xref: /titanic_51/usr/src/uts/common/io/mac/mac_client.c (revision 4a8d0ea71c9a4e51c6a916a083ced6b499eb207f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * - General Introduction:
29  *
30  * This file contains the implementation of the MAC client kernel
31  * API and related code. The MAC client API allows a kernel module
32  * to gain access to a MAC instance (physical NIC, link aggregation, etc).
33  * It allows a MAC client to associate itself with a MAC address,
34  * VLANs, callback functions for data traffic and for promiscuous mode.
35  * The MAC client API is also used to specify the properties associated
36  * with a MAC client, such as bandwidth limits, priority, CPUS, etc.
37  * These properties are further used to determine the hardware resources
38  * to allocate to the various MAC clients.
39  *
40  * - Primary MAC clients:
41  *
42  * The MAC client API refers to "primary MAC clients". A primary MAC
43  * client is a client which "owns" the primary MAC address of
44  * the underlying MAC instance. The primary MAC address is called out
45  * since it is associated with specific semantics: the primary MAC
46  * address is the MAC address which is assigned to the IP interface
47  * when it is plumbed, and the primary MAC address is assigned
48  * to VLAN data-links. The primary address of a MAC instance can
49  * also change dynamically from under the MAC client, for example
50  * as a result of a change of state of a link aggregation. In that
51  * case the MAC layer automatically updates all data-structures which
52  * refer to the current value of the primary MAC address. Typical
53  * primary MAC clients are dls, aggr, and xnb. A typical non-primary
54  * MAC client is the vnic driver.
55  *
56  * - Virtual Switching:
57  *
58  * The MAC layer implements a virtual switch between the MAC clients
59  * (primary and non-primary) defined on top of the same underlying
60  * NIC (physical, link aggregation, etc). The virtual switch is
61  * VLAN-aware, i.e. it allows multiple MAC clients to be member
62  * of one or more VLANs, and the virtual switch will distribute
63  * multicast tagged packets only to the member of the corresponding
64  * VLANs.
65  *
66  * - Upper vs Lower MAC:
67  *
68  * Creating a VNIC on top of a MAC instance effectively causes
69  * two MAC instances to be layered on top of each other, one for
70  * the VNIC(s), one for the underlying MAC instance (physical NIC,
71  * link aggregation, etc). In the code below we refer to the
72  * underlying NIC as the "lower MAC", and we refer to VNICs as
73  * the "upper MAC".
74  *
75  * - Pass-through for VNICs:
76  *
77  * When VNICs are created on top of an underlying MAC, this causes
78  * a layering of two MAC instances. Since the lower MAC already
79  * does the switching and demultiplexing to its MAC clients, the
80  * upper MAC would simply have to pass packets to the layer below
81  * or above it, which would introduce overhead. In order to avoid
82  * this overhead, the MAC layer implements a pass-through mechanism
83  * for VNICs. When a VNIC opens the lower MAC instance, it saves
84  * the MAC client handle it optains from the MAC layer. When a MAC
85  * client opens a VNIC (upper MAC), the MAC layer detects that
86  * the MAC being opened is a VNIC, and gets the MAC client handle
87  * that the VNIC driver obtained from the lower MAC. This exchange
88  * is doing through a private capability between the MAC layer
89  * and the VNIC driver. The upper MAC then returns that handle
90  * directly to its MAC client. Any operation done by the upper
91  * MAC client is now done on the lower MAC client handle, which
92  * allows the VNIC driver to be completely bypassed for the
93  * performance sensitive data-path.
94  *
95  */
96 
97 #include <sys/types.h>
98 #include <sys/conf.h>
99 #include <sys/id_space.h>
100 #include <sys/esunddi.h>
101 #include <sys/stat.h>
102 #include <sys/mkdev.h>
103 #include <sys/stream.h>
104 #include <sys/strsun.h>
105 #include <sys/strsubr.h>
106 #include <sys/dlpi.h>
107 #include <sys/modhash.h>
108 #include <sys/mac_impl.h>
109 #include <sys/mac_client_impl.h>
110 #include <sys/mac_soft_ring.h>
111 #include <sys/dls.h>
112 #include <sys/dld.h>
113 #include <sys/modctl.h>
114 #include <sys/fs/dv_node.h>
115 #include <sys/thread.h>
116 #include <sys/proc.h>
117 #include <sys/callb.h>
118 #include <sys/cpuvar.h>
119 #include <sys/atomic.h>
120 #include <sys/sdt.h>
121 #include <sys/mac_flow.h>
122 #include <sys/ddi_intr_impl.h>
123 #include <sys/disp.h>
124 #include <sys/sdt.h>
125 #include <sys/vnic.h>
126 #include <sys/vnic_impl.h>
127 #include <sys/vlan.h>
128 #include <inet/ip.h>
129 #include <inet/ip6.h>
130 #include <sys/exacct.h>
131 #include <sys/exacct_impl.h>
132 #include <inet/nd.h>
133 #include <sys/ethernet.h>
134 
135 kmem_cache_t	*mac_client_impl_cache;
136 kmem_cache_t	*mac_promisc_impl_cache;
137 
138 static boolean_t mac_client_single_rcvr(mac_client_impl_t *);
139 static flow_entry_t *mac_client_swap_mciflent(mac_client_impl_t *);
140 static flow_entry_t *mac_client_get_flow(mac_client_impl_t *,
141     mac_unicast_impl_t *);
142 static void mac_client_remove_flow_from_list(mac_client_impl_t *,
143     flow_entry_t *);
144 static void mac_client_add_to_flow_list(mac_client_impl_t *, flow_entry_t *);
145 static void mac_rename_flow_names(mac_client_impl_t *, const char *);
146 static void mac_virtual_link_update(mac_impl_t *);
147 
148 /* ARGSUSED */
149 static int
150 i_mac_client_impl_ctor(void *buf, void *arg, int kmflag)
151 {
152 	int	i;
153 	mac_client_impl_t	*mcip = buf;
154 
155 	bzero(buf, MAC_CLIENT_IMPL_SIZE);
156 	mutex_init(&mcip->mci_tx_cb_lock, NULL, MUTEX_DRIVER, NULL);
157 	mcip->mci_tx_notify_cb_info.mcbi_lockp = &mcip->mci_tx_cb_lock;
158 
159 	ASSERT(mac_tx_percpu_cnt >= 0);
160 	for (i = 0; i <= mac_tx_percpu_cnt; i++) {
161 		mutex_init(&mcip->mci_tx_pcpu[i].pcpu_tx_lock, NULL,
162 		    MUTEX_DRIVER, NULL);
163 	}
164 	cv_init(&mcip->mci_tx_cv, NULL, CV_DRIVER, NULL);
165 
166 	return (0);
167 }
168 
169 /* ARGSUSED */
170 static void
171 i_mac_client_impl_dtor(void *buf, void *arg)
172 {
173 	int	i;
174 	mac_client_impl_t *mcip = buf;
175 
176 	ASSERT(mcip->mci_promisc_list == NULL);
177 	ASSERT(mcip->mci_unicast_list == NULL);
178 	ASSERT(mcip->mci_state_flags == 0);
179 	ASSERT(mcip->mci_tx_flag == 0);
180 
181 	mutex_destroy(&mcip->mci_tx_cb_lock);
182 
183 	ASSERT(mac_tx_percpu_cnt >= 0);
184 	for (i = 0; i <= mac_tx_percpu_cnt; i++) {
185 		ASSERT(mcip->mci_tx_pcpu[i].pcpu_tx_refcnt == 0);
186 		mutex_destroy(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
187 	}
188 	cv_destroy(&mcip->mci_tx_cv);
189 }
190 
191 /* ARGSUSED */
192 static int
193 i_mac_promisc_impl_ctor(void *buf, void *arg, int kmflag)
194 {
195 	mac_promisc_impl_t	*mpip = buf;
196 
197 	bzero(buf, sizeof (mac_promisc_impl_t));
198 	mpip->mpi_mci_link.mcb_objp = buf;
199 	mpip->mpi_mci_link.mcb_objsize = sizeof (mac_promisc_impl_t);
200 	mpip->mpi_mi_link.mcb_objp = buf;
201 	mpip->mpi_mi_link.mcb_objsize = sizeof (mac_promisc_impl_t);
202 	return (0);
203 }
204 
205 /* ARGSUSED */
206 static void
207 i_mac_promisc_impl_dtor(void *buf, void *arg)
208 {
209 	mac_promisc_impl_t	*mpip = buf;
210 
211 	ASSERT(mpip->mpi_mci_link.mcb_objp != NULL);
212 	ASSERT(mpip->mpi_mci_link.mcb_objsize == sizeof (mac_promisc_impl_t));
213 	ASSERT(mpip->mpi_mi_link.mcb_objp == mpip->mpi_mci_link.mcb_objp);
214 	ASSERT(mpip->mpi_mi_link.mcb_objsize == sizeof (mac_promisc_impl_t));
215 
216 	mpip->mpi_mci_link.mcb_objp = NULL;
217 	mpip->mpi_mci_link.mcb_objsize = 0;
218 	mpip->mpi_mi_link.mcb_objp = NULL;
219 	mpip->mpi_mi_link.mcb_objsize = 0;
220 
221 	ASSERT(mpip->mpi_mci_link.mcb_flags == 0);
222 	mpip->mpi_mci_link.mcb_objsize = 0;
223 }
224 
225 void
226 mac_client_init(void)
227 {
228 	ASSERT(mac_tx_percpu_cnt >= 0);
229 
230 	mac_client_impl_cache = kmem_cache_create("mac_client_impl_cache",
231 	    MAC_CLIENT_IMPL_SIZE, 0, i_mac_client_impl_ctor,
232 	    i_mac_client_impl_dtor, NULL, NULL, NULL, 0);
233 	ASSERT(mac_client_impl_cache != NULL);
234 
235 	mac_promisc_impl_cache = kmem_cache_create("mac_promisc_impl_cache",
236 	    sizeof (mac_promisc_impl_t), 0, i_mac_promisc_impl_ctor,
237 	    i_mac_promisc_impl_dtor, NULL, NULL, NULL, 0);
238 	ASSERT(mac_promisc_impl_cache != NULL);
239 }
240 
241 void
242 mac_client_fini(void)
243 {
244 	kmem_cache_destroy(mac_client_impl_cache);
245 	kmem_cache_destroy(mac_promisc_impl_cache);
246 }
247 
248 /*
249  * Return the lower MAC client handle from the VNIC driver for the
250  * specified VNIC MAC instance.
251  */
252 mac_client_impl_t *
253 mac_vnic_lower(mac_impl_t *mip)
254 {
255 	mac_capab_vnic_t cap;
256 	mac_client_impl_t *mcip;
257 
258 	VERIFY(i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, &cap));
259 	mcip = cap.mcv_mac_client_handle(cap.mcv_arg);
260 
261 	return (mcip);
262 }
263 
264 /*
265  * Return the MAC client handle of the primary MAC client for the
266  * specified MAC instance, or NULL otherwise.
267  */
268 mac_client_impl_t *
269 mac_primary_client_handle(mac_impl_t *mip)
270 {
271 	mac_client_impl_t *mcip;
272 
273 	if (mip->mi_state_flags & MIS_IS_VNIC)
274 		return (mac_vnic_lower(mip));
275 
276 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
277 
278 	for (mcip = mip->mi_clients_list; mcip != NULL;
279 	    mcip = mcip->mci_client_next) {
280 		if (MCIP_DATAPATH_SETUP(mcip) && mac_is_primary_client(mcip))
281 			return (mcip);
282 	}
283 	return (NULL);
284 }
285 
286 /*
287  * Open a MAC specified by its MAC name.
288  */
289 int
290 mac_open(const char *macname, mac_handle_t *mhp)
291 {
292 	mac_impl_t	*mip;
293 	int		err;
294 
295 	/*
296 	 * Look up its entry in the global hash table.
297 	 */
298 	if ((err = mac_hold(macname, &mip)) != 0)
299 		return (err);
300 
301 	/*
302 	 * Hold the dip associated to the MAC to prevent it from being
303 	 * detached. For a softmac, its underlying dip is held by the
304 	 * mi_open() callback.
305 	 *
306 	 * This is done to be more tolerant with some defective drivers,
307 	 * which incorrectly handle mac_unregister() failure in their
308 	 * xxx_detach() routine. For example, some drivers ignore the
309 	 * failure of mac_unregister() and free all resources that
310 	 * that are needed for data transmition.
311 	 */
312 	e_ddi_hold_devi(mip->mi_dip);
313 
314 	if (!(mip->mi_callbacks->mc_callbacks & MC_OPEN)) {
315 		*mhp = (mac_handle_t)mip;
316 		return (0);
317 	}
318 
319 	/*
320 	 * The mac perimeter is used in both mac_open and mac_close by the
321 	 * framework to single thread the MC_OPEN/MC_CLOSE of drivers.
322 	 */
323 	i_mac_perim_enter(mip);
324 	mip->mi_oref++;
325 	if (mip->mi_oref != 1 || ((err = mip->mi_open(mip->mi_driver)) == 0)) {
326 		*mhp = (mac_handle_t)mip;
327 		i_mac_perim_exit(mip);
328 		return (0);
329 	}
330 	mip->mi_oref--;
331 	ddi_release_devi(mip->mi_dip);
332 	mac_rele(mip);
333 	i_mac_perim_exit(mip);
334 	return (err);
335 }
336 
337 /*
338  * Open a MAC specified by its linkid.
339  */
340 int
341 mac_open_by_linkid(datalink_id_t linkid, mac_handle_t *mhp)
342 {
343 	dls_dl_handle_t	dlh;
344 	int		err;
345 
346 	if ((err = dls_devnet_hold_tmp(linkid, &dlh)) != 0)
347 		return (err);
348 
349 	dls_devnet_prop_task_wait(dlh);
350 
351 	err = mac_open(dls_devnet_mac(dlh), mhp);
352 
353 	dls_devnet_rele_tmp(dlh);
354 	return (err);
355 }
356 
357 /*
358  * Open a MAC specified by its link name.
359  */
360 int
361 mac_open_by_linkname(const char *link, mac_handle_t *mhp)
362 {
363 	datalink_id_t	linkid;
364 	int		err;
365 
366 	if ((err = dls_mgmt_get_linkid(link, &linkid)) != 0)
367 		return (err);
368 	return (mac_open_by_linkid(linkid, mhp));
369 }
370 
371 /*
372  * Close the specified MAC.
373  */
374 void
375 mac_close(mac_handle_t mh)
376 {
377 	mac_impl_t	*mip = (mac_impl_t *)mh;
378 
379 	i_mac_perim_enter(mip);
380 	/*
381 	 * The mac perimeter is used in both mac_open and mac_close by the
382 	 * framework to single thread the MC_OPEN/MC_CLOSE of drivers.
383 	 */
384 	if (mip->mi_callbacks->mc_callbacks & MC_OPEN) {
385 		ASSERT(mip->mi_oref != 0);
386 		if (--mip->mi_oref == 0) {
387 			if ((mip->mi_callbacks->mc_callbacks & MC_CLOSE))
388 				mip->mi_close(mip->mi_driver);
389 		}
390 	}
391 	i_mac_perim_exit(mip);
392 	ddi_release_devi(mip->mi_dip);
393 	mac_rele(mip);
394 }
395 
396 /*
397  * Misc utility functions to retrieve various information about a MAC
398  * instance or a MAC client.
399  */
400 
401 const mac_info_t *
402 mac_info(mac_handle_t mh)
403 {
404 	return (&((mac_impl_t *)mh)->mi_info);
405 }
406 
407 dev_info_t *
408 mac_devinfo_get(mac_handle_t mh)
409 {
410 	return (((mac_impl_t *)mh)->mi_dip);
411 }
412 
413 void *
414 mac_driver(mac_handle_t mh)
415 {
416 	return (((mac_impl_t *)mh)->mi_driver);
417 }
418 
419 const char *
420 mac_name(mac_handle_t mh)
421 {
422 	return (((mac_impl_t *)mh)->mi_name);
423 }
424 
425 char *
426 mac_client_name(mac_client_handle_t mch)
427 {
428 	return (((mac_client_impl_t *)mch)->mci_name);
429 }
430 
431 minor_t
432 mac_minor(mac_handle_t mh)
433 {
434 	return (((mac_impl_t *)mh)->mi_minor);
435 }
436 
437 /*
438  * Return the VID associated with a MAC client. This function should
439  * be called for clients which are associated with only one VID.
440  */
441 uint16_t
442 mac_client_vid(mac_client_handle_t mch)
443 {
444 	uint16_t		vid = VLAN_ID_NONE;
445 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
446 	flow_desc_t		flow_desc;
447 
448 	if (mcip->mci_nflents == 0)
449 		return (vid);
450 
451 	ASSERT(MCIP_DATAPATH_SETUP(mcip) && mac_client_single_rcvr(mcip));
452 
453 	mac_flow_get_desc(mcip->mci_flent, &flow_desc);
454 	if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0)
455 		vid = flow_desc.fd_vid;
456 
457 	return (vid);
458 }
459 
460 /*
461  * Return whether the specified MAC client corresponds to a VLAN VNIC.
462  */
463 boolean_t
464 mac_client_is_vlan_vnic(mac_client_handle_t mch)
465 {
466 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
467 
468 	return (((mcip->mci_state_flags & MCIS_IS_VNIC) != 0) &&
469 	    ((mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) != 0));
470 }
471 
472 /*
473  * Return the link speed associated with the specified MAC client.
474  *
475  * The link speed of a MAC client is equal to the smallest value of
476  * 1) the current link speed of the underlying NIC, or
477  * 2) the bandwidth limit set for the MAC client.
478  *
479  * Note that the bandwidth limit can be higher than the speed
480  * of the underlying NIC. This is allowed to avoid spurious
481  * administration action failures or artifically lowering the
482  * bandwidth limit of a link that may  have temporarily lowered
483  * its link speed due to hardware problem or administrator action.
484  */
485 static uint64_t
486 mac_client_ifspeed(mac_client_impl_t *mcip)
487 {
488 	mac_impl_t *mip = mcip->mci_mip;
489 	uint64_t nic_speed;
490 
491 	nic_speed = mac_stat_get((mac_handle_t)mip, MAC_STAT_IFSPEED);
492 
493 	if (nic_speed == 0) {
494 		return (0);
495 	} else {
496 		uint64_t policy_limit = (uint64_t)-1;
497 
498 		if (MCIP_RESOURCE_PROPS_MASK(mcip) & MRP_MAXBW)
499 			policy_limit = MCIP_RESOURCE_PROPS_MAXBW(mcip);
500 
501 		return (MIN(policy_limit, nic_speed));
502 	}
503 }
504 
505 /*
506  * Return the link state of the specified client. If here are more
507  * than one clients of the underying mac_impl_t, the link state
508  * will always be UP regardless of the link state of the underlying
509  * mac_impl_t. This is needed to allow the MAC clients to continue
510  * to communicate with each other even when the physical link of
511  * their mac_impl_t is down.
512  */
513 static uint64_t
514 mac_client_link_state(mac_client_impl_t *mcip)
515 {
516 	mac_impl_t *mip = mcip->mci_mip;
517 	uint16_t vid;
518 	mac_client_impl_t *mci_list;
519 	mac_unicast_impl_t *mui_list, *oth_mui_list;
520 
521 	/*
522 	 * Returns LINK_STATE_UP if there are other MAC clients defined on
523 	 * mac_impl_t which share same VLAN ID as that of mcip. Note that
524 	 * if 'mcip' has more than one VID's then we match ANY one of the
525 	 * VID's with other MAC client's VID's and return LINK_STATE_UP.
526 	 */
527 	rw_enter(&mcip->mci_rw_lock, RW_READER);
528 	for (mui_list = mcip->mci_unicast_list; mui_list != NULL;
529 	    mui_list = mui_list->mui_next) {
530 		vid = mui_list->mui_vid;
531 		for (mci_list = mip->mi_clients_list; mci_list != NULL;
532 		    mci_list = mci_list->mci_client_next) {
533 			if (mci_list == mcip)
534 				continue;
535 			for (oth_mui_list = mci_list->mci_unicast_list;
536 			    oth_mui_list != NULL; oth_mui_list = oth_mui_list->
537 			    mui_next) {
538 				if (vid == oth_mui_list->mui_vid) {
539 					rw_exit(&mcip->mci_rw_lock);
540 					return (LINK_STATE_UP);
541 				}
542 			}
543 		}
544 	}
545 	rw_exit(&mcip->mci_rw_lock);
546 
547 	return (mac_stat_get((mac_handle_t)mip, MAC_STAT_LINK_STATE));
548 }
549 
550 /*
551  * Return the statistics of a MAC client. These statistics are different
552  * then the statistics of the underlying MAC which are returned by
553  * mac_stat_get().
