xref: /titanic_51/usr/src/uts/common/io/pts.c (revision bdfc6d18da790deeec2e0eb09c625902defe2498)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"	/* SVR4 1.13    */
31 
32 /*
33  * Pseudo Terminal Slave Driver.
34  *
35  * The pseudo-tty subsystem simulates a terminal connection, where the master
36  * side represents the terminal and the slave represents the user process's
37  * special device end point. The master device is set up as a cloned device
38  * where its major device number is the major for the clone device and its minor
39  * device number is the major for the ptm driver. There are no nodes in the file
40  * system for master devices. The master pseudo driver is opened using the
41  * open(2) system call with /dev/ptmx as the device parameter.  The clone open
42  * finds the next available minor device for the ptm major device.
43  *
44  * A master device is available only if it and its corresponding slave device
45  * are not already open. When the master device is opened, the corresponding
46  * slave device is automatically locked out. Only one open is allowed on a
47  * master device.  Multiple opens are allowed on the slave device.  After both
48  * the master and slave have been opened, the user has two file descriptors
49  * which are the end points of a full duplex connection composed of two streams
50  * which are automatically connected at the master and slave drivers. The user
51  * may then push modules onto either side of the stream pair.
52  *
53  * The master and slave drivers pass all messages to their adjacent queues.
54  * Only the M_FLUSH needs some processing.  Because the read queue of one side
55  * is connected to the write queue of the other, the FLUSHR flag is changed to
56  * the FLUSHW flag and vice versa. When the master device is closed an M_HANGUP
57  * message is sent to the slave device which will render the device
58  * unusable. The process on the slave side gets the EIO when attempting to write
59  * on that stream but it will be able to read any data remaining on the stream
60  * head read queue.  When all the data has been read, read() returns 0
61  * indicating that the stream can no longer be used.  On the last close of the
62  * slave device, a 0-length message is sent to the master device. When the
63  * application on the master side issues a read() or getmsg() and 0 is returned,
64  * the user of the master device decides whether to issue a close() that
65  * dismantles the pseudo-terminal subsystem. If the master device is not closed,
66  * the pseudo-tty subsystem will be available to another user to open the slave
67  * device.
68  *
69  * Synchronization:
70  *
71  *   All global data synchronization between ptm/pts is done via global
72  *   ptms_lock mutex which is initialized at system boot time from
73  *   ptms_initspace (called from space.c).
74  *
75  *   Individual fields of pt_ttys structure (except ptm_rdq, pts_rdq and
76  *   pt_nullmsg) are protected by pt_ttys.pt_lock mutex.
77  *
78  *   PT_ENTER_READ/PT_ENTER_WRITE are reference counter based read-write locks
79  *   which allow reader locks to be reacquired by the same thread (usual
80  *   reader/writer locks can't be used for that purpose since it is illegal for
81  *   a thread to acquire a lock it already holds, even as a reader). The sole
82  *   purpose of these macros is to guarantee that the peer queue will not
83  *   disappear (due to closing peer) while it is used. It is safe to use
84  *   PT_ENTER_READ/PT_EXIT_READ brackets across calls like putq/putnext (since
85  *   they are not real locks but reference counts).
86  *
87  *   PT_ENTER_WRITE/PT_EXIT_WRITE brackets are used ONLY in master/slave
88  *   open/close paths to modify ptm_rdq and pts_rdq fields. These fields should
89  *   be set to appropriate queues *after* qprocson() is called during open (to
90  *   prevent peer from accessing the queue with incomplete plumbing) and set to
91  *   NULL before qprocsoff() is called during close.
92  *
93  *   The pt_nullmsg field is only used in open/close routines and it is also
94  *   protected by PT_ENTER_WRITE/PT_EXIT_WRITE brackets to avoid extra mutex
95  *   holds.
96  *
97  * Lock Ordering:
98  *
99  *   If both ptms_lock and per-pty lock should be held, ptms_lock should always
100  *   be entered first, followed by per-pty lock.
101  *
102  * See ptms.h, ptm.c and ptms_conf.c fore more information.
