1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * - General Introduction: 29 * 30 * This file contains the implementation of the MAC client kernel 31 * API and related code. The MAC client API allows a kernel module 32 * to gain access to a MAC instance (physical NIC, link aggregation, etc). 33 * It allows a MAC client to associate itself with a MAC address, 34 * VLANs, callback functions for data traffic and for promiscuous mode. 35 * The MAC client API is also used to specify the properties associated 36 * with a MAC client, such as bandwidth limits, priority, CPUS, etc. 37 * These properties are further used to determine the hardware resources 38 * to allocate to the various MAC clients. 39 * 40 * - Primary MAC clients: 41 * 42 * The MAC client API refers to "primary MAC clients". A primary MAC 43 * client is a client which "owns" the primary MAC address of 44 * the underlying MAC instance. The primary MAC address is called out 45 * since it is associated with specific semantics: the primary MAC 46 * address is the MAC address which is assigned to the IP interface 47 * when it is plumbed, and the primary MAC address is assigned 48 * to VLAN data-links. The primary address of a MAC instance can 49 * also change dynamically from under the MAC client, for example 50 * as a result of a change of state of a link aggregation. In that 51 * case the MAC layer automatically updates all data-structures which 52 * refer to the current value of the primary MAC address. Typical 53 * primary MAC clients are dls, aggr, and xnb. A typical non-primary 54 * MAC client is the vnic driver. 55 * 56 * - Virtual Switching: 57 * 58 * The MAC layer implements a virtual switch between the MAC clients 59 * (primary and non-primary) defined on top of the same underlying 60 * NIC (physical, link aggregation, etc). The virtual switch is 61 * VLAN-aware, i.e. it allows multiple MAC clients to be member 62 * of one or more VLANs, and the virtual switch will distribute 63 * multicast tagged packets only to the member of the corresponding 64 * VLANs. 65 * 66 * - Upper vs Lower MAC: 67 * 68 * Creating a VNIC on top of a MAC instance effectively causes 69 * two MAC instances to be layered on top of each other, one for 70 * the VNIC(s), one for the underlying MAC instance (physical NIC, 71 * link aggregation, etc). In the code below we refer to the 72 * underlying NIC as the "lower MAC", and we refer to VNICs as 73 * the "upper MAC". 74 * 75 * - Pass-through for VNICs: 76 * 77 * When VNICs are created on top of an underlying MAC, this causes 78 * a layering of two MAC instances. Since the lower MAC already 79 * does the switching and demultiplexing to its MAC clients, the 80 * upper MAC would simply have to pass packets to the layer below 81 * or above it, which would introduce overhead. In order to avoid 82 * this overhead, the MAC layer implements a pass-through mechanism 83 * for VNICs. When a VNIC opens the lower MAC instance, it saves 84 * the MAC client handle it optains from the MAC layer. When a MAC 85 * client opens a VNIC (upper MAC), the MAC layer detects that 86 * the MAC being opened is a VNIC, and gets the MAC client handle 87 * that the VNIC driver obtained from the lower MAC. This exchange 88 * is doing through a private capability between the MAC layer 89 * and the VNIC driver. The upper MAC then returns that handle 90 * directly to its MAC client. Any operation done by the upper 91 * MAC client is now done on the lower MAC client handle, which 92 * allows the VNIC driver to be completely bypassed for the 93 * performance sensitive data-path. 94 * 95 */ 96 97 #include <sys/types.h> 98 #include <sys/conf.h> 99 #include <sys/id_space.h> 100 #include <sys/esunddi.h> 101 #include <sys/stat.h> 102 #include <sys/mkdev.h> 103 #include <sys/stream.h> 104 #include <sys/strsun.h> 105 #include <sys/strsubr.h> 106 #include <sys/dlpi.h> 107 #include <sys/modhash.h> 108 #include <sys/mac_impl.h> 109 #include <sys/mac_client_impl.h> 110 #include <sys/mac_soft_ring.h> 111 #include <sys/dls.h> 112 #include <sys/dld.h> 113 #include <sys/modctl.h> 114 #include <sys/fs/dv_node.h> 115 #include <sys/thread.h> 116 #include <sys/proc.h> 117 #include <sys/callb.h> 118 #include <sys/cpuvar.h> 119 #include <sys/atomic.h> 120 #include <sys/sdt.h> 121 #include <sys/mac_flow.h> 122 #include <sys/ddi_intr_impl.h> 123 #include <sys/disp.h> 124 #include <sys/sdt.h> 125 #include <sys/vnic.h> 126 #include <sys/vnic_impl.h> 127 #include <sys/vlan.h> 128 #include <inet/ip.h> 129 #include <inet/ip6.h> 130 #include <sys/exacct.h> 131 #include <sys/exacct_impl.h> 132 #include <inet/nd.h> 133 #include <sys/ethernet.h> 134 135 kmem_cache_t *mac_client_impl_cache; 136 kmem_cache_t *mac_promisc_impl_cache; 137 138 static boolean_t mac_client_single_rcvr(mac_client_impl_t *); 139 static flow_entry_t *mac_client_swap_mciflent(mac_client_impl_t *); 140 static flow_entry_t *mac_client_get_flow(mac_client_impl_t *, 141 mac_unicast_impl_t *); 142 static void mac_client_remove_flow_from_list(mac_client_impl_t *, 143 flow_entry_t *); 144 static void mac_client_add_to_flow_list(mac_client_impl_t *, flow_entry_t *); 145 static void mac_rename_flow_names(mac_client_impl_t *, const char *); 146 static void mac_virtual_link_update(mac_impl_t *); 147 148 /* ARGSUSED */ 149 static int 150 i_mac_client_impl_ctor(void *buf, void *arg, int kmflag) 151 { 152 int i; 153 mac_client_impl_t *mcip = buf; 154 155 bzero(buf, MAC_CLIENT_IMPL_SIZE); 156 mutex_init(&mcip->mci_tx_cb_lock, NULL, MUTEX_DRIVER, NULL); 157 mcip->mci_tx_notify_cb_info.mcbi_lockp = &mcip->mci_tx_cb_lock; 158 159 ASSERT(mac_tx_percpu_cnt >= 0); 160 for (i = 0; i <= mac_tx_percpu_cnt; i++) { 161 mutex_init(&mcip->mci_tx_pcpu[i].pcpu_tx_lock, NULL, 162 MUTEX_DRIVER, NULL); 163 } 164 cv_init(&mcip->mci_tx_cv, NULL, CV_DRIVER, NULL); 165 166 return (0); 167 } 168 169 /* ARGSUSED */ 170 static void 171 i_mac_client_impl_dtor(void *buf, void *arg) 172 { 173 int i; 174 mac_client_impl_t *mcip = buf; 175 176 ASSERT(mcip->mci_promisc_list == NULL); 177 ASSERT(mcip->mci_unicast_list == NULL); 178 ASSERT(mcip->mci_state_flags == 0); 179 ASSERT(mcip->mci_tx_flag == 0); 180 181 mutex_destroy(&mcip->mci_tx_cb_lock); 182 183 ASSERT(mac_tx_percpu_cnt >= 0); 184 for (i = 0; i <= mac_tx_percpu_cnt; i++) { 185 ASSERT(mcip->mci_tx_pcpu[i].pcpu_tx_refcnt == 0); 186 mutex_destroy(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 187 } 188 cv_destroy(&mcip->mci_tx_cv); 189 } 190 191 /* ARGSUSED */ 192 static int 193 i_mac_promisc_impl_ctor(void *buf, void *arg, int kmflag) 194 { 195 mac_promisc_impl_t *mpip = buf; 196 197 bzero(buf, sizeof (mac_promisc_impl_t)); 198 mpip->mpi_mci_link.mcb_objp = buf; 199 mpip->mpi_mci_link.mcb_objsize = sizeof (mac_promisc_impl_t); 200 mpip->mpi_mi_link.mcb_objp = buf; 201 mpip->mpi_mi_link.mcb_objsize = sizeof (mac_promisc_impl_t); 202 return (0); 203 } 204 205 /* ARGSUSED */ 206 static void 207 i_mac_promisc_impl_dtor(void *buf, void *arg) 208 { 209 mac_promisc_impl_t *mpip = buf; 210 211 ASSERT(mpip->mpi_mci_link.mcb_objp != NULL); 212 ASSERT(mpip->mpi_mci_link.mcb_objsize == sizeof (mac_promisc_impl_t)); 213 ASSERT(mpip->mpi_mi_link.mcb_objp == mpip->mpi_mci_link.mcb_objp); 214 ASSERT(mpip->mpi_mi_link.mcb_objsize == sizeof (mac_promisc_impl_t)); 215 216 mpip->mpi_mci_link.mcb_objp = NULL; 217 mpip->mpi_mci_link.mcb_objsize = 0; 218 mpip->mpi_mi_link.mcb_objp = NULL; 219 mpip->mpi_mi_link.mcb_objsize = 0; 220 221 ASSERT(mpip->mpi_mci_link.mcb_flags == 0); 222 mpip->mpi_mci_link.mcb_objsize = 0; 223 } 224 225 void 226 mac_client_init(void) 227 { 228 ASSERT(mac_tx_percpu_cnt >= 0); 229 230 mac_client_impl_cache = kmem_cache_create("mac_client_impl_cache", 231 MAC_CLIENT_IMPL_SIZE, 0, i_mac_client_impl_ctor, 232 i_mac_client_impl_dtor, NULL, NULL, NULL, 0); 233 ASSERT(mac_client_impl_cache != NULL); 234 235 mac_promisc_impl_cache = kmem_cache_create("mac_promisc_impl_cache", 236 sizeof (mac_promisc_impl_t), 0, i_mac_promisc_impl_ctor, 237 i_mac_promisc_impl_dtor, NULL, NULL, NULL, 0); 238 ASSERT(mac_promisc_impl_cache != NULL); 239 } 240 241 void 242 mac_client_fini(void) 243 { 244 kmem_cache_destroy(mac_client_impl_cache); 245 kmem_cache_destroy(mac_promisc_impl_cache); 246 } 247 248 /* 249 * Return the lower MAC client handle from the VNIC driver for the 250 * specified VNIC MAC instance. 251 */ 252 mac_client_impl_t * 253 mac_vnic_lower(mac_impl_t *mip) 254 { 255 mac_capab_vnic_t cap; 256 mac_client_impl_t *mcip; 257 258 VERIFY(i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, &cap)); 259 mcip = cap.mcv_mac_client_handle(cap.mcv_arg); 260 261 return (mcip); 262 } 263 264 /* 265 * Return the MAC client handle of the primary MAC client for the 266 * specified MAC instance, or NULL otherwise. 267 */ 268 mac_client_impl_t * 269 mac_primary_client_handle(mac_impl_t *mip) 270 { 271 mac_client_impl_t *mcip; 272 273 if (mip->mi_state_flags & MIS_IS_VNIC) 274 return (mac_vnic_lower(mip)); 275 276 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 277 278 for (mcip = mip->mi_clients_list; mcip != NULL; 279 mcip = mcip->mci_client_next) { 280 if (MCIP_DATAPATH_SETUP(mcip) && mac_is_primary_client(mcip)) 281 return (mcip); 282 } 283 return (NULL); 284 } 285 286 /* 287 * Open a MAC specified by its MAC name. 288 */ 289 int 290 mac_open(const char *macname, mac_handle_t *mhp) 291 { 292 mac_impl_t *mip; 293 int err; 294 295 /* 296 * Look up its entry in the global hash table. 297 */ 298 if ((err = mac_hold(macname, &mip)) != 0) 299 return (err); 300 301 /* 302 * Hold the dip associated to the MAC to prevent it from being 303 * detached. For a softmac, its underlying dip is held by the 304 * mi_open() callback. 305 * 306 * This is done to be more tolerant with some defective drivers, 307 * which incorrectly handle mac_unregister() failure in their 308 * xxx_detach() routine. For example, some drivers ignore the 309 * failure of mac_unregister() and free all resources that 310 * that are needed for data transmition. 311 */ 312 e_ddi_hold_devi(mip->mi_dip); 313 314 if (!(mip->mi_callbacks->mc_callbacks & MC_OPEN)) { 315 *mhp = (mac_handle_t)mip; 316 return (0); 317 } 318 319 /* 320 * The mac perimeter is used in both mac_open and mac_close by the 321 * framework to single thread the MC_OPEN/MC_CLOSE of drivers. 322 */ 323 i_mac_perim_enter(mip); 324 mip->mi_oref++; 325 if (mip->mi_oref != 1 || ((err = mip->mi_open(mip->mi_driver)) == 0)) { 326 *mhp = (mac_handle_t)mip; 327 i_mac_perim_exit(mip); 328 return (0); 329 } 330 mip->mi_oref--; 331 ddi_release_devi(mip->mi_dip); 332 mac_rele(mip); 333 i_mac_perim_exit(mip); 334 return (err); 335 } 336 337 /* 338 * Open a MAC specified by its linkid. 339 */ 340 int 341 mac_open_by_linkid(datalink_id_t linkid, mac_handle_t *mhp) 342 { 343 dls_dl_handle_t dlh; 344 int err; 345 346 if ((err = dls_devnet_hold_tmp(linkid, &dlh)) != 0) 347 return (err); 348 349 dls_devnet_prop_task_wait(dlh); 350 351 err = mac_open(dls_devnet_mac(dlh), mhp); 352 353 dls_devnet_rele_tmp(dlh); 354 return (err); 355 } 356 357 /* 358 * Open a MAC specified by its link name. 359 */ 360 int 361 mac_open_by_linkname(const char *link, mac_handle_t *mhp) 362 { 363 datalink_id_t linkid; 364 int err; 365 366 if ((err = dls_mgmt_get_linkid(link, &linkid)) != 0) 367 return (err); 368 return (mac_open_by_linkid(linkid, mhp)); 369 } 370 371 /* 372 * Close the specified MAC. 373 */ 374 void 375 mac_close(mac_handle_t mh) 376 { 377 mac_impl_t *mip = (mac_impl_t *)mh; 378 379 i_mac_perim_enter(mip); 380 /* 381 * The mac perimeter is used in both mac_open and mac_close by the 382 * framework to single thread the MC_OPEN/MC_CLOSE of drivers. 383 */ 384 if (mip->mi_callbacks->mc_callbacks & MC_OPEN) { 385 ASSERT(mip->mi_oref != 0); 386 if (--mip->mi_oref == 0) { 387 if ((mip->mi_callbacks->mc_callbacks & MC_CLOSE)) 388 mip->mi_close(mip->mi_driver); 389 } 390 } 391 i_mac_perim_exit(mip); 392 ddi_release_devi(mip->mi_dip); 393 mac_rele(mip); 394 } 395 396 /* 397 * Misc utility functions to retrieve various information about a MAC 398 * instance or a MAC client. 399 */ 400 401 const mac_info_t * 402 mac_info(mac_handle_t mh) 403 { 404 return (&((mac_impl_t *)mh)->mi_info); 405 } 406 407 dev_info_t * 408 mac_devinfo_get(mac_handle_t mh) 409 { 410 return (((mac_impl_t *)mh)->mi_dip); 411 } 412 413 void * 414 mac_driver(mac_handle_t mh) 415 { 416 return (((mac_impl_t *)mh)->mi_driver); 417 } 418 419 const char * 420 mac_name(mac_handle_t mh) 421 { 422 return (((mac_impl_t *)mh)->mi_name); 423 } 424 425 int 426 mac_type(mac_handle_t mh) 427 { 428 return (((mac_impl_t *)mh)->mi_type->mt_type); 429 } 430 431 char * 432 mac_client_name(mac_client_handle_t mch) 433 { 434 return (((mac_client_impl_t *)mch)->mci_name); 435 } 436 437 minor_t 438 mac_minor(mac_handle_t mh) 439 { 440 return (((mac_impl_t *)mh)->mi_minor); 441 } 442 443 /* 444 * Return the VID associated with a MAC client. This function should 445 * be called for clients which are associated with only one VID. 446 */ 447 uint16_t 448 mac_client_vid(mac_client_handle_t mch) 449 { 450 uint16_t vid = VLAN_ID_NONE; 451 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 452 flow_desc_t flow_desc; 453 454 if (mcip->mci_nflents == 0) 455 return (vid); 456 457 ASSERT(MCIP_DATAPATH_SETUP(mcip) && mac_client_single_rcvr(mcip)); 458 459 mac_flow_get_desc(mcip->mci_flent, &flow_desc); 460 if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0) 461 vid = flow_desc.fd_vid; 462 463 return (vid); 464 } 465 466 /* 467 * Return whether the specified MAC client corresponds to a VLAN VNIC. 468 */ 469 boolean_t 470 mac_client_is_vlan_vnic(mac_client_handle_t mch) 471 { 472 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 473 474 return (((mcip->mci_state_flags & MCIS_IS_VNIC) != 0) && 475 ((mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) != 0)); 476 } 477 478 /* 479 * Return the link speed associated with the specified MAC client. 480 * 481 * The link speed of a MAC client is equal to the smallest value of 482 * 1) the current link speed of the underlying NIC, or 483 * 2) the bandwidth limit set for the MAC client. 484 * 485 * Note that the bandwidth limit can be higher than the speed 486 * of the underlying NIC. This is allowed to avoid spurious 487 * administration action failures or artifically lowering the 488 * bandwidth limit of a link that may have temporarily lowered 489 * its link speed due to hardware problem or administrator action. 490 */ 491 static uint64_t 492 mac_client_ifspeed(mac_client_impl_t *mcip) 493 { 494 mac_impl_t *mip = mcip->mci_mip; 495 uint64_t nic_speed; 496 497 nic_speed = mac_stat_get((mac_handle_t)mip, MAC_STAT_IFSPEED); 498 499 if (nic_speed == 0) { 500 return (0); 501 } else { 502 uint64_t policy_limit = (uint64_t)-1; 503 504 if (MCIP_RESOURCE_PROPS_MASK(mcip) & MRP_MAXBW) 505 policy_limit = MCIP_RESOURCE_PROPS_MAXBW(mcip); 506 507 return (MIN(policy_limit, nic_speed)); 508 } 509 } 510 511 /* 512 * Return the link state of the specified client. If here are more 513 * than one clients of the underying mac_impl_t, the link state 514 * will always be UP regardless of the link state of the underlying 515 * mac_impl_t. This is needed to allow the MAC clients to continue 516 * to communicate with each other even when the physical link of 517 * their mac_impl_t is down. 518 */ 519 static uint64_t 520 mac_client_link_state(mac_client_impl_t *mcip) 521 { 522 mac_impl_t *mip = mcip->mci_mip; 523 uint16_t vid; 524 mac_client_impl_t *mci_list; 525 mac_unicast_impl_t *mui_list, *oth_mui_list; 526 527 /* 528 * Returns LINK_STATE_UP if there are other MAC clients defined on 529 * mac_impl_t which share same VLAN ID as that of mcip. Note that 530 * if 'mcip' has more than one VID's then we match ANY one of the 531 * VID's with other MAC client's VID's and return LINK_STATE_UP. 532 */ 533 rw_enter(&mcip->mci_rw_lock, RW_READER); 534 for (mui_list = mcip->mci_unicast_list; mui_list != NULL; 535 mui_list = mui_list->mui_next) { 536 vid = mui_list->mui_vid; 537 for (mci_list = mip->mi_clients_list; mci_list != NULL; 538 mci_list = mci_list->mci_client_next) { 539 if (mci_list == mcip) 540 continue; 541 for (oth_mui_list = mci_list->mci_unicast_list; 542 oth_mui_list != NULL; oth_mui_list = oth_mui_list-> 543 mui_next) { 544 if (vid == oth_mui_list->mui_vid) { 545 rw_exit(&mcip->mci_rw_lock); 546 return (LINK_STATE_UP); 547 } 548 } 549 } 550 } 551 rw_exit(&mcip->mci_rw_lock); 552 553 return (mac_stat_get((mac_handle_t)mip, MAC_STAT_LINK_STATE)); 554 } 555 556 /* 557 * Return the statistics of a MAC client. These statistics are different 558 * then the statistics of the underlying MAC which are returned by 559 * mac_stat_get(). 