1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2015 Joyent, Inc. 25 * Copyright 2015 Garrett D'Amore <garrett@damore.org> 26 */ 27 28 /* 29 * MAC Services Module 30 * 31 * The GLDv3 framework locking - The MAC layer 32 * -------------------------------------------- 33 * 34 * The MAC layer is central to the GLD framework and can provide the locking 35 * framework needed for itself and for the use of MAC clients. MAC end points 36 * are fairly disjoint and don't share a lot of state. So a coarse grained 37 * multi-threading scheme is to single thread all create/modify/delete or set 38 * type of control operations on a per mac end point while allowing data threads 39 * concurrently. 40 * 41 * Control operations (set) that modify a mac end point are always serialized on 42 * a per mac end point basis, We have at most 1 such thread per mac end point 43 * at a time. 44 * 45 * All other operations that are not serialized are essentially multi-threaded. 46 * For example a control operation (get) like getting statistics which may not 47 * care about reading values atomically or data threads sending or receiving 48 * data. Mostly these type of operations don't modify the control state. Any 49 * state these operations care about are protected using traditional locks. 50 * 51 * The perimeter only serializes serial operations. It does not imply there 52 * aren't any other concurrent operations. However a serialized operation may 53 * sometimes need to make sure it is the only thread. In this case it needs 54 * to use reference counting mechanisms to cv_wait until any current data 55 * threads are done. 56 * 57 * The mac layer itself does not hold any locks across a call to another layer. 58 * The perimeter is however held across a down call to the driver to make the 59 * whole control operation atomic with respect to other control operations. 60 * Also the data path and get type control operations may proceed concurrently. 61 * These operations synchronize with the single serial operation on a given mac 62 * end point using regular locks. The perimeter ensures that conflicting 63 * operations like say a mac_multicast_add and a mac_multicast_remove on the 64 * same mac end point don't interfere with each other and also ensures that the 65 * changes in the mac layer and the call to the underlying driver to say add a 66 * multicast address are done atomically without interference from a thread 67 * trying to delete the same address. 68 * 69 * For example, consider 70 * mac_multicst_add() 71 * { 72 * mac_perimeter_enter(); serialize all control operations 73 * 74 * grab list lock protect against access by data threads 75 * add to list 76 * drop list lock 77 * 78 * call driver's mi_multicst 79 * 80 * mac_perimeter_exit(); 81 * } 82 * 83 * To lessen the number of serialization locks and simplify the lock hierarchy, 84 * we serialize all the control operations on a per mac end point by using a 85 * single serialization lock called the perimeter. We allow recursive entry into 86 * the perimeter to facilitate use of this mechanism by both the mac client and 87 * the MAC layer itself. 88 * 89 * MAC client means an entity that does an operation on a mac handle 90 * obtained from a mac_open/mac_client_open. Similarly MAC driver means 91 * an entity that does an operation on a mac handle obtained from a 92 * mac_register. An entity could be both client and driver but on different 93 * handles eg. aggr. and should only make the corresponding mac interface calls 94 * i.e. mac driver interface or mac client interface as appropriate for that 95 * mac handle. 96 * 97 * General rules. 98 * ------------- 99 * 100 * R1. The lock order of upcall threads is natually opposite to downcall 101 * threads. Hence upcalls must not hold any locks across layers for fear of 102 * recursive lock enter and lock order violation. This applies to all layers. 103 * 104 * R2. The perimeter is just another lock. Since it is held in the down 105 * direction, acquiring the perimeter in an upcall is prohibited as it would 106 * cause a deadlock. This applies to all layers. 107 * 108 * Note that upcalls that need to grab the mac perimeter (for example 109 * mac_notify upcalls) can still achieve that by posting the request to a 110 * thread, which can then grab all the required perimeters and locks in the 111 * right global order. Note that in the above example the mac layer iself 112 * won't grab the mac perimeter in the mac_notify upcall, instead the upcall 113 * to the client must do that. Please see the aggr code for an example. 114 * 115 * MAC client rules 116 * ---------------- 117 * 118 * R3. A MAC client may use the MAC provided perimeter facility to serialize 119 * control operations on a per mac end point. It does this by by acquring 120 * and holding the perimeter across a sequence of calls to the mac layer. 121 * This ensures atomicity across the entire block of mac calls. In this 122 * model the MAC client must not hold any client locks across the calls to 123 * the mac layer. This model is the preferred solution. 124 * 125 * R4. However if a MAC client has a lot of global state across all mac end 126 * points the per mac end point serialization may not be sufficient. In this 127 * case the client may choose to use global locks or use its own serialization. 128 * To avoid deadlocks, these client layer locks held across the mac calls 129 * in the control path must never be acquired by the data path for the reason 130 * mentioned below. 131 * 132 * (Assume that a control operation that holds a client lock blocks in the 133 * mac layer waiting for upcall reference counts to drop to zero. If an upcall 134 * data thread that holds this reference count, tries to acquire the same 135 * client lock subsequently it will deadlock). 136 * 137 * A MAC client may follow either the R3 model or the R4 model, but can't 138 * mix both. In the former, the hierarchy is Perim -> client locks, but in 139 * the latter it is client locks -> Perim. 140 * 141 * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able 142 * context since they may block while trying to acquire the perimeter. 143 * In addition some calls may block waiting for upcall refcnts to come down to 144 * zero. 145 * 146 * R6. MAC clients must make sure that they are single threaded and all threads 147 * from the top (in particular data threads) have finished before calling 148 * mac_client_close. The MAC framework does not track the number of client 149 * threads using the mac client handle. Also mac clients must make sure 150 * they have undone all the control operations before calling mac_client_close. 151 * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding 152 * mac_unicast_add/mac_multicast_add. 153 * 154 * MAC framework rules 155 * ------------------- 156 * 157 * R7. The mac layer itself must not hold any mac layer locks (except the mac 158 * perimeter) across a call to any other layer from the mac layer. The call to 159 * any other layer could be via mi_* entry points, classifier entry points into 160 * the driver or via upcall pointers into layers above. The mac perimeter may 161 * be acquired or held only in the down direction, for e.g. when calling into 162 * a mi_* driver enty point to provide atomicity of the operation. 163 * 164 * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across 165 * mac driver interfaces, the MAC layer must provide a cut out for control 166 * interfaces like upcall notifications and start them in a separate thread. 167 * 168 * R9. Note that locking order also implies a plumbing order. For example 169 * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt 170 * to plumb in any other order must be failed at mac_open time, otherwise it 171 * could lead to deadlocks due to inverse locking order. 172 * 173 * R10. MAC driver interfaces must not block since the driver could call them 174 * in interrupt context. 175 * 176 * R11. Walkers must preferably not hold any locks while calling walker 177 * callbacks. Instead these can operate on reference counts. In simple 178 * callbacks it may be ok to hold a lock and call the callbacks, but this is 179 * harder to maintain in the general case of arbitrary callbacks. 180 * 181 * R12. The MAC layer must protect upcall notification callbacks using reference 182 * counts rather than holding locks across the callbacks. 183 * 184 * R13. Given the variety of drivers, it is preferable if the MAC layer can make 185 * sure that any pointers (such as mac ring pointers) it passes to the driver 186 * remain valid until mac unregister time. Currently the mac layer achieves 187 * this by using generation numbers for rings and freeing the mac rings only 188 * at unregister time. The MAC layer must provide a layer of indirection and 189 * must not expose underlying driver rings or driver data structures/pointers 190 * directly to MAC clients. 191 * 192 * MAC driver rules 193 * ---------------- 194 * 195 * R14. It would be preferable if MAC drivers don't hold any locks across any 196 * mac call. However at a minimum they must not hold any locks across data 197 * upcalls. They must also make sure that all references to mac data structures 198 * are cleaned up and that it is single threaded at mac_unregister time. 199 * 200 * R15. MAC driver interfaces don't block and so the action may be done 201 * asynchronously in a separate thread as for example handling notifications. 202 * The driver must not assume that the action is complete when the call 203 * returns. 204 * 205 * R16. Drivers must maintain a generation number per Rx ring, and pass it 206 * back to mac_rx_ring(); They are expected to increment the generation 207 * number whenever the ring's stop routine is invoked. 208 * See comments in mac_rx_ring(); 209 * 210 * R17 Similarly mi_stop is another synchronization point and the driver must 211 * ensure that all upcalls are done and there won't be any future upcall 212 * before returning from mi_stop. 213 * 214 * R18. The driver may assume that all set/modify control operations via 215 * the mi_* entry points are single threaded on a per mac end point. 216 * 217 * Lock and Perimeter hierarchy scenarios 218 * --------------------------------------- 219 * 220 * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify] 221 * 222 * ft_lock -> fe_lock [mac_flow_lookup] 223 * 224 * mi_rw_lock -> fe_lock [mac_bcast_send] 225 * 226 * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw] 227 * 228 * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind] 229 * 230 * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename] 231 * 232 * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac 233 * client to driver. In the case of clients that explictly use the mac provided 234 * perimeter mechanism for its serialization, the hierarchy is 235 * Perimeter -> mac layer locks, since the client never holds any locks across 236 * the mac calls. In the case of clients that use its own locks the hierarchy 237 * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly 238 * calls mac_perim_enter/exit in this case. 239 * 240 * Subflow creation rules 241 * --------------------------- 242 * o In case of a user specified cpulist present on underlying link and flows, 243 * the flows cpulist must be a subset of the underlying link. 244 * o In case of a user specified fanout mode present on link and flow, the 245 * subflow fanout count has to be less than or equal to that of the 246 * underlying link. The cpu-bindings for the subflows will be a subset of 247 * the underlying link. 248 * o In case if no cpulist specified on both underlying link and flow, the 249 * underlying link relies on a MAC tunable to provide out of box fanout. 250 * The subflow will have no cpulist (the subflow will be unbound) 251 * o In case if no cpulist is specified on the underlying link, a subflow can 252 * carry either a user-specified cpulist or fanout count. The cpu-bindings 253 * for the subflow will not adhere to restriction that they need to be subset 254 * of the underlying link. 255 * o In case where the underlying link is carrying either a user specified 256 * cpulist or fanout mode and for a unspecified subflow, the subflow will be 257 * created unbound. 258 * o While creating unbound subflows, bandwidth mode changes attempt to 259 * figure a right fanout count. In such cases the fanout count will override 260 * the unbound cpu-binding behavior. 261 * o In addition to this, while cycling between flow and link properties, we 262 * impose a restriction that if a link property has a subflow with 263 * user-specified attributes, we will not allow changing the link property. 264 * The administrator needs to reset all the user specified properties for the 265 * subflows before attempting a link property change. 266 * Some of the above rules can be overridden by specifying additional command 267 * line options while creating or modifying link or subflow properties. 268 * 269 * Datapath 270 * -------- 271 * 272 * For information on the datapath, the world of soft rings, hardware rings, how 273 * it is structured, and the path of an mblk_t between a driver and a mac 274 * client, see mac_sched.c. 275 */ 276 277 #include <sys/types.h> 278 #include <sys/conf.h> 279 #include <sys/id_space.h> 280 #include <sys/esunddi.h> 281 #include <sys/stat.h> 282 #include <sys/mkdev.h> 283 #include <sys/stream.h> 284 #include <sys/strsun.h> 285 #include <sys/strsubr.h> 286 #include <sys/dlpi.h> 287 #include <sys/list.h> 288 #include <sys/modhash.h> 289 #include <sys/mac_provider.h> 290 #include <sys/mac_client_impl.h> 291 #include <sys/mac_soft_ring.h> 292 #include <sys/mac_stat.h> 293 #include <sys/mac_impl.h> 294 #include <sys/mac.h> 295 #include <sys/dls.h> 296 #include <sys/dld.h> 297 #include <sys/modctl.h> 298 #include <sys/fs/dv_node.h> 299 #include <sys/thread.h> 300 #include <sys/proc.h> 301 #include <sys/callb.h> 302 #include <sys/cpuvar.h> 303 #include <sys/atomic.h> 304 #include <sys/bitmap.h> 305 #include <sys/sdt.h> 306 #include <sys/mac_flow.h> 307 #include <sys/ddi_intr_impl.h> 308 #include <sys/disp.h> 309 #include <sys/sdt.h> 310 #include <sys/vnic.h> 311 #include <sys/vnic_impl.h> 312 #include <sys/vlan.h> 313 #include <inet/ip.h> 314 #include <inet/ip6.h> 315 #include <sys/exacct.h> 316 #include <sys/exacct_impl.h> 317 #include <inet/nd.h> 318 #include <sys/ethernet.h> 319 #include <sys/pool.h> 320 #include <sys/pool_pset.h> 321 #include <sys/cpupart.h> 322 #include <inet/wifi_ioctl.h> 323 #include <net/wpa.h> 324 325 #define IMPL_HASHSZ 67 /* prime */ 326 327 kmem_cache_t *i_mac_impl_cachep; 328 mod_hash_t *i_mac_impl_hash; 329 krwlock_t i_mac_impl_lock; 330 uint_t i_mac_impl_count; 331 static kmem_cache_t *mac_ring_cache; 332 static id_space_t *minor_ids; 333 static uint32_t minor_count; 334 static pool_event_cb_t mac_pool_event_reg; 335 336 /* 337 * Logging stuff. Perhaps mac_logging_interval could be broken into 338 * mac_flow_log_interval and mac_link_log_interval if we want to be 339 * able to schedule them differently. 340 */ 341 uint_t mac_logging_interval; 342 boolean_t mac_flow_log_enable; 343 boolean_t mac_link_log_enable; 344 timeout_id_t mac_logging_timer; 345 346 /* for debugging, see MAC_DBG_PRT() in mac_impl.h */ 347 int mac_dbg = 0; 348 349 #define MACTYPE_KMODDIR "mac" 350 #define MACTYPE_HASHSZ 67 351 static mod_hash_t *i_mactype_hash; 352 /* 353 * i_mactype_lock synchronizes threads that obtain references to mactype_t 354 * structures through i_mactype_getplugin(). 355 */ 356 static kmutex_t i_mactype_lock; 357 358 /* 359 * mac_tx_percpu_cnt 360 * 361 * Number of per cpu locks per mac_client_impl_t. Used by the transmit side 362 * in mac_tx to reduce lock contention. This is sized at boot time in mac_init. 363 * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2. 364 * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1. 365 */ 366 int mac_tx_percpu_cnt; 367 int mac_tx_percpu_cnt_max = 128; 368 369 /* 370 * Call back functions for the bridge module. These are guaranteed to be valid 371 * when holding a reference on a link or when holding mip->mi_bridge_lock and 372 * mi_bridge_link is non-NULL. 373 */ 374 mac_bridge_tx_t mac_bridge_tx_cb; 375 mac_bridge_rx_t mac_bridge_rx_cb; 376 mac_bridge_ref_t mac_bridge_ref_cb; 377 mac_bridge_ls_t mac_bridge_ls_cb; 378 379 static int i_mac_constructor(void *, void *, int); 380 static void i_mac_destructor(void *, void *); 381 static int i_mac_ring_ctor(void *, void *, int); 382 static void i_mac_ring_dtor(void *, void *); 383 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *); 384 void mac_tx_client_flush(mac_client_impl_t *); 385 void mac_tx_client_block(mac_client_impl_t *); 386 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t); 387 static int mac_start_group_and_rings(mac_group_t *); 388 static void mac_stop_group_and_rings(mac_group_t *); 389 static void mac_pool_event_cb(pool_event_t, int, void *); 390 391 typedef struct netinfo_s { 392 list_node_t ni_link; 393 void *ni_record; 394 int ni_size; 395 int ni_type; 396 } netinfo_t; 397 398 /* 399 * Module initialization functions. 400 */ 401 402 void 403 mac_init(void) 404 { 405 mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus : 406 boot_max_ncpus); 407 408 /* Upper bound is mac_tx_percpu_cnt_max */ 409 if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max) 410 mac_tx_percpu_cnt = mac_tx_percpu_cnt_max; 411 412 if (mac_tx_percpu_cnt < 1) { 413 /* Someone set max_tx_percpu_cnt_max to 0 or less */ 414 mac_tx_percpu_cnt = 1; 415 } 416 417 ASSERT(mac_tx_percpu_cnt >= 1); 418 mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1)); 419 /* 420 * Make it of the form 2**N - 1 in the range 421 * [0 .. mac_tx_percpu_cnt_max - 1] 422 */ 423 mac_tx_percpu_cnt--; 424 425 i_mac_impl_cachep = kmem_cache_create("mac_impl_cache", 426 sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor, 427 NULL, NULL, NULL, 0); 428 ASSERT(i_mac_impl_cachep != NULL); 429 430 mac_ring_cache = kmem_cache_create("mac_ring_cache", 431 sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL, 432 NULL, NULL, 0); 433 ASSERT(mac_ring_cache != NULL); 434 435 i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash", 436 IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor, 437 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 438 rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL); 439 440 mac_flow_init(); 441 mac_soft_ring_init(); 442 mac_bcast_init(); 443 mac_client_init(); 444 445 i_mac_impl_count = 0; 446 447 i_mactype_hash = mod_hash_create_extended("mactype_hash", 448 MACTYPE_HASHSZ, 449 mod_hash_null_keydtor, mod_hash_null_valdtor, 450 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 451 452 /* 453 * Allocate an id space to manage minor numbers. The range of the 454 * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1. This 455 * leaves half of the 32-bit minors available for driver private use. 456 */ 457 minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1, 458 MAC_PRIVATE_MINOR-1); 459 ASSERT(minor_ids != NULL); 460 minor_count = 0; 461 462 /* Let's default to 20 seconds */ 463 mac_logging_interval = 20; 464 mac_flow_log_enable = B_FALSE; 465 mac_link_log_enable = B_FALSE; 466 mac_logging_timer = 0; 467 468 /* Register to be notified of noteworthy pools events */ 469 mac_pool_event_reg.pec_func = mac_pool_event_cb; 470 mac_pool_event_reg.pec_arg = NULL; 471 pool_event_cb_register(&mac_pool_event_reg); 472 } 473 474 int 475 mac_fini(void) 476 { 477 478 if (i_mac_impl_count > 0 || minor_count > 0) 479 return (EBUSY); 480 481 pool_event_cb_unregister(&mac_pool_event_reg); 482 483 id_space_destroy(minor_ids); 484 mac_flow_fini(); 485 486 mod_hash_destroy_hash(i_mac_impl_hash); 487 rw_destroy(&i_mac_impl_lock); 488 489 mac_client_fini(); 490 kmem_cache_destroy(mac_ring_cache); 491 492 mod_hash_destroy_hash(i_mactype_hash); 493 mac_soft_ring_finish(); 494 495 496 return (0); 497 } 498 499 /* 500 * Initialize a GLDv3 driver's device ops. A driver that manages its own ops 501 * (e.g. softmac) may pass in a NULL ops argument. 502 */ 503 void 504 mac_init_ops(struct dev_ops *ops, const char *name) 505 { 506 major_t major = ddi_name_to_major((char *)name); 507 508 /* 509 * By returning on error below, we are not letting the driver continue 510 * in an undefined context. The mac_register() function will faill if 511 * DN_GLDV3_DRIVER isn't set. 512 */ 513 if (major == DDI_MAJOR_T_NONE) 514 return; 515 LOCK_DEV_OPS(&devnamesp[major].dn_lock); 516 devnamesp[major].dn_flags |= (DN_GLDV3_DRIVER | DN_NETWORK_DRIVER); 517 UNLOCK_DEV_OPS(&devnamesp[major].dn_lock); 518 if (ops != NULL) 519 dld_init_ops(ops, name); 520 } 521 522 void 523 mac_fini_ops(struct dev_ops *ops) 524 { 525 dld_fini_ops(ops); 526 } 527 528 /*ARGSUSED*/ 529 static int 530 i_mac_constructor(void *buf, void *arg, int kmflag) 531 { 532 mac_impl_t *mip = buf; 533 534 bzero(buf, sizeof (mac_impl_t)); 535 536 mip->mi_linkstate = LINK_STATE_UNKNOWN; 537 538 rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL); 539 mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL); 540 mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL); 541 mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL); 542 543 mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock; 544 cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 545 mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock; 546 cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 547 548 mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL); 549 550 return (0); 551 } 552 553 /*ARGSUSED*/ 554 static void 555 i_mac_destructor(void *buf, void *arg) 556 { 557 mac_impl_t *mip = buf; 558 mac_cb_info_t *mcbi; 559 560 ASSERT(mip->mi_ref == 0); 561 ASSERT(mip->mi_active == 0); 562 ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN); 563 ASSERT(mip->mi_devpromisc == 0); 564 ASSERT(mip->mi_ksp == NULL); 565 ASSERT(mip->mi_kstat_count == 0); 566 ASSERT(mip->mi_nclients == 0); 567 ASSERT(mip->mi_nactiveclients == 0); 568 ASSERT(mip->mi_single_active_client == NULL); 569 ASSERT(mip->mi_state_flags == 0); 570 ASSERT(mip->mi_factory_addr == NULL); 571 ASSERT(mip->mi_factory_addr_num == 0); 572 ASSERT(mip->mi_default_tx_ring == NULL); 573 574 mcbi = &mip->mi_notify_cb_info; 575 ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0); 576 ASSERT(mip->mi_notify_bits == 0); 577 ASSERT(mip->mi_notify_thread == NULL); 578 ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock); 579 mcbi->mcbi_lockp = NULL; 580 581 mcbi = &mip->mi_promisc_cb_info; 582 ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL); 583 ASSERT(mip->mi_promisc_list == NULL); 584 ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock); 585 mcbi->mcbi_lockp = NULL; 586 587 ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL); 588 ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0); 589 590 rw_destroy(&mip->mi_rw_lock); 591 592 mutex_destroy(&mip->mi_promisc_lock); 593 cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv); 594 mutex_destroy(&mip->mi_notify_lock); 595 cv_destroy(&mip->mi_notify_cb_info.mcbi_cv); 596 mutex_destroy(&mip->mi_ring_lock); 597 598 ASSERT(mip->mi_bridge_link == NULL); 599 } 600 601 /* ARGSUSED */ 602 static int 603 i_mac_ring_ctor(void *buf, void *arg, int kmflag) 604 { 605 mac_ring_t *ring = (mac_ring_t *)buf; 606 607 bzero(ring, sizeof (mac_ring_t)); 608 cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL); 609 mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL); 610 ring->mr_state = MR_FREE; 611 return (0); 612 } 613 614 /* ARGSUSED */ 615 static void 616 i_mac_ring_dtor(void *buf, void *arg) 617 { 618 mac_ring_t *ring = (mac_ring_t *)buf; 619 620 cv_destroy(&ring->mr_cv); 621 mutex_destroy(&ring->mr_lock); 622 } 623 624 /* 625 * Common functions to do mac callback addition and deletion. Currently this is 626 * used by promisc callbacks and notify callbacks. List addition and deletion 627 * need to take care of list walkers. List walkers in general, can't hold list 628 * locks and make upcall callbacks due to potential lock order and recursive 629 * reentry issues. Instead list walkers increment the list walker count to mark 630 * the presence of a walker thread. Addition can be carefully done to ensure 631 * that the list walker always sees either the old list or the new list. 632 * However the deletion can't be done while the walker is active, instead the 633 * deleting thread simply marks the entry as logically deleted. The last walker 634 * physically deletes and frees up the logically deleted entries when the walk 635 * is complete. 636 */ 637 void 638 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 639 mac_cb_t *mcb_elem) 640 { 641 mac_cb_t *p; 642 mac_cb_t **pp; 643 644 /* Verify it is not already in the list */ 645 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 646 if (p == mcb_elem) 647 break; 648 } 649 VERIFY(p == NULL); 650 651 /* 652 * Add it to the head of the callback list. The membar ensures that 653 * the following list pointer manipulations reach global visibility 654 * in exactly the program order below. 655 */ 656 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 657 658 mcb_elem->mcb_nextp = *mcb_head; 659 membar_producer(); 660 *mcb_head = mcb_elem; 661 } 662 663 /* 664 * Mark the entry as logically deleted. If there aren't any walkers unlink 665 * from the list. In either case return the corresponding status. 666 */ 667 boolean_t 668 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 669 mac_cb_t *mcb_elem) 670 { 671 mac_cb_t *p; 672 mac_cb_t **pp; 673 674 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 675 /* 676 * Search the callback list for the entry to be removed 677 */ 678 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 679 if (p == mcb_elem) 680 break; 681 } 682 VERIFY(p != NULL); 683 684 /* 685 * If there are walkers just mark it as deleted and the last walker 686 * will remove from the list and free it. 687 */ 688 if (mcbi->mcbi_walker_cnt != 0) { 689 p->mcb_flags |= MCB_CONDEMNED; 690 mcbi->mcbi_del_cnt++; 691 return (B_FALSE); 692 } 693 694 ASSERT(mcbi->mcbi_del_cnt == 0); 695 *pp = p->mcb_nextp; 696 p->mcb_nextp = NULL; 697 return (B_TRUE); 698 } 699 700 /* 701 * Wait for all pending callback removals to be completed 702 */ 703 void 704 mac_callback_remove_wait(mac_cb_info_t *mcbi) 705 { 706 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 707 while (mcbi->mcbi_del_cnt != 0) { 708 DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi); 709 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 710 } 711 } 712 713 /* 714 * The last mac callback walker does the cleanup. Walk the list and unlik 715 * all the logically deleted entries and construct a temporary list of 716 * removed entries. Return the list of removed entries to the caller. 717 */ 718 mac_cb_t * 719 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head) 720 { 721 mac_cb_t *p; 722 mac_cb_t **pp; 723 mac_cb_t *rmlist = NULL; /* List of removed elements */ 724 int cnt = 0; 725 726 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 727 ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0); 728 729 pp = mcb_head; 730 while (*pp != NULL) { 731 if ((*pp)->mcb_flags & MCB_CONDEMNED) { 732 p = *pp; 733 *pp = p->mcb_nextp; 734 p->mcb_nextp = rmlist; 735 rmlist = p; 736 cnt++; 737 continue; 738 } 739 pp = &(*pp)->mcb_nextp; 740 } 741 742 ASSERT(mcbi->mcbi_del_cnt == cnt); 743 mcbi->mcbi_del_cnt = 0; 744 return (rmlist); 745 } 746 747 boolean_t 748 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 749 { 750 mac_cb_t *mcb; 751 752 /* Verify it is not already in the list */ 753 for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) { 754 if (mcb == mcb_elem) 755 return (B_TRUE); 756 } 757 758 return (B_FALSE); 759 } 760 761 boolean_t 762 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 763 { 764 boolean_t found; 765 766 mutex_enter(mcbi->mcbi_lockp); 767 found = mac_callback_lookup(mcb_headp, mcb_elem); 768 mutex_exit(mcbi->mcbi_lockp); 769 770 return (found); 771 } 772 773 /* Free the list of removed callbacks */ 774 void 775 mac_callback_free(mac_cb_t *rmlist) 776 { 777 mac_cb_t *mcb; 778 mac_cb_t *mcb_next; 779 780 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 781 mcb_next = mcb->mcb_nextp; 782 kmem_free(mcb->mcb_objp, mcb->mcb_objsize); 783 } 784 } 785 786 /* 787 * The promisc callbacks are in 2 lists, one off the 'mip' and another off the 788 * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there 789 * is only a single shared total walker count, and an entry can't be physically 790 * unlinked if a walker is active on either list. The last walker does this 791 * cleanup of logically deleted entries. 792 */ 793 void 794 i_mac_promisc_walker_cleanup(mac_impl_t *mip) 795 { 796 mac_cb_t *rmlist; 797 mac_cb_t *mcb; 798 mac_cb_t *mcb_next; 799 mac_promisc_impl_t *mpip; 800 801 /* 802 * Construct a temporary list of deleted callbacks by walking the 803 * the mi_promisc_list. Then for each entry in the temporary list, 804 * remove it from the mci_promisc_list and free the entry. 805 */ 806 rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info, 807 &mip->mi_promisc_list); 808 809 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 810 mcb_next = mcb->mcb_nextp; 811 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 812 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info, 813 &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link)); 814 mcb->mcb_flags = 0; 815 mcb->mcb_nextp = NULL; 816 kmem_cache_free(mac_promisc_impl_cache, mpip); 817 } 818 } 819 820 void 821 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type) 822 { 823 mac_cb_info_t *mcbi; 824 825 /* 826 * Signal the notify thread even after mi_ref has become zero and 827 * mi_disabled is set. The synchronization with the notify thread 828 * happens in mac_unregister and that implies the driver must make 829 * sure it is single-threaded (with respect to mac calls) and that 830 * all pending mac calls have returned before it calls mac_unregister 831 */ 832 rw_enter(&i_mac_impl_lock, RW_READER); 833 if (mip->mi_state_flags & MIS_DISABLED) 834 goto exit; 835 836 /* 837 * Guard against incorrect notifications. (Running a newer 838 * mac client against an older implementation?) 