xref: /titanic_51/usr/src/uts/common/io/mac/mac_client.c (revision 54d5ddcceae506b00e8889ad38c9d15489f670c5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * - General Introduction:
29  *
30  * This file contains the implementation of the MAC client kernel
31  * API and related code. The MAC client API allows a kernel module
32  * to gain access to a MAC instance (physical NIC, link aggregation, etc).
33  * It allows a MAC client to associate itself with a MAC address,
34  * VLANs, callback functions for data traffic and for promiscuous mode.
35  * The MAC client API is also used to specify the properties associated
36  * with a MAC client, such as bandwidth limits, priority, CPUS, etc.
37  * These properties are further used to determine the hardware resources
38  * to allocate to the various MAC clients.
39  *
40  * - Primary MAC clients:
41  *
42  * The MAC client API refers to "primary MAC clients". A primary MAC
43  * client is a client which "owns" the primary MAC address of
44  * the underlying MAC instance. The primary MAC address is called out
45  * since it is associated with specific semantics: the primary MAC
46  * address is the MAC address which is assigned to the IP interface
47  * when it is plumbed, and the primary MAC address is assigned
48  * to VLAN data-links. The primary address of a MAC instance can
49  * also change dynamically from under the MAC client, for example
50  * as a result of a change of state of a link aggregation. In that
51  * case the MAC layer automatically updates all data-structures which
52  * refer to the current value of the primary MAC address. Typical
53  * primary MAC clients are dls, aggr, and xnb. A typical non-primary
54  * MAC client is the vnic driver.
55  *
56  * - Virtual Switching:
57  *
58  * The MAC layer implements a virtual switch between the MAC clients
59  * (primary and non-primary) defined on top of the same underlying
60  * NIC (physical, link aggregation, etc). The virtual switch is
61  * VLAN-aware, i.e. it allows multiple MAC clients to be member
62  * of one or more VLANs, and the virtual switch will distribute
63  * multicast tagged packets only to the member of the corresponding
64  * VLANs.
65  *
66  * - Upper vs Lower MAC:
67  *
68  * Creating a VNIC on top of a MAC instance effectively causes
69  * two MAC instances to be layered on top of each other, one for
70  * the VNIC(s), one for the underlying MAC instance (physical NIC,
71  * link aggregation, etc). In the code below we refer to the
72  * underlying NIC as the "lower MAC", and we refer to VNICs as
73  * the "upper MAC".
74  *
75  * - Pass-through for VNICs:
76  *
77  * When VNICs are created on top of an underlying MAC, this causes
78  * a layering of two MAC instances. Since the lower MAC already
79  * does the switching and demultiplexing to its MAC clients, the
80  * upper MAC would simply have to pass packets to the layer below
81  * or above it, which would introduce overhead. In order to avoid
82  * this overhead, the MAC layer implements a pass-through mechanism
83  * for VNICs. When a VNIC opens the lower MAC instance, it saves
84  * the MAC client handle it optains from the MAC layer. When a MAC
85  * client opens a VNIC (upper MAC), the MAC layer detects that
86  * the MAC being opened is a VNIC, and gets the MAC client handle
87  * that the VNIC driver obtained from the lower MAC. This exchange
88  * is doing through a private capability between the MAC layer
89  * and the VNIC driver. The upper MAC then returns that handle
90  * directly to its MAC client. Any operation done by the upper
91  * MAC client is now done on the lower MAC client handle, which
92  * allows the VNIC driver to be completely bypassed for the
93  * performance sensitive data-path.
94  *
95  */
96 
97 #include <sys/types.h>
98 #include <sys/conf.h>
99 #include <sys/id_space.h>
100 #include <sys/esunddi.h>
101 #include <sys/stat.h>
102 #include <sys/mkdev.h>
103 #include <sys/stream.h>
104 #include <sys/strsun.h>
105 #include <sys/strsubr.h>
106 #include <sys/dlpi.h>
107 #include <sys/modhash.h>
108 #include <sys/mac_impl.h>
109 #include <sys/mac_client_impl.h>
110 #include <sys/mac_soft_ring.h>
111 #include <sys/dls.h>
112 #include <sys/dld.h>
113 #include <sys/modctl.h>
114 #include <sys/fs/dv_node.h>
115 #include <sys/thread.h>
116 #include <sys/proc.h>
117 #include <sys/callb.h>
118 #include <sys/cpuvar.h>
119 #include <sys/atomic.h>
120 #include <sys/sdt.h>
121 #include <sys/mac_flow.h>
122 #include <sys/ddi_intr_impl.h>
123 #include <sys/disp.h>
124 #include <sys/sdt.h>
125 #include <sys/vnic.h>
126 #include <sys/vnic_impl.h>
127 #include <sys/vlan.h>
128 #include <inet/ip.h>
129 #include <inet/ip6.h>
130 #include <sys/exacct.h>
131 #include <sys/exacct_impl.h>
132 #include <inet/nd.h>
133 #include <sys/ethernet.h>
134 
135 kmem_cache_t	*mac_client_impl_cache;
136 kmem_cache_t	*mac_promisc_impl_cache;
137 
138 static boolean_t mac_client_single_rcvr(mac_client_impl_t *);
139 static flow_entry_t *mac_client_swap_mciflent(mac_client_impl_t *);
140 static flow_entry_t *mac_client_get_flow(mac_client_impl_t *,
141     mac_unicast_impl_t *);
142 static void mac_client_remove_flow_from_list(mac_client_impl_t *,
143     flow_entry_t *);
144 static void mac_client_add_to_flow_list(mac_client_impl_t *, flow_entry_t *);
145 static void mac_rename_flow_names(mac_client_impl_t *, const char *);
146 static void mac_virtual_link_update(mac_impl_t *);
147 
148 /* ARGSUSED */
149 static int
150 i_mac_client_impl_ctor(void *buf, void *arg, int kmflag)
151 {
152 	int	i;
153 	mac_client_impl_t	*mcip = buf;
154 
155 	bzero(buf, MAC_CLIENT_IMPL_SIZE);
156 	mutex_init(&mcip->mci_tx_cb_lock, NULL, MUTEX_DRIVER, NULL);
157 	mcip->mci_tx_notify_cb_info.mcbi_lockp = &mcip->mci_tx_cb_lock;
158 
159 	ASSERT(mac_tx_percpu_cnt >= 0);
160 	for (i = 0; i <= mac_tx_percpu_cnt; i++) {
161 		mutex_init(&mcip->mci_tx_pcpu[i].pcpu_tx_lock, NULL,
162 		    MUTEX_DRIVER, NULL);
163 	}
164 	cv_init(&mcip->mci_tx_cv, NULL, CV_DRIVER, NULL);
165 
166 	return (0);
167 }
168 
169 /* ARGSUSED */
170 static void
171 i_mac_client_impl_dtor(void *buf, void *arg)
172 {
173 	int	i;
174 	mac_client_impl_t *mcip = buf;
175 
176 	ASSERT(mcip->mci_promisc_list == NULL);
177 	ASSERT(mcip->mci_unicast_list == NULL);
178 	ASSERT(mcip->mci_state_flags == 0);
179 	ASSERT(mcip->mci_tx_flag == 0);
180 
181 	mutex_destroy(&mcip->mci_tx_cb_lock);
182 
183 	ASSERT(mac_tx_percpu_cnt >= 0);
184 	for (i = 0; i <= mac_tx_percpu_cnt; i++) {
185 		ASSERT(mcip->mci_tx_pcpu[i].pcpu_tx_refcnt == 0);
186 		mutex_destroy(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
187 	}
188 	cv_destroy(&mcip->mci_tx_cv);
189 }
190 
191 /* ARGSUSED */
192 static int
193 i_mac_promisc_impl_ctor(void *buf, void *arg, int kmflag)
194 {
195 	mac_promisc_impl_t	*mpip = buf;
196 
197 	bzero(buf, sizeof (mac_promisc_impl_t));
198 	mpip->mpi_mci_link.mcb_objp = buf;
199 	mpip->mpi_mci_link.mcb_objsize = sizeof (mac_promisc_impl_t);
200 	mpip->mpi_mi_link.mcb_objp = buf;
201 	mpip->mpi_mi_link.mcb_objsize = sizeof (mac_promisc_impl_t);
202 	return (0);
203 }
204 
205 /* ARGSUSED */
206 static void
207 i_mac_promisc_impl_dtor(void *buf, void *arg)
208 {
209 	mac_promisc_impl_t	*mpip = buf;
210 
211 	ASSERT(mpip->mpi_mci_link.mcb_objp != NULL);
212 	ASSERT(mpip->mpi_mci_link.mcb_objsize == sizeof (mac_promisc_impl_t));
213 	ASSERT(mpip->mpi_mi_link.mcb_objp == mpip->mpi_mci_link.mcb_objp);
214 	ASSERT(mpip->mpi_mi_link.mcb_objsize == sizeof (mac_promisc_impl_t));
215 
216 	mpip->mpi_mci_link.mcb_objp = NULL;
217 	mpip->mpi_mci_link.mcb_objsize = 0;
218 	mpip->mpi_mi_link.mcb_objp = NULL;
219 	mpip->mpi_mi_link.mcb_objsize = 0;
220 
221 	ASSERT(mpip->mpi_mci_link.mcb_flags == 0);
222 	mpip->mpi_mci_link.mcb_objsize = 0;
223 }
224 
225 void
226 mac_client_init(void)
227 {
228 	ASSERT(mac_tx_percpu_cnt >= 0);
229 
230 	mac_client_impl_cache = kmem_cache_create("mac_client_impl_cache",
231 	    MAC_CLIENT_IMPL_SIZE, 0, i_mac_client_impl_ctor,
232 	    i_mac_client_impl_dtor, NULL, NULL, NULL, 0);
233 	ASSERT(mac_client_impl_cache != NULL);
234 
235 	mac_promisc_impl_cache = kmem_cache_create("mac_promisc_impl_cache",
236 	    sizeof (mac_promisc_impl_t), 0, i_mac_promisc_impl_ctor,
237 	    i_mac_promisc_impl_dtor, NULL, NULL, NULL, 0);
238 	ASSERT(mac_promisc_impl_cache != NULL);
239 }
240 
241 void
242 mac_client_fini(void)
243 {
244 	kmem_cache_destroy(mac_client_impl_cache);
245 	kmem_cache_destroy(mac_promisc_impl_cache);
246 }
247 
248 /*
249  * Return the lower MAC client handle from the VNIC driver for the
250  * specified VNIC MAC instance.
251  */
252 mac_client_impl_t *
253 mac_vnic_lower(mac_impl_t *mip)
254 {
255 	mac_capab_vnic_t cap;
256 	mac_client_impl_t *mcip;
257 
258 	VERIFY(i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, &cap));
259 	mcip = cap.mcv_mac_client_handle(cap.mcv_arg);
260 
261 	return (mcip);
262 }
263 
264 /*
265  * Return the MAC client handle of the primary MAC client for the
266  * specified MAC instance, or NULL otherwise.
267  */
268 mac_client_impl_t *
269 mac_primary_client_handle(mac_impl_t *mip)
270 {
271 	mac_client_impl_t *mcip;
272 
273 	if (mip->mi_state_flags & MIS_IS_VNIC)
274 		return (mac_vnic_lower(mip));
275 
276 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
277 
278 	for (mcip = mip->mi_clients_list; mcip != NULL;
279 	    mcip = mcip->mci_client_next) {
280 		if (MCIP_DATAPATH_SETUP(mcip) && mac_is_primary_client(mcip))
281 			return (mcip);
282 	}
283 	return (NULL);
284 }
285 
286 /*
287  * Open a MAC specified by its MAC name.
288  */
289 int
290 mac_open(const char *macname, mac_handle_t *mhp)
291 {
292 	mac_impl_t	*mip;
293 	int		err;
294 
295 	/*
296 	 * Look up its entry in the global hash table.
297 	 */
298 	if ((err = mac_hold(macname, &mip)) != 0)
299 		return (err);
300 
301 	/*
302 	 * Hold the dip associated to the MAC to prevent it from being
303 	 * detached. For a softmac, its underlying dip is held by the
304 	 * mi_open() callback.
305 	 *
306 	 * This is done to be more tolerant with some defective drivers,
307 	 * which incorrectly handle mac_unregister() failure in their
308 	 * xxx_detach() routine. For example, some drivers ignore the
309 	 * failure of mac_unregister() and free all resources that
310 	 * that are needed for data transmition.
311 	 */
312 	e_ddi_hold_devi(mip->mi_dip);
313 
314 	if (!(mip->mi_callbacks->mc_callbacks & MC_OPEN)) {
315 		*mhp = (mac_handle_t)mip;
316 		return (0);
317 	}
318 
319 	/*
320 	 * The mac perimeter is used in both mac_open and mac_close by the
321 	 * framework to single thread the MC_OPEN/MC_CLOSE of drivers.
322 	 */
323 	i_mac_perim_enter(mip);
324 	mip->mi_oref++;
325 	if (mip->mi_oref != 1 || ((err = mip->mi_open(mip->mi_driver)) == 0)) {
326 		*mhp = (mac_handle_t)mip;
327 		i_mac_perim_exit(mip);
328 		return (0);
329 	}
330 	mip->mi_oref--;
331 	ddi_release_devi(mip->mi_dip);
332 	mac_rele(mip);
333 	i_mac_perim_exit(mip);
334 	return (err);
335 }
336 
337 /*
338  * Open a MAC specified by its linkid.
339  */
340 int
341 mac_open_by_linkid(datalink_id_t linkid, mac_handle_t *mhp)
342 {
343 	dls_dl_handle_t	dlh;
344 	int		err;
345 
346 	if ((err = dls_devnet_hold_tmp(linkid, &dlh)) != 0)
347 		return (err);
348 
349 	dls_devnet_prop_task_wait(dlh);
350 
351 	err = mac_open(dls_devnet_mac(dlh), mhp);
352 
353 	dls_devnet_rele_tmp(dlh);
354 	return (err);
355 }
356 
357 /*
358  * Open a MAC specified by its link name.
359  */
360 int
361 mac_open_by_linkname(const char *link, mac_handle_t *mhp)
362 {
363 	datalink_id_t	linkid;
364 	int		err;
365 
366 	if ((err = dls_mgmt_get_linkid(link, &linkid)) != 0)
367 		return (err);
368 	return (mac_open_by_linkid(linkid, mhp));
369 }
370 
371 /*
372  * Close the specified MAC.
373  */
374 void
375 mac_close(mac_handle_t mh)
376 {
377 	mac_impl_t	*mip = (mac_impl_t *)mh;
378 
379 	i_mac_perim_enter(mip);
380 	/*
381 	 * The mac perimeter is used in both mac_open and mac_close by the
382 	 * framework to single thread the MC_OPEN/MC_CLOSE of drivers.
383 	 */
384 	if (mip->mi_callbacks->mc_callbacks & MC_OPEN) {
385 		ASSERT(mip->mi_oref != 0);
386 		if (--mip->mi_oref == 0) {
387 			if ((mip->mi_callbacks->mc_callbacks & MC_CLOSE))
388 				mip->mi_close(mip->mi_driver);
389 		}
390 	}
391 	i_mac_perim_exit(mip);
392 	ddi_release_devi(mip->mi_dip);
393 	mac_rele(mip);
394 }
395 
396 /*
397  * Misc utility functions to retrieve various information about a MAC
398  * instance or a MAC client.
399  */
400 
401 const mac_info_t *
402 mac_info(mac_handle_t mh)
403 {
404 	return (&((mac_impl_t *)mh)->mi_info);
405 }
406 
407 dev_info_t *
408 mac_devinfo_get(mac_handle_t mh)
409 {
410 	return (((mac_impl_t *)mh)->mi_dip);
411 }
412 
413 const char *
414 mac_name(mac_handle_t mh)
415 {
416 	return (((mac_impl_t *)mh)->mi_name);
417 }
418 
419 char *
420 mac_client_name(mac_client_handle_t mch)
421 {
422 	return (((mac_client_impl_t *)mch)->mci_name);
423 }
424 
425 minor_t
426 mac_minor(mac_handle_t mh)
427 {
428 	return (((mac_impl_t *)mh)->mi_minor);
429 }
430 
431 /*
432  * Return the VID associated with a MAC client. This function should
433  * be called for clients which are associated with only one VID.
434  */
435 uint16_t
436 mac_client_vid(mac_client_handle_t mch)
437 {
438 	uint16_t		vid = VLAN_ID_NONE;
439 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
440 	flow_desc_t		flow_desc;
441 
442 	if (mcip->mci_nflents == 0)
443 		return (vid);
444 
445 	ASSERT(MCIP_DATAPATH_SETUP(mcip) && mac_client_single_rcvr(mcip));
446 
447 	mac_flow_get_desc(mcip->mci_flent, &flow_desc);
448 	if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0)
449 		vid = flow_desc.fd_vid;
450 
451 	return (vid);
452 }
453 
454 /*
455  * Return the link speed associated with the specified MAC client.
456  *
457  * The link speed of a MAC client is equal to the smallest value of
458  * 1) the current link speed of the underlying NIC, or
459  * 2) the bandwidth limit set for the MAC client.
460  *
461  * Note that the bandwidth limit can be higher than the speed
462  * of the underlying NIC. This is allowed to avoid spurious
463  * administration action failures or artifically lowering the
464  * bandwidth limit of a link that may  have temporarily lowered
465  * its link speed due to hardware problem or administrator action.
466  */
467 static uint64_t
468 mac_client_ifspeed(mac_client_impl_t *mcip)
469 {
470 	mac_impl_t *mip = mcip->mci_mip;
471 	uint64_t nic_speed;
472 
473 	nic_speed = mac_stat_get((mac_handle_t)mip, MAC_STAT_IFSPEED);
474 
475 	if (nic_speed == 0) {
476 		return (0);
477 	} else {
478 		uint64_t policy_limit = (uint64_t)-1;
479 
480 		if (MCIP_RESOURCE_PROPS_MASK(mcip) & MRP_MAXBW)
481 			policy_limit = MCIP_RESOURCE_PROPS_MAXBW(mcip);
482 
483 		return (MIN(policy_limit, nic_speed));
484 	}
485 }
486 
487 /*
488  * Return the link state of the specified client. If here are more
489  * than one clients of the underying mac_impl_t, the link state
490  * will always be UP regardless of the link state of the underlying
491  * mac_impl_t. This is needed to allow the MAC clients to continue
492  * to communicate with each other even when the physical link of
493  * their mac_impl_t is down.
494  */
495 static uint64_t
496 mac_client_link_state(mac_client_impl_t *mcip)
497 {
498 	mac_impl_t *mip = mcip->mci_mip;
499 	uint16_t vid;
500 	mac_client_impl_t *mci_list;
501 	mac_unicast_impl_t *mui_list, *oth_mui_list;
502 
503 	/*
504 	 * Returns LINK_STATE_UP if there are other MAC clients defined on
505 	 * mac_impl_t which share same VLAN ID as that of mcip. Note that
506 	 * if 'mcip' has more than one VID's then we match ANY one of the
507 	 * VID's with other MAC client's VID's and return LINK_STATE_UP.