103  *
104  */
105 
106 #include <sys/types.h>
107 #include <sys/param.h>
108 #include <sys/sysmacros.h>
109 #include <sys/stream.h>
110 #include <sys/stropts.h>
111 #include <sys/stat.h>
112 #include <sys/errno.h>
113 #include <sys/debug.h>
114 #include <sys/cmn_err.h>
115 #include <sys/ptms.h>
116 #include <sys/systm.h>
117 #include <sys/modctl.h>
118 #include <sys/conf.h>
119 #include <sys/ddi.h>
120 #include <sys/sunddi.h>
121 #include <sys/cred.h>
122 #include <sys/zone.h>
123 
124 #ifdef DEBUG
125 int pts_debug = 0;
126 #define	DBG(a)	 if (pts_debug) cmn_err(CE_NOTE, a)
127 #else
128 #define	DBG(a)
129 #endif
130 
131 static int ptsopen(queue_t *, dev_t *, int, int, cred_t *);
132 static int ptsclose(queue_t *, int, cred_t *);
133 static void ptswput(queue_t *, mblk_t *);
134 static void ptsrsrv(queue_t *);
135 static void ptswsrv(queue_t *);
136 
137 /*
138  * Slave Stream Pseudo Terminal Module: stream data structure definitions
139  */
140 static struct module_info pts_info = {
141 	0xface,
142 	"pts",
143 	0,
144 	512,
145 	512,
146 	128
147 };
148 
149 static struct qinit ptsrint = {
150 	NULL,
151 	(int (*)()) ptsrsrv,
152 	ptsopen,
153 	ptsclose,
154 	NULL,
155 	&pts_info,
156 	NULL
157 };
158 
159 static struct qinit ptswint = {
160 	(int (*)()) ptswput,
161 	(int (*)()) ptswsrv,
162 	NULL,
163 	NULL,
164 	NULL,
165 	&pts_info,
166 	NULL
167 };
168 
169 static struct streamtab ptsinfo = {
170 	&ptsrint,
171 	&ptswint,
172 	NULL,
173 	NULL
174 };
175 
176 static int pts_devinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
177 static int pts_attach(dev_info_t *, ddi_attach_cmd_t);
178 static int pts_detach(dev_info_t *, ddi_detach_cmd_t);
179 
180 #define	PTS_CONF_FLAG	(D_NEW | D_MP)
181 
182 /*
183  * this will define (struct cb_ops cb_pts_ops) and (struct dev_ops pts_ops)
184  */
185 DDI_DEFINE_STREAM_OPS(pts_ops, nulldev, nulldev,	\
186 	pts_attach, pts_detach, nodev,			\
187 	pts_devinfo, PTS_CONF_FLAG, &ptsinfo);
188 
189 /*
190  * Module linkage information for the kernel.
191  */
192 
193 static struct modldrv modldrv = {
194 	&mod_driverops, /* Type of module.  This one is a pseudo driver */
195 	"Slave Stream Pseudo Terminal driver 'pts'",
196 	&pts_ops,	/* driver ops */
197 };
198 
199 static struct modlinkage modlinkage = {
200 	MODREV_1,
201 	&modldrv,
202 	NULL
203 };
204 
205 int
206 _init(void)
207 {
208 	int rc;
209 
210 	if ((rc = mod_install(&modlinkage)) == 0)
211 		ptms_init();
212 	return (rc);
213 }
214 
215 
216 int
217 _fini(void)
218 {
219 	return (mod_remove(&modlinkage));
220 }
221 
222 int
223 _info(struct modinfo *modinfop)
224 {
225 	return (mod_info(&modlinkage, modinfop));
226 }
227 
228 static int
229 pts_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
230 {
231 	if (cmd != DDI_ATTACH)
232 		return (DDI_FAILURE);
233 
234 	return (ptms_create_pts_nodes(devi));
235 }
236 
237 static int
238 pts_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
239 {
240 	if (cmd != DDI_DETACH)
241 		return (DDI_FAILURE);
242 
243 	return (ptms_destroy_pts_nodes(devi));
244 }
245 
246 /*ARGSUSED*/
247 static int
248 pts_devinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
249     void **result)
250 {
251 	int error;
252 
253 	switch (infocmd) {
254 	case DDI_INFO_DEVT2DEVINFO:
255 		if (pts_dip == NULL) {
256 			error = DDI_FAILURE;
257 		} else {
258 			*result = (void *)pts_dip;
259 			error = DDI_SUCCESS;
260 		}
261 		break;
262 	case DDI_INFO_DEVT2INSTANCE:
263 		*result = (void *)0;
264 		error = DDI_SUCCESS;
265 		break;
266 	default:
267 		error = DDI_FAILURE;
268 	}
269 	return (error);
270 }
271 
272 /* ARGSUSED */
273 /*
274  * Open the slave device. Reject a clone open and do not allow the
275  * driver to be pushed. If the slave/master pair is locked or if
276  * the master is not open, return EACCESS.