839 */ 840 if (type >= MAC_NNOTE) 841 goto exit; 842 843 mcbi = &mip->mi_notify_cb_info; 844 mutex_enter(mcbi->mcbi_lockp); 845 mip->mi_notify_bits |= (1 << type); 846 cv_broadcast(&mcbi->mcbi_cv); 847 mutex_exit(mcbi->mcbi_lockp); 848 849 exit: 850 rw_exit(&i_mac_impl_lock); 851 } 852 853 /* 854 * Mac serialization primitives. Please see the block comment at the 855 * top of the file. 856 */ 857 void 858 i_mac_perim_enter(mac_impl_t *mip) 859 { 860 mac_client_impl_t *mcip; 861 862 if (mip->mi_state_flags & MIS_IS_VNIC) { 863 /* 864 * This is a VNIC. Return the lower mac since that is what 865 * we want to serialize on. 866 */ 867 mcip = mac_vnic_lower(mip); 868 mip = mcip->mci_mip; 869 } 870 871 mutex_enter(&mip->mi_perim_lock); 872 if (mip->mi_perim_owner == curthread) { 873 mip->mi_perim_ocnt++; 874 mutex_exit(&mip->mi_perim_lock); 875 return; 876 } 877 878 while (mip->mi_perim_owner != NULL) 879 cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock); 880 881 mip->mi_perim_owner = curthread; 882 ASSERT(mip->mi_perim_ocnt == 0); 883 mip->mi_perim_ocnt++; 884 #ifdef DEBUG 885 mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack, 886 MAC_PERIM_STACK_DEPTH); 887 #endif 888 mutex_exit(&mip->mi_perim_lock); 889 } 890 891 int 892 i_mac_perim_enter_nowait(mac_impl_t *mip) 893 { 894 /* 895 * The vnic is a special case, since the serialization is done based 896 * on the lower mac. If the lower mac is busy, it does not imply the 897 * vnic can't be unregistered. But in the case of other drivers, 898 * a busy perimeter or open mac handles implies that the mac is busy 899 * and can't be unregistered. 900 */ 901 if (mip->mi_state_flags & MIS_IS_VNIC) { 902 i_mac_perim_enter(mip); 903 return (0); 904 } 905 906 mutex_enter(&mip->mi_perim_lock); 907 if (mip->mi_perim_owner != NULL) { 908 mutex_exit(&mip->mi_perim_lock); 909 return (EBUSY); 910 } 911 ASSERT(mip->mi_perim_ocnt == 0); 912 mip->mi_perim_owner = curthread; 913 mip->mi_perim_ocnt++; 914 mutex_exit(&mip->mi_perim_lock); 915 916 return (0); 917 } 918 919 void 920 i_mac_perim_exit(mac_impl_t *mip) 921 { 922 mac_client_impl_t *mcip; 923 924 if (mip->mi_state_flags & MIS_IS_VNIC) { 925 /* 926 * This is a VNIC. Return the lower mac since that is what 927 * we want to serialize on. 928 */ 929 mcip = mac_vnic_lower(mip); 930 mip = mcip->mci_mip; 931 } 932 933 ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0); 934 935 mutex_enter(&mip->mi_perim_lock); 936 if (--mip->mi_perim_ocnt == 0) { 937 mip->mi_perim_owner = NULL; 938 cv_signal(&mip->mi_perim_cv); 939 } 940 mutex_exit(&mip->mi_perim_lock); 941 } 942 943 /* 944 * Returns whether the current thread holds the mac perimeter. Used in making 945 * assertions. 946 */ 947 boolean_t 948 mac_perim_held(mac_handle_t mh) 949 { 950 mac_impl_t *mip = (mac_impl_t *)mh; 951 mac_client_impl_t *mcip; 952 953 if (mip->mi_state_flags & MIS_IS_VNIC) { 954 /* 955 * This is a VNIC. Return the lower mac since that is what 956 * we want to serialize on. 957 */ 958 mcip = mac_vnic_lower(mip); 959 mip = mcip->mci_mip; 960 } 961 return (mip->mi_perim_owner == curthread); 962 } 963 964 /* 965 * mac client interfaces to enter the mac perimeter of a mac end point, given 966 * its mac handle, or macname or linkid. 967 */ 968 void 969 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp) 970 { 971 mac_impl_t *mip = (mac_impl_t *)mh; 972 973 i_mac_perim_enter(mip); 974 /* 975 * The mac_perim_handle_t returned encodes the 'mip' and whether a 976 * mac_open has been done internally while entering the perimeter. 977 * This information is used in mac_perim_exit 978 */ 979 MAC_ENCODE_MPH(*mphp, mip, 0); 980 } 981 982 int 983 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp) 984 { 985 int err; 986 mac_handle_t mh; 987 988 if ((err = mac_open(name, &mh)) != 0) 989 return (err); 990 991 mac_perim_enter_by_mh(mh, mphp); 992 MAC_ENCODE_MPH(*mphp, mh, 1); 993 return (0); 994 } 995 996 int 997 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp) 998 { 999 int err; 1000 mac_handle_t mh; 1001 1002 if ((err = mac_open_by_linkid(linkid, &mh)) != 0) 1003 return (err); 1004 1005 mac_perim_enter_by_mh(mh, mphp); 1006 MAC_ENCODE_MPH(*mphp, mh, 1); 1007 return (0); 1008 } 1009 1010 void 1011 mac_perim_exit(mac_perim_handle_t mph) 1012 { 1013 mac_impl_t *mip; 1014 boolean_t need_close; 1015 1016 MAC_DECODE_MPH(mph, mip, need_close); 1017 i_mac_perim_exit(mip); 1018 if (need_close) 1019 mac_close((mac_handle_t)mip); 1020 } 1021 1022 int 1023 mac_hold(const char *macname, mac_impl_t **pmip) 1024 { 1025 mac_impl_t *mip; 1026 int err; 1027 1028 /* 1029 * Check the device name length to make sure it won't overflow our 1030 * buffer. 1031 */ 1032 if (strlen(macname) >= MAXNAMELEN) 1033 return (EINVAL); 1034 1035 /* 1036 * Look up its entry in the global hash table. 1037 */ 1038 rw_enter(&i_mac_impl_lock, RW_WRITER); 1039 err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname, 1040 (mod_hash_val_t *)&mip); 1041 1042 if (err != 0) { 1043 rw_exit(&i_mac_impl_lock); 1044 return (ENOENT); 1045 } 1046 1047 if (mip->mi_state_flags & MIS_DISABLED) { 1048 rw_exit(&i_mac_impl_lock); 1049 return (ENOENT); 1050 } 1051 1052 if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) { 1053 rw_exit(&i_mac_impl_lock); 1054 return (EBUSY); 1055 } 1056 1057 mip->mi_ref++; 1058 rw_exit(&i_mac_impl_lock); 1059 1060 *pmip = mip; 1061 return (0); 1062 } 1063 1064 void 1065 mac_rele(mac_impl_t *mip) 1066 { 1067 rw_enter(&i_mac_impl_lock, RW_WRITER); 1068 ASSERT(mip->mi_ref != 0); 1069 if (--mip->mi_ref == 0) { 1070 ASSERT(mip->mi_nactiveclients == 0 && 1071 !(mip->mi_state_flags & MIS_EXCLUSIVE)); 1072 } 1073 rw_exit(&i_mac_impl_lock); 1074 } 1075 1076 /* 1077 * Private GLDv3 function to start a MAC instance. 1078 */ 1079 int 1080 mac_start(mac_handle_t mh) 1081 { 1082 mac_impl_t *mip = (mac_impl_t *)mh; 1083 int err = 0; 1084 mac_group_t *defgrp; 1085 1086 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1087 ASSERT(mip->mi_start != NULL); 1088 1089 /* 1090 * Check whether the device is already started. 1091 */ 1092 if (mip->mi_active++ == 0) { 1093 mac_ring_t *ring = NULL; 1094 1095 /* 1096 * Start the device. 1097 */ 1098 err = mip->mi_start(mip->mi_driver); 1099 if (err != 0) { 1100 mip->mi_active--; 1101 return (err); 1102 } 1103 1104 /* 1105 * Start the default tx ring. 1106 */ 1107 if (mip->mi_default_tx_ring != NULL) { 1108 1109 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1110 if (ring->mr_state != MR_INUSE) { 1111 err = mac_start_ring(ring); 1112 if (err != 0) { 1113 mip->mi_active--; 1114 return (err); 1115 } 1116 } 1117 } 1118 1119 if ((defgrp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) { 1120 /* 1121 * Start the default ring, since it will be needed 1122 * to receive broadcast and multicast traffic for 1123 * both primary and non-primary MAC clients. 1124 */ 1125 ASSERT(defgrp->mrg_state == MAC_GROUP_STATE_REGISTERED); 1126 err = mac_start_group_and_rings(defgrp); 1127 if (err != 0) { 1128 mip->mi_active--; 1129 if ((ring != NULL) && 1130 (ring->mr_state == MR_INUSE)) 1131 mac_stop_ring(ring); 1132 return (err); 1133 } 1134 mac_set_group_state(defgrp, MAC_GROUP_STATE_SHARED); 1135 } 1136 } 1137 1138 return (err); 1139 } 1140 1141 /* 1142 * Private GLDv3 function to stop a MAC instance. 1143 */ 1144 void 1145 mac_stop(mac_handle_t mh) 1146 { 1147 mac_impl_t *mip = (mac_impl_t *)mh; 1148 mac_group_t *grp; 1149 1150 ASSERT(mip->mi_stop != NULL); 1151 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1152 1153 /* 1154 * Check whether the device is still needed. 1155 */ 1156 ASSERT(mip->mi_active != 0); 1157 if (--mip->mi_active == 0) { 1158 if ((grp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) { 1159 /* 1160 * There should be no more active clients since the 1161 * MAC is being stopped. Stop the default RX group 1162 * and transition it back to registered state. 1163 * 1164 * When clients are torn down, the groups 1165 * are release via mac_release_rx_group which 1166 * knows the the default group is always in 1167 * started mode since broadcast uses it. So 1168 * we can assert that their are no clients 1169 * (since mac_bcast_add doesn't register itself 1170 * as a client) and group is in SHARED state. 1171 */ 1172 ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED); 1173 ASSERT(MAC_GROUP_NO_CLIENT(grp) && 1174 mip->mi_nactiveclients == 0); 1175 mac_stop_group_and_rings(grp); 1176 mac_set_group_state(grp, MAC_GROUP_STATE_REGISTERED); 1177 } 1178 1179 if (mip->mi_default_tx_ring != NULL) { 1180 mac_ring_t *ring; 1181 1182 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1183 if (ring->mr_state == MR_INUSE) { 1184 mac_stop_ring(ring); 1185 ring->mr_flag = 0; 1186 } 1187 } 1188 1189 /* 1190 * Stop the device. 1191 */ 1192 mip->mi_stop(mip->mi_driver); 1193 } 1194 } 1195 1196 int 1197 i_mac_promisc_set(mac_impl_t *mip, boolean_t on) 1198 { 1199 int err = 0; 1200 1201 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1202 ASSERT(mip->mi_setpromisc != NULL); 1203 1204 if (on) { 1205 /* 1206 * Enable promiscuous mode on the device if not yet enabled. 1207 */ 1208 if (mip->mi_devpromisc++ == 0) { 1209 err = mip->mi_setpromisc(mip->mi_driver, B_TRUE); 1210 if (err != 0) { 1211 mip->mi_devpromisc--; 1212 return (err); 1213 } 1214 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1215 } 1216 } else { 1217 if (mip->mi_devpromisc == 0) 1218 return (EPROTO); 1219 1220 /* 1221 * Disable promiscuous mode on the device if this is the last 1222 * enabling. 1223 */ 1224 if (--mip->mi_devpromisc == 0) { 1225 err = mip->mi_setpromisc(mip->mi_driver, B_FALSE); 1226 if (err != 0) { 1227 mip->mi_devpromisc++; 1228 return (err); 1229 } 1230 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1231 } 1232 } 1233 1234 return (0); 1235 } 1236 1237 /* 1238 * The promiscuity state can change any time. If the caller needs to take 1239 * actions that are atomic with the promiscuity state, then the caller needs 1240 * to bracket the entire sequence with mac_perim_enter/exit 1241 */ 1242 boolean_t 1243 mac_promisc_get(mac_handle_t mh) 1244 { 1245 mac_impl_t *mip = (mac_impl_t *)mh; 1246 1247 /* 1248 * Return the current promiscuity. 1249 */ 1250 return (mip->mi_devpromisc != 0); 1251 } 1252 1253 /* 1254 * Invoked at MAC instance attach time to initialize the list 1255 * of factory MAC addresses supported by a MAC instance. This function 1256 * builds a local cache in the mac_impl_t for the MAC addresses 1257 * supported by the underlying hardware. The MAC clients themselves 1258 * use the mac_addr_factory*() functions to query and reserve 1259 * factory MAC addresses. 1260 */ 1261 void 1262 mac_addr_factory_init(mac_impl_t *mip) 1263 { 1264 mac_capab_multifactaddr_t capab; 1265 uint8_t *addr; 1266 int i; 1267 1268 /* 1269 * First round to see how many factory MAC addresses are available. 1270 */ 1271 bzero(&capab, sizeof (capab)); 1272 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR, 1273 &capab) || (capab.mcm_naddr == 0)) { 1274 /* 1275 * The MAC instance doesn't support multiple factory 1276 * MAC addresses, we're done here. 1277 */ 1278 return; 1279 } 1280 1281 /* 1282 * Allocate the space and get all the factory addresses. 1283 */ 1284 addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP); 1285 capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr); 1286 1287 mip->mi_factory_addr_num = capab.mcm_naddr; 1288 mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num * 1289 sizeof (mac_factory_addr_t), KM_SLEEP); 1290 1291 for (i = 0; i < capab.mcm_naddr; i++) { 1292 bcopy(addr + i * MAXMACADDRLEN, 1293 mip->mi_factory_addr[i].mfa_addr, 1294 mip->mi_type->mt_addr_length); 1295 mip->mi_factory_addr[i].mfa_in_use = B_FALSE; 1296 } 1297 1298 kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN); 1299 } 1300 1301 void 1302 mac_addr_factory_fini(mac_impl_t *mip) 1303 { 1304 if (mip->mi_factory_addr == NULL) { 1305 ASSERT(mip->mi_factory_addr_num == 0); 1306 return; 1307 } 1308 1309 kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num * 1310 sizeof (mac_factory_addr_t)); 1311 1312 mip->mi_factory_addr = NULL; 1313 mip->mi_factory_addr_num = 0; 1314 } 1315 1316 /* 1317 * Reserve a factory MAC address. If *slot is set to -1, the function 1318 * attempts to reserve any of the available factory MAC addresses and 1319 * returns the reserved slot id. If no slots are available, the function 1320 * returns ENOSPC. If *slot is not set to -1, the function reserves 1321 * the specified slot if it is available, or returns EBUSY is the slot 1322 * is already used. Returns ENOTSUP if the underlying MAC does not 1323 * support multiple factory addresses. If the slot number is not -1 but 1324 * is invalid, returns EINVAL. 1325 */ 1326 int 1327 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot) 1328 { 1329 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1330 mac_impl_t *mip = mcip->mci_mip; 1331 int i, ret = 0; 1332 1333 i_mac_perim_enter(mip); 1334 /* 1335 * Protect against concurrent readers that may need a self-consistent 1336 * view of the factory addresses 1337 */ 1338 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1339 1340 if (mip->mi_factory_addr_num == 0) { 1341 ret = ENOTSUP; 1342 goto bail; 1343 } 1344 1345 if (*slot != -1) { 1346 /* check the specified slot */ 1347 if (*slot < 1 || *slot > mip->mi_factory_addr_num) { 1348 ret = EINVAL; 1349 goto bail; 1350 } 1351 if (mip->mi_factory_addr[*slot-1].mfa_in_use) { 1352 ret = EBUSY; 1353 goto bail; 1354 } 1355 } else { 1356 /* pick the next available slot */ 1357 for (i = 0; i < mip->mi_factory_addr_num; i++) { 1358 if (!mip->mi_factory_addr[i].mfa_in_use) 1359 break; 1360 } 1361 1362 if (i == mip->mi_factory_addr_num) { 1363 ret = ENOSPC; 1364 goto bail; 1365 } 1366 *slot = i+1; 1367 } 1368 1369 mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE; 1370 mip->mi_factory_addr[*slot-1].mfa_client = mcip; 1371 1372 bail: 1373 rw_exit(&mip->mi_rw_lock); 1374 i_mac_perim_exit(mip); 1375 return (ret); 1376 } 1377 1378 /* 1379 * Release the specified factory MAC address slot. 1380 */ 1381 void 1382 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot) 1383 { 1384 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1385 mac_impl_t *mip = mcip->mci_mip; 1386 1387 i_mac_perim_enter(mip); 1388 /* 1389 * Protect against concurrent readers that may need a self-consistent 1390 * view of the factory addresses 1391 */ 1392 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1393 1394 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1395 ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use); 1396 1397 mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE; 1398 1399 rw_exit(&mip->mi_rw_lock); 1400 i_mac_perim_exit(mip); 1401 } 1402 1403 /* 1404 * Stores in mac_addr the value of the specified MAC address. Returns 1405 * 0 on success, or EINVAL if the slot number is not valid for the MAC. 1406 * The caller must provide a string of at least MAXNAMELEN bytes. 1407 */ 1408 void 1409 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr, 1410 uint_t *addr_len, char *client_name, boolean_t *in_use_arg) 1411 { 1412 mac_impl_t *mip = (mac_impl_t *)mh; 1413 boolean_t in_use; 1414 1415 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1416 1417 /* 1418 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter 1419 * and mi_rw_lock 1420 */ 1421 rw_enter(&mip->mi_rw_lock, RW_READER); 1422 bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN); 1423 *addr_len = mip->mi_type->mt_addr_length; 1424 in_use = mip->mi_factory_addr[slot-1].mfa_in_use; 1425 if (in_use && client_name != NULL) { 1426 bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name, 1427 client_name, MAXNAMELEN); 1428 } 1429 if (in_use_arg != NULL) 1430 *in_use_arg = in_use; 1431 rw_exit(&mip->mi_rw_lock); 1432 } 1433 1434 /* 1435 * Returns the number of factory MAC addresses (in addition to the 1436 * primary MAC address), 0 if the underlying MAC doesn't support 1437 * that feature. 1438 */ 1439 uint_t 1440 mac_addr_factory_num(mac_handle_t mh) 1441 { 1442 mac_impl_t *mip = (mac_impl_t *)mh; 1443 1444 return (mip->mi_factory_addr_num); 1445 } 1446 1447 1448 void 1449 mac_rx_group_unmark(mac_group_t *grp, uint_t flag) 1450 { 1451 mac_ring_t *ring; 1452 1453 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next) 1454 ring->mr_flag &= ~flag; 1455 } 1456 1457 /* 1458 * The following mac_hwrings_xxx() functions are private mac client functions 1459 * used by the aggr driver to access and control the underlying HW Rx group 1460 * and rings. In this case, the aggr driver has exclusive control of the 1461 * underlying HW Rx group/rings, it calls the following functions to 1462 * start/stop the HW Rx rings, disable/enable polling, add/remove mac' 1463 * addresses, or set up the Rx callback. 1464 */ 1465 /* ARGSUSED */ 1466 static void 1467 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs, 1468 mblk_t *mp_chain, boolean_t loopback) 1469 { 1470 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs; 1471 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 1472 mac_direct_rx_t proc; 1473 void *arg1; 1474 mac_resource_handle_t arg2; 1475 1476 proc = srs_rx->sr_func; 1477 arg1 = srs_rx->sr_arg1; 1478 arg2 = mac_srs->srs_mrh; 1479 1480 proc(arg1, arg2, mp_chain, NULL); 1481 } 1482 1483 /* 1484 * This function is called to get the list of HW rings that are reserved by 1485 * an exclusive mac client. 1486 * 1487 * Return value: the number of HW rings. 1488 */ 1489 int 1490 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh, 1491 mac_ring_handle_t *hwrh, mac_ring_type_t rtype) 1492 { 1493 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1494 flow_entry_t *flent = mcip->mci_flent; 1495 mac_group_t *grp; 1496 mac_ring_t *ring; 1497 int cnt = 0; 1498 1499 if (rtype == MAC_RING_TYPE_RX) { 1500 grp = flent->fe_rx_ring_group; 1501 } else if (rtype == MAC_RING_TYPE_TX) { 1502 grp = flent->fe_tx_ring_group; 1503 } else { 1504 ASSERT(B_FALSE); 1505 return (-1); 1506 } 1507 /* 1508 * The mac client did not reserve any RX group, return directly. 1509 * This is probably because the underlying MAC does not support 1510 * any groups. 1511 */ 1512 if (hwgh != NULL) 1513 *hwgh = NULL; 1514 if (grp == NULL) 1515 return (0); 1516 /* 1517 * This group must be reserved by this mac client. 1518 */ 1519 ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) && 1520 (mcip == MAC_GROUP_ONLY_CLIENT(grp))); 1521 1522 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) { 1523 ASSERT(cnt < MAX_RINGS_PER_GROUP); 1524 hwrh[cnt] = (mac_ring_handle_t)ring; 1525 } 1526 if (hwgh != NULL) 1527 *hwgh = (mac_group_handle_t)grp; 1528 1529 return (cnt); 1530 } 1531 1532 /* 1533 * This function is called to get info about Tx/Rx rings. 1534 * 1535 * Return value: returns uint_t which will have various bits set 1536 * that indicates different properties of the ring. 1537 */ 1538 uint_t 1539 mac_hwring_getinfo(mac_ring_handle_t rh) 1540 { 1541 mac_ring_t *ring = (mac_ring_t *)rh; 1542 mac_ring_info_t *info = &ring->mr_info; 1543 1544 return (info->mri_flags); 1545 } 1546 1547 /* 1548 * Export ddi interrupt handles from the HW ring to the pseudo ring and 1549 * setup the RX callback of the mac client which exclusively controls 1550 * HW ring. 1551 */ 1552 void 1553 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh, 1554 mac_ring_handle_t pseudo_rh) 1555 { 1556 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1557 mac_ring_t *pseudo_ring; 1558 mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs; 1559 1560 if (pseudo_rh != NULL) { 1561 pseudo_ring = (mac_ring_t *)pseudo_rh; 1562 /* Export the ddi handles to pseudo ring */ 1563 pseudo_ring->mr_info.mri_intr.mi_ddi_handle = 1564 hw_ring->mr_info.mri_intr.mi_ddi_handle; 1565 pseudo_ring->mr_info.mri_intr.mi_ddi_shared = 1566 hw_ring->mr_info.mri_intr.mi_ddi_shared; 1567 /* 1568 * Save a pointer to pseudo ring in the hw ring. If 1569 * interrupt handle changes, the hw ring will be 1570 * notified of the change (see mac_ring_intr_set()) 1571 * and the appropriate change has to be made to 1572 * the pseudo ring that has exported the ddi handle. 1573 */ 1574 hw_ring->mr_prh = pseudo_rh; 1575 } 1576 1577 if (hw_ring->mr_type == MAC_RING_TYPE_RX) { 1578 ASSERT(!(mac_srs->srs_type & SRST_TX)); 1579 mac_srs->srs_mrh = prh; 1580 mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process; 1581 } 1582 } 1583 1584 void 1585 mac_hwring_teardown(mac_ring_handle_t hwrh) 1586 { 1587 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1588 mac_soft_ring_set_t *mac_srs; 1589 1590 if (hw_ring == NULL) 1591 return; 1592 hw_ring->mr_prh = NULL; 1593 if (hw_ring->mr_type == MAC_RING_TYPE_RX) { 1594 mac_srs = hw_ring->mr_srs; 1595 ASSERT(!(mac_srs->srs_type & SRST_TX)); 1596 mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process; 1597 mac_srs->srs_mrh = NULL; 1598 } 1599 } 1600 1601 int 1602 mac_hwring_disable_intr(mac_ring_handle_t rh) 1603 { 1604 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1605 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1606 1607 return (intr->mi_disable(intr->mi_handle)); 1608 } 1609 1610 int 1611 mac_hwring_enable_intr(mac_ring_handle_t rh) 1612 { 1613 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1614 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1615 1616 return (intr->mi_enable(intr->mi_handle)); 1617 } 1618 1619 int 1620 mac_hwring_start(mac_ring_handle_t rh) 1621 { 1622 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1623 1624 MAC_RING_UNMARK(rr_ring, MR_QUIESCE); 1625 return (0); 1626 } 1627 1628 void 1629 mac_hwring_stop(mac_ring_handle_t rh) 1630 { 1631 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1632 1633 mac_rx_ring_quiesce(rr_ring, MR_QUIESCE); 1634 } 1635 1636 mblk_t * 1637 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup) 1638 { 1639 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1640 mac_ring_info_t *info = &rr_ring->mr_info; 1641 1642 return (info->mri_poll(info->mri_driver, bytes_to_pickup)); 1643 } 1644 1645 /* 1646 * Send packets through a selected tx ring. 1647 */ 1648 mblk_t * 1649 mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp) 1650 { 1651 mac_ring_t *ring = (mac_ring_t *)rh; 1652 mac_ring_info_t *info = &ring->mr_info; 1653 1654 ASSERT(ring->mr_type == MAC_RING_TYPE_TX && 1655 ring->mr_state >= MR_INUSE); 1656 return (info->mri_tx(info->mri_driver, mp)); 1657 } 1658 1659 /* 1660 * Query stats for a particular rx/tx ring 1661 */ 1662 int 1663 mac_hwring_getstat(mac_ring_handle_t rh, uint_t stat, uint64_t *val) 1664 { 1665 mac_ring_t *ring = (mac_ring_t *)rh; 1666 mac_ring_info_t *info = &ring->mr_info; 1667 1668 return (info->mri_stat(info->mri_driver, stat, val)); 1669 } 1670 1671 /* 1672 * Private function that is only used by aggr to send packets through 1673 * a port/Tx ring. Since aggr exposes a pseudo Tx ring even for ports 1674 * that does not expose Tx rings, aggr_ring_tx() entry point needs 1675 * access to mac_impl_t to send packets through m_tx() entry point. 1676 * It accomplishes this by calling mac_hwring_send_priv() function. 1677 */ 1678 mblk_t * 1679 mac_hwring_send_priv(mac_client_handle_t mch, mac_ring_handle_t rh, mblk_t *mp) 1680 { 1681 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1682 mac_impl_t *mip = mcip->mci_mip; 1683 1684 MAC_TX(mip, rh, mp, mcip); 1685 return (mp); 1686 } 1687 1688 /* 1689 * Private function that is only used by aggr to update the default transmission 1690 * ring. Because aggr exposes a pseudo Tx ring even for ports that may 1691 * temporarily be down, it may need to update the default ring that is used by 1692 * MAC such that it refers to a link that can actively be used to send traffic. 1693 * Note that this is different from the case where the port has been removed 1694 * from the group. In those cases, all of the rings will be torn down because 1695 * the ring will no longer exist. It's important to give aggr a case where the 1696 * rings can still exist such that it may be able to continue to send LACP PDUs 1697 * to potentially restore the link. 1698 * 1699 * Finally, we explicitly don't do anything if the ring hasn't been enabled yet. 1700 * This is to help out aggr which doesn't really know the internal state that 1701 * MAC does about the rings and can't know that it's not quite ready for use 1702 * yet. 1703 */ 1704 void 1705 mac_hwring_set_default(mac_handle_t mh, mac_ring_handle_t rh) 1706 { 1707 mac_impl_t *mip = (mac_impl_t *)mh; 1708 mac_ring_t *ring = (mac_ring_t *)rh; 1709 1710 ASSERT(MAC_PERIM_HELD(mh)); 1711 VERIFY(mip->mi_state_flags & MIS_IS_AGGR); 1712 1713 if (ring->mr_state != MR_INUSE) 1714 return; 1715 1716 mip->mi_default_tx_ring = rh; 1717 } 1718 1719 int 1720 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr) 1721 { 1722 mac_group_t *group = (mac_group_t *)gh; 1723 1724 return (mac_group_addmac(group, addr)); 1725 } 1726 1727 int 1728 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr) 1729 { 1730 mac_group_t *group = (mac_group_t *)gh; 1731 1732 return (mac_group_remmac(group, addr)); 1733 } 1734 1735 /* 1736 * Set the RX group to be shared/reserved. Note that the group must be 1737 * started/stopped outside of this function. 1738 */ 1739 void 1740 mac_set_group_state(mac_group_t *grp, mac_group_state_t state) 1741 { 1742 /* 1743 * If there is no change in the group state, just return. 1744 */ 1745 if (grp->mrg_state == state) 1746 return; 1747 1748 switch (state) { 1749 case MAC_GROUP_STATE_RESERVED: 1750 /* 1751 * Successfully reserved the group. 1752 * 1753 * Given that there is an exclusive client controlling this 1754 * group, we enable the group level polling when available, 1755 * so that SRSs get to turn on/off individual rings they's 1756 * assigned to. 1757 */ 1758 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1759 1760 if (grp->mrg_type == MAC_RING_TYPE_RX && 1761 GROUP_INTR_DISABLE_FUNC(grp) != NULL) { 1762 GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1763 } 1764 break; 1765 1766 case MAC_GROUP_STATE_SHARED: 1767 /* 1768 * Set all rings of this group to software classified. 1769 * If the group has an overriding interrupt, then re-enable it. 1770 */ 1771 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1772 1773 if (grp->mrg_type == MAC_RING_TYPE_RX && 1774 GROUP_INTR_ENABLE_FUNC(grp) != NULL) { 1775 GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1776 } 1777 /* The ring is not available for reservations any more */ 1778 break; 1779 1780 case MAC_GROUP_STATE_REGISTERED: 1781 /* Also callable from mac_register, perim is not held */ 1782 break; 1783 1784 default: 1785 ASSERT(B_FALSE); 1786 break; 1787 } 1788 1789 grp->mrg_state = state; 1790 } 1791 1792 /* 1793 * Quiesce future hardware classified packets for the specified Rx ring 1794 */ 1795 static void 1796 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag) 1797 { 1798 ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER); 1799 ASSERT(ring_flag == MR_CONDEMNED || ring_flag == MR_QUIESCE); 1800 1801 mutex_enter(&rx_ring->mr_lock); 1802 rx_ring->mr_flag |= ring_flag; 1803 while (rx_ring->mr_refcnt != 0) 1804 cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock); 1805 mutex_exit(&rx_ring->mr_lock); 1806 } 1807 1808 /* 1809 * Please see mac_tx for details about the per cpu locking scheme 1810 */ 1811 static void 1812 mac_tx_lock_all(mac_client_impl_t *mcip) 1813 { 1814 int i; 1815 1816 for (i = 0; i <= mac_tx_percpu_cnt; i++) 1817 mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1818 } 1819 1820 static void 1821 mac_tx_unlock_all(mac_client_impl_t *mcip) 1822 { 1823 int i; 1824 1825 for (i = mac_tx_percpu_cnt; i >= 0; i--) 1826 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1827 } 1828 1829 static void 1830 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip) 1831 { 1832 int i; 1833 1834 for (i = mac_tx_percpu_cnt; i > 0; i--) 1835 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1836 } 1837 1838 static int 1839 mac_tx_sum_refcnt(mac_client_impl_t *mcip) 1840 { 1841 int i; 1842 int refcnt = 0; 1843 1844 for (i = 0; i <= mac_tx_percpu_cnt; i++) 1845 refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt; 1846 1847 return (refcnt); 1848 } 1849 1850 /* 1851 * Stop future Tx packets coming down from the client in preparation for 1852 * quiescing the Tx side. This is needed for dynamic reclaim and reassignment 1853 * of rings between clients 1854 */ 1855 void 1856 mac_tx_client_block(mac_client_impl_t *mcip) 1857 { 1858 mac_tx_lock_all(mcip); 1859 mcip->mci_tx_flag |= MCI_TX_QUIESCE; 1860 while (mac_tx_sum_refcnt(mcip) != 0) { 1861 mac_tx_unlock_allbutzero(mcip); 1862 cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock); 1863 mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock); 1864 mac_tx_lock_all(mcip); 1865 } 1866 mac_tx_unlock_all(mcip); 1867 } 1868 1869 void 1870 mac_tx_client_unblock(mac_client_impl_t *mcip) 1871 { 1872 mac_tx_lock_all(mcip); 1873 mcip->mci_tx_flag &= ~MCI_TX_QUIESCE; 1874 mac_tx_unlock_all(mcip); 1875 /* 1876 * We may fail to disable flow control for the last MAC_NOTE_TX 1877 * notification because the MAC client is quiesced. Send the 1878 * notification again. 1879 */ 1880 i_mac_notify(mcip->mci_mip, MAC_NOTE_TX); 1881 } 1882 1883 /* 1884 * Wait for an SRS to quiesce. The SRS worker will signal us when the 1885 * quiesce is done. 1886 */ 1887 static void 1888 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag) 1889 { 1890 mutex_enter(&srs->srs_lock); 1891 while (!(srs->srs_state & srs_flag)) 1892 cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock); 1893 mutex_exit(&srs->srs_lock); 1894 } 1895 1896 /* 1897 * Quiescing an Rx SRS is achieved by the following sequence. The protocol 1898 * works bottom up by cutting off packet flow from the bottommost point in the 1899 * mac, then the SRS, and then the soft rings. There are 2 use cases of this 1900 * mechanism. One is a temporary quiesce of the SRS, such as say while changing 1901 * the Rx callbacks. Another use case is Rx SRS teardown. In the former case 1902 * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used 1903 * for the SRS and MR flags. In the former case the threads pause waiting for 1904 * a restart, while in the latter case the threads exit. The Tx SRS teardown 1905 * is also mostly similar to the above. 