xref: /titanic_51/usr/src/uts/common/io/nge/nge_main.c (revision 3db30c357c20c1eb09687fd0194e0ca62d6358cb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include "nge.h"
30 
31 /*
32  * Describes the chip's DMA engine
33  */
34 
35 static ddi_dma_attr_t hot_dma_attr = {
36 	DMA_ATTR_V0,			/* dma_attr version	*/
37 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
38 	0x000000FFFFFFFFFFull,		/* dma_attr_addr_hi	*/
39 	0x000000007FFFFFFFull,		/* dma_attr_count_max	*/
40 	0x0000000000000010ull,		/* dma_attr_align	*/
41 	0x00000FFF,			/* dma_attr_burstsizes	*/
42 	0x00000001,			/* dma_attr_minxfer	*/
43 	0x000000000000FFFFull,		/* dma_attr_maxxfer	*/
44 	0x000000FFFFFFFFFFull,		/* dma_attr_seg		*/
45 	1,				/* dma_attr_sgllen 	*/
46 	0x00000001,			/* dma_attr_granular 	*/
47 	0
48 };
49 
50 static ddi_dma_attr_t hot_tx_dma_attr = {
51 	DMA_ATTR_V0,			/* dma_attr version	*/
52 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
53 	0x000000FFFFFFFFFFull,		/* dma_attr_addr_hi	*/
54 	0x0000000000003FFFull,		/* dma_attr_count_max	*/
55 	0x0000000000000010ull,		/* dma_attr_align	*/
56 	0x00000FFF,			/* dma_attr_burstsizes	*/
57 	0x00000001,			/* dma_attr_minxfer	*/
58 	0x0000000000003FFFull,		/* dma_attr_maxxfer	*/
59 	0x000000FFFFFFFFFFull,		/* dma_attr_seg		*/
60 	NGE_MAX_COOKIES,		/* dma_attr_sgllen 	*/
61 	1,				/* dma_attr_granular 	*/
62 	0
63 };
64 
65 static ddi_dma_attr_t sum_dma_attr = {
66 	DMA_ATTR_V0,			/* dma_attr version	*/
67 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
68 	0x00000000FFFFFFFFull,		/* dma_attr_addr_hi	*/
69 	0x000000007FFFFFFFull,		/* dma_attr_count_max	*/
70 	0x0000000000000010ull,		/* dma_attr_align	*/
71 	0x00000FFF,			/* dma_attr_burstsizes	*/
72 	0x00000001,			/* dma_attr_minxfer	*/
73 	0x000000000000FFFFull,		/* dma_attr_maxxfer	*/
74 	0x00000000FFFFFFFFull,		/* dma_attr_seg		*/
75 	1,				/* dma_attr_sgllen 	*/
76 	0x00000001,			/* dma_attr_granular 	*/
77 	0
78 };
79 
80 static ddi_dma_attr_t sum_tx_dma_attr = {
81 	DMA_ATTR_V0,			/* dma_attr version	*/
82 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
83 	0x00000000FFFFFFFFull,		/* dma_attr_addr_hi	*/
84 	0x0000000000003FFFull,		/* dma_attr_count_max	*/
85 	0x0000000000000010ull,		/* dma_attr_align	*/
86 	0x00000FFF,			/* dma_attr_burstsizes	*/
87 	0x00000001,			/* dma_attr_minxfer	*/
88 	0x0000000000003FFFull,		/* dma_attr_maxxfer	*/
89 	0x00000000FFFFFFFFull,		/* dma_attr_seg		*/
90 	NGE_MAX_COOKIES,		/* dma_attr_sgllen 	*/
91 	1,				/* dma_attr_granular 	*/
92 	0
93 };
94 
95 /*
96  * DMA access attributes for data.
97  */
98 ddi_device_acc_attr_t nge_data_accattr = {
99 	DDI_DEVICE_ATTR_V0,
100 	DDI_STRUCTURE_LE_ACC,
101 	DDI_STRICTORDER_ACC,
102 	DDI_DEFAULT_ACC
103 };
104 
105 /*
106  * DMA access attributes for descriptors.
107  */
108 static ddi_device_acc_attr_t nge_desc_accattr = {
109 	DDI_DEVICE_ATTR_V0,
110 	DDI_STRUCTURE_LE_ACC,
111 	DDI_STRICTORDER_ACC,
112 	DDI_DEFAULT_ACC
113 };
114 
115 /*
116  * PIO access attributes for registers
117  */
118 static ddi_device_acc_attr_t nge_reg_accattr = {
119 	DDI_DEVICE_ATTR_V0,
120 	DDI_STRUCTURE_LE_ACC,
121 	DDI_STRICTORDER_ACC,
122 	DDI_DEFAULT_ACC
123 };
124 
125 /*
126  * NIC DESC MODE 2
127  */
128 
129 static const nge_desc_attr_t nge_sum_desc = {
130 
131 	sizeof (sum_rx_bd),
132 	sizeof (sum_tx_bd),
133 	&sum_dma_attr,
134 	&sum_tx_dma_attr,
135 	nge_sum_rxd_fill,
136 	nge_sum_rxd_check,
137 	nge_sum_txd_fill,
138 	nge_sum_txd_check,
139 };
140 
141 /*
142  * NIC DESC MODE 3
143  */
144 
145 static const nge_desc_attr_t nge_hot_desc = {
146 
147 	sizeof (hot_rx_bd),
148 	sizeof (hot_tx_bd),
149 	&hot_dma_attr,
150 	&hot_tx_dma_attr,
151 	nge_hot_rxd_fill,
152 	nge_hot_rxd_check,
153 	nge_hot_txd_fill,
154 	nge_hot_txd_check,
155 };
156 
157 static char nge_ident[] = "nVidia 1Gb Ethernet %I%";
158 static char clsize_propname[] = "cache-line-size";
159 static char latency_propname[] = "latency-timer";
160 static char debug_propname[]	= "nge-debug-flags";
161 static char intr_moderation[] = "intr-moderation";
162 static char rx_data_hw[] = "rx-data-hw";
163 static char rx_prd_lw[] = "rx-prd-lw";
164 static char rx_prd_hw[] = "rx-prd-hw";
165 static char sw_intr_intv[] = "sw-intr-intvl";
166 static char nge_desc_mode[] = "desc-mode";
167 static char default_mtu[] = "default_mtu";
168 static char low_memory_mode[] = "minimal-memory-usage";
169 extern kmutex_t nge_log_mutex[1];
170 
171 static int		nge_m_start(void *);
172 static void		nge_m_stop(void *);
173 static int		nge_m_promisc(void *, boolean_t);
174 static int		nge_m_multicst(void *, boolean_t, const uint8_t *);
175 static int		nge_m_unicst(void *, const uint8_t *);
176 static void		nge_m_ioctl(void *, queue_t *, mblk_t *);
177 static boolean_t	nge_m_getcapab(void *, mac_capab_t, void *);
178 
179 #define		NGE_M_CALLBACK_FLAGS	(MC_IOCTL | MC_GETCAPAB)
180 
181 static mac_callbacks_t nge_m_callbacks = {
182 	NGE_M_CALLBACK_FLAGS,
183 	nge_m_stat,
184 	nge_m_start,
185 	nge_m_stop,
186 	nge_m_promisc,
187 	nge_m_multicst,
188 	nge_m_unicst,
189 	nge_m_tx,
190 	NULL,
191 	nge_m_ioctl,
192 	nge_m_getcapab
193 };
194 
195 static int nge_add_intrs(nge_t *, int);
196 static void nge_rem_intrs(nge_t *);
197 static int nge_register_intrs_and_init_locks(nge_t *);
198 
199 /*
200  * NGE MSI tunable:
201  */
202 boolean_t nge_enable_msi = B_FALSE;
203 
204 static enum ioc_reply
205 nge_set_loop_mode(nge_t *ngep, uint32_t mode)
206 {
207 	/*
208 	 * If the mode isn't being changed, there's nothing to do ...
209 	 */
210 	if (mode == ngep->param_loop_mode)
211 		return (IOC_ACK);
212 
213 	/*
214 	 * Validate the requested mode and prepare a suitable message
215 	 * to explain the link down/up cycle that the change will
216 	 * probably induce ...
217 	 */
218 	switch (mode) {
219 	default:
220 		return (IOC_INVAL);
221 
222 	case NGE_LOOP_NONE:
223 	case NGE_LOOP_EXTERNAL_100:
224 	case NGE_LOOP_EXTERNAL_10:
225 	case NGE_LOOP_INTERNAL_PHY:
226 		break;
227 	}
228 
229 	/*
230 	 * All OK; tell the caller to reprogram
231 	 * the PHY and/or MAC for the new mode ...
232 	 */
233 	ngep->param_loop_mode = mode;
234 	return (IOC_RESTART_ACK);
235 }
236 
237 #undef	NGE_DBG
238 #define	NGE_DBG		NGE_DBG_INIT
239 
240 /*
241  * Utility routine to carve a slice off a chunk of allocated memory,
242  * updating the chunk descriptor accordingly.  The size of the slice
243  * is given by the product of the <qty> and <size> parameters.