277  * Upon success, store the write queue pointer in private data and
278  * set the PTSOPEN bit in the pt_state field.
279  */
280 static int
281 ptsopen(
282 	queue_t *rqp,		/* pointer to the read side queue */
283 	dev_t   *devp,		/* pointer to stream tail's dev */
284 	int	oflag,		/* the user open(2) supplied flags */
285 	int	sflag,		/* open state flag */
286 	cred_t  *credp)		/* credentials */
287 {
288 	struct pt_ttys	*ptsp;
289 	mblk_t		*mp;
290 	mblk_t		*mop;	/* ptr to a setopts message block */
291 	minor_t		dminor = getminor(*devp);
292 	struct stroptions *sop;
293 
294 	DDBG("entering ptsopen(%d)", dminor);
295 
296 	if (sflag != 0) {
297 		return (EINVAL);
298 	}
299 
300 	mutex_enter(&ptms_lock);
301 	ptsp = ptms_minor2ptty(dminor);
302 
303 	if (ptsp == NULL) {
304 		mutex_exit(&ptms_lock);
305 		return (ENXIO);
306 	}
307 	mutex_enter(&ptsp->pt_lock);
308 
309 	/*
310 	 * Prevent opens from zones other than the one blessed by ptm.  We
311 	 * can't even allow the global zone to open all pts's, as it would
312 	 * otherwise inproperly be able to claim pts's already opened by zones.
313 	 */
314 	if (ptsp->pt_zoneid != getzoneid()) {
315 		mutex_exit(&ptsp->pt_lock);
316 		mutex_exit(&ptms_lock);
317 		return (EPERM);
318 	}
319 
320 	/*
321 	 * Allow reopen of this device.
322 	 */
323 	if (rqp->q_ptr != NULL) {
324 		mutex_exit(&ptsp->pt_lock);
325 		mutex_exit(&ptms_lock);
326 		return (0);
327 	}
328 
329 	DDBGP("ptsopen: p = %p\n", (uintptr_t)ptsp);
330 	DDBG("ptsopen: state = %x\n", ptsp->pt_state);
331 
332 
333 	ASSERT(ptsp->pt_minor == dminor);
334 
335 	if ((ptsp->pt_state & PTLOCK) || !(ptsp->pt_state & PTMOPEN)) {
336 		mutex_exit(&ptsp->pt_lock);
337 		mutex_exit(&ptms_lock);
338 		return (EAGAIN);
339 	}
340 
341 	/*
342 	 * if already, open simply return...
343 	 */
344 	if (ptsp->pt_state & PTSOPEN) {
345 		mutex_exit(&ptsp->pt_lock);
346 		mutex_exit(&ptms_lock);
347 		return (0);
348 	}
349 
350 	/*
351 	 * Allocate message block for setting stream head options.
352 	 */
353 	if ((mop = allocb(sizeof (struct stroptions), BPRI_MED)) == NULL) {
354 		mutex_exit(&ptsp->pt_lock);
355 		mutex_exit(&ptms_lock);
356 		return (ENOMEM);
357 	}
358 
359 	/*
360 	 * Slave should send zero-length message to a master when it is
361 	 * closing. If memory is low at that time, master will not detect slave
362 	 * closes, this pty will not be deallocated. So, preallocate this
363 	 * zero-length message block early.
364 	 */
365 	if ((mp = allocb(0, BPRI_MED)) == NULL) {
366 		mutex_exit(&ptsp->pt_lock);
367 		mutex_exit(&ptms_lock);
368 		freemsg(mop);
369 		return (ENOMEM);
370 	}
371 
372 	ptsp->pt_state |= PTSOPEN;
373 
374 	WR(rqp)->q_ptr = rqp->q_ptr = ptsp;
375 
376 	mutex_exit(&ptsp->pt_lock);
377 	mutex_exit(&ptms_lock);
378 
379 	qprocson(rqp);
380 
381 	/*
382 	 * After qprocson pts driver is fully plumbed into the stream and can
383 	 * send/receive messages. Setting pts_rdq will allow master side to send
384 	 * messages to the slave. This setting can't occur before qprocson() is
385 	 * finished because slave is not ready to process them.