554  */
555 uint64_t
556 mac_client_stat_get(mac_client_handle_t mch, uint_t stat)
557 {
558 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
559 	mac_impl_t *mip = mcip->mci_mip;
560 	uint64_t val;
561 
562 	switch (stat) {
563 	case MAC_STAT_LINK_STATE:
564 		val = mac_client_link_state(mcip);
565 		break;
566 	case MAC_STAT_LINK_UP:
567 		val = (mac_client_link_state(mcip) == LINK_STATE_UP);
568 		break;
569 	case MAC_STAT_PROMISC:
570 		val = mac_stat_get((mac_handle_t)mip, MAC_STAT_PROMISC);
571 		break;
572 	case MAC_STAT_IFSPEED:
573 		val = mac_client_ifspeed(mcip);
574 		break;
575 	case MAC_STAT_MULTIRCV:
576 		val = mcip->mci_stat_multircv;
577 		break;
578 	case MAC_STAT_BRDCSTRCV:
579 		val = mcip->mci_stat_brdcstrcv;
580 		break;
581 	case MAC_STAT_MULTIXMT:
582 		val = mcip->mci_stat_multixmt;
583 		break;
584 	case MAC_STAT_BRDCSTXMT:
585 		val = mcip->mci_stat_brdcstxmt;
586 		break;
587 	case MAC_STAT_OBYTES:
588 		val = mcip->mci_stat_obytes;
589 		break;
590 	case MAC_STAT_OPACKETS:
591 		val = mcip->mci_stat_opackets;
592 		break;
593 	case MAC_STAT_OERRORS:
594 		val = mcip->mci_stat_oerrors;
595 		break;
596 	case MAC_STAT_IPACKETS:
597 		val = mcip->mci_stat_ipackets;
598 		break;
599 	case MAC_STAT_RBYTES:
600 		val = mcip->mci_stat_ibytes;
601 		break;
602 	case MAC_STAT_IERRORS:
603 		val = mcip->mci_stat_ierrors;
604 		break;
605 	default:
606 		val = mac_stat_default(mip, stat);
607 		break;
608 	}
609 
610 	return (val);
611 }
612 
613 /*
614  * Return the statistics of the specified MAC instance.
615  */
616 uint64_t
617 mac_stat_get(mac_handle_t mh, uint_t stat)
618 {
619 	mac_impl_t	*mip = (mac_impl_t *)mh;
620 	uint64_t	val;
621 	int		ret;
622 
623 	/*
624 	 * The range of stat determines where it is maintained.  Stat
625 	 * values from 0 up to (but not including) MAC_STAT_MIN are
626 	 * mainteined by the mac module itself.  Everything else is
627 	 * maintained by the driver.
628 	 *
629 	 * If the mac_impl_t being queried corresponds to a VNIC,
630 	 * the stats need to be queried from the lower MAC client
631 	 * corresponding to the VNIC. (The mac_link_update()
632 	 * invoked by the driver to the lower MAC causes the *lower
633 	 * MAC* to update its mi_linkstate, and send a notification
634 	 * to its MAC clients. Due to the VNIC passthrough,
635 	 * these notifications are sent to the upper MAC clients
636 	 * of the VNIC directly, and the upper mac_impl_t of the VNIC
637 	 * does not have a valid mi_linkstate.
638 	 */
639 	if (stat < MAC_STAT_MIN && !(mip->mi_state_flags & MIS_IS_VNIC)) {
640 		/* these stats are maintained by the mac module itself */
641 		switch (stat) {
642 		case MAC_STAT_LINK_STATE:
643 			return (mip->mi_linkstate);
644 		case MAC_STAT_LINK_UP:
645 			return (mip->mi_linkstate == LINK_STATE_UP);
646 		case MAC_STAT_PROMISC:
647 			return (mip->mi_devpromisc != 0);
648 		default:
649 			ASSERT(B_FALSE);
650 		}
651 	}
652 
653 	/*
654 	 * Call the driver to get the given statistic.
655 	 */
656 	ret = mip->mi_getstat(mip->mi_driver, stat, &val);
657 	if (ret != 0) {
658 		/*
659 		 * The driver doesn't support this statistic.  Get the
660 		 * statistic's default value.
661 		 */
662 		val = mac_stat_default(mip, stat);
663 	}
664 	return (val);
665 }
666 
667 /*
668  * Utility function which returns the VID associated with a flow entry.
669  */
670 uint16_t
671 i_mac_flow_vid(flow_entry_t *flent)
672 {
673 	flow_desc_t	flow_desc;
674 
675 	mac_flow_get_desc(flent, &flow_desc);
676 
677 	if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0)
678 		return (flow_desc.fd_vid);
679 	return (VLAN_ID_NONE);
680 }
681 
682 /*
683  * Verify the validity of the specified unicast MAC address. Returns B_TRUE
684  * if the address is valid, B_FALSE otherwise (multicast address, or incorrect
685  * length.
686  */
687 boolean_t
688 mac_unicst_verify(mac_handle_t mh, const uint8_t *addr, uint_t len)
689 {
690 	mac_impl_t	*mip = (mac_impl_t *)mh;
691 
692 	/*
693 	 * Verify the address. No lock is needed since mi_type and plugin
694 	 * details don't change after mac_register().
695 	 */
696 	if ((len != mip->mi_type->mt_addr_length) ||
697 	    (mip->mi_type->mt_ops.mtops_unicst_verify(addr,
698 	    mip->mi_pdata)) != 0) {
699 		return (B_FALSE);
700 	} else {
701 		return (B_TRUE);
702 	}
703 }
704 
705 void
706 mac_sdu_get(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu)
707 {
708 	mac_impl_t	*mip = (mac_impl_t *)mh;
709 
710 	if (min_sdu != NULL)
711 		*min_sdu = mip->mi_sdu_min;
712 	if (max_sdu != NULL)
713 		*max_sdu = mip->mi_sdu_max;
714 }
715 
716 /*
717  * Update the MAC unicast address of the specified client's flows. Currently
718  * only one unicast MAC unicast address is allowed per client.
719  */
720 static void
721 mac_unicast_update_client_flow(mac_client_impl_t *mcip)
722 {
723 	mac_impl_t *mip = mcip->mci_mip;
724 	flow_entry_t *flent = mcip->mci_flent;
725 	mac_address_t *map = mcip->mci_unicast;
726 	flow_desc_t flow_desc;
727 
728 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
729 	ASSERT(flent != NULL);
730 
731 	mac_flow_get_desc(flent, &flow_desc);
732 	ASSERT(flow_desc.fd_mask & FLOW_LINK_DST);
733 
734 	bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len);
735 	mac_flow_set_desc(flent, &flow_desc);
736 
737 	/*
738 	 * A MAC client could have one MAC address but multiple
739 	 * VLANs. In that case update the flow entries corresponding
740 	 * to all VLANs of the MAC client.
741 	 */
742 	for (flent = mcip->mci_flent_list; flent != NULL;
743 	    flent = flent->fe_client_next) {
744 		mac_flow_get_desc(flent, &flow_desc);
745 		if (!(flent->fe_type & FLOW_PRIMARY_MAC ||
746 		    flent->fe_type & FLOW_VNIC_MAC))
747 			continue;
748 
749 		bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len);
750 		mac_flow_set_desc(flent, &flow_desc);
751 	}
752 }
753 
754 /*
755  * Update all clients that share the same unicast address.
756  */
757 void
758 mac_unicast_update_clients(mac_impl_t *mip, mac_address_t *map)
759 {
760 	mac_client_impl_t *mcip;
761 
762 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
763 
764 	/*
765 	 * Find all clients that share the same unicast MAC address and update
766 	 * them appropriately.
767 	 */
768 	for (mcip = mip->mi_clients_list; mcip != NULL;
769 	    mcip = mcip->mci_client_next) {
770 		/*
771 		 * Ignore clients that don't share this MAC address.
772 		 */
773 		if (map != mcip->mci_unicast)
774 			continue;
775 
776 		/*
777 		 * Update those clients with same old unicast MAC address.
778 		 */
779 		mac_unicast_update_client_flow(mcip);
780 	}
781 }
782 
783 /*
784  * Update the unicast MAC address of the specified VNIC MAC client.
785  *
786  * Check whether the operation is valid. Any of following cases should fail:
787  *
788  * 1. It's a VLAN type of VNIC.
789  * 2. The new value is current "primary" MAC address.
790  * 3. The current MAC address is shared with other clients.
791  * 4. The new MAC address has been used. This case will be valid when
792  *    client migration is fully supported.
793  */
794 int
795 mac_vnic_unicast_set(mac_client_handle_t mch, const uint8_t *addr)
796 {
797 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
798 	mac_impl_t *mip = mcip->mci_mip;
799 	mac_address_t *map = mcip->mci_unicast;
800 	int err;
801 
802 	ASSERT(!(mip->mi_state_flags & MIS_IS_VNIC));
803 	ASSERT(mcip->mci_state_flags & MCIS_IS_VNIC);
804 	ASSERT(mcip->mci_flags != MAC_CLIENT_FLAGS_PRIMARY);
805 
806 	i_mac_perim_enter(mip);
807 
808 	/*
809 	 * If this is a VLAN type of VNIC, it's using "primary" MAC address
810 	 * of the underlying interface. Must fail here. Refer to case 1 above.
811 	 */
812 	if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0) {
813 		i_mac_perim_exit(mip);
814 		return (ENOTSUP);
815 	}
816 
817 	/*
818 	 * If the new address is the "primary" one, must fail. Refer to
819 	 * case 2 above.
820 	 */
821 	if (bcmp(addr, mip->mi_addr, map->ma_len) == 0) {
822 		i_mac_perim_exit(mip);
823 		return (EACCES);
824 	}
825 
826 	/*
827 	 * If the address is shared by multiple clients, must fail. Refer
828 	 * to case 3 above.
829 	 */
830 	if (mac_check_macaddr_shared(map)) {
831 		i_mac_perim_exit(mip);
832 		return (EBUSY);
833 	}
834 
835 	/*
836 	 * If the new address has been used, must fail for now. Refer to
837 	 * case 4 above.
838 	 */
839 	if (mac_find_macaddr(mip, (uint8_t *)addr) != NULL) {
840 		i_mac_perim_exit(mip);
841 		return (ENOTSUP);
842 	}
843 
844 	/*
845 	 * Update the MAC address.
846 	 */
847 	err = mac_update_macaddr(map, (uint8_t *)addr);
848 
849 	if (err != 0) {
850 		i_mac_perim_exit(mip);
851 		return (err);
852 	}
853 
854 	/*
855 	 * Update all flows of this MAC client.
856 	 */
857 	mac_unicast_update_client_flow(mcip);
858 
859 	i_mac_perim_exit(mip);
860 	return (0);
861 }
862 
863 /*
864  * Program the new primary unicast address of the specified MAC.
865  *
866  * Function mac_update_macaddr() takes care different types of underlying
867  * MAC. If the underlying MAC is VNIC, the VNIC driver must have registerd
868  * mi_unicst() entry point, that indirectly calls mac_vnic_unicast_set()
869  * which will take care of updating the MAC address of the corresponding
870  * MAC client.
871  *
872  * This is the only interface that allow the client to update the "primary"
873  * MAC address of the underlying MAC. The new value must have not been
874  * used by other clients.
875  */
876 int
877 mac_unicast_primary_set(mac_handle_t mh, const uint8_t *addr)
878 {
879 	mac_impl_t *mip = (mac_impl_t *)mh;
880 	mac_address_t *map;
881 	int err;
882 
883 	/* verify the address validity */
884 	if (!mac_unicst_verify(mh, addr, mip->mi_type->mt_addr_length))
885 		return (EINVAL);
886 
887 	i_mac_perim_enter(mip);
888 
889 	/*
890 	 * If the new value is the same as the current primary address value,
891 	 * there's nothing to do.
892 	 */
893 	if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) == 0) {
894 		i_mac_perim_exit(mip);
895 		return (0);
896 	}
897 
898 	if (mac_find_macaddr(mip, (uint8_t *)addr) != 0) {
899 		i_mac_perim_exit(mip);
900 		return (EBUSY);
901 	}
902 
903 	map = mac_find_macaddr(mip, mip->mi_addr);
904 	ASSERT(map != NULL);
905 
906 	/*
907 	 * Update the MAC address.
908 	 */
909 	if (mip->mi_state_flags & MIS_IS_AGGR) {
910 		mac_capab_aggr_t aggr_cap;
911 
912 		/*
913 		 * If the mac is an aggregation, other than the unicast
914 		 * addresses programming, aggr must be informed about this
915 		 * primary unicst address change to change its mac address
916 		 * policy to be user-specified.
917 		 */
918 		ASSERT(map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED);
919 		VERIFY(i_mac_capab_get(mh, MAC_CAPAB_AGGR, &aggr_cap));
920 		err = aggr_cap.mca_unicst(mip->mi_driver, addr);
921 		if (err == 0)
922 			bcopy(addr, map->ma_addr, map->ma_len);
923 	} else {
924 		err = mac_update_macaddr(map, (uint8_t *)addr);
925 	}
926 
927 	if (err != 0) {
928 		i_mac_perim_exit(mip);
929 		return (err);
930 	}
931 
932 	mac_unicast_update_clients(mip, map);
933 
934 	/*
935 	 * Save the new primary MAC address in mac_impl_t.
936 	 */
937 	bcopy(addr, mip->mi_addr, mip->mi_type->mt_addr_length);
938 
939 	i_mac_perim_exit(mip);
940 
941 	if (err == 0)
942 		i_mac_notify(mip, MAC_NOTE_UNICST);
943 
944 	return (err);
945 }
946 
947 /*
948  * Return the current primary MAC address of the specified MAC.
949  */
950 void
951 mac_unicast_primary_get(mac_handle_t mh, uint8_t *addr)
952 {
953 	mac_impl_t *mip = (mac_impl_t *)mh;
954 
955 	rw_enter(&mip->mi_rw_lock, RW_READER);
956 	bcopy(mip->mi_addr, addr, mip->mi_type->mt_addr_length);
957 	rw_exit(&mip->mi_rw_lock);
958 }
959 
960 /*
961  * Return information about the use of the primary MAC address of the
962  * specified MAC instance:
963  *
964  * - if client_name is non-NULL, it must point to a string of at
965  *   least MAXNAMELEN bytes, and will be set to the name of the MAC
966  *   client which uses the primary MAC address.
967  *
968  * - if in_use is non-NULL, used to return whether the primary MAC
969  *   address is currently in use.
970  */
971 void
972 mac_unicast_primary_info(mac_handle_t mh, char *client_name, boolean_t *in_use)
973 {
974 	mac_impl_t *mip = (mac_impl_t *)mh;
975 	mac_client_impl_t *cur_client;
976 
977 	if (in_use != NULL)
978 		*in_use = B_FALSE;
979 	if (client_name != NULL)
980 		bzero(client_name, MAXNAMELEN);
981 
982 	/*
983 	 * The mi_rw_lock is used to protect threads that don't hold the
984 	 * mac perimeter to get a consistent view of the mi_clients_list.
985 	 * Threads that modify the list must hold both the mac perimeter and
986 	 * mi_rw_lock(RW_WRITER)
987 	 */
988 	rw_enter(&mip->mi_rw_lock, RW_READER);
989 	for (cur_client = mip->mi_clients_list; cur_client != NULL;
990 	    cur_client = cur_client->mci_client_next) {
991 		if (mac_is_primary_client(cur_client) ||
992 		    (mip->mi_state_flags & MIS_IS_VNIC)) {
993 			rw_exit(&mip->mi_rw_lock);
994 			if (in_use != NULL)
995 				*in_use = B_TRUE;
996 			if (client_name != NULL) {
997 				bcopy(cur_client->mci_name, client_name,
998 				    MAXNAMELEN);
999 			}
1000 			return;
1001 		}
1002 	}
1003 	rw_exit(&mip->mi_rw_lock);
1004 }
1005 
1006 /*
1007  * Add the specified MAC client to the list of clients which opened
1008  * the specified MAC.
1009  */
1010 static void
1011 mac_client_add(mac_client_impl_t *mcip)
1012 {
1013 	mac_impl_t *mip = mcip->mci_mip;
1014 
1015 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1016 
1017 	/* add VNIC to the front of the list */
1018 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1019 	mcip->mci_client_next = mip->mi_clients_list;
1020 	mip->mi_clients_list = mcip;
1021 	mip->mi_nclients++;
1022 	rw_exit(&mip->mi_rw_lock);
1023 }
1024 
1025 /*
1026  * Remove the specified MAC client from the list of clients which opened
1027  * the specified MAC.
1028  */
1029 static void
1030 mac_client_remove(mac_client_impl_t *mcip)
1031 {
1032 	mac_impl_t *mip = mcip->mci_mip;
1033 	mac_client_impl_t **prev, *cclient;
1034 
1035 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1036 
1037 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1038 	prev = &mip->mi_clients_list;
1039 	cclient = *prev;
1040 	while (cclient != NULL && cclient != mcip) {
1041 		prev = &cclient->mci_client_next;
1042 		cclient = *prev;
1043 	}
1044 	ASSERT(cclient != NULL);
1045 	*prev = cclient->mci_client_next;
1046 	mip->mi_nclients--;
1047 	rw_exit(&mip->mi_rw_lock);
1048 }
1049 
1050 static mac_unicast_impl_t *
1051 mac_client_find_vid(mac_client_impl_t *mcip, uint16_t vid)
1052 {
1053 	mac_unicast_impl_t *muip = mcip->mci_unicast_list;
1054 
1055 	while ((muip != NULL) && (muip->mui_vid != vid))
1056 		muip = muip->mui_next;
1057 
1058 	return (muip);
1059 }
1060 
1061 /*
1062  * Return whether the specified (MAC address, VID) tuple is already used by
1063  * one of the MAC clients associated with the specified MAC.
1064  */
1065 static boolean_t
1066 mac_addr_in_use(mac_impl_t *mip, uint8_t *mac_addr, uint16_t vid)
1067 {
1068 	mac_client_impl_t *client;
1069 	mac_address_t *map;
1070 
1071 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1072 
1073 	for (client = mip->mi_clients_list; client != NULL;
1074 	    client = client->mci_client_next) {
1075 
1076 		/*
1077 		 * Ignore clients that don't have unicast address.
1078 		 */
1079 		if (client->mci_unicast_list == NULL)
1080 			continue;
1081 
1082 		map = client->mci_unicast;
1083 
1084 		if ((bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) &&
1085 		    (mac_client_find_vid(client, vid) != NULL)) {
1086 			return (B_TRUE);
1087 		}
1088 	}
1089 
1090 	return (B_FALSE);
1091 }
1092 
1093 /*
1094  * Generate a random MAC address. The MAC address prefix is
1095  * stored in the array pointed to by mac_addr, and its length, in bytes,
1096  * is specified by prefix_len. The least significant bits
1097  * after prefix_len bytes are generated, and stored after the prefix
1098  * in the mac_addr array.
1099  */
1100 int
1101 mac_addr_random(mac_client_handle_t mch, uint_t prefix_len,
1102     uint8_t *mac_addr, mac_diag_t *diag)
1103 {
1104 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1105 	mac_impl_t *mip = mcip->mci_mip;
1106 	size_t addr_len = mip->mi_type->mt_addr_length;
1107 
1108 	if (prefix_len >= addr_len) {
1109 		*diag = MAC_DIAG_MACPREFIXLEN_INVALID;
1110 		return (EINVAL);
1111 	}
1112 
1113 	/* check the prefix value */
1114 	if (prefix_len > 0) {
1115 		bzero(mac_addr + prefix_len, addr_len - prefix_len);
1116 		if (!mac_unicst_verify((mac_handle_t)mip, mac_addr,
1117 		    addr_len)) {
1118 			*diag = MAC_DIAG_MACPREFIX_INVALID;
1119 			return (EINVAL);
1120 		}
1121 	}
1122 
1123 	/* generate the MAC address */
1124 	if (prefix_len < addr_len) {
1125 		(void) random_get_pseudo_bytes(mac_addr +
1126 		    prefix_len, addr_len - prefix_len);
1127 	}
1128 
1129 	*diag = 0;
1130 	return (0);
1131 }
1132 
1133 /*
1134  * Set the priority range for this MAC client. This will be used to
1135  * determine the absolute priority for the threads created for this
1136  * MAC client using the specified "low", "medium" and "high" level.
1137  * This will also be used for any subflows on this MAC client.
1138  */
1139 #define	MAC_CLIENT_SET_PRIORITY_RANGE(mcip, pri) {			\
1140 	(mcip)->mci_min_pri = FLOW_MIN_PRIORITY(MINCLSYSPRI,	\
1141 	    MAXCLSYSPRI, (pri));					\
1142 	(mcip)->mci_max_pri = FLOW_MAX_PRIORITY(MINCLSYSPRI,	\
1143 	    MAXCLSYSPRI, (mcip)->mci_min_pri);				\
1144 	}
1145 
1146 /*
1147  * MAC client open entry point. Return a new MAC client handle. Each
1148  * MAC client is associated with a name, specified through the 'name'
1149  * argument.