244  */
245 void
246 nge_slice_chunk(dma_area_t *slice, dma_area_t *chunk,
247     uint32_t qty, uint32_t size)
248 {
249 	size_t totsize;
250 
251 	totsize = qty*size;
252 	ASSERT(size > 0);
253 	ASSERT(totsize <= chunk->alength);
254 
255 	*slice = *chunk;
256 	slice->nslots = qty;
257 	slice->size = size;
258 	slice->alength = totsize;
259 
260 	chunk->mem_va = (caddr_t)chunk->mem_va + totsize;
261 	chunk->alength -= totsize;
262 	chunk->offset += totsize;
263 	chunk->cookie.dmac_laddress += totsize;
264 	chunk->cookie.dmac_size -= totsize;
265 }
266 
267 /*
268  * Allocate an area of memory and a DMA handle for accessing it
269  */
270 int
271 nge_alloc_dma_mem(nge_t *ngep, size_t memsize, ddi_device_acc_attr_t *attr_p,
272     uint_t dma_flags, dma_area_t *dma_p)
273 {
274 	int err;
275 	caddr_t va;
276 
277 	NGE_TRACE(("nge_alloc_dma_mem($%p, %ld, $%p, 0x%x, $%p)",
278 	    (void *)ngep, memsize, attr_p, dma_flags, dma_p));
279 	/*
280 	 * Allocate handle
281 	 */
282 	err = ddi_dma_alloc_handle(ngep->devinfo, ngep->desc_attr.dma_attr,
283 	    DDI_DMA_DONTWAIT, NULL, &dma_p->dma_hdl);
284 	if (err != DDI_SUCCESS)
285 		goto fail;
286 
287 	/*
288 	 * Allocate memory
289 	 */
290 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, attr_p,
291 	    dma_flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING),
292 	    DDI_DMA_DONTWAIT, NULL, &va, &dma_p->alength, &dma_p->acc_hdl);
293 	if (err != DDI_SUCCESS)
294 		goto fail;
295 
296 	/*
297 	 * Bind the two together
298 	 */
299 	dma_p->mem_va = va;
300 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
301 	    va, dma_p->alength, dma_flags, DDI_DMA_DONTWAIT, NULL,
302 	    &dma_p->cookie, &dma_p->ncookies);
303 
304 	if (err != DDI_DMA_MAPPED || dma_p->ncookies != 1)
305 		goto fail;
306 
307 	dma_p->nslots = ~0U;
308 	dma_p->size = ~0U;
309 	dma_p->offset = 0;
310 
311 	return (DDI_SUCCESS);
312 
313 fail:
314 	nge_free_dma_mem(dma_p);
315 	NGE_DEBUG(("nge_alloc_dma_mem: fail to alloc dma memory!"));
316 
317 	return (DDI_FAILURE);
318 }
319 
320 /*
321  * Free one allocated area of DMAable memory
322  */
323 void
324 nge_free_dma_mem(dma_area_t *dma_p)
325 {
326 	if (dma_p->dma_hdl != NULL) {
327 		if (dma_p->ncookies) {
328 			(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
329 			dma_p->ncookies = 0;
330 		}
331 	}
332 	if (dma_p->acc_hdl != NULL) {
333 		ddi_dma_mem_free(&dma_p->acc_hdl);
334 		dma_p->acc_hdl = NULL;
335 	}
336 	if (dma_p->dma_hdl != NULL) {
337 		ddi_dma_free_handle(&dma_p->dma_hdl);
338 		dma_p->dma_hdl = NULL;
339 	}
340 }
341 
342 #define	ALLOC_TX_BUF	0x1
343 #define	ALLOC_TX_DESC	0x2
344 #define	ALLOC_RX_DESC	0x4
345 
346 int
347 nge_alloc_bufs(nge_t *ngep)
348 {
349 	int err;
350 	int split;
351 	int progress;
352 	size_t txbuffsize;
353 	size_t rxdescsize;
354 	size_t txdescsize;
355 
356 	txbuffsize = ngep->tx_desc * ngep->buf_size;
357 	rxdescsize = ngep->rx_desc;
358 	txdescsize = ngep->tx_desc;
359 	rxdescsize *= ngep->desc_attr.rxd_size;
360 	txdescsize *= ngep->desc_attr.txd_size;
361 	progress = 0;
362 
363 	NGE_TRACE(("nge_alloc_bufs($%p)", (void *)ngep));
364 	/*
365 	 * Allocate memory & handles for TX buffers
366 	 */
367 	ASSERT((txbuffsize % ngep->nge_split) == 0);
368 	for (split = 0; split < ngep->nge_split; ++split) {
369 		err = nge_alloc_dma_mem(ngep, txbuffsize/ngep->nge_split,
370 		    &nge_data_accattr, DDI_DMA_WRITE | NGE_DMA_MODE,
371 		    &ngep->send->buf[split]);
372 		if (err != DDI_SUCCESS)
373 			goto fail;
374 	}
375 
376 	progress |= ALLOC_TX_BUF;
377 
378 	/*
379 	 * Allocate memory & handles for receive return rings and
380 	 * buffer (producer) descriptor rings
381 	 */
382 	err = nge_alloc_dma_mem(ngep, rxdescsize, &nge_desc_accattr,
383 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &ngep->recv->desc);
384 	if (err != DDI_SUCCESS)
385 		goto fail;
386 	progress |= ALLOC_RX_DESC;
387 
388 	/*
389 	 * Allocate memory & handles for TX descriptor rings,
390 	 */
391 	err = nge_alloc_dma_mem(ngep, txdescsize, &nge_desc_accattr,
392 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &ngep->send->desc);
393 	if (err != DDI_SUCCESS)
394 		goto fail;
395 	return (DDI_SUCCESS);
396 
397 fail:
398 	if (progress & ALLOC_RX_DESC)
399 		nge_free_dma_mem(&ngep->recv->desc);
400 	if (progress & ALLOC_TX_BUF) {
401 		for (split = 0; split < ngep->nge_split; ++split)
402 			nge_free_dma_mem(&ngep->send->buf[split]);
403 	}
404 
405 	return (DDI_FAILURE);
406 }
407 
408 /*
409  * This routine frees the transmit and receive buffers and descriptors.
410  * Make sure the chip is stopped before calling it!
411  */
412 void
413 nge_free_bufs(nge_t *ngep)
414 {
415 	int split;
416 
417 	NGE_TRACE(("nge_free_bufs($%p)", (void *)ngep));
418 
419 	nge_free_dma_mem(&ngep->recv->desc);
420 	nge_free_dma_mem(&ngep->send->desc);
421 
422 	for (split = 0; split < ngep->nge_split; ++split)
423 		nge_free_dma_mem(&ngep->send->buf[split]);
424 }
425 
426 /*
427  * Clean up initialisation done above before the memory is freed
428  */
429 static void
430 nge_fini_send_ring(nge_t *ngep)
431 {
432 	uint32_t slot;
433 	size_t dmah_num;
434 	send_ring_t *srp;
435 	sw_tx_sbd_t *ssbdp;
436 
437 	srp = ngep->send;
438 	ssbdp = srp->sw_sbds;
439 
440 	NGE_TRACE(("nge_fini_send_ring($%p)", (void *)ngep));
441 
442 	dmah_num = sizeof (srp->dmahndl) / sizeof (srp->dmahndl[0]);
443 
444 	for (slot = 0; slot < dmah_num; ++slot) {
445 		if (srp->dmahndl[slot].hndl) {
446 			(void) ddi_dma_unbind_handle(srp->dmahndl[slot].hndl);
447 			ddi_dma_free_handle(&srp->dmahndl[slot].hndl);
448 			srp->dmahndl[slot].hndl = NULL;
449 			srp->dmahndl[slot].next = NULL;
450 		}
451 	}
452 
453 	srp->dmah_free.head = NULL;
454 	srp->dmah_free.tail = NULL;
455 
456 	kmem_free(ssbdp, srp->desc.nslots*sizeof (*ssbdp));
457 
458 }
459 
460 /*
461  * Initialise the specified Send Ring, using the information in the
462  * <dma_area> descriptors that it contains to set up all the other
463  * fields. This routine should be called only once for each ring.
464  */
465 static int
466 nge_init_send_ring(nge_t *ngep)
467 {
468 	size_t dmah_num;
469 	uint32_t nslots;
470 	uint32_t err;
471 	uint32_t slot;
472 	uint32_t split;
473 	send_ring_t *srp;
474 	sw_tx_sbd_t *ssbdp;
475 	dma_area_t desc;
476 	dma_area_t pbuf;
477 
478 	srp = ngep->send;
479 	srp->desc.nslots = ngep->tx_desc;
480 	nslots = srp->desc.nslots;
481 
482 	NGE_TRACE(("nge_init_send_ring($%p)", (void *)ngep));
483 	/*
484 	 * Other one-off initialisation of per-ring data
485 	 */
486 	srp->ngep = ngep;
487 
488 	/*
489 	 * Allocate the array of s/w Send Buffer Descriptors
490 	 */
491 	ssbdp = kmem_zalloc(nslots*sizeof (*ssbdp), KM_SLEEP);
492 	srp->sw_sbds = ssbdp;
493 
494 	/*
495 	 * Now initialise each array element once and for all
496 	 */
497 	desc = srp->desc;
498 	for (split = 0; split < ngep->nge_split; ++split) {
499 		pbuf = srp->buf[split];
500 		for (slot = 0; slot < nslots/ngep->nge_split; ++ssbdp, ++slot) {
501 			nge_slice_chunk(&ssbdp->desc, &desc, 1,
502 			    ngep->desc_attr.txd_size);
503 			nge_slice_chunk(&ssbdp->pbuf, &pbuf, 1,
504 			    ngep->buf_size);
505 		}
506 		ASSERT(pbuf.alength == 0);
507 	}
508 	ASSERT(desc.alength == 0);
509 
510 	dmah_num = sizeof (srp->dmahndl) / sizeof (srp->dmahndl[0]);
511 
512 	/* preallocate dma handles for tx buffer */
513 	for (slot = 0; slot < dmah_num; ++slot) {
514 
515 		err = ddi_dma_alloc_handle(ngep->devinfo,
516 		    ngep->desc_attr.tx_dma_attr, DDI_DMA_DONTWAIT,
517 		    NULL, &srp->dmahndl[slot].hndl);
518 
519 		if (err != DDI_SUCCESS) {
520 			nge_fini_send_ring(ngep);
521 			nge_error(ngep,
522 			    "nge_init_send_ring: alloc dma handle fails");
523 			return (DDI_FAILURE);
524 		}
525 		srp->dmahndl[slot].next = srp->dmahndl + slot + 1;
526 	}
527 
528 	srp->dmah_free.head = srp->dmahndl;
529 	srp->dmah_free.tail = srp->dmahndl + dmah_num - 1;
530 	srp->dmah_free.tail->next = NULL;
531 
532 	return (DDI_SUCCESS);
533 }
534 
535 /*
536  * Intialize the tx recycle pointer and tx sending pointer of tx ring
537  * and set the type of tx's data descriptor by default.
538  */
539 static void
540 nge_reinit_send_ring(nge_t *ngep)
541 {
542 	size_t dmah_num;
543 	uint32_t slot;
544 	send_ring_t *srp;
545 	sw_tx_sbd_t *ssbdp;
546 
547 	srp = ngep->send;
548 
549 	/*
550 	 * Reinitialise control variables ...
551 	 */
552 
553 	srp->tx_hwmark = NGE_DESC_MIN;
554 	srp->tx_lwmark = NGE_DESC_MIN;
555 
556 	srp->tx_next = 0;
557 	srp->tx_free = srp->desc.nslots;
558 	srp->tc_next = 0;
559 
560 	dmah_num = sizeof (srp->dmahndl) / sizeof (srp->dmahndl[0]);
561 
562 	for (slot = 0; slot - dmah_num != 0; ++slot)
563 		srp->dmahndl[slot].next = srp->dmahndl + slot + 1;
564 
565 	srp->dmah_free.head = srp->dmahndl;
566 	srp->dmah_free.tail = srp->dmahndl + dmah_num - 1;
567 	srp->dmah_free.tail->next = NULL;
568 
569 	/*
570 	 * Zero and sync all the h/w Send Buffer Descriptors
571 	 */
572 	for (slot = 0; slot < srp->desc.nslots; ++slot) {
573 		ssbdp = &srp->sw_sbds[slot];
574 		ssbdp->flags = HOST_OWN;
575 	}
576 
577 	DMA_ZERO(srp->desc);
578 	DMA_SYNC(srp->desc, DDI_DMA_SYNC_FORDEV);
579 }
580 
581 /*
582  * Initialize the slot number of rx's ring
583  */
584 static void
585 nge_init_recv_ring(nge_t *ngep)
586 {
587 	recv_ring_t *rrp;
588 
589 	rrp = ngep->recv;
590 	rrp->desc.nslots = ngep->rx_desc;
591 	rrp->ngep = ngep;
592 }
593 
594 /*
595  * Intialize the rx recycle pointer and rx sending pointer of rx ring
596  */
597 static void
598 nge_reinit_recv_ring(nge_t *ngep)
599 {
600 	recv_ring_t *rrp;
601 
602 	rrp = ngep->recv;
603 
604 	/*
605 	 * Reinitialise control variables ...
