xref: /titanic_51/usr/src/uts/common/io/ral/rt2560.c (revision 7f79af0b29c00a006403444f61b261219f63cfbf)
1 /*
2  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * Copyright (c) 2005, 2006
8  *	Damien Bergamini <damien.bergamini@free.fr>
9  *
10  * Permission to use, copy, modify, and distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 /*
24  * Ralink Technology RT2560 chipset driver
25  * http://www.ralinktech.com/
26  */
27 
28 #include <sys/types.h>
29 #include <sys/byteorder.h>
30 #include <sys/conf.h>
31 #include <sys/cmn_err.h>
32 #include <sys/stat.h>
33 #include <sys/ddi.h>
34 #include <sys/sunddi.h>
35 #include <sys/strsubr.h>
36 #include <sys/ethernet.h>
37 #include <inet/common.h>
38 #include <inet/nd.h>
39 #include <inet/mi.h>
40 #include <sys/note.h>
41 #include <sys/stream.h>
42 #include <sys/strsun.h>
43 #include <sys/modctl.h>
44 #include <sys/devops.h>
45 #include <sys/dlpi.h>
46 #include <sys/mac.h>
47 #include <sys/mac_wifi.h>
48 #include <sys/net80211.h>
49 #include <sys/net80211_proto.h>
50 #include <sys/varargs.h>
51 #include <sys/policy.h>
52 #include <sys/pci.h>
53 #include <sys/crypto/common.h>
54 #include <sys/crypto/api.h>
55 #include <inet/wifi_ioctl.h>
56 
57 #include "ral_rate.h"
58 #include "rt2560_reg.h"
59 #include "rt2560_var.h"
60 
61 
62 static void *ral_soft_state_p = NULL;
63 
64 #define	RAL_TXBUF_SIZE  	(IEEE80211_MAX_LEN)
65 #define	RAL_RXBUF_SIZE  	(IEEE80211_MAX_LEN)
66 
67 /* quickly determine if a given rate is CCK or OFDM */
68 #define	RAL_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
69 #define	RAL_ACK_SIZE		14	/* 10 + 4(FCS) */
70 #define	RAL_CTS_SIZE		14	/* 10 + 4(FCS) */
71 #define	RAL_SIFS		10	/* us */
72 #define	RT2560_TXRX_TURNAROUND	10	/* us */
73 
74 /*
75  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
76  */
77 static const struct ieee80211_rateset rt2560_rateset_11a =
78 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
79 
80 static const struct ieee80211_rateset rt2560_rateset_11b =
81 	{ 4, { 2, 4, 11, 22 } };
82 
83 static const struct ieee80211_rateset rt2560_rateset_11g =
84 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
85 
86 static const struct {
87 	uint32_t	reg;
88 	uint32_t	val;
89 } rt2560_def_mac[] = {
90 	RT2560_DEF_MAC
91 };
92 
93 static const struct {
94 	uint8_t	reg;
95 	uint8_t	val;
96 } rt2560_def_bbp[] = {
97 	RT2560_DEF_BBP
98 };
99 
100 static const uint32_t rt2560_rf2522_r2[]    = RT2560_RF2522_R2;
101 static const uint32_t rt2560_rf2523_r2[]    = RT2560_RF2523_R2;
102 static const uint32_t rt2560_rf2524_r2[]    = RT2560_RF2524_R2;
103 static const uint32_t rt2560_rf2525_r2[]    = RT2560_RF2525_R2;
104 static const uint32_t rt2560_rf2525_hi_r2[] = RT2560_RF2525_HI_R2;
105 static const uint32_t rt2560_rf2525e_r2[]   = RT2560_RF2525E_R2;
106 static const uint32_t rt2560_rf2526_r2[]    = RT2560_RF2526_R2;
107 static const uint32_t rt2560_rf2526_hi_r2[] = RT2560_RF2526_HI_R2;
108 
109 static const struct {
110 	uint8_t		chan;
111 	uint32_t	r1, r2, r4;
112 } rt2560_rf5222[] = {
113 	RT2560_RF5222
114 };
115 
116 /*
117  * PIO access attributes for registers
118  */
119 static ddi_device_acc_attr_t ral_csr_accattr = {
120 	DDI_DEVICE_ATTR_V0,
121 	DDI_STRUCTURE_LE_ACC,
122 	DDI_STRICTORDER_ACC
123 };
124 
125 /*
126  * DMA access attributes for descriptors: NOT to be byte swapped.
127  */
128 static ddi_device_acc_attr_t ral_desc_accattr = {
129 	DDI_DEVICE_ATTR_V0,
130 	DDI_STRUCTURE_LE_ACC,
131 	DDI_STRICTORDER_ACC
132 };
133 
134 /*
135  * Describes the chip's DMA engine
136  */
137 static ddi_dma_attr_t ral_dma_attr = {
138 	DMA_ATTR_V0,			/* dma_attr version */
139 	0x0000000000000000ull,		/* dma_attr_addr_lo */
140 	0xFFFFFFFF,			/* dma_attr_addr_hi */
141 	0x00000000FFFFFFFFull,		/* dma_attr_count_max */
142 	0x0000000000000001ull,		/* dma_attr_align */
143 	0x00000FFF,			/* dma_attr_burstsizes */
144 	0x00000001,			/* dma_attr_minxfer */
145 	0x000000000000FFFFull,		/* dma_attr_maxxfer */
146 	0xFFFFFFFFFFFFFFFFull,		/* dma_attr_seg */
147 	1,				/* dma_attr_sgllen */
148 	0x00000001,			/* dma_attr_granular */
149 	0				/* dma_attr_flags */
150 };
151 
152 /*
153  * device operations
154  */
155 static int rt2560_attach(dev_info_t *, ddi_attach_cmd_t);
156 static int rt2560_detach(dev_info_t *, ddi_detach_cmd_t);
157 static int32_t rt2560_quiesce(dev_info_t *);
158 
159 /*
160  * Module Loading Data & Entry Points
161  */
162 DDI_DEFINE_STREAM_OPS(ral_dev_ops, nulldev, nulldev, rt2560_attach,
163     rt2560_detach, nodev, NULL, D_MP, NULL, rt2560_quiesce);
164 
165 static struct modldrv ral_modldrv = {
166 	&mod_driverops,		/* Type of module.  This one is a driver */
167 	"Ralink RT2500 driver v1.5",	/* short description */
168 	&ral_dev_ops		/* driver specific ops */
169 };
170 
171 static struct modlinkage modlinkage = {
172 	MODREV_1,
173 	(void *)&ral_modldrv,
174 	NULL
175 };
176 
177 static int	rt2560_m_stat(void *,  uint_t, uint64_t *);
178 static int	rt2560_m_start(void *);
179 static void	rt2560_m_stop(void *);
180 static int	rt2560_m_promisc(void *, boolean_t);
181 static int	rt2560_m_multicst(void *, boolean_t, const uint8_t *);
182 static int	rt2560_m_unicst(void *, const uint8_t *);
183 static mblk_t	*rt2560_m_tx(void *, mblk_t *);
184 static void	rt2560_m_ioctl(void *, queue_t *, mblk_t *);
185 static int	rt2560_m_setprop(void *, const char *, mac_prop_id_t,
186     uint_t, const void *);
187 static int	rt2560_m_getprop(void *, const char *, mac_prop_id_t,
188     uint_t, uint_t, void *);
189 
190 static mac_callbacks_t rt2560_m_callbacks = {
191 	MC_IOCTL | MC_SETPROP | MC_GETPROP,
192 	rt2560_m_stat,
193 	rt2560_m_start,
194 	rt2560_m_stop,
195 	rt2560_m_promisc,
196 	rt2560_m_multicst,
197 	rt2560_m_unicst,
198 	rt2560_m_tx,
199 	NULL,		/* mc_resources; */
200 	rt2560_m_ioctl,
201 	NULL,		/* mc_getcapab */
202 	NULL,
203 	NULL,
204 	rt2560_m_setprop,
205 	rt2560_m_getprop
206 };
207 
208 uint32_t ral_dbg_flags = 0;
209 
210 void
211 ral_debug(uint32_t dbg_flags, const int8_t *fmt, ...)
212 {
213 	va_list args;
214 
215 	if (dbg_flags & ral_dbg_flags) {
216 		va_start(args, fmt);
217 		vcmn_err(CE_CONT, fmt, args);
218 		va_end(args);
219 	}
220 }
221 
222 static void
223 rt2560_set_basicrates(struct rt2560_softc *sc)
224 {
225 	struct ieee80211com *ic = &sc->sc_ic;
226 
227 	/* update basic rate set */
228 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
229 		/* 11b basic rates: 1, 2Mbps */
230 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
231 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) {
232 		/* 11a basic rates: 6, 12, 24Mbps */
233 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
234 	} else {
235 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
236 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
237 	}
238 }
239 
240 static void
241 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
242 {
243 	uint32_t tmp;
244 
245 	/* set ON period to 70ms and OFF period to 30ms */
246 	tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
247 	RAL_WRITE(sc, RT2560_LEDCSR, tmp);
248 }
249 
250 static void
251 rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid)
252 {
253 	uint32_t tmp;
254 
255 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
256 	RAL_WRITE(sc, RT2560_CSR5, tmp);
257 
258 	tmp = bssid[4] | bssid[5] << 8;
259 	RAL_WRITE(sc, RT2560_CSR6, tmp);
260 
261 	RAL_DEBUG(RAL_DBG_HW, "setting BSSID to " MACSTR "\n", MAC2STR(bssid));
262 }
263 
264 
265 static void
266 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
267 {
268 	uint32_t tmp;
269 	int ntries;
270 
271 	for (ntries = 0; ntries < 100; ntries++) {
272 		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
273 			break;
274 		drv_usecwait(1);
275 	}
276 	if (ntries == 100) {
277 		RAL_DEBUG(RAL_DBG_HW, "could not write to BBP\n");
278 		return;
279 	}
280 
281 	tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
282 	RAL_WRITE(sc, RT2560_BBPCSR, tmp);
283 
284 	RAL_DEBUG(RAL_DBG_HW, "BBP R%u <- 0x%02x\n", reg, val);
285 }
286 
287 static uint8_t
288 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
289 {
290 	uint32_t val;
291 	int ntries;
292 
293 	val = RT2560_BBP_BUSY | reg << 8;
294 	RAL_WRITE(sc, RT2560_BBPCSR, val);
295 
296 	for (ntries = 0; ntries < 100; ntries++) {
297 		val = RAL_READ(sc, RT2560_BBPCSR);
298 		if (!(val & RT2560_BBP_BUSY))
299 			return (val & 0xff);
300 		drv_usecwait(1);
301 	}
302 
303 	RAL_DEBUG(RAL_DBG_HW, "could not read from BBP\n");
304 	return (0);
305 }
306 
307 static void
308 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
309 {
310 	uint32_t tmp;
311 	int ntries;
312 
313 	for (ntries = 0; ntries < 100; ntries++) {
314 		if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
315 			break;
316 		drv_usecwait(1);
317 	}
318 	if (ntries == 100) {
319 		RAL_DEBUG(RAL_DBG_HW, "could not write to RF\n");
320 		return;
321 	}
322 
323 	tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
324 	    (reg & 0x3);
325 	RAL_WRITE(sc, RT2560_RFCSR, tmp);
326 
327 	/* remember last written value in sc */
328 	sc->rf_regs[reg] = val;
329 
330 	RAL_DEBUG(RAL_DBG_HW, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff);
331 }
332 
333 static void
334 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
335 {
336 	struct ieee80211com *ic = &sc->sc_ic;
337 	uint8_t power, tmp;
338 	uint_t i, chan;
339 
340 	chan = ieee80211_chan2ieee(ic, c);
341 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
342 		return;
343 
344 	if (IEEE80211_IS_CHAN_2GHZ(c))
345 		power = min(sc->txpow[chan - 1], 31);
346 	else
347 		power = 31;
348 
349 	/* adjust txpower using ifconfig settings */
350 	power -= (100 - ic->ic_txpowlimit) / 8;
351 
352 	RAL_DEBUG(RAL_DBG_CHAN, "setting channel to %u, txpower to %u\n",
353 	    chan, power);
354 
355 	switch (sc->rf_rev) {
356 	case RT2560_RF_2522:
357 		rt2560_rf_write(sc, RAL_RF1, 0x00814);
358 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2522_r2[chan - 1]);
359 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
360 		break;
361 
362 	case RT2560_RF_2523:
363 		rt2560_rf_write(sc, RAL_RF1, 0x08804);
364 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2523_r2[chan - 1]);
365 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
366 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
367 		break;
368 
369 	case RT2560_RF_2524:
370 		rt2560_rf_write(sc, RAL_RF1, 0x0c808);
371 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2524_r2[chan - 1]);
372 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
373 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
374 		break;
375 
376 	case RT2560_RF_2525:
377 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
378 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_hi_r2[chan - 1]);
379 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
380 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
381 
382 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
383 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_r2[chan - 1]);
384 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
385 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
386 		break;
387 
388 	case RT2560_RF_2525E:
389 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
390 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525e_r2[chan - 1]);
391 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
392 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
393 		break;
394 
395 	case RT2560_RF_2526:
396 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_hi_r2[chan - 1]);
397 		rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
398 		rt2560_rf_write(sc, RAL_RF1, 0x08804);
399 
400 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_r2[chan - 1]);
401 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
402 		rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
403 		break;
404 
405 	/* dual-band RF */
406 	case RT2560_RF_5222:
407 		for (i = 0; rt2560_rf5222[i].chan != chan; i++) {
408 		}
409 
410 		rt2560_rf_write(sc, RAL_RF1, rt2560_rf5222[i].r1);
411 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf5222[i].r2);
412 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
413 		rt2560_rf_write(sc, RAL_RF4, rt2560_rf5222[i].r4);
414 		break;
415 	}
416 
417 	if (ic->ic_state != IEEE80211_S_SCAN) {
418 		/* set Japan filter bit for channel 14 */
419 		tmp = rt2560_bbp_read(sc, 70);
420 
421 		tmp &= ~RT2560_JAPAN_FILTER;
422 		if (chan == 14)
423 			tmp |= RT2560_JAPAN_FILTER;
424 
425 		rt2560_bbp_write(sc, 70, tmp);
426 
427 		/* clear CRC errors */
428 		(void) RAL_READ(sc, RT2560_CNT0);
429 	}
430 }
431 
432 /*
433  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
434  * synchronization.