1150  */
1151 int
1152 mac_client_open(mac_handle_t mh, mac_client_handle_t *mchp, char *name,
1153     uint16_t flags)
1154 {
1155 	mac_impl_t *mip = (mac_impl_t *)mh;
1156 	mac_client_impl_t *mcip;
1157 	int err = 0;
1158 	boolean_t share_desired =
1159 	    ((flags & MAC_OPEN_FLAGS_SHARES_DESIRED) != 0);
1160 	boolean_t no_hwrings = ((flags & MAC_OPEN_FLAGS_NO_HWRINGS) != 0);
1161 	boolean_t req_hwrings = ((flags & MAC_OPEN_FLAGS_REQ_HWRINGS) != 0);
1162 	flow_entry_t	*flent = NULL;
1163 
1164 	*mchp = NULL;
1165 	if (share_desired && no_hwrings) {
1166 		/* can't have shares but no hardware rings */
1167 		return (EINVAL);
1168 	}
1169 
1170 	i_mac_perim_enter(mip);
1171 
1172 	if (mip->mi_state_flags & MIS_IS_VNIC) {
1173 		/*
1174 		 * The underlying MAC is a VNIC. Return the MAC client
1175 		 * handle of the lower MAC which was obtained by
1176 		 * the VNIC driver when it did its mac_client_open().
1177 		 */
1178 
1179 		mcip = mac_vnic_lower(mip);
1180 
1181 		/*
1182 		 * Note that multiple mac clients share the same mcip in
1183 		 * this case.
1184 		 */
1185 		if (flags & MAC_OPEN_FLAGS_EXCLUSIVE)
1186 			mcip->mci_state_flags |= MCIS_EXCLUSIVE;
1187 
1188 		if (flags & MAC_OPEN_FLAGS_MULTI_PRIMARY)
1189 			mcip->mci_flags |= MAC_CLIENT_FLAGS_MULTI_PRIMARY;
1190 
1191 		mip->mi_clients_list = mcip;
1192 		i_mac_perim_exit(mip);
1193 		*mchp = (mac_client_handle_t)mcip;
1194 		return (err);
1195 	}
1196 
1197 	mcip = kmem_cache_alloc(mac_client_impl_cache, KM_SLEEP);
1198 
1199 	mcip->mci_mip = mip;
1200 	mcip->mci_upper_mip = NULL;
1201 	mcip->mci_rx_fn = mac_pkt_drop;
1202 	mcip->mci_rx_arg = NULL;
1203 	mcip->mci_rx_p_fn = NULL;
1204 	mcip->mci_rx_p_arg = NULL;
1205 	mcip->mci_p_unicast_list = NULL;
1206 	mcip->mci_direct_rx_fn = NULL;
1207 	mcip->mci_direct_rx_arg = NULL;
1208 
1209 	mcip->mci_unicast_list = NULL;
1210 
1211 	if ((flags & MAC_OPEN_FLAGS_IS_VNIC) != 0)
1212 		mcip->mci_state_flags |= MCIS_IS_VNIC;
1213 
1214 	if ((flags & MAC_OPEN_FLAGS_EXCLUSIVE) != 0)
1215 		mcip->mci_state_flags |= MCIS_EXCLUSIVE;
1216 
1217 	if ((flags & MAC_OPEN_FLAGS_IS_AGGR_PORT) != 0)
1218 		mcip->mci_state_flags |= MCIS_IS_AGGR_PORT;
1219 
1220 	if ((flags & MAC_OPEN_FLAGS_USE_DATALINK_NAME) != 0) {
1221 		datalink_id_t	linkid;
1222 
1223 		ASSERT(name == NULL);
1224 		if ((err = dls_devnet_macname2linkid(mip->mi_name,
1225 		    &linkid)) != 0) {
1226 			goto done;
1227 		}
1228 		if ((err = dls_mgmt_get_linkinfo(linkid, mcip->mci_name, NULL,
1229 		    NULL, NULL)) != 0) {
1230 			/*
1231 			 * Use mac name if dlmgmtd is not available.
1232 			 */
1233 			if (err == EBADF) {
1234 				(void) strlcpy(mcip->mci_name, mip->mi_name,
1235 				    sizeof (mcip->mci_name));
1236 				err = 0;
1237 			} else {
1238 				goto done;
1239 			}
1240 		}
1241 		mcip->mci_state_flags |= MCIS_USE_DATALINK_NAME;
1242 	} else {
1243 		ASSERT(name != NULL);
1244 		if (strlen(name) > MAXNAMELEN) {
1245 			err = EINVAL;
1246 			goto done;
1247 		}
1248 		(void) strlcpy(mcip->mci_name, name, sizeof (mcip->mci_name));
1249 	}
1250 
1251 	if (flags & MAC_OPEN_FLAGS_MULTI_PRIMARY)
1252 		mcip->mci_flags |= MAC_CLIENT_FLAGS_MULTI_PRIMARY;
1253 
1254 	/* the subflow table will be created dynamically */
1255 	mcip->mci_subflow_tab = NULL;
1256 	mcip->mci_stat_multircv = 0;
1257 	mcip->mci_stat_brdcstrcv = 0;
1258 	mcip->mci_stat_multixmt = 0;
1259 	mcip->mci_stat_brdcstxmt = 0;
1260 
1261 	mcip->mci_stat_obytes = 0;
1262 	mcip->mci_stat_opackets = 0;
1263 	mcip->mci_stat_oerrors = 0;
1264 	mcip->mci_stat_ibytes = 0;
1265 	mcip->mci_stat_ipackets = 0;
1266 	mcip->mci_stat_ierrors = 0;
1267 
1268 	/* Create an initial flow */
1269 
1270 	err = mac_flow_create(NULL, NULL, mcip->mci_name, NULL,
1271 	    mcip->mci_state_flags & MCIS_IS_VNIC ? FLOW_VNIC_MAC :
1272 	    FLOW_PRIMARY_MAC, &flent);
1273 	if (err != 0)
1274 		goto done;
1275 	mcip->mci_flent = flent;
1276 	FLOW_MARK(flent, FE_MC_NO_DATAPATH);
1277 	flent->fe_mcip = mcip;
1278 	/*
1279 	 * Place initial creation reference on the flow. This reference
1280 	 * is released in the corresponding delete action viz.
1281 	 * mac_unicast_remove after waiting for all transient refs to
1282 	 * to go away. The wait happens in mac_flow_wait.
1283 	 */
1284 	FLOW_REFHOLD(flent);
1285 
1286 	/*
1287 	 * Do this ahead of the mac_bcast_add() below so that the mi_nclients
1288 	 * will have the right value for mac_rx_srs_setup().
1289 	 */
1290 	mac_client_add(mcip);
1291 
1292 	if (no_hwrings)
1293 		mcip->mci_state_flags |= MCIS_NO_HWRINGS;
1294 	if (req_hwrings)
1295 		mcip->mci_state_flags |= MCIS_REQ_HWRINGS;
1296 	mcip->mci_share = NULL;
1297 	if (share_desired) {
1298 		ASSERT(!no_hwrings);
1299 		i_mac_share_alloc(mcip);
1300 	}
1301 
1302 	DTRACE_PROBE2(mac__client__open__allocated, mac_impl_t *,
1303 	    mcip->mci_mip, mac_client_impl_t *, mcip);
1304 	*mchp = (mac_client_handle_t)mcip;
1305 
1306 	i_mac_perim_exit(mip);
1307 	return (0);
1308 
1309 done:
1310 	i_mac_perim_exit(mip);
1311 	mcip->mci_state_flags = 0;
1312 	mcip->mci_tx_flag = 0;
1313 	kmem_cache_free(mac_client_impl_cache, mcip);
1314 	return (err);
1315 }
1316 
1317 /*
1318  * Close the specified MAC client handle.
1319  */
1320 void
1321 mac_client_close(mac_client_handle_t mch, uint16_t flags)
1322 {
1323 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1324 	mac_impl_t		*mip = mcip->mci_mip;
1325 	flow_entry_t		*flent;
1326 
1327 	i_mac_perim_enter(mip);
1328 
1329 	if (flags & MAC_CLOSE_FLAGS_EXCLUSIVE)
1330 		mcip->mci_state_flags &= ~MCIS_EXCLUSIVE;
1331 
1332 	if ((mcip->mci_state_flags & MCIS_IS_VNIC) &&
1333 	    !(flags & MAC_CLOSE_FLAGS_IS_VNIC)) {
1334 		/*
1335 		 * This is an upper VNIC client initiated operation.
1336 		 * The lower MAC client will be closed by the VNIC driver
1337 		 * when the VNIC is deleted.
1338 		 */
1339 
1340 		i_mac_perim_exit(mip);
1341 		return;
1342 	}
1343 
1344 	/*
1345 	 * Remove the flent associated with the MAC client
1346 	 */
1347 	flent = mcip->mci_flent;
1348 	mcip->mci_flent = NULL;
1349 	FLOW_FINAL_REFRELE(flent);
1350 
1351 	/*
1352 	 * MAC clients must remove the unicast addresses and promisc callbacks
1353 	 * they added before issuing a mac_client_close().
1354 	 */
1355 	ASSERT(mcip->mci_unicast_list == NULL);
1356 	ASSERT(mcip->mci_promisc_list == NULL);
1357 	ASSERT(mcip->mci_tx_notify_cb_list == NULL);
1358 
1359 	i_mac_share_free(mcip);
1360 
1361 	mac_client_remove(mcip);
1362 
1363 	i_mac_perim_exit(mip);
1364 	mcip->mci_subflow_tab = NULL;
1365 	mcip->mci_state_flags = 0;
1366 	mcip->mci_tx_flag = 0;
1367 	kmem_cache_free(mac_client_impl_cache, mch);
1368 }
1369 
1370 /*
1371  * Enable bypass for the specified MAC client.
1372  */
1373 boolean_t
1374 mac_rx_bypass_set(mac_client_handle_t mch, mac_direct_rx_t rx_fn, void *arg1)
1375 {
1376 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1377 	mac_impl_t		*mip = mcip->mci_mip;
1378 
1379 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1380 
1381 	/*
1382 	 * If the mac_client is a VLAN, we should not do DLS bypass and
1383 	 * instead let the packets come up via mac_rx_deliver so the vlan
1384 	 * header can be stripped.
1385 	 */
1386 	if (mcip->mci_nvids > 0)
1387 		return (B_FALSE);
1388 
1389 	/*
1390 	 * These are not accessed directly in the data path, and hence
1391 	 * don't need any protection
1392 	 */
1393 	mcip->mci_direct_rx_fn = rx_fn;
1394 	mcip->mci_direct_rx_arg = arg1;
1395 	mcip->mci_state_flags |= MCIS_CLIENT_POLL_CAPABLE;
1396 	return (B_TRUE);
1397 }
1398 
1399 /*
1400  * Set the receive callback for the specified MAC client. There can be
1401  * at most one such callback per MAC client.
1402  */
1403 void
1404 mac_rx_set(mac_client_handle_t mch, mac_rx_t rx_fn, void *arg)
1405 {
1406 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1407 	mac_impl_t	*mip = mcip->mci_mip;
1408 
1409 	/*
1410 	 * Instead of adding an extra set of locks and refcnts in
1411 	 * the datapath at the mac client boundary, we temporarily quiesce
1412 	 * the SRS and related entities. We then change the receive function
1413 	 * without interference from any receive data thread and then reenable
1414 	 * the data flow subsequently.
1415 	 */
1416 	i_mac_perim_enter(mip);
1417 	mac_rx_client_quiesce(mch);
1418 
1419 	mcip->mci_rx_fn = rx_fn;
1420 	mcip->mci_rx_arg = arg;
1421 	mac_rx_client_restart(mch);
1422 	i_mac_perim_exit(mip);
1423 }
1424 
1425 /*
1426  * Reset the receive callback for the specified MAC client.
1427  */
1428 void
1429 mac_rx_clear(mac_client_handle_t mch)
1430 {
1431 	mac_rx_set(mch, mac_pkt_drop, NULL);
1432 }
1433 
1434 /*
1435  * Walk the MAC client subflow table and updates their priority values.
1436  */
1437 static int
1438 mac_update_subflow_priority_cb(flow_entry_t *flent, void *arg)
1439 {
1440 	mac_flow_update_priority(arg, flent);
1441 	return (0);
1442 }
1443 
1444 void
1445 mac_update_subflow_priority(mac_client_impl_t *mcip)
1446 {
1447 	(void) mac_flow_walk(mcip->mci_subflow_tab,
1448 	    mac_update_subflow_priority_cb, mcip);
1449 }
1450 
1451 /*
1452  * When the MAC client is being brought up (i.e. we do a unicast_add) we need
1453  * to initialize the cpu and resource control structure in the
1454  * mac_client_impl_t from the mac_impl_t (i.e if there are any cached
1455  * properties before the flow entry for the unicast address was created).
1456  */
1457 int
1458 mac_resource_ctl_set(mac_client_handle_t mch, mac_resource_props_t *mrp)
1459 {
1460 	mac_client_impl_t 	*mcip = (mac_client_impl_t *)mch;
1461 	mac_impl_t		*mip = (mac_impl_t *)mcip->mci_mip;
1462 	int			err = 0;
1463 
1464 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1465 
1466 	err = mac_validate_props(mrp);
1467 	if (err != 0)
1468 		return (err);
1469 
1470 	mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE);
1471 	if (MCIP_DATAPATH_SETUP(mcip)) {
1472 		/*
1473 		 * We have to set this prior to calling mac_flow_modify.
1474 		 */
1475 		if (mrp->mrp_mask & MRP_PRIORITY) {
1476 			if (mrp->mrp_priority == MPL_RESET) {
1477 				MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
1478 				    MPL_LINK_DEFAULT);
1479 			} else {
1480 				MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
1481 				    mrp->mrp_priority);
1482 			}
1483 		}
1484 
1485 		mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp);
1486 		if (mrp->mrp_mask & MRP_PRIORITY)
1487 			mac_update_subflow_priority(mcip);
1488 		return (0);
1489 	}
1490 	return (0);
1491 }
1492 
1493 void
1494 mac_resource_ctl_get(mac_client_handle_t mch, mac_resource_props_t *mrp)
1495 {
1496 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1497 	mac_resource_props_t	*mcip_mrp = MCIP_RESOURCE_PROPS(mcip);
1498 
1499 	bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t));
1500 }
1501 
1502 static int
1503 mac_unicast_flow_create(mac_client_impl_t *mcip, uint8_t *mac_addr,
1504     uint16_t vid, boolean_t is_primary, boolean_t first_flow,
1505     flow_entry_t **flent, mac_resource_props_t *mrp)
1506 {
1507 	mac_impl_t	*mip = (mac_impl_t *)mcip->mci_mip;
1508 	flow_desc_t	flow_desc;
1509 	char		flowname[MAXFLOWNAMELEN];
1510 	int		err;
1511 	uint_t		flent_flags;
1512 
1513 	/*
1514 	 * First unicast address being added, create a new flow
1515 	 * for that MAC client.
1516 	 */
1517 	bzero(&flow_desc, sizeof (flow_desc));
1518 
1519 	flow_desc.fd_mac_len = mip->mi_type->mt_addr_length;
1520 	bcopy(mac_addr, flow_desc.fd_dst_mac, flow_desc.fd_mac_len);
1521 	flow_desc.fd_mask = FLOW_LINK_DST;
1522 	if (vid != 0) {
1523 		flow_desc.fd_vid = vid;
1524 		flow_desc.fd_mask |= FLOW_LINK_VID;
1525 	}
1526 
1527 	/*
1528 	 * XXX-nicolas. For now I'm keeping the FLOW_PRIMARY_MAC
1529 	 * and FLOW_VNIC. Even though they're a hack inherited
1530 	 * from the SRS code, we'll keep them for now. They're currently
1531 	 * consumed by mac_datapath_setup() to create the SRS.
1532 	 * That code should be eventually moved out of
1533 	 * mac_datapath_setup() and moved to a mac_srs_create()
1534 	 * function of some sort to keep things clean.
1535 	 *
1536 	 * Also, there's no reason why the SRS for the primary MAC
1537 	 * client should be different than any other MAC client. Until
1538 	 * this is cleaned-up, we support only one MAC unicast address
1539 	 * per client.
1540 	 *
1541 	 * We set FLOW_PRIMARY_MAC for the primary MAC address,
1542 	 * FLOW_VNIC for everything else.
1543 	 */
1544 	if (is_primary)
1545 		flent_flags = FLOW_PRIMARY_MAC;
1546 	else
1547 		flent_flags = FLOW_VNIC_MAC;
1548 
1549 	/*
1550 	 * For the first flow we use the mac client's name - mci_name, for
1551 	 * subsequent ones we just create a name with the vid. This is
1552 	 * so that we can add these flows to the same flow table. This is
1553 	 * fine as the flow name (except for the one with the mac client's
1554 	 * name) is not visible. When the first flow is removed, we just replace
1555 	 * its fdesc with another from the list, so we will still retain the
1556 	 * flent with the MAC client's flow name.
1557 	 */
1558 	if (first_flow) {
1559 		bcopy(mcip->mci_name, flowname, MAXFLOWNAMELEN);
1560 	} else {
1561 		(void) sprintf(flowname, "%s%u", mcip->mci_name, vid);
1562 		flent_flags = FLOW_NO_STATS;
1563 	}
1564 
1565 	if ((err = mac_flow_create(&flow_desc, mrp, flowname, NULL,
1566 	    flent_flags, flent)) != 0)
1567 		return (err);
1568 
1569 	FLOW_MARK(*flent, FE_INCIPIENT);
1570 	(*flent)->fe_mcip = mcip;
1571 
1572 	/*
1573 	 * Place initial creation reference on the flow. This reference
1574 	 * is released in the corresponding delete action viz.
1575 	 * mac_unicast_remove after waiting for all transient refs to
1576 	 * to go away. The wait happens in mac_flow_wait.
1577 	 * We have already held the reference in mac_client_open().
1578 	 */
1579 	if (!first_flow)
1580 		FLOW_REFHOLD(*flent);
1581 	return (0);
1582 }
1583 
1584 /* Refresh the multicast grouping for this VID. */
1585 int
1586 mac_client_update_mcast(void *arg, boolean_t add, const uint8_t *addrp)
1587 {
1588 	flow_entry_t		*flent = arg;
1589 	mac_client_impl_t	*mcip = flent->fe_mcip;
1590 	uint16_t		vid;
1591 	flow_desc_t		flow_desc;
1592 
1593 	mac_flow_get_desc(flent, &flow_desc);
1594 	vid = (flow_desc.fd_mask & FLOW_LINK_VID) != 0 ?
1595 	    flow_desc.fd_vid : VLAN_ID_NONE;
1596 
1597 	/*
1598 	 * We don't call mac_multicast_add()/mac_multicast_remove() as
1599 	 * we want to add/remove for this specific vid.
1600 	 */
1601 	if (add) {
1602 		return (mac_bcast_add(mcip, addrp, vid,
1603 		    MAC_ADDRTYPE_MULTICAST));
1604 	} else {
1605 		mac_bcast_delete(mcip, addrp, vid);
1606 		return (0);
1607 	}
1608 }
1609 
1610 static void
1611 mac_update_single_active_client(mac_impl_t *mip)
1612 {
1613 	mac_client_impl_t *client = NULL;
1614 
1615 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1616 
1617 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1618 	if (mip->mi_nactiveclients == 1) {
1619 		/*
1620 		 * Find the one active MAC client from the list of MAC
1621 		 * clients. The active MAC client has at least one
1622 		 * unicast address.
1623 		 */
1624 		for (client = mip->mi_clients_list; client != NULL;
1625 		    client = client->mci_client_next) {
1626 			if (client->mci_unicast_list != NULL)
1627 				break;
1628 		}
1629 		ASSERT(client != NULL);
1630 	}
1631 
1632 	/*
1633 	 * mi_single_active_client is protected by the MAC impl's read/writer
1634 	 * lock, which allows mac_rx() to check the value of that pointer
1635 	 * as a reader.
1636 	 */
1637 	mip->mi_single_active_client = client;
1638 	rw_exit(&mip->mi_rw_lock);
1639 }
1640 
1641 /*
1642  * Set up the data path. Called from i_mac_unicast_add after having
1643  * done all the validations including making sure this is an active
1644  * client (i.e that is ready to process packets.)