606 	 */
607 	rrp->prod_index = 0;
608 	/*
609 	 * Zero and sync all the h/w Send Buffer Descriptors
610 	 */
611 	DMA_ZERO(rrp->desc);
612 	DMA_SYNC(rrp->desc, DDI_DMA_SYNC_FORDEV);
613 }
614 
615 /*
616  * Clean up initialisation done above before the memory is freed
617  */
618 static void
619 nge_fini_buff_ring(nge_t *ngep)
620 {
621 	uint32_t i;
622 	buff_ring_t *brp;
623 	dma_area_t *bufp;
624 	sw_rx_sbd_t *bsbdp;
625 
626 	brp = ngep->buff;
627 	bsbdp = brp->sw_rbds;
628 
629 	NGE_DEBUG(("nge_fini_buff_ring($%p)", (void *)ngep));
630 
631 	mutex_enter(brp->recycle_lock);
632 	brp->buf_sign++;
633 	mutex_exit(brp->recycle_lock);
634 	for (i = 0; i < ngep->rx_desc; i++, ++bsbdp) {
635 		if (bsbdp->bufp) {
636 			if (bsbdp->bufp->mp)
637 				freemsg(bsbdp->bufp->mp);
638 			nge_free_dma_mem(bsbdp->bufp);
639 			kmem_free(bsbdp->bufp, sizeof (dma_area_t));
640 			bsbdp->bufp = NULL;
641 		}
642 	}
643 	while (brp->free_list != NULL) {
644 		bufp = brp->free_list;
645 		brp->free_list = bufp->next;
646 		bufp->next = NULL;
647 		if (bufp->mp)
648 			freemsg(bufp->mp);
649 		nge_free_dma_mem(bufp);
650 		kmem_free(bufp, sizeof (dma_area_t));
651 	}
652 	while (brp->recycle_list != NULL) {
653 		bufp = brp->recycle_list;
654 		brp->recycle_list = bufp->next;
655 		bufp->next = NULL;
656 		if (bufp->mp)
657 			freemsg(bufp->mp);
658 		nge_free_dma_mem(bufp);
659 		kmem_free(bufp, sizeof (dma_area_t));
660 	}
661 
662 
663 	kmem_free(brp->sw_rbds, (ngep->rx_desc * sizeof (*bsbdp)));
664 	brp->sw_rbds = NULL;
665 }
666 
667 /*
668  * Intialize the Rx's data ring and free ring
669  */
670 static int
671 nge_init_buff_ring(nge_t *ngep)
672 {
673 	uint32_t err;
674 	uint32_t slot;
675 	uint32_t nslots_buff;
676 	uint32_t nslots_recv;
677 	buff_ring_t *brp;
678 	recv_ring_t *rrp;
679 	dma_area_t desc;
680 	dma_area_t *bufp;
681 	sw_rx_sbd_t *bsbdp;
682 
683 	rrp = ngep->recv;
684 	brp = ngep->buff;
685 	brp->nslots = ngep->rx_buf;
686 	brp->rx_bcopy = B_FALSE;
687 	nslots_recv = rrp->desc.nslots;
688 	nslots_buff = brp->nslots;
689 	brp->ngep = ngep;
690 
691 	NGE_TRACE(("nge_init_buff_ring($%p)", (void *)ngep));
692 
693 	/*
694 	 * Allocate the array of s/w Recv Buffer Descriptors
695 	 */
696 	bsbdp = kmem_zalloc(nslots_recv *sizeof (*bsbdp), KM_SLEEP);
697 	brp->sw_rbds = bsbdp;
698 	brp->free_list = NULL;
699 	brp->recycle_list = NULL;
700 	for (slot = 0; slot < nslots_buff; ++slot) {
701 		bufp = kmem_zalloc(sizeof (dma_area_t), KM_SLEEP);
702 		err = nge_alloc_dma_mem(ngep, (ngep->buf_size
703 		    + NGE_HEADROOM),
704 		    &nge_data_accattr, DDI_DMA_READ | NGE_DMA_MODE, bufp);
705 		if (err != DDI_SUCCESS) {
706 			kmem_free(bufp, sizeof (dma_area_t));
707 			return (DDI_FAILURE);
708 		}
709 
710 		bufp->alength -= NGE_HEADROOM;
711 		bufp->offset += NGE_HEADROOM;
712 		bufp->private = (caddr_t)ngep;
713 		bufp->rx_recycle.free_func = nge_recv_recycle;
714 		bufp->rx_recycle.free_arg = (caddr_t)bufp;
715 		bufp->signature = brp->buf_sign;
716 		bufp->rx_delivered = B_FALSE;
717 		bufp->mp = desballoc(DMA_VPTR(*bufp),
718 		    ngep->buf_size + NGE_HEADROOM,
719 		    0, &bufp->rx_recycle);
720 
721 		if (bufp->mp == NULL) {
722 			return (DDI_FAILURE);
723 		}
724 		bufp->next = brp->free_list;
725 		brp->free_list = bufp;
726 	}
727 
728 	/*
729 	 * Now initialise each array element once and for all
730 	 */
731 	desc = rrp->desc;
732 	for (slot = 0; slot < nslots_recv; ++slot, ++bsbdp) {
733 		nge_slice_chunk(&bsbdp->desc, &desc, 1,
734 		    ngep->desc_attr.rxd_size);
735 		bufp = brp->free_list;
736 		brp->free_list = bufp->next;
737 		bsbdp->bufp = bufp;
738 		bsbdp->flags = CONTROLER_OWN;
739 		bufp->next = NULL;
740 	}
741 
742 	ASSERT(desc.alength == 0);
743 	return (DDI_SUCCESS);
744 }
745 
746 /*
747  * Fill the host address of data in rx' descriptor
748  * and initialize free pointers of rx free ring
749  */
750 static int
751 nge_reinit_buff_ring(nge_t *ngep)
752 {
753 	uint32_t slot;
754 	uint32_t nslots_recv;
755 	buff_ring_t *brp;
756 	recv_ring_t *rrp;
757 	sw_rx_sbd_t *bsbdp;
758 	void *hw_bd_p;
759 
760 	brp = ngep->buff;
761 	rrp = ngep->recv;
762 	bsbdp = brp->sw_rbds;
763 	nslots_recv = rrp->desc.nslots;
764 	for (slot = 0; slot < nslots_recv; ++bsbdp, ++slot) {
765 		hw_bd_p = DMA_VPTR(bsbdp->desc);
766 	/*
767 	 * There is a scenario: When the traffic of small tcp
768 	 * packet is heavy, suspending the tcp traffic will
769 	 * cause the preallocated buffers for rx not to be
770 	 * released in time by tcp taffic and cause rx's buffer
771 	 * pointers not to be refilled in time.
772 	 *
773 	 * At this point, if we reinitialize the driver, the bufp
774 	 * pointer for rx's traffic will be NULL.
775 	 * So the result of the reinitializion fails.
776 	 */
777 		if (bsbdp->bufp == NULL)
778 			return (DDI_FAILURE);
779 
780 		ngep->desc_attr.rxd_fill(hw_bd_p, &bsbdp->bufp->cookie,
781 		    bsbdp->bufp->alength);
782 	}
783 	return (DDI_SUCCESS);
784 }
785 
786 static void
787 nge_init_ring_param_lock(nge_t *ngep)
788 {
789 	buff_ring_t *brp;
790 	send_ring_t *srp;
791 
792 	srp = ngep->send;
793 	brp = ngep->buff;
794 
795 	/* Init the locks for send ring */
796 	mutex_init(srp->tx_lock, NULL, MUTEX_DRIVER,
797 	    DDI_INTR_PRI(ngep->intr_pri));
798 	mutex_init(srp->tc_lock, NULL, MUTEX_DRIVER,
799 	    DDI_INTR_PRI(ngep->intr_pri));
800 	mutex_init(&srp->dmah_lock, NULL, MUTEX_DRIVER,
801 	    DDI_INTR_PRI(ngep->intr_pri));
802 
803 	/* Init parameters of buffer ring */
804 	brp->free_list = NULL;
805 	brp->recycle_list = NULL;
806 	brp->rx_hold = 0;
807 	brp->buf_sign = 0;
808 
809 	/* Init recycle list lock */
810 	mutex_init(brp->recycle_lock, NULL, MUTEX_DRIVER,
811 	    DDI_INTR_PRI(ngep->intr_pri));
812 }
813 
814 int
815 nge_init_rings(nge_t *ngep)
816 {
817 	uint32_t err;
818 
819 	err = nge_init_send_ring(ngep);
820 	if (err != DDI_SUCCESS) {
821 		return (err);
822 	}
823 	nge_init_recv_ring(ngep);
824 
825 	err = nge_init_buff_ring(ngep);
826 	if (err != DDI_SUCCESS) {
827 		nge_fini_send_ring(ngep);
828 		return (DDI_FAILURE);
829 	}
830 
831 	return (err);
832 }
833 
834 static int
835 nge_reinit_ring(nge_t *ngep)
836 {
837 	int err;
838 
839 	nge_reinit_recv_ring(ngep);
840 	nge_reinit_send_ring(ngep);
841 	err = nge_reinit_buff_ring(ngep);
842 	return (err);
843 }
844 
845 
846 void
847 nge_fini_rings(nge_t *ngep)
848 {
849 	/*
850 	 * For receive ring, nothing need to be finished.
851 	 * So only finish buffer ring and send ring here.