508 	 */
509 	rw_enter(&mcip->mci_rw_lock, RW_READER);
510 	for (mui_list = mcip->mci_unicast_list; mui_list != NULL;
511 	    mui_list = mui_list->mui_next) {
512 		vid = mui_list->mui_vid;
513 		for (mci_list = mip->mi_clients_list; mci_list != NULL;
514 		    mci_list = mci_list->mci_client_next) {
515 			if (mci_list == mcip)
516 				continue;
517 			for (oth_mui_list = mci_list->mci_unicast_list;
518 			    oth_mui_list != NULL; oth_mui_list = oth_mui_list->
519 			    mui_next) {
520 				if (vid == oth_mui_list->mui_vid) {
521 					rw_exit(&mcip->mci_rw_lock);
522 					return (LINK_STATE_UP);
523 				}
524 			}
525 		}
526 	}
527 	rw_exit(&mcip->mci_rw_lock);
528 
529 	return (mac_stat_get((mac_handle_t)mip, MAC_STAT_LINK_STATE));
530 }
531 
532 /*
533  * Return the statistics of a MAC client. These statistics are different
534  * then the statistics of the underlying MAC which are returned by
535  * mac_stat_get().
536  */
537 uint64_t
538 mac_client_stat_get(mac_client_handle_t mch, uint_t stat)
539 {
540 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
541 	mac_impl_t *mip = mcip->mci_mip;
542 	uint64_t val;
543 
544 	switch (stat) {
545 	case MAC_STAT_LINK_STATE:
546 		val = mac_client_link_state(mcip);
547 		break;
548 	case MAC_STAT_LINK_UP:
549 		val = (mac_client_link_state(mcip) == LINK_STATE_UP);
550 		break;
551 	case MAC_STAT_PROMISC:
552 		val = mac_stat_get((mac_handle_t)mip, MAC_STAT_PROMISC);
553 		break;
554 	case MAC_STAT_IFSPEED:
555 		val = mac_client_ifspeed(mcip);
556 		break;
557 	case MAC_STAT_MULTIRCV:
558 		val = mcip->mci_stat_multircv;
559 		break;
560 	case MAC_STAT_BRDCSTRCV:
561 		val = mcip->mci_stat_brdcstrcv;
562 		break;
563 	case MAC_STAT_MULTIXMT:
564 		val = mcip->mci_stat_multixmt;
565 		break;
566 	case MAC_STAT_BRDCSTXMT:
567 		val = mcip->mci_stat_brdcstxmt;
568 		break;
569 	case MAC_STAT_OBYTES:
570 		val = mcip->mci_stat_obytes;
571 		break;
572 	case MAC_STAT_OPACKETS:
573 		val = mcip->mci_stat_opackets;
574 		break;
575 	case MAC_STAT_OERRORS:
576 		val = mcip->mci_stat_oerrors;
577 		break;
578 	case MAC_STAT_IPACKETS:
579 		val = mcip->mci_stat_ipackets;
580 		break;
581 	case MAC_STAT_RBYTES:
582 		val = mcip->mci_stat_ibytes;
583 		break;
584 	case MAC_STAT_IERRORS:
585 		val = mcip->mci_stat_ierrors;
586 		break;
587 	default:
588 		val = mac_stat_default(mip, stat);
589 		break;
590 	}
591 
592 	return (val);
593 }
594 
595 /*
596  * Return the statistics of the specified MAC instance.
597  */
598 uint64_t
599 mac_stat_get(mac_handle_t mh, uint_t stat)
600 {
601 	mac_impl_t	*mip = (mac_impl_t *)mh;
602 	uint64_t	val;
603 	int		ret;
604 
605 	/*
606 	 * The range of stat determines where it is maintained.  Stat
607 	 * values from 0 up to (but not including) MAC_STAT_MIN are
608 	 * mainteined by the mac module itself.  Everything else is
609 	 * maintained by the driver.
610 	 *
611 	 * If the mac_impl_t being queried corresponds to a VNIC,
612 	 * the stats need to be queried from the lower MAC client
613 	 * corresponding to the VNIC. (The mac_link_update()
614 	 * invoked by the driver to the lower MAC causes the *lower
615 	 * MAC* to update its mi_linkstate, and send a notification
616 	 * to its MAC clients. Due to the VNIC passthrough,
617 	 * these notifications are sent to the upper MAC clients
618 	 * of the VNIC directly, and the upper mac_impl_t of the VNIC
619 	 * does not have a valid mi_linkstate.
620 	 */
621 	if (stat < MAC_STAT_MIN && !(mip->mi_state_flags & MIS_IS_VNIC)) {
622 		/* these stats are maintained by the mac module itself */
623 		switch (stat) {
624 		case MAC_STAT_LINK_STATE:
625 			return (mip->mi_linkstate);
626 		case MAC_STAT_LINK_UP:
627 			return (mip->mi_linkstate == LINK_STATE_UP);
628 		case MAC_STAT_PROMISC:
629 			return (mip->mi_devpromisc != 0);
630 		default:
631 			ASSERT(B_FALSE);
632 		}
633 	}
634 
635 	/*
636 	 * Call the driver to get the given statistic.
637 	 */
638 	ret = mip->mi_getstat(mip->mi_driver, stat, &val);
639 	if (ret != 0) {
640 		/*
641 		 * The driver doesn't support this statistic.  Get the
642 		 * statistic's default value.
643 		 */
644 		val = mac_stat_default(mip, stat);
645 	}
646 	return (val);
647 }
648 
649 /*
650  * Utility function which returns the VID associated with a flow entry.
651  */
652 uint16_t
653 i_mac_flow_vid(flow_entry_t *flent)
654 {
655 	flow_desc_t	flow_desc;
656 
657 	mac_flow_get_desc(flent, &flow_desc);
658 
659 	if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0)
660 		return (flow_desc.fd_vid);
661 	return (VLAN_ID_NONE);
662 }
663 
664 /*
665  * Verify the validity of the specified unicast MAC address. Returns B_TRUE
666  * if the address is valid, B_FALSE otherwise (multicast address, or incorrect
667  * length.
668  */
669 boolean_t
670 mac_unicst_verify(mac_handle_t mh, const uint8_t *addr, uint_t len)
671 {
672 	mac_impl_t	*mip = (mac_impl_t *)mh;
673 
674 	/*
675 	 * Verify the address. No lock is needed since mi_type and plugin
676 	 * details don't change after mac_register().
677 	 */
678 	if ((len != mip->mi_type->mt_addr_length) ||
679 	    (mip->mi_type->mt_ops.mtops_unicst_verify(addr,
680 	    mip->mi_pdata)) != 0) {
681 		return (B_FALSE);
682 	} else {
683 		return (B_TRUE);
684 	}
685 }
686 
687 void
688 mac_sdu_get(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu)
689 {
690 	mac_impl_t	*mip = (mac_impl_t *)mh;
691 
692 	if (min_sdu != NULL)
693 		*min_sdu = mip->mi_sdu_min;
694 	if (max_sdu != NULL)
695 		*max_sdu = mip->mi_sdu_max;
696 }
697 
698 /*
699  * Update the MAC unicast address of the specified client's flows. Currently
700  * only one unicast MAC unicast address is allowed per client.
701  */
702 static void
703 mac_unicast_update_client_flow(mac_client_impl_t *mcip)
704 {
705 	mac_impl_t *mip = mcip->mci_mip;
706 	flow_entry_t *flent = mcip->mci_flent;
707 	mac_address_t *map = mcip->mci_unicast;
708 	flow_desc_t flow_desc;
709 
710 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
711 	ASSERT(flent != NULL);
712 
713 	mac_flow_get_desc(flent, &flow_desc);
714 	ASSERT(flow_desc.fd_mask & FLOW_LINK_DST);
715 
716 	bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len);
717 	mac_flow_set_desc(flent, &flow_desc);
718 
719 	/*
720 	 * A MAC client could have one MAC address but multiple
721 	 * VLANs. In that case update the flow entries corresponding
722 	 * to all VLANs of the MAC client.
723 	 */
724 	for (flent = mcip->mci_flent_list; flent != NULL;
725 	    flent = flent->fe_client_next) {
726 		mac_flow_get_desc(flent, &flow_desc);
727 		if (!(flent->fe_type & FLOW_PRIMARY_MAC ||
728 		    flent->fe_type & FLOW_VNIC_MAC))
729 			continue;
730 
731 		bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len);
732 		mac_flow_set_desc(flent, &flow_desc);
733 	}
734 }
735 
736 /*
737  * Update all clients that share the same unicast address.
738  */
739 void
740 mac_unicast_update_clients(mac_impl_t *mip, mac_address_t *map)
741 {
742 	mac_client_impl_t *mcip;
743 
744 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
745 
746 	/*
747 	 * Find all clients that share the same unicast MAC address and update
748 	 * them appropriately.
749 	 */
750 	for (mcip = mip->mi_clients_list; mcip != NULL;
751 	    mcip = mcip->mci_client_next) {
752 		/*
753 		 * Ignore clients that don't share this MAC address.
754 		 */
755 		if (map != mcip->mci_unicast)
756 			continue;
757 
758 		/*
759 		 * Update those clients with same old unicast MAC address.
760 		 */
761 		mac_unicast_update_client_flow(mcip);
762 	}
763 }
764 
765 /*
766  * Update the unicast MAC address of the specified VNIC MAC client.
767  *
768  * Check whether the operation is valid. Any of following cases should fail:
769  *
770  * 1. It's a VLAN type of VNIC.
771  * 2. The new value is current "primary" MAC address.
772  * 3. The current MAC address is shared with other clients.
773  * 4. The new MAC address has been used. This case will be valid when
774  *    client migration is fully supported.
775  */
776 int
777 mac_vnic_unicast_set(mac_client_handle_t mch, const uint8_t *addr)
778 {
779 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
780 	mac_impl_t *mip = mcip->mci_mip;
781 	mac_address_t *map = mcip->mci_unicast;
782 	int err;
783 
784 	ASSERT(!(mip->mi_state_flags & MIS_IS_VNIC));
785 	ASSERT(mcip->mci_state_flags & MCIS_IS_VNIC);
786 	ASSERT(mcip->mci_flags != MAC_CLIENT_FLAGS_PRIMARY);
787 
788 	i_mac_perim_enter(mip);
789 
790 	/*
791 	 * If this is a VLAN type of VNIC, it's using "primary" MAC address
792 	 * of the underlying interface. Must fail here. Refer to case 1 above.
793 	 */
794 	if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0) {
795 		i_mac_perim_exit(mip);
796 		return (ENOTSUP);
797 	}
798 
799 	/*
800 	 * If the new address is the "primary" one, must fail. Refer to
801 	 * case 2 above.
802 	 */
803 	if (bcmp(addr, mip->mi_addr, map->ma_len) == 0) {
804 		i_mac_perim_exit(mip);
805 		return (EACCES);
806 	}
807 
808 	/*
809 	 * If the address is shared by multiple clients, must fail. Refer
810 	 * to case 3 above.
811 	 */
812 	if (mac_check_macaddr_shared(map)) {
813 		i_mac_perim_exit(mip);
814 		return (EBUSY);
815 	}
816 
817 	/*
818 	 * If the new address has been used, must fail for now. Refer to
819 	 * case 4 above.
820 	 */
821 	if (mac_find_macaddr(mip, (uint8_t *)addr) != NULL) {
822 		i_mac_perim_exit(mip);
823 		return (ENOTSUP);
824 	}
825 
826 	/*
827 	 * Update the MAC address.
828 	 */
829 	err = mac_update_macaddr(map, (uint8_t *)addr);
830 
831 	if (err != 0) {
832 		i_mac_perim_exit(mip);
833 		return (err);
834 	}
835 
836 	/*
837 	 * Update all flows of this MAC client.
838 	 */
839 	mac_unicast_update_client_flow(mcip);
840 
841 	i_mac_perim_exit(mip);
842 	return (0);
843 }
844 
845 /*
846  * Program the new primary unicast address of the specified MAC.
847  *
848  * Function mac_update_macaddr() takes care different types of underlying
849  * MAC. If the underlying MAC is VNIC, the VNIC driver must have registerd
850  * mi_unicst() entry point, that indirectly calls mac_vnic_unicast_set()
851  * which will take care of updating the MAC address of the corresponding
852  * MAC client.
853  *
854  * This is the only interface that allow the client to update the "primary"
855  * MAC address of the underlying MAC. The new value must have not been
856  * used by other clients.
857  */
858 int
859 mac_unicast_primary_set(mac_handle_t mh, const uint8_t *addr)
860 {
861 	mac_impl_t *mip = (mac_impl_t *)mh;
862 	mac_address_t *map;
863 	int err;
864 
865 	/* verify the address validity */
866 	if (!mac_unicst_verify(mh, addr, mip->mi_type->mt_addr_length))
867 		return (EINVAL);
868 
869 	i_mac_perim_enter(mip);
870 
871 	/*
872 	 * If the new value is the same as the current primary address value,
873 	 * there's nothing to do.
874 	 */
875 	if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) == 0) {
876 		i_mac_perim_exit(mip);
877 		return (0);
878 	}
879 
880 	if (mac_find_macaddr(mip, (uint8_t *)addr) != 0) {
881 		i_mac_perim_exit(mip);
882 		return (EBUSY);
883 	}
884 
885 	map = mac_find_macaddr(mip, mip->mi_addr);
886 	ASSERT(map != NULL);
887 
888 	/*
889 	 * Update the MAC address.
890 	 */
891 	if (mip->mi_state_flags & MIS_IS_AGGR) {
892 		mac_capab_aggr_t aggr_cap;
893 
894 		/*
895 		 * If the mac is an aggregation, other than the unicast
896 		 * addresses programming, aggr must be informed about this
897 		 * primary unicst address change to change its mac address
898 		 * policy to be user-specified.
899 		 */
900 		ASSERT(map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED);
901 		VERIFY(i_mac_capab_get(mh, MAC_CAPAB_AGGR, &aggr_cap));
902 		err = aggr_cap.mca_unicst(mip->mi_driver, addr);
903 		if (err == 0)
904 			bcopy(addr, map->ma_addr, map->ma_len);
905 	} else {
906 		err = mac_update_macaddr(map, (uint8_t *)addr);
907 	}
908 
909 	if (err != 0) {
910 		i_mac_perim_exit(mip);
911 		return (err);
912 	}
913 
914 	mac_unicast_update_clients(mip, map);
915 
916 	/*
917 	 * Save the new primary MAC address in mac_impl_t.
918 	 */
919 	bcopy(addr, mip->mi_addr, mip->mi_type->mt_addr_length);
920 
921 	i_mac_perim_exit(mip);
922 
923 	if (err == 0)
924 		i_mac_notify(mip, MAC_NOTE_UNICST);
925 
926 	return (err);
927 }
928 
929 /*
930  * Return the current primary MAC address of the specified MAC.
931  */
932 void
933 mac_unicast_primary_get(mac_handle_t mh, uint8_t *addr)
934 {
935 	mac_impl_t *mip = (mac_impl_t *)mh;
936 
937 	rw_enter(&mip->mi_rw_lock, RW_READER);
938 	bcopy(mip->mi_addr, addr, mip->mi_type->mt_addr_length);
939 	rw_exit(&mip->mi_rw_lock);
940 }
941 
942 /*
943  * Return information about the use of the primary MAC address of the
944  * specified MAC instance:
945  *
946  * - if client_name is non-NULL, it must point to a string of at
947  *   least MAXNAMELEN bytes, and will be set to the name of the MAC
948  *   client which uses the primary MAC address.
949  *
950  * - if in_use is non-NULL, used to return whether the primary MAC
951  *   address is currently in use.
952  */
953 void
954 mac_unicast_primary_info(mac_handle_t mh, char *client_name, boolean_t *in_use)
955 {
956 	mac_impl_t *mip = (mac_impl_t *)mh;
957 	mac_client_impl_t *cur_client;
958 
959 	if (in_use != NULL)
960 		*in_use = B_FALSE;
961 	if (client_name != NULL)
962 		bzero(client_name, MAXNAMELEN);
963 
964 	/*
965 	 * The mi_rw_lock is used to protect threads that don't hold the
966 	 * mac perimeter to get a consistent view of the mi_clients_list.
967 	 * Threads that modify the list must hold both the mac perimeter and
968 	 * mi_rw_lock(RW_WRITER)
969 	 */
970 	rw_enter(&mip->mi_rw_lock, RW_READER);
971 	for (cur_client = mip->mi_clients_list; cur_client != NULL;
972 	    cur_client = cur_client->mci_client_next) {
973 		if (mac_is_primary_client(cur_client) ||
974 		    (mip->mi_state_flags & MIS_IS_VNIC)) {
975 			rw_exit(&mip->mi_rw_lock);
976 			if (in_use != NULL)
977 				*in_use = B_TRUE;
978 			if (client_name != NULL) {
979 				bcopy(cur_client->mci_name, client_name,
980 				    MAXNAMELEN);
981 			}
982 			return;
983 		}
984 	}
985 	rw_exit(&mip->mi_rw_lock);
986 }
987 
988 /*
989  * Add the specified MAC client to the list of clients which opened
990  * the specified MAC.
991  */
992 static void
993 mac_client_add(mac_client_impl_t *mcip)
994 {
995 	mac_impl_t *mip = mcip->mci_mip;
996 
997 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
998 
999 	/* add VNIC to the front of the list */
1000 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1001 	mcip->mci_client_next = mip->mi_clients_list;
1002 	mip->mi_clients_list = mcip;
1003 	mip->mi_nclients++;
1004 	rw_exit(&mip->mi_rw_lock);
1005 }
1006 
1007 /*
1008  * Remove the specified MAC client from the list of clients which opened
1009  * the specified MAC.
1010  */
1011 static void
1012 mac_client_remove(mac_client_impl_t *mcip)
1013 {
1014 	mac_impl_t *mip = mcip->mci_mip;
1015 	mac_client_impl_t **prev, *cclient;
1016 
1017 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1018 
1019 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1020 	prev = &mip->mi_clients_list;
1021 	cclient = *prev;
1022 	while (cclient != NULL && cclient != mcip) {
1023 		prev = &cclient->mci_client_next;
1024 		cclient = *prev;
1025 	}
1026 	ASSERT(cclient != NULL);
1027 	*prev = cclient->mci_client_next;
1028 	mip->mi_nclients--;
1029 	rw_exit(&mip->mi_rw_lock);
1030 }
1031 
1032 static mac_unicast_impl_t *
1033 mac_client_find_vid(mac_client_impl_t *mcip, uint16_t vid)
1034 {
1035 	mac_unicast_impl_t *muip = mcip->mci_unicast_list;
1036 
1037 	while ((muip != NULL) && (muip->mui_vid != vid))
1038 		muip = muip->mui_next;
1039 
1040 	return (muip);
1041 }
1042 
1043 /*
1044  * Return whether the specified (MAC address, VID) tuple is already used by
1045  * one of the MAC clients associated with the specified MAC.