1906 * 1907 * 1. Stop future hardware classified packets at the lowest level in the mac. 1908 * Remove any hardware classification rule (CONDEMNED case) and mark the 1909 * rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt 1910 * from increasing. Upcalls from the driver that come through hardware 1911 * classification will be dropped in mac_rx from now on. Then we wait for 1912 * the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are 1913 * sure there aren't any upcall threads from the driver through hardware 1914 * classification. In the case of SRS teardown we also remove the 1915 * classification rule in the driver. 1916 * 1917 * 2. Stop future software classified packets by marking the flow entry with 1918 * FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from 1919 * increasing. We also remove the flow entry from the table in the latter 1920 * case. Then wait for the fe_refcnt to reach an appropriate quiescent value 1921 * that indicates there aren't any active threads using that flow entry. 1922 * 1923 * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread, 1924 * SRS worker thread, and the soft ring threads are quiesced in sequence 1925 * with the SRS worker thread serving as a master controller. This 1926 * mechansim is explained in mac_srs_worker_quiesce(). 1927 * 1928 * The restart mechanism to reactivate the SRS and softrings is explained 1929 * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the 1930 * restart sequence. 1931 */ 1932 void 1933 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 1934 { 1935 flow_entry_t *flent = srs->srs_flent; 1936 uint_t mr_flag, srs_done_flag; 1937 1938 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 1939 ASSERT(!(srs->srs_type & SRST_TX)); 1940 1941 if (srs_quiesce_flag == SRS_CONDEMNED) { 1942 mr_flag = MR_CONDEMNED; 1943 srs_done_flag = SRS_CONDEMNED_DONE; 1944 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 1945 mac_srs_client_poll_disable(srs->srs_mcip, srs); 1946 } else { 1947 ASSERT(srs_quiesce_flag == SRS_QUIESCE); 1948 mr_flag = MR_QUIESCE; 1949 srs_done_flag = SRS_QUIESCE_DONE; 1950 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 1951 mac_srs_client_poll_quiesce(srs->srs_mcip, srs); 1952 } 1953 1954 if (srs->srs_ring != NULL) { 1955 mac_rx_ring_quiesce(srs->srs_ring, mr_flag); 1956 } else { 1957 /* 1958 * SRS is driven by software classification. In case 1959 * of CONDEMNED, the top level teardown functions will 1960 * deal with flow removal. 1961 */ 1962 if (srs_quiesce_flag != SRS_CONDEMNED) { 1963 FLOW_MARK(flent, FE_QUIESCE); 1964 mac_flow_wait(flent, FLOW_DRIVER_UPCALL); 1965 } 1966 } 1967 1968 /* 1969 * Signal the SRS to quiesce itself, and then cv_wait for the 1970 * SRS quiesce to complete. The SRS worker thread will wake us 1971 * up when the quiesce is complete 1972 */ 1973 mac_srs_signal(srs, srs_quiesce_flag); 1974 mac_srs_quiesce_wait(srs, srs_done_flag); 1975 } 1976 1977 /* 1978 * Remove an SRS. 1979 */ 1980 void 1981 mac_rx_srs_remove(mac_soft_ring_set_t *srs) 1982 { 1983 flow_entry_t *flent = srs->srs_flent; 1984 int i; 1985 1986 mac_rx_srs_quiesce(srs, SRS_CONDEMNED); 1987 /* 1988 * Locate and remove our entry in the fe_rx_srs[] array, and 1989 * adjust the fe_rx_srs array entries and array count by 1990 * moving the last entry into the vacated spot. 1991 */ 1992 mutex_enter(&flent->fe_lock); 1993 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1994 if (flent->fe_rx_srs[i] == srs) 1995 break; 1996 } 1997 1998 ASSERT(i != 0 && i < flent->fe_rx_srs_cnt); 1999 if (i != flent->fe_rx_srs_cnt - 1) { 2000 flent->fe_rx_srs[i] = 2001 flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1]; 2002 i = flent->fe_rx_srs_cnt - 1; 2003 } 2004 2005 flent->fe_rx_srs[i] = NULL; 2006 flent->fe_rx_srs_cnt--; 2007 mutex_exit(&flent->fe_lock); 2008 2009 mac_srs_free(srs); 2010 } 2011 2012 static void 2013 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag) 2014 { 2015 mutex_enter(&srs->srs_lock); 2016 srs->srs_state &= ~flag; 2017 mutex_exit(&srs->srs_lock); 2018 } 2019 2020 void 2021 mac_rx_srs_restart(mac_soft_ring_set_t *srs) 2022 { 2023 flow_entry_t *flent = srs->srs_flent; 2024 mac_ring_t *mr; 2025 2026 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 2027 ASSERT((srs->srs_type & SRST_TX) == 0); 2028 2029 /* 2030 * This handles a change in the number of SRSs between the quiesce and 2031 * and restart operation of a flow. 2032 */ 2033 if (!SRS_QUIESCED(srs)) 2034 return; 2035 2036 /* 2037 * Signal the SRS to restart itself. Wait for the restart to complete 2038 * Note that we only restart the SRS if it is not marked as 2039 * permanently quiesced. 2040 */ 2041 if (!SRS_QUIESCED_PERMANENT(srs)) { 2042 mac_srs_signal(srs, SRS_RESTART); 2043 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2044 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2045 2046 mac_srs_client_poll_restart(srs->srs_mcip, srs); 2047 } 2048 2049 /* Finally clear the flags to let the packets in */ 2050 mr = srs->srs_ring; 2051 if (mr != NULL) { 2052 MAC_RING_UNMARK(mr, MR_QUIESCE); 2053 /* In case the ring was stopped, safely restart it */ 2054 if (mr->mr_state != MR_INUSE) 2055 (void) mac_start_ring(mr); 2056 } else { 2057 FLOW_UNMARK(flent, FE_QUIESCE); 2058 } 2059 } 2060 2061 /* 2062 * Temporary quiesce of a flow and associated Rx SRS. 2063 * Please see block comment above mac_rx_classify_flow_rem. 2064 */ 2065 /* ARGSUSED */ 2066 int 2067 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg) 2068 { 2069 int i; 2070 2071 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2072 mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i], 2073 SRS_QUIESCE); 2074 } 2075 return (0); 2076 } 2077 2078 /* 2079 * Restart a flow and associated Rx SRS that has been quiesced temporarily 2080 * Please see block comment above mac_rx_classify_flow_rem 2081 */ 2082 /* ARGSUSED */ 2083 int 2084 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg) 2085 { 2086 int i; 2087 2088 for (i = 0; i < flent->fe_rx_srs_cnt; i++) 2089 mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]); 2090 2091 return (0); 2092 } 2093 2094 void 2095 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on) 2096 { 2097 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2098 flow_entry_t *flent = mcip->mci_flent; 2099 mac_impl_t *mip = mcip->mci_mip; 2100 mac_soft_ring_set_t *mac_srs; 2101 int i; 2102 2103 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2104 2105 if (flent == NULL) 2106 return; 2107 2108 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2109 mac_srs = flent->fe_rx_srs[i]; 2110 mutex_enter(&mac_srs->srs_lock); 2111 if (on) 2112 mac_srs->srs_state |= SRS_QUIESCE_PERM; 2113 else 2114 mac_srs->srs_state &= ~SRS_QUIESCE_PERM; 2115 mutex_exit(&mac_srs->srs_lock); 2116 } 2117 } 2118 2119 void 2120 mac_rx_client_quiesce(mac_client_handle_t mch) 2121 { 2122 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2123 mac_impl_t *mip = mcip->mci_mip; 2124 2125 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2126 2127 if (MCIP_DATAPATH_SETUP(mcip)) { 2128 (void) mac_rx_classify_flow_quiesce(mcip->mci_flent, 2129 NULL); 2130 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2131 mac_rx_classify_flow_quiesce, NULL); 2132 } 2133 } 2134 2135 void 2136 mac_rx_client_restart(mac_client_handle_t mch) 2137 { 2138 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2139 mac_impl_t *mip = mcip->mci_mip; 2140 2141 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2142 2143 if (MCIP_DATAPATH_SETUP(mcip)) { 2144 (void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL); 2145 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2146 mac_rx_classify_flow_restart, NULL); 2147 } 2148 } 2149 2150 /* 2151 * This function only quiesces the Tx SRS and softring worker threads. Callers 2152 * need to make sure that there aren't any mac client threads doing current or 2153 * future transmits in the mac before calling this function. 2154 */ 2155 void 2156 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 2157 { 2158 mac_client_impl_t *mcip = srs->srs_mcip; 2159 2160 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2161 2162 ASSERT(srs->srs_type & SRST_TX); 2163 ASSERT(srs_quiesce_flag == SRS_CONDEMNED || 2164 srs_quiesce_flag == SRS_QUIESCE); 2165 2166 /* 2167 * Signal the SRS to quiesce itself, and then cv_wait for the 2168 * SRS quiesce to complete. The SRS worker thread will wake us 2169 * up when the quiesce is complete 2170 */ 2171 mac_srs_signal(srs, srs_quiesce_flag); 2172 mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ? 2173 SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE); 2174 } 2175 2176 void 2177 mac_tx_srs_restart(mac_soft_ring_set_t *srs) 2178 { 2179 /* 2180 * Resizing the fanout could result in creation of new SRSs. 2181 * They may not necessarily be in the quiesced state in which 2182 * case it need be restarted 2183 */ 2184 if (!SRS_QUIESCED(srs)) 2185 return; 2186 2187 mac_srs_signal(srs, SRS_RESTART); 2188 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2189 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2190 } 2191 2192 /* 2193 * Temporary quiesce of a flow and associated Rx SRS. 2194 * Please see block comment above mac_rx_srs_quiesce 2195 */ 2196 /* ARGSUSED */ 2197 int 2198 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg) 2199 { 2200 /* 2201 * The fe_tx_srs is null for a subflow on an interface that is 2202 * not plumbed 2203 */ 2204 if (flent->fe_tx_srs != NULL) 2205 mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE); 2206 return (0); 2207 } 2208 2209 /* ARGSUSED */ 2210 int 2211 mac_tx_flow_restart(flow_entry_t *flent, void *arg) 2212 { 2213 /* 2214 * The fe_tx_srs is null for a subflow on an interface that is 2215 * not plumbed 2216 */ 2217 if (flent->fe_tx_srs != NULL) 2218 mac_tx_srs_restart(flent->fe_tx_srs); 2219 return (0); 2220 } 2221 2222 static void 2223 i_mac_tx_client_quiesce(mac_client_handle_t mch, uint_t srs_quiesce_flag) 2224 { 2225 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2226 2227 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2228 2229 mac_tx_client_block(mcip); 2230 if (MCIP_TX_SRS(mcip) != NULL) { 2231 mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag); 2232 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2233 mac_tx_flow_quiesce, NULL); 2234 } 2235 } 2236 2237 void 2238 mac_tx_client_quiesce(mac_client_handle_t mch) 2239 { 2240 i_mac_tx_client_quiesce(mch, SRS_QUIESCE); 2241 } 2242 2243 void 2244 mac_tx_client_condemn(mac_client_handle_t mch) 2245 { 2246 i_mac_tx_client_quiesce(mch, SRS_CONDEMNED); 2247 } 2248 2249 void 2250 mac_tx_client_restart(mac_client_handle_t mch) 2251 { 2252 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2253 2254 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2255 2256 mac_tx_client_unblock(mcip); 2257 if (MCIP_TX_SRS(mcip) != NULL) { 2258 mac_tx_srs_restart(MCIP_TX_SRS(mcip)); 2259 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2260 mac_tx_flow_restart, NULL); 2261 } 2262 } 2263 2264 void 2265 mac_tx_client_flush(mac_client_impl_t *mcip) 2266 { 2267 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2268 2269 mac_tx_client_quiesce((mac_client_handle_t)mcip); 2270 mac_tx_client_restart((mac_client_handle_t)mcip); 2271 } 2272 2273 void 2274 mac_client_quiesce(mac_client_impl_t *mcip) 2275 { 2276 mac_rx_client_quiesce((mac_client_handle_t)mcip); 2277 mac_tx_client_quiesce((mac_client_handle_t)mcip); 2278 } 2279 2280 void 2281 mac_client_restart(mac_client_impl_t *mcip) 2282 { 2283 mac_rx_client_restart((mac_client_handle_t)mcip); 2284 mac_tx_client_restart((mac_client_handle_t)mcip); 2285 } 2286 2287 /* 2288 * Allocate a minor number. 2289 */ 2290 minor_t 2291 mac_minor_hold(boolean_t sleep) 2292 { 2293 minor_t minor; 2294 2295 /* 2296 * Grab a value from the arena. 2297 */ 2298 atomic_inc_32(&minor_count); 2299 2300 if (sleep) 2301 minor = (uint_t)id_alloc(minor_ids); 2302 else 2303 minor = (uint_t)id_alloc_nosleep(minor_ids); 2304 2305 if (minor == 0) { 2306 atomic_dec_32(&minor_count); 2307 return (0); 2308 } 2309 2310 return (minor); 2311 } 2312 2313 /* 2314 * Release a previously allocated minor number. 2315 */ 2316 void 2317 mac_minor_rele(minor_t minor) 2318 { 2319 /* 2320 * Return the value to the arena. 2321 */ 2322 id_free(minor_ids, minor); 2323 atomic_dec_32(&minor_count); 2324 } 2325 2326 uint32_t 2327 mac_no_notification(mac_handle_t mh) 2328 { 2329 mac_impl_t *mip = (mac_impl_t *)mh; 2330 2331 return (((mip->mi_state_flags & MIS_LEGACY) != 0) ? 2332 mip->mi_capab_legacy.ml_unsup_note : 0); 2333 } 2334 2335 /* 2336 * Prevent any new opens of this mac in preparation for unregister 2337 */ 2338 int 2339 i_mac_disable(mac_impl_t *mip) 2340 { 2341 mac_client_impl_t *mcip; 2342 2343 rw_enter(&i_mac_impl_lock, RW_WRITER); 2344 if (mip->mi_state_flags & MIS_DISABLED) { 2345 /* Already disabled, return success */ 2346 rw_exit(&i_mac_impl_lock); 2347 return (0); 2348 } 2349 /* 2350 * See if there are any other references to this mac_t (e.g., VLAN's). 2351 * If so return failure. If all the other checks below pass, then 2352 * set mi_disabled atomically under the i_mac_impl_lock to prevent 2353 * any new VLAN's from being created or new mac client opens of this 2354 * mac end point. 2355 */ 2356 if (mip->mi_ref > 0) { 2357 rw_exit(&i_mac_impl_lock); 2358 return (EBUSY); 2359 } 2360 2361 /* 2362 * mac clients must delete all multicast groups they join before 2363 * closing. bcast groups are reference counted, the last client 2364 * to delete the group will wait till the group is physically 2365 * deleted. Since all clients have closed this mac end point 2366 * mi_bcast_ngrps must be zero at this point 2367 */ 2368 ASSERT(mip->mi_bcast_ngrps == 0); 2369 2370 /* 2371 * Don't let go of this if it has some flows. 2372 * All other code guarantees no flows are added to a disabled 2373 * mac, therefore it is sufficient to check for the flow table 2374 * only here. 2375 */ 2376 mcip = mac_primary_client_handle(mip); 2377 if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) { 2378 rw_exit(&i_mac_impl_lock); 2379 return (ENOTEMPTY); 2380 } 2381 2382 mip->mi_state_flags |= MIS_DISABLED; 2383 rw_exit(&i_mac_impl_lock); 2384 return (0); 2385 } 2386 2387 int 2388 mac_disable_nowait(mac_handle_t mh) 2389 { 2390 mac_impl_t *mip = (mac_impl_t *)mh; 2391 int err; 2392 2393 if ((err = i_mac_perim_enter_nowait(mip)) != 0) 2394 return (err); 2395 err = i_mac_disable(mip); 2396 i_mac_perim_exit(mip); 2397 return (err); 2398 } 2399 2400 int 2401 mac_disable(mac_handle_t mh) 2402 { 2403 mac_impl_t *mip = (mac_impl_t *)mh; 2404 int err; 2405 2406 i_mac_perim_enter(mip); 2407 err = i_mac_disable(mip); 2408 i_mac_perim_exit(mip); 2409 2410 /* 2411 * Clean up notification thread and wait for it to exit. 2412 */ 2413 if (err == 0) 2414 i_mac_notify_exit(mip); 2415 2416 return (err); 2417 } 2418 2419 /* 2420 * Called when the MAC instance has a non empty flow table, to de-multiplex 2421 * incoming packets to the right flow. 2422 * The MAC's rw lock is assumed held as a READER. 2423 */ 2424 /* ARGSUSED */ 2425 static mblk_t * 2426 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp) 2427 { 2428 flow_entry_t *flent = NULL; 2429 uint_t flags = FLOW_INBOUND; 2430 int err; 2431 2432 /* 2433 * If the mac is a port of an aggregation, pass FLOW_IGNORE_VLAN 2434 * to mac_flow_lookup() so that the VLAN packets can be successfully 2435 * passed to the non-VLAN aggregation flows. 2436 * 2437 * Note that there is possibly a race between this and 2438 * mac_unicast_remove/add() and VLAN packets could be incorrectly 2439 * classified to non-VLAN flows of non-aggregation mac clients. These 2440 * VLAN packets will be then filtered out by the mac module. 2441 */ 2442 if ((mip->mi_state_flags & MIS_EXCLUSIVE) != 0) 2443 flags |= FLOW_IGNORE_VLAN; 2444 2445 err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent); 2446 if (err != 0) { 2447 /* no registered receive function */ 2448 return (mp); 2449 } else { 2450 mac_client_impl_t *mcip; 2451 2452 /* 2453 * This flent might just be an additional one on the MAC client, 2454 * i.e. for classification purposes (different fdesc), however 2455 * the resources, SRS et. al., are in the mci_flent, so if 2456 * this isn't the mci_flent, we need to get it. 2457 */ 2458 if ((mcip = flent->fe_mcip) != NULL && 2459 mcip->mci_flent != flent) { 2460 FLOW_REFRELE(flent); 2461 flent = mcip->mci_flent; 2462 FLOW_TRY_REFHOLD(flent, err); 2463 if (err != 0) 2464 return (mp); 2465 } 2466 (flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp, 2467 B_FALSE); 2468 FLOW_REFRELE(flent); 2469 } 2470 return (NULL); 2471 } 2472 2473 mblk_t * 2474 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 2475 { 2476 mac_impl_t *mip = (mac_impl_t *)mh; 2477 mblk_t *bp, *bp1, **bpp, *list = NULL; 2478 2479 /* 2480 * We walk the chain and attempt to classify each packet. 2481 * The packets that couldn't be classified will be returned 2482 * back to the caller. 2483 */ 2484 bp = mp_chain; 2485 bpp = &list; 2486 while (bp != NULL) { 2487 bp1 = bp; 2488 bp = bp->b_next; 2489 bp1->b_next = NULL; 2490 2491 if (mac_rx_classify(mip, mrh, bp1) != NULL) { 2492 *bpp = bp1; 2493 bpp = &bp1->b_next; 2494 } 2495 } 2496 return (list); 2497 } 2498 2499 static int 2500 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg) 2501 { 2502 mac_ring_handle_t ring = arg; 2503 2504 if (flent->fe_tx_srs) 2505 mac_tx_srs_wakeup(flent->fe_tx_srs, ring); 2506 return (0); 2507 } 2508 2509 void 2510 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring) 2511 { 2512 mac_client_impl_t *cclient; 2513 mac_soft_ring_set_t *mac_srs; 2514 2515 /* 2516 * After grabbing the mi_rw_lock, the list of clients can't change. 2517 * If there are any clients mi_disabled must be B_FALSE and can't 2518 * get set since there are clients. If there aren't any clients we 2519 * don't do anything. In any case the mip has to be valid. The driver 2520 * must make sure that it goes single threaded (with respect to mac 2521 * calls) and wait for all pending mac calls to finish before calling 2522 * mac_unregister. 2523 */ 2524 rw_enter(&i_mac_impl_lock, RW_READER); 2525 if (mip->mi_state_flags & MIS_DISABLED) { 2526 rw_exit(&i_mac_impl_lock); 2527 return; 2528 } 2529 2530 /* 2531 * Get MAC tx srs from walking mac_client_handle list. 2532 */ 2533 rw_enter(&mip->mi_rw_lock, RW_READER); 2534 for (cclient = mip->mi_clients_list; cclient != NULL; 2535 cclient = cclient->mci_client_next) { 2536 if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) { 2537 mac_tx_srs_wakeup(mac_srs, ring); 2538 } else { 2539 /* 2540 * Aggr opens underlying ports in exclusive mode 2541 * and registers flow control callbacks using 2542 * mac_tx_client_notify(). When opened in 2543 * exclusive mode, Tx SRS won't be created 2544 * during mac_unicast_add(). 2545 */ 2546 if (cclient->mci_state_flags & MCIS_EXCLUSIVE) { 2547 mac_tx_invoke_callbacks(cclient, 2548 (mac_tx_cookie_t)ring); 2549 } 2550 } 2551 (void) mac_flow_walk(cclient->mci_subflow_tab, 2552 mac_tx_flow_srs_wakeup, ring); 2553 } 2554 rw_exit(&mip->mi_rw_lock); 2555 rw_exit(&i_mac_impl_lock); 2556 } 2557 2558 /* ARGSUSED */ 2559 void 2560 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg, 2561 boolean_t add) 2562 { 2563 mac_impl_t *mip = (mac_impl_t *)mh; 2564 2565 i_mac_perim_enter((mac_impl_t *)mh); 2566 /* 2567 * If no specific refresh function was given then default to the 2568 * driver's m_multicst entry point. 2569 */ 2570 if (refresh == NULL) { 2571 refresh = mip->mi_multicst; 2572 arg = mip->mi_driver; 2573 } 2574 2575 mac_bcast_refresh(mip, refresh, arg, add); 2576 i_mac_perim_exit((mac_impl_t *)mh); 2577 } 2578 2579 void 2580 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg) 2581 { 2582 mac_impl_t *mip = (mac_impl_t *)mh; 2583 2584 /* 2585 * If no specific refresh function was given then default to the 2586 * driver's m_promisc entry point. 2587 */ 2588 if (refresh == NULL) { 2589 refresh = mip->mi_setpromisc; 2590 arg = mip->mi_driver; 2591 } 2592 ASSERT(refresh != NULL); 2593 2594 /* 2595 * Call the refresh function with the current promiscuity. 2596 */ 2597 refresh(arg, (mip->mi_devpromisc != 0)); 2598 } 2599 2600 /* 2601 * The mac client requests that the mac not to change its margin size to 2602 * be less than the specified value. If "current" is B_TRUE, then the client 2603 * requests the mac not to change its margin size to be smaller than the 2604 * current size. Further, return the current margin size value in this case. 2605 * 2606 * We keep every requested size in an ordered list from largest to smallest. 2607 */ 2608 int 2609 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current) 2610 { 2611 mac_impl_t *mip = (mac_impl_t *)mh; 2612 mac_margin_req_t **pp, *p; 2613 int err = 0; 2614 2615 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2616 if (current) 2617 *marginp = mip->mi_margin; 2618 2619 /* 2620 * If the current margin value cannot satisfy the margin requested, 2621 * return ENOTSUP directly. 2622 */ 2623 if (*marginp > mip->mi_margin) { 2624 err = ENOTSUP; 2625 goto done; 2626 } 2627 2628 /* 2629 * Check whether the given margin is already in the list. If so, 2630 * bump the reference count. 2631 */ 2632 for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) { 2633 if (p->mmr_margin == *marginp) { 2634 /* 2635 * The margin requested is already in the list, 2636 * so just bump the reference count. 2637 */ 2638 p->mmr_ref++; 2639 goto done; 2640 } 2641 if (p->mmr_margin < *marginp) 2642 break; 2643 } 2644 2645 2646 p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP); 2647 p->mmr_margin = *marginp; 2648 p->mmr_ref++; 2649 p->mmr_nextp = *pp; 2650 *pp = p; 2651 2652 done: 2653 rw_exit(&(mip->mi_rw_lock)); 2654 return (err); 2655 } 2656 2657 /* 2658 * The mac client requests to cancel its previous mac_margin_add() request. 2659 * We remove the requested margin size from the list. 2660 */ 2661 int 2662 mac_margin_remove(mac_handle_t mh, uint32_t margin) 2663 { 2664 mac_impl_t *mip = (mac_impl_t *)mh; 2665 mac_margin_req_t **pp, *p; 2666 int err = 0; 2667 2668 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2669 /* 2670 * Find the entry in the list for the given margin. 2671 */ 2672 for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) { 2673 if (p->mmr_margin == margin) { 2674 if (--p->mmr_ref == 0) 2675 break; 2676 2677 /* 2678 * There is still a reference to this address so 2679 * there's nothing more to do. 2680 */ 2681 goto done; 2682 } 2683 } 2684 2685 /* 2686 * We did not find an entry for the given margin. 2687 */ 2688 if (p == NULL) { 2689 err = ENOENT; 2690 goto done; 2691 } 2692 2693 ASSERT(p->mmr_ref == 0); 2694 2695 /* 2696 * Remove it from the list. 2697 */ 2698 *pp = p->mmr_nextp; 2699 kmem_free(p, sizeof (mac_margin_req_t)); 2700 done: 2701 rw_exit(&(mip->mi_rw_lock)); 2702 return (err); 2703 } 2704 2705 boolean_t 2706 mac_margin_update(mac_handle_t mh, uint32_t margin) 2707 { 2708 mac_impl_t *mip = (mac_impl_t *)mh; 2709 uint32_t margin_needed = 0; 2710 2711 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2712 2713 if (mip->mi_mmrp != NULL) 2714 margin_needed = mip->mi_mmrp->mmr_margin; 2715 2716 if (margin_needed <= margin) 2717 mip->mi_margin = margin; 2718 2719 rw_exit(&(mip->mi_rw_lock)); 2720 2721 if (margin_needed <= margin) 2722 i_mac_notify(mip, MAC_NOTE_MARGIN); 2723 2724 return (margin_needed <= margin); 2725 } 2726 2727 /* 2728 * MAC clients use this interface to request that a MAC device not change its 2729 * MTU below the specified amount. At this time, that amount must be within the 2730 * range of the device's current minimum and the device's current maximum. eg. a 2731 * client cannot request a 3000 byte MTU when the device's MTU is currently 2732 * 2000. 2733 * 2734 * If "current" is set to B_TRUE, then the request is to simply to reserve the 2735 * current underlying mac's maximum for this mac client and return it in mtup. 2736 */ 2737 int 2738 mac_mtu_add(mac_handle_t mh, uint32_t *mtup, boolean_t current) 2739 { 2740 mac_impl_t *mip = (mac_impl_t *)mh; 2741 mac_mtu_req_t *prev, *cur; 2742 mac_propval_range_t mpr; 2743 int err; 2744 2745 i_mac_perim_enter(mip); 2746 rw_enter(&mip->mi_rw_lock, RW_WRITER); 2747 2748 if (current == B_TRUE) 2749 *mtup = mip->mi_sdu_max; 2750 mpr.mpr_count = 1; 2751 err = mac_prop_info(mh, MAC_PROP_MTU, "mtu", NULL, 0, &mpr, NULL); 2752 if (err != 0) { 2753 rw_exit(&mip->mi_rw_lock); 2754 i_mac_perim_exit(mip); 2755 return (err); 2756 } 2757 2758 if (*mtup > mip->mi_sdu_max || 2759 *mtup < mpr.mpr_range_uint32[0].mpur_min) { 2760 rw_exit(&mip->mi_rw_lock); 2761 i_mac_perim_exit(mip); 2762 return (ENOTSUP); 2763 } 2764 2765 prev = NULL; 2766 for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) { 2767 if (*mtup == cur->mtr_mtu) { 2768 cur->mtr_ref++; 2769 rw_exit(&mip->mi_rw_lock); 2770 i_mac_perim_exit(mip); 2771 return (0); 2772 } 2773 2774 if (*mtup > cur->mtr_mtu) 2775 break; 2776 2777 prev = cur; 2778 } 2779 2780 cur = kmem_alloc(sizeof (mac_mtu_req_t), KM_SLEEP); 2781 cur->mtr_mtu = *mtup; 2782 cur->mtr_ref = 1; 2783 if (prev != NULL) { 2784 cur->mtr_nextp = prev->mtr_nextp; 2785 prev->mtr_nextp = cur; 2786 } else { 2787 cur->mtr_nextp = mip->mi_mtrp; 2788 mip->mi_mtrp = cur; 2789 } 2790 2791 rw_exit(&mip->mi_rw_lock); 2792 i_mac_perim_exit(mip); 2793 return (0); 2794 } 2795 2796 int 2797 mac_mtu_remove(mac_handle_t mh, uint32_t mtu) 2798 { 2799 mac_impl_t *mip = (mac_impl_t *)mh; 2800 mac_mtu_req_t *cur, *prev; 2801 2802 i_mac_perim_enter(mip); 2803 rw_enter(&mip->mi_rw_lock, RW_WRITER); 2804 2805 prev = NULL; 2806 for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) { 2807 if (cur->mtr_mtu == mtu) { 2808 ASSERT(cur->mtr_ref > 0); 2809 cur->mtr_ref--; 2810 if (cur->mtr_ref == 0) { 2811 if (prev == NULL) { 2812 mip->mi_mtrp = cur->mtr_nextp; 2813 } else { 2814 prev->mtr_nextp = cur->mtr_nextp; 2815 } 2816 kmem_free(cur, sizeof (mac_mtu_req_t)); 2817 } 2818 rw_exit(&mip->mi_rw_lock); 2819 i_mac_perim_exit(mip); 2820 return (0); 2821 } 2822 2823 prev = cur; 2824 } 2825 2826 rw_exit(&mip->mi_rw_lock); 2827 i_mac_perim_exit(mip); 2828 return (ENOENT); 2829 } 2830 2831 /* 2832 * MAC Type Plugin functions. 2833 */ 2834 2835 mactype_t * 2836 mactype_getplugin(const char *pname) 2837 { 2838 mactype_t *mtype = NULL; 2839 boolean_t tried_modload = B_FALSE; 2840 2841 mutex_enter(&i_mactype_lock); 2842 2843 find_registered_mactype: 2844 if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname, 2845 (mod_hash_val_t *)&mtype) != 0) { 2846 if (!tried_modload) { 2847 /* 2848 * If the plugin has not yet been loaded, then 2849 * attempt to load it now. If modload() succeeds, 2850 * the plugin should have registered using 2851 * mactype_register(), in which case we can go back 2852 * and attempt to find it again. 2853 */ 2854 if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) { 2855 tried_modload = B_TRUE; 2856 goto find_registered_mactype; 2857 } 2858 } 2859 } else { 2860 /* 2861 * Note that there's no danger that the plugin we've loaded 2862 * could be unloaded between the modload() step and the 2863 * reference count bump here, as we're holding 2864 * i_mactype_lock, which mactype_unregister() also holds. 2865 */ 2866 atomic_inc_32(&mtype->mt_ref); 2867 } 2868 2869 mutex_exit(&i_mactype_lock); 2870 return (mtype); 2871 } 2872 2873 mactype_register_t * 2874 mactype_alloc(uint_t mactype_version) 2875 { 2876 mactype_register_t *mtrp; 2877 2878 /* 2879 * Make sure there isn't a version mismatch between the plugin and 2880 * the framework. In the future, if multiple versions are 2881 * supported, this check could become more sophisticated. 2882 */ 2883 if (mactype_version != MACTYPE_VERSION) 2884 return (NULL); 2885 2886 mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP); 2887 mtrp->mtr_version = mactype_version; 2888 return (mtrp); 2889 } 2890 2891 void 2892 mactype_free(mactype_register_t *mtrp) 2893 { 2894 kmem_free(mtrp, sizeof (mactype_register_t)); 2895 } 2896 2897 int 2898 mactype_register(mactype_register_t *mtrp) 2899 { 2900 mactype_t *mtp; 2901 mactype_ops_t *ops = mtrp->mtr_ops; 2902 2903 /* Do some sanity checking before we register this MAC type. */ 2904 if (mtrp->mtr_ident == NULL || ops == NULL) 2905 return (EINVAL); 2906 2907 /* 2908 * Verify that all mandatory callbacks are set in the ops 2909 * vector. 2910 */ 2911 if (ops->mtops_unicst_verify == NULL || 2912 ops->mtops_multicst_verify == NULL || 2913 ops->mtops_sap_verify == NULL || 2914 ops->mtops_header == NULL || 2915 ops->mtops_header_info == NULL) { 2916 return (EINVAL); 2917 } 2918 2919 mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP); 2920 mtp->mt_ident = mtrp->mtr_ident; 2921 mtp->mt_ops = *ops; 2922 mtp->mt_type = mtrp->mtr_mactype; 2923 mtp->mt_nativetype = mtrp->mtr_nativetype; 2924 mtp->mt_addr_length = mtrp->mtr_addrlen; 2925 if (mtrp->mtr_brdcst_addr != NULL) { 2926 mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP); 2927 bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr, 2928 mtrp->mtr_addrlen); 2929 } 2930 2931 mtp->mt_stats = mtrp->mtr_stats; 2932 mtp->mt_statcount = mtrp->mtr_statcount; 2933 2934 mtp->mt_mapping = mtrp->mtr_mapping; 2935 mtp->mt_mappingcount = mtrp->mtr_mappingcount; 2936 2937 if (mod_hash_insert(i_mactype_hash, 2938 (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) { 2939 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 2940 kmem_free(mtp, sizeof (*mtp)); 2941 return (EEXIST); 2942 } 2943 return (0); 2944 } 2945 2946 int 2947 mactype_unregister(const char *ident) 2948 { 2949 mactype_t *mtp; 2950 mod_hash_val_t val; 2951 int err; 2952 2953 /* 2954 * Let's not allow MAC drivers to use this plugin while we're 2955 * trying to unregister it. Holding i_mactype_lock also prevents a 2956 * plugin from unregistering while a MAC driver is attempting to 2957 * hold a reference to it in i_mactype_getplugin(). 