560 */ 561 uint64_t 562 mac_client_stat_get(mac_client_handle_t mch, uint_t stat) 563 { 564 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 565 mac_impl_t *mip = mcip->mci_mip; 566 uint64_t val; 567 568 switch (stat) { 569 case MAC_STAT_LINK_STATE: 570 val = mac_client_link_state(mcip); 571 break; 572 case MAC_STAT_LINK_UP: 573 val = (mac_client_link_state(mcip) == LINK_STATE_UP); 574 break; 575 case MAC_STAT_PROMISC: 576 val = mac_stat_get((mac_handle_t)mip, MAC_STAT_PROMISC); 577 break; 578 case MAC_STAT_LOWLINK_STATE: 579 val = mac_stat_get((mac_handle_t)mip, MAC_STAT_LOWLINK_STATE); 580 break; 581 case MAC_STAT_IFSPEED: 582 val = mac_client_ifspeed(mcip); 583 break; 584 case MAC_STAT_MULTIRCV: 585 val = mcip->mci_stat_multircv; 586 break; 587 case MAC_STAT_BRDCSTRCV: 588 val = mcip->mci_stat_brdcstrcv; 589 break; 590 case MAC_STAT_MULTIXMT: 591 val = mcip->mci_stat_multixmt; 592 break; 593 case MAC_STAT_BRDCSTXMT: 594 val = mcip->mci_stat_brdcstxmt; 595 break; 596 case MAC_STAT_OBYTES: 597 val = mcip->mci_stat_obytes; 598 break; 599 case MAC_STAT_OPACKETS: 600 val = mcip->mci_stat_opackets; 601 break; 602 case MAC_STAT_OERRORS: 603 val = mcip->mci_stat_oerrors; 604 break; 605 case MAC_STAT_IPACKETS: 606 val = mcip->mci_stat_ipackets; 607 break; 608 case MAC_STAT_RBYTES: 609 val = mcip->mci_stat_ibytes; 610 break; 611 case MAC_STAT_IERRORS: 612 val = mcip->mci_stat_ierrors; 613 break; 614 default: 615 val = mac_stat_default(mip, stat); 616 break; 617 } 618 619 return (val); 620 } 621 622 /* 623 * Return the statistics of the specified MAC instance. 624 */ 625 uint64_t 626 mac_stat_get(mac_handle_t mh, uint_t stat) 627 { 628 mac_impl_t *mip = (mac_impl_t *)mh; 629 uint64_t val; 630 int ret; 631 632 /* 633 * The range of stat determines where it is maintained. Stat 634 * values from 0 up to (but not including) MAC_STAT_MIN are 635 * mainteined by the mac module itself. Everything else is 636 * maintained by the driver. 637 * 638 * If the mac_impl_t being queried corresponds to a VNIC, 639 * the stats need to be queried from the lower MAC client 640 * corresponding to the VNIC. (The mac_link_update() 641 * invoked by the driver to the lower MAC causes the *lower 642 * MAC* to update its mi_linkstate, and send a notification 643 * to its MAC clients. Due to the VNIC passthrough, 644 * these notifications are sent to the upper MAC clients 645 * of the VNIC directly, and the upper mac_impl_t of the VNIC 646 * does not have a valid mi_linkstate. 647 */ 648 if (stat < MAC_STAT_MIN && !(mip->mi_state_flags & MIS_IS_VNIC)) { 649 /* these stats are maintained by the mac module itself */ 650 switch (stat) { 651 case MAC_STAT_LINK_STATE: 652 return (mip->mi_linkstate); 653 case MAC_STAT_LINK_UP: 654 return (mip->mi_linkstate == LINK_STATE_UP); 655 case MAC_STAT_PROMISC: 656 return (mip->mi_devpromisc != 0); 657 case MAC_STAT_LOWLINK_STATE: 658 return (mip->mi_lowlinkstate); 659 default: 660 ASSERT(B_FALSE); 661 } 662 } 663 664 /* 665 * Call the driver to get the given statistic. 666 */ 667 ret = mip->mi_getstat(mip->mi_driver, stat, &val); 668 if (ret != 0) { 669 /* 670 * The driver doesn't support this statistic. Get the 671 * statistic's default value. 672 */ 673 val = mac_stat_default(mip, stat); 674 } 675 return (val); 676 } 677 678 /* 679 * Utility function which returns the VID associated with a flow entry. 680 */ 681 uint16_t 682 i_mac_flow_vid(flow_entry_t *flent) 683 { 684 flow_desc_t flow_desc; 685 686 mac_flow_get_desc(flent, &flow_desc); 687 688 if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0) 689 return (flow_desc.fd_vid); 690 return (VLAN_ID_NONE); 691 } 692 693 /* 694 * Verify the validity of the specified unicast MAC address. Returns B_TRUE 695 * if the address is valid, B_FALSE otherwise (multicast address, or incorrect 696 * length. 697 */ 698 boolean_t 699 mac_unicst_verify(mac_handle_t mh, const uint8_t *addr, uint_t len) 700 { 701 mac_impl_t *mip = (mac_impl_t *)mh; 702 703 /* 704 * Verify the address. No lock is needed since mi_type and plugin 705 * details don't change after mac_register(). 706 */ 707 if ((len != mip->mi_type->mt_addr_length) || 708 (mip->mi_type->mt_ops.mtops_unicst_verify(addr, 709 mip->mi_pdata)) != 0) { 710 return (B_FALSE); 711 } else { 712 return (B_TRUE); 713 } 714 } 715 716 void 717 mac_sdu_get(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu) 718 { 719 mac_impl_t *mip = (mac_impl_t *)mh; 720 721 if (min_sdu != NULL) 722 *min_sdu = mip->mi_sdu_min; 723 if (max_sdu != NULL) 724 *max_sdu = mip->mi_sdu_max; 725 } 726 727 /* 728 * Update the MAC unicast address of the specified client's flows. Currently 729 * only one unicast MAC unicast address is allowed per client. 730 */ 731 static void 732 mac_unicast_update_client_flow(mac_client_impl_t *mcip) 733 { 734 mac_impl_t *mip = mcip->mci_mip; 735 flow_entry_t *flent = mcip->mci_flent; 736 mac_address_t *map = mcip->mci_unicast; 737 flow_desc_t flow_desc; 738 739 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 740 ASSERT(flent != NULL); 741 742 mac_flow_get_desc(flent, &flow_desc); 743 ASSERT(flow_desc.fd_mask & FLOW_LINK_DST); 744 745 bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len); 746 mac_flow_set_desc(flent, &flow_desc); 747 748 /* 749 * A MAC client could have one MAC address but multiple 750 * VLANs. In that case update the flow entries corresponding 751 * to all VLANs of the MAC client. 752 */ 753 for (flent = mcip->mci_flent_list; flent != NULL; 754 flent = flent->fe_client_next) { 755 mac_flow_get_desc(flent, &flow_desc); 756 if (!(flent->fe_type & FLOW_PRIMARY_MAC || 757 flent->fe_type & FLOW_VNIC_MAC)) 758 continue; 759 760 bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len); 761 mac_flow_set_desc(flent, &flow_desc); 762 } 763 } 764 765 /* 766 * Update all clients that share the same unicast address. 767 */ 768 void 769 mac_unicast_update_clients(mac_impl_t *mip, mac_address_t *map) 770 { 771 mac_client_impl_t *mcip; 772 773 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 774 775 /* 776 * Find all clients that share the same unicast MAC address and update 777 * them appropriately. 778 */ 779 for (mcip = mip->mi_clients_list; mcip != NULL; 780 mcip = mcip->mci_client_next) { 781 /* 782 * Ignore clients that don't share this MAC address. 783 */ 784 if (map != mcip->mci_unicast) 785 continue; 786 787 /* 788 * Update those clients with same old unicast MAC address. 789 */ 790 mac_unicast_update_client_flow(mcip); 791 } 792 } 793 794 /* 795 * Update the unicast MAC address of the specified VNIC MAC client. 796 * 797 * Check whether the operation is valid. Any of following cases should fail: 798 * 799 * 1. It's a VLAN type of VNIC. 800 * 2. The new value is current "primary" MAC address. 801 * 3. The current MAC address is shared with other clients. 802 * 4. The new MAC address has been used. This case will be valid when 803 * client migration is fully supported. 804 */ 805 int 806 mac_vnic_unicast_set(mac_client_handle_t mch, const uint8_t *addr) 807 { 808 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 809 mac_impl_t *mip = mcip->mci_mip; 810 mac_address_t *map = mcip->mci_unicast; 811 int err; 812 813 ASSERT(!(mip->mi_state_flags & MIS_IS_VNIC)); 814 ASSERT(mcip->mci_state_flags & MCIS_IS_VNIC); 815 ASSERT(mcip->mci_flags != MAC_CLIENT_FLAGS_PRIMARY); 816 817 i_mac_perim_enter(mip); 818 819 /* 820 * If this is a VLAN type of VNIC, it's using "primary" MAC address 821 * of the underlying interface. Must fail here. Refer to case 1 above. 822 */ 823 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0) { 824 i_mac_perim_exit(mip); 825 return (ENOTSUP); 826 } 827 828 /* 829 * If the new address is the "primary" one, must fail. Refer to 830 * case 2 above. 831 */ 832 if (bcmp(addr, mip->mi_addr, map->ma_len) == 0) { 833 i_mac_perim_exit(mip); 834 return (EACCES); 835 } 836 837 /* 838 * If the address is shared by multiple clients, must fail. Refer 839 * to case 3 above. 840 */ 841 if (mac_check_macaddr_shared(map)) { 842 i_mac_perim_exit(mip); 843 return (EBUSY); 844 } 845 846 /* 847 * If the new address has been used, must fail for now. Refer to 848 * case 4 above. 849 */ 850 if (mac_find_macaddr(mip, (uint8_t *)addr) != NULL) { 851 i_mac_perim_exit(mip); 852 return (ENOTSUP); 853 } 854 855 /* 856 * Update the MAC address. 857 */ 858 err = mac_update_macaddr(map, (uint8_t *)addr); 859 860 if (err != 0) { 861 i_mac_perim_exit(mip); 862 return (err); 863 } 864 865 /* 866 * Update all flows of this MAC client. 867 */ 868 mac_unicast_update_client_flow(mcip); 869 870 i_mac_perim_exit(mip); 871 return (0); 872 } 873 874 /* 875 * Program the new primary unicast address of the specified MAC. 876 * 877 * Function mac_update_macaddr() takes care different types of underlying 878 * MAC. If the underlying MAC is VNIC, the VNIC driver must have registerd 879 * mi_unicst() entry point, that indirectly calls mac_vnic_unicast_set() 880 * which will take care of updating the MAC address of the corresponding 881 * MAC client. 882 * 883 * This is the only interface that allow the client to update the "primary" 884 * MAC address of the underlying MAC. The new value must have not been 885 * used by other clients. 886 */ 887 int 888 mac_unicast_primary_set(mac_handle_t mh, const uint8_t *addr) 889 { 890 mac_impl_t *mip = (mac_impl_t *)mh; 891 mac_address_t *map; 892 int err; 893 894 /* verify the address validity */ 895 if (!mac_unicst_verify(mh, addr, mip->mi_type->mt_addr_length)) 896 return (EINVAL); 897 898 i_mac_perim_enter(mip); 899 900 /* 901 * If the new value is the same as the current primary address value, 902 * there's nothing to do. 903 */ 904 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) == 0) { 905 i_mac_perim_exit(mip); 906 return (0); 907 } 908 909 if (mac_find_macaddr(mip, (uint8_t *)addr) != 0) { 910 i_mac_perim_exit(mip); 911 return (EBUSY); 912 } 913 914 map = mac_find_macaddr(mip, mip->mi_addr); 915 ASSERT(map != NULL); 916 917 /* 918 * Update the MAC address. 919 */ 920 if (mip->mi_state_flags & MIS_IS_AGGR) { 921 mac_capab_aggr_t aggr_cap; 922 923 /* 924 * If the mac is an aggregation, other than the unicast 925 * addresses programming, aggr must be informed about this 926 * primary unicst address change to change its mac address 927 * policy to be user-specified. 928 */ 929 ASSERT(map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED); 930 VERIFY(i_mac_capab_get(mh, MAC_CAPAB_AGGR, &aggr_cap)); 931 err = aggr_cap.mca_unicst(mip->mi_driver, addr); 932 if (err == 0) 933 bcopy(addr, map->ma_addr, map->ma_len); 934 } else { 935 err = mac_update_macaddr(map, (uint8_t *)addr); 936 } 937 938 if (err != 0) { 939 i_mac_perim_exit(mip); 940 return (err); 941 } 942 943 mac_unicast_update_clients(mip, map); 944 945 /* 946 * Save the new primary MAC address in mac_impl_t. 947 */ 948 bcopy(addr, mip->mi_addr, mip->mi_type->mt_addr_length); 949 950 i_mac_perim_exit(mip); 951 952 if (err == 0) 953 i_mac_notify(mip, MAC_NOTE_UNICST); 954 955 return (err); 956 } 957 958 /* 959 * Return the current primary MAC address of the specified MAC. 960 */ 961 void 962 mac_unicast_primary_get(mac_handle_t mh, uint8_t *addr) 963 { 964 mac_impl_t *mip = (mac_impl_t *)mh; 965 966 rw_enter(&mip->mi_rw_lock, RW_READER); 967 bcopy(mip->mi_addr, addr, mip->mi_type->mt_addr_length); 968 rw_exit(&mip->mi_rw_lock); 969 } 970 971 /* 972 * Return information about the use of the primary MAC address of the 973 * specified MAC instance: 974 * 975 * - if client_name is non-NULL, it must point to a string of at 976 * least MAXNAMELEN bytes, and will be set to the name of the MAC 977 * client which uses the primary MAC address. 978 * 979 * - if in_use is non-NULL, used to return whether the primary MAC 980 * address is currently in use. 981 */ 982 void 983 mac_unicast_primary_info(mac_handle_t mh, char *client_name, boolean_t *in_use) 984 { 985 mac_impl_t *mip = (mac_impl_t *)mh; 986 mac_client_impl_t *cur_client; 987 988 if (in_use != NULL) 989 *in_use = B_FALSE; 990 if (client_name != NULL) 991 bzero(client_name, MAXNAMELEN); 992 993 /* 994 * The mi_rw_lock is used to protect threads that don't hold the 995 * mac perimeter to get a consistent view of the mi_clients_list. 996 * Threads that modify the list must hold both the mac perimeter and 997 * mi_rw_lock(RW_WRITER) 998 */ 999 rw_enter(&mip->mi_rw_lock, RW_READER); 1000 for (cur_client = mip->mi_clients_list; cur_client != NULL; 1001 cur_client = cur_client->mci_client_next) { 1002 if (mac_is_primary_client(cur_client) || 1003 (mip->mi_state_flags & MIS_IS_VNIC)) { 1004 rw_exit(&mip->mi_rw_lock); 1005 if (in_use != NULL) 1006 *in_use = B_TRUE; 1007 if (client_name != NULL) { 1008 bcopy(cur_client->mci_name, client_name, 1009 MAXNAMELEN); 1010 } 1011 return; 1012 } 1013 } 1014 rw_exit(&mip->mi_rw_lock); 1015 } 1016 1017 /* 1018 * Return the current destination MAC address of the specified MAC. 1019 */ 1020 boolean_t 1021 mac_dst_get(mac_handle_t mh, uint8_t *addr) 1022 { 1023 mac_impl_t *mip = (mac_impl_t *)mh; 1024 1025 rw_enter(&mip->mi_rw_lock, RW_READER); 1026 if (mip->mi_dstaddr_set) 1027 bcopy(mip->mi_dstaddr, addr, mip->mi_type->mt_addr_length); 1028 rw_exit(&mip->mi_rw_lock); 1029 return (mip->mi_dstaddr_set); 1030 } 1031 1032 /* 1033 * Add the specified MAC client to the list of clients which opened 1034 * the specified MAC. 1035 */ 1036 static void 1037 mac_client_add(mac_client_impl_t *mcip) 1038 { 1039 mac_impl_t *mip = mcip->mci_mip; 1040 1041 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1042 1043 /* add VNIC to the front of the list */ 1044 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1045 mcip->mci_client_next = mip->mi_clients_list; 1046 mip->mi_clients_list = mcip; 1047 mip->mi_nclients++; 1048 rw_exit(&mip->mi_rw_lock); 1049 } 1050 1051 /* 1052 * Remove the specified MAC client from the list of clients which opened 1053 * the specified MAC. 1054 */ 1055 static void 1056 mac_client_remove(mac_client_impl_t *mcip) 1057 { 1058 mac_impl_t *mip = mcip->mci_mip; 1059 mac_client_impl_t **prev, *cclient; 1060 1061 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1062 1063 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1064 prev = &mip->mi_clients_list; 1065 cclient = *prev; 1066 while (cclient != NULL && cclient != mcip) { 1067 prev = &cclient->mci_client_next; 1068 cclient = *prev; 1069 } 1070 ASSERT(cclient != NULL); 1071 *prev = cclient->mci_client_next; 1072 mip->mi_nclients--; 1073 rw_exit(&mip->mi_rw_lock); 1074 } 1075 1076 static mac_unicast_impl_t * 1077 mac_client_find_vid(mac_client_impl_t *mcip, uint16_t vid) 1078 { 1079 mac_unicast_impl_t *muip = mcip->mci_unicast_list; 1080 1081 while ((muip != NULL) && (muip->mui_vid != vid)) 1082 muip = muip->mui_next; 1083 1084 return (muip); 1085 } 1086 1087 /* 1088 * Return whether the specified (MAC address, VID) tuple is already used by 1089 * one of the MAC clients associated with the specified MAC. 1090 */ 1091 static boolean_t 1092 mac_addr_in_use(mac_impl_t *mip, uint8_t *mac_addr, uint16_t vid) 1093 { 1094 mac_client_impl_t *client; 1095 mac_address_t *map; 1096 1097 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1098 1099 for (client = mip->mi_clients_list; client != NULL; 1100 client = client->mci_client_next) { 1101 1102 /* 1103 * Ignore clients that don't have unicast address. 1104 */ 1105 if (client->mci_unicast_list == NULL) 1106 continue; 1107 1108 map = client->mci_unicast; 1109 1110 if ((bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) && 1111 (mac_client_find_vid(client, vid) != NULL)) { 1112 return (B_TRUE); 1113 } 1114 } 1115 1116 return (B_FALSE); 1117 } 1118 1119 /* 1120 * Generate a random MAC address. The MAC address prefix is 1121 * stored in the array pointed to by mac_addr, and its length, in bytes, 1122 * is specified by prefix_len. The least significant bits 1123 * after prefix_len bytes are generated, and stored after the prefix 1124 * in the mac_addr array. 1125 */ 1126 int 1127 mac_addr_random(mac_client_handle_t mch, uint_t prefix_len, 1128 uint8_t *mac_addr, mac_diag_t *diag) 1129 { 1130 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1131 mac_impl_t *mip = mcip->mci_mip; 1132 size_t addr_len = mip->mi_type->mt_addr_length; 1133 1134 if (prefix_len >= addr_len) { 1135 *diag = MAC_DIAG_MACPREFIXLEN_INVALID; 1136 return (EINVAL); 1137 } 1138 1139 /* check the prefix value */ 1140 if (prefix_len > 0) { 1141 bzero(mac_addr + prefix_len, addr_len - prefix_len); 1142 if (!mac_unicst_verify((mac_handle_t)mip, mac_addr, 1143 addr_len)) { 1144 *diag = MAC_DIAG_MACPREFIX_INVALID; 1145 return (EINVAL); 1146 } 1147 } 1148 1149 /* generate the MAC address */ 1150 if (prefix_len < addr_len) { 1151 (void) random_get_pseudo_bytes(mac_addr + 1152 prefix_len, addr_len - prefix_len); 1153 } 1154 1155 *diag = 0; 1156 return (0); 1157 } 1158 1159 /* 1160 * Set the priority range for this MAC client. This will be used to 1161 * determine the absolute priority for the threads created for this 1162 * MAC client using the specified "low", "medium" and "high" level. 