xref: /titanic_51/usr/src/uts/common/io/mac/mac.c (revision 5420b8055570e39d22735d20973c2979c9adba94)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * MAC Services Module
29  *
30  * The GLDv3 framework locking -  The MAC layer
31  * --------------------------------------------
32  *
33  * The MAC layer is central to the GLD framework and can provide the locking
34  * framework needed for itself and for the use of MAC clients. MAC end points
35  * are fairly disjoint and don't share a lot of state. So a coarse grained
36  * multi-threading scheme is to single thread all create/modify/delete or set
37  * type of control operations on a per mac end point while allowing data threads
38  * concurrently.
39  *
40  * Control operations (set) that modify a mac end point are always serialized on
41  * a per mac end point basis, We have at most 1 such thread per mac end point
42  * at a time.
43  *
44  * All other operations that are not serialized are essentially multi-threaded.
45  * For example a control operation (get) like getting statistics which may not
46  * care about reading values atomically or data threads sending or receiving
47  * data. Mostly these type of operations don't modify the control state. Any
48  * state these operations care about are protected using traditional locks.
49  *
50  * The perimeter only serializes serial operations. It does not imply there
51  * aren't any other concurrent operations. However a serialized operation may
52  * sometimes need to make sure it is the only thread. In this case it needs
53  * to use reference counting mechanisms to cv_wait until any current data
54  * threads are done.
55  *
56  * The mac layer itself does not hold any locks across a call to another layer.
57  * The perimeter is however held across a down call to the driver to make the
58  * whole control operation atomic with respect to other control operations.
59  * Also the data path and get type control operations may proceed concurrently.
60  * These operations synchronize with the single serial operation on a given mac
61  * end point using regular locks. The perimeter ensures that conflicting
62  * operations like say a mac_multicast_add and a mac_multicast_remove on the
63  * same mac end point don't interfere with each other and also ensures that the
64  * changes in the mac layer and the call to the underlying driver to say add a
65  * multicast address are done atomically without interference from a thread
66  * trying to delete the same address.
67  *
68  * For example, consider
69  * mac_multicst_add()
70  * {
71  *	mac_perimeter_enter();	serialize all control operations
72  *
73  *	grab list lock		protect against access by data threads
74  *	add to list
75  *	drop list lock
76  *
77  *	call driver's mi_multicst
78  *
79  *	mac_perimeter_exit();
80  * }
81  *
82  * To lessen the number of serialization locks and simplify the lock hierarchy,
83  * we serialize all the control operations on a per mac end point by using a
84  * single serialization lock called the perimeter. We allow recursive entry into
85  * the perimeter to facilitate use of this mechanism by both the mac client and
86  * the MAC layer itself.
87  *
88  * MAC client means an entity that does an operation on a mac handle
89  * obtained from a mac_open/mac_client_open. Similarly MAC driver means
90  * an entity that does an operation on a mac handle obtained from a
91  * mac_register. An entity could be both client and driver but on different
92  * handles eg. aggr. and should only make the corresponding mac interface calls
93  * i.e. mac driver interface or mac client interface as appropriate for that
94  * mac handle.
95  *
96  * General rules.
97  * -------------
98  *
99  * R1. The lock order of upcall threads is natually opposite to downcall
100  * threads. Hence upcalls must not hold any locks across layers for fear of
101  * recursive lock enter and lock order violation. This applies to all layers.
102  *
103  * R2. The perimeter is just another lock. Since it is held in the down
104  * direction, acquiring the perimeter in an upcall is prohibited as it would
105  * cause a deadlock. This applies to all layers.
106  *
107  * Note that upcalls that need to grab the mac perimeter (for example
108  * mac_notify upcalls) can still achieve that by posting the request to a
109  * thread, which can then grab all the required perimeters and locks in the
110  * right global order. Note that in the above example the mac layer iself
111  * won't grab the mac perimeter in the mac_notify upcall, instead the upcall
112  * to the client must do that. Please see the aggr code for an example.
113  *
114  * MAC client rules
115  * ----------------
116  *
117  * R3. A MAC client may use the MAC provided perimeter facility to serialize
118  * control operations on a per mac end point. It does this by by acquring
119  * and holding the perimeter across a sequence of calls to the mac layer.
120  * This ensures atomicity across the entire block of mac calls. In this
121  * model the MAC client must not hold any client locks across the calls to
122  * the mac layer. This model is the preferred solution.
123  *
124  * R4. However if a MAC client has a lot of global state across all mac end
125  * points the per mac end point serialization may not be sufficient. In this
126  * case the client may choose to use global locks or use its own serialization.
127  * To avoid deadlocks, these client layer locks held across the mac calls
128  * in the control path must never be acquired by the data path for the reason
129  * mentioned below.
130  *
131  * (Assume that a control operation that holds a client lock blocks in the
132  * mac layer waiting for upcall reference counts to drop to zero. If an upcall
133  * data thread that holds this reference count, tries to acquire the same
134  * client lock subsequently it will deadlock).
135  *
136  * A MAC client may follow either the R3 model or the R4 model, but can't
137  * mix both. In the former, the hierarchy is Perim -> client locks, but in
138  * the latter it is client locks -> Perim.
139  *
140  * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able
141  * context since they may block while trying to acquire the perimeter.
142  * In addition some calls may block waiting for upcall refcnts to come down to
143  * zero.
144  *
145  * R6. MAC clients must make sure that they are single threaded and all threads
146  * from the top (in particular data threads) have finished before calling
147  * mac_client_close. The MAC framework does not track the number of client
148  * threads using the mac client handle. Also mac clients must make sure
149  * they have undone all the control operations before calling mac_client_close.
150  * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding
151  * mac_unicast_add/mac_multicast_add.
152  *
153  * MAC framework rules
154  * -------------------
155  *
156  * R7. The mac layer itself must not hold any mac layer locks (except the mac
157  * perimeter) across a call to any other layer from the mac layer. The call to
158  * any other layer could be via mi_* entry points, classifier entry points into
159  * the driver or via upcall pointers into layers above. The mac perimeter may
160  * be acquired or held only in the down direction, for e.g. when calling into
161  * a mi_* driver enty point to provide atomicity of the operation.
162  *
163  * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across
164  * mac driver interfaces, the MAC layer must provide a cut out for control
165  * interfaces like upcall notifications and start them in a separate thread.
166  *
167  * R9. Note that locking order also implies a plumbing order. For example
168  * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt
169  * to plumb in any other order must be failed at mac_open time, otherwise it
170  * could lead to deadlocks due to inverse locking order.
171  *
172  * R10. MAC driver interfaces must not block since the driver could call them
173  * in interrupt context.
174  *
175  * R11. Walkers must preferably not hold any locks while calling walker
176  * callbacks. Instead these can operate on reference counts. In simple
177  * callbacks it may be ok to hold a lock and call the callbacks, but this is
178  * harder to maintain in the general case of arbitrary callbacks.
179  *
180  * R12. The MAC layer must protect upcall notification callbacks using reference
181  * counts rather than holding locks across the callbacks.
182  *
183  * R13. Given the variety of drivers, it is preferable if the MAC layer can make
184  * sure that any pointers (such as mac ring pointers) it passes to the driver
185  * remain valid until mac unregister time. Currently the mac layer achieves
186  * this by using generation numbers for rings and freeing the mac rings only
187  * at unregister time.  The MAC layer must provide a layer of indirection and
188  * must not expose underlying driver rings or driver data structures/pointers
189  * directly to MAC clients.
190  *
191  * MAC driver rules
192  * ----------------
193  *
194  * R14. It would be preferable if MAC drivers don't hold any locks across any
195  * mac call. However at a minimum they must not hold any locks across data
196  * upcalls. They must also make sure that all references to mac data structures
197  * are cleaned up and that it is single threaded at mac_unregister time.
198  *
199  * R15. MAC driver interfaces don't block and so the action may be done
200  * asynchronously in a separate thread as for example handling notifications.
201  * The driver must not assume that the action is complete when the call
202  * returns.
203  *
204  * R16. Drivers must maintain a generation number per Rx ring, and pass it
205  * back to mac_rx_ring(); They are expected to increment the generation
206  * number whenever the ring's stop routine is invoked.
207  * See comments in mac_rx_ring();
208  *
209  * R17 Similarly mi_stop is another synchronization point and the driver must
210  * ensure that all upcalls are done and there won't be any future upcall
211  * before returning from mi_stop.
212  *
213  * R18. The driver may assume that all set/modify control operations via
214  * the mi_* entry points are single threaded on a per mac end point.
215  *
216  * Lock and Perimeter hierarchy scenarios
217  * ---------------------------------------
218  *
219  * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify]
220  *
221  * ft_lock -> fe_lock [mac_flow_lookup]
222  *
223  * mi_rw_lock -> fe_lock [mac_bcast_send]
224  *
225  * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw]
226  *
227  * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind]
228  *
229  * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename]
230  *
231  * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac
232  * client to driver. In the case of clients that explictly use the mac provided
233  * perimeter mechanism for its serialization, the hierarchy is
234  * Perimeter -> mac layer locks, since the client never holds any locks across
235  * the mac calls. In the case of clients that use its own locks the hierarchy
236  * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly
237  * calls mac_perim_enter/exit in this case.
238  *
239  * Subflow creation rules
240  * ---------------------------
241  * o In case of a user specified cpulist present on underlying link and flows,
242  * the flows cpulist must be a subset of the underlying link.
243  * o In case of a user specified fanout mode present on link and flow, the
244  * subflow fanout count has to be less than or equal to that of the
245  * underlying link. The cpu-bindings for the subflows will be a subset of
246  * the underlying link.
247  * o In case if no cpulist specified on both underlying link and flow, the
248  * underlying link relies on a  MAC tunable to provide out of box fanout.
249  * The subflow will have no cpulist (the subflow will be unbound)
250  * o In case if no cpulist is specified on the underlying link, a subflow can
251  * carry  either a user-specified cpulist or fanout count. The cpu-bindings
252  * for the subflow will not adhere to restriction that they need to be subset
253  * of the underlying link.
254  * o In case where the underlying link is carrying either a user specified
255  * cpulist or fanout mode and for a unspecified subflow, the subflow will be
256  * created unbound.
257  * o While creating unbound subflows, bandwidth mode changes attempt to
258  * figure a right fanout count. In such cases the fanout count will override
259  * the unbound cpu-binding behavior.
260  * o In addition to this, while cycling between flow and link properties, we
261  * impose a restriction that if a link property has a subflow with
262  * user-specified attributes, we will not allow changing the link property.
263  * The administrator needs to reset all the user specified properties for the
264  * subflows before attempting a link property change.
265  * Some of the above rules can be overridden by specifying additional command
266  * line options while creating or modifying link or subflow properties.
267  */
268 
269 #include <sys/types.h>
270 #include <sys/conf.h>
271 #include <sys/id_space.h>
272 #include <sys/esunddi.h>
273 #include <sys/stat.h>
274 #include <sys/mkdev.h>
275 #include <sys/stream.h>
276 #include <sys/strsun.h>
277 #include <sys/strsubr.h>
278 #include <sys/dlpi.h>
279 #include <sys/modhash.h>
280 #include <sys/mac_provider.h>
281 #include <sys/mac_client_impl.h>
282 #include <sys/mac_soft_ring.h>
283 #include <sys/mac_impl.h>
284 #include <sys/mac.h>
285 #include <sys/dls.h>
286 #include <sys/dld.h>
287 #include <sys/modctl.h>
288 #include <sys/fs/dv_node.h>
289 #include <sys/thread.h>
290 #include <sys/proc.h>
291 #include <sys/callb.h>
292 #include <sys/cpuvar.h>
293 #include <sys/atomic.h>
294 #include <sys/bitmap.h>
295 #include <sys/sdt.h>
296 #include <sys/mac_flow.h>
297 #include <sys/ddi_intr_impl.h>
298 #include <sys/disp.h>
299 #include <sys/sdt.h>
300 #include <sys/vnic.h>
301 #include <sys/vnic_impl.h>
302 #include <sys/vlan.h>
303 #include <inet/ip.h>
304 #include <inet/ip6.h>
305 #include <sys/exacct.h>
306 #include <sys/exacct_impl.h>
307 #include <inet/nd.h>
308 #include <sys/ethernet.h>
309 
310 #define	IMPL_HASHSZ	67	/* prime */
311 
312 kmem_cache_t	*i_mac_impl_cachep;
313 mod_hash_t		*i_mac_impl_hash;
314 krwlock_t		i_mac_impl_lock;
315 uint_t			i_mac_impl_count;
316 static kmem_cache_t	*mac_ring_cache;
317 static id_space_t	*minor_ids;
318 static uint32_t		minor_count;
319 
320 /*
321  * Logging stuff. Perhaps mac_logging_interval could be broken into
322  * mac_flow_log_interval and mac_link_log_interval if we want to be
323  * able to schedule them differently.
