1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * SCSI disk target driver. 30 */ 31 #include <sys/scsi/scsi.h> 32 #include <sys/dkbad.h> 33 #include <sys/dklabel.h> 34 #include <sys/dkio.h> 35 #include <sys/fdio.h> 36 #include <sys/cdio.h> 37 #include <sys/mhd.h> 38 #include <sys/vtoc.h> 39 #include <sys/dktp/fdisk.h> 40 #include <sys/kstat.h> 41 #include <sys/vtrace.h> 42 #include <sys/note.h> 43 #include <sys/thread.h> 44 #include <sys/proc.h> 45 #include <sys/efi_partition.h> 46 #include <sys/var.h> 47 #include <sys/aio_req.h> 48 49 #ifdef __lock_lint 50 #define _LP64 51 #define __amd64 52 #endif 53 54 #if (defined(__fibre)) 55 /* Note: is there a leadville version of the following? */ 56 #include <sys/fc4/fcal_linkapp.h> 57 #endif 58 #include <sys/taskq.h> 59 #include <sys/uuid.h> 60 #include <sys/byteorder.h> 61 #include <sys/sdt.h> 62 63 #include "sd_xbuf.h" 64 65 #include <sys/scsi/targets/sddef.h> 66 67 68 /* 69 * Loadable module info. 70 */ 71 #if (defined(__fibre)) 72 #define SD_MODULE_NAME "SCSI SSA/FCAL Disk Driver %I%" 73 char _depends_on[] = "misc/scsi drv/fcp"; 74 #else 75 #define SD_MODULE_NAME "SCSI Disk Driver %I%" 76 char _depends_on[] = "misc/scsi"; 77 #endif 78 79 /* 80 * Define the interconnect type, to allow the driver to distinguish 81 * between parallel SCSI (sd) and fibre channel (ssd) behaviors. 82 * 83 * This is really for backward compatability. In the future, the driver 84 * should actually check the "interconnect-type" property as reported by 85 * the HBA; however at present this property is not defined by all HBAs, 86 * so we will use this #define (1) to permit the driver to run in 87 * backward-compatability mode; and (2) to print a notification message 88 * if an FC HBA does not support the "interconnect-type" property. The 89 * behavior of the driver will be to assume parallel SCSI behaviors unless 90 * the "interconnect-type" property is defined by the HBA **AND** has a 91 * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or 92 * INTERCONNECT_FABRIC, in which case the driver will assume Fibre 93 * Channel behaviors (as per the old ssd). (Note that the 94 * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and 95 * will result in the driver assuming parallel SCSI behaviors.) 96 * 97 * (see common/sys/scsi/impl/services.h) 98 * 99 * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default 100 * since some FC HBAs may already support that, and there is some code in 101 * the driver that already looks for it. Using INTERCONNECT_FABRIC as the 102 * default would confuse that code, and besides things should work fine 103 * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the 104 * "interconnect_type" property. 105 * 106 * Notes for off-by-1 workaround: 107 * ----------------------------- 108 * 109 * SCSI READ_CAPACITY command returns the LBA number of the 110 * last logical block, but sd once treated this number as 111 * disks' capacity on x86 platform. And LBAs are addressed 112 * based 0. So the last block was lost on x86 platform. 113 * 114 * Now, we remove this workaround. In order for present sd 115 * driver to work with disks which are labeled/partitioned 116 * via previous sd, we add workaround as follows: 117 * 118 * 1) Locate backup EFI label: sd searches the next to last 119 * block for legacy backup EFI label. If fails, it will 120 * turn to the last block for backup EFI label; 121 * 2) Clear backup EFI label: sd first search the last block 122 * for backup EFI label, and will search the next to last 123 * block only if failed for the last block. 124 * 3) Calculate geometry: refer to sd_convert_geometry(), If 125 * capacity increasing by 1 causes disks' capacity to cross 126 * over the limits in table CHS_values, geometry info will 127 * change. This will raise an issue: In case that primary 128 * VTOC label is destroyed, format commandline can restore 129 * it via backup VTOC labels. And format locates backup VTOC 130 * labels by use of geometry from sd driver. So changing 131 * geometry will prevent format from finding backup VTOC 132 * labels. To eliminate this side effect for compatibility, 133 * sd uses (capacity -1) to calculate geometry; 134 * 4) 1TB disks: some important data structures use 32-bit 135 * signed long/int (for example, daddr_t), so that sd doesn't 136 * support a disk with capacity larger than 1TB on 32-bit 137 * platform. However, for exactly 1TB disk, it was treated as 138 * (1T - 512)B in the past, and could have valid solaris 139 * partitions. To workaround this, if an exactly 1TB disk has 140 * solaris fdisk partition, it will be allowed to work with sd. 141 */ 142 #if (defined(__fibre)) 143 #define SD_DEFAULT_INTERCONNECT_TYPE SD_INTERCONNECT_FIBRE 144 #else 145 #define SD_DEFAULT_INTERCONNECT_TYPE SD_INTERCONNECT_PARALLEL 146 #endif 147 148 /* 149 * The name of the driver, established from the module name in _init. 150 */ 151 static char *sd_label = NULL; 152 153 /* 154 * Driver name is unfortunately prefixed on some driver.conf properties. 155 */ 156 #if (defined(__fibre)) 157 #define sd_max_xfer_size ssd_max_xfer_size 158 #define sd_config_list ssd_config_list 159 static char *sd_max_xfer_size = "ssd_max_xfer_size"; 160 static char *sd_config_list = "ssd-config-list"; 161 #else 162 static char *sd_max_xfer_size = "sd_max_xfer_size"; 163 static char *sd_config_list = "sd-config-list"; 164 #endif 165 166 /* 167 * Driver global variables 168 */ 169 170 #if (defined(__fibre)) 171 /* 172 * These #defines are to avoid namespace collisions that occur because this 173 * code is currently used to compile two seperate driver modules: sd and ssd. 174 * All global variables need to be treated this way (even if declared static) 175 * in order to allow the debugger to resolve the names properly. 176 * It is anticipated that in the near future the ssd module will be obsoleted, 177 * at which time this namespace issue should go away. 178 */ 179 #define sd_state ssd_state 180 #define sd_io_time ssd_io_time 181 #define sd_failfast_enable ssd_failfast_enable 182 #define sd_ua_retry_count ssd_ua_retry_count 183 #define sd_report_pfa ssd_report_pfa 184 #define sd_max_throttle ssd_max_throttle 185 #define sd_min_throttle ssd_min_throttle 186 #define sd_rot_delay ssd_rot_delay 187 188 #define sd_retry_on_reservation_conflict \ 189 ssd_retry_on_reservation_conflict 190 #define sd_reinstate_resv_delay ssd_reinstate_resv_delay 191 #define sd_resv_conflict_name ssd_resv_conflict_name 192 193 #define sd_component_mask ssd_component_mask 194 #define sd_level_mask ssd_level_mask 195 #define sd_debug_un ssd_debug_un 196 #define sd_error_level ssd_error_level 197 198 #define sd_xbuf_active_limit ssd_xbuf_active_limit 199 #define sd_xbuf_reserve_limit ssd_xbuf_reserve_limit 200 201 #define sd_tr ssd_tr 202 #define sd_reset_throttle_timeout ssd_reset_throttle_timeout 203 #define sd_qfull_throttle_timeout ssd_qfull_throttle_timeout 204 #define sd_qfull_throttle_enable ssd_qfull_throttle_enable 205 #define sd_check_media_time ssd_check_media_time 206 #define sd_wait_cmds_complete ssd_wait_cmds_complete 207 #define sd_label_mutex ssd_label_mutex 208 #define sd_detach_mutex ssd_detach_mutex 209 #define sd_log_buf ssd_log_buf 210 #define sd_log_mutex ssd_log_mutex 211 212 #define sd_disk_table ssd_disk_table 213 #define sd_disk_table_size ssd_disk_table_size 214 #define sd_sense_mutex ssd_sense_mutex 215 #define sd_cdbtab ssd_cdbtab 216 217 #define sd_cb_ops ssd_cb_ops 218 #define sd_ops ssd_ops 219 #define sd_additional_codes ssd_additional_codes 220 221 #define sd_minor_data ssd_minor_data 222 #define sd_minor_data_efi ssd_minor_data_efi 223 224 #define sd_tq ssd_tq 225 #define sd_wmr_tq ssd_wmr_tq 226 #define sd_taskq_name ssd_taskq_name 227 #define sd_wmr_taskq_name ssd_wmr_taskq_name 228 #define sd_taskq_minalloc ssd_taskq_minalloc 229 #define sd_taskq_maxalloc ssd_taskq_maxalloc 230 231 #define sd_dump_format_string ssd_dump_format_string 232 233 #define sd_iostart_chain ssd_iostart_chain 234 #define sd_iodone_chain ssd_iodone_chain 235 236 #define sd_pm_idletime ssd_pm_idletime 237 238 #define sd_force_pm_supported ssd_force_pm_supported 239 240 #define sd_dtype_optical_bind ssd_dtype_optical_bind 241 242 #endif 243 244 245 #ifdef SDDEBUG 246 int sd_force_pm_supported = 0; 247 #endif /* SDDEBUG */ 248 249 void *sd_state = NULL; 250 int sd_io_time = SD_IO_TIME; 251 int sd_failfast_enable = 1; 252 int sd_ua_retry_count = SD_UA_RETRY_COUNT; 253 int sd_report_pfa = 1; 254 int sd_max_throttle = SD_MAX_THROTTLE; 255 int sd_min_throttle = SD_MIN_THROTTLE; 256 int sd_rot_delay = 4; /* Default 4ms Rotation delay */ 257 int sd_qfull_throttle_enable = TRUE; 258 259 int sd_retry_on_reservation_conflict = 1; 260 int sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY; 261 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay)) 262 263 static int sd_dtype_optical_bind = -1; 264 265 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */ 266 static char *sd_resv_conflict_name = "sd_retry_on_reservation_conflict"; 267 268 /* 269 * Global data for debug logging. To enable debug printing, sd_component_mask 270 * and sd_level_mask should be set to the desired bit patterns as outlined in 271 * sddef.h. 272 */ 273 uint_t sd_component_mask = 0x0; 274 uint_t sd_level_mask = 0x0; 275 struct sd_lun *sd_debug_un = NULL; 276 uint_t sd_error_level = SCSI_ERR_RETRYABLE; 277 278 /* Note: these may go away in the future... */ 279 static uint32_t sd_xbuf_active_limit = 512; 280 static uint32_t sd_xbuf_reserve_limit = 16; 281 282 static struct sd_resv_reclaim_request sd_tr = { NULL, NULL, NULL, 0, 0, 0 }; 283 284 /* 285 * Timer value used to reset the throttle after it has been reduced 286 * (typically in response to TRAN_BUSY or STATUS_QFULL) 287 */ 288 static int sd_reset_throttle_timeout = SD_RESET_THROTTLE_TIMEOUT; 289 static int sd_qfull_throttle_timeout = SD_QFULL_THROTTLE_TIMEOUT; 290 291 /* 292 * Interval value associated with the media change scsi watch. 293 */ 294 static int sd_check_media_time = 3000000; 295 296 /* 297 * Wait value used for in progress operations during a DDI_SUSPEND 298 */ 299 static int sd_wait_cmds_complete = SD_WAIT_CMDS_COMPLETE; 300 301 /* 302 * sd_label_mutex protects a static buffer used in the disk label 303 * component of the driver 304 */ 305 static kmutex_t sd_label_mutex; 306 307 /* 308 * sd_detach_mutex protects un_layer_count, un_detach_count, and 309 * un_opens_in_progress in the sd_lun structure. 310 */ 311 static kmutex_t sd_detach_mutex; 312 313 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex, 314 sd_lun::{un_layer_count un_detach_count un_opens_in_progress})) 315 316 /* 317 * Global buffer and mutex for debug logging 318 */ 319 static char sd_log_buf[1024]; 320 static kmutex_t sd_log_mutex; 321 322 /* 323 * Structs and globals for recording attached lun information. 324 * This maintains a chain. Each node in the chain represents a SCSI controller. 325 * The structure records the number of luns attached to each target connected 326 * with the controller. 327 * For parallel scsi device only. 328 */ 329 struct sd_scsi_hba_tgt_lun { 330 struct sd_scsi_hba_tgt_lun *next; 331 dev_info_t *pdip; 332 int nlun[NTARGETS_WIDE]; 333 }; 334 335 /* 336 * Flag to indicate the lun is attached or detached 337 */ 338 #define SD_SCSI_LUN_ATTACH 0 339 #define SD_SCSI_LUN_DETACH 1 340 341 static kmutex_t sd_scsi_target_lun_mutex; 342 static struct sd_scsi_hba_tgt_lun *sd_scsi_target_lun_head = NULL; 343 344 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex, 345 sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip)) 346 347 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex, 348 sd_scsi_target_lun_head)) 349 350 /* 351 * "Smart" Probe Caching structs, globals, #defines, etc. 352 * For parallel scsi and non-self-identify device only. 353 */ 354 355 /* 356 * The following resources and routines are implemented to support 357 * "smart" probing, which caches the scsi_probe() results in an array, 358 * in order to help avoid long probe times. 359 */ 360 struct sd_scsi_probe_cache { 361 struct sd_scsi_probe_cache *next; 362 dev_info_t *pdip; 363 int cache[NTARGETS_WIDE]; 364 }; 365 366 static kmutex_t sd_scsi_probe_cache_mutex; 367 static struct sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL; 368 369 /* 370 * Really we only need protection on the head of the linked list, but 371 * better safe than sorry. 372 */ 373 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex, 374 sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip)) 375 376 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex, 377 sd_scsi_probe_cache_head)) 378 379 380 /* 381 * Vendor specific data name property declarations 382 */ 383 384 #if defined(__fibre) || defined(__i386) ||defined(__amd64) 385 386 static sd_tunables seagate_properties = { 387 SEAGATE_THROTTLE_VALUE, 388 0, 389 0, 390 0, 391 0, 392 0, 393 0, 394 0, 395 0 396 }; 397 398 399 static sd_tunables fujitsu_properties = { 400 FUJITSU_THROTTLE_VALUE, 401 0, 402 0, 403 0, 404 0, 405 0, 406 0, 407 0, 408 0 409 }; 410 411 static sd_tunables ibm_properties = { 412 IBM_THROTTLE_VALUE, 413 0, 414 0, 415 0, 416 0, 417 0, 418 0, 419 0, 420 0 421 }; 422 423 static sd_tunables purple_properties = { 424 PURPLE_THROTTLE_VALUE, 425 0, 426 0, 427 PURPLE_BUSY_RETRIES, 428 PURPLE_RESET_RETRY_COUNT, 429 PURPLE_RESERVE_RELEASE_TIME, 430 0, 431 0, 432 0 433 }; 434 435 static sd_tunables sve_properties = { 436 SVE_THROTTLE_VALUE, 437 0, 438 0, 439 SVE_BUSY_RETRIES, 440 SVE_RESET_RETRY_COUNT, 441 SVE_RESERVE_RELEASE_TIME, 442 SVE_MIN_THROTTLE_VALUE, 443 SVE_DISKSORT_DISABLED_FLAG, 444 0 445 }; 446 447 static sd_tunables maserati_properties = { 448 0, 449 0, 450 0, 451 0, 452 0, 453 0, 454 0, 455 MASERATI_DISKSORT_DISABLED_FLAG, 456 MASERATI_LUN_RESET_ENABLED_FLAG 457 }; 458 459 static sd_tunables pirus_properties = { 460 PIRUS_THROTTLE_VALUE, 461 0, 462 PIRUS_NRR_COUNT, 463 PIRUS_BUSY_RETRIES, 464 PIRUS_RESET_RETRY_COUNT, 465 0, 466 PIRUS_MIN_THROTTLE_VALUE, 467 PIRUS_DISKSORT_DISABLED_FLAG, 468 PIRUS_LUN_RESET_ENABLED_FLAG 469 }; 470 471 #endif 472 473 #if (defined(__sparc) && !defined(__fibre)) || \ 474 (defined(__i386) || defined(__amd64)) 475 476 477 static sd_tunables elite_properties = { 478 ELITE_THROTTLE_VALUE, 479 0, 480 0, 481 0, 482 0, 483 0, 484 0, 485 0, 486 0 487 }; 488 489 static sd_tunables st31200n_properties = { 490 ST31200N_THROTTLE_VALUE, 491 0, 492 0, 493 0, 494 0, 495 0, 496 0, 497 0, 498 0 499 }; 500 501 #endif /* Fibre or not */ 502 503 static sd_tunables lsi_properties_scsi = { 504 LSI_THROTTLE_VALUE, 505 0, 506 LSI_NOTREADY_RETRIES, 507 0, 508 0, 509 0, 510 0, 511 0, 512 0 513 }; 514 515 static sd_tunables symbios_properties = { 516 SYMBIOS_THROTTLE_VALUE, 517 0, 518 SYMBIOS_NOTREADY_RETRIES, 519 0, 520 0, 521 0, 522 0, 523 0, 524 0 525 }; 526 527 static sd_tunables lsi_properties = { 528 0, 529 0, 530 LSI_NOTREADY_RETRIES, 531 0, 532 0, 533 0, 534 0, 535 0, 536 0 537 }; 538 539 static sd_tunables lsi_oem_properties = { 540 0, 541 0, 542 LSI_OEM_NOTREADY_RETRIES, 543 0, 544 0, 545 0, 546 0, 547 0, 548 0 549 }; 550 551 552 553 #if (defined(SD_PROP_TST)) 554 555 #define SD_TST_CTYPE_VAL CTYPE_CDROM 556 #define SD_TST_THROTTLE_VAL 16 557 #define SD_TST_NOTREADY_VAL 12 558 #define SD_TST_BUSY_VAL 60 559 #define SD_TST_RST_RETRY_VAL 36 560 #define SD_TST_RSV_REL_TIME 60 561 562 static sd_tunables tst_properties = { 563 SD_TST_THROTTLE_VAL, 564 SD_TST_CTYPE_VAL, 565 SD_TST_NOTREADY_VAL, 566 SD_TST_BUSY_VAL, 567 SD_TST_RST_RETRY_VAL, 568 SD_TST_RSV_REL_TIME, 569 0, 570 0, 571 0 572 }; 573 #endif 574 575 /* This is similiar to the ANSI toupper implementation */ 576 #define SD_TOUPPER(C) (((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C)) 577 578 /* 579 * Static Driver Configuration Table 580 * 581 * This is the table of disks which need throttle adjustment (or, perhaps 582 * something else as defined by the flags at a future time.) device_id 583 * is a string consisting of concatenated vid (vendor), pid (product/model) 584 * and revision strings as defined in the scsi_inquiry structure. Offsets of 585 * the parts of the string are as defined by the sizes in the scsi_inquiry 586 * structure. Device type is searched as far as the device_id string is 587 * defined. Flags defines which values are to be set in the driver from the 588 * properties list. 589 * 590 * Entries below which begin and end with a "*" are a special case. 591 * These do not have a specific vendor, and the string which follows 592 * can appear anywhere in the 16 byte PID portion of the inquiry data. 593 * 594 * Entries below which begin and end with a " " (blank) are a special 595 * case. The comparison function will treat multiple consecutive blanks 596 * as equivalent to a single blank. For example, this causes a 597 * sd_disk_table entry of " NEC CDROM " to match a device's id string 598 * of "NEC CDROM". 599 * 600 * Note: The MD21 controller type has been obsoleted. 601 * ST318202F is a Legacy device 602 * MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been 603 * made with an FC connection. The entries here are a legacy. 604 */ 605 static sd_disk_config_t sd_disk_table[] = { 606 #if defined(__fibre) || defined(__i386) || defined(__amd64) 607 { "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 608 { "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 609 { "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 610 { "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 611 { "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 612 { "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 613 { "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 614 { "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 615 { "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 616 { "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 617 { "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 618 { "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 619 { "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 620 { "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 621 { "FUJITSU MAG3091F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 622 { "FUJITSU MAG3182F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 623 { "FUJITSU MAA3182F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 624 { "FUJITSU MAF3364F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 625 { "FUJITSU MAL3364F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 626 { "FUJITSU MAL3738F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 627 { "FUJITSU MAM3182FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 628 { "FUJITSU MAM3364FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 629 { "FUJITSU MAM3738FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 630 { "IBM DDYFT1835", SD_CONF_BSET_THROTTLE, &ibm_properties }, 631 { "IBM DDYFT3695", SD_CONF_BSET_THROTTLE, &ibm_properties }, 632 { "IBM IC35LF2D2", SD_CONF_BSET_THROTTLE, &ibm_properties }, 633 { "IBM IC35LF2PR", SD_CONF_BSET_THROTTLE, &ibm_properties }, 634 { "IBM 1726-2xx", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 635 { "IBM 1726-4xx", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 636 { "IBM 1726-3xx", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 637 { "IBM 3526", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 638 { "IBM 3542", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 639 { "IBM 3552", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 640 { "IBM 1722", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 641 { "IBM 1742", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 642 { "IBM 1815", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 643 { "IBM FAStT", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 644 { "IBM 1814", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 645 { "IBM 1814-200", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 646 { "LSI INF", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 647 { "ENGENIO INF", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 648 { "SGI TP", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 649 { "SGI IS", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 650 { "*CSM100_*", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 651 { "*CSM200_*", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 652 { "Fujitsu SX300", SD_CONF_BSET_THROTTLE, &lsi_oem_properties }, 653 { "LSI", SD_CONF_BSET_NRR_COUNT, &lsi_properties }, 654 { "SUN T3", SD_CONF_BSET_THROTTLE | 655 SD_CONF_BSET_BSY_RETRY_COUNT| 656 SD_CONF_BSET_RST_RETRIES| 657 SD_CONF_BSET_RSV_REL_TIME, 658 &purple_properties }, 659 { "SUN SESS01", SD_CONF_BSET_THROTTLE | 660 SD_CONF_BSET_BSY_RETRY_COUNT| 661 SD_CONF_BSET_RST_RETRIES| 662 SD_CONF_BSET_RSV_REL_TIME| 663 SD_CONF_BSET_MIN_THROTTLE| 664 SD_CONF_BSET_DISKSORT_DISABLED, 665 &sve_properties }, 666 { "SUN T4", SD_CONF_BSET_THROTTLE | 667 SD_CONF_BSET_BSY_RETRY_COUNT| 668 SD_CONF_BSET_RST_RETRIES| 669 SD_CONF_BSET_RSV_REL_TIME, 670 &purple_properties }, 671 { "SUN SVE01", SD_CONF_BSET_DISKSORT_DISABLED | 672 SD_CONF_BSET_LUN_RESET_ENABLED, 673 &maserati_properties }, 674 { "SUN SE6920", SD_CONF_BSET_THROTTLE | 675 SD_CONF_BSET_NRR_COUNT| 676 SD_CONF_BSET_BSY_RETRY_COUNT| 677 SD_CONF_BSET_RST_RETRIES| 678 SD_CONF_BSET_MIN_THROTTLE| 679 SD_CONF_BSET_DISKSORT_DISABLED| 680 SD_CONF_BSET_LUN_RESET_ENABLED, 681 &pirus_properties }, 682 { "SUN SE6940", SD_CONF_BSET_THROTTLE | 683 SD_CONF_BSET_NRR_COUNT| 684 SD_CONF_BSET_BSY_RETRY_COUNT| 685 SD_CONF_BSET_RST_RETRIES| 686 SD_CONF_BSET_MIN_THROTTLE| 687 SD_CONF_BSET_DISKSORT_DISABLED| 688 SD_CONF_BSET_LUN_RESET_ENABLED, 689 &pirus_properties }, 690 { "SUN StorageTek 6920", SD_CONF_BSET_THROTTLE | 691 SD_CONF_BSET_NRR_COUNT| 692 SD_CONF_BSET_BSY_RETRY_COUNT| 693 SD_CONF_BSET_RST_RETRIES| 694 SD_CONF_BSET_MIN_THROTTLE| 695 SD_CONF_BSET_DISKSORT_DISABLED| 696 SD_CONF_BSET_LUN_RESET_ENABLED, 697 &pirus_properties }, 698 { "SUN StorageTek 6940", SD_CONF_BSET_THROTTLE | 699 SD_CONF_BSET_NRR_COUNT| 700 SD_CONF_BSET_BSY_RETRY_COUNT| 701 SD_CONF_BSET_RST_RETRIES| 702 SD_CONF_BSET_MIN_THROTTLE| 703 SD_CONF_BSET_DISKSORT_DISABLED| 704 SD_CONF_BSET_LUN_RESET_ENABLED, 705 &pirus_properties }, 706 { "SUN PSX1000", SD_CONF_BSET_THROTTLE | 707 SD_CONF_BSET_NRR_COUNT| 708 SD_CONF_BSET_BSY_RETRY_COUNT| 709 SD_CONF_BSET_RST_RETRIES| 710 SD_CONF_BSET_MIN_THROTTLE| 711 SD_CONF_BSET_DISKSORT_DISABLED| 712 SD_CONF_BSET_LUN_RESET_ENABLED, 713 &pirus_properties }, 714 { "SUN SE6330", SD_CONF_BSET_THROTTLE | 715 SD_CONF_BSET_NRR_COUNT| 716 SD_CONF_BSET_BSY_RETRY_COUNT| 717 SD_CONF_BSET_RST_RETRIES| 718 SD_CONF_BSET_MIN_THROTTLE| 719 SD_CONF_BSET_DISKSORT_DISABLED| 720 SD_CONF_BSET_LUN_RESET_ENABLED, 721 &pirus_properties }, 722 { "STK OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 723 { "STK OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 724 { "STK BladeCtlr", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 725 { "STK FLEXLINE", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 726 { "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties }, 727 #endif /* fibre or NON-sparc platforms */ 728 #if ((defined(__sparc) && !defined(__fibre)) ||\ 729 (defined(__i386) || defined(__amd64))) 730 { "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties }, 731 { "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties }, 732 { "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL }, 733 { "CONNER CP30540", SD_CONF_BSET_NOCACHE, NULL }, 734 { "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL }, 735 { "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL }, 736 { "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL }, 737 { "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL }, 738 { "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL }, 739 { "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL }, 740 { "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL }, 741 { "SYMBIOS INF-01-00 ", SD_CONF_BSET_FAB_DEVID, NULL }, 742 { "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT, 743 &symbios_properties }, 744 { "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT, 745 &lsi_properties_scsi }, 746 #if defined(__i386) || defined(__amd64) 747 { " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD 748 | SD_CONF_BSET_READSUB_BCD 749 | SD_CONF_BSET_READ_TOC_ADDR_BCD 750 | SD_CONF_BSET_NO_READ_HEADER 751 | SD_CONF_BSET_READ_CD_XD4), NULL }, 752 753 { " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD 754 | SD_CONF_BSET_READSUB_BCD 755 | SD_CONF_BSET_READ_TOC_ADDR_BCD 756 | SD_CONF_BSET_NO_READ_HEADER 757 | SD_CONF_BSET_READ_CD_XD4), NULL }, 758 #endif /* __i386 || __amd64 */ 759 #endif /* sparc NON-fibre or NON-sparc platforms */ 760 761 #if (defined(SD_PROP_TST)) 762 { "VENDOR PRODUCT ", (SD_CONF_BSET_THROTTLE 763 | SD_CONF_BSET_CTYPE 764 | SD_CONF_BSET_NRR_COUNT 765 | SD_CONF_BSET_FAB_DEVID 766 | SD_CONF_BSET_NOCACHE 767 | SD_CONF_BSET_BSY_RETRY_COUNT 768 | SD_CONF_BSET_PLAYMSF_BCD 769 | SD_CONF_BSET_READSUB_BCD 770 | SD_CONF_BSET_READ_TOC_TRK_BCD 771 | SD_CONF_BSET_READ_TOC_ADDR_BCD 772 | SD_CONF_BSET_NO_READ_HEADER 773 | SD_CONF_BSET_READ_CD_XD4 774 | SD_CONF_BSET_RST_RETRIES 775 | SD_CONF_BSET_RSV_REL_TIME 776 | SD_CONF_BSET_TUR_CHECK), &tst_properties}, 777 #endif 778 }; 779 780 static const int sd_disk_table_size = 781 sizeof (sd_disk_table)/ sizeof (sd_disk_config_t); 782 783 784 /* 785 * Return codes of sd_uselabel(). 786 */ 787 #define SD_LABEL_IS_VALID 0 788 #define SD_LABEL_IS_INVALID 1 789 790 #define SD_INTERCONNECT_PARALLEL 0 791 #define SD_INTERCONNECT_FABRIC 1 792 #define SD_INTERCONNECT_FIBRE 2 793 #define SD_INTERCONNECT_SSA 3 794 #define SD_INTERCONNECT_SATA 4 795 #define SD_IS_PARALLEL_SCSI(un) \ 796 ((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL) 797 #define SD_IS_SERIAL(un) \ 798 ((un)->un_interconnect_type == SD_INTERCONNECT_SATA) 799 800 /* 801 * Definitions used by device id registration routines 802 */ 803 #define VPD_HEAD_OFFSET 3 /* size of head for vpd page */ 804 #define VPD_PAGE_LENGTH 3 /* offset for pge length data */ 805 #define VPD_MODE_PAGE 1 /* offset into vpd pg for "page code" */ 806 #define WD_NODE 7 /* the whole disk minor */ 807 808 static kmutex_t sd_sense_mutex = {0}; 809 810 /* 811 * Macros for updates of the driver state 812 */ 813 #define New_state(un, s) \ 814 (un)->un_last_state = (un)->un_state, (un)->un_state = (s) 815 #define Restore_state(un) \ 816 { uchar_t tmp = (un)->un_last_state; New_state((un), tmp); } 817 818 static struct sd_cdbinfo sd_cdbtab[] = { 819 { CDB_GROUP0, 0x00, 0x1FFFFF, 0xFF, }, 820 { CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF, }, 821 { CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF, }, 822 { CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, }, 823 }; 824 825 /* 826 * Specifies the number of seconds that must have elapsed since the last 827 * cmd. has completed for a device to be declared idle to the PM framework. 828 */ 829 static int sd_pm_idletime = 1; 830 831 /* 832 * Internal function prototypes 833 */ 834 835 #if (defined(__fibre)) 836 /* 837 * These #defines are to avoid namespace collisions that occur because this 838 * code is currently used to compile two seperate driver modules: sd and ssd. 839 * All function names need to be treated this way (even if declared static) 840 * in order to allow the debugger to resolve the names properly. 841 * It is anticipated that in the near future the ssd module will be obsoleted, 842 * at which time this ugliness should go away. 843 */ 844 #define sd_log_trace ssd_log_trace 845 #define sd_log_info ssd_log_info 846 #define sd_log_err ssd_log_err 847 #define sdprobe ssdprobe 848 #define sdinfo ssdinfo 849 #define sd_prop_op ssd_prop_op 850 #define sd_scsi_probe_cache_init ssd_scsi_probe_cache_init 851 #define sd_scsi_probe_cache_fini ssd_scsi_probe_cache_fini 852 #define sd_scsi_clear_probe_cache ssd_scsi_clear_probe_cache 853 #define sd_scsi_probe_with_cache ssd_scsi_probe_with_cache 854 #define sd_scsi_target_lun_init ssd_scsi_target_lun_init 855 #define sd_scsi_target_lun_fini ssd_scsi_target_lun_fini 856 #define sd_scsi_get_target_lun_count ssd_scsi_get_target_lun_count 857 #define sd_scsi_update_lun_on_target ssd_scsi_update_lun_on_target 858 #define sd_spin_up_unit ssd_spin_up_unit 859 #define sd_enable_descr_sense ssd_enable_descr_sense 860 #define sd_reenable_dsense_task ssd_reenable_dsense_task 861 #define sd_set_mmc_caps ssd_set_mmc_caps 862 #define sd_read_unit_properties ssd_read_unit_properties 863 #define sd_process_sdconf_file ssd_process_sdconf_file 864 #define sd_process_sdconf_table ssd_process_sdconf_table 865 #define sd_sdconf_id_match ssd_sdconf_id_match 866 #define sd_blank_cmp ssd_blank_cmp 867 #define sd_chk_vers1_data ssd_chk_vers1_data 868 #define sd_set_vers1_properties ssd_set_vers1_properties 869 #define sd_validate_geometry ssd_validate_geometry 870 871 #if defined(_SUNOS_VTOC_16) 872 #define sd_convert_geometry ssd_convert_geometry 873 #endif 874 875 #define sd_resync_geom_caches ssd_resync_geom_caches 876 #define sd_read_fdisk ssd_read_fdisk 877 #define sd_get_physical_geometry ssd_get_physical_geometry 878 #define sd_get_virtual_geometry ssd_get_virtual_geometry 879 #define sd_update_block_info ssd_update_block_info 880 #define sd_swap_efi_gpt ssd_swap_efi_gpt 881 #define sd_swap_efi_gpe ssd_swap_efi_gpe 882 #define sd_validate_efi ssd_validate_efi 883 #define sd_use_efi ssd_use_efi 884 #define sd_uselabel ssd_uselabel 885 #define sd_build_default_label ssd_build_default_label 886 #define sd_has_max_chs_vals ssd_has_max_chs_vals 887 #define sd_inq_fill ssd_inq_fill 888 #define sd_register_devid ssd_register_devid 889 #define sd_get_devid_block ssd_get_devid_block 890 #define sd_get_devid ssd_get_devid 891 #define sd_create_devid ssd_create_devid 892 #define sd_write_deviceid ssd_write_deviceid 893 #define sd_check_vpd_page_support ssd_check_vpd_page_support 894 #define sd_setup_pm ssd_setup_pm 895 #define sd_create_pm_components ssd_create_pm_components 896 #define sd_ddi_suspend ssd_ddi_suspend 897 #define sd_ddi_pm_suspend ssd_ddi_pm_suspend 898 #define sd_ddi_resume ssd_ddi_resume 899 #define sd_ddi_pm_resume ssd_ddi_pm_resume 900 #define sdpower ssdpower 901 #define sdattach ssdattach 902 #define sddetach ssddetach 903 #define sd_unit_attach ssd_unit_attach 904 #define sd_unit_detach ssd_unit_detach 905 #define sd_set_unit_attributes ssd_set_unit_attributes 906 #define sd_create_minor_nodes ssd_create_minor_nodes 907 #define sd_create_errstats ssd_create_errstats 908 #define sd_set_errstats ssd_set_errstats 909 #define sd_set_pstats ssd_set_pstats 910 #define sddump ssddump 911 #define sd_scsi_poll ssd_scsi_poll 912 #define sd_send_polled_RQS ssd_send_polled_RQS 913 #define sd_ddi_scsi_poll ssd_ddi_scsi_poll 914 #define sd_init_event_callbacks ssd_init_event_callbacks 915 #define sd_event_callback ssd_event_callback 916 #define sd_cache_control ssd_cache_control 917 #define sd_get_write_cache_enabled ssd_get_write_cache_enabled 918 #define sd_make_device ssd_make_device 919 #define sdopen ssdopen 920 #define sdclose ssdclose 921 #define sd_ready_and_valid ssd_ready_and_valid 922 #define sdmin ssdmin 923 #define sdread ssdread 924 #define sdwrite ssdwrite 925 #define sdaread ssdaread 926 #define sdawrite ssdawrite 927 #define sdstrategy ssdstrategy 928 #define sdioctl ssdioctl 929 #define sd_mapblockaddr_iostart ssd_mapblockaddr_iostart 930 #define sd_mapblocksize_iostart ssd_mapblocksize_iostart 931 #define sd_checksum_iostart ssd_checksum_iostart 932 #define sd_checksum_uscsi_iostart ssd_checksum_uscsi_iostart 933 #define sd_pm_iostart ssd_pm_iostart 934 #define sd_core_iostart ssd_core_iostart 935 #define sd_mapblockaddr_iodone ssd_mapblockaddr_iodone 936 #define sd_mapblocksize_iodone ssd_mapblocksize_iodone 937 #define sd_checksum_iodone ssd_checksum_iodone 938 #define sd_checksum_uscsi_iodone ssd_checksum_uscsi_iodone 939 #define sd_pm_iodone ssd_pm_iodone 940 #define sd_initpkt_for_buf ssd_initpkt_for_buf 941 #define sd_destroypkt_for_buf ssd_destroypkt_for_buf 942 #define sd_setup_rw_pkt ssd_setup_rw_pkt 943 #define sd_setup_next_rw_pkt ssd_setup_next_rw_pkt 944 #define sd_buf_iodone ssd_buf_iodone 945 #define sd_uscsi_strategy ssd_uscsi_strategy 946 #define sd_initpkt_for_uscsi ssd_initpkt_for_uscsi 947 #define sd_destroypkt_for_uscsi ssd_destroypkt_for_uscsi 948 #define sd_uscsi_iodone ssd_uscsi_iodone 949 #define sd_xbuf_strategy ssd_xbuf_strategy 950 #define sd_xbuf_init ssd_xbuf_init 951 #define sd_pm_entry ssd_pm_entry 952 #define sd_pm_exit ssd_pm_exit 953 954 #define sd_pm_idletimeout_handler ssd_pm_idletimeout_handler 955 #define sd_pm_timeout_handler ssd_pm_timeout_handler 956 957 #define sd_add_buf_to_waitq ssd_add_buf_to_waitq 958 #define sdintr ssdintr 959 #define sd_start_cmds ssd_start_cmds 960 #define sd_send_scsi_cmd ssd_send_scsi_cmd 961 #define sd_bioclone_alloc ssd_bioclone_alloc 962 #define sd_bioclone_free ssd_bioclone_free 963 #define sd_shadow_buf_alloc ssd_shadow_buf_alloc 964 #define sd_shadow_buf_free ssd_shadow_buf_free 965 #define sd_print_transport_rejected_message \ 966 ssd_print_transport_rejected_message 967 #define sd_retry_command ssd_retry_command 968 #define sd_set_retry_bp ssd_set_retry_bp 969 #define sd_send_request_sense_command ssd_send_request_sense_command 970 #define sd_start_retry_command ssd_start_retry_command 971 #define sd_start_direct_priority_command \ 972 ssd_start_direct_priority_command 973 #define sd_return_failed_command ssd_return_failed_command 974 #define sd_return_failed_command_no_restart \ 975 ssd_return_failed_command_no_restart 976 #define sd_return_command ssd_return_command 977 #define sd_sync_with_callback ssd_sync_with_callback 978 #define sdrunout ssdrunout 979 #define sd_mark_rqs_busy ssd_mark_rqs_busy 980 #define sd_mark_rqs_idle ssd_mark_rqs_idle 981 #define sd_reduce_throttle ssd_reduce_throttle 982 #define sd_restore_throttle ssd_restore_throttle 983 #define sd_print_incomplete_msg ssd_print_incomplete_msg 984 #define sd_init_cdb_limits ssd_init_cdb_limits 985 #define sd_pkt_status_good ssd_pkt_status_good 986 #define sd_pkt_status_check_condition ssd_pkt_status_check_condition 987 #define sd_pkt_status_busy ssd_pkt_status_busy 988 #define sd_pkt_status_reservation_conflict \ 989 ssd_pkt_status_reservation_conflict 990 #define sd_pkt_status_qfull ssd_pkt_status_qfull 991 #define sd_handle_request_sense ssd_handle_request_sense 992 #define sd_handle_auto_request_sense ssd_handle_auto_request_sense 993 #define sd_print_sense_failed_msg ssd_print_sense_failed_msg 994 #define sd_validate_sense_data ssd_validate_sense_data 995 #define sd_decode_sense ssd_decode_sense 996 #define sd_print_sense_msg ssd_print_sense_msg 997 #define sd_sense_key_no_sense ssd_sense_key_no_sense 998 #define sd_sense_key_recoverable_error ssd_sense_key_recoverable_error 999 #define sd_sense_key_not_ready ssd_sense_key_not_ready 1000 #define sd_sense_key_medium_or_hardware_error \ 1001 ssd_sense_key_medium_or_hardware_error 1002 #define sd_sense_key_illegal_request ssd_sense_key_illegal_request 1003 #define sd_sense_key_unit_attention ssd_sense_key_unit_attention 1004 #define sd_sense_key_fail_command ssd_sense_key_fail_command 1005 #define sd_sense_key_blank_check ssd_sense_key_blank_check 1006 #define sd_sense_key_aborted_command ssd_sense_key_aborted_command 1007 #define sd_sense_key_default ssd_sense_key_default 1008 #define sd_print_retry_msg ssd_print_retry_msg 1009 #define sd_print_cmd_incomplete_msg ssd_print_cmd_incomplete_msg 1010 #define sd_pkt_reason_cmd_incomplete ssd_pkt_reason_cmd_incomplete 1011 #define sd_pkt_reason_cmd_tran_err ssd_pkt_reason_cmd_tran_err 1012 #define sd_pkt_reason_cmd_reset ssd_pkt_reason_cmd_reset 1013 #define sd_pkt_reason_cmd_aborted ssd_pkt_reason_cmd_aborted 1014 #define sd_pkt_reason_cmd_timeout ssd_pkt_reason_cmd_timeout 1015 #define sd_pkt_reason_cmd_unx_bus_free ssd_pkt_reason_cmd_unx_bus_free 1016 #define sd_pkt_reason_cmd_tag_reject ssd_pkt_reason_cmd_tag_reject 1017 #define sd_pkt_reason_default ssd_pkt_reason_default 1018 #define sd_reset_target ssd_reset_target 1019 #define sd_start_stop_unit_callback ssd_start_stop_unit_callback 1020 #define sd_start_stop_unit_task ssd_start_stop_unit_task 1021 #define sd_taskq_create ssd_taskq_create 1022 #define sd_taskq_delete ssd_taskq_delete 1023 #define sd_media_change_task ssd_media_change_task 1024 #define sd_handle_mchange ssd_handle_mchange 1025 #define sd_send_scsi_DOORLOCK ssd_send_scsi_DOORLOCK 1026 #define sd_send_scsi_READ_CAPACITY ssd_send_scsi_READ_CAPACITY 1027 #define sd_send_scsi_READ_CAPACITY_16 ssd_send_scsi_READ_CAPACITY_16 1028 #define sd_send_scsi_GET_CONFIGURATION ssd_send_scsi_GET_CONFIGURATION 1029 #define sd_send_scsi_feature_GET_CONFIGURATION \ 1030 sd_send_scsi_feature_GET_CONFIGURATION 1031 #define sd_send_scsi_START_STOP_UNIT ssd_send_scsi_START_STOP_UNIT 1032 #define sd_send_scsi_INQUIRY ssd_send_scsi_INQUIRY 1033 #define sd_send_scsi_TEST_UNIT_READY ssd_send_scsi_TEST_UNIT_READY 1034 #define sd_send_scsi_PERSISTENT_RESERVE_IN \ 1035 ssd_send_scsi_PERSISTENT_RESERVE_IN 1036 #define sd_send_scsi_PERSISTENT_RESERVE_OUT \ 1037 ssd_send_scsi_PERSISTENT_RESERVE_OUT 1038 #define sd_send_scsi_SYNCHRONIZE_CACHE ssd_send_scsi_SYNCHRONIZE_CACHE 1039 #define sd_send_scsi_SYNCHRONIZE_CACHE_biodone \ 1040 ssd_send_scsi_SYNCHRONIZE_CACHE_biodone 1041 #define sd_send_scsi_MODE_SENSE ssd_send_scsi_MODE_SENSE 1042 #define sd_send_scsi_MODE_SELECT ssd_send_scsi_MODE_SELECT 1043 #define sd_send_scsi_RDWR ssd_send_scsi_RDWR 1044 #define sd_send_scsi_LOG_SENSE ssd_send_scsi_LOG_SENSE 1045 #define sd_alloc_rqs ssd_alloc_rqs 1046 #define sd_free_rqs ssd_free_rqs 1047 #define sd_dump_memory ssd_dump_memory 1048 #define sd_get_media_info ssd_get_media_info 1049 #define sd_dkio_ctrl_info ssd_dkio_ctrl_info 1050 #define sd_dkio_get_geometry ssd_dkio_get_geometry 1051 #define sd_dkio_set_geometry ssd_dkio_set_geometry 1052 #define sd_dkio_get_partition ssd_dkio_get_partition 1053 #define sd_dkio_set_partition ssd_dkio_set_partition 1054 #define sd_dkio_partition ssd_dkio_partition 1055 #define sd_dkio_get_vtoc ssd_dkio_get_vtoc 1056 #define sd_dkio_get_efi ssd_dkio_get_efi 1057 #define sd_build_user_vtoc ssd_build_user_vtoc 1058 #define sd_dkio_set_vtoc ssd_dkio_set_vtoc 1059 #define sd_dkio_set_efi ssd_dkio_set_efi 1060 #define sd_build_label_vtoc ssd_build_label_vtoc 1061 #define sd_write_label ssd_write_label 1062 #define sd_clear_vtoc ssd_clear_vtoc 1063 #define sd_clear_efi ssd_clear_efi 1064 #define sd_get_tunables_from_conf ssd_get_tunables_from_conf 1065 #define sd_setup_next_xfer ssd_setup_next_xfer 1066 #define sd_dkio_get_temp ssd_dkio_get_temp 1067 #define sd_dkio_get_mboot ssd_dkio_get_mboot 1068 #define sd_dkio_set_mboot ssd_dkio_set_mboot 1069 #define sd_setup_default_geometry ssd_setup_default_geometry 1070 #define sd_update_fdisk_and_vtoc ssd_update_fdisk_and_vtoc 1071 #define sd_check_mhd ssd_check_mhd 1072 #define sd_mhd_watch_cb ssd_mhd_watch_cb 1073 #define sd_mhd_watch_incomplete ssd_mhd_watch_incomplete 1074 #define sd_sname ssd_sname 1075 #define sd_mhd_resvd_recover ssd_mhd_resvd_recover 1076 #define sd_resv_reclaim_thread ssd_resv_reclaim_thread 1077 #define sd_take_ownership ssd_take_ownership 1078 #define sd_reserve_release ssd_reserve_release 1079 #define sd_rmv_resv_reclaim_req ssd_rmv_resv_reclaim_req 1080 #define sd_mhd_reset_notify_cb ssd_mhd_reset_notify_cb 1081 #define sd_persistent_reservation_in_read_keys \ 1082 ssd_persistent_reservation_in_read_keys 1083 #define sd_persistent_reservation_in_read_resv \ 1084 ssd_persistent_reservation_in_read_resv 1085 #define sd_mhdioc_takeown ssd_mhdioc_takeown 1086 #define sd_mhdioc_failfast ssd_mhdioc_failfast 1087 #define sd_mhdioc_release ssd_mhdioc_release 1088 #define sd_mhdioc_register_devid ssd_mhdioc_register_devid 1089 #define sd_mhdioc_inkeys ssd_mhdioc_inkeys 1090 #define sd_mhdioc_inresv ssd_mhdioc_inresv 1091 #define sr_change_blkmode ssr_change_blkmode 1092 #define sr_change_speed ssr_change_speed 1093 #define sr_atapi_change_speed ssr_atapi_change_speed 1094 #define sr_pause_resume ssr_pause_resume 1095 #define sr_play_msf ssr_play_msf 1096 #define sr_play_trkind ssr_play_trkind 1097 #define sr_read_all_subcodes ssr_read_all_subcodes 1098 #define sr_read_subchannel ssr_read_subchannel 1099 #define sr_read_tocentry ssr_read_tocentry 1100 #define sr_read_tochdr ssr_read_tochdr 1101 #define sr_read_cdda ssr_read_cdda 1102 #define sr_read_cdxa ssr_read_cdxa 1103 #define sr_read_mode1 ssr_read_mode1 1104 #define sr_read_mode2 ssr_read_mode2 1105 #define sr_read_cd_mode2 ssr_read_cd_mode2 1106 #define sr_sector_mode ssr_sector_mode 1107 #define sr_eject ssr_eject 1108 #define sr_ejected ssr_ejected 1109 #define sr_check_wp ssr_check_wp 1110 #define sd_check_media ssd_check_media 1111 #define sd_media_watch_cb ssd_media_watch_cb 1112 #define sd_delayed_cv_broadcast ssd_delayed_cv_broadcast 1113 #define sr_volume_ctrl ssr_volume_ctrl 1114 #define sr_read_sony_session_offset ssr_read_sony_session_offset 1115 #define sd_log_page_supported ssd_log_page_supported 1116 #define sd_check_for_writable_cd ssd_check_for_writable_cd 1117 #define sd_wm_cache_constructor ssd_wm_cache_constructor 1118 #define sd_wm_cache_destructor ssd_wm_cache_destructor 1119 #define sd_range_lock ssd_range_lock 1120 #define sd_get_range ssd_get_range 1121 #define sd_free_inlist_wmap ssd_free_inlist_wmap 1122 #define sd_range_unlock ssd_range_unlock 1123 #define sd_read_modify_write_task ssd_read_modify_write_task 1124 #define sddump_do_read_of_rmw ssddump_do_read_of_rmw 1125 1126 #define sd_iostart_chain ssd_iostart_chain 1127 #define sd_iodone_chain ssd_iodone_chain 1128 #define sd_initpkt_map ssd_initpkt_map 1129 #define sd_destroypkt_map ssd_destroypkt_map 1130 #define sd_chain_type_map ssd_chain_type_map 1131 #define sd_chain_index_map ssd_chain_index_map 1132 1133 #define sd_failfast_flushctl ssd_failfast_flushctl 1134 #define sd_failfast_flushq ssd_failfast_flushq 1135 #define sd_failfast_flushq_callback ssd_failfast_flushq_callback 1136 1137 #define sd_is_lsi ssd_is_lsi 1138 1139 #endif /* #if (defined(__fibre)) */ 1140 1141 1142 int _init(void); 1143 int _fini(void); 1144 int _info(struct modinfo *modinfop); 1145 1146 /*PRINTFLIKE3*/ 1147 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1148 /*PRINTFLIKE3*/ 1149 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1150 /*PRINTFLIKE3*/ 1151 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1152 1153 static int sdprobe(dev_info_t *devi); 1154 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, 1155 void **result); 1156 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 1157 int mod_flags, char *name, caddr_t valuep, int *lengthp); 1158 1159 /* 1160 * Smart probe for parallel scsi 1161 */ 1162 static void sd_scsi_probe_cache_init(void); 1163 static void sd_scsi_probe_cache_fini(void); 1164 static void sd_scsi_clear_probe_cache(void); 1165 static int sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)()); 1166 1167 /* 1168 * Attached luns on target for parallel scsi 1169 */ 1170 static void sd_scsi_target_lun_init(void); 1171 static void sd_scsi_target_lun_fini(void); 1172 static int sd_scsi_get_target_lun_count(dev_info_t *dip, int target); 1173 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag); 1174 1175 static int sd_spin_up_unit(struct sd_lun *un); 1176 #ifdef _LP64 1177 static void sd_enable_descr_sense(struct sd_lun *un); 1178 static void sd_reenable_dsense_task(void *arg); 1179 #endif /* _LP64 */ 1180 1181 static void sd_set_mmc_caps(struct sd_lun *un); 1182 1183 static void sd_read_unit_properties(struct sd_lun *un); 1184 static int sd_process_sdconf_file(struct sd_lun *un); 1185 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags, 1186 int *data_list, sd_tunables *values); 1187 static void sd_process_sdconf_table(struct sd_lun *un); 1188 static int sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen); 1189 static int sd_blank_cmp(struct sd_lun *un, char *id, int idlen); 1190 static int sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list, 1191 int list_len, char *dataname_ptr); 1192 static void sd_set_vers1_properties(struct sd_lun *un, int flags, 1193 sd_tunables *prop_list); 1194 static int sd_validate_geometry(struct sd_lun *un, int path_flag); 1195 1196 #if defined(_SUNOS_VTOC_16) 1197 static void sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g); 1198 #endif 1199 1200 static void sd_resync_geom_caches(struct sd_lun *un, uint64_t capacity, 1201 int lbasize, int path_flag); 1202 static int sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize, 1203 int path_flag); 1204 static void sd_get_physical_geometry(struct sd_lun *un, 1205 struct geom_cache *pgeom_p, uint64_t capacity, int lbasize, 1206 int path_flag); 1207 static void sd_get_virtual_geometry(struct sd_lun *un, int capacity, 1208 int lbasize); 1209 static int sd_uselabel(struct sd_lun *un, struct dk_label *l, int path_flag); 1210 static void sd_swap_efi_gpt(efi_gpt_t *); 1211 static void sd_swap_efi_gpe(int nparts, efi_gpe_t *); 1212 static int sd_validate_efi(efi_gpt_t *); 1213 static int sd_use_efi(struct sd_lun *, int); 1214 static void sd_build_default_label(struct sd_lun *un); 1215 1216 #if defined(_FIRMWARE_NEEDS_FDISK) 1217 static int sd_has_max_chs_vals(struct ipart *fdp); 1218 #endif 1219 static void sd_inq_fill(char *p, int l, char *s); 1220 1221 1222 static void sd_register_devid(struct sd_lun *un, dev_info_t *devi, 1223 int reservation_flag); 1224 static daddr_t sd_get_devid_block(struct sd_lun *un); 1225 static int sd_get_devid(struct sd_lun *un); 1226 static int sd_get_serialnum(struct sd_lun *un, uchar_t *wwn, int *len); 1227 static ddi_devid_t sd_create_devid(struct sd_lun *un); 1228 static int sd_write_deviceid(struct sd_lun *un); 1229 static int sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len); 1230 static int sd_check_vpd_page_support(struct sd_lun *un); 1231 1232 static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi); 1233 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un); 1234 1235 static int sd_ddi_suspend(dev_info_t *devi); 1236 static int sd_ddi_pm_suspend(struct sd_lun *un); 1237 static int sd_ddi_resume(dev_info_t *devi); 1238 static int sd_ddi_pm_resume(struct sd_lun *un); 1239 static int sdpower(dev_info_t *devi, int component, int level); 1240 1241 static int sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd); 1242 static int sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd); 1243 static int sd_unit_attach(dev_info_t *devi); 1244 static int sd_unit_detach(dev_info_t *devi); 1245 1246 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi); 1247 static int sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi); 1248 static void sd_create_errstats(struct sd_lun *un, int instance); 1249 static void sd_set_errstats(struct sd_lun *un); 1250 static void sd_set_pstats(struct sd_lun *un); 1251 1252 static int sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk); 1253 static int sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt); 1254 static int sd_send_polled_RQS(struct sd_lun *un); 1255 static int sd_ddi_scsi_poll(struct scsi_pkt *pkt); 1256 1257 #if (defined(__fibre)) 1258 /* 1259 * Event callbacks (photon) 1260 */ 1261 static void sd_init_event_callbacks(struct sd_lun *un); 1262 static void sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *); 1263 #endif 1264 1265 /* 1266 * Defines for sd_cache_control 1267 */ 1268 1269 #define SD_CACHE_ENABLE 1 1270 #define SD_CACHE_DISABLE 0 1271 #define SD_CACHE_NOCHANGE -1 1272 1273 static int sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag); 1274 static int sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled); 1275 static dev_t sd_make_device(dev_info_t *devi); 1276 1277 static void sd_update_block_info(struct sd_lun *un, uint32_t lbasize, 1278 uint64_t capacity); 1279 1280 /* 1281 * Driver entry point functions. 1282 */ 1283 static int sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p); 1284 static int sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p); 1285 static int sd_ready_and_valid(struct sd_lun *un); 1286 1287 static void sdmin(struct buf *bp); 1288 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p); 1289 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p); 1290 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p); 1291 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p); 1292 1293 static int sdstrategy(struct buf *bp); 1294 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *); 1295 1296 /* 1297 * Function prototypes for layering functions in the iostart chain. 1298 */ 1299 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un, 1300 struct buf *bp); 1301 static void sd_mapblocksize_iostart(int index, struct sd_lun *un, 1302 struct buf *bp); 1303 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp); 1304 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un, 1305 struct buf *bp); 1306 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp); 1307 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp); 1308 1309 /* 1310 * Function prototypes for layering functions in the iodone chain. 1311 */ 1312 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp); 1313 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp); 1314 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un, 1315 struct buf *bp); 1316 static void sd_mapblocksize_iodone(int index, struct sd_lun *un, 1317 struct buf *bp); 1318 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp); 1319 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un, 1320 struct buf *bp); 1321 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp); 1322 1323 /* 1324 * Prototypes for functions to support buf(9S) based IO. 1325 */ 1326 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg); 1327 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **); 1328 static void sd_destroypkt_for_buf(struct buf *); 1329 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp, 1330 struct buf *bp, int flags, 1331 int (*callback)(caddr_t), caddr_t callback_arg, 1332 diskaddr_t lba, uint32_t blockcount); 1333 #if defined(__i386) || defined(__amd64) 1334 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp, 1335 struct buf *bp, diskaddr_t lba, uint32_t blockcount); 1336 #endif /* defined(__i386) || defined(__amd64) */ 1337 1338 /* 1339 * Prototypes for functions to support USCSI IO. 1340 */ 1341 static int sd_uscsi_strategy(struct buf *bp); 1342 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **); 1343 static void sd_destroypkt_for_uscsi(struct buf *); 1344 1345 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 1346 uchar_t chain_type, void *pktinfop); 1347 1348 static int sd_pm_entry(struct sd_lun *un); 1349 static void sd_pm_exit(struct sd_lun *un); 1350 1351 static void sd_pm_idletimeout_handler(void *arg); 1352 1353 /* 1354 * sd_core internal functions (used at the sd_core_io layer). 1355 */ 1356 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp); 1357 static void sdintr(struct scsi_pkt *pktp); 1358 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp); 1359 1360 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag, 1361 enum uio_seg dataspace, int path_flag); 1362 1363 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen, 1364 daddr_t blkno, int (*func)(struct buf *)); 1365 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen, 1366 uint_t bflags, daddr_t blkno, int (*func)(struct buf *)); 1367 static void sd_bioclone_free(struct buf *bp); 1368 static void sd_shadow_buf_free(struct buf *bp); 1369 1370 static void sd_print_transport_rejected_message(struct sd_lun *un, 1371 struct sd_xbuf *xp, int code); 1372 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, 1373 void *arg, int code); 1374 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, 1375 void *arg, int code); 1376 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, 1377 void *arg, int code); 1378 1379 static void sd_retry_command(struct sd_lun *un, struct buf *bp, 1380 int retry_check_flag, 1381 void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, 1382 int c), 1383 void *user_arg, int failure_code, clock_t retry_delay, 1384 void (*statp)(kstat_io_t *)); 1385 1386 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp, 1387 clock_t retry_delay, void (*statp)(kstat_io_t *)); 1388 1389 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp, 1390 struct scsi_pkt *pktp); 1391 static void sd_start_retry_command(void *arg); 1392 static void sd_start_direct_priority_command(void *arg); 1393 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp, 1394 int errcode); 1395 static void sd_return_failed_command_no_restart(struct sd_lun *un, 1396 struct buf *bp, int errcode); 1397 static void sd_return_command(struct sd_lun *un, struct buf *bp); 1398 static void sd_sync_with_callback(struct sd_lun *un); 1399 static int sdrunout(caddr_t arg); 1400 1401 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp); 1402 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp); 1403 1404 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type); 1405 static void sd_restore_throttle(void *arg); 1406 1407 static void sd_init_cdb_limits(struct sd_lun *un); 1408 1409 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp, 1410 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1411 1412 /* 1413 * Error handling functions 1414 */ 1415 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp, 1416 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1417 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, 1418 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1419 static void sd_pkt_status_reservation_conflict(struct sd_lun *un, 1420 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1421 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp, 1422 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1423 1424 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp, 1425 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1426 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp, 1427 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1428 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp, 1429 struct sd_xbuf *xp); 1430 static void sd_decode_sense(struct sd_lun *un, struct buf *bp, 1431 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1432 1433 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp, 1434 void *arg, int code); 1435 1436 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp, 1437 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1438 static void sd_sense_key_recoverable_error(struct sd_lun *un, 1439 uint8_t *sense_datap, 1440 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1441 static void sd_sense_key_not_ready(struct sd_lun *un, 1442 uint8_t *sense_datap, 1443 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1444 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un, 1445 uint8_t *sense_datap, 1446 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1447 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp, 1448 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1449 static void sd_sense_key_unit_attention(struct sd_lun *un, 1450 uint8_t *sense_datap, 1451 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1452 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp, 1453 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1454 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp, 1455 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1456 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp, 1457 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1458 static void sd_sense_key_default(struct sd_lun *un, 1459 uint8_t *sense_datap, 1460 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1461 1462 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp, 1463 void *arg, int flag); 1464 1465 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp, 1466 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1467 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp, 1468 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1469 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp, 1470 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1471 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp, 1472 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1473 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp, 1474 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1475 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp, 1476 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1477 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp, 1478 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1479 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp, 1480 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1481 1482 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp); 1483 1484 static void sd_start_stop_unit_callback(void *arg); 1485 static void sd_start_stop_unit_task(void *arg); 1486 1487 static void sd_taskq_create(void); 1488 static void sd_taskq_delete(void); 1489 static void sd_media_change_task(void *arg); 1490 1491 static int sd_handle_mchange(struct sd_lun *un); 1492 static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag); 1493 static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, 1494 uint32_t *lbap, int path_flag); 1495 static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp, 1496 uint32_t *lbap, int path_flag); 1497 static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, 1498 int path_flag); 1499 static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, 1500 size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp); 1501 static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag); 1502 static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, 1503 uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp); 1504 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, 1505 uchar_t usr_cmd, uchar_t *usr_bufp); 1506 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, 1507 struct dk_callback *dkc); 1508 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp); 1509 static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, 1510 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 1511 uchar_t *bufaddr, uint_t buflen); 1512 static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un, 1513 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 1514 uchar_t *bufaddr, uint_t buflen, char feature); 1515 static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, 1516 uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag); 1517 static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, 1518 uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag); 1519 static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr, 1520 size_t buflen, daddr_t start_block, int path_flag); 1521 #define sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag) \ 1522 sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \ 1523 path_flag) 1524 #define sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag) \ 1525 sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\ 1526 path_flag) 1527 1528 static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, 1529 uint16_t buflen, uchar_t page_code, uchar_t page_control, 1530 uint16_t param_ptr, int path_flag); 1531 1532 static int sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un); 1533 static void sd_free_rqs(struct sd_lun *un); 1534 1535 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, 1536 uchar_t *data, int len, int fmt); 1537 static void sd_panic_for_res_conflict(struct sd_lun *un); 1538 1539 /* 1540 * Disk Ioctl Function Prototypes 1541 */ 1542 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag); 1543 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag); 1544 static int sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag, 1545 int geom_validated); 1546 static int sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag); 1547 static int sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag, 1548 int geom_validated); 1549 static int sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag); 1550 static int sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag, 1551 int geom_validated); 1552 static int sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag); 1553 static int sd_dkio_partition(dev_t dev, caddr_t arg, int flag); 1554 static void sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc); 1555 static int sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag); 1556 static int sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag); 1557 static int sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc); 1558 static int sd_write_label(dev_t dev); 1559 static int sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl); 1560 static void sd_clear_vtoc(struct sd_lun *un); 1561 static void sd_clear_efi(struct sd_lun *un); 1562 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag); 1563 static int sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag); 1564 static int sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag); 1565 static void sd_setup_default_geometry(struct sd_lun *un); 1566 #if defined(__i386) || defined(__amd64) 1567 static int sd_update_fdisk_and_vtoc(struct sd_lun *un); 1568 #endif 1569 1570 /* 1571 * Multi-host Ioctl Prototypes 1572 */ 1573 static int sd_check_mhd(dev_t dev, int interval); 1574 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp); 1575 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt); 1576 static char *sd_sname(uchar_t status); 1577 static void sd_mhd_resvd_recover(void *arg); 1578 static void sd_resv_reclaim_thread(); 1579 static int sd_take_ownership(dev_t dev, struct mhioctkown *p); 1580 static int sd_reserve_release(dev_t dev, int cmd); 1581 static void sd_rmv_resv_reclaim_req(dev_t dev); 1582 static void sd_mhd_reset_notify_cb(caddr_t arg); 1583 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un, 1584 mhioc_inkeys_t *usrp, int flag); 1585 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un, 1586 mhioc_inresvs_t *usrp, int flag); 1587 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag); 1588 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag); 1589 static int sd_mhdioc_release(dev_t dev); 1590 static int sd_mhdioc_register_devid(dev_t dev); 1591 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag); 1592 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag); 1593 1594 /* 1595 * SCSI removable prototypes 1596 */ 1597 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag); 1598 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag); 1599 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag); 1600 static int sr_pause_resume(dev_t dev, int mode); 1601 static int sr_play_msf(dev_t dev, caddr_t data, int flag); 1602 static int sr_play_trkind(dev_t dev, caddr_t data, int flag); 1603 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag); 1604 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag); 1605 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag); 1606 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag); 1607 static int sr_read_cdda(dev_t dev, caddr_t data, int flag); 1608 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag); 1609 static int sr_read_mode1(dev_t dev, caddr_t data, int flag); 1610 static int sr_read_mode2(dev_t dev, caddr_t data, int flag); 1611 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag); 1612 static int sr_sector_mode(dev_t dev, uint32_t blksize); 1613 static int sr_eject(dev_t dev); 1614 static void sr_ejected(register struct sd_lun *un); 1615 static int sr_check_wp(dev_t dev); 1616 static int sd_check_media(dev_t dev, enum dkio_state state); 1617 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp); 1618 static void sd_delayed_cv_broadcast(void *arg); 1619 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag); 1620 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag); 1621 1622 static int sd_log_page_supported(struct sd_lun *un, int log_page); 1623 1624 /* 1625 * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions. 1626 */ 1627 static void sd_check_for_writable_cd(struct sd_lun *un); 1628 static int sd_wm_cache_constructor(void *wm, void *un, int flags); 1629 static void sd_wm_cache_destructor(void *wm, void *un); 1630 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb, 1631 daddr_t endb, ushort_t typ); 1632 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb, 1633 daddr_t endb); 1634 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp); 1635 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm); 1636 static void sd_read_modify_write_task(void * arg); 1637 static int 1638 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk, 1639 struct buf **bpp); 1640 1641 1642 /* 1643 * Function prototypes for failfast support. 1644 */ 1645 static void sd_failfast_flushq(struct sd_lun *un); 1646 static int sd_failfast_flushq_callback(struct buf *bp); 1647 1648 /* 1649 * Function prototypes to check for lsi devices 1650 */ 1651 static void sd_is_lsi(struct sd_lun *un); 1652 1653 /* 1654 * Function prototypes for x86 support 1655 */ 1656 #if defined(__i386) || defined(__amd64) 1657 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp, 1658 struct scsi_pkt *pkt, struct sd_xbuf *xp); 1659 #endif 1660 1661 /* 1662 * Constants for failfast support: 1663 * 1664 * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO 1665 * failfast processing being performed. 1666 * 1667 * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing 1668 * failfast processing on all bufs with B_FAILFAST set. 1669 */ 1670 1671 #define SD_FAILFAST_INACTIVE 0 1672 #define SD_FAILFAST_ACTIVE 1 1673 1674 /* 1675 * Bitmask to control behavior of buf(9S) flushes when a transition to 1676 * the failfast state occurs. Optional bits include: 1677 * 1678 * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that 1679 * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will 1680 * be flushed. 1681 * 1682 * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the 1683 * driver, in addition to the regular wait queue. This includes the xbuf 1684 * queues. When clear, only the driver's wait queue will be flushed. 1685 */ 1686 #define SD_FAILFAST_FLUSH_ALL_BUFS 0x01 1687 #define SD_FAILFAST_FLUSH_ALL_QUEUES 0x02 1688 1689 /* 1690 * The default behavior is to only flush bufs that have B_FAILFAST set, but 1691 * to flush all queues within the driver. 1692 */ 1693 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES; 1694 1695 1696 /* 1697 * SD Testing Fault Injection 1698 */ 1699 #ifdef SD_FAULT_INJECTION 1700 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un); 1701 static void sd_faultinjection(struct scsi_pkt *pktp); 1702 static void sd_injection_log(char *buf, struct sd_lun *un); 1703 #endif 1704 1705 /* 1706 * Device driver ops vector 1707 */ 1708 static struct cb_ops sd_cb_ops = { 1709 sdopen, /* open */ 1710 sdclose, /* close */ 1711 sdstrategy, /* strategy */ 1712 nodev, /* print */ 1713 sddump, /* dump */ 1714 sdread, /* read */ 1715 sdwrite, /* write */ 1716 sdioctl, /* ioctl */ 1717 nodev, /* devmap */ 1718 nodev, /* mmap */ 1719 nodev, /* segmap */ 1720 nochpoll, /* poll */ 1721 sd_prop_op, /* cb_prop_op */ 1722 0, /* streamtab */ 1723 D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */ 1724 CB_REV, /* cb_rev */ 1725 sdaread, /* async I/O read entry point */ 1726 sdawrite /* async I/O write entry point */ 1727 }; 1728 1729 static struct dev_ops sd_ops = { 1730 DEVO_REV, /* devo_rev, */ 1731 0, /* refcnt */ 1732 sdinfo, /* info */ 1733 nulldev, /* identify */ 1734 sdprobe, /* probe */ 1735 sdattach, /* attach */ 1736 sddetach, /* detach */ 1737 nodev, /* reset */ 1738 &sd_cb_ops, /* driver operations */ 1739 NULL, /* bus operations */ 1740 sdpower /* power */ 1741 }; 1742 1743 1744 /* 1745 * This is the loadable module wrapper. 1746 */ 1747 #include <sys/modctl.h> 1748 1749 static struct modldrv modldrv = { 1750 &mod_driverops, /* Type of module. This one is a driver */ 1751 SD_MODULE_NAME, /* Module name. */ 1752 &sd_ops /* driver ops */ 1753 }; 1754 1755 1756 static struct modlinkage modlinkage = { 1757 MODREV_1, 1758 &modldrv, 1759 NULL 1760 }; 1761 1762 1763 static struct scsi_asq_key_strings sd_additional_codes[] = { 1764 0x81, 0, "Logical Unit is Reserved", 1765 0x85, 0, "Audio Address Not Valid", 1766 0xb6, 0, "Media Load Mechanism Failed", 1767 0xB9, 0, "Audio Play Operation Aborted", 1768 0xbf, 0, "Buffer Overflow for Read All Subcodes Command", 1769 0x53, 2, "Medium removal prevented", 1770 0x6f, 0, "Authentication failed during key exchange", 1771 0x6f, 1, "Key not present", 1772 0x6f, 2, "Key not established", 1773 0x6f, 3, "Read without proper authentication", 1774 0x6f, 4, "Mismatched region to this logical unit", 1775 0x6f, 5, "Region reset count error", 1776 0xffff, 0x0, NULL 1777 }; 1778 1779 1780 /* 1781 * Struct for passing printing information for sense data messages 1782 */ 1783 struct sd_sense_info { 1784 int ssi_severity; 1785 int ssi_pfa_flag; 1786 }; 1787 1788 /* 1789 * Table of function pointers for iostart-side routines. Seperate "chains" 1790 * of layered function calls are formed by placing the function pointers 1791 * sequentially in the desired order. Functions are called according to an 1792 * incrementing table index ordering. The last function in each chain must 1793 * be sd_core_iostart(). The corresponding iodone-side routines are expected 1794 * in the sd_iodone_chain[] array. 1795 * 1796 * Note: It may seem more natural to organize both the iostart and iodone 1797 * functions together, into an array of structures (or some similar 1798 * organization) with a common index, rather than two seperate arrays which 1799 * must be maintained in synchronization. The purpose of this division is 1800 * to achiece improved performance: individual arrays allows for more 1801 * effective cache line utilization on certain platforms. 1802 */ 1803 1804 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp); 1805 1806 1807 static sd_chain_t sd_iostart_chain[] = { 1808 1809 /* Chain for buf IO for disk drive targets (PM enabled) */ 1810 sd_mapblockaddr_iostart, /* Index: 0 */ 1811 sd_pm_iostart, /* Index: 1 */ 1812 sd_core_iostart, /* Index: 2 */ 1813 1814 /* Chain for buf IO for disk drive targets (PM disabled) */ 1815 sd_mapblockaddr_iostart, /* Index: 3 */ 1816 sd_core_iostart, /* Index: 4 */ 1817 1818 /* Chain for buf IO for removable-media targets (PM enabled) */ 1819 sd_mapblockaddr_iostart, /* Index: 5 */ 1820 sd_mapblocksize_iostart, /* Index: 6 */ 1821 sd_pm_iostart, /* Index: 7 */ 1822 sd_core_iostart, /* Index: 8 */ 1823 1824 /* Chain for buf IO for removable-media targets (PM disabled) */ 1825 sd_mapblockaddr_iostart, /* Index: 9 */ 1826 sd_mapblocksize_iostart, /* Index: 10 */ 1827 sd_core_iostart, /* Index: 11 */ 1828 1829 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 1830 sd_mapblockaddr_iostart, /* Index: 12 */ 1831 sd_checksum_iostart, /* Index: 13 */ 1832 sd_pm_iostart, /* Index: 14 */ 1833 sd_core_iostart, /* Index: 15 */ 1834 1835 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 1836 sd_mapblockaddr_iostart, /* Index: 16 */ 1837 sd_checksum_iostart, /* Index: 17 */ 1838 sd_core_iostart, /* Index: 18 */ 1839 1840 /* Chain for USCSI commands (all targets) */ 1841 sd_pm_iostart, /* Index: 19 */ 1842 sd_core_iostart, /* Index: 20 */ 1843 1844 /* Chain for checksumming USCSI commands (all targets) */ 1845 sd_checksum_uscsi_iostart, /* Index: 21 */ 1846 sd_pm_iostart, /* Index: 22 */ 1847 sd_core_iostart, /* Index: 23 */ 1848 1849 /* Chain for "direct" USCSI commands (all targets) */ 1850 sd_core_iostart, /* Index: 24 */ 1851 1852 /* Chain for "direct priority" USCSI commands (all targets) */ 1853 sd_core_iostart, /* Index: 25 */ 1854 }; 1855 1856 /* 1857 * Macros to locate the first function of each iostart chain in the 1858 * sd_iostart_chain[] array. These are located by the index in the array. 1859 */ 1860 #define SD_CHAIN_DISK_IOSTART 0 1861 #define SD_CHAIN_DISK_IOSTART_NO_PM 3 1862 #define SD_CHAIN_RMMEDIA_IOSTART 5 1863 #define SD_CHAIN_RMMEDIA_IOSTART_NO_PM 9 1864 #define SD_CHAIN_CHKSUM_IOSTART 12 1865 #define SD_CHAIN_CHKSUM_IOSTART_NO_PM 16 1866 #define SD_CHAIN_USCSI_CMD_IOSTART 19 1867 #define SD_CHAIN_USCSI_CHKSUM_IOSTART 21 1868 #define SD_CHAIN_DIRECT_CMD_IOSTART 24 1869 #define SD_CHAIN_PRIORITY_CMD_IOSTART 25 1870 1871 1872 /* 1873 * Table of function pointers for the iodone-side routines for the driver- 1874 * internal layering mechanism. The calling sequence for iodone routines 1875 * uses a decrementing table index, so the last routine called in a chain 1876 * must be at the lowest array index location for that chain. The last 1877 * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs) 1878 * or sd_uscsi_iodone() (for uscsi IOs). Other than this, the ordering 1879 * of the functions in an iodone side chain must correspond to the ordering 1880 * of the iostart routines for that chain. Note that there is no iodone 1881 * side routine that corresponds to sd_core_iostart(), so there is no 1882 * entry in the table for this. 1883 */ 1884 1885 static sd_chain_t sd_iodone_chain[] = { 1886 1887 /* Chain for buf IO for disk drive targets (PM enabled) */ 1888 sd_buf_iodone, /* Index: 0 */ 1889 sd_mapblockaddr_iodone, /* Index: 1 */ 1890 sd_pm_iodone, /* Index: 2 */ 1891 1892 /* Chain for buf IO for disk drive targets (PM disabled) */ 1893 sd_buf_iodone, /* Index: 3 */ 1894 sd_mapblockaddr_iodone, /* Index: 4 */ 1895 1896 /* Chain for buf IO for removable-media targets (PM enabled) */ 1897 sd_buf_iodone, /* Index: 5 */ 1898 sd_mapblockaddr_iodone, /* Index: 6 */ 1899 sd_mapblocksize_iodone, /* Index: 7 */ 1900 sd_pm_iodone, /* Index: 8 */ 1901 1902 /* Chain for buf IO for removable-media targets (PM disabled) */ 1903 sd_buf_iodone, /* Index: 9 */ 1904 sd_mapblockaddr_iodone, /* Index: 10 */ 1905 sd_mapblocksize_iodone, /* Index: 11 */ 1906 1907 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 1908 sd_buf_iodone, /* Index: 12 */ 1909 sd_mapblockaddr_iodone, /* Index: 13 */ 1910 sd_checksum_iodone, /* Index: 14 */ 1911 sd_pm_iodone, /* Index: 15 */ 1912 1913 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 1914 sd_buf_iodone, /* Index: 16 */ 1915 sd_mapblockaddr_iodone, /* Index: 17 */ 1916 sd_checksum_iodone, /* Index: 18 */ 1917 1918 /* Chain for USCSI commands (non-checksum targets) */ 1919 sd_uscsi_iodone, /* Index: 19 */ 1920 sd_pm_iodone, /* Index: 20 */ 1921 1922 /* Chain for USCSI commands (checksum targets) */ 1923 sd_uscsi_iodone, /* Index: 21 */ 1924 sd_checksum_uscsi_iodone, /* Index: 22 */ 1925 sd_pm_iodone, /* Index: 22 */ 1926 1927 /* Chain for "direct" USCSI commands (all targets) */ 1928 sd_uscsi_iodone, /* Index: 24 */ 1929 1930 /* Chain for "direct priority" USCSI commands (all targets) */ 1931 sd_uscsi_iodone, /* Index: 25 */ 1932 }; 1933 1934 1935 /* 1936 * Macros to locate the "first" function in the sd_iodone_chain[] array for 1937 * each iodone-side chain. These are located by the array index, but as the 1938 * iodone side functions are called in a decrementing-index order, the 1939 * highest index number in each chain must be specified (as these correspond 1940 * to the first function in the iodone chain that will be called by the core 1941 * at IO completion time). 1942 */ 1943 1944 #define SD_CHAIN_DISK_IODONE 2 1945 #define SD_CHAIN_DISK_IODONE_NO_PM 4 1946 #define SD_CHAIN_RMMEDIA_IODONE 8 1947 #define SD_CHAIN_RMMEDIA_IODONE_NO_PM 11 1948 #define SD_CHAIN_CHKSUM_IODONE 15 1949 #define SD_CHAIN_CHKSUM_IODONE_NO_PM 18 1950 #define SD_CHAIN_USCSI_CMD_IODONE 20 1951 #define SD_CHAIN_USCSI_CHKSUM_IODONE 22 1952 #define SD_CHAIN_DIRECT_CMD_IODONE 24 1953 #define SD_CHAIN_PRIORITY_CMD_IODONE 25 1954 1955 1956 1957 1958 /* 1959 * Array to map a layering chain index to the appropriate initpkt routine. 1960 * The redundant entries are present so that the index used for accessing 1961 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 1962 * with this table as well. 1963 */ 1964 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **); 1965 1966 static sd_initpkt_t sd_initpkt_map[] = { 1967 1968 /* Chain for buf IO for disk drive targets (PM enabled) */ 1969 sd_initpkt_for_buf, /* Index: 0 */ 1970 sd_initpkt_for_buf, /* Index: 1 */ 1971 sd_initpkt_for_buf, /* Index: 2 */ 1972 1973 /* Chain for buf IO for disk drive targets (PM disabled) */ 1974 sd_initpkt_for_buf, /* Index: 3 */ 1975 sd_initpkt_for_buf, /* Index: 4 */ 1976 1977 /* Chain for buf IO for removable-media targets (PM enabled) */ 1978 sd_initpkt_for_buf, /* Index: 5 */ 1979 sd_initpkt_for_buf, /* Index: 6 */ 1980 sd_initpkt_for_buf, /* Index: 7 */ 1981 sd_initpkt_for_buf, /* Index: 8 */ 1982 1983 /* Chain for buf IO for removable-media targets (PM disabled) */ 1984 sd_initpkt_for_buf, /* Index: 9 */ 1985 sd_initpkt_for_buf, /* Index: 10 */ 1986 sd_initpkt_for_buf, /* Index: 11 */ 1987 1988 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 1989 sd_initpkt_for_buf, /* Index: 12 */ 1990 sd_initpkt_for_buf, /* Index: 13 */ 1991 sd_initpkt_for_buf, /* Index: 14 */ 1992 sd_initpkt_for_buf, /* Index: 15 */ 1993 1994 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 1995 sd_initpkt_for_buf, /* Index: 16 */ 1996 sd_initpkt_for_buf, /* Index: 17 */ 1997 sd_initpkt_for_buf, /* Index: 18 */ 1998 1999 /* Chain for USCSI commands (non-checksum targets) */ 2000 sd_initpkt_for_uscsi, /* Index: 19 */ 2001 sd_initpkt_for_uscsi, /* Index: 20 */ 2002 2003 /* Chain for USCSI commands (checksum targets) */ 2004 sd_initpkt_for_uscsi, /* Index: 21 */ 2005 sd_initpkt_for_uscsi, /* Index: 22 */ 2006 sd_initpkt_for_uscsi, /* Index: 22 */ 2007 2008 /* Chain for "direct" USCSI commands (all targets) */ 2009 sd_initpkt_for_uscsi, /* Index: 24 */ 2010 2011 /* Chain for "direct priority" USCSI commands (all targets) */ 2012 sd_initpkt_for_uscsi, /* Index: 25 */ 2013 2014 }; 2015 2016 2017 /* 2018 * Array to map a layering chain index to the appropriate destroypktpkt routine. 2019 * The redundant entries are present so that the index used for accessing 2020 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 2021 * with this table as well. 2022 */ 2023 typedef void (*sd_destroypkt_t)(struct buf *); 2024 2025 static sd_destroypkt_t sd_destroypkt_map[] = { 2026 2027 /* Chain for buf IO for disk drive targets (PM enabled) */ 2028 sd_destroypkt_for_buf, /* Index: 0 */ 2029 sd_destroypkt_for_buf, /* Index: 1 */ 2030 sd_destroypkt_for_buf, /* Index: 2 */ 2031 2032 /* Chain for buf IO for disk drive targets (PM disabled) */ 2033 sd_destroypkt_for_buf, /* Index: 3 */ 2034 sd_destroypkt_for_buf, /* Index: 4 */ 2035 2036 /* Chain for buf IO for removable-media targets (PM enabled) */ 2037 sd_destroypkt_for_buf, /* Index: 5 */ 2038 sd_destroypkt_for_buf, /* Index: 6 */ 2039 sd_destroypkt_for_buf, /* Index: 7 */ 2040 sd_destroypkt_for_buf, /* Index: 8 */ 2041 2042 /* Chain for buf IO for removable-media targets (PM disabled) */ 2043 sd_destroypkt_for_buf, /* Index: 9 */ 2044 sd_destroypkt_for_buf, /* Index: 10 */ 2045 sd_destroypkt_for_buf, /* Index: 11 */ 2046 2047 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 2048 sd_destroypkt_for_buf, /* Index: 12 */ 2049 sd_destroypkt_for_buf, /* Index: 13 */ 2050 sd_destroypkt_for_buf, /* Index: 14 */ 2051 sd_destroypkt_for_buf, /* Index: 15 */ 2052 2053 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 2054 sd_destroypkt_for_buf, /* Index: 16 */ 2055 sd_destroypkt_for_buf, /* Index: 17 */ 2056 sd_destroypkt_for_buf, /* Index: 18 */ 2057 2058 /* Chain for USCSI commands (non-checksum targets) */ 2059 sd_destroypkt_for_uscsi, /* Index: 19 */ 2060 sd_destroypkt_for_uscsi, /* Index: 20 */ 2061 2062 /* Chain for USCSI commands (checksum targets) */ 2063 sd_destroypkt_for_uscsi, /* Index: 21 */ 2064 sd_destroypkt_for_uscsi, /* Index: 22 */ 2065 sd_destroypkt_for_uscsi, /* Index: 22 */ 2066 2067 /* Chain for "direct" USCSI commands (all targets) */ 2068 sd_destroypkt_for_uscsi, /* Index: 24 */ 2069 2070 /* Chain for "direct priority" USCSI commands (all targets) */ 2071 sd_destroypkt_for_uscsi, /* Index: 25 */ 2072 2073 }; 2074 2075 2076 2077 /* 2078 * Array to map a layering chain index to the appropriate chain "type". 2079 * The chain type indicates a specific property/usage of the chain. 2080 * The redundant entries are present so that the index used for accessing 2081 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 2082 * with this table as well. 2083 */ 2084 2085 #define SD_CHAIN_NULL 0 /* for the special RQS cmd */ 2086 #define SD_CHAIN_BUFIO 1 /* regular buf IO */ 2087 #define SD_CHAIN_USCSI 2 /* regular USCSI commands */ 2088 #define SD_CHAIN_DIRECT 3 /* uscsi, w/ bypass power mgt */ 2089 #define SD_CHAIN_DIRECT_PRIORITY 4 /* uscsi, w/ bypass power mgt */ 2090 /* (for error recovery) */ 2091 2092 static int sd_chain_type_map[] = { 2093 2094 /* Chain for buf IO for disk drive targets (PM enabled) */ 2095 SD_CHAIN_BUFIO, /* Index: 0 */ 2096 SD_CHAIN_BUFIO, /* Index: 1 */ 2097 SD_CHAIN_BUFIO, /* Index: 2 */ 2098 2099 /* Chain for buf IO for disk drive targets (PM disabled) */ 2100 SD_CHAIN_BUFIO, /* Index: 3 */ 2101 SD_CHAIN_BUFIO, /* Index: 4 */ 2102 2103 /* Chain for buf IO for removable-media targets (PM enabled) */ 2104 SD_CHAIN_BUFIO, /* Index: 5 */ 2105 SD_CHAIN_BUFIO, /* Index: 6 */ 2106 SD_CHAIN_BUFIO, /* Index: 7 */ 2107 SD_CHAIN_BUFIO, /* Index: 8 */ 2108 2109 /* Chain for buf IO for removable-media targets (PM disabled) */ 2110 SD_CHAIN_BUFIO, /* Index: 9 */ 2111 SD_CHAIN_BUFIO, /* Index: 10 */ 2112 SD_CHAIN_BUFIO, /* Index: 11 */ 2113 2114 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 2115 SD_CHAIN_BUFIO, /* Index: 12 */ 2116 SD_CHAIN_BUFIO, /* Index: 13 */ 2117 SD_CHAIN_BUFIO, /* Index: 14 */ 2118 SD_CHAIN_BUFIO, /* Index: 15 */ 2119 2120 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 2121 SD_CHAIN_BUFIO, /* Index: 16 */ 2122 SD_CHAIN_BUFIO, /* Index: 17 */ 2123 SD_CHAIN_BUFIO, /* Index: 18 */ 2124 2125 /* Chain for USCSI commands (non-checksum targets) */ 2126 SD_CHAIN_USCSI, /* Index: 19 */ 2127 SD_CHAIN_USCSI, /* Index: 20 */ 2128 2129 /* Chain for USCSI commands (checksum targets) */ 2130 SD_CHAIN_USCSI, /* Index: 21 */ 2131 SD_CHAIN_USCSI, /* Index: 22 */ 2132 SD_CHAIN_USCSI, /* Index: 22 */ 2133 2134 /* Chain for "direct" USCSI commands (all targets) */ 2135 SD_CHAIN_DIRECT, /* Index: 24 */ 2136 2137 /* Chain for "direct priority" USCSI commands (all targets) */ 2138 SD_CHAIN_DIRECT_PRIORITY, /* Index: 25 */ 2139 }; 2140 2141 2142 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */ 2143 #define SD_IS_BUFIO(xp) \ 2144 (sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO) 2145 2146 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */ 2147 #define SD_IS_DIRECT_PRIORITY(xp) \ 2148 (sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY) 2149 2150 2151 2152 /* 2153 * Struct, array, and macros to map a specific chain to the appropriate 2154 * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays. 2155 * 2156 * The sd_chain_index_map[] array is used at attach time to set the various 2157 * un_xxx_chain type members of the sd_lun softstate to the specific layering 2158 * chain to be used with the instance. This allows different instances to use 2159 * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart 2160 * and xb_chain_iodone index values in the sd_xbuf are initialized to these 2161 * values at sd_xbuf init time, this allows (1) layering chains may be changed 2162 * dynamically & without the use of locking; and (2) a layer may update the 2163 * xb_chain_io[start|done] member in a given xbuf with its current index value, 2164 * to allow for deferred processing of an IO within the same chain from a 2165 * different execution context. 2166 */ 2167 2168 struct sd_chain_index { 2169 int sci_iostart_index; 2170 int sci_iodone_index; 2171 }; 2172 2173 static struct sd_chain_index sd_chain_index_map[] = { 2174 { SD_CHAIN_DISK_IOSTART, SD_CHAIN_DISK_IODONE }, 2175 { SD_CHAIN_DISK_IOSTART_NO_PM, SD_CHAIN_DISK_IODONE_NO_PM }, 2176 { SD_CHAIN_RMMEDIA_IOSTART, SD_CHAIN_RMMEDIA_IODONE }, 2177 { SD_CHAIN_RMMEDIA_IOSTART_NO_PM, SD_CHAIN_RMMEDIA_IODONE_NO_PM }, 2178 { SD_CHAIN_CHKSUM_IOSTART, SD_CHAIN_CHKSUM_IODONE }, 2179 { SD_CHAIN_CHKSUM_IOSTART_NO_PM, SD_CHAIN_CHKSUM_IODONE_NO_PM }, 2180 { SD_CHAIN_USCSI_CMD_IOSTART, SD_CHAIN_USCSI_CMD_IODONE }, 2181 { SD_CHAIN_USCSI_CHKSUM_IOSTART, SD_CHAIN_USCSI_CHKSUM_IODONE }, 2182 { SD_CHAIN_DIRECT_CMD_IOSTART, SD_CHAIN_DIRECT_CMD_IODONE }, 2183 { SD_CHAIN_PRIORITY_CMD_IOSTART, SD_CHAIN_PRIORITY_CMD_IODONE }, 2184 }; 2185 2186 2187 /* 2188 * The following are indexes into the sd_chain_index_map[] array. 2189 */ 2190 2191 /* un->un_buf_chain_type must be set to one of these */ 2192 #define SD_CHAIN_INFO_DISK 0 2193 #define SD_CHAIN_INFO_DISK_NO_PM 1 2194 #define SD_CHAIN_INFO_RMMEDIA 2 2195 #define SD_CHAIN_INFO_RMMEDIA_NO_PM 3 2196 #define SD_CHAIN_INFO_CHKSUM 4 2197 #define SD_CHAIN_INFO_CHKSUM_NO_PM 5 2198 2199 /* un->un_uscsi_chain_type must be set to one of these */ 2200 #define SD_CHAIN_INFO_USCSI_CMD 6 2201 /* USCSI with PM disabled is the same as DIRECT */ 2202 #define SD_CHAIN_INFO_USCSI_CMD_NO_PM 8 2203 #define SD_CHAIN_INFO_USCSI_CHKSUM 7 2204 2205 /* un->un_direct_chain_type must be set to one of these */ 2206 #define SD_CHAIN_INFO_DIRECT_CMD 8 2207 2208 /* un->un_priority_chain_type must be set to one of these */ 2209 #define SD_CHAIN_INFO_PRIORITY_CMD 9 2210 2211 /* size for devid inquiries */ 2212 #define MAX_INQUIRY_SIZE 0xF0 2213 2214 /* 2215 * Macros used by functions to pass a given buf(9S) struct along to the 2216 * next function in the layering chain for further processing. 2217 * 2218 * In the following macros, passing more than three arguments to the called 2219 * routines causes the optimizer for the SPARC compiler to stop doing tail 2220 * call elimination which results in significant performance degradation. 2221 */ 2222 #define SD_BEGIN_IOSTART(index, un, bp) \ 2223 ((*(sd_iostart_chain[index]))(index, un, bp)) 2224 2225 #define SD_BEGIN_IODONE(index, un, bp) \ 2226 ((*(sd_iodone_chain[index]))(index, un, bp)) 2227 2228 #define SD_NEXT_IOSTART(index, un, bp) \ 2229 ((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp)) 2230 2231 #define SD_NEXT_IODONE(index, un, bp) \ 2232 ((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp)) 2233 2234 /* 2235 * Function: _init 2236 * 2237 * Description: This is the driver _init(9E) entry point. 2238 * 2239 * Return Code: Returns the value from mod_install(9F) or 2240 * ddi_soft_state_init(9F) as appropriate. 2241 * 2242 * Context: Called when driver module loaded. 2243 */ 2244 2245 int 2246 _init(void) 2247 { 2248 int err; 2249 2250 /* establish driver name from module name */ 2251 sd_label = mod_modname(&modlinkage); 2252 2253 err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun), 2254 SD_MAXUNIT); 2255 2256 if (err != 0) { 2257 return (err); 2258 } 2259 2260 mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL); 2261 mutex_init(&sd_log_mutex, NULL, MUTEX_DRIVER, NULL); 2262 mutex_init(&sd_label_mutex, NULL, MUTEX_DRIVER, NULL); 2263 2264 mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL); 2265 cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL); 2266 cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL); 2267 2268 /* 2269 * it's ok to init here even for fibre device 2270 */ 2271 sd_scsi_probe_cache_init(); 2272 2273 sd_scsi_target_lun_init(); 2274 2275 /* 2276 * Creating taskq before mod_install ensures that all callers (threads) 2277 * that enter the module after a successfull mod_install encounter 2278 * a valid taskq. 2279 */ 2280 sd_taskq_create(); 2281 2282 err = mod_install(&modlinkage); 2283 if (err != 0) { 2284 /* delete taskq if install fails */ 2285 sd_taskq_delete(); 2286 2287 mutex_destroy(&sd_detach_mutex); 2288 mutex_destroy(&sd_log_mutex); 2289 mutex_destroy(&sd_label_mutex); 2290 2291 mutex_destroy(&sd_tr.srq_resv_reclaim_mutex); 2292 cv_destroy(&sd_tr.srq_resv_reclaim_cv); 2293 cv_destroy(&sd_tr.srq_inprocess_cv); 2294 2295 sd_scsi_probe_cache_fini(); 2296 2297 sd_scsi_target_lun_fini(); 2298 2299 ddi_soft_state_fini(&sd_state); 2300 return (err); 2301 } 2302 2303 return (err); 2304 } 2305 2306 2307 /* 2308 * Function: _fini 2309 * 2310 * Description: This is the driver _fini(9E) entry point. 2311 * 2312 * Return Code: Returns the value from mod_remove(9F) 2313 * 2314 * Context: Called when driver module is unloaded. 2315 */ 2316 2317 int 2318 _fini(void) 2319 { 2320 int err; 2321 2322 if ((err = mod_remove(&modlinkage)) != 0) { 2323 return (err); 2324 } 2325 2326 sd_taskq_delete(); 2327 2328 mutex_destroy(&sd_detach_mutex); 2329 mutex_destroy(&sd_log_mutex); 2330 mutex_destroy(&sd_label_mutex); 2331 mutex_destroy(&sd_tr.srq_resv_reclaim_mutex); 2332 2333 sd_scsi_probe_cache_fini(); 2334 2335 sd_scsi_target_lun_fini(); 2336 2337 cv_destroy(&sd_tr.srq_resv_reclaim_cv); 2338 cv_destroy(&sd_tr.srq_inprocess_cv); 2339 2340 ddi_soft_state_fini(&sd_state); 2341 2342 return (err); 2343 } 2344 2345 2346 /* 2347 * Function: _info 2348 * 2349 * Description: This is the driver _info(9E) entry point. 2350 * 2351 * Arguments: modinfop - pointer to the driver modinfo structure 2352 * 2353 * Return Code: Returns the value from mod_info(9F). 2354 * 2355 * Context: Kernel thread context 2356 */ 2357 2358 int 2359 _info(struct modinfo *modinfop) 2360 { 2361 return (mod_info(&modlinkage, modinfop)); 2362 } 2363 2364 2365 /* 2366 * The following routines implement the driver message logging facility. 2367 * They provide component- and level- based debug output filtering. 2368 * Output may also be restricted to messages for a single instance by 2369 * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set 2370 * to NULL, then messages for all instances are printed. 2371 * 2372 * These routines have been cloned from each other due to the language 2373 * constraints of macros and variable argument list processing. 2374 */ 2375 2376 2377 /* 2378 * Function: sd_log_err 2379 * 2380 * Description: This routine is called by the SD_ERROR macro for debug 2381 * logging of error conditions. 2382 * 2383 * Arguments: comp - driver component being logged 2384 * dev - pointer to driver info structure 2385 * fmt - error string and format to be logged 2386 */ 2387 2388 static void 2389 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...) 2390 { 2391 va_list ap; 2392 dev_info_t *dev; 2393 2394 ASSERT(un != NULL); 2395 dev = SD_DEVINFO(un); 2396 ASSERT(dev != NULL); 2397 2398 /* 2399 * Filter messages based on the global component and level masks. 2400 * Also print if un matches the value of sd_debug_un, or if 2401 * sd_debug_un is set to NULL. 2402 */ 2403 if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) && 2404 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2405 mutex_enter(&sd_log_mutex); 2406 va_start(ap, fmt); 2407 (void) vsprintf(sd_log_buf, fmt, ap); 2408 va_end(ap); 2409 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2410 mutex_exit(&sd_log_mutex); 2411 } 2412 #ifdef SD_FAULT_INJECTION 2413 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2414 if (un->sd_injection_mask & comp) { 2415 mutex_enter(&sd_log_mutex); 2416 va_start(ap, fmt); 2417 (void) vsprintf(sd_log_buf, fmt, ap); 2418 va_end(ap); 2419 sd_injection_log(sd_log_buf, un); 2420 mutex_exit(&sd_log_mutex); 2421 } 2422 #endif 2423 } 2424 2425 2426 /* 2427 * Function: sd_log_info 2428 * 2429 * Description: This routine is called by the SD_INFO macro for debug 2430 * logging of general purpose informational conditions. 2431 * 2432 * Arguments: comp - driver component being logged 2433 * dev - pointer to driver info structure 2434 * fmt - info string and format to be logged 2435 */ 2436 2437 static void 2438 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...) 2439 { 2440 va_list ap; 2441 dev_info_t *dev; 2442 2443 ASSERT(un != NULL); 2444 dev = SD_DEVINFO(un); 2445 ASSERT(dev != NULL); 2446 2447 /* 2448 * Filter messages based on the global component and level masks. 2449 * Also print if un matches the value of sd_debug_un, or if 2450 * sd_debug_un is set to NULL. 2451 */ 2452 if ((sd_component_mask & component) && 2453 (sd_level_mask & SD_LOGMASK_INFO) && 2454 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2455 mutex_enter(&sd_log_mutex); 2456 va_start(ap, fmt); 2457 (void) vsprintf(sd_log_buf, fmt, ap); 2458 va_end(ap); 2459 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2460 mutex_exit(&sd_log_mutex); 2461 } 2462 #ifdef SD_FAULT_INJECTION 2463 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2464 if (un->sd_injection_mask & component) { 2465 mutex_enter(&sd_log_mutex); 2466 va_start(ap, fmt); 2467 (void) vsprintf(sd_log_buf, fmt, ap); 2468 va_end(ap); 2469 sd_injection_log(sd_log_buf, un); 2470 mutex_exit(&sd_log_mutex); 2471 } 2472 #endif 2473 } 2474 2475 2476 /* 2477 * Function: sd_log_trace 2478 * 2479 * Description: This routine is called by the SD_TRACE macro for debug 2480 * logging of trace conditions (i.e. function entry/exit). 2481 * 2482 * Arguments: comp - driver component being logged 2483 * dev - pointer to driver info structure 2484 * fmt - trace string and format to be logged 2485 */ 2486 2487 static void 2488 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...) 2489 { 2490 va_list ap; 2491 dev_info_t *dev; 2492 2493 ASSERT(un != NULL); 2494 dev = SD_DEVINFO(un); 2495 ASSERT(dev != NULL); 2496 2497 /* 2498 * Filter messages based on the global component and level masks. 2499 * Also print if un matches the value of sd_debug_un, or if 2500 * sd_debug_un is set to NULL. 2501 */ 2502 if ((sd_component_mask & component) && 2503 (sd_level_mask & SD_LOGMASK_TRACE) && 2504 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2505 mutex_enter(&sd_log_mutex); 2506 va_start(ap, fmt); 2507 (void) vsprintf(sd_log_buf, fmt, ap); 2508 va_end(ap); 2509 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2510 mutex_exit(&sd_log_mutex); 2511 } 2512 #ifdef SD_FAULT_INJECTION 2513 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2514 if (un->sd_injection_mask & component) { 2515 mutex_enter(&sd_log_mutex); 2516 va_start(ap, fmt); 2517 (void) vsprintf(sd_log_buf, fmt, ap); 2518 va_end(ap); 2519 sd_injection_log(sd_log_buf, un); 2520 mutex_exit(&sd_log_mutex); 2521 } 2522 #endif 2523 } 2524 2525 2526 /* 2527 * Function: sdprobe 2528 * 2529 * Description: This is the driver probe(9e) entry point function. 2530 * 2531 * Arguments: devi - opaque device info handle 2532 * 2533 * Return Code: DDI_PROBE_SUCCESS: If the probe was successful. 2534 * DDI_PROBE_FAILURE: If the probe failed. 2535 * DDI_PROBE_PARTIAL: If the instance is not present now, 2536 * but may be present in the future. 2537 */ 2538 2539 static int 2540 sdprobe(dev_info_t *devi) 2541 { 2542 struct scsi_device *devp; 2543 int rval; 2544 int instance; 2545 2546 /* 2547 * if it wasn't for pln, sdprobe could actually be nulldev 2548 * in the "__fibre" case. 2549 */ 2550 if (ddi_dev_is_sid(devi) == DDI_SUCCESS) { 2551 return (DDI_PROBE_DONTCARE); 2552 } 2553 2554 devp = ddi_get_driver_private(devi); 2555 2556 if (devp == NULL) { 2557 /* Ooops... nexus driver is mis-configured... */ 2558 return (DDI_PROBE_FAILURE); 2559 } 2560 2561 instance = ddi_get_instance(devi); 2562 2563 if (ddi_get_soft_state(sd_state, instance) != NULL) { 2564 return (DDI_PROBE_PARTIAL); 2565 } 2566 2567 /* 2568 * Call the SCSA utility probe routine to see if we actually 2569 * have a target at this SCSI nexus. 2570 */ 2571 switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) { 2572 case SCSIPROBE_EXISTS: 2573 switch (devp->sd_inq->inq_dtype) { 2574 case DTYPE_DIRECT: 2575 rval = DDI_PROBE_SUCCESS; 2576 break; 2577 case DTYPE_RODIRECT: 2578 /* CDs etc. Can be removable media */ 2579 rval = DDI_PROBE_SUCCESS; 2580 break; 2581 case DTYPE_OPTICAL: 2582 /* 2583 * Rewritable optical driver HP115AA 2584 * Can also be removable media 2585 */ 2586 2587 /* 2588 * Do not attempt to bind to DTYPE_OPTICAL if 2589 * pre solaris 9 sparc sd behavior is required 2590 * 2591 * If first time through and sd_dtype_optical_bind 2592 * has not been set in /etc/system check properties 2593 */ 2594 2595 if (sd_dtype_optical_bind < 0) { 2596 sd_dtype_optical_bind = ddi_prop_get_int 2597 (DDI_DEV_T_ANY, devi, 0, 2598 "optical-device-bind", 1); 2599 } 2600 2601 if (sd_dtype_optical_bind == 0) { 2602 rval = DDI_PROBE_FAILURE; 2603 } else { 2604 rval = DDI_PROBE_SUCCESS; 2605 } 2606 break; 2607 2608 case DTYPE_NOTPRESENT: 2609 default: 2610 rval = DDI_PROBE_FAILURE; 2611 break; 2612 } 2613 break; 2614 default: 2615 rval = DDI_PROBE_PARTIAL; 2616 break; 2617 } 2618 2619 /* 2620 * This routine checks for resource allocation prior to freeing, 2621 * so it will take care of the "smart probing" case where a 2622 * scsi_probe() may or may not have been issued and will *not* 2623 * free previously-freed resources. 2624 */ 2625 scsi_unprobe(devp); 2626 return (rval); 2627 } 2628 2629 2630 /* 2631 * Function: sdinfo 2632 * 2633 * Description: This is the driver getinfo(9e) entry point function. 2634 * Given the device number, return the devinfo pointer from 2635 * the scsi_device structure or the instance number 2636 * associated with the dev_t. 2637 * 2638 * Arguments: dip - pointer to device info structure 2639 * infocmd - command argument (DDI_INFO_DEVT2DEVINFO, 2640 * DDI_INFO_DEVT2INSTANCE) 2641 * arg - driver dev_t 2642 * resultp - user buffer for request response 2643 * 2644 * Return Code: DDI_SUCCESS 2645 * DDI_FAILURE 2646 */ 2647 /* ARGSUSED */ 2648 static int 2649 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 2650 { 2651 struct sd_lun *un; 2652 dev_t dev; 2653 int instance; 2654 int error; 2655 2656 switch (infocmd) { 2657 case DDI_INFO_DEVT2DEVINFO: 2658 dev = (dev_t)arg; 2659 instance = SDUNIT(dev); 2660 if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) { 2661 return (DDI_FAILURE); 2662 } 2663 *result = (void *) SD_DEVINFO(un); 2664 error = DDI_SUCCESS; 2665 break; 2666 case DDI_INFO_DEVT2INSTANCE: 2667 dev = (dev_t)arg; 2668 instance = SDUNIT(dev); 2669 *result = (void *)(uintptr_t)instance; 2670 error = DDI_SUCCESS; 2671 break; 2672 default: 2673 error = DDI_FAILURE; 2674 } 2675 return (error); 2676 } 2677 2678 /* 2679 * Function: sd_prop_op 2680 * 2681 * Description: This is the driver prop_op(9e) entry point function. 2682 * Return the number of blocks for the partition in question 2683 * or forward the request to the property facilities. 2684 * 2685 * Arguments: dev - device number 2686 * dip - pointer to device info structure 2687 * prop_op - property operator 2688 * mod_flags - DDI_PROP_DONTPASS, don't pass to parent 2689 * name - pointer to property name 2690 * valuep - pointer or address of the user buffer 2691 * lengthp - property length 2692 * 2693 * Return Code: DDI_PROP_SUCCESS 2694 * DDI_PROP_NOT_FOUND 2695 * DDI_PROP_UNDEFINED 2696 * DDI_PROP_NO_MEMORY 2697 * DDI_PROP_BUF_TOO_SMALL 2698 */ 2699 2700 static int 2701 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, 2702 char *name, caddr_t valuep, int *lengthp) 2703 { 2704 int instance = ddi_get_instance(dip); 2705 struct sd_lun *un; 2706 uint64_t nblocks64; 2707 2708 /* 2709 * Our dynamic properties are all device specific and size oriented. 2710 * Requests issued under conditions where size is valid are passed 2711 * to ddi_prop_op_nblocks with the size information, otherwise the 2712 * request is passed to ddi_prop_op. Size depends on valid geometry. 2713 */ 2714 un = ddi_get_soft_state(sd_state, instance); 2715 if ((dev == DDI_DEV_T_ANY) || (un == NULL) || 2716 (un->un_f_geometry_is_valid == FALSE)) { 2717 return (ddi_prop_op(dev, dip, prop_op, mod_flags, 2718 name, valuep, lengthp)); 2719 } else { 2720 /* get nblocks value */ 2721 ASSERT(!mutex_owned(SD_MUTEX(un))); 2722 mutex_enter(SD_MUTEX(un)); 2723 nblocks64 = (ulong_t)un->un_map[SDPART(dev)].dkl_nblk; 2724 mutex_exit(SD_MUTEX(un)); 2725 2726 return (ddi_prop_op_nblocks(dev, dip, prop_op, mod_flags, 2727 name, valuep, lengthp, nblocks64)); 2728 } 2729 } 2730 2731 /* 2732 * The following functions are for smart probing: 2733 * sd_scsi_probe_cache_init() 2734 * sd_scsi_probe_cache_fini() 2735 * sd_scsi_clear_probe_cache() 2736 * sd_scsi_probe_with_cache() 2737 */ 2738 2739 /* 2740 * Function: sd_scsi_probe_cache_init 2741 * 2742 * Description: Initializes the probe response cache mutex and head pointer. 2743 * 2744 * Context: Kernel thread context 2745 */ 2746 2747 static void 2748 sd_scsi_probe_cache_init(void) 2749 { 2750 mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL); 2751 sd_scsi_probe_cache_head = NULL; 2752 } 2753 2754 2755 /* 2756 * Function: sd_scsi_probe_cache_fini 2757 * 2758 * Description: Frees all resources associated with the probe response cache. 2759 * 2760 * Context: Kernel thread context 2761 */ 2762 2763 static void 2764 sd_scsi_probe_cache_fini(void) 2765 { 2766 struct sd_scsi_probe_cache *cp; 2767 struct sd_scsi_probe_cache *ncp; 2768 2769 /* Clean up our smart probing linked list */ 2770 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) { 2771 ncp = cp->next; 2772 kmem_free(cp, sizeof (struct sd_scsi_probe_cache)); 2773 } 2774 sd_scsi_probe_cache_head = NULL; 2775 mutex_destroy(&sd_scsi_probe_cache_mutex); 2776 } 2777 2778 2779 /* 2780 * Function: sd_scsi_clear_probe_cache 2781 * 2782 * Description: This routine clears the probe response cache. This is 2783 * done when open() returns ENXIO so that when deferred 2784 * attach is attempted (possibly after a device has been 2785 * turned on) we will retry the probe. Since we don't know 2786 * which target we failed to open, we just clear the 2787 * entire cache. 2788 * 2789 * Context: Kernel thread context 2790 */ 2791 2792 static void 2793 sd_scsi_clear_probe_cache(void) 2794 { 2795 struct sd_scsi_probe_cache *cp; 2796 int i; 2797 2798 mutex_enter(&sd_scsi_probe_cache_mutex); 2799 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) { 2800 /* 2801 * Reset all entries to SCSIPROBE_EXISTS. This will 2802 * force probing to be performed the next time 2803 * sd_scsi_probe_with_cache is called. 2804 */ 2805 for (i = 0; i < NTARGETS_WIDE; i++) { 2806 cp->cache[i] = SCSIPROBE_EXISTS; 2807 } 2808 } 2809 mutex_exit(&sd_scsi_probe_cache_mutex); 2810 } 2811 2812 2813 /* 2814 * Function: sd_scsi_probe_with_cache 2815 * 2816 * Description: This routine implements support for a scsi device probe 2817 * with cache. The driver maintains a cache of the target 2818 * responses to scsi probes. If we get no response from a 2819 * target during a probe inquiry, we remember that, and we 2820 * avoid additional calls to scsi_probe on non-zero LUNs 2821 * on the same target until the cache is cleared. By doing 2822 * so we avoid the 1/4 sec selection timeout for nonzero 2823 * LUNs. lun0 of a target is always probed. 2824 * 2825 * Arguments: devp - Pointer to a scsi_device(9S) structure 2826 * waitfunc - indicates what the allocator routines should 2827 * do when resources are not available. This value 2828 * is passed on to scsi_probe() when that routine 2829 * is called. 2830 * 2831 * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache; 2832 * otherwise the value returned by scsi_probe(9F). 2833 * 2834 * Context: Kernel thread context 2835 */ 2836 2837 static int 2838 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)()) 2839 { 2840 struct sd_scsi_probe_cache *cp; 2841 dev_info_t *pdip = ddi_get_parent(devp->sd_dev); 2842 int lun, tgt; 2843 2844 lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS, 2845 SCSI_ADDR_PROP_LUN, 0); 2846 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS, 2847 SCSI_ADDR_PROP_TARGET, -1); 2848 2849 /* Make sure caching enabled and target in range */ 2850 if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) { 2851 /* do it the old way (no cache) */ 2852 return (scsi_probe(devp, waitfn)); 2853 } 2854 2855 mutex_enter(&sd_scsi_probe_cache_mutex); 2856 2857 /* Find the cache for this scsi bus instance */ 2858 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) { 2859 if (cp->pdip == pdip) { 2860 break; 2861 } 2862 } 2863 2864 /* If we can't find a cache for this pdip, create one */ 2865 if (cp == NULL) { 2866 int i; 2867 2868 cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache), 2869 KM_SLEEP); 2870 cp->pdip = pdip; 2871 cp->next = sd_scsi_probe_cache_head; 2872 sd_scsi_probe_cache_head = cp; 2873 for (i = 0; i < NTARGETS_WIDE; i++) { 2874 cp->cache[i] = SCSIPROBE_EXISTS; 2875 } 2876 } 2877 2878 mutex_exit(&sd_scsi_probe_cache_mutex); 2879 2880 /* Recompute the cache for this target if LUN zero */ 2881 if (lun == 0) { 2882 cp->cache[tgt] = SCSIPROBE_EXISTS; 2883 } 2884 2885 /* Don't probe if cache remembers a NORESP from a previous LUN. */ 2886 if (cp->cache[tgt] != SCSIPROBE_EXISTS) { 2887 return (SCSIPROBE_NORESP); 2888 } 2889 2890 /* Do the actual probe; save & return the result */ 2891 return (cp->cache[tgt] = scsi_probe(devp, waitfn)); 2892 } 2893 2894 2895 /* 2896 * Function: sd_scsi_target_lun_init 2897 * 2898 * Description: Initializes the attached lun chain mutex and head pointer. 2899 * 2900 * Context: Kernel thread context 2901 */ 2902 2903 static void 2904 sd_scsi_target_lun_init(void) 2905 { 2906 mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL); 2907 sd_scsi_target_lun_head = NULL; 2908 } 2909 2910 2911 /* 2912 * Function: sd_scsi_target_lun_fini 2913 * 2914 * Description: Frees all resources associated with the attached lun 2915 * chain 2916 * 2917 * Context: Kernel thread context 2918 */ 2919 2920 static void 2921 sd_scsi_target_lun_fini(void) 2922 { 2923 struct sd_scsi_hba_tgt_lun *cp; 2924 struct sd_scsi_hba_tgt_lun *ncp; 2925 2926 for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) { 2927 ncp = cp->next; 2928 kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun)); 2929 } 2930 sd_scsi_target_lun_head = NULL; 2931 mutex_destroy(&sd_scsi_target_lun_mutex); 2932 } 2933 2934 2935 /* 2936 * Function: sd_scsi_get_target_lun_count 2937 * 2938 * Description: This routine will check in the attached lun chain to see 2939 * how many luns are attached on the required SCSI controller 2940 * and target. Currently, some capabilities like tagged queue 2941 * are supported per target based by HBA. So all luns in a 2942 * target have the same capabilities. Based on this assumption, 2943 * sd should only set these capabilities once per target. This 2944 * function is called when sd needs to decide how many luns 2945 * already attached on a target. 2946 * 2947 * Arguments: dip - Pointer to the system's dev_info_t for the SCSI 2948 * controller device. 2949 * target - The target ID on the controller's SCSI bus. 2950 * 2951 * Return Code: The number of luns attached on the required target and 2952 * controller. 2953 * -1 if target ID is not in parallel SCSI scope or the given 2954 * dip is not in the chain. 2955 * 2956 * Context: Kernel thread context 2957 */ 2958 2959 static int 2960 sd_scsi_get_target_lun_count(dev_info_t *dip, int target) 2961 { 2962 struct sd_scsi_hba_tgt_lun *cp; 2963 2964 if ((target < 0) || (target >= NTARGETS_WIDE)) { 2965 return (-1); 2966 } 2967 2968 mutex_enter(&sd_scsi_target_lun_mutex); 2969 2970 for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) { 2971 if (cp->pdip == dip) { 2972 break; 2973 } 2974 } 2975 2976 mutex_exit(&sd_scsi_target_lun_mutex); 2977 2978 if (cp == NULL) { 2979 return (-1); 2980 } 2981 2982 return (cp->nlun[target]); 2983 } 2984 2985 2986 /* 2987 * Function: sd_scsi_update_lun_on_target 2988 * 2989 * Description: This routine is used to update the attached lun chain when a 2990 * lun is attached or detached on a target. 2991 * 2992 * Arguments: dip - Pointer to the system's dev_info_t for the SCSI 2993 * controller device. 2994 * target - The target ID on the controller's SCSI bus. 2995 * flag - Indicate the lun is attached or detached. 2996 * 2997 * Context: Kernel thread context 2998 */ 2999 3000 static void 3001 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag) 3002 { 3003 struct sd_scsi_hba_tgt_lun *cp; 3004 3005 mutex_enter(&sd_scsi_target_lun_mutex); 3006 3007 for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) { 3008 if (cp->pdip == dip) { 3009 break; 3010 } 3011 } 3012 3013 if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) { 3014 cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun), 3015 KM_SLEEP); 3016 cp->pdip = dip; 3017 cp->next = sd_scsi_target_lun_head; 3018 sd_scsi_target_lun_head = cp; 3019 } 3020 3021 mutex_exit(&sd_scsi_target_lun_mutex); 3022 3023 if (cp != NULL) { 3024 if (flag == SD_SCSI_LUN_ATTACH) { 3025 cp->nlun[target] ++; 3026 } else { 3027 cp->nlun[target] --; 3028 } 3029 } 3030 } 3031 3032 3033 /* 3034 * Function: sd_spin_up_unit 3035 * 3036 * Description: Issues the following commands to spin-up the device: 3037 * START STOP UNIT, and INQUIRY. 3038 * 3039 * Arguments: un - driver soft state (unit) structure 3040 * 3041 * Return Code: 0 - success 3042 * EIO - failure 3043 * EACCES - reservation conflict 3044 * 3045 * Context: Kernel thread context 3046 */ 3047 3048 static int 3049 sd_spin_up_unit(struct sd_lun *un) 3050 { 3051 size_t resid = 0; 3052 int has_conflict = FALSE; 3053 uchar_t *bufaddr; 3054 3055 ASSERT(un != NULL); 3056 3057 /* 3058 * Send a throwaway START UNIT command. 3059 * 3060 * If we fail on this, we don't care presently what precisely 3061 * is wrong. EMC's arrays will also fail this with a check 3062 * condition (0x2/0x4/0x3) if the device is "inactive," but 3063 * we don't want to fail the attach because it may become 3064 * "active" later. 3065 */ 3066 if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT) 3067 == EACCES) 3068 has_conflict = TRUE; 3069 3070 /* 3071 * Send another INQUIRY command to the target. This is necessary for 3072 * non-removable media direct access devices because their INQUIRY data 3073 * may not be fully qualified until they are spun up (perhaps via the 3074 * START command above). Note: This seems to be needed for some 3075 * legacy devices only.) The INQUIRY command should succeed even if a 3076 * Reservation Conflict is present. 3077 */ 3078 bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP); 3079 if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) { 3080 kmem_free(bufaddr, SUN_INQSIZE); 3081 return (EIO); 3082 } 3083 3084 /* 3085 * If we got enough INQUIRY data, copy it over the old INQUIRY data. 3086 * Note that this routine does not return a failure here even if the 3087 * INQUIRY command did not return any data. This is a legacy behavior. 3088 */ 3089 if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) { 3090 bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE); 3091 } 3092 3093 kmem_free(bufaddr, SUN_INQSIZE); 3094 3095 /* If we hit a reservation conflict above, tell the caller. */ 3096 if (has_conflict == TRUE) { 3097 return (EACCES); 3098 } 3099 3100 return (0); 3101 } 3102 3103 #ifdef _LP64 3104 /* 3105 * Function: sd_enable_descr_sense 3106 * 3107 * Description: This routine attempts to select descriptor sense format 3108 * using the Control mode page. Devices that support 64 bit 3109 * LBAs (for >2TB luns) should also implement descriptor 3110 * sense data so we will call this function whenever we see 3111 * a lun larger than 2TB. If for some reason the device 3112 * supports 64 bit LBAs but doesn't support descriptor sense 3113 * presumably the mode select will fail. Everything will 3114 * continue to work normally except that we will not get 3115 * complete sense data for commands that fail with an LBA 3116 * larger than 32 bits. 3117 * 3118 * Arguments: un - driver soft state (unit) structure 3119 * 3120 * Context: Kernel thread context only 3121 */ 3122 3123 static void 3124 sd_enable_descr_sense(struct sd_lun *un) 3125 { 3126 uchar_t *header; 3127 struct mode_control_scsi3 *ctrl_bufp; 3128 size_t buflen; 3129 size_t bd_len; 3130 3131 /* 3132 * Read MODE SENSE page 0xA, Control Mode Page 3133 */ 3134 buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH + 3135 sizeof (struct mode_control_scsi3); 3136 header = kmem_zalloc(buflen, KM_SLEEP); 3137 if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen, 3138 MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) { 3139 SD_ERROR(SD_LOG_COMMON, un, 3140 "sd_enable_descr_sense: mode sense ctrl page failed\n"); 3141 goto eds_exit; 3142 } 3143 3144 /* 3145 * Determine size of Block Descriptors in order to locate 3146 * the mode page data. ATAPI devices return 0, SCSI devices 3147 * should return MODE_BLK_DESC_LENGTH. 3148 */ 3149 bd_len = ((struct mode_header *)header)->bdesc_length; 3150 3151 ctrl_bufp = (struct mode_control_scsi3 *) 3152 (header + MODE_HEADER_LENGTH + bd_len); 3153 3154 /* 3155 * Clear PS bit for MODE SELECT 3156 */ 3157 ctrl_bufp->mode_page.ps = 0; 3158 3159 /* 3160 * Set D_SENSE to enable descriptor sense format. 3161 */ 3162 ctrl_bufp->d_sense = 1; 3163 3164 /* 3165 * Use MODE SELECT to commit the change to the D_SENSE bit 3166 */ 3167 if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header, 3168 buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) { 3169 SD_INFO(SD_LOG_COMMON, un, 3170 "sd_enable_descr_sense: mode select ctrl page failed\n"); 3171 goto eds_exit; 3172 } 3173 3174 eds_exit: 3175 kmem_free(header, buflen); 3176 } 3177 3178 /* 3179 * Function: sd_reenable_dsense_task 3180 * 3181 * Description: Re-enable descriptor sense after device or bus reset 3182 * 3183 * Context: Executes in a taskq() thread context 3184 */ 3185 static void 3186 sd_reenable_dsense_task(void *arg) 3187 { 3188 struct sd_lun *un = arg; 3189 3190 ASSERT(un != NULL); 3191 sd_enable_descr_sense(un); 3192 } 3193 #endif /* _LP64 */ 3194 3195 /* 3196 * Function: sd_set_mmc_caps 3197 * 3198 * Description: This routine determines if the device is MMC compliant and if 3199 * the device supports CDDA via a mode sense of the CDVD 3200 * capabilities mode page. Also checks if the device is a 3201 * dvdram writable device. 3202 * 3203 * Arguments: un - driver soft state (unit) structure 3204 * 3205 * Context: Kernel thread context only 3206 */ 3207 3208 static void 3209 sd_set_mmc_caps(struct sd_lun *un) 3210 { 3211 struct mode_header_grp2 *sense_mhp; 3212 uchar_t *sense_page; 3213 caddr_t buf; 3214 int bd_len; 3215 int status; 3216 struct uscsi_cmd com; 3217 int rtn; 3218 uchar_t *out_data_rw, *out_data_hd; 3219 uchar_t *rqbuf_rw, *rqbuf_hd; 3220 3221 ASSERT(un != NULL); 3222 3223 /* 3224 * The flags which will be set in this function are - mmc compliant, 3225 * dvdram writable device, cdda support. Initialize them to FALSE 3226 * and if a capability is detected - it will be set to TRUE. 3227 */ 3228 un->un_f_mmc_cap = FALSE; 3229 un->un_f_dvdram_writable_device = FALSE; 3230 un->un_f_cfg_cdda = FALSE; 3231 3232 buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 3233 status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf, 3234 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT); 3235 3236 if (status != 0) { 3237 /* command failed; just return */ 3238 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3239 return; 3240 } 3241 /* 3242 * If the mode sense request for the CDROM CAPABILITIES 3243 * page (0x2A) succeeds the device is assumed to be MMC. 3244 */ 3245 un->un_f_mmc_cap = TRUE; 3246 3247 /* Get to the page data */ 3248 sense_mhp = (struct mode_header_grp2 *)buf; 3249 bd_len = (sense_mhp->bdesc_length_hi << 8) | 3250 sense_mhp->bdesc_length_lo; 3251 if (bd_len > MODE_BLK_DESC_LENGTH) { 3252 /* 3253 * We did not get back the expected block descriptor 3254 * length so we cannot determine if the device supports 3255 * CDDA. However, we still indicate the device is MMC 3256 * according to the successful response to the page 3257 * 0x2A mode sense request. 3258 */ 3259 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3260 "sd_set_mmc_caps: Mode Sense returned " 3261 "invalid block descriptor length\n"); 3262 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3263 return; 3264 } 3265 3266 /* See if read CDDA is supported */ 3267 sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + 3268 bd_len); 3269 un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE; 3270 3271 /* See if writing DVD RAM is supported. */ 3272 un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE; 3273 if (un->un_f_dvdram_writable_device == TRUE) { 3274 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3275 return; 3276 } 3277 3278 /* 3279 * If the device presents DVD or CD capabilities in the mode 3280 * page, we can return here since a RRD will not have 3281 * these capabilities. 3282 */ 3283 if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) { 3284 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3285 return; 3286 } 3287 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3288 3289 /* 3290 * If un->un_f_dvdram_writable_device is still FALSE, 3291 * check for a Removable Rigid Disk (RRD). A RRD 3292 * device is identified by the features RANDOM_WRITABLE and 3293 * HARDWARE_DEFECT_MANAGEMENT. 3294 */ 3295 out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3296 rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3297 3298 rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw, 3299 SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN, 3300 RANDOM_WRITABLE); 3301 if (rtn != 0) { 3302 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3303 kmem_free(rqbuf_rw, SENSE_LENGTH); 3304 return; 3305 } 3306 3307 out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3308 rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3309 3310 rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd, 3311 SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN, 3312 HARDWARE_DEFECT_MANAGEMENT); 3313 if (rtn == 0) { 3314 /* 3315 * We have good information, check for random writable 3316 * and hardware defect features. 3317 */ 3318 if ((out_data_rw[9] & RANDOM_WRITABLE) && 3319 (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) { 3320 un->un_f_dvdram_writable_device = TRUE; 3321 } 3322 } 3323 3324 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3325 kmem_free(rqbuf_rw, SENSE_LENGTH); 3326 kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN); 3327 kmem_free(rqbuf_hd, SENSE_LENGTH); 3328 } 3329 3330 /* 3331 * Function: sd_check_for_writable_cd 3332 * 3333 * Description: This routine determines if the media in the device is 3334 * writable or not. It uses the get configuration command (0x46) 3335 * to determine if the media is writable 3336 * 3337 * Arguments: un - driver soft state (unit) structure 3338 * 3339 * Context: Never called at interrupt context. 3340 */ 3341 3342 static void 3343 sd_check_for_writable_cd(struct sd_lun *un) 3344 { 3345 struct uscsi_cmd com; 3346 uchar_t *out_data; 3347 uchar_t *rqbuf; 3348 int rtn; 3349 uchar_t *out_data_rw, *out_data_hd; 3350 uchar_t *rqbuf_rw, *rqbuf_hd; 3351 struct mode_header_grp2 *sense_mhp; 3352 uchar_t *sense_page; 3353 caddr_t buf; 3354 int bd_len; 3355 int status; 3356 3357 ASSERT(un != NULL); 3358 ASSERT(mutex_owned(SD_MUTEX(un))); 3359 3360 /* 3361 * Initialize the writable media to false, if configuration info. 3362 * tells us otherwise then only we will set it. 3363 */ 3364 un->un_f_mmc_writable_media = FALSE; 3365 mutex_exit(SD_MUTEX(un)); 3366 3367 out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP); 3368 rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3369 3370 rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH, 3371 out_data, SD_PROFILE_HEADER_LEN); 3372 3373 mutex_enter(SD_MUTEX(un)); 3374 if (rtn == 0) { 3375 /* 3376 * We have good information, check for writable DVD. 3377 */ 3378 if ((out_data[6] == 0) && (out_data[7] == 0x12)) { 3379 un->un_f_mmc_writable_media = TRUE; 3380 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 3381 kmem_free(rqbuf, SENSE_LENGTH); 3382 return; 3383 } 3384 } 3385 3386 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 3387 kmem_free(rqbuf, SENSE_LENGTH); 3388 3389 /* 3390 * Determine if this is a RRD type device. 3391 */ 3392 mutex_exit(SD_MUTEX(un)); 3393 buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 3394 status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf, 3395 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT); 3396 mutex_enter(SD_MUTEX(un)); 3397 if (status != 0) { 3398 /* command failed; just return */ 3399 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3400 return; 3401 } 3402 3403 /* Get to the page data */ 3404 sense_mhp = (struct mode_header_grp2 *)buf; 3405 bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo; 3406 if (bd_len > MODE_BLK_DESC_LENGTH) { 3407 /* 3408 * We did not get back the expected block descriptor length so 3409 * we cannot check the mode page. 3410 */ 3411 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3412 "sd_check_for_writable_cd: Mode Sense returned " 3413 "invalid block descriptor length\n"); 3414 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3415 return; 3416 } 3417 3418 /* 3419 * If the device presents DVD or CD capabilities in the mode 3420 * page, we can return here since a RRD device will not have 3421 * these capabilities. 3422 */ 3423 sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len); 3424 if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) { 3425 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3426 return; 3427 } 3428 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3429 3430 /* 3431 * If un->un_f_mmc_writable_media is still FALSE, 3432 * check for RRD type media. A RRD device is identified 3433 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT. 3434 */ 3435 mutex_exit(SD_MUTEX(un)); 3436 out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3437 rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3438 3439 rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw, 3440 SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN, 3441 RANDOM_WRITABLE); 3442 if (rtn != 0) { 3443 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3444 kmem_free(rqbuf_rw, SENSE_LENGTH); 3445 mutex_enter(SD_MUTEX(un)); 3446 return; 3447 } 3448 3449 out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3450 rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3451 3452 rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd, 3453 SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN, 3454 HARDWARE_DEFECT_MANAGEMENT); 3455 mutex_enter(SD_MUTEX(un)); 3456 if (rtn == 0) { 3457 /* 3458 * We have good information, check for random writable 3459 * and hardware defect features as current. 3460 */ 3461 if ((out_data_rw[9] & RANDOM_WRITABLE) && 3462 (out_data_rw[10] & 0x1) && 3463 (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) && 3464 (out_data_hd[10] & 0x1)) { 3465 un->un_f_mmc_writable_media = TRUE; 3466 } 3467 } 3468 3469 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3470 kmem_free(rqbuf_rw, SENSE_LENGTH); 3471 kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN); 3472 kmem_free(rqbuf_hd, SENSE_LENGTH); 3473 } 3474 3475 /* 3476 * Function: sd_read_unit_properties 3477 * 3478 * Description: The following implements a property lookup mechanism. 3479 * Properties for particular disks (keyed on vendor, model 3480 * and rev numbers) are sought in the sd.conf file via 3481 * sd_process_sdconf_file(), and if not found there, are 3482 * looked for in a list hardcoded in this driver via 3483 * sd_process_sdconf_table() Once located the properties 3484 * are used to update the driver unit structure. 3485 * 3486 * Arguments: un - driver soft state (unit) structure 3487 */ 3488 3489 static void 3490 sd_read_unit_properties(struct sd_lun *un) 3491 { 3492 /* 3493 * sd_process_sdconf_file returns SD_FAILURE if it cannot find 3494 * the "sd-config-list" property (from the sd.conf file) or if 3495 * there was not a match for the inquiry vid/pid. If this event 3496 * occurs the static driver configuration table is searched for 3497 * a match. 3498 */ 3499 ASSERT(un != NULL); 3500 if (sd_process_sdconf_file(un) == SD_FAILURE) { 3501 sd_process_sdconf_table(un); 3502 } 3503 3504 /* check for LSI device */ 3505 sd_is_lsi(un); 3506 3507 3508 } 3509 3510 3511 /* 3512 * Function: sd_process_sdconf_file 3513 * 3514 * Description: Use ddi_getlongprop to obtain the properties from the 3515 * driver's config file (ie, sd.conf) and update the driver 3516 * soft state structure accordingly. 3517 * 3518 * Arguments: un - driver soft state (unit) structure 3519 * 3520 * Return Code: SD_SUCCESS - The properties were successfully set according 3521 * to the driver configuration file. 3522 * SD_FAILURE - The driver config list was not obtained or 3523 * there was no vid/pid match. This indicates that 3524 * the static config table should be used. 3525 * 3526 * The config file has a property, "sd-config-list", which consists of 3527 * one or more duplets as follows: 3528 * 3529 * sd-config-list= 3530 * <duplet>, 3531 * [<duplet>,] 3532 * [<duplet>]; 3533 * 3534 * The structure of each duplet is as follows: 3535 * 3536 * <duplet>:= <vid+pid>,<data-property-name_list> 3537 * 3538 * The first entry of the duplet is the device ID string (the concatenated 3539 * vid & pid; not to be confused with a device_id). This is defined in 3540 * the same way as in the sd_disk_table. 3541 * 3542 * The second part of the duplet is a string that identifies a 3543 * data-property-name-list. The data-property-name-list is defined as 3544 * follows: 3545 * 3546 * <data-property-name-list>:=<data-property-name> [<data-property-name>] 3547 * 3548 * The syntax of <data-property-name> depends on the <version> field. 