1163 * This will also be used for any subflows on this MAC client. 1164 */ 1165 #define MAC_CLIENT_SET_PRIORITY_RANGE(mcip, pri) { \ 1166 (mcip)->mci_min_pri = FLOW_MIN_PRIORITY(MINCLSYSPRI, \ 1167 MAXCLSYSPRI, (pri)); \ 1168 (mcip)->mci_max_pri = FLOW_MAX_PRIORITY(MINCLSYSPRI, \ 1169 MAXCLSYSPRI, (mcip)->mci_min_pri); \ 1170 } 1171 1172 /* 1173 * MAC client open entry point. Return a new MAC client handle. Each 1174 * MAC client is associated with a name, specified through the 'name' 1175 * argument. 1176 */ 1177 int 1178 mac_client_open(mac_handle_t mh, mac_client_handle_t *mchp, char *name, 1179 uint16_t flags) 1180 { 1181 mac_impl_t *mip = (mac_impl_t *)mh; 1182 mac_client_impl_t *mcip; 1183 int err = 0; 1184 boolean_t share_desired = 1185 ((flags & MAC_OPEN_FLAGS_SHARES_DESIRED) != 0); 1186 boolean_t no_hwrings = ((flags & MAC_OPEN_FLAGS_NO_HWRINGS) != 0); 1187 boolean_t req_hwrings = ((flags & MAC_OPEN_FLAGS_REQ_HWRINGS) != 0); 1188 flow_entry_t *flent = NULL; 1189 1190 *mchp = NULL; 1191 if (share_desired && no_hwrings) { 1192 /* can't have shares but no hardware rings */ 1193 return (EINVAL); 1194 } 1195 1196 i_mac_perim_enter(mip); 1197 1198 if (mip->mi_state_flags & MIS_IS_VNIC) { 1199 /* 1200 * The underlying MAC is a VNIC. Return the MAC client 1201 * handle of the lower MAC which was obtained by 1202 * the VNIC driver when it did its mac_client_open(). 1203 */ 1204 1205 mcip = mac_vnic_lower(mip); 1206 1207 /* 1208 * Note that multiple mac clients share the same mcip in 1209 * this case. 1210 */ 1211 if (flags & MAC_OPEN_FLAGS_EXCLUSIVE) 1212 mcip->mci_state_flags |= MCIS_EXCLUSIVE; 1213 1214 if (flags & MAC_OPEN_FLAGS_MULTI_PRIMARY) 1215 mcip->mci_flags |= MAC_CLIENT_FLAGS_MULTI_PRIMARY; 1216 1217 mip->mi_clients_list = mcip; 1218 i_mac_perim_exit(mip); 1219 *mchp = (mac_client_handle_t)mcip; 1220 return (err); 1221 } 1222 1223 mcip = kmem_cache_alloc(mac_client_impl_cache, KM_SLEEP); 1224 1225 mcip->mci_mip = mip; 1226 mcip->mci_upper_mip = NULL; 1227 mcip->mci_rx_fn = mac_pkt_drop; 1228 mcip->mci_rx_arg = NULL; 1229 mcip->mci_rx_p_fn = NULL; 1230 mcip->mci_rx_p_arg = NULL; 1231 mcip->mci_p_unicast_list = NULL; 1232 mcip->mci_direct_rx_fn = NULL; 1233 mcip->mci_direct_rx_arg = NULL; 1234 1235 mcip->mci_unicast_list = NULL; 1236 1237 if ((flags & MAC_OPEN_FLAGS_IS_VNIC) != 0) 1238 mcip->mci_state_flags |= MCIS_IS_VNIC; 1239 1240 if ((flags & MAC_OPEN_FLAGS_EXCLUSIVE) != 0) 1241 mcip->mci_state_flags |= MCIS_EXCLUSIVE; 1242 1243 if ((flags & MAC_OPEN_FLAGS_IS_AGGR_PORT) != 0) 1244 mcip->mci_state_flags |= MCIS_IS_AGGR_PORT; 1245 1246 if ((flags & MAC_OPEN_FLAGS_USE_DATALINK_NAME) != 0) { 1247 datalink_id_t linkid; 1248 1249 ASSERT(name == NULL); 1250 if ((err = dls_devnet_macname2linkid(mip->mi_name, 1251 &linkid)) != 0) { 1252 goto done; 1253 } 1254 if ((err = dls_mgmt_get_linkinfo(linkid, mcip->mci_name, NULL, 1255 NULL, NULL)) != 0) { 1256 /* 1257 * Use mac name if dlmgmtd is not available. 1258 */ 1259 if (err == EBADF) { 1260 (void) strlcpy(mcip->mci_name, mip->mi_name, 1261 sizeof (mcip->mci_name)); 1262 err = 0; 1263 } else { 1264 goto done; 1265 } 1266 } 1267 mcip->mci_state_flags |= MCIS_USE_DATALINK_NAME; 1268 } else { 1269 ASSERT(name != NULL); 1270 if (strlen(name) > MAXNAMELEN) { 1271 err = EINVAL; 1272 goto done; 1273 } 1274 (void) strlcpy(mcip->mci_name, name, sizeof (mcip->mci_name)); 1275 } 1276 1277 if (flags & MAC_OPEN_FLAGS_MULTI_PRIMARY) 1278 mcip->mci_flags |= MAC_CLIENT_FLAGS_MULTI_PRIMARY; 1279 1280 /* the subflow table will be created dynamically */ 1281 mcip->mci_subflow_tab = NULL; 1282 mcip->mci_stat_multircv = 0; 1283 mcip->mci_stat_brdcstrcv = 0; 1284 mcip->mci_stat_multixmt = 0; 1285 mcip->mci_stat_brdcstxmt = 0; 1286 1287 mcip->mci_stat_obytes = 0; 1288 mcip->mci_stat_opackets = 0; 1289 mcip->mci_stat_oerrors = 0; 1290 mcip->mci_stat_ibytes = 0; 1291 mcip->mci_stat_ipackets = 0; 1292 mcip->mci_stat_ierrors = 0; 1293 1294 /* Create an initial flow */ 1295 1296 err = mac_flow_create(NULL, NULL, mcip->mci_name, NULL, 1297 mcip->mci_state_flags & MCIS_IS_VNIC ? FLOW_VNIC_MAC : 1298 FLOW_PRIMARY_MAC, &flent); 1299 if (err != 0) 1300 goto done; 1301 mcip->mci_flent = flent; 1302 FLOW_MARK(flent, FE_MC_NO_DATAPATH); 1303 flent->fe_mcip = mcip; 1304 /* 1305 * Place initial creation reference on the flow. This reference 1306 * is released in the corresponding delete action viz. 1307 * mac_unicast_remove after waiting for all transient refs to 1308 * to go away. The wait happens in mac_flow_wait. 1309 */ 1310 FLOW_REFHOLD(flent); 1311 1312 /* 1313 * Do this ahead of the mac_bcast_add() below so that the mi_nclients 1314 * will have the right value for mac_rx_srs_setup(). 1315 */ 1316 mac_client_add(mcip); 1317 1318 if (no_hwrings) 1319 mcip->mci_state_flags |= MCIS_NO_HWRINGS; 1320 if (req_hwrings) 1321 mcip->mci_state_flags |= MCIS_REQ_HWRINGS; 1322 mcip->mci_share = NULL; 1323 if (share_desired) { 1324 ASSERT(!no_hwrings); 1325 i_mac_share_alloc(mcip); 1326 } 1327 1328 DTRACE_PROBE2(mac__client__open__allocated, mac_impl_t *, 1329 mcip->mci_mip, mac_client_impl_t *, mcip); 1330 *mchp = (mac_client_handle_t)mcip; 1331 1332 i_mac_perim_exit(mip); 1333 return (0); 1334 1335 done: 1336 i_mac_perim_exit(mip); 1337 mcip->mci_state_flags = 0; 1338 mcip->mci_tx_flag = 0; 1339 kmem_cache_free(mac_client_impl_cache, mcip); 1340 return (err); 1341 } 1342 1343 /* 1344 * Close the specified MAC client handle. 1345 */ 1346 void 1347 mac_client_close(mac_client_handle_t mch, uint16_t flags) 1348 { 1349 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1350 mac_impl_t *mip = mcip->mci_mip; 1351 flow_entry_t *flent; 1352 1353 i_mac_perim_enter(mip); 1354 1355 if (flags & MAC_CLOSE_FLAGS_EXCLUSIVE) 1356 mcip->mci_state_flags &= ~MCIS_EXCLUSIVE; 1357 1358 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && 1359 !(flags & MAC_CLOSE_FLAGS_IS_VNIC)) { 1360 /* 1361 * This is an upper VNIC client initiated operation. 1362 * The lower MAC client will be closed by the VNIC driver 1363 * when the VNIC is deleted. 1364 */ 1365 1366 i_mac_perim_exit(mip); 1367 return; 1368 } 1369 1370 /* 1371 * Remove the flent associated with the MAC client 1372 */ 1373 flent = mcip->mci_flent; 1374 mcip->mci_flent = NULL; 1375 FLOW_FINAL_REFRELE(flent); 1376 1377 /* 1378 * MAC clients must remove the unicast addresses and promisc callbacks 1379 * they added before issuing a mac_client_close(). 1380 */ 1381 ASSERT(mcip->mci_unicast_list == NULL); 1382 ASSERT(mcip->mci_promisc_list == NULL); 1383 ASSERT(mcip->mci_tx_notify_cb_list == NULL); 1384 1385 i_mac_share_free(mcip); 1386 1387 mac_client_remove(mcip); 1388 1389 i_mac_perim_exit(mip); 1390 mcip->mci_subflow_tab = NULL; 1391 mcip->mci_state_flags = 0; 1392 mcip->mci_tx_flag = 0; 1393 kmem_cache_free(mac_client_impl_cache, mch); 1394 } 1395 1396 /* 1397 * Enable bypass for the specified MAC client. 1398 */ 1399 boolean_t 1400 mac_rx_bypass_set(mac_client_handle_t mch, mac_direct_rx_t rx_fn, void *arg1) 1401 { 1402 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1403 mac_impl_t *mip = mcip->mci_mip; 1404 1405 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1406 1407 /* 1408 * If the mac_client is a VLAN, we should not do DLS bypass and 1409 * instead let the packets come up via mac_rx_deliver so the vlan 1410 * header can be stripped. 1411 */ 1412 if (mcip->mci_nvids > 0) 1413 return (B_FALSE); 1414 1415 /* 1416 * These are not accessed directly in the data path, and hence 1417 * don't need any protection 1418 */ 1419 mcip->mci_direct_rx_fn = rx_fn; 1420 mcip->mci_direct_rx_arg = arg1; 1421 mcip->mci_state_flags |= MCIS_CLIENT_POLL_CAPABLE; 1422 return (B_TRUE); 1423 } 1424 1425 /* 1426 * Set the receive callback for the specified MAC client. There can be 1427 * at most one such callback per MAC client. 1428 */ 1429 void 1430 mac_rx_set(mac_client_handle_t mch, mac_rx_t rx_fn, void *arg) 1431 { 1432 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1433 mac_impl_t *mip = mcip->mci_mip; 1434 1435 /* 1436 * Instead of adding an extra set of locks and refcnts in 1437 * the datapath at the mac client boundary, we temporarily quiesce 1438 * the SRS and related entities. We then change the receive function 1439 * without interference from any receive data thread and then reenable 1440 * the data flow subsequently. 1441 */ 1442 i_mac_perim_enter(mip); 1443 mac_rx_client_quiesce(mch); 1444 1445 mcip->mci_rx_fn = rx_fn; 1446 mcip->mci_rx_arg = arg; 1447 mac_rx_client_restart(mch); 1448 i_mac_perim_exit(mip); 1449 } 1450 1451 /* 1452 * Reset the receive callback for the specified MAC client. 1453 */ 1454 void 1455 mac_rx_clear(mac_client_handle_t mch) 1456 { 1457 mac_rx_set(mch, mac_pkt_drop, NULL); 1458 } 1459 1460 /* 1461 * Walk the MAC client subflow table and updates their priority values. 1462 */ 1463 static int 1464 mac_update_subflow_priority_cb(flow_entry_t *flent, void *arg) 1465 { 1466 mac_flow_update_priority(arg, flent); 1467 return (0); 1468 } 1469 1470 void 1471 mac_update_subflow_priority(mac_client_impl_t *mcip) 1472 { 1473 (void) mac_flow_walk(mcip->mci_subflow_tab, 1474 mac_update_subflow_priority_cb, mcip); 1475 } 1476 1477 /* 1478 * When the MAC client is being brought up (i.e. we do a unicast_add) we need 1479 * to initialize the cpu and resource control structure in the 1480 * mac_client_impl_t from the mac_impl_t (i.e if there are any cached 1481 * properties before the flow entry for the unicast address was created). 1482 */ 1483 int 1484 mac_resource_ctl_set(mac_client_handle_t mch, mac_resource_props_t *mrp) 1485 { 1486 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1487 mac_impl_t *mip = (mac_impl_t *)mcip->mci_mip; 1488 int err = 0; 1489 1490 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1491 1492 err = mac_validate_props(mrp); 1493 if (err != 0) 1494 return (err); 1495 1496 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE); 1497 if (MCIP_DATAPATH_SETUP(mcip)) { 1498 /* 1499 * We have to set this prior to calling mac_flow_modify. 1500 */ 1501 if (mrp->mrp_mask & MRP_PRIORITY) { 1502 if (mrp->mrp_priority == MPL_RESET) { 1503 MAC_CLIENT_SET_PRIORITY_RANGE(mcip, 1504 MPL_LINK_DEFAULT); 1505 } else { 1506 MAC_CLIENT_SET_PRIORITY_RANGE(mcip, 1507 mrp->mrp_priority); 1508 } 1509 } 1510 1511 mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp); 1512 if (mrp->mrp_mask & MRP_PRIORITY) 1513 mac_update_subflow_priority(mcip); 1514 return (0); 1515 } 1516 return (0); 1517 } 1518 1519 void 1520 mac_resource_ctl_get(mac_client_handle_t mch, mac_resource_props_t *mrp) 1521 { 1522 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1523 mac_resource_props_t *mcip_mrp = MCIP_RESOURCE_PROPS(mcip); 1524 1525 bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t)); 1526 } 1527 1528 static int 1529 mac_unicast_flow_create(mac_client_impl_t *mcip, uint8_t *mac_addr, 1530 uint16_t vid, boolean_t is_primary, boolean_t first_flow, 1531 flow_entry_t **flent, mac_resource_props_t *mrp) 1532 { 1533 mac_impl_t *mip = (mac_impl_t *)mcip->mci_mip; 1534 flow_desc_t flow_desc; 1535 char flowname[MAXFLOWNAMELEN]; 1536 int err; 1537 uint_t flent_flags; 1538 1539 /* 1540 * First unicast address being added, create a new flow 1541 * for that MAC client. 1542 */ 1543 bzero(&flow_desc, sizeof (flow_desc)); 1544 1545 flow_desc.fd_mac_len = mip->mi_type->mt_addr_length; 1546 bcopy(mac_addr, flow_desc.fd_dst_mac, flow_desc.fd_mac_len); 1547 flow_desc.fd_mask = FLOW_LINK_DST; 1548 if (vid != 0) { 1549 flow_desc.fd_vid = vid; 1550 flow_desc.fd_mask |= FLOW_LINK_VID; 1551 } 1552 1553 /* 1554 * XXX-nicolas. For now I'm keeping the FLOW_PRIMARY_MAC 1555 * and FLOW_VNIC. Even though they're a hack inherited 1556 * from the SRS code, we'll keep them for now. They're currently 1557 * consumed by mac_datapath_setup() to create the SRS. 1558 * That code should be eventually moved out of 1559 * mac_datapath_setup() and moved to a mac_srs_create() 1560 * function of some sort to keep things clean. 1561 * 1562 * Also, there's no reason why the SRS for the primary MAC 1563 * client should be different than any other MAC client. Until 1564 * this is cleaned-up, we support only one MAC unicast address 1565 * per client. 1566 * 1567 * We set FLOW_PRIMARY_MAC for the primary MAC address, 1568 * FLOW_VNIC for everything else. 1569 */ 1570 if (is_primary) 1571 flent_flags = FLOW_PRIMARY_MAC; 1572 else 1573 flent_flags = FLOW_VNIC_MAC; 1574 1575 /* 1576 * For the first flow we use the mac client's name - mci_name, for 1577 * subsequent ones we just create a name with the vid. This is 1578 * so that we can add these flows to the same flow table. This is 1579 * fine as the flow name (except for the one with the mac client's 1580 * name) is not visible. When the first flow is removed, we just replace 1581 * its fdesc with another from the list, so we will still retain the 1582 * flent with the MAC client's flow name. 1583 */ 1584 if (first_flow) { 1585 bcopy(mcip->mci_name, flowname, MAXFLOWNAMELEN); 1586 } else { 1587 (void) sprintf(flowname, "%s%u", mcip->mci_name, vid); 1588 flent_flags = FLOW_NO_STATS; 1589 } 1590 1591 if ((err = mac_flow_create(&flow_desc, mrp, flowname, NULL, 1592 flent_flags, flent)) != 0) 1593 return (err); 1594 1595 FLOW_MARK(*flent, FE_INCIPIENT); 1596 (*flent)->fe_mcip = mcip; 1597 1598 /* 1599 * Place initial creation reference on the flow. This reference 1600 * is released in the corresponding delete action viz. 1601 * mac_unicast_remove after waiting for all transient refs to 1602 * to go away. The wait happens in mac_flow_wait. 1603 * We have already held the reference in mac_client_open(). 1604 */ 1605 if (!first_flow) 1606 FLOW_REFHOLD(*flent); 1607 return (0); 1608 } 1609 1610 /* Refresh the multicast grouping for this VID. */ 1611 int 1612 mac_client_update_mcast(void *arg, boolean_t add, const uint8_t *addrp) 1613 { 1614 flow_entry_t *flent = arg; 1615 mac_client_impl_t *mcip = flent->fe_mcip; 1616 uint16_t vid; 1617 flow_desc_t flow_desc; 1618 1619 mac_flow_get_desc(flent, &flow_desc); 1620 vid = (flow_desc.fd_mask & FLOW_LINK_VID) != 0 ? 1621 flow_desc.fd_vid : VLAN_ID_NONE; 1622 1623 /* 1624 * We don't call mac_multicast_add()/mac_multicast_remove() as 1625 * we want to add/remove for this specific vid. 1626 */ 1627 if (add) { 1628 return (mac_bcast_add(mcip, addrp, vid, 1629 MAC_ADDRTYPE_MULTICAST)); 1630 } else { 1631 mac_bcast_delete(mcip, addrp, vid); 1632 return (0); 1633 } 1634 } 1635 1636 static void 1637 mac_update_single_active_client(mac_impl_t *mip) 1638 { 1639 mac_client_impl_t *client = NULL; 1640 1641 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1642 1643 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1644 if (mip->mi_nactiveclients == 1) { 1645 /* 1646 * Find the one active MAC client from the list of MAC 1647 * clients. The active MAC client has at least one 1648 * unicast address. 1649 */ 1650 for (client = mip->mi_clients_list; client != NULL; 1651 client = client->mci_client_next) { 1652 if (client->mci_unicast_list != NULL) 1653 break; 1654 } 1655 ASSERT(client != NULL); 1656 } 1657 1658 /* 1659 * mi_single_active_client is protected by the MAC impl's read/writer 1660 * lock, which allows mac_rx() to check the value of that pointer 1661 * as a reader. 1662 */ 1663 mip->mi_single_active_client = client; 1664 rw_exit(&mip->mi_rw_lock); 1665 } 1666 1667 /* 1668 * Set up the data path. Called from i_mac_unicast_add after having 1669 * done all the validations including making sure this is an active 1670 * client (i.e that is ready to process packets.) 1671 */ 1672 static int 1673 mac_client_datapath_setup(mac_client_impl_t *mcip, uint16_t vid, 1674 uint8_t *mac_addr, mac_resource_props_t *mrp, boolean_t isprimary, 1675 mac_unicast_impl_t *muip) 1676 { 1677 mac_impl_t *mip = mcip->mci_mip; 1678 boolean_t mac_started = B_FALSE; 1679 boolean_t bcast_added = B_FALSE; 1680 boolean_t nactiveclients_added = B_FALSE; 1681 flow_entry_t *flent; 1682 int err = 0; 1683 1684 if ((err = mac_start((mac_handle_t)mip)) != 0) 1685 goto bail; 1686 1687 mac_started = B_TRUE; 1688 1689 /* add the MAC client to the broadcast address group by default */ 1690 if (mip->mi_type->mt_brdcst_addr != NULL) { 1691 err = mac_bcast_add(mcip, mip->mi_type->mt_brdcst_addr, vid, 1692 MAC_ADDRTYPE_BROADCAST); 1693 if (err != 0) 1694 goto bail; 1695 bcast_added = B_TRUE; 1696 } 1697 1698 /* 1699 * If this is the first unicast address addition for this 1700 * client, reuse the pre-allocated larval flow entry associated with 1701 * the MAC client. 