324  */
325 uint_t			mac_logging_interval;
326 boolean_t		mac_flow_log_enable;
327 boolean_t		mac_link_log_enable;
328 timeout_id_t		mac_logging_timer;
329 
330 /* for debugging, see MAC_DBG_PRT() in mac_impl.h */
331 int mac_dbg = 0;
332 
333 #define	MACTYPE_KMODDIR	"mac"
334 #define	MACTYPE_HASHSZ	67
335 static mod_hash_t	*i_mactype_hash;
336 /*
337  * i_mactype_lock synchronizes threads that obtain references to mactype_t
338  * structures through i_mactype_getplugin().
339  */
340 static kmutex_t		i_mactype_lock;
341 
342 /*
343  * mac_tx_percpu_cnt
344  *
345  * Number of per cpu locks per mac_client_impl_t. Used by the transmit side
346  * in mac_tx to reduce lock contention. This is sized at boot time in mac_init.
347  * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2.
348  * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1.
349  */
350 int mac_tx_percpu_cnt;
351 int mac_tx_percpu_cnt_max = 128;
352 
353 static int i_mac_constructor(void *, void *, int);
354 static void i_mac_destructor(void *, void *);
355 static int i_mac_ring_ctor(void *, void *, int);
356 static void i_mac_ring_dtor(void *, void *);
357 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *);
358 void mac_tx_client_flush(mac_client_impl_t *);
359 void mac_tx_client_block(mac_client_impl_t *);
360 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t);
361 static int mac_start_group_and_rings(mac_group_t *);
362 static void mac_stop_group_and_rings(mac_group_t *);
363 
364 /*
365  * Module initialization functions.
366  */
367 
368 void
369 mac_init(void)
370 {
371 	mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus :
372 	    boot_max_ncpus);
373 
374 	/* Upper bound is mac_tx_percpu_cnt_max */
375 	if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max)
376 		mac_tx_percpu_cnt = mac_tx_percpu_cnt_max;
377 
378 	if (mac_tx_percpu_cnt < 1) {
379 		/* Someone set max_tx_percpu_cnt_max to 0 or less */
380 		mac_tx_percpu_cnt = 1;
381 	}
382 
383 	ASSERT(mac_tx_percpu_cnt >= 1);
384 	mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1));
385 	/*
386 	 * Make it of the form 2**N - 1 in the range
387 	 * [0 .. mac_tx_percpu_cnt_max - 1]
388 	 */
389 	mac_tx_percpu_cnt--;
390 
391 	i_mac_impl_cachep = kmem_cache_create("mac_impl_cache",
392 	    sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor,
393 	    NULL, NULL, NULL, 0);
394 	ASSERT(i_mac_impl_cachep != NULL);
395 
396 	mac_ring_cache = kmem_cache_create("mac_ring_cache",
397 	    sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL,
398 	    NULL, NULL, 0);
399 	ASSERT(mac_ring_cache != NULL);
400 
401 	i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash",
402 	    IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor,
403 	    mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
404 	rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL);
405 
406 	mac_flow_init();
407 	mac_soft_ring_init();
408 	mac_bcast_init();
409 	mac_client_init();
410 
411 	i_mac_impl_count = 0;
412 
413 	i_mactype_hash = mod_hash_create_extended("mactype_hash",
414 	    MACTYPE_HASHSZ,
415 	    mod_hash_null_keydtor, mod_hash_null_valdtor,
416 	    mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
417 
418 	/*
419 	 * Allocate an id space to manage minor numbers. The range of the
420 	 * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1.  This
421 	 * leaves half of the 32-bit minors available for driver private use.
422 	 */
423 	minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1,
424 	    MAC_PRIVATE_MINOR-1);
425 	ASSERT(minor_ids != NULL);
426 	minor_count = 0;
427 
428 	/* Let's default to 20 seconds */
429 	mac_logging_interval = 20;
430 	mac_flow_log_enable = B_FALSE;
431 	mac_link_log_enable = B_FALSE;
432 	mac_logging_timer = 0;
433 }
434 
435 int
436 mac_fini(void)
437 {
438 	if (i_mac_impl_count > 0 || minor_count > 0)
439 		return (EBUSY);
440 
441 	id_space_destroy(minor_ids);
442 	mac_flow_fini();
443 
444 	mod_hash_destroy_hash(i_mac_impl_hash);
445 	rw_destroy(&i_mac_impl_lock);
446 
447 	mac_client_fini();
448 	kmem_cache_destroy(mac_ring_cache);
449 
450 	mod_hash_destroy_hash(i_mactype_hash);
451 	mac_soft_ring_finish();
452 	return (0);
453 }
454 
455 void
456 mac_init_ops(struct dev_ops *ops, const char *name)
457 {
458 	dld_init_ops(ops, name);
459 }
460 
461 void
462 mac_fini_ops(struct dev_ops *ops)
463 {
464 	dld_fini_ops(ops);
465 }
466 
467 /*ARGSUSED*/
468 static int
469 i_mac_constructor(void *buf, void *arg, int kmflag)
470 {
471 	mac_impl_t	*mip = buf;
472 
473 	bzero(buf, sizeof (mac_impl_t));
474 
475 	mip->mi_linkstate = LINK_STATE_UNKNOWN;
476 	mip->mi_nclients = 0;
477 
478 	mutex_init(&mip->mi_lock, NULL, MUTEX_DRIVER, NULL);
479 	rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL);
480 	mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL);
481 	mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL);
482 	mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL);
483 
484 	mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock;
485 	cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
486 	mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock;
487 	cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
488 	return (0);
489 }
490 
491 /*ARGSUSED*/
492 static void
493 i_mac_destructor(void *buf, void *arg)
494 {
495 	mac_impl_t	*mip = buf;
496 	mac_cb_info_t	*mcbi;
497 
498 	ASSERT(mip->mi_ref == 0);
499 	ASSERT(mip->mi_active == 0);
500 	ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN);
501 	ASSERT(mip->mi_devpromisc == 0);
502 	ASSERT(mip->mi_ksp == NULL);
503 	ASSERT(mip->mi_kstat_count == 0);
504 	ASSERT(mip->mi_nclients == 0);
505 	ASSERT(mip->mi_nactiveclients == 0);
506 	ASSERT(mip->mi_single_active_client == NULL);
507 	ASSERT(mip->mi_state_flags == 0);
508 	ASSERT(mip->mi_factory_addr == NULL);
509 	ASSERT(mip->mi_factory_addr_num == 0);
510 	ASSERT(mip->mi_default_tx_ring == NULL);
511 
512 	mcbi = &mip->mi_notify_cb_info;
513 	ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0);
514 	ASSERT(mip->mi_notify_bits == 0);
515 	ASSERT(mip->mi_notify_thread == NULL);
516 	ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock);
517 	mcbi->mcbi_lockp = NULL;
518 
519 	mcbi = &mip->mi_promisc_cb_info;
520 	ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL);
521 	ASSERT(mip->mi_promisc_list == NULL);
522 	ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock);
523 	mcbi->mcbi_lockp = NULL;
524 
525 	ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL);
526 	ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0);
527 
528 	mutex_destroy(&mip->mi_lock);
529 	rw_destroy(&mip->mi_rw_lock);
530 
531 	mutex_destroy(&mip->mi_promisc_lock);
532 	cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv);
533 	mutex_destroy(&mip->mi_notify_lock);
534 	cv_destroy(&mip->mi_notify_cb_info.mcbi_cv);
535 	mutex_destroy(&mip->mi_ring_lock);
536 }
537 
538 /* ARGSUSED */
539 static int
540 i_mac_ring_ctor(void *buf, void *arg, int kmflag)
541 {
542 	mac_ring_t *ring = (mac_ring_t *)buf;
543 
544 	bzero(ring, sizeof (mac_ring_t));
545 	cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL);
546 	mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL);
547 	ring->mr_state = MR_FREE;
548 	return (0);
549 }
550 
551 /* ARGSUSED */
552 static void
553 i_mac_ring_dtor(void *buf, void *arg)
554 {
555 	mac_ring_t *ring = (mac_ring_t *)buf;
556 
557 	cv_destroy(&ring->mr_cv);
558 	mutex_destroy(&ring->mr_lock);
559 }
560 
561 /*
562  * Common functions to do mac callback addition and deletion. Currently this is
563  * used by promisc callbacks and notify callbacks. List addition and deletion
564  * need to take care of list walkers. List walkers in general, can't hold list
565  * locks and make upcall callbacks due to potential lock order and recursive
566  * reentry issues. Instead list walkers increment the list walker count to mark
567  * the presence of a walker thread. Addition can be carefully done to ensure
568  * that the list walker always sees either the old list or the new list.
569  * However the deletion can't be done while the walker is active, instead the
570  * deleting thread simply marks the entry as logically deleted. The last walker
571  * physically deletes and frees up the logically deleted entries when the walk
572  * is complete.
573  */
574 void
575 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
576     mac_cb_t *mcb_elem)
577 {
578 	mac_cb_t	*p;
579 	mac_cb_t	**pp;
580 
581 	/* Verify it is not already in the list */
582 	for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
583 		if (p == mcb_elem)
584 			break;
585 	}
586 	VERIFY(p == NULL);
587 
588 	/*
589 	 * Add it to the head of the callback list. The membar ensures that
590 	 * the following list pointer manipulations reach global visibility
591 	 * in exactly the program order below.
592 	 */
593 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
594 
595 	mcb_elem->mcb_nextp = *mcb_head;
596 	membar_producer();
597 	*mcb_head = mcb_elem;
598 }
599 
600 /*
601  * Mark the entry as logically deleted. If there aren't any walkers unlink
602  * from the list. In either case return the corresponding status.
603  */
604 boolean_t
605 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
606     mac_cb_t *mcb_elem)
607 {
608 	mac_cb_t	*p;
609 	mac_cb_t	**pp;
610 
611 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
612 	/*
613 	 * Search the callback list for the entry to be removed
614 	 */
615 	for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
616 		if (p == mcb_elem)
617 			break;
618 	}
619 	VERIFY(p != NULL);
620 
621 	/*
622 	 * If there are walkers just mark it as deleted and the last walker
623 	 * will remove from the list and free it.
624 	 */
625 	if (mcbi->mcbi_walker_cnt != 0) {
626 		p->mcb_flags |= MCB_CONDEMNED;
627 		mcbi->mcbi_del_cnt++;
628 		return (B_FALSE);
629 	}
630 
631 	ASSERT(mcbi->mcbi_del_cnt == 0);
632 	*pp = p->mcb_nextp;
633 	p->mcb_nextp = NULL;
634 	return (B_TRUE);
635 }
636 
637 /*
638  * Wait for all pending callback removals to be completed
639  */
640 void
641 mac_callback_remove_wait(mac_cb_info_t *mcbi)
642 {
643 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
644 	while (mcbi->mcbi_del_cnt != 0) {
645 		DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi);
646 		cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
647 	}
648 }
649 
650 /*
651  * The last mac callback walker does the cleanup. Walk the list and unlik
652  * all the logically deleted entries and construct a temporary list of
653  * removed entries. Return the list of removed entries to the caller.
654  */
655 mac_cb_t *
656 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head)
657 {
658 	mac_cb_t	*p;
659 	mac_cb_t	**pp;
660 	mac_cb_t	*rmlist = NULL;		/* List of removed elements */
661 	int	cnt = 0;
662 
663 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
664 	ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0);
665 
666 	pp = mcb_head;
667 	while (*pp != NULL) {
668 		if ((*pp)->mcb_flags & MCB_CONDEMNED) {
669 			p = *pp;
670 			*pp = p->mcb_nextp;
671 			p->mcb_nextp = rmlist;
672 			rmlist = p;
673 			cnt++;
674 			continue;
675 		}
676 		pp = &(*pp)->mcb_nextp;
677 	}
678 
679 	ASSERT(mcbi->mcbi_del_cnt == cnt);
680 	mcbi->mcbi_del_cnt = 0;
681 	return (rmlist);
682 }
683 
684 boolean_t
685 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
686 {
687 	mac_cb_t	*mcb;
688 
689 	/* Verify it is not already in the list */
690 	for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) {
691 		if (mcb == mcb_elem)
692 			return (B_TRUE);
693 	}
694 
695 	return (B_FALSE);
696 }
697 
698 boolean_t
699 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
700 {
701 	boolean_t	found;
702 
703 	mutex_enter(mcbi->mcbi_lockp);
704 	found = mac_callback_lookup(mcb_headp, mcb_elem);
705 	mutex_exit(mcbi->mcbi_lockp);
706 
707 	return (found);
708 }
709 
710 /* Free the list of removed callbacks */
711 void
712 mac_callback_free(mac_cb_t *rmlist)
713 {
714 	mac_cb_t	*mcb;
715 	mac_cb_t	*mcb_next;
716 
717 	for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
718 		mcb_next = mcb->mcb_nextp;
719 		kmem_free(mcb->mcb_objp, mcb->mcb_objsize);
720 	}
721 }
722 
723 /*
724  * The promisc callbacks are in 2 lists, one off the 'mip' and another off the
725  * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there
726  * is only a single shared total walker count, and an entry can't be physically
727  * unlinked if a walker is active on either list. The last walker does this
728  * cleanup of logically deleted entries.