2958 */ 2959 mutex_enter(&i_mactype_lock); 2960 2961 if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident, 2962 (mod_hash_val_t *)&mtp)) != 0) { 2963 /* A plugin is trying to unregister, but it never registered. */ 2964 err = ENXIO; 2965 goto done; 2966 } 2967 2968 if (mtp->mt_ref != 0) { 2969 err = EBUSY; 2970 goto done; 2971 } 2972 2973 err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val); 2974 ASSERT(err == 0); 2975 if (err != 0) { 2976 /* This should never happen, thus the ASSERT() above. */ 2977 err = EINVAL; 2978 goto done; 2979 } 2980 ASSERT(mtp == (mactype_t *)val); 2981 2982 if (mtp->mt_brdcst_addr != NULL) 2983 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 2984 kmem_free(mtp, sizeof (mactype_t)); 2985 done: 2986 mutex_exit(&i_mactype_lock); 2987 return (err); 2988 } 2989 2990 /* 2991 * Checks the size of the value size specified for a property as 2992 * part of a property operation. Returns B_TRUE if the size is 2993 * correct, B_FALSE otherwise. 2994 */ 2995 boolean_t 2996 mac_prop_check_size(mac_prop_id_t id, uint_t valsize, boolean_t is_range) 2997 { 2998 uint_t minsize = 0; 2999 3000 if (is_range) 3001 return (valsize >= sizeof (mac_propval_range_t)); 3002 3003 switch (id) { 3004 case MAC_PROP_ZONE: 3005 minsize = sizeof (dld_ioc_zid_t); 3006 break; 3007 case MAC_PROP_AUTOPUSH: 3008 if (valsize != 0) 3009 minsize = sizeof (struct dlautopush); 3010 break; 3011 case MAC_PROP_TAGMODE: 3012 minsize = sizeof (link_tagmode_t); 3013 break; 3014 case MAC_PROP_RESOURCE: 3015 case MAC_PROP_RESOURCE_EFF: 3016 minsize = sizeof (mac_resource_props_t); 3017 break; 3018 case MAC_PROP_DUPLEX: 3019 minsize = sizeof (link_duplex_t); 3020 break; 3021 case MAC_PROP_SPEED: 3022 minsize = sizeof (uint64_t); 3023 break; 3024 case MAC_PROP_STATUS: 3025 minsize = sizeof (link_state_t); 3026 break; 3027 case MAC_PROP_AUTONEG: 3028 case MAC_PROP_EN_AUTONEG: 3029 minsize = sizeof (uint8_t); 3030 break; 3031 case MAC_PROP_MTU: 3032 case MAC_PROP_LLIMIT: 3033 case MAC_PROP_LDECAY: 3034 minsize = sizeof (uint32_t); 3035 break; 3036 case MAC_PROP_FLOWCTRL: 3037 minsize = sizeof (link_flowctrl_t); 3038 break; 3039 case MAC_PROP_ADV_5000FDX_CAP: 3040 case MAC_PROP_EN_5000FDX_CAP: 3041 case MAC_PROP_ADV_2500FDX_CAP: 3042 case MAC_PROP_EN_2500FDX_CAP: 3043 case MAC_PROP_ADV_100GFDX_CAP: 3044 case MAC_PROP_EN_100GFDX_CAP: 3045 case MAC_PROP_ADV_40GFDX_CAP: 3046 case MAC_PROP_EN_40GFDX_CAP: 3047 case MAC_PROP_ADV_10GFDX_CAP: 3048 case MAC_PROP_EN_10GFDX_CAP: 3049 case MAC_PROP_ADV_1000HDX_CAP: 3050 case MAC_PROP_EN_1000HDX_CAP: 3051 case MAC_PROP_ADV_100FDX_CAP: 3052 case MAC_PROP_EN_100FDX_CAP: 3053 case MAC_PROP_ADV_100HDX_CAP: 3054 case MAC_PROP_EN_100HDX_CAP: 3055 case MAC_PROP_ADV_10FDX_CAP: 3056 case MAC_PROP_EN_10FDX_CAP: 3057 case MAC_PROP_ADV_10HDX_CAP: 3058 case MAC_PROP_EN_10HDX_CAP: 3059 case MAC_PROP_ADV_100T4_CAP: 3060 case MAC_PROP_EN_100T4_CAP: 3061 minsize = sizeof (uint8_t); 3062 break; 3063 case MAC_PROP_PVID: 3064 minsize = sizeof (uint16_t); 3065 break; 3066 case MAC_PROP_IPTUN_HOPLIMIT: 3067 minsize = sizeof (uint32_t); 3068 break; 3069 case MAC_PROP_IPTUN_ENCAPLIMIT: 3070 minsize = sizeof (uint32_t); 3071 break; 3072 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3073 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3074 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3075 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3076 minsize = sizeof (uint_t); 3077 break; 3078 case MAC_PROP_WL_ESSID: 3079 minsize = sizeof (wl_linkstatus_t); 3080 break; 3081 case MAC_PROP_WL_BSSID: 3082 minsize = sizeof (wl_bssid_t); 3083 break; 3084 case MAC_PROP_WL_BSSTYPE: 3085 minsize = sizeof (wl_bss_type_t); 3086 break; 3087 case MAC_PROP_WL_LINKSTATUS: 3088 minsize = sizeof (wl_linkstatus_t); 3089 break; 3090 case MAC_PROP_WL_DESIRED_RATES: 3091 minsize = sizeof (wl_rates_t); 3092 break; 3093 case MAC_PROP_WL_SUPPORTED_RATES: 3094 minsize = sizeof (wl_rates_t); 3095 break; 3096 case MAC_PROP_WL_AUTH_MODE: 3097 minsize = sizeof (wl_authmode_t); 3098 break; 3099 case MAC_PROP_WL_ENCRYPTION: 3100 minsize = sizeof (wl_encryption_t); 3101 break; 3102 case MAC_PROP_WL_RSSI: 3103 minsize = sizeof (wl_rssi_t); 3104 break; 3105 case MAC_PROP_WL_PHY_CONFIG: 3106 minsize = sizeof (wl_phy_conf_t); 3107 break; 3108 case MAC_PROP_WL_CAPABILITY: 3109 minsize = sizeof (wl_capability_t); 3110 break; 3111 case MAC_PROP_WL_WPA: 3112 minsize = sizeof (wl_wpa_t); 3113 break; 3114 case MAC_PROP_WL_SCANRESULTS: 3115 minsize = sizeof (wl_wpa_ess_t); 3116 break; 3117 case MAC_PROP_WL_POWER_MODE: 3118 minsize = sizeof (wl_ps_mode_t); 3119 break; 3120 case MAC_PROP_WL_RADIO: 3121 minsize = sizeof (wl_radio_t); 3122 break; 3123 case MAC_PROP_WL_ESS_LIST: 3124 minsize = sizeof (wl_ess_list_t); 3125 break; 3126 case MAC_PROP_WL_KEY_TAB: 3127 minsize = sizeof (wl_wep_key_tab_t); 3128 break; 3129 case MAC_PROP_WL_CREATE_IBSS: 3130 minsize = sizeof (wl_create_ibss_t); 3131 break; 3132 case MAC_PROP_WL_SETOPTIE: 3133 minsize = sizeof (wl_wpa_ie_t); 3134 break; 3135 case MAC_PROP_WL_DELKEY: 3136 minsize = sizeof (wl_del_key_t); 3137 break; 3138 case MAC_PROP_WL_KEY: 3139 minsize = sizeof (wl_key_t); 3140 break; 3141 case MAC_PROP_WL_MLME: 3142 minsize = sizeof (wl_mlme_t); 3143 break; 3144 } 3145 3146 return (valsize >= minsize); 3147 } 3148 3149 /* 3150 * mac_set_prop() sets MAC or hardware driver properties: 3151 * 3152 * - MAC-managed properties such as resource properties include maxbw, 3153 * priority, and cpu binding list, as well as the default port VID 3154 * used by bridging. These properties are consumed by the MAC layer 3155 * itself and not passed down to the driver. For resource control 3156 * properties, this function invokes mac_set_resources() which will 3157 * cache the property value in mac_impl_t and may call 3158 * mac_client_set_resource() to update property value of the primary 3159 * mac client, if it exists. 3160 * 3161 * - Properties which act on the hardware and must be passed to the 3162 * driver, such as MTU, through the driver's mc_setprop() entry point. 3163 */ 3164 int 3165 mac_set_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val, 3166 uint_t valsize) 3167 { 3168 int err = ENOTSUP; 3169 mac_impl_t *mip = (mac_impl_t *)mh; 3170 3171 ASSERT(MAC_PERIM_HELD(mh)); 3172 3173 switch (id) { 3174 case MAC_PROP_RESOURCE: { 3175 mac_resource_props_t *mrp; 3176 3177 /* call mac_set_resources() for MAC properties */ 3178 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3179 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3180 bcopy(val, mrp, sizeof (*mrp)); 3181 err = mac_set_resources(mh, mrp); 3182 kmem_free(mrp, sizeof (*mrp)); 3183 break; 3184 } 3185 3186 case MAC_PROP_PVID: 3187 ASSERT(valsize >= sizeof (uint16_t)); 3188 if (mip->mi_state_flags & MIS_IS_VNIC) 3189 return (EINVAL); 3190 err = mac_set_pvid(mh, *(uint16_t *)val); 3191 break; 3192 3193 case MAC_PROP_MTU: { 3194 uint32_t mtu; 3195 3196 ASSERT(valsize >= sizeof (uint32_t)); 3197 bcopy(val, &mtu, sizeof (mtu)); 3198 err = mac_set_mtu(mh, mtu, NULL); 3199 break; 3200 } 3201 3202 case MAC_PROP_LLIMIT: 3203 case MAC_PROP_LDECAY: { 3204 uint32_t learnval; 3205 3206 if (valsize < sizeof (learnval) || 3207 (mip->mi_state_flags & MIS_IS_VNIC)) 3208 return (EINVAL); 3209 bcopy(val, &learnval, sizeof (learnval)); 3210 if (learnval == 0 && id == MAC_PROP_LDECAY) 3211 return (EINVAL); 3212 if (id == MAC_PROP_LLIMIT) 3213 mip->mi_llimit = learnval; 3214 else 3215 mip->mi_ldecay = learnval; 3216 err = 0; 3217 break; 3218 } 3219 3220 default: 3221 /* For other driver properties, call driver's callback */ 3222 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) { 3223 err = mip->mi_callbacks->mc_setprop(mip->mi_driver, 3224 name, id, valsize, val); 3225 } 3226 } 3227 return (err); 3228 } 3229 3230 /* 3231 * mac_get_prop() gets MAC or device driver properties. 3232 * 3233 * If the property is a driver property, mac_get_prop() calls driver's callback 3234 * entry point to get it. 3235 * If the property is a MAC property, mac_get_prop() invokes mac_get_resources() 3236 * which returns the cached value in mac_impl_t. 3237 */ 3238 int 3239 mac_get_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val, 3240 uint_t valsize) 3241 { 3242 int err = ENOTSUP; 3243 mac_impl_t *mip = (mac_impl_t *)mh; 3244 uint_t rings; 3245 uint_t vlinks; 3246 3247 bzero(val, valsize); 3248 3249 switch (id) { 3250 case MAC_PROP_RESOURCE: { 3251 mac_resource_props_t *mrp; 3252 3253 /* If mac property, read from cache */ 3254 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3255 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3256 mac_get_resources(mh, mrp); 3257 bcopy(mrp, val, sizeof (*mrp)); 3258 kmem_free(mrp, sizeof (*mrp)); 3259 return (0); 3260 } 3261 case MAC_PROP_RESOURCE_EFF: { 3262 mac_resource_props_t *mrp; 3263 3264 /* If mac effective property, read from client */ 3265 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3266 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3267 mac_get_effective_resources(mh, mrp); 3268 bcopy(mrp, val, sizeof (*mrp)); 3269 kmem_free(mrp, sizeof (*mrp)); 3270 return (0); 3271 } 3272 3273 case MAC_PROP_PVID: 3274 ASSERT(valsize >= sizeof (uint16_t)); 3275 if (mip->mi_state_flags & MIS_IS_VNIC) 3276 return (EINVAL); 3277 *(uint16_t *)val = mac_get_pvid(mh); 3278 return (0); 3279 3280 case MAC_PROP_LLIMIT: 3281 case MAC_PROP_LDECAY: 3282 ASSERT(valsize >= sizeof (uint32_t)); 3283 if (mip->mi_state_flags & MIS_IS_VNIC) 3284 return (EINVAL); 3285 if (id == MAC_PROP_LLIMIT) 3286 bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit)); 3287 else 3288 bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay)); 3289 return (0); 3290 3291 case MAC_PROP_MTU: { 3292 uint32_t sdu; 3293 3294 ASSERT(valsize >= sizeof (uint32_t)); 3295 mac_sdu_get2(mh, NULL, &sdu, NULL); 3296 bcopy(&sdu, val, sizeof (sdu)); 3297 3298 return (0); 3299 } 3300 case MAC_PROP_STATUS: { 3301 link_state_t link_state; 3302 3303 if (valsize < sizeof (link_state)) 3304 return (EINVAL); 3305 link_state = mac_link_get(mh); 3306 bcopy(&link_state, val, sizeof (link_state)); 3307 3308 return (0); 3309 } 3310 3311 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3312 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3313 ASSERT(valsize >= sizeof (uint_t)); 3314 rings = id == MAC_PROP_MAX_RX_RINGS_AVAIL ? 3315 mac_rxavail_get(mh) : mac_txavail_get(mh); 3316 bcopy(&rings, val, sizeof (uint_t)); 3317 return (0); 3318 3319 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3320 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3321 ASSERT(valsize >= sizeof (uint_t)); 3322 vlinks = id == MAC_PROP_MAX_RXHWCLNT_AVAIL ? 3323 mac_rxhwlnksavail_get(mh) : mac_txhwlnksavail_get(mh); 3324 bcopy(&vlinks, val, sizeof (uint_t)); 3325 return (0); 3326 3327 case MAC_PROP_RXRINGSRANGE: 3328 case MAC_PROP_TXRINGSRANGE: 3329 /* 3330 * The value for these properties are returned through 3331 * the MAC_PROP_RESOURCE property. 3332 */ 3333 return (0); 3334 3335 default: 3336 break; 3337 3338 } 3339 3340 /* If driver property, request from driver */ 3341 if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) { 3342 err = mip->mi_callbacks->mc_getprop(mip->mi_driver, name, id, 3343 valsize, val); 3344 } 3345 3346 return (err); 3347 } 3348 3349 /* 3350 * Helper function to initialize the range structure for use in 3351 * mac_get_prop. If the type can be other than uint32, we can 3352 * pass that as an arg. 3353 */ 3354 static void 3355 _mac_set_range(mac_propval_range_t *range, uint32_t min, uint32_t max) 3356 { 3357 range->mpr_count = 1; 3358 range->mpr_type = MAC_PROPVAL_UINT32; 3359 range->mpr_range_uint32[0].mpur_min = min; 3360 range->mpr_range_uint32[0].mpur_max = max; 3361 } 3362 3363 /* 3364 * Returns information about the specified property, such as default 3365 * values or permissions. 3366 */ 3367 int 3368 mac_prop_info(mac_handle_t mh, mac_prop_id_t id, char *name, 3369 void *default_val, uint_t default_size, mac_propval_range_t *range, 3370 uint_t *perm) 3371 { 3372 mac_prop_info_state_t state; 3373 mac_impl_t *mip = (mac_impl_t *)mh; 3374 uint_t max; 3375 3376 /* 3377 * A property is read/write by default unless the driver says 3378 * otherwise. 3379 */ 3380 if (perm != NULL) 3381 *perm = MAC_PROP_PERM_RW; 3382 3383 if (default_val != NULL) 3384 bzero(default_val, default_size); 3385 3386 /* 3387 * First, handle framework properties for which we don't need to 3388 * involve the driver. 3389 */ 3390 switch (id) { 3391 case MAC_PROP_RESOURCE: 3392 case MAC_PROP_PVID: 3393 case MAC_PROP_LLIMIT: 3394 case MAC_PROP_LDECAY: 3395 return (0); 3396 3397 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3398 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3399 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3400 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3401 if (perm != NULL) 3402 *perm = MAC_PROP_PERM_READ; 3403 return (0); 3404 3405 case MAC_PROP_RXRINGSRANGE: 3406 case MAC_PROP_TXRINGSRANGE: 3407 /* 3408 * Currently, we support range for RX and TX rings properties. 3409 * When we extend this support to maxbw, cpus and priority, 3410 * we should move this to mac_get_resources. 3411 * There is no default value for RX or TX rings. 3412 */ 3413 if ((mip->mi_state_flags & MIS_IS_VNIC) && 3414 mac_is_vnic_primary(mh)) { 3415 /* 3416 * We don't support setting rings for a VLAN 3417 * data link because it shares its ring with the 3418 * primary MAC client. 3419 */ 3420 if (perm != NULL) 3421 *perm = MAC_PROP_PERM_READ; 3422 if (range != NULL) 3423 range->mpr_count = 0; 3424 } else if (range != NULL) { 3425 if (mip->mi_state_flags & MIS_IS_VNIC) 3426 mh = mac_get_lower_mac_handle(mh); 3427 mip = (mac_impl_t *)mh; 3428 if ((id == MAC_PROP_RXRINGSRANGE && 3429 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) || 3430 (id == MAC_PROP_TXRINGSRANGE && 3431 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC)) { 3432 if (id == MAC_PROP_RXRINGSRANGE) { 3433 if ((mac_rxhwlnksavail_get(mh) + 3434 mac_rxhwlnksrsvd_get(mh)) <= 1) { 3435 /* 3436 * doesn't support groups or 3437 * rings 3438 */ 3439 range->mpr_count = 0; 3440 } else { 3441 /* 3442 * supports specifying groups, 3443 * but not rings 3444 */ 3445 _mac_set_range(range, 0, 0); 3446 } 3447 } else { 3448 if ((mac_txhwlnksavail_get(mh) + 3449 mac_txhwlnksrsvd_get(mh)) <= 1) { 3450 /* 3451 * doesn't support groups or 3452 * rings 3453 */ 3454 range->mpr_count = 0; 3455 } else { 3456 /* 3457 * supports specifying groups, 3458 * but not rings 3459 */ 3460 _mac_set_range(range, 0, 0); 3461 } 3462 } 3463 } else { 3464 max = id == MAC_PROP_RXRINGSRANGE ? 3465 mac_rxavail_get(mh) + mac_rxrsvd_get(mh) : 3466 mac_txavail_get(mh) + mac_txrsvd_get(mh); 3467 if (max <= 1) { 3468 /* 3469 * doesn't support groups or 3470 * rings 3471 */ 3472 range->mpr_count = 0; 3473 } else { 3474 /* 3475 * -1 because we have to leave out the 3476 * default ring. 3477 */ 3478 _mac_set_range(range, 1, max - 1); 3479 } 3480 } 3481 } 3482 return (0); 3483 3484 case MAC_PROP_STATUS: 3485 if (perm != NULL) 3486 *perm = MAC_PROP_PERM_READ; 3487 return (0); 3488 } 3489 3490 /* 3491 * Get the property info from the driver if it implements the 3492 * property info entry point. 3493 */ 3494 bzero(&state, sizeof (state)); 3495 3496 if (mip->mi_callbacks->mc_callbacks & MC_PROPINFO) { 3497 state.pr_default = default_val; 3498 state.pr_default_size = default_size; 3499 3500 /* 3501 * The caller specifies the maximum number of ranges 3502 * it can accomodate using mpr_count. We don't touch 3503 * this value until the driver returns from its 3504 * mc_propinfo() callback, and ensure we don't exceed 3505 * this number of range as the driver defines 3506 * supported range from its mc_propinfo(). 3507 * 3508 * pr_range_cur_count keeps track of how many ranges 3509 * were defined by the driver from its mc_propinfo() 3510 * entry point. 3511 * 3512 * On exit, the user-specified range mpr_count returns 3513 * the number of ranges specified by the driver on 3514 * success, or the number of ranges it wanted to 3515 * define if that number of ranges could not be 3516 * accomodated by the specified range structure. In 3517 * the latter case, the caller will be able to 3518 * allocate a larger range structure, and query the 3519 * property again. 3520 */ 3521 state.pr_range_cur_count = 0; 3522 state.pr_range = range; 3523 3524 mip->mi_callbacks->mc_propinfo(mip->mi_driver, name, id, 3525 (mac_prop_info_handle_t)&state); 3526 3527 if (state.pr_flags & MAC_PROP_INFO_RANGE) 3528 range->mpr_count = state.pr_range_cur_count; 3529 3530 /* 3531 * The operation could fail if the buffer supplied by 3532 * the user was too small for the range or default 3533 * value of the property. 3534 */ 3535 if (state.pr_errno != 0) 3536 return (state.pr_errno); 3537 3538 if (perm != NULL && state.pr_flags & MAC_PROP_INFO_PERM) 3539 *perm = state.pr_perm; 3540 } 3541 3542 /* 3543 * The MAC layer may want to provide default values or allowed 3544 * ranges for properties if the driver does not provide a 3545 * property info entry point, or that entry point exists, but 3546 * it did not provide a default value or allowed ranges for 3547 * that property. 3548 */ 3549 switch (id) { 3550 case MAC_PROP_MTU: { 3551 uint32_t sdu; 3552 3553 mac_sdu_get2(mh, NULL, &sdu, NULL); 3554 3555 if (range != NULL && !(state.pr_flags & 3556 MAC_PROP_INFO_RANGE)) { 3557 /* MTU range */ 3558 _mac_set_range(range, sdu, sdu); 3559 } 3560 3561 if (default_val != NULL && !(state.pr_flags & 3562 MAC_PROP_INFO_DEFAULT)) { 3563 if (mip->mi_info.mi_media == DL_ETHER) 3564 sdu = ETHERMTU; 3565 /* default MTU value */ 3566 bcopy(&sdu, default_val, sizeof (sdu)); 3567 } 3568 } 3569 } 3570 3571 return (0); 3572 } 3573 3574 int 3575 mac_fastpath_disable(mac_handle_t mh) 3576 { 3577 mac_impl_t *mip = (mac_impl_t *)mh; 3578 3579 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 3580 return (0); 3581 3582 return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver)); 3583 } 3584 3585 void 3586 mac_fastpath_enable(mac_handle_t mh) 3587 { 3588 mac_impl_t *mip = (mac_impl_t *)mh; 3589 3590 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 3591 return; 3592 3593 mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver); 3594 } 3595 3596 void 3597 mac_register_priv_prop(mac_impl_t *mip, char **priv_props) 3598 { 3599 uint_t nprops, i; 3600 3601 if (priv_props == NULL) 3602 return; 3603 3604 nprops = 0; 3605 while (priv_props[nprops] != NULL) 3606 nprops++; 3607 if (nprops == 0) 3608 return; 3609 3610 3611 mip->mi_priv_prop = kmem_zalloc(nprops * sizeof (char *), KM_SLEEP); 3612 3613 for (i = 0; i < nprops; i++) { 3614 mip->mi_priv_prop[i] = kmem_zalloc(MAXLINKPROPNAME, KM_SLEEP); 3615 (void) strlcpy(mip->mi_priv_prop[i], priv_props[i], 3616 MAXLINKPROPNAME); 3617 } 3618 3619 mip->mi_priv_prop_count = nprops; 3620 } 3621 3622 void 3623 mac_unregister_priv_prop(mac_impl_t *mip) 3624 { 3625 uint_t i; 3626 3627 if (mip->mi_priv_prop_count == 0) { 3628 ASSERT(mip->mi_priv_prop == NULL); 3629 return; 3630 } 3631 3632 for (i = 0; i < mip->mi_priv_prop_count; i++) 3633 kmem_free(mip->mi_priv_prop[i], MAXLINKPROPNAME); 3634 kmem_free(mip->mi_priv_prop, mip->mi_priv_prop_count * 3635 sizeof (char *)); 3636 3637 mip->mi_priv_prop = NULL; 3638 mip->mi_priv_prop_count = 0; 3639 } 3640 3641 /* 3642 * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure 3643 * (by invoking mac_rx()) even after processing mac_stop_ring(). In such 3644 * cases if MAC free's the ring structure after mac_stop_ring(), any 3645 * illegal access to the ring structure coming from the driver will panic 3646 * the system. In order to protect the system from such inadverent access, 3647 * we maintain a cache of rings in the mac_impl_t after they get free'd up. 3648 * When packets are received on free'd up rings, MAC (through the generation 3649 * count mechanism) will drop such packets. 3650 */ 3651 static mac_ring_t * 3652 mac_ring_alloc(mac_impl_t *mip) 3653 { 3654 mac_ring_t *ring; 3655 3656 mutex_enter(&mip->mi_ring_lock); 3657 if (mip->mi_ring_freelist != NULL) { 3658 ring = mip->mi_ring_freelist; 3659 mip->mi_ring_freelist = ring->mr_next; 3660 bzero(ring, sizeof (mac_ring_t)); 3661 mutex_exit(&mip->mi_ring_lock); 3662 } else { 3663 mutex_exit(&mip->mi_ring_lock); 3664 ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP); 3665 } 3666 ASSERT((ring != NULL) && (ring->mr_state == MR_FREE)); 3667 return (ring); 3668 } 3669 3670 static void 3671 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring) 3672 { 3673 ASSERT(ring->mr_state == MR_FREE); 3674 3675 mutex_enter(&mip->mi_ring_lock); 3676 ring->mr_state = MR_FREE; 3677 ring->mr_flag = 0; 3678 ring->mr_next = mip->mi_ring_freelist; 3679 ring->mr_mip = NULL; 3680 mip->mi_ring_freelist = ring; 3681 mac_ring_stat_delete(ring); 3682 mutex_exit(&mip->mi_ring_lock); 3683 } 3684 3685 static void 3686 mac_ring_freeall(mac_impl_t *mip) 3687 { 3688 mac_ring_t *ring_next; 3689 mutex_enter(&mip->mi_ring_lock); 3690 mac_ring_t *ring = mip->mi_ring_freelist; 3691 while (ring != NULL) { 3692 ring_next = ring->mr_next; 3693 kmem_cache_free(mac_ring_cache, ring); 3694 ring = ring_next; 3695 } 3696 mip->mi_ring_freelist = NULL; 3697 mutex_exit(&mip->mi_ring_lock); 3698 } 3699 3700 int 3701 mac_start_ring(mac_ring_t *ring) 3702 { 3703 int rv = 0; 3704 3705 ASSERT(ring->mr_state == MR_FREE); 3706 3707 if (ring->mr_start != NULL) { 3708 rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num); 3709 if (rv != 0) 3710 return (rv); 3711 } 3712 3713 ring->mr_state = MR_INUSE; 3714 return (rv); 3715 } 3716 3717 void 3718 mac_stop_ring(mac_ring_t *ring) 3719 { 3720 ASSERT(ring->mr_state == MR_INUSE); 3721 3722 if (ring->mr_stop != NULL) 3723 ring->mr_stop(ring->mr_driver); 3724 3725 ring->mr_state = MR_FREE; 3726 3727 /* 3728 * Increment the ring generation number for this ring. 3729 */ 3730 ring->mr_gen_num++; 3731 } 3732 3733 int 3734 mac_start_group(mac_group_t *group) 3735 { 3736 int rv = 0; 3737 3738 if (group->mrg_start != NULL) 3739 rv = group->mrg_start(group->mrg_driver); 3740 3741 return (rv); 3742 } 3743 3744 void 3745 mac_stop_group(mac_group_t *group) 3746 { 3747 if (group->mrg_stop != NULL) 3748 group->mrg_stop(group->mrg_driver); 3749 } 3750 3751 /* 3752 * Called from mac_start() on the default Rx group. Broadcast and multicast 3753 * packets are received only on the default group. Hence the default group 3754 * needs to be up even if the primary client is not up, for the other groups 3755 * to be functional. We do this by calling this function at mac_start time 3756 * itself. However the broadcast packets that are received can't make their 3757 * way beyond mac_rx until a mac client creates a broadcast flow. 3758 */ 3759 static int 3760 mac_start_group_and_rings(mac_group_t *group) 3761 { 3762 mac_ring_t *ring; 3763 int rv = 0; 3764 3765 ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED); 3766 if ((rv = mac_start_group(group)) != 0) 3767 return (rv); 3768 3769 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 3770 ASSERT(ring->mr_state == MR_FREE); 3771 if ((rv = mac_start_ring(ring)) != 0) 3772 goto error; 3773 ring->mr_classify_type = MAC_SW_CLASSIFIER; 3774 } 3775 return (0); 3776 3777 error: 3778 mac_stop_group_and_rings(group); 3779 return (rv); 3780 } 3781 3782 /* Called from mac_stop on the default Rx group */ 3783 static void 3784 mac_stop_group_and_rings(mac_group_t *group) 3785 { 3786 mac_ring_t *ring; 3787 3788 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 3789 if (ring->mr_state != MR_FREE) { 3790 mac_stop_ring(ring); 3791 ring->mr_flag = 0; 3792 ring->mr_classify_type = MAC_NO_CLASSIFIER; 3793 } 3794 } 3795 mac_stop_group(group); 3796 } 3797 3798 3799 static mac_ring_t * 3800 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index, 3801 mac_capab_rings_t *cap_rings) 3802 { 3803 mac_ring_t *ring, *rnext; 3804 mac_ring_info_t ring_info; 3805 ddi_intr_handle_t ddi_handle; 3806 3807 ring = mac_ring_alloc(mip); 3808 3809 /* Prepare basic information of ring */ 3810 3811 /* 3812 * Ring index is numbered to be unique across a particular device. 3813 * Ring index computation makes following assumptions: 3814 * - For drivers with static grouping (e.g. ixgbe, bge), 3815 * ring index exchanged with the driver (e.g. during mr_rget) 3816 * is unique only across the group the ring belongs to. 3817 * - Drivers with dynamic grouping (e.g. nxge), start 3818 * with single group (mrg_index = 0). 3819 */ 3820 ring->mr_index = group->mrg_index * group->mrg_info.mgi_count + index; 3821 ring->mr_type = group->mrg_type; 3822 ring->mr_gh = (mac_group_handle_t)group; 3823 3824 /* Insert the new ring to the list. */ 3825 ring->mr_next = group->mrg_rings; 3826 group->mrg_rings = ring; 3827 3828 /* Zero to reuse the info data structure */ 3829 bzero(&ring_info, sizeof (ring_info)); 3830 3831 /* Query ring information from driver */ 3832 cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index, 3833 index, &ring_info, (mac_ring_handle_t)ring); 3834 3835 ring->mr_info = ring_info; 3836 3837 /* 3838 * The interrupt handle could be shared among multiple rings. 3839 * Thus if there is a bunch of rings that are sharing an 3840 * interrupt, then only one ring among the bunch will be made 3841 * available for interrupt re-targeting; the rest will have 3842 * ddi_shared flag set to TRUE and would not be available for 3843 * be interrupt re-targeting. 3844 */ 3845 if ((ddi_handle = ring_info.mri_intr.mi_ddi_handle) != NULL) { 3846 rnext = ring->mr_next; 3847 while (rnext != NULL) { 3848 if (rnext->mr_info.mri_intr.mi_ddi_handle == 3849 ddi_handle) { 3850 /* 3851 * If default ring (mr_index == 0) is part 3852 * of a group of rings sharing an 3853 * interrupt, then set ddi_shared flag for 3854 * the default ring and give another ring 3855 * the chance to be re-targeted. 3856 */ 3857 if (rnext->mr_index == 0 && 3858 !rnext->mr_info.mri_intr.mi_ddi_shared) { 3859 rnext->mr_info.mri_intr.mi_ddi_shared = 3860 B_TRUE; 3861 } else { 3862 ring->mr_info.mri_intr.mi_ddi_shared = 3863 B_TRUE; 3864 } 3865 break; 3866 } 3867 rnext = rnext->mr_next; 3868 } 3869 /* 3870 * If rnext is NULL, then no matching ddi_handle was found. 3871 * Rx rings get registered first. So if this is a Tx ring, 3872 * then go through all the Rx rings and see if there is a 3873 * matching ddi handle. 3874 */ 3875 if (rnext == NULL && ring->mr_type == MAC_RING_TYPE_TX) { 3876 mac_compare_ddi_handle(mip->mi_rx_groups, 3877 mip->mi_rx_group_count, ring); 3878 } 3879 } 3880 3881 /* Update ring's status */ 3882 ring->mr_state = MR_FREE; 3883 ring->mr_flag = 0; 3884 3885 /* Update the ring count of the group */ 3886 group->mrg_cur_count++; 3887 3888 /* Create per ring kstats */ 3889 if (ring->mr_stat != NULL) { 3890 ring->mr_mip = mip; 3891 mac_ring_stat_create(ring); 3892 } 3893 3894 return (ring); 3895 } 3896 3897 /* 3898 * Rings are chained together for easy regrouping. 3899 */ 3900 static void 3901 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size, 3902 mac_capab_rings_t *cap_rings) 3903 { 3904 int index; 3905 3906 /* 3907 * Initialize all ring members of this group. Size of zero will not 3908 * enter the loop, so it's safe for initializing an empty group. 3909 */ 3910 for (index = size - 1; index >= 0; index--) 3911 (void) mac_init_ring(mip, group, index, cap_rings); 3912 } 3913 3914 int 3915 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype) 3916 { 3917 mac_capab_rings_t *cap_rings; 3918 mac_group_t *group; 3919 mac_group_t *groups; 3920 mac_group_info_t group_info; 3921 uint_t group_free = 0; 3922 uint_t ring_left; 3923 mac_ring_t *ring; 3924 int g; 3925 int err = 0; 3926 uint_t grpcnt; 3927 boolean_t pseudo_txgrp = B_FALSE; 3928 3929 switch (rtype) { 3930 case MAC_RING_TYPE_RX: 3931 ASSERT(mip->mi_rx_groups == NULL); 3932 3933 cap_rings = &mip->mi_rx_rings_cap; 3934 cap_rings->mr_type = MAC_RING_TYPE_RX; 3935 break; 3936 case MAC_RING_TYPE_TX: 3937 ASSERT(mip->mi_tx_groups == NULL); 3938 3939 cap_rings = &mip->mi_tx_rings_cap; 3940 cap_rings->mr_type = MAC_RING_TYPE_TX; 3941 break; 3942 default: 3943 ASSERT(B_FALSE); 3944 } 3945 3946 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, cap_rings)) 3947 return (0); 3948 grpcnt = cap_rings->mr_gnum; 3949 3950 /* 3951 * If we have multiple TX rings, but only one TX group, we can 3952 * create pseudo TX groups (one per TX ring) in the MAC layer, 3953 * except for an aggr. For an aggr currently we maintain only 3954 * one group with all the rings (for all its ports), going 3955 * forwards we might change this. 3956 */ 3957 if (rtype == MAC_RING_TYPE_TX && 3958 cap_rings->mr_gnum == 0 && cap_rings->mr_rnum > 0 && 3959 (mip->mi_state_flags & MIS_IS_AGGR) == 0) { 3960 /* 3961 * The -1 here is because we create a default TX group 3962 * with all the rings in it. 3963 */ 3964 grpcnt = cap_rings->mr_rnum - 1; 3965 pseudo_txgrp = B_TRUE; 3966 } 3967 3968 /* 3969 * Allocate a contiguous buffer for all groups. 3970 */ 3971 groups = kmem_zalloc(sizeof (mac_group_t) * (grpcnt+ 1), KM_SLEEP); 3972 3973 ring_left = cap_rings->mr_rnum; 3974 3975 /* 3976 * Get all ring groups if any, and get their ring members 3977 * if any. 3978 */ 3979 for (g = 0; g < grpcnt; g++) { 3980 group = groups + g; 3981 3982 /* Prepare basic information of the group */ 3983 group->mrg_index = g; 3984 group->mrg_type = rtype; 3985 group->mrg_state = MAC_GROUP_STATE_UNINIT; 3986 group->mrg_mh = (mac_handle_t)mip; 3987 group->mrg_next = group + 1; 3988 3989 /* Zero to reuse the info data structure */ 3990 bzero(&group_info, sizeof (group_info)); 3991 3992 if (pseudo_txgrp) { 3993 /* 3994 * This is a pseudo group that we created, apart 3995 * from setting the state there is nothing to be 3996 * done. 3997 */ 3998 group->mrg_state = MAC_GROUP_STATE_REGISTERED; 3999 group_free++; 4000 continue; 4001 } 4002 /* Query group information from driver */ 4003 cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info, 4004 (mac_group_handle_t)group); 4005 4006 switch (cap_rings->mr_group_type) { 4007 case MAC_GROUP_TYPE_DYNAMIC: 4008 if (cap_rings->mr_gaddring == NULL || 4009 cap_rings->mr_gremring == NULL) { 4010 DTRACE_PROBE3( 4011 mac__init__rings_no_addremring, 4012 char *, mip->mi_name, 4013 mac_group_add_ring_t, 4014 cap_rings->mr_gaddring, 4015 mac_group_add_ring_t, 4016 cap_rings->mr_gremring); 4017 err = EINVAL; 4018 goto bail; 4019 } 4020 4021 switch (rtype) { 4022 case MAC_RING_TYPE_RX: 4023 /* 4024 * The first RX group must have non-zero 4025 * rings, and the following groups must 4026 * have zero rings. 