1702 */ 1703 flent = (mcip->mci_nflents == 0) ? mcip->mci_flent : NULL; 1704 1705 /* We are configuring the unicast flow now */ 1706 if (!MCIP_DATAPATH_SETUP(mcip)) { 1707 1708 MAC_CLIENT_SET_PRIORITY_RANGE(mcip, 1709 (mrp->mrp_mask & MRP_PRIORITY) ? mrp->mrp_priority : 1710 MPL_LINK_DEFAULT); 1711 1712 if ((err = mac_unicast_flow_create(mcip, mac_addr, vid, 1713 isprimary, B_TRUE, &flent, mrp)) != 0) 1714 goto bail; 1715 1716 mip->mi_nactiveclients++; 1717 nactiveclients_added = B_TRUE; 1718 1719 /* 1720 * This will allocate the RX ring group if possible for the 1721 * flow and program the software classifier as needed. 1722 */ 1723 if ((err = mac_datapath_setup(mcip, flent, SRST_LINK)) != 0) 1724 goto bail; 1725 1726 /* 1727 * The unicast MAC address must have been added successfully. 1728 */ 1729 ASSERT(mcip->mci_unicast != NULL); 1730 /* 1731 * Push down the sub-flows that were defined on this link 1732 * hitherto. The flows are added to the active flow table 1733 * and SRS, softrings etc. are created as needed. 1734 */ 1735 mac_link_init_flows((mac_client_handle_t)mcip); 1736 } else { 1737 mac_address_t *map = mcip->mci_unicast; 1738 1739 /* 1740 * A unicast flow already exists for that MAC client, 1741 * this flow must be the same mac address but with 1742 * different VID. It has been checked by mac_addr_in_use(). 1743 * 1744 * We will use the SRS etc. from the mci_flent. Note that 1745 * We don't need to create kstat for this as except for 1746 * the fdesc, everything will be used from in the 1st flent. 1747 */ 1748 1749 if (bcmp(mac_addr, map->ma_addr, map->ma_len) != 0) { 1750 err = EINVAL; 1751 goto bail; 1752 } 1753 1754 if ((err = mac_unicast_flow_create(mcip, mac_addr, vid, 1755 isprimary, B_FALSE, &flent, NULL)) != 0) { 1756 goto bail; 1757 } 1758 if ((err = mac_flow_add(mip->mi_flow_tab, flent)) != 0) { 1759 FLOW_FINAL_REFRELE(flent); 1760 goto bail; 1761 } 1762 1763 /* update the multicast group for this vid */ 1764 mac_client_bcast_refresh(mcip, mac_client_update_mcast, 1765 (void *)flent, B_TRUE); 1766 1767 } 1768 1769 /* populate the shared MAC address */ 1770 muip->mui_map = mcip->mci_unicast; 1771 1772 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 1773 muip->mui_next = mcip->mci_unicast_list; 1774 mcip->mci_unicast_list = muip; 1775 rw_exit(&mcip->mci_rw_lock); 1776 1777 1778 /* 1779 * First add the flent to the flow list of this mcip. Then set 1780 * the mip's mi_single_active_client if needed. The Rx path assumes 1781 * that mip->mi_single_active_client will always have an associated 1782 * flent. 1783 */ 1784 mac_client_add_to_flow_list(mcip, flent); 1785 1786 if (nactiveclients_added) 1787 mac_update_single_active_client(mip); 1788 /* 1789 * Trigger a renegotiation of the capabilities when the number of 1790 * active clients changes from 1 to 2, since some of the capabilities 1791 * might have to be disabled. Also send a MAC_NOTE_LINK notification 1792 * to all the MAC clients whenever physical link is DOWN. 1793 */ 1794 if (mip->mi_nactiveclients == 2) { 1795 mac_capab_update((mac_handle_t)mip); 1796 mac_virtual_link_update(mip); 1797 } 1798 /* 1799 * Now that the setup is complete, clear the INCIPIENT flag. 1800 * The flag was set to avoid incoming packets seeing inconsistent 1801 * structures while the setup was in progress. Clear the mci_tx_flag 1802 * by calling mac_tx_client_block. It is possible that 1803 * mac_unicast_remove was called prior to this mac_unicast_add which 1804 * could have set the MCI_TX_QUIESCE flag. 1805 */ 1806 if (flent->fe_rx_ring_group != NULL) 1807 mac_rx_group_unmark(flent->fe_rx_ring_group, MR_INCIPIENT); 1808 FLOW_UNMARK(flent, FE_INCIPIENT); 1809 FLOW_UNMARK(flent, FE_MC_NO_DATAPATH); 1810 mac_tx_client_unblock(mcip); 1811 return (0); 1812 bail: 1813 if (bcast_added) 1814 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, vid); 1815 1816 if (nactiveclients_added) 1817 mip->mi_nactiveclients--; 1818 1819 if (mac_started) 1820 mac_stop((mac_handle_t)mip); 1821 1822 return (err); 1823 } 1824 1825 /* 1826 * Return the passive primary MAC client, if present. The passive client is 1827 * a stand-by client that has the same unicast address as another that is 1828 * currenly active. Once the active client goes away, the passive client 1829 * becomes active. 1830 */ 1831 static mac_client_impl_t * 1832 mac_get_passive_primary_client(mac_impl_t *mip) 1833 { 1834 mac_client_impl_t *mcip; 1835 1836 for (mcip = mip->mi_clients_list; mcip != NULL; 1837 mcip = mcip->mci_client_next) { 1838 if (mac_is_primary_client(mcip) && 1839 (mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) { 1840 return (mcip); 1841 } 1842 } 1843 return (NULL); 1844 } 1845 1846 /* 1847 * Add a new unicast address to the MAC client. 1848 * 1849 * The MAC address can be specified either by value, or the MAC client 1850 * can specify that it wants to use the primary MAC address of the 1851 * underlying MAC. See the introductory comments at the beginning 1852 * of this file for more more information on primary MAC addresses. 1853 * 1854 * Note also the tuple (MAC address, VID) must be unique 1855 * for the MAC clients defined on top of the same underlying MAC 1856 * instance, unless the MAC_UNICAST_NODUPCHECK is specified. 1857 * 1858 * In no case can a client use the PVID for the MAC, if the MAC has one set. 1859 */ 1860 int 1861 i_mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags, 1862 mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag) 1863 { 1864 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1865 mac_impl_t *mip = mcip->mci_mip; 1866 int err; 1867 uint_t mac_len = mip->mi_type->mt_addr_length; 1868 boolean_t check_dups = !(flags & MAC_UNICAST_NODUPCHECK); 1869 boolean_t fastpath_disabled = B_FALSE; 1870 boolean_t is_primary = (flags & MAC_UNICAST_PRIMARY); 1871 boolean_t is_unicast_hw = (flags & MAC_UNICAST_HW); 1872 mac_resource_props_t mrp; 1873 boolean_t passive_client = B_FALSE; 1874 mac_unicast_impl_t *muip; 1875 boolean_t is_vnic_primary = 1876 (flags & MAC_UNICAST_VNIC_PRIMARY); 1877 1878 /* when VID is non-zero, the underlying MAC can not be VNIC */ 1879 ASSERT(!((mip->mi_state_flags & MIS_IS_VNIC) && (vid != 0))); 1880 1881 /* 1882 * Check for an attempted use of the current Port VLAN ID, if enabled. 1883 * No client may use it. 1884 */ 1885 if (mip->mi_pvid != 0 && vid == mip->mi_pvid) 1886 return (EBUSY); 1887 1888 /* 1889 * Check whether it's the primary client and flag it. 1890 */ 1891 if (!(mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary && vid == 0) 1892 mcip->mci_flags |= MAC_CLIENT_FLAGS_PRIMARY; 1893 1894 /* 1895 * is_vnic_primary is true when we come here as a VLAN VNIC 1896 * which uses the primary mac client's address but with a non-zero 1897 * VID. In this case the MAC address is not specified by an upper 1898 * MAC client. 1899 */ 1900 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary && 1901 !is_vnic_primary) { 1902 /* 1903 * The address is being set by the upper MAC client 1904 * of a VNIC. The MAC address was already set by the 1905 * VNIC driver during VNIC creation. 1906 * 1907 * Note: a VNIC has only one MAC address. We return 1908 * the MAC unicast address handle of the lower MAC client 1909 * corresponding to the VNIC. We allocate a new entry 1910 * which is flagged appropriately, so that mac_unicast_remove() 1911 * doesn't attempt to free the original entry that 1912 * was allocated by the VNIC driver. 1913 */ 1914 ASSERT(mcip->mci_unicast != NULL); 1915 1916 /* Check for VLAN flags, if present */ 1917 if ((flags & MAC_UNICAST_TAG_DISABLE) != 0) 1918 mcip->mci_state_flags |= MCIS_TAG_DISABLE; 1919 1920 if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0) 1921 mcip->mci_state_flags |= MCIS_STRIP_DISABLE; 1922 1923 if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0) 1924 mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK; 1925 1926 /* 1927 * Ensure that the primary unicast address of the VNIC 1928 * is added only once unless we have the 1929 * MAC_CLIENT_FLAGS_MULTI_PRIMARY set (and this is not 1930 * a passive MAC client). 1931 */ 1932 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) != 0) { 1933 if ((mcip->mci_flags & 1934 MAC_CLIENT_FLAGS_MULTI_PRIMARY) == 0 || 1935 (mcip->mci_flags & 1936 MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) { 1937 return (EBUSY); 1938 } 1939 mcip->mci_flags |= MAC_CLIENT_FLAGS_PASSIVE_PRIMARY; 1940 passive_client = B_TRUE; 1941 } 1942 1943 mcip->mci_flags |= MAC_CLIENT_FLAGS_VNIC_PRIMARY; 1944 1945 /* 1946 * Create a handle for vid 0. 1947 */ 1948 ASSERT(vid == 0); 1949 muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP); 1950 muip->mui_vid = vid; 1951 *mah = (mac_unicast_handle_t)muip; 1952 /* 1953 * This will be used by the caller to defer setting the 1954 * rx functions. 1955 */ 1956 if (passive_client) 1957 return (EAGAIN); 1958 return (0); 1959 } 1960 1961 /* primary MAC clients cannot be opened on top of anchor VNICs */ 1962 if ((is_vnic_primary || is_primary) && 1963 i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_ANCHOR_VNIC, NULL)) { 1964 return (ENXIO); 1965 } 1966 1967 /* 1968 * If this is a VNIC/VLAN, disable softmac fast-path. 1969 */ 1970 if (mcip->mci_state_flags & MCIS_IS_VNIC) { 1971 err = mac_fastpath_disable((mac_handle_t)mip); 1972 if (err != 0) 1973 return (err); 1974 fastpath_disabled = B_TRUE; 1975 } 1976 1977 /* 1978 * Return EBUSY if: 1979 * - there is an exclusively active mac client exists. 1980 * - this is an exclusive active mac client but 1981 * a. there is already active mac clients exist, or 1982 * b. fastpath streams are already plumbed on this legacy device 1983 * - the mac creator has disallowed active mac clients. 1984 */ 1985 if (mip->mi_state_flags & (MIS_EXCLUSIVE|MIS_NO_ACTIVE)) { 1986 if (fastpath_disabled) 1987 mac_fastpath_enable((mac_handle_t)mip); 1988 return (EBUSY); 1989 } 1990 1991 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) { 1992 ASSERT(!fastpath_disabled); 1993 if (mip->mi_nactiveclients != 0) 1994 return (EBUSY); 1995 1996 if ((mip->mi_state_flags & MIS_LEGACY) && 1997 !(mip->mi_capab_legacy.ml_active_set(mip->mi_driver))) { 1998 return (EBUSY); 1999 } 2000 mip->mi_state_flags |= MIS_EXCLUSIVE; 2001 } 2002 2003 bzero(&mrp, sizeof (mac_resource_props_t)); 2004 if (is_primary && !(mcip->mci_state_flags & (MCIS_IS_VNIC | 2005 MCIS_IS_AGGR_PORT))) { 2006 /* 2007 * Apply the property cached in the mac_impl_t to the primary 2008 * mac client. If the mac client is a VNIC or an aggregation 2009 * port, its property should be set in the mcip when the 2010 * VNIC/aggr was created. 2011 */ 2012 mac_get_resources((mac_handle_t)mip, &mrp); 2013 (void) mac_client_set_resources(mch, &mrp); 2014 } else if (mcip->mci_state_flags & MCIS_IS_VNIC) { 2015 bcopy(MCIP_RESOURCE_PROPS(mcip), &mrp, 2016 sizeof (mac_resource_props_t)); 2017 } 2018 2019 muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP); 2020 muip->mui_vid = vid; 2021 2022 if (is_primary || is_vnic_primary) { 2023 mac_addr = mip->mi_addr; 2024 } else { 2025 2026 /* 2027 * Verify the validity of the specified MAC addresses value. 2028 */ 2029 if (!mac_unicst_verify((mac_handle_t)mip, mac_addr, mac_len)) { 2030 *diag = MAC_DIAG_MACADDR_INVALID; 2031 err = EINVAL; 2032 goto bail_out; 2033 } 2034 2035 /* 2036 * Make sure that the specified MAC address is different 2037 * than the unicast MAC address of the underlying NIC. 2038 */ 2039 if (check_dups && bcmp(mip->mi_addr, mac_addr, mac_len) == 0) { 2040 *diag = MAC_DIAG_MACADDR_NIC; 2041 err = EINVAL; 2042 goto bail_out; 2043 } 2044 } 2045 2046 /* 2047 * Set the flags here so that if this is a passive client, we 2048 * can return and set it when we call mac_client_datapath_setup 2049 * when this becomes the active client. If we defer to using these 2050 * flags to mac_client_datapath_setup, then for a passive client, 2051 * we'd have to store the flags somewhere (probably fe_flags) 2052 * and then use it. 2053 */ 2054 if (!MCIP_DATAPATH_SETUP(mcip)) { 2055 if (is_unicast_hw) { 2056 /* 2057 * The client requires a hardware MAC address slot 2058 * for that unicast address. Since we support only 2059 * one unicast MAC address per client, flag the 2060 * MAC client itself. 2061 */ 2062 mcip->mci_state_flags |= MCIS_UNICAST_HW; 2063 } 2064 2065 /* Check for VLAN flags, if present */ 2066 if ((flags & MAC_UNICAST_TAG_DISABLE) != 0) 2067 mcip->mci_state_flags |= MCIS_TAG_DISABLE; 2068 2069 if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0) 2070 mcip->mci_state_flags |= MCIS_STRIP_DISABLE; 2071 2072 if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0) 2073 mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK; 2074 } else { 2075 /* 2076 * Assert that the specified flags are consistent with the 2077 * flags specified by previous calls to mac_unicast_add(). 2078 */ 2079 ASSERT(((flags & MAC_UNICAST_TAG_DISABLE) != 0 && 2080 (mcip->mci_state_flags & MCIS_TAG_DISABLE) != 0) || 2081 ((flags & MAC_UNICAST_TAG_DISABLE) == 0 && 2082 (mcip->mci_state_flags & MCIS_TAG_DISABLE) == 0)); 2083 2084 ASSERT(((flags & MAC_UNICAST_STRIP_DISABLE) != 0 && 2085 (mcip->mci_state_flags & MCIS_STRIP_DISABLE) != 0) || 2086 ((flags & MAC_UNICAST_STRIP_DISABLE) == 0 && 2087 (mcip->mci_state_flags & MCIS_STRIP_DISABLE) == 0)); 2088 2089 ASSERT(((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0 && 2090 (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) != 0) || 2091 ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) == 0 && 2092 (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) == 0)); 2093 2094 /* 2095 * Make sure the client is consistent about its requests 2096 * for MAC addresses. I.e. all requests from the clients 2097 * must have the MAC_UNICAST_HW flag set or clear. 2098 */ 2099 if ((mcip->mci_state_flags & MCIS_UNICAST_HW) != 0 && 2100 !is_unicast_hw || 2101 (mcip->mci_state_flags & MCIS_UNICAST_HW) == 0 && 2102 is_unicast_hw) { 2103 err = EINVAL; 2104 goto bail_out; 2105 } 2106 } 2107 /* 2108 * Make sure the MAC address is not already used by 2109 * another MAC client defined on top of the same 2110 * underlying NIC. Unless we have MAC_CLIENT_FLAGS_MULTI_PRIMARY 2111 * set when we allow a passive client to be present which will 2112 * be activated when the currently active client goes away - this 2113 * works only with primary addresses. 2114 */ 2115 if ((check_dups || is_primary || is_vnic_primary) && 2116 mac_addr_in_use(mip, mac_addr, vid)) { 2117 /* 2118 * Must have set the multiple primary address flag when 2119 * we did a mac_client_open AND this should be a primary 2120 * MAC client AND there should not already be a passive 2121 * primary. If all is true then we let this succeed 2122 * even if the address is a dup. 2123 */ 2124 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_MULTI_PRIMARY) == 0 || 2125 (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) == 0 || 2126 mac_get_passive_primary_client(mip) != NULL) { 2127 *diag = MAC_DIAG_MACADDR_INUSE; 2128 err = EEXIST; 2129 goto bail_out; 2130 } 2131 ASSERT((mcip->mci_flags & 2132 MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) == 0); 2133 mcip->mci_flags |= MAC_CLIENT_FLAGS_PASSIVE_PRIMARY; 2134 2135 /* 2136 * Stash the unicast address handle, we will use it when 2137 * we set up the passive client. 2138 */ 2139 mcip->mci_p_unicast_list = muip; 2140 *mah = (mac_unicast_handle_t)muip; 2141 return (0); 2142 } 2143 2144 err = mac_client_datapath_setup(mcip, vid, mac_addr, &mrp, 2145 is_primary || is_vnic_primary, muip); 2146 if (err != 0) 2147 goto bail_out; 2148 *mah = (mac_unicast_handle_t)muip; 2149 return (0); 2150 2151 bail_out: 2152 if (fastpath_disabled) 2153 mac_fastpath_enable((mac_handle_t)mip); 2154 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) { 2155 mip->mi_state_flags &= ~MIS_EXCLUSIVE; 2156 if (mip->mi_state_flags & MIS_LEGACY) { 2157 mip->mi_capab_legacy.ml_active_clear( 2158 mip->mi_driver); 2159 } 2160 } 2161 kmem_free(muip, sizeof (mac_unicast_impl_t)); 2162 return (err); 2163 } 2164 2165 /* 2166 * Wrapper function to mac_unicast_add when we want to have the same mac 2167 * client open for two instances, one that is currently active and another 2168 * that will become active when the current one is removed. In this case 2169 * mac_unicast_add will return EGAIN and we will save the rx function and 2170 * arg which will be used when we activate the passive client in 2171 * mac_unicast_remove. 