xref: /titanic_51/usr/src/uts/common/io/net80211/net80211_proto.c (revision c39526b769298791ff5b0b6c5e761f49aabaeb4e)
1 /*
2  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * Copyright (c) 2001 Atsushi Onoe
8  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
9  * All rights reserved.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission.
21  *
22  * Alternatively, this software may be distributed under the terms of the
23  * GNU General Public License ("GPL") version 2 as published by the Free
24  * Software Foundation.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
27  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
28  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
29  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
31  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
35  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * IEEE 802.11 protocol support
40  */
41 
42 #include "net80211_impl.h"
43 
44 /* tunables */
45 #define	AGGRESSIVE_MODE_SWITCH_HYSTERESIS	3	/* pkts / 100ms */
46 #define	HIGH_PRI_SWITCH_THRESH			10	/* pkts / 100ms */
47 
48 #define	IEEE80211_RATE2MBS(r)	(((r) & IEEE80211_RATE_VAL) / 2)
49 
50 const char *ieee80211_mgt_subtype_name[] = {
51 	"assoc_req",	"assoc_resp",	"reassoc_req",	"reassoc_resp",
52 	"probe_req",	"probe_resp",	"reserved#6",	"reserved#7",
53 	"beacon",	"atim",		"disassoc",	"auth",
54 	"deauth",	"reserved#13",	"reserved#14",	"reserved#15"
55 };
56 const char *ieee80211_ctl_subtype_name[] = {
57 	"reserved#0",	"reserved#1",	"reserved#2",	"reserved#3",
58 	"reserved#3",	"reserved#5",	"reserved#6",	"reserved#7",
59 	"reserved#8",	"reserved#9",	"ps_poll",	"rts",
60 	"cts",		"ack",		"cf_end",	"cf_end_ack"
61 };
62 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
63 	"INIT",		/* IEEE80211_S_INIT */
64 	"SCAN",		/* IEEE80211_S_SCAN */
65 	"AUTH",		/* IEEE80211_S_AUTH */
66 	"ASSOC",	/* IEEE80211_S_ASSOC */
67 	"RUN"		/* IEEE80211_S_RUN */
68 };
69 const char *ieee80211_wme_acnames[] = {
70 	"WME_AC_BE",
71 	"WME_AC_BK",
72 	"WME_AC_VI",
73 	"WME_AC_VO",
74 	"WME_UPSD",
75 };
76 
77 static int ieee80211_newstate(ieee80211com_t *, enum ieee80211_state, int);
78 
79 /*
80  * Initialize the interface softc, ic, with protocol management
81  * related data structures and functions.
82  */
83 void
84 ieee80211_proto_attach(ieee80211com_t *ic)
85 {
86 	struct ieee80211_impl *im = ic->ic_private;
87 
88 	ic->ic_rtsthreshold = IEEE80211_RTS_DEFAULT;
89 	ic->ic_fragthreshold = IEEE80211_FRAG_DEFAULT;
90 	ic->ic_fixed_rate = IEEE80211_FIXED_RATE_NONE;
91 	ic->ic_protmode = IEEE80211_PROT_CTSONLY;
92 	im->im_bmiss_max = IEEE80211_BMISS_MAX;
93 
94 	ic->ic_wme.wme_hipri_switch_hysteresis =
95 	    AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
96 
97 	/* protocol state change handler */
98 	ic->ic_newstate = ieee80211_newstate;
99 
100 	/* initialize management frame handlers */
101 	ic->ic_recv_mgmt = ieee80211_recv_mgmt;
102 	ic->ic_send_mgmt = ieee80211_send_mgmt;
103 }
104 
105 /*
106  * Print a 802.11 frame header
107  */
108 void
109 ieee80211_dump_pkt(const uint8_t *buf, int32_t len, int32_t rate, int32_t rssi)
110 {
111 	struct ieee80211_frame *wh;
112 	int8_t buf1[100];
113 	int8_t buf2[25];
114 	int i;
115 
116 	bzero(buf1, sizeof (buf1));
117 	bzero(buf2, sizeof (buf2));
118 	wh = (struct ieee80211_frame *)buf;
119 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
120 	case IEEE80211_FC1_DIR_NODS:
121 		(void) snprintf(buf2, sizeof (buf2), "NODS %s",
122 		    ieee80211_macaddr_sprintf(wh->i_addr2));
123 		(void) strncat(buf1, buf2, sizeof (buf2));
124 		(void) snprintf(buf2, sizeof (buf2), "->%s",
125 		    ieee80211_macaddr_sprintf(wh->i_addr1));
126 		(void) strncat(buf1, buf2, sizeof (buf2));
127 		(void) snprintf(buf2, sizeof (buf2), "(%s)",
128 		    ieee80211_macaddr_sprintf(wh->i_addr3));
129 		(void) strncat(buf1, buf2, sizeof (buf2));
130 		break;
131 	case IEEE80211_FC1_DIR_TODS:
132 		(void) snprintf(buf2, sizeof (buf2), "TODS %s",
133 		    ieee80211_macaddr_sprintf(wh->i_addr2));
134 		(void) strncat(buf1, buf2, sizeof (buf2));
135 		(void) snprintf(buf2, sizeof (buf2), "->%s",
136 		    ieee80211_macaddr_sprintf(wh->i_addr3));
137 		(void) strncat(buf1, buf2, sizeof (buf2));
138 		(void) snprintf(buf2, sizeof (buf2), "(%s)",
139 		    ieee80211_macaddr_sprintf(wh->i_addr1));
140 		(void) strncat(buf1, buf2, sizeof (buf2));
141 		break;
142 	case IEEE80211_FC1_DIR_FROMDS:
143 		(void) snprintf(buf2, sizeof (buf2), "FRDS %s",