1645  */
1646 static int
1647 mac_client_datapath_setup(mac_client_impl_t *mcip, uint16_t vid,
1648     uint8_t *mac_addr, mac_resource_props_t *mrp, boolean_t isprimary,
1649     mac_unicast_impl_t *muip)
1650 {
1651 	mac_impl_t	*mip = mcip->mci_mip;
1652 	boolean_t	mac_started = B_FALSE;
1653 	boolean_t	bcast_added = B_FALSE;
1654 	boolean_t	nactiveclients_added = B_FALSE;
1655 	flow_entry_t	*flent;
1656 	int		err = 0;
1657 
1658 	if ((err = mac_start((mac_handle_t)mip)) != 0)
1659 		goto bail;
1660 
1661 	mac_started = B_TRUE;
1662 
1663 	/* add the MAC client to the broadcast address group by default */
1664 	if (mip->mi_type->mt_brdcst_addr != NULL) {
1665 		err = mac_bcast_add(mcip, mip->mi_type->mt_brdcst_addr, vid,
1666 		    MAC_ADDRTYPE_BROADCAST);
1667 		if (err != 0)
1668 			goto bail;
1669 		bcast_added = B_TRUE;
1670 	}
1671 
1672 	/*
1673 	 * If this is the first unicast address addition for this
1674 	 * client, reuse the pre-allocated larval flow entry associated with
1675 	 * the MAC client.
1676 	 */
1677 	flent = (mcip->mci_nflents == 0) ? mcip->mci_flent : NULL;
1678 
1679 	/* We are configuring the unicast flow now */
1680 	if (!MCIP_DATAPATH_SETUP(mcip)) {
1681 
1682 		MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
1683 		    (mrp->mrp_mask & MRP_PRIORITY) ? mrp->mrp_priority :
1684 		    MPL_LINK_DEFAULT);
1685 
1686 		if ((err = mac_unicast_flow_create(mcip, mac_addr, vid,
1687 		    isprimary, B_TRUE, &flent, mrp)) != 0)
1688 			goto bail;
1689 
1690 		mip->mi_nactiveclients++;
1691 		nactiveclients_added = B_TRUE;
1692 
1693 		/*
1694 		 * This will allocate the RX ring group if possible for the
1695 		 * flow and program the software classifier as needed.
1696 		 */
1697 		if ((err = mac_datapath_setup(mcip, flent, SRST_LINK)) != 0)
1698 			goto bail;
1699 
1700 		/*
1701 		 * The unicast MAC address must have been added successfully.
1702 		 */
1703 		ASSERT(mcip->mci_unicast != NULL);
1704 		/*
1705 		 * Push down the sub-flows that were defined on this link
1706 		 * hitherto. The flows are added to the active flow table
1707 		 * and SRS, softrings etc. are created as needed.
1708 		 */
1709 		mac_link_init_flows((mac_client_handle_t)mcip);
1710 	} else {
1711 		mac_address_t *map = mcip->mci_unicast;
1712 
1713 		/*
1714 		 * A unicast flow already exists for that MAC client,
1715 		 * this flow must be the same mac address but with
1716 		 * different VID. It has been checked by mac_addr_in_use().
1717 		 *
1718 		 * We will use the SRS etc. from the mci_flent. Note that
1719 		 * We don't need to create kstat for this as except for
1720 		 * the fdesc, everything will be used from in the 1st flent.
1721 		 */
1722 
1723 		if (bcmp(mac_addr, map->ma_addr, map->ma_len) != 0) {
1724 			err = EINVAL;
1725 			goto bail;
1726 		}
1727 
1728 		if ((err = mac_unicast_flow_create(mcip, mac_addr, vid,
1729 		    isprimary, B_FALSE, &flent, NULL)) != 0) {
1730 			goto bail;
1731 		}
1732 		if ((err = mac_flow_add(mip->mi_flow_tab, flent)) != 0) {
1733 			FLOW_FINAL_REFRELE(flent);
1734 			goto bail;
1735 		}
1736 
1737 		/* update the multicast group for this vid */
1738 		mac_client_bcast_refresh(mcip, mac_client_update_mcast,
1739 		    (void *)flent, B_TRUE);
1740 
1741 	}
1742 
1743 	/* populate the shared MAC address */
1744 	muip->mui_map = mcip->mci_unicast;
1745 
1746 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
1747 	muip->mui_next = mcip->mci_unicast_list;
1748 	mcip->mci_unicast_list = muip;
1749 	rw_exit(&mcip->mci_rw_lock);
1750 
1751 
1752 	/*
1753 	 * First add the flent to the flow list of this mcip. Then set
1754 	 * the mip's mi_single_active_client if needed. The Rx path assumes
1755 	 * that mip->mi_single_active_client will always have an associated
1756 	 * flent.
1757 	 */
1758 	mac_client_add_to_flow_list(mcip, flent);
1759 
1760 	if (nactiveclients_added)
1761 		mac_update_single_active_client(mip);
1762 	/*
1763 	 * Trigger a renegotiation of the capabilities when the number of
1764 	 * active clients changes from 1 to 2, since some of the capabilities
1765 	 * might have to be disabled. Also send a MAC_NOTE_LINK notification
1766 	 * to all the MAC clients whenever physical link is DOWN.
1767 	 */
1768 	if (mip->mi_nactiveclients == 2) {
1769 		mac_capab_update((mac_handle_t)mip);
1770 		mac_virtual_link_update(mip);
1771 	}
1772 	/*
1773 	 * Now that the setup is complete, clear the INCIPIENT flag.
1774 	 * The flag was set to avoid incoming packets seeing inconsistent
1775 	 * structures while the setup was in progress. Clear the mci_tx_flag
1776 	 * by calling mac_tx_client_block. It is possible that
1777 	 * mac_unicast_remove was called prior to this mac_unicast_add which
1778 	 * could have set the MCI_TX_QUIESCE flag.
1779 	 */
1780 	if (flent->fe_rx_ring_group != NULL)
1781 		mac_rx_group_unmark(flent->fe_rx_ring_group, MR_INCIPIENT);
1782 	FLOW_UNMARK(flent, FE_INCIPIENT);
1783 	FLOW_UNMARK(flent, FE_MC_NO_DATAPATH);
1784 	mac_tx_client_unblock(mcip);
1785 	return (0);
1786 bail:
1787 	if (bcast_added)
1788 		mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, vid);
1789 	if (mac_started)
1790 		mac_stop((mac_handle_t)mip);
1791 
1792 	if (nactiveclients_added)
1793 		mip->mi_nactiveclients--;
1794 
1795 	return (err);
1796 }
1797 
1798 /*
1799  * Return the passive primary MAC client, if present. The passive client is
1800  * a stand-by client that has the same unicast address as another that is
1801  * currenly active. Once the active client goes away, the passive client
1802  * becomes active.
1803  */
1804 static mac_client_impl_t *
1805 mac_get_passive_primary_client(mac_impl_t *mip)
1806 {
1807 	mac_client_impl_t	*mcip;
1808 
1809 	for (mcip = mip->mi_clients_list; mcip != NULL;
1810 	    mcip = mcip->mci_client_next) {
1811 		if (mac_is_primary_client(mcip) &&
1812 		    (mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
1813 			return (mcip);
1814 		}
1815 	}
1816 	return (NULL);
1817 }
1818 
1819 /*
1820  * Add a new unicast address to the MAC client.
1821  *
1822  * The MAC address can be specified either by value, or the MAC client
1823  * can specify that it wants to use the primary MAC address of the
1824  * underlying MAC. See the introductory comments at the beginning
1825  * of this file for more more information on primary MAC addresses.
1826  *
1827  * Note also the tuple (MAC address, VID) must be unique
1828  * for the MAC clients defined on top of the same underlying MAC
1829  * instance, unless the MAC_UNICAST_NODUPCHECK is specified.
1830  */
1831 int
1832 i_mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags,
1833     mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag)
1834 {
1835 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1836 	mac_impl_t		*mip = mcip->mci_mip;
1837 	int			err;
1838 	uint_t			mac_len = mip->mi_type->mt_addr_length;
1839 	boolean_t		check_dups = !(flags & MAC_UNICAST_NODUPCHECK);
1840 	boolean_t		fastpath_disabled = B_FALSE;
1841 	boolean_t		is_primary = (flags & MAC_UNICAST_PRIMARY);
1842 	boolean_t		is_unicast_hw = (flags & MAC_UNICAST_HW);
1843 	mac_resource_props_t	mrp;
1844 	boolean_t		passive_client = B_FALSE;
1845 	mac_unicast_impl_t	*muip;
1846 	boolean_t		is_vnic_primary =
1847 	    (flags & MAC_UNICAST_VNIC_PRIMARY);
1848 
1849 	/* when VID is non-zero, the underlying MAC can not be VNIC */
1850 	ASSERT(!((mip->mi_state_flags & MIS_IS_VNIC) && (vid != 0)));
1851 
1852 	/*
1853 	 * Check whether it's the primary client and flag it.
1854 	 */
1855 	if (!(mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary && vid == 0)
1856 		mcip->mci_flags |= MAC_CLIENT_FLAGS_PRIMARY;
1857 
1858 	/*
1859 	 * is_vnic_primary is true when we come here as a VLAN VNIC
1860 	 * which uses the primary mac client's address but with a non-zero
1861 	 * VID. In this case the MAC address is not specified by an upper
1862 	 * MAC client.
1863 	 */
1864 	if ((mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary &&
1865 	    !is_vnic_primary) {
1866 		/*
1867 		 * The address is being set by the upper MAC client
1868 		 * of a VNIC. The MAC address was already set by the
1869 		 * VNIC driver during VNIC creation.
1870 		 *
1871 		 * Note: a VNIC has only one MAC address. We return
1872 		 * the MAC unicast address handle of the lower MAC client
1873 		 * corresponding to the VNIC. We allocate a new entry
1874 		 * which is flagged appropriately, so that mac_unicast_remove()
1875 		 * doesn't attempt to free the original entry that
1876 		 * was allocated by the VNIC driver.
1877 		 */
1878 		ASSERT(mcip->mci_unicast != NULL);
1879 
1880 		/* Check for VLAN flags, if present */
1881 		if ((flags & MAC_UNICAST_TAG_DISABLE) != 0)
1882 			mcip->mci_state_flags |= MCIS_TAG_DISABLE;
1883 
1884 		if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0)
1885 			mcip->mci_state_flags |= MCIS_STRIP_DISABLE;
1886 
1887 		if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0)
1888 			mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK;
1889 
1890 		/*
1891 		 * Ensure that the primary unicast address of the VNIC
1892 		 * is added only once unless we have the
1893 		 * MAC_CLIENT_FLAGS_MULTI_PRIMARY set (and this is not
1894 		 * a passive MAC client).
1895 		 */
1896 		if ((mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) != 0) {
1897 			if ((mcip->mci_flags &
1898 			    MAC_CLIENT_FLAGS_MULTI_PRIMARY) == 0 ||
1899 			    (mcip->mci_flags &
1900 			    MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
1901 				return (EBUSY);
1902 			}
1903 			mcip->mci_flags |= MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
1904 			passive_client = B_TRUE;
1905 		}
1906 
1907 		mcip->mci_flags |= MAC_CLIENT_FLAGS_VNIC_PRIMARY;
1908 
1909 		/*
1910 		 * Create a handle for vid 0.
1911 		 */
1912 		ASSERT(vid == 0);
1913 		muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP);
1914 		muip->mui_vid = vid;
1915 		*mah = (mac_unicast_handle_t)muip;
1916 		/*
1917 		 * This will be used by the caller to defer setting the
1918 		 * rx functions.
1919 		 */
1920 		if (passive_client)
1921 			return (EAGAIN);
1922 		return (0);
1923 	}
1924 
1925 	/* primary MAC clients cannot be opened on top of anchor VNICs */
1926 	if ((is_vnic_primary || is_primary) &&
1927 	    i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_ANCHOR_VNIC, NULL)) {
1928 		return (ENXIO);
1929 	}
1930 
1931 	/*
1932 	 * If this is a VNIC/VLAN, disable softmac fast-path.
1933 	 */
1934 	if (mcip->mci_state_flags & MCIS_IS_VNIC) {
1935 		err = mac_fastpath_disable((mac_handle_t)mip);
1936 		if (err != 0)
1937 			return (err);
1938 		fastpath_disabled = B_TRUE;
1939 	}
1940 
1941 	/*
1942 	 * Return EBUSY if:
1943 	 *  - there is an exclusively active mac client exists.
1944 	 *  - this is an exclusive active mac client but
1945 	 *	a. there is already active mac clients exist, or
1946 	 *	b. fastpath streams are already plumbed on this legacy device
1947 	 */
1948 	if (mip->mi_state_flags & MIS_EXCLUSIVE) {
1949 		if (fastpath_disabled)
1950 			mac_fastpath_enable((mac_handle_t)mip);
1951 		return (EBUSY);
1952 	}
1953 
1954 	if (mcip->mci_state_flags & MCIS_EXCLUSIVE) {
1955 		ASSERT(!fastpath_disabled);
1956 		if (mip->mi_nactiveclients != 0)
1957 			return (EBUSY);
1958 
1959 		if ((mip->mi_state_flags & MIS_LEGACY) &&
1960 		    !(mip->mi_capab_legacy.ml_active_set(mip->mi_driver))) {
1961 			return (EBUSY);
1962 		}
1963 		mip->mi_state_flags |= MIS_EXCLUSIVE;
1964 	}
1965 
1966 	bzero(&mrp, sizeof (mac_resource_props_t));
1967 	if (is_primary && !(mcip->mci_state_flags & (MCIS_IS_VNIC |
1968 	    MCIS_IS_AGGR_PORT))) {
1969 		/*
1970 		 * Apply the property cached in the mac_impl_t to the primary
1971 		 * mac client. If the mac client is a VNIC or an aggregation
1972 		 * port, its property should be set in the mcip when the
1973 		 * VNIC/aggr was created.
1974 		 */
1975 		mac_get_resources((mac_handle_t)mip, &mrp);
1976 		(void) mac_client_set_resources(mch, &mrp);
1977 	} else if (mcip->mci_state_flags & MCIS_IS_VNIC) {
1978 		bcopy(MCIP_RESOURCE_PROPS(mcip), &mrp,
1979 		    sizeof (mac_resource_props_t));
1980 	}
1981 
1982 	muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP);
1983 	muip->mui_vid = vid;
1984 
1985 	if (is_primary || is_vnic_primary) {
1986 		mac_addr = mip->mi_addr;
1987 	} else {
1988 
1989 		/*
1990 		 * Verify the validity of the specified MAC addresses value.
1991 		 */
1992 		if (!mac_unicst_verify((mac_handle_t)mip, mac_addr, mac_len)) {
1993 			*diag = MAC_DIAG_MACADDR_INVALID;
1994 			err = EINVAL;
1995 			goto bail_out;
1996 		}
1997 
1998 		/*
1999 		 * Make sure that the specified MAC address is different
2000 		 * than the unicast MAC address of the underlying NIC.
2001 		 */
2002 		if (check_dups && bcmp(mip->mi_addr, mac_addr, mac_len) == 0) {
2003 			*diag = MAC_DIAG_MACADDR_NIC;
2004 			err = EINVAL;
2005 			goto bail_out;
2006 		}
2007 	}
2008 
2009 	/*
2010 	 * Set the flags here so that if this is a passive client, we
2011 	 * can return  and set it when we call mac_client_datapath_setup
2012 	 * when this becomes the active client. If we defer to using these
2013 	 * flags to mac_client_datapath_setup, then for a passive client,
2014 	 * we'd have to store the flags somewhere (probably fe_flags)
2015 	 * and then use it.
2016 	 */
2017 	if (!MCIP_DATAPATH_SETUP(mcip)) {
2018 		if (is_unicast_hw) {
2019 			/*
2020 			 * The client requires a hardware MAC address slot
2021 			 * for that unicast address. Since we support only
2022 			 * one unicast MAC address per client, flag the
2023 			 * MAC client itself.
2024 			 */
2025 			mcip->mci_state_flags |= MCIS_UNICAST_HW;
2026 		}
2027 
2028 		/* Check for VLAN flags, if present */
2029 		if ((flags & MAC_UNICAST_TAG_DISABLE) != 0)
2030 			mcip->mci_state_flags |= MCIS_TAG_DISABLE;
2031 
2032 		if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0)
2033 			mcip->mci_state_flags |= MCIS_STRIP_DISABLE;
2034 
2035 		if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0)
2036 			mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK;
2037 	} else {
2038 		/*
2039 		 * Assert that the specified flags are consistent with the
2040 		 * flags specified by previous calls to mac_unicast_add().
2041 		 */
2042 		ASSERT(((flags & MAC_UNICAST_TAG_DISABLE) != 0 &&
2043 		    (mcip->mci_state_flags & MCIS_TAG_DISABLE) != 0) ||
2044 		    ((flags & MAC_UNICAST_TAG_DISABLE) == 0 &&
2045 		    (mcip->mci_state_flags & MCIS_TAG_DISABLE) == 0));
2046 
2047 		ASSERT(((flags & MAC_UNICAST_STRIP_DISABLE) != 0 &&
2048 		    (mcip->mci_state_flags & MCIS_STRIP_DISABLE) != 0) ||
2049 		    ((flags & MAC_UNICAST_STRIP_DISABLE) == 0 &&
2050 		    (mcip->mci_state_flags & MCIS_STRIP_DISABLE) == 0));
2051 
2052 		ASSERT(((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0 &&
2053 		    (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) != 0) ||
2054 		    ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) == 0 &&
2055 		    (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) == 0));
2056 
2057 		/*
2058 		 * Make sure the client is consistent about its requests
2059 		 * for MAC addresses. I.e. all requests from the clients
2060 		 * must have the MAC_UNICAST_HW flag set or clear.
2061 		 */
2062 		if ((mcip->mci_state_flags & MCIS_UNICAST_HW) != 0 &&
2063 		    !is_unicast_hw ||
2064 		    (mcip->mci_state_flags & MCIS_UNICAST_HW) == 0 &&
2065 		    is_unicast_hw) {
2066 			err = EINVAL;
2067 			goto bail_out;
2068 		}
2069 	}
2070 	/*
2071 	 * Make sure the MAC address is not already used by
2072 	 * another MAC client defined on top of the same
2073 	 * underlying NIC. Unless we have MAC_CLIENT_FLAGS_MULTI_PRIMARY
2074 	 * set when we allow a passive client to be present which will
2075 	 * be activated when the currently active client goes away - this
2076 	 * works only with primary addresses.
2077 	 */
2078 	if ((check_dups || is_primary || is_vnic_primary) &&
2079 	    mac_addr_in_use(mip, mac_addr, vid)) {
2080 		/*
2081 		 * Must have set the multiple primary address flag when
2082 		 * we did a mac_client_open AND this should be a primary
2083 		 * MAC client AND there should not already be a passive
2084 		 * primary. If all is true then we let this succeed
2085 		 * even if the address is a dup.
2086 		 */
2087 		if ((mcip->mci_flags & MAC_CLIENT_FLAGS_MULTI_PRIMARY) == 0 ||
2088 		    (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) == 0 ||
2089 		    mac_get_passive_primary_client(mip) != NULL) {
2090 			*diag = MAC_DIAG_MACADDR_INUSE;
2091 			err = EEXIST;
2092 			goto bail_out;
2093 		}
2094 		ASSERT((mcip->mci_flags &
2095 		    MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) == 0);
2096 		mcip->mci_flags |= MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
2097 
2098 		/*
2099 		 * Stash the unicast address handle, we will use it when
2100 		 * we set up the passive client.
2101 		 */
2102 		mcip->mci_p_unicast_list = muip;
2103 		*mah = (mac_unicast_handle_t)muip;
2104 		return (0);
2105 	}
2106 
2107 	err = mac_client_datapath_setup(mcip, vid, mac_addr, &mrp,
2108 	    is_primary || is_vnic_primary, muip);
2109 	if (err != 0)
2110 		goto bail_out;
2111 	*mah = (mac_unicast_handle_t)muip;
2112 	return (0);
2113 
2114 bail_out:
2115 	if (fastpath_disabled)
2116 		mac_fastpath_enable((mac_handle_t)mip);
2117 	if (mcip->mci_state_flags & MCIS_EXCLUSIVE) {
2118 		mip->mi_state_flags &= ~MIS_EXCLUSIVE;
2119 		if (mip->mi_state_flags & MIS_LEGACY) {
2120 			mip->mi_capab_legacy.ml_active_clear(
2121 			    mip->mi_driver);
2122 		}
2123 	}
2124 	kmem_free(muip, sizeof (mac_unicast_impl_t));
2125 	return (err);
2126 }
2127 
2128 /*
2129  * Wrapper function to mac_unicast_add when we want to have the same mac
2130  * client open for two instances, one that is currently active and another
2131  * that will become active when the current one is removed. In this case
2132  * mac_unicast_add will return EGAIN and we will save the rx function and
2133  * arg which will be used when we activate the passive client in
2134  * mac_unicast_remove.