1046  */
1047 static boolean_t
1048 mac_addr_in_use(mac_impl_t *mip, uint8_t *mac_addr, uint16_t vid)
1049 {
1050 	mac_client_impl_t *client;
1051 	mac_address_t *map;
1052 
1053 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1054 
1055 	for (client = mip->mi_clients_list; client != NULL;
1056 	    client = client->mci_client_next) {
1057 
1058 		/*
1059 		 * Ignore clients that don't have unicast address.
1060 		 */
1061 		if (client->mci_unicast_list == NULL)
1062 			continue;
1063 
1064 		map = client->mci_unicast;
1065 
1066 		if ((bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) &&
1067 		    (mac_client_find_vid(client, vid) != NULL)) {
1068 			return (B_TRUE);
1069 		}
1070 	}
1071 
1072 	return (B_FALSE);
1073 }
1074 
1075 /*
1076  * Generate a random MAC address. The MAC address prefix is
1077  * stored in the array pointed to by mac_addr, and its length, in bytes,
1078  * is specified by prefix_len. The least significant bits
1079  * after prefix_len bytes are generated, and stored after the prefix
1080  * in the mac_addr array.
1081  */
1082 int
1083 mac_addr_random(mac_client_handle_t mch, uint_t prefix_len,
1084     uint8_t *mac_addr, mac_diag_t *diag)
1085 {
1086 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1087 	mac_impl_t *mip = mcip->mci_mip;
1088 	size_t addr_len = mip->mi_type->mt_addr_length;
1089 
1090 	if (prefix_len >= addr_len) {
1091 		*diag = MAC_DIAG_MACPREFIXLEN_INVALID;
1092 		return (EINVAL);
1093 	}
1094 
1095 	/* check the prefix value */
1096 	if (prefix_len > 0) {
1097 		bzero(mac_addr + prefix_len, addr_len - prefix_len);
1098 		if (!mac_unicst_verify((mac_handle_t)mip, mac_addr,
1099 		    addr_len)) {
1100 			*diag = MAC_DIAG_MACPREFIX_INVALID;
1101 			return (EINVAL);
1102 		}
1103 	}
1104 
1105 	/* generate the MAC address */
1106 	if (prefix_len < addr_len) {
1107 		(void) random_get_pseudo_bytes(mac_addr +
1108 		    prefix_len, addr_len - prefix_len);
1109 	}
1110 
1111 	*diag = 0;
1112 	return (0);
1113 }
1114 
1115 /*
1116  * Set the priority range for this MAC client. This will be used to
1117  * determine the absolute priority for the threads created for this
1118  * MAC client using the specified "low", "medium" and "high" level.
1119  * This will also be used for any subflows on this MAC client.
1120  */
1121 #define	MAC_CLIENT_SET_PRIORITY_RANGE(mcip, pri) {			\
1122 	(mcip)->mci_min_pri = FLOW_MIN_PRIORITY(MINCLSYSPRI,	\
1123 	    MAXCLSYSPRI, (pri));					\
1124 	(mcip)->mci_max_pri = FLOW_MAX_PRIORITY(MINCLSYSPRI,	\
1125 	    MAXCLSYSPRI, (mcip)->mci_min_pri);				\
1126 	}
1127 
1128 /*
1129  * MAC client open entry point. Return a new MAC client handle. Each
1130  * MAC client is associated with a name, specified through the 'name'
1131  * argument.
1132  */
1133 int
1134 mac_client_open(mac_handle_t mh, mac_client_handle_t *mchp, char *name,
1135     uint16_t flags)
1136 {
1137 	mac_impl_t *mip = (mac_impl_t *)mh;
1138 	mac_client_impl_t *mcip;
1139 	int err = 0;
1140 	boolean_t share_desired =
1141 	    ((flags & MAC_OPEN_FLAGS_SHARES_DESIRED) != 0);
1142 	boolean_t no_hwrings = ((flags & MAC_OPEN_FLAGS_NO_HWRINGS) != 0);
1143 	boolean_t req_hwrings = ((flags & MAC_OPEN_FLAGS_REQ_HWRINGS) != 0);
1144 	flow_entry_t	*flent = NULL;
1145 
1146 	*mchp = NULL;
1147 	if (share_desired && no_hwrings) {
1148 		/* can't have shares but no hardware rings */
1149 		return (EINVAL);
1150 	}
1151 
1152 	i_mac_perim_enter(mip);
1153 
1154 	if (mip->mi_state_flags & MIS_IS_VNIC) {
1155 		/*
1156 		 * The underlying MAC is a VNIC. Return the MAC client
1157 		 * handle of the lower MAC which was obtained by
1158 		 * the VNIC driver when it did its mac_client_open().
1159 		 */
1160 
1161 		mcip = mac_vnic_lower(mip);
1162 
1163 		/*
1164 		 * Note that multiple mac clients share the same mcip in
1165 		 * this case.
1166 		 */
1167 		if (flags & MAC_OPEN_FLAGS_EXCLUSIVE)
1168 			mcip->mci_state_flags |= MCIS_EXCLUSIVE;
1169 
1170 		mip->mi_clients_list = mcip;
1171 		i_mac_perim_exit(mip);
1172 		*mchp = (mac_client_handle_t)mcip;
1173 		return (err);
1174 	}
1175 
1176 	mcip = kmem_cache_alloc(mac_client_impl_cache, KM_SLEEP);
1177 
1178 	mcip->mci_mip = mip;
1179 	mcip->mci_upper_mip = NULL;
1180 	mcip->mci_rx_fn = mac_pkt_drop;
1181 	mcip->mci_rx_arg = NULL;
1182 	mcip->mci_direct_rx_fn = NULL;
1183 	mcip->mci_direct_rx_arg = NULL;
1184 
1185 	if ((flags & MAC_OPEN_FLAGS_IS_VNIC) != 0)
1186 		mcip->mci_state_flags |= MCIS_IS_VNIC;
1187 
1188 	if ((flags & MAC_OPEN_FLAGS_EXCLUSIVE) != 0)
1189 		mcip->mci_state_flags |= MCIS_EXCLUSIVE;
1190 
1191 	if ((flags & MAC_OPEN_FLAGS_IS_AGGR_PORT) != 0)
1192 		mcip->mci_state_flags |= MCIS_IS_AGGR_PORT;
1193 
1194 	if ((flags & MAC_OPEN_FLAGS_TAG_DISABLE) != 0)
1195 		mcip->mci_state_flags |= MCIS_TAG_DISABLE;
1196 
1197 	if ((flags & MAC_OPEN_FLAGS_STRIP_DISABLE) != 0)
1198 		mcip->mci_state_flags |= MCIS_STRIP_DISABLE;
1199 
1200 	if ((flags & MAC_OPEN_FLAGS_DISABLE_TX_VID_CHECK) != 0)
1201 		mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK;
1202 
1203 	if ((flags & MAC_OPEN_FLAGS_USE_DATALINK_NAME) != 0) {
1204 		datalink_id_t	linkid;
1205 
1206 		ASSERT(name == NULL);
1207 		if ((err = dls_devnet_macname2linkid(mip->mi_name,
1208 		    &linkid)) != 0) {
1209 			goto done;
1210 		}
1211 		if ((err = dls_mgmt_get_linkinfo(linkid, mcip->mci_name, NULL,
1212 		    NULL, NULL)) != 0) {
1213 			/*
1214 			 * Use mac name if dlmgmtd is not available.
1215 			 */
1216 			if (err == EBADF) {
1217 				(void) strlcpy(mcip->mci_name, mip->mi_name,
1218 				    sizeof (mcip->mci_name));
1219 				err = 0;
1220 			} else {
1221 				goto done;
1222 			}
1223 		}
1224 		mcip->mci_state_flags |= MCIS_USE_DATALINK_NAME;
1225 	} else {
1226 		ASSERT(name != NULL);
1227 		if (strlen(name) > MAXNAMELEN) {
1228 			err = EINVAL;
1229 			goto done;
1230 		}
1231 		(void) strlcpy(mcip->mci_name, name, sizeof (mcip->mci_name));
1232 	}
1233 	/* the subflow table will be created dynamically */
1234 	mcip->mci_subflow_tab = NULL;
1235 	mcip->mci_stat_multircv = 0;
1236 	mcip->mci_stat_brdcstrcv = 0;
1237 	mcip->mci_stat_multixmt = 0;
1238 	mcip->mci_stat_brdcstxmt = 0;
1239 
1240 	mcip->mci_stat_obytes = 0;
1241 	mcip->mci_stat_opackets = 0;
1242 	mcip->mci_stat_oerrors = 0;
1243 	mcip->mci_stat_ibytes = 0;
1244 	mcip->mci_stat_ipackets = 0;
1245 	mcip->mci_stat_ierrors = 0;
1246 
1247 	/* Create an initial flow */
1248 
1249 	err = mac_flow_create(NULL, NULL, mcip->mci_name, NULL,
1250 	    mcip->mci_state_flags & MCIS_IS_VNIC ? FLOW_VNIC_MAC :
1251 	    FLOW_PRIMARY_MAC, &flent);
1252 	if (err != 0)
1253 		goto done;
1254 	mcip->mci_flent = flent;
1255 	FLOW_MARK(flent, FE_MC_NO_DATAPATH);
1256 	flent->fe_mcip = mcip;
1257 	/*
1258 	 * Place initial creation reference on the flow. This reference
1259 	 * is released in the corresponding delete action viz.
1260 	 * mac_unicast_remove after waiting for all transient refs to
1261 	 * to go away. The wait happens in mac_flow_wait.
1262 	 */
1263 	FLOW_REFHOLD(flent);
1264 
1265 	/*
1266 	 * Do this ahead of the mac_bcast_add() below so that the mi_nclients
1267 	 * will have the right value for mac_rx_srs_setup().
1268 	 */
1269 	mac_client_add(mcip);
1270 
1271 	if (no_hwrings)
1272 		mcip->mci_state_flags |= MCIS_NO_HWRINGS;
1273 	if (req_hwrings)
1274 		mcip->mci_state_flags |= MCIS_REQ_HWRINGS;
1275 	mcip->mci_share = NULL;
1276 	if (share_desired) {
1277 		ASSERT(!no_hwrings);
1278 		i_mac_share_alloc(mcip);
1279 	}
1280 
1281 	DTRACE_PROBE2(mac__client__open__allocated, mac_impl_t *,
1282 	    mcip->mci_mip, mac_client_impl_t *, mcip);
1283 	*mchp = (mac_client_handle_t)mcip;
1284 
1285 	i_mac_perim_exit(mip);
1286 	return (0);
1287 
1288 done:
1289 	i_mac_perim_exit(mip);
1290 	mcip->mci_state_flags = 0;
1291 	mcip->mci_tx_flag = 0;
1292 	kmem_cache_free(mac_client_impl_cache, mcip);
1293 	return (err);
1294 }
1295 
1296 /*
1297  * Close the specified MAC client handle.
1298  */
1299 void
1300 mac_client_close(mac_client_handle_t mch, uint16_t flags)
1301 {
1302 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1303 	mac_impl_t		*mip = mcip->mci_mip;
1304 	flow_entry_t		*flent;
1305 
1306 	i_mac_perim_enter(mip);
1307 
1308 	if (flags & MAC_CLOSE_FLAGS_EXCLUSIVE)
1309 		mcip->mci_state_flags &= ~MCIS_EXCLUSIVE;
1310 
1311 	if ((mcip->mci_state_flags & MCIS_IS_VNIC) &&
1312 	    !(flags & MAC_CLOSE_FLAGS_IS_VNIC)) {
1313 		/*
1314 		 * This is an upper VNIC client initiated operation.
1315 		 * The lower MAC client will be closed by the VNIC driver
1316 		 * when the VNIC is deleted.
1317 		 */
1318 
1319 		i_mac_perim_exit(mip);
1320 		return;
1321 	}
1322 
1323 	/*
1324 	 * Remove the flent associated with the MAC client
1325 	 */
1326 	flent = mcip->mci_flent;
1327 	mcip->mci_flent = NULL;
1328 	FLOW_FINAL_REFRELE(flent);
1329 
1330 	/*
1331 	 * MAC clients must remove the unicast addresses and promisc callbacks
1332 	 * they added before issuing a mac_client_close().
1333 	 */
1334 	ASSERT(mcip->mci_unicast_list == NULL);
1335 	ASSERT(mcip->mci_promisc_list == NULL);
1336 	ASSERT(mcip->mci_tx_notify_cb_list == NULL);
1337 
1338 	i_mac_share_free(mcip);
1339 
1340 	mac_client_remove(mcip);
1341 
1342 	i_mac_perim_exit(mip);
1343 	mcip->mci_subflow_tab = NULL;
1344 	mcip->mci_state_flags = 0;
1345 	mcip->mci_tx_flag = 0;
1346 	kmem_cache_free(mac_client_impl_cache, mch);
1347 }
1348 
1349 /*
1350  * Enable bypass for the specified MAC client.
1351  */
1352 boolean_t
1353 mac_rx_bypass_set(mac_client_handle_t mch, mac_direct_rx_t rx_fn, void *arg1)
1354 {
1355 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1356 	mac_impl_t		*mip = mcip->mci_mip;
1357 
1358 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1359 
1360 	/*
1361 	 * If the mac_client is a VLAN, we should not do DLS bypass and
1362 	 * instead let the packets come up via mac_rx_deliver so the vlan
1363 	 * header can be stripped.
1364 	 */
1365 	if (mcip->mci_nvids > 0)
1366 		return (B_FALSE);
1367 
1368 	/*
1369 	 * These are not accessed directly in the data path, and hence
1370 	 * don't need any protection
1371 	 */
1372 	mcip->mci_direct_rx_fn = rx_fn;
1373 	mcip->mci_direct_rx_arg = arg1;
1374 	mcip->mci_state_flags |= MCIS_CLIENT_POLL_CAPABLE;
1375 	return (B_TRUE);
1376 }
1377 
1378 /*
1379  * Set the receive callback for the specified MAC client. There can be
1380  * at most one such callback per MAC client.
1381  */
1382 void
1383 mac_rx_set(mac_client_handle_t mch, mac_rx_t rx_fn, void *arg)
1384 {
1385 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1386 	mac_impl_t	*mip = mcip->mci_mip;
1387 
1388 	/*
1389 	 * Instead of adding an extra set of locks and refcnts in
1390 	 * the datapath at the mac client boundary, we temporarily quiesce
1391 	 * the SRS and related entities. We then change the receive function
1392 	 * without interference from any receive data thread and then reenable
1393 	 * the data flow subsequently.
1394 	 */
1395 	i_mac_perim_enter(mip);
1396 	mac_rx_client_quiesce(mch);
1397 
1398 	mcip->mci_rx_fn = rx_fn;
1399 	mcip->mci_rx_arg = arg;
1400 	mac_rx_client_restart(mch);
1401 	i_mac_perim_exit(mip);
1402 }
1403 
1404 /*
1405  * Reset the receive callback for the specified MAC client.
1406  */
1407 void
1408 mac_rx_clear(mac_client_handle_t mch)
1409 {
1410 	mac_rx_set(mch, mac_pkt_drop, NULL);
1411 }
1412 
1413 /*
1414  * Walk the MAC client subflow table and updates their priority values.
1415  */
1416 static int
1417 mac_update_subflow_priority_cb(flow_entry_t *flent, void *arg)
1418 {
1419 	mac_flow_update_priority(arg, flent);
1420 	return (0);
1421 }
1422 
1423 void
1424 mac_update_subflow_priority(mac_client_impl_t *mcip)
1425 {
1426 	(void) mac_flow_walk(mcip->mci_subflow_tab,
1427 	    mac_update_subflow_priority_cb, mcip);
1428 }
1429 
1430 /*
1431  * When the MAC client is being brought up (i.e. we do a unicast_add) we need
1432  * to initialize the cpu and resource control structure in the
1433  * mac_client_impl_t from the mac_impl_t (i.e if there are any cached
1434  * properties before the flow entry for the unicast address was created).
1435  */
1436 int
1437 mac_resource_ctl_set(mac_client_handle_t mch, mac_resource_props_t *mrp)
1438 {
1439 	mac_client_impl_t 	*mcip = (mac_client_impl_t *)mch;
1440 	mac_impl_t		*mip = (mac_impl_t *)mcip->mci_mip;
1441 	int			err = 0;
1442 
1443 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1444 
1445 	err = mac_validate_props(mrp);
1446 	if (err != 0)
1447 		return (err);
1448 
1449 	mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE);
1450 	if (MCIP_DATAPATH_SETUP(mcip)) {
1451 		/*
1452 		 * We have to set this prior to calling mac_flow_modify.
1453 		 */
1454 		if (mrp->mrp_mask & MRP_PRIORITY) {
1455 			if (mrp->mrp_priority == MPL_RESET) {
1456 				MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
1457 				    MPL_LINK_DEFAULT);
1458 			} else {
1459 				MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
1460 				    mrp->mrp_priority);
1461 			}
1462 		}
1463 
1464 		mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp);
1465 		if (mrp->mrp_mask & MRP_PRIORITY)
1466 			mac_update_subflow_priority(mcip);
1467 		return (0);
1468 	}
1469 	return (0);
1470 }
1471 
1472 void
1473 mac_resource_ctl_get(mac_client_handle_t mch, mac_resource_props_t *mrp)
1474 {
1475 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1476 	mac_resource_props_t	*mcip_mrp = MCIP_RESOURCE_PROPS(mcip);
1477 
1478 	bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t));
1479 }
1480 
1481 static int
1482 mac_unicast_flow_create(mac_client_impl_t *mcip, uint8_t *mac_addr,
1483     uint16_t vid, boolean_t is_primary, boolean_t first_flow,
1484     flow_entry_t **flent, mac_resource_props_t *mrp)
1485 {
1486 	mac_impl_t	*mip = (mac_impl_t *)mcip->mci_mip;
1487 	flow_desc_t	flow_desc;
1488 	char		flowname[MAXFLOWNAMELEN];
1489 	int		err;
1490 	uint_t		flent_flags;
1491 
1492 	/*
1493 	 * First unicast address being added, create a new flow
1494 	 * for that MAC client.
1495 	 */
1496 	bzero(&flow_desc, sizeof (flow_desc));
1497 
1498 	flow_desc.fd_mac_len = mip->mi_type->mt_addr_length;
1499 	bcopy(mac_addr, flow_desc.fd_dst_mac, flow_desc.fd_mac_len);
1500 	flow_desc.fd_mask = FLOW_LINK_DST;
1501 	if (vid != 0) {
1502 		flow_desc.fd_vid = vid;
1503 		flow_desc.fd_mask |= FLOW_LINK_VID;
1504 	}
1505 
1506 	/*
1507 	 * XXX-nicolas. For now I'm keeping the FLOW_PRIMARY_MAC
1508 	 * and FLOW_VNIC. Even though they're a hack inherited
1509 	 * from the SRS code, we'll keep them for now. They're currently
1510 	 * consumed by mac_datapath_setup() to create the SRS.
1511 	 * That code should be eventually moved out of
1512 	 * mac_datapath_setup() and moved to a mac_srs_create()
1513 	 * function of some sort to keep things clean.
1514 	 *
1515 	 * Also, there's no reason why the SRS for the primary MAC
1516 	 * client should be different than any other MAC client. Until
1517 	 * this is cleaned-up, we support only one MAC unicast address
1518 	 * per client.