2172 */ 2173 int 2174 mac_unicast_add_set_rx(mac_client_handle_t mch, uint8_t *mac_addr, 2175 uint16_t flags, mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag, 2176 mac_rx_t rx_fn, void *arg) 2177 { 2178 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2179 uint_t err; 2180 2181 err = mac_unicast_add(mch, mac_addr, flags, mah, vid, diag); 2182 if (err != 0 && err != EAGAIN) 2183 return (err); 2184 if (err == EAGAIN) { 2185 if (rx_fn != NULL) { 2186 mcip->mci_rx_p_fn = rx_fn; 2187 mcip->mci_rx_p_arg = arg; 2188 } 2189 return (0); 2190 } 2191 if (rx_fn != NULL) 2192 mac_rx_set(mch, rx_fn, arg); 2193 return (err); 2194 } 2195 2196 int 2197 mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags, 2198 mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag) 2199 { 2200 mac_impl_t *mip = ((mac_client_impl_t *)mch)->mci_mip; 2201 uint_t err; 2202 2203 i_mac_perim_enter(mip); 2204 err = i_mac_unicast_add(mch, mac_addr, flags, mah, vid, diag); 2205 i_mac_perim_exit(mip); 2206 2207 return (err); 2208 } 2209 2210 void 2211 mac_client_datapath_teardown(mac_client_handle_t mch, mac_unicast_impl_t *muip, 2212 flow_entry_t *flent) 2213 { 2214 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2215 mac_impl_t *mip = mcip->mci_mip; 2216 2217 /* 2218 * We would have initialized subflows etc. only if we brought up 2219 * the primary client and set the unicast unicast address etc. 2220 * Deactivate the flows. The flow entry will be removed from the 2221 * active flow tables, and the associated SRS, softrings etc will 2222 * be deleted. But the flow entry itself won't be destroyed, instead 2223 * it will continue to be archived off the the global flow hash 2224 * list, for a possible future activation when say IP is plumbed 2225 * again. 2226 */ 2227 mac_link_release_flows(mch); 2228 2229 mip->mi_nactiveclients--; 2230 mac_update_single_active_client(mip); 2231 2232 /* Tear down the data path */ 2233 mac_datapath_teardown(mcip, mcip->mci_flent, SRST_LINK); 2234 2235 /* 2236 * Prevent any future access to the flow entry through the mci_flent 2237 * pointer by setting the mci_flent to NULL. Access to mci_flent in 2238 * mac_bcast_send is also under mi_rw_lock. 2239 */ 2240 rw_enter(&mip->mi_rw_lock, RW_WRITER); 2241 flent = mcip->mci_flent; 2242 mac_client_remove_flow_from_list(mcip, flent); 2243 2244 if (mcip->mci_state_flags & MCIS_DESC_LOGGED) 2245 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED; 2246 2247 /* 2248 * This is the last unicast address being removed and there shouldn't 2249 * be any outbound data threads at this point coming down from mac 2250 * clients. We have waited for the data threads to finish before 2251 * starting dld_str_detach. Non-data threads must access TX SRS 2252 * under mi_rw_lock. 2253 */ 2254 rw_exit(&mip->mi_rw_lock); 2255 2256 /* 2257 * Don't use FLOW_MARK with FE_MC_NO_DATAPATH, as the flow might 2258 * contain other flags, such as FE_CONDEMNED, which we need to 2259 * cleared. We don't call mac_flow_cleanup() for this unicast 2260 * flow as we have a already cleaned up SRSs etc. (via the teadown 2261 * path). We just clear the stats and reset the initial callback 2262 * function, the rest will be set when we call mac_flow_create, 2263 * if at all. 2264 */ 2265 mutex_enter(&flent->fe_lock); 2266 ASSERT(flent->fe_refcnt == 1 && flent->fe_mbg == NULL && 2267 flent->fe_tx_srs == NULL && flent->fe_rx_srs_cnt == 0); 2268 flent->fe_flags = FE_MC_NO_DATAPATH; 2269 flow_stat_destroy(flent); 2270 2271 /* Initialize the receiver function to a safe routine */ 2272 flent->fe_cb_fn = (flow_fn_t)mac_pkt_drop; 2273 flent->fe_cb_arg1 = NULL; 2274 flent->fe_cb_arg2 = NULL; 2275 2276 flent->fe_index = -1; 2277 mutex_exit(&flent->fe_lock); 2278 2279 if (mip->mi_type->mt_brdcst_addr != NULL) { 2280 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, 2281 muip->mui_vid); 2282 } 2283 2284 if (mip->mi_nactiveclients == 1) { 2285 mac_capab_update((mac_handle_t)mip); 2286 mac_virtual_link_update(mip); 2287 } 2288 2289 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) { 2290 mip->mi_state_flags &= ~MIS_EXCLUSIVE; 2291 2292 if (mip->mi_state_flags & MIS_LEGACY) 2293 mip->mi_capab_legacy.ml_active_clear(mip->mi_driver); 2294 } 2295 2296 mcip->mci_state_flags &= ~MCIS_UNICAST_HW; 2297 2298 if (mcip->mci_state_flags & MCIS_TAG_DISABLE) 2299 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE; 2300 2301 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE) 2302 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE; 2303 2304 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) 2305 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK; 2306 2307 kmem_free(muip, sizeof (mac_unicast_impl_t)); 2308 2309 /* 2310 * Disable fastpath if this is a VNIC or a VLAN. 2311 */ 2312 if (mcip->mci_state_flags & MCIS_IS_VNIC) 2313 mac_fastpath_enable((mac_handle_t)mip); 2314 mac_stop((mac_handle_t)mip); 2315 } 2316 2317 /* 2318 * Remove a MAC address which was previously added by mac_unicast_add(). 2319 */ 2320 int 2321 mac_unicast_remove(mac_client_handle_t mch, mac_unicast_handle_t mah) 2322 { 2323 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2324 mac_unicast_impl_t *muip = (mac_unicast_impl_t *)mah; 2325 mac_unicast_impl_t *pre; 2326 mac_impl_t *mip = mcip->mci_mip; 2327 flow_entry_t *flent; 2328 boolean_t isprimary = B_FALSE; 2329 2330 i_mac_perim_enter(mip); 2331 if (mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) { 2332 /* 2333 * Called made by the upper MAC client of a VNIC. 2334 * There's nothing much to do, the unicast address will 2335 * be removed by the VNIC driver when the VNIC is deleted, 2336 * but let's ensure that all our transmit is done before 2337 * the client does a mac_client_stop lest it trigger an 2338 * assert in the driver. 2339 */ 2340 ASSERT(muip->mui_vid == 0); 2341 2342 mac_tx_client_flush(mcip); 2343 2344 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) { 2345 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY; 2346 if (mcip->mci_rx_p_fn != NULL) { 2347 mac_rx_set(mch, mcip->mci_rx_p_fn, 2348 mcip->mci_rx_p_arg); 2349 mcip->mci_rx_p_fn = NULL; 2350 mcip->mci_rx_p_arg = NULL; 2351 } 2352 kmem_free(muip, sizeof (mac_unicast_impl_t)); 2353 i_mac_perim_exit(mip); 2354 return (0); 2355 } 2356 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_VNIC_PRIMARY; 2357 2358 if (mcip->mci_state_flags & MCIS_TAG_DISABLE) 2359 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE; 2360 2361 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE) 2362 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE; 2363 2364 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) 2365 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK; 2366 2367 kmem_free(muip, sizeof (mac_unicast_impl_t)); 2368 i_mac_perim_exit(mip); 2369 return (0); 2370 } 2371 2372 ASSERT(muip != NULL); 2373 2374 /* 2375 * We are removing a passive client, we haven't setup the datapath 2376 * for this yet, so nothing much to do. 2377 */ 2378 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) { 2379 2380 ASSERT((mcip->mci_flent->fe_flags & FE_MC_NO_DATAPATH) != 0); 2381 ASSERT(mcip->mci_p_unicast_list == muip); 2382 2383 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY; 2384 2385 mcip->mci_p_unicast_list = NULL; 2386 mcip->mci_rx_p_fn = NULL; 2387 mcip->mci_rx_p_arg = NULL; 2388 2389 mcip->mci_state_flags &= ~MCIS_UNICAST_HW; 2390 2391 if (mcip->mci_state_flags & MCIS_TAG_DISABLE) 2392 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE; 2393 2394 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE) 2395 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE; 2396 2397 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) 2398 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK; 2399 2400 kmem_free(muip, sizeof (mac_unicast_impl_t)); 2401 i_mac_perim_exit(mip); 2402 return (0); 2403 } 2404 /* 2405 * Remove the VID from the list of client's VIDs. 2406 */ 2407 pre = mcip->mci_unicast_list; 2408 if (muip == pre) { 2409 mcip->mci_unicast_list = muip->mui_next; 2410 } else { 2411 while ((pre->mui_next != NULL) && (pre->mui_next != muip)) 2412 pre = pre->mui_next; 2413 ASSERT(pre->mui_next == muip); 2414 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 2415 pre->mui_next = muip->mui_next; 2416 rw_exit(&mcip->mci_rw_lock); 2417 } 2418 2419 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) && 2420 muip->mui_vid == 0) { 2421 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PRIMARY; 2422 isprimary = B_TRUE; 2423 } 2424 if (!mac_client_single_rcvr(mcip)) { 2425 /* 2426 * This MAC client is shared by more than one unicast 2427 * addresses, so we will just remove the flent 2428 * corresponding to the address being removed. We don't invoke 2429 * mac_rx_classify_flow_rem() since the additional flow is 2430 * not associated with its own separate set of SRS and rings, 2431 * and these constructs are still needed for the remaining 2432 * flows. 2433 */ 2434 flent = mac_client_get_flow(mcip, muip); 2435 ASSERT(flent != NULL); 2436 2437 /* 2438 * The first one is disappearing, need to make sure 2439 * we replace it with another from the list of 2440 * shared clients. 2441 */ 2442 if (flent == mcip->mci_flent) 2443 flent = mac_client_swap_mciflent(mcip); 2444 mac_client_remove_flow_from_list(mcip, flent); 2445 mac_flow_remove(mip->mi_flow_tab, flent, B_FALSE); 2446 mac_flow_wait(flent, FLOW_DRIVER_UPCALL); 2447 2448 /* 2449 * The multicast groups that were added by the client so 2450 * far must be removed from the brodcast domain corresponding 2451 * to the VID being removed. 2452 */ 2453 mac_client_bcast_refresh(mcip, mac_client_update_mcast, 2454 (void *)flent, B_FALSE); 2455 2456 if (mip->mi_type->mt_brdcst_addr != NULL) { 2457 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, 2458 muip->mui_vid); 2459 } 2460 2461 FLOW_FINAL_REFRELE(flent); 2462 ASSERT(!(mcip->mci_state_flags & MCIS_EXCLUSIVE)); 2463 /* 2464 * Enable fastpath if this is a VNIC or a VLAN. 2465 */ 2466 if (mcip->mci_state_flags & MCIS_IS_VNIC) 2467 mac_fastpath_enable((mac_handle_t)mip); 2468 mac_stop((mac_handle_t)mip); 2469 i_mac_perim_exit(mip); 2470 return (0); 2471 } 2472 2473 mac_client_datapath_teardown(mch, muip, flent); 2474 2475 /* 2476 * If we are removing the primary, check if we have a passive primary 2477 * client that we need to activate now. 2478 */ 2479 if (!isprimary) { 2480 i_mac_perim_exit(mip); 2481 return (0); 2482 } 2483 mcip = mac_get_passive_primary_client(mip); 2484 if (mcip != NULL) { 2485 mac_resource_props_t mrp; 2486 mac_unicast_impl_t *muip; 2487 2488 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY; 2489 bzero(&mrp, sizeof (mac_resource_props_t)); 2490 /* 2491 * Apply the property cached in the mac_impl_t to the 2492 * primary mac client. 2493 */ 2494 mac_get_resources((mac_handle_t)mip, &mrp); 2495 (void) mac_client_set_resources(mch, &mrp); 2496 ASSERT(mcip->mci_p_unicast_list != NULL); 2497 muip = mcip->mci_p_unicast_list; 2498 mcip->mci_p_unicast_list = NULL; 2499 if (mac_client_datapath_setup(mcip, VLAN_ID_NONE, 2500 mip->mi_addr, &mrp, B_TRUE, muip) == 0) { 2501 if (mcip->mci_rx_p_fn != NULL) { 2502 mac_rx_set(mch, mcip->mci_rx_p_fn, 2503 mcip->mci_rx_p_arg); 2504 mcip->mci_rx_p_fn = NULL; 2505 mcip->mci_rx_p_arg = NULL; 2506 } 2507 } else { 2508 kmem_free(muip, sizeof (mac_unicast_impl_t)); 2509 } 2510 } 2511 i_mac_perim_exit(mip); 2512 return (0); 2513 } 2514 2515 /* 2516 * Multicast add function invoked by MAC clients. 2517 */ 2518 int 2519 mac_multicast_add(mac_client_handle_t mch, const uint8_t *addr) 2520 { 2521 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2522 mac_impl_t *mip = mcip->mci_mip; 2523 flow_entry_t *flent = mcip->mci_flent_list; 2524 flow_entry_t *prev_fe = NULL; 2525 uint16_t vid; 2526 int err = 0; 2527 2528 /* Verify the address is a valid multicast address */ 2529 if ((err = mip->mi_type->mt_ops.mtops_multicst_verify(addr, 2530 mip->mi_pdata)) != 0) 2531 return (err); 2532 2533 i_mac_perim_enter(mip); 2534 while (flent != NULL) { 2535 vid = i_mac_flow_vid(flent); 2536 2537 err = mac_bcast_add((mac_client_impl_t *)mch, addr, vid, 2538 MAC_ADDRTYPE_MULTICAST); 2539 if (err != 0) 2540 break; 2541 prev_fe = flent; 2542 flent = flent->fe_client_next; 2543 } 2544 2545 /* 2546 * If we failed adding, then undo all, rather than partial 2547 * success. 2548 */ 2549 if (flent != NULL && prev_fe != NULL) { 2550 flent = mcip->mci_flent_list; 2551 while (flent != prev_fe->fe_client_next) { 2552 vid = i_mac_flow_vid(flent); 2553 mac_bcast_delete((mac_client_impl_t *)mch, addr, vid); 2554 flent = flent->fe_client_next; 2555 } 2556 } 2557 i_mac_perim_exit(mip); 2558 return (err); 2559 } 2560 2561 /* 2562 * Multicast delete function invoked by MAC clients. 2563 */ 2564 void 2565 mac_multicast_remove(mac_client_handle_t mch, const uint8_t *addr) 2566 { 2567 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2568 mac_impl_t *mip = mcip->mci_mip; 2569 flow_entry_t *flent; 2570 uint16_t vid; 2571 2572 i_mac_perim_enter(mip); 2573 for (flent = mcip->mci_flent_list; flent != NULL; 2574 flent = flent->fe_client_next) { 2575 vid = i_mac_flow_vid(flent); 2576 mac_bcast_delete((mac_client_impl_t *)mch, addr, vid); 2577 } 2578 i_mac_perim_exit(mip); 2579 } 2580 2581 /* 2582 * When a MAC client desires to capture packets on an interface, 2583 * it registers a promiscuous call back with mac_promisc_add(). 2584 * There are three types of promiscuous callbacks: 2585 * 2586 * * MAC_CLIENT_PROMISC_ALL 2587 * Captures all packets sent and received by the MAC client, 2588 * the physical interface, as well as all other MAC clients 2589 * defined on top of the same MAC. 2590 * 2591 * * MAC_CLIENT_PROMISC_FILTERED 2592 * Captures all packets sent and received by the MAC client, 2593 * plus all multicast traffic sent and received by the phyisical 2594 * interface and the other MAC clients. 2595 * 2596 * * MAC_CLIENT_PROMISC_MULTI 2597 * Captures all broadcast and multicast packets sent and 2598 * received by the MAC clients as well as the physical interface. 2599 * 2600 * In all cases, the underlying MAC is put in promiscuous mode. 2601 */ 2602 int 2603 mac_promisc_add(mac_client_handle_t mch, mac_client_promisc_type_t type, 2604 mac_rx_t fn, void *arg, mac_promisc_handle_t *mphp, uint16_t flags) 2605 { 2606 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2607 mac_impl_t *mip = mcip->mci_mip; 2608 mac_promisc_impl_t *mpip; 2609 mac_cb_info_t *mcbi; 2610 int rc; 2611 2612 i_mac_perim_enter(mip); 2613 2614 if ((rc = mac_start((mac_handle_t)mip)) != 0) { 2615 i_mac_perim_exit(mip); 2616 return (rc); 2617 } 2618 2619 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && 2620 type == MAC_CLIENT_PROMISC_ALL) { 2621 /* 2622 * The function is being invoked by the upper MAC client 2623 * of a VNIC. The VNIC should only see the traffic 2624 * it is entitled to. 2625 */ 2626 type = MAC_CLIENT_PROMISC_FILTERED; 2627 } 2628 2629 2630 /* 2631 * Turn on promiscuous mode for the underlying NIC. 2632 * This is needed even for filtered callbacks which 2633 * expect to receive all multicast traffic on the wire. 2634 * 2635 * Physical promiscuous mode should not be turned on if 2636 * MAC_PROMISC_FLAGS_NO_PHYS is set. 2637 */ 2638 if ((flags & MAC_PROMISC_FLAGS_NO_PHYS) == 0) { 2639 if ((rc = i_mac_promisc_set(mip, B_TRUE)) != 0) { 2640 mac_stop((mac_handle_t)mip); 2641 i_mac_perim_exit(mip); 2642 return (rc); 2643 } 2644 } 2645 2646 mpip = kmem_cache_alloc(mac_promisc_impl_cache, KM_SLEEP); 2647 2648 mpip->mpi_type = type; 2649 mpip->mpi_fn = fn; 2650 mpip->mpi_arg = arg; 2651 mpip->mpi_mcip = mcip; 2652 mpip->mpi_no_tx_loop = ((flags & MAC_PROMISC_FLAGS_NO_TX_LOOP) != 0); 2653 mpip->mpi_no_phys = ((flags & MAC_PROMISC_FLAGS_NO_PHYS) != 0); 2654 mpip->mpi_strip_vlan_tag = 2655 ((flags & MAC_PROMISC_FLAGS_VLAN_TAG_STRIP) != 0); 2656 mpip->mpi_no_copy = ((flags & MAC_PROMISC_FLAGS_NO_COPY) != 0); 2657 2658 mcbi = &mip->mi_promisc_cb_info; 2659 mutex_enter(mcbi->mcbi_lockp); 2660 2661 mac_callback_add(&mip->mi_promisc_cb_info, &mcip->mci_promisc_list, 2662 &mpip->mpi_mci_link); 2663 mac_callback_add(&mip->mi_promisc_cb_info, &mip->mi_promisc_list, 2664 &mpip->mpi_mi_link); 2665 2666 mutex_exit(mcbi->mcbi_lockp); 2667 2668 *mphp = (mac_promisc_handle_t)mpip; 2669 i_mac_perim_exit(mip); 2670 return (0); 2671 } 2672 2673 /* 2674 * Remove a multicast address previously aded through mac_promisc_add(). 2675 */ 2676 void 2677 mac_promisc_remove(mac_promisc_handle_t mph) 2678 { 2679 mac_promisc_impl_t *mpip = (mac_promisc_impl_t *)mph; 2680 mac_client_impl_t *mcip = mpip->mpi_mcip; 2681 mac_impl_t *mip = mcip->mci_mip; 2682 mac_cb_info_t *mcbi; 2683 int rv; 2684 2685 i_mac_perim_enter(mip); 2686 2687 /* 2688 * Even if the device can't be reset into normal mode, we still 2689 * need to clear the client promisc callbacks. The client may want 2690 * to close the mac end point and we can't have stale callbacks. 2691 */ 2692 if (!