386 	 */
387 	PT_ENTER_WRITE(ptsp);
388 	ptsp->pts_rdq = rqp;
389 	ASSERT(ptsp->pt_nullmsg == NULL);
390 	ptsp->pt_nullmsg = mp;
391 	PT_EXIT_WRITE(ptsp);
392 
393 	/*
394 	 * set up hi/lo water marks on stream head read queue
395 	 * and add controlling tty if not set
396 	 */
397 
398 	mop->b_datap->db_type = M_SETOPTS;
399 	mop->b_wptr += sizeof (struct stroptions);
400 	sop = (struct stroptions *)mop->b_rptr;
401 	sop->so_flags = SO_HIWAT | SO_LOWAT | SO_ISTTY;
402 	sop->so_hiwat = 512;
403 	sop->so_lowat = 256;
404 	putnext(rqp, mop);
405 
406 	return (0);
407 }
408 
409 
410 
411 /*
412  * Find the address to private data identifying the slave's write
413  * queue. Send a 0-length msg up the slave's read queue to designate
414  * the master is closing. Uattach the master from the slave by nulling
415  * out master's write queue field in private data.
416  */
417 /*ARGSUSED1*/
418 static int
419 ptsclose(queue_t *rqp, int flag, cred_t *credp)
420 {
421 	struct pt_ttys	*ptsp;
422 	queue_t *wqp;
423 	mblk_t	*mp;
424 	mblk_t	*bp;
425 
426 	/*
427 	 * q_ptr should never be NULL in the close routine and it is checked in
428 	 * DEBUG kernel by ASSERT. For non-DEBUG kernel the attempt is made to
429 	 * behave gracefully.
430 	 */
431 	ASSERT(rqp->q_ptr != NULL);
432 	if (rqp->q_ptr == NULL) {
433 		qprocsoff(rqp);
434 		return (0);
435 	}
436 
437 	ptsp = (struct pt_ttys *)rqp->q_ptr;
438 
439 	/*
440 	 * Slave is going to close and doesn't want any new  messages coming
441 	 * from the master side, so set pts_rdq to NULL. This should be done
442 	 * before call to qprocsoff() since slave can't process additional
443 	 * messages from the master after qprocsoff is called.
444 	 */
445 	PT_ENTER_WRITE(ptsp);
446 	mp = ptsp->pt_nullmsg;
447 	ptsp->pt_nullmsg = NULL;
448 	ptsp->pts_rdq = NULL;
449 	PT_EXIT_WRITE(ptsp);
450 
451 	/*
452 	 * Drain the ouput
453 	 */
454 	wqp = WR(rqp);
455 	PT_ENTER_READ(ptsp);
456 	while ((bp = getq(wqp)) != NULL) {
457 		if (ptsp->ptm_rdq) {
458 			putnext(ptsp->ptm_rdq, bp);
459 		} else if (bp->b_datap->db_type == M_IOCTL) {
460 			bp->b_datap->db_type = M_IOCNAK;
461 			freemsg(bp->b_cont);
462 			bp->b_cont = NULL;
463 			qreply(wqp, bp);
464 		} else {
465 			freemsg(bp);
466 		}
467 	}
468 	/*
469 	 * qenable master side write queue so that it can flush
470 	 * its messages as slaves's read queue is going away
471 	 */
472 	if (ptsp->ptm_rdq) {
473 		if (mp)
474 			putnext(ptsp->ptm_rdq, mp);
475 		else
476 			qenable(WR(ptsp->ptm_rdq));
477 	} else
478 		freemsg(mp);
479 	PT_EXIT_READ(ptsp);
480 
481 	qprocsoff(rqp);
482 
483 	rqp->q_ptr = NULL;
484 	WR(rqp)->q_ptr = NULL;
485 
486 	ptms_close(ptsp, PTSOPEN | PTSTTY);
487 
488 	return (0);
489 }
490 
491 
492 /*
493  * The wput procedure will only handle flush messages.