852 	 */
853 	nge_fini_buff_ring(ngep);
854 	nge_fini_send_ring(ngep);
855 }
856 
857 /*
858  * Loopback ioctl code
859  */
860 
861 static lb_property_t loopmodes[] = {
862 	{ normal,	"normal",	NGE_LOOP_NONE		},
863 	{ external,	"100Mbps",	NGE_LOOP_EXTERNAL_100	},
864 	{ external,	"10Mbps",	NGE_LOOP_EXTERNAL_10	},
865 	{ internal,	"PHY",		NGE_LOOP_INTERNAL_PHY	},
866 };
867 
868 enum ioc_reply
869 nge_loop_ioctl(nge_t *ngep, mblk_t *mp, struct iocblk *iocp)
870 {
871 	int cmd;
872 	uint32_t *lbmp;
873 	lb_info_sz_t *lbsp;
874 	lb_property_t *lbpp;
875 
876 	/*
877 	 * Validate format of ioctl
878 	 */
879 	if (mp->b_cont == NULL)
880 		return (IOC_INVAL);
881 
882 	cmd = iocp->ioc_cmd;
883 
884 	switch (cmd) {
885 	default:
886 		return (IOC_INVAL);
887 
888 	case LB_GET_INFO_SIZE:
889 		if (iocp->ioc_count != sizeof (lb_info_sz_t))
890 			return (IOC_INVAL);
891 		lbsp = (lb_info_sz_t *)mp->b_cont->b_rptr;
892 		*lbsp = sizeof (loopmodes);
893 		return (IOC_REPLY);
894 
895 	case LB_GET_INFO:
896 		if (iocp->ioc_count != sizeof (loopmodes))
897 			return (IOC_INVAL);
898 		lbpp = (lb_property_t *)mp->b_cont->b_rptr;
899 		bcopy(loopmodes, lbpp, sizeof (loopmodes));
900 		return (IOC_REPLY);
901 
902 	case LB_GET_MODE:
903 		if (iocp->ioc_count != sizeof (uint32_t))
904 			return (IOC_INVAL);
905 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
906 		*lbmp = ngep->param_loop_mode;
907 		return (IOC_REPLY);
908 
909 	case LB_SET_MODE:
910 		if (iocp->ioc_count != sizeof (uint32_t))
911 			return (IOC_INVAL);
912 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
913 		return (nge_set_loop_mode(ngep, *lbmp));
914 	}
915 }
916 
917 #undef	NGE_DBG
918 #define	NGE_DBG	NGE_DBG_NEMO
919 
920 
921 static void
922 nge_check_desc_prop(nge_t *ngep)
923 {
924 	if (ngep->desc_mode != DESC_HOT && ngep->desc_mode != DESC_OFFLOAD)
925 		ngep->desc_mode = DESC_HOT;
926 
927 	if (ngep->desc_mode == DESC_OFFLOAD)	{
928 
929 		ngep->desc_attr = nge_sum_desc;
930 
931 	}	else if (ngep->desc_mode == DESC_HOT)	{
932 
933 		ngep->desc_attr = nge_hot_desc;
934 	}
935 }
936 
937 /*
938  * nge_get_props -- get the parameters to tune the driver
939  */
940 static void
941 nge_get_props(nge_t *ngep)
942 {
943 	chip_info_t *infop;
944 	dev_info_t *devinfo;
945 	nge_dev_spec_param_t *dev_param_p;
946 
947 	devinfo = ngep->devinfo;
948 	infop = (chip_info_t *)&ngep->chipinfo;
949 	dev_param_p = &ngep->dev_spec_param;
950 
951 	infop->clsize = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
952 	    DDI_PROP_DONTPASS, clsize_propname, 32);
953 
954 	infop->latency = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
955 	    DDI_PROP_DONTPASS, latency_propname, 64);
956 	ngep->intr_moderation = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
957 	    DDI_PROP_DONTPASS, intr_moderation, NGE_SET);
958 	ngep->rx_datahwm = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
959 	    DDI_PROP_DONTPASS, rx_data_hw, 0x20);
960 	ngep->rx_prdlwm = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
961 	    DDI_PROP_DONTPASS, rx_prd_lw, 0x4);
962 	ngep->rx_prdhwm = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
963 	    DDI_PROP_DONTPASS, rx_prd_hw, 0xc);
964 
965 	ngep->sw_intr_intv = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
966 	    DDI_PROP_DONTPASS, sw_intr_intv, SWTR_ITC);
967 	ngep->debug = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
968 	    DDI_PROP_DONTPASS, debug_propname, NGE_DBG_CHIP);
969 	ngep->desc_mode = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
970 	    DDI_PROP_DONTPASS, nge_desc_mode, dev_param_p->desc_type);
971 	ngep->lowmem_mode = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
972 	    DDI_PROP_DONTPASS, low_memory_mode, 0);
973 
974 	if (dev_param_p->jumbo) {
975 		ngep->default_mtu = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
976 		    DDI_PROP_DONTPASS, default_mtu, ETHERMTU);
977 	} else
978 		ngep->default_mtu = ETHERMTU;
979 
980 	if (ngep->default_mtu > ETHERMTU &&
981 	    ngep->default_mtu <= NGE_MTU_2500) {
982 		ngep->buf_size = NGE_JB2500_BUFSZ;
983 		ngep->tx_desc = NGE_SEND_JB2500_SLOTS_DESC;
984 		ngep->rx_desc = NGE_RECV_JB2500_SLOTS_DESC;
985 		ngep->rx_buf = NGE_RECV_JB2500_SLOTS_DESC * 2;
986 		ngep->nge_split = NGE_SPLIT_256;
987 	} else if (ngep->default_mtu > NGE_MTU_2500 &&
988 	    ngep->default_mtu <= NGE_MTU_4500) {
989 		ngep->buf_size = NGE_JB4500_BUFSZ;
990 		ngep->tx_desc = NGE_SEND_JB4500_SLOTS_DESC;
991 		ngep->rx_desc = NGE_RECV_JB4500_SLOTS_DESC;
992 		ngep->rx_buf = NGE_RECV_JB4500_SLOTS_DESC * 2;
993 		ngep->nge_split = NGE_SPLIT_256;
994 	} else if (ngep->default_mtu > NGE_MTU_4500 &&
995 	    ngep->default_mtu <= NGE_MAX_MTU) {
996 		ngep->buf_size = NGE_JB9000_BUFSZ;
997 		ngep->tx_desc = NGE_SEND_JB9000_SLOTS_DESC;
998 		ngep->rx_desc = NGE_RECV_JB9000_SLOTS_DESC;
999 		ngep->rx_buf = NGE_RECV_JB9000_SLOTS_DESC * 2;
1000 		ngep->nge_split = NGE_SPLIT_256;
1001 	} else if (ngep->default_mtu > NGE_MAX_MTU) {
1002 		ngep->default_mtu = NGE_MAX_MTU;
1003 		ngep->buf_size = NGE_JB9000_BUFSZ;
1004 		ngep->tx_desc = NGE_SEND_JB9000_SLOTS_DESC;
1005 		ngep->rx_desc = NGE_RECV_JB9000_SLOTS_DESC;
1006 		ngep->rx_buf = NGE_RECV_JB9000_SLOTS_DESC * 2;
1007 		ngep->nge_split = NGE_SPLIT_256;
1008 	} else if (ngep->lowmem_mode != 0) {
1009 		ngep->default_mtu = ETHERMTU;
1010 		ngep->buf_size = NGE_STD_BUFSZ;
1011 		ngep->tx_desc = NGE_SEND_LOWMEM_SLOTS_DESC;
1012 		ngep->rx_desc = NGE_RECV_LOWMEM_SLOTS_DESC;
1013 		ngep->rx_buf = NGE_RECV_LOWMEM_SLOTS_DESC * 2;
1014 		ngep->nge_split = NGE_SPLIT_32;
1015 	} else {
1016 		ngep->default_mtu = ETHERMTU;
1017 		ngep->buf_size = NGE_STD_BUFSZ;
1018 		ngep->tx_desc = dev_param_p->tx_desc_num;
1019 		ngep->rx_desc = dev_param_p->rx_desc_num;
1020 		ngep->rx_buf = dev_param_p->rx_desc_num * 2;
1021 		ngep->nge_split = dev_param_p->nge_split;
1022 	}
1023 
1024 	nge_check_desc_prop(ngep);
1025 }
1026 
1027 
1028 static int
1029 nge_reset(nge_t *ngep)
1030 {
1031 	int err;
1032 	send_ring_t *srp = ngep->send;
1033 
1034 	ASSERT(mutex_owned(ngep->genlock));
1035 	mutex_enter(srp->tc_lock);
1036 	mutex_enter(srp->tx_lock);
1037 
1038 	nge_tx_recycle_all(ngep);
1039 	err = nge_reinit_ring(ngep);
1040 	if (err == DDI_FAILURE) {
1041 		mutex_exit(srp->tx_lock);
1042 		mutex_exit(srp->tc_lock);
1043 		return (err);
1044 	}
1045 	err = nge_chip_reset(ngep);
1046 	mutex_exit(srp->tx_lock);
1047 	mutex_exit(srp->tc_lock);
1048 	if (err == DDI_FAILURE)
1049 		return (err);
1050 	ngep->watchdog = 0;
1051 	ngep->resched_needed = B_FALSE;
1052 	ngep->promisc = B_FALSE;
1053 	ngep->param_loop_mode = NGE_LOOP_NONE;
1054 	ngep->factotum_flag = 0;
1055 	ngep->resched_needed = 0;
1056 	ngep->nge_mac_state = NGE_MAC_RESET;
1057 	ngep->max_sdu = ngep->default_mtu + ETHER_HEAD_LEN + ETHERFCSL;
1058 	ngep->max_sdu += VTAG_SIZE;
1059 	ngep->rx_def = 0x16;
1060 	return (DDI_SUCCESS);
1061 }
1062 
1063 static void
1064 nge_m_stop(void *arg)
1065 {
1066 	nge_t *ngep = arg;		/* private device info	*/
1067 
1068 	NGE_TRACE(("nge_m_stop($%p)", arg));
1069 
1070 	/*
1071 	 * If suspended, adapter is already stopped, just return.
1072 	 */
1073 	if (ngep->suspended) {
1074 		ASSERT(ngep->nge_mac_state == NGE_MAC_STOPPED);
1075 		return;
1076 	}
1077 
1078 	/*
1079 	 * Just stop processing, then record new MAC state
1080 	 */
1081 	mutex_enter(ngep->genlock);
1082 	rw_enter(ngep->rwlock, RW_WRITER);
1083 
1084 	(void) nge_chip_stop(ngep, B_FALSE);
1085 	/* Try to wait all the buffer post to upper layer be released */
1086 	ngep->nge_mac_state = NGE_MAC_STOPPED;
1087 
1088 	/* Recycle all the TX BD */
1089 	nge_tx_recycle_all(ngep);
1090 	nge_fini_rings(ngep);
1091 	nge_free_bufs(ngep);
1092 
1093 	NGE_DEBUG(("nge_m_stop($%p) done", arg));
1094 
1095 	rw_exit(ngep->rwlock);
1096 	mutex_exit(ngep->genlock);
1097 }
1098 
1099 static int
1100 nge_m_start(void *arg)
1101 {
1102 	int err;
1103 	nge_t *ngep = arg;
1104 
1105 	NGE_TRACE(("nge_m_start($%p)", arg));
1106 	/*
1107 	 * If suspended, don't start, as the resume processing
1108 	 * will recall this function with the suspended flag off.
1109 	 */
1110 	if (ngep->suspended)
1111 		return (DDI_FAILURE);
1112 	/*
1113 	 * Start processing and record new MAC state
1114 	 */
1115 	mutex_enter(ngep->genlock);
1116 	rw_enter(ngep->rwlock, RW_WRITER);
1117 	err = nge_alloc_bufs(ngep);
1118 	if (err != DDI_SUCCESS) {
1119 		nge_problem(ngep, "nge_m_start: DMA buffer allocation failed");
1120 		goto finish;
1121 	}
1122 	err = nge_init_rings(ngep);
1123 	if (err != DDI_SUCCESS) {
1124 		nge_free_bufs(ngep);
1125 		nge_problem(ngep, "nge_init_rings() failed,err=%x");
1126 		goto finish;
1127 	}
1128 	err = nge_restart(ngep);
1129 
1130 	NGE_DEBUG(("nge_m_start($%p) done", arg));
1131 	finish:
1132 		rw_exit(ngep->rwlock);
1133 		mutex_exit(ngep->genlock);
1134 
1135 		return (err);
1136 }
1137 
1138 static int
1139 nge_m_unicst(void *arg, const uint8_t *macaddr)
1140 {
1141 	nge_t *ngep = arg;
1142 
1143 	NGE_TRACE(("nge_m_unicst($%p)", arg));
1144 	/*
1145 	 * Remember the new current address in the driver state
1146 	 * Sync the chip's idea of the address too ...