2135  */
2136 int
2137 mac_unicast_add_set_rx(mac_client_handle_t mch, uint8_t *mac_addr,
2138     uint16_t flags, mac_unicast_handle_t *mah,  uint16_t vid, mac_diag_t *diag,
2139     mac_rx_t rx_fn, void *arg)
2140 {
2141 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2142 	uint_t			err;
2143 
2144 	err = mac_unicast_add(mch, mac_addr, flags, mah, vid, diag);
2145 	if (err != 0 && err != EAGAIN)
2146 		return (err);
2147 	if (err == EAGAIN) {
2148 		if (rx_fn != NULL) {
2149 			mcip->mci_rx_p_fn = rx_fn;
2150 			mcip->mci_rx_p_arg = arg;
2151 		}
2152 		return (0);
2153 	}
2154 	if (rx_fn != NULL)
2155 		mac_rx_set(mch, rx_fn, arg);
2156 	return (err);
2157 }
2158 
2159 int
2160 mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags,
2161     mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag)
2162 {
2163 	mac_impl_t *mip = ((mac_client_impl_t *)mch)->mci_mip;
2164 	uint_t err;
2165 
2166 	i_mac_perim_enter(mip);
2167 	err = i_mac_unicast_add(mch, mac_addr, flags, mah, vid, diag);
2168 	i_mac_perim_exit(mip);
2169 
2170 	return (err);
2171 }
2172 
2173 void
2174 mac_client_datapath_teardown(mac_client_handle_t mch, mac_unicast_impl_t *muip,
2175     flow_entry_t *flent)
2176 {
2177 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2178 	mac_impl_t		*mip = mcip->mci_mip;
2179 
2180 	/*
2181 	 * We would have initialized subflows etc. only if we brought up
2182 	 * the primary client and set the unicast unicast address etc.
2183 	 * Deactivate the flows. The flow entry will be removed from the
2184 	 * active flow tables, and the associated SRS, softrings etc will
2185 	 * be deleted. But the flow entry itself won't be destroyed, instead
2186 	 * it will continue to be archived off the  the global flow hash
2187 	 * list, for a possible future activation when say IP is plumbed
2188 	 * again.
2189 	 */
2190 	mac_link_release_flows(mch);
2191 
2192 	mip->mi_nactiveclients--;
2193 	mac_update_single_active_client(mip);
2194 
2195 	/* Tear down the data path */
2196 	mac_datapath_teardown(mcip, mcip->mci_flent, SRST_LINK);
2197 
2198 	/*
2199 	 * Prevent any future access to the flow entry through the mci_flent
2200 	 * pointer by setting the mci_flent to NULL. Access to mci_flent in
2201 	 * mac_bcast_send is also under mi_rw_lock.
2202 	 */
2203 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
2204 	flent = mcip->mci_flent;
2205 	mac_client_remove_flow_from_list(mcip, flent);
2206 
2207 	if (mcip->mci_state_flags & MCIS_DESC_LOGGED)
2208 		mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
2209 
2210 	/*
2211 	 * This is the last unicast address being removed and there shouldn't
2212 	 * be any outbound data threads at this point coming down from mac
2213 	 * clients. We have waited for the data threads to finish before
2214 	 * starting dld_str_detach. Non-data threads must access TX SRS
2215 	 * under mi_rw_lock.
2216 	 */
2217 	rw_exit(&mip->mi_rw_lock);
2218 
2219 	/*
2220 	 * Don't use FLOW_MARK with FE_MC_NO_DATAPATH, as the flow might
2221 	 * contain other flags, such as FE_CONDEMNED, which we need to
2222 	 * cleared. We don't call mac_flow_cleanup() for this unicast
2223 	 * flow as we have a already cleaned up SRSs etc. (via the teadown
2224 	 * path). We just clear the stats and reset the initial callback
2225 	 * function, the rest will be set when we call mac_flow_create,
2226 	 * if at all.
2227 	 */
2228 	mutex_enter(&flent->fe_lock);
2229 	ASSERT(flent->fe_refcnt == 1 && flent->fe_mbg == NULL &&
2230 	    flent->fe_tx_srs == NULL && flent->fe_rx_srs_cnt == 0);
2231 	flent->fe_flags = FE_MC_NO_DATAPATH;
2232 	flow_stat_destroy(flent);
2233 
2234 	/* Initialize the receiver function to a safe routine */
2235 	flent->fe_cb_fn = (flow_fn_t)mac_pkt_drop;
2236 	flent->fe_cb_arg1 = NULL;
2237 	flent->fe_cb_arg2 = NULL;
2238 
2239 	flent->fe_index = -1;
2240 	mutex_exit(&flent->fe_lock);
2241 
2242 	if (mip->mi_type->mt_brdcst_addr != NULL) {
2243 		mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr,
2244 		    muip->mui_vid);
2245 	}
2246 
2247 	if (mip->mi_nactiveclients == 1) {
2248 		mac_capab_update((mac_handle_t)mip);
2249 		mac_virtual_link_update(mip);
2250 	}
2251 
2252 	if (mcip->mci_state_flags & MCIS_EXCLUSIVE) {
2253 		mip->mi_state_flags &= ~MIS_EXCLUSIVE;
2254 
2255 		if (mip->mi_state_flags & MIS_LEGACY)
2256 			mip->mi_capab_legacy.ml_active_clear(mip->mi_driver);
2257 	}
2258 
2259 	mcip->mci_state_flags &= ~MCIS_UNICAST_HW;
2260 
2261 	if (mcip->mci_state_flags & MCIS_TAG_DISABLE)
2262 		mcip->mci_state_flags &= ~MCIS_TAG_DISABLE;
2263 
2264 	if (mcip->mci_state_flags & MCIS_STRIP_DISABLE)
2265 		mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE;
2266 
2267 	if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK)
2268 		mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK;
2269 
2270 	kmem_free(muip, sizeof (mac_unicast_impl_t));
2271 
2272 	/*
2273 	 * Disable fastpath if this is a VNIC or a VLAN.
2274 	 */
2275 	if (mcip->mci_state_flags & MCIS_IS_VNIC)
2276 		mac_fastpath_enable((mac_handle_t)mip);
2277 	mac_stop((mac_handle_t)mip);
2278 }
2279 
2280 /*
2281  * Remove a MAC address which was previously added by mac_unicast_add().
2282  */
2283 int
2284 mac_unicast_remove(mac_client_handle_t mch, mac_unicast_handle_t mah)
2285 {
2286 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2287 	mac_unicast_impl_t *muip = (mac_unicast_impl_t *)mah;
2288 	mac_unicast_impl_t *pre;
2289 	mac_impl_t *mip = mcip->mci_mip;
2290 	flow_entry_t		*flent;
2291 	boolean_t		isprimary = B_FALSE;
2292 
2293 	i_mac_perim_enter(mip);
2294 	if (mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) {
2295 		/*
2296 		 * Called made by the upper MAC client of a VNIC.
2297 		 * There's nothing much to do, the unicast address will
2298 		 * be removed by the VNIC driver when the VNIC is deleted,
2299 		 * but let's ensure that all our transmit is done before
2300 		 * the client does a mac_client_stop lest it trigger an
2301 		 * assert in the driver.
2302 		 */
2303 		ASSERT(muip->mui_vid == 0);
2304 
2305 		mac_tx_client_flush(mcip);
2306 
2307 		if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
2308 			mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
2309 			if (mcip->mci_rx_p_fn != NULL) {
2310 				mac_rx_set(mch, mcip->mci_rx_p_fn,
2311 				    mcip->mci_rx_p_arg);
2312 				mcip->mci_rx_p_fn = NULL;
2313 				mcip->mci_rx_p_arg = NULL;
2314 			}
2315 			kmem_free(muip, sizeof (mac_unicast_impl_t));
2316 			i_mac_perim_exit(mip);
2317 			return (0);
2318 		}
2319 		mcip->mci_flags &= ~MAC_CLIENT_FLAGS_VNIC_PRIMARY;
2320 
2321 		if (mcip->mci_state_flags & MCIS_TAG_DISABLE)
2322 			mcip->mci_state_flags &= ~MCIS_TAG_DISABLE;
2323 
2324 		if (mcip->mci_state_flags & MCIS_STRIP_DISABLE)
2325 			mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE;
2326 
2327 		if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK)
2328 			mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK;
2329 
2330 		kmem_free(muip, sizeof (mac_unicast_impl_t));
2331 		i_mac_perim_exit(mip);
2332 		return (0);
2333 	}
2334 
2335 	ASSERT(muip != NULL);
2336 
2337 	/*
2338 	 * We are removing a passive client, we haven't setup the datapath
2339 	 * for this yet, so nothing much to do.
2340 	 */
2341 	if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
2342 
2343 		ASSERT((mcip->mci_flent->fe_flags & FE_MC_NO_DATAPATH) != 0);
2344 		ASSERT(mcip->mci_p_unicast_list == muip);
2345 
2346 		mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
2347 
2348 		mcip->mci_p_unicast_list = NULL;
2349 		mcip->mci_rx_p_fn = NULL;
2350 		mcip->mci_rx_p_arg = NULL;
2351 
2352 		mcip->mci_state_flags &= ~MCIS_UNICAST_HW;
2353 
2354 		if (mcip->mci_state_flags & MCIS_TAG_DISABLE)
2355 			mcip->mci_state_flags &= ~MCIS_TAG_DISABLE;
2356 
2357 		if (mcip->mci_state_flags & MCIS_STRIP_DISABLE)
2358 			mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE;
2359 
2360 		if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK)
2361 			mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK;
2362 
2363 		kmem_free(muip, sizeof (mac_unicast_impl_t));
2364 		i_mac_perim_exit(mip);
2365 		return (0);
2366 	}
2367 	/*
2368 	 * Remove the VID from the list of client's VIDs.
2369 	 */
2370 	pre = mcip->mci_unicast_list;
2371 	if (muip == pre) {
2372 		mcip->mci_unicast_list = muip->mui_next;
2373 	} else {
2374 		while ((pre->mui_next != NULL) && (pre->mui_next != muip))
2375 			pre = pre->mui_next;
2376 		ASSERT(pre->mui_next == muip);
2377 		rw_enter(&mcip->mci_rw_lock, RW_WRITER);
2378 		pre->mui_next = muip->mui_next;
2379 		rw_exit(&mcip->mci_rw_lock);
2380 	}
2381 
2382 	if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) &&
2383 	    muip->mui_vid == 0) {
2384 		mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PRIMARY;
2385 		isprimary = B_TRUE;
2386 	}
2387 	if (!mac_client_single_rcvr(mcip)) {
2388 		/*
2389 		 * This MAC client is shared by more than one unicast
2390 		 * addresses, so we will just remove the flent
2391 		 * corresponding to the address being removed. We don't invoke
2392 		 * mac_rx_classify_flow_rem() since the additional flow is
2393 		 * not associated with its own separate set of SRS and rings,
2394 		 * and these constructs are still needed for the remaining
2395 		 * flows.
2396 		 */
2397 		flent = mac_client_get_flow(mcip, muip);
2398 		ASSERT(flent != NULL);
2399 
2400 		/*
2401 		 * The first one is disappearing, need to make sure
2402 		 * we replace it with another from the list of
2403 		 * shared clients.
2404 		 */
2405 		if (flent == mcip->mci_flent)
2406 			flent = mac_client_swap_mciflent(mcip);
2407 		mac_client_remove_flow_from_list(mcip, flent);
2408 		mac_flow_remove(mip->mi_flow_tab, flent, B_FALSE);
2409 		mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
2410 
2411 		/*
2412 		 * The multicast groups that were added by the client so
2413 		 * far must be removed from the brodcast domain corresponding
2414 		 * to the VID being removed.
2415 		 */
2416 		mac_client_bcast_refresh(mcip, mac_client_update_mcast,
2417 		    (void *)flent, B_FALSE);
2418 
2419 		if (mip->mi_type->mt_brdcst_addr != NULL) {
2420 			mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr,
2421 			    muip->mui_vid);
2422 		}
2423 
2424 		FLOW_FINAL_REFRELE(flent);
2425 		ASSERT(!(mcip->mci_state_flags & MCIS_EXCLUSIVE));
2426 		/*
2427 		 * Enable fastpath if this is a VNIC or a VLAN.
2428 		 */
2429 		if (mcip->mci_state_flags & MCIS_IS_VNIC)
2430 			mac_fastpath_enable((mac_handle_t)mip);
2431 		mac_stop((mac_handle_t)mip);
2432 		i_mac_perim_exit(mip);
2433 		return (0);
2434 	}
2435 
2436 	mac_client_datapath_teardown(mch, muip, flent);
2437 
2438 	/*
2439 	 * If we are removing the primary, check if we have a passive primary
2440 	 * client that we need to activate now.
2441 	 */
2442 	if (!isprimary) {
2443 		i_mac_perim_exit(mip);
2444 		return (0);
2445 	}
2446 	mcip = mac_get_passive_primary_client(mip);
2447 	if (mcip != NULL) {
2448 		mac_resource_props_t	mrp;
2449 		mac_unicast_impl_t	*muip;
2450 
2451 		mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
2452 		bzero(&mrp, sizeof (mac_resource_props_t));
2453 		/*
2454 		 * Apply the property cached in the mac_impl_t to the
2455 		 * primary mac client.
2456 		 */
2457 		mac_get_resources((mac_handle_t)mip, &mrp);
2458 		(void) mac_client_set_resources(mch, &mrp);
2459 		ASSERT(mcip->mci_p_unicast_list != NULL);
2460 		muip = mcip->mci_p_unicast_list;
2461 		mcip->mci_p_unicast_list = NULL;
2462 		if (mac_client_datapath_setup(mcip, VLAN_ID_NONE,
2463 		    mip->mi_addr, &mrp, B_TRUE, muip) == 0) {
2464 			if (mcip->mci_rx_p_fn != NULL) {
2465 				mac_rx_set(mch, mcip->mci_rx_p_fn,
2466 				    mcip->mci_rx_p_arg);
2467 				mcip->mci_rx_p_fn = NULL;
2468 				mcip->mci_rx_p_arg = NULL;
2469 			}
2470 		} else {
2471 			kmem_free(muip, sizeof (mac_unicast_impl_t));
2472 		}
2473 	}
2474 	i_mac_perim_exit(mip);
2475 	return (0);
2476 }
2477 
2478 /*
2479  * Multicast add function invoked by MAC clients.
2480  */
2481 int
2482 mac_multicast_add(mac_client_handle_t mch, const uint8_t *addr)
2483 {
2484 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2485 	mac_impl_t		*mip = mcip->mci_mip;
2486 	flow_entry_t		*flent = mcip->mci_flent_list;
2487 	flow_entry_t		*prev_fe = NULL;
2488 	uint16_t		vid;
2489 	int			err = 0;
2490 
2491 	/* Verify the address is a valid multicast address */
2492 	if ((err = mip->mi_type->mt_ops.mtops_multicst_verify(addr,
2493 	    mip->mi_pdata)) != 0)
2494 		return (err);
2495 
2496 	i_mac_perim_enter(mip);
2497 	while (flent != NULL) {
2498 		vid = i_mac_flow_vid(flent);
2499 
2500 		err = mac_bcast_add((mac_client_impl_t *)mch, addr, vid,
2501 		    MAC_ADDRTYPE_MULTICAST);
2502 		if (err != 0)
2503 			break;
2504 		prev_fe = flent;
2505 		flent = flent->fe_client_next;
2506 	}
2507 
2508 	/*
2509 	 * If we failed adding, then undo all, rather than partial
2510 	 * success.
2511 	 */
2512 	if (flent != NULL && prev_fe != NULL) {
2513 		flent = mcip->mci_flent_list;
2514 		while (flent != prev_fe->fe_client_next) {
2515 			vid = i_mac_flow_vid(flent);
2516 			mac_bcast_delete((mac_client_impl_t *)mch, addr, vid);
2517 			flent = flent->fe_client_next;
2518 		}
2519 	}
2520 	i_mac_perim_exit(mip);
2521 	return (err);
2522 }
2523 
2524 /*
2525  * Multicast delete function invoked by MAC clients.
2526  */
2527 void
2528 mac_multicast_remove(mac_client_handle_t mch, const uint8_t *addr)
2529 {
2530 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2531 	mac_impl_t		*mip = mcip->mci_mip;
2532 	flow_entry_t		*flent;
2533 	uint16_t		vid;
2534 
2535 	i_mac_perim_enter(mip);
2536 	for (flent = mcip->mci_flent_list; flent != NULL;
2537 	    flent = flent->fe_client_next) {
2538 		vid = i_mac_flow_vid(flent);
2539 		mac_bcast_delete((mac_client_impl_t *)mch, addr, vid);
2540 	}
2541 	i_mac_perim_exit(mip);
2542 }
2543 
2544 /*
2545  * When a MAC client desires to capture packets on an interface,
2546  * it registers a promiscuous call back with mac_promisc_add().
2547  * There are three types of promiscuous callbacks:
2548  *
2549  * * MAC_CLIENT_PROMISC_ALL
2550  *   Captures all packets sent and received by the MAC client,
2551  *   the physical interface, as well as all other MAC clients
2552  *   defined on top of the same MAC.
2553  *
2554  * * MAC_CLIENT_PROMISC_FILTERED
2555  *   Captures all packets sent and received by the MAC client,
2556  *   plus all multicast traffic sent and received by the phyisical
2557  *   interface and the other MAC clients.
2558  *
2559  * * MAC_CLIENT_PROMISC_MULTI
2560  *   Captures all broadcast and multicast packets sent and
2561  *   received by the MAC clients as well as the physical interface.
2562  *
2563  * In all cases, the underlying MAC is put in promiscuous mode.
2564  */
2565 int
2566 mac_promisc_add(mac_client_handle_t mch, mac_client_promisc_type_t type,
2567     mac_rx_t fn, void *arg, mac_promisc_handle_t *mphp, uint16_t flags)
2568 {
2569 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2570 	mac_impl_t *mip = mcip->mci_mip;
2571 	mac_promisc_impl_t *mpip;
2572 	mac_cb_info_t	*mcbi;
2573 	int rc;
2574 
2575 	i_mac_perim_enter(mip);
2576 
2577 	if ((rc = mac_start((mac_handle_t)mip)) != 0) {
2578 		i_mac_perim_exit(mip);
2579 		return (rc);
2580 	}
2581 
2582 	if ((mcip->mci_state_flags & MCIS_IS_VNIC) &&
2583 	    type == MAC_CLIENT_PROMISC_ALL) {
2584 		/*
2585 		 * The function is being invoked by the upper MAC client
2586 		 * of a VNIC. The VNIC should only see the traffic
2587 		 * it is entitled to.
2588 		 */
2589 		type = MAC_CLIENT_PROMISC_FILTERED;
2590 	}
2591 
2592 
2593 	/*
2594 	 * Turn on promiscuous mode for the underlying NIC.
2595 	 * This is needed even for filtered callbacks which
2596 	 * expect to receive all multicast traffic on the wire.
2597 	 *
2598 	 * Physical promiscuous mode should not be turned on if
2599 	 * MAC_PROMISC_FLAGS_NO_PHYS is set.
2600 	 */
2601 	if ((flags & MAC_PROMISC_FLAGS_NO_PHYS) == 0) {
2602 		if ((rc = i_mac_promisc_set(mip, B_TRUE)) != 0) {
2603 			mac_stop((mac_handle_t)mip);
2604 			i_mac_perim_exit(mip);
2605 			return (rc);
2606 		}
2607 	}
2608 
2609 	mpip = kmem_cache_alloc(mac_promisc_impl_cache, KM_SLEEP);
2610 
2611 	mpip->mpi_type = type;
2612 	mpip->mpi_fn = fn;
2613 	mpip->mpi_arg = arg;
2614 	mpip->mpi_mcip = mcip;
2615 	mpip->mpi_no_tx_loop = ((flags & MAC_PROMISC_FLAGS_NO_TX_LOOP) != 0);
2616 	mpip->mpi_no_phys = ((flags & MAC_PROMISC_FLAGS_NO_PHYS) != 0);
2617 	mpip->mpi_strip_vlan_tag =
2618 	    ((flags & MAC_PROMISC_FLAGS_VLAN_TAG_STRIP) != 0);
2619 
2620 	mcbi = &mip->mi_promisc_cb_info;
2621 	mutex_enter(mcbi->mcbi_lockp);
2622 
2623 	mac_callback_add(&mip->mi_promisc_cb_info, &mcip->mci_promisc_list,
2624 	    &mpip->mpi_mci_link);
2625 	mac_callback_add(&mip->mi_promisc_cb_info, &mip->mi_promisc_list,
2626 	    &mpip->mpi_mi_link);
2627 
2628 	mutex_exit(mcbi->mcbi_lockp);
2629 
2630 	*mphp = (mac_promisc_handle_t)mpip;
2631 	i_mac_perim_exit(mip);
2632 	return (0);
2633 }
2634 
2635 /*
2636  * Remove a multicast address previously aded through mac_promisc_add().
2637  */
2638 void
2639 mac_promisc_remove(mac_promisc_handle_t mph)
2640 {
2641 	mac_promisc_impl_t *mpip = (mac_promisc_impl_t *)mph;
2642 	mac_client_impl_t *mcip = mpip->mpi_mcip;
2643 	mac_impl_t *mip = mcip->mci_mip;
2644 	mac_cb_info_t *mcbi;
2645 	int rv;
2646 
2647 	i_mac_perim_enter(mip);
2648 
2649 	/*
2650 	 * Even if the device can't be reset into normal mode, we still
2651 	 * need to clear the client promisc callbacks. The client may want
2652 	 * to close the mac end point and we can't have stale callbacks.