494  * All other messages are queued and the write side
495  * service procedure sends them off to the master side.
496  */
497 static void
498 ptswput(queue_t *qp, mblk_t *mp)
499 {
500 	struct pt_ttys *ptsp;
501 	struct iocblk  *iocp;
502 	unsigned char type = mp->b_datap->db_type;
503 
504 	DBG(("entering ptswput\n"));
505 	ASSERT(qp->q_ptr);
506 
507 	ptsp = (struct pt_ttys *)qp->q_ptr;
508 	PT_ENTER_READ(ptsp);
509 	if (ptsp->ptm_rdq == NULL) {
510 		DBG(("in write put proc but no master\n"));
511 		/*
512 		 * NAK ioctl as slave side read queue is gone.
513 		 * Or else free the message.
514 		 */
515 		if (mp->b_datap->db_type == M_IOCTL) {
516 			mp->b_datap->db_type = M_IOCNAK;
517 			freemsg(mp->b_cont);
518 			mp->b_cont = NULL;
519 			qreply(qp, mp);
520 		} else
521 			freemsg(mp);
522 		PT_EXIT_READ(ptsp);
523 		return;
524 	}
525 
526 	if (type >= QPCTL) {
527 	    switch (type) {
528 
529 		/*
530 		 * if write queue request, flush slave's write
531 		 * queue and send FLUSHR to ptm. If read queue
532 		 * request, send FLUSHR to ptm.
533 		 */
534 	    case M_FLUSH:
535 		DBG(("pts got flush request\n"));
536 		if (*mp->b_rptr & FLUSHW) {
537 
538 			DBG(("got FLUSHW, flush pts write Q\n"));
539 			if (*mp->b_rptr & FLUSHBAND)
540 				/*
541 				 * if it is a FLUSHBAND, do flushband.
542 				 */
543 				flushband(qp, *(mp->b_rptr + 1), FLUSHDATA);
544 			else
545 				flushq(qp, FLUSHDATA);
546 
547 			*mp->b_rptr &= ~FLUSHW;
548 			if ((*mp->b_rptr & FLUSHR) == 0) {
549 				/*
550 				 * FLUSHW only. Change to FLUSHR and putnext
551 				 * to ptm, then we are done.
552 				 */
553 				*mp->b_rptr |= FLUSHR;
554 				if (ptsp->ptm_rdq)
555 					putnext(ptsp->ptm_rdq, mp);
556 				break;
557 			} else {
558 				mblk_t *nmp;
559 
560 				/* It is a FLUSHRW. Duplicate the mblk */
561 				nmp = copyb(mp);
562 				if (nmp) {
563 					/*
564 					 * Change FLUSHW to FLUSHR before
565 					 * putnext to ptm.
566 					 */
567 					DBG(("putnext nmp(FLUSHR) to ptm\n"));
568 					*nmp->b_rptr |= FLUSHR;
569 					if (ptsp->ptm_rdq)
570 						putnext(ptsp->ptm_rdq, nmp);
571 				}
572 			}
573 		}
574 		/*
575 		 * Since the packet module will toss any
576 		 * M_FLUSHES sent to the master's stream head
577 		 * read queue, we simply turn it around here.
578 		 */
579 		if (*mp->b_rptr & FLUSHR) {
580 			ASSERT(RD(qp)->q_first == NULL);
581 			DBG(("qreply(qp) turning FLUSHR around\n"));
582 			qreply(qp, mp);
583 		} else {
584 			freemsg(mp);
585 		}
586 		break;
587 
588 	    case M_READ:
589 		/* Caused by ldterm - can not pass to master */
590 		freemsg(mp);
591 		break;
592 
593 	    default:
594 		if (ptsp->ptm_rdq)
595 			putnext(ptsp->ptm_rdq, mp);
596 		break;
597 	    }
598 	    PT_EXIT_READ(ptsp);
599 	    return;
600 	}
601 
602 	switch (type) {
603 
604 	case M_IOCTL:
605 		/*
606 		 * For case PTSSTTY set the flag PTSTTY and ACK
607 		 * the ioctl so that the user program can push
608 		 * the associated modules to get tty semantics.