1519 	 *
1520 	 * We set FLOW_PRIMARY_MAC for the primary MAC address,
1521 	 * FLOW_VNIC for everything else.
1522 	 */
1523 	if (is_primary)
1524 		flent_flags = FLOW_PRIMARY_MAC;
1525 	else
1526 		flent_flags = FLOW_VNIC_MAC;
1527 
1528 	/*
1529 	 * For the first flow we use the mac client's name - mci_name, for
1530 	 * subsequent ones we just create a name with the vid. This is
1531 	 * so that we can add these flows to the same flow table. This is
1532 	 * fine as the flow name (except for the one with the mac client's
1533 	 * name) is not visible. When the first flow is removed, we just replace
1534 	 * its fdesc with another from the list, so we will still retain the
1535 	 * flent with the MAC client's flow name.
1536 	 */
1537 	if (first_flow) {
1538 		bcopy(mcip->mci_name, flowname, MAXFLOWNAMELEN);
1539 	} else {
1540 		(void) sprintf(flowname, "%s%u", mcip->mci_name, vid);
1541 		flent_flags = FLOW_NO_STATS;
1542 	}
1543 
1544 	if ((err = mac_flow_create(&flow_desc, mrp, flowname, NULL,
1545 	    flent_flags, flent)) != 0)
1546 		return (err);
1547 
1548 	FLOW_MARK(*flent, FE_INCIPIENT);
1549 	(*flent)->fe_mcip = mcip;
1550 
1551 	/*
1552 	 * Place initial creation reference on the flow. This reference
1553 	 * is released in the corresponding delete action viz.
1554 	 * mac_unicast_remove after waiting for all transient refs to
1555 	 * to go away. The wait happens in mac_flow_wait.
1556 	 * We have already held the reference in mac_client_open().
1557 	 */
1558 	if (!first_flow)
1559 		FLOW_REFHOLD(*flent);
1560 	return (0);
1561 }
1562 
1563 /* Refresh the multicast grouping for this VID. */
1564 int
1565 mac_client_update_mcast(void *arg, boolean_t add, const uint8_t *addrp)
1566 {
1567 	flow_entry_t		*flent = arg;
1568 	mac_client_impl_t	*mcip = flent->fe_mcip;
1569 	uint16_t		vid;
1570 	flow_desc_t		flow_desc;
1571 
1572 	mac_flow_get_desc(flent, &flow_desc);
1573 	vid = (flow_desc.fd_mask & FLOW_LINK_VID) != 0 ?
1574 	    flow_desc.fd_vid : VLAN_ID_NONE;
1575 
1576 	/*
1577 	 * We don't call mac_multicast_add()/mac_multicast_remove() as
1578 	 * we want to add/remove for this specific vid.
1579 	 */
1580 	if (add) {
1581 		return (mac_bcast_add(mcip, addrp, vid,
1582 		    MAC_ADDRTYPE_MULTICAST));
1583 	} else {
1584 		mac_bcast_delete(mcip, addrp, vid);
1585 		return (0);
1586 	}
1587 }
1588 
1589 static void
1590 mac_update_single_active_client(mac_impl_t *mip)
1591 {
1592 	mac_client_impl_t *client = NULL;
1593 
1594 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1595 
1596 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1597 	if (mip->mi_nactiveclients == 1) {
1598 		/*
1599 		 * Find the one active MAC client from the list of MAC
1600 		 * clients. The active MAC client has at least one
1601 		 * unicast address.
1602 		 */
1603 		for (client = mip->mi_clients_list; client != NULL;
1604 		    client = client->mci_client_next) {
1605 			if (client->mci_unicast_list != NULL)
1606 				break;
1607 		}
1608 		ASSERT(client != NULL);
1609 	}
1610 
1611 	/*
1612 	 * mi_single_active_client is protected by the MAC impl's read/writer
1613 	 * lock, which allows mac_rx() to check the value of that pointer
1614 	 * as a reader.
1615 	 */
1616 	mip->mi_single_active_client = client;
1617 	rw_exit(&mip->mi_rw_lock);
1618 }
1619 
1620 /*
1621  * Add a new unicast address to the MAC client.
1622  *
1623  * The MAC address can be specified either by value, or the MAC client
1624  * can specify that it wants to use the primary MAC address of the
1625  * underlying MAC. See the introductory comments at the beginning
1626  * of this file for more more information on primary MAC addresses.
1627  *
1628  * Note also the tuple (MAC address, VID) must be unique
1629  * for the MAC clients defined on top of the same underlying MAC
1630  * instance, unless the MAC_UNICAST_NODUPCHECK is specified.
1631  */
1632 
1633 int
1634 i_mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags,
1635     mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag)
1636 {
1637 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1638 	mac_impl_t *mip = mcip->mci_mip;
1639 	mac_unicast_impl_t *muip;
1640 	flow_entry_t *flent;
1641 	int err;
1642 	uint_t mac_len = mip->mi_type->mt_addr_length;
1643 	boolean_t check_dups = !(flags & MAC_UNICAST_NODUPCHECK);
1644 	boolean_t is_primary = (flags & MAC_UNICAST_PRIMARY);
1645 	boolean_t is_vnic_primary = (flags & MAC_UNICAST_VNIC_PRIMARY);
1646 	boolean_t is_unicast_hw = (flags & MAC_UNICAST_HW);
1647 	boolean_t bcast_added = B_FALSE;
1648 	boolean_t nactiveclients_added = B_FALSE;
1649 	boolean_t mac_started = B_FALSE;
1650 	mac_resource_props_t mrp;
1651 
1652 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1653 
1654 	/* when VID is non-zero, the underlying MAC can not be VNIC */
1655 	ASSERT(!((mip->mi_state_flags & MIS_IS_VNIC) && (vid != 0)));
1656 
1657 	/*
1658 	 * Check whether it's the primary client and flag it.
1659 	 */
1660 	if (!(mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary && vid == 0)
1661 		mcip->mci_flags |= MAC_CLIENT_FLAGS_PRIMARY;
1662 
1663 	/*
1664 	 * is_vnic_primary is true when we come here as a VLAN VNIC
1665 	 * which uses the primary mac client's address but with a non-zero
1666 	 * VID. In this case the MAC address is not specified by an upper
1667 	 * MAC client.
1668 	 */
1669 	if ((mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary &&
1670 	    !is_vnic_primary) {
1671 		/*
1672 		 * The address is being set by the upper MAC client
1673 		 * of a VNIC. The MAC address was already set by the
1674 		 * VNIC driver during VNIC creation.
1675 		 *
1676 		 * Note: a VNIC has only one MAC address. We return
1677 		 * the MAC unicast address handle of the lower MAC client
1678 		 * corresponding to the VNIC. We allocate a new entry
1679 		 * which is flagged appropriately, so that mac_unicast_remove()
1680 		 * doesn't attempt to free the original entry that
1681 		 * was allocated by the VNIC driver.
1682 		 */
1683 		ASSERT(mcip->mci_unicast != NULL);
1684 
1685 		/*
1686 		 * Ensure that the primary unicast address of the VNIC
1687 		 * is added only once.
1688 		 */
1689 		if (mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY)
1690 			return (EBUSY);
1691 
1692 		mcip->mci_flags |= MAC_CLIENT_FLAGS_VNIC_PRIMARY;
1693 
1694 		/*
1695 		 * Create a handle for vid 0.
1696 		 */
1697 		ASSERT(vid == 0);
1698 		muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP);
1699 		muip->mui_vid = vid;
1700 		*mah = (mac_unicast_handle_t)muip;
1701 		return (0);
1702 	}
1703 
1704 	/* primary MAC clients cannot be opened on top of anchor VNICs */
1705 	if ((is_vnic_primary || is_primary) &&
1706 	    i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_ANCHOR_VNIC, NULL)) {
1707 		return (ENXIO);
1708 	}
1709 
1710 	/*
1711 	 * Return EBUSY if:
1712 	 *  - this is an exclusive active mac client and there already exist
1713 	 *    active mac clients, or
1714 	 *  - there already exist an exclusively active mac client.
1715 	 */
1716 	if ((mcip->mci_state_flags & MCIS_EXCLUSIVE) &&
1717 	    (mip->mi_nactiveclients != 0) || (mip->mi_state_flags &
1718 	    MIS_EXCLUSIVE)) {
1719 		return (EBUSY);
1720 	}
1721 
1722 	if (mcip->mci_state_flags & MCIS_EXCLUSIVE)
1723 		mip->mi_state_flags |= MIS_EXCLUSIVE;
1724 
1725 	bzero(&mrp, sizeof (mac_resource_props_t));
1726 	if (is_primary && !(mcip->mci_state_flags & (MCIS_IS_VNIC |
1727 	    MCIS_IS_AGGR_PORT))) {
1728 		/*
1729 		 * Apply the property cached in the mac_impl_t to the primary
1730 		 * mac client. If the mac client is a VNIC or an aggregation
1731 		 * port, its property should be set in the mcip when the
1732 		 * VNIC/aggr was created.
1733 		 */
1734 		mac_get_resources((mac_handle_t)mip, &mrp);
1735 		(void) mac_client_set_resources(mch, &mrp);
1736 	} else if (mcip->mci_state_flags & MCIS_IS_VNIC) {
1737 		bcopy(MCIP_RESOURCE_PROPS(mcip), &mrp,
1738 		    sizeof (mac_resource_props_t));
1739 	}
1740 
1741 	muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP);
1742 	muip->mui_vid = vid;
1743 
1744 	if (is_primary || is_vnic_primary) {
1745 		mac_addr = mip->mi_addr;
1746 		check_dups = B_TRUE;
1747 	} else {
1748 
1749 		/*
1750 		 * Verify the validity of the specified MAC addresses value.
1751 		 */
1752 		if (!mac_unicst_verify((mac_handle_t)mip, mac_addr, mac_len)) {
1753 			*diag = MAC_DIAG_MACADDR_INVALID;
1754 			err = EINVAL;
1755 			goto bail;
1756 		}
1757 
1758 		/*
1759 		 * Make sure that the specified MAC address is different
1760 		 * than the unicast MAC address of the underlying NIC.
1761 		 */
1762 		if (check_dups && bcmp(mip->mi_addr, mac_addr, mac_len) == 0) {
1763 			*diag = MAC_DIAG_MACADDR_NIC;
1764 			err = EINVAL;
1765 			goto bail;
1766 		}
1767 	}
1768 
1769 	/*
1770 	 * Make sure the MAC address is not already used by
1771 	 * another MAC client defined on top of the same
1772 	 * underlying NIC.
1773 	 * xxx-venu mac_unicast_add doesnt' seem to be called
1774 	 * with MAC_UNICAST_NODUPCHECK currently, if it does
1775 	 * get called we need to do mac_addr_in_use() just
1776 	 * to check for addr_in_use till 6697876 is fixed.
1777 	 */
1778 	if (check_dups && mac_addr_in_use(mip, mac_addr, vid)) {
1779 		*diag = MAC_DIAG_MACADDR_INUSE;
1780 		err = EEXIST;
1781 		goto bail;
1782 	}
1783 
1784 	if ((err = mac_start((mac_handle_t)mip)) != 0)
1785 		goto bail;
1786 
1787 	mac_started = B_TRUE;
1788 
1789 	/* add the MAC client to the broadcast address group by default */
1790 	if (mip->mi_type->mt_brdcst_addr != NULL) {
1791 		err = mac_bcast_add(mcip, mip->mi_type->mt_brdcst_addr, vid,
1792 		    MAC_ADDRTYPE_BROADCAST);
1793 		if (err != 0)
1794 			goto bail;
1795 		bcast_added = B_TRUE;
1796 	}
1797 
1798 	/*
1799 	 * If this is the first unicast address addition for this
1800 	 * client, reuse the pre-allocated larval flow entry associated with
1801 	 * the MAC client.
1802 	 */
1803 	flent = (mcip->mci_nflents == 0) ? mcip->mci_flent : NULL;
1804 
1805 	/* We are configuring the unicast flow now */
1806 	if (!MCIP_DATAPATH_SETUP(mcip)) {
1807 		if (is_unicast_hw) {
1808 			/*
1809 			 * The client requires a hardware MAC address slot
1810 			 * for that unicast address. Since we support only
1811 			 * one unicast MAC address per client, flag the
1812 			 * MAC client itself.
1813 			 */
1814 			mcip->mci_state_flags |= MCIS_UNICAST_HW;
1815 		}
1816 
1817 		MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
1818 		    (mrp.mrp_mask & MRP_PRIORITY) ? mrp.mrp_priority :
1819 		    MPL_LINK_DEFAULT);
1820 
1821 		if ((err = mac_unicast_flow_create(mcip, mac_addr, vid,
1822 		    is_primary || is_vnic_primary, B_TRUE, &flent, &mrp)) != 0)
1823 			goto bail;
1824 
1825 		mip->mi_nactiveclients++;
1826 		nactiveclients_added = B_TRUE;
1827 
1828 		/*
1829 		 * This will allocate the RX ring group if possible for the
1830 		 * flow and program the software classifier as needed.
1831 		 */
1832 		if ((err = mac_datapath_setup(mcip, flent, SRST_LINK)) != 0)
1833 			goto bail;
1834 
1835 		/*
1836 		 * The unicast MAC address must have been added successfully.
1837 		 */
1838 		ASSERT(mcip->mci_unicast != NULL);
1839 		/*
1840 		 * Push down the sub-flows that were defined on this link
1841 		 * hitherto. The flows are added to the active flow table
1842 		 * and SRS, softrings etc. are created as needed.
1843 		 */
1844 		mac_link_init_flows(mch);
1845 	} else {
1846 		mac_address_t *map = mcip->mci_unicast;
1847 
1848 		/*
1849 		 * A unicast flow already exists for that MAC client,
1850 		 * this flow must be the same mac address but with
1851 		 * different VID. It has been checked by mac_addr_in_use().
1852 		 *
1853 		 * We will use the SRS etc. from the mci_flent. Note that
1854 		 * We don't need to create kstat for this as except for
1855 		 * the fdesc, everything will be used from in the 1st flent.
1856 		 */
1857 
1858 		if (bcmp(mac_addr, map->ma_addr, map->ma_len) != 0) {
1859 			err = EINVAL;
1860 			goto bail;
1861 		}
1862 
1863 		/*
1864 		 * Make sure the client is consistent about its requests
1865 		 * for MAC addresses. I.e. all requests from the clients
1866 		 * must have the MAC_UNICAST_HW flag set or clear.
1867 		 */
1868 		if ((mcip->mci_state_flags & MCIS_UNICAST_HW) != 0 &&
1869 		    !is_unicast_hw ||
1870 		    (mcip->mci_state_flags & MCIS_UNICAST_HW) == 0 &&
1871 		    is_unicast_hw) {
1872 			err = EINVAL;
1873 			goto bail;
1874 		}
1875 
1876 		if ((err = mac_unicast_flow_create(mcip, mac_addr, vid,
1877 		    is_primary || is_vnic_primary, B_FALSE, &flent, NULL)) != 0)
1878 			goto bail;
1879 
1880 		if ((err = mac_flow_add(mip->mi_flow_tab, flent)) != 0) {
1881 			FLOW_FINAL_REFRELE(flent);
1882 			goto bail;
1883 		}
1884 
1885 		/* update the multicast group for this vid */
1886 		mac_client_bcast_refresh(mcip, mac_client_update_mcast,
1887 		    (void *)flent, B_TRUE);
1888 
1889 	}
1890 
1891 	/* populate the shared MAC address */
1892 	muip->mui_map = mcip->mci_unicast;
1893 
1894 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
1895 	muip->mui_next = mcip->mci_unicast_list;
1896 	mcip->mci_unicast_list = muip;
1897 	rw_exit(&mcip->mci_rw_lock);
1898 
1899 	if (nactiveclients_added)
1900 		mac_update_single_active_client(mip);
1901 
1902 	*mah = (mac_unicast_handle_t)muip;
1903 
1904 	/* add it to the flow list of this mcip */
1905 	mac_client_add_to_flow_list(mcip, flent);
1906 
1907 	/*
1908 	 * Trigger a renegotiation of the capabilities when the number of
1909 	 * active clients changes from 1 to 2, since some of the capabilities
1910 	 * might have to be disabled. Also send a MAC_NOTE_LINK notification
1911 	 * to all the MAC clients whenever physical link is DOWN.
1912 	 */
1913 	if (mip->mi_nactiveclients == 2) {
1914 		mac_capab_update((mac_handle_t)mip);
1915 		mac_virtual_link_update(mip);
1916 	}
1917 	/*
1918 	 * Now that the setup is complete, clear the INCIPIENT flag.
1919 	 * The flag was set to avoid incoming packets seeing inconsistent
1920 	 * structures while the setup was in progress. Clear the mci_tx_flag
1921 	 * by calling mac_tx_client_block. It is possible that
1922 	 * mac_unicast_remove was called prior to this mac_unicast_add which
1923 	 * could have set the MCI_TX_QUIESCE flag.
1924 	 */
1925 	if (flent->fe_rx_ring_group != NULL)
1926 		mac_rx_group_unmark(flent->fe_rx_ring_group, MR_INCIPIENT);
1927 	FLOW_UNMARK(flent, FE_INCIPIENT);
1928 	FLOW_UNMARK(flent, FE_MC_NO_DATAPATH);
1929 	mac_tx_client_unblock(mcip);
1930 	return (0);
1931 bail:
1932 	if (bcast_added)
1933 		mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, vid);
1934 	if (mac_started)
1935 		mac_stop((mac_handle_t)mip);
1936 
1937 	if (nactiveclients_added) {
1938 		mip->mi_nactiveclients--;
1939 		mac_update_single_active_client(mip);
1940 	}
1941 
1942 	if (mcip->mci_state_flags & MCIS_EXCLUSIVE)
1943 		mip->mi_state_flags &= ~MIS_EXCLUSIVE;
1944 	kmem_free(muip, sizeof (mac_unicast_impl_t));
1945 	return (err);
1946 }
1947 
1948 int
1949 mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags,
1950     mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag)
1951 {
1952 	mac_impl_t *mip = ((mac_client_impl_t *)mch)->mci_mip;
1953 	uint_t err;
1954 
1955 	i_mac_perim_enter(mip);
1956 	err = i_mac_unicast_add(mch, mac_addr, flags, mah, vid, diag);
1957 	i_mac_perim_exit(mip);
1958 
1959 	return (err);
1960 }
1961 
1962 /*
1963  * Add the primary MAC address to the MAC client. This is a convenience
1964  * function which can be called by primary MAC clients which do not
1965  * need to specify any other additional flags.
1966  *
1967  * It's called in one of following situations:
1968  *   * dls as the primary MAC client
1969  *   * aggr as an exclusive client
1970  *   * by VNIC's client
1971  */
1972 int
1973 mac_unicast_primary_add(mac_client_handle_t mch, mac_unicast_handle_t *mah,
1974     mac_diag_t *diag)
1975 {
1976 	return (mac_unicast_add(mch, NULL, MAC_UNICAST_PRIMARY, mah, 0, diag));
1977 }
1978 
1979 /*
1980  * Remove a MAC address which was previously added by mac_unicast_add().