144 		    ieee80211_macaddr_sprintf(wh->i_addr3));
145 		(void) strncat(buf1, buf2, sizeof (buf2));
146 		(void) snprintf(buf2, sizeof (buf2), "->%s",
147 		    ieee80211_macaddr_sprintf(wh->i_addr1));
148 		(void) strncat(buf1, buf2, sizeof (buf2));
149 		(void) snprintf(buf2, sizeof (buf2), "(%s)",
150 		    ieee80211_macaddr_sprintf(wh->i_addr2));
151 		(void) strncat(buf1, buf2, sizeof (buf2));
152 		break;
153 	case IEEE80211_FC1_DIR_DSTODS:
154 		(void) snprintf(buf2, sizeof (buf2), "DSDS %s",
155 		    ieee80211_macaddr_sprintf((uint8_t *)&wh[1]));
156 		(void) strncat(buf1, buf2, sizeof (buf2));
157 		(void) snprintf(buf2, sizeof (buf2), "->%s  ",
158 		    ieee80211_macaddr_sprintf(wh->i_addr3));
159 		(void) strncat(buf1, buf2, sizeof (buf2));
160 		(void) snprintf(buf2, sizeof (buf2), "%s",
161 		    ieee80211_macaddr_sprintf(wh->i_addr2));
162 		(void) strncat(buf1, buf2, sizeof (buf2));
163 		(void) snprintf(buf2, sizeof (buf2), "->%s",
164 		    ieee80211_macaddr_sprintf(wh->i_addr1));
165 		(void) strncat(buf1, buf2, sizeof (buf2));
166 		break;
167 	}
168 	ieee80211_dbg(IEEE80211_MSG_ANY, "ieee80211_dump_pkt(): %s", buf1);
169 	bzero(buf1, sizeof (buf1));
170 
171 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
172 	case IEEE80211_FC0_TYPE_DATA:
173 		(void) sprintf(buf2, "data");
174 		break;
175 	case IEEE80211_FC0_TYPE_MGT:
176 		(void) snprintf(buf2, sizeof (buf2), "%s",
177 		    ieee80211_mgt_subtype_name[
178 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
179 		    >> IEEE80211_FC0_SUBTYPE_SHIFT]);
180 		break;
181 	default:
182 		(void) snprintf(buf2, sizeof (buf2), "type#%d",
183 		    wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
184 		break;
185 	}
186 	(void) strncat(buf1, buf2, sizeof (buf2));
187 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
188 		(void) sprintf(buf2, " WEP");
189 		(void) strcat(buf1, buf2);
190 	}
191 	if (rate >= 0) {
192 		(void) snprintf(buf2,  sizeof (buf2), " %dM", rate / 2);
193 		(void) strncat(buf1, buf2, sizeof (buf2));
194 	}
195 	if (rssi >= 0) {
196 		(void) snprintf(buf2,  sizeof (buf2), " +%d", rssi);
197 		(void) strncat(buf1, buf2, sizeof (buf2));
198 	}
199 	ieee80211_dbg(IEEE80211_MSG_ANY, "ieee80211_dump_pkt(): %s", buf1);
200 	bzero(buf1, sizeof (buf1));
201 
202 	if (len > 0) {
203 		for (i = 0; i < (len > 40 ? 40 : len); i++) {
204 			if ((i & 0x03) == 0)
205 				(void) strcat(buf1, " ");
206 			(void) snprintf(buf2, 3, "%02x", buf[i]);
207 			(void) strncat(buf1, buf2, 3);
208 		}
209 		ieee80211_dbg(IEEE80211_MSG_ANY, "ieee80211_dump_pkt(): %s",
210 		    buf1);
211 	}
212 }
213 
214 /*
215  * Adjust/Fix the specified node's rate table
216  *
217  * in   node
218  * flag IEEE80211_F_DOSORT : sort the node's rate table
219  *      IEEE80211_F_DONEGO : mark a rate as basic rate if it is
220  *                           a device's basic rate
221  *      IEEE80211_F_DODEL  : delete rates not supported by the device
222  *      IEEE80211_F_DOFRATE: check if the fixed rate is supported by
223  *                           the device
224  *
225  * The highest bit of returned rate value is set to 1 on failure.
226  */
227 int
228 ieee80211_fix_rate(ieee80211_node_t *in,
229     struct ieee80211_rateset *nrs, int flags)
230 {
231 	ieee80211com_t *ic = in->in_ic;
232 	struct ieee80211_rateset *srs;
233 	boolean_t ignore;
234 	int i;
235 	int okrate;
236 	int badrate;
237 	int fixedrate;
238 	uint8_t r;
239 
240 	/*
241 	 * If the fixed rate check was requested but no
242 	 * fixed has been defined then just remove it.
243 	 */
244 	if ((flags & IEEE80211_F_DOFRATE) &&
245 	    (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)) {
246 		flags &= ~IEEE80211_F_DOFRATE;
247 	}
248 	if (in->in_chan == IEEE80211_CHAN_ANYC) {
249 		return (IEEE80211_RATE_BASIC);
250 	}
251 	okrate = badrate = fixedrate = 0;
252 	srs = &ic->ic_sup_rates[ieee80211_chan2mode(ic, in->in_chan)];
253 	for (i = 0; i < nrs->ir_nrates; ) {
254 		int j;
255 
256 		ignore = B_FALSE;
257 		if (flags & IEEE80211_F_DOSORT) {
258 			/*
259 			 * Sort rates.
260 			 */
261 			for (j = i + 1; j < nrs->ir_nrates; j++) {
262 				if (IEEE80211_RV(nrs->ir_rates[i]) >
263 				    IEEE80211_RV(nrs->ir_rates[j])) {
264 					r = nrs->ir_rates[i];
265 					nrs->ir_rates[i] = nrs->ir_rates[j];
266 					nrs->ir_rates[j] = r;
267 				}
268 			}
269 		}
270 		r = IEEE80211_RV(nrs->ir_rates[i]);
271 		badrate = r;
272 
273 		/*
274 		 * Check against supported rates.