435  */
436 static void
437 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
438 {
439 	struct ieee80211com *ic = &sc->sc_ic;
440 	uint16_t logcwmin, preload;
441 	uint32_t tmp;
442 
443 	/* first, disable TSF synchronization */
444 	RAL_WRITE(sc, RT2560_CSR14, 0);
445 
446 	tmp = 16 * ic->ic_bss->in_intval;
447 	RAL_WRITE(sc, RT2560_CSR12, tmp);
448 
449 	RAL_WRITE(sc, RT2560_CSR13, 0);
450 
451 	logcwmin = 5;
452 	preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
453 	tmp = logcwmin << 16 | preload;
454 	RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
455 
456 	/* finally, enable TSF synchronization */
457 	tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
458 	if (ic->ic_opmode == IEEE80211_M_STA)
459 		tmp |= RT2560_ENABLE_TSF_SYNC(1);
460 	else
461 		tmp |= RT2560_ENABLE_TSF_SYNC(2) |
462 		    RT2560_ENABLE_BEACON_GENERATOR;
463 	RAL_WRITE(sc, RT2560_CSR14, tmp);
464 
465 	RAL_DEBUG(RAL_DBG_HW, "enabling TSF synchronization\n");
466 }
467 
468 static void
469 rt2560_update_plcp(struct rt2560_softc *sc)
470 {
471 	struct ieee80211com *ic = &sc->sc_ic;
472 
473 	/* no short preamble for 1Mbps */
474 	RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
475 
476 	if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
477 		/* values taken from the reference driver */
478 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380401);
479 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
480 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b8403);
481 	} else {
482 		/* same values as above or'ed 0x8 */
483 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380409);
484 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
485 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b840b);
486 	}
487 
488 	RAL_DEBUG(RAL_DBG_HW, "updating PLCP for %s preamble\n",
489 	    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long");
490 }
491 
492 /*
493  * This function can be called by ieee80211_set_shortslottime(). Refer to
494  * IEEE Std 802.11-1999 pp. 85 to know how these values are computed.
495  */
496 void
497 rt2560_update_slot(struct ieee80211com *ic, int onoff)
498 {
499 	struct rt2560_softc *sc = (struct rt2560_softc *)ic;
500 	uint8_t slottime;
501 	uint16_t tx_sifs, tx_pifs, tx_difs, eifs;
502 	uint32_t tmp;
503 
504 	/* slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; */
505 	slottime = (onoff ? 9 : 20);
506 
507 	/* update the MAC slot boundaries */
508 	tx_sifs = RAL_SIFS - RT2560_TXRX_TURNAROUND;
509 	tx_pifs = tx_sifs + slottime;
510 	tx_difs = tx_sifs + 2 * slottime;
511 	eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
512 
513 	tmp = RAL_READ(sc, RT2560_CSR11);
514 	tmp = (tmp & ~0x1f00) | slottime << 8;
515 	RAL_WRITE(sc, RT2560_CSR11, tmp);
516 
517 	tmp = tx_pifs << 16 | tx_sifs;
518 	RAL_WRITE(sc, RT2560_CSR18, tmp);
519 
520 	tmp = eifs << 16 | tx_difs;
521 	RAL_WRITE(sc, RT2560_CSR19, tmp);
522 
523 	RAL_DEBUG(RAL_DBG_HW, "setting slottime to %uus\n", slottime);
524 }
525 
526 int
527 ral_dma_region_alloc(struct rt2560_softc *sc, struct dma_region *dr,
528     size_t size, uint_t alloc_flags, uint_t bind_flags)
529 {
530 	dev_info_t *dip = sc->sc_dev;
531 	int err;
532 
533 	RAL_DEBUG(RAL_DBG_DMA, "ral_dma_region_alloc() size=%u\n", size);
534 
535 	err = ddi_dma_alloc_handle(dip, &ral_dma_attr, DDI_DMA_SLEEP, NULL,
536 	    &dr->dr_hnd);
537 	if (err != DDI_SUCCESS)
538 		goto fail1;
539 
540 	err = ddi_dma_mem_alloc(dr->dr_hnd, size, &ral_desc_accattr,
541 	    alloc_flags, DDI_DMA_SLEEP, NULL,
542 	    &dr->dr_base, &dr->dr_size, &dr->dr_acc);
543 	if (err != DDI_SUCCESS)
544 		goto fail2;
545 
546 	err = ddi_dma_addr_bind_handle(dr->dr_hnd, NULL,
547 	    dr->dr_base, dr->dr_size,
548 	    bind_flags, DDI_DMA_SLEEP, NULL, &dr->dr_cookie, &dr->dr_ccnt);
549 	if (err != DDI_SUCCESS)
550 		goto fail3;
551 
552 	if (dr->dr_ccnt != 1) {
553 		err = DDI_FAILURE;
554 		goto fail4;
555 	}
556 
557 	dr->dr_pbase = dr->dr_cookie.dmac_address;
558 	RAL_DEBUG(RAL_DBG_DMA, "get physical-base=0x%08x\n", dr->dr_pbase);
559 
560 	return (DDI_SUCCESS);
561 
562 fail4:
563 	(void) ddi_dma_unbind_handle(dr->dr_hnd);
564 fail3:
565 	ddi_dma_mem_free(&dr->dr_acc);
566 fail2:
567 	ddi_dma_free_handle(&dr->dr_hnd);
568 fail1:
569 	return (err);
570 }
571 
572 /* ARGSUSED */
573 void
574 ral_dma_region_free(struct rt2560_softc *sc, struct dma_region *dr)
575 {
576 	(void) ddi_dma_unbind_handle(dr->dr_hnd);
577 	ddi_dma_mem_free(&dr->dr_acc);
578 	ddi_dma_free_handle(&dr->dr_hnd);
579 }
580 
581 int
582 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
583 	int count)
584 {
585 	int i, err;
586 	int size;
587 
588 	ring->count = count;
589 	ring->queued = 0;
590 	ring->cur = ring->next = 0;
591 	ring->cur_encrypt = ring->next_encrypt = 0;
592 
593 	ring->data = kmem_zalloc(count * (sizeof (struct rt2560_tx_data)),
594 	    KM_SLEEP);
595 	ring->dr_txbuf = kmem_zalloc(count * (sizeof (struct dma_region)),
596 	    KM_SLEEP);
597 
598 	err = ral_dma_region_alloc(sc, &ring->dr_desc,
599 	    count * (sizeof (struct rt2560_tx_desc)),
600 	    DDI_DMA_CONSISTENT, DDI_DMA_RDWR | DDI_DMA_CONSISTENT);
601 
602 	if (err != DDI_SUCCESS)
603 		goto fail1;
604 
605 	size = roundup(RAL_TXBUF_SIZE, sc->sc_cachelsz);
606 	for (i = 0; i < count; i++) {
607 		err = ral_dma_region_alloc(sc, &ring->dr_txbuf[i], size,
608 		    DDI_DMA_STREAMING, DDI_DMA_WRITE | DDI_DMA_STREAMING);
609 		if (err != DDI_SUCCESS) {
610 			while (i >= 0) {
611 				ral_dma_region_free(sc, &ring->dr_txbuf[i]);
612 				i--;
613 			}
614 			goto fail2;
615 		}
616 	}
617 
618 	ring->physaddr = LE_32(ring->dr_desc.dr_pbase);
619 	ring->desc = (struct rt2560_tx_desc *)ring->dr_desc.dr_base;
620 
621 	for (i = 0; i < count; i++) {
622 		ring->desc[i].physaddr = LE_32(ring->dr_txbuf[i].dr_pbase);
623 		ring->data[i].buf = ring->dr_txbuf[i].dr_base;
624 	}
625 
626 	return (DDI_SUCCESS);
627 fail2:
628 	ral_dma_region_free(sc, &ring->dr_desc);
629 fail1:
630 	return (err);
631 }
632 
633 /* ARGSUSED */
634 void
635 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
636 {
637 	struct rt2560_tx_desc *desc;
638 	struct rt2560_tx_data *data;
639 	int i;
640 
641 	for (i = 0; i < ring->count; i++) {
642 		desc = &ring->desc[i];
643 		data = &ring->data[i];
644 
645 		if (data->ni != NULL) {
646 			ieee80211_free_node(data->ni);
647 			data->ni = NULL;
648 		}
649 
650 		desc->flags = 0;
651 	}
652 
653 	(void) ddi_dma_sync(ring->dr_desc.dr_hnd, 0,
654 	    ring->count * sizeof (struct rt2560_tx_desc), DDI_DMA_SYNC_FORDEV);
655 
656 	ring->queued = 0;
657 	ring->cur = ring->next = 0;
658 	ring->cur_encrypt = ring->next_encrypt = 0;
659 }
660 
661 void
662 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
663 {
664 	struct rt2560_tx_data *data;
665 	int i;
666 
667 	ral_dma_region_free(sc, &ring->dr_desc);
668 	/* tx buf */
669 	for (i = 0; i < ring->count; i++) {
670 		data = &ring->data[i];
671 		if (data->ni != NULL) {
672 			ieee80211_free_node(data->ni);
673 			data->ni = NULL;
674 		}
675 
676 		ral_dma_region_free(sc, &ring->dr_txbuf[i]);
677 	}
678 
679 	kmem_free(ring->data, ring->count * (sizeof (struct rt2560_tx_data)));
680 	kmem_free(ring->dr_txbuf, ring->count * (sizeof (struct dma_region)));
681 }
682 
683 void
684 rt2560_ring_hwsetup(struct rt2560_softc *sc)
685 {
686 	uint32_t tmp;
687 
688 	/* setup tx rings */
689 	tmp = ((uint32_t)RT2560_PRIO_RING_COUNT << 24) |
690 	    RT2560_ATIM_RING_COUNT << 16 |
691 	    RT2560_TX_RING_COUNT   <<  8 |
692 	    RT2560_TX_DESC_SIZE;
693 
694 	/* rings must be initialized in this exact order */
695 	RAL_WRITE(sc, RT2560_TXCSR2, tmp);
696 	RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
697 	RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
698 
699 	/* setup rx ring */
700 	tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
701 
702 	RAL_WRITE(sc, RT2560_RXCSR1, tmp);
703 	RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
704 }
705 
706 int
707 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
708 	int count)
709 {
710 	struct rt2560_rx_desc *desc;
711 	struct rt2560_rx_data *data;
712 	int i, err;
713 	int size;
714 
715 	ring->count = count;
716 	ring->cur = ring->next = 0;
717 	ring->cur_decrypt = 0;
718 
719 	ring->data = kmem_zalloc(count * (sizeof (struct rt2560_rx_data)),
720 	    KM_SLEEP);
721 	ring->dr_rxbuf = kmem_zalloc(count * (sizeof (struct dma_region)),
722 	    KM_SLEEP);
723 
724 	err = ral_dma_region_alloc(sc, &ring->dr_desc,
725 	    count * (sizeof (struct rt2560_rx_desc)),
726 	    DDI_DMA_CONSISTENT, DDI_DMA_RDWR | DDI_DMA_CONSISTENT);
727 
728 	if (err != DDI_SUCCESS)
729 		goto fail1;
730 
731 	size = roundup(RAL_RXBUF_SIZE, sc->sc_cachelsz);
732 	for (i = 0; i < count; i++) {
733 		err = ral_dma_region_alloc(sc, &ring->dr_rxbuf[i], size,
734 		    DDI_DMA_STREAMING, DDI_DMA_READ | DDI_DMA_STREAMING);
735 		if (err != DDI_SUCCESS) {
736 			while (i >= 0) {
737 				ral_dma_region_free(sc, &ring->dr_rxbuf[i]);
738 				i--;
739 			}
740 			goto fail2;
741 		}
742 	}
743 
744 	ring->physaddr = ring->dr_desc.dr_pbase;
745 	ring->desc = (struct rt2560_rx_desc *)ring->dr_desc.dr_base;
746 
747 	for (i = 0; i < count; i++) {
748 		desc = &ring->desc[i];
749 		data = &ring->data[i];
750 
751 		desc->physaddr = LE_32(ring->dr_rxbuf[i].dr_pbase);
752 		desc->flags = LE_32(RT2560_RX_BUSY);
753 
754 		data->buf = ring->dr_rxbuf[i].dr_base;
755 	}
756 
757 	return (DDI_SUCCESS);
758 fail2:
759 	ral_dma_region_free(sc, &ring->dr_desc);
760 fail1:
761 	return (err);
762 }
763 
764 /* ARGSUSED */
765 static void
766 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
767 {
768 	int i;
769 
770 	for (i = 0; i < ring->count; i++) {
771 		ring->desc[i].flags = LE_32(RT2560_RX_BUSY);
772 		ring->data[i].drop = 0;
773 	}
774 
775 	(void) ddi_dma_sync(ring->dr_desc.dr_hnd, 0,
776 	    ring->count * sizeof (struct rt2560_rx_desc),
777 	    DDI_DMA_SYNC_FORKERNEL);
778 
779 	ring->cur = ring->next = 0;
780 	ring->cur_decrypt = 0;
781 }
782 
783 static void
784 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
785 {
786 	int i;
787 
788 	ral_dma_region_free(sc, &ring->dr_desc);
789 	/* rx buf */
790 	for (i = 0; i < ring->count; i++)
791 		ral_dma_region_free(sc, &ring->dr_rxbuf[i]);
792 
793 	kmem_free(ring->data, ring->count * (sizeof (struct rt2560_rx_data)));
794 	kmem_free(ring->dr_rxbuf, ring->count * (sizeof (struct dma_region)));
795 }
796 
797 /* ARGSUSED */
798 static struct ieee80211_node *
799 rt2560_node_alloc(ieee80211com_t *ic)
800 {
801 	struct rt2560_node *rn;
802 
803 	rn = kmem_zalloc(sizeof (struct rt2560_node), KM_SLEEP);
804 	return ((rn != NULL) ? &rn->ni : NULL);
805 }
806 
807 static void
808 rt2560_node_free(struct ieee80211_node *in)
809 {
810 	ieee80211com_t *ic = in->in_ic;
811 
812 	ic->ic_node_cleanup(in);
813 	if (in->in_wpa_ie != NULL)
814 		ieee80211_free(in->in_wpa_ie);
815 	kmem_free(in, sizeof (struct rt2560_node));
816 }
817 
818 /*
819  * This function is called periodically (every 200ms) during scanning to
820  * switch from one channel to another.
