cannot 17839 * be certain of the error blkno, so just use the 17840 * request_blkno. 17841 */ 17842 err_blkno = (diskaddr_t)request_blkno; 17843 } 17844 17845 /* 17846 * The following will log the buffer contents for the release driver 17847 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error 17848 * level is set to verbose. 17849 */ 17850 sd_dump_memory(un, SD_LOG_IO, "Failed CDB", 17851 (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 17852 sd_dump_memory(un, SD_LOG_IO, "Sense Data", 17853 (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX); 17854 17855 if (pfa_flag == FALSE) { 17856 /* This is normally only set for USCSI */ 17857 if ((pktp->pkt_flags & FLAG_SILENT) != 0) { 17858 return; 17859 } 17860 17861 if ((SD_IS_BUFIO(xp) == TRUE) && 17862 (((sd_level_mask & SD_LOGMASK_DIAG) == 0) && 17863 (severity < sd_error_level))) { 17864 return; 17865 } 17866 } 17867 /* 17868 * Check for Sonoma Failover and keep a count of how many failed I/O's 17869 */ 17870 if ((SD_IS_LSI(un)) && 17871 (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) && 17872 (scsi_sense_asc(sensep) == 0x94) && 17873 (scsi_sense_ascq(sensep) == 0x01)) { 17874 un->un_sonoma_failure_count++; 17875 if (un->un_sonoma_failure_count > 1) { 17876 return; 17877 } 17878 } 17879 17880 if (SD_FM_LOG(un) == SD_FM_LOG_NSUP || 17881 ((scsi_sense_key(sensep) == KEY_RECOVERABLE_ERROR) && 17882 (pktp->pkt_resid == 0))) { 17883 scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity, 17884 request_blkno, err_blkno, scsi_cmds, 17885 (struct scsi_extended_sense *)sensep, 17886 un->un_additional_codes, NULL); 17887 } 17888 } 17889 17890 /* 17891 * Function: sd_sense_key_no_sense 17892 * 17893 * Description: Recovery action when sense data was not received. 17894 * 17895 * Context: May be called from interrupt context 17896 */ 17897 17898 static void 17899 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp, 17900 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17901 { 17902 struct sd_sense_info si; 17903 17904 ASSERT(un != NULL); 17905 ASSERT(mutex_owned(SD_MUTEX(un))); 17906 ASSERT(bp != NULL); 17907 ASSERT(xp != NULL); 17908 ASSERT(pktp != NULL); 17909 17910 si.ssi_severity = SCSI_ERR_FATAL; 17911 si.ssi_pfa_flag = FALSE; 17912 17913 SD_UPDATE_ERRSTATS(un, sd_softerrs); 17914 17915 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 17916 &si, EIO, (clock_t)0, NULL); 17917 } 17918 17919 17920 /* 17921 * Function: sd_sense_key_recoverable_error 17922 * 17923 * Description: Recovery actions for a SCSI "Recovered Error" sense key. 17924 * 17925 * Context: May be called from interrupt context 17926 */ 17927 17928 static void 17929 sd_sense_key_recoverable_error(struct sd_lun *un, 17930 uint8_t *sense_datap, 17931 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 17932 { 17933 struct sd_sense_info si; 17934 uint8_t asc = scsi_sense_asc(sense_datap); 17935 17936 ASSERT(un != NULL); 17937 ASSERT(mutex_owned(SD_MUTEX(un))); 17938 ASSERT(bp != NULL); 17939 ASSERT(xp != NULL); 17940 ASSERT(pktp != NULL); 17941 17942 /* 17943 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED 17944 */ 17945 if ((asc == 0x5D) && (sd_report_pfa != 0)) { 17946 SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err); 17947 si.ssi_severity = SCSI_ERR_INFO; 17948 si.ssi_pfa_flag = TRUE; 17949 } else { 17950 SD_UPDATE_ERRSTATS(un, sd_softerrs); 17951 SD_UPDATE_ERRSTATS(un, sd_rq_recov_err); 17952 si.ssi_severity = SCSI_ERR_RECOVERED; 17953 si.ssi_pfa_flag = FALSE; 17954 } 17955 17956 if (pktp->pkt_resid == 0) { 17957 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 17958 sd_return_command(un, bp); 17959 return; 17960 } 17961 17962 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 17963 &si, EIO, (clock_t)0, NULL); 17964 } 17965 17966 17967 17968 17969 /* 17970 * Function: sd_sense_key_not_ready 17971 * 17972 * Description: Recovery actions for a SCSI "Not Ready" sense key. 17973 * 17974 * Context: May be called from interrupt context 17975 */ 17976 17977 static void 17978 sd_sense_key_not_ready(struct sd_lun *un, 17979 uint8_t *sense_datap, 17980 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 17981 { 17982 struct sd_sense_info si; 17983 uint8_t asc = scsi_sense_asc(sense_datap); 17984 uint8_t ascq = scsi_sense_ascq(sense_datap); 17985 17986 ASSERT(un != NULL); 17987 ASSERT(mutex_owned(SD_MUTEX(un))); 17988 ASSERT(bp != NULL); 17989 ASSERT(xp != NULL); 17990 ASSERT(pktp != NULL); 17991 17992 si.ssi_severity = SCSI_ERR_FATAL; 17993 si.ssi_pfa_flag = FALSE; 17994 17995 /* 17996 * Update error stats after first NOT READY error. Disks may have 17997 * been powered down and may need to be restarted. For CDROMs, 17998 * report NOT READY errors only if media is present. 17999 */ 18000 if ((ISCD(un) && (asc == 0x3A)) || 18001 (xp->xb_nr_retry_count > 0)) { 18002 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18003 SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err); 18004 } 18005 18006 /* 18007 * Just fail if the "not ready" retry limit has been reached. 18008 */ 18009 if (xp->xb_nr_retry_count >= un->un_notready_retry_count) { 18010 /* Special check for error message printing for removables. */ 18011 if (un->un_f_has_removable_media && (asc == 0x04) && 18012 (ascq >= 0x04)) { 18013 si.ssi_severity = SCSI_ERR_ALL; 18014 } 18015 goto fail_command; 18016 } 18017 18018 /* 18019 * Check the ASC and ASCQ in the sense data as needed, to determine 18020 * what to do. 18021 */ 18022 switch (asc) { 18023 case 0x04: /* LOGICAL UNIT NOT READY */ 18024 /* 18025 * disk drives that don't spin up result in a very long delay 18026 * in format without warning messages. We will log a message 18027 * if the error level is set to verbose. 18028 */ 18029 if (sd_error_level < SCSI_ERR_RETRYABLE) { 18030 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18031 "logical unit not ready, resetting disk\n"); 18032 } 18033 18034 /* 18035 * There are different requirements for CDROMs and disks for 18036 * the number of retries. If a CD-ROM is giving this, it is 18037 * probably reading TOC and is in the process of getting 18038 * ready, so we should keep on trying for a long time to make 18039 * sure that all types of media are taken in account (for 18040 * some media the drive takes a long time to read TOC). For 18041 * disks we do not want to retry this too many times as this 18042 * can cause a long hang in format when the drive refuses to 18043 * spin up (a very common failure). 18044 */ 18045 switch (ascq) { 18046 case 0x00: /* LUN NOT READY, CAUSE NOT REPORTABLE */ 18047 /* 18048 * Disk drives frequently refuse to spin up which 18049 * results in a very long hang in format without 18050 * warning messages. 18051 * 18052 * Note: This code preserves the legacy behavior of 18053 * comparing xb_nr_retry_count against zero for fibre 18054 * channel targets instead of comparing against the 18055 * un_reset_retry_count value. The reason for this 18056 * discrepancy has been so utterly lost beneath the 18057 * Sands of Time that even Indiana Jones could not 18058 * find it. 18059 */ 18060 if (un->un_f_is_fibre == TRUE) { 18061 if (((sd_level_mask & SD_LOGMASK_DIAG) || 18062 (xp->xb_nr_retry_count > 0)) && 18063 (un->un_startstop_timeid == NULL)) { 18064 scsi_log(SD_DEVINFO(un), sd_label, 18065 CE_WARN, "logical unit not ready, " 18066 "resetting disk\n"); 18067 sd_reset_target(un, pktp); 18068 } 18069 } else { 18070 if (((sd_level_mask & SD_LOGMASK_DIAG) || 18071 (xp->xb_nr_retry_count > 18072 un->un_reset_retry_count)) && 18073 (un->un_startstop_timeid == NULL)) { 18074 scsi_log(SD_DEVINFO(un), sd_label, 18075 CE_WARN, "logical unit not ready, " 18076 "resetting disk\n"); 18077 sd_reset_target(un, pktp); 18078 } 18079 } 18080 break; 18081 18082 case 0x01: /* LUN IS IN PROCESS OF BECOMING READY */ 18083 /* 18084 * If the target is in the process of becoming 18085 * ready, just proceed with the retry. This can 18086 * happen with CD-ROMs that take a long time to 18087 * read TOC after a power cycle or reset. 18088 */ 18089 goto do_retry; 18090 18091 case 0x02: /* LUN NOT READY, INITITIALIZING CMD REQUIRED */ 18092 break; 18093 18094 case 0x03: /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */ 18095 /* 18096 * Retries cannot help here so just fail right away. 18097 */ 18098 goto fail_command; 18099 18100 case 0x88: 18101 /* 18102 * Vendor-unique code for T3/T4: it indicates a 18103 * path problem in a mutipathed config, but as far as 18104 * the target driver is concerned it equates to a fatal 18105 * error, so we should just fail the command right away 18106 * (without printing anything to the console). If this 18107 * is not a T3/T4, fall thru to the default recovery 18108 * action. 18109 * T3/T4 is FC only, don't need to check is_fibre 18110 */ 18111 if (SD_IS_T3(un) || SD_IS_T4(un)) { 18112 sd_return_failed_command(un, bp, EIO); 18113 return; 18114 } 18115 /* FALLTHRU */ 18116 18117 case 0x04: /* LUN NOT READY, FORMAT IN PROGRESS */ 18118 case 0x05: /* LUN NOT READY, REBUILD IN PROGRESS */ 18119 case 0x06: /* LUN NOT READY, RECALCULATION IN PROGRESS */ 18120 case 0x07: /* LUN NOT READY, OPERATION IN PROGRESS */ 18121 case 0x08: /* LUN NOT READY, LONG WRITE IN PROGRESS */ 18122 default: /* Possible future codes in SCSI spec? */ 18123 /* 18124 * For removable-media devices, do not retry if 18125 * ASCQ > 2 as these result mostly from USCSI commands 18126 * on MMC devices issued to check status of an 18127 * operation initiated in immediate mode. Also for 18128 * ASCQ >= 4 do not print console messages as these 18129 * mainly represent a user-initiated operation 18130 * instead of a system failure. 18131 */ 18132 if (un->un_f_has_removable_media) { 18133 si.ssi_severity = SCSI_ERR_ALL; 18134 goto fail_command; 18135 } 18136 break; 18137 } 18138 18139 /* 18140 * As part of our recovery attempt for the NOT READY 18141 * condition, we issue a START STOP UNIT command. However 18142 * we want to wait for a short delay before attempting this 18143 * as there may still be more commands coming back from the 18144 * target with the check condition. To do this we use 18145 * timeout(9F) to call sd_start_stop_unit_callback() after 18146 * the delay interval expires. (sd_start_stop_unit_callback() 18147 * dispatches sd_start_stop_unit_task(), which will issue 18148 * the actual START STOP UNIT command. The delay interval 18149 * is one-half of the delay that we will use to retry the 18150 * command that generated the NOT READY condition. 18151 * 18152 * Note that we could just dispatch sd_start_stop_unit_task() 18153 * from here and allow it to sleep for the delay interval, 18154 * but then we would be tying up the taskq thread 18155 * uncesessarily for the duration of the delay. 18156 * 18157 * Do not issue the START STOP UNIT if the current command 18158 * is already a START STOP UNIT. 18159 */ 18160 if (pktp->pkt_cdbp[0] == SCMD_START_STOP) { 18161 break; 18162 } 18163 18164 /* 18165 * Do not schedule the timeout if one is already pending. 18166 */ 18167 if (un->un_startstop_timeid != NULL) { 18168 SD_INFO(SD_LOG_ERROR, un, 18169 "sd_sense_key_not_ready: restart already issued to" 18170 " %s%d\n", ddi_driver_name(SD_DEVINFO(un)), 18171 ddi_get_instance(SD_DEVINFO(un))); 18172 break; 18173 } 18174 18175 /* 18176 * Schedule the START STOP UNIT command, then queue the command 18177 * for a retry. 18178 * 18179 * Note: A timeout is not scheduled for this retry because we 18180 * want the retry to be serial with the START_STOP_UNIT. The 18181 * retry will be started when the START_STOP_UNIT is completed 18182 * in sd_start_stop_unit_task. 18183 */ 18184 un->un_startstop_timeid = timeout(sd_start_stop_unit_callback, 18185 un, un->un_busy_timeout / 2); 18186 xp->xb_nr_retry_count++; 18187 sd_set_retry_bp(un, bp, 0, kstat_waitq_enter); 18188 return; 18189 18190 case 0x05: /* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */ 18191 if (sd_error_level < SCSI_ERR_RETRYABLE) { 18192 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18193 "unit does not respond to selection\n"); 18194 } 18195 break; 18196 18197 case 0x3A: /* MEDIUM NOT PRESENT */ 18198 if (sd_error_level >= SCSI_ERR_FATAL) { 18199 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18200 "Caddy not inserted in drive\n"); 18201 } 18202 18203 sr_ejected(un); 18204 un->un_mediastate = DKIO_EJECTED; 18205 /* The state has changed, inform the media watch routines */ 18206 cv_broadcast(&un->un_state_cv); 18207 /* Just fail if no media is present in the drive. */ 18208 goto fail_command; 18209 18210 default: 18211 if (sd_error_level < SCSI_ERR_RETRYABLE) { 18212 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 18213 "Unit not Ready. Additional sense code 0x%x\n", 18214 asc); 18215 } 18216 break; 18217 } 18218 18219 do_retry: 18220 18221 /* 18222 * Retry the command, as some targets may report NOT READY for 18223 * several seconds after being reset. 18224 */ 18225 xp->xb_nr_retry_count++; 18226 si.ssi_severity = SCSI_ERR_RETRYABLE; 18227 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg, 18228 &si, EIO, un->un_busy_timeout, NULL); 18229 18230 return; 18231 18232 fail_command: 18233 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18234 sd_return_failed_command(un, bp, EIO); 18235 } 18236 18237 18238 18239 /* 18240 * Function: sd_sense_key_medium_or_hardware_error 18241 * 18242 * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error" 18243 * sense key. 18244 * 18245 * Context: May be called from interrupt context 18246 */ 18247 18248 static void 18249 sd_sense_key_medium_or_hardware_error(struct sd_lun *un, 18250 uint8_t *sense_datap, 18251 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 18252 { 18253 struct sd_sense_info si; 18254 uint8_t sense_key = scsi_sense_key(sense_datap); 18255 uint8_t asc = scsi_sense_asc(sense_datap); 18256 18257 ASSERT(un != NULL); 18258 ASSERT(mutex_owned(SD_MUTEX(un))); 18259 ASSERT(bp != NULL); 18260 ASSERT(xp != NULL); 18261 ASSERT(pktp != NULL); 18262 18263 si.ssi_severity = SCSI_ERR_FATAL; 18264 si.ssi_pfa_flag = FALSE; 18265 18266 if (sense_key == KEY_MEDIUM_ERROR) { 18267 SD_UPDATE_ERRSTATS(un, sd_rq_media_err); 18268 } 18269 18270 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18271 18272 if ((un->un_reset_retry_count != 0) && 18273 (xp->xb_retry_count == un->un_reset_retry_count)) { 18274 mutex_exit(SD_MUTEX(un)); 18275 /* Do NOT do a RESET_ALL here: too intrusive. (4112858) */ 18276 if (un->un_f_allow_bus_device_reset == TRUE) { 18277 18278 boolean_t try_resetting_target = B_TRUE; 18279 18280 /* 18281 * We need to be able to handle specific ASC when we are 18282 * handling a KEY_HARDWARE_ERROR. In particular 18283 * taking the default action of resetting the target may 18284 * not be the appropriate way to attempt recovery. 18285 * Resetting a target because of a single LUN failure 18286 * victimizes all LUNs on that target. 18287 * 18288 * This is true for the LSI arrays, if an LSI 18289 * array controller returns an ASC of 0x84 (LUN Dead) we 18290 * should trust it. 18291 */ 18292 18293 if (sense_key == KEY_HARDWARE_ERROR) { 18294 switch (asc) { 18295 case 0x84: 18296 if (SD_IS_LSI(un)) { 18297 try_resetting_target = B_FALSE; 18298 } 18299 break; 18300 default: 18301 break; 18302 } 18303 } 18304 18305 if (try_resetting_target == B_TRUE) { 18306 int reset_retval = 0; 18307 if (un->un_f_lun_reset_enabled == TRUE) { 18308 SD_TRACE(SD_LOG_IO_CORE, un, 18309 "sd_sense_key_medium_or_hardware_" 18310 "error: issuing RESET_LUN\n"); 18311 reset_retval = 18312 scsi_reset(SD_ADDRESS(un), 18313 RESET_LUN); 18314 } 18315 if (reset_retval == 0) { 18316 SD_TRACE(SD_LOG_IO_CORE, un, 18317 "sd_sense_key_medium_or_hardware_" 18318 "error: issuing RESET_TARGET\n"); 18319 (void) scsi_reset(SD_ADDRESS(un), 18320 RESET_TARGET); 18321 } 18322 } 18323 } 18324 mutex_enter(SD_MUTEX(un)); 18325 } 18326 18327 /* 18328 * This really ought to be a fatal error, but we will retry anyway 18329 * as some drives report this as a spurious error. 18330 */ 18331 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18332 &si, EIO, (clock_t)0, NULL); 18333 } 18334 18335 18336 18337 /* 18338 * Function: sd_sense_key_illegal_request 18339 * 18340 * Description: Recovery actions for a SCSI "Illegal Request" sense key. 18341 * 18342 * Context: May be called from interrupt context 18343 */ 18344 18345 static void 18346 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp, 18347 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18348 { 18349 struct sd_sense_info si; 18350 18351 ASSERT(un != NULL); 18352 ASSERT(mutex_owned(SD_MUTEX(un))); 18353 ASSERT(bp != NULL); 18354 ASSERT(xp != NULL); 18355 ASSERT(pktp != NULL); 18356 18357 SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err); 18358 18359 si.ssi_severity = SCSI_ERR_INFO; 18360 si.ssi_pfa_flag = FALSE; 18361 18362 /* Pointless to retry if the target thinks it's an illegal request */ 18363 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18364 sd_return_failed_command(un, bp, EIO); 18365 } 18366 18367 18368 18369 18370 /* 18371 * Function: sd_sense_key_unit_attention 18372 * 18373 * Description: Recovery actions for a SCSI "Unit Attention" sense key. 18374 * 18375 * Context: May be called from interrupt context 18376 */ 18377 18378 static void 18379 sd_sense_key_unit_attention(struct sd_lun *un, 18380 uint8_t *sense_datap, 18381 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 18382 { 18383 /* 18384 * For UNIT ATTENTION we allow retries for one minute. Devices 18385 * like Sonoma can return UNIT ATTENTION close to a minute 18386 * under certain conditions. 18387 */ 18388 int retry_check_flag = SD_RETRIES_UA; 18389 boolean_t kstat_updated = B_FALSE; 18390 struct sd_sense_info si; 18391 uint8_t asc = scsi_sense_asc(sense_datap); 18392 uint8_t ascq = scsi_sense_ascq(sense_datap); 18393 18394 ASSERT(un != NULL); 18395 ASSERT(mutex_owned(SD_MUTEX(un))); 18396 ASSERT(bp != NULL); 18397 ASSERT(xp != NULL); 18398 ASSERT(pktp != NULL); 18399 18400 si.ssi_severity = SCSI_ERR_INFO; 18401 si.ssi_pfa_flag = FALSE; 18402 18403 18404 switch (asc) { 18405 case 0x5D: /* FAILURE PREDICTION THRESHOLD EXCEEDED */ 18406 if (sd_report_pfa != 0) { 18407 SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err); 18408 si.ssi_pfa_flag = TRUE; 18409 retry_check_flag = SD_RETRIES_STANDARD; 18410 goto do_retry; 18411 } 18412 18413 break; 18414 18415 case 0x29: /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */ 18416 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 18417 un->un_resvd_status |= 18418 (SD_LOST_RESERVE | SD_WANT_RESERVE); 18419 } 18420 #ifdef _LP64 18421 if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) { 18422 if (taskq_dispatch(sd_tq, sd_reenable_dsense_task, 18423 un, KM_NOSLEEP) == 0) { 18424 /* 18425 * If we can't dispatch the task we'll just 18426 * live without descriptor sense. We can 18427 * try again on the next "unit attention" 18428 */ 18429 SD_ERROR(SD_LOG_ERROR, un, 18430 "sd_sense_key_unit_attention: " 18431 "Could not dispatch " 18432 "sd_reenable_dsense_task\n"); 18433 } 18434 } 18435 #endif /* _LP64 */ 18436 /* FALLTHRU */ 18437 18438 case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */ 18439 if (!un->un_f_has_removable_media) { 18440 break; 18441 } 18442 18443 /* 18444 * When we get a unit attention from a removable-media device, 18445 * it may be in a state that will take a long time to recover 18446 * (e.g., from a reset). Since we are executing in interrupt 18447 * context here, we cannot wait around for the device to come 18448 * back. So hand this command off to sd_media_change_task() 18449 * for deferred processing under taskq thread context. (Note 18450 * that the command still may be failed if a problem is 18451 * encountered at a later time.) 18452 */ 18453 if (taskq_dispatch(sd_tq, sd_media_change_task, pktp, 18454 KM_NOSLEEP) == 0) { 18455 /* 18456 * Cannot dispatch the request so fail the command. 18457 */ 18458 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18459 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 18460 si.ssi_severity = SCSI_ERR_FATAL; 18461 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18462 sd_return_failed_command(un, bp, EIO); 18463 } 18464 18465 /* 18466 * If failed to dispatch sd_media_change_task(), we already 18467 * updated kstat. If succeed to dispatch sd_media_change_task(), 18468 * we should update kstat later if it encounters an error. So, 18469 * we update kstat_updated flag here. 18470 */ 18471 kstat_updated = B_TRUE; 18472 18473 /* 18474 * Either the command has been successfully dispatched to a 18475 * task Q for retrying, or the dispatch failed. In either case 18476 * do NOT retry again by calling sd_retry_command. This sets up 18477 * two retries of the same command and when one completes and 18478 * frees the resources the other will access freed memory, 18479 * a bad thing. 18480 */ 18481 return; 18482 18483 default: 18484 break; 18485 } 18486 18487 /* 18488 * ASC ASCQ 18489 * 2A 09 Capacity data has changed 18490 * 2A 01 Mode parameters changed 18491 * 3F 0E Reported luns data has changed 18492 * Arrays that support logical unit expansion should report 18493 * capacity changes(2Ah/09). Mode parameters changed and 18494 * reported luns data has changed are the approximation. 18495 */ 18496 if (((asc == 0x2a) && (ascq == 0x09)) || 18497 ((asc == 0x2a) && (ascq == 0x01)) || 18498 ((asc == 0x3f) && (ascq == 0x0e))) { 18499 if (taskq_dispatch(sd_tq, sd_target_change_task, un, 18500 KM_NOSLEEP) == 0) { 18501 SD_ERROR(SD_LOG_ERROR, un, 18502 "sd_sense_key_unit_attention: " 18503 "Could not dispatch sd_target_change_task\n"); 18504 } 18505 } 18506 18507 /* 18508 * Update kstat if we haven't done that. 18509 */ 18510 if (!kstat_updated) { 18511 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18512 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 18513 } 18514 18515 do_retry: 18516 sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si, 18517 EIO, SD_UA_RETRY_DELAY, NULL); 18518 } 18519 18520 18521 18522 /* 18523 * Function: sd_sense_key_fail_command 18524 * 18525 * Description: Use to fail a command when we don't like the sense key that 18526 * was returned. 18527 * 18528 * Context: May be called from interrupt context 18529 */ 18530 18531 static void 18532 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp, 18533 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18534 { 18535 struct sd_sense_info si; 18536 18537 ASSERT(un != NULL); 18538 ASSERT(mutex_owned(SD_MUTEX(un))); 18539 ASSERT(bp != NULL); 18540 ASSERT(xp != NULL); 18541 ASSERT(pktp != NULL); 18542 18543 si.ssi_severity = SCSI_ERR_FATAL; 18544 si.ssi_pfa_flag = FALSE; 18545 18546 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18547 sd_return_failed_command(un, bp, EIO); 18548 } 18549 18550 18551 18552 /* 18553 * Function: sd_sense_key_blank_check 18554 * 18555 * Description: Recovery actions for a SCSI "Blank Check" sense key. 18556 * Has no monetary connotation. 18557 * 18558 * Context: May be called from interrupt context 18559 */ 18560 18561 static void 18562 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp, 18563 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18564 { 18565 struct sd_sense_info si; 18566 18567 ASSERT(un != NULL); 18568 ASSERT(mutex_owned(SD_MUTEX(un))); 18569 ASSERT(bp != NULL); 18570 ASSERT(xp != NULL); 18571 ASSERT(pktp != NULL); 18572 18573 /* 18574 * Blank check is not fatal for removable devices, therefore 18575 * it does not require a console message. 18576 */ 18577 si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL : 18578 SCSI_ERR_FATAL; 18579 si.ssi_pfa_flag = FALSE; 18580 18581 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18582 sd_return_failed_command(un, bp, EIO); 18583 } 18584 18585 18586 18587 18588 /* 18589 * Function: sd_sense_key_aborted_command 18590 * 18591 * Description: Recovery actions for a SCSI "Aborted Command" sense key. 18592 * 18593 * Context: May be called from interrupt context 18594 */ 18595 18596 static void 18597 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp, 18598 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18599 { 18600 struct sd_sense_info si; 18601 18602 ASSERT(un != NULL); 18603 ASSERT(mutex_owned(SD_MUTEX(un))); 18604 ASSERT(bp != NULL); 18605 ASSERT(xp != NULL); 18606 ASSERT(pktp != NULL); 18607 18608 si.ssi_severity = SCSI_ERR_FATAL; 18609 si.ssi_pfa_flag = FALSE; 18610 18611 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18612 18613 /* 18614 * This really ought to be a fatal error, but we will retry anyway 18615 * as some drives report this as a spurious error. 18616 */ 18617 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18618 &si, EIO, drv_usectohz(100000), NULL); 18619 } 18620 18621 18622 18623 /* 18624 * Function: sd_sense_key_default 18625 * 18626 * Description: Default recovery action for several SCSI sense keys (basically 18627 * attempts a retry). 18628 * 18629 * Context: May be called from interrupt context 18630 */ 18631 18632 static void 18633 sd_sense_key_default(struct sd_lun *un, 18634 uint8_t *sense_datap, 18635 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 18636 { 18637 struct sd_sense_info si; 18638 uint8_t sense_key = scsi_sense_key(sense_datap); 18639 18640 ASSERT(un != NULL); 18641 ASSERT(mutex_owned(SD_MUTEX(un))); 18642 ASSERT(bp != NULL); 18643 ASSERT(xp != NULL); 18644 ASSERT(pktp != NULL); 18645 18646 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18647 18648 /* 18649 * Undecoded sense key. Attempt retries and hope that will fix 18650 * the problem. Otherwise, we're dead. 18651 */ 18652 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 18653 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18654 "Unhandled Sense Key '%s'\n", sense_keys[sense_key]); 18655 } 18656 18657 si.ssi_severity = SCSI_ERR_FATAL; 18658 si.ssi_pfa_flag = FALSE; 18659 18660 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18661 &si, EIO, (clock_t)0, NULL); 18662 } 18663 18664 18665 18666 /* 18667 * Function: sd_print_retry_msg 18668 * 18669 * Description: Print a message indicating the retry action being taken. 18670 * 18671 * Arguments: un - ptr to associated softstate 18672 * bp - ptr to buf(9S) for the command 18673 * arg - not used. 18674 * flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 18675 * or SD_NO_RETRY_ISSUED 18676 * 18677 * Context: May be called from interrupt context 18678 */ 18679 /* ARGSUSED */ 18680 static void 18681 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag) 18682 { 18683 struct sd_xbuf *xp; 18684 struct scsi_pkt *pktp; 18685 char *reasonp; 18686 char *msgp; 18687 18688 ASSERT(un != NULL); 18689 ASSERT(mutex_owned(SD_MUTEX(un))); 18690 ASSERT(bp != NULL); 18691 pktp = SD_GET_PKTP(bp); 18692 ASSERT(pktp != NULL); 18693 xp = SD_GET_XBUF(bp); 18694 ASSERT(xp != NULL); 18695 18696 ASSERT(!mutex_owned(&un->un_pm_mutex)); 18697 mutex_enter(&un->un_pm_mutex); 18698 if ((un->un_state == SD_STATE_SUSPENDED) || 18699 (SD_DEVICE_IS_IN_LOW_POWER(un)) || 18700 (pktp->pkt_flags & FLAG_SILENT)) { 18701 mutex_exit(&un->un_pm_mutex); 18702 goto update_pkt_reason; 18703 } 18704 mutex_exit(&un->un_pm_mutex); 18705 18706 /* 18707 * Suppress messages if they are all the same pkt_reason; with 18708 * TQ, many (up to 256) are returned with the same pkt_reason. 18709 * If we are in panic, then suppress the retry messages. 18710 */ 18711 switch (flag) { 18712 case SD_NO_RETRY_ISSUED: 18713 msgp = "giving up"; 18714 break; 18715 case SD_IMMEDIATE_RETRY_ISSUED: 18716 case SD_DELAYED_RETRY_ISSUED: 18717 if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) || 18718 ((pktp->pkt_reason == un->un_last_pkt_reason) && 18719 (sd_error_level != SCSI_ERR_ALL))) { 18720 return; 18721 } 18722 msgp = "retrying command"; 18723 break; 18724 default: 18725 goto update_pkt_reason; 18726 } 18727 18728 reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" : 18729 scsi_rname(pktp->pkt_reason)); 18730 18731 if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) { 18732 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18733 "SCSI transport failed: reason '%s': %s\n", reasonp, msgp); 18734 } 18735 18736 update_pkt_reason: 18737 /* 18738 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason. 18739 * This is to prevent multiple console messages for the same failure 18740 * condition. Note that un->un_last_pkt_reason is NOT restored if & 18741 * when the command is retried successfully because there still may be 18742 * more commands coming back with the same value of pktp->pkt_reason. 18743 */ 18744 if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) { 18745 un->un_last_pkt_reason = pktp->pkt_reason; 18746 } 18747 } 18748 18749 18750 /* 18751 * Function: sd_print_cmd_incomplete_msg 18752 * 18753 * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason. 18754 * 18755 * Arguments: un - ptr to associated softstate 18756 * bp - ptr to buf(9S) for the command 18757 * arg - passed to sd_print_retry_msg() 18758 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 18759 * or SD_NO_RETRY_ISSUED 18760 * 18761 * Context: May be called from interrupt context 18762 */ 18763 18764 static void 18765 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, 18766 int code) 18767 { 18768 dev_info_t *dip; 18769 18770 ASSERT(un != NULL); 18771 ASSERT(mutex_owned(SD_MUTEX(un))); 18772 ASSERT(bp != NULL); 18773 18774 switch (code) { 18775 case SD_NO_RETRY_ISSUED: 18776 /* Command was failed. Someone turned off this target? */ 18777 if (un->un_state != SD_STATE_OFFLINE) { 18778 /* 18779 * Suppress message if we are detaching and 18780 * device has been disconnected 18781 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation 18782 * private interface and not part of the DDI 18783 */ 18784 dip = un->un_sd->sd_dev; 18785 if (!(DEVI_IS_DETACHING(dip) && 18786 DEVI_IS_DEVICE_REMOVED(dip))) { 18787 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18788 "disk not responding to selection\n"); 18789 } 18790 New_state(un, SD_STATE_OFFLINE); 18791 } 18792 break; 18793 18794 case SD_DELAYED_RETRY_ISSUED: 18795 case SD_IMMEDIATE_RETRY_ISSUED: 18796 default: 18797 /* Command was successfully queued for retry */ 18798 sd_print_retry_msg(un, bp, arg, code); 18799 break; 18800 } 18801 } 18802 18803 18804 /* 18805 * Function: sd_pkt_reason_cmd_incomplete 18806 * 18807 * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason. 18808 * 18809 * Context: May be called from interrupt context 18810 */ 18811 18812 static void 18813 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp, 18814 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18815 { 18816 int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE; 18817 18818 ASSERT(un != NULL); 18819 ASSERT(mutex_owned(SD_MUTEX(un))); 18820 ASSERT(bp != NULL); 18821 ASSERT(xp != NULL); 18822 ASSERT(pktp != NULL); 18823 18824 /* Do not do a reset if selection did not complete */ 18825 /* Note: Should this not just check the bit? */ 18826 if (pktp->pkt_state != STATE_GOT_BUS) { 18827 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18828 sd_reset_target(un, pktp); 18829 } 18830 18831 /* 18832 * If the target was not successfully selected, then set 18833 * SD_RETRIES_FAILFAST to indicate that we lost communication 18834 * with the target, and further retries and/or commands are 18835 * likely to take a long time. 18836 */ 18837 if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) { 18838 flag |= SD_RETRIES_FAILFAST; 18839 } 18840 18841 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18842 18843 sd_retry_command(un, bp, flag, 18844 sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18845 } 18846 18847 18848 18849 /* 18850 * Function: sd_pkt_reason_cmd_tran_err 18851 * 18852 * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason. 18853 * 18854 * Context: May be called from interrupt context 18855 */ 18856 18857 static void 18858 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp, 18859 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18860 { 18861 ASSERT(un != NULL); 18862 ASSERT(mutex_owned(SD_MUTEX(un))); 18863 ASSERT(bp != NULL); 18864 ASSERT(xp != NULL); 18865 ASSERT(pktp != NULL); 18866 18867 /* 18868 * Do not reset if we got a parity error, or if 18869 * selection did not complete. 18870 */ 18871 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18872 /* Note: Should this not just check the bit for pkt_state? */ 18873 if (((pktp->pkt_statistics & STAT_PERR) == 0) && 18874 (pktp->pkt_state != STATE_GOT_BUS)) { 18875 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18876 sd_reset_target(un, pktp); 18877 } 18878 18879 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18880 18881 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 18882 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18883 } 18884 18885 18886 18887 /* 18888 * Function: sd_pkt_reason_cmd_reset 18889 * 18890 * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason. 18891 * 18892 * Context: May be called from interrupt context 18893 */ 18894 18895 static void 18896 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp, 18897 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18898 { 18899 ASSERT(un != NULL); 18900 ASSERT(mutex_owned(SD_MUTEX(un))); 18901 ASSERT(bp != NULL); 18902 ASSERT(xp != NULL); 18903 ASSERT(pktp != NULL); 18904 18905 /* The target may still be running the command, so try to reset. */ 18906 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18907 sd_reset_target(un, pktp); 18908 18909 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18910 18911 /* 18912 * If pkt_reason is CMD_RESET chances are that this pkt got 18913 * reset because another target on this bus caused it. The target 18914 * that caused it should get CMD_TIMEOUT with pkt_statistics 18915 * of STAT_TIMEOUT/STAT_DEV_RESET. 18916 */ 18917 18918 sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE), 18919 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18920 } 18921 18922 18923 18924 18925 /* 18926 * Function: sd_pkt_reason_cmd_aborted 18927 * 18928 * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason. 18929 * 18930 * Context: May be called from interrupt context 18931 */ 18932 18933 static void 18934 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp, 18935 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18936 { 18937 ASSERT(un != NULL); 18938 ASSERT(mutex_owned(SD_MUTEX(un))); 18939 ASSERT(bp != NULL); 18940 ASSERT(xp != NULL); 18941 ASSERT(pktp != NULL); 18942 18943 /* The target may still be running the command, so try to reset. */ 18944 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18945 sd_reset_target(un, pktp); 18946 18947 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18948 18949 /* 18950 * If pkt_reason is CMD_ABORTED chances are that this pkt got 18951 * aborted because another target on this bus caused it. The target 18952 * that caused it should get CMD_TIMEOUT with pkt_statistics 18953 * of STAT_TIMEOUT/STAT_DEV_RESET. 18954 */ 18955 18956 sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE), 18957 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18958 } 18959 18960 18961 18962 /* 18963 * Function: sd_pkt_reason_cmd_timeout 18964 * 18965 * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason. 18966 * 18967 * Context: May be called from interrupt context 18968 */ 18969 18970 static void 18971 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp, 18972 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18973 { 18974 ASSERT(un != NULL); 18975 ASSERT(mutex_owned(SD_MUTEX(un))); 18976 ASSERT(bp != NULL); 18977 ASSERT(xp != NULL); 18978 ASSERT(pktp != NULL); 18979 18980 18981 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18982 sd_reset_target(un, pktp); 18983 18984 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18985 18986 /* 18987 * A command timeout indicates that we could not establish 18988 * communication with the target, so set SD_RETRIES_FAILFAST 18989 * as further retries/commands are likely to take a long time. 18990 */ 18991 sd_retry_command(un, bp, 18992 (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST), 18993 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18994 } 18995 18996 18997 18998 /* 18999 * Function: sd_pkt_reason_cmd_unx_bus_free 19000 * 19001 * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason. 19002 * 19003 * Context: May be called from interrupt context 19004 */ 19005 19006 static void 19007 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp, 19008 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19009 { 19010 void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code); 19011 19012 ASSERT(un != NULL); 19013 ASSERT(mutex_owned(SD_MUTEX(un))); 19014 ASSERT(bp != NULL); 19015 ASSERT(xp != NULL); 19016 ASSERT(pktp != NULL); 19017 19018 SD_UPDATE_ERRSTATS(un, sd_harderrs); 19019 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19020 19021 funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ? 19022 sd_print_retry_msg : NULL; 19023 19024 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 19025 funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19026 } 19027 19028 19029 /* 19030 * Function: sd_pkt_reason_cmd_tag_reject 19031 * 19032 * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason. 19033 * 19034 * Context: May be called from interrupt context 19035 */ 19036 19037 static void 19038 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp, 19039 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19040 { 19041 ASSERT(un != NULL); 19042 ASSERT(mutex_owned(SD_MUTEX(un))); 19043 ASSERT(bp != NULL); 19044 ASSERT(xp != NULL); 19045 ASSERT(pktp != NULL); 19046 19047 SD_UPDATE_ERRSTATS(un, sd_harderrs); 19048 pktp->pkt_flags = 0; 19049 un->un_tagflags = 0; 19050 if (un->un_f_opt_queueing == TRUE) { 19051 un->un_throttle = min(un->un_throttle, 3); 19052 } else { 19053 un->un_throttle = 1; 19054 } 19055 mutex_exit(SD_MUTEX(un)); 19056 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 19057 mutex_enter(SD_MUTEX(un)); 19058 19059 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19060 19061 /* Legacy behavior not to check retry counts here. */ 19062 sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE), 19063 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19064 } 19065 19066 19067 /* 19068 * Function: sd_pkt_reason_default 19069 * 19070 * Description: Default recovery actions for SCSA pkt_reason values that 19071 * do not have more explicit recovery actions. 19072 * 19073 * Context: May be called from interrupt context 19074 */ 19075 19076 static void 19077 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp, 19078 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19079 { 19080 ASSERT(un != NULL); 19081 ASSERT(mutex_owned(SD_MUTEX(un))); 19082 ASSERT(bp != NULL); 19083 ASSERT(xp != NULL); 19084 ASSERT(pktp != NULL); 19085 19086 SD_UPDATE_ERRSTATS(un, sd_transerrs); 19087 sd_reset_target(un, pktp); 19088 19089 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19090 19091 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 19092 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19093 } 19094 19095 19096 19097 /* 19098 * Function: sd_pkt_status_check_condition 19099 * 19100 * Description: Recovery actions for a "STATUS_CHECK" SCSI command status. 19101 * 19102 * Context: May be called from interrupt context 19103 */ 19104 19105 static void 19106 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp, 19107 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19108 { 19109 ASSERT(un != NULL); 19110 ASSERT(mutex_owned(SD_MUTEX(un))); 19111 ASSERT(bp != NULL); 19112 ASSERT(xp != NULL); 19113 ASSERT(pktp != NULL); 19114 19115 SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: " 19116 "entry: buf:0x%p xp:0x%p\n", bp, xp); 19117 19118 /* 19119 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the 19120 * command will be retried after the request sense). Otherwise, retry 19121 * the command. Note: we are issuing the request sense even though the 19122 * retry limit may have been reached for the failed command. 19123 */ 19124 if (un->un_f_arq_enabled == FALSE) { 19125 SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: " 19126 "no ARQ, sending request sense command\n"); 19127 sd_send_request_sense_command(un, bp, pktp); 19128 } else { 19129 SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: " 19130 "ARQ,retrying request sense command\n"); 19131 #if defined(__i386) || defined(__amd64) 19132 /* 19133 * The SD_RETRY_DELAY value need to be adjusted here 19134 * when SD_RETRY_DELAY change in sddef.h 19135 */ 19136 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO, 19137 un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, 19138 NULL); 19139 #else 19140 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, 19141 EIO, SD_RETRY_DELAY, NULL); 19142 #endif 19143 } 19144 19145 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n"); 19146 } 19147 19148 19149 /* 19150 * Function: sd_pkt_status_busy 19151 * 19152 * Description: Recovery actions for a "STATUS_BUSY" SCSI command status. 19153 * 19154 * Context: May be called from interrupt context 19155 */ 19156 19157 static void 19158 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 19159 struct scsi_pkt *pktp) 19160 { 19161 ASSERT(un != NULL); 19162 ASSERT(mutex_owned(SD_MUTEX(un))); 19163 ASSERT(bp != NULL); 19164 ASSERT(xp != NULL); 19165 ASSERT(pktp != NULL); 19166 19167 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19168 "sd_pkt_status_busy: entry\n"); 19169 19170 /* If retries are exhausted, just fail the command. */ 19171 if (xp->xb_retry_count >= un->un_busy_retry_count) { 19172 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 19173 "device busy too long\n"); 19174 sd_return_failed_command(un, bp, EIO); 19175 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19176 "sd_pkt_status_busy: exit\n"); 19177 return; 19178 } 19179 xp->xb_retry_count++; 19180 19181 /* 19182 * Try to reset the target. However, we do not want to perform 19183 * more than one reset if the device continues to fail. The reset 19184 * will be performed when the retry count reaches the reset 19185 * threshold. This threshold should be set such that at least 19186 * one retry is issued before the reset is performed. 19187 */ 19188 if (xp->xb_retry_count == 19189 ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) { 19190 int rval = 0; 19191 mutex_exit(SD_MUTEX(un)); 19192 if (un->un_f_allow_bus_device_reset == TRUE) { 19193 /* 19194 * First try to reset the LUN; if we cannot then 19195 * try to reset the target. 19196 */ 19197 if (un->un_f_lun_reset_enabled == TRUE) { 19198 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19199 "sd_pkt_status_busy: RESET_LUN\n"); 19200 rval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 19201 } 19202 if (rval == 0) { 19203 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19204 "sd_pkt_status_busy: RESET_TARGET\n"); 19205 rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 19206 } 19207 } 19208 if (rval == 0) { 19209 /* 19210 * If the RESET_LUN and/or RESET_TARGET failed, 19211 * try RESET_ALL 19212 */ 19213 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19214 "sd_pkt_status_busy: RESET_ALL\n"); 19215 rval = scsi_reset(SD_ADDRESS(un), RESET_ALL); 19216 } 19217 mutex_enter(SD_MUTEX(un)); 19218 if (rval == 0) { 19219 /* 19220 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed. 19221 * At this point we give up & fail the command. 19222 */ 19223 sd_return_failed_command(un, bp, EIO); 19224 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19225 "sd_pkt_status_busy: exit (failed cmd)\n"); 19226 return; 19227 } 19228 } 19229 19230 /* 19231 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as 19232 * we have already checked the retry counts above. 19233 */ 19234 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 19235 EIO, un->un_busy_timeout, NULL); 19236 19237 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19238 "sd_pkt_status_busy: exit\n"); 19239 } 19240 19241 19242 /* 19243 * Function: sd_pkt_status_reservation_conflict 19244 * 19245 * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI 19246 * command status. 19247 * 19248 * Context: May be called from interrupt context 19249 */ 19250 19251 static void 19252 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp, 19253 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19254 { 19255 ASSERT(un != NULL); 19256 ASSERT(mutex_owned(SD_MUTEX(un))); 19257 ASSERT(bp != NULL); 19258 ASSERT(xp != NULL); 19259 ASSERT(pktp != NULL); 19260 19261 /* 19262 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation 19263 * conflict could be due to various reasons like incorrect keys, not 19264 * registered or not reserved etc. So, we return EACCES to the caller. 19265 */ 19266 if (un->un_reservation_type == SD_SCSI3_RESERVATION) { 19267 int cmd = SD_GET_PKT_OPCODE(pktp); 19268 if ((cmd == SCMD_PERSISTENT_RESERVE_IN) || 19269 (cmd == SCMD_PERSISTENT_RESERVE_OUT)) { 19270 sd_return_failed_command(un, bp, EACCES); 19271 return; 19272 } 19273 } 19274 19275 un->un_resvd_status |= SD_RESERVATION_CONFLICT; 19276 19277 if ((un->un_resvd_status & SD_FAILFAST) != 0) { 19278 if (sd_failfast_enable != 0) { 19279 /* By definition, we must panic here.... */ 19280 sd_panic_for_res_conflict(un); 19281 /*NOTREACHED*/ 19282 } 19283 SD_ERROR(SD_LOG_IO, un, 19284 "sd_handle_resv_conflict: Disk Reserved\n"); 19285 sd_return_failed_command(un, bp, EACCES); 19286 return; 19287 } 19288 19289 /* 19290 * 1147670: retry only if sd_retry_on_reservation_conflict 19291 * property is set (default is 1). Retries will not succeed 19292 * on a disk reserved by another initiator. HA systems 19293 * may reset this via sd.conf to avoid these retries. 19294 * 19295 * Note: The legacy return code for this failure is EIO, however EACCES 19296 * seems more appropriate for a reservation conflict. 19297 */ 19298 if (sd_retry_on_reservation_conflict == 0) { 19299 SD_ERROR(SD_LOG_IO, un, 19300 "sd_handle_resv_conflict: Device Reserved\n"); 19301 sd_return_failed_command(un, bp, EIO); 19302 return; 19303 } 19304 19305 /* 19306 * Retry the command if we can. 19307 * 19308 * Note: The legacy return code for this failure is EIO, however EACCES 19309 * seems more appropriate for a reservation conflict. 19310 */ 19311 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO, 19312 (clock_t)2, NULL); 19313 } 19314 19315 19316 19317 /* 19318 * Function: sd_pkt_status_qfull 19319 * 19320 * Description: Handle a QUEUE FULL condition from the target. This can 19321 * occur if the HBA does not handle the queue full condition. 19322 * (Basically this means third-party HBAs as Sun HBAs will 19323 * handle the queue full condition.) Note that if there are 19324 * some commands already in the transport, then the queue full 19325 * has occurred because the queue for this nexus is actually 19326 * full. If there are no commands in the transport, then the 19327 * queue full is resulting from some other initiator or lun 19328 * consuming all the resources at the target. 19329 * 19330 * Context: May be called from interrupt context 19331 */ 19332 19333 static void 19334 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp, 19335 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19336 { 19337 ASSERT(un != NULL); 19338 ASSERT(mutex_owned(SD_MUTEX(un))); 19339 ASSERT(bp != NULL); 19340 ASSERT(xp != NULL); 19341 ASSERT(pktp != NULL); 19342 19343 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19344 "sd_pkt_status_qfull: entry\n"); 19345 19346 /* 19347 * Just lower the QFULL throttle and retry the command. Note that 19348 * we do not limit the number of retries here. 19349 */ 19350 sd_reduce_throttle(un, SD_THROTTLE_QFULL); 19351 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0, 19352 SD_RESTART_TIMEOUT, NULL); 19353 19354 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19355 "sd_pkt_status_qfull: exit\n"); 19356 } 19357 19358 19359 /* 19360 * Function: sd_reset_target 19361 * 19362 * Description: Issue a scsi_reset(9F), with either RESET_LUN, 19363 * RESET_TARGET, or RESET_ALL. 19364 * 19365 * Context: May be called under interrupt context. 19366 */ 19367 19368 static void 19369 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp) 19370 { 19371 int rval = 0; 19372 19373 ASSERT(un != NULL); 19374 ASSERT(mutex_owned(SD_MUTEX(un))); 19375 ASSERT(pktp != NULL); 19376 19377 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n"); 19378 19379 /* 19380 * No need to reset if the transport layer has already done so. 19381 */ 19382 if ((pktp->pkt_statistics & 19383 (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) { 19384 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19385 "sd_reset_target: no reset\n"); 19386 return; 19387 } 19388 19389 mutex_exit(SD_MUTEX(un)); 19390 19391 if (un->un_f_allow_bus_device_reset == TRUE) { 19392 if (un->un_f_lun_reset_enabled == TRUE) { 19393 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19394 "sd_reset_target: RESET_LUN\n"); 19395 rval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 19396 } 19397 if (rval == 0) { 19398 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19399 "sd_reset_target: RESET_TARGET\n"); 19400 rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 19401 } 19402 } 19403 19404 if (rval == 0) { 19405 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19406 "sd_reset_target: RESET_ALL\n"); 19407 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 19408 } 19409 19410 mutex_enter(SD_MUTEX(un)); 19411 19412 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n"); 19413 } 19414 19415 /* 19416 * Function: sd_target_change_task 19417 * 19418 * Description: Handle dynamic target change 19419 * 19420 * Context: Executes in a taskq() thread context 19421 */ 19422 static void 19423 sd_target_change_task(void *arg) 19424 { 19425 struct sd_lun *un = arg; 19426 uint64_t capacity; 19427 diskaddr_t label_cap; 19428 uint_t lbasize; 19429 sd_ssc_t *ssc; 19430 19431 ASSERT(un != NULL); 19432 ASSERT(!mutex_owned(SD_MUTEX(un))); 19433 19434 if ((un->un_f_blockcount_is_valid == FALSE) || 19435 (un->un_f_tgt_blocksize_is_valid == FALSE)) { 19436 return; 19437 } 19438 19439 ssc = sd_ssc_init(un); 19440 19441 if (sd_send_scsi_READ_CAPACITY(ssc, &capacity, 19442 &lbasize, SD_PATH_DIRECT) != 0) { 19443 SD_ERROR(SD_LOG_ERROR, un, 19444 "sd_target_change_task: fail to read capacity\n"); 19445 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 19446 goto task_exit; 19447 } 19448 19449 mutex_enter(SD_MUTEX(un)); 19450 if (capacity <= un->un_blockcount) { 19451 mutex_exit(SD_MUTEX(un)); 19452 goto task_exit; 19453 } 19454 19455 sd_update_block_info(un, lbasize, capacity); 19456 mutex_exit(SD_MUTEX(un)); 19457 19458 /* 19459 * If lun is EFI labeled and lun capacity is greater than the 19460 * capacity contained in the label, log a sys event. 19461 */ 19462 if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap, 19463 (void*)SD_PATH_DIRECT) == 0) { 19464 mutex_enter(SD_MUTEX(un)); 19465 if (un->un_f_blockcount_is_valid && 19466 un->un_blockcount > label_cap) { 19467 mutex_exit(SD_MUTEX(un)); 19468 sd_log_lun_expansion_event(un, KM_SLEEP); 19469 } else { 19470 mutex_exit(SD_MUTEX(un)); 19471 } 19472 } 19473 19474 task_exit: 19475 sd_ssc_fini(ssc); 19476 } 19477 19478 /* 19479 * Function: sd_log_lun_expansion_event 19480 * 19481 * Description: Log lun expansion sys event 19482 * 19483 * Context: Never called from interrupt context 19484 */ 19485 static void 19486 sd_log_lun_expansion_event(struct sd_lun *un, int km_flag) 19487 { 19488 int err; 19489 char *path; 19490 nvlist_t *dle_attr_list; 19491 19492 /* Allocate and build sysevent attribute list */ 19493 err = nvlist_alloc(&dle_attr_list, NV_UNIQUE_NAME_TYPE, km_flag); 19494 if (err != 0) { 19495 SD_ERROR(SD_LOG_ERROR, un, 19496 "sd_log_lun_expansion_event: fail to allocate space\n"); 19497 return; 19498 } 19499 19500 path = kmem_alloc(MAXPATHLEN, km_flag); 19501 if (path == NULL) { 19502 nvlist_free(dle_attr_list); 19503 SD_ERROR(SD_LOG_ERROR, un, 19504 "sd_log_lun_expansion_event: fail to allocate space\n"); 19505 return; 19506 } 19507 /* 19508 * Add path attribute to identify the lun. 19509 * We are using minor node 'a' as the sysevent attribute. 19510 */ 19511 (void) snprintf(path, MAXPATHLEN, "/devices"); 19512 (void) ddi_pathname(SD_DEVINFO(un), path + strlen(path)); 19513 (void) snprintf(path + strlen(path), MAXPATHLEN - strlen(path), 19514 ":a"); 19515 19516 err = nvlist_add_string(dle_attr_list, DEV_PHYS_PATH, path); 19517 if (err != 0) { 19518 nvlist_free(dle_attr_list); 19519 kmem_free(path, MAXPATHLEN); 19520 SD_ERROR(SD_LOG_ERROR, un, 19521 "sd_log_lun_expansion_event: fail to add attribute\n"); 19522 return; 19523 } 19524 19525 /* Log dynamic lun expansion sysevent */ 19526 err = ddi_log_sysevent(SD_DEVINFO(un), SUNW_VENDOR, EC_DEV_STATUS, 19527 ESC_DEV_DLE, dle_attr_list, NULL, km_flag); 19528 if (err != DDI_SUCCESS) { 19529 SD_ERROR(SD_LOG_ERROR, un, 19530 "sd_log_lun_expansion_event: fail to log sysevent\n"); 19531 } 19532 19533 nvlist_free(dle_attr_list); 19534 kmem_free(path, MAXPATHLEN); 19535 } 19536 19537 /* 19538 * Function: sd_media_change_task 19539 * 19540 * Description: Recovery action for CDROM to become available. 