609 		 * See bugid 4025044
610 		 */
611 		iocp = (struct iocblk *)mp->b_rptr;
612 		switch (iocp->ioc_cmd) {
613 		default:
614 			break;
615 
616 		case PTSSTTY:
617 			if (ptsp->pt_state & PTSTTY) {
618 				mp->b_datap->db_type = M_IOCNAK;
619 				iocp->ioc_error = EEXIST;
620 			} else {
621 				mp->b_datap->db_type = M_IOCACK;
622 				mutex_enter(&ptsp->pt_lock);
623 				ptsp->pt_state |= PTSTTY;
624 				mutex_exit(&ptsp->pt_lock);
625 				iocp->ioc_error = 0;
626 			}
627 			iocp->ioc_count = 0;
628 			qreply(qp, mp);
629 			PT_EXIT_READ(ptsp);
630 			return;
631 		}
632 
633 	default:
634 		/*
635 		 * send other messages to the master
636 		 */
637 		DBG(("put msg on slave's write queue\n"));
638 		(void) putq(qp, mp);
639 		break;
640 	}
641 
642 	PT_EXIT_READ(ptsp);
643 	DBG(("return from ptswput()\n"));
644 }
645 
646 
647 /*
648  * enable the write side of the master. This triggers the
649  * master to send any messages queued on its write side to
650  * the read side of this slave.
651  */
652 static void
653 ptsrsrv(queue_t *qp)
654 {
655 	struct pt_ttys *ptsp;
656 
657 	DBG(("entering ptsrsrv\n"));
658 	ASSERT(qp->q_ptr);
659 
660 	ptsp = (struct pt_ttys *)qp->q_ptr;
661 	PT_ENTER_READ(ptsp);
662 	if (ptsp->ptm_rdq == NULL) {
663 		DBG(("in read srv proc but no master\n"));
664 		PT_EXIT_READ(ptsp);
665 		return;
666 	}
667 	qenable(WR(ptsp->ptm_rdq));
668 	PT_EXIT_READ(ptsp);
669 	DBG(("leaving ptsrsrv\n"));
670 }
671 
672 /*
673  * If there are messages on this queue that can be sent to
674  * master, send them via putnext(). Else, if queued messages
675  * cannot be sent, leave them on this queue. If priority
676  * messages on this queue, send them to master no matter what.
677  */
678 static void
679 ptswsrv(queue_t *qp)
680 {
681 	struct pt_ttys *ptsp;
682 	queue_t *ptm_rdq;
683 	mblk_t *mp;
684 
685 	DBG(("entering ptswsrv\n"));
686 	ASSERT(qp->q_ptr);
687 
688 	ptsp = (struct pt_ttys *)qp->q_ptr;
689 	PT_ENTER_READ(ptsp);
690 	if (ptsp->ptm_rdq == NULL) {
691 		DBG(("in write srv proc but no master\n"));
692 		/*
693 		 * Free messages on the write queue and send
694 		 * NAK for any M_IOCTL type messages to wakeup
695 		 * the user process waiting for ACK/NAK from
696 		 * the ioctl invocation
697 		 */
698 		while ((mp = getq(qp)) != NULL) {
699 			if (mp->b_datap->db_type == M_IOCTL) {
700 				mp->b_datap->db_type = M_IOCNAK;
701 				freemsg(mp->b_cont);
702 				mp->b_cont = NULL;
703 				qreply(qp, mp);
704 			} else
705 				freemsg(mp);
706 		}
707 		PT_EXIT_READ(ptsp);
708 		return;
709 	} else {
710 		ptm_rdq = ptsp->ptm_rdq;
711 	}
712 
713 	/*
714 	 * while there are messages on this write queue...
715 	 */
716 	while ((mp = getq(qp)) != NULL) {
717 		/*
718 		 * if don't have control message and cannot put
719 		 * msg. on master's read queue, put it back on
720 		 * this queue.
721 		 */
722 		if (mp->b_datap->db_type <= QPCTL &&
723 		    !bcanputnext(ptm_rdq, mp->b_band)) {
724 			DBG(("put msg. back on Q\n"));
725 			(void) putbq(qp, mp);
726 			break;
727 		}
728 		/*
729 		 * else send the message up master's stream
730 		 */
731 		DBG(("send message to master\n"));
732 		putnext(ptm_rdq, mp);
733 	}
734 	DBG(("leaving ptswsrv\n"));
735 	PT_EXIT_READ(ptsp);
736 }
737