821  */
822 static void
823 rt2560_next_scan(void *arg)
824 {
825 	struct rt2560_softc *sc = arg;
826 	struct ieee80211com *ic = &sc->sc_ic;
827 
828 	if (ic->ic_state == IEEE80211_S_SCAN)
829 		(void) ieee80211_next_scan(ic);
830 }
831 
832 /*
833  * This function is called for each node present in the node station table.
834  */
835 /* ARGSUSED */
836 static void
837 rt2560_iter_func(void *arg, struct ieee80211_node *ni)
838 {
839 	struct rt2560_node *rn = (struct rt2560_node *)ni;
840 
841 	ral_rssadapt_updatestats(&rn->rssadapt);
842 }
843 
844 /*
845  * This function is called periodically (every 100ms) in RUN state to update
846  * the rate adaptation statistics.
847  */
848 static void
849 rt2560_update_rssadapt(void *arg)
850 {
851 	struct rt2560_softc *sc = arg;
852 	struct ieee80211com *ic = &sc->sc_ic;
853 
854 	ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg);
855 	sc->sc_rssadapt_id = timeout(rt2560_update_rssadapt, (void *)sc,
856 	    drv_usectohz(100 * 1000));
857 }
858 
859 static void
860 rt2560_statedog(void *arg)
861 {
862 	struct rt2560_softc *sc = arg;
863 	struct ieee80211com *ic = &sc->sc_ic;
864 	enum ieee80211_state state;
865 
866 	RAL_LOCK(sc);
867 
868 	RAL_DEBUG(RAL_DBG_MSG, "rt2560_statedog(...)\n");
869 
870 	sc->sc_state_id = 0;
871 	state = ic->ic_state;
872 	ic->ic_state = sc->sc_ostate;
873 
874 	RAL_UNLOCK(sc);
875 
876 	ieee80211_new_state(ic, state, -1);
877 
878 }
879 
880 static int
881 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
882 {
883 	struct rt2560_softc *sc = (struct rt2560_softc *)ic;
884 	enum ieee80211_state ostate;
885 	struct ieee80211_node *ni;
886 	int err;
887 
888 	RAL_LOCK(sc);
889 
890 	ostate = ic->ic_state;
891 	sc->sc_ostate = ostate;
892 
893 	if (sc->sc_scan_id != 0) {
894 		(void) untimeout(sc->sc_scan_id);
895 		sc->sc_scan_id = 0;
896 	}
897 
898 	if (sc->sc_rssadapt_id != 0) {
899 		(void) untimeout(sc->sc_rssadapt_id);
900 		sc->sc_rssadapt_id = 0;
901 	}
902 
903 	if (sc->sc_state_id != 0) {
904 		(void) untimeout(sc->sc_state_id);
905 		sc->sc_state_id = 0;
906 	}
907 
908 	switch (nstate) {
909 	case IEEE80211_S_INIT:
910 		if (ostate == IEEE80211_S_RUN) {
911 			/* abort TSF synchronization */
912 			RAL_WRITE(sc, RT2560_CSR14, 0);
913 			/* turn association led off */
914 			rt2560_update_led(sc, 0, 0);
915 		}
916 		break;
917 
918 	case IEEE80211_S_SCAN:
919 		rt2560_set_chan(sc, ic->ic_curchan);
920 		sc->sc_scan_id = timeout(rt2560_next_scan, (void *)sc,
921 		    drv_usectohz(sc->dwelltime * 1000));
922 		break;
923 
924 	case IEEE80211_S_AUTH:
925 		RAL_DEBUG(RAL_DBG_STATE, "-> IEEE80211_S_AUTH ...\n");
926 		rt2560_set_chan(sc, ic->ic_curchan);
927 		break;
928 
929 	case IEEE80211_S_ASSOC:
930 		RAL_DEBUG(RAL_DBG_STATE, "-> IEEE80211_S_ASSOC ...\n");
931 		rt2560_set_chan(sc, ic->ic_curchan);
932 
933 		drv_usecwait(10 * 1000);	/* dlink */
934 		sc->sc_state_id = timeout(rt2560_statedog, (void *)sc,
935 		    drv_usectohz(300 * 1000));	/* ap7-3 */
936 		break;
937 
938 	case IEEE80211_S_RUN:
939 		RAL_DEBUG(RAL_DBG_STATE, "-> IEEE80211_S_RUN ...\n");
940 		rt2560_set_chan(sc, ic->ic_curchan);
941 
942 		ni = ic->ic_bss;
943 
944 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
945 			rt2560_update_plcp(sc);
946 			rt2560_set_basicrates(sc);
947 			rt2560_set_bssid(sc, ni->in_bssid);
948 		}
949 
950 		/* turn assocation led on */
951 		rt2560_update_led(sc, 1, 0);
952 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
953 			sc->sc_rssadapt_id = timeout(rt2560_update_rssadapt,
954 			    (void *)sc, drv_usectohz(100 * 1000));
955 			rt2560_enable_tsf_sync(sc);
956 		}
957 		break;
958 	}
959 
960 	RAL_UNLOCK(sc);
961 
962 	err = sc->sc_newstate(ic, nstate, arg);
963 	/*
964 	 * Finally, start any timers.
965 	 */
966 	if (nstate == IEEE80211_S_RUN)
967 		ieee80211_start_watchdog(ic, 1);
968 
969 	return (err);
970 }
971 
972 /*
973  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
974  * 93C66).
975  */
976 static uint16_t
977 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
978 {
979 	uint32_t tmp;
980 	uint16_t val;
981 	int n;
982 
983 	/* clock C once before the first command */
984 	RT2560_EEPROM_CTL(sc, 0);
985 
986 	RT2560_EEPROM_CTL(sc, RT2560_S);
987 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
988 	RT2560_EEPROM_CTL(sc, RT2560_S);
989 
990 	/* write start bit (1) */
991 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
992 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
993 
994 	/* write READ opcode (10) */
995 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
996 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
997 	RT2560_EEPROM_CTL(sc, RT2560_S);
998 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
999 
1000 	/* write address (A5-A0 or A7-A0) */
1001 	n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
1002 	for (; n >= 0; n--) {
1003 		RT2560_EEPROM_CTL(sc, RT2560_S |
1004 		    (((addr >> n) & 1) << RT2560_SHIFT_D));
1005 		RT2560_EEPROM_CTL(sc, RT2560_S |
1006 		    (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
1007 	}
1008 
1009 	RT2560_EEPROM_CTL(sc, RT2560_S);
1010 
1011 	/* read data Q15-Q0 */
1012 	val = 0;
1013 	for (n = 15; n >= 0; n--) {
1014 		RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
1015 		tmp = RAL_READ(sc, RT2560_CSR21);
1016 		val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
1017 		RT2560_EEPROM_CTL(sc, RT2560_S);
1018 	}
1019 
1020 	RT2560_EEPROM_CTL(sc, 0);
1021 
1022 	/* clear Chip Select and clock C */
1023 	RT2560_EEPROM_CTL(sc, RT2560_S);
1024 	RT2560_EEPROM_CTL(sc, 0);
1025 	RT2560_EEPROM_CTL(sc, RT2560_C);
1026 
1027 	return (val);
1028 }
1029 
1030 static void
1031 rt2560_tx_intr(struct rt2560_softc *sc)
1032 {
1033 	struct ieee80211com *ic = &sc->sc_ic;
1034 	struct rt2560_tx_desc *desc;
1035 	struct rt2560_tx_data *data;
1036 	struct rt2560_node *rn;
1037 
1038 	struct dma_region *dr;
1039 	int count;
1040 
1041 	dr = &sc->txq.dr_desc;
1042 	count = sc->txq.count;
1043 
1044 	(void) ddi_dma_sync(dr->dr_hnd, 0, count * RT2560_TX_DESC_SIZE,
1045 	    DDI_DMA_SYNC_FORKERNEL);
1046 
1047 	mutex_enter(&sc->txq.tx_lock);
1048 
1049 	for (;;) {
1050 		desc = &sc->txq.desc[sc->txq.next];
1051 		data = &sc->txq.data[sc->txq.next];
1052 
1053 		if ((LE_32(desc->flags) & RT2560_TX_BUSY) ||
1054 		    (LE_32(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
1055 		    !(LE_32(desc->flags) & RT2560_TX_VALID))
1056 			break;
1057 
1058 		rn = (struct rt2560_node *)data->ni;
1059 
1060 		switch (LE_32(desc->flags) & RT2560_TX_RESULT_MASK) {
1061 		case RT2560_TX_SUCCESS:
1062 			RAL_DEBUG(RAL_DBG_INTR, "data frame sent success\n");
1063 			if (data->id.id_node != NULL) {
1064 				ral_rssadapt_raise_rate(ic, &rn->rssadapt,
1065 				    &data->id);
1066 			}
1067 			break;
1068 
1069 		case RT2560_TX_SUCCESS_RETRY:
1070 			RAL_DEBUG(RAL_DBG_INTR,
1071 			    "data frame sent after %u retries\n",
1072 			    (LE_32(desc->flags) >> 5) & 0x7);
1073 			sc->sc_tx_retries++;
1074 			break;
1075 
1076 		case RT2560_TX_FAIL_RETRY:
1077 			RAL_DEBUG(RAL_DBG_INTR,
1078 			    "sending data frame failed (too much retries)\n");
1079 			if (data->id.id_node != NULL) {
1080 				ral_rssadapt_lower_rate(ic, data->ni,
1081 				    &rn->rssadapt, &data->id);
1082 			}
1083 			break;
1084 
1085 		case RT2560_TX_FAIL_INVALID:
1086 		case RT2560_TX_FAIL_OTHER:
1087 		default:
1088 			RAL_DEBUG(RAL_DBG_INTR, "sending data frame failed "
1089 			    "0x%08x\n", LE_32(desc->flags));
1090 			break;
1091 		}
1092 
1093 		ieee80211_free_node(data->ni);
1094 		data->ni = NULL;
1095 
1096 		/* descriptor is no longer valid */
1097 		desc->flags &= ~LE_32(RT2560_TX_VALID);
1098 
1099 		RAL_DEBUG(RAL_DBG_INTR, "tx done idx=%u\n", sc->txq.next);
1100 
1101 		sc->txq.queued--;
1102 		sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
1103 
1104 		if (sc->sc_need_sched &&
1105 		    sc->txq.queued < (RT2560_TX_RING_COUNT - 32)) {
1106 			sc->sc_need_sched = 0;
1107 			mac_tx_update(ic->ic_mach);
1108 		}
1109 	}
1110 
1111 	(void) ddi_dma_sync(dr->dr_hnd, 0, count * RT2560_TX_DESC_SIZE,
1112 	    DDI_DMA_SYNC_FORDEV);
1113 
1114 	sc->sc_tx_timer = 0;
1115 	mutex_exit(&sc->txq.tx_lock);
1116 }
1117 
1118 static void
1119 rt2560_prio_intr(struct rt2560_softc *sc)
1120 {
1121 	struct rt2560_tx_desc *desc;
1122 	struct rt2560_tx_data *data;
1123 
1124 	struct dma_region *dr;
1125 	int count;
1126 
1127 	dr = &sc->prioq.dr_desc;
1128 	count = sc->prioq.count;
1129 
1130 	(void) ddi_dma_sync(dr->dr_hnd, 0, count * RT2560_TX_DESC_SIZE,
1131 	    DDI_DMA_SYNC_FORKERNEL);
1132 
1133 	mutex_enter(&sc->prioq.tx_lock);
1134 
1135 	for (;;) {
1136 		desc = &sc->prioq.desc[sc->prioq.next];
1137 		data = &sc->prioq.data[sc->prioq.next];
1138 
1139 		if ((LE_32(desc->flags) & RT2560_TX_BUSY) ||
1140 		    !(LE_32(desc->flags) & RT2560_TX_VALID))
1141 			break;
1142 
1143 		switch (LE_32(desc->flags) & RT2560_TX_RESULT_MASK) {
1144 		case RT2560_TX_SUCCESS:
1145 			RAL_DEBUG(RAL_DBG_INTR, "mgt frame sent success\n");
1146 			break;
1147 
1148 		case RT2560_TX_SUCCESS_RETRY:
1149 			RAL_DEBUG(RAL_DBG_INTR,
1150 			    "mgt frame sent after %u retries\n",
1151 			    (LE_32(desc->flags) >> 5) & 0x7);
1152 			break;
1153 
1154 		case RT2560_TX_FAIL_RETRY:
1155 			RAL_DEBUG(RAL_DBG_INTR,
1156 			    "sending mgt frame failed (too much " "retries)\n");
1157 			break;
1158 
1159 		case RT2560_TX_FAIL_INVALID:
1160 		case RT2560_TX_FAIL_OTHER:
1161 		default:
1162 			RAL_DEBUG(RAL_DBG_INTR, "sending mgt frame failed "
1163 			    "0x%08x\n", LE_32(desc->flags));
1164 		}
1165 
1166 		ieee80211_free_node(data->ni);
1167 		data->ni = NULL;
1168 
1169 		/* descriptor is no longer valid */
1170 		desc->flags &= ~LE_32(RT2560_TX_VALID);
1171 
1172 		RAL_DEBUG(RAL_DBG_INTR, "prio done idx=%u\n", sc->prioq.next);
1173 
1174 		sc->prioq.queued--;
1175 		sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
1176 	}
1177 
1178 	(void) ddi_dma_sync(dr->dr_hnd, 0, count * RT2560_TX_DESC_SIZE,
1179 	    DDI_DMA_SYNC_FORDEV);
1180 
1181 	sc->sc_tx_timer = 0;
1182 	mutex_exit(&sc->prioq.tx_lock);
1183 }
1184 
1185 /*
1186  * Some frames were received. Pass them to the hardware cipher engine before
1187  * sending them to the 802.11 layer.
1188  */
1189 void
1190 rt2560_rx_intr(struct rt2560_softc *sc)
1191 {
1192 	struct ieee80211com *ic = &sc->sc_ic;
1193 	struct rt2560_rx_desc *desc;
1194 	struct rt2560_rx_data *data;
1195 	struct ieee80211_frame *wh;
1196 	struct ieee80211_node *ni;
1197 	struct rt2560_node *rn;
1198 
1199 	mblk_t *m;
1200 	uint32_t len;
1201 	char *rxbuf;
1202 
1203 	struct dma_region *dr, *dr_bf;
1204 	int count;
1205 
1206 	dr = &sc->rxq.dr_desc;
1207 	count = sc->rxq.count;
1208 
1209 	mutex_enter(&sc->rxq.rx_lock);
1210 
1211 	(void) ddi_dma_sync(dr->dr_hnd, 0, count * RT2560_RX_DESC_SIZE,
1212 	    DDI_DMA_SYNC_FORKERNEL);
1213 
1214 	for (;;) {
1215 		desc = &sc->rxq.desc[sc->rxq.cur];
1216 		data = &sc->rxq.data[sc->rxq.cur];
1217 
1218 		if ((LE_32(desc->flags) & RT2560_RX_BUSY) ||
1219 		    (LE_32(desc->flags) & RT2560_RX_CIPHER_BUSY))
1220 			break;
1221 
1222 		data->drop = 0;
1223 
1224 		if ((LE_32(desc->flags) & RT2560_RX_PHY_ERROR) ||
1225 		    (LE_32(desc->flags) & RT2560_RX_CRC_ERROR)) {
1226 			/*
1227 			 * This should not happen since we did not request
1228 			 * to receive those frames when we filled RXCSR0.
1229 			 */
1230 			RAL_DEBUG(RAL_DBG_RX, "PHY or CRC error flags 0x%08x\n",
1231 			    LE_32(desc->flags));
1232 			data->drop = 1;
1233 		}
1234 
1235 		if (((LE_32(desc->flags) >> 16) & 0xfff) > RAL_RXBUF_SIZE) {
1236 			RAL_DEBUG(RAL_DBG_RX, "bad length\n");
1237 			data->drop = 1;
1238 		}
1239 
1240 		if (data->drop) {
1241 			sc->sc_rx_err++;
1242 			goto skip;
1243 		}
1244 
1245 		rxbuf = data->buf;
1246 		len = (LE_32(desc->flags) >> 16) & 0xfff;
1247 
1248 		if ((len < sizeof (struct ieee80211_frame_min)) ||
1249 		    (len > RAL_RXBUF_SIZE)) {
1250 			RAL_DEBUG(RAL_DBG_RX, "bad frame length=%u\n", len);
1251 			sc->sc_rx_err++;
1252 			goto skip;
1253 		}
1254 
1255 		if ((m = allocb(len, BPRI_MED)) == NULL) {
1256 			RAL_DEBUG(RAL_DBG_RX, "rt2560_rx_intr():"
1257 			    " allocate mblk failed.\n");
1258 			sc->sc_rx_nobuf++;
1259 			goto skip;
1260 		}
1261 
1262 		dr_bf = &sc->rxq.dr_rxbuf[sc->rxq.cur];
1263 		(void) ddi_dma_sync(dr_bf->dr_hnd, 0, dr_bf->dr_size,
1264 		    DDI_DMA_SYNC_FORCPU);
1265 
1266 		bcopy(rxbuf, m->b_rptr, len);
1267 		m->b_wptr += len;
1268 
1269 		wh = (struct ieee80211_frame *)m->b_rptr;
1270 		ni = ieee80211_find_rxnode(ic, wh);
1271 
1272 		/* give rssi to the rate adatation algorithm */
1273 		rn = (struct rt2560_node *)ni;
1274 		ral_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi);
1275 
1276 		/* send the frame to the 802.11 layer */
1277 		(void) ieee80211_input(ic, m, ni, desc->rssi, 0);
1278 
1279 		/* node is no longer needed */
1280 		ieee80211_free_node(ni);
1281 
1282 skip:		desc->flags = LE_32(RT2560_RX_BUSY);
1283 		RAL_DEBUG(RAL_DBG_RX, "rx done idx=%u\n", sc->rxq.cur);
1284 
1285 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
1286 	}
1287 	mutex_exit(&sc->rxq.rx_lock);
1288 
1289 	(void) ddi_dma_sync(dr->dr_hnd, 0, count * RT2560_TX_DESC_SIZE,
1290 	    DDI_DMA_SYNC_FORDEV);
1291 }
1292 
1293 uint_t
1294 ral_softint_handler(caddr_t data)
1295 {
1296 	/* LINTED E_BAD_PTR_CAST_ALIGN */
1297 	struct rt2560_softc *sc = (struct rt2560_softc *)data;
1298 
1299 	/*
1300 	 * Check if the soft interrupt is triggered by another
1301 	 * driver at the same level.
1302 	 */
1303 	RAL_LOCK(sc);
1304 	if (sc->sc_rx_pend) {
1305 		sc->sc_rx_pend = 0;
1306 		RAL_UNLOCK(sc);
1307 		rt2560_rx_intr(sc);
1308 		return (DDI_INTR_CLAIMED);
1309 	}
1310 	RAL_UNLOCK(sc);
1311 	return (DDI_INTR_UNCLAIMED);
1312 }
1313 
1314 /*
1315  * Return the expected ack rate for a frame transmitted at rate `rate'.
1316  * XXX: this should depend on the destination node basic rate set.
1317  */
1318 static int
1319 rt2560_ack_rate(struct ieee80211com *ic, int rate)
1320 {
1321 	switch (rate) {
1322 	/* CCK rates */
1323 	case 2:
1324 		return (2);
1325 	case 4:
1326 	case 11:
1327 	case 22:
1328 		return ((ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate);
1329 
1330 	/* OFDM rates */
1331 	case 12:
1332 	case 18:
1333 		return (12);
1334 	case 24:
1335 	case 36:
1336 		return (24);
1337 	case 48:
1338 	case 72:
1339 	case 96:
1340 	case 108:
1341 		return (48);
1342 	}
1343 
1344 	/* default to 1Mbps */
1345 	return (2);
1346 }
1347 
1348 /*
1349  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1350  * The function automatically determines the operating mode depending on the
1351  * given rate. `flags' indicates whether short preamble is in use or not.
