xref: /titanic_51/usr/src/uts/common/io/rsm/rsm.c (revision 3c112a2b34403220c06c3e2fcac403358cfba168)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 
27 /*
28  * Overview of the RSM Kernel Agent:
29  * ---------------------------------
30  *
31  * rsm.c constitutes the implementation of the RSM kernel agent. The RSM
32  * kernel agent is a pseudo device driver which makes use of the RSMPI
33  * interface on behalf of the RSMAPI user library.
34  *
35  * The kernel agent functionality can be categorized into the following
36  * components:
37  * 1. Driver Infrastructure
38  * 2. Export/Import Segment Management
39  * 3. Internal resource allocation/deallocation
40  *
41  * The driver infrastructure includes the basic module loading entry points
42  * like _init, _info, _fini to load, unload and report information about
43  * the driver module. The driver infrastructure also includes the
44  * autoconfiguration entry points namely, attach, detach and getinfo for
45  * the device autoconfiguration.
46  *
47  * The kernel agent is a pseudo character device driver and exports
48  * a cb_ops structure which defines the driver entry points for character
49  * device access. This includes the open and close entry points. The
50  * other entry points provided include ioctl, devmap and segmap and chpoll.
51  * read and write entry points are not used since the device is memory
52  * mapped. Also ddi_prop_op is used for the prop_op entry point.
53  *
54  * The ioctl entry point supports a number of commands, which are used by
55  * the RSMAPI library in order to export and import segments. These
56  * commands include commands for binding and rebinding the physical pages
57  * allocated to the virtual address range, publishing the export segment,
58  * unpublishing and republishing an export segment, creating an
59  * import segment and a virtual connection from this import segment to
60  * an export segment, performing scatter-gather data transfer, barrier
61  * operations.
62  *
63  *
64  * Export and Import segments:
65  * ---------------------------
66  *
67  * In order to create an RSM export segment a process allocates a range in its
68  * virtual address space for the segment using standard Solaris interfaces.
69  * The process then calls RSMAPI, which in turn makes an ioctl call to the
70  * RSM kernel agent for an allocation of physical memory pages and for
71  * creation of the export segment by binding these pages to the virtual
72  * address range. These pages are locked in memory so that remote accesses
73  * are always applied to the correct page. Then the RSM segment is published,
74  * again via RSMAPI making an ioctl to the RSM kernel agent, and a segment id
75  * is assigned to it.
76  *
77  * In order to import a published RSM segment, RSMAPI creates an import
78  * segment and forms a virtual connection across the interconnect to the
79  * export segment, via an ioctl into the kernel agent with the connect
80  * command. The import segment setup is completed by mapping the
81  * local device memory into the importers virtual address space. The
82  * mapping of the import segment is handled by the segmap/devmap
83  * infrastructure described as follows.
84  *
85  * Segmap and Devmap interfaces:
86  *
87  * The RSM kernel agent allows device memory to be directly accessed by user
88  * threads via memory mapping. In order to do so, the RSM kernel agent
89  * supports the devmap and segmap entry points.
90  *
91  * The segmap entry point(rsm_segmap) is responsible for setting up a memory
92  * mapping as requested by mmap. The devmap entry point(rsm_devmap) is
93  * responsible for exporting the device memory to the user applications.
94  * rsm_segmap calls RSMPI rsm_map to allocate device memory. Then the
95  * control is transfered to the devmap_setup call which calls rsm_devmap.
96  *
97  * rsm_devmap validates the user mapping to the device or kernel memory
98  * and passes the information to the system for setting up the mapping. The
99  * actual setting up of the mapping is done by devmap_devmem_setup(for
100  * device memory) or devmap_umem_setup(for kernel memory). Callbacks are
101  * registered for device context management via the devmap_devmem_setup
102  * or devmap_umem_setup calls. The callbacks are rsmmap_map, rsmmap_unmap,
103  * rsmmap_access, rsmmap_dup. The callbacks are called when a new mapping
104  * is created, a mapping is freed, a mapping is accessed or an existing
105  * mapping is duplicated respectively. These callbacks allow the RSM kernel
106  * agent to maintain state information associated with the mappings.
107  * The state information is mainly in the form of a cookie list for the import
108  * segment for which mapping has been done.
109  *
110  * Forced disconnect of import segments:
111  *
112  * When an exported segment is unpublished, the exporter sends a forced
113  * disconnect message to all its importers. The importer segments are
114  * unloaded and disconnected. This involves unloading the original
115  * mappings and remapping to a preallocated kernel trash page. This is
116  * done by devmap_umem_remap. The trash/dummy page is a kernel page,
117  * preallocated by the kernel agent during attach using ddi_umem_alloc with
118  * the DDI_UMEM_TRASH flag set. This avoids a core dump in the application
119  * due to unloading of the original mappings.
120  *
121  * Additionally every segment has a mapping generation number associated
122  * with it. This is an entry in the barrier generation page, created
123  * during attach time. This mapping generation number for the import
124  * segments is incremented on a force disconnect to notify the application
125  * of the force disconnect. On this notification, the application needs
126  * to reconnect the segment to establish a new legitimate mapping.
127  *
128  *
129  * Locks used in the kernel agent:
130  * -------------------------------
131  *
132  * The kernel agent uses a variety of mutexes and condition variables for
133  * mutual exclusion of the shared data structures and for synchronization
134  * between the various threads. Some of the locks are described as follows.
135  *
136  * Each resource structure, which represents either an export/import segment
137  * has a lock associated with it. The lock is the resource mutex, rsmrc_lock.
138  * This is used directly by RSMRC_LOCK and RSMRC_UNLOCK macros and in the
139  * rsmseglock_acquire and rsmseglock_release macros. An additional
140  * lock called the rsmsi_lock is used for the shared import data structure
141  * that is relevant for resources representing import segments. There is
142  * also a condition variable associated with the resource called s_cv. This
143  * is used to wait for events like the segment state change etc.
144  *
145  * The resource structures are allocated from a pool of resource structures,
146  * called rsm_resource. This pool is protected via a reader-writer lock,
147  * called rsmrc_lock.
148  *
149  * There are two separate hash tables, one for the export segments and
150  * one for the import segments. The export segments are inserted into the
151  * export segment hash table only after they have been published and the
152  * import segments are inserted in the import segments list only after they
153  * have successfully connected to an exported segment. These tables are
154  * protected via reader-writer locks.
155  *
156  * Debug Support in the kernel agent:
157  * ----------------------------------
158  *
159  * Debugging support in the kernel agent is provided by the following
160  * macros.
161  *
162  * DBG_PRINTF((category, level, message)) is a macro which logs a debug
163  * message to the kernel agents debug buffer, rsmka_dbg. This debug buffer
164  * can be viewed in kmdb as *rsmka_dbg/s. The message is logged based
165  * on the definition of the category and level. All messages that belong to
166  * the specified category(rsmdbg_category) and are of an equal or greater
167  * severity than the specified level(rsmdbg_level) are logged. The message
168  * is a string which uses the same formatting rules as the strings used in
169  * printf.
170  *
171  * The category defines which component of the kernel agent has logged this
172  * message. There are a number of categories that have been defined such as
173  * RSM_KERNEL_AGENT, RSM_OPS, RSM_IMPORT, RSM_EXPORT etc. A macro,
174  * DBG_ADDCATEGORY is used to add in another category to the currently
175  * specified category value so that the component using this new category
176  * can also effectively log debug messages. Thus, the category of a specific
177  * message is some combination of the available categories and we can define
178  * sub-categories if we want a finer level of granularity.
179  *
180  * The level defines the severity of the message. Different level values are
181  * defined, with RSM_ERR being the most severe and RSM_DEBUG_VERBOSE being
182  * the least severe(debug level is 0).
183  *
184  * DBG_DEFINE and DBG_DEFINE_STR are macros provided to declare a debug
185  * variable or a string respectively.
186  *
187  *
188  * NOTES:
189  *
190  * Special Fork and Exec Handling:
191  * -------------------------------
192  *
193  * The backing physical pages of an exported segment are always locked down.
194  * Thus, there are two cases in which a process having exported segments
195  * will cause a cpu to hang: (1) the process invokes exec; (2) a process
196  * forks and invokes exit before the duped file descriptors for the export
197  * segments are closed in the child process. The hang is caused because the
198  * address space release algorithm in Solaris VM subsystem is based on a
199  * non-blocking loop which does not terminate while segments are locked
200  * down. In addition to this, Solaris VM subsystem lacks a callback
201  * mechanism to the rsm kernel agent to allow unlocking these export
202  * segment pages.
203  *
204  * In order to circumvent this problem, the kernel agent does the following.
205  * The Solaris VM subsystem keeps memory segments in increasing order of
206  * virtual addressses. Thus a special page(special_exit_offset) is allocated
207  * by the kernel agent and is mmapped into the heap area of the process address
208  * space(the mmap is done by the RSMAPI library). During the mmap processing
209  * of this special page by the devmap infrastructure, a callback(the same
210  * devmap context management callbacks discussed above) is registered for an
211  * unmap.
212  *
213  * As discussed above, this page is processed by the Solaris address space
214  * release code before any of the exported segments pages(which are allocated
215  * from high memory). It is during this processing that the unmap callback gets
216  * called and this callback is responsible for force destroying the exported
217  * segments and thus eliminating the problem of locked pages.
218  *
219  * Flow-control:
220  * ------------
221  *
222  * A credit based flow control algorithm is used for messages whose
223  * processing cannot be done in the interrupt context because it might
224  * involve invoking rsmpi calls, or might take a long time to complete
225  * or might need to allocate resources. The algorithm operates on a per
226  * path basis. To send a message the pathend needs to have a credit and
227  * it consumes one for every message that is flow controlled. On the
228  * receiving pathend the message is put on a msgbuf_queue and a task is
229  * dispatched on the worker thread - recv_taskq where it is processed.
230  * After processing the message, the receiving pathend dequeues the message,
231  * and if it has processed > RSMIPC_LOTSFREE_MSGBUFS messages sends
232  * credits to the sender pathend.
233  *
234  * RSM_DRTEST:
235  * -----------
236  *
237  * This is used to enable the DR testing using a test driver on test
238  * platforms which do not supported DR.
239  *
240  */
241 
242 #include <sys/types.h>
243 #include <sys/param.h>
244 #include <sys/user.h>
245 #include <sys/buf.h>
246 #include <sys/systm.h>
247 #include <sys/cred.h>
248 #include <sys/vm.h>
249 #include <sys/uio.h>
250 #include <vm/seg.h>
251 #include <vm/page.h>
252 #include <sys/stat.h>
253 
254 #include <sys/time.h>
255 #include <sys/errno.h>
256 
257 #include <sys/file.h>
258 #include <sys/uio.h>
259 #include <sys/proc.h>
260 #include <sys/mman.h>
261 #include <sys/open.h>
262 #include <sys/atomic.h>
263 #include <sys/mem_config.h>
264 
265 
266 #include <sys/ddi.h>
267 #include <sys/devops.h>
268 #include <sys/ddidevmap.h>
269 #include <sys/sunddi.h>
270 #include <sys/esunddi.h>
271 #include <sys/ddi_impldefs.h>
272 
273 #include <sys/kmem.h>
274 #include <sys/conf.h>
275 #include <sys/devops.h>
276 #include <sys/ddi_impldefs.h>
277 
278 #include <sys/modctl.h>
279 
280 #include <sys/policy.h>
281 #include <sys/types.h>
282 #include <sys/conf.h>
283 #include <sys/param.h>
284 
285 #include <sys/taskq.h>
286 
287 #include <sys/rsm/rsm_common.h>
288 #include <sys/rsm/rsmapi_common.h>
289 #include <sys/rsm/rsm.h>
290 #include <rsm_in.h>
291 #include <sys/rsm/rsmka_path_int.h>
292 #include <sys/rsm/rsmpi.h>
293 
294 #include <sys/modctl.h>
295 #include <sys/debug.h>
296 
297 #include <sys/tuneable.h>
298 
299 #ifdef	RSM_DRTEST
300 extern int rsm_kphysm_setup_func_register(kphysm_setup_vector_t *vec,
301 		void *arg);
302 extern void rsm_kphysm_setup_func_unregister(kphysm_setup_vector_t *vec,
303 		void *arg);
304 #endif
305 
306 extern void dbg_printf(int category, int level, char *fmt, ...);
307 extern void rsmka_pathmanager_init();
308 extern void rsmka_pathmanager_cleanup();
309 extern void rele_sendq_token();
310 extern rsm_addr_t get_remote_hwaddr(adapter_t *, rsm_node_id_t);
311 extern rsm_node_id_t get_remote_nodeid(adapter_t *, rsm_addr_t);
312 extern int rsmka_topology_ioctl(caddr_t, int, int);
313 
314 extern pri_t maxclsyspri;
315 extern work_queue_t work_queue;
316 extern kmutex_t ipc_info_lock;
317 extern kmutex_t ipc_info_cvlock;
318 extern kcondvar_t ipc_info_cv;
319 extern kmutex_t path_hold_cvlock;
320 extern kcondvar_t path_hold_cv;
321 
322 extern kmutex_t rsmka_buf_lock;
323 
324 extern path_t *rsm_find_path(char *, int, rsm_addr_t);
325 extern adapter_t *rsmka_lookup_adapter(char *, int);
326 extern sendq_token_t *rsmka_get_sendq_token(rsm_node_id_t, sendq_token_t *);
327 extern boolean_t rsmka_do_path_active(path_t *, int);
328 extern boolean_t rsmka_check_node_alive(rsm_node_id_t);
329 extern void rsmka_release_adapter(adapter_t *);
330 extern void rsmka_enqueue_msgbuf(path_t *path, void *data);
331 extern void rsmka_dequeue_msgbuf(path_t *path);
332 extern msgbuf_elem_t *rsmka_gethead_msgbuf(path_t *path);
333 /* lint -w2 */
334 
335 static int rsm_open(dev_t *, int, int, cred_t *);
336 static int rsm_close(dev_t, int, int, cred_t *);
337 static int rsm_ioctl(dev_t dev, int cmd, intptr_t arg, int mode,
338     cred_t *credp, int *rvalp);
339 static int rsm_devmap(dev_t, devmap_cookie_t, offset_t, size_t, size_t *,
340     uint_t);
341 static int rsm_segmap(dev_t, off_t, struct as *, caddr_t *, off_t, uint_t,
342     uint_t, uint_t, cred_t *);
343 static int rsm_chpoll(dev_t dev, short events, int anyyet, short *reventsp,
344     struct pollhead **phpp);
345 
346 static int rsm_info(dev_info_t *, ddi_info_cmd_t, void *, void **);
347 static int rsm_attach(dev_info_t *, ddi_attach_cmd_t);
348 static int rsm_detach(dev_info_t *, ddi_detach_cmd_t);
349 
350 static int rsmipc_send(rsm_node_id_t, rsmipc_request_t *, rsmipc_reply_t *);
351 static void rsm_force_unload(rsm_node_id_t, rsm_memseg_id_t, boolean_t);
352 static void rsm_send_importer_disconnects(rsm_memseg_id_t, rsm_node_id_t);
353 static void rsm_send_republish(rsm_memseg_id_t, rsmapi_access_entry_t *, int,
354 				rsm_permission_t);
355 static void rsm_export_force_destroy(ddi_umem_cookie_t *);
356 static void rsmacl_free(rsmapi_access_entry_t *, int);
357 static void rsmpiacl_free(rsm_access_entry_t *, int);
358 
359 static int rsm_inc_pgcnt(pgcnt_t);
360 static void rsm_dec_pgcnt(pgcnt_t);
361 static void rsm_free_mapinfo(rsm_mapinfo_t *mapinfop);
362 static rsm_mapinfo_t *rsm_get_mapinfo(rsmseg_t *, off_t, size_t, off_t *,
363 					size_t *);
364 static void exporter_quiesce();
365 static void rsmseg_suspend(rsmseg_t *, int *);
366 static void rsmsegshare_suspend(rsmseg_t *);
367 static int rsmseg_resume(rsmseg_t *, void **);
368 static int rsmsegshare_resume(rsmseg_t *);
369 
370 static struct cb_ops rsm_cb_ops = {
371 	rsm_open,		/* open */
372 	rsm_close,		/* close */
373 	nodev,			/* strategy */
374 	nodev,			/* print */
375 	nodev,			/* dump */
376 	nodev,			/* read */
377 	nodev,			/* write */
378 	rsm_ioctl,		/* ioctl */
379 	rsm_devmap,		/* devmap */
380 	NULL,			/* mmap */
381 	rsm_segmap,		/* segmap */
382 	rsm_chpoll,		/* poll */
383 	ddi_prop_op,		/* cb_prop_op */
384 	0,			/* streamtab  */
385 	D_NEW|D_MP|D_DEVMAP,	/* Driver compatibility flag */
386 	0,
387 	0,
388 	0
389 };
390 
391 static struct dev_ops rsm_ops = {
392 	DEVO_REV,		/* devo_rev, */
393 	0,			/* refcnt  */
394 	rsm_info,		/* get_dev_info */
395 	nulldev,		/* identify */
396 	nulldev,		/* probe */
397 	rsm_attach,		/* attach */
398 	rsm_detach,		/* detach */
399 	nodev,			/* reset */
400 	&rsm_cb_ops,		/* driver operations */
401 	(struct bus_ops *)0,	/* bus operations */
402 	0,
403 	ddi_quiesce_not_needed,		/* quiesce */
404 };
405 
406 /*
407  * Module linkage information for the kernel.
408  */
409 
410 static struct modldrv modldrv = {
411 	&mod_driverops, /* Type of module.  This one is a pseudo driver */
412 	"Remote Shared Memory Driver",
413 	&rsm_ops,	/* driver ops */
414 };
415 
416 static struct modlinkage modlinkage = {
417 	MODREV_1,
418 	(void *)&modldrv,
419 	0,
420 	0,
421 	0
422 };
423 
424 static void rsm_dr_callback_post_add(void *arg, pgcnt_t delta);
425 static int rsm_dr_callback_pre_del(void *arg, pgcnt_t delta);
426 static void rsm_dr_callback_post_del(void *arg, pgcnt_t delta, int cancelled);
427 
428 static kphysm_setup_vector_t rsm_dr_callback_vec = {
429 	KPHYSM_SETUP_VECTOR_VERSION,
430 	rsm_dr_callback_post_add,
431 	rsm_dr_callback_pre_del,
432 	rsm_dr_callback_post_del
433 };
434 
435 /* This flag can be changed to 0 to help with PIT testing */
436 int rsmka_modunloadok = 1;
437 int no_reply_cnt = 0;
438 
439 uint64_t rsm_ctrlmsg_errcnt = 0;
440 uint64_t rsm_ipcsend_errcnt = 0;
441 
442 #define	MAX_NODES 64
443 
444 static struct rsm_driver_data rsm_drv_data;
445 static struct rsmresource_table rsm_resource;
446 
447 static void rsmresource_insert(minor_t, rsmresource_t *, rsm_resource_type_t);
448 static void rsmresource_destroy(void);
449 static int rsmresource_alloc(minor_t *);
450 static rsmresource_t *rsmresource_free(minor_t rnum);
451 static int rsm_closeconnection(rsmseg_t *seg, void **cookie);
452 static int rsm_unpublish(rsmseg_t *seg, int mode);
453 static int rsm_unbind(rsmseg_t *seg);
454 static uint_t rsmhash(rsm_memseg_id_t key);
455 static void rsmhash_alloc(rsmhash_table_t *rhash, int size);
456 static void rsmhash_free(rsmhash_table_t *rhash, int size);
457 static void *rsmhash_getbkt(rsmhash_table_t *rhash, uint_t hashval);
458 static void **rsmhash_bktaddr(rsmhash_table_t *rhash, uint_t hashval);
459 static int rsm_send_notimporting(rsm_node_id_t dest, rsm_memseg_id_t segid,
460 					void *cookie);
461 int rsm_disconnect(rsmseg_t *seg);
462 void rsmseg_unload(rsmseg_t *);
463 void rsm_suspend_complete(rsm_node_id_t src_node, int flag);
464 
465 rsm_intr_hand_ret_t rsm_srv_func(rsm_controller_object_t *chd,
466     rsm_intr_q_op_t opcode, rsm_addr_t src,
467     void *data, size_t size, rsm_intr_hand_arg_t arg);
468 
469 static void rsm_intr_callback(void *, rsm_addr_t, rsm_intr_hand_arg_t);
470 
471 rsm_node_id_t my_nodeid;
472 
473 /* cookie, va, offsets and length for the barrier */
474 static rsm_gnum_t		*bar_va;
475 static ddi_umem_cookie_t	bar_cookie;
476 static off_t			barrier_offset;
477 static size_t			barrier_size;
478 static int			max_segs;
479 
480 /* cookie for the trash memory */
481 static ddi_umem_cookie_t	remap_cookie;
482 
483 static rsm_memseg_id_t	rsm_nextavail_segmentid;
484 
485 extern taskq_t *work_taskq;
486 extern char *taskq_name;
487 
488 static dev_info_t *rsm_dip;	/* private copy of devinfo pointer */
489 
490 static rsmhash_table_t rsm_export_segs;		/* list of exported segs */
491 rsmhash_table_t rsm_import_segs;		/* list of imported segs */
492 static rsmhash_table_t rsm_event_queues;	/* list of event queues */
493 
494 static	rsm_ipc_t	rsm_ipc;		/* ipc info */
495 
496 /* list of nodes to which RSMIPC_MSG_SUSPEND has been sent */
497 static list_head_t	rsm_suspend_list;
498 
499 /* list of descriptors for remote importers */
500 static importers_table_t importer_list;
501 
502 kmutex_t rsm_suspend_cvlock;
503 kcondvar_t rsm_suspend_cv;
504 
505 static kmutex_t rsm_lock;
506 
507 adapter_t loopback_adapter;
508 rsm_controller_attr_t loopback_attr;
509 
510 int rsmipc_send_controlmsg(path_t *path, int msgtype);
511 
512 void rsmka_init_loopback();
513 
514 int rsmka_null_seg_create(
515     rsm_controller_handle_t,
516     rsm_memseg_export_handle_t *,
517     size_t,
518     uint_t,
519     rsm_memory_local_t *,
520     rsm_resource_callback_t,
521     rsm_resource_callback_arg_t);
522 
523 int rsmka_null_seg_destroy(
524     rsm_memseg_export_handle_t);
525 
526 int rsmka_null_bind(
527     rsm_memseg_export_handle_t,
528     off_t,
529     rsm_memory_local_t *,
530     rsm_resource_callback_t,
531     rsm_resource_callback_arg_t);
532 
533 int rsmka_null_unbind(
534     rsm_memseg_export_handle_t,
535     off_t,
536     size_t);
537 
538 int rsmka_null_rebind(
539     rsm_memseg_export_handle_t,
540     off_t,
541     rsm_memory_local_t *,
542     rsm_resource_callback_t,
543     rsm_resource_callback_arg_t);
544 
545 int rsmka_null_publish(
546     rsm_memseg_export_handle_t,
547     rsm_access_entry_t [],
548     uint_t,
549     rsm_memseg_id_t,
550     rsm_resource_callback_t,
551     rsm_resource_callback_arg_t);
552 
553 
554 int rsmka_null_republish(
555     rsm_memseg_export_handle_t,
556     rsm_access_entry_t [],
557     uint_t,
558     rsm_resource_callback_t,
559     rsm_resource_callback_arg_t);
560 
561 int rsmka_null_unpublish(
562     rsm_memseg_export_handle_t);
563 
564 rsm_ops_t null_rsmpi_ops;
565 
566 /*
567  * data and locks to keep track of total amount of exported memory
568  */
569 static	pgcnt_t		rsm_pgcnt;
570 static	pgcnt_t		rsm_pgcnt_max;	/* max allowed */
571 static	kmutex_t	rsm_pgcnt_lock;
572 
573 static	int		rsm_enable_dr;
574 
575 static	char		loopback_str[] = "loopback";
576 
577 int		rsm_hash_size;
578 
579 /*
580  * The locking model is as follows:
581  *
582  * Local operations:
583  *		find resource - grab reader lock on resouce list
584  *		insert rc     - grab writer lock
585  *		delete rc     - grab writer lock and resource mutex
586  *		read/write    - no lock
587  *
588  * Remote invocations:
589  *		find resource - grab read lock and resource mutex
590  *
591  * State:
592  *		resource state - grab resource mutex
593  */
594 
595 int
596 _init(void)
597 {
598 	int e;
599 
600 	e = mod_install(&modlinkage);
601 	if (e != 0) {
602 		return (e);
603 	}
604 
605 	mutex_init(&rsm_lock, NULL, MUTEX_DRIVER, NULL);
606 
607 	mutex_init(&rsmka_buf_lock, NULL, MUTEX_DEFAULT, NULL);
608 
609 
610 	rw_init(&rsm_resource.rsmrc_lock, NULL, RW_DRIVER, NULL);
611 
612 	rsm_hash_size = RSM_HASHSZ;
613 
614 	rw_init(&rsm_export_segs.rsmhash_rw, NULL, RW_DRIVER, NULL);
615 
616 	rw_init(&rsm_import_segs.rsmhash_rw, NULL, RW_DRIVER, NULL);
617 
618 	mutex_init(&importer_list.lock, NULL, MUTEX_DRIVER, NULL);
619 
620 	mutex_init(&rsm_ipc.lock, NULL, MUTEX_DRIVER, NULL);
621 	cv_init(&rsm_ipc.cv, NULL, CV_DRIVER, 0);
622 
623 	mutex_init(&rsm_suspend_cvlock, NULL, MUTEX_DRIVER, NULL);
624 	cv_init(&rsm_suspend_cv, NULL, CV_DRIVER, 0);
625 
626 	mutex_init(&rsm_drv_data.drv_lock, NULL, MUTEX_DRIVER, NULL);
627 	cv_init(&rsm_drv_data.drv_cv, NULL, CV_DRIVER, 0);
628 
629 	rsm_ipc.count = RSMIPC_SZ;
630 	rsm_ipc.wanted = 0;
631 	rsm_ipc.sequence = 0;
632 
633 	(void) mutex_init(&rsm_pgcnt_lock, NULL, MUTEX_DRIVER, NULL);
634 
635 	for (e = 0; e < RSMIPC_SZ; e++) {
636 		rsmipc_slot_t *slot = &rsm_ipc.slots[e];
637 
638 		RSMIPC_SET(slot, RSMIPC_FREE);
639 		mutex_init(&slot->rsmipc_lock, NULL, MUTEX_DRIVER, NULL);
640 		cv_init(&slot->rsmipc_cv, NULL, CV_DRIVER, 0);
641 	}
642 
643 	/*
644 	 * Initialize the suspend message list
645 	 */
646 	rsm_suspend_list.list_head = NULL;
647 	mutex_init(&rsm_suspend_list.list_lock, NULL, MUTEX_DRIVER, NULL);
648 
649 	/*
650 	 * It is assumed here that configuration data is available
651 	 * during system boot since _init may be called at that time.
652 	 */
653 
654 	rsmka_pathmanager_init();
655 
656 	DBG_PRINTF((RSM_KERNEL_AGENT, RSM_DEBUG_VERBOSE,
657 	    "rsm: _init done\n"));
658 
659 	return (DDI_SUCCESS);
660 
661 }
662 
663 int
664 _info(struct modinfo *modinfop)
665 {
666 
667 	return (mod_info(&modlinkage, modinfop));
668 }
669 
670 int
671 _fini(void)
672 {
673 	int e;
674 
675 	DBG_PRINTF((RSM_KERNEL_AGENT, RSM_DEBUG_VERBOSE,
676 	    "rsm: _fini enter\n"));
677 
678 	/*
679 	 * The rsmka_modunloadok flag is simply used to help with
680 	 * the PIT testing. Make this flag 0 to disallow modunload.
681 	 */
682 	if (rsmka_modunloadok == 0)
683 		return (EBUSY);
684 
685 	/* rsm_detach will be called as a result of mod_remove */
686 	e = mod_remove(&modlinkage);
687 	if (e) {
688 		DBG_PRINTF((RSM_KERNEL_AGENT, RSM_ERR,
689 		    "Unable to fini RSM %x\n", e));
690 		return (e);
691 	}
692 
693 	rsmka_pathmanager_cleanup();
694 
695 	rw_destroy(&rsm_resource.rsmrc_lock);
696 
697 	rw_destroy(&rsm_export_segs.rsmhash_rw);
698 	rw_destroy(&rsm_import_segs.rsmhash_rw);
699 	rw_destroy(&rsm_event_queues.rsmhash_rw);
700 
701 	mutex_destroy(&importer_list.lock);
702 
703 	mutex_destroy(&rsm_ipc.lock);
704 	cv_destroy(&rsm_ipc.cv);
705 
706 	(void) mutex_destroy(&rsm_suspend_list.list_lock);
707 
708 	(void) mutex_destroy(&rsm_pgcnt_lock);
709 
710 	DBG_PRINTF((RSM_KERNEL_AGENT, RSM_DEBUG_VERBOSE, "_fini done\n"));
711 
712 	return (DDI_SUCCESS);
713 
714 }
715 
716 /*ARGSUSED1*/
717 static int
718 rsm_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
719 {
720 	minor_t	rnum;
721 	int	percent;
722 	int	ret;
723 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_DDI);
724 
725 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_attach enter\n"));
726 
727 	switch (cmd) {
728 	case DDI_ATTACH:
729 		break;
730 	case DDI_RESUME:
731 	default:
732 		DBG_PRINTF((category, RSM_ERR,
733 		    "rsm:rsm_attach - cmd not supported\n"));
734 		return (DDI_FAILURE);
735 	}
736 
737 	if (rsm_dip != NULL) {
738 		DBG_PRINTF((category, RSM_ERR,
739 		    "rsm:rsm_attach - supports only "
740 		    "one instance\n"));
741 		return (DDI_FAILURE);
742 	}
743 
744 	rsm_enable_dr = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
745 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
746 	    "enable-dynamic-reconfiguration", 1);
747 
748 	mutex_enter(&rsm_drv_data.drv_lock);
749 	rsm_drv_data.drv_state = RSM_DRV_REG_PROCESSING;
750 	mutex_exit(&rsm_drv_data.drv_lock);
751 
752 	if (rsm_enable_dr) {
753 #ifdef	RSM_DRTEST
754 		ret = rsm_kphysm_setup_func_register(&rsm_dr_callback_vec,
755 		    (void *)NULL);
756 #else
757 		ret = kphysm_setup_func_register(&rsm_dr_callback_vec,
758 		    (void *)NULL);
759 #endif
760 		if (ret != 0) {
761 			mutex_exit(&rsm_drv_data.drv_lock);
762 			cmn_err(CE_CONT, "rsm:rsm_attach - Dynamic "
763 			    "reconfiguration setup failed\n");
764 			return (DDI_FAILURE);
765 		}
766 	}
767 
768 	mutex_enter(&rsm_drv_data.drv_lock);
769 	ASSERT(rsm_drv_data.drv_state == RSM_DRV_REG_PROCESSING);
770 	rsm_drv_data.drv_state = RSM_DRV_OK;
771 	cv_broadcast(&rsm_drv_data.drv_cv);
772 	mutex_exit(&rsm_drv_data.drv_lock);
773 
774 	/*
775 	 * page_list_read_lock();
776 	 * xx_setup();
777 	 * page_list_read_unlock();
778 	 */
779 
780 	rsm_hash_size = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
781 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
782 	    "segment-hashtable-size", RSM_HASHSZ);
783 	if (rsm_hash_size == 0) {
784 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
785 		    "rsm: segment-hashtable-size in rsm.conf "
786 		    "must be greater than 0, defaulting to 128\n"));
787 		rsm_hash_size = RSM_HASHSZ;
788 	}
789 
790 	DBG_PRINTF((category, RSM_DEBUG, "rsm_attach rsm_hash_size: %d\n",
791 	    rsm_hash_size));
792 
793 	rsm_pgcnt = 0;
794 
795 	percent = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
796 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
797 	    "max-exported-memory", 0);
798 	if (percent < 0) {
799 		DBG_PRINTF((category, RSM_ERR,
800 		    "rsm:rsm_attach not enough memory available to "
801 		    "export, or max-exported-memory set incorrectly.\n"));
802 		return (DDI_FAILURE);
803 	}
804 	/* 0 indicates no fixed upper limit. maxmem is the max	*/
805 	/* available pageable physical mem			*/
806 	rsm_pgcnt_max = (percent*maxmem)/100;
807 
808 	if (rsm_pgcnt_max > 0) {
809 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
810 		    "rsm: Available physical memory = %lu pages, "
811 		    "Max exportable memory = %lu pages",
812 		    maxmem, rsm_pgcnt_max));
813 	}
814 
815 	/*
816 	 * Create minor number
817 	 */
818 	if (rsmresource_alloc(&rnum) != RSM_SUCCESS) {
819 		DBG_PRINTF((category, RSM_ERR,
820 		    "rsm: rsm_attach - Unable to get "
821 		    "minor number\n"));
822 		return (DDI_FAILURE);
823 	}
824 
825 	ASSERT(rnum == RSM_DRIVER_MINOR);
826 
827 	if (ddi_create_minor_node(devi, DRIVER_NAME, S_IFCHR,
828 	    rnum, DDI_PSEUDO, NULL) == DDI_FAILURE) {
829 		DBG_PRINTF((category, RSM_ERR,
830 		    "rsm: rsm_attach - unable to allocate "
831 		    "minor #\n"));
832 		return (DDI_FAILURE);
833 	}
834 
835 	rsm_dip = devi;
836 	/*
837 	 * Allocate the hashtables
838 	 */
839 	rsmhash_alloc(&rsm_export_segs, rsm_hash_size);
840 	rsmhash_alloc(&rsm_import_segs, rsm_hash_size);
841 
842 	importer_list.bucket = (importing_token_t **)
843 	    kmem_zalloc(rsm_hash_size * sizeof (importing_token_t *), KM_SLEEP);
844 
845 	/*
846 	 * Allocate a resource struct
847 	 */
848 	{
849 		rsmresource_t *p;
850 
851 		p = (rsmresource_t *)kmem_zalloc(sizeof (*p), KM_SLEEP);
852 
853 		mutex_init(&p->rsmrc_lock, NULL, MUTEX_DRIVER, (void *) NULL);
854 
855 		rsmresource_insert(rnum, p, RSM_RESOURCE_BAR);
856 	}
857 
858 	/*
859 	 * Based on the rsm.conf property max-segments, determine the maximum
860 	 * number of segments that can be exported/imported. This is then used
861 	 * to determine the size for barrier failure pages.
862 	 */
863 
864 	/* First get the max number of segments from the rsm.conf file */
865 	max_segs = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
866 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
867 	    "max-segments", 0);
868 	if (max_segs == 0) {
869 		/* Use default number of segments */
870 		max_segs = RSM_MAX_NUM_SEG;
871 	}
872 
873 	/*
874 	 * Based on the max number of segments allowed, determine the barrier
875 	 * page size. add 1 to max_segs since the barrier page itself uses
876 	 * a slot
877 	 */
878 	barrier_size = roundup((max_segs + 1) * sizeof (rsm_gnum_t),
879 	    PAGESIZE);
880 
881 	/*
882 	 * allocation of the barrier failure page
883 	 */
884 	bar_va = (rsm_gnum_t *)ddi_umem_alloc(barrier_size,
885 	    DDI_UMEM_SLEEP, &bar_cookie);
886 
887 	/*
888 	 * Set the barrier_offset
889 	 */
890 	barrier_offset = 0;
891 
892 	/*
893 	 * Allocate a trash memory and get a cookie for it. This will be used
894 	 * when remapping segments during force disconnects. Allocate the
895 	 * trash memory with a large size which is page aligned.
896 	 */
897 	(void) ddi_umem_alloc((size_t)TRASHSIZE,
898 	    DDI_UMEM_TRASH, &remap_cookie);
899 
900 	/* initialize user segment id allocation variable */
901 	rsm_nextavail_segmentid = (rsm_memseg_id_t)RSM_USER_APP_ID_BASE;
902 
903 	/*
904 	 * initialize the null_rsmpi_ops vector and the loopback adapter
905 	 */
906 	rsmka_init_loopback();
907 
908 
909 	ddi_report_dev(devi);
910 
911 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_attach done\n"));
912 
913 	return (DDI_SUCCESS);
914 }
915 
916 /*
917  * The call to mod_remove in the _fine routine will cause the system
918  * to call rsm_detach
919  */
920 /*ARGSUSED*/
921 static int
922 rsm_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
923 {
924 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_DDI);
925 
926 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_detach enter\n"));
927 
928 	switch (cmd) {
929 	case DDI_DETACH:
930 		break;
931 	default:
932 		DBG_PRINTF((category, RSM_ERR,
933 		    "rsm:rsm_detach - cmd %x not supported\n",
934 		    cmd));
935 		return (DDI_FAILURE);
936 	}
937 
938 	mutex_enter(&rsm_drv_data.drv_lock);
939 	while (rsm_drv_data.drv_state != RSM_DRV_OK)
940 		cv_wait(&rsm_drv_data.drv_cv, &rsm_drv_data.drv_lock);
941 	rsm_drv_data.drv_state = RSM_DRV_UNREG_PROCESSING;
942 	mutex_exit(&rsm_drv_data.drv_lock);
943 
944 	/*
945 	 * Unregister the DR callback functions
946 	 */
947 	if (rsm_enable_dr) {
948 #ifdef	RSM_DRTEST
949 		rsm_kphysm_setup_func_unregister(&rsm_dr_callback_vec,
950 		    (void *)NULL);
951 #else
952 		kphysm_setup_func_unregister(&rsm_dr_callback_vec,
953 		    (void *)NULL);
954 #endif
955 	}
956 
957 	mutex_enter(&rsm_drv_data.drv_lock);
958 	ASSERT(rsm_drv_data.drv_state == RSM_DRV_UNREG_PROCESSING);
959 	rsm_drv_data.drv_state = RSM_DRV_NEW;
960 	mutex_exit(&rsm_drv_data.drv_lock);
961 
962 	ASSERT(rsm_suspend_list.list_head == NULL);
963 
964 	/*
965 	 * Release all resources, seglist, controller, ...
966 	 */
967 
968 	/* remove intersend queues */
969 	/* remove registered services */
970 
971 
972 	ddi_remove_minor_node(dip, DRIVER_NAME);
973 	rsm_dip = NULL;
974 
975 	/*
976 	 * Free minor zero resource
977 	 */
978 	{
979 		rsmresource_t *p;
980 
981 		p = rsmresource_free(RSM_DRIVER_MINOR);
982 		if (p) {
983 			mutex_destroy(&p->rsmrc_lock);
984 			kmem_free((void *)p, sizeof (*p));
985 		}
986 	}
987 
988 	/*
989 	 * Free resource table
990 	 */
991 
992 	rsmresource_destroy();
993 
994 	/*
995 	 * Free the hash tables
996 	 */
997 	rsmhash_free(&rsm_export_segs, rsm_hash_size);
998 	rsmhash_free(&rsm_import_segs, rsm_hash_size);
999 
1000 	kmem_free((void *)importer_list.bucket,
1001 	    rsm_hash_size * sizeof (importing_token_t *));
1002 	importer_list.bucket = NULL;
1003 
1004 
1005 	/* free barrier page */
1006 	if (bar_cookie != NULL) {
1007 		ddi_umem_free(bar_cookie);
1008 	}
1009 	bar_va = NULL;
1010 	bar_cookie = NULL;
1011 
1012 	/*
1013 	 * Free the memory allocated for the trash
1014 	 */
1015 	if (remap_cookie != NULL) {
1016 		ddi_umem_free(remap_cookie);
1017 	}
1018 	remap_cookie = NULL;
1019 
1020 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_detach done\n"));
1021 
1022 	return (DDI_SUCCESS);
1023 }
1024 
1025 /*ARGSUSED*/
1026 static int
1027 rsm_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
1028 {
1029 	register int error;
1030 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_DDI);
1031 
1032 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_info enter\n"));
1033 
1034 	switch (infocmd) {
1035 	case DDI_INFO_DEVT2DEVINFO:
1036 		if (rsm_dip == NULL)
1037 			error = DDI_FAILURE;
1038 		else {
1039 			*result = (void *)rsm_dip;
1040 			error = DDI_SUCCESS;
1041 		}
1042 		break;
1043 	case DDI_INFO_DEVT2INSTANCE:
1044 		*result = (void *)0;
1045 		error = DDI_SUCCESS;
1046 		break;
1047 	default:
1048 		error = DDI_FAILURE;
1049 	}
1050 
1051 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_info done\n"));
1052 	return (error);
1053 }
1054 
1055 adapter_t *
1056 rsm_getadapter(rsm_ioctlmsg_t *msg, int mode)
1057 {
1058 	adapter_t *adapter;
1059 	char adapter_devname[MAXNAMELEN];
1060 	int instance;
1061 	DBG_DEFINE(category,
1062 	    RSM_KERNEL_AGENT | RSM_IMPORT | RSM_EXPORT | RSM_IOCTL);
1063 
1064 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_getadapter enter\n"));
1065 
1066 	instance = msg->cnum;
1067 
1068 	if ((msg->cname_len <= 0) || (msg->cname_len > MAXNAMELEN)) {
1069 		return (NULL);
1070 	}
1071 
1072 	if (ddi_copyin(msg->cname, adapter_devname, msg->cname_len, mode))
1073 		return (NULL);
1074 
1075 	if (strcmp(adapter_devname, "loopback") == 0)
1076 		return (&loopback_adapter);
1077 
1078 	adapter = rsmka_lookup_adapter(adapter_devname, instance);
1079 
1080 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_getadapter done\n"));
1081 
1082 	return (adapter);
1083 }
1084 
1085 
1086 /*
1087  * *********************** Resource Number Management ********************
1088  * All resources are stored in a simple hash table. The table is an array
1089  * of pointers to resource blks. Each blk contains:
1090  *	base	- base number of this blk
1091  *	used	- number of used slots in this blk.
1092  *	blks    - array of pointers to resource items.
1093  * An entry in a resource blk is empty if it's NULL.
1094  *
1095  * We start with no resource array. Each time we run out of slots, we
1096  * reallocate a new larger array and copy the pointer to the new array and
1097  * a new resource blk is allocated and added to the hash table.
1098  *
1099  * The resource control block contains:
1100  *      root    - array of pointer of resource blks
1101  *      sz      - current size of array.
1102  *      len     - last valid entry in array.
1103  *
1104  * A search operation based on a resource number is as follows:
1105  *      index = rnum / RESOURCE_BLKSZ;
1106  *      ASSERT(index < resource_block.len);
1107  *      ASSERT(index < resource_block.sz);
1108  *	offset = rnum % RESOURCE_BLKSZ;
1109  *      ASSERT(offset >= resource_block.root[index]->base);
1110  *	ASSERT(offset < resource_block.root[index]->base + RESOURCE_BLKSZ);
1111  *	return resource_block.root[index]->blks[offset];
1112  *
1113  * A resource blk is freed with its used count reachs zero.
1114  */
1115 static int
1116 rsmresource_alloc(minor_t *rnum)
1117 {
1118 
1119 	/* search for available resource slot */
1120 	int i, j, empty = -1;
1121 	rsmresource_blk_t *blk;
1122 
1123 	DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1124 	    "rsmresource_alloc enter\n"));
1125 
1126 	rw_enter(&rsm_resource.rsmrc_lock, RW_WRITER);
1127 
1128 	/* Try to find an empty slot */
1129 	for (i = 0; i < rsm_resource.rsmrc_len; i++) {
1130 		blk = rsm_resource.rsmrc_root[i];
1131 		if (blk != NULL && blk->rsmrcblk_avail > 0) {
1132 			/* found an empty slot in this blk */
1133 			for (j = 0; j < RSMRC_BLKSZ; j++) {
1134 				if (blk->rsmrcblk_blks[j] == NULL) {
1135 					*rnum = (minor_t)
1136 					    (j + (i * RSMRC_BLKSZ));
1137 					/*
1138 					 * obey gen page limits
1139 					 */
1140 					if (*rnum >= max_segs + 1) {
1141 						if (empty < 0) {
1142 							rw_exit(&rsm_resource.