275 		 */
276 		for (j = 0; j < srs->ir_nrates; j++) {
277 			if (r == IEEE80211_RV(srs->ir_rates[j])) {
278 				/*
279 				 * Overwrite with the supported rate
280 				 * value so any basic rate bit is set.
281 				 * This insures that response we send
282 				 * to stations have the necessary basic
283 				 * rate bit set.
284 				 */
285 				if (flags & IEEE80211_F_DONEGO)
286 					nrs->ir_rates[i] = srs->ir_rates[j];
287 				break;
288 			}
289 		}
290 		if (j == srs->ir_nrates) {
291 			/*
292 			 * A rate in the node's rate set is not
293 			 * supported. We just discard/ignore the rate.
294 			 * Note that this is important for 11b stations
295 			 * when they want to associate with an 11g AP.
296 			 */
297 			ignore = B_TRUE;
298 		}
299 
300 		if (flags & IEEE80211_F_DODEL) {
301 			/*
302 			 * Delete unacceptable rates.
303 			 */
304 			if (ignore) {
305 				nrs->ir_nrates--;
306 				for (j = i; j < nrs->ir_nrates; j++)
307 					nrs->ir_rates[j] = nrs->ir_rates[j + 1];
308 				nrs->ir_rates[j] = 0;
309 				continue;
310 			}
311 		}
312 		if (flags & IEEE80211_F_DOFRATE) {
313 			/*
314 			 * Check any fixed rate is included.
315 			 */
316 			if (r == ic->ic_fixed_rate)
317 				fixedrate = r;
318 		}
319 		if (!ignore)
320 			okrate = nrs->ir_rates[i];
321 		i++;
322 	}
323 	if (okrate == 0 || ((flags & IEEE80211_F_DOFRATE) && fixedrate == 0))
324 		return (badrate | IEEE80211_RATE_BASIC);
325 	else
326 		return (IEEE80211_RV(okrate));
327 }
328 
329 /*
330  * Reset 11g-related state.
331  */
332 void
333 ieee80211_reset_erp(ieee80211com_t *ic)
334 {
335 	ic->ic_flags &= ~IEEE80211_F_USEPROT;
336 	/*
337 	 * Short slot time is enabled only when operating in 11g
338 	 * and not in an IBSS.  We must also honor whether or not
339 	 * the driver is capable of doing it.
340 	 */
341 	ieee80211_set_shortslottime(ic,
342 	    ic->ic_curmode == IEEE80211_MODE_11A);
343 	/*
344 	 * Set short preamble and ERP barker-preamble flags.
345 	 */
346 	if (ic->ic_curmode == IEEE80211_MODE_11A ||
347 	    (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
348 		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
349 		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
350 	} else {
351 		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
352 		ic->ic_flags |= IEEE80211_F_USEBARKER;
353 	}
354 }
355 
356 /*
357  * Change current channel to be the next available channel
358  */
359 void
360 ieee80211_reset_chan(ieee80211com_t *ic)
361 {
362 	struct ieee80211_channel *ch = ic->ic_curchan;
363 
364 	IEEE80211_LOCK(ic);
365 	do {
366 		if (++ch > &ic->ic_sup_channels[IEEE80211_CHAN_MAX])
367 			ch = &ic->ic_sup_channels[0];
368 		if (ieee80211_isset(ic->ic_chan_active,
369 		    ieee80211_chan2ieee(ic, ch))) {
370 			break;
371 		}
372 	} while (ch != ic->ic_curchan);
373 	ic->ic_curchan = ch;
374 	IEEE80211_UNLOCK(ic);
375 }
376 
377 /*
378  * Set the short slot time state and notify the driver.
379  */
380 void
381 ieee80211_set_shortslottime(ieee80211com_t *ic, boolean_t on)
382 {
383 	if (on)
384 		ic->ic_flags |= IEEE80211_F_SHSLOT;
385 	else
386 		ic->ic_flags &= ~IEEE80211_F_SHSLOT;
387 	/* notify driver */
388 	if (ic->ic_set_shortslot != NULL)
389 		ic->ic_set_shortslot(ic, on);
390 }
391 
392 /*
393  * Mark the basic rates for the 11g rate table based on the
394  * operating mode.  For real 11g we mark all the 11b rates
395  * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
396  * 11b rates.  There's also a pseudo 11a-mode used to mark only
397  * the basic OFDM rates.
398  */
399 void
400 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
401     enum ieee80211_phymode mode)
402 {
403 	static const struct ieee80211_rateset basic[] = {
404 		{ 0 },			/* IEEE80211_MODE_AUTO */
405 		{ 3, { 12, 24, 48 } },	/* IEEE80211_MODE_11A */
406 		{ 2, { 2, 4} },		/* IEEE80211_MODE_11B */
407 		{ 4, { 2, 4, 11, 22 } }, /* IEEE80211_MODE_11G mixed b/g */
408 		{ 0 },			/* IEEE80211_MODE_FH */
409 		{ 3, { 12, 24, 48 } },	/* IEEE80211_MODE_TURBO_A */
410 		{ 4, { 2, 4, 11, 22 } },
411 					/* IEEE80211_MODE_TURBO_G (mixed b/g) */
412 		{ 0 },			/* IEEE80211_MODE_STURBO_A */
413 		{ 3, { 12, 24, 48 } },	/* IEEE80211_MODE_11NA */
414 					/* IEEE80211_MODE_11NG (mixed b/g) */
415 		{ 7, { 2, 4, 11, 22, 12, 24, 48 } }
416 	};
417 	int i, j;
418 
419 	ASSERT(mode < IEEE80211_MODE_MAX);
420 	for (i = 0; i < rs->ir_nrates; i++) {
421 		rs->ir_rates[i] &= IEEE80211_RATE_VAL;
422 		for (j = 0; j < basic[mode].ir_nrates; j++) {
423 			if (basic[mode].ir_rates[j] == rs->ir_rates[i]) {
424 				rs->ir_rates[i] |= IEEE80211_RATE_BASIC;
425 				break;
426 			}
427 		}
428 	}
429 }
430 
431 /*
432  * WME protocol support.  The following parameters come from the spec.