3549 * 3550 * If version = SD_CONF_VERSION_1 we have the following syntax: 3551 * 3552 * <data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN> 3553 * 3554 * where the prop0 value will be used to set prop0 if bit0 set in the 3555 * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1 3556 * 3557 */ 3558 3559 static int 3560 sd_process_sdconf_file(struct sd_lun *un) 3561 { 3562 char *config_list = NULL; 3563 int config_list_len; 3564 int len; 3565 int dupletlen = 0; 3566 char *vidptr; 3567 int vidlen; 3568 char *dnlist_ptr; 3569 char *dataname_ptr; 3570 int dnlist_len; 3571 int dataname_len; 3572 int *data_list; 3573 int data_list_len; 3574 int rval = SD_FAILURE; 3575 int i; 3576 3577 ASSERT(un != NULL); 3578 3579 /* Obtain the configuration list associated with the .conf file */ 3580 if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS, 3581 sd_config_list, (caddr_t)&config_list, &config_list_len) 3582 != DDI_PROP_SUCCESS) { 3583 return (SD_FAILURE); 3584 } 3585 3586 /* 3587 * Compare vids in each duplet to the inquiry vid - if a match is 3588 * made, get the data value and update the soft state structure 3589 * accordingly. 3590 * 3591 * Note: This algorithm is complex and difficult to maintain. It should 3592 * be replaced with a more robust implementation. 3593 */ 3594 for (len = config_list_len, vidptr = config_list; len > 0; 3595 vidptr += dupletlen, len -= dupletlen) { 3596 /* 3597 * Note: The assumption here is that each vid entry is on 3598 * a unique line from its associated duplet. 3599 */ 3600 vidlen = dupletlen = (int)strlen(vidptr); 3601 if ((vidlen == 0) || 3602 (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) { 3603 dupletlen++; 3604 continue; 3605 } 3606 3607 /* 3608 * dnlist contains 1 or more blank separated 3609 * data-property-name entries 3610 */ 3611 dnlist_ptr = vidptr + vidlen + 1; 3612 dnlist_len = (int)strlen(dnlist_ptr); 3613 dupletlen += dnlist_len + 2; 3614 3615 /* 3616 * Set a pointer for the first data-property-name 3617 * entry in the list 3618 */ 3619 dataname_ptr = dnlist_ptr; 3620 dataname_len = 0; 3621 3622 /* 3623 * Loop through all data-property-name entries in the 3624 * data-property-name-list setting the properties for each. 3625 */ 3626 while (dataname_len < dnlist_len) { 3627 int version; 3628 3629 /* 3630 * Determine the length of the current 3631 * data-property-name entry by indexing until a 3632 * blank or NULL is encountered. When the space is 3633 * encountered reset it to a NULL for compliance 3634 * with ddi_getlongprop(). 3635 */ 3636 for (i = 0; ((dataname_ptr[i] != ' ') && 3637 (dataname_ptr[i] != '\0')); i++) { 3638 ; 3639 } 3640 3641 dataname_len += i; 3642 /* If not null terminated, Make it so */ 3643 if (dataname_ptr[i] == ' ') { 3644 dataname_ptr[i] = '\0'; 3645 } 3646 dataname_len++; 3647 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3648 "sd_process_sdconf_file: disk:%s, data:%s\n", 3649 vidptr, dataname_ptr); 3650 3651 /* Get the data list */ 3652 if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0, 3653 dataname_ptr, (caddr_t)&data_list, &data_list_len) 3654 != DDI_PROP_SUCCESS) { 3655 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3656 "sd_process_sdconf_file: data property (%s)" 3657 " has no value\n", dataname_ptr); 3658 dataname_ptr = dnlist_ptr + dataname_len; 3659 continue; 3660 } 3661 3662 version = data_list[0]; 3663 3664 if (version == SD_CONF_VERSION_1) { 3665 sd_tunables values; 3666 3667 /* Set the properties */ 3668 if (sd_chk_vers1_data(un, data_list[1], 3669 &data_list[2], data_list_len, dataname_ptr) 3670 == SD_SUCCESS) { 3671 sd_get_tunables_from_conf(un, 3672 data_list[1], &data_list[2], 3673 &values); 3674 sd_set_vers1_properties(un, 3675 data_list[1], &values); 3676 rval = SD_SUCCESS; 3677 } else { 3678 rval = SD_FAILURE; 3679 } 3680 } else { 3681 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3682 "data property %s version 0x%x is invalid.", 3683 dataname_ptr, version); 3684 rval = SD_FAILURE; 3685 } 3686 kmem_free(data_list, data_list_len); 3687 dataname_ptr = dnlist_ptr + dataname_len; 3688 } 3689 } 3690 3691 /* free up the memory allocated by ddi_getlongprop */ 3692 if (config_list) { 3693 kmem_free(config_list, config_list_len); 3694 } 3695 3696 return (rval); 3697 } 3698 3699 /* 3700 * Function: sd_get_tunables_from_conf() 3701 * 3702 * 3703 * This function reads the data list from the sd.conf file and pulls 3704 * the values that can have numeric values as arguments and places 3705 * the values in the apropriate sd_tunables member. 3706 * Since the order of the data list members varies across platforms 3707 * This function reads them from the data list in a platform specific 3708 * order and places them into the correct sd_tunable member that is 3709 * a consistant across all platforms. 3710 */ 3711 static void 3712 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list, 3713 sd_tunables *values) 3714 { 3715 int i; 3716 int mask; 3717 3718 bzero(values, sizeof (sd_tunables)); 3719 3720 for (i = 0; i < SD_CONF_MAX_ITEMS; i++) { 3721 3722 mask = 1 << i; 3723 if (mask > flags) { 3724 break; 3725 } 3726 3727 switch (mask & flags) { 3728 case 0: /* This mask bit not set in flags */ 3729 continue; 3730 case SD_CONF_BSET_THROTTLE: 3731 values->sdt_throttle = data_list[i]; 3732 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3733 "sd_get_tunables_from_conf: throttle = %d\n", 3734 values->sdt_throttle); 3735 break; 3736 case SD_CONF_BSET_CTYPE: 3737 values->sdt_ctype = data_list[i]; 3738 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3739 "sd_get_tunables_from_conf: ctype = %d\n", 3740 values->sdt_ctype); 3741 break; 3742 case SD_CONF_BSET_NRR_COUNT: 3743 values->sdt_not_rdy_retries = data_list[i]; 3744 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3745 "sd_get_tunables_from_conf: not_rdy_retries = %d\n", 3746 values->sdt_not_rdy_retries); 3747 break; 3748 case SD_CONF_BSET_BSY_RETRY_COUNT: 3749 values->sdt_busy_retries = data_list[i]; 3750 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3751 "sd_get_tunables_from_conf: busy_retries = %d\n", 3752 values->sdt_busy_retries); 3753 break; 3754 case SD_CONF_BSET_RST_RETRIES: 3755 values->sdt_reset_retries = data_list[i]; 3756 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3757 "sd_get_tunables_from_conf: reset_retries = %d\n", 3758 values->sdt_reset_retries); 3759 break; 3760 case SD_CONF_BSET_RSV_REL_TIME: 3761 values->sdt_reserv_rel_time = data_list[i]; 3762 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3763 "sd_get_tunables_from_conf: reserv_rel_time = %d\n", 3764 values->sdt_reserv_rel_time); 3765 break; 3766 case SD_CONF_BSET_MIN_THROTTLE: 3767 values->sdt_min_throttle = data_list[i]; 3768 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3769 "sd_get_tunables_from_conf: min_throttle = %d\n", 3770 values->sdt_min_throttle); 3771 break; 3772 case SD_CONF_BSET_DISKSORT_DISABLED: 3773 values->sdt_disk_sort_dis = data_list[i]; 3774 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3775 "sd_get_tunables_from_conf: disk_sort_dis = %d\n", 3776 values->sdt_disk_sort_dis); 3777 break; 3778 case SD_CONF_BSET_LUN_RESET_ENABLED: 3779 values->sdt_lun_reset_enable = data_list[i]; 3780 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3781 "sd_get_tunables_from_conf: lun_reset_enable = %d" 3782 "\n", values->sdt_lun_reset_enable); 3783 break; 3784 } 3785 } 3786 } 3787 3788 /* 3789 * Function: sd_process_sdconf_table 3790 * 3791 * Description: Search the static configuration table for a match on the 3792 * inquiry vid/pid and update the driver soft state structure 3793 * according to the table property values for the device. 3794 * 3795 * The form of a configuration table entry is: 3796 * <vid+pid>,<flags>,<property-data> 3797 * "SEAGATE ST42400N",1,63,0,0 (Fibre) 3798 * "SEAGATE ST42400N",1,63,0,0,0,0 (Sparc) 3799 * "SEAGATE ST42400N",1,63,0,0,0,0,0,0,0,0,0,0 (Intel) 3800 * 3801 * Arguments: un - driver soft state (unit) structure 3802 */ 3803 3804 static void 3805 sd_process_sdconf_table(struct sd_lun *un) 3806 { 3807 char *id = NULL; 3808 int table_index; 3809 int idlen; 3810 3811 ASSERT(un != NULL); 3812 for (table_index = 0; table_index < sd_disk_table_size; 3813 table_index++) { 3814 id = sd_disk_table[table_index].device_id; 3815 idlen = strlen(id); 3816 if (idlen == 0) { 3817 continue; 3818 } 3819 3820 /* 3821 * The static configuration table currently does not 3822 * implement version 10 properties. Additionally, 3823 * multiple data-property-name entries are not 3824 * implemented in the static configuration table. 3825 */ 3826 if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) { 3827 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3828 "sd_process_sdconf_table: disk %s\n", id); 3829 sd_set_vers1_properties(un, 3830 sd_disk_table[table_index].flags, 3831 sd_disk_table[table_index].properties); 3832 break; 3833 } 3834 } 3835 } 3836 3837 3838 /* 3839 * Function: sd_sdconf_id_match 3840 * 3841 * Description: This local function implements a case sensitive vid/pid 3842 * comparison as well as the boundary cases of wild card and 3843 * multiple blanks. 3844 * 3845 * Note: An implicit assumption made here is that the scsi 3846 * inquiry structure will always keep the vid, pid and 3847 * revision strings in consecutive sequence, so they can be 3848 * read as a single string. If this assumption is not the 3849 * case, a separate string, to be used for the check, needs 3850 * to be built with these strings concatenated. 3851 * 3852 * Arguments: un - driver soft state (unit) structure 3853 * id - table or config file vid/pid 3854 * idlen - length of the vid/pid (bytes) 3855 * 3856 * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid 3857 * SD_FAILURE - Indicates no match with the inquiry vid/pid 3858 */ 3859 3860 static int 3861 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen) 3862 { 3863 struct scsi_inquiry *sd_inq; 3864 int rval = SD_SUCCESS; 3865 3866 ASSERT(un != NULL); 3867 sd_inq = un->un_sd->sd_inq; 3868 ASSERT(id != NULL); 3869 3870 /* 3871 * We use the inq_vid as a pointer to a buffer containing the 3872 * vid and pid and use the entire vid/pid length of the table 3873 * entry for the comparison. This works because the inq_pid 3874 * data member follows inq_vid in the scsi_inquiry structure. 3875 */ 3876 if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) { 3877 /* 3878 * The user id string is compared to the inquiry vid/pid 3879 * using a case insensitive comparison and ignoring 3880 * multiple spaces. 3881 */ 3882 rval = sd_blank_cmp(un, id, idlen); 3883 if (rval != SD_SUCCESS) { 3884 /* 3885 * User id strings that start and end with a "*" 3886 * are a special case. These do not have a 3887 * specific vendor, and the product string can 3888 * appear anywhere in the 16 byte PID portion of 3889 * the inquiry data. This is a simple strstr() 3890 * type search for the user id in the inquiry data. 3891 */ 3892 if ((id[0] == '*') && (id[idlen - 1] == '*')) { 3893 char *pidptr = &id[1]; 3894 int i; 3895 int j; 3896 int pidstrlen = idlen - 2; 3897 j = sizeof (SD_INQUIRY(un)->inq_pid) - 3898 pidstrlen; 3899 3900 if (j < 0) { 3901 return (SD_FAILURE); 3902 } 3903 for (i = 0; i < j; i++) { 3904 if (bcmp(&SD_INQUIRY(un)->inq_pid[i], 3905 pidptr, pidstrlen) == 0) { 3906 rval = SD_SUCCESS; 3907 break; 3908 } 3909 } 3910 } 3911 } 3912 } 3913 return (rval); 3914 } 3915 3916 3917 /* 3918 * Function: sd_blank_cmp 3919 * 3920 * Description: If the id string starts and ends with a space, treat 3921 * multiple consecutive spaces as equivalent to a single 3922 * space. For example, this causes a sd_disk_table entry 3923 * of " NEC CDROM " to match a device's id string of 3924 * "NEC CDROM". 3925 * 3926 * Note: The success exit condition for this routine is if 3927 * the pointer to the table entry is '\0' and the cnt of 3928 * the inquiry length is zero. This will happen if the inquiry 3929 * string returned by the device is padded with spaces to be 3930 * exactly 24 bytes in length (8 byte vid + 16 byte pid). The 3931 * SCSI spec states that the inquiry string is to be padded with 3932 * spaces. 3933 * 3934 * Arguments: un - driver soft state (unit) structure 3935 * id - table or config file vid/pid 3936 * idlen - length of the vid/pid (bytes) 3937 * 3938 * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid 3939 * SD_FAILURE - Indicates no match with the inquiry vid/pid 3940 */ 3941 3942 static int 3943 sd_blank_cmp(struct sd_lun *un, char *id, int idlen) 3944 { 3945 char *p1; 3946 char *p2; 3947 int cnt; 3948 cnt = sizeof (SD_INQUIRY(un)->inq_vid) + 3949 sizeof (SD_INQUIRY(un)->inq_pid); 3950 3951 ASSERT(un != NULL); 3952 p2 = un->un_sd->sd_inq->inq_vid; 3953 ASSERT(id != NULL); 3954 p1 = id; 3955 3956 if ((id[0] == ' ') && (id[idlen - 1] == ' ')) { 3957 /* 3958 * Note: string p1 is terminated by a NUL but string p2 3959 * isn't. The end of p2 is determined by cnt. 3960 */ 3961 for (;;) { 3962 /* skip over any extra blanks in both strings */ 3963 while ((*p1 != '\0') && (*p1 == ' ')) { 3964 p1++; 3965 } 3966 while ((cnt != 0) && (*p2 == ' ')) { 3967 p2++; 3968 cnt--; 3969 } 3970 3971 /* compare the two strings */ 3972 if ((cnt == 0) || 3973 (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) { 3974 break; 3975 } 3976 while ((cnt > 0) && 3977 (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) { 3978 p1++; 3979 p2++; 3980 cnt--; 3981 } 3982 } 3983 } 3984 3985 /* return SD_SUCCESS if both strings match */ 3986 return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE); 3987 } 3988 3989 3990 /* 3991 * Function: sd_chk_vers1_data 3992 * 3993 * Description: Verify the version 1 device properties provided by the 3994 * user via the configuration file 3995 * 3996 * Arguments: un - driver soft state (unit) structure 3997 * flags - integer mask indicating properties to be set 3998 * prop_list - integer list of property values 3999 * list_len - length of user provided data 4000 * 4001 * Return Code: SD_SUCCESS - Indicates the user provided data is valid 4002 * SD_FAILURE - Indicates the user provided data is invalid 4003 */ 4004 4005 static int 4006 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list, 4007 int list_len, char *dataname_ptr) 4008 { 4009 int i; 4010 int mask = 1; 4011 int index = 0; 4012 4013 ASSERT(un != NULL); 4014 4015 /* Check for a NULL property name and list */ 4016 if (dataname_ptr == NULL) { 4017 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4018 "sd_chk_vers1_data: NULL data property name."); 4019 return (SD_FAILURE); 4020 } 4021 if (prop_list == NULL) { 4022 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4023 "sd_chk_vers1_data: %s NULL data property list.", 4024 dataname_ptr); 4025 return (SD_FAILURE); 4026 } 4027 4028 /* Display a warning if undefined bits are set in the flags */ 4029 if (flags & ~SD_CONF_BIT_MASK) { 4030 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4031 "sd_chk_vers1_data: invalid bits 0x%x in data list %s. " 4032 "Properties not set.", 4033 (flags & ~SD_CONF_BIT_MASK), dataname_ptr); 4034 return (SD_FAILURE); 4035 } 4036 4037 /* 4038 * Verify the length of the list by identifying the highest bit set 4039 * in the flags and validating that the property list has a length 4040 * up to the index of this bit. 4041 */ 4042 for (i = 0; i < SD_CONF_MAX_ITEMS; i++) { 4043 if (flags & mask) { 4044 index++; 4045 } 4046 mask = 1 << i; 4047 } 4048 if ((list_len / sizeof (int)) < (index + 2)) { 4049 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4050 "sd_chk_vers1_data: " 4051 "Data property list %s size is incorrect. " 4052 "Properties not set.", dataname_ptr); 4053 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: " 4054 "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS); 4055 return (SD_FAILURE); 4056 } 4057 return (SD_SUCCESS); 4058 } 4059 4060 4061 /* 4062 * Function: sd_set_vers1_properties 4063 * 4064 * Description: Set version 1 device properties based on a property list 4065 * retrieved from the driver configuration file or static 4066 * configuration table. Version 1 properties have the format: 4067 * 4068 * <data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN> 4069 * 4070 * where the prop0 value will be used to set prop0 if bit0 4071 * is set in the flags 4072 * 4073 * Arguments: un - driver soft state (unit) structure 4074 * flags - integer mask indicating properties to be set 4075 * prop_list - integer list of property values 4076 */ 4077 4078 static void 4079 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list) 4080 { 4081 ASSERT(un != NULL); 4082 4083 /* 4084 * Set the flag to indicate cache is to be disabled. An attempt 4085 * to disable the cache via sd_cache_control() will be made 4086 * later during attach once the basic initialization is complete. 4087 */ 4088 if (flags & SD_CONF_BSET_NOCACHE) { 4089 un->un_f_opt_disable_cache = TRUE; 4090 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4091 "sd_set_vers1_properties: caching disabled flag set\n"); 4092 } 4093 4094 /* CD-specific configuration parameters */ 4095 if (flags & SD_CONF_BSET_PLAYMSF_BCD) { 4096 un->un_f_cfg_playmsf_bcd = TRUE; 4097 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4098 "sd_set_vers1_properties: playmsf_bcd set\n"); 4099 } 4100 if (flags & SD_CONF_BSET_READSUB_BCD) { 4101 un->un_f_cfg_readsub_bcd = TRUE; 4102 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4103 "sd_set_vers1_properties: readsub_bcd set\n"); 4104 } 4105 if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) { 4106 un->un_f_cfg_read_toc_trk_bcd = TRUE; 4107 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4108 "sd_set_vers1_properties: read_toc_trk_bcd set\n"); 4109 } 4110 if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) { 4111 un->un_f_cfg_read_toc_addr_bcd = TRUE; 4112 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4113 "sd_set_vers1_properties: read_toc_addr_bcd set\n"); 4114 } 4115 if (flags & SD_CONF_BSET_NO_READ_HEADER) { 4116 un->un_f_cfg_no_read_header = TRUE; 4117 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4118 "sd_set_vers1_properties: no_read_header set\n"); 4119 } 4120 if (flags & SD_CONF_BSET_READ_CD_XD4) { 4121 un->un_f_cfg_read_cd_xd4 = TRUE; 4122 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4123 "sd_set_vers1_properties: read_cd_xd4 set\n"); 4124 } 4125 4126 /* Support for devices which do not have valid/unique serial numbers */ 4127 if (flags & SD_CONF_BSET_FAB_DEVID) { 4128 un->un_f_opt_fab_devid = TRUE; 4129 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4130 "sd_set_vers1_properties: fab_devid bit set\n"); 4131 } 4132 4133 /* Support for user throttle configuration */ 4134 if (flags & SD_CONF_BSET_THROTTLE) { 4135 ASSERT(prop_list != NULL); 4136 un->un_saved_throttle = un->un_throttle = 4137 prop_list->sdt_throttle; 4138 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4139 "sd_set_vers1_properties: throttle set to %d\n", 4140 prop_list->sdt_throttle); 4141 } 4142 4143 /* Set the per disk retry count according to the conf file or table. */ 4144 if (flags & SD_CONF_BSET_NRR_COUNT) { 4145 ASSERT(prop_list != NULL); 4146 if (prop_list->sdt_not_rdy_retries) { 4147 un->un_notready_retry_count = 4148 prop_list->sdt_not_rdy_retries; 4149 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4150 "sd_set_vers1_properties: not ready retry count" 4151 " set to %d\n", un->un_notready_retry_count); 4152 } 4153 } 4154 4155 /* The controller type is reported for generic disk driver ioctls */ 4156 if (flags & SD_CONF_BSET_CTYPE) { 4157 ASSERT(prop_list != NULL); 4158 switch (prop_list->sdt_ctype) { 4159 case CTYPE_CDROM: 4160 un->un_ctype = prop_list->sdt_ctype; 4161 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4162 "sd_set_vers1_properties: ctype set to " 4163 "CTYPE_CDROM\n"); 4164 break; 4165 case CTYPE_CCS: 4166 un->un_ctype = prop_list->sdt_ctype; 4167 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4168 "sd_set_vers1_properties: ctype set to " 4169 "CTYPE_CCS\n"); 4170 break; 4171 case CTYPE_ROD: /* RW optical */ 4172 un->un_ctype = prop_list->sdt_ctype; 4173 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4174 "sd_set_vers1_properties: ctype set to " 4175 "CTYPE_ROD\n"); 4176 break; 4177 default: 4178 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4179 "sd_set_vers1_properties: Could not set " 4180 "invalid ctype value (%d)", 4181 prop_list->sdt_ctype); 4182 } 4183 } 4184 4185 /* Purple failover timeout */ 4186 if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) { 4187 ASSERT(prop_list != NULL); 4188 un->un_busy_retry_count = 4189 prop_list->sdt_busy_retries; 4190 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4191 "sd_set_vers1_properties: " 4192 "busy retry count set to %d\n", 4193 un->un_busy_retry_count); 4194 } 4195 4196 /* Purple reset retry count */ 4197 if (flags & SD_CONF_BSET_RST_RETRIES) { 4198 ASSERT(prop_list != NULL); 4199 un->un_reset_retry_count = 4200 prop_list->sdt_reset_retries; 4201 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4202 "sd_set_vers1_properties: " 4203 "reset retry count set to %d\n", 4204 un->un_reset_retry_count); 4205 } 4206 4207 /* Purple reservation release timeout */ 4208 if (flags & SD_CONF_BSET_RSV_REL_TIME) { 4209 ASSERT(prop_list != NULL); 4210 un->un_reserve_release_time = 4211 prop_list->sdt_reserv_rel_time; 4212 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4213 "sd_set_vers1_properties: " 4214 "reservation release timeout set to %d\n", 4215 un->un_reserve_release_time); 4216 } 4217 4218 /* 4219 * Driver flag telling the driver to verify that no commands are pending 4220 * for a device before issuing a Test Unit Ready. This is a workaround 4221 * for a firmware bug in some Seagate eliteI drives. 4222 */ 4223 if (flags & SD_CONF_BSET_TUR_CHECK) { 4224 un->un_f_cfg_tur_check = TRUE; 4225 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4226 "sd_set_vers1_properties: tur queue check set\n"); 4227 } 4228 4229 if (flags & SD_CONF_BSET_MIN_THROTTLE) { 4230 un->un_min_throttle = prop_list->sdt_min_throttle; 4231 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4232 "sd_set_vers1_properties: min throttle set to %d\n", 4233 un->un_min_throttle); 4234 } 4235 4236 if (flags & SD_CONF_BSET_DISKSORT_DISABLED) { 4237 un->un_f_disksort_disabled = 4238 (prop_list->sdt_disk_sort_dis != 0) ? 4239 TRUE : FALSE; 4240 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4241 "sd_set_vers1_properties: disksort disabled " 4242 "flag set to %d\n", 4243 prop_list->sdt_disk_sort_dis); 4244 } 4245 4246 if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) { 4247 un->un_f_lun_reset_enabled = 4248 (prop_list->sdt_lun_reset_enable != 0) ? 4249 TRUE : FALSE; 4250 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4251 "sd_set_vers1_properties: lun reset enabled " 4252 "flag set to %d\n", 4253 prop_list->sdt_lun_reset_enable); 4254 } 4255 4256 /* 4257 * Validate the throttle values. 4258 * If any of the numbers are invalid, set everything to defaults. 4259 */ 4260 if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) || 4261 (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) || 4262 (un->un_min_throttle > un->un_throttle)) { 4263 un->un_saved_throttle = un->un_throttle = sd_max_throttle; 4264 un->un_min_throttle = sd_min_throttle; 4265 } 4266 } 4267 4268 /* 4269 * Function: sd_is_lsi() 4270 * 4271 * Description: Check for lsi devices, step throught the static device 4272 * table to match vid/pid. 4273 * 4274 * Args: un - ptr to sd_lun 4275 * 4276 * Notes: When creating new LSI property, need to add the new LSI property 4277 * to this function. 4278 */ 4279 static void 4280 sd_is_lsi(struct sd_lun *un) 4281 { 4282 char *id = NULL; 4283 int table_index; 4284 int idlen; 4285 void *prop; 4286 4287 ASSERT(un != NULL); 4288 for (table_index = 0; table_index < sd_disk_table_size; 4289 table_index++) { 4290 id = sd_disk_table[table_index].device_id; 4291 idlen = strlen(id); 4292 if (idlen == 0) { 4293 continue; 4294 } 4295 4296 if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) { 4297 prop = sd_disk_table[table_index].properties; 4298 if (prop == &lsi_properties || 4299 prop == &lsi_oem_properties || 4300 prop == &lsi_properties_scsi || 4301 prop == &symbios_properties) { 4302 un->un_f_cfg_is_lsi = TRUE; 4303 } 4304 break; 4305 } 4306 } 4307 } 4308 4309 4310 /* 4311 * The following routines support reading and interpretation of disk labels, 4312 * including Solaris BE (8-slice) vtoc's, Solaris LE (16-slice) vtoc's, and 4313 * fdisk tables. 4314 */ 4315 4316 /* 4317 * Function: sd_validate_geometry 4318 * 4319 * Description: Read the label from the disk (if present). Update the unit's 4320 * geometry and vtoc information from the data in the label. 4321 * Verify that the label is valid. 4322 * 4323 * Arguments: un - driver soft state (unit) structure 4324 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 4325 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 4326 * to use the USCSI "direct" chain and bypass the normal 4327 * command waitq. 4328 * 4329 * Return Code: 0 - Successful completion 4330 * EINVAL - Invalid value in un->un_tgt_blocksize or 4331 * un->un_blockcount; or label on disk is corrupted 4332 * or unreadable. 4333 * EACCES - Reservation conflict at the device. 4334 * ENOMEM - Resource allocation error 4335 * ENOTSUP - geometry not applicable 4336 * 4337 * Context: Kernel thread only (can sleep). 4338 */ 4339 4340 static int 4341 sd_validate_geometry(struct sd_lun *un, int path_flag) 4342 { 4343 static char labelstring[128]; 4344 static char buf[256]; 4345 char *label = NULL; 4346 int label_error = 0; 4347 int gvalid = un->un_f_geometry_is_valid; 4348 int lbasize; 4349 uint64_t capacity; 4350 int count; 4351 #if defined(__i386) || defined(__amd64) 4352 int forced_under_1t = 0; 4353 #endif 4354 4355 ASSERT(un != NULL); 4356 ASSERT(mutex_owned(SD_MUTEX(un))); 4357 4358 /* 4359 * If the required values are not valid, then try getting them 4360 * once via read capacity. If that fails, then fail this call. 4361 * This is necessary with the new mpxio failover behavior in 4362 * the T300 where we can get an attach for the inactive path 4363 * before the active path. The inactive path fails commands with 4364 * sense data of 02,04,88 which happens to the read capacity 4365 * before mpxio has had sufficient knowledge to know if it should 4366 * force a fail over or not. (Which it won't do at attach anyhow). 4367 * If the read capacity at attach time fails, un_tgt_blocksize and 4368 * un_blockcount won't be valid. 4369 */ 4370 if ((un->un_f_tgt_blocksize_is_valid != TRUE) || 4371 (un->un_f_blockcount_is_valid != TRUE)) { 4372 uint64_t cap; 4373 uint32_t lbasz; 4374 int rval; 4375 4376 mutex_exit(SD_MUTEX(un)); 4377 rval = sd_send_scsi_READ_CAPACITY(un, &cap, 4378 &lbasz, SD_PATH_DIRECT); 4379 mutex_enter(SD_MUTEX(un)); 4380 if (rval == 0) { 4381 /* 4382 * The following relies on 4383 * sd_send_scsi_READ_CAPACITY never 4384 * returning 0 for capacity and/or lbasize. 4385 */ 4386 sd_update_block_info(un, lbasz, cap); 4387 } 4388 4389 if ((un->un_f_tgt_blocksize_is_valid != TRUE) || 4390 (un->un_f_blockcount_is_valid != TRUE)) { 4391 return (EINVAL); 4392 } 4393 } 4394 4395 /* 4396 * Copy the lbasize and capacity so that if they're reset while we're 4397 * not holding the SD_MUTEX, we will continue to use valid values 4398 * after the SD_MUTEX is reacquired. (4119659) 4399 */ 4400 lbasize = un->un_tgt_blocksize; 4401 capacity = un->un_blockcount; 4402 4403 #if defined(_SUNOS_VTOC_16) 4404 /* 4405 * Set up the "whole disk" fdisk partition; this should always 4406 * exist, regardless of whether the disk contains an fdisk table 4407 * or vtoc. 4408 */ 4409 un->un_map[P0_RAW_DISK].dkl_cylno = 0; 4410 un->un_map[P0_RAW_DISK].dkl_nblk = capacity; 4411 #endif 4412 4413 /* 4414 * Refresh the logical and physical geometry caches. 4415 * (data from MODE SENSE format/rigid disk geometry pages, 4416 * and scsi_ifgetcap("geometry"). 4417 */ 4418 sd_resync_geom_caches(un, capacity, lbasize, path_flag); 4419 4420 label_error = sd_use_efi(un, path_flag); 4421 if (label_error == 0) { 4422 /* found a valid EFI label */ 4423 SD_TRACE(SD_LOG_IO_PARTITION, un, 4424 "sd_validate_geometry: found EFI label\n"); 4425 un->un_solaris_offset = 0; 4426 un->un_solaris_size = capacity; 4427 return (ENOTSUP); 4428 } 4429 if (un->un_blockcount > DK_MAX_BLOCKS) { 4430 if (label_error == ESRCH) { 4431 /* 4432 * they've configured a LUN over 1TB, but used 4433 * format.dat to restrict format's view of the 4434 * capacity to be under 1TB 4435 */ 4436 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4437 "is >1TB and has a VTOC label: use format(1M) to either decrease the"); 4438 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 4439 "size to be < 1TB or relabel the disk with an EFI label"); 4440 #if defined(__i386) || defined(__amd64) 4441 forced_under_1t = 1; 4442 #endif 4443 } else { 4444 /* unlabeled disk over 1TB */ 4445 #if defined(__i386) || defined(__amd64) 4446 /* 4447 * Refer to comments on off-by-1 at the head of the file 4448 * A 1TB disk was treated as (1T - 512)B in the past, 4449 * thus, it might have valid solaris partition. We 4450 * will return ENOTSUP later only if this disk has no 4451 * valid solaris partition. 4452 */ 4453 if ((un->un_tgt_blocksize != un->un_sys_blocksize) || 4454 (un->un_blockcount - 1 > DK_MAX_BLOCKS) || 4455 un->un_f_has_removable_media || 4456 un->un_f_is_hotpluggable) 4457 #endif 4458 return (ENOTSUP); 4459 } 4460 } 4461 label_error = 0; 4462 4463 /* 4464 * at this point it is either labeled with a VTOC or it is 4465 * under 1TB (<= 1TB actually for off-by-1) 4466 */ 4467 if (un->un_f_vtoc_label_supported) { 4468 struct dk_label *dkl; 4469 offset_t dkl1; 4470 offset_t label_addr, real_addr; 4471 int rval; 4472 size_t buffer_size; 4473 4474 /* 4475 * Note: This will set up un->un_solaris_size and 4476 * un->un_solaris_offset. 4477 */ 4478 switch (sd_read_fdisk(un, capacity, lbasize, path_flag)) { 4479 case SD_CMD_RESERVATION_CONFLICT: 4480 ASSERT(mutex_owned(SD_MUTEX(un))); 4481 return (EACCES); 4482 case SD_CMD_FAILURE: 4483 ASSERT(mutex_owned(SD_MUTEX(un))); 4484 return (ENOMEM); 4485 } 4486 4487 if (un->un_solaris_size <= DK_LABEL_LOC) { 4488 4489 #if defined(__i386) || defined(__amd64) 4490 /* 4491 * Refer to comments on off-by-1 at the head of the file 4492 * This is for 1TB disk only. Since that there is no 4493 * solaris partitions, return ENOTSUP as we do for 4494 * >1TB disk. 4495 */ 4496 if (un->un_blockcount > DK_MAX_BLOCKS) 4497 return (ENOTSUP); 4498 #endif 4499 /* 4500 * Found fdisk table but no Solaris partition entry, 4501 * so don't call sd_uselabel() and don't create 4502 * a default label. 4503 */ 4504 label_error = 0; 4505 un->un_f_geometry_is_valid = TRUE; 4506 goto no_solaris_partition; 4507 } 4508 label_addr = (daddr_t)(un->un_solaris_offset + DK_LABEL_LOC); 4509 4510 #if defined(__i386) || defined(__amd64) 4511 /* 4512 * Refer to comments on off-by-1 at the head of the file 4513 * Now, this 1TB disk has valid solaris partition. It 4514 * must be created by previous sd driver, we have to 4515 * treat it as (1T-512)B. 4516 */ 4517 if ((un->un_blockcount > DK_MAX_BLOCKS) && 4518 (forced_under_1t != 1)) { 4519 un->un_f_capacity_adjusted = 1; 4520 un->un_blockcount = DK_MAX_BLOCKS; 4521 un->un_map[P0_RAW_DISK].dkl_nblk = DK_MAX_BLOCKS; 4522 4523 /* 4524 * Refer to sd_read_fdisk, when there is no 4525 * fdisk partition table, un_solaris_size is 4526 * set to disk's capacity. In this case, we 4527 * need to adjust it 4528 */ 4529 if (un->un_solaris_size > DK_MAX_BLOCKS) 4530 un->un_solaris_size = DK_MAX_BLOCKS; 4531 sd_resync_geom_caches(un, DK_MAX_BLOCKS, 4532 lbasize, path_flag); 4533 } 4534 #endif 4535 4536 /* 4537 * sys_blocksize != tgt_blocksize, need to re-adjust 4538 * blkno and save the index to beginning of dk_label 4539 */ 4540 real_addr = SD_SYS2TGTBLOCK(un, label_addr); 4541 buffer_size = SD_REQBYTES2TGTBYTES(un, 4542 sizeof (struct dk_label)); 4543 4544 SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_validate_geometry: " 4545 "label_addr: 0x%x allocation size: 0x%x\n", 4546 label_addr, buffer_size); 4547 dkl = kmem_zalloc(buffer_size, KM_NOSLEEP); 4548 if (dkl == NULL) { 4549 return (ENOMEM); 4550 } 4551 4552 mutex_exit(SD_MUTEX(un)); 4553 rval = sd_send_scsi_READ(un, dkl, buffer_size, real_addr, 4554 path_flag); 4555 mutex_enter(SD_MUTEX(un)); 4556 4557 switch (rval) { 4558 case 0: 4559 /* 4560 * sd_uselabel will establish that the geometry 4561 * is valid. 4562 * For sys_blocksize != tgt_blocksize, need 4563 * to index into the beginning of dk_label 4564 */ 4565 dkl1 = (daddr_t)dkl 4566 + SD_TGTBYTEOFFSET(un, label_addr, real_addr); 4567 if (sd_uselabel(un, (struct dk_label *)(uintptr_t)dkl1, 4568 path_flag) != SD_LABEL_IS_VALID) { 4569 label_error = EINVAL; 4570 } 4571 break; 4572 case EACCES: 4573 label_error = EACCES; 4574 break; 4575 default: 4576 label_error = EINVAL; 4577 break; 4578 } 4579 4580 kmem_free(dkl, buffer_size); 4581 4582 #if defined(_SUNOS_VTOC_8) 4583 label = (char *)un->un_asciilabel; 4584 #elif defined(_SUNOS_VTOC_16) 4585 label = (char *)un->un_vtoc.v_asciilabel; 4586 #else 4587 #error "No VTOC format defined." 4588 #endif 4589 } 4590 4591 /* 4592 * If a valid label was not found, AND if no reservation conflict 4593 * was detected, then go ahead and create a default label (4069506). 4594 */ 4595 if (un->un_f_default_vtoc_supported && (label_error != EACCES)) { 4596 if (un->un_f_geometry_is_valid == FALSE) { 4597 sd_build_default_label(un); 4598 } 4599 label_error = 0; 4600 } 4601 4602 no_solaris_partition: 4603 if ((!un->un_f_has_removable_media || 4604 (un->un_f_has_removable_media && 4605 un->un_mediastate == DKIO_EJECTED)) && 4606 (un->un_state == SD_STATE_NORMAL && !gvalid)) { 4607 /* 4608 * Print out a message indicating who and what we are. 4609 * We do this only when we happen to really validate the 4610 * geometry. We may call sd_validate_geometry() at other 4611 * times, e.g., ioctl()'s like Get VTOC in which case we 4612 * don't want to print the label. 4613 * If the geometry is valid, print the label string, 4614 * else print vendor and product info, if available 4615 */ 4616 if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) { 4617 SD_INFO(SD_LOG_ATTACH_DETACH, un, "?<%s>\n", label); 4618 } else { 4619 mutex_enter(&sd_label_mutex); 4620 sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX, 4621 labelstring); 4622 sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX, 4623 &labelstring[64]); 4624 (void) sprintf(buf, "?Vendor '%s', product '%s'", 4625 labelstring, &labelstring[64]); 4626 if (un->un_f_blockcount_is_valid == TRUE) { 4627 (void) sprintf(&buf[strlen(buf)], 4628 ", %llu %u byte blocks\n", 4629 (longlong_t)un->un_blockcount, 4630 un->un_tgt_blocksize); 4631 } else { 4632 (void) sprintf(&buf[strlen(buf)], 4633 ", (unknown capacity)\n"); 4634 } 4635 SD_INFO(SD_LOG_ATTACH_DETACH, un, buf); 4636 mutex_exit(&sd_label_mutex); 4637 } 4638 } 4639 4640 #if defined(_SUNOS_VTOC_16) 4641 /* 4642 * If we have valid geometry, set up the remaining fdisk partitions. 4643 * Note that dkl_cylno is not used for the fdisk map entries, so 4644 * we set it to an entirely bogus value. 4645 */ 4646 for (count = 0; count < FD_NUMPART; count++) { 4647 un->un_map[FDISK_P1 + count].dkl_cylno = -1; 4648 un->un_map[FDISK_P1 + count].dkl_nblk = 4649 un->un_fmap[count].fmap_nblk; 4650 4651 un->un_offset[FDISK_P1 + count] = 4652 un->un_fmap[count].fmap_start; 4653 } 4654 #endif 4655 4656 for (count = 0; count < NDKMAP; count++) { 4657 #if defined(_SUNOS_VTOC_8) 4658 struct dk_map *lp = &un->un_map[count]; 4659 un->un_offset[count] = 4660 un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno; 4661 #elif defined(_SUNOS_VTOC_16) 4662 struct dkl_partition *vp = &un->un_vtoc.v_part[count]; 4663 4664 un->un_offset[count] = vp->p_start + un->un_solaris_offset; 4665 #else 4666 #error "No VTOC format defined." 4667 #endif 4668 } 4669 4670 /* 4671 * For VTOC labeled disk, create and set the partition stats 4672 * at attach time, update the stats according to dynamic 4673 * partition changes during running time. 4674 */ 4675 if (label_error == 0 && un->un_f_pkstats_enabled) { 4676 sd_set_pstats(un); 4677 SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_validate_geometry: " 4678 "un:0x%p pstats created and set, or updated\n", un); 4679 } 4680 4681 return (label_error); 4682 } 4683 4684 4685 #if defined(_SUNOS_VTOC_16) 4686 /* 4687 * Macro: MAX_BLKS 4688 * 4689 * This macro is used for table entries where we need to have the largest 4690 * possible sector value for that head & SPT (sectors per track) 4691 * combination. Other entries for some smaller disk sizes are set by 4692 * convention to match those used by X86 BIOS usage. 4693 */ 4694 #define MAX_BLKS(heads, spt) UINT16_MAX * heads * spt, heads, spt 4695 4696 /* 4697 * Function: sd_convert_geometry 4698 * 4699 * Description: Convert physical geometry into a dk_geom structure. In 4700 * other words, make sure we don't wrap 16-bit values. 4701 * e.g. converting from geom_cache to dk_geom 4702 * 4703 * Context: Kernel thread only 4704 */ 4705 static void 4706 sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g) 4707 { 4708 int i; 4709 static const struct chs_values { 4710 uint_t max_cap; /* Max Capacity for this HS. */ 4711 uint_t nhead; /* Heads to use. */ 4712 uint_t nsect; /* SPT to use. */ 4713 } CHS_values[] = { 4714 {0x00200000, 64, 32}, /* 1GB or smaller disk. */ 4715 {0x01000000, 128, 32}, /* 8GB or smaller disk. */ 4716 {MAX_BLKS(255, 63)}, /* 502.02GB or smaller disk. */ 4717 {MAX_BLKS(255, 126)}, /* .98TB or smaller disk. */ 4718 {DK_MAX_BLOCKS, 255, 189} /* Max size is just under 1TB */ 4719 }; 4720 4721 /* Unlabeled SCSI floppy device */ 4722 if (capacity <= 0x1000) { 4723 un_g->dkg_nhead = 2; 4724 un_g->dkg_ncyl = 80; 4725 un_g->dkg_nsect = capacity / (un_g->dkg_nhead * un_g->dkg_ncyl); 4726 return; 4727 } 4728 4729 /* 4730 * For all devices we calculate cylinders using the 4731 * heads and sectors we assign based on capacity of the 4732 * device. The table is designed to be compatible with the 4733 * way other operating systems lay out fdisk tables for X86 4734 * and to insure that the cylinders never exceed 65535 to 4735 * prevent problems with X86 ioctls that report geometry. 4736 * We use SPT that are multiples of 63, since other OSes that 4737 * are not limited to 16-bits for cylinders stop at 63 SPT 4738 * we make do by using multiples of 63 SPT. 4739 * 4740 * Note than capacities greater than or equal to 1TB will simply 4741 * get the largest geometry from the table. This should be okay 4742 * since disks this large shouldn't be using CHS values anyway. 4743 */ 4744 for (i = 0; CHS_values[i].max_cap < capacity && 4745 CHS_values[i].max_cap != DK_MAX_BLOCKS; i++) 4746 ; 4747 4748 un_g->dkg_nhead = CHS_values[i].nhead; 4749 un_g->dkg_nsect = CHS_values[i].nsect; 4750 } 4751 #endif 4752 4753 4754 /* 4755 * Function: sd_resync_geom_caches 4756 * 4757 * Description: (Re)initialize both geometry caches: the virtual geometry 4758 * information is extracted from the HBA (the "geometry" 4759 * capability), and the physical geometry cache data is 4760 * generated by issuing MODE SENSE commands. 4761 * 4762 * Arguments: un - driver soft state (unit) structure 4763 * capacity - disk capacity in #blocks 4764 * lbasize - disk block size in bytes 4765 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 4766 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 4767 * to use the USCSI "direct" chain and bypass the normal 4768 * command waitq. 4769 * 4770 * Context: Kernel thread only (can sleep). 4771 */ 4772 4773 static void 4774 sd_resync_geom_caches(struct sd_lun *un, uint64_t capacity, int lbasize, 4775 int path_flag) 4776 { 4777 struct geom_cache pgeom; 4778 struct geom_cache *pgeom_p = &pgeom; 4779 int spc; 4780 unsigned short nhead; 4781 unsigned short nsect; 4782 4783 ASSERT(un != NULL); 4784 ASSERT(mutex_owned(SD_MUTEX(un))); 4785 4786 /* 4787 * Ask the controller for its logical geometry. 4788 * Note: if the HBA does not support scsi_ifgetcap("geometry"), 4789 * then the lgeom cache will be invalid. 4790 */ 4791 sd_get_virtual_geometry(un, capacity, lbasize); 4792 4793 /* 4794 * Initialize the pgeom cache from lgeom, so that if MODE SENSE 4795 * doesn't work, DKIOCG_PHYSGEOM can return reasonable values. 4796 */ 4797 if (un->un_lgeom.g_nsect == 0 || un->un_lgeom.g_nhead == 0) { 4798 /* 4799 * Note: Perhaps this needs to be more adaptive? The rationale 4800 * is that, if there's no HBA geometry from the HBA driver, any 4801 * guess is good, since this is the physical geometry. If MODE 4802 * SENSE fails this gives a max cylinder size for non-LBA access 4803 */ 4804 nhead = 255; 4805 nsect = 63; 4806 } else { 4807 nhead = un->un_lgeom.g_nhead; 4808 nsect = un->un_lgeom.g_nsect; 4809 } 4810 4811 if (ISCD(un)) { 4812 pgeom_p->g_nhead = 1; 4813 pgeom_p->g_nsect = nsect * nhead; 4814 } else { 4815 pgeom_p->g_nhead = nhead; 4816 pgeom_p->g_nsect = nsect; 4817 } 4818 4819 spc = pgeom_p->g_nhead * pgeom_p->g_nsect; 4820 pgeom_p->g_capacity = capacity; 4821 pgeom_p->g_ncyl = pgeom_p->g_capacity / spc; 4822 pgeom_p->g_acyl = 0; 4823 4824 /* 4825 * Retrieve fresh geometry data from the hardware, stash it 4826 * here temporarily before we rebuild the incore label. 4827 * 4828 * We want to use the MODE SENSE commands to derive the 4829 * physical geometry of the device, but if either command 4830 * fails, the logical geometry is used as the fallback for 4831 * disk label geometry. 4832 */ 4833 mutex_exit(SD_MUTEX(un)); 4834 sd_get_physical_geometry(un, pgeom_p, capacity, lbasize, path_flag); 4835 mutex_enter(SD_MUTEX(un)); 4836 4837 /* 4838 * Now update the real copy while holding the mutex. This 4839 * way the global copy is never in an inconsistent state. 4840 */ 4841 bcopy(pgeom_p, &un->un_pgeom, sizeof (un->un_pgeom)); 4842 4843 SD_INFO(SD_LOG_COMMON, un, "sd_resync_geom_caches: " 4844 "(cached from lgeom)\n"); 4845 SD_INFO(SD_LOG_COMMON, un, 4846 " ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n", 4847 un->un_pgeom.g_ncyl, un->un_pgeom.g_acyl, 4848 un->un_pgeom.g_nhead, un->un_pgeom.g_nsect); 4849 SD_INFO(SD_LOG_COMMON, un, " lbasize: %d; capacity: %ld; " 4850 "intrlv: %d; rpm: %d\n", un->un_pgeom.g_secsize, 4851 un->un_pgeom.g_capacity, un->un_pgeom.g_intrlv, 4852 un->un_pgeom.g_rpm); 4853 } 4854 4855 4856 /* 4857 * Function: sd_read_fdisk 4858 * 4859 * Description: utility routine to read the fdisk table. 4860 * 4861 * Arguments: un - driver soft state (unit) structure 4862 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 4863 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 4864 * to use the USCSI "direct" chain and bypass the normal 4865 * command waitq. 4866 * 4867 * Return Code: SD_CMD_SUCCESS 4868 * SD_CMD_FAILURE 4869 * 4870 * Context: Kernel thread only (can sleep). 4871 */ 4872 /* ARGSUSED */ 4873 static int 4874 sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize, int path_flag) 4875 { 4876 #if defined(_NO_FDISK_PRESENT) 4877 4878 un->un_solaris_offset = 0; 4879 un->un_solaris_size = capacity; 4880 bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART); 4881 return (SD_CMD_SUCCESS); 4882 4883 #elif defined(_FIRMWARE_NEEDS_FDISK) 4884 4885 struct ipart *fdp; 4886 struct mboot *mbp; 4887 struct ipart fdisk[FD_NUMPART]; 4888 int i; 4889 char sigbuf[2]; 4890 caddr_t bufp; 4891 int uidx; 4892 int rval; 4893 int lba = 0; 4894 uint_t solaris_offset; /* offset to solaris part. */ 4895 daddr_t solaris_size; /* size of solaris partition */ 4896 uint32_t blocksize; 4897 4898 ASSERT(un != NULL); 4899 ASSERT(mutex_owned(SD_MUTEX(un))); 4900 ASSERT(un->un_f_tgt_blocksize_is_valid == TRUE); 4901 4902 blocksize = un->un_tgt_blocksize; 4903 4904 /* 4905 * Start off assuming no fdisk table 4906 */ 4907 solaris_offset = 0; 4908 solaris_size = capacity; 4909 4910 mutex_exit(SD_MUTEX(un)); 4911 bufp = kmem_zalloc(blocksize, KM_SLEEP); 4912 rval = sd_send_scsi_READ(un, bufp, blocksize, 0, path_flag); 4913 mutex_enter(SD_MUTEX(un)); 4914 4915 if (rval != 0) { 4916 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 4917 "sd_read_fdisk: fdisk read err\n"); 4918 kmem_free(bufp, blocksize); 4919 return (SD_CMD_FAILURE); 4920 } 4921 4922 mbp = (struct mboot *)bufp; 4923 4924 /* 4925 * The fdisk table does not begin on a 4-byte boundary within the 4926 * master boot record, so we copy it to an aligned structure to avoid 4927 * alignment exceptions on some processors. 4928 */ 4929 bcopy(&mbp->parts[0], fdisk, sizeof (fdisk)); 4930 4931 /* 4932 * Check for lba support before verifying sig; sig might not be 4933 * there, say on a blank disk, but the max_chs mark may still 4934 * be present. 4935 * 4936 * Note: LBA support and BEFs are an x86-only concept but this 4937 * code should work OK on SPARC as well. 4938 */ 4939 4940 /* 4941 * First, check for lba-access-ok on root node (or prom root node) 4942 * if present there, don't need to search fdisk table. 4943 */ 4944 if (ddi_getprop(DDI_DEV_T_ANY, ddi_root_node(), 0, 4945 "lba-access-ok", 0) != 0) { 4946 /* All drives do LBA; don't search fdisk table */ 4947 lba = 1; 4948 } else { 4949 /* Okay, look for mark in fdisk table */ 4950 for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) { 4951 /* accumulate "lba" value from all partitions */ 4952 lba = (lba || sd_has_max_chs_vals(fdp)); 4953 } 4954 } 4955 4956 if (lba != 0) { 4957 dev_t dev = sd_make_device(SD_DEVINFO(un)); 4958 4959 if (ddi_getprop(dev, SD_DEVINFO(un), DDI_PROP_DONTPASS, 4960 "lba-access-ok", 0) == 0) { 4961 /* not found; create it */ 4962 if (ddi_prop_create(dev, SD_DEVINFO(un), 0, 4963 "lba-access-ok", (caddr_t)NULL, 0) != 4964 DDI_PROP_SUCCESS) { 4965 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 4966 "sd_read_fdisk: Can't create lba property " 4967 "for instance %d\n", 4968 ddi_get_instance(SD_DEVINFO(un))); 4969 } 4970 } 4971 } 4972 4973 bcopy(&mbp->signature, sigbuf, sizeof (sigbuf)); 4974 4975 /* 4976 * Endian-independent signature check 4977 */ 4978 if (((sigbuf[1] & 0xFF) != ((MBB_MAGIC >> 8) & 0xFF)) || 4979 (sigbuf[0] != (MBB_MAGIC & 0xFF))) { 4980 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 4981 "sd_read_fdisk: no fdisk\n"); 4982 bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART); 4983 rval = SD_CMD_SUCCESS; 4984 goto done; 4985 } 4986 4987 #ifdef SDDEBUG 4988 if (sd_level_mask & SD_LOGMASK_INFO) { 4989 fdp = fdisk; 4990 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_read_fdisk:\n"); 4991 SD_INFO(SD_LOG_ATTACH_DETACH, un, " relsect " 4992 "numsect sysid bootid\n"); 4993 for (i = 0; i < FD_NUMPART; i++, fdp++) { 4994 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4995 " %d: %8d %8d 0x%08x 0x%08x\n", 4996 i, fdp->relsect, fdp->numsect, 4997 fdp->systid, fdp->bootid); 4998 } 4999 } 5000 #endif 5001 5002 /* 5003 * Try to find the unix partition 5004 */ 5005 uidx = -1; 5006 solaris_offset = 0; 5007 solaris_size = 0; 5008 5009 for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) { 5010 int relsect; 5011 int numsect; 5012 5013 if (fdp->numsect == 0) { 5014 un->un_fmap[i].fmap_start = 0; 5015 un->un_fmap[i].fmap_nblk = 0; 5016 continue; 5017 } 5018 5019 /* 5020 * Data in the fdisk table is little-endian. 5021 */ 5022 relsect = LE_32(fdp->relsect); 5023 numsect = LE_32(fdp->numsect); 5024 5025 un->un_fmap[i].fmap_start = relsect; 5026 un->un_fmap[i].fmap_nblk = numsect; 5027 5028 if (fdp->systid != SUNIXOS && 5029 fdp->systid != SUNIXOS2 && 5030 fdp->systid != EFI_PMBR) { 5031 continue; 5032 } 5033 5034 /* 5035 * use the last active solaris partition id found 5036 * (there should only be 1 active partition id) 5037 * 5038 * if there are no active solaris partition id 5039 * then use the first inactive solaris partition id 5040 */ 5041 if ((uidx == -1) || (fdp->bootid == ACTIVE)) { 5042 uidx = i; 5043 solaris_offset = relsect; 5044 solaris_size = numsect; 5045 } 5046 } 5047 5048 SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk 0x%x 0x%lx", 5049 un->un_solaris_offset, un->un_solaris_size); 5050 5051 rval = SD_CMD_SUCCESS; 5052 5053 done: 5054 5055 /* 5056 * Clear the VTOC info, only if the Solaris partition entry 5057 * has moved, changed size, been deleted, or if the size of 5058 * the partition is too small to even fit the label sector. 5059 */ 5060 if ((un->un_solaris_offset != solaris_offset) || 5061 (un->un_solaris_size != solaris_size) || 5062 solaris_size <= DK_LABEL_LOC) { 5063 SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk moved 0x%x 0x%lx", 5064 solaris_offset, solaris_size); 5065 bzero(&un->un_g, sizeof (struct dk_geom)); 5066 bzero(&un->un_vtoc, sizeof (struct dk_vtoc)); 5067 bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map))); 5068 un->un_f_geometry_is_valid = FALSE; 5069 } 5070 un->un_solaris_offset = solaris_offset; 5071 un->un_solaris_size = solaris_size; 5072 kmem_free(bufp, blocksize); 5073 return (rval); 5074 5075 #else /* #elif defined(_FIRMWARE_NEEDS_FDISK) */ 5076 #error "fdisk table presence undetermined for this platform." 5077 #endif /* #if defined(_NO_FDISK_PRESENT) */ 5078 } 5079 5080 5081 /* 5082 * Function: sd_get_physical_geometry 5083 * 5084 * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and 5085 * MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the 5086 * target, and use this information to initialize the physical 5087 * geometry cache specified by pgeom_p. 5088 * 5089 * MODE SENSE is an optional command, so failure in this case 5090 * does not necessarily denote an error. We want to use the 5091 * MODE SENSE commands to derive the physical geometry of the 5092 * device, but if either command fails, the logical geometry is 5093 * used as the fallback for disk label geometry. 5094 * 5095 * This requires that un->un_blockcount and un->un_tgt_blocksize 5096 * have already been initialized for the current target and 5097 * that the current values be passed as args so that we don't 5098 * end up ever trying to use -1 as a valid value. This could 5099 * happen if either value is reset while we're not holding 5100 * the mutex. 5101 * 5102 * Arguments: un - driver soft state (unit) structure 5103 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 5104 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 5105 * to use the USCSI "direct" chain and bypass the normal 5106 * command waitq. 5107 * 5108 * Context: Kernel thread only (can sleep). 5109 */ 5110 5111 static void 5112 sd_get_physical_geometry(struct sd_lun *un, struct geom_cache *pgeom_p, 5113 uint64_t capacity, int lbasize, int path_flag) 5114 { 5115 struct mode_format *page3p; 5116 struct mode_geometry *page4p; 5117 struct mode_header *headerp; 5118 int sector_size; 5119 int nsect; 5120 int nhead; 5121 int ncyl; 5122 int intrlv; 5123 int spc; 5124 int modesense_capacity; 5125 int rpm; 5126 int bd_len; 5127 int mode_header_length; 5128 uchar_t *p3bufp; 5129 uchar_t *p4bufp; 5130 int cdbsize; 5131 5132 ASSERT(un != NULL); 5133 ASSERT(!(mutex_owned(SD_MUTEX(un)))); 5134 5135 if (un->un_f_blockcount_is_valid != TRUE) { 5136 return; 5137 } 5138 5139 if (un->un_f_tgt_blocksize_is_valid != TRUE) { 5140 return; 5141 } 5142 5143 if (lbasize == 0) { 5144 if (ISCD(un)) { 5145 lbasize = 2048; 5146 } else { 5147 lbasize = un->un_sys_blocksize; 5148 } 5149 } 5150 pgeom_p->g_secsize = (unsigned short)lbasize; 5151 5152 cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0; 5153 5154 /* 5155 * Retrieve MODE SENSE page 3 - Format Device Page 5156 */ 5157 p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP); 5158 if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp, 5159 SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag) 5160 != 0) { 5161 SD_ERROR(SD_LOG_COMMON, un, 5162 "sd_get_physical_geometry: mode sense page 3 failed\n"); 5163 goto page3_exit; 5164 } 5165 5166 /* 5167 * Determine size of Block Descriptors in order to locate the mode 5168 * page data. ATAPI devices return 0, SCSI devices should return 5169 * MODE_BLK_DESC_LENGTH. 5170 */ 5171 headerp = (struct mode_header *)p3bufp; 5172 if (un->un_f_cfg_is_atapi == TRUE) { 5173 struct mode_header_grp2 *mhp = 5174 (struct mode_header_grp2 *)headerp; 5175 mode_header_length = MODE_HEADER_LENGTH_GRP2; 5176 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 5177 } else { 5178 mode_header_length = MODE_HEADER_LENGTH; 5179 bd_len = ((struct mode_header *)headerp)->bdesc_length; 5180 } 5181 5182 if (bd_len > MODE_BLK_DESC_LENGTH) { 5183 SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: " 5184 "received unexpected bd_len of %d, page3\n", bd_len); 5185 goto page3_exit; 5186 } 5187 5188 page3p = (struct mode_format *) 5189 ((caddr_t)headerp + mode_header_length + bd_len); 5190 5191 if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) { 5192 SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: " 5193 "mode sense pg3 code mismatch %d\n", 5194 page3p->mode_page.code); 5195 goto page3_exit; 5196 } 5197 5198 /* 5199 * Use this physical geometry data only if BOTH MODE SENSE commands 5200 * complete successfully; otherwise, revert to the logical geometry. 5201 * So, we need to save everything in temporary variables. 5202 */ 5203 sector_size = BE_16(page3p->data_bytes_sect); 5204 5205 /* 5206 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size 5207 */ 5208 if (sector_size == 0) { 5209 sector_size = (ISCD(un)) ? 2048 : un->un_sys_blocksize; 5210 } else { 5211 sector_size &= ~(un->un_sys_blocksize - 1); 5212 } 5213 5214 nsect = BE_16(page3p->sect_track); 5215 intrlv = BE_16(page3p->interleave); 5216 5217 SD_INFO(SD_LOG_COMMON, un, 5218 "sd_get_physical_geometry: Format Parameters (page 3)\n"); 5219 SD_INFO(SD_LOG_COMMON, un, 5220 " mode page: %d; nsect: %d; sector size: %d;\n", 5221 page3p->mode_page.code, nsect, sector_size); 5222 SD_INFO(SD_LOG_COMMON, un, 5223 " interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv, 5224 BE_16(page3p->track_skew), 5225 BE_16(page3p->cylinder_skew)); 5226 5227 5228 /* 5229 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page 5230 */ 5231 p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP); 5232 if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp, 5233 SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag) 5234 != 0) { 5235 SD_ERROR(SD_LOG_COMMON, un, 5236 "sd_get_physical_geometry: mode sense page 4 failed\n"); 5237 goto page4_exit; 5238 } 5239 5240 /* 5241 * Determine size of Block Descriptors in order to locate the mode 5242 * page data. ATAPI devices return 0, SCSI devices should return 5243 * MODE_BLK_DESC_LENGTH. 5244 */ 5245 headerp = (struct mode_header *)p4bufp; 5246 if (un->un_f_cfg_is_atapi == TRUE) { 5247 struct mode_header_grp2 *mhp = 5248 (struct mode_header_grp2 *)headerp; 5249 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 5250 } else { 5251 bd_len = ((struct mode_header *)headerp)->bdesc_length; 5252 } 5253 5254 if (bd_len > MODE_BLK_DESC_LENGTH) { 5255 SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: " 5256 "received unexpected bd_len of %d, page4\n", bd_len); 5257 goto page4_exit; 5258 } 5259 5260 page4p = (struct mode_geometry *) 5261 ((caddr_t)headerp + mode_header_length + bd_len); 5262 5263 if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) { 5264 SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: " 5265 "mode sense pg4 code mismatch %d\n", 5266 page4p->mode_page.code); 5267 goto page4_exit; 5268 } 5269 5270 /* 5271 * Stash the data now, after we know that both commands completed. 5272 */ 5273 5274 mutex_enter(SD_MUTEX(un)); 5275 5276 nhead = (int)page4p->heads; /* uchar, so no conversion needed */ 5277 spc = nhead * nsect; 5278 ncyl = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb; 5279 rpm = BE_16(page4p->rpm); 5280 5281 modesense_capacity = spc * ncyl; 5282 5283 SD_INFO(SD_LOG_COMMON, un, 5284 "sd_get_physical_geometry: Geometry Parameters (page 4)\n"); 5285 SD_INFO(SD_LOG_COMMON, un, 5286 " cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm); 5287 SD_INFO(SD_LOG_COMMON, un, 5288 " computed capacity(h*s*c): %d;\n", modesense_capacity); 5289 SD_INFO(SD_LOG_COMMON, un, " pgeom_p: %p; read cap: %d\n", 5290 (void *)pgeom_p, capacity); 5291 5292 /* 5293 * Compensate if the drive's geometry is not rectangular, i.e., 5294 * the product of C * H * S returned by MODE SENSE >= that returned 5295 * by read capacity. This is an idiosyncrasy of the original x86 5296 * disk subsystem. 5297 */ 5298 if (modesense_capacity >= capacity) { 5299 SD_INFO(SD_LOG_COMMON, un, 5300 "sd_get_physical_geometry: adjusting acyl; " 5301 "old: %d; new: %d\n", pgeom_p->g_acyl, 5302 (modesense_capacity - capacity + spc - 1) / spc); 5303 if (sector_size != 0) { 5304 /* 1243403: NEC D38x7 drives don't support sec size */ 5305 pgeom_p->g_secsize = (unsigned short)sector_size; 5306 } 5307 pgeom_p->g_nsect = (unsigned short)nsect; 5308 pgeom_p->g_nhead = (unsigned short)nhead; 5309 pgeom_p->g_capacity = capacity; 5310 pgeom_p->g_acyl = 5311 (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc; 5312 pgeom_p->g_ncyl = ncyl - pgeom_p->g_acyl; 5313 } 5314 5315 pgeom_p->g_rpm = (unsigned short)rpm; 5316 pgeom_p->g_intrlv = (unsigned short)intrlv; 5317 5318 SD_INFO(SD_LOG_COMMON, un, 5319 "sd_get_physical_geometry: mode sense geometry:\n"); 5320 SD_INFO(SD_LOG_COMMON, un, 5321 " nsect: %d; sector size: %d; interlv: %d\n", 5322 nsect, sector_size, intrlv); 5323 SD_INFO(SD_LOG_COMMON, un, 5324 " nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n", 5325 nhead, ncyl, rpm, modesense_capacity); 5326 SD_INFO(SD_LOG_COMMON, un, 5327 "sd_get_physical_geometry: (cached)\n"); 5328 SD_INFO(SD_LOG_COMMON, un, 5329 " ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n", 5330 un->un_pgeom.g_ncyl, un->un_pgeom.g_acyl, 5331 un->un_pgeom.g_nhead, un->un_pgeom.g_nsect); 5332 SD_INFO(SD_LOG_COMMON, un, 5333 " lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n", 5334 un->un_pgeom.g_secsize, un->un_pgeom.g_capacity, 5335 un->un_pgeom.g_intrlv, un->un_pgeom.g_rpm); 5336 5337 mutex_exit(SD_MUTEX(un)); 5338 5339 page4_exit: 5340 kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH); 5341 page3_exit: 5342 kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH); 5343 } 5344 5345 5346 /* 5347 * Function: sd_get_virtual_geometry 5348 * 5349 * Description: Ask the controller to tell us about the target device. 5350 * 5351 * Arguments: un - pointer to softstate 5352 * capacity - disk capacity in #blocks 5353 * lbasize - disk block size in bytes 5354 * 5355 * Context: Kernel thread only 5356 */ 5357 5358 static void 5359 sd_get_virtual_geometry(struct sd_lun *un, int capacity, int lbasize) 5360 { 5361 struct geom_cache *lgeom_p = &un->un_lgeom; 5362 uint_t geombuf; 5363 int spc; 5364 5365 ASSERT(un != NULL); 5366 ASSERT(mutex_owned(SD_MUTEX(un))); 5367 5368 mutex_exit(SD_MUTEX(un)); 5369 5370 /* Set sector size, and total number of sectors */ 5371 (void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size", lbasize, 1); 5372 (void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1); 5373 5374 /* Let the HBA tell us its geometry */ 5375 geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1); 5376 5377 mutex_enter(SD_MUTEX(un)); 5378 5379 /* A value of -1 indicates an undefined "geometry" property */ 5380 if (geombuf == (-1)) { 5381 return; 5382 } 5383 5384 /* Initialize the logical geometry cache. */ 5385 lgeom_p->g_nhead = (geombuf >> 16) & 0xffff; 5386 lgeom_p->g_nsect = geombuf & 0xffff; 5387 lgeom_p->g_secsize = un->un_sys_blocksize; 5388 5389 spc = lgeom_p->g_nhead * lgeom_p->g_nsect; 5390 5391 /* 5392 * Note: The driver originally converted the capacity value from 5393 * target blocks to system blocks. However, the capacity value passed 5394 * to this routine is already in terms of system blocks (this scaling 5395 * is done when the READ CAPACITY command is issued and processed). 5396 * This 'error' may have gone undetected because the usage of g_ncyl 5397 * (which is based upon g_capacity) is very limited within the driver 5398 */ 5399 lgeom_p->g_capacity = capacity; 5400 5401 /* 5402 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The 5403 * hba may return zero values if the device has been removed. 5404 */ 5405 if (spc == 0) { 5406 lgeom_p->g_ncyl = 0; 5407 } else { 5408 lgeom_p->g_ncyl = lgeom_p->g_capacity / spc; 5409 } 5410 lgeom_p->g_acyl = 0; 5411 5412 SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n"); 5413 SD_INFO(SD_LOG_COMMON, un, 5414 " ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n", 5415 un->un_lgeom.g_ncyl, un->un_lgeom.g_acyl, 5416 un->un_lgeom.g_nhead, un->un_lgeom.g_nsect); 5417 SD_INFO(SD_LOG_COMMON, un, " lbasize: %d; capacity: %ld; " 5418 "intrlv: %d; rpm: %d\n", un->un_lgeom.g_secsize, 5419 un->un_lgeom.g_capacity, un->un_lgeom.g_intrlv, un->un_lgeom.g_rpm); 5420 } 5421 5422 5423 /* 5424 * Function: sd_update_block_info 5425 * 5426 * Description: Calculate a byte count to sector count bitshift value 5427 * from sector size. 5428 * 5429 * Arguments: un: unit struct. 5430 * lbasize: new target sector size 5431 * capacity: new target capacity, ie. block count 5432 * 5433 * Context: Kernel thread context 5434 */ 5435 5436 static void 5437 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity) 5438 { 5439 if (lbasize != 0) { 5440 un->un_tgt_blocksize = lbasize; 5441 un->un_f_tgt_blocksize_is_valid = TRUE; 5442 } 5443 5444 if (capacity != 0) { 5445 un->un_blockcount = capacity; 5446 un->un_f_blockcount_is_valid = TRUE; 5447 } 5448 } 5449 5450 5451 static void 5452 sd_swap_efi_gpt(efi_gpt_t *e) 5453 { 5454 _NOTE(ASSUMING_PROTECTED(*e)) 5455 e->efi_gpt_Signature = LE_64(e->efi_gpt_Signature); 5456 e->efi_gpt_Revision = LE_32(e->efi_gpt_Revision); 5457 e->efi_gpt_HeaderSize = LE_32(e->efi_gpt_HeaderSize); 5458 e->efi_gpt_HeaderCRC32 = LE_32(e->efi_gpt_HeaderCRC32); 5459 e->efi_gpt_MyLBA = LE_64(e->efi_gpt_MyLBA); 5460 e->efi_gpt_AlternateLBA = LE_64(e->efi_gpt_AlternateLBA); 5461 e->efi_gpt_FirstUsableLBA = LE_64(e->efi_gpt_FirstUsableLBA); 5462 e->efi_gpt_LastUsableLBA = LE_64(e->efi_gpt_LastUsableLBA); 5463 UUID_LE_CONVERT(e->efi_gpt_DiskGUID, e->efi_gpt_DiskGUID); 5464 e->efi_gpt_PartitionEntryLBA = LE_64(e->efi_gpt_PartitionEntryLBA); 5465 e->efi_gpt_NumberOfPartitionEntries = 5466 LE_32(e->efi_gpt_NumberOfPartitionEntries); 5467 e->efi_gpt_SizeOfPartitionEntry = 5468 LE_32(e->efi_gpt_SizeOfPartitionEntry); 5469 e->efi_gpt_PartitionEntryArrayCRC32 = 5470 LE_32(e->efi_gpt_PartitionEntryArrayCRC32); 5471 } 5472 5473 static void 5474 sd_swap_efi_gpe(int nparts, efi_gpe_t *p) 5475 { 5476 int i; 5477 5478 _NOTE(ASSUMING_PROTECTED(*p)) 5479 for (i = 0; i < nparts; i++) { 5480 UUID_LE_CONVERT(p[i].efi_gpe_PartitionTypeGUID, 5481 p[i].efi_gpe_PartitionTypeGUID); 5482 p[i].efi_gpe_StartingLBA = LE_64(p[i].efi_gpe_StartingLBA); 5483 p[i].efi_gpe_EndingLBA = LE_64(p[i].efi_gpe_EndingLBA); 5484 /* PartitionAttrs */ 5485 } 5486 } 5487 5488 static int 5489 sd_validate_efi(efi_gpt_t *labp) 5490 { 5491 if (labp->efi_gpt_Signature != EFI_SIGNATURE) 5492 return (EINVAL); 5493 /* at least 96 bytes in this version of the spec. */ 5494 if (sizeof (efi_gpt_t) - sizeof (labp->efi_gpt_Reserved2) > 5495 labp->efi_gpt_HeaderSize) 5496 return (EINVAL); 5497 /* this should be 128 bytes */ 5498 if (labp->efi_gpt_SizeOfPartitionEntry != sizeof (efi_gpe_t)) 5499 return (EINVAL); 5500 return (0); 5501 } 5502 5503 static int 5504 sd_use_efi(struct sd_lun *un, int path_flag) 5505 { 5506 int i; 5507 int rval = 0; 5508 efi_gpe_t *partitions; 5509 uchar_t *buf; 5510 uint_t lbasize; 5511 uint64_t cap = 0; 5512 uint_t nparts; 5513 diskaddr_t gpe_lba; 5514 struct uuid uuid_type_reserved = EFI_RESERVED; 5515 5516 ASSERT(mutex_owned(SD_MUTEX(un))); 5517 lbasize = un->un_tgt_blocksize; 5518 un->un_reserved = -1; 5519 5520 mutex_exit(SD_MUTEX(un)); 5521 5522 buf = kmem_zalloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP); 5523 5524 if (un->un_tgt_blocksize != un->un_sys_blocksize) { 5525 rval = EINVAL; 5526 goto done_err; 5527 } 5528 5529 rval = sd_send_scsi_READ(un, buf, lbasize, 0, path_flag); 5530 if (rval) { 5531 goto done_err; 5532 } 5533 if (((struct dk_label *)buf)->dkl_magic == DKL_MAGIC) { 5534 /* not ours */ 5535 rval = ESRCH; 5536 goto done_err; 5537 } 5538 5539 rval = sd_send_scsi_READ(un, buf, lbasize, 1, path_flag); 5540 if (rval) { 5541 goto done_err; 5542 } 5543 sd_swap_efi_gpt((efi_gpt_t *)buf); 5544 5545 if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0) { 5546 /* 5547 * Couldn't read the primary, try the backup. Our 5548 * capacity at this point could be based on CHS, so 5549 * check what the device reports. 5550 */ 5551 rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize, 5552 path_flag); 5553 if (rval) { 5554 goto done_err; 5555 } 5556 5557 /* 5558 * The MMC standard allows READ CAPACITY to be 5559 * inaccurate by a bounded amount (in the interest of 5560 * response latency). As a result, failed READs are 5561 * commonplace (due to the reading of metadata and not 5562 * data). Depending on the per-Vendor/drive Sense data, 5563 * the failed READ can cause many (unnecessary) retries. 5564 */ 5565 5566 /* 5567 * Refer to comments related to off-by-1 at the 5568 * header of this file. Search the next to last 5569 * block for backup EFI label. 5570 */ 5571 if ((rval = sd_send_scsi_READ(un, buf, lbasize, 5572 cap - 2, (ISCD(un)) ? SD_PATH_DIRECT_PRIORITY : 5573 path_flag)) != 0) { 5574 goto done_err; 5575 } 5576 5577 sd_swap_efi_gpt((efi_gpt_t *)buf); 5578 if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0) { 5579 if ((rval = sd_send_scsi_READ(un, buf, lbasize, 5580 cap - 1, (ISCD(un)) ? SD_PATH_DIRECT_PRIORITY : 5581 path_flag)) != 0) { 5582 goto done_err; 5583 } 5584 sd_swap_efi_gpt((efi_gpt_t *)buf); 5585 if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0) 5586 goto done_err; 5587 } 5588 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 5589 "primary label corrupt; using backup\n"); 5590 } 5591 5592 if (cap == 0) 5593 rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize, 5594 path_flag); 5595 5596 nparts = ((efi_gpt_t *)buf)->efi_gpt_NumberOfPartitionEntries; 5597 gpe_lba = ((efi_gpt_t *)buf)->efi_gpt_PartitionEntryLBA; 5598 5599 rval = sd_send_scsi_READ(un, buf, EFI_MIN_ARRAY_SIZE, gpe_lba, 5600 path_flag); 5601 if (rval) { 5602 goto done_err; 5603 } 5604 partitions = (efi_gpe_t *)buf; 5605 5606 if (nparts > MAXPART) { 5607 nparts = MAXPART; 5608 } 5609 sd_swap_efi_gpe(nparts, partitions); 5610 5611 mutex_enter(SD_MUTEX(un)); 5612 5613 /* Fill in partition table. */ 5614 for (i = 0; i < nparts; i++) { 5615 if (partitions->efi_gpe_StartingLBA != 0 || 5616 partitions->efi_gpe_EndingLBA != 0) { 5617 un->un_map[i].dkl_cylno = 5618 partitions->efi_gpe_StartingLBA; 5619 un->un_map[i].dkl_nblk = 5620 partitions->efi_gpe_EndingLBA - 5621 partitions->efi_gpe_StartingLBA + 1; 5622 un->un_offset[i] = 5623 partitions->efi_gpe_StartingLBA; 5624 } 5625 if (un->un_reserved == -1) { 5626 if (bcmp(&partitions->efi_gpe_PartitionTypeGUID, 5627 &uuid_type_reserved, sizeof (struct uuid)) == 0) { 5628 un->un_reserved = i; 5629 } 5630 } 5631 if (i == WD_NODE) { 5632 /* 5633 * minor number 7 corresponds to the whole disk 5634 */ 5635 un->un_map[i].dkl_cylno = 0; 5636 un->un_map[i].dkl_nblk = un->un_blockcount; 5637 un->un_offset[i] = 0; 5638 } 5639 partitions++; 5640 } 5641 un->un_solaris_offset = 0; 5642 un->un_solaris_size = cap; 5643 un->un_f_geometry_is_valid = TRUE; 5644 5645 /* clear the vtoc label */ 5646 bzero(&un->un_vtoc, sizeof (struct dk_vtoc)); 5647 5648 kmem_free(buf, EFI_MIN_ARRAY_SIZE); 5649 5650 /* 5651 * For EFI labeled disk, create and set the partition stats 5652 * at attach time, update the stats according to dynamic 5653 * partition changes during running time. 5654 */ 5655 if (un->un_f_pkstats_enabled) { 5656 sd_set_pstats(un); 5657 SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_use_efi: " 5658 "un:0x%p pstats created and set, or updated\n", un); 5659 } 5660 return (0); 5661 5662 done_err: 5663 kmem_free(buf, EFI_MIN_ARRAY_SIZE); 5664 mutex_enter(SD_MUTEX(un)); 5665 /* 5666 * if we didn't find something that could look like a VTOC 5667 * and the disk is over 1TB, we know there isn't a valid label. 5668 * Otherwise let sd_uselabel decide what to do. We only 5669 * want to invalidate this if we're certain the label isn't 5670 * valid because sd_prop_op will now fail, which in turn 5671 * causes things like opens and stats on the partition to fail. 5672 */ 5673 if ((un->un_blockcount > DK_MAX_BLOCKS) && (rval != ESRCH)) { 5674 un->un_f_geometry_is_valid = FALSE; 5675 } 5676 return (rval); 5677 } 5678 5679 5680 /* 5681 * Function: sd_uselabel 5682 * 5683 * Description: Validate the disk label and update the relevant data (geometry, 5684 * partition, vtoc, and capacity data) in the sd_lun struct. 5685 * Marks the geometry of the unit as being valid. 5686 * 5687 * Arguments: un: unit struct. 5688 * dk_label: disk label 5689 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 5690 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 5691 * to use the USCSI "direct" chain and bypass the normal 5692 * command waitq. 5693 * 5694 * Return Code: SD_LABEL_IS_VALID: Label read from disk is OK; geometry, 5695 * partition, vtoc, and capacity data are good. 5696 * 5697 * SD_LABEL_IS_INVALID: Magic number or checksum error in the 5698 * label; or computed capacity does not jibe with capacity 5699 * reported from the READ CAPACITY command. 5700 * 5701 * Context: Kernel thread only (can sleep). 5702 */ 5703 5704 static int 5705 sd_uselabel(struct sd_lun *un, struct dk_label *labp, int path_flag) 5706 { 5707 short *sp; 5708 short sum; 5709 short count; 5710 int label_error = SD_LABEL_IS_VALID; 5711 int i; 5712 int capacity; 5713 int part_end; 5714 int track_capacity; 5715 int err; 5716 #if defined(_SUNOS_VTOC_16) 5717 struct dkl_partition *vpartp; 5718 #endif 5719 ASSERT(un != NULL); 5720 ASSERT(mutex_owned(SD_MUTEX(un))); 5721 5722 /* Validate the magic number of the label. */ 5723 if (labp->dkl_magic != DKL_MAGIC) { 5724 #if defined(__sparc) 5725 if ((un->un_state == SD_STATE_NORMAL) && 5726 un->un_f_vtoc_errlog_supported) { 5727 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 5728 "Corrupt label; wrong magic number\n"); 5729 } 5730 #endif 5731 return (SD_LABEL_IS_INVALID); 5732 } 5733 5734 /* Validate the checksum of the label. */ 5735 sp = (short *)labp; 5736 sum = 0; 5737 count = sizeof (struct dk_label) / sizeof (short); 5738 while (count--) { 5739 sum ^= *sp++; 5740 } 5741 5742 if (sum != 0) { 5743 #if defined(_SUNOS_VTOC_16) 5744 if ((un->un_state == SD_STATE_NORMAL) && !ISCD(un)) { 5745 #elif defined(_SUNOS_VTOC_8) 5746 if ((un->un_state == SD_STATE_NORMAL) && 5747 un->un_f_vtoc_errlog_supported) { 5748 #endif 5749 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 5750 "Corrupt label - label checksum failed\n"); 5751 } 5752 return (SD_LABEL_IS_INVALID); 5753 } 5754 5755 5756 /* 5757 * Fill in geometry structure with data from label. 5758 */ 5759 bzero(&un->un_g, sizeof (struct dk_geom)); 5760 un->un_g.dkg_ncyl = labp->dkl_ncyl; 5761 un->un_g.dkg_acyl = labp->dkl_acyl; 5762 un->un_g.dkg_bcyl = 0; 5763 un->un_g.dkg_nhead = labp->dkl_nhead; 5764 un->un_g.dkg_nsect = labp->dkl_nsect; 5765 un->un_g.dkg_intrlv = labp->dkl_intrlv; 5766 5767 #if defined(_SUNOS_VTOC_8) 5768 un->un_g.dkg_gap1 = labp->dkl_gap1; 5769 un->un_g.dkg_gap2 = labp->dkl_gap2; 5770 un->un_g.dkg_bhead = labp->dkl_bhead; 5771 #endif 5772 #if defined(_SUNOS_VTOC_16) 5773 un->un_dkg_skew = labp->dkl_skew; 5774 #endif 5775 5776 #if defined(__i386) || defined(__amd64) 5777 un->un_g.dkg_apc = labp->dkl_apc; 5778 #endif 5779 5780 /* 5781 * Currently we rely on the values in the label being accurate. If 5782 * dlk_rpm or dlk_pcly are zero in the label, use a default value. 5783 * 5784 * Note: In the future a MODE SENSE may be used to retrieve this data, 5785 * although this command is optional in SCSI-2. 5786 */ 5787 un->un_g.dkg_rpm = (labp->dkl_rpm != 0) ? labp->dkl_rpm : 3600; 5788 un->un_g.dkg_pcyl = (labp->dkl_pcyl != 0) ? labp->dkl_pcyl : 5789 (un->un_g.dkg_ncyl + un->un_g.dkg_acyl); 5790 5791 /* 5792 * The Read and Write reinstruct values may not be valid 5793 * for older disks. 5794 */ 5795 un->un_g.dkg_read_reinstruct = labp->dkl_read_reinstruct; 5796 un->un_g.dkg_write_reinstruct = labp->dkl_write_reinstruct; 5797 5798 /* Fill in partition table. */ 5799 #if defined(_SUNOS_VTOC_8) 5800 for (i = 0; i < NDKMAP; i++) { 5801 un->un_map[i].dkl_cylno = labp->dkl_map[i].dkl_cylno; 5802 un->un_map[i].dkl_nblk = labp->dkl_map[i].dkl_nblk; 5803 } 5804 #endif 5805 #if defined(_SUNOS_VTOC_16) 5806 vpartp = labp->dkl_vtoc.v_part; 5807 track_capacity = labp->dkl_nhead * labp->dkl_nsect; 5808 5809 /* Prevent divide by zero */ 5810 if (track_capacity == 0) { 5811 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 5812 "Corrupt label - zero nhead or nsect value\n"); 5813 5814 return (SD_LABEL_IS_INVALID); 5815 } 5816 5817 for (i = 0; i < NDKMAP; i++, vpartp++) { 5818 un->un_map[i].dkl_cylno = vpartp->p_start / track_capacity; 5819 un->un_map[i].dkl_nblk = vpartp->p_size; 5820 } 5821 #endif 5822 5823 /* Fill in VTOC Structure. */ 5824 bcopy(&labp->dkl_vtoc, &un->un_vtoc, sizeof (struct dk_vtoc)); 5825 #if defined(_SUNOS_VTOC_8) 5826 /* 5827 * The 8-slice vtoc does not include the ascii label; save it into 5828 * the device's soft state structure here. 5829 */ 5830 bcopy(labp->dkl_asciilabel, un->un_asciilabel, LEN_DKL_ASCII); 5831 #endif 5832 5833 /* Now look for a valid capacity. */ 5834 track_capacity = (un->un_g.dkg_nhead * un->un_g.dkg_nsect); 5835 capacity = (un->un_g.dkg_ncyl * track_capacity); 5836 5837 if (un->un_g.dkg_acyl) { 5838 #if defined(__i386) || defined(__amd64) 5839 /* we may have > 1 alts cylinder */ 5840 capacity += (track_capacity * un->un_g.dkg_acyl); 5841 #else 5842 capacity += track_capacity; 5843 #endif 5844 } 5845 5846 /* 5847 * Force check here to ensure the computed capacity is valid. 5848 * If capacity is zero, it indicates an invalid label and 5849 * we should abort updating the relevant data then. 5850 */ 5851 if (capacity == 0) { 5852 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 5853 "Corrupt label - no valid capacity could be retrieved\n"); 5854 5855 return (SD_LABEL_IS_INVALID); 5856 } 5857 5858 /* Mark the geometry as valid. */ 5859 un->un_f_geometry_is_valid = TRUE; 5860 5861 /* 5862 * At this point, un->un_blockcount should contain valid data from 5863 * the READ CAPACITY command. 5864 */ 5865 if (un->un_f_blockcount_is_valid != TRUE) { 5866 /* 5867 * We have a situation where the target didn't give us a good 5868 * READ CAPACITY value, yet there appears to be a valid label. 5869 * In this case, we'll fake the capacity. 5870 */ 5871 un->un_blockcount = capacity; 5872 un->un_f_blockcount_is_valid = TRUE; 5873 goto done; 5874 } 5875 5876 5877 if ((capacity <= un->un_blockcount) || 5878 (un->un_state != SD_STATE_NORMAL)) { 5879 #if defined(_SUNOS_VTOC_8) 5880 /* 5881 * We can't let this happen on drives that are subdivided 5882 * into logical disks (i.e., that have an fdisk table). 5883 * The un_blockcount field should always hold the full media 5884 * size in sectors, period. This code would overwrite 5885 * un_blockcount with the size of the Solaris fdisk partition. 5886 */ 5887 SD_ERROR(SD_LOG_COMMON, un, 5888 "sd_uselabel: Label %d blocks; Drive %d blocks\n", 5889 capacity, un->un_blockcount); 5890 un->un_blockcount = capacity; 5891 un->un_f_blockcount_is_valid = TRUE; 5892 #endif /* defined(_SUNOS_VTOC_8) */ 5893 goto done; 5894 } 5895 5896 if (ISCD(un)) { 5897 /* For CDROMs, we trust that the data in the label is OK. */ 5898 #if defined(_SUNOS_VTOC_8) 5899 for (i = 0; i < NDKMAP; i++) { 5900 part_end = labp->dkl_nhead * labp->dkl_nsect * 5901 labp->dkl_map[i].dkl_cylno + 5902 labp->dkl_map[i].dkl_nblk - 1; 5903 5904 if ((labp->dkl_map[i].dkl_nblk) && 5905 (part_end > un->un_blockcount)) { 5906 un->un_f_geometry_is_valid = FALSE; 5907 break; 5908 } 5909 } 5910 #endif 5911 #if defined(_SUNOS_VTOC_16) 5912 vpartp = &(labp->dkl_vtoc.v_part[0]); 5913 for (i = 0; i < NDKMAP; i++, vpartp++) { 5914 part_end = vpartp->p_start + vpartp->p_size; 5915 if ((vpartp->p_size > 0) && 5916 (part_end > un->un_blockcount)) { 5917 un->un_f_geometry_is_valid = FALSE; 5918 break; 5919 } 5920 } 5921 #endif 5922 } else { 5923 uint64_t t_capacity; 5924 uint32_t t_lbasize; 5925 5926 mutex_exit(SD_MUTEX(un)); 5927 err = sd_send_scsi_READ_CAPACITY(un, &t_capacity, &t_lbasize, 5928 path_flag); 5929 ASSERT(t_capacity <= DK_MAX_BLOCKS); 5930 mutex_enter(SD_MUTEX(un)); 5931 5932 if (err == 0) { 5933 sd_update_block_info(un, t_lbasize, t_capacity); 5934 } 5935 5936 if (capacity > un->un_blockcount) { 5937 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 5938 "Corrupt label - bad geometry\n"); 5939 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 5940 "Label says %u blocks; Drive says %llu blocks\n", 5941 capacity, (unsigned long long)un->un_blockcount); 5942 un->un_f_geometry_is_valid = FALSE; 5943 label_error = SD_LABEL_IS_INVALID; 5944 } 5945 } 5946 5947 done: 5948 5949 SD_INFO(SD_LOG_COMMON, un, "sd_uselabel: (label geometry)\n"); 5950 SD_INFO(SD_LOG_COMMON, un, 5951 " ncyl: %d; acyl: %d; nhead: %d; nsect: %d\n", 5952 un->un_g.dkg_ncyl, un->un_g.dkg_acyl, 5953 un->un_g.dkg_nhead, un->un_g.dkg_nsect); 5954 SD_INFO(SD_LOG_COMMON, un, 5955 " lbasize: %d; capacity: %d; intrlv: %d; rpm: %d\n", 5956 un->un_tgt_blocksize, un->un_blockcount, 5957 un->un_g.dkg_intrlv, un->un_g.dkg_rpm); 5958 SD_INFO(SD_LOG_COMMON, un, " wrt_reinstr: %d; rd_reinstr: %d\n", 5959 un->un_g.dkg_write_reinstruct, un->un_g.dkg_read_reinstruct); 5960 5961 ASSERT(mutex_owned(SD_MUTEX(un))); 5962 5963 return (label_error); 5964 } 5965 5966 5967 /* 5968 * Function: sd_build_default_label 5969 * 5970 * Description: Generate a default label for those devices that do not have 5971 * one, e.g., new media, removable cartridges, etc.. 5972 * 5973 * Context: Kernel thread only 5974 */ 5975 5976 static void 5977 sd_build_default_label(struct sd_lun *un) 5978 { 5979 #if defined(_SUNOS_VTOC_16) 5980 uint_t phys_spc; 5981 uint_t disksize; 5982 struct dk_geom un_g; 5983 uint64_t capacity; 5984 #endif 5985 5986 ASSERT(un != NULL); 5987 ASSERT(mutex_owned(SD_MUTEX(un))); 5988 5989 #if defined(_SUNOS_VTOC_8) 5990 /* 5991 * Note: This is a legacy check for non-removable devices on VTOC_8 5992 * only. This may be a valid check for VTOC_16 as well. 5993 * Once we understand why there is this difference between SPARC and 5994 * x86 platform, we could remove this legacy check. 5995 */ 5996 ASSERT(un->un_f_default_vtoc_supported); 5997 #endif 5998 5999 bzero(&un->un_g, sizeof (struct dk_geom)); 6000 bzero(&un->un_vtoc, sizeof (struct dk_vtoc)); 6001 bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map))); 6002 6003 #if defined(_SUNOS_VTOC_8) 6004 6005 /* 6006 * It's a REMOVABLE media, therefore no label (on sparc, anyway). 6007 * But it is still necessary to set up various geometry information, 6008 * and we are doing this here. 6009 */ 6010 6011 /* 6012 * For the rpm, we use the minimum for the disk. For the head, cyl, 6013 * and number of sector per track, if the capacity <= 1GB, head = 64, 6014 * sect = 32. else head = 255, sect 63 Note: the capacity should be 6015 * equal to C*H*S values. This will cause some truncation of size due 6016 * to round off errors. For CD-ROMs, this truncation can have adverse 6017 * side effects, so returning ncyl and nhead as 1. The nsect will 6018 * overflow for most of CD-ROMs as nsect is of type ushort. (4190569) 6019 */ 6020 if (ISCD(un)) { 6021 /* 6022 * Preserve the old behavior for non-writable 6023 * medias. Since dkg_nsect is a ushort, it 6024 * will lose bits as cdroms have more than 6025 * 65536 sectors. So if we recalculate 6026 * capacity, it will become much shorter. 6027 * But the dkg_* information is not 6028 * used for CDROMs so it is OK. But for 6029 * Writable CDs we need this information 6030 * to be valid (for newfs say). So we 6031 * make nsect and nhead > 1 that way 6032 * nsect can still stay within ushort limit 6033 * without losing any bits. 6034 */ 6035 if (un->un_f_mmc_writable_media == TRUE) { 6036 un->un_g.dkg_nhead = 64; 6037 un->un_g.dkg_nsect = 32; 6038 un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32); 6039 un->un_blockcount = un->un_g.dkg_ncyl * 6040 un->un_g.dkg_nhead * un->un_g.dkg_nsect; 6041 } else { 6042 un->un_g.dkg_ncyl = 1; 6043 un->un_g.dkg_nhead = 1; 6044 un->un_g.dkg_nsect = un->un_blockcount; 6045 } 6046 } else { 6047 if (un->un_blockcount <= 0x1000) { 6048 /* unlabeled SCSI floppy device */ 6049 un->un_g.dkg_nhead = 2; 6050 un->un_g.dkg_ncyl = 80; 6051 un->un_g.dkg_nsect = un->un_blockcount / (2 * 80); 6052 } else if (un->un_blockcount <= 0x200000) { 6053 un->un_g.dkg_nhead = 64; 6054 un->un_g.dkg_nsect = 32; 6055 un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32); 6056 } else { 6057 un->un_g.dkg_nhead = 255; 6058 un->un_g.dkg_nsect = 63; 6059 un->un_g.dkg_ncyl = un->un_blockcount / (255 * 63); 6060 } 6061 un->un_blockcount = 6062 un->un_g.dkg_ncyl * un->un_g.dkg_nhead * un->un_g.dkg_nsect; 6063 } 6064 6065 un->un_g.dkg_acyl = 0; 6066 un->un_g.dkg_bcyl = 0; 6067 un->un_g.dkg_rpm = 200; 6068 un->un_asciilabel[0] = '\0'; 6069 un->un_g.dkg_pcyl = un->un_g.dkg_ncyl; 6070 6071 un->un_map[0].dkl_cylno = 0; 6072 un->un_map[0].dkl_nblk = un->un_blockcount; 6073 un->un_map[2].dkl_cylno = 0; 6074 un->un_map[2].dkl_nblk = un->un_blockcount; 6075 6076 #elif defined(_SUNOS_VTOC_16) 6077 6078 if (un->un_solaris_size == 0) { 6079 /* 6080 * Got fdisk table but no solaris entry therefore 6081 * don't create a default label 6082 */ 6083 un->un_f_geometry_is_valid = TRUE; 6084 return; 6085 } 6086 6087 /* 6088 * For CDs we continue to use the physical geometry to calculate 6089 * number of cylinders. All other devices must convert the 6090 * physical geometry (geom_cache) to values that will fit 6091 * in a dk_geom structure. 6092 */ 6093 if (ISCD(un)) { 6094 phys_spc = un->un_pgeom.g_nhead * un->un_pgeom.g_nsect; 6095 } else { 6096 /* Convert physical geometry to disk geometry */ 6097 bzero(&un_g, sizeof (struct dk_geom)); 6098 6099 /* 6100 * Refer to comments related to off-by-1 at the 6101 * header of this file. 6102 * Before caculating geometry, capacity should be 6103 * decreased by 1. That un_f_capacity_adjusted is 6104 * TRUE means that we are treating a 1TB disk as 6105 * (1T - 512)B. And the capacity of disks is already 6106 * decreased by 1. 6107 */ 6108 if (!un->un_f_capacity_adjusted && 6109 !un->un_f_has_removable_media && 6110 !un->un_f_is_hotpluggable && 6111 un->un_tgt_blocksize == un->un_sys_blocksize) 6112 capacity = un->un_blockcount - 1; 6113 else 6114 capacity = un->un_blockcount; 6115 6116 sd_convert_geometry(capacity, &un_g); 6117 bcopy(&un_g, &un->un_g, sizeof (un->un_g)); 6118 phys_spc = un->un_g.dkg_nhead * un->un_g.dkg_nsect; 6119 } 6120 6121 ASSERT(phys_spc != 0); 6122 un->un_g.dkg_pcyl = un->un_solaris_size / phys_spc; 6123 un->un_g.dkg_acyl = DK_ACYL; 6124 un->un_g.dkg_ncyl = un->un_g.dkg_pcyl - DK_ACYL; 6125 disksize = un->un_g.dkg_ncyl * phys_spc; 6126 6127 if (ISCD(un)) { 6128 /* 6129 * CD's don't use the "heads * sectors * cyls"-type of 6130 * geometry, but instead use the entire capacity of the media. 6131 */ 6132 disksize = un->un_solaris_size; 6133 un->un_g.dkg_nhead = 1; 6134 un->un_g.dkg_nsect = 1; 6135 un->un_g.dkg_rpm = 6136 (un->un_pgeom.g_rpm == 0) ? 200 : un->un_pgeom.g_rpm; 6137 6138 un->un_vtoc.v_part[0].p_start = 0; 6139 un->un_vtoc.v_part[0].p_size = disksize; 6140 un->un_vtoc.v_part[0].p_tag = V_BACKUP; 6141 un->un_vtoc.v_part[0].p_flag = V_UNMNT; 6142 6143 un->un_map[0].dkl_cylno = 0; 6144 un->un_map[0].dkl_nblk = disksize; 6145 un->un_offset[0] = 0; 6146 6147 } else { 6148 /* 6149 * Hard disks and removable media cartridges 6150 */ 6151 un->un_g.dkg_rpm = 6152 (un->un_pgeom.g_rpm == 0) ? 3600: un->un_pgeom.g_rpm; 6153 un->un_vtoc.v_sectorsz = un->un_sys_blocksize; 6154 6155 /* Add boot slice */ 6156 un->un_vtoc.v_part[8].p_start = 0; 6157 un->un_vtoc.v_part[8].p_size = phys_spc; 6158 un->un_vtoc.v_part[8].p_tag = V_BOOT; 6159 un->un_vtoc.v_part[8].p_flag = V_UNMNT; 6160 6161 un->un_map[8].dkl_cylno = 0; 6162 un->un_map[8].dkl_nblk = phys_spc; 6163 un->un_offset[8] = 0; 6164 } 6165 6166 un->un_g.dkg_apc = 0; 6167 un->un_vtoc.v_nparts = V_NUMPAR; 6168 un->un_vtoc.v_version = V_VERSION; 6169 6170 /* Add backup slice */ 6171 un->un_vtoc.v_part[2].p_start = 0; 6172 un->un_vtoc.v_part[2].p_size = disksize; 6173 un->un_vtoc.v_part[2].p_tag = V_BACKUP; 6174 un->un_vtoc.v_part[2].p_flag = V_UNMNT; 6175 6176 un->un_map[2].dkl_cylno = 0; 6177 un->un_map[2].dkl_nblk = disksize; 6178 un->un_offset[2] = 0; 6179 6180 (void) sprintf(un->un_vtoc.v_asciilabel, "DEFAULT cyl %d alt %d" 6181 " hd %d sec %d", un->un_g.dkg_ncyl, un->un_g.dkg_acyl, 6182 un->un_g.dkg_nhead, un->un_g.dkg_nsect); 6183 6184 #else 6185 #error "No VTOC format defined." 6186 #endif 6187 6188 un->un_g.dkg_read_reinstruct = 0; 6189 un->un_g.dkg_write_reinstruct = 0; 6190 6191 un->un_g.dkg_intrlv = 1; 6192 6193 un->un_vtoc.v_sanity = VTOC_SANE; 6194 6195 un->un_f_geometry_is_valid = TRUE; 6196 6197 SD_INFO(SD_LOG_COMMON, un, 6198 "sd_build_default_label: Default label created: " 6199 "cyl: %d\tacyl: %d\tnhead: %d\tnsect: %d\tcap: %d\n", 6200 un->un_g.dkg_ncyl, un->un_g.dkg_acyl, un->un_g.dkg_nhead, 6201 un->un_g.dkg_nsect, un->un_blockcount); 6202 } 6203 6204 6205 #if defined(_FIRMWARE_NEEDS_FDISK) 6206 /* 6207 * Max CHS values, as they are encoded into bytes, for 1022/254/63 6208 */ 6209 #define LBA_MAX_SECT (63 | ((1022 & 0x300) >> 2)) 6210 #define LBA_MAX_CYL (1022 & 0xFF) 6211 #define LBA_MAX_HEAD (254) 6212 6213 6214 /* 6215 * Function: sd_has_max_chs_vals 6216 * 6217 * Description: Return TRUE if Cylinder-Head-Sector values are all at maximum. 6218 * 6219 * Arguments: fdp - ptr to CHS info 6220 * 6221 * Return Code: True or false 6222 * 6223 * Context: Any. 6224 */ 6225 6226 static int 6227 sd_has_max_chs_vals(struct ipart *fdp) 6228 { 6229 return ((fdp->begcyl == LBA_MAX_CYL) && 6230 (fdp->beghead == LBA_MAX_HEAD) && 6231 (fdp->begsect == LBA_MAX_SECT) && 6232 (fdp->endcyl == LBA_MAX_CYL) && 6233 (fdp->endhead == LBA_MAX_HEAD) && 6234 (fdp->endsect == LBA_MAX_SECT)); 6235 } 6236 #endif 6237 6238 6239 /* 6240 * Function: sd_inq_fill 6241 * 6242 * Description: Print a piece of inquiry data, cleaned up for non-printable 6243 * characters and stopping at the first space character after 6244 * the beginning of the passed string; 6245 * 6246 * Arguments: p - source string 6247 * l - maximum length to copy 6248 * s - destination string 6249 * 6250 * Context: Any. 6251 */ 6252 6253 static void 6254 sd_inq_fill(char *p, int l, char *s) 6255 { 6256 unsigned i = 0; 6257 char c; 6258 6259 while (i++ < l) { 6260 if ((c = *p++) < ' ' || c >= 0x7F) { 6261 c = '*'; 6262 } else if (i != 1 && c == ' ') { 6263 break; 6264 } 6265 *s++ = c; 6266 } 6267 *s++ = 0; 6268 } 6269 6270 6271 /* 6272 * Function: sd_register_devid 6273 * 6274 * Description: This routine will obtain the device id information from the 6275 * target, obtain the serial number, and register the device 6276 * id with the ddi framework. 6277 * 6278 * Arguments: devi - the system's dev_info_t for the device. 6279 * un - driver soft state (unit) structure 6280 * reservation_flag - indicates if a reservation conflict 6281 * occurred during attach 6282 * 6283 * Context: Kernel Thread 6284 */ 6285 static void 6286 sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag) 6287 { 6288 int rval = 0; 6289 uchar_t *inq80 = NULL; 6290 size_t inq80_len = MAX_INQUIRY_SIZE; 6291 size_t inq80_resid = 0; 6292 uchar_t *inq83 = NULL; 6293 size_t inq83_len = MAX_INQUIRY_SIZE; 6294 size_t inq83_resid = 0; 6295 6296 ASSERT(un != NULL); 6297 ASSERT(mutex_owned(SD_MUTEX(un))); 6298 ASSERT((SD_DEVINFO(un)) == devi); 6299 6300 /* 6301 * This is the case of antiquated Sun disk drives that have the 6302 * FAB_DEVID property set in the disk_table. These drives 6303 * manage the devid's by storing them in last 2 available sectors 6304 * on the drive and have them fabricated by the ddi layer by calling 6305 * ddi_devid_init and passing the DEVID_FAB flag. 6306 */ 6307 if (un->un_f_opt_fab_devid == TRUE) { 6308 /* 6309 * Depending on EINVAL isn't reliable, since a reserved disk 6310 * may result in invalid geometry, so check to make sure a 6311 * reservation conflict did not occur during attach. 6312 */ 6313 if ((sd_get_devid(un) == EINVAL) && 6314 (reservation_flag != SD_TARGET_IS_RESERVED)) { 6315 /* 6316 * The devid is invalid AND there is no reservation 6317 * conflict. Fabricate a new devid. 6318 */ 6319 (void) sd_create_devid(un); 6320 } 6321 6322 /* Register the devid if it exists */ 6323 if (un->un_devid != NULL) { 6324 (void) ddi_devid_register(SD_DEVINFO(un), 6325 un->un_devid); 6326 SD_INFO(SD_LOG_ATTACH_DETACH, un, 6327 "sd_register_devid: Devid Fabricated\n"); 6328 } 6329 return; 6330 } 6331 6332 /* 6333 * We check the availibility of the World Wide Name (0x83) and Unit 6334 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using 6335 * un_vpd_page_mask from them, we decide which way to get the WWN. If 6336 * 0x83 is availible, that is the best choice. Our next choice is 6337 * 0x80. If neither are availible, we munge the devid from the device 6338 * vid/pid/serial # for Sun qualified disks, or use the ddi framework 6339 * to fabricate a devid for non-Sun qualified disks. 6340 */ 6341 if (sd_check_vpd_page_support(un) == 0) { 6342 /* collect page 80 data if available */ 6343 if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) { 6344 6345 mutex_exit(SD_MUTEX(un)); 6346 inq80 = kmem_zalloc(inq80_len, KM_SLEEP); 6347 rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len, 6348 0x01, 0x80, &inq80_resid); 6349 6350 if (rval != 0) { 6351 kmem_free(inq80, inq80_len); 6352 inq80 = NULL; 6353 inq80_len = 0; 6354 } 6355 mutex_enter(SD_MUTEX(un)); 6356 } 6357 6358 /* collect page 83 data if available */ 6359 if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) { 6360 mutex_exit(SD_MUTEX(un)); 6361 inq83 = kmem_zalloc(inq83_len, KM_SLEEP); 6362 rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len, 6363 0x01, 0x83, &inq83_resid); 6364 6365 if (rval != 0) { 6366 kmem_free(inq83, inq83_len); 6367 inq83 = NULL; 6368 inq83_len = 0; 6369 } 6370 mutex_enter(SD_MUTEX(un)); 6371 } 6372 } 6373 6374 /* encode best devid possible based on data available */ 6375 if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST, 6376 (char *)ddi_driver_name(SD_DEVINFO(un)), 6377 (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)), 6378 inq80, inq80_len - inq80_resid, inq83, inq83_len - 6379 inq83_resid, &un->un_devid) == DDI_SUCCESS) { 6380 6381 /* devid successfully encoded, register devid */ 6382 (void) ddi_devid_register(SD_DEVINFO(un), un->un_devid); 6383 6384 } else { 6385 /* 6386 * Unable to encode a devid based on data available. 6387 * This is not a Sun qualified disk. Older Sun disk 6388 * drives that have the SD_FAB_DEVID property 6389 * set in the disk_table and non Sun qualified 6390 * disks are treated in the same manner. These 6391 * drives manage the devid's by storing them in 6392 * last 2 available sectors on the drive and 6393 * have them fabricated by the ddi layer by 6394 * calling ddi_devid_init and passing the 6395 * DEVID_FAB flag. 6396 * Create a fabricate devid only if there's no 6397 * fabricate devid existed. 6398 */ 6399 if (sd_get_devid(un) == EINVAL) { 6400 (void) sd_create_devid(un); 6401 } 6402 un->un_f_opt_fab_devid = TRUE; 6403 6404 /* Register the devid if it exists */ 6405 if (un->un_devid != NULL) { 6406 (void) ddi_devid_register(SD_DEVINFO(un), 6407 un->un_devid); 6408 SD_INFO(SD_LOG_ATTACH_DETACH, un, 6409 "sd_register_devid: devid fabricated using " 6410 "ddi framework\n"); 6411 } 6412 } 6413 6414 /* clean up resources */ 6415 if (inq80 != NULL) { 6416 kmem_free(inq80, inq80_len); 6417 } 6418 if (inq83 != NULL) { 6419 kmem_free(inq83, inq83_len); 6420 } 6421 } 6422 6423 static daddr_t 6424 sd_get_devid_block(struct sd_lun *un) 6425 { 6426 daddr_t spc, blk, head, cyl; 6427 6428 if ((un->un_f_geometry_is_valid == FALSE) || 6429 (un->un_solaris_size < DK_LABEL_LOC)) 6430 return (-1); 6431 6432 if (un->un_vtoc.v_sanity != VTOC_SANE) { 6433 /* EFI labeled */ 6434 if (un->un_reserved != -1) { 6435 blk = un->un_map[un->un_reserved].dkl_cylno; 6436 } else { 6437 return (-1); 6438 } 6439 } else { 6440 /* SMI labeled */ 6441 /* this geometry doesn't allow us to write a devid */ 6442 if (un->un_g.dkg_acyl < 2) { 6443 return (-1); 6444 } 6445 6446 /* 6447 * Subtract 2 guarantees that the next to last cylinder 6448 * is used 6449 */ 6450 cyl = un->un_g.dkg_ncyl + un->un_g.dkg_acyl - 2; 6451 spc = un->un_g.dkg_nhead * un->un_g.dkg_nsect; 6452 head = un->un_g.dkg_nhead - 1; 6453 blk = (cyl * (spc - un->un_g.dkg_apc)) + 6454 (head * un->un_g.dkg_nsect) + 1; 6455 } 6456 return (blk); 6457 } 6458 6459 /* 6460 * Function: sd_get_devid 6461 * 6462 * Description: This routine will return 0 if a valid device id has been 6463 * obtained from the target and stored in the soft state. If a 6464 * valid device id has not been previously read and stored, a 6465 * read attempt will be made. 6466 * 6467 * Arguments: un - driver soft state (unit) structure 6468 * 6469 * Return Code: 0 if we successfully get the device id 6470 * 6471 * Context: Kernel Thread 6472 */ 6473 6474 static int 6475 sd_get_devid(struct sd_lun *un) 6476 { 6477 struct dk_devid *dkdevid; 6478 ddi_devid_t tmpid; 6479 uint_t *ip; 6480 size_t sz; 6481 daddr_t blk; 6482 int status; 6483 int chksum; 6484 int i; 6485 size_t buffer_size; 6486 6487 ASSERT(un != NULL); 6488 ASSERT(mutex_owned(SD_MUTEX(un))); 6489 6490 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n", 6491 un); 6492 6493 if (un->un_devid != NULL) { 6494 return (0); 6495 } 6496 6497 blk = sd_get_devid_block(un); 6498 if (blk < 0) 6499 return (EINVAL); 6500 6501 /* 6502 * Read and verify device id, stored in the reserved cylinders at the 6503 * end of the disk. Backup label is on the odd sectors of the last 6504 * track of the last cylinder. Device id will be on track of the next 6505 * to last cylinder. 6506 */ 6507 buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid)); 6508 mutex_exit(SD_MUTEX(un)); 6509 dkdevid = kmem_alloc(buffer_size, KM_SLEEP); 6510 status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk, 6511 SD_PATH_DIRECT); 6512 if (status != 0) { 6513 goto error; 6514 } 6515 6516 /* Validate the revision */ 6517 if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) || 6518 (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) { 6519 status = EINVAL; 6520 goto error; 6521 } 6522 6523 /* Calculate the checksum */ 6524 chksum = 0; 6525 ip = (uint_t *)dkdevid; 6526 for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int)); 6527 i++) { 6528 chksum ^= ip[i]; 6529 } 6530 6531 /* Compare the checksums */ 6532 if (DKD_GETCHKSUM(dkdevid) != chksum) { 6533 status = EINVAL; 6534 goto error; 6535 } 6536 6537 /* Validate the device id */ 6538 if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) { 6539 status = EINVAL; 6540 goto error; 6541 } 6542 6543 /* 6544 * Store the device id in the driver soft state 6545 */ 6546 sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid); 6547 tmpid = kmem_alloc(sz, KM_SLEEP); 6548 6549 mutex_enter(SD_MUTEX(un)); 6550 6551 un->un_devid = tmpid; 6552 bcopy(&dkdevid->dkd_devid, un->un_devid, sz); 6553 6554 kmem_free(dkdevid, buffer_size); 6555 6556 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un); 6557 6558 return (status); 6559 error: 6560 mutex_enter(SD_MUTEX(un)); 6561 kmem_free(dkdevid, buffer_size); 6562 return (status); 6563 } 6564 6565 6566 /* 6567 * Function: sd_create_devid 6568 * 6569 * Description: This routine will fabricate the device id and write it 6570 * to the disk. 6571 * 6572 * Arguments: un - driver soft state (unit) structure 6573 * 6574 * Return Code: value of the fabricated device id 6575 * 6576 * Context: Kernel Thread 6577 */ 6578 6579 static ddi_devid_t 6580 sd_create_devid(struct sd_lun *un) 6581 { 6582 ASSERT(un != NULL); 6583 6584 /* Fabricate the devid */ 6585 if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid) 6586 == DDI_FAILURE) { 6587 return (NULL); 6588 } 6589 6590 /* Write the devid to disk */ 6591 if (sd_write_deviceid(un) != 0) { 6592 ddi_devid_free(un->un_devid); 6593 un->un_devid = NULL; 6594 } 6595 6596 return (un->un_devid); 6597 } 6598 6599 6600 /* 6601 * Function: sd_write_deviceid 6602 * 6603 * Description: This routine will write the device id to the disk 6604 * reserved sector. 6605 * 6606 * Arguments: un - driver soft state (unit) structure 6607 * 6608 * Return Code: EINVAL 6609 * value returned by sd_send_scsi_cmd 6610 * 6611 * Context: Kernel Thread 6612 */ 6613 6614 static int 6615 sd_write_deviceid(struct sd_lun *un) 6616 { 6617 struct dk_devid *dkdevid; 6618 daddr_t blk; 6619 uint_t *ip, chksum; 6620 int status; 6621 int i; 6622 6623 ASSERT(mutex_owned(SD_MUTEX(un))); 6624 6625 blk = sd_get_devid_block(un); 6626 if (blk < 0) 6627 return (-1); 6628 mutex_exit(SD_MUTEX(un)); 6629 6630 /* Allocate the buffer */ 6631 dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP); 6632 6633 /* Fill in the revision */ 6634 dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB; 6635 dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB; 6636 6637 /* Copy in the device id */ 6638 mutex_enter(SD_MUTEX(un)); 6639 bcopy(un->un_devid, &dkdevid->dkd_devid, 6640 ddi_devid_sizeof(un->un_devid)); 6641 mutex_exit(SD_MUTEX(un)); 6642 6643 /* Calculate the checksum */ 6644 chksum = 0; 6645 ip = (uint_t *)dkdevid; 6646 for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int)); 6647 i++) { 6648 chksum ^= ip[i]; 6649 } 6650 6651 /* Fill-in checksum */ 6652 DKD_FORMCHKSUM(chksum, dkdevid); 6653 6654 /* Write the reserved sector */ 6655 status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk, 6656 SD_PATH_DIRECT); 6657 6658 kmem_free(dkdevid, un->un_sys_blocksize); 6659 6660 mutex_enter(SD_MUTEX(un)); 6661 return (status); 6662 } 6663 6664 6665 /* 6666 * Function: sd_check_vpd_page_support 6667 * 6668 * Description: This routine sends an inquiry command with the EVPD bit set and 6669 * a page code of 0x00 to the device. It is used to determine which 6670 * vital product pages are availible to find the devid. We are 6671 * looking for pages 0x83 or 0x80. If we return a negative 1, the 6672 * device does not support that command. 6673 * 6674 * Arguments: un - driver soft state (unit) structure 6675 * 6676 * Return Code: 0 - success 6677 * 1 - check condition 6678 * 6679 * Context: This routine can sleep. 6680 */ 6681 6682 static int 6683 sd_check_vpd_page_support(struct sd_lun *un) 6684 { 6685 uchar_t *page_list = NULL; 6686 uchar_t page_length = 0xff; /* Use max possible length */ 6687 uchar_t evpd = 0x01; /* Set the EVPD bit */ 6688 uchar_t page_code = 0x00; /* Supported VPD Pages */ 6689 int rval = 0; 6690 int counter; 6691 6692 ASSERT(un != NULL); 6693 ASSERT(mutex_owned(SD_MUTEX(un))); 6694 6695 mutex_exit(SD_MUTEX(un)); 6696 6697 /* 6698 * We'll set the page length to the maximum to save figuring it out 6699 * with an additional call. 6700 */ 6701 page_list = kmem_zalloc(page_length, KM_SLEEP); 6702 6703 rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd, 6704 page_code, NULL); 6705 6706 mutex_enter(SD_MUTEX(un)); 6707 6708 /* 6709 * Now we must validate that the device accepted the command, as some 6710 * drives do not support it. If the drive does support it, we will 6711 * return 0, and the supported pages will be in un_vpd_page_mask. If 6712 * not, we return -1. 6713 */ 6714 if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) { 6715 /* Loop to find one of the 2 pages we need */ 6716 counter = 4; /* Supported pages start at byte 4, with 0x00 */ 6717 6718 /* 6719 * Pages are returned in ascending order, and 0x83 is what we 6720 * are hoping for. 6721 */ 6722 while ((page_list[counter] <= 0x83) && 6723 (counter <= (page_list[VPD_PAGE_LENGTH] + 6724 VPD_HEAD_OFFSET))) { 6725 /* 6726 * Add 3 because page_list[3] is the number of 6727 * pages minus 3 6728 */ 6729 6730 switch (page_list[counter]) { 6731 case 0x00: 6732 un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG; 6733 break; 6734 case 0x80: 6735 un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG; 6736 break; 6737 case 0x81: 6738 un->un_vpd_page_mask |= SD_VPD_OPERATING_PG; 6739 break; 6740 case 0x82: 6741 un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG; 6742 break; 6743 case 0x83: 6744 un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG; 6745 break; 6746 } 6747 counter++; 6748 } 6749 6750 } else { 6751 rval = -1; 6752 6753 SD_INFO(SD_LOG_ATTACH_DETACH, un, 6754 "sd_check_vpd_page_support: This drive does not implement " 6755 "VPD pages.\n"); 6756 } 6757 6758 kmem_free(page_list, page_length); 6759 6760 return (rval); 6761 } 6762 6763 6764 /* 6765 * Function: sd_setup_pm 6766 * 6767 * Description: Initialize Power Management on the device 6768 * 6769 * Context: Kernel Thread 6770 */ 6771 6772 static void 6773 sd_setup_pm(struct sd_lun *un, dev_info_t *devi) 6774 { 6775 uint_t log_page_size; 6776 uchar_t *log_page_data; 6777 int rval; 6778 6779 /* 6780 * Since we are called from attach, holding a mutex for 6781 * un is unnecessary. Because some of the routines called 6782 * from here require SD_MUTEX to not be held, assert this 6783 * right up front. 6784 */ 6785 ASSERT(!mutex_owned(SD_MUTEX(un))); 6786 /* 6787 * Since the sd device does not have the 'reg' property, 6788 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries. 6789 * The following code is to tell cpr that this device 6790 * DOES need to be suspended and resumed. 6791 */ 6792 (void) ddi_prop_update_string(DDI_DEV_T_NONE, devi, 6793 "pm-hardware-state", "needs-suspend-resume"); 6794 6795 /* 6796 * This complies with the new power management framework 6797 * for certain desktop machines. Create the pm_components 6798 * property as a string array property. 6799 */ 6800 if (un->un_f_pm_supported) { 6801 /* 6802 * not all devices have a motor, try it first. 6803 * some devices may return ILLEGAL REQUEST, some 6804 * will hang 6805 * The following START_STOP_UNIT is used to check if target 6806 * device has a motor. 6807 */ 6808 un->un_f_start_stop_supported = TRUE; 6809 if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, 6810 SD_PATH_DIRECT) != 0) { 6811 un->un_f_start_stop_supported = FALSE; 6812 } 6813 6814 /* 6815 * create pm properties anyways otherwise the parent can't 6816 * go to sleep 6817 */ 6818 (void) sd_create_pm_components(devi, un); 6819 un->un_f_pm_is_enabled = TRUE; 6820 return; 6821 } 6822 6823 if (!un->un_f_log_sense_supported) { 6824 un->un_power_level = SD_SPINDLE_ON; 6825 un->un_f_pm_is_enabled = FALSE; 6826 return; 6827 } 6828 6829 rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE); 6830 6831 #ifdef SDDEBUG 6832 if (sd_force_pm_supported) { 6833 /* Force a successful result */ 6834 rval = 1; 6835 } 6836 #endif 6837 6838 /* 6839 * If the start-stop cycle counter log page is not supported 6840 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0) 6841 * then we should not create the pm_components property. 6842 */ 6843 if (rval == -1) { 6844 /* 6845 * Error. 6846 * Reading log sense failed, most likely this is 6847 * an older drive that does not support log sense. 6848 * If this fails auto-pm is not supported. 6849 */ 6850 un->un_power_level = SD_SPINDLE_ON; 6851 un->un_f_pm_is_enabled = FALSE; 6852 6853 } else if (rval == 0) { 6854 /* 6855 * Page not found. 6856 * The start stop cycle counter is implemented as page 6857 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For 6858 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE). 6859 */ 6860 if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) { 6861 /* 6862 * Page found, use this one. 6863 */ 6864 un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE; 6865 un->un_f_pm_is_enabled = TRUE; 6866 } else { 6867 /* 6868 * Error or page not found. 6869 * auto-pm is not supported for this device. 6870 */ 6871 un->un_power_level = SD_SPINDLE_ON; 6872 un->un_f_pm_is_enabled = FALSE; 6873 } 6874 } else { 6875 /* 6876 * Page found, use it. 6877 */ 6878 un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE; 6879 un->un_f_pm_is_enabled = TRUE; 6880 } 6881 6882 6883 if (un->un_f_pm_is_enabled == TRUE) { 6884 log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE; 6885 log_page_data = kmem_zalloc(log_page_size, KM_SLEEP); 6886 6887 rval = sd_send_scsi_LOG_SENSE(un, log_page_data, 6888 log_page_size, un->un_start_stop_cycle_page, 6889 0x01, 0, SD_PATH_DIRECT); 6890 #ifdef SDDEBUG 6891 if (sd_force_pm_supported) { 6892 /* Force a successful result */ 6893 rval = 0; 6894 } 6895 #endif 6896 6897 /* 6898 * If the Log sense for Page( Start/stop cycle counter page) 6899 * succeeds, then power managment is supported and we can 6900 * enable auto-pm. 6901 */ 6902 if (rval == 0) { 6903 (void) sd_create_pm_components(devi, un); 6904 } else { 6905 un->un_power_level = SD_SPINDLE_ON; 6906 un->un_f_pm_is_enabled = FALSE; 6907 } 6908 6909 kmem_free(log_page_data, log_page_size); 6910 } 6911 } 6912 6913 6914 /* 6915 * Function: sd_create_pm_components 6916 * 6917 * Description: Initialize PM property. 6918 * 6919 * Context: Kernel thread context 6920 */ 6921 6922 static void 6923 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un) 6924 { 6925 char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL }; 6926 6927 ASSERT(!mutex_owned(SD_MUTEX(un))); 6928 6929 if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi, 6930 "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) { 6931 /* 6932 * When components are initially created they are idle, 6933 * power up any non-removables. 6934 * Note: the return value of pm_raise_power can't be used 6935 * for determining if PM should be enabled for this device. 6936 * Even if you check the return values and remove this 6937 * property created above, the PM framework will not honor the 6938 * change after the first call to pm_raise_power. Hence, 6939 * removal of that property does not help if pm_raise_power 6940 * fails. In the case of removable media, the start/stop 6941 * will fail if the media is not present. 6942 */ 6943 if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0, 6944 SD_SPINDLE_ON) == DDI_SUCCESS)) { 6945 mutex_enter(SD_MUTEX(un)); 6946 un->un_power_level = SD_SPINDLE_ON; 6947 mutex_enter(&un->un_pm_mutex); 6948 /* Set to on and not busy. */ 6949 un->un_pm_count = 0; 6950 } else { 6951 mutex_enter(SD_MUTEX(un)); 6952 un->un_power_level = SD_SPINDLE_OFF; 6953 mutex_enter(&un->un_pm_mutex); 6954 /* Set to off. */ 6955 un->un_pm_count = -1; 6956 } 6957 mutex_exit(&un->un_pm_mutex); 6958 mutex_exit(SD_MUTEX(un)); 6959 } else { 6960 un->un_power_level = SD_SPINDLE_ON; 6961 un->un_f_pm_is_enabled = FALSE; 6962 } 6963 } 6964 6965 6966 /* 6967 * Function: sd_ddi_suspend 6968 * 6969 * Description: Performs system power-down operations. This includes 6970 * setting the drive state to indicate its suspended so 6971 * that no new commands will be accepted. Also, wait for 6972 * all commands that are in transport or queued to a timer 6973 * for retry to complete. All timeout threads are cancelled. 6974 * 6975 * Return Code: DDI_FAILURE or DDI_SUCCESS 6976 * 6977 * Context: Kernel thread context 6978 */ 6979 6980 static int 6981 sd_ddi_suspend(dev_info_t *devi) 6982 { 6983 struct sd_lun *un; 6984 clock_t wait_cmds_complete; 6985 6986 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 6987 if (un == NULL) { 6988 return (DDI_FAILURE); 6989 } 6990 6991 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n"); 6992 6993 mutex_enter(SD_MUTEX(un)); 6994 6995 /* Return success if the device is already suspended. */ 6996 if (un->un_state == SD_STATE_SUSPENDED) { 6997 mutex_exit(SD_MUTEX(un)); 6998 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 6999 "device already suspended, exiting\n"); 7000 return (DDI_SUCCESS); 7001 } 7002 7003 /* Return failure if the device is being used by HA */ 7004 if (un->un_resvd_status & 7005 (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) { 7006 mutex_exit(SD_MUTEX(un)); 7007 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 7008 "device in use by HA, exiting\n"); 7009 return (DDI_FAILURE); 7010 } 7011 7012 /* 7013 * Return failure if the device is in a resource wait 7014 * or power changing state. 7015 */ 7016 if ((un->un_state == SD_STATE_RWAIT) || 7017 (un->un_state == SD_STATE_PM_CHANGING)) { 7018 mutex_exit(SD_MUTEX(un)); 7019 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 7020 "device in resource wait state, exiting\n"); 7021 return (DDI_FAILURE); 7022 } 7023 7024 7025 un->un_save_state = un->un_last_state; 7026 New_state(un, SD_STATE_SUSPENDED); 7027 7028 /* 7029 * Wait for all commands that are in transport or queued to a timer 7030 * for retry to complete. 7031 * 7032 * While waiting, no new commands will be accepted or sent because of 7033 * the new state we set above. 7034 * 7035 * Wait till current operation has completed. If we are in the resource 7036 * wait state (with an intr outstanding) then we need to wait till the 7037 * intr completes and starts the next cmd. We want to wait for 7038 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND. 7039 */ 7040 wait_cmds_complete = ddi_get_lbolt() + 7041 (sd_wait_cmds_complete * drv_usectohz(1000000)); 7042 7043 while (un->un_ncmds_in_transport != 0) { 7044 /* 7045 * Fail if commands do not finish in the specified time. 7046 */ 7047 if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un), 7048 wait_cmds_complete) == -1) { 7049 /* 7050 * Undo the state changes made above. Everything 7051 * must go back to it's original value. 7052 */ 7053 Restore_state(un); 7054 un->un_last_state = un->un_save_state; 7055 /* Wake up any threads that might be waiting. */ 7056 cv_broadcast(&un->un_suspend_cv); 7057 mutex_exit(SD_MUTEX(un)); 7058 SD_ERROR(SD_LOG_IO_PM, un, 7059 "sd_ddi_suspend: failed due to outstanding cmds\n"); 7060 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n"); 7061 return (DDI_FAILURE); 7062 } 7063 } 7064 7065 /* 7066 * Cancel SCSI watch thread and timeouts, if any are active 7067 */ 7068 7069 if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) { 7070 opaque_t temp_token = un->un_swr_token; 7071 mutex_exit(SD_MUTEX(un)); 7072 scsi_watch_suspend(temp_token); 7073 mutex_enter(SD_MUTEX(un)); 7074 } 7075 7076 if (un->un_reset_throttle_timeid != NULL) { 7077 timeout_id_t temp_id = un->un_reset_throttle_timeid; 7078 un->un_reset_throttle_timeid = NULL; 7079 mutex_exit(SD_MUTEX(un)); 7080 (void) untimeout(temp_id); 7081 mutex_enter(SD_MUTEX(un)); 7082 } 7083 7084 if (un->un_dcvb_timeid != NULL) { 7085 timeout_id_t temp_id = un->un_dcvb_timeid; 7086 un->un_dcvb_timeid = NULL; 7087 mutex_exit(SD_MUTEX(un)); 7088 (void) untimeout(temp_id); 7089 mutex_enter(SD_MUTEX(un)); 7090 } 7091 7092 mutex_enter(&un->un_pm_mutex); 7093 if (un->un_pm_timeid != NULL) { 7094 timeout_id_t temp_id = un->un_pm_timeid; 7095 un->un_pm_timeid = NULL; 7096 mutex_exit(&un->un_pm_mutex); 7097 mutex_exit(SD_MUTEX(un)); 7098 (void) untimeout(temp_id); 7099 mutex_enter(SD_MUTEX(un)); 7100 } else { 7101 mutex_exit(&un->un_pm_mutex); 7102 } 7103 7104 if (un->un_retry_timeid != NULL) { 7105 timeout_id_t temp_id = un->un_retry_timeid; 7106 un->un_retry_timeid = NULL; 7107 mutex_exit(SD_MUTEX(un)); 7108 (void) untimeout(temp_id); 7109 mutex_enter(SD_MUTEX(un)); 7110 } 7111 7112 if (un->un_direct_priority_timeid != NULL) { 7113 timeout_id_t temp_id = un->un_direct_priority_timeid; 7114 un->un_direct_priority_timeid = NULL; 7115 mutex_exit(SD_MUTEX(un)); 7116 (void) untimeout(temp_id); 7117 mutex_enter(SD_MUTEX(un)); 7118 } 7119 7120 if (un->un_f_is_fibre == TRUE) { 7121 /* 7122 * Remove callbacks for insert and remove events 7123 */ 7124 if (un->un_insert_event != NULL) { 7125 mutex_exit(SD_MUTEX(un)); 7126 (void) ddi_remove_event_handler(un->un_insert_cb_id); 7127 mutex_enter(SD_MUTEX(un)); 7128 un->un_insert_event = NULL; 7129 } 7130 7131 if (un->un_remove_event != NULL) { 7132 mutex_exit(SD_MUTEX(un)); 7133 (void) ddi_remove_event_handler(un->un_remove_cb_id); 7134 mutex_enter(SD_MUTEX(un)); 7135 un->un_remove_event = NULL; 7136 } 7137 } 7138 7139 mutex_exit(SD_MUTEX(un)); 7140 7141 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n"); 7142 7143 return (DDI_SUCCESS); 7144 } 7145 7146 7147 /* 7148 * Function: sd_ddi_pm_suspend 7149 * 7150 * Description: Set the drive state to low power. 7151 * Someone else is required to actually change the drive 7152 * power level. 7153 * 7154 * Arguments: un - driver soft state (unit) structure 7155 * 7156 * Return Code: DDI_FAILURE or DDI_SUCCESS 7157 * 7158 * Context: Kernel thread context 7159 */ 7160 7161 static int 7162 sd_ddi_pm_suspend(struct sd_lun *un) 7163 { 7164 ASSERT(un != NULL); 7165 SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n"); 7166 7167 ASSERT(!mutex_owned(SD_MUTEX(un))); 7168 mutex_enter(SD_MUTEX(un)); 7169 7170 /* 7171 * Exit if power management is not enabled for this device, or if 7172 * the device is being used by HA. 7173 */ 7174 if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status & 7175 (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) { 7176 mutex_exit(SD_MUTEX(un)); 7177 SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n"); 7178 return (DDI_SUCCESS); 7179 } 7180 7181 SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n", 7182 un->un_ncmds_in_driver); 7183 7184 /* 7185 * See if the device is not busy, ie.: 7186 * - we have no commands in the driver for this device 7187 * - not waiting for resources 7188 */ 7189 if ((un->un_ncmds_in_driver == 0) && 7190 (un->un_state != SD_STATE_RWAIT)) { 7191 /* 7192 * The device is not busy, so it is OK to go to low power state. 7193 * Indicate low power, but rely on someone else to actually 7194 * change it. 7195 */ 7196 mutex_enter(&un->un_pm_mutex); 7197 un->un_pm_count = -1; 7198 mutex_exit(&un->un_pm_mutex); 7199 un->un_power_level = SD_SPINDLE_OFF; 7200 } 7201 7202 mutex_exit(SD_MUTEX(un)); 7203 7204 SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n"); 7205 7206 return (DDI_SUCCESS); 7207 } 7208 7209 7210 /* 7211 * Function: sd_ddi_resume 7212 * 7213 * Description: Performs system power-up operations.. 7214 * 7215 * Return Code: DDI_SUCCESS 7216 * DDI_FAILURE 7217 * 7218 * Context: Kernel thread context 7219 */ 7220 7221 static int 7222 sd_ddi_resume(dev_info_t *devi) 7223 { 7224 struct sd_lun *un; 7225 7226 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 7227 if (un == NULL) { 7228 return (DDI_FAILURE); 7229 } 7230 7231 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n"); 7232 7233 mutex_enter(SD_MUTEX(un)); 7234 Restore_state(un); 7235 7236 /* 7237 * Restore the state which was saved to give the 7238 * the right state in un_last_state 7239 */ 7240 un->un_last_state = un->un_save_state; 7241 /* 7242 * Note: throttle comes back at full. 7243 * Also note: this MUST be done before calling pm_raise_power 7244 * otherwise the system can get hung in biowait. The scenario where 7245 * this'll happen is under cpr suspend. Writing of the system 7246 * state goes through sddump, which writes 0 to un_throttle. If 7247 * writing the system state then fails, example if the partition is 7248 * too small, then cpr attempts a resume. If throttle isn't restored 7249 * from the saved value until after calling pm_raise_power then 7250 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs 7251 * in biowait. 7252 */ 7253 un->un_throttle = un->un_saved_throttle; 7254 7255 /* 7256 * The chance of failure is very rare as the only command done in power 7257 * entry point is START command when you transition from 0->1 or 7258 * unknown->1. Put it to SPINDLE ON state irrespective of the state at 7259 * which suspend was done. Ignore the return value as the resume should 7260 * not be failed. In the case of removable media the media need not be 7261 * inserted and hence there is a chance that raise power will fail with 7262 * media not present. 7263 */ 7264 if (un->un_f_attach_spinup) { 7265 mutex_exit(SD_MUTEX(un)); 7266 (void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON); 7267 mutex_enter(SD_MUTEX(un)); 7268 } 7269 7270 /* 7271 * Don't broadcast to the suspend cv and therefore possibly 7272 * start I/O until after power has been restored. 7273 */ 7274 cv_broadcast(&un->un_suspend_cv); 7275 cv_broadcast(&un->un_state_cv); 7276 7277 /* restart thread */ 7278 if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) { 7279 scsi_watch_resume(un->un_swr_token); 7280 } 7281 7282 #if (defined(__fibre)) 7283 if (un->un_f_is_fibre == TRUE) { 7284 /* 7285 * Add callbacks for insert and remove events 7286 */ 7287 if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) { 7288 sd_init_event_callbacks(un); 7289 } 7290 } 7291 #endif 7292 7293 /* 7294 * Transport any pending commands to the target. 7295 * 7296 * If this is a low-activity device commands in queue will have to wait 7297 * until new commands come in, which may take awhile. Also, we 7298 * specifically don't check un_ncmds_in_transport because we know that 7299 * there really are no commands in progress after the unit was 7300 * suspended and we could have reached the throttle level, been 7301 * suspended, and have no new commands coming in for awhile. Highly 7302 * unlikely, but so is the low-activity disk scenario. 7303 */ 7304 ddi_xbuf_dispatch(un->un_xbuf_attr); 7305 7306 sd_start_cmds(un, NULL); 7307 mutex_exit(SD_MUTEX(un)); 7308 7309 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n"); 7310 7311 return (DDI_SUCCESS); 7312 } 7313 7314 7315 /* 7316 * Function: sd_ddi_pm_resume 7317 * 7318 * Description: Set the drive state to powered on. 7319 * Someone else is required to actually change the drive 7320 * power level. 7321 * 7322 * Arguments: un - driver soft state (unit) structure 7323 * 7324 * Return Code: DDI_SUCCESS 7325 * 7326 * Context: Kernel thread context 7327 */ 7328 7329 static int 7330 sd_ddi_pm_resume(struct sd_lun *un) 7331 { 7332 ASSERT(un != NULL); 7333 7334 ASSERT(!mutex_owned(SD_MUTEX(un))); 7335 mutex_enter(SD_MUTEX(un)); 7336 un->un_power_level = SD_SPINDLE_ON; 7337 7338 ASSERT(!mutex_owned(&un->un_pm_mutex)); 7339 mutex_enter(&un->un_pm_mutex); 7340 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 7341 un->un_pm_count++; 7342 ASSERT(un->un_pm_count == 0); 7343 /* 7344 * Note: no longer do the cv_broadcast on un_suspend_cv. The 7345 * un_suspend_cv is for a system resume, not a power management 7346 * device resume. (4297749) 7347 * cv_broadcast(&un->un_suspend_cv); 7348 */ 7349 } 7350 mutex_exit(&un->un_pm_mutex); 7351 mutex_exit(SD_MUTEX(un)); 7352 7353 return (DDI_SUCCESS); 7354 } 7355 7356 7357 /* 7358 * Function: sd_pm_idletimeout_handler 7359 * 7360 * Description: A timer routine that's active only while a device is busy. 7361 * The purpose is to extend slightly the pm framework's busy 7362 * view of the device to prevent busy/idle thrashing for 7363 * back-to-back commands. Do this by comparing the current time 7364 * to the time at which the last command completed and when the 7365 * difference is greater than sd_pm_idletime, call 7366 * pm_idle_component. In addition to indicating idle to the pm 7367 * framework, update the chain type to again use the internal pm 7368 * layers of the driver. 7369 * 7370 * Arguments: arg - driver soft state (unit) structure 7371 * 7372 * Context: Executes in a timeout(9F) thread context 7373 */ 7374 7375 static void 7376 sd_pm_idletimeout_handler(void *arg) 7377 { 7378 struct sd_lun *un = arg; 7379 7380 time_t now; 7381 7382 mutex_enter(&sd_detach_mutex); 7383 if (un->un_detach_count != 0) { 7384 /* Abort if the instance is detaching */ 7385 mutex_exit(&sd_detach_mutex); 7386 return; 7387 } 7388 mutex_exit(&sd_detach_mutex); 7389 7390 now = ddi_get_time(); 7391 /* 7392 * Grab both mutexes, in the proper order, since we're accessing 7393 * both PM and softstate variables. 7394 */ 7395 mutex_enter(SD_MUTEX(un)); 7396 mutex_enter(&un->un_pm_mutex); 7397 if (((now - un->un_pm_idle_time) > sd_pm_idletime) && 7398 (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) { 7399 /* 7400 * Update the chain types. 7401 * This takes affect on the next new command received. 7402 */ 7403 if (un->un_f_non_devbsize_supported) { 7404 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA; 7405 } else { 7406 un->un_buf_chain_type = SD_CHAIN_INFO_DISK; 7407 } 7408 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD; 7409 7410 SD_TRACE(SD_LOG_IO_PM, un, 7411 "sd_pm_idletimeout_handler: idling device\n"); 7412 (void) pm_idle_component(SD_DEVINFO(un), 0); 7413 un->un_pm_idle_timeid = NULL; 7414 } else { 7415 un->un_pm_idle_timeid = 7416 timeout(sd_pm_idletimeout_handler, un, 7417 (drv_usectohz((clock_t)300000))); /* 300 ms. */ 7418 } 7419 mutex_exit(&un->un_pm_mutex); 7420 mutex_exit(SD_MUTEX(un)); 7421 } 7422 7423 7424 /* 7425 * Function: sd_pm_timeout_handler 7426 * 7427 * Description: Callback to tell framework we are idle. 7428 * 7429 * Context: timeout(9f) thread context. 7430 */ 7431 7432 static void 7433 sd_pm_timeout_handler(void *arg) 7434 { 7435 struct sd_lun *un = arg; 7436 7437 (void) pm_idle_component(SD_DEVINFO(un), 0); 7438 mutex_enter(&un->un_pm_mutex); 7439 un->un_pm_timeid = NULL; 7440 mutex_exit(&un->un_pm_mutex); 7441 } 7442 7443 7444 /* 7445 * Function: sdpower 7446 * 7447 * Description: PM entry point. 7448 * 7449 * Return Code: DDI_SUCCESS 7450 * DDI_FAILURE 7451 * 7452 * Context: Kernel thread context 7453 */ 7454 7455 static int 7456 sdpower(dev_info_t *devi, int component, int level) 7457 { 7458 struct sd_lun *un; 7459 int instance; 7460 int rval = DDI_SUCCESS; 7461 uint_t i, log_page_size, maxcycles, ncycles; 7462 uchar_t *log_page_data; 7463 int log_sense_page; 7464 int medium_present; 7465 time_t intvlp; 7466 dev_t dev; 7467 struct pm_trans_data sd_pm_tran_data; 7468 uchar_t save_state; 7469 int sval; 7470 uchar_t state_before_pm; 7471 int got_semaphore_here; 7472 7473 instance = ddi_get_instance(devi); 7474 7475 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 7476 (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) || 7477 component != 0) { 7478 return (DDI_FAILURE); 7479 } 7480 7481 dev = sd_make_device(SD_DEVINFO(un)); 7482 7483 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level); 7484 7485 /* 7486 * Must synchronize power down with close. 7487 * Attempt to decrement/acquire the open/close semaphore, 7488 * but do NOT wait on it. If it's not greater than zero, 7489 * ie. it can't be decremented without waiting, then 7490 * someone else, either open or close, already has it 7491 * and the try returns 0. Use that knowledge here to determine 7492 * if it's OK to change the device power level. 7493 * Also, only increment it on exit if it was decremented, ie. gotten, 7494 * here. 7495 */ 7496 got_semaphore_here = sema_tryp(&un->un_semoclose); 7497 7498 mutex_enter(SD_MUTEX(un)); 7499 7500 SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n", 7501 un->un_ncmds_in_driver); 7502 7503 /* 7504 * If un_ncmds_in_driver is non-zero it indicates commands are 7505 * already being processed in the driver, or if the semaphore was 7506 * not gotten here it indicates an open or close is being processed. 7507 * At the same time somebody is requesting to go low power which 7508 * can't happen, therefore we need to return failure. 7509 */ 7510 if ((level == SD_SPINDLE_OFF) && 7511 ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) { 7512 mutex_exit(SD_MUTEX(un)); 7513 7514 if (got_semaphore_here != 0) { 7515 sema_v(&un->un_semoclose); 7516 } 7517 SD_TRACE(SD_LOG_IO_PM, un, 7518 "sdpower: exit, device has queued cmds.\n"); 7519 return (DDI_FAILURE); 7520 } 7521 7522 /* 7523 * if it is OFFLINE that means the disk is completely dead 7524 * in our case we have to put the disk in on or off by sending commands 7525 * Of course that will fail anyway so return back here. 7526 * 7527 * Power changes to a device that's OFFLINE or SUSPENDED 7528 * are not allowed. 7529 */ 7530 if ((un->un_state == SD_STATE_OFFLINE) || 7531 (un->un_state == SD_STATE_SUSPENDED)) { 7532 mutex_exit(SD_MUTEX(un)); 7533 7534 if (got_semaphore_here != 0) { 7535 sema_v(&un->un_semoclose); 7536 } 7537 SD_TRACE(SD_LOG_IO_PM, un, 7538 "sdpower: exit, device is off-line.\n"); 7539 return (DDI_FAILURE); 7540 } 7541 7542 /* 7543 * Change the device's state to indicate it's power level 7544 * is being changed. Do this to prevent a power off in the 7545 * middle of commands, which is especially bad on devices 7546 * that are really powered off instead of just spun down. 7547 */ 7548 state_before_pm = un->un_state; 7549 un->un_state = SD_STATE_PM_CHANGING; 7550 7551 mutex_exit(SD_MUTEX(un)); 7552 7553 /* 7554 * If "pm-capable" property is set to TRUE by HBA drivers, 7555 * bypass the following checking, otherwise, check the log 7556 * sense information for this device 7557 */ 7558 if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) { 7559 /* 7560 * Get the log sense information to understand whether the 7561 * the powercycle counts have gone beyond the threshhold. 