1352  */
1353 static uint16_t
1354 rt2560_txtime(int len, int rate, uint32_t flags)
1355 {
1356 	uint16_t txtime;
1357 
1358 	if (RAL_RATE_IS_OFDM(rate)) {
1359 		/* IEEE Std 802.11a-1999, pp. 37 */
1360 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1361 		txtime = 16 + 4 + 4 * txtime + 6;
1362 	} else {
1363 		/* IEEE Std 802.11b-1999, pp. 28 */
1364 		txtime = (16 * len + rate - 1) / rate;
1365 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1366 			txtime +=  72 + 24;
1367 		else
1368 			txtime += 144 + 48;
1369 	}
1370 
1371 	return (txtime);
1372 }
1373 
1374 static uint8_t
1375 rt2560_plcp_signal(int rate)
1376 {
1377 	switch (rate) {
1378 	/* CCK rates (returned values are device-dependent) */
1379 	case 2:		return (0x0);
1380 	case 4:		return (0x1);
1381 	case 11:	return (0x2);
1382 	case 22:	return (0x3);
1383 
1384 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1385 	case 12:	return (0xb);
1386 	case 18:	return (0xf);
1387 	case 24:	return (0xa);
1388 	case 36:	return (0xe);
1389 	case 48:	return (0x9);
1390 	case 72:	return (0xd);
1391 	case 96:	return (0x8);
1392 	case 108:	return (0xc);
1393 
1394 	/* unsupported rates (should not get there) */
1395 	default:	return (0xff);
1396 	}
1397 }
1398 
1399 void
1400 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
1401     uint32_t flags, int len, int rate, int encrypt)
1402 {
1403 	struct ieee80211com *ic = &sc->sc_ic;
1404 	uint16_t plcp_length;
1405 	int remainder;
1406 
1407 	desc->flags = LE_32(flags);
1408 	desc->flags |= LE_32(len << 16);
1409 	desc->flags |= encrypt ? LE_32(RT2560_TX_CIPHER_BUSY) :
1410 	    LE_32(RT2560_TX_BUSY | RT2560_TX_VALID);
1411 
1412 	desc->wme = LE_16(
1413 	    RT2560_AIFSN(2) |
1414 	    RT2560_LOGCWMIN(3) |
1415 	    RT2560_LOGCWMAX(8));
1416 
1417 	/* setup PLCP fields */
1418 	desc->plcp_signal  = rt2560_plcp_signal(rate);
1419 	desc->plcp_service = 4;
1420 
1421 	len += IEEE80211_CRC_LEN;
1422 	if (RAL_RATE_IS_OFDM(rate)) {
1423 		desc->flags |= LE_32(RT2560_TX_OFDM);
1424 
1425 		plcp_length = len & 0xfff;
1426 		desc->plcp_length_hi = plcp_length >> 6;
1427 		desc->plcp_length_lo = plcp_length & 0x3f;
1428 	} else {
1429 		plcp_length = (16 * len + rate - 1) / rate;
1430 		if (rate == 22) {
1431 			remainder = (16 * len) % 22;
1432 			if (remainder != 0 && remainder < 7)
1433 				desc->plcp_service |= RT2560_PLCP_LENGEXT;
1434 		}
1435 		desc->plcp_length_hi = plcp_length >> 8;
1436 		desc->plcp_length_lo = plcp_length & 0xff;
1437 
1438 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1439 			desc->plcp_signal |= 0x08;
1440 	}
1441 }
1442 
1443 /* ARGSUSED */
1444 int
1445 rt2560_mgmt_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
1446 {
1447 	struct rt2560_softc *sc = (struct rt2560_softc *)ic;
1448 	struct rt2560_tx_desc *desc;
1449 	struct rt2560_tx_data *data;
1450 	struct ieee80211_frame *wh;
1451 	uint16_t dur;
1452 	uint32_t flags = 0;
1453 	int rate, err = DDI_SUCCESS;
1454 
1455 	int off, pktlen, mblen;
1456 	caddr_t dest;
1457 	mblk_t *m, *m0;
1458 
1459 	struct dma_region *dr;
1460 	uint32_t idx;
1461 	struct ieee80211_node *ni;
1462 	struct ieee80211_key *k;
1463 
1464 	mutex_enter(&sc->prioq.tx_lock);
1465 
1466 	if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
1467 		err = ENOMEM;
1468 		sc->sc_tx_nobuf++;
1469 		goto fail1;
1470 	}
1471 
1472 	m = allocb(msgdsize(mp) + 32, BPRI_MED);
1473 	if (m == NULL) {
1474 		RAL_DEBUG(RAL_DBG_TX, "rt2560_mgmt_send: can't alloc mblk.\n");
1475 		err = DDI_FAILURE;
1476 		goto fail1;
1477 	}
1478 
1479 	for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) {
1480 		mblen = MBLKL(m0);
1481 		(void) memcpy(m->b_rptr + off, m0->b_rptr, mblen);
1482 		off += mblen;
1483 	}
1484 	m->b_wptr += off;
1485 
1486 	wh = (struct ieee80211_frame *)m->b_rptr;
1487 	ni = ieee80211_find_txnode(ic, wh->i_addr1);
1488 
1489 	if (ni == NULL) {
1490 		err = DDI_FAILURE;
1491 		sc->sc_tx_err++;
1492 		goto fail2;
1493 	}
1494 
1495 	/* to support shared_key auth mode */
1496 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1497 		k = ieee80211_crypto_encap(ic, m);
1498 		if (k == NULL) {
1499 			err = DDI_FAILURE;
1500 			sc->sc_tx_err++;
1501 			goto fail3;
1502 		}
1503 		/* packet header may have moved, reset our local pointer */
1504 		wh = (struct ieee80211_frame *)m->b_rptr;
1505 	}
1506 
1507 	desc = &sc->prioq.desc[sc->prioq.cur];
1508 	data = &sc->prioq.data[sc->prioq.cur];
1509 
1510 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1511 	data->ni = ieee80211_ref_node(ni);
1512 
1513 	pktlen = msgdsize(m);
1514 	dest = data->buf;
1515 	bcopy(m->b_rptr, dest, pktlen);
1516 
1517 	wh = (struct ieee80211_frame *)m->b_rptr;
1518 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1519 		flags |= RT2560_TX_ACK;
1520 
1521 		dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1522 		    RAL_SIFS;
1523 		/* LINTED E_BAD_PTR_CAST_ALIGN */
1524 		*(uint16_t *)wh->i_dur = LE_16(dur);
1525 
1526 		/* tell hardware to add timestamp for probe responses */
1527 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1528 		    IEEE80211_FC0_TYPE_MGT &&
1529 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1530 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1531 			flags |= RT2560_TX_TIMESTAMP;
1532 	}
1533 
1534 	rt2560_setup_tx_desc(sc, desc, flags, pktlen, rate, 0);
1535 
1536 	idx = sc->prioq.cur;
1537 
1538 	dr = &sc->prioq.dr_txbuf[idx];
1539 	(void) ddi_dma_sync(dr->dr_hnd, 0, RAL_TXBUF_SIZE, DDI_DMA_SYNC_FORDEV);
1540 
1541 	dr = &sc->prioq.dr_desc;
1542 	(void) ddi_dma_sync(dr->dr_hnd, idx * RT2560_TX_DESC_SIZE,
1543 	    RT2560_TX_DESC_SIZE, DDI_DMA_SYNC_FORDEV);
1544 
1545 	RAL_DEBUG(RAL_DBG_MGMT, "sending mgt frame len=%u idx=%u rate=%u\n",
1546 	    pktlen, sc->prioq.cur, rate);
1547 
1548 	/* kick prio */
1549 	sc->prioq.queued++; /* IF > RT2560_PRIO_RING_COUNT? FULL */
1550 	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1551 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1552 
1553 	sc->sc_tx_timer = 5;
1554 
1555 	ic->ic_stats.is_tx_frags++;
1556 	ic->ic_stats.is_tx_bytes += pktlen;
1557 
1558 fail3:
1559 	ieee80211_free_node(ni);
1560 fail2:
1561 	freemsg(m);
1562 fail1:
1563 	freemsg(mp);
1564 	mutex_exit(&sc->prioq.tx_lock);
1565 
1566 	return (err);
1567 }
1568 
1569 static int
1570 rt2560_send(ieee80211com_t *ic, mblk_t *mp)
1571 {
1572 	struct rt2560_softc *sc = (struct rt2560_softc *)ic;
1573 	struct rt2560_tx_desc *desc;
1574 	struct rt2560_tx_data *data;
1575 	struct rt2560_node *rn;
1576 	struct ieee80211_rateset *rs;
1577 	struct ieee80211_frame *wh;
1578 	struct ieee80211_key *k;
1579 	uint16_t dur;
1580 	uint32_t flags = 0;
1581 	int rate, err = DDI_SUCCESS;
1582 
1583 	struct ieee80211_node *ni;
1584 	mblk_t *m, *m0;
1585 	int off, mblen, pktlen;
1586 	caddr_t dest;
1587 
1588 	struct dma_region *dr;
1589 	uint32_t idx;
1590 
1591 	mutex_enter(&sc->txq.tx_lock);
1592 
1593 	if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
1594 		RAL_DEBUG(RAL_DBG_TX, "ral: rt2560_tx_data(): "
1595 		    "no TX DMA buffer available!\n");
1596 		sc->sc_need_sched = 1;
1597 		sc->sc_tx_nobuf++;
1598 		err = ENOMEM;
1599 		goto fail1;
1600 	}
1601 
1602 	m = allocb(msgdsize(mp) + 32, BPRI_MED);
1603 	if (m == NULL) {
1604 		RAL_DEBUG(RAL_DBG_TX, "rt2560_xmit(): can't alloc mblk.\n");
1605 		err = DDI_FAILURE;
1606 		goto fail1;
1607 	}
1608 
1609 	for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) {
1610 		mblen = MBLKL(m0);
1611 		(void) memcpy(m->b_rptr + off, m0->b_rptr, mblen);
1612 		off += mblen;
1613 	}
1614 	m->b_wptr += off;
1615 
1616 	wh = (struct ieee80211_frame *)m->b_rptr;
1617 	ni = ieee80211_find_txnode(ic, wh->i_addr1);
1618 
1619 	if (ni == NULL) {
1620 		err = DDI_FAILURE;
1621 		sc->sc_tx_err++;
1622 		goto fail2;
1623 	}
1624 
1625 	(void) ieee80211_encap(ic, m, ni);
1626 
1627 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1628 		k = ieee80211_crypto_encap(ic, m);
1629 		if (k == NULL) {
1630 			sc->sc_tx_err++;
1631 			err = DDI_FAILURE;
1632 			goto fail3;
1633 		}
1634 		/* packet header may have moved, reset our local pointer */
1635 		wh = (struct ieee80211_frame *)m->b_rptr;
1636 	}
1637 
1638 	/*
1639 	 * RTS/CTS exchange ignore, since the max packet will less than
1640 	 * the rtsthreshold (2346)
1641 	 * Unnecessary codes deleted.
1642 	 */
1643 
1644 	data = &sc->txq.data[sc->txq.cur];
1645 	desc = &sc->txq.desc[sc->txq.cur];
1646 
1647 	data->ni = ieee80211_ref_node(ni);
1648 
1649 	pktlen = msgdsize(m);
1650 	dest = data->buf;
1651 	bcopy(m->b_rptr, dest, pktlen);
1652 
1653 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1654 		rs = &ic->ic_sup_rates[ic->ic_curmode];
1655 		rate = rs->ir_rates[ic->ic_fixed_rate];
1656 	} else {
1657 		rs = &ni->in_rates;
1658 		rn = (struct rt2560_node *)ni;
1659 		ni->in_txrate = ral_rssadapt_choose(&rn->rssadapt, rs, wh,
1660 		    pktlen, NULL, 0);
1661 		rate = rs->ir_rates[ni->in_txrate];
1662 	}
1663 
1664 	rate &= IEEE80211_RATE_VAL;
1665 	if (rate <= 0) {
1666 		rate = 2;	/* basic rate */
1667 	}
1668 
1669 	/* remember link conditions for rate adaptation algorithm */
1670 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1671 		data->id.id_len = pktlen;
1672 		data->id.id_rateidx = ni->in_txrate;
1673 		data->id.id_node = ni;
1674 		data->id.id_rssi = ni->in_rssi;
1675 	} else
1676 		data->id.id_node = NULL;
1677 
1678 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1679 		flags |= RT2560_TX_ACK;
1680 
1681 		dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
1682 		    ic->ic_flags) + RAL_SIFS;
1683 		/* LINTED E_BAD_PTR_CAST_ALIGN */
1684 		*(uint16_t *)wh->i_dur = LE_16(dur);
1685 	}
1686 
1687 	/* flags |= RT2560_TX_CIPHER_NONE; */
1688 	rt2560_setup_tx_desc(sc, desc, flags, pktlen, rate, 0);
1689 
1690 	idx = sc->txq.cur;
1691 
1692 	dr = &sc->txq.dr_txbuf[idx];
1693 	(void) ddi_dma_sync(dr->dr_hnd, 0, RAL_TXBUF_SIZE, DDI_DMA_SYNC_FORDEV);
1694 
1695 	dr = &sc->txq.dr_desc;
1696 	(void) ddi_dma_sync(dr->dr_hnd, idx * RT2560_TX_DESC_SIZE,
1697 	    RT2560_TX_DESC_SIZE, DDI_DMA_SYNC_FORDEV);
1698 
1699 	RAL_DEBUG(RAL_DBG_TX, "sending data frame len=%u idx=%u rate=%u\n",
1700 	    pktlen, sc->txq.cur, rate);
1701 
1702 	/* kick tx */
1703 	sc->txq.queued++;
1704 	sc->txq.cur = (sc->txq.cur + 1) % RT2560_TX_RING_COUNT;
1705 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
1706 
1707 	sc->sc_tx_timer = 5;
1708 
1709 	ic->ic_stats.is_tx_frags++;
1710 	ic->ic_stats.is_tx_bytes += pktlen;
1711 
1712 	freemsg(mp);
1713 fail3:
1714 	ieee80211_free_node(ni);
1715 fail2:
1716 	freemsg(m);
1717 fail1:
1718 	mutex_exit(&sc->txq.tx_lock);
1719 	return (err);
1720 }
1721 
1722 static mblk_t *
1723 rt2560_m_tx(void *arg, mblk_t *mp)
1724 {
1725 	struct rt2560_softc *sc = (struct rt2560_softc *)arg;
1726 	struct ieee80211com *ic = &sc->sc_ic;
1727 	mblk_t *next;
1728 
1729 	/*
1730 	 * No data frames go out unless we're associated; this
1731 	 * should not happen as the 802.11 layer does not enable
1732 	 * the xmit queue until we enter the RUN state.