4027 */ 4028 if (g == 0 && group_info.mgi_count == 0) { 4029 DTRACE_PROBE1( 4030 mac__init__rings__rx__def__zero, 4031 char *, mip->mi_name); 4032 err = EINVAL; 4033 goto bail; 4034 } 4035 if (g > 0 && group_info.mgi_count != 0) { 4036 DTRACE_PROBE3( 4037 mac__init__rings__rx__nonzero, 4038 char *, mip->mi_name, 4039 int, g, int, group_info.mgi_count); 4040 err = EINVAL; 4041 goto bail; 4042 } 4043 break; 4044 case MAC_RING_TYPE_TX: 4045 /* 4046 * All TX ring groups must have zero rings. 4047 */ 4048 if (group_info.mgi_count != 0) { 4049 DTRACE_PROBE3( 4050 mac__init__rings__tx__nonzero, 4051 char *, mip->mi_name, 4052 int, g, int, group_info.mgi_count); 4053 err = EINVAL; 4054 goto bail; 4055 } 4056 break; 4057 } 4058 break; 4059 case MAC_GROUP_TYPE_STATIC: 4060 /* 4061 * Note that an empty group is allowed, e.g., an aggr 4062 * would start with an empty group. 4063 */ 4064 break; 4065 default: 4066 /* unknown group type */ 4067 DTRACE_PROBE2(mac__init__rings__unknown__type, 4068 char *, mip->mi_name, 4069 int, cap_rings->mr_group_type); 4070 err = EINVAL; 4071 goto bail; 4072 } 4073 4074 4075 /* 4076 * Driver must register group->mgi_addmac/remmac() for rx groups 4077 * to support multiple MAC addresses. 4078 */ 4079 if (rtype == MAC_RING_TYPE_RX && 4080 ((group_info.mgi_addmac == NULL) || 4081 (group_info.mgi_remmac == NULL))) { 4082 err = EINVAL; 4083 goto bail; 4084 } 4085 4086 /* Cache driver-supplied information */ 4087 group->mrg_info = group_info; 4088 4089 /* Update the group's status and group count. */ 4090 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED); 4091 group_free++; 4092 4093 group->mrg_rings = NULL; 4094 group->mrg_cur_count = 0; 4095 mac_init_group(mip, group, group_info.mgi_count, cap_rings); 4096 ring_left -= group_info.mgi_count; 4097 4098 /* The current group size should be equal to default value */ 4099 ASSERT(group->mrg_cur_count == group_info.mgi_count); 4100 } 4101 4102 /* Build up a dummy group for free resources as a pool */ 4103 group = groups + grpcnt; 4104 4105 /* Prepare basic information of the group */ 4106 group->mrg_index = -1; 4107 group->mrg_type = rtype; 4108 group->mrg_state = MAC_GROUP_STATE_UNINIT; 4109 group->mrg_mh = (mac_handle_t)mip; 4110 group->mrg_next = NULL; 4111 4112 /* 4113 * If there are ungrouped rings, allocate a continuous buffer for 4114 * remaining resources. 4115 */ 4116 if (ring_left != 0) { 4117 group->mrg_rings = NULL; 4118 group->mrg_cur_count = 0; 4119 mac_init_group(mip, group, ring_left, cap_rings); 4120 4121 /* The current group size should be equal to ring_left */ 4122 ASSERT(group->mrg_cur_count == ring_left); 4123 4124 ring_left = 0; 4125 4126 /* Update this group's status */ 4127 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED); 4128 } else 4129 group->mrg_rings = NULL; 4130 4131 ASSERT(ring_left == 0); 4132 4133 bail: 4134 4135 /* Cache other important information to finalize the initialization */ 4136 switch (rtype) { 4137 case MAC_RING_TYPE_RX: 4138 mip->mi_rx_group_type = cap_rings->mr_group_type; 4139 mip->mi_rx_group_count = cap_rings->mr_gnum; 4140 mip->mi_rx_groups = groups; 4141 mip->mi_rx_donor_grp = groups; 4142 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 4143 /* 4144 * The default ring is reserved since it is 4145 * used for sending the broadcast etc. packets. 4146 */ 4147 mip->mi_rxrings_avail = 4148 mip->mi_rx_groups->mrg_cur_count - 1; 4149 mip->mi_rxrings_rsvd = 1; 4150 } 4151 /* 4152 * The default group cannot be reserved. It is used by 4153 * all the clients that do not have an exclusive group. 4154 */ 4155 mip->mi_rxhwclnt_avail = mip->mi_rx_group_count - 1; 4156 mip->mi_rxhwclnt_used = 1; 4157 break; 4158 case MAC_RING_TYPE_TX: 4159 mip->mi_tx_group_type = pseudo_txgrp ? MAC_GROUP_TYPE_DYNAMIC : 4160 cap_rings->mr_group_type; 4161 mip->mi_tx_group_count = grpcnt; 4162 mip->mi_tx_group_free = group_free; 4163 mip->mi_tx_groups = groups; 4164 4165 group = groups + grpcnt; 4166 ring = group->mrg_rings; 4167 /* 4168 * The ring can be NULL in the case of aggr. Aggr will 4169 * have an empty Tx group which will get populated 4170 * later when pseudo Tx rings are added after 4171 * mac_register() is done. 4172 */ 4173 if (ring == NULL) { 4174 ASSERT(mip->mi_state_flags & MIS_IS_AGGR); 4175 /* 4176 * pass the group to aggr so it can add Tx 4177 * rings to the group later. 4178 */ 4179 cap_rings->mr_gget(mip->mi_driver, rtype, 0, NULL, 4180 (mac_group_handle_t)group); 4181 /* 4182 * Even though there are no rings at this time 4183 * (rings will come later), set the group 4184 * state to registered. 4185 */ 4186 group->mrg_state = MAC_GROUP_STATE_REGISTERED; 4187 } else { 4188 /* 4189 * Ring 0 is used as the default one and it could be 4190 * assigned to a client as well. 4191 */ 4192 while ((ring->mr_index != 0) && (ring->mr_next != NULL)) 4193 ring = ring->mr_next; 4194 ASSERT(ring->mr_index == 0); 4195 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 4196 } 4197 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) 4198 mip->mi_txrings_avail = group->mrg_cur_count - 1; 4199 /* 4200 * The default ring cannot be reserved. 4201 */ 4202 mip->mi_txrings_rsvd = 1; 4203 /* 4204 * The default group cannot be reserved. It will be shared 4205 * by clients that do not have an exclusive group. 4206 */ 4207 mip->mi_txhwclnt_avail = mip->mi_tx_group_count; 4208 mip->mi_txhwclnt_used = 1; 4209 break; 4210 default: 4211 ASSERT(B_FALSE); 4212 } 4213 4214 if (err != 0) 4215 mac_free_rings(mip, rtype); 4216 4217 return (err); 4218 } 4219 4220 /* 4221 * The ddi interrupt handle could be shared amoung rings. If so, compare 4222 * the new ring's ddi handle with the existing ones and set ddi_shared 4223 * flag. 4224 */ 4225 void 4226 mac_compare_ddi_handle(mac_group_t *groups, uint_t grpcnt, mac_ring_t *cring) 4227 { 4228 mac_group_t *group; 4229 mac_ring_t *ring; 4230 ddi_intr_handle_t ddi_handle; 4231 int g; 4232 4233 ddi_handle = cring->mr_info.mri_intr.mi_ddi_handle; 4234 for (g = 0; g < grpcnt; g++) { 4235 group = groups + g; 4236 for (ring = group->mrg_rings; ring != NULL; 4237 ring = ring->mr_next) { 4238 if (ring == cring) 4239 continue; 4240 if (ring->mr_info.mri_intr.mi_ddi_handle == 4241 ddi_handle) { 4242 if (cring->mr_type == MAC_RING_TYPE_RX && 4243 ring->mr_index == 0 && 4244 !ring->mr_info.mri_intr.mi_ddi_shared) { 4245 ring->mr_info.mri_intr.mi_ddi_shared = 4246 B_TRUE; 4247 } else { 4248 cring->mr_info.mri_intr.mi_ddi_shared = 4249 B_TRUE; 4250 } 4251 return; 4252 } 4253 } 4254 } 4255 } 4256 4257 /* 4258 * Called to free all groups of particular type (RX or TX). It's assumed that 4259 * no clients are using these groups. 4260 */ 4261 void 4262 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype) 4263 { 4264 mac_group_t *group, *groups; 4265 uint_t group_count; 4266 4267 switch (rtype) { 4268 case MAC_RING_TYPE_RX: 4269 if (mip->mi_rx_groups == NULL) 4270 return; 4271 4272 groups = mip->mi_rx_groups; 4273 group_count = mip->mi_rx_group_count; 4274 4275 mip->mi_rx_groups = NULL; 4276 mip->mi_rx_donor_grp = NULL; 4277 mip->mi_rx_group_count = 0; 4278 break; 4279 case MAC_RING_TYPE_TX: 4280 ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free); 4281 4282 if (mip->mi_tx_groups == NULL) 4283 return; 4284 4285 groups = mip->mi_tx_groups; 4286 group_count = mip->mi_tx_group_count; 4287 4288 mip->mi_tx_groups = NULL; 4289 mip->mi_tx_group_count = 0; 4290 mip->mi_tx_group_free = 0; 4291 mip->mi_default_tx_ring = NULL; 4292 break; 4293 default: 4294 ASSERT(B_FALSE); 4295 } 4296 4297 for (group = groups; group != NULL; group = group->mrg_next) { 4298 mac_ring_t *ring; 4299 4300 if (group->mrg_cur_count == 0) 4301 continue; 4302 4303 ASSERT(group->mrg_rings != NULL); 4304 4305 while ((ring = group->mrg_rings) != NULL) { 4306 group->mrg_rings = ring->mr_next; 4307 mac_ring_free(mip, ring); 4308 } 4309 } 4310 4311 /* Free all the cached rings */ 4312 mac_ring_freeall(mip); 4313 /* Free the block of group data strutures */ 4314 kmem_free(groups, sizeof (mac_group_t) * (group_count + 1)); 4315 } 4316 4317 /* 4318 * Associate a MAC address with a receive group. 4319 * 4320 * The return value of this function should always be checked properly, because 4321 * any type of failure could cause unexpected results. A group can be added 4322 * or removed with a MAC address only after it has been reserved. Ideally, 4323 * a successful reservation always leads to calling mac_group_addmac() to 4324 * steer desired traffic. Failure of adding an unicast MAC address doesn't 4325 * always imply that the group is functioning abnormally. 4326 * 4327 * Currently this function is called everywhere, and it reflects assumptions 4328 * about MAC addresses in the implementation. CR 6735196. 4329 */ 4330 int 4331 mac_group_addmac(mac_group_t *group, const uint8_t *addr) 4332 { 4333 ASSERT(group->mrg_type == MAC_RING_TYPE_RX); 4334 ASSERT(group->mrg_info.mgi_addmac != NULL); 4335 4336 return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr)); 4337 } 4338 4339 /* 4340 * Remove the association between MAC address and receive group. 4341 */ 4342 int 4343 mac_group_remmac(mac_group_t *group, const uint8_t *addr) 4344 { 4345 ASSERT(group->mrg_type == MAC_RING_TYPE_RX); 4346 ASSERT(group->mrg_info.mgi_remmac != NULL); 4347 4348 return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr)); 4349 } 4350 4351 /* 4352 * This is the entry point for packets transmitted through the bridging code. 4353 * If no bridge is in place, MAC_RING_TX transmits using tx ring. The 'rh' 4354 * pointer may be NULL to select the default ring. 4355 */ 4356 mblk_t * 4357 mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp) 4358 { 4359 mac_handle_t mh; 4360 4361 /* 4362 * Once we take a reference on the bridge link, the bridge 4363 * module itself can't unload, so the callback pointers are 4364 * stable. 4365 */ 4366 mutex_enter(&mip->mi_bridge_lock); 4367 if ((mh = mip->mi_bridge_link) != NULL) 4368 mac_bridge_ref_cb(mh, B_TRUE); 4369 mutex_exit(&mip->mi_bridge_lock); 4370 if (mh == NULL) { 4371 MAC_RING_TX(mip, rh, mp, mp); 4372 } else { 4373 mp = mac_bridge_tx_cb(mh, rh, mp); 4374 mac_bridge_ref_cb(mh, B_FALSE); 4375 } 4376 4377 return (mp); 4378 } 4379 4380 /* 4381 * Find a ring from its index. 4382 */ 4383 mac_ring_handle_t 4384 mac_find_ring(mac_group_handle_t gh, int index) 4385 { 4386 mac_group_t *group = (mac_group_t *)gh; 4387 mac_ring_t *ring = group->mrg_rings; 4388 4389 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) 4390 if (ring->mr_index == index) 4391 break; 4392 4393 return ((mac_ring_handle_t)ring); 4394 } 4395 /* 4396 * Add a ring to an existing group. 4397 * 4398 * The ring must be either passed directly (for example if the ring 4399 * movement is initiated by the framework), or specified through a driver 4400 * index (for example when the ring is added by the driver. 4401 * 4402 * The caller needs to call mac_perim_enter() before calling this function. 4403 */ 4404 int 4405 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index) 4406 { 4407 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 4408 mac_capab_rings_t *cap_rings; 4409 boolean_t driver_call = (ring == NULL); 4410 mac_group_type_t group_type; 4411 int ret = 0; 4412 flow_entry_t *flent; 4413 4414 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4415 4416 switch (group->mrg_type) { 4417 case MAC_RING_TYPE_RX: 4418 cap_rings = &mip->mi_rx_rings_cap; 4419 group_type = mip->mi_rx_group_type; 4420 break; 4421 case MAC_RING_TYPE_TX: 4422 cap_rings = &mip->mi_tx_rings_cap; 4423 group_type = mip->mi_tx_group_type; 4424 break; 4425 default: 4426 ASSERT(B_FALSE); 4427 } 4428 4429 /* 4430 * There should be no ring with the same ring index in the target 4431 * group. 4432 */ 4433 ASSERT(mac_find_ring((mac_group_handle_t)group, 4434 driver_call ? index : ring->mr_index) == NULL); 4435 4436 if (driver_call) { 4437 /* 4438 * The function is called as a result of a request from 4439 * a driver to add a ring to an existing group, for example 4440 * from the aggregation driver. Allocate a new mac_ring_t 4441 * for that ring. 4442 */ 4443 ring = mac_init_ring(mip, group, index, cap_rings); 4444 ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT); 4445 } else { 4446 /* 4447 * The function is called as a result of a MAC layer request 4448 * to add a ring to an existing group. In this case the 4449 * ring is being moved between groups, which requires 4450 * the underlying driver to support dynamic grouping, 4451 * and the mac_ring_t already exists. 4452 */ 4453 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 4454 ASSERT(group->mrg_driver == NULL || 4455 cap_rings->mr_gaddring != NULL); 4456 ASSERT(ring->mr_gh == NULL); 4457 } 4458 4459 /* 4460 * At this point the ring should not be in use, and it should be 4461 * of the right for the target group. 4462 */ 4463 ASSERT(ring->mr_state < MR_INUSE); 4464 ASSERT(ring->mr_srs == NULL); 4465 ASSERT(ring->mr_type == group->mrg_type); 4466 4467 if (!driver_call) { 4468 /* 4469 * Add the driver level hardware ring if the process was not 4470 * initiated by the driver, and the target group is not the 4471 * group. 4472 */ 4473 if (group->mrg_driver != NULL) { 4474 cap_rings->mr_gaddring(group->mrg_driver, 4475 ring->mr_driver, ring->mr_type); 4476 } 4477 4478 /* 4479 * Insert the ring ahead existing rings. 4480 */ 4481 ring->mr_next = group->mrg_rings; 4482 group->mrg_rings = ring; 4483 ring->mr_gh = (mac_group_handle_t)group; 4484 group->mrg_cur_count++; 4485 } 4486 4487 /* 4488 * If the group has not been actively used, we're done. 4489 */ 4490 if (group->mrg_index != -1 && 4491 group->mrg_state < MAC_GROUP_STATE_RESERVED) 4492 return (0); 4493 4494 /* 4495 * Start the ring if needed. Failure causes to undo the grouping action. 4496 */ 4497 if (ring->mr_state != MR_INUSE) { 4498 if ((ret = mac_start_ring(ring)) != 0) { 4499 if (!driver_call) { 4500 cap_rings->mr_gremring(group->mrg_driver, 4501 ring->mr_driver, ring->mr_type); 4502 } 4503 group->mrg_cur_count--; 4504 group->mrg_rings = ring->mr_next; 4505 4506 ring->mr_gh = NULL; 4507 4508 if (driver_call) 4509 mac_ring_free(mip, ring); 4510 4511 return (ret); 4512 } 4513 } 4514 4515 /* 4516 * Set up SRS/SR according to the ring type. 4517 */ 4518 switch (ring->mr_type) { 4519 case MAC_RING_TYPE_RX: 4520 /* 4521 * Setup SRS on top of the new ring if the group is 4522 * reserved for someones exclusive use. 4523 */ 4524 if (group->mrg_state == MAC_GROUP_STATE_RESERVED) { 4525 mac_client_impl_t *mcip; 4526 4527 mcip = MAC_GROUP_ONLY_CLIENT(group); 4528 /* 4529 * Even though this group is reserved we migth still 4530 * have multiple clients, i.e a VLAN shares the 4531 * group with the primary mac client. 4532 */ 4533 if (mcip != NULL) { 4534 flent = mcip->mci_flent; 4535 ASSERT(flent->fe_rx_srs_cnt > 0); 4536 mac_rx_srs_group_setup(mcip, flent, SRST_LINK); 4537 mac_fanout_setup(mcip, flent, 4538 MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, 4539 mcip, NULL, NULL); 4540 } else { 4541 ring->mr_classify_type = MAC_SW_CLASSIFIER; 4542 } 4543 } 4544 break; 4545 case MAC_RING_TYPE_TX: 4546 { 4547 mac_grp_client_t *mgcp = group->mrg_clients; 4548 mac_client_impl_t *mcip; 4549 mac_soft_ring_set_t *mac_srs; 4550 mac_srs_tx_t *tx; 4551 4552 if (MAC_GROUP_NO_CLIENT(group)) { 4553 if (ring->mr_state == MR_INUSE) 4554 mac_stop_ring(ring); 4555 ring->mr_flag = 0; 4556 break; 4557 } 4558 /* 4559 * If the rings are being moved to a group that has 4560 * clients using it, then add the new rings to the 4561 * clients SRS. 4562 */ 4563 while (mgcp != NULL) { 4564 boolean_t is_aggr; 4565 4566 mcip = mgcp->mgc_client; 4567 flent = mcip->mci_flent; 4568 is_aggr = (mcip->mci_state_flags & MCIS_IS_AGGR); 4569 mac_srs = MCIP_TX_SRS(mcip); 4570 tx = &mac_srs->srs_tx; 4571 mac_tx_client_quiesce((mac_client_handle_t)mcip); 4572 /* 4573 * If we are growing from 1 to multiple rings. 4574 */ 4575 if (tx->st_mode == SRS_TX_BW || 4576 tx->st_mode == SRS_TX_SERIALIZE || 4577 tx->st_mode == SRS_TX_DEFAULT) { 4578 mac_ring_t *tx_ring = tx->st_arg2; 4579 4580 tx->st_arg2 = NULL; 4581 mac_tx_srs_stat_recreate(mac_srs, B_TRUE); 4582 mac_tx_srs_add_ring(mac_srs, tx_ring); 4583 if (mac_srs->srs_type & SRST_BW_CONTROL) { 4584 tx->st_mode = is_aggr ? SRS_TX_BW_AGGR : 4585 SRS_TX_BW_FANOUT; 4586 } else { 4587 tx->st_mode = is_aggr ? SRS_TX_AGGR : 4588 SRS_TX_FANOUT; 4589 } 4590 tx->st_func = mac_tx_get_func(tx->st_mode); 4591 } 4592 mac_tx_srs_add_ring(mac_srs, ring); 4593 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 4594 mac_rx_deliver, mcip, NULL, NULL); 4595 mac_tx_client_restart((mac_client_handle_t)mcip); 4596 mgcp = mgcp->mgc_next; 4597 } 4598 break; 4599 } 4600 default: 4601 ASSERT(B_FALSE); 4602 } 4603 /* 4604 * For aggr, the default ring will be NULL to begin with. If it 4605 * is NULL, then pick the first ring that gets added as the 4606 * default ring. Any ring in an aggregation can be removed at 4607 * any time (by the user action of removing a link) and if the 4608 * current default ring gets removed, then a new one gets 4609 * picked (see i_mac_group_rem_ring()). 4610 */ 4611 if (mip->mi_state_flags & MIS_IS_AGGR && 4612 mip->mi_default_tx_ring == NULL && 4613 ring->mr_type == MAC_RING_TYPE_TX) { 4614 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 4615 } 4616 4617 MAC_RING_UNMARK(ring, MR_INCIPIENT); 4618 return (0); 4619 } 4620 4621 /* 4622 * Remove a ring from it's current group. MAC internal function for dynamic 4623 * grouping. 4624 * 4625 * The caller needs to call mac_perim_enter() before calling this function. 4626 */ 4627 void 4628 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring, 4629 boolean_t driver_call) 4630 { 4631 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 4632 mac_capab_rings_t *cap_rings = NULL; 4633 mac_group_type_t group_type; 4634 4635 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4636 4637 ASSERT(mac_find_ring((mac_group_handle_t)group, 4638 ring->mr_index) == (mac_ring_handle_t)ring); 4639 ASSERT((mac_group_t *)ring->mr_gh == group); 4640 ASSERT(ring->mr_type == group->mrg_type); 4641 4642 if (ring->mr_state == MR_INUSE) 4643 mac_stop_ring(ring); 4644 switch (ring->mr_type) { 4645 case MAC_RING_TYPE_RX: 4646 group_type = mip->mi_rx_group_type; 4647 cap_rings = &mip->mi_rx_rings_cap; 4648 4649 /* 4650 * Only hardware classified packets hold a reference to the 4651 * ring all the way up the Rx path. mac_rx_srs_remove() 4652 * will take care of quiescing the Rx path and removing the 4653 * SRS. The software classified path neither holds a reference 4654 * nor any association with the ring in mac_rx. 4655 */ 4656 if (ring->mr_srs != NULL) { 4657 mac_rx_srs_remove(ring->mr_srs); 4658 ring->mr_srs = NULL; 4659 } 4660 4661 break; 4662 case MAC_RING_TYPE_TX: 4663 { 4664 mac_grp_client_t *mgcp; 4665 mac_client_impl_t *mcip; 4666 mac_soft_ring_set_t *mac_srs; 4667 mac_srs_tx_t *tx; 4668 mac_ring_t *rem_ring; 4669 mac_group_t *defgrp; 4670 uint_t ring_info = 0; 4671 4672 /* 4673 * For TX this function is invoked in three 4674 * cases: 4675 * 4676 * 1) In the case of a failure during the 4677 * initial creation of a group when a share is 4678 * associated with a MAC client. So the SRS is not 4679 * yet setup, and will be setup later after the 4680 * group has been reserved and populated. 4681 * 4682 * 2) From mac_release_tx_group() when freeing 4683 * a TX SRS. 4684 * 4685 * 3) In the case of aggr, when a port gets removed, 4686 * the pseudo Tx rings that it exposed gets removed. 4687 * 4688 * In the first two cases the SRS and its soft 4689 * rings are already quiesced. 4690 */ 4691 if (driver_call) { 4692 mac_client_impl_t *mcip; 4693 mac_soft_ring_set_t *mac_srs; 4694 mac_soft_ring_t *sringp; 4695 mac_srs_tx_t *srs_tx; 4696 4697 if (mip->mi_state_flags & MIS_IS_AGGR && 4698 mip->mi_default_tx_ring == 4699 (mac_ring_handle_t)ring) { 4700 /* pick a new default Tx ring */ 4701 mip->mi_default_tx_ring = 4702 (group->mrg_rings != ring) ? 4703 (mac_ring_handle_t)group->mrg_rings : 4704 (mac_ring_handle_t)(ring->mr_next); 4705 } 4706 /* Presently only aggr case comes here */ 4707 if (group->mrg_state != MAC_GROUP_STATE_RESERVED) 4708 break; 4709 4710 mcip = MAC_GROUP_ONLY_CLIENT(group); 4711 ASSERT(mcip != NULL); 4712 ASSERT(mcip->mci_state_flags & MCIS_IS_AGGR); 4713 mac_srs = MCIP_TX_SRS(mcip); 4714 ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_AGGR || 4715 mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR); 4716 srs_tx = &mac_srs->srs_tx; 4717 /* 4718 * Wakeup any callers blocked on this 4719 * Tx ring due to flow control. 4720 */ 4721 sringp = srs_tx->st_soft_rings[ring->mr_index]; 4722 ASSERT(sringp != NULL); 4723 mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)sringp); 4724 mac_tx_client_quiesce((mac_client_handle_t)mcip); 4725 mac_tx_srs_del_ring(mac_srs, ring); 4726 mac_tx_client_restart((mac_client_handle_t)mcip); 4727 break; 4728 } 4729 ASSERT(ring != (mac_ring_t *)mip->mi_default_tx_ring); 4730 group_type = mip->mi_tx_group_type; 4731 cap_rings = &mip->mi_tx_rings_cap; 4732 /* 4733 * See if we need to take it out of the MAC clients using 4734 * this group 4735 */ 4736 if (MAC_GROUP_NO_CLIENT(group)) 4737 break; 4738 mgcp = group->mrg_clients; 4739 defgrp = MAC_DEFAULT_TX_GROUP(mip); 4740 while (mgcp != NULL) { 4741 mcip = mgcp->mgc_client; 4742 mac_srs = MCIP_TX_SRS(mcip); 4743 tx = &mac_srs->srs_tx; 4744 mac_tx_client_quiesce((mac_client_handle_t)mcip); 4745 /* 4746 * If we are here when removing rings from the 4747 * defgroup, mac_reserve_tx_ring would have 4748 * already deleted the ring from the MAC 4749 * clients in the group. 4750 */ 4751 if (group != defgrp) { 4752 mac_tx_invoke_callbacks(mcip, 4753 (mac_tx_cookie_t) 4754 mac_tx_srs_get_soft_ring(mac_srs, ring)); 4755 mac_tx_srs_del_ring(mac_srs, ring); 4756 } 4757 /* 4758 * Additionally, if we are left with only 4759 * one ring in the group after this, we need 4760 * to modify the mode etc. to. (We haven't 4761 * yet taken the ring out, so we check with 2). 4762 */ 4763 if (group->mrg_cur_count == 2) { 4764 if (ring->mr_next == NULL) 4765 rem_ring = group->mrg_rings; 4766 else 4767 rem_ring = ring->mr_next; 4768 mac_tx_invoke_callbacks(mcip, 4769 (mac_tx_cookie_t) 4770 mac_tx_srs_get_soft_ring(mac_srs, 4771 rem_ring)); 4772 mac_tx_srs_del_ring(mac_srs, rem_ring); 4773 if (rem_ring->mr_state != MR_INUSE) { 4774 (void) mac_start_ring(rem_ring); 4775 } 4776 tx->st_arg2 = (void *)rem_ring; 4777 mac_tx_srs_stat_recreate(mac_srs, B_FALSE); 4778 ring_info = mac_hwring_getinfo( 4779 (mac_ring_handle_t)rem_ring); 4780 /* 4781 * We are shrinking from multiple 4782 * to 1 ring. 4783 */ 4784 if (mac_srs->srs_type & SRST_BW_CONTROL) { 4785 tx->st_mode = SRS_TX_BW; 4786 } else if (mac_tx_serialize || 4787 (ring_info & MAC_RING_TX_SERIALIZE)) { 4788 tx->st_mode = SRS_TX_SERIALIZE; 4789 } else { 4790 tx->st_mode = SRS_TX_DEFAULT; 4791 } 4792 tx->st_func = mac_tx_get_func(tx->st_mode); 4793 } 4794 mac_tx_client_restart((mac_client_handle_t)mcip); 4795 mgcp = mgcp->mgc_next; 4796 } 4797 break; 4798 } 4799 default: 4800 ASSERT(B_FALSE); 4801 } 4802 4803 /* 4804 * Remove the ring from the group. 4805 */ 4806 if (ring == group->mrg_rings) 4807 group->mrg_rings = ring->mr_next; 4808 else { 4809 mac_ring_t *pre; 4810 4811 pre = group->mrg_rings; 4812 while (pre->mr_next != ring) 4813 pre = pre->mr_next; 4814 pre->mr_next = ring->mr_next; 4815 } 4816 group->mrg_cur_count--; 4817 4818 if (!driver_call) { 4819 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 4820 ASSERT(group->mrg_driver == NULL || 4821 cap_rings->mr_gremring != NULL); 4822 4823 /* 4824 * Remove the driver level hardware ring. 4825 */ 4826 if (group->mrg_driver != NULL) { 4827 cap_rings->mr_gremring(group->mrg_driver, 4828 ring->mr_driver, ring->mr_type); 4829 } 4830 } 4831 4832 ring->mr_gh = NULL; 4833 if (driver_call) 4834 mac_ring_free(mip, ring); 4835 else 4836 ring->mr_flag = 0; 4837 } 4838 4839 /* 4840 * Move a ring to the target group. If needed, remove the ring from the group 4841 * that it currently belongs to. 4842 * 4843 * The caller need to enter MAC's perimeter by calling mac_perim_enter(). 4844 */ 4845 static int 4846 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring) 4847 { 4848 mac_group_t *s_group = (mac_group_t *)ring->mr_gh; 4849 int rv; 4850 4851 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4852 ASSERT(d_group != NULL); 4853 ASSERT(s_group->mrg_mh == d_group->mrg_mh); 4854 4855 if (s_group == d_group) 4856 return (0); 4857 4858 /* 4859 * Remove it from current group first. 4860 */ 4861 if (s_group != NULL) 4862 i_mac_group_rem_ring(s_group, ring, B_FALSE); 4863 4864 /* 4865 * Add it to the new group. 4866 */ 4867 rv = i_mac_group_add_ring(d_group, ring, 0); 4868 if (rv != 0) { 4869 /* 4870 * Failed to add ring back to source group. If 4871 * that fails, the ring is stuck in limbo, log message. 4872 */ 4873 if (i_mac_group_add_ring(s_group, ring, 0)) { 4874 cmn_err(CE_WARN, "%s: failed to move ring %p\n", 4875 mip->mi_name, (void *)ring); 4876 } 4877 } 4878 4879 return (rv); 4880 } 4881 4882 /* 4883 * Find a MAC address according to its value. 4884 */ 4885 mac_address_t * 4886 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr) 4887 { 4888 mac_address_t *map; 4889 4890 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4891 4892 for (map = mip->mi_addresses; map != NULL; map = map->ma_next) { 4893 if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) 4894 break; 4895 } 4896 4897 return (map); 4898 } 4899 4900 /* 4901 * Check whether the MAC address is shared by multiple clients. 4902 */ 4903 boolean_t 4904 mac_check_macaddr_shared(mac_address_t *map) 4905 { 4906 ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip)); 4907 4908 return (map->ma_nusers > 1); 4909 } 4910 4911 /* 4912 * Remove the specified MAC address from the MAC address list and free it. 4913 */ 4914 static void 4915 mac_free_macaddr(mac_address_t *map) 4916 { 4917 mac_impl_t *mip = map->ma_mip; 4918 4919 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4920 ASSERT(mip->mi_addresses != NULL); 4921 4922 map = mac_find_macaddr(mip, map->ma_addr); 4923 4924 ASSERT(map != NULL); 4925 ASSERT(map->ma_nusers == 0); 4926 4927 if (map == mip->mi_addresses) { 4928 mip->mi_addresses = map->ma_next; 4929 } else { 4930 mac_address_t *pre; 4931 4932 pre = mip->mi_addresses; 4933 while (pre->ma_next != map) 4934 pre = pre->ma_next; 4935 pre->ma_next = map->ma_next; 4936 } 4937 4938 kmem_free(map, sizeof (mac_address_t)); 4939 } 4940 4941 /* 4942 * Add a MAC address reference for a client. If the desired MAC address 4943 * exists, add a reference to it. Otherwise, add the new address by adding 4944 * it to a reserved group or setting promiscuous mode. Won't try different 4945 * group is the group is non-NULL, so the caller must explictly share 4946 * default group when needed. 4947 * 4948 * Note, the primary MAC address is initialized at registration time, so 4949 * to add it to default group only need to activate it if its reference 4950 * count is still zero. Also, some drivers may not have advertised RINGS 4951 * capability. 4952 */ 4953 int 4954 mac_add_macaddr(mac_impl_t *mip, mac_group_t *group, uint8_t *mac_addr, 4955 boolean_t use_hw) 4956 { 4957 mac_address_t *map; 4958 int err = 0; 4959 boolean_t allocated_map = B_FALSE; 4960 4961 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4962 4963 map = mac_find_macaddr(mip, mac_addr); 4964 4965 /* 4966 * If the new MAC address has not been added. Allocate a new one 4967 * and set it up. 4968 */ 4969 if (map == NULL) { 4970 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 4971 map->ma_len = mip->mi_type->mt_addr_length; 4972 bcopy(mac_addr, map->ma_addr, map->ma_len); 4973 map->ma_nusers = 0; 4974 map->ma_group = group; 4975 map->ma_mip = mip; 4976 4977 /* add the new MAC address to the head of the address list */ 4978 map->ma_next = mip->mi_addresses; 4979 mip->mi_addresses = map; 4980 4981 allocated_map = B_TRUE; 4982 } 4983 4984 ASSERT(map->ma_group == NULL || map->ma_group == group); 4985 if (map->ma_group == NULL) 4986 map->ma_group = group; 4987 4988 /* 4989 * If the MAC address is already in use, simply account for the 4990 * new client. 4991 */ 4992 if (map->ma_nusers++ > 0) 4993 return (0); 4994 4995 /* 4996 * Activate this MAC address by adding it to the reserved group. 4997 */ 4998 if (group != NULL) { 4999 err = mac_group_addmac(group, (const uint8_t *)mac_addr); 5000 if (err == 0) { 5001 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5002 return (0); 5003 } 5004 } 5005 5006 /* 5007 * The MAC address addition failed. If the client requires a 5008 * hardware classified MAC address, fail the operation. 5009 */ 5010 if (use_hw) { 5011 err = ENOSPC; 5012 goto bail; 5013 } 5014 5015 /* 5016 * Try promiscuous mode. 5017 * 5018 * For drivers that don't advertise RINGS capability, do 5019 * nothing for the primary address. 5020 */ 5021 if ((group == NULL) && 5022 (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) { 5023 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5024 return (0); 5025 } 5026 5027 /* 5028 * Enable promiscuous mode in order to receive traffic 5029 * to the new MAC address. 5030 */ 5031 if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) { 5032 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC; 5033 return (0); 5034 } 5035 5036 /* 5037 * Free the MAC address that could not be added. Don't free 5038 * a pre-existing address, it could have been the entry 5039 * for the primary MAC address which was pre-allocated by 5040 * mac_init_macaddr(), and which must remain on the list. 5041 */ 5042 bail: 5043 map->ma_nusers--; 5044 if (allocated_map) 5045 mac_free_macaddr(map); 5046 return (err); 5047 } 5048 5049 /* 5050 * Remove a reference to a MAC address. This may cause to remove the MAC 5051 * address from an associated group or to turn off promiscuous mode. 5052 * The caller needs to handle the failure properly. 