7562 */ 7563 log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE; 7564 log_page_data = kmem_zalloc(log_page_size, KM_SLEEP); 7565 7566 mutex_enter(SD_MUTEX(un)); 7567 log_sense_page = un->un_start_stop_cycle_page; 7568 mutex_exit(SD_MUTEX(un)); 7569 7570 rval = sd_send_scsi_LOG_SENSE(un, log_page_data, 7571 log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT); 7572 #ifdef SDDEBUG 7573 if (sd_force_pm_supported) { 7574 /* Force a successful result */ 7575 rval = 0; 7576 } 7577 #endif 7578 if (rval != 0) { 7579 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 7580 "Log Sense Failed\n"); 7581 kmem_free(log_page_data, log_page_size); 7582 /* Cannot support power management on those drives */ 7583 7584 if (got_semaphore_here != 0) { 7585 sema_v(&un->un_semoclose); 7586 } 7587 /* 7588 * On exit put the state back to it's original value 7589 * and broadcast to anyone waiting for the power 7590 * change completion. 7591 */ 7592 mutex_enter(SD_MUTEX(un)); 7593 un->un_state = state_before_pm; 7594 cv_broadcast(&un->un_suspend_cv); 7595 mutex_exit(SD_MUTEX(un)); 7596 SD_TRACE(SD_LOG_IO_PM, un, 7597 "sdpower: exit, Log Sense Failed.\n"); 7598 return (DDI_FAILURE); 7599 } 7600 7601 /* 7602 * From the page data - Convert the essential information to 7603 * pm_trans_data 7604 */ 7605 maxcycles = 7606 (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) | 7607 (log_page_data[0x1E] << 8) | log_page_data[0x1F]; 7608 7609 sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles; 7610 7611 ncycles = 7612 (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) | 7613 (log_page_data[0x26] << 8) | log_page_data[0x27]; 7614 7615 sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles; 7616 7617 for (i = 0; i < DC_SCSI_MFR_LEN; i++) { 7618 sd_pm_tran_data.un.scsi_cycles.svc_date[i] = 7619 log_page_data[8+i]; 7620 } 7621 7622 kmem_free(log_page_data, log_page_size); 7623 7624 /* 7625 * Call pm_trans_check routine to get the Ok from 7626 * the global policy 7627 */ 7628 7629 sd_pm_tran_data.format = DC_SCSI_FORMAT; 7630 sd_pm_tran_data.un.scsi_cycles.flag = 0; 7631 7632 rval = pm_trans_check(&sd_pm_tran_data, &intvlp); 7633 #ifdef SDDEBUG 7634 if (sd_force_pm_supported) { 7635 /* Force a successful result */ 7636 rval = 1; 7637 } 7638 #endif 7639 switch (rval) { 7640 case 0: 7641 /* 7642 * Not Ok to Power cycle or error in parameters passed 7643 * Would have given the advised time to consider power 7644 * cycle. Based on the new intvlp parameter we are 7645 * supposed to pretend we are busy so that pm framework 7646 * will never call our power entry point. Because of 7647 * that install a timeout handler and wait for the 7648 * recommended time to elapse so that power management 7649 * can be effective again. 7650 * 7651 * To effect this behavior, call pm_busy_component to 7652 * indicate to the framework this device is busy. 7653 * By not adjusting un_pm_count the rest of PM in 7654 * the driver will function normally, and independant 7655 * of this but because the framework is told the device 7656 * is busy it won't attempt powering down until it gets 7657 * a matching idle. The timeout handler sends this. 7658 * Note: sd_pm_entry can't be called here to do this 7659 * because sdpower may have been called as a result 7660 * of a call to pm_raise_power from within sd_pm_entry. 7661 * 7662 * If a timeout handler is already active then 7663 * don't install another. 7664 */ 7665 mutex_enter(&un->un_pm_mutex); 7666 if (un->un_pm_timeid == NULL) { 7667 un->un_pm_timeid = 7668 timeout(sd_pm_timeout_handler, 7669 un, intvlp * drv_usectohz(1000000)); 7670 mutex_exit(&un->un_pm_mutex); 7671 (void) pm_busy_component(SD_DEVINFO(un), 0); 7672 } else { 7673 mutex_exit(&un->un_pm_mutex); 7674 } 7675 if (got_semaphore_here != 0) { 7676 sema_v(&un->un_semoclose); 7677 } 7678 /* 7679 * On exit put the state back to it's original value 7680 * and broadcast to anyone waiting for the power 7681 * change completion. 7682 */ 7683 mutex_enter(SD_MUTEX(un)); 7684 un->un_state = state_before_pm; 7685 cv_broadcast(&un->un_suspend_cv); 7686 mutex_exit(SD_MUTEX(un)); 7687 7688 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, " 7689 "trans check Failed, not ok to power cycle.\n"); 7690 return (DDI_FAILURE); 7691 7692 case -1: 7693 if (got_semaphore_here != 0) { 7694 sema_v(&un->un_semoclose); 7695 } 7696 /* 7697 * On exit put the state back to it's original value 7698 * and broadcast to anyone waiting for the power 7699 * change completion. 7700 */ 7701 mutex_enter(SD_MUTEX(un)); 7702 un->un_state = state_before_pm; 7703 cv_broadcast(&un->un_suspend_cv); 7704 mutex_exit(SD_MUTEX(un)); 7705 SD_TRACE(SD_LOG_IO_PM, un, 7706 "sdpower: exit, trans check command Failed.\n"); 7707 return (DDI_FAILURE); 7708 } 7709 } 7710 7711 if (level == SD_SPINDLE_OFF) { 7712 /* 7713 * Save the last state... if the STOP FAILS we need it 7714 * for restoring 7715 */ 7716 mutex_enter(SD_MUTEX(un)); 7717 save_state = un->un_last_state; 7718 /* 7719 * There must not be any cmds. getting processed 7720 * in the driver when we get here. Power to the 7721 * device is potentially going off. 7722 */ 7723 ASSERT(un->un_ncmds_in_driver == 0); 7724 mutex_exit(SD_MUTEX(un)); 7725 7726 /* 7727 * For now suspend the device completely before spindle is 7728 * turned off 7729 */ 7730 if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) { 7731 if (got_semaphore_here != 0) { 7732 sema_v(&un->un_semoclose); 7733 } 7734 /* 7735 * On exit put the state back to it's original value 7736 * and broadcast to anyone waiting for the power 7737 * change completion. 7738 */ 7739 mutex_enter(SD_MUTEX(un)); 7740 un->un_state = state_before_pm; 7741 cv_broadcast(&un->un_suspend_cv); 7742 mutex_exit(SD_MUTEX(un)); 7743 SD_TRACE(SD_LOG_IO_PM, un, 7744 "sdpower: exit, PM suspend Failed.\n"); 7745 return (DDI_FAILURE); 7746 } 7747 } 7748 7749 /* 7750 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open, 7751 * close, or strategy. Dump no long uses this routine, it uses it's 7752 * own code so it can be done in polled mode. 7753 */ 7754 7755 medium_present = TRUE; 7756 7757 /* 7758 * When powering up, issue a TUR in case the device is at unit 7759 * attention. Don't do retries. Bypass the PM layer, otherwise 7760 * a deadlock on un_pm_busy_cv will occur. 7761 */ 7762 if (level == SD_SPINDLE_ON) { 7763 (void) sd_send_scsi_TEST_UNIT_READY(un, 7764 SD_DONT_RETRY_TUR | SD_BYPASS_PM); 7765 } 7766 7767 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n", 7768 ((level == SD_SPINDLE_ON) ? "START" : "STOP")); 7769 7770 sval = sd_send_scsi_START_STOP_UNIT(un, 7771 ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP), 7772 SD_PATH_DIRECT); 7773 /* Command failed, check for media present. */ 7774 if ((sval == ENXIO) && un->un_f_has_removable_media) { 7775 medium_present = FALSE; 7776 } 7777 7778 /* 7779 * The conditions of interest here are: 7780 * if a spindle off with media present fails, 7781 * then restore the state and return an error. 7782 * else if a spindle on fails, 7783 * then return an error (there's no state to restore). 7784 * In all other cases we setup for the new state 7785 * and return success. 7786 */ 7787 switch (level) { 7788 case SD_SPINDLE_OFF: 7789 if ((medium_present == TRUE) && (sval != 0)) { 7790 /* The stop command from above failed */ 7791 rval = DDI_FAILURE; 7792 /* 7793 * The stop command failed, and we have media 7794 * present. Put the level back by calling the 7795 * sd_pm_resume() and set the state back to 7796 * it's previous value. 7797 */ 7798 (void) sd_ddi_pm_resume(un); 7799 mutex_enter(SD_MUTEX(un)); 7800 un->un_last_state = save_state; 7801 mutex_exit(SD_MUTEX(un)); 7802 break; 7803 } 7804 /* 7805 * The stop command from above succeeded. 7806 */ 7807 if (un->un_f_monitor_media_state) { 7808 /* 7809 * Terminate watch thread in case of removable media 7810 * devices going into low power state. This is as per 7811 * the requirements of pm framework, otherwise commands 7812 * will be generated for the device (through watch 7813 * thread), even when the device is in low power state. 7814 */ 7815 mutex_enter(SD_MUTEX(un)); 7816 un->un_f_watcht_stopped = FALSE; 7817 if (un->un_swr_token != NULL) { 7818 opaque_t temp_token = un->un_swr_token; 7819 un->un_f_watcht_stopped = TRUE; 7820 un->un_swr_token = NULL; 7821 mutex_exit(SD_MUTEX(un)); 7822 (void) scsi_watch_request_terminate(temp_token, 7823 SCSI_WATCH_TERMINATE_WAIT); 7824 } else { 7825 mutex_exit(SD_MUTEX(un)); 7826 } 7827 } 7828 break; 7829 7830 default: /* The level requested is spindle on... */ 7831 /* 7832 * Legacy behavior: return success on a failed spinup 7833 * if there is no media in the drive. 7834 * Do this by looking at medium_present here. 7835 */ 7836 if ((sval != 0) && medium_present) { 7837 /* The start command from above failed */ 7838 rval = DDI_FAILURE; 7839 break; 7840 } 7841 /* 7842 * The start command from above succeeded 7843 * Resume the devices now that we have 7844 * started the disks 7845 */ 7846 (void) sd_ddi_pm_resume(un); 7847 7848 /* 7849 * Resume the watch thread since it was suspended 7850 * when the device went into low power mode. 7851 */ 7852 if (un->un_f_monitor_media_state) { 7853 mutex_enter(SD_MUTEX(un)); 7854 if (un->un_f_watcht_stopped == TRUE) { 7855 opaque_t temp_token; 7856 7857 un->un_f_watcht_stopped = FALSE; 7858 mutex_exit(SD_MUTEX(un)); 7859 temp_token = scsi_watch_request_submit( 7860 SD_SCSI_DEVP(un), 7861 sd_check_media_time, 7862 SENSE_LENGTH, sd_media_watch_cb, 7863 (caddr_t)dev); 7864 mutex_enter(SD_MUTEX(un)); 7865 un->un_swr_token = temp_token; 7866 } 7867 mutex_exit(SD_MUTEX(un)); 7868 } 7869 } 7870 if (got_semaphore_here != 0) { 7871 sema_v(&un->un_semoclose); 7872 } 7873 /* 7874 * On exit put the state back to it's original value 7875 * and broadcast to anyone waiting for the power 7876 * change completion. 7877 */ 7878 mutex_enter(SD_MUTEX(un)); 7879 un->un_state = state_before_pm; 7880 cv_broadcast(&un->un_suspend_cv); 7881 mutex_exit(SD_MUTEX(un)); 7882 7883 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval); 7884 7885 return (rval); 7886 } 7887 7888 7889 7890 /* 7891 * Function: sdattach 7892 * 7893 * Description: Driver's attach(9e) entry point function. 7894 * 7895 * Arguments: devi - opaque device info handle 7896 * cmd - attach type 7897 * 7898 * Return Code: DDI_SUCCESS 7899 * DDI_FAILURE 7900 * 7901 * Context: Kernel thread context 7902 */ 7903 7904 static int 7905 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd) 7906 { 7907 switch (cmd) { 7908 case DDI_ATTACH: 7909 return (sd_unit_attach(devi)); 7910 case DDI_RESUME: 7911 return (sd_ddi_resume(devi)); 7912 default: 7913 break; 7914 } 7915 return (DDI_FAILURE); 7916 } 7917 7918 7919 /* 7920 * Function: sddetach 7921 * 7922 * Description: Driver's detach(9E) entry point function. 7923 * 7924 * Arguments: devi - opaque device info handle 7925 * cmd - detach type 7926 * 7927 * Return Code: DDI_SUCCESS 7928 * DDI_FAILURE 7929 * 7930 * Context: Kernel thread context 7931 */ 7932 7933 static int 7934 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd) 7935 { 7936 switch (cmd) { 7937 case DDI_DETACH: 7938 return (sd_unit_detach(devi)); 7939 case DDI_SUSPEND: 7940 return (sd_ddi_suspend(devi)); 7941 default: 7942 break; 7943 } 7944 return (DDI_FAILURE); 7945 } 7946 7947 7948 /* 7949 * Function: sd_sync_with_callback 7950 * 7951 * Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft 7952 * state while the callback routine is active. 7953 * 7954 * Arguments: un: softstate structure for the instance 7955 * 7956 * Context: Kernel thread context 7957 */ 7958 7959 static void 7960 sd_sync_with_callback(struct sd_lun *un) 7961 { 7962 ASSERT(un != NULL); 7963 7964 mutex_enter(SD_MUTEX(un)); 7965 7966 ASSERT(un->un_in_callback >= 0); 7967 7968 while (un->un_in_callback > 0) { 7969 mutex_exit(SD_MUTEX(un)); 7970 delay(2); 7971 mutex_enter(SD_MUTEX(un)); 7972 } 7973 7974 mutex_exit(SD_MUTEX(un)); 7975 } 7976 7977 /* 7978 * Function: sd_unit_attach 7979 * 7980 * Description: Performs DDI_ATTACH processing for sdattach(). Allocates 7981 * the soft state structure for the device and performs 7982 * all necessary structure and device initializations. 7983 * 7984 * Arguments: devi: the system's dev_info_t for the device. 7985 * 7986 * Return Code: DDI_SUCCESS if attach is successful. 7987 * DDI_FAILURE if any part of the attach fails. 7988 * 7989 * Context: Called at attach(9e) time for the DDI_ATTACH flag. 7990 * Kernel thread context only. Can sleep. 7991 */ 7992 7993 static int 7994 sd_unit_attach(dev_info_t *devi) 7995 { 7996 struct scsi_device *devp; 7997 struct sd_lun *un; 7998 char *variantp; 7999 int reservation_flag = SD_TARGET_IS_UNRESERVED; 8000 int instance; 8001 int rval; 8002 int wc_enabled; 8003 int tgt; 8004 uint64_t capacity; 8005 uint_t lbasize; 8006 dev_info_t *pdip = ddi_get_parent(devi); 8007 8008 /* 8009 * Retrieve the target driver's private data area. This was set 8010 * up by the HBA. 8011 */ 8012 devp = ddi_get_driver_private(devi); 8013 8014 /* 8015 * Retrieve the target ID of the device. 8016 */ 8017 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 8018 SCSI_ADDR_PROP_TARGET, -1); 8019 8020 /* 8021 * Since we have no idea what state things were left in by the last 8022 * user of the device, set up some 'default' settings, ie. turn 'em 8023 * off. The scsi_ifsetcap calls force re-negotiations with the drive. 8024 * Do this before the scsi_probe, which sends an inquiry. 8025 * This is a fix for bug (4430280). 8026 * Of special importance is wide-xfer. The drive could have been left 8027 * in wide transfer mode by the last driver to communicate with it, 8028 * this includes us. If that's the case, and if the following is not 8029 * setup properly or we don't re-negotiate with the drive prior to 8030 * transferring data to/from the drive, it causes bus parity errors, 8031 * data overruns, and unexpected interrupts. This first occurred when 8032 * the fix for bug (4378686) was made. 8033 */ 8034 (void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1); 8035 (void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1); 8036 (void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1); 8037 8038 /* 8039 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs 8040 * on a target. Setting it per lun instance actually sets the 8041 * capability of this target, which affects those luns already 8042 * attached on the same target. So during attach, we can only disable 8043 * this capability only when no other lun has been attached on this 8044 * target. By doing this, we assume a target has the same tagged-qing 8045 * capability for every lun. The condition can be removed when HBA 8046 * is changed to support per lun based tagged-qing capability. 8047 */ 8048 if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) { 8049 (void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1); 8050 } 8051 8052 /* 8053 * Use scsi_probe() to issue an INQUIRY command to the device. 8054 * This call will allocate and fill in the scsi_inquiry structure 8055 * and point the sd_inq member of the scsi_device structure to it. 8056 * If the attach succeeds, then this memory will not be de-allocated 8057 * (via scsi_unprobe()) until the instance is detached. 8058 */ 8059 if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) { 8060 goto probe_failed; 8061 } 8062 8063 /* 8064 * Check the device type as specified in the inquiry data and 8065 * claim it if it is of a type that we support. 8066 */ 8067 switch (devp->sd_inq->inq_dtype) { 8068 case DTYPE_DIRECT: 8069 break; 8070 case DTYPE_RODIRECT: 8071 break; 8072 case DTYPE_OPTICAL: 8073 break; 8074 case DTYPE_NOTPRESENT: 8075 default: 8076 /* Unsupported device type; fail the attach. */ 8077 goto probe_failed; 8078 } 8079 8080 /* 8081 * Allocate the soft state structure for this unit. 8082 * 8083 * We rely upon this memory being set to all zeroes by 8084 * ddi_soft_state_zalloc(). We assume that any member of the 8085 * soft state structure that is not explicitly initialized by 8086 * this routine will have a value of zero. 8087 */ 8088 instance = ddi_get_instance(devp->sd_dev); 8089 if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) { 8090 goto probe_failed; 8091 } 8092 8093 /* 8094 * Retrieve a pointer to the newly-allocated soft state. 8095 * 8096 * This should NEVER fail if the ddi_soft_state_zalloc() call above 8097 * was successful, unless something has gone horribly wrong and the 8098 * ddi's soft state internals are corrupt (in which case it is 8099 * probably better to halt here than just fail the attach....) 8100 */ 8101 if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) { 8102 panic("sd_unit_attach: NULL soft state on instance:0x%x", 8103 instance); 8104 /*NOTREACHED*/ 8105 } 8106 8107 /* 8108 * Link the back ptr of the driver soft state to the scsi_device 8109 * struct for this lun. 8110 * Save a pointer to the softstate in the driver-private area of 8111 * the scsi_device struct. 8112 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until 8113 * we first set un->un_sd below. 8114 */ 8115 un->un_sd = devp; 8116 devp->sd_private = (opaque_t)un; 8117 8118 /* 8119 * The following must be after devp is stored in the soft state struct. 8120 */ 8121 #ifdef SDDEBUG 8122 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8123 "%s_unit_attach: un:0x%p instance:%d\n", 8124 ddi_driver_name(devi), un, instance); 8125 #endif 8126 8127 /* 8128 * Set up the device type and node type (for the minor nodes). 8129 * By default we assume that the device can at least support the 8130 * Common Command Set. Call it a CD-ROM if it reports itself 8131 * as a RODIRECT device. 8132 */ 8133 switch (devp->sd_inq->inq_dtype) { 8134 case DTYPE_RODIRECT: 8135 un->un_node_type = DDI_NT_CD_CHAN; 8136 un->un_ctype = CTYPE_CDROM; 8137 break; 8138 case DTYPE_OPTICAL: 8139 un->un_node_type = DDI_NT_BLOCK_CHAN; 8140 un->un_ctype = CTYPE_ROD; 8141 break; 8142 default: 8143 un->un_node_type = DDI_NT_BLOCK_CHAN; 8144 un->un_ctype = CTYPE_CCS; 8145 break; 8146 } 8147 8148 /* 8149 * Try to read the interconnect type from the HBA. 8150 * 8151 * Note: This driver is currently compiled as two binaries, a parallel 8152 * scsi version (sd) and a fibre channel version (ssd). All functional 8153 * differences are determined at compile time. In the future a single 8154 * binary will be provided and the inteconnect type will be used to 8155 * differentiate between fibre and parallel scsi behaviors. At that time 8156 * it will be necessary for all fibre channel HBAs to support this 8157 * property. 8158 * 8159 * set un_f_is_fiber to TRUE ( default fiber ) 8160 */ 8161 un->un_f_is_fibre = TRUE; 8162 switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) { 8163 case INTERCONNECT_SSA: 8164 un->un_interconnect_type = SD_INTERCONNECT_SSA; 8165 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8166 "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un); 8167 break; 8168 case INTERCONNECT_PARALLEL: 8169 un->un_f_is_fibre = FALSE; 8170 un->un_interconnect_type = SD_INTERCONNECT_PARALLEL; 8171 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8172 "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un); 8173 break; 8174 case INTERCONNECT_SATA: 8175 un->un_f_is_fibre = FALSE; 8176 un->un_interconnect_type = SD_INTERCONNECT_SATA; 8177 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8178 "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un); 8179 break; 8180 case INTERCONNECT_FIBRE: 8181 un->un_interconnect_type = SD_INTERCONNECT_FIBRE; 8182 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8183 "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un); 8184 break; 8185 case INTERCONNECT_FABRIC: 8186 un->un_interconnect_type = SD_INTERCONNECT_FABRIC; 8187 un->un_node_type = DDI_NT_BLOCK_FABRIC; 8188 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8189 "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un); 8190 break; 8191 default: 8192 #ifdef SD_DEFAULT_INTERCONNECT_TYPE 8193 /* 8194 * The HBA does not support the "interconnect-type" property 8195 * (or did not provide a recognized type). 8196 * 8197 * Note: This will be obsoleted when a single fibre channel 8198 * and parallel scsi driver is delivered. In the meantime the 8199 * interconnect type will be set to the platform default.If that 8200 * type is not parallel SCSI, it means that we should be 8201 * assuming "ssd" semantics. However, here this also means that 8202 * the FC HBA is not supporting the "interconnect-type" property 8203 * like we expect it to, so log this occurrence. 8204 */ 8205 un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE; 8206 if (!SD_IS_PARALLEL_SCSI(un)) { 8207 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8208 "sd_unit_attach: un:0x%p Assuming " 8209 "INTERCONNECT_FIBRE\n", un); 8210 } else { 8211 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8212 "sd_unit_attach: un:0x%p Assuming " 8213 "INTERCONNECT_PARALLEL\n", un); 8214 un->un_f_is_fibre = FALSE; 8215 } 8216 #else 8217 /* 8218 * Note: This source will be implemented when a single fibre 8219 * channel and parallel scsi driver is delivered. The default 8220 * will be to assume that if a device does not support the 8221 * "interconnect-type" property it is a parallel SCSI HBA and 8222 * we will set the interconnect type for parallel scsi. 8223 */ 8224 un->un_interconnect_type = SD_INTERCONNECT_PARALLEL; 8225 un->un_f_is_fibre = FALSE; 8226 #endif 8227 break; 8228 } 8229 8230 if (un->un_f_is_fibre == TRUE) { 8231 if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) == 8232 SCSI_VERSION_3) { 8233 switch (un->un_interconnect_type) { 8234 case SD_INTERCONNECT_FIBRE: 8235 case SD_INTERCONNECT_SSA: 8236 un->un_node_type = DDI_NT_BLOCK_WWN; 8237 break; 8238 default: 8239 break; 8240 } 8241 } 8242 } 8243 8244 /* 8245 * Initialize the Request Sense command for the target 8246 */ 8247 if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) { 8248 goto alloc_rqs_failed; 8249 } 8250 8251 /* 8252 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc 8253 * with seperate binary for sd and ssd. 8254 * 8255 * x86 has 1 binary, un_retry_count is set base on connection type. 8256 * The hardcoded values will go away when Sparc uses 1 binary 8257 * for sd and ssd. This hardcoded values need to match 8258 * SD_RETRY_COUNT in sddef.h 8259 * The value used is base on interconnect type. 8260 * fibre = 3, parallel = 5 8261 */ 8262 #if defined(__i386) || defined(__amd64) 8263 un->un_retry_count = un->un_f_is_fibre ? 3 : 5; 8264 #else 8265 un->un_retry_count = SD_RETRY_COUNT; 8266 #endif 8267 8268 /* 8269 * Set the per disk retry count to the default number of retries 8270 * for disks and CDROMs. This value can be overridden by the 8271 * disk property list or an entry in sd.conf. 8272 */ 8273 un->un_notready_retry_count = 8274 ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un) 8275 : DISK_NOT_READY_RETRY_COUNT(un); 8276 8277 /* 8278 * Set the busy retry count to the default value of un_retry_count. 8279 * This can be overridden by entries in sd.conf or the device 8280 * config table. 8281 */ 8282 un->un_busy_retry_count = un->un_retry_count; 8283 8284 /* 8285 * Init the reset threshold for retries. This number determines 8286 * how many retries must be performed before a reset can be issued 8287 * (for certain error conditions). This can be overridden by entries 8288 * in sd.conf or the device config table. 8289 */ 8290 un->un_reset_retry_count = (un->un_retry_count / 2); 8291 8292 /* 8293 * Set the victim_retry_count to the default un_retry_count 8294 */ 8295 un->un_victim_retry_count = (2 * un->un_retry_count); 8296 8297 /* 8298 * Set the reservation release timeout to the default value of 8299 * 5 seconds. This can be overridden by entries in ssd.conf or the 8300 * device config table. 8301 */ 8302 un->un_reserve_release_time = 5; 8303 8304 /* 8305 * Set up the default maximum transfer size. Note that this may 8306 * get updated later in the attach, when setting up default wide 8307 * operations for disks. 8308 */ 8309 #if defined(__i386) || defined(__amd64) 8310 un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE; 8311 #else 8312 un->un_max_xfer_size = (uint_t)maxphys; 8313 #endif 8314 8315 /* 8316 * Get "allow bus device reset" property (defaults to "enabled" if 8317 * the property was not defined). This is to disable bus resets for 8318 * certain kinds of error recovery. Note: In the future when a run-time 8319 * fibre check is available the soft state flag should default to 8320 * enabled. 8321 */ 8322 if (un->un_f_is_fibre == TRUE) { 8323 un->un_f_allow_bus_device_reset = TRUE; 8324 } else { 8325 if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 8326 "allow-bus-device-reset", 1) != 0) { 8327 un->un_f_allow_bus_device_reset = TRUE; 8328 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8329 "sd_unit_attach: un:0x%p Bus device reset enabled\n", 8330 un); 8331 } else { 8332 un->un_f_allow_bus_device_reset = FALSE; 8333 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8334 "sd_unit_attach: un:0x%p Bus device reset disabled\n", 8335 un); 8336 } 8337 } 8338 8339 /* 8340 * Check if this is an ATAPI device. ATAPI devices use Group 1 8341 * Read/Write commands and Group 2 Mode Sense/Select commands. 8342 * 8343 * Note: The "obsolete" way of doing this is to check for the "atapi" 8344 * property. The new "variant" property with a value of "atapi" has been 8345 * introduced so that future 'variants' of standard SCSI behavior (like 8346 * atapi) could be specified by the underlying HBA drivers by supplying 8347 * a new value for the "variant" property, instead of having to define a 8348 * new property. 8349 */ 8350 if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) { 8351 un->un_f_cfg_is_atapi = TRUE; 8352 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8353 "sd_unit_attach: un:0x%p Atapi device\n", un); 8354 } 8355 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant", 8356 &variantp) == DDI_PROP_SUCCESS) { 8357 if (strcmp(variantp, "atapi") == 0) { 8358 un->un_f_cfg_is_atapi = TRUE; 8359 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8360 "sd_unit_attach: un:0x%p Atapi device\n", un); 8361 } 8362 ddi_prop_free(variantp); 8363 } 8364 8365 un->un_cmd_timeout = SD_IO_TIME; 8366 8367 /* Info on current states, statuses, etc. (Updated frequently) */ 8368 un->un_state = SD_STATE_NORMAL; 8369 un->un_last_state = SD_STATE_NORMAL; 8370 8371 /* Control & status info for command throttling */ 8372 un->un_throttle = sd_max_throttle; 8373 un->un_saved_throttle = sd_max_throttle; 8374 un->un_min_throttle = sd_min_throttle; 8375 8376 if (un->un_f_is_fibre == TRUE) { 8377 un->un_f_use_adaptive_throttle = TRUE; 8378 } else { 8379 un->un_f_use_adaptive_throttle = FALSE; 8380 } 8381 8382 /* Removable media support. */ 8383 cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL); 8384 un->un_mediastate = DKIO_NONE; 8385 un->un_specified_mediastate = DKIO_NONE; 8386 8387 /* CVs for suspend/resume (PM or DR) */ 8388 cv_init(&un->un_suspend_cv, NULL, CV_DRIVER, NULL); 8389 cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL); 8390 8391 /* Power management support. */ 8392 un->un_power_level = SD_SPINDLE_UNINIT; 8393 8394 cv_init(&un->un_wcc_cv, NULL, CV_DRIVER, NULL); 8395 un->un_f_wcc_inprog = 0; 8396 8397 /* 8398 * The open/close semaphore is used to serialize threads executing 8399 * in the driver's open & close entry point routines for a given 8400 * instance. 8401 */ 8402 (void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL); 8403 8404 /* 8405 * The conf file entry and softstate variable is a forceful override, 8406 * meaning a non-zero value must be entered to change the default. 8407 */ 8408 un->un_f_disksort_disabled = FALSE; 8409 8410 /* 8411 * Retrieve the properties from the static driver table or the driver 8412 * configuration file (.conf) for this unit and update the soft state 8413 * for the device as needed for the indicated properties. 8414 * Note: the property configuration needs to occur here as some of the 8415 * following routines may have dependancies on soft state flags set 8416 * as part of the driver property configuration. 8417 */ 8418 sd_read_unit_properties(un); 8419 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8420 "sd_unit_attach: un:0x%p property configuration complete.\n", un); 8421 8422 /* 8423 * Only if a device has "hotpluggable" property, it is 8424 * treated as hotpluggable device. Otherwise, it is 8425 * regarded as non-hotpluggable one. 8426 */ 8427 if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable", 8428 -1) != -1) { 8429 un->un_f_is_hotpluggable = TRUE; 8430 } 8431 8432 /* 8433 * set unit's attributes(flags) according to "hotpluggable" and 8434 * RMB bit in INQUIRY data. 8435 */ 8436 sd_set_unit_attributes(un, devi); 8437 8438 /* 8439 * By default, we mark the capacity, lbasize, and geometry 8440 * as invalid. Only if we successfully read a valid capacity 8441 * will we update the un_blockcount and un_tgt_blocksize with the 8442 * valid values (the geometry will be validated later). 8443 */ 8444 un->un_f_blockcount_is_valid = FALSE; 8445 un->un_f_tgt_blocksize_is_valid = FALSE; 8446 un->un_f_geometry_is_valid = FALSE; 8447 8448 /* 8449 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine 8450 * otherwise. 8451 */ 8452 un->un_tgt_blocksize = un->un_sys_blocksize = DEV_BSIZE; 8453 un->un_blockcount = 0; 8454 8455 /* 8456 * Set up the per-instance info needed to determine the correct 8457 * CDBs and other info for issuing commands to the target. 8458 */ 8459 sd_init_cdb_limits(un); 8460 8461 /* 8462 * Set up the IO chains to use, based upon the target type. 8463 */ 8464 if (un->un_f_non_devbsize_supported) { 8465 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA; 8466 } else { 8467 un->un_buf_chain_type = SD_CHAIN_INFO_DISK; 8468 } 8469 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD; 8470 un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD; 8471 un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD; 8472 8473 un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf), 8474 sd_xbuf_strategy, un, sd_xbuf_active_limit, sd_xbuf_reserve_limit, 8475 ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER); 8476 ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi); 8477 8478 8479 if (ISCD(un)) { 8480 un->un_additional_codes = sd_additional_codes; 8481 } else { 8482 un->un_additional_codes = NULL; 8483 } 8484 8485 /* 8486 * Create the kstats here so they can be available for attach-time 8487 * routines that send commands to the unit (either polled or via 8488 * sd_send_scsi_cmd). 8489 * 8490 * Note: This is a critical sequence that needs to be maintained: 8491 * 1) Instantiate the kstats here, before any routines using the 8492 * iopath (i.e. sd_send_scsi_cmd). 8493 * 2) Instantiate and initialize the partition stats 8494 * (sd_set_pstats) in sd_use_efi() and sd_validate_geometry(), 8495 * see detailed comments there. 8496 * 3) Initialize the error stats (sd_set_errstats), following 8497 * sd_validate_geometry(),sd_register_devid(), 8498 * and sd_cache_control(). 8499 */ 8500 8501 un->un_stats = kstat_create(sd_label, instance, 8502 NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT); 8503 if (un->un_stats != NULL) { 8504 un->un_stats->ks_lock = SD_MUTEX(un); 8505 kstat_install(un->un_stats); 8506 } 8507 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8508 "sd_unit_attach: un:0x%p un_stats created\n", un); 8509 8510 sd_create_errstats(un, instance); 8511 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8512 "sd_unit_attach: un:0x%p errstats created\n", un); 8513 8514 /* 8515 * The following if/else code was relocated here from below as part 8516 * of the fix for bug (4430280). However with the default setup added 8517 * on entry to this routine, it's no longer absolutely necessary for 8518 * this to be before the call to sd_spin_up_unit. 8519 */ 8520 if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) { 8521 /* 8522 * If SCSI-2 tagged queueing is supported by the target 8523 * and by the host adapter then we will enable it. 8524 */ 8525 un->un_tagflags = 0; 8526 if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && 8527 (devp->sd_inq->inq_cmdque) && 8528 (un->un_f_arq_enabled == TRUE)) { 8529 if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 8530 1, 1) == 1) { 8531 un->un_tagflags = FLAG_STAG; 8532 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8533 "sd_unit_attach: un:0x%p tag queueing " 8534 "enabled\n", un); 8535 } else if (scsi_ifgetcap(SD_ADDRESS(un), 8536 "untagged-qing", 0) == 1) { 8537 un->un_f_opt_queueing = TRUE; 8538 un->un_saved_throttle = un->un_throttle = 8539 min(un->un_throttle, 3); 8540 } else { 8541 un->un_f_opt_queueing = FALSE; 8542 un->un_saved_throttle = un->un_throttle = 1; 8543 } 8544 } else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0) 8545 == 1) && (un->un_f_arq_enabled == TRUE)) { 8546 /* The Host Adapter supports internal queueing. */ 8547 un->un_f_opt_queueing = TRUE; 8548 un->un_saved_throttle = un->un_throttle = 8549 min(un->un_throttle, 3); 8550 } else { 8551 un->un_f_opt_queueing = FALSE; 8552 un->un_saved_throttle = un->un_throttle = 1; 8553 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8554 "sd_unit_attach: un:0x%p no tag queueing\n", un); 8555 } 8556 8557 /* 8558 * Enable large transfers for SATA/SAS drives 8559 */ 8560 if (SD_IS_SERIAL(un)) { 8561 un->un_max_xfer_size = 8562 ddi_getprop(DDI_DEV_T_ANY, devi, 0, 8563 sd_max_xfer_size, SD_MAX_XFER_SIZE); 8564 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8565 "sd_unit_attach: un:0x%p max transfer " 8566 "size=0x%x\n", un, un->un_max_xfer_size); 8567 8568 } 8569 8570 /* Setup or tear down default wide operations for disks */ 8571 8572 /* 8573 * Note: Legacy: it may be possible for both "sd_max_xfer_size" 8574 * and "ssd_max_xfer_size" to exist simultaneously on the same 8575 * system and be set to different values. In the future this 8576 * code may need to be updated when the ssd module is 8577 * obsoleted and removed from the system. (4299588) 8578 */ 8579 if (SD_IS_PARALLEL_SCSI(un) && 8580 (devp->sd_inq->inq_rdf == RDF_SCSI2) && 8581 (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) { 8582 if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 8583 1, 1) == 1) { 8584 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8585 "sd_unit_attach: un:0x%p Wide Transfer " 8586 "enabled\n", un); 8587 } 8588 8589 /* 8590 * If tagged queuing has also been enabled, then 8591 * enable large xfers 8592 */ 8593 if (un->un_saved_throttle == sd_max_throttle) { 8594 un->un_max_xfer_size = 8595 ddi_getprop(DDI_DEV_T_ANY, devi, 0, 8596 sd_max_xfer_size, SD_MAX_XFER_SIZE); 8597 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8598 "sd_unit_attach: un:0x%p max transfer " 8599 "size=0x%x\n", un, un->un_max_xfer_size); 8600 } 8601 } else { 8602 if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 8603 0, 1) == 1) { 8604 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8605 "sd_unit_attach: un:0x%p " 8606 "Wide Transfer disabled\n", un); 8607 } 8608 } 8609 } else { 8610 un->un_tagflags = FLAG_STAG; 8611 un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY, 8612 devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE); 8613 } 8614 8615 /* 8616 * If this target supports LUN reset, try to enable it. 8617 */ 8618 if (un->un_f_lun_reset_enabled) { 8619 if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) { 8620 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: " 8621 "un:0x%p lun_reset capability set\n", un); 8622 } else { 8623 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: " 8624 "un:0x%p lun-reset capability not set\n", un); 8625 } 8626 } 8627 8628 /* 8629 * At this point in the attach, we have enough info in the 8630 * soft state to be able to issue commands to the target. 8631 * 8632 * All command paths used below MUST issue their commands as 8633 * SD_PATH_DIRECT. This is important as intermediate layers 8634 * are not all initialized yet (such as PM). 8635 */ 8636 8637 /* 8638 * Send a TEST UNIT READY command to the device. This should clear 8639 * any outstanding UNIT ATTENTION that may be present. 8640 * 8641 * Note: Don't check for success, just track if there is a reservation, 8642 * this is a throw away command to clear any unit attentions. 8643 * 8644 * Note: This MUST be the first command issued to the target during 8645 * attach to ensure power on UNIT ATTENTIONS are cleared. 8646 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated 8647 * with attempts at spinning up a device with no media. 8648 */ 8649 if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) { 8650 reservation_flag = SD_TARGET_IS_RESERVED; 8651 } 8652 8653 /* 8654 * If the device is NOT a removable media device, attempt to spin 8655 * it up (using the START_STOP_UNIT command) and read its capacity 8656 * (using the READ CAPACITY command). Note, however, that either 8657 * of these could fail and in some cases we would continue with 8658 * the attach despite the failure (see below). 8659 */ 8660 if (un->un_f_descr_format_supported) { 8661 switch (sd_spin_up_unit(un)) { 8662 case 0: 8663 /* 8664 * Spin-up was successful; now try to read the 8665 * capacity. If successful then save the results 8666 * and mark the capacity & lbasize as valid. 8667 */ 8668 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8669 "sd_unit_attach: un:0x%p spin-up successful\n", un); 8670 8671 switch (sd_send_scsi_READ_CAPACITY(un, &capacity, 8672 &lbasize, SD_PATH_DIRECT)) { 8673 case 0: { 8674 if (capacity > DK_MAX_BLOCKS) { 8675 #ifdef _LP64 8676 if (capacity + 1 > 8677 SD_GROUP1_MAX_ADDRESS) { 8678 /* 8679 * Enable descriptor format 8680 * sense data so that we can 8681 * get 64 bit sense data 8682 * fields. 8683 */ 8684 sd_enable_descr_sense(un); 8685 } 8686 #else 8687 /* 32-bit kernels can't handle this */ 8688 scsi_log(SD_DEVINFO(un), 8689 sd_label, CE_WARN, 8690 "disk has %llu blocks, which " 8691 "is too large for a 32-bit " 8692 "kernel", capacity); 8693 8694 #if defined(__i386) || defined(__amd64) 8695 /* 8696 * Refer to comments related to off-by-1 8697 * at the header of this file. 8698 * 1TB disk was treated as (1T - 512)B 8699 * in the past, so that it might has 8700 * valid VTOC and solaris partitions, 8701 * we have to allow it to continue to 8702 * work. 8703 */ 8704 if (capacity -1 > DK_MAX_BLOCKS) 8705 #endif 8706 goto spinup_failed; 8707 #endif 8708 } 8709 8710 /* 8711 * Here it's not necessary to check the case: 8712 * the capacity of the device is bigger than 8713 * what the max hba cdb can support. Because 8714 * sd_send_scsi_READ_CAPACITY will retrieve 8715 * the capacity by sending USCSI command, which 8716 * is constrained by the max hba cdb. Actually, 8717 * sd_send_scsi_READ_CAPACITY will return 8718 * EINVAL when using bigger cdb than required 8719 * cdb length. Will handle this case in 8720 * "case EINVAL". 8721 */ 8722 8723 /* 8724 * The following relies on 8725 * sd_send_scsi_READ_CAPACITY never 8726 * returning 0 for capacity and/or lbasize. 8727 */ 8728 sd_update_block_info(un, lbasize, capacity); 8729 8730 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8731 "sd_unit_attach: un:0x%p capacity = %ld " 8732 "blocks; lbasize= %ld.\n", un, 8733 un->un_blockcount, un->un_tgt_blocksize); 8734 8735 break; 8736 } 8737 case EINVAL: 8738 /* 8739 * In the case where the max-cdb-length property 8740 * is smaller than the required CDB length for 8741 * a SCSI device, a target driver can fail to 8742 * attach to that device. 8743 */ 8744 scsi_log(SD_DEVINFO(un), 8745 sd_label, CE_WARN, 8746 "disk capacity is too large " 8747 "for current cdb length"); 8748 goto spinup_failed; 8749 case EACCES: 8750 /* 8751 * Should never get here if the spin-up 8752 * succeeded, but code it in anyway. 8753 * From here, just continue with the attach... 8754 */ 8755 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8756 "sd_unit_attach: un:0x%p " 8757 "sd_send_scsi_READ_CAPACITY " 8758 "returned reservation conflict\n", un); 8759 reservation_flag = SD_TARGET_IS_RESERVED; 8760 break; 8761 default: 8762 /* 8763 * Likewise, should never get here if the 8764 * spin-up succeeded. Just continue with 8765 * the attach... 8766 */ 8767 break; 8768 } 8769 break; 8770 case EACCES: 8771 /* 8772 * Device is reserved by another host. In this case 8773 * we could not spin it up or read the capacity, but 8774 * we continue with the attach anyway. 8775 */ 8776 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8777 "sd_unit_attach: un:0x%p spin-up reservation " 8778 "conflict.\n", un); 8779 reservation_flag = SD_TARGET_IS_RESERVED; 8780 break; 8781 default: 8782 /* Fail the attach if the spin-up failed. */ 8783 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8784 "sd_unit_attach: un:0x%p spin-up failed.", un); 8785 goto spinup_failed; 8786 } 8787 } 8788 8789 /* 8790 * Check to see if this is a MMC drive 8791 */ 8792 if (ISCD(un)) { 8793 sd_set_mmc_caps(un); 8794 } 8795 8796 /* 8797 * Create the minor nodes for the device. 8798 * Note: If we want to support fdisk on both sparc and intel, this will 8799 * have to separate out the notion that VTOC8 is always sparc, and 8800 * VTOC16 is always intel (tho these can be the defaults). The vtoc 8801 * type will have to be determined at run-time, and the fdisk 8802 * partitioning will have to have been read & set up before we 8803 * create the minor nodes. (any other inits (such as kstats) that 8804 * also ought to be done before creating the minor nodes?) (Doesn't 8805 * setting up the minor nodes kind of imply that we're ready to 8806 * handle an open from userland?) 8807 */ 8808 if (sd_create_minor_nodes(un, devi) != DDI_SUCCESS) { 8809 goto create_minor_nodes_failed; 8810 } 8811 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8812 "sd_unit_attach: un:0x%p minor nodes created\n", un); 8813 8814 /* 8815 * Add a zero-length attribute to tell the world we support 8816 * kernel ioctls (for layered drivers) 8817 */ 8818 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP, 8819 DDI_KERNEL_IOCTL, NULL, 0); 8820 8821 /* 8822 * Add a boolean property to tell the world we support 8823 * the B_FAILFAST flag (for layered drivers) 8824 */ 8825 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP, 8826 "ddi-failfast-supported", NULL, 0); 8827 8828 /* 8829 * Initialize power management 8830 */ 8831 mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL); 8832 cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL); 8833 sd_setup_pm(un, devi); 8834 if (un->un_f_pm_is_enabled == FALSE) { 8835 /* 8836 * For performance, point to a jump table that does 8837 * not include pm. 8838 * The direct and priority chains don't change with PM. 8839 * 8840 * Note: this is currently done based on individual device 8841 * capabilities. When an interface for determining system 8842 * power enabled state becomes available, or when additional 8843 * layers are added to the command chain, these values will 8844 * have to be re-evaluated for correctness. 8845 */ 8846 if (un->un_f_non_devbsize_supported) { 8847 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM; 8848 } else { 8849 un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM; 8850 } 8851 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM; 8852 } 8853 8854 /* 8855 * This property is set to 0 by HA software to avoid retries 8856 * on a reserved disk. (The preferred property name is 8857 * "retry-on-reservation-conflict") (1189689) 8858 * 8859 * Note: The use of a global here can have unintended consequences. A 8860 * per instance variable is preferrable to match the capabilities of 8861 * different underlying hba's (4402600) 8862 */ 8863 sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi, 8864 DDI_PROP_DONTPASS, "retry-on-reservation-conflict", 8865 sd_retry_on_reservation_conflict); 8866 if (sd_retry_on_reservation_conflict != 0) { 8867 sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, 8868 devi, DDI_PROP_DONTPASS, sd_resv_conflict_name, 8869 sd_retry_on_reservation_conflict); 8870 } 8871 8872 /* Set up options for QFULL handling. */ 8873 if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0, 8874 "qfull-retries", -1)) != -1) { 8875 (void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries", 8876 rval, 1); 8877 } 8878 if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0, 8879 "qfull-retry-interval", -1)) != -1) { 8880 (void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval", 8881 rval, 1); 8882 } 8883 8884 /* 8885 * This just prints a message that announces the existence of the 8886 * device. The message is always printed in the system logfile, but 8887 * only appears on the console if the system is booted with the 8888 * -v (verbose) argument. 8889 */ 8890 ddi_report_dev(devi); 8891 8892 /* 8893 * The framework calls driver attach routines single-threaded 8894 * for a given instance. However we still acquire SD_MUTEX here 8895 * because this required for calling the sd_validate_geometry() 8896 * and sd_register_devid() functions. 8897 */ 8898 mutex_enter(SD_MUTEX(un)); 8899 un->un_f_geometry_is_valid = FALSE; 8900 un->un_mediastate = DKIO_NONE; 8901 un->un_reserved = -1; 8902 8903 /* 8904 * Read and validate the device's geometry (ie, disk label) 8905 * A new unformatted drive will not have a valid geometry, but 8906 * the driver needs to successfully attach to this device so 8907 * the drive can be formatted via ioctls. 8908 */ 8909 if (((sd_validate_geometry(un, SD_PATH_DIRECT) == 8910 ENOTSUP)) && 8911 (un->un_blockcount < DK_MAX_BLOCKS)) { 8912 /* 8913 * We found a small disk with an EFI label on it; 8914 * we need to fix up the minor nodes accordingly. 8915 */ 8916 ddi_remove_minor_node(devi, "h"); 8917 ddi_remove_minor_node(devi, "h,raw"); 8918 (void) ddi_create_minor_node(devi, "wd", 8919 S_IFBLK, 8920 (instance << SDUNIT_SHIFT) | WD_NODE, 8921 un->un_node_type, NULL); 8922 (void) ddi_create_minor_node(devi, "wd,raw", 8923 S_IFCHR, 8924 (instance << SDUNIT_SHIFT) | WD_NODE, 8925 un->un_node_type, NULL); 8926 } 8927 #if defined(__i386) || defined(__amd64) 8928 else if (un->un_f_capacity_adjusted == 1) { 8929 /* 8930 * Refer to comments related to off-by-1 at the 8931 * header of this file. 8932 * Adjust minor node for 1TB disk. 8933 */ 8934 ddi_remove_minor_node(devi, "wd"); 8935 ddi_remove_minor_node(devi, "wd,raw"); 8936 (void) ddi_create_minor_node(devi, "h", 8937 S_IFBLK, 8938 (instance << SDUNIT_SHIFT) | WD_NODE, 8939 un->un_node_type, NULL); 8940 (void) ddi_create_minor_node(devi, "h,raw", 8941 S_IFCHR, 8942 (instance << SDUNIT_SHIFT) | WD_NODE, 8943 un->un_node_type, NULL); 8944 } 8945 #endif 8946 /* 8947 * Read and initialize the devid for the unit. 8948 */ 8949 ASSERT(un->un_errstats != NULL); 8950 if (un->un_f_devid_supported) { 8951 sd_register_devid(un, devi, reservation_flag); 8952 } 8953 mutex_exit(SD_MUTEX(un)); 8954 8955 #if (defined(__fibre)) 8956 /* 8957 * Register callbacks for fibre only. You can't do this soley 8958 * on the basis of the devid_type because this is hba specific. 8959 * We need to query our hba capabilities to find out whether to 8960 * register or not. 8961 */ 8962 if (un->un_f_is_fibre) { 8963 if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) { 8964 sd_init_event_callbacks(un); 8965 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8966 "sd_unit_attach: un:0x%p event callbacks inserted", un); 8967 } 8968 } 8969 #endif 8970 8971 if (un->un_f_opt_disable_cache == TRUE) { 8972 /* 8973 * Disable both read cache and write cache. This is 8974 * the historic behavior of the keywords in the config file. 8975 */ 8976 if (sd_cache_control(un, SD_CACHE_DISABLE, SD_CACHE_DISABLE) != 8977 0) { 8978 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8979 "sd_unit_attach: un:0x%p Could not disable " 8980 "caching", un); 8981 goto devid_failed; 8982 } 8983 } 8984 8985 /* 8986 * Check the value of the WCE bit now and 8987 * set un_f_write_cache_enabled accordingly. 8988 */ 8989 (void) sd_get_write_cache_enabled(un, &wc_enabled); 8990 mutex_enter(SD_MUTEX(un)); 8991 un->un_f_write_cache_enabled = (wc_enabled != 0); 8992 mutex_exit(SD_MUTEX(un)); 8993 8994 /* 8995 * Set the pstat and error stat values here, so data obtained during the 8996 * previous attach-time routines is available. 8997 * 8998 * Note: This is a critical sequence that needs to be maintained: 8999 * 1) Instantiate the kstats before any routines using the iopath 9000 * (i.e. sd_send_scsi_cmd). 9001 * 2) Instantiate and initialize the partition stats 9002 * (sd_set_pstats) in sd_use_efi() and sd_validate_geometry(), 9003 * see detailed comments there. 9004 * 3) Initialize the error stats (sd_set_errstats), following 9005 * sd_validate_geometry(),sd_register_devid(), 9006 * and sd_cache_control(). 9007 */ 9008 sd_set_errstats(un); 9009 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 9010 "sd_unit_attach: un:0x%p errstats set\n", un); 9011 9012 /* 9013 * Find out what type of reservation this disk supports. 9014 */ 9015 switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) { 9016 case 0: 9017 /* 9018 * SCSI-3 reservations are supported. 9019 */ 9020 un->un_reservation_type = SD_SCSI3_RESERVATION; 9021 SD_INFO(SD_LOG_ATTACH_DETACH, un, 9022 "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un); 9023 break; 9024 case ENOTSUP: 9025 /* 9026 * The PERSISTENT RESERVE IN command would not be recognized by 9027 * a SCSI-2 device, so assume the reservation type is SCSI-2. 9028 */ 9029 SD_INFO(SD_LOG_ATTACH_DETACH, un, 9030 "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un); 9031 un->un_reservation_type = SD_SCSI2_RESERVATION; 9032 break; 9033 default: 9034 /* 9035 * default to SCSI-3 reservations 9036 */ 9037 SD_INFO(SD_LOG_ATTACH_DETACH, un, 9038 "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un); 9039 un->un_reservation_type = SD_SCSI3_RESERVATION; 9040 break; 9041 } 9042 9043 /* 9044 * After successfully attaching an instance, we record the information 9045 * of how many luns have been attached on the relative target and 9046 * controller for parallel SCSI. This information is used when sd tries 9047 * to set the tagged queuing capability in HBA. 9048 */ 9049 if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) { 9050 sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH); 9051 } 9052 9053 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 9054 "sd_unit_attach: un:0x%p exit success\n", un); 9055 9056 return (DDI_SUCCESS); 9057 9058 /* 9059 * An error occurred during the attach; clean up & return failure. 9060 */ 9061 9062 devid_failed: 9063 9064 setup_pm_failed: 9065 ddi_remove_minor_node(devi, NULL); 9066 9067 create_minor_nodes_failed: 9068 /* 9069 * Cleanup from the scsi_ifsetcap() calls (437868) 9070 */ 9071 (void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1); 9072 (void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1); 9073 9074 /* 9075 * Refer to the comments of setting tagged-qing in the beginning of 9076 * sd_unit_attach. We can only disable tagged queuing when there is 9077 * no lun attached on the target. 9078 */ 9079 if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) { 9080 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 9081 } 9082 9083 if (un->un_f_is_fibre == FALSE) { 9084 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1); 9085 } 9086 9087 spinup_failed: 9088 9089 mutex_enter(SD_MUTEX(un)); 9090 9091 /* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */ 9092 if (un->un_direct_priority_timeid != NULL) { 9093 timeout_id_t temp_id = un->un_direct_priority_timeid; 9094 un->un_direct_priority_timeid = NULL; 9095 mutex_exit(SD_MUTEX(un)); 9096 (void) untimeout(temp_id); 9097 mutex_enter(SD_MUTEX(un)); 9098 } 9099 9100 /* Cancel any pending start/stop timeouts */ 9101 if (un->un_startstop_timeid != NULL) { 9102 timeout_id_t temp_id = un->un_startstop_timeid; 9103 un->un_startstop_timeid = NULL; 9104 mutex_exit(SD_MUTEX(un)); 9105 (void) untimeout(temp_id); 9106 mutex_enter(SD_MUTEX(un)); 9107 } 9108 9109 /* Cancel any pending reset-throttle timeouts */ 9110 if (un->un_reset_throttle_timeid != NULL) { 9111 timeout_id_t temp_id = un->un_reset_throttle_timeid; 9112 un->un_reset_throttle_timeid = NULL; 9113 mutex_exit(SD_MUTEX(un)); 9114 (void) untimeout(temp_id); 9115 mutex_enter(SD_MUTEX(un)); 9116 } 9117 9118 /* Cancel any pending retry timeouts */ 9119 if (un->un_retry_timeid != NULL) { 9120 timeout_id_t temp_id = un->un_retry_timeid; 9121 un->un_retry_timeid = NULL; 9122 mutex_exit(SD_MUTEX(un)); 9123 (void) untimeout(temp_id); 9124 mutex_enter(SD_MUTEX(un)); 9125 } 9126 9127 /* Cancel any pending delayed cv broadcast timeouts */ 9128 if (un->un_dcvb_timeid != NULL) { 9129 timeout_id_t temp_id = un->un_dcvb_timeid; 9130 un->un_dcvb_timeid = NULL; 9131 mutex_exit(SD_MUTEX(un)); 9132 (void) untimeout(temp_id); 9133 mutex_enter(SD_MUTEX(un)); 9134 } 9135 9136 mutex_exit(SD_MUTEX(un)); 9137 9138 /* There should not be any in-progress I/O so ASSERT this check */ 9139 ASSERT(un->un_ncmds_in_transport == 0); 9140 ASSERT(un->un_ncmds_in_driver == 0); 9141 9142 /* Do not free the softstate if the callback routine is active */ 9143 sd_sync_with_callback(un); 9144 9145 /* 9146 * Partition stats apparently are not used with removables. These would 9147 * not have been created during attach, so no need to clean them up... 9148 */ 9149 if (un->un_stats != NULL) { 9150 kstat_delete(un->un_stats); 9151 un->un_stats = NULL; 9152 } 9153 if (un->un_errstats != NULL) { 9154 kstat_delete(un->un_errstats); 9155 un->un_errstats = NULL; 9156 } 9157 9158 ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi); 9159 ddi_xbuf_attr_destroy(un->un_xbuf_attr); 9160 9161 ddi_prop_remove_all(devi); 9162 sema_destroy(&un->un_semoclose); 9163 cv_destroy(&un->un_state_cv); 9164 9165 getrbuf_failed: 9166 9167 sd_free_rqs(un); 9168 9169 alloc_rqs_failed: 9170 9171 devp->sd_private = NULL; 9172 bzero(un, sizeof (struct sd_lun)); /* Clear any stale data! */ 9173 9174 get_softstate_failed: 9175 /* 9176 * Note: the man pages are unclear as to whether or not doing a 9177 * ddi_soft_state_free(sd_state, instance) is the right way to 9178 * clean up after the ddi_soft_state_zalloc() if the subsequent 9179 * ddi_get_soft_state() fails. The implication seems to be 9180 * that the get_soft_state cannot fail if the zalloc succeeds. 9181 */ 9182 ddi_soft_state_free(sd_state, instance); 9183 9184 probe_failed: 9185 scsi_unprobe(devp); 9186 #ifdef SDDEBUG 9187 if ((sd_component_mask & SD_LOG_ATTACH_DETACH) && 9188 (sd_level_mask & SD_LOGMASK_TRACE)) { 9189 cmn_err(CE_CONT, "sd_unit_attach: un:0x%p exit failure\n", 9190 (void *)un); 9191 } 9192 #endif 9193 return (DDI_FAILURE); 9194 } 9195 9196 9197 /* 9198 * Function: sd_unit_detach 9199 * 9200 * Description: Performs DDI_DETACH processing for sddetach(). 9201 * 9202 * Return Code: DDI_SUCCESS 9203 * DDI_FAILURE 9204 * 9205 * Context: Kernel thread context 9206 */ 9207 9208 static int 9209 sd_unit_detach(dev_info_t *devi) 9210 { 9211 struct scsi_device *devp; 9212 struct sd_lun *un; 9213 int i; 9214 int tgt; 9215 dev_t dev; 9216 dev_info_t *pdip = ddi_get_parent(devi); 9217 int instance = ddi_get_instance(devi); 9218 9219 mutex_enter(&sd_detach_mutex); 9220 9221 /* 9222 * Fail the detach for any of the following: 9223 * - Unable to get the sd_lun struct for the instance 9224 * - A layered driver has an outstanding open on the instance 9225 * - Another thread is already detaching this instance 9226 * - Another thread is currently performing an open 9227 */ 9228 devp = ddi_get_driver_private(devi); 9229 if ((devp == NULL) || 9230 ((un = (struct sd_lun *)devp->sd_private) == NULL) || 9231 (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) || 9232 (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) { 9233 mutex_exit(&sd_detach_mutex); 9234 return (DDI_FAILURE); 9235 } 9236 9237 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un); 9238 9239 /* 9240 * Mark this instance as currently in a detach, to inhibit any 9241 * opens from a layered driver. 9242 */ 9243 un->un_detach_count++; 9244 mutex_exit(&sd_detach_mutex); 9245 9246 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 9247 SCSI_ADDR_PROP_TARGET, -1); 9248 9249 dev = sd_make_device(SD_DEVINFO(un)); 9250 9251 #ifndef lint 9252 _NOTE(COMPETING_THREADS_NOW); 9253 #endif 9254 9255 mutex_enter(SD_MUTEX(un)); 9256 9257 /* 9258 * Fail the detach if there are any outstanding layered 9259 * opens on this device. 9260 */ 9261 for (i = 0; i < NDKMAP; i++) { 9262 if (un->un_ocmap.lyropen[i] != 0) { 9263 goto err_notclosed; 9264 } 9265 } 9266 9267 /* 9268 * Verify there are NO outstanding commands issued to this device. 9269 * ie, un_ncmds_in_transport == 0. 9270 * It's possible to have outstanding commands through the physio 9271 * code path, even though everything's closed. 9272 */ 9273 if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) || 9274 (un->un_direct_priority_timeid != NULL) || 9275 (un->un_state == SD_STATE_RWAIT)) { 9276 mutex_exit(SD_MUTEX(un)); 9277 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 9278 "sd_dr_detach: Detach failure due to outstanding cmds\n"); 9279 goto err_stillbusy; 9280 } 9281 9282 /* 9283 * If we have the device reserved, release the reservation. 9284 */ 9285 if ((un->un_resvd_status & SD_RESERVE) && 9286 !(un->un_resvd_status & SD_LOST_RESERVE)) { 9287 mutex_exit(SD_MUTEX(un)); 9288 /* 9289 * Note: sd_reserve_release sends a command to the device 9290 * via the sd_ioctlcmd() path, and can sleep. 9291 */ 9292 if (sd_reserve_release(dev, SD_RELEASE) != 0) { 9293 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 9294 "sd_dr_detach: Cannot release reservation \n"); 9295 } 9296 } else { 9297 mutex_exit(SD_MUTEX(un)); 9298 } 9299 9300 /* 9301 * Untimeout any reserve recover, throttle reset, restart unit 9302 * and delayed broadcast timeout threads. Protect the timeout pointer 9303 * from getting nulled by their callback functions. 9304 */ 9305 mutex_enter(SD_MUTEX(un)); 9306 if (un->un_resvd_timeid != NULL) { 9307 timeout_id_t temp_id = un->un_resvd_timeid; 9308 un->un_resvd_timeid = NULL; 9309 mutex_exit(SD_MUTEX(un)); 9310 (void) untimeout(temp_id); 9311 mutex_enter(SD_MUTEX(un)); 9312 } 9313 9314 if (un->un_reset_throttle_timeid != NULL) { 9315 timeout_id_t temp_id = un->un_reset_throttle_timeid; 9316 un->un_reset_throttle_timeid = NULL; 9317 mutex_exit(SD_MUTEX(un)); 9318 (void) untimeout(temp_id); 9319 mutex_enter(SD_MUTEX(un)); 9320 } 9321 9322 if (un->un_startstop_timeid != NULL) { 9323 timeout_id_t temp_id = un->un_startstop_timeid; 9324 un->un_startstop_timeid = NULL; 9325 mutex_exit(SD_MUTEX(un)); 9326 (void) untimeout(temp_id); 9327 mutex_enter(SD_MUTEX(un)); 9328 } 9329 9330 if (un->un_dcvb_timeid != NULL) { 9331 timeout_id_t temp_id = un->un_dcvb_timeid; 9332 un->un_dcvb_timeid = NULL; 9333 mutex_exit(SD_MUTEX(un)); 9334 (void) untimeout(temp_id); 9335 } else { 9336 mutex_exit(SD_MUTEX(un)); 9337 } 9338 9339 /* Remove any pending reservation reclaim requests for this device */ 9340 sd_rmv_resv_reclaim_req(dev); 9341 9342 mutex_enter(SD_MUTEX(un)); 9343 9344 /* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */ 9345 if (un->un_direct_priority_timeid != NULL) { 9346 timeout_id_t temp_id = un->un_direct_priority_timeid; 9347 un->un_direct_priority_timeid = NULL; 9348 mutex_exit(SD_MUTEX(un)); 9349 (void) untimeout(temp_id); 9350 mutex_enter(SD_MUTEX(un)); 9351 } 9352 9353 /* Cancel any active multi-host disk watch thread requests */ 9354 if (un->un_mhd_token != NULL) { 9355 mutex_exit(SD_MUTEX(un)); 9356 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token)); 9357 if (scsi_watch_request_terminate(un->un_mhd_token, 9358 SCSI_WATCH_TERMINATE_NOWAIT)) { 9359 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 9360 "sd_dr_detach: Cannot cancel mhd watch request\n"); 9361 /* 9362 * Note: We are returning here after having removed 9363 * some driver timeouts above. This is consistent with 9364 * the legacy implementation but perhaps the watch 9365 * terminate call should be made with the wait flag set. 9366 */ 9367 goto err_stillbusy; 9368 } 9369 mutex_enter(SD_MUTEX(un)); 9370 un->un_mhd_token = NULL; 9371 } 9372 9373 if (un->un_swr_token != NULL) { 9374 mutex_exit(SD_MUTEX(un)); 9375 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token)); 9376 if (scsi_watch_request_terminate(un->un_swr_token, 9377 SCSI_WATCH_TERMINATE_NOWAIT)) { 9378 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 9379 "sd_dr_detach: Cannot cancel swr watch request\n"); 9380 /* 9381 * Note: We are returning here after having removed 9382 * some driver timeouts above. This is consistent with 9383 * the legacy implementation but perhaps the watch 9384 * terminate call should be made with the wait flag set. 9385 */ 9386 goto err_stillbusy; 9387 } 9388 mutex_enter(SD_MUTEX(un)); 9389 un->un_swr_token = NULL; 9390 } 9391 9392 mutex_exit(SD_MUTEX(un)); 9393 9394 /* 9395 * Clear any scsi_reset_notifies. We clear the reset notifies 9396 * if we have not registered one. 9397 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX! 9398 */ 9399 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL, 9400 sd_mhd_reset_notify_cb, (caddr_t)un); 9401 9402 /* 9403 * protect the timeout pointers from getting nulled by 9404 * their callback functions during the cancellation process. 9405 * In such a scenario untimeout can be invoked with a null value. 9406 */ 9407 _NOTE(NO_COMPETING_THREADS_NOW); 9408 9409 mutex_enter(&un->un_pm_mutex); 9410 if (un->un_pm_idle_timeid != NULL) { 9411 timeout_id_t temp_id = un->un_pm_idle_timeid; 9412 un->un_pm_idle_timeid = NULL; 9413 mutex_exit(&un->un_pm_mutex); 9414 9415 /* 9416 * Timeout is active; cancel it. 9417 * Note that it'll never be active on a device 9418 * that does not support PM therefore we don't 9419 * have to check before calling pm_idle_component. 9420 */ 9421 (void) untimeout(temp_id); 9422 (void) pm_idle_component(SD_DEVINFO(un), 0); 9423 mutex_enter(&un->un_pm_mutex); 9424 } 9425 9426 /* 9427 * Check whether there is already a timeout scheduled for power 9428 * management. If yes then don't lower the power here, that's. 9429 * the timeout handler's job. 9430 */ 9431 if (un->un_pm_timeid != NULL) { 9432 timeout_id_t temp_id = un->un_pm_timeid; 9433 un->un_pm_timeid = NULL; 9434 mutex_exit(&un->un_pm_mutex); 9435 /* 9436 * Timeout is active; cancel it. 9437 * Note that it'll never be active on a device 9438 * that does not support PM therefore we don't 9439 * have to check before calling pm_idle_component. 9440 */ 9441 (void) untimeout(temp_id); 9442 (void) pm_idle_component(SD_DEVINFO(un), 0); 9443 9444 } else { 9445 mutex_exit(&un->un_pm_mutex); 9446 if ((un->un_f_pm_is_enabled == TRUE) && 9447 (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) != 9448 DDI_SUCCESS)) { 9449 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 9450 "sd_dr_detach: Lower power request failed, ignoring.\n"); 9451 /* 9452 * Fix for bug: 4297749, item # 13 9453 * The above test now includes a check to see if PM is 9454 * supported by this device before call 9455 * pm_lower_power(). 9456 * Note, the following is not dead code. The call to 9457 * pm_lower_power above will generate a call back into 9458 * our sdpower routine which might result in a timeout 9459 * handler getting activated. Therefore the following 9460 * code is valid and necessary. 9461 */ 9462 mutex_enter(&un->un_pm_mutex); 9463 if (un->un_pm_timeid != NULL) { 9464 timeout_id_t temp_id = un->un_pm_timeid; 9465 un->un_pm_timeid = NULL; 9466 mutex_exit(&un->un_pm_mutex); 9467 (void) untimeout(temp_id); 9468 (void) pm_idle_component(SD_DEVINFO(un), 0); 9469 } else { 9470 mutex_exit(&un->un_pm_mutex); 9471 } 9472 } 9473 } 9474 9475 /* 9476 * Cleanup from the scsi_ifsetcap() calls (437868) 9477 * Relocated here from above to be after the call to 9478 * pm_lower_power, which was getting errors. 9479 */ 9480 (void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1); 9481 (void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1); 9482 9483 /* 9484 * Currently, tagged queuing is supported per target based by HBA. 9485 * Setting this per lun instance actually sets the capability of this 9486 * target in HBA, which affects those luns already attached on the 9487 * same target. So during detach, we can only disable this capability 9488 * only when this is the only lun left on this target. By doing 9489 * this, we assume a target has the same tagged queuing capability 9490 * for every lun. The condition can be removed when HBA is changed to 9491 * support per lun based tagged queuing capability. 9492 */ 9493 if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) { 9494 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 9495 } 9496 9497 if (un->un_f_is_fibre == FALSE) { 9498 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1); 9499 } 9500 9501 /* 9502 * Remove any event callbacks, fibre only 9503 */ 9504 if (un->un_f_is_fibre == TRUE) { 9505 if ((un->un_insert_event != NULL) && 9506 (ddi_remove_event_handler(un->un_insert_cb_id) != 9507 DDI_SUCCESS)) { 9508 /* 9509 * Note: We are returning here after having done 9510 * substantial cleanup above. This is consistent 9511 * with the legacy implementation but this may not 9512 * be the right thing to do. 9513 */ 9514 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 9515 "sd_dr_detach: Cannot cancel insert event\n"); 9516 goto err_remove_event; 9517 } 9518 un->un_insert_event = NULL; 9519 9520 if ((un->un_remove_event != NULL) && 9521 (ddi_remove_event_handler(un->un_remove_cb_id) != 9522 DDI_SUCCESS)) { 9523 /* 9524 * Note: We are returning here after having done 9525 * substantial cleanup above. This is consistent 9526 * with the legacy implementation but this may not 9527 * be the right thing to do. 9528 */ 9529 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 9530 "sd_dr_detach: Cannot cancel remove event\n"); 9531 goto err_remove_event; 9532 } 9533 un->un_remove_event = NULL; 9534 } 9535 9536 /* Do not free the softstate if the callback routine is active */ 9537 sd_sync_with_callback(un); 9538 9539 /* 9540 * Hold the detach mutex here, to make sure that no other threads ever 9541 * can access a (partially) freed soft state structure. 9542 */ 9543 mutex_enter(&sd_detach_mutex); 9544 9545 /* 9546 * Clean up the soft state struct. 9547 * Cleanup is done in reverse order of allocs/inits. 9548 * At this point there should be no competing threads anymore. 9549 */ 9550 9551 /* Unregister and free device id. */ 9552 ddi_devid_unregister(devi); 9553 if (un->un_devid) { 9554 ddi_devid_free(un->un_devid); 9555 un->un_devid = NULL; 9556 } 9557 9558 /* 9559 * Destroy wmap cache if it exists. 9560 */ 9561 if (un->un_wm_cache != NULL) { 9562 kmem_cache_destroy(un->un_wm_cache); 9563 un->un_wm_cache = NULL; 9564 } 9565 9566 /* Remove minor nodes */ 9567 ddi_remove_minor_node(devi, NULL); 9568 9569 /* 9570 * kstat cleanup is done in detach for all device types (4363169). 9571 * We do not want to fail detach if the device kstats are not deleted 9572 * since there is a confusion about the devo_refcnt for the device. 9573 * We just delete the kstats and let detach complete successfully. 9574 */ 9575 if (un->un_stats != NULL) { 9576 kstat_delete(un->un_stats); 9577 un->un_stats = NULL; 9578 } 9579 if (un->un_errstats != NULL) { 9580 kstat_delete(un->un_errstats); 9581 un->un_errstats = NULL; 9582 } 9583 9584 /* Remove partition stats */ 9585 if (un->un_f_pkstats_enabled) { 9586 for (i = 0; i < NSDMAP; i++) { 9587 if (un->un_pstats[i] != NULL) { 9588 kstat_delete(un->un_pstats[i]); 9589 un->un_pstats[i] = NULL; 9590 } 9591 } 9592 } 9593 9594 /* Remove xbuf registration */ 9595 ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi); 9596 ddi_xbuf_attr_destroy(un->un_xbuf_attr); 9597 9598 /* Remove driver properties */ 9599 ddi_prop_remove_all(devi); 9600 9601 mutex_destroy(&un->un_pm_mutex); 9602 cv_destroy(&un->un_pm_busy_cv); 9603 9604 cv_destroy(&un->un_wcc_cv); 9605 9606 /* Open/close semaphore */ 9607 sema_destroy(&un->un_semoclose); 9608 9609 /* Removable media condvar. */ 9610 cv_destroy(&un->un_state_cv); 9611 9612 /* Suspend/resume condvar. */ 9613 cv_destroy(&un->un_suspend_cv); 9614 cv_destroy(&un->un_disk_busy_cv); 9615 9616 sd_free_rqs(un); 9617 9618 /* Free up soft state */ 9619 devp->sd_private = NULL; 9620 bzero(un, sizeof (struct sd_lun)); 9621 ddi_soft_state_free(sd_state, instance); 9622 9623 mutex_exit(&sd_detach_mutex); 9624 9625 /* This frees up the INQUIRY data associated with the device. */ 9626 scsi_unprobe(devp); 9627 9628 /* 9629 * After successfully detaching an instance, we update the information 9630 * of how many luns have been attached in the relative target and 9631 * controller for parallel SCSI. This information is used when sd tries 9632 * to set the tagged queuing capability in HBA. 9633 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to 9634 * check if the device is parallel SCSI. However, we don't need to 9635 * check here because we've already checked during attach. No device 9636 * that is not parallel SCSI is in the chain. 9637 */ 9638 if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) { 9639 sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH); 9640 } 9641 9642 return (DDI_SUCCESS); 9643 9644 err_notclosed: 9645 mutex_exit(SD_MUTEX(un)); 9646 9647 err_stillbusy: 9648 _NOTE(NO_COMPETING_THREADS_NOW); 9649 9650 err_remove_event: 9651 mutex_enter(&sd_detach_mutex); 9652 un->un_detach_count--; 9653 mutex_exit(&sd_detach_mutex); 9654 9655 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n"); 9656 return (DDI_FAILURE); 9657 } 9658 9659 9660 /* 9661 * Driver minor node structure and data table 9662 */ 9663 struct driver_minor_data { 9664 char *name; 9665 minor_t minor; 9666 int type; 9667 }; 9668 9669 static struct driver_minor_data sd_minor_data[] = { 9670 {"a", 0, S_IFBLK}, 9671 {"b", 1, S_IFBLK}, 9672 {"c", 2, S_IFBLK}, 9673 {"d", 3, S_IFBLK}, 9674 {"e", 4, S_IFBLK}, 9675 {"f", 5, S_IFBLK}, 9676 {"g", 6, S_IFBLK}, 9677 {"h", 7, S_IFBLK}, 9678 #if defined(_SUNOS_VTOC_16) 9679 {"i", 8, S_IFBLK}, 9680 {"j", 9, S_IFBLK}, 9681 {"k", 10, S_IFBLK}, 9682 {"l", 11, S_IFBLK}, 9683 {"m", 12, S_IFBLK}, 9684 {"n", 13, S_IFBLK}, 9685 {"o", 14, S_IFBLK}, 9686 {"p", 15, S_IFBLK}, 9687 #endif /* defined(_SUNOS_VTOC_16) */ 9688 #if defined(_FIRMWARE_NEEDS_FDISK) 9689 {"q", 16, S_IFBLK}, 9690 {"r", 17, S_IFBLK}, 9691 {"s", 18, S_IFBLK}, 9692 {"t", 19, S_IFBLK}, 9693 {"u", 20, S_IFBLK}, 9694 #endif /* defined(_FIRMWARE_NEEDS_FDISK) */ 9695 {"a,raw", 0, S_IFCHR}, 9696 {"b,raw", 1, S_IFCHR}, 9697 {"c,raw", 2, S_IFCHR}, 9698 {"d,raw", 3, S_IFCHR}, 9699 {"e,raw", 4, S_IFCHR}, 9700 {"f,raw", 5, S_IFCHR}, 9701 {"g,raw", 6, S_IFCHR}, 9702 {"h,raw", 7, S_IFCHR}, 9703 #if defined(_SUNOS_VTOC_16) 9704 {"i,raw", 8, S_IFCHR}, 9705 {"j,raw", 9, S_IFCHR}, 9706 {"k,raw", 10, S_IFCHR}, 9707 {"l,raw", 11, S_IFCHR}, 9708 {"m,raw", 12, S_IFCHR}, 9709 {"n,raw", 13, S_IFCHR}, 9710 {"o,raw", 14, S_IFCHR}, 9711 {"p,raw", 15, S_IFCHR}, 9712 #endif /* defined(_SUNOS_VTOC_16) */ 9713 #if defined(_FIRMWARE_NEEDS_FDISK) 9714 {"q,raw", 16, S_IFCHR}, 9715 {"r,raw", 17, S_IFCHR}, 9716 {"s,raw", 18, S_IFCHR}, 9717 {"t,raw", 19, S_IFCHR}, 9718 {"u,raw", 20, S_IFCHR}, 9719 #endif /* defined(_FIRMWARE_NEEDS_FDISK) */ 9720 {0} 9721 }; 9722 9723 static struct driver_minor_data sd_minor_data_efi[] = { 9724 {"a", 0, S_IFBLK}, 9725 {"b", 1, S_IFBLK}, 9726 {"c", 2, S_IFBLK}, 9727 {"d", 3, S_IFBLK}, 9728 {"e", 4, S_IFBLK}, 9729 {"f", 5, S_IFBLK}, 9730 {"g", 6, S_IFBLK}, 9731 {"wd", 7, S_IFBLK}, 9732 #if defined(_FIRMWARE_NEEDS_FDISK) 9733 {"q", 16, S_IFBLK}, 9734 {"r", 17, S_IFBLK}, 9735 {"s", 18, S_IFBLK}, 9736 {"t", 19, S_IFBLK}, 9737 {"u", 20, S_IFBLK}, 9738 #endif /* defined(_FIRMWARE_NEEDS_FDISK) */ 9739 {"a,raw", 0, S_IFCHR}, 9740 {"b,raw", 1, S_IFCHR}, 9741 {"c,raw", 2, S_IFCHR}, 9742 {"d,raw", 3, S_IFCHR}, 9743 {"e,raw", 4, S_IFCHR}, 9744 {"f,raw", 5, S_IFCHR}, 9745 {"g,raw", 6, S_IFCHR}, 9746 {"wd,raw", 7, S_IFCHR}, 9747 #if defined(_FIRMWARE_NEEDS_FDISK) 9748 {"q,raw", 16, S_IFCHR}, 9749 {"r,raw", 17, S_IFCHR}, 9750 {"s,raw", 18, S_IFCHR}, 9751 {"t,raw", 19, S_IFCHR}, 9752 {"u,raw", 20, S_IFCHR}, 9753 #endif /* defined(_FIRMWARE_NEEDS_FDISK) */ 9754 {0} 9755 }; 9756 9757 9758 /* 9759 * Function: sd_create_minor_nodes 9760 * 9761 * Description: Create the minor device nodes for the instance. 9762 * 9763 * Arguments: un - driver soft state (unit) structure 9764 * devi - pointer to device info structure 9765 * 9766 * Return Code: DDI_SUCCESS 9767 * DDI_FAILURE 9768 * 9769 * Context: Kernel thread context 9770 */ 9771 9772 static int 9773 sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi) 9774 { 9775 struct driver_minor_data *dmdp; 9776 struct scsi_device *devp; 9777 int instance; 9778 char name[48]; 9779 9780 ASSERT(un != NULL); 9781 devp = ddi_get_driver_private(devi); 9782 instance = ddi_get_instance(devp->sd_dev); 9783 9784 /* 9785 * Create all the minor nodes for this target. 9786 */ 9787 if (un->un_blockcount > DK_MAX_BLOCKS) 9788 dmdp = sd_minor_data_efi; 9789 else 9790 dmdp = sd_minor_data; 9791 while (dmdp->name != NULL) { 9792 9793 (void) sprintf(name, "%s", dmdp->name); 9794 9795 if (ddi_create_minor_node(devi, name, dmdp->type, 9796 (instance << SDUNIT_SHIFT) | dmdp->minor, 9797 un->un_node_type, NULL) == DDI_FAILURE) { 9798 /* 9799 * Clean up any nodes that may have been created, in 9800 * case this fails in the middle of the loop. 9801 */ 9802 ddi_remove_minor_node(devi, NULL); 9803 return (DDI_FAILURE); 9804 } 9805 dmdp++; 9806 } 9807 9808 return (DDI_SUCCESS); 9809 } 9810 9811 9812 /* 9813 * Function: sd_create_errstats 9814 * 9815 * Description: This routine instantiates the device error stats. 9816 * 9817 * Note: During attach the stats are instantiated first so they are 9818 * available for attach-time routines that utilize the driver 9819 * iopath to send commands to the device. The stats are initialized 9820 * separately so data obtained during some attach-time routines is 9821 * available. (4362483) 9822 * 9823 * Arguments: un - driver soft state (unit) structure 9824 * instance - driver instance 9825 * 9826 * Context: Kernel thread context 9827 */ 9828 9829 static void 9830 sd_create_errstats(struct sd_lun *un, int instance) 9831 { 9832 struct sd_errstats *stp; 9833 char kstatmodule_err[KSTAT_STRLEN]; 9834 char kstatname[KSTAT_STRLEN]; 9835 int ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t)); 9836 9837 ASSERT(un != NULL); 9838 9839 if (un->un_errstats != NULL) { 9840 return; 9841 } 9842 9843 (void) snprintf(kstatmodule_err, sizeof (kstatmodule_err), 9844 "%serr", sd_label); 9845 (void) snprintf(kstatname, sizeof (kstatname), 9846 "%s%d,err", sd_label, instance); 9847 9848 un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname, 9849 "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT); 9850 9851 if (un->un_errstats == NULL) { 9852 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 9853 "sd_create_errstats: Failed kstat_create\n"); 9854 return; 9855 } 9856 9857 stp = (struct sd_errstats *)un->un_errstats->ks_data; 9858 kstat_named_init(&stp->sd_softerrs, "Soft Errors", 9859 KSTAT_DATA_UINT32); 9860 kstat_named_init(&stp->sd_harderrs, "Hard Errors", 9861 KSTAT_DATA_UINT32); 9862 kstat_named_init(&stp->sd_transerrs, "Transport Errors", 9863 KSTAT_DATA_UINT32); 9864 kstat_named_init(&stp->sd_vid, "Vendor", 9865 KSTAT_DATA_CHAR); 9866 kstat_named_init(&stp->sd_pid, "Product", 9867 KSTAT_DATA_CHAR); 9868 kstat_named_init(&stp->sd_revision, "Revision", 9869 KSTAT_DATA_CHAR); 9870 kstat_named_init(&stp->sd_serial, "Serial No", 9871 KSTAT_DATA_CHAR); 9872 kstat_named_init(&stp->sd_capacity, "Size", 9873 KSTAT_DATA_ULONGLONG); 9874 kstat_named_init(&stp->sd_rq_media_err, "Media Error", 9875 KSTAT_DATA_UINT32); 9876 kstat_named_init(&stp->sd_rq_ntrdy_err, "Device Not Ready", 9877 KSTAT_DATA_UINT32); 9878 kstat_named_init(&stp->sd_rq_nodev_err, "No Device", 9879 KSTAT_DATA_UINT32); 9880 kstat_named_init(&stp->sd_rq_recov_err, "Recoverable", 9881 KSTAT_DATA_UINT32); 9882 kstat_named_init(&stp->sd_rq_illrq_err, "Illegal Request", 9883 KSTAT_DATA_UINT32); 9884 kstat_named_init(&stp->sd_rq_pfa_err, "Predictive Failure Analysis", 9885 KSTAT_DATA_UINT32); 9886 9887 un->un_errstats->ks_private = un; 9888 un->un_errstats->ks_update = nulldev; 9889 9890 kstat_install(un->un_errstats); 9891 } 9892 9893 9894 /* 9895 * Function: sd_set_errstats 9896 * 9897 * Description: This routine sets the value of the vendor id, product id, 9898 * revision, serial number, and capacity device error stats. 9899 * 9900 * Note: During attach the stats are instantiated first so they are 9901 * available for attach-time routines that utilize the driver 9902 * iopath to send commands to the device. The stats are initialized 9903 * separately so data obtained during some attach-time routines is 9904 * available. (4362483) 9905 * 9906 * Arguments: un - driver soft state (unit) structure 9907 * 9908 * Context: Kernel thread context 9909 */ 9910 9911 static void 9912 sd_set_errstats(struct sd_lun *un) 9913 { 9914 struct sd_errstats *stp; 9915 9916 ASSERT(un != NULL); 9917 ASSERT(un->un_errstats != NULL); 9918 stp = (struct sd_errstats *)un->un_errstats->ks_data; 9919 ASSERT(stp != NULL); 9920 (void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8); 9921 (void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16); 9922 (void) strncpy(stp->sd_revision.value.c, 9923 un->un_sd->sd_inq->inq_revision, 4); 9924 9925 /* 9926 * All the errstats are persistent across detach/attach, 9927 * so reset all the errstats here in case of the hot 9928 * replacement of disk drives, except for not changed 9929 * Sun qualified drives. 9930 */ 9931 if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) || 9932 (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c, 9933 sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) { 9934 stp->sd_softerrs.value.ui32 = 0; 9935 stp->sd_harderrs.value.ui32 = 0; 9936 stp->sd_transerrs.value.ui32 = 0; 9937 stp->sd_rq_media_err.value.ui32 = 0; 9938 stp->sd_rq_ntrdy_err.value.ui32 = 0; 9939 stp->sd_rq_nodev_err.value.ui32 = 0; 9940 stp->sd_rq_recov_err.value.ui32 = 0; 9941 stp->sd_rq_illrq_err.value.ui32 = 0; 9942 stp->sd_rq_pfa_err.value.ui32 = 0; 9943 } 9944 9945 /* 9946 * Set the "Serial No" kstat for Sun qualified drives (indicated by 9947 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid) 9948 * (4376302)) 9949 */ 9950 if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) { 9951 bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c, 9952 sizeof (SD_INQUIRY(un)->inq_serial)); 9953 } 9954 9955 if (un->un_f_blockcount_is_valid != TRUE) { 9956 /* 9957 * Set capacity error stat to 0 for no media. This ensures 9958 * a valid capacity is displayed in response to 'iostat -E' 9959 * when no media is present in the device. 9960 */ 9961 stp->sd_capacity.value.ui64 = 0; 9962 } else { 9963 /* 9964 * Multiply un_blockcount by un->un_sys_blocksize to get 9965 * capacity. 9966 * 9967 * Note: for non-512 blocksize devices "un_blockcount" has been 9968 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by 9969 * (un_tgt_blocksize / un->un_sys_blocksize). 9970 */ 9971 stp->sd_capacity.value.ui64 = (uint64_t) 9972 ((uint64_t)un->un_blockcount * un->un_sys_blocksize); 9973 } 9974 } 9975 9976 9977 /* 9978 * Function: sd_set_pstats 9979 * 9980 * Description: This routine instantiates and initializes the partition 9981 * stats for each partition with more than zero blocks. 9982 * (4363169) 9983 * 9984 * Arguments: un - driver soft state (unit) structure 9985 * 9986 * Context: Kernel thread context 9987 */ 9988 9989 static void 9990 sd_set_pstats(struct sd_lun *un) 9991 { 9992 char kstatname[KSTAT_STRLEN]; 9993 int instance; 9994 int i; 9995 9996 ASSERT(un != NULL); 9997 9998 instance = ddi_get_instance(SD_DEVINFO(un)); 9999 10000 /* Note:x86: is this a VTOC8/VTOC16 difference? */ 10001 for (i = 0; i < NSDMAP; i++) { 10002 if ((un->un_pstats[i] == NULL) && 10003 (un->un_map[i].dkl_nblk != 0)) { 10004 (void) snprintf(kstatname, sizeof (kstatname), 10005 "%s%d,%s", sd_label, instance, 10006 sd_minor_data[i].name); 10007 un->un_pstats[i] = kstat_create(sd_label, 10008 instance, kstatname, "partition", KSTAT_TYPE_IO, 10009 1, KSTAT_FLAG_PERSISTENT); 10010 if (un->un_pstats[i] != NULL) { 10011 un->un_pstats[i]->ks_lock = SD_MUTEX(un); 10012 kstat_install(un->un_pstats[i]); 10013 } 10014 } 10015 } 10016 } 10017 10018 10019 #if (defined(__fibre)) 10020 /* 10021 * Function: sd_init_event_callbacks 10022 * 10023 * Description: This routine initializes the insertion and removal event 10024 * callbacks. (fibre only) 10025 * 10026 * Arguments: un - driver soft state (unit) structure 10027 * 10028 * Context: Kernel thread context 10029 */ 10030 10031 static void 10032 sd_init_event_callbacks(struct sd_lun *un) 10033 { 10034 ASSERT(un != NULL); 10035 10036 if ((un->un_insert_event == NULL) && 10037 (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT, 10038 &un->un_insert_event) == DDI_SUCCESS)) { 10039 /* 10040 * Add the callback for an insertion event 10041 */ 10042 (void) ddi_add_event_handler(SD_DEVINFO(un), 10043 un->un_insert_event, sd_event_callback, (void *)un, 10044 &(un->un_insert_cb_id)); 10045 } 10046 10047 if ((un->un_remove_event == NULL) && 10048 (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT, 10049 &un->un_remove_event) == DDI_SUCCESS)) { 10050 /* 10051 * Add the callback for a removal event 10052 */ 10053 (void) ddi_add_event_handler(SD_DEVINFO(un), 10054 un->un_remove_event, sd_event_callback, (void *)un, 10055 &(un->un_remove_cb_id)); 10056 } 10057 } 10058 10059 10060 /* 10061 * Function: sd_event_callback 10062 * 10063 * Description: This routine handles insert/remove events (photon). The 10064 * state is changed to OFFLINE which can be used to supress 10065 * error msgs. (fibre only) 10066 * 10067 * Arguments: un - driver soft state (unit) structure 10068 * 10069 * Context: Callout thread context 10070 */ 10071 /* ARGSUSED */ 10072 static void 10073 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg, 10074 void *bus_impldata) 10075 { 10076 struct sd_lun *un = (struct sd_lun *)arg; 10077 10078 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event)); 10079 if (event == un->un_insert_event) { 10080 SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event"); 10081 mutex_enter(SD_MUTEX(un)); 10082 if (un->un_state == SD_STATE_OFFLINE) { 10083 if (un->un_last_state != SD_STATE_SUSPENDED) { 10084 un->un_state = un->un_last_state; 10085 } else { 10086 /* 10087 * We have gone through SUSPEND/RESUME while 10088 * we were offline. Restore the last state 10089 */ 10090 un->un_state = un->un_save_state; 10091 } 10092 } 10093 mutex_exit(SD_MUTEX(un)); 10094 10095 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event)); 10096 } else if (event == un->un_remove_event) { 10097 SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event"); 10098 mutex_enter(SD_MUTEX(un)); 10099 /* 10100 * We need to handle an event callback that occurs during 10101 * the suspend operation, since we don't prevent it. 10102 */ 10103 if (un->un_state != SD_STATE_OFFLINE) { 10104 if (un->un_state != SD_STATE_SUSPENDED) { 10105 New_state(un, SD_STATE_OFFLINE); 10106 } else { 10107 un->un_last_state = SD_STATE_OFFLINE; 10108 } 10109 } 10110 mutex_exit(SD_MUTEX(un)); 10111 } else { 10112 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 10113 "!Unknown event\n"); 10114 } 10115 10116 } 10117 #endif 10118 10119 /* 10120 * Function: sd_cache_control() 10121 * 10122 * Description: This routine is the driver entry point for setting 10123 * read and write caching by modifying the WCE (write cache 10124 * enable) and RCD (read cache disable) bits of mode 10125 * page 8 (MODEPAGE_CACHING). 10126 * 10127 * Arguments: un - driver soft state (unit) structure 10128 * rcd_flag - flag for controlling the read cache 10129 * wce_flag - flag for controlling the write cache 10130 * 10131 * Return Code: EIO 10132 * code returned by sd_send_scsi_MODE_SENSE and 10133 * sd_send_scsi_MODE_SELECT 10134 * 10135 * Context: Kernel Thread 10136 */ 10137 10138 static int 10139 sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag) 10140 { 10141 struct mode_caching *mode_caching_page; 10142 uchar_t *header; 10143 size_t buflen; 10144 int hdrlen; 10145 int bd_len; 10146 int rval = 0; 10147 struct mode_header_grp2 *mhp; 10148 10149 ASSERT(un != NULL); 10150 10151 /* 10152 * Do a test unit ready, otherwise a mode sense may not work if this 10153 * is the first command sent to the device after boot. 10154 */ 10155 (void) sd_send_scsi_TEST_UNIT_READY(un, 0); 10156 10157 if (un->un_f_cfg_is_atapi == TRUE) { 10158 hdrlen = MODE_HEADER_LENGTH_GRP2; 10159 } else { 10160 hdrlen = MODE_HEADER_LENGTH; 10161 } 10162 10163 /* 10164 * Allocate memory for the retrieved mode page and its headers. Set 10165 * a pointer to the page itself. Use mode_cache_scsi3 to insure 10166 * we get all of the mode sense data otherwise, the mode select 10167 * will fail. mode_cache_scsi3 is a superset of mode_caching. 10168 */ 10169 buflen = hdrlen + MODE_BLK_DESC_LENGTH + 10170 sizeof (struct mode_cache_scsi3); 10171 10172 header = kmem_zalloc(buflen, KM_SLEEP); 10173 10174 /* Get the information from the device. */ 10175 if (un->un_f_cfg_is_atapi == TRUE) { 10176 rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen, 10177 MODEPAGE_CACHING, SD_PATH_DIRECT); 10178 } else { 10179 rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen, 10180 MODEPAGE_CACHING, SD_PATH_DIRECT); 10181 } 10182 if (rval != 0) { 10183 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 10184 "sd_cache_control: Mode Sense Failed\n"); 10185 kmem_free(header, buflen); 10186 return (rval); 10187 } 10188 10189 /* 10190 * Determine size of Block Descriptors in order to locate 10191 * the mode page data. ATAPI devices return 0, SCSI devices 10192 * should return MODE_BLK_DESC_LENGTH. 10193 */ 10194 if (un->un_f_cfg_is_atapi == TRUE) { 10195 mhp = (struct mode_header_grp2 *)header; 10196 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 10197 } else { 10198 bd_len = ((struct mode_header *)header)->bdesc_length; 10199 } 10200 10201 if (bd_len > MODE_BLK_DESC_LENGTH) { 10202 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 10203 "sd_cache_control: Mode Sense returned invalid " 10204 "block descriptor length\n"); 10205 kmem_free(header, buflen); 10206 return (EIO); 10207 } 10208 10209 mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len); 10210 if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) { 10211 SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense" 10212 " caching page code mismatch %d\n", 10213 mode_caching_page->mode_page.code); 10214 kmem_free(header, buflen); 10215 return (EIO); 10216 } 10217 10218 /* Check the relevant bits on successful mode sense. */ 10219 if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) || 10220 (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) || 10221 (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) || 10222 (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) { 10223 10224 size_t sbuflen; 10225 uchar_t save_pg; 10226 10227 /* 10228 * Construct select buffer length based on the 10229 * length of the sense data returned. 10230 */ 10231 sbuflen = hdrlen + MODE_BLK_DESC_LENGTH + 10232 sizeof (struct mode_page) + 10233 (int)mode_caching_page->mode_page.length; 10234 10235 /* 10236 * Set the caching bits as requested. 10237 */ 10238 if (rcd_flag == SD_CACHE_ENABLE) 10239 mode_caching_page->rcd = 0; 10240 else if (rcd_flag == SD_CACHE_DISABLE) 10241 mode_caching_page->rcd = 1; 10242 10243 if (wce_flag == SD_CACHE_ENABLE) 10244 mode_caching_page->wce = 1; 10245 else if (wce_flag == SD_CACHE_DISABLE) 10246 mode_caching_page->wce = 0; 10247 10248 /* 10249 * Save the page if the mode sense says the 10250 * drive supports it. 10251 */ 10252 save_pg = mode_caching_page->mode_page.ps ? 10253 SD_SAVE_PAGE : SD_DONTSAVE_PAGE; 10254 10255 /* Clear reserved bits before mode select. */ 10256 mode_caching_page->mode_page.ps = 0; 10257 10258 /* 10259 * Clear out mode header for mode select. 10260 * The rest of the retrieved page will be reused. 10261 */ 10262 bzero(header, hdrlen); 10263 10264 if (un->un_f_cfg_is_atapi == TRUE) { 10265 mhp = (struct mode_header_grp2 *)header; 10266 mhp->bdesc_length_hi = bd_len >> 8; 10267 mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff; 10268 } else { 10269 ((struct mode_header *)header)->bdesc_length = bd_len; 10270 } 10271 10272 /* Issue mode select to change the cache settings */ 10273 if (un->un_f_cfg_is_atapi == TRUE) { 10274 rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header, 10275 sbuflen, save_pg, SD_PATH_DIRECT); 10276 } else { 10277 rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header, 10278 sbuflen, save_pg, SD_PATH_DIRECT); 10279 } 10280 } 10281 10282 kmem_free(header, buflen); 10283 return (rval); 10284 } 10285 10286 10287 /* 10288 * Function: sd_get_write_cache_enabled() 10289 * 10290 * Description: This routine is the driver entry point for determining if 10291 * write caching is enabled. It examines the WCE (write cache 10292 * enable) bits of mode page 8 (MODEPAGE_CACHING). 10293 * 10294 * Arguments: un - driver soft state (unit) structure 10295 * is_enabled - pointer to int where write cache enabled state 10296 * is returned (non-zero -> write cache enabled) 10297 * 10298 * 10299 * Return Code: EIO 10300 * code returned by sd_send_scsi_MODE_SENSE 10301 * 10302 * Context: Kernel Thread 10303 * 10304 * NOTE: If ioctl is added to disable write cache, this sequence should 10305 * be followed so that no locking is required for accesses to 10306 * un->un_f_write_cache_enabled: 10307 * do mode select to clear wce 10308 * do synchronize cache to flush cache 10309 * set un->un_f_write_cache_enabled = FALSE 10310 * 10311 * Conversely, an ioctl to enable the write cache should be done 10312 * in this order: 10313 * set un->un_f_write_cache_enabled = TRUE 10314 * do mode select to set wce 10315 */ 10316 10317 static int 10318 sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled) 10319 { 10320 struct mode_caching *mode_caching_page; 10321 uchar_t *header; 10322 size_t buflen; 10323 int hdrlen; 10324 int bd_len; 10325 int rval = 0; 10326 10327 ASSERT(un != NULL); 10328 ASSERT(is_enabled != NULL); 10329 10330 /* in case of error, flag as enabled */ 10331 *is_enabled = TRUE; 10332 10333 /* 10334 * Do a test unit ready, otherwise a mode sense may not work if this 10335 * is the first command sent to the device after boot. 10336 */ 10337 (void) sd_send_scsi_TEST_UNIT_READY(un, 0); 10338 10339 if (un->un_f_cfg_is_atapi == TRUE) { 10340 hdrlen = MODE_HEADER_LENGTH_GRP2; 10341 } else { 10342 hdrlen = MODE_HEADER_LENGTH; 10343 } 10344 10345 /* 10346 * Allocate memory for the retrieved mode page and its headers. Set 10347 * a pointer to the page itself. 10348 */ 10349 buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching); 10350 header = kmem_zalloc(buflen, KM_SLEEP); 10351 10352 /* Get the information from the device. */ 10353 if (un->un_f_cfg_is_atapi == TRUE) { 10354 rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen, 10355 MODEPAGE_CACHING, SD_PATH_DIRECT); 10356 } else { 10357 rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen, 10358 MODEPAGE_CACHING, SD_PATH_DIRECT); 10359 } 10360 if (rval != 0) { 10361 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 10362 "sd_get_write_cache_enabled: Mode Sense Failed\n"); 10363 kmem_free(header, buflen); 10364 return (rval); 10365 } 10366 10367 /* 10368 * Determine size of Block Descriptors in order to locate 10369 * the mode page data. ATAPI devices return 0, SCSI devices 10370 * should return MODE_BLK_DESC_LENGTH. 10371 */ 10372 if (un->un_f_cfg_is_atapi == TRUE) { 10373 struct mode_header_grp2 *mhp; 10374 mhp = (struct mode_header_grp2 *)header; 10375 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 10376 } else { 10377 bd_len = ((struct mode_header *)header)->bdesc_length; 10378 } 10379 10380 if (bd_len > MODE_BLK_DESC_LENGTH) { 10381 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 10382 "sd_get_write_cache_enabled: Mode Sense returned invalid " 10383 "block descriptor length\n"); 10384 kmem_free(header, buflen); 10385 return (EIO); 10386 } 10387 10388 mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len); 10389 if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) { 10390 SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense" 10391 " caching page code mismatch %d\n", 10392 mode_caching_page->mode_page.code); 10393 kmem_free(header, buflen); 10394 return (EIO); 10395 } 10396 *is_enabled = mode_caching_page->wce; 10397 10398 kmem_free(header, buflen); 10399 return (0); 10400 } 10401 10402 10403 /* 10404 * Function: sd_make_device 10405 * 10406 * Description: Utility routine to return the Solaris device number from 10407 * the data in the device's dev_info structure. 10408 * 10409 * Return Code: The Solaris device number 10410 * 10411 * Context: Any 10412 */ 10413 10414 static dev_t 10415 sd_make_device(dev_info_t *devi) 10416 { 10417 return (makedevice(ddi_name_to_major(ddi_get_name(devi)), 10418 ddi_get_instance(devi) << SDUNIT_SHIFT)); 10419 } 10420 10421 10422 /* 10423 * Function: sd_pm_entry 10424 * 10425 * Description: Called at the start of a new command to manage power 10426 * and busy status of a device. This includes determining whether 10427 * the current power state of the device is sufficient for 10428 * performing the command or whether it must be changed. 10429 * The PM framework is notified appropriately. 10430 * Only with a return status of DDI_SUCCESS will the 10431 * component be busy to the framework. 10432 * 10433 * All callers of sd_pm_entry must check the return status 10434 * and only call sd_pm_exit it it was DDI_SUCCESS. A status 10435 * of DDI_FAILURE indicates the device failed to power up. 10436 * In this case un_pm_count has been adjusted so the result 10437 * on exit is still powered down, ie. count is less than 0. 10438 * Calling sd_pm_exit with this count value hits an ASSERT. 10439 * 10440 * Return Code: DDI_SUCCESS or DDI_FAILURE 10441 * 10442 * Context: Kernel thread context. 10443 */ 10444 10445 static int 10446 sd_pm_entry(struct sd_lun *un) 10447 { 10448 int return_status = DDI_SUCCESS; 10449 10450 ASSERT(!mutex_owned(SD_MUTEX(un))); 10451 ASSERT(!mutex_owned(&un->un_pm_mutex)); 10452 10453 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n"); 10454 10455 if (un->un_f_pm_is_enabled == FALSE) { 10456 SD_TRACE(SD_LOG_IO_PM, un, 10457 "sd_pm_entry: exiting, PM not enabled\n"); 10458 return (return_status); 10459 } 10460 10461 /* 10462 * Just increment a counter if PM is enabled. On the transition from 10463 * 0 ==> 1, mark the device as busy. The iodone side will decrement 10464 * the count with each IO and mark the device as idle when the count 10465 * hits 0. 10466 * 10467 * If the count is less than 0 the device is powered down. If a powered 10468 * down device is successfully powered up then the count must be 10469 * incremented to reflect the power up. Note that it'll get incremented 10470 * a second time to become busy. 10471 * 10472 * Because the following has the potential to change the device state 10473 * and must release the un_pm_mutex to do so, only one thread can be 10474 * allowed through at a time. 10475 */ 10476 10477 mutex_enter(&un->un_pm_mutex); 10478 while (un->un_pm_busy == TRUE) { 10479 cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex); 10480 } 10481 un->un_pm_busy = TRUE; 10482 10483 if (un->un_pm_count < 1) { 10484 10485 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n"); 10486 10487 /* 10488 * Indicate we are now busy so the framework won't attempt to 10489 * power down the device. This call will only fail if either 10490 * we passed a bad component number or the device has no 10491 * components. Neither of these should ever happen. 10492 */ 10493 mutex_exit(&un->un_pm_mutex); 10494 return_status = pm_busy_component(SD_DEVINFO(un), 0); 10495 ASSERT(return_status == DDI_SUCCESS); 10496 10497 mutex_enter(&un->un_pm_mutex); 10498 10499 if (un->un_pm_count < 0) { 10500 mutex_exit(&un->un_pm_mutex); 10501 10502 SD_TRACE(SD_LOG_IO_PM, un, 10503 "sd_pm_entry: power up component\n"); 10504 10505 /* 10506 * pm_raise_power will cause sdpower to be called 10507 * which brings the device power level to the 10508 * desired state, ON in this case. If successful, 10509 * un_pm_count and un_power_level will be updated 10510 * appropriately. 10511 */ 10512 return_status = pm_raise_power(SD_DEVINFO(un), 0, 10513 SD_SPINDLE_ON); 10514 10515 mutex_enter(&un->un_pm_mutex); 10516 10517 if (return_status != DDI_SUCCESS) { 10518 /* 10519 * Power up failed. 10520 * Idle the device and adjust the count 10521 * so the result on exit is that we're 10522 * still powered down, ie. count is less than 0. 10523 */ 10524 SD_TRACE(SD_LOG_IO_PM, un, 10525 "sd_pm_entry: power up failed," 10526 " idle the component\n"); 10527 10528 (void) pm_idle_component(SD_DEVINFO(un), 0); 10529 un->un_pm_count--; 10530 } else { 10531 /* 10532 * Device is powered up, verify the 10533 * count is non-negative. 10534 * This is debug only. 10535 */ 10536 ASSERT(un->un_pm_count == 0); 10537 } 10538 } 10539 10540 if (return_status == DDI_SUCCESS) { 10541 /* 10542 * For performance, now that the device has been tagged 10543 * as busy, and it's known to be powered up, update the 10544 * chain types to use jump tables that do not include 10545 * pm. This significantly lowers the overhead and 10546 * therefore improves performance. 10547 */ 10548 10549 mutex_exit(&un->un_pm_mutex); 10550 mutex_enter(SD_MUTEX(un)); 10551 SD_TRACE(SD_LOG_IO_PM, un, 10552 "sd_pm_entry: changing uscsi_chain_type from %d\n", 10553 un->un_uscsi_chain_type); 10554 10555 if (un->un_f_non_devbsize_supported) { 10556 un->un_buf_chain_type = 10557 SD_CHAIN_INFO_RMMEDIA_NO_PM; 10558 } else { 10559 un->un_buf_chain_type = 10560 SD_CHAIN_INFO_DISK_NO_PM; 10561 } 10562 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM; 10563 10564 SD_TRACE(SD_LOG_IO_PM, un, 10565 " changed uscsi_chain_type to %d\n", 10566 un->un_uscsi_chain_type); 10567 mutex_exit(SD_MUTEX(un)); 10568 mutex_enter(&un->un_pm_mutex); 10569 10570 if (un->un_pm_idle_timeid == NULL) { 10571 /* 300 ms. */ 10572 un->un_pm_idle_timeid = 10573 timeout(sd_pm_idletimeout_handler, un, 10574 (drv_usectohz((clock_t)300000))); 10575 /* 10576 * Include an extra call to busy which keeps the 10577 * device busy with-respect-to the PM layer 10578 * until the timer fires, at which time it'll 10579 * get the extra idle call. 10580 */ 10581 (void) pm_busy_component(SD_DEVINFO(un), 0); 10582 } 10583 } 10584 } 10585 un->un_pm_busy = FALSE; 10586 /* Next... */ 10587 cv_signal(&un->un_pm_busy_cv); 10588 10589 un->un_pm_count++; 10590 10591 SD_TRACE(SD_LOG_IO_PM, un, 10592 "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count); 10593 10594 mutex_exit(&un->un_pm_mutex); 10595 10596 return (return_status); 10597 } 10598 10599 10600 /* 10601 * Function: sd_pm_exit 10602 * 10603 * Description: Called at the completion of a command to manage busy 10604 * status for the device. If the device becomes idle the 10605 * PM framework is notified. 10606 * 10607 * Context: Kernel thread context 10608 */ 10609 10610 static void 10611 sd_pm_exit(struct sd_lun *un) 10612 { 10613 ASSERT(!mutex_owned(SD_MUTEX(un))); 10614 ASSERT(!mutex_owned(&un->un_pm_mutex)); 10615 10616 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n"); 10617 10618 /* 10619 * After attach the following flag is only read, so don't 10620 * take the penalty of acquiring a mutex for it. 10621 */ 10622 if (un->un_f_pm_is_enabled == TRUE) { 10623 10624 mutex_enter(&un->un_pm_mutex); 10625 un->un_pm_count--; 10626 10627 SD_TRACE(SD_LOG_IO_PM, un, 10628 "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count); 10629 10630 ASSERT(un->un_pm_count >= 0); 10631 if (un->un_pm_count == 0) { 10632 mutex_exit(&un->un_pm_mutex); 10633 10634 SD_TRACE(SD_LOG_IO_PM, un, 10635 "sd_pm_exit: idle component\n"); 10636 10637 (void) pm_idle_component(SD_DEVINFO(un), 0); 10638 10639 } else { 10640 mutex_exit(&un->un_pm_mutex); 10641 } 10642 } 10643 10644 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n"); 10645 } 10646 10647 10648 /* 10649 * Function: sdopen 10650 * 10651 * Description: Driver's open(9e) entry point function. 10652 * 10653 * Arguments: dev_i - pointer to device number 10654 * flag - how to open file (FEXCL, FNDELAY, FREAD, FWRITE) 10655 * otyp - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR) 10656 * cred_p - user credential pointer 10657 * 10658 * Return Code: EINVAL 10659 * ENXIO 10660 * EIO 10661 * EROFS 10662 * EBUSY 10663 * 10664 * Context: Kernel thread context 10665 */ 10666 /* ARGSUSED */ 10667 static int 10668 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p) 10669 { 10670 struct sd_lun *un; 10671 int nodelay; 10672 int part; 10673 uint64_t partmask; 10674 int instance; 10675 dev_t dev; 10676 int rval = EIO; 10677 10678 /* Validate the open type */ 10679 if (otyp >= OTYPCNT) { 10680 return (EINVAL); 10681 } 10682 10683 dev = *dev_p; 10684 instance = SDUNIT(dev); 10685 mutex_enter(&sd_detach_mutex); 10686 10687 /* 10688 * Fail the open if there is no softstate for the instance, or 10689 * if another thread somewhere is trying to detach the instance. 10690 */ 10691 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 10692 (un->un_detach_count != 0)) { 10693 mutex_exit(&sd_detach_mutex); 10694 /* 10695 * The probe cache only needs to be cleared when open (9e) fails 10696 * with ENXIO (4238046). 10697 */ 10698 /* 10699 * un-conditionally clearing probe cache is ok with 10700 * separate sd/ssd binaries 10701 * x86 platform can be an issue with both parallel 10702 * and fibre in 1 binary 10703 */ 10704 sd_scsi_clear_probe_cache(); 10705 return (ENXIO); 10706 } 10707 10708 /* 10709 * The un_layer_count is to prevent another thread in specfs from 10710 * trying to detach the instance, which can happen when we are 10711 * called from a higher-layer driver instead of thru specfs. 10712 * This will not be needed when DDI provides a layered driver 10713 * interface that allows specfs to know that an instance is in 10714 * use by a layered driver & should not be detached. 10715 * 10716 * Note: the semantics for layered driver opens are exactly one 10717 * close for every open. 10718 */ 10719 if (otyp == OTYP_LYR) { 10720 un->un_layer_count++; 10721 } 10722 10723 /* 10724 * Keep a count of the current # of opens in progress. This is because 10725 * some layered drivers try to call us as a regular open. This can 10726 * cause problems that we cannot prevent, however by keeping this count 10727 * we can at least keep our open and detach routines from racing against 10728 * each other under such conditions. 10729 */ 10730 un->un_opens_in_progress++; 10731 mutex_exit(&sd_detach_mutex); 10732 10733 nodelay = (flag & (FNDELAY | FNONBLOCK)); 10734 part = SDPART(dev); 10735 partmask = 1 << part; 10736 10737 /* 10738 * We use a semaphore here in order to serialize 10739 * open and close requests on the device. 10740 */ 10741 sema_p(&un->un_semoclose); 10742 10743 mutex_enter(SD_MUTEX(un)); 10744 10745 /* 10746 * All device accesses go thru sdstrategy() where we check 10747 * on suspend status but there could be a scsi_poll command, 10748 * which bypasses sdstrategy(), so we need to check pm 10749 * status. 10750 */ 10751 10752 if (!nodelay) { 10753 while ((un->un_state == SD_STATE_SUSPENDED) || 10754 (un->un_state == SD_STATE_PM_CHANGING)) { 10755 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10756 } 10757 10758 mutex_exit(SD_MUTEX(un)); 10759 if (sd_pm_entry(un) != DDI_SUCCESS) { 10760 rval = EIO; 10761 SD_ERROR(SD_LOG_OPEN_CLOSE, un, 10762 "sdopen: sd_pm_entry failed\n"); 10763 goto open_failed_with_pm; 10764 } 10765 mutex_enter(SD_MUTEX(un)); 10766 } 10767 10768 /* check for previous exclusive open */ 10769 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un); 10770 SD_TRACE(SD_LOG_OPEN_CLOSE, un, 10771 "sdopen: exclopen=%x, flag=%x, regopen=%x\n", 10772 un->un_exclopen, flag, un->un_ocmap.regopen[otyp]); 10773 10774 if (un->un_exclopen & (partmask)) { 10775 goto excl_open_fail; 10776 } 10777 10778 if (flag & FEXCL) { 10779 int i; 10780 if (un->un_ocmap.lyropen[part]) { 10781 goto excl_open_fail; 10782 } 10783 for (i = 0; i < (OTYPCNT - 1); i++) { 10784 if (un->un_ocmap.regopen[i] & (partmask)) { 10785 goto excl_open_fail; 10786 } 10787 } 10788 } 10789 10790 /* 10791 * Check the write permission if this is a removable media device, 10792 * NDELAY has not been set, and writable permission is requested. 10793 * 10794 * Note: If NDELAY was set and this is write-protected media the WRITE 10795 * attempt will fail with EIO as part of the I/O processing. This is a 10796 * more permissive implementation that allows the open to succeed and 10797 * WRITE attempts to fail when appropriate. 10798 */ 10799 if (un->un_f_chk_wp_open) { 10800 if ((flag & FWRITE) && (!nodelay)) { 10801 mutex_exit(SD_MUTEX(un)); 10802 /* 10803 * Defer the check for write permission on writable 10804 * DVD drive till sdstrategy and will not fail open even 10805 * if FWRITE is set as the device can be writable 10806 * depending upon the media and the media can change 10807 * after the call to open(). 10808 */ 10809 if (un->un_f_dvdram_writable_device == FALSE) { 10810 if (ISCD(un) || sr_check_wp(dev)) { 10811 rval = EROFS; 10812 mutex_enter(SD_MUTEX(un)); 10813 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: " 10814 "write to cd or write protected media\n"); 10815 goto open_fail; 10816 } 10817 } 10818 mutex_enter(SD_MUTEX(un)); 10819 } 10820 } 10821 10822 /* 10823 * If opening in NDELAY/NONBLOCK mode, just return. 10824 * Check if disk is ready and has a valid geometry later. 10825 */ 10826 if (!nodelay) { 10827 mutex_exit(SD_MUTEX(un)); 10828 rval = sd_ready_and_valid(un); 10829 mutex_enter(SD_MUTEX(un)); 10830 /* 10831 * Fail if device is not ready or if the number of disk 10832 * blocks is zero or negative for non CD devices. 10833 */ 10834 if ((rval != SD_READY_VALID) || 10835 (!ISCD(un) && un->un_map[part].dkl_nblk <= 0)) { 10836 rval = un->un_f_has_removable_media ? ENXIO : EIO; 10837 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: " 10838 "device not ready or invalid disk block value\n"); 10839 goto open_fail; 10840 } 10841 #if defined(__i386) || defined(__amd64) 10842 } else { 10843 uchar_t *cp; 10844 /* 10845 * x86 requires special nodelay handling, so that p0 is 10846 * always defined and accessible. 10847 * Invalidate geometry only if device is not already open. 10848 */ 10849 cp = &un->un_ocmap.chkd[0]; 10850 while (cp < &un->un_ocmap.chkd[OCSIZE]) { 10851 if (*cp != (uchar_t)0) { 10852 break; 10853 } 10854 cp++; 10855 } 10856 if (cp == &un->un_ocmap.chkd[OCSIZE]) { 10857 un->un_f_geometry_is_valid = FALSE; 10858 } 10859 10860 #endif 10861 } 10862 10863 if (otyp == OTYP_LYR) { 10864 un->un_ocmap.lyropen[part]++; 10865 } else { 10866 un->un_ocmap.regopen[otyp] |= partmask; 10867 } 10868 10869 /* Set up open and exclusive open flags */ 10870 if (flag & FEXCL) { 10871 un->un_exclopen |= (partmask); 10872 } 10873 10874 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: " 10875 "open of part %d type %d\n", part, otyp); 10876 10877 mutex_exit(SD_MUTEX(un)); 10878 if (!nodelay) { 10879 sd_pm_exit(un); 10880 } 10881 10882 sema_v(&un->un_semoclose); 10883 10884 mutex_enter(&sd_detach_mutex); 10885 un->un_opens_in_progress--; 10886 mutex_exit(&sd_detach_mutex); 10887 10888 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n"); 10889 return (DDI_SUCCESS); 10890 10891 excl_open_fail: 10892 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n"); 10893 rval = EBUSY; 10894 10895 open_fail: 10896 mutex_exit(SD_MUTEX(un)); 10897 10898 /* 10899 * On a failed open we must exit the pm management. 10900 */ 10901 if (!nodelay) { 10902 sd_pm_exit(un); 10903 } 10904 open_failed_with_pm: 10905 sema_v(&un->un_semoclose); 10906 10907 mutex_enter(&sd_detach_mutex); 10908 un->un_opens_in_progress--; 10909 if (otyp == OTYP_LYR) { 10910 un->un_layer_count--; 10911 } 10912 mutex_exit(&sd_detach_mutex); 10913 10914 return (rval); 10915 } 10916 10917 10918 /* 10919 * Function: sdclose 10920 * 10921 * Description: Driver's close(9e) entry point function. 10922 * 10923 * Arguments: dev - device number 10924 * flag - file status flag, informational only 10925 * otyp - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR) 10926 * cred_p - user credential pointer 10927 * 10928 * Return Code: ENXIO 10929 * 10930 * Context: Kernel thread context 10931 */ 10932 /* ARGSUSED */ 10933 static int 10934 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p) 10935 { 10936 struct sd_lun *un; 10937 uchar_t *cp; 10938 int part; 10939 int nodelay; 10940 int rval = 0; 10941 10942 /* Validate the open type */ 10943 if (otyp >= OTYPCNT) { 10944 return (ENXIO); 10945 } 10946 10947 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 10948 return (ENXIO); 10949 } 10950 10951 part = SDPART(dev); 10952 nodelay = flag & (FNDELAY | FNONBLOCK); 10953 10954 SD_TRACE(SD_LOG_OPEN_CLOSE, un, 10955 "sdclose: close of part %d type %d\n", part, otyp); 10956 10957 /* 10958 * We use a semaphore here in order to serialize 10959 * open and close requests on the device. 10960 */ 10961 sema_p(&un->un_semoclose); 10962 10963 mutex_enter(SD_MUTEX(un)); 10964 10965 /* Don't proceed if power is being changed. */ 10966 while (un->un_state == SD_STATE_PM_CHANGING) { 10967 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10968 } 10969 10970 if (un->un_exclopen & (1 << part)) { 10971 un->un_exclopen &= ~(1 << part); 10972 } 10973 10974 /* Update the open partition map */ 10975 if (otyp == OTYP_LYR) { 10976 un->un_ocmap.lyropen[part] -= 1; 10977 } else { 10978 un->un_ocmap.regopen[otyp] &= ~(1 << part); 10979 } 10980 10981 cp = &un->un_ocmap.chkd[0]; 10982 while (cp < &un->un_ocmap.chkd[OCSIZE]) { 10983 if (*cp != NULL) { 10984 break; 10985 } 10986 cp++; 10987 } 10988 10989 if (cp == &un->un_ocmap.chkd[OCSIZE]) { 10990 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n"); 10991 10992 /* 10993 * We avoid persistance upon the last close, and set 10994 * the throttle back to the maximum. 10995 */ 10996 un->un_throttle = un->un_saved_throttle; 10997 10998 if (un->un_state == SD_STATE_OFFLINE) { 10999 if (un->un_f_is_fibre == FALSE) { 11000 scsi_log(SD_DEVINFO(un), sd_label, 11001 CE_WARN, "offline\n"); 11002 } 11003 un->un_f_geometry_is_valid = FALSE; 11004 11005 } else { 11006 /* 11007 * Flush any outstanding writes in NVRAM cache. 11008 * Note: SYNCHRONIZE CACHE is an optional SCSI-2 11009 * cmd, it may not work for non-Pluto devices. 11010 * SYNCHRONIZE CACHE is not required for removables, 11011 * except DVD-RAM drives. 11012 * 11013 * Also note: because SYNCHRONIZE CACHE is currently 11014 * the only command issued here that requires the 11015 * drive be powered up, only do the power up before 11016 * sending the Sync Cache command. If additional 11017 * commands are added which require a powered up 11018 * drive, the following sequence may have to change. 11019 * 11020 * And finally, note that parallel SCSI on SPARC 11021 * only issues a Sync Cache to DVD-RAM, a newly 11022 * supported device. 11023 */ 11024 #if defined(__i386) || defined(__amd64) 11025 if (un->un_f_sync_cache_supported || 11026 un->un_f_dvdram_writable_device == TRUE) { 11027 #else 11028 if (un->un_f_dvdram_writable_device == TRUE) { 11029 #endif 11030 mutex_exit(SD_MUTEX(un)); 11031 if (sd_pm_entry(un) == DDI_SUCCESS) { 11032 rval = 11033 sd_send_scsi_SYNCHRONIZE_CACHE(un, 11034 NULL); 11035 /* ignore error if not supported */ 11036 if (rval == ENOTSUP) { 11037 rval = 0; 11038 } else if (rval != 0) { 11039 rval = EIO; 11040 } 11041 sd_pm_exit(un); 11042 } else { 11043 rval = EIO; 11044 } 11045 mutex_enter(SD_MUTEX(un)); 11046 } 11047 11048 /* 11049 * For devices which supports DOOR_LOCK, send an ALLOW 11050 * MEDIA REMOVAL command, but don't get upset if it 11051 * fails. We need to raise the power of the drive before 11052 * we can call sd_send_scsi_DOORLOCK() 11053 */ 11054 if (un->un_f_doorlock_supported) { 11055 mutex_exit(SD_MUTEX(un)); 11056 if (sd_pm_entry(un) == DDI_SUCCESS) { 11057 rval = sd_send_scsi_DOORLOCK(un, 11058 SD_REMOVAL_ALLOW, SD_PATH_DIRECT); 11059 11060 sd_pm_exit(un); 11061 if (ISCD(un) && (rval != 0) && 11062 (nodelay != 0)) { 11063 rval = ENXIO; 11064 } 11065 } else { 11066 rval = EIO; 11067 } 11068 mutex_enter(SD_MUTEX(un)); 11069 } 11070 11071 /* 11072 * If a device has removable media, invalidate all 11073 * parameters related to media, such as geometry, 11074 * blocksize, and blockcount. 11075 */ 11076 if (un->un_f_has_removable_media) { 11077 sr_ejected(un); 11078 } 11079 11080 /* 11081 * Destroy the cache (if it exists) which was 11082 * allocated for the write maps since this is 11083 * the last close for this media. 11084 */ 11085 if (un->un_wm_cache) { 11086 /* 11087 * Check if there are pending commands. 11088 * and if there are give a warning and 11089 * do not destroy the cache. 11090 */ 11091 if (un->un_ncmds_in_driver > 0) { 11092 scsi_log(SD_DEVINFO(un), 11093 sd_label, CE_WARN, 11094 "Unable to clean up memory " 11095 "because of pending I/O\n"); 11096 } else { 11097 kmem_cache_destroy( 11098 un->un_wm_cache); 11099 un->un_wm_cache = NULL; 11100 } 11101 } 11102 } 11103 } 11104 11105 mutex_exit(SD_MUTEX(un)); 11106 sema_v(&un->un_semoclose); 11107 11108 if (otyp == OTYP_LYR) { 11109 mutex_enter(&sd_detach_mutex); 11110 /* 11111 * The detach routine may run when the layer count 11112 * drops to zero. 11113 */ 11114 un->un_layer_count--; 11115 mutex_exit(&sd_detach_mutex); 11116 } 11117 11118 return (rval); 11119 } 11120 11121 11122 /* 11123 * Function: sd_ready_and_valid 11124 * 11125 * Description: Test if device is ready and has a valid geometry. 11126 * 11127 * Arguments: dev - device number 11128 * un - driver soft state (unit) structure 11129 * 11130 * Return Code: SD_READY_VALID ready and valid label 11131 * SD_READY_NOT_VALID ready, geom ops never applicable 11132 * SD_NOT_READY_VALID not ready, no label 11133 * SD_RESERVED_BY_OTHERS reservation conflict 11134 * 11135 * Context: Never called at interrupt context. 11136 */ 11137 11138 static int 11139 sd_ready_and_valid(struct sd_lun *un) 11140 { 11141 struct sd_errstats *stp; 11142 uint64_t capacity; 11143 uint_t lbasize; 11144 int rval = SD_READY_VALID; 11145 char name_str[48]; 11146 11147 ASSERT(un != NULL); 11148 ASSERT(!mutex_owned(SD_MUTEX(un))); 11149 11150 mutex_enter(SD_MUTEX(un)); 11151 /* 11152 * If a device has removable media, we must check if media is 11153 * ready when checking if this device is ready and valid. 11154 */ 11155 if (un->un_f_has_removable_media) { 11156 mutex_exit(SD_MUTEX(un)); 11157 if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) { 11158 rval = SD_NOT_READY_VALID; 11159 mutex_enter(SD_MUTEX(un)); 11160 goto done; 11161 } 11162 11163 mutex_enter(SD_MUTEX(un)); 11164 if ((un->un_f_geometry_is_valid == FALSE) || 11165 (un->un_f_blockcount_is_valid == FALSE) || 11166 (un->un_f_tgt_blocksize_is_valid == FALSE)) { 11167 11168 /* capacity has to be read every open. */ 11169 mutex_exit(SD_MUTEX(un)); 11170 if (sd_send_scsi_READ_CAPACITY(un, &capacity, 11171 &lbasize, SD_PATH_DIRECT) != 0) { 11172 mutex_enter(SD_MUTEX(un)); 11173 un->un_f_geometry_is_valid = FALSE; 11174 rval = SD_NOT_READY_VALID; 11175 goto done; 11176 } else { 11177 mutex_enter(SD_MUTEX(un)); 11178 sd_update_block_info(un, lbasize, capacity); 11179 } 11180 } 11181 11182 /* 11183 * Check if the media in the device is writable or not. 11184 */ 11185 if ((un->un_f_geometry_is_valid == FALSE) && ISCD(un)) { 11186 sd_check_for_writable_cd(un); 11187 } 11188 11189 } else { 11190 /* 11191 * Do a test unit ready to clear any unit attention from non-cd 11192 * devices. 11193 */ 11194 mutex_exit(SD_MUTEX(un)); 11195 (void) sd_send_scsi_TEST_UNIT_READY(un, 0); 11196 mutex_enter(SD_MUTEX(un)); 11197 } 11198 11199 11200 /* 11201 * If this is a non 512 block device, allocate space for 11202 * the wmap cache. This is being done here since every time 11203 * a media is changed this routine will be called and the 11204 * block size is a function of media rather than device. 11205 */ 11206 if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) { 11207 if (!(un->un_wm_cache)) { 11208 (void) snprintf(name_str, sizeof (name_str), 11209 "%s%d_cache", 11210 ddi_driver_name(SD_DEVINFO(un)), 11211 ddi_get_instance(SD_DEVINFO(un))); 11212 un->un_wm_cache = kmem_cache_create( 11213 name_str, sizeof (struct sd_w_map), 11214 8, sd_wm_cache_constructor, 11215 sd_wm_cache_destructor, NULL, 11216 (void *)un, NULL, 0); 11217 if (!(un->un_wm_cache)) { 11218 rval = ENOMEM; 11219 goto done; 11220 } 11221 } 11222 } 11223 11224 if (un->un_state == SD_STATE_NORMAL) { 11225 /* 11226 * If the target is not yet ready here (defined by a TUR 11227 * failure), invalidate the geometry and print an 'offline' 11228 * message. This is a legacy message, as the state of the 11229 * target is not actually changed to SD_STATE_OFFLINE. 11230 * 11231 * If the TUR fails for EACCES (Reservation Conflict), 11232 * SD_RESERVED_BY_OTHERS will be returned to indicate 11233 * reservation conflict. If the TUR fails for other 11234 * reasons, SD_NOT_READY_VALID will be returned. 11235 */ 11236 int err; 11237 11238 mutex_exit(SD_MUTEX(un)); 11239 err = sd_send_scsi_TEST_UNIT_READY(un, 0); 11240 mutex_enter(SD_MUTEX(un)); 11241 11242 if (err != 0) { 11243 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 11244 "offline or reservation conflict\n"); 11245 un->un_f_geometry_is_valid = FALSE; 11246 if (err == EACCES) { 11247 rval = SD_RESERVED_BY_OTHERS; 11248 } else { 11249 rval = SD_NOT_READY_VALID; 11250 } 11251 goto done; 11252 } 11253 } 11254 11255 if (un->un_f_format_in_progress == FALSE) { 11256 /* 11257 * Note: sd_validate_geometry may return TRUE, but that does 11258 * not necessarily mean un_f_geometry_is_valid == TRUE! 11259 */ 11260 rval = sd_validate_geometry(un, SD_PATH_DIRECT); 11261 if (rval == ENOTSUP) { 11262 if (un->un_f_geometry_is_valid == TRUE) 11263 rval = 0; 11264 else { 11265 rval = SD_READY_NOT_VALID; 11266 goto done; 11267 } 11268 } 11269 if (rval != 0) { 11270 /* 11271 * We don't check the validity of geometry for 11272 * CDROMs. Also we assume we have a good label 11273 * even if sd_validate_geometry returned ENOMEM. 11274 */ 11275 if (!ISCD(un) && rval != ENOMEM) { 11276 rval = SD_NOT_READY_VALID; 11277 goto done; 11278 } 11279 } 11280 } 11281 11282 /* 11283 * If this device supports DOOR_LOCK command, try and send 11284 * this command to PREVENT MEDIA REMOVAL, but don't get upset 11285 * if it fails. For a CD, however, it is an error 11286 */ 11287 if (un->un_f_doorlock_supported) { 11288 mutex_exit(SD_MUTEX(un)); 11289 if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT, 11290 SD_PATH_DIRECT) != 0) && ISCD(un)) { 11291 rval = SD_NOT_READY_VALID; 11292 mutex_enter(SD_MUTEX(un)); 11293 goto done; 11294 } 11295 mutex_enter(SD_MUTEX(un)); 11296 } 11297 11298 /* The state has changed, inform the media watch routines */ 11299 un->un_mediastate = DKIO_INSERTED; 11300 cv_broadcast(&un->un_state_cv); 11301 rval = SD_READY_VALID; 11302 11303 done: 11304 11305 /* 11306 * Initialize the capacity kstat value, if no media previously 11307 * (capacity kstat is 0) and a media has been inserted 11308 * (un_blockcount > 0). 11309 */ 11310 if (un->un_errstats != NULL) { 11311 stp = (struct sd_errstats *)un->un_errstats->ks_data; 11312 if ((stp->sd_capacity.value.ui64 == 0) && 11313 (un->un_f_blockcount_is_valid == TRUE)) { 11314 stp->sd_capacity.value.ui64 = 11315 (uint64_t)((uint64_t)un->un_blockcount * 11316 un->un_sys_blocksize); 11317 } 11318 } 11319 11320 mutex_exit(SD_MUTEX(un)); 11321 return (rval); 11322 } 11323 11324 11325 /* 11326 * Function: sdmin 11327 * 11328 * Description: Routine to limit the size of a data transfer. Used in 11329 * conjunction with physio(9F). 11330 * 11331 * Arguments: bp - pointer to the indicated buf(9S) struct. 11332 * 11333 * Context: Kernel thread context. 11334 */ 11335 11336 static void 11337 sdmin(struct buf *bp) 11338 { 11339 struct sd_lun *un; 11340 int instance; 11341 11342 instance = SDUNIT(bp->b_edev); 11343 11344 un = ddi_get_soft_state(sd_state, instance); 11345 ASSERT(un != NULL); 11346 11347 if (bp->b_bcount > un->un_max_xfer_size) { 11348 bp->b_bcount = un->un_max_xfer_size; 11349 } 11350 } 11351 11352 11353 /* 11354 * Function: sdread 11355 * 11356 * Description: Driver's read(9e) entry point function. 11357 * 11358 * Arguments: dev - device number 11359 * uio - structure pointer describing where data is to be stored 11360 * in user's space 11361 * cred_p - user credential pointer 11362 * 11363 * Return Code: ENXIO 11364 * EIO 11365 * EINVAL 11366 * value returned by physio 11367 * 11368 * Context: Kernel thread context. 11369 */ 11370 /* ARGSUSED */ 11371 static int 11372 sdread(dev_t dev, struct uio *uio, cred_t *cred_p) 11373 { 11374 struct sd_lun *un = NULL; 11375 int secmask; 11376 int err; 11377 11378 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 11379 return (ENXIO); 11380 } 11381 11382 ASSERT(!mutex_owned(SD_MUTEX(un))); 11383 11384 if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) { 11385 mutex_enter(SD_MUTEX(un)); 11386 /* 11387 * Because the call to sd_ready_and_valid will issue I/O we 11388 * must wait here if either the device is suspended or 11389 * if it's power level is changing. 11390 */ 11391 while ((un->un_state == SD_STATE_SUSPENDED) || 11392 (un->un_state == SD_STATE_PM_CHANGING)) { 11393 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 11394 } 11395 un->un_ncmds_in_driver++; 11396 mutex_exit(SD_MUTEX(un)); 11397 if ((sd_ready_and_valid(un)) != SD_READY_VALID) { 11398 mutex_enter(SD_MUTEX(un)); 11399 un->un_ncmds_in_driver--; 11400 ASSERT(un->un_ncmds_in_driver >= 0); 11401 mutex_exit(SD_MUTEX(un)); 11402 return (EIO); 11403 } 11404 mutex_enter(SD_MUTEX(un)); 11405 un->un_ncmds_in_driver--; 11406 ASSERT(un->un_ncmds_in_driver >= 0); 11407 mutex_exit(SD_MUTEX(un)); 11408 } 11409 11410 /* 11411 * Read requests are restricted to multiples of the system block size. 11412 */ 11413 secmask = un->un_sys_blocksize - 1; 11414 11415 if (uio->uio_loffset & ((offset_t)(secmask))) { 11416 SD_ERROR(SD_LOG_READ_WRITE, un, 11417 "sdread: file offset not modulo %d\n", 11418 un->un_sys_blocksize); 11419 err = EINVAL; 11420 } else if (uio->uio_iov->iov_len & (secmask)) { 11421 SD_ERROR(SD_LOG_READ_WRITE, un, 11422 "sdread: transfer length not modulo %d\n", 11423 un->un_sys_blocksize); 11424 err = EINVAL; 11425 } else { 11426 err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio); 11427 } 11428 return (err); 11429 } 11430 11431 11432 /* 11433 * Function: sdwrite 11434 * 11435 * Description: Driver's write(9e) entry point function. 11436 * 11437 * Arguments: dev - device number 11438 * uio - structure pointer describing where data is stored in 11439 * user's space 11440 * cred_p - user credential pointer 11441 * 11442 * Return Code: ENXIO 11443 * EIO 11444 * EINVAL 11445 * value returned by physio 11446 * 11447 * Context: Kernel thread context. 11448 */ 11449 /* ARGSUSED */ 11450 static int 11451 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p) 11452 { 11453 struct sd_lun *un = NULL; 11454 int secmask; 11455 int err; 11456 11457 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 11458 return (ENXIO); 11459 } 11460 11461 ASSERT(!mutex_owned(SD_MUTEX(un))); 11462 11463 if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) { 11464 mutex_enter(SD_MUTEX(un)); 11465 /* 11466 * Because the call to sd_ready_and_valid will issue I/O we 11467 * must wait here if either the device is suspended or 11468 * if it's power level is changing. 11469 */ 11470 while ((un->un_state == SD_STATE_SUSPENDED) || 11471 (un->un_state == SD_STATE_PM_CHANGING)) { 11472 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 11473 } 11474 un->un_ncmds_in_driver++; 11475 mutex_exit(SD_MUTEX(un)); 11476 if ((sd_ready_and_valid(un)) != SD_READY_VALID) { 11477 mutex_enter(SD_MUTEX(un)); 11478 un->un_ncmds_in_driver--; 11479 ASSERT(un->un_ncmds_in_driver >= 0); 11480 mutex_exit(SD_MUTEX(un)); 11481 return (EIO); 11482 } 11483 mutex_enter(SD_MUTEX(un)); 11484 un->un_ncmds_in_driver--; 11485 ASSERT(un->un_ncmds_in_driver >= 0); 11486 mutex_exit(SD_MUTEX(un)); 11487 } 11488 11489 /* 11490 * Write requests are restricted to multiples of the system block size. 11491 */ 11492 secmask = un->un_sys_blocksize - 1; 11493 11494 if (uio->uio_loffset & ((offset_t)(secmask))) { 11495 SD_ERROR(SD_LOG_READ_WRITE, un, 11496 "sdwrite: file offset not modulo %d\n", 11497 un->un_sys_blocksize); 11498 err = EINVAL; 11499 } else if (uio->uio_iov->iov_len & (secmask)) { 11500 SD_ERROR(SD_LOG_READ_WRITE, un, 11501 "sdwrite: transfer length not modulo %d\n", 11502 un->un_sys_blocksize); 11503 err = EINVAL; 11504 } else { 11505 err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio); 11506 } 11507 return (err); 11508 } 11509 11510 11511 /* 11512 * Function: sdaread 11513 * 11514 * Description: Driver's aread(9e) entry point function. 