1981  */
1982 int
1983 mac_unicast_remove(mac_client_handle_t mch, mac_unicast_handle_t mah)
1984 {
1985 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1986 	mac_unicast_impl_t *muip = (mac_unicast_impl_t *)mah;
1987 	mac_unicast_impl_t *pre;
1988 	mac_impl_t *mip = mcip->mci_mip;
1989 	flow_entry_t *flent;
1990 
1991 	i_mac_perim_enter(mip);
1992 	if (mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) {
1993 		/*
1994 		 * Called made by the upper MAC client of a VNIC.
1995 		 * There's nothing much to do, the unicast address will
1996 		 * be removed by the VNIC driver when the VNIC is deleted,
1997 		 * but let's ensure that all our transmit is done before
1998 		 * the client does a mac_client_stop lest it trigger an
1999 		 * assert in the driver.
2000 		 */
2001 		ASSERT(muip->mui_vid == 0);
2002 
2003 		mac_tx_client_flush(mcip);
2004 		mcip->mci_flags &= ~MAC_CLIENT_FLAGS_VNIC_PRIMARY;
2005 
2006 		kmem_free(muip, sizeof (mac_unicast_impl_t));
2007 		i_mac_perim_exit(mip);
2008 		return (0);
2009 	}
2010 
2011 	ASSERT(muip != NULL);
2012 
2013 	/*
2014 	 * Remove the VID from the list of client's VIDs.
2015 	 */
2016 	pre = mcip->mci_unicast_list;
2017 	if (muip == pre) {
2018 		mcip->mci_unicast_list = muip->mui_next;
2019 	} else {
2020 		while ((pre->mui_next != NULL) && (pre->mui_next != muip))
2021 			pre = pre->mui_next;
2022 		ASSERT(pre->mui_next == muip);
2023 		rw_enter(&mcip->mci_rw_lock, RW_WRITER);
2024 		pre->mui_next = muip->mui_next;
2025 		rw_exit(&mcip->mci_rw_lock);
2026 	}
2027 
2028 	if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) && muip->mui_vid == 0)
2029 		mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PRIMARY;
2030 
2031 	if (!mac_client_single_rcvr(mcip)) {
2032 		/*
2033 		 * This MAC client is shared by more than one unicast
2034 		 * addresses, so we will just remove the flent
2035 		 * corresponding to the address being removed. We don't invoke
2036 		 * mac_rx_classify_flow_rem() since the additional flow is
2037 		 * not associated with its own separate set of SRS and rings,
2038 		 * and these constructs are still needed for the remaining
2039 		 * flows.
2040 		 */
2041 		flent = mac_client_get_flow(mcip, muip);
2042 		ASSERT(flent != NULL);
2043 
2044 		/*
2045 		 * The first one is disappearing, need to make sure
2046 		 * we replace it with another from the list of
2047 		 * shared clients.
2048 		 */
2049 		if (flent == mcip->mci_flent)
2050 			flent = mac_client_swap_mciflent(mcip);
2051 		mac_client_remove_flow_from_list(mcip, flent);
2052 		mac_flow_remove(mip->mi_flow_tab, flent, B_FALSE);
2053 		mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
2054 
2055 		/*
2056 		 * The multicast groups that were added by the client so
2057 		 * far must be removed from the brodcast domain corresponding
2058 		 * to the VID being removed.
2059 		 */
2060 		mac_client_bcast_refresh(mcip, mac_client_update_mcast,
2061 		    (void *)flent, B_FALSE);
2062 
2063 		if (mip->mi_type->mt_brdcst_addr != NULL) {
2064 			mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr,
2065 			    muip->mui_vid);
2066 		}
2067 		mac_stop((mac_handle_t)mip);
2068 		FLOW_FINAL_REFRELE(flent);
2069 		i_mac_perim_exit(mip);
2070 		return (0);
2071 	}
2072 
2073 	/*
2074 	 * We would have initialized subflows etc. only if we brought up
2075 	 * the primary client and set the unicast unicast address etc.
2076 	 * Deactivate the flows. The flow entry will be removed from the
2077 	 * active flow tables, and the associated SRS, softrings etc will
2078 	 * be deleted. But the flow entry itself won't be destroyed, instead
2079 	 * it will continue to be archived off the  the global flow hash
2080 	 * list, for a possible future activation when say IP is plumbed
2081 	 * again.
2082 	 */
2083 	mac_link_release_flows(mch);
2084 
2085 	mip->mi_nactiveclients--;
2086 	mac_update_single_active_client(mip);
2087 
2088 	/* Tear down the Data path */
2089 	mac_datapath_teardown(mcip, mcip->mci_flent, SRST_LINK);
2090 
2091 	/*
2092 	 * Prevent any future access to the flow entry through the mci_flent
2093 	 * pointer by setting the mci_flent to NULL. Access to mci_flent in
2094 	 * mac_bcast_send is also under mi_rw_lock.
2095 	 */
2096 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
2097 	flent = mcip->mci_flent;
2098 	mac_client_remove_flow_from_list(mcip, flent);
2099 
2100 	if (mcip->mci_state_flags & MCIS_DESC_LOGGED)
2101 		mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
2102 
2103 	/*
2104 	 * This is the last unicast address being removed and there shouldn't
2105 	 * be any outbound data threads at this point coming down from mac
2106 	 * clients. We have waited for the data threads to finish before
2107 	 * starting dld_str_detach. Non-data threads must access TX SRS
2108 	 * under mi_rw_lock.
2109 	 */
2110 	rw_exit(&mip->mi_rw_lock);
2111 
2112 	/*
2113 	 * Update the multicast group for this vid.
2114 	 */
2115 	mac_client_bcast_refresh(mcip, mac_client_update_mcast, (void *)flent,
2116 	    B_FALSE);
2117 
2118 	/*
2119 	 * Don't use FLOW_MARK with FE_MC_NO_DATAPATH, as the flow might
2120 	 * contain other flags, such as FE_CONDEMNED, which we need to
2121 	 * cleared. We don't call mac_flow_cleanup() for this unicast
2122 	 * flow as we have a already cleaned up SRSs etc. (via the teadown
2123 	 * path). We just clear the stats and reset the initial callback
2124 	 * function, the rest will be set when we call mac_flow_create,
2125 	 * if at all.
2126 	 */
2127 	mutex_enter(&flent->fe_lock);
2128 	ASSERT(flent->fe_refcnt == 1 && flent->fe_mbg == NULL &&
2129 	    flent->fe_tx_srs == NULL && flent->fe_rx_srs_cnt == 0);
2130 	flent->fe_flags = FE_MC_NO_DATAPATH;
2131 	flow_stat_destroy(flent);
2132 
2133 	/* Initialize the receiver function to a safe routine */
2134 	flent->fe_cb_fn = (flow_fn_t)mac_pkt_drop;
2135 	flent->fe_cb_arg1 = NULL;
2136 	flent->fe_cb_arg2 = NULL;
2137 
2138 	flent->fe_index = -1;
2139 	mutex_exit(&flent->fe_lock);
2140 
2141 	if (mip->mi_type->mt_brdcst_addr != NULL) {
2142 		mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr,
2143 		    muip->mui_vid);
2144 	}
2145 
2146 	if (mip->mi_nactiveclients == 1) {
2147 		mac_capab_update((mac_handle_t)mip);
2148 		mac_virtual_link_update(mip);
2149 	}
2150 	if (mcip->mci_state_flags & MCIS_EXCLUSIVE)
2151 		mip->mi_state_flags &= ~MIS_EXCLUSIVE;
2152 	mcip->mci_state_flags &= ~MCIS_UNICAST_HW;
2153 
2154 	mac_stop((mac_handle_t)mip);
2155 
2156 	i_mac_perim_exit(mip);
2157 	kmem_free(muip, sizeof (mac_unicast_impl_t));
2158 	return (0);
2159 }
2160 
2161 /*
2162  * Multicast add function invoked by MAC clients.
2163  */
2164 int
2165 mac_multicast_add(mac_client_handle_t mch, const uint8_t *addr)
2166 {
2167 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2168 	mac_impl_t		*mip = mcip->mci_mip;
2169 	flow_entry_t		*flent = mcip->mci_flent_list;
2170 	flow_entry_t		*prev_fe = NULL;
2171 	uint16_t		vid;
2172 	int			err = 0;
2173 
2174 	/* Verify the address is a valid multicast address */
2175 	if ((err = mip->mi_type->mt_ops.mtops_multicst_verify(addr,
2176 	    mip->mi_pdata)) != 0)
2177 		return (err);
2178 
2179 	i_mac_perim_enter(mip);
2180 	while (flent != NULL) {
2181 		vid = i_mac_flow_vid(flent);
2182 
2183 		err = mac_bcast_add((mac_client_impl_t *)mch, addr, vid,
2184 		    MAC_ADDRTYPE_MULTICAST);
2185 		if (err != 0)
2186 			break;
2187 		prev_fe = flent;
2188 		flent = flent->fe_client_next;
2189 	}
2190 
2191 	/*
2192 	 * If we failed adding, then undo all, rather than partial
2193 	 * success.
2194 	 */
2195 	if (flent != NULL && prev_fe != NULL) {
2196 		flent = mcip->mci_flent_list;
2197 		while (flent != prev_fe->fe_client_next) {
2198 			vid = i_mac_flow_vid(flent);
2199 			mac_bcast_delete((mac_client_impl_t *)mch, addr, vid);
2200 			flent = flent->fe_client_next;
2201 		}
2202 	}
2203 	i_mac_perim_exit(mip);
2204 	return (err);
2205 }
2206 
2207 /*
2208  * Multicast delete function invoked by MAC clients.
2209  */
2210 void
2211 mac_multicast_remove(mac_client_handle_t mch, const uint8_t *addr)
2212 {
2213 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2214 	mac_impl_t		*mip = mcip->mci_mip;
2215 	flow_entry_t		*flent;
2216 	uint16_t		vid;
2217 
2218 	i_mac_perim_enter(mip);
2219 	for (flent = mcip->mci_flent_list; flent != NULL;
2220 	    flent = flent->fe_client_next) {
2221 		vid = i_mac_flow_vid(flent);
2222 		mac_bcast_delete((mac_client_impl_t *)mch, addr, vid);
2223 	}
2224 	i_mac_perim_exit(mip);
2225 }
2226 
2227 /*
2228  * When a MAC client desires to capture packets on an interface,
2229  * it registers a promiscuous call back with mac_promisc_add().
2230  * There are three types of promiscuous callbacks:
2231  *
2232  * * MAC_CLIENT_PROMISC_ALL
2233  *   Captures all packets sent and received by the MAC client,
2234  *   the physical interface, as well as all other MAC clients
2235  *   defined on top of the same MAC.
2236  *
2237  * * MAC_CLIENT_PROMISC_FILTERED
2238  *   Captures all packets sent and received by the MAC client,
2239  *   plus all multicast traffic sent and received by the phyisical
2240  *   interface and the other MAC clients.
2241  *
2242  * * MAC_CLIENT_PROMISC_MULTI
2243  *   Captures all broadcast and multicast packets sent and
2244  *   received by the MAC clients as well as the physical interface.
2245  *
2246  * In all cases, the underlying MAC is put in promiscuous mode.
2247  */
2248 int
2249 mac_promisc_add(mac_client_handle_t mch, mac_client_promisc_type_t type,
2250     mac_rx_t fn, void *arg, mac_promisc_handle_t *mphp, uint16_t flags)
2251 {
2252 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2253 	mac_impl_t *mip = mcip->mci_mip;
2254 	mac_promisc_impl_t *mpip;
2255 	mac_cb_info_t	*mcbi;
2256 	int rc;
2257 
2258 	i_mac_perim_enter(mip);
2259 
2260 	if ((rc = mac_start((mac_handle_t)mip)) != 0) {
2261 		i_mac_perim_exit(mip);
2262 		return (rc);
2263 	}
2264 
2265 	if ((mcip->mci_state_flags & MCIS_IS_VNIC) &&
2266 	    type == MAC_CLIENT_PROMISC_ALL) {
2267 		/*
2268 		 * The function is being invoked by the upper MAC client
2269 		 * of a VNIC. The VNIC should only see the traffic
2270 		 * it is entitled to.
2271 		 */
2272 		type = MAC_CLIENT_PROMISC_FILTERED;
2273 	}
2274 
2275 
2276 	/*
2277 	 * Turn on promiscuous mode for the underlying NIC.
2278 	 * This is needed even for filtered callbacks which
2279 	 * expect to receive all multicast traffic on the wire.
2280 	 *
2281 	 * Physical promiscuous mode should not be turned on if
2282 	 * MAC_PROMISC_FLAGS_NO_PHYS is set.
2283 	 */
2284 	if ((flags & MAC_PROMISC_FLAGS_NO_PHYS) == 0) {
2285 		if ((rc = i_mac_promisc_set(mip, B_TRUE, MAC_DEVPROMISC))
2286 		    != 0) {
2287 			mac_stop((mac_handle_t)mip);
2288 			i_mac_perim_exit(mip);
2289 			return (rc);
2290 		}
2291 	}
2292 
2293 	mpip = kmem_cache_alloc(mac_promisc_impl_cache, KM_SLEEP);
2294 
2295 	mpip->mpi_type = type;
2296 	mpip->mpi_fn = fn;
2297 	mpip->mpi_arg = arg;
2298 	mpip->mpi_mcip = mcip;
2299 	mpip->mpi_no_tx_loop = ((flags & MAC_PROMISC_FLAGS_NO_TX_LOOP) != 0);
2300 	mpip->mpi_no_phys = ((flags & MAC_PROMISC_FLAGS_NO_PHYS) != 0);
2301 	mpip->mpi_strip_vlan_tag =
2302 	    ((flags & MAC_PROMISC_FLAGS_VLAN_TAG_STRIP) != 0);
2303 
2304 	mcbi = &mip->mi_promisc_cb_info;
2305 	mutex_enter(mcbi->mcbi_lockp);
2306 
2307 	mac_callback_add(&mip->mi_promisc_cb_info, &mcip->mci_promisc_list,
2308 	    &mpip->mpi_mci_link);
2309 	mac_callback_add(&mip->mi_promisc_cb_info, &mip->mi_promisc_list,
2310 	    &mpip->mpi_mi_link);
2311 
2312 	mutex_exit(mcbi->mcbi_lockp);
2313 
2314 	*mphp = (mac_promisc_handle_t)mpip;
2315 	i_mac_perim_exit(mip);
2316 	return (0);
2317 }
2318 
2319 /*
2320  * Remove a multicast address previously aded through mac_promisc_add().
2321  */
2322 int
2323 mac_promisc_remove(mac_promisc_handle_t mph)
2324 {
2325 	mac_promisc_impl_t *mpip = (mac_promisc_impl_t *)mph;
2326 	mac_client_impl_t *mcip = mpip->mpi_mcip;
2327 	mac_impl_t *mip = mcip->mci_mip;
2328 	mac_cb_info_t *mcbi;
2329 	int rc = 0;
2330 
2331 	i_mac_perim_enter(mip);
2332 
2333 	/*
2334 	 * Even if the device can't be reset into normal mode, we still
2335 	 * need to clear the client promisc callbacks. The client may want
2336 	 * to close the mac end point and we can't have stale callbacks.
2337 	 */
2338 	if (!(mpip->mpi_no_phys)) {
2339 		rc = mac_promisc_set((mac_handle_t)mip, B_FALSE,
2340 		    MAC_DEVPROMISC);
2341 		if (rc != 0)
2342 			goto done;
2343 	}
2344 	mcbi = &mip->mi_promisc_cb_info;
2345 	mutex_enter(mcbi->mcbi_lockp);
2346 	if (mac_callback_remove(mcbi, &mip->mi_promisc_list,
2347 	    &mpip->mpi_mi_link)) {
2348 		VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info,
2349 		    &mcip->mci_promisc_list, &mpip->mpi_mci_link));
2350 		kmem_cache_free(mac_promisc_impl_cache, mpip);
2351 	} else {
2352 		mac_callback_remove_wait(&mip->mi_promisc_cb_info);
2353 	}
2354 	mutex_exit(mcbi->mcbi_lockp);
2355 	mac_stop((mac_handle_t)mip);
2356 
2357 done:
2358 	i_mac_perim_exit(mip);
2359 	return (rc);
2360 }
2361 
2362 /*
2363  * Reference count the number of active Tx threads. MCI_TX_QUIESCE indicates
2364  * that a control operation wants to quiesce the Tx data flow in which case
2365  * we return an error. Holding any of the per cpu locks ensures that the
2366  * mci_tx_flag won't change.
2367  *
2368  * 'CPU' must be accessed just once and used to compute the index into the
2369  * percpu array, and that index must be used for the entire duration of the
2370  * packet send operation. Note that the thread may be preempted and run on
2371  * another cpu any time and so we can't use 'CPU' more than once for the
2372  * operation.
2373  */
2374 #define	MAC_TX_TRY_HOLD(mcip, mytx, error)				\
2375 {									\
2376 	(error) = 0;							\
2377 	(mytx) = &(mcip)->mci_tx_pcpu[CPU->cpu_seqid & mac_tx_percpu_cnt]; \
2378 	mutex_enter(&(mytx)->pcpu_tx_lock);				\
2379 	if (!((mcip)->mci_tx_flag & MCI_TX_QUIESCE)) {			\
2380 		(mytx)->pcpu_tx_refcnt++;				\
2381 	} else {							\
2382 		(error) = -1;						\
2383 	}								\
2384 	mutex_exit(&(mytx)->pcpu_tx_lock);				\
2385 }
2386 
2387 /*
2388  * Release the reference. If needed, signal any control operation waiting
2389  * for Tx quiescence. The wait and signal are always done using the
2390  * mci_tx_pcpu[0]'s lock
2391  */
2392 #define	MAC_TX_RELE(mcip, mytx) {					\
2393 	mutex_enter(&(mytx)->pcpu_tx_lock);				\
2394 	if (--(mytx)->pcpu_tx_refcnt == 0 &&				\
2395 	    (mcip)->mci_tx_flag & MCI_TX_QUIESCE) {			\
2396 		mutex_exit(&(mytx)->pcpu_tx_lock);			\
2397 		mutex_enter(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock);	\
2398 		cv_signal(&(mcip)->mci_tx_cv);				\
2399 		mutex_exit(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock);	\
2400 	} else {							\
2401 		mutex_exit(&(mytx)->pcpu_tx_lock);			\
2402 	}								\
2403 }
2404 
2405 /*
2406  * Bump the count of the number of active Tx threads. This is maintained as
2407  * a per CPU counter. On (CMT kind of) machines with large number of CPUs,
2408  * a single mci_tx_lock may become contended. However a count of the total
2409  * number of Tx threads per client is needed in order to quiesce the Tx side
2410  * prior to reassigning a Tx ring dynamically to another client. The thread
2411  * that needs to quiesce the Tx traffic grabs all the percpu locks and checks
2412  * the sum of the individual percpu refcnts. Each Tx data thread only grabs
2413  * its own percpu lock and increments its own refcnt.