19541 * 19542 * Context: Executes in a taskq() thread context 19543 */ 19544 19545 static void 19546 sd_media_change_task(void *arg) 19547 { 19548 struct scsi_pkt *pktp = arg; 19549 struct sd_lun *un; 19550 struct buf *bp; 19551 struct sd_xbuf *xp; 19552 int err = 0; 19553 int retry_count = 0; 19554 int retry_limit = SD_UNIT_ATTENTION_RETRY/10; 19555 struct sd_sense_info si; 19556 19557 ASSERT(pktp != NULL); 19558 bp = (struct buf *)pktp->pkt_private; 19559 ASSERT(bp != NULL); 19560 xp = SD_GET_XBUF(bp); 19561 ASSERT(xp != NULL); 19562 un = SD_GET_UN(bp); 19563 ASSERT(un != NULL); 19564 ASSERT(!mutex_owned(SD_MUTEX(un))); 19565 ASSERT(un->un_f_monitor_media_state); 19566 19567 si.ssi_severity = SCSI_ERR_INFO; 19568 si.ssi_pfa_flag = FALSE; 19569 19570 /* 19571 * When a reset is issued on a CDROM, it takes a long time to 19572 * recover. First few attempts to read capacity and other things 19573 * related to handling unit attention fail (with a ASC 0x4 and 19574 * ASCQ 0x1). In that case we want to do enough retries and we want 19575 * to limit the retries in other cases of genuine failures like 19576 * no media in drive. 19577 */ 19578 while (retry_count++ < retry_limit) { 19579 if ((err = sd_handle_mchange(un)) == 0) { 19580 break; 19581 } 19582 if (err == EAGAIN) { 19583 retry_limit = SD_UNIT_ATTENTION_RETRY; 19584 } 19585 /* Sleep for 0.5 sec. & try again */ 19586 delay(drv_usectohz(500000)); 19587 } 19588 19589 /* 19590 * Dispatch (retry or fail) the original command here, 19591 * along with appropriate console messages.... 19592 * 19593 * Must grab the mutex before calling sd_retry_command, 19594 * sd_print_sense_msg and sd_return_failed_command. 19595 */ 19596 mutex_enter(SD_MUTEX(un)); 19597 if (err != SD_CMD_SUCCESS) { 19598 SD_UPDATE_ERRSTATS(un, sd_harderrs); 19599 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 19600 si.ssi_severity = SCSI_ERR_FATAL; 19601 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 19602 sd_return_failed_command(un, bp, EIO); 19603 } else { 19604 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg, 19605 &si, EIO, (clock_t)0, NULL); 19606 } 19607 mutex_exit(SD_MUTEX(un)); 19608 } 19609 19610 19611 19612 /* 19613 * Function: sd_handle_mchange 19614 * 19615 * Description: Perform geometry validation & other recovery when CDROM 19616 * has been removed from drive. 19617 * 19618 * Return Code: 0 for success 19619 * errno-type return code of either sd_send_scsi_DOORLOCK() or 19620 * sd_send_scsi_READ_CAPACITY() 19621 * 19622 * Context: Executes in a taskq() thread context 19623 */ 19624 19625 static int 19626 sd_handle_mchange(struct sd_lun *un) 19627 { 19628 uint64_t capacity; 19629 uint32_t lbasize; 19630 int rval; 19631 sd_ssc_t *ssc; 19632 19633 ASSERT(!mutex_owned(SD_MUTEX(un))); 19634 ASSERT(un->un_f_monitor_media_state); 19635 19636 ssc = sd_ssc_init(un); 19637 rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize, 19638 SD_PATH_DIRECT_PRIORITY); 19639 19640 if (rval != 0) 19641 goto failed; 19642 19643 mutex_enter(SD_MUTEX(un)); 19644 sd_update_block_info(un, lbasize, capacity); 19645 19646 if (un->un_errstats != NULL) { 19647 struct sd_errstats *stp = 19648 (struct sd_errstats *)un->un_errstats->ks_data; 19649 stp->sd_capacity.value.ui64 = (uint64_t) 19650 ((uint64_t)un->un_blockcount * 19651 (uint64_t)un->un_tgt_blocksize); 19652 } 19653 19654 /* 19655 * Check if the media in the device is writable or not 19656 */ 19657 if (ISCD(un)) { 19658 sd_check_for_writable_cd(ssc, SD_PATH_DIRECT_PRIORITY); 19659 } 19660 19661 /* 19662 * Note: Maybe let the strategy/partitioning chain worry about getting 19663 * valid geometry. 19664 */ 19665 mutex_exit(SD_MUTEX(un)); 19666 cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY); 19667 19668 19669 if (cmlb_validate(un->un_cmlbhandle, 0, 19670 (void *)SD_PATH_DIRECT_PRIORITY) != 0) { 19671 sd_ssc_fini(ssc); 19672 return (EIO); 19673 } else { 19674 if (un->un_f_pkstats_enabled) { 19675 sd_set_pstats(un); 19676 SD_TRACE(SD_LOG_IO_PARTITION, un, 19677 "sd_handle_mchange: un:0x%p pstats created and " 19678 "set\n", un); 19679 } 19680 } 19681 19682 /* 19683 * Try to lock the door 19684 */ 19685 rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT, 19686 SD_PATH_DIRECT_PRIORITY); 19687 failed: 19688 if (rval != 0) 19689 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 19690 sd_ssc_fini(ssc); 19691 return (rval); 19692 } 19693 19694 19695 /* 19696 * Function: sd_send_scsi_DOORLOCK 19697 * 19698 * Description: Issue the scsi DOOR LOCK command 19699 * 19700 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 19701 * structure for this target. 19702 * flag - SD_REMOVAL_ALLOW 19703 * SD_REMOVAL_PREVENT 19704 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 19705 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 19706 * to use the USCSI "direct" chain and bypass the normal 19707 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 19708 * command is issued as part of an error recovery action. 19709 * 19710 * Return Code: 0 - Success 19711 * errno return code from sd_ssc_send() 19712 * 19713 * Context: Can sleep. 19714 */ 19715 19716 static int 19717 sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag) 19718 { 19719 struct scsi_extended_sense sense_buf; 19720 union scsi_cdb cdb; 19721 struct uscsi_cmd ucmd_buf; 19722 int status; 19723 struct sd_lun *un; 19724 19725 ASSERT(ssc != NULL); 19726 un = ssc->ssc_un; 19727 ASSERT(un != NULL); 19728 ASSERT(!mutex_owned(SD_MUTEX(un))); 19729 19730 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un); 19731 19732 /* already determined doorlock is not supported, fake success */ 19733 if (un->un_f_doorlock_supported == FALSE) { 19734 return (0); 19735 } 19736 19737 /* 19738 * If we are ejecting and see an SD_REMOVAL_PREVENT 19739 * ignore the command so we can complete the eject 19740 * operation. 19741 */ 19742 if (flag == SD_REMOVAL_PREVENT) { 19743 mutex_enter(SD_MUTEX(un)); 19744 if (un->un_f_ejecting == TRUE) { 19745 mutex_exit(SD_MUTEX(un)); 19746 return (EAGAIN); 19747 } 19748 mutex_exit(SD_MUTEX(un)); 19749 } 19750 19751 bzero(&cdb, sizeof (cdb)); 19752 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19753 19754 cdb.scc_cmd = SCMD_DOORLOCK; 19755 cdb.cdb_opaque[4] = (uchar_t)flag; 19756 19757 ucmd_buf.uscsi_cdb = (char *)&cdb; 19758 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 19759 ucmd_buf.uscsi_bufaddr = NULL; 19760 ucmd_buf.uscsi_buflen = 0; 19761 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19762 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 19763 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 19764 ucmd_buf.uscsi_timeout = 15; 19765 19766 SD_TRACE(SD_LOG_IO, un, 19767 "sd_send_scsi_DOORLOCK: returning sd_ssc_send\n"); 19768 19769 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 19770 UIO_SYSSPACE, path_flag); 19771 19772 if (status == 0) 19773 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 19774 19775 if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) && 19776 (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 19777 (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) { 19778 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 19779 19780 /* fake success and skip subsequent doorlock commands */ 19781 un->un_f_doorlock_supported = FALSE; 19782 return (0); 19783 } 19784 19785 return (status); 19786 } 19787 19788 /* 19789 * Function: sd_send_scsi_READ_CAPACITY 19790 * 19791 * Description: This routine uses the scsi READ CAPACITY command to determine 19792 * the device capacity in number of blocks and the device native 19793 * block size. If this function returns a failure, then the 19794 * values in *capp and *lbap are undefined. If the capacity 19795 * returned is 0xffffffff then the lun is too large for a 19796 * normal READ CAPACITY command and the results of a 19797 * READ CAPACITY 16 will be used instead. 19798 * 19799 * Arguments: ssc - ssc contains ptr to soft state struct for the target 19800 * capp - ptr to unsigned 64-bit variable to receive the 19801 * capacity value from the command. 19802 * lbap - ptr to unsigned 32-bit varaible to receive the 19803 * block size value from the command 19804 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 19805 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 19806 * to use the USCSI "direct" chain and bypass the normal 19807 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 19808 * command is issued as part of an error recovery action. 19809 * 19810 * Return Code: 0 - Success 19811 * EIO - IO error 19812 * EACCES - Reservation conflict detected 19813 * EAGAIN - Device is becoming ready 19814 * errno return code from sd_ssc_send() 19815 * 19816 * Context: Can sleep. Blocks until command completes. 19817 */ 19818 19819 #define SD_CAPACITY_SIZE sizeof (struct scsi_capacity) 19820 19821 static int 19822 sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp, uint32_t *lbap, 19823 int path_flag) 19824 { 19825 struct scsi_extended_sense sense_buf; 19826 struct uscsi_cmd ucmd_buf; 19827 union scsi_cdb cdb; 19828 uint32_t *capacity_buf; 19829 uint64_t capacity; 19830 uint32_t lbasize; 19831 uint32_t pbsize; 19832 int status; 19833 struct sd_lun *un; 19834 19835 ASSERT(ssc != NULL); 19836 19837 un = ssc->ssc_un; 19838 ASSERT(un != NULL); 19839 ASSERT(!mutex_owned(SD_MUTEX(un))); 19840 ASSERT(capp != NULL); 19841 ASSERT(lbap != NULL); 19842 19843 SD_TRACE(SD_LOG_IO, un, 19844 "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un); 19845 19846 /* 19847 * First send a READ_CAPACITY command to the target. 19848 * (This command is mandatory under SCSI-2.) 19849 * 19850 * Set up the CDB for the READ_CAPACITY command. The Partial 19851 * Medium Indicator bit is cleared. The address field must be 19852 * zero if the PMI bit is zero. 19853 */ 19854 bzero(&cdb, sizeof (cdb)); 19855 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19856 19857 capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP); 19858 19859 cdb.scc_cmd = SCMD_READ_CAPACITY; 19860 19861 ucmd_buf.uscsi_cdb = (char *)&cdb; 19862 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 19863 ucmd_buf.uscsi_bufaddr = (caddr_t)capacity_buf; 19864 ucmd_buf.uscsi_buflen = SD_CAPACITY_SIZE; 19865 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19866 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 19867 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 19868 ucmd_buf.uscsi_timeout = 60; 19869 19870 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 19871 UIO_SYSSPACE, path_flag); 19872 19873 switch (status) { 19874 case 0: 19875 /* Return failure if we did not get valid capacity data. */ 19876 if (ucmd_buf.uscsi_resid != 0) { 19877 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 19878 "sd_send_scsi_READ_CAPACITY received invalid " 19879 "capacity data"); 19880 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 19881 return (EIO); 19882 } 19883 /* 19884 * Read capacity and block size from the READ CAPACITY 10 data. 19885 * This data may be adjusted later due to device specific 19886 * issues. 19887 * 19888 * According to the SCSI spec, the READ CAPACITY 10 19889 * command returns the following: 19890 * 19891 * bytes 0-3: Maximum logical block address available. 19892 * (MSB in byte:0 & LSB in byte:3) 19893 * 19894 * bytes 4-7: Block length in bytes 19895 * (MSB in byte:4 & LSB in byte:7) 19896 * 19897 */ 19898 capacity = BE_32(capacity_buf[0]); 19899 lbasize = BE_32(capacity_buf[1]); 19900 19901 /* 19902 * Done with capacity_buf 19903 */ 19904 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 19905 19906 /* 19907 * if the reported capacity is set to all 0xf's, then 19908 * this disk is too large and requires SBC-2 commands. 19909 * Reissue the request using READ CAPACITY 16. 19910 */ 19911 if (capacity == 0xffffffff) { 19912 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 19913 status = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, 19914 &lbasize, &pbsize, path_flag); 19915 if (status != 0) { 19916 return (status); 19917 } 19918 } 19919 break; /* Success! */ 19920 case EIO: 19921 switch (ucmd_buf.uscsi_status) { 19922 case STATUS_RESERVATION_CONFLICT: 19923 status = EACCES; 19924 break; 19925 case STATUS_CHECK: 19926 /* 19927 * Check condition; look for ASC/ASCQ of 0x04/0x01 19928 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY) 19929 */ 19930 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 19931 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) && 19932 (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) { 19933 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 19934 return (EAGAIN); 19935 } 19936 break; 19937 default: 19938 break; 19939 } 19940 /* FALLTHRU */ 19941 default: 19942 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 19943 return (status); 19944 } 19945 19946 /* 19947 * Some ATAPI CD-ROM drives report inaccurate LBA size values 19948 * (2352 and 0 are common) so for these devices always force the value 19949 * to 2048 as required by the ATAPI specs. 19950 */ 19951 if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) { 19952 lbasize = 2048; 19953 } 19954 19955 /* 19956 * Get the maximum LBA value from the READ CAPACITY data. 19957 * Here we assume that the Partial Medium Indicator (PMI) bit 19958 * was cleared when issuing the command. This means that the LBA 19959 * returned from the device is the LBA of the last logical block 19960 * on the logical unit. The actual logical block count will be 19961 * this value plus one. 19962 */ 19963 capacity += 1; 19964 19965 /* 19966 * Currently, for removable media, the capacity is saved in terms 19967 * of un->un_sys_blocksize, so scale the capacity value to reflect this. 19968 */ 19969 if (un->un_f_has_removable_media) 19970 capacity *= (lbasize / un->un_sys_blocksize); 19971 19972 /* 19973 * Copy the values from the READ CAPACITY command into the space 19974 * provided by the caller. 19975 */ 19976 *capp = capacity; 19977 *lbap = lbasize; 19978 19979 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: " 19980 "capacity:0x%llx lbasize:0x%x\n", capacity, lbasize); 19981 19982 /* 19983 * Both the lbasize and capacity from the device must be nonzero, 19984 * otherwise we assume that the values are not valid and return 19985 * failure to the caller. (4203735) 19986 */ 19987 if ((capacity == 0) || (lbasize == 0)) { 19988 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 19989 "sd_send_scsi_READ_CAPACITY received invalid value " 19990 "capacity %llu lbasize %d", capacity, lbasize); 19991 return (EIO); 19992 } 19993 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 19994 return (0); 19995 } 19996 19997 /* 19998 * Function: sd_send_scsi_READ_CAPACITY_16 19999 * 20000 * Description: This routine uses the scsi READ CAPACITY 16 command to 20001 * determine the device capacity in number of blocks and the 20002 * device native block size. If this function returns a failure, 20003 * then the values in *capp and *lbap are undefined. 20004 * This routine should be called by sd_send_scsi_READ_CAPACITY 20005 * which will apply any device specific adjustments to capacity 20006 * and lbasize. One exception is it is also called by 20007 * sd_get_media_info_ext. In that function, there is no need to 20008 * adjust the capacity and lbasize. 20009 * 20010 * Arguments: ssc - ssc contains ptr to soft state struct for the target 20011 * capp - ptr to unsigned 64-bit variable to receive the 20012 * capacity value from the command. 20013 * lbap - ptr to unsigned 32-bit varaible to receive the 20014 * block size value from the command 20015 * psp - ptr to unsigned 32-bit variable to receive the 20016 * physical block size value from the command 20017 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 20018 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 20019 * to use the USCSI "direct" chain and bypass the normal 20020 * command waitq. SD_PATH_DIRECT_PRIORITY is used when 20021 * this command is issued as part of an error recovery 20022 * action. 20023 * 20024 * Return Code: 0 - Success 20025 * EIO - IO error 20026 * EACCES - Reservation conflict detected 20027 * EAGAIN - Device is becoming ready 20028 * errno return code from sd_ssc_send() 20029 * 20030 * Context: Can sleep. Blocks until command completes. 20031 */ 20032 20033 #define SD_CAPACITY_16_SIZE sizeof (struct scsi_capacity_16) 20034 20035 static int 20036 sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp, 20037 uint32_t *lbap, uint32_t *psp, int path_flag) 20038 { 20039 struct scsi_extended_sense sense_buf; 20040 struct uscsi_cmd ucmd_buf; 20041 union scsi_cdb cdb; 20042 uint64_t *capacity16_buf; 20043 uint64_t capacity; 20044 uint32_t lbasize; 20045 uint32_t pbsize; 20046 uint32_t lbpb_exp; 20047 int status; 20048 struct sd_lun *un; 20049 20050 ASSERT(ssc != NULL); 20051 20052 un = ssc->ssc_un; 20053 ASSERT(un != NULL); 20054 ASSERT(!mutex_owned(SD_MUTEX(un))); 20055 ASSERT(capp != NULL); 20056 ASSERT(lbap != NULL); 20057 20058 SD_TRACE(SD_LOG_IO, un, 20059 "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un); 20060 20061 /* 20062 * First send a READ_CAPACITY_16 command to the target. 20063 * 20064 * Set up the CDB for the READ_CAPACITY_16 command. The Partial 20065 * Medium Indicator bit is cleared. The address field must be 20066 * zero if the PMI bit is zero. 20067 */ 20068 bzero(&cdb, sizeof (cdb)); 20069 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20070 20071 capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP); 20072 20073 ucmd_buf.uscsi_cdb = (char *)&cdb; 20074 ucmd_buf.uscsi_cdblen = CDB_GROUP4; 20075 ucmd_buf.uscsi_bufaddr = (caddr_t)capacity16_buf; 20076 ucmd_buf.uscsi_buflen = SD_CAPACITY_16_SIZE; 20077 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20078 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 20079 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 20080 ucmd_buf.uscsi_timeout = 60; 20081 20082 /* 20083 * Read Capacity (16) is a Service Action In command. One 20084 * command byte (0x9E) is overloaded for multiple operations, 20085 * with the second CDB byte specifying the desired operation 20086 */ 20087 cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4; 20088 cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4; 20089 20090 /* 20091 * Fill in allocation length field 20092 */ 20093 FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen); 20094 20095 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20096 UIO_SYSSPACE, path_flag); 20097 20098 switch (status) { 20099 case 0: 20100 /* Return failure if we did not get valid capacity data. */ 20101 if (ucmd_buf.uscsi_resid > 20) { 20102 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 20103 "sd_send_scsi_READ_CAPACITY_16 received invalid " 20104 "capacity data"); 20105 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 20106 return (EIO); 20107 } 20108 20109 /* 20110 * Read capacity and block size from the READ CAPACITY 10 data. 20111 * This data may be adjusted later due to device specific 20112 * issues. 20113 * 20114 * According to the SCSI spec, the READ CAPACITY 10 20115 * command returns the following: 20116 * 20117 * bytes 0-7: Maximum logical block address available. 20118 * (MSB in byte:0 & LSB in byte:7) 20119 * 20120 * bytes 8-11: Block length in bytes 20121 * (MSB in byte:8 & LSB in byte:11) 20122 * 20123 * byte 13: LOGICAL BLOCKS PER PHYSICAL BLOCK EXPONENT 20124 */ 20125 capacity = BE_64(capacity16_buf[0]); 20126 lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]); 20127 lbpb_exp = (BE_64(capacity16_buf[1]) >> 40) & 0x0f; 20128 20129 pbsize = lbasize << lbpb_exp; 20130 20131 /* 20132 * Done with capacity16_buf 20133 */ 20134 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 20135 20136 /* 20137 * if the reported capacity is set to all 0xf's, then 20138 * this disk is too large. This could only happen with 20139 * a device that supports LBAs larger than 64 bits which 20140 * are not defined by any current T10 standards. 20141 */ 20142 if (capacity == 0xffffffffffffffff) { 20143 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 20144 "disk is too large"); 20145 return (EIO); 20146 } 20147 break; /* Success! */ 20148 case EIO: 20149 switch (ucmd_buf.uscsi_status) { 20150 case STATUS_RESERVATION_CONFLICT: 20151 status = EACCES; 20152 break; 20153 case STATUS_CHECK: 20154 /* 20155 * Check condition; look for ASC/ASCQ of 0x04/0x01 20156 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY) 20157 */ 20158 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20159 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) && 20160 (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) { 20161 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 20162 return (EAGAIN); 20163 } 20164 break; 20165 default: 20166 break; 20167 } 20168 /* FALLTHRU */ 20169 default: 20170 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 20171 return (status); 20172 } 20173 20174 *capp = capacity; 20175 *lbap = lbasize; 20176 *psp = pbsize; 20177 20178 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: " 20179 "capacity:0x%llx lbasize:0x%x, pbsize: 0x%x\n", 20180 capacity, lbasize, pbsize); 20181 20182 return (0); 20183 } 20184 20185 20186 /* 20187 * Function: sd_send_scsi_START_STOP_UNIT 20188 * 20189 * Description: Issue a scsi START STOP UNIT command to the target. 20190 * 20191 * Arguments: ssc - ssc contatins pointer to driver soft state (unit) 20192 * structure for this target. 20193 * pc_flag - SD_POWER_CONDITION 20194 * SD_START_STOP 20195 * flag - SD_TARGET_START 20196 * SD_TARGET_STOP 20197 * SD_TARGET_EJECT 20198 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 20199 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 20200 * to use the USCSI "direct" chain and bypass the normal 20201 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 20202 * command is issued as part of an error recovery action. 20203 * 20204 * Return Code: 0 - Success 20205 * EIO - IO error 20206 * EACCES - Reservation conflict detected 20207 * ENXIO - Not Ready, medium not present 20208 * errno return code from sd_ssc_send() 20209 * 20210 * Context: Can sleep. 20211 */ 20212 20213 static int 20214 sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag, int flag, 20215 int path_flag) 20216 { 20217 struct scsi_extended_sense sense_buf; 20218 union scsi_cdb cdb; 20219 struct uscsi_cmd ucmd_buf; 20220 int status; 20221 struct sd_lun *un; 20222 20223 ASSERT(ssc != NULL); 20224 un = ssc->ssc_un; 20225 ASSERT(un != NULL); 20226 ASSERT(!mutex_owned(SD_MUTEX(un))); 20227 20228 SD_TRACE(SD_LOG_IO, un, 20229 "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un); 20230 20231 if (un->un_f_check_start_stop && 20232 ((pc_flag == SD_START_STOP) && (flag != SD_TARGET_EJECT)) && 20233 (un->un_f_start_stop_supported != TRUE)) { 20234 return (0); 20235 } 20236 20237 /* 20238 * If we are performing an eject operation and 20239 * we receive any command other than SD_TARGET_EJECT 20240 * we should immediately return. 20241 */ 20242 if (flag != SD_TARGET_EJECT) { 20243 mutex_enter(SD_MUTEX(un)); 20244 if (un->un_f_ejecting == TRUE) { 20245 mutex_exit(SD_MUTEX(un)); 20246 return (EAGAIN); 20247 } 20248 mutex_exit(SD_MUTEX(un)); 20249 } 20250 20251 bzero(&cdb, sizeof (cdb)); 20252 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20253 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20254 20255 cdb.scc_cmd = SCMD_START_STOP; 20256 cdb.cdb_opaque[4] = (pc_flag == SD_POWER_CONDITION) ? 20257 (uchar_t)(flag << 4) : (uchar_t)flag; 20258 20259 ucmd_buf.uscsi_cdb = (char *)&cdb; 20260 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 20261 ucmd_buf.uscsi_bufaddr = NULL; 20262 ucmd_buf.uscsi_buflen = 0; 20263 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20264 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20265 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 20266 ucmd_buf.uscsi_timeout = 200; 20267 20268 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20269 UIO_SYSSPACE, path_flag); 20270 20271 switch (status) { 20272 case 0: 20273 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20274 break; /* Success! */ 20275 case EIO: 20276 switch (ucmd_buf.uscsi_status) { 20277 case STATUS_RESERVATION_CONFLICT: 20278 status = EACCES; 20279 break; 20280 case STATUS_CHECK: 20281 if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) { 20282 switch (scsi_sense_key( 20283 (uint8_t *)&sense_buf)) { 20284 case KEY_ILLEGAL_REQUEST: 20285 status = ENOTSUP; 20286 break; 20287 case KEY_NOT_READY: 20288 if (scsi_sense_asc( 20289 (uint8_t *)&sense_buf) 20290 == 0x3A) { 20291 status = ENXIO; 20292 } 20293 break; 20294 default: 20295 break; 20296 } 20297 } 20298 break; 20299 default: 20300 break; 20301 } 20302 break; 20303 default: 20304 break; 20305 } 20306 20307 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n"); 20308 20309 return (status); 20310 } 20311 20312 20313 /* 20314 * Function: sd_start_stop_unit_callback 20315 * 20316 * Description: timeout(9F) callback to begin recovery process for a 20317 * device that has spun down. 20318 * 20319 * Arguments: arg - pointer to associated softstate struct. 20320 * 20321 * Context: Executes in a timeout(9F) thread context 20322 */ 20323 20324 static void 20325 sd_start_stop_unit_callback(void *arg) 20326 { 20327 struct sd_lun *un = arg; 20328 ASSERT(un != NULL); 20329 ASSERT(!mutex_owned(SD_MUTEX(un))); 20330 20331 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n"); 20332 20333 (void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP); 20334 } 20335 20336 20337 /* 20338 * Function: sd_start_stop_unit_task 20339 * 20340 * Description: Recovery procedure when a drive is spun down. 20341 * 20342 * Arguments: arg - pointer to associated softstate struct. 20343 * 20344 * Context: Executes in a taskq() thread context 20345 */ 20346 20347 static void 20348 sd_start_stop_unit_task(void *arg) 20349 { 20350 struct sd_lun *un = arg; 20351 sd_ssc_t *ssc; 20352 int power_level; 20353 int rval; 20354 20355 ASSERT(un != NULL); 20356 ASSERT(!mutex_owned(SD_MUTEX(un))); 20357 20358 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n"); 20359 20360 /* 20361 * Some unformatted drives report not ready error, no need to 20362 * restart if format has been initiated. 20363 */ 20364 mutex_enter(SD_MUTEX(un)); 20365 if (un->un_f_format_in_progress == TRUE) { 20366 mutex_exit(SD_MUTEX(un)); 20367 return; 20368 } 20369 mutex_exit(SD_MUTEX(un)); 20370 20371 ssc = sd_ssc_init(un); 20372 /* 20373 * When a START STOP command is issued from here, it is part of a 20374 * failure recovery operation and must be issued before any other 20375 * commands, including any pending retries. Thus it must be sent 20376 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up 20377 * succeeds or not, we will start I/O after the attempt. 20378 * If power condition is supported and the current power level 20379 * is capable of performing I/O, we should set the power condition 20380 * to that level. Otherwise, set the power condition to ACTIVE. 20381 */ 20382 if (un->un_f_power_condition_supported) { 20383 mutex_enter(SD_MUTEX(un)); 20384 ASSERT(SD_PM_IS_LEVEL_VALID(un, un->un_power_level)); 20385 power_level = sd_pwr_pc.ran_perf[un->un_power_level] 20386 > 0 ? un->un_power_level : SD_SPINDLE_ACTIVE; 20387 mutex_exit(SD_MUTEX(un)); 20388 rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION, 20389 sd_pl2pc[power_level], SD_PATH_DIRECT_PRIORITY); 20390 } else { 20391 rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 20392 SD_TARGET_START, SD_PATH_DIRECT_PRIORITY); 20393 } 20394 20395 if (rval != 0) 20396 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 20397 sd_ssc_fini(ssc); 20398 /* 20399 * The above call blocks until the START_STOP_UNIT command completes. 20400 * Now that it has completed, we must re-try the original IO that 20401 * received the NOT READY condition in the first place. There are 20402 * three possible conditions here: 20403 * 20404 * (1) The original IO is on un_retry_bp. 20405 * (2) The original IO is on the regular wait queue, and un_retry_bp 20406 * is NULL. 20407 * (3) The original IO is on the regular wait queue, and un_retry_bp 20408 * points to some other, unrelated bp. 20409 * 20410 * For each case, we must call sd_start_cmds() with un_retry_bp 20411 * as the argument. If un_retry_bp is NULL, this will initiate 20412 * processing of the regular wait queue. If un_retry_bp is not NULL, 20413 * then this will process the bp on un_retry_bp. That may or may not 20414 * be the original IO, but that does not matter: the important thing 20415 * is to keep the IO processing going at this point. 20416 * 20417 * Note: This is a very specific error recovery sequence associated 20418 * with a drive that is not spun up. We attempt a START_STOP_UNIT and 20419 * serialize the I/O with completion of the spin-up. 20420 */ 20421 mutex_enter(SD_MUTEX(un)); 20422 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 20423 "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n", 20424 un, un->un_retry_bp); 20425 un->un_startstop_timeid = NULL; /* Timeout is no longer pending */ 20426 sd_start_cmds(un, un->un_retry_bp); 20427 mutex_exit(SD_MUTEX(un)); 20428 20429 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n"); 20430 } 20431 20432 20433 /* 20434 * Function: sd_send_scsi_INQUIRY 20435 * 20436 * Description: Issue the scsi INQUIRY command. 20437 * 20438 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 20439 * structure for this target. 20440 * bufaddr 20441 * buflen 20442 * evpd 20443 * page_code 20444 * page_length 20445 * 20446 * Return Code: 0 - Success 20447 * errno return code from sd_ssc_send() 20448 * 20449 * Context: Can sleep. Does not return until command is completed. 20450 */ 20451 20452 static int 20453 sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr, size_t buflen, 20454 uchar_t evpd, uchar_t page_code, size_t *residp) 20455 { 20456 union scsi_cdb cdb; 20457 struct uscsi_cmd ucmd_buf; 20458 int status; 20459 struct sd_lun *un; 20460 20461 ASSERT(ssc != NULL); 20462 un = ssc->ssc_un; 20463 ASSERT(un != NULL); 20464 ASSERT(!mutex_owned(SD_MUTEX(un))); 20465 ASSERT(bufaddr != NULL); 20466 20467 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un); 20468 20469 bzero(&cdb, sizeof (cdb)); 20470 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20471 bzero(bufaddr, buflen); 20472 20473 cdb.scc_cmd = SCMD_INQUIRY; 20474 cdb.cdb_opaque[1] = evpd; 20475 cdb.cdb_opaque[2] = page_code; 20476 FORMG0COUNT(&cdb, buflen); 20477 20478 ucmd_buf.uscsi_cdb = (char *)&cdb; 20479 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 20480 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 20481 ucmd_buf.uscsi_buflen = buflen; 20482 ucmd_buf.uscsi_rqbuf = NULL; 20483 ucmd_buf.uscsi_rqlen = 0; 20484 ucmd_buf.uscsi_flags = USCSI_READ | USCSI_SILENT; 20485 ucmd_buf.uscsi_timeout = 200; /* Excessive legacy value */ 20486 20487 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20488 UIO_SYSSPACE, SD_PATH_DIRECT); 20489 20490 /* 20491 * Only handle status == 0, the upper-level caller 20492 * will put different assessment based on the context. 20493 */ 20494 if (status == 0) 20495 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20496 20497 if ((status == 0) && (residp != NULL)) { 20498 *residp = ucmd_buf.uscsi_resid; 20499 } 20500 20501 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n"); 20502 20503 return (status); 20504 } 20505 20506 20507 /* 20508 * Function: sd_send_scsi_TEST_UNIT_READY 20509 * 20510 * Description: Issue the scsi TEST UNIT READY command. 20511 * This routine can be told to set the flag USCSI_DIAGNOSE to 20512 * prevent retrying failed commands. Use this when the intent 20513 * is either to check for device readiness, to clear a Unit 20514 * Attention, or to clear any outstanding sense data. 20515 * However under specific conditions the expected behavior 20516 * is for retries to bring a device ready, so use the flag 20517 * with caution. 20518 * 20519 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 20520 * structure for this target. 20521 * flag: SD_CHECK_FOR_MEDIA: return ENXIO if no media present 20522 * SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE. 20523 * 0: dont check for media present, do retries on cmd. 20524 * 20525 * Return Code: 0 - Success 20526 * EIO - IO error 20527 * EACCES - Reservation conflict detected 20528 * ENXIO - Not Ready, medium not present 20529 * errno return code from sd_ssc_send() 20530 * 20531 * Context: Can sleep. Does not return until command is completed. 20532 */ 20533 20534 static int 20535 sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag) 20536 { 20537 struct scsi_extended_sense sense_buf; 20538 union scsi_cdb cdb; 20539 struct uscsi_cmd ucmd_buf; 20540 int status; 20541 struct sd_lun *un; 20542 20543 ASSERT(ssc != NULL); 20544 un = ssc->ssc_un; 20545 ASSERT(un != NULL); 20546 ASSERT(!mutex_owned(SD_MUTEX(un))); 20547 20548 SD_TRACE(SD_LOG_IO, un, 20549 "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un); 20550 20551 /* 20552 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect 20553 * timeouts when they receive a TUR and the queue is not empty. Check 20554 * the configuration flag set during attach (indicating the drive has 20555 * this firmware bug) and un_ncmds_in_transport before issuing the 20556 * TUR. If there are 20557 * pending commands return success, this is a bit arbitrary but is ok 20558 * for non-removables (i.e. the eliteI disks) and non-clustering 20559 * configurations. 20560 */ 20561 if (un->un_f_cfg_tur_check == TRUE) { 20562 mutex_enter(SD_MUTEX(un)); 20563 if (un->un_ncmds_in_transport != 0) { 20564 mutex_exit(SD_MUTEX(un)); 20565 return (0); 20566 } 20567 mutex_exit(SD_MUTEX(un)); 20568 } 20569 20570 bzero(&cdb, sizeof (cdb)); 20571 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20572 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20573 20574 cdb.scc_cmd = SCMD_TEST_UNIT_READY; 20575 20576 ucmd_buf.uscsi_cdb = (char *)&cdb; 20577 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 20578 ucmd_buf.uscsi_bufaddr = NULL; 20579 ucmd_buf.uscsi_buflen = 0; 20580 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20581 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20582 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 20583 20584 /* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */ 20585 if ((flag & SD_DONT_RETRY_TUR) != 0) { 20586 ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE; 20587 } 20588 ucmd_buf.uscsi_timeout = 60; 20589 20590 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20591 UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT : 20592 SD_PATH_STANDARD)); 20593 20594 switch (status) { 20595 case 0: 20596 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20597 break; /* Success! */ 20598 case EIO: 20599 switch (ucmd_buf.uscsi_status) { 20600 case STATUS_RESERVATION_CONFLICT: 20601 status = EACCES; 20602 break; 20603 case STATUS_CHECK: 20604 if ((flag & SD_CHECK_FOR_MEDIA) == 0) { 20605 break; 20606 } 20607 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20608 (scsi_sense_key((uint8_t *)&sense_buf) == 20609 KEY_NOT_READY) && 20610 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) { 20611 status = ENXIO; 20612 } 20613 break; 20614 default: 20615 break; 20616 } 20617 break; 20618 default: 20619 break; 20620 } 20621 20622 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n"); 20623 20624 return (status); 20625 } 20626 20627 /* 20628 * Function: sd_send_scsi_PERSISTENT_RESERVE_IN 20629 * 20630 * Description: Issue the scsi PERSISTENT RESERVE IN command. 20631 * 20632 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 20633 * structure for this target. 20634 * 20635 * Return Code: 0 - Success 20636 * EACCES 20637 * ENOTSUP 20638 * errno return code from sd_ssc_send() 20639 * 20640 * Context: Can sleep. Does not return until command is completed. 20641 */ 20642 20643 static int 20644 sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc, uchar_t usr_cmd, 20645 uint16_t data_len, uchar_t *data_bufp) 20646 { 20647 struct scsi_extended_sense sense_buf; 20648 union scsi_cdb cdb; 20649 struct uscsi_cmd ucmd_buf; 20650 int status; 20651 int no_caller_buf = FALSE; 20652 struct sd_lun *un; 20653 20654 ASSERT(ssc != NULL); 20655 un = ssc->ssc_un; 20656 ASSERT(un != NULL); 20657 ASSERT(!mutex_owned(SD_MUTEX(un))); 20658 ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV)); 20659 20660 SD_TRACE(SD_LOG_IO, un, 20661 "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un); 20662 20663 bzero(&cdb, sizeof (cdb)); 20664 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20665 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20666 if (data_bufp == NULL) { 20667 /* Allocate a default buf if the caller did not give one */ 20668 ASSERT(data_len == 0); 20669 data_len = MHIOC_RESV_KEY_SIZE; 20670 data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP); 20671 no_caller_buf = TRUE; 20672 } 20673 20674 cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN; 20675 cdb.cdb_opaque[1] = usr_cmd; 20676 FORMG1COUNT(&cdb, data_len); 20677 20678 ucmd_buf.uscsi_cdb = (char *)&cdb; 20679 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 20680 ucmd_buf.uscsi_bufaddr = (caddr_t)data_bufp; 20681 ucmd_buf.uscsi_buflen = data_len; 20682 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20683 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20684 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 20685 ucmd_buf.uscsi_timeout = 60; 20686 20687 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20688 UIO_SYSSPACE, SD_PATH_STANDARD); 20689 20690 switch (status) { 20691 case 0: 20692 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20693 20694 break; /* Success! */ 20695 case EIO: 20696 switch (ucmd_buf.uscsi_status) { 20697 case STATUS_RESERVATION_CONFLICT: 20698 status = EACCES; 20699 break; 20700 case STATUS_CHECK: 20701 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20702 (scsi_sense_key((uint8_t *)&sense_buf) == 20703 KEY_ILLEGAL_REQUEST)) { 20704 status = ENOTSUP; 20705 } 20706 break; 20707 default: 20708 break; 20709 } 20710 break; 20711 default: 20712 break; 20713 } 20714 20715 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n"); 20716 20717 if (no_caller_buf == TRUE) { 20718 kmem_free(data_bufp, data_len); 20719 } 20720 20721 return (status); 20722 } 20723 20724 20725 /* 20726 * Function: sd_send_scsi_PERSISTENT_RESERVE_OUT 20727 * 20728 * Description: This routine is the driver entry point for handling CD-ROM 20729 * multi-host persistent reservation requests (MHIOCGRP_INKEYS, 20730 * MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the 20731 * device. 20732 * 20733 * Arguments: ssc - ssc contains un - pointer to soft state struct 20734 * for the target. 20735 * usr_cmd SCSI-3 reservation facility command (one of 20736 * SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE, 20737 * SD_SCSI3_PREEMPTANDABORT) 20738 * usr_bufp - user provided pointer register, reserve descriptor or 20739 * preempt and abort structure (mhioc_register_t, 20740 * mhioc_resv_desc_t, mhioc_preemptandabort_t) 20741 * 20742 * Return Code: 0 - Success 20743 * EACCES 20744 * ENOTSUP 20745 * errno return code from sd_ssc_send() 20746 * 20747 * Context: Can sleep. Does not return until command is completed. 20748 */ 20749 20750 static int 20751 sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc, uchar_t usr_cmd, 20752 uchar_t *usr_bufp) 20753 { 20754 struct scsi_extended_sense sense_buf; 20755 union scsi_cdb cdb; 20756 struct uscsi_cmd ucmd_buf; 20757 int status; 20758 uchar_t data_len = sizeof (sd_prout_t); 20759 sd_prout_t *prp; 20760 struct sd_lun *un; 20761 20762 ASSERT(ssc != NULL); 20763 un = ssc->ssc_un; 20764 ASSERT(un != NULL); 20765 ASSERT(!mutex_owned(SD_MUTEX(un))); 20766 ASSERT(data_len == 24); /* required by scsi spec */ 20767 20768 SD_TRACE(SD_LOG_IO, un, 20769 "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un); 20770 20771 if (usr_bufp == NULL) { 20772 return (EINVAL); 20773 } 20774 20775 bzero(&cdb, sizeof (cdb)); 20776 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20777 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20778 prp = kmem_zalloc(data_len, KM_SLEEP); 20779 20780 cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT; 20781 cdb.cdb_opaque[1] = usr_cmd; 20782 FORMG1COUNT(&cdb, data_len); 20783 20784 ucmd_buf.uscsi_cdb = (char *)&cdb; 20785 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 20786 ucmd_buf.uscsi_bufaddr = (caddr_t)prp; 20787 ucmd_buf.uscsi_buflen = data_len; 20788 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20789 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20790 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT; 20791 ucmd_buf.uscsi_timeout = 60; 20792 20793 switch (usr_cmd) { 20794 case SD_SCSI3_REGISTER: { 20795 mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp; 20796 20797 bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 20798 bcopy(ptr->newkey.key, prp->service_key, 20799 MHIOC_RESV_KEY_SIZE); 20800 prp->aptpl = ptr->aptpl; 20801 break; 20802 } 20803 case SD_SCSI3_RESERVE: 20804 case SD_SCSI3_RELEASE: { 20805 mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp; 20806 20807 bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 20808 prp->scope_address = BE_32(ptr->scope_specific_addr); 20809 cdb.cdb_opaque[2] = ptr->type; 20810 break; 20811 } 20812 case SD_SCSI3_PREEMPTANDABORT: { 20813 mhioc_preemptandabort_t *ptr = 20814 (mhioc_preemptandabort_t *)usr_bufp; 20815 20816 bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 20817 bcopy(ptr->victim_key.key, prp->service_key, 20818 MHIOC_RESV_KEY_SIZE); 20819 prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr); 20820 cdb.cdb_opaque[2] = ptr->resvdesc.type; 20821 ucmd_buf.uscsi_flags |= USCSI_HEAD; 20822 break; 20823 } 20824 case SD_SCSI3_REGISTERANDIGNOREKEY: 20825 { 20826 mhioc_registerandignorekey_t *ptr; 20827 ptr = (mhioc_registerandignorekey_t *)usr_bufp; 20828 bcopy(ptr->newkey.key, 20829 prp->service_key, MHIOC_RESV_KEY_SIZE); 20830 prp->aptpl = ptr->aptpl; 20831 break; 20832 } 20833 default: 20834 ASSERT(FALSE); 20835 break; 20836 } 20837 20838 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20839 UIO_SYSSPACE, SD_PATH_STANDARD); 20840 20841 switch (status) { 20842 case 0: 20843 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20844 break; /* Success! */ 20845 case EIO: 20846 switch (ucmd_buf.uscsi_status) { 20847 case STATUS_RESERVATION_CONFLICT: 20848 status = EACCES; 20849 break; 20850 case STATUS_CHECK: 20851 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20852 (scsi_sense_key((uint8_t *)&sense_buf) == 20853 KEY_ILLEGAL_REQUEST)) { 20854 status = ENOTSUP; 20855 } 20856 break; 20857 default: 20858 break; 20859 } 20860 break; 20861 default: 20862 break; 20863 } 20864 20865 kmem_free(prp, data_len); 20866 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n"); 20867 return (status); 20868 } 20869 20870 20871 /* 20872 * Function: sd_send_scsi_SYNCHRONIZE_CACHE 20873 * 20874 * Description: Issues a scsi SYNCHRONIZE CACHE command to the target 20875 * 20876 * Arguments: un - pointer to the target's soft state struct 20877 * dkc - pointer to the callback structure 20878 * 20879 * Return Code: 0 - success 20880 * errno-type error code 20881 * 20882 * Context: kernel thread context only. 20883 * 20884 * _______________________________________________________________ 20885 * | dkc_flag & | dkc_callback | DKIOCFLUSHWRITECACHE | 20886 * |FLUSH_VOLATILE| | operation | 20887 * |______________|______________|_________________________________| 20888 * | 0 | NULL | Synchronous flush on both | 20889 * | | | volatile and non-volatile cache | 20890 * |______________|______________|_________________________________| 20891 * | 1 | NULL | Synchronous flush on volatile | 20892 * | | | cache; disk drivers may suppress| 20893 * | | | flush if disk table indicates | 20894 * | | | non-volatile cache | 20895 * |______________|______________|_________________________________| 20896 * | 0 | !NULL | Asynchronous flush on both | 20897 * | | | volatile and non-volatile cache;| 20898 * |______________|______________|_________________________________| 20899 * | 1 | !NULL | Asynchronous flush on volatile | 20900 * | | | cache; disk drivers may suppress| 20901 * | | | flush if disk table indicates | 20902 * | | | non-volatile cache | 20903 * |______________|______________|_________________________________| 20904 * 20905 */ 20906 20907 static int 20908 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc) 20909 { 20910 struct sd_uscsi_info *uip; 20911 struct uscsi_cmd *uscmd; 20912 union scsi_cdb *cdb; 20913 struct buf *bp; 20914 int rval = 0; 20915 int is_async; 20916 20917 SD_TRACE(SD_LOG_IO, un, 20918 "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un); 20919 20920 ASSERT(un != NULL); 20921 ASSERT(!mutex_owned(SD_MUTEX(un))); 20922 20923 if (dkc == NULL || dkc->dkc_callback == NULL) { 20924 is_async = FALSE; 20925 } else { 20926 is_async = TRUE; 20927 } 20928 20929 mutex_enter(SD_MUTEX(un)); 20930 /* check whether cache flush should be suppressed */ 20931 if (un->un_f_suppress_cache_flush == TRUE) { 20932 mutex_exit(SD_MUTEX(un)); 20933 /* 20934 * suppress the cache flush if the device is told to do 20935 * so by sd.conf or disk table 20936 */ 20937 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: \ 20938 skip the cache flush since suppress_cache_flush is %d!\n", 20939 un->un_f_suppress_cache_flush); 20940 20941 if (is_async == TRUE) { 20942 /* invoke callback for asynchronous flush */ 20943 (*dkc->dkc_callback)(dkc->dkc_cookie, 0); 20944 } 20945 return (rval); 20946 } 20947 mutex_exit(SD_MUTEX(un)); 20948 20949 /* 20950 * check dkc_flag & FLUSH_VOLATILE so SYNC_NV bit can be 20951 * set properly 20952 */ 20953 cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP); 20954 cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE; 20955 20956 mutex_enter(SD_MUTEX(un)); 20957 if (dkc != NULL && un->un_f_sync_nv_supported && 20958 (dkc->dkc_flag & FLUSH_VOLATILE)) { 20959 /* 20960 * if the device supports SYNC_NV bit, turn on 20961 * the SYNC_NV bit to only flush volatile cache 20962 */ 20963 cdb->cdb_un.tag |= SD_SYNC_NV_BIT; 20964 } 20965 mutex_exit(SD_MUTEX(un)); 20966 20967 /* 20968 * First get some memory for the uscsi_cmd struct and cdb 20969 * and initialize for SYNCHRONIZE_CACHE cmd. 20970 */ 20971 uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP); 20972 uscmd->uscsi_cdblen = CDB_GROUP1; 20973 uscmd->uscsi_cdb = (caddr_t)cdb; 20974 uscmd->uscsi_bufaddr = NULL; 20975 uscmd->uscsi_buflen = 0; 20976 uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 20977 uscmd->uscsi_rqlen = SENSE_LENGTH; 20978 uscmd->uscsi_rqresid = SENSE_LENGTH; 20979 uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 20980 uscmd->uscsi_timeout = sd_io_time; 20981 20982 /* 20983 * Allocate an sd_uscsi_info struct and fill it with the info 20984 * needed by sd_initpkt_for_uscsi(). Then put the pointer into 20985 * b_private in the buf for sd_initpkt_for_uscsi(). Note that 20986 * since we allocate the buf here in this function, we do not 20987 * need to preserve the prior contents of b_private. 20988 * The sd_uscsi_info struct is also used by sd_uscsi_strategy() 20989 */ 20990 uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP); 20991 uip->ui_flags = SD_PATH_DIRECT; 20992 uip->ui_cmdp = uscmd; 20993 20994 bp = getrbuf(KM_SLEEP); 20995 bp->b_private = uip; 20996 20997 /* 20998 * Setup buffer to carry uscsi request. 20999 */ 21000 bp->b_flags = B_BUSY; 21001 bp->b_bcount = 0; 21002 bp->b_blkno = 0; 21003 21004 if (is_async == TRUE) { 21005 bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone; 21006 uip->ui_dkc = *dkc; 21007 } 21008 21009 bp->b_edev = SD_GET_DEV(un); 21010 bp->b_dev = cmpdev(bp->b_edev); /* maybe unnecessary? */ 21011 21012 /* 21013 * Unset un_f_sync_cache_required flag 21014 */ 21015 mutex_enter(SD_MUTEX(un)); 21016 un->un_f_sync_cache_required = FALSE; 21017 mutex_exit(SD_MUTEX(un)); 21018 21019 (void) sd_uscsi_strategy(bp); 21020 21021 /* 21022 * If synchronous request, wait for completion 21023 * If async just return and let b_iodone callback 21024 * cleanup. 21025 * NOTE: On return, u_ncmds_in_driver will be decremented, 21026 * but it was also incremented in sd_uscsi_strategy(), so 21027 * we should be ok. 21028 */ 21029 if (is_async == FALSE) { 21030 (void) biowait(bp); 21031 rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp); 21032 } 21033 21034 return (rval); 21035 } 21036 21037 21038 static int 21039 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp) 21040 { 21041 struct sd_uscsi_info *uip; 21042 struct uscsi_cmd *uscmd; 21043 uint8_t *sense_buf; 21044 struct sd_lun *un; 21045 int status; 21046 union scsi_cdb *cdb; 21047 21048 uip = (struct sd_uscsi_info *)(bp->b_private); 21049 ASSERT(uip != NULL); 21050 21051 uscmd = uip->ui_cmdp; 21052 ASSERT(uscmd != NULL); 21053 21054 sense_buf = (uint8_t *)uscmd->uscsi_rqbuf; 21055 ASSERT(sense_buf != NULL); 21056 21057 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 21058 ASSERT(un != NULL); 21059 21060 cdb = (union scsi_cdb *)uscmd->uscsi_cdb; 21061 21062 status = geterror(bp); 21063 switch (status) { 21064 case 0: 21065 break; /* Success! */ 21066 case EIO: 21067 switch (uscmd->uscsi_status) { 21068 case STATUS_RESERVATION_CONFLICT: 21069 /* Ignore reservation conflict */ 21070 status = 0; 21071 goto done; 21072 21073 case STATUS_CHECK: 21074 if ((uscmd->uscsi_rqstatus == STATUS_GOOD) && 21075 (scsi_sense_key(sense_buf) == 21076 KEY_ILLEGAL_REQUEST)) { 21077 /* Ignore Illegal Request error */ 21078 if (cdb->cdb_un.tag&SD_SYNC_NV_BIT) { 21079 mutex_enter(SD_MUTEX(un)); 21080 un->un_f_sync_nv_supported = FALSE; 21081 mutex_exit(SD_MUTEX(un)); 21082 status = 0; 21083 SD_TRACE(SD_LOG_IO, un, 21084 "un_f_sync_nv_supported \ 21085 is set to false.\n"); 21086 goto done; 21087 } 21088 21089 mutex_enter(SD_MUTEX(un)); 21090 un->un_f_sync_cache_supported = FALSE; 21091 mutex_exit(SD_MUTEX(un)); 21092 SD_TRACE(SD_LOG_IO, un, 21093 "sd_send_scsi_SYNCHRONIZE_CACHE_biodone: \ 21094 un_f_sync_cache_supported set to false \ 21095 with asc = %x, ascq = %x\n", 21096 scsi_sense_asc(sense_buf), 21097 scsi_sense_ascq(sense_buf)); 21098 status = ENOTSUP; 21099 goto done; 21100 } 21101 break; 21102 default: 21103 break; 21104 } 21105 /* FALLTHRU */ 21106 default: 21107 /* 21108 * Turn on the un_f_sync_cache_required flag 21109 * since the SYNC CACHE command failed 21110 */ 21111 mutex_enter(SD_MUTEX(un)); 21112 un->un_f_sync_cache_required = TRUE; 21113 mutex_exit(SD_MUTEX(un)); 21114 21115 /* 21116 * Don't log an error message if this device 21117 * has removable media. 21118 */ 21119 if (!un->un_f_has_removable_media) { 21120 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 21121 "SYNCHRONIZE CACHE command failed (%d)\n", status); 21122 } 21123 break; 21124 } 21125 21126 done: 21127 if (uip->ui_dkc.dkc_callback != NULL) { 21128 (*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status); 21129 } 21130 21131 ASSERT((bp->b_flags & B_REMAPPED) == 0); 21132 freerbuf(bp); 21133 kmem_free(uip, sizeof (struct sd_uscsi_info)); 21134 kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH); 21135 kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen); 21136 kmem_free(uscmd, sizeof (struct uscsi_cmd)); 21137 21138 return (status); 21139 } 21140 21141 21142 /* 21143 * Function: sd_send_scsi_GET_CONFIGURATION 21144 * 21145 * Description: Issues the get configuration command to the device. 21146 * Called from sd_check_for_writable_cd & sd_get_media_info 21147 * caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN 21148 * Arguments: ssc 21149 * ucmdbuf 21150 * rqbuf 21151 * rqbuflen 21152 * bufaddr 21153 * buflen 21154 * path_flag 21155 * 21156 * Return Code: 0 - Success 21157 * errno return code from sd_ssc_send() 21158 * 21159 * Context: Can sleep. Does not return until command is completed. 21160 * 21161 */ 21162 21163 static int 21164 sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc, struct uscsi_cmd *ucmdbuf, 21165 uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen, 21166 int path_flag) 21167 { 21168 char cdb[CDB_GROUP1]; 21169 int status; 21170 struct sd_lun *un; 21171 21172 ASSERT(ssc != NULL); 21173 un = ssc->ssc_un; 21174 ASSERT(un != NULL); 21175 ASSERT(!mutex_owned(SD_MUTEX(un))); 21176 ASSERT(bufaddr != NULL); 21177 ASSERT(ucmdbuf != NULL); 21178 ASSERT(rqbuf != NULL); 21179 21180 SD_TRACE(SD_LOG_IO, un, 21181 "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un); 21182 21183 bzero(cdb, sizeof (cdb)); 21184 bzero(ucmdbuf, sizeof (struct uscsi_cmd)); 21185 bzero(rqbuf, rqbuflen); 21186 bzero(bufaddr, buflen); 21187 21188 /* 21189 * Set up cdb field for the get configuration command. 21190 */ 21191 cdb[0] = SCMD_GET_CONFIGURATION; 21192 cdb[1] = 0x02; /* Requested Type */ 21193 cdb[8] = SD_PROFILE_HEADER_LEN; 21194 ucmdbuf->uscsi_cdb = cdb; 21195 ucmdbuf->uscsi_cdblen = CDB_GROUP1; 21196 ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr; 21197 ucmdbuf->uscsi_buflen = buflen; 21198 ucmdbuf->uscsi_timeout = sd_io_time; 21199 ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf; 21200 ucmdbuf->uscsi_rqlen = rqbuflen; 21201 ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ; 21202 21203 status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL, 21204 UIO_SYSSPACE, path_flag); 21205 21206 switch (status) { 21207 case 0: 21208 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 21209 break; /* Success! */ 21210 case EIO: 21211 switch (ucmdbuf->uscsi_status) { 21212 case STATUS_RESERVATION_CONFLICT: 21213 status = EACCES; 21214 break; 21215 default: 21216 break; 21217 } 21218 break; 21219 default: 21220 break; 21221 } 21222 21223 if (status == 0) { 21224 SD_DUMP_MEMORY(un, SD_LOG_IO, 21225 "sd_send_scsi_GET_CONFIGURATION: data", 21226 (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX); 21227 } 21228 21229 SD_TRACE(SD_LOG_IO, un, 21230 "sd_send_scsi_GET_CONFIGURATION: exit\n"); 21231 21232 return (status); 21233 } 21234 21235 /* 21236 * Function: sd_send_scsi_feature_GET_CONFIGURATION 21237 * 21238 * Description: Issues the get configuration command to the device to 21239 * retrieve a specific feature. Called from 21240 * sd_check_for_writable_cd & sd_set_mmc_caps. 21241 * Arguments: ssc 21242 * ucmdbuf 21243 * rqbuf 21244 * rqbuflen 21245 * bufaddr 21246 * buflen 21247 * feature 21248 * 21249 * Return Code: 0 - Success 21250 * errno return code from sd_ssc_send() 21251 * 21252 * Context: Can sleep. Does not return until command is completed. 