729  */
730 void
731 i_mac_promisc_walker_cleanup(mac_impl_t *mip)
732 {
733 	mac_cb_t	*rmlist;
734 	mac_cb_t	*mcb;
735 	mac_cb_t	*mcb_next;
736 	mac_promisc_impl_t	*mpip;
737 
738 	/*
739 	 * Construct a temporary list of deleted callbacks by walking the
740 	 * the mi_promisc_list. Then for each entry in the temporary list,
741 	 * remove it from the mci_promisc_list and free the entry.
742 	 */
743 	rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info,
744 	    &mip->mi_promisc_list);
745 
746 	for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
747 		mcb_next = mcb->mcb_nextp;
748 		mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
749 		VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info,
750 		    &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link));
751 		mcb->mcb_flags = 0;
752 		mcb->mcb_nextp = NULL;
753 		kmem_cache_free(mac_promisc_impl_cache, mpip);
754 	}
755 }
756 
757 void
758 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type)
759 {
760 	mac_cb_info_t	*mcbi;
761 
762 	/*
763 	 * Signal the notify thread even after mi_ref has become zero and
764 	 * mi_disabled is set. The synchronization with the notify thread
765 	 * happens in mac_unregister and that implies the driver must make
766 	 * sure it is single-threaded (with respect to mac calls) and that
767 	 * all pending mac calls have returned before it calls mac_unregister
768 	 */
769 	rw_enter(&i_mac_impl_lock, RW_READER);
770 	if (mip->mi_state_flags & MIS_DISABLED)
771 		goto exit;
772 
773 	/*
774 	 * Guard against incorrect notifications.  (Running a newer
775 	 * mac client against an older implementation?)
776 	 */
777 	if (type >= MAC_NNOTE)
778 		goto exit;
779 
780 	mcbi = &mip->mi_notify_cb_info;
781 	mutex_enter(mcbi->mcbi_lockp);
782 	mip->mi_notify_bits |= (1 << type);
783 	cv_broadcast(&mcbi->mcbi_cv);
784 	mutex_exit(mcbi->mcbi_lockp);
785 
786 exit:
787 	rw_exit(&i_mac_impl_lock);
788 }
789 
790 /*
791  * Mac serialization primitives. Please see the block comment at the
792  * top of the file.
793  */
794 void
795 i_mac_perim_enter(mac_impl_t *mip)
796 {
797 	mac_client_impl_t	*mcip;
798 
799 	if (mip->mi_state_flags & MIS_IS_VNIC) {
800 		/*
801 		 * This is a VNIC. Return the lower mac since that is what
802 		 * we want to serialize on.
803 		 */
804 		mcip = mac_vnic_lower(mip);
805 		mip = mcip->mci_mip;
806 	}
807 
808 	mutex_enter(&mip->mi_perim_lock);
809 	if (mip->mi_perim_owner == curthread) {
810 		mip->mi_perim_ocnt++;
811 		mutex_exit(&mip->mi_perim_lock);
812 		return;
813 	}
814 
815 	while (mip->mi_perim_owner != NULL)
816 		cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock);
817 
818 	mip->mi_perim_owner = curthread;
819 	ASSERT(mip->mi_perim_ocnt == 0);
820 	mip->mi_perim_ocnt++;
821 #ifdef DEBUG
822 	mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack,
823 	    MAC_PERIM_STACK_DEPTH);
824 #endif
825 	mutex_exit(&mip->mi_perim_lock);
826 }
827 
828 int
829 i_mac_perim_enter_nowait(mac_impl_t *mip)
830 {
831 	/*
832 	 * The vnic is a special case, since the serialization is done based
833 	 * on the lower mac. If the lower mac is busy, it does not imply the
834 	 * vnic can't be unregistered. But in the case of other drivers,
835 	 * a busy perimeter or open mac handles implies that the mac is busy
836 	 * and can't be unregistered.
837 	 */
838 	if (mip->mi_state_flags & MIS_IS_VNIC) {
839 		i_mac_perim_enter(mip);
840 		return (0);
841 	}
842 
843 	mutex_enter(&mip->mi_perim_lock);
844 	if (mip->mi_perim_owner != NULL) {
845 		mutex_exit(&mip->mi_perim_lock);
846 		return (EBUSY);
847 	}
848 	ASSERT(mip->mi_perim_ocnt == 0);
849 	mip->mi_perim_owner = curthread;
850 	mip->mi_perim_ocnt++;
851 	mutex_exit(&mip->mi_perim_lock);
852 
853 	return (0);
854 }
855 
856 void
857 i_mac_perim_exit(mac_impl_t *mip)
858 {
859 	mac_client_impl_t *mcip;
860 
861 	if (mip->mi_state_flags & MIS_IS_VNIC) {
862 		/*
863 		 * This is a VNIC. Return the lower mac since that is what
864 		 * we want to serialize on.
865 		 */
866 		mcip = mac_vnic_lower(mip);
867 		mip = mcip->mci_mip;
868 	}
869 
870 	ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0);
871 
872 	mutex_enter(&mip->mi_perim_lock);
873 	if (--mip->mi_perim_ocnt == 0) {
874 		mip->mi_perim_owner = NULL;
875 		cv_signal(&mip->mi_perim_cv);
876 	}
877 	mutex_exit(&mip->mi_perim_lock);
878 }
879 
880 /*
881  * Returns whether the current thread holds the mac perimeter. Used in making
882  * assertions.
883  */
884 boolean_t
885 mac_perim_held(mac_handle_t mh)
886 {
887 	mac_impl_t	*mip = (mac_impl_t *)mh;
888 	mac_client_impl_t *mcip;
889 
890 	if (mip->mi_state_flags & MIS_IS_VNIC) {
891 		/*
892 		 * This is a VNIC. Return the lower mac since that is what
893 		 * we want to serialize on.
894 		 */
895 		mcip = mac_vnic_lower(mip);
896 		mip = mcip->mci_mip;
897 	}
898 	return (mip->mi_perim_owner == curthread);
899 }
900 
901 /*
902  * mac client interfaces to enter the mac perimeter of a mac end point, given
903  * its mac handle, or macname or linkid.
904  */
905 void
906 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp)
907 {
908 	mac_impl_t	*mip = (mac_impl_t *)mh;
909 
910 	i_mac_perim_enter(mip);
911 	/*
912 	 * The mac_perim_handle_t returned encodes the 'mip' and whether a
913 	 * mac_open has been done internally while entering the perimeter.
914 	 * This information is used in mac_perim_exit
915 	 */
916 	MAC_ENCODE_MPH(*mphp, mip, 0);
917 }
918 
919 int
920 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp)
921 {
922 	int	err;
923 	mac_handle_t	mh;
924 
925 	if ((err = mac_open(name, &mh)) != 0)
926 		return (err);
927 
928 	mac_perim_enter_by_mh(mh, mphp);
929 	MAC_ENCODE_MPH(*mphp, mh, 1);
930 	return (0);
931 }
932 
933 int
934 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp)
935 {
936 	int	err;
937 	mac_handle_t	mh;
938 
939 	if ((err = mac_open_by_linkid(linkid, &mh)) != 0)
940 		return (err);
941 
942 	mac_perim_enter_by_mh(mh, mphp);
943 	MAC_ENCODE_MPH(*mphp, mh, 1);
944 	return (0);
945 }
946 
947 void
948 mac_perim_exit(mac_perim_handle_t mph)
949 {
950 	mac_impl_t	*mip;
951 	boolean_t	need_close;
952 
953 	MAC_DECODE_MPH(mph, mip, need_close);
954 	i_mac_perim_exit(mip);
955 	if (need_close)
956 		mac_close((mac_handle_t)mip);
957 }
958 
959 int
960 mac_hold(const char *macname, mac_impl_t **pmip)
961 {
962 	mac_impl_t	*mip;
963 	int		err;
964 
965 	/*
966 	 * Check the device name length to make sure it won't overflow our
967 	 * buffer.
968 	 */
969 	if (strlen(macname) >= MAXNAMELEN)
970 		return (EINVAL);
971 
972 	/*
973 	 * Look up its entry in the global hash table.
974 	 */
975 	rw_enter(&i_mac_impl_lock, RW_WRITER);
976 	err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname,
977 	    (mod_hash_val_t *)&mip);
978 
979 	if (err != 0) {
980 		rw_exit(&i_mac_impl_lock);
981 		return (ENOENT);
982 	}
983 
984 	if (mip->mi_state_flags & MIS_DISABLED) {
985 		rw_exit(&i_mac_impl_lock);
986 		return (ENOENT);
987 	}
988 
989 	if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) {
990 		rw_exit(&i_mac_impl_lock);
991 		return (EBUSY);
992 	}
993 
994 	mip->mi_ref++;
995 	rw_exit(&i_mac_impl_lock);
996 
997 	*pmip = mip;
998 	return (0);
999 }
1000 
1001 void
1002 mac_rele(mac_impl_t *mip)
1003 {
1004 	rw_enter(&i_mac_impl_lock, RW_WRITER);
1005 	ASSERT(mip->mi_ref != 0);
1006 	if (--mip->mi_ref == 0) {
1007 		ASSERT(mip->mi_nactiveclients == 0 &&
1008 		    !(mip->mi_state_flags & MIS_EXCLUSIVE));
1009 	}
1010 	rw_exit(&i_mac_impl_lock);
1011 }
1012 
1013 /*
1014  * Private GLDv3 function to start a MAC instance.
1015  */
1016 int
1017 mac_start(mac_handle_t mh)
1018 {
1019 	mac_impl_t	*mip = (mac_impl_t *)mh;
1020 	int		err = 0;
1021 
1022 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1023 	ASSERT(mip->mi_start != NULL);
1024 
1025 	/*
1026 	 * Check whether the device is already started.
1027 	 */
1028 	if (mip->mi_active++ == 0) {
1029 		mac_ring_t *ring = NULL;
1030 
1031 		/*
1032 		 * Start the device.
1033 		 */
1034 		err = mip->mi_start(mip->mi_driver);
1035 		if (err != 0) {
1036 			mip->mi_active--;
1037 			return (err);
1038 		}
1039 
1040 		/*
1041 		 * Start the default tx ring.
1042 		 */
1043 		if (mip->mi_default_tx_ring != NULL) {
1044 
1045 			ring = (mac_ring_t *)mip->mi_default_tx_ring;
1046 			err = mac_start_ring(ring);
1047 			if (err != 0) {
1048 				mip->mi_active--;
1049 				return (err);
1050 			}
1051 			ring->mr_state = MR_INUSE;
1052 		}
1053 
1054 		if (mip->mi_rx_groups != NULL) {
1055 			/*
1056 			 * Start the default ring, since it will be needed
1057 			 * to receive broadcast and multicast traffic for
1058 			 * both primary and non-primary MAC clients.
1059 			 */
1060 			mac_group_t *grp = &mip->mi_rx_groups[0];
1061 
1062 			ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
1063 			err = mac_start_group_and_rings(grp);
1064 			if (err != 0) {
1065 				mip->mi_active--;
1066 				if (ring != NULL) {
1067 					mac_stop_ring(ring);
1068 					ring->mr_state = MR_FREE;
1069 				}
1070 				return (err);
1071 			}
1072 			mac_set_rx_group_state(grp, MAC_GROUP_STATE_SHARED);
1073 		}
1074 	}
1075 
1076 	return (err);
1077 }
1078 
1079 /*
1080  * Private GLDv3 function to stop a MAC instance.
1081  */
1082 void
1083 mac_stop(mac_handle_t mh)
1084 {
1085 	mac_impl_t	*mip = (mac_impl_t *)mh;
1086 
1087 	ASSERT(mip->mi_stop != NULL);
1088 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1089 
1090 	/*
1091 	 * Check whether the device is still needed.
1092 	 */
1093 	ASSERT(mip->mi_active != 0);
1094 	if (--mip->mi_active == 0) {
1095 		if (mip->mi_rx_groups != NULL) {
1096 			/*
1097 			 * There should be no more active clients since the
1098 			 * MAC is being stopped. Stop the default RX group
1099 			 * and transition it back to registered state.
1100 			 */
1101 			mac_group_t *grp = &mip->mi_rx_groups[0];
1102 
1103 			/*
1104 			 * When clients are torn down, the groups
1105 			 * are release via mac_release_rx_group which
1106 			 * knows the the default group is always in
1107 			 * started mode since broadcast uses it. So
1108 			 * we can assert that their are no clients
1109 			 * (since mac_bcast_add doesn't register itself
1110 			 * as a client) and group is in SHARED state.
1111 			 */
1112 			ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED);
1113 			ASSERT(MAC_RX_GROUP_NO_CLIENT(grp) &&
1114 			    mip->mi_nactiveclients == 0);
1115 			mac_stop_group_and_rings(grp);
1116 			mac_set_rx_group_state(grp, MAC_GROUP_STATE_REGISTERED);
1117 		}
1118 
1119 		if (mip->mi_default_tx_ring != NULL) {
1120 			mac_ring_t *ring;
1121 
1122 			ring = (mac_ring_t *)mip->mi_default_tx_ring;
1123 			mac_stop_ring(ring);
1124 			ring->mr_state = MR_FREE;
1125 		}
1126 
1127 		/*
1128 		 * Stop the device.