(mpip->mpi_no_phys)) { 2693 if ((rv = i_mac_promisc_set(mip, B_FALSE)) != 0) { 2694 cmn_err(CE_WARN, "%s: failed to switch OFF promiscuous" 2695 " mode because of error 0x%x", mip->mi_name, rv); 2696 } 2697 } 2698 mcbi = &mip->mi_promisc_cb_info; 2699 mutex_enter(mcbi->mcbi_lockp); 2700 if (mac_callback_remove(mcbi, &mip->mi_promisc_list, 2701 &mpip->mpi_mi_link)) { 2702 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info, 2703 &mcip->mci_promisc_list, &mpip->mpi_mci_link)); 2704 kmem_cache_free(mac_promisc_impl_cache, mpip); 2705 } else { 2706 mac_callback_remove_wait(&mip->mi_promisc_cb_info); 2707 } 2708 mutex_exit(mcbi->mcbi_lockp); 2709 mac_stop((mac_handle_t)mip); 2710 2711 i_mac_perim_exit(mip); 2712 } 2713 2714 /* 2715 * Reference count the number of active Tx threads. MCI_TX_QUIESCE indicates 2716 * that a control operation wants to quiesce the Tx data flow in which case 2717 * we return an error. Holding any of the per cpu locks ensures that the 2718 * mci_tx_flag won't change. 2719 * 2720 * 'CPU' must be accessed just once and used to compute the index into the 2721 * percpu array, and that index must be used for the entire duration of the 2722 * packet send operation. Note that the thread may be preempted and run on 2723 * another cpu any time and so we can't use 'CPU' more than once for the 2724 * operation. 2725 */ 2726 #define MAC_TX_TRY_HOLD(mcip, mytx, error) \ 2727 { \ 2728 (error) = 0; \ 2729 (mytx) = &(mcip)->mci_tx_pcpu[CPU->cpu_seqid & mac_tx_percpu_cnt]; \ 2730 mutex_enter(&(mytx)->pcpu_tx_lock); \ 2731 if (!((mcip)->mci_tx_flag & MCI_TX_QUIESCE)) { \ 2732 (mytx)->pcpu_tx_refcnt++; \ 2733 } else { \ 2734 (error) = -1; \ 2735 } \ 2736 mutex_exit(&(mytx)->pcpu_tx_lock); \ 2737 } 2738 2739 /* 2740 * Release the reference. If needed, signal any control operation waiting 2741 * for Tx quiescence. The wait and signal are always done using the 2742 * mci_tx_pcpu[0]'s lock 2743 */ 2744 #define MAC_TX_RELE(mcip, mytx) { \ 2745 mutex_enter(&(mytx)->pcpu_tx_lock); \ 2746 if (--(mytx)->pcpu_tx_refcnt == 0 && \ 2747 (mcip)->mci_tx_flag & MCI_TX_QUIESCE) { \ 2748 mutex_exit(&(mytx)->pcpu_tx_lock); \ 2749 mutex_enter(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock); \ 2750 cv_signal(&(mcip)->mci_tx_cv); \ 2751 mutex_exit(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock); \ 2752 } else { \ 2753 mutex_exit(&(mytx)->pcpu_tx_lock); \ 2754 } \ 2755 } 2756 2757 /* 2758 * Bump the count of the number of active Tx threads. This is maintained as 2759 * a per CPU counter. On (CMT kind of) machines with large number of CPUs, 2760 * a single mci_tx_lock may become contended. However a count of the total 2761 * number of Tx threads per client is needed in order to quiesce the Tx side 2762 * prior to reassigning a Tx ring dynamically to another client. The thread 2763 * that needs to quiesce the Tx traffic grabs all the percpu locks and checks 2764 * the sum of the individual percpu refcnts. Each Tx data thread only grabs 2765 * its own percpu lock and increments its own refcnt. 2766 */ 2767 void * 2768 mac_tx_hold(mac_client_handle_t mch) 2769 { 2770 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2771 mac_tx_percpu_t *mytx; 2772 int error; 2773 2774 MAC_TX_TRY_HOLD(mcip, mytx, error); 2775 return (error == 0 ? (void *)mytx : NULL); 2776 } 2777 2778 void 2779 mac_tx_rele(mac_client_handle_t mch, void *mytx_handle) 2780 { 2781 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2782 mac_tx_percpu_t *mytx = mytx_handle; 2783 2784 MAC_TX_RELE(mcip, mytx) 2785 } 2786 2787 /* 2788 * Send function invoked by MAC clients. 2789 */ 2790 mac_tx_cookie_t 2791 mac_tx(mac_client_handle_t mch, mblk_t *mp_chain, uintptr_t hint, 2792 uint16_t flag, mblk_t **ret_mp) 2793 { 2794 mac_tx_cookie_t cookie = NULL; 2795 int error; 2796 mac_tx_percpu_t *mytx; 2797 mac_soft_ring_set_t *srs; 2798 flow_entry_t *flent; 2799 boolean_t is_subflow = B_FALSE; 2800 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2801 mac_impl_t *mip = mcip->mci_mip; 2802 mac_srs_tx_t *srs_tx; 2803 2804 /* 2805 * Check whether the active Tx threads count is bumped already. 2806 */ 2807 if (!(flag & MAC_TX_NO_HOLD)) { 2808 MAC_TX_TRY_HOLD(mcip, mytx, error); 2809 if (error != 0) { 2810 freemsgchain(mp_chain); 2811 return (NULL); 2812 } 2813 } 2814 2815 /* 2816 * If mac protection is enabled, only the permissible packets will be 2817 * returned by mac_protect_check(). 2818 */ 2819 if ((mcip->mci_flent-> 2820 fe_resource_props.mrp_mask & MRP_PROTECT) != 0 && 2821 (mp_chain = mac_protect_check(mch, mp_chain)) == NULL) 2822 goto done; 2823 2824 if (mcip->mci_subflow_tab != NULL && 2825 mcip->mci_subflow_tab->ft_flow_count > 0 && 2826 mac_flow_lookup(mcip->mci_subflow_tab, mp_chain, 2827 FLOW_OUTBOUND, &flent) == 0) { 2828 /* 2829 * The main assumption here is that if in the event 2830 * we get a chain, all the packets will be classified 2831 * to the same Flow/SRS. If this changes for any 2832 * reason, the following logic should change as well. 2833 * I suppose the fanout_hint also assumes this . 2834 */ 2835 ASSERT(flent != NULL); 2836 is_subflow = B_TRUE; 2837 } else { 2838 flent = mcip->mci_flent; 2839 } 2840 2841 srs = flent->fe_tx_srs; 2842 /* 2843 * This is to avoid panics with PF_PACKET that can call mac_tx() 2844 * against an interface that is not capable of sending. A rewrite 2845 * of the mac datapath is required to remove this limitation. 2846 */ 2847 if (srs == NULL) { 2848 freemsgchain(mp_chain); 2849 goto done; 2850 } 2851 2852 srs_tx = &srs->srs_tx; 2853 if (srs_tx->st_mode == SRS_TX_DEFAULT && 2854 (srs->srs_state & SRS_ENQUEUED) == 0 && 2855 mip->mi_nactiveclients == 1 && mip->mi_promisc_list == NULL && 2856 mp_chain->b_next == NULL) { 2857 uint64_t obytes; 2858 2859 /* 2860 * Since dls always opens the underlying MAC, nclients equals 2861 * to 1 means that the only active client is dls itself acting 2862 * as a primary client of the MAC instance. Since dls will not 2863 * send tagged packets in that case, and dls is trusted to send 2864 * packets for its allowed VLAN(s), the VLAN tag insertion and 2865 * check is required only if nclients is greater than 1. 2866 */ 2867 if (mip->mi_nclients > 1) { 2868 if (MAC_VID_CHECK_NEEDED(mcip)) { 2869 int err = 0; 2870 2871 MAC_VID_CHECK(mcip, mp_chain, err); 2872 if (err != 0) { 2873 freemsg(mp_chain); 2874 mcip->mci_stat_oerrors++; 2875 goto done; 2876 } 2877 } 2878 if (MAC_TAG_NEEDED(mcip)) { 2879 mp_chain = mac_add_vlan_tag(mp_chain, 0, 2880 mac_client_vid(mch)); 2881 if (mp_chain == NULL) { 2882 mcip->mci_stat_oerrors++; 2883 goto done; 2884 } 2885 } 2886 } 2887 2888 obytes = (mp_chain->b_cont == NULL ? MBLKL(mp_chain) : 2889 msgdsize(mp_chain)); 2890 2891 MAC_TX(mip, srs_tx->st_arg2, mp_chain, 2892 ((mcip->mci_state_flags & MCIS_SHARE_BOUND) != 0)); 2893 2894 if (mp_chain == NULL) { 2895 cookie = NULL; 2896 mcip->mci_stat_obytes += obytes; 2897 mcip->mci_stat_opackets += 1; 2898 if ((srs->srs_type & SRST_FLOW) != 0) { 2899 FLOW_STAT_UPDATE(flent, obytes, obytes); 2900 FLOW_STAT_UPDATE(flent, opackets, 1); 2901 } 2902 } else { 2903 mutex_enter(&srs->srs_lock); 2904 cookie = mac_tx_srs_no_desc(srs, mp_chain, 2905 flag, ret_mp); 2906 mutex_exit(&srs->srs_lock); 2907 } 2908 } else { 2909 cookie = srs_tx->st_func(srs, mp_chain, hint, flag, ret_mp); 2910 } 2911 2912 done: 2913 if (is_subflow) 2914 FLOW_REFRELE(flent); 2915 2916 if (!(flag & MAC_TX_NO_HOLD)) 2917 MAC_TX_RELE(mcip, mytx); 2918 2919 return (cookie); 2920 } 2921 2922 /* 2923 * mac_tx_is_blocked 2924 * 2925 * Given a cookie, it returns if the ring identified by the cookie is 2926 * flow-controlled or not. If NULL is passed in place of a cookie, 2927 * then it finds out if any of the underlying rings belonging to the 2928 * SRS is flow controlled or not and returns that status. 2929 */ 2930 /* ARGSUSED */ 2931 boolean_t 2932 mac_tx_is_flow_blocked(mac_client_handle_t mch, mac_tx_cookie_t cookie) 2933 { 2934 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2935 mac_soft_ring_set_t *mac_srs; 2936 mac_soft_ring_t *sringp; 2937 boolean_t blocked = B_FALSE; 2938 mac_tx_percpu_t *mytx; 2939 int err; 2940 int i; 2941 2942 /* 2943 * Bump the reference count so that mac_srs won't be deleted. 2944 * If the client is currently quiesced and we failed to bump 2945 * the reference, return B_TRUE so that flow control stays 2946 * as enabled. 2947 * 2948 * Flow control will then be disabled once the client is no 2949 * longer quiesced. 2950 */ 2951 MAC_TX_TRY_HOLD(mcip, mytx, err); 2952 if (err != 0) 2953 return (B_TRUE); 2954 2955 if ((mac_srs = MCIP_TX_SRS(mcip)) == NULL) { 2956 MAC_TX_RELE(mcip, mytx); 2957 return (B_FALSE); 2958 } 2959 2960 mutex_enter(&mac_srs->srs_lock); 2961 if (mac_srs->srs_tx.st_mode == SRS_TX_FANOUT) { 2962 if (cookie != NULL) { 2963 sringp = (mac_soft_ring_t *)cookie; 2964 mutex_enter(&sringp->s_ring_lock); 2965 if (sringp->s_ring_state & S_RING_TX_HIWAT) 2966 blocked = B_TRUE; 2967 mutex_exit(&sringp->s_ring_lock); 2968 } else { 2969 for (i = 0; i < mac_srs->srs_oth_ring_count; i++) { 2970 sringp = mac_srs->srs_oth_soft_rings[i]; 2971 mutex_enter(&sringp->s_ring_lock); 2972 if (sringp->s_ring_state & S_RING_TX_HIWAT) { 2973 blocked = B_TRUE; 2974 mutex_exit(&sringp->s_ring_lock); 2975 break; 2976 } 2977 mutex_exit(&sringp->s_ring_lock); 2978 } 2979 } 2980 } else { 2981 blocked = (mac_srs->srs_state & SRS_TX_HIWAT); 2982 } 2983 mutex_exit(&mac_srs->srs_lock); 2984 MAC_TX_RELE(mcip, mytx); 2985 return (blocked); 2986 } 2987 2988 /* 2989 * Check if the MAC client is the primary MAC client. 2990 */ 2991 boolean_t 2992 mac_is_primary_client(mac_client_impl_t *mcip) 2993 { 2994 return (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY); 2995 } 2996 2997 void 2998 mac_ioctl(mac_handle_t mh, queue_t *wq, mblk_t *bp) 2999 { 3000 mac_impl_t *mip = (mac_impl_t *)mh; 3001 int cmd = ((struct iocblk *)bp->b_rptr)->ioc_cmd; 3002 3003 if ((cmd == ND_GET && (mip->mi_callbacks->mc_callbacks & MC_GETPROP)) || 3004 (cmd == ND_SET && (mip->mi_callbacks->mc_callbacks & MC_SETPROP))) { 3005 /* 3006 * If ndd props were registered, call them. 3007 * Note that ndd ioctls are Obsolete 3008 */ 3009 mac_ndd_ioctl(mip, wq, bp); 3010 return; 3011 } 3012 3013 /* 3014 * Call the driver to handle the ioctl. The driver may not support 3015 * any ioctls, in which case we reply with a NAK on its behalf. 3016 */ 3017 if (mip->mi_callbacks->mc_callbacks & MC_IOCTL) 3018 mip->mi_ioctl(mip->mi_driver, wq, bp); 3019 else 3020 miocnak(wq, bp, 0, EINVAL); 3021 } 3022 3023 /* 3024 * Return the link state of the specified MAC instance. 3025 */ 3026 link_state_t 3027 mac_link_get(mac_handle_t mh) 3028 { 3029 return (((mac_impl_t *)mh)->mi_linkstate); 3030 } 3031 3032 /* 3033 * Add a mac client specified notification callback. Please see the comments 3034 * above mac_callback_add() for general information about mac callback 3035 * addition/deletion in the presence of mac callback list walkers 3036 */ 3037 mac_notify_handle_t 3038 mac_notify_add(mac_handle_t mh, mac_notify_t notify_fn, void *arg) 3039 { 3040 mac_impl_t *mip = (mac_impl_t *)mh; 3041 mac_notify_cb_t *mncb; 3042 mac_cb_info_t *mcbi; 3043 3044 /* 3045 * Allocate a notify callback structure, fill in the details and 3046 * use the mac callback list manipulation functions to chain into 3047 * the list of callbacks. 3048 */ 3049 mncb = kmem_zalloc(sizeof (mac_notify_cb_t), KM_SLEEP); 3050 mncb->mncb_fn = notify_fn; 3051 mncb->mncb_arg = arg; 3052 mncb->mncb_mip = mip; 3053 mncb->mncb_link.mcb_objp = mncb; 3054 mncb->mncb_link.mcb_objsize = sizeof (mac_notify_cb_t); 3055 mncb->mncb_link.mcb_flags = MCB_NOTIFY_CB_T; 3056 3057 mcbi = &mip->mi_notify_cb_info; 3058 3059 i_mac_perim_enter(mip); 3060 mutex_enter(mcbi->mcbi_lockp); 3061 3062 mac_callback_add(&mip->mi_notify_cb_info, &mip->mi_notify_cb_list, 3063 &mncb->mncb_link); 3064 3065 mutex_exit(mcbi->mcbi_lockp); 3066 i_mac_perim_exit(mip); 3067 return ((mac_notify_handle_t)mncb); 3068 } 3069 3070 void 3071 mac_notify_remove_wait(mac_handle_t mh) 3072 { 3073 mac_impl_t *mip = (mac_impl_t *)mh; 3074 mac_cb_info_t *mcbi = &mip->mi_notify_cb_info; 3075 3076 mutex_enter(mcbi->mcbi_lockp); 3077 mac_callback_remove_wait(&mip->mi_notify_cb_info); 3078 mutex_exit(mcbi->mcbi_lockp); 3079 } 3080 3081 /* 3082 * Remove a mac client specified notification callback 3083 */ 3084 int 3085 mac_notify_remove(mac_notify_handle_t mnh, boolean_t wait) 3086 { 3087 mac_notify_cb_t *mncb = (mac_notify_cb_t *)mnh; 3088 mac_impl_t *mip = mncb->mncb_mip; 3089 mac_cb_info_t *mcbi; 3090 int err = 0; 3091 3092 mcbi = &mip->mi_notify_cb_info; 3093 3094 i_mac_perim_enter(mip); 3095 mutex_enter(mcbi->mcbi_lockp); 3096 3097 ASSERT(mncb->mncb_link.mcb_objp == mncb); 3098 /* 3099 * If there aren't any list walkers, the remove would succeed 3100 * inline, else we wait for the deferred remove to complete 3101 */ 3102 if (mac_callback_remove(&mip->mi_notify_cb_info, 3103 &mip->mi_notify_cb_list, &mncb->mncb_link)) { 3104 kmem_free(mncb, sizeof (mac_notify_cb_t)); 3105 } else { 3106 err = EBUSY; 3107 } 3108 3109 mutex_exit(mcbi->mcbi_lockp); 3110 i_mac_perim_exit(mip); 3111 3112 /* 3113 * If we failed to remove the notification callback and "wait" is set 3114 * to be B_TRUE, wait for the callback to finish after we exit the 3115 * mac perimeter. 3116 */ 3117 if (err != 0 && wait) { 3118 mac_notify_remove_wait((mac_handle_t)mip); 3119 return (0); 3120 } 3121 3122 return (err); 3123 } 3124 3125 /* 3126 * Associate resource management callbacks with the specified MAC 3127 * clients. 3128 */ 3129 3130 void 3131 mac_resource_set_common(mac_client_handle_t mch, mac_resource_add_t add, 3132 mac_resource_remove_t remove, mac_resource_quiesce_t quiesce, 3133 mac_resource_restart_t restart, mac_resource_bind_t bind, 3134 void *arg) 3135 { 3136 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3137 3138 mcip->mci_resource_add = add; 3139 mcip->mci_resource_remove = remove; 3140 mcip->mci_resource_quiesce = quiesce; 3141 mcip->mci_resource_restart = restart; 3142 mcip->mci_resource_bind = bind; 3143 mcip->mci_resource_arg = arg; 3144 3145 if (arg == NULL) 3146 mcip->mci_state_flags &= ~MCIS_CLIENT_POLL_CAPABLE; 3147 } 3148 3149 void 3150 mac_resource_set(mac_client_handle_t mch, mac_resource_add_t add, void *arg) 3151 { 3152 /* update the 'resource_add' callback */ 3153 mac_resource_set_common(mch, add, NULL, NULL, NULL, NULL, arg); 3154 } 3155 3156 /* 3157 * Sets up the client resources and enable the polling interface over all the 3158 * SRS's and the soft rings of the client 3159 */ 3160 void 3161 mac_client_poll_enable(mac_client_handle_t mch) 3162 { 3163 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3164 mac_soft_ring_set_t *mac_srs; 3165 flow_entry_t *flent; 3166 int i; 3167 3168 flent = mcip->mci_flent; 3169 ASSERT(flent != NULL); 3170 3171 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 3172 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 3173 ASSERT(mac_srs->srs_mcip == mcip); 3174 mac_srs_client_poll_enable(mcip, mac_srs); 3175 } 3176 } 3177 3178 /* 3179 * Tears down the client resources and disable the polling interface over all 3180 * the SRS's and the soft rings of the client 3181 */ 3182 void 3183 mac_client_poll_disable(mac_client_handle_t mch) 3184 { 3185 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3186 mac_soft_ring_set_t *mac_srs; 3187 flow_entry_t *flent; 3188 int i; 3189 3190 flent = mcip->mci_flent; 3191 ASSERT(flent != NULL); 3192 3193 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 3194 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 3195 ASSERT(mac_srs->srs_mcip == mcip); 3196 mac_srs_client_poll_disable(mcip, mac_srs); 3197 } 3198 } 3199 3200 /* 3201 * Associate the CPUs specified by the given property with a MAC client. 3202 */ 3203 int 3204 mac_cpu_set(mac_client_handle_t mch, mac_resource_props_t *mrp) 3205 { 3206 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3207 mac_impl_t *mip = mcip->mci_mip; 3208 int err = 0; 3209 3210 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3211 3212 if ((err = mac_validate_props(mrp)) != 0) 3213 return (err); 3214 3215 if (MCIP_DATAPATH_SETUP(mcip)) 3216 mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp); 3217 3218 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE); 3219 return (0); 3220 } 3221 3222 /* 3223 * Apply the specified properties to the specified MAC client. 