1143 							    rsmrc_lock);
1144 							DBG_PRINTF((
1145 							    RSM_KERNEL_ALL,
1146 							    RSM_ERR,
1147 							    "rsmresource"
1148 							    "_alloc failed:"
1149 							    "not enough res"
1150 							    "%d\n", *rnum));
1151 					return (RSMERR_INSUFFICIENT_RESOURCES);
1152 						} else {
1153 							/* use empty slot */
1154 							break;
1155 						}
1156 
1157 					}
1158 
1159 					blk->rsmrcblk_blks[j] = RSMRC_RESERVED;
1160 					blk->rsmrcblk_avail--;
1161 					rw_exit(&rsm_resource.rsmrc_lock);
1162 					DBG_PRINTF((RSM_KERNEL_ALL,
1163 					    RSM_DEBUG_VERBOSE,
1164 					    "rsmresource_alloc done\n"));
1165 					return (RSM_SUCCESS);
1166 				}
1167 			}
1168 		} else if (blk == NULL && empty < 0) {
1169 			/* remember first empty slot */
1170 			empty = i;
1171 		}
1172 	}
1173 
1174 	/* Couldn't find anything, allocate a new blk */
1175 	/*
1176 	 * Do we need to reallocate the root array
1177 	 */
1178 	if (empty < 0) {
1179 		if (rsm_resource.rsmrc_len == rsm_resource.rsmrc_sz) {
1180 			/*
1181 			 * Allocate new array and copy current stuff into it
1182 			 */
1183 			rsmresource_blk_t	**p;
1184 			uint_t newsz = (uint_t)rsm_resource.rsmrc_sz +
1185 			    RSMRC_BLKSZ;
1186 			/*
1187 			 * Don't allocate more that max valid rnum
1188 			 */
1189 			if (rsm_resource.rsmrc_len*RSMRC_BLKSZ >=
1190 			    max_segs + 1) {
1191 				rw_exit(&rsm_resource.rsmrc_lock);
1192 				return (RSMERR_INSUFFICIENT_RESOURCES);
1193 			}
1194 
1195 			p = (rsmresource_blk_t **)kmem_zalloc(
1196 			    newsz * sizeof (*p),
1197 			    KM_SLEEP);
1198 
1199 			if (rsm_resource.rsmrc_root) {
1200 				uint_t oldsz;
1201 
1202 				oldsz = (uint_t)(rsm_resource.rsmrc_sz *
1203 				    (int)sizeof (*p));
1204 
1205 				/*
1206 				 * Copy old data into new space and
1207 				 * free old stuff
1208 				 */
1209 				bcopy(rsm_resource.rsmrc_root, p, oldsz);
1210 				kmem_free(rsm_resource.rsmrc_root, oldsz);
1211 			}
1212 
1213 			rsm_resource.rsmrc_root = p;
1214 			rsm_resource.rsmrc_sz = (int)newsz;
1215 		}
1216 
1217 		empty = rsm_resource.rsmrc_len;
1218 		rsm_resource.rsmrc_len++;
1219 	}
1220 
1221 	/*
1222 	 * Allocate a new blk
1223 	 */
1224 	blk = (rsmresource_blk_t *)kmem_zalloc(sizeof (*blk), KM_SLEEP);
1225 	ASSERT(rsm_resource.rsmrc_root[empty] == NULL);
1226 	rsm_resource.rsmrc_root[empty] = blk;
1227 	blk->rsmrcblk_avail = RSMRC_BLKSZ - 1;
1228 
1229 	/*
1230 	 * Allocate slot
1231 	 */
1232 
1233 	*rnum = (minor_t)(empty * RSMRC_BLKSZ);
1234 
1235 	/*
1236 	 * watch out not to exceed bounds of barrier page
1237 	 */
1238 	if (*rnum >= max_segs + 1) {
1239 		rw_exit(&rsm_resource.rsmrc_lock);
1240 		DBG_PRINTF((RSM_KERNEL_ALL, RSM_ERR,
1241 		    "rsmresource_alloc failed %d\n", *rnum));
1242 
1243 		return (RSMERR_INSUFFICIENT_RESOURCES);
1244 	}
1245 	blk->rsmrcblk_blks[0] = RSMRC_RESERVED;
1246 
1247 
1248 	rw_exit(&rsm_resource.rsmrc_lock);
1249 
1250 	DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1251 	    "rsmresource_alloc done\n"));
1252 
1253 	return (RSM_SUCCESS);
1254 }
1255 
1256 static rsmresource_t *
1257 rsmresource_free(minor_t rnum)
1258 {
1259 
1260 	/* search for available resource slot */
1261 	int i, j;
1262 	rsmresource_blk_t *blk;
1263 	rsmresource_t *p;
1264 
1265 	DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1266 	    "rsmresource_free enter\n"));
1267 
1268 	i = (int)(rnum / RSMRC_BLKSZ);
1269 	j = (int)(rnum % RSMRC_BLKSZ);
1270 
1271 	if (i >= rsm_resource.rsmrc_len) {
1272 		DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1273 		    "rsmresource_free done\n"));
1274 		return (NULL);
1275 	}
1276 
1277 	rw_enter(&rsm_resource.rsmrc_lock, RW_WRITER);
1278 
1279 	ASSERT(rsm_resource.rsmrc_root);
1280 	ASSERT(i < rsm_resource.rsmrc_len);
1281 	ASSERT(i < rsm_resource.rsmrc_sz);
1282 	blk = rsm_resource.rsmrc_root[i];
1283 	if (blk == NULL) {
1284 		rw_exit(&rsm_resource.rsmrc_lock);
1285 		DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1286 		    "rsmresource_free done\n"));
1287 		return (NULL);
1288 	}
1289 
1290 	ASSERT(blk->rsmrcblk_blks[j]); /* reserved or full */
1291 
1292 	p = blk->rsmrcblk_blks[j];
1293 	if (p == RSMRC_RESERVED) {
1294 		p = NULL;
1295 	}
1296 
1297 	blk->rsmrcblk_blks[j] = NULL;
1298 	blk->rsmrcblk_avail++;
1299 	if (blk->rsmrcblk_avail == RSMRC_BLKSZ) {
1300 		/* free this blk */
1301 		kmem_free(blk, sizeof (*blk));
1302 		rsm_resource.rsmrc_root[i] = NULL;
1303 	}
1304 
1305 	rw_exit(&rsm_resource.rsmrc_lock);
1306 
1307 	DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1308 	    "rsmresource_free done\n"));
1309 
1310 	return (p);
1311 }
1312 
1313 static rsmresource_t *
1314 rsmresource_lookup(minor_t rnum, int lock)
1315 {
1316 	int i, j;
1317 	rsmresource_blk_t *blk;
1318 	rsmresource_t *p;
1319 
1320 	DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1321 	    "rsmresource_lookup enter\n"));
1322 
1323 	/* Find resource and lock it in READER mode */
1324 	/* search for available resource slot */
1325 
1326 	i = (int)(rnum / RSMRC_BLKSZ);
1327 	j = (int)(rnum % RSMRC_BLKSZ);
1328 
1329 	if (i >= rsm_resource.rsmrc_len) {
1330 		DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1331 		    "rsmresource_lookup done\n"));
1332 		return (NULL);
1333 	}
1334 
1335 	rw_enter(&rsm_resource.rsmrc_lock, RW_READER);
1336 
1337 	blk = rsm_resource.rsmrc_root[i];
1338 	if (blk != NULL) {
1339 		ASSERT(i < rsm_resource.rsmrc_len);
1340 		ASSERT(i < rsm_resource.rsmrc_sz);
1341 
1342 		p = blk->rsmrcblk_blks[j];
1343 		if (lock == RSM_LOCK) {
1344 			if (p != RSMRC_RESERVED) {
1345 				mutex_enter(&p->rsmrc_lock);
1346 			} else {
1347 				p = NULL;
1348 			}
1349 		}
1350 	} else {
1351 		p = NULL;
1352 	}
1353 	rw_exit(&rsm_resource.rsmrc_lock);
1354 
1355 	DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1356 	    "rsmresource_lookup done\n"));
1357 
1358 	return (p);
1359 }
1360 
1361 static void
1362 rsmresource_insert(minor_t rnum, rsmresource_t *p, rsm_resource_type_t type)
1363 {
1364 	/* Find resource and lock it in READER mode */
1365 	/* Caller can upgrade if need be */
1366 	/* search for available resource slot */
1367 	int i, j;
1368 	rsmresource_blk_t *blk;
1369 
1370 	DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1371 	    "rsmresource_insert enter\n"));
1372 
1373 	i = (int)(rnum / RSMRC_BLKSZ);
1374 	j = (int)(rnum % RSMRC_BLKSZ);
1375 
1376 	p->rsmrc_type = type;
1377 	p->rsmrc_num = rnum;
1378 
1379 	rw_enter(&rsm_resource.rsmrc_lock, RW_READER);
1380 
1381 	ASSERT(rsm_resource.rsmrc_root);
1382 	ASSERT(i < rsm_resource.rsmrc_len);
1383 	ASSERT(i < rsm_resource.rsmrc_sz);
1384 
1385 	blk = rsm_resource.rsmrc_root[i];
1386 	ASSERT(blk);
1387 
1388 	ASSERT(blk->rsmrcblk_blks[j] == RSMRC_RESERVED);
1389 
1390 	blk->rsmrcblk_blks[j] = p;
1391 
1392 	DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1393 	    "rsmresource_insert done\n"));
1394 
1395 	rw_exit(&rsm_resource.rsmrc_lock);
1396 }
1397 
1398 static void
1399 rsmresource_destroy()
1400 {
1401 	int i, j;
1402 
1403 	DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1404 	    "rsmresource_destroy enter\n"));
1405 
1406 	rw_enter(&rsm_resource.rsmrc_lock, RW_WRITER);
1407 
1408 	for (i = 0; i < rsm_resource.rsmrc_len; i++) {
1409 		rsmresource_blk_t	*blk;
1410 
1411 		blk = rsm_resource.rsmrc_root[i];
1412 		if (blk == NULL) {
1413 			continue;
1414 		}
1415 		for (j = 0; j < RSMRC_BLKSZ; j++) {
1416 			if (blk->rsmrcblk_blks[j] != NULL) {
1417 				DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1418 				    "Not null slot %d, %lx\n", j,
1419 				    (size_t)blk->rsmrcblk_blks[j]));
1420 			}
1421 		}
1422 		kmem_free(blk, sizeof (*blk));
1423 		rsm_resource.rsmrc_root[i] = NULL;
1424 	}
1425 	if (rsm_resource.rsmrc_root) {
1426 		i = rsm_resource.rsmrc_sz * (int)sizeof (rsmresource_blk_t *);
1427 		kmem_free(rsm_resource.rsmrc_root, (uint_t)i);
1428 		rsm_resource.rsmrc_root = NULL;
1429 		rsm_resource.rsmrc_len = 0;
1430 		rsm_resource.rsmrc_sz = 0;
1431 	}
1432 
1433 	DBG_PRINTF((RSM_KERNEL_ALL, RSM_DEBUG_VERBOSE,
1434 	    "rsmresource_destroy done\n"));
1435 
1436 	rw_exit(&rsm_resource.rsmrc_lock);
1437 }
1438 
1439 
1440 /* ******************** Generic Key Hash Table Management ********* */
1441 static rsmresource_t *
1442 rsmhash_lookup(rsmhash_table_t *rhash, rsm_memseg_id_t key,
1443     rsm_resource_state_t state)
1444 {
1445 	rsmresource_t	*p;
1446 	uint_t		hashval;
1447 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
1448 
1449 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmhash_lookup enter\n"));
1450 
1451 	hashval = rsmhash(key);
1452 
1453 	DBG_PRINTF((category, RSM_DEBUG_LVL2, "rsmhash_lookup %u=%d\n",
1454 	    key, hashval));
1455 
1456 	rw_enter(&rhash->rsmhash_rw, RW_READER);
1457 
1458 	p = (rsmresource_t *)rsmhash_getbkt(rhash, hashval);
1459 
1460 	for (; p; p = p->rsmrc_next) {
1461 		if (p->rsmrc_key == key) {
1462 			/* acquire resource lock */
1463 			RSMRC_LOCK(p);
1464 			break;
1465 		}
1466 	}
1467 
1468 	rw_exit(&rhash->rsmhash_rw);
1469 
1470 	if (p != NULL && p->rsmrc_state != state) {
1471 		/* state changed, release lock and return null */
1472 		RSMRC_UNLOCK(p);
1473 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
1474 		    "rsmhash_lookup done: state changed\n"));
1475 		return (NULL);
1476 	}
1477 
1478 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmhash_lookup done\n"));
1479 
1480 	return (p);
1481 }
1482 
1483 static void
1484 rsmhash_rm(rsmhash_table_t *rhash, rsmresource_t *rcelm)
1485 {
1486 	rsmresource_t		*p, **back;
1487 	uint_t			hashval;
1488 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
1489 
1490 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmhash_rm enter\n"));
1491 
1492 	hashval = rsmhash(rcelm->rsmrc_key);
1493 
1494 	DBG_PRINTF((category, RSM_DEBUG_LVL2, "rsmhash_rm %u=%d\n",
1495 	    rcelm->rsmrc_key, hashval));
1496 
1497 	/*
1498 	 * It's ok not to find the segment.
1499 	 */
1500 	rw_enter(&rhash->rsmhash_rw, RW_WRITER);
1501 
1502 	back = (rsmresource_t **)rsmhash_bktaddr(rhash, hashval);
1503 
1504 	for (; (p = *back) != NULL;  back = &p->rsmrc_next) {
1505 		if (p == rcelm) {
1506 			*back = rcelm->rsmrc_next;
1507 			break;
1508 		}
1509 	}
1510 
1511 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmhash_rm done\n"));
1512 
1513 	rw_exit(&rhash->rsmhash_rw);
1514 }
1515 
1516 static int
1517 rsmhash_add(rsmhash_table_t *rhash, rsmresource_t *new, rsm_memseg_id_t key,
1518     int dup_check, rsm_resource_state_t state)
1519 {
1520 	rsmresource_t	*p = NULL, **bktp;
1521 	uint_t		hashval;
1522 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
1523 
1524 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmhash_add enter\n"));
1525 
1526 	/* lock table */
1527 	rw_enter(&rhash->rsmhash_rw, RW_WRITER);
1528 
1529 	/*
1530 	 * If the current resource state is other than the state passed in
1531 	 * then the resource is (probably) already on the list. eg. for an
1532 	 * import segment if the state is not RSM_STATE_NEW then it's on the
1533 	 * list already.
1534 	 */
1535 	RSMRC_LOCK(new);
1536 	if (new->rsmrc_state != state) {
1537 		RSMRC_UNLOCK(new);
1538 		rw_exit(&rhash->rsmhash_rw);
1539 		return (RSMERR_BAD_SEG_HNDL);
1540 	}
1541 
1542 	hashval = rsmhash(key);
1543 	DBG_PRINTF((category, RSM_DEBUG_LVL2, "rsmhash_add %d\n", hashval));
1544 
1545 	if (dup_check) {
1546 		/*
1547 		 * Used for checking export segments; don't want to have
1548 		 * the same key used for multiple segments.
1549 		 */
1550 
1551 		p = (rsmresource_t *)rsmhash_getbkt(rhash, hashval);
1552 
1553 		for (; p; p = p->rsmrc_next) {
1554 			if (p->rsmrc_key == key) {
1555 				RSMRC_UNLOCK(new);
1556 				break;
1557 			}
1558 		}
1559 	}
1560 
1561 	if (p == NULL) {
1562 		/* Key doesn't exist, add it */
1563 
1564 		bktp = (rsmresource_t **)rsmhash_bktaddr(rhash, hashval);
1565 
1566 		new->rsmrc_key = key;
1567 		new->rsmrc_next = *bktp;
1568 		*bktp = new;
1569 	}
1570 
1571 	rw_exit(&rhash->rsmhash_rw);
1572 
1573 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmhash_add done\n"));
1574 
1575 	return (p == NULL ? RSM_SUCCESS : RSMERR_SEGID_IN_USE);
1576 }
1577 
1578 /*
1579  * XOR each byte of the key.
1580  */
1581 static uint_t
1582 rsmhash(rsm_memseg_id_t key)
1583 {
1584 	uint_t	hash = key;
1585 
1586 	hash ^=  (key >> 8);
1587 	hash ^=  (key >> 16);
1588 	hash ^=  (key >> 24);
1589 
1590 	return (hash % rsm_hash_size);
1591 
1592 }
1593 
1594 /*
1595  * generic function to get a specific bucket
1596  */
1597 static void *
1598 rsmhash_getbkt(rsmhash_table_t *rhash, uint_t hashval)
1599 {
1600 
1601 	if (rhash->bucket == NULL)
1602 		return (NULL);
1603 	else
1604 		return ((void *)rhash->bucket[hashval]);
1605 }
1606 
1607 /*
1608  * generic function to get a specific bucket's address
1609  */
1610 static void **
1611 rsmhash_bktaddr(rsmhash_table_t *rhash, uint_t hashval)
1612 {
1613 	if (rhash->bucket == NULL)
1614 		return (NULL);
1615 	else
1616 		return ((void **)&(rhash->bucket[hashval]));
1617 }
1618 
1619 /*
1620  * generic function to alloc a hash table
1621  */
1622 static void
1623 rsmhash_alloc(rsmhash_table_t *rhash, int size)
1624 {
1625 	rhash->bucket = (rsmresource_t **)
1626 	    kmem_zalloc(size * sizeof (rsmresource_t *), KM_SLEEP);
1627 }
1628 
1629 /*
1630  * generic function to free a hash table
1631  */
1632 static void
1633 rsmhash_free(rsmhash_table_t *rhash, int size)
1634 {
1635 
1636 	kmem_free((void *)rhash->bucket, size * sizeof (caddr_t));
1637 	rhash->bucket = NULL;
1638 
1639 }
1640 /* *********************** Exported Segment Key Management ************ */
1641 
1642 #define	rsmexport_add(new, key)		\
1643 	rsmhash_add(&rsm_export_segs, (rsmresource_t *)new, key, 1, \
1644 	    RSM_STATE_BIND)
1645 
1646 #define	rsmexport_rm(arg)	\
1647 	rsmhash_rm(&rsm_export_segs, (rsmresource_t *)(arg))
1648 
1649 #define	rsmexport_lookup(key)	\
1650 	(rsmseg_t *)rsmhash_lookup(&rsm_export_segs, key, RSM_STATE_EXPORT)
1651 
1652 /* ************************** Import Segment List Management ********** */
1653 
1654 /*
1655  *  Add segment to import list. This will be useful for paging and loopback
1656  * segment unloading.
1657  */
1658 #define	rsmimport_add(arg, key)	\
1659 	rsmhash_add(&rsm_import_segs, (rsmresource_t *)(arg), (key), 0, \
1660 	    RSM_STATE_NEW)
1661 
1662 #define	rsmimport_rm(arg)	\
1663 	rsmhash_rm(&rsm_import_segs, (rsmresource_t *)(arg))
1664 
1665 /*
1666  *	#define	rsmimport_lookup(key)	\
1667  *	(rsmseg_t *)rsmhash_lookup(&rsm_import_segs, (key), RSM_STATE_CONNECT)
1668  */
1669 
1670 /*
1671  * increase the ref count and make the import segment point to the
1672  * shared data structure. Return a pointer to the share data struct
1673  * and the shared data struct is locked upon return
1674  */
1675 static rsm_import_share_t *
1676 rsmshare_get(rsm_memseg_id_t key, rsm_node_id_t node, adapter_t *adapter,
1677     rsmseg_t *segp)
1678 {
1679 	uint_t		hash;
1680 	rsmresource_t		*p;
1681 	rsm_import_share_t	*shdatap;
1682 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
1683 
1684 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmshare_get enter\n"));
1685 
1686 	hash = rsmhash(key);
1687 	/* lock table */
1688 	rw_enter(&rsm_import_segs.rsmhash_rw, RW_WRITER);
1689 	DBG_PRINTF((category, RSM_DEBUG_LVL2, "rsmshare_get:key=%u, hash=%d\n",
1690 	    key, hash));
1691 
1692 	p = (rsmresource_t *)rsmhash_getbkt(&rsm_import_segs, hash);
1693 
1694 	for (; p; p = p->rsmrc_next) {
1695 		/*
1696 		 * Look for an entry that is importing the same exporter
1697 		 * with the share data structure allocated.
1698 		 */
1699 		if ((p->rsmrc_key == key) &&
1700 		    (p->rsmrc_node == node) &&
1701 		    (p->rsmrc_adapter == adapter) &&
1702 		    (((rsmseg_t *)p)->s_share != NULL)) {
1703 			shdatap = ((rsmseg_t *)p)->s_share;
1704 			break;
1705 		}
1706 	}
1707 
1708 	if (p == NULL) {
1709 		/* we are the first importer, create the shared data struct */
1710 		shdatap = kmem_zalloc(sizeof (rsm_import_share_t), KM_SLEEP);
1711 		shdatap->rsmsi_state = RSMSI_STATE_NEW;
1712 		shdatap->rsmsi_segid = key;
1713 		shdatap->rsmsi_node = node;
1714 		mutex_init(&shdatap->rsmsi_lock, NULL, MUTEX_DRIVER, NULL);
1715 		cv_init(&shdatap->rsmsi_cv, NULL, CV_DRIVER, 0);
1716 	}
1717 
1718 	rsmseglock_acquire(segp);
1719 
1720 	/* we grab the shared lock before returning from this function */
1721 	mutex_enter(&shdatap->rsmsi_lock);
1722 
1723 	shdatap->rsmsi_refcnt++;
1724 	segp->s_share = shdatap;
1725 
1726 	rsmseglock_release(segp);
1727 
1728 	rw_exit(&rsm_import_segs.rsmhash_rw);
1729 
1730 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmshare_get done\n"));
1731 
1732 	return (shdatap);
1733 }
1734 
1735 /*
1736  * the shared data structure should be locked before calling
1737  * rsmsharecv_signal().
1738  * Change the state and signal any waiting segments.
1739  */
1740 void
1741 rsmsharecv_signal(rsmseg_t *seg, int oldstate, int newstate)
1742 {
1743 	ASSERT(rsmsharelock_held(seg));
1744 
1745 	if (seg->s_share->rsmsi_state == oldstate) {
1746 		seg->s_share->rsmsi_state = newstate;
1747 		cv_broadcast(&seg->s_share->rsmsi_cv);
1748 	}
1749 }
1750 
1751 /*
1752  * Add to the hash table
1753  */
1754 static void
1755 importer_list_add(rsm_node_id_t node, rsm_memseg_id_t key, rsm_addr_t hwaddr,
1756     void *cookie)
1757 {
1758 
1759 	importing_token_t	*head;
1760 	importing_token_t	*new_token;
1761 	int			index;
1762 
1763 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
1764 
1765 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importer_list_add enter\n"));
1766 
1767 	new_token = kmem_zalloc(sizeof (importing_token_t), KM_SLEEP);
1768 	new_token->importing_node = node;
1769 	new_token->key = key;
1770 	new_token->import_segment_cookie = cookie;
1771 	new_token->importing_adapter_hwaddr = hwaddr;
1772 
1773 	index = rsmhash(key);
1774 
1775 	mutex_enter(&importer_list.lock);
1776 
1777 	head = importer_list.bucket[index];
1778 	importer_list.bucket[index] = new_token;
1779 	new_token->next = head;
1780 	mutex_exit(&importer_list.lock);
1781 
1782 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importer_list_add done\n"));
1783 }
1784 
1785 static void
1786 importer_list_rm(rsm_node_id_t node,  rsm_memseg_id_t key, void *cookie)
1787 {
1788 
1789 	importing_token_t	*prev, *token = NULL;
1790 	int			index;
1791 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
1792 
1793 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importer_list_rm enter\n"));
1794 
1795 	index = rsmhash(key);
1796 
1797 	mutex_enter(&importer_list.lock);
1798 
1799 	token = importer_list.bucket[index];
1800 
1801 	prev = token;
1802 	while (token != NULL) {
1803 		if (token->importing_node == node &&
1804 		    token->import_segment_cookie == cookie) {
1805 			if (prev == token)
1806 				importer_list.bucket[index] = token->next;
1807 			else
1808 				prev->next = token->next;
1809 			kmem_free((void *)token, sizeof (*token));
1810 			break;
1811 		} else {
1812 			prev = token;
1813 			token = token->next;
1814 		}
1815 	}
1816 
1817 	mutex_exit(&importer_list.lock);
1818 
1819 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importer_list_rm done\n"));
1820 
1821 
1822 }
1823 
1824 /* **************************Segment Structure Management ************* */
1825 
1826 /*
1827  * Free segment structure
1828  */
1829 static void
1830 rsmseg_free(rsmseg_t *seg)
1831 {
1832 
1833 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
1834 
1835 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmseg_free enter\n"));
1836 
1837 	/* need to take seglock here to avoid race with rsmmap_unmap() */
1838 	rsmseglock_acquire(seg);
1839 	if (seg->s_ckl != NULL) {
1840 		/* Segment is still busy */
1841 		seg->s_state = RSM_STATE_END;
1842 		rsmseglock_release(seg);
1843 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
1844 		    "rsmseg_free done\n"));
1845 		return;
1846 	}
1847 
1848 	rsmseglock_release(seg);
1849 
1850 	ASSERT(seg->s_state == RSM_STATE_END || seg->s_state == RSM_STATE_NEW);
1851 
1852 	/*
1853 	 * If it's an importer decrement the refcount
1854 	 * and if its down to zero free the shared data structure.
1855 	 * This is where failures during rsm_connect() are unrefcounted
1856 	 */
1857 	if (seg->s_share != NULL) {
1858 
1859 		ASSERT(seg->s_type == RSM_RESOURCE_IMPORT_SEGMENT);
1860 
1861 		rsmsharelock_acquire(seg);
1862 
1863 		ASSERT(seg->s_share->rsmsi_refcnt > 0);
1864 
1865 		seg->s_share->rsmsi_refcnt--;
1866 
1867 		if (seg->s_share->rsmsi_refcnt == 0) {
1868 			rsmsharelock_release(seg);
1869 			mutex_destroy(&seg->s_share->rsmsi_lock);
1870 			cv_destroy(&seg->s_share->rsmsi_cv);
1871 			kmem_free((void *)(seg->s_share),
1872 			    sizeof (rsm_import_share_t));
1873 		} else {
1874 			rsmsharelock_release(seg);
1875 		}
1876 		/*
1877 		 * The following needs to be done after any
1878 		 * rsmsharelock calls which use seg->s_share.
1879 		 */
1880 		seg->s_share = NULL;
1881 	}
1882 
1883 	cv_destroy(&seg->s_cv);
1884 	mutex_destroy(&seg->s_lock);
1885 	rsmacl_free(seg->s_acl, seg->s_acl_len);
1886 	rsmpiacl_free(seg->s_acl_in, seg->s_acl_len);
1887 	if (seg->s_adapter)
1888 		rsmka_release_adapter(seg->s_adapter);
1889 
1890 	kmem_free((void *)seg, sizeof (*seg));
1891 
1892 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmseg_free done\n"));
1893 
1894 }
1895 
1896 
1897 static rsmseg_t *
1898 rsmseg_alloc(minor_t num, struct cred *cred)
1899 {
1900 	rsmseg_t	*new;
1901 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
1902 
1903 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmseg_alloc enter\n"));
1904 	/*
1905 	 * allocate memory for new segment. This should be a segkmem cache.
1906 	 */
1907 	new = (rsmseg_t *)kmem_zalloc(sizeof (*new), KM_SLEEP);
1908 
1909 	new->s_state = RSM_STATE_NEW;
1910 	new->s_minor	= num;
1911 	new->s_acl_len	= 0;
1912 	new->s_cookie = NULL;
1913 	new->s_adapter = NULL;
1914 
1915 	new->s_mode = 0777 & ~PTOU((ttoproc(curthread)))->u_cmask;
1916 	/* we don't have a key yet, will set at export/connect */
1917 	new->s_uid  = crgetuid(cred);
1918 	new->s_gid  = crgetgid(cred);
1919 
1920 	mutex_init(&new->s_lock, NULL, MUTEX_DRIVER, (void *)NULL);
1921 	cv_init(&new->s_cv, NULL, CV_DRIVER, 0);
1922 
1923 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmseg_alloc done\n"));
1924 
1925 	return (new);
1926 }
1927 
1928 /* ******************************** Driver Open/Close/Poll *************** */
1929 
1930 /*ARGSUSED1*/
1931 static int
1932 rsm_open(dev_t *devp, int flag, int otyp, struct cred *cred)
1933 {
1934 	minor_t rnum;
1935 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL| RSM_DDI);
1936 
1937 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_open enter\n"));
1938 	/*
1939 	 * Char only
1940 	 */
1941 	if (otyp != OTYP_CHR) {
1942 		DBG_PRINTF((category, RSM_ERR, "rsm_open: bad otyp\n"));
1943 		return (EINVAL);
1944 	}
1945 
1946 	/*
1947 	 * Only zero can be opened, clones are used for resources.
1948 	 */
1949 	if (getminor(*devp) != RSM_DRIVER_MINOR) {
1950 		DBG_PRINTF((category, RSM_ERR,
1951 		    "rsm_open: bad minor %d\n", getminor(*devp)));
1952 		return (ENODEV);
1953 	}
1954 
1955 	if ((flag & FEXCL) != 0 && secpolicy_excl_open(cred) != 0) {
1956 		DBG_PRINTF((category, RSM_ERR, "rsm_open: bad perm\n"));
1957 		return (EPERM);
1958 	}
1959 
1960 	if (!(flag & FWRITE)) {
1961 		/*
1962 		 * The library function _rsm_librsm_init calls open for
1963 		 * /dev/rsm with flag set to O_RDONLY.  We want a valid
1964 		 * file descriptor to be returned for minor device zero.
1965 		 */
1966 
1967 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
1968 		    "rsm_open RDONLY done\n"));
1969 		return (DDI_SUCCESS);
1970 	}
1971 
1972 	/*
1973 	 * - allocate new minor number and segment.
1974 	 * - add segment to list of all segments.
1975 	 * - set minordev data to segment
1976 	 * - update devp argument to new device
1977 	 * - update s_cred to cred; make sure you do crhold(cred);
1978 	 */
1979 
1980 	/* allocate a new resource number */
1981 	if (rsmresource_alloc(&rnum) == RSM_SUCCESS) {
1982 		/*
1983 		 * We will bind this minor to a specific resource in first
1984 		 * ioctl
1985 		 */
1986 		*devp = makedevice(getmajor(*devp), rnum);
1987 	} else {
1988 		return (EAGAIN);
1989 	}
1990 
1991 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_open done\n"));
1992 	return (DDI_SUCCESS);
1993 }
1994 
1995 static void
1996 rsmseg_close(rsmseg_t *seg, int force_flag)
1997 {
1998 	int e = RSM_SUCCESS;
1999 
2000 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL| RSM_DDI);
2001 
2002 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmseg_close enter\n"));
2003 
2004 	rsmseglock_acquire(seg);
2005 	if (!force_flag && (seg->s_hdr.rsmrc_type ==
2006 	    RSM_RESOURCE_EXPORT_SEGMENT)) {
2007 		/*
2008 		 * If we are processing rsm_close wait for force_destroy
2009 		 * processing to complete since force_destroy processing
2010 		 * needs to finish first before we can free the segment.
2011 		 * force_destroy is only for export segments
2012 		 */
2013 		while (seg->s_flags & RSM_FORCE_DESTROY_WAIT) {
2014 			cv_wait(&seg->s_cv, &seg->s_lock);
2015 		}
2016 	}
2017 	rsmseglock_release(seg);
2018 
2019 	/* It's ok to read the state without a lock */
2020 	switch (seg->s_state) {
2021 	case RSM_STATE_EXPORT:
2022 	case RSM_STATE_EXPORT_QUIESCING:
2023 	case RSM_STATE_EXPORT_QUIESCED:
2024 		e = rsm_unpublish(seg, 1);
2025 		/* FALLTHRU */
2026 	case RSM_STATE_BIND_QUIESCED:
2027 		/* FALLTHRU */
2028 	case RSM_STATE_BIND:
2029 		e = rsm_unbind(seg);
2030 		if (e != RSM_SUCCESS && force_flag == 1)
2031 			return;
2032 		ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_EXPORT_SEGMENT);
2033 		/* FALLTHRU */
2034 	case RSM_STATE_NEW_QUIESCED:
2035 		rsmseglock_acquire(seg);
2036 		seg->s_state = RSM_STATE_NEW;
2037 		cv_broadcast(&seg->s_cv);
2038 		rsmseglock_release(seg);
2039 		break;
2040 	case RSM_STATE_NEW:
2041 		break;
2042 	case RSM_STATE_ZOMBIE:
2043 		/*
2044 		 * Segments in this state have been removed off the
2045 		 * exported segments list and have been unpublished
2046 		 * and unbind. These segments have been removed during
2047 		 * a callback to the rsm_export_force_destroy, which
2048 		 * is called for the purpose of unlocking these
2049 		 * exported memory segments when a process exits but
2050 		 * leaves the segments locked down since rsm_close is
2051 		 * is not called for the segments. This can happen
2052 		 * when a process calls fork or exec and then exits.
2053 		 * Once the segments are in the ZOMBIE state, all that
2054 		 * remains is to destroy them when rsm_close is called.
2055 		 * This is done here. Thus, for such segments the
2056 		 * the state is changed to new so that later in this
2057 		 * function rsmseg_free is called.
2058 		 */
2059 		rsmseglock_acquire(seg);
2060 		seg->s_state = RSM_STATE_NEW;
2061 		rsmseglock_release(seg);
2062 		break;
2063 	case RSM_STATE_MAP_QUIESCE:
2064 	case RSM_STATE_ACTIVE:
2065 		/* Disconnect will handle the unmap */
2066 	case RSM_STATE_CONN_QUIESCE:
2067 	case RSM_STATE_CONNECT:
2068 	case RSM_STATE_DISCONNECT:
2069 		ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
2070 		(void) rsm_disconnect(seg);
2071 		break;
2072 	case RSM_STATE_MAPPING:
2073 		/*FALLTHRU*/
2074 	case RSM_STATE_END:
2075 		DBG_PRINTF((category, RSM_ERR,
2076 		    "Invalid segment state %d in rsm_close\n", seg->s_state));
2077 		break;
2078 	default:
2079 		DBG_PRINTF((category, RSM_ERR,
2080 		    "Invalid segment state %d in rsm_close\n", seg->s_state));
2081 		break;
2082 	}
2083 
2084 	/*
2085 	 * check state.
2086 	 * - make sure you do crfree(s_cred);
2087 	 * release segment and minor number
2088 	 */
2089 	ASSERT(seg->s_state == RSM_STATE_NEW);
2090 
2091 	/*
2092 	 * The export_force_destroy callback is created to unlock
2093 	 * the exported segments of a process
2094 	 * when the process does a fork or exec and then exits calls this
2095 	 * function with the force flag set to 1 which indicates that the
2096 	 * segment state must be converted to ZOMBIE. This state means that the
2097 	 * segments still exist and have been unlocked and most importantly the
2098 	 * only operation allowed is to destroy them on an rsm_close.
2099 	 */
2100 	if (force_flag) {
2101 		rsmseglock_acquire(seg);
2102 		seg->s_state = RSM_STATE_ZOMBIE;
2103 		rsmseglock_release(seg);
2104 	} else {
2105 		rsmseg_free(seg);
2106 	}
2107 
2108 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmseg_close done\n"));
2109 }
2110 
2111 static int
2112 rsm_close(dev_t dev, int flag, int otyp, cred_t *cred)
2113 {
2114 	minor_t	rnum = getminor(dev);
2115 	rsmresource_t *res;
2116 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL| RSM_DDI);
2117 
2118 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_close enter\n"));
2119 
2120 	flag = flag; cred = cred;
2121 
2122 	if (otyp != OTYP_CHR)
2123 		return (EINVAL);
2124 
2125 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rnum = %d\n", rnum));
2126 
2127 	/*
2128 	 * At this point we are the last reference to the resource.
2129 	 * Free resource number from resource table.
2130 	 * It's ok to remove number before we free the segment.
2131 	 * We need to lock the resource to protect against remote calls.
2132 	 */
2133 	if (rnum == RSM_DRIVER_MINOR ||
2134 	    (res = rsmresource_free(rnum)) == NULL) {
2135 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_close done\n"));
2136 		return (DDI_SUCCESS);
2137 	}
2138 
2139 	switch (res->rsmrc_type) {
2140 	case RSM_RESOURCE_EXPORT_SEGMENT:
2141 	case RSM_RESOURCE_IMPORT_SEGMENT:
2142 		rsmseg_close((rsmseg_t *)res, 0);
2143 		break;
2144 	case RSM_RESOURCE_BAR:
2145 		DBG_PRINTF((category, RSM_ERR, "bad resource in rsm_close\n"));
2146 		break;
2147 	default:
2148 		break;
2149 	}
2150 
2151 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_close done\n"));
2152 
2153 	return (DDI_SUCCESS);
2154 }
2155 
2156 /*
2157  * rsm_inc_pgcnt
2158  *
2159  * Description: increment rsm page counter.
2160  *
2161  * Parameters:	pgcnt_t	pnum;	number of pages to be used
2162  *
2163  * Returns:	RSM_SUCCESS	if memory limit not exceeded
2164  *		ENOSPC		if memory limit exceeded. In this case, the
2165  *				page counter remains unchanged.
2166  *
2167  */
2168 static int
2169 rsm_inc_pgcnt(pgcnt_t pnum)
2170 {
2171 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2172 	if (rsm_pgcnt_max == 0) { /* no upper limit has been set */
2173 		return (RSM_SUCCESS);
2174 	}
2175 
2176 	mutex_enter(&rsm_pgcnt_lock);
2177 
2178 	if (rsm_pgcnt + pnum > rsm_pgcnt_max) {
2179 		/* ensure that limits have not been exceeded */
2180 		mutex_exit(&rsm_pgcnt_lock);
2181 		return (RSMERR_INSUFFICIENT_MEM);
2182 	}
2183 
2184 	rsm_pgcnt += pnum;
2185 	DBG_PRINTF((category, RSM_DEBUG, "rsm_pgcnt incr to %d.\n",
2186 	    rsm_pgcnt));
2187 	mutex_exit(&rsm_pgcnt_lock);
2188 
2189 	return (RSM_SUCCESS);
2190 }
2191 
2192 /*
2193  * rsm_dec_pgcnt
2194  *
2195  * Description:	decrement rsm page counter.
2196  *
2197  * Parameters:	pgcnt_t	pnum;	number of pages freed
2198  *
2199  */
2200 static void
2201 rsm_dec_pgcnt(pgcnt_t pnum)
2202 {
2203 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2204 
2205 	if (rsm_pgcnt_max == 0) { /* no upper limit has been set */
2206 		return;
2207 	}
2208 
2209 	mutex_enter(&rsm_pgcnt_lock);
2210 	ASSERT(rsm_pgcnt >= pnum);
2211 	rsm_pgcnt -= pnum;
2212 	DBG_PRINTF((category, RSM_DEBUG, "rsm_pgcnt decr to %d.\n",
2213 	    rsm_pgcnt));
2214 	mutex_exit(&rsm_pgcnt_lock);
2215 }
2216 
2217 static struct umem_callback_ops rsm_as_ops = {
2218 	UMEM_CALLBACK_VERSION, /* version number */
2219 	rsm_export_force_destroy,
2220 };
2221 
2222 static int
2223 rsm_bind_pages(ddi_umem_cookie_t *cookie, caddr_t vaddr, size_t len,
2224     proc_t *procp)
2225 {
2226 	int error = RSM_SUCCESS;
2227 	ulong_t pnum;
2228 	struct umem_callback_ops *callbackops = &rsm_as_ops;
2229 
2230 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2231 
2232 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_bind_pages enter\n"));
2233 
2234 	/*
2235 	 * Make sure vaddr and len are aligned on a page boundary
2236 	 */
2237 	if ((uintptr_t)vaddr & (PAGESIZE - 1)) {
2238 		return (RSMERR_BAD_ADDR);
2239 	}
2240 
2241 	if (len & (PAGESIZE - 1)) {
2242 		return (RSMERR_BAD_LENGTH);
2243 	}
2244 
2245 	/*
2246 	 * Find number of pages
2247 	 */
2248 	pnum = btopr(len);
2249 	error = rsm_inc_pgcnt(pnum);
2250 	if (error != RSM_SUCCESS) {
2251 		DBG_PRINTF((category, RSM_ERR,
2252 		    "rsm_bind_pages:mem limit exceeded\n"));
2253 		return (RSMERR_INSUFFICIENT_MEM);
2254 	}
2255 
2256 	error = umem_lockmemory(vaddr, len,
2257 	    DDI_UMEMLOCK_WRITE|DDI_UMEMLOCK_READ|DDI_UMEMLOCK_LONGTERM,
2258 	    cookie,
2259 	    callbackops, procp);
2260 
2261 	if (error) {
2262 		rsm_dec_pgcnt(pnum);
2263 		DBG_PRINTF((category, RSM_ERR,
2264 		    "rsm_bind_pages:ddi_umem_lock failed\n"));
2265 		/*
2266 		 * ddi_umem_lock, in the case of failure, returns one of
2267 		 * the following three errors. These are translated into
2268 		 * the RSMERR namespace and returned.
2269 		 */
2270 		if (error == EFAULT)
2271 			return (RSMERR_BAD_ADDR);
2272 		else if (error == EACCES)
2273 			return (RSMERR_PERM_DENIED);
2274 		else
2275 			return (RSMERR_INSUFFICIENT_MEM);
2276 	}
2277 
2278 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_bind_pages done\n"));
2279 
2280 	return (error);
2281 
2282 }
2283 
2284 static int
2285 rsm_unbind_pages(rsmseg_t *seg)
2286 {
2287 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2288 
2289 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_unbind_pages enter\n"));
2290 
2291 	ASSERT(rsmseglock_held(seg));
2292 
2293 	if (seg->s_cookie != NULL) {
2294 		/* unlock address range */
2295 		ddi_umem_unlock(seg->s_cookie);
2296 		rsm_dec_pgcnt(btopr(seg->s_len));
2297 		seg->s_cookie = NULL;
2298 	}
2299 
2300 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_unbind_pages done\n"));
2301 
2302 	return (RSM_SUCCESS);
2303 }
2304 
2305 
2306 static int
2307 rsm_bind(rsmseg_t *seg, rsm_ioctlmsg_t *msg, intptr_t dataptr, int mode)
2308 {
2309 	int e;
2310 	adapter_t *adapter;
2311 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2312 
2313 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_bind enter\n"));
2314 
2315 	adapter = rsm_getadapter(msg, mode);
2316 	if (adapter == NULL) {
2317 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
2318 		    "rsm_bind done:no adapter\n"));
2319 		return (RSMERR_CTLR_NOT_PRESENT);
2320 	}
2321 
2322 	/* lock address range */
2323 	if (msg->vaddr == NULL) {
2324 		rsmka_release_adapter(adapter);
2325 		DBG_PRINTF((category, RSM_ERR,
2326 		    "rsm: rsm_bind done: invalid vaddr\n"));
2327 		return (RSMERR_BAD_ADDR);
2328 	}
2329 	if (msg->len <= 0) {
2330 		rsmka_release_adapter(adapter);
2331 		DBG_PRINTF((category, RSM_ERR,
2332 		    "rsm_bind: invalid length\n"));
2333 		return (RSMERR_BAD_LENGTH);
2334 	}
2335 
2336 	/* Lock segment */
2337 	rsmseglock_acquire(seg);
2338 
2339 	while (seg->s_state == RSM_STATE_NEW_QUIESCED) {
2340 		if (cv_wait_sig(&seg->s_cv, &seg->s_lock) == 0) {
2341 			DBG_PRINTF((category, RSM_DEBUG,
2342 			    "rsm_bind done: cv_wait INTERRUPTED"));
2343 			rsmka_release_adapter(adapter);
2344 			rsmseglock_release(seg);
2345 			return (RSMERR_INTERRUPTED);
2346 		}
2347 	}
2348 
2349 	ASSERT(seg->s_state == RSM_STATE_NEW);
2350 
2351 	ASSERT(seg->s_cookie == NULL);
2352 
2353 	e = rsm_bind_pages(&seg->s_cookie, msg->vaddr, msg->len, curproc);
2354 	if (e == RSM_SUCCESS) {
2355 		seg->s_flags |= RSM_USER_MEMORY;
2356 		if (msg->perm & RSM_ALLOW_REBIND) {
2357 			seg->s_flags |= RSMKA_ALLOW_UNBIND_REBIND;
2358 		}
2359 		if (msg->perm & RSM_CREATE_SEG_DONTWAIT) {
2360 			seg->s_flags |= RSMKA_SET_RESOURCE_DONTWAIT;
2361 		}
2362 		seg->s_region.r_vaddr = msg->vaddr;
2363 		/*
2364 		 * Set the s_pid value in the segment structure. This is used
2365 		 * to identify exported segments belonging to a particular
2366 		 * process so that when the process exits, these segments can
2367 		 * be unlocked forcefully even if rsm_close is not called on
2368 		 * process exit since there maybe other processes referencing
2369 		 * them (for example on a fork or exec).
2370 		 * The s_pid value is also used to authenticate the process
2371 		 * doing a publish or unpublish on the export segment. Only
2372 		 * the creator of the export segment has a right to do a
2373 		 * publish or unpublish and unbind on the segment.
2374 		 */
2375 		seg->s_pid = ddi_get_pid();
2376 		seg->s_len = msg->len;
2377 		seg->s_state = RSM_STATE_BIND;
2378 		seg->s_adapter = adapter;
2379 		seg->s_proc = curproc;
2380 	} else {
2381 		rsmka_release_adapter(adapter);
2382 		DBG_PRINTF((category, RSM_WARNING,
2383 		    "unable to lock down pages\n"));
2384 	}
2385 
2386 	msg->rnum = seg->s_minor;
2387 	/* Unlock segment */
2388 	rsmseglock_release(seg);
2389 
2390 	if (e == RSM_SUCCESS) {
2391 		/* copyout the resource number */
2392 #ifdef _MULTI_DATAMODEL
2393 		if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
2394 			rsm_ioctlmsg32_t msg32;
2395 
2396 			msg32.rnum = msg->rnum;
2397 			if (ddi_copyout((caddr_t)&msg32.rnum,
2398 			    (caddr_t)&((rsm_ioctlmsg32_t *)dataptr)->rnum,
2399 			    sizeof (minor_t), mode)) {
2400 				rsmka_release_adapter(adapter);
2401 				e = RSMERR_BAD_ADDR;
2402 			}
2403 		}
2404 #endif
2405 		if (ddi_copyout((caddr_t)&msg->rnum,
2406 		    (caddr_t)&((rsm_ioctlmsg_t *)dataptr)->rnum,
2407 		    sizeof (minor_t), mode)) {
2408 			rsmka_release_adapter(adapter);
2409 			e = RSMERR_BAD_ADDR;
2410 		}
2411 	}
2412 
2413 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_bind done\n"));
2414 
2415 	return (e);
2416 }
2417 
2418 static void
2419 rsm_remap_local_importers(rsm_node_id_t src_nodeid,
2420     rsm_memseg_id_t ex_segid,
2421     ddi_umem_cookie_t cookie)
2422 
2423 {
2424 	rsmresource_t	*p = NULL;
2425 	rsmhash_table_t *rhash = &rsm_import_segs;
2426 	uint_t		index;
2427 
2428 	DBG_PRINTF((RSM_KERNEL_AGENT | RSM_FUNC_ALL, RSM_DEBUG_VERBOSE,
2429 	    "rsm_remap_local_importers enter\n"));
2430 
2431 	index = rsmhash(ex_segid);
2432 
2433 	rw_enter(&rhash->rsmhash_rw, RW_READER);
2434 
2435 	p = rsmhash_getbkt(rhash, index);
2436 
2437 	for (; p; p = p->rsmrc_next) {
2438 		rsmseg_t *seg = (rsmseg_t *)p;
2439 		rsmseglock_acquire(seg);
2440 		/*
2441 		 * Change the s_cookie value of only the local importers
2442 		 * which have been mapped (in state RSM_STATE_ACTIVE).
2443 		 * Note that there is no need to change the s_cookie value
2444 		 * if the imported segment is in RSM_STATE_MAPPING since
2445 		 * eventually the s_cookie will be updated via the mapping
2446 		 * functionality.
2447 		 */
2448 		if ((seg->s_segid == ex_segid) && (seg->s_node == src_nodeid) &&
2449 		    (seg->s_state == RSM_STATE_ACTIVE)) {
2450 			seg->s_cookie = cookie;
2451 		}
2452 		rsmseglock_release(seg);
2453 	}
2454 	rw_exit(&rhash->rsmhash_rw);
2455 
2456 	DBG_PRINTF((RSM_KERNEL_AGENT | RSM_FUNC_ALL, RSM_DEBUG_VERBOSE,
2457 	    "rsm_remap_local_importers done\n"));
2458 }
2459 
2460 static int
2461 rsm_rebind(rsmseg_t *seg, rsm_ioctlmsg_t *msg)
2462 {
2463 	int e;
2464 	adapter_t *adapter;
2465 	ddi_umem_cookie_t cookie;
2466 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2467 
2468 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_rebind enter\n"));
2469 
2470 	/* Check for permissions to rebind */
2471 	if (!(seg->s_flags & RSMKA_ALLOW_UNBIND_REBIND)) {
2472 		return (RSMERR_REBIND_NOT_ALLOWED);
2473 	}
2474 
2475 	if (seg->s_pid != ddi_get_pid() &&
2476 	    ddi_get_pid() != 0) {
2477 		DBG_PRINTF((category, RSM_ERR, "rsm_rebind: Not owner\n"));
2478 		return (RSMERR_NOT_CREATOR);
2479 	}
2480 
2481 	/*
2482 	 * We will not be allowing partial rebind and hence length passed
2483 	 * in must be same as segment length
2484 	 */
2485 	if (msg->vaddr == NULL) {
2486 		DBG_PRINTF((category, RSM_ERR,
2487 		    "rsm_rebind done: null msg->vaddr\n"));
2488 		return (RSMERR_BAD_ADDR);
2489 	}
2490 	if (msg->len != seg->s_len) {
2491 		DBG_PRINTF((category, RSM_ERR,
2492 		    "rsm_rebind: invalid length\n"));
2493 		return (RSMERR_BAD_LENGTH);
2494 	}
2495 
2496 	/* Lock segment */
2497 	rsmseglock_acquire(seg);
2498 
2499 	while ((seg->s_state == RSM_STATE_BIND_QUIESCED) ||
2500 	    (seg->s_state == RSM_STATE_EXPORT_QUIESCING) ||
2501 	    (seg->s_state == RSM_STATE_EXPORT_QUIESCED)) {
2502 		if (cv_wait_sig(&seg->s_cv, &seg->s_lock) == 0) {
2503 			rsmseglock_release(seg);
2504 			DBG_PRINTF((category, RSM_DEBUG,
2505 			    "rsm_rebind done: cv_wait INTERRUPTED"));
2506 			return (RSMERR_INTERRUPTED);
2507 		}
2508 	}
2509 
2510 	/* verify segment state */
2511 	if ((seg->s_state != RSM_STATE_BIND) &&
2512 	    (seg->s_state != RSM_STATE_EXPORT)) {
2513 		/* Unlock segment */
2514 		rsmseglock_release(seg);
2515 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
2516 		    "rsm_rebind done: invalid state\n"));
2517 		return (RSMERR_BAD_SEG_HNDL);
2518 	}
2519 
2520 	ASSERT(seg->s_cookie != NULL);
2521 
2522 	if (msg->vaddr == seg->s_region.r_vaddr) {
2523 		rsmseglock_release(seg);
2524 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_rebind done\n"));
2525 		return (RSM_SUCCESS);
2526 	}
2527 
2528 	e = rsm_bind_pages(&cookie, msg->vaddr, msg->len, curproc);
2529 	if (e == RSM_SUCCESS) {
2530 		struct buf *xbuf;
2531 		dev_t sdev = 0;
2532 		rsm_memory_local_t mem;
2533 
2534 		xbuf = ddi_umem_iosetup(cookie, 0, msg->len, B_WRITE,
2535 		    sdev, 0, NULL, DDI_UMEM_SLEEP);
2536 		ASSERT(xbuf != NULL);
2537 
2538 		mem.ms_type = RSM_MEM_BUF;
2539 		mem.ms_bp = xbuf;
2540 
2541 		adapter = seg->s_adapter;
2542 		e = adapter->rsmpi_ops->rsm_rebind(
2543 		    seg->s_handle.out, 0, &mem,
2544 		    RSM_RESOURCE_DONTWAIT, NULL);
2545 
2546 		if (e == RSM_SUCCESS) {
2547 			/*
2548 			 * unbind the older pages, and unload local importers;
2549 			 * but don't disconnect importers
2550 			 */
2551 			(void) rsm_unbind_pages(seg);
2552 			seg->s_cookie = cookie;
2553 			seg->s_region.r_vaddr = msg->vaddr;
2554 			rsm_remap_local_importers(my_nodeid, seg->s_segid,
2555 			    cookie);
2556 		} else {
2557 			/*
2558 			 * Unbind the pages associated with "cookie" by the
2559 			 * rsm_bind_pages calls prior to this. This is
2560 			 * similar to what is done in the rsm_unbind_pages
2561 			 * routine for the seg->s_cookie.