11515 * 11516 * Arguments: dev - device number 11517 * aio - structure pointer describing where data is to be stored 11518 * cred_p - user credential pointer 11519 * 11520 * Return Code: ENXIO 11521 * EIO 11522 * EINVAL 11523 * value returned by aphysio 11524 * 11525 * Context: Kernel thread context. 11526 */ 11527 /* ARGSUSED */ 11528 static int 11529 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p) 11530 { 11531 struct sd_lun *un = NULL; 11532 struct uio *uio = aio->aio_uio; 11533 int secmask; 11534 int err; 11535 11536 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 11537 return (ENXIO); 11538 } 11539 11540 ASSERT(!mutex_owned(SD_MUTEX(un))); 11541 11542 if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) { 11543 mutex_enter(SD_MUTEX(un)); 11544 /* 11545 * Because the call to sd_ready_and_valid will issue I/O we 11546 * must wait here if either the device is suspended or 11547 * if it's power level is changing. 11548 */ 11549 while ((un->un_state == SD_STATE_SUSPENDED) || 11550 (un->un_state == SD_STATE_PM_CHANGING)) { 11551 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 11552 } 11553 un->un_ncmds_in_driver++; 11554 mutex_exit(SD_MUTEX(un)); 11555 if ((sd_ready_and_valid(un)) != SD_READY_VALID) { 11556 mutex_enter(SD_MUTEX(un)); 11557 un->un_ncmds_in_driver--; 11558 ASSERT(un->un_ncmds_in_driver >= 0); 11559 mutex_exit(SD_MUTEX(un)); 11560 return (EIO); 11561 } 11562 mutex_enter(SD_MUTEX(un)); 11563 un->un_ncmds_in_driver--; 11564 ASSERT(un->un_ncmds_in_driver >= 0); 11565 mutex_exit(SD_MUTEX(un)); 11566 } 11567 11568 /* 11569 * Read requests are restricted to multiples of the system block size. 11570 */ 11571 secmask = un->un_sys_blocksize - 1; 11572 11573 if (uio->uio_loffset & ((offset_t)(secmask))) { 11574 SD_ERROR(SD_LOG_READ_WRITE, un, 11575 "sdaread: file offset not modulo %d\n", 11576 un->un_sys_blocksize); 11577 err = EINVAL; 11578 } else if (uio->uio_iov->iov_len & (secmask)) { 11579 SD_ERROR(SD_LOG_READ_WRITE, un, 11580 "sdaread: transfer length not modulo %d\n", 11581 un->un_sys_blocksize); 11582 err = EINVAL; 11583 } else { 11584 err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio); 11585 } 11586 return (err); 11587 } 11588 11589 11590 /* 11591 * Function: sdawrite 11592 * 11593 * Description: Driver's awrite(9e) entry point function. 11594 * 11595 * Arguments: dev - device number 11596 * aio - structure pointer describing where data is stored 11597 * cred_p - user credential pointer 11598 * 11599 * Return Code: ENXIO 11600 * EIO 11601 * EINVAL 11602 * value returned by aphysio 11603 * 11604 * Context: Kernel thread context. 11605 */ 11606 /* ARGSUSED */ 11607 static int 11608 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p) 11609 { 11610 struct sd_lun *un = NULL; 11611 struct uio *uio = aio->aio_uio; 11612 int secmask; 11613 int err; 11614 11615 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 11616 return (ENXIO); 11617 } 11618 11619 ASSERT(!mutex_owned(SD_MUTEX(un))); 11620 11621 if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) { 11622 mutex_enter(SD_MUTEX(un)); 11623 /* 11624 * Because the call to sd_ready_and_valid will issue I/O we 11625 * must wait here if either the device is suspended or 11626 * if it's power level is changing. 11627 */ 11628 while ((un->un_state == SD_STATE_SUSPENDED) || 11629 (un->un_state == SD_STATE_PM_CHANGING)) { 11630 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 11631 } 11632 un->un_ncmds_in_driver++; 11633 mutex_exit(SD_MUTEX(un)); 11634 if ((sd_ready_and_valid(un)) != SD_READY_VALID) { 11635 mutex_enter(SD_MUTEX(un)); 11636 un->un_ncmds_in_driver--; 11637 ASSERT(un->un_ncmds_in_driver >= 0); 11638 mutex_exit(SD_MUTEX(un)); 11639 return (EIO); 11640 } 11641 mutex_enter(SD_MUTEX(un)); 11642 un->un_ncmds_in_driver--; 11643 ASSERT(un->un_ncmds_in_driver >= 0); 11644 mutex_exit(SD_MUTEX(un)); 11645 } 11646 11647 /* 11648 * Write requests are restricted to multiples of the system block size. 11649 */ 11650 secmask = un->un_sys_blocksize - 1; 11651 11652 if (uio->uio_loffset & ((offset_t)(secmask))) { 11653 SD_ERROR(SD_LOG_READ_WRITE, un, 11654 "sdawrite: file offset not modulo %d\n", 11655 un->un_sys_blocksize); 11656 err = EINVAL; 11657 } else if (uio->uio_iov->iov_len & (secmask)) { 11658 SD_ERROR(SD_LOG_READ_WRITE, un, 11659 "sdawrite: transfer length not modulo %d\n", 11660 un->un_sys_blocksize); 11661 err = EINVAL; 11662 } else { 11663 err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio); 11664 } 11665 return (err); 11666 } 11667 11668 11669 11670 11671 11672 /* 11673 * Driver IO processing follows the following sequence: 11674 * 11675 * sdioctl(9E) sdstrategy(9E) biodone(9F) 11676 * | | ^ 11677 * v v | 11678 * sd_send_scsi_cmd() ddi_xbuf_qstrategy() +-------------------+ 11679 * | | | | 11680 * v | | | 11681 * sd_uscsi_strategy() sd_xbuf_strategy() sd_buf_iodone() sd_uscsi_iodone() 11682 * | | ^ ^ 11683 * v v | | 11684 * SD_BEGIN_IOSTART() SD_BEGIN_IOSTART() | | 11685 * | | | | 11686 * +---+ | +------------+ +-------+ 11687 * | | | | 11688 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 11689 * | v | | 11690 * | sd_mapblockaddr_iostart() sd_mapblockaddr_iodone() | 11691 * | | ^ | 11692 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 11693 * | v | | 11694 * | sd_mapblocksize_iostart() sd_mapblocksize_iodone() | 11695 * | | ^ | 11696 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 11697 * | v | | 11698 * | sd_checksum_iostart() sd_checksum_iodone() | 11699 * | | ^ | 11700 * +-> SD_NEXT_IOSTART()| SD_NEXT_IODONE()+------------->+ 11701 * | v | | 11702 * | sd_pm_iostart() sd_pm_iodone() | 11703 * | | ^ | 11704 * | | | | 11705 * +-> SD_NEXT_IOSTART()| SD_BEGIN_IODONE()--+--------------+ 11706 * | ^ 11707 * v | 11708 * sd_core_iostart() | 11709 * | | 11710 * | +------>(*destroypkt)() 11711 * +-> sd_start_cmds() <-+ | | 11712 * | | | v 11713 * | | | scsi_destroy_pkt(9F) 11714 * | | | 11715 * +->(*initpkt)() +- sdintr() 11716 * | | | | 11717 * | +-> scsi_init_pkt(9F) | +-> sd_handle_xxx() 11718 * | +-> scsi_setup_cdb(9F) | 11719 * | | 11720 * +--> scsi_transport(9F) | 11721 * | | 11722 * +----> SCSA ---->+ 11723 * 11724 * 11725 * This code is based upon the following presumtions: 11726 * 11727 * - iostart and iodone functions operate on buf(9S) structures. These 11728 * functions perform the necessary operations on the buf(9S) and pass 11729 * them along to the next function in the chain by using the macros 11730 * SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE() 11731 * (for iodone side functions). 11732 * 11733 * - The iostart side functions may sleep. The iodone side functions 11734 * are called under interrupt context and may NOT sleep. Therefore 11735 * iodone side functions also may not call iostart side functions. 11736 * (NOTE: iostart side functions should NOT sleep for memory, as 11737 * this could result in deadlock.) 11738 * 11739 * - An iostart side function may call its corresponding iodone side 11740 * function directly (if necessary). 11741 * 11742 * - In the event of an error, an iostart side function can return a buf(9S) 11743 * to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and 11744 * b_error in the usual way of course). 11745 * 11746 * - The taskq mechanism may be used by the iodone side functions to dispatch 11747 * requests to the iostart side functions. The iostart side functions in 11748 * this case would be called under the context of a taskq thread, so it's 11749 * OK for them to block/sleep/spin in this case. 11750 * 11751 * - iostart side functions may allocate "shadow" buf(9S) structs and 11752 * pass them along to the next function in the chain. The corresponding 11753 * iodone side functions must coalesce the "shadow" bufs and return 11754 * the "original" buf to the next higher layer. 11755 * 11756 * - The b_private field of the buf(9S) struct holds a pointer to 11757 * an sd_xbuf struct, which contains information needed to 11758 * construct the scsi_pkt for the command. 11759 * 11760 * - The SD_MUTEX(un) is NOT held across calls to the next layer. Each 11761 * layer must acquire & release the SD_MUTEX(un) as needed. 11762 */ 11763 11764 11765 /* 11766 * Create taskq for all targets in the system. This is created at 11767 * _init(9E) and destroyed at _fini(9E). 11768 * 11769 * Note: here we set the minalloc to a reasonably high number to ensure that 11770 * we will have an adequate supply of task entries available at interrupt time. 11771 * This is used in conjunction with the TASKQ_PREPOPULATE flag in 11772 * sd_create_taskq(). Since we do not want to sleep for allocations at 11773 * interrupt time, set maxalloc equal to minalloc. That way we will just fail 11774 * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq 11775 * requests any one instant in time. 11776 */ 11777 #define SD_TASKQ_NUMTHREADS 8 11778 #define SD_TASKQ_MINALLOC 256 11779 #define SD_TASKQ_MAXALLOC 256 11780 11781 static taskq_t *sd_tq = NULL; 11782 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq)) 11783 11784 static int sd_taskq_minalloc = SD_TASKQ_MINALLOC; 11785 static int sd_taskq_maxalloc = SD_TASKQ_MAXALLOC; 11786 11787 /* 11788 * The following task queue is being created for the write part of 11789 * read-modify-write of non-512 block size devices. 11790 * Limit the number of threads to 1 for now. This number has been choosen 11791 * considering the fact that it applies only to dvd ram drives/MO drives 11792 * currently. Performance for which is not main criteria at this stage. 11793 * Note: It needs to be explored if we can use a single taskq in future 11794 */ 11795 #define SD_WMR_TASKQ_NUMTHREADS 1 11796 static taskq_t *sd_wmr_tq = NULL; 11797 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq)) 11798 11799 /* 11800 * Function: sd_taskq_create 11801 * 11802 * Description: Create taskq thread(s) and preallocate task entries 11803 * 11804 * Return Code: Returns a pointer to the allocated taskq_t. 11805 * 11806 * Context: Can sleep. Requires blockable context. 11807 * 11808 * Notes: - The taskq() facility currently is NOT part of the DDI. 11809 * (definitely NOT recommeded for 3rd-party drivers!) :-) 11810 * - taskq_create() will block for memory, also it will panic 11811 * if it cannot create the requested number of threads. 11812 * - Currently taskq_create() creates threads that cannot be 11813 * swapped. 11814 * - We use TASKQ_PREPOPULATE to ensure we have an adequate 11815 * supply of taskq entries at interrupt time (ie, so that we 11816 * do not have to sleep for memory) 11817 */ 11818 11819 static void 11820 sd_taskq_create(void) 11821 { 11822 char taskq_name[TASKQ_NAMELEN]; 11823 11824 ASSERT(sd_tq == NULL); 11825 ASSERT(sd_wmr_tq == NULL); 11826 11827 (void) snprintf(taskq_name, sizeof (taskq_name), 11828 "%s_drv_taskq", sd_label); 11829 sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS, 11830 (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc, 11831 TASKQ_PREPOPULATE)); 11832 11833 (void) snprintf(taskq_name, sizeof (taskq_name), 11834 "%s_rmw_taskq", sd_label); 11835 sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS, 11836 (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc, 11837 TASKQ_PREPOPULATE)); 11838 } 11839 11840 11841 /* 11842 * Function: sd_taskq_delete 11843 * 11844 * Description: Complementary cleanup routine for sd_taskq_create(). 11845 * 11846 * Context: Kernel thread context. 11847 */ 11848 11849 static void 11850 sd_taskq_delete(void) 11851 { 11852 ASSERT(sd_tq != NULL); 11853 ASSERT(sd_wmr_tq != NULL); 11854 taskq_destroy(sd_tq); 11855 taskq_destroy(sd_wmr_tq); 11856 sd_tq = NULL; 11857 sd_wmr_tq = NULL; 11858 } 11859 11860 11861 /* 11862 * Function: sdstrategy 11863 * 11864 * Description: Driver's strategy (9E) entry point function. 11865 * 11866 * Arguments: bp - pointer to buf(9S) 11867 * 11868 * Return Code: Always returns zero 11869 * 11870 * Context: Kernel thread context. 11871 */ 11872 11873 static int 11874 sdstrategy(struct buf *bp) 11875 { 11876 struct sd_lun *un; 11877 11878 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 11879 if (un == NULL) { 11880 bioerror(bp, EIO); 11881 bp->b_resid = bp->b_bcount; 11882 biodone(bp); 11883 return (0); 11884 } 11885 /* As was done in the past, fail new cmds. if state is dumping. */ 11886 if (un->un_state == SD_STATE_DUMPING) { 11887 bioerror(bp, ENXIO); 11888 bp->b_resid = bp->b_bcount; 11889 biodone(bp); 11890 return (0); 11891 } 11892 11893 ASSERT(!mutex_owned(SD_MUTEX(un))); 11894 11895 /* 11896 * Commands may sneak in while we released the mutex in 11897 * DDI_SUSPEND, we should block new commands. However, old 11898 * commands that are still in the driver at this point should 11899 * still be allowed to drain. 11900 */ 11901 mutex_enter(SD_MUTEX(un)); 11902 /* 11903 * Must wait here if either the device is suspended or 11904 * if it's power level is changing. 11905 */ 11906 while ((un->un_state == SD_STATE_SUSPENDED) || 11907 (un->un_state == SD_STATE_PM_CHANGING)) { 11908 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 11909 } 11910 11911 un->un_ncmds_in_driver++; 11912 11913 /* 11914 * atapi: Since we are running the CD for now in PIO mode we need to 11915 * call bp_mapin here to avoid bp_mapin called interrupt context under 11916 * the HBA's init_pkt routine. 11917 */ 11918 if (un->un_f_cfg_is_atapi == TRUE) { 11919 mutex_exit(SD_MUTEX(un)); 11920 bp_mapin(bp); 11921 mutex_enter(SD_MUTEX(un)); 11922 } 11923 SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n", 11924 un->un_ncmds_in_driver); 11925 11926 mutex_exit(SD_MUTEX(un)); 11927 11928 /* 11929 * This will (eventually) allocate the sd_xbuf area and 11930 * call sd_xbuf_strategy(). We just want to return the 11931 * result of ddi_xbuf_qstrategy so that we have an opt- 11932 * imized tail call which saves us a stack frame. 11933 */ 11934 return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr)); 11935 } 11936 11937 11938 /* 11939 * Function: sd_xbuf_strategy 11940 * 11941 * Description: Function for initiating IO operations via the 11942 * ddi_xbuf_qstrategy() mechanism. 11943 * 11944 * Context: Kernel thread context. 11945 */ 11946 11947 static void 11948 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg) 11949 { 11950 struct sd_lun *un = arg; 11951 11952 ASSERT(bp != NULL); 11953 ASSERT(xp != NULL); 11954 ASSERT(un != NULL); 11955 ASSERT(!mutex_owned(SD_MUTEX(un))); 11956 11957 /* 11958 * Initialize the fields in the xbuf and save a pointer to the 11959 * xbuf in bp->b_private. 11960 */ 11961 sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL); 11962 11963 /* Send the buf down the iostart chain */ 11964 SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp); 11965 } 11966 11967 11968 /* 11969 * Function: sd_xbuf_init 11970 * 11971 * Description: Prepare the given sd_xbuf struct for use. 11972 * 11973 * Arguments: un - ptr to softstate 11974 * bp - ptr to associated buf(9S) 11975 * xp - ptr to associated sd_xbuf 11976 * chain_type - IO chain type to use: 11977 * SD_CHAIN_NULL 11978 * SD_CHAIN_BUFIO 11979 * SD_CHAIN_USCSI 11980 * SD_CHAIN_DIRECT 11981 * SD_CHAIN_DIRECT_PRIORITY 11982 * pktinfop - ptr to private data struct for scsi_pkt(9S) 11983 * initialization; may be NULL if none. 11984 * 11985 * Context: Kernel thread context 11986 */ 11987 11988 static void 11989 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 11990 uchar_t chain_type, void *pktinfop) 11991 { 11992 int index; 11993 11994 ASSERT(un != NULL); 11995 ASSERT(bp != NULL); 11996 ASSERT(xp != NULL); 11997 11998 SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n", 11999 bp, chain_type); 12000 12001 xp->xb_un = un; 12002 xp->xb_pktp = NULL; 12003 xp->xb_pktinfo = pktinfop; 12004 xp->xb_private = bp->b_private; 12005 xp->xb_blkno = (daddr_t)bp->b_blkno; 12006 12007 /* 12008 * Set up the iostart and iodone chain indexes in the xbuf, based 12009 * upon the specified chain type to use. 12010 */ 12011 switch (chain_type) { 12012 case SD_CHAIN_NULL: 12013 /* 12014 * Fall thru to just use the values for the buf type, even 12015 * tho for the NULL chain these values will never be used. 12016 */ 12017 /* FALLTHRU */ 12018 case SD_CHAIN_BUFIO: 12019 index = un->un_buf_chain_type; 12020 break; 12021 case SD_CHAIN_USCSI: 12022 index = un->un_uscsi_chain_type; 12023 break; 12024 case SD_CHAIN_DIRECT: 12025 index = un->un_direct_chain_type; 12026 break; 12027 case SD_CHAIN_DIRECT_PRIORITY: 12028 index = un->un_priority_chain_type; 12029 break; 12030 default: 12031 /* We're really broken if we ever get here... */ 12032 panic("sd_xbuf_init: illegal chain type!"); 12033 /*NOTREACHED*/ 12034 } 12035 12036 xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index; 12037 xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index; 12038 12039 /* 12040 * It might be a bit easier to simply bzero the entire xbuf above, 12041 * but it turns out that since we init a fair number of members anyway, 12042 * we save a fair number cycles by doing explicit assignment of zero. 12043 */ 12044 xp->xb_pkt_flags = 0; 12045 xp->xb_dma_resid = 0; 12046 xp->xb_retry_count = 0; 12047 xp->xb_victim_retry_count = 0; 12048 xp->xb_ua_retry_count = 0; 12049 xp->xb_sense_bp = NULL; 12050 xp->xb_sense_status = 0; 12051 xp->xb_sense_state = 0; 12052 xp->xb_sense_resid = 0; 12053 12054 bp->b_private = xp; 12055 bp->b_flags &= ~(B_DONE | B_ERROR); 12056 bp->b_resid = 0; 12057 bp->av_forw = NULL; 12058 bp->av_back = NULL; 12059 bioerror(bp, 0); 12060 12061 SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n"); 12062 } 12063 12064 12065 /* 12066 * Function: sd_uscsi_strategy 12067 * 12068 * Description: Wrapper for calling into the USCSI chain via physio(9F) 12069 * 12070 * Arguments: bp - buf struct ptr 12071 * 12072 * Return Code: Always returns 0 12073 * 12074 * Context: Kernel thread context 12075 */ 12076 12077 static int 12078 sd_uscsi_strategy(struct buf *bp) 12079 { 12080 struct sd_lun *un; 12081 struct sd_uscsi_info *uip; 12082 struct sd_xbuf *xp; 12083 uchar_t chain_type; 12084 12085 ASSERT(bp != NULL); 12086 12087 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 12088 if (un == NULL) { 12089 bioerror(bp, EIO); 12090 bp->b_resid = bp->b_bcount; 12091 biodone(bp); 12092 return (0); 12093 } 12094 12095 ASSERT(!mutex_owned(SD_MUTEX(un))); 12096 12097 SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp); 12098 12099 mutex_enter(SD_MUTEX(un)); 12100 /* 12101 * atapi: Since we are running the CD for now in PIO mode we need to 12102 * call bp_mapin here to avoid bp_mapin called interrupt context under 12103 * the HBA's init_pkt routine. 12104 */ 12105 if (un->un_f_cfg_is_atapi == TRUE) { 12106 mutex_exit(SD_MUTEX(un)); 12107 bp_mapin(bp); 12108 mutex_enter(SD_MUTEX(un)); 12109 } 12110 un->un_ncmds_in_driver++; 12111 SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n", 12112 un->un_ncmds_in_driver); 12113 mutex_exit(SD_MUTEX(un)); 12114 12115 /* 12116 * A pointer to a struct sd_uscsi_info is expected in bp->b_private 12117 */ 12118 ASSERT(bp->b_private != NULL); 12119 uip = (struct sd_uscsi_info *)bp->b_private; 12120 12121 switch (uip->ui_flags) { 12122 case SD_PATH_DIRECT: 12123 chain_type = SD_CHAIN_DIRECT; 12124 break; 12125 case SD_PATH_DIRECT_PRIORITY: 12126 chain_type = SD_CHAIN_DIRECT_PRIORITY; 12127 break; 12128 default: 12129 chain_type = SD_CHAIN_USCSI; 12130 break; 12131 } 12132 12133 xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 12134 sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp); 12135 12136 /* Use the index obtained within xbuf_init */ 12137 SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp); 12138 12139 SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp); 12140 12141 return (0); 12142 } 12143 12144 /* 12145 * Function: sd_send_scsi_cmd 12146 * 12147 * Description: Runs a USCSI command for user (when called thru sdioctl), 12148 * or for the driver 12149 * 12150 * Arguments: dev - the dev_t for the device 12151 * incmd - ptr to a valid uscsi_cmd struct 12152 * flag - bit flag, indicating open settings, 32/64 bit type 12153 * dataspace - UIO_USERSPACE or UIO_SYSSPACE 12154 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 12155 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 12156 * to use the USCSI "direct" chain and bypass the normal 12157 * command waitq. 12158 * 12159 * Return Code: 0 - successful completion of the given command 12160 * EIO - scsi_uscsi_handle_command() failed 12161 * ENXIO - soft state not found for specified dev 12162 * EINVAL 12163 * EFAULT - copyin/copyout error 12164 * return code of scsi_uscsi_handle_command(): 12165 * EIO 12166 * ENXIO 12167 * EACCES 12168 * 12169 * Context: Waits for command to complete. Can sleep. 12170 */ 12171 12172 static int 12173 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag, 12174 enum uio_seg dataspace, int path_flag) 12175 { 12176 struct sd_uscsi_info *uip; 12177 struct uscsi_cmd *uscmd; 12178 struct sd_lun *un; 12179 int format = 0; 12180 int rval; 12181 12182 un = ddi_get_soft_state(sd_state, SDUNIT(dev)); 12183 if (un == NULL) { 12184 return (ENXIO); 12185 } 12186 12187 ASSERT(!mutex_owned(SD_MUTEX(un))); 12188 12189 #ifdef SDDEBUG 12190 switch (dataspace) { 12191 case UIO_USERSPACE: 12192 SD_TRACE(SD_LOG_IO, un, 12193 "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un); 12194 break; 12195 case UIO_SYSSPACE: 12196 SD_TRACE(SD_LOG_IO, un, 12197 "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un); 12198 break; 12199 default: 12200 SD_TRACE(SD_LOG_IO, un, 12201 "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un); 12202 break; 12203 } 12204 #endif 12205 12206 rval = scsi_uscsi_alloc_and_copyin((intptr_t)incmd, flag, 12207 SD_ADDRESS(un), &uscmd); 12208 if (rval != 0) { 12209 SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: " 12210 "scsi_uscsi_alloc_and_copyin failed\n", un); 12211 return (rval); 12212 } 12213 12214 if ((uscmd->uscsi_cdb != NULL) && 12215 (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) { 12216 mutex_enter(SD_MUTEX(un)); 12217 un->un_f_format_in_progress = TRUE; 12218 mutex_exit(SD_MUTEX(un)); 12219 format = 1; 12220 } 12221 12222 /* 12223 * Allocate an sd_uscsi_info struct and fill it with the info 12224 * needed by sd_initpkt_for_uscsi(). Then put the pointer into 12225 * b_private in the buf for sd_initpkt_for_uscsi(). Note that 12226 * since we allocate the buf here in this function, we do not 12227 * need to preserve the prior contents of b_private. 12228 * The sd_uscsi_info struct is also used by sd_uscsi_strategy() 12229 */ 12230 uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP); 12231 uip->ui_flags = path_flag; 12232 uip->ui_cmdp = uscmd; 12233 12234 /* 12235 * Commands sent with priority are intended for error recovery 12236 * situations, and do not have retries performed. 12237 */ 12238 if (path_flag == SD_PATH_DIRECT_PRIORITY) { 12239 uscmd->uscsi_flags |= USCSI_DIAGNOSE; 12240 } 12241 uscmd->uscsi_flags &= ~USCSI_NOINTR; 12242 12243 rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd, 12244 sd_uscsi_strategy, NULL, uip); 12245 12246 #ifdef SDDEBUG 12247 SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: " 12248 "uscsi_status: 0x%02x uscsi_resid:0x%x\n", 12249 uscmd->uscsi_status, uscmd->uscsi_resid); 12250 if (uscmd->uscsi_bufaddr != NULL) { 12251 SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: " 12252 "uscmd->uscsi_bufaddr: 0x%p uscmd->uscsi_buflen:%d\n", 12253 uscmd->uscsi_bufaddr, uscmd->uscsi_buflen); 12254 if (dataspace == UIO_SYSSPACE) { 12255 SD_DUMP_MEMORY(un, SD_LOG_IO, 12256 "data", (uchar_t *)uscmd->uscsi_bufaddr, 12257 uscmd->uscsi_buflen, SD_LOG_HEX); 12258 } 12259 } 12260 #endif 12261 12262 if (format == 1) { 12263 mutex_enter(SD_MUTEX(un)); 12264 un->un_f_format_in_progress = FALSE; 12265 mutex_exit(SD_MUTEX(un)); 12266 } 12267 12268 (void) scsi_uscsi_copyout_and_free((intptr_t)incmd, uscmd); 12269 kmem_free(uip, sizeof (struct sd_uscsi_info)); 12270 12271 return (rval); 12272 } 12273 12274 12275 /* 12276 * Function: sd_buf_iodone 12277 * 12278 * Description: Frees the sd_xbuf & returns the buf to its originator. 12279 * 12280 * Context: May be called from interrupt context. 12281 */ 12282 /* ARGSUSED */ 12283 static void 12284 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp) 12285 { 12286 struct sd_xbuf *xp; 12287 12288 ASSERT(un != NULL); 12289 ASSERT(bp != NULL); 12290 ASSERT(!mutex_owned(SD_MUTEX(un))); 12291 12292 SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n"); 12293 12294 xp = SD_GET_XBUF(bp); 12295 ASSERT(xp != NULL); 12296 12297 mutex_enter(SD_MUTEX(un)); 12298 12299 /* 12300 * Grab time when the cmd completed. 12301 * This is used for determining if the system has been 12302 * idle long enough to make it idle to the PM framework. 12303 * This is for lowering the overhead, and therefore improving 12304 * performance per I/O operation. 12305 */ 12306 un->un_pm_idle_time = ddi_get_time(); 12307 12308 un->un_ncmds_in_driver--; 12309 ASSERT(un->un_ncmds_in_driver >= 0); 12310 SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n", 12311 un->un_ncmds_in_driver); 12312 12313 mutex_exit(SD_MUTEX(un)); 12314 12315 ddi_xbuf_done(bp, un->un_xbuf_attr); /* xbuf is gone after this */ 12316 biodone(bp); /* bp is gone after this */ 12317 12318 SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n"); 12319 } 12320 12321 12322 /* 12323 * Function: sd_uscsi_iodone 12324 * 12325 * Description: Frees the sd_xbuf & returns the buf to its originator. 12326 * 12327 * Context: May be called from interrupt context. 12328 */ 12329 /* ARGSUSED */ 12330 static void 12331 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp) 12332 { 12333 struct sd_xbuf *xp; 12334 12335 ASSERT(un != NULL); 12336 ASSERT(bp != NULL); 12337 12338 xp = SD_GET_XBUF(bp); 12339 ASSERT(xp != NULL); 12340 ASSERT(!mutex_owned(SD_MUTEX(un))); 12341 12342 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n"); 12343 12344 bp->b_private = xp->xb_private; 12345 12346 mutex_enter(SD_MUTEX(un)); 12347 12348 /* 12349 * Grab time when the cmd completed. 12350 * This is used for determining if the system has been 12351 * idle long enough to make it idle to the PM framework. 12352 * This is for lowering the overhead, and therefore improving 12353 * performance per I/O operation. 12354 */ 12355 un->un_pm_idle_time = ddi_get_time(); 12356 12357 un->un_ncmds_in_driver--; 12358 ASSERT(un->un_ncmds_in_driver >= 0); 12359 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n", 12360 un->un_ncmds_in_driver); 12361 12362 mutex_exit(SD_MUTEX(un)); 12363 12364 kmem_free(xp, sizeof (struct sd_xbuf)); 12365 biodone(bp); 12366 12367 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n"); 12368 } 12369 12370 12371 /* 12372 * Function: sd_mapblockaddr_iostart 12373 * 12374 * Description: Verify request lies withing the partition limits for 12375 * the indicated minor device. Issue "overrun" buf if 12376 * request would exceed partition range. Converts 12377 * partition-relative block address to absolute. 12378 * 12379 * Context: Can sleep 12380 * 12381 * Issues: This follows what the old code did, in terms of accessing 12382 * some of the partition info in the unit struct without holding 12383 * the mutext. This is a general issue, if the partition info 12384 * can be altered while IO is in progress... as soon as we send 12385 * a buf, its partitioning can be invalid before it gets to the 12386 * device. Probably the right fix is to move partitioning out 12387 * of the driver entirely. 12388 */ 12389 12390 static void 12391 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp) 12392 { 12393 daddr_t nblocks; /* #blocks in the given partition */ 12394 daddr_t blocknum; /* Block number specified by the buf */ 12395 size_t requested_nblocks; 12396 size_t available_nblocks; 12397 int partition; 12398 diskaddr_t partition_offset; 12399 struct sd_xbuf *xp; 12400 12401 12402 ASSERT(un != NULL); 12403 ASSERT(bp != NULL); 12404 ASSERT(!mutex_owned(SD_MUTEX(un))); 12405 12406 SD_TRACE(SD_LOG_IO_PARTITION, un, 12407 "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp); 12408 12409 xp = SD_GET_XBUF(bp); 12410 ASSERT(xp != NULL); 12411 12412 /* 12413 * If the geometry is not indicated as valid, attempt to access 12414 * the unit & verify the geometry/label. This can be the case for 12415 * removable-media devices, of if the device was opened in 12416 * NDELAY/NONBLOCK mode. 12417 */ 12418 if ((un->un_f_geometry_is_valid != TRUE) && 12419 (sd_ready_and_valid(un) != SD_READY_VALID)) { 12420 /* 12421 * For removable devices it is possible to start an I/O 12422 * without a media by opening the device in nodelay mode. 12423 * Also for writable CDs there can be many scenarios where 12424 * there is no geometry yet but volume manager is trying to 12425 * issue a read() just because it can see TOC on the CD. So 12426 * do not print a message for removables. 12427 */ 12428 if (!un->un_f_has_removable_media) { 12429 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 12430 "i/o to invalid geometry\n"); 12431 } 12432 bioerror(bp, EIO); 12433 bp->b_resid = bp->b_bcount; 12434 SD_BEGIN_IODONE(index, un, bp); 12435 return; 12436 } 12437 12438 partition = SDPART(bp->b_edev); 12439 12440 /* #blocks in partition */ 12441 nblocks = un->un_map[partition].dkl_nblk; /* #blocks in partition */ 12442 12443 /* Use of a local variable potentially improves performance slightly */ 12444 partition_offset = un->un_offset[partition]; 12445 12446 /* 12447 * blocknum is the starting block number of the request. At this 12448 * point it is still relative to the start of the minor device. 12449 */ 12450 blocknum = xp->xb_blkno; 12451 12452 /* 12453 * Legacy: If the starting block number is one past the last block 12454 * in the partition, do not set B_ERROR in the buf. 12455 */ 12456 if (blocknum == nblocks) { 12457 goto error_exit; 12458 } 12459 12460 /* 12461 * Confirm that the first block of the request lies within the 12462 * partition limits. Also the requested number of bytes must be 12463 * a multiple of the system block size. 12464 */ 12465 if ((blocknum < 0) || (blocknum >= nblocks) || 12466 ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) { 12467 bp->b_flags |= B_ERROR; 12468 goto error_exit; 12469 } 12470 12471 /* 12472 * If the requsted # blocks exceeds the available # blocks, that 12473 * is an overrun of the partition. 12474 */ 12475 requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount); 12476 available_nblocks = (size_t)(nblocks - blocknum); 12477 ASSERT(nblocks >= blocknum); 12478 12479 if (requested_nblocks > available_nblocks) { 12480 /* 12481 * Allocate an "overrun" buf to allow the request to proceed 12482 * for the amount of space available in the partition. The 12483 * amount not transferred will be added into the b_resid 12484 * when the operation is complete. The overrun buf 12485 * replaces the original buf here, and the original buf 12486 * is saved inside the overrun buf, for later use. 12487 */ 12488 size_t resid = SD_SYSBLOCKS2BYTES(un, 12489 (offset_t)(requested_nblocks - available_nblocks)); 12490 size_t count = bp->b_bcount - resid; 12491 /* 12492 * Note: count is an unsigned entity thus it'll NEVER 12493 * be less than 0 so ASSERT the original values are 12494 * correct. 12495 */ 12496 ASSERT(bp->b_bcount >= resid); 12497 12498 bp = sd_bioclone_alloc(bp, count, blocknum, 12499 (int (*)(struct buf *)) sd_mapblockaddr_iodone); 12500 xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */ 12501 ASSERT(xp != NULL); 12502 } 12503 12504 /* At this point there should be no residual for this buf. */ 12505 ASSERT(bp->b_resid == 0); 12506 12507 /* Convert the block number to an absolute address. */ 12508 xp->xb_blkno += partition_offset; 12509 12510 SD_NEXT_IOSTART(index, un, bp); 12511 12512 SD_TRACE(SD_LOG_IO_PARTITION, un, 12513 "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp); 12514 12515 return; 12516 12517 error_exit: 12518 bp->b_resid = bp->b_bcount; 12519 SD_BEGIN_IODONE(index, un, bp); 12520 SD_TRACE(SD_LOG_IO_PARTITION, un, 12521 "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp); 12522 } 12523 12524 12525 /* 12526 * Function: sd_mapblockaddr_iodone 12527 * 12528 * Description: Completion-side processing for partition management. 12529 * 12530 * Context: May be called under interrupt context 12531 */ 12532 12533 static void 12534 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp) 12535 { 12536 /* int partition; */ /* Not used, see below. */ 12537 ASSERT(un != NULL); 12538 ASSERT(bp != NULL); 12539 ASSERT(!mutex_owned(SD_MUTEX(un))); 12540 12541 SD_TRACE(SD_LOG_IO_PARTITION, un, 12542 "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp); 12543 12544 if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) { 12545 /* 12546 * We have an "overrun" buf to deal with... 12547 */ 12548 struct sd_xbuf *xp; 12549 struct buf *obp; /* ptr to the original buf */ 12550 12551 xp = SD_GET_XBUF(bp); 12552 ASSERT(xp != NULL); 12553 12554 /* Retrieve the pointer to the original buf */ 12555 obp = (struct buf *)xp->xb_private; 12556 ASSERT(obp != NULL); 12557 12558 obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid); 12559 bioerror(obp, bp->b_error); 12560 12561 sd_bioclone_free(bp); 12562 12563 /* 12564 * Get back the original buf. 12565 * Note that since the restoration of xb_blkno below 12566 * was removed, the sd_xbuf is not needed. 12567 */ 12568 bp = obp; 12569 /* 12570 * xp = SD_GET_XBUF(bp); 12571 * ASSERT(xp != NULL); 12572 */ 12573 } 12574 12575 /* 12576 * Convert sd->xb_blkno back to a minor-device relative value. 12577 * Note: this has been commented out, as it is not needed in the 12578 * current implementation of the driver (ie, since this function 12579 * is at the top of the layering chains, so the info will be 12580 * discarded) and it is in the "hot" IO path. 12581 * 12582 * partition = getminor(bp->b_edev) & SDPART_MASK; 12583 * xp->xb_blkno -= un->un_offset[partition]; 12584 */ 12585 12586 SD_NEXT_IODONE(index, un, bp); 12587 12588 SD_TRACE(SD_LOG_IO_PARTITION, un, 12589 "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp); 12590 } 12591 12592 12593 /* 12594 * Function: sd_mapblocksize_iostart 12595 * 12596 * Description: Convert between system block size (un->un_sys_blocksize) 12597 * and target block size (un->un_tgt_blocksize). 12598 * 12599 * Context: Can sleep to allocate resources. 12600 * 12601 * Assumptions: A higher layer has already performed any partition validation, 12602 * and converted the xp->xb_blkno to an absolute value relative 12603 * to the start of the device. 12604 * 12605 * It is also assumed that the higher layer has implemented 12606 * an "overrun" mechanism for the case where the request would 12607 * read/write beyond the end of a partition. In this case we 12608 * assume (and ASSERT) that bp->b_resid == 0. 12609 * 12610 * Note: The implementation for this routine assumes the target 12611 * block size remains constant between allocation and transport. 12612 */ 12613 12614 static void 12615 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp) 12616 { 12617 struct sd_mapblocksize_info *bsp; 12618 struct sd_xbuf *xp; 12619 offset_t first_byte; 12620 daddr_t start_block, end_block; 12621 daddr_t request_bytes; 12622 ushort_t is_aligned = FALSE; 12623 12624 ASSERT(un != NULL); 12625 ASSERT(bp != NULL); 12626 ASSERT(!mutex_owned(SD_MUTEX(un))); 12627 ASSERT(bp->b_resid == 0); 12628 12629 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 12630 "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp); 12631 12632 /* 12633 * For a non-writable CD, a write request is an error 12634 */ 12635 if (ISCD(un) && ((bp->b_flags & B_READ) == 0) && 12636 (un->un_f_mmc_writable_media == FALSE)) { 12637 bioerror(bp, EIO); 12638 bp->b_resid = bp->b_bcount; 12639 SD_BEGIN_IODONE(index, un, bp); 12640 return; 12641 } 12642 12643 /* 12644 * We do not need a shadow buf if the device is using 12645 * un->un_sys_blocksize as its block size or if bcount == 0. 12646 * In this case there is no layer-private data block allocated. 12647 */ 12648 if ((un->un_tgt_blocksize == un->un_sys_blocksize) || 12649 (bp->b_bcount == 0)) { 12650 goto done; 12651 } 12652 12653 #if defined(__i386) || defined(__amd64) 12654 /* We do not support non-block-aligned transfers for ROD devices */ 12655 ASSERT(!ISROD(un)); 12656 #endif 12657 12658 xp = SD_GET_XBUF(bp); 12659 ASSERT(xp != NULL); 12660 12661 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 12662 "tgt_blocksize:0x%x sys_blocksize: 0x%x\n", 12663 un->un_tgt_blocksize, un->un_sys_blocksize); 12664 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 12665 "request start block:0x%x\n", xp->xb_blkno); 12666 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 12667 "request len:0x%x\n", bp->b_bcount); 12668 12669 /* 12670 * Allocate the layer-private data area for the mapblocksize layer. 12671 * Layers are allowed to use the xp_private member of the sd_xbuf 12672 * struct to store the pointer to their layer-private data block, but 12673 * each layer also has the responsibility of restoring the prior 12674 * contents of xb_private before returning the buf/xbuf to the 12675 * higher layer that sent it. 12676 * 12677 * Here we save the prior contents of xp->xb_private into the 12678 * bsp->mbs_oprivate field of our layer-private data area. This value 12679 * is restored by sd_mapblocksize_iodone() just prior to freeing up 12680 * the layer-private area and returning the buf/xbuf to the layer 12681 * that sent it. 12682 * 12683 * Note that here we use kmem_zalloc for the allocation as there are 12684 * parts of the mapblocksize code that expect certain fields to be 12685 * zero unless explicitly set to a required value. 12686 */ 12687 bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP); 12688 bsp->mbs_oprivate = xp->xb_private; 12689 xp->xb_private = bsp; 12690 12691 /* 12692 * This treats the data on the disk (target) as an array of bytes. 12693 * first_byte is the byte offset, from the beginning of the device, 12694 * to the location of the request. This is converted from a 12695 * un->un_sys_blocksize block address to a byte offset, and then back 12696 * to a block address based upon a un->un_tgt_blocksize block size. 12697 * 12698 * xp->xb_blkno should be absolute upon entry into this function, 12699 * but, but it is based upon partitions that use the "system" 12700 * block size. It must be adjusted to reflect the block size of 12701 * the target. 12702 * 12703 * Note that end_block is actually the block that follows the last 12704 * block of the request, but that's what is needed for the computation. 12705 */ 12706 first_byte = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno); 12707 start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize; 12708 end_block = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) / 12709 un->un_tgt_blocksize; 12710 12711 /* request_bytes is rounded up to a multiple of the target block size */ 12712 request_bytes = (end_block - start_block) * un->un_tgt_blocksize; 12713 12714 /* 12715 * See if the starting address of the request and the request 12716 * length are aligned on a un->un_tgt_blocksize boundary. If aligned 12717 * then we do not need to allocate a shadow buf to handle the request. 12718 */ 12719 if (((first_byte % un->un_tgt_blocksize) == 0) && 12720 ((bp->b_bcount % un->un_tgt_blocksize) == 0)) { 12721 is_aligned = TRUE; 12722 } 12723 12724 if ((bp->b_flags & B_READ) == 0) { 12725 /* 12726 * Lock the range for a write operation. An aligned request is 12727 * considered a simple write; otherwise the request must be a 12728 * read-modify-write. 12729 */ 12730 bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1, 12731 (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW); 12732 } 12733 12734 /* 12735 * Alloc a shadow buf if the request is not aligned. Also, this is 12736 * where the READ command is generated for a read-modify-write. (The 12737 * write phase is deferred until after the read completes.) 12738 */ 12739 if (is_aligned == FALSE) { 12740 12741 struct sd_mapblocksize_info *shadow_bsp; 12742 struct sd_xbuf *shadow_xp; 12743 struct buf *shadow_bp; 12744 12745 /* 12746 * Allocate the shadow buf and it associated xbuf. Note that 12747 * after this call the xb_blkno value in both the original 12748 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the 12749 * same: absolute relative to the start of the device, and 12750 * adjusted for the target block size. The b_blkno in the 12751 * shadow buf will also be set to this value. We should never 12752 * change b_blkno in the original bp however. 12753 * 12754 * Note also that the shadow buf will always need to be a 12755 * READ command, regardless of whether the incoming command 12756 * is a READ or a WRITE. 12757 */ 12758 shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ, 12759 xp->xb_blkno, 12760 (int (*)(struct buf *)) sd_mapblocksize_iodone); 12761 12762 shadow_xp = SD_GET_XBUF(shadow_bp); 12763 12764 /* 12765 * Allocate the layer-private data for the shadow buf. 12766 * (No need to preserve xb_private in the shadow xbuf.) 12767 */ 12768 shadow_xp->xb_private = shadow_bsp = 12769 kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP); 12770 12771 /* 12772 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone 12773 * to figure out where the start of the user data is (based upon 12774 * the system block size) in the data returned by the READ 12775 * command (which will be based upon the target blocksize). Note 12776 * that this is only really used if the request is unaligned. 12777 */ 12778 bsp->mbs_copy_offset = (ssize_t)(first_byte - 12779 ((offset_t)xp->xb_blkno * un->un_tgt_blocksize)); 12780 ASSERT((bsp->mbs_copy_offset >= 0) && 12781 (bsp->mbs_copy_offset < un->un_tgt_blocksize)); 12782 12783 shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset; 12784 12785 shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index; 12786 12787 /* Transfer the wmap (if any) to the shadow buf */ 12788 shadow_bsp->mbs_wmp = bsp->mbs_wmp; 12789 bsp->mbs_wmp = NULL; 12790 12791 /* 12792 * The shadow buf goes on from here in place of the 12793 * original buf. 12794 */ 12795 shadow_bsp->mbs_orig_bp = bp; 12796 bp = shadow_bp; 12797 } 12798 12799 SD_INFO(SD_LOG_IO_RMMEDIA, un, 12800 "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno); 12801 SD_INFO(SD_LOG_IO_RMMEDIA, un, 12802 "sd_mapblocksize_iostart: tgt request len:0x%x\n", 12803 request_bytes); 12804 SD_INFO(SD_LOG_IO_RMMEDIA, un, 12805 "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp); 12806 12807 done: 12808 SD_NEXT_IOSTART(index, un, bp); 12809 12810 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 12811 "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp); 12812 } 12813 12814 12815 /* 12816 * Function: sd_mapblocksize_iodone 12817 * 12818 * Description: Completion side processing for block-size mapping. 12819 * 12820 * Context: May be called under interrupt context 12821 */ 12822 12823 static void 12824 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp) 12825 { 12826 struct sd_mapblocksize_info *bsp; 12827 struct sd_xbuf *xp; 12828 struct sd_xbuf *orig_xp; /* sd_xbuf for the original buf */ 12829 struct buf *orig_bp; /* ptr to the original buf */ 12830 offset_t shadow_end; 12831 offset_t request_end; 12832 offset_t shadow_start; 12833 ssize_t copy_offset; 12834 size_t copy_length; 12835 size_t shortfall; 12836 uint_t is_write; /* TRUE if this bp is a WRITE */ 12837 uint_t has_wmap; /* TRUE is this bp has a wmap */ 12838 12839 ASSERT(un != NULL); 12840 ASSERT(bp != NULL); 12841 12842 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 12843 "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp); 12844 12845 /* 12846 * There is no shadow buf or layer-private data if the target is 12847 * using un->un_sys_blocksize as its block size or if bcount == 0. 12848 */ 12849 if ((un->un_tgt_blocksize == un->un_sys_blocksize) || 12850 (bp->b_bcount == 0)) { 12851 goto exit; 12852 } 12853 12854 xp = SD_GET_XBUF(bp); 12855 ASSERT(xp != NULL); 12856 12857 /* Retrieve the pointer to the layer-private data area from the xbuf. */ 12858 bsp = xp->xb_private; 12859 12860 is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE; 12861 has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE; 12862 12863 if (is_write) { 12864 /* 12865 * For a WRITE request we must free up the block range that 12866 * we have locked up. This holds regardless of whether this is 12867 * an aligned write request or a read-modify-write request. 12868 */ 12869 sd_range_unlock(un, bsp->mbs_wmp); 12870 bsp->mbs_wmp = NULL; 12871 } 12872 12873 if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) { 12874 /* 12875 * An aligned read or write command will have no shadow buf; 12876 * there is not much else to do with it. 12877 */ 12878 goto done; 12879 } 12880 12881 orig_bp = bsp->mbs_orig_bp; 12882 ASSERT(orig_bp != NULL); 12883 orig_xp = SD_GET_XBUF(orig_bp); 12884 ASSERT(orig_xp != NULL); 12885 ASSERT(!mutex_owned(SD_MUTEX(un))); 12886 12887 if (!is_write && has_wmap) { 12888 /* 12889 * A READ with a wmap means this is the READ phase of a 12890 * read-modify-write. If an error occurred on the READ then 12891 * we do not proceed with the WRITE phase or copy any data. 12892 * Just release the write maps and return with an error. 12893 */ 12894 if ((bp->b_resid != 0) || (bp->b_error != 0)) { 12895 orig_bp->b_resid = orig_bp->b_bcount; 12896 bioerror(orig_bp, bp->b_error); 12897 sd_range_unlock(un, bsp->mbs_wmp); 12898 goto freebuf_done; 12899 } 12900 } 12901 12902 /* 12903 * Here is where we set up to copy the data from the shadow buf 12904 * into the space associated with the original buf. 12905 * 12906 * To deal with the conversion between block sizes, these 12907 * computations treat the data as an array of bytes, with the 12908 * first byte (byte 0) corresponding to the first byte in the 12909 * first block on the disk. 12910 */ 12911 12912 /* 12913 * shadow_start and shadow_len indicate the location and size of 12914 * the data returned with the shadow IO request. 12915 */ 12916 shadow_start = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno); 12917 shadow_end = shadow_start + bp->b_bcount - bp->b_resid; 12918 12919 /* 12920 * copy_offset gives the offset (in bytes) from the start of the first 12921 * block of the READ request to the beginning of the data. We retrieve 12922 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved 12923 * there by sd_mapblockize_iostart(). copy_length gives the amount of 12924 * data to be copied (in bytes). 12925 */ 12926 copy_offset = bsp->mbs_copy_offset; 12927 ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize)); 12928 copy_length = orig_bp->b_bcount; 12929 request_end = shadow_start + copy_offset + orig_bp->b_bcount; 12930 12931 /* 12932 * Set up the resid and error fields of orig_bp as appropriate. 12933 */ 12934 if (shadow_end >= request_end) { 12935 /* We got all the requested data; set resid to zero */ 12936 orig_bp->b_resid = 0; 12937 } else { 12938 /* 12939 * We failed to get enough data to fully satisfy the original 12940 * request. Just copy back whatever data we got and set 12941 * up the residual and error code as required. 12942 * 12943 * 'shortfall' is the amount by which the data received with the 12944 * shadow buf has "fallen short" of the requested amount. 12945 */ 12946 shortfall = (size_t)(request_end - shadow_end); 12947 12948 if (shortfall > orig_bp->b_bcount) { 12949 /* 12950 * We did not get enough data to even partially 12951 * fulfill the original request. The residual is 12952 * equal to the amount requested. 12953 */ 12954 orig_bp->b_resid = orig_bp->b_bcount; 12955 } else { 12956 /* 12957 * We did not get all the data that we requested 12958 * from the device, but we will try to return what 12959 * portion we did get. 12960 */ 12961 orig_bp->b_resid = shortfall; 12962 } 12963 ASSERT(copy_length >= orig_bp->b_resid); 12964 copy_length -= orig_bp->b_resid; 12965 } 12966 12967 /* Propagate the error code from the shadow buf to the original buf */ 12968 bioerror(orig_bp, bp->b_error); 12969 12970 if (is_write) { 12971 goto freebuf_done; /* No data copying for a WRITE */ 12972 } 12973 12974 if (has_wmap) { 12975 /* 12976 * This is a READ command from the READ phase of a 12977 * read-modify-write request. We have to copy the data given 12978 * by the user OVER the data returned by the READ command, 12979 * then convert the command from a READ to a WRITE and send 12980 * it back to the target. 12981 */ 12982 bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset, 12983 copy_length); 12984 12985 bp->b_flags &= ~((int)B_READ); /* Convert to a WRITE */ 12986 12987 /* 12988 * Dispatch the WRITE command to the taskq thread, which 12989 * will in turn send the command to the target. When the 12990 * WRITE command completes, we (sd_mapblocksize_iodone()) 12991 * will get called again as part of the iodone chain 12992 * processing for it. Note that we will still be dealing 12993 * with the shadow buf at that point. 12994 */ 12995 if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp, 12996 KM_NOSLEEP) != 0) { 12997 /* 12998 * Dispatch was successful so we are done. Return 12999 * without going any higher up the iodone chain. Do 13000 * not free up any layer-private data until after the 13001 * WRITE completes. 13002 */ 13003 return; 13004 } 13005 13006 /* 13007 * Dispatch of the WRITE command failed; set up the error 13008 * condition and send this IO back up the iodone chain. 13009 */ 13010 bioerror(orig_bp, EIO); 13011 orig_bp->b_resid = orig_bp->b_bcount; 13012 13013 } else { 13014 /* 13015 * This is a regular READ request (ie, not a RMW). Copy the 13016 * data from the shadow buf into the original buf. The 13017 * copy_offset compensates for any "misalignment" between the 13018 * shadow buf (with its un->un_tgt_blocksize blocks) and the 13019 * original buf (with its un->un_sys_blocksize blocks). 13020 */ 13021 bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr, 13022 copy_length); 13023 } 13024 13025 freebuf_done: 13026 13027 /* 13028 * At this point we still have both the shadow buf AND the original 13029 * buf to deal with, as well as the layer-private data area in each. 13030 * Local variables are as follows: 13031 * 13032 * bp -- points to shadow buf 13033 * xp -- points to xbuf of shadow buf 13034 * bsp -- points to layer-private data area of shadow buf 13035 * orig_bp -- points to original buf 13036 * 13037 * First free the shadow buf and its associated xbuf, then free the 13038 * layer-private data area from the shadow buf. There is no need to 13039 * restore xb_private in the shadow xbuf. 13040 */ 13041 sd_shadow_buf_free(bp); 13042 kmem_free(bsp, sizeof (struct sd_mapblocksize_info)); 13043 13044 /* 13045 * Now update the local variables to point to the original buf, xbuf, 13046 * and layer-private area. 13047 */ 13048 bp = orig_bp; 13049 xp = SD_GET_XBUF(bp); 13050 ASSERT(xp != NULL); 13051 ASSERT(xp == orig_xp); 13052 bsp = xp->xb_private; 13053 ASSERT(bsp != NULL); 13054 13055 done: 13056 /* 13057 * Restore xb_private to whatever it was set to by the next higher 13058 * layer in the chain, then free the layer-private data area. 13059 */ 13060 xp->xb_private = bsp->mbs_oprivate; 13061 kmem_free(bsp, sizeof (struct sd_mapblocksize_info)); 13062 13063 exit: 13064 SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp), 13065 "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp); 13066 13067 SD_NEXT_IODONE(index, un, bp); 13068 } 13069 13070 13071 /* 13072 * Function: sd_checksum_iostart 13073 * 13074 * Description: A stub function for a layer that's currently not used. 13075 * For now just a placeholder. 13076 * 13077 * Context: Kernel thread context 13078 */ 13079 13080 static void 13081 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp) 13082 { 13083 ASSERT(un != NULL); 13084 ASSERT(bp != NULL); 13085 ASSERT(!mutex_owned(SD_MUTEX(un))); 13086 SD_NEXT_IOSTART(index, un, bp); 13087 } 13088 13089 13090 /* 13091 * Function: sd_checksum_iodone 13092 * 13093 * Description: A stub function for a layer that's currently not used. 13094 * For now just a placeholder. 13095 * 13096 * Context: May be called under interrupt context 13097 */ 13098 13099 static void 13100 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp) 13101 { 13102 ASSERT(un != NULL); 13103 ASSERT(bp != NULL); 13104 ASSERT(!mutex_owned(SD_MUTEX(un))); 13105 SD_NEXT_IODONE(index, un, bp); 13106 } 13107 13108 13109 /* 13110 * Function: sd_checksum_uscsi_iostart 13111 * 13112 * Description: A stub function for a layer that's currently not used. 13113 * For now just a placeholder. 13114 * 13115 * Context: Kernel thread context 13116 */ 13117 13118 static void 13119 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp) 13120 { 13121 ASSERT(un != NULL); 13122 ASSERT(bp != NULL); 13123 ASSERT(!mutex_owned(SD_MUTEX(un))); 13124 SD_NEXT_IOSTART(index, un, bp); 13125 } 13126 13127 13128 /* 13129 * Function: sd_checksum_uscsi_iodone 13130 * 13131 * Description: A stub function for a layer that's currently not used. 13132 * For now just a placeholder. 13133 * 13134 * Context: May be called under interrupt context 13135 */ 13136 13137 static void 13138 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp) 13139 { 13140 ASSERT(un != NULL); 13141 ASSERT(bp != NULL); 13142 ASSERT(!mutex_owned(SD_MUTEX(un))); 13143 SD_NEXT_IODONE(index, un, bp); 13144 } 13145 13146 13147 /* 13148 * Function: sd_pm_iostart 13149 * 13150 * Description: iostart-side routine for Power mangement. 13151 * 13152 * Context: Kernel thread context 13153 */ 13154 13155 static void 13156 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp) 13157 { 13158 ASSERT(un != NULL); 13159 ASSERT(bp != NULL); 13160 ASSERT(!mutex_owned(SD_MUTEX(un))); 13161 ASSERT(!mutex_owned(&un->un_pm_mutex)); 13162 13163 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n"); 13164 13165 if (sd_pm_entry(un) != DDI_SUCCESS) { 13166 /* 13167 * Set up to return the failed buf back up the 'iodone' 13168 * side of the calling chain. 13169 */ 13170 bioerror(bp, EIO); 13171 bp->b_resid = bp->b_bcount; 13172 13173 SD_BEGIN_IODONE(index, un, bp); 13174 13175 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n"); 13176 return; 13177 } 13178 13179 SD_NEXT_IOSTART(index, un, bp); 13180 13181 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n"); 13182 } 13183 13184 13185 /* 13186 * Function: sd_pm_iodone 13187 * 13188 * Description: iodone-side routine for power mangement. 13189 * 13190 * Context: may be called from interrupt context 13191 */ 13192 13193 static void 13194 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp) 13195 { 13196 ASSERT(un != NULL); 13197 ASSERT(bp != NULL); 13198 ASSERT(!mutex_owned(&un->un_pm_mutex)); 13199 13200 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n"); 13201 13202 /* 13203 * After attach the following flag is only read, so don't 13204 * take the penalty of acquiring a mutex for it. 13205 */ 13206 if (un->un_f_pm_is_enabled == TRUE) { 13207 sd_pm_exit(un); 13208 } 13209 13210 SD_NEXT_IODONE(index, un, bp); 13211 13212 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n"); 13213 } 13214 13215 13216 /* 13217 * Function: sd_core_iostart 13218 * 13219 * Description: Primary driver function for enqueuing buf(9S) structs from 13220 * the system and initiating IO to the target device 13221 * 13222 * Context: Kernel thread context. Can sleep. 13223 * 13224 * Assumptions: - The given xp->xb_blkno is absolute 13225 * (ie, relative to the start of the device). 13226 * - The IO is to be done using the native blocksize of 13227 * the device, as specified in un->un_tgt_blocksize. 13228 */ 13229 /* ARGSUSED */ 13230 static void 13231 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp) 13232 { 13233 struct sd_xbuf *xp; 13234 13235 ASSERT(un != NULL); 13236 ASSERT(bp != NULL); 13237 ASSERT(!mutex_owned(SD_MUTEX(un))); 13238 ASSERT(bp->b_resid == 0); 13239 13240 SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp); 13241 13242 xp = SD_GET_XBUF(bp); 13243 ASSERT(xp != NULL); 13244 13245 mutex_enter(SD_MUTEX(un)); 13246 13247 /* 13248 * If we are currently in the failfast state, fail any new IO 13249 * that has B_FAILFAST set, then return. 13250 */ 13251 if ((bp->b_flags & B_FAILFAST) && 13252 (un->un_failfast_state == SD_FAILFAST_ACTIVE)) { 13253 mutex_exit(SD_MUTEX(un)); 13254 bioerror(bp, EIO); 13255 bp->b_resid = bp->b_bcount; 13256 SD_BEGIN_IODONE(index, un, bp); 13257 return; 13258 } 13259 13260 if (SD_IS_DIRECT_PRIORITY(xp)) { 13261 /* 13262 * Priority command -- transport it immediately. 13263 * 13264 * Note: We may want to assert that USCSI_DIAGNOSE is set, 13265 * because all direct priority commands should be associated 13266 * with error recovery actions which we don't want to retry. 13267 */ 13268 sd_start_cmds(un, bp); 13269 } else { 13270 /* 13271 * Normal command -- add it to the wait queue, then start 13272 * transporting commands from the wait queue. 13273 */ 13274 sd_add_buf_to_waitq(un, bp); 13275 SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp); 13276 sd_start_cmds(un, NULL); 13277 } 13278 13279 mutex_exit(SD_MUTEX(un)); 13280 13281 SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp); 13282 } 13283 13284 13285 /* 13286 * Function: sd_init_cdb_limits 13287 * 13288 * Description: This is to handle scsi_pkt initialization differences 13289 * between the driver platforms. 13290 * 13291 * Legacy behaviors: 13292 * 13293 * If the block number or the sector count exceeds the 13294 * capabilities of a Group 0 command, shift over to a 13295 * Group 1 command. We don't blindly use Group 1 13296 * commands because a) some drives (CDC Wren IVs) get a 13297 * bit confused, and b) there is probably a fair amount 13298 * of speed difference for a target to receive and decode 13299 * a 10 byte command instead of a 6 byte command. 13300 * 13301 * The xfer time difference of 6 vs 10 byte CDBs is 13302 * still significant so this code is still worthwhile. 13303 * 10 byte CDBs are very inefficient with the fas HBA driver 13304 * and older disks. Each CDB byte took 1 usec with some 13305 * popular disks. 13306 * 13307 * Context: Must be called at attach time 13308 */ 13309 13310 static void 13311 sd_init_cdb_limits(struct sd_lun *un) 13312 { 13313 int hba_cdb_limit; 13314 13315 /* 13316 * Use CDB_GROUP1 commands for most devices except for 13317 * parallel SCSI fixed drives in which case we get better 13318 * performance using CDB_GROUP0 commands (where applicable). 13319 */ 13320 un->un_mincdb = SD_CDB_GROUP1; 13321 #if !defined(__fibre) 13322 if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) && 13323 !un->un_f_has_removable_media) { 13324 un->un_mincdb = SD_CDB_GROUP0; 13325 } 13326 #endif 13327 13328 /* 13329 * Try to read the max-cdb-length supported by HBA. 13330 */ 13331 un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1); 13332 if (0 >= un->un_max_hba_cdb) { 13333 un->un_max_hba_cdb = CDB_GROUP4; 13334 hba_cdb_limit = SD_CDB_GROUP4; 13335 } else if (0 < un->un_max_hba_cdb && 13336 un->un_max_hba_cdb < CDB_GROUP1) { 13337 hba_cdb_limit = SD_CDB_GROUP0; 13338 } else if (CDB_GROUP1 <= un->un_max_hba_cdb && 13339 un->un_max_hba_cdb < CDB_GROUP5) { 13340 hba_cdb_limit = SD_CDB_GROUP1; 13341 } else if (CDB_GROUP5 <= un->un_max_hba_cdb && 13342 un->un_max_hba_cdb < CDB_GROUP4) { 13343 hba_cdb_limit = SD_CDB_GROUP5; 13344 } else { 13345 hba_cdb_limit = SD_CDB_GROUP4; 13346 } 13347 13348 /* 13349 * Use CDB_GROUP5 commands for removable devices. Use CDB_GROUP4 13350 * commands for fixed disks unless we are building for a 32 bit 13351 * kernel. 13352 */ 13353 #ifdef _LP64 13354 un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 : 13355 min(hba_cdb_limit, SD_CDB_GROUP4); 13356 #else 13357 un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 : 13358 min(hba_cdb_limit, SD_CDB_GROUP1); 13359 #endif 13360 13361 /* 13362 * x86 systems require the PKT_DMA_PARTIAL flag 13363 */ 13364 #if defined(__x86) 13365 un->un_pkt_flags = PKT_DMA_PARTIAL; 13366 #else 13367 un->un_pkt_flags = 0; 13368 #endif 13369 13370 un->un_status_len = (int)((un->un_f_arq_enabled == TRUE) 13371 ? sizeof (struct scsi_arq_status) : 1); 13372 un->un_cmd_timeout = (ushort_t)sd_io_time; 13373 un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout; 13374 } 13375 13376 13377 /* 13378 * Function: sd_initpkt_for_buf 13379 * 13380 * Description: Allocate and initialize for transport a scsi_pkt struct, 13381 * based upon the info specified in the given buf struct. 13382 * 13383 * Assumes the xb_blkno in the request is absolute (ie, 13384 * relative to the start of the device (NOT partition!). 13385 * Also assumes that the request is using the native block 13386 * size of the device (as returned by the READ CAPACITY 13387 * command). 13388 * 13389 * Return Code: SD_PKT_ALLOC_SUCCESS 13390 * SD_PKT_ALLOC_FAILURE 13391 * SD_PKT_ALLOC_FAILURE_NO_DMA 13392 * SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL 13393 * 13394 * Context: Kernel thread and may be called from software interrupt context 13395 * as part of a sdrunout callback. This function may not block or 13396 * call routines that block 13397 */ 13398 13399 static int 13400 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp) 13401 { 13402 struct sd_xbuf *xp; 13403 struct scsi_pkt *pktp = NULL; 13404 struct sd_lun *un; 13405 size_t blockcount; 13406 daddr_t startblock; 13407 int rval; 13408 int cmd_flags; 13409 13410 ASSERT(bp != NULL); 13411 ASSERT(pktpp != NULL); 13412 xp = SD_GET_XBUF(bp); 13413 ASSERT(xp != NULL); 13414 un = SD_GET_UN(bp); 13415 ASSERT(un != NULL); 13416 ASSERT(mutex_owned(SD_MUTEX(un))); 13417 ASSERT(bp->b_resid == 0); 13418 13419 SD_TRACE(SD_LOG_IO_CORE, un, 13420 "sd_initpkt_for_buf: entry: buf:0x%p\n", bp); 13421 13422 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 13423 if (xp->xb_pkt_flags & SD_XB_DMA_FREED) { 13424 /* 13425 * Already have a scsi_pkt -- just need DMA resources. 13426 * We must recompute the CDB in case the mapping returns 13427 * a nonzero pkt_resid. 13428 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer 13429 * that is being retried, the unmap/remap of the DMA resouces 13430 * will result in the entire transfer starting over again 13431 * from the very first block. 13432 */ 13433 ASSERT(xp->xb_pktp != NULL); 13434 pktp = xp->xb_pktp; 13435 } else { 13436 pktp = NULL; 13437 } 13438 #endif /* __i386 || __amd64 */ 13439 13440 startblock = xp->xb_blkno; /* Absolute block num. */ 13441 blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount); 13442 13443 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 13444 13445 cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK); 13446 13447 #else 13448 13449 cmd_flags = un->un_pkt_flags | xp->xb_pkt_flags; 13450 13451 #endif 13452 13453 /* 13454 * sd_setup_rw_pkt will determine the appropriate CDB group to use, 13455 * call scsi_init_pkt, and build the CDB. 13456 */ 13457 rval = sd_setup_rw_pkt(un, &pktp, bp, 13458 cmd_flags, sdrunout, (caddr_t)un, 13459 startblock, blockcount); 13460 13461 if (rval == 0) { 13462 /* 13463 * Success. 13464 * 13465 * If partial DMA is being used and required for this transfer. 13466 * set it up here. 13467 */ 13468 if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 && 13469 (pktp->pkt_resid != 0)) { 13470 13471 /* 13472 * Save the CDB length and pkt_resid for the 13473 * next xfer 13474 */ 13475 xp->xb_dma_resid = pktp->pkt_resid; 13476 13477 /* rezero resid */ 13478 pktp->pkt_resid = 0; 13479 13480 } else { 13481 xp->xb_dma_resid = 0; 13482 } 13483 13484 pktp->pkt_flags = un->un_tagflags; 13485 pktp->pkt_time = un->un_cmd_timeout; 13486 pktp->pkt_comp = sdintr; 13487 13488 pktp->pkt_private = bp; 13489 *pktpp = pktp; 13490 13491 SD_TRACE(SD_LOG_IO_CORE, un, 13492 "sd_initpkt_for_buf: exit: buf:0x%p\n", bp); 13493 13494 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 13495 xp->xb_pkt_flags &= ~SD_XB_DMA_FREED; 13496 #endif 13497 13498 return (SD_PKT_ALLOC_SUCCESS); 13499 13500 } 13501 13502 /* 13503 * SD_PKT_ALLOC_FAILURE is the only expected failure code 13504 * from sd_setup_rw_pkt. 13505 */ 13506 ASSERT(rval == SD_PKT_ALLOC_FAILURE); 13507 13508 if (rval == SD_PKT_ALLOC_FAILURE) { 13509 *pktpp = NULL; 13510 /* 13511 * Set the driver state to RWAIT to indicate the driver 13512 * is waiting on resource allocations. The driver will not 13513 * suspend, pm_suspend, or detatch while the state is RWAIT. 13514 */ 13515 New_state(un, SD_STATE_RWAIT); 13516 13517 SD_ERROR(SD_LOG_IO_CORE, un, 13518 "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp); 13519 13520 if ((bp->b_flags & B_ERROR) != 0) { 13521 return (SD_PKT_ALLOC_FAILURE_NO_DMA); 13522 } 13523 return (SD_PKT_ALLOC_FAILURE); 13524 } else { 13525 /* 13526 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL 13527 * 13528 * This should never happen. Maybe someone messed with the 13529 * kernel's minphys? 13530 */ 13531 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 13532 "Request rejected: too large for CDB: " 13533 "lba:0x%08lx len:0x%08lx\n", startblock, blockcount); 13534 SD_ERROR(SD_LOG_IO_CORE, un, 13535 "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp); 13536 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13537 13538 } 13539 } 13540 13541 13542 /* 13543 * Function: sd_destroypkt_for_buf 13544 * 13545 * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing). 13546 * 13547 * Context: Kernel thread or interrupt context 13548 */ 13549 13550 static void 13551 sd_destroypkt_for_buf(struct buf *bp) 13552 { 13553 ASSERT(bp != NULL); 13554 ASSERT(SD_GET_UN(bp) != NULL); 13555 13556 SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp), 13557 "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp); 13558 13559 ASSERT(SD_GET_PKTP(bp) != NULL); 13560 scsi_destroy_pkt(SD_GET_PKTP(bp)); 13561 13562 SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp), 13563 "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp); 13564 } 13565 13566 /* 13567 * Function: sd_setup_rw_pkt 13568 * 13569 * Description: Determines appropriate CDB group for the requested LBA 13570 * and transfer length, calls scsi_init_pkt, and builds 13571 * the CDB. Do not use for partial DMA transfers except 13572 * for the initial transfer since the CDB size must 13573 * remain constant. 13574 * 13575 * Context: Kernel thread and may be called from software interrupt 13576 * context as part of a sdrunout callback. This function may not 13577 * block or call routines that block 13578 */ 13579 13580 13581 int 13582 sd_setup_rw_pkt(struct sd_lun *un, 13583 struct scsi_pkt **pktpp, struct buf *bp, int flags, 13584 int (*callback)(caddr_t), caddr_t callback_arg, 13585 diskaddr_t lba, uint32_t blockcount) 13586 { 13587 struct scsi_pkt *return_pktp; 13588 union scsi_cdb *cdbp; 13589 struct sd_cdbinfo *cp = NULL; 13590 int i; 13591 13592 /* 13593 * See which size CDB to use, based upon the request. 13594 */ 13595 for (i = un->un_mincdb; i <= un->un_maxcdb; i++) { 13596 13597 /* 13598 * Check lba and block count against sd_cdbtab limits. 13599 * In the partial DMA case, we have to use the same size 13600 * CDB for all the transfers. Check lba + blockcount 13601 * against the max LBA so we know that segment of the 13602 * transfer can use the CDB we select. 13603 */ 13604 if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) && 13605 (blockcount <= sd_cdbtab[i].sc_maxlen)) { 13606 13607 /* 13608 * The command will fit into the CDB type 13609 * specified by sd_cdbtab[i]. 13610 */ 13611 cp = sd_cdbtab + i; 13612 13613 /* 13614 * Call scsi_init_pkt so we can fill in the 13615 * CDB. 13616 */ 13617 return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp, 13618 bp, cp->sc_grpcode, un->un_status_len, 0, 13619 flags, callback, callback_arg); 13620 13621 if (return_pktp != NULL) { 13622 13623 /* 13624 * Return new value of pkt 13625 */ 13626 *pktpp = return_pktp; 13627 13628 /* 13629 * To be safe, zero the CDB insuring there is 13630 * no leftover data from a previous command. 13631 */ 13632 bzero(return_pktp->pkt_cdbp, cp->sc_grpcode); 13633 13634 /* 13635 * Handle partial DMA mapping 13636 */ 13637 if (return_pktp->pkt_resid != 0) { 13638 13639 /* 13640 * Not going to xfer as many blocks as 13641 * originally expected 13642 */ 13643 blockcount -= 13644 SD_BYTES2TGTBLOCKS(un, 13645 return_pktp->pkt_resid); 13646 } 13647 13648 cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp; 13649 13650 /* 13651 * Set command byte based on the CDB 13652 * type we matched. 13653 */ 13654 cdbp->scc_cmd = cp->sc_grpmask | 13655 ((bp->b_flags & B_READ) ? 13656 SCMD_READ : SCMD_WRITE); 13657 13658 SD_FILL_SCSI1_LUN(un, return_pktp); 13659 13660 /* 13661 * Fill in LBA and length 13662 */ 13663 ASSERT((cp->sc_grpcode == CDB_GROUP1) || 13664 (cp->sc_grpcode == CDB_GROUP4) || 13665 (cp->sc_grpcode == CDB_GROUP0) || 13666 (cp->sc_grpcode == CDB_GROUP5)); 13667 13668 if (cp->sc_grpcode == CDB_GROUP1) { 13669 FORMG1ADDR(cdbp, lba); 13670 FORMG1COUNT(cdbp, blockcount); 13671 return (0); 13672 } else if (cp->sc_grpcode == CDB_GROUP4) { 13673 FORMG4LONGADDR(cdbp, lba); 13674 FORMG4COUNT(cdbp, blockcount); 13675 return (0); 13676 } else if (cp->sc_grpcode == CDB_GROUP0) { 13677 FORMG0ADDR(cdbp, lba); 13678 FORMG0COUNT(cdbp, blockcount); 13679 return (0); 13680 } else if (cp->sc_grpcode == CDB_GROUP5) { 13681 FORMG5ADDR(cdbp, lba); 13682 FORMG5COUNT(cdbp, blockcount); 13683 return (0); 13684 } 13685 13686 /* 13687 * It should be impossible to not match one 13688 * of the CDB types above, so we should never 13689 * reach this point. Set the CDB command byte 13690 * to test-unit-ready to avoid writing 13691 * to somewhere we don't intend. 13692 */ 13693 cdbp->scc_cmd = SCMD_TEST_UNIT_READY; 13694 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13695 } else { 13696 /* 13697 * Couldn't get scsi_pkt 13698 */ 13699 return (SD_PKT_ALLOC_FAILURE); 13700 } 13701 } 13702 } 13703 13704 /* 13705 * None of the available CDB types were suitable. This really 13706 * should never happen: on a 64 bit system we support 13707 * READ16/WRITE16 which will hold an entire 64 bit disk address 13708 * and on a 32 bit system we will refuse to bind to a device 13709 * larger than 2TB so addresses will never be larger than 32 bits. 13710 */ 13711 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13712 } 13713 13714 #if defined(__i386) || defined(__amd64) 13715 /* 13716 * Function: sd_setup_next_rw_pkt 13717 * 13718 * Description: Setup packet for partial DMA transfers, except for the 13719 * initial transfer. sd_setup_rw_pkt should be used for 13720 * the initial transfer. 13721 * 13722 * Context: Kernel thread and may be called from interrupt context. 13723 */ 13724 13725 int 13726 sd_setup_next_rw_pkt(struct sd_lun *un, 13727 struct scsi_pkt *pktp, struct buf *bp, 13728 diskaddr_t lba, uint32_t blockcount) 13729 { 13730 uchar_t com; 13731 union scsi_cdb *cdbp; 13732 uchar_t cdb_group_id; 13733 13734 ASSERT(pktp != NULL); 13735 ASSERT(pktp->pkt_cdbp != NULL); 13736 13737 cdbp = (union scsi_cdb *)pktp->pkt_cdbp; 13738 com = cdbp->scc_cmd; 13739 cdb_group_id = CDB_GROUPID(com); 13740 13741 ASSERT((cdb_group_id == CDB_GROUPID_0) || 13742 (cdb_group_id == CDB_GROUPID_1) || 13743 (cdb_group_id == CDB_GROUPID_4) || 13744 (cdb_group_id == CDB_GROUPID_5)); 13745 13746 /* 13747 * Move pkt to the next portion of the xfer. 13748 * func is NULL_FUNC so we do not have to release 13749 * the disk mutex here. 13750 */ 13751 if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0, 13752 NULL_FUNC, NULL) == pktp) { 13753 /* Success. Handle partial DMA */ 13754 if (pktp->pkt_resid != 0) { 13755 blockcount -= 13756 SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid); 13757 } 13758 13759 cdbp->scc_cmd = com; 13760 SD_FILL_SCSI1_LUN(un, pktp); 13761 if (cdb_group_id == CDB_GROUPID_1) { 13762 FORMG1ADDR(cdbp, lba); 13763 FORMG1COUNT(cdbp, blockcount); 13764 return (0); 13765 } else if (cdb_group_id == CDB_GROUPID_4) { 13766 FORMG4LONGADDR(cdbp, lba); 13767 FORMG4COUNT(cdbp, blockcount); 13768 return (0); 13769 } else if (cdb_group_id == CDB_GROUPID_0) { 13770 FORMG0ADDR(cdbp, lba); 13771 FORMG0COUNT(cdbp, blockcount); 13772 return (0); 13773 } else if (cdb_group_id == CDB_GROUPID_5) { 13774 FORMG5ADDR(cdbp, lba); 13775 FORMG5COUNT(cdbp, blockcount); 13776 return (0); 13777 } 13778 13779 /* Unreachable */ 13780 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13781 } 13782 13783 /* 13784 * Error setting up next portion of cmd transfer. 13785 * Something is definitely very wrong and this 13786 * should not happen. 13787 */ 13788 return (SD_PKT_ALLOC_FAILURE); 13789 } 13790 #endif /* defined(__i386) || defined(__amd64) */ 13791 13792 /* 13793 * Function: sd_initpkt_for_uscsi 13794 * 13795 * Description: Allocate and initialize for transport a scsi_pkt struct, 13796 * based upon the info specified in the given uscsi_cmd struct. 13797 * 13798 * Return Code: SD_PKT_ALLOC_SUCCESS 13799 * SD_PKT_ALLOC_FAILURE 13800 * SD_PKT_ALLOC_FAILURE_NO_DMA 13801 * SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL 13802 * 13803 * Context: Kernel thread and may be called from software interrupt context 13804 * as part of a sdrunout callback. This function may not block or 13805 * call routines that block 13806 */ 13807 13808 static int 13809 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp) 13810 { 13811 struct uscsi_cmd *uscmd; 13812 struct sd_xbuf *xp; 13813 struct scsi_pkt *pktp; 13814 struct sd_lun *un; 13815 uint32_t flags = 0; 13816 13817 ASSERT(bp != NULL); 13818 ASSERT(pktpp != NULL); 13819 xp = SD_GET_XBUF(bp); 13820 ASSERT(xp != NULL); 13821 un = SD_GET_UN(bp); 13822 ASSERT(un != NULL); 13823 ASSERT(mutex_owned(SD_MUTEX(un))); 13824 13825 /* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */ 13826 uscmd = (struct uscsi_cmd *)xp->xb_pktinfo; 13827 ASSERT(uscmd != NULL); 13828 13829 SD_TRACE(SD_LOG_IO_CORE, un, 13830 "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp); 13831 13832 /* 13833 * Allocate the scsi_pkt for the command. 13834 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path 13835 * during scsi_init_pkt time and will continue to use the 13836 * same path as long as the same scsi_pkt is used without 13837 * intervening scsi_dma_free(). Since uscsi command does 13838 * not call scsi_dmafree() before retry failed command, it 13839 * is necessary to make sure PKT_DMA_PARTIAL flag is NOT 13840 * set such that scsi_vhci can use other available path for 13841 * retry. Besides, ucsci command does not allow DMA breakup, 13842 * so there is no need to set PKT_DMA_PARTIAL flag. 13843 */ 13844 pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, 13845 ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen, 13846 sizeof (struct scsi_arq_status), 0, 13847 (un->un_pkt_flags & ~PKT_DMA_PARTIAL), 13848 sdrunout, (caddr_t)un); 13849 13850 if (pktp == NULL) { 13851 *pktpp = NULL; 13852 /* 13853 * Set the driver state to RWAIT to indicate the driver 13854 * is waiting on resource allocations. The driver will not 13855 * suspend, pm_suspend, or detatch while the state is RWAIT. 13856 */ 13857 New_state(un, SD_STATE_RWAIT); 13858 13859 SD_ERROR(SD_LOG_IO_CORE, un, 13860 "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp); 13861 13862 if ((bp->b_flags & B_ERROR) != 0) { 13863 return (SD_PKT_ALLOC_FAILURE_NO_DMA); 13864 } 13865 return (SD_PKT_ALLOC_FAILURE); 13866 } 13867 13868 /* 13869 * We do not do DMA breakup for USCSI commands, so return failure 13870 * here if all the needed DMA resources were not allocated. 13871 */ 13872 if ((un->un_pkt_flags & PKT_DMA_PARTIAL) && 13873 (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) { 13874 scsi_destroy_pkt(pktp); 13875 SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: " 13876 "No partial DMA for USCSI. exit: buf:0x%p\n", bp); 13877 return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL); 13878 } 13879 13880 /* Init the cdb from the given uscsi struct */ 13881 (void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp, 13882 uscmd->uscsi_cdb[0], 0, 0, 0); 13883 13884 SD_FILL_SCSI1_LUN(un, pktp); 13885 13886 /* 13887 * Set up the optional USCSI flags. See the uscsi (7I) man page 13888 * for listing of the supported flags. 13889 */ 13890 13891 if (uscmd->uscsi_flags & USCSI_SILENT) { 13892 flags |= FLAG_SILENT; 13893 } 13894 13895 if (uscmd->uscsi_flags & USCSI_DIAGNOSE) { 13896 flags |= FLAG_DIAGNOSE; 13897 } 13898 13899 if (uscmd->uscsi_flags & USCSI_ISOLATE) { 13900 flags |= FLAG_ISOLATE; 13901 } 13902 13903 if (un->un_f_is_fibre == FALSE) { 13904 if (uscmd->uscsi_flags & USCSI_RENEGOT) { 13905 flags |= FLAG_RENEGOTIATE_WIDE_SYNC; 13906 } 13907 } 13908 13909 /* 13910 * Set the pkt flags here so we save time later. 13911 * Note: These flags are NOT in the uscsi man page!!! 13912 */ 13913 if (uscmd->uscsi_flags & USCSI_HEAD) { 13914 flags |= FLAG_HEAD; 13915 } 13916 13917 if (uscmd->uscsi_flags & USCSI_NOINTR) { 13918 flags |= FLAG_NOINTR; 13919 } 13920 13921 /* 13922 * For tagged queueing, things get a bit complicated. 13923 * Check first for head of queue and last for ordered queue. 13924 * If neither head nor order, use the default driver tag flags. 13925 */ 13926 if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) { 13927 if (uscmd->uscsi_flags & USCSI_HTAG) { 13928 flags |= FLAG_HTAG; 13929 } else if (uscmd->uscsi_flags & USCSI_OTAG) { 13930 flags |= FLAG_OTAG; 13931 } else { 13932 flags |= un->un_tagflags & FLAG_TAGMASK; 13933 } 13934 } 13935 13936 if (uscmd->uscsi_flags & USCSI_NODISCON) { 13937 flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON; 13938 } 13939 13940 pktp->pkt_flags = flags; 13941 13942 /* Copy the caller's CDB into the pkt... */ 13943 bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen); 13944 13945 if (uscmd->uscsi_timeout == 0) { 13946 pktp->pkt_time = un->un_uscsi_timeout; 13947 } else { 13948 pktp->pkt_time = uscmd->uscsi_timeout; 13949 } 13950 13951 /* need it later to identify USCSI request in sdintr */ 13952 xp->xb_pkt_flags |= SD_XB_USCSICMD; 13953 13954 xp->xb_sense_resid = uscmd->uscsi_rqresid; 13955 13956 pktp->pkt_private = bp; 13957 pktp->pkt_comp = sdintr; 13958 *pktpp = pktp; 13959 13960 SD_TRACE(SD_LOG_IO_CORE, un, 13961 "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp); 13962 13963 return (SD_PKT_ALLOC_SUCCESS); 13964 } 13965 13966 13967 /* 13968 * Function: sd_destroypkt_for_uscsi 13969 * 13970 * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi 13971 * IOs.. Also saves relevant info into the associated uscsi_cmd 13972 * struct. 13973 * 13974 * Context: May be called under interrupt context 13975 */ 13976 13977 static void 13978 sd_destroypkt_for_uscsi(struct buf *bp) 13979 { 13980 struct uscsi_cmd *uscmd; 13981 struct sd_xbuf *xp; 13982 struct scsi_pkt *pktp; 13983 struct sd_lun *un; 13984 13985 ASSERT(bp != NULL); 13986 xp = SD_GET_XBUF(bp); 13987 ASSERT(xp != NULL); 13988 un = SD_GET_UN(bp); 13989 ASSERT(un != NULL); 13990 ASSERT(!mutex_owned(SD_MUTEX(un))); 13991 pktp = SD_GET_PKTP(bp); 13992 ASSERT(pktp != NULL); 13993 13994 SD_TRACE(SD_LOG_IO_CORE, un, 13995 "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp); 13996 13997 /* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */ 13998 uscmd = (struct uscsi_cmd *)xp->xb_pktinfo; 13999 ASSERT(uscmd != NULL); 14000 14001 /* Save the status and the residual into the uscsi_cmd struct */ 14002 uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK); 14003 uscmd->uscsi_resid = bp->b_resid; 14004 14005 /* 14006 * If enabled, copy any saved sense data into the area specified 14007 * by the uscsi command. 14008 */ 14009 if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) && 14010 (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) { 14011 /* 14012 * Note: uscmd->uscsi_rqbuf should always point to a buffer 14013 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd()) 14014 */ 14015 uscmd->uscsi_rqstatus = xp->xb_sense_status; 14016 uscmd->uscsi_rqresid = xp->xb_sense_resid; 14017 bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, SENSE_LENGTH); 14018 } 14019 14020 /* We are done with the scsi_pkt; free it now */ 14021 ASSERT(SD_GET_PKTP(bp) != NULL); 14022 scsi_destroy_pkt(SD_GET_PKTP(bp)); 14023 14024 SD_TRACE(SD_LOG_IO_CORE, un, 14025 "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp); 14026 } 14027 14028 14029 /* 14030 * Function: sd_bioclone_alloc 14031 * 14032 * Description: Allocate a buf(9S) and init it as per the given buf 14033 * and the various arguments. The associated sd_xbuf 14034 * struct is (nearly) duplicated. The struct buf *bp 14035 * argument is saved in new_xp->xb_private. 14036 * 14037 * Arguments: bp - ptr the the buf(9S) to be "shadowed" 14038 * datalen - size of data area for the shadow bp 14039 * blkno - starting LBA 14040 * func - function pointer for b_iodone in the shadow buf. (May 14041 * be NULL if none.) 14042 * 14043 * Return Code: Pointer to allocates buf(9S) struct 14044 * 14045 * Context: Can sleep. 14046 */ 14047 14048 static struct buf * 14049 sd_bioclone_alloc(struct buf *bp, size_t datalen, 14050 daddr_t blkno, int (*func)(struct buf *)) 14051 { 14052 struct sd_lun *un; 14053 struct sd_xbuf *xp; 14054 struct sd_xbuf *new_xp; 14055 struct buf *new_bp; 14056 14057 ASSERT(bp != NULL); 14058 xp = SD_GET_XBUF(bp); 14059 ASSERT(xp != NULL); 14060 un = SD_GET_UN(bp); 14061 ASSERT(un != NULL); 14062 ASSERT(!mutex_owned(SD_MUTEX(un))); 14063 14064 new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func, 14065 NULL, KM_SLEEP); 14066 14067 new_bp->b_lblkno = blkno; 14068 14069 /* 14070 * Allocate an xbuf for the shadow bp and copy the contents of the 14071 * original xbuf into it. 14072 */ 14073 new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 14074 bcopy(xp, new_xp, sizeof (struct sd_xbuf)); 14075 14076 /* 14077 * The given bp is automatically saved in the xb_private member 14078 * of the new xbuf. Callers are allowed to depend on this. 14079 */ 14080 new_xp->xb_private = bp; 14081 14082 new_bp->b_private = new_xp; 14083 14084 return (new_bp); 14085 } 14086 14087 /* 14088 * Function: sd_shadow_buf_alloc 14089 * 14090 * Description: Allocate a buf(9S) and init it as per the given buf 14091 * and the various arguments. The associated sd_xbuf 14092 * struct is (nearly) duplicated. The struct buf *bp 14093 * argument is saved in new_xp->xb_private. 14094 * 14095 * Arguments: bp - ptr the the buf(9S) to be "shadowed" 14096 * datalen - size of data area for the shadow bp 14097 * bflags - B_READ or B_WRITE (pseudo flag) 14098 * blkno - starting LBA 14099 * func - function pointer for b_iodone in the shadow buf. (May 14100 * be NULL if none.) 14101 * 14102 * Return Code: Pointer to allocates buf(9S) struct 14103 * 14104 * Context: Can sleep. 14105 */ 14106 14107 static struct buf * 14108 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags, 14109 daddr_t blkno, int (*func)(struct buf *)) 14110 { 14111 struct sd_lun *un; 14112 struct sd_xbuf *xp; 14113 struct sd_xbuf *new_xp; 14114 struct buf *new_bp; 14115 14116 ASSERT(bp != NULL); 14117 xp = SD_GET_XBUF(bp); 14118 ASSERT(xp != NULL); 14119 un = SD_GET_UN(bp); 14120 ASSERT(un != NULL); 14121 ASSERT(!mutex_owned(SD_MUTEX(un))); 14122 14123 if (bp->b_flags & (B_PAGEIO | B_PHYS)) { 14124 bp_mapin(bp); 14125 } 14126 14127 bflags &= (B_READ | B_WRITE); 14128 #if defined(__i386) || defined(__amd64) 14129 new_bp = getrbuf(KM_SLEEP); 14130 new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP); 14131 new_bp->b_bcount = datalen; 14132 new_bp->b_flags = bflags | 14133 (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW)); 14134 #else 14135 new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL, 14136 datalen, bflags, SLEEP_FUNC, NULL); 14137 #endif 14138 new_bp->av_forw = NULL; 14139 new_bp->av_back = NULL; 14140 new_bp->b_dev = bp->b_dev; 14141 new_bp->b_blkno = blkno; 14142 new_bp->b_iodone = func; 14143 new_bp->b_edev = bp->b_edev; 14144 new_bp->b_resid = 0; 14145 14146 /* We need to preserve the B_FAILFAST flag */ 14147 if (bp->b_flags & B_FAILFAST) { 14148 new_bp->b_flags |= B_FAILFAST; 14149 } 14150 14151 /* 14152 * Allocate an xbuf for the shadow bp and copy the contents of the 14153 * original xbuf into it. 14154 */ 14155 new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 14156 bcopy(xp, new_xp, sizeof (struct sd_xbuf)); 14157 14158 /* Need later to copy data between the shadow buf & original buf! */ 14159 new_xp->xb_pkt_flags |= PKT_CONSISTENT; 14160 14161 /* 14162 * The given bp is automatically saved in the xb_private member 14163 * of the new xbuf. Callers are allowed to depend on this. 14164 */ 14165 new_xp->xb_private = bp; 14166 14167 new_bp->b_private = new_xp; 14168 14169 return (new_bp); 14170 } 14171 14172 /* 14173 * Function: sd_bioclone_free 14174 * 14175 * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations 14176 * in the larger than partition operation. 14177 * 14178 * Context: May be called under interrupt context 14179 */ 14180 14181 static void 14182 sd_bioclone_free(struct buf *bp) 14183 { 14184 struct sd_xbuf *xp; 14185 14186 ASSERT(bp != NULL); 14187 xp = SD_GET_XBUF(bp); 14188 ASSERT(xp != NULL); 14189 14190 /* 14191 * Call bp_mapout() before freeing the buf, in case a lower 14192 * layer or HBA had done a bp_mapin(). we must do this here 14193 * as we are the "originator" of the shadow buf. 14194 */ 14195 bp_mapout(bp); 14196 14197 /* 14198 * Null out b_iodone before freeing the bp, to ensure that the driver 14199 * never gets confused by a stale value in this field. (Just a little 14200 * extra defensiveness here.) 14201 */ 14202 bp->b_iodone = NULL; 14203 14204 freerbuf(bp); 14205 14206 kmem_free(xp, sizeof (struct sd_xbuf)); 14207 } 14208 14209 /* 14210 * Function: sd_shadow_buf_free 14211 * 14212 * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations. 14213 * 14214 * Context: May be called under interrupt context 14215 */ 14216 14217 static void 14218 sd_shadow_buf_free(struct buf *bp) 14219 { 14220 struct sd_xbuf *xp; 14221 14222 ASSERT(bp != NULL); 14223 xp = SD_GET_XBUF(bp); 14224 ASSERT(xp != NULL); 14225 14226 #if defined(__sparc) 14227 /* 14228 * Call bp_mapout() before freeing the buf, in case a lower 14229 * layer or HBA had done a bp_mapin(). we must do this here 14230 * as we are the "originator" of the shadow buf. 14231 */ 14232 bp_mapout(bp); 14233 #endif 14234 14235 /* 14236 * Null out b_iodone before freeing the bp, to ensure that the driver 14237 * never gets confused by a stale value in this field. (Just a little 14238 * extra defensiveness here.) 14239 */ 14240 bp->b_iodone = NULL; 14241 14242 #if defined(__i386) || defined(__amd64) 14243 kmem_free(bp->b_un.b_addr, bp->b_bcount); 14244 freerbuf(bp); 14245 #else 14246 scsi_free_consistent_buf(bp); 14247 #endif 14248 14249 kmem_free(xp, sizeof (struct sd_xbuf)); 14250 } 14251 14252 14253 /* 14254 * Function: sd_print_transport_rejected_message 14255 * 14256 * Description: This implements the ludicrously complex rules for printing 14257 * a "transport rejected" message. This is to address the 14258 * specific problem of having a flood of this error message 14259 * produced when a failover occurs. 14260 * 14261 * Context: Any. 14262 */ 14263 14264 static void 14265 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp, 14266 int code) 14267 { 14268 ASSERT(un != NULL); 14269 ASSERT(mutex_owned(SD_MUTEX(un))); 14270 ASSERT(xp != NULL); 14271 14272 /* 14273 * Print the "transport rejected" message under the following 14274 * conditions: 14275 * 14276 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set 14277 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR. 14278 * - If the error code IS a TRAN_FATAL_ERROR, then the message is 14279 * printed the FIRST time a TRAN_FATAL_ERROR is returned from 14280 * scsi_transport(9F) (which indicates that the target might have 14281 * gone off-line). This uses the un->un_tran_fatal_count 14282 * count, which is incremented whenever a TRAN_FATAL_ERROR is 14283 * received, and reset to zero whenver a TRAN_ACCEPT is returned 14284 * from scsi_transport(). 14285 * 14286 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of 14287 * the preceeding cases in order for the message to be printed. 14288 */ 14289 if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) { 14290 if ((sd_level_mask & SD_LOGMASK_DIAG) || 14291 (code != TRAN_FATAL_ERROR) || 14292 (un->un_tran_fatal_count == 1)) { 14293 switch (code) { 14294 case TRAN_BADPKT: 14295 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 14296 "transport rejected bad packet\n"); 14297 break; 14298 case TRAN_FATAL_ERROR: 14299 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 14300 "transport rejected fatal error\n"); 14301 break; 14302 default: 14303 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 14304 "transport rejected (%d)\n", code); 14305 break; 14306 } 14307 } 14308 } 14309 } 14310 14311 14312 /* 14313 * Function: sd_add_buf_to_waitq 14314 * 14315 * Description: Add the given buf(9S) struct to the wait queue for the 14316 * instance. If sorting is enabled, then the buf is added 14317 * to the queue via an elevator sort algorithm (a la 14318 * disksort(9F)). The SD_GET_BLKNO(bp) is used as the sort key. 14319 * If sorting is not enabled, then the buf is just added 14320 * to the end of the wait queue. 14321 * 14322 * Return Code: void 14323 * 14324 * Context: Does not sleep/block, therefore technically can be called 14325 * from any context. However if sorting is enabled then the 14326 * execution time is indeterminate, and may take long if 14327 * the wait queue grows large. 14328 */ 14329 14330 static void 14331 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp) 14332 { 14333 struct buf *ap; 14334 14335 ASSERT(bp != NULL); 14336 ASSERT(un != NULL); 14337 ASSERT(mutex_owned(SD_MUTEX(un))); 14338 14339 /* If the queue is empty, add the buf as the only entry & return. */ 14340 if (un->un_waitq_headp == NULL) { 14341 ASSERT(un->un_waitq_tailp == NULL); 14342 un->un_waitq_headp = un->un_waitq_tailp = bp; 14343 bp->av_forw = NULL; 14344 return; 14345 } 14346 14347 ASSERT(un->un_waitq_tailp != NULL); 14348 14349 /* 14350 * If sorting is disabled, just add the buf to the tail end of 14351 * the wait queue and return. 14352 */ 14353 if (un->un_f_disksort_disabled) { 14354 un->un_waitq_tailp->av_forw = bp; 14355 un->un_waitq_tailp = bp; 14356 bp->av_forw = NULL; 14357 return; 14358 } 14359 14360 /* 14361 * Sort thru the list of requests currently on the wait queue 14362 * and add the new buf request at the appropriate position. 14363 * 14364 * The un->un_waitq_headp is an activity chain pointer on which 14365 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The 14366 * first queue holds those requests which are positioned after 14367 * the current SD_GET_BLKNO() (in the first request); the second holds 14368 * requests which came in after their SD_GET_BLKNO() number was passed. 14369 * Thus we implement a one way scan, retracting after reaching 14370 * the end of the drive to the first request on the second 14371 * queue, at which time it becomes the first queue. 14372 * A one-way scan is natural because of the way UNIX read-ahead 14373 * blocks are allocated. 14374 * 14375 * If we lie after the first request, then we must locate the 14376 * second request list and add ourselves to it. 14377 */ 14378 ap = un->un_waitq_headp; 14379 if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) { 14380 while (ap->av_forw != NULL) { 14381 /* 14382 * Look for an "inversion" in the (normally 14383 * ascending) block numbers. This indicates 14384 * the start of the second request list. 14385 */ 14386 if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) { 14387 /* 14388 * Search the second request list for the 14389 * first request at a larger block number. 14390 * We go before that; however if there is 14391 * no such request, we go at the end. 14392 */ 14393 do { 14394 if (SD_GET_BLKNO(bp) < 14395 SD_GET_BLKNO(ap->av_forw)) { 14396 goto insert; 14397 } 14398 ap = ap->av_forw; 14399 } while (ap->av_forw != NULL); 14400 goto insert; /* after last */ 14401 } 14402 ap = ap->av_forw; 14403 } 14404 14405 /* 14406 * No inversions... we will go after the last, and 14407 * be the first request in the second request list. 14408 */ 14409 goto insert; 14410 } 14411 14412 /* 14413 * Request is at/after the current request... 14414 * sort in the first request list. 14415 */ 14416 while (ap->av_forw != NULL) { 14417 /* 14418 * We want to go after the current request (1) if 14419 * there is an inversion after it (i.e. it is the end 14420 * of the first request list), or (2) if the next 14421 * request is a larger block no. than our request. 14422 */ 14423 if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) || 14424 (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) { 14425 goto insert; 14426 } 14427 ap = ap->av_forw; 14428 } 14429 14430 /* 14431 * Neither a second list nor a larger request, therefore 14432 * we go at the end of the first list (which is the same 14433 * as the end of the whole schebang). 14434 */ 14435 insert: 14436 bp->av_forw = ap->av_forw; 14437 ap->av_forw = bp; 14438 14439 /* 14440 * If we inserted onto the tail end of the waitq, make sure the 14441 * tail pointer is updated. 14442 */ 14443 if (ap == un->un_waitq_tailp) { 14444 un->un_waitq_tailp = bp; 14445 } 14446 } 14447 14448 14449 /* 14450 * Function: sd_start_cmds 14451 * 14452 * Description: Remove and transport cmds from the driver queues. 14453 * 14454 * Arguments: un - pointer to the unit (soft state) struct for the target. 14455 * 14456 * immed_bp - ptr to a buf to be transported immediately. Only 14457 * the immed_bp is transported; bufs on the waitq are not 14458 * processed and the un_retry_bp is not checked. If immed_bp is 14459 * NULL, then normal queue processing is performed. 14460 * 14461 * Context: May be called from kernel thread context, interrupt context, 14462 * or runout callback context. This function may not block or 14463 * call routines that block. 14464 */ 14465 14466 static void 14467 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp) 14468 { 14469 struct sd_xbuf *xp; 14470 struct buf *bp; 14471 void (*statp)(kstat_io_t *); 14472 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14473 void (*saved_statp)(kstat_io_t *); 14474 #endif 14475 int rval; 14476 14477 ASSERT(un != NULL); 14478 ASSERT(mutex_owned(SD_MUTEX(un))); 14479 ASSERT(un->un_ncmds_in_transport >= 0); 14480 ASSERT(un->un_throttle >= 0); 14481 14482 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n"); 14483 14484 do { 14485 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14486 saved_statp = NULL; 14487 #endif 14488 14489 /* 14490 * If we are syncing or dumping, fail the command to 14491 * avoid recursively calling back into scsi_transport(). 14492 * The dump I/O itself uses a separate code path so this 14493 * only prevents non-dump I/O from being sent while dumping. 14494 * File system sync takes place before dumping begins. 14495 * During panic, filesystem I/O is allowed provided 14496 * un_in_callback is <= 1. This is to prevent recursion 14497 * such as sd_start_cmds -> scsi_transport -> sdintr -> 14498 * sd_start_cmds and so on. See panic.c for more information 14499 * about the states the system can be in during panic. 14500 */ 14501 if ((un->un_state == SD_STATE_DUMPING) || 14502 (ddi_in_panic() && (un->un_in_callback > 1))) { 14503 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14504 "sd_start_cmds: panicking\n"); 14505 goto exit; 14506 } 14507 14508 if ((bp = immed_bp) != NULL) { 14509 /* 14510 * We have a bp that must be transported immediately. 14511 * It's OK to transport the immed_bp here without doing 14512 * the throttle limit check because the immed_bp is 14513 * always used in a retry/recovery case. This means 14514 * that we know we are not at the throttle limit by 14515 * virtue of the fact that to get here we must have 14516 * already gotten a command back via sdintr(). This also 14517 * relies on (1) the command on un_retry_bp preventing 14518 * further commands from the waitq from being issued; 14519 * and (2) the code in sd_retry_command checking the 14520 * throttle limit before issuing a delayed or immediate 14521 * retry. This holds even if the throttle limit is 14522 * currently ratcheted down from its maximum value. 14523 */ 14524 statp = kstat_runq_enter; 14525 if (bp == un->un_retry_bp) { 14526 ASSERT((un->un_retry_statp == NULL) || 14527 (un->un_retry_statp == kstat_waitq_enter) || 14528 (un->un_retry_statp == 14529 kstat_runq_back_to_waitq)); 14530 /* 14531 * If the waitq kstat was incremented when 14532 * sd_set_retry_bp() queued this bp for a retry, 14533 * then we must set up statp so that the waitq 14534 * count will get decremented correctly below. 14535 * Also we must clear un->un_retry_statp to 14536 * ensure that we do not act on a stale value 14537 * in this field. 14538 */ 14539 if ((un->un_retry_statp == kstat_waitq_enter) || 14540 (un->un_retry_statp == 14541 kstat_runq_back_to_waitq)) { 14542 statp = kstat_waitq_to_runq; 14543 } 14544 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14545 saved_statp = un->un_retry_statp; 14546 #endif 14547 un->un_retry_statp = NULL; 14548 14549 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 14550 "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p " 14551 "un_throttle:%d un_ncmds_in_transport:%d\n", 14552 un, un->un_retry_bp, un->un_throttle, 14553 un->un_ncmds_in_transport); 14554 } else { 14555 SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: " 14556 "processing priority bp:0x%p\n", bp); 14557 } 14558 14559 } else if ((bp = un->un_waitq_headp) != NULL) { 14560 /* 14561 * A command on the waitq is ready to go, but do not 14562 * send it if: 14563 * 14564 * (1) the throttle limit has been reached, or 14565 * (2) a retry is pending, or 14566 * (3) a START_STOP_UNIT callback pending, or 14567 * (4) a callback for a SD_PATH_DIRECT_PRIORITY 14568 * command is pending. 14569 * 14570 * For all of these conditions, IO processing will 14571 * restart after the condition is cleared. 14572 */ 14573 if (un->un_ncmds_in_transport >= un->un_throttle) { 14574 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14575 "sd_start_cmds: exiting, " 14576 "throttle limit reached!\n"); 14577 goto exit; 14578 } 14579 if (un->un_retry_bp != NULL) { 14580 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14581 "sd_start_cmds: exiting, retry pending!\n"); 14582 goto exit; 14583 } 14584 if (un->un_startstop_timeid != NULL) { 14585 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14586 "sd_start_cmds: exiting, " 14587 "START_STOP pending!\n"); 14588 goto exit; 14589 } 14590 if (un->un_direct_priority_timeid != NULL) { 14591 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14592 "sd_start_cmds: exiting, " 14593 "SD_PATH_DIRECT_PRIORITY cmd. pending!\n"); 14594 goto exit; 14595 } 14596 14597 /* Dequeue the command */ 14598 un->un_waitq_headp = bp->av_forw; 14599 if (un->un_waitq_headp == NULL) { 14600 un->un_waitq_tailp = NULL; 14601 } 14602 bp->av_forw = NULL; 14603 statp = kstat_waitq_to_runq; 14604 SD_TRACE(SD_LOG_IO_CORE, un, 14605 "sd_start_cmds: processing waitq bp:0x%p\n", bp); 14606 14607 } else { 14608 /* No work to do so bail out now */ 14609 SD_TRACE(SD_LOG_IO_CORE, un, 14610 "sd_start_cmds: no more work, exiting!\n"); 14611 goto exit; 14612 } 14613 14614 /* 14615 * Reset the state to normal. This is the mechanism by which 14616 * the state transitions from either SD_STATE_RWAIT or 14617 * SD_STATE_OFFLINE to SD_STATE_NORMAL. 14618 * If state is SD_STATE_PM_CHANGING then this command is 14619 * part of the device power control and the state must 14620 * not be put back to normal. Doing so would would 14621 * allow new commands to proceed when they shouldn't, 14622 * the device may be going off. 14623 */ 14624 if ((un->un_state != SD_STATE_SUSPENDED) && 14625 (un->un_state != SD_STATE_PM_CHANGING)) { 14626 New_state(un, SD_STATE_NORMAL); 14627 } 14628 14629 xp = SD_GET_XBUF(bp); 14630 ASSERT(xp != NULL); 14631 14632 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14633 /* 14634 * Allocate the scsi_pkt if we need one, or attach DMA 14635 * resources if we have a scsi_pkt that needs them. The 14636 * latter should only occur for commands that are being 14637 * retried. 14638 */ 14639 if ((xp->xb_pktp == NULL) || 14640 ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) { 14641 #else 14642 if (xp->xb_pktp == NULL) { 14643 #endif 14644 /* 14645 * There is no scsi_pkt allocated for this buf. Call 14646 * the initpkt function to allocate & init one. 14647 * 14648 * The scsi_init_pkt runout callback functionality is 14649 * implemented as follows: 14650 * 14651 * 1) The initpkt function always calls 14652 * scsi_init_pkt(9F) with sdrunout specified as the 14653 * callback routine. 14654 * 2) A successful packet allocation is initialized and 14655 * the I/O is transported. 14656 * 3) The I/O associated with an allocation resource 14657 * failure is left on its queue to be retried via 14658 * runout or the next I/O. 14659 * 4) The I/O associated with a DMA error is removed 14660 * from the queue and failed with EIO. Processing of 14661 * the transport queues is also halted to be 14662 * restarted via runout or the next I/O. 14663 * 5) The I/O associated with a CDB size or packet 14664 * size error is removed from the queue and failed 14665 * with EIO. Processing of the transport queues is 14666 * continued. 14667 * 14668 * Note: there is no interface for canceling a runout 14669 * callback. To prevent the driver from detaching or 14670 * suspending while a runout is pending the driver 14671 * state is set to SD_STATE_RWAIT 14672 * 14673 * Note: using the scsi_init_pkt callback facility can 14674 * result in an I/O request persisting at the head of 14675 * the list which cannot be satisfied even after 14676 * multiple retries. In the future the driver may 14677 * implement some kind of maximum runout count before 14678 * failing an I/O. 14679 * 14680 * Note: the use of funcp below may seem superfluous, 14681 * but it helps warlock figure out the correct 14682 * initpkt function calls (see [s]sd.wlcmd). 14683 */ 14684 struct scsi_pkt *pktp; 14685 int (*funcp)(struct buf *bp, struct scsi_pkt **pktp); 14686 14687 ASSERT(bp != un->un_rqs_bp); 14688 14689 funcp = sd_initpkt_map[xp->xb_chain_iostart]; 14690 switch ((*funcp)(bp, &pktp)) { 14691 case SD_PKT_ALLOC_SUCCESS: 14692 xp->xb_pktp = pktp; 14693 SD_TRACE(SD_LOG_IO_CORE, un, 14694 "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n", 14695 pktp); 14696 goto got_pkt; 14697 14698 case SD_PKT_ALLOC_FAILURE: 14699 /* 14700 * Temporary (hopefully) resource depletion. 14701 * Since retries and RQS commands always have a 14702 * scsi_pkt allocated, these cases should never 14703 * get here. So the only cases this needs to 14704 * handle is a bp from the waitq (which we put 14705 * back onto the waitq for sdrunout), or a bp 14706 * sent as an immed_bp (which we just fail). 14707 */ 14708 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14709 "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n"); 14710 14711 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14712 14713 if (bp == immed_bp) { 14714 /* 14715 * If SD_XB_DMA_FREED is clear, then 14716 * this is a failure to allocate a 14717 * scsi_pkt, and we must fail the 14718 * command. 14719 */ 14720 if ((xp->xb_pkt_flags & 14721 SD_XB_DMA_FREED) == 0) { 14722 break; 14723 } 14724 14725 /* 14726 * If this immediate command is NOT our 14727 * un_retry_bp, then we must fail it. 14728 */ 14729 if (bp != un->un_retry_bp) { 14730 break; 14731 } 14732 14733 /* 14734 * We get here if this cmd is our 14735 * un_retry_bp that was DMAFREED, but 14736 * scsi_init_pkt() failed to reallocate 14737 * DMA resources when we attempted to 14738 * retry it. This can happen when an 14739 * mpxio failover is in progress, but 14740 * we don't want to just fail the 14741 * command in this case. 14742 * 14743 * Use timeout(9F) to restart it after 14744 * a 100ms delay. We don't want to 14745 * let sdrunout() restart it, because 14746 * sdrunout() is just supposed to start 14747 * commands that are sitting on the 14748 * wait queue. The un_retry_bp stays 14749 * set until the command completes, but 14750 * sdrunout can be called many times 14751 * before that happens. Since sdrunout 14752 * cannot tell if the un_retry_bp is 14753 * already in the transport, it could 14754 * end up calling scsi_transport() for 14755 * the un_retry_bp multiple times. 14756 * 14757 * Also: don't schedule the callback 14758 * if some other callback is already 14759 * pending. 14760 */ 14761 if (un->un_retry_statp == NULL) { 14762 /* 14763 * restore the kstat pointer to 14764 * keep kstat counts coherent 14765 * when we do retry the command. 14766 */ 14767 un->un_retry_statp = 14768 saved_statp; 14769 } 14770 14771 if ((un->un_startstop_timeid == NULL) && 14772 (un->un_retry_timeid == NULL) && 14773 (un->un_direct_priority_timeid == 14774 NULL)) { 14775 14776 un->un_retry_timeid = 14777 timeout( 14778 sd_start_retry_command, 14779 un, SD_RESTART_TIMEOUT); 14780 } 14781 goto exit; 14782 } 14783 14784 #else 14785 if (bp == immed_bp) { 14786 break; /* Just fail the command */ 14787 } 14788 #endif 14789 14790 /* Add the buf back to the head of the waitq */ 14791 bp->av_forw = un->un_waitq_headp; 14792 un->un_waitq_headp = bp; 14793 if (un->un_waitq_tailp == NULL) { 14794 un->un_waitq_tailp = bp; 14795 } 14796 goto exit; 14797 14798 case SD_PKT_ALLOC_FAILURE_NO_DMA: 14799 /* 14800 * HBA DMA resource failure. Fail the command 14801 * and continue processing of the queues. 14802 */ 14803 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14804 "sd_start_cmds: " 14805 "SD_PKT_ALLOC_FAILURE_NO_DMA\n"); 14806 break; 14807 14808 case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL: 14809 /* 14810 * Note:x86: Partial DMA mapping not supported 14811 * for USCSI commands, and all the needed DMA 14812 * resources were not allocated. 14813 */ 14814 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14815 "sd_start_cmds: " 14816 "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n"); 14817 break; 14818 14819 case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL: 14820 /* 14821 * Note:x86: Request cannot fit into CDB based 14822 * on lba and len. 14823 */ 14824 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14825 "sd_start_cmds: " 14826 "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n"); 14827 break; 14828 14829 default: 14830 /* Should NEVER get here! */ 14831 panic("scsi_initpkt error"); 14832 /*NOTREACHED*/ 14833 } 14834 14835 /* 14836 * Fatal error in allocating a scsi_pkt for this buf. 14837 * Update kstats & return the buf with an error code. 14838 * We must use sd_return_failed_command_no_restart() to 14839 * avoid a recursive call back into sd_start_cmds(). 14840 * However this also means that we must keep processing 14841 * the waitq here in order to avoid stalling. 14842 */ 14843 if (statp == kstat_waitq_to_runq) { 14844 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 14845 } 14846 sd_return_failed_command_no_restart(un, bp, EIO); 14847 if (bp == immed_bp) { 14848 /* immed_bp is gone by now, so clear this */ 14849 immed_bp = NULL; 14850 } 14851 continue; 14852 } 14853 got_pkt: 14854 if (bp == immed_bp) { 14855 /* goto the head of the class.... */ 14856 xp->xb_pktp->pkt_flags |= FLAG_HEAD; 14857 } 14858 14859 un->un_ncmds_in_transport++; 14860 SD_UPDATE_KSTATS(un, statp, bp); 14861 14862 /* 14863 * Call scsi_transport() to send the command to the target. 14864 * According to SCSA architecture, we must drop the mutex here 14865 * before calling scsi_transport() in order to avoid deadlock. 14866 * Note that the scsi_pkt's completion routine can be executed 14867 * (from interrupt context) even before the call to 14868 * scsi_transport() returns. 14869 */ 14870 SD_TRACE(SD_LOG_IO_CORE, un, 14871 "sd_start_cmds: calling scsi_transport()\n"); 14872 DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp); 14873 14874 mutex_exit(SD_MUTEX(un)); 14875 rval = scsi_transport(xp->xb_pktp); 14876 mutex_enter(SD_MUTEX(un)); 14877 14878 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14879 "sd_start_cmds: scsi_transport() returned %d\n", rval); 14880 14881 switch (rval) { 14882 case TRAN_ACCEPT: 14883 /* Clear this with every pkt accepted by the HBA */ 14884 un->un_tran_fatal_count = 0; 14885 break; /* Success; try the next cmd (if any) */ 14886 14887 case TRAN_BUSY: 14888 un->un_ncmds_in_transport--; 14889 ASSERT(un->un_ncmds_in_transport >= 0); 14890 14891 /* 14892 * Don't retry request sense, the sense data 14893 * is lost when another request is sent. 14894 * Free up the rqs buf and retry 14895 * the original failed cmd. Update kstat. 14896 */ 14897 if (bp == un->un_rqs_bp) { 14898 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 14899 bp = sd_mark_rqs_idle(un, xp); 14900 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 14901 NULL, NULL, EIO, SD_BSY_TIMEOUT / 500, 14902 kstat_waitq_enter); 14903 goto exit; 14904 } 14905 14906 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14907 /* 14908 * Free the DMA resources for the scsi_pkt. This will 14909 * allow mpxio to select another path the next time 14910 * we call scsi_transport() with this scsi_pkt. 14911 * See sdintr() for the rationalization behind this. 14912 */ 14913 if ((un->un_f_is_fibre == TRUE) && 14914 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 14915 ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) { 14916 scsi_dmafree(xp->xb_pktp); 14917 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 14918 } 14919 #endif 14920 14921 if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) { 14922 /* 14923 * Commands that are SD_PATH_DIRECT_PRIORITY 14924 * are for error recovery situations. These do 14925 * not use the normal command waitq, so if they 14926 * get a TRAN_BUSY we cannot put them back onto 14927 * the waitq for later retry. One possible 14928 * problem is that there could already be some 14929 * other command on un_retry_bp that is waiting 14930 * for this one to complete, so we would be 14931 * deadlocked if we put this command back onto 14932 * the waitq for later retry (since un_retry_bp 14933 * must complete before the driver gets back to 14934 * commands on the waitq). 14935 * 14936 * To avoid deadlock we must schedule a callback 14937 * that will restart this command after a set 14938 * interval. This should keep retrying for as 14939 * long as the underlying transport keeps 14940 * returning TRAN_BUSY (just like for other 14941 * commands). Use the same timeout interval as 14942 * for the ordinary TRAN_BUSY retry. 14943 */ 14944 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14945 "sd_start_cmds: scsi_transport() returned " 14946 "TRAN_BUSY for DIRECT_PRIORITY cmd!\n"); 14947 14948 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 14949 un->un_direct_priority_timeid = 14950 timeout(sd_start_direct_priority_command, 14951 bp, SD_BSY_TIMEOUT / 500); 14952 14953 goto exit; 14954 } 14955 14956 /* 14957 * For TRAN_BUSY, we want to reduce the throttle value, 14958 * unless we are retrying a command. 14959 */ 14960 if (bp != un->un_retry_bp) { 14961 sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY); 14962 } 14963 14964 /* 14965 * Set up the bp to be tried again 10 ms later. 14966 * Note:x86: Is there a timeout value in the sd_lun 14967 * for this condition? 14968 */ 14969 sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500, 14970 kstat_runq_back_to_waitq); 14971 goto exit; 14972 14973 case TRAN_FATAL_ERROR: 14974 un->un_tran_fatal_count++; 14975 /* FALLTHRU */ 14976 14977 case TRAN_BADPKT: 14978 default: 14979 un->un_ncmds_in_transport--; 14980 ASSERT(un->un_ncmds_in_transport >= 0); 14981 14982 /* 14983 * If this is our REQUEST SENSE command with a 14984 * transport error, we must get back the pointers 14985 * to the original buf, and mark the REQUEST 14986 * SENSE command as "available". 14987 */ 14988 if (bp == un->un_rqs_bp) { 14989 bp = sd_mark_rqs_idle(un, xp); 14990 xp = SD_GET_XBUF(bp); 14991 } else { 14992 /* 14993 * Legacy behavior: do not update transport 14994 * error count for request sense commands. 14995 */ 14996 SD_UPDATE_ERRSTATS(un, sd_transerrs); 14997 } 14998 14999 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 15000 sd_print_transport_rejected_message(un, xp, rval); 15001 15002 /* 15003 * We must use sd_return_failed_command_no_restart() to 15004 * avoid a recursive call back into sd_start_cmds(). 15005 * However this also means that we must keep processing 15006 * the waitq here in order to avoid stalling. 15007 */ 15008 sd_return_failed_command_no_restart(un, bp, EIO); 15009 15010 /* 15011 * Notify any threads waiting in sd_ddi_suspend() that 15012 * a command completion has occurred. 15013 */ 15014 if (un->un_state == SD_STATE_SUSPENDED) { 15015 cv_broadcast(&un->un_disk_busy_cv); 15016 } 15017 15018 if (bp == immed_bp) { 15019 /* immed_bp is gone by now, so clear this */ 15020 immed_bp = NULL; 15021 } 15022 break; 15023 } 15024 15025 } while (immed_bp == NULL); 15026 15027 exit: 15028 ASSERT(mutex_owned(SD_MUTEX(un))); 15029 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n"); 15030 } 15031 15032 15033 /* 15034 * Function: sd_return_command 15035 * 15036 * Description: Returns a command to its originator (with or without an 15037 * error). Also starts commands waiting to be transported 15038 * to the target. 15039 * 15040 * Context: May be called from interrupt, kernel, or timeout context 15041 */ 15042 15043 static void 15044 sd_return_command(struct sd_lun *un, struct buf *bp) 15045 { 15046 struct sd_xbuf *xp; 15047 #if defined(__i386) || defined(__amd64) 15048 struct scsi_pkt *pktp; 15049 #endif 15050 15051 ASSERT(bp != NULL); 15052 ASSERT(un != NULL); 15053 ASSERT(mutex_owned(SD_MUTEX(un))); 15054 ASSERT(bp != un->un_rqs_bp); 15055 xp = SD_GET_XBUF(bp); 15056 ASSERT(xp != NULL); 15057 15058 #if defined(__i386) || defined(__amd64) 15059 pktp = SD_GET_PKTP(bp); 15060 #endif 15061 15062 SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n"); 15063 15064 #if defined(__i386) || defined(__amd64) 15065 /* 15066 * Note:x86: check for the "sdrestart failed" case. 15067 */ 15068 if (((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) && 15069 (geterror(bp) == 0) && (xp->xb_dma_resid != 0) && 15070 (xp->xb_pktp->pkt_resid == 0)) { 15071 15072 if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) { 15073 /* 15074 * Successfully set up next portion of cmd 15075 * transfer, try sending it 15076 */ 15077 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, 15078 NULL, NULL, 0, (clock_t)0, NULL); 15079 sd_start_cmds(un, NULL); 15080 return; /* Note:x86: need a return here? */ 15081 } 15082 } 15083 #endif 15084 15085 /* 15086 * If this is the failfast bp, clear it from un_failfast_bp. This 15087 * can happen if upon being re-tried the failfast bp either 15088 * succeeded or encountered another error (possibly even a different 15089 * error than the one that precipitated the failfast state, but in 15090 * that case it would have had to exhaust retries as well). Regardless, 15091 * this should not occur whenever the instance is in the active 15092 * failfast state. 15093 */ 15094 if (bp == un->un_failfast_bp) { 15095 ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE); 15096 un->un_failfast_bp = NULL; 15097 } 15098 15099 /* 15100 * Clear the failfast state upon successful completion of ANY cmd. 15101 */ 15102 if (bp->b_error == 0) { 15103 un->un_failfast_state = SD_FAILFAST_INACTIVE; 15104 } 15105 15106 /* 15107 * This is used if the command was retried one or more times. Show that 15108 * we are done with it, and allow processing of the waitq to resume. 15109 */ 15110 if (bp == un->un_retry_bp) { 15111 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15112 "sd_return_command: un:0x%p: " 15113 "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp); 15114 un->un_retry_bp = NULL; 15115 un->un_retry_statp = NULL; 15116 } 15117 15118 SD_UPDATE_RDWR_STATS(un, bp); 15119 SD_UPDATE_PARTITION_STATS(un, bp); 15120 15121 switch (un->un_state) { 15122 case SD_STATE_SUSPENDED: 15123 /* 15124 * Notify any threads waiting in sd_ddi_suspend() that 15125 * a command completion has occurred. 15126 */ 15127 cv_broadcast(&un->un_disk_busy_cv); 15128 break; 15129 default: 15130 sd_start_cmds(un, NULL); 15131 break; 15132 } 15133 15134 /* Return this command up the iodone chain to its originator. */ 15135 mutex_exit(SD_MUTEX(un)); 15136 15137 (*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp); 15138 xp->xb_pktp = NULL; 15139 15140 SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp); 15141 15142 ASSERT(!mutex_owned(SD_MUTEX(un))); 15143 mutex_enter(SD_MUTEX(un)); 15144 15145 SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n"); 15146 } 15147 15148 15149 /* 15150 * Function: sd_return_failed_command 15151 * 15152 * Description: Command completion when an error occurred. 15153 * 15154 * Context: May be called from interrupt context 15155 */ 15156 15157 static void 15158 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode) 15159 { 15160 ASSERT(bp != NULL); 15161 ASSERT(un != NULL); 15162 ASSERT(mutex_owned(SD_MUTEX(un))); 15163 15164 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15165 "sd_return_failed_command: entry\n"); 15166 15167 /* 15168 * b_resid could already be nonzero due to a partial data 15169 * transfer, so do not change it here. 15170 */ 15171 SD_BIOERROR(bp, errcode); 15172 15173 sd_return_command(un, bp); 15174 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15175 "sd_return_failed_command: exit\n"); 15176 } 15177 15178 15179 /* 15180 * Function: sd_return_failed_command_no_restart 15181 * 15182 * Description: Same as sd_return_failed_command, but ensures that no 15183 * call back into sd_start_cmds will be issued. 15184 * 15185 * Context: May be called from interrupt context 15186 */ 15187 15188 static void 15189 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp, 15190 int errcode) 15191 { 15192 struct sd_xbuf *xp; 15193 15194 ASSERT(bp != NULL); 15195 ASSERT(un != NULL); 15196 ASSERT(mutex_owned(SD_MUTEX(un))); 15197 xp = SD_GET_XBUF(bp); 15198 ASSERT(xp != NULL); 15199 ASSERT(errcode != 0); 15200 15201 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15202 "sd_return_failed_command_no_restart: entry\n"); 15203 15204 /* 15205 * b_resid could already be nonzero due to a partial data 15206 * transfer, so do not change it here. 15207 */ 15208 SD_BIOERROR(bp, errcode); 15209 15210 /* 15211 * If this is the failfast bp, clear it. This can happen if the 15212 * failfast bp encounterd a fatal error when we attempted to 15213 * re-try it (such as a scsi_transport(9F) failure). However 15214 * we should NOT be in an active failfast state if the failfast 15215 * bp is not NULL. 15216 */ 15217 if (bp == un->un_failfast_bp) { 15218 ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE); 15219 un->un_failfast_bp = NULL; 15220 } 15221 15222 if (bp == un->un_retry_bp) { 15223 /* 15224 * This command was retried one or more times. Show that we are 15225 * done with it, and allow processing of the waitq to resume. 15226 */ 15227 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15228 "sd_return_failed_command_no_restart: " 15229 " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp); 15230 un->un_retry_bp = NULL; 15231 un->un_retry_statp = NULL; 15232 } 15233 15234 SD_UPDATE_RDWR_STATS(un, bp); 15235 SD_UPDATE_PARTITION_STATS(un, bp); 15236 15237 mutex_exit(SD_MUTEX(un)); 15238 15239 if (xp->xb_pktp != NULL) { 15240 (*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp); 15241 xp->xb_pktp = NULL; 15242 } 15243 15244 SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp); 15245 15246 mutex_enter(SD_MUTEX(un)); 15247 15248 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15249 "sd_return_failed_command_no_restart: exit\n"); 15250 } 15251 15252 15253 /* 15254 * Function: sd_retry_command 15255 * 15256 * Description: queue up a command for retry, or (optionally) fail it 15257 * if retry counts are exhausted. 15258 * 15259 * Arguments: un - Pointer to the sd_lun struct for the target. 15260 * 15261 * bp - Pointer to the buf for the command to be retried. 15262 * 15263 * retry_check_flag - Flag to see which (if any) of the retry 15264 * counts should be decremented/checked. If the indicated 15265 * retry count is exhausted, then the command will not be 15266 * retried; it will be failed instead. This should use a 15267 * value equal to one of the following: 15268 * 15269 * SD_RETRIES_NOCHECK 15270 * SD_RESD_RETRIES_STANDARD 15271 * SD_RETRIES_VICTIM 15272 * 15273 * Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE 15274 * if the check should be made to see of FLAG_ISOLATE is set 15275 * in the pkt. If FLAG_ISOLATE is set, then the command is 15276 * not retried, it is simply failed. 15277 * 15278 * user_funcp - Ptr to function to call before dispatching the 15279 * command. May be NULL if no action needs to be performed. 15280 * (Primarily intended for printing messages.) 15281 * 15282 * user_arg - Optional argument to be passed along to 15283 * the user_funcp call. 15284 * 15285 * failure_code - errno return code to set in the bp if the 15286 * command is going to be failed. 15287 * 15288 * retry_delay - Retry delay interval in (clock_t) units. May 15289 * be zero which indicates that the retry should be retried 15290 * immediately (ie, without an intervening delay). 15291 * 15292 * statp - Ptr to kstat function to be updated if the command 15293 * is queued for a delayed retry. May be NULL if no kstat 15294 * update is desired. 15295 * 15296 * Context: May be called from interupt context. 15297 */ 15298 15299 static void 15300 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag, 15301 void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int 15302 code), void *user_arg, int failure_code, clock_t retry_delay, 15303 void (*statp)(kstat_io_t *)) 15304 { 15305 struct sd_xbuf *xp; 15306 struct scsi_pkt *pktp; 15307 15308 ASSERT(un != NULL); 15309 ASSERT(mutex_owned(SD_MUTEX(un))); 15310 ASSERT(bp != NULL); 15311 xp = SD_GET_XBUF(bp); 15312 ASSERT(xp != NULL); 15313 pktp = SD_GET_PKTP(bp); 15314 ASSERT(pktp != NULL); 15315 15316 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 15317 "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp); 15318 15319 /* 15320 * If we are syncing or dumping, fail the command to avoid 15321 * recursively calling back into scsi_transport(). 15322 */ 15323 if (ddi_in_panic()) { 15324 goto fail_command_no_log; 15325 } 15326 15327 /* 15328 * We should never be be retrying a command with FLAG_DIAGNOSE set, so 15329 * log an error and fail the command. 15330 */ 15331 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 15332 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 15333 "ERROR, retrying FLAG_DIAGNOSE command.\n"); 15334 sd_dump_memory(un, SD_LOG_IO, "CDB", 15335 (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 15336 sd_dump_memory(un, SD_LOG_IO, "Sense Data", 15337 (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX); 15338 goto fail_command; 15339 } 15340 15341 /* 15342 * If we are suspended, then put the command onto head of the 15343 * wait queue since we don't want to start more commands. 15344 */ 15345 switch (un->un_state) { 15346 case SD_STATE_SUSPENDED: 15347 case SD_STATE_DUMPING: 15348 bp->av_forw = un->un_waitq_headp; 15349 un->un_waitq_headp = bp; 15350 if (un->un_waitq_tailp == NULL) { 15351 un->un_waitq_tailp = bp; 15352 } 15353 SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp); 15354 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: " 15355 "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp); 15356 return; 15357 default: 15358 break; 15359 } 15360 15361 /* 15362 * If the caller wants us to check FLAG_ISOLATE, then see if that 15363 * is set; if it is then we do not want to retry the command. 15364 * Normally, FLAG_ISOLATE is only used with USCSI cmds. 15365 */ 15366 if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) { 15367 if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) { 15368 goto fail_command; 15369 } 15370 } 15371 15372 15373 /* 15374 * If SD_RETRIES_FAILFAST is set, it indicates that either a 15375 * command timeout or a selection timeout has occurred. This means 15376 * that we were unable to establish an kind of communication with 15377 * the target, and subsequent retries and/or commands are likely 15378 * to encounter similar results and take a long time to complete. 15379 * 15380 * If this is a failfast error condition, we need to update the 15381 * failfast state, even if this bp does not have B_FAILFAST set. 15382 */ 15383 if (retry_check_flag & SD_RETRIES_FAILFAST) { 15384 if (un->un_failfast_state == SD_FAILFAST_ACTIVE) { 15385 ASSERT(un->un_failfast_bp == NULL); 15386 /* 15387 * If we are already in the active failfast state, and 15388 * another failfast error condition has been detected, 15389 * then fail this command if it has B_FAILFAST set. 15390 * If B_FAILFAST is clear, then maintain the legacy 15391 * behavior of retrying heroically, even tho this will 15392 * take a lot more time to fail the command. 