2414  */
2415 void *
2416 mac_tx_hold(mac_client_handle_t mch)
2417 {
2418 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2419 	mac_tx_percpu_t	*mytx;
2420 	int error;
2421 
2422 	MAC_TX_TRY_HOLD(mcip, mytx, error);
2423 	return (error == 0 ? (void *)mytx : NULL);
2424 }
2425 
2426 void
2427 mac_tx_rele(mac_client_handle_t mch, void *mytx_handle)
2428 {
2429 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2430 	mac_tx_percpu_t	*mytx = mytx_handle;
2431 
2432 	MAC_TX_RELE(mcip, mytx)
2433 }
2434 
2435 /*
2436  * Send function invoked by MAC clients.
2437  */
2438 mac_tx_cookie_t
2439 mac_tx(mac_client_handle_t mch, mblk_t *mp_chain, uintptr_t hint,
2440     uint16_t flag, mblk_t **ret_mp)
2441 {
2442 	mac_tx_cookie_t		cookie;
2443 	int			error;
2444 	mac_tx_percpu_t		*mytx;
2445 	mac_soft_ring_set_t	*srs;
2446 	flow_entry_t		*flent;
2447 	boolean_t		is_subflow = B_FALSE;
2448 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2449 	mac_impl_t		*mip = mcip->mci_mip;
2450 	mac_srs_tx_t		*srs_tx;
2451 
2452 	/*
2453 	 * Check whether the active Tx threads count is bumped already.
2454 	 */
2455 	if (!(flag & MAC_TX_NO_HOLD)) {
2456 		MAC_TX_TRY_HOLD(mcip, mytx, error);
2457 		if (error != 0) {
2458 			freemsgchain(mp_chain);
2459 			return (NULL);
2460 		}
2461 	}
2462 
2463 	if (mcip->mci_subflow_tab != NULL &&
2464 	    mcip->mci_subflow_tab->ft_flow_count > 0 &&
2465 	    mac_flow_lookup(mcip->mci_subflow_tab, mp_chain,
2466 	    FLOW_OUTBOUND, &flent) == 0) {
2467 		/*
2468 		 * The main assumption here is that if in the event
2469 		 * we get a chain, all the packets will be classified
2470 		 * to the same Flow/SRS. If this changes for any
2471 		 * reason, the following logic should change as well.
2472 		 * I suppose the fanout_hint also assumes this .
2473 		 */
2474 		ASSERT(flent != NULL);
2475 		is_subflow = B_TRUE;
2476 	} else {
2477 		flent = mcip->mci_flent;
2478 	}
2479 
2480 	srs = flent->fe_tx_srs;
2481 	srs_tx = &srs->srs_tx;
2482 	if (srs_tx->st_mode == SRS_TX_DEFAULT &&
2483 	    (srs->srs_state & SRS_ENQUEUED) == 0 &&
2484 	    mip->mi_nactiveclients == 1 && mip->mi_promisc_list == NULL &&
2485 	    mp_chain->b_next == NULL) {
2486 		uint64_t	obytes;
2487 
2488 		/*
2489 		 * Since dls always opens the underlying MAC, nclients equals
2490 		 * to 1 means that the only active client is dls itself acting
2491 		 * as a primary client of the MAC instance. Since dls will not
2492 		 * send tagged packets in that case, and dls is trusted to send
2493 		 * packets for its allowed VLAN(s), the VLAN tag insertion and
2494 		 * check is required only if nclients is greater than 1.
2495 		 */
2496 		if (mip->mi_nclients > 1) {
2497 			if (MAC_VID_CHECK_NEEDED(mcip)) {
2498 				int	err = 0;
2499 
2500 				MAC_VID_CHECK(mcip, mp_chain, err);
2501 				if (err != 0) {
2502 					freemsg(mp_chain);
2503 					mcip->mci_stat_oerrors++;
2504 					goto done;
2505 				}
2506 			}
2507 			if (MAC_TAG_NEEDED(mcip)) {
2508 				mp_chain = mac_add_vlan_tag(mp_chain, 0,
2509 				    mac_client_vid(mch));
2510 				if (mp_chain == NULL) {
2511 					mcip->mci_stat_oerrors++;
2512 					goto done;
2513 				}
2514 			}
2515 		}
2516 
2517 		obytes = (mp_chain->b_cont == NULL ? MBLKL(mp_chain) :
2518 		    msgdsize(mp_chain));
2519 
2520 		MAC_TX(mip, srs_tx->st_arg2, mp_chain, mcip);
2521 
2522 		if (mp_chain == NULL) {
2523 			cookie = NULL;
2524 			mcip->mci_stat_obytes += obytes;
2525 			mcip->mci_stat_opackets += 1;
2526 			if ((srs->srs_type & SRST_FLOW) != 0) {
2527 				FLOW_STAT_UPDATE(flent, obytes, obytes);
2528 				FLOW_STAT_UPDATE(flent, opackets, 1);
2529 			}
2530 		} else {
2531 			mutex_enter(&srs->srs_lock);
2532 			cookie = mac_tx_srs_no_desc(srs, mp_chain,
2533 			    flag, ret_mp);
2534 			mutex_exit(&srs->srs_lock);
2535 		}
2536 	} else {
2537 		cookie = srs_tx->st_func(srs, mp_chain, hint, flag, ret_mp);
2538 	}
2539 
2540 done:
2541 	if (is_subflow)
2542 		FLOW_REFRELE(flent);
2543 
2544 	if (!(flag & MAC_TX_NO_HOLD))
2545 		MAC_TX_RELE(mcip, mytx);
2546 
2547 	return (cookie);
2548 }
2549 
2550 /*
2551  * mac_tx_is_blocked
2552  *
2553  * Given a cookie, it returns if the ring identified by the cookie is
2554  * flow-controlled or not. If NULL is passed in place of a cookie,
2555  * then it finds out if any of the underlying rings belonging to the
2556  * SRS is flow controlled or not and returns that status.
2557  */
2558 /* ARGSUSED */
2559 boolean_t
2560 mac_tx_is_flow_blocked(mac_client_handle_t mch, mac_tx_cookie_t cookie)
2561 {
2562 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2563 	mac_soft_ring_set_t *mac_srs;
2564 	mac_soft_ring_t *sringp;
2565 	boolean_t blocked = B_FALSE;
2566 	mac_tx_percpu_t *mytx;
2567 	int err;
2568 	int i;
2569 
2570 	/*
2571 	 * Bump the reference count so that mac_srs won't be deleted.
2572 	 * If the client is currently quiesced and we failed to bump
2573 	 * the reference, return B_TRUE so that flow control stays
2574 	 * as enabled.
2575 	 *
2576 	 * Flow control will then be disabled once the client is no
2577 	 * longer quiesced.
2578 	 */
2579 	MAC_TX_TRY_HOLD(mcip, mytx, err);
2580 	if (err != 0)
2581 		return (B_TRUE);
2582 
2583 	if ((mac_srs = MCIP_TX_SRS(mcip)) == NULL) {
2584 		MAC_TX_RELE(mcip, mytx);
2585 		return (B_FALSE);
2586 	}
2587 
2588 	mutex_enter(&mac_srs->srs_lock);
2589 	if (mac_srs->srs_tx.st_mode == SRS_TX_FANOUT) {
2590 		if (cookie != NULL) {
2591 			sringp = (mac_soft_ring_t *)cookie;
2592 			mutex_enter(&sringp->s_ring_lock);
2593 			if (sringp->s_ring_state & S_RING_TX_HIWAT)
2594 				blocked = B_TRUE;
2595 			mutex_exit(&sringp->s_ring_lock);
2596 		} else {
2597 			for (i = 0; i < mac_srs->srs_oth_ring_count; i++) {
2598 				sringp = mac_srs->srs_oth_soft_rings[i];
2599 				mutex_enter(&sringp->s_ring_lock);
2600 				if (sringp->s_ring_state & S_RING_TX_HIWAT) {
2601 					blocked = B_TRUE;
2602 					mutex_exit(&sringp->s_ring_lock);
2603 					break;
2604 				}
2605 				mutex_exit(&sringp->s_ring_lock);
2606 			}
2607 		}
2608 	} else {
2609 		blocked = (mac_srs->srs_state & SRS_TX_HIWAT);
2610 	}
2611 	mutex_exit(&mac_srs->srs_lock);
2612 	MAC_TX_RELE(mcip, mytx);
2613 	return (blocked);
2614 }
2615 
2616 /*
2617  * Check if the MAC client is the primary MAC client.
2618  */
2619 boolean_t
2620 mac_is_primary_client(mac_client_impl_t *mcip)
2621 {
2622 	return (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY);
2623 }
2624 
2625 void
2626 mac_ioctl(mac_handle_t mh, queue_t *wq, mblk_t *bp)
2627 {
2628 	mac_impl_t	*mip = (mac_impl_t *)mh;
2629 	int cmd = ((struct iocblk *)bp->b_rptr)->ioc_cmd;
2630 
2631 	if ((cmd == ND_GET && (mip->mi_callbacks->mc_callbacks & MC_GETPROP)) ||
2632 	    (cmd == ND_SET && (mip->mi_callbacks->mc_callbacks & MC_SETPROP))) {
2633 		/*
2634 		 * If ndd props were registered, call them.
2635 		 * Note that ndd ioctls are Obsolete
2636 		 */
2637 		mac_ndd_ioctl(mip, wq, bp);
2638 		return;
2639 	}
2640 
2641 	/*
2642 	 * Call the driver to handle the ioctl.  The driver may not support
2643 	 * any ioctls, in which case we reply with a NAK on its behalf.
2644 	 */
2645 	if (mip->mi_callbacks->mc_callbacks & MC_IOCTL)
2646 		mip->mi_ioctl(mip->mi_driver, wq, bp);
2647 	else
2648 		miocnak(wq, bp, 0, EINVAL);
2649 }
2650 
2651 /*
2652  * Return the link state of the specified MAC instance.
2653  */
2654 link_state_t
2655 mac_link_get(mac_handle_t mh)
2656 {
2657 	return (((mac_impl_t *)mh)->mi_linkstate);
2658 }
2659 
2660 /*
2661  * Add a mac client specified notification callback. Please see the comments
2662  * above mac_callback_add() for general information about mac callback
2663  * addition/deletion in the presence of mac callback list walkers
2664  */
2665 mac_notify_handle_t
2666 mac_notify_add(mac_handle_t mh, mac_notify_t notify_fn, void *arg)
2667 {
2668 	mac_impl_t		*mip = (mac_impl_t *)mh;
2669 	mac_notify_cb_t		*mncb;
2670 	mac_cb_info_t		*mcbi;
2671 
2672 	/*
2673 	 * Allocate a notify callback structure, fill in the details and
2674 	 * use the mac callback list manipulation functions to chain into
2675 	 * the list of callbacks.
2676 	 */
2677 	mncb = kmem_zalloc(sizeof (mac_notify_cb_t), KM_SLEEP);
2678 	mncb->mncb_fn = notify_fn;
2679 	mncb->mncb_arg = arg;
2680 	mncb->mncb_mip = mip;
2681 	mncb->mncb_link.mcb_objp = mncb;
2682 	mncb->mncb_link.mcb_objsize = sizeof (mac_notify_cb_t);
2683 	mncb->mncb_link.mcb_flags = MCB_NOTIFY_CB_T;
2684 
2685 	mcbi = &mip->mi_notify_cb_info;
2686 
2687 	i_mac_perim_enter(mip);
2688 	mutex_enter(mcbi->mcbi_lockp);
2689 
2690 	mac_callback_add(&mip->mi_notify_cb_info, &mip->mi_notify_cb_list,
2691 	    &mncb->mncb_link);
2692 
2693 	mutex_exit(mcbi->mcbi_lockp);
2694 	i_mac_perim_exit(mip);
2695 	return ((mac_notify_handle_t)mncb);
2696 }
2697 
2698 void
2699 mac_notify_remove_wait(mac_handle_t mh)
2700 {
2701 	mac_impl_t	*mip = (mac_impl_t *)mh;
2702 	mac_cb_info_t	*mcbi = &mip->mi_notify_cb_info;
2703 
2704 	mutex_enter(mcbi->mcbi_lockp);
2705 	mac_callback_remove_wait(&mip->mi_notify_cb_info);
2706 	mutex_exit(mcbi->mcbi_lockp);
2707 }
2708 
2709 /*
2710  * Remove a mac client specified notification callback
2711  */
2712 int
2713 mac_notify_remove(mac_notify_handle_t mnh, boolean_t wait)
2714 {
2715 	mac_notify_cb_t	*mncb = (mac_notify_cb_t *)mnh;
2716 	mac_impl_t	*mip = mncb->mncb_mip;
2717 	mac_cb_info_t	*mcbi;
2718 	int		err = 0;
2719 
2720 	mcbi = &mip->mi_notify_cb_info;
2721 
2722 	i_mac_perim_enter(mip);
2723 	mutex_enter(mcbi->mcbi_lockp);
2724 
2725 	ASSERT(mncb->mncb_link.mcb_objp == mncb);
2726 	/*
2727 	 * If there aren't any list walkers, the remove would succeed
2728 	 * inline, else we wait for the deferred remove to complete
2729 	 */
2730 	if (mac_callback_remove(&mip->mi_notify_cb_info,
2731 	    &mip->mi_notify_cb_list, &mncb->mncb_link)) {
2732 		kmem_free(mncb, sizeof (mac_notify_cb_t));
2733 	} else {
2734 		err = EBUSY;
2735 	}
2736 
2737 	mutex_exit(mcbi->mcbi_lockp);
2738 	i_mac_perim_exit(mip);
2739 
2740 	/*
2741 	 * If we failed to remove the notification callback and "wait" is set
2742 	 * to be B_TRUE, wait for the callback to finish after we exit the
2743 	 * mac perimeter.
2744 	 */
2745 	if (err != 0 && wait) {
2746 		mac_notify_remove_wait((mac_handle_t)mip);
2747 		return (0);
2748 	}
2749 
2750 	return (err);
2751 }
2752 
2753 /*
2754  * Associate resource management callbacks with the specified MAC
2755  * clients.
2756  */
2757 
2758 void
2759 mac_resource_set_common(mac_client_handle_t mch, mac_resource_add_t add,
2760     mac_resource_remove_t remove, mac_resource_quiesce_t quiesce,
2761     mac_resource_restart_t restart, mac_resource_bind_t bind,
2762     void *arg)
2763 {
2764 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2765 
2766 	mcip->mci_resource_add = add;
2767 	mcip->mci_resource_remove = remove;
2768 	mcip->mci_resource_quiesce = quiesce;
2769 	mcip->mci_resource_restart = restart;
2770 	mcip->mci_resource_bind = bind;
2771 	mcip->mci_resource_arg = arg;
2772 
2773 	if (arg == NULL)
2774 		mcip->mci_state_flags &= ~MCIS_CLIENT_POLL_CAPABLE;
2775 }
2776 
2777 void
2778 mac_resource_set(mac_client_handle_t mch, mac_resource_add_t add, void *arg)
2779 {
2780 	/* update the 'resource_add' callback */
2781 	mac_resource_set_common(mch, add, NULL, NULL, NULL, NULL, arg);
2782 }
2783 
2784 /*
2785  * Sets up the client resources and enable the polling interface over all the
2786  * SRS's and the soft rings of the client
2787  */
2788 void
2789 mac_client_poll_enable(mac_client_handle_t mch)
2790 {
2791 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2792 	mac_soft_ring_set_t	*mac_srs;
2793 	flow_entry_t		*flent;
2794 	int			i;
2795 
2796 	flent = mcip->mci_flent;
2797 	ASSERT(flent != NULL);
2798 
2799 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2800 		mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
2801 		ASSERT(mac_srs->srs_mcip == mcip);
2802 		mac_srs_client_poll_enable(mcip, mac_srs);
2803 	}
2804 }
2805 
2806 /*
2807  * Tears down the client resources and disable the polling interface over all
2808  * the SRS's and the soft rings of the client
2809  */
2810 void
2811 mac_client_poll_disable(mac_client_handle_t mch)
2812 {
2813 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2814 	mac_soft_ring_set_t	*mac_srs;
2815 	flow_entry_t		*flent;
2816 	int			i;
2817 
2818 	flent = mcip->mci_flent;
2819 	ASSERT(flent != NULL);
2820 
2821 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2822 		mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
2823 		ASSERT(mac_srs->srs_mcip == mcip);
2824 		mac_srs_client_poll_disable(mcip, mac_srs);
2825 	}
2826 }
2827 
2828 /*
2829  * Associate the CPUs specified by the given property with a MAC client.
2830  */
2831 int
2832 mac_cpu_set(mac_client_handle_t mch, mac_resource_props_t *mrp)
2833 {
2834 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2835 	mac_impl_t *mip = mcip->mci_mip;
2836 	int err = 0;
2837 
2838 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2839 
2840 	if ((err = mac_validate_props(mrp)) != 0)
2841 		return (err);
2842 
2843 	if (MCIP_DATAPATH_SETUP(mcip))
2844 		mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp);
2845 
2846 	mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE);
2847 	return (0);
2848 }
2849 
2850 /*
2851  * Apply the specified properties to the specified MAC client.
2852  */
2853 int
2854 mac_client_set_resources(mac_client_handle_t mch, mac_resource_props_t *mrp)
2855 {
2856 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2857 	mac_impl_t *mip = mcip->mci_mip;
2858 	int err = 0;
2859 
2860 	i_mac_perim_enter(mip);
2861 
2862 	if ((mrp->mrp_mask & MRP_MAXBW) || (mrp->mrp_mask & MRP_PRIORITY)) {
2863 		err = mac_resource_ctl_set(mch, mrp);
2864 		if (err != 0) {
2865 			i_mac_perim_exit(mip);
2866 			return (err);
2867 		}
2868 	}
2869 
2870 	if (mrp->mrp_mask & MRP_CPUS)
2871 		err = mac_cpu_set(mch, mrp);
2872 
2873 	i_mac_perim_exit(mip);
2874 	return (err);
2875 }
2876 
2877 /*
2878  * Return the properties currently associated with the specified MAC client.
2879  */
2880 void
2881 mac_client_get_resources(mac_client_handle_t mch, mac_resource_props_t *mrp)
2882 {
2883 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2884 	mac_resource_props_t	*mcip_mrp = MCIP_RESOURCE_PROPS(mcip);
2885 
2886 	bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t));
2887 }
2888 
2889 /*
2890  * Pass a copy of the specified packet to the promiscuous callbacks
2891  * of the specified MAC.
2892  *
2893  * If sender is NULL, the function is being invoked for a packet chain
2894  * received from the wire. If sender is non-NULL, it points to
2895  * the MAC client from which the packet is being sent.
2896  *
2897  * The packets are distributed to the promiscuous callbacks as follows:
2898  *
2899  * - all packets are sent to the MAC_CLIENT_PROMISC_ALL callbacks
2900  * - all broadcast and multicast packets are sent to the
2901  *   MAC_CLIENT_PROMISC_FILTER and MAC_CLIENT_PROMISC_MULTI.
2902  *
2903  * The unicast packets of MAC_CLIENT_PROMISC_FILTER callbacks are dispatched
2904  * after classification by mac_rx_deliver().