2562 			 */
2563 			ddi_umem_unlock(cookie);
2564 			rsm_dec_pgcnt(btopr(msg->len));
2565 			DBG_PRINTF((category, RSM_ERR,
2566 			    "rsm_rebind failed with %d\n", e));
2567 		}
2568 		/*
2569 		 * At present there is no dependency on the existence of xbuf.
2570 		 * So we can free it here. If in the future this changes, it can
2571 		 * be freed sometime during the segment destroy.
2572 		 */
2573 		freerbuf(xbuf);
2574 	}
2575 
2576 	/* Unlock segment */
2577 	rsmseglock_release(seg);
2578 
2579 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_rebind done\n"));
2580 
2581 	return (e);
2582 }
2583 
2584 static int
2585 rsm_unbind(rsmseg_t *seg)
2586 {
2587 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2588 
2589 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_unbind enter\n"));
2590 
2591 	rsmseglock_acquire(seg);
2592 
2593 	/* verify segment state */
2594 	if ((seg->s_state != RSM_STATE_BIND) &&
2595 	    (seg->s_state != RSM_STATE_BIND_QUIESCED)) {
2596 		rsmseglock_release(seg);
2597 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
2598 		    "rsm_unbind: invalid state\n"));
2599 		return (RSMERR_BAD_SEG_HNDL);
2600 	}
2601 
2602 	/* unlock current range */
2603 	(void) rsm_unbind_pages(seg);
2604 
2605 	if (seg->s_state == RSM_STATE_BIND) {
2606 		seg->s_state = RSM_STATE_NEW;
2607 	} else if (seg->s_state == RSM_STATE_BIND_QUIESCED) {
2608 		seg->s_state = RSM_STATE_NEW_QUIESCED;
2609 	}
2610 
2611 	rsmseglock_release(seg);
2612 
2613 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_unbind done\n"));
2614 
2615 	return (RSM_SUCCESS);
2616 }
2617 
2618 /* **************************** Exporter Access List Management ******* */
2619 static void
2620 rsmacl_free(rsmapi_access_entry_t *acl, int acl_len)
2621 {
2622 	int	acl_sz;
2623 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2624 
2625 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmacl_free enter\n"));
2626 
2627 	/* acl could be NULL */
2628 
2629 	if (acl != NULL && acl_len > 0) {
2630 		acl_sz = acl_len * sizeof (rsmapi_access_entry_t);
2631 		kmem_free((void *)acl, acl_sz);
2632 	}
2633 
2634 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmacl_free done\n"));
2635 }
2636 
2637 static void
2638 rsmpiacl_free(rsm_access_entry_t *acl, int acl_len)
2639 {
2640 	int	acl_sz;
2641 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2642 
2643 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmpiacl_free enter\n"));
2644 
2645 	if (acl != NULL && acl_len > 0) {
2646 		acl_sz = acl_len * sizeof (rsm_access_entry_t);
2647 		kmem_free((void *)acl, acl_sz);
2648 	}
2649 
2650 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmpiacl_free done\n"));
2651 
2652 }
2653 
2654 static int
2655 rsmacl_build(rsm_ioctlmsg_t *msg, int mode,
2656     rsmapi_access_entry_t **list, int *len, int loopback)
2657 {
2658 	rsmapi_access_entry_t *acl;
2659 	int	acl_len;
2660 	int i;
2661 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2662 
2663 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmacl_build enter\n"));
2664 
2665 	*len = 0;
2666 	*list = NULL;
2667 
2668 	acl_len = msg->acl_len;
2669 	if ((loopback && acl_len > 1) || (acl_len < 0) ||
2670 	    (acl_len > MAX_NODES)) {
2671 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
2672 		    "rsmacl_build done: acl invalid\n"));
2673 		return (RSMERR_BAD_ACL);
2674 	}
2675 
2676 	if (acl_len > 0 && acl_len <= MAX_NODES) {
2677 		size_t acl_size = acl_len * sizeof (rsmapi_access_entry_t);
2678 
2679 		acl = kmem_alloc(acl_size, KM_SLEEP);
2680 
2681 		if (ddi_copyin((caddr_t)msg->acl, (caddr_t)acl,
2682 		    acl_size, mode)) {
2683 			kmem_free((void *) acl, acl_size);
2684 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
2685 			    "rsmacl_build done: BAD_ADDR\n"));
2686 			return (RSMERR_BAD_ADDR);
2687 		}
2688 
2689 		/*
2690 		 * Verify access list
2691 		 */
2692 		for (i = 0; i < acl_len; i++) {
2693 			if (acl[i].ae_node > MAX_NODES ||
2694 			    (loopback && (acl[i].ae_node != my_nodeid)) ||
2695 			    acl[i].ae_permission > RSM_ACCESS_TRUSTED) {
2696 				/* invalid entry */
2697 				kmem_free((void *) acl, acl_size);
2698 				DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
2699 				    "rsmacl_build done: EINVAL\n"));
2700 				return (RSMERR_BAD_ACL);
2701 			}
2702 		}
2703 
2704 		*len = acl_len;
2705 		*list = acl;
2706 	}
2707 
2708 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmacl_build done\n"));
2709 
2710 	return (DDI_SUCCESS);
2711 }
2712 
2713 static int
2714 rsmpiacl_create(rsmapi_access_entry_t *src, rsm_access_entry_t **dest,
2715     int acl_len, adapter_t *adapter)
2716 {
2717 	rsm_access_entry_t *acl;
2718 	rsm_addr_t hwaddr;
2719 	int i;
2720 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2721 
2722 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmpiacl_create enter\n"));
2723 
2724 	if (src != NULL) {
2725 		size_t acl_size = acl_len * sizeof (rsm_access_entry_t);
2726 		acl = kmem_alloc(acl_size, KM_SLEEP);
2727 
2728 		/*
2729 		 * translate access list
2730 		 */
2731 		for (i = 0; i < acl_len; i++) {
2732 			if (src[i].ae_node == my_nodeid) {
2733 				acl[i].ae_addr = adapter->hwaddr;
2734 			} else {
2735 				hwaddr = get_remote_hwaddr(adapter,
2736 				    src[i].ae_node);
2737 				if ((int64_t)hwaddr < 0) {
2738 					/* invalid hwaddr */
2739 					kmem_free((void *) acl, acl_size);
2740 					DBG_PRINTF((category,
2741 					    RSM_DEBUG_VERBOSE,
2742 					    "rsmpiacl_create done:"
2743 					    "EINVAL hwaddr\n"));
2744 					return (RSMERR_INTERNAL_ERROR);
2745 				}
2746 				acl[i].ae_addr = hwaddr;
2747 			}
2748 			/* rsmpi understands only RSM_PERM_XXXX */
2749 			acl[i].ae_permission =
2750 			    src[i].ae_permission & RSM_PERM_RDWR;
2751 		}
2752 		*dest = acl;
2753 	} else {
2754 		*dest = NULL;
2755 	}
2756 
2757 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmpiacl_create done\n"));
2758 
2759 	return (RSM_SUCCESS);
2760 }
2761 
2762 static int
2763 rsmsegacl_validate(rsmipc_request_t *req, rsm_node_id_t rnode,
2764     rsmipc_reply_t *reply)
2765 {
2766 
2767 	int		i;
2768 	rsmseg_t	*seg;
2769 	rsm_memseg_id_t key = req->rsmipc_key;
2770 	rsm_permission_t perm = req->rsmipc_perm;
2771 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2772 
2773 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
2774 	    "rsmsegacl_validate enter\n"));
2775 
2776 	/*
2777 	 * Find segment and grab its lock. The reason why we grab the segment
2778 	 * lock in side the search is to avoid the race when the segment is
2779 	 * being deleted and we already have a pointer to it.
2780 	 */
2781 	seg = rsmexport_lookup(key);
2782 	if (!seg) {
2783 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
2784 		    "rsmsegacl_validate done: %u ENXIO\n", key));
2785 		return (RSMERR_SEG_NOT_PUBLISHED);
2786 	}
2787 
2788 	ASSERT(rsmseglock_held(seg));
2789 	ASSERT(seg->s_state == RSM_STATE_EXPORT);
2790 
2791 	/*
2792 	 * We implement a 2-level protection scheme.
2793 	 * First, we check if local/remote host has access rights.
2794 	 * Second, we check if the user has access rights.
2795 	 *
2796 	 * This routine only validates the rnode access_list
2797 	 */
2798 	if (seg->s_acl_len > 0) {
2799 		/*
2800 		 * Check host access list
2801 		 */
2802 		ASSERT(seg->s_acl != NULL);
2803 		for (i = 0; i < seg->s_acl_len; i++) {
2804 			if (seg->s_acl[i].ae_node == rnode) {
2805 				perm &= seg->s_acl[i].ae_permission;
2806 				goto found;
2807 			}
2808 		}
2809 		/* rnode is not found in the list */
2810 		rsmseglock_release(seg);
2811 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
2812 		    "rsmsegacl_validate done: EPERM\n"));
2813 		return (RSMERR_SEG_NOT_PUBLISHED_TO_NODE);
2814 	} else {
2815 		/* use default owner creation umask */
2816 		perm &= seg->s_mode;
2817 	}
2818 
2819 found:
2820 	/* update perm for this node */
2821 	reply->rsmipc_mode = perm;
2822 	reply->rsmipc_uid = seg->s_uid;
2823 	reply->rsmipc_gid = seg->s_gid;
2824 	reply->rsmipc_segid = seg->s_segid;
2825 	reply->rsmipc_seglen = seg->s_len;
2826 
2827 	/*
2828 	 * Perm of requesting node is valid; source will validate user
2829 	 */
2830 	rsmseglock_release(seg);
2831 
2832 	/*
2833 	 * Add the importer to the list right away, if connect fails
2834 	 * the importer will ask the exporter to remove it.
2835 	 */
2836 	importer_list_add(rnode, key, req->rsmipc_adapter_hwaddr,
2837 	    req->rsmipc_segment_cookie);
2838 
2839 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmsegacl_validate done\n"));
2840 
2841 	return (RSM_SUCCESS);
2842 }
2843 
2844 
2845 /* ************************** Exporter Calls ************************* */
2846 
2847 static int
2848 rsm_publish(rsmseg_t *seg, rsm_ioctlmsg_t *msg, intptr_t dataptr, int mode)
2849 {
2850 	int			e;
2851 	int			acl_len;
2852 	rsmapi_access_entry_t	*acl;
2853 	rsm_access_entry_t	*rsmpi_acl;
2854 	rsm_memory_local_t	mem;
2855 	struct buf		*xbuf;
2856 	dev_t 			sdev = 0;
2857 	adapter_t		*adapter;
2858 	rsm_memseg_id_t		segment_id = 0;
2859 	int			loopback_flag = 0;
2860 	int			create_flags = 0;
2861 	rsm_resource_callback_t	callback_flag;
2862 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
2863 
2864 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_publish enter\n"));
2865 
2866 	if (seg->s_adapter == &loopback_adapter)
2867 		loopback_flag = 1;
2868 
2869 	if (seg->s_pid != ddi_get_pid() &&
2870 	    ddi_get_pid() != 0) {
2871 		DBG_PRINTF((category, RSM_ERR,
2872 		    "rsm_publish: Not creator\n"));
2873 		return (RSMERR_NOT_CREATOR);
2874 	}
2875 
2876 	/*
2877 	 * Get per node access list
2878 	 */
2879 	e = rsmacl_build(msg, mode, &acl, &acl_len, loopback_flag);
2880 	if (e != DDI_SUCCESS) {
2881 		DBG_PRINTF((category, RSM_ERR,
2882 		    "rsm_publish done: rsmacl_build failed\n"));
2883 		return (e);
2884 	}
2885 
2886 	/*
2887 	 * The application provided msg->key is used for resolving a
2888 	 * segment id according to the following:
2889 	 *    key = 0   		Kernel Agent selects the segment id
2890 	 *    key <= RSM_DLPI_ID_END	Reserved for system usage except
2891 	 *				RSMLIB range
2892 	 *    key < RSM_USER_APP_ID_BASE segment id = key
2893 	 *    key >= RSM_USER_APP_ID_BASE Reserved for KA selections
2894 	 *
2895 	 * rsm_nextavail_segmentid is initialized to 0x80000000 and
2896 	 * overflows to zero after 0x80000000 allocations.
2897 	 * An algorithm is needed which allows reinitialization and provides
2898 	 * for reallocation after overflow.  For now, ENOMEM is returned
2899 	 * once the overflow condition has occurred.
2900 	 */
2901 	if (msg->key == 0) {
2902 		mutex_enter(&rsm_lock);
2903 		segment_id = rsm_nextavail_segmentid;
2904 		if (segment_id != 0) {
2905 			rsm_nextavail_segmentid++;
2906 			mutex_exit(&rsm_lock);
2907 		} else {
2908 			mutex_exit(&rsm_lock);
2909 			DBG_PRINTF((category, RSM_ERR,
2910 			    "rsm_publish done: no more keys avlbl\n"));
2911 			return (RSMERR_INSUFFICIENT_RESOURCES);
2912 		}
2913 	} else	if BETWEEN(msg->key, RSM_RSMLIB_ID_BASE, RSM_RSMLIB_ID_END)
2914 		/* range reserved for internal use by base/ndi libraries */
2915 		segment_id = msg->key;
2916 	else	if (msg->key <= RSM_DLPI_ID_END)
2917 		return (RSMERR_RESERVED_SEGID);
2918 	else if (msg->key <= (uint_t)RSM_USER_APP_ID_BASE -1)
2919 		segment_id = msg->key;
2920 	else {
2921 		DBG_PRINTF((category, RSM_ERR,
2922 		    "rsm_publish done: invalid key %u\n", msg->key));
2923 		return (RSMERR_RESERVED_SEGID);
2924 	}
2925 
2926 	/* Add key to exportlist; The segment lock is held on success */
2927 	e = rsmexport_add(seg, segment_id);
2928 	if (e) {
2929 		rsmacl_free(acl, acl_len);
2930 		DBG_PRINTF((category, RSM_ERR,
2931 		    "rsm_publish done: export_add failed: %d\n", e));
2932 		return (e);
2933 	}
2934 
2935 	seg->s_segid = segment_id;
2936 
2937 	if ((seg->s_state != RSM_STATE_BIND) &&
2938 	    (seg->s_state != RSM_STATE_BIND_QUIESCED)) {
2939 		/* state changed since then, free acl and return */
2940 		rsmseglock_release(seg);
2941 		rsmexport_rm(seg);
2942 		rsmacl_free(acl, acl_len);
2943 		DBG_PRINTF((category, RSM_ERR,
2944 		    "rsm_publish done: segment in wrong state: %d\n",
2945 		    seg->s_state));
2946 		return (RSMERR_BAD_SEG_HNDL);
2947 	}
2948 
2949 	/*
2950 	 * If this is for a local memory handle and permissions are zero,
2951 	 * then the surrogate segment is very large and we want to skip
2952 	 * allocation of DVMA space.
2953 	 *
2954 	 * Careful!  If the user didn't use an ACL list, acl will be a NULL
2955 	 * pointer.  Check that before dereferencing it.
2956 	 */
2957 	if (acl != (rsmapi_access_entry_t *)NULL) {
2958 		if (acl[0].ae_node == my_nodeid && acl[0].ae_permission == 0)
2959 			goto skipdriver;
2960 	}
2961 
2962 	/* create segment  */
2963 	xbuf = ddi_umem_iosetup(seg->s_cookie, 0, seg->s_len, B_WRITE,
2964 	    sdev, 0, NULL, DDI_UMEM_SLEEP);
2965 	ASSERT(xbuf != NULL);
2966 
2967 	mem.ms_type = RSM_MEM_BUF;
2968 	mem.ms_bp = xbuf;
2969 
2970 	/* This call includes a bind operations */
2971 
2972 	adapter = seg->s_adapter;
2973 	/*
2974 	 * create a acl list with hwaddr for RSMPI publish
2975 	 */
2976 	e = rsmpiacl_create(acl, &rsmpi_acl, acl_len, adapter);
2977 
2978 	if (e != RSM_SUCCESS) {
2979 		rsmseglock_release(seg);
2980 		rsmexport_rm(seg);
2981 		rsmacl_free(acl, acl_len);
2982 		freerbuf(xbuf);
2983 		DBG_PRINTF((category, RSM_ERR,
2984 		    "rsm_publish done: rsmpiacl_create failed: %d\n", e));
2985 		return (e);
2986 	}
2987 
2988 	if (seg->s_state == RSM_STATE_BIND) {
2989 		/* create segment  */
2990 
2991 		/* This call includes a bind operations */
2992 
2993 		if (seg->s_flags & RSMKA_ALLOW_UNBIND_REBIND) {
2994 			create_flags = RSM_ALLOW_UNBIND_REBIND;
2995 		}
2996 
2997 		if (seg->s_flags & RSMKA_SET_RESOURCE_DONTWAIT) {
2998 			callback_flag  = RSM_RESOURCE_DONTWAIT;
2999 		} else {
3000 			callback_flag  = RSM_RESOURCE_SLEEP;
3001 		}
3002 
3003 		e = adapter->rsmpi_ops->rsm_seg_create(
3004 		    adapter->rsmpi_handle,
3005 		    &seg->s_handle.out, seg->s_len,
3006 		    create_flags, &mem,
3007 		    callback_flag, NULL);
3008 		/*
3009 		 * At present there is no dependency on the existence of xbuf.
3010 		 * So we can free it here. If in the future this changes, it can
3011 		 * be freed sometime during the segment destroy.
3012 		 */
3013 		freerbuf(xbuf);
3014 
3015 		if (e != RSM_SUCCESS) {
3016 			rsmseglock_release(seg);
3017 			rsmexport_rm(seg);
3018 			rsmacl_free(acl, acl_len);
3019 			rsmpiacl_free(rsmpi_acl, acl_len);
3020 			DBG_PRINTF((category, RSM_ERR,
3021 			    "rsm_publish done: export_create failed: %d\n", e));
3022 			/*
3023 			 * The following assertion ensures that the two errors
3024 			 * related to the length and its alignment do not occur
3025 			 * since they have been checked during export_create
3026 			 */
3027 			ASSERT(e != RSMERR_BAD_MEM_ALIGNMENT &&
3028 			    e != RSMERR_BAD_LENGTH);
3029 			if (e == RSMERR_NOT_MEM)
3030 				e = RSMERR_INSUFFICIENT_MEM;
3031 
3032 			return (e);
3033 		}
3034 		/* export segment, this should create an IMMU mapping */
3035 		e = adapter->rsmpi_ops->rsm_publish(
3036 		    seg->s_handle.out,
3037 		    rsmpi_acl, acl_len,
3038 		    seg->s_segid,
3039 		    RSM_RESOURCE_DONTWAIT, NULL);
3040 
3041 		if (e != RSM_SUCCESS) {
3042 			adapter->rsmpi_ops->rsm_seg_destroy(seg->s_handle.out);
3043 			rsmseglock_release(seg);
3044 			rsmexport_rm(seg);
3045 			rsmacl_free(acl, acl_len);
3046 			rsmpiacl_free(rsmpi_acl, acl_len);
3047 			DBG_PRINTF((category, RSM_ERR,
3048 			    "rsm_publish done: export_publish failed: %d\n",
3049 			    e));
3050 			return (e);
3051 		}
3052 	}
3053 
3054 	seg->s_acl_in = rsmpi_acl;
3055 
3056 skipdriver:
3057 	/* defer s_acl/s_acl_len -> avoid crash in rsmseg_free */
3058 	seg->s_acl_len	= acl_len;
3059 	seg->s_acl	= acl;
3060 
3061 	if (seg->s_state == RSM_STATE_BIND) {
3062 		seg->s_state = RSM_STATE_EXPORT;
3063 	} else if (seg->s_state == RSM_STATE_BIND_QUIESCED) {
3064 		seg->s_state = RSM_STATE_EXPORT_QUIESCED;
3065 		cv_broadcast(&seg->s_cv);
3066 	}
3067 
3068 	rsmseglock_release(seg);
3069 
3070 	/*
3071 	 * If the segment id was solicited, then return it in
3072 	 * the original incoming message.
3073 	 */
3074 	if (msg->key == 0) {
3075 		msg->key = segment_id;
3076 #ifdef _MULTI_DATAMODEL
3077 		if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
3078 			rsm_ioctlmsg32_t msg32;
3079 
3080 			msg32.key = msg->key;
3081 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3082 			    "rsm_publish done\n"));
3083 			return (ddi_copyout((caddr_t)&msg32,
3084 			    (caddr_t)dataptr, sizeof (msg32), mode));
3085 		}
3086 #endif
3087 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3088 		    "rsm_publish done\n"));
3089 		return (ddi_copyout((caddr_t)msg,
3090 		    (caddr_t)dataptr, sizeof (*msg), mode));
3091 	}
3092 
3093 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_publish done\n"));
3094 	return (DDI_SUCCESS);
3095 }
3096 
3097 /*
3098  * This function modifies the access control list of an already published
3099  * segment.  There is no effect on import segments which are already
3100  * connected.
3101  */
3102 static int
3103 rsm_republish(rsmseg_t *seg, rsm_ioctlmsg_t *msg, int mode)
3104 {
3105 	rsmapi_access_entry_t	*new_acl, *old_acl, *tmp_acl;
3106 	rsm_access_entry_t	*rsmpi_new_acl, *rsmpi_old_acl;
3107 	int			new_acl_len, old_acl_len, tmp_acl_len;
3108 	int			e, i;
3109 	adapter_t		*adapter;
3110 	int			loopback_flag = 0;
3111 	rsm_memseg_id_t		key;
3112 	rsm_permission_t	permission;
3113 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
3114 
3115 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_republish enter\n"));
3116 
3117 	if ((seg->s_state != RSM_STATE_EXPORT) &&
3118 	    (seg->s_state != RSM_STATE_EXPORT_QUIESCED) &&
3119 	    (seg->s_state != RSM_STATE_EXPORT_QUIESCING))
3120 		return (RSMERR_SEG_NOT_PUBLISHED);
3121 
3122 	if (seg->s_pid != ddi_get_pid() &&
3123 	    ddi_get_pid() != 0) {
3124 		DBG_PRINTF((category, RSM_ERR,
3125 		    "rsm_republish: Not owner\n"));
3126 		return (RSMERR_NOT_CREATOR);
3127 	}
3128 
3129 	if (seg->s_adapter == &loopback_adapter)
3130 		loopback_flag = 1;
3131 
3132 	/*
3133 	 * Build new list first
3134 	 */
3135 	e = rsmacl_build(msg, mode, &new_acl, &new_acl_len, loopback_flag);
3136 	if (e) {
3137 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3138 		    "rsm_republish done: rsmacl_build failed %d", e));
3139 		return (e);
3140 	}
3141 
3142 	/* Lock segment */
3143 	rsmseglock_acquire(seg);
3144 	/*
3145 	 * a republish is in progress - REPUBLISH message is being
3146 	 * sent to the importers so wait for it to complete OR
3147 	 * wait till DR completes
3148 	 */
3149 	while (((seg->s_state == RSM_STATE_EXPORT) &&
3150 	    (seg->s_flags & RSM_REPUBLISH_WAIT)) ||
3151 	    (seg->s_state == RSM_STATE_EXPORT_QUIESCED) ||
3152 	    (seg->s_state == RSM_STATE_EXPORT_QUIESCING)) {
3153 		if (cv_wait_sig(&seg->s_cv, &seg->s_lock) == 0) {
3154 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3155 			    "rsm_republish done: cv_wait  INTERRUPTED"));
3156 			rsmseglock_release(seg);
3157 			rsmacl_free(new_acl, new_acl_len);
3158 			return (RSMERR_INTERRUPTED);
3159 		}
3160 	}
3161 
3162 	/* recheck if state is valid */
3163 	if (seg->s_state != RSM_STATE_EXPORT) {
3164 		rsmseglock_release(seg);
3165 		rsmacl_free(new_acl, new_acl_len);
3166 		return (RSMERR_SEG_NOT_PUBLISHED);
3167 	}
3168 
3169 	key = seg->s_key;
3170 	old_acl = seg->s_acl;
3171 	old_acl_len = seg->s_acl_len;
3172 
3173 	seg->s_acl = new_acl;
3174 	seg->s_acl_len = new_acl_len;
3175 
3176 	/*
3177 	 * This call will only be meaningful if and when the interconnect
3178 	 * layer makes use of the access list
3179 	 */
3180 	adapter = seg->s_adapter;
3181 	/*
3182 	 * create a acl list with hwaddr for RSMPI publish
3183 	 */
3184 	e = rsmpiacl_create(new_acl, &rsmpi_new_acl, new_acl_len, adapter);
3185 
3186 	if (e != RSM_SUCCESS) {
3187 		seg->s_acl = old_acl;
3188 		seg->s_acl_len = old_acl_len;
3189 		rsmseglock_release(seg);
3190 		rsmacl_free(new_acl, new_acl_len);
3191 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3192 		    "rsm_republish done: rsmpiacl_create failed %d", e));
3193 		return (e);
3194 	}
3195 	rsmpi_old_acl = seg->s_acl_in;
3196 	seg->s_acl_in = rsmpi_new_acl;
3197 
3198 	e = adapter->rsmpi_ops->rsm_republish(seg->s_handle.out,
3199 	    seg->s_acl_in, seg->s_acl_len,
3200 	    RSM_RESOURCE_DONTWAIT, NULL);
3201 
3202 	if (e != RSM_SUCCESS) {
3203 		seg->s_acl = old_acl;
3204 		seg->s_acl_in = rsmpi_old_acl;
3205 		seg->s_acl_len = old_acl_len;
3206 		rsmseglock_release(seg);
3207 		rsmacl_free(new_acl, new_acl_len);
3208 		rsmpiacl_free(rsmpi_new_acl, new_acl_len);
3209 
3210 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3211 		    "rsm_republish done: rsmpi republish failed %d\n", e));
3212 		return (e);
3213 	}
3214 
3215 	/* create a tmp copy of the new acl */
3216 	tmp_acl_len = new_acl_len;
3217 	if (tmp_acl_len > 0) {
3218 		tmp_acl = kmem_zalloc(new_acl_len*sizeof (*tmp_acl), KM_SLEEP);
3219 		for (i = 0; i < tmp_acl_len; i++) {
3220 			tmp_acl[i].ae_node = new_acl[i].ae_node;
3221 			tmp_acl[i].ae_permission = new_acl[i].ae_permission;
3222 		}
3223 		/*
3224 		 * The default permission of a node which was in the old
3225 		 * ACL but not in the new ACL is 0 ie no access.
3226 		 */
3227 		permission = 0;
3228 	} else {
3229 		/*
3230 		 * NULL acl means all importers can connect and
3231 		 * default permission will be owner creation umask
3232 		 */
3233 		tmp_acl = NULL;
3234 		permission = seg->s_mode;
3235 	}
3236 
3237 	/* make other republishers to wait for republish to complete */
3238 	seg->s_flags |= RSM_REPUBLISH_WAIT;
3239 
3240 	rsmseglock_release(seg);
3241 
3242 	/* send the new perms to the importing nodes */
3243 	rsm_send_republish(key, tmp_acl, tmp_acl_len, permission);
3244 
3245 	rsmseglock_acquire(seg);
3246 	seg->s_flags &= ~RSM_REPUBLISH_WAIT;
3247 	/* wake up any one waiting for republish to complete */
3248 	cv_broadcast(&seg->s_cv);
3249 	rsmseglock_release(seg);
3250 
3251 	rsmacl_free(tmp_acl, tmp_acl_len);
3252 	rsmacl_free(old_acl, old_acl_len);
3253 	rsmpiacl_free(rsmpi_old_acl, old_acl_len);
3254 
3255 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_republish done\n"));
3256 	return (DDI_SUCCESS);
3257 }
3258 
3259 static int
3260 rsm_unpublish(rsmseg_t *seg, int mode)
3261 {
3262 	rsmapi_access_entry_t	*acl;
3263 	rsm_access_entry_t	*rsmpi_acl;
3264 	int			acl_len;
3265 	int			e;
3266 	adapter_t *adapter;
3267 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT);
3268 
3269 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_unpublish enter\n"));
3270 
3271 	if (seg->s_pid != ddi_get_pid() &&
3272 	    ddi_get_pid() != 0) {
3273 		DBG_PRINTF((category, RSM_ERR,
3274 		    "rsm_unpublish: Not creator\n"));
3275 		return (RSMERR_NOT_CREATOR);
3276 	}
3277 
3278 	rsmseglock_acquire(seg);
3279 	/*
3280 	 * wait for QUIESCING to complete here before rsmexport_rm
3281 	 * is called because the SUSPEND_COMPLETE mesg which changes
3282 	 * the seg state from EXPORT_QUIESCING to EXPORT_QUIESCED and
3283 	 * signals the cv_wait needs to find it in the hashtable.
3284 	 */
3285 	while ((seg->s_state == RSM_STATE_EXPORT_QUIESCING) ||
3286 	    ((seg->s_state == RSM_STATE_EXPORT) && (seg->s_rdmacnt > 0))) {
3287 		if (cv_wait_sig(&seg->s_cv, &seg->s_lock) == 0) {
3288 			rsmseglock_release(seg);
3289 			DBG_PRINTF((category, RSM_ERR,
3290 			    "rsm_unpublish done: cv_wait INTR qscing"
3291 			    "getv/putv in progress"));
3292 			return (RSMERR_INTERRUPTED);
3293 		}
3294 	}
3295 
3296 	/* verify segment state */
3297 	if ((seg->s_state != RSM_STATE_EXPORT) &&
3298 	    (seg->s_state != RSM_STATE_EXPORT_QUIESCED)) {
3299 		rsmseglock_release(seg);
3300 		DBG_PRINTF((category, RSM_ERR,
3301 		    "rsm_unpublish done: bad state %x\n", seg->s_state));
3302 		return (RSMERR_SEG_NOT_PUBLISHED);
3303 	}
3304 
3305 	rsmseglock_release(seg);
3306 
3307 	rsmexport_rm(seg);
3308 
3309 	rsm_send_importer_disconnects(seg->s_segid, my_nodeid);
3310 
3311 	rsmseglock_acquire(seg);
3312 	/*
3313 	 * wait for republish to complete
3314 	 */
3315 	while ((seg->s_state == RSM_STATE_EXPORT) &&
3316 	    (seg->s_flags & RSM_REPUBLISH_WAIT)) {
3317 		if (cv_wait_sig(&seg->s_cv, &seg->s_lock) == 0) {
3318 			DBG_PRINTF((category, RSM_ERR,
3319 			    "rsm_unpublish done: cv_wait INTR repubing"));
3320 			rsmseglock_release(seg);
3321 			return (RSMERR_INTERRUPTED);
3322 		}
3323 	}
3324 
3325 	if ((seg->s_state != RSM_STATE_EXPORT) &&
3326 	    (seg->s_state != RSM_STATE_EXPORT_QUIESCED)) {
3327 		DBG_PRINTF((category, RSM_ERR,
3328 		    "rsm_unpublish done: invalid state"));
3329 		rsmseglock_release(seg);
3330 		return (RSMERR_SEG_NOT_PUBLISHED);
3331 	}
3332 
3333 	/*
3334 	 * check for putv/get surrogate segment which was not published
3335 	 * to the driver.
3336 	 *
3337 	 * Be certain to see if there is an ACL first!  If this segment was
3338 	 * not published with an ACL, acl will be a null pointer.  Check
3339 	 * that before dereferencing it.
3340 	 */
3341 	acl = seg->s_acl;
3342 	if (acl != (rsmapi_access_entry_t *)NULL) {
3343 		if (acl[0].ae_node == my_nodeid && acl[0].ae_permission == 0)
3344 			goto bypass;
3345 	}
3346 
3347 	/* The RSMPI unpublish/destroy has been done if seg is QUIESCED */
3348 	if (seg->s_state == RSM_STATE_EXPORT_QUIESCED)
3349 		goto bypass;
3350 
3351 	adapter = seg->s_adapter;
3352 	for (;;) {
3353 		if (seg->s_state != RSM_STATE_EXPORT) {
3354 			rsmseglock_release(seg);
3355 			DBG_PRINTF((category, RSM_ERR,
3356 			    "rsm_unpublish done: bad state %x\n",
3357 			    seg->s_state));
3358 			return (RSMERR_SEG_NOT_PUBLISHED);
3359 		}
3360 
3361 		/* unpublish from adapter */
3362 		e = adapter->rsmpi_ops->rsm_unpublish(seg->s_handle.out);
3363 
3364 		if (e == RSM_SUCCESS) {
3365 			break;
3366 		}
3367 
3368 		if (e == RSMERR_SEG_IN_USE && mode == 1) {
3369 			/*
3370 			 * wait for unpublish to succeed, it's busy.
3371 			 */
3372 			seg->s_flags |= RSM_EXPORT_WAIT;
3373 
3374 			/* wait for a max of 1 ms - this is an empirical */
3375 			/* value that was found by some minimal testing  */
3376 			/* can be fine tuned when we have better numbers */
3377 			/* A long term fix would be to send cv_signal	 */
3378 			/* from the intr callback routine		 */
3379 			/* currently nobody signals this wait		 */
3380 			(void) cv_reltimedwait(&seg->s_cv, &seg->s_lock,
3381 			    drv_usectohz(1000), TR_CLOCK_TICK);
3382 
3383 			DBG_PRINTF((category, RSM_ERR,
3384 			    "rsm_unpublish: SEG_IN_USE\n"));
3385 
3386 			seg->s_flags &= ~RSM_EXPORT_WAIT;
3387 		} else {
3388 			if (mode == 1) {
3389 				DBG_PRINTF((category, RSM_ERR,
3390 				    "rsm:rsmpi unpublish err %x\n", e));
3391 				seg->s_state = RSM_STATE_BIND;
3392 			}
3393 			rsmseglock_release(seg);
3394 			return (e);
3395 		}
3396 	}
3397 
3398 	/* Free segment */
3399 	e = adapter->rsmpi_ops->rsm_seg_destroy(seg->s_handle.out);
3400 
3401 	if (e != RSM_SUCCESS) {
3402 		DBG_PRINTF((category, RSM_ERR,
3403 		    "rsm_unpublish: rsmpi destroy key=%x failed %x\n",
3404 		    seg->s_key, e));
3405 	}
3406 
3407 bypass:
3408 	acl = seg->s_acl;
3409 	rsmpi_acl = seg->s_acl_in;
3410 	acl_len = seg->s_acl_len;
3411 
3412 	seg->s_acl = NULL;
3413 	seg->s_acl_in = NULL;
3414 	seg->s_acl_len = 0;
3415 
3416 	if (seg->s_state == RSM_STATE_EXPORT) {
3417 		seg->s_state = RSM_STATE_BIND;
3418 	} else if (seg->s_state == RSM_STATE_EXPORT_QUIESCED) {
3419 		seg->s_state = RSM_STATE_BIND_QUIESCED;
3420 		cv_broadcast(&seg->s_cv);
3421 	}
3422 
3423 	rsmseglock_release(seg);
3424 
3425 	rsmacl_free(acl, acl_len);
3426 	rsmpiacl_free(rsmpi_acl, acl_len);
3427 
3428 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_unpublish done\n"));
3429 
3430 	return (DDI_SUCCESS);
3431 }
3432 
3433 /*
3434  * Called from rsm_unpublish to force an unload and disconnection of all
3435  * importers of the unpublished segment.
3436  *
3437  * First build the list of segments requiring a force disconnect, then
3438  * send a request for each.
3439  */
3440 static void
3441 rsm_send_importer_disconnects(rsm_memseg_id_t ex_segid,
3442     rsm_node_id_t ex_nodeid)
3443 {
3444 	rsmipc_request_t 	request;
3445 	importing_token_t	*prev_token, *token, *tmp_token, *tokp;
3446 	importing_token_t	*force_disconnect_list = NULL;
3447 	int			index;
3448 
3449 	DBG_PRINTF((RSM_KERNEL_AGENT | RSM_EXPORT, RSM_DEBUG_VERBOSE,
3450 	    "rsm_send_importer_disconnects enter\n"));
3451 
3452 	index = rsmhash(ex_segid);
3453 
3454 	mutex_enter(&importer_list.lock);
3455 
3456 	prev_token = NULL;
3457 	token = importer_list.bucket[index];
3458 
3459 	while (token != NULL) {
3460 		if (token->key == ex_segid) {
3461 			/*
3462 			 * take it off the importer list and add it
3463 			 * to the force disconnect list.
3464 			 */
3465 			if (prev_token == NULL)
3466 				importer_list.bucket[index] = token->next;
3467 			else
3468 				prev_token->next = token->next;
3469 			tmp_token = token;
3470 			token = token->next;
3471 			if (force_disconnect_list == NULL) {
3472 				force_disconnect_list = tmp_token;
3473 				tmp_token->next = NULL;
3474 			} else {
3475 				tokp = force_disconnect_list;
3476 				/*
3477 				 * make sure that the tmp_token's node
3478 				 * is not already on the force disconnect
3479 				 * list.
3480 				 */
3481 				while (tokp != NULL) {
3482 					if (tokp->importing_node ==
3483 					    tmp_token->importing_node) {
3484 						break;
3485 					}
3486 					tokp = tokp->next;
3487 				}
3488 				if (tokp == NULL) {
3489 					tmp_token->next =
3490 					    force_disconnect_list;
3491 					force_disconnect_list = tmp_token;
3492 				} else {
3493 					kmem_free((void *)tmp_token,
3494 					    sizeof (*token));
3495 				}
3496 			}
3497 
3498 		} else {
3499 			prev_token = token;
3500 			token = token->next;
3501 		}
3502 	}
3503 	mutex_exit(&importer_list.lock);
3504 
3505 	token = force_disconnect_list;
3506 	while (token != NULL) {
3507 		if (token->importing_node == my_nodeid) {
3508 			rsm_force_unload(ex_nodeid, ex_segid,
3509 			    DISCONNECT);
3510 		} else {
3511 			request.rsmipc_hdr.rsmipc_type =
3512 			    RSMIPC_MSG_DISCONNECT;
3513 			request.rsmipc_key = token->key;
3514 			for (;;) {
3515 				if (rsmipc_send(token->importing_node,
3516 				    &request,
3517 				    RSM_NO_REPLY) == RSM_SUCCESS) {
3518 					break;
3519 				} else {
3520 					delay(drv_usectohz(10000));
3521 				}
3522 			}
3523 		}
3524 		tmp_token = token;
3525 		token = token->next;
3526 		kmem_free((void *)tmp_token, sizeof (*token));
3527 	}
3528 
3529 	DBG_PRINTF((RSM_KERNEL_AGENT | RSM_EXPORT, RSM_DEBUG_VERBOSE,
3530 	    "rsm_send_importer_disconnects done\n"));
3531 }
3532 
3533 /*
3534  * This function is used as a callback for unlocking the pages locked
3535  * down by a process which then does a fork or an exec.
3536  * It marks the export segments corresponding to umem cookie given by
3537  * the *arg to be in a ZOMBIE state(by calling rsmseg_close to be
3538  * destroyed later when an rsm_close occurs).
3539  */
3540 static void
3541 rsm_export_force_destroy(ddi_umem_cookie_t *ck)
3542 {
3543 	rsmresource_blk_t *blk;
3544 	rsmresource_t *p;
3545 	rsmseg_t *eseg = NULL;
3546 	int i, j;
3547 	int found = 0;
3548 
3549 	DBG_PRINTF((RSM_KERNEL_AGENT | RSM_EXPORT, RSM_DEBUG_VERBOSE,
3550 	    "rsm_export_force_destroy enter\n"));
3551 
3552 	/*
3553 	 * Walk the resource list and locate the export segment (either
3554 	 * in the BIND or the EXPORT state) which corresponds to the
3555 	 * ddi_umem_cookie_t being freed up, and call rsmseg_close.
3556 	 * Change the state to ZOMBIE by calling rsmseg_close with the
3557 	 * force_flag argument (the second argument) set to 1. Also,
3558 	 * unpublish and unbind the segment, but don't free it. Free it
3559 	 * only on a rsm_close call for the segment.
3560 	 */
3561 	rw_enter(&rsm_resource.rsmrc_lock, RW_READER);
3562 
3563 	for (i = 0; i < rsm_resource.rsmrc_len; i++) {
3564 		blk = rsm_resource.rsmrc_root[i];
3565 		if (blk == NULL) {
3566 			continue;
3567 		}
3568 
3569 		for (j = 0; j < RSMRC_BLKSZ; j++) {
3570 			p = blk->rsmrcblk_blks[j];
3571 			if ((p != NULL) && (p != RSMRC_RESERVED) &&
3572 			    (p->rsmrc_type == RSM_RESOURCE_EXPORT_SEGMENT)) {
3573 				eseg = (rsmseg_t *)p;
3574 				if (eseg->s_cookie != ck)
3575 					continue; /* continue searching */
3576 				/*
3577 				 * Found the segment, set flag to indicate
3578 				 * force destroy processing is in progress
3579 				 */
3580 				rsmseglock_acquire(eseg);
3581 				eseg->s_flags |= RSM_FORCE_DESTROY_WAIT;
3582 				rsmseglock_release(eseg);
3583 				found = 1;
3584 				break;
3585 			}
3586 		}
3587 
3588 		if (found)
3589 			break;
3590 	}
3591 
3592 	rw_exit(&rsm_resource.rsmrc_lock);
3593 
3594 	if (found) {
3595 		ASSERT(eseg != NULL);
3596 		/* call rsmseg_close with force flag set to 1 */
3597 		rsmseg_close(eseg, 1);
3598 		/*
3599 		 * force destroy processing done, clear flag and signal any
3600 		 * thread waiting in rsmseg_close.
3601 		 */
3602 		rsmseglock_acquire(eseg);
3603 		eseg->s_flags &= ~RSM_FORCE_DESTROY_WAIT;
3604 		cv_broadcast(&eseg->s_cv);
3605 		rsmseglock_release(eseg);
3606 	}
3607 
3608 	DBG_PRINTF((RSM_KERNEL_AGENT | RSM_EXPORT, RSM_DEBUG_VERBOSE,
3609 	    "rsm_export_force_destroy done\n"));
3610 }
3611 
3612 /* ******************************* Remote Calls *********************** */
3613 static void
3614 rsm_intr_segconnect(rsm_node_id_t src, rsmipc_request_t *req)
3615 {
3616 	rsmipc_reply_t reply;
3617 	DBG_DEFINE(category,
3618 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
3619 
3620 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3621 	    "rsm_intr_segconnect enter\n"));
3622 
3623 	reply.rsmipc_status = (short)rsmsegacl_validate(req, src, &reply);
3624 
3625 	reply.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_REPLY;
3626 	reply.rsmipc_hdr.rsmipc_cookie = req->rsmipc_hdr.rsmipc_cookie;
3627 
3628 	(void) rsmipc_send(src, NULL, &reply);
3629 
3630 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3631 	    "rsm_intr_segconnect done\n"));
3632 }
3633 
3634 
3635 /*
3636  * When an exported segment is unpublished the exporter sends an ipc
3637  * message (RSMIPC_MSG_DISCONNECT) to all importers.  The recv ipc dispatcher
3638  * calls this function.  The import list is scanned; segments which match the
3639  * exported segment id are unloaded and disconnected.
3640  *
3641  * Will also be called from rsm_rebind with disconnect_flag FALSE.
3642  *
3643  */
3644 static void
3645 rsm_force_unload(rsm_node_id_t src_nodeid,
3646     rsm_memseg_id_t ex_segid,
3647     boolean_t disconnect_flag)
3648 
3649 {
3650 	rsmresource_t	*p = NULL;
3651 	rsmhash_table_t *rhash = &rsm_import_segs;
3652 	uint_t		index;
3653 	DBG_DEFINE(category,
3654 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
3655 
3656 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_force_unload enter\n"));
3657 
3658 	index = rsmhash(ex_segid);
3659 
3660 	rw_enter(&rhash->rsmhash_rw, RW_READER);
3661 
3662 	p = rsmhash_getbkt(rhash, index);
3663 
3664 	for (; p; p = p->rsmrc_next) {
3665 		rsmseg_t *seg = (rsmseg_t *)p;
3666 		if ((seg->s_segid == ex_segid) && (seg->s_node == src_nodeid)) {
3667 			/*
3668 			 * In order to make rsmseg_unload and rsm_force_unload
3669 			 * thread safe, acquire the segment lock here.
3670 			 * rsmseg_unload is responsible for releasing the lock.
3671 			 * rsmseg_unload releases the lock just before a call
3672 			 * to rsmipc_send or in case of an early exit which
3673 			 * occurs if the segment was in the state
3674 			 * RSM_STATE_CONNECTING or RSM_STATE_NEW.
3675 			 */
3676 			rsmseglock_acquire(seg);
3677 			if (disconnect_flag)
3678 				seg->s_flags |= RSM_FORCE_DISCONNECT;
3679 			rsmseg_unload(seg);
3680 		}
3681 	}
3682 	rw_exit(&rhash->rsmhash_rw);
3683 
3684 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_force_unload done\n"));
3685 }
3686 
3687 static void
3688 rsm_intr_reply(rsmipc_msghdr_t *msg)
3689 {
3690 	/*
3691 	 * Find slot for cookie in reply.
3692 	 * Match sequence with sequence in cookie
3693 	 * If no match; return
3694 	 * Try to grap lock of slot, if locked return
3695 	 * copy data into reply slot area
3696 	 * signal waiter
3697 	 */
3698 	rsmipc_slot_t 	*slot;
3699 	rsmipc_cookie_t	*cookie;
3700 	void *data = (void *) msg;
3701 	size_t size = sizeof (rsmipc_reply_t);
3702 	DBG_DEFINE(category,
3703 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
3704 
3705 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_intr_reply enter\n"));
3706 
3707 	cookie = &msg->rsmipc_cookie;
3708 	if (cookie->ic.index >= RSMIPC_SZ) {
3709 		DBG_PRINTF((category, RSM_ERR,
3710 		    "rsm: rsm_intr_reply bad cookie %d\n", cookie->ic.index));
3711 		return;
3712 	}
3713 
3714 	ASSERT(cookie->ic.index < RSMIPC_SZ);
3715 	slot = &rsm_ipc.slots[cookie->ic.index];
3716 	mutex_enter(&slot->rsmipc_lock);
3717 	if (slot->rsmipc_cookie.value == cookie->value) {
3718 		/* found a match */
3719 		if (RSMIPC_GET(slot, RSMIPC_PENDING)) {
3720 			bcopy(data, slot->rsmipc_data, size);
3721 			RSMIPC_CLEAR(slot, RSMIPC_PENDING);
3722 			cv_signal(&slot->rsmipc_cv);
3723 		}
3724 	} else {
3725 		DBG_PRINTF((category, RSM_DEBUG,
3726 		    "rsm: rsm_intr_reply mismatched reply %d\n",
3727 		    cookie->ic.index));
3728 	}
3729 	mutex_exit(&slot->rsmipc_lock);
3730 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_intr_reply done\n"));
3731 }
3732 
3733 /*
3734  * This function gets dispatched on the worker thread when we receive
3735  * the SQREADY message. This function sends the SQREADY_ACK message.