433  */
434 typedef struct phyParamType {
435 	uint8_t aifsn;
436 	uint8_t logcwmin;
437 	uint8_t logcwmax;
438 	uint16_t txopLimit;
439 	uint8_t acm;
440 } paramType;
441 
442 static const paramType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
443 	{ 3, 4,  6,  0, 0 },	/* IEEE80211_MODE_AUTO */
444 	{ 3, 4,  6,  0, 0 },	/* IEEE80211_MODE_11A */
445 	{ 3, 4,  6,  0, 0 },	/* IEEE80211_MODE_11B */
446 	{ 3, 4,  6,  0, 0 },	/* IEEE80211_MODE_11G */
447 	{ 3, 4,  6,  0, 0 },	/* IEEE80211_MODE_FH */
448 	{ 2, 3,  5,  0, 0 },	/* IEEE80211_MODE_TURBO_A */
449 	{ 2, 3,  5,  0, 0 },	/* IEEE80211_MODE_TURBO_G */
450 	{ 2, 3,  5,  0, 0 },	/* IEEE80211_MODE_STURBO_A */
451 	{ 3, 4,  6,  0, 0 },	/* IEEE80211_MODE_11NA */
452 	{ 3, 4,  6,  0, 0 }	/* IEEE80211_MODE_11NG */
453 };
454 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
455 	{ 7, 4, 10,  0, 0 },	/* IEEE80211_MODE_AUTO */
456 	{ 7, 4, 10,  0, 0 },	/* IEEE80211_MODE_11A */
457 	{ 7, 4, 10,  0, 0 },	/* IEEE80211_MODE_11B */
458 	{ 7, 4, 10,  0, 0 },	/* IEEE80211_MODE_11G */
459 	{ 7, 4, 10,  0, 0 },	/* IEEE80211_MODE_FH */
460 	{ 7, 3, 10,  0, 0 },	/* IEEE80211_MODE_TURBO_A */
461 	{ 7, 3, 10,  0, 0 },	/* IEEE80211_MODE_TURBO_G */
462 	{ 7, 3, 10,  0, 0 },	/* IEEE80211_MODE_STURBO_A */
463 	{ 7, 4, 10,  0, 0 },	/* IEEE80211_MODE_11NA */
464 	{ 7, 4, 10,  0, 0 },	/* IEEE80211_MODE_11NG */
465 };
466 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
467 	{ 1, 3, 4,  94, 0 },	/* IEEE80211_MODE_AUTO */
468 	{ 1, 3, 4,  94, 0 },	/* IEEE80211_MODE_11A */
469 	{ 1, 3, 4, 188, 0 },	/* IEEE80211_MODE_11B */
470 	{ 1, 3, 4,  94, 0 },	/* IEEE80211_MODE_11G */
471 	{ 1, 3, 4, 188, 0 },	/* IEEE80211_MODE_FH */
472 	{ 1, 2, 3,  94, 0 },	/* IEEE80211_MODE_TURBO_A */
473 	{ 1, 2, 3,  94, 0 },	/* IEEE80211_MODE_TURBO_G */
474 	{ 1, 2, 3,  94, 0 },	/* IEEE80211_MODE_STURBO_A */
475 	{ 1, 3, 4,  94, 0 },	/* IEEE80211_MODE_11NA */
476 	{ 1, 3, 4,  94, 0 },	/* IEEE80211_MODE_11NG */
477 };
478 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
479 	{ 1, 2, 3,  47, 0 },	/* IEEE80211_MODE_AUTO */
480 	{ 1, 2, 3,  47, 0 },	/* IEEE80211_MODE_11A */
481 	{ 1, 2, 3, 102, 0 },	/* IEEE80211_MODE_11B */
482 	{ 1, 2, 3,  47, 0 },	/* IEEE80211_MODE_11G */
483 	{ 1, 2, 3, 102, 0 },	/* IEEE80211_MODE_FH */
484 	{ 1, 2, 2,  47, 0 },	/* IEEE80211_MODE_TURBO_A */
485 	{ 1, 2, 2,  47, 0 },	/* IEEE80211_MODE_TURBO_G */
486 	{ 1, 2, 2,  47, 0 },	/* IEEE80211_MODE_STURBO_A */
487 	{ 1, 2, 3,  47, 0 },	/* IEEE80211_MODE_11NA */
488 	{ 1, 2, 3,  47, 0 },	/* IEEE80211_MODE_11NG */
489 };
490 
491 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
492 	{ 3, 4, 10,  0, 0 },	/* IEEE80211_MODE_AUTO */
493 	{ 3, 4, 10,  0, 0 },	/* IEEE80211_MODE_11A */
494 	{ 3, 4, 10,  0, 0 },	/* IEEE80211_MODE_11B */
495 	{ 3, 4, 10,  0, 0 },	/* IEEE80211_MODE_11G */
496 	{ 3, 4, 10,  0, 0 },	/* IEEE80211_MODE_FH */
497 	{ 2, 3, 10,  0, 0 },	/* IEEE80211_MODE_TURBO_A */
498 	{ 2, 3, 10,  0, 0 },	/* IEEE80211_MODE_TURBO_G */
499 	{ 2, 3, 10,  0, 0 },	/* IEEE80211_MODE_STURBO_A */
500 	{ 3, 4, 10,  0, 0 },	/* IEEE80211_MODE_11NA */
501 	{ 3, 4, 10,  0, 0 },	/* IEEE80211_MODE_11NG */
502 };
503 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
504 	{ 2, 3, 4,  94, 0 },	/* IEEE80211_MODE_AUTO */
505 	{ 2, 3, 4,  94, 0 },	/* IEEE80211_MODE_11A */
506 	{ 2, 3, 4, 188, 0 },	/* IEEE80211_MODE_11B */
507 	{ 2, 3, 4,  94, 0 },	/* IEEE80211_MODE_11G */
508 	{ 2, 3, 4, 188, 0 },	/* IEEE80211_MODE_FH */
509 	{ 2, 2, 3,  94, 0 },	/* IEEE80211_MODE_TURBO_A */
510 	{ 2, 2, 3,  94, 0 },	/* IEEE80211_MODE_TURBO_G */
511 	{ 2, 2, 3,  94, 0 },	/* IEEE80211_MODE_STURBO_A */
512 	{ 2, 3, 4,  94, 0 },	/* IEEE80211_MODE_11NA */
513 	{ 2, 3, 4,  94, 0 },	/* IEEE80211_MODE_11NG */
514 };
515 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