2653 	 */
2654 	if (!(mpip->mpi_no_phys)) {
2655 		if ((rv = i_mac_promisc_set(mip, B_FALSE)) != 0) {
2656 			cmn_err(CE_WARN, "%s: failed to switch OFF promiscuous"
2657 			    " mode because of error 0x%x", mip->mi_name, rv);
2658 		}
2659 	}
2660 	mcbi = &mip->mi_promisc_cb_info;
2661 	mutex_enter(mcbi->mcbi_lockp);
2662 	if (mac_callback_remove(mcbi, &mip->mi_promisc_list,
2663 	    &mpip->mpi_mi_link)) {
2664 		VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info,
2665 		    &mcip->mci_promisc_list, &mpip->mpi_mci_link));
2666 		kmem_cache_free(mac_promisc_impl_cache, mpip);
2667 	} else {
2668 		mac_callback_remove_wait(&mip->mi_promisc_cb_info);
2669 	}
2670 	mutex_exit(mcbi->mcbi_lockp);
2671 	mac_stop((mac_handle_t)mip);
2672 
2673 	i_mac_perim_exit(mip);
2674 }
2675 
2676 /*
2677  * Reference count the number of active Tx threads. MCI_TX_QUIESCE indicates
2678  * that a control operation wants to quiesce the Tx data flow in which case
2679  * we return an error. Holding any of the per cpu locks ensures that the
2680  * mci_tx_flag won't change.
2681  *
2682  * 'CPU' must be accessed just once and used to compute the index into the
2683  * percpu array, and that index must be used for the entire duration of the
2684  * packet send operation. Note that the thread may be preempted and run on
2685  * another cpu any time and so we can't use 'CPU' more than once for the
2686  * operation.
2687  */
2688 #define	MAC_TX_TRY_HOLD(mcip, mytx, error)				\
2689 {									\
2690 	(error) = 0;							\
2691 	(mytx) = &(mcip)->mci_tx_pcpu[CPU->cpu_seqid & mac_tx_percpu_cnt]; \
2692 	mutex_enter(&(mytx)->pcpu_tx_lock);				\
2693 	if (!((mcip)->mci_tx_flag & MCI_TX_QUIESCE)) {			\
2694 		(mytx)->pcpu_tx_refcnt++;				\
2695 	} else {							\
2696 		(error) = -1;						\
2697 	}								\
2698 	mutex_exit(&(mytx)->pcpu_tx_lock);				\
2699 }
2700 
2701 /*
2702  * Release the reference. If needed, signal any control operation waiting
2703  * for Tx quiescence. The wait and signal are always done using the
2704  * mci_tx_pcpu[0]'s lock
2705  */
2706 #define	MAC_TX_RELE(mcip, mytx) {					\
2707 	mutex_enter(&(mytx)->pcpu_tx_lock);				\
2708 	if (--(mytx)->pcpu_tx_refcnt == 0 &&				\
2709 	    (mcip)->mci_tx_flag & MCI_TX_QUIESCE) {			\
2710 		mutex_exit(&(mytx)->pcpu_tx_lock);			\
2711 		mutex_enter(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock);	\
2712 		cv_signal(&(mcip)->mci_tx_cv);				\
2713 		mutex_exit(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock);	\
2714 	} else {							\
2715 		mutex_exit(&(mytx)->pcpu_tx_lock);			\
2716 	}								\
2717 }
2718 
2719 /*
2720  * Bump the count of the number of active Tx threads. This is maintained as
2721  * a per CPU counter. On (CMT kind of) machines with large number of CPUs,
2722  * a single mci_tx_lock may become contended. However a count of the total
2723  * number of Tx threads per client is needed in order to quiesce the Tx side
2724  * prior to reassigning a Tx ring dynamically to another client. The thread
2725  * that needs to quiesce the Tx traffic grabs all the percpu locks and checks
2726  * the sum of the individual percpu refcnts. Each Tx data thread only grabs
2727  * its own percpu lock and increments its own refcnt.
2728  */
2729 void *
2730 mac_tx_hold(mac_client_handle_t mch)
2731 {
2732 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2733 	mac_tx_percpu_t	*mytx;
2734 	int error;
2735 
2736 	MAC_TX_TRY_HOLD(mcip, mytx, error);
2737 	return (error == 0 ? (void *)mytx : NULL);
2738 }
2739 
2740 void
2741 mac_tx_rele(mac_client_handle_t mch, void *mytx_handle)
2742 {
2743 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2744 	mac_tx_percpu_t	*mytx = mytx_handle;
2745 
2746 	MAC_TX_RELE(mcip, mytx)
2747 }
2748 
2749 /*
2750  * Send function invoked by MAC clients.
2751  */
2752 mac_tx_cookie_t
2753 mac_tx(mac_client_handle_t mch, mblk_t *mp_chain, uintptr_t hint,
2754     uint16_t flag, mblk_t **ret_mp)
2755 {
2756 	mac_tx_cookie_t		cookie;
2757 	int			error;
2758 	mac_tx_percpu_t		*mytx;
2759 	mac_soft_ring_set_t	*srs;
2760 	flow_entry_t		*flent;
2761 	boolean_t		is_subflow = B_FALSE;
2762 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2763 	mac_impl_t		*mip = mcip->mci_mip;
2764 	mac_srs_tx_t		*srs_tx;
2765 
2766 	/*
2767 	 * Check whether the active Tx threads count is bumped already.
2768 	 */
2769 	if (!(flag & MAC_TX_NO_HOLD)) {
2770 		MAC_TX_TRY_HOLD(mcip, mytx, error);
2771 		if (error != 0) {
2772 			freemsgchain(mp_chain);
2773 			return (NULL);
2774 		}
2775 	}
2776 
2777 	if (mcip->mci_subflow_tab != NULL &&
2778 	    mcip->mci_subflow_tab->ft_flow_count > 0 &&
2779 	    mac_flow_lookup(mcip->mci_subflow_tab, mp_chain,
2780 	    FLOW_OUTBOUND, &flent) == 0) {
2781 		/*
2782 		 * The main assumption here is that if in the event
2783 		 * we get a chain, all the packets will be classified
2784 		 * to the same Flow/SRS. If this changes for any
2785 		 * reason, the following logic should change as well.
2786 		 * I suppose the fanout_hint also assumes this .
2787 		 */
2788 		ASSERT(flent != NULL);
2789 		is_subflow = B_TRUE;
2790 	} else {
2791 		flent = mcip->mci_flent;
2792 	}
2793 
2794 	srs = flent->fe_tx_srs;
2795 	srs_tx = &srs->srs_tx;
2796 	if (srs_tx->st_mode == SRS_TX_DEFAULT &&
2797 	    (srs->srs_state & SRS_ENQUEUED) == 0 &&
2798 	    mip->mi_nactiveclients == 1 && mip->mi_promisc_list == NULL &&
2799 	    mp_chain->b_next == NULL) {
2800 		uint64_t	obytes;
2801 
2802 		/*
2803 		 * Since dls always opens the underlying MAC, nclients equals
2804 		 * to 1 means that the only active client is dls itself acting
2805 		 * as a primary client of the MAC instance. Since dls will not
2806 		 * send tagged packets in that case, and dls is trusted to send
2807 		 * packets for its allowed VLAN(s), the VLAN tag insertion and
2808 		 * check is required only if nclients is greater than 1.
2809 		 */
2810 		if (mip->mi_nclients > 1) {
2811 			if (MAC_VID_CHECK_NEEDED(mcip)) {
2812 				int	err = 0;
2813 
2814 				MAC_VID_CHECK(mcip, mp_chain, err);
2815 				if (err != 0) {
2816 					freemsg(mp_chain);
2817 					mcip->mci_stat_oerrors++;
2818 					goto done;
2819 				}
2820 			}
2821 			if (MAC_TAG_NEEDED(mcip)) {
2822 				mp_chain = mac_add_vlan_tag(mp_chain, 0,
2823 				    mac_client_vid(mch));
2824 				if (mp_chain == NULL) {
2825 					mcip->mci_stat_oerrors++;
2826 					goto done;
2827 				}
2828 			}
2829 		}
2830 
2831 		obytes = (mp_chain->b_cont == NULL ? MBLKL(mp_chain) :
2832 		    msgdsize(mp_chain));
2833 
2834 		MAC_TX(mip, srs_tx->st_arg2, mp_chain, mcip);
2835 
2836 		if (mp_chain == NULL) {
2837 			cookie = NULL;
2838 			mcip->mci_stat_obytes += obytes;
2839 			mcip->mci_stat_opackets += 1;
2840 			if ((srs->srs_type & SRST_FLOW) != 0) {
2841 				FLOW_STAT_UPDATE(flent, obytes, obytes);
2842 				FLOW_STAT_UPDATE(flent, opackets, 1);
2843 			}
2844 		} else {
2845 			mutex_enter(&srs->srs_lock);
2846 			cookie = mac_tx_srs_no_desc(srs, mp_chain,
2847 			    flag, ret_mp);
2848 			mutex_exit(&srs->srs_lock);
2849 		}
2850 	} else {
2851 		cookie = srs_tx->st_func(srs, mp_chain, hint, flag, ret_mp);
2852 	}
2853 
2854 done:
2855 	if (is_subflow)
2856 		FLOW_REFRELE(flent);
2857 
2858 	if (!(flag & MAC_TX_NO_HOLD))
2859 		MAC_TX_RELE(mcip, mytx);
2860 
2861 	return (cookie);
2862 }
2863 
2864 /*
2865  * mac_tx_is_blocked
2866  *
2867  * Given a cookie, it returns if the ring identified by the cookie is
2868  * flow-controlled or not. If NULL is passed in place of a cookie,
2869  * then it finds out if any of the underlying rings belonging to the
2870  * SRS is flow controlled or not and returns that status.
2871  */
2872 /* ARGSUSED */
2873 boolean_t
2874 mac_tx_is_flow_blocked(mac_client_handle_t mch, mac_tx_cookie_t cookie)
2875 {
2876 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2877 	mac_soft_ring_set_t *mac_srs;
2878 	mac_soft_ring_t *sringp;
2879 	boolean_t blocked = B_FALSE;
2880 	mac_tx_percpu_t *mytx;
2881 	int err;
2882 	int i;
2883 
2884 	/*
2885 	 * Bump the reference count so that mac_srs won't be deleted.
2886 	 * If the client is currently quiesced and we failed to bump
2887 	 * the reference, return B_TRUE so that flow control stays
2888 	 * as enabled.
2889 	 *
2890 	 * Flow control will then be disabled once the client is no
2891 	 * longer quiesced.
2892 	 */
2893 	MAC_TX_TRY_HOLD(mcip, mytx, err);
2894 	if (err != 0)
2895 		return (B_TRUE);
2896 
2897 	if ((mac_srs = MCIP_TX_SRS(mcip)) == NULL) {
2898 		MAC_TX_RELE(mcip, mytx);
2899 		return (B_FALSE);
2900 	}
2901 
2902 	mutex_enter(&mac_srs->srs_lock);
2903 	if (mac_srs->srs_tx.st_mode == SRS_TX_FANOUT) {
2904 		if (cookie != NULL) {
2905 			sringp = (mac_soft_ring_t *)cookie;
2906 			mutex_enter(&sringp->s_ring_lock);
2907 			if (sringp->s_ring_state & S_RING_TX_HIWAT)
2908 				blocked = B_TRUE;
2909 			mutex_exit(&sringp->s_ring_lock);
2910 		} else {
2911 			for (i = 0; i < mac_srs->srs_oth_ring_count; i++) {
2912 				sringp = mac_srs->srs_oth_soft_rings[i];
2913 				mutex_enter(&sringp->s_ring_lock);
2914 				if (sringp->s_ring_state & S_RING_TX_HIWAT) {
2915 					blocked = B_TRUE;
2916 					mutex_exit(&sringp->s_ring_lock);
2917 					break;
2918 				}
2919 				mutex_exit(&sringp->s_ring_lock);
2920 			}
2921 		}
2922 	} else {
2923 		blocked = (mac_srs->srs_state & SRS_TX_HIWAT);
2924 	}
2925 	mutex_exit(&mac_srs->srs_lock);
2926 	MAC_TX_RELE(mcip, mytx);
2927 	return (blocked);
2928 }
2929 
2930 /*
2931  * Check if the MAC client is the primary MAC client.
2932  */
2933 boolean_t
2934 mac_is_primary_client(mac_client_impl_t *mcip)
2935 {
2936 	return (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY);
2937 }
2938 
2939 void
2940 mac_ioctl(mac_handle_t mh, queue_t *wq, mblk_t *bp)
2941 {
2942 	mac_impl_t	*mip = (mac_impl_t *)mh;
2943 	int cmd = ((struct iocblk *)bp->b_rptr)->ioc_cmd;
2944 
2945 	if ((cmd == ND_GET && (mip->mi_callbacks->mc_callbacks & MC_GETPROP)) ||
2946 	    (cmd == ND_SET && (mip->mi_callbacks->mc_callbacks & MC_SETPROP))) {
2947 		/*
2948 		 * If ndd props were registered, call them.
2949 		 * Note that ndd ioctls are Obsolete
2950 		 */
2951 		mac_ndd_ioctl(mip, wq, bp);
2952 		return;
2953 	}
2954 
2955 	/*
2956 	 * Call the driver to handle the ioctl.  The driver may not support
2957 	 * any ioctls, in which case we reply with a NAK on its behalf.
2958 	 */
2959 	if (mip->mi_callbacks->mc_callbacks & MC_IOCTL)
2960 		mip->mi_ioctl(mip->mi_driver, wq, bp);
2961 	else
2962 		miocnak(wq, bp, 0, EINVAL);
2963 }
2964 
2965 /*
2966  * Return the link state of the specified MAC instance.
2967  */
2968 link_state_t
2969 mac_link_get(mac_handle_t mh)
2970 {
2971 	return (((mac_impl_t *)mh)->mi_linkstate);
2972 }
2973 
2974 /*
2975  * Add a mac client specified notification callback. Please see the comments
2976  * above mac_callback_add() for general information about mac callback
2977  * addition/deletion in the presence of mac callback list walkers
2978  */
2979 mac_notify_handle_t
2980 mac_notify_add(mac_handle_t mh, mac_notify_t notify_fn, void *arg)
2981 {
2982 	mac_impl_t		*mip = (mac_impl_t *)mh;
2983 	mac_notify_cb_t		*mncb;
2984 	mac_cb_info_t		*mcbi;
2985 
2986 	/*
2987 	 * Allocate a notify callback structure, fill in the details and
2988 	 * use the mac callback list manipulation functions to chain into
2989 	 * the list of callbacks.
2990 	 */
2991 	mncb = kmem_zalloc(sizeof (mac_notify_cb_t), KM_SLEEP);
2992 	mncb->mncb_fn = notify_fn;
2993 	mncb->mncb_arg = arg;
2994 	mncb->mncb_mip = mip;
2995 	mncb->mncb_link.mcb_objp = mncb;
2996 	mncb->mncb_link.mcb_objsize = sizeof (mac_notify_cb_t);
2997 	mncb->mncb_link.mcb_flags = MCB_NOTIFY_CB_T;
2998 
2999 	mcbi = &mip->mi_notify_cb_info;
3000 
3001 	i_mac_perim_enter(mip);
3002 	mutex_enter(mcbi->mcbi_lockp);
3003 
3004 	mac_callback_add(&mip->mi_notify_cb_info, &mip->mi_notify_cb_list,
3005 	    &mncb->mncb_link);
3006 
3007 	mutex_exit(mcbi->mcbi_lockp);
3008 	i_mac_perim_exit(mip);
3009 	return ((mac_notify_handle_t)mncb);
3010 }
3011 
3012 void
3013 mac_notify_remove_wait(mac_handle_t mh)
3014 {
3015 	mac_impl_t	*mip = (mac_impl_t *)mh;
3016 	mac_cb_info_t	*mcbi = &mip->mi_notify_cb_info;
3017 
3018 	mutex_enter(mcbi->mcbi_lockp);
3019 	mac_callback_remove_wait(&mip->mi_notify_cb_info);
3020 	mutex_exit(mcbi->mcbi_lockp);
3021 }
3022 
3023 /*
3024  * Remove a mac client specified notification callback
3025  */
3026 int
3027 mac_notify_remove(mac_notify_handle_t mnh, boolean_t wait)
3028 {
3029 	mac_notify_cb_t	*mncb = (mac_notify_cb_t *)mnh;
3030 	mac_impl_t	*mip = mncb->mncb_mip;
3031 	mac_cb_info_t	*mcbi;
3032 	int		err = 0;
3033 
3034 	mcbi = &mip->mi_notify_cb_info;
3035 
3036 	i_mac_perim_enter(mip);
3037 	mutex_enter(mcbi->mcbi_lockp);
3038 
3039 	ASSERT(mncb->mncb_link.mcb_objp == mncb);
3040 	/*
3041 	 * If there aren't any list walkers, the remove would succeed
3042 	 * inline, else we wait for the deferred remove to complete
3043 	 */
3044 	if (mac_callback_remove(&mip->mi_notify_cb_info,
3045 	    &mip->mi_notify_cb_list, &mncb->mncb_link)) {
3046 		kmem_free(mncb, sizeof (mac_notify_cb_t));
3047 	} else {
3048 		err = EBUSY;
3049 	}
3050 
3051 	mutex_exit(mcbi->mcbi_lockp);
3052 	i_mac_perim_exit(mip);
3053 
3054 	/*
3055 	 * If we failed to remove the notification callback and "wait" is set
3056 	 * to be B_TRUE, wait for the callback to finish after we exit the
3057 	 * mac perimeter.
3058 	 */
3059 	if (err != 0 && wait) {
3060 		mac_notify_remove_wait((mac_handle_t)mip);
3061 		return (0);
3062 	}
3063 
3064 	return (err);
3065 }
3066 
3067 /*
3068  * Associate resource management callbacks with the specified MAC
3069  * clients.
3070  */
3071 
3072 void
3073 mac_resource_set_common(mac_client_handle_t mch, mac_resource_add_t add,
3074     mac_resource_remove_t remove, mac_resource_quiesce_t quiesce,
3075     mac_resource_restart_t restart, mac_resource_bind_t bind,
3076     void *arg)
3077 {
3078 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3079 
3080 	mcip->mci_resource_add = add;
3081 	mcip->mci_resource_remove = remove;
3082 	mcip->mci_resource_quiesce = quiesce;
3083 	mcip->mci_resource_restart = restart;
3084 	mcip->mci_resource_bind = bind;
3085 	mcip->mci_resource_arg = arg;
3086 
3087 	if (arg == NULL)
3088 		mcip->mci_state_flags &= ~MCIS_CLIENT_POLL_CAPABLE;
3089 }
3090 
3091 void
3092 mac_resource_set(mac_client_handle_t mch, mac_resource_add_t add, void *arg)
3093 {
3094 	/* update the 'resource_add' callback */
3095 	mac_resource_set_common(mch, add, NULL, NULL, NULL, NULL, arg);
3096 }
3097 
3098 /*
3099  * Sets up the client resources and enable the polling interface over all the
3100  * SRS's and the soft rings of the client
3101  */
3102 void
3103 mac_client_poll_enable(mac_client_handle_t mch)
3104 {
3105 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
3106 	mac_soft_ring_set_t	*mac_srs;
3107 	flow_entry_t		*flent;
3108 	int			i;
3109 
3110 	flent = mcip->mci_flent;
3111 	ASSERT(flent != NULL);
3112 
3113 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
3114 		mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
3115 		ASSERT(mac_srs->srs_mcip == mcip);
3116 		mac_srs_client_poll_enable(mcip, mac_srs);
3117 	}
3118 }
3119 
3120 /*
3121  * Tears down the client resources and disable the polling interface over all
3122  * the SRS's and the soft rings of the client
3123  */
3124 void
3125 mac_client_poll_disable(mac_client_handle_t mch)
3126 {
3127 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
3128 	mac_soft_ring_set_t	*mac_srs;
3129 	flow_entry_t		*flent;
3130 	int			i;
3131 
3132 	flent = mcip->mci_flent;
3133 	ASSERT(flent != NULL);
3134 
3135 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
3136 		mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
3137 		ASSERT(mac_srs->srs_mcip == mcip);
3138 		mac_srs_client_poll_disable(mcip, mac_srs);
3139 	}
3140 }
3141 
3142 /*
3143  * Associate the CPUs specified by the given property with a MAC client.
3144  */
3145 int
3146 mac_cpu_set(mac_client_handle_t mch, mac_resource_props_t *mrp)
3147 {
3148 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3149 	mac_impl_t *mip = mcip->mci_mip;
3150 	int err = 0;
3151 
3152 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3153 
3154 	if ((err = mac_validate_props(mrp)) != 0)
3155 		return (err);
3156 
3157 	if (MCIP_DATAPATH_SETUP(mcip))
3158 		mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp);
3159 
3160 	mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE);
3161 	return (0);
3162 }
3163 
3164 /*
3165  * Apply the specified properties to the specified MAC client.