1733 	 */
1734 	if (ic->ic_state != IEEE80211_S_RUN) {
1735 		RAL_DEBUG(RAL_DBG_TX, "ral: rt2560_tx_data(): "
1736 		    "discard, state %u\n", ic->ic_state);
1737 		freemsgchain(mp);
1738 		return (NULL);
1739 	}
1740 
1741 	while (mp != NULL) {
1742 		next = mp->b_next;
1743 		mp->b_next = NULL;
1744 		if (rt2560_send(ic, mp) != DDI_SUCCESS) {
1745 			mp->b_next = next;
1746 			freemsgchain(mp);
1747 			return (NULL);
1748 		}
1749 		mp = next;
1750 	}
1751 	return (mp);
1752 }
1753 
1754 static void
1755 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
1756 {
1757 	uint32_t tmp;
1758 
1759 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1760 	RAL_WRITE(sc, RT2560_CSR3, tmp);
1761 
1762 	tmp = addr[4] | addr[5] << 8;
1763 	RAL_WRITE(sc, RT2560_CSR4, tmp);
1764 
1765 	RAL_DEBUG(RAL_DBG_HW,
1766 	    "setting MAC address to " MACSTR "\n", MAC2STR(addr));
1767 }
1768 
1769 static void
1770 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
1771 {
1772 	uint32_t tmp;
1773 
1774 	tmp = RAL_READ(sc, RT2560_CSR3);
1775 	addr[0] = tmp & 0xff;
1776 	addr[1] = (tmp >>  8) & 0xff;
1777 	addr[2] = (tmp >> 16) & 0xff;
1778 	addr[3] = (tmp >> 24);
1779 
1780 	tmp = RAL_READ(sc, RT2560_CSR4);
1781 	addr[4] = tmp & 0xff;
1782 	addr[5] = (tmp >> 8) & 0xff;
1783 }
1784 
1785 static void
1786 rt2560_update_promisc(struct rt2560_softc *sc)
1787 {
1788 	uint32_t tmp;
1789 
1790 	tmp = RAL_READ(sc, RT2560_RXCSR0);
1791 	tmp &= ~RT2560_DROP_NOT_TO_ME;
1792 	if (!(sc->sc_rcr & RAL_RCR_PROMISC))
1793 		tmp |= RT2560_DROP_NOT_TO_ME;
1794 
1795 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
1796 	RAL_DEBUG(RAL_DBG_HW, "%s promiscuous mode\n",
1797 	    (sc->sc_rcr & RAL_RCR_PROMISC) ?  "entering" : "leaving");
1798 }
1799 
1800 static const char *
1801 rt2560_get_rf(int rev)
1802 {
1803 	switch (rev) {
1804 	case RT2560_RF_2522:	return ("RT2522");
1805 	case RT2560_RF_2523:	return ("RT2523");
1806 	case RT2560_RF_2524:	return ("RT2524");
1807 	case RT2560_RF_2525:	return ("RT2525");
1808 	case RT2560_RF_2525E:	return ("RT2525e");
1809 	case RT2560_RF_2526:	return ("RT2526");
1810 	case RT2560_RF_5222:	return ("RT5222");
1811 	default:		return ("unknown");
1812 	}
1813 }
1814 
1815 static void
1816 rt2560_read_eeprom(struct rt2560_softc *sc)
1817 {
1818 	uint16_t val;
1819 	int i;
1820 
1821 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
1822 	sc->rf_rev =   (val >> 11) & 0x7;
1823 	sc->hw_radio = (val >> 10) & 0x1;
1824 	sc->led_mode = (val >> 6)  & 0x7;
1825 	sc->rx_ant =   (val >> 4)  & 0x3;
1826 	sc->tx_ant =   (val >> 2)  & 0x3;
1827 	sc->nb_ant =   val & 0x3;
1828 
1829 	/* read default values for BBP registers */
1830 	for (i = 0; i < 16; i++) {
1831 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
1832 		sc->bbp_prom[i].reg = val >> 8;
1833 		sc->bbp_prom[i].val = val & 0xff;
1834 	}
1835 
1836 	/* read Tx power for all b/g channels */
1837 	for (i = 0; i < 14 / 2; i++) {
1838 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
1839 		sc->txpow[i * 2] = val >> 8;
1840 		sc->txpow[i * 2 + 1] = val & 0xff;
1841 	}
1842 }
1843 
1844 static int
1845 rt2560_bbp_init(struct rt2560_softc *sc)
1846 {
1847 #define	N(a)	(sizeof (a) / sizeof ((a)[0]))
1848 	int i, ntries;
1849 
1850 	/* wait for BBP to be ready */
1851 	for (ntries = 0; ntries < 100; ntries++) {
1852 		if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
1853 			break;
1854 		drv_usecwait(1);
1855 	}
1856 	if (ntries == 100) {
1857 		RAL_DEBUG(RAL_DBG_HW, "timeout waiting for BBP\n");
1858 		return (EIO);
1859 	}
1860 	/* initialize BBP registers to default values */
1861 	for (i = 0; i < N(rt2560_def_bbp); i++) {
1862 		rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
1863 		    rt2560_def_bbp[i].val);
1864 	}
1865 
1866 	return (0);
1867 #undef N
1868 }
1869 
1870 static void
1871 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
1872 {
1873 	uint32_t tmp;
1874 	uint8_t tx;
1875 
1876 	tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
1877 	if (antenna == 1)
1878 		tx |= RT2560_BBP_ANTA;
1879 	else if (antenna == 2)
1880 		tx |= RT2560_BBP_ANTB;
1881 	else
1882 		tx |= RT2560_BBP_DIVERSITY;
1883 
1884 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
1885 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
1886 	    sc->rf_rev == RT2560_RF_5222)
1887 		tx |= RT2560_BBP_FLIPIQ;
1888 
1889 	rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
1890 
1891 	/* update values for CCK and OFDM in BBPCSR1 */
1892 	tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
1893 	tmp |= (tx & 0x7) << 16 | (tx & 0x7);
1894 	RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
1895 }
1896 
1897 static void
1898 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
1899 {
1900 	uint8_t rx;
1901 
1902 	rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
1903 	if (antenna == 1)
1904 		rx |= RT2560_BBP_ANTA;
1905 	else if (antenna == 2)
1906 		rx |= RT2560_BBP_ANTB;
1907 	else
1908 		rx |= RT2560_BBP_DIVERSITY;
1909 
1910 	/* need to force no I/Q flip for RF 2525e and 2526 */
1911 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
1912 		rx &= ~RT2560_BBP_FLIPIQ;
1913 
1914 	rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
1915 }
1916 
1917 static void
1918 rt2560_stop(struct rt2560_softc *sc)
1919 {
1920 	struct ieee80211com *ic = &sc->sc_ic;
1921 
1922 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1923 	ieee80211_stop_watchdog(ic);	/* stop the watchdog */
1924 
1925 	RAL_LOCK(sc);
1926 	sc->sc_tx_timer = 0;
1927 
1928 	/* abort Tx */
1929 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
1930 
1931 	/* disable Rx */
1932 	RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
1933 
1934 	/* reset ASIC (imply reset BBP) */
1935 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
1936 	RAL_WRITE(sc, RT2560_CSR1, 0);
1937 
1938 	/* disable interrupts */
1939 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
1940 
1941 	/* reset Tx and Rx rings */
1942 	rt2560_reset_tx_ring(sc, &sc->txq);
1943 	rt2560_reset_tx_ring(sc, &sc->prioq);
1944 	rt2560_reset_rx_ring(sc, &sc->rxq);
1945 	RAL_UNLOCK(sc);
1946 }
1947 
1948 static int
1949 rt2560_init(struct rt2560_softc *sc)
1950 {
1951 #define	N(a)	(sizeof (a) / sizeof ((a)[0]))
1952 	/* struct rt2560_softc *sc = priv; */
1953 	struct ieee80211com *ic = &sc->sc_ic;
1954 	uint32_t tmp;
1955 	int i;
1956 
1957 	rt2560_stop(sc);
1958 
1959 	RAL_LOCK(sc);
1960 	/* setup tx/rx ring */
1961 	rt2560_ring_hwsetup(sc);
1962 
1963 	/* initialize MAC registers to default values */
1964 	for (i = 0; i < N(rt2560_def_mac); i++)
1965 		RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
1966 
1967 	rt2560_set_macaddr(sc, ic->ic_macaddr);
1968 
1969 	/* set basic rate set (will be updated later) */
1970 	RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
1971 
1972 	rt2560_set_txantenna(sc, sc->tx_ant);
1973 	rt2560_set_rxantenna(sc, sc->rx_ant);
1974 	rt2560_update_slot(ic, 1);
1975 	rt2560_update_plcp(sc);
1976 	rt2560_update_led(sc, 0, 0);
1977 
1978 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
1979 	RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
1980 
1981 	if (rt2560_bbp_init(sc) != 0) {
1982 		RAL_UNLOCK(sc);
1983 		rt2560_stop(sc);
1984 		return (DDI_FAILURE);
1985 	}
1986 
1987 	/* set default BSS channel */
1988 	rt2560_set_chan(sc, ic->ic_curchan);
1989 
1990 	/* kick Rx */
1991 	tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
1992 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1993 		tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
1994 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
1995 			tmp |= RT2560_DROP_TODS;
1996 		if (!(sc->sc_rcr & RAL_RCR_PROMISC))
1997 			tmp |= RT2560_DROP_NOT_TO_ME;
1998 
1999 	}
2000 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2001 
2002 	/* clear old FCS and Rx FIFO errors */
2003 	(void) RAL_READ(sc, RT2560_CNT0);
2004 	(void) RAL_READ(sc, RT2560_CNT4);
2005 
2006 	/* clear any pending interrupts */
2007 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2008 	/* enable interrupts */
2009 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2010 
2011 	RAL_UNLOCK(sc);
2012 #undef N
2013 	return (DDI_SUCCESS);
2014 }
2015 
2016 void
2017 rt2560_watchdog(void *arg)
2018 {
2019 	struct rt2560_softc *sc = arg;
2020 	struct ieee80211com *ic = &sc->sc_ic;
2021 	int ntimer = 0;
2022 
2023 	RAL_LOCK(sc);
2024 	ic->ic_watchdog_timer = 0;
2025 
2026 	if (!RAL_IS_RUNNING(sc)) {
2027 		RAL_UNLOCK(sc);
2028 		return;
2029 	}
2030 
2031 	if (sc->sc_tx_timer > 0) {
2032 		if (--sc->sc_tx_timer == 0) {
2033 			RAL_DEBUG(RAL_DBG_MSG, "tx timer timeout\n");
2034 			RAL_UNLOCK(sc);
2035 			(void) rt2560_init(sc);
2036 			(void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2037 			return;
2038 		}
2039 	}
2040 
2041 	if (ic->ic_state == IEEE80211_S_RUN)
2042 		ntimer = 1;
2043 
2044 	RAL_UNLOCK(sc);
2045 
2046 	ieee80211_watchdog(ic);
2047 
2048 	if (ntimer)
2049 		ieee80211_start_watchdog(ic, ntimer);
2050 }
2051 
2052 static int
2053 rt2560_m_start(void *arg)
2054 {
2055 	struct rt2560_softc *sc = (struct rt2560_softc *)arg;
2056 	crypto_mech_type_t type;
2057 	int err;
2058 
2059 
2060 	type = crypto_mech2id(SUN_CKM_RC4); /* load rc4 module into kernel */