21253 * 21254 */ 21255 static int 21256 sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc, 21257 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 21258 uchar_t *bufaddr, uint_t buflen, char feature, int path_flag) 21259 { 21260 char cdb[CDB_GROUP1]; 21261 int status; 21262 struct sd_lun *un; 21263 21264 ASSERT(ssc != NULL); 21265 un = ssc->ssc_un; 21266 ASSERT(un != NULL); 21267 ASSERT(!mutex_owned(SD_MUTEX(un))); 21268 ASSERT(bufaddr != NULL); 21269 ASSERT(ucmdbuf != NULL); 21270 ASSERT(rqbuf != NULL); 21271 21272 SD_TRACE(SD_LOG_IO, un, 21273 "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un); 21274 21275 bzero(cdb, sizeof (cdb)); 21276 bzero(ucmdbuf, sizeof (struct uscsi_cmd)); 21277 bzero(rqbuf, rqbuflen); 21278 bzero(bufaddr, buflen); 21279 21280 /* 21281 * Set up cdb field for the get configuration command. 21282 */ 21283 cdb[0] = SCMD_GET_CONFIGURATION; 21284 cdb[1] = 0x02; /* Requested Type */ 21285 cdb[3] = feature; 21286 cdb[8] = buflen; 21287 ucmdbuf->uscsi_cdb = cdb; 21288 ucmdbuf->uscsi_cdblen = CDB_GROUP1; 21289 ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr; 21290 ucmdbuf->uscsi_buflen = buflen; 21291 ucmdbuf->uscsi_timeout = sd_io_time; 21292 ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf; 21293 ucmdbuf->uscsi_rqlen = rqbuflen; 21294 ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ; 21295 21296 status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL, 21297 UIO_SYSSPACE, path_flag); 21298 21299 switch (status) { 21300 case 0: 21301 21302 break; /* Success! */ 21303 case EIO: 21304 switch (ucmdbuf->uscsi_status) { 21305 case STATUS_RESERVATION_CONFLICT: 21306 status = EACCES; 21307 break; 21308 default: 21309 break; 21310 } 21311 break; 21312 default: 21313 break; 21314 } 21315 21316 if (status == 0) { 21317 SD_DUMP_MEMORY(un, SD_LOG_IO, 21318 "sd_send_scsi_feature_GET_CONFIGURATION: data", 21319 (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX); 21320 } 21321 21322 SD_TRACE(SD_LOG_IO, un, 21323 "sd_send_scsi_feature_GET_CONFIGURATION: exit\n"); 21324 21325 return (status); 21326 } 21327 21328 21329 /* 21330 * Function: sd_send_scsi_MODE_SENSE 21331 * 21332 * Description: Utility function for issuing a scsi MODE SENSE command. 21333 * Note: This routine uses a consistent implementation for Group0, 21334 * Group1, and Group2 commands across all platforms. ATAPI devices 21335 * use Group 1 Read/Write commands and Group 2 Mode Sense/Select 21336 * 21337 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 21338 * structure for this target. 21339 * cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or 21340 * CDB_GROUP[1|2] (10 byte). 21341 * bufaddr - buffer for page data retrieved from the target. 21342 * buflen - size of page to be retrieved. 21343 * page_code - page code of data to be retrieved from the target. 21344 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 21345 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 21346 * to use the USCSI "direct" chain and bypass the normal 21347 * command waitq. 21348 * 21349 * Return Code: 0 - Success 21350 * errno return code from sd_ssc_send() 21351 * 21352 * Context: Can sleep. Does not return until command is completed. 21353 */ 21354 21355 static int 21356 sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr, 21357 size_t buflen, uchar_t page_code, int path_flag) 21358 { 21359 struct scsi_extended_sense sense_buf; 21360 union scsi_cdb cdb; 21361 struct uscsi_cmd ucmd_buf; 21362 int status; 21363 int headlen; 21364 struct sd_lun *un; 21365 21366 ASSERT(ssc != NULL); 21367 un = ssc->ssc_un; 21368 ASSERT(un != NULL); 21369 ASSERT(!mutex_owned(SD_MUTEX(un))); 21370 ASSERT(bufaddr != NULL); 21371 ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) || 21372 (cdbsize == CDB_GROUP2)); 21373 21374 SD_TRACE(SD_LOG_IO, un, 21375 "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un); 21376 21377 bzero(&cdb, sizeof (cdb)); 21378 bzero(&ucmd_buf, sizeof (ucmd_buf)); 21379 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 21380 bzero(bufaddr, buflen); 21381 21382 if (cdbsize == CDB_GROUP0) { 21383 cdb.scc_cmd = SCMD_MODE_SENSE; 21384 cdb.cdb_opaque[2] = page_code; 21385 FORMG0COUNT(&cdb, buflen); 21386 headlen = MODE_HEADER_LENGTH; 21387 } else { 21388 cdb.scc_cmd = SCMD_MODE_SENSE_G1; 21389 cdb.cdb_opaque[2] = page_code; 21390 FORMG1COUNT(&cdb, buflen); 21391 headlen = MODE_HEADER_LENGTH_GRP2; 21392 } 21393 21394 ASSERT(headlen <= buflen); 21395 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 21396 21397 ucmd_buf.uscsi_cdb = (char *)&cdb; 21398 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 21399 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 21400 ucmd_buf.uscsi_buflen = buflen; 21401 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 21402 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 21403 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 21404 ucmd_buf.uscsi_timeout = 60; 21405 21406 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 21407 UIO_SYSSPACE, path_flag); 21408 21409 switch (status) { 21410 case 0: 21411 /* 21412 * sr_check_wp() uses 0x3f page code and check the header of 21413 * mode page to determine if target device is write-protected. 21414 * But some USB devices return 0 bytes for 0x3f page code. For 21415 * this case, make sure that mode page header is returned at 21416 * least. 21417 */ 21418 if (buflen - ucmd_buf.uscsi_resid < headlen) { 21419 status = EIO; 21420 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 21421 "mode page header is not returned"); 21422 } 21423 break; /* Success! */ 21424 case EIO: 21425 switch (ucmd_buf.uscsi_status) { 21426 case STATUS_RESERVATION_CONFLICT: 21427 status = EACCES; 21428 break; 21429 default: 21430 break; 21431 } 21432 break; 21433 default: 21434 break; 21435 } 21436 21437 if (status == 0) { 21438 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data", 21439 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 21440 } 21441 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n"); 21442 21443 return (status); 21444 } 21445 21446 21447 /* 21448 * Function: sd_send_scsi_MODE_SELECT 21449 * 21450 * Description: Utility function for issuing a scsi MODE SELECT command. 21451 * Note: This routine uses a consistent implementation for Group0, 21452 * Group1, and Group2 commands across all platforms. ATAPI devices 21453 * use Group 1 Read/Write commands and Group 2 Mode Sense/Select 21454 * 21455 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 21456 * structure for this target. 21457 * cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or 21458 * CDB_GROUP[1|2] (10 byte). 21459 * bufaddr - buffer for page data retrieved from the target. 21460 * buflen - size of page to be retrieved. 21461 * save_page - boolean to determin if SP bit should be set. 21462 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 21463 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 21464 * to use the USCSI "direct" chain and bypass the normal 21465 * command waitq. 21466 * 21467 * Return Code: 0 - Success 21468 * errno return code from sd_ssc_send() 21469 * 21470 * Context: Can sleep. Does not return until command is completed. 21471 */ 21472 21473 static int 21474 sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr, 21475 size_t buflen, uchar_t save_page, int path_flag) 21476 { 21477 struct scsi_extended_sense sense_buf; 21478 union scsi_cdb cdb; 21479 struct uscsi_cmd ucmd_buf; 21480 int status; 21481 struct sd_lun *un; 21482 21483 ASSERT(ssc != NULL); 21484 un = ssc->ssc_un; 21485 ASSERT(un != NULL); 21486 ASSERT(!mutex_owned(SD_MUTEX(un))); 21487 ASSERT(bufaddr != NULL); 21488 ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) || 21489 (cdbsize == CDB_GROUP2)); 21490 21491 SD_TRACE(SD_LOG_IO, un, 21492 "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un); 21493 21494 bzero(&cdb, sizeof (cdb)); 21495 bzero(&ucmd_buf, sizeof (ucmd_buf)); 21496 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 21497 21498 /* Set the PF bit for many third party drives */ 21499 cdb.cdb_opaque[1] = 0x10; 21500 21501 /* Set the savepage(SP) bit if given */ 21502 if (save_page == SD_SAVE_PAGE) { 21503 cdb.cdb_opaque[1] |= 0x01; 21504 } 21505 21506 if (cdbsize == CDB_GROUP0) { 21507 cdb.scc_cmd = SCMD_MODE_SELECT; 21508 FORMG0COUNT(&cdb, buflen); 21509 } else { 21510 cdb.scc_cmd = SCMD_MODE_SELECT_G1; 21511 FORMG1COUNT(&cdb, buflen); 21512 } 21513 21514 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 21515 21516 ucmd_buf.uscsi_cdb = (char *)&cdb; 21517 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 21518 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 21519 ucmd_buf.uscsi_buflen = buflen; 21520 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 21521 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 21522 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT; 21523 ucmd_buf.uscsi_timeout = 60; 21524 21525 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 21526 UIO_SYSSPACE, path_flag); 21527 21528 switch (status) { 21529 case 0: 21530 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 21531 break; /* Success! */ 21532 case EIO: 21533 switch (ucmd_buf.uscsi_status) { 21534 case STATUS_RESERVATION_CONFLICT: 21535 status = EACCES; 21536 break; 21537 default: 21538 break; 21539 } 21540 break; 21541 default: 21542 break; 21543 } 21544 21545 if (status == 0) { 21546 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data", 21547 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 21548 } 21549 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n"); 21550 21551 return (status); 21552 } 21553 21554 21555 /* 21556 * Function: sd_send_scsi_RDWR 21557 * 21558 * Description: Issue a scsi READ or WRITE command with the given parameters. 21559 * 21560 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 21561 * structure for this target. 21562 * cmd: SCMD_READ or SCMD_WRITE 21563 * bufaddr: Address of caller's buffer to receive the RDWR data 21564 * buflen: Length of caller's buffer receive the RDWR data. 21565 * start_block: Block number for the start of the RDWR operation. 21566 * (Assumes target-native block size.) 21567 * residp: Pointer to variable to receive the redisual of the 21568 * RDWR operation (may be NULL of no residual requested). 21569 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 21570 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 21571 * to use the USCSI "direct" chain and bypass the normal 21572 * command waitq. 21573 * 21574 * Return Code: 0 - Success 21575 * errno return code from sd_ssc_send() 21576 * 21577 * Context: Can sleep. Does not return until command is completed. 21578 */ 21579 21580 static int 21581 sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr, 21582 size_t buflen, daddr_t start_block, int path_flag) 21583 { 21584 struct scsi_extended_sense sense_buf; 21585 union scsi_cdb cdb; 21586 struct uscsi_cmd ucmd_buf; 21587 uint32_t block_count; 21588 int status; 21589 int cdbsize; 21590 uchar_t flag; 21591 struct sd_lun *un; 21592 21593 ASSERT(ssc != NULL); 21594 un = ssc->ssc_un; 21595 ASSERT(un != NULL); 21596 ASSERT(!mutex_owned(SD_MUTEX(un))); 21597 ASSERT(bufaddr != NULL); 21598 ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE)); 21599 21600 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un); 21601 21602 if (un->un_f_tgt_blocksize_is_valid != TRUE) { 21603 return (EINVAL); 21604 } 21605 21606 mutex_enter(SD_MUTEX(un)); 21607 block_count = SD_BYTES2TGTBLOCKS(un, buflen); 21608 mutex_exit(SD_MUTEX(un)); 21609 21610 flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE; 21611 21612 SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: " 21613 "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n", 21614 bufaddr, buflen, start_block, block_count); 21615 21616 bzero(&cdb, sizeof (cdb)); 21617 bzero(&ucmd_buf, sizeof (ucmd_buf)); 21618 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 21619 21620 /* Compute CDB size to use */ 21621 if (start_block > 0xffffffff) 21622 cdbsize = CDB_GROUP4; 21623 else if ((start_block & 0xFFE00000) || 21624 (un->un_f_cfg_is_atapi == TRUE)) 21625 cdbsize = CDB_GROUP1; 21626 else 21627 cdbsize = CDB_GROUP0; 21628 21629 switch (cdbsize) { 21630 case CDB_GROUP0: /* 6-byte CDBs */ 21631 cdb.scc_cmd = cmd; 21632 FORMG0ADDR(&cdb, start_block); 21633 FORMG0COUNT(&cdb, block_count); 21634 break; 21635 case CDB_GROUP1: /* 10-byte CDBs */ 21636 cdb.scc_cmd = cmd | SCMD_GROUP1; 21637 FORMG1ADDR(&cdb, start_block); 21638 FORMG1COUNT(&cdb, block_count); 21639 break; 21640 case CDB_GROUP4: /* 16-byte CDBs */ 21641 cdb.scc_cmd = cmd | SCMD_GROUP4; 21642 FORMG4LONGADDR(&cdb, (uint64_t)start_block); 21643 FORMG4COUNT(&cdb, block_count); 21644 break; 21645 case CDB_GROUP5: /* 12-byte CDBs (currently unsupported) */ 21646 default: 21647 /* All others reserved */ 21648 return (EINVAL); 21649 } 21650 21651 /* Set LUN bit(s) in CDB if this is a SCSI-1 device */ 21652 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 21653 21654 ucmd_buf.uscsi_cdb = (char *)&cdb; 21655 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 21656 ucmd_buf.uscsi_bufaddr = bufaddr; 21657 ucmd_buf.uscsi_buflen = buflen; 21658 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 21659 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 21660 ucmd_buf.uscsi_flags = flag | USCSI_RQENABLE | USCSI_SILENT; 21661 ucmd_buf.uscsi_timeout = 60; 21662 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 21663 UIO_SYSSPACE, path_flag); 21664 21665 switch (status) { 21666 case 0: 21667 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 21668 break; /* Success! */ 21669 case EIO: 21670 switch (ucmd_buf.uscsi_status) { 21671 case STATUS_RESERVATION_CONFLICT: 21672 status = EACCES; 21673 break; 21674 default: 21675 break; 21676 } 21677 break; 21678 default: 21679 break; 21680 } 21681 21682 if (status == 0) { 21683 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data", 21684 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 21685 } 21686 21687 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n"); 21688 21689 return (status); 21690 } 21691 21692 21693 /* 21694 * Function: sd_send_scsi_LOG_SENSE 21695 * 21696 * Description: Issue a scsi LOG_SENSE command with the given parameters. 21697 * 21698 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 21699 * structure for this target. 21700 * 21701 * Return Code: 0 - Success 21702 * errno return code from sd_ssc_send() 21703 * 21704 * Context: Can sleep. Does not return until command is completed. 21705 */ 21706 21707 static int 21708 sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr, uint16_t buflen, 21709 uchar_t page_code, uchar_t page_control, uint16_t param_ptr, 21710 int path_flag) 21711 21712 { 21713 struct scsi_extended_sense sense_buf; 21714 union scsi_cdb cdb; 21715 struct uscsi_cmd ucmd_buf; 21716 int status; 21717 struct sd_lun *un; 21718 21719 ASSERT(ssc != NULL); 21720 un = ssc->ssc_un; 21721 ASSERT(un != NULL); 21722 ASSERT(!mutex_owned(SD_MUTEX(un))); 21723 21724 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un); 21725 21726 bzero(&cdb, sizeof (cdb)); 21727 bzero(&ucmd_buf, sizeof (ucmd_buf)); 21728 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 21729 21730 cdb.scc_cmd = SCMD_LOG_SENSE_G1; 21731 cdb.cdb_opaque[2] = (page_control << 6) | page_code; 21732 cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8); 21733 cdb.cdb_opaque[6] = (uchar_t)(param_ptr & 0x00FF); 21734 FORMG1COUNT(&cdb, buflen); 21735 21736 ucmd_buf.uscsi_cdb = (char *)&cdb; 21737 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 21738 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 21739 ucmd_buf.uscsi_buflen = buflen; 21740 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 21741 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 21742 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 21743 ucmd_buf.uscsi_timeout = 60; 21744 21745 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 21746 UIO_SYSSPACE, path_flag); 21747 21748 switch (status) { 21749 case 0: 21750 break; 21751 case EIO: 21752 switch (ucmd_buf.uscsi_status) { 21753 case STATUS_RESERVATION_CONFLICT: 21754 status = EACCES; 21755 break; 21756 case STATUS_CHECK: 21757 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 21758 (scsi_sense_key((uint8_t *)&sense_buf) == 21759 KEY_ILLEGAL_REQUEST) && 21760 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) { 21761 /* 21762 * ASC 0x24: INVALID FIELD IN CDB 21763 */ 21764 switch (page_code) { 21765 case START_STOP_CYCLE_PAGE: 21766 /* 21767 * The start stop cycle counter is 21768 * implemented as page 0x31 in earlier 21769 * generation disks. In new generation 21770 * disks the start stop cycle counter is 21771 * implemented as page 0xE. To properly 21772 * handle this case if an attempt for 21773 * log page 0xE is made and fails we 21774 * will try again using page 0x31. 21775 * 21776 * Network storage BU committed to 21777 * maintain the page 0x31 for this 21778 * purpose and will not have any other 21779 * page implemented with page code 0x31 21780 * until all disks transition to the 21781 * standard page. 21782 */ 21783 mutex_enter(SD_MUTEX(un)); 21784 un->un_start_stop_cycle_page = 21785 START_STOP_CYCLE_VU_PAGE; 21786 cdb.cdb_opaque[2] = 21787 (char)(page_control << 6) | 21788 un->un_start_stop_cycle_page; 21789 mutex_exit(SD_MUTEX(un)); 21790 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 21791 status = sd_ssc_send( 21792 ssc, &ucmd_buf, FKIOCTL, 21793 UIO_SYSSPACE, path_flag); 21794 21795 break; 21796 case TEMPERATURE_PAGE: 21797 status = ENOTTY; 21798 break; 21799 default: 21800 break; 21801 } 21802 } 21803 break; 21804 default: 21805 break; 21806 } 21807 break; 21808 default: 21809 break; 21810 } 21811 21812 if (status == 0) { 21813 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 21814 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data", 21815 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 21816 } 21817 21818 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n"); 21819 21820 return (status); 21821 } 21822 21823 21824 /* 21825 * Function: sdioctl 21826 * 21827 * Description: Driver's ioctl(9e) entry point function. 21828 * 21829 * Arguments: dev - device number 21830 * cmd - ioctl operation to be performed 21831 * arg - user argument, contains data to be set or reference 21832 * parameter for get 21833 * flag - bit flag, indicating open settings, 32/64 bit type 21834 * cred_p - user credential pointer 21835 * rval_p - calling process return value (OPT) 21836 * 21837 * Return Code: EINVAL 21838 * ENOTTY 21839 * ENXIO 21840 * EIO 21841 * EFAULT 21842 * ENOTSUP 21843 * EPERM 21844 * 21845 * Context: Called from the device switch at normal priority. 21846 */ 21847 21848 static int 21849 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p) 21850 { 21851 struct sd_lun *un = NULL; 21852 int err = 0; 21853 int i = 0; 21854 cred_t *cr; 21855 int tmprval = EINVAL; 21856 boolean_t is_valid; 21857 sd_ssc_t *ssc; 21858 21859 /* 21860 * All device accesses go thru sdstrategy where we check on suspend 21861 * status 21862 */ 21863 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 21864 return (ENXIO); 21865 } 21866 21867 ASSERT(!mutex_owned(SD_MUTEX(un))); 21868 21869 /* Initialize sd_ssc_t for internal uscsi commands */ 21870 ssc = sd_ssc_init(un); 21871 21872 is_valid = SD_IS_VALID_LABEL(un); 21873 21874 /* 21875 * Moved this wait from sd_uscsi_strategy to here for 21876 * reasons of deadlock prevention. Internal driver commands, 21877 * specifically those to change a devices power level, result 21878 * in a call to sd_uscsi_strategy. 21879 */ 21880 mutex_enter(SD_MUTEX(un)); 21881 while ((un->un_state == SD_STATE_SUSPENDED) || 21882 (un->un_state == SD_STATE_PM_CHANGING)) { 21883 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 21884 } 21885 /* 21886 * Twiddling the counter here protects commands from now 21887 * through to the top of sd_uscsi_strategy. Without the 21888 * counter inc. a power down, for example, could get in 21889 * after the above check for state is made and before 21890 * execution gets to the top of sd_uscsi_strategy. 21891 * That would cause problems. 21892 */ 21893 un->un_ncmds_in_driver++; 21894 21895 if (!is_valid && 21896 (flag & (FNDELAY | FNONBLOCK))) { 21897 switch (cmd) { 21898 case DKIOCGGEOM: /* SD_PATH_DIRECT */ 21899 case DKIOCGVTOC: 21900 case DKIOCGEXTVTOC: 21901 case DKIOCGAPART: 21902 case DKIOCPARTINFO: 21903 case DKIOCEXTPARTINFO: 21904 case DKIOCSGEOM: 21905 case DKIOCSAPART: 21906 case DKIOCGETEFI: 21907 case DKIOCPARTITION: 21908 case DKIOCSVTOC: 21909 case DKIOCSEXTVTOC: 21910 case DKIOCSETEFI: 21911 case DKIOCGMBOOT: 21912 case DKIOCSMBOOT: 21913 case DKIOCG_PHYGEOM: 21914 case DKIOCG_VIRTGEOM: 21915 #if defined(__i386) || defined(__amd64) 21916 case DKIOCSETEXTPART: 21917 #endif 21918 /* let cmlb handle it */ 21919 goto skip_ready_valid; 21920 21921 case CDROMPAUSE: 21922 case CDROMRESUME: 21923 case CDROMPLAYMSF: 21924 case CDROMPLAYTRKIND: 21925 case CDROMREADTOCHDR: 21926 case CDROMREADTOCENTRY: 21927 case CDROMSTOP: 21928 case CDROMSTART: 21929 case CDROMVOLCTRL: 21930 case CDROMSUBCHNL: 21931 case CDROMREADMODE2: 21932 case CDROMREADMODE1: 21933 case CDROMREADOFFSET: 21934 case CDROMSBLKMODE: 21935 case CDROMGBLKMODE: 21936 case CDROMGDRVSPEED: 21937 case CDROMSDRVSPEED: 21938 case CDROMCDDA: 21939 case CDROMCDXA: 21940 case CDROMSUBCODE: 21941 if (!ISCD(un)) { 21942 un->un_ncmds_in_driver--; 21943 ASSERT(un->un_ncmds_in_driver >= 0); 21944 mutex_exit(SD_MUTEX(un)); 21945 err = ENOTTY; 21946 goto done_without_assess; 21947 } 21948 break; 21949 case FDEJECT: 21950 case DKIOCEJECT: 21951 case CDROMEJECT: 21952 if (!un->un_f_eject_media_supported) { 21953 un->un_ncmds_in_driver--; 21954 ASSERT(un->un_ncmds_in_driver >= 0); 21955 mutex_exit(SD_MUTEX(un)); 21956 err = ENOTTY; 21957 goto done_without_assess; 21958 } 21959 break; 21960 case DKIOCFLUSHWRITECACHE: 21961 mutex_exit(SD_MUTEX(un)); 21962 err = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 21963 if (err != 0) { 21964 mutex_enter(SD_MUTEX(un)); 21965 un->un_ncmds_in_driver--; 21966 ASSERT(un->un_ncmds_in_driver >= 0); 21967 mutex_exit(SD_MUTEX(un)); 21968 err = EIO; 21969 goto done_quick_assess; 21970 } 21971 mutex_enter(SD_MUTEX(un)); 21972 /* FALLTHROUGH */ 21973 case DKIOCREMOVABLE: 21974 case DKIOCHOTPLUGGABLE: 21975 case DKIOCINFO: 21976 case DKIOCGMEDIAINFO: 21977 case DKIOCGMEDIAINFOEXT: 21978 case MHIOCENFAILFAST: 21979 case MHIOCSTATUS: 21980 case MHIOCTKOWN: 21981 case MHIOCRELEASE: 21982 case MHIOCGRP_INKEYS: 21983 case MHIOCGRP_INRESV: 21984 case MHIOCGRP_REGISTER: 21985 case MHIOCGRP_RESERVE: 21986 case MHIOCGRP_PREEMPTANDABORT: 21987 case MHIOCGRP_REGISTERANDIGNOREKEY: 21988 case CDROMCLOSETRAY: 21989 case USCSICMD: 21990 goto skip_ready_valid; 21991 default: 21992 break; 21993 } 21994 21995 mutex_exit(SD_MUTEX(un)); 21996 err = sd_ready_and_valid(ssc, SDPART(dev)); 21997 mutex_enter(SD_MUTEX(un)); 21998 21999 if (err != SD_READY_VALID) { 22000 switch (cmd) { 22001 case DKIOCSTATE: 22002 case CDROMGDRVSPEED: 22003 case CDROMSDRVSPEED: 22004 case FDEJECT: /* for eject command */ 22005 case DKIOCEJECT: 22006 case CDROMEJECT: 22007 case DKIOCREMOVABLE: 22008 case DKIOCHOTPLUGGABLE: 22009 break; 22010 default: 22011 if (un->un_f_has_removable_media) { 22012 err = ENXIO; 22013 } else { 22014 /* Do not map SD_RESERVED_BY_OTHERS to EIO */ 22015 if (err == SD_RESERVED_BY_OTHERS) { 22016 err = EACCES; 22017 } else { 22018 err = EIO; 22019 } 22020 } 22021 un->un_ncmds_in_driver--; 22022 ASSERT(un->un_ncmds_in_driver >= 0); 22023 mutex_exit(SD_MUTEX(un)); 22024 22025 goto done_without_assess; 22026 } 22027 } 22028 } 22029 22030 skip_ready_valid: 22031 mutex_exit(SD_MUTEX(un)); 22032 22033 switch (cmd) { 22034 case DKIOCINFO: 22035 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n"); 22036 err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag); 22037 break; 22038 22039 case DKIOCGMEDIAINFO: 22040 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n"); 22041 err = sd_get_media_info(dev, (caddr_t)arg, flag); 22042 break; 22043 22044 case DKIOCGMEDIAINFOEXT: 22045 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFOEXT\n"); 22046 err = sd_get_media_info_ext(dev, (caddr_t)arg, flag); 22047 break; 22048 22049 case DKIOCGGEOM: 22050 case DKIOCGVTOC: 22051 case DKIOCGEXTVTOC: 22052 case DKIOCGAPART: 22053 case DKIOCPARTINFO: 22054 case DKIOCEXTPARTINFO: 22055 case DKIOCSGEOM: 22056 case DKIOCSAPART: 22057 case DKIOCGETEFI: 22058 case DKIOCPARTITION: 22059 case DKIOCSVTOC: 22060 case DKIOCSEXTVTOC: 22061 case DKIOCSETEFI: 22062 case DKIOCGMBOOT: 22063 case DKIOCSMBOOT: 22064 case DKIOCG_PHYGEOM: 22065 case DKIOCG_VIRTGEOM: 22066 #if defined(__i386) || defined(__amd64) 22067 case DKIOCSETEXTPART: 22068 #endif 22069 SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd); 22070 22071 /* TUR should spin up */ 22072 22073 if (un->un_f_has_removable_media) 22074 err = sd_send_scsi_TEST_UNIT_READY(ssc, 22075 SD_CHECK_FOR_MEDIA); 22076 22077 else 22078 err = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 22079 22080 if (err != 0) 22081 goto done_with_assess; 22082 22083 err = cmlb_ioctl(un->un_cmlbhandle, dev, 22084 cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT); 22085 22086 if ((err == 0) && 22087 ((cmd == DKIOCSETEFI) || 22088 (un->un_f_pkstats_enabled) && 22089 (cmd == DKIOCSAPART || cmd == DKIOCSVTOC || 22090 cmd == DKIOCSEXTVTOC))) { 22091 22092 tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT, 22093 (void *)SD_PATH_DIRECT); 22094 if ((tmprval == 0) && un->un_f_pkstats_enabled) { 22095 sd_set_pstats(un); 22096 SD_TRACE(SD_LOG_IO_PARTITION, un, 22097 "sd_ioctl: un:0x%p pstats created and " 22098 "set\n", un); 22099 } 22100 } 22101 22102 if ((cmd == DKIOCSVTOC || cmd == DKIOCSEXTVTOC) || 22103 ((cmd == DKIOCSETEFI) && (tmprval == 0))) { 22104 22105 mutex_enter(SD_MUTEX(un)); 22106 if (un->un_f_devid_supported && 22107 (un->un_f_opt_fab_devid == TRUE)) { 22108 if (un->un_devid == NULL) { 22109 sd_register_devid(ssc, SD_DEVINFO(un), 22110 SD_TARGET_IS_UNRESERVED); 22111 } else { 22112 /* 22113 * The device id for this disk 22114 * has been fabricated. The 22115 * device id must be preserved 22116 * by writing it back out to 22117 * disk. 22118 */ 22119 if (sd_write_deviceid(ssc) != 0) { 22120 ddi_devid_free(un->un_devid); 22121 un->un_devid = NULL; 22122 } 22123 } 22124 } 22125 mutex_exit(SD_MUTEX(un)); 22126 } 22127 22128 break; 22129 22130 case DKIOCLOCK: 22131 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n"); 22132 err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT, 22133 SD_PATH_STANDARD); 22134 goto done_with_assess; 22135 22136 case DKIOCUNLOCK: 22137 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n"); 22138 err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW, 22139 SD_PATH_STANDARD); 22140 goto done_with_assess; 22141 22142 case DKIOCSTATE: { 22143 enum dkio_state state; 22144 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n"); 22145 22146 if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) { 22147 err = EFAULT; 22148 } else { 22149 err = sd_check_media(dev, state); 22150 if (err == 0) { 22151 if (ddi_copyout(&un->un_mediastate, (void *)arg, 22152 sizeof (int), flag) != 0) 22153 err = EFAULT; 22154 } 22155 } 22156 break; 22157 } 22158 22159 case DKIOCREMOVABLE: 22160 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n"); 22161 i = un->un_f_has_removable_media ? 1 : 0; 22162 if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) { 22163 err = EFAULT; 22164 } else { 22165 err = 0; 22166 } 22167 break; 22168 22169 case DKIOCHOTPLUGGABLE: 22170 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n"); 22171 i = un->un_f_is_hotpluggable ? 1 : 0; 22172 if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) { 22173 err = EFAULT; 22174 } else { 22175 err = 0; 22176 } 22177 break; 22178 22179 case DKIOCGTEMPERATURE: 22180 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n"); 22181 err = sd_dkio_get_temp(dev, (caddr_t)arg, flag); 22182 break; 22183 22184 case MHIOCENFAILFAST: 22185 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n"); 22186 if ((err = drv_priv(cred_p)) == 0) { 22187 err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag); 22188 } 22189 break; 22190 22191 case MHIOCTKOWN: 22192 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n"); 22193 if ((err = drv_priv(cred_p)) == 0) { 22194 err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag); 22195 } 22196 break; 22197 22198 case MHIOCRELEASE: 22199 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n"); 22200 if ((err = drv_priv(cred_p)) == 0) { 22201 err = sd_mhdioc_release(dev); 22202 } 22203 break; 22204 22205 case MHIOCSTATUS: 22206 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n"); 22207 if ((err = drv_priv(cred_p)) == 0) { 22208 switch (sd_send_scsi_TEST_UNIT_READY(ssc, 0)) { 22209 case 0: 22210 err = 0; 22211 break; 22212 case EACCES: 22213 *rval_p = 1; 22214 err = 0; 22215 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 22216 break; 22217 default: 22218 err = EIO; 22219 goto done_with_assess; 22220 } 22221 } 22222 break; 22223 22224 case MHIOCQRESERVE: 22225 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n"); 22226 if ((err = drv_priv(cred_p)) == 0) { 22227 err = sd_reserve_release(dev, SD_RESERVE); 22228 } 22229 break; 22230 22231 case MHIOCREREGISTERDEVID: 22232 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n"); 22233 if (drv_priv(cred_p) == EPERM) { 22234 err = EPERM; 22235 } else if (!un->un_f_devid_supported) { 22236 err = ENOTTY; 22237 } else { 22238 err = sd_mhdioc_register_devid(dev); 22239 } 22240 break; 22241 22242 case MHIOCGRP_INKEYS: 22243 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n"); 22244 if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) { 22245 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22246 err = ENOTSUP; 22247 } else { 22248 err = sd_mhdioc_inkeys(dev, (caddr_t)arg, 22249 flag); 22250 } 22251 } 22252 break; 22253 22254 case MHIOCGRP_INRESV: 22255 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n"); 22256 if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) { 22257 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22258 err = ENOTSUP; 22259 } else { 22260 err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag); 22261 } 22262 } 22263 break; 22264 22265 case MHIOCGRP_REGISTER: 22266 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n"); 22267 if ((err = drv_priv(cred_p)) != EPERM) { 22268 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22269 err = ENOTSUP; 22270 } else if (arg != NULL) { 22271 mhioc_register_t reg; 22272 if (ddi_copyin((void *)arg, ®, 22273 sizeof (mhioc_register_t), flag) != 0) { 22274 err = EFAULT; 22275 } else { 22276 err = 22277 sd_send_scsi_PERSISTENT_RESERVE_OUT( 22278 ssc, SD_SCSI3_REGISTER, 22279 (uchar_t *)®); 22280 if (err != 0) 22281 goto done_with_assess; 22282 } 22283 } 22284 } 22285 break; 22286 22287 case MHIOCGRP_RESERVE: 22288 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n"); 22289 if ((err = drv_priv(cred_p)) != EPERM) { 22290 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22291 err = ENOTSUP; 22292 } else if (arg != NULL) { 22293 mhioc_resv_desc_t resv_desc; 22294 if (ddi_copyin((void *)arg, &resv_desc, 22295 sizeof (mhioc_resv_desc_t), flag) != 0) { 22296 err = EFAULT; 22297 } else { 22298 err = 22299 sd_send_scsi_PERSISTENT_RESERVE_OUT( 22300 ssc, SD_SCSI3_RESERVE, 22301 (uchar_t *)&resv_desc); 22302 if (err != 0) 22303 goto done_with_assess; 22304 } 22305 } 22306 } 22307 break; 22308 22309 case MHIOCGRP_PREEMPTANDABORT: 22310 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n"); 22311 if ((err = drv_priv(cred_p)) != EPERM) { 22312 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22313 err = ENOTSUP; 22314 } else if (arg != NULL) { 22315 mhioc_preemptandabort_t preempt_abort; 22316 if (ddi_copyin((void *)arg, &preempt_abort, 22317 sizeof (mhioc_preemptandabort_t), 22318 flag) != 0) { 22319 err = EFAULT; 22320 } else { 22321 err = 22322 sd_send_scsi_PERSISTENT_RESERVE_OUT( 22323 ssc, SD_SCSI3_PREEMPTANDABORT, 22324 (uchar_t *)&preempt_abort); 22325 if (err != 0) 22326 goto done_with_assess; 22327 } 22328 } 22329 } 22330 break; 22331 22332 case MHIOCGRP_REGISTERANDIGNOREKEY: 22333 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n"); 22334 if ((err = drv_priv(cred_p)) != EPERM) { 22335 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22336 err = ENOTSUP; 22337 } else if (arg != NULL) { 22338 mhioc_registerandignorekey_t r_and_i; 22339 if (ddi_copyin((void *)arg, (void *)&r_and_i, 22340 sizeof (mhioc_registerandignorekey_t), 22341 flag) != 0) { 22342 err = EFAULT; 22343 } else { 22344 err = 22345 sd_send_scsi_PERSISTENT_RESERVE_OUT( 22346 ssc, SD_SCSI3_REGISTERANDIGNOREKEY, 22347 (uchar_t *)&r_and_i); 22348 if (err != 0) 22349 goto done_with_assess; 22350 } 22351 } 22352 } 22353 break; 22354 22355 case USCSICMD: 22356 SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n"); 22357 cr = ddi_get_cred(); 22358 if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) { 22359 err = EPERM; 22360 } else { 22361 enum uio_seg uioseg; 22362 22363 uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE : 22364 UIO_USERSPACE; 22365 if (un->un_f_format_in_progress == TRUE) { 22366 err = EAGAIN; 22367 break; 22368 } 22369 22370 err = sd_ssc_send(ssc, 22371 (struct uscsi_cmd *)arg, 22372 flag, uioseg, SD_PATH_STANDARD); 22373 if (err != 0) 22374 goto done_with_assess; 22375 else 22376 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 22377 } 22378 break; 22379 22380 case CDROMPAUSE: 22381 case CDROMRESUME: 22382 SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n"); 22383 if (!ISCD(un)) { 22384 err = ENOTTY; 22385 } else { 22386 err = sr_pause_resume(dev, cmd); 22387 } 22388 break; 22389 22390 case CDROMPLAYMSF: 22391 SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n"); 22392 if (!ISCD(un)) { 22393 err = ENOTTY; 22394 } else { 22395 err = sr_play_msf(dev, (caddr_t)arg, flag); 22396 } 22397 break; 22398 22399 case CDROMPLAYTRKIND: 22400 SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n"); 22401 #if defined(__i386) || defined(__amd64) 22402 /* 22403 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead 22404 */ 22405 if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) { 22406 #else 22407 if (!ISCD(un)) { 22408 #endif 22409 err = ENOTTY; 22410 } else { 22411 err = sr_play_trkind(dev, (caddr_t)arg, flag); 22412 } 22413 break; 22414 22415 case CDROMREADTOCHDR: 22416 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n"); 22417 if (!ISCD(un)) { 22418 err = ENOTTY; 22419 } else { 22420 err = sr_read_tochdr(dev, (caddr_t)arg, flag); 22421 } 22422 break; 22423 22424 case CDROMREADTOCENTRY: 22425 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n"); 22426 if (!ISCD(un)) { 22427 err = ENOTTY; 22428 } else { 22429 err = sr_read_tocentry(dev, (caddr_t)arg, flag); 22430 } 22431 break; 22432 22433 case CDROMSTOP: 22434 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n"); 22435 if (!ISCD(un)) { 22436 err = ENOTTY; 22437 } else { 22438 err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 22439 SD_TARGET_STOP, SD_PATH_STANDARD); 22440 goto done_with_assess; 22441 } 22442 break; 22443 22444 case CDROMSTART: 22445 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n"); 22446 if (!ISCD(un)) { 22447 err = ENOTTY; 22448 } else { 22449 err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 22450 SD_TARGET_START, SD_PATH_STANDARD); 22451 goto done_with_assess; 22452 } 22453 break; 22454 22455 case CDROMCLOSETRAY: 22456 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n"); 22457 if (!ISCD(un)) { 22458 err = ENOTTY; 22459 } else { 22460 err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 22461 SD_TARGET_CLOSE, SD_PATH_STANDARD); 22462 goto done_with_assess; 22463 } 22464 break; 22465 22466 case FDEJECT: /* for eject command */ 22467 case DKIOCEJECT: 22468 case CDROMEJECT: 22469 SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n"); 22470 if (!un->un_f_eject_media_supported) { 22471 err = ENOTTY; 22472 } else { 22473 err = sr_eject(dev); 22474 } 22475 break; 22476 22477 case CDROMVOLCTRL: 22478 SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n"); 22479 if (!ISCD(un)) { 22480 err = ENOTTY; 22481 } else { 22482 err = sr_volume_ctrl(dev, (caddr_t)arg, flag); 22483 } 22484 break; 22485 22486 case CDROMSUBCHNL: 22487 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n"); 22488 if (!ISCD(un)) { 22489 err = ENOTTY; 22490 } else { 22491 err = sr_read_subchannel(dev, (caddr_t)arg, flag); 22492 } 22493 break; 22494 22495 case CDROMREADMODE2: 22496 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n"); 22497 if (!ISCD(un)) { 22498 err = ENOTTY; 22499 } else if (un->un_f_cfg_is_atapi == TRUE) { 22500 /* 22501 * If the drive supports READ CD, use that instead of 22502 * switching the LBA size via a MODE SELECT 22503 * Block Descriptor 22504 */ 22505 err = sr_read_cd_mode2(dev, (caddr_t)arg, flag); 22506 } else { 22507 err = sr_read_mode2(dev, (caddr_t)arg, flag); 22508 } 22509 break; 22510 22511 case CDROMREADMODE1: 22512 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n"); 22513 if (!ISCD(un)) { 22514 err = ENOTTY; 22515 } else { 22516 err = sr_read_mode1(dev, (caddr_t)arg, flag); 22517 } 22518 break; 22519 22520 case CDROMREADOFFSET: 22521 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n"); 22522 if (!ISCD(un)) { 22523 err = ENOTTY; 22524 } else { 22525 err = sr_read_sony_session_offset(dev, (caddr_t)arg, 22526 flag); 22527 } 22528 break; 22529 22530 case CDROMSBLKMODE: 22531 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n"); 22532 /* 22533 * There is no means of changing block size in case of atapi 22534 * drives, thus return ENOTTY if drive type is atapi 22535 */ 22536 if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) { 22537 err = ENOTTY; 22538 } else if (un->un_f_mmc_cap == TRUE) { 22539 22540 /* 22541 * MMC Devices do not support changing the 22542 * logical block size 22543 * 22544 * Note: EINVAL is being returned instead of ENOTTY to 22545 * maintain consistancy with the original mmc 22546 * driver update. 22547 */ 22548 err = EINVAL; 22549 } else { 22550 mutex_enter(SD_MUTEX(un)); 22551 if ((!(un->un_exclopen & (1<<SDPART(dev)))) || 22552 (un->un_ncmds_in_transport > 0)) { 22553 mutex_exit(SD_MUTEX(un)); 22554 err = EINVAL; 22555 } else { 22556 mutex_exit(SD_MUTEX(un)); 22557 err = sr_change_blkmode(dev, cmd, arg, flag); 22558 } 22559 } 22560 break; 22561 22562 case CDROMGBLKMODE: 22563 SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n"); 22564 if (!ISCD(un)) { 22565 err = ENOTTY; 22566 } else if ((un->un_f_cfg_is_atapi != FALSE) && 22567 (un->un_f_blockcount_is_valid != FALSE)) { 22568 /* 22569 * Drive is an ATAPI drive so return target block 22570 * size for ATAPI drives since we cannot change the 22571 * blocksize on ATAPI drives. Used primarily to detect 22572 * if an ATAPI cdrom is present. 22573 */ 22574 if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg, 22575 sizeof (int), flag) != 0) { 22576 err = EFAULT; 22577 } else { 22578 err = 0; 22579 } 22580 22581 } else { 22582 /* 22583 * Drive supports changing block sizes via a Mode 22584 * Select. 22585 */ 22586 err = sr_change_blkmode(dev, cmd, arg, flag); 22587 } 22588 break; 22589 22590 case CDROMGDRVSPEED: 22591 case CDROMSDRVSPEED: 22592 SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n"); 22593 if (!ISCD(un)) { 22594 err = ENOTTY; 22595 } else if (un->un_f_mmc_cap == TRUE) { 22596 /* 22597 * Note: In the future the driver implementation 22598 * for getting and 22599 * setting cd speed should entail: 22600 * 1) If non-mmc try the Toshiba mode page 22601 * (sr_change_speed) 22602 * 2) If mmc but no support for Real Time Streaming try 22603 * the SET CD SPEED (0xBB) command 22604 * (sr_atapi_change_speed) 22605 * 3) If mmc and support for Real Time Streaming 22606 * try the GET PERFORMANCE and SET STREAMING 22607 * commands (not yet implemented, 4380808) 22608 */ 22609 /* 22610 * As per recent MMC spec, CD-ROM speed is variable 22611 * and changes with LBA. Since there is no such 22612 * things as drive speed now, fail this ioctl. 22613 * 22614 * Note: EINVAL is returned for consistancy of original 22615 * implementation which included support for getting 22616 * the drive speed of mmc devices but not setting 22617 * the drive speed. Thus EINVAL would be returned 22618 * if a set request was made for an mmc device. 22619 * We no longer support get or set speed for 22620 * mmc but need to remain consistent with regard 22621 * to the error code returned. 22622 */ 22623 err = EINVAL; 22624 } else if (un->un_f_cfg_is_atapi == TRUE) { 22625 err = sr_atapi_change_speed(dev, cmd, arg, flag); 22626 } else { 22627 err = sr_change_speed(dev, cmd, arg, flag); 22628 } 22629 break; 22630 22631 case CDROMCDDA: 22632 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n"); 22633 if (!ISCD(un)) { 22634 err = ENOTTY; 22635 } else { 22636 err = sr_read_cdda(dev, (void *)arg, flag); 22637 } 22638 break; 22639 22640 case CDROMCDXA: 22641 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n"); 22642 if (!ISCD(un)) { 22643 err = ENOTTY; 22644 } else { 22645 err = sr_read_cdxa(dev, (caddr_t)arg, flag); 22646 } 22647 break; 22648 22649 case CDROMSUBCODE: 22650 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n"); 22651 if (!ISCD(un)) { 22652 err = ENOTTY; 22653 } else { 22654 err = sr_read_all_subcodes(dev, (caddr_t)arg, flag); 22655 } 22656 break; 22657 22658 22659 #ifdef SDDEBUG 22660 /* RESET/ABORTS testing ioctls */ 22661 case DKIOCRESET: { 22662 int reset_level; 22663 22664 if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) { 22665 err = EFAULT; 22666 } else { 22667 SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: " 22668 "reset_level = 0x%lx\n", reset_level); 22669 if (scsi_reset(SD_ADDRESS(un), reset_level)) { 22670 err = 0; 22671 } else { 22672 err = EIO; 22673 } 22674 } 22675 break; 22676 } 22677 22678 case DKIOCABORT: 22679 SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n"); 22680 if (scsi_abort(SD_ADDRESS(un), NULL)) { 22681 err = 0; 22682 } else { 22683 err = EIO; 22684 } 22685 break; 22686 #endif 22687 22688 #ifdef SD_FAULT_INJECTION 22689 /* SDIOC FaultInjection testing ioctls */ 22690 case SDIOCSTART: 22691 case SDIOCSTOP: 22692 case SDIOCINSERTPKT: 22693 case SDIOCINSERTXB: 22694 case SDIOCINSERTUN: 22695 case SDIOCINSERTARQ: 22696 case SDIOCPUSH: 22697 case SDIOCRETRIEVE: 22698 case SDIOCRUN: 22699 SD_INFO(SD_LOG_SDTEST, un, "sdioctl:" 22700 "SDIOC detected cmd:0x%X:\n", cmd); 22701 /* call error generator */ 22702 sd_faultinjection_ioctl(cmd, arg, un); 22703 err = 0; 22704 break; 22705 22706 #endif /* SD_FAULT_INJECTION */ 22707 22708 case DKIOCFLUSHWRITECACHE: 22709 { 22710 struct dk_callback *dkc = (struct dk_callback *)arg; 22711 22712 mutex_enter(SD_MUTEX(un)); 22713 if (!un->un_f_sync_cache_supported || 22714 !un->un_f_write_cache_enabled) { 22715 err = un->un_f_sync_cache_supported ? 22716 0 : ENOTSUP; 22717 mutex_exit(SD_MUTEX(un)); 22718 if ((flag & FKIOCTL) && dkc != NULL && 22719 dkc->dkc_callback != NULL) { 22720 (*dkc->dkc_callback)(dkc->dkc_cookie, 22721 err); 22722 /* 22723 * Did callback and reported error. 22724 * Since we did a callback, ioctl 22725 * should return 0. 22726 */ 22727 err = 0; 22728 } 22729 break; 22730 } 22731 mutex_exit(SD_MUTEX(un)); 22732 22733 if ((flag & FKIOCTL) && dkc != NULL && 22734 dkc->dkc_callback != NULL) { 22735 /* async SYNC CACHE request */ 22736 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc); 22737 } else { 22738 /* synchronous SYNC CACHE request */ 22739 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL); 22740 } 22741 } 22742 break; 22743 22744 case DKIOCGETWCE: { 22745 22746 int wce; 22747 22748 if ((err = sd_get_write_cache_enabled(ssc, &wce)) != 0) { 22749 break; 22750 } 22751 22752 if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) { 22753 err = EFAULT; 22754 } 22755 break; 22756 } 22757 22758 case DKIOCSETWCE: { 22759 22760 int wce, sync_supported; 22761 22762 if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) { 22763 err = EFAULT; 22764 break; 22765 } 22766 22767 /* 22768 * Synchronize multiple threads trying to enable 22769 * or disable the cache via the un_f_wcc_cv 22770 * condition variable. 22771 */ 22772 mutex_enter(SD_MUTEX(un)); 22773 22774 /* 22775 * Don't allow the cache to be enabled if the 22776 * config file has it disabled. 22777 */ 22778 if (un->un_f_opt_disable_cache && wce) { 22779 mutex_exit(SD_MUTEX(un)); 22780 err = EINVAL; 22781 break; 22782 } 22783 22784 /* 22785 * Wait for write cache change in progress 22786 * bit to be clear before proceeding. 22787 */ 22788 while (un->un_f_wcc_inprog) 22789 cv_wait(&un->un_wcc_cv, SD_MUTEX(un)); 22790 22791 un->un_f_wcc_inprog = 1; 22792 22793 if (un->un_f_write_cache_enabled && wce == 0) { 22794 /* 22795 * Disable the write cache. Don't clear 22796 * un_f_write_cache_enabled until after 22797 * the mode select and flush are complete. 22798 */ 22799 sync_supported = un->un_f_sync_cache_supported; 22800 22801 /* 22802 * If cache flush is suppressed, we assume that the 22803 * controller firmware will take care of managing the 22804 * write cache for us: no need to explicitly 22805 * disable it. 22806 */ 22807 if (!un->un_f_suppress_cache_flush) { 22808 mutex_exit(SD_MUTEX(un)); 22809 if ((err = sd_cache_control(ssc, 22810 SD_CACHE_NOCHANGE, 22811 SD_CACHE_DISABLE)) == 0 && 22812 sync_supported) { 22813 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, 22814 NULL); 22815 } 22816 } else { 22817 mutex_exit(SD_MUTEX(un)); 22818 } 22819 22820 mutex_enter(SD_MUTEX(un)); 22821 if (err == 0) { 22822 un->un_f_write_cache_enabled = 0; 22823 } 22824 22825 } else if (!un->un_f_write_cache_enabled && wce != 0) { 22826 /* 22827 * Set un_f_write_cache_enabled first, so there is 22828 * no window where the cache is enabled, but the 22829 * bit says it isn't. 22830 */ 22831 un->un_f_write_cache_enabled = 1; 22832 22833 /* 22834 * If cache flush is suppressed, we assume that the 22835 * controller firmware will take care of managing the 22836 * write cache for us: no need to explicitly 22837 * enable it. 22838 */ 22839 if (!un->un_f_suppress_cache_flush) { 22840 mutex_exit(SD_MUTEX(un)); 22841 err = sd_cache_control(ssc, SD_CACHE_NOCHANGE, 22842 SD_CACHE_ENABLE); 22843 } else { 22844 mutex_exit(SD_MUTEX(un)); 22845 } 22846 22847 mutex_enter(SD_MUTEX(un)); 22848 22849 if (err) { 22850 un->un_f_write_cache_enabled = 0; 22851 } 22852 } 22853 22854 un->un_f_wcc_inprog = 0; 22855 cv_broadcast(&un->un_wcc_cv); 22856 mutex_exit(SD_MUTEX(un)); 22857 break; 22858 } 22859 22860 default: 22861 err = ENOTTY; 22862 break; 22863 } 22864 mutex_enter(SD_MUTEX(un)); 22865 un->un_ncmds_in_driver--; 22866 ASSERT(un->un_ncmds_in_driver >= 0); 22867 mutex_exit(SD_MUTEX(un)); 22868 22869 22870 done_without_assess: 22871 sd_ssc_fini(ssc); 22872 22873 SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err); 22874 return (err); 22875 22876 done_with_assess: 22877 mutex_enter(SD_MUTEX(un)); 22878 un->un_ncmds_in_driver--; 22879 ASSERT(un->un_ncmds_in_driver >= 0); 22880 mutex_exit(SD_MUTEX(un)); 22881 22882 done_quick_assess: 22883 if (err != 0) 22884 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 22885 /* Uninitialize sd_ssc_t pointer */ 22886 sd_ssc_fini(ssc); 22887 22888 SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err); 22889 return (err); 22890 } 22891 22892 22893 /* 22894 * Function: sd_dkio_ctrl_info 22895 * 22896 * Description: This routine is the driver entry point for handling controller 22897 * information ioctl requests (DKIOCINFO). 22898 * 22899 * Arguments: dev - the device number 22900 * arg - pointer to user provided dk_cinfo structure 22901 * specifying the controller type and attributes. 22902 * flag - this argument is a pass through to ddi_copyxxx() 22903 * directly from the mode argument of ioctl(). 22904 * 22905 * Return Code: 0 22906 * EFAULT 22907 * ENXIO 22908 */ 22909 22910 static int 22911 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag) 22912 { 22913 struct sd_lun *un = NULL; 22914 struct dk_cinfo *info; 22915 dev_info_t *pdip; 22916 int lun, tgt; 22917 22918 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22919 return (ENXIO); 22920 } 22921 22922 info = (struct dk_cinfo *) 22923 kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP); 22924 22925 switch (un->un_ctype) { 22926 case CTYPE_CDROM: 22927 info->dki_ctype = DKC_CDROM; 22928 break; 22929 default: 22930 info->dki_ctype = DKC_SCSI_CCS; 22931 break; 22932 } 22933 pdip = ddi_get_parent(SD_DEVINFO(un)); 22934 info->dki_cnum = ddi_get_instance(pdip); 22935 if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) { 22936 (void) strcpy(info->dki_cname, ddi_get_name(pdip)); 22937 } else { 22938 (void) strncpy(info->dki_cname, ddi_node_name(pdip), 22939 DK_DEVLEN - 1); 22940 } 22941 22942 lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 22943 DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0); 22944 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 22945 DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0); 22946 22947 /* Unit Information */ 22948 info->dki_unit = ddi_get_instance(SD_DEVINFO(un)); 22949 info->dki_slave = ((tgt << 3) | lun); 22950 (void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)), 22951 DK_DEVLEN - 1); 22952 info->dki_flags = DKI_FMTVOL; 22953 info->dki_partition = SDPART(dev); 22954 22955 /* Max Transfer size of this device in blocks */ 22956 info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize; 22957 info->dki_addr = 0; 22958 info->dki_space = 0; 22959 info->dki_prio = 0; 22960 info->dki_vec = 0; 22961 22962 if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) { 22963 kmem_free(info, sizeof (struct dk_cinfo)); 22964 return (EFAULT); 22965 } else { 22966 kmem_free(info, sizeof (struct dk_cinfo)); 22967 return (0); 22968 } 22969 } 22970 22971 22972 /* 22973 * Function: sd_get_media_info 22974 * 22975 * Description: This routine is the driver entry point for handling ioctl 22976 * requests for the media type or command set profile used by the 22977 * drive to operate on the media (DKIOCGMEDIAINFO). 22978 * 22979 * Arguments: dev - the device number 22980 * arg - pointer to user provided dk_minfo structure 22981 * specifying the media type, logical block size and 22982 * drive capacity. 22983 * flag - this argument is a pass through to ddi_copyxxx() 22984 * directly from the mode argument of ioctl(). 22985 * 22986 * Return Code: 0 22987 * EACCESS 22988 * EFAULT 22989 * ENXIO 22990 * EIO 22991 */ 22992 22993 static int 22994 sd_get_media_info(dev_t dev, caddr_t arg, int flag) 22995 { 22996 struct sd_lun *un = NULL; 22997 struct uscsi_cmd com; 22998 struct scsi_inquiry *sinq; 22999 struct dk_minfo media_info; 23000 u_longlong_t media_capacity; 23001 uint64_t capacity; 23002 uint_t lbasize; 23003 uchar_t *out_data; 23004 uchar_t *rqbuf; 23005 int rval = 0; 23006 int rtn; 23007 sd_ssc_t *ssc; 23008 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 23009 (un->un_state == SD_STATE_OFFLINE)) { 23010 return (ENXIO); 23011 } 23012 23013 SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n"); 23014 23015 out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP); 23016 rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 23017 23018 /* Issue a TUR to determine if the drive is ready with media present */ 23019 ssc = sd_ssc_init(un); 23020 rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_CHECK_FOR_MEDIA); 23021 if (rval == ENXIO) { 23022 goto done; 23023 } else if (rval != 0) { 23024 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23025 } 23026 23027 /* Now get configuration data */ 23028 if (ISCD(un)) { 23029 media_info.dki_media_type = DK_CDROM; 23030 23031 /* Allow SCMD_GET_CONFIGURATION to MMC devices only */ 23032 if (un->un_f_mmc_cap == TRUE) { 23033 rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, 23034 SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN, 23035 SD_PATH_STANDARD); 23036 23037 if (rtn) { 23038 /* 23039 * We ignore all failures for CD and need to 23040 * put the assessment before processing code 23041 * to avoid missing assessment for FMA. 23042 */ 23043 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23044 /* 23045 * Failed for other than an illegal request 23046 * or command not supported 23047 */ 23048 if ((com.uscsi_status == STATUS_CHECK) && 23049 (com.uscsi_rqstatus == STATUS_GOOD)) { 23050 if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) || 23051 (rqbuf[12] != 0x20)) { 23052 rval = EIO; 23053 goto no_assessment; 23054 } 23055 } 23056 } else { 23057 /* 23058 * The GET CONFIGURATION command succeeded 23059 * so set the media type according to the 23060 * returned data 23061 */ 23062 media_info.dki_media_type = out_data[6]; 23063 media_info.dki_media_type <<= 8; 23064 media_info.dki_media_type |= out_data[7]; 23065 } 23066 } 23067 } else { 23068 /* 23069 * The profile list is not available, so we attempt to identify 23070 * the media type based on the inquiry data 23071 */ 23072 sinq = un->un_sd->sd_inq; 23073 if ((sinq->inq_dtype == DTYPE_DIRECT) || 23074 (sinq->inq_dtype == DTYPE_OPTICAL)) { 23075 /* This is a direct access device or optical disk */ 23076 media_info.dki_media_type = DK_FIXED_DISK; 23077 23078 if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) || 23079 (bcmp(sinq->inq_vid, "iomega", 6) == 0)) { 23080 if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) { 23081 media_info.dki_media_type = DK_ZIP; 23082 } else if ( 23083 (bcmp(sinq->inq_pid, "jaz", 3) == 0)) { 23084 media_info.dki_media_type = DK_JAZ; 23085 } 23086 } 23087 } else { 23088 /* 23089 * Not a CD, direct access or optical disk so return 23090 * unknown media 23091 */ 23092 media_info.dki_media_type = DK_UNKNOWN; 23093 } 23094 } 23095 23096 /* Now read the capacity so we can provide the lbasize and capacity */ 23097 rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize, 23098 SD_PATH_DIRECT); 23099 switch (rval) { 23100 case 0: 23101 break; 23102 case EACCES: 23103 rval = EACCES; 23104 goto done; 23105 default: 23106 rval = EIO; 23107 goto done; 23108 } 23109 23110 /* 23111 * If lun is expanded dynamically, update the un structure. 