3736  */
3737 static void
3738 rsm_sqready_ack_deferred(void *arg)
3739 {
3740 	path_t	*path = (path_t *)arg;
3741 	DBG_DEFINE(category,
3742 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
3743 
3744 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3745 	    "rsm_sqready_ack_deferred enter\n"));
3746 
3747 	mutex_enter(&path->mutex);
3748 
3749 	/*
3750 	 * If path is not active no point in sending the ACK
3751 	 * because the whole SQREADY protocol will again start
3752 	 * when the path becomes active.
3753 	 */
3754 	if (path->state != RSMKA_PATH_ACTIVE) {
3755 		/*
3756 		 * decrement the path refcnt incremented in rsm_proc_sqready
3757 		 */
3758 		PATH_RELE_NOLOCK(path);
3759 		mutex_exit(&path->mutex);
3760 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3761 		    "rsm_sqready_ack_deferred done:!ACTIVE\n"));
3762 		return;
3763 	}
3764 
3765 	/* send an SQREADY_ACK message */
3766 	(void) rsmipc_send_controlmsg(path, RSMIPC_MSG_SQREADY_ACK);
3767 
3768 	/* initialize credits to the max level */
3769 	path->sendq_token.msgbuf_avail = RSMIPC_MAX_MESSAGES;
3770 
3771 	/* wake up any send that is waiting for credits */
3772 	cv_broadcast(&path->sendq_token.sendq_cv);
3773 
3774 	/*
3775 	 * decrement the path refcnt since we incremented it in
3776 	 * rsm_proc_sqready
3777 	 */
3778 	PATH_RELE_NOLOCK(path);
3779 
3780 	mutex_exit(&path->mutex);
3781 
3782 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3783 	    "rsm_sqready_ack_deferred done\n"));
3784 }
3785 
3786 /*
3787  * Process the SQREADY message
3788  */
3789 static void
3790 rsm_proc_sqready(rsmipc_controlmsg_t *msg, rsm_addr_t src_hwaddr,
3791     rsm_intr_hand_arg_t arg)
3792 {
3793 	rsmipc_msghdr_t		*msghdr = (rsmipc_msghdr_t *)msg;
3794 	srv_handler_arg_t	*hdlr_argp = (srv_handler_arg_t *)arg;
3795 	path_t			*path;
3796 	DBG_DEFINE(category,
3797 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
3798 
3799 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_proc_sqready enter\n"));
3800 
3801 	/* look up the path - incr the path refcnt */
3802 	path = rsm_find_path(hdlr_argp->adapter_name,
3803 	    hdlr_argp->adapter_instance, src_hwaddr);
3804 
3805 	/*
3806 	 * No path exists or path is not active - drop the message
3807 	 */
3808 	if (path == NULL) {
3809 		DBG_PRINTF((category, RSM_DEBUG,
3810 		    "rsm_proc_sqready done: msg dropped no path\n"));
3811 		return;
3812 	}
3813 
3814 	mutex_exit(&path->mutex);
3815 
3816 	/* drain any tasks from the previous incarnation */
3817 	taskq_wait(path->recv_taskq);
3818 
3819 	mutex_enter(&path->mutex);
3820 	/*
3821 	 * If we'd sent an SQREADY message and were waiting for SQREADY_ACK
3822 	 * in the meanwhile we received an SQREADY message, blindly reset
3823 	 * the WAIT_FOR_SQACK flag because we'll just send SQREADY_ACK
3824 	 * and forget about the SQREADY that we sent.
3825 	 */
3826 	path->flags &= ~RSMKA_WAIT_FOR_SQACK;
3827 
3828 	if (path->state != RSMKA_PATH_ACTIVE) {
3829 		/* decr refcnt and drop the mutex */
3830 		PATH_RELE_NOLOCK(path);
3831 		mutex_exit(&path->mutex);
3832 		DBG_PRINTF((category, RSM_DEBUG,
3833 		    "rsm_proc_sqready done: msg dropped path !ACTIVE\n"));
3834 		return;
3835 	}
3836 
3837 	DBG_PRINTF((category, RSM_DEBUG, "rsm_proc_sqready:path=%lx "
3838 	    " src=%lx:%llx\n", path, msghdr->rsmipc_src, src_hwaddr));
3839 
3840 	/*
3841 	 * The sender's local incarnation number is our remote incarnation
3842 	 * number save it in the path data structure
3843 	 */
3844 	path->remote_incn = msg->rsmipc_local_incn;
3845 	path->sendq_token.msgbuf_avail = 0;
3846 	path->procmsg_cnt = 0;
3847 
3848 	/*
3849 	 * path is active - dispatch task to send SQREADY_ACK - remember
3850 	 * RSMPI calls can't be done in interrupt context
3851 	 *
3852 	 * We can use the recv_taskq to send because the remote endpoint
3853 	 * cannot start sending messages till it receives SQREADY_ACK hence
3854 	 * at this point there are no tasks on recv_taskq.
3855 	 *
3856 	 * The path refcnt will be decremented in rsm_sqready_ack_deferred.
3857 	 */
3858 	(void) taskq_dispatch(path->recv_taskq,
3859 	    rsm_sqready_ack_deferred, path, KM_NOSLEEP);
3860 
3861 	mutex_exit(&path->mutex);
3862 
3863 
3864 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_proc_sqready done\n"));
3865 }
3866 
3867 /*
3868  * Process the SQREADY_ACK message
3869  */
3870 static void
3871 rsm_proc_sqready_ack(rsmipc_controlmsg_t *msg, rsm_addr_t src_hwaddr,
3872     rsm_intr_hand_arg_t arg)
3873 {
3874 	rsmipc_msghdr_t		*msghdr = (rsmipc_msghdr_t *)msg;
3875 	srv_handler_arg_t	*hdlr_argp = (srv_handler_arg_t *)arg;
3876 	path_t			*path;
3877 	DBG_DEFINE(category,
3878 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
3879 
3880 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3881 	    "rsm_proc_sqready_ack enter\n"));
3882 
3883 	/* look up the path - incr the path refcnt */
3884 	path = rsm_find_path(hdlr_argp->adapter_name,
3885 	    hdlr_argp->adapter_instance, src_hwaddr);
3886 
3887 	/*
3888 	 * drop the message if - no path exists or path is not active
3889 	 * or if its not waiting for SQREADY_ACK message
3890 	 */
3891 	if (path == NULL) {
3892 		DBG_PRINTF((category, RSM_DEBUG,
3893 		    "rsm_proc_sqready_ack done: msg dropped no path\n"));
3894 		return;
3895 	}
3896 
3897 	if ((path->state != RSMKA_PATH_ACTIVE) ||
3898 	    !(path->flags & RSMKA_WAIT_FOR_SQACK)) {
3899 		/* decrement the refcnt */
3900 		PATH_RELE_NOLOCK(path);
3901 		mutex_exit(&path->mutex);
3902 		DBG_PRINTF((category, RSM_DEBUG,
3903 		    "rsm_proc_sqready_ack done: msg dropped\n"));
3904 		return;
3905 	}
3906 
3907 	/*
3908 	 * Check if this message is in response to the last RSMIPC_MSG_SQREADY
3909 	 * sent, if not drop it.
3910 	 */
3911 	if (path->local_incn != msghdr->rsmipc_incn) {
3912 		/* decrement the refcnt */
3913 		PATH_RELE_NOLOCK(path);
3914 		mutex_exit(&path->mutex);
3915 		DBG_PRINTF((category, RSM_DEBUG,
3916 		    "rsm_proc_sqready_ack done: msg old incn %lld\n",
3917 		    msghdr->rsmipc_incn));
3918 		return;
3919 	}
3920 
3921 	DBG_PRINTF((category, RSM_DEBUG, "rsm_proc_sqready_ack:path=%lx "
3922 	    " src=%lx:%llx\n", path, msghdr->rsmipc_src, src_hwaddr));
3923 
3924 	/*
3925 	 * clear the WAIT_FOR_SQACK flag since we have recvd the ack
3926 	 */
3927 	path->flags &= ~RSMKA_WAIT_FOR_SQACK;
3928 
3929 	/* save the remote sendq incn number */
3930 	path->remote_incn = msg->rsmipc_local_incn;
3931 
3932 	/* initialize credits to the max level */
3933 	path->sendq_token.msgbuf_avail = RSMIPC_MAX_MESSAGES;
3934 
3935 	/* wake up any send that is waiting for credits */
3936 	cv_broadcast(&path->sendq_token.sendq_cv);
3937 
3938 	/* decrement the refcnt */
3939 	PATH_RELE_NOLOCK(path);
3940 
3941 	mutex_exit(&path->mutex);
3942 
3943 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
3944 	    "rsm_proc_sqready_ack done\n"));
3945 }
3946 
3947 /*
3948  * process the RSMIPC_MSG_CREDIT message
3949  */
3950 static void
3951 rsm_add_credits(rsmipc_controlmsg_t *msg, rsm_addr_t src_hwaddr,
3952     rsm_intr_hand_arg_t arg)
3953 {
3954 	rsmipc_msghdr_t		*msghdr = (rsmipc_msghdr_t *)msg;
3955 	srv_handler_arg_t	*hdlr_argp = (srv_handler_arg_t *)arg;
3956 	path_t			*path;
3957 	DBG_DEFINE(category,
3958 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL |
3959 	    RSM_INTR_CALLBACK | RSM_FLOWCONTROL);
3960 
3961 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_add_credits enter\n"));
3962 
3963 	/* look up the path - incr the path refcnt */
3964 	path = rsm_find_path(hdlr_argp->adapter_name,
3965 	    hdlr_argp->adapter_instance, src_hwaddr);
3966 
3967 	if (path == NULL) {
3968 		DBG_PRINTF((category, RSM_DEBUG,
3969 		    "rsm_add_credits enter: path not found\n"));
3970 		return;
3971 	}
3972 
3973 	/* the path is not active - discard credits */
3974 	if (path->state != RSMKA_PATH_ACTIVE) {
3975 		PATH_RELE_NOLOCK(path);
3976 		mutex_exit(&path->mutex);
3977 		DBG_PRINTF((category, RSM_DEBUG,
3978 		    "rsm_add_credits enter:path=%lx !ACTIVE\n", path));
3979 		return;
3980 	}
3981 
3982 	/*
3983 	 * Check if these credits are for current incarnation of the path.
3984 	 */
3985 	if (path->local_incn != msghdr->rsmipc_incn) {
3986 		/* decrement the refcnt */
3987 		PATH_RELE_NOLOCK(path);
3988 		mutex_exit(&path->mutex);
3989 		DBG_PRINTF((category, RSM_DEBUG,
3990 		    "rsm_add_credits enter: old incn %lld\n",
3991 		    msghdr->rsmipc_incn));
3992 		return;
3993 	}
3994 
3995 	DBG_PRINTF((category, RSM_DEBUG,
3996 	    "rsm_add_credits:path=%lx new-creds=%d "
3997 	    "curr credits=%d src=%lx:%llx\n", path, msg->rsmipc_credits,
3998 	    path->sendq_token.msgbuf_avail, msghdr->rsmipc_src,
3999 	    src_hwaddr));
4000 
4001 
4002 	/* add credits to the path's sendq */
4003 	path->sendq_token.msgbuf_avail += msg->rsmipc_credits;
4004 
4005 	ASSERT(path->sendq_token.msgbuf_avail <= RSMIPC_MAX_MESSAGES);
4006 
4007 	/* wake up any send that is waiting for credits */
4008 	cv_broadcast(&path->sendq_token.sendq_cv);
4009 
4010 	/* decrement the refcnt */
4011 	PATH_RELE_NOLOCK(path);
4012 
4013 	mutex_exit(&path->mutex);
4014 
4015 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_add_credits done\n"));
4016 }
4017 
4018 static void
4019 rsm_intr_event(rsmipc_request_t *msg)
4020 {
4021 	rsmseg_t	*seg;
4022 	rsmresource_t	*p;
4023 	rsm_node_id_t	src_node;
4024 	DBG_DEFINE(category,
4025 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4026 
4027 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_intr_event enter\n"));
4028 
4029 	src_node = msg->rsmipc_hdr.rsmipc_src;
4030 
4031 	if ((seg = msg->rsmipc_segment_cookie) != NULL) {
4032 		/* This is for an import segment */
4033 		uint_t hashval = rsmhash(msg->rsmipc_key);
4034 
4035 		rw_enter(&rsm_import_segs.rsmhash_rw, RW_READER);
4036 
4037 		p = (rsmresource_t *)rsmhash_getbkt(&rsm_import_segs, hashval);
4038 
4039 		for (; p; p = p->rsmrc_next) {
4040 			if ((p->rsmrc_key == msg->rsmipc_key) &&
4041 			    (p->rsmrc_node == src_node)) {
4042 				seg = (rsmseg_t *)p;
4043 				rsmseglock_acquire(seg);
4044 
4045 				atomic_add_32(&seg->s_pollevent, 1);
4046 
4047 				if (seg->s_pollflag & RSM_SEGMENT_POLL)
4048 					pollwakeup(&seg->s_poll, POLLRDNORM);
4049 
4050 				rsmseglock_release(seg);
4051 			}
4052 		}
4053 
4054 		rw_exit(&rsm_import_segs.rsmhash_rw);
4055 	} else {
4056 		/* This is for an export segment */
4057 		seg = rsmexport_lookup(msg->rsmipc_key);
4058 		if (!seg) {
4059 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4060 			    "rsm_intr_event done: exp seg not found\n"));
4061 			return;
4062 		}
4063 
4064 		ASSERT(rsmseglock_held(seg));
4065 
4066 		atomic_add_32(&seg->s_pollevent, 1);
4067 
4068 		/*
4069 		 * We must hold the segment lock here, or else the segment
4070 		 * can be freed while pollwakeup is using it. This implies
4071 		 * that we MUST NOT grab the segment lock during rsm_chpoll,
4072 		 * as outlined in the chpoll(2) man page.
4073 		 */
4074 		if (seg->s_pollflag & RSM_SEGMENT_POLL)
4075 			pollwakeup(&seg->s_poll, POLLRDNORM);
4076 
4077 		rsmseglock_release(seg);
4078 	}
4079 
4080 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_intr_event done\n"));
4081 }
4082 
4083 /*
4084  * The exporter did a republish and changed the ACL - this change is only
4085  * visible to new importers.
4086  */
4087 static void
4088 importer_update(rsm_node_id_t src_node, rsm_memseg_id_t key,
4089     rsm_permission_t perm)
4090 {
4091 
4092 	rsmresource_t	*p;
4093 	rsmseg_t	*seg;
4094 	uint_t		hashval = rsmhash(key);
4095 	DBG_DEFINE(category,
4096 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4097 
4098 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importer_update enter\n"));
4099 
4100 	rw_enter(&rsm_import_segs.rsmhash_rw, RW_READER);
4101 
4102 	p = (rsmresource_t *)rsmhash_getbkt(&rsm_import_segs, hashval);
4103 
4104 	for (; p; p = p->rsmrc_next) {
4105 		/*
4106 		 * find the importer and update the permission in the shared
4107 		 * data structure. Any new importers will use the new perms
4108 		 */
4109 		if ((p->rsmrc_key == key) && (p->rsmrc_node == src_node)) {
4110 			seg = (rsmseg_t *)p;
4111 
4112 			rsmseglock_acquire(seg);
4113 			rsmsharelock_acquire(seg);
4114 			seg->s_share->rsmsi_mode = perm;
4115 			rsmsharelock_release(seg);
4116 			rsmseglock_release(seg);
4117 
4118 			break;
4119 		}
4120 	}
4121 
4122 	rw_exit(&rsm_import_segs.rsmhash_rw);
4123 
4124 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importer_update done\n"));
4125 }
4126 
4127 void
4128 rsm_suspend_complete(rsm_node_id_t src_node, int flag)
4129 {
4130 	int		done = 1; /* indicate all SUSPENDS have been acked */
4131 	list_element_t	*elem;
4132 	DBG_DEFINE(category,
4133 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4134 
4135 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4136 	    "rsm_suspend_complete enter\n"));
4137 
4138 	mutex_enter(&rsm_suspend_list.list_lock);
4139 
4140 	if (rsm_suspend_list.list_head == NULL) {
4141 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4142 		    "rsm_suspend_complete done: suspend_list is empty\n"));
4143 		mutex_exit(&rsm_suspend_list.list_lock);
4144 		return;
4145 	}
4146 
4147 	elem = rsm_suspend_list.list_head;
4148 	while (elem != NULL) {
4149 		if (elem->nodeid == src_node) {
4150 			/* clear the pending flag for the node */
4151 			elem->flags &= ~RSM_SUSPEND_ACKPENDING;
4152 			elem->flags |= flag;
4153 		}
4154 
4155 		if (done && (elem->flags & RSM_SUSPEND_ACKPENDING))
4156 			done = 0; /* still some nodes have not yet ACKED */
4157 
4158 		elem = elem->next;
4159 	}
4160 
4161 	mutex_exit(&rsm_suspend_list.list_lock);
4162 
4163 	if (!done) {
4164 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4165 		    "rsm_suspend_complete done: acks pending\n"));
4166 		return;
4167 	}
4168 	/*
4169 	 * Now that we are done with suspending all the remote importers
4170 	 * time to quiesce the local exporters
4171 	 */
4172 	exporter_quiesce();
4173 
4174 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4175 	    "rsm_suspend_complete done\n"));
4176 }
4177 
4178 static void
4179 exporter_quiesce()
4180 {
4181 	int		i, e;
4182 	rsmresource_t	*current;
4183 	rsmseg_t	*seg;
4184 	adapter_t	*adapter;
4185 	DBG_DEFINE(category,
4186 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4187 
4188 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "exporter_quiesce enter\n"));
4189 	/*
4190 	 * The importers send a SUSPEND_COMPLETE to the exporter node
4191 	 *	Unpublish, unbind the export segment and
4192 	 *	move the segments to the EXPORT_QUIESCED state
4193 	 */
4194 
4195 	rw_enter(&rsm_export_segs.rsmhash_rw, RW_READER);
4196 
4197 	for (i = 0; i < rsm_hash_size; i++) {
4198 		current = rsm_export_segs.bucket[i];
4199 		while (current != NULL) {
4200 			seg = (rsmseg_t *)current;
4201 			rsmseglock_acquire(seg);
4202 			if (current->rsmrc_state ==
4203 			    RSM_STATE_EXPORT_QUIESCING) {
4204 				adapter = seg->s_adapter;
4205 				/*
4206 				 * some local memory handles are not published
4207 				 * check if it was published
4208 				 */
4209 				if ((seg->s_acl == NULL) ||
4210 				    (seg->s_acl[0].ae_node != my_nodeid) ||
4211 				    (seg->s_acl[0].ae_permission != 0)) {
4212 
4213 					e = adapter->rsmpi_ops->rsm_unpublish(
4214 					    seg->s_handle.out);
4215 					DBG_PRINTF((category, RSM_DEBUG,
4216 					    "exporter_quiesce:unpub %d\n", e));
4217 
4218 					e = adapter->rsmpi_ops->rsm_seg_destroy(
4219 					    seg->s_handle.out);
4220 
4221 					DBG_PRINTF((category, RSM_DEBUG,
4222 					    "exporter_quiesce:destroy %d\n",
4223 					    e));
4224 				}
4225 
4226 				(void) rsm_unbind_pages(seg);
4227 				seg->s_state = RSM_STATE_EXPORT_QUIESCED;
4228 				cv_broadcast(&seg->s_cv);
4229 			}
4230 			rsmseglock_release(seg);
4231 			current = current->rsmrc_next;
4232 		}
4233 	}
4234 	rw_exit(&rsm_export_segs.rsmhash_rw);
4235 
4236 	/*
4237 	 * All the local segments we are done with the pre-del processing
4238 	 * - time to move to PREDEL_COMPLETED.
4239 	 */
4240 
4241 	mutex_enter(&rsm_drv_data.drv_lock);
4242 
4243 	ASSERT(rsm_drv_data.drv_state == RSM_DRV_PREDEL_STARTED);
4244 
4245 	rsm_drv_data.drv_state = RSM_DRV_PREDEL_COMPLETED;
4246 
4247 	cv_broadcast(&rsm_drv_data.drv_cv);
4248 
4249 	mutex_exit(&rsm_drv_data.drv_lock);
4250 
4251 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "exporter_quiesce done\n"));
4252 }
4253 
4254 static void
4255 importer_suspend(rsm_node_id_t src_node)
4256 {
4257 	int		i;
4258 	int		susp_flg; /* true means already suspended */
4259 	int		num_importers;
4260 	rsmresource_t	*p = NULL, *curp;
4261 	rsmhash_table_t *rhash = &rsm_import_segs;
4262 	rsmseg_t	*seg;
4263 	rsmipc_request_t request;
4264 	DBG_DEFINE(category,
4265 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4266 
4267 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importer_suspend enter\n"));
4268 
4269 	rw_enter(&rhash->rsmhash_rw, RW_READER);
4270 	for (i = 0; i < rsm_hash_size; i++) {
4271 		p = rhash->bucket[i];
4272 
4273 		/*
4274 		 * Suspend all importers with same <node, key> pair.
4275 		 * After the last one of the shared importers has been
4276 		 * suspended - suspend the shared mappings/connection.
4277 		 */
4278 		for (; p; p = p->rsmrc_next) {
4279 			rsmseg_t *first = (rsmseg_t *)p;
4280 			if ((first->s_node != src_node) ||
4281 			    (first->s_state == RSM_STATE_DISCONNECT))
4282 				continue; /* go to next entry */
4283 			/*
4284 			 * search the rest of the bucket for
4285 			 * other siblings (imprtrs with the same key)
4286 			 * of "first" and suspend them.
4287 			 * All importers with same key fall in
4288 			 * the same bucket.
4289 			 */
4290 			num_importers = 0;
4291 			for (curp = p; curp; curp = curp->rsmrc_next) {
4292 				seg = (rsmseg_t *)curp;
4293 
4294 				rsmseglock_acquire(seg);
4295 
4296 				if ((seg->s_node != first->s_node) ||
4297 				    (seg->s_key != first->s_key) ||
4298 				    (seg->s_state == RSM_STATE_DISCONNECT)) {
4299 					/*
4300 					 * either not a peer segment or its a
4301 					 * disconnected segment - skip it
4302 					 */
4303 					rsmseglock_release(seg);
4304 					continue;
4305 				}
4306 
4307 				rsmseg_suspend(seg, &susp_flg);
4308 
4309 				if (susp_flg) { /* seg already suspended */
4310 					rsmseglock_release(seg);
4311 					break; /* the inner for loop */
4312 				}
4313 
4314 				num_importers++;
4315 				rsmsharelock_acquire(seg);
4316 				/*
4317 				 * we've processed all importers that are
4318 				 * siblings of "first"
4319 				 */
4320 				if (num_importers ==
4321 				    seg->s_share->rsmsi_refcnt) {
4322 					rsmsharelock_release(seg);
4323 					rsmseglock_release(seg);
4324 					break;
4325 				}
4326 				rsmsharelock_release(seg);
4327 				rsmseglock_release(seg);
4328 			}
4329 
4330 			/*
4331 			 * All the importers with the same key and
4332 			 * nodeid as "first" have been suspended.
4333 			 * Now suspend the shared connect/mapping.
4334 			 * This is done only once.
4335 			 */
4336 			if (!susp_flg) {
4337 				rsmsegshare_suspend(seg);
4338 			}
4339 		}
4340 	}
4341 
4342 	rw_exit(&rhash->rsmhash_rw);
4343 
4344 	/* send an ACK for SUSPEND message */
4345 	request.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_SUSPEND_DONE;
4346 	(void) rsmipc_send(src_node, &request, RSM_NO_REPLY);
4347 
4348 
4349 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importer_suspend done\n"));
4350 
4351 }
4352 
4353 static void
4354 rsmseg_suspend(rsmseg_t *seg, int *susp_flg)
4355 {
4356 	int		recheck_state;
4357 	rsmcookie_t	*hdl;
4358 	DBG_DEFINE(category,
4359 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4360 
4361 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4362 	    "rsmseg_suspend enter: key=%u\n", seg->s_key));
4363 
4364 	*susp_flg = 0;
4365 
4366 	ASSERT(rsmseglock_held(seg));
4367 	/* wait if putv/getv is in progress */
4368 	while (seg->s_rdmacnt > 0)
4369 		cv_wait(&seg->s_cv, &seg->s_lock);
4370 
4371 	do {
4372 		recheck_state = 0;
4373 
4374 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4375 		    "rsmseg_suspend:segment %x state=%d\n",
4376 		    seg->s_key, seg->s_state));
4377 
4378 		switch (seg->s_state) {
4379 		case RSM_STATE_NEW:
4380 			/* not a valid state */
4381 			break;
4382 		case RSM_STATE_CONNECTING:
4383 			seg->s_state = RSM_STATE_ABORT_CONNECT;
4384 			break;
4385 		case RSM_STATE_ABORT_CONNECT:
4386 			break;
4387 		case RSM_STATE_CONNECT:
4388 			seg->s_handle.in = NULL;
4389 			seg->s_state = RSM_STATE_CONN_QUIESCE;
4390 			break;
4391 		case RSM_STATE_MAPPING:
4392 			/* wait until segment leaves the mapping state */
4393 			while (seg->s_state == RSM_STATE_MAPPING)
4394 				cv_wait(&seg->s_cv, &seg->s_lock);
4395 			recheck_state = 1;
4396 			break;
4397 		case RSM_STATE_ACTIVE:
4398 			/* unload the mappings */
4399 			if (seg->s_ckl != NULL) {
4400 				hdl = seg->s_ckl;
4401 				for (; hdl != NULL; hdl = hdl->c_next) {
4402 					(void) devmap_unload(hdl->c_dhp,
4403 					    hdl->c_off, hdl->c_len);
4404 				}
4405 			}
4406 			seg->s_mapinfo = NULL;
4407 			seg->s_state = RSM_STATE_MAP_QUIESCE;
4408 			break;
4409 		case RSM_STATE_CONN_QUIESCE:
4410 			/* FALLTHRU */
4411 		case RSM_STATE_MAP_QUIESCE:
4412 			/* rsmseg_suspend already done for seg */
4413 			*susp_flg = 1;
4414 			break;
4415 		case RSM_STATE_DISCONNECT:
4416 			break;
4417 		default:
4418 			ASSERT(0); /* invalid state */
4419 		}
4420 	} while (recheck_state);
4421 
4422 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmseg_suspend done\n"));
4423 }
4424 
4425 static void
4426 rsmsegshare_suspend(rsmseg_t *seg)
4427 {
4428 	int			e;
4429 	adapter_t		*adapter;
4430 	rsm_import_share_t	*sharedp;
4431 	DBG_DEFINE(category,
4432 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4433 
4434 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4435 	    "rsmsegshare_suspend enter\n"));
4436 
4437 	rsmseglock_acquire(seg);
4438 	rsmsharelock_acquire(seg);
4439 
4440 	sharedp = seg->s_share;
4441 	adapter = seg->s_adapter;
4442 	switch (sharedp->rsmsi_state) {
4443 	case RSMSI_STATE_NEW:
4444 		break;
4445 	case RSMSI_STATE_CONNECTING:
4446 		sharedp->rsmsi_state = RSMSI_STATE_ABORT_CONNECT;
4447 		break;
4448 	case RSMSI_STATE_ABORT_CONNECT:
4449 		break;
4450 	case RSMSI_STATE_CONNECTED:
4451 		/* do the rsmpi disconnect */
4452 		if (sharedp->rsmsi_node != my_nodeid) {
4453 			e = adapter->rsmpi_ops->
4454 			    rsm_disconnect(sharedp->rsmsi_handle);
4455 
4456 			DBG_PRINTF((category, RSM_DEBUG,
4457 			    "rsm:rsmpi disconnect seg=%x:err=%d\n",
4458 			    sharedp->rsmsi_segid, e));
4459 		}
4460 
4461 		sharedp->rsmsi_handle = NULL;
4462 
4463 		sharedp->rsmsi_state = RSMSI_STATE_CONN_QUIESCE;
4464 		break;
4465 	case RSMSI_STATE_CONN_QUIESCE:
4466 		break;
4467 	case RSMSI_STATE_MAPPED:
4468 		/* do the rsmpi unmap and disconnect */
4469 		if (sharedp->rsmsi_node != my_nodeid) {
4470 			e = adapter->rsmpi_ops->rsm_unmap(seg->s_handle.in);
4471 
4472 			DBG_PRINTF((category, RSM_DEBUG,
4473 			    "rsmshare_suspend: rsmpi unmap %d\n", e));
4474 
4475 			e = adapter->rsmpi_ops->
4476 			    rsm_disconnect(sharedp->rsmsi_handle);
4477 			DBG_PRINTF((category, RSM_DEBUG,
4478 			    "rsm:rsmpi disconnect seg=%x:err=%d\n",
4479 			    sharedp->rsmsi_segid, e));
4480 		}
4481 
4482 		sharedp->rsmsi_handle = NULL;
4483 
4484 		sharedp->rsmsi_state = RSMSI_STATE_MAP_QUIESCE;
4485 		break;
4486 	case RSMSI_STATE_MAP_QUIESCE:
4487 		break;
4488 	case RSMSI_STATE_DISCONNECTED:
4489 		break;
4490 	default:
4491 		ASSERT(0); /* invalid state */
4492 	}
4493 
4494 	rsmsharelock_release(seg);
4495 	rsmseglock_release(seg);
4496 
4497 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4498 	    "rsmsegshare_suspend done\n"));
4499 }
4500 
4501 /*
4502  * This should get called on receiving a RESUME message or from
4503  * the pathmanger if the node undergoing DR dies.
4504  */
4505 static void
4506 importer_resume(rsm_node_id_t src_node)
4507 {
4508 	int		i;
4509 	rsmresource_t	*p = NULL;
4510 	rsmhash_table_t *rhash = &rsm_import_segs;
4511 	void		*cookie;
4512 	DBG_DEFINE(category,
4513 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4514 
4515 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importer_resume enter\n"));
4516 
4517 	rw_enter(&rhash->rsmhash_rw, RW_READER);
4518 
4519 	for (i = 0; i < rsm_hash_size; i++) {
4520 		p = rhash->bucket[i];
4521 
4522 		for (; p; p = p->rsmrc_next) {
4523 			rsmseg_t *seg = (rsmseg_t *)p;
4524 
4525 			rsmseglock_acquire(seg);
4526 
4527 			/* process only importers of node undergoing DR */
4528 			if (seg->s_node != src_node) {
4529 				rsmseglock_release(seg);
4530 				continue;
4531 			}
4532 
4533 			if (rsmseg_resume(seg, &cookie) != RSM_SUCCESS) {
4534 				rsmipc_request_t	request;
4535 				/*
4536 				 * rsmpi map/connect failed
4537 				 * inform the exporter so that it can
4538 				 * remove the importer.
4539 				 */
4540 				request.rsmipc_hdr.rsmipc_type =
4541 				    RSMIPC_MSG_NOTIMPORTING;
4542 				request.rsmipc_key = seg->s_segid;
4543 				request.rsmipc_segment_cookie = cookie;
4544 				rsmseglock_release(seg);
4545 				(void) rsmipc_send(seg->s_node, &request,
4546 				    RSM_NO_REPLY);
4547 			} else {
4548 				rsmseglock_release(seg);
4549 			}
4550 		}
4551 	}
4552 
4553 	rw_exit(&rhash->rsmhash_rw);
4554 
4555 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importer_resume done\n"));
4556 }
4557 
4558 static int
4559 rsmseg_resume(rsmseg_t *seg, void **cookie)
4560 {
4561 	int			e;
4562 	int			retc;
4563 	off_t			dev_offset;
4564 	size_t			maplen;
4565 	uint_t			maxprot;
4566 	rsm_mapinfo_t		*p;
4567 	rsmcookie_t		*hdl;
4568 	rsm_import_share_t	*sharedp;
4569 	DBG_DEFINE(category,
4570 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4571 
4572 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4573 	    "rsmseg_resume enter: key=%u\n", seg->s_key));
4574 
4575 	*cookie = NULL;
4576 
4577 	ASSERT(rsmseglock_held(seg));
4578 
4579 	if ((seg->s_state != RSM_STATE_CONN_QUIESCE) &&
4580 	    (seg->s_state != RSM_STATE_MAP_QUIESCE)) {
4581 		return (RSM_SUCCESS);
4582 	}
4583 
4584 	sharedp = seg->s_share;
4585 
4586 	rsmsharelock_acquire(seg);
4587 
4588 	/* resume the shared connection and/or mapping */
4589 	retc = rsmsegshare_resume(seg);
4590 
4591 	if (seg->s_state == RSM_STATE_CONN_QUIESCE) {
4592 		/* shared state can either be connected or mapped */
4593 		if ((sharedp->rsmsi_state == RSMSI_STATE_CONNECTED) ||
4594 		    (sharedp->rsmsi_state == RSMSI_STATE_MAPPED)) {
4595 			ASSERT(retc == RSM_SUCCESS);
4596 			seg->s_handle.in = sharedp->rsmsi_handle;
4597 			rsmsharelock_release(seg);
4598 			seg->s_state = RSM_STATE_CONNECT;
4599 
4600 		} else { /* error in rsmpi connect during resume */
4601 			seg->s_handle.in = NULL;
4602 			seg->s_state = RSM_STATE_DISCONNECT;
4603 
4604 			sharedp->rsmsi_refcnt--;
4605 			cookie = (void *)sharedp->rsmsi_cookie;
4606 
4607 			if (sharedp->rsmsi_refcnt == 0) {
4608 				ASSERT(sharedp->rsmsi_mapcnt == 0);
4609 				rsmsharelock_release(seg);
4610 
4611 				/* clean up the shared data structure */
4612 				mutex_destroy(&sharedp->rsmsi_lock);
4613 				cv_destroy(&sharedp->rsmsi_cv);
4614 				kmem_free((void *)(sharedp),
4615 				    sizeof (rsm_import_share_t));
4616 
4617 			} else {
4618 				rsmsharelock_release(seg);
4619 			}
4620 			/*
4621 			 * The following needs to be done after any
4622 			 * rsmsharelock calls which use seg->s_share.
4623 			 */
4624 			seg->s_share = NULL;
4625 		}
4626 
4627 		/* signal any waiting segment */
4628 		cv_broadcast(&seg->s_cv);
4629 
4630 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4631 		    "rsmseg_resume done:state=%d\n", seg->s_state));
4632 		return (retc);
4633 	}
4634 
4635 	ASSERT(seg->s_state == RSM_STATE_MAP_QUIESCE);
4636 
4637 	/* Setup protections for remap */
4638 	maxprot = PROT_USER;
4639 	if (seg->s_mode & RSM_PERM_READ) {
4640 		maxprot |= PROT_READ;
4641 	}
4642 	if (seg->s_mode & RSM_PERM_WRITE) {
4643 		maxprot |= PROT_WRITE;
4644 	}
4645 
4646 	if (sharedp->rsmsi_state != RSMSI_STATE_MAPPED) {
4647 		/* error in rsmpi connect or map during resume */
4648 
4649 		/* remap to trash page */
4650 		ASSERT(seg->s_ckl != NULL);
4651 
4652 		for (hdl = seg->s_ckl; hdl != NULL; hdl = hdl->c_next) {
4653 			e = devmap_umem_remap(hdl->c_dhp, rsm_dip,
4654 			    remap_cookie, hdl->c_off, hdl->c_len,
4655 			    maxprot, 0, NULL);
4656 
4657 			DBG_PRINTF((category, RSM_ERR,
4658 			    "rsmseg_resume:remap=%d\n", e));
4659 		}
4660 
4661 		seg->s_handle.in = NULL;
4662 		seg->s_state = RSM_STATE_DISCONNECT;
4663 
4664 		sharedp->rsmsi_refcnt--;
4665 
4666 		sharedp->rsmsi_mapcnt--;
4667 		seg->s_mapinfo = NULL;
4668 
4669 		if (sharedp->rsmsi_refcnt == 0) {
4670 			ASSERT(sharedp->rsmsi_mapcnt == 0);
4671 			rsmsharelock_release(seg);
4672 
4673 			/* clean up the shared data structure */
4674 			mutex_destroy(&sharedp->rsmsi_lock);
4675 			cv_destroy(&sharedp->rsmsi_cv);
4676 			kmem_free((void *)(sharedp),
4677 			    sizeof (rsm_import_share_t));
4678 
4679 		} else {
4680 			rsmsharelock_release(seg);
4681 		}
4682 		/*
4683 		 * The following needs to be done after any
4684 		 * rsmsharelock calls which use seg->s_share.
4685 		 */
4686 		seg->s_share = NULL;
4687 
4688 		/* signal any waiting segment */
4689 		cv_broadcast(&seg->s_cv);
4690 
4691 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4692 		    "rsmseg_resume done:seg=%x,err=%d\n",
4693 		    seg->s_key, retc));
4694 		return (retc);
4695 
4696 	}
4697 
4698 	seg->s_handle.in = sharedp->rsmsi_handle;
4699 
4700 	if (seg->s_node == my_nodeid) { /* loopback */
4701 		ASSERT(seg->s_mapinfo == NULL);
4702 
4703 		for (hdl = seg->s_ckl; hdl != NULL; hdl = hdl->c_next) {
4704 			e = devmap_umem_remap(hdl->c_dhp,
4705 			    rsm_dip, seg->s_cookie,
4706 			    hdl->c_off, hdl->c_len,
4707 			    maxprot, 0, NULL);
4708 
4709 			DBG_PRINTF((category, RSM_ERR,
4710 			    "rsmseg_resume:remap=%d\n", e));
4711 		}
4712 	} else { /* remote exporter */
4713 		/* remap to the new rsmpi maps */
4714 		seg->s_mapinfo = sharedp->rsmsi_mapinfo;
4715 
4716 		for (hdl = seg->s_ckl; hdl != NULL; hdl = hdl->c_next) {
4717 			p = rsm_get_mapinfo(seg, hdl->c_off, hdl->c_len,
4718 			    &dev_offset, &maplen);
4719 			e = devmap_devmem_remap(hdl->c_dhp,
4720 			    p->dip, p->dev_register, dev_offset,
4721 			    maplen, maxprot, 0, NULL);
4722 
4723 			DBG_PRINTF((category, RSM_ERR,
4724 			    "rsmseg_resume:remap=%d\n", e));
4725 		}
4726 	}
4727 
4728 	rsmsharelock_release(seg);
4729 
4730 	seg->s_state = RSM_STATE_ACTIVE;
4731 	cv_broadcast(&seg->s_cv);
4732 
4733 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmseg_resume done\n"));
4734 
4735 	return (retc);
4736 }
4737 
4738 static int
4739 rsmsegshare_resume(rsmseg_t *seg)
4740 {
4741 	int			e = RSM_SUCCESS;
4742 	adapter_t		*adapter;
4743 	rsm_import_share_t	*sharedp;
4744 	DBG_DEFINE(category,
4745 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4746 
4747 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmsegshare_resume enter\n"));
4748 
4749 	ASSERT(rsmseglock_held(seg));
4750 	ASSERT(rsmsharelock_held(seg));
4751 
4752 	sharedp = seg->s_share;
4753 
4754 	/*
4755 	 * If we are not in a xxxx_QUIESCE state that means shared
4756 	 * connect/mapping processing has been already been done
4757 	 * so return success.
4758 	 */
4759 	if ((sharedp->rsmsi_state != RSMSI_STATE_CONN_QUIESCE) &&
4760 	    (sharedp->rsmsi_state != RSMSI_STATE_MAP_QUIESCE)) {
4761 		return (RSM_SUCCESS);
4762 	}
4763 
4764 	adapter = seg->s_adapter;
4765 
4766 	if (sharedp->rsmsi_node != my_nodeid) {
4767 		rsm_addr_t	hwaddr;
4768 		hwaddr = get_remote_hwaddr(adapter, sharedp->rsmsi_node);
4769 
4770 		e = adapter->rsmpi_ops->rsm_connect(
4771 		    adapter->rsmpi_handle, hwaddr,
4772 		    sharedp->rsmsi_segid, &sharedp->rsmsi_handle);
4773 
4774 		DBG_PRINTF((category, RSM_DEBUG,
4775 		    "rsmsegshare_resume:rsmpi connect seg=%x:err=%d\n",
4776 		    sharedp->rsmsi_segid, e));
4777 
4778 		if (e != RSM_SUCCESS) {
4779 			/* when do we send the NOT_IMPORTING message */
4780 			sharedp->rsmsi_handle = NULL;
4781 			sharedp->rsmsi_state = RSMSI_STATE_DISCONNECTED;
4782 			/* signal any waiting segment */
4783 			cv_broadcast(&sharedp->rsmsi_cv);
4784 			return (e);
4785 		}
4786 	}
4787 
4788 	if (sharedp->rsmsi_state == RSMSI_STATE_CONN_QUIESCE) {
4789 		sharedp->rsmsi_state = RSMSI_STATE_CONNECTED;
4790 		/* signal any waiting segment */
4791 		cv_broadcast(&sharedp->rsmsi_cv);
4792 		return (e);
4793 	}
4794 
4795 	ASSERT(sharedp->rsmsi_state == RSMSI_STATE_MAP_QUIESCE);
4796 
4797 	/* do the rsmpi map of the whole segment here */
4798 	if (sharedp->rsmsi_node != my_nodeid) {
4799 		size_t mapped_len;
4800 		rsm_mapinfo_t *p;
4801 
4802 		/*
4803 		 * We need to do rsmpi maps with <off, lens> identical to
4804 		 * the old mapinfo list because the segment mapping handles
4805 		 * dhp and such need the fragmentation of rsmpi maps to be
4806 		 * identical to what it was during the mmap of the segment
4807 		 */
4808 		p = sharedp->rsmsi_mapinfo;
4809 
4810 		while (p != NULL) {
4811 			mapped_len = 0;
4812 
4813 			e = adapter->rsmpi_ops->rsm_map(
4814 			    sharedp->rsmsi_handle, p->start_offset,
4815 			    p->individual_len, &mapped_len,
4816 			    &p->dip, &p->dev_register, &p->dev_offset,
4817 			    NULL, NULL);
4818 
4819 			if (e != 0) {
4820 				DBG_PRINTF((category, RSM_ERR,
4821 				    "rsmsegshare_resume: rsmpi map err=%d\n",
4822 				    e));
4823 				break;
4824 			}
4825 
4826 			if (mapped_len != p->individual_len) {
4827 				DBG_PRINTF((category, RSM_ERR,
4828 				    "rsmsegshare_resume: rsmpi maplen"
4829 				    "< reqlen=%lx\n", mapped_len));
4830 				e = RSMERR_BAD_LENGTH;
4831 				break;
4832 			}
4833 
4834 			p = p->next;
4835 
4836 		}
4837 
4838 
4839 		if (e != RSM_SUCCESS) { /* rsmpi map failed */
4840 			int	err;
4841 			/* Check if this is the first rsm_map */
4842 			if (p != sharedp->rsmsi_mapinfo) {
4843 				/*
4844 				 * A single rsm_unmap undoes multiple rsm_maps.
4845 				 */
4846 				(void) seg->s_adapter->rsmpi_ops->
4847 				    rsm_unmap(sharedp->rsmsi_handle);
4848 			}
4849 
4850 			rsm_free_mapinfo(sharedp->rsmsi_mapinfo);
4851 			sharedp->rsmsi_mapinfo = NULL;
4852 
4853 			err = adapter->rsmpi_ops->
4854 			    rsm_disconnect(sharedp->rsmsi_handle);
4855 
4856 			DBG_PRINTF((category, RSM_DEBUG,
4857 			    "rsmsegshare_resume:disconn seg=%x:err=%d\n",
4858 			    sharedp->rsmsi_segid, err));
4859 
4860 			sharedp->rsmsi_handle = NULL;
4861 			sharedp->rsmsi_state = RSMSI_STATE_DISCONNECTED;
4862 
4863 			/* signal the waiting segments */
4864 			cv_broadcast(&sharedp->rsmsi_cv);
4865 			DBG_PRINTF((category, RSM_DEBUG,
4866 			    "rsmsegshare_resume done: rsmpi map err\n"));
4867 			return (e);
4868 		}
4869 	}
4870 
4871 	sharedp->rsmsi_state = RSMSI_STATE_MAPPED;
4872 
4873 	/* signal any waiting segment */
4874 	cv_broadcast(&sharedp->rsmsi_cv);
4875 
4876 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmsegshare_resume done\n"));
4877 
4878 	return (e);
4879 }
4880 
4881 /*
4882  * this is the routine that gets called by recv_taskq which is the
4883  * thread that processes messages that are flow-controlled.
4884  */
4885 static void
4886 rsm_intr_proc_deferred(void *arg)
4887 {
4888 	path_t			*path = (path_t *)arg;
4889 	rsmipc_request_t	*msg;
4890 	rsmipc_msghdr_t		*msghdr;
4891 	rsm_node_id_t		src_node;
4892 	msgbuf_elem_t		*head;
4893 	int			e;
4894 	DBG_DEFINE(category,
4895 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4896 
4897 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4898 	    "rsm_intr_proc_deferred enter\n"));
4899 
4900 	mutex_enter(&path->mutex);
4901 
4902 	/* use the head of the msgbuf_queue */
4903 	head = rsmka_gethead_msgbuf(path);
4904 
4905 	mutex_exit(&path->mutex);
4906 
4907 	msg = (rsmipc_request_t *)&(head->msg);
4908 	msghdr = (rsmipc_msghdr_t *)msg;
4909 
4910 	src_node = msghdr->rsmipc_src;
4911 
4912 	/*
4913 	 * messages that need to send a reply should check the message version
4914 	 * before processing the message. And all messages that need to
4915 	 * send a reply should be processed here by the worker thread.