3166  */
3167 int
3168 mac_client_set_resources(mac_client_handle_t mch, mac_resource_props_t *mrp)
3169 {
3170 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3171 	mac_impl_t *mip = mcip->mci_mip;
3172 	int err = 0;
3173 
3174 	i_mac_perim_enter(mip);
3175 
3176 	if ((mrp->mrp_mask & MRP_MAXBW) || (mrp->mrp_mask & MRP_PRIORITY)) {
3177 		err = mac_resource_ctl_set(mch, mrp);
3178 		if (err != 0) {
3179 			i_mac_perim_exit(mip);
3180 			return (err);
3181 		}
3182 	}
3183 
3184 	if (mrp->mrp_mask & MRP_CPUS)
3185 		err = mac_cpu_set(mch, mrp);
3186 
3187 	i_mac_perim_exit(mip);
3188 	return (err);
3189 }
3190 
3191 /*
3192  * Return the properties currently associated with the specified MAC client.
3193  */
3194 void
3195 mac_client_get_resources(mac_client_handle_t mch, mac_resource_props_t *mrp)
3196 {
3197 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
3198 	mac_resource_props_t	*mcip_mrp = MCIP_RESOURCE_PROPS(mcip);
3199 
3200 	bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t));
3201 }
3202 
3203 /*
3204  * Pass a copy of the specified packet to the promiscuous callbacks
3205  * of the specified MAC.
3206  *
3207  * If sender is NULL, the function is being invoked for a packet chain
3208  * received from the wire. If sender is non-NULL, it points to
3209  * the MAC client from which the packet is being sent.
3210  *
3211  * The packets are distributed to the promiscuous callbacks as follows:
3212  *
3213  * - all packets are sent to the MAC_CLIENT_PROMISC_ALL callbacks
3214  * - all broadcast and multicast packets are sent to the
3215  *   MAC_CLIENT_PROMISC_FILTER and MAC_CLIENT_PROMISC_MULTI.
3216  *
3217  * The unicast packets of MAC_CLIENT_PROMISC_FILTER callbacks are dispatched
3218  * after classification by mac_rx_deliver().
3219  */
3220 
3221 static void
3222 mac_promisc_dispatch_one(mac_promisc_impl_t *mpip, mblk_t *mp,
3223     boolean_t loopback)
3224 {
3225 	mblk_t *mp_copy;
3226 
3227 	mp_copy = copymsg(mp);
3228 	if (mp_copy == NULL)
3229 		return;
3230 	mp_copy->b_next = NULL;
3231 
3232 	if (mpip->mpi_strip_vlan_tag) {
3233 		if ((mp_copy = mac_strip_vlan_tag_chain(mp_copy)) == NULL)
3234 			return;
3235 	}
3236 	mpip->mpi_fn(mpip->mpi_arg, NULL, mp_copy, loopback);
3237 }
3238 
3239 /*
3240  * Return the VID of a packet. Zero if the packet is not tagged.
3241  */
3242 static uint16_t
3243 mac_ether_vid(mblk_t *mp)
3244 {
3245 	struct ether_header *eth = (struct ether_header *)mp->b_rptr;
3246 
3247 	if (ntohs(eth->ether_type) == ETHERTYPE_VLAN) {
3248 		struct ether_vlan_header *t_evhp =
3249 		    (struct ether_vlan_header *)mp->b_rptr;
3250 		return (VLAN_ID(ntohs(t_evhp->ether_tci)));
3251 	}
3252 
3253 	return (0);
3254 }
3255 
3256 /*
3257  * Return whether the specified packet contains a multicast or broadcast
3258  * destination MAC address.
3259  */
3260 static boolean_t
3261 mac_is_mcast(mac_impl_t *mip, mblk_t *mp)
3262 {
3263 	mac_header_info_t hdr_info;
3264 
3265 	if (mac_header_info((mac_handle_t)mip, mp, &hdr_info) != 0)
3266 		return (B_FALSE);
3267 	return ((hdr_info.mhi_dsttype == MAC_ADDRTYPE_BROADCAST) ||
3268 	    (hdr_info.mhi_dsttype == MAC_ADDRTYPE_MULTICAST));
3269 }
3270 
3271 /*
3272  * Send a copy of an mblk chain to the MAC clients of the specified MAC.
3273  * "sender" points to the sender MAC client for outbound packets, and
3274  * is set to NULL for inbound packets.
3275  */
3276 void
3277 mac_promisc_dispatch(mac_impl_t *mip, mblk_t *mp_chain,
3278     mac_client_impl_t *sender)
3279 {
3280 	mac_promisc_impl_t *mpip;
3281 	mac_cb_t *mcb;
3282 	mblk_t *mp;
3283 	boolean_t is_mcast, is_sender;
3284 
3285 	MAC_PROMISC_WALKER_INC(mip);
3286 	for (mp = mp_chain; mp != NULL; mp = mp->b_next) {
3287 		is_mcast = mac_is_mcast(mip, mp);
3288 		/* send packet to interested callbacks */
3289 		for (mcb = mip->mi_promisc_list; mcb != NULL;
3290 		    mcb = mcb->mcb_nextp) {
3291 			mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
3292 			is_sender = (mpip->mpi_mcip == sender);
3293 
3294 			if (is_sender && mpip->mpi_no_tx_loop)
3295 				/*
3296 				 * The sender doesn't want to receive
3297 				 * copies of the packets it sends.
3298 				 */
3299 				continue;
3300 
3301 			/*
3302 			 * For an ethernet MAC, don't displatch a multicast
3303 			 * packet to a non-PROMISC_ALL callbacks unless the VID
3304 			 * of the packet matches the VID of the client.
3305 			 */
3306 			if (is_mcast &&
3307 			    mpip->mpi_type != MAC_CLIENT_PROMISC_ALL &&
3308 			    !mac_client_check_flow_vid(mpip->mpi_mcip,
3309 			    mac_ether_vid(mp)))
3310 				continue;
3311 
3312 			if (is_sender ||
3313 			    mpip->mpi_type == MAC_CLIENT_PROMISC_ALL ||
3314 			    is_mcast)
3315 				mac_promisc_dispatch_one(mpip, mp, is_sender);
3316 		}
3317 	}
3318 	MAC_PROMISC_WALKER_DCR(mip);
3319 }
3320 
3321 void
3322 mac_promisc_client_dispatch(mac_client_impl_t *mcip, mblk_t *mp_chain)
3323 {
3324 	mac_impl_t		*mip = mcip->mci_mip;
3325 	mac_promisc_impl_t	*mpip;
3326 	boolean_t		is_mcast;
3327 	mblk_t			*mp;
3328 	mac_cb_t		*mcb;
3329 
3330 	/*
3331 	 * The unicast packets for the MAC client still
3332 	 * need to be delivered to the MAC_CLIENT_PROMISC_FILTERED
3333 	 * promiscuous callbacks. The broadcast and multicast
3334 	 * packets were delivered from mac_rx().
3335 	 */
3336 	MAC_PROMISC_WALKER_INC(mip);
3337 	for (mp = mp_chain; mp != NULL; mp = mp->b_next) {
3338 		is_mcast = mac_is_mcast(mip, mp);
3339 		for (mcb = mcip->mci_promisc_list; mcb != NULL;
3340 		    mcb = mcb->mcb_nextp) {
3341 			mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
3342 			if (mpip->mpi_type == MAC_CLIENT_PROMISC_FILTERED &&
3343 			    !is_mcast) {
3344 				mac_promisc_dispatch_one(mpip, mp, B_FALSE);
3345 			}
3346 		}
3347 	}
3348 	MAC_PROMISC_WALKER_DCR(mip);
3349 }
3350 
3351 /*
3352  * Return the margin value currently assigned to the specified MAC instance.
3353  */
3354 void
3355 mac_margin_get(mac_handle_t mh, uint32_t *marginp)
3356 {
3357 	mac_impl_t *mip = (mac_impl_t *)mh;
3358 
3359 	rw_enter(&(mip->mi_rw_lock), RW_READER);
3360 	*marginp = mip->mi_margin;
3361 	rw_exit(&(mip->mi_rw_lock));
3362 }
3363 
3364 /*
3365  * mac_info_get() is used for retrieving the mac_info when a DL_INFO_REQ is
3366  * issued before a DL_ATTACH_REQ. we walk the i_mac_impl_hash table and find
3367  * the first mac_impl_t with a matching driver name; then we copy its mac_info_t
3368  * to the caller. we do all this with i_mac_impl_lock held so the mac_impl_t
3369  * cannot disappear while we are accessing it.
3370  */
3371 typedef struct i_mac_info_state_s {
3372 	const char	*mi_name;
3373 	mac_info_t	*mi_infop;
3374 } i_mac_info_state_t;
3375 
3376 /*ARGSUSED*/
3377 static uint_t
3378 i_mac_info_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
3379 {
3380 	i_mac_info_state_t *statep = arg;
3381 	mac_impl_t *mip = (mac_impl_t *)val;
3382 
3383 	if (mip->mi_state_flags & MIS_DISABLED)
3384 		return (MH_WALK_CONTINUE);
3385 
3386 	if (strcmp(statep->mi_name,
3387 	    ddi_driver_name(mip->mi_dip)) != 0)
3388 		return (MH_WALK_CONTINUE);
3389 
3390 	statep->mi_infop = &mip->mi_info;
3391 	return (MH_WALK_TERMINATE);
3392 }
3393 
3394 boolean_t
3395 mac_info_get(const char *name, mac_info_t *minfop)
3396 {
3397 	i_mac_info_state_t state;
3398 
3399 	rw_enter(&i_mac_impl_lock, RW_READER);
3400 	state.mi_name = name;
3401 	state.mi_infop = NULL;
3402 	mod_hash_walk(i_mac_impl_hash, i_mac_info_walker, &state);
3403 	if (state.mi_infop == NULL) {
3404 		rw_exit(&i_mac_impl_lock);
3405 		return (B_FALSE);
3406 	}
3407 	*minfop = *state.mi_infop;
3408 	rw_exit(&i_mac_impl_lock);
3409 	return (B_TRUE);
3410 }
3411 
3412 /*
3413  * To get the capabilities that MAC layer cares about, such as rings, factory
3414  * mac address, vnic or not, it should directly invoke this function
3415  */
3416 boolean_t
3417 i_mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data)
3418 {
3419 	mac_impl_t *mip = (mac_impl_t *)mh;
3420 
3421 	if (mip->mi_callbacks->mc_callbacks & MC_GETCAPAB)
3422 		return (mip->mi_getcapab(mip->mi_driver, cap, cap_data));
3423 	else
3424 		return (B_FALSE);
3425 }
3426 
3427 /*
3428  * Capability query function. If number of active mac clients is greater than
3429  * 1, only limited capabilities can be advertised to the caller no matter the
3430  * driver has certain capability or not. Else, we query the driver to get the
3431  * capability.
3432  */
3433 boolean_t
3434 mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data)
3435 {
3436 	mac_impl_t *mip = (mac_impl_t *)mh;
3437 
3438 	/*
3439 	 * if mi_nactiveclients > 1, only MAC_CAPAB_LEGACY, MAC_CAPAB_HCKSUM,
3440 	 * MAC_CAPAB_NO_NATIVEVLAN and MAC_CAPAB_NO_ZCOPY can be advertised.
3441 	 */
3442 	if (mip->mi_nactiveclients > 1) {
3443 		switch (cap) {
3444 		case MAC_CAPAB_NO_NATIVEVLAN:
3445 		case MAC_CAPAB_NO_ZCOPY:
3446 			return (B_TRUE);
3447 		case MAC_CAPAB_LEGACY:
3448 		case MAC_CAPAB_HCKSUM:
3449 			break;
3450 		default:
3451 			return (B_FALSE);
3452 		}
3453 	}
3454 
3455 	/* else get capab from driver */
3456 	return (i_mac_capab_get(mh, cap, cap_data));
3457 }
3458 
3459 boolean_t
3460 mac_sap_verify(mac_handle_t mh, uint32_t sap, uint32_t *bind_sap)
3461 {
3462 	mac_impl_t *mip = (mac_impl_t *)mh;
3463 
3464 	return (mip->mi_type->mt_ops.mtops_sap_verify(sap, bind_sap,
3465 	    mip->mi_pdata));
3466 }
3467 
3468 mblk_t *
3469 mac_header(mac_handle_t mh, const uint8_t *daddr, uint32_t sap, mblk_t *payload,
3470     size_t extra_len)
3471 {
3472 	mac_impl_t *mip = (mac_impl_t *)mh;
3473 
3474 	return (mip->mi_type->mt_ops.mtops_header(mip->mi_addr, daddr, sap,
3475 	    mip->mi_pdata, payload, extra_len));
3476 }
3477 
3478 int
3479 mac_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip)
3480 {
3481 	mac_impl_t *mip = (mac_impl_t *)mh;
3482 
3483 	return (mip->mi_type->mt_ops.mtops_header_info(mp, mip->mi_pdata,
3484 	    mhip));
3485 }
3486 
3487 mblk_t *
3488 mac_header_cook(mac_handle_t mh, mblk_t *mp)
3489 {
3490 	mac_impl_t *mip = (mac_impl_t *)mh;
3491 
3492 	if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_COOK) {
3493 		if (DB_REF(mp) > 1) {
3494 			mblk_t *newmp = copymsg(mp);
3495 			if (newmp == NULL)
3496 				return (NULL);
3497 			freemsg(mp);
3498 			mp = newmp;
3499 		}
3500 		return (mip->mi_type->mt_ops.mtops_header_cook(mp,
3501 		    mip->mi_pdata));
3502 	}
3503 	return (mp);
3504 }
3505 
3506 mblk_t *
3507 mac_header_uncook(mac_handle_t mh, mblk_t *mp)
3508 {
3509 	mac_impl_t *mip = (mac_impl_t *)mh;
3510 
3511 	if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_UNCOOK) {
3512 		if (DB_REF(mp) > 1) {
3513 			mblk_t *newmp = copymsg(mp);
3514 			if (newmp == NULL)
3515 				return (NULL);
3516 			freemsg(mp);
3517 			mp = newmp;
3518 		}
3519 		return (mip->mi_type->mt_ops.mtops_header_uncook(mp,
3520 		    mip->mi_pdata));
3521 	}
3522 	return (mp);
3523 }
3524 
3525 uint_t
3526 mac_addr_len(mac_handle_t mh)
3527 {
3528 	mac_impl_t *mip = (mac_impl_t *)mh;
3529 
3530 	return (mip->mi_type->mt_addr_length);
3531 }
3532 
3533 /* True if a MAC is a VNIC */
3534 boolean_t
3535 mac_is_vnic(mac_handle_t mh)
3536 {
3537 	return (((mac_impl_t *)mh)->mi_state_flags & MIS_IS_VNIC);
3538 }
3539 
3540 mac_handle_t
3541 mac_get_lower_mac_handle(mac_handle_t mh)
3542 {
3543 	mac_impl_t *mip = (mac_impl_t *)mh;
3544 
3545 	ASSERT(mac_is_vnic(mh));
3546 	return (((vnic_t *)mip->mi_driver)->vn_lower_mh);
3547 }
3548 
3549 void
3550 mac_update_resources(mac_resource_props_t *nmrp, mac_resource_props_t *cmrp,
3551     boolean_t is_user_flow)
3552 {
3553 	if (nmrp != NULL && cmrp != NULL) {
3554 		if (nmrp->mrp_mask & MRP_PRIORITY) {
3555 			if (nmrp->mrp_priority == MPL_RESET) {
3556 				cmrp->mrp_mask &= ~MRP_PRIORITY;
3557 				if (is_user_flow) {
3558 					cmrp->mrp_priority =
3559 					    MPL_SUBFLOW_DEFAULT;
3560 				} else {
3561 					cmrp->mrp_priority = MPL_LINK_DEFAULT;
3562 				}
3563 			} else {
3564 				cmrp->mrp_mask |= MRP_PRIORITY;
3565 				cmrp->mrp_priority = nmrp->mrp_priority;
3566 			}
3567 		}
3568 		if (nmrp->mrp_mask & MRP_MAXBW) {
3569 			cmrp->mrp_maxbw = nmrp->mrp_maxbw;
3570 			if (nmrp->mrp_maxbw == MRP_MAXBW_RESETVAL)
3571 				cmrp->mrp_mask &= ~MRP_MAXBW;
3572 			else
3573 				cmrp->mrp_mask |= MRP_MAXBW;
3574 		}
3575 		if (nmrp->mrp_mask & MRP_CPUS)
3576 			MAC_COPY_CPUS(nmrp, cmrp);
3577 	}
3578 }
3579 
3580 /*
3581  * i_mac_set_resources:
3582  *
3583  * This routine associates properties with the primary MAC client of
3584  * the specified MAC instance.
3585  * - Cache the properties in mac_impl_t
3586  * - Apply the properties to the primary MAC client if exists
3587  */
3588 int
3589 i_mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp)
3590 {
3591 	mac_impl_t		*mip = (mac_impl_t *)mh;
3592 	mac_client_impl_t	*mcip;
3593 	int			err = 0;
3594 	uint32_t		resmask, newresmask;
3595 	mac_resource_props_t	tmrp, umrp;
3596 
3597 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3598 
3599 	err = mac_validate_props(mrp);
3600 	if (err != 0)
3601 		return (err);
3602 
3603 	bcopy(&mip->mi_resource_props, &umrp, sizeof (mac_resource_props_t));
3604 	resmask = umrp.mrp_mask;
3605 	mac_update_resources(mrp, &umrp, B_FALSE);
3606 	newresmask = umrp.mrp_mask;
3607 
3608 	if (resmask == 0 && newresmask != 0) {
3609 		/*
3610 		 * Bandwidth, priority or cpu link properties configured,
3611 		 * must disable fastpath.
3612 		 */
3613 		if ((err = mac_fastpath_disable((mac_handle_t)mip)) != 0)
3614 			return (err);
3615 	}
3616 
3617 	/*
3618 	 * Since bind_cpu may be modified by mac_client_set_resources()
3619 	 * we use a copy of bind_cpu and finally cache bind_cpu in mip.
3620 	 * This allows us to cache only user edits in mip.
3621 	 */
3622 	bcopy(mrp, &tmrp, sizeof (mac_resource_props_t));
3623 	mcip = mac_primary_client_handle(mip);
3624 	if (mcip != NULL && (mcip->mci_state_flags & MCIS_IS_AGGR_PORT) == 0) {
3625 		err =
3626 		    mac_client_set_resources((mac_client_handle_t)mcip, &tmrp);
3627 	}
3628 
3629 	/* Only update the values if mac_client_set_resources succeeded */
3630 	if (err == 0) {
3631 		bcopy(&umrp, &mip->mi_resource_props,
3632 		    sizeof (mac_resource_props_t));
3633 		/*
3634 		 * If bankwidth, priority or cpu link properties cleared,
3635 		 * renable fastpath.
3636 		 */
3637 		if (resmask != 0 && newresmask == 0)
3638 			mac_fastpath_enable((mac_handle_t)mip);
3639 	} else if (resmask == 0 && newresmask != 0) {
3640 		mac_fastpath_enable((mac_handle_t)mip);
3641 	}
3642 	return (err);
3643 }
3644 
3645 int
3646 mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp)
3647 {
3648 	int err;
3649 
3650 	i_mac_perim_enter((mac_impl_t *)mh);
3651 	err = i_mac_set_resources(mh, mrp);
3652 	i_mac_perim_exit((mac_impl_t *)mh);
3653 	return (err);
3654 }
3655 
3656 /*
3657  * Get the properties cached for the specified MAC instance.
3658  */
3659 void
3660 mac_get_resources(mac_handle_t mh, mac_resource_props_t *mrp)
3661 {
3662 	mac_impl_t 		*mip = (mac_impl_t *)mh;
3663 	mac_client_impl_t	*mcip;
3664 
3665 	if (mip->mi_state_flags & MIS_IS_VNIC) {
3666 		mcip = mac_primary_client_handle(mip);
3667 		if (mcip != NULL) {
3668 			mac_client_get_resources((mac_client_handle_t)mcip,
3669 			    mrp);
3670 			return;
3671 		}
3672 	}
3673 	bcopy(&mip->mi_resource_props, mrp, sizeof (mac_resource_props_t));
3674 }
3675 
3676 /*
3677  * Rename a mac client, its flow, and the kstat.
3678  */
3679 int
3680 mac_rename_primary(mac_handle_t mh, const char *new_name)
3681 {
3682 	mac_impl_t		*mip = (mac_impl_t *)mh;
3683 	mac_client_impl_t	*cur_clnt = NULL;
3684 	flow_entry_t		*fep;
3685 
3686 	i_mac_perim_enter(mip);
3687 
3688 	/*
3689 	 * VNICs: we need to change the sys flow name and
3690 	 * the associated flow kstat.