23112 */ 23113 mutex_enter(SD_MUTEX(un)); 23114 if ((un->un_f_blockcount_is_valid == TRUE) && 23115 (un->un_f_tgt_blocksize_is_valid == TRUE) && 23116 (capacity > un->un_blockcount)) { 23117 sd_update_block_info(un, lbasize, capacity); 23118 } 23119 mutex_exit(SD_MUTEX(un)); 23120 23121 media_info.dki_lbsize = lbasize; 23122 media_capacity = capacity; 23123 23124 /* 23125 * sd_send_scsi_READ_CAPACITY() reports capacity in 23126 * un->un_sys_blocksize chunks. So we need to convert it into 23127 * cap.lbasize chunks. 23128 */ 23129 media_capacity *= un->un_sys_blocksize; 23130 media_capacity /= lbasize; 23131 media_info.dki_capacity = media_capacity; 23132 23133 if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) { 23134 rval = EFAULT; 23135 /* Put goto. Anybody might add some code below in future */ 23136 goto no_assessment; 23137 } 23138 done: 23139 if (rval != 0) { 23140 if (rval == EIO) 23141 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 23142 else 23143 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23144 } 23145 no_assessment: 23146 sd_ssc_fini(ssc); 23147 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 23148 kmem_free(rqbuf, SENSE_LENGTH); 23149 return (rval); 23150 } 23151 23152 /* 23153 * Function: sd_get_media_info_ext 23154 * 23155 * Description: This routine is the driver entry point for handling ioctl 23156 * requests for the media type or command set profile used by the 23157 * drive to operate on the media (DKIOCGMEDIAINFOEXT). The 23158 * difference this ioctl and DKIOCGMEDIAINFO is the return value 23159 * of this ioctl contains both logical block size and physical 23160 * block size. 23161 * 23162 * 23163 * Arguments: dev - the device number 23164 * arg - pointer to user provided dk_minfo_ext structure 23165 * specifying the media type, logical block size, 23166 * physical block size and disk capacity. 23167 * flag - this argument is a pass through to ddi_copyxxx() 23168 * directly from the mode argument of ioctl(). 23169 * 23170 * Return Code: 0 23171 * EACCESS 23172 * EFAULT 23173 * ENXIO 23174 * EIO 23175 */ 23176 23177 static int 23178 sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag) 23179 { 23180 struct sd_lun *un = NULL; 23181 struct uscsi_cmd com; 23182 struct scsi_inquiry *sinq; 23183 struct dk_minfo_ext media_info_ext; 23184 u_longlong_t media_capacity; 23185 uint64_t capacity; 23186 uint_t lbasize; 23187 uint_t pbsize; 23188 uchar_t *out_data; 23189 uchar_t *rqbuf; 23190 int rval = 0; 23191 int rtn; 23192 sd_ssc_t *ssc; 23193 23194 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 23195 (un->un_state == SD_STATE_OFFLINE)) { 23196 return (ENXIO); 23197 } 23198 23199 SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info_ext: entry\n"); 23200 23201 out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP); 23202 rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 23203 ssc = sd_ssc_init(un); 23204 23205 /* Issue a TUR to determine if the drive is ready with media present */ 23206 rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_CHECK_FOR_MEDIA); 23207 if (rval == ENXIO) { 23208 goto done; 23209 } else if (rval != 0) { 23210 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23211 } 23212 23213 /* Now get configuration data */ 23214 if (ISCD(un)) { 23215 media_info_ext.dki_media_type = DK_CDROM; 23216 23217 /* Allow SCMD_GET_CONFIGURATION to MMC devices only */ 23218 if (un->un_f_mmc_cap == TRUE) { 23219 rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, 23220 SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN, 23221 SD_PATH_STANDARD); 23222 23223 if (rtn) { 23224 /* 23225 * We ignore all failures for CD and need to 23226 * put the assessment before processing code 23227 * to avoid missing assessment for FMA. 23228 */ 23229 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23230 /* 23231 * Failed for other than an illegal request 23232 * or command not supported 23233 */ 23234 if ((com.uscsi_status == STATUS_CHECK) && 23235 (com.uscsi_rqstatus == STATUS_GOOD)) { 23236 if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) || 23237 (rqbuf[12] != 0x20)) { 23238 rval = EIO; 23239 goto no_assessment; 23240 } 23241 } 23242 } else { 23243 /* 23244 * The GET CONFIGURATION command succeeded 23245 * so set the media type according to the 23246 * returned data 23247 */ 23248 media_info_ext.dki_media_type = out_data[6]; 23249 media_info_ext.dki_media_type <<= 8; 23250 media_info_ext.dki_media_type |= out_data[7]; 23251 } 23252 } 23253 } else { 23254 /* 23255 * The profile list is not available, so we attempt to identify 23256 * the media type based on the inquiry data 23257 */ 23258 sinq = un->un_sd->sd_inq; 23259 if ((sinq->inq_dtype == DTYPE_DIRECT) || 23260 (sinq->inq_dtype == DTYPE_OPTICAL)) { 23261 /* This is a direct access device or optical disk */ 23262 media_info_ext.dki_media_type = DK_FIXED_DISK; 23263 23264 if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) || 23265 (bcmp(sinq->inq_vid, "iomega", 6) == 0)) { 23266 if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) { 23267 media_info_ext.dki_media_type = DK_ZIP; 23268 } else if ( 23269 (bcmp(sinq->inq_pid, "jaz", 3) == 0)) { 23270 media_info_ext.dki_media_type = DK_JAZ; 23271 } 23272 } 23273 } else { 23274 /* 23275 * Not a CD, direct access or optical disk so return 23276 * unknown media 23277 */ 23278 media_info_ext.dki_media_type = DK_UNKNOWN; 23279 } 23280 } 23281 23282 /* 23283 * Now read the capacity so we can provide the lbasize, 23284 * pbsize and capacity. 23285 */ 23286 rval = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, &lbasize, &pbsize, 23287 SD_PATH_DIRECT); 23288 23289 if (rval != 0) { 23290 rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize, 23291 SD_PATH_DIRECT); 23292 23293 switch (rval) { 23294 case 0: 23295 pbsize = lbasize; 23296 media_capacity = capacity; 23297 /* 23298 * sd_send_scsi_READ_CAPACITY() reports capacity in 23299 * un->un_sys_blocksize chunks. So we need to convert 23300 * it into cap.lbsize chunks. 23301 */ 23302 if (un->un_f_has_removable_media) { 23303 media_capacity *= un->un_sys_blocksize; 23304 media_capacity /= lbasize; 23305 } 23306 break; 23307 case EACCES: 23308 rval = EACCES; 23309 goto done; 23310 default: 23311 rval = EIO; 23312 goto done; 23313 } 23314 } else { 23315 media_capacity = capacity; 23316 } 23317 23318 /* 23319 * If lun is expanded dynamically, update the un structure. 23320 */ 23321 mutex_enter(SD_MUTEX(un)); 23322 if ((un->un_f_blockcount_is_valid == TRUE) && 23323 (un->un_f_tgt_blocksize_is_valid == TRUE) && 23324 (capacity > un->un_blockcount)) { 23325 sd_update_block_info(un, lbasize, capacity); 23326 } 23327 mutex_exit(SD_MUTEX(un)); 23328 23329 media_info_ext.dki_lbsize = lbasize; 23330 media_info_ext.dki_capacity = media_capacity; 23331 media_info_ext.dki_pbsize = pbsize; 23332 23333 if (ddi_copyout(&media_info_ext, arg, sizeof (struct dk_minfo_ext), 23334 flag)) { 23335 rval = EFAULT; 23336 goto no_assessment; 23337 } 23338 done: 23339 if (rval != 0) { 23340 if (rval == EIO) 23341 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 23342 else 23343 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23344 } 23345 no_assessment: 23346 sd_ssc_fini(ssc); 23347 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 23348 kmem_free(rqbuf, SENSE_LENGTH); 23349 return (rval); 23350 } 23351 23352 /* 23353 * Function: sd_check_media 23354 * 23355 * Description: This utility routine implements the functionality for the 23356 * DKIOCSTATE ioctl. This ioctl blocks the user thread until the 23357 * driver state changes from that specified by the user 23358 * (inserted or ejected). For example, if the user specifies 23359 * DKIO_EJECTED and the current media state is inserted this 23360 * routine will immediately return DKIO_INSERTED. However, if the 23361 * current media state is not inserted the user thread will be 23362 * blocked until the drive state changes. If DKIO_NONE is specified 23363 * the user thread will block until a drive state change occurs. 23364 * 23365 * Arguments: dev - the device number 23366 * state - user pointer to a dkio_state, updated with the current 23367 * drive state at return. 23368 * 23369 * Return Code: ENXIO 23370 * EIO 23371 * EAGAIN 23372 * EINTR 23373 */ 23374 23375 static int 23376 sd_check_media(dev_t dev, enum dkio_state state) 23377 { 23378 struct sd_lun *un = NULL; 23379 enum dkio_state prev_state; 23380 opaque_t token = NULL; 23381 int rval = 0; 23382 sd_ssc_t *ssc; 23383 dev_t sub_dev; 23384 23385 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23386 return (ENXIO); 23387 } 23388 23389 /* 23390 * sub_dev is used when submitting request to scsi watch. 23391 * All submissions are unified to use same device number. 23392 */ 23393 sub_dev = sd_make_device(SD_DEVINFO(un)); 23394 23395 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n"); 23396 23397 ssc = sd_ssc_init(un); 23398 23399 mutex_enter(SD_MUTEX(un)); 23400 23401 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: " 23402 "state=%x, mediastate=%x\n", state, un->un_mediastate); 23403 23404 prev_state = un->un_mediastate; 23405 23406 /* is there anything to do? */ 23407 if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) { 23408 /* 23409 * submit the request to the scsi_watch service; 23410 * scsi_media_watch_cb() does the real work 23411 */ 23412 mutex_exit(SD_MUTEX(un)); 23413 23414 /* 23415 * This change handles the case where a scsi watch request is 23416 * added to a device that is powered down. To accomplish this 23417 * we power up the device before adding the scsi watch request, 23418 * since the scsi watch sends a TUR directly to the device 23419 * which the device cannot handle if it is powered down. 23420 */ 23421 if (sd_pm_entry(un) != DDI_SUCCESS) { 23422 mutex_enter(SD_MUTEX(un)); 23423 goto done; 23424 } 23425 23426 token = scsi_watch_request_submit(SD_SCSI_DEVP(un), 23427 sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb, 23428 (caddr_t)sub_dev); 23429 23430 sd_pm_exit(un); 23431 23432 mutex_enter(SD_MUTEX(un)); 23433 if (token == NULL) { 23434 rval = EAGAIN; 23435 goto done; 23436 } 23437 23438 /* 23439 * This is a special case IOCTL that doesn't return 23440 * until the media state changes. Routine sdpower 23441 * knows about and handles this so don't count it 23442 * as an active cmd in the driver, which would 23443 * keep the device busy to the pm framework. 23444 * If the count isn't decremented the device can't 23445 * be powered down. 23446 */ 23447 un->un_ncmds_in_driver--; 23448 ASSERT(un->un_ncmds_in_driver >= 0); 23449 23450 /* 23451 * if a prior request had been made, this will be the same 23452 * token, as scsi_watch was designed that way. 23453 */ 23454 un->un_swr_token = token; 23455 un->un_specified_mediastate = state; 23456 23457 /* 23458 * now wait for media change 23459 * we will not be signalled unless mediastate == state but it is 23460 * still better to test for this condition, since there is a 23461 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED 23462 */ 23463 SD_TRACE(SD_LOG_COMMON, un, 23464 "sd_check_media: waiting for media state change\n"); 23465 while (un->un_mediastate == state) { 23466 if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) { 23467 SD_TRACE(SD_LOG_COMMON, un, 23468 "sd_check_media: waiting for media state " 23469 "was interrupted\n"); 23470 un->un_ncmds_in_driver++; 23471 rval = EINTR; 23472 goto done; 23473 } 23474 SD_TRACE(SD_LOG_COMMON, un, 23475 "sd_check_media: received signal, state=%x\n", 23476 un->un_mediastate); 23477 } 23478 /* 23479 * Inc the counter to indicate the device once again 23480 * has an active outstanding cmd. 23481 */ 23482 un->un_ncmds_in_driver++; 23483 } 23484 23485 /* invalidate geometry */ 23486 if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) { 23487 sr_ejected(un); 23488 } 23489 23490 if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) { 23491 uint64_t capacity; 23492 uint_t lbasize; 23493 23494 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n"); 23495 mutex_exit(SD_MUTEX(un)); 23496 /* 23497 * Since the following routines use SD_PATH_DIRECT, we must 23498 * call PM directly before the upcoming disk accesses. This 23499 * may cause the disk to be power/spin up. 23500 */ 23501 23502 if (sd_pm_entry(un) == DDI_SUCCESS) { 23503 rval = sd_send_scsi_READ_CAPACITY(ssc, 23504 &capacity, &lbasize, SD_PATH_DIRECT); 23505 if (rval != 0) { 23506 sd_pm_exit(un); 23507 if (rval == EIO) 23508 sd_ssc_assessment(ssc, 23509 SD_FMT_STATUS_CHECK); 23510 else 23511 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23512 mutex_enter(SD_MUTEX(un)); 23513 goto done; 23514 } 23515 } else { 23516 rval = EIO; 23517 mutex_enter(SD_MUTEX(un)); 23518 goto done; 23519 } 23520 mutex_enter(SD_MUTEX(un)); 23521 23522 sd_update_block_info(un, lbasize, capacity); 23523 23524 /* 23525 * Check if the media in the device is writable or not 23526 */ 23527 if (ISCD(un)) { 23528 sd_check_for_writable_cd(ssc, SD_PATH_DIRECT); 23529 } 23530 23531 mutex_exit(SD_MUTEX(un)); 23532 cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT); 23533 if ((cmlb_validate(un->un_cmlbhandle, 0, 23534 (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) { 23535 sd_set_pstats(un); 23536 SD_TRACE(SD_LOG_IO_PARTITION, un, 23537 "sd_check_media: un:0x%p pstats created and " 23538 "set\n", un); 23539 } 23540 23541 rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT, 23542 SD_PATH_DIRECT); 23543 23544 sd_pm_exit(un); 23545 23546 if (rval != 0) { 23547 if (rval == EIO) 23548 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 23549 else 23550 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23551 } 23552 23553 mutex_enter(SD_MUTEX(un)); 23554 } 23555 done: 23556 sd_ssc_fini(ssc); 23557 un->un_f_watcht_stopped = FALSE; 23558 if (token != NULL && un->un_swr_token != NULL) { 23559 /* 23560 * Use of this local token and the mutex ensures that we avoid 23561 * some race conditions associated with terminating the 23562 * scsi watch. 23563 */ 23564 token = un->un_swr_token; 23565 mutex_exit(SD_MUTEX(un)); 23566 (void) scsi_watch_request_terminate(token, 23567 SCSI_WATCH_TERMINATE_WAIT); 23568 if (scsi_watch_get_ref_count(token) == 0) { 23569 mutex_enter(SD_MUTEX(un)); 23570 un->un_swr_token = (opaque_t)NULL; 23571 } else { 23572 mutex_enter(SD_MUTEX(un)); 23573 } 23574 } 23575 23576 /* 23577 * Update the capacity kstat value, if no media previously 23578 * (capacity kstat is 0) and a media has been inserted 23579 * (un_f_blockcount_is_valid == TRUE) 23580 */ 23581 if (un->un_errstats) { 23582 struct sd_errstats *stp = NULL; 23583 23584 stp = (struct sd_errstats *)un->un_errstats->ks_data; 23585 if ((stp->sd_capacity.value.ui64 == 0) && 23586 (un->un_f_blockcount_is_valid == TRUE)) { 23587 stp->sd_capacity.value.ui64 = 23588 (uint64_t)((uint64_t)un->un_blockcount * 23589 un->un_sys_blocksize); 23590 } 23591 } 23592 mutex_exit(SD_MUTEX(un)); 23593 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n"); 23594 return (rval); 23595 } 23596 23597 23598 /* 23599 * Function: sd_delayed_cv_broadcast 23600 * 23601 * Description: Delayed cv_broadcast to allow for target to recover from media 23602 * insertion. 23603 * 23604 * Arguments: arg - driver soft state (unit) structure 23605 */ 23606 23607 static void 23608 sd_delayed_cv_broadcast(void *arg) 23609 { 23610 struct sd_lun *un = arg; 23611 23612 SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n"); 23613 23614 mutex_enter(SD_MUTEX(un)); 23615 un->un_dcvb_timeid = NULL; 23616 cv_broadcast(&un->un_state_cv); 23617 mutex_exit(SD_MUTEX(un)); 23618 } 23619 23620 23621 /* 23622 * Function: sd_media_watch_cb 23623 * 23624 * Description: Callback routine used for support of the DKIOCSTATE ioctl. This 23625 * routine processes the TUR sense data and updates the driver 23626 * state if a transition has occurred. The user thread 23627 * (sd_check_media) is then signalled. 23628 * 23629 * Arguments: arg - the device 'dev_t' is used for context to discriminate 23630 * among multiple watches that share this callback function 23631 * resultp - scsi watch facility result packet containing scsi 23632 * packet, status byte and sense data 23633 * 23634 * Return Code: 0 for success, -1 for failure 23635 */ 23636 23637 static int 23638 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp) 23639 { 23640 struct sd_lun *un; 23641 struct scsi_status *statusp = resultp->statusp; 23642 uint8_t *sensep = (uint8_t *)resultp->sensep; 23643 enum dkio_state state = DKIO_NONE; 23644 dev_t dev = (dev_t)arg; 23645 uchar_t actual_sense_length; 23646 uint8_t skey, asc, ascq; 23647 23648 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23649 return (-1); 23650 } 23651 actual_sense_length = resultp->actual_sense_length; 23652 23653 mutex_enter(SD_MUTEX(un)); 23654 SD_TRACE(SD_LOG_COMMON, un, 23655 "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n", 23656 *((char *)statusp), (void *)sensep, actual_sense_length); 23657 23658 if (resultp->pkt->pkt_reason == CMD_DEV_GONE) { 23659 un->un_mediastate = DKIO_DEV_GONE; 23660 cv_broadcast(&un->un_state_cv); 23661 mutex_exit(SD_MUTEX(un)); 23662 23663 return (0); 23664 } 23665 23666 /* 23667 * If there was a check condition then sensep points to valid sense data 23668 * If status was not a check condition but a reservation or busy status 23669 * then the new state is DKIO_NONE 23670 */ 23671 if (sensep != NULL) { 23672 skey = scsi_sense_key(sensep); 23673 asc = scsi_sense_asc(sensep); 23674 ascq = scsi_sense_ascq(sensep); 23675 23676 SD_INFO(SD_LOG_COMMON, un, 23677 "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n", 23678 skey, asc, ascq); 23679 /* This routine only uses up to 13 bytes of sense data. */ 23680 if (actual_sense_length >= 13) { 23681 if (skey == KEY_UNIT_ATTENTION) { 23682 if (asc == 0x28) { 23683 state = DKIO_INSERTED; 23684 } 23685 } else if (skey == KEY_NOT_READY) { 23686 /* 23687 * Sense data of 02/06/00 means that the 23688 * drive could not read the media (No 23689 * reference position found). In this case 23690 * to prevent a hang on the DKIOCSTATE IOCTL 23691 * we set the media state to DKIO_INSERTED. 23692 */ 23693 if (asc == 0x06 && ascq == 0x00) 23694 state = DKIO_INSERTED; 23695 23696 /* 23697 * if 02/04/02 means that the host 23698 * should send start command. Explicitly 23699 * leave the media state as is 23700 * (inserted) as the media is inserted 23701 * and host has stopped device for PM 23702 * reasons. Upon next true read/write 23703 * to this media will bring the 23704 * device to the right state good for 23705 * media access. 23706 */ 23707 if (asc == 0x3a) { 23708 state = DKIO_EJECTED; 23709 } else { 23710 /* 23711 * If the drive is busy with an 23712 * operation or long write, keep the 23713 * media in an inserted state. 23714 */ 23715 23716 if ((asc == 0x04) && 23717 ((ascq == 0x02) || 23718 (ascq == 0x07) || 23719 (ascq == 0x08))) { 23720 state = DKIO_INSERTED; 23721 } 23722 } 23723 } else if (skey == KEY_NO_SENSE) { 23724 if ((asc == 0x00) && (ascq == 0x00)) { 23725 /* 23726 * Sense Data 00/00/00 does not provide 23727 * any information about the state of 23728 * the media. Ignore it. 23729 */ 23730 mutex_exit(SD_MUTEX(un)); 23731 return (0); 23732 } 23733 } 23734 } 23735 } else if ((*((char *)statusp) == STATUS_GOOD) && 23736 (resultp->pkt->pkt_reason == CMD_CMPLT)) { 23737 state = DKIO_INSERTED; 23738 } 23739 23740 SD_TRACE(SD_LOG_COMMON, un, 23741 "sd_media_watch_cb: state=%x, specified=%x\n", 23742 state, un->un_specified_mediastate); 23743 23744 /* 23745 * now signal the waiting thread if this is *not* the specified state; 23746 * delay the signal if the state is DKIO_INSERTED to allow the target 23747 * to recover 23748 */ 23749 if (state != un->un_specified_mediastate) { 23750 un->un_mediastate = state; 23751 if (state == DKIO_INSERTED) { 23752 /* 23753 * delay the signal to give the drive a chance 23754 * to do what it apparently needs to do 23755 */ 23756 SD_TRACE(SD_LOG_COMMON, un, 23757 "sd_media_watch_cb: delayed cv_broadcast\n"); 23758 if (un->un_dcvb_timeid == NULL) { 23759 un->un_dcvb_timeid = 23760 timeout(sd_delayed_cv_broadcast, un, 23761 drv_usectohz((clock_t)MEDIA_ACCESS_DELAY)); 23762 } 23763 } else { 23764 SD_TRACE(SD_LOG_COMMON, un, 23765 "sd_media_watch_cb: immediate cv_broadcast\n"); 23766 cv_broadcast(&un->un_state_cv); 23767 } 23768 } 23769 mutex_exit(SD_MUTEX(un)); 23770 return (0); 23771 } 23772 23773 23774 /* 23775 * Function: sd_dkio_get_temp 23776 * 23777 * Description: This routine is the driver entry point for handling ioctl 23778 * requests to get the disk temperature. 23779 * 23780 * Arguments: dev - the device number 23781 * arg - pointer to user provided dk_temperature structure. 23782 * flag - this argument is a pass through to ddi_copyxxx() 23783 * directly from the mode argument of ioctl(). 23784 * 23785 * Return Code: 0 23786 * EFAULT 23787 * ENXIO 23788 * EAGAIN 23789 */ 23790 23791 static int 23792 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag) 23793 { 23794 struct sd_lun *un = NULL; 23795 struct dk_temperature *dktemp = NULL; 23796 uchar_t *temperature_page; 23797 int rval = 0; 23798 int path_flag = SD_PATH_STANDARD; 23799 sd_ssc_t *ssc; 23800 23801 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23802 return (ENXIO); 23803 } 23804 23805 ssc = sd_ssc_init(un); 23806 dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP); 23807 23808 /* copyin the disk temp argument to get the user flags */ 23809 if (ddi_copyin((void *)arg, dktemp, 23810 sizeof (struct dk_temperature), flag) != 0) { 23811 rval = EFAULT; 23812 goto done; 23813 } 23814 23815 /* Initialize the temperature to invalid. */ 23816 dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP; 23817 dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP; 23818 23819 /* 23820 * Note: Investigate removing the "bypass pm" semantic. 23821 * Can we just bypass PM always? 23822 */ 23823 if (dktemp->dkt_flags & DKT_BYPASS_PM) { 23824 path_flag = SD_PATH_DIRECT; 23825 ASSERT(!mutex_owned(&un->un_pm_mutex)); 23826 mutex_enter(&un->un_pm_mutex); 23827 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 23828 /* 23829 * If DKT_BYPASS_PM is set, and the drive happens to be 23830 * in low power mode, we can not wake it up, Need to 23831 * return EAGAIN. 23832 */ 23833 mutex_exit(&un->un_pm_mutex); 23834 rval = EAGAIN; 23835 goto done; 23836 } else { 23837 /* 23838 * Indicate to PM the device is busy. This is required 23839 * to avoid a race - i.e. the ioctl is issuing a 23840 * command and the pm framework brings down the device 23841 * to low power mode (possible power cut-off on some 23842 * platforms). 23843 */ 23844 mutex_exit(&un->un_pm_mutex); 23845 if (sd_pm_entry(un) != DDI_SUCCESS) { 23846 rval = EAGAIN; 23847 goto done; 23848 } 23849 } 23850 } 23851 23852 temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP); 23853 23854 rval = sd_send_scsi_LOG_SENSE(ssc, temperature_page, 23855 TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag); 23856 if (rval != 0) 23857 goto done2; 23858 23859 /* 23860 * For the current temperature verify that the parameter length is 0x02 23861 * and the parameter code is 0x00 23862 */ 23863 if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) && 23864 (temperature_page[5] == 0x00)) { 23865 if (temperature_page[9] == 0xFF) { 23866 dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP; 23867 } else { 23868 dktemp->dkt_cur_temp = (short)(temperature_page[9]); 23869 } 23870 } 23871 23872 /* 23873 * For the reference temperature verify that the parameter 23874 * length is 0x02 and the parameter code is 0x01 23875 */ 23876 if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) && 23877 (temperature_page[11] == 0x01)) { 23878 if (temperature_page[15] == 0xFF) { 23879 dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP; 23880 } else { 23881 dktemp->dkt_ref_temp = (short)(temperature_page[15]); 23882 } 23883 } 23884 23885 /* Do the copyout regardless of the temperature commands status. */ 23886 if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature), 23887 flag) != 0) { 23888 rval = EFAULT; 23889 goto done1; 23890 } 23891 23892 done2: 23893 if (rval != 0) { 23894 if (rval == EIO) 23895 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 23896 else 23897 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23898 } 23899 done1: 23900 if (path_flag == SD_PATH_DIRECT) { 23901 sd_pm_exit(un); 23902 } 23903 23904 kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE); 23905 done: 23906 sd_ssc_fini(ssc); 23907 if (dktemp != NULL) { 23908 kmem_free(dktemp, sizeof (struct dk_temperature)); 23909 } 23910 23911 return (rval); 23912 } 23913 23914 23915 /* 23916 * Function: sd_log_page_supported 23917 * 23918 * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of 23919 * supported log pages. 23920 * 23921 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 23922 * structure for this target. 23923 * log_page - 23924 * 23925 * Return Code: -1 - on error (log sense is optional and may not be supported). 23926 * 0 - log page not found. 23927 * 1 - log page found. 23928 */ 23929 23930 static int 23931 sd_log_page_supported(sd_ssc_t *ssc, int log_page) 23932 { 23933 uchar_t *log_page_data; 23934 int i; 23935 int match = 0; 23936 int log_size; 23937 int status = 0; 23938 struct sd_lun *un; 23939 23940 ASSERT(ssc != NULL); 23941 un = ssc->ssc_un; 23942 ASSERT(un != NULL); 23943 23944 log_page_data = kmem_zalloc(0xFF, KM_SLEEP); 23945 23946 status = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 0xFF, 0, 0x01, 0, 23947 SD_PATH_DIRECT); 23948 23949 if (status != 0) { 23950 if (status == EIO) { 23951 /* 23952 * Some disks do not support log sense, we 23953 * should ignore this kind of error(sense key is 23954 * 0x5 - illegal request). 23955 */ 23956 uint8_t *sensep; 23957 int senlen; 23958 23959 sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf; 23960 senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen - 23961 ssc->ssc_uscsi_cmd->uscsi_rqresid); 23962 23963 if (senlen > 0 && 23964 scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) { 23965 sd_ssc_assessment(ssc, 23966 SD_FMT_IGNORE_COMPROMISE); 23967 } else { 23968 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 23969 } 23970 } else { 23971 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23972 } 23973 23974 SD_ERROR(SD_LOG_COMMON, un, 23975 "sd_log_page_supported: failed log page retrieval\n"); 23976 kmem_free(log_page_data, 0xFF); 23977 return (-1); 23978 } 23979 23980 log_size = log_page_data[3]; 23981 23982 /* 23983 * The list of supported log pages start from the fourth byte. Check 23984 * until we run out of log pages or a match is found. 23985 */ 23986 for (i = 4; (i < (log_size + 4)) && !match; i++) { 23987 if (log_page_data[i] == log_page) { 23988 match++; 23989 } 23990 } 23991 kmem_free(log_page_data, 0xFF); 23992 return (match); 23993 } 23994 23995 23996 /* 23997 * Function: sd_mhdioc_failfast 23998 * 23999 * Description: This routine is the driver entry point for handling ioctl 24000 * requests to enable/disable the multihost failfast option. 24001 * (MHIOCENFAILFAST) 24002 * 24003 * Arguments: dev - the device number 24004 * arg - user specified probing interval. 24005 * flag - this argument is a pass through to ddi_copyxxx() 24006 * directly from the mode argument of ioctl(). 24007 * 24008 * Return Code: 0 24009 * EFAULT 24010 * ENXIO 24011 */ 24012 24013 static int 24014 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag) 24015 { 24016 struct sd_lun *un = NULL; 24017 int mh_time; 24018 int rval = 0; 24019 24020 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24021 return (ENXIO); 24022 } 24023 24024 if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag)) 24025 return (EFAULT); 24026 24027 if (mh_time) { 24028 mutex_enter(SD_MUTEX(un)); 24029 un->un_resvd_status |= SD_FAILFAST; 24030 mutex_exit(SD_MUTEX(un)); 24031 /* 24032 * If mh_time is INT_MAX, then this ioctl is being used for 24033 * SCSI-3 PGR purposes, and we don't need to spawn watch thread. 24034 */ 24035 if (mh_time != INT_MAX) { 24036 rval = sd_check_mhd(dev, mh_time); 24037 } 24038 } else { 24039 (void) sd_check_mhd(dev, 0); 24040 mutex_enter(SD_MUTEX(un)); 24041 un->un_resvd_status &= ~SD_FAILFAST; 24042 mutex_exit(SD_MUTEX(un)); 24043 } 24044 return (rval); 24045 } 24046 24047 24048 /* 24049 * Function: sd_mhdioc_takeown 24050 * 24051 * Description: This routine is the driver entry point for handling ioctl 24052 * requests to forcefully acquire exclusive access rights to the 24053 * multihost disk (MHIOCTKOWN). 24054 * 24055 * Arguments: dev - the device number 24056 * arg - user provided structure specifying the delay 24057 * parameters in milliseconds 24058 * flag - this argument is a pass through to ddi_copyxxx() 24059 * directly from the mode argument of ioctl(). 24060 * 24061 * Return Code: 0 24062 * EFAULT 24063 * ENXIO 24064 */ 24065 24066 static int 24067 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag) 24068 { 24069 struct sd_lun *un = NULL; 24070 struct mhioctkown *tkown = NULL; 24071 int rval = 0; 24072 24073 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24074 return (ENXIO); 24075 } 24076 24077 if (arg != NULL) { 24078 tkown = (struct mhioctkown *) 24079 kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP); 24080 rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag); 24081 if (rval != 0) { 24082 rval = EFAULT; 24083 goto error; 24084 } 24085 } 24086 24087 rval = sd_take_ownership(dev, tkown); 24088 mutex_enter(SD_MUTEX(un)); 24089 if (rval == 0) { 24090 un->un_resvd_status |= SD_RESERVE; 24091 if (tkown != NULL && tkown->reinstate_resv_delay != 0) { 24092 sd_reinstate_resv_delay = 24093 tkown->reinstate_resv_delay * 1000; 24094 } else { 24095 sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY; 24096 } 24097 /* 24098 * Give the scsi_watch routine interval set by 24099 * the MHIOCENFAILFAST ioctl precedence here. 24100 */ 24101 if ((un->un_resvd_status & SD_FAILFAST) == 0) { 24102 mutex_exit(SD_MUTEX(un)); 24103 (void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000); 24104 SD_TRACE(SD_LOG_IOCTL_MHD, un, 24105 "sd_mhdioc_takeown : %d\n", 24106 sd_reinstate_resv_delay); 24107 } else { 24108 mutex_exit(SD_MUTEX(un)); 24109 } 24110 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY, 24111 sd_mhd_reset_notify_cb, (caddr_t)un); 24112 } else { 24113 un->un_resvd_status &= ~SD_RESERVE; 24114 mutex_exit(SD_MUTEX(un)); 24115 } 24116 24117 error: 24118 if (tkown != NULL) { 24119 kmem_free(tkown, sizeof (struct mhioctkown)); 24120 } 24121 return (rval); 24122 } 24123 24124 24125 /* 24126 * Function: sd_mhdioc_release 24127 * 24128 * Description: This routine is the driver entry point for handling ioctl 24129 * requests to release exclusive access rights to the multihost 24130 * disk (MHIOCRELEASE). 24131 * 24132 * Arguments: dev - the device number 24133 * 24134 * Return Code: 0 24135 * ENXIO 24136 */ 24137 24138 static int 24139 sd_mhdioc_release(dev_t dev) 24140 { 24141 struct sd_lun *un = NULL; 24142 timeout_id_t resvd_timeid_save; 24143 int resvd_status_save; 24144 int rval = 0; 24145 24146 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24147 return (ENXIO); 24148 } 24149 24150 mutex_enter(SD_MUTEX(un)); 24151 resvd_status_save = un->un_resvd_status; 24152 un->un_resvd_status &= 24153 ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE); 24154 if (un->un_resvd_timeid) { 24155 resvd_timeid_save = un->un_resvd_timeid; 24156 un->un_resvd_timeid = NULL; 24157 mutex_exit(SD_MUTEX(un)); 24158 (void) untimeout(resvd_timeid_save); 24159 } else { 24160 mutex_exit(SD_MUTEX(un)); 24161 } 24162 24163 /* 24164 * destroy any pending timeout thread that may be attempting to 24165 * reinstate reservation on this device. 24166 */ 24167 sd_rmv_resv_reclaim_req(dev); 24168 24169 if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) { 24170 mutex_enter(SD_MUTEX(un)); 24171 if ((un->un_mhd_token) && 24172 ((un->un_resvd_status & SD_FAILFAST) == 0)) { 24173 mutex_exit(SD_MUTEX(un)); 24174 (void) sd_check_mhd(dev, 0); 24175 } else { 24176 mutex_exit(SD_MUTEX(un)); 24177 } 24178 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL, 24179 sd_mhd_reset_notify_cb, (caddr_t)un); 24180 } else { 24181 /* 24182 * sd_mhd_watch_cb will restart the resvd recover timeout thread 24183 */ 24184 mutex_enter(SD_MUTEX(un)); 24185 un->un_resvd_status = resvd_status_save; 24186 mutex_exit(SD_MUTEX(un)); 24187 } 24188 return (rval); 24189 } 24190 24191 24192 /* 24193 * Function: sd_mhdioc_register_devid 24194 * 24195 * Description: This routine is the driver entry point for handling ioctl 24196 * requests to register the device id (MHIOCREREGISTERDEVID). 24197 * 24198 * Note: The implementation for this ioctl has been updated to 24199 * be consistent with the original PSARC case (1999/357) 24200 * (4375899, 4241671, 4220005) 24201 * 24202 * Arguments: dev - the device number 24203 * 24204 * Return Code: 0 24205 * ENXIO 24206 */ 24207 24208 static int 24209 sd_mhdioc_register_devid(dev_t dev) 24210 { 24211 struct sd_lun *un = NULL; 24212 int rval = 0; 24213 sd_ssc_t *ssc; 24214 24215 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24216 return (ENXIO); 24217 } 24218 24219 ASSERT(!mutex_owned(SD_MUTEX(un))); 24220 24221 mutex_enter(SD_MUTEX(un)); 24222 24223 /* If a devid already exists, de-register it */ 24224 if (un->un_devid != NULL) { 24225 ddi_devid_unregister(SD_DEVINFO(un)); 24226 /* 24227 * After unregister devid, needs to free devid memory 24228 */ 24229 ddi_devid_free(un->un_devid); 24230 un->un_devid = NULL; 24231 } 24232 24233 /* Check for reservation conflict */ 24234 mutex_exit(SD_MUTEX(un)); 24235 ssc = sd_ssc_init(un); 24236 rval = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 24237 mutex_enter(SD_MUTEX(un)); 24238 24239 switch (rval) { 24240 case 0: 24241 sd_register_devid(ssc, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED); 24242 break; 24243 case EACCES: 24244 break; 24245 default: 24246 rval = EIO; 24247 } 24248 24249 mutex_exit(SD_MUTEX(un)); 24250 if (rval != 0) { 24251 if (rval == EIO) 24252 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 24253 else 24254 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 24255 } 24256 sd_ssc_fini(ssc); 24257 return (rval); 24258 } 24259 24260 24261 /* 24262 * Function: sd_mhdioc_inkeys 24263 * 24264 * Description: This routine is the driver entry point for handling ioctl 24265 * requests to issue the SCSI-3 Persistent In Read Keys command 24266 * to the device (MHIOCGRP_INKEYS). 24267 * 24268 * Arguments: dev - the device number 24269 * arg - user provided in_keys structure 24270 * flag - this argument is a pass through to ddi_copyxxx() 24271 * directly from the mode argument of ioctl(). 24272 * 24273 * Return Code: code returned by sd_persistent_reservation_in_read_keys() 24274 * ENXIO 24275 * EFAULT 24276 */ 24277 24278 static int 24279 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag) 24280 { 24281 struct sd_lun *un; 24282 mhioc_inkeys_t inkeys; 24283 int rval = 0; 24284 24285 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24286 return (ENXIO); 24287 } 24288 24289 #ifdef _MULTI_DATAMODEL 24290 switch (ddi_model_convert_from(flag & FMODELS)) { 24291 case DDI_MODEL_ILP32: { 24292 struct mhioc_inkeys32 inkeys32; 24293 24294 if (ddi_copyin(arg, &inkeys32, 24295 sizeof (struct mhioc_inkeys32), flag) != 0) { 24296 return (EFAULT); 24297 } 24298 inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li; 24299 if ((rval = sd_persistent_reservation_in_read_keys(un, 24300 &inkeys, flag)) != 0) { 24301 return (rval); 24302 } 24303 inkeys32.generation = inkeys.generation; 24304 if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32), 24305 flag) != 0) { 24306 return (EFAULT); 24307 } 24308 break; 24309 } 24310 case DDI_MODEL_NONE: 24311 if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), 24312 flag) != 0) { 24313 return (EFAULT); 24314 } 24315 if ((rval = sd_persistent_reservation_in_read_keys(un, 24316 &inkeys, flag)) != 0) { 24317 return (rval); 24318 } 24319 if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), 24320 flag) != 0) { 24321 return (EFAULT); 24322 } 24323 break; 24324 } 24325 24326 #else /* ! _MULTI_DATAMODEL */ 24327 24328 if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) { 24329 return (EFAULT); 24330 } 24331 rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag); 24332 if (rval != 0) { 24333 return (rval); 24334 } 24335 if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) { 24336 return (EFAULT); 24337 } 24338 24339 #endif /* _MULTI_DATAMODEL */ 24340 24341 return (rval); 24342 } 24343 24344 24345 /* 24346 * Function: sd_mhdioc_inresv 24347 * 24348 * Description: This routine is the driver entry point for handling ioctl 24349 * requests to issue the SCSI-3 Persistent In Read Reservations 24350 * command to the device (MHIOCGRP_INKEYS). 24351 * 24352 * Arguments: dev - the device number 24353 * arg - user provided in_resv structure 24354 * flag - this argument is a pass through to ddi_copyxxx() 24355 * directly from the mode argument of ioctl(). 24356 * 24357 * Return Code: code returned by sd_persistent_reservation_in_read_resv() 24358 * ENXIO 24359 * EFAULT 24360 */ 24361 24362 static int 24363 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag) 24364 { 24365 struct sd_lun *un; 24366 mhioc_inresvs_t inresvs; 24367 int rval = 0; 24368 24369 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24370 return (ENXIO); 24371 } 24372 24373 #ifdef _MULTI_DATAMODEL 24374 24375 switch (ddi_model_convert_from(flag & FMODELS)) { 24376 case DDI_MODEL_ILP32: { 24377 struct mhioc_inresvs32 inresvs32; 24378 24379 if (ddi_copyin(arg, &inresvs32, 24380 sizeof (struct mhioc_inresvs32), flag) != 0) { 24381 return (EFAULT); 24382 } 24383 inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li; 24384 if ((rval = sd_persistent_reservation_in_read_resv(un, 24385 &inresvs, flag)) != 0) { 24386 return (rval); 24387 } 24388 inresvs32.generation = inresvs.generation; 24389 if (ddi_copyout(&inresvs32, arg, 24390 sizeof (struct mhioc_inresvs32), flag) != 0) { 24391 return (EFAULT); 24392 } 24393 break; 24394 } 24395 case DDI_MODEL_NONE: 24396 if (ddi_copyin(arg, &inresvs, 24397 sizeof (mhioc_inresvs_t), flag) != 0) { 24398 return (EFAULT); 24399 } 24400 if ((rval = sd_persistent_reservation_in_read_resv(un, 24401 &inresvs, flag)) != 0) { 24402 return (rval); 24403 } 24404 if (ddi_copyout(&inresvs, arg, 24405 sizeof (mhioc_inresvs_t), flag) != 0) { 24406 return (EFAULT); 24407 } 24408 break; 24409 } 24410 24411 #else /* ! _MULTI_DATAMODEL */ 24412 24413 if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) { 24414 return (EFAULT); 24415 } 24416 rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag); 24417 if (rval != 0) { 24418 return (rval); 24419 } 24420 if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) { 24421 return (EFAULT); 24422 } 24423 24424 #endif /* ! _MULTI_DATAMODEL */ 24425 24426 return (rval); 24427 } 24428 24429 24430 /* 24431 * The following routines support the clustering functionality described below 24432 * and implement lost reservation reclaim functionality. 24433 * 24434 * Clustering 24435 * ---------- 24436 * The clustering code uses two different, independent forms of SCSI 24437 * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3 24438 * Persistent Group Reservations. For any particular disk, it will use either 24439 * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk. 24440 * 24441 * SCSI-2 24442 * The cluster software takes ownership of a multi-hosted disk by issuing the 24443 * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the 24444 * MHIOCRELEASE ioctl. Closely related is the MHIOCENFAILFAST ioctl -- a 24445 * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl 24446 * then issues the MHIOCENFAILFAST ioctl. This ioctl "enables failfast" in the 24447 * driver. The meaning of failfast is that if the driver (on this host) ever 24448 * encounters the scsi error return code RESERVATION_CONFLICT from the device, 24449 * it should immediately panic the host. The motivation for this ioctl is that 24450 * if this host does encounter reservation conflict, the underlying cause is 24451 * that some other host of the cluster has decided that this host is no longer 24452 * in the cluster and has seized control of the disks for itself. Since this 24453 * host is no longer in the cluster, it ought to panic itself. The 24454 * MHIOCENFAILFAST ioctl does two things: 24455 * (a) it sets a flag that will cause any returned RESERVATION_CONFLICT 24456 * error to panic the host 24457 * (b) it sets up a periodic timer to test whether this host still has 24458 * "access" (in that no other host has reserved the device): if the 24459 * periodic timer gets RESERVATION_CONFLICT, the host is panicked. The 24460 * purpose of that periodic timer is to handle scenarios where the host is 24461 * otherwise temporarily quiescent, temporarily doing no real i/o. 24462 * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host, 24463 * by issuing a SCSI Bus Device Reset. It will then issue a SCSI Reserve for 24464 * the device itself. 24465 * 24466 * SCSI-3 PGR 24467 * A direct semantic implementation of the SCSI-3 Persistent Reservation 24468 * facility is supported through the shared multihost disk ioctls 24469 * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE, 24470 * MHIOCGRP_PREEMPTANDABORT) 24471 * 24472 * Reservation Reclaim: 24473 * -------------------- 24474 * To support the lost reservation reclaim operations this driver creates a 24475 * single thread to handle reinstating reservations on all devices that have 24476 * lost reservations sd_resv_reclaim_requests are logged for all devices that 24477 * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb 24478 * and the reservation reclaim thread loops through the requests to regain the 24479 * lost reservations. 24480 */ 24481 24482 /* 24483 * Function: sd_check_mhd() 24484 * 24485 * Description: This function sets up and submits a scsi watch request or 24486 * terminates an existing watch request. This routine is used in 24487 * support of reservation reclaim. 24488 * 24489 * Arguments: dev - the device 'dev_t' is used for context to discriminate 24490 * among multiple watches that share the callback function 24491 * interval - the number of microseconds specifying the watch 24492 * interval for issuing TEST UNIT READY commands. If 24493 * set to 0 the watch should be terminated. If the 24494 * interval is set to 0 and if the device is required 24495 * to hold reservation while disabling failfast, the 24496 * watch is restarted with an interval of 24497 * reinstate_resv_delay. 24498 * 24499 * Return Code: 0 - Successful submit/terminate of scsi watch request 24500 * ENXIO - Indicates an invalid device was specified 24501 * EAGAIN - Unable to submit the scsi watch request 24502 */ 24503 24504 static int 24505 sd_check_mhd(dev_t dev, int interval) 24506 { 24507 struct sd_lun *un; 24508 opaque_t token; 24509 24510 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24511 return (ENXIO); 24512 } 24513 24514 /* is this a watch termination request? */ 24515 if (interval == 0) { 24516 mutex_enter(SD_MUTEX(un)); 24517 /* if there is an existing watch task then terminate it */ 24518 if (un->un_mhd_token) { 24519 token = un->un_mhd_token; 24520 un->un_mhd_token = NULL; 24521 mutex_exit(SD_MUTEX(un)); 24522 (void) scsi_watch_request_terminate(token, 24523 SCSI_WATCH_TERMINATE_ALL_WAIT); 24524 mutex_enter(SD_MUTEX(un)); 24525 } else { 24526 mutex_exit(SD_MUTEX(un)); 24527 /* 24528 * Note: If we return here we don't check for the 24529 * failfast case. This is the original legacy 24530 * implementation but perhaps we should be checking 24531 * the failfast case. 24532 */ 24533 return (0); 24534 } 24535 /* 24536 * If the device is required to hold reservation while 24537 * disabling failfast, we need to restart the scsi_watch 24538 * routine with an interval of reinstate_resv_delay. 24539 */ 24540 if (un->un_resvd_status & SD_RESERVE) { 24541 interval = sd_reinstate_resv_delay/1000; 24542 } else { 24543 /* no failfast so bail */ 24544 mutex_exit(SD_MUTEX(un)); 24545 return (0); 24546 } 24547 mutex_exit(SD_MUTEX(un)); 24548 } 24549 24550 /* 24551 * adjust minimum time interval to 1 second, 24552 * and convert from msecs to usecs 24553 */ 24554 if (interval > 0 && interval < 1000) { 24555 interval = 1000; 24556 } 24557 interval *= 1000; 24558 24559 /* 24560 * submit the request to the scsi_watch service 24561 */ 24562 token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval, 24563 SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev); 24564 if (token == NULL) { 24565 return (EAGAIN); 24566 } 24567 24568 /* 24569 * save token for termination later on 24570 */ 24571 mutex_enter(SD_MUTEX(un)); 24572 un->un_mhd_token = token; 24573 mutex_exit(SD_MUTEX(un)); 24574 return (0); 24575 } 24576 24577 24578 /* 24579 * Function: sd_mhd_watch_cb() 24580 * 24581 * Description: This function is the call back function used by the scsi watch 24582 * facility. The scsi watch facility sends the "Test Unit Ready" 24583 * and processes the status. If applicable (i.e. a "Unit Attention" 24584 * status and automatic "Request Sense" not used) the scsi watch 24585 * facility will send a "Request Sense" and retrieve the sense data 24586 * to be passed to this callback function. In either case the 24587 * automatic "Request Sense" or the facility submitting one, this 24588 * callback is passed the status and sense data. 24589 * 24590 * Arguments: arg - the device 'dev_t' is used for context to discriminate 24591 * among multiple watches that share this callback function 24592 * resultp - scsi watch facility result packet containing scsi 24593 * packet, status byte and sense data 24594 * 24595 * Return Code: 0 - continue the watch task 24596 * non-zero - terminate the watch task 24597 */ 24598 24599 static int 24600 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp) 24601 { 24602 struct sd_lun *un; 24603 struct scsi_status *statusp; 24604 uint8_t *sensep; 24605 struct scsi_pkt *pkt; 24606 uchar_t actual_sense_length; 24607 dev_t dev = (dev_t)arg; 24608 24609 ASSERT(resultp != NULL); 24610 statusp = resultp->statusp; 24611 sensep = (uint8_t *)resultp->sensep; 24612 pkt = resultp->pkt; 24613 actual_sense_length = resultp->actual_sense_length; 24614 24615 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24616 return (ENXIO); 24617 } 24618 24619 SD_TRACE(SD_LOG_IOCTL_MHD, un, 24620 "sd_mhd_watch_cb: reason '%s', status '%s'\n", 24621 scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp))); 24622 24623 /* Begin processing of the status and/or sense data */ 24624 if (pkt->pkt_reason != CMD_CMPLT) { 24625 /* Handle the incomplete packet */ 24626 sd_mhd_watch_incomplete(un, pkt); 24627 return (0); 24628 } else if (*((unsigned char *)statusp) != STATUS_GOOD) { 24629 if (*((unsigned char *)statusp) 24630 == STATUS_RESERVATION_CONFLICT) { 24631 /* 24632 * Handle a reservation conflict by panicking if 24633 * configured for failfast or by logging the conflict 24634 * and updating the reservation status 24635 */ 24636 mutex_enter(SD_MUTEX(un)); 24637 if ((un->un_resvd_status & SD_FAILFAST) && 24638 (sd_failfast_enable)) { 24639 sd_panic_for_res_conflict(un); 24640 /*NOTREACHED*/ 24641 } 24642 SD_INFO(SD_LOG_IOCTL_MHD, un, 24643 "sd_mhd_watch_cb: Reservation Conflict\n"); 24644 un->un_resvd_status |= SD_RESERVATION_CONFLICT; 24645 mutex_exit(SD_MUTEX(un)); 24646 } 24647 } 24648 24649 if (sensep != NULL) { 24650 if (actual_sense_length >= (SENSE_LENGTH - 2)) { 24651 mutex_enter(SD_MUTEX(un)); 24652 if ((scsi_sense_asc(sensep) == 24653 SD_SCSI_RESET_SENSE_CODE) && 24654 (un->un_resvd_status & SD_RESERVE)) { 24655 /* 24656 * The additional sense code indicates a power 24657 * on or bus device reset has occurred; update 24658 * the reservation status. 24659 */ 24660 un->un_resvd_status |= 24661 (SD_LOST_RESERVE | SD_WANT_RESERVE); 24662 SD_INFO(SD_LOG_IOCTL_MHD, un, 24663 "sd_mhd_watch_cb: Lost Reservation\n"); 24664 } 24665 } else { 24666 return (0); 24667 } 24668 } else { 24669 mutex_enter(SD_MUTEX(un)); 24670 } 24671 24672 if ((un->un_resvd_status & SD_RESERVE) && 24673 (un->un_resvd_status & SD_LOST_RESERVE)) { 24674 if (un->un_resvd_status & SD_WANT_RESERVE) { 24675 /* 24676 * A reset occurred in between the last probe and this 24677 * one so if a timeout is pending cancel it. 24678 */ 24679 if (un->un_resvd_timeid) { 24680 timeout_id_t temp_id = un->un_resvd_timeid; 24681 un->un_resvd_timeid = NULL; 24682 mutex_exit(SD_MUTEX(un)); 24683 (void) untimeout(temp_id); 24684 mutex_enter(SD_MUTEX(un)); 24685 } 24686 un->un_resvd_status &= ~SD_WANT_RESERVE; 24687 } 24688 if (un->un_resvd_timeid == 0) { 24689 /* Schedule a timeout to handle the lost reservation */ 24690 un->un_resvd_timeid = timeout(sd_mhd_resvd_recover, 24691 (void *)dev, 24692 drv_usectohz(sd_reinstate_resv_delay)); 24693 } 24694 } 24695 mutex_exit(SD_MUTEX(un)); 24696 return (0); 24697 } 24698 24699 24700 /* 24701 * Function: sd_mhd_watch_incomplete() 24702 * 24703 * Description: This function is used to find out why a scsi pkt sent by the 24704 * scsi watch facility was not completed. Under some scenarios this 24705 * routine will return. Otherwise it will send a bus reset to see 24706 * if the drive is still online. 24707 * 24708 * Arguments: un - driver soft state (unit) structure 24709 * pkt - incomplete scsi pkt 24710 */ 24711 24712 static void 24713 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt) 24714 { 24715 int be_chatty; 24716 int perr; 24717 24718 ASSERT(pkt != NULL); 24719 ASSERT(un != NULL); 24720 be_chatty = (!(pkt->pkt_flags & FLAG_SILENT)); 24721 perr = (pkt->pkt_statistics & STAT_PERR); 24722 24723 mutex_enter(SD_MUTEX(un)); 24724 if (un->un_state == SD_STATE_DUMPING) { 24725 mutex_exit(SD_MUTEX(un)); 24726 return; 24727 } 24728 24729 switch (pkt->pkt_reason) { 24730 case CMD_UNX_BUS_FREE: 24731 /* 24732 * If we had a parity error that caused the target to drop BSY*, 24733 * don't be chatty about it. 24734 */ 24735 if (perr && be_chatty) { 24736 be_chatty = 0; 24737 } 24738 break; 24739 case CMD_TAG_REJECT: 24740 /* 24741 * The SCSI-2 spec states that a tag reject will be sent by the 24742 * target if tagged queuing is not supported. A tag reject may 24743 * also be sent during certain initialization periods or to 24744 * control internal resources. For the latter case the target 24745 * may also return Queue Full. 24746 * 24747 * If this driver receives a tag reject from a target that is 24748 * going through an init period or controlling internal 24749 * resources tagged queuing will be disabled. This is a less 24750 * than optimal behavior but the driver is unable to determine 24751 * the target state and assumes tagged queueing is not supported 24752 */ 24753 pkt->pkt_flags = 0; 24754 un->un_tagflags = 0; 24755 24756 if (un->un_f_opt_queueing == TRUE) { 24757 un->un_throttle = min(un->un_throttle, 3); 24758 } else { 24759 un->un_throttle = 1; 24760 } 24761 mutex_exit(SD_MUTEX(un)); 24762 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 24763 mutex_enter(SD_MUTEX(un)); 24764 break; 24765 case CMD_INCOMPLETE: 24766 /* 24767 * The transport stopped with an abnormal state, fallthrough and 24768 * reset the target and/or bus unless selection did not complete 24769 * (indicated by STATE_GOT_BUS) in which case we don't want to 24770 * go through a target/bus reset 24771 */ 24772 if (pkt->pkt_state == STATE_GOT_BUS) { 24773 break; 24774 } 24775 /*FALLTHROUGH*/ 24776 24777 case CMD_TIMEOUT: 24778 default: 24779 /* 24780 * The lun may still be running the command, so a lun reset 24781 * should be attempted. If the lun reset fails or cannot be 24782 * issued, than try a target reset. Lastly try a bus reset. 