4916 	 */
4917 	switch (msghdr->rsmipc_type) {
4918 	case RSMIPC_MSG_SEGCONNECT:
4919 		if (msghdr->rsmipc_version != RSM_VERSION) {
4920 			rsmipc_reply_t reply;
4921 			reply.rsmipc_status = RSMERR_BAD_DRIVER_VERSION;
4922 			reply.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_REPLY;
4923 			reply.rsmipc_hdr.rsmipc_cookie = msghdr->rsmipc_cookie;
4924 			(void) rsmipc_send(msghdr->rsmipc_src, NULL, &reply);
4925 		} else {
4926 			rsm_intr_segconnect(src_node, msg);
4927 		}
4928 		break;
4929 	case RSMIPC_MSG_DISCONNECT:
4930 		rsm_force_unload(src_node, msg->rsmipc_key, DISCONNECT);
4931 		break;
4932 	case RSMIPC_MSG_SUSPEND:
4933 		importer_suspend(src_node);
4934 		break;
4935 	case RSMIPC_MSG_SUSPEND_DONE:
4936 		rsm_suspend_complete(src_node, 0);
4937 		break;
4938 	case RSMIPC_MSG_RESUME:
4939 		importer_resume(src_node);
4940 		break;
4941 	default:
4942 		ASSERT(0);
4943 	}
4944 
4945 	mutex_enter(&path->mutex);
4946 
4947 	rsmka_dequeue_msgbuf(path);
4948 
4949 	/* incr procmsg_cnt can be at most RSMIPC_MAX_MESSAGES */
4950 	if (path->procmsg_cnt < RSMIPC_MAX_MESSAGES)
4951 		path->procmsg_cnt++;
4952 
4953 	ASSERT(path->procmsg_cnt <= RSMIPC_MAX_MESSAGES);
4954 
4955 	/* No need to send credits if path is going down */
4956 	if ((path->state == RSMKA_PATH_ACTIVE) &&
4957 	    (path->procmsg_cnt >= RSMIPC_LOTSFREE_MSGBUFS)) {
4958 		/*
4959 		 * send credits and reset procmsg_cnt if success otherwise
4960 		 * credits will be sent after processing the next message
4961 		 */
4962 		e = rsmipc_send_controlmsg(path, RSMIPC_MSG_CREDIT);
4963 		if (e == 0)
4964 			path->procmsg_cnt = 0;
4965 		else
4966 			DBG_PRINTF((category, RSM_ERR,
4967 			    "rsm_intr_proc_deferred:send credits err=%d\n", e));
4968 	}
4969 
4970 	/*
4971 	 * decrement the path refcnt since we incremented it in
4972 	 * rsm_intr_callback_dispatch
4973 	 */
4974 	PATH_RELE_NOLOCK(path);
4975 
4976 	mutex_exit(&path->mutex);
4977 
4978 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4979 	    "rsm_intr_proc_deferred done\n"));
4980 }
4981 
4982 /*
4983  * Flow-controlled messages are enqueued and dispatched onto a taskq here
4984  */
4985 static void
4986 rsm_intr_callback_dispatch(void *data, rsm_addr_t src_hwaddr,
4987     rsm_intr_hand_arg_t arg)
4988 {
4989 	srv_handler_arg_t	*hdlr_argp = (srv_handler_arg_t *)arg;
4990 	path_t			*path;
4991 	rsmipc_msghdr_t *msghdr = (rsmipc_msghdr_t *)data;
4992 	DBG_DEFINE(category,
4993 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
4994 
4995 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
4996 	    "rsm_intr_callback_dispatch enter\n"));
4997 	ASSERT(data && hdlr_argp);
4998 
4999 	/* look up the path - incr the path refcnt */
5000 	path = rsm_find_path(hdlr_argp->adapter_name,
5001 	    hdlr_argp->adapter_instance, src_hwaddr);
5002 
5003 	/* the path has been removed - drop this message */
5004 	if (path == NULL) {
5005 		DBG_PRINTF((category, RSM_DEBUG,
5006 		    "rsm_intr_callback_dispatch done: msg dropped\n"));
5007 		return;
5008 	}
5009 	/* the path is not active - don't accept new messages */
5010 	if (path->state != RSMKA_PATH_ACTIVE) {
5011 		PATH_RELE_NOLOCK(path);
5012 		mutex_exit(&path->mutex);
5013 		DBG_PRINTF((category, RSM_DEBUG,
5014 		    "rsm_intr_callback_dispatch done: msg dropped"
5015 		    " path=%lx !ACTIVE\n", path));
5016 		return;
5017 	}
5018 
5019 	/*
5020 	 * Check if this message was sent to an older incarnation
5021 	 * of the path/sendq.
5022 	 */
5023 	if (path->local_incn != msghdr->rsmipc_incn) {
5024 		/* decrement the refcnt */
5025 		PATH_RELE_NOLOCK(path);
5026 		mutex_exit(&path->mutex);
5027 		DBG_PRINTF((category, RSM_DEBUG,
5028 		    "rsm_intr_callback_dispatch done: old incn %lld\n",
5029 		    msghdr->rsmipc_incn));
5030 		return;
5031 	}
5032 
5033 	/* copy and enqueue msg on the path's msgbuf queue */
5034 	rsmka_enqueue_msgbuf(path, data);
5035 
5036 	/*
5037 	 * schedule task to process messages - ignore retval from
5038 	 * task_dispatch because we sender cannot send more than
5039 	 * what receiver can handle.
5040 	 */
5041 	(void) taskq_dispatch(path->recv_taskq,
5042 	    rsm_intr_proc_deferred, path, KM_NOSLEEP);
5043 
5044 	mutex_exit(&path->mutex);
5045 
5046 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5047 	    "rsm_intr_callback_dispatch done\n"));
5048 }
5049 
5050 /*
5051  * This procedure is called from rsm_srv_func when a remote node creates a
5052  * a send queue.  This event is used as a hint that an  earlier failed
5053  * attempt to create a send queue to that remote node may now succeed and
5054  * should be retried.  Indication of an earlier failed attempt is provided
5055  * by the RSMKA_SQCREATE_PENDING flag.
5056  */
5057 static void
5058 rsm_sqcreateop_callback(rsm_addr_t src_hwaddr, rsm_intr_hand_arg_t arg)
5059 {
5060 	srv_handler_arg_t	*hdlr_argp = (srv_handler_arg_t *)arg;
5061 	path_t			*path;
5062 	DBG_DEFINE(category,
5063 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
5064 
5065 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5066 	    "rsm_sqcreateop_callback enter\n"));
5067 
5068 	/* look up the path - incr the path refcnt */
5069 	path = rsm_find_path(hdlr_argp->adapter_name,
5070 	    hdlr_argp->adapter_instance, src_hwaddr);
5071 
5072 	if (path == NULL) {
5073 		DBG_PRINTF((category, RSM_DEBUG,
5074 		    "rsm_sqcreateop_callback done: no path\n"));
5075 		return;
5076 	}
5077 
5078 	if ((path->state == RSMKA_PATH_UP) &&
5079 	    (path->flags & RSMKA_SQCREATE_PENDING)) {
5080 		/*
5081 		 * previous attempt to create sendq had failed, retry
5082 		 * it and move to RSMKA_PATH_ACTIVE state if successful.
5083 		 * the refcnt will be decremented in the do_deferred_work
5084 		 */
5085 		(void) rsmka_do_path_active(path, RSMKA_NO_SLEEP);
5086 	} else {
5087 		/* decrement the refcnt */
5088 		PATH_RELE_NOLOCK(path);
5089 	}
5090 	mutex_exit(&path->mutex);
5091 
5092 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5093 	    "rsm_sqcreateop_callback done\n"));
5094 }
5095 
5096 static void
5097 rsm_intr_callback(void *data, rsm_addr_t src_hwaddr, rsm_intr_hand_arg_t arg)
5098 {
5099 	rsmipc_msghdr_t *msghdr = (rsmipc_msghdr_t *)data;
5100 	rsmipc_request_t *msg = (rsmipc_request_t *)data;
5101 	rsmipc_controlmsg_t *ctrlmsg = (rsmipc_controlmsg_t *)data;
5102 	rsm_node_id_t src_node;
5103 	DBG_DEFINE(category,
5104 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
5105 
5106 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_intr_callback enter:"
5107 	    "src=%d, type=%d\n", msghdr->rsmipc_src,
5108 	    msghdr->rsmipc_type));
5109 
5110 	/*
5111 	 * Check for the version number in the msg header. If it is not
5112 	 * RSM_VERSION, drop the message. In the future, we need to manage
5113 	 * incompatible version numbers in some way
5114 	 */
5115 	if (msghdr->rsmipc_version != RSM_VERSION) {
5116 		DBG_PRINTF((category, RSM_ERR, "wrong KA version\n"));
5117 		/*
5118 		 * Drop requests that don't have a reply right here
5119 		 * Request with reply will send a BAD_VERSION reply
5120 		 * when they get processed by the worker thread.
5121 		 */
5122 		if (msghdr->rsmipc_type != RSMIPC_MSG_SEGCONNECT) {
5123 			return;
5124 		}
5125 
5126 	}
5127 
5128 	src_node = msghdr->rsmipc_src;
5129 
5130 	switch (msghdr->rsmipc_type) {
5131 	case RSMIPC_MSG_SEGCONNECT:
5132 	case RSMIPC_MSG_DISCONNECT:
5133 	case RSMIPC_MSG_SUSPEND:
5134 	case RSMIPC_MSG_SUSPEND_DONE:
5135 	case RSMIPC_MSG_RESUME:
5136 		/*
5137 		 * These message types are handled by a worker thread using
5138 		 * the flow-control algorithm.
5139 		 * Any message processing that does one or more of the
5140 		 * following should be handled in a worker thread.
5141 		 *	- allocates resources and might sleep
5142 		 *	- makes RSMPI calls down to the interconnect driver
5143 		 *	this by defn include requests with reply.
5144 		 *	- takes a long duration of time
5145 		 */
5146 		rsm_intr_callback_dispatch(data, src_hwaddr, arg);
5147 		break;
5148 	case RSMIPC_MSG_NOTIMPORTING:
5149 		importer_list_rm(src_node, msg->rsmipc_key,
5150 		    msg->rsmipc_segment_cookie);
5151 		break;
5152 	case RSMIPC_MSG_SQREADY:
5153 		rsm_proc_sqready(data, src_hwaddr, arg);
5154 		break;
5155 	case RSMIPC_MSG_SQREADY_ACK:
5156 		rsm_proc_sqready_ack(data, src_hwaddr, arg);
5157 		break;
5158 	case RSMIPC_MSG_CREDIT:
5159 		rsm_add_credits(ctrlmsg, src_hwaddr, arg);
5160 		break;
5161 	case RSMIPC_MSG_REPLY:
5162 		rsm_intr_reply(msghdr);
5163 		break;
5164 	case RSMIPC_MSG_BELL:
5165 		rsm_intr_event(msg);
5166 		break;
5167 	case RSMIPC_MSG_IMPORTING:
5168 		importer_list_add(src_node, msg->rsmipc_key,
5169 		    msg->rsmipc_adapter_hwaddr,
5170 		    msg->rsmipc_segment_cookie);
5171 		break;
5172 	case RSMIPC_MSG_REPUBLISH:
5173 		importer_update(src_node, msg->rsmipc_key, msg->rsmipc_perm);
5174 		break;
5175 	default:
5176 		DBG_PRINTF((category, RSM_DEBUG,
5177 		    "rsm_intr_callback: bad msg %lx type %d data %lx\n",
5178 		    (size_t)msg, (int)(msghdr->rsmipc_type), (size_t)data));
5179 	}
5180 
5181 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_intr_callback done\n"));
5182 
5183 }
5184 
5185 rsm_intr_hand_ret_t rsm_srv_func(rsm_controller_object_t *chd,
5186     rsm_intr_q_op_t opcode, rsm_addr_t src,
5187     void *data, size_t size, rsm_intr_hand_arg_t arg)
5188 {
5189 	DBG_DEFINE(category,
5190 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
5191 
5192 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_srv_func enter\n"));
5193 
5194 	switch (opcode) {
5195 	case RSM_INTR_Q_OP_CREATE:
5196 		DBG_PRINTF((category, RSM_DEBUG, "rsm_srv_func:OP_CREATE\n"));
5197 		rsm_sqcreateop_callback(src, arg);
5198 		break;
5199 	case RSM_INTR_Q_OP_DESTROY:
5200 		DBG_PRINTF((category, RSM_DEBUG, "rsm_srv_func:OP_DESTROY\n"));
5201 		break;
5202 	case RSM_INTR_Q_OP_RECEIVE:
5203 		rsm_intr_callback(data, src, arg);
5204 		break;
5205 	default:
5206 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5207 		    "rsm_srv_func: unknown opcode = %x\n", opcode));
5208 	}
5209 
5210 	chd = chd;
5211 	size = size;
5212 
5213 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_srv_func done\n"));
5214 
5215 	return (RSM_INTR_HAND_CLAIMED);
5216 }
5217 
5218 /* *************************** IPC slots ************************* */
5219 static rsmipc_slot_t *
5220 rsmipc_alloc()
5221 {
5222 	int i;
5223 	rsmipc_slot_t *slot;
5224 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
5225 
5226 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmipc_alloc enter\n"));
5227 
5228 	/* try to find a free slot, if not wait */
5229 	mutex_enter(&rsm_ipc.lock);
5230 
5231 	while (rsm_ipc.count == 0) {
5232 		rsm_ipc.wanted = 1;
5233 		cv_wait(&rsm_ipc.cv, &rsm_ipc.lock);
5234 	}
5235 
5236 	/* An empty slot is available, find it */
5237 	slot = &rsm_ipc.slots[0];
5238 	for (i = 0; i < RSMIPC_SZ; i++, slot++) {
5239 		if (RSMIPC_GET(slot, RSMIPC_FREE)) {
5240 			RSMIPC_CLEAR(slot, RSMIPC_FREE);
5241 			break;
5242 		}
5243 	}
5244 
5245 	ASSERT(i < RSMIPC_SZ);
5246 	rsm_ipc.count--;	/* one less is available */
5247 	rsm_ipc.sequence++; /* new sequence */
5248 
5249 	slot->rsmipc_cookie.ic.sequence = (uint_t)rsm_ipc.sequence;
5250 	slot->rsmipc_cookie.ic.index = (uint_t)i;
5251 
5252 	mutex_exit(&rsm_ipc.lock);
5253 
5254 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmipc_alloc done\n"));
5255 
5256 	return (slot);
5257 }
5258 
5259 static void
5260 rsmipc_free(rsmipc_slot_t *slot)
5261 {
5262 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
5263 
5264 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmipc_free enter\n"));
5265 
5266 	ASSERT(MUTEX_HELD(&slot->rsmipc_lock));
5267 	ASSERT(&rsm_ipc.slots[slot->rsmipc_cookie.ic.index] == slot);
5268 
5269 	mutex_enter(&rsm_ipc.lock);
5270 
5271 	RSMIPC_SET(slot, RSMIPC_FREE);
5272 
5273 	slot->rsmipc_cookie.ic.sequence = 0;
5274 
5275 	mutex_exit(&slot->rsmipc_lock);
5276 	rsm_ipc.count++;
5277 	ASSERT(rsm_ipc.count <= RSMIPC_SZ);
5278 	if (rsm_ipc.wanted) {
5279 		rsm_ipc.wanted = 0;
5280 		cv_broadcast(&rsm_ipc.cv);
5281 	}
5282 
5283 	mutex_exit(&rsm_ipc.lock);
5284 
5285 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmipc_free done\n"));
5286 }
5287 
5288 static int
5289 rsmipc_send(rsm_node_id_t dest, rsmipc_request_t *req, rsmipc_reply_t *reply)
5290 {
5291 	int		e = 0;
5292 	int		credit_check = 0;
5293 	int		retry_cnt = 0;
5294 	int		min_retry_cnt = 10;
5295 	rsm_send_t	is;
5296 	rsmipc_slot_t	*rslot;
5297 	adapter_t	*adapter;
5298 	path_t		*path;
5299 	sendq_token_t	*sendq_token;
5300 	sendq_token_t	*used_sendq_token = NULL;
5301 	rsm_send_q_handle_t	ipc_handle;
5302 	DBG_DEFINE(category,
5303 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
5304 
5305 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmipc_send enter:dest=%d",
5306 	    dest));
5307 
5308 	/*
5309 	 * Check if this is a local case
5310 	 */
5311 	if (dest == my_nodeid) {
5312 		switch (req->rsmipc_hdr.rsmipc_type) {
5313 		case RSMIPC_MSG_SEGCONNECT:
5314 			reply->rsmipc_status = (short)rsmsegacl_validate(
5315 			    req, dest, reply);
5316 			break;
5317 		case RSMIPC_MSG_BELL:
5318 			req->rsmipc_hdr.rsmipc_src = dest;
5319 			rsm_intr_event(req);
5320 			break;
5321 		case RSMIPC_MSG_IMPORTING:
5322 			importer_list_add(dest, req->rsmipc_key,
5323 			    req->rsmipc_adapter_hwaddr,
5324 			    req->rsmipc_segment_cookie);
5325 			break;
5326 		case RSMIPC_MSG_NOTIMPORTING:
5327 			importer_list_rm(dest, req->rsmipc_key,
5328 			    req->rsmipc_segment_cookie);
5329 			break;
5330 		case RSMIPC_MSG_REPUBLISH:
5331 			importer_update(dest, req->rsmipc_key,
5332 			    req->rsmipc_perm);
5333 			break;
5334 		case RSMIPC_MSG_SUSPEND:
5335 			importer_suspend(dest);
5336 			break;
5337 		case RSMIPC_MSG_SUSPEND_DONE:
5338 			rsm_suspend_complete(dest, 0);
5339 			break;
5340 		case RSMIPC_MSG_RESUME:
5341 			importer_resume(dest);
5342 			break;
5343 		default:
5344 			ASSERT(0);
5345 		}
5346 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5347 		    "rsmipc_send done\n"));
5348 		return (0);
5349 	}
5350 
5351 	if (dest >= MAX_NODES) {
5352 		DBG_PRINTF((category, RSM_ERR,
5353 		    "rsm: rsmipc_send bad node number %x\n", dest));
5354 		return (RSMERR_REMOTE_NODE_UNREACHABLE);
5355 	}
5356 
5357 	/*
5358 	 * Oh boy! we are going remote.
5359 	 */
5360 
5361 	/*
5362 	 * identify if we need to have credits to send this message
5363 	 * - only selected requests are flow controlled
5364 	 */
5365 	if (req != NULL) {
5366 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5367 		    "rsmipc_send:request type=%d\n",
5368 		    req->rsmipc_hdr.rsmipc_type));
5369 
5370 		switch (req->rsmipc_hdr.rsmipc_type) {
5371 		case RSMIPC_MSG_SEGCONNECT:
5372 		case RSMIPC_MSG_DISCONNECT:
5373 		case RSMIPC_MSG_IMPORTING:
5374 		case RSMIPC_MSG_SUSPEND:
5375 		case RSMIPC_MSG_SUSPEND_DONE:
5376 		case RSMIPC_MSG_RESUME:
5377 			credit_check = 1;
5378 			break;
5379 		default:
5380 			credit_check = 0;
5381 		}
5382 	}
5383 
5384 again:
5385 	if (retry_cnt++ == min_retry_cnt) {
5386 		/* backoff before further retries for 10ms */
5387 		delay(drv_usectohz(10000));
5388 		retry_cnt = 0; /* reset retry_cnt */
5389 	}
5390 	sendq_token = rsmka_get_sendq_token(dest, used_sendq_token);
5391 	if (sendq_token == NULL) {
5392 		DBG_PRINTF((category, RSM_ERR,
5393 		    "rsm: rsmipc_send no device to reach node %d\n", dest));
5394 		return (RSMERR_REMOTE_NODE_UNREACHABLE);
5395 	}
5396 
5397 	if ((sendq_token == used_sendq_token) &&
5398 	    ((e == RSMERR_CONN_ABORTED) || (e == RSMERR_TIMEOUT) ||
5399 	    (e == RSMERR_COMM_ERR_MAYBE_DELIVERED))) {
5400 		rele_sendq_token(sendq_token);
5401 		DBG_PRINTF((category, RSM_DEBUG, "rsmipc_send done=%d\n", e));
5402 		return (RSMERR_CONN_ABORTED);
5403 	} else
5404 		used_sendq_token = sendq_token;
5405 
5406 /* lint -save -e413 */
5407 	path = SQ_TOKEN_TO_PATH(sendq_token);
5408 	adapter = path->local_adapter;
5409 /* lint -restore */
5410 	ipc_handle = sendq_token->rsmpi_sendq_handle;
5411 
5412 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5413 	    "rsmipc_send: path=%lx sendq_hdl=%lx\n", path, ipc_handle));
5414 
5415 	if (reply == NULL) {
5416 		/* Send request without ack */
5417 		/*
5418 		 * Set the rsmipc_version number in the msghdr for KA
5419 		 * communication versioning
5420 		 */
5421 		req->rsmipc_hdr.rsmipc_version = RSM_VERSION;
5422 		req->rsmipc_hdr.rsmipc_src = my_nodeid;
5423 		/*
5424 		 * remote endpoints incn should match the value in our
5425 		 * path's remote_incn field. No need to grab any lock
5426 		 * since we have refcnted the path in rsmka_get_sendq_token
5427 		 */
5428 		req->rsmipc_hdr.rsmipc_incn = path->remote_incn;
5429 
5430 		is.is_data = (void *)req;
5431 		is.is_size = sizeof (*req);
5432 		is.is_flags = RSM_INTR_SEND_DELIVER | RSM_INTR_SEND_SLEEP;
5433 		is.is_wait = 0;
5434 
5435 		if (credit_check) {
5436 			mutex_enter(&path->mutex);
5437 			/*
5438 			 * wait till we recv credits or path goes down. If path
5439 			 * goes down rsm_send will fail and we handle the error
5440 			 * then
5441 			 */
5442 			while ((sendq_token->msgbuf_avail == 0) &&
5443 			    (path->state == RSMKA_PATH_ACTIVE)) {
5444 				e = cv_wait_sig(&sendq_token->sendq_cv,
5445 				    &path->mutex);
5446 				if (e == 0) {
5447 					mutex_exit(&path->mutex);
5448 					no_reply_cnt++;
5449 					rele_sendq_token(sendq_token);
5450 					DBG_PRINTF((category, RSM_DEBUG,
5451 					    "rsmipc_send done: "
5452 					    "cv_wait INTERRUPTED"));
5453 					return (RSMERR_INTERRUPTED);
5454 				}
5455 			}
5456 
5457 			/*
5458 			 * path is not active retry on another path.
5459 			 */
5460 			if (path->state != RSMKA_PATH_ACTIVE) {
5461 				mutex_exit(&path->mutex);
5462 				rele_sendq_token(sendq_token);
5463 				e = RSMERR_CONN_ABORTED;
5464 				DBG_PRINTF((category, RSM_ERR,
5465 				    "rsm: rsmipc_send: path !ACTIVE"));
5466 				goto again;
5467 			}
5468 
5469 			ASSERT(sendq_token->msgbuf_avail > 0);
5470 
5471 			/*
5472 			 * reserve a msgbuf
5473 			 */
5474 			sendq_token->msgbuf_avail--;
5475 
5476 			mutex_exit(&path->mutex);
5477 
5478 			e = adapter->rsmpi_ops->rsm_send(ipc_handle, &is,
5479 			    NULL);
5480 
5481 			if (e != RSM_SUCCESS) {
5482 				mutex_enter(&path->mutex);
5483 				/*
5484 				 * release the reserved msgbuf since
5485 				 * the send failed
5486 				 */
5487 				sendq_token->msgbuf_avail++;
5488 				cv_broadcast(&sendq_token->sendq_cv);
5489 				mutex_exit(&path->mutex);
5490 			}
5491 		} else
5492 			e = adapter->rsmpi_ops->rsm_send(ipc_handle, &is,
5493 			    NULL);
5494 
5495 		no_reply_cnt++;
5496 		rele_sendq_token(sendq_token);
5497 		if (e != RSM_SUCCESS) {
5498 			DBG_PRINTF((category, RSM_ERR,
5499 			    "rsm: rsmipc_send no reply send"
5500 			    " err = %d no reply count = %d\n",
5501 			    e, no_reply_cnt));
5502 			ASSERT(e != RSMERR_QUEUE_FENCE_UP &&
5503 			    e != RSMERR_BAD_BARRIER_HNDL);
5504 			atomic_add_64(&rsm_ipcsend_errcnt, 1);
5505 			goto again;
5506 		} else {
5507 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5508 			    "rsmipc_send done\n"));
5509 			return (e);
5510 		}
5511 
5512 	}
5513 
5514 	if (req == NULL) {
5515 		/* Send reply - No flow control is done for reply */
5516 		/*
5517 		 * Set the version in the msg header for KA communication
5518 		 * versioning
5519 		 */
5520 		reply->rsmipc_hdr.rsmipc_version = RSM_VERSION;
5521 		reply->rsmipc_hdr.rsmipc_src = my_nodeid;
5522 		/* incn number is not used for reply msgs currently */
5523 		reply->rsmipc_hdr.rsmipc_incn = path->remote_incn;
5524 
5525 		is.is_data = (void *)reply;
5526 		is.is_size = sizeof (*reply);
5527 		is.is_flags = RSM_INTR_SEND_DELIVER | RSM_INTR_SEND_SLEEP;
5528 		is.is_wait = 0;
5529 		e = adapter->rsmpi_ops->rsm_send(ipc_handle, &is, NULL);
5530 		rele_sendq_token(sendq_token);
5531 		if (e != RSM_SUCCESS) {
5532 			DBG_PRINTF((category, RSM_ERR,
5533 			    "rsm: rsmipc_send reply send"
5534 			    " err = %d\n", e));
5535 			atomic_add_64(&rsm_ipcsend_errcnt, 1);
5536 			goto again;
5537 		} else {
5538 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5539 			    "rsmipc_send done\n"));
5540 			return (e);
5541 		}
5542 	}
5543 
5544 	/* Reply needed */
5545 	rslot = rsmipc_alloc(); /* allocate a new ipc slot */
5546 
5547 	mutex_enter(&rslot->rsmipc_lock);
5548 
5549 	rslot->rsmipc_data = (void *)reply;
5550 	RSMIPC_SET(rslot, RSMIPC_PENDING);
5551 
5552 	while (RSMIPC_GET(rslot, RSMIPC_PENDING)) {
5553 		/*
5554 		 * Set the rsmipc_version number in the msghdr for KA
5555 		 * communication versioning
5556 		 */
5557 		req->rsmipc_hdr.rsmipc_version = RSM_VERSION;
5558 		req->rsmipc_hdr.rsmipc_src = my_nodeid;
5559 		req->rsmipc_hdr.rsmipc_cookie = rslot->rsmipc_cookie;
5560 		/*
5561 		 * remote endpoints incn should match the value in our
5562 		 * path's remote_incn field. No need to grab any lock
5563 		 * since we have refcnted the path in rsmka_get_sendq_token
5564 		 */
5565 		req->rsmipc_hdr.rsmipc_incn = path->remote_incn;
5566 
5567 		is.is_data = (void *)req;
5568 		is.is_size = sizeof (*req);
5569 		is.is_flags = RSM_INTR_SEND_DELIVER | RSM_INTR_SEND_SLEEP;
5570 		is.is_wait = 0;
5571 		if (credit_check) {
5572 
5573 			mutex_enter(&path->mutex);
5574 			/*
5575 			 * wait till we recv credits or path goes down. If path
5576 			 * goes down rsm_send will fail and we handle the error
5577 			 * then.
5578 			 */
5579 			while ((sendq_token->msgbuf_avail == 0) &&
5580 			    (path->state == RSMKA_PATH_ACTIVE)) {
5581 				e = cv_wait_sig(&sendq_token->sendq_cv,
5582 				    &path->mutex);
5583 				if (e == 0) {
5584 					mutex_exit(&path->mutex);
5585 					RSMIPC_CLEAR(rslot, RSMIPC_PENDING);
5586 					rsmipc_free(rslot);
5587 					rele_sendq_token(sendq_token);
5588 					DBG_PRINTF((category, RSM_DEBUG,
5589 					    "rsmipc_send done: "
5590 					    "cv_wait INTERRUPTED"));
5591 					return (RSMERR_INTERRUPTED);
5592 				}
5593 			}
5594 
5595 			/*
5596 			 * path is not active retry on another path.
5597 			 */
5598 			if (path->state != RSMKA_PATH_ACTIVE) {
5599 				mutex_exit(&path->mutex);
5600 				RSMIPC_CLEAR(rslot, RSMIPC_PENDING);
5601 				rsmipc_free(rslot);
5602 				rele_sendq_token(sendq_token);
5603 				e = RSMERR_CONN_ABORTED;
5604 				DBG_PRINTF((category, RSM_ERR,
5605 				    "rsm: rsmipc_send: path !ACTIVE"));
5606 				goto again;
5607 			}
5608 
5609 			ASSERT(sendq_token->msgbuf_avail > 0);
5610 
5611 			/*
5612 			 * reserve a msgbuf
5613 			 */
5614 			sendq_token->msgbuf_avail--;
5615 
5616 			mutex_exit(&path->mutex);
5617 
5618 			e = adapter->rsmpi_ops->rsm_send(ipc_handle, &is,
5619 			    NULL);
5620 
5621 			if (e != RSM_SUCCESS) {
5622 				mutex_enter(&path->mutex);
5623 				/*
5624 				 * release the reserved msgbuf since
5625 				 * the send failed
5626 				 */
5627 				sendq_token->msgbuf_avail++;
5628 				cv_broadcast(&sendq_token->sendq_cv);
5629 				mutex_exit(&path->mutex);
5630 			}
5631 		} else
5632 			e = adapter->rsmpi_ops->rsm_send(ipc_handle, &is,
5633 			    NULL);
5634 
5635 		if (e != RSM_SUCCESS) {
5636 			DBG_PRINTF((category, RSM_ERR,
5637 			    "rsm: rsmipc_send rsmpi send err = %d\n", e));
5638 			RSMIPC_CLEAR(rslot, RSMIPC_PENDING);
5639 			rsmipc_free(rslot);
5640 			rele_sendq_token(sendq_token);
5641 			atomic_add_64(&rsm_ipcsend_errcnt, 1);
5642 			goto again;
5643 		}
5644 
5645 		/* wait for a reply signal, a SIGINT, or 5 sec. timeout */
5646 		e = cv_reltimedwait_sig(&rslot->rsmipc_cv, &rslot->rsmipc_lock,
5647 		    drv_usectohz(5000000), TR_CLOCK_TICK);
5648 		if (e < 0) {
5649 			/* timed out - retry */
5650 			e = RSMERR_TIMEOUT;
5651 		} else if (e == 0) {
5652 			/* signalled - return error */
5653 			e = RSMERR_INTERRUPTED;
5654 			break;
5655 		} else {
5656 			e = RSM_SUCCESS;
5657 		}
5658 	}
5659 
5660 	RSMIPC_CLEAR(rslot, RSMIPC_PENDING);
5661 	rsmipc_free(rslot);
5662 	rele_sendq_token(sendq_token);
5663 
5664 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmipc_send done=%d\n", e));
5665 	return (e);
5666 }
5667 
5668 static int
5669 rsm_send_notimporting(rsm_node_id_t dest, rsm_memseg_id_t segid,  void *cookie)
5670 {
5671 	rsmipc_request_t request;
5672 
5673 	/*
5674 	 *  inform the exporter to delete this importer
5675 	 */
5676 	request.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_NOTIMPORTING;
5677 	request.rsmipc_key = segid;
5678 	request.rsmipc_segment_cookie = cookie;
5679 	return (rsmipc_send(dest, &request, RSM_NO_REPLY));
5680 }
5681 
5682 static void
5683 rsm_send_republish(rsm_memseg_id_t segid, rsmapi_access_entry_t	*acl,
5684     int acl_len, rsm_permission_t default_permission)
5685 {
5686 	int			i;
5687 	importing_token_t	*token;
5688 	rsmipc_request_t	request;
5689 	republish_token_t	*republish_list = NULL;
5690 	republish_token_t	*rp;
5691 	rsm_permission_t	permission;
5692 	int			index;
5693 
5694 	/*
5695 	 * send the new access mode to all the nodes that have imported
5696 	 * this segment.
5697 	 * If the new acl does not have a node that was present in
5698 	 * the old acl a access permission of 0 is sent.
5699 	 */
5700 
5701 	index = rsmhash(segid);
5702 
5703 	/*
5704 	 * create a list of node/permissions to send the republish message
5705 	 */
5706 	mutex_enter(&importer_list.lock);
5707 
5708 	token = importer_list.bucket[index];
5709 	while (token != NULL) {
5710 		if (segid == token->key) {
5711 			permission = default_permission;
5712 
5713 			for (i = 0; i < acl_len; i++) {
5714 				if (token->importing_node == acl[i].ae_node) {
5715 					permission = acl[i].ae_permission;
5716 					break;
5717 				}
5718 			}
5719 			rp = kmem_zalloc(sizeof (republish_token_t), KM_SLEEP);
5720 
5721 			rp->key = segid;
5722 			rp->importing_node = token->importing_node;
5723 			rp->permission = permission;
5724 			rp->next = republish_list;
5725 			republish_list = rp;
5726 		}
5727 		token = token->next;
5728 	}
5729 
5730 	mutex_exit(&importer_list.lock);
5731 
5732 	request.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_REPUBLISH;
5733 	request.rsmipc_key = segid;
5734 
5735 	while (republish_list != NULL) {
5736 		request.rsmipc_perm = republish_list->permission;
5737 		(void) rsmipc_send(republish_list->importing_node,
5738 		    &request, RSM_NO_REPLY);
5739 		rp = republish_list;
5740 		republish_list = republish_list->next;
5741 		kmem_free(rp, sizeof (republish_token_t));
5742 	}
5743 }
5744 
5745 static void
5746 rsm_send_suspend()
5747 {
5748 	int			i, e;
5749 	rsmipc_request_t 	request;
5750 	list_element_t		*tokp;
5751 	list_element_t		*head = NULL;
5752 	importing_token_t	*token;
5753 	DBG_PRINTF((RSM_KERNEL_AGENT | RSM_EXPORT, RSM_DEBUG_VERBOSE,
5754 	    "rsm_send_suspend enter\n"));
5755 
5756 	/*
5757 	 * create a list of node to send the suspend message
5758 	 *
5759 	 * Currently the whole importer list is scanned and we obtain
5760 	 * all the nodes - this basically gets all nodes that at least
5761 	 * import one segment from the local node.
5762 	 *
5763 	 * no need to grab the rsm_suspend_list lock here since we are
5764 	 * single threaded when suspend is called.
5765 	 */
5766 
5767 	mutex_enter(&importer_list.lock);
5768 	for (i = 0; i < rsm_hash_size; i++) {
5769 
5770 		token = importer_list.bucket[i];
5771 
5772 		while (token != NULL) {
5773 
5774 			tokp = head;
5775 
5776 			/*
5777 			 * make sure that the token's node
5778 			 * is not already on the suspend list
5779 			 */
5780 			while (tokp != NULL) {
5781 				if (tokp->nodeid == token->importing_node) {
5782 					break;
5783 				}
5784 				tokp = tokp->next;
5785 			}
5786 
5787 			if (tokp == NULL) { /* not in suspend list */
5788 				tokp = kmem_zalloc(sizeof (list_element_t),
5789 				    KM_SLEEP);
5790 				tokp->nodeid = token->importing_node;
5791 				tokp->next = head;
5792 				head = tokp;
5793 			}
5794 
5795 			token = token->next;
5796 		}
5797 	}
5798 	mutex_exit(&importer_list.lock);
5799 
5800 	if (head == NULL) { /* no importers so go ahead and quiesce segments */
5801 		exporter_quiesce();
5802 		return;
5803 	}
5804 
5805 	mutex_enter(&rsm_suspend_list.list_lock);
5806 	ASSERT(rsm_suspend_list.list_head == NULL);
5807 	/*
5808 	 * update the suspend list righaway so that if a node dies the
5809 	 * pathmanager can set the NODE dead flag
5810 	 */
5811 	rsm_suspend_list.list_head = head;
5812 	mutex_exit(&rsm_suspend_list.list_lock);
5813 
5814 	tokp = head;
5815 
5816 	while (tokp != NULL) {
5817 		request.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_SUSPEND;
5818 		e = rsmipc_send(tokp->nodeid, &request, RSM_NO_REPLY);
5819 		/*
5820 		 * Error in rsmipc_send currently happens due to inaccessibility
5821 		 * of the remote node.
5822 		 */
5823 		if (e == RSM_SUCCESS) { /* send failed - don't wait for ack */
5824 			tokp->flags |= RSM_SUSPEND_ACKPENDING;
5825 		}
5826 
5827 		tokp = tokp->next;
5828 	}
5829 
5830 	DBG_PRINTF((RSM_KERNEL_AGENT | RSM_EXPORT, RSM_DEBUG_VERBOSE,
5831 	    "rsm_send_suspend done\n"));
5832 
5833 }
5834 
5835 static void
5836 rsm_send_resume()
5837 {
5838 	rsmipc_request_t 	request;
5839 	list_element_t		*elem, *head;
5840 
5841 	/*
5842 	 * save the suspend list so that we know where to send
5843 	 * the resume messages and make the suspend list head
5844 	 * NULL.
5845 	 */
5846 	mutex_enter(&rsm_suspend_list.list_lock);
5847 	head = rsm_suspend_list.list_head;
5848 	rsm_suspend_list.list_head = NULL;
5849 	mutex_exit(&rsm_suspend_list.list_lock);
5850 
5851 	while (head != NULL) {
5852 		elem = head;
5853 		head = head->next;
5854 
5855 		request.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_RESUME;
5856 
5857 		(void) rsmipc_send(elem->nodeid, &request, RSM_NO_REPLY);
5858 
5859 		kmem_free((void *)elem, sizeof (list_element_t));
5860 
5861 	}
5862 
5863 }
5864 
5865 /*
5866  * This function takes path and sends a message using the sendq
5867  * corresponding to it. The RSMIPC_MSG_SQREADY, RSMIPC_MSG_SQREADY_ACK
5868  * and RSMIPC_MSG_CREDIT are sent using this function.
5869  */
5870 int
5871 rsmipc_send_controlmsg(path_t *path, int msgtype)
5872 {
5873 	int			e;
5874 	int			retry_cnt = 0;
5875 	int			min_retry_cnt = 10;
5876 	adapter_t		*adapter;
5877 	rsm_send_t		is;
5878 	rsm_send_q_handle_t	ipc_handle;
5879 	rsmipc_controlmsg_t	msg;
5880 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_FLOWCONTROL);
5881 
5882 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5883 	    "rsmipc_send_controlmsg enter\n"));
5884 
5885 	ASSERT(MUTEX_HELD(&path->mutex));
5886 
5887 	adapter = path->local_adapter;
5888 
5889 	DBG_PRINTF((category, RSM_DEBUG, "rsmipc_send_controlmsg:path=%lx "
5890 	    "msgtype=%d %lx:%llx->%lx:%llx procmsg=%d\n", path, msgtype,
5891 	    my_nodeid, adapter->hwaddr, path->remote_node,
5892 	    path->remote_hwaddr, path->procmsg_cnt));
5893 
5894 	if (path->state != RSMKA_PATH_ACTIVE) {
5895 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5896 		    "rsmipc_send_controlmsg done: ! RSMKA_PATH_ACTIVE"));
5897 		return (1);
5898 	}
5899 
5900 	ipc_handle = path->sendq_token.rsmpi_sendq_handle;
5901 
5902 	msg.rsmipc_hdr.rsmipc_version = RSM_VERSION;
5903 	msg.rsmipc_hdr.rsmipc_src = my_nodeid;
5904 	msg.rsmipc_hdr.rsmipc_type = msgtype;
5905 	msg.rsmipc_hdr.rsmipc_incn = path->remote_incn;
5906 
5907 	if (msgtype == RSMIPC_MSG_CREDIT)
5908 		msg.rsmipc_credits = path->procmsg_cnt;
5909 
5910 	msg.rsmipc_local_incn = path->local_incn;
5911 
5912 	msg.rsmipc_adapter_hwaddr = adapter->hwaddr;
5913 	/* incr the sendq, path refcnt */
5914 	PATH_HOLD_NOLOCK(path);
5915 	SENDQ_TOKEN_HOLD(path);
5916 
5917 	do {
5918 		/* drop the path lock before doing the rsm_send */
5919 		mutex_exit(&path->mutex);
5920 
5921 		is.is_data = (void *)&msg;
5922 		is.is_size = sizeof (msg);
5923 		is.is_flags = RSM_INTR_SEND_DELIVER | RSM_INTR_SEND_SLEEP;
5924 		is.is_wait = 0;
5925 
5926 		e = adapter->rsmpi_ops->rsm_send(ipc_handle, &is, NULL);
5927 
5928 		ASSERT(e != RSMERR_QUEUE_FENCE_UP &&
5929 		    e != RSMERR_BAD_BARRIER_HNDL);
5930 
5931 		mutex_enter(&path->mutex);
5932 
5933 		if (e == RSM_SUCCESS) {
5934 			break;
5935 		}
5936 		/* error counter for statistics */
5937 		atomic_add_64(&rsm_ctrlmsg_errcnt, 1);
5938 
5939 		DBG_PRINTF((category, RSM_ERR,
5940 		    "rsmipc_send_controlmsg:rsm_send error=%d", e));
5941 
5942 		if (++retry_cnt == min_retry_cnt) { /* backoff before retry */
5943 			(void) cv_reltimedwait(&path->sendq_token.sendq_cv,
5944 			    &path->mutex, drv_usectohz(10000), TR_CLOCK_TICK);
5945 			retry_cnt = 0;
5946 		}
5947 	} while (path->state == RSMKA_PATH_ACTIVE);
5948 
5949 	/* decrement the sendq,path refcnt that we incr before rsm_send */
5950 	SENDQ_TOKEN_RELE(path);
5951 	PATH_RELE_NOLOCK(path);
5952 
5953 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
5954 	    "rsmipc_send_controlmsg done=%d", e));
5955 	return (e);
5956 }
5957 
5958 /*
5959  * Called from rsm_force_unload and path_importer_disconnect. The memory
5960  * mapping for the imported segment is removed and the segment is
5961  * disconnected at the interconnect layer if disconnect_flag is TRUE.
5962  * rsm_force_unload will get disconnect_flag TRUE from rsm_intr_callback
5963  * and FALSE from rsm_rebind.
5964  *
5965  * When subsequent accesses cause page faulting, the dummy page is mapped
5966  * to resolve the fault, and the mapping generation number is incremented
5967  * so that the application can be notified on a close barrier operation.
5968  *
5969  * It is important to note that the caller of rsmseg_unload is responsible for
5970  * acquiring the segment lock before making a call to rsmseg_unload. This is
5971  * required to make the caller and rsmseg_unload thread safe. The segment lock
5972  * will be released by the rsmseg_unload function.
5973  */
5974 void
5975 rsmseg_unload(rsmseg_t *im_seg)
5976 {
5977 	rsmcookie_t		*hdl;
5978 	void			*shared_cookie;
5979 	rsmipc_request_t	request;
5980 	uint_t			maxprot;
5981 
5982 	DBG_DEFINE(category,
5983 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_INTR_CALLBACK);
5984 
5985 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmseg_unload enter\n"));
5986 
5987 	ASSERT(im_seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
5988 
5989 	/* wait until segment leaves the mapping state */
5990 	while (im_seg->s_state == RSM_STATE_MAPPING)
5991 		cv_wait(&im_seg->s_cv, &im_seg->s_lock);
5992 	/*
5993 	 * An unload is only necessary if the segment is connected. However,
5994 	 * if the segment was on the import list in state RSM_STATE_CONNECTING
5995 	 * then a connection was in progress. Change to RSM_STATE_NEW
5996 	 * here to cause an early exit from the connection process.
5997 	 */
5998 	if (im_seg->s_state == RSM_STATE_NEW) {
5999 		rsmseglock_release(im_seg);
6000 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6001 		    "rsmseg_unload done: RSM_STATE_NEW\n"));
6002 		return;
6003 	} else if (im_seg->s_state == RSM_STATE_CONNECTING) {
6004 		im_seg->s_state = RSM_STATE_ABORT_CONNECT;
6005 		rsmsharelock_acquire(im_seg);
6006 		im_seg->s_share->rsmsi_state = RSMSI_STATE_ABORT_CONNECT;
6007 		rsmsharelock_release(im_seg);
6008 		rsmseglock_release(im_seg);
6009 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6010 		    "rsmseg_unload done: RSM_STATE_CONNECTING\n"));
6011 		return;
6012 	}
6013 
6014 	if (im_seg->s_flags & RSM_FORCE_DISCONNECT) {
6015 		if (im_seg->s_ckl != NULL) {
6016 			int e;
6017 			/* Setup protections for remap */
6018 			maxprot = PROT_USER;
6019 			if (im_seg->s_mode & RSM_PERM_READ) {
6020 				maxprot |= PROT_READ;
6021 			}
6022 			if (im_seg->s_mode & RSM_PERM_WRITE) {
6023 				maxprot |= PROT_WRITE;
6024 			}
6025 			hdl = im_seg->s_ckl;
6026 			for (; hdl != NULL; hdl = hdl->c_next) {
6027 				e = devmap_umem_remap(hdl->c_dhp, rsm_dip,
6028 				    remap_cookie,
6029 				    hdl->c_off, hdl->c_len,
6030 				    maxprot, 0, NULL);
6031 
6032 				DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6033 				    "remap returns %d\n", e));
6034 			}
6035 		}
6036 
6037 		(void) rsm_closeconnection(im_seg, &shared_cookie);
6038 
6039 		if (shared_cookie != NULL) {
6040 			/*
6041 			 * inform the exporting node so this import
6042 			 * can be deleted from the list of importers.
6043 			 */
6044 			request.rsmipc_hdr.rsmipc_type =
6045 			    RSMIPC_MSG_NOTIMPORTING;
6046 			request.rsmipc_key = im_seg->s_segid;
6047 			request.rsmipc_segment_cookie = shared_cookie;
6048 			rsmseglock_release(im_seg);
6049 			(void) rsmipc_send(im_seg->s_node, &request,
6050 			    RSM_NO_REPLY);
6051 		} else {
6052 			rsmseglock_release(im_seg);
6053 		}
6054 	}
6055 	else
6056 		rsmseglock_release(im_seg);
6057 
6058 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmseg_unload done\n"));
6059 
6060 }
6061 
6062 /* ****************************** Importer Calls ************************ */
6063 
6064 static int
6065 rsm_access(uid_t owner, gid_t group, int perm, int mode, const struct cred *cr)
6066 {
6067 	int shifts = 0;
6068 
6069 	if (crgetuid(cr) != owner) {
6070 		shifts += 3;
6071 		if (!groupmember(group, cr))
6072 			shifts += 3;
6073 	}
6074 
6075 	mode &= ~(perm << shifts);
6076 
6077 	if (mode == 0)
6078 		return (0);
6079 
6080 	return (secpolicy_rsm_access(cr, owner, mode));
6081 }
6082 
6083 
6084 static int
6085 rsm_connect(rsmseg_t *seg, rsm_ioctlmsg_t *msg, cred_t *cred,
6086     intptr_t dataptr, int mode)
6087 {
6088 	int e;
6089 	int			recheck_state = 0;
6090 	void			*shared_cookie;
6091 	rsmipc_request_t	request;
6092 	rsmipc_reply_t		reply;
6093 	rsm_permission_t	access;
6094 	adapter_t		*adapter;
6095 	rsm_addr_t		addr = 0;
6096 	rsm_import_share_t	*sharedp;
6097 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT);
6098 
6099 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_connect enter\n"));
6100 
6101 	adapter = rsm_getadapter(msg, mode);
6102 	if (adapter == NULL) {
6103 		DBG_PRINTF((category, RSM_ERR,
6104 		    "rsm_connect done:ENODEV adapter=NULL\n"));
6105 		return (RSMERR_CTLR_NOT_PRESENT);
6106 	}
6107 
6108 	if ((adapter == &loopback_adapter) && (msg->nodeid != my_nodeid)) {
6109 		rsmka_release_adapter(adapter);
6110 		DBG_PRINTF((category, RSM_ERR,
6111 		    "rsm_connect done:ENODEV loopback\n"));
6112 		return (RSMERR_CTLR_NOT_PRESENT);
6113 	}
6114 
6115 
6116 	ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
6117 	ASSERT(seg->s_state == RSM_STATE_NEW);
6118 
6119 	/*
6120 	 * Translate perm to access
6121 	 */
6122 	if (msg->perm & ~RSM_PERM_RDWR) {
6123 		rsmka_release_adapter(adapter);
6124 		DBG_PRINTF((category, RSM_ERR,
6125 		    "rsm_connect done:EINVAL invalid perms\n"));
6126 		return (RSMERR_BAD_PERMS);
6127 	}
6128 	access = 0;
6129 	if (msg->perm & RSM_PERM_READ)
6130 		access |= RSM_ACCESS_READ;
6131 	if (msg->perm & RSM_PERM_WRITE)
6132 		access |= RSM_ACCESS_WRITE;
6133 
6134 	seg->s_node = msg->nodeid;
6135 
6136 	/*
6137 	 * Adding to the import list locks the segment; release the segment
6138 	 * lock so we can get the reply for the send.