2061 	RAL_DEBUG(RAL_DBG_GLD, "enter rt2560_m_start(%d)\n", type);
2062 
2063 	/*
2064 	 * initialize rt2560 hardware
2065 	 */
2066 	err = rt2560_init(sc);
2067 	if (err != DDI_SUCCESS) {
2068 		RAL_DEBUG(RAL_DBG_GLD, "device configuration failed\n");
2069 		goto fail;
2070 	}
2071 	sc->sc_flags |= RAL_FLAG_RUNNING;	/* RUNNING */
2072 	return (err);
2073 
2074 fail:
2075 	rt2560_stop(sc);
2076 	return (err);
2077 }
2078 
2079 static void
2080 rt2560_m_stop(void *arg)
2081 {
2082 	struct rt2560_softc *sc = (struct rt2560_softc *)arg;
2083 
2084 	RAL_DEBUG(RAL_DBG_GLD, "enter rt2560_m_stop()\n");
2085 
2086 	(void) rt2560_stop(sc);
2087 	sc->sc_flags &= ~RAL_FLAG_RUNNING;	/* STOP */
2088 }
2089 
2090 static int
2091 rt2560_m_unicst(void *arg, const uint8_t *macaddr)
2092 {
2093 	struct rt2560_softc *sc = (struct rt2560_softc *)arg;
2094 	struct ieee80211com *ic = &sc->sc_ic;
2095 
2096 	RAL_DEBUG(RAL_DBG_GLD, "rt2560_m_unicst(): " MACSTR "\n",
2097 	    MAC2STR(macaddr));
2098 
2099 	IEEE80211_ADDR_COPY(ic->ic_macaddr, macaddr);
2100 	(void) rt2560_set_macaddr(sc, (uint8_t *)macaddr);
2101 	(void) rt2560_init(sc);
2102 
2103 	return (0);
2104 }
2105 
2106 /*ARGSUSED*/
2107 static int
2108 rt2560_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
2109 {
2110 	return (0);
2111 }
2112 
2113 static int
2114 rt2560_m_promisc(void *arg, boolean_t on)
2115 {
2116 	struct rt2560_softc *sc = (struct rt2560_softc *)arg;
2117 
2118 	RAL_DEBUG(RAL_DBG_GLD, "rt2560_m_promisc()\n");
2119 
2120 	if (on) {
2121 		sc->sc_rcr |= RAL_RCR_PROMISC;
2122 		sc->sc_rcr |= RAL_RCR_MULTI;
2123 	} else {
2124 		sc->sc_rcr &= ~RAL_RCR_PROMISC;
2125 		sc->sc_rcr &= ~RAL_RCR_PROMISC;
2126 	}
2127 
2128 	rt2560_update_promisc(sc);
2129 	return (0);
2130 }
2131 
2132 /*
2133  * callback functions for /get/set properties
2134  */
2135 static int
2136 rt2560_m_setprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
2137     uint_t wldp_length, const void *wldp_buf)
2138 {
2139 	struct rt2560_softc *sc = arg;
2140 	struct ieee80211com *ic = &sc->sc_ic;
2141 	int err;
2142 
2143 	err = ieee80211_setprop(ic, pr_name, wldp_pr_num,
2144 	    wldp_length, wldp_buf);
2145 	RAL_LOCK(sc);
2146 	if (err == ENETRESET) {
2147 		if (RAL_IS_RUNNING(sc)) {
2148 			RAL_UNLOCK(sc);
2149 			(void) rt2560_init(sc);
2150 			(void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2151 			RAL_LOCK(sc);
2152 		}
2153 		err = 0;
2154 	}
2155 	RAL_UNLOCK(sc);
2156 
2157 	return (err);
2158 }
2159 
2160 static int
2161 rt2560_m_getprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
2162     uint_t pr_flags, uint_t wldp_length, void *wldp_buf)
2163 {
2164 	struct rt2560_softc *sc = arg;
2165 	int err;
2166 
2167 	err = ieee80211_getprop(&sc->sc_ic, pr_name, wldp_pr_num,
2168 	    pr_flags, wldp_length, wldp_buf);
2169 
2170 	return (err);
2171 }
2172 
2173 static void
2174 rt2560_m_ioctl(void* arg, queue_t *wq, mblk_t *mp)
2175 {
2176 	struct rt2560_softc *sc = (struct rt2560_softc *)arg;
2177 	struct ieee80211com *ic = &sc->sc_ic;
2178 	int err;
2179 
2180 	err = ieee80211_ioctl(ic, wq, mp);
2181 	RAL_LOCK(sc);
2182 	if (err == ENETRESET) {
2183 		if (RAL_IS_RUNNING(sc)) {
2184 			RAL_UNLOCK(sc);
2185 			(void) rt2560_init(sc);
2186 			(void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2187 			RAL_LOCK(sc);
2188 		}
2189 	}
2190 	RAL_UNLOCK(sc);
2191 }
2192 
2193 static int
2194 rt2560_m_stat(void *arg, uint_t stat, uint64_t *val)
2195 {
2196 	struct rt2560_softc *sc  = (struct rt2560_softc *)arg;
2197 	ieee80211com_t	*ic = &sc->sc_ic;
2198 	ieee80211_node_t *ni = ic->ic_bss;
2199 	struct ieee80211_rateset *rs = &ni->in_rates;
2200 
2201 	RAL_LOCK(sc);
2202 	switch (stat) {
2203 	case MAC_STAT_IFSPEED:
2204 		*val = ((ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) ?
2205 		    (rs->ir_rates[ni->in_txrate] & IEEE80211_RATE_VAL)
2206 		    : ic->ic_fixed_rate) / 2 * 1000000;
2207 		break;
2208 	case MAC_STAT_NOXMTBUF:
2209 		*val = sc->sc_tx_nobuf;
2210 		break;
2211 	case MAC_STAT_NORCVBUF:
2212 		*val = sc->sc_rx_nobuf;
2213 		break;
2214 	case MAC_STAT_IERRORS:
2215 		*val = sc->sc_rx_err;
2216 		break;
2217 	case MAC_STAT_RBYTES:
2218 		*val = ic->ic_stats.is_rx_bytes;
2219 		break;
2220 	case MAC_STAT_IPACKETS:
2221 		*val = ic->ic_stats.is_rx_frags;
2222 		break;
2223 	case MAC_STAT_OBYTES:
2224 		*val = ic->ic_stats.is_tx_bytes;
2225 		break;
2226 	case MAC_STAT_OPACKETS:
2227 		*val = ic->ic_stats.is_tx_frags;
2228 		break;
2229 	case MAC_STAT_OERRORS:
2230 	case WIFI_STAT_TX_FAILED:
2231 		*val = sc->sc_tx_err;
2232 		break;
2233 	case WIFI_STAT_TX_RETRANS:
2234 		*val = sc->sc_tx_retries;
2235 		break;
2236 	case WIFI_STAT_FCS_ERRORS:
2237 	case WIFI_STAT_WEP_ERRORS:
2238 	case WIFI_STAT_TX_FRAGS:
2239 	case WIFI_STAT_MCAST_TX:
2240 	case WIFI_STAT_RTS_SUCCESS:
2241 	case WIFI_STAT_RTS_FAILURE:
2242 	case WIFI_STAT_ACK_FAILURE:
2243 	case WIFI_STAT_RX_FRAGS:
2244 	case WIFI_STAT_MCAST_RX:
2245 	case WIFI_STAT_RX_DUPS:
2246 		RAL_UNLOCK(sc);
2247 		return (ieee80211_stat(ic, stat, val));
2248 	default:
2249 		RAL_UNLOCK(sc);
2250 		return (ENOTSUP);
2251 	}
2252 	RAL_UNLOCK(sc);
2253 
2254 	return (0);
2255 }
2256 
2257 static uint_t
2258 rt2560_intr(caddr_t arg)
2259 {
2260 	/* LINTED E_BAD_PTR_CAST_ALIGN */
2261 	struct rt2560_softc *sc = (struct rt2560_softc *)arg;
2262 	uint32_t r;
2263 
2264 	RAL_LOCK(sc);
2265 
2266 	r = RAL_READ(sc, RT2560_CSR7);
2267 	RAL_WRITE(sc, RT2560_CSR7, r);
2268 
2269 	if (r == 0xffffffff) {
2270 		RAL_UNLOCK(sc);
2271 		return (DDI_INTR_UNCLAIMED);
2272 	}
2273 
2274 	if (!(r & RT2560_INTR_ALL)) {
2275 		RAL_UNLOCK(sc);
2276 		return (DDI_INTR_UNCLAIMED);
2277 	}
2278 
2279 	/* disable interrupts */
2280 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2281 
2282 	if (r & RT2560_TX_DONE) {
2283 		RAL_UNLOCK(sc);
2284 		rt2560_tx_intr(sc);
2285 		RAL_LOCK(sc);
2286 	}
2287 
2288 	if (r & RT2560_PRIO_DONE) {
2289 		RAL_UNLOCK(sc);
2290 		rt2560_prio_intr(sc);
2291 		RAL_LOCK(sc);
2292 	}
2293 
2294 	if (r & RT2560_RX_DONE) {
2295 		sc->sc_rx_pend = 1;
2296 		ddi_trigger_softintr(sc->sc_softint_id);
2297 	}
2298 
2299 	/* re-enable interrupts */
2300 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2301 	RAL_UNLOCK(sc);
2302 
2303 	return (DDI_INTR_CLAIMED);
2304 }
2305 
2306 /*
2307  * quiesce(9E) entry point.
2308  *
2309  * This function is called when the system is single-threaded at high
2310  * PIL with preemption disabled. Therefore, this function must not be
2311  * blocked.
2312  *
2313  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
2314  * DDI_FAILURE indicates an error condition and should almost never happen.
2315  */
2316 static int32_t
2317 rt2560_quiesce(dev_info_t *devinfo)
2318 {
2319 	struct rt2560_softc *sc;
2320 
2321 	sc = ddi_get_soft_state(ral_soft_state_p, ddi_get_instance(devinfo));
2322 	if (sc == NULL)
2323 		return (DDI_FAILURE);
2324 
2325 	/* abort Tx */
2326 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
2327 
2328 	/* disable Rx */
2329 	RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
2330 
2331 	/* reset ASIC (imply reset BBP) */
2332 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2333 	RAL_WRITE(sc, RT2560_CSR1, 0);
2334 
2335 	/* disable interrupts */
2336 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2337 
2338 	return (DDI_SUCCESS);
2339 }
2340 
2341 static int
2342 rt2560_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
2343 {
2344 	struct rt2560_softc *sc;
2345 	struct ieee80211com *ic;
2346 	int err, i;
2347 	int instance;
2348 
2349 	ddi_acc_handle_t ioh;
2350 	caddr_t regs;
2351 	uint16_t vendor_id, device_id, command;
2352 	uint8_t cachelsz;
2353 	char strbuf[32];
2354 
2355 	wifi_data_t wd = { 0 };
2356 	mac_register_t *macp;
2357 
2358 	RAL_DEBUG(RAL_DBG_GLD, "enter rt2560_attach()\n");
2359 
2360 	if (cmd != DDI_ATTACH)
2361 		return (DDI_FAILURE);
2362 
2363 	instance = ddi_get_instance(devinfo);
2364 
2365 	if (ddi_soft_state_zalloc(ral_soft_state_p, instance) != DDI_SUCCESS) {
2366 		RAL_DEBUG(RAL_DBG_GLD, "ral: rt2560_attach(): "
2367 		    "unable to alloc soft_state_p\n");
2368 		return (DDI_FAILURE);
2369 	}
2370 
2371 	sc = ddi_get_soft_state(ral_soft_state_p, instance);
2372 	ic = (ieee80211com_t *)&sc->sc_ic;
2373 	sc->sc_dev = devinfo;
2374 
2375 	/* pci configuration */
2376 	err = ddi_regs_map_setup(devinfo, 0, &regs, 0, 0, &ral_csr_accattr,
2377 	    &ioh);
2378 	if (err != DDI_SUCCESS) {
2379 		RAL_DEBUG(RAL_DBG_GLD, "ral: rt2560_attach(): "
2380 		    "ddi_regs_map_setup() failed");
2381 		goto fail1;
2382 	}
2383 
2384 	cachelsz = ddi_get8(ioh, (uint8_t *)(regs + PCI_CONF_CACHE_LINESZ));
2385 	if (cachelsz == 0)
2386 		cachelsz = 0x10;
2387 	sc->sc_cachelsz = cachelsz << 2;
2388 
2389 	vendor_id = ddi_get16(ioh,
2390 	    (uint16_t *)((uintptr_t)regs + PCI_CONF_VENID));
2391 	device_id = ddi_get16(ioh,
2392 	    (uint16_t *)((uintptr_t)regs + PCI_CONF_DEVID));
2393 
2394 	RAL_DEBUG(RAL_DBG_GLD, "ral: rt2560_attach(): vendor 0x%x, "
2395 	    "device id 0x%x, cache size %d\n", vendor_id, device_id, cachelsz);
2396 
2397 	/*
2398 	 * Enable response to memory space accesses,
2399 	 * and enabe bus master.