24783 */ 24784 if ((pkt->pkt_statistics & 24785 (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) { 24786 int reset_retval = 0; 24787 mutex_exit(SD_MUTEX(un)); 24788 if (un->un_f_allow_bus_device_reset == TRUE) { 24789 if (un->un_f_lun_reset_enabled == TRUE) { 24790 reset_retval = 24791 scsi_reset(SD_ADDRESS(un), 24792 RESET_LUN); 24793 } 24794 if (reset_retval == 0) { 24795 reset_retval = 24796 scsi_reset(SD_ADDRESS(un), 24797 RESET_TARGET); 24798 } 24799 } 24800 if (reset_retval == 0) { 24801 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 24802 } 24803 mutex_enter(SD_MUTEX(un)); 24804 } 24805 break; 24806 } 24807 24808 /* A device/bus reset has occurred; update the reservation status. */ 24809 if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics & 24810 (STAT_BUS_RESET | STAT_DEV_RESET))) { 24811 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 24812 un->un_resvd_status |= 24813 (SD_LOST_RESERVE | SD_WANT_RESERVE); 24814 SD_INFO(SD_LOG_IOCTL_MHD, un, 24815 "sd_mhd_watch_incomplete: Lost Reservation\n"); 24816 } 24817 } 24818 24819 /* 24820 * The disk has been turned off; Update the device state. 24821 * 24822 * Note: Should we be offlining the disk here? 24823 */ 24824 if (pkt->pkt_state == STATE_GOT_BUS) { 24825 SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: " 24826 "Disk not responding to selection\n"); 24827 if (un->un_state != SD_STATE_OFFLINE) { 24828 New_state(un, SD_STATE_OFFLINE); 24829 } 24830 } else if (be_chatty) { 24831 /* 24832 * suppress messages if they are all the same pkt reason; 24833 * with TQ, many (up to 256) are returned with the same 24834 * pkt_reason 24835 */ 24836 if (pkt->pkt_reason != un->un_last_pkt_reason) { 24837 SD_ERROR(SD_LOG_IOCTL_MHD, un, 24838 "sd_mhd_watch_incomplete: " 24839 "SCSI transport failed: reason '%s'\n", 24840 scsi_rname(pkt->pkt_reason)); 24841 } 24842 } 24843 un->un_last_pkt_reason = pkt->pkt_reason; 24844 mutex_exit(SD_MUTEX(un)); 24845 } 24846 24847 24848 /* 24849 * Function: sd_sname() 24850 * 24851 * Description: This is a simple little routine to return a string containing 24852 * a printable description of command status byte for use in 24853 * logging. 24854 * 24855 * Arguments: status - pointer to a status byte 24856 * 24857 * Return Code: char * - string containing status description. 24858 */ 24859 24860 static char * 24861 sd_sname(uchar_t status) 24862 { 24863 switch (status & STATUS_MASK) { 24864 case STATUS_GOOD: 24865 return ("good status"); 24866 case STATUS_CHECK: 24867 return ("check condition"); 24868 case STATUS_MET: 24869 return ("condition met"); 24870 case STATUS_BUSY: 24871 return ("busy"); 24872 case STATUS_INTERMEDIATE: 24873 return ("intermediate"); 24874 case STATUS_INTERMEDIATE_MET: 24875 return ("intermediate - condition met"); 24876 case STATUS_RESERVATION_CONFLICT: 24877 return ("reservation_conflict"); 24878 case STATUS_TERMINATED: 24879 return ("command terminated"); 24880 case STATUS_QFULL: 24881 return ("queue full"); 24882 default: 24883 return ("<unknown status>"); 24884 } 24885 } 24886 24887 24888 /* 24889 * Function: sd_mhd_resvd_recover() 24890 * 24891 * Description: This function adds a reservation entry to the 24892 * sd_resv_reclaim_request list and signals the reservation 24893 * reclaim thread that there is work pending. If the reservation 24894 * reclaim thread has not been previously created this function 24895 * will kick it off. 24896 * 24897 * Arguments: arg - the device 'dev_t' is used for context to discriminate 24898 * among multiple watches that share this callback function 24899 * 24900 * Context: This routine is called by timeout() and is run in interrupt 24901 * context. It must not sleep or call other functions which may 24902 * sleep. 24903 */ 24904 24905 static void 24906 sd_mhd_resvd_recover(void *arg) 24907 { 24908 dev_t dev = (dev_t)arg; 24909 struct sd_lun *un; 24910 struct sd_thr_request *sd_treq = NULL; 24911 struct sd_thr_request *sd_cur = NULL; 24912 struct sd_thr_request *sd_prev = NULL; 24913 int already_there = 0; 24914 24915 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24916 return; 24917 } 24918 24919 mutex_enter(SD_MUTEX(un)); 24920 un->un_resvd_timeid = NULL; 24921 if (un->un_resvd_status & SD_WANT_RESERVE) { 24922 /* 24923 * There was a reset so don't issue the reserve, allow the 24924 * sd_mhd_watch_cb callback function to notice this and 24925 * reschedule the timeout for reservation. 24926 */ 24927 mutex_exit(SD_MUTEX(un)); 24928 return; 24929 } 24930 mutex_exit(SD_MUTEX(un)); 24931 24932 /* 24933 * Add this device to the sd_resv_reclaim_request list and the 24934 * sd_resv_reclaim_thread should take care of the rest. 24935 * 24936 * Note: We can't sleep in this context so if the memory allocation 24937 * fails allow the sd_mhd_watch_cb callback function to notice this and 24938 * reschedule the timeout for reservation. (4378460) 24939 */ 24940 sd_treq = (struct sd_thr_request *) 24941 kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP); 24942 if (sd_treq == NULL) { 24943 return; 24944 } 24945 24946 sd_treq->sd_thr_req_next = NULL; 24947 sd_treq->dev = dev; 24948 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 24949 if (sd_tr.srq_thr_req_head == NULL) { 24950 sd_tr.srq_thr_req_head = sd_treq; 24951 } else { 24952 sd_cur = sd_prev = sd_tr.srq_thr_req_head; 24953 for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) { 24954 if (sd_cur->dev == dev) { 24955 /* 24956 * already in Queue so don't log 24957 * another request for the device 24958 */ 24959 already_there = 1; 24960 break; 24961 } 24962 sd_prev = sd_cur; 24963 } 24964 if (!already_there) { 24965 SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: " 24966 "logging request for %lx\n", dev); 24967 sd_prev->sd_thr_req_next = sd_treq; 24968 } else { 24969 kmem_free(sd_treq, sizeof (struct sd_thr_request)); 24970 } 24971 } 24972 24973 /* 24974 * Create a kernel thread to do the reservation reclaim and free up this 24975 * thread. We cannot block this thread while we go away to do the 24976 * reservation reclaim 24977 */ 24978 if (sd_tr.srq_resv_reclaim_thread == NULL) 24979 sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0, 24980 sd_resv_reclaim_thread, NULL, 24981 0, &p0, TS_RUN, v.v_maxsyspri - 2); 24982 24983 /* Tell the reservation reclaim thread that it has work to do */ 24984 cv_signal(&sd_tr.srq_resv_reclaim_cv); 24985 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 24986 } 24987 24988 /* 24989 * Function: sd_resv_reclaim_thread() 24990 * 24991 * Description: This function implements the reservation reclaim operations 24992 * 24993 * Arguments: arg - the device 'dev_t' is used for context to discriminate 24994 * among multiple watches that share this callback function 24995 */ 24996 24997 static void 24998 sd_resv_reclaim_thread() 24999 { 25000 struct sd_lun *un; 25001 struct sd_thr_request *sd_mhreq; 25002 25003 /* Wait for work */ 25004 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25005 if (sd_tr.srq_thr_req_head == NULL) { 25006 cv_wait(&sd_tr.srq_resv_reclaim_cv, 25007 &sd_tr.srq_resv_reclaim_mutex); 25008 } 25009 25010 /* Loop while we have work */ 25011 while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) { 25012 un = ddi_get_soft_state(sd_state, 25013 SDUNIT(sd_tr.srq_thr_cur_req->dev)); 25014 if (un == NULL) { 25015 /* 25016 * softstate structure is NULL so just 25017 * dequeue the request and continue 25018 */ 25019 sd_tr.srq_thr_req_head = 25020 sd_tr.srq_thr_cur_req->sd_thr_req_next; 25021 kmem_free(sd_tr.srq_thr_cur_req, 25022 sizeof (struct sd_thr_request)); 25023 continue; 25024 } 25025 25026 /* dequeue the request */ 25027 sd_mhreq = sd_tr.srq_thr_cur_req; 25028 sd_tr.srq_thr_req_head = 25029 sd_tr.srq_thr_cur_req->sd_thr_req_next; 25030 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25031 25032 /* 25033 * Reclaim reservation only if SD_RESERVE is still set. There 25034 * may have been a call to MHIOCRELEASE before we got here. 25035 */ 25036 mutex_enter(SD_MUTEX(un)); 25037 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 25038 /* 25039 * Note: The SD_LOST_RESERVE flag is cleared before 25040 * reclaiming the reservation. If this is done after the 25041 * call to sd_reserve_release a reservation loss in the 25042 * window between pkt completion of reserve cmd and 25043 * mutex_enter below may not be recognized 25044 */ 25045 un->un_resvd_status &= ~SD_LOST_RESERVE; 25046 mutex_exit(SD_MUTEX(un)); 25047 25048 if (sd_reserve_release(sd_mhreq->dev, 25049 SD_RESERVE) == 0) { 25050 mutex_enter(SD_MUTEX(un)); 25051 un->un_resvd_status |= SD_RESERVE; 25052 mutex_exit(SD_MUTEX(un)); 25053 SD_INFO(SD_LOG_IOCTL_MHD, un, 25054 "sd_resv_reclaim_thread: " 25055 "Reservation Recovered\n"); 25056 } else { 25057 mutex_enter(SD_MUTEX(un)); 25058 un->un_resvd_status |= SD_LOST_RESERVE; 25059 mutex_exit(SD_MUTEX(un)); 25060 SD_INFO(SD_LOG_IOCTL_MHD, un, 25061 "sd_resv_reclaim_thread: Failed " 25062 "Reservation Recovery\n"); 25063 } 25064 } else { 25065 mutex_exit(SD_MUTEX(un)); 25066 } 25067 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25068 ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req); 25069 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 25070 sd_mhreq = sd_tr.srq_thr_cur_req = NULL; 25071 /* 25072 * wakeup the destroy thread if anyone is waiting on 25073 * us to complete. 25074 */ 25075 cv_signal(&sd_tr.srq_inprocess_cv); 25076 SD_TRACE(SD_LOG_IOCTL_MHD, un, 25077 "sd_resv_reclaim_thread: cv_signalling current request \n"); 25078 } 25079 25080 /* 25081 * cleanup the sd_tr structure now that this thread will not exist 25082 */ 25083 ASSERT(sd_tr.srq_thr_req_head == NULL); 25084 ASSERT(sd_tr.srq_thr_cur_req == NULL); 25085 sd_tr.srq_resv_reclaim_thread = NULL; 25086 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25087 thread_exit(); 25088 } 25089 25090 25091 /* 25092 * Function: sd_rmv_resv_reclaim_req() 25093 * 25094 * Description: This function removes any pending reservation reclaim requests 25095 * for the specified device. 25096 * 25097 * Arguments: dev - the device 'dev_t' 25098 */ 25099 25100 static void 25101 sd_rmv_resv_reclaim_req(dev_t dev) 25102 { 25103 struct sd_thr_request *sd_mhreq; 25104 struct sd_thr_request *sd_prev; 25105 25106 /* Remove a reservation reclaim request from the list */ 25107 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25108 if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) { 25109 /* 25110 * We are attempting to reinstate reservation for 25111 * this device. We wait for sd_reserve_release() 25112 * to return before we return. 25113 */ 25114 cv_wait(&sd_tr.srq_inprocess_cv, 25115 &sd_tr.srq_resv_reclaim_mutex); 25116 } else { 25117 sd_prev = sd_mhreq = sd_tr.srq_thr_req_head; 25118 if (sd_mhreq && sd_mhreq->dev == dev) { 25119 sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next; 25120 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 25121 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25122 return; 25123 } 25124 for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) { 25125 if (sd_mhreq && sd_mhreq->dev == dev) { 25126 break; 25127 } 25128 sd_prev = sd_mhreq; 25129 } 25130 if (sd_mhreq != NULL) { 25131 sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next; 25132 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 25133 } 25134 } 25135 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25136 } 25137 25138 25139 /* 25140 * Function: sd_mhd_reset_notify_cb() 25141 * 25142 * Description: This is a call back function for scsi_reset_notify. This 25143 * function updates the softstate reserved status and logs the 25144 * reset. The driver scsi watch facility callback function 25145 * (sd_mhd_watch_cb) and reservation reclaim thread functionality 25146 * will reclaim the reservation. 25147 * 25148 * Arguments: arg - driver soft state (unit) structure 25149 */ 25150 25151 static void 25152 sd_mhd_reset_notify_cb(caddr_t arg) 25153 { 25154 struct sd_lun *un = (struct sd_lun *)arg; 25155 25156 mutex_enter(SD_MUTEX(un)); 25157 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 25158 un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE); 25159 SD_INFO(SD_LOG_IOCTL_MHD, un, 25160 "sd_mhd_reset_notify_cb: Lost Reservation\n"); 25161 } 25162 mutex_exit(SD_MUTEX(un)); 25163 } 25164 25165 25166 /* 25167 * Function: sd_take_ownership() 25168 * 25169 * Description: This routine implements an algorithm to achieve a stable 25170 * reservation on disks which don't implement priority reserve, 25171 * and makes sure that other host lose re-reservation attempts. 25172 * This algorithm contains of a loop that keeps issuing the RESERVE 25173 * for some period of time (min_ownership_delay, default 6 seconds) 25174 * During that loop, it looks to see if there has been a bus device 25175 * reset or bus reset (both of which cause an existing reservation 25176 * to be lost). If the reservation is lost issue RESERVE until a 25177 * period of min_ownership_delay with no resets has gone by, or 25178 * until max_ownership_delay has expired. This loop ensures that 25179 * the host really did manage to reserve the device, in spite of 25180 * resets. The looping for min_ownership_delay (default six 25181 * seconds) is important to early generation clustering products, 25182 * Solstice HA 1.x and Sun Cluster 2.x. Those products use an 25183 * MHIOCENFAILFAST periodic timer of two seconds. By having 25184 * MHIOCTKOWN issue Reserves in a loop for six seconds, and having 25185 * MHIOCENFAILFAST poll every two seconds, the idea is that by the 25186 * time the MHIOCTKOWN ioctl returns, the other host (if any) will 25187 * have already noticed, via the MHIOCENFAILFAST polling, that it 25188 * no longer "owns" the disk and will have panicked itself. Thus, 25189 * the host issuing the MHIOCTKOWN is assured (with timing 25190 * dependencies) that by the time it actually starts to use the 25191 * disk for real work, the old owner is no longer accessing it. 25192 * 25193 * min_ownership_delay is the minimum amount of time for which the 25194 * disk must be reserved continuously devoid of resets before the 25195 * MHIOCTKOWN ioctl will return success. 25196 * 25197 * max_ownership_delay indicates the amount of time by which the 25198 * take ownership should succeed or timeout with an error. 25199 * 25200 * Arguments: dev - the device 'dev_t' 25201 * *p - struct containing timing info. 25202 * 25203 * Return Code: 0 for success or error code 25204 */ 25205 25206 static int 25207 sd_take_ownership(dev_t dev, struct mhioctkown *p) 25208 { 25209 struct sd_lun *un; 25210 int rval; 25211 int err; 25212 int reservation_count = 0; 25213 int min_ownership_delay = 6000000; /* in usec */ 25214 int max_ownership_delay = 30000000; /* in usec */ 25215 clock_t start_time; /* starting time of this algorithm */ 25216 clock_t end_time; /* time limit for giving up */ 25217 clock_t ownership_time; /* time limit for stable ownership */ 25218 clock_t current_time; 25219 clock_t previous_current_time; 25220 25221 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25222 return (ENXIO); 25223 } 25224 25225 /* 25226 * Attempt a device reservation. A priority reservation is requested. 25227 */ 25228 if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE)) 25229 != SD_SUCCESS) { 25230 SD_ERROR(SD_LOG_IOCTL_MHD, un, 25231 "sd_take_ownership: return(1)=%d\n", rval); 25232 return (rval); 25233 } 25234 25235 /* Update the softstate reserved status to indicate the reservation */ 25236 mutex_enter(SD_MUTEX(un)); 25237 un->un_resvd_status |= SD_RESERVE; 25238 un->un_resvd_status &= 25239 ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT); 25240 mutex_exit(SD_MUTEX(un)); 25241 25242 if (p != NULL) { 25243 if (p->min_ownership_delay != 0) { 25244 min_ownership_delay = p->min_ownership_delay * 1000; 25245 } 25246 if (p->max_ownership_delay != 0) { 25247 max_ownership_delay = p->max_ownership_delay * 1000; 25248 } 25249 } 25250 SD_INFO(SD_LOG_IOCTL_MHD, un, 25251 "sd_take_ownership: min, max delays: %d, %d\n", 25252 min_ownership_delay, max_ownership_delay); 25253 25254 start_time = ddi_get_lbolt(); 25255 current_time = start_time; 25256 ownership_time = current_time + drv_usectohz(min_ownership_delay); 25257 end_time = start_time + drv_usectohz(max_ownership_delay); 25258 25259 while (current_time - end_time < 0) { 25260 delay(drv_usectohz(500000)); 25261 25262 if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) { 25263 if ((sd_reserve_release(dev, SD_RESERVE)) != 0) { 25264 mutex_enter(SD_MUTEX(un)); 25265 rval = (un->un_resvd_status & 25266 SD_RESERVATION_CONFLICT) ? EACCES : EIO; 25267 mutex_exit(SD_MUTEX(un)); 25268 break; 25269 } 25270 } 25271 previous_current_time = current_time; 25272 current_time = ddi_get_lbolt(); 25273 mutex_enter(SD_MUTEX(un)); 25274 if (err || (un->un_resvd_status & SD_LOST_RESERVE)) { 25275 ownership_time = ddi_get_lbolt() + 25276 drv_usectohz(min_ownership_delay); 25277 reservation_count = 0; 25278 } else { 25279 reservation_count++; 25280 } 25281 un->un_resvd_status |= SD_RESERVE; 25282 un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE); 25283 mutex_exit(SD_MUTEX(un)); 25284 25285 SD_INFO(SD_LOG_IOCTL_MHD, un, 25286 "sd_take_ownership: ticks for loop iteration=%ld, " 25287 "reservation=%s\n", (current_time - previous_current_time), 25288 reservation_count ? "ok" : "reclaimed"); 25289 25290 if (current_time - ownership_time >= 0 && 25291 reservation_count >= 4) { 25292 rval = 0; /* Achieved a stable ownership */ 25293 break; 25294 } 25295 if (current_time - end_time >= 0) { 25296 rval = EACCES; /* No ownership in max possible time */ 25297 break; 25298 } 25299 } 25300 SD_TRACE(SD_LOG_IOCTL_MHD, un, 25301 "sd_take_ownership: return(2)=%d\n", rval); 25302 return (rval); 25303 } 25304 25305 25306 /* 25307 * Function: sd_reserve_release() 25308 * 25309 * Description: This function builds and sends scsi RESERVE, RELEASE, and 25310 * PRIORITY RESERVE commands based on a user specified command type 25311 * 25312 * Arguments: dev - the device 'dev_t' 25313 * cmd - user specified command type; one of SD_PRIORITY_RESERVE, 25314 * SD_RESERVE, SD_RELEASE 25315 * 25316 * Return Code: 0 or Error Code 25317 */ 25318 25319 static int 25320 sd_reserve_release(dev_t dev, int cmd) 25321 { 25322 struct uscsi_cmd *com = NULL; 25323 struct sd_lun *un = NULL; 25324 char cdb[CDB_GROUP0]; 25325 int rval; 25326 25327 ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) || 25328 (cmd == SD_PRIORITY_RESERVE)); 25329 25330 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25331 return (ENXIO); 25332 } 25333 25334 /* instantiate and initialize the command and cdb */ 25335 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 25336 bzero(cdb, CDB_GROUP0); 25337 com->uscsi_flags = USCSI_SILENT; 25338 com->uscsi_timeout = un->un_reserve_release_time; 25339 com->uscsi_cdblen = CDB_GROUP0; 25340 com->uscsi_cdb = cdb; 25341 if (cmd == SD_RELEASE) { 25342 cdb[0] = SCMD_RELEASE; 25343 } else { 25344 cdb[0] = SCMD_RESERVE; 25345 } 25346 25347 /* Send the command. */ 25348 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 25349 SD_PATH_STANDARD); 25350 25351 /* 25352 * "break" a reservation that is held by another host, by issuing a 25353 * reset if priority reserve is desired, and we could not get the 25354 * device. 25355 */ 25356 if ((cmd == SD_PRIORITY_RESERVE) && 25357 (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) { 25358 /* 25359 * First try to reset the LUN. If we cannot, then try a target 25360 * reset, followed by a bus reset if the target reset fails. 25361 */ 25362 int reset_retval = 0; 25363 if (un->un_f_lun_reset_enabled == TRUE) { 25364 reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 25365 } 25366 if (reset_retval == 0) { 25367 /* The LUN reset either failed or was not issued */ 25368 reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 25369 } 25370 if ((reset_retval == 0) && 25371 (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) { 25372 rval = EIO; 25373 kmem_free(com, sizeof (*com)); 25374 return (rval); 25375 } 25376 25377 bzero(com, sizeof (struct uscsi_cmd)); 25378 com->uscsi_flags = USCSI_SILENT; 25379 com->uscsi_cdb = cdb; 25380 com->uscsi_cdblen = CDB_GROUP0; 25381 com->uscsi_timeout = 5; 25382 25383 /* 25384 * Reissue the last reserve command, this time without request 25385 * sense. Assume that it is just a regular reserve command. 25386 */ 25387 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 25388 SD_PATH_STANDARD); 25389 } 25390 25391 /* Return an error if still getting a reservation conflict. */ 25392 if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) { 25393 rval = EACCES; 25394 } 25395 25396 kmem_free(com, sizeof (*com)); 25397 return (rval); 25398 } 25399 25400 25401 #define SD_NDUMP_RETRIES 12 25402 /* 25403 * System Crash Dump routine 25404 */ 25405 25406 static int 25407 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk) 25408 { 25409 int instance; 25410 int partition; 25411 int i; 25412 int err; 25413 struct sd_lun *un; 25414 struct scsi_pkt *wr_pktp; 25415 struct buf *wr_bp; 25416 struct buf wr_buf; 25417 daddr_t tgt_byte_offset; /* rmw - byte offset for target */ 25418 daddr_t tgt_blkno; /* rmw - blkno for target */ 25419 size_t tgt_byte_count; /* rmw - # of bytes to xfer */ 25420 size_t tgt_nblk; /* rmw - # of tgt blks to xfer */ 25421 size_t io_start_offset; 25422 int doing_rmw = FALSE; 25423 int rval; 25424 ssize_t dma_resid; 25425 daddr_t oblkno; 25426 diskaddr_t nblks = 0; 25427 diskaddr_t start_block; 25428 25429 instance = SDUNIT(dev); 25430 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 25431 !SD_IS_VALID_LABEL(un) || ISCD(un)) { 25432 return (ENXIO); 25433 } 25434 25435 _NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un)) 25436 25437 SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n"); 25438 25439 partition = SDPART(dev); 25440 SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition); 25441 25442 if (!(NOT_DEVBSIZE(un))) { 25443 int secmask = 0; 25444 int blknomask = 0; 25445 25446 blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1; 25447 secmask = un->un_tgt_blocksize - 1; 25448 25449 if (blkno & blknomask) { 25450 SD_TRACE(SD_LOG_DUMP, un, 25451 "sddump: dump start block not modulo %d\n", 25452 un->un_tgt_blocksize); 25453 return (EINVAL); 25454 } 25455 25456 if ((nblk * DEV_BSIZE) & secmask) { 25457 SD_TRACE(SD_LOG_DUMP, un, 25458 "sddump: dump length not modulo %d\n", 25459 un->un_tgt_blocksize); 25460 return (EINVAL); 25461 } 25462 25463 } 25464 25465 /* Validate blocks to dump at against partition size. */ 25466 25467 (void) cmlb_partinfo(un->un_cmlbhandle, partition, 25468 &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT); 25469 25470 if (NOT_DEVBSIZE(un)) { 25471 if ((blkno + nblk) > nblks) { 25472 SD_TRACE(SD_LOG_DUMP, un, 25473 "sddump: dump range larger than partition: " 25474 "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n", 25475 blkno, nblk, nblks); 25476 return (EINVAL); 25477 } 25478 } else { 25479 if (((blkno / (un->un_tgt_blocksize / DEV_BSIZE)) + 25480 (nblk / (un->un_tgt_blocksize / DEV_BSIZE))) > nblks) { 25481 SD_TRACE(SD_LOG_DUMP, un, 25482 "sddump: dump range larger than partition: " 25483 "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n", 25484 blkno, nblk, nblks); 25485 return (EINVAL); 25486 } 25487 } 25488 25489 mutex_enter(&un->un_pm_mutex); 25490 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 25491 struct scsi_pkt *start_pktp; 25492 25493 mutex_exit(&un->un_pm_mutex); 25494 25495 /* 25496 * use pm framework to power on HBA 1st 25497 */ 25498 (void) pm_raise_power(SD_DEVINFO(un), 0, 25499 SD_PM_STATE_ACTIVE(un)); 25500 25501 /* 25502 * Dump no long uses sdpower to power on a device, it's 25503 * in-line here so it can be done in polled mode. 25504 */ 25505 25506 SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n"); 25507 25508 start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL, 25509 CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL); 25510 25511 if (start_pktp == NULL) { 25512 /* We were not given a SCSI packet, fail. */ 25513 return (EIO); 25514 } 25515 bzero(start_pktp->pkt_cdbp, CDB_GROUP0); 25516 start_pktp->pkt_cdbp[0] = SCMD_START_STOP; 25517 start_pktp->pkt_cdbp[4] = SD_TARGET_START; 25518 start_pktp->pkt_flags = FLAG_NOINTR; 25519 25520 mutex_enter(SD_MUTEX(un)); 25521 SD_FILL_SCSI1_LUN(un, start_pktp); 25522 mutex_exit(SD_MUTEX(un)); 25523 /* 25524 * Scsi_poll returns 0 (success) if the command completes and 25525 * the status block is STATUS_GOOD. 25526 */ 25527 if (sd_scsi_poll(un, start_pktp) != 0) { 25528 scsi_destroy_pkt(start_pktp); 25529 return (EIO); 25530 } 25531 scsi_destroy_pkt(start_pktp); 25532 (void) sd_pm_state_change(un, SD_PM_STATE_ACTIVE(un), 25533 SD_PM_STATE_CHANGE); 25534 } else { 25535 mutex_exit(&un->un_pm_mutex); 25536 } 25537 25538 mutex_enter(SD_MUTEX(un)); 25539 un->un_throttle = 0; 25540 25541 /* 25542 * The first time through, reset the specific target device. 25543 * However, when cpr calls sddump we know that sd is in a 25544 * a good state so no bus reset is required. 25545 * Clear sense data via Request Sense cmd. 25546 * In sddump we don't care about allow_bus_device_reset anymore 25547 */ 25548 25549 if ((un->un_state != SD_STATE_SUSPENDED) && 25550 (un->un_state != SD_STATE_DUMPING)) { 25551 25552 New_state(un, SD_STATE_DUMPING); 25553 25554 if (un->un_f_is_fibre == FALSE) { 25555 mutex_exit(SD_MUTEX(un)); 25556 /* 25557 * Attempt a bus reset for parallel scsi. 25558 * 25559 * Note: A bus reset is required because on some host 25560 * systems (i.e. E420R) a bus device reset is 25561 * insufficient to reset the state of the target. 25562 * 25563 * Note: Don't issue the reset for fibre-channel, 25564 * because this tends to hang the bus (loop) for 25565 * too long while everyone is logging out and in 25566 * and the deadman timer for dumping will fire 25567 * before the dump is complete. 25568 */ 25569 if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) { 25570 mutex_enter(SD_MUTEX(un)); 25571 Restore_state(un); 25572 mutex_exit(SD_MUTEX(un)); 25573 return (EIO); 25574 } 25575 25576 /* Delay to give the device some recovery time. */ 25577 drv_usecwait(10000); 25578 25579 if (sd_send_polled_RQS(un) == SD_FAILURE) { 25580 SD_INFO(SD_LOG_DUMP, un, 25581 "sddump: sd_send_polled_RQS failed\n"); 25582 } 25583 mutex_enter(SD_MUTEX(un)); 25584 } 25585 } 25586 25587 /* 25588 * Convert the partition-relative block number to a 25589 * disk physical block number. 25590 */ 25591 if (NOT_DEVBSIZE(un)) { 25592 blkno += start_block; 25593 } else { 25594 blkno = blkno / (un->un_tgt_blocksize / DEV_BSIZE); 25595 blkno += start_block; 25596 } 25597 25598 SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno); 25599 25600 25601 /* 25602 * Check if the device has a non-512 block size. 25603 */ 25604 wr_bp = NULL; 25605 if (NOT_DEVBSIZE(un)) { 25606 tgt_byte_offset = blkno * un->un_sys_blocksize; 25607 tgt_byte_count = nblk * un->un_sys_blocksize; 25608 if ((tgt_byte_offset % un->un_tgt_blocksize) || 25609 (tgt_byte_count % un->un_tgt_blocksize)) { 25610 doing_rmw = TRUE; 25611 /* 25612 * Calculate the block number and number of block 25613 * in terms of the media block size. 25614 */ 25615 tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize; 25616 tgt_nblk = 25617 ((tgt_byte_offset + tgt_byte_count + 25618 (un->un_tgt_blocksize - 1)) / 25619 un->un_tgt_blocksize) - tgt_blkno; 25620 25621 /* 25622 * Invoke the routine which is going to do read part 25623 * of read-modify-write. 25624 * Note that this routine returns a pointer to 25625 * a valid bp in wr_bp. 25626 */ 25627 err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk, 25628 &wr_bp); 25629 if (err) { 25630 mutex_exit(SD_MUTEX(un)); 25631 return (err); 25632 } 25633 /* 25634 * Offset is being calculated as - 25635 * (original block # * system block size) - 25636 * (new block # * target block size) 25637 */ 25638 io_start_offset = 25639 ((uint64_t)(blkno * un->un_sys_blocksize)) - 25640 ((uint64_t)(tgt_blkno * un->un_tgt_blocksize)); 25641 25642 ASSERT((io_start_offset >= 0) && 25643 (io_start_offset < un->un_tgt_blocksize)); 25644 /* 25645 * Do the modify portion of read modify write. 25646 */ 25647 bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset], 25648 (size_t)nblk * un->un_sys_blocksize); 25649 } else { 25650 doing_rmw = FALSE; 25651 tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize; 25652 tgt_nblk = tgt_byte_count / un->un_tgt_blocksize; 25653 } 25654 25655 /* Convert blkno and nblk to target blocks */ 25656 blkno = tgt_blkno; 25657 nblk = tgt_nblk; 25658 } else { 25659 wr_bp = &wr_buf; 25660 bzero(wr_bp, sizeof (struct buf)); 25661 wr_bp->b_flags = B_BUSY; 25662 wr_bp->b_un.b_addr = addr; 25663 wr_bp->b_bcount = nblk << DEV_BSHIFT; 25664 wr_bp->b_resid = 0; 25665 } 25666 25667 mutex_exit(SD_MUTEX(un)); 25668 25669 /* 25670 * Obtain a SCSI packet for the write command. 25671 * It should be safe to call the allocator here without 25672 * worrying about being locked for DVMA mapping because 25673 * the address we're passed is already a DVMA mapping 25674 * 25675 * We are also not going to worry about semaphore ownership 25676 * in the dump buffer. Dumping is single threaded at present. 25677 */ 25678 25679 wr_pktp = NULL; 25680 25681 dma_resid = wr_bp->b_bcount; 25682 oblkno = blkno; 25683 25684 if (!(NOT_DEVBSIZE(un))) { 25685 nblk = nblk / (un->un_tgt_blocksize / DEV_BSIZE); 25686 } 25687 25688 while (dma_resid != 0) { 25689 25690 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 25691 wr_bp->b_flags &= ~B_ERROR; 25692 25693 if (un->un_partial_dma_supported == 1) { 25694 blkno = oblkno + 25695 ((wr_bp->b_bcount - dma_resid) / 25696 un->un_tgt_blocksize); 25697 nblk = dma_resid / un->un_tgt_blocksize; 25698 25699 if (wr_pktp) { 25700 /* 25701 * Partial DMA transfers after initial transfer 25702 */ 25703 rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp, 25704 blkno, nblk); 25705 } else { 25706 /* Initial transfer */ 25707 rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp, 25708 un->un_pkt_flags, NULL_FUNC, NULL, 25709 blkno, nblk); 25710 } 25711 } else { 25712 rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp, 25713 0, NULL_FUNC, NULL, blkno, nblk); 25714 } 25715 25716 if (rval == 0) { 25717 /* We were given a SCSI packet, continue. */ 25718 break; 25719 } 25720 25721 if (i == 0) { 25722 if (wr_bp->b_flags & B_ERROR) { 25723 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 25724 "no resources for dumping; " 25725 "error code: 0x%x, retrying", 25726 geterror(wr_bp)); 25727 } else { 25728 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 25729 "no resources for dumping; retrying"); 25730 } 25731 } else if (i != (SD_NDUMP_RETRIES - 1)) { 25732 if (wr_bp->b_flags & B_ERROR) { 25733 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 25734 "no resources for dumping; error code: " 25735 "0x%x, retrying\n", geterror(wr_bp)); 25736 } 25737 } else { 25738 if (wr_bp->b_flags & B_ERROR) { 25739 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 25740 "no resources for dumping; " 25741 "error code: 0x%x, retries failed, " 25742 "giving up.\n", geterror(wr_bp)); 25743 } else { 25744 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 25745 "no resources for dumping; " 25746 "retries failed, giving up.\n"); 25747 } 25748 mutex_enter(SD_MUTEX(un)); 25749 Restore_state(un); 25750 if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) { 25751 mutex_exit(SD_MUTEX(un)); 25752 scsi_free_consistent_buf(wr_bp); 25753 } else { 25754 mutex_exit(SD_MUTEX(un)); 25755 } 25756 return (EIO); 25757 } 25758 drv_usecwait(10000); 25759 } 25760 25761 if (un->un_partial_dma_supported == 1) { 25762 /* 25763 * save the resid from PARTIAL_DMA 25764 */ 25765 dma_resid = wr_pktp->pkt_resid; 25766 if (dma_resid != 0) 25767 nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid); 25768 wr_pktp->pkt_resid = 0; 25769 } else { 25770 dma_resid = 0; 25771 } 25772 25773 /* SunBug 1222170 */ 25774 wr_pktp->pkt_flags = FLAG_NOINTR; 25775 25776 err = EIO; 25777 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 25778 25779 /* 25780 * Scsi_poll returns 0 (success) if the command completes and 25781 * the status block is STATUS_GOOD. We should only check 25782 * errors if this condition is not true. Even then we should 25783 * send our own request sense packet only if we have a check 25784 * condition and auto request sense has not been performed by 25785 * the hba. 25786 */ 25787 SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n"); 25788 25789 if ((sd_scsi_poll(un, wr_pktp) == 0) && 25790 (wr_pktp->pkt_resid == 0)) { 25791 err = SD_SUCCESS; 25792 break; 25793 } 25794 25795 /* 25796 * Check CMD_DEV_GONE 1st, give up if device is gone. 25797 */ 25798 if (wr_pktp->pkt_reason == CMD_DEV_GONE) { 25799 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 25800 "Error while dumping state...Device is gone\n"); 25801 break; 25802 } 25803 25804 if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) { 25805 SD_INFO(SD_LOG_DUMP, un, 25806 "sddump: write failed with CHECK, try # %d\n", i); 25807 if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) { 25808 (void) sd_send_polled_RQS(un); 25809 } 25810 25811 continue; 25812 } 25813 25814 if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) { 25815 int reset_retval = 0; 25816 25817 SD_INFO(SD_LOG_DUMP, un, 25818 "sddump: write failed with BUSY, try # %d\n", i); 25819 25820 if (un->un_f_lun_reset_enabled == TRUE) { 25821 reset_retval = scsi_reset(SD_ADDRESS(un), 25822 RESET_LUN); 25823 } 25824 if (reset_retval == 0) { 25825 (void) scsi_reset(SD_ADDRESS(un), RESET_TARGET); 25826 } 25827 (void) sd_send_polled_RQS(un); 25828 25829 } else { 25830 SD_INFO(SD_LOG_DUMP, un, 25831 "sddump: write failed with 0x%x, try # %d\n", 25832 SD_GET_PKT_STATUS(wr_pktp), i); 25833 mutex_enter(SD_MUTEX(un)); 25834 sd_reset_target(un, wr_pktp); 25835 mutex_exit(SD_MUTEX(un)); 25836 } 25837 25838 /* 25839 * If we are not getting anywhere with lun/target resets, 25840 * let's reset the bus. 25841 */ 25842 if (i == SD_NDUMP_RETRIES/2) { 25843 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 25844 (void) sd_send_polled_RQS(un); 25845 } 25846 } 25847 } 25848 25849 scsi_destroy_pkt(wr_pktp); 25850 mutex_enter(SD_MUTEX(un)); 25851 if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) { 25852 mutex_exit(SD_MUTEX(un)); 25853 scsi_free_consistent_buf(wr_bp); 25854 } else { 25855 mutex_exit(SD_MUTEX(un)); 25856 } 25857 SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err); 25858 return (err); 25859 } 25860 25861 /* 25862 * Function: sd_scsi_poll() 25863 * 25864 * Description: This is a wrapper for the scsi_poll call. 25865 * 25866 * Arguments: sd_lun - The unit structure 25867 * scsi_pkt - The scsi packet being sent to the device. 25868 * 25869 * Return Code: 0 - Command completed successfully with good status 25870 * -1 - Command failed. This could indicate a check condition 25871 * or other status value requiring recovery action. 25872 * 25873 * NOTE: This code is only called off sddump(). 25874 */ 25875 25876 static int 25877 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp) 25878 { 25879 int status; 25880 25881 ASSERT(un != NULL); 25882 ASSERT(!mutex_owned(SD_MUTEX(un))); 25883 ASSERT(pktp != NULL); 25884 25885 status = SD_SUCCESS; 25886 25887 if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) { 25888 pktp->pkt_flags |= un->un_tagflags; 25889 pktp->pkt_flags &= ~FLAG_NODISCON; 25890 } 25891 25892 status = sd_ddi_scsi_poll(pktp); 25893 /* 25894 * Scsi_poll returns 0 (success) if the command completes and the 25895 * status block is STATUS_GOOD. We should only check errors if this 25896 * condition is not true. Even then we should send our own request 25897 * sense packet only if we have a check condition and auto 25898 * request sense has not been performed by the hba. 25899 * Don't get RQS data if pkt_reason is CMD_DEV_GONE. 25900 */ 25901 if ((status != SD_SUCCESS) && 25902 (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) && 25903 (pktp->pkt_state & STATE_ARQ_DONE) == 0 && 25904 (pktp->pkt_reason != CMD_DEV_GONE)) 25905 (void) sd_send_polled_RQS(un); 25906 25907 return (status); 25908 } 25909 25910 /* 25911 * Function: sd_send_polled_RQS() 25912 * 25913 * Description: This sends the request sense command to a device. 25914 * 25915 * Arguments: sd_lun - The unit structure 25916 * 25917 * Return Code: 0 - Command completed successfully with good status 25918 * -1 - Command failed. 25919 * 25920 */ 25921 25922 static int 25923 sd_send_polled_RQS(struct sd_lun *un) 25924 { 25925 int ret_val; 25926 struct scsi_pkt *rqs_pktp; 25927 struct buf *rqs_bp; 25928 25929 ASSERT(un != NULL); 25930 ASSERT(!mutex_owned(SD_MUTEX(un))); 25931 25932 ret_val = SD_SUCCESS; 25933 25934 rqs_pktp = un->un_rqs_pktp; 25935 rqs_bp = un->un_rqs_bp; 25936 25937 mutex_enter(SD_MUTEX(un)); 25938 25939 if (un->un_sense_isbusy) { 25940 ret_val = SD_FAILURE; 25941 mutex_exit(SD_MUTEX(un)); 25942 return (ret_val); 25943 } 25944 25945 /* 25946 * If the request sense buffer (and packet) is not in use, 25947 * let's set the un_sense_isbusy and send our packet 25948 */ 25949 un->un_sense_isbusy = 1; 25950 rqs_pktp->pkt_resid = 0; 25951 rqs_pktp->pkt_reason = 0; 25952 rqs_pktp->pkt_flags |= FLAG_NOINTR; 25953 bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH); 25954 25955 mutex_exit(SD_MUTEX(un)); 25956 25957 SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at" 25958 " 0x%p\n", rqs_bp->b_un.b_addr); 25959 25960 /* 25961 * Can't send this to sd_scsi_poll, we wrap ourselves around the 25962 * axle - it has a call into us! 25963 */ 25964 if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) { 25965 SD_INFO(SD_LOG_COMMON, un, 25966 "sd_send_polled_RQS: RQS failed\n"); 25967 } 25968 25969 SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:", 25970 (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX); 25971 25972 mutex_enter(SD_MUTEX(un)); 25973 un->un_sense_isbusy = 0; 25974 mutex_exit(SD_MUTEX(un)); 25975 25976 return (ret_val); 25977 } 25978 25979 /* 25980 * Defines needed for localized version of the scsi_poll routine. 25981 */ 25982 #define CSEC 10000 /* usecs */ 25983 #define SEC_TO_CSEC (1000000/CSEC) 25984 25985 /* 25986 * Function: sd_ddi_scsi_poll() 25987 * 25988 * Description: Localized version of the scsi_poll routine. The purpose is to 25989 * send a scsi_pkt to a device as a polled command. This version 25990 * is to ensure more robust handling of transport errors. 25991 * Specifically this routine cures not ready, coming ready 25992 * transition for power up and reset of sonoma's. This can take 25993 * up to 45 seconds for power-on and 20 seconds for reset of a 25994 * sonoma lun. 25995 * 25996 * Arguments: scsi_pkt - The scsi_pkt being sent to a device 25997 * 25998 * Return Code: 0 - Command completed successfully with good status 25999 * -1 - Command failed. 26000 * 26001 * NOTE: This code is almost identical to scsi_poll, however before 6668774 can 26002 * be fixed (removing this code), we need to determine how to handle the 26003 * KEY_UNIT_ATTENTION condition below in conditions not as limited as sddump(). 26004 * 26005 * NOTE: This code is only called off sddump(). 26006 */ 26007 static int 26008 sd_ddi_scsi_poll(struct scsi_pkt *pkt) 26009 { 26010 int rval = -1; 26011 int savef; 26012 long savet; 26013 void (*savec)(); 26014 int timeout; 26015 int busy_count; 26016 int poll_delay; 26017 int rc; 26018 uint8_t *sensep; 26019 struct scsi_arq_status *arqstat; 26020 extern int do_polled_io; 26021 26022 ASSERT(pkt->pkt_scbp); 26023 26024 /* 26025 * save old flags.. 26026 */ 26027 savef = pkt->pkt_flags; 26028 savec = pkt->pkt_comp; 26029 savet = pkt->pkt_time; 26030 26031 pkt->pkt_flags |= FLAG_NOINTR; 26032 26033 /* 26034 * XXX there is nothing in the SCSA spec that states that we should not 26035 * do a callback for polled cmds; however, removing this will break sd 26036 * and probably other target drivers 26037 */ 26038 pkt->pkt_comp = NULL; 26039 26040 /* 26041 * we don't like a polled command without timeout. 26042 * 60 seconds seems long enough. 26043 */ 26044 if (pkt->pkt_time == 0) 26045 pkt->pkt_time = SCSI_POLL_TIMEOUT; 26046 26047 /* 26048 * Send polled cmd. 26049 * 26050 * We do some error recovery for various errors. Tran_busy, 26051 * queue full, and non-dispatched commands are retried every 10 msec. 26052 * as they are typically transient failures. Busy status and Not 26053 * Ready are retried every second as this status takes a while to 26054 * change. 26055 */ 26056 timeout = pkt->pkt_time * SEC_TO_CSEC; 26057 26058 for (busy_count = 0; busy_count < timeout; busy_count++) { 26059 /* 26060 * Initialize pkt status variables. 26061 */ 26062 *pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0; 26063 26064 if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) { 26065 if (rc != TRAN_BUSY) { 26066 /* Transport failed - give up. */ 26067 break; 26068 } else { 26069 /* Transport busy - try again. */ 26070 poll_delay = 1 * CSEC; /* 10 msec. */ 26071 } 26072 } else { 26073 /* 26074 * Transport accepted - check pkt status. 26075 */ 26076 rc = (*pkt->pkt_scbp) & STATUS_MASK; 26077 if ((pkt->pkt_reason == CMD_CMPLT) && 26078 (rc == STATUS_CHECK) && 26079 (pkt->pkt_state & STATE_ARQ_DONE)) { 26080 arqstat = 26081 (struct scsi_arq_status *)(pkt->pkt_scbp); 26082 sensep = (uint8_t *)&arqstat->sts_sensedata; 26083 } else { 26084 sensep = NULL; 26085 } 26086 26087 if ((pkt->pkt_reason == CMD_CMPLT) && 26088 (rc == STATUS_GOOD)) { 26089 /* No error - we're done */ 26090 rval = 0; 26091 break; 26092 26093 } else if (pkt->pkt_reason == CMD_DEV_GONE) { 26094 /* Lost connection - give up */ 26095 break; 26096 26097 } else if ((pkt->pkt_reason == CMD_INCOMPLETE) && 26098 (pkt->pkt_state == 0)) { 26099 /* Pkt not dispatched - try again. */ 26100 poll_delay = 1 * CSEC; /* 10 msec. */ 26101 26102 } else if ((pkt->pkt_reason == CMD_CMPLT) && 26103 (rc == STATUS_QFULL)) { 26104 /* Queue full - try again. */ 26105 poll_delay = 1 * CSEC; /* 10 msec. */ 26106 26107 } else if ((pkt->pkt_reason == CMD_CMPLT) && 26108 (rc == STATUS_BUSY)) { 26109 /* Busy - try again. */ 26110 poll_delay = 100 * CSEC; /* 1 sec. */ 26111 busy_count += (SEC_TO_CSEC - 1); 26112 26113 } else if ((sensep != NULL) && 26114 (scsi_sense_key(sensep) == KEY_UNIT_ATTENTION)) { 26115 /* 26116 * Unit Attention - try again. 26117 * Pretend it took 1 sec. 26118 * NOTE: 'continue' avoids poll_delay 26119 */ 26120 busy_count += (SEC_TO_CSEC - 1); 26121 continue; 26122 26123 } else if ((sensep != NULL) && 26124 (scsi_sense_key(sensep) == KEY_NOT_READY) && 26125 (scsi_sense_asc(sensep) == 0x04) && 26126 (scsi_sense_ascq(sensep) == 0x01)) { 26127 /* 26128 * Not ready -> ready - try again. 26129 * 04h/01h: LUN IS IN PROCESS OF BECOMING READY 26130 * ...same as STATUS_BUSY 26131 */ 26132 poll_delay = 100 * CSEC; /* 1 sec. */ 26133 busy_count += (SEC_TO_CSEC - 1); 26134 26135 } else { 26136 /* BAD status - give up. */ 26137 break; 26138 } 26139 } 26140 26141 if (((curthread->t_flag & T_INTR_THREAD) == 0) && 26142 !do_polled_io) { 26143 delay(drv_usectohz(poll_delay)); 26144 } else { 26145 /* we busy wait during cpr_dump or interrupt threads */ 26146 drv_usecwait(poll_delay); 26147 } 26148 } 26149 26150 pkt->pkt_flags = savef; 26151 pkt->pkt_comp = savec; 26152 pkt->pkt_time = savet; 26153 26154 /* return on error */ 26155 if (rval) 26156 return (rval); 26157 26158 /* 26159 * This is not a performance critical code path. 26160 * 26161 * As an accommodation for scsi_poll callers, to avoid ddi_dma_sync() 26162 * issues associated with looking at DMA memory prior to 26163 * scsi_pkt_destroy(), we scsi_sync_pkt() prior to return. 26164 */ 26165 scsi_sync_pkt(pkt); 26166 return (0); 26167 } 26168 26169 26170 26171 /* 26172 * Function: sd_persistent_reservation_in_read_keys 26173 * 26174 * Description: This routine is the driver entry point for handling CD-ROM 26175 * multi-host persistent reservation requests (MHIOCGRP_INKEYS) 26176 * by sending the SCSI-3 PRIN commands to the device. 26177 * Processes the read keys command response by copying the 26178 * reservation key information into the user provided buffer. 26179 * Support for the 32/64 bit _MULTI_DATAMODEL is implemented. 26180 * 26181 * Arguments: un - Pointer to soft state struct for the target. 26182 * usrp - user provided pointer to multihost Persistent In Read 26183 * Keys structure (mhioc_inkeys_t) 26184 * flag - this argument is a pass through to ddi_copyxxx() 26185 * directly from the mode argument of ioctl(). 26186 * 26187 * Return Code: 0 - Success 26188 * EACCES 26189 * ENOTSUP 26190 * errno return code from sd_send_scsi_cmd() 26191 * 26192 * Context: Can sleep. Does not return until command is completed. 26193 */ 26194 26195 static int 26196 sd_persistent_reservation_in_read_keys(struct sd_lun *un, 26197 mhioc_inkeys_t *usrp, int flag) 26198 { 26199 #ifdef _MULTI_DATAMODEL 26200 struct mhioc_key_list32 li32; 26201 #endif 26202 sd_prin_readkeys_t *in; 26203 mhioc_inkeys_t *ptr; 26204 mhioc_key_list_t li; 26205 uchar_t *data_bufp; 26206 int data_len; 26207 int rval = 0; 26208 size_t copysz; 26209 sd_ssc_t *ssc; 26210 26211 if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) { 26212 return (EINVAL); 26213 } 26214 bzero(&li, sizeof (mhioc_key_list_t)); 26215 26216 ssc = sd_ssc_init(un); 26217 26218 /* 26219 * Get the listsize from user 26220 */ 26221 #ifdef _MULTI_DATAMODEL 26222 26223 switch (ddi_model_convert_from(flag & FMODELS)) { 26224 case DDI_MODEL_ILP32: 26225 copysz = sizeof (struct mhioc_key_list32); 26226 if (ddi_copyin(ptr->li, &li32, copysz, flag)) { 26227 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26228 "sd_persistent_reservation_in_read_keys: " 26229 "failed ddi_copyin: mhioc_key_list32_t\n"); 26230 rval = EFAULT; 26231 goto done; 26232 } 26233 li.listsize = li32.listsize; 26234 li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list; 26235 break; 26236 26237 case DDI_MODEL_NONE: 26238 copysz = sizeof (mhioc_key_list_t); 26239 if (ddi_copyin(ptr->li, &li, copysz, flag)) { 26240 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26241 "sd_persistent_reservation_in_read_keys: " 26242 "failed ddi_copyin: mhioc_key_list_t\n"); 26243 rval = EFAULT; 26244 goto done; 26245 } 26246 break; 26247 } 26248 26249 #else /* ! _MULTI_DATAMODEL */ 26250 copysz = sizeof (mhioc_key_list_t); 26251 if (ddi_copyin(ptr->li, &li, copysz, flag)) { 26252 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26253 "sd_persistent_reservation_in_read_keys: " 26254 "failed ddi_copyin: mhioc_key_list_t\n"); 26255 rval = EFAULT; 26256 goto done; 26257 } 26258 #endif 26259 26260 data_len = li.listsize * MHIOC_RESV_KEY_SIZE; 26261 data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t)); 26262 data_bufp = kmem_zalloc(data_len, KM_SLEEP); 26263 26264 rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS, 26265 data_len, data_bufp); 26266 if (rval != 0) { 26267 if (rval == EIO) 26268 sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE); 26269 else 26270 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 26271 goto done; 26272 } 26273 in = (sd_prin_readkeys_t *)data_bufp; 26274 ptr->generation = BE_32(in->generation); 26275 li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE; 26276 26277 /* 26278 * Return the min(listsize, listlen) keys 26279 */ 26280 #ifdef _MULTI_DATAMODEL 26281 26282 switch (ddi_model_convert_from(flag & FMODELS)) { 26283 case DDI_MODEL_ILP32: 26284 li32.listlen = li.listlen; 26285 if (ddi_copyout(&li32, ptr->li, copysz, flag)) { 26286 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26287 "sd_persistent_reservation_in_read_keys: " 26288 "failed ddi_copyout: mhioc_key_list32_t\n"); 26289 rval = EFAULT; 26290 goto done; 26291 } 26292 break; 26293 26294 case DDI_MODEL_NONE: 26295 if (ddi_copyout(&li, ptr->li, copysz, flag)) { 26296 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26297 "sd_persistent_reservation_in_read_keys: " 26298 "failed ddi_copyout: mhioc_key_list_t\n"); 26299 rval = EFAULT; 26300 goto done; 26301 } 26302 break; 26303 } 26304 26305 #else /* ! _MULTI_DATAMODEL */ 26306 26307 if (ddi_copyout(&li, ptr->li, copysz, flag)) { 26308 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26309 "sd_persistent_reservation_in_read_keys: " 26310 "failed ddi_copyout: mhioc_key_list_t\n"); 26311 rval = EFAULT; 26312 goto done; 26313 } 26314 26315 #endif /* _MULTI_DATAMODEL */ 26316 26317 copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE, 26318 li.listsize * MHIOC_RESV_KEY_SIZE); 26319 if (ddi_copyout(&in->keylist, li.list, copysz, flag)) { 26320 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26321 "sd_persistent_reservation_in_read_keys: " 26322 "failed ddi_copyout: keylist\n"); 26323 rval = EFAULT; 26324 } 26325 done: 26326 sd_ssc_fini(ssc); 26327 kmem_free(data_bufp, data_len); 26328 return (rval); 26329 } 26330 26331 26332 /* 26333 * Function: sd_persistent_reservation_in_read_resv 26334 * 26335 * Description: This routine is the driver entry point for handling CD-ROM 26336 * multi-host persistent reservation requests (MHIOCGRP_INRESV) 26337 * by sending the SCSI-3 PRIN commands to the device. 26338 * Process the read persistent reservations command response by 26339 * copying the reservation information into the user provided 26340 * buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented. 26341 * 26342 * Arguments: un - Pointer to soft state struct for the target. 26343 * usrp - user provided pointer to multihost Persistent In Read 26344 * Keys structure (mhioc_inkeys_t) 26345 * flag - this argument is a pass through to ddi_copyxxx() 26346 * directly from the mode argument of ioctl(). 26347 * 26348 * Return Code: 0 - Success 26349 * EACCES 26350 * ENOTSUP 26351 * errno return code from sd_send_scsi_cmd() 26352 * 26353 * Context: Can sleep. Does not return until command is completed. 26354 */ 26355 26356 static int 26357 sd_persistent_reservation_in_read_resv(struct sd_lun *un, 26358 mhioc_inresvs_t *usrp, int flag) 26359 { 26360 #ifdef _MULTI_DATAMODEL 26361 struct mhioc_resv_desc_list32 resvlist32; 26362 #endif 26363 sd_prin_readresv_t *in; 26364 mhioc_inresvs_t *ptr; 26365 sd_readresv_desc_t *readresv_ptr; 26366 mhioc_resv_desc_list_t resvlist; 26367 mhioc_resv_desc_t resvdesc; 26368 uchar_t *data_bufp = NULL; 26369 int data_len; 26370 int rval = 0; 26371 int i; 26372 size_t copysz; 26373 mhioc_resv_desc_t *bufp; 26374 sd_ssc_t *ssc; 26375 26376 if ((ptr = usrp) == NULL) { 26377 return (EINVAL); 26378 } 26379 26380 ssc = sd_ssc_init(un); 26381 26382 /* 26383 * Get the listsize from user 26384 */ 26385 #ifdef _MULTI_DATAMODEL 26386 switch (ddi_model_convert_from(flag & FMODELS)) { 26387 case DDI_MODEL_ILP32: 26388 copysz = sizeof (struct mhioc_resv_desc_list32); 26389 if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) { 26390 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26391 "sd_persistent_reservation_in_read_resv: " 26392 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 26393 rval = EFAULT; 26394 goto done; 26395 } 26396 resvlist.listsize = resvlist32.listsize; 26397 resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list; 26398 break; 26399 26400 case DDI_MODEL_NONE: 26401 copysz = sizeof (mhioc_resv_desc_list_t); 26402 if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) { 26403 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26404 "sd_persistent_reservation_in_read_resv: " 26405 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 26406 rval = EFAULT; 26407 goto done; 26408 } 26409 break; 26410 } 26411 #else /* ! _MULTI_DATAMODEL */ 26412 copysz = sizeof (mhioc_resv_desc_list_t); 26413 if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) { 26414 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26415 "sd_persistent_reservation_in_read_resv: " 26416 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 26417 rval = EFAULT; 26418 goto done; 26419 } 26420 #endif /* ! _MULTI_DATAMODEL */ 26421 26422 data_len = resvlist.listsize * SCSI3_RESV_DESC_LEN; 26423 data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t)); 26424 data_bufp = kmem_zalloc(data_len, KM_SLEEP); 26425 26426 rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_RESV, 26427 data_len, data_bufp); 26428 if (rval != 0) { 26429 if (rval == EIO) 26430 sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE); 26431 else 26432 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 26433 goto done; 26434 } 26435 in = (sd_prin_readresv_t *)data_bufp; 26436 ptr->generation = BE_32(in->generation); 26437 resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN; 26438 26439 /* 26440 * Return the min(listsize, listlen( keys 26441 */ 26442 #ifdef _MULTI_DATAMODEL 26443 26444 switch (ddi_model_convert_from(flag & FMODELS)) { 26445 case DDI_MODEL_ILP32: 26446 resvlist32.listlen = resvlist.listlen; 26447 if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) { 26448 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26449 "sd_persistent_reservation_in_read_resv: " 26450 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 26451 rval = EFAULT; 26452 goto done; 26453 } 26454 break; 26455 26456 case DDI_MODEL_NONE: 26457 if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) { 26458 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26459 "sd_persistent_reservation_in_read_resv: " 26460 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 26461 rval = EFAULT; 26462 goto done; 26463 } 26464 break; 26465 } 26466 26467 #else /* ! _MULTI_DATAMODEL */ 26468 26469 if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) { 26470 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26471 "sd_persistent_reservation_in_read_resv: " 26472 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 26473 rval = EFAULT; 26474 goto done; 26475 } 26476 26477 #endif /* ! _MULTI_DATAMODEL */ 26478 26479 readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc; 26480 bufp = resvlist.list; 26481 copysz = sizeof (mhioc_resv_desc_t); 26482 for (i = 0; i < min(resvlist.listlen, resvlist.listsize); 26483 i++, readresv_ptr++, bufp++) { 26484 26485 bcopy(&readresv_ptr->resvkey, &resvdesc.key, 26486 MHIOC_RESV_KEY_SIZE); 26487 resvdesc.type = readresv_ptr->type; 26488 resvdesc.scope = readresv_ptr->scope; 26489 resvdesc.scope_specific_addr = 26490 BE_32(readresv_ptr->scope_specific_addr); 26491 26492 if (ddi_copyout(&resvdesc, bufp, copysz, flag)) { 26493 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26494 "sd_persistent_reservation_in_read_resv: " 26495 "failed ddi_copyout: resvlist\n"); 26496 rval = EFAULT; 26497 goto done; 26498 } 26499 } 26500 done: 26501 sd_ssc_fini(ssc); 26502 /* only if data_bufp is allocated, we need to free it */ 26503 if (data_bufp) { 26504 kmem_free(data_bufp, data_len); 26505 } 26506 return (rval); 26507 } 26508 26509 26510 /* 26511 * Function: sr_change_blkmode() 26512 * 26513 * Description: This routine is the driver entry point for handling CD-ROM 26514 * block mode ioctl requests. Support for returning and changing 26515 * the current block size in use by the device is implemented. The 26516 * LBA size is changed via a MODE SELECT Block Descriptor. 