6139 	 */
6140 	e = rsmimport_add(seg, msg->key);
6141 	if (e) {
6142 		rsmka_release_adapter(adapter);
6143 		DBG_PRINTF((category, RSM_ERR,
6144 		    "rsm_connect done:rsmimport_add failed %d\n", e));
6145 		return (e);
6146 	}
6147 	seg->s_state = RSM_STATE_CONNECTING;
6148 
6149 	/*
6150 	 * Set the s_adapter field here so as to have a valid comparison of
6151 	 * the adapter and the s_adapter value during rsmshare_get. For
6152 	 * any error, set s_adapter to NULL before doing a release_adapter
6153 	 */
6154 	seg->s_adapter = adapter;
6155 
6156 	rsmseglock_release(seg);
6157 
6158 	/*
6159 	 * get the pointer to the shared data structure; the
6160 	 * shared data is locked and refcount has been incremented
6161 	 */
6162 	sharedp = rsmshare_get(msg->key, msg->nodeid, adapter, seg);
6163 
6164 	ASSERT(rsmsharelock_held(seg));
6165 
6166 	do {
6167 		/* flag indicates whether we need to recheck the state */
6168 		recheck_state = 0;
6169 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6170 		    "rsm_connect:RSMSI_STATE=%d\n", sharedp->rsmsi_state));
6171 		switch (sharedp->rsmsi_state) {
6172 		case RSMSI_STATE_NEW:
6173 			sharedp->rsmsi_state = RSMSI_STATE_CONNECTING;
6174 			break;
6175 		case RSMSI_STATE_CONNECTING:
6176 			/* FALLTHRU */
6177 		case RSMSI_STATE_CONN_QUIESCE:
6178 			/* FALLTHRU */
6179 		case RSMSI_STATE_MAP_QUIESCE:
6180 			/* wait for the state to change */
6181 			while ((sharedp->rsmsi_state ==
6182 			    RSMSI_STATE_CONNECTING) ||
6183 			    (sharedp->rsmsi_state ==
6184 			    RSMSI_STATE_CONN_QUIESCE) ||
6185 			    (sharedp->rsmsi_state ==
6186 			    RSMSI_STATE_MAP_QUIESCE)) {
6187 				if (cv_wait_sig(&sharedp->rsmsi_cv,
6188 				    &sharedp->rsmsi_lock) == 0) {
6189 					/* signalled - clean up and return */
6190 					rsmsharelock_release(seg);
6191 					rsmimport_rm(seg);
6192 					seg->s_adapter = NULL;
6193 					rsmka_release_adapter(adapter);
6194 					seg->s_state = RSM_STATE_NEW;
6195 					DBG_PRINTF((category, RSM_ERR,
6196 					    "rsm_connect done: INTERRUPTED\n"));
6197 					return (RSMERR_INTERRUPTED);
6198 				}
6199 			}
6200 			/*
6201 			 * the state changed, loop back and check what it is
6202 			 */
6203 			recheck_state = 1;
6204 			break;
6205 		case RSMSI_STATE_ABORT_CONNECT:
6206 			/* exit the loop and clean up further down */
6207 			break;
6208 		case RSMSI_STATE_CONNECTED:
6209 			/* already connected, good - fall through */
6210 		case RSMSI_STATE_MAPPED:
6211 			/* already mapped, wow - fall through */
6212 			/* access validation etc is done further down */
6213 			break;
6214 		case RSMSI_STATE_DISCONNECTED:
6215 			/* disconnected - so reconnect now */
6216 			sharedp->rsmsi_state = RSMSI_STATE_CONNECTING;
6217 			break;
6218 		default:
6219 			ASSERT(0); /* Invalid State */
6220 		}
6221 	} while (recheck_state);
6222 
6223 	if (sharedp->rsmsi_state == RSMSI_STATE_CONNECTING) {
6224 		/* we are the first to connect */
6225 		rsmsharelock_release(seg);
6226 
6227 		if (msg->nodeid != my_nodeid) {
6228 			addr = get_remote_hwaddr(adapter, msg->nodeid);
6229 
6230 			if ((int64_t)addr < 0) {
6231 				rsmsharelock_acquire(seg);
6232 				rsmsharecv_signal(seg, RSMSI_STATE_CONNECTING,
6233 				    RSMSI_STATE_NEW);
6234 				rsmsharelock_release(seg);
6235 				rsmimport_rm(seg);
6236 				seg->s_adapter = NULL;
6237 				rsmka_release_adapter(adapter);
6238 				seg->s_state = RSM_STATE_NEW;
6239 				DBG_PRINTF((category, RSM_ERR,
6240 				    "rsm_connect done: hwaddr<0\n"));
6241 				return (RSMERR_INTERNAL_ERROR);
6242 			}
6243 		} else {
6244 			addr = adapter->hwaddr;
6245 		}
6246 
6247 		/*
6248 		 * send request to node [src, dest, key, msgid] and get back
6249 		 * [status, msgid, cookie]
6250 		 */
6251 		request.rsmipc_key = msg->key;
6252 		/*
6253 		 * we need the s_mode of the exporter so pass
6254 		 * RSM_ACCESS_TRUSTED
6255 		 */
6256 		request.rsmipc_perm = RSM_ACCESS_TRUSTED;
6257 		request.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_SEGCONNECT;
6258 		request.rsmipc_adapter_hwaddr = addr;
6259 		request.rsmipc_segment_cookie = sharedp;
6260 
6261 		e = (int)rsmipc_send(msg->nodeid, &request, &reply);
6262 		if (e) {
6263 			rsmsharelock_acquire(seg);
6264 			rsmsharecv_signal(seg, RSMSI_STATE_CONNECTING,
6265 			    RSMSI_STATE_NEW);
6266 			rsmsharelock_release(seg);
6267 			rsmimport_rm(seg);
6268 			seg->s_adapter = NULL;
6269 			rsmka_release_adapter(adapter);
6270 			seg->s_state = RSM_STATE_NEW;
6271 			DBG_PRINTF((category, RSM_ERR,
6272 			    "rsm_connect done:rsmipc_send failed %d\n", e));
6273 			return (e);
6274 		}
6275 
6276 		if (reply.rsmipc_status != RSM_SUCCESS) {
6277 			rsmsharelock_acquire(seg);
6278 			rsmsharecv_signal(seg, RSMSI_STATE_CONNECTING,
6279 			    RSMSI_STATE_NEW);
6280 			rsmsharelock_release(seg);
6281 			rsmimport_rm(seg);
6282 			seg->s_adapter = NULL;
6283 			rsmka_release_adapter(adapter);
6284 			seg->s_state = RSM_STATE_NEW;
6285 			DBG_PRINTF((category, RSM_ERR,
6286 			    "rsm_connect done:rsmipc_send reply err %d\n",
6287 			    reply.rsmipc_status));
6288 			return (reply.rsmipc_status);
6289 		}
6290 
6291 		rsmsharelock_acquire(seg);
6292 		/* store the information recvd into the shared data struct */
6293 		sharedp->rsmsi_mode = reply.rsmipc_mode;
6294 		sharedp->rsmsi_uid = reply.rsmipc_uid;
6295 		sharedp->rsmsi_gid = reply.rsmipc_gid;
6296 		sharedp->rsmsi_seglen = reply.rsmipc_seglen;
6297 		sharedp->rsmsi_cookie = sharedp;
6298 	}
6299 
6300 	rsmsharelock_release(seg);
6301 
6302 	/*
6303 	 * Get the segment lock and check for a force disconnect
6304 	 * from the export side which would have changed the state
6305 	 * back to RSM_STATE_NEW. Once the segment lock is acquired a
6306 	 * force disconnect will be held off until the connection
6307 	 * has completed.
6308 	 */
6309 	rsmseglock_acquire(seg);
6310 	rsmsharelock_acquire(seg);
6311 	ASSERT(seg->s_state == RSM_STATE_CONNECTING ||
6312 	    seg->s_state == RSM_STATE_ABORT_CONNECT);
6313 
6314 	shared_cookie = sharedp->rsmsi_cookie;
6315 
6316 	if ((seg->s_state == RSM_STATE_ABORT_CONNECT) ||
6317 	    (sharedp->rsmsi_state == RSMSI_STATE_ABORT_CONNECT)) {
6318 		seg->s_state = RSM_STATE_NEW;
6319 		seg->s_adapter = NULL;
6320 		rsmsharelock_release(seg);
6321 		rsmseglock_release(seg);
6322 		rsmimport_rm(seg);
6323 		rsmka_release_adapter(adapter);
6324 
6325 		rsmsharelock_acquire(seg);
6326 		if (!(sharedp->rsmsi_flags & RSMSI_FLAGS_ABORTDONE)) {
6327 			/*
6328 			 * set a flag indicating abort handling has been
6329 			 * done
6330 			 */
6331 			sharedp->rsmsi_flags |= RSMSI_FLAGS_ABORTDONE;
6332 			rsmsharelock_release(seg);
6333 			/* send a message to exporter - only once */
6334 			(void) rsm_send_notimporting(msg->nodeid,
6335 			    msg->key, shared_cookie);
6336 			rsmsharelock_acquire(seg);
6337 			/*
6338 			 * wake up any waiting importers and inform that
6339 			 * connection has been aborted
6340 			 */
6341 			cv_broadcast(&sharedp->rsmsi_cv);
6342 		}
6343 		rsmsharelock_release(seg);
6344 
6345 		DBG_PRINTF((category, RSM_ERR,
6346 		    "rsm_connect done: RSM_STATE_ABORT_CONNECT\n"));
6347 		return (RSMERR_INTERRUPTED);
6348 	}
6349 
6350 
6351 	/*
6352 	 * We need to verify that this process has access
6353 	 */
6354 	e = rsm_access(sharedp->rsmsi_uid, sharedp->rsmsi_gid,
6355 	    access & sharedp->rsmsi_mode,
6356 	    (int)(msg->perm & RSM_PERM_RDWR), cred);
6357 	if (e) {
6358 		rsmsharelock_release(seg);
6359 		seg->s_state = RSM_STATE_NEW;
6360 		seg->s_adapter = NULL;
6361 		rsmseglock_release(seg);
6362 		rsmimport_rm(seg);
6363 		rsmka_release_adapter(adapter);
6364 		/*
6365 		 * No need to lock segment it has been removed
6366 		 * from the hash table
6367 		 */
6368 		rsmsharelock_acquire(seg);
6369 		if (sharedp->rsmsi_state == RSMSI_STATE_CONNECTING) {
6370 			rsmsharelock_release(seg);
6371 			/* this is the first importer */
6372 
6373 			(void) rsm_send_notimporting(msg->nodeid, msg->key,
6374 			    shared_cookie);
6375 			rsmsharelock_acquire(seg);
6376 			sharedp->rsmsi_state = RSMSI_STATE_NEW;
6377 			cv_broadcast(&sharedp->rsmsi_cv);
6378 		}
6379 		rsmsharelock_release(seg);
6380 
6381 		DBG_PRINTF((category, RSM_ERR,
6382 		    "rsm_connect done: ipcaccess failed\n"));
6383 		return (RSMERR_PERM_DENIED);
6384 	}
6385 
6386 	/* update state and cookie */
6387 	seg->s_segid = sharedp->rsmsi_segid;
6388 	seg->s_len = sharedp->rsmsi_seglen;
6389 	seg->s_mode = access & sharedp->rsmsi_mode;
6390 	seg->s_pid = ddi_get_pid();
6391 	seg->s_mapinfo = NULL;
6392 
6393 	if (seg->s_node != my_nodeid) {
6394 		if (sharedp->rsmsi_state == RSMSI_STATE_CONNECTING) {
6395 			e = adapter->rsmpi_ops->rsm_connect(
6396 			    adapter->rsmpi_handle,
6397 			    addr, seg->s_segid, &sharedp->rsmsi_handle);
6398 
6399 			if (e != RSM_SUCCESS) {
6400 				seg->s_state = RSM_STATE_NEW;
6401 				seg->s_adapter = NULL;
6402 				rsmsharelock_release(seg);
6403 				rsmseglock_release(seg);
6404 				rsmimport_rm(seg);
6405 				rsmka_release_adapter(adapter);
6406 				/*
6407 				 *  inform the exporter to delete this importer
6408 				 */
6409 				(void) rsm_send_notimporting(msg->nodeid,
6410 				    msg->key, shared_cookie);
6411 
6412 				/*
6413 				 * Now inform any waiting importers to
6414 				 * retry connect. This needs to be done
6415 				 * after sending notimporting so that
6416 				 * the notimporting is sent before a waiting
6417 				 * importer sends a segconnect while retrying
6418 				 *
6419 				 * No need to lock segment it has been removed
6420 				 * from the hash table
6421 				 */
6422 
6423 				rsmsharelock_acquire(seg);
6424 				sharedp->rsmsi_state = RSMSI_STATE_NEW;
6425 				cv_broadcast(&sharedp->rsmsi_cv);
6426 				rsmsharelock_release(seg);
6427 
6428 				DBG_PRINTF((category, RSM_ERR,
6429 				    "rsm_connect error %d\n", e));
6430 				if (e == RSMERR_SEG_NOT_PUBLISHED_TO_RSM_ADDR)
6431 					return (
6432 					    RSMERR_SEG_NOT_PUBLISHED_TO_NODE);
6433 				else if ((e == RSMERR_RSM_ADDR_UNREACHABLE) ||
6434 				    (e == RSMERR_UNKNOWN_RSM_ADDR))
6435 					return (RSMERR_REMOTE_NODE_UNREACHABLE);
6436 				else
6437 					return (e);
6438 			}
6439 
6440 		}
6441 		seg->s_handle.in = sharedp->rsmsi_handle;
6442 
6443 	}
6444 
6445 	seg->s_state = RSM_STATE_CONNECT;
6446 
6447 
6448 	seg->s_flags &= ~RSM_IMPORT_DUMMY;	/* clear dummy flag */
6449 	if (bar_va) {
6450 		/* increment generation number on barrier page */
6451 		atomic_add_16(bar_va + seg->s_hdr.rsmrc_num, 1);
6452 		/* return user off into barrier page where status will be */
6453 		msg->off = (int)seg->s_hdr.rsmrc_num;
6454 		msg->gnum = bar_va[msg->off]; 	/* gnum race */
6455 	} else {
6456 		msg->off = 0;
6457 		msg->gnum = 0;	/* gnum race */
6458 	}
6459 
6460 	msg->len = (int)sharedp->rsmsi_seglen;
6461 	msg->rnum = seg->s_minor;
6462 	rsmsharecv_signal(seg, RSMSI_STATE_CONNECTING, RSMSI_STATE_CONNECTED);
6463 	rsmsharelock_release(seg);
6464 	rsmseglock_release(seg);
6465 
6466 	/* Return back to user the segment size & perm in case it's needed */
6467 
6468 #ifdef _MULTI_DATAMODEL
6469 	if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
6470 		rsm_ioctlmsg32_t msg32;
6471 
6472 		if (msg->len > UINT_MAX)
6473 			msg32.len = RSM_MAXSZ_PAGE_ALIGNED;
6474 		else
6475 			msg32.len = msg->len;
6476 		msg32.off = msg->off;
6477 		msg32.perm = msg->perm;
6478 		msg32.gnum = msg->gnum;
6479 		msg32.rnum = msg->rnum;
6480 
6481 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6482 		    "rsm_connect done\n"));
6483 
6484 		if (ddi_copyout((caddr_t)&msg32, (caddr_t)dataptr,
6485 		    sizeof (msg32), mode))
6486 			return (RSMERR_BAD_ADDR);
6487 		else
6488 			return (RSM_SUCCESS);
6489 	}
6490 #endif
6491 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_connect done\n"));
6492 
6493 	if (ddi_copyout((caddr_t)msg, (caddr_t)dataptr, sizeof (*msg),
6494 	    mode))
6495 		return (RSMERR_BAD_ADDR);
6496 	else
6497 		return (RSM_SUCCESS);
6498 }
6499 
6500 static int
6501 rsm_unmap(rsmseg_t *seg)
6502 {
6503 	int			err;
6504 	adapter_t		*adapter;
6505 	rsm_import_share_t	*sharedp;
6506 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT);
6507 
6508 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6509 	    "rsm_unmap enter %u\n", seg->s_segid));
6510 
6511 	ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
6512 
6513 	/* assert seg is locked */
6514 	ASSERT(rsmseglock_held(seg));
6515 	ASSERT(seg->s_state != RSM_STATE_MAPPING);
6516 
6517 	if ((seg->s_state != RSM_STATE_ACTIVE) &&
6518 	    (seg->s_state != RSM_STATE_MAP_QUIESCE)) {
6519 		/* segment unmap has already been done */
6520 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_unmap done\n"));
6521 		return (RSM_SUCCESS);
6522 	}
6523 
6524 	sharedp = seg->s_share;
6525 
6526 	rsmsharelock_acquire(seg);
6527 
6528 	/*
6529 	 *	- shared data struct is in MAPPED or MAP_QUIESCE state
6530 	 */
6531 
6532 	ASSERT(sharedp->rsmsi_state == RSMSI_STATE_MAPPED ||
6533 	    sharedp->rsmsi_state == RSMSI_STATE_MAP_QUIESCE);
6534 
6535 	/*
6536 	 * Unmap pages - previously rsm_memseg_import_unmap was called only if
6537 	 * the segment cookie list was NULL; but it is always NULL when
6538 	 * called from rsmmap_unmap and won't be NULL when called for
6539 	 * a force disconnect - so the check for NULL cookie list was removed
6540 	 */
6541 
6542 	ASSERT(sharedp->rsmsi_mapcnt > 0);
6543 
6544 	sharedp->rsmsi_mapcnt--;
6545 
6546 	if (sharedp->rsmsi_mapcnt == 0) {
6547 		if (sharedp->rsmsi_state == RSMSI_STATE_MAPPED) {
6548 			/* unmap the shared RSMPI mapping */
6549 			adapter = seg->s_adapter;
6550 			if (seg->s_node != my_nodeid) {
6551 				ASSERT(sharedp->rsmsi_handle != NULL);
6552 				err = adapter->rsmpi_ops->
6553 				    rsm_unmap(sharedp->rsmsi_handle);
6554 				DBG_PRINTF((category, RSM_DEBUG,
6555 				    "rsm_unmap: rsmpi unmap %d\n", err));
6556 				rsm_free_mapinfo(sharedp->rsmsi_mapinfo);
6557 				sharedp->rsmsi_mapinfo = NULL;
6558 			}
6559 			sharedp->rsmsi_state = RSMSI_STATE_CONNECTED;
6560 		} else { /* MAP_QUIESCE --munmap()--> CONN_QUIESCE */
6561 			sharedp->rsmsi_state = RSMSI_STATE_CONN_QUIESCE;
6562 		}
6563 	}
6564 
6565 	rsmsharelock_release(seg);
6566 
6567 	/*
6568 	 * The s_cookie field is used to store the cookie returned from the
6569 	 * ddi_umem_lock when binding the pages for an export segment. This
6570 	 * is the primary use of the s_cookie field and does not normally
6571 	 * pertain to any importing segment except in the loopback case.
6572 	 * For the loopback case, the import segment and export segment are
6573 	 * on the same node, the s_cookie field of the segment structure for
6574 	 * the importer is initialized to the s_cookie field in the exported
6575 	 * segment during the map operation and is used during the call to
6576 	 * devmap_umem_setup for the import mapping.
6577 	 * Thus, during unmap, we simply need to set s_cookie to NULL to
6578 	 * indicate that the mapping no longer exists.
6579 	 */
6580 	seg->s_cookie = NULL;
6581 
6582 	seg->s_mapinfo = NULL;
6583 
6584 	if (seg->s_state == RSM_STATE_ACTIVE)
6585 		seg->s_state = RSM_STATE_CONNECT;
6586 	else
6587 		seg->s_state = RSM_STATE_CONN_QUIESCE;
6588 
6589 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_unmap done\n"));
6590 
6591 	return (RSM_SUCCESS);
6592 }
6593 
6594 /*
6595  * cookie returned here if not null indicates that it is
6596  * the last importer and it can be used in the RSMIPC_NOT_IMPORTING
6597  * message.
6598  */
6599 static int
6600 rsm_closeconnection(rsmseg_t *seg, void **cookie)
6601 {
6602 	int			e;
6603 	adapter_t		*adapter;
6604 	rsm_import_share_t	*sharedp;
6605 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT);
6606 
6607 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6608 	    "rsm_closeconnection enter\n"));
6609 
6610 	*cookie = (void *)NULL;
6611 
6612 	ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
6613 
6614 	/* assert seg is locked */
6615 	ASSERT(rsmseglock_held(seg));
6616 
6617 	if (seg->s_state == RSM_STATE_DISCONNECT) {
6618 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6619 		    "rsm_closeconnection done: already disconnected\n"));
6620 		return (RSM_SUCCESS);
6621 	}
6622 
6623 	/* wait for all putv/getv ops to get done */
6624 	while (seg->s_rdmacnt > 0) {
6625 		cv_wait(&seg->s_cv, &seg->s_lock);
6626 	}
6627 
6628 	(void) rsm_unmap(seg);
6629 
6630 	ASSERT(seg->s_state == RSM_STATE_CONNECT ||
6631 	    seg->s_state == RSM_STATE_CONN_QUIESCE);
6632 
6633 	adapter = seg->s_adapter;
6634 	sharedp = seg->s_share;
6635 
6636 	ASSERT(sharedp != NULL);
6637 
6638 	rsmsharelock_acquire(seg);
6639 
6640 	/*
6641 	 * Disconnect on adapter
6642 	 *
6643 	 * The current algorithm is stateless, I don't have to contact
6644 	 * server when I go away. He only gives me permissions. Of course,
6645 	 * the adapters will talk to terminate the connect.
6646 	 *
6647 	 * disconnect is needed only if we are CONNECTED not in CONN_QUIESCE
6648 	 */
6649 	if ((sharedp->rsmsi_state == RSMSI_STATE_CONNECTED) &&
6650 	    (sharedp->rsmsi_node != my_nodeid)) {
6651 
6652 		if (sharedp->rsmsi_refcnt == 1) {
6653 			/* this is the last importer */
6654 			ASSERT(sharedp->rsmsi_mapcnt == 0);
6655 
6656 			e = adapter->rsmpi_ops->
6657 			    rsm_disconnect(sharedp->rsmsi_handle);
6658 			if (e != RSM_SUCCESS) {
6659 				DBG_PRINTF((category, RSM_DEBUG,
6660 				    "rsm:disconnect failed seg=%x:err=%d\n",
6661 				    seg->s_key, e));
6662 			}
6663 		}
6664 	}
6665 
6666 	seg->s_handle.in = NULL;
6667 
6668 	sharedp->rsmsi_refcnt--;
6669 
6670 	if (sharedp->rsmsi_refcnt == 0) {
6671 		*cookie = (void *)sharedp->rsmsi_cookie;
6672 		sharedp->rsmsi_state = RSMSI_STATE_DISCONNECTED;
6673 		sharedp->rsmsi_handle = NULL;
6674 		rsmsharelock_release(seg);
6675 
6676 		/* clean up the shared data structure */
6677 		mutex_destroy(&sharedp->rsmsi_lock);
6678 		cv_destroy(&sharedp->rsmsi_cv);
6679 		kmem_free((void *)(sharedp), sizeof (rsm_import_share_t));
6680 
6681 	} else {
6682 		rsmsharelock_release(seg);
6683 	}
6684 
6685 	/* increment generation number on barrier page */
6686 	if (bar_va) {
6687 		atomic_add_16(bar_va + seg->s_hdr.rsmrc_num, 1);
6688 	}
6689 
6690 	/*
6691 	 * The following needs to be done after any
6692 	 * rsmsharelock calls which use seg->s_share.
6693 	 */
6694 	seg->s_share = NULL;
6695 
6696 	seg->s_state = RSM_STATE_DISCONNECT;
6697 	/* signal anyone waiting in the CONN_QUIESCE state */
6698 	cv_broadcast(&seg->s_cv);
6699 
6700 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6701 	    "rsm_closeconnection done\n"));
6702 
6703 	return (RSM_SUCCESS);
6704 }
6705 
6706 int
6707 rsm_disconnect(rsmseg_t *seg)
6708 {
6709 	rsmipc_request_t	request;
6710 	void			*shared_cookie;
6711 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT);
6712 
6713 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_disconnect enter\n"));
6714 
6715 	ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
6716 
6717 	/* assert seg isn't locked */
6718 	ASSERT(!rsmseglock_held(seg));
6719 
6720 
6721 	/* Remove segment from imported list */
6722 	rsmimport_rm(seg);
6723 
6724 	/* acquire the segment */
6725 	rsmseglock_acquire(seg);
6726 
6727 	/* wait until segment leaves the mapping state */
6728 	while (seg->s_state == RSM_STATE_MAPPING)
6729 		cv_wait(&seg->s_cv, &seg->s_lock);
6730 
6731 	if (seg->s_state == RSM_STATE_DISCONNECT) {
6732 		seg->s_state = RSM_STATE_NEW;
6733 		rsmseglock_release(seg);
6734 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6735 		    "rsm_disconnect done: already disconnected\n"));
6736 		return (RSM_SUCCESS);
6737 	}
6738 
6739 	(void) rsm_closeconnection(seg, &shared_cookie);
6740 
6741 	/* update state */
6742 	seg->s_state = RSM_STATE_NEW;
6743 
6744 	if (shared_cookie != NULL) {
6745 		/*
6746 		 *  This is the last importer so inform the exporting node
6747 		 *  so this import can be deleted from the list of importers.
6748 		 */
6749 		request.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_NOTIMPORTING;
6750 		request.rsmipc_key = seg->s_segid;
6751 		request.rsmipc_segment_cookie = shared_cookie;
6752 		rsmseglock_release(seg);
6753 		(void) rsmipc_send(seg->s_node, &request, RSM_NO_REPLY);
6754 	} else {
6755 		rsmseglock_release(seg);
6756 	}
6757 
6758 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_disconnect done\n"));
6759 
6760 	return (DDI_SUCCESS);
6761 }
6762 
6763 /*ARGSUSED*/
6764 static int
6765 rsm_chpoll(dev_t dev, short events, int anyyet, short *reventsp,
6766     struct pollhead **phpp)
6767 {
6768 	minor_t		rnum;
6769 	rsmresource_t	*res;
6770 	rsmseg_t 	*seg;
6771 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_DDI);
6772 
6773 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_chpoll enter\n"));
6774 
6775 	/* find minor, no lock */
6776 	rnum = getminor(dev);
6777 	res = rsmresource_lookup(rnum, RSM_NOLOCK);
6778 
6779 	/* poll is supported only for export/import segments */
6780 	if ((res == NULL) || (res == RSMRC_RESERVED) ||
6781 	    (res->rsmrc_type == RSM_RESOURCE_BAR)) {
6782 		return (ENXIO);
6783 	}
6784 
6785 	*reventsp = 0;
6786 
6787 	/*
6788 	 * An exported segment must be in state RSM_STATE_EXPORT; an
6789 	 * imported segment must be in state RSM_STATE_ACTIVE.
6790 	 */
6791 	seg = (rsmseg_t *)res;
6792 
6793 	if (seg->s_pollevent) {
6794 		*reventsp = POLLRDNORM;
6795 	} else if (!anyyet) {
6796 		/* cannot take segment lock here */
6797 		*phpp = &seg->s_poll;
6798 		seg->s_pollflag |= RSM_SEGMENT_POLL;
6799 	}
6800 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_chpoll done\n"));
6801 	return (0);
6802 }
6803 
6804 
6805 
6806 /* ************************* IOCTL Commands ********************* */
6807 
6808 static rsmseg_t *
6809 rsmresource_seg(rsmresource_t *res, minor_t rnum, cred_t *credp,
6810     rsm_resource_type_t type)
6811 {
6812 	/* get segment from resource handle */
6813 	rsmseg_t *seg;
6814 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_IOCTL);
6815 
6816 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmresource_seg enter\n"));
6817 
6818 
6819 	if (res != RSMRC_RESERVED) {
6820 		seg = (rsmseg_t *)res;
6821 	} else {
6822 		/* Allocate segment now and bind it */
6823 		seg = rsmseg_alloc(rnum, credp);
6824 
6825 		/*
6826 		 * if DR pre-processing is going on or DR is in progress
6827 		 * then the new export segments should be in the NEW_QSCD state
6828 		 */
6829 		if (type == RSM_RESOURCE_EXPORT_SEGMENT) {
6830 			mutex_enter(&rsm_drv_data.drv_lock);
6831 			if ((rsm_drv_data.drv_state ==
6832 			    RSM_DRV_PREDEL_STARTED) ||
6833 			    (rsm_drv_data.drv_state ==
6834 			    RSM_DRV_PREDEL_COMPLETED) ||
6835 			    (rsm_drv_data.drv_state ==
6836 			    RSM_DRV_DR_IN_PROGRESS)) {
6837 				seg->s_state = RSM_STATE_NEW_QUIESCED;
6838 			}
6839 			mutex_exit(&rsm_drv_data.drv_lock);
6840 		}
6841 
6842 		rsmresource_insert(rnum, (rsmresource_t *)seg, type);
6843 	}
6844 
6845 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmresource_seg done\n"));
6846 
6847 	return (seg);
6848 }
6849 
6850 static int
6851 rsmexport_ioctl(rsmseg_t *seg, rsm_ioctlmsg_t *msg, int cmd, intptr_t arg,
6852     int mode, cred_t *credp)
6853 {
6854 	int error;
6855 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT | RSM_IOCTL);
6856 
6857 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmexport_ioctl enter\n"));
6858 
6859 	arg = arg;
6860 	credp = credp;
6861 
6862 	ASSERT(seg != NULL);
6863 
6864 	switch (cmd) {
6865 	case RSM_IOCTL_BIND:
6866 		error = rsm_bind(seg, msg, arg, mode);
6867 		break;
6868 	case RSM_IOCTL_REBIND:
6869 		error = rsm_rebind(seg, msg);
6870 		break;
6871 	case RSM_IOCTL_UNBIND:
6872 		error = ENOTSUP;
6873 		break;
6874 	case RSM_IOCTL_PUBLISH:
6875 		error = rsm_publish(seg, msg, arg, mode);
6876 		break;
6877 	case RSM_IOCTL_REPUBLISH:
6878 		error = rsm_republish(seg, msg, mode);
6879 		break;
6880 	case RSM_IOCTL_UNPUBLISH:
6881 		error = rsm_unpublish(seg, 1);
6882 		break;
6883 	default:
6884 		error = EINVAL;
6885 		break;
6886 	}
6887 
6888 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmexport_ioctl done: %d\n",
6889 	    error));
6890 
6891 	return (error);
6892 }
6893 static int
6894 rsmimport_ioctl(rsmseg_t *seg, rsm_ioctlmsg_t *msg, int cmd, intptr_t arg,
6895     int mode, cred_t *credp)
6896 {
6897 	int error;
6898 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT | RSM_IOCTL);
6899 
6900 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmimport_ioctl enter\n"));
6901 
6902 	ASSERT(seg);
6903 
6904 	switch (cmd) {
6905 	case RSM_IOCTL_CONNECT:
6906 		error = rsm_connect(seg, msg, credp, arg, mode);
6907 		break;
6908 	default:
6909 		error = EINVAL;
6910 		break;
6911 	}
6912 
6913 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmimport_ioctl done: %d\n",
6914 	    error));
6915 	return (error);
6916 }
6917 
6918 static int
6919 rsmbar_ioctl(rsmseg_t *seg, rsm_ioctlmsg_t *msg, int cmd, intptr_t arg,
6920     int mode)
6921 {
6922 	int e;
6923 	adapter_t *adapter;
6924 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT | RSM_IOCTL);
6925 
6926 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmbar_ioctl enter\n"));
6927 
6928 
6929 	if ((seg->s_flags & RSM_IMPORT_DUMMY) != 0) {
6930 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6931 		    "rsmbar_ioctl done: RSM_IMPORT_DUMMY\n"));
6932 		return (RSMERR_CONN_ABORTED);
6933 	} else if (seg->s_node == my_nodeid) {
6934 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6935 		    "rsmbar_ioctl done: loopback\n"));
6936 		return (RSM_SUCCESS);
6937 	}
6938 
6939 	adapter = seg->s_adapter;
6940 
6941 	switch (cmd) {
6942 	case RSM_IOCTL_BAR_CHECK:
6943 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6944 		    "rsmbar_ioctl done: RSM_BAR_CHECK %d\n", bar_va));
6945 		return (bar_va ? RSM_SUCCESS : EINVAL);
6946 	case RSM_IOCTL_BAR_OPEN:
6947 		e = adapter->rsmpi_ops->
6948 		    rsm_open_barrier_ctrl(adapter->rsmpi_handle, &msg->bar);
6949 		break;
6950 	case RSM_IOCTL_BAR_ORDER:
6951 		e = adapter->rsmpi_ops->rsm_order_barrier(&msg->bar);
6952 		break;
6953 	case RSM_IOCTL_BAR_CLOSE:
6954 		e = adapter->rsmpi_ops->rsm_close_barrier(&msg->bar);
6955 		break;
6956 	default:
6957 		e = EINVAL;
6958 		break;
6959 	}
6960 
6961 	if (e == RSM_SUCCESS) {
6962 #ifdef _MULTI_DATAMODEL
6963 		if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
6964 			rsm_ioctlmsg32_t msg32;
6965 			int i;
6966 
6967 			for (i = 0; i < 4; i++) {
6968 				msg32.bar.comp[i].u64 = msg->bar.comp[i].u64;
6969 			}
6970 
6971 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6972 			    "rsmbar_ioctl done\n"));
6973 			if (ddi_copyout((caddr_t)&msg32, (caddr_t)arg,
6974 			    sizeof (msg32), mode))
6975 				return (RSMERR_BAD_ADDR);
6976 			else
6977 				return (RSM_SUCCESS);
6978 		}
6979 #endif
6980 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6981 		    "rsmbar_ioctl done\n"));
6982 		if (ddi_copyout((caddr_t)&msg->bar, (caddr_t)arg,
6983 		    sizeof (*msg), mode))
6984 			return (RSMERR_BAD_ADDR);
6985 		else
6986 			return (RSM_SUCCESS);
6987 	}
6988 
6989 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
6990 	    "rsmbar_ioctl done: error=%d\n", e));
6991 
6992 	return (e);
6993 }
6994 
6995 /*
6996  * Ring the doorbell of the export segment to which this segment is
6997  * connected.
6998  */
6999 static int
7000 exportbell_ioctl(rsmseg_t *seg, int cmd /*ARGSUSED*/)
7001 {
7002 	int e = 0;
7003 	rsmipc_request_t request;
7004 
7005 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT | RSM_IOCTL);
7006 
7007 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "exportbell_ioctl enter\n"));
7008 
7009 	request.rsmipc_key = seg->s_segid;
7010 	request.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_BELL;
7011 	request.rsmipc_segment_cookie = NULL;
7012 	e = rsmipc_send(seg->s_node, &request, RSM_NO_REPLY);
7013 
7014 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7015 	    "exportbell_ioctl done: %d\n", e));
7016 
7017 	return (e);
7018 }
7019 
7020 /*
7021  * Ring the doorbells of all segments importing this segment
7022  */
7023 static int
7024 importbell_ioctl(rsmseg_t *seg, int cmd /*ARGSUSED*/)
7025 {
7026 	importing_token_t	*token = NULL;
7027 	rsmipc_request_t	request;
7028 	int			index;
7029 
7030 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_EXPORT | RSM_IOCTL);
7031 
7032 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "importbell_ioctl enter\n"));
7033 
7034 	ASSERT(seg->s_state != RSM_STATE_NEW &&
7035 	    seg->s_state != RSM_STATE_NEW_QUIESCED);
7036 
7037 	request.rsmipc_key = seg->s_segid;
7038 	request.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_BELL;
7039 
7040 	index = rsmhash(seg->s_segid);
7041 
7042 	token = importer_list.bucket[index];
7043 
7044 	while (token != NULL) {
7045 		if (seg->s_key == token->key) {
7046 			request.rsmipc_segment_cookie =
7047 			    token->import_segment_cookie;
7048 			(void) rsmipc_send(token->importing_node,
7049 			    &request, RSM_NO_REPLY);
7050 		}
7051 		token = token->next;
7052 	}
7053 
7054 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7055 	    "importbell_ioctl done\n"));
7056 	return (RSM_SUCCESS);
7057 }
7058 
7059 static int
7060 rsm_consumeevent_copyin(caddr_t arg, rsm_consume_event_msg_t *msgp,
7061     rsm_poll_event_t **eventspp, int mode)
7062 {
7063 	rsm_poll_event_t	*evlist = NULL;
7064 	size_t			evlistsz;
7065 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IOCTL);
7066 
7067 #ifdef _MULTI_DATAMODEL
7068 	if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
7069 		int i;
7070 		rsm_consume_event_msg32_t cemsg32 = {0};
7071 		rsm_poll_event32_t	event32[RSM_MAX_POLLFDS];
7072 		rsm_poll_event32_t	*evlist32;
7073 		size_t			evlistsz32;
7074 
7075 		/* copyin the ioctl message */
7076 		if (ddi_copyin(arg, (caddr_t)&cemsg32,
7077 		    sizeof (rsm_consume_event_msg32_t), mode)) {
7078 			DBG_PRINTF((category, RSM_ERR,
7079 			    "consumeevent_copyin msgp: RSMERR_BAD_ADDR\n"));
7080 			return (RSMERR_BAD_ADDR);
7081 		}
7082 		msgp->seglist = (caddr_t)(uintptr_t)cemsg32.seglist;
7083 		msgp->numents = (int)cemsg32.numents;
7084 
7085 		evlistsz32 = sizeof (rsm_poll_event32_t) * msgp->numents;
7086 		/*
7087 		 * If numents is large alloc events list on heap otherwise
7088 		 * use the address of array that was passed in.
7089 		 */
7090 		if (msgp->numents > RSM_MAX_POLLFDS) {
7091 			if (msgp->numents > max_segs) { /* validate numents */
7092 				DBG_PRINTF((category, RSM_ERR,
7093 				    "consumeevent_copyin: "
7094 				    "RSMERR_BAD_ARGS_ERRORS\n"));
7095 				return (RSMERR_BAD_ARGS_ERRORS);
7096 			}
7097 			evlist32 = kmem_zalloc(evlistsz32, KM_SLEEP);
7098 		} else {
7099 			evlist32 = event32;
7100 		}
7101 
7102 		/* copyin the seglist into the rsm_poll_event32_t array */
7103 		if (ddi_copyin((caddr_t)msgp->seglist, (caddr_t)evlist32,
7104 		    evlistsz32, mode)) {
7105 			if ((msgp->numents > RSM_MAX_POLLFDS) && evlist32) {
7106 				kmem_free(evlist32, evlistsz32);
7107 			}
7108 			DBG_PRINTF((category, RSM_ERR,
7109 			    "consumeevent_copyin evlist: RSMERR_BAD_ADDR\n"));
7110 			return (RSMERR_BAD_ADDR);
7111 		}
7112 
7113 		/* evlist and evlistsz are based on rsm_poll_event_t type */
7114 		evlistsz = sizeof (rsm_poll_event_t)* msgp->numents;
7115 
7116 		if (msgp->numents > RSM_MAX_POLLFDS) {
7117 			evlist = kmem_zalloc(evlistsz, KM_SLEEP);
7118 			*eventspp = evlist;
7119 		} else {
7120 			evlist = *eventspp;
7121 		}
7122 		/*
7123 		 * copy the rsm_poll_event32_t array to the rsm_poll_event_t
7124 		 * array
7125 		 */
7126 		for (i = 0; i < msgp->numents; i++) {
7127 			evlist[i].rnum = evlist32[i].rnum;
7128 			evlist[i].fdsidx = evlist32[i].fdsidx;
7129 			evlist[i].revent = evlist32[i].revent;
7130 		}
7131 		/* free the temp 32-bit event list */
7132 		if ((msgp->numents > RSM_MAX_POLLFDS) && evlist32) {
7133 			kmem_free(evlist32, evlistsz32);
7134 		}
7135 
7136 		return (RSM_SUCCESS);
7137 	}
7138 #endif
7139 	/* copyin the ioctl message */
7140 	if (ddi_copyin(arg, (caddr_t)msgp, sizeof (rsm_consume_event_msg_t),
7141 	    mode)) {
7142 		DBG_PRINTF((category, RSM_ERR,
7143 		    "consumeevent_copyin msgp: RSMERR_BAD_ADDR\n"));
7144 		return (RSMERR_BAD_ADDR);
7145 	}
7146 	/*
7147 	 * If numents is large alloc events list on heap otherwise
7148 	 * use the address of array that was passed in.
7149 	 */
7150 	if (msgp->numents > RSM_MAX_POLLFDS) {
7151 		if (msgp->numents > max_segs) { /* validate numents */
7152 			DBG_PRINTF((category, RSM_ERR,
7153 			    "consumeevent_copyin: RSMERR_BAD_ARGS_ERRORS\n"));
7154 			return (RSMERR_BAD_ARGS_ERRORS);
7155 		}
7156 		evlistsz = sizeof (rsm_poll_event_t)*msgp->numents;
7157 		evlist = kmem_zalloc(evlistsz, KM_SLEEP);
7158 		*eventspp  = evlist;
7159 	}
7160 
7161 	/* copyin the seglist */
7162 	if (ddi_copyin((caddr_t)msgp->seglist, (caddr_t)(*eventspp),
7163 	    sizeof (rsm_poll_event_t)*msgp->numents, mode)) {
7164 		if (evlist) {
7165 			kmem_free(evlist, evlistsz);
7166 			*eventspp = NULL;
7167 		}
7168 		DBG_PRINTF((category, RSM_ERR,
7169 		    "consumeevent_copyin evlist: RSMERR_BAD_ADDR\n"));
7170 		return (RSMERR_BAD_ADDR);
7171 	}
7172 
7173 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7174 	    "consumeevent_copyin done\n"));
7175 	return (RSM_SUCCESS);
7176 }
7177 
7178 static int
7179 rsm_consumeevent_copyout(rsm_consume_event_msg_t *msgp,
7180     rsm_poll_event_t *eventsp, int mode)
7181 {
7182 	size_t			evlistsz;
7183 	int			err = RSM_SUCCESS;
7184 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IOCTL);
7185 
7186 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7187 	    "consumeevent_copyout enter: numents(%d) eventsp(%p)\n",
7188 	    msgp->numents, eventsp));
7189 
7190 #ifdef _MULTI_DATAMODEL
7191 	if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
7192 		int i;
7193 		rsm_poll_event32_t	event32[RSM_MAX_POLLFDS];
7194 		rsm_poll_event32_t	*evlist32;
7195 		size_t			evlistsz32;
7196 
7197 		evlistsz32 = sizeof (rsm_poll_event32_t)*msgp->numents;
7198 		if (msgp->numents > RSM_MAX_POLLFDS) {
7199 			evlist32 = kmem_zalloc(evlistsz32, KM_SLEEP);
7200 		} else {
7201 			evlist32 = event32;
7202 		}
7203 
7204 		/*
7205 		 * copy the rsm_poll_event_t array to the rsm_poll_event32_t
7206 		 * array
7207 		 */
7208 		for (i = 0; i < msgp->numents; i++) {
7209 			evlist32[i].rnum = eventsp[i].rnum;
7210 			evlist32[i].fdsidx = eventsp[i].fdsidx;
7211 			evlist32[i].revent = eventsp[i].revent;
7212 		}
7213 
7214 		if (ddi_copyout((caddr_t)evlist32, (caddr_t)msgp->seglist,
7215 		    evlistsz32, mode)) {
7216 			err = RSMERR_BAD_ADDR;
7217 		}
7218 
7219 		if (msgp->numents > RSM_MAX_POLLFDS) {
7220 			if (evlist32) {	/* free the temp 32-bit event list */
7221 				kmem_free(evlist32, evlistsz32);
7222 			}
7223 			/*
7224 			 * eventsp and evlistsz are based on rsm_poll_event_t
7225 			 * type
7226 			 */
7227 			evlistsz = sizeof (rsm_poll_event_t)*msgp->numents;
7228 			/* event list on the heap and needs to be freed here */
7229 			if (eventsp) {
7230 				kmem_free(eventsp, evlistsz);
7231 			}
7232 		}
7233 
7234 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7235 		    "consumeevent_copyout done: err=%d\n", err));
7236 		return (err);
7237 	}
7238 #endif
7239 	evlistsz = sizeof (rsm_poll_event_t)*msgp->numents;
7240 
7241 	if (ddi_copyout((caddr_t)eventsp, (caddr_t)msgp->seglist, evlistsz,
7242 	    mode)) {
7243 		err = RSMERR_BAD_ADDR;
7244 	}
7245 
7246 	if ((msgp->numents > RSM_MAX_POLLFDS) && eventsp) {
7247 		/* event list on the heap and needs to be freed here */
7248 		kmem_free(eventsp, evlistsz);
7249 	}
7250 
7251 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7252 	    "consumeevent_copyout done: err=%d\n", err));
7253 	return (err);
7254 }
7255 
7256 static int
7257 rsm_consumeevent_ioctl(caddr_t arg, int mode)
7258 {
7259 	int	rc;
7260 	int	i;
7261 	minor_t	rnum;
7262 	rsm_consume_event_msg_t	msg = {0};
7263 	rsmseg_t		*seg;
7264 	rsm_poll_event_t	*event_list;
7265 	rsm_poll_event_t	events[RSM_MAX_POLLFDS];
7266 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IOCTL);
7267 
7268 	event_list = events;
7269 
7270 	if ((rc = rsm_consumeevent_copyin(arg, &msg, &event_list, mode)) !=
7271 	    RSM_SUCCESS) {
7272 		return (rc);
7273 	}
7274 
7275 	for (i = 0; i < msg.numents; i++) {
7276 		rnum = event_list[i].rnum;
7277 		event_list[i].revent = 0;
7278 		/* get the segment structure */
7279 		seg = (rsmseg_t *)rsmresource_lookup(rnum, RSM_LOCK);
7280 		if (seg) {
7281 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7282 			    "consumeevent_ioctl: rnum(%d) seg(%p)\n", rnum,
7283 			    seg));
7284 			if (seg->s_pollevent) {
7285 				/* consume the event */
7286 				atomic_add_32(&seg->s_pollevent, -1);
7287 				event_list[i].revent = POLLRDNORM;
7288 			}
7289 			rsmseglock_release(seg);
7290 		}
7291 	}
7292 
7293 	if ((rc = rsm_consumeevent_copyout(&msg, event_list, mode)) !=
7294 	    RSM_SUCCESS) {
7295 		return (rc);
7296 	}
7297 
7298 	return (RSM_SUCCESS);
7299 }
7300 
7301 static int
7302 iovec_copyin(caddr_t user_vec, rsmka_iovec_t *iovec, int count, int mode)
7303 {
7304 	int size;
7305 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT | RSM_IOCTL);
7306 
7307 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "iovec_copyin enter\n"));
7308 
7309 #ifdef _MULTI_DATAMODEL
7310 	if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
7311 		rsmka_iovec32_t	*iovec32, *iovec32_base;
7312 		int i;
7313 
7314 		size = count * sizeof (rsmka_iovec32_t);
7315 		iovec32_base = iovec32 = kmem_zalloc(size, KM_SLEEP);
7316 		if (ddi_copyin((caddr_t)user_vec,
7317 		    (caddr_t)iovec32, size, mode)) {
7318 			kmem_free(iovec32, size);
7319 			DBG_PRINTF((category, RSM_DEBUG,
7320 			    "iovec_copyin: returning RSMERR_BAD_ADDR\n"));
7321 			return (RSMERR_BAD_ADDR);
7322 		}
7323 
7324 		for (i = 0; i < count; i++, iovec++, iovec32++) {
7325 			iovec->io_type = (int)iovec32->io_type;
7326 			if (iovec->io_type == RSM_HANDLE_TYPE)
7327 				iovec->local.segid = (rsm_memseg_id_t)
7328 				    iovec32->local;
7329 			else
7330 				iovec->local.vaddr =
7331 				    (caddr_t)(uintptr_t)iovec32->local;
7332 			iovec->local_offset = (size_t)iovec32->local_offset;
7333 			iovec->remote_offset = (size_t)iovec32->remote_offset;
7334 			iovec->transfer_len = (size_t)iovec32->transfer_len;
7335 
7336 		}
7337 		kmem_free(iovec32_base, size);
7338 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7339 		    "iovec_copyin done\n"));
7340 		return (DDI_SUCCESS);
7341 	}
7342 #endif
7343 
7344 	size = count * sizeof (rsmka_iovec_t);
7345 	if (ddi_copyin((caddr_t)user_vec, (caddr_t)iovec, size, mode)) {
7346 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7347 		    "iovec_copyin done: RSMERR_BAD_ADDR\n"));
7348 		return (RSMERR_BAD_ADDR);
7349 	}
7350 
7351 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "iovec_copyin done\n"));
7352 
7353 	return (DDI_SUCCESS);
7354 }
7355 
7356 
7357 static int
7358 sgio_copyin(caddr_t arg, rsmka_scat_gath_t *sg_io, int mode)
7359 {
7360 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT | RSM_IOCTL);
7361 
7362 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "sgio_copyin enter\n"));
7363 
7364 #ifdef _MULTI_DATAMODEL
7365 	if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
7366 		rsmka_scat_gath32_t sg_io32;
7367 
7368 		if (ddi_copyin(arg, (caddr_t)&sg_io32, sizeof (sg_io32),
7369 		    mode)) {
7370 			DBG_PRINTF((category, RSM_DEBUG,
7371 			    "sgio_copyin done: returning EFAULT\n"));
7372 			return (RSMERR_BAD_ADDR);
7373 		}
7374 		sg_io->local_nodeid = (rsm_node_id_t)sg_io32.local_nodeid;
7375 		sg_io->io_request_count =  (size_t)sg_io32.io_request_count;
7376 		sg_io->io_residual_count = (size_t)sg_io32.io_residual_count;
7377 		sg_io->flags = (size_t)sg_io32.flags;
7378 		sg_io->remote_handle = (rsm_memseg_import_handle_t)
7379 		    (uintptr_t)sg_io32.remote_handle;
7380 		sg_io->iovec = (rsmka_iovec_t *)(uintptr_t)sg_io32.iovec;
7381 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7382 		    "sgio_copyin done\n"));
7383 		return (DDI_SUCCESS);
7384 	}
7385 #endif
7386 	if (ddi_copyin(arg, (caddr_t)sg_io, sizeof (rsmka_scat_gath_t),
7387 	    mode)) {
7388 		DBG_PRINTF((category, RSM_DEBUG,
7389 		    "sgio_copyin done: returning EFAULT\n"));
7390 		return (RSMERR_BAD_ADDR);
7391 	}
7392 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "sgio_copyin done\n"));
7393 	return (DDI_SUCCESS);
7394 }
7395 
7396 static int
7397 sgio_resid_copyout(caddr_t arg, rsmka_scat_gath_t *sg_io, int mode)
7398 {
7399 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT | RSM_IOCTL);
7400 
7401 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7402 	    "sgio_resid_copyout enter\n"));
7403 
7404 #ifdef _MULTI_DATAMODEL
7405 	if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
7406 		rsmka_scat_gath32_t sg_io32;
7407 
7408 		sg_io32.io_residual_count = sg_io->io_residual_count;
7409 		sg_io32.flags = sg_io->flags;
7410 
7411 		if (ddi_copyout((caddr_t)&sg_io32.io_residual_count,
7412 		    (caddr_t)&((rsmka_scat_gath32_t *)arg)->io_residual_count,
7413 		    sizeof (uint32_t), mode)) {
7414 
7415 			DBG_PRINTF((category, RSM_ERR,
7416 			    "sgio_resid_copyout error: rescnt\n"));
7417 			return (RSMERR_BAD_ADDR);
7418 		}
7419 
7420 		if (ddi_copyout((caddr_t)&sg_io32.flags,
7421 		    (caddr_t)&((rsmka_scat_gath32_t *)arg)->flags,
7422 		    sizeof (uint32_t), mode)) {
7423 
7424 			DBG_PRINTF((category, RSM_ERR,
7425 			    "sgio_resid_copyout error: flags\n"));
7426 			return (RSMERR_BAD_ADDR);
7427 		}
7428 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7429 		    "sgio_resid_copyout done\n"));
7430 		return (DDI_SUCCESS);
7431 	}
7432 #endif
7433 	if (ddi_copyout((caddr_t)&sg_io->io_residual_count,
7434 	    (caddr_t)&((rsmka_scat_gath_t *)arg)->io_residual_count,
7435 	    sizeof (ulong_t), mode)) {
7436 
7437 		DBG_PRINTF((category, RSM_ERR,
7438 		    "sgio_resid_copyout error:rescnt\n"));
7439 		return (RSMERR_BAD_ADDR);
7440 	}
7441 
7442 	if (ddi_copyout((caddr_t)&sg_io->flags,
7443 	    (caddr_t)&((rsmka_scat_gath_t *)arg)->flags,
7444 	    sizeof (uint_t), mode)) {
7445 
7446 		DBG_PRINTF((category, RSM_ERR,
7447 		    "sgio_resid_copyout error:flags\n"));
7448 		return (RSMERR_BAD_ADDR);
7449 	}
7450 
7451 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "sgio_resid_copyout done\n"));
7452 	return (DDI_SUCCESS);
7453 }
7454 
7455 
7456 static int
7457 rsm_iovec_ioctl(dev_t dev, caddr_t arg, int cmd, int mode, cred_t *credp)
7458 {
7459 	rsmka_scat_gath_t	sg_io;
7460 	rsmka_iovec_t		ka_iovec_arr[RSM_MAX_IOVLEN];
7461 	rsmka_iovec_t		*ka_iovec;
7462 	rsmka_iovec_t		*ka_iovec_start;
7463 	rsmpi_scat_gath_t	rsmpi_sg_io;
7464 	rsmpi_iovec_t		iovec_arr[RSM_MAX_IOVLEN];
7465 	rsmpi_iovec_t		*iovec;
7466 	rsmpi_iovec_t		*iovec_start = NULL;
7467 	rsmapi_access_entry_t	*acl;
7468 	rsmresource_t		*res;
7469 	minor_t			rnum;
7470 	rsmseg_t		*im_seg, *ex_seg;
7471 	int			e;
7472 	int			error = 0;
7473 	uint_t			i;
7474 	uint_t			iov_proc = 0; /* num of iovecs processed */
7475 	size_t			size = 0;
7476 	size_t			ka_size;
7477 
7478 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_IMPORT | RSM_IOCTL);
7479 
7480 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_iovec_ioctl enter\n"));
7481 
7482 	credp = credp;
7483 
7484 	/*
7485 	 * Copyin the scatter/gather structure  and build new structure
7486 	 * for rsmpi.