516 	{ 2, 2, 3,  47, 0 },	/* IEEE80211_MODE_AUTO */
517 	{ 2, 2, 3,  47, 0 },	/* IEEE80211_MODE_11A */
518 	{ 2, 2, 3, 102, 0 },	/* IEEE80211_MODE_11B */
519 	{ 2, 2, 3,  47, 0 },	/* IEEE80211_MODE_11G */
520 	{ 2, 2, 3, 102, 0 },	/* IEEE80211_MODE_FH */
521 	{ 1, 2, 2,  47, 0 },	/* IEEE80211_MODE_TURBO_A */
522 	{ 1, 2, 2,  47, 0 },	/* IEEE80211_MODE_TURBO_G */
523 	{ 1, 2, 2,  47, 0 },	/* IEEE80211_MODE_STURBO_A */
524 	{ 2, 2, 3,  47, 0 },	/* IEEE80211_MODE_11NA */
525 	{ 2, 2, 3,  47, 0 },	/* IEEE80211_MODE_11NG */
526 };
527 
528 void
529 ieee80211_wme_initparams(struct ieee80211com *ic)
530 {
531 	struct ieee80211_wme_state *wme = &ic->ic_wme;
532 	const paramType *pPhyParam, *pBssPhyParam;
533 	struct wmeParams *wmep;
534 	enum ieee80211_phymode mode;
535 	int i;
536 
537 	if ((ic->ic_caps & IEEE80211_C_WME) == 0)
538 		return;
539 
540 	/*
541 	 * Select mode; we can be called early in which case we
542 	 * always use auto mode.  We know we'll be called when
543 	 * entering the RUN state with bsschan setup properly
544 	 * so state will eventually get set correctly
545 	 */
546 	if (ic->ic_curchan != IEEE80211_CHAN_ANYC)
547 		mode = ieee80211_chan2mode(ic, ic->ic_curchan);
548 	else
549 		mode = IEEE80211_MODE_AUTO;
550 	for (i = 0; i < WME_NUM_AC; i++) {
551 		switch (i) {
552 		case WME_AC_BK:
553 			pPhyParam = &phyParamForAC_BK[mode];
554 			pBssPhyParam = &phyParamForAC_BK[mode];
555 			break;
556 		case WME_AC_VI:
557 			pPhyParam = &phyParamForAC_VI[mode];
558 			pBssPhyParam = &bssPhyParamForAC_VI[mode];
559 			break;
560 		case WME_AC_VO:
561 			pPhyParam = &phyParamForAC_VO[mode];
562 			pBssPhyParam = &bssPhyParamForAC_VO[mode];
563 			break;
564 		case WME_AC_BE:
565 		default:
566 			pPhyParam = &phyParamForAC_BE[mode];
567 			pBssPhyParam = &bssPhyParamForAC_BE[mode];
568 			break;
569 		}
570 
571 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
572 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
573 			wmep->wmep_acm = pPhyParam->acm;
574 			wmep->wmep_aifsn = pPhyParam->aifsn;
575 			wmep->wmep_logcwmin = pPhyParam->logcwmin;
576 			wmep->wmep_logcwmax = pPhyParam->logcwmax;
577 			wmep->wmep_txopLimit = pPhyParam->txopLimit;
578 		} else {
579 			wmep->wmep_acm = pBssPhyParam->acm;
580 			wmep->wmep_aifsn = pBssPhyParam->aifsn;
581 			wmep->wmep_logcwmin = pBssPhyParam->logcwmin;
582 			wmep->wmep_logcwmax = pBssPhyParam->logcwmax;
583 			wmep->wmep_txopLimit = pBssPhyParam->txopLimit;
584 
585 		}
586 		ieee80211_dbg(IEEE80211_MSG_WME, "ieee80211_wme_initparams: "
587 		    "%s chan [acm %u aifsn %u log2(cwmin) %u "
588 		    "log2(cwmax) %u txpoLimit %u]\n",
589 		    ieee80211_wme_acnames[i],
590 		    wmep->wmep_acm,
591 		    wmep->wmep_aifsn,
592 		    wmep->wmep_logcwmin,
593 		    wmep->wmep_logcwmax,
594 		    wmep->wmep_txopLimit);
595 
596 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
597 		wmep->wmep_acm = pBssPhyParam->acm;
598 		wmep->wmep_aifsn = pBssPhyParam->aifsn;
599 		wmep->wmep_logcwmin = pBssPhyParam->logcwmin;
600 		wmep->wmep_logcwmax = pBssPhyParam->logcwmax;
601 		wmep->wmep_txopLimit = pBssPhyParam->txopLimit;
602 		ieee80211_dbg(IEEE80211_MSG_WME, "ieee80211_wme_initparams: "
603 		    "%s  bss [acm %u aifsn %u log2(cwmin) %u "
604 		    "log2(cwmax) %u txpoLimit %u]\n",
605 		    ieee80211_wme_acnames[i],
606 		    wmep->wmep_acm,
607 		    wmep->wmep_aifsn,
608 		    wmep->wmep_logcwmin,
609 		    wmep->wmep_logcwmax,
610 		    wmep->wmep_txopLimit);
611 	}
612 	/* NB: check ic_bss to avoid NULL deref on initial attach */
613 	if (ic->ic_bss != NULL) {
614 		/*
615 		 * Calculate agressive mode switching threshold based
616 		 * on beacon interval.  This doesn't need locking since
617 		 * we're only called before entering the RUN state at
618 		 * which point we start sending beacon frames.