26517 * 26518 * This routine issues a mode sense with an allocation length of 26519 * 12 bytes for the mode page header and a single block descriptor. 26520 * 26521 * Arguments: dev - the device 'dev_t' 26522 * cmd - the request type; one of CDROMGBLKMODE (get) or 26523 * CDROMSBLKMODE (set) 26524 * data - current block size or requested block size 26525 * flag - this argument is a pass through to ddi_copyxxx() directly 26526 * from the mode argument of ioctl(). 26527 * 26528 * Return Code: the code returned by sd_send_scsi_cmd() 26529 * EINVAL if invalid arguments are provided 26530 * EFAULT if ddi_copyxxx() fails 26531 * ENXIO if fail ddi_get_soft_state 26532 * EIO if invalid mode sense block descriptor length 26533 * 26534 */ 26535 26536 static int 26537 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag) 26538 { 26539 struct sd_lun *un = NULL; 26540 struct mode_header *sense_mhp, *select_mhp; 26541 struct block_descriptor *sense_desc, *select_desc; 26542 int current_bsize; 26543 int rval = EINVAL; 26544 uchar_t *sense = NULL; 26545 uchar_t *select = NULL; 26546 sd_ssc_t *ssc; 26547 26548 ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE)); 26549 26550 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 26551 return (ENXIO); 26552 } 26553 26554 /* 26555 * The block length is changed via the Mode Select block descriptor, the 26556 * "Read/Write Error Recovery" mode page (0x1) contents are not actually 26557 * required as part of this routine. Therefore the mode sense allocation 26558 * length is specified to be the length of a mode page header and a 26559 * block descriptor. 26560 */ 26561 sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP); 26562 26563 ssc = sd_ssc_init(un); 26564 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 26565 BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD); 26566 sd_ssc_fini(ssc); 26567 if (rval != 0) { 26568 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26569 "sr_change_blkmode: Mode Sense Failed\n"); 26570 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 26571 return (rval); 26572 } 26573 26574 /* Check the block descriptor len to handle only 1 block descriptor */ 26575 sense_mhp = (struct mode_header *)sense; 26576 if ((sense_mhp->bdesc_length == 0) || 26577 (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) { 26578 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26579 "sr_change_blkmode: Mode Sense returned invalid block" 26580 " descriptor length\n"); 26581 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 26582 return (EIO); 26583 } 26584 sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH); 26585 current_bsize = ((sense_desc->blksize_hi << 16) | 26586 (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo); 26587 26588 /* Process command */ 26589 switch (cmd) { 26590 case CDROMGBLKMODE: 26591 /* Return the block size obtained during the mode sense */ 26592 if (ddi_copyout(¤t_bsize, (void *)data, 26593 sizeof (int), flag) != 0) 26594 rval = EFAULT; 26595 break; 26596 case CDROMSBLKMODE: 26597 /* Validate the requested block size */ 26598 switch (data) { 26599 case CDROM_BLK_512: 26600 case CDROM_BLK_1024: 26601 case CDROM_BLK_2048: 26602 case CDROM_BLK_2056: 26603 case CDROM_BLK_2336: 26604 case CDROM_BLK_2340: 26605 case CDROM_BLK_2352: 26606 case CDROM_BLK_2368: 26607 case CDROM_BLK_2448: 26608 case CDROM_BLK_2646: 26609 case CDROM_BLK_2647: 26610 break; 26611 default: 26612 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26613 "sr_change_blkmode: " 26614 "Block Size '%ld' Not Supported\n", data); 26615 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 26616 return (EINVAL); 26617 } 26618 26619 /* 26620 * The current block size matches the requested block size so 26621 * there is no need to send the mode select to change the size 26622 */ 26623 if (current_bsize == data) { 26624 break; 26625 } 26626 26627 /* Build the select data for the requested block size */ 26628 select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP); 26629 select_mhp = (struct mode_header *)select; 26630 select_desc = 26631 (struct block_descriptor *)(select + MODE_HEADER_LENGTH); 26632 /* 26633 * The LBA size is changed via the block descriptor, so the 26634 * descriptor is built according to the user data 26635 */ 26636 select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH; 26637 select_desc->blksize_hi = (char)(((data) & 0x00ff0000) >> 16); 26638 select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8); 26639 select_desc->blksize_lo = (char)((data) & 0x000000ff); 26640 26641 /* Send the mode select for the requested block size */ 26642 ssc = sd_ssc_init(un); 26643 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, 26644 select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE, 26645 SD_PATH_STANDARD); 26646 sd_ssc_fini(ssc); 26647 if (rval != 0) { 26648 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26649 "sr_change_blkmode: Mode Select Failed\n"); 26650 /* 26651 * The mode select failed for the requested block size, 26652 * so reset the data for the original block size and 26653 * send it to the target. The error is indicated by the 26654 * return value for the failed mode select. 26655 */ 26656 select_desc->blksize_hi = sense_desc->blksize_hi; 26657 select_desc->blksize_mid = sense_desc->blksize_mid; 26658 select_desc->blksize_lo = sense_desc->blksize_lo; 26659 ssc = sd_ssc_init(un); 26660 (void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, 26661 select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE, 26662 SD_PATH_STANDARD); 26663 sd_ssc_fini(ssc); 26664 } else { 26665 ASSERT(!mutex_owned(SD_MUTEX(un))); 26666 mutex_enter(SD_MUTEX(un)); 26667 sd_update_block_info(un, (uint32_t)data, 0); 26668 mutex_exit(SD_MUTEX(un)); 26669 } 26670 break; 26671 default: 26672 /* should not reach here, but check anyway */ 26673 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26674 "sr_change_blkmode: Command '%x' Not Supported\n", cmd); 26675 rval = EINVAL; 26676 break; 26677 } 26678 26679 if (select) { 26680 kmem_free(select, BUFLEN_CHG_BLK_MODE); 26681 } 26682 if (sense) { 26683 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 26684 } 26685 return (rval); 26686 } 26687 26688 26689 /* 26690 * Note: The following sr_change_speed() and sr_atapi_change_speed() routines 26691 * implement driver support for getting and setting the CD speed. The command 26692 * set used will be based on the device type. If the device has not been 26693 * identified as MMC the Toshiba vendor specific mode page will be used. If 26694 * the device is MMC but does not support the Real Time Streaming feature 26695 * the SET CD SPEED command will be used to set speed and mode page 0x2A will 26696 * be used to read the speed. 26697 */ 26698 26699 /* 26700 * Function: sr_change_speed() 26701 * 26702 * Description: This routine is the driver entry point for handling CD-ROM 26703 * drive speed ioctl requests for devices supporting the Toshiba 26704 * vendor specific drive speed mode page. Support for returning 26705 * and changing the current drive speed in use by the device is 26706 * implemented. 26707 * 26708 * Arguments: dev - the device 'dev_t' 26709 * cmd - the request type; one of CDROMGDRVSPEED (get) or 26710 * CDROMSDRVSPEED (set) 26711 * data - current drive speed or requested drive speed 26712 * flag - this argument is a pass through to ddi_copyxxx() directly 26713 * from the mode argument of ioctl(). 26714 * 26715 * Return Code: the code returned by sd_send_scsi_cmd() 26716 * EINVAL if invalid arguments are provided 26717 * EFAULT if ddi_copyxxx() fails 26718 * ENXIO if fail ddi_get_soft_state 26719 * EIO if invalid mode sense block descriptor length 26720 */ 26721 26722 static int 26723 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag) 26724 { 26725 struct sd_lun *un = NULL; 26726 struct mode_header *sense_mhp, *select_mhp; 26727 struct mode_speed *sense_page, *select_page; 26728 int current_speed; 26729 int rval = EINVAL; 26730 int bd_len; 26731 uchar_t *sense = NULL; 26732 uchar_t *select = NULL; 26733 sd_ssc_t *ssc; 26734 26735 ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED)); 26736 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 26737 return (ENXIO); 26738 } 26739 26740 /* 26741 * Note: The drive speed is being modified here according to a Toshiba 26742 * vendor specific mode page (0x31). 26743 */ 26744 sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP); 26745 26746 ssc = sd_ssc_init(un); 26747 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 26748 BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED, 26749 SD_PATH_STANDARD); 26750 sd_ssc_fini(ssc); 26751 if (rval != 0) { 26752 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26753 "sr_change_speed: Mode Sense Failed\n"); 26754 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 26755 return (rval); 26756 } 26757 sense_mhp = (struct mode_header *)sense; 26758 26759 /* Check the block descriptor len to handle only 1 block descriptor */ 26760 bd_len = sense_mhp->bdesc_length; 26761 if (bd_len > MODE_BLK_DESC_LENGTH) { 26762 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26763 "sr_change_speed: Mode Sense returned invalid block " 26764 "descriptor length\n"); 26765 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 26766 return (EIO); 26767 } 26768 26769 sense_page = (struct mode_speed *) 26770 (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length); 26771 current_speed = sense_page->speed; 26772 26773 /* Process command */ 26774 switch (cmd) { 26775 case CDROMGDRVSPEED: 26776 /* Return the drive speed obtained during the mode sense */ 26777 if (current_speed == 0x2) { 26778 current_speed = CDROM_TWELVE_SPEED; 26779 } 26780 if (ddi_copyout(¤t_speed, (void *)data, 26781 sizeof (int), flag) != 0) { 26782 rval = EFAULT; 26783 } 26784 break; 26785 case CDROMSDRVSPEED: 26786 /* Validate the requested drive speed */ 26787 switch ((uchar_t)data) { 26788 case CDROM_TWELVE_SPEED: 26789 data = 0x2; 26790 /*FALLTHROUGH*/ 26791 case CDROM_NORMAL_SPEED: 26792 case CDROM_DOUBLE_SPEED: 26793 case CDROM_QUAD_SPEED: 26794 case CDROM_MAXIMUM_SPEED: 26795 break; 26796 default: 26797 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26798 "sr_change_speed: " 26799 "Drive Speed '%d' Not Supported\n", (uchar_t)data); 26800 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 26801 return (EINVAL); 26802 } 26803 26804 /* 26805 * The current drive speed matches the requested drive speed so 26806 * there is no need to send the mode select to change the speed 26807 */ 26808 if (current_speed == data) { 26809 break; 26810 } 26811 26812 /* Build the select data for the requested drive speed */ 26813 select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP); 26814 select_mhp = (struct mode_header *)select; 26815 select_mhp->bdesc_length = 0; 26816 select_page = 26817 (struct mode_speed *)(select + MODE_HEADER_LENGTH); 26818 select_page = 26819 (struct mode_speed *)(select + MODE_HEADER_LENGTH); 26820 select_page->mode_page.code = CDROM_MODE_SPEED; 26821 select_page->mode_page.length = 2; 26822 select_page->speed = (uchar_t)data; 26823 26824 /* Send the mode select for the requested block size */ 26825 ssc = sd_ssc_init(un); 26826 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 26827 MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH, 26828 SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 26829 sd_ssc_fini(ssc); 26830 if (rval != 0) { 26831 /* 26832 * The mode select failed for the requested drive speed, 26833 * so reset the data for the original drive speed and 26834 * send it to the target. The error is indicated by the 26835 * return value for the failed mode select. 26836 */ 26837 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26838 "sr_drive_speed: Mode Select Failed\n"); 26839 select_page->speed = sense_page->speed; 26840 ssc = sd_ssc_init(un); 26841 (void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 26842 MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH, 26843 SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 26844 sd_ssc_fini(ssc); 26845 } 26846 break; 26847 default: 26848 /* should not reach here, but check anyway */ 26849 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26850 "sr_change_speed: Command '%x' Not Supported\n", cmd); 26851 rval = EINVAL; 26852 break; 26853 } 26854 26855 if (select) { 26856 kmem_free(select, BUFLEN_MODE_CDROM_SPEED); 26857 } 26858 if (sense) { 26859 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 26860 } 26861 26862 return (rval); 26863 } 26864 26865 26866 /* 26867 * Function: sr_atapi_change_speed() 26868 * 26869 * Description: This routine is the driver entry point for handling CD-ROM 26870 * drive speed ioctl requests for MMC devices that do not support 26871 * the Real Time Streaming feature (0x107). 26872 * 26873 * Note: This routine will use the SET SPEED command which may not 26874 * be supported by all devices. 26875 * 26876 * Arguments: dev- the device 'dev_t' 26877 * cmd- the request type; one of CDROMGDRVSPEED (get) or 26878 * CDROMSDRVSPEED (set) 26879 * data- current drive speed or requested drive speed 26880 * flag- this argument is a pass through to ddi_copyxxx() directly 26881 * from the mode argument of ioctl(). 26882 * 26883 * Return Code: the code returned by sd_send_scsi_cmd() 26884 * EINVAL if invalid arguments are provided 26885 * EFAULT if ddi_copyxxx() fails 26886 * ENXIO if fail ddi_get_soft_state 26887 * EIO if invalid mode sense block descriptor length 26888 */ 26889 26890 static int 26891 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag) 26892 { 26893 struct sd_lun *un; 26894 struct uscsi_cmd *com = NULL; 26895 struct mode_header_grp2 *sense_mhp; 26896 uchar_t *sense_page; 26897 uchar_t *sense = NULL; 26898 char cdb[CDB_GROUP5]; 26899 int bd_len; 26900 int current_speed = 0; 26901 int max_speed = 0; 26902 int rval; 26903 sd_ssc_t *ssc; 26904 26905 ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED)); 26906 26907 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 26908 return (ENXIO); 26909 } 26910 26911 sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 26912 26913 ssc = sd_ssc_init(un); 26914 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, 26915 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, 26916 SD_PATH_STANDARD); 26917 sd_ssc_fini(ssc); 26918 if (rval != 0) { 26919 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26920 "sr_atapi_change_speed: Mode Sense Failed\n"); 26921 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 26922 return (rval); 26923 } 26924 26925 /* Check the block descriptor len to handle only 1 block descriptor */ 26926 sense_mhp = (struct mode_header_grp2 *)sense; 26927 bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo; 26928 if (bd_len > MODE_BLK_DESC_LENGTH) { 26929 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26930 "sr_atapi_change_speed: Mode Sense returned invalid " 26931 "block descriptor length\n"); 26932 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 26933 return (EIO); 26934 } 26935 26936 /* Calculate the current and maximum drive speeds */ 26937 sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len); 26938 current_speed = (sense_page[14] << 8) | sense_page[15]; 26939 max_speed = (sense_page[8] << 8) | sense_page[9]; 26940 26941 /* Process the command */ 26942 switch (cmd) { 26943 case CDROMGDRVSPEED: 26944 current_speed /= SD_SPEED_1X; 26945 if (ddi_copyout(¤t_speed, (void *)data, 26946 sizeof (int), flag) != 0) 26947 rval = EFAULT; 26948 break; 26949 case CDROMSDRVSPEED: 26950 /* Convert the speed code to KB/sec */ 26951 switch ((uchar_t)data) { 26952 case CDROM_NORMAL_SPEED: 26953 current_speed = SD_SPEED_1X; 26954 break; 26955 case CDROM_DOUBLE_SPEED: 26956 current_speed = 2 * SD_SPEED_1X; 26957 break; 26958 case CDROM_QUAD_SPEED: 26959 current_speed = 4 * SD_SPEED_1X; 26960 break; 26961 case CDROM_TWELVE_SPEED: 26962 current_speed = 12 * SD_SPEED_1X; 26963 break; 26964 case CDROM_MAXIMUM_SPEED: 26965 current_speed = 0xffff; 26966 break; 26967 default: 26968 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26969 "sr_atapi_change_speed: invalid drive speed %d\n", 26970 (uchar_t)data); 26971 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 26972 return (EINVAL); 26973 } 26974 26975 /* Check the request against the drive's max speed. */ 26976 if (current_speed != 0xffff) { 26977 if (current_speed > max_speed) { 26978 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 26979 return (EINVAL); 26980 } 26981 } 26982 26983 /* 26984 * Build and send the SET SPEED command 26985 * 26986 * Note: The SET SPEED (0xBB) command used in this routine is 26987 * obsolete per the SCSI MMC spec but still supported in the 26988 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI 26989 * therefore the command is still implemented in this routine. 26990 */ 26991 bzero(cdb, sizeof (cdb)); 26992 cdb[0] = (char)SCMD_SET_CDROM_SPEED; 26993 cdb[2] = (uchar_t)(current_speed >> 8); 26994 cdb[3] = (uchar_t)current_speed; 26995 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 26996 com->uscsi_cdb = (caddr_t)cdb; 26997 com->uscsi_cdblen = CDB_GROUP5; 26998 com->uscsi_bufaddr = NULL; 26999 com->uscsi_buflen = 0; 27000 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27001 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD); 27002 break; 27003 default: 27004 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27005 "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd); 27006 rval = EINVAL; 27007 } 27008 27009 if (sense) { 27010 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27011 } 27012 if (com) { 27013 kmem_free(com, sizeof (*com)); 27014 } 27015 return (rval); 27016 } 27017 27018 27019 /* 27020 * Function: sr_pause_resume() 27021 * 27022 * Description: This routine is the driver entry point for handling CD-ROM 27023 * pause/resume ioctl requests. This only affects the audio play 27024 * operation. 27025 * 27026 * Arguments: dev - the device 'dev_t' 27027 * cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used 27028 * for setting the resume bit of the cdb. 27029 * 27030 * Return Code: the code returned by sd_send_scsi_cmd() 27031 * EINVAL if invalid mode specified 27032 * 27033 */ 27034 27035 static int 27036 sr_pause_resume(dev_t dev, int cmd) 27037 { 27038 struct sd_lun *un; 27039 struct uscsi_cmd *com; 27040 char cdb[CDB_GROUP1]; 27041 int rval; 27042 27043 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27044 return (ENXIO); 27045 } 27046 27047 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27048 bzero(cdb, CDB_GROUP1); 27049 cdb[0] = SCMD_PAUSE_RESUME; 27050 switch (cmd) { 27051 case CDROMRESUME: 27052 cdb[8] = 1; 27053 break; 27054 case CDROMPAUSE: 27055 cdb[8] = 0; 27056 break; 27057 default: 27058 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:" 27059 " Command '%x' Not Supported\n", cmd); 27060 rval = EINVAL; 27061 goto done; 27062 } 27063 27064 com->uscsi_cdb = cdb; 27065 com->uscsi_cdblen = CDB_GROUP1; 27066 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27067 27068 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27069 SD_PATH_STANDARD); 27070 27071 done: 27072 kmem_free(com, sizeof (*com)); 27073 return (rval); 27074 } 27075 27076 27077 /* 27078 * Function: sr_play_msf() 27079 * 27080 * Description: This routine is the driver entry point for handling CD-ROM 27081 * ioctl requests to output the audio signals at the specified 27082 * starting address and continue the audio play until the specified 27083 * ending address (CDROMPLAYMSF) The address is in Minute Second 27084 * Frame (MSF) format. 27085 * 27086 * Arguments: dev - the device 'dev_t' 27087 * data - pointer to user provided audio msf structure, 27088 * specifying start/end addresses. 27089 * flag - this argument is a pass through to ddi_copyxxx() 27090 * directly from the mode argument of ioctl(). 27091 * 27092 * Return Code: the code returned by sd_send_scsi_cmd() 27093 * EFAULT if ddi_copyxxx() fails 27094 * ENXIO if fail ddi_get_soft_state 27095 * EINVAL if data pointer is NULL 27096 */ 27097 27098 static int 27099 sr_play_msf(dev_t dev, caddr_t data, int flag) 27100 { 27101 struct sd_lun *un; 27102 struct uscsi_cmd *com; 27103 struct cdrom_msf msf_struct; 27104 struct cdrom_msf *msf = &msf_struct; 27105 char cdb[CDB_GROUP1]; 27106 int rval; 27107 27108 if (data == NULL) { 27109 return (EINVAL); 27110 } 27111 27112 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27113 return (ENXIO); 27114 } 27115 27116 if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) { 27117 return (EFAULT); 27118 } 27119 27120 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27121 bzero(cdb, CDB_GROUP1); 27122 cdb[0] = SCMD_PLAYAUDIO_MSF; 27123 if (un->un_f_cfg_playmsf_bcd == TRUE) { 27124 cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0); 27125 cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0); 27126 cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0); 27127 cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1); 27128 cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1); 27129 cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1); 27130 } else { 27131 cdb[3] = msf->cdmsf_min0; 27132 cdb[4] = msf->cdmsf_sec0; 27133 cdb[5] = msf->cdmsf_frame0; 27134 cdb[6] = msf->cdmsf_min1; 27135 cdb[7] = msf->cdmsf_sec1; 27136 cdb[8] = msf->cdmsf_frame1; 27137 } 27138 com->uscsi_cdb = cdb; 27139 com->uscsi_cdblen = CDB_GROUP1; 27140 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27141 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27142 SD_PATH_STANDARD); 27143 kmem_free(com, sizeof (*com)); 27144 return (rval); 27145 } 27146 27147 27148 /* 27149 * Function: sr_play_trkind() 27150 * 27151 * Description: This routine is the driver entry point for handling CD-ROM 27152 * ioctl requests to output the audio signals at the specified 27153 * starting address and continue the audio play until the specified 27154 * ending address (CDROMPLAYTRKIND). The address is in Track Index 27155 * format. 27156 * 27157 * Arguments: dev - the device 'dev_t' 27158 * data - pointer to user provided audio track/index structure, 27159 * specifying start/end addresses. 27160 * flag - this argument is a pass through to ddi_copyxxx() 27161 * directly from the mode argument of ioctl(). 27162 * 27163 * Return Code: the code returned by sd_send_scsi_cmd() 27164 * EFAULT if ddi_copyxxx() fails 27165 * ENXIO if fail ddi_get_soft_state 27166 * EINVAL if data pointer is NULL 27167 */ 27168 27169 static int 27170 sr_play_trkind(dev_t dev, caddr_t data, int flag) 27171 { 27172 struct cdrom_ti ti_struct; 27173 struct cdrom_ti *ti = &ti_struct; 27174 struct uscsi_cmd *com = NULL; 27175 char cdb[CDB_GROUP1]; 27176 int rval; 27177 27178 if (data == NULL) { 27179 return (EINVAL); 27180 } 27181 27182 if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) { 27183 return (EFAULT); 27184 } 27185 27186 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27187 bzero(cdb, CDB_GROUP1); 27188 cdb[0] = SCMD_PLAYAUDIO_TI; 27189 cdb[4] = ti->cdti_trk0; 27190 cdb[5] = ti->cdti_ind0; 27191 cdb[7] = ti->cdti_trk1; 27192 cdb[8] = ti->cdti_ind1; 27193 com->uscsi_cdb = cdb; 27194 com->uscsi_cdblen = CDB_GROUP1; 27195 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27196 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27197 SD_PATH_STANDARD); 27198 kmem_free(com, sizeof (*com)); 27199 return (rval); 27200 } 27201 27202 27203 /* 27204 * Function: sr_read_all_subcodes() 27205 * 27206 * Description: This routine is the driver entry point for handling CD-ROM 27207 * ioctl requests to return raw subcode data while the target is 27208 * playing audio (CDROMSUBCODE). 27209 * 27210 * Arguments: dev - the device 'dev_t' 27211 * data - pointer to user provided cdrom subcode structure, 27212 * specifying the transfer length and address. 27213 * flag - this argument is a pass through to ddi_copyxxx() 27214 * directly from the mode argument of ioctl(). 27215 * 27216 * Return Code: the code returned by sd_send_scsi_cmd() 27217 * EFAULT if ddi_copyxxx() fails 27218 * ENXIO if fail ddi_get_soft_state 27219 * EINVAL if data pointer is NULL 27220 */ 27221 27222 static int 27223 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag) 27224 { 27225 struct sd_lun *un = NULL; 27226 struct uscsi_cmd *com = NULL; 27227 struct cdrom_subcode *subcode = NULL; 27228 int rval; 27229 size_t buflen; 27230 char cdb[CDB_GROUP5]; 27231 27232 #ifdef _MULTI_DATAMODEL 27233 /* To support ILP32 applications in an LP64 world */ 27234 struct cdrom_subcode32 cdrom_subcode32; 27235 struct cdrom_subcode32 *cdsc32 = &cdrom_subcode32; 27236 #endif 27237 if (data == NULL) { 27238 return (EINVAL); 27239 } 27240 27241 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27242 return (ENXIO); 27243 } 27244 27245 subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP); 27246 27247 #ifdef _MULTI_DATAMODEL 27248 switch (ddi_model_convert_from(flag & FMODELS)) { 27249 case DDI_MODEL_ILP32: 27250 if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) { 27251 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27252 "sr_read_all_subcodes: ddi_copyin Failed\n"); 27253 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27254 return (EFAULT); 27255 } 27256 /* Convert the ILP32 uscsi data from the application to LP64 */ 27257 cdrom_subcode32tocdrom_subcode(cdsc32, subcode); 27258 break; 27259 case DDI_MODEL_NONE: 27260 if (ddi_copyin(data, subcode, 27261 sizeof (struct cdrom_subcode), flag)) { 27262 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27263 "sr_read_all_subcodes: ddi_copyin Failed\n"); 27264 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27265 return (EFAULT); 27266 } 27267 break; 27268 } 27269 #else /* ! _MULTI_DATAMODEL */ 27270 if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) { 27271 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27272 "sr_read_all_subcodes: ddi_copyin Failed\n"); 27273 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27274 return (EFAULT); 27275 } 27276 #endif /* _MULTI_DATAMODEL */ 27277 27278 /* 27279 * Since MMC-2 expects max 3 bytes for length, check if the 27280 * length input is greater than 3 bytes 27281 */ 27282 if ((subcode->cdsc_length & 0xFF000000) != 0) { 27283 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27284 "sr_read_all_subcodes: " 27285 "cdrom transfer length too large: %d (limit %d)\n", 27286 subcode->cdsc_length, 0xFFFFFF); 27287 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27288 return (EINVAL); 27289 } 27290 27291 buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length; 27292 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27293 bzero(cdb, CDB_GROUP5); 27294 27295 if (un->un_f_mmc_cap == TRUE) { 27296 cdb[0] = (char)SCMD_READ_CD; 27297 cdb[2] = (char)0xff; 27298 cdb[3] = (char)0xff; 27299 cdb[4] = (char)0xff; 27300 cdb[5] = (char)0xff; 27301 cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16); 27302 cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8); 27303 cdb[8] = ((subcode->cdsc_length) & 0x000000ff); 27304 cdb[10] = 1; 27305 } else { 27306 /* 27307 * Note: A vendor specific command (0xDF) is being used her to 27308 * request a read of all subcodes. 27309 */ 27310 cdb[0] = (char)SCMD_READ_ALL_SUBCODES; 27311 cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24); 27312 cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16); 27313 cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8); 27314 cdb[9] = ((subcode->cdsc_length) & 0x000000ff); 27315 } 27316 com->uscsi_cdb = cdb; 27317 com->uscsi_cdblen = CDB_GROUP5; 27318 com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr; 27319 com->uscsi_buflen = buflen; 27320 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 27321 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 27322 SD_PATH_STANDARD); 27323 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27324 kmem_free(com, sizeof (*com)); 27325 return (rval); 27326 } 27327 27328 27329 /* 27330 * Function: sr_read_subchannel() 27331 * 27332 * Description: This routine is the driver entry point for handling CD-ROM 27333 * ioctl requests to return the Q sub-channel data of the CD 27334 * current position block. (CDROMSUBCHNL) The data includes the 27335 * track number, index number, absolute CD-ROM address (LBA or MSF 27336 * format per the user) , track relative CD-ROM address (LBA or MSF 27337 * format per the user), control data and audio status. 27338 * 27339 * Arguments: dev - the device 'dev_t' 27340 * data - pointer to user provided cdrom sub-channel structure 27341 * flag - this argument is a pass through to ddi_copyxxx() 27342 * directly from the mode argument of ioctl(). 27343 * 27344 * Return Code: the code returned by sd_send_scsi_cmd() 27345 * EFAULT if ddi_copyxxx() fails 27346 * ENXIO if fail ddi_get_soft_state 27347 * EINVAL if data pointer is NULL 27348 */ 27349 27350 static int 27351 sr_read_subchannel(dev_t dev, caddr_t data, int flag) 27352 { 27353 struct sd_lun *un; 27354 struct uscsi_cmd *com; 27355 struct cdrom_subchnl subchanel; 27356 struct cdrom_subchnl *subchnl = &subchanel; 27357 char cdb[CDB_GROUP1]; 27358 caddr_t buffer; 27359 int rval; 27360 27361 if (data == NULL) { 27362 return (EINVAL); 27363 } 27364 27365 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 27366 (un->un_state == SD_STATE_OFFLINE)) { 27367 return (ENXIO); 27368 } 27369 27370 if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) { 27371 return (EFAULT); 27372 } 27373 27374 buffer = kmem_zalloc((size_t)16, KM_SLEEP); 27375 bzero(cdb, CDB_GROUP1); 27376 cdb[0] = SCMD_READ_SUBCHANNEL; 27377 /* Set the MSF bit based on the user requested address format */ 27378 cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02; 27379 /* 27380 * Set the Q bit in byte 2 to indicate that Q sub-channel data be 27381 * returned 27382 */ 27383 cdb[2] = 0x40; 27384 /* 27385 * Set byte 3 to specify the return data format. A value of 0x01 27386 * indicates that the CD-ROM current position should be returned. 27387 */ 27388 cdb[3] = 0x01; 27389 cdb[8] = 0x10; 27390 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27391 com->uscsi_cdb = cdb; 27392 com->uscsi_cdblen = CDB_GROUP1; 27393 com->uscsi_bufaddr = buffer; 27394 com->uscsi_buflen = 16; 27395 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 27396 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27397 SD_PATH_STANDARD); 27398 if (rval != 0) { 27399 kmem_free(buffer, 16); 27400 kmem_free(com, sizeof (*com)); 27401 return (rval); 27402 } 27403 27404 /* Process the returned Q sub-channel data */ 27405 subchnl->cdsc_audiostatus = buffer[1]; 27406 subchnl->cdsc_adr = (buffer[5] & 0xF0); 27407 subchnl->cdsc_ctrl = (buffer[5] & 0x0F); 27408 subchnl->cdsc_trk = buffer[6]; 27409 subchnl->cdsc_ind = buffer[7]; 27410 if (subchnl->cdsc_format & CDROM_LBA) { 27411 subchnl->cdsc_absaddr.lba = 27412 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 27413 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 27414 subchnl->cdsc_reladdr.lba = 27415 ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) + 27416 ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]); 27417 } else if (un->un_f_cfg_readsub_bcd == TRUE) { 27418 subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]); 27419 subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]); 27420 subchnl->cdsc_absaddr.msf.frame = BCD_TO_BYTE(buffer[11]); 27421 subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]); 27422 subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]); 27423 subchnl->cdsc_reladdr.msf.frame = BCD_TO_BYTE(buffer[15]); 27424 } else { 27425 subchnl->cdsc_absaddr.msf.minute = buffer[9]; 27426 subchnl->cdsc_absaddr.msf.second = buffer[10]; 27427 subchnl->cdsc_absaddr.msf.frame = buffer[11]; 27428 subchnl->cdsc_reladdr.msf.minute = buffer[13]; 27429 subchnl->cdsc_reladdr.msf.second = buffer[14]; 27430 subchnl->cdsc_reladdr.msf.frame = buffer[15]; 27431 } 27432 kmem_free(buffer, 16); 27433 kmem_free(com, sizeof (*com)); 27434 if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag) 27435 != 0) { 27436 return (EFAULT); 27437 } 27438 return (rval); 27439 } 27440 27441 27442 /* 27443 * Function: sr_read_tocentry() 27444 * 27445 * Description: This routine is the driver entry point for handling CD-ROM 27446 * ioctl requests to read from the Table of Contents (TOC) 27447 * (CDROMREADTOCENTRY). This routine provides the ADR and CTRL 27448 * fields, the starting address (LBA or MSF format per the user) 27449 * and the data mode if the user specified track is a data track. 27450 * 27451 * Note: The READ HEADER (0x44) command used in this routine is 27452 * obsolete per the SCSI MMC spec but still supported in the 27453 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI 27454 * therefore the command is still implemented in this routine. 27455 * 27456 * Arguments: dev - the device 'dev_t' 27457 * data - pointer to user provided toc entry structure, 27458 * specifying the track # and the address format 27459 * (LBA or MSF). 27460 * flag - this argument is a pass through to ddi_copyxxx() 27461 * directly from the mode argument of ioctl(). 27462 * 27463 * Return Code: the code returned by sd_send_scsi_cmd() 27464 * EFAULT if ddi_copyxxx() fails 27465 * ENXIO if fail ddi_get_soft_state 27466 * EINVAL if data pointer is NULL 27467 */ 27468 27469 static int 27470 sr_read_tocentry(dev_t dev, caddr_t data, int flag) 27471 { 27472 struct sd_lun *un = NULL; 27473 struct uscsi_cmd *com; 27474 struct cdrom_tocentry toc_entry; 27475 struct cdrom_tocentry *entry = &toc_entry; 27476 caddr_t buffer; 27477 int rval; 27478 char cdb[CDB_GROUP1]; 27479 27480 if (data == NULL) { 27481 return (EINVAL); 27482 } 27483 27484 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 27485 (un->un_state == SD_STATE_OFFLINE)) { 27486 return (ENXIO); 27487 } 27488 27489 if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) { 27490 return (EFAULT); 27491 } 27492 27493 /* Validate the requested track and address format */ 27494 if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) { 27495 return (EINVAL); 27496 } 27497 27498 if (entry->cdte_track == 0) { 27499 return (EINVAL); 27500 } 27501 27502 buffer = kmem_zalloc((size_t)12, KM_SLEEP); 27503 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27504 bzero(cdb, CDB_GROUP1); 27505 27506 cdb[0] = SCMD_READ_TOC; 27507 /* Set the MSF bit based on the user requested address format */ 27508 cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2); 27509 if (un->un_f_cfg_read_toc_trk_bcd == TRUE) { 27510 cdb[6] = BYTE_TO_BCD(entry->cdte_track); 27511 } else { 27512 cdb[6] = entry->cdte_track; 27513 } 27514 27515 /* 27516 * Bytes 7 & 8 are the 12 byte allocation length for a single entry. 27517 * (4 byte TOC response header + 8 byte track descriptor) 27518 */ 27519 cdb[8] = 12; 27520 com->uscsi_cdb = cdb; 27521 com->uscsi_cdblen = CDB_GROUP1; 27522 com->uscsi_bufaddr = buffer; 27523 com->uscsi_buflen = 0x0C; 27524 com->uscsi_flags = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ); 27525 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27526 SD_PATH_STANDARD); 27527 if (rval != 0) { 27528 kmem_free(buffer, 12); 27529 kmem_free(com, sizeof (*com)); 27530 return (rval); 27531 } 27532 27533 /* Process the toc entry */ 27534 entry->cdte_adr = (buffer[5] & 0xF0) >> 4; 27535 entry->cdte_ctrl = (buffer[5] & 0x0F); 27536 if (entry->cdte_format & CDROM_LBA) { 27537 entry->cdte_addr.lba = 27538 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 27539 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 27540 } else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) { 27541 entry->cdte_addr.msf.minute = BCD_TO_BYTE(buffer[9]); 27542 entry->cdte_addr.msf.second = BCD_TO_BYTE(buffer[10]); 27543 entry->cdte_addr.msf.frame = BCD_TO_BYTE(buffer[11]); 27544 /* 27545 * Send a READ TOC command using the LBA address format to get 27546 * the LBA for the track requested so it can be used in the 27547 * READ HEADER request 27548 * 27549 * Note: The MSF bit of the READ HEADER command specifies the 27550 * output format. The block address specified in that command 27551 * must be in LBA format. 27552 */ 27553 cdb[1] = 0; 27554 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27555 SD_PATH_STANDARD); 27556 if (rval != 0) { 27557 kmem_free(buffer, 12); 27558 kmem_free(com, sizeof (*com)); 27559 return (rval); 27560 } 27561 } else { 27562 entry->cdte_addr.msf.minute = buffer[9]; 27563 entry->cdte_addr.msf.second = buffer[10]; 27564 entry->cdte_addr.msf.frame = buffer[11]; 27565 /* 27566 * Send a READ TOC command using the LBA address format to get 27567 * the LBA for the track requested so it can be used in the 27568 * READ HEADER request 27569 * 27570 * Note: The MSF bit of the READ HEADER command specifies the 27571 * output format. The block address specified in that command 27572 * must be in LBA format. 27573 */ 27574 cdb[1] = 0; 27575 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27576 SD_PATH_STANDARD); 27577 if (rval != 0) { 27578 kmem_free(buffer, 12); 27579 kmem_free(com, sizeof (*com)); 27580 return (rval); 27581 } 27582 } 27583 27584 /* 27585 * Build and send the READ HEADER command to determine the data mode of 27586 * the user specified track. 27587 */ 27588 if ((entry->cdte_ctrl & CDROM_DATA_TRACK) && 27589 (entry->cdte_track != CDROM_LEADOUT)) { 27590 bzero(cdb, CDB_GROUP1); 27591 cdb[0] = SCMD_READ_HEADER; 27592 cdb[2] = buffer[8]; 27593 cdb[3] = buffer[9]; 27594 cdb[4] = buffer[10]; 27595 cdb[5] = buffer[11]; 27596 cdb[8] = 0x08; 27597 com->uscsi_buflen = 0x08; 27598 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27599 SD_PATH_STANDARD); 27600 if (rval == 0) { 27601 entry->cdte_datamode = buffer[0]; 27602 } else { 27603 /* 27604 * READ HEADER command failed, since this is 27605 * obsoleted in one spec, its better to return 27606 * -1 for an invlid track so that we can still 27607 * receive the rest of the TOC data. 27608 */ 27609 entry->cdte_datamode = (uchar_t)-1; 27610 } 27611 } else { 27612 entry->cdte_datamode = (uchar_t)-1; 27613 } 27614 27615 kmem_free(buffer, 12); 27616 kmem_free(com, sizeof (*com)); 27617 if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0) 27618 return (EFAULT); 27619 27620 return (rval); 27621 } 27622 27623 27624 /* 27625 * Function: sr_read_tochdr() 27626 * 27627 * Description: This routine is the driver entry point for handling CD-ROM 27628 * ioctl requests to read the Table of Contents (TOC) header 27629 * (CDROMREADTOHDR). The TOC header consists of the disk starting 27630 * and ending track numbers 27631 * 27632 * Arguments: dev - the device 'dev_t' 27633 * data - pointer to user provided toc header structure, 27634 * specifying the starting and ending track numbers. 27635 * flag - this argument is a pass through to ddi_copyxxx() 27636 * directly from the mode argument of ioctl(). 27637 * 27638 * Return Code: the code returned by sd_send_scsi_cmd() 27639 * EFAULT if ddi_copyxxx() fails 27640 * ENXIO if fail ddi_get_soft_state 27641 * EINVAL if data pointer is NULL 27642 */ 27643 27644 static int 27645 sr_read_tochdr(dev_t dev, caddr_t data, int flag) 27646 { 27647 struct sd_lun *un; 27648 struct uscsi_cmd *com; 27649 struct cdrom_tochdr toc_header; 27650 struct cdrom_tochdr *hdr = &toc_header; 27651 char cdb[CDB_GROUP1]; 27652 int rval; 27653 caddr_t buffer; 27654 27655 if (data == NULL) { 27656 return (EINVAL); 27657 } 27658 27659 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 27660 (un->un_state == SD_STATE_OFFLINE)) { 27661 return (ENXIO); 27662 } 27663 27664 buffer = kmem_zalloc(4, KM_SLEEP); 27665 bzero(cdb, CDB_GROUP1); 27666 cdb[0] = SCMD_READ_TOC; 27667 /* 27668 * Specifying a track number of 0x00 in the READ TOC command indicates 27669 * that the TOC header should be returned 27670 */ 27671 cdb[6] = 0x00; 27672 /* 27673 * Bytes 7 & 8 are the 4 byte allocation length for TOC header. 27674 * (2 byte data len + 1 byte starting track # + 1 byte ending track #) 27675 */ 27676 cdb[8] = 0x04; 27677 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27678 com->uscsi_cdb = cdb; 27679 com->uscsi_cdblen = CDB_GROUP1; 27680 com->uscsi_bufaddr = buffer; 27681 com->uscsi_buflen = 0x04; 27682 com->uscsi_timeout = 300; 27683 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 27684 27685 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27686 SD_PATH_STANDARD); 27687 if (un->un_f_cfg_read_toc_trk_bcd == TRUE) { 27688 hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]); 27689 hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]); 27690 } else { 27691 hdr->cdth_trk0 = buffer[2]; 27692 hdr->cdth_trk1 = buffer[3]; 27693 } 27694 kmem_free(buffer, 4); 27695 kmem_free(com, sizeof (*com)); 27696 if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) { 27697 return (EFAULT); 27698 } 27699 return (rval); 27700 } 27701 27702 27703 /* 27704 * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(), 27705 * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for 27706 * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data, 27707 * digital audio and extended architecture digital audio. These modes are 27708 * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3 27709 * MMC specs. 27710 * 27711 * In addition to support for the various data formats these routines also 27712 * include support for devices that implement only the direct access READ 27713 * commands (0x08, 0x28), devices that implement the READ_CD commands 27714 * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and 27715 * READ CDXA commands (0xD8, 0xDB) 27716 */ 27717 27718 /* 27719 * Function: sr_read_mode1() 27720 * 27721 * Description: This routine is the driver entry point for handling CD-ROM 27722 * ioctl read mode1 requests (CDROMREADMODE1). 27723 * 27724 * Arguments: dev - the device 'dev_t' 27725 * data - pointer to user provided cd read structure specifying 27726 * the lba buffer address and length. 27727 * flag - this argument is a pass through to ddi_copyxxx() 27728 * directly from the mode argument of ioctl(). 27729 * 27730 * Return Code: the code returned by sd_send_scsi_cmd() 27731 * EFAULT if ddi_copyxxx() fails 27732 * ENXIO if fail ddi_get_soft_state 27733 * EINVAL if data pointer is NULL 27734 */ 27735 27736 static int 27737 sr_read_mode1(dev_t dev, caddr_t data, int flag) 27738 { 27739 struct sd_lun *un; 27740 struct cdrom_read mode1_struct; 27741 struct cdrom_read *mode1 = &mode1_struct; 27742 int rval; 27743 sd_ssc_t *ssc; 27744 27745 #ifdef _MULTI_DATAMODEL 27746 /* To support ILP32 applications in an LP64 world */ 27747 struct cdrom_read32 cdrom_read32; 27748 struct cdrom_read32 *cdrd32 = &cdrom_read32; 27749 #endif /* _MULTI_DATAMODEL */ 27750 27751 if (data == NULL) { 27752 return (EINVAL); 27753 } 27754 27755 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 27756 (un->un_state == SD_STATE_OFFLINE)) { 27757 return (ENXIO); 27758 } 27759 27760 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 27761 "sd_read_mode1: entry: un:0x%p\n", un); 27762 27763 #ifdef _MULTI_DATAMODEL 27764 switch (ddi_model_convert_from(flag & FMODELS)) { 27765 case DDI_MODEL_ILP32: 27766 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 27767 return (EFAULT); 27768 } 27769 /* Convert the ILP32 uscsi data from the application to LP64 */ 27770 cdrom_read32tocdrom_read(cdrd32, mode1); 27771 break; 27772 case DDI_MODEL_NONE: 27773 if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) { 27774 return (EFAULT); 27775 } 27776 } 27777 #else /* ! _MULTI_DATAMODEL */ 27778 if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) { 27779 return (EFAULT); 27780 } 27781 #endif /* _MULTI_DATAMODEL */ 27782 27783 ssc = sd_ssc_init(un); 27784 rval = sd_send_scsi_READ(ssc, mode1->cdread_bufaddr, 27785 mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD); 27786 sd_ssc_fini(ssc); 27787 27788 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 27789 "sd_read_mode1: exit: un:0x%p\n", un); 27790 27791 return (rval); 27792 } 27793 27794 27795 /* 27796 * Function: sr_read_cd_mode2() 27797 * 27798 * Description: This routine is the driver entry point for handling CD-ROM 27799 * ioctl read mode2 requests (CDROMREADMODE2) for devices that 27800 * support the READ CD (0xBE) command or the 1st generation 27801 * READ CD (0xD4) command. 27802 * 27803 * Arguments: dev - the device 'dev_t' 27804 * data - pointer to user provided cd read structure specifying 27805 * the lba buffer address and length. 27806 * flag - this argument is a pass through to ddi_copyxxx() 27807 * directly from the mode argument of ioctl(). 27808 * 27809 * Return Code: the code returned by sd_send_scsi_cmd() 27810 * EFAULT if ddi_copyxxx() fails 27811 * ENXIO if fail ddi_get_soft_state 27812 * EINVAL if data pointer is NULL 27813 */ 27814 27815 static int 27816 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag) 27817 { 27818 struct sd_lun *un; 27819 struct uscsi_cmd *com; 27820 struct cdrom_read mode2_struct; 27821 struct cdrom_read *mode2 = &mode2_struct; 27822 uchar_t cdb[CDB_GROUP5]; 27823 int nblocks; 27824 int rval; 27825 #ifdef _MULTI_DATAMODEL 27826 /* To support ILP32 applications in an LP64 world */ 27827 struct cdrom_read32 cdrom_read32; 27828 struct cdrom_read32 *cdrd32 = &cdrom_read32; 27829 #endif /* _MULTI_DATAMODEL */ 27830 27831 if (data == NULL) { 27832 return (EINVAL); 27833 } 27834 27835 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 27836 (un->un_state == SD_STATE_OFFLINE)) { 27837 return (ENXIO); 27838 } 27839 27840 #ifdef _MULTI_DATAMODEL 27841 switch (ddi_model_convert_from(flag & FMODELS)) { 27842 case DDI_MODEL_ILP32: 27843 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 27844 return (EFAULT); 27845 } 27846 /* Convert the ILP32 uscsi data from the application to LP64 */ 27847 cdrom_read32tocdrom_read(cdrd32, mode2); 27848 break; 27849 case DDI_MODEL_NONE: 27850 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 27851 return (EFAULT); 27852 } 27853 break; 27854 } 27855 27856 #else /* ! _MULTI_DATAMODEL */ 27857 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 27858 return (EFAULT); 27859 } 27860 #endif /* _MULTI_DATAMODEL */ 27861 27862 bzero(cdb, sizeof (cdb)); 27863 if (un->un_f_cfg_read_cd_xd4 == TRUE) { 27864 /* Read command supported by 1st generation atapi drives */ 27865 cdb[0] = SCMD_READ_CDD4; 27866 } else { 27867 /* Universal CD Access Command */ 27868 cdb[0] = SCMD_READ_CD; 27869 } 27870 27871 /* 27872 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book 27873 */ 27874 cdb[1] = CDROM_SECTOR_TYPE_MODE2; 27875 27876 /* set the start address */ 27877 cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF); 27878 cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF); 27879 cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF); 27880 cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF); 27881 27882 /* set the transfer length */ 27883 nblocks = mode2->cdread_buflen / 2336; 27884 cdb[6] = (uchar_t)(nblocks >> 16); 27885 cdb[7] = (uchar_t)(nblocks >> 8); 27886 cdb[8] = (uchar_t)nblocks; 27887 27888 /* set the filter bits */ 27889 cdb[9] = CDROM_READ_CD_USERDATA; 27890 27891 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27892 com->uscsi_cdb = (caddr_t)cdb; 27893 com->uscsi_cdblen = sizeof (cdb); 27894 com->uscsi_bufaddr = mode2->cdread_bufaddr; 27895 com->uscsi_buflen = mode2->cdread_buflen; 27896 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 27897 27898 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 27899 SD_PATH_STANDARD); 27900 kmem_free(com, sizeof (*com)); 27901 return (rval); 27902 } 27903 27904 27905 /* 27906 * Function: sr_read_mode2() 27907 * 27908 * Description: This routine is the driver entry point for handling CD-ROM 27909 * ioctl read mode2 requests (CDROMREADMODE2) for devices that 27910 * do not support the READ CD (0xBE) command. 27911 * 27912 * Arguments: dev - the device 'dev_t' 27913 * data - pointer to user provided cd read structure specifying 27914 * the lba buffer address and length. 27915 * flag - this argument is a pass through to ddi_copyxxx() 27916 * directly from the mode argument of ioctl(). 27917 * 27918 * Return Code: the code returned by sd_send_scsi_cmd() 27919 * EFAULT if ddi_copyxxx() fails 27920 * ENXIO if fail ddi_get_soft_state 27921 * EINVAL if data pointer is NULL 27922 * EIO if fail to reset block size 27923 * EAGAIN if commands are in progress in the driver 27924 */ 27925 27926 static int 27927 sr_read_mode2(dev_t dev, caddr_t data, int flag) 27928 { 27929 struct sd_lun *un; 27930 struct cdrom_read mode2_struct; 27931 struct cdrom_read *mode2 = &mode2_struct; 27932 int rval; 27933 uint32_t restore_blksize; 27934 struct uscsi_cmd *com; 27935 uchar_t cdb[CDB_GROUP0]; 27936 int nblocks; 27937 27938 #ifdef _MULTI_DATAMODEL 27939 /* To support ILP32 applications in an LP64 world */ 27940 struct cdrom_read32 cdrom_read32; 27941 struct cdrom_read32 *cdrd32 = &cdrom_read32; 27942 #endif /* _MULTI_DATAMODEL */ 27943 27944 if (data == NULL) { 27945 return (EINVAL); 27946 } 27947 27948 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 27949 (un->un_state == SD_STATE_OFFLINE)) { 27950 return (ENXIO); 27951 } 27952 27953 /* 27954 * Because this routine will update the device and driver block size 27955 * being used we want to make sure there are no commands in progress. 27956 * If commands are in progress the user will have to try again. 27957 * 27958 * We check for 1 instead of 0 because we increment un_ncmds_in_driver 27959 * in sdioctl to protect commands from sdioctl through to the top of 27960 * sd_uscsi_strategy. See sdioctl for details. 27961 */ 27962 mutex_enter(SD_MUTEX(un)); 27963 if (un->un_ncmds_in_driver != 1) { 27964 mutex_exit(SD_MUTEX(un)); 27965 return (EAGAIN); 27966 } 27967 mutex_exit(SD_MUTEX(un)); 27968 27969 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 27970 "sd_read_mode2: entry: un:0x%p\n", un); 27971 27972 #ifdef _MULTI_DATAMODEL 27973 switch (ddi_model_convert_from(flag & FMODELS)) { 27974 case DDI_MODEL_ILP32: 27975 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 27976 return (EFAULT); 27977 } 27978 /* Convert the ILP32 uscsi data from the application to LP64 */ 27979 cdrom_read32tocdrom_read(cdrd32, mode2); 27980 break; 27981 case DDI_MODEL_NONE: 27982 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 27983 return (EFAULT); 27984 } 27985 break; 27986 } 27987 #else /* ! _MULTI_DATAMODEL */ 27988 if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) { 27989 return (EFAULT); 27990 } 27991 #endif /* _MULTI_DATAMODEL */ 27992 27993 /* Store the current target block size for restoration later */ 27994 restore_blksize = un->un_tgt_blocksize; 27995 27996 /* Change the device and soft state target block size to 2336 */ 27997 if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) { 27998 rval = EIO; 27999 goto done; 28000 } 28001 28002 28003 bzero(cdb, sizeof (cdb)); 28004 28005 /* set READ operation */ 28006 cdb[0] = SCMD_READ; 28007 28008 /* adjust lba for 2kbyte blocks from 512 byte blocks */ 28009 mode2->cdread_lba >>= 2; 28010 28011 /* set the start address */ 28012 cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F); 28013 cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF); 28014 cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF); 28015 28016 /* set the transfer length */ 28017 nblocks = mode2->cdread_buflen / 2336; 28018 cdb[4] = (uchar_t)nblocks & 0xFF; 28019 28020 /* build command */ 28021 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28022 com->uscsi_cdb = (caddr_t)cdb; 28023 com->uscsi_cdblen = sizeof (cdb); 28024 com->uscsi_bufaddr = mode2->cdread_bufaddr; 28025 com->uscsi_buflen = mode2->cdread_buflen; 28026 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28027 28028 /* 28029 * Issue SCSI command with user space address for read buffer. 28030 * 28031 * This sends the command through main channel in the driver. 28032 * 28033 * Since this is accessed via an IOCTL call, we go through the 28034 * standard path, so that if the device was powered down, then 28035 * it would be 'awakened' to handle the command. 