7487 	 */
7488 	e = sgio_copyin(arg, &sg_io, mode);
7489 	if (e != DDI_SUCCESS) {
7490 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7491 		    "rsm_iovec_ioctl done: sgio_copyin %d\n", e));
7492 		return (e);
7493 	}
7494 
7495 	if (sg_io.io_request_count > RSM_MAX_SGIOREQS) {
7496 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7497 		    "rsm_iovec_ioctl done: request_count(%d) too large\n",
7498 		    sg_io.io_request_count));
7499 		return (RSMERR_BAD_SGIO);
7500 	}
7501 
7502 	rsmpi_sg_io.io_request_count = sg_io.io_request_count;
7503 	rsmpi_sg_io.io_residual_count = sg_io.io_request_count;
7504 	rsmpi_sg_io.io_segflg = 0;
7505 
7506 	/* Allocate memory and copyin io vector array  */
7507 	if (sg_io.io_request_count > RSM_MAX_IOVLEN) {
7508 		ka_size =  sg_io.io_request_count * sizeof (rsmka_iovec_t);
7509 		ka_iovec_start = ka_iovec = kmem_zalloc(ka_size, KM_SLEEP);
7510 	} else {
7511 		ka_iovec_start = ka_iovec = ka_iovec_arr;
7512 	}
7513 	e = iovec_copyin((caddr_t)sg_io.iovec, ka_iovec,
7514 	    sg_io.io_request_count, mode);
7515 	if (e != DDI_SUCCESS) {
7516 		if (sg_io.io_request_count > RSM_MAX_IOVLEN)
7517 			kmem_free(ka_iovec, ka_size);
7518 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7519 		    "rsm_iovec_ioctl done: iovec_copyin %d\n", e));
7520 		return (e);
7521 	}
7522 
7523 	/* get the import segment descriptor */
7524 	rnum = getminor(dev);
7525 	res = rsmresource_lookup(rnum, RSM_LOCK);
7526 
7527 	/*
7528 	 * The following sequence of locking may (or MAY NOT) cause a
7529 	 * deadlock but this is currently not addressed here since the
7530 	 * implementation will be changed to incorporate the use of
7531 	 * reference counting for both the import and the export segments.
7532 	 */
7533 
7534 	/* rsmseglock_acquire(im_seg) done in rsmresource_lookup */
7535 
7536 	im_seg = (rsmseg_t *)res;
7537 
7538 	if (im_seg == NULL) {
7539 		if (sg_io.io_request_count > RSM_MAX_IOVLEN)
7540 			kmem_free(ka_iovec, ka_size);
7541 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7542 		    "rsm_iovec_ioctl done: rsmresource_lookup failed\n"));
7543 		return (EINVAL);
7544 	}
7545 	/* putv/getv supported is supported only on import segments */
7546 	if (im_seg->s_type != RSM_RESOURCE_IMPORT_SEGMENT) {
7547 		rsmseglock_release(im_seg);
7548 		if (sg_io.io_request_count > RSM_MAX_IOVLEN)
7549 			kmem_free(ka_iovec, ka_size);
7550 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7551 		    "rsm_iovec_ioctl done: not an import segment\n"));
7552 		return (EINVAL);
7553 	}
7554 
7555 	/*
7556 	 * wait for a remote DR to complete ie. for segments to get UNQUIESCED
7557 	 * as well as wait for a local DR to complete.
7558 	 */
7559 	while ((im_seg->s_state == RSM_STATE_CONN_QUIESCE) ||
7560 	    (im_seg->s_state == RSM_STATE_MAP_QUIESCE) ||
7561 	    (im_seg->s_flags & RSM_DR_INPROGRESS)) {
7562 		if (cv_wait_sig(&im_seg->s_cv, &im_seg->s_lock) == 0) {
7563 			DBG_PRINTF((category, RSM_DEBUG,
7564 			    "rsm_iovec_ioctl done: cv_wait INTR"));
7565 			rsmseglock_release(im_seg);
7566 			return (RSMERR_INTERRUPTED);
7567 		}
7568 	}
7569 
7570 	if ((im_seg->s_state != RSM_STATE_CONNECT) &&
7571 	    (im_seg->s_state != RSM_STATE_ACTIVE)) {
7572 
7573 		ASSERT(im_seg->s_state == RSM_STATE_DISCONNECT ||
7574 		    im_seg->s_state == RSM_STATE_NEW);
7575 
7576 		DBG_PRINTF((category, RSM_DEBUG,
7577 		    "rsm_iovec_ioctl done: im_seg not conn/map"));
7578 		rsmseglock_release(im_seg);
7579 		e = RSMERR_BAD_SGIO;
7580 		goto out;
7581 	}
7582 
7583 	im_seg->s_rdmacnt++;
7584 	rsmseglock_release(im_seg);
7585 
7586 	/*
7587 	 * Allocate and set up the io vector for rsmpi
7588 	 */
7589 	if (sg_io.io_request_count > RSM_MAX_IOVLEN) {
7590 		size = sg_io.io_request_count * sizeof (rsmpi_iovec_t);
7591 		iovec_start = iovec = kmem_zalloc(size, KM_SLEEP);
7592 	} else {
7593 		iovec_start = iovec = iovec_arr;
7594 	}
7595 
7596 	rsmpi_sg_io.iovec = iovec;
7597 	for (iov_proc = 0; iov_proc < sg_io.io_request_count; iov_proc++) {
7598 		if (ka_iovec->io_type == RSM_HANDLE_TYPE) {
7599 			ex_seg = rsmexport_lookup(ka_iovec->local.segid);
7600 
7601 			if (ex_seg == NULL) {
7602 				e = RSMERR_BAD_SGIO;
7603 				break;
7604 			}
7605 			ASSERT(ex_seg->s_state == RSM_STATE_EXPORT);
7606 
7607 			acl = ex_seg->s_acl;
7608 			if (acl[0].ae_permission == 0) {
7609 				struct buf *xbuf;
7610 				dev_t sdev = 0;
7611 
7612 				xbuf = ddi_umem_iosetup(ex_seg->s_cookie,
7613 				    0, ex_seg->s_len, B_WRITE,
7614 				    sdev, 0, NULL, DDI_UMEM_SLEEP);
7615 
7616 				ASSERT(xbuf != NULL);
7617 
7618 				iovec->local_mem.ms_type = RSM_MEM_BUF;
7619 				iovec->local_mem.ms_memory.bp = xbuf;
7620 			} else {
7621 				iovec->local_mem.ms_type = RSM_MEM_HANDLE;
7622 				iovec->local_mem.ms_memory.handle =
7623 				    ex_seg->s_handle.out;
7624 			}
7625 			ex_seg->s_rdmacnt++; /* refcnt the handle */
7626 			rsmseglock_release(ex_seg);
7627 		} else {
7628 			iovec->local_mem.ms_type = RSM_MEM_VADDR;
7629 			iovec->local_mem.ms_memory.vr.vaddr =
7630 			    ka_iovec->local.vaddr;
7631 		}
7632 
7633 		iovec->local_offset = ka_iovec->local_offset;
7634 		iovec->remote_handle = im_seg->s_handle.in;
7635 		iovec->remote_offset = ka_iovec->remote_offset;
7636 		iovec->transfer_length = ka_iovec->transfer_len;
7637 		iovec++;
7638 		ka_iovec++;
7639 	}
7640 
7641 	if (iov_proc <  sg_io.io_request_count) {
7642 		/* error while processing handle */
7643 		rsmseglock_acquire(im_seg);
7644 		im_seg->s_rdmacnt--;   /* decrement the refcnt for importseg */
7645 		if (im_seg->s_rdmacnt == 0) {
7646 			cv_broadcast(&im_seg->s_cv);
7647 		}
7648 		rsmseglock_release(im_seg);
7649 		goto out;
7650 	}
7651 
7652 	/* call rsmpi */
7653 	if (cmd == RSM_IOCTL_PUTV)
7654 		e = im_seg->s_adapter->rsmpi_ops->rsm_memseg_import_putv(
7655 		    im_seg->s_adapter->rsmpi_handle,
7656 		    &rsmpi_sg_io);
7657 	else if (cmd == RSM_IOCTL_GETV)
7658 		e = im_seg->s_adapter->rsmpi_ops->rsm_memseg_import_getv(
7659 		    im_seg->s_adapter->rsmpi_handle,
7660 		    &rsmpi_sg_io);
7661 	else {
7662 		e = EINVAL;
7663 		DBG_PRINTF((category, RSM_DEBUG,
7664 		    "iovec_ioctl: bad command = %x\n", cmd));
7665 	}
7666 
7667 
7668 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7669 	    "rsm_iovec_ioctl RSMPI oper done %d\n", e));
7670 
7671 	sg_io.io_residual_count = rsmpi_sg_io.io_residual_count;
7672 
7673 	/*
7674 	 * Check for implicit signal post flag and do the signal
7675 	 * post if needed
7676 	 */
7677 	if (sg_io.flags & RSM_IMPLICIT_SIGPOST &&
7678 	    e == RSM_SUCCESS) {
7679 		rsmipc_request_t request;
7680 
7681 		request.rsmipc_key = im_seg->s_segid;
7682 		request.rsmipc_hdr.rsmipc_type = RSMIPC_MSG_BELL;
7683 		request.rsmipc_segment_cookie = NULL;
7684 		e = rsmipc_send(im_seg->s_node, &request, RSM_NO_REPLY);
7685 		/*
7686 		 * Reset the implicit signal post flag to 0 to indicate
7687 		 * that the signal post has been done and need not be
7688 		 * done in the RSMAPI library
7689 		 */
7690 		sg_io.flags &= ~RSM_IMPLICIT_SIGPOST;
7691 	}
7692 
7693 	rsmseglock_acquire(im_seg);
7694 	im_seg->s_rdmacnt--;
7695 	if (im_seg->s_rdmacnt == 0) {
7696 		cv_broadcast(&im_seg->s_cv);
7697 	}
7698 	rsmseglock_release(im_seg);
7699 	error = sgio_resid_copyout(arg, &sg_io, mode);
7700 out:
7701 	iovec = iovec_start;
7702 	ka_iovec = ka_iovec_start;
7703 	for (i = 0; i < iov_proc; i++) {
7704 		if (ka_iovec->io_type == RSM_HANDLE_TYPE) {
7705 			ex_seg = rsmexport_lookup(ka_iovec->local.segid);
7706 
7707 			ASSERT(ex_seg != NULL);
7708 			ASSERT(ex_seg->s_state == RSM_STATE_EXPORT);
7709 
7710 			ex_seg->s_rdmacnt--; /* unrefcnt the handle */
7711 			if (ex_seg->s_rdmacnt == 0) {
7712 				cv_broadcast(&ex_seg->s_cv);
7713 			}
7714 			rsmseglock_release(ex_seg);
7715 		}
7716 
7717 		ASSERT(iovec != NULL); /* true if iov_proc > 0 */
7718 
7719 		/*
7720 		 * At present there is no dependency on the existence of xbufs
7721 		 * created by ddi_umem_iosetup for each of the iovecs. So we
7722 		 * can these xbufs here.
7723 		 */
7724 		if (iovec->local_mem.ms_type == RSM_MEM_BUF) {
7725 			freerbuf(iovec->local_mem.ms_memory.bp);
7726 		}
7727 
7728 		iovec++;
7729 		ka_iovec++;
7730 	}
7731 
7732 	if (sg_io.io_request_count > RSM_MAX_IOVLEN) {
7733 		if (iovec_start)
7734 			kmem_free(iovec_start, size);
7735 		kmem_free(ka_iovec_start, ka_size);
7736 	}
7737 
7738 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7739 	    "rsm_iovec_ioctl done %d\n", e));
7740 	/* if RSMPI call fails return that else return copyout's retval */
7741 	return ((e != RSM_SUCCESS) ? e : error);
7742 
7743 }
7744 
7745 
7746 static int
7747 rsmaddr_ioctl(int cmd, rsm_ioctlmsg_t *msg, int mode)
7748 {
7749 	adapter_t	*adapter;
7750 	rsm_addr_t	addr;
7751 	rsm_node_id_t	node;
7752 	int		rval = DDI_SUCCESS;
7753 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_IOCTL);
7754 
7755 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmaddr_ioctl enter\n"));
7756 
7757 	adapter =  rsm_getadapter(msg, mode);
7758 	if (adapter == NULL) {
7759 		DBG_PRINTF((category, RSM_DEBUG,
7760 		    "rsmaddr_ioctl done: adapter not found\n"));
7761 		return (RSMERR_CTLR_NOT_PRESENT);
7762 	}
7763 
7764 	switch (cmd) {
7765 	case RSM_IOCTL_MAP_TO_ADDR: /* nodeid to hwaddr mapping */
7766 		/* returns the hwaddr in msg->hwaddr */
7767 		if (msg->nodeid == my_nodeid) {
7768 			msg->hwaddr = adapter->hwaddr;
7769 		} else {
7770 			addr = get_remote_hwaddr(adapter, msg->nodeid);
7771 			if ((int64_t)addr < 0) {
7772 				rval = RSMERR_INTERNAL_ERROR;
7773 			} else {
7774 				msg->hwaddr = addr;
7775 			}
7776 		}
7777 		break;
7778 	case RSM_IOCTL_MAP_TO_NODEID: /* hwaddr to nodeid mapping */
7779 		/* returns the nodeid in msg->nodeid */
7780 		if (msg->hwaddr == adapter->hwaddr) {
7781 			msg->nodeid = my_nodeid;
7782 		} else {
7783 			node = get_remote_nodeid(adapter, msg->hwaddr);
7784 			if ((int)node < 0) {
7785 				rval = RSMERR_INTERNAL_ERROR;
7786 			} else {
7787 				msg->nodeid = (rsm_node_id_t)node;
7788 			}
7789 		}
7790 		break;
7791 	default:
7792 		rval = EINVAL;
7793 		break;
7794 	}
7795 
7796 	rsmka_release_adapter(adapter);
7797 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7798 	    "rsmaddr_ioctl done: %d\n", rval));
7799 	return (rval);
7800 }
7801 
7802 static int
7803 rsm_ddi_copyin(caddr_t arg, rsm_ioctlmsg_t *msg, int mode)
7804 {
7805 	DBG_DEFINE(category,
7806 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_IOCTL | RSM_DDI);
7807 
7808 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_ddi_copyin enter\n"));
7809 
7810 #ifdef _MULTI_DATAMODEL
7811 
7812 	if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
7813 		rsm_ioctlmsg32_t msg32;
7814 		int i;
7815 
7816 		if (ddi_copyin(arg, (caddr_t)&msg32, sizeof (msg32), mode)) {
7817 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7818 			    "rsm_ddi_copyin done: EFAULT\n"));
7819 			return (RSMERR_BAD_ADDR);
7820 		}
7821 		msg->len = msg32.len;
7822 		msg->vaddr = (caddr_t)(uintptr_t)msg32.vaddr;
7823 		msg->arg = (caddr_t)(uintptr_t)msg32.arg;
7824 		msg->key = msg32.key;
7825 		msg->acl_len = msg32.acl_len;
7826 		msg->acl = (rsmapi_access_entry_t *)(uintptr_t)msg32.acl;
7827 		msg->cnum = msg32.cnum;
7828 		msg->cname = (caddr_t)(uintptr_t)msg32.cname;
7829 		msg->cname_len = msg32.cname_len;
7830 		msg->nodeid = msg32.nodeid;
7831 		msg->hwaddr = msg32.hwaddr;
7832 		msg->perm = msg32.perm;
7833 		for (i = 0; i < 4; i++) {
7834 			msg->bar.comp[i].u64 = msg32.bar.comp[i].u64;
7835 		}
7836 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7837 		    "rsm_ddi_copyin done\n"));
7838 		return (RSM_SUCCESS);
7839 	}
7840 #endif
7841 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_ddi_copyin done\n"));
7842 	if (ddi_copyin(arg, (caddr_t)msg, sizeof (*msg), mode))
7843 		return (RSMERR_BAD_ADDR);
7844 	else
7845 		return (RSM_SUCCESS);
7846 }
7847 
7848 static int
7849 rsmattr_ddi_copyout(adapter_t *adapter, caddr_t arg, int mode)
7850 {
7851 	rsmka_int_controller_attr_t	rsm_cattr;
7852 	DBG_DEFINE(category,
7853 	    RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_IOCTL | RSM_DDI);
7854 
7855 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7856 	    "rsmattr_ddi_copyout enter\n"));
7857 	/*
7858 	 * need to copy appropriate data from rsm_controller_attr_t
7859 	 * to rsmka_int_controller_attr_t
7860 	 */
7861 #ifdef	_MULTI_DATAMODEL
7862 	if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
7863 		rsmka_int_controller_attr32_t rsm_cattr32;
7864 
7865 		rsm_cattr32.attr_direct_access_sizes =
7866 		    adapter->rsm_attr.attr_direct_access_sizes;
7867 		rsm_cattr32.attr_atomic_sizes =
7868 		    adapter->rsm_attr.attr_atomic_sizes;
7869 		rsm_cattr32.attr_page_size =
7870 		    adapter->rsm_attr.attr_page_size;
7871 		if (adapter->rsm_attr.attr_max_export_segment_size >
7872 		    UINT_MAX)
7873 			rsm_cattr32.attr_max_export_segment_size =
7874 			    RSM_MAXSZ_PAGE_ALIGNED;
7875 		else
7876 			rsm_cattr32.attr_max_export_segment_size =
7877 			    adapter->rsm_attr.attr_max_export_segment_size;
7878 		if (adapter->rsm_attr.attr_tot_export_segment_size >
7879 		    UINT_MAX)
7880 			rsm_cattr32.attr_tot_export_segment_size =
7881 			    RSM_MAXSZ_PAGE_ALIGNED;
7882 		else
7883 			rsm_cattr32.attr_tot_export_segment_size =
7884 			    adapter->rsm_attr.attr_tot_export_segment_size;
7885 		if (adapter->rsm_attr.attr_max_export_segments >
7886 		    UINT_MAX)
7887 			rsm_cattr32.attr_max_export_segments =
7888 			    UINT_MAX;
7889 		else
7890 			rsm_cattr32.attr_max_export_segments =
7891 			    adapter->rsm_attr.attr_max_export_segments;
7892 		if (adapter->rsm_attr.attr_max_import_map_size >
7893 		    UINT_MAX)
7894 			rsm_cattr32.attr_max_import_map_size =
7895 			    RSM_MAXSZ_PAGE_ALIGNED;
7896 		else
7897 			rsm_cattr32.attr_max_import_map_size =
7898 			    adapter->rsm_attr.attr_max_import_map_size;
7899 		if (adapter->rsm_attr.attr_tot_import_map_size >
7900 		    UINT_MAX)
7901 			rsm_cattr32.attr_tot_import_map_size =
7902 			    RSM_MAXSZ_PAGE_ALIGNED;
7903 		else
7904 			rsm_cattr32.attr_tot_import_map_size =
7905 			    adapter->rsm_attr.attr_tot_import_map_size;
7906 		if (adapter->rsm_attr.attr_max_import_segments >
7907 		    UINT_MAX)
7908 			rsm_cattr32.attr_max_import_segments =
7909 			    UINT_MAX;
7910 		else
7911 			rsm_cattr32.attr_max_import_segments =
7912 			    adapter->rsm_attr.attr_max_import_segments;
7913 		rsm_cattr32.attr_controller_addr =
7914 		    adapter->rsm_attr.attr_controller_addr;
7915 
7916 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7917 		    "rsmattr_ddi_copyout done\n"));
7918 		if (ddi_copyout((caddr_t)&rsm_cattr32, arg,
7919 		    sizeof (rsmka_int_controller_attr32_t), mode)) {
7920 			return (RSMERR_BAD_ADDR);
7921 		}
7922 		else
7923 			return (RSM_SUCCESS);
7924 	}
7925 #endif
7926 	rsm_cattr.attr_direct_access_sizes =
7927 	    adapter->rsm_attr.attr_direct_access_sizes;
7928 	rsm_cattr.attr_atomic_sizes =
7929 	    adapter->rsm_attr.attr_atomic_sizes;
7930 	rsm_cattr.attr_page_size =
7931 	    adapter->rsm_attr.attr_page_size;
7932 	rsm_cattr.attr_max_export_segment_size =
7933 	    adapter->rsm_attr.attr_max_export_segment_size;
7934 	rsm_cattr.attr_tot_export_segment_size =
7935 	    adapter->rsm_attr.attr_tot_export_segment_size;
7936 	rsm_cattr.attr_max_export_segments =
7937 	    adapter->rsm_attr.attr_max_export_segments;
7938 	rsm_cattr.attr_max_import_map_size =
7939 	    adapter->rsm_attr.attr_max_import_map_size;
7940 	rsm_cattr.attr_tot_import_map_size =
7941 	    adapter->rsm_attr.attr_tot_import_map_size;
7942 	rsm_cattr.attr_max_import_segments =
7943 	    adapter->rsm_attr.attr_max_import_segments;
7944 	rsm_cattr.attr_controller_addr =
7945 	    adapter->rsm_attr.attr_controller_addr;
7946 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7947 	    "rsmattr_ddi_copyout done\n"));
7948 	if (ddi_copyout((caddr_t)&rsm_cattr, arg,
7949 	    sizeof (rsmka_int_controller_attr_t), mode)) {
7950 		return (RSMERR_BAD_ADDR);
7951 	}
7952 	else
7953 		return (RSM_SUCCESS);
7954 }
7955 
7956 /*ARGSUSED*/
7957 static int
7958 rsm_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
7959     int *rvalp)
7960 {
7961 	rsmseg_t *seg;
7962 	rsmresource_t	*res;
7963 	minor_t		rnum;
7964 	rsm_ioctlmsg_t msg = {0};
7965 	int error;
7966 	adapter_t *adapter;
7967 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_IOCTL);
7968 
7969 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_ioctl enter\n"));
7970 
7971 	if (cmd == RSM_IOCTL_CONSUMEEVENT) {
7972 		error = rsm_consumeevent_ioctl((caddr_t)arg, mode);
7973 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7974 		    "rsm_ioctl RSM_IOCTL_CONSUMEEVENT done: %d\n", error));
7975 		return (error);
7976 	}
7977 
7978 	/* topology cmd does not use the arg common to other cmds */
7979 	if (RSM_IOCTL_CMDGRP(cmd) == RSM_IOCTL_TOPOLOGY) {
7980 		error = rsmka_topology_ioctl((caddr_t)arg, cmd, mode);
7981 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7982 		    "rsm_ioctl done: %d\n", error));
7983 		return (error);
7984 	}
7985 
7986 	if (RSM_IOCTL_CMDGRP(cmd) == RSM_IOCTL_IOVEC) {
7987 		error = rsm_iovec_ioctl(dev, (caddr_t)arg, cmd, mode, credp);
7988 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7989 		    "rsm_ioctl done: %d\n", error));
7990 		return (error);
7991 	}
7992 
7993 	/*
7994 	 * try to load arguments
7995 	 */
7996 	if (cmd != RSM_IOCTL_RING_BELL &&
7997 	    rsm_ddi_copyin((caddr_t)arg, &msg, mode)) {
7998 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
7999 		    "rsm_ioctl done: EFAULT\n"));
8000 		return (RSMERR_BAD_ADDR);
8001 	}
8002 
8003 	if (cmd == RSM_IOCTL_ATTR) {
8004 		adapter =  rsm_getadapter(&msg, mode);
8005 		if (adapter == NULL) {
8006 			DBG_PRINTF((category, RSM_DEBUG,
8007 			    "rsm_ioctl done: ENODEV\n"));
8008 			return (RSMERR_CTLR_NOT_PRESENT);
8009 		}
8010 		error = rsmattr_ddi_copyout(adapter, msg.arg, mode);
8011 		rsmka_release_adapter(adapter);
8012 		DBG_PRINTF((category, RSM_DEBUG,
8013 		    "rsm_ioctl:after copyout %d\n", error));
8014 		return (error);
8015 	}
8016 
8017 	if (cmd == RSM_IOCTL_BAR_INFO) {
8018 		/* Return library off,len of barrier page */
8019 		msg.off = barrier_offset;
8020 		msg.len = (int)barrier_size;
8021 #ifdef _MULTI_DATAMODEL
8022 		if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
8023 			rsm_ioctlmsg32_t msg32;
8024 
8025 			if (msg.len > UINT_MAX)
8026 				msg.len = RSM_MAXSZ_PAGE_ALIGNED;
8027 			else
8028 				msg32.len = (int32_t)msg.len;
8029 			msg32.off = (int32_t)msg.off;
8030 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8031 			    "rsm_ioctl done\n"));
8032 			if (ddi_copyout((caddr_t)&msg32, (caddr_t)arg,
8033 			    sizeof (msg32), mode))
8034 				return (RSMERR_BAD_ADDR);
8035 			else
8036 				return (RSM_SUCCESS);
8037 		}
8038 #endif
8039 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8040 		    "rsm_ioctl done\n"));
8041 		if (ddi_copyout((caddr_t)&msg, (caddr_t)arg,
8042 		    sizeof (msg), mode))
8043 			return (RSMERR_BAD_ADDR);
8044 		else
8045 			return (RSM_SUCCESS);
8046 	}
8047 
8048 	if (RSM_IOCTL_CMDGRP(cmd) == RSM_IOCTL_MAP_ADDR) {
8049 		/* map the nodeid or hwaddr */
8050 		error = rsmaddr_ioctl(cmd, &msg, mode);
8051 		if (error == RSM_SUCCESS) {
8052 #ifdef _MULTI_DATAMODEL
8053 			if ((mode & DATAMODEL_MASK) == DATAMODEL_ILP32) {
8054 				rsm_ioctlmsg32_t msg32;
8055 
8056 				msg32.hwaddr = (uint64_t)msg.hwaddr;
8057 				msg32.nodeid = (uint32_t)msg.nodeid;
8058 
8059 				DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8060 				    "rsm_ioctl done\n"));
8061 				if (ddi_copyout((caddr_t)&msg32, (caddr_t)arg,
8062 				    sizeof (msg32), mode))
8063 					return (RSMERR_BAD_ADDR);
8064 				else
8065 					return (RSM_SUCCESS);
8066 			}
8067 #endif
8068 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8069 			    "rsm_ioctl done\n"));
8070 			if (ddi_copyout((caddr_t)&msg, (caddr_t)arg,
8071 			    sizeof (msg), mode))
8072 				return (RSMERR_BAD_ADDR);
8073 			else
8074 				return (RSM_SUCCESS);
8075 		}
8076 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8077 		    "rsm_ioctl done: %d\n", error));
8078 		return (error);
8079 	}
8080 
8081 	/* Find resource and look it in read mode */
8082 	rnum = getminor(dev);
8083 	res = rsmresource_lookup(rnum, RSM_NOLOCK);
8084 	ASSERT(res != NULL);
8085 
8086 	/*
8087 	 * Find command group
8088 	 */
8089 	switch (RSM_IOCTL_CMDGRP(cmd)) {
8090 	case RSM_IOCTL_EXPORT_SEG:
8091 		/*
8092 		 * Export list is searched during publish, loopback and
8093 		 * remote lookup call.
8094 		 */
8095 		seg = rsmresource_seg(res, rnum, credp,
8096 		    RSM_RESOURCE_EXPORT_SEGMENT);
8097 		if (seg->s_type == RSM_RESOURCE_EXPORT_SEGMENT) {
8098 			error = rsmexport_ioctl(seg, &msg, cmd, arg, mode,
8099 			    credp);
8100 		} else { /* export ioctl on an import/barrier resource */
8101 			error = RSMERR_BAD_SEG_HNDL;
8102 		}
8103 		break;
8104 	case RSM_IOCTL_IMPORT_SEG:
8105 		/* Import list is searched during remote unmap call. */
8106 		seg = rsmresource_seg(res, rnum, credp,
8107 		    RSM_RESOURCE_IMPORT_SEGMENT);
8108 		if (seg->s_type == RSM_RESOURCE_IMPORT_SEGMENT) {
8109 			error = rsmimport_ioctl(seg, &msg, cmd, arg, mode,
8110 			    credp);
8111 		} else  { /* import ioctl on an export/barrier resource */
8112 			error = RSMERR_BAD_SEG_HNDL;
8113 		}
8114 		break;
8115 	case RSM_IOCTL_BAR:
8116 		if (res != RSMRC_RESERVED &&
8117 		    res->rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT) {
8118 			error = rsmbar_ioctl((rsmseg_t *)res, &msg, cmd, arg,
8119 			    mode);
8120 		} else { /* invalid res value */
8121 			error = RSMERR_BAD_SEG_HNDL;
8122 		}
8123 		break;
8124 	case RSM_IOCTL_BELL:
8125 		if (res != RSMRC_RESERVED) {
8126 			if (res->rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT)
8127 				error = exportbell_ioctl((rsmseg_t *)res, cmd);
8128 			else if (res->rsmrc_type == RSM_RESOURCE_EXPORT_SEGMENT)
8129 				error = importbell_ioctl((rsmseg_t *)res, cmd);
8130 			else /* RSM_RESOURCE_BAR */
8131 				error = RSMERR_BAD_SEG_HNDL;
8132 		} else { /* invalid res value */
8133 			error = RSMERR_BAD_SEG_HNDL;
8134 		}
8135 		break;
8136 	default:
8137 		error = EINVAL;
8138 	}
8139 
8140 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_ioctl done: %d\n",
8141 	    error));
8142 	return (error);
8143 }
8144 
8145 
8146 /* **************************** Segment Mapping Operations ********* */
8147 static rsm_mapinfo_t *
8148 rsm_get_mapinfo(rsmseg_t *seg, off_t off, size_t len, off_t *dev_offset,
8149     size_t *map_len)
8150 {
8151 	rsm_mapinfo_t	*p;
8152 	/*
8153 	 * Find the correct mapinfo structure to use during the mapping
8154 	 * from the seg->s_mapinfo list.
8155 	 * The seg->s_mapinfo list contains in reverse order the mappings
8156 	 * as returned by the RSMPI rsm_map. In rsm_devmap, we need to
8157 	 * access the correct entry within this list for the mapping
8158 	 * requested.
8159 	 *
8160 	 * The algorithm for selecting a list entry is as follows:
8161 	 *
8162 	 * When start_offset of an entry <= off we have found the entry
8163 	 * we were looking for. Adjust the dev_offset and map_len (needs
8164 	 * to be PAGESIZE aligned).
8165 	 */
8166 	p = seg->s_mapinfo;
8167 	for (; p; p = p->next) {
8168 		if (p->start_offset <= off) {
8169 			*dev_offset = p->dev_offset + off - p->start_offset;
8170 			*map_len = (len > p->individual_len) ?
8171 			    p->individual_len : ptob(btopr(len));
8172 			return (p);
8173 		}
8174 		p = p->next;
8175 	}
8176 
8177 	return (NULL);
8178 }
8179 
8180 static void
8181 rsm_free_mapinfo(rsm_mapinfo_t  *mapinfo)
8182 {
8183 	rsm_mapinfo_t *p;
8184 
8185 	while (mapinfo != NULL) {
8186 		p = mapinfo;
8187 		mapinfo = mapinfo->next;
8188 		kmem_free(p, sizeof (*p));
8189 	}
8190 }
8191 
8192 static int
8193 rsmmap_map(devmap_cookie_t dhp, dev_t dev, uint_t flags, offset_t off,
8194     size_t len, void **pvtp)
8195 {
8196 	rsmcookie_t	*p;
8197 	rsmresource_t	*res;
8198 	rsmseg_t	*seg;
8199 	minor_t rnum;
8200 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_DDI);
8201 
8202 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmmap_map enter\n"));
8203 
8204 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8205 	    "rsmmap_map: dhp = %x\n", dhp));
8206 
8207 	flags = flags;
8208 
8209 	rnum = getminor(dev);
8210 	res = (rsmresource_t *)rsmresource_lookup(rnum, RSM_NOLOCK);
8211 	ASSERT(res != NULL);
8212 
8213 	seg = (rsmseg_t *)res;
8214 
8215 	rsmseglock_acquire(seg);
8216 
8217 	ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
8218 
8219 	/*
8220 	 * Allocate structure and add cookie to segment list
8221 	 */
8222 	p = kmem_alloc(sizeof (*p), KM_SLEEP);
8223 
8224 	p->c_dhp = dhp;
8225 	p->c_off = off;
8226 	p->c_len = len;
8227 	p->c_next = seg->s_ckl;
8228 	seg->s_ckl = p;
8229 
8230 	*pvtp = (void *)seg;
8231 
8232 	rsmseglock_release(seg);
8233 
8234 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmmap_map done\n"));
8235 	return (DDI_SUCCESS);
8236 }
8237 
8238 /*
8239  * Page fault handling is done here. The prerequisite mapping setup
8240  * has been done in rsm_devmap with calls to ddi_devmem_setup or
8241  * ddi_umem_setup
8242  */
8243 static int
8244 rsmmap_access(devmap_cookie_t dhp, void *pvt, offset_t offset, size_t len,
8245     uint_t type, uint_t rw)
8246 {
8247 	int e;
8248 	rsmseg_t *seg = (rsmseg_t *)pvt;
8249 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_DDI);
8250 
8251 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmmap_access enter\n"));
8252 
8253 	rsmseglock_acquire(seg);
8254 
8255 	ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
8256 
8257 	while (seg->s_state == RSM_STATE_MAP_QUIESCE) {
8258 		if (cv_wait_sig(&seg->s_cv, &seg->s_lock) == 0) {
8259 			DBG_PRINTF((category, RSM_DEBUG,
8260 			    "rsmmap_access done: cv_wait INTR"));
8261 			rsmseglock_release(seg);
8262 			return (RSMERR_INTERRUPTED);
8263 		}
8264 	}
8265 
8266 	ASSERT(seg->s_state == RSM_STATE_DISCONNECT ||
8267 	    seg->s_state == RSM_STATE_ACTIVE);
8268 
8269 	if (seg->s_state == RSM_STATE_DISCONNECT)
8270 		seg->s_flags |= RSM_IMPORT_DUMMY;
8271 
8272 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8273 	    "rsmmap_access: dhp = %x\n", dhp));
8274 
8275 	rsmseglock_release(seg);
8276 
8277 	if (e = devmap_load(dhp, offset, len, type, rw)) {
8278 		DBG_PRINTF((category, RSM_ERR, "devmap_load failed\n"));
8279 	}
8280 
8281 
8282 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmmap_access done\n"));
8283 
8284 	return (e);
8285 }
8286 
8287 static int
8288 rsmmap_dup(devmap_cookie_t dhp, void *oldpvt, devmap_cookie_t new_dhp,
8289 	void **newpvt)
8290 {
8291 	rsmseg_t	*seg = (rsmseg_t *)oldpvt;
8292 	rsmcookie_t	*p, *old;
8293 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_DDI);
8294 
8295 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmmap_dup enter\n"));
8296 
8297 	/*
8298 	 * Same as map, create an entry to hold cookie and add it to
8299 	 * connect segment list. The oldpvt is a pointer to segment.
8300 	 * Return segment pointer in newpvt.
8301 	 */
8302 	rsmseglock_acquire(seg);
8303 
8304 	ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
8305 
8306 	/*
8307 	 * Find old cookie
8308 	 */
8309 	for (old = seg->s_ckl; old != NULL; old = old->c_next) {
8310 		if (old->c_dhp == dhp) {
8311 			break;
8312 		}
8313 	}
8314 	if (old == NULL) {
8315 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8316 		    "rsmmap_dup done: EINVAL\n"));
8317 		rsmseglock_release(seg);
8318 		return (EINVAL);
8319 	}
8320 
8321 	p = kmem_alloc(sizeof (*p), KM_SLEEP);
8322 
8323 	p->c_dhp = new_dhp;
8324 	p->c_off = old->c_off;
8325 	p->c_len = old->c_len;
8326 	p->c_next = seg->s_ckl;
8327 	seg->s_ckl = p;
8328 
8329 	*newpvt = (void *)seg;
8330 
8331 	rsmseglock_release(seg);
8332 
8333 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmmap_dup done\n"));
8334 
8335 	return (DDI_SUCCESS);
8336 }
8337 
8338 static void
8339 rsmmap_unmap(devmap_cookie_t dhp, void *pvtp, offset_t off, size_t len,
8340 	devmap_cookie_t new_dhp1, void **pvtp1,
8341 	devmap_cookie_t new_dhp2, void **pvtp2)
8342 {
8343 	/*
8344 	 * Remove pvtp structure from segment list.
8345 	 */
8346 	rsmseg_t	*seg = (rsmseg_t *)pvtp;
8347 	int freeflag;
8348 
8349 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_DDI);
8350 
8351 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmmap_unmap enter\n"));
8352 
8353 	off = off; len = len;
8354 	pvtp1 = pvtp1; pvtp2 = pvtp2;
8355 
8356 	rsmseglock_acquire(seg);
8357 
8358 	ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
8359 
8360 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8361 	    "rsmmap_unmap: dhp = %x\n", dhp));
8362 	/*
8363 	 * We can go ahead and remove the dhps even if we are in
8364 	 * the MAPPING state because the dhps being removed here
8365 	 * belong to a different mmap and we are holding the segment
8366 	 * lock.
8367 	 */
8368 	if (new_dhp1 == NULL && new_dhp2 == NULL) {
8369 		/* find and remove dhp handle */
8370 		rsmcookie_t *tmp, **back = &seg->s_ckl;
8371 
8372 		while (*back != NULL) {
8373 			tmp = *back;
8374 			if (tmp->c_dhp == dhp) {
8375 				*back = tmp->c_next;
8376 				kmem_free(tmp, sizeof (*tmp));
8377 				break;
8378 			}
8379 			back = &tmp->c_next;
8380 		}
8381 	} else {
8382 		DBG_PRINTF((category, RSM_DEBUG_LVL2,
8383 		    "rsmmap_unmap:parital unmap"
8384 		    "new_dhp1 %lx, new_dhp2 %lx\n",
8385 		    (size_t)new_dhp1, (size_t)new_dhp2));
8386 	}
8387 
8388 	/*
8389 	 * rsmmap_unmap is called for each mapping cookie on the list.
8390 	 * When the list becomes empty and we are not in the MAPPING
8391 	 * state then unmap in the rsmpi driver.
8392 	 */
8393 	if ((seg->s_ckl == NULL) && (seg->s_state != RSM_STATE_MAPPING))
8394 		(void) rsm_unmap(seg);
8395 
8396 	if (seg->s_state == RSM_STATE_END && seg->s_ckl == NULL) {
8397 		freeflag = 1;
8398 	} else {
8399 		freeflag = 0;
8400 	}
8401 
8402 	rsmseglock_release(seg);
8403 
8404 	if (freeflag) {
8405 		/* Free the segment structure */
8406 		rsmseg_free(seg);
8407 	}
8408 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsmmap_unmap done\n"));
8409 
8410 }
8411 
8412 static struct devmap_callback_ctl rsmmap_ops = {
8413 	DEVMAP_OPS_REV,	/* devmap_ops version number	*/
8414 	rsmmap_map,	/* devmap_ops map routine */
8415 	rsmmap_access,	/* devmap_ops access routine */
8416 	rsmmap_dup,		/* devmap_ops dup routine		*/
8417 	rsmmap_unmap,	/* devmap_ops unmap routine */
8418 };
8419 
8420 static int
8421 rsm_devmap(dev_t dev, devmap_cookie_t dhc, offset_t off, size_t len,
8422     size_t *maplen, uint_t model /*ARGSUSED*/)
8423 {
8424 	struct devmap_callback_ctl *callbackops = &rsmmap_ops;
8425 	int		err;
8426 	uint_t		maxprot;
8427 	minor_t		rnum;
8428 	rsmseg_t	*seg;
8429 	off_t		dev_offset;
8430 	size_t		cur_len;
8431 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_DDI);
8432 
8433 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_devmap enter\n"));
8434 
8435 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8436 	    "rsm_devmap: off = %lx, len = %lx\n", off, len));
8437 	rnum = getminor(dev);
8438 	seg = (rsmseg_t *)rsmresource_lookup(rnum, RSM_NOLOCK);
8439 	ASSERT(seg != NULL);
8440 
8441 	if (seg->s_hdr.rsmrc_type == RSM_RESOURCE_BAR) {
8442 		if ((off == barrier_offset) &&
8443 		    (len == barrier_size)) {
8444 
8445 			ASSERT(bar_va != NULL && bar_cookie != NULL);
8446 
8447 			/*
8448 			 * The offset argument in devmap_umem_setup represents
8449 			 * the offset within the kernel memory defined by the
8450 			 * cookie. We use this offset as barrier_offset.
8451 			 */
8452 			err = devmap_umem_setup(dhc, rsm_dip, NULL, bar_cookie,
8453 			    barrier_offset, len, PROT_USER|PROT_READ,
8454 			    DEVMAP_DEFAULTS, 0);
8455 
8456 			if (err != 0) {
8457 				DBG_PRINTF((category, RSM_ERR,
8458 				    "rsm_devmap done: %d\n", err));
8459 				return (RSMERR_MAP_FAILED);
8460 			}
8461 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8462 			    "rsm_devmap done: %d\n", err));
8463 
8464 			*maplen = barrier_size;
8465 
8466 			return (err);
8467 		} else {
8468 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8469 			    "rsm_devmap done: %d\n", err));
8470 			return (RSMERR_MAP_FAILED);
8471 		}
8472 	}
8473 
8474 	ASSERT(seg->s_hdr.rsmrc_type == RSM_RESOURCE_IMPORT_SEGMENT);
8475 	ASSERT(seg->s_state == RSM_STATE_MAPPING);
8476 
8477 	/*
8478 	 * Make sure we still have permission for the map operation.