1129 		 */
1130 		mip->mi_stop(mip->mi_driver);
1131 	}
1132 }
1133 
1134 int
1135 i_mac_promisc_set(mac_impl_t *mip, boolean_t on)
1136 {
1137 	int		err = 0;
1138 
1139 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1140 	ASSERT(mip->mi_setpromisc != NULL);
1141 
1142 	if (on) {
1143 		/*
1144 		 * Enable promiscuous mode on the device if not yet enabled.
1145 		 */
1146 		if (mip->mi_devpromisc++ == 0) {
1147 			err = mip->mi_setpromisc(mip->mi_driver, B_TRUE);
1148 			if (err != 0) {
1149 				mip->mi_devpromisc--;
1150 				return (err);
1151 			}
1152 			i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1153 		}
1154 	} else {
1155 		if (mip->mi_devpromisc == 0)
1156 			return (EPROTO);
1157 
1158 		/*
1159 		 * Disable promiscuous mode on the device if this is the last
1160 		 * enabling.
1161 		 */
1162 		if (--mip->mi_devpromisc == 0) {
1163 			err = mip->mi_setpromisc(mip->mi_driver, B_FALSE);
1164 			if (err != 0) {
1165 				mip->mi_devpromisc++;
1166 				return (err);
1167 			}
1168 			i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1169 		}
1170 	}
1171 
1172 	return (0);
1173 }
1174 
1175 /*
1176  * The promiscuity state can change any time. If the caller needs to take
1177  * actions that are atomic with the promiscuity state, then the caller needs
1178  * to bracket the entire sequence with mac_perim_enter/exit
1179  */
1180 boolean_t
1181 mac_promisc_get(mac_handle_t mh)
1182 {
1183 	mac_impl_t		*mip = (mac_impl_t *)mh;
1184 
1185 	/*
1186 	 * Return the current promiscuity.
1187 	 */
1188 	return (mip->mi_devpromisc != 0);
1189 }
1190 
1191 /*
1192  * Invoked at MAC instance attach time to initialize the list
1193  * of factory MAC addresses supported by a MAC instance. This function
1194  * builds a local cache in the mac_impl_t for the MAC addresses
1195  * supported by the underlying hardware. The MAC clients themselves
1196  * use the mac_addr_factory*() functions to query and reserve
1197  * factory MAC addresses.
1198  */
1199 void
1200 mac_addr_factory_init(mac_impl_t *mip)
1201 {
1202 	mac_capab_multifactaddr_t capab;
1203 	uint8_t *addr;
1204 	int i;
1205 
1206 	/*
1207 	 * First round to see how many factory MAC addresses are available.
1208 	 */
1209 	bzero(&capab, sizeof (capab));
1210 	if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR,
1211 	    &capab) || (capab.mcm_naddr == 0)) {
1212 		/*
1213 		 * The MAC instance doesn't support multiple factory
1214 		 * MAC addresses, we're done here.
1215 		 */
1216 		return;
1217 	}
1218 
1219 	/*
1220 	 * Allocate the space and get all the factory addresses.
1221 	 */
1222 	addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP);
1223 	capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr);
1224 
1225 	mip->mi_factory_addr_num = capab.mcm_naddr;
1226 	mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num *
1227 	    sizeof (mac_factory_addr_t), KM_SLEEP);
1228 
1229 	for (i = 0; i < capab.mcm_naddr; i++) {
1230 		bcopy(addr + i * MAXMACADDRLEN,
1231 		    mip->mi_factory_addr[i].mfa_addr,
1232 		    mip->mi_type->mt_addr_length);
1233 		mip->mi_factory_addr[i].mfa_in_use = B_FALSE;
1234 	}
1235 
1236 	kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN);
1237 }
1238 
1239 void
1240 mac_addr_factory_fini(mac_impl_t *mip)
1241 {
1242 	if (mip->mi_factory_addr == NULL) {
1243 		ASSERT(mip->mi_factory_addr_num == 0);
1244 		return;
1245 	}
1246 
1247 	kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num *
1248 	    sizeof (mac_factory_addr_t));
1249 
1250 	mip->mi_factory_addr = NULL;
1251 	mip->mi_factory_addr_num = 0;
1252 }
1253 
1254 /*
1255  * Reserve a factory MAC address. If *slot is set to -1, the function
1256  * attempts to reserve any of the available factory MAC addresses and
1257  * returns the reserved slot id. If no slots are available, the function
1258  * returns ENOSPC. If *slot is not set to -1, the function reserves
1259  * the specified slot if it is available, or returns EBUSY is the slot
1260  * is already used. Returns ENOTSUP if the underlying MAC does not
1261  * support multiple factory addresses. If the slot number is not -1 but
1262  * is invalid, returns EINVAL.
1263  */
1264 int
1265 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot)
1266 {
1267 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1268 	mac_impl_t *mip = mcip->mci_mip;
1269 	int i, ret = 0;
1270 
1271 	i_mac_perim_enter(mip);
1272 	/*
1273 	 * Protect against concurrent readers that may need a self-consistent
1274 	 * view of the factory addresses
1275 	 */
1276 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1277 
1278 	if (mip->mi_factory_addr_num == 0) {
1279 		ret = ENOTSUP;
1280 		goto bail;
1281 	}
1282 
1283 	if (*slot != -1) {
1284 		/* check the specified slot */
1285 		if (*slot < 1 || *slot > mip->mi_factory_addr_num) {
1286 			ret = EINVAL;
1287 			goto bail;
1288 		}
1289 		if (mip->mi_factory_addr[*slot-1].mfa_in_use) {
1290 			ret = EBUSY;
1291 			goto bail;
1292 		}
1293 	} else {
1294 		/* pick the next available slot */
1295 		for (i = 0; i < mip->mi_factory_addr_num; i++) {
1296 			if (!mip->mi_factory_addr[i].mfa_in_use)
1297 				break;
1298 		}
1299 
1300 		if (i == mip->mi_factory_addr_num) {
1301 			ret = ENOSPC;
1302 			goto bail;
1303 		}
1304 		*slot = i+1;
1305 	}
1306 
1307 	mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE;
1308 	mip->mi_factory_addr[*slot-1].mfa_client = mcip;
1309 
1310 bail:
1311 	rw_exit(&mip->mi_rw_lock);
1312 	i_mac_perim_exit(mip);
1313 	return (ret);
1314 }
1315 
1316 /*
1317  * Release the specified factory MAC address slot.
1318  */
1319 void
1320 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot)
1321 {
1322 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1323 	mac_impl_t *mip = mcip->mci_mip;
1324 
1325 	i_mac_perim_enter(mip);
1326 	/*
1327 	 * Protect against concurrent readers that may need a self-consistent
1328 	 * view of the factory addresses
1329 	 */
1330 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1331 
1332 	ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1333 	ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use);
1334 
1335 	mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE;
1336 
1337 	rw_exit(&mip->mi_rw_lock);
1338 	i_mac_perim_exit(mip);
1339 }
1340 
1341 /*
1342  * Stores in mac_addr the value of the specified MAC address. Returns
1343  * 0 on success, or EINVAL if the slot number is not valid for the MAC.
1344  * The caller must provide a string of at least MAXNAMELEN bytes.
1345  */
1346 void
1347 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr,
1348     uint_t *addr_len, char *client_name, boolean_t *in_use_arg)
1349 {
1350 	mac_impl_t *mip = (mac_impl_t *)mh;
1351 	boolean_t in_use;
1352 
1353 	ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1354 
1355 	/*
1356 	 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter
1357 	 * and mi_rw_lock
1358 	 */
1359 	rw_enter(&mip->mi_rw_lock, RW_READER);
1360 	bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN);
1361 	*addr_len = mip->mi_type->mt_addr_length;
1362 	in_use = mip->mi_factory_addr[slot-1].mfa_in_use;
1363 	if (in_use && client_name != NULL) {
1364 		bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name,
1365 		    client_name, MAXNAMELEN);
1366 	}
1367 	if (in_use_arg != NULL)
1368 		*in_use_arg = in_use;
1369 	rw_exit(&mip->mi_rw_lock);
1370 }
1371 
1372 /*
1373  * Returns the number of factory MAC addresses (in addition to the
1374  * primary MAC address), 0 if the underlying MAC doesn't support
1375  * that feature.
1376  */
1377 uint_t
1378 mac_addr_factory_num(mac_handle_t mh)
1379 {
1380 	mac_impl_t *mip = (mac_impl_t *)mh;
1381 
1382 	return (mip->mi_factory_addr_num);
1383 }
1384 
1385 
1386 void
1387 mac_rx_group_unmark(mac_group_t *grp, uint_t flag)
1388 {
1389 	mac_ring_t	*ring;
1390 
1391 	for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next)
1392 		ring->mr_flag &= ~flag;
1393 }
1394 
1395 /*
1396  * The following mac_hwrings_xxx() functions are private mac client functions
1397  * used by the aggr driver to access and control the underlying HW Rx group
1398  * and rings. In this case, the aggr driver has exclusive control of the
1399  * underlying HW Rx group/rings, it calls the following functions to
1400  * start/stop the HW Rx rings, disable/enable polling, add/remove mac'
1401  * addresses, or set up the Rx callback.
1402  */
1403 /* ARGSUSED */
1404 static void
1405 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs,
1406     mblk_t *mp_chain, boolean_t loopback)
1407 {
1408 	mac_soft_ring_set_t	*mac_srs = (mac_soft_ring_set_t *)srs;
1409 	mac_srs_rx_t		*srs_rx = &mac_srs->srs_rx;
1410 	mac_direct_rx_t		proc;
1411 	void			*arg1;
1412 	mac_resource_handle_t	arg2;
1413 
1414 	proc = srs_rx->sr_func;
1415 	arg1 = srs_rx->sr_arg1;
1416 	arg2 = mac_srs->srs_mrh;
1417 
1418 	proc(arg1, arg2, mp_chain, NULL);
1419 }
1420 
1421 /*
1422  * This function is called to get the list of HW rings that are reserved by
1423  * an exclusive mac client.
1424  *
1425  * Return value: the number of HW rings.
1426  */
1427 int
1428 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh,
1429     mac_ring_handle_t *hwrh)
1430 {
1431 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1432 	flow_entry_t		*flent = mcip->mci_flent;
1433 	mac_group_t		*grp = flent->fe_rx_ring_group;
1434 	mac_ring_t		*ring;
1435 	int			cnt = 0;
1436 
1437 	/*
1438 	 * The mac client did not reserve any RX group, return directly.
1439 	 * This is probably because the underlying MAC does not support
1440 	 * any RX groups.
1441 	 */
1442 	*hwgh = NULL;
1443 	if (grp == NULL)
1444 		return (0);
1445 
1446 	/*
1447 	 * This RX group must be reserved by this mac client.
1448 	 */
1449 	ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) &&
1450 	    (mch == (mac_client_handle_t)(MAC_RX_GROUP_ONLY_CLIENT(grp))));
1451 
1452 	for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next) {
1453 		ASSERT(cnt < MAX_RINGS_PER_GROUP);
1454 		hwrh[cnt++] = (mac_ring_handle_t)ring;
1455 	}
1456 	*hwgh = (mac_group_handle_t)grp;
1457 	return (cnt);
1458 }
1459 
1460 /*
1461  * Setup the RX callback of the mac client which exclusively controls HW ring.
1462  */
1463 void
1464 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh)
1465 {
1466 	mac_ring_t		*hw_ring = (mac_ring_t *)hwrh;
1467 	mac_soft_ring_set_t	*mac_srs = hw_ring->mr_srs;
1468 
1469 	mac_srs->srs_mrh = prh;
1470 	mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process;
1471 }
1472 
1473 void
1474 mac_hwring_teardown(mac_ring_handle_t hwrh)
1475 {
1476 	mac_ring_t		*hw_ring = (mac_ring_t *)hwrh;
1477 	mac_soft_ring_set_t	*mac_srs = hw_ring->mr_srs;
1478 
1479 	mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process;
1480 	mac_srs->srs_mrh = NULL;
1481 }
1482 
1483 int
1484 mac_hwring_disable_intr(mac_ring_handle_t rh)
1485 {
1486 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1487 	mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1488 
1489 	return (intr->mi_disable(intr->mi_handle));
1490 }
1491 
1492 int
1493 mac_hwring_enable_intr(mac_ring_handle_t rh)
1494 {
1495 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1496 	mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1497 
1498 	return (intr->mi_enable(intr->mi_handle));
1499 }
1500 
1501 int
1502 mac_hwring_start(mac_ring_handle_t rh)
1503 {
1504 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1505 
1506 	MAC_RING_UNMARK(rr_ring, MR_QUIESCE);
1507 	return (0);
1508 }
1509 
1510 void
1511 mac_hwring_stop(mac_ring_handle_t rh)
1512 {
1513 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1514 
1515 	mac_rx_ring_quiesce(rr_ring, MR_QUIESCE);
1516 }
1517 
1518 mblk_t *
1519 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup)
1520 {
1521 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1522 	mac_ring_info_t *info = &rr_ring->mr_info;
1523 
1524 	return (info->mri_poll(info->mri_driver, bytes_to_pickup));
1525 }
1526 
1527 int
1528 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr)
1529 {
1530 	mac_group_t *group = (mac_group_t *)gh;
1531 
1532 	return (mac_group_addmac(group, addr));
1533 }
1534 
1535 int
1536 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr)
1537 {
1538 	mac_group_t *group = (mac_group_t *)gh;
1539 
1540 	return (mac_group_remmac(group, addr));
1541 }
1542 
1543 /*
1544  * Set the RX group to be shared/reserved. Note that the group must be
1545  * started/stopped outside of this function.