5053 */ 5054 int 5055 mac_remove_macaddr(mac_address_t *map) 5056 { 5057 mac_impl_t *mip = map->ma_mip; 5058 int err = 0; 5059 5060 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5061 5062 ASSERT(map == mac_find_macaddr(mip, map->ma_addr)); 5063 5064 /* 5065 * If it's not the last client using this MAC address, only update 5066 * the MAC clients count. 5067 */ 5068 if (--map->ma_nusers > 0) 5069 return (0); 5070 5071 /* 5072 * The MAC address is no longer used by any MAC client, so remove 5073 * it from its associated group, or turn off promiscuous mode 5074 * if it was enabled for the MAC address. 5075 */ 5076 switch (map->ma_type) { 5077 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 5078 /* 5079 * Don't free the preset primary address for drivers that 5080 * don't advertise RINGS capability. 5081 */ 5082 if (map->ma_group == NULL) 5083 return (0); 5084 5085 err = mac_group_remmac(map->ma_group, map->ma_addr); 5086 if (err == 0) 5087 map->ma_group = NULL; 5088 break; 5089 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 5090 err = i_mac_promisc_set(mip, B_FALSE); 5091 break; 5092 default: 5093 ASSERT(B_FALSE); 5094 } 5095 5096 if (err != 0) 5097 return (err); 5098 5099 /* 5100 * We created MAC address for the primary one at registration, so we 5101 * won't free it here. mac_fini_macaddr() will take care of it. 5102 */ 5103 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0) 5104 mac_free_macaddr(map); 5105 5106 return (0); 5107 } 5108 5109 /* 5110 * Update an existing MAC address. The caller need to make sure that the new 5111 * value has not been used. 5112 */ 5113 int 5114 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr) 5115 { 5116 mac_impl_t *mip = map->ma_mip; 5117 int err = 0; 5118 5119 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5120 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 5121 5122 switch (map->ma_type) { 5123 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 5124 /* 5125 * Update the primary address for drivers that are not 5126 * RINGS capable. 5127 */ 5128 if (mip->mi_rx_groups == NULL) { 5129 err = mip->mi_unicst(mip->mi_driver, (const uint8_t *) 5130 mac_addr); 5131 if (err != 0) 5132 return (err); 5133 break; 5134 } 5135 5136 /* 5137 * If this MAC address is not currently in use, 5138 * simply break out and update the value. 5139 */ 5140 if (map->ma_nusers == 0) 5141 break; 5142 5143 /* 5144 * Need to replace the MAC address associated with a group. 5145 */ 5146 err = mac_group_remmac(map->ma_group, map->ma_addr); 5147 if (err != 0) 5148 return (err); 5149 5150 err = mac_group_addmac(map->ma_group, mac_addr); 5151 5152 /* 5153 * Failure hints hardware error. The MAC layer needs to 5154 * have error notification facility to handle this. 5155 * Now, simply try to restore the value. 5156 */ 5157 if (err != 0) 5158 (void) mac_group_addmac(map->ma_group, map->ma_addr); 5159 5160 break; 5161 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 5162 /* 5163 * Need to do nothing more if in promiscuous mode. 5164 */ 5165 break; 5166 default: 5167 ASSERT(B_FALSE); 5168 } 5169 5170 /* 5171 * Successfully replaced the MAC address. 5172 */ 5173 if (err == 0) 5174 bcopy(mac_addr, map->ma_addr, map->ma_len); 5175 5176 return (err); 5177 } 5178 5179 /* 5180 * Freshen the MAC address with new value. Its caller must have updated the 5181 * hardware MAC address before calling this function. 5182 * This funcitons is supposed to be used to handle the MAC address change 5183 * notification from underlying drivers. 5184 */ 5185 void 5186 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr) 5187 { 5188 mac_impl_t *mip = map->ma_mip; 5189 5190 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5191 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 5192 5193 /* 5194 * Freshen the MAC address with new value. 5195 */ 5196 bcopy(mac_addr, map->ma_addr, map->ma_len); 5197 bcopy(mac_addr, mip->mi_addr, map->ma_len); 5198 5199 /* 5200 * Update all MAC clients that share this MAC address. 5201 */ 5202 mac_unicast_update_clients(mip, map); 5203 } 5204 5205 /* 5206 * Set up the primary MAC address. 5207 */ 5208 void 5209 mac_init_macaddr(mac_impl_t *mip) 5210 { 5211 mac_address_t *map; 5212 5213 /* 5214 * The reference count is initialized to zero, until it's really 5215 * activated. 5216 */ 5217 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 5218 map->ma_len = mip->mi_type->mt_addr_length; 5219 bcopy(mip->mi_addr, map->ma_addr, map->ma_len); 5220 5221 /* 5222 * If driver advertises RINGS capability, it shouldn't have initialized 5223 * its primary MAC address. For other drivers, including VNIC, the 5224 * primary address must work after registration. 5225 */ 5226 if (mip->mi_rx_groups == NULL) 5227 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5228 5229 map->ma_mip = mip; 5230 5231 mip->mi_addresses = map; 5232 } 5233 5234 /* 5235 * Clean up the primary MAC address. Note, only one primary MAC address 5236 * is allowed. All other MAC addresses must have been freed appropriately. 5237 */ 5238 void 5239 mac_fini_macaddr(mac_impl_t *mip) 5240 { 5241 mac_address_t *map = mip->mi_addresses; 5242 5243 if (map == NULL) 5244 return; 5245 5246 /* 5247 * If mi_addresses is initialized, there should be exactly one 5248 * entry left on the list with no users. 5249 */ 5250 ASSERT(map->ma_nusers == 0); 5251 ASSERT(map->ma_next == NULL); 5252 5253 kmem_free(map, sizeof (mac_address_t)); 5254 mip->mi_addresses = NULL; 5255 } 5256 5257 /* 5258 * Logging related functions. 5259 * 5260 * Note that Kernel statistics have been extended to maintain fine 5261 * granularity of statistics viz. hardware lane, software lane, fanout 5262 * stats etc. However, extended accounting continues to support only 5263 * aggregate statistics like before. 5264 */ 5265 5266 /* Write the flow description to a netinfo_t record */ 5267 static netinfo_t * 5268 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip) 5269 { 5270 netinfo_t *ninfo; 5271 net_desc_t *ndesc; 5272 flow_desc_t *fdesc; 5273 mac_resource_props_t *mrp; 5274 5275 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5276 if (ninfo == NULL) 5277 return (NULL); 5278 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP); 5279 if (ndesc == NULL) { 5280 kmem_free(ninfo, sizeof (netinfo_t)); 5281 return (NULL); 5282 } 5283 5284 /* 5285 * Grab the fe_lock to see a self-consistent fe_flow_desc. 5286 * Updates to the fe_flow_desc are done under the fe_lock 5287 */ 5288 mutex_enter(&flent->fe_lock); 5289 fdesc = &flent->fe_flow_desc; 5290 mrp = &flent->fe_resource_props; 5291 5292 ndesc->nd_name = flent->fe_flow_name; 5293 ndesc->nd_devname = mcip->mci_name; 5294 bcopy(fdesc->fd_src_mac, ndesc->nd_ehost, ETHERADDRL); 5295 bcopy(fdesc->fd_dst_mac, ndesc->nd_edest, ETHERADDRL); 5296 ndesc->nd_sap = htonl(fdesc->fd_sap); 5297 ndesc->nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION; 5298 ndesc->nd_bw_limit = mrp->mrp_maxbw; 5299 if (ndesc->nd_isv4) { 5300 ndesc->nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]); 5301 ndesc->nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]); 5302 } else { 5303 bcopy(&fdesc->fd_local_addr, ndesc->nd_saddr, IPV6_ADDR_LEN); 5304 bcopy(&fdesc->fd_remote_addr, ndesc->nd_daddr, IPV6_ADDR_LEN); 5305 } 5306 ndesc->nd_sport = htons(fdesc->fd_local_port); 5307 ndesc->nd_dport = htons(fdesc->fd_remote_port); 5308 ndesc->nd_protocol = (uint8_t)fdesc->fd_protocol; 5309 mutex_exit(&flent->fe_lock); 5310 5311 ninfo->ni_record = ndesc; 5312 ninfo->ni_size = sizeof (net_desc_t); 5313 ninfo->ni_type = EX_NET_FLDESC_REC; 5314 5315 return (ninfo); 5316 } 5317 5318 /* Write the flow statistics to a netinfo_t record */ 5319 static netinfo_t * 5320 mac_write_flow_stats(flow_entry_t *flent) 5321 { 5322 netinfo_t *ninfo; 5323 net_stat_t *nstat; 5324 mac_soft_ring_set_t *mac_srs; 5325 mac_rx_stats_t *mac_rx_stat; 5326 mac_tx_stats_t *mac_tx_stat; 5327 int i; 5328 5329 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5330 if (ninfo == NULL) 5331 return (NULL); 5332 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP); 5333 if (nstat == NULL) { 5334 kmem_free(ninfo, sizeof (netinfo_t)); 5335 return (NULL); 5336 } 5337 5338 nstat->ns_name = flent->fe_flow_name; 5339 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 5340 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 5341 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 5342 5343 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes + 5344 mac_rx_stat->mrs_pollbytes + mac_rx_stat->mrs_lclbytes; 5345 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt + 5346 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt; 5347 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors; 5348 } 5349 5350 mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs); 5351 if (mac_srs != NULL) { 5352 mac_tx_stat = &mac_srs->srs_tx.st_stat; 5353 5354 nstat->ns_obytes = mac_tx_stat->mts_obytes; 5355 nstat->ns_opackets = mac_tx_stat->mts_opackets; 5356 nstat->ns_oerrors = mac_tx_stat->mts_oerrors; 5357 } 5358 5359 ninfo->ni_record = nstat; 5360 ninfo->ni_size = sizeof (net_stat_t); 5361 ninfo->ni_type = EX_NET_FLSTAT_REC; 5362 5363 return (ninfo); 5364 } 5365 5366 /* Write the link description to a netinfo_t record */ 5367 static netinfo_t * 5368 mac_write_link_desc(mac_client_impl_t *mcip) 5369 { 5370 netinfo_t *ninfo; 5371 net_desc_t *ndesc; 5372 flow_entry_t *flent = mcip->mci_flent; 5373 5374 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5375 if (ninfo == NULL) 5376 return (NULL); 5377 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP); 5378 if (ndesc == NULL) { 5379 kmem_free(ninfo, sizeof (netinfo_t)); 5380 return (NULL); 5381 } 5382 5383 ndesc->nd_name = mcip->mci_name; 5384 ndesc->nd_devname = mcip->mci_name; 5385 ndesc->nd_isv4 = B_TRUE; 5386 /* 5387 * Grab the fe_lock to see a self-consistent fe_flow_desc. 5388 * Updates to the fe_flow_desc are done under the fe_lock 5389 * after removing the flent from the flow table. 5390 */ 5391 mutex_enter(&flent->fe_lock); 5392 bcopy(flent->fe_flow_desc.fd_src_mac, ndesc->nd_ehost, ETHERADDRL); 5393 mutex_exit(&flent->fe_lock); 5394 5395 ninfo->ni_record = ndesc; 5396 ninfo->ni_size = sizeof (net_desc_t); 5397 ninfo->ni_type = EX_NET_LNDESC_REC; 5398 5399 return (ninfo); 5400 } 5401 5402 /* Write the link statistics to a netinfo_t record */ 5403 static netinfo_t * 5404 mac_write_link_stats(mac_client_impl_t *mcip) 5405 { 5406 netinfo_t *ninfo; 5407 net_stat_t *nstat; 5408 flow_entry_t *flent; 5409 mac_soft_ring_set_t *mac_srs; 5410 mac_rx_stats_t *mac_rx_stat; 5411 mac_tx_stats_t *mac_tx_stat; 5412 int i; 5413 5414 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5415 if (ninfo == NULL) 5416 return (NULL); 5417 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP); 5418 if (nstat == NULL) { 5419 kmem_free(ninfo, sizeof (netinfo_t)); 5420 return (NULL); 5421 } 5422 5423 nstat->ns_name = mcip->mci_name; 5424 flent = mcip->mci_flent; 5425 if (flent != NULL) { 5426 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 5427 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 5428 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 5429 5430 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes + 5431 mac_rx_stat->mrs_pollbytes + 5432 mac_rx_stat->mrs_lclbytes; 5433 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt + 5434 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt; 5435 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors; 5436 } 5437 } 5438 5439 mac_srs = (mac_soft_ring_set_t *)(mcip->mci_flent->fe_tx_srs); 5440 if (mac_srs != NULL) { 5441 mac_tx_stat = &mac_srs->srs_tx.st_stat; 5442 5443 nstat->ns_obytes = mac_tx_stat->mts_obytes; 5444 nstat->ns_opackets = mac_tx_stat->mts_opackets; 5445 nstat->ns_oerrors = mac_tx_stat->mts_oerrors; 5446 } 5447 5448 ninfo->ni_record = nstat; 5449 ninfo->ni_size = sizeof (net_stat_t); 5450 ninfo->ni_type = EX_NET_LNSTAT_REC; 5451 5452 return (ninfo); 5453 } 5454 5455 typedef struct i_mac_log_state_s { 5456 boolean_t mi_last; 5457 int mi_fenable; 5458 int mi_lenable; 5459 list_t *mi_list; 5460 } i_mac_log_state_t; 5461 5462 /* 5463 * For a given flow, if the description has not been logged before, do it now. 5464 * If it is a VNIC, then we have collected information about it from the MAC 5465 * table, so skip it. 5466 * 5467 * Called through mac_flow_walk_nolock() 5468 * 5469 * Return 0 if successful. 5470 */ 5471 static int 5472 mac_log_flowinfo(flow_entry_t *flent, void *arg) 5473 { 5474 mac_client_impl_t *mcip = flent->fe_mcip; 5475 i_mac_log_state_t *lstate = arg; 5476 netinfo_t *ninfo; 5477 5478 if (mcip == NULL) 5479 return (0); 5480 5481 /* 5482 * If the name starts with "vnic", and fe_user_generated is true (to 5483 * exclude the mcast and active flow entries created implicitly for 5484 * a vnic, it is a VNIC flow. i.e. vnic1 is a vnic flow, 5485 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active. 5486 */ 5487 if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 && 5488 (flent->fe_type & FLOW_USER) != 0) { 5489 return (0); 5490 } 5491 5492 if (!flent->fe_desc_logged) { 5493 /* 5494 * We don't return error because we want to continue the 5495 * walk in case this is the last walk which means we 5496 * need to reset fe_desc_logged in all the flows. 5497 */ 5498 if ((ninfo = mac_write_flow_desc(flent, mcip)) == NULL) 5499 return (0); 5500 list_insert_tail(lstate->mi_list, ninfo); 5501 flent->fe_desc_logged = B_TRUE; 5502 } 5503 5504 /* 5505 * Regardless of the error, we want to proceed in case we have to 5506 * reset fe_desc_logged. 5507 */ 5508 ninfo = mac_write_flow_stats(flent); 5509 if (ninfo == NULL) 5510 return (-1); 5511 5512 list_insert_tail(lstate->mi_list, ninfo); 5513 5514 if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED)) 5515 flent->fe_desc_logged = B_FALSE; 5516 5517 return (0); 5518 } 5519 5520 /* 5521 * Log the description for each mac client of this mac_impl_t, if it 5522 * hasn't already been done. Additionally, log statistics for the link as 5523 * well. Walk the flow table and log information for each flow as well. 5524 * If it is the last walk (mci_last), then we turn off mci_desc_logged (and 5525 * also fe_desc_logged, if flow logging is on) since we want to log the 5526 * description if and when logging is restarted. 5527 * 5528 * Return 0 upon success or -1 upon failure 5529 */ 5530 static int 5531 i_mac_impl_log(mac_impl_t *mip, i_mac_log_state_t *lstate) 5532 { 5533 mac_client_impl_t *mcip; 5534 netinfo_t *ninfo; 5535 5536 i_mac_perim_enter(mip); 5537 /* 5538 * Only walk the client list for NIC and etherstub 5539 */ 5540 if ((mip->mi_state_flags & MIS_DISABLED) || 5541 ((mip->mi_state_flags & MIS_IS_VNIC) && 5542 (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) { 5543 i_mac_perim_exit(mip); 5544 return (0); 5545 } 5546 5547 for (mcip = mip->mi_clients_list; mcip != NULL; 5548 mcip = mcip->mci_client_next) { 5549 if (!MCIP_DATAPATH_SETUP(mcip)) 5550 continue; 5551 if (lstate->mi_lenable) { 5552 if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) { 5553 ninfo = mac_write_link_desc(mcip); 5554 if (ninfo == NULL) { 5555 /* 5556 * We can't terminate it if this is the last 5557 * walk, else there might be some links with 5558 * mi_desc_logged set to true, which means 5559 * their description won't be logged the next 5560 * time logging is started (similarly for the 5561 * flows within such links). We can continue 5562 * without walking the flow table (i.e. to 5563 * set fe_desc_logged to false) because we 5564 * won't have written any flow stuff for this 5565 * link as we haven't logged the link itself. 5566 */ 5567 i_mac_perim_exit(mip); 5568 if (lstate->mi_last) 5569 return (0); 5570 else 5571 return (-1); 5572 } 5573 mcip->mci_state_flags |= MCIS_DESC_LOGGED; 5574 list_insert_tail(lstate->mi_list, ninfo); 5575 } 5576 } 5577 5578 ninfo = mac_write_link_stats(mcip); 5579 if (ninfo == NULL && !lstate->mi_last) { 5580 i_mac_perim_exit(mip); 5581 return (-1); 5582 } 5583 list_insert_tail(lstate->mi_list, ninfo); 5584 5585 if (lstate->mi_last) 5586 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED; 5587 5588 if (lstate->mi_fenable) { 5589 if (mcip->mci_subflow_tab != NULL) { 5590 (void) mac_flow_walk_nolock( 5591 mcip->mci_subflow_tab, mac_log_flowinfo, 5592 lstate); 5593 } 5594 } 5595 } 5596 i_mac_perim_exit(mip); 5597 return (0); 5598 } 5599 5600 /* 5601 * modhash walker function to add a mac_impl_t to a list 5602 */ 5603 /*ARGSUSED*/ 5604 static uint_t 5605 i_mac_impl_list_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 5606 { 5607 list_t *list = (list_t *)arg; 5608 mac_impl_t *mip = (mac_impl_t *)val; 5609 5610 if ((mip->mi_state_flags & MIS_DISABLED) == 0) { 5611 list_insert_tail(list, mip); 5612 mip->mi_ref++; 5613 } 5614 5615 return (MH_WALK_CONTINUE); 5616 } 5617 5618 void 5619 i_mac_log_info(list_t *net_log_list, i_mac_log_state_t *lstate) 5620 { 5621 list_t mac_impl_list; 5622 mac_impl_t *mip; 5623 netinfo_t *ninfo; 5624 5625 /* Create list of mac_impls */ 5626 ASSERT(RW_LOCK_HELD(&i_mac_impl_lock)); 5627 list_create(&mac_impl_list, sizeof (mac_impl_t), offsetof(mac_impl_t, 5628 mi_node)); 5629 mod_hash_walk(i_mac_impl_hash, i_mac_impl_list_walker, &mac_impl_list); 5630 rw_exit(&i_mac_impl_lock); 5631 5632 /* Create log entries for each mac_impl */ 5633 for (mip = list_head(&mac_impl_list); mip != NULL; 5634 mip = list_next(&mac_impl_list, mip)) { 5635 if (i_mac_impl_log(mip, lstate) != 0) 5636 continue; 5637 } 5638 5639 /* Remove elements and destroy list of mac_impls */ 5640 rw_enter(&i_mac_impl_lock, RW_WRITER); 5641 while ((mip = list_remove_tail(&mac_impl_list)) != NULL) { 5642 mip->mi_ref--; 5643 } 5644 rw_exit(&i_mac_impl_lock); 5645 list_destroy(&mac_impl_list); 5646 5647 /* 5648 * Write log entries to files outside of locks, free associated 5649 * structures, and remove entries from the list. 5650 */ 5651 while ((ninfo = list_head(net_log_list)) != NULL) { 5652 (void) exacct_commit_netinfo(ninfo->ni_record, ninfo->ni_type); 5653 list_remove(net_log_list, ninfo); 5654 kmem_free(ninfo->ni_record, ninfo->ni_size); 5655 kmem_free(ninfo, sizeof (*ninfo)); 5656 } 5657 list_destroy(net_log_list); 5658 } 5659 5660 /* 5661 * The timer thread that runs every mac_logging_interval seconds and logs 5662 * link and/or flow information. 5663 */ 5664 /* ARGSUSED */ 5665 void 5666 mac_log_linkinfo(void *arg) 5667 { 5668 i_mac_log_state_t lstate; 5669 list_t net_log_list; 5670 5671 list_create(&net_log_list, sizeof (netinfo_t), 5672 offsetof(netinfo_t, ni_link)); 5673 5674 rw_enter(&i_mac_impl_lock, RW_READER); 5675 if (!mac_flow_log_enable && !mac_link_log_enable) { 5676 rw_exit(&i_mac_impl_lock); 5677 return; 5678 } 5679 lstate.mi_fenable = mac_flow_log_enable; 5680 lstate.mi_lenable = mac_link_log_enable; 5681 lstate.mi_last = B_FALSE; 5682 lstate.mi_list = &net_log_list; 5683 5684 /* Write log entries for each mac_impl in the list */ 5685 i_mac_log_info(&net_log_list, &lstate); 5686 5687 if (mac_flow_log_enable || mac_link_log_enable) { 5688 mac_logging_timer = timeout(mac_log_linkinfo, NULL, 5689 SEC_TO_TICK(mac_logging_interval)); 5690 } 5691 } 5692 5693 typedef struct i_mac_fastpath_state_s { 5694 boolean_t mf_disable; 5695 int mf_err; 5696 } i_mac_fastpath_state_t; 5697 5698 /* modhash walker function to enable or disable fastpath */ 5699 /*ARGSUSED*/ 5700 static uint_t 5701 i_mac_fastpath_walker(mod_hash_key_t key, mod_hash_val_t *val, 5702 void *arg) 5703 { 5704 i_mac_fastpath_state_t *state = arg; 5705 mac_handle_t mh = (mac_handle_t)val; 5706 5707 if (state->mf_disable) 5708 state->mf_err = mac_fastpath_disable(mh); 5709 else 5710 mac_fastpath_enable(mh); 5711 5712 return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE); 5713 } 5714 5715 /* 5716 * Start the logging timer. 5717 */ 5718 int 5719 mac_start_logusage(mac_logtype_t type, uint_t interval) 5720 { 5721 i_mac_fastpath_state_t dstate = {B_TRUE, 0}; 5722 i_mac_fastpath_state_t estate = {B_FALSE, 0}; 5723 int err; 5724 5725 rw_enter(&i_mac_impl_lock, RW_WRITER); 5726 switch (type) { 5727 case MAC_LOGTYPE_FLOW: 5728 if (mac_flow_log_enable) { 5729 rw_exit(&i_mac_impl_lock); 5730 return (0); 5731 } 5732 /* FALLTHRU */ 5733 case MAC_LOGTYPE_LINK: 5734 if (mac_link_log_enable) { 5735 rw_exit(&i_mac_impl_lock); 5736 return (0); 5737 } 5738 break; 5739 default: 5740 ASSERT(0); 5741 } 5742 5743 /* Disable fastpath */ 5744 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &dstate); 5745 if ((err = dstate.mf_err) != 0) { 5746 /* Reenable fastpath */ 5747 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate); 5748 rw_exit(&i_mac_impl_lock); 5749 return (err); 5750 } 5751 5752 switch (type) { 5753 case MAC_LOGTYPE_FLOW: 5754 mac_flow_log_enable = B_TRUE; 5755 /* FALLTHRU */ 5756 case MAC_LOGTYPE_LINK: 5757 mac_link_log_enable = B_TRUE; 5758 break; 5759 } 5760 5761 mac_logging_interval = interval; 5762 rw_exit(&i_mac_impl_lock); 5763 mac_log_linkinfo(NULL); 5764 return (0); 5765 } 5766 5767 /* 5768 * Stop the logging timer if both link and flow logging are turned off. 5769 */ 5770 void 5771 mac_stop_logusage(mac_logtype_t type) 5772 { 5773 i_mac_log_state_t lstate; 5774 i_mac_fastpath_state_t estate = {B_FALSE, 0}; 5775 list_t net_log_list; 5776 5777 list_create(&net_log_list, sizeof (netinfo_t), 5778 offsetof(netinfo_t, ni_link)); 5779 5780 rw_enter(&i_mac_impl_lock, RW_WRITER); 5781 5782 lstate.mi_fenable = mac_flow_log_enable; 5783 lstate.mi_lenable = mac_link_log_enable; 5784 lstate.mi_list = &net_log_list; 5785 5786 /* Last walk */ 5787 lstate.mi_last = B_TRUE; 5788 5789 switch (type) { 5790 case MAC_LOGTYPE_FLOW: 5791 if (lstate.mi_fenable) { 5792 ASSERT(mac_link_log_enable); 5793 mac_flow_log_enable = B_FALSE; 5794 mac_link_log_enable = B_FALSE; 5795 break; 5796 } 5797 /* FALLTHRU */ 5798 case MAC_LOGTYPE_LINK: 5799 if (!lstate.mi_lenable || mac_flow_log_enable) { 5800 rw_exit(&i_mac_impl_lock); 5801 return; 5802 } 5803 mac_link_log_enable = B_FALSE; 5804 break; 5805 default: 5806 ASSERT(0); 5807 } 5808 5809 /* Reenable fastpath */ 5810 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate); 5811 5812 (void) untimeout(mac_logging_timer); 5813 mac_logging_timer = 0; 5814 5815 /* Write log entries for each mac_impl in the list */ 5816 i_mac_log_info(&net_log_list, &lstate); 5817 } 5818 5819 /* 5820 * Walk the rx and tx SRS/SRs for a flow and update the priority value. 5821 */ 5822 void 5823 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent) 5824 { 5825 pri_t pri; 5826 int count; 5827 mac_soft_ring_set_t *mac_srs; 5828 5829 if (flent->fe_rx_srs_cnt <= 0) 5830 return; 5831 5832 if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type == 5833 SRST_FLOW) { 5834 pri = FLOW_PRIORITY(mcip->mci_min_pri, 5835 mcip->mci_max_pri, 5836 flent->fe_resource_props.mrp_priority); 5837 } else { 5838 pri = mcip->mci_max_pri; 5839 } 5840 5841 for (count = 0; count < flent->fe_rx_srs_cnt; count++) { 5842 mac_srs = flent->fe_rx_srs[count]; 5843 mac_update_srs_priority(mac_srs, pri); 5844 } 5845 /* 5846 * If we have a Tx SRS, we need to modify all the threads associated 5847 * with it. 5848 */ 5849 if (flent->fe_tx_srs != NULL) 5850 mac_update_srs_priority(flent->fe_tx_srs, pri); 5851 } 5852 5853 /* 5854 * RX and TX rings are reserved according to different semantics depending 5855 * on the requests from the MAC clients and type of rings: 5856 * 5857 * On the Tx side, by default we reserve individual rings, independently from 5858 * the groups. 5859 * 5860 * On the Rx side, the reservation is at the granularity of the group 5861 * of rings, and used for v12n level 1 only. It has a special case for the 5862 * primary client. 5863 * 5864 * If a share is allocated to a MAC client, we allocate a TX group and an 5865 * RX group to the client, and assign TX rings and RX rings to these 5866 * groups according to information gathered from the driver through 5867 * the share capability. 5868 * 5869 * The foreseable evolution of Rx rings will handle v12n level 2 and higher 5870 * to allocate individual rings out of a group and program the hw classifier 5871 * based on IP address or higher level criteria. 5872 */ 5873 5874 /* 5875 * mac_reserve_tx_ring() 5876 * Reserve a unused ring by marking it with MR_INUSE state. 5877 * As reserved, the ring is ready to function. 5878 * 5879 * Notes for Hybrid I/O: 5880 * 5881 * If a specific ring is needed, it is specified through the desired_ring 5882 * argument. Otherwise that argument is set to NULL. 5883 * If the desired ring was previous allocated to another client, this 5884 * function swaps it with a new ring from the group of unassigned rings. 5885 */ 5886 mac_ring_t * 5887 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring) 5888 { 5889 mac_group_t *group; 5890 mac_grp_client_t *mgcp; 5891 mac_client_impl_t *mcip; 5892 mac_soft_ring_set_t *srs; 5893 5894 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5895 5896 /* 5897 * Find an available ring and start it before changing its status. 5898 * The unassigned rings are at the end of the mi_tx_groups 5899 * array. 5900 */ 5901 group = MAC_DEFAULT_TX_GROUP(mip); 5902 5903 /* Can't take the default ring out of the default group */ 5904 ASSERT(desired_ring != (mac_ring_t *)mip->mi_default_tx_ring); 5905 5906 if (desired_ring->mr_state == MR_FREE) { 5907 ASSERT(MAC_GROUP_NO_CLIENT(group)); 5908 if (mac_start_ring(desired_ring) != 0) 5909 return (NULL); 5910 return (desired_ring); 5911 } 5912 /* 5913 * There are clients using this ring, so let's move the clients 5914 * away from using this ring. 5915 */ 5916 for (mgcp = group->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 5917 mcip = mgcp->mgc_client; 5918 mac_tx_client_quiesce((mac_client_handle_t)mcip); 5919 srs = MCIP_TX_SRS(mcip); 5920 ASSERT(mac_tx_srs_ring_present(srs, desired_ring)); 5921 mac_tx_invoke_callbacks(mcip, 5922 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(srs, 5923 desired_ring)); 5924 mac_tx_srs_del_ring(srs, desired_ring); 5925 mac_tx_client_restart((mac_client_handle_t)mcip); 5926 } 5927 return (desired_ring); 5928 } 5929 5930 /* 5931 * For a reserved group with multiple clients, return the primary client. 5932 */ 5933 static mac_client_impl_t * 5934 mac_get_grp_primary(mac_group_t *grp) 5935 { 5936 mac_grp_client_t *mgcp = grp->mrg_clients; 5937 mac_client_impl_t *mcip; 5938 5939 while (mgcp != NULL) { 5940 mcip = mgcp->mgc_client; 5941 if (mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) 5942 return (mcip); 5943 mgcp = mgcp->mgc_next; 5944 } 5945 return (NULL); 5946 } 5947 5948 /* 5949 * Hybrid I/O specifies the ring that should be given to a share. 5950 * If the ring is already used by clients, then we need to release 5951 * the ring back to the default group so that we can give it to 5952 * the share. This means the clients using this ring now get a 5953 * replacement ring. If there aren't any replacement rings, this 5954 * function returns a failure. 5955 */ 5956 static int 5957 mac_reclaim_ring_from_grp(mac_impl_t *mip, mac_ring_type_t ring_type, 5958 mac_ring_t *ring, mac_ring_t **rings, int nrings) 5959 { 5960 mac_group_t *group = (mac_group_t *)ring->mr_gh; 5961 mac_resource_props_t *mrp; 5962 mac_client_impl_t *mcip; 5963 mac_group_t *defgrp; 5964 mac_ring_t *tring; 5965 mac_group_t *tgrp; 5966 int i; 5967 int j; 5968 5969 mcip = MAC_GROUP_ONLY_CLIENT(group); 5970 if (mcip == NULL) 5971 mcip = mac_get_grp_primary(group); 5972 ASSERT(mcip != NULL); 5973 ASSERT(mcip->mci_share == NULL); 5974 5975 mrp = MCIP_RESOURCE_PROPS(mcip); 5976 if (ring_type == MAC_RING_TYPE_RX) { 5977 defgrp = mip->mi_rx_donor_grp; 5978 if ((mrp->mrp_mask & MRP_RX_RINGS) == 0) { 5979 /* Need to put this mac client in the default group */ 5980 if (mac_rx_switch_group(mcip, group, defgrp) != 0) 5981 return (ENOSPC); 5982 } else { 5983 /* 5984 * Switch this ring with some other ring from 5985 * the default group. 5986 */ 5987 for (tring = defgrp->mrg_rings; tring != NULL; 5988 tring = tring->mr_next) { 5989 if (tring->mr_index == 0) 5990 continue; 5991 for (j = 0; j < nrings; j++) { 5992 if (rings[j] == tring) 5993 break; 5994 } 5995 if (j >= nrings) 5996 break; 5997 } 5998 if (tring == NULL) 5999 return (ENOSPC); 6000 if (mac_group_mov_ring(mip, group, tring) != 0) 6001 return (ENOSPC); 6002 if (mac_group_mov_ring(mip, defgrp, ring) != 0) { 6003 (void) mac_group_mov_ring(mip, defgrp, tring); 6004 return (ENOSPC); 6005 } 6006 } 6007 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp); 6008 return (0); 6009 } 6010 6011 defgrp = MAC_DEFAULT_TX_GROUP(mip); 6012 if (ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6013 /* 6014 * See if we can get a spare ring to replace the default 6015 * ring. 6016 */ 6017 if (defgrp->mrg_cur_count == 1) { 6018 /* 6019 * Need to get a ring from another client, see if 6020 * there are any clients that can be moved to 6021 * the default group, thereby freeing some rings. 6022 */ 6023 for (i = 0; i < mip->mi_tx_group_count; i++) { 6024 tgrp = &mip->mi_tx_groups[i]; 6025 if (tgrp->mrg_state == 6026 MAC_GROUP_STATE_REGISTERED) { 6027 continue; 6028 } 6029 mcip = MAC_GROUP_ONLY_CLIENT(tgrp); 6030 if (mcip == NULL) 6031 mcip = mac_get_grp_primary(tgrp); 6032 ASSERT(mcip != NULL); 6033 mrp = MCIP_RESOURCE_PROPS(mcip); 6034 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) { 6035 ASSERT(tgrp->mrg_cur_count == 1); 6036 /* 6037 * If this ring is part of the 6038 * rings asked by the share we cannot 6039 * use it as the default ring. 6040 */ 6041 for (j = 0; j < nrings; j++) { 6042 if (rings[j] == tgrp->mrg_rings) 6043 break; 6044 } 6045 if (j < nrings) 6046 continue; 6047 mac_tx_client_quiesce( 6048 (mac_client_handle_t)mcip); 6049 mac_tx_switch_group(mcip, tgrp, 6050 defgrp); 6051 mac_tx_client_restart( 6052 (mac_client_handle_t)mcip); 6053 break; 6054 } 6055 } 6056 /* 6057 * All the rings are reserved, can't give up the 6058 * default ring. 6059 */ 6060 if (defgrp->mrg_cur_count <= 1) 6061 return (ENOSPC); 6062 } 6063 /* 6064 * Swap the default ring with another. 