2905  */
2906 
2907 static void
2908 mac_promisc_dispatch_one(mac_promisc_impl_t *mpip, mblk_t *mp,
2909     boolean_t loopback)
2910 {
2911 	mblk_t *mp_copy;
2912 
2913 	mp_copy = copymsg(mp);
2914 	if (mp_copy == NULL)
2915 		return;
2916 	mp_copy->b_next = NULL;
2917 
2918 	if (mpip->mpi_strip_vlan_tag) {
2919 		if ((mp_copy = mac_strip_vlan_tag_chain(mp_copy)) == NULL)
2920 			return;
2921 	}
2922 	mpip->mpi_fn(mpip->mpi_arg, NULL, mp_copy, loopback);
2923 }
2924 
2925 /*
2926  * Return the VID of a packet. Zero if the packet is not tagged.
2927  */
2928 static uint16_t
2929 mac_ether_vid(mblk_t *mp)
2930 {
2931 	struct ether_header *eth = (struct ether_header *)mp->b_rptr;
2932 
2933 	if (ntohs(eth->ether_type) == ETHERTYPE_VLAN) {
2934 		struct ether_vlan_header *t_evhp =
2935 		    (struct ether_vlan_header *)mp->b_rptr;
2936 		return (VLAN_ID(ntohs(t_evhp->ether_tci)));
2937 	}
2938 
2939 	return (0);
2940 }
2941 
2942 /*
2943  * Return whether the specified packet contains a multicast or broadcast
2944  * destination MAC address.
2945  */
2946 static boolean_t
2947 mac_is_mcast(mac_impl_t *mip, mblk_t *mp)
2948 {
2949 	mac_header_info_t hdr_info;
2950 
2951 	if (mac_header_info((mac_handle_t)mip, mp, &hdr_info) != 0)
2952 		return (B_FALSE);
2953 	return ((hdr_info.mhi_dsttype == MAC_ADDRTYPE_BROADCAST) ||
2954 	    (hdr_info.mhi_dsttype == MAC_ADDRTYPE_MULTICAST));
2955 }
2956 
2957 /*
2958  * Send a copy of an mblk chain to the MAC clients of the specified MAC.
2959  * "sender" points to the sender MAC client for outbound packets, and
2960  * is set to NULL for inbound packets.
2961  */
2962 void
2963 mac_promisc_dispatch(mac_impl_t *mip, mblk_t *mp_chain,
2964     mac_client_impl_t *sender)
2965 {
2966 	mac_promisc_impl_t *mpip;
2967 	mac_cb_t *mcb;
2968 	mblk_t *mp;
2969 	boolean_t is_mcast, is_sender;
2970 
2971 	MAC_PROMISC_WALKER_INC(mip);
2972 	for (mp = mp_chain; mp != NULL; mp = mp->b_next) {
2973 		is_mcast = mac_is_mcast(mip, mp);
2974 		/* send packet to interested callbacks */
2975 		for (mcb = mip->mi_promisc_list; mcb != NULL;
2976 		    mcb = mcb->mcb_nextp) {
2977 			mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
2978 			is_sender = (mpip->mpi_mcip == sender);
2979 
2980 			if (is_sender && mpip->mpi_no_tx_loop)
2981 				/*
2982 				 * The sender doesn't want to receive
2983 				 * copies of the packets it sends.
2984 				 */
2985 				continue;
2986 
2987 			/*
2988 			 * For an ethernet MAC, don't displatch a multicast
2989 			 * packet to a non-PROMISC_ALL callbacks unless the VID
2990 			 * of the packet matches the VID of the client.
2991 			 */
2992 			if (is_mcast &&
2993 			    mpip->mpi_type != MAC_CLIENT_PROMISC_ALL &&
2994 			    !mac_client_check_flow_vid(mpip->mpi_mcip,
2995 			    mac_ether_vid(mp)))
2996 				continue;
2997 
2998 			if (is_sender ||
2999 			    mpip->mpi_type == MAC_CLIENT_PROMISC_ALL ||
3000 			    is_mcast)
3001 				mac_promisc_dispatch_one(mpip, mp, is_sender);
3002 		}
3003 	}
3004 	MAC_PROMISC_WALKER_DCR(mip);
3005 }
3006 
3007 void
3008 mac_promisc_client_dispatch(mac_client_impl_t *mcip, mblk_t *mp_chain)
3009 {
3010 	mac_impl_t		*mip = mcip->mci_mip;
3011 	mac_promisc_impl_t	*mpip;
3012 	boolean_t		is_mcast;
3013 	mblk_t			*mp;
3014 	mac_cb_t		*mcb;
3015 
3016 	/*
3017 	 * The unicast packets for the MAC client still
3018 	 * need to be delivered to the MAC_CLIENT_PROMISC_FILTERED
3019 	 * promiscuous callbacks. The broadcast and multicast
3020 	 * packets were delivered from mac_rx().
3021 	 */
3022 	MAC_PROMISC_WALKER_INC(mip);
3023 	for (mp = mp_chain; mp != NULL; mp = mp->b_next) {
3024 		is_mcast = mac_is_mcast(mip, mp);
3025 		for (mcb = mcip->mci_promisc_list; mcb != NULL;
3026 		    mcb = mcb->mcb_nextp) {
3027 			mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
3028 			if (mpip->mpi_type == MAC_CLIENT_PROMISC_FILTERED &&
3029 			    !is_mcast) {
3030 				mac_promisc_dispatch_one(mpip, mp, B_FALSE);
3031 			}
3032 		}
3033 	}
3034 	MAC_PROMISC_WALKER_DCR(mip);
3035 }
3036 
3037 /*
3038  * Return the margin value currently assigned to the specified MAC instance.
3039  */
3040 void
3041 mac_margin_get(mac_handle_t mh, uint32_t *marginp)
3042 {
3043 	mac_impl_t *mip = (mac_impl_t *)mh;
3044 
3045 	rw_enter(&(mip->mi_rw_lock), RW_READER);
3046 	*marginp = mip->mi_margin;
3047 	rw_exit(&(mip->mi_rw_lock));
3048 }
3049 
3050 /*
3051  * mac_info_get() is used for retrieving the mac_info when a DL_INFO_REQ is
3052  * issued before a DL_ATTACH_REQ. we walk the i_mac_impl_hash table and find
3053  * the first mac_impl_t with a matching driver name; then we copy its mac_info_t
3054  * to the caller. we do all this with i_mac_impl_lock held so the mac_impl_t
3055  * cannot disappear while we are accessing it.
3056  */
3057 typedef struct i_mac_info_state_s {
3058 	const char	*mi_name;
3059 	mac_info_t	*mi_infop;
3060 } i_mac_info_state_t;
3061 
3062 /*ARGSUSED*/
3063 static uint_t
3064 i_mac_info_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
3065 {
3066 	i_mac_info_state_t *statep = arg;
3067 	mac_impl_t *mip = (mac_impl_t *)val;
3068 
3069 	if (mip->mi_state_flags & MIS_DISABLED)
3070 		return (MH_WALK_CONTINUE);
3071 
3072 	if (strcmp(statep->mi_name,
3073 	    ddi_driver_name(mip->mi_dip)) != 0)
3074 		return (MH_WALK_CONTINUE);
3075 
3076 	statep->mi_infop = &mip->mi_info;
3077 	return (MH_WALK_TERMINATE);
3078 }
3079 
3080 boolean_t
3081 mac_info_get(const char *name, mac_info_t *minfop)
3082 {
3083 	i_mac_info_state_t state;
3084 
3085 	rw_enter(&i_mac_impl_lock, RW_READER);
3086 	state.mi_name = name;
3087 	state.mi_infop = NULL;
3088 	mod_hash_walk(i_mac_impl_hash, i_mac_info_walker, &state);
3089 	if (state.mi_infop == NULL) {
3090 		rw_exit(&i_mac_impl_lock);
3091 		return (B_FALSE);
3092 	}
3093 	*minfop = *state.mi_infop;
3094 	rw_exit(&i_mac_impl_lock);
3095 	return (B_TRUE);
3096 }
3097 
3098 /*
3099  * To get the capabilities that MAC layer cares about, such as rings, factory
3100  * mac address, vnic or not, it should directly invoke this function
3101  */
3102 boolean_t
3103 i_mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data)
3104 {
3105 	mac_impl_t *mip = (mac_impl_t *)mh;
3106 
3107 	if (mip->mi_callbacks->mc_callbacks & MC_GETCAPAB)
3108 		return (mip->mi_getcapab(mip->mi_driver, cap, cap_data));
3109 	else
3110 		return (B_FALSE);
3111 }
3112 
3113 /*
3114  * Capability query function. If number of active mac clients is greater than
3115  * 1, only limited capabilities can be advertised to the caller no matter the
3116  * driver has certain capability or not. Else, we query the driver to get the
3117  * capability.
3118  */
3119 boolean_t
3120 mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data)
3121 {
3122 	mac_impl_t *mip = (mac_impl_t *)mh;
3123 
3124 	/*
3125 	 * if mi_nactiveclients > 1, only MAC_CAPAB_HCKSUM,
3126 	 * MAC_CAPAB_NO_NATIVEVLAN, MAC_CAPAB_NO_ZCOPY can be advertised.
3127 	 */
3128 	if (mip->mi_nactiveclients > 1) {
3129 		switch (cap) {
3130 		case MAC_CAPAB_HCKSUM:
3131 			return (i_mac_capab_get(mh, cap, cap_data));
3132 		case MAC_CAPAB_NO_NATIVEVLAN:
3133 		case MAC_CAPAB_NO_ZCOPY:
3134 			return (B_TRUE);
3135 		default:
3136 			return (B_FALSE);
3137 		}
3138 	}
3139 
3140 	/* else get capab from driver */
3141 	return (i_mac_capab_get(mh, cap, cap_data));
3142 }
3143 
3144 boolean_t
3145 mac_sap_verify(mac_handle_t mh, uint32_t sap, uint32_t *bind_sap)
3146 {
3147 	mac_impl_t *mip = (mac_impl_t *)mh;
3148 
3149 	return (mip->mi_type->mt_ops.mtops_sap_verify(sap, bind_sap,
3150 	    mip->mi_pdata));
3151 }
3152 
3153 mblk_t *
3154 mac_header(mac_handle_t mh, const uint8_t *daddr, uint32_t sap, mblk_t *payload,
3155     size_t extra_len)
3156 {
3157 	mac_impl_t *mip = (mac_impl_t *)mh;
3158 
3159 	return (mip->mi_type->mt_ops.mtops_header(mip->mi_addr, daddr, sap,
3160 	    mip->mi_pdata, payload, extra_len));
3161 }
3162 
3163 int
3164 mac_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip)
3165 {
3166 	mac_impl_t *mip = (mac_impl_t *)mh;
3167 
3168 	return (mip->mi_type->mt_ops.mtops_header_info(mp, mip->mi_pdata,
3169 	    mhip));
3170 }
3171 
3172 mblk_t *
3173 mac_header_cook(mac_handle_t mh, mblk_t *mp)
3174 {
3175 	mac_impl_t *mip = (mac_impl_t *)mh;
3176 
3177 	if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_COOK) {
3178 		if (DB_REF(mp) > 1) {
3179 			mblk_t *newmp = copymsg(mp);
3180 			if (newmp == NULL)
3181 				return (NULL);
3182 			freemsg(mp);
3183 			mp = newmp;
3184 		}
3185 		return (mip->mi_type->mt_ops.mtops_header_cook(mp,
3186 		    mip->mi_pdata));
3187 	}
3188 	return (mp);
3189 }
3190 
3191 mblk_t *
3192 mac_header_uncook(mac_handle_t mh, mblk_t *mp)
3193 {
3194 	mac_impl_t *mip = (mac_impl_t *)mh;
3195 
3196 	if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_UNCOOK) {
3197 		if (DB_REF(mp) > 1) {
3198 			mblk_t *newmp = copymsg(mp);
3199 			if (newmp == NULL)
3200 				return (NULL);
3201 			freemsg(mp);
3202 			mp = newmp;
3203 		}
3204 		return (mip->mi_type->mt_ops.mtops_header_uncook(mp,
3205 		    mip->mi_pdata));
3206 	}
3207 	return (mp);
3208 }
3209 
3210 uint_t
3211 mac_addr_len(mac_handle_t mh)
3212 {
3213 	mac_impl_t *mip = (mac_impl_t *)mh;
3214 
3215 	return (mip->mi_type->mt_addr_length);
3216 }
3217 
3218 /* True if a MAC is a VNIC */
3219 boolean_t
3220 mac_is_vnic(mac_handle_t mh)
3221 {
3222 	return (((mac_impl_t *)mh)->mi_state_flags & MIS_IS_VNIC);
3223 }
3224 
3225 mac_handle_t
3226 mac_get_lower_mac_handle(mac_handle_t mh)
3227 {
3228 	mac_impl_t *mip = (mac_impl_t *)mh;
3229 
3230 	ASSERT(mac_is_vnic(mh));
3231 	return (((vnic_t *)mip->mi_driver)->vn_lower_mh);
3232 }
3233 
3234 void
3235 mac_update_resources(mac_resource_props_t *nmrp, mac_resource_props_t *cmrp,
3236     boolean_t is_user_flow)
3237 {
3238 	if (nmrp != NULL && cmrp != NULL) {
3239 		if (nmrp->mrp_mask & MRP_PRIORITY) {
3240 			if (nmrp->mrp_priority == MPL_RESET) {
3241 				cmrp->mrp_mask &= ~MRP_PRIORITY;
3242 				if (is_user_flow) {
3243 					cmrp->mrp_priority =
3244 					    MPL_SUBFLOW_DEFAULT;
3245 				} else {
3246 					cmrp->mrp_priority = MPL_LINK_DEFAULT;
3247 				}
3248 			} else {
3249 				cmrp->mrp_mask |= MRP_PRIORITY;
3250 				cmrp->mrp_priority = nmrp->mrp_priority;
3251 			}
3252 		}
3253 		if (nmrp->mrp_mask & MRP_MAXBW) {
3254 			cmrp->mrp_maxbw = nmrp->mrp_maxbw;
3255 			if (nmrp->mrp_maxbw == MRP_MAXBW_RESETVAL)
3256 				cmrp->mrp_mask &= ~MRP_MAXBW;
3257 			else
3258 				cmrp->mrp_mask |= MRP_MAXBW;
3259 		}
3260 		if (nmrp->mrp_mask & MRP_CPUS)
3261 			MAC_COPY_CPUS(nmrp, cmrp);
3262 	}
3263 }
3264 
3265 /*
3266  * i_mac_set_resources:
3267  *
3268  * This routine associates properties with the primary MAC client of
3269  * the specified MAC instance.
3270  * - Cache the properties in mac_impl_t
3271  * - Apply the properties to the primary MAC client if exists
3272  */
3273 int
3274 i_mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp)
3275 {
3276 	mac_impl_t		*mip = (mac_impl_t *)mh;
3277 	mac_client_impl_t	*mcip;
3278 	int			err = 0;
3279 	mac_resource_props_t	tmrp;
3280 
3281 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3282 
3283 	err = mac_validate_props(mrp);
3284 	if (err != 0)
3285 		return (err);
3286 
3287 	/*
3288 	 * Since bind_cpu may be modified by mac_client_set_resources()
3289 	 * we use a copy of bind_cpu and finally cache bind_cpu in mip.
3290 	 * This allows us to cache only user edits in mip.
3291 	 */
3292 	bcopy(mrp, &tmrp, sizeof (mac_resource_props_t));
3293 	mcip = mac_primary_client_handle(mip);
3294 	if (mcip != NULL && (mcip->mci_state_flags & MCIS_IS_AGGR_PORT) == 0) {
3295 		err =
3296 		    mac_client_set_resources((mac_client_handle_t)mcip, &tmrp);
3297 	}
3298 	/* if mac_client_set_resources failed, do not update the values */
3299 	if (err == 0)
3300 		mac_update_resources(mrp, &mip->mi_resource_props, B_FALSE);
3301 	return (err);
3302 }
3303 
3304 int
3305 mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp)
3306 {
3307 	int err;
3308 
3309 	i_mac_perim_enter((mac_impl_t *)mh);
3310 	err = i_mac_set_resources(mh, mrp);
3311 	i_mac_perim_exit((mac_impl_t *)mh);
3312 	return (err);
3313 }
3314 
3315 /*
3316  * Get the properties cached for the specified MAC instance.
3317  */
3318 void
3319 mac_get_resources(mac_handle_t mh, mac_resource_props_t *mrp)
3320 {
3321 	mac_impl_t 		*mip = (mac_impl_t *)mh;
3322 	mac_client_impl_t	*mcip;
3323 
3324 	if (mip->mi_state_flags & MIS_IS_VNIC) {
3325 		mcip = mac_primary_client_handle(mip);
3326 		if (mcip != NULL) {
3327 			mac_client_get_resources((mac_client_handle_t)mcip,
3328 			    mrp);
3329 			return;
3330 		}
3331 	}
3332 	bcopy(&mip->mi_resource_props, mrp, sizeof (mac_resource_props_t));
3333 }
3334 
3335 /*
3336  * Rename a mac client, its flow, and the kstat.
3337  */
3338 int
3339 mac_rename_primary(mac_handle_t mh, const char *new_name)
3340 {
3341 	mac_impl_t		*mip = (mac_impl_t *)mh;
3342 	mac_client_impl_t	*cur_clnt = NULL;
3343 	flow_entry_t		*fep;
3344 
3345 	i_mac_perim_enter(mip);
3346 
3347 	/*
3348 	 * VNICs: we need to change the sys flow name and
3349 	 * the associated flow kstat.
3350 	 */
3351 	if (mip->mi_state_flags & MIS_IS_VNIC) {
3352 		ASSERT(new_name != NULL);
3353 		mac_rename_flow_names(mac_vnic_lower(mip), new_name);
3354 		goto done;
3355 	}
3356 	/*
3357 	 * This mac may itself be an aggr link, or it may have some client
3358 	 * which is an aggr port. For both cases, we need to change the
3359 	 * aggr port's mac client name, its flow name and the associated flow
3360 	 * kstat.
3361 	 */
3362 	if (mip->mi_state_flags & MIS_IS_AGGR) {
3363 		mac_capab_aggr_t aggr_cap;
3364 		mac_rename_fn_t rename_fn;
3365 		boolean_t ret;
3366 
3367 		ASSERT(new_name != NULL);
3368 		ret = i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR,
3369 		    (void *)(&aggr_cap));
3370 		ASSERT(ret == B_TRUE);
3371 		rename_fn = aggr_cap.mca_rename_fn;
3372 		rename_fn(new_name, mip->mi_driver);
3373 		/*
3374 		 * The aggr's client name and kstat flow name will be
3375 		 * updated below, i.e. via mac_rename_flow_names.