2400 	 */
2401 	command = PCI_COMM_MAE | PCI_COMM_ME;
2402 	ddi_put16(ioh, (uint16_t *)((uintptr_t)regs + PCI_CONF_COMM), command);
2403 	RAL_DEBUG(RAL_DBG_GLD, "ral: rt2560_attach(): "
2404 	    "set command reg to 0x%x \n", command);
2405 
2406 	ddi_put8(ioh, (uint8_t *)(regs + PCI_CONF_LATENCY_TIMER), 0xa8);
2407 	ddi_put8(ioh, (uint8_t *)(regs + PCI_CONF_ILINE), 0x10);
2408 	ddi_regs_map_free(&ioh);
2409 
2410 	/* pci i/o space */
2411 	err = ddi_regs_map_setup(devinfo, 1,
2412 	    &sc->sc_rbase, 0, 0, &ral_csr_accattr, &sc->sc_ioh);
2413 	RAL_DEBUG(RAL_DBG_GLD, "ral: rt2560_attach(): "
2414 	    "regs map1 = %x err=%d\n", regs, err);
2415 	if (err != DDI_SUCCESS) {
2416 		RAL_DEBUG(RAL_DBG_GLD, "ral: rt2560_attach(): "
2417 		    "ddi_regs_map_setup() failed");
2418 		goto fail1;
2419 	}
2420 
2421 	/* initialize the ral rate */
2422 	ral_rate_init();
2423 
2424 	/* retrieve RT2560 rev. no */
2425 	sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
2426 
2427 	/* retrieve MAC address */
2428 	rt2560_get_macaddr(sc, ic->ic_macaddr);
2429 
2430 	/* retrieve RF rev. no and various other things from EEPROM */
2431 	rt2560_read_eeprom(sc);
2432 
2433 	RAL_DEBUG(RAL_DBG_GLD, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
2434 	    sc->asic_rev, rt2560_get_rf(sc->rf_rev));
2435 
2436 	/*
2437 	 * Allocate Tx and Rx rings.
2438 	 */
2439 	err = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
2440 	if (err != DDI_SUCCESS) {
2441 		RAL_DEBUG(RAL_DBG_GLD, "could not allocate Tx ring\n");
2442 		goto fail2;
2443 	}
2444 	err = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
2445 	if (err != DDI_SUCCESS) {
2446 		RAL_DEBUG(RAL_DBG_GLD, "could not allocate Prio ring\n");
2447 		goto fail3;
2448 	}
2449 	err = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
2450 	if (err != DDI_SUCCESS) {
2451 		RAL_DEBUG(RAL_DBG_GLD, "could not allocate Rx ring\n");
2452 		goto fail4;
2453 	}
2454 
2455 	mutex_init(&sc->sc_genlock, NULL, MUTEX_DRIVER, NULL);
2456 	mutex_init(&sc->txq.tx_lock, NULL, MUTEX_DRIVER, NULL);
2457 	mutex_init(&sc->prioq.tx_lock, NULL, MUTEX_DRIVER, NULL);
2458 	mutex_init(&sc->rxq.rx_lock, NULL, MUTEX_DRIVER, NULL);
2459 
2460 
2461 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
2462 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
2463 	ic->ic_state = IEEE80211_S_INIT;
2464 
2465 	ic->ic_maxrssi = 63;
2466 	ic->ic_set_shortslot = rt2560_update_slot;
2467 	ic->ic_xmit = rt2560_mgmt_send;
2468 
2469 	/* set device capabilities */
2470 	ic->ic_caps =
2471 	    IEEE80211_C_TXPMGT |	/* tx power management */
2472 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
2473 	    IEEE80211_C_SHSLOT;		/* short slot time supported */
2474 
2475 	ic->ic_caps |= IEEE80211_C_WPA; /* Support WPA/WPA2 */
2476 
2477 #define	IEEE80211_CHAN_A	\
2478 	(IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM)
2479 
2480 	if (sc->rf_rev == RT2560_RF_5222) {
2481 		/* set supported .11a rates */
2482 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2560_rateset_11a;
2483 
2484 		/* set supported .11a channels */
2485 		for (i = 36; i <= 64; i += 4) {
2486 			ic->ic_sup_channels[i].ich_freq =
2487 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
2488 			ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A;
2489 		}
2490 		for (i = 100; i <= 140; i += 4) {
2491 			ic->ic_sup_channels[i].ich_freq =
2492 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
2493 			ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A;
2494 		}
2495 		for (i = 149; i <= 161; i += 4) {
2496 			ic->ic_sup_channels[i].ich_freq =
2497 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
2498 			ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A;
2499 		}
2500 	}
2501 
2502 	/* set supported .11b and .11g rates */
2503 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2560_rateset_11b;
2504 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2560_rateset_11g;
2505 
2506 	/* set supported .11b and .11g channels (1 through 14) */
2507 	for (i = 1; i <= 14; i++) {
2508 		ic->ic_sup_channels[i].ich_freq =
2509 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
2510 		ic->ic_sup_channels[i].ich_flags =
2511 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2512 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2513 	}
2514 
2515 	ieee80211_attach(ic);
2516 
2517 	/* register WPA door */
2518 	ieee80211_register_door(ic, ddi_driver_name(devinfo),
2519 	    ddi_get_instance(devinfo));
2520 
2521 	ic->ic_node_alloc = rt2560_node_alloc;
2522 	ic->ic_node_free = rt2560_node_free;
2523 
2524 	/* override state transition machine */
2525 	sc->sc_newstate = ic->ic_newstate;
2526 	ic->ic_newstate = rt2560_newstate;
2527 	ic->ic_watchdog = rt2560_watchdog;
2528 	ieee80211_media_init(ic);
2529 	ic->ic_def_txkey = 0;
2530 
2531 	sc->sc_rcr = 0;
2532 	sc->sc_rx_pend = 0;
2533 	sc->dwelltime = 300;
2534 	sc->sc_flags &= ~RAL_FLAG_RUNNING;
2535 
2536 	err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW,
2537 	    &sc->sc_softint_id, NULL, 0, ral_softint_handler, (caddr_t)sc);
2538 	if (err != DDI_SUCCESS) {
2539 		RAL_DEBUG(RAL_DBG_GLD, "ral: rt2560_attach(): "
2540 		    "ddi_add_softintr() failed");
2541 		goto fail5;
2542 	}
2543 
2544 	err = ddi_get_iblock_cookie(devinfo, 0, &sc->sc_iblock);
2545 	if (err != DDI_SUCCESS) {
2546 		RAL_DEBUG(RAL_DBG_GLD, "ral: rt2560_attach(): "
2547 		    "Can not get iblock cookie for INT\n");
2548 		goto fail6;
2549 	}
2550 
2551 	err = ddi_add_intr(devinfo, 0, NULL, NULL, rt2560_intr, (caddr_t)sc);
2552 	if (err != DDI_SUCCESS) {
2553 		RAL_DEBUG(RAL_DBG_GLD,
2554 		    "unable to add device interrupt handler\n");
2555 		goto fail6;
2556 	}
2557 
2558 	/*
2559 	 * Provide initial settings for the WiFi plugin; whenever this
2560 	 * information changes, we need to call mac_plugindata_update()
2561 	 */
2562 	wd.wd_opmode = ic->ic_opmode;
2563 	wd.wd_secalloc = WIFI_SEC_NONE;
2564 	IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_bss->in_bssid);
2565 
2566 	if ((macp = mac_alloc(MAC_VERSION)) == NULL) {
2567 		RAL_DEBUG(RAL_DBG_GLD, "ral: rt2560_attach(): "
2568 		    "MAC version mismatch\n");
2569 		goto fail7;
2570 	}
2571 
2572 	macp->m_type_ident	= MAC_PLUGIN_IDENT_WIFI;
2573 	macp->m_driver		= sc;
2574 	macp->m_dip		= devinfo;
2575 	macp->m_src_addr	= ic->ic_macaddr;
2576 	macp->m_callbacks	= &rt2560_m_callbacks;
2577 	macp->m_min_sdu		= 0;
2578 	macp->m_max_sdu		= IEEE80211_MTU;
2579 	macp->m_pdata		= &wd;
2580 	macp->m_pdata_size	= sizeof (wd);
2581 
2582 	err = mac_register(macp, &ic->ic_mach);
2583 	mac_free(macp);
2584 	if (err != 0) {
2585 		RAL_DEBUG(RAL_DBG_GLD, "ral: rt2560_attach(): "
2586 		    "mac_register err %x\n", err);
2587 		goto fail7;
2588 	}
2589 
2590 	/*
2591 	 * Create minor node of type DDI_NT_NET_WIFI
2592 	 */
2593 	(void) snprintf(strbuf, sizeof (strbuf), "%s%d",
2594 	    "ral", instance);
2595 	err = ddi_create_minor_node(devinfo, strbuf, S_IFCHR,
2596 	    instance + 1, DDI_NT_NET_WIFI, 0);
2597 
2598 	if (err != DDI_SUCCESS)
2599 		RAL_DEBUG(RAL_DBG_GLD, "ddi_create_minor_node() failed\n");
2600 
2601 	/*
2602 	 * Notify link is down now
2603 	 */
2604 	mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
2605 
2606 	RAL_DEBUG(RAL_DBG_GLD, "rt2560_attach() exit successfully.\n");
2607 	return (DDI_SUCCESS);
2608 fail7:
2609 	ddi_remove_intr(devinfo, 0, sc->sc_iblock);
2610 fail6:
2611 	ddi_remove_softintr(sc->sc_softint_id);
2612 fail5:
2613 	mutex_destroy(&sc->sc_genlock);
2614 	mutex_destroy(&sc->txq.tx_lock);
2615 	mutex_destroy(&sc->prioq.tx_lock);
2616 	mutex_destroy(&sc->rxq.rx_lock);
2617 
2618 	rt2560_free_rx_ring(sc, &sc->rxq);
2619 fail4:
2620 	rt2560_free_tx_ring(sc, &sc->prioq);
2621 fail3:
2622 	rt2560_free_tx_ring(sc, &sc->txq);
2623 fail2:
2624 	ddi_regs_map_free(&sc->sc_ioh);
2625 fail1:
2626 	ddi_soft_state_free(ral_soft_state_p, ddi_get_instance(devinfo));
2627 
2628 	return (DDI_FAILURE);
2629 }
2630 
2631 static int
2632 rt2560_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
2633 {
2634 	struct rt2560_softc *sc;
2635 
2636 	RAL_DEBUG(RAL_DBG_GLD, "enter rt2560_detach()\n");
2637 	sc = ddi_get_soft_state(ral_soft_state_p, ddi_get_instance(devinfo));
2638 
2639 	if (cmd != DDI_DETACH)
2640 		return (DDI_FAILURE);
2641 
2642 	if (mac_disable(sc->sc_ic.ic_mach) != 0)
2643 		return (DDI_FAILURE);
2644 
2645 	rt2560_stop(sc);
2646 
2647 	/*
2648 	 * Unregister from the MAC layer subsystem
2649 	 */
2650 	(void) mac_unregister(sc->sc_ic.ic_mach);
2651 
2652 	ddi_remove_intr(devinfo, 0, sc->sc_iblock);
2653 	ddi_remove_softintr(sc->sc_softint_id);
2654 
2655 	/*
2656 	 * detach ieee80211 layer
2657 	 */
2658 	ieee80211_detach(&sc->sc_ic);
2659 
2660 	rt2560_free_tx_ring(sc, &sc->txq);
2661 	rt2560_free_tx_ring(sc, &sc->prioq);
2662 	rt2560_free_rx_ring(sc, &sc->rxq);
2663 
2664 	ddi_regs_map_free(&sc->sc_ioh);
2665 
2666 	mutex_destroy(&sc->sc_genlock);
2667 	mutex_destroy(&sc->txq.tx_lock);
2668 	mutex_destroy(&sc->prioq.tx_lock);
2669 	mutex_destroy(&sc->rxq.rx_lock);
2670 
2671 	ddi_remove_minor_node(devinfo, NULL);
2672 	ddi_soft_state_free(ral_soft_state_p, ddi_get_instance(devinfo));
2673 
2674 	return (DDI_SUCCESS);
2675 }
2676 
2677 int
2678 _info(struct modinfo *modinfop)
2679 {
2680 	return (mod_info(&modlinkage, modinfop));
2681 }
2682 
2683 int
2684 _init(void)
2685 {
2686 	int status;
2687 
2688 	status = ddi_soft_state_init(&ral_soft_state_p,
2689 	    sizeof (struct rt2560_softc), 1);
2690 	if (status != 0)
2691 		return (status);
2692 
2693 	mac_init_ops(&ral_dev_ops, "ral");
2694 	status = mod_install(&modlinkage);
2695 	if (status != 0) {
2696 		mac_fini_ops(&ral_dev_ops);
2697 		ddi_soft_state_fini(&ral_soft_state_p);
2698 	}
2699 	return (status);
2700 }
2701 
2702 int
2703 _fini(void)
2704 {
2705 	int status;
2706 
2707 	status = mod_remove(&modlinkage);
2708 	if (status == 0) {
2709 		mac_fini_ops(&ral_dev_ops);
2710 		ddi_soft_state_fini(&ral_soft_state_p);
2711 	}
2712 	return (status);
2713 }
2714