1546  */
1547 void
1548 mac_set_rx_group_state(mac_group_t *grp, mac_group_state_t state)
1549 {
1550 	/*
1551 	 * If there is no change in the group state, just return.
1552 	 */
1553 	if (grp->mrg_state == state)
1554 		return;
1555 
1556 	switch (state) {
1557 	case MAC_GROUP_STATE_RESERVED:
1558 		/*
1559 		 * Successfully reserved the group.
1560 		 *
1561 		 * Given that there is an exclusive client controlling this
1562 		 * group, we enable the group level polling when available,
1563 		 * so that SRSs get to turn on/off individual rings they's
1564 		 * assigned to.
1565 		 */
1566 		ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
1567 
1568 		if (GROUP_INTR_DISABLE_FUNC(grp) != NULL)
1569 			GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
1570 
1571 		break;
1572 
1573 	case MAC_GROUP_STATE_SHARED:
1574 		/*
1575 		 * Set all rings of this group to software classified.
1576 		 * If the group has an overriding interrupt, then re-enable it.
1577 		 */
1578 		ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
1579 
1580 		if (GROUP_INTR_ENABLE_FUNC(grp) != NULL)
1581 			GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
1582 
1583 		/* The ring is not available for reservations any more */
1584 		break;
1585 
1586 	case MAC_GROUP_STATE_REGISTERED:
1587 		/* Also callable from mac_register, perim is not held */
1588 		break;
1589 
1590 	default:
1591 		ASSERT(B_FALSE);
1592 		break;
1593 	}
1594 
1595 	grp->mrg_state = state;
1596 }
1597 
1598 /*
1599  * Quiesce future hardware classified packets for the specified Rx ring
1600  */
1601 static void
1602 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag)
1603 {
1604 	ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER);
1605 	ASSERT(ring_flag == MR_CONDEMNED || ring_flag  == MR_QUIESCE);
1606 
1607 	mutex_enter(&rx_ring->mr_lock);
1608 	rx_ring->mr_flag |= ring_flag;
1609 	while (rx_ring->mr_refcnt != 0)
1610 		cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock);
1611 	mutex_exit(&rx_ring->mr_lock);
1612 }
1613 
1614 /*
1615  * Please see mac_tx for details about the per cpu locking scheme
1616  */
1617 static void
1618 mac_tx_lock_all(mac_client_impl_t *mcip)
1619 {
1620 	int	i;
1621 
1622 	for (i = 0; i <= mac_tx_percpu_cnt; i++)
1623 		mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1624 }
1625 
1626 static void
1627 mac_tx_unlock_all(mac_client_impl_t *mcip)
1628 {
1629 	int	i;
1630 
1631 	for (i = mac_tx_percpu_cnt; i >= 0; i--)
1632 		mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1633 }
1634 
1635 static void
1636 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip)
1637 {
1638 	int	i;
1639 
1640 	for (i = mac_tx_percpu_cnt; i > 0; i--)
1641 		mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1642 }
1643 
1644 static int
1645 mac_tx_sum_refcnt(mac_client_impl_t *mcip)
1646 {
1647 	int	i;
1648 	int	refcnt = 0;
1649 
1650 	for (i = 0; i <= mac_tx_percpu_cnt; i++)
1651 		refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt;
1652 
1653 	return (refcnt);
1654 }
1655 
1656 /*
1657  * Stop future Tx packets coming down from the client in preparation for
1658  * quiescing the Tx side. This is needed for dynamic reclaim and reassignment
1659  * of rings between clients
1660  */
1661 void
1662 mac_tx_client_block(mac_client_impl_t *mcip)
1663 {
1664 	mac_tx_lock_all(mcip);
1665 	mcip->mci_tx_flag |= MCI_TX_QUIESCE;
1666 	while (mac_tx_sum_refcnt(mcip) != 0) {
1667 		mac_tx_unlock_allbutzero(mcip);
1668 		cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock);
1669 		mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock);
1670 		mac_tx_lock_all(mcip);
1671 	}
1672 	mac_tx_unlock_all(mcip);
1673 }
1674 
1675 void
1676 mac_tx_client_unblock(mac_client_impl_t *mcip)
1677 {
1678 	mac_tx_lock_all(mcip);
1679 	mcip->mci_tx_flag &= ~MCI_TX_QUIESCE;
1680 	mac_tx_unlock_all(mcip);
1681 	/*
1682 	 * We may fail to disable flow control for the last MAC_NOTE_TX
1683 	 * notification because the MAC client is quiesced. Send the
1684 	 * notification again.
1685 	 */
1686 	i_mac_notify(mcip->mci_mip, MAC_NOTE_TX);
1687 }
1688 
1689 /*
1690  * Wait for an SRS to quiesce. The SRS worker will signal us when the
1691  * quiesce is done.
1692  */
1693 static void
1694 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag)
1695 {
1696 	mutex_enter(&srs->srs_lock);
1697 	while (!(srs->srs_state & srs_flag))
1698 		cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock);
1699 	mutex_exit(&srs->srs_lock);
1700 }
1701 
1702 /*
1703  * Quiescing an Rx SRS is achieved by the following sequence. The protocol
1704  * works bottom up by cutting off packet flow from the bottommost point in the
1705  * mac, then the SRS, and then the soft rings. There are 2 use cases of this
1706  * mechanism. One is a temporary quiesce of the SRS, such as say while changing
1707  * the Rx callbacks. Another use case is Rx SRS teardown. In the former case
1708  * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used
1709  * for the SRS and MR flags. In the former case the threads pause waiting for
1710  * a restart, while in the latter case the threads exit. The Tx SRS teardown
1711  * is also mostly similar to the above.
1712  *
1713  * 1. Stop future hardware classified packets at the lowest level in the mac.
1714  *    Remove any hardware classification rule (CONDEMNED case) and mark the
1715  *    rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt
1716  *    from increasing. Upcalls from the driver that come through hardware
1717  *    classification will be dropped in mac_rx from now on. Then we wait for
1718  *    the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are
1719  *    sure there aren't any upcall threads from the driver through hardware
1720  *    classification. In the case of SRS teardown we also remove the
1721  *    classification rule in the driver.
1722  *
1723  * 2. Stop future software classified packets by marking the flow entry with
1724  *    FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from
1725  *    increasing. We also remove the flow entry from the table in the latter
1726  *    case. Then wait for the fe_refcnt to reach an appropriate quiescent value
1727  *    that indicates there aren't any active threads using that flow entry.
1728  *
1729  * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread,
1730  *    SRS worker thread, and the soft ring threads are quiesced in sequence
1731  *    with the SRS worker thread serving as a master controller. This
1732  *    mechansim is explained in mac_srs_worker_quiesce().
1733  *
1734  * The restart mechanism to reactivate the SRS and softrings is explained
1735  * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the
1736  * restart sequence.
1737  */
1738 void
1739 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
1740 {
1741 	flow_entry_t	*flent = srs->srs_flent;
1742 	uint_t	mr_flag, srs_done_flag;
1743 
1744 	ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
1745 	ASSERT(!(srs->srs_type & SRST_TX));
1746 
1747 	if (srs_quiesce_flag == SRS_CONDEMNED) {
1748 		mr_flag = MR_CONDEMNED;
1749 		srs_done_flag = SRS_CONDEMNED_DONE;
1750 		if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
1751 			mac_srs_client_poll_disable(srs->srs_mcip, srs);
1752 	} else {
1753 		ASSERT(srs_quiesce_flag == SRS_QUIESCE);
1754 		mr_flag = MR_QUIESCE;
1755 		srs_done_flag = SRS_QUIESCE_DONE;
1756 		if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
1757 			mac_srs_client_poll_quiesce(srs->srs_mcip, srs);
1758 	}
1759 
1760 	if (srs->srs_ring != NULL) {
1761 		mac_rx_ring_quiesce(srs->srs_ring, mr_flag);
1762 	} else {
1763 		/*
1764 		 * SRS is driven by software classification. In case
1765 		 * of CONDEMNED, the top level teardown functions will
1766 		 * deal with flow removal.
1767 		 */
1768 		if (srs_quiesce_flag != SRS_CONDEMNED) {
1769 			FLOW_MARK(flent, FE_QUIESCE);
1770 			mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
1771 		}
1772 	}
1773 
1774 	/*
1775 	 * Signal the SRS to quiesce itself, and then cv_wait for the
1776 	 * SRS quiesce to complete. The SRS worker thread will wake us
1777 	 * up when the quiesce is complete
1778 	 */
1779 	mac_srs_signal(srs, srs_quiesce_flag);
1780 	mac_srs_quiesce_wait(srs, srs_done_flag);
1781 }
1782 
1783 /*
1784  * Remove an SRS.
1785  */
1786 void
1787 mac_rx_srs_remove(mac_soft_ring_set_t *srs)
1788 {
1789 	flow_entry_t *flent = srs->srs_flent;
1790 	int i;
1791 
1792 	mac_rx_srs_quiesce(srs, SRS_CONDEMNED);
1793 	/*
1794 	 * Locate and remove our entry in the fe_rx_srs[] array, and
1795 	 * adjust the fe_rx_srs array entries and array count by
1796 	 * moving the last entry into the vacated spot.
1797 	 */
1798 	mutex_enter(&flent->fe_lock);
1799 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
1800 		if (flent->fe_rx_srs[i] == srs)
1801 			break;
1802 	}
1803 
1804 	ASSERT(i != 0 && i < flent->fe_rx_srs_cnt);
1805 	if (i != flent->fe_rx_srs_cnt - 1) {
1806 		flent->fe_rx_srs[i] =
1807 		    flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1];
1808 		i = flent->fe_rx_srs_cnt - 1;
1809 	}
1810 
1811 	flent->fe_rx_srs[i] = NULL;
1812 	flent->fe_rx_srs_cnt--;
1813 	mutex_exit(&flent->fe_lock);
1814 
1815 	mac_srs_free(srs);
1816 }
1817 
1818 static void
1819 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag)
1820 {
1821 	mutex_enter(&srs->srs_lock);
1822 	srs->srs_state &= ~flag;
1823 	mutex_exit(&srs->srs_lock);
1824 }
1825 
1826 void
1827 mac_rx_srs_restart(mac_soft_ring_set_t *srs)
1828 {
1829 	flow_entry_t	*flent = srs->srs_flent;
1830 	mac_ring_t	*mr;
1831 
1832 	ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
1833 	ASSERT((srs->srs_type & SRST_TX) == 0);
1834 
1835 	/*
1836 	 * This handles a change in the number of SRSs between the quiesce and
1837 	 * and restart operation of a flow.
1838 	 */
1839 	if (!SRS_QUIESCED(srs))
1840 		return;
1841 
1842 	/*
1843 	 * Signal the SRS to restart itself. Wait for the restart to complete
1844 	 * Note that we only restart the SRS if it is not marked as
1845 	 * permanently quiesced.
1846 	 */
1847 	if (!SRS_QUIESCED_PERMANENT(srs)) {
1848 		mac_srs_signal(srs, SRS_RESTART);
1849 		mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
1850 		mac_srs_clear_flag(srs, SRS_RESTART_DONE);
1851 
1852 		mac_srs_client_poll_restart(srs->srs_mcip, srs);
1853 	}
1854 
1855 	/* Finally clear the flags to let the packets in */
1856 	mr = srs->srs_ring;
1857 	if (mr != NULL) {
1858 		MAC_RING_UNMARK(mr, MR_QUIESCE);
1859 		/* In case the ring was stopped, safely restart it */
1860 		(void) mac_start_ring(mr);
1861 	} else {
1862 		FLOW_UNMARK(flent, FE_QUIESCE);
1863 	}
1864 }
1865 
1866 /*
1867  * Temporary quiesce of a flow and associated Rx SRS.
1868  * Please see block comment above mac_rx_classify_flow_rem.