3376 		 */
3377 	}
3378 
3379 	for (cur_clnt = mip->mi_clients_list; cur_clnt != NULL;
3380 	    cur_clnt = cur_clnt->mci_client_next) {
3381 		if (cur_clnt->mci_state_flags & MCIS_IS_AGGR_PORT) {
3382 			if (new_name != NULL) {
3383 				char *str_st = cur_clnt->mci_name;
3384 				char *str_del = strchr(str_st, '-');
3385 
3386 				ASSERT(str_del != NULL);
3387 				bzero(str_del + 1, MAXNAMELEN -
3388 				    (str_del - str_st + 1));
3389 				bcopy(new_name, str_del + 1,
3390 				    strlen(new_name));
3391 			}
3392 			fep = cur_clnt->mci_flent;
3393 			mac_rename_flow(fep, cur_clnt->mci_name);
3394 			break;
3395 		} else if (new_name != NULL &&
3396 		    cur_clnt->mci_state_flags & MCIS_USE_DATALINK_NAME) {
3397 			mac_rename_flow_names(cur_clnt, new_name);
3398 			break;
3399 		}
3400 	}
3401 
3402 done:
3403 	i_mac_perim_exit(mip);
3404 	return (0);
3405 }
3406 
3407 /*
3408  * Rename the MAC client's flow names
3409  */
3410 static void
3411 mac_rename_flow_names(mac_client_impl_t *mcip, const char *new_name)
3412 {
3413 	flow_entry_t	*flent;
3414 	uint16_t	vid;
3415 	char		flowname[MAXFLOWNAMELEN];
3416 	mac_impl_t	*mip = mcip->mci_mip;
3417 
3418 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3419 
3420 	/*
3421 	 * Use mi_rw_lock to ensure that threads not in the mac perimeter
3422 	 * see a self-consistent value for mci_name
3423 	 */
3424 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
3425 	(void) strlcpy(mcip->mci_name, new_name, sizeof (mcip->mci_name));
3426 	rw_exit(&mip->mi_rw_lock);
3427 
3428 	mac_rename_flow(mcip->mci_flent, new_name);
3429 
3430 	if (mcip->mci_nflents == 1)
3431 		return;
3432 
3433 	/*
3434 	 * We have to rename all the others too, no stats to destroy for
3435 	 * these.
3436 	 */
3437 	for (flent = mcip->mci_flent_list; flent != NULL;
3438 	    flent = flent->fe_client_next) {
3439 		if (flent != mcip->mci_flent) {
3440 			vid = i_mac_flow_vid(flent);
3441 			(void) sprintf(flowname, "%s%u", new_name, vid);
3442 			mac_flow_set_name(flent, flowname);
3443 		}
3444 	}
3445 }
3446 
3447 
3448 /*
3449  * Add a flow to the MAC client's flow list - i.e list of MAC/VID tuples
3450  * defined for the specified MAC client.
3451  */
3452 static void
3453 mac_client_add_to_flow_list(mac_client_impl_t *mcip, flow_entry_t *flent)
3454 {
3455 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
3456 	/*
3457 	 * The promisc Rx data path walks the mci_flent_list. Protect by
3458 	 * using mi_rw_lock
3459 	 */
3460 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
3461 
3462 	/* Add it to the head */
3463 	flent->fe_client_next = mcip->mci_flent_list;
3464 	mcip->mci_flent_list = flent;
3465 	mcip->mci_nflents++;
3466 
3467 	/*
3468 	 * Keep track of the number of non-zero VIDs addresses per MAC
3469 	 * client to avoid figuring it out in the data-path.
3470 	 */
3471 	if (i_mac_flow_vid(flent) != VLAN_ID_NONE)
3472 		mcip->mci_nvids++;
3473 
3474 	rw_exit(&mcip->mci_rw_lock);
3475 }
3476 
3477 /*
3478  * Remove a flow entry from the MAC client's list.
3479  */
3480 static void
3481 mac_client_remove_flow_from_list(mac_client_impl_t *mcip, flow_entry_t *flent)
3482 {
3483 	flow_entry_t	*fe = mcip->mci_flent_list;
3484 	flow_entry_t	*prev_fe = NULL;
3485 
3486 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
3487 	/*
3488 	 * The promisc Rx data path walks the mci_flent_list. Protect by
3489 	 * using mci_rw_lock
3490 	 */
3491 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
3492 	while ((fe != NULL) && (fe != flent)) {
3493 		prev_fe = fe;
3494 		fe = fe->fe_client_next;
3495 	}
3496 
3497 	ASSERT(fe != NULL);
3498 	if (prev_fe == NULL) {
3499 		/* Deleting the first node */
3500 		mcip->mci_flent_list = fe->fe_client_next;
3501 	} else {
3502 		prev_fe->fe_client_next = fe->fe_client_next;
3503 	}
3504 	mcip->mci_nflents--;
3505 
3506 	if (i_mac_flow_vid(flent) != VLAN_ID_NONE)
3507 		mcip->mci_nvids--;
3508 
3509 	rw_exit(&mcip->mci_rw_lock);
3510 }
3511 
3512 /*
3513  * Check if the given VID belongs to this MAC client.
3514  */
3515 boolean_t
3516 mac_client_check_flow_vid(mac_client_impl_t *mcip, uint16_t vid)
3517 {
3518 	flow_entry_t	*flent;
3519 	uint16_t	mci_vid;
3520 
3521 	/* The mci_flent_list is protected by mci_rw_lock */
3522 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
3523 	for (flent = mcip->mci_flent_list; flent != NULL;
3524 	    flent = flent->fe_client_next) {
3525 		mci_vid = i_mac_flow_vid(flent);
3526 		if (vid == mci_vid) {
3527 			rw_exit(&mcip->mci_rw_lock);
3528 			return (B_TRUE);
3529 		}
3530 	}
3531 	rw_exit(&mcip->mci_rw_lock);
3532 	return (B_FALSE);
3533 }
3534 
3535 /*
3536  * Get the flow entry for the specified <MAC addr, VID> tuple.
3537  */
3538 static flow_entry_t *
3539 mac_client_get_flow(mac_client_impl_t *mcip, mac_unicast_impl_t *muip)
3540 {
3541 	mac_address_t *map = mcip->mci_unicast;
3542 	flow_entry_t *flent;
3543 	uint16_t vid;
3544 	flow_desc_t flow_desc;
3545 
3546 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
3547 
3548 	mac_flow_get_desc(mcip->mci_flent, &flow_desc);
3549 	if (bcmp(flow_desc.fd_dst_mac, map->ma_addr, map->ma_len) != 0)
3550 		return (NULL);
3551 
3552 	for (flent = mcip->mci_flent_list; flent != NULL;
3553 	    flent = flent->fe_client_next) {
3554 		vid = i_mac_flow_vid(flent);
3555 		if (vid == muip->mui_vid) {
3556 			return (flent);
3557 		}
3558 	}
3559 
3560 	return (NULL);
3561 }
3562 
3563 /*
3564  * Since mci_flent has the SRSs, when we want to remove it, we replace
3565  * the flow_desc_t in mci_flent with that of an existing flent and then
3566  * remove that flent instead of mci_flent.
3567  */
3568 static flow_entry_t *
3569 mac_client_swap_mciflent(mac_client_impl_t *mcip)
3570 {
3571 	flow_entry_t	*flent = mcip->mci_flent;
3572 	flow_tab_t	*ft = flent->fe_flow_tab;
3573 	flow_entry_t	*flent1;
3574 	flow_desc_t	fl_desc;
3575 	char		fl_name[MAXFLOWNAMELEN];
3576 	int		err;
3577 
3578 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
3579 	ASSERT(mcip->mci_nflents > 1);
3580 
3581 	/* get the next flent following the primary flent  */
3582 	flent1 = mcip->mci_flent_list->fe_client_next;
3583 	ASSERT(flent1 != NULL && flent1->fe_flow_tab == ft);
3584 
3585 	/*
3586 	 * Remove the flent from the flow table before updating the
3587 	 * flow descriptor as the hash depends on the flow descriptor.
3588 	 * This also helps incoming packet classification avoid having
3589 	 * to grab fe_lock. Access to fe_flow_desc of a flent not in the
3590 	 * flow table is done under the fe_lock so that log or stat functions
3591 	 * see a self-consistent fe_flow_desc. The name and desc are specific
3592 	 * to a flow, the rest are shared by all the clients, including
3593 	 * resource control etc.
3594 	 */
3595 	mac_flow_remove(ft, flent, B_TRUE);
3596 	mac_flow_remove(ft, flent1, B_TRUE);
3597 
3598 	bcopy(&flent->fe_flow_desc, &fl_desc, sizeof (flow_desc_t));
3599 	bcopy(flent->fe_flow_name, fl_name, MAXFLOWNAMELEN);
3600 
3601 	/* update the primary flow entry */
3602 	mutex_enter(&flent->fe_lock);
3603 	bcopy(&flent1->fe_flow_desc, &flent->fe_flow_desc,
3604 	    sizeof (flow_desc_t));
3605 	bcopy(&flent1->fe_flow_name, &flent->fe_flow_name, MAXFLOWNAMELEN);
3606 	mutex_exit(&flent->fe_lock);
3607 
3608 	/* update the flow entry that is to be freed */
3609 	mutex_enter(&flent1->fe_lock);
3610 	bcopy(&fl_desc, &flent1->fe_flow_desc, sizeof (flow_desc_t));
3611 	bcopy(fl_name, &flent1->fe_flow_name, MAXFLOWNAMELEN);
3612 	mutex_exit(&flent1->fe_lock);
3613 
3614 	/* now reinsert the flow entries in the table */
3615 	err = mac_flow_add(ft, flent);
3616 	ASSERT(err == 0);
3617 
3618 	err = mac_flow_add(ft, flent1);
3619 	ASSERT(err == 0);
3620 
3621 	return (flent1);
3622 }
3623 
3624 /*
3625  * Return whether there is only one flow entry associated with this
3626  * MAC client.
3627  */
3628 static boolean_t
3629 mac_client_single_rcvr(mac_client_impl_t *mcip)
3630 {
3631 	return (mcip->mci_nflents == 1);
3632 }
3633 
3634 int
3635 mac_validate_props(mac_resource_props_t *mrp)
3636 {
3637 	if (mrp == NULL)
3638 		return (0);
3639 
3640 	if (mrp->mrp_mask & MRP_PRIORITY) {
3641 		mac_priority_level_t	pri = mrp->mrp_priority;
3642 
3643 		if (pri < MPL_LOW || pri > MPL_RESET)
3644 			return (EINVAL);
3645 	}
3646 
3647 	if (mrp->mrp_mask & MRP_MAXBW) {
3648 		uint64_t maxbw = mrp->mrp_maxbw;
3649 
3650 		if (maxbw < MRP_MAXBW_MINVAL && maxbw != 0)
3651 			return (EINVAL);
3652 	}
3653 	if (mrp->mrp_mask & MRP_CPUS) {
3654 		int i;
3655 		mac_cpu_mode_t	fanout;
3656 
3657 		if (mrp->mrp_ncpus > ncpus || mrp->mrp_ncpus > MAX_SR_FANOUT)
3658 			return (EINVAL);
3659 
3660 		for (i = 0; i < mrp->mrp_ncpus; i++) {
3661 			cpu_t *cp;
3662 			int rv;
3663 
3664 			mutex_enter(&cpu_lock);
3665 			cp = cpu_get(mrp->mrp_cpu[i]);
3666 			if (cp != NULL)
3667 				rv = cpu_is_online(cp);
3668 			else
3669 				rv = 0;
3670 			mutex_exit(&cpu_lock);
3671 			if (rv == 0)
3672 				return (EINVAL);
3673 		}
3674 
3675 		fanout = mrp->mrp_fanout_mode;
3676 		if (fanout < 0 || fanout > MCM_CPUS)
3677 			return (EINVAL);
3678 	}
3679 	return (0);
3680 }
3681 
3682 /*
3683  * Send a MAC_NOTE_LINK notification to all the MAC clients whenever the
3684  * underlying physical link is down. This is to allow MAC clients to
3685  * communicate with other clients.
3686  */
3687 void
3688 mac_virtual_link_update(mac_impl_t *mip)
3689 {
3690 	if (mip->mi_linkstate != LINK_STATE_UP)
3691 		i_mac_notify(mip, MAC_NOTE_LINK);
3692 }
3693 
3694 /*
3695  * For clients that have a pass-thru MAC, e.g. VNIC, we set the VNIC's
3696  * mac handle in the client.
3697  */
3698 void
3699 mac_set_upper_mac(mac_client_handle_t mch, mac_handle_t mh)
3700 {
3701 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
3702 
3703 	mcip->mci_upper_mip = (mac_impl_t *)mh;
3704 }
3705 
3706 /*
3707  * Mark the mac as being used exclusively by the single mac client that is
3708  * doing some control operation on this mac. No further opens of this mac
3709  * will be allowed until this client calls mac_unmark_exclusive. The mac
3710  * client calling this function must already be in the mac perimeter
3711  */
3712 int
3713 mac_mark_exclusive(mac_handle_t mh)
3714 {
3715 	mac_impl_t	*mip = (mac_impl_t *)mh;
3716 
3717 	ASSERT(MAC_PERIM_HELD(mh));
3718 	/*
3719 	 * Look up its entry in the global hash table.
3720 	 */
3721 	rw_enter(&i_mac_impl_lock, RW_WRITER);
3722 	if (mip->mi_state_flags & MIS_DISABLED) {
3723 		rw_exit(&i_mac_impl_lock);
3724 		return (ENOENT);
3725 	}
3726 
3727 	/*
3728 	 * A reference to mac is held even if the link is not plumbed.
3729 	 * In i_dls_link_create() we open the MAC interface and hold the
3730 	 * reference. There is an additional reference for the mac_open
3731 	 * done in acquiring the mac perimeter
3732 	 */
3733 	if (mip->mi_ref != 2) {
3734 		rw_exit(&i_mac_impl_lock);
3735 		return (EBUSY);
3736 	}
3737 
3738 	ASSERT(!(mip->mi_state_flags & MIS_EXCLUSIVE_HELD));
3739 	mip->mi_state_flags |= MIS_EXCLUSIVE_HELD;
3740 	rw_exit(&i_mac_impl_lock);
3741 	return (0);
3742 }
3743 
3744 void
3745 mac_unmark_exclusive(mac_handle_t mh)
3746 {
3747 	mac_impl_t	*mip = (mac_impl_t *)mh;
3748 
3749 	ASSERT(MAC_PERIM_HELD(mh));
3750 
3751 	rw_enter(&i_mac_impl_lock, RW_WRITER);
3752 	/* 1 for the creation and another for the perimeter */
3753 	ASSERT(mip->mi_ref == 2 && (mip->mi_state_flags & MIS_EXCLUSIVE_HELD));
3754 	mip->mi_state_flags &= ~MIS_EXCLUSIVE_HELD;
3755 	rw_exit(&i_mac_impl_lock);
3756 }
3757 
3758 /*
3759  * Set the MTU for the specified device. The function returns EBUSY if
3760  * another MAC client prevents the caller to become the exclusive client.
3761  * Returns EAGAIN if the client is started.
3762  */
3763 int
3764 mac_set_mtu(mac_handle_t mh, uint_t new_mtu, uint_t *old_mtu_arg)
3765 {
3766 	mac_impl_t *mip = (mac_impl_t *)mh;
3767 	uint_t old_mtu;
3768 	int rv;
3769 	boolean_t exclusive = B_FALSE;
3770 
3771 	i_mac_perim_enter(mip);
3772 
3773 	if ((mip->mi_callbacks->mc_callbacks & MC_SETPROP) == 0 ||
3774 	    (mip->mi_callbacks->mc_callbacks & MC_GETPROP) == 0) {
3775 		rv = ENOTSUP;
3776 		goto bail;
3777 	}
3778 
3779 	if ((rv = mac_mark_exclusive(mh)) != 0)
3780 		goto bail;
3781 	exclusive = B_TRUE;
3782 
3783 	if (mip->mi_active > 0) {
3784 		/*
3785 		 * The MAC instance is started, for example due to the
3786 		 * presence of a promiscuous clients. Fail the operation
3787 		 * since the MAC's MTU cannot be changed while the NIC
3788 		 * is started.
3789 		 */
3790 		rv = EAGAIN;
3791 		goto bail;
3792 	}
3793 
3794 	mac_sdu_get(mh, NULL, &old_mtu);
3795 
3796 	if (old_mtu != new_mtu) {
3797 		rv = mip->mi_callbacks->mc_setprop(mip->mi_driver,
3798 		    "mtu", MAC_PROP_MTU, sizeof (uint_t), &new_mtu);
3799 	}
3800 
3801 bail:
3802 	if (exclusive)
3803 		mac_unmark_exclusive(mh);
3804 	i_mac_perim_exit(mip);
3805 
3806 	if (rv == 0 && old_mtu_arg != NULL)
3807 		*old_mtu_arg = old_mtu;
3808 	return (rv);
3809 }
3810 
3811 void
3812 mac_get_hwgrp_info(mac_handle_t mh, int grp_index, uint_t *grp_num,
3813     uint_t *n_rings, uint_t *type, uint_t *n_clnts, char *clnts_name)
3814 {
3815 	mac_impl_t *mip = (mac_impl_t *)mh;
3816 	mac_grp_client_t *mcip;
3817 	uint_t i = 0, index = 0;
3818 
3819 	/* Revisit when we implement fully dynamic group allocation */
3820 	ASSERT(grp_index >= 0 && grp_index < mip->mi_rx_group_count);
3821 
3822 	rw_enter(&mip->mi_rw_lock, RW_READER);
3823 	*grp_num = mip->mi_rx_groups[grp_index].mrg_index;
3824 	*type = mip->mi_rx_groups[grp_index].mrg_type;
3825 	*n_rings = mip->mi_rx_groups[grp_index].mrg_cur_count;
3826 	for (mcip = mip->mi_rx_groups[grp_index].mrg_clients; mcip != NULL;
3827 	    mcip = mcip->mgc_next) {
3828 		int name_len = strlen(mcip->mgc_client->mci_name);
3829 
3830 		/*
3831 		 * MAXCLIENTNAMELEN is the buffer size reserved for client
3832 		 * names.
3833 		 * XXXX Formating the client name string needs to be moved
3834 		 * to user land when fixing the size of dhi_clnts in
3835 		 * dld_hwgrpinfo_t. We should use n_clients * client_name for
3836 		 * dhi_clntsin instead of MAXCLIENTNAMELEN
3837 		 */
3838 		if (index + name_len >= MAXCLIENTNAMELEN) {
3839 			index = MAXCLIENTNAMELEN;
3840 			break;
3841 		}
3842 		bcopy(mcip->mgc_client->mci_name, &(clnts_name[index]),
3843 		    name_len);
3844 		index += name_len;
3845 		clnts_name[index++] = ',';
3846 		i++;
3847 	}
3848 
3849 	/* Get rid of the last , */
3850 	if (index > 0)
3851 		clnts_name[index - 1] = '\0';
3852 	*n_clnts = i;
3853 	rw_exit(&mip->mi_rw_lock);
3854 }
3855 
3856 uint_t
3857 mac_hwgrp_num(mac_handle_t mh)
3858 {
3859 	mac_impl_t *mip = (mac_impl_t *)mh;
3860 
3861 	return (mip->mi_rx_group_count);
3862 }
3863