15393 */ 15394 if (bp->b_flags & B_FAILFAST) { 15395 goto fail_command; 15396 } 15397 } else { 15398 /* 15399 * We're not in the active failfast state, but we 15400 * have a failfast error condition, so we must begin 15401 * transition to the next state. We do this regardless 15402 * of whether or not this bp has B_FAILFAST set. 15403 */ 15404 if (un->un_failfast_bp == NULL) { 15405 /* 15406 * This is the first bp to meet a failfast 15407 * condition so save it on un_failfast_bp & 15408 * do normal retry processing. Do not enter 15409 * active failfast state yet. This marks 15410 * entry into the "failfast pending" state. 15411 */ 15412 un->un_failfast_bp = bp; 15413 15414 } else if (un->un_failfast_bp == bp) { 15415 /* 15416 * This is the second time *this* bp has 15417 * encountered a failfast error condition, 15418 * so enter active failfast state & flush 15419 * queues as appropriate. 15420 */ 15421 un->un_failfast_state = SD_FAILFAST_ACTIVE; 15422 un->un_failfast_bp = NULL; 15423 sd_failfast_flushq(un); 15424 15425 /* 15426 * Fail this bp now if B_FAILFAST set; 15427 * otherwise continue with retries. (It would 15428 * be pretty ironic if this bp succeeded on a 15429 * subsequent retry after we just flushed all 15430 * the queues). 15431 */ 15432 if (bp->b_flags & B_FAILFAST) { 15433 goto fail_command; 15434 } 15435 15436 #if !defined(lint) && !defined(__lint) 15437 } else { 15438 /* 15439 * If neither of the preceeding conditionals 15440 * was true, it means that there is some 15441 * *other* bp that has met an inital failfast 15442 * condition and is currently either being 15443 * retried or is waiting to be retried. In 15444 * that case we should perform normal retry 15445 * processing on *this* bp, since there is a 15446 * chance that the current failfast condition 15447 * is transient and recoverable. If that does 15448 * not turn out to be the case, then retries 15449 * will be cleared when the wait queue is 15450 * flushed anyway. 15451 */ 15452 #endif 15453 } 15454 } 15455 } else { 15456 /* 15457 * SD_RETRIES_FAILFAST is clear, which indicates that we 15458 * likely were able to at least establish some level of 15459 * communication with the target and subsequent commands 15460 * and/or retries are likely to get through to the target, 15461 * In this case we want to be aggressive about clearing 15462 * the failfast state. Note that this does not affect 15463 * the "failfast pending" condition. 15464 */ 15465 un->un_failfast_state = SD_FAILFAST_INACTIVE; 15466 } 15467 15468 15469 /* 15470 * Check the specified retry count to see if we can still do 15471 * any retries with this pkt before we should fail it. 15472 */ 15473 switch (retry_check_flag & SD_RETRIES_MASK) { 15474 case SD_RETRIES_VICTIM: 15475 /* 15476 * Check the victim retry count. If exhausted, then fall 15477 * thru & check against the standard retry count. 15478 */ 15479 if (xp->xb_victim_retry_count < un->un_victim_retry_count) { 15480 /* Increment count & proceed with the retry */ 15481 xp->xb_victim_retry_count++; 15482 break; 15483 } 15484 /* Victim retries exhausted, fall back to std. retries... */ 15485 /* FALLTHRU */ 15486 15487 case SD_RETRIES_STANDARD: 15488 if (xp->xb_retry_count >= un->un_retry_count) { 15489 /* Retries exhausted, fail the command */ 15490 SD_TRACE(SD_LOG_IO_CORE, un, 15491 "sd_retry_command: retries exhausted!\n"); 15492 /* 15493 * update b_resid for failed SCMD_READ & SCMD_WRITE 15494 * commands with nonzero pkt_resid. 15495 */ 15496 if ((pktp->pkt_reason == CMD_CMPLT) && 15497 (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) && 15498 (pktp->pkt_resid != 0)) { 15499 uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F; 15500 if ((op == SCMD_READ) || (op == SCMD_WRITE)) { 15501 SD_UPDATE_B_RESID(bp, pktp); 15502 } 15503 } 15504 goto fail_command; 15505 } 15506 xp->xb_retry_count++; 15507 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15508 "sd_retry_command: retry count:%d\n", xp->xb_retry_count); 15509 break; 15510 15511 case SD_RETRIES_UA: 15512 if (xp->xb_ua_retry_count >= sd_ua_retry_count) { 15513 /* Retries exhausted, fail the command */ 15514 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 15515 "Unit Attention retries exhausted. " 15516 "Check the target.\n"); 15517 goto fail_command; 15518 } 15519 xp->xb_ua_retry_count++; 15520 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15521 "sd_retry_command: retry count:%d\n", 15522 xp->xb_ua_retry_count); 15523 break; 15524 15525 case SD_RETRIES_BUSY: 15526 if (xp->xb_retry_count >= un->un_busy_retry_count) { 15527 /* Retries exhausted, fail the command */ 15528 SD_TRACE(SD_LOG_IO_CORE, un, 15529 "sd_retry_command: retries exhausted!\n"); 15530 goto fail_command; 15531 } 15532 xp->xb_retry_count++; 15533 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15534 "sd_retry_command: retry count:%d\n", xp->xb_retry_count); 15535 break; 15536 15537 case SD_RETRIES_NOCHECK: 15538 default: 15539 /* No retry count to check. Just proceed with the retry */ 15540 break; 15541 } 15542 15543 xp->xb_pktp->pkt_flags |= FLAG_HEAD; 15544 15545 /* 15546 * If we were given a zero timeout, we must attempt to retry the 15547 * command immediately (ie, without a delay). 15548 */ 15549 if (retry_delay == 0) { 15550 /* 15551 * Check some limiting conditions to see if we can actually 15552 * do the immediate retry. If we cannot, then we must 15553 * fall back to queueing up a delayed retry. 15554 */ 15555 if (un->un_ncmds_in_transport >= un->un_throttle) { 15556 /* 15557 * We are at the throttle limit for the target, 15558 * fall back to delayed retry. 15559 */ 15560 retry_delay = SD_BSY_TIMEOUT; 15561 statp = kstat_waitq_enter; 15562 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15563 "sd_retry_command: immed. retry hit " 15564 "throttle!\n"); 15565 } else { 15566 /* 15567 * We're clear to proceed with the immediate retry. 15568 * First call the user-provided function (if any) 15569 */ 15570 if (user_funcp != NULL) { 15571 (*user_funcp)(un, bp, user_arg, 15572 SD_IMMEDIATE_RETRY_ISSUED); 15573 #ifdef __lock_lint 15574 sd_print_incomplete_msg(un, bp, user_arg, 15575 SD_IMMEDIATE_RETRY_ISSUED); 15576 sd_print_cmd_incomplete_msg(un, bp, user_arg, 15577 SD_IMMEDIATE_RETRY_ISSUED); 15578 sd_print_sense_failed_msg(un, bp, user_arg, 15579 SD_IMMEDIATE_RETRY_ISSUED); 15580 #endif 15581 } 15582 15583 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15584 "sd_retry_command: issuing immediate retry\n"); 15585 15586 /* 15587 * Call sd_start_cmds() to transport the command to 15588 * the target. 15589 */ 15590 sd_start_cmds(un, bp); 15591 15592 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15593 "sd_retry_command exit\n"); 15594 return; 15595 } 15596 } 15597 15598 /* 15599 * Set up to retry the command after a delay. 15600 * First call the user-provided function (if any) 15601 */ 15602 if (user_funcp != NULL) { 15603 (*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED); 15604 } 15605 15606 sd_set_retry_bp(un, bp, retry_delay, statp); 15607 15608 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n"); 15609 return; 15610 15611 fail_command: 15612 15613 if (user_funcp != NULL) { 15614 (*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED); 15615 } 15616 15617 fail_command_no_log: 15618 15619 SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15620 "sd_retry_command: returning failed command\n"); 15621 15622 sd_return_failed_command(un, bp, failure_code); 15623 15624 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n"); 15625 } 15626 15627 15628 /* 15629 * Function: sd_set_retry_bp 15630 * 15631 * Description: Set up the given bp for retry. 15632 * 15633 * Arguments: un - ptr to associated softstate 15634 * bp - ptr to buf(9S) for the command 15635 * retry_delay - time interval before issuing retry (may be 0) 15636 * statp - optional pointer to kstat function 15637 * 15638 * Context: May be called under interrupt context 15639 */ 15640 15641 static void 15642 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay, 15643 void (*statp)(kstat_io_t *)) 15644 { 15645 ASSERT(un != NULL); 15646 ASSERT(mutex_owned(SD_MUTEX(un))); 15647 ASSERT(bp != NULL); 15648 15649 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 15650 "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp); 15651 15652 /* 15653 * Indicate that the command is being retried. This will not allow any 15654 * other commands on the wait queue to be transported to the target 15655 * until this command has been completed (success or failure). The 15656 * "retry command" is not transported to the target until the given 15657 * time delay expires, unless the user specified a 0 retry_delay. 15658 * 15659 * Note: the timeout(9F) callback routine is what actually calls 15660 * sd_start_cmds() to transport the command, with the exception of a 15661 * zero retry_delay. The only current implementor of a zero retry delay 15662 * is the case where a START_STOP_UNIT is sent to spin-up a device. 15663 */ 15664 if (un->un_retry_bp == NULL) { 15665 ASSERT(un->un_retry_statp == NULL); 15666 un->un_retry_bp = bp; 15667 15668 /* 15669 * If the user has not specified a delay the command should 15670 * be queued and no timeout should be scheduled. 15671 */ 15672 if (retry_delay == 0) { 15673 /* 15674 * Save the kstat pointer that will be used in the 15675 * call to SD_UPDATE_KSTATS() below, so that 15676 * sd_start_cmds() can correctly decrement the waitq 15677 * count when it is time to transport this command. 15678 */ 15679 un->un_retry_statp = statp; 15680 goto done; 15681 } 15682 } 15683 15684 if (un->un_retry_bp == bp) { 15685 /* 15686 * Save the kstat pointer that will be used in the call to 15687 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can 15688 * correctly decrement the waitq count when it is time to 15689 * transport this command. 15690 */ 15691 un->un_retry_statp = statp; 15692 15693 /* 15694 * Schedule a timeout if: 15695 * 1) The user has specified a delay. 15696 * 2) There is not a START_STOP_UNIT callback pending. 15697 * 15698 * If no delay has been specified, then it is up to the caller 15699 * to ensure that IO processing continues without stalling. 15700 * Effectively, this means that the caller will issue the 15701 * required call to sd_start_cmds(). The START_STOP_UNIT 15702 * callback does this after the START STOP UNIT command has 15703 * completed. In either of these cases we should not schedule 15704 * a timeout callback here. Also don't schedule the timeout if 15705 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart. 15706 */ 15707 if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) && 15708 (un->un_direct_priority_timeid == NULL)) { 15709 un->un_retry_timeid = 15710 timeout(sd_start_retry_command, un, retry_delay); 15711 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15712 "sd_set_retry_bp: setting timeout: un: 0x%p" 15713 " bp:0x%p un_retry_timeid:0x%p\n", 15714 un, bp, un->un_retry_timeid); 15715 } 15716 } else { 15717 /* 15718 * We only get in here if there is already another command 15719 * waiting to be retried. In this case, we just put the 15720 * given command onto the wait queue, so it can be transported 15721 * after the current retry command has completed. 15722 * 15723 * Also we have to make sure that if the command at the head 15724 * of the wait queue is the un_failfast_bp, that we do not 15725 * put ahead of it any other commands that are to be retried. 15726 */ 15727 if ((un->un_failfast_bp != NULL) && 15728 (un->un_failfast_bp == un->un_waitq_headp)) { 15729 /* 15730 * Enqueue this command AFTER the first command on 15731 * the wait queue (which is also un_failfast_bp). 15732 */ 15733 bp->av_forw = un->un_waitq_headp->av_forw; 15734 un->un_waitq_headp->av_forw = bp; 15735 if (un->un_waitq_headp == un->un_waitq_tailp) { 15736 un->un_waitq_tailp = bp; 15737 } 15738 } else { 15739 /* Enqueue this command at the head of the waitq. */ 15740 bp->av_forw = un->un_waitq_headp; 15741 un->un_waitq_headp = bp; 15742 if (un->un_waitq_tailp == NULL) { 15743 un->un_waitq_tailp = bp; 15744 } 15745 } 15746 15747 if (statp == NULL) { 15748 statp = kstat_waitq_enter; 15749 } 15750 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15751 "sd_set_retry_bp: un:0x%p already delayed retry\n", un); 15752 } 15753 15754 done: 15755 if (statp != NULL) { 15756 SD_UPDATE_KSTATS(un, statp, bp); 15757 } 15758 15759 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15760 "sd_set_retry_bp: exit un:0x%p\n", un); 15761 } 15762 15763 15764 /* 15765 * Function: sd_start_retry_command 15766 * 15767 * Description: Start the command that has been waiting on the target's 15768 * retry queue. Called from timeout(9F) context after the 15769 * retry delay interval has expired. 15770 * 15771 * Arguments: arg - pointer to associated softstate for the device. 15772 * 15773 * Context: timeout(9F) thread context. May not sleep. 15774 */ 15775 15776 static void 15777 sd_start_retry_command(void *arg) 15778 { 15779 struct sd_lun *un = arg; 15780 15781 ASSERT(un != NULL); 15782 ASSERT(!mutex_owned(SD_MUTEX(un))); 15783 15784 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15785 "sd_start_retry_command: entry\n"); 15786 15787 mutex_enter(SD_MUTEX(un)); 15788 15789 un->un_retry_timeid = NULL; 15790 15791 if (un->un_retry_bp != NULL) { 15792 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15793 "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n", 15794 un, un->un_retry_bp); 15795 sd_start_cmds(un, un->un_retry_bp); 15796 } 15797 15798 mutex_exit(SD_MUTEX(un)); 15799 15800 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15801 "sd_start_retry_command: exit\n"); 15802 } 15803 15804 15805 /* 15806 * Function: sd_start_direct_priority_command 15807 * 15808 * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had 15809 * received TRAN_BUSY when we called scsi_transport() to send it 15810 * to the underlying HBA. This function is called from timeout(9F) 15811 * context after the delay interval has expired. 15812 * 15813 * Arguments: arg - pointer to associated buf(9S) to be restarted. 15814 * 15815 * Context: timeout(9F) thread context. May not sleep. 15816 */ 15817 15818 static void 15819 sd_start_direct_priority_command(void *arg) 15820 { 15821 struct buf *priority_bp = arg; 15822 struct sd_lun *un; 15823 15824 ASSERT(priority_bp != NULL); 15825 un = SD_GET_UN(priority_bp); 15826 ASSERT(un != NULL); 15827 ASSERT(!mutex_owned(SD_MUTEX(un))); 15828 15829 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15830 "sd_start_direct_priority_command: entry\n"); 15831 15832 mutex_enter(SD_MUTEX(un)); 15833 un->un_direct_priority_timeid = NULL; 15834 sd_start_cmds(un, priority_bp); 15835 mutex_exit(SD_MUTEX(un)); 15836 15837 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15838 "sd_start_direct_priority_command: exit\n"); 15839 } 15840 15841 15842 /* 15843 * Function: sd_send_request_sense_command 15844 * 15845 * Description: Sends a REQUEST SENSE command to the target 15846 * 15847 * Context: May be called from interrupt context. 15848 */ 15849 15850 static void 15851 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp, 15852 struct scsi_pkt *pktp) 15853 { 15854 ASSERT(bp != NULL); 15855 ASSERT(un != NULL); 15856 ASSERT(mutex_owned(SD_MUTEX(un))); 15857 15858 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: " 15859 "entry: buf:0x%p\n", bp); 15860 15861 /* 15862 * If we are syncing or dumping, then fail the command to avoid a 15863 * recursive callback into scsi_transport(). Also fail the command 15864 * if we are suspended (legacy behavior). 15865 */ 15866 if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) || 15867 (un->un_state == SD_STATE_DUMPING)) { 15868 sd_return_failed_command(un, bp, EIO); 15869 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15870 "sd_send_request_sense_command: syncing/dumping, exit\n"); 15871 return; 15872 } 15873 15874 /* 15875 * Retry the failed command and don't issue the request sense if: 15876 * 1) the sense buf is busy 15877 * 2) we have 1 or more outstanding commands on the target 15878 * (the sense data will be cleared or invalidated any way) 15879 * 15880 * Note: There could be an issue with not checking a retry limit here, 15881 * the problem is determining which retry limit to check. 15882 */ 15883 if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) { 15884 /* Don't retry if the command is flagged as non-retryable */ 15885 if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 15886 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, 15887 NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter); 15888 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15889 "sd_send_request_sense_command: " 15890 "at full throttle, retrying exit\n"); 15891 } else { 15892 sd_return_failed_command(un, bp, EIO); 15893 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15894 "sd_send_request_sense_command: " 15895 "at full throttle, non-retryable exit\n"); 15896 } 15897 return; 15898 } 15899 15900 sd_mark_rqs_busy(un, bp); 15901 sd_start_cmds(un, un->un_rqs_bp); 15902 15903 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15904 "sd_send_request_sense_command: exit\n"); 15905 } 15906 15907 15908 /* 15909 * Function: sd_mark_rqs_busy 15910 * 15911 * Description: Indicate that the request sense bp for this instance is 15912 * in use. 15913 * 15914 * Context: May be called under interrupt context 15915 */ 15916 15917 static void 15918 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp) 15919 { 15920 struct sd_xbuf *sense_xp; 15921 15922 ASSERT(un != NULL); 15923 ASSERT(bp != NULL); 15924 ASSERT(mutex_owned(SD_MUTEX(un))); 15925 ASSERT(un->un_sense_isbusy == 0); 15926 15927 SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: " 15928 "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un); 15929 15930 sense_xp = SD_GET_XBUF(un->un_rqs_bp); 15931 ASSERT(sense_xp != NULL); 15932 15933 SD_INFO(SD_LOG_IO, un, 15934 "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp); 15935 15936 ASSERT(sense_xp->xb_pktp != NULL); 15937 ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) 15938 == (FLAG_SENSING | FLAG_HEAD)); 15939 15940 un->un_sense_isbusy = 1; 15941 un->un_rqs_bp->b_resid = 0; 15942 sense_xp->xb_pktp->pkt_resid = 0; 15943 sense_xp->xb_pktp->pkt_reason = 0; 15944 15945 /* So we can get back the bp at interrupt time! */ 15946 sense_xp->xb_sense_bp = bp; 15947 15948 bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH); 15949 15950 /* 15951 * Mark this buf as awaiting sense data. (This is already set in 15952 * the pkt_flags for the RQS packet.) 15953 */ 15954 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING; 15955 15956 sense_xp->xb_retry_count = 0; 15957 sense_xp->xb_victim_retry_count = 0; 15958 sense_xp->xb_ua_retry_count = 0; 15959 sense_xp->xb_dma_resid = 0; 15960 15961 /* Clean up the fields for auto-request sense */ 15962 sense_xp->xb_sense_status = 0; 15963 sense_xp->xb_sense_state = 0; 15964 sense_xp->xb_sense_resid = 0; 15965 bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data)); 15966 15967 SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n"); 15968 } 15969 15970 15971 /* 15972 * Function: sd_mark_rqs_idle 15973 * 15974 * Description: SD_MUTEX must be held continuously through this routine 15975 * to prevent reuse of the rqs struct before the caller can 15976 * complete it's processing. 15977 * 15978 * Return Code: Pointer to the RQS buf 15979 * 15980 * Context: May be called under interrupt context 15981 */ 15982 15983 static struct buf * 15984 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp) 15985 { 15986 struct buf *bp; 15987 ASSERT(un != NULL); 15988 ASSERT(sense_xp != NULL); 15989 ASSERT(mutex_owned(SD_MUTEX(un))); 15990 ASSERT(un->un_sense_isbusy != 0); 15991 15992 un->un_sense_isbusy = 0; 15993 bp = sense_xp->xb_sense_bp; 15994 sense_xp->xb_sense_bp = NULL; 15995 15996 /* This pkt is no longer interested in getting sense data */ 15997 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING; 15998 15999 return (bp); 16000 } 16001 16002 16003 16004 /* 16005 * Function: sd_alloc_rqs 16006 * 16007 * Description: Set up the unit to receive auto request sense data 16008 * 16009 * Return Code: DDI_SUCCESS or DDI_FAILURE 16010 * 16011 * Context: Called under attach(9E) context 16012 */ 16013 16014 static int 16015 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un) 16016 { 16017 struct sd_xbuf *xp; 16018 16019 ASSERT(un != NULL); 16020 ASSERT(!mutex_owned(SD_MUTEX(un))); 16021 ASSERT(un->un_rqs_bp == NULL); 16022 ASSERT(un->un_rqs_pktp == NULL); 16023 16024 /* 16025 * First allocate the required buf and scsi_pkt structs, then set up 16026 * the CDB in the scsi_pkt for a REQUEST SENSE command. 16027 */ 16028 un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL, 16029 SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL); 16030 if (un->un_rqs_bp == NULL) { 16031 return (DDI_FAILURE); 16032 } 16033 16034 un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp, 16035 CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL); 16036 16037 if (un->un_rqs_pktp == NULL) { 16038 sd_free_rqs(un); 16039 return (DDI_FAILURE); 16040 } 16041 16042 /* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */ 16043 (void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp, 16044 SCMD_REQUEST_SENSE, 0, SENSE_LENGTH, 0); 16045 16046 SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp); 16047 16048 /* Set up the other needed members in the ARQ scsi_pkt. */ 16049 un->un_rqs_pktp->pkt_comp = sdintr; 16050 un->un_rqs_pktp->pkt_time = sd_io_time; 16051 un->un_rqs_pktp->pkt_flags |= 16052 (FLAG_SENSING | FLAG_HEAD); /* (1222170) */ 16053 16054 /* 16055 * Allocate & init the sd_xbuf struct for the RQS command. Do not 16056 * provide any intpkt, destroypkt routines as we take care of 16057 * scsi_pkt allocation/freeing here and in sd_free_rqs(). 16058 */ 16059 xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 16060 sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL); 16061 xp->xb_pktp = un->un_rqs_pktp; 16062 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16063 "sd_alloc_rqs: un 0x%p, rqs xp 0x%p, pkt 0x%p, buf 0x%p\n", 16064 un, xp, un->un_rqs_pktp, un->un_rqs_bp); 16065 16066 /* 16067 * Save the pointer to the request sense private bp so it can 16068 * be retrieved in sdintr. 16069 */ 16070 un->un_rqs_pktp->pkt_private = un->un_rqs_bp; 16071 ASSERT(un->un_rqs_bp->b_private == xp); 16072 16073 /* 16074 * See if the HBA supports auto-request sense for the specified 16075 * target/lun. If it does, then try to enable it (if not already 16076 * enabled). 16077 * 16078 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return 16079 * failure, while for other HBAs (pln) scsi_ifsetcap will always 16080 * return success. However, in both of these cases ARQ is always 16081 * enabled and scsi_ifgetcap will always return true. The best approach 16082 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap(). 16083 * 16084 * The 3rd case is the HBA (adp) always return enabled on 16085 * scsi_ifgetgetcap even when it's not enable, the best approach 16086 * is issue a scsi_ifsetcap then a scsi_ifgetcap 16087 * Note: this case is to circumvent the Adaptec bug. (x86 only) 16088 */ 16089 16090 if (un->un_f_is_fibre == TRUE) { 16091 un->un_f_arq_enabled = TRUE; 16092 } else { 16093 #if defined(__i386) || defined(__amd64) 16094 /* 16095 * Circumvent the Adaptec bug, remove this code when 16096 * the bug is fixed 16097 */ 16098 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1); 16099 #endif 16100 switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) { 16101 case 0: 16102 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16103 "sd_alloc_rqs: HBA supports ARQ\n"); 16104 /* 16105 * ARQ is supported by this HBA but currently is not 16106 * enabled. Attempt to enable it and if successful then 16107 * mark this instance as ARQ enabled. 16108 */ 16109 if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1) 16110 == 1) { 16111 /* Successfully enabled ARQ in the HBA */ 16112 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16113 "sd_alloc_rqs: ARQ enabled\n"); 16114 un->un_f_arq_enabled = TRUE; 16115 } else { 16116 /* Could not enable ARQ in the HBA */ 16117 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16118 "sd_alloc_rqs: failed ARQ enable\n"); 16119 un->un_f_arq_enabled = FALSE; 16120 } 16121 break; 16122 case 1: 16123 /* 16124 * ARQ is supported by this HBA and is already enabled. 16125 * Just mark ARQ as enabled for this instance. 16126 */ 16127 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16128 "sd_alloc_rqs: ARQ already enabled\n"); 16129 un->un_f_arq_enabled = TRUE; 16130 break; 16131 default: 16132 /* 16133 * ARQ is not supported by this HBA; disable it for this 16134 * instance. 16135 */ 16136 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16137 "sd_alloc_rqs: HBA does not support ARQ\n"); 16138 un->un_f_arq_enabled = FALSE; 16139 break; 16140 } 16141 } 16142 16143 return (DDI_SUCCESS); 16144 } 16145 16146 16147 /* 16148 * Function: sd_free_rqs 16149 * 16150 * Description: Cleanup for the pre-instance RQS command. 16151 * 16152 * Context: Kernel thread context 16153 */ 16154 16155 static void 16156 sd_free_rqs(struct sd_lun *un) 16157 { 16158 ASSERT(un != NULL); 16159 16160 SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n"); 16161 16162 /* 16163 * If consistent memory is bound to a scsi_pkt, the pkt 16164 * has to be destroyed *before* freeing the consistent memory. 16165 * Don't change the sequence of this operations. 16166 * scsi_destroy_pkt() might access memory, which isn't allowed, 16167 * after it was freed in scsi_free_consistent_buf(). 16168 */ 16169 if (un->un_rqs_pktp != NULL) { 16170 scsi_destroy_pkt(un->un_rqs_pktp); 16171 un->un_rqs_pktp = NULL; 16172 } 16173 16174 if (un->un_rqs_bp != NULL) { 16175 kmem_free(SD_GET_XBUF(un->un_rqs_bp), sizeof (struct sd_xbuf)); 16176 scsi_free_consistent_buf(un->un_rqs_bp); 16177 un->un_rqs_bp = NULL; 16178 } 16179 SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n"); 16180 } 16181 16182 16183 16184 /* 16185 * Function: sd_reduce_throttle 16186 * 16187 * Description: Reduces the maximun # of outstanding commands on a 16188 * target to the current number of outstanding commands. 16189 * Queues a tiemout(9F) callback to restore the limit 16190 * after a specified interval has elapsed. 16191 * Typically used when we get a TRAN_BUSY return code 16192 * back from scsi_transport(). 16193 * 16194 * Arguments: un - ptr to the sd_lun softstate struct 16195 * throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL 16196 * 16197 * Context: May be called from interrupt context 16198 */ 16199 16200 static void 16201 sd_reduce_throttle(struct sd_lun *un, int throttle_type) 16202 { 16203 ASSERT(un != NULL); 16204 ASSERT(mutex_owned(SD_MUTEX(un))); 16205 ASSERT(un->un_ncmds_in_transport >= 0); 16206 16207 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: " 16208 "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n", 16209 un, un->un_throttle, un->un_ncmds_in_transport); 16210 16211 if (un->un_throttle > 1) { 16212 if (un->un_f_use_adaptive_throttle == TRUE) { 16213 switch (throttle_type) { 16214 case SD_THROTTLE_TRAN_BUSY: 16215 if (un->un_busy_throttle == 0) { 16216 un->un_busy_throttle = un->un_throttle; 16217 } 16218 break; 16219 case SD_THROTTLE_QFULL: 16220 un->un_busy_throttle = 0; 16221 break; 16222 default: 16223 ASSERT(FALSE); 16224 } 16225 16226 if (un->un_ncmds_in_transport > 0) { 16227 un->un_throttle = un->un_ncmds_in_transport; 16228 } 16229 16230 } else { 16231 if (un->un_ncmds_in_transport == 0) { 16232 un->un_throttle = 1; 16233 } else { 16234 un->un_throttle = un->un_ncmds_in_transport; 16235 } 16236 } 16237 } 16238 16239 /* Reschedule the timeout if none is currently active */ 16240 if (un->un_reset_throttle_timeid == NULL) { 16241 un->un_reset_throttle_timeid = timeout(sd_restore_throttle, 16242 un, SD_THROTTLE_RESET_INTERVAL); 16243 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16244 "sd_reduce_throttle: timeout scheduled!\n"); 16245 } 16246 16247 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: " 16248 "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle); 16249 } 16250 16251 16252 16253 /* 16254 * Function: sd_restore_throttle 16255 * 16256 * Description: Callback function for timeout(9F). Resets the current 16257 * value of un->un_throttle to its default. 16258 * 16259 * Arguments: arg - pointer to associated softstate for the device. 16260 * 16261 * Context: May be called from interrupt context 16262 */ 16263 16264 static void 16265 sd_restore_throttle(void *arg) 16266 { 16267 struct sd_lun *un = arg; 16268 16269 ASSERT(un != NULL); 16270 ASSERT(!mutex_owned(SD_MUTEX(un))); 16271 16272 mutex_enter(SD_MUTEX(un)); 16273 16274 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: " 16275 "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle); 16276 16277 un->un_reset_throttle_timeid = NULL; 16278 16279 if (un->un_f_use_adaptive_throttle == TRUE) { 16280 /* 16281 * If un_busy_throttle is nonzero, then it contains the 16282 * value that un_throttle was when we got a TRAN_BUSY back 16283 * from scsi_transport(). We want to revert back to this 16284 * value. 16285 * 16286 * In the QFULL case, the throttle limit will incrementally 16287 * increase until it reaches max throttle. 16288 */ 16289 if (un->un_busy_throttle > 0) { 16290 un->un_throttle = un->un_busy_throttle; 16291 un->un_busy_throttle = 0; 16292 } else { 16293 /* 16294 * increase throttle by 10% open gate slowly, schedule 16295 * another restore if saved throttle has not been 16296 * reached 16297 */ 16298 short throttle; 16299 if (sd_qfull_throttle_enable) { 16300 throttle = un->un_throttle + 16301 max((un->un_throttle / 10), 1); 16302 un->un_throttle = 16303 (throttle < un->un_saved_throttle) ? 16304 throttle : un->un_saved_throttle; 16305 if (un->un_throttle < un->un_saved_throttle) { 16306 un->un_reset_throttle_timeid = 16307 timeout(sd_restore_throttle, 16308 un, SD_QFULL_THROTTLE_RESET_INTERVAL); 16309 } 16310 } 16311 } 16312 16313 /* 16314 * If un_throttle has fallen below the low-water mark, we 16315 * restore the maximum value here (and allow it to ratchet 16316 * down again if necessary). 16317 */ 16318 if (un->un_throttle < un->un_min_throttle) { 16319 un->un_throttle = un->un_saved_throttle; 16320 } 16321 } else { 16322 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: " 16323 "restoring limit from 0x%x to 0x%x\n", 16324 un->un_throttle, un->un_saved_throttle); 16325 un->un_throttle = un->un_saved_throttle; 16326 } 16327 16328 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 16329 "sd_restore_throttle: calling sd_start_cmds!\n"); 16330 16331 sd_start_cmds(un, NULL); 16332 16333 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 16334 "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n", 16335 un, un->un_throttle); 16336 16337 mutex_exit(SD_MUTEX(un)); 16338 16339 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n"); 16340 } 16341 16342 /* 16343 * Function: sdrunout 16344 * 16345 * Description: Callback routine for scsi_init_pkt when a resource allocation 16346 * fails. 16347 * 16348 * Arguments: arg - a pointer to the sd_lun unit struct for the particular 16349 * soft state instance. 16350 * 16351 * Return Code: The scsi_init_pkt routine allows for the callback function to 16352 * return a 0 indicating the callback should be rescheduled or a 1 16353 * indicating not to reschedule. This routine always returns 1 16354 * because the driver always provides a callback function to 16355 * scsi_init_pkt. This results in a callback always being scheduled 16356 * (via the scsi_init_pkt callback implementation) if a resource 16357 * failure occurs. 16358 * 16359 * Context: This callback function may not block or call routines that block 16360 * 16361 * Note: Using the scsi_init_pkt callback facility can result in an I/O 16362 * request persisting at the head of the list which cannot be 16363 * satisfied even after multiple retries. In the future the driver 16364 * may implement some time of maximum runout count before failing 16365 * an I/O. 16366 */ 16367 16368 static int 16369 sdrunout(caddr_t arg) 16370 { 16371 struct sd_lun *un = (struct sd_lun *)arg; 16372 16373 ASSERT(un != NULL); 16374 ASSERT(!mutex_owned(SD_MUTEX(un))); 16375 16376 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n"); 16377 16378 mutex_enter(SD_MUTEX(un)); 16379 sd_start_cmds(un, NULL); 16380 mutex_exit(SD_MUTEX(un)); 16381 /* 16382 * This callback routine always returns 1 (i.e. do not reschedule) 16383 * because we always specify sdrunout as the callback handler for 16384 * scsi_init_pkt inside the call to sd_start_cmds. 16385 */ 16386 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n"); 16387 return (1); 16388 } 16389 16390 16391 /* 16392 * Function: sdintr 16393 * 16394 * Description: Completion callback routine for scsi_pkt(9S) structs 16395 * sent to the HBA driver via scsi_transport(9F). 16396 * 16397 * Context: Interrupt context 16398 */ 16399 16400 static void 16401 sdintr(struct scsi_pkt *pktp) 16402 { 16403 struct buf *bp; 16404 struct sd_xbuf *xp; 16405 struct sd_lun *un; 16406 16407 ASSERT(pktp != NULL); 16408 bp = (struct buf *)pktp->pkt_private; 16409 ASSERT(bp != NULL); 16410 xp = SD_GET_XBUF(bp); 16411 ASSERT(xp != NULL); 16412 ASSERT(xp->xb_pktp != NULL); 16413 un = SD_GET_UN(bp); 16414 ASSERT(un != NULL); 16415 ASSERT(!mutex_owned(SD_MUTEX(un))); 16416 16417 #ifdef SD_FAULT_INJECTION 16418 16419 SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n"); 16420 /* SD FaultInjection */ 16421 sd_faultinjection(pktp); 16422 16423 #endif /* SD_FAULT_INJECTION */ 16424 16425 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p," 16426 " xp:0x%p, un:0x%p\n", bp, xp, un); 16427 16428 mutex_enter(SD_MUTEX(un)); 16429 16430 /* Reduce the count of the #commands currently in transport */ 16431 un->un_ncmds_in_transport--; 16432 ASSERT(un->un_ncmds_in_transport >= 0); 16433 16434 /* Increment counter to indicate that the callback routine is active */ 16435 un->un_in_callback++; 16436 16437 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 16438 16439 #ifdef SDDEBUG 16440 if (bp == un->un_retry_bp) { 16441 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: " 16442 "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n", 16443 un, un->un_retry_bp, un->un_ncmds_in_transport); 16444 } 16445 #endif 16446 16447 /* 16448 * If pkt_reason is CMD_DEV_GONE, just fail the command 16449 */ 16450 if (pktp->pkt_reason == CMD_DEV_GONE) { 16451 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 16452 "Device is gone\n"); 16453 sd_return_failed_command(un, bp, EIO); 16454 goto exit; 16455 } 16456 16457 /* 16458 * First see if the pkt has auto-request sense data with it.... 16459 * Look at the packet state first so we don't take a performance 16460 * hit looking at the arq enabled flag unless absolutely necessary. 16461 */ 16462 if ((pktp->pkt_state & STATE_ARQ_DONE) && 16463 (un->un_f_arq_enabled == TRUE)) { 16464 /* 16465 * The HBA did an auto request sense for this command so check 16466 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal 16467 * driver command that should not be retried. 16468 */ 16469 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 16470 /* 16471 * Save the relevant sense info into the xp for the 16472 * original cmd. 16473 */ 16474 struct scsi_arq_status *asp; 16475 asp = (struct scsi_arq_status *)(pktp->pkt_scbp); 16476 xp->xb_sense_status = 16477 *((uchar_t *)(&(asp->sts_rqpkt_status))); 16478 xp->xb_sense_state = asp->sts_rqpkt_state; 16479 xp->xb_sense_resid = asp->sts_rqpkt_resid; 16480 bcopy(&asp->sts_sensedata, xp->xb_sense_data, 16481 min(sizeof (struct scsi_extended_sense), 16482 SENSE_LENGTH)); 16483 16484 /* fail the command */ 16485 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16486 "sdintr: arq done and FLAG_DIAGNOSE set\n"); 16487 sd_return_failed_command(un, bp, EIO); 16488 goto exit; 16489 } 16490 16491 #if (defined(__i386) || defined(__amd64)) /* DMAFREE for x86 only */ 16492 /* 16493 * We want to either retry or fail this command, so free 16494 * the DMA resources here. If we retry the command then 16495 * the DMA resources will be reallocated in sd_start_cmds(). 16496 * Note that when PKT_DMA_PARTIAL is used, this reallocation 16497 * causes the *entire* transfer to start over again from the 16498 * beginning of the request, even for PARTIAL chunks that 16499 * have already transferred successfully. 16500 */ 16501 if ((un->un_f_is_fibre == TRUE) && 16502 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 16503 ((pktp->pkt_flags & FLAG_SENSING) == 0)) { 16504 scsi_dmafree(pktp); 16505 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 16506 } 16507 #endif 16508 16509 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16510 "sdintr: arq done, sd_handle_auto_request_sense\n"); 16511 16512 sd_handle_auto_request_sense(un, bp, xp, pktp); 16513 goto exit; 16514 } 16515 16516 /* Next see if this is the REQUEST SENSE pkt for the instance */ 16517 if (pktp->pkt_flags & FLAG_SENSING) { 16518 /* This pktp is from the unit's REQUEST_SENSE command */ 16519 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16520 "sdintr: sd_handle_request_sense\n"); 16521 sd_handle_request_sense(un, bp, xp, pktp); 16522 goto exit; 16523 } 16524 16525 /* 16526 * Check to see if the command successfully completed as requested; 16527 * this is the most common case (and also the hot performance path). 16528 * 16529 * Requirements for successful completion are: 16530 * pkt_reason is CMD_CMPLT and packet status is status good. 16531 * In addition: 16532 * - A residual of zero indicates successful completion no matter what 16533 * the command is. 16534 * - If the residual is not zero and the command is not a read or 16535 * write, then it's still defined as successful completion. In other 16536 * words, if the command is a read or write the residual must be 16537 * zero for successful completion. 16538 * - If the residual is not zero and the command is a read or 16539 * write, and it's a USCSICMD, then it's still defined as 16540 * successful completion. 16541 */ 16542 if ((pktp->pkt_reason == CMD_CMPLT) && 16543 (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) { 16544 16545 /* 16546 * Since this command is returned with a good status, we 16547 * can reset the count for Sonoma failover. 16548 */ 16549 un->un_sonoma_failure_count = 0; 16550 16551 /* 16552 * Return all USCSI commands on good status 16553 */ 16554 if (pktp->pkt_resid == 0) { 16555 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16556 "sdintr: returning command for resid == 0\n"); 16557 } else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) && 16558 ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) { 16559 SD_UPDATE_B_RESID(bp, pktp); 16560 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16561 "sdintr: returning command for resid != 0\n"); 16562 } else if (xp->xb_pkt_flags & SD_XB_USCSICMD) { 16563 SD_UPDATE_B_RESID(bp, pktp); 16564 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16565 "sdintr: returning uscsi command\n"); 16566 } else { 16567 goto not_successful; 16568 } 16569 sd_return_command(un, bp); 16570 16571 /* 16572 * Decrement counter to indicate that the callback routine 16573 * is done. 16574 */ 16575 un->un_in_callback--; 16576 ASSERT(un->un_in_callback >= 0); 16577 mutex_exit(SD_MUTEX(un)); 16578 16579 return; 16580 } 16581 16582 not_successful: 16583 16584 #if (defined(__i386) || defined(__amd64)) /* DMAFREE for x86 only */ 16585 /* 16586 * The following is based upon knowledge of the underlying transport 16587 * and its use of DMA resources. This code should be removed when 16588 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor 16589 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf() 16590 * and sd_start_cmds(). 16591 * 16592 * Free any DMA resources associated with this command if there 16593 * is a chance it could be retried or enqueued for later retry. 16594 * If we keep the DMA binding then mpxio cannot reissue the 16595 * command on another path whenever a path failure occurs. 16596 * 16597 * Note that when PKT_DMA_PARTIAL is used, free/reallocation 16598 * causes the *entire* transfer to start over again from the 16599 * beginning of the request, even for PARTIAL chunks that 16600 * have already transferred successfully. 16601 * 16602 * This is only done for non-uscsi commands (and also skipped for the 16603 * driver's internal RQS command). Also just do this for Fibre Channel 16604 * devices as these are the only ones that support mpxio. 16605 */ 16606 if ((un->un_f_is_fibre == TRUE) && 16607 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 16608 ((pktp->pkt_flags & FLAG_SENSING) == 0)) { 16609 scsi_dmafree(pktp); 16610 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 16611 } 16612 #endif 16613 16614 /* 16615 * The command did not successfully complete as requested so check 16616 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal 16617 * driver command that should not be retried so just return. If 16618 * FLAG_DIAGNOSE is not set the error will be processed below. 16619 */ 16620 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 16621 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16622 "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n"); 16623 /* 16624 * Issue a request sense if a check condition caused the error 16625 * (we handle the auto request sense case above), otherwise 16626 * just fail the command. 16627 */ 16628 if ((pktp->pkt_reason == CMD_CMPLT) && 16629 (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) { 16630 sd_send_request_sense_command(un, bp, pktp); 16631 } else { 16632 sd_return_failed_command(un, bp, EIO); 16633 } 16634 goto exit; 16635 } 16636 16637 /* 16638 * The command did not successfully complete as requested so process 16639 * the error, retry, and/or attempt recovery. 16640 */ 16641 switch (pktp->pkt_reason) { 16642 case CMD_CMPLT: 16643 switch (SD_GET_PKT_STATUS(pktp)) { 16644 case STATUS_GOOD: 16645 /* 16646 * The command completed successfully with a non-zero 16647 * residual 16648 */ 16649 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16650 "sdintr: STATUS_GOOD \n"); 16651 sd_pkt_status_good(un, bp, xp, pktp); 16652 break; 16653 16654 case STATUS_CHECK: 16655 case STATUS_TERMINATED: 16656 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16657 "sdintr: STATUS_TERMINATED | STATUS_CHECK\n"); 16658 sd_pkt_status_check_condition(un, bp, xp, pktp); 16659 break; 16660 16661 case STATUS_BUSY: 16662 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16663 "sdintr: STATUS_BUSY\n"); 16664 sd_pkt_status_busy(un, bp, xp, pktp); 16665 break; 16666 16667 case STATUS_RESERVATION_CONFLICT: 16668 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16669 "sdintr: STATUS_RESERVATION_CONFLICT\n"); 16670 sd_pkt_status_reservation_conflict(un, bp, xp, pktp); 16671 break; 16672 16673 case STATUS_QFULL: 16674 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16675 "sdintr: STATUS_QFULL\n"); 16676 sd_pkt_status_qfull(un, bp, xp, pktp); 16677 break; 16678 16679 case STATUS_MET: 16680 case STATUS_INTERMEDIATE: 16681 case STATUS_SCSI2: 16682 case STATUS_INTERMEDIATE_MET: 16683 case STATUS_ACA_ACTIVE: 16684 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 16685 "Unexpected SCSI status received: 0x%x\n", 16686 SD_GET_PKT_STATUS(pktp)); 16687 sd_return_failed_command(un, bp, EIO); 16688 break; 16689 16690 default: 16691 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 16692 "Invalid SCSI status received: 0x%x\n", 16693 SD_GET_PKT_STATUS(pktp)); 16694 sd_return_failed_command(un, bp, EIO); 16695 break; 16696 16697 } 16698 break; 16699 16700 case CMD_INCOMPLETE: 16701 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16702 "sdintr: CMD_INCOMPLETE\n"); 16703 sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp); 16704 break; 16705 case CMD_TRAN_ERR: 16706 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16707 "sdintr: CMD_TRAN_ERR\n"); 16708 sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp); 16709 break; 16710 case CMD_RESET: 16711 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16712 "sdintr: CMD_RESET \n"); 16713 sd_pkt_reason_cmd_reset(un, bp, xp, pktp); 16714 break; 16715 case CMD_ABORTED: 16716 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16717 "sdintr: CMD_ABORTED \n"); 16718 sd_pkt_reason_cmd_aborted(un, bp, xp, pktp); 16719 break; 16720 case CMD_TIMEOUT: 16721 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16722 "sdintr: CMD_TIMEOUT\n"); 16723 sd_pkt_reason_cmd_timeout(un, bp, xp, pktp); 16724 break; 16725 case CMD_UNX_BUS_FREE: 16726 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16727 "sdintr: CMD_UNX_BUS_FREE \n"); 16728 sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp); 16729 break; 16730 case CMD_TAG_REJECT: 16731 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16732 "sdintr: CMD_TAG_REJECT\n"); 16733 sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp); 16734 break; 16735 default: 16736 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16737 "sdintr: default\n"); 16738 sd_pkt_reason_default(un, bp, xp, pktp); 16739 break; 16740 } 16741 16742 exit: 16743 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n"); 16744 16745 /* Decrement counter to indicate that the callback routine is done. */ 16746 un->un_in_callback--; 16747 ASSERT(un->un_in_callback >= 0); 16748 16749 /* 16750 * At this point, the pkt has been dispatched, ie, it is either 16751 * being re-tried or has been returned to its caller and should 16752 * not be referenced. 16753 */ 16754 16755 mutex_exit(SD_MUTEX(un)); 16756 } 16757 16758 16759 /* 16760 * Function: sd_print_incomplete_msg 16761 * 16762 * Description: Prints the error message for a CMD_INCOMPLETE error. 16763 * 16764 * Arguments: un - ptr to associated softstate for the device. 16765 * bp - ptr to the buf(9S) for the command. 16766 * arg - message string ptr 16767 * code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED, 16768 * or SD_NO_RETRY_ISSUED. 16769 * 16770 * Context: May be called under interrupt context 16771 */ 16772 16773 static void 16774 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code) 16775 { 16776 struct scsi_pkt *pktp; 16777 char *msgp; 16778 char *cmdp = arg; 16779 16780 ASSERT(un != NULL); 16781 ASSERT(mutex_owned(SD_MUTEX(un))); 16782 ASSERT(bp != NULL); 16783 ASSERT(arg != NULL); 16784 pktp = SD_GET_PKTP(bp); 16785 ASSERT(pktp != NULL); 16786 16787 switch (code) { 16788 case SD_DELAYED_RETRY_ISSUED: 16789 case SD_IMMEDIATE_RETRY_ISSUED: 16790 msgp = "retrying"; 16791 break; 16792 case SD_NO_RETRY_ISSUED: 16793 default: 16794 msgp = "giving up"; 16795 break; 16796 } 16797 16798 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 16799 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16800 "incomplete %s- %s\n", cmdp, msgp); 16801 } 16802 } 16803 16804 16805 16806 /* 16807 * Function: sd_pkt_status_good 16808 * 16809 * Description: Processing for a STATUS_GOOD code in pkt_status. 16810 * 16811 * Context: May be called under interrupt context 16812 */ 16813 16814 static void 16815 sd_pkt_status_good(struct sd_lun *un, struct buf *bp, 16816 struct sd_xbuf *xp, struct scsi_pkt *pktp) 16817 { 16818 char *cmdp; 16819 16820 ASSERT(un != NULL); 16821 ASSERT(mutex_owned(SD_MUTEX(un))); 16822 ASSERT(bp != NULL); 16823 ASSERT(xp != NULL); 16824 ASSERT(pktp != NULL); 16825 ASSERT(pktp->pkt_reason == CMD_CMPLT); 16826 ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD); 16827 ASSERT(pktp->pkt_resid != 0); 16828 16829 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n"); 16830 16831 SD_UPDATE_ERRSTATS(un, sd_harderrs); 16832 switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) { 16833 case SCMD_READ: 16834 cmdp = "read"; 16835 break; 16836 case SCMD_WRITE: 16837 cmdp = "write"; 16838 break; 16839 default: 16840 SD_UPDATE_B_RESID(bp, pktp); 16841 sd_return_command(un, bp); 16842 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n"); 16843 return; 16844 } 16845 16846 /* 16847 * See if we can retry the read/write, preferrably immediately. 16848 * If retries are exhaused, then sd_retry_command() will update 16849 * the b_resid count. 16850 */ 16851 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg, 16852 cmdp, EIO, (clock_t)0, NULL); 16853 16854 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n"); 16855 } 16856 16857 16858 16859 16860 16861 /* 16862 * Function: sd_handle_request_sense 16863 * 16864 * Description: Processing for non-auto Request Sense command. 16865 * 16866 * Arguments: un - ptr to associated softstate 16867 * sense_bp - ptr to buf(9S) for the RQS command 16868 * sense_xp - ptr to the sd_xbuf for the RQS command 16869 * sense_pktp - ptr to the scsi_pkt(9S) for the RQS command 16870 * 16871 * Context: May be called under interrupt context 16872 */ 16873 16874 static void 16875 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp, 16876 struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp) 16877 { 16878 struct buf *cmd_bp; /* buf for the original command */ 16879 struct sd_xbuf *cmd_xp; /* sd_xbuf for the original command */ 16880 struct scsi_pkt *cmd_pktp; /* pkt for the original command */ 16881 16882 ASSERT(un != NULL); 16883 ASSERT(mutex_owned(SD_MUTEX(un))); 16884 ASSERT(sense_bp != NULL); 16885 ASSERT(sense_xp != NULL); 16886 ASSERT(sense_pktp != NULL); 16887 16888 /* 16889 * Note the sense_bp, sense_xp, and sense_pktp here are for the 16890 * RQS command and not the original command. 16891 */ 16892 ASSERT(sense_pktp == un->un_rqs_pktp); 16893 ASSERT(sense_bp == un->un_rqs_bp); 16894 ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) == 16895 (FLAG_SENSING | FLAG_HEAD)); 16896 ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) & 16897 FLAG_SENSING) == FLAG_SENSING); 16898 16899 /* These are the bp, xp, and pktp for the original command */ 16900 cmd_bp = sense_xp->xb_sense_bp; 16901 cmd_xp = SD_GET_XBUF(cmd_bp); 16902 cmd_pktp = SD_GET_PKTP(cmd_bp); 16903 16904 if (sense_pktp->pkt_reason != CMD_CMPLT) { 16905 /* 16906 * The REQUEST SENSE command failed. Release the REQUEST 16907 * SENSE command for re-use, get back the bp for the original 16908 * command, and attempt to re-try the original command if 16909 * FLAG_DIAGNOSE is not set in the original packet. 16910 */ 16911 SD_UPDATE_ERRSTATS(un, sd_harderrs); 16912 if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 16913 cmd_bp = sd_mark_rqs_idle(un, sense_xp); 16914 sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD, 16915 NULL, NULL, EIO, (clock_t)0, NULL); 16916 return; 16917 } 16918 } 16919 16920 /* 16921 * Save the relevant sense info into the xp for the original cmd. 16922 * 16923 * Note: if the request sense failed the state info will be zero 16924 * as set in sd_mark_rqs_busy() 16925 */ 16926 cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp); 16927 cmd_xp->xb_sense_state = sense_pktp->pkt_state; 16928 cmd_xp->xb_sense_resid = sense_pktp->pkt_resid; 16929 bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, SENSE_LENGTH); 16930 16931 /* 16932 * Free up the RQS command.... 16933 * NOTE: 16934 * Must do this BEFORE calling sd_validate_sense_data! 16935 * sd_validate_sense_data may return the original command in 16936 * which case the pkt will be freed and the flags can no 16937 * longer be touched. 16938 * SD_MUTEX is held through this process until the command 16939 * is dispatched based upon the sense data, so there are 16940 * no race conditions. 16941 */ 16942 (void) sd_mark_rqs_idle(un, sense_xp); 16943 16944 /* 16945 * For a retryable command see if we have valid sense data, if so then 16946 * turn it over to sd_decode_sense() to figure out the right course of 16947 * action. Just fail a non-retryable command. 16948 */ 16949 if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 16950 if (sd_validate_sense_data(un, cmd_bp, cmd_xp) == 16951 SD_SENSE_DATA_IS_VALID) { 16952 sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp); 16953 } 16954 } else { 16955 SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB", 16956 (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 16957 SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data", 16958 (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX); 16959 sd_return_failed_command(un, cmd_bp, EIO); 16960 } 16961 } 16962 16963 16964 16965 16966 /* 16967 * Function: sd_handle_auto_request_sense 16968 * 16969 * Description: Processing for auto-request sense information. 16970 * 16971 * Arguments: un - ptr to associated softstate 16972 * bp - ptr to buf(9S) for the command 16973 * xp - ptr to the sd_xbuf for the command 16974 * pktp - ptr to the scsi_pkt(9S) for the command 16975 * 16976 * Context: May be called under interrupt context 16977 */ 16978 16979 static void 16980 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp, 16981 struct sd_xbuf *xp, struct scsi_pkt *pktp) 16982 { 16983 struct scsi_arq_status *asp; 16984 16985 ASSERT(un != NULL); 16986 ASSERT(mutex_owned(SD_MUTEX(un))); 16987 ASSERT(bp != NULL); 16988 ASSERT(xp != NULL); 16989 ASSERT(pktp != NULL); 16990 ASSERT(pktp != un->un_rqs_pktp); 16991 ASSERT(bp != un->un_rqs_bp); 16992 16993 /* 16994 * For auto-request sense, we get a scsi_arq_status back from 16995 * the HBA, with the sense data in the sts_sensedata member. 16996 * The pkt_scbp of the packet points to this scsi_arq_status. 16997 */ 16998 asp = (struct scsi_arq_status *)(pktp->pkt_scbp); 16999 17000 if (asp->sts_rqpkt_reason != CMD_CMPLT) { 17001 /* 17002 * The auto REQUEST SENSE failed; see if we can re-try 17003 * the original command. 17004 */ 17005 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17006 "auto request sense failed (reason=%s)\n", 17007 scsi_rname(asp->sts_rqpkt_reason)); 17008 17009 sd_reset_target(un, pktp); 17010 17011 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 17012 NULL, NULL, EIO, (clock_t)0, NULL); 17013 return; 17014 } 17015 17016 /* Save the relevant sense info into the xp for the original cmd. */ 17017 xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status))); 17018 xp->xb_sense_state = asp->sts_rqpkt_state; 17019 xp->xb_sense_resid = asp->sts_rqpkt_resid; 17020 bcopy(&asp->sts_sensedata, xp->xb_sense_data, 17021 min(sizeof (struct scsi_extended_sense), SENSE_LENGTH)); 17022 17023 /* 17024 * See if we have valid sense data, if so then turn it over to 17025 * sd_decode_sense() to figure out the right course of action. 17026 */ 17027 if (sd_validate_sense_data(un, bp, xp) == SD_SENSE_DATA_IS_VALID) { 17028 sd_decode_sense(un, bp, xp, pktp); 17029 } 17030 } 17031 17032 17033 /* 17034 * Function: sd_print_sense_failed_msg 17035 * 17036 * Description: Print log message when RQS has failed. 17037 * 17038 * Arguments: un - ptr to associated softstate 17039 * bp - ptr to buf(9S) for the command 17040 * arg - generic message string ptr 17041 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 17042 * or SD_NO_RETRY_ISSUED 17043 * 17044 * Context: May be called from interrupt context 17045 */ 17046 17047 static void 17048 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg, 17049 int code) 17050 { 17051 char *msgp = arg; 17052 17053 ASSERT(un != NULL); 17054 ASSERT(mutex_owned(SD_MUTEX(un))); 17055 ASSERT(bp != NULL); 17056 17057 if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) { 17058 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp); 17059 } 17060 } 17061 17062 17063 /* 17064 * Function: sd_validate_sense_data 17065 * 17066 * Description: Check the given sense data for validity. 17067 * If the sense data is not valid, the command will 17068 * be either failed or retried! 17069 * 17070 * Return Code: SD_SENSE_DATA_IS_INVALID 17071 * SD_SENSE_DATA_IS_VALID 17072 * 17073 * Context: May be called from interrupt context 17074 */ 17075 17076 static int 17077 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp) 17078 { 17079 struct scsi_extended_sense *esp; 17080 struct scsi_pkt *pktp; 17081 size_t actual_len; 17082 char *msgp = NULL; 17083 17084 ASSERT(un != NULL); 17085 ASSERT(mutex_owned(SD_MUTEX(un))); 17086 ASSERT(bp != NULL); 17087 ASSERT(bp != un->un_rqs_bp); 17088 ASSERT(xp != NULL); 17089 17090 pktp = SD_GET_PKTP(bp); 17091 ASSERT(pktp != NULL); 17092 17093 /* 17094 * Check the status of the RQS command (auto or manual). 17095 */ 17096 switch (xp->xb_sense_status & STATUS_MASK) { 17097 case STATUS_GOOD: 17098 break; 17099 17100 case STATUS_RESERVATION_CONFLICT: 17101 sd_pkt_status_reservation_conflict(un, bp, xp, pktp); 17102 return (SD_SENSE_DATA_IS_INVALID); 17103 17104 case STATUS_BUSY: 17105 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17106 "Busy Status on REQUEST SENSE\n"); 17107 sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL, 17108 NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter); 17109 return (SD_SENSE_DATA_IS_INVALID); 17110 17111 case STATUS_QFULL: 17112 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17113 "QFULL Status on REQUEST SENSE\n"); 17114 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, 17115 NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter); 17116 return (SD_SENSE_DATA_IS_INVALID); 17117 17118 case STATUS_CHECK: 17119 case STATUS_TERMINATED: 17120 msgp = "Check Condition on REQUEST SENSE\n"; 17121 goto sense_failed; 17122 17123 default: 17124 msgp = "Not STATUS_GOOD on REQUEST_SENSE\n"; 17125 goto sense_failed; 17126 } 17127 17128 /* 17129 * See if we got the minimum required amount of sense data. 17130 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes 17131 * or less. 17132 */ 17133 actual_len = (int)(SENSE_LENGTH - xp->xb_sense_resid); 17134 if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) || 17135 (actual_len == 0)) { 17136 msgp = "Request Sense couldn't get sense data\n"; 17137 goto sense_failed; 17138 } 17139 17140 if (actual_len < SUN_MIN_SENSE_LENGTH) { 17141 msgp = "Not enough sense information\n"; 17142 goto sense_failed; 17143 } 17144 17145 /* 17146 * We require the extended sense data 17147 */ 17148 esp = (struct scsi_extended_sense *)xp->xb_sense_data; 17149 if (esp->es_class != CLASS_EXTENDED_SENSE) { 17150 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 17151 static char tmp[8]; 17152 static char buf[148]; 17153 char *p = (char *)(xp->xb_sense_data); 17154 int i; 17155 17156 mutex_enter(&sd_sense_mutex); 17157 (void) strcpy(buf, "undecodable sense information:"); 17158 for (i = 0; i < actual_len; i++) { 17159 (void) sprintf(tmp, " 0x%x", *(p++)&0xff); 17160 (void) strcpy(&buf[strlen(buf)], tmp); 17161 } 17162 i = strlen(buf); 17163 (void) strcpy(&buf[i], "-(assumed fatal)\n"); 17164 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf); 17165 mutex_exit(&sd_sense_mutex); 17166 } 17167 /* Note: Legacy behavior, fail the command with no retry */ 17168 sd_return_failed_command(un, bp, EIO); 17169 return (SD_SENSE_DATA_IS_INVALID); 17170 } 17171 17172 /* 17173 * Check that es_code is valid (es_class concatenated with es_code 17174 * make up the "response code" field. es_class will always be 7, so 17175 * make sure es_code is 0, 1, 2, 3 or 0xf. es_code will indicate the 17176 * format. 17177 */ 17178 if ((esp->es_code != CODE_FMT_FIXED_CURRENT) && 17179 (esp->es_code != CODE_FMT_FIXED_DEFERRED) && 17180 (esp->es_code != CODE_FMT_DESCR_CURRENT) && 17181 (esp->es_code != CODE_FMT_DESCR_DEFERRED) && 17182 (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) { 17183 goto sense_failed; 17184 } 17185 17186 return (SD_SENSE_DATA_IS_VALID); 17187 17188 sense_failed: 17189 /* 17190 * If the request sense failed (for whatever reason), attempt 17191 * to retry the original command. 17192 */ 17193 #if defined(__i386) || defined(__amd64) 17194 /* 17195 * SD_RETRY_DELAY is conditionally compile (#if fibre) in 17196 * sddef.h for Sparc platform, and x86 uses 1 binary 17197 * for both SCSI/FC. 17198 * The SD_RETRY_DELAY value need to be adjusted here 17199 * when SD_RETRY_DELAY change in sddef.h 17200 */ 17201 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 17202 sd_print_sense_failed_msg, msgp, EIO, 17203 un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL); 17204 #else 17205 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 17206 sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL); 17207 #endif 17208 17209 return (SD_SENSE_DATA_IS_INVALID); 17210 } 17211 17212 17213 17214 /* 17215 * Function: sd_decode_sense 17216 * 17217 * Description: Take recovery action(s) when SCSI Sense Data is received. 17218 * 17219 * Context: Interrupt context. 17220 */ 17221 17222 static void 17223 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 17224 struct scsi_pkt *pktp) 17225 { 17226 uint8_t sense_key; 17227 17228 ASSERT(un != NULL); 17229 ASSERT(mutex_owned(SD_MUTEX(un))); 17230 ASSERT(bp != NULL); 17231 ASSERT(bp != un->un_rqs_bp); 17232 ASSERT(xp != NULL); 17233 ASSERT(pktp != NULL); 17234 17235 sense_key = scsi_sense_key(xp->xb_sense_data); 17236 17237 switch (sense_key) { 17238 case KEY_NO_SENSE: 17239 sd_sense_key_no_sense(un, bp, xp, pktp); 17240 break; 17241 case KEY_RECOVERABLE_ERROR: 17242 sd_sense_key_recoverable_error(un, xp->xb_sense_data, 17243 bp, xp, pktp); 17244 break; 17245 case KEY_NOT_READY: 17246 sd_sense_key_not_ready(un, xp->xb_sense_data, 17247 bp, xp, pktp); 17248 break; 17249 case KEY_MEDIUM_ERROR: 17250 case KEY_HARDWARE_ERROR: 17251 sd_sense_key_medium_or_hardware_error(un, 17252 xp->xb_sense_data, bp, xp, pktp); 17253 break; 17254 case KEY_ILLEGAL_REQUEST: 17255 sd_sense_key_illegal_request(un, bp, xp, pktp); 17256 break; 17257 case KEY_UNIT_ATTENTION: 17258 sd_sense_key_unit_attention(un, xp->xb_sense_data, 17259 bp, xp, pktp); 17260 break; 17261 case KEY_WRITE_PROTECT: 17262 case KEY_VOLUME_OVERFLOW: 17263 case KEY_MISCOMPARE: 17264 sd_sense_key_fail_command(un, bp, xp, pktp); 17265 break; 17266 case KEY_BLANK_CHECK: 17267 sd_sense_key_blank_check(un, bp, xp, pktp); 17268 break; 17269 case KEY_ABORTED_COMMAND: 17270 sd_sense_key_aborted_command(un, bp, xp, pktp); 17271 break; 17272 case KEY_VENDOR_UNIQUE: 17273 case KEY_COPY_ABORTED: 17274 case KEY_EQUAL: 17275 case KEY_RESERVED: 17276 default: 17277 sd_sense_key_default(un, xp->xb_sense_data, 17278 bp, xp, pktp); 17279 break; 17280 } 17281 } 17282 17283 17284 /* 17285 * Function: sd_dump_memory 17286 * 17287 * Description: Debug logging routine to print the contents of a user provided 17288 * buffer. The output of the buffer is broken up into 256 byte 17289 * segments due to a size constraint of the scsi_log. 17290 * implementation. 17291 * 17292 * Arguments: un - ptr to softstate 17293 * comp - component mask 17294 * title - "title" string to preceed data when printed 17295 * data - ptr to data block to be printed 17296 * len - size of data block to be printed 17297 * fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c) 17298 * 17299 * Context: May be called from interrupt context 17300 */ 17301 17302 #define SD_DUMP_MEMORY_BUF_SIZE 256 17303 17304 static char *sd_dump_format_string[] = { 17305 " 0x%02x", 17306 " %c" 17307 }; 17308 17309 static void 17310 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data, 17311 int len, int fmt) 17312 { 17313 int i, j; 17314 int avail_count; 17315 int start_offset; 17316 int end_offset; 17317 size_t entry_len; 17318 char *bufp; 17319 char *local_buf; 17320 char *format_string; 17321 17322 ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR)); 17323 17324 /* 17325 * In the debug version of the driver, this function is called from a 17326 * number of places which are NOPs in the release driver. 17327 * The debug driver therefore has additional methods of filtering 17328 * debug output. 17329 */ 17330 #ifdef SDDEBUG 17331 /* 17332 * In the debug version of the driver we can reduce the amount of debug 17333 * messages by setting sd_error_level to something other than 17334 * SCSI_ERR_ALL and clearing bits in sd_level_mask and 17335 * sd_component_mask. 17336 */ 17337 if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) || 17338 (sd_error_level != SCSI_ERR_ALL)) { 17339 return; 17340 } 17341 if (((sd_component_mask & comp) == 0) || 17342 (sd_error_level != SCSI_ERR_ALL)) { 17343 return; 17344 } 17345 #else 17346 if (sd_error_level != SCSI_ERR_ALL) { 17347 return; 17348 } 17349 #endif 17350 17351 local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP); 17352 bufp = local_buf; 17353 /* 17354 * Available length is the length of local_buf[], minus the 17355 * length of the title string, minus one for the ":", minus 17356 * one for the newline, minus one for the NULL terminator. 17357 * This gives the #bytes available for holding the printed 17358 * values from the given data buffer. 17359 */ 17360 if (fmt == SD_LOG_HEX) { 17361 format_string = sd_dump_format_string[0]; 17362 } else /* SD_LOG_CHAR */ { 17363 format_string = sd_dump_format_string[1]; 17364 } 17365 /* 17366 * Available count is the number of elements from the given 17367 * data buffer that we can fit into the available length. 17368 * This is based upon the size of the format string used. 17369 * Make one entry and find it's size. 17370 */ 17371 (void) sprintf(bufp, format_string, data[0]); 17372 entry_len = strlen(bufp); 17373 avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len; 17374 17375 j = 0; 17376 while (j < len) { 17377 bufp = local_buf; 17378 bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE); 17379 start_offset = j; 17380 17381 end_offset = start_offset + avail_count; 17382 17383 (void) sprintf(bufp, "%s:", title); 17384 bufp += strlen(bufp); 17385 for (i = start_offset; ((i < end_offset) && (j < len)); 17386 i++, j++) { 17387 (void) sprintf(bufp, format_string, data[i]); 17388 bufp += entry_len; 17389 } 17390 (void) sprintf(bufp, "\n"); 17391 17392 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf); 17393 } 17394 kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE); 17395 } 17396 17397 /* 17398 * Function: sd_print_sense_msg 17399 * 17400 * Description: Log a message based upon the given sense data. 17401 * 17402 * Arguments: un - ptr to associated softstate 17403 * bp - ptr to buf(9S) for the command 17404 * arg - ptr to associate sd_sense_info struct 17405 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 17406 * or SD_NO_RETRY_ISSUED 17407 * 17408 * Context: May be called from interrupt context 17409 */ 17410 17411 static void 17412 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code) 17413 { 17414 struct sd_xbuf *xp; 17415 struct scsi_pkt *pktp; 17416 uint8_t *sensep; 17417 daddr_t request_blkno; 17418 diskaddr_t err_blkno; 17419 int severity; 17420 int pfa_flag; 17421 extern struct scsi_key_strings scsi_cmds[]; 17422 17423 ASSERT(un != NULL); 17424 ASSERT(mutex_owned(SD_MUTEX(un))); 17425 ASSERT(bp != NULL); 17426 xp = SD_GET_XBUF(bp); 17427 ASSERT(xp != NULL); 17428 pktp = SD_GET_PKTP(bp); 17429 ASSERT(pktp != NULL); 17430 ASSERT(arg != NULL); 17431 17432 severity = ((struct sd_sense_info *)(arg))->ssi_severity; 17433 pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag; 17434 17435 if ((code == SD_DELAYED_RETRY_ISSUED) || 17436 (code == SD_IMMEDIATE_RETRY_ISSUED)) { 17437 severity = SCSI_ERR_RETRYABLE; 17438 } 17439 17440 /* Use absolute block number for the request block number */ 17441 request_blkno = xp->xb_blkno; 17442 17443 /* 17444 * Now try to get the error block number from the sense data 17445 */ 17446 sensep = xp->xb_sense_data; 17447 17448 if (scsi_sense_info_uint64(sensep, SENSE_LENGTH, 17449 (uint64_t *)&err_blkno)) { 17450 /* 17451 * We retrieved the error block number from the information 17452 * portion of the sense data. 17453 * 17454 * For USCSI commands we are better off using the error 17455 * block no. as the requested block no. (This is the best 17456 * we can estimate.) 17457 */ 17458 if ((SD_IS_BUFIO(xp) == FALSE) && 17459 ((pktp->pkt_flags & FLAG_SILENT) == 0)) { 17460 request_blkno = err_blkno; 17461 } 17462 } else { 17463 /* 17464 * Without the es_valid bit set (for fixed format) or an 17465 * information descriptor (for descriptor format) we cannot 17466 * be certain of the error blkno, so just use the 17467 * request_blkno. 17468 */ 17469 err_blkno = (diskaddr_t)request_blkno; 17470 } 17471 17472 /* 17473 * The following will log the buffer contents for the release driver 17474 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error 17475 * level is set to verbose. 17476 */ 17477 sd_dump_memory(un, SD_LOG_IO, "Failed CDB", 17478 (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 17479 sd_dump_memory(un, SD_LOG_IO, "Sense Data", 17480 (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX); 17481 17482 if (pfa_flag == FALSE) { 17483 /* This is normally only set for USCSI */ 17484 if ((pktp->pkt_flags & FLAG_SILENT) != 0) { 17485 return; 17486 } 17487 17488 if ((SD_IS_BUFIO(xp) == TRUE) && 17489 (((sd_level_mask & SD_LOGMASK_DIAG) == 0) && 17490 (severity < sd_error_level))) { 17491 return; 17492 } 17493 } 17494 17495 /* 17496 * Check for Sonoma Failover and keep a count of how many failed I/O's 17497 */ 17498 if ((SD_IS_LSI(un)) && 17499 (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) && 17500 (scsi_sense_asc(sensep) == 0x94) && 17501 (scsi_sense_ascq(sensep) == 0x01)) { 17502 un->un_sonoma_failure_count++; 17503 if (un->un_sonoma_failure_count > 1) { 17504 return; 17505 } 17506 } 17507 17508 scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity, 17509 request_blkno, err_blkno, scsi_cmds, 17510 (struct scsi_extended_sense *)sensep, 17511 un->un_additional_codes, NULL); 17512 } 17513 17514 /* 17515 * Function: sd_sense_key_no_sense 17516 * 17517 * Description: Recovery action when sense data was not received. 17518 * 17519 * Context: May be called from interrupt context 17520 */ 17521 17522 static void 17523 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp, 17524 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17525 { 17526 struct sd_sense_info si; 17527 17528 ASSERT(un != NULL); 17529 ASSERT(mutex_owned(SD_MUTEX(un))); 17530 ASSERT(bp != NULL); 17531 ASSERT(xp != NULL); 17532 ASSERT(pktp != NULL); 17533 17534 si.ssi_severity = SCSI_ERR_FATAL; 17535 si.ssi_pfa_flag = FALSE; 17536 17537 SD_UPDATE_ERRSTATS(un, sd_softerrs); 17538 17539 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 17540 &si, EIO, (clock_t)0, NULL); 17541 } 17542 17543 17544 /* 17545 * Function: sd_sense_key_recoverable_error 17546 * 17547 * Description: Recovery actions for a SCSI "Recovered Error" sense key. 17548 * 17549 * Context: May be called from interrupt context 17550 */ 17551 17552 static void 17553 sd_sense_key_recoverable_error(struct sd_lun *un, 17554 uint8_t *sense_datap, 17555 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 17556 { 17557 struct sd_sense_info si; 17558 uint8_t asc = scsi_sense_asc(sense_datap); 17559 17560 ASSERT(un != NULL); 17561 ASSERT(mutex_owned(SD_MUTEX(un))); 17562 ASSERT(bp != NULL); 17563 ASSERT(xp != NULL); 17564 ASSERT(pktp != NULL); 17565 17566 /* 17567 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED 17568 */ 17569 if ((asc == 0x5D) && (sd_report_pfa != 0)) { 17570 SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err); 17571 si.ssi_severity = SCSI_ERR_INFO; 17572 si.ssi_pfa_flag = TRUE; 17573 } else { 17574 SD_UPDATE_ERRSTATS(un, sd_softerrs); 17575 SD_UPDATE_ERRSTATS(un, sd_rq_recov_err); 17576 si.ssi_severity = SCSI_ERR_RECOVERED; 17577 si.ssi_pfa_flag = FALSE; 17578 } 17579 17580 if (pktp->pkt_resid == 0) { 17581 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 17582 sd_return_command(un, bp); 17583 return; 17584 } 17585 17586 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 17587 &si, EIO, (clock_t)0, NULL); 17588 } 17589 17590 17591 17592 17593 /* 17594 * Function: sd_sense_key_not_ready 17595 * 17596 * Description: Recovery actions for a SCSI "Not Ready" sense key. 17597 * 17598 * Context: May be called from interrupt context 17599 */ 17600 17601 static void 17602 sd_sense_key_not_ready(struct sd_lun *un, 17603 uint8_t *sense_datap, 17604 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 17605 { 17606 struct sd_sense_info si; 17607 uint8_t asc = scsi_sense_asc(sense_datap); 17608 uint8_t ascq = scsi_sense_ascq(sense_datap); 17609 17610 ASSERT(un != NULL); 17611 ASSERT(mutex_owned(SD_MUTEX(un))); 17612 ASSERT(bp != NULL); 17613 ASSERT(xp != NULL); 17614 ASSERT(pktp != NULL); 17615 17616 si.ssi_severity = SCSI_ERR_FATAL; 17617 si.ssi_pfa_flag = FALSE; 17618 17619 /* 17620 * Update error stats after first NOT READY error. Disks may have 17621 * been powered down and may need to be restarted. For CDROMs, 17622 * report NOT READY errors only if media is present. 17623 */ 17624 if ((ISCD(un) && (un->un_f_geometry_is_valid == TRUE)) || 17625 (xp->xb_retry_count > 0)) { 17626 SD_UPDATE_ERRSTATS(un, sd_harderrs); 17627 SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err); 17628 } 17629 17630 /* 17631 * Just fail if the "not ready" retry limit has been reached. 17632 */ 17633 if (xp->xb_retry_count >= un->un_notready_retry_count) { 17634 /* Special check for error message printing for removables. */ 17635 if (un->un_f_has_removable_media && (asc == 0x04) && 17636 (ascq >= 0x04)) { 17637 si.ssi_severity = SCSI_ERR_ALL; 17638 } 17639 goto fail_command; 17640 } 17641 17642 /* 17643 * Check the ASC and ASCQ in the sense data as needed, to determine 17644 * what to do. 17645 */ 17646 switch (asc) { 17647 case 0x04: /* LOGICAL UNIT NOT READY */ 17648 /* 17649 * disk drives that don't spin up result in a very long delay 17650 * in format without warning messages. We will log a message 17651 * if the error level is set to verbose. 17652 */ 17653 if (sd_error_level < SCSI_ERR_RETRYABLE) { 17654 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17655 "logical unit not ready, resetting disk\n"); 17656 } 17657 17658 /* 17659 * There are different requirements for CDROMs and disks for 17660 * the number of retries. If a CD-ROM is giving this, it is 17661 * probably reading TOC and is in the process of getting 17662 * ready, so we should keep on trying for a long time to make 17663 * sure that all types of media are taken in account (for 17664 * some media the drive takes a long time to read TOC). For 17665 * disks we do not want to retry this too many times as this 17666 * can cause a long hang in format when the drive refuses to 17667 * spin up (a very common failure). 17668 */ 17669 switch (ascq) { 17670 case 0x00: /* LUN NOT READY, CAUSE NOT REPORTABLE */ 17671 /* 17672 * Disk drives frequently refuse to spin up which 17673 * results in a very long hang in format without 17674 * warning messages. 17675 * 17676 * Note: This code preserves the legacy behavior of 17677 * comparing xb_retry_count against zero for fibre 17678 * channel targets instead of comparing against the 17679 * un_reset_retry_count value. The reason for this 17680 * discrepancy has been so utterly lost beneath the 17681 * Sands of Time that even Indiana Jones could not 17682 * find it. 17683 */ 17684 if (un->un_f_is_fibre == TRUE) { 17685 if (((sd_level_mask & SD_LOGMASK_DIAG) || 17686 (xp->xb_retry_count > 0)) && 17687 (un->un_startstop_timeid == NULL)) { 17688 scsi_log(SD_DEVINFO(un), sd_label, 17689 CE_WARN, "logical unit not ready, " 17690 "resetting disk\n"); 17691 sd_reset_target(un, pktp); 17692 } 17693 } else { 17694 if (((sd_level_mask & SD_LOGMASK_DIAG) || 17695 (xp->xb_retry_count > 17696 un->un_reset_retry_count)) && 17697 (un->un_startstop_timeid == NULL)) { 17698 scsi_log(SD_DEVINFO(un), sd_label, 17699 CE_WARN, "logical unit not ready, " 17700 "resetting disk\n"); 17701 sd_reset_target(un, pktp); 17702 } 17703 } 17704 break; 17705 17706 case 0x01: /* LUN IS IN PROCESS OF BECOMING READY */ 17707 /* 17708 * If the target is in the process of becoming 17709 * ready, just proceed with the retry. This can 17710 * happen with CD-ROMs that take a long time to 17711 * read TOC after a power cycle or reset. 17712 */ 17713 goto do_retry; 17714 17715 case 0x02: /* LUN NOT READY, INITITIALIZING CMD REQUIRED */ 17716 break; 17717 17718 case 0x03: /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */ 17719 /* 17720 * Retries cannot help here so just fail right away. 17721 */ 17722 goto fail_command; 17723 17724 case 0x88: 17725 /* 17726 * Vendor-unique code for T3/T4: it indicates a 17727 * path problem in a mutipathed config, but as far as 17728 * the target driver is concerned it equates to a fatal 17729 * error, so we should just fail the command right away 17730 * (without printing anything to the console). If this 17731 * is not a T3/T4, fall thru to the default recovery 17732 * action. 17733 * T3/T4 is FC only, don't need to check is_fibre 17734 */ 17735 if (SD_IS_T3(un) || SD_IS_T4(un)) { 17736 sd_return_failed_command(un, bp, EIO); 17737 return; 17738 } 17739 /* FALLTHRU */ 17740 17741 case 0x04: /* LUN NOT READY, FORMAT IN PROGRESS */ 17742 case 0x05: /* LUN NOT READY, REBUILD IN PROGRESS */ 17743 case 0x06: /* LUN NOT READY, RECALCULATION IN PROGRESS */ 17744 case 0x07: /* LUN NOT READY, OPERATION IN PROGRESS */ 17745 case 0x08: /* LUN NOT READY, LONG WRITE IN PROGRESS */ 17746 default: /* Possible future codes in SCSI spec? */ 17747 /* 17748 * For removable-media devices, do not retry if 17749 * ASCQ > 2 as these result mostly from USCSI commands 17750 * on MMC devices issued to check status of an 17751 * operation initiated in immediate mode. Also for 17752 * ASCQ >= 4 do not print console messages as these 17753 * mainly represent a user-initiated operation 17754 * instead of a system failure. 17755 */ 17756 if (un->un_f_has_removable_media) { 17757 si.ssi_severity = SCSI_ERR_ALL; 17758 goto fail_command; 17759 } 17760 break; 17761 } 17762 17763 /* 17764 * As part of our recovery attempt for the NOT READY 17765 * condition, we issue a START STOP UNIT command. However 17766 * we want to wait for a short delay before attempting this 17767 * as there may still be more commands coming back from the 17768 * target with the check condition. To do this we use 17769 * timeout(9F) to call sd_start_stop_unit_callback() after 17770 * the delay interval expires. (sd_start_stop_unit_callback() 17771 * dispatches sd_start_stop_unit_task(), which will issue 17772 * the actual START STOP UNIT command. The delay interval 17773 * is one-half of the delay that we will use to retry the 17774 * command that generated the NOT READY condition. 17775 * 17776 * Note that we could just dispatch sd_start_stop_unit_task() 17777 * from here and allow it to sleep for the delay interval, 17778 * but then we would be tying up the taskq thread 17779 * uncesessarily for the duration of the delay. 17780 * 17781 * Do not issue the START STOP UNIT if the current command 17782 * is already a START STOP UNIT. 17783 */ 17784 if (pktp->pkt_cdbp[0] == SCMD_START_STOP) { 17785 break; 17786 } 17787 17788 /* 17789 * Do not schedule the timeout if one is already pending. 17790 */ 17791 if (un->un_startstop_timeid != NULL) { 17792 SD_INFO(SD_LOG_ERROR, un, 17793 "sd_sense_key_not_ready: restart already issued to" 17794 " %s%d\n", ddi_driver_name(SD_DEVINFO(un)), 17795 ddi_get_instance(SD_DEVINFO(un))); 17796 break; 17797 } 17798 17799 /* 17800 * Schedule the START STOP UNIT command, then queue the command 17801 * for a retry. 17802 * 17803 * Note: A timeout is not scheduled for this retry because we 17804 * want the retry to be serial with the START_STOP_UNIT. The 17805 * retry will be started when the START_STOP_UNIT is completed 17806 * in sd_start_stop_unit_task. 17807 */ 17808 un->un_startstop_timeid = timeout(sd_start_stop_unit_callback, 17809 un, SD_BSY_TIMEOUT / 2); 17810 xp->xb_retry_count++; 17811 sd_set_retry_bp(un, bp, 0, kstat_waitq_enter); 17812 return; 17813 17814 case 0x05: /* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */ 17815 if (sd_error_level < SCSI_ERR_RETRYABLE) { 17816 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17817 "unit does not respond to selection\n"); 17818 } 17819 break; 17820 17821 case 0x3A: /* MEDIUM NOT PRESENT */ 17822 if (sd_error_level >= SCSI_ERR_FATAL) { 17823 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17824 "Caddy not inserted in drive\n"); 17825 } 17826 17827 sr_ejected(un); 17828 un->un_mediastate = DKIO_EJECTED; 17829 /* The state has changed, inform the media watch routines */ 17830 cv_broadcast(&un->un_state_cv); 17831 /* Just fail if no media is present in the drive. */ 17832 goto fail_command; 17833 17834 default: 17835 if (sd_error_level < SCSI_ERR_RETRYABLE) { 17836 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 17837 "Unit not Ready. Additional sense code 0x%x\n", 17838 asc); 17839 } 17840 break; 17841 } 17842 17843 do_retry: 17844 17845 /* 17846 * Retry the command, as some targets may report NOT READY for 17847 * several seconds after being reset. 17848 */ 17849 xp->xb_retry_count++; 17850 si.ssi_severity = SCSI_ERR_RETRYABLE; 17851 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg, 17852 &si, EIO, SD_BSY_TIMEOUT, NULL); 17853 17854 return; 17855 17856 fail_command: 17857 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 17858 sd_return_failed_command(un, bp, EIO); 17859 } 17860 17861 17862 17863 /* 17864 * Function: sd_sense_key_medium_or_hardware_error 17865 * 17866 * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error" 17867 * sense key. 17868 * 17869 * Context: May be called from interrupt context 17870 */ 17871 17872 static void 17873 sd_sense_key_medium_or_hardware_error(struct sd_lun *un, 17874 uint8_t *sense_datap, 17875 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 17876 { 17877 struct sd_sense_info si; 17878 uint8_t sense_key = scsi_sense_key(sense_datap); 17879 uint8_t asc = scsi_sense_asc(sense_datap); 17880 17881 ASSERT(un != NULL); 17882 ASSERT(mutex_owned(SD_MUTEX(un))); 17883 ASSERT(bp != NULL); 17884 ASSERT(xp != NULL); 17885 ASSERT(pktp != NULL); 17886 17887 si.ssi_severity = SCSI_ERR_FATAL; 17888 si.ssi_pfa_flag = FALSE; 17889 17890 if (sense_key == KEY_MEDIUM_ERROR) { 17891 SD_UPDATE_ERRSTATS(un, sd_rq_media_err); 17892 } 17893 17894 SD_UPDATE_ERRSTATS(un, sd_harderrs); 17895 17896 if ((un->un_reset_retry_count != 0) && 17897 (xp->xb_retry_count == un->un_reset_retry_count)) { 17898 mutex_exit(SD_MUTEX(un)); 17899 /* Do NOT do a RESET_ALL here: too intrusive. (4112858) */ 17900 if (un->un_f_allow_bus_device_reset == TRUE) { 17901 17902 boolean_t try_resetting_target = B_TRUE; 17903 17904 /* 17905 * We need to be able to handle specific ASC when we are 17906 * handling a KEY_HARDWARE_ERROR. In particular 17907 * taking the default action of resetting the target may 17908 * not be the appropriate way to attempt recovery. 17909 * Resetting a target because of a single LUN failure 17910 * victimizes all LUNs on that target. 17911 * 17912 * This is true for the LSI arrays, if an LSI 17913 * array controller returns an ASC of 0x84 (LUN Dead) we 17914 * should trust it. 17915 */ 17916 17917 if (sense_key == KEY_HARDWARE_ERROR) { 17918 switch (asc) { 17919 case 0x84: 17920 if (SD_IS_LSI(un)) { 17921 try_resetting_target = B_FALSE; 17922 } 17923 break; 17924 default: 17925 break; 17926 } 17927 } 17928 17929 if (try_resetting_target == B_TRUE) { 17930 int reset_retval = 0; 17931 if (un->un_f_lun_reset_enabled == TRUE) { 17932 SD_TRACE(SD_LOG_IO_CORE, un, 17933 "sd_sense_key_medium_or_hardware_" 17934 "error: issuing RESET_LUN\n"); 17935 reset_retval = 17936 scsi_reset(SD_ADDRESS(un), 17937 RESET_LUN); 17938 } 17939 if (reset_retval == 0) { 17940 SD_TRACE(SD_LOG_IO_CORE, un, 17941 "sd_sense_key_medium_or_hardware_" 17942 "error: issuing RESET_TARGET\n"); 17943 (void) scsi_reset(SD_ADDRESS(un), 17944 RESET_TARGET); 17945 } 17946 } 17947 } 17948 mutex_enter(SD_MUTEX(un)); 17949 } 17950 17951 /* 17952 * This really ought to be a fatal error, but we will retry anyway 17953 * as some drives report this as a spurious error. 17954 */ 17955 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 17956 &si, EIO, (clock_t)0, NULL); 17957 } 17958 17959 17960 17961 /* 17962 * Function: sd_sense_key_illegal_request 17963 * 17964 * Description: Recovery actions for a SCSI "Illegal Request" sense key. 17965 * 17966 * Context: May be called from interrupt context 17967 */ 17968 17969 static void 17970 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp, 17971 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17972 { 17973 struct sd_sense_info si; 17974 17975 ASSERT(un != NULL); 17976 ASSERT(mutex_owned(SD_MUTEX(un))); 17977 ASSERT(bp != NULL); 17978 ASSERT(xp != NULL); 17979 ASSERT(pktp != NULL); 17980 17981 SD_UPDATE_ERRSTATS(un, sd_softerrs); 17982 SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err); 17983 17984 si.ssi_severity = SCSI_ERR_INFO; 17985 si.ssi_pfa_flag = FALSE; 17986 17987 /* Pointless to retry if the target thinks it's an illegal request */ 17988 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 17989 sd_return_failed_command(un, bp, EIO); 17990 } 17991 17992 17993 17994 17995 /* 17996 * Function: sd_sense_key_unit_attention 17997 * 17998 * Description: Recovery actions for a SCSI "Unit Attention" sense key. 17999 * 18000 * Context: May be called from interrupt context 18001 */ 18002 18003 static void 18004 sd_sense_key_unit_attention(struct sd_lun *un, 18005 uint8_t *sense_datap, 18006 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 18007 { 18008 /* 18009 * For UNIT ATTENTION we allow retries for one minute. Devices 18010 * like Sonoma can return UNIT ATTENTION close to a minute 18011 * under certain conditions. 18012 */ 18013 int retry_check_flag = SD_RETRIES_UA; 18014 boolean_t kstat_updated = B_FALSE; 18015 struct sd_sense_info si; 18016 uint8_t asc = scsi_sense_asc(sense_datap); 18017 18018 ASSERT(un != NULL); 18019 ASSERT(mutex_owned(SD_MUTEX(un))); 18020 ASSERT(bp != NULL); 18021 ASSERT(xp != NULL); 18022 ASSERT(pktp != NULL); 18023 18024 si.ssi_severity = SCSI_ERR_INFO; 18025 si.ssi_pfa_flag = FALSE; 18026 18027 18028 switch (asc) { 18029 case 0x5D: /* FAILURE PREDICTION THRESHOLD EXCEEDED */ 18030 if (sd_report_pfa != 0) { 18031 SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err); 18032 si.ssi_pfa_flag = TRUE; 18033 retry_check_flag = SD_RETRIES_STANDARD; 18034 goto do_retry; 18035 } 18036 18037 break; 18038 18039 case 0x29: /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */ 18040 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 18041 un->un_resvd_status |= 18042 (SD_LOST_RESERVE | SD_WANT_RESERVE); 18043 } 18044 #ifdef _LP64 18045 if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) { 18046 if (taskq_dispatch(sd_tq, sd_reenable_dsense_task, 18047 un, KM_NOSLEEP) == 0) { 18048 /* 18049 * If we can't dispatch the task we'll just 18050 * live without descriptor sense. We can 18051 * try again on the next "unit attention" 18052 */ 18053 SD_ERROR(SD_LOG_ERROR, un, 18054 "sd_sense_key_unit_attention: " 18055 "Could not dispatch " 18056 "sd_reenable_dsense_task\n"); 18057 } 18058 } 18059 #endif /* _LP64 */ 18060 /* FALLTHRU */ 18061 18062 case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */ 18063 if (!un->un_f_has_removable_media) { 18064 break; 18065 } 18066 18067 /* 18068 * When we get a unit attention from a removable-media device, 18069 * it may be in a state that will take a long time to recover 18070 * (e.g., from a reset). Since we are executing in interrupt 18071 * context here, we cannot wait around for the device to come 18072 * back. So hand this command off to sd_media_change_task() 18073 * for deferred processing under taskq thread context. (Note 18074 * that the command still may be failed if a problem is 18075 * encountered at a later time.) 18076 */ 18077 if (taskq_dispatch(sd_tq, sd_media_change_task, pktp, 18078 KM_NOSLEEP) == 0) { 18079 /* 18080 * Cannot dispatch the request so fail the command. 18081 */ 18082 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18083 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 18084 si.ssi_severity = SCSI_ERR_FATAL; 18085 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18086 sd_return_failed_command(un, bp, EIO); 18087 } 18088 18089 /* 18090 * If failed to dispatch sd_media_change_task(), we already 18091 * updated kstat. If succeed to dispatch sd_media_change_task(), 18092 * we should update kstat later if it encounters an error. So, 18093 * we update kstat_updated flag here. 18094 */ 18095 kstat_updated = B_TRUE; 18096 18097 /* 18098 * Either the command has been successfully dispatched to a 18099 * task Q for retrying, or the dispatch failed. In either case 18100 * do NOT retry again by calling sd_retry_command. This sets up 18101 * two retries of the same command and when one completes and 18102 * frees the resources the other will access freed memory, 18103 * a bad thing. 18104 */ 18105 return; 18106 18107 default: 18108 break; 18109 } 18110 18111 /* 18112 * Update kstat if we haven't done that. 18113 */ 18114 if (!kstat_updated) { 18115 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18116 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 18117 } 18118 18119 do_retry: 18120 sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si, 18121 EIO, SD_UA_RETRY_DELAY, NULL); 18122 } 18123 18124 18125 18126 /* 18127 * Function: sd_sense_key_fail_command 18128 * 18129 * Description: Use to fail a command when we don't like the sense key that 18130 * was returned. 18131 * 18132 * Context: May be called from interrupt context 18133 */ 18134 18135 static void 18136 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp, 18137 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18138 { 18139 struct sd_sense_info si; 18140 18141 ASSERT(un != NULL); 18142 ASSERT(mutex_owned(SD_MUTEX(un))); 18143 ASSERT(bp != NULL); 18144 ASSERT(xp != NULL); 18145 ASSERT(pktp != NULL); 18146 18147 si.ssi_severity = SCSI_ERR_FATAL; 18148 si.ssi_pfa_flag = FALSE; 18149 18150 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18151 sd_return_failed_command(un, bp, EIO); 18152 } 18153 18154 18155 18156 /* 18157 * Function: sd_sense_key_blank_check 18158 * 18159 * Description: Recovery actions for a SCSI "Blank Check" sense key. 18160 * Has no monetary connotation. 18161 * 18162 * Context: May be called from interrupt context 18163 */ 18164 18165 static void 18166 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp, 18167 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18168 { 18169 struct sd_sense_info si; 18170 18171 ASSERT(un != NULL); 18172 ASSERT(mutex_owned(SD_MUTEX(un))); 18173 ASSERT(bp != NULL); 18174 ASSERT(xp != NULL); 18175 ASSERT(pktp != NULL); 18176 18177 /* 18178 * Blank check is not fatal for removable devices, therefore 18179 * it does not require a console message. 18180 */ 18181 si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL : 18182 SCSI_ERR_FATAL; 18183 si.ssi_pfa_flag = FALSE; 18184 18185 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18186 sd_return_failed_command(un, bp, EIO); 18187 } 18188 18189 18190 18191 18192 /* 18193 * Function: sd_sense_key_aborted_command 18194 * 18195 * Description: Recovery actions for a SCSI "Aborted Command" sense key. 18196 * 18197 * Context: May be called from interrupt context 18198 */ 18199 18200 static void 18201 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp, 18202 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18203 { 18204 struct sd_sense_info si; 18205 18206 ASSERT(un != NULL); 18207 ASSERT(mutex_owned(SD_MUTEX(un))); 18208 ASSERT(bp != NULL); 18209 ASSERT(xp != NULL); 18210 ASSERT(pktp != NULL); 18211 18212 si.ssi_severity = SCSI_ERR_FATAL; 18213 si.ssi_pfa_flag = FALSE; 18214 18215 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18216 18217 /* 18218 * This really ought to be a fatal error, but we will retry anyway 18219 * as some drives report this as a spurious error. 18220 */ 18221 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18222 &si, EIO, (clock_t)0, NULL); 18223 } 18224 18225 18226 18227 /* 18228 * Function: sd_sense_key_default 18229 * 18230 * Description: Default recovery action for several SCSI sense keys (basically 18231 * attempts a retry). 18232 * 18233 * Context: May be called from interrupt context 18234 */ 18235 18236 static void 18237 sd_sense_key_default(struct sd_lun *un, 18238 uint8_t *sense_datap, 18239 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 18240 { 18241 struct sd_sense_info si; 18242 uint8_t sense_key = scsi_sense_key(sense_datap); 18243 18244 ASSERT(un != NULL); 18245 ASSERT(mutex_owned(SD_MUTEX(un))); 18246 ASSERT(bp != NULL); 18247 ASSERT(xp != NULL); 18248 ASSERT(pktp != NULL); 18249 18250 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18251 18252 /* 18253 * Undecoded sense key. Attempt retries and hope that will fix 18254 * the problem. Otherwise, we're dead. 18255 */ 18256 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 18257 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18258 "Unhandled Sense Key '%s'\n", sense_keys[sense_key]); 18259 } 18260 18261 si.ssi_severity = SCSI_ERR_FATAL; 18262 si.ssi_pfa_flag = FALSE; 18263 18264 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18265 &si, EIO, (clock_t)0, NULL); 18266 } 18267 18268 18269 18270 /* 18271 * Function: sd_print_retry_msg 18272 * 18273 * Description: Print a message indicating the retry action being taken. 18274 * 18275 * Arguments: un - ptr to associated softstate 18276 * bp - ptr to buf(9S) for the command 18277 * arg - not used. 18278 * flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 18279 * or SD_NO_RETRY_ISSUED 18280 * 18281 * Context: May be called from interrupt context 18282 */ 18283 /* ARGSUSED */ 18284 static void 18285 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag) 18286 { 18287 struct sd_xbuf *xp; 18288 struct scsi_pkt *pktp; 18289 char *reasonp; 18290 char *msgp; 18291 18292 ASSERT(un != NULL); 18293 ASSERT(mutex_owned(SD_MUTEX(un))); 18294 ASSERT(bp != NULL); 18295 pktp = SD_GET_PKTP(bp); 18296 ASSERT(pktp != NULL); 18297 xp = SD_GET_XBUF(bp); 18298 ASSERT(xp != NULL); 18299 18300 ASSERT(!mutex_owned(&un->un_pm_mutex)); 18301 mutex_enter(&un->un_pm_mutex); 18302 if ((un->un_state == SD_STATE_SUSPENDED) || 18303 (SD_DEVICE_IS_IN_LOW_POWER(un)) || 18304 (pktp->pkt_flags & FLAG_SILENT)) { 18305 mutex_exit(&un->un_pm_mutex); 18306 goto update_pkt_reason; 18307 } 18308 mutex_exit(&un->un_pm_mutex); 18309 18310 /* 18311 * Suppress messages if they are all the same pkt_reason; with 18312 * TQ, many (up to 256) are returned with the same pkt_reason. 18313 * If we are in panic, then suppress the retry messages. 18314 */ 18315 switch (flag) { 18316 case SD_NO_RETRY_ISSUED: 18317 msgp = "giving up"; 18318 break; 18319 case SD_IMMEDIATE_RETRY_ISSUED: 18320 case SD_DELAYED_RETRY_ISSUED: 18321 if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) || 18322 ((pktp->pkt_reason == un->un_last_pkt_reason) && 18323 (sd_error_level != SCSI_ERR_ALL))) { 18324 return; 18325 } 18326 msgp = "retrying command"; 18327 break; 18328 default: 18329 goto update_pkt_reason; 18330 } 18331 18332 reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" : 18333 scsi_rname(pktp->pkt_reason)); 18334 18335 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18336 "SCSI transport failed: reason '%s': %s\n", reasonp, msgp); 18337 18338 update_pkt_reason: 18339 /* 18340 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason. 18341 * This is to prevent multiple console messages for the same failure 18342 * condition. Note that un->un_last_pkt_reason is NOT restored if & 18343 * when the command is retried successfully because there still may be 18344 * more commands coming back with the same value of pktp->pkt_reason. 18345 */ 18346 if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) { 18347 un->un_last_pkt_reason = pktp->pkt_reason; 18348 } 18349 } 18350 18351 18352 /* 18353 * Function: sd_print_cmd_incomplete_msg 18354 * 18355 * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason. 18356 * 18357 * Arguments: un - ptr to associated softstate 18358 * bp - ptr to buf(9S) for the command 18359 * arg - passed to sd_print_retry_msg() 18360 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 18361 * or SD_NO_RETRY_ISSUED 18362 * 18363 * Context: May be called from interrupt context 18364 */ 18365 18366 static void 18367 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, 18368 int code) 18369 { 18370 dev_info_t *dip; 18371 18372 ASSERT(un != NULL); 18373 ASSERT(mutex_owned(SD_MUTEX(un))); 18374 ASSERT(bp != NULL); 18375 18376 switch (code) { 18377 case SD_NO_RETRY_ISSUED: 18378 /* Command was failed. Someone turned off this target? */ 18379 if (un->un_state != SD_STATE_OFFLINE) { 18380 /* 18381 * Suppress message if we are detaching and 18382 * device has been disconnected 18383 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation 18384 * private interface and not part of the DDI 18385 */ 18386 dip = un->un_sd->sd_dev; 18387 if (!(DEVI_IS_DETACHING(dip) && 18388 DEVI_IS_DEVICE_REMOVED(dip))) { 18389 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18390 "disk not responding to selection\n"); 18391 } 18392 New_state(un, SD_STATE_OFFLINE); 18393 } 18394 break; 18395 18396 case SD_DELAYED_RETRY_ISSUED: 18397 case SD_IMMEDIATE_RETRY_ISSUED: 18398 default: 18399 /* Command was successfully queued for retry */ 18400 sd_print_retry_msg(un, bp, arg, code); 18401 break; 18402 } 18403 } 18404 18405 18406 /* 18407 * Function: sd_pkt_reason_cmd_incomplete 18408 * 18409 * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason. 18410 * 18411 * Context: May be called from interrupt context 18412 */ 18413 18414 static void 18415 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp, 18416 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18417 { 18418 int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE; 18419 18420 ASSERT(un != NULL); 18421 ASSERT(mutex_owned(SD_MUTEX(un))); 18422 ASSERT(bp != NULL); 18423 ASSERT(xp != NULL); 18424 ASSERT(pktp != NULL); 18425 18426 /* Do not do a reset if selection did not complete */ 18427 /* Note: Should this not just check the bit? */ 18428 if (pktp->pkt_state != STATE_GOT_BUS) { 18429 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18430 sd_reset_target(un, pktp); 18431 } 18432 18433 /* 18434 * If the target was not successfully selected, then set 18435 * SD_RETRIES_FAILFAST to indicate that we lost communication 18436 * with the target, and further retries and/or commands are 18437 * likely to take a long time. 18438 */ 18439 if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) { 18440 flag |= SD_RETRIES_FAILFAST; 18441 } 18442 18443 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18444 18445 sd_retry_command(un, bp, flag, 18446 sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18447 } 18448 18449 18450 18451 /* 18452 * Function: sd_pkt_reason_cmd_tran_err 18453 * 18454 * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason. 18455 * 18456 * Context: May be called from interrupt context 18457 */ 18458 18459 static void 18460 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp, 18461 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18462 { 18463 ASSERT(un != NULL); 18464 ASSERT(mutex_owned(SD_MUTEX(un))); 18465 ASSERT(bp != NULL); 18466 ASSERT(xp != NULL); 18467 ASSERT(pktp != NULL); 18468 18469 /* 18470 * Do not reset if we got a parity error, or if 18471 * selection did not complete. 18472 */ 18473 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18474 /* Note: Should this not just check the bit for pkt_state? */ 18475 if (((pktp->pkt_statistics & STAT_PERR) == 0) && 18476 (pktp->pkt_state != STATE_GOT_BUS)) { 18477 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18478 sd_reset_target(un, pktp); 18479 } 18480 18481 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18482 18483 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 18484 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18485 } 18486 18487 18488 18489 /* 18490 * Function: sd_pkt_reason_cmd_reset 18491 * 18492 * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason. 18493 * 18494 * Context: May be called from interrupt context 18495 */ 18496 18497 static void 18498 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp, 18499 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18500 { 18501 ASSERT(un != NULL); 18502 ASSERT(mutex_owned(SD_MUTEX(un))); 18503 ASSERT(bp != NULL); 18504 ASSERT(xp != NULL); 18505 ASSERT(pktp != NULL); 18506 18507 /* The target may still be running the command, so try to reset. */ 18508 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18509 sd_reset_target(un, pktp); 18510 18511 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18512 18513 /* 18514 * If pkt_reason is CMD_RESET chances are that this pkt got 18515 * reset because another target on this bus caused it. The target 18516 * that caused it should get CMD_TIMEOUT with pkt_statistics 18517 * of STAT_TIMEOUT/STAT_DEV_RESET. 18518 */ 18519 18520 sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE), 18521 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18522 } 18523 18524 18525 18526 18527 /* 18528 * Function: sd_pkt_reason_cmd_aborted 18529 * 18530 * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason. 18531 * 18532 * Context: May be called from interrupt context 18533 */ 18534 18535 static void 18536 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp, 18537 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18538 { 18539 ASSERT(un != NULL); 18540 ASSERT(mutex_owned(SD_MUTEX(un))); 18541 ASSERT(bp != NULL); 18542 ASSERT(xp != NULL); 18543 ASSERT(pktp != NULL); 18544 18545 /* The target may still be running the command, so try to reset. */ 18546 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18547 sd_reset_target(un, pktp); 18548 18549 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18550 18551 /* 18552 * If pkt_reason is CMD_ABORTED chances are that this pkt got 18553 * aborted because another target on this bus caused it. The target 18554 * that caused it should get CMD_TIMEOUT with pkt_statistics 18555 * of STAT_TIMEOUT/STAT_DEV_RESET. 18556 */ 18557 18558 sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE), 18559 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18560 } 18561 18562 18563 18564 /* 18565 * Function: sd_pkt_reason_cmd_timeout 18566 * 18567 * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason. 18568 * 18569 * Context: May be called from interrupt context 18570 */ 18571 18572 static void 18573 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp, 18574 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18575 { 18576 ASSERT(un != NULL); 18577 ASSERT(mutex_owned(SD_MUTEX(un))); 18578 ASSERT(bp != NULL); 18579 ASSERT(xp != NULL); 18580 ASSERT(pktp != NULL); 18581 18582 18583 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18584 sd_reset_target(un, pktp); 18585 18586 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18587 18588 /* 18589 * A command timeout indicates that we could not establish 18590 * communication with the target, so set SD_RETRIES_FAILFAST 18591 * as further retries/commands are likely to take a long time. 18592 */ 18593 sd_retry_command(un, bp, 18594 (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST), 18595 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18596 } 18597 18598 18599 18600 /* 18601 * Function: sd_pkt_reason_cmd_unx_bus_free 18602 * 18603 * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason. 18604 * 18605 * Context: May be called from interrupt context 18606 */ 18607 18608 static void 18609 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp, 18610 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18611 { 18612 void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code); 18613 18614 ASSERT(un != NULL); 18615 ASSERT(mutex_owned(SD_MUTEX(un))); 18616 ASSERT(bp != NULL); 18617 ASSERT(xp != NULL); 18618 ASSERT(pktp != NULL); 18619 18620 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18621 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18622 18623 funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ? 18624 sd_print_retry_msg : NULL; 18625 18626 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 18627 funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18628 } 18629 18630 18631 /* 18632 * Function: sd_pkt_reason_cmd_tag_reject 18633 * 18634 * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason. 18635 * 18636 * Context: May be called from interrupt context 18637 */ 18638 18639 static void 18640 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp, 18641 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18642 { 18643 ASSERT(un != NULL); 18644 ASSERT(mutex_owned(SD_MUTEX(un))); 18645 ASSERT(bp != NULL); 18646 ASSERT(xp != NULL); 18647 ASSERT(pktp != NULL); 18648 18649 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18650 pktp->pkt_flags = 0; 18651 un->un_tagflags = 0; 18652 if (un->un_f_opt_queueing == TRUE) { 18653 un->un_throttle = min(un->un_throttle, 3); 18654 } else { 18655 un->un_throttle = 1; 18656 } 18657 mutex_exit(SD_MUTEX(un)); 18658 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 18659 mutex_enter(SD_MUTEX(un)); 18660 18661 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18662 18663 /* Legacy behavior not to check retry counts here. */ 18664 sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE), 18665 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18666 } 18667 18668 18669 /* 18670 * Function: sd_pkt_reason_default 18671 * 18672 * Description: Default recovery actions for SCSA pkt_reason values that 18673 * do not have more explicit recovery actions. 18674 * 18675 * Context: May be called from interrupt context 18676 */ 18677 18678 static void 18679 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp, 18680 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18681 { 18682 ASSERT(un != NULL); 18683 ASSERT(mutex_owned(SD_MUTEX(un))); 18684 ASSERT(bp != NULL); 18685 ASSERT(xp != NULL); 18686 ASSERT(pktp != NULL); 18687 18688 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18689 sd_reset_target(un, pktp); 18690 18691 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18692 18693 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 18694 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18695 } 18696 18697 18698 18699 /* 18700 * Function: sd_pkt_status_check_condition 18701 * 18702 * Description: Recovery actions for a "STATUS_CHECK" SCSI command status. 18703 * 18704 * Context: May be called from interrupt context 18705 */ 18706 18707 static void 18708 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp, 18709 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18710 { 18711 ASSERT(un != NULL); 18712 ASSERT(mutex_owned(SD_MUTEX(un))); 18713 ASSERT(bp != NULL); 18714 ASSERT(xp != NULL); 18715 ASSERT(pktp != NULL); 18716 18717 SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: " 18718 "entry: buf:0x%p xp:0x%p\n", bp, xp); 18719 18720 /* 18721 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the 18722 * command will be retried after the request sense). Otherwise, retry 18723 * the command. Note: we are issuing the request sense even though the 18724 * retry limit may have been reached for the failed command. 18725 */ 18726 if (un->un_f_arq_enabled == FALSE) { 18727 SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: " 18728 "no ARQ, sending request sense command\n"); 18729 sd_send_request_sense_command(un, bp, pktp); 18730 } else { 18731 SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: " 18732 "ARQ,retrying request sense command\n"); 18733 #if defined(__i386) || defined(__amd64) 18734 /* 18735 * The SD_RETRY_DELAY value need to be adjusted here 18736 * when SD_RETRY_DELAY change in sddef.h 18737 */ 18738 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO, 18739 un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, 18740 NULL); 18741 #else 18742 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, 18743 EIO, SD_RETRY_DELAY, NULL); 18744 #endif 18745 } 18746 18747 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n"); 18748 } 18749 18750 18751 /* 18752 * Function: sd_pkt_status_busy 18753 * 18754 * Description: Recovery actions for a "STATUS_BUSY" SCSI command status. 18755 * 18756 * Context: May be called from interrupt context 18757 */ 18758 18759 static void 18760 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 18761 struct scsi_pkt *pktp) 18762 { 18763 ASSERT(un != NULL); 18764 ASSERT(mutex_owned(SD_MUTEX(un))); 18765 ASSERT(bp != NULL); 18766 ASSERT(xp != NULL); 18767 ASSERT(pktp != NULL); 18768 18769 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18770 "sd_pkt_status_busy: entry\n"); 18771 18772 /* If retries are exhausted, just fail the command. */ 18773 if (xp->xb_retry_count >= un->un_busy_retry_count) { 18774 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18775 "device busy too long\n"); 18776 sd_return_failed_command(un, bp, EIO); 18777 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18778 "sd_pkt_status_busy: exit\n"); 18779 return; 18780 } 18781 xp->xb_retry_count++; 18782 18783 /* 18784 * Try to reset the target. However, we do not want to perform 18785 * more than one reset if the device continues to fail. The reset 18786 * will be performed when the retry count reaches the reset 18787 * threshold. This threshold should be set such that at least 18788 * one retry is issued before the reset is performed. 18789 */ 18790 if (xp->xb_retry_count == 18791 ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) { 18792 int rval = 0; 18793 mutex_exit(SD_MUTEX(un)); 18794 if (un->un_f_allow_bus_device_reset == TRUE) { 18795 /* 18796 * First try to reset the LUN; if we cannot then 18797 * try to reset the target. 18798 */ 18799 if (un->un_f_lun_reset_enabled == TRUE) { 18800 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18801 "sd_pkt_status_busy: RESET_LUN\n"); 18802 rval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 18803 } 18804 if (rval == 0) { 18805 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18806 "sd_pkt_status_busy: RESET_TARGET\n"); 18807 rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 18808 } 18809 } 18810 if (rval == 0) { 18811 /* 18812 * If the RESET_LUN and/or RESET_TARGET failed, 18813 * try RESET_ALL 18814 */ 18815 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18816 "sd_pkt_status_busy: RESET_ALL\n"); 18817 rval = scsi_reset(SD_ADDRESS(un), RESET_ALL); 18818 } 18819 mutex_enter(SD_MUTEX(un)); 18820 if (rval == 0) { 18821 /* 18822 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed. 18823 * At this point we give up & fail the command. 18824 */ 18825 sd_return_failed_command(un, bp, EIO); 18826 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18827 "sd_pkt_status_busy: exit (failed cmd)\n"); 18828 return; 18829 } 18830 } 18831 18832 /* 18833 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as 18834 * we have already checked the retry counts above. 18835 */ 18836 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 18837 EIO, SD_BSY_TIMEOUT, NULL); 18838 18839 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18840 "sd_pkt_status_busy: exit\n"); 18841 } 18842 18843 18844 /* 18845 * Function: sd_pkt_status_reservation_conflict 18846 * 18847 * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI 18848 * command status. 18849 * 18850 * Context: May be called from interrupt context 18851 */ 18852 18853 static void 18854 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp, 18855 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18856 { 18857 ASSERT(un != NULL); 18858 ASSERT(mutex_owned(SD_MUTEX(un))); 18859 ASSERT(bp != NULL); 18860 ASSERT(xp != NULL); 18861 ASSERT(pktp != NULL); 18862 18863 /* 18864 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation 18865 * conflict could be due to various reasons like incorrect keys, not 18866 * registered or not reserved etc. So, we return EACCES to the caller. 18867 */ 18868 if (un->un_reservation_type == SD_SCSI3_RESERVATION) { 18869 int cmd = SD_GET_PKT_OPCODE(pktp); 18870 if ((cmd == SCMD_PERSISTENT_RESERVE_IN) || 18871 (cmd == SCMD_PERSISTENT_RESERVE_OUT)) { 18872 sd_return_failed_command(un, bp, EACCES); 18873 return; 18874 } 18875 } 18876 18877 un->un_resvd_status |= SD_RESERVATION_CONFLICT; 18878 18879 if ((un->un_resvd_status & SD_FAILFAST) != 0) { 18880 if (sd_failfast_enable != 0) { 18881 /* By definition, we must panic here.... */ 18882 sd_panic_for_res_conflict(un); 18883 /*NOTREACHED*/ 18884 } 18885 SD_ERROR(SD_LOG_IO, un, 18886 "sd_handle_resv_conflict: Disk Reserved\n"); 18887 sd_return_failed_command(un, bp, EACCES); 18888 return; 18889 } 18890 18891 /* 18892 * 1147670: retry only if sd_retry_on_reservation_conflict 18893 * property is set (default is 1). Retries will not succeed 18894 * on a disk reserved by another initiator. HA systems 18895 * may reset this via sd.conf to avoid these retries. 18896 * 18897 * Note: The legacy return code for this failure is EIO, however EACCES 18898 * seems more appropriate for a reservation conflict. 18899 */ 18900 if (sd_retry_on_reservation_conflict == 0) { 18901 SD_ERROR(SD_LOG_IO, un, 18902 "sd_handle_resv_conflict: Device Reserved\n"); 18903 sd_return_failed_command(un, bp, EIO); 18904 return; 18905 } 18906 18907 /* 18908 * Retry the command if we can. 18909 * 18910 * Note: The legacy return code for this failure is EIO, however EACCES 18911 * seems more appropriate for a reservation conflict. 18912 */ 18913 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO, 18914 (clock_t)2, NULL); 18915 } 18916 18917 18918 18919 /* 18920 * Function: sd_pkt_status_qfull 18921 * 18922 * Description: Handle a QUEUE FULL condition from the target. This can 18923 * occur if the HBA does not handle the queue full condition. 18924 * (Basically this means third-party HBAs as Sun HBAs will 18925 * handle the queue full condition.) Note that if there are 18926 * some commands already in the transport, then the queue full 18927 * has occurred because the queue for this nexus is actually 18928 * full. If there are no commands in the transport, then the 18929 * queue full is resulting from some other initiator or lun 18930 * consuming all the resources at the target. 18931 * 18932 * Context: May be called from interrupt context 18933 */ 18934 18935 static void 18936 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp, 18937 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18938 { 18939 ASSERT(un != NULL); 18940 ASSERT(mutex_owned(SD_MUTEX(un))); 18941 ASSERT(bp != NULL); 18942 ASSERT(xp != NULL); 18943 ASSERT(pktp != NULL); 18944 18945 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18946 "sd_pkt_status_qfull: entry\n"); 18947 18948 /* 18949 * Just lower the QFULL throttle and retry the command. Note that 18950 * we do not limit the number of retries here. 18951 */ 18952 sd_reduce_throttle(un, SD_THROTTLE_QFULL); 18953 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0, 18954 SD_RESTART_TIMEOUT, NULL); 18955 18956 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18957 "sd_pkt_status_qfull: exit\n"); 18958 } 18959 18960 18961 /* 18962 * Function: sd_reset_target 18963 * 18964 * Description: Issue a scsi_reset(9F), with either RESET_LUN, 18965 * RESET_TARGET, or RESET_ALL. 18966 * 18967 * Context: May be called under interrupt context. 18968 */ 18969 18970 static void 18971 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp) 18972 { 18973 int rval = 0; 18974 18975 ASSERT(un != NULL); 18976 ASSERT(mutex_owned(SD_MUTEX(un))); 18977 ASSERT(pktp != NULL); 18978 18979 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n"); 18980 18981 /* 18982 * No need to reset if the transport layer has already done so. 18983 */ 18984 if ((pktp->pkt_statistics & 18985 (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) { 18986 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18987 "sd_reset_target: no reset\n"); 18988 return; 18989 } 18990 18991 mutex_exit(SD_MUTEX(un)); 18992 18993 if (un->un_f_allow_bus_device_reset == TRUE) { 18994 if (un->un_f_lun_reset_enabled == TRUE) { 18995 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18996 "sd_reset_target: RESET_LUN\n"); 18997 rval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 18998 } 18999 if (rval == 0) { 19000 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19001 "sd_reset_target: RESET_TARGET\n"); 19002 rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 19003 } 19004 } 19005 19006 if (rval == 0) { 19007 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19008 "sd_reset_target: RESET_ALL\n"); 19009 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 19010 } 19011 19012 mutex_enter(SD_MUTEX(un)); 19013 19014 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n"); 19015 } 19016 19017 19018 /* 19019 * Function: sd_media_change_task 19020 * 19021 * Description: Recovery action for CDROM to become available. 19022 * 19023 * Context: Executes in a taskq() thread context 19024 */ 19025 19026 static void 19027 sd_media_change_task(void *arg) 19028 { 19029 struct scsi_pkt *pktp = arg; 19030 struct sd_lun *un; 19031 struct buf *bp; 19032 struct sd_xbuf *xp; 19033 int err = 0; 19034 int retry_count = 0; 19035 int retry_limit = SD_UNIT_ATTENTION_RETRY/10; 19036 struct sd_sense_info si; 19037 19038 ASSERT(pktp != NULL); 19039 bp = (struct buf *)pktp->pkt_private; 19040 ASSERT(bp != NULL); 19041 xp = SD_GET_XBUF(bp); 19042 ASSERT(xp != NULL); 19043 un = SD_GET_UN(bp); 19044 ASSERT(un != NULL); 19045 ASSERT(!mutex_owned(SD_MUTEX(un))); 19046 ASSERT(un->un_f_monitor_media_state); 19047 19048 si.ssi_severity = SCSI_ERR_INFO; 19049 si.ssi_pfa_flag = FALSE; 19050 19051 /* 19052 * When a reset is issued on a CDROM, it takes a long time to 19053 * recover. First few attempts to read capacity and other things 19054 * related to handling unit attention fail (with a ASC 0x4 and 19055 * ASCQ 0x1). In that case we want to do enough retries and we want 19056 * to limit the retries in other cases of genuine failures like 19057 * no media in drive. 19058 */ 19059 while (retry_count++ < retry_limit) { 19060 if ((err = sd_handle_mchange(un)) == 0) { 19061 break; 19062 } 19063 if (err == EAGAIN) { 19064 retry_limit = SD_UNIT_ATTENTION_RETRY; 19065 } 19066 /* Sleep for 0.5 sec. & try again */ 19067 delay(drv_usectohz(500000)); 19068 } 19069 19070 /* 19071 * Dispatch (retry or fail) the original command here, 19072 * along with appropriate console messages.... 19073 * 19074 * Must grab the mutex before calling sd_retry_command, 19075 * sd_print_sense_msg and sd_return_failed_command. 19076 */ 19077 mutex_enter(SD_MUTEX(un)); 19078 if (err != SD_CMD_SUCCESS) { 19079 SD_UPDATE_ERRSTATS(un, sd_harderrs); 19080 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 19081 si.ssi_severity = SCSI_ERR_FATAL; 19082 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 19083 sd_return_failed_command(un, bp, EIO); 19084 } else { 19085 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg, 19086 &si, EIO, (clock_t)0, NULL); 19087 } 19088 mutex_exit(SD_MUTEX(un)); 19089 } 19090 19091 19092 19093 /* 19094 * Function: sd_handle_mchange 19095 * 19096 * Description: Perform geometry validation & other recovery when CDROM 19097 * has been removed from drive. 19098 * 19099 * Return Code: 0 for success 19100 * errno-type return code of either sd_send_scsi_DOORLOCK() or 19101 * sd_send_scsi_READ_CAPACITY() 19102 * 19103 * Context: Executes in a taskq() thread context 19104 */ 19105 19106 static int 19107 sd_handle_mchange(struct sd_lun *un) 19108 { 19109 uint64_t capacity; 19110 uint32_t lbasize; 19111 int rval; 19112 19113 ASSERT(!mutex_owned(SD_MUTEX(un))); 19114 ASSERT(un->un_f_monitor_media_state); 19115 19116 if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize, 19117 SD_PATH_DIRECT_PRIORITY)) != 0) { 19118 return (rval); 19119 } 19120 19121 mutex_enter(SD_MUTEX(un)); 19122 sd_update_block_info(un, lbasize, capacity); 19123 19124 if (un->un_errstats != NULL) { 19125 struct sd_errstats *stp = 19126 (struct sd_errstats *)un->un_errstats->ks_data; 19127 stp->sd_capacity.value.ui64 = (uint64_t) 19128 ((uint64_t)un->un_blockcount * 19129 (uint64_t)un->un_tgt_blocksize); 19130 } 19131 19132 /* 19133 * Note: Maybe let the strategy/partitioning chain worry about getting 19134 * valid geometry. 19135 */ 19136 un->un_f_geometry_is_valid = FALSE; 19137 (void) sd_validate_geometry(un, SD_PATH_DIRECT_PRIORITY); 19138 if (un->un_f_geometry_is_valid == FALSE) { 19139 mutex_exit(SD_MUTEX(un)); 19140 return (EIO); 19141 } 19142 19143 mutex_exit(SD_MUTEX(un)); 19144 19145 /* 19146 * Try to lock the door 19147 */ 19148 return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT, 19149 SD_PATH_DIRECT_PRIORITY)); 19150 } 19151 19152 19153 /* 19154 * Function: sd_send_scsi_DOORLOCK 19155 * 19156 * Description: Issue the scsi DOOR LOCK command 19157 * 19158 * Arguments: un - pointer to driver soft state (unit) structure for 19159 * this target. 19160 * flag - SD_REMOVAL_ALLOW 19161 * SD_REMOVAL_PREVENT 19162 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 19163 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 19164 * to use the USCSI "direct" chain and bypass the normal 19165 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 19166 * command is issued as part of an error recovery action. 19167 * 19168 * Return Code: 0 - Success 19169 * errno return code from sd_send_scsi_cmd() 19170 * 19171 * Context: Can sleep. 19172 */ 19173 19174 static int 19175 sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag) 19176 { 19177 union scsi_cdb cdb; 19178 struct uscsi_cmd ucmd_buf; 19179 struct scsi_extended_sense sense_buf; 19180 int status; 19181 19182 ASSERT(un != NULL); 19183 ASSERT(!mutex_owned(SD_MUTEX(un))); 19184 19185 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un); 19186 19187 /* already determined doorlock is not supported, fake success */ 19188 if (un->un_f_doorlock_supported == FALSE) { 19189 return (0); 19190 } 19191 19192 bzero(&cdb, sizeof (cdb)); 19193 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19194 19195 cdb.scc_cmd = SCMD_DOORLOCK; 19196 cdb.cdb_opaque[4] = (uchar_t)flag; 19197 19198 ucmd_buf.uscsi_cdb = (char *)&cdb; 19199 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 19200 ucmd_buf.uscsi_bufaddr = NULL; 19201 ucmd_buf.uscsi_buflen = 0; 19202 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19203 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 19204 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 19205 ucmd_buf.uscsi_timeout = 15; 19206 19207 SD_TRACE(SD_LOG_IO, un, 19208 "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n"); 19209 19210 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL, 19211 UIO_SYSSPACE, path_flag); 19212 19213 if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) && 19214 (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 19215 (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) { 19216 /* fake success and skip subsequent doorlock commands */ 19217 un->un_f_doorlock_supported = FALSE; 19218 return (0); 19219 } 19220 19221 return (status); 19222 } 19223 19224 /* 19225 * Function: sd_send_scsi_READ_CAPACITY 19226 * 19227 * Description: This routine uses the scsi READ CAPACITY command to determine 19228 * the device capacity in number of blocks and the device native 19229 * block size. If this function returns a failure, then the 19230 * values in *capp and *lbap are undefined. If the capacity 19231 * returned is 0xffffffff then the lun is too large for a 19232 * normal READ CAPACITY command and the results of a 19233 * READ CAPACITY 16 will be used instead. 19234 * 19235 * Arguments: un - ptr to soft state struct for the target 19236 * capp - ptr to unsigned 64-bit variable to receive the 19237 * capacity value from the command. 19238 * lbap - ptr to unsigned 32-bit varaible to receive the 19239 * block size value from the command 19240 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 19241 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 19242 * to use the USCSI "direct" chain and bypass the normal 19243 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 19244 * command is issued as part of an error recovery action. 19245 * 19246 * Return Code: 0 - Success 19247 * EIO - IO error 19248 * EACCES - Reservation conflict detected 19249 * EAGAIN - Device is becoming ready 19250 * errno return code from sd_send_scsi_cmd() 19251 * 19252 * Context: Can sleep. Blocks until command completes. 19253 */ 19254 19255 #define SD_CAPACITY_SIZE sizeof (struct scsi_capacity) 19256 19257 static int 19258 sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap, 19259 int path_flag) 19260 { 19261 struct scsi_extended_sense sense_buf; 19262 struct uscsi_cmd ucmd_buf; 19263 union scsi_cdb cdb; 19264 uint32_t *capacity_buf; 19265 uint64_t capacity; 19266 uint32_t lbasize; 19267 int status; 19268 19269 ASSERT(un != NULL); 19270 ASSERT(!mutex_owned(SD_MUTEX(un))); 19271 ASSERT(capp != NULL); 19272 ASSERT(lbap != NULL); 19273 19274 SD_TRACE(SD_LOG_IO, un, 19275 "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un); 19276 19277 /* 19278 * First send a READ_CAPACITY command to the target. 19279 * (This command is mandatory under SCSI-2.) 