1147 	 */
1148 	mutex_enter(ngep->genlock);
1149 
1150 	ethaddr_copy(macaddr, ngep->cur_uni_addr.addr);
1151 	ngep->cur_uni_addr.set = 1;
1152 
1153 	/*
1154 	 * If we are suspended, we want to quit now, and not update
1155 	 * the chip.  Doing so might put it in a bad state, but the
1156 	 * resume will get the unicast address installed.
1157 	 */
1158 	if (ngep->suspended)
1159 		return (DDI_SUCCESS);
1160 
1161 	nge_chip_sync(ngep);
1162 
1163 	NGE_DEBUG(("nge_m_unicst($%p) done", arg));
1164 	mutex_exit(ngep->genlock);
1165 
1166 	return (0);
1167 }
1168 
1169 static int
1170 nge_m_promisc(void *arg, boolean_t on)
1171 {
1172 	nge_t *ngep = arg;
1173 
1174 	NGE_TRACE(("nge_m_promisc($%p)", arg));
1175 	/*
1176 	 * If suspended, we don't do anything, even record the promiscuious
1177 	 * mode, as we won't properly set it on resume.  Just fail.
1178 	 */
1179 	if (ngep->suspended)
1180 		return (DDI_FAILURE);
1181 
1182 	/*
1183 	 * Store specified mode and pass to chip layer to update h/w
1184 	 */
1185 	mutex_enter(ngep->genlock);
1186 	if (ngep->promisc == on) {
1187 		mutex_exit(ngep->genlock);
1188 		NGE_DEBUG(("nge_m_promisc($%p) done", arg));
1189 		return (0);
1190 	}
1191 	ngep->promisc = on;
1192 	nge_chip_sync(ngep);
1193 	NGE_DEBUG(("nge_m_promisc($%p) done", arg));
1194 	mutex_exit(ngep->genlock);
1195 
1196 	return (0);
1197 }
1198 
1199 static void nge_mulparam(nge_t *ngep)
1200 {
1201 	uint8_t number;
1202 	ether_addr_t pand;
1203 	ether_addr_t por;
1204 	mul_item *plist;
1205 
1206 	for (number = 0; number < ETHERADDRL; number++) {
1207 		pand[number] = 0x00;
1208 		por[number] = 0x00;
1209 	}
1210 	for (plist = ngep->pcur_mulist; plist != NULL; plist = plist->next) {
1211 		for (number = 0; number < ETHERADDRL; number++) {
1212 			pand[number] &= plist->mul_addr[number];
1213 			por[number] |= plist->mul_addr[number];
1214 		}
1215 	}
1216 	for (number = 0; number < ETHERADDRL; number++) {
1217 		ngep->cur_mul_addr.addr[number]
1218 		    = pand[number] & por[number];
1219 		ngep->cur_mul_mask.addr[number]
1220 		    = pand [number] | (~por[number]);
1221 	}
1222 }
1223 static int
1224 nge_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
1225 {
1226 	boolean_t update;
1227 	boolean_t b_eq;
1228 	nge_t *ngep = arg;
1229 	mul_item *plist;
1230 	mul_item *plist_prev;
1231 	mul_item *pitem;
1232 
1233 	NGE_TRACE(("nge_m_multicst($%p, %s, %s)", arg,
1234 	    (add) ? "add" : "remove", ether_sprintf((void *)mca)));
1235 
1236 	update = B_FALSE;
1237 	plist = plist_prev = NULL;
1238 	mutex_enter(ngep->genlock);
1239 	if (add) {
1240 		if (ngep->pcur_mulist != NULL) {
1241 			for (plist = ngep->pcur_mulist; plist != NULL;
1242 			    plist = plist->next) {
1243 				b_eq = ether_eq(plist->mul_addr, mca);
1244 				if (b_eq) {
1245 					plist->ref_cnt++;
1246 					break;
1247 				}
1248 				plist_prev = plist;
1249 			}
1250 		}
1251 
1252 		if (plist == NULL) {
1253 			pitem = kmem_zalloc(sizeof (mul_item), KM_SLEEP);
1254 			ether_copy(mca, pitem->mul_addr);
1255 			pitem ->ref_cnt++;
1256 			pitem ->next = NULL;
1257 			if (plist_prev == NULL)
1258 				ngep->pcur_mulist = pitem;
1259 			else
1260 				plist_prev->next = pitem;
1261 			update = B_TRUE;
1262 		}
1263 	} else {
1264 		if (ngep->pcur_mulist != NULL) {
1265 			for (plist = ngep->pcur_mulist; plist != NULL;
1266 			    plist = plist->next) {
1267 				b_eq = ether_eq(plist->mul_addr, mca);
1268 				if (b_eq) {
1269 					update = B_TRUE;
1270 					break;
1271 				}
1272 				plist_prev = plist;
1273 			}
1274 
1275 			if (update) {
1276 				if ((plist_prev == NULL) &&
1277 				    (plist->next == NULL))
1278 					ngep->pcur_mulist = NULL;
1279 				else if ((plist_prev == NULL) &&
1280 				    (plist->next != NULL))
1281 					ngep->pcur_mulist = plist->next;
1282 				else
1283 					plist_prev->next = plist->next;
1284 				kmem_free(plist, sizeof (mul_item));
1285 			}
1286 		}
1287 	}
1288 
1289 	if (update || !ngep->suspended) {
1290 		nge_mulparam(ngep);
1291 		nge_chip_sync(ngep);
1292 	}
1293 	NGE_DEBUG(("nge_m_multicst($%p) done", arg));
1294 	mutex_exit(ngep->genlock);
1295 
1296 	return (0);
1297 }
1298 
1299 static void
1300 nge_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
1301 {
1302 	int err;
1303 	int cmd;
1304 	nge_t *ngep = arg;
1305 	struct iocblk *iocp;
1306 	enum ioc_reply status;
1307 	boolean_t need_privilege;
1308 
1309 	/*
1310 	 * If suspended, we might actually be able to do some of
1311 	 * these ioctls, but it is harder to make sure they occur
1312 	 * without actually putting the hardware in an undesireable
1313 	 * state.  So just NAK it.
1314 	 */
1315 	if (ngep->suspended) {
1316 		miocnak(wq, mp, 0, EINVAL);
1317 		return;
1318 	}
1319 
1320 	/*
1321 	 * Validate the command before bothering with the mutex ...
1322 	 */
1323 	iocp = (struct iocblk *)mp->b_rptr;
1324 	iocp->ioc_error = 0;
1325 	need_privilege = B_TRUE;
1326 	cmd = iocp->ioc_cmd;
1327 
1328 	NGE_DEBUG(("nge_m_ioctl:  cmd 0x%x", cmd));
1329 	switch (cmd) {
1330 	default:
1331 		NGE_LDB(NGE_DBG_BADIOC,
1332 		    ("nge_m_ioctl: unknown cmd 0x%x", cmd));
1333 
1334 		miocnak(wq, mp, 0, EINVAL);
1335 		return;
1336 
1337 	case NGE_MII_READ:
1338 	case NGE_MII_WRITE:
1339 	case NGE_SEE_READ:
1340 	case NGE_SEE_WRITE:
1341 	case NGE_DIAG:
1342 	case NGE_PEEK:
1343 	case NGE_POKE:
1344 	case NGE_PHY_RESET:
1345 	case NGE_SOFT_RESET:
1346 	case NGE_HARD_RESET:
1347 		break;
1348 
1349 	case LB_GET_INFO_SIZE:
1350 	case LB_GET_INFO:
1351 	case LB_GET_MODE:
1352 		need_privilege = B_FALSE;
1353 		break;
1354 	case LB_SET_MODE:
1355 		break;
1356 
1357 	case ND_GET:
1358 		need_privilege = B_FALSE;
1359 		break;
1360 	case ND_SET:
1361 		break;
1362 	}
1363 
1364 	if (need_privilege) {
1365 		/*
1366 		 * Check for specific net_config privilege.
1367 		 */
1368 		err = secpolicy_net_config(iocp->ioc_cr, B_FALSE);
1369 		if (err != 0) {
1370 			NGE_DEBUG(("nge_m_ioctl: rejected cmd 0x%x, err %d",
1371 			    cmd, err));
1372 			miocnak(wq, mp, 0, err);
1373 			return;
1374 		}
1375 	}
1376 
1377 	mutex_enter(ngep->genlock);
1378 
1379 	switch (cmd) {
1380 	default:
1381 		_NOTE(NOTREACHED)
1382 		status = IOC_INVAL;
1383 	break;
1384 
1385 	case NGE_MII_READ:
1386 	case NGE_MII_WRITE:
1387 	case NGE_SEE_READ:
1388 	case NGE_SEE_WRITE:
1389 	case NGE_DIAG:
1390 	case NGE_PEEK:
1391 	case NGE_POKE:
1392 	case NGE_PHY_RESET:
1393 	case NGE_SOFT_RESET:
1394 	case NGE_HARD_RESET:
1395 		status = nge_chip_ioctl(ngep, mp, iocp);
1396 	break;
1397 
1398 	case LB_GET_INFO_SIZE:
1399 	case LB_GET_INFO:
1400 	case LB_GET_MODE:
1401 	case LB_SET_MODE:
1402 		status = nge_loop_ioctl(ngep, mp, iocp);
1403 	break;
1404 
1405 	case ND_GET:
1406 	case ND_SET:
1407 		status = nge_nd_ioctl(ngep, wq, mp, iocp);
1408 	break;
1409 
1410 	}
1411 
1412 	/*
1413 	 * Do we need to reprogram the PHY and/or the MAC?
1414 	 * Do it now, while we still have the mutex.
1415 	 *
1416 	 * Note: update the PHY first, 'cos it controls the
1417 	 * speed/duplex parameters that the MAC code uses.
1418 	 */
1419 
1420 	NGE_DEBUG(("nge_m_ioctl: cmd 0x%x status %d", cmd, status));
1421 
1422 	switch (status) {
1423 	case IOC_RESTART_REPLY:
1424 	case IOC_RESTART_ACK:
1425 		(*ngep->physops->phys_update)(ngep);
1426 		nge_chip_sync(ngep);
1427 		break;
1428 
1429 	default:
1430 	break;
1431 	}
1432 
1433 	mutex_exit(ngep->genlock);
1434 
1435 	/*
1436 	 * Finally, decide how to reply
1437 	 */
1438 	switch (status) {
1439 
1440 	default:
1441 	case IOC_INVAL:
1442 		miocnak(wq, mp, 0, iocp->ioc_error == 0 ?