619 		 */
620 		wme->wme_hipri_switch_thresh =
621 		    (HIGH_PRI_SWITCH_THRESH * ic->ic_bss->in_intval) / 100;
622 		ieee80211_wme_updateparams(ic);
623 	}
624 }
625 
626 /*
627  * Update WME parameters for ourself and the BSS.
628  */
629 void
630 ieee80211_wme_updateparams(struct ieee80211com *ic)
631 {
632 	static const paramType phyParam[IEEE80211_MODE_MAX] = {
633 		{ 2, 4, 10, 64, 0 },	/* IEEE80211_MODE_AUTO */
634 		{ 2, 4, 10, 64, 0 },	/* IEEE80211_MODE_11A */
635 		{ 2, 5, 10, 64, 0 },	/* IEEE80211_MODE_11B */
636 		{ 2, 4, 10, 64, 0 },	/* IEEE80211_MODE_11G */
637 		{ 2, 5, 10, 64, 0 },	/* IEEE80211_MODE_FH */
638 		{ 1, 3, 10, 64, 0 },	/* IEEE80211_MODE_TURBO_A */
639 		{ 1, 3, 10, 64, 0 },	/* IEEE80211_MODE_TURBO_G */
640 		{ 1, 3, 10, 64, 0 },	/* IEEE80211_MODE_STURBO_A */
641 		{ 2, 4, 10, 64, 0 },	/* IEEE80211_MODE_11NA */
642 		{ 2, 4, 10, 64, 0 },	/* IEEE80211_MODE_11NG */
643 	};
644 	struct ieee80211_wme_state *wme = &ic->ic_wme;
645 	const struct wmeParams *wmep;
646 	struct wmeParams *chanp, *bssp;
647 	enum ieee80211_phymode mode;
648 	int i;
649 
650 	if ((ic->ic_caps & IEEE80211_C_WME) == 0)
651 		return;
652 
653 	/* set up the channel access parameters for the physical device */
654 	for (i = 0; i < WME_NUM_AC; i++) {
655 		chanp = &wme->wme_chanParams.cap_wmeParams[i];
656 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
657 		chanp->wmep_aifsn = wmep->wmep_aifsn;
658 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
659 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
660 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
661 
662 		chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
663 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
664 		chanp->wmep_aifsn = wmep->wmep_aifsn;
665 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
666 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
667 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
668 	}
669 
670 	/*
671 	 * Select mode; we can be called early in which case we
672 	 * always use auto mode.  We know we'll be called when
673 	 * entering the RUN state with bsschan setup properly
674 	 * so state will eventually get set correctly
675 	 */
676 	if (ic->ic_curchan != IEEE80211_CHAN_ANYC)
677 		mode = ieee80211_chan2mode(ic, ic->ic_curchan);
678 	else
679 		mode = IEEE80211_MODE_AUTO;
680 
681 	/*
682 	 * This implements agressive mode as found in certain
683 	 * vendors' AP's.  When there is significant high
684 	 * priority (VI/VO) traffic in the BSS throttle back BE
685 	 * traffic by using conservative parameters.  Otherwise
686 	 * BE uses agressive params to optimize performance of
687 	 * legacy/non-QoS traffic.
688 	 */
689 	if ((ic->ic_opmode == IEEE80211_M_HOSTAP &&
690 	    (wme->wme_flags & WME_F_AGGRMODE) != 0) ||
691 	    (ic->ic_opmode == IEEE80211_M_STA &&
692 	    (ic->ic_bss->in_flags & IEEE80211_NODE_QOS) == 0) ||
693 	    (ic->ic_flags & IEEE80211_F_WME) == 0) {
694 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
695 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
696 
697 		chanp->wmep_aifsn = bssp->wmep_aifsn = phyParam[mode].aifsn;
698 		chanp->wmep_logcwmin = bssp->wmep_logcwmin =
699 		    phyParam[mode].logcwmin;
700 		chanp->wmep_logcwmax = bssp->wmep_logcwmax =
701 		    phyParam[mode].logcwmax;
702 		chanp->wmep_txopLimit = bssp->wmep_txopLimit =
703 		    (ic->ic_flags & IEEE80211_F_BURST) ?
704 		    phyParam[mode].txopLimit : 0;
705 		ieee80211_dbg(IEEE80211_MSG_WME,
706 		    "ieee80211_wme_updateparams_locked: "
707 		    "%s [acm %u aifsn %u log2(cwmin) %u "
708 		    "log2(cwmax) %u txpoLimit %u]\n",
709 		    ieee80211_wme_acnames[WME_AC_BE],
710 		    chanp->wmep_acm,
711 		    chanp->wmep_aifsn,
712 		    chanp->wmep_logcwmin,
713 		    chanp->wmep_logcwmax,
714 		    chanp->wmep_txopLimit);
715 	}
716 
717 	wme->wme_update(ic);
718 
719 	ieee80211_dbg(IEEE80211_MSG_WME, "ieee80211_wme_updateparams(): "
720 	    "%s: WME params updated, cap_info 0x%x\n",
721 	    ic->ic_opmode == IEEE80211_M_STA ?