19280 * 19281 * Set up the CDB for the READ_CAPACITY command. The Partial 19282 * Medium Indicator bit is cleared. The address field must be 19283 * zero if the PMI bit is zero. 19284 */ 19285 bzero(&cdb, sizeof (cdb)); 19286 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19287 19288 capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP); 19289 19290 cdb.scc_cmd = SCMD_READ_CAPACITY; 19291 19292 ucmd_buf.uscsi_cdb = (char *)&cdb; 19293 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 19294 ucmd_buf.uscsi_bufaddr = (caddr_t)capacity_buf; 19295 ucmd_buf.uscsi_buflen = SD_CAPACITY_SIZE; 19296 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19297 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 19298 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 19299 ucmd_buf.uscsi_timeout = 60; 19300 19301 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL, 19302 UIO_SYSSPACE, path_flag); 19303 19304 switch (status) { 19305 case 0: 19306 /* Return failure if we did not get valid capacity data. */ 19307 if (ucmd_buf.uscsi_resid != 0) { 19308 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 19309 return (EIO); 19310 } 19311 19312 /* 19313 * Read capacity and block size from the READ CAPACITY 10 data. 19314 * This data may be adjusted later due to device specific 19315 * issues. 19316 * 19317 * According to the SCSI spec, the READ CAPACITY 10 19318 * command returns the following: 19319 * 19320 * bytes 0-3: Maximum logical block address available. 19321 * (MSB in byte:0 & LSB in byte:3) 19322 * 19323 * bytes 4-7: Block length in bytes 19324 * (MSB in byte:4 & LSB in byte:7) 19325 * 19326 */ 19327 capacity = BE_32(capacity_buf[0]); 19328 lbasize = BE_32(capacity_buf[1]); 19329 19330 /* 19331 * Done with capacity_buf 19332 */ 19333 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 19334 19335 /* 19336 * if the reported capacity is set to all 0xf's, then 19337 * this disk is too large and requires SBC-2 commands. 19338 * Reissue the request using READ CAPACITY 16. 19339 */ 19340 if (capacity == 0xffffffff) { 19341 status = sd_send_scsi_READ_CAPACITY_16(un, &capacity, 19342 &lbasize, path_flag); 19343 if (status != 0) { 19344 return (status); 19345 } 19346 } 19347 break; /* Success! */ 19348 case EIO: 19349 switch (ucmd_buf.uscsi_status) { 19350 case STATUS_RESERVATION_CONFLICT: 19351 status = EACCES; 19352 break; 19353 case STATUS_CHECK: 19354 /* 19355 * Check condition; look for ASC/ASCQ of 0x04/0x01 19356 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY) 19357 */ 19358 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 19359 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) && 19360 (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) { 19361 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 19362 return (EAGAIN); 19363 } 19364 break; 19365 default: 19366 break; 19367 } 19368 /* FALLTHRU */ 19369 default: 19370 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 19371 return (status); 19372 } 19373 19374 /* 19375 * Some ATAPI CD-ROM drives report inaccurate LBA size values 19376 * (2352 and 0 are common) so for these devices always force the value 19377 * to 2048 as required by the ATAPI specs. 19378 */ 19379 if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) { 19380 lbasize = 2048; 19381 } 19382 19383 /* 19384 * Get the maximum LBA value from the READ CAPACITY data. 19385 * Here we assume that the Partial Medium Indicator (PMI) bit 19386 * was cleared when issuing the command. This means that the LBA 19387 * returned from the device is the LBA of the last logical block 19388 * on the logical unit. The actual logical block count will be 19389 * this value plus one. 19390 * 19391 * Currently the capacity is saved in terms of un->un_sys_blocksize, 19392 * so scale the capacity value to reflect this. 19393 */ 19394 capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize); 19395 19396 #if defined(__i386) || defined(__amd64) 19397 /* 19398 * Refer to comments related to off-by-1 at the 19399 * header of this file. 19400 * Treat 1TB disk as (1T - 512)B. 19401 */ 19402 if (un->un_f_capacity_adjusted == 1) 19403 capacity = DK_MAX_BLOCKS; 19404 #endif 19405 19406 /* 19407 * Copy the values from the READ CAPACITY command into the space 19408 * provided by the caller. 19409 */ 19410 *capp = capacity; 19411 *lbap = lbasize; 19412 19413 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: " 19414 "capacity:0x%llx lbasize:0x%x\n", capacity, lbasize); 19415 19416 /* 19417 * Both the lbasize and capacity from the device must be nonzero, 19418 * otherwise we assume that the values are not valid and return 19419 * failure to the caller. (4203735) 19420 */ 19421 if ((capacity == 0) || (lbasize == 0)) { 19422 return (EIO); 19423 } 19424 19425 return (0); 19426 } 19427 19428 /* 19429 * Function: sd_send_scsi_READ_CAPACITY_16 19430 * 19431 * Description: This routine uses the scsi READ CAPACITY 16 command to 19432 * determine the device capacity in number of blocks and the 19433 * device native block size. If this function returns a failure, 19434 * then the values in *capp and *lbap are undefined. 19435 * This routine should always be called by 19436 * sd_send_scsi_READ_CAPACITY which will appy any device 19437 * specific adjustments to capacity and lbasize. 19438 * 19439 * Arguments: un - ptr to soft state struct for the target 19440 * capp - ptr to unsigned 64-bit variable to receive the 19441 * capacity value from the command. 19442 * lbap - ptr to unsigned 32-bit varaible to receive the 19443 * block size value from the command 19444 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 19445 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 19446 * to use the USCSI "direct" chain and bypass the normal 19447 * command waitq. SD_PATH_DIRECT_PRIORITY is used when 19448 * this command is issued as part of an error recovery 19449 * action. 19450 * 19451 * Return Code: 0 - Success 19452 * EIO - IO error 19453 * EACCES - Reservation conflict detected 19454 * EAGAIN - Device is becoming ready 19455 * errno return code from sd_send_scsi_cmd() 19456 * 19457 * Context: Can sleep. Blocks until command completes. 19458 */ 19459 19460 #define SD_CAPACITY_16_SIZE sizeof (struct scsi_capacity_16) 19461 19462 static int 19463 sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp, 19464 uint32_t *lbap, int path_flag) 19465 { 19466 struct scsi_extended_sense sense_buf; 19467 struct uscsi_cmd ucmd_buf; 19468 union scsi_cdb cdb; 19469 uint64_t *capacity16_buf; 19470 uint64_t capacity; 19471 uint32_t lbasize; 19472 int status; 19473 19474 ASSERT(un != NULL); 19475 ASSERT(!mutex_owned(SD_MUTEX(un))); 19476 ASSERT(capp != NULL); 19477 ASSERT(lbap != NULL); 19478 19479 SD_TRACE(SD_LOG_IO, un, 19480 "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un); 19481 19482 /* 19483 * First send a READ_CAPACITY_16 command to the target. 19484 * 19485 * Set up the CDB for the READ_CAPACITY_16 command. The Partial 19486 * Medium Indicator bit is cleared. The address field must be 19487 * zero if the PMI bit is zero. 19488 */ 19489 bzero(&cdb, sizeof (cdb)); 19490 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19491 19492 capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP); 19493 19494 ucmd_buf.uscsi_cdb = (char *)&cdb; 19495 ucmd_buf.uscsi_cdblen = CDB_GROUP4; 19496 ucmd_buf.uscsi_bufaddr = (caddr_t)capacity16_buf; 19497 ucmd_buf.uscsi_buflen = SD_CAPACITY_16_SIZE; 19498 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19499 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 19500 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 19501 ucmd_buf.uscsi_timeout = 60; 19502 19503 /* 19504 * Read Capacity (16) is a Service Action In command. One 19505 * command byte (0x9E) is overloaded for multiple operations, 19506 * with the second CDB byte specifying the desired operation 19507 */ 19508 cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4; 19509 cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4; 19510 19511 /* 19512 * Fill in allocation length field 19513 */ 19514 FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen); 19515 19516 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL, 19517 UIO_SYSSPACE, path_flag); 19518 19519 switch (status) { 19520 case 0: 19521 /* Return failure if we did not get valid capacity data. */ 19522 if (ucmd_buf.uscsi_resid > 20) { 19523 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 19524 return (EIO); 19525 } 19526 19527 /* 19528 * Read capacity and block size from the READ CAPACITY 10 data. 19529 * This data may be adjusted later due to device specific 19530 * issues. 19531 * 19532 * According to the SCSI spec, the READ CAPACITY 10 19533 * command returns the following: 19534 * 19535 * bytes 0-7: Maximum logical block address available. 19536 * (MSB in byte:0 & LSB in byte:7) 19537 * 19538 * bytes 8-11: Block length in bytes 19539 * (MSB in byte:8 & LSB in byte:11) 19540 * 19541 */ 19542 capacity = BE_64(capacity16_buf[0]); 19543 lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]); 19544 19545 /* 19546 * Done with capacity16_buf 19547 */ 19548 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 19549 19550 /* 19551 * if the reported capacity is set to all 0xf's, then 19552 * this disk is too large. This could only happen with 19553 * a device that supports LBAs larger than 64 bits which 19554 * are not defined by any current T10 standards. 19555 */ 19556 if (capacity == 0xffffffffffffffff) { 19557 return (EIO); 19558 } 19559 break; /* Success! */ 19560 case EIO: 19561 switch (ucmd_buf.uscsi_status) { 19562 case STATUS_RESERVATION_CONFLICT: 19563 status = EACCES; 19564 break; 19565 case STATUS_CHECK: 19566 /* 19567 * Check condition; look for ASC/ASCQ of 0x04/0x01 19568 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY) 19569 */ 19570 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 19571 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) && 19572 (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) { 19573 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 19574 return (EAGAIN); 19575 } 19576 break; 19577 default: 19578 break; 19579 } 19580 /* FALLTHRU */ 19581 default: 19582 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 19583 return (status); 19584 } 19585 19586 *capp = capacity; 19587 *lbap = lbasize; 19588 19589 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: " 19590 "capacity:0x%llx lbasize:0x%x\n", capacity, lbasize); 19591 19592 return (0); 19593 } 19594 19595 19596 /* 19597 * Function: sd_send_scsi_START_STOP_UNIT 19598 * 19599 * Description: Issue a scsi START STOP UNIT command to the target. 19600 * 19601 * Arguments: un - pointer to driver soft state (unit) structure for 19602 * this target. 19603 * flag - SD_TARGET_START 19604 * SD_TARGET_STOP 19605 * SD_TARGET_EJECT 19606 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 19607 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 19608 * to use the USCSI "direct" chain and bypass the normal 19609 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 19610 * command is issued as part of an error recovery action. 19611 * 19612 * Return Code: 0 - Success 19613 * EIO - IO error 19614 * EACCES - Reservation conflict detected 19615 * ENXIO - Not Ready, medium not present 19616 * errno return code from sd_send_scsi_cmd() 19617 * 19618 * Context: Can sleep. 19619 */ 19620 19621 static int 19622 sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag) 19623 { 19624 struct scsi_extended_sense sense_buf; 19625 union scsi_cdb cdb; 19626 struct uscsi_cmd ucmd_buf; 19627 int status; 19628 19629 ASSERT(un != NULL); 19630 ASSERT(!mutex_owned(SD_MUTEX(un))); 19631 19632 SD_TRACE(SD_LOG_IO, un, 19633 "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un); 19634 19635 if (un->un_f_check_start_stop && 19636 ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) && 19637 (un->un_f_start_stop_supported != TRUE)) { 19638 return (0); 19639 } 19640 19641 bzero(&cdb, sizeof (cdb)); 19642 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19643 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 19644 19645 cdb.scc_cmd = SCMD_START_STOP; 19646 cdb.cdb_opaque[4] = (uchar_t)flag; 19647 19648 ucmd_buf.uscsi_cdb = (char *)&cdb; 19649 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 19650 ucmd_buf.uscsi_bufaddr = NULL; 19651 ucmd_buf.uscsi_buflen = 0; 19652 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19653 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 19654 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 19655 ucmd_buf.uscsi_timeout = 200; 19656 19657 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL, 19658 UIO_SYSSPACE, path_flag); 19659 19660 switch (status) { 19661 case 0: 19662 break; /* Success! */ 19663 case EIO: 19664 switch (ucmd_buf.uscsi_status) { 19665 case STATUS_RESERVATION_CONFLICT: 19666 status = EACCES; 19667 break; 19668 case STATUS_CHECK: 19669 if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) { 19670 switch (scsi_sense_key( 19671 (uint8_t *)&sense_buf)) { 19672 case KEY_ILLEGAL_REQUEST: 19673 status = ENOTSUP; 19674 break; 19675 case KEY_NOT_READY: 19676 if (scsi_sense_asc( 19677 (uint8_t *)&sense_buf) 19678 == 0x3A) { 19679 status = ENXIO; 19680 } 19681 break; 19682 default: 19683 break; 19684 } 19685 } 19686 break; 19687 default: 19688 break; 19689 } 19690 break; 19691 default: 19692 break; 19693 } 19694 19695 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n"); 19696 19697 return (status); 19698 } 19699 19700 19701 /* 19702 * Function: sd_start_stop_unit_callback 19703 * 19704 * Description: timeout(9F) callback to begin recovery process for a 19705 * device that has spun down. 19706 * 19707 * Arguments: arg - pointer to associated softstate struct. 19708 * 19709 * Context: Executes in a timeout(9F) thread context 19710 */ 19711 19712 static void 19713 sd_start_stop_unit_callback(void *arg) 19714 { 19715 struct sd_lun *un = arg; 19716 ASSERT(un != NULL); 19717 ASSERT(!mutex_owned(SD_MUTEX(un))); 19718 19719 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n"); 19720 19721 (void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP); 19722 } 19723 19724 19725 /* 19726 * Function: sd_start_stop_unit_task 19727 * 19728 * Description: Recovery procedure when a drive is spun down. 19729 * 19730 * Arguments: arg - pointer to associated softstate struct. 19731 * 19732 * Context: Executes in a taskq() thread context 19733 */ 19734 19735 static void 19736 sd_start_stop_unit_task(void *arg) 19737 { 19738 struct sd_lun *un = arg; 19739 19740 ASSERT(un != NULL); 19741 ASSERT(!mutex_owned(SD_MUTEX(un))); 19742 19743 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n"); 19744 19745 /* 19746 * Some unformatted drives report not ready error, no need to 19747 * restart if format has been initiated. 19748 */ 19749 mutex_enter(SD_MUTEX(un)); 19750 if (un->un_f_format_in_progress == TRUE) { 19751 mutex_exit(SD_MUTEX(un)); 19752 return; 19753 } 19754 mutex_exit(SD_MUTEX(un)); 19755 19756 /* 19757 * When a START STOP command is issued from here, it is part of a 19758 * failure recovery operation and must be issued before any other 19759 * commands, including any pending retries. Thus it must be sent 19760 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up 19761 * succeeds or not, we will start I/O after the attempt. 19762 */ 19763 (void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, 19764 SD_PATH_DIRECT_PRIORITY); 19765 19766 /* 19767 * The above call blocks until the START_STOP_UNIT command completes. 19768 * Now that it has completed, we must re-try the original IO that 19769 * received the NOT READY condition in the first place. There are 19770 * three possible conditions here: 19771 * 19772 * (1) The original IO is on un_retry_bp. 19773 * (2) The original IO is on the regular wait queue, and un_retry_bp 19774 * is NULL. 19775 * (3) The original IO is on the regular wait queue, and un_retry_bp 19776 * points to some other, unrelated bp. 19777 * 19778 * For each case, we must call sd_start_cmds() with un_retry_bp 19779 * as the argument. If un_retry_bp is NULL, this will initiate 19780 * processing of the regular wait queue. If un_retry_bp is not NULL, 19781 * then this will process the bp on un_retry_bp. That may or may not 19782 * be the original IO, but that does not matter: the important thing 19783 * is to keep the IO processing going at this point. 19784 * 19785 * Note: This is a very specific error recovery sequence associated 19786 * with a drive that is not spun up. We attempt a START_STOP_UNIT and 19787 * serialize the I/O with completion of the spin-up. 19788 */ 19789 mutex_enter(SD_MUTEX(un)); 19790 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19791 "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n", 19792 un, un->un_retry_bp); 19793 un->un_startstop_timeid = NULL; /* Timeout is no longer pending */ 19794 sd_start_cmds(un, un->un_retry_bp); 19795 mutex_exit(SD_MUTEX(un)); 19796 19797 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n"); 19798 } 19799 19800 19801 /* 19802 * Function: sd_send_scsi_INQUIRY 19803 * 19804 * Description: Issue the scsi INQUIRY command. 19805 * 19806 * Arguments: un 19807 * bufaddr 19808 * buflen 19809 * evpd 19810 * page_code 19811 * page_length 19812 * 19813 * Return Code: 0 - Success 19814 * errno return code from sd_send_scsi_cmd() 19815 * 19816 * Context: Can sleep. Does not return until command is completed. 19817 */ 19818 19819 static int 19820 sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen, 19821 uchar_t evpd, uchar_t page_code, size_t *residp) 19822 { 19823 union scsi_cdb cdb; 19824 struct uscsi_cmd ucmd_buf; 19825 int status; 19826 19827 ASSERT(un != NULL); 19828 ASSERT(!mutex_owned(SD_MUTEX(un))); 19829 ASSERT(bufaddr != NULL); 19830 19831 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un); 19832 19833 bzero(&cdb, sizeof (cdb)); 19834 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19835 bzero(bufaddr, buflen); 19836 19837 cdb.scc_cmd = SCMD_INQUIRY; 19838 cdb.cdb_opaque[1] = evpd; 19839 cdb.cdb_opaque[2] = page_code; 19840 FORMG0COUNT(&cdb, buflen); 19841 19842 ucmd_buf.uscsi_cdb = (char *)&cdb; 19843 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 19844 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 19845 ucmd_buf.uscsi_buflen = buflen; 19846 ucmd_buf.uscsi_rqbuf = NULL; 19847 ucmd_buf.uscsi_rqlen = 0; 19848 ucmd_buf.uscsi_flags = USCSI_READ | USCSI_SILENT; 19849 ucmd_buf.uscsi_timeout = 200; /* Excessive legacy value */ 19850 19851 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL, 19852 UIO_SYSSPACE, SD_PATH_DIRECT); 19853 19854 if ((status == 0) && (residp != NULL)) { 19855 *residp = ucmd_buf.uscsi_resid; 19856 } 19857 19858 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n"); 19859 19860 return (status); 19861 } 19862 19863 19864 /* 19865 * Function: sd_send_scsi_TEST_UNIT_READY 19866 * 19867 * Description: Issue the scsi TEST UNIT READY command. 19868 * This routine can be told to set the flag USCSI_DIAGNOSE to 19869 * prevent retrying failed commands. Use this when the intent 19870 * is either to check for device readiness, to clear a Unit 19871 * Attention, or to clear any outstanding sense data. 19872 * However under specific conditions the expected behavior 19873 * is for retries to bring a device ready, so use the flag 19874 * with caution. 19875 * 19876 * Arguments: un 19877 * flag: SD_CHECK_FOR_MEDIA: return ENXIO if no media present 19878 * SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE. 19879 * 0: dont check for media present, do retries on cmd. 19880 * 19881 * Return Code: 0 - Success 19882 * EIO - IO error 19883 * EACCES - Reservation conflict detected 19884 * ENXIO - Not Ready, medium not present 19885 * errno return code from sd_send_scsi_cmd() 19886 * 19887 * Context: Can sleep. Does not return until command is completed. 19888 */ 19889 19890 static int 19891 sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag) 19892 { 19893 struct scsi_extended_sense sense_buf; 19894 union scsi_cdb cdb; 19895 struct uscsi_cmd ucmd_buf; 19896 int status; 19897 19898 ASSERT(un != NULL); 19899 ASSERT(!mutex_owned(SD_MUTEX(un))); 19900 19901 SD_TRACE(SD_LOG_IO, un, 19902 "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un); 19903 19904 /* 19905 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect 19906 * timeouts when they receive a TUR and the queue is not empty. Check 19907 * the configuration flag set during attach (indicating the drive has 19908 * this firmware bug) and un_ncmds_in_transport before issuing the 19909 * TUR. If there are 19910 * pending commands return success, this is a bit arbitrary but is ok 19911 * for non-removables (i.e. the eliteI disks) and non-clustering 19912 * configurations. 19913 */ 19914 if (un->un_f_cfg_tur_check == TRUE) { 19915 mutex_enter(SD_MUTEX(un)); 19916 if (un->un_ncmds_in_transport != 0) { 19917 mutex_exit(SD_MUTEX(un)); 19918 return (0); 19919 } 19920 mutex_exit(SD_MUTEX(un)); 19921 } 19922 19923 bzero(&cdb, sizeof (cdb)); 19924 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19925 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 19926 19927 cdb.scc_cmd = SCMD_TEST_UNIT_READY; 19928 19929 ucmd_buf.uscsi_cdb = (char *)&cdb; 19930 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 19931 ucmd_buf.uscsi_bufaddr = NULL; 19932 ucmd_buf.uscsi_buflen = 0; 19933 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19934 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 19935 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 19936 19937 /* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */ 19938 if ((flag & SD_DONT_RETRY_TUR) != 0) { 19939 ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE; 19940 } 19941 ucmd_buf.uscsi_timeout = 60; 19942 19943 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL, 19944 UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT : 19945 SD_PATH_STANDARD)); 19946 19947 switch (status) { 19948 case 0: 19949 break; /* Success! */ 19950 case EIO: 19951 switch (ucmd_buf.uscsi_status) { 19952 case STATUS_RESERVATION_CONFLICT: 19953 status = EACCES; 19954 break; 19955 case STATUS_CHECK: 19956 if ((flag & SD_CHECK_FOR_MEDIA) == 0) { 19957 break; 19958 } 19959 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 19960 (scsi_sense_key((uint8_t *)&sense_buf) == 19961 KEY_NOT_READY) && 19962 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) { 19963 status = ENXIO; 19964 } 19965 break; 19966 default: 19967 break; 19968 } 19969 break; 19970 default: 19971 break; 19972 } 19973 19974 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n"); 19975 19976 return (status); 19977 } 19978 19979 19980 /* 19981 * Function: sd_send_scsi_PERSISTENT_RESERVE_IN 19982 * 19983 * Description: Issue the scsi PERSISTENT RESERVE IN command. 19984 * 19985 * Arguments: un 19986 * 19987 * Return Code: 0 - Success 19988 * EACCES 19989 * ENOTSUP 19990 * errno return code from sd_send_scsi_cmd() 19991 * 19992 * Context: Can sleep. Does not return until command is completed. 19993 */ 19994 19995 static int 19996 sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t usr_cmd, 19997 uint16_t data_len, uchar_t *data_bufp) 19998 { 19999 struct scsi_extended_sense sense_buf; 20000 union scsi_cdb cdb; 20001 struct uscsi_cmd ucmd_buf; 20002 int status; 20003 int no_caller_buf = FALSE; 20004 20005 ASSERT(un != NULL); 20006 ASSERT(!mutex_owned(SD_MUTEX(un))); 20007 ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV)); 20008 20009 SD_TRACE(SD_LOG_IO, un, 20010 "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un); 20011 20012 bzero(&cdb, sizeof (cdb)); 20013 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20014 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20015 if (data_bufp == NULL) { 20016 /* Allocate a default buf if the caller did not give one */ 20017 ASSERT(data_len == 0); 20018 data_len = MHIOC_RESV_KEY_SIZE; 20019 data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP); 20020 no_caller_buf = TRUE; 20021 } 20022 20023 cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN; 20024 cdb.cdb_opaque[1] = usr_cmd; 20025 FORMG1COUNT(&cdb, data_len); 20026 20027 ucmd_buf.uscsi_cdb = (char *)&cdb; 20028 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 20029 ucmd_buf.uscsi_bufaddr = (caddr_t)data_bufp; 20030 ucmd_buf.uscsi_buflen = data_len; 20031 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20032 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20033 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 20034 ucmd_buf.uscsi_timeout = 60; 20035 20036 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL, 20037 UIO_SYSSPACE, SD_PATH_STANDARD); 20038 20039 switch (status) { 20040 case 0: 20041 break; /* Success! */ 20042 case EIO: 20043 switch (ucmd_buf.uscsi_status) { 20044 case STATUS_RESERVATION_CONFLICT: 20045 status = EACCES; 20046 break; 20047 case STATUS_CHECK: 20048 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20049 (scsi_sense_key((uint8_t *)&sense_buf) == 20050 KEY_ILLEGAL_REQUEST)) { 20051 status = ENOTSUP; 20052 } 20053 break; 20054 default: 20055 break; 20056 } 20057 break; 20058 default: 20059 break; 20060 } 20061 20062 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n"); 20063 20064 if (no_caller_buf == TRUE) { 20065 kmem_free(data_bufp, data_len); 20066 } 20067 20068 return (status); 20069 } 20070 20071 20072 /* 20073 * Function: sd_send_scsi_PERSISTENT_RESERVE_OUT 20074 * 20075 * Description: This routine is the driver entry point for handling CD-ROM 20076 * multi-host persistent reservation requests (MHIOCGRP_INKEYS, 20077 * MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the 20078 * device. 20079 * 20080 * Arguments: un - Pointer to soft state struct for the target. 20081 * usr_cmd SCSI-3 reservation facility command (one of 20082 * SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE, 20083 * SD_SCSI3_PREEMPTANDABORT) 20084 * usr_bufp - user provided pointer register, reserve descriptor or 20085 * preempt and abort structure (mhioc_register_t, 20086 * mhioc_resv_desc_t, mhioc_preemptandabort_t) 20087 * 20088 * Return Code: 0 - Success 20089 * EACCES 20090 * ENOTSUP 20091 * errno return code from sd_send_scsi_cmd() 20092 * 20093 * Context: Can sleep. Does not return until command is completed. 20094 */ 20095 20096 static int 20097 sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd, 20098 uchar_t *usr_bufp) 20099 { 20100 struct scsi_extended_sense sense_buf; 20101 union scsi_cdb cdb; 20102 struct uscsi_cmd ucmd_buf; 20103 int status; 20104 uchar_t data_len = sizeof (sd_prout_t); 20105 sd_prout_t *prp; 20106 20107 ASSERT(un != NULL); 20108 ASSERT(!mutex_owned(SD_MUTEX(un))); 20109 ASSERT(data_len == 24); /* required by scsi spec */ 20110 20111 SD_TRACE(SD_LOG_IO, un, 20112 "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un); 20113 20114 if (usr_bufp == NULL) { 20115 return (EINVAL); 20116 } 20117 20118 bzero(&cdb, sizeof (cdb)); 20119 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20120 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20121 prp = kmem_zalloc(data_len, KM_SLEEP); 20122 20123 cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT; 20124 cdb.cdb_opaque[1] = usr_cmd; 20125 FORMG1COUNT(&cdb, data_len); 20126 20127 ucmd_buf.uscsi_cdb = (char *)&cdb; 20128 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 20129 ucmd_buf.uscsi_bufaddr = (caddr_t)prp; 20130 ucmd_buf.uscsi_buflen = data_len; 20131 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20132 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20133 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT; 20134 ucmd_buf.uscsi_timeout = 60; 20135 20136 switch (usr_cmd) { 20137 case SD_SCSI3_REGISTER: { 20138 mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp; 20139 20140 bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 20141 bcopy(ptr->newkey.key, prp->service_key, 20142 MHIOC_RESV_KEY_SIZE); 20143 prp->aptpl = ptr->aptpl; 20144 break; 20145 } 20146 case SD_SCSI3_RESERVE: 20147 case SD_SCSI3_RELEASE: { 20148 mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp; 20149 20150 bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 20151 prp->scope_address = BE_32(ptr->scope_specific_addr); 20152 cdb.cdb_opaque[2] = ptr->type; 20153 break; 20154 } 20155 case SD_SCSI3_PREEMPTANDABORT: { 20156 mhioc_preemptandabort_t *ptr = 20157 (mhioc_preemptandabort_t *)usr_bufp; 20158 20159 bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 20160 bcopy(ptr->victim_key.key, prp->service_key, 20161 MHIOC_RESV_KEY_SIZE); 20162 prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr); 20163 cdb.cdb_opaque[2] = ptr->resvdesc.type; 20164 ucmd_buf.uscsi_flags |= USCSI_HEAD; 20165 break; 20166 } 20167 case SD_SCSI3_REGISTERANDIGNOREKEY: 20168 { 20169 mhioc_registerandignorekey_t *ptr; 20170 ptr = (mhioc_registerandignorekey_t *)usr_bufp; 20171 bcopy(ptr->newkey.key, 20172 prp->service_key, MHIOC_RESV_KEY_SIZE); 20173 prp->aptpl = ptr->aptpl; 20174 break; 20175 } 20176 default: 20177 ASSERT(FALSE); 20178 break; 20179 } 20180 20181 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL, 20182 UIO_SYSSPACE, SD_PATH_STANDARD); 20183 20184 switch (status) { 20185 case 0: 20186 break; /* Success! */ 20187 case EIO: 20188 switch (ucmd_buf.uscsi_status) { 20189 case STATUS_RESERVATION_CONFLICT: 20190 status = EACCES; 20191 break; 20192 case STATUS_CHECK: 20193 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20194 (scsi_sense_key((uint8_t *)&sense_buf) == 20195 KEY_ILLEGAL_REQUEST)) { 20196 status = ENOTSUP; 20197 } 20198 break; 20199 default: 20200 break; 20201 } 20202 break; 20203 default: 20204 break; 20205 } 20206 20207 kmem_free(prp, data_len); 20208 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n"); 20209 return (status); 20210 } 20211 20212 20213 /* 20214 * Function: sd_send_scsi_SYNCHRONIZE_CACHE 20215 * 20216 * Description: Issues a scsi SYNCHRONIZE CACHE command to the target 20217 * 20218 * Arguments: un - pointer to the target's soft state struct 20219 * 20220 * Return Code: 0 - success 20221 * errno-type error code 20222 * 20223 * Context: kernel thread context only. 20224 */ 20225 20226 static int 20227 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc) 20228 { 20229 struct sd_uscsi_info *uip; 20230 struct uscsi_cmd *uscmd; 20231 union scsi_cdb *cdb; 20232 struct buf *bp; 20233 int rval = 0; 20234 20235 SD_TRACE(SD_LOG_IO, un, 20236 "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un); 20237 20238 ASSERT(un != NULL); 20239 ASSERT(!mutex_owned(SD_MUTEX(un))); 20240 20241 cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP); 20242 cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE; 20243 20244 /* 20245 * First get some memory for the uscsi_cmd struct and cdb 20246 * and initialize for SYNCHRONIZE_CACHE cmd. 20247 */ 20248 uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP); 20249 uscmd->uscsi_cdblen = CDB_GROUP1; 20250 uscmd->uscsi_cdb = (caddr_t)cdb; 20251 uscmd->uscsi_bufaddr = NULL; 20252 uscmd->uscsi_buflen = 0; 20253 uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 20254 uscmd->uscsi_rqlen = SENSE_LENGTH; 20255 uscmd->uscsi_rqresid = SENSE_LENGTH; 20256 uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 20257 uscmd->uscsi_timeout = sd_io_time; 20258 20259 /* 20260 * Allocate an sd_uscsi_info struct and fill it with the info 20261 * needed by sd_initpkt_for_uscsi(). Then put the pointer into 20262 * b_private in the buf for sd_initpkt_for_uscsi(). Note that 20263 * since we allocate the buf here in this function, we do not 20264 * need to preserve the prior contents of b_private. 20265 * The sd_uscsi_info struct is also used by sd_uscsi_strategy() 20266 */ 20267 uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP); 20268 uip->ui_flags = SD_PATH_DIRECT; 20269 uip->ui_cmdp = uscmd; 20270 20271 bp = getrbuf(KM_SLEEP); 20272 bp->b_private = uip; 20273 20274 /* 20275 * Setup buffer to carry uscsi request. 20276 */ 20277 bp->b_flags = B_BUSY; 20278 bp->b_bcount = 0; 20279 bp->b_blkno = 0; 20280 20281 if (dkc != NULL) { 20282 bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone; 20283 uip->ui_dkc = *dkc; 20284 } 20285 20286 bp->b_edev = SD_GET_DEV(un); 20287 bp->b_dev = cmpdev(bp->b_edev); /* maybe unnecessary? */ 20288 20289 (void) sd_uscsi_strategy(bp); 20290 20291 /* 20292 * If synchronous request, wait for completion 20293 * If async just return and let b_iodone callback 20294 * cleanup. 20295 * NOTE: On return, u_ncmds_in_driver will be decremented, 20296 * but it was also incremented in sd_uscsi_strategy(), so 20297 * we should be ok. 20298 */ 20299 if (dkc == NULL) { 20300 (void) biowait(bp); 20301 rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp); 20302 } 20303 20304 return (rval); 20305 } 20306 20307 20308 static int 20309 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp) 20310 { 20311 struct sd_uscsi_info *uip; 20312 struct uscsi_cmd *uscmd; 20313 uint8_t *sense_buf; 20314 struct sd_lun *un; 20315 int status; 20316 20317 uip = (struct sd_uscsi_info *)(bp->b_private); 20318 ASSERT(uip != NULL); 20319 20320 uscmd = uip->ui_cmdp; 20321 ASSERT(uscmd != NULL); 20322 20323 sense_buf = (uint8_t *)uscmd->uscsi_rqbuf; 20324 ASSERT(sense_buf != NULL); 20325 20326 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 20327 ASSERT(un != NULL); 20328 20329 status = geterror(bp); 20330 switch (status) { 20331 case 0: 20332 break; /* Success! */ 20333 case EIO: 20334 switch (uscmd->uscsi_status) { 20335 case STATUS_RESERVATION_CONFLICT: 20336 /* Ignore reservation conflict */ 20337 status = 0; 20338 goto done; 20339 20340 case STATUS_CHECK: 20341 if ((uscmd->uscsi_rqstatus == STATUS_GOOD) && 20342 (scsi_sense_key(sense_buf) == 20343 KEY_ILLEGAL_REQUEST)) { 20344 /* Ignore Illegal Request error */ 20345 mutex_enter(SD_MUTEX(un)); 20346 un->un_f_sync_cache_supported = FALSE; 20347 mutex_exit(SD_MUTEX(un)); 20348 status = ENOTSUP; 20349 goto done; 20350 } 20351 break; 20352 default: 20353 break; 20354 } 20355 /* FALLTHRU */ 20356 default: 20357 /* 20358 * Don't log an error message if this device 20359 * has removable media. 20360 */ 20361 if (!un->un_f_has_removable_media) { 20362 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 20363 "SYNCHRONIZE CACHE command failed (%d)\n", status); 20364 } 20365 break; 20366 } 20367 20368 done: 20369 if (uip->ui_dkc.dkc_callback != NULL) { 20370 (*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status); 20371 } 20372 20373 ASSERT((bp->b_flags & B_REMAPPED) == 0); 20374 freerbuf(bp); 20375 kmem_free(uip, sizeof (struct sd_uscsi_info)); 20376 kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH); 20377 kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen); 20378 kmem_free(uscmd, sizeof (struct uscsi_cmd)); 20379 20380 return (status); 20381 } 20382 20383 20384 /* 20385 * Function: sd_send_scsi_GET_CONFIGURATION 20386 * 20387 * Description: Issues the get configuration command to the device. 20388 * Called from sd_check_for_writable_cd & sd_get_media_info 20389 * caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN 20390 * Arguments: un 20391 * ucmdbuf 20392 * rqbuf 20393 * rqbuflen 20394 * bufaddr 20395 * buflen 20396 * 20397 * Return Code: 0 - Success 20398 * errno return code from sd_send_scsi_cmd() 20399 * 20400 * Context: Can sleep. Does not return until command is completed. 20401 * 20402 */ 20403 20404 static int 20405 sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf, 20406 uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen) 20407 { 20408 char cdb[CDB_GROUP1]; 20409 int status; 20410 20411 ASSERT(un != NULL); 20412 ASSERT(!mutex_owned(SD_MUTEX(un))); 20413 ASSERT(bufaddr != NULL); 20414 ASSERT(ucmdbuf != NULL); 20415 ASSERT(rqbuf != NULL); 20416 20417 SD_TRACE(SD_LOG_IO, un, 20418 "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un); 20419 20420 bzero(cdb, sizeof (cdb)); 20421 bzero(ucmdbuf, sizeof (struct uscsi_cmd)); 20422 bzero(rqbuf, rqbuflen); 20423 bzero(bufaddr, buflen); 20424 20425 /* 20426 * Set up cdb field for the get configuration command. 20427 */ 20428 cdb[0] = SCMD_GET_CONFIGURATION; 20429 cdb[1] = 0x02; /* Requested Type */ 20430 cdb[8] = SD_PROFILE_HEADER_LEN; 20431 ucmdbuf->uscsi_cdb = cdb; 20432 ucmdbuf->uscsi_cdblen = CDB_GROUP1; 20433 ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr; 20434 ucmdbuf->uscsi_buflen = buflen; 20435 ucmdbuf->uscsi_timeout = sd_io_time; 20436 ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf; 20437 ucmdbuf->uscsi_rqlen = rqbuflen; 20438 ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ; 20439 20440 status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL, 20441 UIO_SYSSPACE, SD_PATH_STANDARD); 20442 20443 switch (status) { 20444 case 0: 20445 break; /* Success! */ 20446 case EIO: 20447 switch (ucmdbuf->uscsi_status) { 20448 case STATUS_RESERVATION_CONFLICT: 20449 status = EACCES; 20450 break; 20451 default: 20452 break; 20453 } 20454 break; 20455 default: 20456 break; 20457 } 20458 20459 if (status == 0) { 20460 SD_DUMP_MEMORY(un, SD_LOG_IO, 20461 "sd_send_scsi_GET_CONFIGURATION: data", 20462 (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX); 20463 } 20464 20465 SD_TRACE(SD_LOG_IO, un, 20466 "sd_send_scsi_GET_CONFIGURATION: exit\n"); 20467 20468 return (status); 20469 } 20470 20471 /* 20472 * Function: sd_send_scsi_feature_GET_CONFIGURATION 20473 * 20474 * Description: Issues the get configuration command to the device to 20475 * retrieve a specfic feature. Called from 20476 * sd_check_for_writable_cd & sd_set_mmc_caps. 20477 * Arguments: un 20478 * ucmdbuf 20479 * rqbuf 20480 * rqbuflen 20481 * bufaddr 20482 * buflen 20483 * feature 20484 * 20485 * Return Code: 0 - Success 20486 * errno return code from sd_send_scsi_cmd() 20487 * 20488 * Context: Can sleep. Does not return until command is completed. 20489 * 20490 */ 20491 static int 20492 sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un, 20493 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 20494 uchar_t *bufaddr, uint_t buflen, char feature) 20495 { 20496 char cdb[CDB_GROUP1]; 20497 int status; 20498 20499 ASSERT(un != NULL); 20500 ASSERT(!mutex_owned(SD_MUTEX(un))); 20501 ASSERT(bufaddr != NULL); 20502 ASSERT(ucmdbuf != NULL); 20503 ASSERT(rqbuf != NULL); 20504 20505 SD_TRACE(SD_LOG_IO, un, 20506 "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un); 20507 20508 bzero(cdb, sizeof (cdb)); 20509 bzero(ucmdbuf, sizeof (struct uscsi_cmd)); 20510 bzero(rqbuf, rqbuflen); 20511 bzero(bufaddr, buflen); 20512 20513 /* 20514 * Set up cdb field for the get configuration command. 20515 */ 20516 cdb[0] = SCMD_GET_CONFIGURATION; 20517 cdb[1] = 0x02; /* Requested Type */ 20518 cdb[3] = feature; 20519 cdb[8] = buflen; 20520 ucmdbuf->uscsi_cdb = cdb; 20521 ucmdbuf->uscsi_cdblen = CDB_GROUP1; 20522 ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr; 20523 ucmdbuf->uscsi_buflen = buflen; 20524 ucmdbuf->uscsi_timeout = sd_io_time; 20525 ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf; 20526 ucmdbuf->uscsi_rqlen = rqbuflen; 20527 ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ; 20528 20529 status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL, 20530 UIO_SYSSPACE, SD_PATH_STANDARD); 20531 20532 switch (status) { 20533 case 0: 20534 break; /* Success! */ 20535 case EIO: 20536 switch (ucmdbuf->uscsi_status) { 20537 case STATUS_RESERVATION_CONFLICT: 20538 status = EACCES; 20539 break; 20540 default: 20541 break; 20542 } 20543 break; 20544 default: 20545 break; 20546 } 20547 20548 if (status == 0) { 20549 SD_DUMP_MEMORY(un, SD_LOG_IO, 20550 "sd_send_scsi_feature_GET_CONFIGURATION: data", 20551 (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX); 20552 } 20553 20554 SD_TRACE(SD_LOG_IO, un, 20555 "sd_send_scsi_feature_GET_CONFIGURATION: exit\n"); 20556 20557 return (status); 20558 } 20559 20560 20561 /* 20562 * Function: sd_send_scsi_MODE_SENSE 20563 * 20564 * Description: Utility function for issuing a scsi MODE SENSE command. 20565 * Note: This routine uses a consistent implementation for Group0, 20566 * Group1, and Group2 commands across all platforms. ATAPI devices 20567 * use Group 1 Read/Write commands and Group 2 Mode Sense/Select 20568 * 20569 * Arguments: un - pointer to the softstate struct for the target. 20570 * cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or 20571 * CDB_GROUP[1|2] (10 byte). 20572 * bufaddr - buffer for page data retrieved from the target. 20573 * buflen - size of page to be retrieved. 20574 * page_code - page code of data to be retrieved from the target. 20575 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 20576 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 20577 * to use the USCSI "direct" chain and bypass the normal 20578 * command waitq. 20579 * 20580 * Return Code: 0 - Success 20581 * errno return code from sd_send_scsi_cmd() 20582 * 20583 * Context: Can sleep. Does not return until command is completed. 20584 */ 20585 20586 static int 20587 sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr, 20588 size_t buflen, uchar_t page_code, int path_flag) 20589 { 20590 struct scsi_extended_sense sense_buf; 20591 union scsi_cdb cdb; 20592 struct uscsi_cmd ucmd_buf; 20593 int status; 20594 int headlen; 20595 20596 ASSERT(un != NULL); 20597 ASSERT(!mutex_owned(SD_MUTEX(un))); 20598 ASSERT(bufaddr != NULL); 20599 ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) || 20600 (cdbsize == CDB_GROUP2)); 20601 20602 SD_TRACE(SD_LOG_IO, un, 20603 "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un); 20604 20605 bzero(&cdb, sizeof (cdb)); 20606 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20607 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20608 bzero(bufaddr, buflen); 20609 20610 if (cdbsize == CDB_GROUP0) { 20611 cdb.scc_cmd = SCMD_MODE_SENSE; 20612 cdb.cdb_opaque[2] = page_code; 20613 FORMG0COUNT(&cdb, buflen); 20614 headlen = MODE_HEADER_LENGTH; 20615 } else { 20616 cdb.scc_cmd = SCMD_MODE_SENSE_G1; 20617 cdb.cdb_opaque[2] = page_code; 20618 FORMG1COUNT(&cdb, buflen); 20619 headlen = MODE_HEADER_LENGTH_GRP2; 20620 } 20621 20622 ASSERT(headlen <= buflen); 20623 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 20624 20625 ucmd_buf.uscsi_cdb = (char *)&cdb; 20626 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 20627 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 20628 ucmd_buf.uscsi_buflen = buflen; 20629 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20630 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20631 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 20632 ucmd_buf.uscsi_timeout = 60; 20633 20634 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL, 20635 UIO_SYSSPACE, path_flag); 20636 20637 switch (status) { 20638 case 0: 20639 /* 20640 * sr_check_wp() uses 0x3f page code and check the header of 20641 * mode page to determine if target device is write-protected. 20642 * But some USB devices return 0 bytes for 0x3f page code. For 20643 * this case, make sure that mode page header is returned at 20644 * least. 20645 */ 20646 if (buflen - ucmd_buf.uscsi_resid < headlen) 20647 status = EIO; 20648 break; /* Success! */ 20649 case EIO: 20650 switch (ucmd_buf.uscsi_status) { 20651 case STATUS_RESERVATION_CONFLICT: 20652 status = EACCES; 20653 break; 20654 default: 20655 break; 20656 } 20657 break; 20658 default: 20659 break; 20660 } 20661 20662 if (status == 0) { 20663 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data", 20664 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 20665 } 20666 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n"); 20667 20668 return (status); 20669 } 20670 20671 20672 /* 20673 * Function: sd_send_scsi_MODE_SELECT 20674 * 20675 * Description: Utility function for issuing a scsi MODE SELECT command. 20676 * Note: This routine uses a consistent implementation for Group0, 20677 * Group1, and Group2 commands across all platforms. ATAPI devices 20678 * use Group 1 Read/Write commands and Group 2 Mode Sense/Select 20679 * 20680 * Arguments: un - pointer to the softstate struct for the target. 20681 * cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or 20682 * CDB_GROUP[1|2] (10 byte). 20683 * bufaddr - buffer for page data retrieved from the target. 20684 * buflen - size of page to be retrieved. 20685 * save_page - boolean to determin if SP bit should be set. 20686 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 20687 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 20688 * to use the USCSI "direct" chain and bypass the normal 20689 * command waitq. 20690 * 20691 * Return Code: 0 - Success 20692 * errno return code from sd_send_scsi_cmd() 20693 * 20694 * Context: Can sleep. Does not return until command is completed. 20695 */ 20696 20697 static int 20698 sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr, 20699 size_t buflen, uchar_t save_page, int path_flag) 20700 { 20701 struct scsi_extended_sense sense_buf; 20702 union scsi_cdb cdb; 20703 struct uscsi_cmd ucmd_buf; 20704 int status; 20705 20706 ASSERT(un != NULL); 20707 ASSERT(!mutex_owned(SD_MUTEX(un))); 20708 ASSERT(bufaddr != NULL); 20709 ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) || 20710 (cdbsize == CDB_GROUP2)); 20711 20712 SD_TRACE(SD_LOG_IO, un, 20713 "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un); 20714 20715 bzero(&cdb, sizeof (cdb)); 20716 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20717 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20718 20719 /* Set the PF bit for many third party drives */ 20720 cdb.cdb_opaque[1] = 0x10; 20721 20722 /* Set the savepage(SP) bit if given */ 20723 if (save_page == SD_SAVE_PAGE) { 20724 cdb.cdb_opaque[1] |= 0x01; 20725 } 20726 20727 if (cdbsize == CDB_GROUP0) { 20728 cdb.scc_cmd = SCMD_MODE_SELECT; 20729 FORMG0COUNT(&cdb, buflen); 20730 } else { 20731 cdb.scc_cmd = SCMD_MODE_SELECT_G1; 20732 FORMG1COUNT(&cdb, buflen); 20733 } 20734 20735 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 20736 20737 ucmd_buf.uscsi_cdb = (char *)&cdb; 20738 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 20739 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 20740 ucmd_buf.uscsi_buflen = buflen; 20741 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20742 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20743 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT; 20744 ucmd_buf.uscsi_timeout = 60; 20745 20746 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL, 20747 UIO_SYSSPACE, path_flag); 20748 20749 switch (status) { 20750 case 0: 20751 break; /* Success! */ 20752 case EIO: 20753 switch (ucmd_buf.uscsi_status) { 20754 case STATUS_RESERVATION_CONFLICT: 20755 status = EACCES; 20756 break; 20757 default: 20758 break; 20759 } 20760 break; 20761 default: 20762 break; 20763 } 20764 20765 if (status == 0) { 20766 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data", 20767 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 20768 } 20769 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n"); 20770 20771 return (status); 20772 } 20773 20774 20775 /* 20776 * Function: sd_send_scsi_RDWR 20777 * 20778 * Description: Issue a scsi READ or WRITE command with the given parameters. 20779 * 20780 * Arguments: un: Pointer to the sd_lun struct for the target. 20781 * cmd: SCMD_READ or SCMD_WRITE 20782 * bufaddr: Address of caller's buffer to receive the RDWR data 20783 * buflen: Length of caller's buffer receive the RDWR data. 20784 * start_block: Block number for the start of the RDWR operation. 20785 * (Assumes target-native block size.) 20786 * residp: Pointer to variable to receive the redisual of the 20787 * RDWR operation (may be NULL of no residual requested). 20788 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 20789 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 20790 * to use the USCSI "direct" chain and bypass the normal 20791 * command waitq. 20792 * 20793 * Return Code: 0 - Success 20794 * errno return code from sd_send_scsi_cmd() 20795 * 20796 * Context: Can sleep. Does not return until command is completed. 20797 */ 20798 20799 static int 20800 sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr, 20801 size_t buflen, daddr_t start_block, int path_flag) 20802 { 20803 struct scsi_extended_sense sense_buf; 20804 union scsi_cdb cdb; 20805 struct uscsi_cmd ucmd_buf; 20806 uint32_t block_count; 20807 int status; 20808 int cdbsize; 20809 uchar_t flag; 20810 20811 ASSERT(un != NULL); 20812 ASSERT(!mutex_owned(SD_MUTEX(un))); 20813 ASSERT(bufaddr != NULL); 20814 ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE)); 20815 20816 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un); 20817 20818 if (un->un_f_tgt_blocksize_is_valid != TRUE) { 20819 return (EINVAL); 20820 } 20821 20822 mutex_enter(SD_MUTEX(un)); 20823 block_count = SD_BYTES2TGTBLOCKS(un, buflen); 20824 mutex_exit(SD_MUTEX(un)); 20825 20826 flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE; 20827 20828 SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: " 20829 "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n", 20830 bufaddr, buflen, start_block, block_count); 20831 20832 bzero(&cdb, sizeof (cdb)); 20833 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20834 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20835 20836 /* Compute CDB size to use */ 20837 if (start_block > 0xffffffff) 20838 cdbsize = CDB_GROUP4; 20839 else if ((start_block & 0xFFE00000) || 20840 (un->un_f_cfg_is_atapi == TRUE)) 20841 cdbsize = CDB_GROUP1; 20842 else 20843 cdbsize = CDB_GROUP0; 20844 20845 switch (cdbsize) { 20846 case CDB_GROUP0: /* 6-byte CDBs */ 20847 cdb.scc_cmd = cmd; 20848 FORMG0ADDR(&cdb, start_block); 20849 FORMG0COUNT(&cdb, block_count); 20850 break; 20851 case CDB_GROUP1: /* 10-byte CDBs */ 20852 cdb.scc_cmd = cmd | SCMD_GROUP1; 20853 FORMG1ADDR(&cdb, start_block); 20854 FORMG1COUNT(&cdb, block_count); 20855 break; 20856 case CDB_GROUP4: /* 16-byte CDBs */ 20857 cdb.scc_cmd = cmd | SCMD_GROUP4; 20858 FORMG4LONGADDR(&cdb, (uint64_t)start_block); 20859 FORMG4COUNT(&cdb, block_count); 20860 break; 20861 case CDB_GROUP5: /* 12-byte CDBs (currently unsupported) */ 20862 default: 20863 /* All others reserved */ 20864 return (EINVAL); 20865 } 20866 20867 /* Set LUN bit(s) in CDB if this is a SCSI-1 device */ 20868 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 20869 20870 ucmd_buf.uscsi_cdb = (char *)&cdb; 20871 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 20872 ucmd_buf.uscsi_bufaddr = bufaddr; 20873 ucmd_buf.uscsi_buflen = buflen; 20874 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20875 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20876 ucmd_buf.uscsi_flags = flag | USCSI_RQENABLE | USCSI_SILENT; 20877 ucmd_buf.uscsi_timeout = 60; 20878 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL, 20879 UIO_SYSSPACE, path_flag); 20880 switch (status) { 20881 case 0: 20882 break; /* Success! */ 20883 case EIO: 20884 switch (ucmd_buf.uscsi_status) { 20885 case STATUS_RESERVATION_CONFLICT: 20886 status = EACCES; 20887 break; 20888 default: 20889 break; 20890 } 20891 break; 20892 default: 20893 break; 20894 } 20895 20896 if (status == 0) { 20897 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data", 20898 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 20899 } 20900 20901 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n"); 20902 20903 return (status); 20904 } 20905 20906 20907 /* 20908 * Function: sd_send_scsi_LOG_SENSE 20909 * 20910 * Description: Issue a scsi LOG_SENSE command with the given parameters. 20911 * 20912 * Arguments: un: Pointer to the sd_lun struct for the target. 20913 * 20914 * Return Code: 0 - Success 20915 * errno return code from sd_send_scsi_cmd() 20916 * 20917 * Context: Can sleep. Does not return until command is completed. 20918 */ 20919 20920 static int 20921 sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen, 20922 uchar_t page_code, uchar_t page_control, uint16_t param_ptr, 20923 int path_flag) 20924 20925 { 20926 struct scsi_extended_sense sense_buf; 20927 union scsi_cdb cdb; 20928 struct uscsi_cmd ucmd_buf; 20929 int status; 20930 20931 ASSERT(un != NULL); 20932 ASSERT(!mutex_owned(SD_MUTEX(un))); 20933 20934 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un); 20935 20936 bzero(&cdb, sizeof (cdb)); 20937 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20938 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20939 20940 cdb.scc_cmd = SCMD_LOG_SENSE_G1; 20941 cdb.cdb_opaque[2] = (page_control << 6) | page_code; 20942 cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8); 20943 cdb.cdb_opaque[6] = (uchar_t)(param_ptr & 0x00FF); 20944 FORMG1COUNT(&cdb, buflen); 20945 20946 ucmd_buf.uscsi_cdb = (char *)&cdb; 20947 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 20948 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 20949 ucmd_buf.uscsi_buflen = buflen; 20950 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20951 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20952 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 20953 ucmd_buf.uscsi_timeout = 60; 20954 20955 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL, 20956 UIO_SYSSPACE, path_flag); 20957 20958 switch (status) { 20959 case 0: 20960 break; 20961 case EIO: 20962 switch (ucmd_buf.uscsi_status) { 20963 case STATUS_RESERVATION_CONFLICT: 20964 status = EACCES; 20965 break; 20966 case STATUS_CHECK: 20967 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20968 (scsi_sense_key((uint8_t *)&sense_buf) == 20969 KEY_ILLEGAL_REQUEST) && 20970 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) { 20971 /* 20972 * ASC 0x24: INVALID FIELD IN CDB 20973 */ 20974 switch (page_code) { 20975 case START_STOP_CYCLE_PAGE: 20976 /* 20977 * The start stop cycle counter is 20978 * implemented as page 0x31 in earlier 20979 * generation disks. In new generation 20980 * disks the start stop cycle counter is 20981 * implemented as page 0xE. To properly 20982 * handle this case if an attempt for 20983 * log page 0xE is made and fails we 20984 * will try again using page 0x31. 20985 * 20986 * Network storage BU committed to 20987 * maintain the page 0x31 for this 20988 * purpose and will not have any other 20989 * page implemented with page code 0x31 20990 * until all disks transition to the 20991 * standard page. 20992 */ 20993 mutex_enter(SD_MUTEX(un)); 20994 un->un_start_stop_cycle_page = 20995 START_STOP_CYCLE_VU_PAGE; 20996 cdb.cdb_opaque[2] = 20997 (char)(page_control << 6) | 20998 un->un_start_stop_cycle_page; 20999 mutex_exit(SD_MUTEX(un)); 21000 status = sd_send_scsi_cmd( 21001 SD_GET_DEV(un), &ucmd_buf, FKIOCTL, 21002 UIO_SYSSPACE, path_flag); 21003 21004 break; 21005 case TEMPERATURE_PAGE: 21006 status = ENOTTY; 21007 break; 21008 default: 21009 break; 21010 } 21011 } 21012 break; 21013 default: 21014 break; 21015 } 21016 break; 21017 default: 21018 break; 21019 } 21020 21021 if (status == 0) { 21022 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data", 21023 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 21024 } 21025 21026 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n"); 21027 21028 return (status); 21029 } 21030 21031 21032 /* 21033 * Function: sdioctl 21034 * 21035 * Description: Driver's ioctl(9e) entry point function. 21036 * 21037 * Arguments: dev - device number 21038 * cmd - ioctl operation to be performed 21039 * arg - user argument, contains data to be set or reference 21040 * parameter for get 21041 * flag - bit flag, indicating open settings, 32/64 bit type 21042 * cred_p - user credential pointer 21043 * rval_p - calling process return value (OPT) 21044 * 21045 * Return Code: EINVAL 21046 * ENOTTY 21047 * ENXIO 21048 * EIO 21049 * EFAULT 21050 * ENOTSUP 21051 * EPERM 21052 * 21053 * Context: Called from the device switch at normal priority. 21054 */ 21055 21056 static int 21057 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p) 21058 { 21059 struct sd_lun *un = NULL; 21060 int geom_validated = FALSE; 21061 int err = 0; 21062 int i = 0; 21063 cred_t *cr; 21064 21065 /* 21066 * All device accesses go thru sdstrategy where we check on suspend 21067 * status 21068 */ 21069 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 21070 return (ENXIO); 21071 } 21072 21073 ASSERT(!mutex_owned(SD_MUTEX(un))); 21074 21075 /* 21076 * Moved this wait from sd_uscsi_strategy to here for 21077 * reasons of deadlock prevention. Internal driver commands, 21078 * specifically those to change a devices power level, result 21079 * in a call to sd_uscsi_strategy. 21080 */ 21081 mutex_enter(SD_MUTEX(un)); 21082 while ((un->un_state == SD_STATE_SUSPENDED) || 21083 (un->un_state == SD_STATE_PM_CHANGING)) { 21084 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 21085 } 21086 /* 21087 * Twiddling the counter here protects commands from now 21088 * through to the top of sd_uscsi_strategy. Without the 21089 * counter inc. a power down, for example, could get in 21090 * after the above check for state is made and before 21091 * execution gets to the top of sd_uscsi_strategy. 21092 * That would cause problems. 21093 */ 21094 un->un_ncmds_in_driver++; 21095 21096 if ((un->un_f_geometry_is_valid == FALSE) && 21097 (flag & (FNDELAY | FNONBLOCK))) { 21098 switch (cmd) { 21099 case CDROMPAUSE: 21100 case CDROMRESUME: 21101 case CDROMPLAYMSF: 21102 case CDROMPLAYTRKIND: 21103 case CDROMREADTOCHDR: 21104 case CDROMREADTOCENTRY: 21105 case CDROMSTOP: 21106 case CDROMSTART: 21107 case CDROMVOLCTRL: 21108 case CDROMSUBCHNL: 21109 case CDROMREADMODE2: 21110 case CDROMREADMODE1: 21111 case CDROMREADOFFSET: 21112 case CDROMSBLKMODE: 21113 case CDROMGBLKMODE: 21114 case CDROMGDRVSPEED: 21115 case CDROMSDRVSPEED: 21116 case CDROMCDDA: 21117 case CDROMCDXA: 21118 case CDROMSUBCODE: 21119 if (!ISCD(un)) { 21120 un->un_ncmds_in_driver--; 21121 ASSERT(un->un_ncmds_in_driver >= 0); 21122 mutex_exit(SD_MUTEX(un)); 21123 return (ENOTTY); 21124 } 21125 break; 21126 case FDEJECT: 21127 case DKIOCEJECT: 21128 case CDROMEJECT: 21129 if (!un->un_f_eject_media_supported) { 21130 un->un_ncmds_in_driver--; 21131 ASSERT(un->un_ncmds_in_driver >= 0); 21132 mutex_exit(SD_MUTEX(un)); 21133 return (ENOTTY); 21134 } 21135 break; 21136 case DKIOCSVTOC: 21137 case DKIOCSETEFI: 21138 case DKIOCSMBOOT: 21139 case DKIOCFLUSHWRITECACHE: 21140 mutex_exit(SD_MUTEX(un)); 21141 err = sd_send_scsi_TEST_UNIT_READY(un, 0); 21142 if (err != 0) { 21143 mutex_enter(SD_MUTEX(un)); 21144 un->un_ncmds_in_driver--; 21145 ASSERT(un->un_ncmds_in_driver >= 0); 21146 mutex_exit(SD_MUTEX(un)); 21147 return (EIO); 21148 } 21149 mutex_enter(SD_MUTEX(un)); 21150 /* FALLTHROUGH */ 21151 case DKIOCREMOVABLE: 21152 case DKIOCHOTPLUGGABLE: 21153 case DKIOCINFO: 21154 case DKIOCGMEDIAINFO: 21155 case MHIOCENFAILFAST: 21156 case MHIOCSTATUS: 21157 case MHIOCTKOWN: 21158 case MHIOCRELEASE: 21159 case MHIOCGRP_INKEYS: 21160 case MHIOCGRP_INRESV: 21161 case MHIOCGRP_REGISTER: 21162 case MHIOCGRP_RESERVE: 21163 case MHIOCGRP_PREEMPTANDABORT: 21164 case MHIOCGRP_REGISTERANDIGNOREKEY: 21165 case CDROMCLOSETRAY: 21166 case USCSICMD: 21167 goto skip_ready_valid; 21168 default: 21169 break; 21170 } 21171 21172 mutex_exit(SD_MUTEX(un)); 21173 err = sd_ready_and_valid(un); 21174 mutex_enter(SD_MUTEX(un)); 21175 if (err == SD_READY_NOT_VALID) { 21176 switch (cmd) { 21177 case DKIOCGAPART: 21178 case DKIOCGGEOM: 21179 case DKIOCSGEOM: 21180 case DKIOCGVTOC: 21181 case DKIOCSVTOC: 21182 case DKIOCSAPART: 21183 case DKIOCG_PHYGEOM: 21184 case DKIOCG_VIRTGEOM: 21185 err = ENOTSUP; 21186 un->un_ncmds_in_driver--; 21187 ASSERT(un->un_ncmds_in_driver >= 0); 21188 mutex_exit(SD_MUTEX(un)); 21189 return (err); 21190 } 21191 } 21192 if (err != SD_READY_VALID) { 21193 switch (cmd) { 21194 case DKIOCSTATE: 21195 case CDROMGDRVSPEED: 21196 case CDROMSDRVSPEED: 21197 case FDEJECT: /* for eject command */ 21198 case DKIOCEJECT: 21199 case CDROMEJECT: 21200 case DKIOCGETEFI: 21201 case DKIOCSGEOM: 21202 case DKIOCREMOVABLE: 21203 case DKIOCHOTPLUGGABLE: 21204 case DKIOCSAPART: 21205 case DKIOCSETEFI: 21206 break; 21207 default: 21208 if (un->un_f_has_removable_media) { 21209 err = ENXIO; 21210 } else { 21211 /* Do not map SD_RESERVED_BY_OTHERS to EIO */ 21212 if (err == SD_RESERVED_BY_OTHERS) { 21213 err = EACCES; 21214 } else { 21215 err = EIO; 21216 } 21217 } 21218 un->un_ncmds_in_driver--; 21219 ASSERT(un->un_ncmds_in_driver >= 0); 21220 mutex_exit(SD_MUTEX(un)); 21221 return (err); 21222 } 21223 } 21224 geom_validated = TRUE; 21225 } 21226 if ((un->un_f_geometry_is_valid == TRUE) && 21227 (un->un_solaris_size > 0)) { 21228 /* 21229 * the "geometry_is_valid" flag could be true if we 21230 * have an fdisk table but no Solaris partition 21231 */ 21232 if (un->un_vtoc.v_sanity != VTOC_SANE) { 21233 /* it is EFI, so return ENOTSUP for these */ 21234 switch (cmd) { 21235 case DKIOCGAPART: 21236 case DKIOCGGEOM: 21237 case DKIOCGVTOC: 21238 case DKIOCSVTOC: 21239 case DKIOCSAPART: 21240 err = ENOTSUP; 21241 un->un_ncmds_in_driver--; 21242 ASSERT(un->un_ncmds_in_driver >= 0); 21243 mutex_exit(SD_MUTEX(un)); 21244 return (err); 21245 } 21246 } 21247 } 21248 21249 skip_ready_valid: 21250 mutex_exit(SD_MUTEX(un)); 21251 21252 switch (cmd) { 21253 case DKIOCINFO: 21254 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n"); 21255 err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag); 21256 break; 21257 21258 case DKIOCGMEDIAINFO: 21259 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n"); 21260 err = sd_get_media_info(dev, (caddr_t)arg, flag); 21261 break; 21262 21263 case DKIOCGGEOM: 21264 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGGEOM\n"); 21265 err = sd_dkio_get_geometry(dev, (caddr_t)arg, flag, 21266 geom_validated); 21267 break; 21268 21269 case DKIOCSGEOM: 21270 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSGEOM\n"); 21271 err = sd_dkio_set_geometry(dev, (caddr_t)arg, flag); 21272 break; 21273 21274 case DKIOCGAPART: 21275 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGAPART\n"); 21276 err = sd_dkio_get_partition(dev, (caddr_t)arg, flag, 21277 geom_validated); 21278 break; 21279 21280 case DKIOCSAPART: 21281 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSAPART\n"); 21282 err = sd_dkio_set_partition(dev, (caddr_t)arg, flag); 21283 break; 21284 21285 case DKIOCGVTOC: 21286 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGVTOC\n"); 21287 err = sd_dkio_get_vtoc(dev, (caddr_t)arg, flag, 21288 geom_validated); 21289 break; 21290 21291 case DKIOCGETEFI: 21292 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGETEFI\n"); 21293 err = sd_dkio_get_efi(dev, (caddr_t)arg, flag); 21294 break; 21295 21296 case DKIOCPARTITION: 21297 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTITION\n"); 21298 err = sd_dkio_partition(dev, (caddr_t)arg, flag); 21299 break; 21300 21301 case DKIOCSVTOC: 21302 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSVTOC\n"); 21303 err = sd_dkio_set_vtoc(dev, (caddr_t)arg, flag); 21304 break; 21305 21306 case DKIOCSETEFI: 21307 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSETEFI\n"); 21308 err = sd_dkio_set_efi(dev, (caddr_t)arg, flag); 21309 break; 21310 21311 case DKIOCGMBOOT: 21312 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMBOOT\n"); 21313 err = sd_dkio_get_mboot(dev, (caddr_t)arg, flag); 21314 break; 21315 21316 case DKIOCSMBOOT: 21317 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSMBOOT\n"); 21318 err = sd_dkio_set_mboot(dev, (caddr_t)arg, flag); 21319 break; 21320 21321 case DKIOCLOCK: 21322 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n"); 21323 err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT, 21324 SD_PATH_STANDARD); 21325 break; 21326 21327 case DKIOCUNLOCK: 21328 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n"); 21329 err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW, 21330 SD_PATH_STANDARD); 21331 break; 21332 21333 case DKIOCSTATE: { 21334 enum dkio_state state; 21335 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n"); 21336 21337 if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) { 21338 err = EFAULT; 21339 } else { 21340 err = sd_check_media(dev, state); 21341 if (err == 0) { 21342 if (ddi_copyout(&un->un_mediastate, (void *)arg, 21343 sizeof (int), flag) != 0) 21344 err = EFAULT; 21345 } 21346 } 21347 break; 21348 } 21349 21350 case DKIOCREMOVABLE: 21351 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n"); 21352 i = un->un_f_has_removable_media ? 1 : 0; 21353 if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) { 21354 err = EFAULT; 21355 } else { 21356 err = 0; 21357 } 21358 break; 21359 21360 case DKIOCHOTPLUGGABLE: 21361 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n"); 21362 i = un->un_f_is_hotpluggable ? 1 : 0; 21363 if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) { 21364 err = EFAULT; 21365 } else { 21366 err = 0; 21367 } 21368 break; 21369 21370 case DKIOCGTEMPERATURE: 21371 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n"); 21372 err = sd_dkio_get_temp(dev, (caddr_t)arg, flag); 21373 break; 21374 21375 case MHIOCENFAILFAST: 21376 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n"); 21377 if ((err = drv_priv(cred_p)) == 0) { 21378 err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag); 21379 } 21380 break; 21381 21382 case MHIOCTKOWN: 21383 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n"); 21384 if ((err = drv_priv(cred_p)) == 0) { 21385 err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag); 21386 } 21387 break; 21388 21389 case MHIOCRELEASE: 21390 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n"); 21391 if ((err = drv_priv(cred_p)) == 0) { 21392 err = sd_mhdioc_release(dev); 21393 } 21394 break; 21395 21396 case MHIOCSTATUS: 21397 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n"); 21398 if ((err = drv_priv(cred_p)) == 0) { 21399 switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) { 21400 case 0: 21401 err = 0; 21402 break; 21403 case EACCES: 21404 *rval_p = 1; 21405 err = 0; 21406 break; 21407 default: 21408 err = EIO; 21409 break; 21410 } 21411 } 21412 break; 21413 21414 case MHIOCQRESERVE: 21415 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n"); 21416 if ((err = drv_priv(cred_p)) == 0) { 21417 err = sd_reserve_release(dev, SD_RESERVE); 21418 } 21419 break; 21420 21421 case MHIOCREREGISTERDEVID: 21422 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n"); 21423 if (drv_priv(cred_p) == EPERM) { 21424 err = EPERM; 21425 } else if (!un->un_f_devid_supported) { 21426 err = ENOTTY; 21427 } else { 21428 err = sd_mhdioc_register_devid(dev); 21429 } 21430 break; 21431 21432 case MHIOCGRP_INKEYS: 21433 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n"); 21434 if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) { 21435 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 21436 err = ENOTSUP; 21437 } else { 21438 err = sd_mhdioc_inkeys(dev, (caddr_t)arg, 21439 flag); 21440 } 21441 } 21442 break; 21443 21444 case MHIOCGRP_INRESV: 21445 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n"); 21446 if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) { 21447 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 21448 err = ENOTSUP; 21449 } else { 21450 err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag); 21451 } 21452 } 21453 break; 21454 21455 case MHIOCGRP_REGISTER: 21456 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n"); 21457 if ((err = drv_priv(cred_p)) != EPERM) { 21458 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 21459 err = ENOTSUP; 21460 } else if (arg != NULL) { 21461 mhioc_register_t reg; 21462 if (ddi_copyin((void *)arg, ®, 21463 sizeof (mhioc_register_t), flag) != 0) { 21464 err = EFAULT; 21465 } else { 21466 err = 21467 sd_send_scsi_PERSISTENT_RESERVE_OUT( 21468 un, SD_SCSI3_REGISTER, 21469 (uchar_t *)®); 21470 } 21471 } 21472 } 21473 break; 21474 21475 case MHIOCGRP_RESERVE: 21476 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n"); 21477 if ((err = drv_priv(cred_p)) != EPERM) { 21478 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 21479 err = ENOTSUP; 21480 } else if (arg != NULL) { 21481 mhioc_resv_desc_t resv_desc; 21482 if (ddi_copyin((void *)arg, &resv_desc, 21483 sizeof (mhioc_resv_desc_t), flag) != 0) { 21484 err = EFAULT; 21485 } else { 21486 err = 21487 sd_send_scsi_PERSISTENT_RESERVE_OUT( 21488 un, SD_SCSI3_RESERVE, 21489 (uchar_t *)&resv_desc); 21490 } 21491 } 21492 } 21493 break; 21494 21495 case MHIOCGRP_PREEMPTANDABORT: 21496 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n"); 21497 if ((err = drv_priv(cred_p)) != EPERM) { 21498 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 21499 err = ENOTSUP; 21500 } else if (arg != NULL) { 21501 mhioc_preemptandabort_t preempt_abort; 21502 if (ddi_copyin((void *)arg, &preempt_abort, 21503 sizeof (mhioc_preemptandabort_t), 21504 flag) != 0) { 21505 err = EFAULT; 21506 } else { 21507 err = 21508 sd_send_scsi_PERSISTENT_RESERVE_OUT( 21509 un, SD_SCSI3_PREEMPTANDABORT, 21510 (uchar_t *)&preempt_abort); 21511 } 21512 } 21513 } 21514 break; 21515 21516 case MHIOCGRP_REGISTERANDIGNOREKEY: 21517 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n"); 21518 if ((err = drv_priv(cred_p)) != EPERM) { 21519 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 21520 err = ENOTSUP; 21521 } else if (arg != NULL) { 21522 mhioc_registerandignorekey_t r_and_i; 21523 if (ddi_copyin((void *)arg, (void *)&r_and_i, 21524 sizeof (mhioc_registerandignorekey_t), 21525 flag) != 0) { 21526 err = EFAULT; 21527 } else { 21528 err = 21529 sd_send_scsi_PERSISTENT_RESERVE_OUT( 21530 un, SD_SCSI3_REGISTERANDIGNOREKEY, 21531 (uchar_t *)&r_and_i); 21532 } 21533 } 21534 } 21535 break; 21536 21537 case USCSICMD: 21538 SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n"); 21539 cr = ddi_get_cred(); 21540 if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) { 21541 err = EPERM; 21542 } else { 21543 enum uio_seg uioseg; 21544 uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE : 21545 UIO_USERSPACE; 21546 if (un->un_f_format_in_progress == TRUE) { 21547 err = EAGAIN; 21548 break; 21549 } 21550 err = sd_send_scsi_cmd(dev, (struct uscsi_cmd *)arg, 21551 flag, uioseg, SD_PATH_STANDARD); 21552 } 21553 break; 21554 21555 case CDROMPAUSE: 21556 case CDROMRESUME: 21557 SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n"); 21558 if (!ISCD(un)) { 21559 err = ENOTTY; 21560 } else { 21561 err = sr_pause_resume(dev, cmd); 21562 } 21563 break; 21564 21565 case CDROMPLAYMSF: 21566 SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n"); 21567 if (!ISCD(un)) { 21568 err = ENOTTY; 21569 } else { 21570 err = sr_play_msf(dev, (caddr_t)arg, flag); 21571 } 21572 break; 21573 21574 case CDROMPLAYTRKIND: 21575 SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n"); 21576 #if defined(__i386) || defined(__amd64) 21577 /* 21578 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead 21579 */ 21580 if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) { 21581 #else 21582 if (!ISCD(un)) { 21583 #endif 21584 err = ENOTTY; 21585 } else { 21586 err = sr_play_trkind(dev, (caddr_t)arg, flag); 21587 } 21588 break; 21589 21590 case CDROMREADTOCHDR: 21591 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n"); 21592 if (!ISCD(un)) { 21593 err = ENOTTY; 21594 } else { 21595 err = sr_read_tochdr(dev, (caddr_t)arg, flag); 21596 } 21597 break; 21598 21599 case CDROMREADTOCENTRY: 21600 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n"); 21601 if (!ISCD(un)) { 21602 err = ENOTTY; 21603 } else { 21604 err = sr_read_tocentry(dev, (caddr_t)arg, flag); 21605 } 21606 break; 21607 21608 case CDROMSTOP: 21609 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n"); 21610 if (!ISCD(un)) { 21611 err = ENOTTY; 21612 } else { 21613 err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP, 21614 SD_PATH_STANDARD); 21615 } 21616 break; 21617 21618 case CDROMSTART: 21619 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n"); 21620 if (!ISCD(un)) { 21621 err = ENOTTY; 21622 } else { 21623 err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, 21624 SD_PATH_STANDARD); 21625 } 21626 break; 21627 21628 case CDROMCLOSETRAY: 21629 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n"); 21630 if (!ISCD(un)) { 21631 err = ENOTTY; 21632 } else { 21633 err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE, 21634 SD_PATH_STANDARD); 21635 } 21636 break; 21637 21638 case FDEJECT: /* for eject command */ 21639 case DKIOCEJECT: 21640 case CDROMEJECT: 21641 SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n"); 21642 if (!un->un_f_eject_media_supported) { 21643 err = ENOTTY; 21644 } else { 21645 err = sr_eject(dev); 21646 } 21647 break; 21648 21649 case CDROMVOLCTRL: 21650 SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n"); 21651 if (!ISCD(un)) { 21652 err = ENOTTY; 21653 } else { 21654 err = sr_volume_ctrl(dev, (caddr_t)arg, flag); 21655 } 21656 break; 21657 21658 case CDROMSUBCHNL: 21659 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n"); 21660 if (!ISCD(un)) { 21661 err = ENOTTY; 21662 } else { 21663 err = sr_read_subchannel(dev, (caddr_t)arg, flag); 21664 } 21665 break; 21666 21667 case CDROMREADMODE2: 21668 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n"); 21669 if (!ISCD(un)) { 21670 err = ENOTTY; 21671 } else if (un->un_f_cfg_is_atapi == TRUE) { 21672 /* 21673 * If the drive supports READ CD, use that instead of 21674 * switching the LBA size via a MODE SELECT 21675 * Block Descriptor 21676 */ 21677 err = sr_read_cd_mode2(dev, (caddr_t)arg, flag); 21678 } else { 21679 err = sr_read_mode2(dev, (caddr_t)arg, flag); 21680 } 21681 break; 21682 21683 case CDROMREADMODE1: 21684 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n"); 21685 if (!ISCD(un)) { 21686 err = ENOTTY; 21687 } else { 21688 err = sr_read_mode1(dev, (caddr_t)arg, flag); 21689 } 21690 break; 21691 21692 case CDROMREADOFFSET: 21693 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n"); 21694 if (!ISCD(un)) { 21695 err = ENOTTY; 21696 } else { 21697 err = sr_read_sony_session_offset(dev, (caddr_t)arg, 21698 flag); 21699 } 21700 break; 21701 21702 case CDROMSBLKMODE: 21703 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n"); 21704 /* 21705 * There is no means of changing block size in case of atapi 21706 * drives, thus return ENOTTY if drive type is atapi 21707 */ 21708 if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) { 21709 err = ENOTTY; 21710 } else if (un->un_f_mmc_cap == TRUE) { 21711 21712 /* 21713 * MMC Devices do not support changing the 21714 * logical block size 21715 * 21716 * Note: EINVAL is being returned instead of ENOTTY to 21717 * maintain consistancy with the original mmc 21718 * driver update. 21719 */ 21720 err = EINVAL; 21721 } else { 21722 mutex_enter(SD_MUTEX(un)); 21723 if ((!(un->un_exclopen & (1<<SDPART(dev)))) || 21724 (un->un_ncmds_in_transport > 0)) { 21725 mutex_exit(SD_MUTEX(un)); 21726 err = EINVAL; 21727 } else { 21728 mutex_exit(SD_MUTEX(un)); 21729 err = sr_change_blkmode(dev, cmd, arg, flag); 21730 } 21731 } 21732 break; 21733 21734 case CDROMGBLKMODE: 21735 SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n"); 21736 if (!ISCD(un)) { 21737 err = ENOTTY; 21738 } else if ((un->un_f_cfg_is_atapi != FALSE) && 21739 (un->un_f_blockcount_is_valid != FALSE)) { 21740 /* 21741 * Drive is an ATAPI drive so return target block 21742 * size for ATAPI drives since we cannot change the 21743 * blocksize on ATAPI drives. Used primarily to detect 21744 * if an ATAPI cdrom is present. 21745 */ 21746 if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg, 21747 sizeof (int), flag) != 0) { 21748 err = EFAULT; 21749 } else { 21750 err = 0; 21751 } 21752 21753 } else { 21754 /* 21755 * Drive supports changing block sizes via a Mode 21756 * Select. 21757 */ 21758 err = sr_change_blkmode(dev, cmd, arg, flag); 21759 } 21760 break; 21761 21762 case CDROMGDRVSPEED: 21763 case CDROMSDRVSPEED: 21764 SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n"); 21765 if (!ISCD(un)) { 21766 err = ENOTTY; 21767 } else if (un->un_f_mmc_cap == TRUE) { 21768 /* 21769 * Note: In the future the driver implementation 21770 * for getting and 21771 * setting cd speed should entail: 21772 * 1) If non-mmc try the Toshiba mode page 21773 * (sr_change_speed) 21774 * 2) If mmc but no support for Real Time Streaming try 21775 * the SET CD SPEED (0xBB) command 21776 * (sr_atapi_change_speed) 21777 * 3) If mmc and support for Real Time Streaming 21778 * try the GET PERFORMANCE and SET STREAMING 21779 * commands (not yet implemented, 4380808) 21780 */ 21781 /* 21782 * As per recent MMC spec, CD-ROM speed is variable 21783 * and changes with LBA. Since there is no such 21784 * things as drive speed now, fail this ioctl. 21785 * 21786 * Note: EINVAL is returned for consistancy of original 21787 * implementation which included support for getting 21788 * the drive speed of mmc devices but not setting 21789 * the drive speed. Thus EINVAL would be returned 21790 * if a set request was made for an mmc device. 21791 * We no longer support get or set speed for 21792 * mmc but need to remain consistant with regard 21793 * to the error code returned. 21794 */ 21795 err = EINVAL; 21796 } else if (un->un_f_cfg_is_atapi == TRUE) { 21797 err = sr_atapi_change_speed(dev, cmd, arg, flag); 21798 } else { 21799 err = sr_change_speed(dev, cmd, arg, flag); 21800 } 21801 break; 21802 21803 case CDROMCDDA: 21804 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n"); 21805 if (!ISCD(un)) { 21806 err = ENOTTY; 21807 } else { 21808 err = sr_read_cdda(dev, (void *)arg, flag); 21809 } 21810 break; 21811 21812 case CDROMCDXA: 21813 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n"); 21814 if (!ISCD(un)) { 21815 err = ENOTTY; 21816 } else { 21817 err = sr_read_cdxa(dev, (caddr_t)arg, flag); 21818 } 21819 break; 21820 21821 case CDROMSUBCODE: 21822 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n"); 21823 if (!ISCD(un)) { 21824 err = ENOTTY; 21825 } else { 21826 err = sr_read_all_subcodes(dev, (caddr_t)arg, flag); 21827 } 21828 break; 21829 21830 case DKIOCPARTINFO: { 21831 /* 21832 * Return parameters describing the selected disk slice. 21833 * Note: this ioctl is for the intel platform only 21834 */ 21835 #if defined(__i386) || defined(__amd64) 21836 int part; 21837 21838 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n"); 21839 part = SDPART(dev); 21840 21841 /* don't check un_solaris_size for pN */ 21842 if (part < P0_RAW_DISK && un->un_solaris_size == 0) { 21843 err = EIO; 21844 } else { 21845 struct part_info p; 21846 21847 p.p_start = (daddr_t)un->un_offset[part]; 21848 p.p_length = (int)un->un_map[part].dkl_nblk; 21849 #ifdef _MULTI_DATAMODEL 21850 switch (ddi_model_convert_from(flag & FMODELS)) { 21851 case DDI_MODEL_ILP32: 21852 { 21853 struct part_info32 p32; 21854 21855 p32.p_start = (daddr32_t)p.p_start; 21856 p32.p_length = p.p_length; 21857 if (ddi_copyout(&p32, (void *)arg, 21858 sizeof (p32), flag)) 21859 err = EFAULT; 21860 break; 21861 } 21862 21863 case DDI_MODEL_NONE: 21864 { 21865 if (ddi_copyout(&p, (void *)arg, sizeof (p), 21866 flag)) 21867 err = EFAULT; 21868 break; 21869 } 21870 } 21871 #else /* ! _MULTI_DATAMODEL */ 21872 if (ddi_copyout(&p, (void *)arg, sizeof (p), flag)) 21873 err = EFAULT; 21874 #endif /* _MULTI_DATAMODEL */ 21875 } 21876 #else 21877 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n"); 21878 err = ENOTTY; 21879 #endif 21880 break; 21881 } 21882 21883 case DKIOCG_PHYGEOM: { 21884 /* Return the driver's notion of the media physical geometry */ 21885 #if defined(__i386) || defined(__amd64) 21886 uint64_t capacity; 21887 struct dk_geom disk_geom; 21888 struct dk_geom *dkgp = &disk_geom; 21889 21890 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n"); 21891 mutex_enter(SD_MUTEX(un)); 21892 21893 if (un->un_g.dkg_nhead != 0 && 21894 un->un_g.dkg_nsect != 0) { 21895 /* 21896 * We succeeded in getting a geometry, but 21897 * right now it is being reported as just the 21898 * Solaris fdisk partition, just like for 21899 * DKIOCGGEOM. We need to change that to be 21900 * correct for the entire disk now. 21901 */ 21902 bcopy(&un->un_g, dkgp, sizeof (*dkgp)); 21903 dkgp->dkg_acyl = 0; 21904 dkgp->dkg_ncyl = un->un_blockcount / 21905 (dkgp->dkg_nhead * dkgp->dkg_nsect); 21906 } else { 21907 bzero(dkgp, sizeof (struct dk_geom)); 21908 /* 21909 * This disk does not have a Solaris VTOC 21910 * so we must present a physical geometry 21911 * that will remain consistent regardless 21912 * of how the disk is used. This will ensure 21913 * that the geometry does not change regardless 21914 * of the fdisk partition type (ie. EFI, FAT32, 21915 * Solaris, etc). 21916 */ 21917 if (ISCD(un)) { 21918 dkgp->dkg_nhead = un->un_pgeom.g_nhead; 21919 dkgp->dkg_nsect = un->un_pgeom.g_nsect; 21920 dkgp->dkg_ncyl = un->un_pgeom.g_ncyl; 21921 dkgp->dkg_acyl = un->un_pgeom.g_acyl; 21922 } else { 21923 /* 21924 * Invalid un_blockcount can generate invalid 21925 * dk_geom and may result in division by zero 21926 * system failure. Should make sure blockcount 21927 * is valid before using it here. 21928 */ 21929 if (un->un_f_blockcount_is_valid == FALSE) { 21930 mutex_exit(SD_MUTEX(un)); 21931 err = EIO; 21932 21933 break; 21934 } 21935 21936 /* 21937 * Refer to comments related to off-by-1 at the 21938 * header of this file 21939 */ 21940 if (!un->un_f_capacity_adjusted && 21941 !un->un_f_has_removable_media && 21942 !un->un_f_is_hotpluggable && 21943 (un->un_tgt_blocksize == 21944 un->un_sys_blocksize)) 21945 capacity = un->un_blockcount - 1; 21946 else 21947 capacity = un->un_blockcount; 21948 21949 sd_convert_geometry(capacity, dkgp); 21950 dkgp->dkg_acyl = 0; 21951 dkgp->dkg_ncyl = capacity / 21952 (dkgp->dkg_nhead * dkgp->dkg_nsect); 21953 } 21954 } 21955 dkgp->dkg_pcyl = dkgp->dkg_ncyl + dkgp->dkg_acyl; 21956 21957 if (ddi_copyout(dkgp, (void *)arg, 21958 sizeof (struct dk_geom), flag)) { 21959 mutex_exit(SD_MUTEX(un)); 21960 err = EFAULT; 21961 } else { 21962 mutex_exit(SD_MUTEX(un)); 21963 err = 0; 21964 } 21965 #else 21966 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n"); 21967 err = ENOTTY; 21968 #endif 21969 break; 21970 } 21971 21972 case DKIOCG_VIRTGEOM: { 21973 /* Return the driver's notion of the media's logical geometry */ 21974 #if defined(__i386) || defined(__amd64) 21975 struct dk_geom disk_geom; 21976 struct dk_geom *dkgp = &disk_geom; 21977 21978 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n"); 21979 mutex_enter(SD_MUTEX(un)); 21980 /* 21981 * If there is no HBA geometry available, or 21982 * if the HBA returned us something that doesn't 21983 * really fit into an Int 13/function 8 geometry 21984 * result, just fail the ioctl. See PSARC 1998/313. 21985 */ 21986 if (un->un_lgeom.g_nhead == 0 || 21987 un->un_lgeom.g_nsect == 0 || 21988 un->un_lgeom.g_ncyl > 1024) { 21989 mutex_exit(SD_MUTEX(un)); 21990 err = EINVAL; 21991 } else { 21992 dkgp->dkg_ncyl = un->un_lgeom.g_ncyl; 21993 dkgp->dkg_acyl = un->un_lgeom.g_acyl; 21994 dkgp->dkg_pcyl = dkgp->dkg_ncyl + dkgp->dkg_acyl; 21995 dkgp->dkg_nhead = un->un_lgeom.g_nhead; 21996 dkgp->dkg_nsect = un->un_lgeom.g_nsect; 21997 21998 if (ddi_copyout(dkgp, (void *)arg, 21999 sizeof (struct dk_geom), flag)) { 22000 mutex_exit(SD_MUTEX(un)); 22001 err = EFAULT; 22002 } else { 22003 mutex_exit(SD_MUTEX(un)); 22004 err = 0; 22005 } 22006 } 22007 #else 22008 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n"); 22009 err = ENOTTY; 22010 #endif 22011 break; 22012 } 22013 #ifdef SDDEBUG 22014 /* RESET/ABORTS testing ioctls */ 22015 case DKIOCRESET: { 22016 int reset_level; 22017 22018 if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) { 22019 err = EFAULT; 22020 } else { 22021 SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: " 22022 "reset_level = 0x%lx\n", reset_level); 22023 if (scsi_reset(SD_ADDRESS(un), reset_level)) { 22024 err = 0; 22025 } else { 22026 err = EIO; 22027 } 22028 } 22029 break; 22030 } 22031 22032 case DKIOCABORT: 22033 SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n"); 22034 if (scsi_abort(SD_ADDRESS(un), NULL)) { 22035 err = 0; 22036 } else { 22037 err = EIO; 22038 } 22039 break; 22040 #endif 22041 22042 #ifdef SD_FAULT_INJECTION 22043 /* SDIOC FaultInjection testing ioctls */ 22044 case SDIOCSTART: 22045 case SDIOCSTOP: 22046 case SDIOCINSERTPKT: 22047 case SDIOCINSERTXB: 22048 case SDIOCINSERTUN: 22049 case SDIOCINSERTARQ: 22050 case SDIOCPUSH: 22051 case SDIOCRETRIEVE: 22052 case SDIOCRUN: 22053 SD_INFO(SD_LOG_SDTEST, un, "sdioctl:" 22054 "SDIOC detected cmd:0x%X:\n", cmd); 22055 /* call error generator */ 22056 sd_faultinjection_ioctl(cmd, arg, un); 22057 err = 0; 22058 break; 22059 22060 #endif /* SD_FAULT_INJECTION */ 22061 22062 case DKIOCFLUSHWRITECACHE: 22063 { 22064 struct dk_callback *dkc = (struct dk_callback *)arg; 22065 22066 mutex_enter(SD_MUTEX(un)); 22067 if (!un->un_f_sync_cache_supported || 22068 !un->un_f_write_cache_enabled) { 22069 err = un->un_f_sync_cache_supported ? 22070 0 : ENOTSUP; 22071 mutex_exit(SD_MUTEX(un)); 22072 if ((flag & FKIOCTL) && dkc != NULL && 22073 dkc->dkc_callback != NULL) { 22074 (*dkc->dkc_callback)(dkc->dkc_cookie, 22075 err); 22076 /* 22077 * Did callback and reported error. 22078 * Since we did a callback, ioctl 22079 * should return 0. 22080 */ 22081 err = 0; 22082 } 22083 break; 22084 } 22085 mutex_exit(SD_MUTEX(un)); 22086 22087 if ((flag & FKIOCTL) && dkc != NULL && 22088 dkc->dkc_callback != NULL) { 22089 /* async SYNC CACHE request */ 22090 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc); 22091 } else { 22092 /* synchronous SYNC CACHE request */ 22093 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL); 22094 } 22095 } 22096 break; 22097 22098 case DKIOCGETWCE: { 22099 22100 int wce; 22101 22102 if ((err = sd_get_write_cache_enabled(un, &wce)) != 0) { 22103 break; 22104 } 22105 22106 if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) { 22107 err = EFAULT; 22108 } 22109 break; 22110 } 22111 22112 case DKIOCSETWCE: { 22113 22114 int wce, sync_supported; 22115 22116 if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) { 22117 err = EFAULT; 22118 break; 22119 } 22120 22121 /* 22122 * Synchronize multiple threads trying to enable 22123 * or disable the cache via the un_f_wcc_cv 22124 * condition variable. 22125 */ 22126 mutex_enter(SD_MUTEX(un)); 22127 22128 /* 22129 * Don't allow the cache to be enabled if the 22130 * config file has it disabled. 22131 */ 22132 if (un->un_f_opt_disable_cache && wce) { 22133 mutex_exit(SD_MUTEX(un)); 22134 err = EINVAL; 22135 break; 22136 } 22137 22138 /* 22139 * Wait for write cache change in progress 22140 * bit to be clear before proceeding. 22141 */ 22142 while (un->un_f_wcc_inprog) 22143 cv_wait(&un->un_wcc_cv, SD_MUTEX(un)); 22144 22145 un->un_f_wcc_inprog = 1; 22146 22147 if (un->un_f_write_cache_enabled && wce == 0) { 22148 /* 22149 * Disable the write cache. Don't clear 22150 * un_f_write_cache_enabled until after 22151 * the mode select and flush are complete. 22152 */ 22153 sync_supported = un->un_f_sync_cache_supported; 22154 mutex_exit(SD_MUTEX(un)); 22155 if ((err = sd_cache_control(un, SD_CACHE_NOCHANGE, 22156 SD_CACHE_DISABLE)) == 0 && sync_supported) { 22157 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL); 22158 } 22159 22160 mutex_enter(SD_MUTEX(un)); 22161 if (err == 0) { 22162 un->un_f_write_cache_enabled = 0; 22163 } 22164 22165 } else if (!un->un_f_write_cache_enabled && wce != 0) { 22166 /* 22167 * Set un_f_write_cache_enabled first, so there is 22168 * no window where the cache is enabled, but the 22169 * bit says it isn't. 22170 */ 22171 un->un_f_write_cache_enabled = 1; 22172 mutex_exit(SD_MUTEX(un)); 22173 22174 err = sd_cache_control(un, SD_CACHE_NOCHANGE, 22175 SD_CACHE_ENABLE); 22176 22177 mutex_enter(SD_MUTEX(un)); 22178 22179 if (err) { 22180 un->un_f_write_cache_enabled = 0; 22181 } 22182 } 22183 22184 un->un_f_wcc_inprog = 0; 22185 cv_broadcast(&un->un_wcc_cv); 22186 mutex_exit(SD_MUTEX(un)); 22187 break; 22188 } 22189 22190 default: 22191 err = ENOTTY; 22192 break; 22193 } 22194 mutex_enter(SD_MUTEX(un)); 22195 un->un_ncmds_in_driver--; 22196 ASSERT(un->un_ncmds_in_driver >= 0); 22197 mutex_exit(SD_MUTEX(un)); 22198 22199 SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err); 22200 return (err); 22201 } 22202 22203 22204 /* 22205 * Function: sd_dkio_ctrl_info 22206 * 22207 * Description: This routine is the driver entry point for handling controller 22208 * information ioctl requests (DKIOCINFO). 22209 * 22210 * Arguments: dev - the device number 22211 * arg - pointer to user provided dk_cinfo structure 22212 * specifying the controller type and attributes. 22213 * flag - this argument is a pass through to ddi_copyxxx() 22214 * directly from the mode argument of ioctl(). 22215 * 22216 * Return Code: 0 22217 * EFAULT 22218 * ENXIO 22219 */ 22220 22221 static int 22222 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag) 22223 { 22224 struct sd_lun *un = NULL; 22225 struct dk_cinfo *info; 22226 dev_info_t *pdip; 22227 int lun, tgt; 22228 22229 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22230 return (ENXIO); 22231 } 22232 22233 info = (struct dk_cinfo *) 22234 kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP); 22235 22236 switch (un->un_ctype) { 22237 case CTYPE_CDROM: 22238 info->dki_ctype = DKC_CDROM; 22239 break; 22240 default: 22241 info->dki_ctype = DKC_SCSI_CCS; 22242 break; 22243 } 22244 pdip = ddi_get_parent(SD_DEVINFO(un)); 22245 info->dki_cnum = ddi_get_instance(pdip); 22246 if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) { 22247 (void) strcpy(info->dki_cname, ddi_get_name(pdip)); 22248 } else { 22249 (void) strncpy(info->dki_cname, ddi_node_name(pdip), 22250 DK_DEVLEN - 1); 22251 } 22252 22253 lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 22254 DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0); 22255 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 22256 DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0); 22257 22258 /* Unit Information */ 22259 info->dki_unit = ddi_get_instance(SD_DEVINFO(un)); 22260 info->dki_slave = ((tgt << 3) | lun); 22261 (void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)), 22262 DK_DEVLEN - 1); 22263 info->dki_flags = DKI_FMTVOL; 22264 info->dki_partition = SDPART(dev); 22265 22266 /* Max Transfer size of this device in blocks */ 22267 info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize; 22268 info->dki_addr = 0; 22269 info->dki_space = 0; 22270 info->dki_prio = 0; 22271 info->dki_vec = 0; 22272 22273 if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) { 22274 kmem_free(info, sizeof (struct dk_cinfo)); 22275 return (EFAULT); 22276 } else { 22277 kmem_free(info, sizeof (struct dk_cinfo)); 22278 return (0); 22279 } 22280 } 22281 22282 22283 /* 22284 * Function: sd_get_media_info 22285 * 22286 * Description: This routine is the driver entry point for handling ioctl 22287 * requests for the media type or command set profile used by the 22288 * drive to operate on the media (DKIOCGMEDIAINFO). 22289 * 22290 * Arguments: dev - the device number 22291 * arg - pointer to user provided dk_minfo structure 22292 * specifying the media type, logical block size and 22293 * drive capacity. 22294 * flag - this argument is a pass through to ddi_copyxxx() 22295 * directly from the mode argument of ioctl(). 22296 * 22297 * Return Code: 0 22298 * EACCESS 22299 * EFAULT 22300 * ENXIO 22301 * EIO 22302 */ 22303 22304 static int 22305 sd_get_media_info(dev_t dev, caddr_t arg, int flag) 22306 { 22307 struct sd_lun *un = NULL; 22308 struct uscsi_cmd com; 22309 struct scsi_inquiry *sinq; 22310 struct dk_minfo media_info; 22311 u_longlong_t media_capacity; 22312 uint64_t capacity; 22313 uint_t lbasize; 22314 uchar_t *out_data; 22315 uchar_t *rqbuf; 22316 int rval = 0; 22317 int rtn; 22318 22319 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 22320 (un->un_state == SD_STATE_OFFLINE)) { 22321 return (ENXIO); 22322 } 22323 22324 SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n"); 22325 22326 out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP); 22327 rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 22328 22329 /* Issue a TUR to determine if the drive is ready with media present */ 22330 rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA); 22331 if (rval == ENXIO) { 22332 goto done; 22333 } 22334 22335 /* Now get configuration data */ 22336 if (ISCD(un)) { 22337 media_info.dki_media_type = DK_CDROM; 22338 22339 /* Allow SCMD_GET_CONFIGURATION to MMC devices only */ 22340 if (un->un_f_mmc_cap == TRUE) { 22341 rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, 22342 SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN); 22343 22344 if (rtn) { 22345 /* 22346 * Failed for other than an illegal request 22347 * or command not supported 22348 */ 22349 if ((com.uscsi_status == STATUS_CHECK) && 22350 (com.uscsi_rqstatus == STATUS_GOOD)) { 22351 if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) || 22352 (rqbuf[12] != 0x20)) { 22353 rval = EIO; 22354 goto done; 22355 } 22356 } 22357 } else { 22358 /* 22359 * The GET CONFIGURATION command succeeded 22360 * so set the media type according to the 22361 * returned data 22362 */ 22363 media_info.dki_media_type = out_data[6]; 22364 media_info.dki_media_type <<= 8; 22365 media_info.dki_media_type |= out_data[7]; 22366 } 22367 } 22368 } else { 22369 /* 22370 * The profile list is not available, so we attempt to identify 22371 * the media type based on the inquiry data 22372 */ 22373 sinq = un->un_sd->sd_inq; 22374 if (sinq->inq_qual == 0) { 22375 /* This is a direct access device */ 22376 media_info.dki_media_type = DK_FIXED_DISK; 22377 22378 if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) || 22379 (bcmp(sinq->inq_vid, "iomega", 6) == 0)) { 22380 if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) { 22381 media_info.dki_media_type = DK_ZIP; 22382 } else if ( 22383 (bcmp(sinq->inq_pid, "jaz", 3) == 0)) { 22384 media_info.dki_media_type = DK_JAZ; 22385 } 22386 } 22387 } else { 22388 /* Not a CD or direct access so return unknown media */ 22389 media_info.dki_media_type = DK_UNKNOWN; 22390 } 22391 } 22392 22393 /* Now read the capacity so we can provide the lbasize and capacity */ 22394 switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize, 22395 SD_PATH_DIRECT)) { 22396 case 0: 22397 break; 22398 case EACCES: 22399 rval = EACCES; 22400 goto done; 22401 default: 22402 rval = EIO; 22403 goto done; 22404 } 22405 22406 media_info.dki_lbsize = lbasize; 22407 media_capacity = capacity; 22408 22409 /* 22410 * sd_send_scsi_READ_CAPACITY() reports capacity in 22411 * un->un_sys_blocksize chunks. So we need to convert it into 22412 * cap.lbasize chunks. 22413 */ 22414 media_capacity *= un->un_sys_blocksize; 22415 media_capacity /= lbasize; 22416 media_info.dki_capacity = media_capacity; 22417 22418 if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) { 22419 rval = EFAULT; 22420 /* Put goto. Anybody might add some code below in future */ 22421 goto done; 22422 } 22423 done: 22424 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 22425 kmem_free(rqbuf, SENSE_LENGTH); 22426 return (rval); 22427 } 22428 22429 22430 /* 22431 * Function: sd_dkio_get_geometry 22432 * 22433 * Description: This routine is the driver entry point for handling user 22434 * requests to get the device geometry (DKIOCGGEOM). 22435 * 22436 * Arguments: dev - the device number 22437 * arg - pointer to user provided dk_geom structure specifying 22438 * the controller's notion of the current geometry. 22439 * flag - this argument is a pass through to ddi_copyxxx() 22440 * directly from the mode argument of ioctl(). 22441 * geom_validated - flag indicating if the device geometry has been 22442 * previously validated in the sdioctl routine. 22443 * 22444 * Return Code: 0 22445 * EFAULT 22446 * ENXIO 22447 * EIO 22448 */ 22449 22450 static int 22451 sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag, int geom_validated) 22452 { 22453 struct sd_lun *un = NULL; 22454 struct dk_geom *tmp_geom = NULL; 22455 int rval = 0; 22456 22457 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22458 return (ENXIO); 22459 } 22460 22461 if (geom_validated == FALSE) { 22462 /* 22463 * sd_validate_geometry does not spin a disk up 22464 * if it was spun down. We need to make sure it 22465 * is ready. 22466 */ 22467 if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) { 22468 return (rval); 22469 } 22470 mutex_enter(SD_MUTEX(un)); 22471 rval = sd_validate_geometry(un, SD_PATH_DIRECT); 22472 mutex_exit(SD_MUTEX(un)); 22473 } 22474 if (rval) 22475 return (rval); 22476 22477 /* 22478 * It is possible that un_solaris_size is 0(uninitialized) 22479 * after sd_unit_attach. Reservation conflict may cause the 22480 * above situation. Thus, the zero check of un_solaris_size 22481 * should occur after the sd_validate_geometry() call. 22482 */ 22483 #if defined(__i386) || defined(__amd64) 22484 if (un->un_solaris_size == 0) { 22485 return (EIO); 22486 } 22487 #endif 22488 22489 /* 22490 * Make a local copy of the soft state geometry to avoid some potential 22491 * race conditions associated with holding the mutex and updating the 22492 * write_reinstruct value 22493 */ 22494 tmp_geom = kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP); 22495 mutex_enter(SD_MUTEX(un)); 22496 bcopy(&un->un_g, tmp_geom, sizeof (struct dk_geom)); 22497 mutex_exit(SD_MUTEX(un)); 22498 22499 if (tmp_geom->dkg_write_reinstruct == 0) { 22500 tmp_geom->dkg_write_reinstruct = 22501 (int)((int)(tmp_geom->dkg_nsect * tmp_geom->dkg_rpm * 22502 sd_rot_delay) / (int)60000); 22503 } 22504 22505 rval = ddi_copyout(tmp_geom, (void *)arg, sizeof (struct dk_geom), 22506 flag); 22507 if (rval != 0) { 22508 rval = EFAULT; 22509 } 22510 22511 kmem_free(tmp_geom, sizeof (struct dk_geom)); 22512 return (rval); 22513 22514 } 22515 22516 22517 /* 22518 * Function: sd_dkio_set_geometry 22519 * 22520 * Description: This routine is the driver entry point for handling user 22521 * requests to set the device geometry (DKIOCSGEOM). The actual 22522 * device geometry is not updated, just the driver "notion" of it. 22523 * 22524 * Arguments: dev - the device number 22525 * arg - pointer to user provided dk_geom structure used to set 22526 * the controller's notion of the current geometry. 22527 * flag - this argument is a pass through to ddi_copyxxx() 22528 * directly from the mode argument of ioctl(). 22529 * 22530 * Return Code: 0 22531 * EFAULT 22532 * ENXIO 22533 * EIO 22534 */ 22535 22536 static int 22537 sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag) 22538 { 22539 struct sd_lun *un = NULL; 22540 struct dk_geom *tmp_geom; 22541 struct dk_map *lp; 22542 int rval = 0; 22543 int i; 22544 22545 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22546 return (ENXIO); 22547 } 22548 22549 /* 22550 * Make sure there is no reservation conflict on the lun. 22551 */ 22552 if (sd_send_scsi_TEST_UNIT_READY(un, 0) == EACCES) { 22553 return (EACCES); 22554 } 22555 22556 #if defined(__i386) || defined(__amd64) 22557 if (un->un_solaris_size == 0) { 22558 return (EIO); 22559 } 22560 #endif 22561 22562 /* 22563 * We need to copy the user specified geometry into local 22564 * storage and then update the softstate. We don't want to hold 22565 * the mutex and copyin directly from the user to the soft state 22566 */ 22567 tmp_geom = (struct dk_geom *) 22568 kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP); 22569 rval = ddi_copyin(arg, tmp_geom, sizeof (struct dk_geom), flag); 22570 if (rval != 0) { 22571 kmem_free(tmp_geom, sizeof (struct dk_geom)); 22572 return (EFAULT); 22573 } 22574 22575 mutex_enter(SD_MUTEX(un)); 22576 bcopy(tmp_geom, &un->un_g, sizeof (struct dk_geom)); 22577 for (i = 0; i < NDKMAP; i++) { 22578 lp = &un->un_map[i]; 22579 un->un_offset[i] = 22580 un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno; 22581 #if defined(__i386) || defined(__amd64) 22582 un->un_offset[i] += un->un_solaris_offset; 22583 #endif 22584 } 22585 un->un_f_geometry_is_valid = FALSE; 22586 mutex_exit(SD_MUTEX(un)); 22587 kmem_free(tmp_geom, sizeof (struct dk_geom)); 22588 22589 return (rval); 22590 } 22591 22592 22593 /* 22594 * Function: sd_dkio_get_partition 22595 * 22596 * Description: This routine is the driver entry point for handling user 22597 * requests to get the partition table (DKIOCGAPART). 22598 * 22599 * Arguments: dev - the device number 22600 * arg - pointer to user provided dk_allmap structure specifying 22601 * the controller's notion of the current partition table. 22602 * flag - this argument is a pass through to ddi_copyxxx() 22603 * directly from the mode argument of ioctl(). 22604 * geom_validated - flag indicating if the device geometry has been 22605 * previously validated in the sdioctl routine. 22606 * 22607 * Return Code: 0 22608 * EFAULT 22609 * ENXIO 22610 * EIO 22611 */ 22612 22613 static int 22614 sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag, int geom_validated) 22615 { 22616 struct sd_lun *un = NULL; 22617 int rval = 0; 22618 int size; 22619 22620 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22621 return (ENXIO); 22622 } 22623 22624 /* 22625 * Make sure the geometry is valid before getting the partition 22626 * information. 22627 */ 22628 mutex_enter(SD_MUTEX(un)); 22629 if (geom_validated == FALSE) { 22630 /* 22631 * sd_validate_geometry does not spin a disk up 22632 * if it was spun down. We need to make sure it 22633 * is ready before validating the geometry. 22634 */ 22635 mutex_exit(SD_MUTEX(un)); 22636 if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) { 22637 return (rval); 22638 } 22639 mutex_enter(SD_MUTEX(un)); 22640 22641 if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) { 22642 mutex_exit(SD_MUTEX(un)); 22643 return (rval); 22644 } 22645 } 22646 mutex_exit(SD_MUTEX(un)); 22647 22648 /* 22649 * It is possible that un_solaris_size is 0(uninitialized) 22650 * after sd_unit_attach. Reservation conflict may cause the 22651 * above situation. Thus, the zero check of un_solaris_size 22652 * should occur after the sd_validate_geometry() call. 22653 */ 22654 #if defined(__i386) || defined(__amd64) 22655 if (un->un_solaris_size == 0) { 22656 return (EIO); 22657 } 22658 #endif 22659 22660 #ifdef _MULTI_DATAMODEL 22661 switch (ddi_model_convert_from(flag & FMODELS)) { 22662 case DDI_MODEL_ILP32: { 22663 struct dk_map32 dk_map32[NDKMAP]; 22664 int i; 22665 22666 for (i = 0; i < NDKMAP; i++) { 22667 dk_map32[i].dkl_cylno = un->un_map[i].dkl_cylno; 22668 dk_map32[i].dkl_nblk = un->un_map[i].dkl_nblk; 22669 } 22670 size = NDKMAP * sizeof (struct dk_map32); 22671 rval = ddi_copyout(dk_map32, (void *)arg, size, flag); 22672 if (rval != 0) { 22673 rval = EFAULT; 22674 } 22675 break; 22676 } 22677 case DDI_MODEL_NONE: 22678 size = NDKMAP * sizeof (struct dk_map); 22679 rval = ddi_copyout(un->un_map, (void *)arg, size, flag); 22680 if (rval != 0) { 22681 rval = EFAULT; 22682 } 22683 break; 22684 } 22685 #else /* ! _MULTI_DATAMODEL */ 22686 size = NDKMAP * sizeof (struct dk_map); 22687 rval = ddi_copyout(un->un_map, (void *)arg, size, flag); 22688 if (rval != 0) { 22689 rval = EFAULT; 22690 } 22691 #endif /* _MULTI_DATAMODEL */ 22692 return (rval); 22693 } 22694 22695 22696 /* 22697 * Function: sd_dkio_set_partition 22698 * 22699 * Description: This routine is the driver entry point for handling user 22700 * requests to set the partition table (DKIOCSAPART). The actual 22701 * device partition is not updated. 22702 * 22703 * Arguments: dev - the device number 22704 * arg - pointer to user provided dk_allmap structure used to set 22705 * the controller's notion of the partition table. 22706 * flag - this argument is a pass through to ddi_copyxxx() 22707 * directly from the mode argument of ioctl(). 22708 * 22709 * Return Code: 0 22710 * EINVAL 22711 * EFAULT 22712 * ENXIO 22713 * EIO 22714 */ 22715 22716 static int 22717 sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag) 22718 { 22719 struct sd_lun *un = NULL; 22720 struct dk_map dk_map[NDKMAP]; 22721 struct dk_map *lp; 22722 int rval = 0; 22723 int size; 22724 int i; 22725 #if defined(_SUNOS_VTOC_16) 22726 struct dkl_partition *vp; 22727 #endif 22728 22729 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22730 return (ENXIO); 22731 } 22732 22733 /* 22734 * Set the map for all logical partitions. We lock 22735 * the priority just to make sure an interrupt doesn't 22736 * come in while the map is half updated. 22737 */ 22738 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_solaris_size)) 22739 mutex_enter(SD_MUTEX(un)); 22740 if (un->un_blockcount > DK_MAX_BLOCKS) { 22741 mutex_exit(SD_MUTEX(un)); 22742 return (ENOTSUP); 22743 } 22744 mutex_exit(SD_MUTEX(un)); 22745 22746 /* 22747 * Make sure there is no reservation conflict on the lun. 22748 */ 22749 if (sd_send_scsi_TEST_UNIT_READY(un, 0) == EACCES) { 22750 return (EACCES); 22751 } 22752 22753 #if defined(__i386) || defined(__amd64) 22754 if (un->un_solaris_size == 0) { 22755 return (EIO); 22756 } 22757 #endif 22758 22759 #ifdef _MULTI_DATAMODEL 22760 switch (ddi_model_convert_from(flag & FMODELS)) { 22761 case DDI_MODEL_ILP32: { 22762 struct dk_map32 dk_map32[NDKMAP]; 22763 22764 size = NDKMAP * sizeof (struct dk_map32); 22765 rval = ddi_copyin((void *)arg, dk_map32, size, flag); 22766 if (rval != 0) { 22767 return (EFAULT); 22768 } 22769 for (i = 0; i < NDKMAP; i++) { 22770 dk_map[i].dkl_cylno = dk_map32[i].dkl_cylno; 22771 dk_map[i].dkl_nblk = dk_map32[i].dkl_nblk; 22772 } 22773 break; 22774 } 22775 case DDI_MODEL_NONE: 22776 size = NDKMAP * sizeof (struct dk_map); 22777 rval = ddi_copyin((void *)arg, dk_map, size, flag); 22778 if (rval != 0) { 22779 return (EFAULT); 22780 } 22781 break; 22782 } 22783 #else /* ! _MULTI_DATAMODEL */ 22784 size = NDKMAP * sizeof (struct dk_map); 22785 rval = ddi_copyin((void *)arg, dk_map, size, flag); 22786 if (rval != 0) { 22787 return (EFAULT); 22788 } 22789 #endif /* _MULTI_DATAMODEL */ 22790 22791 mutex_enter(SD_MUTEX(un)); 22792 /* Note: The size used in this bcopy is set based upon the data model */ 22793 bcopy(dk_map, un->un_map, size); 22794 #if defined(_SUNOS_VTOC_16) 22795 vp = (struct dkl_partition *)&(un->un_vtoc); 22796 #endif /* defined(_SUNOS_VTOC_16) */ 22797 for (i = 0; i < NDKMAP; i++) { 22798 lp = &un->un_map[i]; 22799 un->un_offset[i] = 22800 un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno; 22801 #if defined(_SUNOS_VTOC_16) 22802 vp->p_start = un->un_offset[i]; 22803 vp->p_size = lp->dkl_nblk; 22804 vp++; 22805 #endif /* defined(_SUNOS_VTOC_16) */ 22806 #if defined(__i386) || defined(__amd64) 22807 un->un_offset[i] += un->un_solaris_offset; 22808 #endif 22809 } 22810 mutex_exit(SD_MUTEX(un)); 22811 return (rval); 22812 } 22813 22814 22815 /* 22816 * Function: sd_dkio_get_vtoc 22817 * 22818 * Description: This routine is the driver entry point for handling user 22819 * requests to get the current volume table of contents 22820 * (DKIOCGVTOC). 22821 * 22822 * Arguments: dev - the device number 22823 * arg - pointer to user provided vtoc structure specifying 22824 * the current vtoc. 22825 * flag - this argument is a pass through to ddi_copyxxx() 22826 * directly from the mode argument of ioctl(). 22827 * geom_validated - flag indicating if the device geometry has been 22828 * previously validated in the sdioctl routine. 22829 * 22830 * Return Code: 0 22831 * EFAULT 22832 * ENXIO 22833 * EIO 22834 */ 22835 22836 static int 22837 sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag, int geom_validated) 22838 { 22839 struct sd_lun *un = NULL; 22840 #if defined(_SUNOS_VTOC_8) 22841 struct vtoc user_vtoc; 22842 #endif /* defined(_SUNOS_VTOC_8) */ 22843 int rval = 0; 22844 22845 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22846 return (ENXIO); 22847 } 22848 22849 mutex_enter(SD_MUTEX(un)); 22850 if (geom_validated == FALSE) { 22851 /* 22852 * sd_validate_geometry does not spin a disk up 22853 * if it was spun down. We need to make sure it 22854 * is ready. 22855 */ 22856 mutex_exit(SD_MUTEX(un)); 22857 if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) { 22858 return (rval); 22859 } 22860 mutex_enter(SD_MUTEX(un)); 22861 if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) { 22862 mutex_exit(SD_MUTEX(un)); 22863 return (rval); 22864 } 22865 } 22866 22867 #if defined(_SUNOS_VTOC_8) 22868 sd_build_user_vtoc(un, &user_vtoc); 22869 mutex_exit(SD_MUTEX(un)); 22870 22871 #ifdef _MULTI_DATAMODEL 22872 switch (ddi_model_convert_from(flag & FMODELS)) { 22873 case DDI_MODEL_ILP32: { 22874 struct vtoc32 user_vtoc32; 22875 22876 vtoctovtoc32(user_vtoc, user_vtoc32); 22877 if (ddi_copyout(&user_vtoc32, (void *)arg, 22878 sizeof (struct vtoc32), flag)) { 22879 return (EFAULT); 22880 } 22881 break; 22882 } 22883 22884 case DDI_MODEL_NONE: 22885 if (ddi_copyout(&user_vtoc, (void *)arg, 22886 sizeof (struct vtoc), flag)) { 22887 return (EFAULT); 22888 } 22889 break; 22890 } 22891 #else /* ! _MULTI_DATAMODEL */ 22892 if (ddi_copyout(&user_vtoc, (void *)arg, sizeof (struct vtoc), flag)) { 22893 return (EFAULT); 22894 } 22895 #endif /* _MULTI_DATAMODEL */ 22896 22897 #elif defined(_SUNOS_VTOC_16) 22898 mutex_exit(SD_MUTEX(un)); 22899 22900 #ifdef _MULTI_DATAMODEL 22901 /* 22902 * The un_vtoc structure is a "struct dk_vtoc" which is always 22903 * 32-bit to maintain compatibility with existing on-disk 22904 * structures. Thus, we need to convert the structure when copying 22905 * it out to a datamodel-dependent "struct vtoc" in a 64-bit 22906 * program. If the target is a 32-bit program, then no conversion 22907 * is necessary. 22908 */ 22909 /* LINTED: logical expression always true: op "||" */ 22910 ASSERT(sizeof (un->un_vtoc) == sizeof (struct vtoc32)); 22911 switch (ddi_model_convert_from(flag & FMODELS)) { 22912 case DDI_MODEL_ILP32: 22913 if (ddi_copyout(&(un->un_vtoc), (void *)arg, 22914 sizeof (un->un_vtoc), flag)) { 22915 return (EFAULT); 22916 } 22917 break; 22918 22919 case DDI_MODEL_NONE: { 22920 struct vtoc user_vtoc; 22921 22922 vtoc32tovtoc(un->un_vtoc, user_vtoc); 22923 if (ddi_copyout(&user_vtoc, (void *)arg, 22924 sizeof (struct vtoc), flag)) { 22925 return (EFAULT); 22926 } 22927 break; 22928 } 22929 } 22930 #else /* ! _MULTI_DATAMODEL */ 22931 if (ddi_copyout(&(un->un_vtoc), (void *)arg, sizeof (un->un_vtoc), 22932 flag)) { 22933 return (EFAULT); 22934 } 22935 #endif /* _MULTI_DATAMODEL */ 22936 #else 22937 #error "No VTOC format defined." 22938 #endif 22939 22940 return (rval); 22941 } 22942 22943 static int 22944 sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag) 22945 { 22946 struct sd_lun *un = NULL; 22947 dk_efi_t user_efi; 22948 int rval = 0; 22949 void *buffer; 22950 22951 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) 22952 return (ENXIO); 22953 22954 if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag)) 22955 return (EFAULT); 22956 22957 user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64; 22958 22959 if ((user_efi.dki_length % un->un_tgt_blocksize) || 22960 (user_efi.dki_length > un->un_max_xfer_size)) 22961 return (EINVAL); 22962 22963 buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP); 22964 rval = sd_send_scsi_READ(un, buffer, user_efi.dki_length, 22965 user_efi.dki_lba, SD_PATH_DIRECT); 22966 if (rval == 0 && ddi_copyout(buffer, user_efi.dki_data, 22967 user_efi.dki_length, flag) != 0) 22968 rval = EFAULT; 22969 22970 kmem_free(buffer, user_efi.dki_length); 22971 return (rval); 22972 } 22973 22974 #if defined(_SUNOS_VTOC_8) 22975 /* 22976 * Function: sd_build_user_vtoc 22977 * 22978 * Description: This routine populates a pass by reference variable with the 22979 * current volume table of contents. 22980 * 22981 * Arguments: un - driver soft state (unit) structure 22982 * user_vtoc - pointer to vtoc structure to be populated 22983 */ 22984 22985 static void 22986 sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc) 22987 { 22988 struct dk_map2 *lpart; 22989 struct dk_map *lmap; 22990 struct partition *vpart; 22991 int nblks; 22992 int i; 22993 22994 ASSERT(mutex_owned(SD_MUTEX(un))); 22995 22996 /* 22997 * Return vtoc structure fields in the provided VTOC area, addressed 22998 * by *vtoc. 22999 */ 23000 bzero(user_vtoc, sizeof (struct vtoc)); 23001 user_vtoc->v_bootinfo[0] = un->un_vtoc.v_bootinfo[0]; 23002 user_vtoc->v_bootinfo[1] = un->un_vtoc.v_bootinfo[1]; 23003 user_vtoc->v_bootinfo[2] = un->un_vtoc.v_bootinfo[2]; 23004 user_vtoc->v_sanity = VTOC_SANE; 23005 user_vtoc->v_version = un->un_vtoc.v_version; 23006 bcopy(un->un_vtoc.v_volume, user_vtoc->v_volume, LEN_DKL_VVOL); 23007 user_vtoc->v_sectorsz = un->un_sys_blocksize; 23008 user_vtoc->v_nparts = un->un_vtoc.v_nparts; 23009 bcopy(un->un_vtoc.v_reserved, user_vtoc->v_reserved, 23010 sizeof (un->un_vtoc.v_reserved)); 23011 /* 23012 * Convert partitioning information. 23013 * 23014 * Note the conversion from starting cylinder number 23015 * to starting sector number. 23016 */ 23017 lmap = un->un_map; 23018 lpart = (struct dk_map2 *)un->un_vtoc.v_part; 23019 vpart = user_vtoc->v_part; 23020 23021 nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead; 23022 23023 for (i = 0; i < V_NUMPAR; i++) { 23024 vpart->p_tag = lpart->p_tag; 23025 vpart->p_flag = lpart->p_flag; 23026 vpart->p_start = lmap->dkl_cylno * nblks; 23027 vpart->p_size = lmap->dkl_nblk; 23028 lmap++; 23029 lpart++; 23030 vpart++; 23031 23032 /* (4364927) */ 23033 user_vtoc->timestamp[i] = (time_t)un->un_vtoc.v_timestamp[i]; 23034 } 23035 23036 bcopy(un->un_asciilabel, user_vtoc->v_asciilabel, LEN_DKL_ASCII); 23037 } 23038 #endif 23039 23040 static int 23041 sd_dkio_partition(dev_t dev, caddr_t arg, int flag) 23042 { 23043 struct sd_lun *un = NULL; 23044 struct partition64 p64; 23045 int rval = 0; 23046 uint_t nparts; 23047 efi_gpe_t *partitions; 23048 efi_gpt_t *buffer; 23049 diskaddr_t gpe_lba; 23050 23051 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23052 return (ENXIO); 23053 } 23054 23055 if (ddi_copyin((const void *)arg, &p64, 23056 sizeof (struct partition64), flag)) { 23057 return (EFAULT); 23058 } 23059 23060 buffer = kmem_alloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP); 23061 rval = sd_send_scsi_READ(un, buffer, DEV_BSIZE, 23062 1, SD_PATH_DIRECT); 23063 if (rval != 0) 23064 goto done_error; 23065 23066 sd_swap_efi_gpt(buffer); 23067 23068 if ((rval = sd_validate_efi(buffer)) != 0) 23069 goto done_error; 23070 23071 nparts = buffer->efi_gpt_NumberOfPartitionEntries; 23072 gpe_lba = buffer->efi_gpt_PartitionEntryLBA; 23073 if (p64.p_partno > nparts) { 23074 /* couldn't find it */ 23075 rval = ESRCH; 23076 goto done_error; 23077 } 23078 /* 23079 * if we're dealing with a partition that's out of the normal 23080 * 16K block, adjust accordingly 23081 */ 23082 gpe_lba += p64.p_partno / sizeof (efi_gpe_t); 23083 rval = sd_send_scsi_READ(un, buffer, EFI_MIN_ARRAY_SIZE, 23084 gpe_lba, SD_PATH_DIRECT); 23085 if (rval) { 23086 goto done_error; 23087 } 23088 partitions = (efi_gpe_t *)buffer; 23089 23090 sd_swap_efi_gpe(nparts, partitions); 23091 23092 partitions += p64.p_partno; 23093 bcopy(&partitions->efi_gpe_PartitionTypeGUID, &p64.p_type, 23094 sizeof (struct uuid)); 23095 p64.p_start = partitions->efi_gpe_StartingLBA; 23096 p64.p_size = partitions->efi_gpe_EndingLBA - 23097 p64.p_start + 1; 23098 23099 if (ddi_copyout(&p64, (void *)arg, sizeof (struct partition64), flag)) 23100 rval = EFAULT; 23101 23102 done_error: 23103 kmem_free(buffer, EFI_MIN_ARRAY_SIZE); 23104 return (rval); 23105 } 23106 23107 23108 /* 23109 * Function: sd_dkio_set_vtoc 23110 * 23111 * Description: This routine is the driver entry point for handling user 23112 * requests to set the current volume table of contents 23113 * (DKIOCSVTOC). 23114 * 23115 * Arguments: dev - the device number 23116 * arg - pointer to user provided vtoc structure used to set the 23117 * current vtoc. 23118 * flag - this argument is a pass through to ddi_copyxxx() 23119 * directly from the mode argument of ioctl(). 23120 * 23121 * Return Code: 0 23122 * EFAULT 23123 * ENXIO 23124 * EINVAL 23125 * ENOTSUP 23126 */ 23127 23128 static int 23129 sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag) 23130 { 23131 struct sd_lun *un = NULL; 23132 struct vtoc user_vtoc; 23133 int rval = 0; 23134 23135 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23136 return (ENXIO); 23137 } 23138 23139 #if defined(__i386) || defined(__amd64) 23140 if (un->un_tgt_blocksize != un->un_sys_blocksize) { 23141 return (EINVAL); 23142 } 23143 #endif 23144 23145 #ifdef _MULTI_DATAMODEL 23146 switch (ddi_model_convert_from(flag & FMODELS)) { 23147 case DDI_MODEL_ILP32: { 23148 struct vtoc32 user_vtoc32; 23149 23150 if (ddi_copyin((const void *)arg, &user_vtoc32, 23151 sizeof (struct vtoc32), flag)) { 23152 return (EFAULT); 23153 } 23154 vtoc32tovtoc(user_vtoc32, user_vtoc); 23155 break; 23156 } 23157 23158 case DDI_MODEL_NONE: 23159 if (ddi_copyin((const void *)arg, &user_vtoc, 23160 sizeof (struct vtoc), flag)) { 23161 return (EFAULT); 23162 } 23163 break; 23164 } 23165 #else /* ! _MULTI_DATAMODEL */ 23166 if (ddi_copyin((const void *)arg, &user_vtoc, 23167 sizeof (struct vtoc), flag)) { 23168 return (EFAULT); 23169 } 23170 #endif /* _MULTI_DATAMODEL */ 23171 23172 mutex_enter(SD_MUTEX(un)); 23173 if (un->un_blockcount > DK_MAX_BLOCKS) { 23174 mutex_exit(SD_MUTEX(un)); 23175 return (ENOTSUP); 23176 } 23177 if (un->un_g.dkg_ncyl == 0) { 23178 mutex_exit(SD_MUTEX(un)); 23179 return (EINVAL); 23180 } 23181 23182 mutex_exit(SD_MUTEX(un)); 23183 sd_clear_efi(un); 23184 ddi_remove_minor_node(SD_DEVINFO(un), "wd"); 23185 ddi_remove_minor_node(SD_DEVINFO(un), "wd,raw"); 23186 (void) ddi_create_minor_node(SD_DEVINFO(un), "h", 23187 S_IFBLK, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE, 23188 un->un_node_type, NULL); 23189 (void) ddi_create_minor_node(SD_DEVINFO(un), "h,raw", 23190 S_IFCHR, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE, 23191 un->un_node_type, NULL); 23192 mutex_enter(SD_MUTEX(un)); 23193 23194 if ((rval = sd_build_label_vtoc(un, &user_vtoc)) == 0) { 23195 if ((rval = sd_write_label(dev)) == 0) { 23196 if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) 23197 != 0) { 23198 SD_ERROR(SD_LOG_IOCTL_DKIO, un, 23199 "sd_dkio_set_vtoc: " 23200 "Failed validate geometry\n"); 23201 } 23202 } 23203 } 23204 23205 /* 23206 * If sd_build_label_vtoc, or sd_write_label failed above write the 23207 * devid anyway, what can it hurt? Also preserve the device id by 23208 * writing to the disk acyl for the case where a devid has been 23209 * fabricated. 23210 */ 23211 if (un->un_f_devid_supported && 23212 (un->un_f_opt_fab_devid == TRUE)) { 23213 if (un->un_devid == NULL) { 23214 sd_register_devid(un, SD_DEVINFO(un), 23215 SD_TARGET_IS_UNRESERVED); 23216 } else { 23217 /* 23218 * The device id for this disk has been 23219 * fabricated. Fabricated device id's are 23220 * managed by storing them in the last 2 23221 * available sectors on the drive. The device 23222 * id must be preserved by writing it back out 23223 * to this location. 23224 */ 23225 if (sd_write_deviceid(un) != 0) { 23226 ddi_devid_free(un->un_devid); 23227 un->un_devid = NULL; 23228 } 23229 } 23230 } 23231 mutex_exit(SD_MUTEX(un)); 23232 return (rval); 23233 } 23234 23235 23236 /* 23237 * Function: sd_build_label_vtoc 23238 * 23239 * Description: This routine updates the driver soft state current volume table 23240 * of contents based on a user specified vtoc. 23241 * 23242 * Arguments: un - driver soft state (unit) structure 23243 * user_vtoc - pointer to vtoc structure specifying vtoc to be used 23244 * to update the driver soft state. 23245 * 23246 * Return Code: 0 23247 * EINVAL 23248 */ 23249 23250 static int 23251 sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc) 23252 { 23253 struct dk_map *lmap; 23254 struct partition *vpart; 23255 int nblks; 23256 #if defined(_SUNOS_VTOC_8) 23257 int ncyl; 23258 struct dk_map2 *lpart; 23259 #endif /* defined(_SUNOS_VTOC_8) */ 23260 int i; 23261 23262 ASSERT(mutex_owned(SD_MUTEX(un))); 23263 23264 /* Sanity-check the vtoc */ 23265 if (user_vtoc->v_sanity != VTOC_SANE || 23266 user_vtoc->v_sectorsz != un->un_sys_blocksize || 23267 user_vtoc->v_nparts != V_NUMPAR) { 23268 return (EINVAL); 23269 } 23270 23271 nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead; 23272 if (nblks == 0) { 23273 return (EINVAL); 23274 } 23275 23276 #if defined(_SUNOS_VTOC_8) 23277 vpart = user_vtoc->v_part; 23278 for (i = 0; i < V_NUMPAR; i++) { 23279 if ((vpart->p_start % nblks) != 0) { 23280 return (EINVAL); 23281 } 23282 ncyl = vpart->p_start / nblks; 23283 ncyl += vpart->p_size / nblks; 23284 if ((vpart->p_size % nblks) != 0) { 23285 ncyl++; 23286 } 23287 if (ncyl > (int)un->un_g.dkg_ncyl) { 23288 return (EINVAL); 23289 } 23290 vpart++; 23291 } 23292 #endif /* defined(_SUNOS_VTOC_8) */ 23293 23294 /* Put appropriate vtoc structure fields into the disk label */ 23295 #if defined(_SUNOS_VTOC_16) 23296 /* 23297 * The vtoc is always a 32bit data structure to maintain the 23298 * on-disk format. Convert "in place" instead of bcopying it. 23299 */ 23300 vtoctovtoc32((*user_vtoc), (*((struct vtoc32 *)&(un->un_vtoc)))); 23301 23302 /* 23303 * in the 16-slice vtoc, starting sectors are expressed in 23304 * numbers *relative* to the start of the Solaris fdisk partition. 23305 */ 23306 lmap = un->un_map; 23307 vpart = user_vtoc->v_part; 23308 23309 for (i = 0; i < (int)user_vtoc->v_nparts; i++, lmap++, vpart++) { 23310 lmap->dkl_cylno = vpart->p_start / nblks; 23311 lmap->dkl_nblk = vpart->p_size; 23312 } 23313 23314 #elif defined(_SUNOS_VTOC_8) 23315 23316 un->un_vtoc.v_bootinfo[0] = (uint32_t)user_vtoc->v_bootinfo[0]; 23317 un->un_vtoc.v_bootinfo[1] = (uint32_t)user_vtoc->v_bootinfo[1]; 23318 un->un_vtoc.v_bootinfo[2] = (uint32_t)user_vtoc->v_bootinfo[2]; 23319 23320 un->un_vtoc.v_sanity = (uint32_t)user_vtoc->v_sanity; 23321 un->un_vtoc.v_version = (uint32_t)user_vtoc->v_version; 23322 23323 bcopy(user_vtoc->v_volume, un->un_vtoc.v_volume, LEN_DKL_VVOL); 23324 23325 un->un_vtoc.v_nparts = user_vtoc->v_nparts; 23326 23327 bcopy(user_vtoc->v_reserved, un->un_vtoc.v_reserved, 23328 sizeof (un->un_vtoc.v_reserved)); 23329 23330 /* 23331 * Note the conversion from starting sector number 23332 * to starting cylinder number. 23333 * Return error if division results in a remainder. 23334 */ 23335 lmap = un->un_map; 23336 lpart = un->un_vtoc.v_part; 23337 vpart = user_vtoc->v_part; 23338 23339 for (i = 0; i < (int)user_vtoc->v_nparts; i++) { 23340 lpart->p_tag = vpart->p_tag; 23341 lpart->p_flag = vpart->p_flag; 23342 lmap->dkl_cylno = vpart->p_start / nblks; 23343 lmap->dkl_nblk = vpart->p_size; 23344 23345 lmap++; 23346 lpart++; 23347 vpart++; 23348 23349 /* (4387723) */ 23350 #ifdef _LP64 23351 if (user_vtoc->timestamp[i] > TIME32_MAX) { 23352 un->un_vtoc.v_timestamp[i] = TIME32_MAX; 23353 } else { 23354 un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i]; 23355 } 23356 #else 23357 un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i]; 23358 #endif 23359 } 23360 23361 bcopy(user_vtoc->v_asciilabel, un->un_asciilabel, LEN_DKL_ASCII); 23362 #else 23363 #error "No VTOC format defined." 23364 #endif 23365 return (0); 23366 } 23367 23368 /* 23369 * Function: sd_clear_efi 23370 * 23371 * Description: This routine clears all EFI labels. 23372 * 23373 * Arguments: un - driver soft state (unit) structure 23374 * 23375 * Return Code: void 23376 */ 23377 23378 static void 23379 sd_clear_efi(struct sd_lun *un) 23380 { 23381 efi_gpt_t *gpt; 23382 uint_t lbasize; 23383 uint64_t cap; 23384 int rval; 23385 23386 ASSERT(!mutex_owned(SD_MUTEX(un))); 23387 23388 mutex_enter(SD_MUTEX(un)); 23389 un->un_reserved = -1; 23390 mutex_exit(SD_MUTEX(un)); 23391 gpt = kmem_alloc(sizeof (efi_gpt_t), KM_SLEEP); 23392 23393 if (sd_send_scsi_READ(un, gpt, DEV_BSIZE, 1, SD_PATH_DIRECT) != 0) { 23394 goto done; 23395 } 23396 23397 sd_swap_efi_gpt(gpt); 23398 rval = sd_validate_efi(gpt); 23399 if (rval == 0) { 23400 /* clear primary */ 23401 bzero(gpt, sizeof (efi_gpt_t)); 23402 if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE, 1, 23403 SD_PATH_DIRECT))) { 23404 SD_INFO(SD_LOG_IO_PARTITION, un, 23405 "sd_clear_efi: clear primary label failed\n"); 23406 } 23407 } 23408 /* the backup */ 23409 rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize, 23410 SD_PATH_DIRECT); 23411 if (rval) { 23412 goto done; 23413 } 23414 /* 23415 * The MMC standard allows READ CAPACITY to be 23416 * inaccurate by a bounded amount (in the interest of 23417 * response latency). As a result, failed READs are 23418 * commonplace (due to the reading of metadata and not 23419 * data). Depending on the per-Vendor/drive Sense data, 23420 * the failed READ can cause many (unnecessary) retries. 23421 */ 23422 if ((rval = sd_send_scsi_READ(un, gpt, lbasize, 23423 cap - 1, ISCD(un) ? SD_PATH_DIRECT_PRIORITY : 23424 SD_PATH_DIRECT)) != 0) { 23425 goto done; 23426 } 23427 sd_swap_efi_gpt(gpt); 23428 rval = sd_validate_efi(gpt); 23429 if (rval == 0) { 23430 /* clear backup */ 23431 SD_TRACE(SD_LOG_IOCTL, un, "sd_clear_efi clear backup@%lu\n", 23432 cap-1); 23433 bzero(gpt, sizeof (efi_gpt_t)); 23434 if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE, 23435 cap-1, SD_PATH_DIRECT))) { 23436 SD_INFO(SD_LOG_IO_PARTITION, un, 23437 "sd_clear_efi: clear backup label failed\n"); 23438 } 23439 } else { 23440 /* 23441 * Refer to comments related to off-by-1 at the 23442 * header of this file 23443 */ 23444 if ((rval = sd_send_scsi_READ(un, gpt, lbasize, 23445 cap - 2, ISCD(un) ? SD_PATH_DIRECT_PRIORITY : 23446 SD_PATH_DIRECT)) != 0) { 23447 goto done; 23448 } 23449 sd_swap_efi_gpt(gpt); 23450 rval = sd_validate_efi(gpt); 23451 if (rval == 0) { 23452 /* clear legacy backup EFI label */ 23453 SD_TRACE(SD_LOG_IOCTL, un, 23454 "sd_clear_efi clear backup@%lu\n", cap-2); 23455 bzero(gpt, sizeof (efi_gpt_t)); 23456 if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE, 23457 cap-2, SD_PATH_DIRECT))) { 23458 SD_INFO(SD_LOG_IO_PARTITION, 23459 un, "sd_clear_efi: " 23460 " clear legacy backup label failed\n"); 23461 } 23462 } 23463 } 23464 23465 done: 23466 kmem_free(gpt, sizeof (efi_gpt_t)); 23467 } 23468 23469 /* 23470 * Function: sd_set_vtoc 23471 * 23472 * Description: This routine writes data to the appropriate positions 23473 * 23474 * Arguments: un - driver soft state (unit) structure 23475 * dkl - the data to be written 23476 * 23477 * Return: void 23478 */ 23479 23480 static int 23481 sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl) 23482 { 23483 void *shadow_buf; 23484 uint_t label_addr; 23485 int sec; 23486 int blk; 23487 int head; 23488 int cyl; 23489 int rval; 23490 23491 #if defined(__i386) || defined(__amd64) 23492 label_addr = un->un_solaris_offset + DK_LABEL_LOC; 23493 #else 23494 /* Write the primary label at block 0 of the solaris partition. */ 23495 label_addr = 0; 23496 #endif 23497 23498 if (NOT_DEVBSIZE(un)) { 23499 shadow_buf = kmem_zalloc(un->un_tgt_blocksize, KM_SLEEP); 23500 /* 23501 * Read the target's first block. 