8479 	 */
8480 	maxprot = PROT_USER;
8481 	if (seg->s_mode & RSM_PERM_READ) {
8482 		maxprot |= PROT_READ;
8483 	}
8484 
8485 	if (seg->s_mode & RSM_PERM_WRITE) {
8486 		maxprot |= PROT_WRITE;
8487 	}
8488 
8489 	/*
8490 	 * For each devmap call, rsmmap_map is called. This maintains driver
8491 	 * private information for the mapping. Thus, if there are multiple
8492 	 * devmap calls there will be multiple rsmmap_map calls and for each
8493 	 * call, the mapping information will be stored.
8494 	 * In case of an error during the processing of the devmap call, error
8495 	 * will be returned. This error return causes the caller of rsm_devmap
8496 	 * to undo all the mappings by calling rsmmap_unmap for each one.
8497 	 * rsmmap_unmap will free up the private information for the requested
8498 	 * mapping.
8499 	 */
8500 	if (seg->s_node != my_nodeid) {
8501 		rsm_mapinfo_t *p;
8502 
8503 		p = rsm_get_mapinfo(seg, off, len, &dev_offset, &cur_len);
8504 		if (p == NULL) {
8505 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8506 			    "rsm_devmap: incorrect mapping info\n"));
8507 			return (RSMERR_MAP_FAILED);
8508 		}
8509 		err = devmap_devmem_setup(dhc, p->dip,
8510 		    callbackops, p->dev_register,
8511 		    dev_offset, cur_len, maxprot,
8512 		    DEVMAP_ALLOW_REMAP | DEVMAP_DEFAULTS, 0);
8513 
8514 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8515 		    "rsm_devmap: dip=%lx,dreg=%lu,doff=%lx,"
8516 		    "off=%lx,len=%lx\n",
8517 		    p->dip, p->dev_register, dev_offset, off, cur_len));
8518 
8519 		if (err != 0) {
8520 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8521 			    "rsm_devmap: devmap_devmem_setup failed %d\n",
8522 			    err));
8523 			return (RSMERR_MAP_FAILED);
8524 		}
8525 		/* cur_len is always an integral multiple pagesize */
8526 		ASSERT((cur_len & (PAGESIZE-1)) == 0);
8527 		*maplen = cur_len;
8528 		return (err);
8529 
8530 	} else {
8531 		err = devmap_umem_setup(dhc, rsm_dip, callbackops,
8532 		    seg->s_cookie, off, len, maxprot,
8533 		    DEVMAP_ALLOW_REMAP|DEVMAP_DEFAULTS, 0);
8534 		if (err != 0) {
8535 			DBG_PRINTF((category, RSM_DEBUG,
8536 			    "rsm_devmap: devmap_umem_setup failed %d\n",
8537 			    err));
8538 			return (RSMERR_MAP_FAILED);
8539 		}
8540 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8541 		    "rsm_devmap: loopback done\n"));
8542 
8543 		*maplen = ptob(btopr(len));
8544 
8545 		return (err);
8546 	}
8547 }
8548 
8549 /*
8550  * We can use the devmap framework for mapping device memory to user space by
8551  * specifying this routine in the rsm_cb_ops structure. The kernel mmap
8552  * processing calls this entry point and devmap_setup is called within this
8553  * function, which eventually calls rsm_devmap
8554  */
8555 static int
8556 rsm_segmap(dev_t dev, off_t off, struct as *as, caddr_t *addrp, off_t len,
8557     uint_t prot, uint_t maxprot, uint_t flags, struct cred *cred)
8558 {
8559 	int			error = 0;
8560 	int			old_state;
8561 	minor_t			rnum;
8562 	rsmseg_t		*seg, *eseg;
8563 	adapter_t		*adapter;
8564 	rsm_import_share_t	*sharedp;
8565 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_DDI);
8566 
8567 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "rsm_segmap enter\n"));
8568 
8569 	/*
8570 	 * find segment
8571 	 */
8572 	rnum = getminor(dev);
8573 	seg = (rsmseg_t *)rsmresource_lookup(rnum, RSM_LOCK);
8574 
8575 	if (seg == NULL) {
8576 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8577 		    "rsm_segmap done: invalid segment\n"));
8578 		return (EINVAL);
8579 	}
8580 
8581 	/*
8582 	 * the user is trying to map a resource that has not been
8583 	 * defined yet. The library uses this to map in the
8584 	 * barrier page.
8585 	 */
8586 	if (seg->s_hdr.rsmrc_type == RSM_RESOURCE_BAR) {
8587 		rsmseglock_release(seg);
8588 
8589 		/*
8590 		 * The mapping for the barrier page is identified
8591 		 * by the special offset barrier_offset
8592 		 */
8593 
8594 		if (off == (off_t)barrier_offset ||
8595 		    len == (off_t)barrier_size) {
8596 			if (bar_cookie == NULL || bar_va == NULL) {
8597 				DBG_PRINTF((category, RSM_DEBUG,
8598 				    "rsm_segmap: bar cookie/va is NULL\n"));
8599 				return (EINVAL);
8600 			}
8601 
8602 			error = devmap_setup(dev, (offset_t)off, as, addrp,
8603 			    (size_t)len, prot, maxprot, flags,  cred);
8604 
8605 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8606 			    "rsm_segmap done: %d\n", error));
8607 			return (error);
8608 		} else {
8609 			DBG_PRINTF((category, RSM_DEBUG,
8610 			    "rsm_segmap: bad offset/length\n"));
8611 			return (EINVAL);
8612 		}
8613 	}
8614 
8615 	/* Make sure you can only map imported segments */
8616 	if (seg->s_hdr.rsmrc_type != RSM_RESOURCE_IMPORT_SEGMENT) {
8617 		rsmseglock_release(seg);
8618 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8619 		    "rsm_segmap done: not an import segment\n"));
8620 		return (EINVAL);
8621 	}
8622 	/* check means library is broken */
8623 	ASSERT(seg->s_hdr.rsmrc_num == rnum);
8624 
8625 	/* wait for the segment to become unquiesced */
8626 	while (seg->s_state == RSM_STATE_CONN_QUIESCE) {
8627 		if (cv_wait_sig(&seg->s_cv, &seg->s_lock) == 0) {
8628 			rsmseglock_release(seg);
8629 			DBG_PRINTF((category, RSM_DEBUG,
8630 			    "rsm_segmap done: cv_wait INTR"));
8631 			return (ENODEV);
8632 		}
8633 	}
8634 
8635 	/* wait until segment leaves the mapping state */
8636 	while (seg->s_state == RSM_STATE_MAPPING)
8637 		cv_wait(&seg->s_cv, &seg->s_lock);
8638 
8639 	/*
8640 	 * we allow multiple maps of the same segment in the KA
8641 	 * and it works because we do an rsmpi map of the whole
8642 	 * segment during the first map and all the device mapping
8643 	 * information needed in rsm_devmap is in the mapinfo list.
8644 	 */
8645 	if ((seg->s_state != RSM_STATE_CONNECT) &&
8646 	    (seg->s_state != RSM_STATE_ACTIVE)) {
8647 		rsmseglock_release(seg);
8648 		DBG_PRINTF((category, RSM_DEBUG,
8649 		    "rsm_segmap done: segment not connected\n"));
8650 		return (ENODEV);
8651 	}
8652 
8653 	/*
8654 	 * Make sure we are not mapping a larger segment than what's
8655 	 * exported
8656 	 */
8657 	if ((size_t)off + ptob(btopr(len)) > seg->s_len) {
8658 		rsmseglock_release(seg);
8659 		DBG_PRINTF((category, RSM_DEBUG,
8660 		    "rsm_segmap done: off+len>seg size\n"));
8661 		return (ENXIO);
8662 	}
8663 
8664 	/*
8665 	 * Make sure we still have permission for the map operation.
8666 	 */
8667 	maxprot = PROT_USER;
8668 	if (seg->s_mode & RSM_PERM_READ) {
8669 		maxprot |= PROT_READ;
8670 	}
8671 
8672 	if (seg->s_mode & RSM_PERM_WRITE) {
8673 		maxprot |= PROT_WRITE;
8674 	}
8675 
8676 	if ((prot & maxprot) != prot) {
8677 		/* No permission */
8678 		rsmseglock_release(seg);
8679 		DBG_PRINTF((category, RSM_DEBUG,
8680 		    "rsm_segmap done: no permission\n"));
8681 		return (EACCES);
8682 	}
8683 
8684 	old_state = seg->s_state;
8685 
8686 	ASSERT(seg->s_share != NULL);
8687 
8688 	rsmsharelock_acquire(seg);
8689 
8690 	sharedp = seg->s_share;
8691 
8692 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
8693 	    "rsm_segmap:RSMSI_STATE=%d\n", sharedp->rsmsi_state));
8694 
8695 	if ((sharedp->rsmsi_state != RSMSI_STATE_CONNECTED) &&
8696 	    (sharedp->rsmsi_state != RSMSI_STATE_MAPPED)) {
8697 		rsmsharelock_release(seg);
8698 		rsmseglock_release(seg);
8699 		DBG_PRINTF((category, RSM_DEBUG,
8700 		    "rsm_segmap done:RSMSI_STATE %d invalid\n",
8701 		    sharedp->rsmsi_state));
8702 		return (ENODEV);
8703 	}
8704 
8705 	/*
8706 	 * Do the map - since we want importers to share mappings
8707 	 * we do the rsmpi map for the whole segment
8708 	 */
8709 	if (seg->s_node != my_nodeid) {
8710 		uint_t dev_register;
8711 		off_t dev_offset;
8712 		dev_info_t *dip;
8713 		size_t tmp_len;
8714 		size_t total_length_mapped = 0;
8715 		size_t length_to_map = seg->s_len;
8716 		off_t tmp_off = 0;
8717 		rsm_mapinfo_t *p;
8718 
8719 		/*
8720 		 * length_to_map = seg->s_len is always an integral
8721 		 * multiple of PAGESIZE. Length mapped in each entry in mapinfo
8722 		 * list is a multiple of PAGESIZE - RSMPI map ensures this
8723 		 */
8724 
8725 		adapter = seg->s_adapter;
8726 		ASSERT(sharedp->rsmsi_state == RSMSI_STATE_CONNECTED ||
8727 		    sharedp->rsmsi_state == RSMSI_STATE_MAPPED);
8728 
8729 		if (sharedp->rsmsi_state == RSMSI_STATE_CONNECTED) {
8730 			error = 0;
8731 			/* map the whole segment */
8732 			while (total_length_mapped < seg->s_len) {
8733 				tmp_len = 0;
8734 
8735 				error = adapter->rsmpi_ops->rsm_map(
8736 				    seg->s_handle.in, tmp_off,
8737 				    length_to_map, &tmp_len,
8738 				    &dip, &dev_register, &dev_offset,
8739 				    NULL, NULL);
8740 
8741 				if (error != 0)
8742 					break;
8743 
8744 				/*
8745 				 * Store the mapping info obtained from rsm_map
8746 				 */
8747 				p = kmem_alloc(sizeof (*p), KM_SLEEP);
8748 				p->dev_register = dev_register;
8749 				p->dev_offset = dev_offset;
8750 				p->dip = dip;
8751 				p->individual_len = tmp_len;
8752 				p->start_offset = tmp_off;
8753 				p->next = sharedp->rsmsi_mapinfo;
8754 				sharedp->rsmsi_mapinfo = p;
8755 
8756 				total_length_mapped += tmp_len;
8757 				length_to_map -= tmp_len;
8758 				tmp_off += tmp_len;
8759 			}
8760 			seg->s_mapinfo = sharedp->rsmsi_mapinfo;
8761 
8762 			if (error != RSM_SUCCESS) {
8763 				/* Check if this is the the first rsm_map */
8764 				if (sharedp->rsmsi_mapinfo != NULL) {
8765 					/*
8766 					 * A single rsm_unmap undoes
8767 					 * multiple rsm_maps.
8768 					 */
8769 					(void) seg->s_adapter->rsmpi_ops->
8770 					    rsm_unmap(sharedp->rsmsi_handle);
8771 					rsm_free_mapinfo(sharedp->
8772 					    rsmsi_mapinfo);
8773 				}
8774 				sharedp->rsmsi_mapinfo = NULL;
8775 				sharedp->rsmsi_state = RSMSI_STATE_CONNECTED;
8776 				rsmsharelock_release(seg);
8777 				rsmseglock_release(seg);
8778 				DBG_PRINTF((category, RSM_DEBUG,
8779 				    "rsm_segmap done: rsmpi map err %d\n",
8780 				    error));
8781 				ASSERT(error != RSMERR_BAD_LENGTH &&
8782 				    error != RSMERR_BAD_MEM_ALIGNMENT &&
8783 				    error != RSMERR_BAD_SEG_HNDL);
8784 				if (error == RSMERR_UNSUPPORTED_OPERATION)
8785 					return (ENOTSUP);
8786 				else if (error == RSMERR_INSUFFICIENT_RESOURCES)
8787 					return (EAGAIN);
8788 				else if (error == RSMERR_CONN_ABORTED)
8789 					return (ENODEV);
8790 				else
8791 					return (error);
8792 			} else {
8793 				sharedp->rsmsi_state = RSMSI_STATE_MAPPED;
8794 			}
8795 		} else {
8796 			seg->s_mapinfo = sharedp->rsmsi_mapinfo;
8797 		}
8798 
8799 		sharedp->rsmsi_mapcnt++;
8800 
8801 		rsmsharelock_release(seg);
8802 
8803 		/* move to an intermediate mapping state */
8804 		seg->s_state = RSM_STATE_MAPPING;
8805 		rsmseglock_release(seg);
8806 
8807 		error = devmap_setup(dev, (offset_t)off, as, addrp,
8808 		    len, prot, maxprot, flags, cred);
8809 
8810 		rsmseglock_acquire(seg);
8811 		ASSERT(seg->s_state == RSM_STATE_MAPPING);
8812 
8813 		if (error == DDI_SUCCESS) {
8814 			seg->s_state = RSM_STATE_ACTIVE;
8815 		} else {
8816 			rsmsharelock_acquire(seg);
8817 
8818 			ASSERT(sharedp->rsmsi_state == RSMSI_STATE_MAPPED);
8819 
8820 			sharedp->rsmsi_mapcnt--;
8821 			if (sharedp->rsmsi_mapcnt == 0) {
8822 				/* unmap the shared RSMPI mapping */
8823 				ASSERT(sharedp->rsmsi_handle != NULL);
8824 				(void) adapter->rsmpi_ops->
8825 				    rsm_unmap(sharedp->rsmsi_handle);
8826 				rsm_free_mapinfo(sharedp->rsmsi_mapinfo);
8827 				sharedp->rsmsi_mapinfo = NULL;
8828 				sharedp->rsmsi_state = RSMSI_STATE_CONNECTED;
8829 			}
8830 
8831 			rsmsharelock_release(seg);
8832 			seg->s_state = old_state;
8833 			DBG_PRINTF((category, RSM_ERR,
8834 			    "rsm: devmap_setup failed %d\n", error));
8835 		}
8836 		cv_broadcast(&seg->s_cv);
8837 		rsmseglock_release(seg);
8838 		DBG_PRINTF((category, RSM_DEBUG_LVL2, "rsm_segmap done: %d\n",
8839 		    error));
8840 		return (error);
8841 	} else {
8842 		/*
8843 		 * For loopback, the export segment mapping cookie (s_cookie)
8844 		 * is also used as the s_cookie value for its import segments
8845 		 * during mapping.
8846 		 * Note that reference counting for s_cookie of the export
8847 		 * segment is not required due to the following:
8848 		 * We never have a case of the export segment being destroyed,
8849 		 * leaving the import segments with a stale value for the
8850 		 * s_cookie field, since a force disconnect is done prior to a
8851 		 * destroy of an export segment. The force disconnect causes
8852 		 * the s_cookie value to be reset to NULL. Also for the
8853 		 * rsm_rebind operation, we change the s_cookie value of the
8854 		 * export segment as well as of all its local (loopback)
8855 		 * importers.
8856 		 */
8857 		DBG_ADDCATEGORY(category, RSM_LOOPBACK);
8858 
8859 		rsmsharelock_release(seg);
8860 		/*
8861 		 * In order to maintain the lock ordering between the export
8862 		 * and import segment locks, we need to acquire the export
8863 		 * segment lock first and only then acquire the import
8864 		 * segment lock.
8865 		 * The above is necessary to avoid any deadlock scenarios
8866 		 * with rsm_rebind which also acquires both the export
8867 		 * and import segment locks in the above mentioned order.
8868 		 * Based on code inspection, there seem to be no other
8869 		 * situations in which both the export and import segment
8870 		 * locks are acquired either in the same or opposite order
8871 		 * as mentioned above.
8872 		 * Thus in order to conform to the above lock order, we
8873 		 * need to change the state of the import segment to
8874 		 * RSM_STATE_MAPPING, release the lock. Once this is done we
8875 		 * can now safely acquire the export segment lock first
8876 		 * followed by the import segment lock which is as per
8877 		 * the lock order mentioned above.
8878 		 */
8879 		/* move to an intermediate mapping state */
8880 		seg->s_state = RSM_STATE_MAPPING;
8881 		rsmseglock_release(seg);
8882 
8883 		eseg = rsmexport_lookup(seg->s_key);
8884 
8885 		if (eseg == NULL) {
8886 			rsmseglock_acquire(seg);
8887 			/*
8888 			 * Revert to old_state and signal any waiters
8889 			 * The shared state is not changed
8890 			 */
8891 
8892 			seg->s_state = old_state;
8893 			cv_broadcast(&seg->s_cv);
8894 			rsmseglock_release(seg);
8895 			DBG_PRINTF((category, RSM_DEBUG,
8896 			    "rsm_segmap done: key %d not found\n", seg->s_key));
8897 			return (ENODEV);
8898 		}
8899 
8900 		rsmsharelock_acquire(seg);
8901 		ASSERT(sharedp->rsmsi_state == RSMSI_STATE_CONNECTED ||
8902 		    sharedp->rsmsi_state == RSMSI_STATE_MAPPED);
8903 
8904 		sharedp->rsmsi_mapcnt++;
8905 		sharedp->rsmsi_state = RSMSI_STATE_MAPPED;
8906 		rsmsharelock_release(seg);
8907 
8908 		ASSERT(eseg->s_cookie != NULL);
8909 
8910 		/*
8911 		 * It is not required or necessary to acquire the import
8912 		 * segment lock here to change the value of s_cookie since
8913 		 * no one will touch the import segment as long as it is
8914 		 * in the RSM_STATE_MAPPING state.
8915 		 */
8916 		seg->s_cookie = eseg->s_cookie;
8917 
8918 		rsmseglock_release(eseg);
8919 
8920 		error = devmap_setup(dev, (offset_t)off, as, addrp, (size_t)len,
8921 		    prot, maxprot, flags, cred);
8922 
8923 		rsmseglock_acquire(seg);
8924 		ASSERT(seg->s_state == RSM_STATE_MAPPING);
8925 		if (error == 0) {
8926 			seg->s_state = RSM_STATE_ACTIVE;
8927 		} else {
8928 			rsmsharelock_acquire(seg);
8929 
8930 			ASSERT(sharedp->rsmsi_state == RSMSI_STATE_MAPPED);
8931 
8932 			sharedp->rsmsi_mapcnt--;
8933 			if (sharedp->rsmsi_mapcnt == 0) {
8934 				sharedp->rsmsi_mapinfo = NULL;
8935 				sharedp->rsmsi_state = RSMSI_STATE_CONNECTED;
8936 			}
8937 			rsmsharelock_release(seg);
8938 			seg->s_state = old_state;
8939 			seg->s_cookie = NULL;
8940 		}
8941 		cv_broadcast(&seg->s_cv);
8942 		rsmseglock_release(seg);
8943 		DBG_PRINTF((category, RSM_DEBUG_LVL2,
8944 		    "rsm_segmap done: %d\n", error));
8945 		return (error);
8946 	}
8947 }
8948 
8949 int
8950 rsmka_null_seg_create(
8951     rsm_controller_handle_t argcp,
8952     rsm_memseg_export_handle_t *handle,
8953     size_t size,
8954     uint_t flags,
8955     rsm_memory_local_t *memory,
8956     rsm_resource_callback_t callback,
8957     rsm_resource_callback_arg_t callback_arg	/*ARGSUSED*/)
8958 {
8959 	return (RSM_SUCCESS);
8960 }
8961 
8962 
8963 int
8964 rsmka_null_seg_destroy(
8965     rsm_memseg_export_handle_t argmemseg	/*ARGSUSED*/)
8966 {
8967 	return (RSM_SUCCESS);
8968 }
8969 
8970 
8971 int
8972 rsmka_null_bind(
8973     rsm_memseg_export_handle_t argmemseg,
8974     off_t offset,
8975     rsm_memory_local_t *argmemory,
8976     rsm_resource_callback_t callback,
8977     rsm_resource_callback_arg_t callback_arg	/*ARGSUSED*/)
8978 {
8979 	return (RSM_SUCCESS);
8980 }
8981 
8982 
8983 int
8984 rsmka_null_unbind(
8985     rsm_memseg_export_handle_t argmemseg,
8986     off_t offset,
8987     size_t length	/*ARGSUSED*/)
8988 {
8989 	return (DDI_SUCCESS);
8990 }
8991 
8992 int
8993 rsmka_null_rebind(
8994     rsm_memseg_export_handle_t argmemseg,
8995     off_t offset,
8996     rsm_memory_local_t *memory,
8997     rsm_resource_callback_t callback,
8998     rsm_resource_callback_arg_t callback_arg	/*ARGSUSED*/)
8999 {
9000 	return (RSM_SUCCESS);
9001 }
9002 
9003 int
9004 rsmka_null_publish(
9005     rsm_memseg_export_handle_t argmemseg,
9006     rsm_access_entry_t access_list[],
9007     uint_t access_list_length,
9008     rsm_memseg_id_t segment_id,
9009     rsm_resource_callback_t callback,
9010     rsm_resource_callback_arg_t callback_arg	/*ARGSUSED*/)
9011 {
9012 	return (RSM_SUCCESS);
9013 }
9014 
9015 
9016 int
9017 rsmka_null_republish(
9018     rsm_memseg_export_handle_t memseg,
9019     rsm_access_entry_t access_list[],
9020     uint_t access_list_length,
9021     rsm_resource_callback_t callback,
9022     rsm_resource_callback_arg_t callback_arg	/*ARGSUSED*/)
9023 {
9024 	return (RSM_SUCCESS);
9025 }
9026 
9027 int
9028 rsmka_null_unpublish(
9029     rsm_memseg_export_handle_t argmemseg	/*ARGSUSED*/)
9030 {
9031 	return (RSM_SUCCESS);
9032 }
9033 
9034 
9035 void
9036 rsmka_init_loopback()
9037 {
9038 	rsm_ops_t	*ops = &null_rsmpi_ops;
9039 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL | RSM_LOOPBACK);
9040 
9041 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9042 	    "rsmka_init_loopback enter\n"));
9043 
9044 	/* initialize null ops vector */
9045 	ops->rsm_seg_create = rsmka_null_seg_create;
9046 	ops->rsm_seg_destroy = rsmka_null_seg_destroy;
9047 	ops->rsm_bind = rsmka_null_bind;
9048 	ops->rsm_unbind = rsmka_null_unbind;
9049 	ops->rsm_rebind = rsmka_null_rebind;
9050 	ops->rsm_publish = rsmka_null_publish;
9051 	ops->rsm_unpublish = rsmka_null_unpublish;
9052 	ops->rsm_republish = rsmka_null_republish;
9053 
9054 	/* initialize attributes for loopback adapter */
9055 	loopback_attr.attr_name = loopback_str;
9056 	loopback_attr.attr_page_size = 0x8; /* 8K */
9057 
9058 	/* initialize loopback adapter */
9059 	loopback_adapter.rsm_attr = loopback_attr;
9060 	loopback_adapter.rsmpi_ops = &null_rsmpi_ops;
9061 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9062 	    "rsmka_init_loopback done\n"));
9063 }
9064 
9065 /* ************** DR functions ********************************** */
9066 static void
9067 rsm_quiesce_exp_seg(rsmresource_t *resp)
9068 {
9069 	int		recheck_state;
9070 	rsmseg_t	*segp = (rsmseg_t *)resp;
9071 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
9072 	DBG_DEFINE_STR(function, "rsm_unquiesce_exp_seg");
9073 
9074 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9075 	    "%s enter: key=%u\n", function, segp->s_key));
9076 
9077 	rsmseglock_acquire(segp);
9078 	do {
9079 		recheck_state = 0;
9080 		if ((segp->s_state == RSM_STATE_NEW_QUIESCED) ||
9081 		    (segp->s_state == RSM_STATE_BIND_QUIESCED) ||
9082 		    (segp->s_state == RSM_STATE_EXPORT_QUIESCING) ||
9083 		    (segp->s_state == RSM_STATE_EXPORT_QUIESCED)) {
9084 			rsmseglock_release(segp);
9085 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9086 			    "%s done:state =%d\n", function,
9087 			    segp->s_state));
9088 			return;
9089 		}
9090 
9091 		if (segp->s_state == RSM_STATE_NEW) {
9092 			segp->s_state = RSM_STATE_NEW_QUIESCED;
9093 			rsmseglock_release(segp);
9094 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9095 			    "%s done:state =%d\n", function,
9096 			    segp->s_state));
9097 			return;
9098 		}
9099 
9100 		if (segp->s_state == RSM_STATE_BIND) {
9101 			/* unbind */
9102 			(void) rsm_unbind_pages(segp);
9103 			segp->s_state = RSM_STATE_BIND_QUIESCED;
9104 			rsmseglock_release(segp);
9105 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9106 			    "%s done:state =%d\n", function,
9107 			    segp->s_state));
9108 			return;
9109 		}
9110 
9111 		if (segp->s_state == RSM_STATE_EXPORT) {
9112 			/*
9113 			 * wait for putv/getv to complete if the segp is
9114 			 * a local memory handle
9115 			 */
9116 			while ((segp->s_state == RSM_STATE_EXPORT) &&
9117 			    (segp->s_rdmacnt != 0)) {
9118 				cv_wait(&segp->s_cv, &segp->s_lock);
9119 			}
9120 
9121 			if (segp->s_state != RSM_STATE_EXPORT) {
9122 				/*
9123 				 * state changed need to see what it
9124 				 * should be changed to.
9125 				 */
9126 				recheck_state = 1;
9127 				continue;
9128 			}
9129 
9130 			segp->s_state = RSM_STATE_EXPORT_QUIESCING;
9131 			rsmseglock_release(segp);
9132 			/*
9133 			 * send SUSPEND messages - currently it will be
9134 			 * done at the end
9135 			 */
9136 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9137 			    "%s done:state =%d\n", function,
9138 			    segp->s_state));
9139 			return;
9140 		}
9141 	} while (recheck_state);
9142 
9143 	rsmseglock_release(segp);
9144 }
9145 
9146 static void
9147 rsm_unquiesce_exp_seg(rsmresource_t *resp)
9148 {
9149 	int			ret;
9150 	rsmseg_t		*segp = (rsmseg_t *)resp;
9151 	rsmapi_access_entry_t	*acl;
9152 	rsm_access_entry_t	*rsmpi_acl;
9153 	int			acl_len;
9154 	int			create_flags = 0;
9155 	struct buf		*xbuf;
9156 	rsm_memory_local_t	mem;
9157 	adapter_t		*adapter;
9158 	dev_t			sdev = 0;
9159 	rsm_resource_callback_t callback_flag;
9160 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
9161 	DBG_DEFINE_STR(function, "rsm_unquiesce_exp_seg");
9162 
9163 	rsmseglock_acquire(segp);
9164 
9165 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9166 	    "%s enter: key=%u, state=%d\n", function, segp->s_key,
9167 	    segp->s_state));
9168 
9169 	if ((segp->s_state == RSM_STATE_NEW) ||
9170 	    (segp->s_state == RSM_STATE_BIND) ||
9171 	    (segp->s_state == RSM_STATE_EXPORT)) {
9172 		rsmseglock_release(segp);
9173 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "%s done:state=%d\n",
9174 		    function, segp->s_state));
9175 		return;
9176 	}
9177 
9178 	if (segp->s_state == RSM_STATE_NEW_QUIESCED) {
9179 		segp->s_state = RSM_STATE_NEW;
9180 		cv_broadcast(&segp->s_cv);
9181 		rsmseglock_release(segp);
9182 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "%s done:state=%d\n",
9183 		    function, segp->s_state));
9184 		return;
9185 	}
9186 
9187 	if (segp->s_state == RSM_STATE_BIND_QUIESCED) {
9188 		/* bind the segment */
9189 		ret = rsm_bind_pages(&segp->s_cookie, segp->s_region.r_vaddr,
9190 		    segp->s_len, segp->s_proc);
9191 		if (ret == RSM_SUCCESS) { /* bind successful */
9192 			segp->s_state = RSM_STATE_BIND;
9193 		} else { /* bind failed - resource unavailable */
9194 			segp->s_state = RSM_STATE_NEW;
9195 		}
9196 		cv_broadcast(&segp->s_cv);
9197 		rsmseglock_release(segp);
9198 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9199 		    "%s done: bind_qscd bind = %d\n", function, ret));
9200 		return;
9201 	}
9202 
9203 	while (segp->s_state == RSM_STATE_EXPORT_QUIESCING) {
9204 		/* wait for the segment to move to EXPORT_QUIESCED state */
9205 		cv_wait(&segp->s_cv, &segp->s_lock);
9206 	}
9207 
9208 	if (segp->s_state == RSM_STATE_EXPORT_QUIESCED) {
9209 		/* bind the segment */
9210 		ret = rsm_bind_pages(&segp->s_cookie, segp->s_region.r_vaddr,
9211 		    segp->s_len, segp->s_proc);
9212 
9213 		if (ret != RSM_SUCCESS) {
9214 			/* bind failed - resource unavailable */
9215 			acl_len = segp->s_acl_len;
9216 			acl = segp->s_acl;
9217 			rsmpi_acl = segp->s_acl_in;
9218 			segp->s_acl_len = 0;
9219 			segp->s_acl = NULL;
9220 			segp->s_acl_in = NULL;
9221 			rsmseglock_release(segp);
9222 
9223 			rsmexport_rm(segp);
9224 			rsmacl_free(acl, acl_len);
9225 			rsmpiacl_free(rsmpi_acl, acl_len);
9226 
9227 			rsmseglock_acquire(segp);
9228 			segp->s_state = RSM_STATE_NEW;
9229 			cv_broadcast(&segp->s_cv);
9230 			rsmseglock_release(segp);
9231 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9232 			    "%s done: exp_qscd bind failed = %d\n",
9233 			    function, ret));
9234 			return;
9235 		}
9236 		/*
9237 		 * publish the segment
9238 		 * if  successful
9239 		 *   segp->s_state = RSM_STATE_EXPORT;
9240 		 * else failed
9241 		 *   segp->s_state = RSM_STATE_BIND;
9242 		 */
9243 
9244 		/* check whether it is a local_memory_handle */
9245 		if (segp->s_acl != (rsmapi_access_entry_t *)NULL) {
9246 			if ((segp->s_acl[0].ae_node == my_nodeid) &&
9247 			    (segp->s_acl[0].ae_permission == 0)) {
9248 				segp->s_state = RSM_STATE_EXPORT;
9249 				cv_broadcast(&segp->s_cv);
9250 				rsmseglock_release(segp);
9251 				DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9252 				    "%s done:exp_qscd\n", function));
9253 				return;
9254 			}
9255 		}
9256 		xbuf = ddi_umem_iosetup(segp->s_cookie, 0, segp->s_len, B_WRITE,
9257 		    sdev, 0, NULL, DDI_UMEM_SLEEP);
9258 		ASSERT(xbuf != NULL);
9259 
9260 		mem.ms_type = RSM_MEM_BUF;
9261 		mem.ms_bp = xbuf;
9262 
9263 		adapter = segp->s_adapter;
9264 
9265 		if (segp->s_flags & RSMKA_ALLOW_UNBIND_REBIND) {
9266 			create_flags = RSM_ALLOW_UNBIND_REBIND;
9267 		}
9268 
9269 		if (segp->s_flags & RSMKA_SET_RESOURCE_DONTWAIT) {
9270 			callback_flag  = RSM_RESOURCE_DONTWAIT;
9271 		} else {
9272 			callback_flag  = RSM_RESOURCE_SLEEP;
9273 		}
9274 
9275 		ret = adapter->rsmpi_ops->rsm_seg_create(
9276 		    adapter->rsmpi_handle, &segp->s_handle.out,
9277 		    segp->s_len, create_flags, &mem,
9278 		    callback_flag, NULL);
9279 
9280 		if (ret != RSM_SUCCESS) {
9281 			acl_len = segp->s_acl_len;
9282 			acl = segp->s_acl;
9283 			rsmpi_acl = segp->s_acl_in;
9284 			segp->s_acl_len = 0;
9285 			segp->s_acl = NULL;
9286 			segp->s_acl_in = NULL;
9287 			rsmseglock_release(segp);
9288 
9289 			rsmexport_rm(segp);
9290 			rsmacl_free(acl, acl_len);
9291 			rsmpiacl_free(rsmpi_acl, acl_len);
9292 
9293 			rsmseglock_acquire(segp);
9294 			segp->s_state = RSM_STATE_BIND;
9295 			cv_broadcast(&segp->s_cv);
9296 			rsmseglock_release(segp);
9297 			DBG_PRINTF((category, RSM_ERR,
9298 			    "%s done: exp_qscd create failed = %d\n",
9299 			    function, ret));
9300 			return;
9301 		}
9302 
9303 		ret = adapter->rsmpi_ops->rsm_publish(
9304 		    segp->s_handle.out, segp->s_acl_in, segp->s_acl_len,
9305 		    segp->s_segid, RSM_RESOURCE_DONTWAIT, NULL);
9306 
9307 		if (ret != RSM_SUCCESS) {
9308 			acl_len = segp->s_acl_len;
9309 			acl = segp->s_acl;
9310 			rsmpi_acl = segp->s_acl_in;
9311 			segp->s_acl_len = 0;
9312 			segp->s_acl = NULL;
9313 			segp->s_acl_in = NULL;
9314 			adapter->rsmpi_ops->rsm_seg_destroy(segp->s_handle.out);
9315 			rsmseglock_release(segp);
9316 
9317 			rsmexport_rm(segp);
9318 			rsmacl_free(acl, acl_len);
9319 			rsmpiacl_free(rsmpi_acl, acl_len);
9320 
9321 			rsmseglock_acquire(segp);
9322 			segp->s_state = RSM_STATE_BIND;
9323 			cv_broadcast(&segp->s_cv);
9324 			rsmseglock_release(segp);
9325 			DBG_PRINTF((category, RSM_ERR,
9326 			    "%s done: exp_qscd publish failed = %d\n",
9327 			    function, ret));
9328 			return;
9329 		}
9330 
9331 		segp->s_state = RSM_STATE_EXPORT;
9332 		cv_broadcast(&segp->s_cv);
9333 		rsmseglock_release(segp);
9334 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "%s done: exp_qscd\n",
9335 		    function));
9336 		return;
9337 	}
9338 
9339 	rsmseglock_release(segp);
9340 
9341 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "%s done\n", function));
9342 }
9343 
9344 static void
9345 rsm_quiesce_imp_seg(rsmresource_t *resp)
9346 {
9347 	rsmseg_t	*segp = (rsmseg_t *)resp;
9348 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
9349 	DBG_DEFINE_STR(function, "rsm_quiesce_imp_seg");
9350 
9351 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9352 	    "%s enter: key=%u\n", function, segp->s_key));
9353 
9354 	rsmseglock_acquire(segp);
9355 	segp->s_flags |= RSM_DR_INPROGRESS;
9356 
9357 	while (segp->s_rdmacnt != 0) {
9358 		/* wait for the RDMA to complete */
9359 		cv_wait(&segp->s_cv, &segp->s_lock);
9360 	}
9361 
9362 	rsmseglock_release(segp);
9363 
9364 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "%s done\n", function));
9365 
9366 }
9367 
9368 static void
9369 rsm_unquiesce_imp_seg(rsmresource_t *resp)
9370 {
9371 	rsmseg_t	*segp = (rsmseg_t *)resp;
9372 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
9373 	DBG_DEFINE_STR(function, "rsm_unquiesce_imp_seg");
9374 
9375 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9376 	    "%s enter: key=%u\n", function, segp->s_key));
9377 
9378 	rsmseglock_acquire(segp);
9379 
9380 	segp->s_flags &= ~RSM_DR_INPROGRESS;
9381 	/* wake up any waiting putv/getv ops */
9382 	cv_broadcast(&segp->s_cv);
9383 
9384 	rsmseglock_release(segp);
9385 
9386 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE, "%s done\n", function));
9387 
9388 
9389 }
9390 
9391 static void
9392 rsm_process_exp_seg(rsmresource_t *resp, int event)
9393 {
9394 	if (event == RSM_DR_QUIESCE)
9395 		rsm_quiesce_exp_seg(resp);
9396 	else /* UNQUIESCE */
9397 		rsm_unquiesce_exp_seg(resp);
9398 }
9399 
9400 static void
9401 rsm_process_imp_seg(rsmresource_t *resp, int event)
9402 {
9403 	if (event == RSM_DR_QUIESCE)
9404 		rsm_quiesce_imp_seg(resp);
9405 	else /* UNQUIESCE */
9406 		rsm_unquiesce_imp_seg(resp);
9407 }
9408 
9409 static void
9410 rsm_dr_process_local_segments(int event)
9411 {
9412 
9413 	int i, j;
9414 	rsmresource_blk_t	*blk;
9415 	rsmresource_t		*p;
9416 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
9417 
9418 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9419 	    "rsm_dr_process_local_segments enter\n"));
9420 
9421 	/* iterate through the resource structure */
9422 
9423 	rw_enter(&rsm_resource.rsmrc_lock, RW_READER);
9424 
9425 	for (i = 0; i < rsm_resource.rsmrc_len; i++) {
9426 		blk = rsm_resource.rsmrc_root[i];
9427 		if (blk != NULL) {
9428 			for (j = 0; j < RSMRC_BLKSZ; j++) {
9429 				p = blk->rsmrcblk_blks[j];
9430 				if ((p != NULL) && (p != RSMRC_RESERVED)) {
9431 					/* valid resource */
9432 					if (p->rsmrc_type ==
9433 					    RSM_RESOURCE_EXPORT_SEGMENT)
9434 						rsm_process_exp_seg(p, event);
9435 					else if (p->rsmrc_type ==
9436 					    RSM_RESOURCE_IMPORT_SEGMENT)
9437 						rsm_process_imp_seg(p, event);
9438 				}
9439 			}
9440 		}
9441 	}
9442 
9443 	rw_exit(&rsm_resource.rsmrc_lock);
9444 
9445 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9446 	    "rsm_dr_process_local_segments done\n"));
9447 }
9448 
9449 /* *************** DR callback functions ************ */
9450 static void
9451 rsm_dr_callback_post_add(void *arg, pgcnt_t delta /* ARGSUSED */)
9452 {
9453 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
9454 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9455 	    "rsm_dr_callback_post_add is a no-op\n"));
9456 	/* Noop */
9457 }
9458 
9459 static int
9460 rsm_dr_callback_pre_del(void *arg, pgcnt_t delta /* ARGSUSED */)
9461 {
9462 	int	recheck_state = 0;
9463 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
9464 
9465 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9466 	    "rsm_dr_callback_pre_del enter\n"));
9467 
9468 	mutex_enter(&rsm_drv_data.drv_lock);
9469 
9470 	do {
9471 		recheck_state = 0;
9472 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9473 		    "rsm_dr_callback_pre_del:state=%d\n",
9474 		    rsm_drv_data.drv_state));
9475 
9476 		switch (rsm_drv_data.drv_state) {
9477 		case RSM_DRV_NEW:
9478 			/*
9479 			 * The state should usually never be RSM_DRV_NEW
9480 			 * since in this state the callbacks have not yet
9481 			 * been registered. So, ASSERT.
9482 			 */
9483 			ASSERT(0);
9484 			return (0);
9485 		case RSM_DRV_REG_PROCESSING:
9486 			/*
9487 			 * The driver is in the process of registering
9488 			 * with the DR framework. So, wait till the
9489 			 * registration process is complete.
9490 			 */
9491 			recheck_state = 1;
9492 			cv_wait(&rsm_drv_data.drv_cv, &rsm_drv_data.drv_lock);
9493 			break;
9494 		case RSM_DRV_UNREG_PROCESSING:
9495 			/*
9496 			 * If the state is RSM_DRV_UNREG_PROCESSING, the
9497 			 * module is in the process of detaching and
9498 			 * unregistering the callbacks from the DR
9499 			 * framework. So, simply return.
9500 			 */
9501 			mutex_exit(&rsm_drv_data.drv_lock);
9502 			DBG_PRINTF((category, RSM_DEBUG,
9503 			    "rsm_dr_callback_pre_del:"
9504 			    "pre-del on NEW/UNREG\n"));
9505 			return (0);
9506 		case RSM_DRV_OK:
9507 			rsm_drv_data.drv_state = RSM_DRV_PREDEL_STARTED;
9508 			break;
9509 		case RSM_DRV_PREDEL_STARTED:
9510 			/* FALLTHRU */
9511 		case RSM_DRV_PREDEL_COMPLETED:
9512 			/* FALLTHRU */
9513 		case RSM_DRV_POSTDEL_IN_PROGRESS:
9514 			recheck_state = 1;
9515 			cv_wait(&rsm_drv_data.drv_cv, &rsm_drv_data.drv_lock);
9516 			break;
9517 		case RSM_DRV_DR_IN_PROGRESS:
9518 			rsm_drv_data.drv_memdel_cnt++;
9519 			mutex_exit(&rsm_drv_data.drv_lock);
9520 			DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9521 			    "rsm_dr_callback_pre_del done\n"));
9522 			return (0);
9523 			/* break; */
9524 		default:
9525 			ASSERT(0);
9526 			break;
9527 		}
9528 
9529 	} while (recheck_state);
9530 
9531 	rsm_drv_data.drv_memdel_cnt++;
9532 
9533 	mutex_exit(&rsm_drv_data.drv_lock);
9534 
9535 	/* Do all the quiescing stuff here */
9536 	DBG_PRINTF((category, RSM_DEBUG,
9537 	    "rsm_dr_callback_pre_del: quiesce things now\n"));
9538 
9539 	rsm_dr_process_local_segments(RSM_DR_QUIESCE);
9540 
9541 	/*
9542 	 * now that all local segments have been quiesced lets inform
9543 	 * the importers
9544 	 */
9545 	rsm_send_suspend();
9546 
9547 	/*
9548 	 * In response to the suspend message the remote node(s) will process
9549 	 * the segments and send a suspend_complete message. Till all
9550 	 * the nodes send the suspend_complete message we wait in the
9551 	 * RSM_DRV_PREDEL_STARTED state. In the exporter_quiesce
9552 	 * function we transition to the RSM_DRV_PREDEL_COMPLETED state.
9553 	 */
9554 	mutex_enter(&rsm_drv_data.drv_lock);
9555 
9556 	while (rsm_drv_data.drv_state == RSM_DRV_PREDEL_STARTED) {
9557 		cv_wait(&rsm_drv_data.drv_cv, &rsm_drv_data.drv_lock);
9558 	}
9559 
9560 	ASSERT(rsm_drv_data.drv_state == RSM_DRV_PREDEL_COMPLETED);
9561 
9562 	rsm_drv_data.drv_state = RSM_DRV_DR_IN_PROGRESS;
9563 	cv_broadcast(&rsm_drv_data.drv_cv);
9564 
9565 	mutex_exit(&rsm_drv_data.drv_lock);
9566 
9567 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9568 	    "rsm_dr_callback_pre_del done\n"));
9569 
9570 	return (0);
9571 }
9572 
9573 static void
9574 rsm_dr_callback_post_del(void *arg, pgcnt_t delta, int cancelled /* ARGSUSED */)
9575 {
9576 	int	recheck_state = 0;
9577 	DBG_DEFINE(category, RSM_KERNEL_AGENT | RSM_FUNC_ALL);
9578 
9579 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9580 	    "rsm_dr_callback_post_del enter\n"));
9581 
9582 	mutex_enter(&rsm_drv_data.drv_lock);
9583 
9584 	do {
9585 		recheck_state = 0;
9586 		DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9587 		    "rsm_dr_callback_post_del:state=%d\n",
9588 		    rsm_drv_data.drv_state));
9589 
9590 		switch (rsm_drv_data.drv_state) {
9591 		case RSM_DRV_NEW:
9592 			/*
9593 			 * The driver state cannot not be RSM_DRV_NEW
9594 			 * since in this state the callbacks have not
9595 			 * yet been registered.
9596 			 */
9597 			ASSERT(0);
9598 			return;
9599 		case RSM_DRV_REG_PROCESSING:
9600 			/*
9601 			 * The driver is in the process of registering with
9602 			 * the DR framework. Wait till the registration is
9603 			 * complete.
9604 			 */
9605 			recheck_state = 1;
9606 			cv_wait(&rsm_drv_data.drv_cv, &rsm_drv_data.drv_lock);
9607 			break;
9608 		case RSM_DRV_UNREG_PROCESSING:
9609 			/*
9610 			 * RSM_DRV_UNREG_PROCESSING state means the module
9611 			 * is detaching and unregistering the callbacks
9612 			 * from the DR framework. So simply return.
9613 			 */
9614 			/* FALLTHRU */
9615 		case RSM_DRV_OK:
9616 			/*
9617 			 * RSM_DRV_OK means we missed the pre-del
9618 			 * corresponding to this post-del coz we had not
9619 			 * registered yet, so simply return.
9620 			 */
9621 			mutex_exit(&rsm_drv_data.drv_lock);
9622 			DBG_PRINTF((category, RSM_DEBUG,
9623 			    "rsm_dr_callback_post_del:"
9624 			    "post-del on OK/UNREG\n"));
9625 			return;
9626 			/* break; */
9627 		case RSM_DRV_PREDEL_STARTED:
9628 			/* FALLTHRU */
9629 		case RSM_DRV_PREDEL_COMPLETED:
9630 			/* FALLTHRU */
9631 		case RSM_DRV_POSTDEL_IN_PROGRESS:
9632 			recheck_state = 1;
9633 			cv_wait(&rsm_drv_data.drv_cv, &rsm_drv_data.drv_lock);
9634 			break;
9635 		case RSM_DRV_DR_IN_PROGRESS:
9636 			rsm_drv_data.drv_memdel_cnt--;
9637 			if (rsm_drv_data.drv_memdel_cnt > 0) {
9638 				mutex_exit(&rsm_drv_data.drv_lock);
9639 				DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9640 				    "rsm_dr_callback_post_del done:\n"));
9641 				return;
9642 			}
9643 			rsm_drv_data.drv_state = RSM_DRV_POSTDEL_IN_PROGRESS;
9644 			break;
9645 		default:
9646 			ASSERT(0);
9647 			return;
9648 			/* break; */
9649 		}
9650 	} while (recheck_state);
9651 
9652 	mutex_exit(&rsm_drv_data.drv_lock);
9653 
9654 	/* Do all the unquiescing stuff here */
9655 	DBG_PRINTF((category, RSM_DEBUG,
9656 	    "rsm_dr_callback_post_del: unquiesce things now\n"));
9657 
9658 	rsm_dr_process_local_segments(RSM_DR_UNQUIESCE);
9659 
9660 	/*
9661 	 * now that all local segments have been unquiesced lets inform
9662 	 * the importers
9663 	 */
9664 	rsm_send_resume();
9665 
9666 	mutex_enter(&rsm_drv_data.drv_lock);
9667 
9668 	rsm_drv_data.drv_state = RSM_DRV_OK;
9669 
9670 	cv_broadcast(&rsm_drv_data.drv_cv);
9671 
9672 	mutex_exit(&rsm_drv_data.drv_lock);
9673 
9674 	DBG_PRINTF((category, RSM_DEBUG_VERBOSE,
9675 	    "rsm_dr_callback_post_del done\n"));
9676 
9677 	return;
9678 
9679 }
9680