1869  */
1870 /* ARGSUSED */
1871 int
1872 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg)
1873 {
1874 	int		i;
1875 
1876 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
1877 		mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i],
1878 		    SRS_QUIESCE);
1879 	}
1880 	return (0);
1881 }
1882 
1883 /*
1884  * Restart a flow and associated Rx SRS that has been quiesced temporarily
1885  * Please see block comment above mac_rx_classify_flow_rem
1886  */
1887 /* ARGSUSED */
1888 int
1889 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg)
1890 {
1891 	int		i;
1892 
1893 	for (i = 0; i < flent->fe_rx_srs_cnt; i++)
1894 		mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]);
1895 
1896 	return (0);
1897 }
1898 
1899 void
1900 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on)
1901 {
1902 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1903 	flow_entry_t		*flent = mcip->mci_flent;
1904 	mac_impl_t		*mip = mcip->mci_mip;
1905 	mac_soft_ring_set_t	*mac_srs;
1906 	int			i;
1907 
1908 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1909 
1910 	if (flent == NULL)
1911 		return;
1912 
1913 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
1914 		mac_srs = flent->fe_rx_srs[i];
1915 		mutex_enter(&mac_srs->srs_lock);
1916 		if (on)
1917 			mac_srs->srs_state |= SRS_QUIESCE_PERM;
1918 		else
1919 			mac_srs->srs_state &= ~SRS_QUIESCE_PERM;
1920 		mutex_exit(&mac_srs->srs_lock);
1921 	}
1922 }
1923 
1924 void
1925 mac_rx_client_quiesce(mac_client_handle_t mch)
1926 {
1927 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1928 	mac_impl_t		*mip = mcip->mci_mip;
1929 
1930 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1931 
1932 	if (MCIP_DATAPATH_SETUP(mcip)) {
1933 		(void) mac_rx_classify_flow_quiesce(mcip->mci_flent,
1934 		    NULL);
1935 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
1936 		    mac_rx_classify_flow_quiesce, NULL);
1937 	}
1938 }
1939 
1940 void
1941 mac_rx_client_restart(mac_client_handle_t mch)
1942 {
1943 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1944 	mac_impl_t		*mip = mcip->mci_mip;
1945 
1946 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1947 
1948 	if (MCIP_DATAPATH_SETUP(mcip)) {
1949 		(void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL);
1950 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
1951 		    mac_rx_classify_flow_restart, NULL);
1952 	}
1953 }
1954 
1955 /*
1956  * This function only quiesces the Tx SRS and softring worker threads. Callers
1957  * need to make sure that there aren't any mac client threads doing current or
1958  * future transmits in the mac before calling this function.
1959  */
1960 void
1961 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
1962 {
1963 	mac_client_impl_t	*mcip = srs->srs_mcip;
1964 
1965 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
1966 
1967 	ASSERT(srs->srs_type & SRST_TX);
1968 	ASSERT(srs_quiesce_flag == SRS_CONDEMNED ||
1969 	    srs_quiesce_flag == SRS_QUIESCE);
1970 
1971 	/*
1972 	 * Signal the SRS to quiesce itself, and then cv_wait for the
1973 	 * SRS quiesce to complete. The SRS worker thread will wake us
1974 	 * up when the quiesce is complete
1975 	 */
1976 	mac_srs_signal(srs, srs_quiesce_flag);
1977 	mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ?
1978 	    SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE);
1979 }
1980 
1981 void
1982 mac_tx_srs_restart(mac_soft_ring_set_t *srs)
1983 {
1984 	/*
1985 	 * Resizing the fanout could result in creation of new SRSs.
1986 	 * They may not necessarily be in the quiesced state in which
1987 	 * case it need be restarted
1988 	 */
1989 	if (!SRS_QUIESCED(srs))
1990 		return;
1991 
1992 	mac_srs_signal(srs, SRS_RESTART);
1993 	mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
1994 	mac_srs_clear_flag(srs, SRS_RESTART_DONE);
1995 }
1996 
1997 /*
1998  * Temporary quiesce of a flow and associated Rx SRS.
1999  * Please see block comment above mac_rx_srs_quiesce
2000  */
2001 /* ARGSUSED */
2002 int
2003 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg)
2004 {
2005 	/*
2006 	 * The fe_tx_srs is null for a subflow on an interface that is
2007 	 * not plumbed
2008 	 */
2009 	if (flent->fe_tx_srs != NULL)
2010 		mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE);
2011 	return (0);
2012 }
2013 
2014 /* ARGSUSED */
2015 int
2016 mac_tx_flow_restart(flow_entry_t *flent, void *arg)
2017 {
2018 	/*
2019 	 * The fe_tx_srs is null for a subflow on an interface that is
2020 	 * not plumbed
2021 	 */
2022 	if (flent->fe_tx_srs != NULL)
2023 		mac_tx_srs_restart(flent->fe_tx_srs);
2024 	return (0);
2025 }
2026 
2027 void
2028 mac_tx_client_quiesce(mac_client_impl_t *mcip, uint_t srs_quiesce_flag)
2029 {
2030 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2031 
2032 	mac_tx_client_block(mcip);
2033 	if (MCIP_TX_SRS(mcip) != NULL) {
2034 		mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag);
2035 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2036 		    mac_tx_flow_quiesce, NULL);
2037 	}
2038 }
2039 
2040 void
2041 mac_tx_client_restart(mac_client_impl_t *mcip)
2042 {
2043 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2044 
2045 	mac_tx_client_unblock(mcip);
2046 	if (MCIP_TX_SRS(mcip) != NULL) {
2047 		mac_tx_srs_restart(MCIP_TX_SRS(mcip));
2048 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2049 		    mac_tx_flow_restart, NULL);
2050 	}
2051 }
2052 
2053 void
2054 mac_tx_client_flush(mac_client_impl_t *mcip)
2055 {
2056 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2057 
2058 	mac_tx_client_quiesce(mcip, SRS_QUIESCE);
2059 	mac_tx_client_restart(mcip);
2060 }
2061 
2062 void
2063 mac_client_quiesce(mac_client_impl_t *mcip)
2064 {
2065 	mac_rx_client_quiesce((mac_client_handle_t)mcip);
2066 	mac_tx_client_quiesce(mcip, SRS_QUIESCE);
2067 }
2068 
2069 void
2070 mac_client_restart(mac_client_impl_t *mcip)
2071 {
2072 	mac_rx_client_restart((mac_client_handle_t)mcip);
2073 	mac_tx_client_restart(mcip);
2074 }
2075 
2076 /*
2077  * Allocate a minor number.
2078  */
2079 minor_t
2080 mac_minor_hold(boolean_t sleep)
2081 {
2082 	minor_t	minor;
2083 
2084 	/*
2085 	 * Grab a value from the arena.
2086 	 */
2087 	atomic_add_32(&minor_count, 1);
2088 
2089 	if (sleep)
2090 		minor = (uint_t)id_alloc(minor_ids);
2091 	else
2092 		minor = (uint_t)id_alloc_nosleep(minor_ids);
2093 
2094 	if (minor == 0) {
2095 		atomic_add_32(&minor_count, -1);
2096 		return (0);
2097 	}
2098 
2099 	return (minor);
2100 }
2101 
2102 /*
2103  * Release a previously allocated minor number.
2104  */
2105 void
2106 mac_minor_rele(minor_t minor)
2107 {
2108 	/*
2109 	 * Return the value to the arena.
2110 	 */
2111 	id_free(minor_ids, minor);
2112 	atomic_add_32(&minor_count, -1);
2113 }
2114 
2115 uint32_t
2116 mac_no_notification(mac_handle_t mh)
2117 {
2118 	mac_impl_t *mip = (mac_impl_t *)mh;
2119 
2120 	return (((mip->mi_state_flags & MIS_LEGACY) != 0) ?
2121 	    mip->mi_capab_legacy.ml_unsup_note : 0);
2122 }
2123 
2124 /*
2125  * Prevent any new opens of this mac in preparation for unregister
2126  */
2127 int
2128 i_mac_disable(mac_impl_t *mip)
2129 {
2130 	mac_client_impl_t	*mcip;
2131 
2132 	rw_enter(&i_mac_impl_lock, RW_WRITER);
2133 	if (mip->mi_state_flags & MIS_DISABLED) {
2134 		/* Already disabled, return success */
2135 		rw_exit(&i_mac_impl_lock);
2136 		return (0);
2137 	}
2138 	/*
2139 	 * See if there are any other references to this mac_t (e.g., VLAN's).
2140 	 * If so return failure. If all the other checks below pass, then
2141 	 * set mi_disabled atomically under the i_mac_impl_lock to prevent
2142 	 * any new VLAN's from being created or new mac client opens of this
2143 	 * mac end point.
2144 	 */
2145 	if (mip->mi_ref > 0) {
2146 		rw_exit(&i_mac_impl_lock);
2147 		return (EBUSY);
2148 	}
2149 
2150 	/*
2151 	 * mac clients must delete all multicast groups they join before
2152 	 * closing. bcast groups are reference counted, the last client
2153 	 * to delete the group will wait till the group is physically
2154 	 * deleted. Since all clients have closed this mac end point
2155 	 * mi_bcast_ngrps must be zero at this point
2156 	 */
2157 	ASSERT(mip->mi_bcast_ngrps == 0);
2158 
2159 	/*
2160 	 * Don't let go of this if it has some flows.
2161 	 * All other code guarantees no flows are added to a disabled
2162 	 * mac, therefore it is sufficient to check for the flow table
2163 	 * only here.
2164 	 */
2165 	mcip = mac_primary_client_handle(mip);
2166 	if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) {
2167 		rw_exit(&i_mac_impl_lock);
2168 		return (ENOTEMPTY);
2169 	}
2170 
2171 	mip->mi_state_flags |= MIS_DISABLED;
2172 	rw_exit(&i_mac_impl_lock);
2173 	return (0);
2174 }
2175 
2176 int
2177 mac_disable_nowait(mac_handle_t mh)
2178 {
2179 	mac_impl_t	*mip = (mac_impl_t *)mh;
2180 	int err;
2181 
2182 	if ((err = i_mac_perim_enter_nowait(mip)) != 0)
2183 		return (err);
2184 	err = i_mac_disable(mip);
2185 	i_mac_perim_exit(mip);
2186 	return (err);
2187 }
2188 
2189 int
2190 mac_disable(mac_handle_t mh)
2191 {
2192 	mac_impl_t	*mip = (mac_impl_t *)mh;
2193 	int err;
2194 
2195 	i_mac_perim_enter(mip);
2196 	err = i_mac_disable(mip);
2197 	i_mac_perim_exit(mip);
2198 
2199 	/*
2200 	 * Clean up notification thread and wait for it to exit.
2201 	 */
2202 	if (err == 0)
2203 		i_mac_notify_exit(mip);
2204 
2205 	return (err);
2206 }
2207 
2208 /*
2209  * Called when the MAC instance has a non empty flow table, to de-multiplex
2210  * incoming packets to the right flow.
2211  * The MAC's rw lock is assumed held as a READER.
2212  */
2213 /* ARGSUSED */
2214 static mblk_t *
2215 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp)
2216 {
2217 	flow_entry_t	*flent = NULL;
2218 	uint_t		flags = FLOW_INBOUND;
2219 	int		err;
2220 
2221 	/*
2222 	 * If the mac is a port of an aggregation, pass FLOW_IGNORE_VLAN
2223 	 * to mac_flow_lookup() so that the VLAN packets can be successfully
2224 	 * passed to the non-VLAN aggregation flows.
2225 	 *
2226 	 * Note that there is possibly a race between this and
2227 	 * mac_unicast_remove/add() and VLAN packets could be incorrectly
2228 	 * classified to non-VLAN flows of non-aggregation mac clients. These
2229 	 * VLAN packets will be then filtered out by the mac module.
2230 	 */
2231 	if ((mip->mi_state_flags & MIS_EXCLUSIVE) != 0)
2232 		flags |= FLOW_IGNORE_VLAN;
2233 
2234 	err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent);
2235 	if (err != 0) {
2236 		/* no registered receive function */
2237 		return (mp);
2238 	} else {
2239 		mac_client_impl_t	*mcip;
2240 
2241 		/*
2242 		 * This flent might just be an additional one on the MAC client,
2243 		 * i.e. for classification purposes (different fdesc), however
2244 		 * the resources, SRS et. al., are in the mci_flent, so if
2245 		 * this isn't the mci_flent, we need to get it.
2246 		 */
2247 		if ((mcip = flent->fe_mcip) != NULL &&
2248 		    mcip->mci_flent != flent) {
2249 			FLOW_REFRELE(flent);
2250 			flent = mcip->mci_flent;
2251 			FLOW_TRY_REFHOLD(flent, err);
2252 			if (err != 0)
2253 				return (mp);
2254 		}
2255 		(flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp,
2256 		    B_FALSE);
2257 		FLOW_REFRELE(flent);
2258 	}
2259 	return (NULL);
2260 }
2261 
2262 mblk_t *
2263 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
2264 {
2265 	mac_impl_t	*mip = (mac_impl_t *)mh;
2266 	mblk_t		*bp, *bp1, **bpp, *list = NULL;
2267 
2268 	/*
2269 	 * We walk the chain and attempt to classify each packet.
2270 	 * The packets that couldn't be classified will be returned
2271 	 * back to the caller.
2272 	 */
2273 	bp = mp_chain;
2274 	bpp = &list;
2275 	while (bp != NULL) {
2276 		bp1 = bp;
2277 		bp = bp->b_next;
2278 		bp1->b_next = NULL;
2279 
2280 		if (mac_rx_classify(mip, mrh, bp1) != NULL) {
2281 			*bpp = bp1;
2282 			bpp = &bp1->b_next;
2283 		}
2284 	}
2285 	return (list);
2286 }
2287 
2288 static int
2289 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg)
2290 {
2291 	mac_ring_handle_t ring = arg;
2292 
2293 	if (flent->fe_tx_srs)
2294 		mac_tx_srs_wakeup(flent->fe_tx_srs, ring);
2295 	return (0);
2296 }
2297 
2298 void
2299 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring)
2300 {
2301 	mac_client_impl_t	*cclient;
2302 	mac_soft_ring_set_t	*mac_srs;
2303 
2304 	/*
2305 	 * After grabbing the mi_rw_lock, the list of clients can't change.