23502 */ 23503 if ((rval = sd_send_scsi_READ(un, shadow_buf, 23504 un->un_tgt_blocksize, label_addr, 23505 SD_PATH_STANDARD)) != 0) { 23506 goto exit; 23507 } 23508 /* 23509 * Copy the contents of the label into the shadow buffer 23510 * which is of the size of target block size. 23511 */ 23512 bcopy(dkl, shadow_buf, sizeof (struct dk_label)); 23513 } 23514 23515 /* Write the primary label */ 23516 if (NOT_DEVBSIZE(un)) { 23517 rval = sd_send_scsi_WRITE(un, shadow_buf, un->un_tgt_blocksize, 23518 label_addr, SD_PATH_STANDARD); 23519 } else { 23520 rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize, 23521 label_addr, SD_PATH_STANDARD); 23522 } 23523 if (rval != 0) { 23524 return (rval); 23525 } 23526 23527 /* 23528 * Calculate where the backup labels go. They are always on 23529 * the last alternate cylinder, but some older drives put them 23530 * on head 2 instead of the last head. They are always on the 23531 * first 5 odd sectors of the appropriate track. 23532 * 23533 * We have no choice at this point, but to believe that the 23534 * disk label is valid. Use the geometry of the disk 23535 * as described in the label. 23536 */ 23537 cyl = dkl->dkl_ncyl + dkl->dkl_acyl - 1; 23538 head = dkl->dkl_nhead - 1; 23539 23540 /* 23541 * Write and verify the backup labels. Make sure we don't try to 23542 * write past the last cylinder. 23543 */ 23544 for (sec = 1; ((sec < 5 * 2 + 1) && (sec < dkl->dkl_nsect)); sec += 2) { 23545 blk = (daddr_t)( 23546 (cyl * ((dkl->dkl_nhead * dkl->dkl_nsect) - dkl->dkl_apc)) + 23547 (head * dkl->dkl_nsect) + sec); 23548 #if defined(__i386) || defined(__amd64) 23549 blk += un->un_solaris_offset; 23550 #endif 23551 if (NOT_DEVBSIZE(un)) { 23552 uint64_t tblk; 23553 /* 23554 * Need to read the block first for read modify write. 23555 */ 23556 tblk = (uint64_t)blk; 23557 blk = (int)((tblk * un->un_sys_blocksize) / 23558 un->un_tgt_blocksize); 23559 if ((rval = sd_send_scsi_READ(un, shadow_buf, 23560 un->un_tgt_blocksize, blk, 23561 SD_PATH_STANDARD)) != 0) { 23562 goto exit; 23563 } 23564 /* 23565 * Modify the shadow buffer with the label. 23566 */ 23567 bcopy(dkl, shadow_buf, sizeof (struct dk_label)); 23568 rval = sd_send_scsi_WRITE(un, shadow_buf, 23569 un->un_tgt_blocksize, blk, SD_PATH_STANDARD); 23570 } else { 23571 rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize, 23572 blk, SD_PATH_STANDARD); 23573 SD_INFO(SD_LOG_IO_PARTITION, un, 23574 "sd_set_vtoc: wrote backup label %d\n", blk); 23575 } 23576 if (rval != 0) { 23577 goto exit; 23578 } 23579 } 23580 exit: 23581 if (NOT_DEVBSIZE(un)) { 23582 kmem_free(shadow_buf, un->un_tgt_blocksize); 23583 } 23584 return (rval); 23585 } 23586 23587 /* 23588 * Function: sd_clear_vtoc 23589 * 23590 * Description: This routine clears out the VTOC labels. 23591 * 23592 * Arguments: un - driver soft state (unit) structure 23593 * 23594 * Return: void 23595 */ 23596 23597 static void 23598 sd_clear_vtoc(struct sd_lun *un) 23599 { 23600 struct dk_label *dkl; 23601 23602 mutex_exit(SD_MUTEX(un)); 23603 dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP); 23604 mutex_enter(SD_MUTEX(un)); 23605 /* 23606 * sd_set_vtoc uses these fields in order to figure out 23607 * where to overwrite the backup labels 23608 */ 23609 dkl->dkl_apc = un->un_g.dkg_apc; 23610 dkl->dkl_ncyl = un->un_g.dkg_ncyl; 23611 dkl->dkl_acyl = un->un_g.dkg_acyl; 23612 dkl->dkl_nhead = un->un_g.dkg_nhead; 23613 dkl->dkl_nsect = un->un_g.dkg_nsect; 23614 mutex_exit(SD_MUTEX(un)); 23615 (void) sd_set_vtoc(un, dkl); 23616 kmem_free(dkl, sizeof (struct dk_label)); 23617 23618 mutex_enter(SD_MUTEX(un)); 23619 } 23620 23621 /* 23622 * Function: sd_write_label 23623 * 23624 * Description: This routine will validate and write the driver soft state vtoc 23625 * contents to the device. 23626 * 23627 * Arguments: dev - the device number 23628 * 23629 * Return Code: the code returned by sd_send_scsi_cmd() 23630 * 0 23631 * EINVAL 23632 * ENXIO 23633 * ENOMEM 23634 */ 23635 23636 static int 23637 sd_write_label(dev_t dev) 23638 { 23639 struct sd_lun *un; 23640 struct dk_label *dkl; 23641 short sum; 23642 short *sp; 23643 int i; 23644 int rval; 23645 23646 if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) || 23647 (un->un_state == SD_STATE_OFFLINE)) { 23648 return (ENXIO); 23649 } 23650 ASSERT(mutex_owned(SD_MUTEX(un))); 23651 mutex_exit(SD_MUTEX(un)); 23652 dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP); 23653 mutex_enter(SD_MUTEX(un)); 23654 23655 bcopy(&un->un_vtoc, &dkl->dkl_vtoc, sizeof (struct dk_vtoc)); 23656 dkl->dkl_rpm = un->un_g.dkg_rpm; 23657 dkl->dkl_pcyl = un->un_g.dkg_pcyl; 23658 dkl->dkl_apc = un->un_g.dkg_apc; 23659 dkl->dkl_intrlv = un->un_g.dkg_intrlv; 23660 dkl->dkl_ncyl = un->un_g.dkg_ncyl; 23661 dkl->dkl_acyl = un->un_g.dkg_acyl; 23662 dkl->dkl_nhead = un->un_g.dkg_nhead; 23663 dkl->dkl_nsect = un->un_g.dkg_nsect; 23664 23665 #if defined(_SUNOS_VTOC_8) 23666 dkl->dkl_obs1 = un->un_g.dkg_obs1; 23667 dkl->dkl_obs2 = un->un_g.dkg_obs2; 23668 dkl->dkl_obs3 = un->un_g.dkg_obs3; 23669 for (i = 0; i < NDKMAP; i++) { 23670 dkl->dkl_map[i].dkl_cylno = un->un_map[i].dkl_cylno; 23671 dkl->dkl_map[i].dkl_nblk = un->un_map[i].dkl_nblk; 23672 } 23673 bcopy(un->un_asciilabel, dkl->dkl_asciilabel, LEN_DKL_ASCII); 23674 #elif defined(_SUNOS_VTOC_16) 23675 dkl->dkl_skew = un->un_dkg_skew; 23676 #else 23677 #error "No VTOC format defined." 23678 #endif 23679 23680 dkl->dkl_magic = DKL_MAGIC; 23681 dkl->dkl_write_reinstruct = un->un_g.dkg_write_reinstruct; 23682 dkl->dkl_read_reinstruct = un->un_g.dkg_read_reinstruct; 23683 23684 /* Construct checksum for the new disk label */ 23685 sum = 0; 23686 sp = (short *)dkl; 23687 i = sizeof (struct dk_label) / sizeof (short); 23688 while (i--) { 23689 sum ^= *sp++; 23690 } 23691 dkl->dkl_cksum = sum; 23692 23693 mutex_exit(SD_MUTEX(un)); 23694 23695 rval = sd_set_vtoc(un, dkl); 23696 exit: 23697 kmem_free(dkl, sizeof (struct dk_label)); 23698 mutex_enter(SD_MUTEX(un)); 23699 return (rval); 23700 } 23701 23702 static int 23703 sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag) 23704 { 23705 struct sd_lun *un = NULL; 23706 dk_efi_t user_efi; 23707 int rval = 0; 23708 void *buffer; 23709 int valid_efi; 23710 23711 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) 23712 return (ENXIO); 23713 23714 if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag)) 23715 return (EFAULT); 23716 23717 user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64; 23718 23719 if ((user_efi.dki_length % un->un_tgt_blocksize) || 23720 (user_efi.dki_length > un->un_max_xfer_size)) 23721 return (EINVAL); 23722 23723 buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP); 23724 if (ddi_copyin(user_efi.dki_data, buffer, user_efi.dki_length, flag)) { 23725 rval = EFAULT; 23726 } else { 23727 /* 23728 * let's clear the vtoc labels and clear the softstate 23729 * vtoc. 23730 */ 23731 mutex_enter(SD_MUTEX(un)); 23732 if (un->un_vtoc.v_sanity == VTOC_SANE) { 23733 SD_TRACE(SD_LOG_IO_PARTITION, un, 23734 "sd_dkio_set_efi: CLEAR VTOC\n"); 23735 sd_clear_vtoc(un); 23736 bzero(&un->un_vtoc, sizeof (struct dk_vtoc)); 23737 mutex_exit(SD_MUTEX(un)); 23738 ddi_remove_minor_node(SD_DEVINFO(un), "h"); 23739 ddi_remove_minor_node(SD_DEVINFO(un), "h,raw"); 23740 (void) ddi_create_minor_node(SD_DEVINFO(un), "wd", 23741 S_IFBLK, 23742 (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE, 23743 un->un_node_type, NULL); 23744 (void) ddi_create_minor_node(SD_DEVINFO(un), "wd,raw", 23745 S_IFCHR, 23746 (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE, 23747 un->un_node_type, NULL); 23748 } else 23749 mutex_exit(SD_MUTEX(un)); 23750 rval = sd_send_scsi_WRITE(un, buffer, user_efi.dki_length, 23751 user_efi.dki_lba, SD_PATH_DIRECT); 23752 if (rval == 0) { 23753 mutex_enter(SD_MUTEX(un)); 23754 23755 /* 23756 * Set the un_reserved for valid efi label. 23757 * Function clear_efi in fdisk and efi_write in 23758 * libefi both change efi label on disk in 3 steps 23759 * 1. Change primary gpt and gpe 23760 * 2. Change backup gpe 23761 * 3. Change backup gpt, which is one block 23762 * We only reread the efi label after the 3rd step, 23763 * or there will be warning "primary label corrupt". 23764 */ 23765 if (user_efi.dki_length == un->un_tgt_blocksize) { 23766 un->un_f_geometry_is_valid = FALSE; 23767 valid_efi = sd_use_efi(un, SD_PATH_DIRECT); 23768 if ((valid_efi == 0) && 23769 un->un_f_devid_supported && 23770 (un->un_f_opt_fab_devid == TRUE)) { 23771 if (un->un_devid == NULL) { 23772 sd_register_devid(un, 23773 SD_DEVINFO(un), 23774 SD_TARGET_IS_UNRESERVED); 23775 } else { 23776 /* 23777 * The device id for this disk 23778 * has been fabricated. The 23779 * device id must be preserved 23780 * by writing it back out to 23781 * disk. 23782 */ 23783 if (sd_write_deviceid(un) 23784 != 0) { 23785 ddi_devid_free( 23786 un->un_devid); 23787 un->un_devid = NULL; 23788 } 23789 } 23790 } 23791 } 23792 23793 mutex_exit(SD_MUTEX(un)); 23794 } 23795 } 23796 kmem_free(buffer, user_efi.dki_length); 23797 return (rval); 23798 } 23799 23800 /* 23801 * Function: sd_dkio_get_mboot 23802 * 23803 * Description: This routine is the driver entry point for handling user 23804 * requests to get the current device mboot (DKIOCGMBOOT) 23805 * 23806 * Arguments: dev - the device number 23807 * arg - pointer to user provided mboot structure specifying 23808 * the current mboot. 23809 * flag - this argument is a pass through to ddi_copyxxx() 23810 * directly from the mode argument of ioctl(). 23811 * 23812 * Return Code: 0 23813 * EINVAL 23814 * EFAULT 23815 * ENXIO 23816 */ 23817 23818 static int 23819 sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag) 23820 { 23821 struct sd_lun *un; 23822 struct mboot *mboot; 23823 int rval; 23824 size_t buffer_size; 23825 23826 if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) || 23827 (un->un_state == SD_STATE_OFFLINE)) { 23828 return (ENXIO); 23829 } 23830 23831 if (!un->un_f_mboot_supported || arg == NULL) { 23832 return (EINVAL); 23833 } 23834 23835 /* 23836 * Read the mboot block, located at absolute block 0 on the target. 23837 */ 23838 buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct mboot)); 23839 23840 SD_TRACE(SD_LOG_IO_PARTITION, un, 23841 "sd_dkio_get_mboot: allocation size: 0x%x\n", buffer_size); 23842 23843 mboot = kmem_zalloc(buffer_size, KM_SLEEP); 23844 if ((rval = sd_send_scsi_READ(un, mboot, buffer_size, 0, 23845 SD_PATH_STANDARD)) == 0) { 23846 if (ddi_copyout(mboot, (void *)arg, 23847 sizeof (struct mboot), flag) != 0) { 23848 rval = EFAULT; 23849 } 23850 } 23851 kmem_free(mboot, buffer_size); 23852 return (rval); 23853 } 23854 23855 23856 /* 23857 * Function: sd_dkio_set_mboot 23858 * 23859 * Description: This routine is the driver entry point for handling user 23860 * requests to validate and set the device master boot 23861 * (DKIOCSMBOOT). 23862 * 23863 * Arguments: dev - the device number 23864 * arg - pointer to user provided mboot structure used to set the 23865 * master boot. 23866 * flag - this argument is a pass through to ddi_copyxxx() 23867 * directly from the mode argument of ioctl(). 23868 * 23869 * Return Code: 0 23870 * EINVAL 23871 * EFAULT 23872 * ENXIO 23873 */ 23874 23875 static int 23876 sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag) 23877 { 23878 struct sd_lun *un = NULL; 23879 struct mboot *mboot = NULL; 23880 int rval; 23881 ushort_t magic; 23882 23883 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23884 return (ENXIO); 23885 } 23886 23887 ASSERT(!mutex_owned(SD_MUTEX(un))); 23888 23889 if (!un->un_f_mboot_supported) { 23890 return (EINVAL); 23891 } 23892 23893 if (arg == NULL) { 23894 return (EINVAL); 23895 } 23896 23897 mboot = kmem_zalloc(sizeof (struct mboot), KM_SLEEP); 23898 23899 if (ddi_copyin((const void *)arg, mboot, 23900 sizeof (struct mboot), flag) != 0) { 23901 kmem_free(mboot, (size_t)(sizeof (struct mboot))); 23902 return (EFAULT); 23903 } 23904 23905 /* Is this really a master boot record? */ 23906 magic = LE_16(mboot->signature); 23907 if (magic != MBB_MAGIC) { 23908 kmem_free(mboot, (size_t)(sizeof (struct mboot))); 23909 return (EINVAL); 23910 } 23911 23912 rval = sd_send_scsi_WRITE(un, mboot, un->un_sys_blocksize, 0, 23913 SD_PATH_STANDARD); 23914 23915 mutex_enter(SD_MUTEX(un)); 23916 #if defined(__i386) || defined(__amd64) 23917 if (rval == 0) { 23918 /* 23919 * mboot has been written successfully. 23920 * update the fdisk and vtoc tables in memory 23921 */ 23922 rval = sd_update_fdisk_and_vtoc(un); 23923 if ((un->un_f_geometry_is_valid == FALSE) || (rval != 0)) { 23924 mutex_exit(SD_MUTEX(un)); 23925 kmem_free(mboot, (size_t)(sizeof (struct mboot))); 23926 return (rval); 23927 } 23928 } 23929 23930 #ifdef __lock_lint 23931 sd_setup_default_geometry(un); 23932 #endif 23933 23934 #else 23935 if (rval == 0) { 23936 /* 23937 * mboot has been written successfully. 23938 * set up the default geometry and VTOC 23939 */ 23940 if (un->un_blockcount <= DK_MAX_BLOCKS) 23941 sd_setup_default_geometry(un); 23942 } 23943 #endif 23944 mutex_exit(SD_MUTEX(un)); 23945 kmem_free(mboot, (size_t)(sizeof (struct mboot))); 23946 return (rval); 23947 } 23948 23949 23950 /* 23951 * Function: sd_setup_default_geometry 23952 * 23953 * Description: This local utility routine sets the default geometry as part of 23954 * setting the device mboot. 23955 * 23956 * Arguments: un - driver soft state (unit) structure 23957 * 23958 * Note: This may be redundant with sd_build_default_label. 23959 */ 23960 23961 static void 23962 sd_setup_default_geometry(struct sd_lun *un) 23963 { 23964 /* zero out the soft state geometry and partition table. */ 23965 bzero(&un->un_g, sizeof (struct dk_geom)); 23966 bzero(&un->un_vtoc, sizeof (struct dk_vtoc)); 23967 bzero(un->un_map, NDKMAP * (sizeof (struct dk_map))); 23968 un->un_asciilabel[0] = '\0'; 23969 23970 /* 23971 * For the rpm, we use the minimum for the disk. 23972 * For the head, cyl and number of sector per track, 23973 * if the capacity <= 1GB, head = 64, sect = 32. 23974 * else head = 255, sect 63 23975 * Note: the capacity should be equal to C*H*S values. 23976 * This will cause some truncation of size due to 23977 * round off errors. For CD-ROMs, this truncation can 23978 * have adverse side effects, so returning ncyl and 23979 * nhead as 1. The nsect will overflow for most of 23980 * CD-ROMs as nsect is of type ushort. 23981 */ 23982 if (ISCD(un)) { 23983 un->un_g.dkg_ncyl = 1; 23984 un->un_g.dkg_nhead = 1; 23985 un->un_g.dkg_nsect = un->un_blockcount; 23986 } else { 23987 if (un->un_blockcount <= 0x1000) { 23988 /* Needed for unlabeled SCSI floppies. */ 23989 un->un_g.dkg_nhead = 2; 23990 un->un_g.dkg_ncyl = 80; 23991 un->un_g.dkg_pcyl = 80; 23992 un->un_g.dkg_nsect = un->un_blockcount / (2 * 80); 23993 } else if (un->un_blockcount <= 0x200000) { 23994 un->un_g.dkg_nhead = 64; 23995 un->un_g.dkg_nsect = 32; 23996 un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32); 23997 } else { 23998 un->un_g.dkg_nhead = 255; 23999 un->un_g.dkg_nsect = 63; 24000 un->un_g.dkg_ncyl = un->un_blockcount / (255 * 63); 24001 } 24002 un->un_blockcount = un->un_g.dkg_ncyl * 24003 un->un_g.dkg_nhead * un->un_g.dkg_nsect; 24004 } 24005 un->un_g.dkg_acyl = 0; 24006 un->un_g.dkg_bcyl = 0; 24007 un->un_g.dkg_intrlv = 1; 24008 un->un_g.dkg_rpm = 200; 24009 un->un_g.dkg_read_reinstruct = 0; 24010 un->un_g.dkg_write_reinstruct = 0; 24011 if (un->un_g.dkg_pcyl == 0) { 24012 un->un_g.dkg_pcyl = un->un_g.dkg_ncyl + un->un_g.dkg_acyl; 24013 } 24014 24015 un->un_map['a'-'a'].dkl_cylno = 0; 24016 un->un_map['a'-'a'].dkl_nblk = un->un_blockcount; 24017 un->un_map['c'-'a'].dkl_cylno = 0; 24018 un->un_map['c'-'a'].dkl_nblk = un->un_blockcount; 24019 un->un_f_geometry_is_valid = FALSE; 24020 } 24021 24022 24023 #if defined(__i386) || defined(__amd64) 24024 /* 24025 * Function: sd_update_fdisk_and_vtoc 24026 * 24027 * Description: This local utility routine updates the device fdisk and vtoc 24028 * as part of setting the device mboot. 24029 * 24030 * Arguments: un - driver soft state (unit) structure 24031 * 24032 * Return Code: 0 for success or errno-type return code. 24033 * 24034 * Note:x86: This looks like a duplicate of sd_validate_geometry(), but 24035 * these did exist seperately in x86 sd.c!!! 24036 */ 24037 24038 static int 24039 sd_update_fdisk_and_vtoc(struct sd_lun *un) 24040 { 24041 static char labelstring[128]; 24042 static char buf[256]; 24043 char *label = 0; 24044 int count; 24045 int label_rc = 0; 24046 int gvalid = un->un_f_geometry_is_valid; 24047 int fdisk_rval; 24048 int lbasize; 24049 int capacity; 24050 24051 ASSERT(mutex_owned(SD_MUTEX(un))); 24052 24053 if (un->un_f_tgt_blocksize_is_valid == FALSE) { 24054 return (EINVAL); 24055 } 24056 24057 if (un->un_f_blockcount_is_valid == FALSE) { 24058 return (EINVAL); 24059 } 24060 24061 #if defined(_SUNOS_VTOC_16) 24062 /* 24063 * Set up the "whole disk" fdisk partition; this should always 24064 * exist, regardless of whether the disk contains an fdisk table 24065 * or vtoc. 24066 */ 24067 un->un_map[P0_RAW_DISK].dkl_cylno = 0; 24068 un->un_map[P0_RAW_DISK].dkl_nblk = un->un_blockcount; 24069 #endif /* defined(_SUNOS_VTOC_16) */ 24070 24071 /* 24072 * copy the lbasize and capacity so that if they're 24073 * reset while we're not holding the SD_MUTEX(un), we will 24074 * continue to use valid values after the SD_MUTEX(un) is 24075 * reacquired. 24076 */ 24077 lbasize = un->un_tgt_blocksize; 24078 capacity = un->un_blockcount; 24079 24080 /* 24081 * refresh the logical and physical geometry caches. 24082 * (data from mode sense format/rigid disk geometry pages, 24083 * and scsi_ifgetcap("geometry"). 24084 */ 24085 sd_resync_geom_caches(un, capacity, lbasize, SD_PATH_DIRECT); 24086 24087 /* 24088 * Only DIRECT ACCESS devices will have Sun labels. 24089 * CD's supposedly have a Sun label, too 24090 */ 24091 if (un->un_f_vtoc_label_supported) { 24092 fdisk_rval = sd_read_fdisk(un, capacity, lbasize, 24093 SD_PATH_DIRECT); 24094 if (fdisk_rval == SD_CMD_FAILURE) { 24095 ASSERT(mutex_owned(SD_MUTEX(un))); 24096 return (EIO); 24097 } 24098 24099 if (fdisk_rval == SD_CMD_RESERVATION_CONFLICT) { 24100 ASSERT(mutex_owned(SD_MUTEX(un))); 24101 return (EACCES); 24102 } 24103 24104 if (un->un_solaris_size <= DK_LABEL_LOC) { 24105 /* 24106 * Found fdisk table but no Solaris partition entry, 24107 * so don't call sd_uselabel() and don't create 24108 * a default label. 24109 */ 24110 label_rc = 0; 24111 un->un_f_geometry_is_valid = TRUE; 24112 goto no_solaris_partition; 24113 } 24114 24115 #if defined(_SUNOS_VTOC_8) 24116 label = (char *)un->un_asciilabel; 24117 #elif defined(_SUNOS_VTOC_16) 24118 label = (char *)un->un_vtoc.v_asciilabel; 24119 #else 24120 #error "No VTOC format defined." 24121 #endif 24122 } else if (capacity < 0) { 24123 ASSERT(mutex_owned(SD_MUTEX(un))); 24124 return (EINVAL); 24125 } 24126 24127 /* 24128 * For Removable media We reach here if we have found a 24129 * SOLARIS PARTITION. 24130 * If un_f_geometry_is_valid is FALSE it indicates that the SOLARIS 24131 * PARTITION has changed from the previous one, hence we will setup a 24132 * default VTOC in this case. 24133 */ 24134 if (un->un_f_geometry_is_valid == FALSE) { 24135 sd_build_default_label(un); 24136 label_rc = 0; 24137 } 24138 24139 no_solaris_partition: 24140 if ((!un->un_f_has_removable_media || 24141 (un->un_f_has_removable_media && 24142 un->un_mediastate == DKIO_EJECTED)) && 24143 (un->un_state == SD_STATE_NORMAL && !gvalid)) { 24144 /* 24145 * Print out a message indicating who and what we are. 24146 * We do this only when we happen to really validate the 24147 * geometry. We may call sd_validate_geometry() at other 24148 * times, ioctl()'s like Get VTOC in which case we 24149 * don't want to print the label. 24150 * If the geometry is valid, print the label string, 24151 * else print vendor and product info, if available 24152 */ 24153 if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) { 24154 SD_INFO(SD_LOG_IOCTL_DKIO, un, "?<%s>\n", label); 24155 } else { 24156 mutex_enter(&sd_label_mutex); 24157 sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX, 24158 labelstring); 24159 sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX, 24160 &labelstring[64]); 24161 (void) sprintf(buf, "?Vendor '%s', product '%s'", 24162 labelstring, &labelstring[64]); 24163 if (un->un_f_blockcount_is_valid == TRUE) { 24164 (void) sprintf(&buf[strlen(buf)], 24165 ", %" PRIu64 " %u byte blocks\n", 24166 un->un_blockcount, 24167 un->un_tgt_blocksize); 24168 } else { 24169 (void) sprintf(&buf[strlen(buf)], 24170 ", (unknown capacity)\n"); 24171 } 24172 SD_INFO(SD_LOG_IOCTL_DKIO, un, buf); 24173 mutex_exit(&sd_label_mutex); 24174 } 24175 } 24176 24177 #if defined(_SUNOS_VTOC_16) 24178 /* 24179 * If we have valid geometry, set up the remaining fdisk partitions. 24180 * Note that dkl_cylno is not used for the fdisk map entries, so 24181 * we set it to an entirely bogus value. 24182 */ 24183 for (count = 0; count < FD_NUMPART; count++) { 24184 un->un_map[FDISK_P1 + count].dkl_cylno = -1; 24185 un->un_map[FDISK_P1 + count].dkl_nblk = 24186 un->un_fmap[count].fmap_nblk; 24187 un->un_offset[FDISK_P1 + count] = 24188 un->un_fmap[count].fmap_start; 24189 } 24190 #endif 24191 24192 for (count = 0; count < NDKMAP; count++) { 24193 #if defined(_SUNOS_VTOC_8) 24194 struct dk_map *lp = &un->un_map[count]; 24195 un->un_offset[count] = 24196 un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno; 24197 #elif defined(_SUNOS_VTOC_16) 24198 struct dkl_partition *vp = &un->un_vtoc.v_part[count]; 24199 un->un_offset[count] = vp->p_start + un->un_solaris_offset; 24200 #else 24201 #error "No VTOC format defined." 24202 #endif 24203 } 24204 24205 ASSERT(mutex_owned(SD_MUTEX(un))); 24206 return (label_rc); 24207 } 24208 #endif 24209 24210 24211 /* 24212 * Function: sd_check_media 24213 * 24214 * Description: This utility routine implements the functionality for the 24215 * DKIOCSTATE ioctl. This ioctl blocks the user thread until the 24216 * driver state changes from that specified by the user 24217 * (inserted or ejected). For example, if the user specifies 24218 * DKIO_EJECTED and the current media state is inserted this 24219 * routine will immediately return DKIO_INSERTED. However, if the 24220 * current media state is not inserted the user thread will be 24221 * blocked until the drive state changes. If DKIO_NONE is specified 24222 * the user thread will block until a drive state change occurs. 24223 * 24224 * Arguments: dev - the device number 24225 * state - user pointer to a dkio_state, updated with the current 24226 * drive state at return. 24227 * 24228 * Return Code: ENXIO 24229 * EIO 24230 * EAGAIN 24231 * EINTR 24232 */ 24233 24234 static int 24235 sd_check_media(dev_t dev, enum dkio_state state) 24236 { 24237 struct sd_lun *un = NULL; 24238 enum dkio_state prev_state; 24239 opaque_t token = NULL; 24240 int rval = 0; 24241 24242 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24243 return (ENXIO); 24244 } 24245 24246 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n"); 24247 24248 mutex_enter(SD_MUTEX(un)); 24249 24250 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: " 24251 "state=%x, mediastate=%x\n", state, un->un_mediastate); 24252 24253 prev_state = un->un_mediastate; 24254 24255 /* is there anything to do? */ 24256 if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) { 24257 /* 24258 * submit the request to the scsi_watch service; 24259 * scsi_media_watch_cb() does the real work 24260 */ 24261 mutex_exit(SD_MUTEX(un)); 24262 24263 /* 24264 * This change handles the case where a scsi watch request is 24265 * added to a device that is powered down. To accomplish this 24266 * we power up the device before adding the scsi watch request, 24267 * since the scsi watch sends a TUR directly to the device 24268 * which the device cannot handle if it is powered down. 24269 */ 24270 if (sd_pm_entry(un) != DDI_SUCCESS) { 24271 mutex_enter(SD_MUTEX(un)); 24272 goto done; 24273 } 24274 24275 token = scsi_watch_request_submit(SD_SCSI_DEVP(un), 24276 sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb, 24277 (caddr_t)dev); 24278 24279 sd_pm_exit(un); 24280 24281 mutex_enter(SD_MUTEX(un)); 24282 if (token == NULL) { 24283 rval = EAGAIN; 24284 goto done; 24285 } 24286 24287 /* 24288 * This is a special case IOCTL that doesn't return 24289 * until the media state changes. Routine sdpower 24290 * knows about and handles this so don't count it 24291 * as an active cmd in the driver, which would 24292 * keep the device busy to the pm framework. 24293 * If the count isn't decremented the device can't 24294 * be powered down. 24295 */ 24296 un->un_ncmds_in_driver--; 24297 ASSERT(un->un_ncmds_in_driver >= 0); 24298 24299 /* 24300 * if a prior request had been made, this will be the same 24301 * token, as scsi_watch was designed that way. 24302 */ 24303 un->un_swr_token = token; 24304 un->un_specified_mediastate = state; 24305 24306 /* 24307 * now wait for media change 24308 * we will not be signalled unless mediastate == state but it is 24309 * still better to test for this condition, since there is a 24310 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED 24311 */ 24312 SD_TRACE(SD_LOG_COMMON, un, 24313 "sd_check_media: waiting for media state change\n"); 24314 while (un->un_mediastate == state) { 24315 if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) { 24316 SD_TRACE(SD_LOG_COMMON, un, 24317 "sd_check_media: waiting for media state " 24318 "was interrupted\n"); 24319 un->un_ncmds_in_driver++; 24320 rval = EINTR; 24321 goto done; 24322 } 24323 SD_TRACE(SD_LOG_COMMON, un, 24324 "sd_check_media: received signal, state=%x\n", 24325 un->un_mediastate); 24326 } 24327 /* 24328 * Inc the counter to indicate the device once again 24329 * has an active outstanding cmd. 24330 */ 24331 un->un_ncmds_in_driver++; 24332 } 24333 24334 /* invalidate geometry */ 24335 if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) { 24336 sr_ejected(un); 24337 } 24338 24339 if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) { 24340 uint64_t capacity; 24341 uint_t lbasize; 24342 24343 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n"); 24344 mutex_exit(SD_MUTEX(un)); 24345 /* 24346 * Since the following routines use SD_PATH_DIRECT, we must 24347 * call PM directly before the upcoming disk accesses. This 24348 * may cause the disk to be power/spin up. 24349 */ 24350 24351 if (sd_pm_entry(un) == DDI_SUCCESS) { 24352 rval = sd_send_scsi_READ_CAPACITY(un, 24353 &capacity, 24354 &lbasize, SD_PATH_DIRECT); 24355 if (rval != 0) { 24356 sd_pm_exit(un); 24357 mutex_enter(SD_MUTEX(un)); 24358 goto done; 24359 } 24360 } else { 24361 rval = EIO; 24362 mutex_enter(SD_MUTEX(un)); 24363 goto done; 24364 } 24365 mutex_enter(SD_MUTEX(un)); 24366 24367 sd_update_block_info(un, lbasize, capacity); 24368 24369 un->un_f_geometry_is_valid = FALSE; 24370 (void) sd_validate_geometry(un, SD_PATH_DIRECT); 24371 24372 mutex_exit(SD_MUTEX(un)); 24373 rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT, 24374 SD_PATH_DIRECT); 24375 sd_pm_exit(un); 24376 24377 mutex_enter(SD_MUTEX(un)); 24378 } 24379 done: 24380 un->un_f_watcht_stopped = FALSE; 24381 if (un->un_swr_token) { 24382 /* 24383 * Use of this local token and the mutex ensures that we avoid 24384 * some race conditions associated with terminating the 24385 * scsi watch. 24386 */ 24387 token = un->un_swr_token; 24388 un->un_swr_token = (opaque_t)NULL; 24389 mutex_exit(SD_MUTEX(un)); 24390 (void) scsi_watch_request_terminate(token, 24391 SCSI_WATCH_TERMINATE_WAIT); 24392 mutex_enter(SD_MUTEX(un)); 24393 } 24394 24395 /* 24396 * Update the capacity kstat value, if no media previously 24397 * (capacity kstat is 0) and a media has been inserted 24398 * (un_f_blockcount_is_valid == TRUE) 24399 */ 24400 if (un->un_errstats) { 24401 struct sd_errstats *stp = NULL; 24402 24403 stp = (struct sd_errstats *)un->un_errstats->ks_data; 24404 if ((stp->sd_capacity.value.ui64 == 0) && 24405 (un->un_f_blockcount_is_valid == TRUE)) { 24406 stp->sd_capacity.value.ui64 = 24407 (uint64_t)((uint64_t)un->un_blockcount * 24408 un->un_sys_blocksize); 24409 } 24410 } 24411 mutex_exit(SD_MUTEX(un)); 24412 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n"); 24413 return (rval); 24414 } 24415 24416 24417 /* 24418 * Function: sd_delayed_cv_broadcast 24419 * 24420 * Description: Delayed cv_broadcast to allow for target to recover from media 24421 * insertion. 24422 * 24423 * Arguments: arg - driver soft state (unit) structure 24424 */ 24425 24426 static void 24427 sd_delayed_cv_broadcast(void *arg) 24428 { 24429 struct sd_lun *un = arg; 24430 24431 SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n"); 24432 24433 mutex_enter(SD_MUTEX(un)); 24434 un->un_dcvb_timeid = NULL; 24435 cv_broadcast(&un->un_state_cv); 24436 mutex_exit(SD_MUTEX(un)); 24437 } 24438 24439 24440 /* 24441 * Function: sd_media_watch_cb 24442 * 24443 * Description: Callback routine used for support of the DKIOCSTATE ioctl. This 24444 * routine processes the TUR sense data and updates the driver 24445 * state if a transition has occurred. The user thread 24446 * (sd_check_media) is then signalled. 24447 * 24448 * Arguments: arg - the device 'dev_t' is used for context to discriminate 24449 * among multiple watches that share this callback function 24450 * resultp - scsi watch facility result packet containing scsi 24451 * packet, status byte and sense data 24452 * 24453 * Return Code: 0 for success, -1 for failure 24454 */ 24455 24456 static int 24457 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp) 24458 { 24459 struct sd_lun *un; 24460 struct scsi_status *statusp = resultp->statusp; 24461 uint8_t *sensep = (uint8_t *)resultp->sensep; 24462 enum dkio_state state = DKIO_NONE; 24463 dev_t dev = (dev_t)arg; 24464 uchar_t actual_sense_length; 24465 uint8_t skey, asc, ascq; 24466 24467 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24468 return (-1); 24469 } 24470 actual_sense_length = resultp->actual_sense_length; 24471 24472 mutex_enter(SD_MUTEX(un)); 24473 SD_TRACE(SD_LOG_COMMON, un, 24474 "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n", 24475 *((char *)statusp), (void *)sensep, actual_sense_length); 24476 24477 if (resultp->pkt->pkt_reason == CMD_DEV_GONE) { 24478 un->un_mediastate = DKIO_DEV_GONE; 24479 cv_broadcast(&un->un_state_cv); 24480 mutex_exit(SD_MUTEX(un)); 24481 24482 return (0); 24483 } 24484 24485 /* 24486 * If there was a check condition then sensep points to valid sense data 24487 * If status was not a check condition but a reservation or busy status 24488 * then the new state is DKIO_NONE 24489 */ 24490 if (sensep != NULL) { 24491 skey = scsi_sense_key(sensep); 24492 asc = scsi_sense_asc(sensep); 24493 ascq = scsi_sense_ascq(sensep); 24494 24495 SD_INFO(SD_LOG_COMMON, un, 24496 "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n", 24497 skey, asc, ascq); 24498 /* This routine only uses up to 13 bytes of sense data. */ 24499 if (actual_sense_length >= 13) { 24500 if (skey == KEY_UNIT_ATTENTION) { 24501 if (asc == 0x28) { 24502 state = DKIO_INSERTED; 24503 } 24504 } else { 24505 /* 24506 * if 02/04/02 means that the host 24507 * should send start command. Explicitly 24508 * leave the media state as is 24509 * (inserted) as the media is inserted 24510 * and host has stopped device for PM 24511 * reasons. Upon next true read/write 24512 * to this media will bring the 24513 * device to the right state good for 24514 * media access. 24515 */ 24516 if ((skey == KEY_NOT_READY) && 24517 (asc == 0x3a)) { 24518 state = DKIO_EJECTED; 24519 } 24520 24521 /* 24522 * If the drivge is busy with an operation 24523 * or long write, keep the media in an 24524 * inserted state. 24525 */ 24526 24527 if ((skey == KEY_NOT_READY) && 24528 (asc == 0x04) && 24529 ((ascq == 0x02) || 24530 (ascq == 0x07) || 24531 (ascq == 0x08))) { 24532 state = DKIO_INSERTED; 24533 } 24534 } 24535 } 24536 } else if ((*((char *)statusp) == STATUS_GOOD) && 24537 (resultp->pkt->pkt_reason == CMD_CMPLT)) { 24538 state = DKIO_INSERTED; 24539 } 24540 24541 SD_TRACE(SD_LOG_COMMON, un, 24542 "sd_media_watch_cb: state=%x, specified=%x\n", 24543 state, un->un_specified_mediastate); 24544 24545 /* 24546 * now signal the waiting thread if this is *not* the specified state; 24547 * delay the signal if the state is DKIO_INSERTED to allow the target 24548 * to recover 24549 */ 24550 if (state != un->un_specified_mediastate) { 24551 un->un_mediastate = state; 24552 if (state == DKIO_INSERTED) { 24553 /* 24554 * delay the signal to give the drive a chance 24555 * to do what it apparently needs to do 24556 */ 24557 SD_TRACE(SD_LOG_COMMON, un, 24558 "sd_media_watch_cb: delayed cv_broadcast\n"); 24559 if (un->un_dcvb_timeid == NULL) { 24560 un->un_dcvb_timeid = 24561 timeout(sd_delayed_cv_broadcast, un, 24562 drv_usectohz((clock_t)MEDIA_ACCESS_DELAY)); 24563 } 24564 } else { 24565 SD_TRACE(SD_LOG_COMMON, un, 24566 "sd_media_watch_cb: immediate cv_broadcast\n"); 24567 cv_broadcast(&un->un_state_cv); 24568 } 24569 } 24570 mutex_exit(SD_MUTEX(un)); 24571 return (0); 24572 } 24573 24574 24575 /* 24576 * Function: sd_dkio_get_temp 24577 * 24578 * Description: This routine is the driver entry point for handling ioctl 24579 * requests to get the disk temperature. 24580 * 24581 * Arguments: dev - the device number 24582 * arg - pointer to user provided dk_temperature structure. 24583 * flag - this argument is a pass through to ddi_copyxxx() 24584 * directly from the mode argument of ioctl(). 24585 * 24586 * Return Code: 0 24587 * EFAULT 24588 * ENXIO 24589 * EAGAIN 24590 */ 24591 24592 static int 24593 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag) 24594 { 24595 struct sd_lun *un = NULL; 24596 struct dk_temperature *dktemp = NULL; 24597 uchar_t *temperature_page; 24598 int rval = 0; 24599 int path_flag = SD_PATH_STANDARD; 24600 24601 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24602 return (ENXIO); 24603 } 24604 24605 dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP); 24606 24607 /* copyin the disk temp argument to get the user flags */ 24608 if (ddi_copyin((void *)arg, dktemp, 24609 sizeof (struct dk_temperature), flag) != 0) { 24610 rval = EFAULT; 24611 goto done; 24612 } 24613 24614 /* Initialize the temperature to invalid. */ 24615 dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP; 24616 dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP; 24617 24618 /* 24619 * Note: Investigate removing the "bypass pm" semantic. 24620 * Can we just bypass PM always? 24621 */ 24622 if (dktemp->dkt_flags & DKT_BYPASS_PM) { 24623 path_flag = SD_PATH_DIRECT; 24624 ASSERT(!mutex_owned(&un->un_pm_mutex)); 24625 mutex_enter(&un->un_pm_mutex); 24626 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 24627 /* 24628 * If DKT_BYPASS_PM is set, and the drive happens to be 24629 * in low power mode, we can not wake it up, Need to 24630 * return EAGAIN. 24631 */ 24632 mutex_exit(&un->un_pm_mutex); 24633 rval = EAGAIN; 24634 goto done; 24635 } else { 24636 /* 24637 * Indicate to PM the device is busy. This is required 24638 * to avoid a race - i.e. the ioctl is issuing a 24639 * command and the pm framework brings down the device 24640 * to low power mode (possible power cut-off on some 24641 * platforms). 24642 */ 24643 mutex_exit(&un->un_pm_mutex); 24644 if (sd_pm_entry(un) != DDI_SUCCESS) { 24645 rval = EAGAIN; 24646 goto done; 24647 } 24648 } 24649 } 24650 24651 temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP); 24652 24653 if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page, 24654 TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) { 24655 goto done2; 24656 } 24657 24658 /* 24659 * For the current temperature verify that the parameter length is 0x02 24660 * and the parameter code is 0x00 24661 */ 24662 if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) && 24663 (temperature_page[5] == 0x00)) { 24664 if (temperature_page[9] == 0xFF) { 24665 dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP; 24666 } else { 24667 dktemp->dkt_cur_temp = (short)(temperature_page[9]); 24668 } 24669 } 24670 24671 /* 24672 * For the reference temperature verify that the parameter 24673 * length is 0x02 and the parameter code is 0x01 24674 */ 24675 if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) && 24676 (temperature_page[11] == 0x01)) { 24677 if (temperature_page[15] == 0xFF) { 24678 dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP; 24679 } else { 24680 dktemp->dkt_ref_temp = (short)(temperature_page[15]); 24681 } 24682 } 24683 24684 /* Do the copyout regardless of the temperature commands status. */ 24685 if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature), 24686 flag) != 0) { 24687 rval = EFAULT; 24688 } 24689 24690 done2: 24691 if (path_flag == SD_PATH_DIRECT) { 24692 sd_pm_exit(un); 24693 } 24694 24695 kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE); 24696 done: 24697 if (dktemp != NULL) { 24698 kmem_free(dktemp, sizeof (struct dk_temperature)); 24699 } 24700 24701 return (rval); 24702 } 24703 24704 24705 /* 24706 * Function: sd_log_page_supported 24707 * 24708 * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of 24709 * supported log pages. 24710 * 24711 * Arguments: un - 24712 * log_page - 24713 * 24714 * Return Code: -1 - on error (log sense is optional and may not be supported). 24715 * 0 - log page not found. 24716 * 1 - log page found. 24717 */ 24718 24719 static int 24720 sd_log_page_supported(struct sd_lun *un, int log_page) 24721 { 24722 uchar_t *log_page_data; 24723 int i; 24724 int match = 0; 24725 int log_size; 24726 24727 log_page_data = kmem_zalloc(0xFF, KM_SLEEP); 24728 24729 if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0, 24730 SD_PATH_DIRECT) != 0) { 24731 SD_ERROR(SD_LOG_COMMON, un, 24732 "sd_log_page_supported: failed log page retrieval\n"); 24733 kmem_free(log_page_data, 0xFF); 24734 return (-1); 24735 } 24736 log_size = log_page_data[3]; 24737 24738 /* 24739 * The list of supported log pages start from the fourth byte. Check 24740 * until we run out of log pages or a match is found. 24741 */ 24742 for (i = 4; (i < (log_size + 4)) && !match; i++) { 24743 if (log_page_data[i] == log_page) { 24744 match++; 24745 } 24746 } 24747 kmem_free(log_page_data, 0xFF); 24748 return (match); 24749 } 24750 24751 24752 /* 24753 * Function: sd_mhdioc_failfast 24754 * 24755 * Description: This routine is the driver entry point for handling ioctl 24756 * requests to enable/disable the multihost failfast option. 24757 * (MHIOCENFAILFAST) 24758 * 24759 * Arguments: dev - the device number 24760 * arg - user specified probing interval. 24761 * flag - this argument is a pass through to ddi_copyxxx() 24762 * directly from the mode argument of ioctl(). 24763 * 24764 * Return Code: 0 24765 * EFAULT 24766 * ENXIO 24767 */ 24768 24769 static int 24770 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag) 24771 { 24772 struct sd_lun *un = NULL; 24773 int mh_time; 24774 int rval = 0; 24775 24776 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24777 return (ENXIO); 24778 } 24779 24780 if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag)) 24781 return (EFAULT); 24782 24783 if (mh_time) { 24784 mutex_enter(SD_MUTEX(un)); 24785 un->un_resvd_status |= SD_FAILFAST; 24786 mutex_exit(SD_MUTEX(un)); 24787 /* 24788 * If mh_time is INT_MAX, then this ioctl is being used for 24789 * SCSI-3 PGR purposes, and we don't need to spawn watch thread. 24790 */ 24791 if (mh_time != INT_MAX) { 24792 rval = sd_check_mhd(dev, mh_time); 24793 } 24794 } else { 24795 (void) sd_check_mhd(dev, 0); 24796 mutex_enter(SD_MUTEX(un)); 24797 un->un_resvd_status &= ~SD_FAILFAST; 24798 mutex_exit(SD_MUTEX(un)); 24799 } 24800 return (rval); 24801 } 24802 24803 24804 /* 24805 * Function: sd_mhdioc_takeown 24806 * 24807 * Description: This routine is the driver entry point for handling ioctl 24808 * requests to forcefully acquire exclusive access rights to the 24809 * multihost disk (MHIOCTKOWN). 24810 * 24811 * Arguments: dev - the device number 24812 * arg - user provided structure specifying the delay 24813 * parameters in milliseconds 24814 * flag - this argument is a pass through to ddi_copyxxx() 24815 * directly from the mode argument of ioctl(). 24816 * 24817 * Return Code: 0 24818 * EFAULT 24819 * ENXIO 24820 */ 24821 24822 static int 24823 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag) 24824 { 24825 struct sd_lun *un = NULL; 24826 struct mhioctkown *tkown = NULL; 24827 int rval = 0; 24828 24829 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24830 return (ENXIO); 24831 } 24832 24833 if (arg != NULL) { 24834 tkown = (struct mhioctkown *) 24835 kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP); 24836 rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag); 24837 if (rval != 0) { 24838 rval = EFAULT; 24839 goto error; 24840 } 24841 } 24842 24843 rval = sd_take_ownership(dev, tkown); 24844 mutex_enter(SD_MUTEX(un)); 24845 if (rval == 0) { 24846 un->un_resvd_status |= SD_RESERVE; 24847 if (tkown != NULL && tkown->reinstate_resv_delay != 0) { 24848 sd_reinstate_resv_delay = 24849 tkown->reinstate_resv_delay * 1000; 24850 } else { 24851 sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY; 24852 } 24853 /* 24854 * Give the scsi_watch routine interval set by 24855 * the MHIOCENFAILFAST ioctl precedence here. 24856 */ 24857 if ((un->un_resvd_status & SD_FAILFAST) == 0) { 24858 mutex_exit(SD_MUTEX(un)); 24859 (void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000); 24860 SD_TRACE(SD_LOG_IOCTL_MHD, un, 24861 "sd_mhdioc_takeown : %d\n", 24862 sd_reinstate_resv_delay); 24863 } else { 24864 mutex_exit(SD_MUTEX(un)); 24865 } 24866 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY, 24867 sd_mhd_reset_notify_cb, (caddr_t)un); 24868 } else { 24869 un->un_resvd_status &= ~SD_RESERVE; 24870 mutex_exit(SD_MUTEX(un)); 24871 } 24872 24873 error: 24874 if (tkown != NULL) { 24875 kmem_free(tkown, sizeof (struct mhioctkown)); 24876 } 24877 return (rval); 24878 } 24879 24880 24881 /* 24882 * Function: sd_mhdioc_release 24883 * 24884 * Description: This routine is the driver entry point for handling ioctl 24885 * requests to release exclusive access rights to the multihost 24886 * disk (MHIOCRELEASE). 24887 * 24888 * Arguments: dev - the device number 24889 * 24890 * Return Code: 0 24891 * ENXIO 24892 */ 24893 24894 static int 24895 sd_mhdioc_release(dev_t dev) 24896 { 24897 struct sd_lun *un = NULL; 24898 timeout_id_t resvd_timeid_save; 24899 int resvd_status_save; 24900 int rval = 0; 24901 24902 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24903 return (ENXIO); 24904 } 24905 24906 mutex_enter(SD_MUTEX(un)); 24907 resvd_status_save = un->un_resvd_status; 24908 un->un_resvd_status &= 24909 ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE); 24910 if (un->un_resvd_timeid) { 24911 resvd_timeid_save = un->un_resvd_timeid; 24912 un->un_resvd_timeid = NULL; 24913 mutex_exit(SD_MUTEX(un)); 24914 (void) untimeout(resvd_timeid_save); 24915 } else { 24916 mutex_exit(SD_MUTEX(un)); 24917 } 24918 24919 /* 24920 * destroy any pending timeout thread that may be attempting to 24921 * reinstate reservation on this device. 24922 */ 24923 sd_rmv_resv_reclaim_req(dev); 24924 24925 if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) { 24926 mutex_enter(SD_MUTEX(un)); 24927 if ((un->un_mhd_token) && 24928 ((un->un_resvd_status & SD_FAILFAST) == 0)) { 24929 mutex_exit(SD_MUTEX(un)); 24930 (void) sd_check_mhd(dev, 0); 24931 } else { 24932 mutex_exit(SD_MUTEX(un)); 24933 } 24934 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL, 24935 sd_mhd_reset_notify_cb, (caddr_t)un); 24936 } else { 24937 /* 24938 * sd_mhd_watch_cb will restart the resvd recover timeout thread 24939 */ 24940 mutex_enter(SD_MUTEX(un)); 24941 un->un_resvd_status = resvd_status_save; 24942 mutex_exit(SD_MUTEX(un)); 24943 } 24944 return (rval); 24945 } 24946 24947 24948 /* 24949 * Function: sd_mhdioc_register_devid 24950 * 24951 * Description: This routine is the driver entry point for handling ioctl 24952 * requests to register the device id (MHIOCREREGISTERDEVID). 24953 * 24954 * Note: The implementation for this ioctl has been updated to 24955 * be consistent with the original PSARC case (1999/357) 24956 * (4375899, 4241671, 4220005) 24957 * 24958 * Arguments: dev - the device number 24959 * 24960 * Return Code: 0 24961 * ENXIO 24962 */ 24963 24964 static int 24965 sd_mhdioc_register_devid(dev_t dev) 24966 { 24967 struct sd_lun *un = NULL; 24968 int rval = 0; 24969 24970 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24971 return (ENXIO); 24972 } 24973 24974 ASSERT(!mutex_owned(SD_MUTEX(un))); 24975 24976 mutex_enter(SD_MUTEX(un)); 24977 24978 /* If a devid already exists, de-register it */ 24979 if (un->un_devid != NULL) { 24980 ddi_devid_unregister(SD_DEVINFO(un)); 24981 /* 24982 * After unregister devid, needs to free devid memory 24983 */ 24984 ddi_devid_free(un->un_devid); 24985 un->un_devid = NULL; 24986 } 24987 24988 /* Check for reservation conflict */ 24989 mutex_exit(SD_MUTEX(un)); 24990 rval = sd_send_scsi_TEST_UNIT_READY(un, 0); 24991 mutex_enter(SD_MUTEX(un)); 24992 24993 switch (rval) { 24994 case 0: 24995 sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED); 24996 break; 24997 case EACCES: 24998 break; 24999 default: 25000 rval = EIO; 25001 } 25002 25003 mutex_exit(SD_MUTEX(un)); 25004 return (rval); 25005 } 25006 25007 25008 /* 25009 * Function: sd_mhdioc_inkeys 25010 * 25011 * Description: This routine is the driver entry point for handling ioctl 25012 * requests to issue the SCSI-3 Persistent In Read Keys command 25013 * to the device (MHIOCGRP_INKEYS). 25014 * 25015 * Arguments: dev - the device number 25016 * arg - user provided in_keys structure 25017 * flag - this argument is a pass through to ddi_copyxxx() 25018 * directly from the mode argument of ioctl(). 25019 * 25020 * Return Code: code returned by sd_persistent_reservation_in_read_keys() 25021 * ENXIO 25022 * EFAULT 25023 */ 25024 25025 static int 25026 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag) 25027 { 25028 struct sd_lun *un; 25029 mhioc_inkeys_t inkeys; 25030 int rval = 0; 25031 25032 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25033 return (ENXIO); 25034 } 25035 25036 #ifdef _MULTI_DATAMODEL 25037 switch (ddi_model_convert_from(flag & FMODELS)) { 25038 case DDI_MODEL_ILP32: { 25039 struct mhioc_inkeys32 inkeys32; 25040 25041 if (ddi_copyin(arg, &inkeys32, 25042 sizeof (struct mhioc_inkeys32), flag) != 0) { 25043 return (EFAULT); 25044 } 25045 inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li; 25046 if ((rval = sd_persistent_reservation_in_read_keys(un, 25047 &inkeys, flag)) != 0) { 25048 return (rval); 25049 } 25050 inkeys32.generation = inkeys.generation; 25051 if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32), 25052 flag) != 0) { 25053 return (EFAULT); 25054 } 25055 break; 25056 } 25057 case DDI_MODEL_NONE: 25058 if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), 25059 flag) != 0) { 25060 return (EFAULT); 25061 } 25062 if ((rval = sd_persistent_reservation_in_read_keys(un, 25063 &inkeys, flag)) != 0) { 25064 return (rval); 25065 } 25066 if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), 25067 flag) != 0) { 25068 return (EFAULT); 25069 } 25070 break; 25071 } 25072 25073 #else /* ! _MULTI_DATAMODEL */ 25074 25075 if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) { 25076 return (EFAULT); 25077 } 25078 rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag); 25079 if (rval != 0) { 25080 return (rval); 25081 } 25082 if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) { 25083 return (EFAULT); 25084 } 25085 25086 #endif /* _MULTI_DATAMODEL */ 25087 25088 return (rval); 25089 } 25090 25091 25092 /* 25093 * Function: sd_mhdioc_inresv 25094 * 25095 * Description: This routine is the driver entry point for handling ioctl 25096 * requests to issue the SCSI-3 Persistent In Read Reservations 25097 * command to the device (MHIOCGRP_INKEYS). 25098 * 25099 * Arguments: dev - the device number 25100 * arg - user provided in_resv structure 25101 * flag - this argument is a pass through to ddi_copyxxx() 25102 * directly from the mode argument of ioctl(). 25103 * 25104 * Return Code: code returned by sd_persistent_reservation_in_read_resv() 25105 * ENXIO 25106 * EFAULT 25107 */ 25108 25109 static int 25110 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag) 25111 { 25112 struct sd_lun *un; 25113 mhioc_inresvs_t inresvs; 25114 int rval = 0; 25115 25116 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25117 return (ENXIO); 25118 } 25119 25120 #ifdef _MULTI_DATAMODEL 25121 25122 switch (ddi_model_convert_from(flag & FMODELS)) { 25123 case DDI_MODEL_ILP32: { 25124 struct mhioc_inresvs32 inresvs32; 25125 25126 if (ddi_copyin(arg, &inresvs32, 25127 sizeof (struct mhioc_inresvs32), flag) != 0) { 25128 return (EFAULT); 25129 } 25130 inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li; 25131 if ((rval = sd_persistent_reservation_in_read_resv(un, 25132 &inresvs, flag)) != 0) { 25133 return (rval); 25134 } 25135 inresvs32.generation = inresvs.generation; 25136 if (ddi_copyout(&inresvs32, arg, 25137 sizeof (struct mhioc_inresvs32), flag) != 0) { 25138 return (EFAULT); 25139 } 25140 break; 25141 } 25142 case DDI_MODEL_NONE: 25143 if (ddi_copyin(arg, &inresvs, 25144 sizeof (mhioc_inresvs_t), flag) != 0) { 25145 return (EFAULT); 25146 } 25147 if ((rval = sd_persistent_reservation_in_read_resv(un, 25148 &inresvs, flag)) != 0) { 25149 return (rval); 25150 } 25151 if (ddi_copyout(&inresvs, arg, 25152 sizeof (mhioc_inresvs_t), flag) != 0) { 25153 return (EFAULT); 25154 } 25155 break; 25156 } 25157 25158 #else /* ! _MULTI_DATAMODEL */ 25159 25160 if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) { 25161 return (EFAULT); 25162 } 25163 rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag); 25164 if (rval != 0) { 25165 return (rval); 25166 } 25167 if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) { 25168 return (EFAULT); 25169 } 25170 25171 #endif /* ! _MULTI_DATAMODEL */ 25172 25173 return (rval); 25174 } 25175 25176 25177 /* 25178 * The following routines support the clustering functionality described below 25179 * and implement lost reservation reclaim functionality. 25180 * 25181 * Clustering 25182 * ---------- 25183 * The clustering code uses two different, independent forms of SCSI 25184 * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3 25185 * Persistent Group Reservations. For any particular disk, it will use either 25186 * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk. 25187 * 25188 * SCSI-2 25189 * The cluster software takes ownership of a multi-hosted disk by issuing the 25190 * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the 25191 * MHIOCRELEASE ioctl.Closely related is the MHIOCENFAILFAST ioctl -- a cluster, 25192 * just after taking ownership of the disk with the MHIOCTKOWN ioctl then issues 25193 * the MHIOCENFAILFAST ioctl. This ioctl "enables failfast" in the driver. The 25194 * meaning of failfast is that if the driver (on this host) ever encounters the 25195 * scsi error return code RESERVATION_CONFLICT from the device, it should 25196 * immediately panic the host. The motivation for this ioctl is that if this 25197 * host does encounter reservation conflict, the underlying cause is that some 25198 * other host of the cluster has decided that this host is no longer in the 25199 * cluster and has seized control of the disks for itself. Since this host is no 25200 * longer in the cluster, it ought to panic itself. The MHIOCENFAILFAST ioctl 25201 * does two things: 25202 * (a) it sets a flag that will cause any returned RESERVATION_CONFLICT 25203 * error to panic the host 25204 * (b) it sets up a periodic timer to test whether this host still has 25205 * "access" (in that no other host has reserved the device): if the 25206 * periodic timer gets RESERVATION_CONFLICT, the host is panicked. The 25207 * purpose of that periodic timer is to handle scenarios where the host is 25208 * otherwise temporarily quiescent, temporarily doing no real i/o. 25209 * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host, 25210 * by issuing a SCSI Bus Device Reset. It will then issue a SCSI Reserve for 25211 * the device itself. 25212 * 25213 * SCSI-3 PGR 25214 * A direct semantic implementation of the SCSI-3 Persistent Reservation 25215 * facility is supported through the shared multihost disk ioctls 25216 * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE, 25217 * MHIOCGRP_PREEMPTANDABORT) 25218 * 25219 * Reservation Reclaim: 25220 * -------------------- 25221 * To support the lost reservation reclaim operations this driver creates a 25222 * single thread to handle reinstating reservations on all devices that have 25223 * lost reservations sd_resv_reclaim_requests are logged for all devices that 25224 * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb 25225 * and the reservation reclaim thread loops through the requests to regain the 25226 * lost reservations. 25227 */ 25228 25229 /* 25230 * Function: sd_check_mhd() 25231 * 25232 * Description: This function sets up and submits a scsi watch request or 25233 * terminates an existing watch request. This routine is used in 25234 * support of reservation reclaim. 25235 * 25236 * Arguments: dev - the device 'dev_t' is used for context to discriminate 25237 * among multiple watches that share the callback function 25238 * interval - the number of microseconds specifying the watch 25239 * interval for issuing TEST UNIT READY commands. If 25240 * set to 0 the watch should be terminated. If the 25241 * interval is set to 0 and if the device is required 25242 * to hold reservation while disabling failfast, the 25243 * watch is restarted with an interval of 25244 * reinstate_resv_delay. 25245 * 25246 * Return Code: 0 - Successful submit/terminate of scsi watch request 25247 * ENXIO - Indicates an invalid device was specified 25248 * EAGAIN - Unable to submit the scsi watch request 25249 */ 25250 25251 static int 25252 sd_check_mhd(dev_t dev, int interval) 25253 { 25254 struct sd_lun *un; 25255 opaque_t token; 25256 25257 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25258 return (ENXIO); 25259 } 25260 25261 /* is this a watch termination request? */ 25262 if (interval == 0) { 25263 mutex_enter(SD_MUTEX(un)); 25264 /* if there is an existing watch task then terminate it */ 25265 if (un->un_mhd_token) { 25266 token = un->un_mhd_token; 25267 un->un_mhd_token = NULL; 25268 mutex_exit(SD_MUTEX(un)); 25269 (void) scsi_watch_request_terminate(token, 25270 SCSI_WATCH_TERMINATE_WAIT); 25271 mutex_enter(SD_MUTEX(un)); 25272 } else { 25273 mutex_exit(SD_MUTEX(un)); 25274 /* 25275 * Note: If we return here we don't check for the 25276 * failfast case. This is the original legacy 25277 * implementation but perhaps we should be checking 25278 * the failfast case. 25279 */ 25280 return (0); 25281 } 25282 /* 25283 * If the device is required to hold reservation while 25284 * disabling failfast, we need to restart the scsi_watch 25285 * routine with an interval of reinstate_resv_delay. 25286 */ 25287 if (un->un_resvd_status & SD_RESERVE) { 25288 interval = sd_reinstate_resv_delay/1000; 25289 } else { 25290 /* no failfast so bail */ 25291 mutex_exit(SD_MUTEX(un)); 25292 return (0); 25293 } 25294 mutex_exit(SD_MUTEX(un)); 25295 } 25296 25297 /* 25298 * adjust minimum time interval to 1 second, 25299 * and convert from msecs to usecs 25300 */ 25301 if (interval > 0 && interval < 1000) { 25302 interval = 1000; 25303 } 25304 interval *= 1000; 25305 25306 /* 25307 * submit the request to the scsi_watch service 25308 */ 25309 token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval, 25310 SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev); 25311 if (token == NULL) { 25312 return (EAGAIN); 25313 } 25314 25315 /* 25316 * save token for termination later on 25317 */ 25318 mutex_enter(SD_MUTEX(un)); 25319 un->un_mhd_token = token; 25320 mutex_exit(SD_MUTEX(un)); 25321 return (0); 25322 } 25323 25324 25325 /* 25326 * Function: sd_mhd_watch_cb() 25327 * 25328 * Description: This function is the call back function used by the scsi watch 25329 * facility. The scsi watch facility sends the "Test Unit Ready" 25330 * and processes the status. If applicable (i.e. a "Unit Attention" 25331 * status and automatic "Request Sense" not used) the scsi watch 25332 * facility will send a "Request Sense" and retrieve the sense data 25333 * to be passed to this callback function. In either case the 25334 * automatic "Request Sense" or the facility submitting one, this 25335 * callback is passed the status and sense data. 25336 * 25337 * Arguments: arg - the device 'dev_t' is used for context to discriminate 25338 * among multiple watches that share this callback function 25339 * resultp - scsi watch facility result packet containing scsi 25340 * packet, status byte and sense data 25341 * 25342 * Return Code: 0 - continue the watch task 25343 * non-zero - terminate the watch task 25344 */ 25345 25346 static int 25347 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp) 25348 { 25349 struct sd_lun *un; 25350 struct scsi_status *statusp; 25351 uint8_t *sensep; 25352 struct scsi_pkt *pkt; 25353 uchar_t actual_sense_length; 25354 dev_t dev = (dev_t)arg; 25355 25356 ASSERT(resultp != NULL); 25357 statusp = resultp->statusp; 25358 sensep = (uint8_t *)resultp->sensep; 25359 pkt = resultp->pkt; 25360 actual_sense_length = resultp->actual_sense_length; 25361 25362 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25363 return (ENXIO); 25364 } 25365 25366 SD_TRACE(SD_LOG_IOCTL_MHD, un, 25367 "sd_mhd_watch_cb: reason '%s', status '%s'\n", 25368 scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp))); 25369 25370 /* Begin processing of the status and/or sense data */ 25371 if (pkt->pkt_reason != CMD_CMPLT) { 25372 /* Handle the incomplete packet */ 25373 sd_mhd_watch_incomplete(un, pkt); 25374 return (0); 25375 } else if (*((unsigned char *)statusp) != STATUS_GOOD) { 25376 if (*((unsigned char *)statusp) 25377 == STATUS_RESERVATION_CONFLICT) { 25378 /* 25379 * Handle a reservation conflict by panicking if 25380 * configured for failfast or by logging the conflict 25381 * and updating the reservation status 25382 */ 25383 mutex_enter(SD_MUTEX(un)); 25384 if ((un->un_resvd_status & SD_FAILFAST) && 25385 (sd_failfast_enable)) { 25386 sd_panic_for_res_conflict(un); 25387 /*NOTREACHED*/ 25388 } 25389 SD_INFO(SD_LOG_IOCTL_MHD, un, 25390 "sd_mhd_watch_cb: Reservation Conflict\n"); 25391 un->un_resvd_status |= SD_RESERVATION_CONFLICT; 25392 mutex_exit(SD_MUTEX(un)); 25393 } 25394 } 25395 25396 if (sensep != NULL) { 25397 if (actual_sense_length >= (SENSE_LENGTH - 2)) { 25398 mutex_enter(SD_MUTEX(un)); 25399 if ((scsi_sense_asc(sensep) == 25400 SD_SCSI_RESET_SENSE_CODE) && 25401 (un->un_resvd_status & SD_RESERVE)) { 25402 /* 25403 * The additional sense code indicates a power 25404 * on or bus device reset has occurred; update 25405 * the reservation status. 25406 */ 25407 un->un_resvd_status |= 25408 (SD_LOST_RESERVE | SD_WANT_RESERVE); 25409 SD_INFO(SD_LOG_IOCTL_MHD, un, 25410 "sd_mhd_watch_cb: Lost Reservation\n"); 25411 } 25412 } else { 25413 return (0); 25414 } 25415 } else { 25416 mutex_enter(SD_MUTEX(un)); 25417 } 25418 25419 if ((un->un_resvd_status & SD_RESERVE) && 25420 (un->un_resvd_status & SD_LOST_RESERVE)) { 25421 if (un->un_resvd_status & SD_WANT_RESERVE) { 25422 /* 25423 * A reset occurred in between the last probe and this 25424 * one so if a timeout is pending cancel it. 25425 */ 25426 if (un->un_resvd_timeid) { 25427 timeout_id_t temp_id = un->un_resvd_timeid; 25428 un->un_resvd_timeid = NULL; 25429 mutex_exit(SD_MUTEX(un)); 25430 (void) untimeout(temp_id); 25431 mutex_enter(SD_MUTEX(un)); 25432 } 25433 un->un_resvd_status &= ~SD_WANT_RESERVE; 25434 } 25435 if (un->un_resvd_timeid == 0) { 25436 /* Schedule a timeout to handle the lost reservation */ 25437 un->un_resvd_timeid = timeout(sd_mhd_resvd_recover, 25438 (void *)dev, 25439 drv_usectohz(sd_reinstate_resv_delay)); 25440 } 25441 } 25442 mutex_exit(SD_MUTEX(un)); 25443 return (0); 25444 } 25445 25446 25447 /* 25448 * Function: sd_mhd_watch_incomplete() 25449 * 25450 * Description: This function is used to find out why a scsi pkt sent by the 25451 * scsi watch facility was not completed. Under some scenarios this 25452 * routine will return. Otherwise it will send a bus reset to see 25453 * if the drive is still online. 25454 * 25455 * Arguments: un - driver soft state (unit) structure 25456 * pkt - incomplete scsi pkt 25457 */ 25458 25459 static void 25460 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt) 25461 { 25462 int be_chatty; 25463 int perr; 25464 25465 ASSERT(pkt != NULL); 25466 ASSERT(un != NULL); 25467 be_chatty = (!(pkt->pkt_flags & FLAG_SILENT)); 25468 perr = (pkt->pkt_statistics & STAT_PERR); 25469 25470 mutex_enter(SD_MUTEX(un)); 25471 if (un->un_state == SD_STATE_DUMPING) { 25472 mutex_exit(SD_MUTEX(un)); 25473 return; 25474 } 25475 25476 switch (pkt->pkt_reason) { 25477 case CMD_UNX_BUS_FREE: 25478 /* 25479 * If we had a parity error that caused the target to drop BSY*, 25480 * don't be chatty about it. 25481 */ 25482 if (perr && be_chatty) { 25483 be_chatty = 0; 25484 } 25485 break; 25486 case CMD_TAG_REJECT: 25487 /* 25488 * The SCSI-2 spec states that a tag reject will be sent by the 25489 * target if tagged queuing is not supported. A tag reject may 25490 * also be sent during certain initialization periods or to 25491 * control internal resources. For the latter case the target 25492 * may also return Queue Full. 25493 * 25494 * If this driver receives a tag reject from a target that is 25495 * going through an init period or controlling internal 25496 * resources tagged queuing will be disabled. This is a less 25497 * than optimal behavior but the driver is unable to determine 25498 * the target state and assumes tagged queueing is not supported 25499 */ 25500 pkt->pkt_flags = 0; 25501 un->un_tagflags = 0; 25502 25503 if (un->un_f_opt_queueing == TRUE) { 25504 un->un_throttle = min(un->un_throttle, 3); 25505 } else { 25506 un->un_throttle = 1; 25507 } 25508 mutex_exit(SD_MUTEX(un)); 25509 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 25510 mutex_enter(SD_MUTEX(un)); 25511 break; 25512 case CMD_INCOMPLETE: 25513 /* 25514 * The transport stopped with an abnormal state, fallthrough and 25515 * reset the target and/or bus unless selection did not complete 25516 * (indicated by STATE_GOT_BUS) in which case we don't want to 25517 * go through a target/bus reset 25518 */ 25519 if (pkt->pkt_state == STATE_GOT_BUS) { 25520 break; 25521 } 25522 /*FALLTHROUGH*/ 25523 25524 case CMD_TIMEOUT: 25525 default: 25526 /* 25527 * The lun may still be running the command, so a lun reset 25528 * should be attempted. If the lun reset fails or cannot be 25529 * issued, than try a target reset. Lastly try a bus reset. 25530 */ 25531 if ((pkt->pkt_statistics & 25532 (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) { 25533 int reset_retval = 0; 25534 mutex_exit(SD_MUTEX(un)); 25535 if (un->un_f_allow_bus_device_reset == TRUE) { 25536 if (un->un_f_lun_reset_enabled == TRUE) { 25537 reset_retval = 25538 scsi_reset(SD_ADDRESS(un), 25539 RESET_LUN); 25540 } 25541 if (reset_retval == 0) { 25542 reset_retval = 25543 scsi_reset(SD_ADDRESS(un), 25544 RESET_TARGET); 25545 } 25546 } 25547 if (reset_retval == 0) { 25548 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 25549 } 25550 mutex_enter(SD_MUTEX(un)); 25551 } 25552 break; 25553 } 25554 25555 /* A device/bus reset has occurred; update the reservation status. */ 25556 if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics & 25557 (STAT_BUS_RESET | STAT_DEV_RESET))) { 25558 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 25559 un->un_resvd_status |= 25560 (SD_LOST_RESERVE | SD_WANT_RESERVE); 25561 SD_INFO(SD_LOG_IOCTL_MHD, un, 25562 "sd_mhd_watch_incomplete: Lost Reservation\n"); 25563 } 25564 } 25565 25566 /* 25567 * The disk has been turned off; Update the device state. 25568 * 25569 * Note: Should we be offlining the disk here? 25570 */ 25571 if (pkt->pkt_state == STATE_GOT_BUS) { 25572 SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: " 25573 "Disk not responding to selection\n"); 25574 if (un->un_state != SD_STATE_OFFLINE) { 25575 New_state(un, SD_STATE_OFFLINE); 25576 } 25577 } else if (be_chatty) { 25578 /* 25579 * suppress messages if they are all the same pkt reason; 25580 * with TQ, many (up to 256) are returned with the same 25581 * pkt_reason 25582 */ 25583 if (pkt->pkt_reason != un->un_last_pkt_reason) { 25584 SD_ERROR(SD_LOG_IOCTL_MHD, un, 25585 "sd_mhd_watch_incomplete: " 25586 "SCSI transport failed: reason '%s'\n", 25587 scsi_rname(pkt->pkt_reason)); 25588 } 25589 } 25590 un->un_last_pkt_reason = pkt->pkt_reason; 25591 mutex_exit(SD_MUTEX(un)); 25592 } 25593 25594 25595 /* 25596 * Function: sd_sname() 25597 * 25598 * Description: This is a simple little routine to return a string containing 25599 * a printable description of command status byte for use in 25600 * logging. 25601 * 25602 * Arguments: status - pointer to a status byte 25603 * 25604 * Return Code: char * - string containing status description. 25605 */ 25606 25607 static char * 25608 sd_sname(uchar_t status) 25609 { 25610 switch (status & STATUS_MASK) { 25611 case STATUS_GOOD: 25612 return ("good status"); 25613 case STATUS_CHECK: 25614 return ("check condition"); 25615 case STATUS_MET: 25616 return ("condition met"); 25617 case STATUS_BUSY: 25618 return ("busy"); 25619 case STATUS_INTERMEDIATE: 25620 return ("intermediate"); 25621 case STATUS_INTERMEDIATE_MET: 25622 return ("intermediate - condition met"); 25623 case STATUS_RESERVATION_CONFLICT: 25624 return ("reservation_conflict"); 25625 case STATUS_TERMINATED: 25626 return ("command terminated"); 25627 case STATUS_QFULL: 25628 return ("queue full"); 25629 default: 25630 return ("<unknown status>"); 25631 } 25632 } 25633 25634 25635 /* 25636 * Function: sd_mhd_resvd_recover() 25637 * 25638 * Description: This function adds a reservation entry to the 25639 * sd_resv_reclaim_request list and signals the reservation 25640 * reclaim thread that there is work pending. If the reservation 25641 * reclaim thread has not been previously created this function 25642 * will kick it off. 25643 * 25644 * Arguments: arg - the device 'dev_t' is used for context to discriminate 25645 * among multiple watches that share this callback function 25646 * 25647 * Context: This routine is called by timeout() and is run in interrupt 25648 * context. It must not sleep or call other functions which may 25649 * sleep. 25650 */ 25651 25652 static void 25653 sd_mhd_resvd_recover(void *arg) 25654 { 25655 dev_t dev = (dev_t)arg; 25656 struct sd_lun *un; 25657 struct sd_thr_request *sd_treq = NULL; 25658 struct sd_thr_request *sd_cur = NULL; 25659 struct sd_thr_request *sd_prev = NULL; 25660 int already_there = 0; 25661 25662 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25663 return; 25664 } 25665 25666 mutex_enter(SD_MUTEX(un)); 25667 un->un_resvd_timeid = NULL; 25668 if (un->un_resvd_status & SD_WANT_RESERVE) { 25669 /* 25670 * There was a reset so don't issue the reserve, allow the 25671 * sd_mhd_watch_cb callback function to notice this and 25672 * reschedule the timeout for reservation. 25673 */ 25674 mutex_exit(SD_MUTEX(un)); 25675 return; 25676 } 25677 mutex_exit(SD_MUTEX(un)); 25678 25679 /* 25680 * Add this device to the sd_resv_reclaim_request list and the 25681 * sd_resv_reclaim_thread should take care of the rest. 25682 * 25683 * Note: We can't sleep in this context so if the memory allocation 25684 * fails allow the sd_mhd_watch_cb callback function to notice this and 25685 * reschedule the timeout for reservation. (4378460) 25686 */ 25687 sd_treq = (struct sd_thr_request *) 25688 kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP); 25689 if (sd_treq == NULL) { 25690 return; 25691 } 25692 25693 sd_treq->sd_thr_req_next = NULL; 25694 sd_treq->dev = dev; 25695 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25696 if (sd_tr.srq_thr_req_head == NULL) { 25697 sd_tr.srq_thr_req_head = sd_treq; 25698 } else { 25699 sd_cur = sd_prev = sd_tr.srq_thr_req_head; 25700 for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) { 25701 if (sd_cur->dev == dev) { 25702 /* 25703 * already in Queue so don't log 25704 * another request for the device 25705 */ 25706 already_there = 1; 25707 break; 25708 } 25709 sd_prev = sd_cur; 25710 } 25711 if (!already_there) { 25712 SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: " 25713 "logging request for %lx\n", dev); 25714 sd_prev->sd_thr_req_next = sd_treq; 25715 } else { 25716 kmem_free(sd_treq, sizeof (struct sd_thr_request)); 25717 } 25718 } 25719 25720 /* 25721 * Create a kernel thread to do the reservation reclaim and free up this 25722 * thread. We cannot block this thread while we go away to do the 25723 * reservation reclaim 25724 */ 25725 if (sd_tr.srq_resv_reclaim_thread == NULL) 25726 sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0, 25727 sd_resv_reclaim_thread, NULL, 25728 0, &p0, TS_RUN, v.v_maxsyspri - 2); 25729 25730 /* Tell the reservation reclaim thread that it has work to do */ 25731 cv_signal(&sd_tr.srq_resv_reclaim_cv); 25732 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25733 } 25734 25735 /* 25736 * Function: sd_resv_reclaim_thread() 25737 * 25738 * Description: This function implements the reservation reclaim operations 25739 * 25740 * Arguments: arg - the device 'dev_t' is used for context to discriminate 25741 * among multiple watches that share this callback function 25742 */ 25743 25744 static void 25745 sd_resv_reclaim_thread() 25746 { 25747 struct sd_lun *un; 25748 struct sd_thr_request *sd_mhreq; 25749 25750 /* Wait for work */ 25751 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25752 if (sd_tr.srq_thr_req_head == NULL) { 25753 cv_wait(&sd_tr.srq_resv_reclaim_cv, 25754 &sd_tr.srq_resv_reclaim_mutex); 25755 } 25756 25757 /* Loop while we have work */ 25758 while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) { 25759 un = ddi_get_soft_state(sd_state, 25760 SDUNIT(sd_tr.srq_thr_cur_req->dev)); 25761 if (un == NULL) { 25762 /* 25763 * softstate structure is NULL so just 25764 * dequeue the request and continue 25765 */ 25766 sd_tr.srq_thr_req_head = 25767 sd_tr.srq_thr_cur_req->sd_thr_req_next; 25768 kmem_free(sd_tr.srq_thr_cur_req, 25769 sizeof (struct sd_thr_request)); 25770 continue; 25771 } 25772 25773 /* dequeue the request */ 25774 sd_mhreq = sd_tr.srq_thr_cur_req; 25775 sd_tr.srq_thr_req_head = 25776 sd_tr.srq_thr_cur_req->sd_thr_req_next; 25777 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25778 25779 /* 25780 * Reclaim reservation only if SD_RESERVE is still set. There 25781 * may have been a call to MHIOCRELEASE before we got here. 25782 */ 25783 mutex_enter(SD_MUTEX(un)); 25784 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 25785 /* 25786 * Note: The SD_LOST_RESERVE flag is cleared before 25787 * reclaiming the reservation. If this is done after the 25788 * call to sd_reserve_release a reservation loss in the 25789 * window between pkt completion of reserve cmd and 25790 * mutex_enter below may not be recognized 25791 */ 25792 un->un_resvd_status &= ~SD_LOST_RESERVE; 25793 mutex_exit(SD_MUTEX(un)); 25794 25795 if (sd_reserve_release(sd_mhreq->dev, 25796 SD_RESERVE) == 0) { 25797 mutex_enter(SD_MUTEX(un)); 25798 un->un_resvd_status |= SD_RESERVE; 25799 mutex_exit(SD_MUTEX(un)); 25800 SD_INFO(SD_LOG_IOCTL_MHD, un, 25801 "sd_resv_reclaim_thread: " 25802 "Reservation Recovered\n"); 25803 } else { 25804 mutex_enter(SD_MUTEX(un)); 25805 un->un_resvd_status |= SD_LOST_RESERVE; 25806 mutex_exit(SD_MUTEX(un)); 25807 SD_INFO(SD_LOG_IOCTL_MHD, un, 25808 "sd_resv_reclaim_thread: Failed " 25809 "Reservation Recovery\n"); 25810 } 25811 } else { 25812 mutex_exit(SD_MUTEX(un)); 25813 } 25814 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25815 ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req); 25816 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 25817 sd_mhreq = sd_tr.srq_thr_cur_req = NULL; 25818 /* 25819 * wakeup the destroy thread if anyone is waiting on 25820 * us to complete. 25821 */ 25822 cv_signal(&sd_tr.srq_inprocess_cv); 25823 SD_TRACE(SD_LOG_IOCTL_MHD, un, 25824 "sd_resv_reclaim_thread: cv_signalling current request \n"); 25825 } 25826 25827 /* 25828 * cleanup the sd_tr structure now that this thread will not exist 25829 */ 25830 ASSERT(sd_tr.srq_thr_req_head == NULL); 25831 ASSERT(sd_tr.srq_thr_cur_req == NULL); 25832 sd_tr.srq_resv_reclaim_thread = NULL; 25833 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25834 thread_exit(); 25835 } 25836 25837 25838 /* 25839 * Function: sd_rmv_resv_reclaim_req() 25840 * 25841 * Description: This function removes any pending reservation reclaim requests 25842 * for the specified device. 25843 * 25844 * Arguments: dev - the device 'dev_t' 25845 */ 25846 25847 static void 25848 sd_rmv_resv_reclaim_req(dev_t dev) 25849 { 25850 struct sd_thr_request *sd_mhreq; 25851 struct sd_thr_request *sd_prev; 25852 25853 /* Remove a reservation reclaim request from the list */ 25854 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25855 if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) { 25856 /* 25857 * We are attempting to reinstate reservation for 25858 * this device. We wait for sd_reserve_release() 25859 * to return before we return. 25860 */ 25861 cv_wait(&sd_tr.srq_inprocess_cv, 25862 &sd_tr.srq_resv_reclaim_mutex); 25863 } else { 25864 sd_prev = sd_mhreq = sd_tr.srq_thr_req_head; 25865 if (sd_mhreq && sd_mhreq->dev == dev) { 25866 sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next; 25867 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 25868 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25869 return; 25870 } 25871 for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) { 25872 if (sd_mhreq && sd_mhreq->dev == dev) { 25873 break; 25874 } 25875 sd_prev = sd_mhreq; 25876 } 25877 if (sd_mhreq != NULL) { 25878 sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next; 25879 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 25880 } 25881 } 25882 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25883 } 25884 25885 25886 /* 25887 * Function: sd_mhd_reset_notify_cb() 25888 * 25889 * Description: This is a call back function for scsi_reset_notify. This 25890 * function updates the softstate reserved status and logs the 25891 * reset. The driver scsi watch facility callback function 25892 * (sd_mhd_watch_cb) and reservation reclaim thread functionality 25893 * will reclaim the reservation. 25894 * 25895 * Arguments: arg - driver soft state (unit) structure 25896 */ 25897 25898 static void 25899 sd_mhd_reset_notify_cb(caddr_t arg) 25900 { 25901 struct sd_lun *un = (struct sd_lun *)arg; 25902 25903 mutex_enter(SD_MUTEX(un)); 25904 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 25905 un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE); 25906 SD_INFO(SD_LOG_IOCTL_MHD, un, 25907 "sd_mhd_reset_notify_cb: Lost Reservation\n"); 25908 } 25909 mutex_exit(SD_MUTEX(un)); 25910 } 25911 25912 25913 /* 25914 * Function: sd_take_ownership() 25915 * 25916 * Description: This routine implements an algorithm to achieve a stable 25917 * reservation on disks which don't implement priority reserve, 25918 * and makes sure that other host lose re-reservation attempts. 25919 * This algorithm contains of a loop that keeps issuing the RESERVE 25920 * for some period of time (min_ownership_delay, default 6 seconds) 25921 * During that loop, it looks to see if there has been a bus device 25922 * reset or bus reset (both of which cause an existing reservation 25923 * to be lost). If the reservation is lost issue RESERVE until a 25924 * period of min_ownership_delay with no resets has gone by, or 25925 * until max_ownership_delay has expired. This loop ensures that 25926 * the host really did manage to reserve the device, in spite of 25927 * resets. The looping for min_ownership_delay (default six 25928 * seconds) is important to early generation clustering products, 25929 * Solstice HA 1.x and Sun Cluster 2.x. Those products use an 25930 * MHIOCENFAILFAST periodic timer of two seconds. By having 25931 * MHIOCTKOWN issue Reserves in a loop for six seconds, and having 25932 * MHIOCENFAILFAST poll every two seconds, the idea is that by the 25933 * time the MHIOCTKOWN ioctl returns, the other host (if any) will 25934 * have already noticed, via the MHIOCENFAILFAST polling, that it 25935 * no longer "owns" the disk and will have panicked itself. Thus, 25936 * the host issuing the MHIOCTKOWN is assured (with timing 25937 * dependencies) that by the time it actually starts to use the 25938 * disk for real work, the old owner is no longer accessing it. 25939 * 25940 * min_ownership_delay is the minimum amount of time for which the 25941 * disk must be reserved continuously devoid of resets before the 25942 * MHIOCTKOWN ioctl will return success. 25943 * 25944 * max_ownership_delay indicates the amount of time by which the 25945 * take ownership should succeed or timeout with an error. 25946 * 25947 * Arguments: dev - the device 'dev_t' 25948 * *p - struct containing timing info. 25949 * 25950 * Return Code: 0 for success or error code 25951 */ 25952 25953 static int 25954 sd_take_ownership(dev_t dev, struct mhioctkown *p) 25955 { 25956 struct sd_lun *un; 25957 int rval; 25958 int err; 25959 int reservation_count = 0; 25960 int min_ownership_delay = 6000000; /* in usec */ 25961 int max_ownership_delay = 30000000; /* in usec */ 25962 clock_t start_time; /* starting time of this algorithm */ 25963 clock_t end_time; /* time limit for giving up */ 25964 clock_t ownership_time; /* time limit for stable ownership */ 25965 clock_t current_time; 25966 clock_t previous_current_time; 25967 25968 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25969 return (ENXIO); 25970 } 25971 25972 /* 25973 * Attempt a device reservation. A priority reservation is requested. 25974 */ 25975 if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE)) 25976 != SD_SUCCESS) { 25977 SD_ERROR(SD_LOG_IOCTL_MHD, un, 25978 "sd_take_ownership: return(1)=%d\n", rval); 25979 return (rval); 25980 } 25981 25982 /* Update the softstate reserved status to indicate the reservation */ 25983 mutex_enter(SD_MUTEX(un)); 25984 un->un_resvd_status |= SD_RESERVE; 25985 un->un_resvd_status &= 25986 ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT); 25987 mutex_exit(SD_MUTEX(un)); 25988 25989 if (p != NULL) { 25990 if (p->min_ownership_delay != 0) { 25991 min_ownership_delay = p->min_ownership_delay * 1000; 25992 } 25993 if (p->max_ownership_delay != 0) { 25994 max_ownership_delay = p->max_ownership_delay * 1000; 25995 } 25996 } 25997 SD_INFO(SD_LOG_IOCTL_MHD, un, 25998 "sd_take_ownership: min, max delays: %d, %d\n", 25999 min_ownership_delay, max_ownership_delay); 26000 26001 start_time = ddi_get_lbolt(); 26002 current_time = start_time; 26003 ownership_time = current_time + drv_usectohz(min_ownership_delay); 26004 end_time = start_time + drv_usectohz(max_ownership_delay); 26005 26006 while (current_time - end_time < 0) { 26007 delay(drv_usectohz(500000)); 26008 26009 if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) { 26010 if ((sd_reserve_release(dev, SD_RESERVE)) != 0) { 26011 mutex_enter(SD_MUTEX(un)); 26012 rval = (un->un_resvd_status & 26013 SD_RESERVATION_CONFLICT) ? EACCES : EIO; 26014 mutex_exit(SD_MUTEX(un)); 26015 break; 26016 } 26017 } 26018 previous_current_time = current_time; 26019 current_time = ddi_get_lbolt(); 26020 mutex_enter(SD_MUTEX(un)); 26021 if (err || (un->un_resvd_status & SD_LOST_RESERVE)) { 26022 ownership_time = ddi_get_lbolt() + 26023 drv_usectohz(min_ownership_delay); 26024 reservation_count = 0; 26025 } else { 26026 reservation_count++; 26027 } 26028 un->un_resvd_status |= SD_RESERVE; 26029 un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE); 26030 mutex_exit(SD_MUTEX(un)); 26031 26032 SD_INFO(SD_LOG_IOCTL_MHD, un, 26033 "sd_take_ownership: ticks for loop iteration=%ld, " 26034 "reservation=%s\n", (current_time - previous_current_time), 26035 reservation_count ? "ok" : "reclaimed"); 26036 26037 if (current_time - ownership_time >= 0 && 26038 reservation_count >= 4) { 26039 rval = 0; /* Achieved a stable ownership */ 26040 break; 26041 } 26042 if (current_time - end_time >= 0) { 26043 rval = EACCES; /* No ownership in max possible time */ 26044 break; 26045 } 26046 } 26047 SD_TRACE(SD_LOG_IOCTL_MHD, un, 26048 "sd_take_ownership: return(2)=%d\n", rval); 26049 return (rval); 26050 } 26051 26052 26053 /* 26054 * Function: sd_reserve_release() 26055 * 26056 * Description: This function builds and sends scsi RESERVE, RELEASE, and 26057 * PRIORITY RESERVE commands based on a user specified command type 26058 * 26059 * Arguments: dev - the device 'dev_t' 26060 * cmd - user specified command type; one of SD_PRIORITY_RESERVE, 26061 * SD_RESERVE, SD_RELEASE 26062 * 26063 * Return Code: 0 or Error Code 26064 */ 26065 26066 static int 26067 sd_reserve_release(dev_t dev, int cmd) 26068 { 26069 struct uscsi_cmd *com = NULL; 26070 struct sd_lun *un = NULL; 26071 char cdb[CDB_GROUP0]; 26072 int rval; 26073 26074 ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) || 26075 (cmd == SD_PRIORITY_RESERVE)); 26076 26077 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 26078 return (ENXIO); 26079 } 26080 26081 /* instantiate and initialize the command and cdb */ 26082 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 26083 bzero(cdb, CDB_GROUP0); 26084 com->uscsi_flags = USCSI_SILENT; 26085 com->uscsi_timeout = un->un_reserve_release_time; 26086 com->uscsi_cdblen = CDB_GROUP0; 26087 com->uscsi_cdb = cdb; 26088 if (cmd == SD_RELEASE) { 26089 cdb[0] = SCMD_RELEASE; 26090 } else { 26091 cdb[0] = SCMD_RESERVE; 26092 } 26093 26094 /* Send the command. */ 26095 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 26096 SD_PATH_STANDARD); 26097 26098 /* 26099 * "break" a reservation that is held by another host, by issuing a 26100 * reset if priority reserve is desired, and we could not get the 26101 * device. 26102 */ 26103 if ((cmd == SD_PRIORITY_RESERVE) && 26104 (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) { 26105 /* 26106 * First try to reset the LUN. If we cannot, then try a target 26107 * reset, followed by a bus reset if the target reset fails. 26108 */ 26109 int reset_retval = 0; 26110 if (un->un_f_lun_reset_enabled == TRUE) { 26111 reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 26112 } 26113 if (reset_retval == 0) { 26114 /* The LUN reset either failed or was not issued */ 26115 reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 26116 } 26117 if ((reset_retval == 0) && 26118 (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) { 26119 rval = EIO; 26120 kmem_free(com, sizeof (*com)); 26121 return (rval); 26122 } 26123 26124 bzero(com, sizeof (struct uscsi_cmd)); 26125 com->uscsi_flags = USCSI_SILENT; 26126 com->uscsi_cdb = cdb; 26127 com->uscsi_cdblen = CDB_GROUP0; 26128 com->uscsi_timeout = 5; 26129 26130 /* 26131 * Reissue the last reserve command, this time without request 26132 * sense. Assume that it is just a regular reserve command. 26133 */ 26134 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 26135 SD_PATH_STANDARD); 26136 } 26137 26138 /* Return an error if still getting a reservation conflict. */ 26139 if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) { 26140 rval = EACCES; 26141 } 26142 26143 kmem_free(com, sizeof (*com)); 26144 return (rval); 26145 } 26146 26147 26148 #define SD_NDUMP_RETRIES 12 26149 /* 26150 * System Crash Dump routine 26151 */ 26152 26153 static int 26154 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk) 26155 { 26156 int instance; 26157 int partition; 26158 int i; 26159 int err; 26160 struct sd_lun *un; 26161 struct dk_map *lp; 26162 struct scsi_pkt *wr_pktp; 26163 struct buf *wr_bp; 26164 struct buf wr_buf; 26165 daddr_t tgt_byte_offset; /* rmw - byte offset for target */ 26166 daddr_t tgt_blkno; /* rmw - blkno for target */ 26167 size_t tgt_byte_count; /* rmw - # of bytes to xfer */ 26168 size_t tgt_nblk; /* rmw - # of tgt blks to xfer */ 26169 size_t io_start_offset; 26170 int doing_rmw = FALSE; 26171 int rval; 26172 #if defined(__i386) || defined(__amd64) 26173 ssize_t dma_resid; 26174 daddr_t oblkno; 26175 #endif 26176 26177 instance = SDUNIT(dev); 26178 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 26179 (!un->un_f_geometry_is_valid) || ISCD(un)) { 26180 return (ENXIO); 26181 } 26182 26183 _NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un)) 26184 26185 SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n"); 26186 26187 partition = SDPART(dev); 26188 SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition); 26189 26190 /* Validate blocks to dump at against partition size. */ 26191 lp = &un->un_map[partition]; 26192 if ((blkno + nblk) > lp->dkl_nblk) { 26193 SD_TRACE(SD_LOG_DUMP, un, 26194 "sddump: dump range larger than partition: " 26195 "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n", 26196 blkno, nblk, lp->dkl_nblk); 26197 return (EINVAL); 26198 } 26199 26200 mutex_enter(&un->un_pm_mutex); 26201 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 26202 struct scsi_pkt *start_pktp; 26203 26204 mutex_exit(&un->un_pm_mutex); 26205 26206 /* 26207 * use pm framework to power on HBA 1st 26208 */ 26209 (void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON); 26210 26211 /* 26212 * Dump no long uses sdpower to power on a device, it's 26213 * in-line here so it can be done in polled mode. 26214 */ 26215 26216 SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n"); 26217 26218 start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL, 26219 CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL); 26220 26221 if (start_pktp == NULL) { 26222 /* We were not given a SCSI packet, fail. */ 26223 return (EIO); 26224 } 26225 bzero(start_pktp->pkt_cdbp, CDB_GROUP0); 26226 start_pktp->pkt_cdbp[0] = SCMD_START_STOP; 26227 start_pktp->pkt_cdbp[4] = SD_TARGET_START; 26228 start_pktp->pkt_flags = FLAG_NOINTR; 26229 26230 mutex_enter(SD_MUTEX(un)); 26231 SD_FILL_SCSI1_LUN(un, start_pktp); 26232 mutex_exit(SD_MUTEX(un)); 26233 /* 26234 * Scsi_poll returns 0 (success) if the command completes and 26235 * the status block is STATUS_GOOD. 26236 */ 26237 if (sd_scsi_poll(un, start_pktp) != 0) { 26238 scsi_destroy_pkt(start_pktp); 26239 return (EIO); 26240 } 26241 scsi_destroy_pkt(start_pktp); 26242 (void) sd_ddi_pm_resume(un); 26243 } else { 26244 mutex_exit(&un->un_pm_mutex); 26245 } 26246 26247 mutex_enter(SD_MUTEX(un)); 26248 un->un_throttle = 0; 26249 26250 /* 26251 * The first time through, reset the specific target device. 26252 * However, when cpr calls sddump we know that sd is in a 26253 * a good state so no bus reset is required. 26254 * Clear sense data via Request Sense cmd. 26255 * In sddump we don't care about allow_bus_device_reset anymore 26256 */ 26257 26258 if ((un->un_state != SD_STATE_SUSPENDED) && 26259 (un->un_state != SD_STATE_DUMPING)) { 26260 26261 New_state(un, SD_STATE_DUMPING); 26262 26263 if (un->un_f_is_fibre == FALSE) { 26264 mutex_exit(SD_MUTEX(un)); 26265 /* 26266 * Attempt a bus reset for parallel scsi. 26267 * 26268 * Note: A bus reset is required because on some host 26269 * systems (i.e. E420R) a bus device reset is 26270 * insufficient to reset the state of the target. 26271 * 26272 * Note: Don't issue the reset for fibre-channel, 26273 * because this tends to hang the bus (loop) for 26274 * too long while everyone is logging out and in 26275 * and the deadman timer for dumping will fire 26276 * before the dump is complete. 26277 */ 26278 if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) { 26279 mutex_enter(SD_MUTEX(un)); 26280 Restore_state(un); 26281 mutex_exit(SD_MUTEX(un)); 26282 return (EIO); 26283 } 26284 26285 /* Delay to give the device some recovery time. */ 26286 drv_usecwait(10000); 26287 26288 if (sd_send_polled_RQS(un) == SD_FAILURE) { 26289 SD_INFO(SD_LOG_DUMP, un, 26290 "sddump: sd_send_polled_RQS failed\n"); 26291 } 26292 mutex_enter(SD_MUTEX(un)); 26293 } 26294 } 26295 26296 /* 26297 * Convert the partition-relative block number to a 26298 * disk physical block number. 26299 */ 26300 blkno += un->un_offset[partition]; 26301 SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno); 26302 26303 26304 /* 26305 * Check if the device has a non-512 block size. 26306 */ 26307 wr_bp = NULL; 26308 if (NOT_DEVBSIZE(un)) { 26309 tgt_byte_offset = blkno * un->un_sys_blocksize; 26310 tgt_byte_count = nblk * un->un_sys_blocksize; 26311 if ((tgt_byte_offset % un->un_tgt_blocksize) || 26312 (tgt_byte_count % un->un_tgt_blocksize)) { 26313 doing_rmw = TRUE; 26314 /* 26315 * Calculate the block number and number of block 26316 * in terms of the media block size. 26317 */ 26318 tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize; 26319 tgt_nblk = 26320 ((tgt_byte_offset + tgt_byte_count + 26321 (un->un_tgt_blocksize - 1)) / 26322 un->un_tgt_blocksize) - tgt_blkno; 26323 26324 /* 26325 * Invoke the routine which is going to do read part 26326 * of read-modify-write. 26327 * Note that this routine returns a pointer to 26328 * a valid bp in wr_bp. 26329 */ 26330 err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk, 26331 &wr_bp); 26332 if (err) { 26333 mutex_exit(SD_MUTEX(un)); 26334 return (err); 26335 } 26336 /* 26337 * Offset is being calculated as - 26338 * (original block # * system block size) - 26339 * (new block # * target block size) 26340 */ 26341 io_start_offset = 26342 ((uint64_t)(blkno * un->un_sys_blocksize)) - 26343 ((uint64_t)(tgt_blkno * un->un_tgt_blocksize)); 26344 26345 ASSERT((io_start_offset >= 0) && 26346 (io_start_offset < un->un_tgt_blocksize)); 26347 /* 26348 * Do the modify portion of read modify write. 26349 */ 26350 bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset], 26351 (size_t)nblk * un->un_sys_blocksize); 26352 } else { 26353 doing_rmw = FALSE; 26354 tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize; 26355 tgt_nblk = tgt_byte_count / un->un_tgt_blocksize; 26356 } 26357 26358 /* Convert blkno and nblk to target blocks */ 26359 blkno = tgt_blkno; 26360 nblk = tgt_nblk; 26361 } else { 26362 wr_bp = &wr_buf; 26363 bzero(wr_bp, sizeof (struct buf)); 26364 wr_bp->b_flags = B_BUSY; 26365 wr_bp->b_un.b_addr = addr; 26366 wr_bp->b_bcount = nblk << DEV_BSHIFT; 26367 wr_bp->b_resid = 0; 26368 } 26369 26370 mutex_exit(SD_MUTEX(un)); 26371 26372 /* 26373 * Obtain a SCSI packet for the write command. 26374 * It should be safe to call the allocator here without 26375 * worrying about being locked for DVMA mapping because 26376 * the address we're passed is already a DVMA mapping 26377 * 26378 * We are also not going to worry about semaphore ownership 26379 * in the dump buffer. Dumping is single threaded at present. 26380 */ 26381 26382 wr_pktp = NULL; 26383 26384 #if defined(__i386) || defined(__amd64) 26385 dma_resid = wr_bp->b_bcount; 26386 oblkno = blkno; 26387 while (dma_resid != 0) { 26388 #endif 26389 26390 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 26391 wr_bp->b_flags &= ~B_ERROR; 26392 26393 #if defined(__i386) || defined(__amd64) 26394 blkno = oblkno + 26395 ((wr_bp->b_bcount - dma_resid) / 26396 un->un_tgt_blocksize); 26397 nblk = dma_resid / un->un_tgt_blocksize; 26398 26399 if (wr_pktp) { 26400 /* Partial DMA transfers after initial transfer */ 26401 rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp, 26402 blkno, nblk); 26403 } else { 26404 /* Initial transfer */ 26405 rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp, 26406 un->un_pkt_flags, NULL_FUNC, NULL, 26407 blkno, nblk); 26408 } 26409 #else 26410 rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp, 26411 0, NULL_FUNC, NULL, blkno, nblk); 26412 #endif 26413 26414 if (rval == 0) { 26415 /* We were given a SCSI packet, continue. */ 26416 break; 26417 } 26418 26419 if (i == 0) { 26420 if (wr_bp->b_flags & B_ERROR) { 26421 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26422 "no resources for dumping; " 26423 "error code: 0x%x, retrying", 26424 geterror(wr_bp)); 26425 } else { 26426 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26427 "no resources for dumping; retrying"); 26428 } 26429 } else if (i != (SD_NDUMP_RETRIES - 1)) { 26430 if (wr_bp->b_flags & B_ERROR) { 26431 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 26432 "no resources for dumping; error code: " 26433 "0x%x, retrying\n", geterror(wr_bp)); 26434 } 26435 } else { 26436 if (wr_bp->b_flags & B_ERROR) { 26437 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 26438 "no resources for dumping; " 26439 "error code: 0x%x, retries failed, " 26440 "giving up.\n", geterror(wr_bp)); 26441 } else { 26442 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 26443 "no resources for dumping; " 26444 "retries failed, giving up.\n"); 26445 } 26446 mutex_enter(SD_MUTEX(un)); 26447 Restore_state(un); 26448 if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) { 26449 mutex_exit(SD_MUTEX(un)); 26450 scsi_free_consistent_buf(wr_bp); 26451 } else { 26452 mutex_exit(SD_MUTEX(un)); 26453 } 26454 return (EIO); 26455 } 26456 drv_usecwait(10000); 26457 } 26458 26459 #if defined(__i386) || defined(__amd64) 26460 /* 26461 * save the resid from PARTIAL_DMA 26462 */ 26463 dma_resid = wr_pktp->pkt_resid; 26464 if (dma_resid != 0) 26465 nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid); 26466 wr_pktp->pkt_resid = 0; 26467 #endif 26468 26469 /* SunBug 1222170 */ 26470 wr_pktp->pkt_flags = FLAG_NOINTR; 26471 26472 err = EIO; 26473 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 26474 26475 /* 26476 * Scsi_poll returns 0 (success) if the command completes and 26477 * the status block is STATUS_GOOD. We should only check 26478 * errors if this condition is not true. Even then we should 26479 * send our own request sense packet only if we have a check 26480 * condition and auto request sense has not been performed by 26481 * the hba. 26482 */ 26483 SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n"); 26484 26485 if ((sd_scsi_poll(un, wr_pktp) == 0) && 26486 (wr_pktp->pkt_resid == 0)) { 26487 err = SD_SUCCESS; 26488 break; 26489 } 26490 26491 /* 26492 * Check CMD_DEV_GONE 1st, give up if device is gone. 26493 */ 26494 if (wr_pktp->pkt_reason == CMD_DEV_GONE) { 26495 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 26496 "Device is gone\n"); 26497 break; 26498 } 26499 26500 if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) { 26501 SD_INFO(SD_LOG_DUMP, un, 26502 "sddump: write failed with CHECK, try # %d\n", i); 26503 if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) { 26504 (void) sd_send_polled_RQS(un); 26505 } 26506 26507 continue; 26508 } 26509 26510 if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) { 26511 int reset_retval = 0; 26512 26513 SD_INFO(SD_LOG_DUMP, un, 26514 "sddump: write failed with BUSY, try # %d\n", i); 26515 26516 if (un->un_f_lun_reset_enabled == TRUE) { 26517 reset_retval = scsi_reset(SD_ADDRESS(un), 26518 RESET_LUN); 26519 } 26520 if (reset_retval == 0) { 26521 (void) scsi_reset(SD_ADDRESS(un), RESET_TARGET); 26522 } 26523 (void) sd_send_polled_RQS(un); 26524 26525 } else { 26526 SD_INFO(SD_LOG_DUMP, un, 26527 "sddump: write failed with 0x%x, try # %d\n", 26528 SD_GET_PKT_STATUS(wr_pktp), i); 26529 mutex_enter(SD_MUTEX(un)); 26530 sd_reset_target(un, wr_pktp); 26531 mutex_exit(SD_MUTEX(un)); 26532 } 26533 26534 /* 26535 * If we are not getting anywhere with lun/target resets, 26536 * let's reset the bus. 26537 */ 26538 if (i == SD_NDUMP_RETRIES/2) { 26539 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 26540 (void) sd_send_polled_RQS(un); 26541 } 26542 26543 } 26544 #if defined(__i386) || defined(__amd64) 26545 } /* dma_resid */ 26546 #endif 26547 26548 scsi_destroy_pkt(wr_pktp); 26549 mutex_enter(SD_MUTEX(un)); 26550 if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) { 26551 mutex_exit(SD_MUTEX(un)); 26552 scsi_free_consistent_buf(wr_bp); 26553 } else { 26554 mutex_exit(SD_MUTEX(un)); 26555 } 26556 SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err); 26557 return (err); 26558 } 26559 26560 /* 26561 * Function: sd_scsi_poll() 26562 * 26563 * Description: This is a wrapper for the scsi_poll call. 26564 * 26565 * Arguments: sd_lun - The unit structure 26566 * scsi_pkt - The scsi packet being sent to the device. 26567 * 26568 * Return Code: 0 - Command completed successfully with good status 26569 * -1 - Command failed. This could indicate a check condition 26570 * or other status value requiring recovery action. 26571 * 26572 */ 26573 26574 static int 26575 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp) 26576 { 26577 int status; 26578 26579 ASSERT(un != NULL); 26580 ASSERT(!mutex_owned(SD_MUTEX(un))); 26581 ASSERT(pktp != NULL); 26582 26583 status = SD_SUCCESS; 26584 26585 if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) { 26586 pktp->pkt_flags |= un->un_tagflags; 26587 pktp->pkt_flags &= ~FLAG_NODISCON; 26588 } 26589 26590 status = sd_ddi_scsi_poll(pktp); 26591 /* 26592 * Scsi_poll returns 0 (success) if the command completes and the 26593 * status block is STATUS_GOOD. We should only check errors if this 26594 * condition is not true. Even then we should send our own request 26595 * sense packet only if we have a check condition and auto 26596 * request sense has not been performed by the hba. 26597 * Don't get RQS data if pkt_reason is CMD_DEV_GONE. 26598 */ 26599 if ((status != SD_SUCCESS) && 26600 (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) && 26601 (pktp->pkt_state & STATE_ARQ_DONE) == 0 && 26602 (pktp->pkt_reason != CMD_DEV_GONE)) 26603 (void) sd_send_polled_RQS(un); 26604 26605 return (status); 26606 } 26607 26608 /* 26609 * Function: sd_send_polled_RQS() 26610 * 26611 * Description: This sends the request sense command to a device. 26612 * 26613 * Arguments: sd_lun - The unit structure 26614 * 26615 * Return Code: 0 - Command completed successfully with good status 26616 * -1 - Command failed. 26617 * 26618 */ 26619 26620 static int 26621 sd_send_polled_RQS(struct sd_lun *un) 26622 { 26623 int ret_val; 26624 struct scsi_pkt *rqs_pktp; 26625 struct buf *rqs_bp; 26626 26627 ASSERT(un != NULL); 26628 ASSERT(!mutex_owned(SD_MUTEX(un))); 26629 26630 ret_val = SD_SUCCESS; 26631 26632 rqs_pktp = un->un_rqs_pktp; 26633 rqs_bp = un->un_rqs_bp; 26634 26635 mutex_enter(SD_MUTEX(un)); 26636 26637 if (un->un_sense_isbusy) { 26638 ret_val = SD_FAILURE; 26639 mutex_exit(SD_MUTEX(un)); 26640 return (ret_val); 26641 } 26642 26643 /* 26644 * If the request sense buffer (and packet) is not in use, 26645 * let's set the un_sense_isbusy and send our packet 26646 */ 26647 un->un_sense_isbusy = 1; 26648 rqs_pktp->pkt_resid = 0; 26649 rqs_pktp->pkt_reason = 0; 26650 rqs_pktp->pkt_flags |= FLAG_NOINTR; 26651 bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH); 26652 26653 mutex_exit(SD_MUTEX(un)); 26654 26655 SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at" 26656 " 0x%p\n", rqs_bp->b_un.b_addr); 26657 26658 /* 26659 * Can't send this to sd_scsi_poll, we wrap ourselves around the 26660 * axle - it has a call into us! 26661 */ 26662 if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) { 26663 SD_INFO(SD_LOG_COMMON, un, 26664 "sd_send_polled_RQS: RQS failed\n"); 26665 } 26666 26667 SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:", 26668 (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX); 26669 26670 mutex_enter(SD_MUTEX(un)); 26671 un->un_sense_isbusy = 0; 26672 mutex_exit(SD_MUTEX(un)); 26673 26674 return (ret_val); 26675 } 26676 26677 /* 26678 * Defines needed for localized version of the scsi_poll routine. 26679 */ 26680 #define SD_CSEC 10000 /* usecs */ 26681 #define SD_SEC_TO_CSEC (1000000/SD_CSEC) 26682 26683 26684 /* 26685 * Function: sd_ddi_scsi_poll() 26686 * 26687 * Description: Localized version of the scsi_poll routine. The purpose is to 26688 * send a scsi_pkt to a device as a polled command. This version 26689 * is to ensure more robust handling of transport errors. 26690 * Specifically this routine cures not ready, coming ready 26691 * transition for power up and reset of sonoma's. This can take 26692 * up to 45 seconds for power-on and 20 seconds for reset of a 26693 * sonoma lun. 26694 * 26695 * Arguments: scsi_pkt - The scsi_pkt being sent to a device 26696 * 26697 * Return Code: 0 - Command completed successfully with good status 26698 * -1 - Command failed. 26699 * 26700 */ 26701 26702 static int 26703 sd_ddi_scsi_poll(struct scsi_pkt *pkt) 26704 { 26705 int busy_count; 26706 int timeout; 26707 int rval = SD_FAILURE; 26708 int savef; 26709 uint8_t *sensep; 26710 long savet; 26711 void (*savec)(); 26712 /* 26713 * The following is defined in machdep.c and is used in determining if 26714 * the scsi transport system will do polled I/O instead of interrupt 26715 * I/O when called from xx_dump(). 26716 */ 26717 extern int do_polled_io; 26718 26719 /* 26720 * save old flags in pkt, to restore at end 26721 */ 26722 savef = pkt->pkt_flags; 26723 savec = pkt->pkt_comp; 26724 savet = pkt->pkt_time; 26725 26726 pkt->pkt_flags |= FLAG_NOINTR; 26727 26728 /* 26729 * XXX there is nothing in the SCSA spec that states that we should not 26730 * do a callback for polled cmds; however, removing this will break sd 26731 * and probably other target drivers 26732 */ 26733 pkt->pkt_comp = NULL; 26734 26735 /* 26736 * we don't like a polled command without timeout. 26737 * 60 seconds seems long enough. 26738 */ 26739 if (pkt->pkt_time == 0) { 26740 pkt->pkt_time = SCSI_POLL_TIMEOUT; 26741 } 26742 26743 /* 26744 * Send polled cmd. 26745 * 26746 * We do some error recovery for various errors. Tran_busy, 26747 * queue full, and non-dispatched commands are retried every 10 msec. 26748 * as they are typically transient failures. Busy status and Not 26749 * Ready are retried every second as this status takes a while to 26750 * change. Unit attention is retried for pkt_time (60) times 26751 * with no delay. 26752 */ 26753 timeout = pkt->pkt_time * SD_SEC_TO_CSEC; 26754 26755 for (busy_count = 0; busy_count < timeout; busy_count++) { 26756 int rc; 26757 int poll_delay; 26758 26759 /* 26760 * Initialize pkt status variables. 26761 */ 26762 *pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0; 26763 26764 if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) { 26765 if (rc != TRAN_BUSY) { 26766 /* Transport failed - give up. */ 26767 break; 26768 } else { 26769 /* Transport busy - try again. */ 26770 poll_delay = 1 * SD_CSEC; /* 10 msec */ 26771 } 26772 } else { 26773 /* 26774 * Transport accepted - check pkt status. 26775 */ 26776 rc = (*pkt->pkt_scbp) & STATUS_MASK; 26777 if (pkt->pkt_reason == CMD_CMPLT && 26778 rc == STATUS_CHECK && 26779 pkt->pkt_state & STATE_ARQ_DONE) { 26780 struct scsi_arq_status *arqstat = 26781 (struct scsi_arq_status *)(pkt->pkt_scbp); 26782 26783 sensep = (uint8_t *)&arqstat->sts_sensedata; 26784 } else { 26785 sensep = NULL; 26786 } 26787 26788 if ((pkt->pkt_reason == CMD_CMPLT) && 26789 (rc == STATUS_GOOD)) { 26790 /* No error - we're done */ 26791 rval = SD_SUCCESS; 26792 break; 26793 26794 } else if (pkt->pkt_reason == CMD_DEV_GONE) { 26795 /* Lost connection - give up */ 26796 break; 26797 26798 } else if ((pkt->pkt_reason == CMD_INCOMPLETE) && 26799 (pkt->pkt_state == 0)) { 26800 /* Pkt not dispatched - try again. */ 26801 poll_delay = 1 * SD_CSEC; /* 10 msec. */ 26802 26803 } else if ((pkt->pkt_reason == CMD_CMPLT) && 26804 (rc == STATUS_QFULL)) { 26805 /* Queue full - try again. */ 26806 poll_delay = 1 * SD_CSEC; /* 10 msec. */ 26807 26808 } else if ((pkt->pkt_reason == CMD_CMPLT) && 26809 (rc == STATUS_BUSY)) { 26810 /* Busy - try again. */ 26811 poll_delay = 100 * SD_CSEC; /* 1 sec. */ 26812 busy_count += (SD_SEC_TO_CSEC - 1); 26813 26814 } else if ((sensep != NULL) && 26815 (scsi_sense_key(sensep) == 26816 KEY_UNIT_ATTENTION)) { 26817 /* Unit Attention - try again */ 26818 busy_count += (SD_SEC_TO_CSEC - 1); /* 1 */ 26819 continue; 26820 26821 } else if ((sensep != NULL) && 26822 (scsi_sense_key(sensep) == KEY_NOT_READY) && 26823 (scsi_sense_asc(sensep) == 0x04) && 26824 (scsi_sense_ascq(sensep) == 0x01)) { 26825 /* Not ready -> ready - try again. */ 26826 poll_delay = 100 * SD_CSEC; /* 1 sec. */ 26827 busy_count += (SD_SEC_TO_CSEC - 1); 26828 26829 } else { 26830 /* BAD status - give up. */ 26831 break; 26832 } 26833 } 26834 26835 if ((curthread->t_flag & T_INTR_THREAD) == 0 && 26836 !do_polled_io) { 26837 delay(drv_usectohz(poll_delay)); 26838 } else { 26839 /* we busy wait during cpr_dump or interrupt threads */ 26840 drv_usecwait(poll_delay); 26841 } 26842 } 26843 26844 pkt->pkt_flags = savef; 26845 pkt->pkt_comp = savec; 26846 pkt->pkt_time = savet; 26847 return (rval); 26848 } 26849 26850 26851 /* 26852 * Function: sd_persistent_reservation_in_read_keys 26853 * 26854 * Description: This routine is the driver entry point for handling CD-ROM 26855 * multi-host persistent reservation requests (MHIOCGRP_INKEYS) 26856 * by sending the SCSI-3 PRIN commands to the device. 26857 * Processes the read keys command response by copying the 26858 * reservation key information into the user provided buffer. 26859 * Support for the 32/64 bit _MULTI_DATAMODEL is implemented. 26860 * 26861 * Arguments: un - Pointer to soft state struct for the target. 26862 * usrp - user provided pointer to multihost Persistent In Read 26863 * Keys structure (mhioc_inkeys_t) 26864 * flag - this argument is a pass through to ddi_copyxxx() 26865 * directly from the mode argument of ioctl(). 26866 * 26867 * Return Code: 0 - Success 26868 * EACCES 26869 * ENOTSUP 26870 * errno return code from sd_send_scsi_cmd() 26871 * 26872 * Context: Can sleep. Does not return until command is completed. 26873 */ 26874 26875 static int 26876 sd_persistent_reservation_in_read_keys(struct sd_lun *un, 26877 mhioc_inkeys_t *usrp, int flag) 26878 { 26879 #ifdef _MULTI_DATAMODEL 26880 struct mhioc_key_list32 li32; 26881 #endif 26882 sd_prin_readkeys_t *in; 26883 mhioc_inkeys_t *ptr; 26884 mhioc_key_list_t li; 26885 uchar_t *data_bufp; 26886 int data_len; 26887 int rval; 26888 size_t copysz; 26889 26890 if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) { 26891 return (EINVAL); 26892 } 26893 bzero(&li, sizeof (mhioc_key_list_t)); 26894 26895 /* 26896 * Get the listsize from user 26897 */ 26898 #ifdef _MULTI_DATAMODEL 26899 26900 switch (ddi_model_convert_from(flag & FMODELS)) { 26901 case DDI_MODEL_ILP32: 26902 copysz = sizeof (struct mhioc_key_list32); 26903 if (ddi_copyin(ptr->li, &li32, copysz, flag)) { 26904 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26905 "sd_persistent_reservation_in_read_keys: " 26906 "failed ddi_copyin: mhioc_key_list32_t\n"); 26907 rval = EFAULT; 26908 goto done; 26909 } 26910 li.listsize = li32.listsize; 26911 li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list; 26912 break; 26913 26914 case DDI_MODEL_NONE: 26915 copysz = sizeof (mhioc_key_list_t); 26916 if (ddi_copyin(ptr->li, &li, copysz, flag)) { 26917 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26918 "sd_persistent_reservation_in_read_keys: " 26919 "failed ddi_copyin: mhioc_key_list_t\n"); 26920 rval = EFAULT; 26921 goto done; 26922 } 26923 break; 26924 } 26925 26926 #else /* ! _MULTI_DATAMODEL */ 26927 copysz = sizeof (mhioc_key_list_t); 26928 if (ddi_copyin(ptr->li, &li, copysz, flag)) { 26929 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26930 "sd_persistent_reservation_in_read_keys: " 26931 "failed ddi_copyin: mhioc_key_list_t\n"); 26932 rval = EFAULT; 26933 goto done; 26934 } 26935 #endif 26936 26937 data_len = li.listsize * MHIOC_RESV_KEY_SIZE; 26938 data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t)); 26939 data_bufp = kmem_zalloc(data_len, KM_SLEEP); 26940 26941 if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 26942 data_len, data_bufp)) != 0) { 26943 goto done; 26944 } 26945 in = (sd_prin_readkeys_t *)data_bufp; 26946 ptr->generation = BE_32(in->generation); 26947 li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE; 26948 26949 /* 26950 * Return the min(listsize, listlen) keys 26951 */ 26952 #ifdef _MULTI_DATAMODEL 26953 26954 switch (ddi_model_convert_from(flag & FMODELS)) { 26955 case DDI_MODEL_ILP32: 26956 li32.listlen = li.listlen; 26957 if (ddi_copyout(&li32, ptr->li, copysz, flag)) { 26958 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26959 "sd_persistent_reservation_in_read_keys: " 26960 "failed ddi_copyout: mhioc_key_list32_t\n"); 26961 rval = EFAULT; 26962 goto done; 26963 } 26964 break; 26965 26966 case DDI_MODEL_NONE: 26967 if (ddi_copyout(&li, ptr->li, copysz, flag)) { 26968 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26969 "sd_persistent_reservation_in_read_keys: " 26970 "failed ddi_copyout: mhioc_key_list_t\n"); 26971 rval = EFAULT; 26972 goto done; 26973 } 26974 break; 26975 } 26976 26977 #else /* ! _MULTI_DATAMODEL */ 26978 26979 if (ddi_copyout(&li, ptr->li, copysz, flag)) { 26980 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26981 "sd_persistent_reservation_in_read_keys: " 26982 "failed ddi_copyout: mhioc_key_list_t\n"); 26983 rval = EFAULT; 26984 goto done; 26985 } 26986 26987 #endif /* _MULTI_DATAMODEL */ 26988 26989 copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE, 26990 li.listsize * MHIOC_RESV_KEY_SIZE); 26991 if (ddi_copyout(&in->keylist, li.list, copysz, flag)) { 26992 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26993 "sd_persistent_reservation_in_read_keys: " 26994 "failed ddi_copyout: keylist\n"); 26995 rval = EFAULT; 26996 } 26997 done: 26998 kmem_free(data_bufp, data_len); 26999 return (rval); 27000 } 27001 27002 27003 /* 27004 * Function: sd_persistent_reservation_in_read_resv 27005 * 27006 * Description: This routine is the driver entry point for handling CD-ROM 27007 * multi-host persistent reservation requests (MHIOCGRP_INRESV) 27008 * by sending the SCSI-3 PRIN commands to the device. 27009 * Process the read persistent reservations command response by 27010 * copying the reservation information into the user provided 27011 * buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented. 27012 * 27013 * Arguments: un - Pointer to soft state struct for the target. 27014 * usrp - user provided pointer to multihost Persistent In Read 27015 * Keys structure (mhioc_inkeys_t) 27016 * flag - this argument is a pass through to ddi_copyxxx() 27017 * directly from the mode argument of ioctl(). 27018 * 27019 * Return Code: 0 - Success 27020 * EACCES 27021 * ENOTSUP 27022 * errno return code from sd_send_scsi_cmd() 27023 * 27024 * Context: Can sleep. Does not return until command is completed. 27025 */ 27026 27027 static int 27028 sd_persistent_reservation_in_read_resv(struct sd_lun *un, 27029 mhioc_inresvs_t *usrp, int flag) 27030 { 27031 #ifdef _MULTI_DATAMODEL 27032 struct mhioc_resv_desc_list32 resvlist32; 27033 #endif 27034 sd_prin_readresv_t *in; 27035 mhioc_inresvs_t *ptr; 27036 sd_readresv_desc_t *readresv_ptr; 27037 mhioc_resv_desc_list_t resvlist; 27038 mhioc_resv_desc_t resvdesc; 27039 uchar_t *data_bufp; 27040 int data_len; 27041 int rval; 27042 int i; 27043 size_t copysz; 27044 mhioc_resv_desc_t *bufp; 27045 27046 if ((ptr = usrp) == NULL) { 27047 return (EINVAL); 27048 } 27049 27050 /* 27051 * Get the listsize from user 27052 */ 27053 #ifdef _MULTI_DATAMODEL 27054 switch (ddi_model_convert_from(flag & FMODELS)) { 27055 case DDI_MODEL_ILP32: 27056 copysz = sizeof (struct mhioc_resv_desc_list32); 27057 if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) { 27058 SD_ERROR(SD_LOG_IOCTL_MHD, un, 27059 "sd_persistent_reservation_in_read_resv: " 27060 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 27061 rval = EFAULT; 27062 goto done; 27063 } 27064 resvlist.listsize = resvlist32.listsize; 27065 resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list; 27066 break; 27067 27068 case DDI_MODEL_NONE: 27069 copysz = sizeof (mhioc_resv_desc_list_t); 27070 if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) { 27071 SD_ERROR(SD_LOG_IOCTL_MHD, un, 27072 "sd_persistent_reservation_in_read_resv: " 27073 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 27074 rval = EFAULT; 27075 goto done; 27076 } 27077 break; 27078 } 27079 #else /* ! _MULTI_DATAMODEL */ 27080 copysz = sizeof (mhioc_resv_desc_list_t); 27081 if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) { 27082 SD_ERROR(SD_LOG_IOCTL_MHD, un, 27083 "sd_persistent_reservation_in_read_resv: " 27084 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 27085 rval = EFAULT; 27086 goto done; 27087 } 27088 #endif /* ! _MULTI_DATAMODEL */ 27089 27090 data_len = resvlist.listsize * SCSI3_RESV_DESC_LEN; 27091 data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t)); 27092 data_bufp = kmem_zalloc(data_len, KM_SLEEP); 27093 27094 if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV, 27095 data_len, data_bufp)) != 0) { 27096 goto done; 27097 } 27098 in = (sd_prin_readresv_t *)data_bufp; 27099 ptr->generation = BE_32(in->generation); 27100 resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN; 27101 27102 /* 27103 * Return the min(listsize, listlen( keys 27104 */ 27105 #ifdef _MULTI_DATAMODEL 27106 27107 switch (ddi_model_convert_from(flag & FMODELS)) { 27108 case DDI_MODEL_ILP32: 27109 resvlist32.listlen = resvlist.listlen; 27110 if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) { 27111 SD_ERROR(SD_LOG_IOCTL_MHD, un, 27112 "sd_persistent_reservation_in_read_resv: " 27113 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 27114 rval = EFAULT; 27115 goto done; 27116 } 27117 break; 27118 27119 case DDI_MODEL_NONE: 27120 if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) { 27121 SD_ERROR(SD_LOG_IOCTL_MHD, un, 27122 "sd_persistent_reservation_in_read_resv: " 27123 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 27124 rval = EFAULT; 27125 goto done; 27126 } 27127 break; 27128 } 27129 27130 #else /* ! _MULTI_DATAMODEL */ 27131 27132 if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) { 27133 SD_ERROR(SD_LOG_IOCTL_MHD, un, 27134 "sd_persistent_reservation_in_read_resv: " 27135 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 27136 rval = EFAULT; 27137 goto done; 27138 } 27139 27140 #endif /* ! _MULTI_DATAMODEL */ 27141 27142 readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc; 27143 bufp = resvlist.list; 27144 copysz = sizeof (mhioc_resv_desc_t); 27145 for (i = 0; i < min(resvlist.listlen, resvlist.listsize); 27146 i++, readresv_ptr++, bufp++) { 27147 27148 bcopy(&readresv_ptr->resvkey, &resvdesc.key, 27149 MHIOC_RESV_KEY_SIZE); 27150 resvdesc.type = readresv_ptr->type; 27151 resvdesc.scope = readresv_ptr->scope; 27152 resvdesc.scope_specific_addr = 27153 BE_32(readresv_ptr->scope_specific_addr); 27154 27155 if (ddi_copyout(&resvdesc, bufp, copysz, flag)) { 27156 SD_ERROR(SD_LOG_IOCTL_MHD, un, 27157 "sd_persistent_reservation_in_read_resv: " 27158 "failed ddi_copyout: resvlist\n"); 27159 rval = EFAULT; 27160 goto done; 27161 } 27162 } 27163 done: 27164 kmem_free(data_bufp, data_len); 27165 return (rval); 27166 } 27167 27168 27169 /* 27170 * Function: sr_change_blkmode() 27171 * 27172 * Description: This routine is the driver entry point for handling CD-ROM 27173 * block mode ioctl requests. Support for returning and changing 27174 * the current block size in use by the device is implemented. The 27175 * LBA size is changed via a MODE SELECT Block Descriptor. 27176 * 27177 * This routine issues a mode sense with an allocation length of 27178 * 12 bytes for the mode page header and a single block descriptor. 27179 * 27180 * Arguments: dev - the device 'dev_t' 27181 * cmd - the request type; one of CDROMGBLKMODE (get) or 27182 * CDROMSBLKMODE (set) 27183 * data - current block size or requested block size 27184 * flag - this argument is a pass through to ddi_copyxxx() directly 27185 * from the mode argument of ioctl(). 27186 * 27187 * Return Code: the code returned by sd_send_scsi_cmd() 27188 * EINVAL if invalid arguments are provided 27189 * EFAULT if ddi_copyxxx() fails 27190 * ENXIO if fail ddi_get_soft_state 27191 * EIO if invalid mode sense block descriptor length 27192 * 27193 */ 27194 27195 static int 27196 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag) 27197 { 27198 struct sd_lun *un = NULL; 27199 struct mode_header *sense_mhp, *select_mhp; 27200 struct block_descriptor *sense_desc, *select_desc; 27201 int current_bsize; 27202 int rval = EINVAL; 27203 uchar_t *sense = NULL; 27204 uchar_t *select = NULL; 27205 27206 ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE)); 27207 27208 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27209 return (ENXIO); 27210 } 27211 27212 /* 27213 * The block length is changed via the Mode Select block descriptor, the 27214 * "Read/Write Error Recovery" mode page (0x1) contents are not actually 27215 * required as part of this routine. Therefore the mode sense allocation 27216 * length is specified to be the length of a mode page header and a 27217 * block descriptor. 27218 */ 27219 sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP); 27220 27221 if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 27222 BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) { 27223 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27224 "sr_change_blkmode: Mode Sense Failed\n"); 27225 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 27226 return (rval); 27227 } 27228 27229 /* Check the block descriptor len to handle only 1 block descriptor */ 27230 sense_mhp = (struct mode_header *)sense; 27231 if ((sense_mhp->bdesc_length == 0) || 27232 (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) { 27233 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27234 "sr_change_blkmode: Mode Sense returned invalid block" 27235 " descriptor length\n"); 27236 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 27237 return (EIO); 27238 } 27239 sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH); 27240 current_bsize = ((sense_desc->blksize_hi << 16) | 27241 (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo); 27242 27243 /* Process command */ 27244 switch (cmd) { 27245 case CDROMGBLKMODE: 27246 /* Return the block size obtained during the mode sense */ 27247 if (ddi_copyout(¤t_bsize, (void *)data, 27248 sizeof (int), flag) != 0) 27249 rval = EFAULT; 27250 break; 27251 case CDROMSBLKMODE: 27252 /* Validate the requested block size */ 27253 switch (data) { 27254 case CDROM_BLK_512: 27255 case CDROM_BLK_1024: 27256 case CDROM_BLK_2048: 27257 case CDROM_BLK_2056: 27258 case CDROM_BLK_2336: 27259 case CDROM_BLK_2340: 27260 case CDROM_BLK_2352: 27261 case CDROM_BLK_2368: 27262 case CDROM_BLK_2448: 27263 case CDROM_BLK_2646: 27264 case CDROM_BLK_2647: 27265 break; 27266 default: 27267 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27268 "sr_change_blkmode: " 27269 "Block Size '%ld' Not Supported\n", data); 27270 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 27271 return (EINVAL); 27272 } 27273 27274 /* 27275 * The current block size matches the requested block size so 27276 * there is no need to send the mode select to change the size 27277 */ 27278 if (current_bsize == data) { 27279 break; 27280 } 27281 27282 /* Build the select data for the requested block size */ 27283 select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP); 27284 select_mhp = (struct mode_header *)select; 27285 select_desc = 27286 (struct block_descriptor *)(select + MODE_HEADER_LENGTH); 27287 /* 27288 * The LBA size is changed via the block descriptor, so the 27289 * descriptor is built according to the user data 27290 */ 27291 select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH; 27292 select_desc->blksize_hi = (char)(((data) & 0x00ff0000) >> 16); 27293 select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8); 27294 select_desc->blksize_lo = (char)((data) & 0x000000ff); 27295 27296 /* Send the mode select for the requested block size */ 27297 if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, 27298 select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE, 27299 SD_PATH_STANDARD)) != 0) { 27300 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27301 "sr_change_blkmode: Mode Select Failed\n"); 27302 /* 27303 * The mode select failed for the requested block size, 27304 * so reset the data for the original block size and 27305 * send it to the target. The error is indicated by the 27306 * return value for the failed mode select. 27307 */ 27308 select_desc->blksize_hi = sense_desc->blksize_hi; 27309 select_desc->blksize_mid = sense_desc->blksize_mid; 27310 select_desc->blksize_lo = sense_desc->blksize_lo; 27311 (void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, 27312 select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE, 27313 SD_PATH_STANDARD); 27314 } else { 27315 ASSERT(!mutex_owned(SD_MUTEX(un))); 27316 mutex_enter(SD_MUTEX(un)); 27317 sd_update_block_info(un, (uint32_t)data, 0); 27318 27319 mutex_exit(SD_MUTEX(un)); 27320 } 27321 break; 27322 default: 27323 /* should not reach here, but check anyway */ 27324 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27325 "sr_change_blkmode: Command '%x' Not Supported\n", cmd); 27326 rval = EINVAL; 27327 break; 27328 } 27329 27330 if (select) { 27331 kmem_free(select, BUFLEN_CHG_BLK_MODE); 27332 } 27333 if (sense) { 27334 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 27335 } 27336 return (rval); 27337 } 27338 27339 27340 /* 27341 * Note: The following sr_change_speed() and sr_atapi_change_speed() routines 27342 * implement driver support for getting and setting the CD speed. The command 27343 * set used will be based on the device type. If the device has not been 27344 * identified as MMC the Toshiba vendor specific mode page will be used. If 27345 * the device is MMC but does not support the Real Time Streaming feature 27346 * the SET CD SPEED command will be used to set speed and mode page 0x2A will 27347 * be used to read the speed. 27348 */ 27349 27350 /* 27351 * Function: sr_change_speed() 27352 * 27353 * Description: This routine is the driver entry point for handling CD-ROM 27354 * drive speed ioctl requests for devices supporting the Toshiba 27355 * vendor specific drive speed mode page. Support for returning 27356 * and changing the current drive speed in use by the device is 27357 * implemented. 27358 * 27359 * Arguments: dev - the device 'dev_t' 27360 * cmd - the request type; one of CDROMGDRVSPEED (get) or 27361 * CDROMSDRVSPEED (set) 27362 * data - current drive speed or requested drive speed 27363 * flag - this argument is a pass through to ddi_copyxxx() directly 27364 * from the mode argument of ioctl(). 27365 * 27366 * Return Code: the code returned by sd_send_scsi_cmd() 27367 * EINVAL if invalid arguments are provided 27368 * EFAULT if ddi_copyxxx() fails 27369 * ENXIO if fail ddi_get_soft_state 27370 * EIO if invalid mode sense block descriptor length 27371 */ 27372 27373 static int 27374 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag) 27375 { 27376 struct sd_lun *un = NULL; 27377 struct mode_header *sense_mhp, *select_mhp; 27378 struct mode_speed *sense_page, *select_page; 27379 int current_speed; 27380 int rval = EINVAL; 27381 int bd_len; 27382 uchar_t *sense = NULL; 27383 uchar_t *select = NULL; 27384 27385 ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED)); 27386 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27387 return (ENXIO); 27388 } 27389 27390 /* 27391 * Note: The drive speed is being modified here according to a Toshiba 27392 * vendor specific mode page (0x31). 