6065 */ 6066 for (tring = defgrp->mrg_rings; tring != NULL; 6067 tring = tring->mr_next) { 6068 /* 6069 * If this ring is part of the rings asked by the 6070 * share we cannot use it as the default ring. 6071 */ 6072 for (j = 0; j < nrings; j++) { 6073 if (rings[j] == tring) 6074 break; 6075 } 6076 if (j >= nrings) 6077 break; 6078 } 6079 ASSERT(tring != NULL); 6080 mip->mi_default_tx_ring = (mac_ring_handle_t)tring; 6081 return (0); 6082 } 6083 /* 6084 * The Tx ring is with a group reserved by a MAC client. See if 6085 * we can swap it. 6086 */ 6087 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 6088 mcip = MAC_GROUP_ONLY_CLIENT(group); 6089 if (mcip == NULL) 6090 mcip = mac_get_grp_primary(group); 6091 ASSERT(mcip != NULL); 6092 mrp = MCIP_RESOURCE_PROPS(mcip); 6093 mac_tx_client_quiesce((mac_client_handle_t)mcip); 6094 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) { 6095 ASSERT(group->mrg_cur_count == 1); 6096 /* Put this mac client in the default group */ 6097 mac_tx_switch_group(mcip, group, defgrp); 6098 } else { 6099 /* 6100 * Switch this ring with some other ring from 6101 * the default group. 6102 */ 6103 for (tring = defgrp->mrg_rings; tring != NULL; 6104 tring = tring->mr_next) { 6105 if (tring == (mac_ring_t *)mip->mi_default_tx_ring) 6106 continue; 6107 /* 6108 * If this ring is part of the rings asked by the 6109 * share we cannot use it for swapping. 6110 */ 6111 for (j = 0; j < nrings; j++) { 6112 if (rings[j] == tring) 6113 break; 6114 } 6115 if (j >= nrings) 6116 break; 6117 } 6118 if (tring == NULL) { 6119 mac_tx_client_restart((mac_client_handle_t)mcip); 6120 return (ENOSPC); 6121 } 6122 if (mac_group_mov_ring(mip, group, tring) != 0) { 6123 mac_tx_client_restart((mac_client_handle_t)mcip); 6124 return (ENOSPC); 6125 } 6126 if (mac_group_mov_ring(mip, defgrp, ring) != 0) { 6127 (void) mac_group_mov_ring(mip, defgrp, tring); 6128 mac_tx_client_restart((mac_client_handle_t)mcip); 6129 return (ENOSPC); 6130 } 6131 } 6132 mac_tx_client_restart((mac_client_handle_t)mcip); 6133 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp); 6134 return (0); 6135 } 6136 6137 /* 6138 * Populate a zero-ring group with rings. If the share is non-NULL, 6139 * the rings are chosen according to that share. 6140 * Invoked after allocating a new RX or TX group through 6141 * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively. 6142 * Returns zero on success, an errno otherwise. 6143 */ 6144 int 6145 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type, 6146 mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share, 6147 uint32_t ringcnt) 6148 { 6149 mac_ring_t **rings, *ring; 6150 uint_t nrings; 6151 int rv = 0, i = 0, j; 6152 6153 ASSERT((ring_type == MAC_RING_TYPE_RX && 6154 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) || 6155 (ring_type == MAC_RING_TYPE_TX && 6156 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC)); 6157 6158 /* 6159 * First find the rings to allocate to the group. 6160 */ 6161 if (share != NULL) { 6162 /* get rings through ms_squery() */ 6163 mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings); 6164 ASSERT(nrings != 0); 6165 rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t), 6166 KM_SLEEP); 6167 mip->mi_share_capab.ms_squery(share, ring_type, 6168 (mac_ring_handle_t *)rings, &nrings); 6169 for (i = 0; i < nrings; i++) { 6170 /* 6171 * If we have given this ring to a non-default 6172 * group, we need to check if we can get this 6173 * ring. 6174 */ 6175 ring = rings[i]; 6176 if (ring->mr_gh != (mac_group_handle_t)src_group || 6177 ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6178 if (mac_reclaim_ring_from_grp(mip, ring_type, 6179 ring, rings, nrings) != 0) { 6180 rv = ENOSPC; 6181 goto bail; 6182 } 6183 } 6184 } 6185 } else { 6186 /* 6187 * Pick one ring from default group. 6188 * 6189 * for now pick the second ring which requires the first ring 6190 * at index 0 to stay in the default group, since it is the 6191 * ring which carries the multicast traffic. 6192 * We need a better way for a driver to indicate this, 6193 * for example a per-ring flag. 6194 */ 6195 rings = kmem_alloc(ringcnt * sizeof (mac_ring_handle_t), 6196 KM_SLEEP); 6197 for (ring = src_group->mrg_rings; ring != NULL; 6198 ring = ring->mr_next) { 6199 if (ring_type == MAC_RING_TYPE_RX && 6200 ring->mr_index == 0) { 6201 continue; 6202 } 6203 if (ring_type == MAC_RING_TYPE_TX && 6204 ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6205 continue; 6206 } 6207 rings[i++] = ring; 6208 if (i == ringcnt) 6209 break; 6210 } 6211 ASSERT(ring != NULL); 6212 nrings = i; 6213 /* Not enough rings as required */ 6214 if (nrings != ringcnt) { 6215 rv = ENOSPC; 6216 goto bail; 6217 } 6218 } 6219 6220 switch (ring_type) { 6221 case MAC_RING_TYPE_RX: 6222 if (src_group->mrg_cur_count - nrings < 1) { 6223 /* we ran out of rings */ 6224 rv = ENOSPC; 6225 goto bail; 6226 } 6227 6228 /* move receive rings to new group */ 6229 for (i = 0; i < nrings; i++) { 6230 rv = mac_group_mov_ring(mip, new_group, rings[i]); 6231 if (rv != 0) { 6232 /* move rings back on failure */ 6233 for (j = 0; j < i; j++) { 6234 (void) mac_group_mov_ring(mip, 6235 src_group, rings[j]); 6236 } 6237 goto bail; 6238 } 6239 } 6240 break; 6241 6242 case MAC_RING_TYPE_TX: { 6243 mac_ring_t *tmp_ring; 6244 6245 /* move the TX rings to the new group */ 6246 for (i = 0; i < nrings; i++) { 6247 /* get the desired ring */ 6248 tmp_ring = mac_reserve_tx_ring(mip, rings[i]); 6249 if (tmp_ring == NULL) { 6250 rv = ENOSPC; 6251 goto bail; 6252 } 6253 ASSERT(tmp_ring == rings[i]); 6254 rv = mac_group_mov_ring(mip, new_group, rings[i]); 6255 if (rv != 0) { 6256 /* cleanup on failure */ 6257 for (j = 0; j < i; j++) { 6258 (void) mac_group_mov_ring(mip, 6259 MAC_DEFAULT_TX_GROUP(mip), 6260 rings[j]); 6261 } 6262 goto bail; 6263 } 6264 } 6265 break; 6266 } 6267 } 6268 6269 /* add group to share */ 6270 if (share != NULL) 6271 mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver); 6272 6273 bail: 6274 /* free temporary array of rings */ 6275 kmem_free(rings, nrings * sizeof (mac_ring_handle_t)); 6276 6277 return (rv); 6278 } 6279 6280 void 6281 mac_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip) 6282 { 6283 mac_grp_client_t *mgcp; 6284 6285 for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 6286 if (mgcp->mgc_client == mcip) 6287 break; 6288 } 6289 6290 VERIFY(mgcp == NULL); 6291 6292 mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP); 6293 mgcp->mgc_client = mcip; 6294 mgcp->mgc_next = grp->mrg_clients; 6295 grp->mrg_clients = mgcp; 6296 6297 } 6298 6299 void 6300 mac_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip) 6301 { 6302 mac_grp_client_t *mgcp, **pprev; 6303 6304 for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL; 6305 pprev = &mgcp->mgc_next, mgcp = *pprev) { 6306 if (mgcp->mgc_client == mcip) 6307 break; 6308 } 6309 6310 ASSERT(mgcp != NULL); 6311 6312 *pprev = mgcp->mgc_next; 6313 kmem_free(mgcp, sizeof (mac_grp_client_t)); 6314 } 6315 6316 /* 6317 * mac_reserve_rx_group() 6318 * 6319 * Finds an available group and exclusively reserves it for a client. 6320 * The group is chosen to suit the flow's resource controls (bandwidth and 6321 * fanout requirements) and the address type. 6322 * If the requestor is the pimary MAC then return the group with the 6323 * largest number of rings, otherwise the default ring when available. 6324 */ 6325 mac_group_t * 6326 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, boolean_t move) 6327 { 6328 mac_share_handle_t share = mcip->mci_share; 6329 mac_impl_t *mip = mcip->mci_mip; 6330 mac_group_t *grp = NULL; 6331 int i; 6332 int err = 0; 6333 mac_address_t *map; 6334 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 6335 int nrings; 6336 int donor_grp_rcnt; 6337 boolean_t need_exclgrp = B_FALSE; 6338 int need_rings = 0; 6339 mac_group_t *candidate_grp = NULL; 6340 mac_client_impl_t *gclient; 6341 mac_resource_props_t *gmrp; 6342 mac_group_t *donorgrp = NULL; 6343 boolean_t rxhw = mrp->mrp_mask & MRP_RX_RINGS; 6344 boolean_t unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC; 6345 boolean_t isprimary; 6346 6347 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 6348 6349 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC; 6350 6351 /* 6352 * Check if a group already has this mac address (case of VLANs) 6353 * unless we are moving this MAC client from one group to another. 6354 */ 6355 if (!move && (map = mac_find_macaddr(mip, mac_addr)) != NULL) { 6356 if (map->ma_group != NULL) 6357 return (map->ma_group); 6358 } 6359 if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0) 6360 return (NULL); 6361 /* 6362 * If exclusive open, return NULL which will enable the 6363 * caller to use the default group. 6364 */ 6365 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) 6366 return (NULL); 6367 6368 /* For dynamic groups default unspecified to 1 */ 6369 if (rxhw && unspec && 6370 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6371 mrp->mrp_nrxrings = 1; 6372 } 6373 /* 6374 * For static grouping we allow only specifying rings=0 and 6375 * unspecified 6376 */ 6377 if (rxhw && mrp->mrp_nrxrings > 0 && 6378 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) { 6379 return (NULL); 6380 } 6381 if (rxhw) { 6382 /* 6383 * We have explicitly asked for a group (with nrxrings, 6384 * if unspec). 6385 */ 6386 if (unspec || mrp->mrp_nrxrings > 0) { 6387 need_exclgrp = B_TRUE; 6388 need_rings = mrp->mrp_nrxrings; 6389 } else if (mrp->mrp_nrxrings == 0) { 6390 /* 6391 * We have asked for a software group. 6392 */ 6393 return (NULL); 6394 } 6395 } else if (isprimary && mip->mi_nactiveclients == 1 && 6396 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6397 /* 6398 * If the primary is the only active client on this 6399 * mip and we have not asked for any rings, we give 6400 * it the default group so that the primary gets to 6401 * use all the rings. 6402 */ 6403 return (NULL); 6404 } 6405 6406 /* The group that can donate rings */ 6407 donorgrp = mip->mi_rx_donor_grp; 6408 6409 /* 6410 * The number of rings that the default group can donate. 6411 * We need to leave at least one ring. 6412 */ 6413 donor_grp_rcnt = donorgrp->mrg_cur_count - 1; 6414 6415 /* 6416 * Try to exclusively reserve a RX group. 6417 * 6418 * For flows requiring HW_DEFAULT_RING (unicast flow of the primary 6419 * client), try to reserve the a non-default RX group and give 6420 * it all the rings from the donor group, except the default ring 6421 * 6422 * For flows requiring HW_RING (unicast flow of other clients), try 6423 * to reserve non-default RX group with the specified number of 6424 * rings, if available. 6425 * 6426 * For flows that have not asked for software or hardware ring, 6427 * try to reserve a non-default group with 1 ring, if available. 6428 */ 6429 for (i = 1; i < mip->mi_rx_group_count; i++) { 6430 grp = &mip->mi_rx_groups[i]; 6431 6432 DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name, 6433 int, grp->mrg_index, mac_group_state_t, grp->mrg_state); 6434 6435 /* 6436 * Check if this group could be a candidate group for 6437 * eviction if we need a group for this MAC client, 6438 * but there aren't any. A candidate group is one 6439 * that didn't ask for an exclusive group, but got 6440 * one and it has enough rings (combined with what 6441 * the donor group can donate) for the new MAC 6442 * client 6443 */ 6444 if (grp->mrg_state >= MAC_GROUP_STATE_RESERVED) { 6445 /* 6446 * If the primary/donor group is not the default 6447 * group, don't bother looking for a candidate group. 6448 * If we don't have enough rings we will check 6449 * if the primary group can be vacated. 6450 */ 6451 if (candidate_grp == NULL && 6452 donorgrp == MAC_DEFAULT_RX_GROUP(mip)) { 6453 ASSERT(!MAC_GROUP_NO_CLIENT(grp)); 6454 gclient = MAC_GROUP_ONLY_CLIENT(grp); 6455 if (gclient == NULL) 6456 gclient = mac_get_grp_primary(grp); 6457 ASSERT(gclient != NULL); 6458 gmrp = MCIP_RESOURCE_PROPS(gclient); 6459 if (gclient->mci_share == NULL && 6460 (gmrp->mrp_mask & MRP_RX_RINGS) == 0 && 6461 (unspec || 6462 (grp->mrg_cur_count + donor_grp_rcnt >= 6463 need_rings))) { 6464 candidate_grp = grp; 6465 } 6466 } 6467 continue; 6468 } 6469 /* 6470 * This group could already be SHARED by other multicast 6471 * flows on this client. In that case, the group would 6472 * be shared and has already been started. 6473 */ 6474 ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT); 6475 6476 if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) && 6477 (mac_start_group(grp) != 0)) { 6478 continue; 6479 } 6480 6481 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) 6482 break; 6483 ASSERT(grp->mrg_cur_count == 0); 6484 6485 /* 6486 * Populate the group. Rings should be taken 6487 * from the donor group. 6488 */ 6489 nrings = rxhw ? need_rings : isprimary ? donor_grp_rcnt: 1; 6490 6491 /* 6492 * If the donor group can't donate, let's just walk and 6493 * see if someone can vacate a group, so that we have 6494 * enough rings for this, unless we already have 6495 * identified a candiate group.. 6496 */ 6497 if (nrings <= donor_grp_rcnt) { 6498 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 6499 donorgrp, grp, share, nrings); 6500 if (err == 0) { 6501 /* 6502 * For a share i_mac_group_allocate_rings gets 6503 * the rings from the driver, let's populate 6504 * the property for the client now. 6505 */ 6506 if (share != NULL) { 6507 mac_client_set_rings( 6508 (mac_client_handle_t)mcip, 6509 grp->mrg_cur_count, -1); 6510 } 6511 if (mac_is_primary_client(mcip) && !rxhw) 6512 mip->mi_rx_donor_grp = grp; 6513 break; 6514 } 6515 } 6516 6517 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 6518 mip->mi_name, int, grp->mrg_index, int, err); 6519 6520 /* 6521 * It's a dynamic group but the grouping operation 6522 * failed. 6523 */ 6524 mac_stop_group(grp); 6525 } 6526 /* We didn't find an exclusive group for this MAC client */ 6527 if (i >= mip->mi_rx_group_count) { 6528 6529 if (!need_exclgrp) 6530 return (NULL); 6531 6532 /* 6533 * If we found a candidate group then we switch the 6534 * MAC client from the candidate_group to the default 6535 * group and give the group to this MAC client. If 6536 * we didn't find a candidate_group, check if the 6537 * primary is in its own group and if it can make way 6538 * for this MAC client. 6539 */ 6540 if (candidate_grp == NULL && 6541 donorgrp != MAC_DEFAULT_RX_GROUP(mip) && 6542 donorgrp->mrg_cur_count >= need_rings) { 6543 candidate_grp = donorgrp; 6544 } 6545 if (candidate_grp != NULL) { 6546 boolean_t prim_grp = B_FALSE; 6547 6548 /* 6549 * Switch the MAC client from the candidate group 6550 * to the default group.. If this group was the 6551 * donor group, then after the switch we need 6552 * to update the donor group too. 6553 */ 6554 grp = candidate_grp; 6555 gclient = MAC_GROUP_ONLY_CLIENT(grp); 6556 if (gclient == NULL) 6557 gclient = mac_get_grp_primary(grp); 6558 if (grp == mip->mi_rx_donor_grp) 6559 prim_grp = B_TRUE; 6560 if (mac_rx_switch_group(gclient, grp, 6561 MAC_DEFAULT_RX_GROUP(mip)) != 0) { 6562 return (NULL); 6563 } 6564 if (prim_grp) { 6565 mip->mi_rx_donor_grp = 6566 MAC_DEFAULT_RX_GROUP(mip); 6567 donorgrp = MAC_DEFAULT_RX_GROUP(mip); 6568 } 6569 6570 6571 /* 6572 * Now give this group with the required rings 6573 * to this MAC client. 6574 */ 6575 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 6576 if (mac_start_group(grp) != 0) 6577 return (NULL); 6578 6579 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) 6580 return (grp); 6581 6582 donor_grp_rcnt = donorgrp->mrg_cur_count - 1; 6583 ASSERT(grp->mrg_cur_count == 0); 6584 ASSERT(donor_grp_rcnt >= need_rings); 6585 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 6586 donorgrp, grp, share, need_rings); 6587 if (err == 0) { 6588 /* 6589 * For a share i_mac_group_allocate_rings gets 6590 * the rings from the driver, let's populate 6591 * the property for the client now. 6592 */ 6593 if (share != NULL) { 6594 mac_client_set_rings( 6595 (mac_client_handle_t)mcip, 6596 grp->mrg_cur_count, -1); 6597 } 6598 DTRACE_PROBE2(rx__group__reserved, 6599 char *, mip->mi_name, int, grp->mrg_index); 6600 return (grp); 6601 } 6602 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 6603 mip->mi_name, int, grp->mrg_index, int, err); 6604 mac_stop_group(grp); 6605 } 6606 return (NULL); 6607 } 6608 ASSERT(grp != NULL); 6609 6610 DTRACE_PROBE2(rx__group__reserved, 6611 char *, mip->mi_name, int, grp->mrg_index); 6612 return (grp); 6613 } 6614 6615 /* 6616 * mac_rx_release_group() 6617 * 6618 * This is called when there are no clients left for the group. 6619 * The group is stopped and marked MAC_GROUP_STATE_REGISTERED, 6620 * and if it is a non default group, the shares are removed and 6621 * all rings are assigned back to default group. 6622 */ 6623 void 6624 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group) 6625 { 6626 mac_impl_t *mip = mcip->mci_mip; 6627 mac_ring_t *ring; 6628 6629 ASSERT(group != MAC_DEFAULT_RX_GROUP(mip)); 6630 6631 if (mip->mi_rx_donor_grp == group) 6632 mip->mi_rx_donor_grp = MAC_DEFAULT_RX_GROUP(mip); 6633 6634 /* 6635 * This is the case where there are no clients left. Any 6636 * SRS etc on this group have also be quiesced. 6637 */ 6638 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 6639 if (ring->mr_classify_type == MAC_HW_CLASSIFIER) { 6640 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 6641 /* 6642 * Remove the SRS associated with the HW ring. 6643 * As a result, polling will be disabled. 6644 */ 6645 ring->mr_srs = NULL; 6646 } 6647 ASSERT(group->mrg_state < MAC_GROUP_STATE_RESERVED || 6648 ring->mr_state == MR_INUSE); 6649 if (ring->mr_state == MR_INUSE) { 6650 mac_stop_ring(ring); 6651 ring->mr_flag = 0; 6652 } 6653 } 6654 6655 /* remove group from share */ 6656 if (mcip->mci_share != NULL) { 6657 mip->mi_share_capab.ms_sremove(mcip->mci_share, 6658 group->mrg_driver); 6659 } 6660 6661 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6662 mac_ring_t *ring; 6663 6664 /* 6665 * Rings were dynamically allocated to group. 6666 * Move rings back to default group. 6667 */ 6668 while ((ring = group->mrg_rings) != NULL) { 6669 (void) mac_group_mov_ring(mip, mip->mi_rx_donor_grp, 6670 ring); 6671 } 6672 } 6673 mac_stop_group(group); 6674 /* 6675 * Possible improvement: See if we can assign the group just released 6676 * to a another client of the mip 6677 */ 6678 } 6679 6680 /* 6681 * When we move the primary's mac address between groups, we need to also 6682 * take all the clients sharing the same mac address along with it (VLANs) 6683 * We remove the mac address for such clients from the group after quiescing 6684 * them. When we add the mac address we restart the client. Note that 6685 * the primary's mac address is removed from the group after all the 6686 * other clients sharing the address are removed. Similarly, the primary's 6687 * mac address is added before all the other client's mac address are 6688 * added. While grp is the group where the clients reside, tgrp is 6689 * the group where the addresses have to be added. 6690 */ 6691 static void 6692 mac_rx_move_macaddr_prim(mac_client_impl_t *mcip, mac_group_t *grp, 6693 mac_group_t *tgrp, uint8_t *maddr, boolean_t add) 6694 { 6695 mac_impl_t *mip = mcip->mci_mip; 6696 mac_grp_client_t *mgcp = grp->mrg_clients; 6697 mac_client_impl_t *gmcip; 6698 boolean_t prim; 6699 6700 prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0; 6701 6702 /* 6703 * If the clients are in a non-default group, we just have to 6704 * walk the group's client list. If it is in the default group 6705 * (which will be shared by other clients as well, we need to 6706 * check if the unicast address matches mcip's unicast. 6707 */ 6708 while (mgcp != NULL) { 6709 gmcip = mgcp->mgc_client; 6710 if (gmcip != mcip && 6711 (grp != MAC_DEFAULT_RX_GROUP(mip) || 6712 mcip->mci_unicast == gmcip->mci_unicast)) { 6713 if (!add) { 6714 mac_rx_client_quiesce( 6715 (mac_client_handle_t)gmcip); 6716 (void) mac_remove_macaddr(mcip->mci_unicast); 6717 } else { 6718 (void) mac_add_macaddr(mip, tgrp, maddr, prim); 6719 mac_rx_client_restart( 6720 (mac_client_handle_t)gmcip); 6721 } 6722 } 6723 mgcp = mgcp->mgc_next; 6724 } 6725 } 6726 6727 6728 /* 6729 * Move the MAC address from fgrp to tgrp. If this is the primary client, 6730 * we need to take any VLANs etc. together too. 6731 */ 6732 static int 6733 mac_rx_move_macaddr(mac_client_impl_t *mcip, mac_group_t *fgrp, 6734 mac_group_t *tgrp) 6735 { 6736 mac_impl_t *mip = mcip->mci_mip; 6737 uint8_t maddr[MAXMACADDRLEN]; 6738 int err = 0; 6739 boolean_t prim; 6740 boolean_t multiclnt = B_FALSE; 6741 6742 mac_rx_client_quiesce((mac_client_handle_t)mcip); 6743 ASSERT(mcip->mci_unicast != NULL); 6744 bcopy(mcip->mci_unicast->ma_addr, maddr, mcip->mci_unicast->ma_len); 6745 6746 prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0; 6747 if (mcip->mci_unicast->ma_nusers > 1) { 6748 mac_rx_move_macaddr_prim(mcip, fgrp, NULL, maddr, B_FALSE); 6749 multiclnt = B_TRUE; 6750 } 6751 ASSERT(mcip->mci_unicast->ma_nusers == 1); 6752 err = mac_remove_macaddr(mcip->mci_unicast); 6753 if (err != 0) { 6754 mac_rx_client_restart((mac_client_handle_t)mcip); 6755 if (multiclnt) { 6756 mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr, 6757 B_TRUE); 6758 } 6759 return (err); 6760 } 6761 /* 6762 * Program the H/W Classifier first, if this fails we need 6763 * not proceed with the other stuff. 6764 */ 6765 if ((err = mac_add_macaddr(mip, tgrp, maddr, prim)) != 0) { 6766 /* Revert back the H/W Classifier */ 6767 if ((err = mac_add_macaddr(mip, fgrp, maddr, prim)) != 0) { 6768 /* 6769 * This should not fail now since it worked earlier, 6770 * should we panic? 6771 */ 6772 cmn_err(CE_WARN, 6773 "mac_rx_switch_group: switching %p back" 6774 " to group %p failed!!", (void *)mcip, 6775 (void *)fgrp); 6776 } 6777 mac_rx_client_restart((mac_client_handle_t)mcip); 6778 if (multiclnt) { 6779 mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr, 6780 B_TRUE); 6781 } 6782 return (err); 6783 } 6784 mcip->mci_unicast = mac_find_macaddr(mip, maddr); 6785 mac_rx_client_restart((mac_client_handle_t)mcip); 6786 if (multiclnt) 6787 mac_rx_move_macaddr_prim(mcip, fgrp, tgrp, maddr, B_TRUE); 6788 return (err); 6789 } 6790 6791 /* 6792 * Switch the MAC client from one group to another. This means we need 6793 * to remove the MAC address from the group, remove the MAC client, 6794 * teardown the SRSs and revert the group state. Then, we add the client 6795 * to the destination group, set the SRSs, and add the MAC address to the 6796 * group. 6797 */ 6798 int 6799 mac_rx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp, 6800 mac_group_t *tgrp) 6801 { 6802 int err; 6803 mac_group_state_t next_state; 6804 mac_client_impl_t *group_only_mcip; 6805 mac_client_impl_t *gmcip; 6806 mac_impl_t *mip = mcip->mci_mip; 6807 mac_grp_client_t *mgcp; 6808 6809 ASSERT(fgrp == mcip->mci_flent->fe_rx_ring_group); 6810 6811 if ((err = mac_rx_move_macaddr(mcip, fgrp, tgrp)) != 0) 6812 return (err); 6813 6814 /* 6815 * The group might be reserved, but SRSs may not be set up, e.g. 6816 * primary and its vlans using a reserved group. 6817 */ 6818 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED && 6819 MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) { 6820 mac_rx_srs_group_teardown(mcip->mci_flent, B_TRUE); 6821 } 6822 if (fgrp != MAC_DEFAULT_RX_GROUP(mip)) { 6823 mgcp = fgrp->mrg_clients; 6824 while (mgcp != NULL) { 6825 gmcip = mgcp->mgc_client; 6826 mgcp = mgcp->mgc_next; 6827 mac_group_remove_client(fgrp, gmcip); 6828 mac_group_add_client(tgrp, gmcip); 6829 gmcip->mci_flent->fe_rx_ring_group = tgrp; 6830 } 6831 mac_release_rx_group(mcip, fgrp); 6832 ASSERT(MAC_GROUP_NO_CLIENT(fgrp)); 6833 mac_set_group_state(fgrp, MAC_GROUP_STATE_REGISTERED); 6834 } else { 6835 mac_group_remove_client(fgrp, mcip); 6836 mac_group_add_client(tgrp, mcip); 6837 mcip->mci_flent->fe_rx_ring_group = tgrp; 6838 /* 6839 * If there are other clients (VLANs) sharing this address 6840 * we should be here only for the primary. 6841 */ 6842 if (mcip->mci_unicast->ma_nusers > 1) { 6843 /* 6844 * We need to move all the clients that are using 6845 * this h/w address. 6846 */ 6847 mgcp = fgrp->mrg_clients; 6848 while (mgcp != NULL) { 6849 gmcip = mgcp->mgc_client; 6850 mgcp = mgcp->mgc_next; 6851 if (mcip->mci_unicast == gmcip->mci_unicast) { 6852 mac_group_remove_client(fgrp, gmcip); 6853 mac_group_add_client(tgrp, gmcip); 6854 gmcip->mci_flent->fe_rx_ring_group = 6855 tgrp; 6856 } 6857 } 6858 } 6859 /* 6860 * The default group will still take the multicast, 6861 * broadcast traffic etc., so it won't go to 6862 * MAC_GROUP_STATE_REGISTERED. 6863 */ 6864 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED) 6865 mac_rx_group_unmark(fgrp, MR_CONDEMNED); 6866 mac_set_group_state(fgrp, MAC_GROUP_STATE_SHARED); 6867 } 6868 next_state = mac_group_next_state(tgrp, &group_only_mcip, 6869 MAC_DEFAULT_RX_GROUP(mip), B_TRUE); 6870 mac_set_group_state(tgrp, next_state); 6871 /* 6872 * If the destination group is reserved, setup the SRSs etc. 6873 */ 6874 if (tgrp->mrg_state == MAC_GROUP_STATE_RESERVED) { 6875 mac_rx_srs_group_setup(mcip, mcip->mci_flent, SRST_LINK); 6876 mac_fanout_setup(mcip, mcip->mci_flent, 6877 MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, mcip, NULL, 6878 NULL); 6879 mac_rx_group_unmark(tgrp, MR_INCIPIENT); 6880 } else { 6881 mac_rx_switch_grp_to_sw(tgrp); 6882 } 6883 return (0); 6884 } 6885 6886 /* 6887 * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup() 6888 * when a share was allocated to the client. 6889 */ 6890 mac_group_t * 6891 mac_reserve_tx_group(mac_client_impl_t *mcip, boolean_t move) 6892 { 6893 mac_impl_t *mip = mcip->mci_mip; 6894 mac_group_t *grp = NULL; 6895 int rv; 6896 int i; 6897 int err; 6898 mac_group_t *defgrp; 6899 mac_share_handle_t share = mcip->mci_share; 6900 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 6901 int nrings; 6902 int defnrings; 6903 boolean_t need_exclgrp = B_FALSE; 6904 int need_rings = 0; 6905 mac_group_t *candidate_grp = NULL; 6906 mac_client_impl_t *gclient; 6907 mac_resource_props_t *gmrp; 6908 boolean_t txhw = mrp->mrp_mask & MRP_TX_RINGS; 6909 boolean_t unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC; 6910 boolean_t isprimary; 6911 6912 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC; 6913 /* 6914 * When we come here for a VLAN on the primary (dladm create-vlan), 6915 * we need to pair it along with the primary (to keep it consistent 6916 * with the RX side). So, we check if the primary is already assigned 6917 * to a group and return the group if so. The other way is also 6918 * true, i.e. the VLAN is already created and now we are plumbing 6919 * the primary. 6920 */ 6921 if (!move && isprimary) { 6922 for (gclient = mip->mi_clients_list; gclient != NULL; 6923 gclient = gclient->mci_client_next) { 6924 if (gclient->mci_flent->fe_type & FLOW_PRIMARY_MAC && 6925 gclient->mci_flent->fe_tx_ring_group != NULL) { 6926 return (gclient->mci_flent->fe_tx_ring_group); 6927 } 6928 } 6929 } 6930 6931 if (mip->mi_tx_groups == NULL || mip->mi_tx_group_count == 0) 6932 return (NULL); 6933 6934 /* For dynamic groups, default unspec to 1 */ 6935 if (txhw && unspec && 6936 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6937 mrp->mrp_ntxrings = 1; 6938 } 6939 /* 6940 * For static grouping we allow only specifying rings=0 and 6941 * unspecified 6942 */ 6943 if (txhw && mrp->mrp_ntxrings > 0 && 6944 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC) { 6945 return (NULL); 6946 } 6947 6948 if (txhw) { 6949 /* 6950 * We have explicitly asked for a group (with ntxrings, 6951 * if unspec). 6952 */ 6953 if (unspec || mrp->mrp_ntxrings > 0) { 6954 need_exclgrp = B_TRUE; 6955 need_rings = mrp->mrp_ntxrings; 6956 } else if (mrp->mrp_ntxrings == 0) { 6957 /* 6958 * We have asked for a software group. 6959 */ 6960 return (NULL); 6961 } 6962 } 6963 defgrp = MAC_DEFAULT_TX_GROUP(mip); 6964 /* 6965 * The number of rings that the default group can donate. 6966 * We need to leave at least one ring - the default ring - in 6967 * this group. 6968 */ 6969 defnrings = defgrp->mrg_cur_count - 1; 6970 6971 /* 6972 * Primary gets default group unless explicitly told not 6973 * to (i.e. rings > 0). 6974 */ 6975 if (isprimary && !need_exclgrp) 6976 return (NULL); 6977 6978 nrings = (mrp->mrp_mask & MRP_TX_RINGS) != 0 ? mrp->mrp_ntxrings : 1; 6979 for (i = 0; i < mip->mi_tx_group_count; i++) { 6980 grp = &mip->mi_tx_groups[i]; 6981 if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) || 6982 (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) { 6983 /* 6984 * Select a candidate for replacement if we don't 6985 * get an exclusive group. A candidate group is one 6986 * that didn't ask for an exclusive group, but got 6987 * one and it has enough rings (combined with what 6988 * the default group can donate) for the new MAC 6989 * client. 6990 */ 6991 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED && 6992 candidate_grp == NULL) { 6993 gclient = MAC_GROUP_ONLY_CLIENT(grp); 6994 if (gclient == NULL) 6995 gclient = mac_get_grp_primary(grp); 6996 gmrp = MCIP_RESOURCE_PROPS(gclient); 6997 if (gclient->mci_share == NULL && 6998 (gmrp->mrp_mask & MRP_TX_RINGS) == 0 && 6999 (unspec || 7000 (grp->mrg_cur_count + defnrings) >= 7001 need_rings)) { 7002 candidate_grp = grp; 7003 } 7004 } 7005 continue; 7006 } 7007 /* 7008 * If the default can't donate let's just walk and 7009 * see if someone can vacate a group, so that we have 7010 * enough rings for this. 7011 */ 7012 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC || 7013 nrings <= defnrings) { 7014 if (grp->mrg_state == MAC_GROUP_STATE_REGISTERED) { 7015 rv = mac_start_group(grp); 7016 ASSERT(rv == 0); 7017 } 7018 break; 7019 } 7020 } 7021 7022 /* The default group */ 7023 if (i >= mip->mi_tx_group_count) { 7024 /* 7025 * If we need an exclusive group and have identified a 7026 * candidate group we switch the MAC client from the 7027 * candidate group to the default group and give the 7028 * candidate group to this client. 7029 */ 7030 if (need_exclgrp && candidate_grp != NULL) { 7031 /* 7032 * Switch the MAC client from the candidate group 7033 * to the default group. 7034 */ 7035 grp = candidate_grp; 7036 gclient = MAC_GROUP_ONLY_CLIENT(grp); 7037 if (gclient == NULL) 7038 gclient = mac_get_grp_primary(grp); 7039 mac_tx_client_quiesce((mac_client_handle_t)gclient); 7040 mac_tx_switch_group(gclient, grp, defgrp); 7041 mac_tx_client_restart((mac_client_handle_t)gclient); 7042 7043 /* 7044 * Give the candidate group with the specified number 7045 * of rings to this MAC client. 