3224 */ 3225 int 3226 mac_client_set_resources(mac_client_handle_t mch, mac_resource_props_t *mrp) 3227 { 3228 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3229 mac_impl_t *mip = mcip->mci_mip; 3230 int err = 0; 3231 3232 i_mac_perim_enter(mip); 3233 3234 if ((mrp->mrp_mask & MRP_MAXBW) || (mrp->mrp_mask & MRP_PRIORITY)) { 3235 err = mac_resource_ctl_set(mch, mrp); 3236 if (err != 0) 3237 goto done; 3238 } 3239 3240 if (mrp->mrp_mask & MRP_CPUS) { 3241 err = mac_cpu_set(mch, mrp); 3242 if (err != 0) 3243 goto done; 3244 } 3245 3246 if (mrp->mrp_mask & MRP_PROTECT) 3247 err = mac_protect_set(mch, mrp); 3248 3249 done: 3250 i_mac_perim_exit(mip); 3251 return (err); 3252 } 3253 3254 /* 3255 * Return the properties currently associated with the specified MAC client. 3256 */ 3257 void 3258 mac_client_get_resources(mac_client_handle_t mch, mac_resource_props_t *mrp) 3259 { 3260 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3261 mac_resource_props_t *mcip_mrp = MCIP_RESOURCE_PROPS(mcip); 3262 3263 bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t)); 3264 } 3265 3266 /* 3267 * Pass a copy of the specified packet to the promiscuous callbacks 3268 * of the specified MAC. 3269 * 3270 * If sender is NULL, the function is being invoked for a packet chain 3271 * received from the wire. If sender is non-NULL, it points to 3272 * the MAC client from which the packet is being sent. 3273 * 3274 * The packets are distributed to the promiscuous callbacks as follows: 3275 * 3276 * - all packets are sent to the MAC_CLIENT_PROMISC_ALL callbacks 3277 * - all broadcast and multicast packets are sent to the 3278 * MAC_CLIENT_PROMISC_FILTER and MAC_CLIENT_PROMISC_MULTI. 3279 * 3280 * The unicast packets of MAC_CLIENT_PROMISC_FILTER callbacks are dispatched 3281 * after classification by mac_rx_deliver(). 3282 */ 3283 3284 static void 3285 mac_promisc_dispatch_one(mac_promisc_impl_t *mpip, mblk_t *mp, 3286 boolean_t loopback) 3287 { 3288 mblk_t *mp_copy, *mp_next; 3289 3290 if (!mpip->mpi_no_copy || mpip->mpi_strip_vlan_tag) { 3291 mp_copy = copymsg(mp); 3292 if (mp_copy == NULL) 3293 return; 3294 3295 if (mpip->mpi_strip_vlan_tag) { 3296 mp_copy = mac_strip_vlan_tag_chain(mp_copy); 3297 if (mp_copy == NULL) 3298 return; 3299 } 3300 mp_next = NULL; 3301 } else { 3302 mp_copy = mp; 3303 mp_next = mp->b_next; 3304 } 3305 mp_copy->b_next = NULL; 3306 3307 mpip->mpi_fn(mpip->mpi_arg, NULL, mp_copy, loopback); 3308 if (mp_copy == mp) 3309 mp->b_next = mp_next; 3310 } 3311 3312 /* 3313 * Return the VID of a packet. Zero if the packet is not tagged. 3314 */ 3315 static uint16_t 3316 mac_ether_vid(mblk_t *mp) 3317 { 3318 struct ether_header *eth = (struct ether_header *)mp->b_rptr; 3319 3320 if (ntohs(eth->ether_type) == ETHERTYPE_VLAN) { 3321 struct ether_vlan_header *t_evhp = 3322 (struct ether_vlan_header *)mp->b_rptr; 3323 return (VLAN_ID(ntohs(t_evhp->ether_tci))); 3324 } 3325 3326 return (0); 3327 } 3328 3329 /* 3330 * Return whether the specified packet contains a multicast or broadcast 3331 * destination MAC address. 3332 */ 3333 static boolean_t 3334 mac_is_mcast(mac_impl_t *mip, mblk_t *mp) 3335 { 3336 mac_header_info_t hdr_info; 3337 3338 if (mac_header_info((mac_handle_t)mip, mp, &hdr_info) != 0) 3339 return (B_FALSE); 3340 return ((hdr_info.mhi_dsttype == MAC_ADDRTYPE_BROADCAST) || 3341 (hdr_info.mhi_dsttype == MAC_ADDRTYPE_MULTICAST)); 3342 } 3343 3344 /* 3345 * Send a copy of an mblk chain to the MAC clients of the specified MAC. 3346 * "sender" points to the sender MAC client for outbound packets, and 3347 * is set to NULL for inbound packets. 3348 */ 3349 void 3350 mac_promisc_dispatch(mac_impl_t *mip, mblk_t *mp_chain, 3351 mac_client_impl_t *sender) 3352 { 3353 mac_promisc_impl_t *mpip; 3354 mac_cb_t *mcb; 3355 mblk_t *mp; 3356 boolean_t is_mcast, is_sender; 3357 3358 MAC_PROMISC_WALKER_INC(mip); 3359 for (mp = mp_chain; mp != NULL; mp = mp->b_next) { 3360 is_mcast = mac_is_mcast(mip, mp); 3361 /* send packet to interested callbacks */ 3362 for (mcb = mip->mi_promisc_list; mcb != NULL; 3363 mcb = mcb->mcb_nextp) { 3364 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 3365 is_sender = (mpip->mpi_mcip == sender); 3366 3367 if (is_sender && mpip->mpi_no_tx_loop) 3368 /* 3369 * The sender doesn't want to receive 3370 * copies of the packets it sends. 3371 */ 3372 continue; 3373 3374 /* this client doesn't need any packets (bridge) */ 3375 if (mpip->mpi_fn == NULL) 3376 continue; 3377 3378 /* 3379 * For an ethernet MAC, don't displatch a multicast 3380 * packet to a non-PROMISC_ALL callbacks unless the VID 3381 * of the packet matches the VID of the client. 3382 */ 3383 if (is_mcast && 3384 mpip->mpi_type != MAC_CLIENT_PROMISC_ALL && 3385 !mac_client_check_flow_vid(mpip->mpi_mcip, 3386 mac_ether_vid(mp))) 3387 continue; 3388 3389 if (is_sender || 3390 mpip->mpi_type == MAC_CLIENT_PROMISC_ALL || 3391 is_mcast) 3392 mac_promisc_dispatch_one(mpip, mp, is_sender); 3393 } 3394 } 3395 MAC_PROMISC_WALKER_DCR(mip); 3396 } 3397 3398 void 3399 mac_promisc_client_dispatch(mac_client_impl_t *mcip, mblk_t *mp_chain) 3400 { 3401 mac_impl_t *mip = mcip->mci_mip; 3402 mac_promisc_impl_t *mpip; 3403 boolean_t is_mcast; 3404 mblk_t *mp; 3405 mac_cb_t *mcb; 3406 3407 /* 3408 * The unicast packets for the MAC client still 3409 * need to be delivered to the MAC_CLIENT_PROMISC_FILTERED 3410 * promiscuous callbacks. The broadcast and multicast 3411 * packets were delivered from mac_rx(). 3412 */ 3413 MAC_PROMISC_WALKER_INC(mip); 3414 for (mp = mp_chain; mp != NULL; mp = mp->b_next) { 3415 is_mcast = mac_is_mcast(mip, mp); 3416 for (mcb = mcip->mci_promisc_list; mcb != NULL; 3417 mcb = mcb->mcb_nextp) { 3418 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 3419 if (mpip->mpi_type == MAC_CLIENT_PROMISC_FILTERED && 3420 !is_mcast) { 3421 mac_promisc_dispatch_one(mpip, mp, B_FALSE); 3422 } 3423 } 3424 } 3425 MAC_PROMISC_WALKER_DCR(mip); 3426 } 3427 3428 /* 3429 * Return the margin value currently assigned to the specified MAC instance. 3430 */ 3431 void 3432 mac_margin_get(mac_handle_t mh, uint32_t *marginp) 3433 { 3434 mac_impl_t *mip = (mac_impl_t *)mh; 3435 3436 rw_enter(&(mip->mi_rw_lock), RW_READER); 3437 *marginp = mip->mi_margin; 3438 rw_exit(&(mip->mi_rw_lock)); 3439 } 3440 3441 /* 3442 * mac_info_get() is used for retrieving the mac_info when a DL_INFO_REQ is 3443 * issued before a DL_ATTACH_REQ. we walk the i_mac_impl_hash table and find 3444 * the first mac_impl_t with a matching driver name; then we copy its mac_info_t 3445 * to the caller. we do all this with i_mac_impl_lock held so the mac_impl_t 3446 * cannot disappear while we are accessing it. 3447 */ 3448 typedef struct i_mac_info_state_s { 3449 const char *mi_name; 3450 mac_info_t *mi_infop; 3451 } i_mac_info_state_t; 3452 3453 /*ARGSUSED*/ 3454 static uint_t 3455 i_mac_info_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 3456 { 3457 i_mac_info_state_t *statep = arg; 3458 mac_impl_t *mip = (mac_impl_t *)val; 3459 3460 if (mip->mi_state_flags & MIS_DISABLED) 3461 return (MH_WALK_CONTINUE); 3462 3463 if (strcmp(statep->mi_name, 3464 ddi_driver_name(mip->mi_dip)) != 0) 3465 return (MH_WALK_CONTINUE); 3466 3467 statep->mi_infop = &mip->mi_info; 3468 return (MH_WALK_TERMINATE); 3469 } 3470 3471 boolean_t 3472 mac_info_get(const char *name, mac_info_t *minfop) 3473 { 3474 i_mac_info_state_t state; 3475 3476 rw_enter(&i_mac_impl_lock, RW_READER); 3477 state.mi_name = name; 3478 state.mi_infop = NULL; 3479 mod_hash_walk(i_mac_impl_hash, i_mac_info_walker, &state); 3480 if (state.mi_infop == NULL) { 3481 rw_exit(&i_mac_impl_lock); 3482 return (B_FALSE); 3483 } 3484 *minfop = *state.mi_infop; 3485 rw_exit(&i_mac_impl_lock); 3486 return (B_TRUE); 3487 } 3488 3489 /* 3490 * To get the capabilities that MAC layer cares about, such as rings, factory 3491 * mac address, vnic or not, it should directly invoke this function. If the 3492 * link is part of a bridge, then the only "capability" it has is the inability 3493 * to do zero copy. 3494 */ 3495 boolean_t 3496 i_mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data) 3497 { 3498 mac_impl_t *mip = (mac_impl_t *)mh; 3499 3500 if (mip->mi_bridge_link != NULL) 3501 return (cap == MAC_CAPAB_NO_ZCOPY); 3502 else if (mip->mi_callbacks->mc_callbacks & MC_GETCAPAB) 3503 return (mip->mi_getcapab(mip->mi_driver, cap, cap_data)); 3504 else 3505 return (B_FALSE); 3506 } 3507 3508 /* 3509 * Capability query function. If number of active mac clients is greater than 3510 * 1, only limited capabilities can be advertised to the caller no matter the 3511 * driver has certain capability or not. Else, we query the driver to get the 3512 * capability. 3513 */ 3514 boolean_t 3515 mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data) 3516 { 3517 mac_impl_t *mip = (mac_impl_t *)mh; 3518 3519 /* 3520 * if mi_nactiveclients > 1, only MAC_CAPAB_LEGACY, MAC_CAPAB_HCKSUM, 3521 * MAC_CAPAB_NO_NATIVEVLAN and MAC_CAPAB_NO_ZCOPY can be advertised. 3522 */ 3523 if (mip->mi_nactiveclients > 1) { 3524 switch (cap) { 3525 case MAC_CAPAB_NO_NATIVEVLAN: 3526 case MAC_CAPAB_NO_ZCOPY: 3527 return (B_TRUE); 3528 case MAC_CAPAB_LEGACY: 3529 case MAC_CAPAB_HCKSUM: 3530 break; 3531 default: 3532 return (B_FALSE); 3533 } 3534 } 3535 3536 /* else get capab from driver */ 3537 return (i_mac_capab_get(mh, cap, cap_data)); 3538 } 3539 3540 boolean_t 3541 mac_sap_verify(mac_handle_t mh, uint32_t sap, uint32_t *bind_sap) 3542 { 3543 mac_impl_t *mip = (mac_impl_t *)mh; 3544 3545 return (mip->mi_type->mt_ops.mtops_sap_verify(sap, bind_sap, 3546 mip->mi_pdata)); 3547 } 3548 3549 mblk_t * 3550 mac_header(mac_handle_t mh, const uint8_t *daddr, uint32_t sap, mblk_t *payload, 3551 size_t extra_len) 3552 { 3553 mac_impl_t *mip = (mac_impl_t *)mh; 3554 const uint8_t *hdr_daddr; 3555 3556 /* 3557 * If the MAC is point-to-point with a fixed destination address, then 3558 * we must always use that destination in the MAC header. 3559 */ 3560 hdr_daddr = (mip->mi_dstaddr_set ? mip->mi_dstaddr : daddr); 3561 return (mip->mi_type->mt_ops.mtops_header(mip->mi_addr, hdr_daddr, sap, 3562 mip->mi_pdata, payload, extra_len)); 3563 } 3564 3565 int 3566 mac_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip) 3567 { 3568 mac_impl_t *mip = (mac_impl_t *)mh; 3569 3570 return (mip->mi_type->mt_ops.mtops_header_info(mp, mip->mi_pdata, 3571 mhip)); 3572 } 3573 3574 int 3575 mac_vlan_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip) 3576 { 3577 mac_impl_t *mip = (mac_impl_t *)mh; 3578 boolean_t is_ethernet = (mip->mi_info.mi_media == DL_ETHER); 3579 int err = 0; 3580 3581 /* 3582 * Packets should always be at least 16 bit aligned. 3583 */ 3584 ASSERT(IS_P2ALIGNED(mp->b_rptr, sizeof (uint16_t))); 3585 3586 if ((err = mac_header_info(mh, mp, mhip)) != 0) 3587 return (err); 3588 3589 /* 3590 * If this is a VLAN-tagged Ethernet packet, then the SAP in the 3591 * mac_header_info_t as returned by mac_header_info() is 3592 * ETHERTYPE_VLAN. We need to grab the ethertype from the VLAN header. 3593 */ 3594 if (is_ethernet && (mhip->mhi_bindsap == ETHERTYPE_VLAN)) { 3595 struct ether_vlan_header *evhp; 3596 uint16_t sap; 3597 mblk_t *tmp = NULL; 3598 size_t size; 3599 3600 size = sizeof (struct ether_vlan_header); 3601 if (MBLKL(mp) < size) { 3602 /* 3603 * Pullup the message in order to get the MAC header 3604 * infomation. Note that this is a read-only function, 3605 * we keep the input packet intact. 3606 */ 3607 if ((tmp = msgpullup(mp, size)) == NULL) 3608 return (EINVAL); 3609 3610 mp = tmp; 3611 } 3612 evhp = (struct ether_vlan_header *)mp->b_rptr; 3613 sap = ntohs(evhp->ether_type); 3614 (void) mac_sap_verify(mh, sap, &mhip->mhi_bindsap); 3615 mhip->mhi_hdrsize = sizeof (struct ether_vlan_header); 3616 mhip->mhi_tci = ntohs(evhp->ether_tci); 3617 mhip->mhi_istagged = B_TRUE; 3618 freemsg(tmp); 3619 3620 if (VLAN_CFI(mhip->mhi_tci) != ETHER_CFI) 3621 return (EINVAL); 3622 } else { 3623 mhip->mhi_istagged = B_FALSE; 3624 mhip->mhi_tci = 0; 3625 } 3626 3627 return (0); 3628 } 3629 3630 mblk_t * 3631 mac_header_cook(mac_handle_t mh, mblk_t *mp) 3632 { 3633 mac_impl_t *mip = (mac_impl_t *)mh; 3634 3635 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_COOK) { 3636 if (DB_REF(mp) > 1) { 3637 mblk_t *newmp = copymsg(mp); 3638 if (newmp == NULL) 3639 return (NULL); 3640 freemsg(mp); 3641 mp = newmp; 3642 } 3643 return (mip->mi_type->mt_ops.mtops_header_cook(mp, 3644 mip->mi_pdata)); 3645 } 3646 return (mp); 3647 } 3648 3649 mblk_t * 3650 mac_header_uncook(mac_handle_t mh, mblk_t *mp) 3651 { 3652 mac_impl_t *mip = (mac_impl_t *)mh; 3653 3654 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_UNCOOK) { 3655 if (DB_REF(mp) > 1) { 3656 mblk_t *newmp = copymsg(mp); 3657 if (newmp == NULL) 3658 return (NULL); 3659 freemsg(mp); 3660 mp = newmp; 3661 } 3662 return (mip->mi_type->mt_ops.mtops_header_uncook(mp, 3663 mip->mi_pdata)); 3664 } 3665 return (mp); 3666 } 3667 3668 uint_t 3669 mac_addr_len(mac_handle_t mh) 3670 { 3671 mac_impl_t *mip = (mac_impl_t *)mh; 3672 3673 return (mip->mi_type->mt_addr_length); 3674 } 3675 3676 /* True if a MAC is a VNIC */ 3677 boolean_t 3678 mac_is_vnic(mac_handle_t mh) 3679 { 3680 return (((mac_impl_t *)mh)->mi_state_flags & MIS_IS_VNIC); 3681 } 3682 3683 mac_handle_t 3684 mac_get_lower_mac_handle(mac_handle_t mh) 3685 { 3686 mac_impl_t *mip = (mac_impl_t *)mh; 3687 3688 ASSERT(mac_is_vnic(mh)); 3689 return (((vnic_t *)mip->mi_driver)->vn_lower_mh); 3690 } 3691 3692 void 3693 mac_update_resources(mac_resource_props_t *nmrp, mac_resource_props_t *cmrp, 3694 boolean_t is_user_flow) 3695 { 3696 if (nmrp != NULL && cmrp != NULL) { 3697 if (nmrp->mrp_mask & MRP_PRIORITY) { 3698 if (nmrp->mrp_priority == MPL_RESET) { 3699 cmrp->mrp_mask &= ~MRP_PRIORITY; 3700 if (is_user_flow) { 3701 cmrp->mrp_priority = 3702 MPL_SUBFLOW_DEFAULT; 3703 } else { 3704 cmrp->mrp_priority = MPL_LINK_DEFAULT; 3705 } 3706 } else { 3707 cmrp->mrp_mask |= MRP_PRIORITY; 3708 cmrp->mrp_priority = nmrp->mrp_priority; 3709 } 3710 } 3711 if (nmrp->mrp_mask & MRP_MAXBW) { 3712 cmrp->mrp_maxbw = nmrp->mrp_maxbw; 3713 if (nmrp->mrp_maxbw == MRP_MAXBW_RESETVAL) 3714 cmrp->mrp_mask &= ~MRP_MAXBW; 3715 else 3716 cmrp->mrp_mask |= MRP_MAXBW; 3717 } 3718 if (nmrp->mrp_mask & MRP_CPUS) 3719 MAC_COPY_CPUS(nmrp, cmrp); 3720 3721 if (nmrp->mrp_mask & MRP_PROTECT) 3722 mac_protect_update(nmrp, cmrp); 3723 } 3724 } 3725 3726 /* 3727 * i_mac_set_resources: 3728 * 3729 * This routine associates properties with the primary MAC client of 3730 * the specified MAC instance. 3731 * - Cache the properties in mac_impl_t 3732 * - Apply the properties to the primary MAC client if exists 3733 */ 3734 int 3735 i_mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp) 3736 { 3737 mac_impl_t *mip = (mac_impl_t *)mh; 3738 mac_client_impl_t *mcip; 3739 int err = 0; 3740 uint32_t resmask, newresmask; 3741 mac_resource_props_t tmrp, umrp; 3742 3743 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3744 3745 err = mac_validate_props(mrp); 3746 if (err != 0) 3747 return (err); 3748 3749 bcopy(&mip->mi_resource_props, &umrp, sizeof (mac_resource_props_t)); 3750 resmask = umrp.mrp_mask; 3751 mac_update_resources(mrp, &umrp, B_FALSE); 3752 newresmask = umrp.mrp_mask; 3753 3754 if (resmask == 0 && newresmask != 0) { 3755 /* 3756 * Bandwidth, priority or cpu link properties configured, 3757 * must disable fastpath. 3758 */ 3759 if ((err = mac_fastpath_disable((mac_handle_t)mip)) != 0) 3760 return (err); 3761 } 3762 3763 /* 3764 * Since bind_cpu may be modified by mac_client_set_resources() 3765 * we use a copy of bind_cpu and finally cache bind_cpu in mip. 3766 * This allows us to cache only user edits in mip. 3767 */ 3768 bcopy(mrp, &tmrp, sizeof (mac_resource_props_t)); 3769 mcip = mac_primary_client_handle(mip); 3770 if (mcip != NULL && (mcip->mci_state_flags & MCIS_IS_AGGR_PORT) == 0) { 3771 err = 3772 mac_client_set_resources((mac_client_handle_t)mcip, &tmrp); 3773 } 3774 3775 /* Only update the values if mac_client_set_resources succeeded */ 3776 if (err == 0) { 3777 bcopy(&umrp, &mip->mi_resource_props, 3778 sizeof (mac_resource_props_t)); 3779 /* 3780 * If bankwidth, priority or cpu link properties cleared, 3781 * renable fastpath. 3782 */ 3783 if (resmask != 0 && newresmask == 0) 3784 mac_fastpath_enable((mac_handle_t)mip); 3785 } else if (resmask == 0 && newresmask != 0) { 3786 mac_fastpath_enable((mac_handle_t)mip); 3787 } 3788 return (err); 3789 } 3790 3791 int 3792 mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp) 3793 { 3794 int err; 3795 3796 i_mac_perim_enter((mac_impl_t *)mh); 3797 err = i_mac_set_resources(mh, mrp); 3798 i_mac_perim_exit((mac_impl_t *)mh); 3799 return (err); 3800 } 3801 3802 /* 3803 * Get the properties cached for the specified MAC instance. 