722 	    wme->wme_wmeChanParams.cap_info :
723 	    wme->wme_bssChanParams.cap_info);
724 }
725 
726 /*
727  * Process STA mode beacon miss events. Send a direct probe request
728  * frame to the current ap bmiss_max times (w/o answer) before
729  * scanning for a new ap.
730  */
731 void
732 ieee80211_beacon_miss(ieee80211com_t *ic)
733 {
734 	ieee80211_impl_t *im = ic->ic_private;
735 
736 	if (ic->ic_flags & IEEE80211_F_SCAN)
737 		return;
738 	ieee80211_dbg(IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
739 	    "%s\n", "beacon miss");
740 
741 	/*
742 	 * Our handling is only meaningful for stations that are
743 	 * associated; any other conditions else will be handled
744 	 * through different means (e.g. the tx timeout on mgt frames).
745 	 */
746 	if (ic->ic_opmode != IEEE80211_M_STA ||
747 	    ic->ic_state != IEEE80211_S_RUN) {
748 		return;
749 	}
750 
751 	IEEE80211_LOCK(ic);
752 	if (++im->im_bmiss_count < im->im_bmiss_max) {
753 		/*
754 		 * Send a directed probe req before falling back to a scan;
755 		 * if we receive a response ic_bmiss_count will be reset.
756 		 * Some cards mistakenly report beacon miss so this avoids
757 		 * the expensive scan if the ap is still there.
758 		 */
759 		IEEE80211_UNLOCK(ic);
760 		(void) ieee80211_send_probereq(ic->ic_bss, ic->ic_macaddr,
761 		    ic->ic_bss->in_bssid, ic->ic_bss->in_bssid,
762 		    ic->ic_bss->in_essid, ic->ic_bss->in_esslen,
763 		    ic->ic_opt_ie, ic->ic_opt_ie_len);
764 		return;
765 	}
766 	im->im_bmiss_count = 0;
767 	IEEE80211_UNLOCK(ic);
768 	ieee80211_new_state(ic, IEEE80211_S_SCAN, 0);
769 }
770 
771 /*
772  * Manage state transition between INIT | AUTH | ASSOC | RUN.
773  */
774 static int
775 ieee80211_newstate(ieee80211com_t *ic, enum ieee80211_state nstate, int arg)
776 {
777 	struct ieee80211_impl *im = ic->ic_private;
778 	ieee80211_node_t *in;
779 	enum ieee80211_state ostate;
780 	wifi_data_t wd = { 0 };
781 
782 	IEEE80211_LOCK(ic);
783 	ostate = ic->ic_state;
784 	ieee80211_dbg(IEEE80211_MSG_STATE, "ieee80211_newstate(): "
785 	    "%s -> %s\n",
786 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate]);
787 	ic->ic_state = nstate;
788 	in = ic->ic_bss;
789 	im->im_swbmiss_period = 0;	/* Reset software beacon miss period */
790 
791 	switch (nstate) {
792 	case IEEE80211_S_INIT:
793 		IEEE80211_UNLOCK(ic);
794 		switch (ostate) {
795 		case IEEE80211_S_INIT:
796 			return (0);
797 		case IEEE80211_S_SCAN:
798 			ieee80211_cancel_scan(ic);
799 			break;
800 		case IEEE80211_S_AUTH:
801 			break;
802 		case IEEE80211_S_ASSOC:
803 			if (ic->ic_opmode == IEEE80211_M_STA) {
804 				IEEE80211_SEND_MGMT(ic, in,
805 				    IEEE80211_FC0_SUBTYPE_DEAUTH,
806 				    IEEE80211_REASON_AUTH_LEAVE);
807 			}
808 			break;
809 		case IEEE80211_S_RUN:
810 			switch (ic->ic_opmode) {
811 			case IEEE80211_M_STA:
812 				IEEE80211_SEND_MGMT(ic, in,
813 				    IEEE80211_FC0_SUBTYPE_DEAUTH,
814 				    IEEE80211_REASON_AUTH_LEAVE);
815 				ieee80211_sta_leave(ic, in);
816 				break;
817 			case IEEE80211_M_IBSS:
818 				ieee80211_notify_node_leave(ic, in);
819 				break;
820 			default:
821 				break;
822 			}
823 			break;
824 		}
825 		IEEE80211_LOCK(ic);
826 		im->im_mgt_timer = 0;
827 		ieee80211_reset_bss(ic);
828 		break;
829 	case IEEE80211_S_SCAN:
830 		switch (ostate) {
831 		case IEEE80211_S_INIT:
832 			IEEE80211_UNLOCK(ic);
833 			ieee80211_begin_scan(ic, (arg == 0) ? B_FALSE : B_TRUE);
834 			return (0);
835 		case IEEE80211_S_SCAN:
836 			/*
837 			 * Scan next. If doing an active scan and the
838 			 * channel is not marked passive-only then send
839 			 * a probe request.  Otherwise just listen for
840 			 * beacons on the channel.