3691 	 */
3692 	if (mip->mi_state_flags & MIS_IS_VNIC) {
3693 		ASSERT(new_name != NULL);
3694 		mac_rename_flow_names(mac_vnic_lower(mip), new_name);
3695 		goto done;
3696 	}
3697 	/*
3698 	 * This mac may itself be an aggr link, or it may have some client
3699 	 * which is an aggr port. For both cases, we need to change the
3700 	 * aggr port's mac client name, its flow name and the associated flow
3701 	 * kstat.
3702 	 */
3703 	if (mip->mi_state_flags & MIS_IS_AGGR) {
3704 		mac_capab_aggr_t aggr_cap;
3705 		mac_rename_fn_t rename_fn;
3706 		boolean_t ret;
3707 
3708 		ASSERT(new_name != NULL);
3709 		ret = i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR,
3710 		    (void *)(&aggr_cap));
3711 		ASSERT(ret == B_TRUE);
3712 		rename_fn = aggr_cap.mca_rename_fn;
3713 		rename_fn(new_name, mip->mi_driver);
3714 		/*
3715 		 * The aggr's client name and kstat flow name will be
3716 		 * updated below, i.e. via mac_rename_flow_names.
3717 		 */
3718 	}
3719 
3720 	for (cur_clnt = mip->mi_clients_list; cur_clnt != NULL;
3721 	    cur_clnt = cur_clnt->mci_client_next) {
3722 		if (cur_clnt->mci_state_flags & MCIS_IS_AGGR_PORT) {
3723 			if (new_name != NULL) {
3724 				char *str_st = cur_clnt->mci_name;
3725 				char *str_del = strchr(str_st, '-');
3726 
3727 				ASSERT(str_del != NULL);
3728 				bzero(str_del + 1, MAXNAMELEN -
3729 				    (str_del - str_st + 1));
3730 				bcopy(new_name, str_del + 1,
3731 				    strlen(new_name));
3732 			}
3733 			fep = cur_clnt->mci_flent;
3734 			mac_rename_flow(fep, cur_clnt->mci_name);
3735 			break;
3736 		} else if (new_name != NULL &&
3737 		    cur_clnt->mci_state_flags & MCIS_USE_DATALINK_NAME) {
3738 			mac_rename_flow_names(cur_clnt, new_name);
3739 			break;
3740 		}
3741 	}
3742 
3743 done:
3744 	i_mac_perim_exit(mip);
3745 	return (0);
3746 }
3747 
3748 /*
3749  * Rename the MAC client's flow names
3750  */
3751 static void
3752 mac_rename_flow_names(mac_client_impl_t *mcip, const char *new_name)
3753 {
3754 	flow_entry_t	*flent;
3755 	uint16_t	vid;
3756 	char		flowname[MAXFLOWNAMELEN];
3757 	mac_impl_t	*mip = mcip->mci_mip;
3758 
3759 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3760 
3761 	/*
3762 	 * Use mi_rw_lock to ensure that threads not in the mac perimeter
3763 	 * see a self-consistent value for mci_name
3764 	 */
3765 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
3766 	(void) strlcpy(mcip->mci_name, new_name, sizeof (mcip->mci_name));
3767 	rw_exit(&mip->mi_rw_lock);
3768 
3769 	mac_rename_flow(mcip->mci_flent, new_name);
3770 
3771 	if (mcip->mci_nflents == 1)
3772 		return;
3773 
3774 	/*
3775 	 * We have to rename all the others too, no stats to destroy for
3776 	 * these.
3777 	 */
3778 	for (flent = mcip->mci_flent_list; flent != NULL;
3779 	    flent = flent->fe_client_next) {
3780 		if (flent != mcip->mci_flent) {
3781 			vid = i_mac_flow_vid(flent);
3782 			(void) sprintf(flowname, "%s%u", new_name, vid);
3783 			mac_flow_set_name(flent, flowname);
3784 		}
3785 	}
3786 }
3787 
3788 
3789 /*
3790  * Add a flow to the MAC client's flow list - i.e list of MAC/VID tuples
3791  * defined for the specified MAC client.
3792  */
3793 static void
3794 mac_client_add_to_flow_list(mac_client_impl_t *mcip, flow_entry_t *flent)
3795 {
3796 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
3797 	/*
3798 	 * The promisc Rx data path walks the mci_flent_list. Protect by
3799 	 * using mi_rw_lock
3800 	 */
3801 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
3802 
3803 	/* Add it to the head */
3804 	flent->fe_client_next = mcip->mci_flent_list;
3805 	mcip->mci_flent_list = flent;
3806 	mcip->mci_nflents++;
3807 
3808 	/*
3809 	 * Keep track of the number of non-zero VIDs addresses per MAC
3810 	 * client to avoid figuring it out in the data-path.
3811 	 */
3812 	if (i_mac_flow_vid(flent) != VLAN_ID_NONE)
3813 		mcip->mci_nvids++;
3814 
3815 	rw_exit(&mcip->mci_rw_lock);
3816 }
3817 
3818 /*
3819  * Remove a flow entry from the MAC client's list.
3820  */
3821 static void
3822 mac_client_remove_flow_from_list(mac_client_impl_t *mcip, flow_entry_t *flent)
3823 {
3824 	flow_entry_t	*fe = mcip->mci_flent_list;
3825 	flow_entry_t	*prev_fe = NULL;
3826 
3827 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
3828 	/*
3829 	 * The promisc Rx data path walks the mci_flent_list. Protect by
3830 	 * using mci_rw_lock
3831 	 */
3832 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
3833 	while ((fe != NULL) && (fe != flent)) {
3834 		prev_fe = fe;
3835 		fe = fe->fe_client_next;
3836 	}
3837 
3838 	ASSERT(fe != NULL);
3839 	if (prev_fe == NULL) {
3840 		/* Deleting the first node */
3841 		mcip->mci_flent_list = fe->fe_client_next;
3842 	} else {
3843 		prev_fe->fe_client_next = fe->fe_client_next;
3844 	}
3845 	mcip->mci_nflents--;
3846 
3847 	if (i_mac_flow_vid(flent) != VLAN_ID_NONE)
3848 		mcip->mci_nvids--;
3849 
3850 	rw_exit(&mcip->mci_rw_lock);
3851 }
3852 
3853 /*
3854  * Check if the given VID belongs to this MAC client.
3855  */
3856 boolean_t
3857 mac_client_check_flow_vid(mac_client_impl_t *mcip, uint16_t vid)
3858 {
3859 	flow_entry_t	*flent;
3860 	uint16_t	mci_vid;
3861 
3862 	/* The mci_flent_list is protected by mci_rw_lock */
3863 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
3864 	for (flent = mcip->mci_flent_list; flent != NULL;
3865 	    flent = flent->fe_client_next) {
3866 		mci_vid = i_mac_flow_vid(flent);
3867 		if (vid == mci_vid) {
3868 			rw_exit(&mcip->mci_rw_lock);
3869 			return (B_TRUE);
3870 		}
3871 	}
3872 	rw_exit(&mcip->mci_rw_lock);
3873 	return (B_FALSE);
3874 }
3875 
3876 /*
3877  * Get the flow entry for the specified <MAC addr, VID> tuple.
3878  */
3879 static flow_entry_t *
3880 mac_client_get_flow(mac_client_impl_t *mcip, mac_unicast_impl_t *muip)
3881 {
3882 	mac_address_t *map = mcip->mci_unicast;
3883 	flow_entry_t *flent;
3884 	uint16_t vid;
3885 	flow_desc_t flow_desc;
3886 
3887 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
3888 
3889 	mac_flow_get_desc(mcip->mci_flent, &flow_desc);
3890 	if (bcmp(flow_desc.fd_dst_mac, map->ma_addr, map->ma_len) != 0)
3891 		return (NULL);
3892 
3893 	for (flent = mcip->mci_flent_list; flent != NULL;
3894 	    flent = flent->fe_client_next) {
3895 		vid = i_mac_flow_vid(flent);
3896 		if (vid == muip->mui_vid) {
3897 			return (flent);
3898 		}
3899 	}
3900 
3901 	return (NULL);
3902 }
3903 
3904 /*
3905  * Since mci_flent has the SRSs, when we want to remove it, we replace
3906  * the flow_desc_t in mci_flent with that of an existing flent and then
3907  * remove that flent instead of mci_flent.
3908  */
3909 static flow_entry_t *
3910 mac_client_swap_mciflent(mac_client_impl_t *mcip)
3911 {
3912 	flow_entry_t	*flent = mcip->mci_flent;
3913 	flow_tab_t	*ft = flent->fe_flow_tab;
3914 	flow_entry_t	*flent1;
3915 	flow_desc_t	fl_desc;
3916 	char		fl_name[MAXFLOWNAMELEN];
3917 	int		err;
3918 
3919 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
3920 	ASSERT(mcip->mci_nflents > 1);
3921 
3922 	/* get the next flent following the primary flent  */
3923 	flent1 = mcip->mci_flent_list->fe_client_next;
3924 	ASSERT(flent1 != NULL && flent1->fe_flow_tab == ft);
3925 
3926 	/*
3927 	 * Remove the flent from the flow table before updating the
3928 	 * flow descriptor as the hash depends on the flow descriptor.
3929 	 * This also helps incoming packet classification avoid having
3930 	 * to grab fe_lock. Access to fe_flow_desc of a flent not in the
3931 	 * flow table is done under the fe_lock so that log or stat functions
3932 	 * see a self-consistent fe_flow_desc. The name and desc are specific
3933 	 * to a flow, the rest are shared by all the clients, including
3934 	 * resource control etc.
3935 	 */
3936 	mac_flow_remove(ft, flent, B_TRUE);
3937 	mac_flow_remove(ft, flent1, B_TRUE);
3938 
3939 	bcopy(&flent->fe_flow_desc, &fl_desc, sizeof (flow_desc_t));
3940 	bcopy(flent->fe_flow_name, fl_name, MAXFLOWNAMELEN);
3941 
3942 	/* update the primary flow entry */
3943 	mutex_enter(&flent->fe_lock);
3944 	bcopy(&flent1->fe_flow_desc, &flent->fe_flow_desc,
3945 	    sizeof (flow_desc_t));
3946 	bcopy(&flent1->fe_flow_name, &flent->fe_flow_name, MAXFLOWNAMELEN);
3947 	mutex_exit(&flent->fe_lock);
3948 
3949 	/* update the flow entry that is to be freed */
3950 	mutex_enter(&flent1->fe_lock);
3951 	bcopy(&fl_desc, &flent1->fe_flow_desc, sizeof (flow_desc_t));
3952 	bcopy(fl_name, &flent1->fe_flow_name, MAXFLOWNAMELEN);
3953 	mutex_exit(&flent1->fe_lock);
3954 
3955 	/* now reinsert the flow entries in the table */
3956 	err = mac_flow_add(ft, flent);
3957 	ASSERT(err == 0);
3958 
3959 	err = mac_flow_add(ft, flent1);
3960 	ASSERT(err == 0);
3961 
3962 	return (flent1);
3963 }
3964 
3965 /*
3966  * Return whether there is only one flow entry associated with this
3967  * MAC client.
3968  */
3969 static boolean_t
3970 mac_client_single_rcvr(mac_client_impl_t *mcip)
3971 {
3972 	return (mcip->mci_nflents == 1);
3973 }
3974 
3975 int
3976 mac_validate_props(mac_resource_props_t *mrp)
3977 {
3978 	if (mrp == NULL)
3979 		return (0);
3980 
3981 	if (mrp->mrp_mask & MRP_PRIORITY) {
3982 		mac_priority_level_t	pri = mrp->mrp_priority;
3983 
3984 		if (pri < MPL_LOW || pri > MPL_RESET)
3985 			return (EINVAL);
3986 	}
3987 
3988 	if (mrp->mrp_mask & MRP_MAXBW) {
3989 		uint64_t maxbw = mrp->mrp_maxbw;
3990 
3991 		if (maxbw < MRP_MAXBW_MINVAL && maxbw != 0)
3992 			return (EINVAL);
3993 	}
3994 	if (mrp->mrp_mask & MRP_CPUS) {
3995 		int i, j;
3996 		mac_cpu_mode_t	fanout;
3997 
3998 		if (mrp->mrp_ncpus > ncpus || mrp->mrp_ncpus > MAX_SR_FANOUT)
3999 			return (EINVAL);
4000 
4001 		for (i = 0; i < mrp->mrp_ncpus; i++) {
4002 			for (j = 0; j < mrp->mrp_ncpus; j++) {
4003 				if (i != j &&
4004 				    mrp->mrp_cpu[i] == mrp->mrp_cpu[j]) {
4005 					return (EINVAL);
4006 				}
4007 			}
4008 		}
4009 
4010 		for (i = 0; i < mrp->mrp_ncpus; i++) {
4011 			cpu_t *cp;
4012 			int rv;
4013 
4014 			mutex_enter(&cpu_lock);
4015 			cp = cpu_get(mrp->mrp_cpu[i]);
4016 			if (cp != NULL)
4017 				rv = cpu_is_online(cp);
4018 			else
4019 				rv = 0;
4020 			mutex_exit(&cpu_lock);
4021 			if (rv == 0)
4022 				return (EINVAL);
4023 		}
4024 
4025 		fanout = mrp->mrp_fanout_mode;
4026 		if (fanout < 0 || fanout > MCM_CPUS)
4027 			return (EINVAL);
4028 	}
4029 	return (0);
4030 }
4031 
4032 /*
4033  * Send a MAC_NOTE_LINK notification to all the MAC clients whenever the
4034  * underlying physical link is down. This is to allow MAC clients to
4035  * communicate with other clients.
4036  */
4037 void
4038 mac_virtual_link_update(mac_impl_t *mip)
4039 {
4040 	if (mip->mi_linkstate != LINK_STATE_UP)
4041 		i_mac_notify(mip, MAC_NOTE_LINK);
4042 }
4043 
4044 /*
4045  * For clients that have a pass-thru MAC, e.g. VNIC, we set the VNIC's
4046  * mac handle in the client.
4047  */
4048 void
4049 mac_set_upper_mac(mac_client_handle_t mch, mac_handle_t mh)
4050 {
4051 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
4052 
4053 	mcip->mci_upper_mip = (mac_impl_t *)mh;
4054 }
4055 
4056 /*
4057  * Mark the mac as being used exclusively by the single mac client that is
4058  * doing some control operation on this mac. No further opens of this mac
4059  * will be allowed until this client calls mac_unmark_exclusive. The mac
4060  * client calling this function must already be in the mac perimeter
4061  */
4062 int
4063 mac_mark_exclusive(mac_handle_t mh)
4064 {
4065 	mac_impl_t	*mip = (mac_impl_t *)mh;
4066 
4067 	ASSERT(MAC_PERIM_HELD(mh));
4068 	/*
4069 	 * Look up its entry in the global hash table.
4070 	 */
4071 	rw_enter(&i_mac_impl_lock, RW_WRITER);
4072 	if (mip->mi_state_flags & MIS_DISABLED) {
4073 		rw_exit(&i_mac_impl_lock);
4074 		return (ENOENT);
4075 	}
4076 
4077 	/*
4078 	 * A reference to mac is held even if the link is not plumbed.
4079 	 * In i_dls_link_create() we open the MAC interface and hold the
4080 	 * reference. There is an additional reference for the mac_open
4081 	 * done in acquiring the mac perimeter
4082 	 */
4083 	if (mip->mi_ref != 2) {
4084 		rw_exit(&i_mac_impl_lock);
4085 		return (EBUSY);
4086 	}
4087 
4088 	ASSERT(!(mip->mi_state_flags & MIS_EXCLUSIVE_HELD));
4089 	mip->mi_state_flags |= MIS_EXCLUSIVE_HELD;
4090 	rw_exit(&i_mac_impl_lock);
4091 	return (0);
4092 }
4093 
4094 void
4095 mac_unmark_exclusive(mac_handle_t mh)
4096 {
4097 	mac_impl_t	*mip = (mac_impl_t *)mh;
4098 
4099 	ASSERT(MAC_PERIM_HELD(mh));
4100 
4101 	rw_enter(&i_mac_impl_lock, RW_WRITER);
4102 	/* 1 for the creation and another for the perimeter */
4103 	ASSERT(mip->mi_ref == 2 && (mip->mi_state_flags & MIS_EXCLUSIVE_HELD));
4104 	mip->mi_state_flags &= ~MIS_EXCLUSIVE_HELD;
4105 	rw_exit(&i_mac_impl_lock);
4106 }
4107 
4108 /*
4109  * Set the MTU for the specified device. The function returns EBUSY if
4110  * another MAC client prevents the caller to become the exclusive client.
4111  * Returns EAGAIN if the client is started.
4112  */
4113 int
4114 mac_set_mtu(mac_handle_t mh, uint_t new_mtu, uint_t *old_mtu_arg)
4115 {
4116 	mac_impl_t *mip = (mac_impl_t *)mh;
4117 	uint_t old_mtu;
4118 	int rv;
4119 	boolean_t exclusive = B_FALSE;
4120 
4121 	i_mac_perim_enter(mip);
4122 
4123 	if ((mip->mi_callbacks->mc_callbacks & MC_SETPROP) == 0 ||
4124 	    (mip->mi_callbacks->mc_callbacks & MC_GETPROP) == 0) {
4125 		rv = ENOTSUP;
4126 		goto bail;
4127 	}
4128 
4129 	if ((rv = mac_mark_exclusive(mh)) != 0)
4130 		goto bail;
4131 	exclusive = B_TRUE;
4132 
4133 	if (mip->mi_active > 0) {
4134 		/*
4135 		 * The MAC instance is started, for example due to the
4136 		 * presence of a promiscuous clients. Fail the operation
4137 		 * since the MAC's MTU cannot be changed while the NIC
4138 		 * is started.
4139 		 */
4140 		rv = EAGAIN;
4141 		goto bail;
4142 	}
4143 
4144 	mac_sdu_get(mh, NULL, &old_mtu);
4145 
4146 	if (old_mtu != new_mtu) {
4147 		rv = mip->mi_callbacks->mc_setprop(mip->mi_driver,
4148 		    "mtu", MAC_PROP_MTU, sizeof (uint_t), &new_mtu);
4149 	}
4150 
4151 bail:
4152 	if (exclusive)
4153 		mac_unmark_exclusive(mh);
4154 	i_mac_perim_exit(mip);
4155 
4156 	if (rv == 0 && old_mtu_arg != NULL)
4157 		*old_mtu_arg = old_mtu;
4158 	return (rv);
4159 }
4160 
4161 void
4162 mac_get_hwgrp_info(mac_handle_t mh, int grp_index, uint_t *grp_num,
4163     uint_t *n_rings, uint_t *type, uint_t *n_clnts, char *clnts_name)
4164 {
4165 	mac_impl_t *mip = (mac_impl_t *)mh;
4166 	mac_grp_client_t *mcip;
4167 	uint_t i = 0, index = 0;
4168 
4169 	/* Revisit when we implement fully dynamic group allocation */
4170 	ASSERT(grp_index >= 0 && grp_index < mip->mi_rx_group_count);
4171 
4172 	rw_enter(&mip->mi_rw_lock, RW_READER);
4173 	*grp_num = mip->mi_rx_groups[grp_index].mrg_index;
4174 	*type = mip->mi_rx_groups[grp_index].mrg_type;
4175 	*n_rings = mip->mi_rx_groups[grp_index].mrg_cur_count;
4176 	for (mcip = mip->mi_rx_groups[grp_index].mrg_clients; mcip != NULL;
4177 	    mcip = mcip->mgc_next) {
4178 		int name_len = strlen(mcip->mgc_client->mci_name);
4179 
4180 		/*
4181 		 * MAXCLIENTNAMELEN is the buffer size reserved for client
4182 		 * names.
4183 		 * XXXX Formating the client name string needs to be moved
4184 		 * to user land when fixing the size of dhi_clnts in
4185 		 * dld_hwgrpinfo_t. We should use n_clients * client_name for
4186 		 * dhi_clntsin instead of MAXCLIENTNAMELEN
4187 		 */
4188 		if (index + name_len >= MAXCLIENTNAMELEN) {
4189 			index = MAXCLIENTNAMELEN;
4190 			break;
4191 		}
4192 		bcopy(mcip->mgc_client->mci_name, &(clnts_name[index]),
4193 		    name_len);
4194 		index += name_len;
4195 		clnts_name[index++] = ',';
4196 		i++;
4197 	}
4198 
4199 	/* Get rid of the last , */
4200 	if (index > 0)
4201 		clnts_name[index - 1] = '\0';
4202 	*n_clnts = i;
4203 	rw_exit(&mip->mi_rw_lock);
4204 }
4205 
4206 uint_t
4207 mac_hwgrp_num(mac_handle_t mh)
4208 {
4209 	mac_impl_t *mip = (mac_impl_t *)mh;
4210 
4211 	return (mip->mi_rx_group_count);
4212 }
4213