1443 		    EINVAL : iocp->ioc_error);
1444 		break;
1445 
1446 	case IOC_DONE:
1447 		break;
1448 
1449 	case IOC_RESTART_ACK:
1450 	case IOC_ACK:
1451 		miocack(wq, mp, 0, 0);
1452 		break;
1453 
1454 	case IOC_RESTART_REPLY:
1455 	case IOC_REPLY:
1456 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1457 		    M_IOCACK : M_IOCNAK;
1458 		qreply(wq, mp);
1459 		break;
1460 	}
1461 }
1462 
1463 /* ARGSUSED */
1464 static boolean_t
1465 nge_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
1466 {
1467 	nge_t	*ngep = arg;
1468 	nge_dev_spec_param_t *dev_param_p;
1469 
1470 	dev_param_p = &ngep->dev_spec_param;
1471 
1472 	switch (cap) {
1473 	case MAC_CAPAB_HCKSUM: {
1474 		uint32_t *hcksum_txflags = cap_data;
1475 
1476 		if (dev_param_p->tx_hw_checksum) {
1477 			*hcksum_txflags = dev_param_p->tx_hw_checksum;
1478 		} else
1479 			return (B_FALSE);
1480 		break;
1481 	}
1482 	case MAC_CAPAB_POLL:
1483 		/*
1484 		 * There's nothing for us to fill in, simply returning
1485 		 * B_TRUE, stating that we support polling is sufficient.
1486 		 */
1487 		break;
1488 	default:
1489 		return (B_FALSE);
1490 	}
1491 	return (B_TRUE);
1492 }
1493 
1494 #undef	NGE_DBG
1495 #define	NGE_DBG	NGE_DBG_INIT	/* debug flag for this code	*/
1496 int
1497 nge_restart(nge_t *ngep)
1498 {
1499 	int err = 0;
1500 	err += nge_reset(ngep);
1501 	err += nge_chip_start(ngep);
1502 
1503 	if (err) {
1504 		ngep->nge_mac_state = NGE_MAC_STOPPED;
1505 		return (DDI_FAILURE);
1506 	} else {
1507 		ngep->nge_mac_state = NGE_MAC_STARTED;
1508 		return (DDI_SUCCESS);
1509 	}
1510 }
1511 
1512 void
1513 nge_wake_factotum(nge_t *ngep)
1514 {
1515 	mutex_enter(ngep->softlock);
1516 	if (ngep->factotum_flag == 0) {
1517 		ngep->factotum_flag = 1;
1518 		(void) ddi_intr_trigger_softint(ngep->factotum_hdl, NULL);
1519 	}
1520 	mutex_exit(ngep->softlock);
1521 }
1522 
1523 /*
1524  * High-level cyclic handler
1525  *
1526  * This routine schedules a (low-level) softint callback to the
1527  * factotum.
1528  */
1529 
1530 static void
1531 nge_chip_cyclic(void *arg)
1532 {
1533 	nge_t *ngep;
1534 
1535 	ngep = (nge_t *)arg;
1536 
1537 	switch (ngep->nge_chip_state) {
1538 	default:
1539 		return;
1540 
1541 	case NGE_CHIP_RUNNING:
1542 		break;
1543 
1544 	case NGE_CHIP_FAULT:
1545 	case NGE_CHIP_ERROR:
1546 		break;
1547 	}
1548 
1549 	nge_wake_factotum(ngep);
1550 }
1551 
1552 static void
1553 nge_unattach(nge_t *ngep)
1554 {
1555 	send_ring_t *srp;
1556 	buff_ring_t *brp;
1557 
1558 	srp = ngep->send;
1559 	brp = ngep->buff;
1560 	NGE_TRACE(("nge_unattach($%p)", (void *)ngep));
1561 
1562 	/*
1563 	 * Flag that no more activity may be initiated
1564 	 */
1565 	ngep->progress &= ~PROGRESS_READY;
1566 	ngep->nge_mac_state = NGE_MAC_UNATTACH;
1567 
1568 	/*
1569 	 * Quiesce the PHY and MAC (leave it reset but still powered).
1570 	 * Clean up and free all NGE data structures
1571 	 */
1572 	if (ngep->periodic_id != NULL) {
1573 		ddi_periodic_delete(ngep->periodic_id);
1574 		ngep->periodic_id = NULL;
1575 	}
1576 
1577 	if (ngep->progress & PROGRESS_KSTATS)
1578 		nge_fini_kstats(ngep);
1579 
1580 	if (ngep->progress & PROGRESS_NDD)
1581 		nge_nd_cleanup(ngep);
1582 
1583 	if (ngep->progress & PROGRESS_HWINT) {
1584 		mutex_enter(ngep->genlock);
1585 		nge_restore_mac_addr(ngep);
1586 		(void) nge_chip_stop(ngep, B_FALSE);
1587 		mutex_exit(ngep->genlock);
1588 	}
1589 
1590 	if (ngep->progress & PROGRESS_SWINT)
1591 		nge_rem_intrs(ngep);
1592 
1593 	if (ngep->progress & PROGRESS_FACTOTUM)
1594 		(void) ddi_intr_remove_softint(ngep->factotum_hdl);
1595 
1596 	if (ngep->progress & PROGRESS_RESCHED)
1597 		(void) ddi_intr_remove_softint(ngep->resched_hdl);
1598 
1599 	if (ngep->progress & PROGRESS_INTR) {
1600 		mutex_destroy(srp->tx_lock);
1601 		mutex_destroy(srp->tc_lock);
1602 		mutex_destroy(&srp->dmah_lock);
1603 		mutex_destroy(brp->recycle_lock);
1604 
1605 		mutex_destroy(ngep->genlock);
1606 		mutex_destroy(ngep->softlock);
1607 		rw_destroy(ngep->rwlock);
1608 	}
1609 
1610 	if (ngep->progress & PROGRESS_REGS)
1611 		ddi_regs_map_free(&ngep->io_handle);
1612 
1613 	if (ngep->progress & PROGRESS_CFG)
1614 		pci_config_teardown(&ngep->cfg_handle);
1615 
1616 	ddi_remove_minor_node(ngep->devinfo, NULL);
1617 
1618 	kmem_free(ngep, sizeof (*ngep));
1619 }
1620 
1621 static int
1622 nge_resume(dev_info_t *devinfo)
1623 {
1624 	nge_t		*ngep;
1625 	chip_info_t	*infop;
1626 
1627 	ASSERT(devinfo != NULL);
1628 
1629 	ngep = ddi_get_driver_private(devinfo);
1630 	/*
1631 	 * If there are state inconsistancies, this is bad.  Returning
1632 	 * DDI_FAILURE here will eventually cause the machine to panic,
1633 	 * so it is best done here so that there is a possibility of
1634 	 * debugging the problem.
1635 	 */
1636 	if (ngep == NULL)
1637 		cmn_err(CE_PANIC,
1638 		    "nge: ngep returned from ddi_get_driver_private was NULL");
1639 	infop = (chip_info_t *)&ngep->chipinfo;
1640 
1641 	if (ngep->devinfo != devinfo)
1642 		cmn_err(CE_PANIC,
1643 		    "nge: passed devinfo not the same as saved definfo");
1644 
1645 	ngep->suspended = B_FALSE;
1646 
1647 	/*
1648 	 * Fetch the config space.  Even though we have most of it cached,
1649 	 * some values *might* change across a suspend/resume.
1650 	 */
1651 	nge_chip_cfg_init(ngep, infop, B_FALSE);
1652 
1653 	/*
1654 	 * Start the controller.  In this case (and probably most GLDv3
1655 	 * devices), it is sufficient to call nge_m_start().
1656 	 */
1657 	if (nge_m_start((void *)ngep) != DDI_SUCCESS) {
1658 		/*
1659 		 * We note the failure, but return success, as the
1660 		 * system is still usable without this controller.
1661 		 */
1662 		cmn_err(CE_WARN, "nge: resume: failed to restart controller");
1663 	}
1664 	return (DDI_SUCCESS);
1665 }
1666 
1667 /*
1668  * attach(9E) -- Attach a device to the system
1669  *
1670  * Called once for each board successfully probed.
1671  */
1672 static int
1673 nge_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
1674 {
1675 	int		err;
1676 	int		i;
1677 	int		instance;
1678 	caddr_t		regs;
1679 	nge_t		*ngep;
1680 	chip_info_t	*infop;
1681 	mac_register_t	*macp;
1682 
1683 	switch (cmd) {
1684 	default:
1685 		return (DDI_FAILURE);
1686 
1687 	case DDI_RESUME:
1688 		return (nge_resume(devinfo));
1689 
1690 	case DDI_ATTACH:
1691 		break;
1692 	}
1693 
1694 	ngep = kmem_zalloc(sizeof (*ngep), KM_SLEEP);
1695 	instance = ddi_get_instance(devinfo);
1696 	ddi_set_driver_private(devinfo, ngep);
1697 	ngep->devinfo = devinfo;
1698 
1699 	(void) snprintf(ngep->ifname, sizeof (ngep->ifname), "%s%d",
1700 	    NGE_DRIVER_NAME, instance);
1701 	err = pci_config_setup(devinfo, &ngep->cfg_handle);
1702 	if (err != DDI_SUCCESS) {
1703 		nge_problem(ngep, "nge_attach: pci_config_setup() failed");
1704 		goto attach_fail;
1705 	}
1706 	infop = (chip_info_t *)&ngep->chipinfo;
1707 	nge_chip_cfg_init(ngep, infop, B_FALSE);
1708 	nge_init_dev_spec_param(ngep);
1709 	nge_get_props(ngep);
1710 	ngep->progress |= PROGRESS_CFG;
1711 
1712 	err = ddi_regs_map_setup(devinfo, NGE_PCI_OPREGS_RNUMBER,
1713 	    &regs, 0, 0, &nge_reg_accattr, &ngep->io_handle);
1714 	if (err != DDI_SUCCESS) {
1715 		nge_problem(ngep, "nge_attach: ddi_regs_map_setup() failed");
1716 		goto attach_fail;
1717 	}
1718 	ngep->io_regs = regs;
1719 	ngep->progress |= PROGRESS_REGS;
1720 
1721 	err = nge_register_intrs_and_init_locks(ngep);
1722 	if (err != DDI_SUCCESS) {
1723 		nge_problem(ngep, "nge_attach:"
1724 		    " register intrs and init locks failed");
1725 		goto attach_fail;
1726 	}
1727 	nge_init_ring_param_lock(ngep);
1728 	ngep->progress |= PROGRESS_INTR;
1729 
1730 	mutex_enter(ngep->genlock);
1731 
1732 	/*
1733 	 * Initialise link state variables
1734 	 * Stop, reset & reinitialise the chip.
1735 	 * Initialise the (internal) PHY.
1736 	 */
1737 	nge_phys_init(ngep);
1738 	err = nge_chip_reset(ngep);
1739 	if (err != DDI_SUCCESS) {
1740 		nge_problem(ngep, "nge_attach: nge_chip_reset() failed");
1741 		mutex_exit(ngep->genlock);
1742 		goto attach_fail;
1743 	}
1744 	nge_chip_sync(ngep);
1745 
1746 	/*
1747 	 * Now that mutex locks are initialized, enable interrupts.