2306 	 * If there are any clients mi_disabled must be B_FALSE and can't
2307 	 * get set since there are clients. If there aren't any clients we
2308 	 * don't do anything. In any case the mip has to be valid. The driver
2309 	 * must make sure that it goes single threaded (with respect to mac
2310 	 * calls) and wait for all pending mac calls to finish before calling
2311 	 * mac_unregister.
2312 	 */
2313 	rw_enter(&i_mac_impl_lock, RW_READER);
2314 	if (mip->mi_state_flags & MIS_DISABLED) {
2315 		rw_exit(&i_mac_impl_lock);
2316 		return;
2317 	}
2318 
2319 	/*
2320 	 * Get MAC tx srs from walking mac_client_handle list.
2321 	 */
2322 	rw_enter(&mip->mi_rw_lock, RW_READER);
2323 	for (cclient = mip->mi_clients_list; cclient != NULL;
2324 	    cclient = cclient->mci_client_next) {
2325 		if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL)
2326 			mac_tx_srs_wakeup(mac_srs, ring);
2327 		(void) mac_flow_walk(cclient->mci_subflow_tab,
2328 		    mac_tx_flow_srs_wakeup, ring);
2329 	}
2330 	rw_exit(&mip->mi_rw_lock);
2331 	rw_exit(&i_mac_impl_lock);
2332 }
2333 
2334 /* ARGSUSED */
2335 void
2336 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg,
2337     boolean_t add)
2338 {
2339 	mac_impl_t *mip = (mac_impl_t *)mh;
2340 
2341 	i_mac_perim_enter((mac_impl_t *)mh);
2342 	/*
2343 	 * If no specific refresh function was given then default to the
2344 	 * driver's m_multicst entry point.
2345 	 */
2346 	if (refresh == NULL) {
2347 		refresh = mip->mi_multicst;
2348 		arg = mip->mi_driver;
2349 	}
2350 
2351 	mac_bcast_refresh(mip, refresh, arg, add);
2352 	i_mac_perim_exit((mac_impl_t *)mh);
2353 }
2354 
2355 void
2356 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg)
2357 {
2358 	mac_impl_t	*mip = (mac_impl_t *)mh;
2359 
2360 	/*
2361 	 * If no specific refresh function was given then default to the
2362 	 * driver's m_promisc entry point.
2363 	 */
2364 	if (refresh == NULL) {
2365 		refresh = mip->mi_setpromisc;
2366 		arg = mip->mi_driver;
2367 	}
2368 	ASSERT(refresh != NULL);
2369 
2370 	/*
2371 	 * Call the refresh function with the current promiscuity.
2372 	 */
2373 	refresh(arg, (mip->mi_devpromisc != 0));
2374 }
2375 
2376 /*
2377  * The mac client requests that the mac not to change its margin size to
2378  * be less than the specified value.  If "current" is B_TRUE, then the client
2379  * requests the mac not to change its margin size to be smaller than the
2380  * current size. Further, return the current margin size value in this case.
2381  *
2382  * We keep every requested size in an ordered list from largest to smallest.
2383  */
2384 int
2385 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current)
2386 {
2387 	mac_impl_t		*mip = (mac_impl_t *)mh;
2388 	mac_margin_req_t	**pp, *p;
2389 	int			err = 0;
2390 
2391 	rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2392 	if (current)
2393 		*marginp = mip->mi_margin;
2394 
2395 	/*
2396 	 * If the current margin value cannot satisfy the margin requested,
2397 	 * return ENOTSUP directly.
2398 	 */
2399 	if (*marginp > mip->mi_margin) {
2400 		err = ENOTSUP;
2401 		goto done;
2402 	}
2403 
2404 	/*
2405 	 * Check whether the given margin is already in the list. If so,
2406 	 * bump the reference count.
2407 	 */
2408 	for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) {
2409 		if (p->mmr_margin == *marginp) {
2410 			/*
2411 			 * The margin requested is already in the list,
2412 			 * so just bump the reference count.
2413 			 */
2414 			p->mmr_ref++;
2415 			goto done;
2416 		}
2417 		if (p->mmr_margin < *marginp)
2418 			break;
2419 	}
2420 
2421 
2422 	p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP);
2423 	p->mmr_margin = *marginp;
2424 	p->mmr_ref++;
2425 	p->mmr_nextp = *pp;
2426 	*pp = p;
2427 
2428 done:
2429 	rw_exit(&(mip->mi_rw_lock));
2430 	return (err);
2431 }
2432 
2433 /*
2434  * The mac client requests to cancel its previous mac_margin_add() request.
2435  * We remove the requested margin size from the list.
2436  */
2437 int
2438 mac_margin_remove(mac_handle_t mh, uint32_t margin)
2439 {
2440 	mac_impl_t		*mip = (mac_impl_t *)mh;
2441 	mac_margin_req_t	**pp, *p;
2442 	int			err = 0;
2443 
2444 	rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2445 	/*
2446 	 * Find the entry in the list for the given margin.
2447 	 */
2448 	for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) {
2449 		if (p->mmr_margin == margin) {
2450 			if (--p->mmr_ref == 0)
2451 				break;
2452 
2453 			/*
2454 			 * There is still a reference to this address so
2455 			 * there's nothing more to do.
2456 			 */
2457 			goto done;
2458 		}
2459 	}
2460 
2461 	/*
2462 	 * We did not find an entry for the given margin.
2463 	 */
2464 	if (p == NULL) {
2465 		err = ENOENT;
2466 		goto done;
2467 	}
2468 
2469 	ASSERT(p->mmr_ref == 0);
2470 
2471 	/*
2472 	 * Remove it from the list.
2473 	 */
2474 	*pp = p->mmr_nextp;
2475 	kmem_free(p, sizeof (mac_margin_req_t));
2476 done:
2477 	rw_exit(&(mip->mi_rw_lock));
2478 	return (err);
2479 }
2480 
2481 boolean_t
2482 mac_margin_update(mac_handle_t mh, uint32_t margin)
2483 {
2484 	mac_impl_t	*mip = (mac_impl_t *)mh;
2485 	uint32_t	margin_needed = 0;
2486 
2487 	rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2488 
2489 	if (mip->mi_mmrp != NULL)
2490 		margin_needed = mip->mi_mmrp->mmr_margin;
2491 
2492 	if (margin_needed <= margin)
2493 		mip->mi_margin = margin;
2494 
2495 	rw_exit(&(mip->mi_rw_lock));
2496 
2497 	if (margin_needed <= margin)
2498 		i_mac_notify(mip, MAC_NOTE_MARGIN);
2499 
2500 	return (margin_needed <= margin);
2501 }
2502 
2503 /*
2504  * MAC Type Plugin functions.
2505  */
2506 
2507 mactype_t *
2508 mactype_getplugin(const char *pname)
2509 {
2510 	mactype_t	*mtype = NULL;
2511 	boolean_t	tried_modload = B_FALSE;
2512 
2513 	mutex_enter(&i_mactype_lock);
2514 
2515 find_registered_mactype:
2516 	if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname,
2517 	    (mod_hash_val_t *)&mtype) != 0) {
2518 		if (!tried_modload) {
2519 			/*
2520 			 * If the plugin has not yet been loaded, then
2521 			 * attempt to load it now.  If modload() succeeds,
2522 			 * the plugin should have registered using
2523 			 * mactype_register(), in which case we can go back
2524 			 * and attempt to find it again.
2525 			 */
2526 			if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) {
2527 				tried_modload = B_TRUE;
2528 				goto find_registered_mactype;
2529 			}
2530 		}
2531 	} else {
2532 		/*
2533 		 * Note that there's no danger that the plugin we've loaded
2534 		 * could be unloaded between the modload() step and the
2535 		 * reference count bump here, as we're holding
2536 		 * i_mactype_lock, which mactype_unregister() also holds.
2537 		 */
2538 		atomic_inc_32(&mtype->mt_ref);
2539 	}
2540 
2541 	mutex_exit(&i_mactype_lock);
2542 	return (mtype);
2543 }
2544 
2545 mactype_register_t *
2546 mactype_alloc(uint_t mactype_version)
2547 {
2548 	mactype_register_t *mtrp;
2549 
2550 	/*
2551 	 * Make sure there isn't a version mismatch between the plugin and
2552 	 * the framework.  In the future, if multiple versions are
2553 	 * supported, this check could become more sophisticated.
2554 	 */
2555 	if (mactype_version != MACTYPE_VERSION)
2556 		return (NULL);
2557 
2558 	mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP);
2559 	mtrp->mtr_version = mactype_version;
2560 	return (mtrp);
2561 }
2562 
2563 void
2564 mactype_free(mactype_register_t *mtrp)
2565 {
2566 	kmem_free(mtrp, sizeof (mactype_register_t));
2567 }
2568 
2569 int
2570 mactype_register(mactype_register_t *mtrp)
2571 {
2572 	mactype_t	*mtp;
2573 	mactype_ops_t	*ops = mtrp->mtr_ops;
2574 
2575 	/* Do some sanity checking before we register this MAC type. */
2576 	if (mtrp->mtr_ident == NULL || ops == NULL)
2577 		return (EINVAL);
2578 
2579 	/*
2580 	 * Verify that all mandatory callbacks are set in the ops
2581 	 * vector.
2582 	 */
2583 	if (ops->mtops_unicst_verify == NULL ||
2584 	    ops->mtops_multicst_verify == NULL ||
2585 	    ops->mtops_sap_verify == NULL ||
2586 	    ops->mtops_header == NULL ||
2587 	    ops->mtops_header_info == NULL) {
2588 		return (EINVAL);
2589 	}
2590 
2591 	mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP);
2592 	mtp->mt_ident = mtrp->mtr_ident;
2593 	mtp->mt_ops = *ops;
2594 	mtp->mt_type = mtrp->mtr_mactype;
2595 	mtp->mt_nativetype = mtrp->mtr_nativetype;
2596 	mtp->mt_addr_length = mtrp->mtr_addrlen;
2597 	if (mtrp->mtr_brdcst_addr != NULL) {
2598 		mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP);
2599 		bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr,
2600 		    mtrp->mtr_addrlen);
2601 	}
2602 
2603 	mtp->mt_stats = mtrp->mtr_stats;
2604 	mtp->mt_statcount = mtrp->mtr_statcount;
2605 
2606 	mtp->mt_mapping = mtrp->mtr_mapping;
2607 	mtp->mt_mappingcount = mtrp->mtr_mappingcount;
2608 
2609 	if (mod_hash_insert(i_mactype_hash,
2610 	    (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) {
2611 		kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
2612 		kmem_free(mtp, sizeof (*mtp));
2613 		return (EEXIST);
2614 	}
2615 	return (0);
2616 }
2617 
2618 int
2619 mactype_unregister(const char *ident)
2620 {
2621 	mactype_t	*mtp;
2622 	mod_hash_val_t	val;
2623 	int 		err;
2624 
2625 	/*
2626 	 * Let's not allow MAC drivers to use this plugin while we're
2627 	 * trying to unregister it.  Holding i_mactype_lock also prevents a
2628 	 * plugin from unregistering while a MAC driver is attempting to
2629 	 * hold a reference to it in i_mactype_getplugin().
2630 	 */
2631 	mutex_enter(&i_mactype_lock);
2632 
2633 	if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident,
2634 	    (mod_hash_val_t *)&mtp)) != 0) {
2635 		/* A plugin is trying to unregister, but it never registered. */
2636 		err = ENXIO;
2637 		goto done;
2638 	}
2639 
2640 	if (mtp->mt_ref != 0) {
2641 		err = EBUSY;
2642 		goto done;
2643 	}
2644 
2645 	err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val);
2646 	ASSERT(err == 0);
2647 	if (err != 0) {
2648 		/* This should never happen, thus the ASSERT() above. */
2649 		err = EINVAL;
2650 		goto done;
2651 	}
2652 	ASSERT(mtp == (mactype_t *)val);
2653 
2654 	kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
2655 	kmem_free(mtp, sizeof (mactype_t));
2656 done:
2657 	mutex_exit(&i_mactype_lock);
2658 	return (err);
2659 }
2660 
2661 /*
2662  * Returns TRUE when the specified property is intended for the MAC framework,
2663  * as opposed to driver defined properties.
2664  */
2665 static boolean_t
2666 mac_is_macprop(mac_prop_t *macprop)
2667 {
2668 	switch (macprop->mp_id) {
2669 	case MAC_PROP_MAXBW:
2670 	case MAC_PROP_PRIO:
2671 	case MAC_PROP_BIND_CPU:
2672 		return (B_TRUE);
2673 	default:
2674 		return (B_FALSE);
2675 	}
2676 }
2677 
2678 /*
2679  * mac_set_prop() sets mac or hardware driver properties:
2680  * 	mac properties include maxbw, priority, and cpu binding list. Driver
2681  *	properties are private properties to the hardware, such as mtu, speed
2682  *	etc.
2683  * If the property is a driver property, mac_set_prop() calls driver's callback
2684  * function to set it.