7046 */ 7047 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 7048 rv = mac_start_group(grp); 7049 ASSERT(rv == 0); 7050 7051 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) 7052 return (grp); 7053 7054 ASSERT(grp->mrg_cur_count == 0); 7055 ASSERT(defgrp->mrg_cur_count > need_rings); 7056 7057 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, 7058 defgrp, grp, share, need_rings); 7059 if (err == 0) { 7060 /* 7061 * For a share i_mac_group_allocate_rings gets 7062 * the rings from the driver, let's populate 7063 * the property for the client now. 7064 */ 7065 if (share != NULL) { 7066 mac_client_set_rings( 7067 (mac_client_handle_t)mcip, -1, 7068 grp->mrg_cur_count); 7069 } 7070 mip->mi_tx_group_free--; 7071 return (grp); 7072 } 7073 DTRACE_PROBE3(tx__group__reserve__alloc__rings, char *, 7074 mip->mi_name, int, grp->mrg_index, int, err); 7075 mac_stop_group(grp); 7076 } 7077 return (NULL); 7078 } 7079 /* 7080 * We got an exclusive group, but it is not dynamic. 7081 */ 7082 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) { 7083 mip->mi_tx_group_free--; 7084 return (grp); 7085 } 7086 7087 rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, defgrp, grp, 7088 share, nrings); 7089 if (rv != 0) { 7090 DTRACE_PROBE3(tx__group__reserve__alloc__rings, 7091 char *, mip->mi_name, int, grp->mrg_index, int, rv); 7092 mac_stop_group(grp); 7093 return (NULL); 7094 } 7095 /* 7096 * For a share i_mac_group_allocate_rings gets the rings from the 7097 * driver, let's populate the property for the client now. 7098 */ 7099 if (share != NULL) { 7100 mac_client_set_rings((mac_client_handle_t)mcip, -1, 7101 grp->mrg_cur_count); 7102 } 7103 mip->mi_tx_group_free--; 7104 return (grp); 7105 } 7106 7107 void 7108 mac_release_tx_group(mac_client_impl_t *mcip, mac_group_t *grp) 7109 { 7110 mac_impl_t *mip = mcip->mci_mip; 7111 mac_share_handle_t share = mcip->mci_share; 7112 mac_ring_t *ring; 7113 mac_soft_ring_set_t *srs = MCIP_TX_SRS(mcip); 7114 mac_group_t *defgrp; 7115 7116 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7117 if (srs != NULL) { 7118 if (srs->srs_soft_ring_count > 0) { 7119 for (ring = grp->mrg_rings; ring != NULL; 7120 ring = ring->mr_next) { 7121 ASSERT(mac_tx_srs_ring_present(srs, ring)); 7122 mac_tx_invoke_callbacks(mcip, 7123 (mac_tx_cookie_t) 7124 mac_tx_srs_get_soft_ring(srs, ring)); 7125 mac_tx_srs_del_ring(srs, ring); 7126 } 7127 } else { 7128 ASSERT(srs->srs_tx.st_arg2 != NULL); 7129 srs->srs_tx.st_arg2 = NULL; 7130 mac_srs_stat_delete(srs); 7131 } 7132 } 7133 if (share != NULL) 7134 mip->mi_share_capab.ms_sremove(share, grp->mrg_driver); 7135 7136 /* move the ring back to the pool */ 7137 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 7138 while ((ring = grp->mrg_rings) != NULL) 7139 (void) mac_group_mov_ring(mip, defgrp, ring); 7140 } 7141 mac_stop_group(grp); 7142 mip->mi_tx_group_free++; 7143 } 7144 7145 /* 7146 * Disassociate a MAC client from a group, i.e go through the rings in the 7147 * group and delete all the soft rings tied to them. 7148 */ 7149 static void 7150 mac_tx_dismantle_soft_rings(mac_group_t *fgrp, flow_entry_t *flent) 7151 { 7152 mac_client_impl_t *mcip = flent->fe_mcip; 7153 mac_soft_ring_set_t *tx_srs; 7154 mac_srs_tx_t *tx; 7155 mac_ring_t *ring; 7156 7157 tx_srs = flent->fe_tx_srs; 7158 tx = &tx_srs->srs_tx; 7159 7160 /* Single ring case we haven't created any soft rings */ 7161 if (tx->st_mode == SRS_TX_BW || tx->st_mode == SRS_TX_SERIALIZE || 7162 tx->st_mode == SRS_TX_DEFAULT) { 7163 tx->st_arg2 = NULL; 7164 mac_srs_stat_delete(tx_srs); 7165 /* Fanout case, where we have to dismantle the soft rings */ 7166 } else { 7167 for (ring = fgrp->mrg_rings; ring != NULL; 7168 ring = ring->mr_next) { 7169 ASSERT(mac_tx_srs_ring_present(tx_srs, ring)); 7170 mac_tx_invoke_callbacks(mcip, 7171 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(tx_srs, 7172 ring)); 7173 mac_tx_srs_del_ring(tx_srs, ring); 7174 } 7175 ASSERT(tx->st_arg2 == NULL); 7176 } 7177 } 7178 7179 /* 7180 * Switch the MAC client from one group to another. This means we need 7181 * to remove the MAC client, teardown the SRSs and revert the group state. 7182 * Then, we add the client to the destination roup, set the SRSs etc. 7183 */ 7184 void 7185 mac_tx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp, 7186 mac_group_t *tgrp) 7187 { 7188 mac_client_impl_t *group_only_mcip; 7189 mac_impl_t *mip = mcip->mci_mip; 7190 flow_entry_t *flent = mcip->mci_flent; 7191 mac_group_t *defgrp; 7192 mac_grp_client_t *mgcp; 7193 mac_client_impl_t *gmcip; 7194 flow_entry_t *gflent; 7195 7196 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7197 ASSERT(fgrp == flent->fe_tx_ring_group); 7198 7199 if (fgrp == defgrp) { 7200 /* 7201 * If this is the primary we need to find any VLANs on 7202 * the primary and move them too. 7203 */ 7204 mac_group_remove_client(fgrp, mcip); 7205 mac_tx_dismantle_soft_rings(fgrp, flent); 7206 if (mcip->mci_unicast->ma_nusers > 1) { 7207 mgcp = fgrp->mrg_clients; 7208 while (mgcp != NULL) { 7209 gmcip = mgcp->mgc_client; 7210 mgcp = mgcp->mgc_next; 7211 if (mcip->mci_unicast != gmcip->mci_unicast) 7212 continue; 7213 mac_tx_client_quiesce( 7214 (mac_client_handle_t)gmcip); 7215 7216 gflent = gmcip->mci_flent; 7217 mac_group_remove_client(fgrp, gmcip); 7218 mac_tx_dismantle_soft_rings(fgrp, gflent); 7219 7220 mac_group_add_client(tgrp, gmcip); 7221 gflent->fe_tx_ring_group = tgrp; 7222 /* We could directly set this to SHARED */ 7223 tgrp->mrg_state = mac_group_next_state(tgrp, 7224 &group_only_mcip, defgrp, B_FALSE); 7225 7226 mac_tx_srs_group_setup(gmcip, gflent, 7227 SRST_LINK); 7228 mac_fanout_setup(gmcip, gflent, 7229 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver, 7230 gmcip, NULL, NULL); 7231 7232 mac_tx_client_restart( 7233 (mac_client_handle_t)gmcip); 7234 } 7235 } 7236 if (MAC_GROUP_NO_CLIENT(fgrp)) { 7237 mac_ring_t *ring; 7238 int cnt; 7239 int ringcnt; 7240 7241 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED; 7242 /* 7243 * Additionally, we also need to stop all 7244 * the rings in the default group, except 7245 * the default ring. The reason being 7246 * this group won't be released since it is 7247 * the default group, so the rings won't 7248 * be stopped otherwise. 7249 */ 7250 ringcnt = fgrp->mrg_cur_count; 7251 ring = fgrp->mrg_rings; 7252 for (cnt = 0; cnt < ringcnt; cnt++) { 7253 if (ring->mr_state == MR_INUSE && 7254 ring != 7255 (mac_ring_t *)mip->mi_default_tx_ring) { 7256 mac_stop_ring(ring); 7257 ring->mr_flag = 0; 7258 } 7259 ring = ring->mr_next; 7260 } 7261 } else if (MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) { 7262 fgrp->mrg_state = MAC_GROUP_STATE_RESERVED; 7263 } else { 7264 ASSERT(fgrp->mrg_state == MAC_GROUP_STATE_SHARED); 7265 } 7266 } else { 7267 /* 7268 * We could have VLANs sharing the non-default group with 7269 * the primary. 7270 */ 7271 mgcp = fgrp->mrg_clients; 7272 while (mgcp != NULL) { 7273 gmcip = mgcp->mgc_client; 7274 mgcp = mgcp->mgc_next; 7275 if (gmcip == mcip) 7276 continue; 7277 mac_tx_client_quiesce((mac_client_handle_t)gmcip); 7278 gflent = gmcip->mci_flent; 7279 7280 mac_group_remove_client(fgrp, gmcip); 7281 mac_tx_dismantle_soft_rings(fgrp, gflent); 7282 7283 mac_group_add_client(tgrp, gmcip); 7284 gflent->fe_tx_ring_group = tgrp; 7285 /* We could directly set this to SHARED */ 7286 tgrp->mrg_state = mac_group_next_state(tgrp, 7287 &group_only_mcip, defgrp, B_FALSE); 7288 mac_tx_srs_group_setup(gmcip, gflent, SRST_LINK); 7289 mac_fanout_setup(gmcip, gflent, 7290 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver, 7291 gmcip, NULL, NULL); 7292 7293 mac_tx_client_restart((mac_client_handle_t)gmcip); 7294 } 7295 mac_group_remove_client(fgrp, mcip); 7296 mac_release_tx_group(mcip, fgrp); 7297 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED; 7298 } 7299 7300 /* Add it to the tgroup */ 7301 mac_group_add_client(tgrp, mcip); 7302 flent->fe_tx_ring_group = tgrp; 7303 tgrp->mrg_state = mac_group_next_state(tgrp, &group_only_mcip, 7304 defgrp, B_FALSE); 7305 7306 mac_tx_srs_group_setup(mcip, flent, SRST_LINK); 7307 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 7308 mac_rx_deliver, mcip, NULL, NULL); 7309 } 7310 7311 /* 7312 * This is a 1-time control path activity initiated by the client (IP). 7313 * The mac perimeter protects against other simultaneous control activities, 7314 * for example an ioctl that attempts to change the degree of fanout and 7315 * increase or decrease the number of softrings associated with this Tx SRS. 7316 */ 7317 static mac_tx_notify_cb_t * 7318 mac_client_tx_notify_add(mac_client_impl_t *mcip, 7319 mac_tx_notify_t notify, void *arg) 7320 { 7321 mac_cb_info_t *mcbi; 7322 mac_tx_notify_cb_t *mtnfp; 7323 7324 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 7325 7326 mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP); 7327 mtnfp->mtnf_fn = notify; 7328 mtnfp->mtnf_arg = arg; 7329 mtnfp->mtnf_link.mcb_objp = mtnfp; 7330 mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t); 7331 mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T; 7332 7333 mcbi = &mcip->mci_tx_notify_cb_info; 7334 mutex_enter(mcbi->mcbi_lockp); 7335 mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link); 7336 mutex_exit(mcbi->mcbi_lockp); 7337 return (mtnfp); 7338 } 7339 7340 static void 7341 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp) 7342 { 7343 mac_cb_info_t *mcbi; 7344 mac_cb_t **cblist; 7345 7346 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 7347 7348 if (!mac_callback_find(&mcip->mci_tx_notify_cb_info, 7349 &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) { 7350 cmn_err(CE_WARN, 7351 "mac_client_tx_notify_remove: callback not " 7352 "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp); 7353 return; 7354 } 7355 7356 mcbi = &mcip->mci_tx_notify_cb_info; 7357 cblist = &mcip->mci_tx_notify_cb_list; 7358 mutex_enter(mcbi->mcbi_lockp); 7359 if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link)) 7360 kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t)); 7361 else 7362 mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info); 7363 mutex_exit(mcbi->mcbi_lockp); 7364 } 7365 7366 /* 7367 * mac_client_tx_notify(): 7368 * call to add and remove flow control callback routine. 7369 */ 7370 mac_tx_notify_handle_t 7371 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func, 7372 void *ptr) 7373 { 7374 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 7375 mac_tx_notify_cb_t *mtnfp = NULL; 7376 7377 i_mac_perim_enter(mcip->mci_mip); 7378 7379 if (callb_func != NULL) { 7380 /* Add a notify callback */ 7381 mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr); 7382 } else { 7383 mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr); 7384 } 7385 i_mac_perim_exit(mcip->mci_mip); 7386 7387 return ((mac_tx_notify_handle_t)mtnfp); 7388 } 7389 7390 void 7391 mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf, 7392 mac_bridge_ref_t reff, mac_bridge_ls_t lsf) 7393 { 7394 mac_bridge_tx_cb = txf; 7395 mac_bridge_rx_cb = rxf; 7396 mac_bridge_ref_cb = reff; 7397 mac_bridge_ls_cb = lsf; 7398 } 7399 7400 int 7401 mac_bridge_set(mac_handle_t mh, mac_handle_t link) 7402 { 7403 mac_impl_t *mip = (mac_impl_t *)mh; 7404 int retv; 7405 7406 mutex_enter(&mip->mi_bridge_lock); 7407 if (mip->mi_bridge_link == NULL) { 7408 mip->mi_bridge_link = link; 7409 retv = 0; 7410 } else { 7411 retv = EBUSY; 7412 } 7413 mutex_exit(&mip->mi_bridge_lock); 7414 if (retv == 0) { 7415 mac_poll_state_change(mh, B_FALSE); 7416 mac_capab_update(mh); 7417 } 7418 return (retv); 7419 } 7420 7421 /* 7422 * Disable bridging on the indicated link. 7423 */ 7424 void 7425 mac_bridge_clear(mac_handle_t mh, mac_handle_t link) 7426 { 7427 mac_impl_t *mip = (mac_impl_t *)mh; 7428 7429 mutex_enter(&mip->mi_bridge_lock); 7430 ASSERT(mip->mi_bridge_link == link); 7431 mip->mi_bridge_link = NULL; 7432 mutex_exit(&mip->mi_bridge_lock); 7433 mac_poll_state_change(mh, B_TRUE); 7434 mac_capab_update(mh); 7435 } 7436 7437 void 7438 mac_no_active(mac_handle_t mh) 7439 { 7440 mac_impl_t *mip = (mac_impl_t *)mh; 7441 7442 i_mac_perim_enter(mip); 7443 mip->mi_state_flags |= MIS_NO_ACTIVE; 7444 i_mac_perim_exit(mip); 7445 } 7446 7447 /* 7448 * Walk the primary VLAN clients whenever the primary's rings property 7449 * changes and update the mac_resource_props_t for the VLAN's client. 7450 * We need to do this since we don't support setting these properties 7451 * on the primary's VLAN clients, but the VLAN clients have to 7452 * follow the primary w.r.t the rings property; 7453 */ 7454 void 7455 mac_set_prim_vlan_rings(mac_impl_t *mip, mac_resource_props_t *mrp) 7456 { 7457 mac_client_impl_t *vmcip; 7458 mac_resource_props_t *vmrp; 7459 7460 for (vmcip = mip->mi_clients_list; vmcip != NULL; 7461 vmcip = vmcip->mci_client_next) { 7462 if (!(vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) || 7463 mac_client_vid((mac_client_handle_t)vmcip) == 7464 VLAN_ID_NONE) { 7465 continue; 7466 } 7467 vmrp = MCIP_RESOURCE_PROPS(vmcip); 7468 7469 vmrp->mrp_nrxrings = mrp->mrp_nrxrings; 7470 if (mrp->mrp_mask & MRP_RX_RINGS) 7471 vmrp->mrp_mask |= MRP_RX_RINGS; 7472 else if (vmrp->mrp_mask & MRP_RX_RINGS) 7473 vmrp->mrp_mask &= ~MRP_RX_RINGS; 7474 7475 vmrp->mrp_ntxrings = mrp->mrp_ntxrings; 7476 if (mrp->mrp_mask & MRP_TX_RINGS) 7477 vmrp->mrp_mask |= MRP_TX_RINGS; 7478 else if (vmrp->mrp_mask & MRP_TX_RINGS) 7479 vmrp->mrp_mask &= ~MRP_TX_RINGS; 7480 7481 if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) 7482 vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC; 7483 else 7484 vmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC; 7485 7486 if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) 7487 vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC; 7488 else 7489 vmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC; 7490 } 7491 } 7492 7493 /* 7494 * We are adding or removing ring(s) from a group. The source for taking 7495 * rings is the default group. The destination for giving rings back is 7496 * the default group. 7497 */ 7498 int 7499 mac_group_ring_modify(mac_client_impl_t *mcip, mac_group_t *group, 7500 mac_group_t *defgrp) 7501 { 7502 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 7503 uint_t modify; 7504 int count; 7505 mac_ring_t *ring; 7506 mac_ring_t *next; 7507 mac_impl_t *mip = mcip->mci_mip; 7508 mac_ring_t **rings; 7509 uint_t ringcnt; 7510 int i = 0; 7511 boolean_t rx_group = group->mrg_type == MAC_RING_TYPE_RX; 7512 int start; 7513 int end; 7514 mac_group_t *tgrp; 7515 int j; 7516 int rv = 0; 7517 7518 /* 7519 * If we are asked for just a group, we give 1 ring, else 7520 * the specified number of rings. 7521 */ 7522 if (rx_group) { 7523 ringcnt = (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) ? 1: 7524 mrp->mrp_nrxrings; 7525 } else { 7526 ringcnt = (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) ? 1: 7527 mrp->mrp_ntxrings; 7528 } 7529 7530 /* don't allow modifying rings for a share for now. */ 7531 ASSERT(mcip->mci_share == NULL); 7532 7533 if (ringcnt == group->mrg_cur_count) 7534 return (0); 7535 7536 if (group->mrg_cur_count > ringcnt) { 7537 modify = group->mrg_cur_count - ringcnt; 7538 if (rx_group) { 7539 if (mip->mi_rx_donor_grp == group) { 7540 ASSERT(mac_is_primary_client(mcip)); 7541 mip->mi_rx_donor_grp = defgrp; 7542 } else { 7543 defgrp = mip->mi_rx_donor_grp; 7544 } 7545 } 7546 ring = group->mrg_rings; 7547 rings = kmem_alloc(modify * sizeof (mac_ring_handle_t), 7548 KM_SLEEP); 7549 j = 0; 7550 for (count = 0; count < modify; count++) { 7551 next = ring->mr_next; 7552 rv = mac_group_mov_ring(mip, defgrp, ring); 7553 if (rv != 0) { 7554 /* cleanup on failure */ 7555 for (j = 0; j < count; j++) { 7556 (void) mac_group_mov_ring(mip, group, 7557 rings[j]); 7558 } 7559 break; 7560 } 7561 rings[j++] = ring; 7562 ring = next; 7563 } 7564 kmem_free(rings, modify * sizeof (mac_ring_handle_t)); 7565 return (rv); 7566 } 7567 if (ringcnt >= MAX_RINGS_PER_GROUP) 7568 return (EINVAL); 7569 7570 modify = ringcnt - group->mrg_cur_count; 7571 7572 if (rx_group) { 7573 if (group != mip->mi_rx_donor_grp) 7574 defgrp = mip->mi_rx_donor_grp; 7575 else 7576 /* 7577 * This is the donor group with all the remaining 7578 * rings. Default group now gets to be the donor 7579 */ 7580 mip->mi_rx_donor_grp = defgrp; 7581 start = 1; 7582 end = mip->mi_rx_group_count; 7583 } else { 7584 start = 0; 7585 end = mip->mi_tx_group_count - 1; 7586 } 7587 /* 7588 * If the default doesn't have any rings, lets see if we can 7589 * take rings given to an h/w client that doesn't need it. 7590 * For now, we just see if there is any one client that can donate 7591 * all the required rings. 7592 */ 7593 if (defgrp->mrg_cur_count < (modify + 1)) { 7594 for (i = start; i < end; i++) { 7595 if (rx_group) { 7596 tgrp = &mip->mi_rx_groups[i]; 7597 if (tgrp == group || tgrp->mrg_state < 7598 MAC_GROUP_STATE_RESERVED) { 7599 continue; 7600 } 7601 mcip = MAC_GROUP_ONLY_CLIENT(tgrp); 7602 if (mcip == NULL) 7603 mcip = mac_get_grp_primary(tgrp); 7604 ASSERT(mcip != NULL); 7605 mrp = MCIP_RESOURCE_PROPS(mcip); 7606 if ((mrp->mrp_mask & MRP_RX_RINGS) != 0) 7607 continue; 7608 if ((tgrp->mrg_cur_count + 7609 defgrp->mrg_cur_count) < (modify + 1)) { 7610 continue; 7611 } 7612 if (mac_rx_switch_group(mcip, tgrp, 7613 defgrp) != 0) { 7614 return (ENOSPC); 7615 } 7616 } else { 7617 tgrp = &mip->mi_tx_groups[i]; 7618 if (tgrp == group || tgrp->mrg_state < 7619 MAC_GROUP_STATE_RESERVED) { 7620 continue; 7621 } 7622 mcip = MAC_GROUP_ONLY_CLIENT(tgrp); 7623 if (mcip == NULL) 7624 mcip = mac_get_grp_primary(tgrp); 7625 mrp = MCIP_RESOURCE_PROPS(mcip); 7626 if ((mrp->mrp_mask & MRP_TX_RINGS) != 0) 7627 continue; 7628 if ((tgrp->mrg_cur_count + 7629 defgrp->mrg_cur_count) < (modify + 1)) { 7630 continue; 7631 } 7632 /* OK, we can switch this to s/w */ 7633 mac_tx_client_quiesce( 7634 (mac_client_handle_t)mcip); 7635 mac_tx_switch_group(mcip, tgrp, defgrp); 7636 mac_tx_client_restart( 7637 (mac_client_handle_t)mcip); 7638 } 7639 } 7640 if (defgrp->mrg_cur_count < (modify + 1)) 7641 return (ENOSPC); 7642 } 7643 if ((rv = i_mac_group_allocate_rings(mip, group->mrg_type, defgrp, 7644 group, mcip->mci_share, modify)) != 0) { 7645 return (rv); 7646 } 7647 return (0); 7648 } 7649 7650 /* 7651 * Given the poolname in mac_resource_props, find the cpupart 7652 * that is associated with this pool. The cpupart will be used 7653 * later for finding the cpus to be bound to the networking threads. 7654 * 7655 * use_default is set B_TRUE if pools are enabled and pool_default 7656 * is returned. This avoids a 2nd lookup to set the poolname 7657 * for pool-effective. 7658 * 7659 * returns: 7660 * 7661 * NULL - pools are disabled or if the 'cpus' property is set. 7662 * cpupart of pool_default - pools are enabled and the pool 7663 * is not available or poolname is blank 7664 * cpupart of named pool - pools are enabled and the pool 7665 * is available. 7666 */ 7667 cpupart_t * 7668 mac_pset_find(mac_resource_props_t *mrp, boolean_t *use_default) 7669 { 7670 pool_t *pool; 7671 cpupart_t *cpupart; 7672 7673 *use_default = B_FALSE; 7674 7675 /* CPUs property is set */ 7676 if (mrp->mrp_mask & MRP_CPUS) 7677 return (NULL); 7678 7679 ASSERT(pool_lock_held()); 7680 7681 /* Pools are disabled, no pset */ 7682 if (pool_state == POOL_DISABLED) 7683 return (NULL); 7684 7685 /* Pools property is set */ 7686 if (mrp->mrp_mask & MRP_POOL) { 7687 if ((pool = pool_lookup_pool_by_name(mrp->mrp_pool)) == NULL) { 7688 /* Pool not found */ 7689 DTRACE_PROBE1(mac_pset_find_no_pool, char *, 7690 mrp->mrp_pool); 7691 *use_default = B_TRUE; 7692 pool = pool_default; 7693 } 7694 /* Pools property is not set */ 7695 } else { 7696 *use_default = B_TRUE; 7697 pool = pool_default; 7698 } 7699 7700 /* Find the CPU pset that corresponds to the pool */ 7701 mutex_enter(&cpu_lock); 7702 if ((cpupart = cpupart_find(pool->pool_pset->pset_id)) == NULL) { 7703 DTRACE_PROBE1(mac_find_pset_no_pset, psetid_t, 7704 pool->pool_pset->pset_id); 7705 } 7706 mutex_exit(&cpu_lock); 7707 7708 return (cpupart); 7709 } 7710 7711 void 7712 mac_set_pool_effective(boolean_t use_default, cpupart_t *cpupart, 7713 mac_resource_props_t *mrp, mac_resource_props_t *emrp) 7714 { 7715 ASSERT(pool_lock_held()); 7716 7717 if (cpupart != NULL) { 7718 emrp->mrp_mask |= MRP_POOL; 7719 if (use_default) { 7720 (void) strcpy(emrp->mrp_pool, 7721 "pool_default"); 7722 } else { 7723 ASSERT(strlen(mrp->mrp_pool) != 0); 7724 (void) strcpy(emrp->mrp_pool, 7725 mrp->mrp_pool); 7726 } 7727 } else { 7728 emrp->mrp_mask &= ~MRP_POOL; 7729 bzero(emrp->mrp_pool, MAXPATHLEN); 7730 } 7731 } 7732 7733 struct mac_pool_arg { 7734 char mpa_poolname[MAXPATHLEN]; 7735 pool_event_t mpa_what; 7736 }; 7737 7738 /*ARGSUSED*/ 7739 static uint_t 7740 mac_pool_link_update(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 7741 { 7742 struct mac_pool_arg *mpa = arg; 7743 mac_impl_t *mip = (mac_impl_t *)val; 7744 mac_client_impl_t *mcip; 7745 mac_resource_props_t *mrp, *emrp; 7746 boolean_t pool_update = B_FALSE; 7747 boolean_t pool_clear = B_FALSE; 7748 boolean_t use_default = B_FALSE; 7749 cpupart_t *cpupart = NULL; 7750 7751 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 7752 i_mac_perim_enter(mip); 7753 for (mcip = mip->mi_clients_list; mcip != NULL; 7754 mcip = mcip->mci_client_next) { 7755 pool_update = B_FALSE; 7756 pool_clear = B_FALSE; 7757 use_default = B_FALSE; 7758 mac_client_get_resources((mac_client_handle_t)mcip, mrp); 7759 emrp = MCIP_EFFECTIVE_PROPS(mcip); 7760 7761 /* 7762 * When pools are enabled 7763 */ 7764 if ((mpa->mpa_what == POOL_E_ENABLE) && 7765 ((mrp->mrp_mask & MRP_CPUS) == 0)) { 7766 mrp->mrp_mask |= MRP_POOL; 7767 pool_update = B_TRUE; 7768 } 7769 7770 /* 7771 * When pools are disabled 7772 */ 7773 if ((mpa->mpa_what == POOL_E_DISABLE) && 7774 ((mrp->mrp_mask & MRP_CPUS) == 0)) { 7775 mrp->mrp_mask |= MRP_POOL; 7776 pool_clear = B_TRUE; 7777 } 7778 7779 /* 7780 * Look for links with the pool property set and the poolname 7781 * matching the one which is changing. 7782 */ 7783 if (strcmp(mrp->mrp_pool, mpa->mpa_poolname) == 0) { 7784 /* 7785 * The pool associated with the link has changed. 7786 */ 7787 if (mpa->mpa_what == POOL_E_CHANGE) { 7788 mrp->mrp_mask |= MRP_POOL; 7789 pool_update = B_TRUE; 7790 } 7791 } 7792 7793 /* 7794 * This link is associated with pool_default and 7795 * pool_default has changed. 7796 */ 7797 if ((mpa->mpa_what == POOL_E_CHANGE) && 7798 (strcmp(emrp->mrp_pool, "pool_default") == 0) && 7799 (strcmp(mpa->mpa_poolname, "pool_default") == 0)) { 7800 mrp->mrp_mask |= MRP_POOL; 7801 pool_update = B_TRUE; 7802 } 7803 7804 /* 7805 * Get new list of cpus for the pool, bind network 7806 * threads to new list of cpus and update resources. 7807 */ 7808 if (pool_update) { 7809 if (MCIP_DATAPATH_SETUP(mcip)) { 7810 pool_lock(); 7811 cpupart = mac_pset_find(mrp, &use_default); 7812 mac_fanout_setup(mcip, mcip->mci_flent, mrp, 7813 mac_rx_deliver, mcip, NULL, cpupart); 7814 mac_set_pool_effective(use_default, cpupart, 7815 mrp, emrp); 7816 pool_unlock(); 7817 } 7818 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), 7819 B_FALSE); 7820 } 7821 7822 /* 7823 * Clear the effective pool and bind network threads 7824 * to any available CPU. 7825 */ 7826 if (pool_clear) { 7827 if (MCIP_DATAPATH_SETUP(mcip)) { 7828 emrp->mrp_mask &= ~MRP_POOL; 7829 bzero(emrp->mrp_pool, MAXPATHLEN); 7830 mac_fanout_setup(mcip, mcip->mci_flent, mrp, 7831 mac_rx_deliver, mcip, NULL, NULL); 7832 } 7833 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), 7834 B_FALSE); 7835 } 7836 } 7837 i_mac_perim_exit(mip); 7838 kmem_free(mrp, sizeof (*mrp)); 7839 return (MH_WALK_CONTINUE); 7840 } 7841 7842 static void 7843 mac_pool_update(void *arg) 7844 { 7845 mod_hash_walk(i_mac_impl_hash, mac_pool_link_update, arg); 7846 kmem_free(arg, sizeof (struct mac_pool_arg)); 7847 } 7848 7849 /* 7850 * Callback function to be executed when a noteworthy pool event 7851 * takes place. 7852 */ 7853 /* ARGSUSED */ 7854 static void 7855 mac_pool_event_cb(pool_event_t what, poolid_t id, void *arg) 7856 { 7857 pool_t *pool; 7858 char *poolname = NULL; 7859 struct mac_pool_arg *mpa; 7860 7861 pool_lock(); 7862 mpa = kmem_zalloc(sizeof (struct mac_pool_arg), KM_SLEEP); 7863 7864 switch (what) { 7865 case POOL_E_ENABLE: 7866 case POOL_E_DISABLE: 7867 break; 7868 7869 case POOL_E_CHANGE: 7870 pool = pool_lookup_pool_by_id(id); 7871 if (pool == NULL) { 7872 kmem_free(mpa, sizeof (struct mac_pool_arg)); 7873 pool_unlock(); 7874 return; 7875 } 7876 pool_get_name(pool, &poolname); 7877 (void) strlcpy(mpa->mpa_poolname, poolname, 7878 sizeof (mpa->mpa_poolname)); 7879 break; 7880 7881 default: 7882 kmem_free(mpa, sizeof (struct mac_pool_arg)); 7883 pool_unlock(); 7884 return; 7885 } 7886 pool_unlock(); 7887 7888 mpa->mpa_what = what; 7889 7890 mac_pool_update(mpa); 7891 } 7892 7893 /* 7894 * Set effective rings property. This could be called from datapath_setup/ 7895 * datapath_teardown or set-linkprop. 7896 * If the group is reserved we just go ahead and set the effective rings. 7897 * Additionally, for TX this could mean the default group has lost/gained 7898 * some rings, so if the default group is reserved, we need to adjust the 7899 * effective rings for the default group clients. For RX, if we are working 7900 * with the non-default group, we just need * to reset the effective props 7901 * for the default group clients. 7902 */ 7903 void 7904 mac_set_rings_effective(mac_client_impl_t *mcip) 7905 { 7906 mac_impl_t *mip = mcip->mci_mip; 7907 mac_group_t *grp; 7908 mac_group_t *defgrp; 7909 flow_entry_t *flent = mcip->mci_flent; 7910 mac_resource_props_t *emrp = MCIP_EFFECTIVE_PROPS(mcip); 7911 mac_grp_client_t *mgcp; 7912 mac_client_impl_t *gmcip; 7913 7914 grp = flent->fe_rx_ring_group; 7915 if (grp != NULL) { 7916 defgrp = MAC_DEFAULT_RX_GROUP(mip); 7917 /* 7918 * If we have reserved a group, set the effective rings 7919 * to the ring count in the group. 7920 */ 7921 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) { 7922 emrp->mrp_mask |= MRP_RX_RINGS; 7923 emrp->mrp_nrxrings = grp->mrg_cur_count; 7924 } 7925 7926 /* 7927 * We go through the clients in the shared group and 7928 * reset the effective properties. It is possible this 7929 * might have already been done for some client (i.e. 7930 * if some client is being moved to a group that is 7931 * already shared). The case where the default group is 7932 * RESERVED is taken care of above (note in the RX side if 7933 * there is a non-default group, the default group is always 7934 * SHARED). 7935 */ 7936 if (grp != defgrp || grp->mrg_state == MAC_GROUP_STATE_SHARED) { 7937 if (grp->mrg_state == MAC_GROUP_STATE_SHARED) 7938 mgcp = grp->mrg_clients; 7939 else 7940 mgcp = defgrp->mrg_clients; 7941 while (mgcp != NULL) { 7942 gmcip = mgcp->mgc_client; 7943 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 7944 if (emrp->mrp_mask & MRP_RX_RINGS) { 7945 emrp->mrp_mask &= ~MRP_RX_RINGS; 7946 emrp->mrp_nrxrings = 0; 7947 } 7948 mgcp = mgcp->mgc_next; 7949 } 7950 } 7951 } 7952 7953 /* Now the TX side */ 7954 grp = flent->fe_tx_ring_group; 7955 if (grp != NULL) { 7956 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7957 7958 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) { 7959 emrp->mrp_mask |= MRP_TX_RINGS; 7960 emrp->mrp_ntxrings = grp->mrg_cur_count; 7961 } else if (grp->mrg_state == MAC_GROUP_STATE_SHARED) { 7962 mgcp = grp->mrg_clients; 7963 while (mgcp != NULL) { 7964 gmcip = mgcp->mgc_client; 7965 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 7966 if (emrp->mrp_mask & MRP_TX_RINGS) { 7967 emrp->mrp_mask &= ~MRP_TX_RINGS; 7968 emrp->mrp_ntxrings = 0; 7969 } 7970 mgcp = mgcp->mgc_next; 7971 } 7972 } 7973 7974 /* 7975 * If the group is not the default group and the default 7976 * group is reserved, the ring count in the default group 7977 * might have changed, update it. 7978 */ 7979 if (grp != defgrp && 7980 defgrp->mrg_state == MAC_GROUP_STATE_RESERVED) { 7981 gmcip = MAC_GROUP_ONLY_CLIENT(defgrp); 7982 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 7983 emrp->mrp_ntxrings = defgrp->mrg_cur_count; 7984 } 7985 } 7986 emrp = MCIP_EFFECTIVE_PROPS(mcip); 7987 } 7988 7989 /* 7990 * Check if the primary is in the default group. If so, see if we 7991 * can give it a an exclusive group now that another client is 7992 * being configured. We take the primary out of the default group 7993 * because the multicast/broadcast packets for the all the clients 7994 * will land in the default ring in the default group which means 7995 * any client in the default group, even if it is the only on in 7996 * the group, will lose exclusive access to the rings, hence 7997 * polling. 7998 */ 7999 mac_client_impl_t * 8000 mac_check_primary_relocation(mac_client_impl_t *mcip, boolean_t rxhw) 8001 { 8002 mac_impl_t *mip = mcip->mci_mip; 8003 mac_group_t *defgrp = MAC_DEFAULT_RX_GROUP(mip); 8004 flow_entry_t *flent = mcip->mci_flent; 8005 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 8006 uint8_t *mac_addr; 8007 mac_group_t *ngrp; 8008 8009 /* 8010 * Check if the primary is in the default group, if not 8011 * or if it is explicitly configured to be in the default 8012 * group OR set the RX rings property, return. 8013 */ 8014 if (flent->fe_rx_ring_group != defgrp || mrp->mrp_mask & MRP_RX_RINGS) 8015 return (NULL); 8016 8017 /* 8018 * If the new client needs an exclusive group and we 8019 * don't have another for the primary, return. 8020 */ 8021 if (rxhw && mip->mi_rxhwclnt_avail < 2) 8022 return (NULL); 8023 8024 mac_addr = flent->fe_flow_desc.fd_dst_mac; 8025 /* 8026 * We call this when we are setting up the datapath for 8027 * the first non-primary. 8028 */ 8029 ASSERT(mip->mi_nactiveclients == 2); 8030 /* 8031 * OK, now we have the primary that needs to be relocated. 8032 */ 8033 ngrp = mac_reserve_rx_group(mcip, mac_addr, B_TRUE); 8034 if (ngrp == NULL) 8035 return (NULL); 8036 if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) { 8037 mac_stop_group(ngrp); 8038 return (NULL); 8039 } 8040 return (mcip); 8041 } 8042