27393 */ 27394 sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP); 27395 27396 if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 27397 BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED, 27398 SD_PATH_STANDARD)) != 0) { 27399 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27400 "sr_change_speed: Mode Sense Failed\n"); 27401 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 27402 return (rval); 27403 } 27404 sense_mhp = (struct mode_header *)sense; 27405 27406 /* Check the block descriptor len to handle only 1 block descriptor */ 27407 bd_len = sense_mhp->bdesc_length; 27408 if (bd_len > MODE_BLK_DESC_LENGTH) { 27409 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27410 "sr_change_speed: Mode Sense returned invalid block " 27411 "descriptor length\n"); 27412 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 27413 return (EIO); 27414 } 27415 27416 sense_page = (struct mode_speed *) 27417 (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length); 27418 current_speed = sense_page->speed; 27419 27420 /* Process command */ 27421 switch (cmd) { 27422 case CDROMGDRVSPEED: 27423 /* Return the drive speed obtained during the mode sense */ 27424 if (current_speed == 0x2) { 27425 current_speed = CDROM_TWELVE_SPEED; 27426 } 27427 if (ddi_copyout(¤t_speed, (void *)data, 27428 sizeof (int), flag) != 0) { 27429 rval = EFAULT; 27430 } 27431 break; 27432 case CDROMSDRVSPEED: 27433 /* Validate the requested drive speed */ 27434 switch ((uchar_t)data) { 27435 case CDROM_TWELVE_SPEED: 27436 data = 0x2; 27437 /*FALLTHROUGH*/ 27438 case CDROM_NORMAL_SPEED: 27439 case CDROM_DOUBLE_SPEED: 27440 case CDROM_QUAD_SPEED: 27441 case CDROM_MAXIMUM_SPEED: 27442 break; 27443 default: 27444 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27445 "sr_change_speed: " 27446 "Drive Speed '%d' Not Supported\n", (uchar_t)data); 27447 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 27448 return (EINVAL); 27449 } 27450 27451 /* 27452 * The current drive speed matches the requested drive speed so 27453 * there is no need to send the mode select to change the speed 27454 */ 27455 if (current_speed == data) { 27456 break; 27457 } 27458 27459 /* Build the select data for the requested drive speed */ 27460 select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP); 27461 select_mhp = (struct mode_header *)select; 27462 select_mhp->bdesc_length = 0; 27463 select_page = 27464 (struct mode_speed *)(select + MODE_HEADER_LENGTH); 27465 select_page = 27466 (struct mode_speed *)(select + MODE_HEADER_LENGTH); 27467 select_page->mode_page.code = CDROM_MODE_SPEED; 27468 select_page->mode_page.length = 2; 27469 select_page->speed = (uchar_t)data; 27470 27471 /* Send the mode select for the requested block size */ 27472 if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 27473 MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH, 27474 SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) { 27475 /* 27476 * The mode select failed for the requested drive speed, 27477 * so reset the data for the original drive speed and 27478 * send it to the target. The error is indicated by the 27479 * return value for the failed mode select. 27480 */ 27481 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27482 "sr_drive_speed: Mode Select Failed\n"); 27483 select_page->speed = sense_page->speed; 27484 (void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 27485 MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH, 27486 SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 27487 } 27488 break; 27489 default: 27490 /* should not reach here, but check anyway */ 27491 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27492 "sr_change_speed: Command '%x' Not Supported\n", cmd); 27493 rval = EINVAL; 27494 break; 27495 } 27496 27497 if (select) { 27498 kmem_free(select, BUFLEN_MODE_CDROM_SPEED); 27499 } 27500 if (sense) { 27501 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 27502 } 27503 27504 return (rval); 27505 } 27506 27507 27508 /* 27509 * Function: sr_atapi_change_speed() 27510 * 27511 * Description: This routine is the driver entry point for handling CD-ROM 27512 * drive speed ioctl requests for MMC devices that do not support 27513 * the Real Time Streaming feature (0x107). 27514 * 27515 * Note: This routine will use the SET SPEED command which may not 27516 * be supported by all devices. 27517 * 27518 * Arguments: dev- the device 'dev_t' 27519 * cmd- the request type; one of CDROMGDRVSPEED (get) or 27520 * CDROMSDRVSPEED (set) 27521 * data- current drive speed or requested drive speed 27522 * flag- this argument is a pass through to ddi_copyxxx() directly 27523 * from the mode argument of ioctl(). 27524 * 27525 * Return Code: the code returned by sd_send_scsi_cmd() 27526 * EINVAL if invalid arguments are provided 27527 * EFAULT if ddi_copyxxx() fails 27528 * ENXIO if fail ddi_get_soft_state 27529 * EIO if invalid mode sense block descriptor length 27530 */ 27531 27532 static int 27533 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag) 27534 { 27535 struct sd_lun *un; 27536 struct uscsi_cmd *com = NULL; 27537 struct mode_header_grp2 *sense_mhp; 27538 uchar_t *sense_page; 27539 uchar_t *sense = NULL; 27540 char cdb[CDB_GROUP5]; 27541 int bd_len; 27542 int current_speed = 0; 27543 int max_speed = 0; 27544 int rval; 27545 27546 ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED)); 27547 27548 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27549 return (ENXIO); 27550 } 27551 27552 sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 27553 27554 if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, 27555 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, 27556 SD_PATH_STANDARD)) != 0) { 27557 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27558 "sr_atapi_change_speed: Mode Sense Failed\n"); 27559 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27560 return (rval); 27561 } 27562 27563 /* Check the block descriptor len to handle only 1 block descriptor */ 27564 sense_mhp = (struct mode_header_grp2 *)sense; 27565 bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo; 27566 if (bd_len > MODE_BLK_DESC_LENGTH) { 27567 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27568 "sr_atapi_change_speed: Mode Sense returned invalid " 27569 "block descriptor length\n"); 27570 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27571 return (EIO); 27572 } 27573 27574 /* Calculate the current and maximum drive speeds */ 27575 sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len); 27576 current_speed = (sense_page[14] << 8) | sense_page[15]; 27577 max_speed = (sense_page[8] << 8) | sense_page[9]; 27578 27579 /* Process the command */ 27580 switch (cmd) { 27581 case CDROMGDRVSPEED: 27582 current_speed /= SD_SPEED_1X; 27583 if (ddi_copyout(¤t_speed, (void *)data, 27584 sizeof (int), flag) != 0) 27585 rval = EFAULT; 27586 break; 27587 case CDROMSDRVSPEED: 27588 /* Convert the speed code to KB/sec */ 27589 switch ((uchar_t)data) { 27590 case CDROM_NORMAL_SPEED: 27591 current_speed = SD_SPEED_1X; 27592 break; 27593 case CDROM_DOUBLE_SPEED: 27594 current_speed = 2 * SD_SPEED_1X; 27595 break; 27596 case CDROM_QUAD_SPEED: 27597 current_speed = 4 * SD_SPEED_1X; 27598 break; 27599 case CDROM_TWELVE_SPEED: 27600 current_speed = 12 * SD_SPEED_1X; 27601 break; 27602 case CDROM_MAXIMUM_SPEED: 27603 current_speed = 0xffff; 27604 break; 27605 default: 27606 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27607 "sr_atapi_change_speed: invalid drive speed %d\n", 27608 (uchar_t)data); 27609 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27610 return (EINVAL); 27611 } 27612 27613 /* Check the request against the drive's max speed. */ 27614 if (current_speed != 0xffff) { 27615 if (current_speed > max_speed) { 27616 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27617 return (EINVAL); 27618 } 27619 } 27620 27621 /* 27622 * Build and send the SET SPEED command 27623 * 27624 * Note: The SET SPEED (0xBB) command used in this routine is 27625 * obsolete per the SCSI MMC spec but still supported in the 27626 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI 27627 * therefore the command is still implemented in this routine. 27628 */ 27629 bzero(cdb, sizeof (cdb)); 27630 cdb[0] = (char)SCMD_SET_CDROM_SPEED; 27631 cdb[2] = (uchar_t)(current_speed >> 8); 27632 cdb[3] = (uchar_t)current_speed; 27633 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27634 com->uscsi_cdb = (caddr_t)cdb; 27635 com->uscsi_cdblen = CDB_GROUP5; 27636 com->uscsi_bufaddr = NULL; 27637 com->uscsi_buflen = 0; 27638 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27639 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD); 27640 break; 27641 default: 27642 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27643 "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd); 27644 rval = EINVAL; 27645 } 27646 27647 if (sense) { 27648 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27649 } 27650 if (com) { 27651 kmem_free(com, sizeof (*com)); 27652 } 27653 return (rval); 27654 } 27655 27656 27657 /* 27658 * Function: sr_pause_resume() 27659 * 27660 * Description: This routine is the driver entry point for handling CD-ROM 27661 * pause/resume ioctl requests. This only affects the audio play 27662 * operation. 27663 * 27664 * Arguments: dev - the device 'dev_t' 27665 * cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used 27666 * for setting the resume bit of the cdb. 27667 * 27668 * Return Code: the code returned by sd_send_scsi_cmd() 27669 * EINVAL if invalid mode specified 27670 * 27671 */ 27672 27673 static int 27674 sr_pause_resume(dev_t dev, int cmd) 27675 { 27676 struct sd_lun *un; 27677 struct uscsi_cmd *com; 27678 char cdb[CDB_GROUP1]; 27679 int rval; 27680 27681 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27682 return (ENXIO); 27683 } 27684 27685 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27686 bzero(cdb, CDB_GROUP1); 27687 cdb[0] = SCMD_PAUSE_RESUME; 27688 switch (cmd) { 27689 case CDROMRESUME: 27690 cdb[8] = 1; 27691 break; 27692 case CDROMPAUSE: 27693 cdb[8] = 0; 27694 break; 27695 default: 27696 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:" 27697 " Command '%x' Not Supported\n", cmd); 27698 rval = EINVAL; 27699 goto done; 27700 } 27701 27702 com->uscsi_cdb = cdb; 27703 com->uscsi_cdblen = CDB_GROUP1; 27704 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27705 27706 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27707 SD_PATH_STANDARD); 27708 27709 done: 27710 kmem_free(com, sizeof (*com)); 27711 return (rval); 27712 } 27713 27714 27715 /* 27716 * Function: sr_play_msf() 27717 * 27718 * Description: This routine is the driver entry point for handling CD-ROM 27719 * ioctl requests to output the audio signals at the specified 27720 * starting address and continue the audio play until the specified 27721 * ending address (CDROMPLAYMSF) The address is in Minute Second 27722 * Frame (MSF) format. 27723 * 27724 * Arguments: dev - the device 'dev_t' 27725 * data - pointer to user provided audio msf structure, 27726 * specifying start/end addresses. 27727 * flag - this argument is a pass through to ddi_copyxxx() 27728 * directly from the mode argument of ioctl(). 27729 * 27730 * Return Code: the code returned by sd_send_scsi_cmd() 27731 * EFAULT if ddi_copyxxx() fails 27732 * ENXIO if fail ddi_get_soft_state 27733 * EINVAL if data pointer is NULL 27734 */ 27735 27736 static int 27737 sr_play_msf(dev_t dev, caddr_t data, int flag) 27738 { 27739 struct sd_lun *un; 27740 struct uscsi_cmd *com; 27741 struct cdrom_msf msf_struct; 27742 struct cdrom_msf *msf = &msf_struct; 27743 char cdb[CDB_GROUP1]; 27744 int rval; 27745 27746 if (data == NULL) { 27747 return (EINVAL); 27748 } 27749 27750 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27751 return (ENXIO); 27752 } 27753 27754 if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) { 27755 return (EFAULT); 27756 } 27757 27758 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27759 bzero(cdb, CDB_GROUP1); 27760 cdb[0] = SCMD_PLAYAUDIO_MSF; 27761 if (un->un_f_cfg_playmsf_bcd == TRUE) { 27762 cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0); 27763 cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0); 27764 cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0); 27765 cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1); 27766 cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1); 27767 cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1); 27768 } else { 27769 cdb[3] = msf->cdmsf_min0; 27770 cdb[4] = msf->cdmsf_sec0; 27771 cdb[5] = msf->cdmsf_frame0; 27772 cdb[6] = msf->cdmsf_min1; 27773 cdb[7] = msf->cdmsf_sec1; 27774 cdb[8] = msf->cdmsf_frame1; 27775 } 27776 com->uscsi_cdb = cdb; 27777 com->uscsi_cdblen = CDB_GROUP1; 27778 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27779 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27780 SD_PATH_STANDARD); 27781 kmem_free(com, sizeof (*com)); 27782 return (rval); 27783 } 27784 27785 27786 /* 27787 * Function: sr_play_trkind() 27788 * 27789 * Description: This routine is the driver entry point for handling CD-ROM 27790 * ioctl requests to output the audio signals at the specified 27791 * starting address and continue the audio play until the specified 27792 * ending address (CDROMPLAYTRKIND). The address is in Track Index 27793 * format. 27794 * 27795 * Arguments: dev - the device 'dev_t' 27796 * data - pointer to user provided audio track/index structure, 27797 * specifying start/end addresses. 27798 * flag - this argument is a pass through to ddi_copyxxx() 27799 * directly from the mode argument of ioctl(). 27800 * 27801 * Return Code: the code returned by sd_send_scsi_cmd() 27802 * EFAULT if ddi_copyxxx() fails 27803 * ENXIO if fail ddi_get_soft_state 27804 * EINVAL if data pointer is NULL 27805 */ 27806 27807 static int 27808 sr_play_trkind(dev_t dev, caddr_t data, int flag) 27809 { 27810 struct cdrom_ti ti_struct; 27811 struct cdrom_ti *ti = &ti_struct; 27812 struct uscsi_cmd *com = NULL; 27813 char cdb[CDB_GROUP1]; 27814 int rval; 27815 27816 if (data == NULL) { 27817 return (EINVAL); 27818 } 27819 27820 if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) { 27821 return (EFAULT); 27822 } 27823 27824 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27825 bzero(cdb, CDB_GROUP1); 27826 cdb[0] = SCMD_PLAYAUDIO_TI; 27827 cdb[4] = ti->cdti_trk0; 27828 cdb[5] = ti->cdti_ind0; 27829 cdb[7] = ti->cdti_trk1; 27830 cdb[8] = ti->cdti_ind1; 27831 com->uscsi_cdb = cdb; 27832 com->uscsi_cdblen = CDB_GROUP1; 27833 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27834 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27835 SD_PATH_STANDARD); 27836 kmem_free(com, sizeof (*com)); 27837 return (rval); 27838 } 27839 27840 27841 /* 27842 * Function: sr_read_all_subcodes() 27843 * 27844 * Description: This routine is the driver entry point for handling CD-ROM 27845 * ioctl requests to return raw subcode data while the target is 27846 * playing audio (CDROMSUBCODE). 27847 * 27848 * Arguments: dev - the device 'dev_t' 27849 * data - pointer to user provided cdrom subcode structure, 27850 * specifying the transfer length and address. 27851 * flag - this argument is a pass through to ddi_copyxxx() 27852 * directly from the mode argument of ioctl(). 27853 * 27854 * Return Code: the code returned by sd_send_scsi_cmd() 27855 * EFAULT if ddi_copyxxx() fails 27856 * ENXIO if fail ddi_get_soft_state 27857 * EINVAL if data pointer is NULL 27858 */ 27859 27860 static int 27861 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag) 27862 { 27863 struct sd_lun *un = NULL; 27864 struct uscsi_cmd *com = NULL; 27865 struct cdrom_subcode *subcode = NULL; 27866 int rval; 27867 size_t buflen; 27868 char cdb[CDB_GROUP5]; 27869 27870 #ifdef _MULTI_DATAMODEL 27871 /* To support ILP32 applications in an LP64 world */ 27872 struct cdrom_subcode32 cdrom_subcode32; 27873 struct cdrom_subcode32 *cdsc32 = &cdrom_subcode32; 27874 #endif 27875 if (data == NULL) { 27876 return (EINVAL); 27877 } 27878 27879 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27880 return (ENXIO); 27881 } 27882 27883 subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP); 27884 27885 #ifdef _MULTI_DATAMODEL 27886 switch (ddi_model_convert_from(flag & FMODELS)) { 27887 case DDI_MODEL_ILP32: 27888 if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) { 27889 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27890 "sr_read_all_subcodes: ddi_copyin Failed\n"); 27891 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27892 return (EFAULT); 27893 } 27894 /* Convert the ILP32 uscsi data from the application to LP64 */ 27895 cdrom_subcode32tocdrom_subcode(cdsc32, subcode); 27896 break; 27897 case DDI_MODEL_NONE: 27898 if (ddi_copyin(data, subcode, 27899 sizeof (struct cdrom_subcode), flag)) { 27900 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27901 "sr_read_all_subcodes: ddi_copyin Failed\n"); 27902 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27903 return (EFAULT); 27904 } 27905 break; 27906 } 27907 #else /* ! _MULTI_DATAMODEL */ 27908 if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) { 27909 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27910 "sr_read_all_subcodes: ddi_copyin Failed\n"); 27911 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27912 return (EFAULT); 27913 } 27914 #endif /* _MULTI_DATAMODEL */ 27915 27916 /* 27917 * Since MMC-2 expects max 3 bytes for length, check if the 27918 * length input is greater than 3 bytes 27919 */ 27920 if ((subcode->cdsc_length & 0xFF000000) != 0) { 27921 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27922 "sr_read_all_subcodes: " 27923 "cdrom transfer length too large: %d (limit %d)\n", 27924 subcode->cdsc_length, 0xFFFFFF); 27925 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27926 return (EINVAL); 27927 } 27928 27929 buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length; 27930 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27931 bzero(cdb, CDB_GROUP5); 27932 27933 if (un->un_f_mmc_cap == TRUE) { 27934 cdb[0] = (char)SCMD_READ_CD; 27935 cdb[2] = (char)0xff; 27936 cdb[3] = (char)0xff; 27937 cdb[4] = (char)0xff; 27938 cdb[5] = (char)0xff; 27939 cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16); 27940 cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8); 27941 cdb[8] = ((subcode->cdsc_length) & 0x000000ff); 27942 cdb[10] = 1; 27943 } else { 27944 /* 27945 * Note: A vendor specific command (0xDF) is being used her to 27946 * request a read of all subcodes. 27947 */ 27948 cdb[0] = (char)SCMD_READ_ALL_SUBCODES; 27949 cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24); 27950 cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16); 27951 cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8); 27952 cdb[9] = ((subcode->cdsc_length) & 0x000000ff); 27953 } 27954 com->uscsi_cdb = cdb; 27955 com->uscsi_cdblen = CDB_GROUP5; 27956 com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr; 27957 com->uscsi_buflen = buflen; 27958 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 27959 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 27960 SD_PATH_STANDARD); 27961 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27962 kmem_free(com, sizeof (*com)); 27963 return (rval); 27964 } 27965 27966 27967 /* 27968 * Function: sr_read_subchannel() 27969 * 27970 * Description: This routine is the driver entry point for handling CD-ROM 27971 * ioctl requests to return the Q sub-channel data of the CD 27972 * current position block. (CDROMSUBCHNL) The data includes the 27973 * track number, index number, absolute CD-ROM address (LBA or MSF 27974 * format per the user) , track relative CD-ROM address (LBA or MSF 27975 * format per the user), control data and audio status. 27976 * 27977 * Arguments: dev - the device 'dev_t' 27978 * data - pointer to user provided cdrom sub-channel structure 27979 * flag - this argument is a pass through to ddi_copyxxx() 27980 * directly from the mode argument of ioctl(). 27981 * 27982 * Return Code: the code returned by sd_send_scsi_cmd() 27983 * EFAULT if ddi_copyxxx() fails 27984 * ENXIO if fail ddi_get_soft_state 27985 * EINVAL if data pointer is NULL 27986 */ 27987 27988 static int 27989 sr_read_subchannel(dev_t dev, caddr_t data, int flag) 27990 { 27991 struct sd_lun *un; 27992 struct uscsi_cmd *com; 27993 struct cdrom_subchnl subchanel; 27994 struct cdrom_subchnl *subchnl = &subchanel; 27995 char cdb[CDB_GROUP1]; 27996 caddr_t buffer; 27997 int rval; 27998 27999 if (data == NULL) { 28000 return (EINVAL); 28001 } 28002 28003 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28004 (un->un_state == SD_STATE_OFFLINE)) { 28005 return (ENXIO); 28006 } 28007 28008 if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) { 28009 return (EFAULT); 28010 } 28011 28012 buffer = kmem_zalloc((size_t)16, KM_SLEEP); 28013 bzero(cdb, CDB_GROUP1); 28014 cdb[0] = SCMD_READ_SUBCHANNEL; 28015 /* Set the MSF bit based on the user requested address format */ 28016 cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02; 28017 /* 28018 * Set the Q bit in byte 2 to indicate that Q sub-channel data be 28019 * returned 28020 */ 28021 cdb[2] = 0x40; 28022 /* 28023 * Set byte 3 to specify the return data format. A value of 0x01 28024 * indicates that the CD-ROM current position should be returned. 28025 */ 28026 cdb[3] = 0x01; 28027 cdb[8] = 0x10; 28028 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28029 com->uscsi_cdb = cdb; 28030 com->uscsi_cdblen = CDB_GROUP1; 28031 com->uscsi_bufaddr = buffer; 28032 com->uscsi_buflen = 16; 28033 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28034 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 28035 SD_PATH_STANDARD); 28036 if (rval != 0) { 28037 kmem_free(buffer, 16); 28038 kmem_free(com, sizeof (*com)); 28039 return (rval); 28040 } 28041 28042 /* Process the returned Q sub-channel data */ 28043 subchnl->cdsc_audiostatus = buffer[1]; 28044 subchnl->cdsc_adr = (buffer[5] & 0xF0); 28045 subchnl->cdsc_ctrl = (buffer[5] & 0x0F); 28046 subchnl->cdsc_trk = buffer[6]; 28047 subchnl->cdsc_ind = buffer[7]; 28048 if (subchnl->cdsc_format & CDROM_LBA) { 28049 subchnl->cdsc_absaddr.lba = 28050 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 28051 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 28052 subchnl->cdsc_reladdr.lba = 28053 ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) + 28054 ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]); 28055 } else if (un->un_f_cfg_readsub_bcd == TRUE) { 28056 subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]); 28057 subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]); 28058 subchnl->cdsc_absaddr.msf.frame = BCD_TO_BYTE(buffer[11]); 28059 subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]); 28060 subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]); 28061 subchnl->cdsc_reladdr.msf.frame = BCD_TO_BYTE(buffer[15]); 28062 } else { 28063 subchnl->cdsc_absaddr.msf.minute = buffer[9]; 28064 subchnl->cdsc_absaddr.msf.second = buffer[10]; 28065 subchnl->cdsc_absaddr.msf.frame = buffer[11]; 28066 subchnl->cdsc_reladdr.msf.minute = buffer[13]; 28067 subchnl->cdsc_reladdr.msf.second = buffer[14]; 28068 subchnl->cdsc_reladdr.msf.frame = buffer[15]; 28069 } 28070 kmem_free(buffer, 16); 28071 kmem_free(com, sizeof (*com)); 28072 if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag) 28073 != 0) { 28074 return (EFAULT); 28075 } 28076 return (rval); 28077 } 28078 28079 28080 /* 28081 * Function: sr_read_tocentry() 28082 * 28083 * Description: This routine is the driver entry point for handling CD-ROM 28084 * ioctl requests to read from the Table of Contents (TOC) 28085 * (CDROMREADTOCENTRY). This routine provides the ADR and CTRL 28086 * fields, the starting address (LBA or MSF format per the user) 28087 * and the data mode if the user specified track is a data track. 28088 * 28089 * Note: The READ HEADER (0x44) command used in this routine is 28090 * obsolete per the SCSI MMC spec but still supported in the 28091 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI 28092 * therefore the command is still implemented in this routine. 28093 * 28094 * Arguments: dev - the device 'dev_t' 28095 * data - pointer to user provided toc entry structure, 28096 * specifying the track # and the address format 28097 * (LBA or MSF). 28098 * flag - this argument is a pass through to ddi_copyxxx() 28099 * directly from the mode argument of ioctl(). 28100 * 28101 * Return Code: the code returned by sd_send_scsi_cmd() 28102 * EFAULT if ddi_copyxxx() fails 28103 * ENXIO if fail ddi_get_soft_state 28104 * EINVAL if data pointer is NULL 28105 */ 28106 28107 static int 28108 sr_read_tocentry(dev_t dev, caddr_t data, int flag) 28109 { 28110 struct sd_lun *un = NULL; 28111 struct uscsi_cmd *com; 28112 struct cdrom_tocentry toc_entry; 28113 struct cdrom_tocentry *entry = &toc_entry; 28114 caddr_t buffer; 28115 int rval; 28116 char cdb[CDB_GROUP1]; 28117 28118 if (data == NULL) { 28119 return (EINVAL); 28120 } 28121 28122 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28123 (un->un_state == SD_STATE_OFFLINE)) { 28124 return (ENXIO); 28125 } 28126 28127 if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) { 28128 return (EFAULT); 28129 } 28130 28131 /* Validate the requested track and address format */ 28132 if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) { 28133 return (EINVAL); 28134 } 28135 28136 if (entry->cdte_track == 0) { 28137 return (EINVAL); 28138 } 28139 28140 buffer = kmem_zalloc((size_t)12, KM_SLEEP); 28141 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28142 bzero(cdb, CDB_GROUP1); 28143 28144 cdb[0] = SCMD_READ_TOC; 28145 /* Set the MSF bit based on the user requested address format */ 28146 cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2); 28147 if (un->un_f_cfg_read_toc_trk_bcd == TRUE) { 28148 cdb[6] = BYTE_TO_BCD(entry->cdte_track); 28149 } else { 28150 cdb[6] = entry->cdte_track; 28151 } 28152 28153 /* 28154 * Bytes 7 & 8 are the 12 byte allocation length for a single entry. 28155 * (4 byte TOC response header + 8 byte track descriptor) 28156 */ 28157 cdb[8] = 12; 28158 com->uscsi_cdb = cdb; 28159 com->uscsi_cdblen = CDB_GROUP1; 28160 com->uscsi_bufaddr = buffer; 28161 com->uscsi_buflen = 0x0C; 28162 com->uscsi_flags = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ); 28163 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 28164 SD_PATH_STANDARD); 28165 if (rval != 0) { 28166 kmem_free(buffer, 12); 28167 kmem_free(com, sizeof (*com)); 28168 return (rval); 28169 } 28170 28171 /* Process the toc entry */ 28172 entry->cdte_adr = (buffer[5] & 0xF0) >> 4; 28173 entry->cdte_ctrl = (buffer[5] & 0x0F); 28174 if (entry->cdte_format & CDROM_LBA) { 28175 entry->cdte_addr.lba = 28176 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 28177 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 28178 } else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) { 28179 entry->cdte_addr.msf.minute = BCD_TO_BYTE(buffer[9]); 28180 entry->cdte_addr.msf.second = BCD_TO_BYTE(buffer[10]); 28181 entry->cdte_addr.msf.frame = BCD_TO_BYTE(buffer[11]); 28182 /* 28183 * Send a READ TOC command using the LBA address format to get 28184 * the LBA for the track requested so it can be used in the 28185 * READ HEADER request 28186 * 28187 * Note: The MSF bit of the READ HEADER command specifies the 28188 * output format. The block address specified in that command 28189 * must be in LBA format. 28190 */ 28191 cdb[1] = 0; 28192 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 28193 SD_PATH_STANDARD); 28194 if (rval != 0) { 28195 kmem_free(buffer, 12); 28196 kmem_free(com, sizeof (*com)); 28197 return (rval); 28198 } 28199 } else { 28200 entry->cdte_addr.msf.minute = buffer[9]; 28201 entry->cdte_addr.msf.second = buffer[10]; 28202 entry->cdte_addr.msf.frame = buffer[11]; 28203 /* 28204 * Send a READ TOC command using the LBA address format to get 28205 * the LBA for the track requested so it can be used in the 28206 * READ HEADER request 28207 * 28208 * Note: The MSF bit of the READ HEADER command specifies the 28209 * output format. The block address specified in that command 28210 * must be in LBA format. 28211 */ 28212 cdb[1] = 0; 28213 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 28214 SD_PATH_STANDARD); 28215 if (rval != 0) { 28216 kmem_free(buffer, 12); 28217 kmem_free(com, sizeof (*com)); 28218 return (rval); 28219 } 28220 } 28221 28222 /* 28223 * Build and send the READ HEADER command to determine the data mode of 28224 * the user specified track. 28225 */ 28226 if ((entry->cdte_ctrl & CDROM_DATA_TRACK) && 28227 (entry->cdte_track != CDROM_LEADOUT)) { 28228 bzero(cdb, CDB_GROUP1); 28229 cdb[0] = SCMD_READ_HEADER; 28230 cdb[2] = buffer[8]; 28231 cdb[3] = buffer[9]; 28232 cdb[4] = buffer[10]; 28233 cdb[5] = buffer[11]; 28234 cdb[8] = 0x08; 28235 com->uscsi_buflen = 0x08; 28236 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 28237 SD_PATH_STANDARD); 28238 if (rval == 0) { 28239 entry->cdte_datamode = buffer[0]; 28240 } else { 28241 /* 28242 * READ HEADER command failed, since this is 28243 * obsoleted in one spec, its better to return 28244 * -1 for an invlid track so that we can still 28245 * recieve the rest of the TOC data. 28246 */ 28247 entry->cdte_datamode = (uchar_t)-1; 28248 } 28249 } else { 28250 entry->cdte_datamode = (uchar_t)-1; 28251 } 28252 28253 kmem_free(buffer, 12); 28254 kmem_free(com, sizeof (*com)); 28255 if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0) 28256 return (EFAULT); 28257 28258 return (rval); 28259 } 28260 28261 28262 /* 28263 * Function: sr_read_tochdr() 28264 * 28265 * Description: This routine is the driver entry point for handling CD-ROM 28266 * ioctl requests to read the Table of Contents (TOC) header 28267 * (CDROMREADTOHDR). The TOC header consists of the disk starting 28268 * and ending track numbers 28269 * 28270 * Arguments: dev - the device 'dev_t' 28271 * data - pointer to user provided toc header structure, 28272 * specifying the starting and ending track numbers. 28273 * flag - this argument is a pass through to ddi_copyxxx() 28274 * directly from the mode argument of ioctl(). 28275 * 28276 * Return Code: the code returned by sd_send_scsi_cmd() 28277 * EFAULT if ddi_copyxxx() fails 28278 * ENXIO if fail ddi_get_soft_state 28279 * EINVAL if data pointer is NULL 28280 */ 28281 28282 static int 28283 sr_read_tochdr(dev_t dev, caddr_t data, int flag) 28284 { 28285 struct sd_lun *un; 28286 struct uscsi_cmd *com; 28287 struct cdrom_tochdr toc_header; 28288 struct cdrom_tochdr *hdr = &toc_header; 28289 char cdb[CDB_GROUP1]; 28290 int rval; 28291 caddr_t buffer; 28292 28293 if (data == NULL) { 28294 return (EINVAL); 28295 } 28296 28297 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28298 (un->un_state == SD_STATE_OFFLINE)) { 28299 return (ENXIO); 28300 } 28301 28302 buffer = kmem_zalloc(4, KM_SLEEP); 28303 bzero(cdb, CDB_GROUP1); 28304 cdb[0] = SCMD_READ_TOC; 28305 /* 28306 * Specifying a track number of 0x00 in the READ TOC command indicates 28307 * that the TOC header should be returned 28308 */ 28309 cdb[6] = 0x00; 28310 /* 28311 * Bytes 7 & 8 are the 4 byte allocation length for TOC header. 28312 * (2 byte data len + 1 byte starting track # + 1 byte ending track #) 28313 */ 28314 cdb[8] = 0x04; 28315 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28316 com->uscsi_cdb = cdb; 28317 com->uscsi_cdblen = CDB_GROUP1; 28318 com->uscsi_bufaddr = buffer; 28319 com->uscsi_buflen = 0x04; 28320 com->uscsi_timeout = 300; 28321 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28322 28323 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 28324 SD_PATH_STANDARD); 28325 if (un->un_f_cfg_read_toc_trk_bcd == TRUE) { 28326 hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]); 28327 hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]); 28328 } else { 28329 hdr->cdth_trk0 = buffer[2]; 28330 hdr->cdth_trk1 = buffer[3]; 28331 } 28332 kmem_free(buffer, 4); 28333 kmem_free(com, sizeof (*com)); 28334 if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) { 28335 return (EFAULT); 28336 } 28337 return (rval); 28338 } 28339 28340 28341 /* 28342 * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(), 28343 * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for 28344 * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data, 28345 * digital audio and extended architecture digital audio. These modes are 28346 * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3 28347 * MMC specs. 28348 * 28349 * In addition to support for the various data formats these routines also 28350 * include support for devices that implement only the direct access READ 28351 * commands (0x08, 0x28), devices that implement the READ_CD commands 28352 * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and 28353 * READ CDXA commands (0xD8, 0xDB) 28354 */ 28355 28356 /* 28357 * Function: sr_read_mode1() 28358 * 28359 * Description: This routine is the driver entry point for handling CD-ROM 28360 * ioctl read mode1 requests (CDROMREADMODE1). 28361 * 28362 * Arguments: dev - the device 'dev_t' 28363 * data - pointer to user provided cd read structure specifying 28364 * the lba buffer address and length. 28365 * flag - this argument is a pass through to ddi_copyxxx() 28366 * directly from the mode argument of ioctl(). 28367 * 28368 * Return Code: the code returned by sd_send_scsi_cmd() 28369 * EFAULT if ddi_copyxxx() fails 28370 * ENXIO if fail ddi_get_soft_state 28371 * EINVAL if data pointer is NULL 28372 */ 28373 28374 static int 28375 sr_read_mode1(dev_t dev, caddr_t data, int flag) 28376 { 28377 struct sd_lun *un; 28378 struct cdrom_read mode1_struct; 28379 struct cdrom_read *mode1 = &mode1_struct; 28380 int rval; 28381 #ifdef _MULTI_DATAMODEL 28382 /* To support ILP32 applications in an LP64 world */ 28383 struct cdrom_read32 cdrom_read32; 28384 struct cdrom_read32 *cdrd32 = &cdrom_read32; 28385 #endif /* _MULTI_DATAMODEL */ 28386 28387 if (data == NULL) { 28388 return (EINVAL); 28389 } 28390 28391 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28392 (un->un_state == SD_STATE_OFFLINE)) { 28393 return (ENXIO); 28394 } 28395 28396 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 28397 "sd_read_mode1: entry: un:0x%p\n", un); 28398 28399 #ifdef _MULTI_DATAMODEL 28400 switch (ddi_model_convert_from(flag & FMODELS)) { 28401 case DDI_MODEL_ILP32: 28402 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 28403 return (EFAULT); 28404 } 28405 /* Convert the ILP32 uscsi data from the application to LP64 */ 28406 cdrom_read32tocdrom_read(cdrd32, mode1); 28407 break; 28408 case DDI_MODEL_NONE: 28409 if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) { 28410 return (EFAULT); 28411 } 28412 } 28413 #else /* ! _MULTI_DATAMODEL */ 28414 if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) { 28415 return (EFAULT); 28416 } 28417 #endif /* _MULTI_DATAMODEL */ 28418 28419 rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr, 28420 mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD); 28421 28422 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 28423 "sd_read_mode1: exit: un:0x%p\n", un); 28424 28425 return (rval); 28426 } 28427 28428 28429 /* 28430 * Function: sr_read_cd_mode2() 28431 * 28432 * Description: This routine is the driver entry point for handling CD-ROM 28433 * ioctl read mode2 requests (CDROMREADMODE2) for devices that 28434 * support the READ CD (0xBE) command or the 1st generation 28435 * READ CD (0xD4) command. 28436 * 28437 * Arguments: dev - the device 'dev_t' 28438 * data - pointer to user provided cd read structure specifying 28439 * the lba buffer address and length. 28440 * flag - this argument is a pass through to ddi_copyxxx() 28441 * directly from the mode argument of ioctl(). 28442 * 28443 * Return Code: the code returned by sd_send_scsi_cmd() 28444 * EFAULT if ddi_copyxxx() fails 28445 * ENXIO if fail ddi_get_soft_state 28446 * EINVAL if data pointer is NULL 28447 */ 28448 28449 static int 28450 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag) 28451 { 28452 struct sd_lun *un; 28453 struct uscsi_cmd *com; 28454 struct cdrom_read mode2_struct; 28455 struct cdrom_read *mode2 = &mode2_struct; 28456 uchar_t cdb[CDB_GROUP5]; 28457 int nblocks; 28458 int rval; 28459 #ifdef _MULTI_DATAMODEL 28460 /* To support ILP32 applications in an LP64 world */ 28461 struct cdrom_read32 cdrom_read32; 28462 struct cdrom_read32 *cdrd32 = &cdrom_read32; 28463 #endif /* _MULTI_DATAMODEL */ 28464 28465 if (data == NULL) { 28466 return (EINVAL); 28467 } 28468 28469 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28470 (un->un_state == SD_STATE_OFFLINE)) { 28471 return (ENXIO); 28472 } 28473 28474 #ifdef _MULTI_DATAMODEL 28475 switch (ddi_model_convert_from(flag & FMODELS)) { 28476 case DDI_MODEL_ILP32: 28477 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 28478 return (EFAULT); 28479 } 28480 /* Convert the ILP32 uscsi data from the application to LP64 */ 28481 cdrom_read32tocdrom_read(cdrd32, mode2); 28482 break; 28483 case DDI_MODEL_NONE: 28484 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 28485 return (EFAULT); 28486 } 28487 break; 28488 } 28489 28490 #else /* ! _MULTI_DATAMODEL */ 28491 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 28492 return (EFAULT); 28493 } 28494 #endif /* _MULTI_DATAMODEL */ 28495 28496 bzero(cdb, sizeof (cdb)); 28497 if (un->un_f_cfg_read_cd_xd4 == TRUE) { 28498 /* Read command supported by 1st generation atapi drives */ 28499 cdb[0] = SCMD_READ_CDD4; 28500 } else { 28501 /* Universal CD Access Command */ 28502 cdb[0] = SCMD_READ_CD; 28503 } 28504 28505 /* 28506 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book 28507 */ 28508 cdb[1] = CDROM_SECTOR_TYPE_MODE2; 28509 28510 /* set the start address */ 28511 cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF); 28512 cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF); 28513 cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF); 28514 cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF); 28515 28516 /* set the transfer length */ 28517 nblocks = mode2->cdread_buflen / 2336; 28518 cdb[6] = (uchar_t)(nblocks >> 16); 28519 cdb[7] = (uchar_t)(nblocks >> 8); 28520 cdb[8] = (uchar_t)nblocks; 28521 28522 /* set the filter bits */ 28523 cdb[9] = CDROM_READ_CD_USERDATA; 28524 28525 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28526 com->uscsi_cdb = (caddr_t)cdb; 28527 com->uscsi_cdblen = sizeof (cdb); 28528 com->uscsi_bufaddr = mode2->cdread_bufaddr; 28529 com->uscsi_buflen = mode2->cdread_buflen; 28530 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28531 28532 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 28533 SD_PATH_STANDARD); 28534 kmem_free(com, sizeof (*com)); 28535 return (rval); 28536 } 28537 28538 28539 /* 28540 * Function: sr_read_mode2() 28541 * 28542 * Description: This routine is the driver entry point for handling CD-ROM 28543 * ioctl read mode2 requests (CDROMREADMODE2) for devices that 28544 * do not support the READ CD (0xBE) command. 28545 * 28546 * Arguments: dev - the device 'dev_t' 28547 * data - pointer to user provided cd read structure specifying 28548 * the lba buffer address and length. 28549 * flag - this argument is a pass through to ddi_copyxxx() 28550 * directly from the mode argument of ioctl(). 28551 * 28552 * Return Code: the code returned by sd_send_scsi_cmd() 28553 * EFAULT if ddi_copyxxx() fails 28554 * ENXIO if fail ddi_get_soft_state 28555 * EINVAL if data pointer is NULL 28556 * EIO if fail to reset block size 28557 * EAGAIN if commands are in progress in the driver 28558 */ 28559 28560 static int 28561 sr_read_mode2(dev_t dev, caddr_t data, int flag) 28562 { 28563 struct sd_lun *un; 28564 struct cdrom_read mode2_struct; 28565 struct cdrom_read *mode2 = &mode2_struct; 28566 int rval; 28567 uint32_t restore_blksize; 28568 struct uscsi_cmd *com; 28569 uchar_t cdb[CDB_GROUP0]; 28570 int nblocks; 28571 28572 #ifdef _MULTI_DATAMODEL 28573 /* To support ILP32 applications in an LP64 world */ 28574 struct cdrom_read32 cdrom_read32; 28575 struct cdrom_read32 *cdrd32 = &cdrom_read32; 28576 #endif /* _MULTI_DATAMODEL */ 28577 28578 if (data == NULL) { 28579 return (EINVAL); 28580 } 28581 28582 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28583 (un->un_state == SD_STATE_OFFLINE)) { 28584 return (ENXIO); 28585 } 28586 28587 /* 28588 * Because this routine will update the device and driver block size 28589 * being used we want to make sure there are no commands in progress. 28590 * If commands are in progress the user will have to try again. 28591 * 28592 * We check for 1 instead of 0 because we increment un_ncmds_in_driver 28593 * in sdioctl to protect commands from sdioctl through to the top of 28594 * sd_uscsi_strategy. See sdioctl for details. 28595 */ 28596 mutex_enter(SD_MUTEX(un)); 28597 if (un->un_ncmds_in_driver != 1) { 28598 mutex_exit(SD_MUTEX(un)); 28599 return (EAGAIN); 28600 } 28601 mutex_exit(SD_MUTEX(un)); 28602 28603 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 28604 "sd_read_mode2: entry: un:0x%p\n", un); 28605 28606 #ifdef _MULTI_DATAMODEL 28607 switch (ddi_model_convert_from(flag & FMODELS)) { 28608 case DDI_MODEL_ILP32: 28609 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 28610 return (EFAULT); 28611 } 28612 /* Convert the ILP32 uscsi data from the application to LP64 */ 28613 cdrom_read32tocdrom_read(cdrd32, mode2); 28614 break; 28615 case DDI_MODEL_NONE: 28616 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 28617 return (EFAULT); 28618 } 28619 break; 28620 } 28621 #else /* ! _MULTI_DATAMODEL */ 28622 if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) { 28623 return (EFAULT); 28624 } 28625 #endif /* _MULTI_DATAMODEL */ 28626 28627 /* Store the current target block size for restoration later */ 28628 restore_blksize = un->un_tgt_blocksize; 28629 28630 /* Change the device and soft state target block size to 2336 */ 28631 if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) { 28632 rval = EIO; 28633 goto done; 28634 } 28635 28636 28637 bzero(cdb, sizeof (cdb)); 28638 28639 /* set READ operation */ 28640 cdb[0] = SCMD_READ; 28641 28642 /* adjust lba for 2kbyte blocks from 512 byte blocks */ 28643 mode2->cdread_lba >>= 2; 28644 28645 /* set the start address */ 28646 cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F); 28647 cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF); 28648 cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF); 28649 28650 /* set the transfer length */ 28651 nblocks = mode2->cdread_buflen / 2336; 28652 cdb[4] = (uchar_t)nblocks & 0xFF; 28653 28654 /* build command */ 28655 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28656 com->uscsi_cdb = (caddr_t)cdb; 28657 com->uscsi_cdblen = sizeof (cdb); 28658 com->uscsi_bufaddr = mode2->cdread_bufaddr; 28659 com->uscsi_buflen = mode2->cdread_buflen; 28660 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28661 28662 /* 28663 * Issue SCSI command with user space address for read buffer. 28664 * 28665 * This sends the command through main channel in the driver. 28666 * 28667 * Since this is accessed via an IOCTL call, we go through the 28668 * standard path, so that if the device was powered down, then 28669 * it would be 'awakened' to handle the command. 28670 */ 28671 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 28672 SD_PATH_STANDARD); 28673 28674 kmem_free(com, sizeof (*com)); 28675 28676 /* Restore the device and soft state target block size */ 28677 if (sr_sector_mode(dev, restore_blksize) != 0) { 28678 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28679 "can't do switch back to mode 1\n"); 28680 /* 28681 * If sd_send_scsi_READ succeeded we still need to report 28682 * an error because we failed to reset the block size 28683 */ 28684 if (rval == 0) { 28685 rval = EIO; 28686 } 28687 } 28688 28689 done: 28690 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 28691 "sd_read_mode2: exit: un:0x%p\n", un); 28692 28693 return (rval); 28694 } 28695 28696 28697 /* 28698 * Function: sr_sector_mode() 28699 * 28700 * Description: This utility function is used by sr_read_mode2 to set the target 28701 * block size based on the user specified size. This is a legacy 28702 * implementation based upon a vendor specific mode page 28703 * 28704 * Arguments: dev - the device 'dev_t' 28705 * data - flag indicating if block size is being set to 2336 or 28706 * 512. 28707 * 28708 * Return Code: the code returned by sd_send_scsi_cmd() 28709 * EFAULT if ddi_copyxxx() fails 28710 * ENXIO if fail ddi_get_soft_state 28711 * EINVAL if data pointer is NULL 28712 */ 28713 28714 static int 28715 sr_sector_mode(dev_t dev, uint32_t blksize) 28716 { 28717 struct sd_lun *un; 28718 uchar_t *sense; 28719 uchar_t *select; 28720 int rval; 28721 28722 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28723 (un->un_state == SD_STATE_OFFLINE)) { 28724 return (ENXIO); 28725 } 28726 28727 sense = kmem_zalloc(20, KM_SLEEP); 28728 28729 /* Note: This is a vendor specific mode page (0x81) */ 28730 if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81, 28731 SD_PATH_STANDARD)) != 0) { 28732 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 28733 "sr_sector_mode: Mode Sense failed\n"); 28734 kmem_free(sense, 20); 28735 return (rval); 28736 } 28737 select = kmem_zalloc(20, KM_SLEEP); 28738 select[3] = 0x08; 28739 select[10] = ((blksize >> 8) & 0xff); 28740 select[11] = (blksize & 0xff); 28741 select[12] = 0x01; 28742 select[13] = 0x06; 28743 select[14] = sense[14]; 28744 select[15] = sense[15]; 28745 if (blksize == SD_MODE2_BLKSIZE) { 28746 select[14] |= 0x01; 28747 } 28748 28749 if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20, 28750 SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) { 28751 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 28752 "sr_sector_mode: Mode Select failed\n"); 28753 } else { 28754 /* 28755 * Only update the softstate block size if we successfully 28756 * changed the device block mode. 28757 */ 28758 mutex_enter(SD_MUTEX(un)); 28759 sd_update_block_info(un, blksize, 0); 28760 mutex_exit(SD_MUTEX(un)); 28761 } 28762 kmem_free(sense, 20); 28763 kmem_free(select, 20); 28764 return (rval); 28765 } 28766 28767 28768 /* 28769 * Function: sr_read_cdda() 28770 * 28771 * Description: This routine is the driver entry point for handling CD-ROM 28772 * ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If 28773 * the target supports CDDA these requests are handled via a vendor 28774 * specific command (0xD8) If the target does not support CDDA 28775 * these requests are handled via the READ CD command (0xBE). 28776 * 28777 * Arguments: dev - the device 'dev_t' 28778 * data - pointer to user provided CD-DA structure specifying 28779 * the track starting address, transfer length, and 28780 * subcode options. 28781 * flag - this argument is a pass through to ddi_copyxxx() 28782 * directly from the mode argument of ioctl(). 28783 * 28784 * Return Code: the code returned by sd_send_scsi_cmd() 28785 * EFAULT if ddi_copyxxx() fails 28786 * ENXIO if fail ddi_get_soft_state 28787 * EINVAL if invalid arguments are provided 28788 * ENOTTY 28789 */ 28790 28791 static int 28792 sr_read_cdda(dev_t dev, caddr_t data, int flag) 28793 { 28794 struct sd_lun *un; 28795 struct uscsi_cmd *com; 28796 struct cdrom_cdda *cdda; 28797 int rval; 28798 size_t buflen; 28799 char cdb[CDB_GROUP5]; 28800 28801 #ifdef _MULTI_DATAMODEL 28802 /* To support ILP32 applications in an LP64 world */ 28803 struct cdrom_cdda32 cdrom_cdda32; 28804 struct cdrom_cdda32 *cdda32 = &cdrom_cdda32; 28805 #endif /* _MULTI_DATAMODEL */ 28806 28807 if (data == NULL) { 28808 return (EINVAL); 28809 } 28810 28811 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 28812 return (ENXIO); 28813 } 28814 28815 cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP); 28816 28817 #ifdef _MULTI_DATAMODEL 28818 switch (ddi_model_convert_from(flag & FMODELS)) { 28819 case DDI_MODEL_ILP32: 28820 if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) { 28821 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28822 "sr_read_cdda: ddi_copyin Failed\n"); 28823 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28824 return (EFAULT); 28825 } 28826 /* Convert the ILP32 uscsi data from the application to LP64 */ 28827 cdrom_cdda32tocdrom_cdda(cdda32, cdda); 28828 break; 28829 case DDI_MODEL_NONE: 28830 if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) { 28831 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28832 "sr_read_cdda: ddi_copyin Failed\n"); 28833 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28834 return (EFAULT); 28835 } 28836 break; 28837 } 28838 #else /* ! _MULTI_DATAMODEL */ 28839 if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) { 28840 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28841 "sr_read_cdda: ddi_copyin Failed\n"); 28842 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28843 return (EFAULT); 28844 } 28845 #endif /* _MULTI_DATAMODEL */ 28846 28847 /* 28848 * Since MMC-2 expects max 3 bytes for length, check if the 28849 * length input is greater than 3 bytes 28850 */ 28851 if ((cdda->cdda_length & 0xFF000000) != 0) { 28852 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: " 28853 "cdrom transfer length too large: %d (limit %d)\n", 28854 cdda->cdda_length, 0xFFFFFF); 28855 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28856 return (EINVAL); 28857 } 28858 28859 switch (cdda->cdda_subcode) { 28860 case CDROM_DA_NO_SUBCODE: 28861 buflen = CDROM_BLK_2352 * cdda->cdda_length; 28862 break; 28863 case CDROM_DA_SUBQ: 28864 buflen = CDROM_BLK_2368 * cdda->cdda_length; 28865 break; 28866 case CDROM_DA_ALL_SUBCODE: 28867 buflen = CDROM_BLK_2448 * cdda->cdda_length; 28868 break; 28869 case CDROM_DA_SUBCODE_ONLY: 28870 buflen = CDROM_BLK_SUBCODE * cdda->cdda_length; 28871 break; 28872 default: 28873 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28874 "sr_read_cdda: Subcode '0x%x' Not Supported\n", 28875 cdda->cdda_subcode); 28876 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28877 return (EINVAL); 28878 } 28879 28880 /* Build and send the command */ 28881 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28882 bzero(cdb, CDB_GROUP5); 28883 28884 if (un->un_f_cfg_cdda == TRUE) { 28885 cdb[0] = (char)SCMD_READ_CD; 28886 cdb[1] = 0x04; 28887 cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24); 28888 cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16); 28889 cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8); 28890 cdb[5] = ((cdda->cdda_addr) & 0x000000ff); 28891 cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16); 28892 cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8); 28893 cdb[8] = ((cdda->cdda_length) & 0x000000ff); 28894 cdb[9] = 0x10; 28895 switch (cdda->cdda_subcode) { 28896 case CDROM_DA_NO_SUBCODE : 28897 cdb[10] = 0x0; 28898 break; 28899 case CDROM_DA_SUBQ : 28900 cdb[10] = 0x2; 28901 break; 28902 case CDROM_DA_ALL_SUBCODE : 28903 cdb[10] = 0x1; 28904 break; 28905 case CDROM_DA_SUBCODE_ONLY : 28906 /* FALLTHROUGH */ 28907 default : 28908 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28909 kmem_free(com, sizeof (*com)); 28910 return (ENOTTY); 28911 } 28912 } else { 28913 cdb[0] = (char)SCMD_READ_CDDA; 28914 cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24); 28915 cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16); 28916 cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8); 28917 cdb[5] = ((cdda->cdda_addr) & 0x000000ff); 28918 cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24); 28919 cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16); 28920 cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8); 28921 cdb[9] = ((cdda->cdda_length) & 0x000000ff); 28922 cdb[10] = cdda->cdda_subcode; 28923 } 28924 28925 com->uscsi_cdb = cdb; 28926 com->uscsi_cdblen = CDB_GROUP5; 28927 com->uscsi_bufaddr = (caddr_t)cdda->cdda_data; 28928 com->uscsi_buflen = buflen; 28929 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28930 28931 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 28932 SD_PATH_STANDARD); 28933 28934 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28935 kmem_free(com, sizeof (*com)); 28936 return (rval); 28937 } 28938 28939 28940 /* 28941 * Function: sr_read_cdxa() 28942 * 28943 * Description: This routine is the driver entry point for handling CD-ROM 28944 * ioctl requests to return CD-XA (Extended Architecture) data. 28945 * (CDROMCDXA). 28946 * 28947 * Arguments: dev - the device 'dev_t' 28948 * data - pointer to user provided CD-XA structure specifying 28949 * the data starting address, transfer length, and format 28950 * flag - this argument is a pass through to ddi_copyxxx() 28951 * directly from the mode argument of ioctl(). 28952 * 28953 * Return Code: the code returned by sd_send_scsi_cmd() 28954 * EFAULT if ddi_copyxxx() fails 28955 * ENXIO if fail ddi_get_soft_state 28956 * EINVAL if data pointer is NULL 28957 */ 28958 28959 static int 28960 sr_read_cdxa(dev_t dev, caddr_t data, int flag) 28961 { 28962 struct sd_lun *un; 28963 struct uscsi_cmd *com; 28964 struct cdrom_cdxa *cdxa; 28965 int rval; 28966 size_t buflen; 28967 char cdb[CDB_GROUP5]; 28968 uchar_t read_flags; 28969 28970 #ifdef _MULTI_DATAMODEL 28971 /* To support ILP32 applications in an LP64 world */ 28972 struct cdrom_cdxa32 cdrom_cdxa32; 28973 struct cdrom_cdxa32 *cdxa32 = &cdrom_cdxa32; 28974 #endif /* _MULTI_DATAMODEL */ 28975 28976 if (data == NULL) { 28977 return (EINVAL); 28978 } 28979 28980 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 28981 return (ENXIO); 28982 } 28983 28984 cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP); 28985 28986 #ifdef _MULTI_DATAMODEL 28987 switch (ddi_model_convert_from(flag & FMODELS)) { 28988 case DDI_MODEL_ILP32: 28989 if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) { 28990 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28991 return (EFAULT); 28992 } 28993 /* 28994 * Convert the ILP32 uscsi data from the 28995 * application to LP64 for internal use. 28996 */ 28997 cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa); 28998 break; 28999 case DDI_MODEL_NONE: 29000 if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) { 29001 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 29002 return (EFAULT); 29003 } 29004 break; 29005 } 29006 #else /* ! _MULTI_DATAMODEL */ 29007 if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) { 29008 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 29009 return (EFAULT); 29010 } 29011 #endif /* _MULTI_DATAMODEL */ 29012 29013 /* 29014 * Since MMC-2 expects max 3 bytes for length, check if the 29015 * length input is greater than 3 bytes 29016 */ 29017 if ((cdxa->cdxa_length & 0xFF000000) != 0) { 29018 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: " 29019 "cdrom transfer length too large: %d (limit %d)\n", 29020 cdxa->cdxa_length, 0xFFFFFF); 29021 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 29022 return (EINVAL); 29023 } 29024 29025 switch (cdxa->cdxa_format) { 29026 case CDROM_XA_DATA: 29027 buflen = CDROM_BLK_2048 * cdxa->cdxa_length; 29028 read_flags = 0x10; 29029 break; 29030 case CDROM_XA_SECTOR_DATA: 29031 buflen = CDROM_BLK_2352 * cdxa->cdxa_length; 29032 read_flags = 0xf8; 29033 break; 29034 case CDROM_XA_DATA_W_ERROR: 29035 buflen = CDROM_BLK_2646 * cdxa->cdxa_length; 29036 read_flags = 0xfc; 29037 break; 29038 default: 29039 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29040 "sr_read_cdxa: Format '0x%x' Not Supported\n", 29041 cdxa->cdxa_format); 29042 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 29043 return (EINVAL); 29044 } 29045 29046 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 29047 bzero(cdb, CDB_GROUP5); 29048 if (un->un_f_mmc_cap == TRUE) { 29049 cdb[0] = (char)SCMD_READ_CD; 29050 cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24); 29051 cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16); 29052 cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8); 29053 cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff); 29054 cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16); 29055 cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8); 29056 cdb[8] = ((cdxa->cdxa_length) & 0x000000ff); 29057 cdb[9] = (char)read_flags; 29058 } else { 29059 /* 29060 * Note: A vendor specific command (0xDB) is being used her to 29061 * request a read of all subcodes. 29062 */ 29063 cdb[0] = (char)SCMD_READ_CDXA; 29064 cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24); 29065 cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16); 29066 cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8); 29067 cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff); 29068 cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24); 29069 cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16); 29070 cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8); 29071 cdb[9] = ((cdxa->cdxa_length) & 0x000000ff); 29072 cdb[10] = cdxa->cdxa_format; 29073 } 29074 com->uscsi_cdb = cdb; 29075 com->uscsi_cdblen = CDB_GROUP5; 29076 com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data; 29077 com->uscsi_buflen = buflen; 29078 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 29079 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 29080 SD_PATH_STANDARD); 29081 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 29082 kmem_free(com, sizeof (*com)); 29083 return (rval); 29084 } 29085 29086 29087 /* 29088 * Function: sr_eject() 29089 * 29090 * Description: This routine is the driver entry point for handling CD-ROM 29091 * eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT) 29092 * 29093 * Arguments: dev - the device 'dev_t' 29094 * 29095 * Return Code: the code returned by sd_send_scsi_cmd() 29096 */ 29097 29098 static int 29099 sr_eject(dev_t dev) 29100 { 29101 struct sd_lun *un; 29102 int rval; 29103 29104 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 29105 (un->un_state == SD_STATE_OFFLINE)) { 29106 return (ENXIO); 29107 } 29108 if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW, 29109 SD_PATH_STANDARD)) != 0) { 29110 return (rval); 29111 } 29112 29113 rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT, 29114 SD_PATH_STANDARD); 29115 29116 if (rval == 0) { 29117 mutex_enter(SD_MUTEX(un)); 29118 sr_ejected(un); 29119 un->un_mediastate = DKIO_EJECTED; 29120 cv_broadcast(&un->un_state_cv); 29121 mutex_exit(SD_MUTEX(un)); 29122 } 29123 return (rval); 29124 } 29125 29126 29127 /* 29128 * Function: sr_ejected() 29129 * 29130 * Description: This routine updates the soft state structure to invalidate the 29131 * geometry information after the media has been ejected or a 29132 * media eject has been detected. 29133 * 29134 * Arguments: un - driver soft state (unit) structure 29135 */ 29136 29137 static void 29138 sr_ejected(struct sd_lun *un) 29139 { 29140 struct sd_errstats *stp; 29141 29142 ASSERT(un != NULL); 29143 ASSERT(mutex_owned(SD_MUTEX(un))); 29144 29145 un->un_f_blockcount_is_valid = FALSE; 29146 un->un_f_tgt_blocksize_is_valid = FALSE; 29147 un->un_f_geometry_is_valid = FALSE; 29148 29149 if (un->un_errstats != NULL) { 29150 stp = (struct sd_errstats *)un->un_errstats->ks_data; 29151 stp->sd_capacity.value.ui64 = 0; 29152 } 29153 } 29154 29155 29156 /* 29157 * Function: sr_check_wp() 29158 * 29159 * Description: This routine checks the write protection of a removable 29160 * media disk and hotpluggable devices via the write protect bit of 29161 * the Mode Page Header device specific field. Some devices choke 29162 * on unsupported mode page. In order to workaround this issue, 29163 * this routine has been implemented to use 0x3f mode page(request 29164 * for all pages) for all device types. 29165 * 29166 * Arguments: dev - the device 'dev_t' 29167 * 29168 * Return Code: int indicating if the device is write protected (1) or not (0) 29169 * 29170 * Context: Kernel thread. 29171 * 29172 */ 29173 29174 static int 29175 sr_check_wp(dev_t dev) 29176 { 29177 struct sd_lun *un; 29178 uchar_t device_specific; 29179 uchar_t *sense; 29180 int hdrlen; 29181 int rval = FALSE; 29182 29183 /* 29184 * Note: The return codes for this routine should be reworked to 29185 * properly handle the case of a NULL softstate. 29186 */ 29187 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 29188 return (FALSE); 29189 } 29190 29191 if (un->un_f_cfg_is_atapi == TRUE) { 29192 /* 29193 * The mode page contents are not required; set the allocation 29194 * length for the mode page header only 29195 */ 29196 hdrlen = MODE_HEADER_LENGTH_GRP2; 29197 sense = kmem_zalloc(hdrlen, KM_SLEEP); 29198 if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen, 29199 MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0) 29200 goto err_exit; 29201 device_specific = 29202 ((struct mode_header_grp2 *)sense)->device_specific; 29203 } else { 29204 hdrlen = MODE_HEADER_LENGTH; 29205 sense = kmem_zalloc(hdrlen, KM_SLEEP); 29206 if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen, 29207 MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0) 29208 goto err_exit; 29209 device_specific = 29210 ((struct mode_header *)sense)->device_specific; 29211 } 29212 29213 /* 29214 * Write protect mode sense failed; not all disks 29215 * understand this query. Return FALSE assuming that 29216 * these devices are not writable. 29217 */ 29218 if (device_specific & WRITE_PROTECT) { 29219 rval = TRUE; 29220 } 29221 29222 err_exit: 29223 kmem_free(sense, hdrlen); 29224 return (rval); 29225 } 29226 29227 /* 29228 * Function: sr_volume_ctrl() 29229 * 29230 * Description: This routine is the driver entry point for handling CD-ROM 29231 * audio output volume ioctl requests. (CDROMVOLCTRL) 29232 * 29233 * Arguments: dev - the device 'dev_t' 29234 * data - pointer to user audio volume control structure 29235 * flag - this argument is a pass through to ddi_copyxxx() 29236 * directly from the mode argument of ioctl(). 29237 * 29238 * Return Code: the code returned by sd_send_scsi_cmd() 29239 * EFAULT if ddi_copyxxx() fails 29240 * ENXIO if fail ddi_get_soft_state 29241 * EINVAL if data pointer is NULL 29242 * 29243 */ 29244 29245 static int 29246 sr_volume_ctrl(dev_t dev, caddr_t data, int flag) 29247 { 29248 struct sd_lun *un; 29249 struct cdrom_volctrl volume; 29250 struct cdrom_volctrl *vol = &volume; 29251 uchar_t *sense_page; 29252 uchar_t *select_page; 29253 uchar_t *sense; 29254 uchar_t *select; 29255 int sense_buflen; 29256 int select_buflen; 29257 int rval; 29258 29259 if (data == NULL) { 29260 return (EINVAL); 29261 } 29262 29263 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 29264 (un->un_state == SD_STATE_OFFLINE)) { 29265 return (ENXIO); 29266 } 29267 29268 if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) { 29269 return (EFAULT); 29270 } 29271 29272 if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) { 29273 struct mode_header_grp2 *sense_mhp; 29274 struct mode_header_grp2 *select_mhp; 29275 int bd_len; 29276 29277 sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN; 29278 select_buflen = MODE_HEADER_LENGTH_GRP2 + 29279 MODEPAGE_AUDIO_CTRL_LEN; 29280 sense = kmem_zalloc(sense_buflen, KM_SLEEP); 29281 select = kmem_zalloc(select_buflen, KM_SLEEP); 29282 if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, 29283 sense_buflen, MODEPAGE_AUDIO_CTRL, 29284 SD_PATH_STANDARD)) != 0) { 29285 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 29286 "sr_volume_ctrl: Mode Sense Failed\n"); 29287 kmem_free(sense, sense_buflen); 29288 kmem_free(select, select_buflen); 29289 return (rval); 29290 } 29291 sense_mhp = (struct mode_header_grp2 *)sense; 29292 select_mhp = (struct mode_header_grp2 *)select; 29293 bd_len = (sense_mhp->bdesc_length_hi << 8) | 29294 sense_mhp->bdesc_length_lo; 29295 if (bd_len > MODE_BLK_DESC_LENGTH) { 29296 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29297 "sr_volume_ctrl: Mode Sense returned invalid " 29298 "block descriptor length\n"); 29299 kmem_free(sense, sense_buflen); 29300 kmem_free(select, select_buflen); 29301 return (EIO); 29302 } 29303 sense_page = (uchar_t *) 29304 (sense + MODE_HEADER_LENGTH_GRP2 + bd_len); 29305 select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2); 29306 select_mhp->length_msb = 0; 29307 select_mhp->length_lsb = 0; 29308 select_mhp->bdesc_length_hi = 0; 29309 select_mhp->bdesc_length_lo = 0; 29310 } else { 29311 struct mode_header *sense_mhp, *select_mhp; 29312 29313 sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN; 29314 select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN; 29315 sense = kmem_zalloc(sense_buflen, KM_SLEEP); 29316 select = kmem_zalloc(select_buflen, KM_SLEEP); 29317 if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 29318 sense_buflen, MODEPAGE_AUDIO_CTRL, 29319 SD_PATH_STANDARD)) != 0) { 29320 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29321 "sr_volume_ctrl: Mode Sense Failed\n"); 29322 kmem_free(sense, sense_buflen); 29323 kmem_free(select, select_buflen); 29324 return (rval); 29325 } 29326 sense_mhp = (struct mode_header *)sense; 29327 select_mhp = (struct mode_header *)select; 29328 if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) { 29329 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29330 "sr_volume_ctrl: Mode Sense returned invalid " 29331 "block descriptor length\n"); 29332 kmem_free(sense, sense_buflen); 29333 kmem_free(select, select_buflen); 29334 return (EIO); 29335 } 29336 sense_page = (uchar_t *) 29337 (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length); 29338 select_page = (uchar_t *)(select + MODE_HEADER_LENGTH); 29339 select_mhp->length = 0; 29340 select_mhp->bdesc_length = 0; 29341 } 29342 /* 29343 * Note: An audio control data structure could be created and overlayed 29344 * on the following in place of the array indexing method implemented. 29345 */ 29346 29347 /* Build the select data for the user volume data */ 29348 select_page[0] = MODEPAGE_AUDIO_CTRL; 29349 select_page[1] = 0xE; 29350 /* Set the immediate bit */ 29351 select_page[2] = 0x04; 29352 /* Zero out reserved fields */ 29353 select_page[3] = 0x00; 29354 select_page[4] = 0x00; 29355 /* Return sense data for fields not to be modified */ 29356 select_page[5] = sense_page[5]; 29357 select_page[6] = sense_page[6]; 29358 select_page[7] = sense_page[7]; 29359 /* Set the user specified volume levels for channel 0 and 1 */ 29360 select_page[8] = 0x01; 29361 select_page[9] = vol->channel0; 29362 select_page[10] = 0x02; 29363 select_page[11] = vol->channel1; 29364 /* Channel 2 and 3 are currently unsupported so return the sense data */ 29365 select_page[12] = sense_page[12]; 29366 select_page[13] = sense_page[13]; 29367 select_page[14] = sense_page[14]; 29368 select_page[15] = sense_page[15]; 29369 29370 if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) { 29371 rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select, 29372 select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 29373 } else { 29374 rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 29375 select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 29376 } 29377 29378 kmem_free(sense, sense_buflen); 29379 kmem_free(select, select_buflen); 29380 return (rval); 29381 } 29382 29383 29384 /* 29385 * Function: sr_read_sony_session_offset() 29386 * 29387 * Description: This routine is the driver entry point for handling CD-ROM 29388 * ioctl requests for session offset information. (CDROMREADOFFSET) 29389 * The address of the first track in the last session of a 29390 * multi-session CD-ROM is returned 29391 * 29392 * Note: This routine uses a vendor specific key value in the 29393 * command control field without implementing any vendor check here 29394 * or in the ioctl routine. 29395 * 29396 * Arguments: dev - the device 'dev_t' 29397 * data - pointer to an int to hold the requested address 29398 * flag - this argument is a pass through to ddi_copyxxx() 29399 * directly from the mode argument of ioctl(). 29400 * 29401 * Return Code: the code returned by sd_send_scsi_cmd() 29402 * EFAULT if ddi_copyxxx() fails 29403 * ENXIO if fail ddi_get_soft_state 29404 * EINVAL if data pointer is NULL 29405 */ 29406 29407 static int 29408 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag) 29409 { 29410 struct sd_lun *un; 29411 struct uscsi_cmd *com; 29412 caddr_t buffer; 29413 char cdb[CDB_GROUP1]; 29414 int session_offset = 0; 29415 int rval; 29416 29417 if (data == NULL) { 29418 return (EINVAL); 29419 } 29420 29421 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 29422 (un->un_state == SD_STATE_OFFLINE)) { 29423 return (ENXIO); 29424 } 29425 29426 buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP); 29427 bzero(cdb, CDB_GROUP1); 29428 cdb[0] = SCMD_READ_TOC; 29429 /* 29430 * Bytes 7 & 8 are the 12 byte allocation length for a single entry. 29431 * (4 byte TOC response header + 8 byte response data) 29432 */ 29433 cdb[8] = SONY_SESSION_OFFSET_LEN; 29434 /* Byte 9 is the control byte. A vendor specific value is used */ 29435 cdb[9] = SONY_SESSION_OFFSET_KEY; 29436 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 29437 com->uscsi_cdb = cdb; 29438 com->uscsi_cdblen = CDB_GROUP1; 29439 com->uscsi_bufaddr = buffer; 29440 com->uscsi_buflen = SONY_SESSION_OFFSET_LEN; 29441 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 29442 29443 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 29444 SD_PATH_STANDARD); 29445 if (rval != 0) { 29446 kmem_free(buffer, SONY_SESSION_OFFSET_LEN); 29447 kmem_free(com, sizeof (*com)); 29448 return (rval); 29449 } 29450 if (buffer[1] == SONY_SESSION_OFFSET_VALID) { 29451 session_offset = 29452 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 29453 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 29454 /* 29455 * Offset returned offset in current lbasize block's. Convert to 29456 * 2k block's to return to the user 29457 */ 29458 if (un->un_tgt_blocksize == CDROM_BLK_512) { 29459 session_offset >>= 2; 29460 } else if (un->un_tgt_blocksize == CDROM_BLK_1024) { 29461 session_offset >>= 1; 29462 } 29463 } 29464 29465 if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) { 29466 rval = EFAULT; 29467 } 29468 29469 kmem_free(buffer, SONY_SESSION_OFFSET_LEN); 29470 kmem_free(com, sizeof (*com)); 29471 return (rval); 29472 } 29473 29474 29475 /* 29476 * Function: sd_wm_cache_constructor() 29477 * 29478 * Description: Cache Constructor for the wmap cache for the read/modify/write 29479 * devices. 29480 * 29481 * Arguments: wm - A pointer to the sd_w_map to be initialized. 29482 * un - sd_lun structure for the device. 29483 * flag - the km flags passed to constructor 29484 * 29485 * Return Code: 0 on success. 29486 * -1 on failure. 29487 */ 29488 29489 /*ARGSUSED*/ 29490 static int 29491 sd_wm_cache_constructor(void *wm, void *un, int flags) 29492 { 29493 bzero(wm, sizeof (struct sd_w_map)); 29494 cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL); 29495 return (0); 29496 } 29497 29498 29499 /* 29500 * Function: sd_wm_cache_destructor() 29501 * 29502 * Description: Cache destructor for the wmap cache for the read/modify/write 29503 * devices. 29504 * 29505 * Arguments: wm - A pointer to the sd_w_map to be initialized. 29506 * un - sd_lun structure for the device. 29507 */ 29508 /*ARGSUSED*/ 29509 static void 29510 sd_wm_cache_destructor(void *wm, void *un) 29511 { 29512 cv_destroy(&((struct sd_w_map *)wm)->wm_avail); 29513 } 29514 29515 29516 /* 29517 * Function: sd_range_lock() 29518 * 29519 * Description: Lock the range of blocks specified as parameter to ensure 29520 * that read, modify write is atomic and no other i/o writes 29521 * to the same location. The range is specified in terms 29522 * of start and end blocks. Block numbers are the actual 29523 * media block numbers and not system. 29524 * 29525 * Arguments: un - sd_lun structure for the device. 29526 * startb - The starting block number 29527 * endb - The end block number 29528 * typ - type of i/o - simple/read_modify_write 29529 * 29530 * Return Code: wm - pointer to the wmap structure. 29531 * 29532 * Context: This routine can sleep. 29533 */ 29534 29535 static struct sd_w_map * 29536 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ) 29537 { 29538 struct sd_w_map *wmp = NULL; 29539 struct sd_w_map *sl_wmp = NULL; 29540 struct sd_w_map *tmp_wmp; 29541 wm_state state = SD_WM_CHK_LIST; 29542 29543 29544 ASSERT(un != NULL); 29545 ASSERT(!mutex_owned(SD_MUTEX(un))); 29546 29547 mutex_enter(SD_MUTEX(un)); 29548 29549 while (state != SD_WM_DONE) { 29550 29551 switch (state) { 29552 case SD_WM_CHK_LIST: 29553 /* 29554 * This is the starting state. Check the wmap list 29555 * to see if the range is currently available. 29556 */ 29557 if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) { 29558 /* 29559 * If this is a simple write and no rmw 29560 * i/o is pending then try to lock the 29561 * range as the range should be available. 29562 */ 29563 state = SD_WM_LOCK_RANGE; 29564 } else { 29565 tmp_wmp = sd_get_range(un, startb, endb); 29566 if (tmp_wmp != NULL) { 29567 if ((wmp != NULL) && ONLIST(un, wmp)) { 29568 /* 29569 * Should not keep onlist wmps 29570 * while waiting this macro 29571 * will also do wmp = NULL; 29572 */ 29573 FREE_ONLIST_WMAP(un, wmp); 29574 } 29575 /* 29576 * sl_wmp is the wmap on which wait 29577 * is done, since the tmp_wmp points 29578 * to the inuse wmap, set sl_wmp to 29579 * tmp_wmp and change the state to sleep 29580 */ 29581 sl_wmp = tmp_wmp; 29582 state = SD_WM_WAIT_MAP; 29583 } else { 29584 state = SD_WM_LOCK_RANGE; 29585 } 29586 29587 } 29588 break; 29589 29590 case SD_WM_LOCK_RANGE: 29591 ASSERT(un->un_wm_cache); 29592 /* 29593 * The range need to be locked, try to get a wmap. 29594 * First attempt it with NO_SLEEP, want to avoid a sleep 29595 * if possible as we will have to release the sd mutex 29596 * if we have to sleep. 29597 */ 29598 if (wmp == NULL) 29599 wmp = kmem_cache_alloc(un->un_wm_cache, 29600 KM_NOSLEEP); 29601 if (wmp == NULL) { 29602 mutex_exit(SD_MUTEX(un)); 29603 _NOTE(DATA_READABLE_WITHOUT_LOCK 29604 (sd_lun::un_wm_cache)) 29605 wmp = kmem_cache_alloc(un->un_wm_cache, 29606 KM_SLEEP); 29607 mutex_enter(SD_MUTEX(un)); 29608 /* 29609 * we released the mutex so recheck and go to 29610 * check list state. 29611 */ 29612 state = SD_WM_CHK_LIST; 29613 } else { 29614 /* 29615 * We exit out of state machine since we 29616 * have the wmap. Do the housekeeping first. 29617 * place the wmap on the wmap list if it is not 29618 * on it already and then set the state to done. 29619 */ 29620 wmp->wm_start = startb; 29621 wmp->wm_end = endb; 29622 wmp->wm_flags = typ | SD_WM_BUSY; 29623 if (typ & SD_WTYPE_RMW) { 29624 un->un_rmw_count++; 29625 } 29626 /* 29627 * If not already on the list then link 29628 */ 29629 if (!ONLIST(un, wmp)) { 29630 wmp->wm_next = un->un_wm; 29631 wmp->wm_prev = NULL; 29632 if (wmp->wm_next) 29633 wmp->wm_next->wm_prev = wmp; 29634 un->un_wm = wmp; 29635 } 29636 state = SD_WM_DONE; 29637 } 29638 break; 29639 29640 case SD_WM_WAIT_MAP: 29641 ASSERT(sl_wmp->wm_flags & SD_WM_BUSY); 29642 /* 29643 * Wait is done on sl_wmp, which is set in the 29644 * check_list state. 29645 */ 29646 sl_wmp->wm_wanted_count++; 29647 cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un)); 29648 sl_wmp->wm_wanted_count--; 29649 /* 29650 * We can reuse the memory from the completed sl_wmp 29651 * lock range for our new lock, but only if noone is 29652 * waiting for it. 29653 */ 29654 ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY)); 29655 if (sl_wmp->wm_wanted_count == 0) { 29656 if (wmp != NULL) 29657 CHK_N_FREEWMP(un, wmp); 29658 wmp = sl_wmp; 29659 } 29660 sl_wmp = NULL; 29661 /* 29662 * After waking up, need to recheck for availability of 29663 * range. 29664 */ 29665 state = SD_WM_CHK_LIST; 29666 break; 29667 29668 default: 29669 panic("sd_range_lock: " 29670 "Unknown state %d in sd_range_lock", state); 29671 /*NOTREACHED*/ 29672 } /* switch(state) */ 29673 29674 } /* while(state != SD_WM_DONE) */ 29675 29676 mutex_exit(SD_MUTEX(un)); 29677 29678 ASSERT(wmp != NULL); 29679 29680 return (wmp); 29681 } 29682 29683 29684 /* 29685 * Function: sd_get_range() 29686 * 29687 * Description: Find if there any overlapping I/O to this one 29688 * Returns the write-map of 1st such I/O, NULL otherwise. 29689 * 29690 * Arguments: un - sd_lun structure for the device. 29691 * startb - The starting block number 29692 * endb - The end block number 29693 * 29694 * Return Code: wm - pointer to the wmap structure. 29695 */ 29696 29697 static struct sd_w_map * 29698 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb) 29699 { 29700 struct sd_w_map *wmp; 29701 29702 ASSERT(un != NULL); 29703 29704 for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) { 29705 if (!(wmp->wm_flags & SD_WM_BUSY)) { 29706 continue; 29707 } 29708 if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) { 29709 break; 29710 } 29711 if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) { 29712 break; 29713 } 29714 } 29715 29716 return (wmp); 29717 } 29718 29719 29720 /* 29721 * Function: sd_free_inlist_wmap() 29722 * 29723 * Description: Unlink and free a write map struct. 29724 * 29725 * Arguments: un - sd_lun structure for the device. 29726 * wmp - sd_w_map which needs to be unlinked. 29727 */ 29728 29729 static void 29730 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp) 29731 { 29732 ASSERT(un != NULL); 29733 29734 if (un->un_wm == wmp) { 29735 un->un_wm = wmp->wm_next; 29736 } else { 29737 wmp->wm_prev->wm_next = wmp->wm_next; 29738 } 29739 29740 if (wmp->wm_next) { 29741 wmp->wm_next->wm_prev = wmp->wm_prev; 29742 } 29743 29744 wmp->wm_next = wmp->wm_prev = NULL; 29745 29746 kmem_cache_free(un->un_wm_cache, wmp); 29747 } 29748 29749 29750 /* 29751 * Function: sd_range_unlock() 29752 * 29753 * Description: Unlock the range locked by wm. 29754 * Free write map if nobody else is waiting on it. 29755 * 29756 * Arguments: un - sd_lun structure for the device. 29757 * wmp - sd_w_map which needs to be unlinked. 29758 */ 29759 29760 static void 29761 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm) 29762 { 29763 ASSERT(un != NULL); 29764 ASSERT(wm != NULL); 29765 ASSERT(!mutex_owned(SD_MUTEX(un))); 29766 29767 mutex_enter(SD_MUTEX(un)); 29768 29769 if (wm->wm_flags & SD_WTYPE_RMW) { 29770 un->un_rmw_count--; 29771 } 29772 29773 if (wm->wm_wanted_count) { 29774 wm->wm_flags = 0; 29775 /* 29776 * Broadcast that the wmap is available now. 29777 */ 29778 cv_broadcast(&wm->wm_avail); 29779 } else { 29780 /* 29781 * If no one is waiting on the map, it should be free'ed. 29782 */ 29783 sd_free_inlist_wmap(un, wm); 29784 } 29785 29786 mutex_exit(SD_MUTEX(un)); 29787 } 29788 29789 29790 /* 29791 * Function: sd_read_modify_write_task 29792 * 29793 * Description: Called from a taskq thread to initiate the write phase of 29794 * a read-modify-write request. This is used for targets where 29795 * un->un_sys_blocksize != un->un_tgt_blocksize. 29796 * 29797 * Arguments: arg - a pointer to the buf(9S) struct for the write command. 29798 * 29799 * Context: Called under taskq thread context. 29800 */ 29801 29802 static void 29803 sd_read_modify_write_task(void *arg) 29804 { 29805 struct sd_mapblocksize_info *bsp; 29806 struct buf *bp; 29807 struct sd_xbuf *xp; 29808 struct sd_lun *un; 29809 29810 bp = arg; /* The bp is given in arg */ 29811 ASSERT(bp != NULL); 29812 29813 /* Get the pointer to the layer-private data struct */ 29814 xp = SD_GET_XBUF(bp); 29815 ASSERT(xp != NULL); 29816 bsp = xp->xb_private; 29817 ASSERT(bsp != NULL); 29818 29819 un = SD_GET_UN(bp); 29820 ASSERT(un != NULL); 29821 ASSERT(!mutex_owned(SD_MUTEX(un))); 29822 29823 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 29824 "sd_read_modify_write_task: entry: buf:0x%p\n", bp); 29825 29826 /* 29827 * This is the write phase of a read-modify-write request, called 29828 * under the context of a taskq thread in response to the completion 29829 * of the read portion of the rmw request completing under interrupt 29830 * context. The write request must be sent from here down the iostart 29831 * chain as if it were being sent from sd_mapblocksize_iostart(), so 29832 * we use the layer index saved in the layer-private data area. 29833 */ 29834 SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp); 29835 29836 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 29837 "sd_read_modify_write_task: exit: buf:0x%p\n", bp); 29838 } 29839 29840 29841 /* 29842 * Function: sddump_do_read_of_rmw() 29843 * 29844 * Description: This routine will be called from sddump, If sddump is called 29845 * with an I/O which not aligned on device blocksize boundary 29846 * then the write has to be converted to read-modify-write. 29847 * Do the read part here in order to keep sddump simple. 29848 * Note - That the sd_mutex is held across the call to this 29849 * routine. 29850 * 29851 * Arguments: un - sd_lun 29852 * blkno - block number in terms of media block size. 29853 * nblk - number of blocks. 29854 * bpp - pointer to pointer to the buf structure. On return 29855 * from this function, *bpp points to the valid buffer 29856 * to which the write has to be done. 29857 * 29858 * Return Code: 0 for success or errno-type return code 29859 */ 29860 29861 static int 29862 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk, 29863 struct buf **bpp) 29864 { 29865 int err; 29866 int i; 29867 int rval; 29868 struct buf *bp; 29869 struct scsi_pkt *pkt = NULL; 29870 uint32_t target_blocksize; 29871 29872 ASSERT(un != NULL); 29873 ASSERT(mutex_owned(SD_MUTEX(un))); 29874 29875 target_blocksize = un->un_tgt_blocksize; 29876 29877 mutex_exit(SD_MUTEX(un)); 29878 29879 bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL, 29880 (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL); 29881 if (bp == NULL) { 29882 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 29883 "no resources for dumping; giving up"); 29884 err = ENOMEM; 29885 goto done; 29886 } 29887 29888 rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL, 29889 blkno, nblk); 29890 if (rval != 0) { 29891 scsi_free_consistent_buf(bp); 29892 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 29893 "no resources for dumping; giving up"); 29894 err = ENOMEM; 29895 goto done; 29896 } 29897 29898 pkt->pkt_flags |= FLAG_NOINTR; 29899 29900 err = EIO; 29901 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 29902 29903 /* 29904 * Scsi_poll returns 0 (success) if the command completes and 29905 * the status block is STATUS_GOOD. We should only check 29906 * errors if this condition is not true. Even then we should 29907 * send our own request sense packet only if we have a check 29908 * condition and auto request sense has not been performed by 29909 * the hba. 29910 */ 29911 SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n"); 29912 29913 if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) { 29914 err = 0; 29915 break; 29916 } 29917 29918 /* 29919 * Check CMD_DEV_GONE 1st, give up if device is gone, 29920 * no need to read RQS data. 29921 */ 29922 if (pkt->pkt_reason == CMD_DEV_GONE) { 29923 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 29924 "Device is gone\n"); 29925 break; 29926 } 29927 29928 if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) { 29929 SD_INFO(SD_LOG_DUMP, un, 29930 "sddump: read failed with CHECK, try # %d\n", i); 29931 if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) { 29932 (void) sd_send_polled_RQS(un); 29933 } 29934 29935 continue; 29936 } 29937 29938 if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) { 29939 int reset_retval = 0; 29940 29941 SD_INFO(SD_LOG_DUMP, un, 29942 "sddump: read failed with BUSY, try # %d\n", i); 29943 29944 if (un->un_f_lun_reset_enabled == TRUE) { 29945 reset_retval = scsi_reset(SD_ADDRESS(un), 29946 RESET_LUN); 29947 } 29948 if (reset_retval == 0) { 29949 (void) scsi_reset(SD_ADDRESS(un), RESET_TARGET); 29950 } 29951 (void) sd_send_polled_RQS(un); 29952 29953 } else { 29954 SD_INFO(SD_LOG_DUMP, un, 29955 "sddump: read failed with 0x%x, try # %d\n", 29956 SD_GET_PKT_STATUS(pkt), i); 29957 mutex_enter(SD_MUTEX(un)); 29958 sd_reset_target(un, pkt); 29959 mutex_exit(SD_MUTEX(un)); 29960 } 29961 29962 /* 29963 * If we are not getting anywhere with lun/target resets, 29964 * let's reset the bus. 29965 */ 29966 if (i > SD_NDUMP_RETRIES/2) { 29967 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 29968 (void) sd_send_polled_RQS(un); 29969 } 29970 29971 } 29972 scsi_destroy_pkt(pkt); 29973 29974 if (err != 0) { 29975 scsi_free_consistent_buf(bp); 29976 *bpp = NULL; 29977 } else { 29978 *bpp = bp; 29979 } 29980 29981 done: 29982 mutex_enter(SD_MUTEX(un)); 29983 return (err); 29984 } 29985 29986 29987 /* 29988 * Function: sd_failfast_flushq 29989 * 29990 * Description: Take all bp's on the wait queue that have B_FAILFAST set 29991 * in b_flags and move them onto the failfast queue, then kick 29992 * off a thread to return all bp's on the failfast queue to 29993 * their owners with an error set. 29994 * 29995 * Arguments: un - pointer to the soft state struct for the instance. 29996 * 29997 * Context: may execute in interrupt context. 29998 */ 29999 30000 static void 30001 sd_failfast_flushq(struct sd_lun *un) 30002 { 30003 struct buf *bp; 30004 struct buf *next_waitq_bp; 30005 struct buf *prev_waitq_bp = NULL; 30006 30007 ASSERT(un != NULL); 30008 ASSERT(mutex_owned(SD_MUTEX(un))); 30009 ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE); 30010 ASSERT(un->un_failfast_bp == NULL); 30011 30012 SD_TRACE(SD_LOG_IO_FAILFAST, un, 30013 "sd_failfast_flushq: entry: un:0x%p\n", un); 30014 30015 /* 30016 * Check if we should flush all bufs when entering failfast state, or 30017 * just those with B_FAILFAST set. 30018 */ 30019 if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) { 30020 /* 30021 * Move *all* bp's on the wait queue to the failfast flush 30022 * queue, including those that do NOT have B_FAILFAST set. 30023 */ 30024 if (un->un_failfast_headp == NULL) { 30025 ASSERT(un->un_failfast_tailp == NULL); 30026 un->un_failfast_headp = un->un_waitq_headp; 30027 } else { 30028 ASSERT(un->un_failfast_tailp != NULL); 30029 un->un_failfast_tailp->av_forw = un->un_waitq_headp; 30030 } 30031 30032 un->un_failfast_tailp = un->un_waitq_tailp; 30033 30034 /* update kstat for each bp moved out of the waitq */ 30035 for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) { 30036 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 30037 } 30038 30039 /* empty the waitq */ 30040 un->un_waitq_headp = un->un_waitq_tailp = NULL; 30041 30042 } else { 30043 /* 30044 * Go thru the wait queue, pick off all entries with 30045 * B_FAILFAST set, and move these onto the failfast queue. 30046 */ 30047 for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) { 30048 /* 30049 * Save the pointer to the next bp on the wait queue, 30050 * so we get to it on the next iteration of this loop. 30051 */ 30052 next_waitq_bp = bp->av_forw; 30053 30054 /* 30055 * If this bp from the wait queue does NOT have 30056 * B_FAILFAST set, just move on to the next element 30057 * in the wait queue. Note, this is the only place 30058 * where it is correct to set prev_waitq_bp. 30059 */ 30060 if ((bp->b_flags & B_FAILFAST) == 0) { 30061 prev_waitq_bp = bp; 30062 continue; 30063 } 30064 30065 /* 30066 * Remove the bp from the wait queue. 30067 */ 30068 if (bp == un->un_waitq_headp) { 30069 /* The bp is the first element of the waitq. */ 30070 un->un_waitq_headp = next_waitq_bp; 30071 if (un->un_waitq_headp == NULL) { 30072 /* The wait queue is now empty */ 30073 un->un_waitq_tailp = NULL; 30074 } 30075 } else { 30076 /* 30077 * The bp is either somewhere in the middle 30078 * or at the end of the wait queue. 30079 */ 30080 ASSERT(un->un_waitq_headp != NULL); 30081 ASSERT(prev_waitq_bp != NULL); 30082 ASSERT((prev_waitq_bp->b_flags & B_FAILFAST) 30083 == 0); 30084 if (bp == un->un_waitq_tailp) { 30085 /* bp is the last entry on the waitq. */ 30086 ASSERT(next_waitq_bp == NULL); 30087 un->un_waitq_tailp = prev_waitq_bp; 30088 } 30089 prev_waitq_bp->av_forw = next_waitq_bp; 30090 } 30091 bp->av_forw = NULL; 30092 30093 /* 30094 * update kstat since the bp is moved out of 30095 * the waitq 30096 */ 30097 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 30098 30099 /* 30100 * Now put the bp onto the failfast queue. 30101 */ 30102 if (un->un_failfast_headp == NULL) { 30103 /* failfast queue is currently empty */ 30104 ASSERT(un->un_failfast_tailp == NULL); 30105 un->un_failfast_headp = 30106 un->un_failfast_tailp = bp; 30107 } else { 30108 /* Add the bp to the end of the failfast q */ 30109 ASSERT(un->un_failfast_tailp != NULL); 30110 ASSERT(un->un_failfast_tailp->b_flags & 30111 B_FAILFAST); 30112 un->un_failfast_tailp->av_forw = bp; 30113 un->un_failfast_tailp = bp; 30114 } 30115 } 30116 } 30117 30118 /* 30119 * Now return all bp's on the failfast queue to their owners. 30120 */ 30121 while ((bp = un->un_failfast_headp) != NULL) { 30122 30123 un->un_failfast_headp = bp->av_forw; 30124 if (un->un_failfast_headp == NULL) { 30125 un->un_failfast_tailp = NULL; 30126 } 30127 30128 /* 30129 * We want to return the bp with a failure error code, but 30130 * we do not want a call to sd_start_cmds() to occur here, 30131 * so use sd_return_failed_command_no_restart() instead of 30132 * sd_return_failed_command(). 30133 */ 30134 sd_return_failed_command_no_restart(un, bp, EIO); 30135 } 30136 30137 /* Flush the xbuf queues if required. */ 30138 if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) { 30139 ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback); 30140 } 30141 30142 SD_TRACE(SD_LOG_IO_FAILFAST, un, 30143 "sd_failfast_flushq: exit: un:0x%p\n", un); 30144 } 30145 30146 30147 /* 30148 * Function: sd_failfast_flushq_callback 30149 * 30150 * Description: Return TRUE if the given bp meets the criteria for failfast 30151 * flushing. Used with ddi_xbuf_flushq(9F). 30152 * 30153 * Arguments: bp - ptr to buf struct to be examined. 30154 * 30155 * Context: Any 30156 */ 30157 30158 static int 30159 sd_failfast_flushq_callback(struct buf *bp) 30160 { 30161 /* 30162 * Return TRUE if (1) we want to flush ALL bufs when the failfast 30163 * state is entered; OR (2) the given bp has B_FAILFAST set. 30164 */ 30165 return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) || 30166 (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE); 30167 } 30168 30169 30170 30171 #if defined(__i386) || defined(__amd64) 30172 /* 30173 * Function: sd_setup_next_xfer 30174 * 30175 * Description: Prepare next I/O operation using DMA_PARTIAL 30176 * 30177 */ 30178 30179 static int 30180 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp, 30181 struct scsi_pkt *pkt, struct sd_xbuf *xp) 30182 { 30183 ssize_t num_blks_not_xfered; 30184 daddr_t strt_blk_num; 30185 ssize_t bytes_not_xfered; 30186 int rval; 30187 30188 ASSERT(pkt->pkt_resid == 0); 30189 30190 /* 30191 * Calculate next block number and amount to be transferred. 30192 * 30193 * How much data NOT transfered to the HBA yet. 30194 */ 30195 bytes_not_xfered = xp->xb_dma_resid; 30196 30197 /* 30198 * figure how many blocks NOT transfered to the HBA yet. 30199 */ 30200 num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered); 30201 30202 /* 30203 * set starting block number to the end of what WAS transfered. 30204 */ 30205 strt_blk_num = xp->xb_blkno + 30206 SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered); 30207 30208 /* 30209 * Move pkt to the next portion of the xfer. sd_setup_next_rw_pkt 30210 * will call scsi_initpkt with NULL_FUNC so we do not have to release 30211 * the disk mutex here. 30212 */ 30213 rval = sd_setup_next_rw_pkt(un, pkt, bp, 30214 strt_blk_num, num_blks_not_xfered); 30215 30216 if (rval == 0) { 30217 30218 /* 30219 * Success. 30220 * 30221 * Adjust things if there are still more blocks to be 30222 * transfered. 30223 */ 30224 xp->xb_dma_resid = pkt->pkt_resid; 30225 pkt->pkt_resid = 0; 30226 30227 return (1); 30228 } 30229 30230 /* 30231 * There's really only one possible return value from 30232 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt 30233 * returns NULL. 30234 */ 30235 ASSERT(rval == SD_PKT_ALLOC_FAILURE); 30236 30237 bp->b_resid = bp->b_bcount; 30238 bp->b_flags |= B_ERROR; 30239 30240 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 30241 "Error setting up next portion of DMA transfer\n"); 30242 30243 return (0); 30244 } 30245 #endif 30246 30247 /* 30248 * Function: sd_panic_for_res_conflict 30249 * 30250 * Description: Call panic with a string formated with "Reservation Conflict" 30251 * and a human readable identifier indicating the SD instance 30252 * that experienced the reservation conflict. 30253 * 30254 * Arguments: un - pointer to the soft state struct for the instance. 30255 * 30256 * Context: may execute in interrupt context. 30257 */ 30258 30259 #define SD_RESV_CONFLICT_FMT_LEN 40 30260 void 30261 sd_panic_for_res_conflict(struct sd_lun *un) 30262 { 30263 char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN]; 30264 char path_str[MAXPATHLEN]; 30265 30266 (void) snprintf(panic_str, sizeof (panic_str), 30267 "Reservation Conflict\nDisk: %s", 30268 ddi_pathname(SD_DEVINFO(un), path_str)); 30269 30270 panic(panic_str); 30271 } 30272 30273 /* 30274 * Note: The following sd_faultinjection_ioctl( ) routines implement 30275 * driver support for handling fault injection for error analysis 30276 * causing faults in multiple layers of the driver. 30277 * 30278 */ 30279 30280 #ifdef SD_FAULT_INJECTION 30281 static uint_t sd_fault_injection_on = 0; 30282 30283 /* 30284 * Function: sd_faultinjection_ioctl() 30285 * 30286 * Description: This routine is the driver entry point for handling 30287 * faultinjection ioctls to inject errors into the 30288 * layer model 30289 * 30290 * Arguments: cmd - the ioctl cmd recieved 30291 * arg - the arguments from user and returns 30292 */ 30293 30294 static void 30295 sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un) { 30296 30297 uint_t i; 30298 uint_t rval; 30299 30300 SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n"); 30301 30302 mutex_enter(SD_MUTEX(un)); 30303 30304 switch (cmd) { 30305 case SDIOCRUN: 30306 /* Allow pushed faults to be injected */ 30307 SD_INFO(SD_LOG_SDTEST, un, 30308 "sd_faultinjection_ioctl: Injecting Fault Run\n"); 30309 30310 sd_fault_injection_on = 1; 30311 30312 SD_INFO(SD_LOG_IOERR, un, 30313 "sd_faultinjection_ioctl: run finished\n"); 30314 break; 30315 30316 case SDIOCSTART: 30317 /* Start Injection Session */ 30318 SD_INFO(SD_LOG_SDTEST, un, 30319 "sd_faultinjection_ioctl: Injecting Fault Start\n"); 30320 30321 sd_fault_injection_on = 0; 30322 un->sd_injection_mask = 0xFFFFFFFF; 30323 for (i = 0; i < SD_FI_MAX_ERROR; i++) { 30324 un->sd_fi_fifo_pkt[i] = NULL; 30325 un->sd_fi_fifo_xb[i] = NULL; 30326 un->sd_fi_fifo_un[i] = NULL; 30327 un->sd_fi_fifo_arq[i] = NULL; 30328 } 30329 un->sd_fi_fifo_start = 0; 30330 un->sd_fi_fifo_end = 0; 30331 30332 mutex_enter(&(un->un_fi_mutex)); 30333 un->sd_fi_log[0] = '\0'; 30334 un->sd_fi_buf_len = 0; 30335 mutex_exit(&(un->un_fi_mutex)); 30336 30337 SD_INFO(SD_LOG_IOERR, un, 30338 "sd_faultinjection_ioctl: start finished\n"); 30339 break; 30340 30341 case SDIOCSTOP: 30342 /* Stop Injection Session */ 30343 SD_INFO(SD_LOG_SDTEST, un, 30344 "sd_faultinjection_ioctl: Injecting Fault Stop\n"); 30345 sd_fault_injection_on = 0; 30346 un->sd_injection_mask = 0x0; 30347 30348 /* Empty stray or unuseds structs from fifo */ 30349 for (i = 0; i < SD_FI_MAX_ERROR; i++) { 30350 if (un->sd_fi_fifo_pkt[i] != NULL) { 30351 kmem_free(un->sd_fi_fifo_pkt[i], 30352 sizeof (struct sd_fi_pkt)); 30353 } 30354 if (un->sd_fi_fifo_xb[i] != NULL) { 30355 kmem_free(un->sd_fi_fifo_xb[i], 30356 sizeof (struct sd_fi_xb)); 30357 } 30358 if (un->sd_fi_fifo_un[i] != NULL) { 30359 kmem_free(un->sd_fi_fifo_un[i], 30360 sizeof (struct sd_fi_un)); 30361 } 30362 if (un->sd_fi_fifo_arq[i] != NULL) { 30363 kmem_free(un->sd_fi_fifo_arq[i], 30364 sizeof (struct sd_fi_arq)); 30365 } 30366 un->sd_fi_fifo_pkt[i] = NULL; 30367 un->sd_fi_fifo_un[i] = NULL; 30368 un->sd_fi_fifo_xb[i] = NULL; 30369 un->sd_fi_fifo_arq[i] = NULL; 30370 } 30371 un->sd_fi_fifo_start = 0; 30372 un->sd_fi_fifo_end = 0; 30373 30374 SD_INFO(SD_LOG_IOERR, un, 30375 "sd_faultinjection_ioctl: stop finished\n"); 30376 break; 30377 30378 case SDIOCINSERTPKT: 30379 /* Store a packet struct to be pushed onto fifo */ 30380 SD_INFO(SD_LOG_SDTEST, un, 30381 "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n"); 30382 30383 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30384 30385 sd_fault_injection_on = 0; 30386 30387 /* No more that SD_FI_MAX_ERROR allowed in Queue */ 30388 if (un->sd_fi_fifo_pkt[i] != NULL) { 30389 kmem_free(un->sd_fi_fifo_pkt[i], 30390 sizeof (struct sd_fi_pkt)); 30391 } 30392 if (arg != NULL) { 30393 un->sd_fi_fifo_pkt[i] = 30394 kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP); 30395 if (un->sd_fi_fifo_pkt[i] == NULL) { 30396 /* Alloc failed don't store anything */ 30397 break; 30398 } 30399 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i], 30400 sizeof (struct sd_fi_pkt), 0); 30401 if (rval == -1) { 30402 kmem_free(un->sd_fi_fifo_pkt[i], 30403 sizeof (struct sd_fi_pkt)); 30404 un->sd_fi_fifo_pkt[i] = NULL; 30405 } 30406 } else { 30407 SD_INFO(SD_LOG_IOERR, un, 30408 "sd_faultinjection_ioctl: pkt null\n"); 30409 } 30410 break; 30411 30412 case SDIOCINSERTXB: 30413 /* Store a xb struct to be pushed onto fifo */ 30414 SD_INFO(SD_LOG_SDTEST, un, 30415 "sd_faultinjection_ioctl: Injecting Fault Insert XB\n"); 30416 30417 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30418 30419 sd_fault_injection_on = 0; 30420 30421 if (un->sd_fi_fifo_xb[i] != NULL) { 30422 kmem_free(un->sd_fi_fifo_xb[i], 30423 sizeof (struct sd_fi_xb)); 30424 un->sd_fi_fifo_xb[i] = NULL; 30425 } 30426 if (arg != NULL) { 30427 un->sd_fi_fifo_xb[i] = 30428 kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP); 30429 if (un->sd_fi_fifo_xb[i] == NULL) { 30430 /* Alloc failed don't store anything */ 30431 break; 30432 } 30433 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i], 30434 sizeof (struct sd_fi_xb), 0); 30435 30436 if (rval == -1) { 30437 kmem_free(un->sd_fi_fifo_xb[i], 30438 sizeof (struct sd_fi_xb)); 30439 un->sd_fi_fifo_xb[i] = NULL; 30440 } 30441 } else { 30442 SD_INFO(SD_LOG_IOERR, un, 30443 "sd_faultinjection_ioctl: xb null\n"); 30444 } 30445 break; 30446 30447 case SDIOCINSERTUN: 30448 /* Store a un struct to be pushed onto fifo */ 30449 SD_INFO(SD_LOG_SDTEST, un, 30450 "sd_faultinjection_ioctl: Injecting Fault Insert UN\n"); 30451 30452 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30453 30454 sd_fault_injection_on = 0; 30455 30456 if (un->sd_fi_fifo_un[i] != NULL) { 30457 kmem_free(un->sd_fi_fifo_un[i], 30458 sizeof (struct sd_fi_un)); 30459 un->sd_fi_fifo_un[i] = NULL; 30460 } 30461 if (arg != NULL) { 30462 un->sd_fi_fifo_un[i] = 30463 kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP); 30464 if (un->sd_fi_fifo_un[i] == NULL) { 30465 /* Alloc failed don't store anything */ 30466 break; 30467 } 30468 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i], 30469 sizeof (struct sd_fi_un), 0); 30470 if (rval == -1) { 30471 kmem_free(un->sd_fi_fifo_un[i], 30472 sizeof (struct sd_fi_un)); 30473 un->sd_fi_fifo_un[i] = NULL; 30474 } 30475 30476 } else { 30477 SD_INFO(SD_LOG_IOERR, un, 30478 "sd_faultinjection_ioctl: un null\n"); 30479 } 30480 30481 break; 30482 30483 case SDIOCINSERTARQ: 30484 /* Store a arq struct to be pushed onto fifo */ 30485 SD_INFO(SD_LOG_SDTEST, un, 30486 "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n"); 30487 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30488 30489 sd_fault_injection_on = 0; 30490 30491 if (un->sd_fi_fifo_arq[i] != NULL) { 30492 kmem_free(un->sd_fi_fifo_arq[i], 30493 sizeof (struct sd_fi_arq)); 30494 un->sd_fi_fifo_arq[i] = NULL; 30495 } 30496 if (arg != NULL) { 30497 un->sd_fi_fifo_arq[i] = 30498 kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP); 30499 if (un->sd_fi_fifo_arq[i] == NULL) { 30500 /* Alloc failed don't store anything */ 30501 break; 30502 } 30503 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i], 30504 sizeof (struct sd_fi_arq), 0); 30505 if (rval == -1) { 30506 kmem_free(un->sd_fi_fifo_arq[i], 30507 sizeof (struct sd_fi_arq)); 30508 un->sd_fi_fifo_arq[i] = NULL; 30509 } 30510 30511 } else { 30512 SD_INFO(SD_LOG_IOERR, un, 30513 "sd_faultinjection_ioctl: arq null\n"); 30514 } 30515 30516 break; 30517 30518 case SDIOCPUSH: 30519 /* Push stored xb, pkt, un, and arq onto fifo */ 30520 sd_fault_injection_on = 0; 30521 30522 if (arg != NULL) { 30523 rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0); 30524 if (rval != -1 && 30525 un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) { 30526 un->sd_fi_fifo_end += i; 30527 } 30528 } else { 30529 SD_INFO(SD_LOG_IOERR, un, 30530 "sd_faultinjection_ioctl: push arg null\n"); 30531 if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) { 30532 un->sd_fi_fifo_end++; 30533 } 30534 } 30535 SD_INFO(SD_LOG_IOERR, un, 30536 "sd_faultinjection_ioctl: push to end=%d\n", 30537 un->sd_fi_fifo_end); 30538 break; 30539 30540 case SDIOCRETRIEVE: 30541 /* Return buffer of log from Injection session */ 30542 SD_INFO(SD_LOG_SDTEST, un, 30543 "sd_faultinjection_ioctl: Injecting Fault Retreive"); 30544 30545 sd_fault_injection_on = 0; 30546 30547 mutex_enter(&(un->un_fi_mutex)); 30548 rval = ddi_copyout(un->sd_fi_log, (void *)arg, 30549 un->sd_fi_buf_len+1, 0); 30550 mutex_exit(&(un->un_fi_mutex)); 30551 30552 if (rval == -1) { 30553 /* 30554 * arg is possibly invalid setting 30555 * it to NULL for return 30556 */ 30557 arg = NULL; 30558 } 30559 break; 30560 } 30561 30562 mutex_exit(SD_MUTEX(un)); 30563 SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:" 30564 " exit\n"); 30565 } 30566 30567 30568 /* 30569 * Function: sd_injection_log() 30570 * 30571 * Description: This routine adds buff to the already existing injection log 30572 * for retrieval via faultinjection_ioctl for use in fault 30573 * detection and recovery 30574 * 30575 * Arguments: buf - the string to add to the log 30576 */ 30577 30578 static void 30579 sd_injection_log(char *buf, struct sd_lun *un) 30580 { 30581 uint_t len; 30582 30583 ASSERT(un != NULL); 30584 ASSERT(buf != NULL); 30585 30586 mutex_enter(&(un->un_fi_mutex)); 30587 30588 len = min(strlen(buf), 255); 30589 /* Add logged value to Injection log to be returned later */ 30590 if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) { 30591 uint_t offset = strlen((char *)un->sd_fi_log); 30592 char *destp = (char *)un->sd_fi_log + offset; 30593 int i; 30594 for (i = 0; i < len; i++) { 30595 *destp++ = *buf++; 30596 } 30597 un->sd_fi_buf_len += len; 30598 un->sd_fi_log[un->sd_fi_buf_len] = '\0'; 30599 } 30600 30601 mutex_exit(&(un->un_fi_mutex)); 30602 } 30603 30604 30605 /* 30606 * Function: sd_faultinjection() 30607 * 30608 * Description: This routine takes the pkt and changes its 30609 * content based on error injection scenerio. 30610 * 30611 * Arguments: pktp - packet to be changed 30612 */ 30613 30614 static void 30615 sd_faultinjection(struct scsi_pkt *pktp) 30616 { 30617 uint_t i; 30618 struct sd_fi_pkt *fi_pkt; 30619 struct sd_fi_xb *fi_xb; 30620 struct sd_fi_un *fi_un; 30621 struct sd_fi_arq *fi_arq; 30622 struct buf *bp; 30623 struct sd_xbuf *xb; 30624 struct sd_lun *un; 30625 30626 ASSERT(pktp != NULL); 30627 30628 /* pull bp xb and un from pktp */ 30629 bp = (struct buf *)pktp->pkt_private; 30630 xb = SD_GET_XBUF(bp); 30631 un = SD_GET_UN(bp); 30632 30633 ASSERT(un != NULL); 30634 30635 mutex_enter(SD_MUTEX(un)); 30636 30637 SD_TRACE(SD_LOG_SDTEST, un, 30638 "sd_faultinjection: entry Injection from sdintr\n"); 30639 30640 /* if injection is off return */ 30641 if (sd_fault_injection_on == 0 || 30642 un->sd_fi_fifo_start == un->sd_fi_fifo_end) { 30643 mutex_exit(SD_MUTEX(un)); 30644 return; 30645 } 30646 30647 30648 /* take next set off fifo */ 30649 i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR; 30650 30651 fi_pkt = un->sd_fi_fifo_pkt[i]; 30652 fi_xb = un->sd_fi_fifo_xb[i]; 30653 fi_un = un->sd_fi_fifo_un[i]; 30654 fi_arq = un->sd_fi_fifo_arq[i]; 30655 30656 30657 /* set variables accordingly */ 30658 /* set pkt if it was on fifo */ 30659 if (fi_pkt != NULL) { 30660 SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags"); 30661 SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp"); 30662 SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp"); 30663 SD_CONDSET(pktp, pkt, pkt_state, "pkt_state"); 30664 SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics"); 30665 SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason"); 30666 30667 } 30668 30669 /* set xb if it was on fifo */ 30670 if (fi_xb != NULL) { 30671 SD_CONDSET(xb, xb, xb_blkno, "xb_blkno"); 30672 SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid"); 30673 SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count"); 30674 SD_CONDSET(xb, xb, xb_victim_retry_count, 30675 "xb_victim_retry_count"); 30676 SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status"); 30677 SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state"); 30678 SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid"); 30679 30680 /* copy in block data from sense */ 30681 if (fi_xb->xb_sense_data[0] != -1) { 30682 bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, 30683 SENSE_LENGTH); 30684 } 30685 30686 /* copy in extended sense codes */ 30687 SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code, 30688 "es_code"); 30689 SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key, 30690 "es_key"); 30691 SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code, 30692 "es_add_code"); 30693 SD_CONDSET(((struct scsi_extended_sense *)xb), xb, 30694 es_qual_code, "es_qual_code"); 30695 } 30696 30697 /* set un if it was on fifo */ 30698 if (fi_un != NULL) { 30699 SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb"); 30700 SD_CONDSET(un, un, un_ctype, "un_ctype"); 30701 SD_CONDSET(un, un, un_reset_retry_count, 30702 "un_reset_retry_count"); 30703 SD_CONDSET(un, un, un_reservation_type, "un_reservation_type"); 30704 SD_CONDSET(un, un, un_resvd_status, "un_resvd_status"); 30705 SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled"); 30706 SD_CONDSET(un, un, un_f_geometry_is_valid, 30707 "un_f_geometry_is_valid"); 30708 SD_CONDSET(un, un, un_f_allow_bus_device_reset, 30709 "un_f_allow_bus_device_reset"); 30710 SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing"); 30711 30712 } 30713 30714 /* copy in auto request sense if it was on fifo */ 30715 if (fi_arq != NULL) { 30716 bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq)); 30717 } 30718 30719 /* free structs */ 30720 if (un->sd_fi_fifo_pkt[i] != NULL) { 30721 kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt)); 30722 } 30723 if (un->sd_fi_fifo_xb[i] != NULL) { 30724 kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb)); 30725 } 30726 if (un->sd_fi_fifo_un[i] != NULL) { 30727 kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un)); 30728 } 30729 if (un->sd_fi_fifo_arq[i] != NULL) { 30730 kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq)); 30731 } 30732 30733 /* 30734 * kmem_free does not gurantee to set to NULL 30735 * since we uses these to determine if we set 30736 * values or not lets confirm they are always 30737 * NULL after free 30738 */ 30739 un->sd_fi_fifo_pkt[i] = NULL; 30740 un->sd_fi_fifo_un[i] = NULL; 30741 un->sd_fi_fifo_xb[i] = NULL; 30742 un->sd_fi_fifo_arq[i] = NULL; 30743 30744 un->sd_fi_fifo_start++; 30745 30746 mutex_exit(SD_MUTEX(un)); 30747 30748 SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n"); 30749 } 30750 30751 #endif /* SD_FAULT_INJECTION */ 30752 30753 /* 30754 * This routine is invoked in sd_unit_attach(). Before calling it, the 30755 * properties in conf file should be processed already, and "hotpluggable" 30756 * property was processed also. 30757 * 30758 * The sd driver distinguishes 3 different type of devices: removable media, 30759 * non-removable media, and hotpluggable. Below the differences are defined: 30760 * 30761 * 1. Device ID 30762 * 30763 * The device ID of a device is used to identify this device. Refer to 30764 * ddi_devid_register(9F). 30765 * 30766 * For a non-removable media disk device which can provide 0x80 or 0x83 30767 * VPD page (refer to INQUIRY command of SCSI SPC specification), a unique 30768 * device ID is created to identify this device. For other non-removable 30769 * media devices, a default device ID is created only if this device has 30770 * at least 2 alter cylinders. Otherwise, this device has no devid. 30771 * 30772 * ------------------------------------------------------- 30773 * removable media hotpluggable | Can Have Device ID 30774 * ------------------------------------------------------- 30775 * false false | Yes 30776 * false true | Yes 30777 * true x | No 30778 * ------------------------------------------------------ 30779 * 30780 * 30781 * 2. SCSI group 4 commands 30782 * 30783 * In SCSI specs, only some commands in group 4 command set can use 30784 * 8-byte addresses that can be used to access >2TB storage spaces. 30785 * Other commands have no such capability. Without supporting group4, 30786 * it is impossible to make full use of storage spaces of a disk with 30787 * capacity larger than 2TB. 30788 * 30789 * ----------------------------------------------- 30790 * removable media hotpluggable LP64 | Group 30791 * ----------------------------------------------- 30792 * false false false | 1 30793 * false false true | 4 30794 * false true false | 1 30795 * false true true | 4 30796 * true x x | 5 30797 * ----------------------------------------------- 30798 * 30799 * 30800 * 3. Check for VTOC Label 30801 * 30802 * If a direct-access disk has no EFI label, sd will check if it has a 30803 * valid VTOC label. Now, sd also does that check for removable media 30804 * and hotpluggable devices. 30805 * 30806 * -------------------------------------------------------------- 30807 * Direct-Access removable media hotpluggable | Check Label 30808 * ------------------------------------------------------------- 30809 * false false false | No 30810 * false false true | No 30811 * false true false | Yes 30812 * false true true | Yes 30813 * true x x | Yes 30814 * -------------------------------------------------------------- 30815 * 30816 * 30817 * 4. Building default VTOC label 30818 * 30819 * As section 3 says, sd checks if some kinds of devices have VTOC label. 30820 * If those devices have no valid VTOC label, sd(7d) will attempt to 30821 * create default VTOC for them. Currently sd creates default VTOC label 30822 * for all devices on x86 platform (VTOC_16), but only for removable 30823 * media devices on SPARC (VTOC_8). 30824 * 30825 * ----------------------------------------------------------- 30826 * removable media hotpluggable platform | Default Label 30827 * ----------------------------------------------------------- 30828 * false false sparc | No 30829 * false true x86 | Yes 30830 * false true sparc | Yes 30831 * true x x | Yes 30832 * ---------------------------------------------------------- 30833 * 30834 * 30835 * 5. Supported blocksizes of target devices 30836 * 30837 * Sd supports non-512-byte blocksize for removable media devices only. 30838 * For other devices, only 512-byte blocksize is supported. This may be 30839 * changed in near future because some RAID devices require non-512-byte 30840 * blocksize 30841 * 30842 * ----------------------------------------------------------- 30843 * removable media hotpluggable | non-512-byte blocksize 30844 * ----------------------------------------------------------- 30845 * false false | No 30846 * false true | No 30847 * true x | Yes 30848 * ----------------------------------------------------------- 30849 * 30850 * 30851 * 6. Automatic mount & unmount 30852 * 30853 * Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query 30854 * if a device is removable media device. It return 1 for removable media 30855 * devices, and 0 for others. 30856 * 30857 * The automatic mounting subsystem should distinguish between the types 30858 * of devices and apply automounting policies to each. 30859 * 30860 * 30861 * 7. fdisk partition management 30862 * 30863 * Fdisk is traditional partition method on x86 platform. Sd(7d) driver 30864 * just supports fdisk partitions on x86 platform. On sparc platform, sd 30865 * doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize 30866 * fdisk partitions on both x86 and SPARC platform. 30867 * 30868 * ----------------------------------------------------------- 30869 * platform removable media USB/1394 | fdisk supported 30870 * ----------------------------------------------------------- 30871 * x86 X X | true 30872 * ------------------------------------------------------------ 30873 * sparc X X | false 30874 * ------------------------------------------------------------ 30875 * 30876 * 30877 * 8. MBOOT/MBR 30878 * 30879 * Although sd(7d) doesn't support fdisk on SPARC platform, it does support 30880 * read/write mboot for removable media devices on sparc platform. 30881 * 30882 * ----------------------------------------------------------- 30883 * platform removable media USB/1394 | mboot supported 30884 * ----------------------------------------------------------- 30885 * x86 X X | true 30886 * ------------------------------------------------------------ 30887 * sparc false false | false 30888 * sparc false true | true 30889 * sparc true false | true 30890 * sparc true true | true 30891 * ------------------------------------------------------------ 30892 * 30893 * 30894 * 9. error handling during opening device 30895 * 30896 * If failed to open a disk device, an errno is returned. For some kinds 30897 * of errors, different errno is returned depending on if this device is 30898 * a removable media device. This brings USB/1394 hard disks in line with 30899 * expected hard disk behavior. It is not expected that this breaks any 30900 * application. 30901 * 30902 * ------------------------------------------------------ 30903 * removable media hotpluggable | errno 30904 * ------------------------------------------------------ 30905 * false false | EIO 30906 * false true | EIO 30907 * true x | ENXIO 30908 * ------------------------------------------------------ 30909 * 30910 * 30911 * 11. ioctls: DKIOCEJECT, CDROMEJECT 30912 * 30913 * These IOCTLs are applicable only to removable media devices. 30914 * 30915 * ----------------------------------------------------------- 30916 * removable media hotpluggable |DKIOCEJECT, CDROMEJECT 30917 * ----------------------------------------------------------- 30918 * false false | No 30919 * false true | No 30920 * true x | Yes 30921 * ----------------------------------------------------------- 30922 * 30923 * 30924 * 12. Kstats for partitions 30925 * 30926 * sd creates partition kstat for non-removable media devices. USB and 30927 * Firewire hard disks now have partition kstats 30928 * 30929 * ------------------------------------------------------ 30930 * removable media hotplugable | kstat 30931 * ------------------------------------------------------ 30932 * false false | Yes 30933 * false true | Yes 30934 * true x | No 30935 * ------------------------------------------------------ 30936 * 30937 * 30938 * 13. Removable media & hotpluggable properties 30939 * 30940 * Sd driver creates a "removable-media" property for removable media 30941 * devices. Parent nexus drivers create a "hotpluggable" property if 30942 * it supports hotplugging. 30943 * 30944 * --------------------------------------------------------------------- 30945 * removable media hotpluggable | "removable-media" " hotpluggable" 30946 * --------------------------------------------------------------------- 30947 * false false | No No 30948 * false true | No Yes 30949 * true false | Yes No 30950 * true true | Yes Yes 30951 * --------------------------------------------------------------------- 30952 * 30953 * 30954 * 14. Power Management 30955 * 30956 * sd only power manages removable media devices or devices that support 30957 * LOG_SENSE or have a "pm-capable" property (PSARC/2002/250) 30958 * 30959 * A parent nexus that supports hotplugging can also set "pm-capable" 30960 * if the disk can be power managed. 30961 * 30962 * ------------------------------------------------------------ 30963 * removable media hotpluggable pm-capable | power manage 30964 * ------------------------------------------------------------ 30965 * false false false | No 30966 * false false true | Yes 30967 * false true false | No 30968 * false true true | Yes 30969 * true x x | Yes 30970 * ------------------------------------------------------------ 30971 * 30972 * USB and firewire hard disks can now be power managed independently 30973 * of the framebuffer 30974 * 30975 * 30976 * 15. Support for USB disks with capacity larger than 1TB 30977 * 30978 * Currently, sd doesn't permit a fixed disk device with capacity 30979 * larger than 1TB to be used in a 32-bit operating system environment. 30980 * However, sd doesn't do that for removable media devices. Instead, it 30981 * assumes that removable media devices cannot have a capacity larger 30982 * than 1TB. Therefore, using those devices on 32-bit system is partially 30983 * supported, which can cause some unexpected results. 30984 * 30985 * --------------------------------------------------------------------- 30986 * removable media USB/1394 | Capacity > 1TB | Used in 32-bit env 30987 * --------------------------------------------------------------------- 30988 * false false | true | no 30989 * false true | true | no 30990 * true false | true | Yes 30991 * true true | true | Yes 30992 * --------------------------------------------------------------------- 30993 * 30994 * 30995 * 16. Check write-protection at open time 30996 * 30997 * When a removable media device is being opened for writing without NDELAY 30998 * flag, sd will check if this device is writable. If attempting to open 30999 * without NDELAY flag a write-protected device, this operation will abort. 31000 * 31001 * ------------------------------------------------------------ 31002 * removable media USB/1394 | WP Check 31003 * ------------------------------------------------------------ 31004 * false false | No 31005 * false true | No 31006 * true false | Yes 31007 * true true | Yes 31008 * ------------------------------------------------------------ 31009 * 31010 * 31011 * 17. syslog when corrupted VTOC is encountered 31012 * 31013 * Currently, if an invalid VTOC is encountered, sd only print syslog 31014 * for fixed SCSI disks. 31015 * ------------------------------------------------------------ 31016 * removable media USB/1394 | print syslog 31017 * ------------------------------------------------------------ 31018 * false false | Yes 31019 * false true | No 31020 * true false | No 31021 * true true | No 31022 * ------------------------------------------------------------ 31023 */ 31024 static void 31025 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi) 31026 { 31027 int pm_capable_prop; 31028 31029 ASSERT(un->un_sd); 31030 ASSERT(un->un_sd->sd_inq); 31031 31032 #if defined(_SUNOS_VTOC_16) 31033 /* 31034 * For VTOC_16 devices, the default label will be created for all 31035 * devices. (see sd_build_default_label) 31036 */ 31037 un->un_f_default_vtoc_supported = TRUE; 31038 #endif 31039 31040 /* 31041 * Enable SYNC CACHE support for all devices. 31042 */ 31043 un->un_f_sync_cache_supported = TRUE; 31044 31045 if (un->un_sd->sd_inq->inq_rmb) { 31046 /* 31047 * The media of this device is removable. And for this kind 31048 * of devices, it is possible to change medium after opening 31049 * devices. Thus we should support this operation. 31050 */ 31051 un->un_f_has_removable_media = TRUE; 31052 31053 #if defined(_SUNOS_VTOC_8) 31054 /* 31055 * Note: currently, for VTOC_8 devices, default label is 31056 * created for removable and hotpluggable devices only. 31057 */ 31058 un->un_f_default_vtoc_supported = TRUE; 31059 #endif 31060 /* 31061 * support non-512-byte blocksize of removable media devices 31062 */ 31063 un->un_f_non_devbsize_supported = TRUE; 31064 31065 /* 31066 * Assume that all removable media devices support DOOR_LOCK 31067 */ 31068 un->un_f_doorlock_supported = TRUE; 31069 31070 /* 31071 * For a removable media device, it is possible to be opened 31072 * with NDELAY flag when there is no media in drive, in this 31073 * case we don't care if device is writable. But if without 31074 * NDELAY flag, we need to check if media is write-protected. 31075 */ 31076 un->un_f_chk_wp_open = TRUE; 31077 31078 /* 31079 * need to start a SCSI watch thread to monitor media state, 31080 * when media is being inserted or ejected, notify syseventd. 31081 */ 31082 un->un_f_monitor_media_state = TRUE; 31083 31084 /* 31085 * Some devices don't support START_STOP_UNIT command. 31086 * Therefore, we'd better check if a device supports it 31087 * before sending it. 31088 */ 31089 un->un_f_check_start_stop = TRUE; 31090 31091 /* 31092 * support eject media ioctl: 31093 * FDEJECT, DKIOCEJECT, CDROMEJECT 31094 */ 31095 un->un_f_eject_media_supported = TRUE; 31096 31097 /* 31098 * Because many removable-media devices don't support 31099 * LOG_SENSE, we couldn't use this command to check if 31100 * a removable media device support power-management. 31101 * We assume that they support power-management via 31102 * START_STOP_UNIT command and can be spun up and down 31103 * without limitations. 31104 */ 31105 un->un_f_pm_supported = TRUE; 31106 31107 /* 31108 * Need to create a zero length (Boolean) property 31109 * removable-media for the removable media devices. 31110 * Note that the return value of the property is not being 31111 * checked, since if unable to create the property 31112 * then do not want the attach to fail altogether. Consistent 31113 * with other property creation in attach. 31114 */ 31115 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, 31116 DDI_PROP_CANSLEEP, "removable-media", NULL, 0); 31117 31118 } else { 31119 /* 31120 * create device ID for device 31121 */ 31122 un->un_f_devid_supported = TRUE; 31123 31124 /* 31125 * Spin up non-removable-media devices once it is attached 31126 */ 31127 un->un_f_attach_spinup = TRUE; 31128 31129 /* 31130 * According to SCSI specification, Sense data has two kinds of 31131 * format: fixed format, and descriptor format. At present, we 31132 * don't support descriptor format sense data for removable 31133 * media. 31134 */ 31135 if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) { 31136 un->un_f_descr_format_supported = TRUE; 31137 } 31138 31139 /* 31140 * kstats are created only for non-removable media devices. 31141 * 31142 * Set this in sd.conf to 0 in order to disable kstats. The 31143 * default is 1, so they are enabled by default. 31144 */ 31145 un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY, 31146 SD_DEVINFO(un), DDI_PROP_DONTPASS, 31147 "enable-partition-kstats", 1)); 31148 31149 /* 31150 * Check if HBA has set the "pm-capable" property. 31151 * If "pm-capable" exists and is non-zero then we can 31152 * power manage the device without checking the start/stop 31153 * cycle count log sense page. 31154 * 31155 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0) 31156 * then we should not power manage the device. 31157 * 31158 * If "pm-capable" doesn't exist then pm_capable_prop will 31159 * be set to SD_PM_CAPABLE_UNDEFINED (-1). In this case, 31160 * sd will check the start/stop cycle count log sense page 31161 * and power manage the device if the cycle count limit has 31162 * not been exceeded. 31163 */ 31164 pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi, 31165 DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED); 31166 if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) { 31167 un->un_f_log_sense_supported = TRUE; 31168 } else { 31169 /* 31170 * pm-capable property exists. 31171 * 31172 * Convert "TRUE" values for pm_capable_prop to 31173 * SD_PM_CAPABLE_TRUE (1) to make it easier to check 31174 * later. "TRUE" values are any values except 31175 * SD_PM_CAPABLE_FALSE (0) and 31176 * SD_PM_CAPABLE_UNDEFINED (-1) 31177 */ 31178 if (pm_capable_prop == SD_PM_CAPABLE_FALSE) { 31179 un->un_f_log_sense_supported = FALSE; 31180 } else { 31181 un->un_f_pm_supported = TRUE; 31182 } 31183 31184 SD_INFO(SD_LOG_ATTACH_DETACH, un, 31185 "sd_unit_attach: un:0x%p pm-capable " 31186 "property set to %d.\n", un, un->un_f_pm_supported); 31187 } 31188 } 31189 31190 if (un->un_f_is_hotpluggable) { 31191 #if defined(_SUNOS_VTOC_8) 31192 /* 31193 * Note: currently, for VTOC_8 devices, default label is 31194 * created for removable and hotpluggable devices only. 31195 */ 31196 un->un_f_default_vtoc_supported = TRUE; 31197 #endif 31198 31199 /* 31200 * Have to watch hotpluggable devices as well, since 31201 * that's the only way for userland applications to 31202 * detect hot removal while device is busy/mounted. 31203 */ 31204 un->un_f_monitor_media_state = TRUE; 31205 31206 un->un_f_check_start_stop = TRUE; 31207 31208 } 31209 31210 /* 31211 * By default, only DIRECT ACCESS devices and CDs will have Sun 31212 * labels. 31213 */ 31214 if ((SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) || 31215 (un->un_sd->sd_inq->inq_rmb)) { 31216 /* 31217 * Direct access devices have disk label 31218 */ 31219 un->un_f_vtoc_label_supported = TRUE; 31220 } 31221 31222 /* 31223 * Fdisk partitions are supported for all direct access devices on 31224 * x86 platform, and just for removable media and hotpluggable 31225 * devices on SPARC platform. Later, we will set the following flag 31226 * to FALSE if current device is not removable media or hotpluggable 31227 * device and if sd works on SAPRC platform. 31228 */ 31229 if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) { 31230 un->un_f_mboot_supported = TRUE; 31231 } 31232 31233 if (!un->un_f_is_hotpluggable && 31234 !un->un_sd->sd_inq->inq_rmb) { 31235 31236 #if defined(_SUNOS_VTOC_8) 31237 /* 31238 * Don't support fdisk on fixed disk 31239 */ 31240 un->un_f_mboot_supported = FALSE; 31241 #endif 31242 31243 /* 31244 * For fixed disk, if its VTOC is not valid, we will write 31245 * errlog into system log 31246 */ 31247 if (un->un_f_vtoc_label_supported) 31248 un->un_f_vtoc_errlog_supported = TRUE; 31249 } 31250 } 31251