1748 	 */
1749 	if (ngep->intr_cap & DDI_INTR_FLAG_BLOCK) {
1750 		/* Call ddi_intr_block_enable() for MSI interrupts */
1751 		(void) ddi_intr_block_enable(ngep->htable,
1752 		    ngep->intr_actual_cnt);
1753 	} else {
1754 		/* Call ddi_intr_enable for MSI or FIXED interrupts */
1755 		for (i = 0; i < ngep->intr_actual_cnt; i++) {
1756 			(void) ddi_intr_enable(ngep->htable[i]);
1757 		}
1758 	}
1759 
1760 	ngep->link_state = LINK_STATE_UNKNOWN;
1761 	ngep->progress |= PROGRESS_HWINT;
1762 
1763 	/*
1764 	 * Register NDD-tweakable parameters
1765 	 */
1766 	if (nge_nd_init(ngep)) {
1767 		nge_problem(ngep, "nge_attach: nge_nd_init() failed");
1768 		mutex_exit(ngep->genlock);
1769 		goto attach_fail;
1770 	}
1771 	ngep->progress |= PROGRESS_NDD;
1772 
1773 	/*
1774 	 * Create & initialise named kstats
1775 	 */
1776 	nge_init_kstats(ngep, instance);
1777 	ngep->progress |= PROGRESS_KSTATS;
1778 
1779 	mutex_exit(ngep->genlock);
1780 
1781 	if ((macp = mac_alloc(MAC_VERSION)) == NULL)
1782 		goto attach_fail;
1783 	macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
1784 	macp->m_driver = ngep;
1785 	macp->m_dip = devinfo;
1786 	macp->m_src_addr = infop->vendor_addr.addr;
1787 	macp->m_callbacks = &nge_m_callbacks;
1788 	macp->m_min_sdu = 0;
1789 	macp->m_max_sdu = ngep->default_mtu;
1790 	/*
1791 	 * Finally, we're ready to register ourselves with the mac
1792 	 * interface; if this succeeds, we're all ready to start()
1793 	 */
1794 	err = mac_register(macp, &ngep->mh);
1795 	mac_free(macp);
1796 	if (err != 0)
1797 		goto attach_fail;
1798 
1799 	/*
1800 	 * Register a periodical handler.
1801 	 * nge_chip_cyclic() is invoked in kernel context.
1802 	 */
1803 	ngep->periodic_id = ddi_periodic_add(nge_chip_cyclic, ngep,
1804 	    NGE_CYCLIC_PERIOD, DDI_IPL_0);
1805 
1806 	ngep->progress |= PROGRESS_READY;
1807 	return (DDI_SUCCESS);
1808 
1809 attach_fail:
1810 	nge_unattach(ngep);
1811 	return (DDI_FAILURE);
1812 }
1813 
1814 /*
1815  * detach(9E) -- Detach a device from the system
1816  */
1817 static int
1818 nge_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
1819 {
1820 	int i;
1821 	nge_t *ngep;
1822 	mul_item *p, *nextp;
1823 	buff_ring_t *brp;
1824 
1825 	NGE_GTRACE(("nge_detach($%p, %d)", (void *)devinfo, cmd));
1826 
1827 	ngep = ddi_get_driver_private(devinfo);
1828 	brp = ngep->buff;
1829 
1830 	switch (cmd) {
1831 	default:
1832 		return (DDI_FAILURE);
1833 
1834 	case DDI_SUSPEND:
1835 		/*
1836 		 * Stop the NIC
1837 		 * I suspect that we can actually suspend if the stop
1838 		 * routine returns a failure, as the resume will
1839 		 * effectively fully reset the hardware (i.e. we don't
1840 		 * really save any hardware state).  However, nge_m_stop
1841 		 * doesn't return an error code.
1842 		 * Note: This driver doesn't currently support WOL, but
1843 		 *	should it in the future, it is important to
1844 		 *	make sure the PHY remains powered so that the
1845 		 *	wakeup packet can actually be recieved.
1846 		 */
1847 		nge_m_stop(ngep);
1848 		ngep->suspended = B_TRUE;
1849 		return (DDI_SUCCESS);
1850 
1851 	case DDI_DETACH:
1852 		break;
1853 	}
1854 
1855 	/* Try to wait all the buffer post to upper layer be released */
1856 	for (i = 0; i < 1000; i++) {
1857 		if (brp->rx_hold == 0)
1858 			break;
1859 		drv_usecwait(1000);
1860 	}
1861 
1862 	/* If there is any posted buffer, reject to detach */
1863 	if (brp->rx_hold != 0)
1864 		return (DDI_FAILURE);
1865 
1866 	/* Recycle the multicast table */
1867 	for (p = ngep->pcur_mulist; p != NULL; p = nextp) {
1868 		nextp = p->next;
1869 		kmem_free(p, sizeof (mul_item));
1870 	}
1871 	ngep->pcur_mulist = NULL;
1872 
1873 	/*
1874 	 * Unregister from the GLD subsystem.  This can fail, in
1875 	 * particular if there are DLPI style-2 streams still open -
1876 	 * in which case we just return failure without shutting
1877 	 * down chip operations.
1878 	 */
1879 	if (mac_unregister(ngep->mh) != DDI_SUCCESS)
1880 		return (DDI_FAILURE);
1881 
1882 	/*
1883 	 * All activity stopped, so we can clean up & exit
1884 	 */
1885 	nge_unattach(ngep);
1886 	return (DDI_SUCCESS);
1887 }
1888 
1889 
1890 /*
1891  * ========== Module Loading Data & Entry Points ==========
1892  */
1893 
1894 DDI_DEFINE_STREAM_OPS(nge_dev_ops, nulldev, nulldev, nge_attach, nge_detach,
1895     nodev, NULL, D_MP, NULL);
1896 
1897 
1898 static struct modldrv nge_modldrv = {
1899 	&mod_driverops,		/* Type of module.  This one is a driver */
1900 	nge_ident,		/* short description */
1901 	&nge_dev_ops		/* driver specific ops */
1902 };
1903 
1904 static struct modlinkage modlinkage = {
1905 	MODREV_1, (void *)&nge_modldrv, NULL
1906 };
1907 
1908 
1909 int
1910 _info(struct modinfo *modinfop)
1911 {
1912 	return (mod_info(&modlinkage, modinfop));
1913 }
1914 
1915 int
1916 _init(void)
1917 {
1918 	int status;
1919 
1920 	mac_init_ops(&nge_dev_ops, "nge");
1921 	status = mod_install(&modlinkage);
1922 	if (status != DDI_SUCCESS)
1923 		mac_fini_ops(&nge_dev_ops);
1924 	else
1925 		mutex_init(nge_log_mutex, NULL, MUTEX_DRIVER, NULL);
1926 
1927 	return (status);
1928 }
1929 
1930 int
1931 _fini(void)
1932 {
1933 	int status;
1934 
1935 	status = mod_remove(&modlinkage);
1936 	if (status == DDI_SUCCESS) {
1937 		mac_fini_ops(&nge_dev_ops);
1938 		mutex_destroy(nge_log_mutex);
1939 	}
1940 
1941 	return (status);
1942 }
1943 
1944 /*
1945  * ============ Init MSI/Fixed/SoftInterrupt routines ==============
1946  */
1947 
1948 /*
1949  * Register interrupts and initialize each mutex and condition variables
1950  */
1951 
1952 static int
1953 nge_register_intrs_and_init_locks(nge_t *ngep)
1954 {
1955 	int		err;
1956 	int		intr_types;
1957 	uint_t		soft_prip;
1958 	nge_msi_mask	msi_mask;
1959 	nge_msi_map0_vec map0_vec;
1960 	nge_msi_map1_vec map1_vec;
1961 
1962 	/*
1963 	 * Add the softint handlers:
1964 	 *
1965 	 * Both of these handlers are used to avoid restrictions on the
1966 	 * context and/or mutexes required for some operations.  In
1967 	 * particular, the hardware interrupt handler and its subfunctions
1968 	 * can detect a number of conditions that we don't want to handle
1969 	 * in that context or with that set of mutexes held.  So, these
1970 	 * softints are triggered instead:
1971 	 *
1972 	 * the <resched> softint is triggered if if we have previously
1973 	 * had to refuse to send a packet because of resource shortage
1974 	 * (we've run out of transmit buffers), but the send completion
1975 	 * interrupt handler has now detected that more buffers have
1976 	 * become available.  Its only purpose is to call gld_sched()
1977 	 * to retry the pending transmits (we're not allowed to hold
1978 	 * driver-defined mutexes across gld_sched()).
1979 	 *
1980 	 * the <factotum> is triggered if the h/w interrupt handler
1981 	 * sees the <link state changed> or <error> bits in the status
1982 	 * block.  It's also triggered periodically to poll the link
1983 	 * state, just in case we aren't getting link status change
1984 	 * interrupts ...
1985 	 */
1986 	err = ddi_intr_add_softint(ngep->devinfo, &ngep->resched_hdl,
1987 	    DDI_INTR_SOFTPRI_MIN, nge_reschedule, (caddr_t)ngep);
1988 	if (err != DDI_SUCCESS) {
1989 		nge_problem(ngep,
1990 		    "nge_attach: add nge_reschedule softintr failed");
1991 
1992 		return (DDI_FAILURE);
1993 	}
1994 	ngep->progress |= PROGRESS_RESCHED;
1995 	err = ddi_intr_add_softint(ngep->devinfo, &ngep->factotum_hdl,
1996 	    DDI_INTR_SOFTPRI_MIN, nge_chip_factotum, (caddr_t)ngep);
1997 	if (err != DDI_SUCCESS) {
1998 		nge_problem(ngep,
1999 		    "nge_attach: add nge_chip_factotum softintr failed!");
2000 
2001 		return (DDI_FAILURE);
2002 	}
2003 	if (ddi_intr_get_softint_pri(ngep->factotum_hdl, &soft_prip)
2004 	    != DDI_SUCCESS) {
2005 		nge_problem(ngep, "nge_attach: get softintr priority failed\n");
2006 
2007 		return (DDI_FAILURE);
2008 	}
2009 	ngep->soft_pri = soft_prip;
2010 
2011 	ngep->progress |= PROGRESS_FACTOTUM;
2012 	/* Get supported interrupt types */
2013 	if (ddi_intr_get_supported_types(ngep->devinfo, &intr_types)
2014 	    != DDI_SUCCESS) {
2015 		nge_error(ngep, "ddi_intr_get_supported_types failed\n");
2016 
2017 		return (DDI_FAILURE);
2018 	}
2019 
2020 	NGE_DEBUG(("ddi_intr_get_supported_types() returned: %x",
2021 	    intr_types));
2022 
2023 	if ((intr_types & DDI_INTR_TYPE_MSI) && nge_enable_msi) {
2024 
2025 		/* MSI Configurations for mcp55 chipset */
2026 		if (ngep->chipinfo.device == DEVICE_ID_MCP55_373 ||
2027 		    ngep->chipinfo.device == DEVICE_ID_MCP55_372) {
2028 
2029 
2030 			/* Enable the 8 vectors */
2031 			msi_mask.msi_mask_val =
2032 			    nge_reg_get32(ngep, NGE_MSI_MASK);
2033 			msi_mask.msi_msk_bits.vec0 = NGE_SET;
2034 			msi_mask.msi_msk_bits.vec1 = NGE_SET;
2035 			msi_mask.msi_msk_bits.vec2 = NGE_SET;
2036 			msi_mask.msi_msk_bits.vec3 = NGE_SET;
2037 			msi_mask.msi_msk_bits.vec4 = NGE_SET;
2038 			msi_mask.msi_msk_bits.vec5 = NGE_SET;
2039 			msi_mask.msi_msk_bits.vec6 = NGE_SET;
2040 			msi_mask.msi_msk_bits.vec7 = NGE_SET;
2041 			nge_reg_put32(ngep, NGE_MSI_MASK,
2042 			    msi_mask.msi_mask_val);
2043 
2044 			/*
2045 			 * Remapping the MSI MAP0 and MAP1. MCP55
2046 			 * is default mapping all the interrupt to 0 vector.