841 			 */
842 			if ((ic->ic_flags & IEEE80211_F_ASCAN) &&
843 			    !IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan)) {
844 				IEEE80211_UNLOCK(ic);
845 				(void) ieee80211_send_probereq(in,
846 				    ic->ic_macaddr, wifi_bcastaddr,
847 				    wifi_bcastaddr,
848 				    ic->ic_des_essid, ic->ic_des_esslen,
849 				    ic->ic_opt_ie, ic->ic_opt_ie_len);
850 				return (0);
851 			}
852 			break;
853 		case IEEE80211_S_RUN:
854 			/* beacon miss */
855 			ieee80211_dbg(IEEE80211_MSG_STATE,
856 			    "no recent beacons from %s, rescanning\n",
857 			    ieee80211_macaddr_sprintf(in->in_macaddr));
858 			IEEE80211_UNLOCK(ic);
859 			ieee80211_sta_leave(ic, in);
860 			IEEE80211_LOCK(ic);
861 			ic->ic_flags &= ~IEEE80211_F_SIBSS;
862 			/* FALLTHRU */
863 		case IEEE80211_S_AUTH:
864 		case IEEE80211_S_ASSOC:
865 			/* timeout restart scan */
866 			in = ieee80211_find_node(&ic->ic_scan,
867 			    ic->ic_bss->in_macaddr);
868 			if (in != NULL) {
869 				in->in_fails++;
870 				ieee80211_unref_node(&in);
871 			}
872 			break;
873 		}
874 		break;
875 	case IEEE80211_S_AUTH:
876 		ASSERT(ic->ic_opmode == IEEE80211_M_STA);
877 		switch (ostate) {
878 		case IEEE80211_S_INIT:
879 		case IEEE80211_S_SCAN:
880 			IEEE80211_UNLOCK(ic);
881 			IEEE80211_SEND_MGMT(ic, in, IEEE80211_FC0_SUBTYPE_AUTH,
882 			    1);
883 			return (0);
884 		case IEEE80211_S_AUTH:
885 		case IEEE80211_S_ASSOC:
886 			switch (arg) {
887 			case IEEE80211_FC0_SUBTYPE_AUTH:
888 				IEEE80211_UNLOCK(ic);
889 				IEEE80211_SEND_MGMT(ic, in,
890 				    IEEE80211_FC0_SUBTYPE_AUTH, 2);
891 				return (0);
892 			case IEEE80211_FC0_SUBTYPE_DEAUTH:
893 				/* ignore and retry scan on timeout */
894 				break;
895 			}
896 			break;
897 		case IEEE80211_S_RUN:
898 			switch (arg) {
899 			case IEEE80211_FC0_SUBTYPE_AUTH:
900 				ic->ic_state = ostate;	/* stay RUN */
901 				IEEE80211_UNLOCK(ic);
902 				IEEE80211_SEND_MGMT(ic, in,
903 				    IEEE80211_FC0_SUBTYPE_AUTH, 2);
904 				return (0);
905 			case IEEE80211_FC0_SUBTYPE_DEAUTH:
906 				IEEE80211_UNLOCK(ic);
907 				ieee80211_sta_leave(ic, in);
908 				/* try to re-auth */
909 				IEEE80211_SEND_MGMT(ic, in,
910 				    IEEE80211_FC0_SUBTYPE_AUTH, 1);
911 				return (0);
912 			}
913 			break;
914 		}
915 		break;
916 	case IEEE80211_S_ASSOC:
917 		ASSERT(ic->ic_opmode == IEEE80211_M_STA);
918 		switch (ostate) {
919 		case IEEE80211_S_INIT:
920 		case IEEE80211_S_SCAN:
921 		case IEEE80211_S_ASSOC:
922 			ieee80211_dbg(IEEE80211_MSG_ANY, "ieee80211_newstate: "
923 			    "invalid transition\n");
924 			break;
925 		case IEEE80211_S_AUTH:
926 			IEEE80211_UNLOCK(ic);
927 			IEEE80211_SEND_MGMT(ic, in,
928 			    IEEE80211_FC0_SUBTYPE_ASSOC_REQ, 0);
929 			return (0);
930 		case IEEE80211_S_RUN:
931 			IEEE80211_UNLOCK(ic);
932 			ieee80211_sta_leave(ic, in);
933 			IEEE80211_SEND_MGMT(ic, in,
934 			    IEEE80211_FC0_SUBTYPE_ASSOC_REQ, 1);
935 			return (0);
936 		}
937 		break;
938 	case IEEE80211_S_RUN:
939 		switch (ostate) {
940 		case IEEE80211_S_INIT:
941 			ieee80211_err("ieee80211_newstate: "
942 			    "invalid transition\n");
943 			break;
944 		case IEEE80211_S_AUTH:
945 			ieee80211_err("ieee80211_newstate: "
946 			    "invalid transition\n");
947 			break;
948 		case IEEE80211_S_SCAN:		/* adhoc/hostap mode */
949 		case IEEE80211_S_ASSOC:		/* infra mode */
950 			ASSERT(in->in_txrate < in->in_rates.ir_nrates);
951 			im->im_mgt_timer = 0;
952 			ieee80211_notify_node_join(ic, in);
953 
954 			/*
955 			 * We can send data now; update the fastpath with our
956 			 * current associated BSSID and other relevant settings.
957 			 */
958 			wd.wd_secalloc = ieee80211_crypto_getciphertype(ic);
959 			wd.wd_opmode = ic->ic_opmode;
960 			IEEE80211_ADDR_COPY(wd.wd_bssid, in->in_bssid);
961 			wd.wd_qospad = 0;
962 			if (in->in_flags &
963 			    (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) {
964 				wd.wd_qospad = 2;
965 				if (ic->ic_flags & IEEE80211_F_DATAPAD) {
966 					wd.wd_qospad = roundup(wd.wd_qospad,
967 					    sizeof (uint32_t));
968 				}
969 			}
970 			(void) mac_pdata_update(ic->ic_mach, &wd, sizeof (wd));
971 			break;
972 		}
973 
974 		/*
975 		 * When 802.1x is not in use mark the port authorized
976 		 * at this point so traffic can flow.
977 		 */
978 		if (in->in_authmode != IEEE80211_AUTH_8021X)
979 			ieee80211_node_authorize(in);
980 		/*
981 		 * Enable inactivity processing.
982 		 */
983 		ic->ic_scan.nt_inact_timer = IEEE80211_INACT_WAIT;
984 		ic->ic_sta.nt_inact_timer = IEEE80211_INACT_WAIT;
985 		break;	/* IEEE80211_S_RUN */
986 	} /* switch nstate */
987 	IEEE80211_UNLOCK(ic);
988 
989 	return (0);
990 }
991