3804 */ 3805 void 3806 mac_get_resources(mac_handle_t mh, mac_resource_props_t *mrp) 3807 { 3808 mac_impl_t *mip = (mac_impl_t *)mh; 3809 mac_client_impl_t *mcip; 3810 3811 if (mip->mi_state_flags & MIS_IS_VNIC) { 3812 mcip = mac_primary_client_handle(mip); 3813 if (mcip != NULL) { 3814 mac_client_get_resources((mac_client_handle_t)mcip, 3815 mrp); 3816 return; 3817 } 3818 } 3819 bcopy(&mip->mi_resource_props, mrp, sizeof (mac_resource_props_t)); 3820 } 3821 3822 int 3823 mac_set_pvid(mac_handle_t mh, uint16_t pvid) 3824 { 3825 mac_impl_t *mip = (mac_impl_t *)mh; 3826 mac_client_impl_t *mcip; 3827 mac_unicast_impl_t *muip; 3828 3829 i_mac_perim_enter(mip); 3830 if (pvid != 0) { 3831 for (mcip = mip->mi_clients_list; mcip != NULL; 3832 mcip = mcip->mci_client_next) { 3833 for (muip = mcip->mci_unicast_list; muip != NULL; 3834 muip = muip->mui_next) { 3835 if (muip->mui_vid == pvid) { 3836 i_mac_perim_exit(mip); 3837 return (EBUSY); 3838 } 3839 } 3840 } 3841 } 3842 mip->mi_pvid = pvid; 3843 i_mac_perim_exit(mip); 3844 return (0); 3845 } 3846 3847 uint16_t 3848 mac_get_pvid(mac_handle_t mh) 3849 { 3850 mac_impl_t *mip = (mac_impl_t *)mh; 3851 3852 return (mip->mi_pvid); 3853 } 3854 3855 uint32_t 3856 mac_get_llimit(mac_handle_t mh) 3857 { 3858 mac_impl_t *mip = (mac_impl_t *)mh; 3859 3860 return (mip->mi_llimit); 3861 } 3862 3863 uint32_t 3864 mac_get_ldecay(mac_handle_t mh) 3865 { 3866 mac_impl_t *mip = (mac_impl_t *)mh; 3867 3868 return (mip->mi_ldecay); 3869 } 3870 3871 /* 3872 * Rename a mac client, its flow, and the kstat. 3873 */ 3874 int 3875 mac_rename_primary(mac_handle_t mh, const char *new_name) 3876 { 3877 mac_impl_t *mip = (mac_impl_t *)mh; 3878 mac_client_impl_t *cur_clnt = NULL; 3879 flow_entry_t *fep; 3880 3881 i_mac_perim_enter(mip); 3882 3883 /* 3884 * VNICs: we need to change the sys flow name and 3885 * the associated flow kstat. 3886 */ 3887 if (mip->mi_state_flags & MIS_IS_VNIC) { 3888 ASSERT(new_name != NULL); 3889 mac_rename_flow_names(mac_vnic_lower(mip), new_name); 3890 goto done; 3891 } 3892 /* 3893 * This mac may itself be an aggr link, or it may have some client 3894 * which is an aggr port. For both cases, we need to change the 3895 * aggr port's mac client name, its flow name and the associated flow 3896 * kstat. 3897 */ 3898 if (mip->mi_state_flags & MIS_IS_AGGR) { 3899 mac_capab_aggr_t aggr_cap; 3900 mac_rename_fn_t rename_fn; 3901 boolean_t ret; 3902 3903 ASSERT(new_name != NULL); 3904 ret = i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR, 3905 (void *)(&aggr_cap)); 3906 ASSERT(ret == B_TRUE); 3907 rename_fn = aggr_cap.mca_rename_fn; 3908 rename_fn(new_name, mip->mi_driver); 3909 /* 3910 * The aggr's client name and kstat flow name will be 3911 * updated below, i.e. via mac_rename_flow_names. 3912 */ 3913 } 3914 3915 for (cur_clnt = mip->mi_clients_list; cur_clnt != NULL; 3916 cur_clnt = cur_clnt->mci_client_next) { 3917 if (cur_clnt->mci_state_flags & MCIS_IS_AGGR_PORT) { 3918 if (new_name != NULL) { 3919 char *str_st = cur_clnt->mci_name; 3920 char *str_del = strchr(str_st, '-'); 3921 3922 ASSERT(str_del != NULL); 3923 bzero(str_del + 1, MAXNAMELEN - 3924 (str_del - str_st + 1)); 3925 bcopy(new_name, str_del + 1, 3926 strlen(new_name)); 3927 } 3928 fep = cur_clnt->mci_flent; 3929 mac_rename_flow(fep, cur_clnt->mci_name); 3930 break; 3931 } else if (new_name != NULL && 3932 cur_clnt->mci_state_flags & MCIS_USE_DATALINK_NAME) { 3933 mac_rename_flow_names(cur_clnt, new_name); 3934 break; 3935 } 3936 } 3937 3938 done: 3939 i_mac_perim_exit(mip); 3940 return (0); 3941 } 3942 3943 /* 3944 * Rename the MAC client's flow names 3945 */ 3946 static void 3947 mac_rename_flow_names(mac_client_impl_t *mcip, const char *new_name) 3948 { 3949 flow_entry_t *flent; 3950 uint16_t vid; 3951 char flowname[MAXFLOWNAMELEN]; 3952 mac_impl_t *mip = mcip->mci_mip; 3953 3954 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3955 3956 /* 3957 * Use mi_rw_lock to ensure that threads not in the mac perimeter 3958 * see a self-consistent value for mci_name 3959 */ 3960 rw_enter(&mip->mi_rw_lock, RW_WRITER); 3961 (void) strlcpy(mcip->mci_name, new_name, sizeof (mcip->mci_name)); 3962 rw_exit(&mip->mi_rw_lock); 3963 3964 mac_rename_flow(mcip->mci_flent, new_name); 3965 3966 if (mcip->mci_nflents == 1) 3967 return; 3968 3969 /* 3970 * We have to rename all the others too, no stats to destroy for 3971 * these. 3972 */ 3973 for (flent = mcip->mci_flent_list; flent != NULL; 3974 flent = flent->fe_client_next) { 3975 if (flent != mcip->mci_flent) { 3976 vid = i_mac_flow_vid(flent); 3977 (void) sprintf(flowname, "%s%u", new_name, vid); 3978 mac_flow_set_name(flent, flowname); 3979 } 3980 } 3981 } 3982 3983 3984 /* 3985 * Add a flow to the MAC client's flow list - i.e list of MAC/VID tuples 3986 * defined for the specified MAC client. 3987 */ 3988 static void 3989 mac_client_add_to_flow_list(mac_client_impl_t *mcip, flow_entry_t *flent) 3990 { 3991 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 3992 /* 3993 * The promisc Rx data path walks the mci_flent_list. Protect by 3994 * using mi_rw_lock 3995 */ 3996 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 3997 3998 /* Add it to the head */ 3999 flent->fe_client_next = mcip->mci_flent_list; 4000 mcip->mci_flent_list = flent; 4001 mcip->mci_nflents++; 4002 4003 /* 4004 * Keep track of the number of non-zero VIDs addresses per MAC 4005 * client to avoid figuring it out in the data-path. 4006 */ 4007 if (i_mac_flow_vid(flent) != VLAN_ID_NONE) 4008 mcip->mci_nvids++; 4009 4010 rw_exit(&mcip->mci_rw_lock); 4011 } 4012 4013 /* 4014 * Remove a flow entry from the MAC client's list. 4015 */ 4016 static void 4017 mac_client_remove_flow_from_list(mac_client_impl_t *mcip, flow_entry_t *flent) 4018 { 4019 flow_entry_t *fe = mcip->mci_flent_list; 4020 flow_entry_t *prev_fe = NULL; 4021 4022 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 4023 /* 4024 * The promisc Rx data path walks the mci_flent_list. Protect by 4025 * using mci_rw_lock 4026 */ 4027 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 4028 while ((fe != NULL) && (fe != flent)) { 4029 prev_fe = fe; 4030 fe = fe->fe_client_next; 4031 } 4032 4033 ASSERT(fe != NULL); 4034 if (prev_fe == NULL) { 4035 /* Deleting the first node */ 4036 mcip->mci_flent_list = fe->fe_client_next; 4037 } else { 4038 prev_fe->fe_client_next = fe->fe_client_next; 4039 } 4040 mcip->mci_nflents--; 4041 4042 if (i_mac_flow_vid(flent) != VLAN_ID_NONE) 4043 mcip->mci_nvids--; 4044 4045 rw_exit(&mcip->mci_rw_lock); 4046 } 4047 4048 /* 4049 * Check if the given VID belongs to this MAC client. 4050 */ 4051 boolean_t 4052 mac_client_check_flow_vid(mac_client_impl_t *mcip, uint16_t vid) 4053 { 4054 flow_entry_t *flent; 4055 uint16_t mci_vid; 4056 4057 /* The mci_flent_list is protected by mci_rw_lock */ 4058 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 4059 for (flent = mcip->mci_flent_list; flent != NULL; 4060 flent = flent->fe_client_next) { 4061 mci_vid = i_mac_flow_vid(flent); 4062 if (vid == mci_vid) { 4063 rw_exit(&mcip->mci_rw_lock); 4064 return (B_TRUE); 4065 } 4066 } 4067 rw_exit(&mcip->mci_rw_lock); 4068 return (B_FALSE); 4069 } 4070 4071 /* 4072 * Get the flow entry for the specified <MAC addr, VID> tuple. 4073 */ 4074 static flow_entry_t * 4075 mac_client_get_flow(mac_client_impl_t *mcip, mac_unicast_impl_t *muip) 4076 { 4077 mac_address_t *map = mcip->mci_unicast; 4078 flow_entry_t *flent; 4079 uint16_t vid; 4080 flow_desc_t flow_desc; 4081 4082 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 4083 4084 mac_flow_get_desc(mcip->mci_flent, &flow_desc); 4085 if (bcmp(flow_desc.fd_dst_mac, map->ma_addr, map->ma_len) != 0) 4086 return (NULL); 4087 4088 for (flent = mcip->mci_flent_list; flent != NULL; 4089 flent = flent->fe_client_next) { 4090 vid = i_mac_flow_vid(flent); 4091 if (vid == muip->mui_vid) { 4092 return (flent); 4093 } 4094 } 4095 4096 return (NULL); 4097 } 4098 4099 /* 4100 * Since mci_flent has the SRSs, when we want to remove it, we replace 4101 * the flow_desc_t in mci_flent with that of an existing flent and then 4102 * remove that flent instead of mci_flent. 4103 */ 4104 static flow_entry_t * 4105 mac_client_swap_mciflent(mac_client_impl_t *mcip) 4106 { 4107 flow_entry_t *flent = mcip->mci_flent; 4108 flow_tab_t *ft = flent->fe_flow_tab; 4109 flow_entry_t *flent1; 4110 flow_desc_t fl_desc; 4111 char fl_name[MAXFLOWNAMELEN]; 4112 int err; 4113 4114 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 4115 ASSERT(mcip->mci_nflents > 1); 4116 4117 /* get the next flent following the primary flent */ 4118 flent1 = mcip->mci_flent_list->fe_client_next; 4119 ASSERT(flent1 != NULL && flent1->fe_flow_tab == ft); 4120 4121 /* 4122 * Remove the flent from the flow table before updating the 4123 * flow descriptor as the hash depends on the flow descriptor. 4124 * This also helps incoming packet classification avoid having 4125 * to grab fe_lock. Access to fe_flow_desc of a flent not in the 4126 * flow table is done under the fe_lock so that log or stat functions 4127 * see a self-consistent fe_flow_desc. The name and desc are specific 4128 * to a flow, the rest are shared by all the clients, including 4129 * resource control etc. 4130 */ 4131 mac_flow_remove(ft, flent, B_TRUE); 4132 mac_flow_remove(ft, flent1, B_TRUE); 4133 4134 bcopy(&flent->fe_flow_desc, &fl_desc, sizeof (flow_desc_t)); 4135 bcopy(flent->fe_flow_name, fl_name, MAXFLOWNAMELEN); 4136 4137 /* update the primary flow entry */ 4138 mutex_enter(&flent->fe_lock); 4139 bcopy(&flent1->fe_flow_desc, &flent->fe_flow_desc, 4140 sizeof (flow_desc_t)); 4141 bcopy(&flent1->fe_flow_name, &flent->fe_flow_name, MAXFLOWNAMELEN); 4142 mutex_exit(&flent->fe_lock); 4143 4144 /* update the flow entry that is to be freed */ 4145 mutex_enter(&flent1->fe_lock); 4146 bcopy(&fl_desc, &flent1->fe_flow_desc, sizeof (flow_desc_t)); 4147 bcopy(fl_name, &flent1->fe_flow_name, MAXFLOWNAMELEN); 4148 mutex_exit(&flent1->fe_lock); 4149 4150 /* now reinsert the flow entries in the table */ 4151 err = mac_flow_add(ft, flent); 4152 ASSERT(err == 0); 4153 4154 err = mac_flow_add(ft, flent1); 4155 ASSERT(err == 0); 4156 4157 return (flent1); 4158 } 4159 4160 /* 4161 * Return whether there is only one flow entry associated with this 4162 * MAC client. 4163 */ 4164 static boolean_t 4165 mac_client_single_rcvr(mac_client_impl_t *mcip) 4166 { 4167 return (mcip->mci_nflents == 1); 4168 } 4169 4170 int 4171 mac_validate_props(mac_resource_props_t *mrp) 4172 { 4173 if (mrp == NULL) 4174 return (0); 4175 4176 if (mrp->mrp_mask & MRP_PRIORITY) { 4177 mac_priority_level_t pri = mrp->mrp_priority; 4178 4179 if (pri < MPL_LOW || pri > MPL_RESET) 4180 return (EINVAL); 4181 } 4182 4183 if (mrp->mrp_mask & MRP_MAXBW) { 4184 uint64_t maxbw = mrp->mrp_maxbw; 4185 4186 if (maxbw < MRP_MAXBW_MINVAL && maxbw != 0) 4187 return (EINVAL); 4188 } 4189 if (mrp->mrp_mask & MRP_CPUS) { 4190 int i, j; 4191 mac_cpu_mode_t fanout; 4192 4193 if (mrp->mrp_ncpus > ncpus || mrp->mrp_ncpus > MAX_SR_FANOUT) 4194 return (EINVAL); 4195 4196 for (i = 0; i < mrp->mrp_ncpus; i++) { 4197 for (j = 0; j < mrp->mrp_ncpus; j++) { 4198 if (i != j && 4199 mrp->mrp_cpu[i] == mrp->mrp_cpu[j]) { 4200 return (EINVAL); 4201 } 4202 } 4203 } 4204 4205 for (i = 0; i < mrp->mrp_ncpus; i++) { 4206 cpu_t *cp; 4207 int rv; 4208 4209 mutex_enter(&cpu_lock); 4210 cp = cpu_get(mrp->mrp_cpu[i]); 4211 if (cp != NULL) 4212 rv = cpu_is_online(cp); 4213 else 4214 rv = 0; 4215 mutex_exit(&cpu_lock); 4216 if (rv == 0) 4217 return (EINVAL); 4218 } 4219 4220 fanout = mrp->mrp_fanout_mode; 4221 if (fanout < 0 || fanout > MCM_CPUS) 4222 return (EINVAL); 4223 } 4224 4225 if (mrp->mrp_mask & MRP_PROTECT) { 4226 int err = mac_protect_validate(mrp); 4227 if (err != 0) 4228 return (err); 4229 } 4230 return (0); 4231 } 4232 4233 /* 4234 * Send a MAC_NOTE_LINK notification to all the MAC clients whenever the 4235 * underlying physical link is down. This is to allow MAC clients to 4236 * communicate with other clients. 4237 */ 4238 void 4239 mac_virtual_link_update(mac_impl_t *mip) 4240 { 4241 if (mip->mi_linkstate != LINK_STATE_UP) 4242 i_mac_notify(mip, MAC_NOTE_LINK); 4243 } 4244 4245 /* 4246 * For clients that have a pass-thru MAC, e.g. VNIC, we set the VNIC's 4247 * mac handle in the client. 4248 */ 4249 void 4250 mac_set_upper_mac(mac_client_handle_t mch, mac_handle_t mh) 4251 { 4252 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 4253 4254 mcip->mci_upper_mip = (mac_impl_t *)mh; 4255 } 4256 4257 /* 4258 * Mark the mac as being used exclusively by the single mac client that is 4259 * doing some control operation on this mac. No further opens of this mac 4260 * will be allowed until this client calls mac_unmark_exclusive. The mac 4261 * client calling this function must already be in the mac perimeter 4262 */ 4263 int 4264 mac_mark_exclusive(mac_handle_t mh) 4265 { 4266 mac_impl_t *mip = (mac_impl_t *)mh; 4267 4268 ASSERT(MAC_PERIM_HELD(mh)); 4269 /* 4270 * Look up its entry in the global hash table. 4271 */ 4272 rw_enter(&i_mac_impl_lock, RW_WRITER); 4273 if (mip->mi_state_flags & MIS_DISABLED) { 4274 rw_exit(&i_mac_impl_lock); 4275 return (ENOENT); 4276 } 4277 4278 /* 4279 * A reference to mac is held even if the link is not plumbed. 4280 * In i_dls_link_create() we open the MAC interface and hold the 4281 * reference. There is an additional reference for the mac_open 4282 * done in acquiring the mac perimeter 4283 */ 4284 if (mip->mi_ref != 2) { 4285 rw_exit(&i_mac_impl_lock); 4286 return (EBUSY); 4287 } 4288 4289 ASSERT(!(mip->mi_state_flags & MIS_EXCLUSIVE_HELD)); 4290 mip->mi_state_flags |= MIS_EXCLUSIVE_HELD; 4291 rw_exit(&i_mac_impl_lock); 4292 return (0); 4293 } 4294 4295 void 4296 mac_unmark_exclusive(mac_handle_t mh) 4297 { 4298 mac_impl_t *mip = (mac_impl_t *)mh; 4299 4300 ASSERT(MAC_PERIM_HELD(mh)); 4301 4302 rw_enter(&i_mac_impl_lock, RW_WRITER); 4303 /* 1 for the creation and another for the perimeter */ 4304 ASSERT(mip->mi_ref == 2 && (mip->mi_state_flags & MIS_EXCLUSIVE_HELD)); 4305 mip->mi_state_flags &= ~MIS_EXCLUSIVE_HELD; 4306 rw_exit(&i_mac_impl_lock); 4307 } 4308 4309 /* 4310 * Set the MTU for the specified MAC. Note that this mechanism depends on 4311 * the driver calling mac_maxsdu_update() to update the link MTU if it was 4312 * successful in setting its MTU. 4313 * 4314 * Note that there is potential for improvement here. A better model might be 4315 * to not require drivers to call mac_maxsdu_update(), but rather have this 4316 * function update mi_sdu_max and send notifications if the driver setprop 4317 * callback succeeds. This would remove the burden and complexity from 4318 * drivers. 4319 */ 4320 int 4321 mac_set_mtu(mac_handle_t mh, uint_t new_mtu, uint_t *old_mtu_arg) 4322 { 4323 mac_impl_t *mip = (mac_impl_t *)mh; 4324 uint_t old_mtu; 4325 int rv = 0; 4326 4327 i_mac_perim_enter(mip); 4328 4329 if (!(mip->mi_callbacks->mc_callbacks & (MC_SETPROP|MC_GETPROP))) { 4330 rv = ENOTSUP; 4331 goto bail; 4332 } 4333 4334 old_mtu = mip->mi_sdu_max; 4335 4336 if (old_mtu != new_mtu) { 4337 rv = mip->mi_callbacks->mc_setprop(mip->mi_driver, 4338 "mtu", MAC_PROP_MTU, sizeof (uint_t), &new_mtu); 4339 } 4340 4341 bail: 4342 i_mac_perim_exit(mip); 4343 4344 if (rv == 0 && old_mtu_arg != NULL) 4345 *old_mtu_arg = old_mtu; 4346 return (rv); 4347 } 4348 4349 void 4350 mac_get_hwgrp_info(mac_handle_t mh, int grp_index, uint_t *grp_num, 4351 uint_t *n_rings, uint_t *type, uint_t *n_clnts, char *clnts_name) 4352 { 4353 mac_impl_t *mip = (mac_impl_t *)mh; 4354 mac_grp_client_t *mcip; 4355 uint_t i = 0, index = 0; 4356 4357 /* Revisit when we implement fully dynamic group allocation */ 4358 ASSERT(grp_index >= 0 && grp_index < mip->mi_rx_group_count); 4359 4360 rw_enter(&mip->mi_rw_lock, RW_READER); 4361 *grp_num = mip->mi_rx_groups[grp_index].mrg_index; 4362 *type = mip->mi_rx_groups[grp_index].mrg_type; 4363 *n_rings = mip->mi_rx_groups[grp_index].mrg_cur_count; 4364 for (mcip = mip->mi_rx_groups[grp_index].mrg_clients; mcip != NULL; 4365 mcip = mcip->mgc_next) { 4366 int name_len = strlen(mcip->mgc_client->mci_name); 4367 4368 /* 4369 * MAXCLIENTNAMELEN is the buffer size reserved for client 4370 * names. 4371 * XXXX Formating the client name string needs to be moved 4372 * to user land when fixing the size of dhi_clnts in 4373 * dld_hwgrpinfo_t. We should use n_clients * client_name for 4374 * dhi_clntsin instead of MAXCLIENTNAMELEN 4375 */ 4376 if (index + name_len >= MAXCLIENTNAMELEN) { 4377 index = MAXCLIENTNAMELEN; 4378 break; 4379 } 4380 bcopy(mcip->mgc_client->mci_name, &(clnts_name[index]), 4381 name_len); 4382 index += name_len; 4383 clnts_name[index++] = ','; 4384 i++; 4385 } 4386 4387 /* Get rid of the last , */ 4388 if (index > 0) 4389 clnts_name[index - 1] = '\0'; 4390 *n_clnts = i; 4391 rw_exit(&mip->mi_rw_lock); 4392 } 4393 4394 uint_t 4395 mac_hwgrp_num(mac_handle_t mh) 4396 { 4397 mac_impl_t *mip = (mac_impl_t *)mh; 4398 4399 return (mip->mi_rx_group_count); 4400 } 4401