28036 */ 28037 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 28038 SD_PATH_STANDARD); 28039 28040 kmem_free(com, sizeof (*com)); 28041 28042 /* Restore the device and soft state target block size */ 28043 if (sr_sector_mode(dev, restore_blksize) != 0) { 28044 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28045 "can't do switch back to mode 1\n"); 28046 /* 28047 * If sd_send_scsi_READ succeeded we still need to report 28048 * an error because we failed to reset the block size 28049 */ 28050 if (rval == 0) { 28051 rval = EIO; 28052 } 28053 } 28054 28055 done: 28056 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 28057 "sd_read_mode2: exit: un:0x%p\n", un); 28058 28059 return (rval); 28060 } 28061 28062 28063 /* 28064 * Function: sr_sector_mode() 28065 * 28066 * Description: This utility function is used by sr_read_mode2 to set the target 28067 * block size based on the user specified size. This is a legacy 28068 * implementation based upon a vendor specific mode page 28069 * 28070 * Arguments: dev - the device 'dev_t' 28071 * data - flag indicating if block size is being set to 2336 or 28072 * 512. 28073 * 28074 * Return Code: the code returned by sd_send_scsi_cmd() 28075 * EFAULT if ddi_copyxxx() fails 28076 * ENXIO if fail ddi_get_soft_state 28077 * EINVAL if data pointer is NULL 28078 */ 28079 28080 static int 28081 sr_sector_mode(dev_t dev, uint32_t blksize) 28082 { 28083 struct sd_lun *un; 28084 uchar_t *sense; 28085 uchar_t *select; 28086 int rval; 28087 sd_ssc_t *ssc; 28088 28089 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28090 (un->un_state == SD_STATE_OFFLINE)) { 28091 return (ENXIO); 28092 } 28093 28094 sense = kmem_zalloc(20, KM_SLEEP); 28095 28096 /* Note: This is a vendor specific mode page (0x81) */ 28097 ssc = sd_ssc_init(un); 28098 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 20, 0x81, 28099 SD_PATH_STANDARD); 28100 sd_ssc_fini(ssc); 28101 if (rval != 0) { 28102 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 28103 "sr_sector_mode: Mode Sense failed\n"); 28104 kmem_free(sense, 20); 28105 return (rval); 28106 } 28107 select = kmem_zalloc(20, KM_SLEEP); 28108 select[3] = 0x08; 28109 select[10] = ((blksize >> 8) & 0xff); 28110 select[11] = (blksize & 0xff); 28111 select[12] = 0x01; 28112 select[13] = 0x06; 28113 select[14] = sense[14]; 28114 select[15] = sense[15]; 28115 if (blksize == SD_MODE2_BLKSIZE) { 28116 select[14] |= 0x01; 28117 } 28118 28119 ssc = sd_ssc_init(un); 28120 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 20, 28121 SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 28122 sd_ssc_fini(ssc); 28123 if (rval != 0) { 28124 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 28125 "sr_sector_mode: Mode Select failed\n"); 28126 } else { 28127 /* 28128 * Only update the softstate block size if we successfully 28129 * changed the device block mode. 28130 */ 28131 mutex_enter(SD_MUTEX(un)); 28132 sd_update_block_info(un, blksize, 0); 28133 mutex_exit(SD_MUTEX(un)); 28134 } 28135 kmem_free(sense, 20); 28136 kmem_free(select, 20); 28137 return (rval); 28138 } 28139 28140 28141 /* 28142 * Function: sr_read_cdda() 28143 * 28144 * Description: This routine is the driver entry point for handling CD-ROM 28145 * ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If 28146 * the target supports CDDA these requests are handled via a vendor 28147 * specific command (0xD8) If the target does not support CDDA 28148 * these requests are handled via the READ CD command (0xBE). 28149 * 28150 * Arguments: dev - the device 'dev_t' 28151 * data - pointer to user provided CD-DA structure specifying 28152 * the track starting address, transfer length, and 28153 * subcode options. 28154 * flag - this argument is a pass through to ddi_copyxxx() 28155 * directly from the mode argument of ioctl(). 28156 * 28157 * Return Code: the code returned by sd_send_scsi_cmd() 28158 * EFAULT if ddi_copyxxx() fails 28159 * ENXIO if fail ddi_get_soft_state 28160 * EINVAL if invalid arguments are provided 28161 * ENOTTY 28162 */ 28163 28164 static int 28165 sr_read_cdda(dev_t dev, caddr_t data, int flag) 28166 { 28167 struct sd_lun *un; 28168 struct uscsi_cmd *com; 28169 struct cdrom_cdda *cdda; 28170 int rval; 28171 size_t buflen; 28172 char cdb[CDB_GROUP5]; 28173 28174 #ifdef _MULTI_DATAMODEL 28175 /* To support ILP32 applications in an LP64 world */ 28176 struct cdrom_cdda32 cdrom_cdda32; 28177 struct cdrom_cdda32 *cdda32 = &cdrom_cdda32; 28178 #endif /* _MULTI_DATAMODEL */ 28179 28180 if (data == NULL) { 28181 return (EINVAL); 28182 } 28183 28184 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 28185 return (ENXIO); 28186 } 28187 28188 cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP); 28189 28190 #ifdef _MULTI_DATAMODEL 28191 switch (ddi_model_convert_from(flag & FMODELS)) { 28192 case DDI_MODEL_ILP32: 28193 if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) { 28194 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28195 "sr_read_cdda: ddi_copyin Failed\n"); 28196 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28197 return (EFAULT); 28198 } 28199 /* Convert the ILP32 uscsi data from the application to LP64 */ 28200 cdrom_cdda32tocdrom_cdda(cdda32, cdda); 28201 break; 28202 case DDI_MODEL_NONE: 28203 if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) { 28204 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28205 "sr_read_cdda: ddi_copyin Failed\n"); 28206 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28207 return (EFAULT); 28208 } 28209 break; 28210 } 28211 #else /* ! _MULTI_DATAMODEL */ 28212 if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) { 28213 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28214 "sr_read_cdda: ddi_copyin Failed\n"); 28215 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28216 return (EFAULT); 28217 } 28218 #endif /* _MULTI_DATAMODEL */ 28219 28220 /* 28221 * Since MMC-2 expects max 3 bytes for length, check if the 28222 * length input is greater than 3 bytes 28223 */ 28224 if ((cdda->cdda_length & 0xFF000000) != 0) { 28225 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: " 28226 "cdrom transfer length too large: %d (limit %d)\n", 28227 cdda->cdda_length, 0xFFFFFF); 28228 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28229 return (EINVAL); 28230 } 28231 28232 switch (cdda->cdda_subcode) { 28233 case CDROM_DA_NO_SUBCODE: 28234 buflen = CDROM_BLK_2352 * cdda->cdda_length; 28235 break; 28236 case CDROM_DA_SUBQ: 28237 buflen = CDROM_BLK_2368 * cdda->cdda_length; 28238 break; 28239 case CDROM_DA_ALL_SUBCODE: 28240 buflen = CDROM_BLK_2448 * cdda->cdda_length; 28241 break; 28242 case CDROM_DA_SUBCODE_ONLY: 28243 buflen = CDROM_BLK_SUBCODE * cdda->cdda_length; 28244 break; 28245 default: 28246 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28247 "sr_read_cdda: Subcode '0x%x' Not Supported\n", 28248 cdda->cdda_subcode); 28249 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28250 return (EINVAL); 28251 } 28252 28253 /* Build and send the command */ 28254 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28255 bzero(cdb, CDB_GROUP5); 28256 28257 if (un->un_f_cfg_cdda == TRUE) { 28258 cdb[0] = (char)SCMD_READ_CD; 28259 cdb[1] = 0x04; 28260 cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24); 28261 cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16); 28262 cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8); 28263 cdb[5] = ((cdda->cdda_addr) & 0x000000ff); 28264 cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16); 28265 cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8); 28266 cdb[8] = ((cdda->cdda_length) & 0x000000ff); 28267 cdb[9] = 0x10; 28268 switch (cdda->cdda_subcode) { 28269 case CDROM_DA_NO_SUBCODE : 28270 cdb[10] = 0x0; 28271 break; 28272 case CDROM_DA_SUBQ : 28273 cdb[10] = 0x2; 28274 break; 28275 case CDROM_DA_ALL_SUBCODE : 28276 cdb[10] = 0x1; 28277 break; 28278 case CDROM_DA_SUBCODE_ONLY : 28279 /* FALLTHROUGH */ 28280 default : 28281 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28282 kmem_free(com, sizeof (*com)); 28283 return (ENOTTY); 28284 } 28285 } else { 28286 cdb[0] = (char)SCMD_READ_CDDA; 28287 cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24); 28288 cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16); 28289 cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8); 28290 cdb[5] = ((cdda->cdda_addr) & 0x000000ff); 28291 cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24); 28292 cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16); 28293 cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8); 28294 cdb[9] = ((cdda->cdda_length) & 0x000000ff); 28295 cdb[10] = cdda->cdda_subcode; 28296 } 28297 28298 com->uscsi_cdb = cdb; 28299 com->uscsi_cdblen = CDB_GROUP5; 28300 com->uscsi_bufaddr = (caddr_t)cdda->cdda_data; 28301 com->uscsi_buflen = buflen; 28302 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28303 28304 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 28305 SD_PATH_STANDARD); 28306 28307 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28308 kmem_free(com, sizeof (*com)); 28309 return (rval); 28310 } 28311 28312 28313 /* 28314 * Function: sr_read_cdxa() 28315 * 28316 * Description: This routine is the driver entry point for handling CD-ROM 28317 * ioctl requests to return CD-XA (Extended Architecture) data. 28318 * (CDROMCDXA). 28319 * 28320 * Arguments: dev - the device 'dev_t' 28321 * data - pointer to user provided CD-XA structure specifying 28322 * the data starting address, transfer length, and format 28323 * flag - this argument is a pass through to ddi_copyxxx() 28324 * directly from the mode argument of ioctl(). 28325 * 28326 * Return Code: the code returned by sd_send_scsi_cmd() 28327 * EFAULT if ddi_copyxxx() fails 28328 * ENXIO if fail ddi_get_soft_state 28329 * EINVAL if data pointer is NULL 28330 */ 28331 28332 static int 28333 sr_read_cdxa(dev_t dev, caddr_t data, int flag) 28334 { 28335 struct sd_lun *un; 28336 struct uscsi_cmd *com; 28337 struct cdrom_cdxa *cdxa; 28338 int rval; 28339 size_t buflen; 28340 char cdb[CDB_GROUP5]; 28341 uchar_t read_flags; 28342 28343 #ifdef _MULTI_DATAMODEL 28344 /* To support ILP32 applications in an LP64 world */ 28345 struct cdrom_cdxa32 cdrom_cdxa32; 28346 struct cdrom_cdxa32 *cdxa32 = &cdrom_cdxa32; 28347 #endif /* _MULTI_DATAMODEL */ 28348 28349 if (data == NULL) { 28350 return (EINVAL); 28351 } 28352 28353 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 28354 return (ENXIO); 28355 } 28356 28357 cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP); 28358 28359 #ifdef _MULTI_DATAMODEL 28360 switch (ddi_model_convert_from(flag & FMODELS)) { 28361 case DDI_MODEL_ILP32: 28362 if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) { 28363 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28364 return (EFAULT); 28365 } 28366 /* 28367 * Convert the ILP32 uscsi data from the 28368 * application to LP64 for internal use. 28369 */ 28370 cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa); 28371 break; 28372 case DDI_MODEL_NONE: 28373 if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) { 28374 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28375 return (EFAULT); 28376 } 28377 break; 28378 } 28379 #else /* ! _MULTI_DATAMODEL */ 28380 if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) { 28381 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28382 return (EFAULT); 28383 } 28384 #endif /* _MULTI_DATAMODEL */ 28385 28386 /* 28387 * Since MMC-2 expects max 3 bytes for length, check if the 28388 * length input is greater than 3 bytes 28389 */ 28390 if ((cdxa->cdxa_length & 0xFF000000) != 0) { 28391 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: " 28392 "cdrom transfer length too large: %d (limit %d)\n", 28393 cdxa->cdxa_length, 0xFFFFFF); 28394 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28395 return (EINVAL); 28396 } 28397 28398 switch (cdxa->cdxa_format) { 28399 case CDROM_XA_DATA: 28400 buflen = CDROM_BLK_2048 * cdxa->cdxa_length; 28401 read_flags = 0x10; 28402 break; 28403 case CDROM_XA_SECTOR_DATA: 28404 buflen = CDROM_BLK_2352 * cdxa->cdxa_length; 28405 read_flags = 0xf8; 28406 break; 28407 case CDROM_XA_DATA_W_ERROR: 28408 buflen = CDROM_BLK_2646 * cdxa->cdxa_length; 28409 read_flags = 0xfc; 28410 break; 28411 default: 28412 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28413 "sr_read_cdxa: Format '0x%x' Not Supported\n", 28414 cdxa->cdxa_format); 28415 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28416 return (EINVAL); 28417 } 28418 28419 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28420 bzero(cdb, CDB_GROUP5); 28421 if (un->un_f_mmc_cap == TRUE) { 28422 cdb[0] = (char)SCMD_READ_CD; 28423 cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24); 28424 cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16); 28425 cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8); 28426 cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff); 28427 cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16); 28428 cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8); 28429 cdb[8] = ((cdxa->cdxa_length) & 0x000000ff); 28430 cdb[9] = (char)read_flags; 28431 } else { 28432 /* 28433 * Note: A vendor specific command (0xDB) is being used her to 28434 * request a read of all subcodes. 28435 */ 28436 cdb[0] = (char)SCMD_READ_CDXA; 28437 cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24); 28438 cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16); 28439 cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8); 28440 cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff); 28441 cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24); 28442 cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16); 28443 cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8); 28444 cdb[9] = ((cdxa->cdxa_length) & 0x000000ff); 28445 cdb[10] = cdxa->cdxa_format; 28446 } 28447 com->uscsi_cdb = cdb; 28448 com->uscsi_cdblen = CDB_GROUP5; 28449 com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data; 28450 com->uscsi_buflen = buflen; 28451 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28452 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 28453 SD_PATH_STANDARD); 28454 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28455 kmem_free(com, sizeof (*com)); 28456 return (rval); 28457 } 28458 28459 28460 /* 28461 * Function: sr_eject() 28462 * 28463 * Description: This routine is the driver entry point for handling CD-ROM 28464 * eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT) 28465 * 28466 * Arguments: dev - the device 'dev_t' 28467 * 28468 * Return Code: the code returned by sd_send_scsi_cmd() 28469 */ 28470 28471 static int 28472 sr_eject(dev_t dev) 28473 { 28474 struct sd_lun *un; 28475 int rval; 28476 sd_ssc_t *ssc; 28477 28478 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28479 (un->un_state == SD_STATE_OFFLINE)) { 28480 return (ENXIO); 28481 } 28482 28483 /* 28484 * To prevent race conditions with the eject 28485 * command, keep track of an eject command as 28486 * it progresses. If we are already handling 28487 * an eject command in the driver for the given 28488 * unit and another request to eject is received 28489 * immediately return EAGAIN so we don't lose 28490 * the command if the current eject command fails. 28491 */ 28492 mutex_enter(SD_MUTEX(un)); 28493 if (un->un_f_ejecting == TRUE) { 28494 mutex_exit(SD_MUTEX(un)); 28495 return (EAGAIN); 28496 } 28497 un->un_f_ejecting = TRUE; 28498 mutex_exit(SD_MUTEX(un)); 28499 28500 ssc = sd_ssc_init(un); 28501 rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW, 28502 SD_PATH_STANDARD); 28503 sd_ssc_fini(ssc); 28504 28505 if (rval != 0) { 28506 mutex_enter(SD_MUTEX(un)); 28507 un->un_f_ejecting = FALSE; 28508 mutex_exit(SD_MUTEX(un)); 28509 return (rval); 28510 } 28511 28512 ssc = sd_ssc_init(un); 28513 rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 28514 SD_TARGET_EJECT, SD_PATH_STANDARD); 28515 sd_ssc_fini(ssc); 28516 28517 if (rval == 0) { 28518 mutex_enter(SD_MUTEX(un)); 28519 sr_ejected(un); 28520 un->un_mediastate = DKIO_EJECTED; 28521 un->un_f_ejecting = FALSE; 28522 cv_broadcast(&un->un_state_cv); 28523 mutex_exit(SD_MUTEX(un)); 28524 } else { 28525 mutex_enter(SD_MUTEX(un)); 28526 un->un_f_ejecting = FALSE; 28527 mutex_exit(SD_MUTEX(un)); 28528 } 28529 return (rval); 28530 } 28531 28532 28533 /* 28534 * Function: sr_ejected() 28535 * 28536 * Description: This routine updates the soft state structure to invalidate the 28537 * geometry information after the media has been ejected or a 28538 * media eject has been detected. 28539 * 28540 * Arguments: un - driver soft state (unit) structure 28541 */ 28542 28543 static void 28544 sr_ejected(struct sd_lun *un) 28545 { 28546 struct sd_errstats *stp; 28547 28548 ASSERT(un != NULL); 28549 ASSERT(mutex_owned(SD_MUTEX(un))); 28550 28551 un->un_f_blockcount_is_valid = FALSE; 28552 un->un_f_tgt_blocksize_is_valid = FALSE; 28553 mutex_exit(SD_MUTEX(un)); 28554 cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY); 28555 mutex_enter(SD_MUTEX(un)); 28556 28557 if (un->un_errstats != NULL) { 28558 stp = (struct sd_errstats *)un->un_errstats->ks_data; 28559 stp->sd_capacity.value.ui64 = 0; 28560 } 28561 } 28562 28563 28564 /* 28565 * Function: sr_check_wp() 28566 * 28567 * Description: This routine checks the write protection of a removable 28568 * media disk and hotpluggable devices via the write protect bit of 28569 * the Mode Page Header device specific field. Some devices choke 28570 * on unsupported mode page. In order to workaround this issue, 28571 * this routine has been implemented to use 0x3f mode page(request 28572 * for all pages) for all device types. 28573 * 28574 * Arguments: dev - the device 'dev_t' 28575 * 28576 * Return Code: int indicating if the device is write protected (1) or not (0) 28577 * 28578 * Context: Kernel thread. 28579 * 28580 */ 28581 28582 static int 28583 sr_check_wp(dev_t dev) 28584 { 28585 struct sd_lun *un; 28586 uchar_t device_specific; 28587 uchar_t *sense; 28588 int hdrlen; 28589 int rval = FALSE; 28590 int status; 28591 sd_ssc_t *ssc; 28592 28593 /* 28594 * Note: The return codes for this routine should be reworked to 28595 * properly handle the case of a NULL softstate. 28596 */ 28597 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 28598 return (FALSE); 28599 } 28600 28601 if (un->un_f_cfg_is_atapi == TRUE) { 28602 /* 28603 * The mode page contents are not required; set the allocation 28604 * length for the mode page header only 28605 */ 28606 hdrlen = MODE_HEADER_LENGTH_GRP2; 28607 sense = kmem_zalloc(hdrlen, KM_SLEEP); 28608 ssc = sd_ssc_init(un); 28609 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, hdrlen, 28610 MODEPAGE_ALLPAGES, SD_PATH_STANDARD); 28611 sd_ssc_fini(ssc); 28612 if (status != 0) 28613 goto err_exit; 28614 device_specific = 28615 ((struct mode_header_grp2 *)sense)->device_specific; 28616 } else { 28617 hdrlen = MODE_HEADER_LENGTH; 28618 sense = kmem_zalloc(hdrlen, KM_SLEEP); 28619 ssc = sd_ssc_init(un); 28620 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, hdrlen, 28621 MODEPAGE_ALLPAGES, SD_PATH_STANDARD); 28622 sd_ssc_fini(ssc); 28623 if (status != 0) 28624 goto err_exit; 28625 device_specific = 28626 ((struct mode_header *)sense)->device_specific; 28627 } 28628 28629 28630 /* 28631 * Write protect mode sense failed; not all disks 28632 * understand this query. Return FALSE assuming that 28633 * these devices are not writable. 28634 */ 28635 if (device_specific & WRITE_PROTECT) { 28636 rval = TRUE; 28637 } 28638 28639 err_exit: 28640 kmem_free(sense, hdrlen); 28641 return (rval); 28642 } 28643 28644 /* 28645 * Function: sr_volume_ctrl() 28646 * 28647 * Description: This routine is the driver entry point for handling CD-ROM 28648 * audio output volume ioctl requests. (CDROMVOLCTRL) 28649 * 28650 * Arguments: dev - the device 'dev_t' 28651 * data - pointer to user audio volume control structure 28652 * flag - this argument is a pass through to ddi_copyxxx() 28653 * directly from the mode argument of ioctl(). 28654 * 28655 * Return Code: the code returned by sd_send_scsi_cmd() 28656 * EFAULT if ddi_copyxxx() fails 28657 * ENXIO if fail ddi_get_soft_state 28658 * EINVAL if data pointer is NULL 28659 * 28660 */ 28661 28662 static int 28663 sr_volume_ctrl(dev_t dev, caddr_t data, int flag) 28664 { 28665 struct sd_lun *un; 28666 struct cdrom_volctrl volume; 28667 struct cdrom_volctrl *vol = &volume; 28668 uchar_t *sense_page; 28669 uchar_t *select_page; 28670 uchar_t *sense; 28671 uchar_t *select; 28672 int sense_buflen; 28673 int select_buflen; 28674 int rval; 28675 sd_ssc_t *ssc; 28676 28677 if (data == NULL) { 28678 return (EINVAL); 28679 } 28680 28681 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28682 (un->un_state == SD_STATE_OFFLINE)) { 28683 return (ENXIO); 28684 } 28685 28686 if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) { 28687 return (EFAULT); 28688 } 28689 28690 if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) { 28691 struct mode_header_grp2 *sense_mhp; 28692 struct mode_header_grp2 *select_mhp; 28693 int bd_len; 28694 28695 sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN; 28696 select_buflen = MODE_HEADER_LENGTH_GRP2 + 28697 MODEPAGE_AUDIO_CTRL_LEN; 28698 sense = kmem_zalloc(sense_buflen, KM_SLEEP); 28699 select = kmem_zalloc(select_buflen, KM_SLEEP); 28700 ssc = sd_ssc_init(un); 28701 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, 28702 sense_buflen, MODEPAGE_AUDIO_CTRL, 28703 SD_PATH_STANDARD); 28704 sd_ssc_fini(ssc); 28705 28706 if (rval != 0) { 28707 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 28708 "sr_volume_ctrl: Mode Sense Failed\n"); 28709 kmem_free(sense, sense_buflen); 28710 kmem_free(select, select_buflen); 28711 return (rval); 28712 } 28713 sense_mhp = (struct mode_header_grp2 *)sense; 28714 select_mhp = (struct mode_header_grp2 *)select; 28715 bd_len = (sense_mhp->bdesc_length_hi << 8) | 28716 sense_mhp->bdesc_length_lo; 28717 if (bd_len > MODE_BLK_DESC_LENGTH) { 28718 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28719 "sr_volume_ctrl: Mode Sense returned invalid " 28720 "block descriptor length\n"); 28721 kmem_free(sense, sense_buflen); 28722 kmem_free(select, select_buflen); 28723 return (EIO); 28724 } 28725 sense_page = (uchar_t *) 28726 (sense + MODE_HEADER_LENGTH_GRP2 + bd_len); 28727 select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2); 28728 select_mhp->length_msb = 0; 28729 select_mhp->length_lsb = 0; 28730 select_mhp->bdesc_length_hi = 0; 28731 select_mhp->bdesc_length_lo = 0; 28732 } else { 28733 struct mode_header *sense_mhp, *select_mhp; 28734 28735 sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN; 28736 select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN; 28737 sense = kmem_zalloc(sense_buflen, KM_SLEEP); 28738 select = kmem_zalloc(select_buflen, KM_SLEEP); 28739 ssc = sd_ssc_init(un); 28740 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 28741 sense_buflen, MODEPAGE_AUDIO_CTRL, 28742 SD_PATH_STANDARD); 28743 sd_ssc_fini(ssc); 28744 28745 if (rval != 0) { 28746 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28747 "sr_volume_ctrl: Mode Sense Failed\n"); 28748 kmem_free(sense, sense_buflen); 28749 kmem_free(select, select_buflen); 28750 return (rval); 28751 } 28752 sense_mhp = (struct mode_header *)sense; 28753 select_mhp = (struct mode_header *)select; 28754 if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) { 28755 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28756 "sr_volume_ctrl: Mode Sense returned invalid " 28757 "block descriptor length\n"); 28758 kmem_free(sense, sense_buflen); 28759 kmem_free(select, select_buflen); 28760 return (EIO); 28761 } 28762 sense_page = (uchar_t *) 28763 (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length); 28764 select_page = (uchar_t *)(select + MODE_HEADER_LENGTH); 28765 select_mhp->length = 0; 28766 select_mhp->bdesc_length = 0; 28767 } 28768 /* 28769 * Note: An audio control data structure could be created and overlayed 28770 * on the following in place of the array indexing method implemented. 28771 */ 28772 28773 /* Build the select data for the user volume data */ 28774 select_page[0] = MODEPAGE_AUDIO_CTRL; 28775 select_page[1] = 0xE; 28776 /* Set the immediate bit */ 28777 select_page[2] = 0x04; 28778 /* Zero out reserved fields */ 28779 select_page[3] = 0x00; 28780 select_page[4] = 0x00; 28781 /* Return sense data for fields not to be modified */ 28782 select_page[5] = sense_page[5]; 28783 select_page[6] = sense_page[6]; 28784 select_page[7] = sense_page[7]; 28785 /* Set the user specified volume levels for channel 0 and 1 */ 28786 select_page[8] = 0x01; 28787 select_page[9] = vol->channel0; 28788 select_page[10] = 0x02; 28789 select_page[11] = vol->channel1; 28790 /* Channel 2 and 3 are currently unsupported so return the sense data */ 28791 select_page[12] = sense_page[12]; 28792 select_page[13] = sense_page[13]; 28793 select_page[14] = sense_page[14]; 28794 select_page[15] = sense_page[15]; 28795 28796 ssc = sd_ssc_init(un); 28797 if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) { 28798 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, select, 28799 select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 28800 } else { 28801 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 28802 select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 28803 } 28804 sd_ssc_fini(ssc); 28805 28806 kmem_free(sense, sense_buflen); 28807 kmem_free(select, select_buflen); 28808 return (rval); 28809 } 28810 28811 28812 /* 28813 * Function: sr_read_sony_session_offset() 28814 * 28815 * Description: This routine is the driver entry point for handling CD-ROM 28816 * ioctl requests for session offset information. (CDROMREADOFFSET) 28817 * The address of the first track in the last session of a 28818 * multi-session CD-ROM is returned 28819 * 28820 * Note: This routine uses a vendor specific key value in the 28821 * command control field without implementing any vendor check here 28822 * or in the ioctl routine. 28823 * 28824 * Arguments: dev - the device 'dev_t' 28825 * data - pointer to an int to hold the requested address 28826 * flag - this argument is a pass through to ddi_copyxxx() 28827 * directly from the mode argument of ioctl(). 28828 * 28829 * Return Code: the code returned by sd_send_scsi_cmd() 28830 * EFAULT if ddi_copyxxx() fails 28831 * ENXIO if fail ddi_get_soft_state 28832 * EINVAL if data pointer is NULL 28833 */ 28834 28835 static int 28836 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag) 28837 { 28838 struct sd_lun *un; 28839 struct uscsi_cmd *com; 28840 caddr_t buffer; 28841 char cdb[CDB_GROUP1]; 28842 int session_offset = 0; 28843 int rval; 28844 28845 if (data == NULL) { 28846 return (EINVAL); 28847 } 28848 28849 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28850 (un->un_state == SD_STATE_OFFLINE)) { 28851 return (ENXIO); 28852 } 28853 28854 buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP); 28855 bzero(cdb, CDB_GROUP1); 28856 cdb[0] = SCMD_READ_TOC; 28857 /* 28858 * Bytes 7 & 8 are the 12 byte allocation length for a single entry. 28859 * (4 byte TOC response header + 8 byte response data) 28860 */ 28861 cdb[8] = SONY_SESSION_OFFSET_LEN; 28862 /* Byte 9 is the control byte. A vendor specific value is used */ 28863 cdb[9] = SONY_SESSION_OFFSET_KEY; 28864 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28865 com->uscsi_cdb = cdb; 28866 com->uscsi_cdblen = CDB_GROUP1; 28867 com->uscsi_bufaddr = buffer; 28868 com->uscsi_buflen = SONY_SESSION_OFFSET_LEN; 28869 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28870 28871 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 28872 SD_PATH_STANDARD); 28873 if (rval != 0) { 28874 kmem_free(buffer, SONY_SESSION_OFFSET_LEN); 28875 kmem_free(com, sizeof (*com)); 28876 return (rval); 28877 } 28878 if (buffer[1] == SONY_SESSION_OFFSET_VALID) { 28879 session_offset = 28880 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 28881 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 28882 /* 28883 * Offset returned offset in current lbasize block's. Convert to 28884 * 2k block's to return to the user 28885 */ 28886 if (un->un_tgt_blocksize == CDROM_BLK_512) { 28887 session_offset >>= 2; 28888 } else if (un->un_tgt_blocksize == CDROM_BLK_1024) { 28889 session_offset >>= 1; 28890 } 28891 } 28892 28893 if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) { 28894 rval = EFAULT; 28895 } 28896 28897 kmem_free(buffer, SONY_SESSION_OFFSET_LEN); 28898 kmem_free(com, sizeof (*com)); 28899 return (rval); 28900 } 28901 28902 28903 /* 28904 * Function: sd_wm_cache_constructor() 28905 * 28906 * Description: Cache Constructor for the wmap cache for the read/modify/write 28907 * devices. 28908 * 28909 * Arguments: wm - A pointer to the sd_w_map to be initialized. 28910 * un - sd_lun structure for the device. 28911 * flag - the km flags passed to constructor 28912 * 28913 * Return Code: 0 on success. 28914 * -1 on failure. 28915 */ 28916 28917 /*ARGSUSED*/ 28918 static int 28919 sd_wm_cache_constructor(void *wm, void *un, int flags) 28920 { 28921 bzero(wm, sizeof (struct sd_w_map)); 28922 cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL); 28923 return (0); 28924 } 28925 28926 28927 /* 28928 * Function: sd_wm_cache_destructor() 28929 * 28930 * Description: Cache destructor for the wmap cache for the read/modify/write 28931 * devices. 28932 * 28933 * Arguments: wm - A pointer to the sd_w_map to be initialized. 28934 * un - sd_lun structure for the device. 28935 */ 28936 /*ARGSUSED*/ 28937 static void 28938 sd_wm_cache_destructor(void *wm, void *un) 28939 { 28940 cv_destroy(&((struct sd_w_map *)wm)->wm_avail); 28941 } 28942 28943 28944 /* 28945 * Function: sd_range_lock() 28946 * 28947 * Description: Lock the range of blocks specified as parameter to ensure 28948 * that read, modify write is atomic and no other i/o writes 28949 * to the same location. The range is specified in terms 28950 * of start and end blocks. Block numbers are the actual 28951 * media block numbers and not system. 28952 * 28953 * Arguments: un - sd_lun structure for the device. 28954 * startb - The starting block number 28955 * endb - The end block number 28956 * typ - type of i/o - simple/read_modify_write 28957 * 28958 * Return Code: wm - pointer to the wmap structure. 28959 * 28960 * Context: This routine can sleep. 28961 */ 28962 28963 static struct sd_w_map * 28964 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ) 28965 { 28966 struct sd_w_map *wmp = NULL; 28967 struct sd_w_map *sl_wmp = NULL; 28968 struct sd_w_map *tmp_wmp; 28969 wm_state state = SD_WM_CHK_LIST; 28970 28971 28972 ASSERT(un != NULL); 28973 ASSERT(!mutex_owned(SD_MUTEX(un))); 28974 28975 mutex_enter(SD_MUTEX(un)); 28976 28977 while (state != SD_WM_DONE) { 28978 28979 switch (state) { 28980 case SD_WM_CHK_LIST: 28981 /* 28982 * This is the starting state. Check the wmap list 28983 * to see if the range is currently available. 28984 */ 28985 if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) { 28986 /* 28987 * If this is a simple write and no rmw 28988 * i/o is pending then try to lock the 28989 * range as the range should be available. 28990 */ 28991 state = SD_WM_LOCK_RANGE; 28992 } else { 28993 tmp_wmp = sd_get_range(un, startb, endb); 28994 if (tmp_wmp != NULL) { 28995 if ((wmp != NULL) && ONLIST(un, wmp)) { 28996 /* 28997 * Should not keep onlist wmps 28998 * while waiting this macro 28999 * will also do wmp = NULL; 29000 */ 29001 FREE_ONLIST_WMAP(un, wmp); 29002 } 29003 /* 29004 * sl_wmp is the wmap on which wait 29005 * is done, since the tmp_wmp points 29006 * to the inuse wmap, set sl_wmp to 29007 * tmp_wmp and change the state to sleep 29008 */ 29009 sl_wmp = tmp_wmp; 29010 state = SD_WM_WAIT_MAP; 29011 } else { 29012 state = SD_WM_LOCK_RANGE; 29013 } 29014 29015 } 29016 break; 29017 29018 case SD_WM_LOCK_RANGE: 29019 ASSERT(un->un_wm_cache); 29020 /* 29021 * The range need to be locked, try to get a wmap. 29022 * First attempt it with NO_SLEEP, want to avoid a sleep 29023 * if possible as we will have to release the sd mutex 29024 * if we have to sleep. 29025 */ 29026 if (wmp == NULL) 29027 wmp = kmem_cache_alloc(un->un_wm_cache, 29028 KM_NOSLEEP); 29029 if (wmp == NULL) { 29030 mutex_exit(SD_MUTEX(un)); 29031 _NOTE(DATA_READABLE_WITHOUT_LOCK 29032 (sd_lun::un_wm_cache)) 29033 wmp = kmem_cache_alloc(un->un_wm_cache, 29034 KM_SLEEP); 29035 mutex_enter(SD_MUTEX(un)); 29036 /* 29037 * we released the mutex so recheck and go to 29038 * check list state. 29039 */ 29040 state = SD_WM_CHK_LIST; 29041 } else { 29042 /* 29043 * We exit out of state machine since we 29044 * have the wmap. Do the housekeeping first. 29045 * place the wmap on the wmap list if it is not 29046 * on it already and then set the state to done. 29047 */ 29048 wmp->wm_start = startb; 29049 wmp->wm_end = endb; 29050 wmp->wm_flags = typ | SD_WM_BUSY; 29051 if (typ & SD_WTYPE_RMW) { 29052 un->un_rmw_count++; 29053 } 29054 /* 29055 * If not already on the list then link 29056 */ 29057 if (!ONLIST(un, wmp)) { 29058 wmp->wm_next = un->un_wm; 29059 wmp->wm_prev = NULL; 29060 if (wmp->wm_next) 29061 wmp->wm_next->wm_prev = wmp; 29062 un->un_wm = wmp; 29063 } 29064 state = SD_WM_DONE; 29065 } 29066 break; 29067 29068 case SD_WM_WAIT_MAP: 29069 ASSERT(sl_wmp->wm_flags & SD_WM_BUSY); 29070 /* 29071 * Wait is done on sl_wmp, which is set in the 29072 * check_list state. 29073 */ 29074 sl_wmp->wm_wanted_count++; 29075 cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un)); 29076 sl_wmp->wm_wanted_count--; 29077 /* 29078 * We can reuse the memory from the completed sl_wmp 29079 * lock range for our new lock, but only if noone is 29080 * waiting for it. 29081 */ 29082 ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY)); 29083 if (sl_wmp->wm_wanted_count == 0) { 29084 if (wmp != NULL) 29085 CHK_N_FREEWMP(un, wmp); 29086 wmp = sl_wmp; 29087 } 29088 sl_wmp = NULL; 29089 /* 29090 * After waking up, need to recheck for availability of 29091 * range. 29092 */ 29093 state = SD_WM_CHK_LIST; 29094 break; 29095 29096 default: 29097 panic("sd_range_lock: " 29098 "Unknown state %d in sd_range_lock", state); 29099 /*NOTREACHED*/ 29100 } /* switch(state) */ 29101 29102 } /* while(state != SD_WM_DONE) */ 29103 29104 mutex_exit(SD_MUTEX(un)); 29105 29106 ASSERT(wmp != NULL); 29107 29108 return (wmp); 29109 } 29110 29111 29112 /* 29113 * Function: sd_get_range() 29114 * 29115 * Description: Find if there any overlapping I/O to this one 29116 * Returns the write-map of 1st such I/O, NULL otherwise. 29117 * 29118 * Arguments: un - sd_lun structure for the device. 29119 * startb - The starting block number 29120 * endb - The end block number 29121 * 29122 * Return Code: wm - pointer to the wmap structure. 29123 */ 29124 29125 static struct sd_w_map * 29126 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb) 29127 { 29128 struct sd_w_map *wmp; 29129 29130 ASSERT(un != NULL); 29131 29132 for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) { 29133 if (!(wmp->wm_flags & SD_WM_BUSY)) { 29134 continue; 29135 } 29136 if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) { 29137 break; 29138 } 29139 if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) { 29140 break; 29141 } 29142 } 29143 29144 return (wmp); 29145 } 29146 29147 29148 /* 29149 * Function: sd_free_inlist_wmap() 29150 * 29151 * Description: Unlink and free a write map struct. 29152 * 29153 * Arguments: un - sd_lun structure for the device. 29154 * wmp - sd_w_map which needs to be unlinked. 29155 */ 29156 29157 static void 29158 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp) 29159 { 29160 ASSERT(un != NULL); 29161 29162 if (un->un_wm == wmp) { 29163 un->un_wm = wmp->wm_next; 29164 } else { 29165 wmp->wm_prev->wm_next = wmp->wm_next; 29166 } 29167 29168 if (wmp->wm_next) { 29169 wmp->wm_next->wm_prev = wmp->wm_prev; 29170 } 29171 29172 wmp->wm_next = wmp->wm_prev = NULL; 29173 29174 kmem_cache_free(un->un_wm_cache, wmp); 29175 } 29176 29177 29178 /* 29179 * Function: sd_range_unlock() 29180 * 29181 * Description: Unlock the range locked by wm. 29182 * Free write map if nobody else is waiting on it. 29183 * 29184 * Arguments: un - sd_lun structure for the device. 29185 * wmp - sd_w_map which needs to be unlinked. 29186 */ 29187 29188 static void 29189 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm) 29190 { 29191 ASSERT(un != NULL); 29192 ASSERT(wm != NULL); 29193 ASSERT(!mutex_owned(SD_MUTEX(un))); 29194 29195 mutex_enter(SD_MUTEX(un)); 29196 29197 if (wm->wm_flags & SD_WTYPE_RMW) { 29198 un->un_rmw_count--; 29199 } 29200 29201 if (wm->wm_wanted_count) { 29202 wm->wm_flags = 0; 29203 /* 29204 * Broadcast that the wmap is available now. 29205 */ 29206 cv_broadcast(&wm->wm_avail); 29207 } else { 29208 /* 29209 * If no one is waiting on the map, it should be free'ed. 29210 */ 29211 sd_free_inlist_wmap(un, wm); 29212 } 29213 29214 mutex_exit(SD_MUTEX(un)); 29215 } 29216 29217 29218 /* 29219 * Function: sd_read_modify_write_task 29220 * 29221 * Description: Called from a taskq thread to initiate the write phase of 29222 * a read-modify-write request. This is used for targets where 29223 * un->un_sys_blocksize != un->un_tgt_blocksize. 29224 * 29225 * Arguments: arg - a pointer to the buf(9S) struct for the write command. 29226 * 29227 * Context: Called under taskq thread context. 29228 */ 29229 29230 static void 29231 sd_read_modify_write_task(void *arg) 29232 { 29233 struct sd_mapblocksize_info *bsp; 29234 struct buf *bp; 29235 struct sd_xbuf *xp; 29236 struct sd_lun *un; 29237 29238 bp = arg; /* The bp is given in arg */ 29239 ASSERT(bp != NULL); 29240 29241 /* Get the pointer to the layer-private data struct */ 29242 xp = SD_GET_XBUF(bp); 29243 ASSERT(xp != NULL); 29244 bsp = xp->xb_private; 29245 ASSERT(bsp != NULL); 29246 29247 un = SD_GET_UN(bp); 29248 ASSERT(un != NULL); 29249 ASSERT(!mutex_owned(SD_MUTEX(un))); 29250 29251 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 29252 "sd_read_modify_write_task: entry: buf:0x%p\n", bp); 29253 29254 /* 29255 * This is the write phase of a read-modify-write request, called 29256 * under the context of a taskq thread in response to the completion 29257 * of the read portion of the rmw request completing under interrupt 29258 * context. The write request must be sent from here down the iostart 29259 * chain as if it were being sent from sd_mapblocksize_iostart(), so 29260 * we use the layer index saved in the layer-private data area. 29261 */ 29262 SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp); 29263 29264 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 29265 "sd_read_modify_write_task: exit: buf:0x%p\n", bp); 29266 } 29267 29268 29269 /* 29270 * Function: sddump_do_read_of_rmw() 29271 * 29272 * Description: This routine will be called from sddump, If sddump is called 29273 * with an I/O which not aligned on device blocksize boundary 29274 * then the write has to be converted to read-modify-write. 29275 * Do the read part here in order to keep sddump simple. 29276 * Note - That the sd_mutex is held across the call to this 29277 * routine. 29278 * 29279 * Arguments: un - sd_lun 29280 * blkno - block number in terms of media block size. 29281 * nblk - number of blocks. 29282 * bpp - pointer to pointer to the buf structure. On return 29283 * from this function, *bpp points to the valid buffer 29284 * to which the write has to be done. 29285 * 29286 * Return Code: 0 for success or errno-type return code 29287 */ 29288 29289 static int 29290 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk, 29291 struct buf **bpp) 29292 { 29293 int err; 29294 int i; 29295 int rval; 29296 struct buf *bp; 29297 struct scsi_pkt *pkt = NULL; 29298 uint32_t target_blocksize; 29299 29300 ASSERT(un != NULL); 29301 ASSERT(mutex_owned(SD_MUTEX(un))); 29302 29303 target_blocksize = un->un_tgt_blocksize; 29304 29305 mutex_exit(SD_MUTEX(un)); 29306 29307 bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL, 29308 (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL); 29309 if (bp == NULL) { 29310 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29311 "no resources for dumping; giving up"); 29312 err = ENOMEM; 29313 goto done; 29314 } 29315 29316 rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL, 29317 blkno, nblk); 29318 if (rval != 0) { 29319 scsi_free_consistent_buf(bp); 29320 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29321 "no resources for dumping; giving up"); 29322 err = ENOMEM; 29323 goto done; 29324 } 29325 29326 pkt->pkt_flags |= FLAG_NOINTR; 29327 29328 err = EIO; 29329 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 29330 29331 /* 29332 * Scsi_poll returns 0 (success) if the command completes and 29333 * the status block is STATUS_GOOD. We should only check 29334 * errors if this condition is not true. Even then we should 29335 * send our own request sense packet only if we have a check 29336 * condition and auto request sense has not been performed by 29337 * the hba. 29338 */ 29339 SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n"); 29340 29341 if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) { 29342 err = 0; 29343 break; 29344 } 29345 29346 /* 29347 * Check CMD_DEV_GONE 1st, give up if device is gone, 29348 * no need to read RQS data. 29349 */ 29350 if (pkt->pkt_reason == CMD_DEV_GONE) { 29351 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29352 "Error while dumping state with rmw..." 29353 "Device is gone\n"); 29354 break; 29355 } 29356 29357 if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) { 29358 SD_INFO(SD_LOG_DUMP, un, 29359 "sddump: read failed with CHECK, try # %d\n", i); 29360 if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) { 29361 (void) sd_send_polled_RQS(un); 29362 } 29363 29364 continue; 29365 } 29366 29367 if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) { 29368 int reset_retval = 0; 29369 29370 SD_INFO(SD_LOG_DUMP, un, 29371 "sddump: read failed with BUSY, try # %d\n", i); 29372 29373 if (un->un_f_lun_reset_enabled == TRUE) { 29374 reset_retval = scsi_reset(SD_ADDRESS(un), 29375 RESET_LUN); 29376 } 29377 if (reset_retval == 0) { 29378 (void) scsi_reset(SD_ADDRESS(un), RESET_TARGET); 29379 } 29380 (void) sd_send_polled_RQS(un); 29381 29382 } else { 29383 SD_INFO(SD_LOG_DUMP, un, 29384 "sddump: read failed with 0x%x, try # %d\n", 29385 SD_GET_PKT_STATUS(pkt), i); 29386 mutex_enter(SD_MUTEX(un)); 29387 sd_reset_target(un, pkt); 29388 mutex_exit(SD_MUTEX(un)); 29389 } 29390 29391 /* 29392 * If we are not getting anywhere with lun/target resets, 29393 * let's reset the bus. 29394 */ 29395 if (i > SD_NDUMP_RETRIES/2) { 29396 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 29397 (void) sd_send_polled_RQS(un); 29398 } 29399 29400 } 29401 scsi_destroy_pkt(pkt); 29402 29403 if (err != 0) { 29404 scsi_free_consistent_buf(bp); 29405 *bpp = NULL; 29406 } else { 29407 *bpp = bp; 29408 } 29409 29410 done: 29411 mutex_enter(SD_MUTEX(un)); 29412 return (err); 29413 } 29414 29415 29416 /* 29417 * Function: sd_failfast_flushq 29418 * 29419 * Description: Take all bp's on the wait queue that have B_FAILFAST set 29420 * in b_flags and move them onto the failfast queue, then kick 29421 * off a thread to return all bp's on the failfast queue to 29422 * their owners with an error set. 29423 * 29424 * Arguments: un - pointer to the soft state struct for the instance. 29425 * 29426 * Context: may execute in interrupt context. 29427 */ 29428 29429 static void 29430 sd_failfast_flushq(struct sd_lun *un) 29431 { 29432 struct buf *bp; 29433 struct buf *next_waitq_bp; 29434 struct buf *prev_waitq_bp = NULL; 29435 29436 ASSERT(un != NULL); 29437 ASSERT(mutex_owned(SD_MUTEX(un))); 29438 ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE); 29439 ASSERT(un->un_failfast_bp == NULL); 29440 29441 SD_TRACE(SD_LOG_IO_FAILFAST, un, 29442 "sd_failfast_flushq: entry: un:0x%p\n", un); 29443 29444 /* 29445 * Check if we should flush all bufs when entering failfast state, or 29446 * just those with B_FAILFAST set. 29447 */ 29448 if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) { 29449 /* 29450 * Move *all* bp's on the wait queue to the failfast flush 29451 * queue, including those that do NOT have B_FAILFAST set. 29452 */ 29453 if (un->un_failfast_headp == NULL) { 29454 ASSERT(un->un_failfast_tailp == NULL); 29455 un->un_failfast_headp = un->un_waitq_headp; 29456 } else { 29457 ASSERT(un->un_failfast_tailp != NULL); 29458 un->un_failfast_tailp->av_forw = un->un_waitq_headp; 29459 } 29460 29461 un->un_failfast_tailp = un->un_waitq_tailp; 29462 29463 /* update kstat for each bp moved out of the waitq */ 29464 for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) { 29465 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 29466 } 29467 29468 /* empty the waitq */ 29469 un->un_waitq_headp = un->un_waitq_tailp = NULL; 29470 29471 } else { 29472 /* 29473 * Go thru the wait queue, pick off all entries with 29474 * B_FAILFAST set, and move these onto the failfast queue. 29475 */ 29476 for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) { 29477 /* 29478 * Save the pointer to the next bp on the wait queue, 29479 * so we get to it on the next iteration of this loop. 29480 */ 29481 next_waitq_bp = bp->av_forw; 29482 29483 /* 29484 * If this bp from the wait queue does NOT have 29485 * B_FAILFAST set, just move on to the next element 29486 * in the wait queue. Note, this is the only place 29487 * where it is correct to set prev_waitq_bp. 29488 */ 29489 if ((bp->b_flags & B_FAILFAST) == 0) { 29490 prev_waitq_bp = bp; 29491 continue; 29492 } 29493 29494 /* 29495 * Remove the bp from the wait queue. 29496 */ 29497 if (bp == un->un_waitq_headp) { 29498 /* The bp is the first element of the waitq. */ 29499 un->un_waitq_headp = next_waitq_bp; 29500 if (un->un_waitq_headp == NULL) { 29501 /* The wait queue is now empty */ 29502 un->un_waitq_tailp = NULL; 29503 } 29504 } else { 29505 /* 29506 * The bp is either somewhere in the middle 29507 * or at the end of the wait queue. 29508 */ 29509 ASSERT(un->un_waitq_headp != NULL); 29510 ASSERT(prev_waitq_bp != NULL); 29511 ASSERT((prev_waitq_bp->b_flags & B_FAILFAST) 29512 == 0); 29513 if (bp == un->un_waitq_tailp) { 29514 /* bp is the last entry on the waitq. */ 29515 ASSERT(next_waitq_bp == NULL); 29516 un->un_waitq_tailp = prev_waitq_bp; 29517 } 29518 prev_waitq_bp->av_forw = next_waitq_bp; 29519 } 29520 bp->av_forw = NULL; 29521 29522 /* 29523 * update kstat since the bp is moved out of 29524 * the waitq 29525 */ 29526 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 29527 29528 /* 29529 * Now put the bp onto the failfast queue. 29530 */ 29531 if (un->un_failfast_headp == NULL) { 29532 /* failfast queue is currently empty */ 29533 ASSERT(un->un_failfast_tailp == NULL); 29534 un->un_failfast_headp = 29535 un->un_failfast_tailp = bp; 29536 } else { 29537 /* Add the bp to the end of the failfast q */ 29538 ASSERT(un->un_failfast_tailp != NULL); 29539 ASSERT(un->un_failfast_tailp->b_flags & 29540 B_FAILFAST); 29541 un->un_failfast_tailp->av_forw = bp; 29542 un->un_failfast_tailp = bp; 29543 } 29544 } 29545 } 29546 29547 /* 29548 * Now return all bp's on the failfast queue to their owners. 29549 */ 29550 while ((bp = un->un_failfast_headp) != NULL) { 29551 29552 un->un_failfast_headp = bp->av_forw; 29553 if (un->un_failfast_headp == NULL) { 29554 un->un_failfast_tailp = NULL; 29555 } 29556 29557 /* 29558 * We want to return the bp with a failure error code, but 29559 * we do not want a call to sd_start_cmds() to occur here, 29560 * so use sd_return_failed_command_no_restart() instead of 29561 * sd_return_failed_command(). 29562 */ 29563 sd_return_failed_command_no_restart(un, bp, EIO); 29564 } 29565 29566 /* Flush the xbuf queues if required. */ 29567 if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) { 29568 ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback); 29569 } 29570 29571 SD_TRACE(SD_LOG_IO_FAILFAST, un, 29572 "sd_failfast_flushq: exit: un:0x%p\n", un); 29573 } 29574 29575 29576 /* 29577 * Function: sd_failfast_flushq_callback 29578 * 29579 * Description: Return TRUE if the given bp meets the criteria for failfast 29580 * flushing. Used with ddi_xbuf_flushq(9F). 29581 * 29582 * Arguments: bp - ptr to buf struct to be examined. 29583 * 29584 * Context: Any 29585 */ 29586 29587 static int 29588 sd_failfast_flushq_callback(struct buf *bp) 29589 { 29590 /* 29591 * Return TRUE if (1) we want to flush ALL bufs when the failfast 29592 * state is entered; OR (2) the given bp has B_FAILFAST set. 29593 */ 29594 return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) || 29595 (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE); 29596 } 29597 29598 29599 29600 /* 29601 * Function: sd_setup_next_xfer 29602 * 29603 * Description: Prepare next I/O operation using DMA_PARTIAL 29604 * 29605 */ 29606 29607 static int 29608 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp, 29609 struct scsi_pkt *pkt, struct sd_xbuf *xp) 29610 { 29611 ssize_t num_blks_not_xfered; 29612 daddr_t strt_blk_num; 29613 ssize_t bytes_not_xfered; 29614 int rval; 29615 29616 ASSERT(pkt->pkt_resid == 0); 29617 29618 /* 29619 * Calculate next block number and amount to be transferred. 29620 * 29621 * How much data NOT transfered to the HBA yet. 29622 */ 29623 bytes_not_xfered = xp->xb_dma_resid; 29624 29625 /* 29626 * figure how many blocks NOT transfered to the HBA yet. 29627 */ 29628 num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered); 29629 29630 /* 29631 * set starting block number to the end of what WAS transfered. 29632 */ 29633 strt_blk_num = xp->xb_blkno + 29634 SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered); 29635 29636 /* 29637 * Move pkt to the next portion of the xfer. sd_setup_next_rw_pkt 29638 * will call scsi_initpkt with NULL_FUNC so we do not have to release 29639 * the disk mutex here. 29640 */ 29641 rval = sd_setup_next_rw_pkt(un, pkt, bp, 29642 strt_blk_num, num_blks_not_xfered); 29643 29644 if (rval == 0) { 29645 29646 /* 29647 * Success. 29648 * 29649 * Adjust things if there are still more blocks to be 29650 * transfered. 29651 */ 29652 xp->xb_dma_resid = pkt->pkt_resid; 29653 pkt->pkt_resid = 0; 29654 29655 return (1); 29656 } 29657 29658 /* 29659 * There's really only one possible return value from 29660 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt 29661 * returns NULL. 29662 */ 29663 ASSERT(rval == SD_PKT_ALLOC_FAILURE); 29664 29665 bp->b_resid = bp->b_bcount; 29666 bp->b_flags |= B_ERROR; 29667 29668 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29669 "Error setting up next portion of DMA transfer\n"); 29670 29671 return (0); 29672 } 29673 29674 /* 29675 * Function: sd_panic_for_res_conflict 29676 * 29677 * Description: Call panic with a string formatted with "Reservation Conflict" 29678 * and a human readable identifier indicating the SD instance 29679 * that experienced the reservation conflict. 29680 * 29681 * Arguments: un - pointer to the soft state struct for the instance. 29682 * 29683 * Context: may execute in interrupt context. 29684 */ 29685 29686 #define SD_RESV_CONFLICT_FMT_LEN 40 29687 void 29688 sd_panic_for_res_conflict(struct sd_lun *un) 29689 { 29690 char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN]; 29691 char path_str[MAXPATHLEN]; 29692 29693 (void) snprintf(panic_str, sizeof (panic_str), 29694 "Reservation Conflict\nDisk: %s", 29695 ddi_pathname(SD_DEVINFO(un), path_str)); 29696 29697 panic(panic_str); 29698 } 29699 29700 /* 29701 * Note: The following sd_faultinjection_ioctl( ) routines implement 29702 * driver support for handling fault injection for error analysis 29703 * causing faults in multiple layers of the driver. 