2047 			 * Software needs to remapping this.
2048 			 * This mapping is same as CK804.
2049 			 */
2050 			map0_vec.msi_map0_val =
2051 			    nge_reg_get32(ngep, NGE_MSI_MAP0);
2052 			map1_vec.msi_map1_val =
2053 			    nge_reg_get32(ngep, NGE_MSI_MAP1);
2054 			map0_vec.vecs_bits.reint_vec = 0;
2055 			map0_vec.vecs_bits.rcint_vec = 0;
2056 			map0_vec.vecs_bits.miss_vec = 3;
2057 			map0_vec.vecs_bits.teint_vec = 5;
2058 			map0_vec.vecs_bits.tcint_vec = 5;
2059 			map0_vec.vecs_bits.stint_vec = 2;
2060 			map0_vec.vecs_bits.mint_vec = 6;
2061 			map0_vec.vecs_bits.rfint_vec = 0;
2062 			map1_vec.vecs_bits.tfint_vec = 5;
2063 			map1_vec.vecs_bits.feint_vec = 6;
2064 			map1_vec.vecs_bits.resv8_11 = 3;
2065 			map1_vec.vecs_bits.resv12_15 = 1;
2066 			map1_vec.vecs_bits.resv16_19 = 0;
2067 			map1_vec.vecs_bits.resv20_23 = 7;
2068 			map1_vec.vecs_bits.resv24_31 = 0xff;
2069 			nge_reg_put32(ngep, NGE_MSI_MAP0,
2070 			    map0_vec.msi_map0_val);
2071 			nge_reg_put32(ngep, NGE_MSI_MAP1,
2072 			    map1_vec.msi_map1_val);
2073 		}
2074 		if (nge_add_intrs(ngep, DDI_INTR_TYPE_MSI) != DDI_SUCCESS) {
2075 			NGE_DEBUG(("MSI registration failed, "
2076 			    "trying FIXED interrupt type\n"));
2077 		} else {
2078 			nge_log(ngep, "Using MSI interrupt type\n");
2079 
2080 			ngep->intr_type = DDI_INTR_TYPE_MSI;
2081 			ngep->progress |= PROGRESS_SWINT;
2082 		}
2083 	}
2084 
2085 	if (!(ngep->progress & PROGRESS_SWINT) &&
2086 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
2087 		if (nge_add_intrs(ngep, DDI_INTR_TYPE_FIXED) != DDI_SUCCESS) {
2088 			nge_error(ngep, "FIXED interrupt "
2089 			    "registration failed\n");
2090 
2091 			return (DDI_FAILURE);
2092 		}
2093 
2094 		nge_log(ngep, "Using FIXED interrupt type\n");
2095 
2096 		ngep->intr_type = DDI_INTR_TYPE_FIXED;
2097 		ngep->progress |= PROGRESS_SWINT;
2098 	}
2099 
2100 
2101 	if (!(ngep->progress & PROGRESS_SWINT)) {
2102 		nge_error(ngep, "No interrupts registered\n");
2103 
2104 		return (DDI_FAILURE);
2105 	}
2106 	mutex_init(ngep->genlock, NULL, MUTEX_DRIVER,
2107 	    DDI_INTR_PRI(ngep->intr_pri));
2108 	mutex_init(ngep->softlock, NULL, MUTEX_DRIVER,
2109 	    DDI_INTR_PRI(ngep->soft_pri));
2110 	rw_init(ngep->rwlock, NULL, RW_DRIVER,
2111 	    DDI_INTR_PRI(ngep->intr_pri));
2112 
2113 	return (DDI_SUCCESS);
2114 }
2115 
2116 /*
2117  * nge_add_intrs:
2118  *
2119  * Register FIXED or MSI interrupts.
2120  */
2121 static int
2122 nge_add_intrs(nge_t *ngep, int	intr_type)
2123 {
2124 	dev_info_t	*dip = ngep->devinfo;
2125 	int		avail, actual, intr_size, count = 0;
2126 	int		i, flag, ret;
2127 
2128 	NGE_DEBUG(("nge_add_intrs: interrupt type 0x%x\n", intr_type));
2129 
2130 	/* Get number of interrupts */
2131 	ret = ddi_intr_get_nintrs(dip, intr_type, &count);
2132 	if ((ret != DDI_SUCCESS) || (count == 0)) {
2133 		nge_error(ngep, "ddi_intr_get_nintrs() failure, ret: %d, "
2134 		    "count: %d", ret, count);
2135 
2136 		return (DDI_FAILURE);
2137 	}
2138 
2139 	/* Get number of available interrupts */
2140 	ret = ddi_intr_get_navail(dip, intr_type, &avail);
2141 	if ((ret != DDI_SUCCESS) || (avail == 0)) {
2142 		nge_error(ngep, "ddi_intr_get_navail() failure, "
2143 		    "ret: %d, avail: %d\n", ret, avail);
2144 
2145 		return (DDI_FAILURE);
2146 	}
2147 
2148 	if (avail < count) {
2149 		NGE_DEBUG(("nitrs() returned %d, navail returned %d\n",
2150 		    count, avail));
2151 	}
2152 	flag = DDI_INTR_ALLOC_NORMAL;
2153 
2154 	/* Allocate an array of interrupt handles */
2155 	intr_size = count * sizeof (ddi_intr_handle_t);
2156 	ngep->htable = kmem_alloc(intr_size, KM_SLEEP);
2157 
2158 	/* Call ddi_intr_alloc() */
2159 	ret = ddi_intr_alloc(dip, ngep->htable, intr_type, 0,
2160 	    count, &actual, flag);
2161 
2162 	if ((ret != DDI_SUCCESS) || (actual == 0)) {
2163 		nge_error(ngep, "ddi_intr_alloc() failed %d\n", ret);
2164 
2165 		kmem_free(ngep->htable, intr_size);
2166 		return (DDI_FAILURE);
2167 	}
2168 
2169 	if (actual < count) {
2170 		NGE_DEBUG(("Requested: %d, Received: %d\n",
2171 		    count, actual));
2172 	}
2173 
2174 	ngep->intr_actual_cnt = actual;
2175 	ngep->intr_req_cnt = count;
2176 
2177 	/*
2178 	 * Get priority for first msi, assume remaining are all the same
2179 	 */
2180 	if ((ret = ddi_intr_get_pri(ngep->htable[0], &ngep->intr_pri)) !=
2181 	    DDI_SUCCESS) {
2182 		nge_error(ngep, "ddi_intr_get_pri() failed %d\n", ret);
2183 
2184 		/* Free already allocated intr */
2185 		for (i = 0; i < actual; i++) {
2186 			(void) ddi_intr_free(ngep->htable[i]);
2187 		}
2188 
2189 		kmem_free(ngep->htable, intr_size);
2190 
2191 		return (DDI_FAILURE);
2192 	}
2193 	/* Test for high level mutex */
2194 	if (ngep->intr_pri >= ddi_intr_get_hilevel_pri()) {
2195 		nge_error(ngep, "nge_add_intrs:"
2196 		    "Hi level interrupt not supported");
2197 
2198 		for (i = 0; i < actual; i++)
2199 			(void) ddi_intr_free(ngep->htable[i]);
2200 
2201 		kmem_free(ngep->htable, intr_size);
2202 
2203 		return (DDI_FAILURE);
2204 	}
2205 
2206 
2207 	/* Call ddi_intr_add_handler() */
2208 	for (i = 0; i < actual; i++) {
2209 		if ((ret = ddi_intr_add_handler(ngep->htable[i], nge_chip_intr,
2210 		    (caddr_t)ngep, (caddr_t)(uintptr_t)i)) != DDI_SUCCESS) {
2211 			nge_error(ngep, "ddi_intr_add_handler() "
2212 			    "failed %d\n", ret);
2213 
2214 			/* Free already allocated intr */
2215 			for (i = 0; i < actual; i++) {
2216 				(void) ddi_intr_free(ngep->htable[i]);
2217 			}
2218 
2219 			kmem_free(ngep->htable, intr_size);
2220 
2221 			return (DDI_FAILURE);
2222 		}
2223 	}
2224 
2225 	if ((ret = ddi_intr_get_cap(ngep->htable[0], &ngep->intr_cap))
2226 	    != DDI_SUCCESS) {
2227 		nge_error(ngep, "ddi_intr_get_cap() failed %d\n", ret);
2228 
2229 		for (i = 0; i < actual; i++) {
2230 			(void) ddi_intr_remove_handler(ngep->htable[i]);
2231 			(void) ddi_intr_free(ngep->htable[i]);
2232 		}
2233 
2234 		kmem_free(ngep->htable, intr_size);
2235 
2236 		return (DDI_FAILURE);
2237 	}
2238 
2239 	return (DDI_SUCCESS);
2240 }
2241 
2242 /*
2243  * nge_rem_intrs:
2244  *
2245  * Unregister FIXED or MSI interrupts
2246  */
2247 static void
2248 nge_rem_intrs(nge_t *ngep)
2249 {
2250 	int	i;
2251 
2252 	NGE_DEBUG(("nge_rem_intrs\n"));
2253 
2254 	/* Disable all interrupts */
2255 	if (ngep->intr_cap & DDI_INTR_FLAG_BLOCK) {
2256 		/* Call ddi_intr_block_disable() */
2257 		(void) ddi_intr_block_disable(ngep->htable,
2258 		    ngep->intr_actual_cnt);
2259 	} else {
2260 		for (i = 0; i < ngep->intr_actual_cnt; i++) {
2261 			(void) ddi_intr_disable(ngep->htable[i]);
2262 		}
2263 	}
2264 
2265 	/* Call ddi_intr_remove_handler() */
2266 	for (i = 0; i < ngep->intr_actual_cnt; i++) {
2267 		(void) ddi_intr_remove_handler(ngep->htable[i]);
2268 		(void) ddi_intr_free(ngep->htable[i]);
2269 	}
2270 
2271 	kmem_free(ngep->htable,
2272 	    ngep->intr_req_cnt * sizeof (ddi_intr_handle_t));
2273 }
2274