29704 * 29705 */ 29706 29707 #ifdef SD_FAULT_INJECTION 29708 static uint_t sd_fault_injection_on = 0; 29709 29710 /* 29711 * Function: sd_faultinjection_ioctl() 29712 * 29713 * Description: This routine is the driver entry point for handling 29714 * faultinjection ioctls to inject errors into the 29715 * layer model 29716 * 29717 * Arguments: cmd - the ioctl cmd received 29718 * arg - the arguments from user and returns 29719 */ 29720 29721 static void 29722 sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un) { 29723 29724 uint_t i = 0; 29725 uint_t rval; 29726 29727 SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n"); 29728 29729 mutex_enter(SD_MUTEX(un)); 29730 29731 switch (cmd) { 29732 case SDIOCRUN: 29733 /* Allow pushed faults to be injected */ 29734 SD_INFO(SD_LOG_SDTEST, un, 29735 "sd_faultinjection_ioctl: Injecting Fault Run\n"); 29736 29737 sd_fault_injection_on = 1; 29738 29739 SD_INFO(SD_LOG_IOERR, un, 29740 "sd_faultinjection_ioctl: run finished\n"); 29741 break; 29742 29743 case SDIOCSTART: 29744 /* Start Injection Session */ 29745 SD_INFO(SD_LOG_SDTEST, un, 29746 "sd_faultinjection_ioctl: Injecting Fault Start\n"); 29747 29748 sd_fault_injection_on = 0; 29749 un->sd_injection_mask = 0xFFFFFFFF; 29750 for (i = 0; i < SD_FI_MAX_ERROR; i++) { 29751 un->sd_fi_fifo_pkt[i] = NULL; 29752 un->sd_fi_fifo_xb[i] = NULL; 29753 un->sd_fi_fifo_un[i] = NULL; 29754 un->sd_fi_fifo_arq[i] = NULL; 29755 } 29756 un->sd_fi_fifo_start = 0; 29757 un->sd_fi_fifo_end = 0; 29758 29759 mutex_enter(&(un->un_fi_mutex)); 29760 un->sd_fi_log[0] = '\0'; 29761 un->sd_fi_buf_len = 0; 29762 mutex_exit(&(un->un_fi_mutex)); 29763 29764 SD_INFO(SD_LOG_IOERR, un, 29765 "sd_faultinjection_ioctl: start finished\n"); 29766 break; 29767 29768 case SDIOCSTOP: 29769 /* Stop Injection Session */ 29770 SD_INFO(SD_LOG_SDTEST, un, 29771 "sd_faultinjection_ioctl: Injecting Fault Stop\n"); 29772 sd_fault_injection_on = 0; 29773 un->sd_injection_mask = 0x0; 29774 29775 /* Empty stray or unuseds structs from fifo */ 29776 for (i = 0; i < SD_FI_MAX_ERROR; i++) { 29777 if (un->sd_fi_fifo_pkt[i] != NULL) { 29778 kmem_free(un->sd_fi_fifo_pkt[i], 29779 sizeof (struct sd_fi_pkt)); 29780 } 29781 if (un->sd_fi_fifo_xb[i] != NULL) { 29782 kmem_free(un->sd_fi_fifo_xb[i], 29783 sizeof (struct sd_fi_xb)); 29784 } 29785 if (un->sd_fi_fifo_un[i] != NULL) { 29786 kmem_free(un->sd_fi_fifo_un[i], 29787 sizeof (struct sd_fi_un)); 29788 } 29789 if (un->sd_fi_fifo_arq[i] != NULL) { 29790 kmem_free(un->sd_fi_fifo_arq[i], 29791 sizeof (struct sd_fi_arq)); 29792 } 29793 un->sd_fi_fifo_pkt[i] = NULL; 29794 un->sd_fi_fifo_un[i] = NULL; 29795 un->sd_fi_fifo_xb[i] = NULL; 29796 un->sd_fi_fifo_arq[i] = NULL; 29797 } 29798 un->sd_fi_fifo_start = 0; 29799 un->sd_fi_fifo_end = 0; 29800 29801 SD_INFO(SD_LOG_IOERR, un, 29802 "sd_faultinjection_ioctl: stop finished\n"); 29803 break; 29804 29805 case SDIOCINSERTPKT: 29806 /* Store a packet struct to be pushed onto fifo */ 29807 SD_INFO(SD_LOG_SDTEST, un, 29808 "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n"); 29809 29810 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 29811 29812 sd_fault_injection_on = 0; 29813 29814 /* No more that SD_FI_MAX_ERROR allowed in Queue */ 29815 if (un->sd_fi_fifo_pkt[i] != NULL) { 29816 kmem_free(un->sd_fi_fifo_pkt[i], 29817 sizeof (struct sd_fi_pkt)); 29818 } 29819 if (arg != NULL) { 29820 un->sd_fi_fifo_pkt[i] = 29821 kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP); 29822 if (un->sd_fi_fifo_pkt[i] == NULL) { 29823 /* Alloc failed don't store anything */ 29824 break; 29825 } 29826 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i], 29827 sizeof (struct sd_fi_pkt), 0); 29828 if (rval == -1) { 29829 kmem_free(un->sd_fi_fifo_pkt[i], 29830 sizeof (struct sd_fi_pkt)); 29831 un->sd_fi_fifo_pkt[i] = NULL; 29832 } 29833 } else { 29834 SD_INFO(SD_LOG_IOERR, un, 29835 "sd_faultinjection_ioctl: pkt null\n"); 29836 } 29837 break; 29838 29839 case SDIOCINSERTXB: 29840 /* Store a xb struct to be pushed onto fifo */ 29841 SD_INFO(SD_LOG_SDTEST, un, 29842 "sd_faultinjection_ioctl: Injecting Fault Insert XB\n"); 29843 29844 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 29845 29846 sd_fault_injection_on = 0; 29847 29848 if (un->sd_fi_fifo_xb[i] != NULL) { 29849 kmem_free(un->sd_fi_fifo_xb[i], 29850 sizeof (struct sd_fi_xb)); 29851 un->sd_fi_fifo_xb[i] = NULL; 29852 } 29853 if (arg != NULL) { 29854 un->sd_fi_fifo_xb[i] = 29855 kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP); 29856 if (un->sd_fi_fifo_xb[i] == NULL) { 29857 /* Alloc failed don't store anything */ 29858 break; 29859 } 29860 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i], 29861 sizeof (struct sd_fi_xb), 0); 29862 29863 if (rval == -1) { 29864 kmem_free(un->sd_fi_fifo_xb[i], 29865 sizeof (struct sd_fi_xb)); 29866 un->sd_fi_fifo_xb[i] = NULL; 29867 } 29868 } else { 29869 SD_INFO(SD_LOG_IOERR, un, 29870 "sd_faultinjection_ioctl: xb null\n"); 29871 } 29872 break; 29873 29874 case SDIOCINSERTUN: 29875 /* Store a un struct to be pushed onto fifo */ 29876 SD_INFO(SD_LOG_SDTEST, un, 29877 "sd_faultinjection_ioctl: Injecting Fault Insert UN\n"); 29878 29879 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 29880 29881 sd_fault_injection_on = 0; 29882 29883 if (un->sd_fi_fifo_un[i] != NULL) { 29884 kmem_free(un->sd_fi_fifo_un[i], 29885 sizeof (struct sd_fi_un)); 29886 un->sd_fi_fifo_un[i] = NULL; 29887 } 29888 if (arg != NULL) { 29889 un->sd_fi_fifo_un[i] = 29890 kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP); 29891 if (un->sd_fi_fifo_un[i] == NULL) { 29892 /* Alloc failed don't store anything */ 29893 break; 29894 } 29895 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i], 29896 sizeof (struct sd_fi_un), 0); 29897 if (rval == -1) { 29898 kmem_free(un->sd_fi_fifo_un[i], 29899 sizeof (struct sd_fi_un)); 29900 un->sd_fi_fifo_un[i] = NULL; 29901 } 29902 29903 } else { 29904 SD_INFO(SD_LOG_IOERR, un, 29905 "sd_faultinjection_ioctl: un null\n"); 29906 } 29907 29908 break; 29909 29910 case SDIOCINSERTARQ: 29911 /* Store a arq struct to be pushed onto fifo */ 29912 SD_INFO(SD_LOG_SDTEST, un, 29913 "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n"); 29914 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 29915 29916 sd_fault_injection_on = 0; 29917 29918 if (un->sd_fi_fifo_arq[i] != NULL) { 29919 kmem_free(un->sd_fi_fifo_arq[i], 29920 sizeof (struct sd_fi_arq)); 29921 un->sd_fi_fifo_arq[i] = NULL; 29922 } 29923 if (arg != NULL) { 29924 un->sd_fi_fifo_arq[i] = 29925 kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP); 29926 if (un->sd_fi_fifo_arq[i] == NULL) { 29927 /* Alloc failed don't store anything */ 29928 break; 29929 } 29930 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i], 29931 sizeof (struct sd_fi_arq), 0); 29932 if (rval == -1) { 29933 kmem_free(un->sd_fi_fifo_arq[i], 29934 sizeof (struct sd_fi_arq)); 29935 un->sd_fi_fifo_arq[i] = NULL; 29936 } 29937 29938 } else { 29939 SD_INFO(SD_LOG_IOERR, un, 29940 "sd_faultinjection_ioctl: arq null\n"); 29941 } 29942 29943 break; 29944 29945 case SDIOCPUSH: 29946 /* Push stored xb, pkt, un, and arq onto fifo */ 29947 sd_fault_injection_on = 0; 29948 29949 if (arg != NULL) { 29950 rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0); 29951 if (rval != -1 && 29952 un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) { 29953 un->sd_fi_fifo_end += i; 29954 } 29955 } else { 29956 SD_INFO(SD_LOG_IOERR, un, 29957 "sd_faultinjection_ioctl: push arg null\n"); 29958 if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) { 29959 un->sd_fi_fifo_end++; 29960 } 29961 } 29962 SD_INFO(SD_LOG_IOERR, un, 29963 "sd_faultinjection_ioctl: push to end=%d\n", 29964 un->sd_fi_fifo_end); 29965 break; 29966 29967 case SDIOCRETRIEVE: 29968 /* Return buffer of log from Injection session */ 29969 SD_INFO(SD_LOG_SDTEST, un, 29970 "sd_faultinjection_ioctl: Injecting Fault Retreive"); 29971 29972 sd_fault_injection_on = 0; 29973 29974 mutex_enter(&(un->un_fi_mutex)); 29975 rval = ddi_copyout(un->sd_fi_log, (void *)arg, 29976 un->sd_fi_buf_len+1, 0); 29977 mutex_exit(&(un->un_fi_mutex)); 29978 29979 if (rval == -1) { 29980 /* 29981 * arg is possibly invalid setting 29982 * it to NULL for return 29983 */ 29984 arg = NULL; 29985 } 29986 break; 29987 } 29988 29989 mutex_exit(SD_MUTEX(un)); 29990 SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:" 29991 " exit\n"); 29992 } 29993 29994 29995 /* 29996 * Function: sd_injection_log() 29997 * 29998 * Description: This routine adds buff to the already existing injection log 29999 * for retrieval via faultinjection_ioctl for use in fault 30000 * detection and recovery 30001 * 30002 * Arguments: buf - the string to add to the log 30003 */ 30004 30005 static void 30006 sd_injection_log(char *buf, struct sd_lun *un) 30007 { 30008 uint_t len; 30009 30010 ASSERT(un != NULL); 30011 ASSERT(buf != NULL); 30012 30013 mutex_enter(&(un->un_fi_mutex)); 30014 30015 len = min(strlen(buf), 255); 30016 /* Add logged value to Injection log to be returned later */ 30017 if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) { 30018 uint_t offset = strlen((char *)un->sd_fi_log); 30019 char *destp = (char *)un->sd_fi_log + offset; 30020 int i; 30021 for (i = 0; i < len; i++) { 30022 *destp++ = *buf++; 30023 } 30024 un->sd_fi_buf_len += len; 30025 un->sd_fi_log[un->sd_fi_buf_len] = '\0'; 30026 } 30027 30028 mutex_exit(&(un->un_fi_mutex)); 30029 } 30030 30031 30032 /* 30033 * Function: sd_faultinjection() 30034 * 30035 * Description: This routine takes the pkt and changes its 30036 * content based on error injection scenerio. 30037 * 30038 * Arguments: pktp - packet to be changed 30039 */ 30040 30041 static void 30042 sd_faultinjection(struct scsi_pkt *pktp) 30043 { 30044 uint_t i; 30045 struct sd_fi_pkt *fi_pkt; 30046 struct sd_fi_xb *fi_xb; 30047 struct sd_fi_un *fi_un; 30048 struct sd_fi_arq *fi_arq; 30049 struct buf *bp; 30050 struct sd_xbuf *xb; 30051 struct sd_lun *un; 30052 30053 ASSERT(pktp != NULL); 30054 30055 /* pull bp xb and un from pktp */ 30056 bp = (struct buf *)pktp->pkt_private; 30057 xb = SD_GET_XBUF(bp); 30058 un = SD_GET_UN(bp); 30059 30060 ASSERT(un != NULL); 30061 30062 mutex_enter(SD_MUTEX(un)); 30063 30064 SD_TRACE(SD_LOG_SDTEST, un, 30065 "sd_faultinjection: entry Injection from sdintr\n"); 30066 30067 /* if injection is off return */ 30068 if (sd_fault_injection_on == 0 || 30069 un->sd_fi_fifo_start == un->sd_fi_fifo_end) { 30070 mutex_exit(SD_MUTEX(un)); 30071 return; 30072 } 30073 30074 SD_INFO(SD_LOG_SDTEST, un, 30075 "sd_faultinjection: is working for copying\n"); 30076 30077 /* take next set off fifo */ 30078 i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR; 30079 30080 fi_pkt = un->sd_fi_fifo_pkt[i]; 30081 fi_xb = un->sd_fi_fifo_xb[i]; 30082 fi_un = un->sd_fi_fifo_un[i]; 30083 fi_arq = un->sd_fi_fifo_arq[i]; 30084 30085 30086 /* set variables accordingly */ 30087 /* set pkt if it was on fifo */ 30088 if (fi_pkt != NULL) { 30089 SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags"); 30090 SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp"); 30091 if (fi_pkt->pkt_cdbp != 0xff) 30092 SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp"); 30093 SD_CONDSET(pktp, pkt, pkt_state, "pkt_state"); 30094 SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics"); 30095 SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason"); 30096 30097 } 30098 /* set xb if it was on fifo */ 30099 if (fi_xb != NULL) { 30100 SD_CONDSET(xb, xb, xb_blkno, "xb_blkno"); 30101 SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid"); 30102 if (fi_xb->xb_retry_count != 0) 30103 SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count"); 30104 SD_CONDSET(xb, xb, xb_victim_retry_count, 30105 "xb_victim_retry_count"); 30106 SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status"); 30107 SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state"); 30108 SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid"); 30109 30110 /* copy in block data from sense */ 30111 /* 30112 * if (fi_xb->xb_sense_data[0] != -1) { 30113 * bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, 30114 * SENSE_LENGTH); 30115 * } 30116 */ 30117 bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, SENSE_LENGTH); 30118 30119 /* copy in extended sense codes */ 30120 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data), 30121 xb, es_code, "es_code"); 30122 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data), 30123 xb, es_key, "es_key"); 30124 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data), 30125 xb, es_add_code, "es_add_code"); 30126 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data), 30127 xb, es_qual_code, "es_qual_code"); 30128 struct scsi_extended_sense *esp; 30129 esp = (struct scsi_extended_sense *)xb->xb_sense_data; 30130 esp->es_class = CLASS_EXTENDED_SENSE; 30131 } 30132 30133 /* set un if it was on fifo */ 30134 if (fi_un != NULL) { 30135 SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb"); 30136 SD_CONDSET(un, un, un_ctype, "un_ctype"); 30137 SD_CONDSET(un, un, un_reset_retry_count, 30138 "un_reset_retry_count"); 30139 SD_CONDSET(un, un, un_reservation_type, "un_reservation_type"); 30140 SD_CONDSET(un, un, un_resvd_status, "un_resvd_status"); 30141 SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled"); 30142 SD_CONDSET(un, un, un_f_allow_bus_device_reset, 30143 "un_f_allow_bus_device_reset"); 30144 SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing"); 30145 30146 } 30147 30148 /* copy in auto request sense if it was on fifo */ 30149 if (fi_arq != NULL) { 30150 bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq)); 30151 } 30152 30153 /* free structs */ 30154 if (un->sd_fi_fifo_pkt[i] != NULL) { 30155 kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt)); 30156 } 30157 if (un->sd_fi_fifo_xb[i] != NULL) { 30158 kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb)); 30159 } 30160 if (un->sd_fi_fifo_un[i] != NULL) { 30161 kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un)); 30162 } 30163 if (un->sd_fi_fifo_arq[i] != NULL) { 30164 kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq)); 30165 } 30166 30167 /* 30168 * kmem_free does not gurantee to set to NULL 30169 * since we uses these to determine if we set 30170 * values or not lets confirm they are always 30171 * NULL after free 30172 */ 30173 un->sd_fi_fifo_pkt[i] = NULL; 30174 un->sd_fi_fifo_un[i] = NULL; 30175 un->sd_fi_fifo_xb[i] = NULL; 30176 un->sd_fi_fifo_arq[i] = NULL; 30177 30178 un->sd_fi_fifo_start++; 30179 30180 mutex_exit(SD_MUTEX(un)); 30181 30182 SD_INFO(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n"); 30183 } 30184 30185 #endif /* SD_FAULT_INJECTION */ 30186 30187 /* 30188 * This routine is invoked in sd_unit_attach(). Before calling it, the 30189 * properties in conf file should be processed already, and "hotpluggable" 30190 * property was processed also. 30191 * 30192 * The sd driver distinguishes 3 different type of devices: removable media, 30193 * non-removable media, and hotpluggable. Below the differences are defined: 30194 * 30195 * 1. Device ID 30196 * 30197 * The device ID of a device is used to identify this device. Refer to 30198 * ddi_devid_register(9F). 30199 * 30200 * For a non-removable media disk device which can provide 0x80 or 0x83 30201 * VPD page (refer to INQUIRY command of SCSI SPC specification), a unique 30202 * device ID is created to identify this device. For other non-removable 30203 * media devices, a default device ID is created only if this device has 30204 * at least 2 alter cylinders. Otherwise, this device has no devid. 30205 * 30206 * ------------------------------------------------------- 30207 * removable media hotpluggable | Can Have Device ID 30208 * ------------------------------------------------------- 30209 * false false | Yes 30210 * false true | Yes 30211 * true x | No 30212 * ------------------------------------------------------ 30213 * 30214 * 30215 * 2. SCSI group 4 commands 30216 * 30217 * In SCSI specs, only some commands in group 4 command set can use 30218 * 8-byte addresses that can be used to access >2TB storage spaces. 30219 * Other commands have no such capability. Without supporting group4, 30220 * it is impossible to make full use of storage spaces of a disk with 30221 * capacity larger than 2TB. 30222 * 30223 * ----------------------------------------------- 30224 * removable media hotpluggable LP64 | Group 30225 * ----------------------------------------------- 30226 * false false false | 1 30227 * false false true | 4 30228 * false true false | 1 30229 * false true true | 4 30230 * true x x | 5 30231 * ----------------------------------------------- 30232 * 30233 * 30234 * 3. Check for VTOC Label 30235 * 30236 * If a direct-access disk has no EFI label, sd will check if it has a 30237 * valid VTOC label. Now, sd also does that check for removable media 30238 * and hotpluggable devices. 30239 * 30240 * -------------------------------------------------------------- 30241 * Direct-Access removable media hotpluggable | Check Label 30242 * ------------------------------------------------------------- 30243 * false false false | No 30244 * false false true | No 30245 * false true false | Yes 30246 * false true true | Yes 30247 * true x x | Yes 30248 * -------------------------------------------------------------- 30249 * 30250 * 30251 * 4. Building default VTOC label 30252 * 30253 * As section 3 says, sd checks if some kinds of devices have VTOC label. 30254 * If those devices have no valid VTOC label, sd(7d) will attempt to 30255 * create default VTOC for them. Currently sd creates default VTOC label 30256 * for all devices on x86 platform (VTOC_16), but only for removable 30257 * media devices on SPARC (VTOC_8). 30258 * 30259 * ----------------------------------------------------------- 30260 * removable media hotpluggable platform | Default Label 30261 * ----------------------------------------------------------- 30262 * false false sparc | No 30263 * false true x86 | Yes 30264 * false true sparc | Yes 30265 * true x x | Yes 30266 * ---------------------------------------------------------- 30267 * 30268 * 30269 * 5. Supported blocksizes of target devices 30270 * 30271 * Sd supports non-512-byte blocksize for removable media devices only. 30272 * For other devices, only 512-byte blocksize is supported. This may be 30273 * changed in near future because some RAID devices require non-512-byte 30274 * blocksize 30275 * 30276 * ----------------------------------------------------------- 30277 * removable media hotpluggable | non-512-byte blocksize 30278 * ----------------------------------------------------------- 30279 * false false | No 30280 * false true | No 30281 * true x | Yes 30282 * ----------------------------------------------------------- 30283 * 30284 * 30285 * 6. Automatic mount & unmount 30286 * 30287 * Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query 30288 * if a device is removable media device. It return 1 for removable media 30289 * devices, and 0 for others. 30290 * 30291 * The automatic mounting subsystem should distinguish between the types 30292 * of devices and apply automounting policies to each. 30293 * 30294 * 30295 * 7. fdisk partition management 30296 * 30297 * Fdisk is traditional partition method on x86 platform. Sd(7d) driver 30298 * just supports fdisk partitions on x86 platform. On sparc platform, sd 30299 * doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize 30300 * fdisk partitions on both x86 and SPARC platform. 30301 * 30302 * ----------------------------------------------------------- 30303 * platform removable media USB/1394 | fdisk supported 30304 * ----------------------------------------------------------- 30305 * x86 X X | true 30306 * ------------------------------------------------------------ 30307 * sparc X X | false 30308 * ------------------------------------------------------------ 30309 * 30310 * 30311 * 8. MBOOT/MBR 30312 * 30313 * Although sd(7d) doesn't support fdisk on SPARC platform, it does support 30314 * read/write mboot for removable media devices on sparc platform. 30315 * 30316 * ----------------------------------------------------------- 30317 * platform removable media USB/1394 | mboot supported 30318 * ----------------------------------------------------------- 30319 * x86 X X | true 30320 * ------------------------------------------------------------ 30321 * sparc false false | false 30322 * sparc false true | true 30323 * sparc true false | true 30324 * sparc true true | true 30325 * ------------------------------------------------------------ 30326 * 30327 * 30328 * 9. error handling during opening device 30329 * 30330 * If failed to open a disk device, an errno is returned. For some kinds 30331 * of errors, different errno is returned depending on if this device is 30332 * a removable media device. This brings USB/1394 hard disks in line with 30333 * expected hard disk behavior. It is not expected that this breaks any 30334 * application. 30335 * 30336 * ------------------------------------------------------ 30337 * removable media hotpluggable | errno 30338 * ------------------------------------------------------ 30339 * false false | EIO 30340 * false true | EIO 30341 * true x | ENXIO 30342 * ------------------------------------------------------ 30343 * 30344 * 30345 * 11. ioctls: DKIOCEJECT, CDROMEJECT 30346 * 30347 * These IOCTLs are applicable only to removable media devices. 30348 * 30349 * ----------------------------------------------------------- 30350 * removable media hotpluggable |DKIOCEJECT, CDROMEJECT 30351 * ----------------------------------------------------------- 30352 * false false | No 30353 * false true | No 30354 * true x | Yes 30355 * ----------------------------------------------------------- 30356 * 30357 * 30358 * 12. Kstats for partitions 30359 * 30360 * sd creates partition kstat for non-removable media devices. USB and 30361 * Firewire hard disks now have partition kstats 30362 * 30363 * ------------------------------------------------------ 30364 * removable media hotpluggable | kstat 30365 * ------------------------------------------------------ 30366 * false false | Yes 30367 * false true | Yes 30368 * true x | No 30369 * ------------------------------------------------------ 30370 * 30371 * 30372 * 13. Removable media & hotpluggable properties 30373 * 30374 * Sd driver creates a "removable-media" property for removable media 30375 * devices. Parent nexus drivers create a "hotpluggable" property if 30376 * it supports hotplugging. 30377 * 30378 * --------------------------------------------------------------------- 30379 * removable media hotpluggable | "removable-media" " hotpluggable" 30380 * --------------------------------------------------------------------- 30381 * false false | No No 30382 * false true | No Yes 30383 * true false | Yes No 30384 * true true | Yes Yes 30385 * --------------------------------------------------------------------- 30386 * 30387 * 30388 * 14. Power Management 30389 * 30390 * sd only power manages removable media devices or devices that support 30391 * LOG_SENSE or have a "pm-capable" property (PSARC/2002/250) 30392 * 30393 * A parent nexus that supports hotplugging can also set "pm-capable" 30394 * if the disk can be power managed. 30395 * 30396 * ------------------------------------------------------------ 30397 * removable media hotpluggable pm-capable | power manage 30398 * ------------------------------------------------------------ 30399 * false false false | No 30400 * false false true | Yes 30401 * false true false | No 30402 * false true true | Yes 30403 * true x x | Yes 30404 * ------------------------------------------------------------ 30405 * 30406 * USB and firewire hard disks can now be power managed independently 30407 * of the framebuffer 30408 * 30409 * 30410 * 15. Support for USB disks with capacity larger than 1TB 30411 * 30412 * Currently, sd doesn't permit a fixed disk device with capacity 30413 * larger than 1TB to be used in a 32-bit operating system environment. 30414 * However, sd doesn't do that for removable media devices. Instead, it 30415 * assumes that removable media devices cannot have a capacity larger 30416 * than 1TB. Therefore, using those devices on 32-bit system is partially 30417 * supported, which can cause some unexpected results. 30418 * 30419 * --------------------------------------------------------------------- 30420 * removable media USB/1394 | Capacity > 1TB | Used in 32-bit env 30421 * --------------------------------------------------------------------- 30422 * false false | true | no 30423 * false true | true | no 30424 * true false | true | Yes 30425 * true true | true | Yes 30426 * --------------------------------------------------------------------- 30427 * 30428 * 30429 * 16. Check write-protection at open time 30430 * 30431 * When a removable media device is being opened for writing without NDELAY 30432 * flag, sd will check if this device is writable. If attempting to open 30433 * without NDELAY flag a write-protected device, this operation will abort. 30434 * 30435 * ------------------------------------------------------------ 30436 * removable media USB/1394 | WP Check 30437 * ------------------------------------------------------------ 30438 * false false | No 30439 * false true | No 30440 * true false | Yes 30441 * true true | Yes 30442 * ------------------------------------------------------------ 30443 * 30444 * 30445 * 17. syslog when corrupted VTOC is encountered 30446 * 30447 * Currently, if an invalid VTOC is encountered, sd only print syslog 30448 * for fixed SCSI disks. 30449 * ------------------------------------------------------------ 30450 * removable media USB/1394 | print syslog 30451 * ------------------------------------------------------------ 30452 * false false | Yes 30453 * false true | No 30454 * true false | No 30455 * true true | No 30456 * ------------------------------------------------------------ 30457 */ 30458 static void 30459 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi) 30460 { 30461 int pm_cap; 30462 30463 ASSERT(un->un_sd); 30464 ASSERT(un->un_sd->sd_inq); 30465 30466 /* 30467 * Enable SYNC CACHE support for all devices. 30468 */ 30469 un->un_f_sync_cache_supported = TRUE; 30470 30471 /* 30472 * Set the sync cache required flag to false. 30473 * This would ensure that there is no SYNC CACHE 30474 * sent when there are no writes 30475 */ 30476 un->un_f_sync_cache_required = FALSE; 30477 30478 if (un->un_sd->sd_inq->inq_rmb) { 30479 /* 30480 * The media of this device is removable. And for this kind 30481 * of devices, it is possible to change medium after opening 30482 * devices. Thus we should support this operation. 30483 */ 30484 un->un_f_has_removable_media = TRUE; 30485 30486 /* 30487 * support non-512-byte blocksize of removable media devices 30488 */ 30489 un->un_f_non_devbsize_supported = TRUE; 30490 30491 /* 30492 * Assume that all removable media devices support DOOR_LOCK 30493 */ 30494 un->un_f_doorlock_supported = TRUE; 30495 30496 /* 30497 * For a removable media device, it is possible to be opened 30498 * with NDELAY flag when there is no media in drive, in this 30499 * case we don't care if device is writable. But if without 30500 * NDELAY flag, we need to check if media is write-protected. 30501 */ 30502 un->un_f_chk_wp_open = TRUE; 30503 30504 /* 30505 * need to start a SCSI watch thread to monitor media state, 30506 * when media is being inserted or ejected, notify syseventd. 30507 */ 30508 un->un_f_monitor_media_state = TRUE; 30509 30510 /* 30511 * Some devices don't support START_STOP_UNIT command. 30512 * Therefore, we'd better check if a device supports it 30513 * before sending it. 30514 */ 30515 un->un_f_check_start_stop = TRUE; 30516 30517 /* 30518 * support eject media ioctl: 30519 * FDEJECT, DKIOCEJECT, CDROMEJECT 30520 */ 30521 un->un_f_eject_media_supported = TRUE; 30522 30523 /* 30524 * Because many removable-media devices don't support 30525 * LOG_SENSE, we couldn't use this command to check if 30526 * a removable media device support power-management. 30527 * We assume that they support power-management via 30528 * START_STOP_UNIT command and can be spun up and down 30529 * without limitations. 30530 */ 30531 un->un_f_pm_supported = TRUE; 30532 30533 /* 30534 * Need to create a zero length (Boolean) property 30535 * removable-media for the removable media devices. 30536 * Note that the return value of the property is not being 30537 * checked, since if unable to create the property 30538 * then do not want the attach to fail altogether. Consistent 30539 * with other property creation in attach. 30540 */ 30541 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, 30542 DDI_PROP_CANSLEEP, "removable-media", NULL, 0); 30543 30544 } else { 30545 /* 30546 * create device ID for device 30547 */ 30548 un->un_f_devid_supported = TRUE; 30549 30550 /* 30551 * Spin up non-removable-media devices once it is attached 30552 */ 30553 un->un_f_attach_spinup = TRUE; 30554 30555 /* 30556 * According to SCSI specification, Sense data has two kinds of 30557 * format: fixed format, and descriptor format. At present, we 30558 * don't support descriptor format sense data for removable 30559 * media. 30560 */ 30561 if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) { 30562 un->un_f_descr_format_supported = TRUE; 30563 } 30564 30565 /* 30566 * kstats are created only for non-removable media devices. 30567 * 30568 * Set this in sd.conf to 0 in order to disable kstats. The 30569 * default is 1, so they are enabled by default. 30570 */ 30571 un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY, 30572 SD_DEVINFO(un), DDI_PROP_DONTPASS, 30573 "enable-partition-kstats", 1)); 30574 30575 /* 30576 * Check if HBA has set the "pm-capable" property. 30577 * If "pm-capable" exists and is non-zero then we can 30578 * power manage the device without checking the start/stop 30579 * cycle count log sense page. 30580 * 30581 * If "pm-capable" exists and is set to be false (0), 30582 * then we should not power manage the device. 30583 * 30584 * If "pm-capable" doesn't exist then pm_cap will 30585 * be set to SD_PM_CAPABLE_UNDEFINED (-1). In this case, 30586 * sd will check the start/stop cycle count log sense page 30587 * and power manage the device if the cycle count limit has 30588 * not been exceeded. 30589 */ 30590 pm_cap = ddi_prop_get_int(DDI_DEV_T_ANY, devi, 30591 DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED); 30592 if (SD_PM_CAPABLE_IS_UNDEFINED(pm_cap)) { 30593 un->un_f_log_sense_supported = TRUE; 30594 if (!un->un_f_power_condition_disabled && 30595 SD_INQUIRY(un)->inq_ansi == 6) { 30596 un->un_f_power_condition_supported = TRUE; 30597 } 30598 } else { 30599 /* 30600 * pm-capable property exists. 30601 * 30602 * Convert "TRUE" values for pm_cap to 30603 * SD_PM_CAPABLE_IS_TRUE to make it easier to check 30604 * later. "TRUE" values are any values defined in 30605 * inquiry.h. 30606 */ 30607 if (SD_PM_CAPABLE_IS_FALSE(pm_cap)) { 30608 un->un_f_log_sense_supported = FALSE; 30609 } else { 30610 /* SD_PM_CAPABLE_IS_TRUE case */ 30611 un->un_f_pm_supported = TRUE; 30612 if (!un->un_f_power_condition_disabled && 30613 SD_PM_CAPABLE_IS_SPC_4(pm_cap)) { 30614 un->un_f_power_condition_supported = 30615 TRUE; 30616 } 30617 if (SD_PM_CAP_LOG_SUPPORTED(pm_cap)) { 30618 un->un_f_log_sense_supported = TRUE; 30619 un->un_f_pm_log_sense_smart = 30620 SD_PM_CAP_SMART_LOG(pm_cap); 30621 } 30622 } 30623 30624 SD_INFO(SD_LOG_ATTACH_DETACH, un, 30625 "sd_unit_attach: un:0x%p pm-capable " 30626 "property set to %d.\n", un, un->un_f_pm_supported); 30627 } 30628 } 30629 30630 if (un->un_f_is_hotpluggable) { 30631 30632 /* 30633 * Have to watch hotpluggable devices as well, since 30634 * that's the only way for userland applications to 30635 * detect hot removal while device is busy/mounted. 30636 */ 30637 un->un_f_monitor_media_state = TRUE; 30638 30639 un->un_f_check_start_stop = TRUE; 30640 30641 } 30642 } 30643 30644 /* 30645 * sd_tg_rdwr: 30646 * Provides rdwr access for cmlb via sd_tgops. The start_block is 30647 * in sys block size, req_length in bytes. 30648 * 30649 */ 30650 static int 30651 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr, 30652 diskaddr_t start_block, size_t reqlength, void *tg_cookie) 30653 { 30654 struct sd_lun *un; 30655 int path_flag = (int)(uintptr_t)tg_cookie; 30656 char *dkl = NULL; 30657 diskaddr_t real_addr = start_block; 30658 diskaddr_t first_byte, end_block; 30659 30660 size_t buffer_size = reqlength; 30661 int rval = 0; 30662 diskaddr_t cap; 30663 uint32_t lbasize; 30664 sd_ssc_t *ssc; 30665 30666 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 30667 if (un == NULL) 30668 return (ENXIO); 30669 30670 if (cmd != TG_READ && cmd != TG_WRITE) 30671 return (EINVAL); 30672 30673 ssc = sd_ssc_init(un); 30674 mutex_enter(SD_MUTEX(un)); 30675 if (un->un_f_tgt_blocksize_is_valid == FALSE) { 30676 mutex_exit(SD_MUTEX(un)); 30677 rval = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap, 30678 &lbasize, path_flag); 30679 if (rval != 0) 30680 goto done1; 30681 mutex_enter(SD_MUTEX(un)); 30682 sd_update_block_info(un, lbasize, cap); 30683 if ((un->un_f_tgt_blocksize_is_valid == FALSE)) { 30684 mutex_exit(SD_MUTEX(un)); 30685 rval = EIO; 30686 goto done; 30687 } 30688 } 30689 30690 if (NOT_DEVBSIZE(un)) { 30691 /* 30692 * sys_blocksize != tgt_blocksize, need to re-adjust 30693 * blkno and save the index to beginning of dk_label 30694 */ 30695 first_byte = SD_SYSBLOCKS2BYTES(start_block); 30696 real_addr = first_byte / un->un_tgt_blocksize; 30697 30698 end_block = (first_byte + reqlength + 30699 un->un_tgt_blocksize - 1) / un->un_tgt_blocksize; 30700 30701 /* round up buffer size to multiple of target block size */ 30702 buffer_size = (end_block - real_addr) * un->un_tgt_blocksize; 30703 30704 SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr", 30705 "label_addr: 0x%x allocation size: 0x%x\n", 30706 real_addr, buffer_size); 30707 30708 if (((first_byte % un->un_tgt_blocksize) != 0) || 30709 (reqlength % un->un_tgt_blocksize) != 0) 30710 /* the request is not aligned */ 30711 dkl = kmem_zalloc(buffer_size, KM_SLEEP); 30712 } 30713 30714 /* 30715 * The MMC standard allows READ CAPACITY to be 30716 * inaccurate by a bounded amount (in the interest of 30717 * response latency). As a result, failed READs are 30718 * commonplace (due to the reading of metadata and not 30719 * data). Depending on the per-Vendor/drive Sense data, 30720 * the failed READ can cause many (unnecessary) retries. 30721 */ 30722 30723 if (ISCD(un) && (cmd == TG_READ) && 30724 (un->un_f_blockcount_is_valid == TRUE) && 30725 ((start_block == (un->un_blockcount - 1))|| 30726 (start_block == (un->un_blockcount - 2)))) { 30727 path_flag = SD_PATH_DIRECT_PRIORITY; 30728 } 30729 30730 mutex_exit(SD_MUTEX(un)); 30731 if (cmd == TG_READ) { 30732 rval = sd_send_scsi_READ(ssc, (dkl != NULL)? dkl: bufaddr, 30733 buffer_size, real_addr, path_flag); 30734 if (dkl != NULL) 30735 bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block, 30736 real_addr), bufaddr, reqlength); 30737 } else { 30738 if (dkl) { 30739 rval = sd_send_scsi_READ(ssc, dkl, buffer_size, 30740 real_addr, path_flag); 30741 if (rval) { 30742 goto done1; 30743 } 30744 bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block, 30745 real_addr), reqlength); 30746 } 30747 rval = sd_send_scsi_WRITE(ssc, (dkl != NULL)? dkl: bufaddr, 30748 buffer_size, real_addr, path_flag); 30749 } 30750 30751 done1: 30752 if (dkl != NULL) 30753 kmem_free(dkl, buffer_size); 30754 30755 if (rval != 0) { 30756 if (rval == EIO) 30757 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 30758 else 30759 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 30760 } 30761 done: 30762 sd_ssc_fini(ssc); 30763 return (rval); 30764 } 30765 30766 30767 static int 30768 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie) 30769 { 30770 30771 struct sd_lun *un; 30772 diskaddr_t cap; 30773 uint32_t lbasize; 30774 int path_flag = (int)(uintptr_t)tg_cookie; 30775 int ret = 0; 30776 30777 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 30778 if (un == NULL) 30779 return (ENXIO); 30780 30781 switch (cmd) { 30782 case TG_GETPHYGEOM: 30783 case TG_GETVIRTGEOM: 30784 case TG_GETCAPACITY: 30785 case TG_GETBLOCKSIZE: 30786 mutex_enter(SD_MUTEX(un)); 30787 30788 if ((un->un_f_blockcount_is_valid == TRUE) && 30789 (un->un_f_tgt_blocksize_is_valid == TRUE)) { 30790 cap = un->un_blockcount; 30791 lbasize = un->un_tgt_blocksize; 30792 mutex_exit(SD_MUTEX(un)); 30793 } else { 30794 sd_ssc_t *ssc; 30795 mutex_exit(SD_MUTEX(un)); 30796 ssc = sd_ssc_init(un); 30797 ret = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap, 30798 &lbasize, path_flag); 30799 if (ret != 0) { 30800 if (ret == EIO) 30801 sd_ssc_assessment(ssc, 30802 SD_FMT_STATUS_CHECK); 30803 else 30804 sd_ssc_assessment(ssc, 30805 SD_FMT_IGNORE); 30806 sd_ssc_fini(ssc); 30807 return (ret); 30808 } 30809 sd_ssc_fini(ssc); 30810 mutex_enter(SD_MUTEX(un)); 30811 sd_update_block_info(un, lbasize, cap); 30812 if ((un->un_f_blockcount_is_valid == FALSE) || 30813 (un->un_f_tgt_blocksize_is_valid == FALSE)) { 30814 mutex_exit(SD_MUTEX(un)); 30815 return (EIO); 30816 } 30817 mutex_exit(SD_MUTEX(un)); 30818 } 30819 30820 if (cmd == TG_GETCAPACITY) { 30821 *(diskaddr_t *)arg = cap; 30822 return (0); 30823 } 30824 30825 if (cmd == TG_GETBLOCKSIZE) { 30826 *(uint32_t *)arg = lbasize; 30827 return (0); 30828 } 30829 30830 if (cmd == TG_GETPHYGEOM) 30831 ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg, 30832 cap, lbasize, path_flag); 30833 else 30834 /* TG_GETVIRTGEOM */ 30835 ret = sd_get_virtual_geometry(un, 30836 (cmlb_geom_t *)arg, cap, lbasize); 30837 30838 return (ret); 30839 30840 case TG_GETATTR: 30841 mutex_enter(SD_MUTEX(un)); 30842 ((tg_attribute_t *)arg)->media_is_writable = 30843 un->un_f_mmc_writable_media; 30844 ((tg_attribute_t *)arg)->media_is_solid_state = 30845 un->un_f_is_solid_state; 30846 mutex_exit(SD_MUTEX(un)); 30847 return (0); 30848 default: 30849 return (ENOTTY); 30850 30851 } 30852 } 30853 30854 /* 30855 * Function: sd_ssc_ereport_post 30856 * 30857 * Description: Will be called when SD driver need to post an ereport. 30858 * 30859 * Context: Kernel thread or interrupt context. 30860 */ 30861 static void 30862 sd_ssc_ereport_post(sd_ssc_t *ssc, enum sd_driver_assessment drv_assess) 30863 { 30864 int uscsi_path_instance = 0; 30865 uchar_t uscsi_pkt_reason; 30866 uint32_t uscsi_pkt_state; 30867 uint32_t uscsi_pkt_statistics; 30868 uint64_t uscsi_ena; 30869 uchar_t op_code; 30870 uint8_t *sensep; 30871 union scsi_cdb *cdbp; 30872 uint_t cdblen = 0; 30873 uint_t senlen = 0; 30874 struct sd_lun *un; 30875 dev_info_t *dip; 30876 char *devid; 30877 int ssc_invalid_flags = SSC_FLAGS_INVALID_PKT_REASON | 30878 SSC_FLAGS_INVALID_STATUS | 30879 SSC_FLAGS_INVALID_SENSE | 30880 SSC_FLAGS_INVALID_DATA; 30881 char assessment[16]; 30882 30883 ASSERT(ssc != NULL); 30884 ASSERT(ssc->ssc_uscsi_cmd != NULL); 30885 ASSERT(ssc->ssc_uscsi_info != NULL); 30886 30887 un = ssc->ssc_un; 30888 ASSERT(un != NULL); 30889 30890 dip = un->un_sd->sd_dev; 30891 30892 /* 30893 * Get the devid: 30894 * devid will only be passed to non-transport error reports. 30895 */ 30896 devid = DEVI(dip)->devi_devid_str; 30897 30898 /* 30899 * If we are syncing or dumping, the command will not be executed 30900 * so we bypass this situation. 30901 */ 30902 if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) || 30903 (un->un_state == SD_STATE_DUMPING)) 30904 return; 30905 30906 uscsi_pkt_reason = ssc->ssc_uscsi_info->ui_pkt_reason; 30907 uscsi_path_instance = ssc->ssc_uscsi_cmd->uscsi_path_instance; 30908 uscsi_pkt_state = ssc->ssc_uscsi_info->ui_pkt_state; 30909 uscsi_pkt_statistics = ssc->ssc_uscsi_info->ui_pkt_statistics; 30910 uscsi_ena = ssc->ssc_uscsi_info->ui_ena; 30911 30912 sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf; 30913 cdbp = (union scsi_cdb *)ssc->ssc_uscsi_cmd->uscsi_cdb; 30914 30915 /* In rare cases, EG:DOORLOCK, the cdb could be NULL */ 30916 if (cdbp == NULL) { 30917 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 30918 "sd_ssc_ereport_post meet empty cdb\n"); 30919 return; 30920 } 30921 30922 op_code = cdbp->scc_cmd; 30923 30924 cdblen = (int)ssc->ssc_uscsi_cmd->uscsi_cdblen; 30925 senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen - 30926 ssc->ssc_uscsi_cmd->uscsi_rqresid); 30927 30928 if (senlen > 0) 30929 ASSERT(sensep != NULL); 30930 30931 /* 30932 * Initialize drv_assess to corresponding values. 30933 * SD_FM_DRV_FATAL will be mapped to "fail" or "fatal" depending 30934 * on the sense-key returned back. 30935 */ 30936 switch (drv_assess) { 30937 case SD_FM_DRV_RECOVERY: 30938 (void) sprintf(assessment, "%s", "recovered"); 30939 break; 30940 case SD_FM_DRV_RETRY: 30941 (void) sprintf(assessment, "%s", "retry"); 30942 break; 30943 case SD_FM_DRV_NOTICE: 30944 (void) sprintf(assessment, "%s", "info"); 30945 break; 30946 case SD_FM_DRV_FATAL: 30947 default: 30948 (void) sprintf(assessment, "%s", "unknown"); 30949 } 30950 /* 30951 * If drv_assess == SD_FM_DRV_RECOVERY, this should be a recovered 30952 * command, we will post ereport.io.scsi.cmd.disk.recovered. 30953 * driver-assessment will always be "recovered" here. 30954 */ 30955 if (drv_assess == SD_FM_DRV_RECOVERY) { 30956 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, 30957 "cmd.disk.recovered", uscsi_ena, devid, DDI_NOSLEEP, 30958 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, 30959 "driver-assessment", DATA_TYPE_STRING, assessment, 30960 "op-code", DATA_TYPE_UINT8, op_code, 30961 "cdb", DATA_TYPE_UINT8_ARRAY, 30962 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 30963 "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason, 30964 "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state, 30965 "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics, 30966 NULL); 30967 return; 30968 } 30969 30970 /* 30971 * If there is un-expected/un-decodable data, we should post 30972 * ereport.io.scsi.cmd.disk.dev.uderr. 30973 * driver-assessment will be set based on parameter drv_assess. 30974 * SSC_FLAGS_INVALID_SENSE - invalid sense data sent back. 30975 * SSC_FLAGS_INVALID_PKT_REASON - invalid pkt-reason encountered. 30976 * SSC_FLAGS_INVALID_STATUS - invalid stat-code encountered. 30977 * SSC_FLAGS_INVALID_DATA - invalid data sent back. 30978 */ 30979 if (ssc->ssc_flags & ssc_invalid_flags) { 30980 if (ssc->ssc_flags & SSC_FLAGS_INVALID_SENSE) { 30981 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, 30982 "cmd.disk.dev.uderr", uscsi_ena, devid, DDI_NOSLEEP, 30983 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, 30984 "driver-assessment", DATA_TYPE_STRING, 30985 drv_assess == SD_FM_DRV_FATAL ? 30986 "fail" : assessment, 30987 "op-code", DATA_TYPE_UINT8, op_code, 30988 "cdb", DATA_TYPE_UINT8_ARRAY, 30989 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 30990 "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason, 30991 "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state, 30992 "pkt-stats", DATA_TYPE_UINT32, 30993 uscsi_pkt_statistics, 30994 "stat-code", DATA_TYPE_UINT8, 30995 ssc->ssc_uscsi_cmd->uscsi_status, 30996 "un-decode-info", DATA_TYPE_STRING, 30997 ssc->ssc_info, 30998 "un-decode-value", DATA_TYPE_UINT8_ARRAY, 30999 senlen, sensep, 31000 NULL); 31001 } else { 31002 /* 31003 * For other type of invalid data, the 31004 * un-decode-value field would be empty because the 31005 * un-decodable content could be seen from upper 31006 * level payload or inside un-decode-info. 31007 */ 31008 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, 31009 "cmd.disk.dev.uderr", uscsi_ena, devid, DDI_NOSLEEP, 31010 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31011 "driver-assessment", DATA_TYPE_STRING, 31012 drv_assess == SD_FM_DRV_FATAL ? 31013 "fail" : assessment, 31014 "op-code", DATA_TYPE_UINT8, op_code, 31015 "cdb", DATA_TYPE_UINT8_ARRAY, 31016 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 31017 "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason, 31018 "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state, 31019 "pkt-stats", DATA_TYPE_UINT32, 31020 uscsi_pkt_statistics, 31021 "stat-code", DATA_TYPE_UINT8, 31022 ssc->ssc_uscsi_cmd->uscsi_status, 31023 "un-decode-info", DATA_TYPE_STRING, 31024 ssc->ssc_info, 31025 "un-decode-value", DATA_TYPE_UINT8_ARRAY, 31026 0, NULL, 31027 NULL); 31028 } 31029 ssc->ssc_flags &= ~ssc_invalid_flags; 31030 return; 31031 } 31032 31033 if (uscsi_pkt_reason != CMD_CMPLT || 31034 (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)) { 31035 /* 31036 * pkt-reason != CMD_CMPLT or SSC_FLAGS_TRAN_ABORT was 31037 * set inside sd_start_cmds due to errors(bad packet or 31038 * fatal transport error), we should take it as a 31039 * transport error, so we post ereport.io.scsi.cmd.disk.tran. 31040 * driver-assessment will be set based on drv_assess. 31041 * We will set devid to NULL because it is a transport 31042 * error. 31043 */ 31044 if (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT) 31045 ssc->ssc_flags &= ~SSC_FLAGS_TRAN_ABORT; 31046 31047 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, 31048 "cmd.disk.tran", uscsi_ena, NULL, DDI_NOSLEEP, FM_VERSION, 31049 DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31050 "driver-assessment", DATA_TYPE_STRING, 31051 drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment, 31052 "op-code", DATA_TYPE_UINT8, op_code, 31053 "cdb", DATA_TYPE_UINT8_ARRAY, 31054 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 31055 "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason, 31056 "pkt-state", DATA_TYPE_UINT8, uscsi_pkt_state, 31057 "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics, 31058 NULL); 31059 } else { 31060 /* 31061 * If we got here, we have a completed command, and we need 31062 * to further investigate the sense data to see what kind 31063 * of ereport we should post. 31064 * Post ereport.io.scsi.cmd.disk.dev.rqs.merr 31065 * if sense-key == 0x3. 31066 * Post ereport.io.scsi.cmd.disk.dev.rqs.derr otherwise. 31067 * driver-assessment will be set based on the parameter 31068 * drv_assess. 31069 */ 31070 if (senlen > 0) { 31071 /* 31072 * Here we have sense data available. 31073 */ 31074 uint8_t sense_key; 31075 sense_key = scsi_sense_key(sensep); 31076 if (sense_key == 0x3) { 31077 /* 31078 * sense-key == 0x3(medium error), 31079 * driver-assessment should be "fatal" if 31080 * drv_assess is SD_FM_DRV_FATAL. 31081 */ 31082 scsi_fm_ereport_post(un->un_sd, 31083 uscsi_path_instance, 31084 "cmd.disk.dev.rqs.merr", 31085 uscsi_ena, devid, DDI_NOSLEEP, FM_VERSION, 31086 DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31087 "driver-assessment", 31088 DATA_TYPE_STRING, 31089 drv_assess == SD_FM_DRV_FATAL ? 31090 "fatal" : assessment, 31091 "op-code", 31092 DATA_TYPE_UINT8, op_code, 31093 "cdb", 31094 DATA_TYPE_UINT8_ARRAY, cdblen, 31095 ssc->ssc_uscsi_cmd->uscsi_cdb, 31096 "pkt-reason", 31097 DATA_TYPE_UINT8, uscsi_pkt_reason, 31098 "pkt-state", 31099 DATA_TYPE_UINT8, uscsi_pkt_state, 31100 "pkt-stats", 31101 DATA_TYPE_UINT32, 31102 uscsi_pkt_statistics, 31103 "stat-code", 31104 DATA_TYPE_UINT8, 31105 ssc->ssc_uscsi_cmd->uscsi_status, 31106 "key", 31107 DATA_TYPE_UINT8, 31108 scsi_sense_key(sensep), 31109 "asc", 31110 DATA_TYPE_UINT8, 31111 scsi_sense_asc(sensep), 31112 "ascq", 31113 DATA_TYPE_UINT8, 31114 scsi_sense_ascq(sensep), 31115 "sense-data", 31116 DATA_TYPE_UINT8_ARRAY, 31117 senlen, sensep, 31118 "lba", 31119 DATA_TYPE_UINT64, 31120 ssc->ssc_uscsi_info->ui_lba, 31121 NULL); 31122 } else { 31123 /* 31124 * if sense-key == 0x4(hardware 31125 * error), driver-assessment should 31126 * be "fatal" if drv_assess is 31127 * SD_FM_DRV_FATAL. 31128 */ 31129 scsi_fm_ereport_post(un->un_sd, 31130 uscsi_path_instance, 31131 "cmd.disk.dev.rqs.derr", 31132 uscsi_ena, devid, DDI_NOSLEEP, 31133 FM_VERSION, 31134 DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31135 "driver-assessment", 31136 DATA_TYPE_STRING, 31137 drv_assess == SD_FM_DRV_FATAL ? 31138 (sense_key == 0x4 ? 31139 "fatal" : "fail") : assessment, 31140 "op-code", 31141 DATA_TYPE_UINT8, op_code, 31142 "cdb", 31143 DATA_TYPE_UINT8_ARRAY, cdblen, 31144 ssc->ssc_uscsi_cmd->uscsi_cdb, 31145 "pkt-reason", 31146 DATA_TYPE_UINT8, uscsi_pkt_reason, 31147 "pkt-state", 31148 DATA_TYPE_UINT8, uscsi_pkt_state, 31149 "pkt-stats", 31150 DATA_TYPE_UINT32, 31151 uscsi_pkt_statistics, 31152 "stat-code", 31153 DATA_TYPE_UINT8, 31154 ssc->ssc_uscsi_cmd->uscsi_status, 31155 "key", 31156 DATA_TYPE_UINT8, 31157 scsi_sense_key(sensep), 31158 "asc", 31159 DATA_TYPE_UINT8, 31160 scsi_sense_asc(sensep), 31161 "ascq", 31162 DATA_TYPE_UINT8, 31163 scsi_sense_ascq(sensep), 31164 "sense-data", 31165 DATA_TYPE_UINT8_ARRAY, 31166 senlen, sensep, 31167 NULL); 31168 } 31169 } else { 31170 /* 31171 * For stat_code == STATUS_GOOD, this is not a 31172 * hardware error. 31173 */ 31174 if (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD) 31175 return; 31176 31177 /* 31178 * Post ereport.io.scsi.cmd.disk.dev.serr if we got the 31179 * stat-code but with sense data unavailable. 31180 * driver-assessment will be set based on parameter 31181 * drv_assess. 31182 */ 31183 scsi_fm_ereport_post(un->un_sd, 31184 uscsi_path_instance, "cmd.disk.dev.serr", uscsi_ena, 31185 devid, DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 31186 FM_EREPORT_VERS0, 31187 "driver-assessment", DATA_TYPE_STRING, 31188 drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment, 31189 "op-code", DATA_TYPE_UINT8, op_code, 31190 "cdb", 31191 DATA_TYPE_UINT8_ARRAY, 31192 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 31193 "pkt-reason", 31194 DATA_TYPE_UINT8, uscsi_pkt_reason, 31195 "pkt-state", 31196 DATA_TYPE_UINT8, uscsi_pkt_state, 31197 "pkt-stats", 31198 DATA_TYPE_UINT32, uscsi_pkt_statistics, 31199 "stat-code", 31200 DATA_TYPE_UINT8, 31201 ssc->ssc_uscsi_cmd->uscsi_status, 31202 NULL); 31203 } 31204 } 31205 } 31206 31207 /* 31208 * Function: sd_ssc_extract_info 31209 * 31210 * Description: Extract information available to help generate ereport. 31211 * 31212 * Context: Kernel thread or interrupt context. 31213 */ 31214 static void 31215 sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un, struct scsi_pkt *pktp, 31216 struct buf *bp, struct sd_xbuf *xp) 31217 { 31218 size_t senlen = 0; 31219 union scsi_cdb *cdbp; 31220 int path_instance; 31221 /* 31222 * Need scsi_cdb_size array to determine the cdb length. 31223 */ 31224 extern uchar_t scsi_cdb_size[]; 31225 31226 ASSERT(un != NULL); 31227 ASSERT(pktp != NULL); 31228 ASSERT(bp != NULL); 31229 ASSERT(xp != NULL); 31230 ASSERT(ssc != NULL); 31231 ASSERT(mutex_owned(SD_MUTEX(un))); 31232 31233 /* 31234 * Transfer the cdb buffer pointer here. 31235 */ 31236 cdbp = (union scsi_cdb *)pktp->pkt_cdbp; 31237 31238 ssc->ssc_uscsi_cmd->uscsi_cdblen = scsi_cdb_size[GETGROUP(cdbp)]; 31239 ssc->ssc_uscsi_cmd->uscsi_cdb = (caddr_t)cdbp; 31240 31241 /* 31242 * Transfer the sense data buffer pointer if sense data is available, 31243 * calculate the sense data length first. 31244 */ 31245 if ((xp->xb_sense_state & STATE_XARQ_DONE) || 31246 (xp->xb_sense_state & STATE_ARQ_DONE)) { 31247 /* 31248 * For arq case, we will enter here. 31249 */ 31250 if (xp->xb_sense_state & STATE_XARQ_DONE) { 31251 senlen = MAX_SENSE_LENGTH - xp->xb_sense_resid; 31252 } else { 31253 senlen = SENSE_LENGTH; 31254 } 31255 } else { 31256 /* 31257 * For non-arq case, we will enter this branch. 31258 */ 31259 if (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK && 31260 (xp->xb_sense_state & STATE_XFERRED_DATA)) { 31261 senlen = SENSE_LENGTH - xp->xb_sense_resid; 31262 } 31263 31264 } 31265 31266 ssc->ssc_uscsi_cmd->uscsi_rqlen = (senlen & 0xff); 31267 ssc->ssc_uscsi_cmd->uscsi_rqresid = 0; 31268 ssc->ssc_uscsi_cmd->uscsi_rqbuf = (caddr_t)xp->xb_sense_data; 31269 31270 ssc->ssc_uscsi_cmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK); 31271 31272 /* 31273 * Only transfer path_instance when scsi_pkt was properly allocated. 31274 */ 31275 path_instance = pktp->pkt_path_instance; 31276 if (scsi_pkt_allocated_correctly(pktp) && path_instance) 31277 ssc->ssc_uscsi_cmd->uscsi_path_instance = path_instance; 31278 else 31279 ssc->ssc_uscsi_cmd->uscsi_path_instance = 0; 31280 31281 /* 31282 * Copy in the other fields we may need when posting ereport. 31283 */ 31284 ssc->ssc_uscsi_info->ui_pkt_reason = pktp->pkt_reason; 31285 ssc->ssc_uscsi_info->ui_pkt_state = pktp->pkt_state; 31286 ssc->ssc_uscsi_info->ui_pkt_statistics = pktp->pkt_statistics; 31287 ssc->ssc_uscsi_info->ui_lba = (uint64_t)SD_GET_BLKNO(bp); 31288 31289 /* 31290 * For partially read/write command, we will not create ena 31291 * in case of a successful command be reconized as recovered. 31292 */ 31293 if ((pktp->pkt_reason == CMD_CMPLT) && 31294 (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD) && 31295 (senlen == 0)) { 31296 return; 31297 } 31298 31299 /* 31300 * To associate ereports of a single command execution flow, we 31301 * need a shared ena for a specific command. 31302 */ 31303 if (xp->xb_ena == 0) 31304 xp->xb_ena = fm_ena_generate(0, FM_ENA_FMT1); 31305 ssc->ssc_uscsi_info->ui_ena = xp->xb_ena; 31306 } 31307 31308 31309 /* 31310 * Function: sd_check_solid_state 31311 * 31312 * Description: Query the optional INQUIRY VPD page 0xb1. If the device 31313 * supports VPD page 0xb1, sd examines the MEDIUM ROTATION 31314 * RATE. If the MEDIUM ROTATION RATE is 1, sd assumes the 31315 * device is a solid state drive. 31316 * 31317 * Context: Kernel thread or interrupt context. 31318 */ 31319 31320 static void 31321 sd_check_solid_state(sd_ssc_t *ssc) 31322 { 31323 int rval = 0; 31324 uchar_t *inqb1 = NULL; 31325 size_t inqb1_len = MAX_INQUIRY_SIZE; 31326 size_t inqb1_resid = 0; 31327 struct sd_lun *un; 31328 31329 ASSERT(ssc != NULL); 31330 un = ssc->ssc_un; 31331 ASSERT(un != NULL); 31332 ASSERT(!mutex_owned(SD_MUTEX(un))); 31333 31334 mutex_enter(SD_MUTEX(un)); 31335 un->un_f_is_solid_state = FALSE; 31336 31337 if (ISCD(un)) { 31338 mutex_exit(SD_MUTEX(un)); 31339 return; 31340 } 31341 31342 if (sd_check_vpd_page_support(ssc) == 0 && 31343 un->un_vpd_page_mask & SD_VPD_DEV_CHARACTER_PG) { 31344 mutex_exit(SD_MUTEX(un)); 31345 /* collect page b1 data */ 31346 inqb1 = kmem_zalloc(inqb1_len, KM_SLEEP); 31347 31348 rval = sd_send_scsi_INQUIRY(ssc, inqb1, inqb1_len, 31349 0x01, 0xB1, &inqb1_resid); 31350 31351 if (rval == 0 && (inqb1_len - inqb1_resid > 5)) { 31352 SD_TRACE(SD_LOG_COMMON, un, 31353 "sd_check_solid_state: \ 31354 successfully get VPD page: %x \ 31355 PAGE LENGTH: %x BYTE 4: %x \ 31356 BYTE 5: %x", inqb1[1], inqb1[3], inqb1[4], 31357 inqb1[5]); 31358 31359 mutex_enter(SD_MUTEX(un)); 31360 /* 31361 * Check the MEDIUM ROTATION RATE. If it is set 31362 * to 1, the device is a solid state drive. 31363 */ 31364 if (inqb1[4] == 0 && inqb1[5] == 1) { 31365 un->un_f_is_solid_state = TRUE; 31366 } 31367 mutex_exit(SD_MUTEX(un)); 31368 } else if (rval != 0) { 31369 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 31370 } 31371 31372 kmem_free(inqb1, inqb1_len); 31373 } else { 31374 mutex_exit(SD_MUTEX(un)); 31375 } 31376 } 31377