2685  * If the property is a mac property, mac_set_prop() invokes mac_set_resources()
2686  * which will cache the property value in mac_impl_t and may call
2687  * mac_client_set_resource() to update property value of the primary mac client,
2688  * if it exists.
2689  */
2690 int
2691 mac_set_prop(mac_handle_t mh, mac_prop_t *macprop, void *val, uint_t valsize)
2692 {
2693 	int err = ENOTSUP;
2694 	mac_impl_t *mip = (mac_impl_t *)mh;
2695 
2696 	ASSERT(MAC_PERIM_HELD(mh));
2697 
2698 	/* If it is mac property, call mac_set_resources() */
2699 	if (mac_is_macprop(macprop)) {
2700 		mac_resource_props_t mrp;
2701 
2702 		if (valsize < sizeof (mac_resource_props_t))
2703 			return (EINVAL);
2704 		bzero(&mrp, sizeof (mac_resource_props_t));
2705 		bcopy(val, &mrp, sizeof (mrp));
2706 		return (mac_set_resources(mh, &mrp));
2707 	}
2708 	switch (macprop->mp_id) {
2709 	case MAC_PROP_MTU: {
2710 		uint32_t mtu;
2711 
2712 		if (valsize < sizeof (mtu))
2713 			return (EINVAL);
2714 		bcopy(val, &mtu, sizeof (mtu));
2715 		err = mac_set_mtu(mh, mtu, NULL);
2716 		break;
2717 	}
2718 	default:
2719 		/* For other driver properties, call driver's callback */
2720 		if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) {
2721 			err = mip->mi_callbacks->mc_setprop(mip->mi_driver,
2722 			    macprop->mp_name, macprop->mp_id, valsize, val);
2723 		}
2724 	}
2725 	return (err);
2726 }
2727 
2728 /*
2729  * mac_get_prop() gets mac or hardware driver properties.
2730  *
2731  * If the property is a driver property, mac_get_prop() calls driver's callback
2732  * function to get it.
2733  * If the property is a mac property, mac_get_prop() invokes mac_get_resources()
2734  * which returns the cached value in mac_impl_t.
2735  */
2736 int
2737 mac_get_prop(mac_handle_t mh, mac_prop_t *macprop, void *val, uint_t valsize,
2738     uint_t *perm)
2739 {
2740 	int err = ENOTSUP;
2741 	mac_impl_t *mip = (mac_impl_t *)mh;
2742 	link_state_t link_state;
2743 	boolean_t is_getprop, is_setprop;
2744 
2745 	is_getprop = (mip->mi_callbacks->mc_callbacks & MC_GETPROP);
2746 	is_setprop = (mip->mi_callbacks->mc_callbacks & MC_SETPROP);
2747 
2748 	/* If mac property, read from cache */
2749 	if (mac_is_macprop(macprop)) {
2750 		mac_resource_props_t mrp;
2751 
2752 		if (valsize < sizeof (mac_resource_props_t))
2753 			return (EINVAL);
2754 		bzero(&mrp, sizeof (mac_resource_props_t));
2755 		mac_get_resources(mh, &mrp);
2756 		bcopy(&mrp, val, sizeof (mac_resource_props_t));
2757 		return (0);
2758 	}
2759 
2760 	switch (macprop->mp_id) {
2761 	case MAC_PROP_MTU: {
2762 		uint32_t sdu;
2763 		mac_propval_range_t range;
2764 
2765 		if ((macprop->mp_flags & MAC_PROP_POSSIBLE) != 0) {
2766 			if (valsize < sizeof (mac_propval_range_t))
2767 				return (EINVAL);
2768 			if (is_getprop) {
2769 				err = mip->mi_callbacks->mc_getprop(mip->
2770 				    mi_driver, macprop->mp_name, macprop->mp_id,
2771 				    macprop->mp_flags, valsize, val, perm);
2772 			}
2773 			/*
2774 			 * If the driver doesn't have *_m_getprop defined or
2775 			 * if the driver doesn't support setting MTU then
2776 			 * return the CURRENT value as POSSIBLE value.
2777 			 */
2778 			if (!is_getprop || err == ENOTSUP) {
2779 				mac_sdu_get(mh, NULL, &sdu);
2780 				range.mpr_count = 1;
2781 				range.mpr_type = MAC_PROPVAL_UINT32;
2782 				range.range_uint32[0].mpur_min =
2783 				    range.range_uint32[0].mpur_max = sdu;
2784 				bcopy(&range, val, sizeof (range));
2785 				err = 0;
2786 			}
2787 			return (err);
2788 		}
2789 		if (valsize < sizeof (sdu))
2790 			return (EINVAL);
2791 		if ((macprop->mp_flags & MAC_PROP_DEFAULT) == 0) {
2792 			mac_sdu_get(mh, NULL, &sdu);
2793 			bcopy(&sdu, val, sizeof (sdu));
2794 			if (is_setprop && (mip->mi_callbacks->mc_setprop(mip->
2795 			    mi_driver, macprop->mp_name, macprop->mp_id,
2796 			    valsize, val) == 0)) {
2797 				*perm = MAC_PROP_PERM_RW;
2798 			} else {
2799 				*perm = MAC_PROP_PERM_READ;
2800 			}
2801 			return (0);
2802 		} else {
2803 			if (mip->mi_info.mi_media == DL_ETHER) {
2804 				sdu = ETHERMTU;
2805 				bcopy(&sdu, val, sizeof (sdu));
2806 
2807 				return (0);
2808 			}
2809 			/*
2810 			 * ask driver for its default.
2811 			 */
2812 			break;
2813 		}
2814 	}
2815 	case MAC_PROP_STATUS:
2816 		if (valsize < sizeof (link_state))
2817 			return (EINVAL);
2818 		*perm = MAC_PROP_PERM_READ;
2819 		link_state = mac_link_get(mh);
2820 		bcopy(&link_state, val, sizeof (link_state));
2821 		return (0);
2822 	default:
2823 		break;
2824 
2825 	}
2826 	/* If driver property, request from driver */
2827 	if (is_getprop) {
2828 		err = mip->mi_callbacks->mc_getprop(mip->mi_driver,
2829 		    macprop->mp_name, macprop->mp_id, macprop->mp_flags,
2830 		    valsize, val, perm);
2831 	}
2832 	return (err);
2833 }
2834 
2835 int
2836 mac_fastpath_disable(mac_handle_t mh)
2837 {
2838 	mac_impl_t	*mip = (mac_impl_t *)mh;
2839 
2840 	if ((mip->mi_state_flags & MIS_LEGACY) == 0)
2841 		return (0);
2842 
2843 	return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver));
2844 }
2845 
2846 void
2847 mac_fastpath_enable(mac_handle_t mh)
2848 {
2849 	mac_impl_t	*mip = (mac_impl_t *)mh;
2850 
2851 	if ((mip->mi_state_flags & MIS_LEGACY) == 0)
2852 		return;
2853 
2854 	mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver);
2855 }
2856 
2857 void
2858 mac_register_priv_prop(mac_impl_t *mip, mac_priv_prop_t *mpp, uint_t nprop)
2859 {
2860 	mac_priv_prop_t *mpriv;
2861 
2862 	if (mpp == NULL)
2863 		return;
2864 
2865 	mpriv = kmem_zalloc(nprop * sizeof (*mpriv), KM_SLEEP);
2866 	(void) memcpy(mpriv, mpp, nprop * sizeof (*mpriv));
2867 	mip->mi_priv_prop = mpriv;
2868 	mip->mi_priv_prop_count = nprop;
2869 }
2870 
2871 void
2872 mac_unregister_priv_prop(mac_impl_t *mip)
2873 {
2874 	mac_priv_prop_t	*mpriv;
2875 
2876 	mpriv = mip->mi_priv_prop;
2877 	if (mpriv != NULL) {
2878 		kmem_free(mpriv, mip->mi_priv_prop_count * sizeof (*mpriv));
2879 		mip->mi_priv_prop = NULL;
2880 	}
2881 	mip->mi_priv_prop_count = 0;
2882 }
2883 
2884 /*
2885  * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure
2886  * (by invoking mac_rx()) even after processing mac_stop_ring(). In such
2887  * cases if MAC free's the ring structure after mac_stop_ring(), any
2888  * illegal access to the ring structure coming from the driver will panic
2889  * the system. In order to protect the system from such inadverent access,
2890  * we maintain a cache of rings in the mac_impl_t after they get free'd up.
2891  * When packets are received on free'd up rings, MAC (through the generation
2892  * count mechanism) will drop such packets.
2893  */
2894 static mac_ring_t *
2895 mac_ring_alloc(mac_impl_t *mip, mac_capab_rings_t *cap_rings)
2896 {
2897 	mac_ring_t *ring;
2898 
2899 	if (cap_rings->mr_type == MAC_RING_TYPE_RX) {
2900 		mutex_enter(&mip->mi_ring_lock);
2901 		if (mip->mi_ring_freelist != NULL) {
2902 			ring = mip->mi_ring_freelist;
2903 			mip->mi_ring_freelist = ring->mr_next;
2904 			bzero(ring, sizeof (mac_ring_t));
2905 		} else {
2906 			ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP);
2907 		}
2908 		mutex_exit(&mip->mi_ring_lock);
2909 	} else {
2910 		ring = kmem_zalloc(sizeof (mac_ring_t), KM_SLEEP);
2911 	}
2912 	ASSERT((ring != NULL) && (ring->mr_state == MR_FREE));
2913 	return (ring);
2914 }
2915 
2916 static void
2917 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring)
2918 {
2919 	if (ring->mr_type == MAC_RING_TYPE_RX) {
2920 		mutex_enter(&mip->mi_ring_lock);
2921 		ring->mr_state = MR_FREE;
2922 		ring->mr_flag = 0;
2923 		ring->mr_next = mip->mi_ring_freelist;
2924 		mip->mi_ring_freelist = ring;
2925 		mutex_exit(&mip->mi_ring_lock);
2926 	} else {
2927 		kmem_free(ring, sizeof (mac_ring_t));
2928 	}
2929 }
2930 
2931 static void
2932 mac_ring_freeall(mac_impl_t *mip)
2933 {
2934 	mac_ring_t *ring_next;
2935 	mutex_enter(&mip->mi_ring_lock);
2936 	mac_ring_t *ring = mip->mi_ring_freelist;
2937 	while (ring != NULL) {
2938 		ring_next = ring->mr_next;
2939 		kmem_cache_free(mac_ring_cache, ring);
2940 		ring = ring_next;
2941 	}
2942 	mip->mi_ring_freelist = NULL;
2943 	mutex_exit(&mip->mi_ring_lock);
2944 }
2945 
2946 int
2947 mac_start_ring(mac_ring_t *ring)
2948 {
2949 	int rv = 0;
2950 
2951 	if (ring->mr_start != NULL)
2952 		rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num);
2953 
2954 	return (rv);
2955 }
2956 
2957 void
2958 mac_stop_ring(mac_ring_t *ring)
2959 {
2960 	if (ring->mr_stop != NULL)
2961 		ring->mr_stop(ring->mr_driver);
2962 
2963 	/*
2964 	 * Increment the ring generation number for this ring.
2965 	 */
2966 	ring->mr_gen_num++;
2967 }
2968 
2969 int
2970 mac_start_group(mac_group_t *group)
2971 {
2972 	int rv = 0;
2973 
2974 	if (group->mrg_start != NULL)
2975 		rv = group->mrg_start(group->mrg_driver);
2976 
2977 	return (rv);
2978 }
2979 
2980 void
2981 mac_stop_group(mac_group_t *group)
2982 {
2983 	if (group->mrg_stop != NULL)
2984 		group->mrg_stop(group->mrg_driver);
2985 }
2986 
2987 /*
2988  * Called from mac_start() on the default Rx group. Broadcast and multicast
2989  * packets are received only on the default group. Hence the default group
2990  * needs to be up even if the primary client is not up, for the other groups
2991  * to be functional. We do this by calling this function at mac_start time
2992  * itself. However the broadcast packets that are received can't make their
2993  * way beyond mac_rx until a mac client creates a broadcast flow.
2994  */
2995 static int
2996 mac_start_group_and_rings(mac_group_t *group)
2997 {
2998 	mac_ring_t	*ring;
2999 	int		rv = 0;
3000 
3001 	ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED);
3002 	if ((rv = mac_start_group(group)) != 0)
3003 		return (rv);
3004 
3005 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
3006 		ASSERT(ring->mr_state == MR_FREE);
3007 		if ((rv = mac_start_ring(ring)) != 0)
3008 			goto error;
3009 		ring->mr_state = MR_INUSE;
3010 		ring->mr_classify_type = MAC_SW_CLASSIFIER;
3011 	}
3012 	return (0);
3013 
3014 error:
3015 	mac_stop_group_and_rings(group);
3016 	return (rv);
3017 }
3018 
3019 /* Called from mac_stop on the default Rx group */
3020 static void
3021 mac_stop_group_and_rings(mac_group_t *group)
3022 {
3023 	mac_ring_t	*ring;
3024 
3025 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
3026 		if (ring->mr_state != MR_FREE) {
3027 			mac_stop_ring(ring);
3028 			ring->mr_state = MR_FREE;
3029 			ring->mr_flag = 0;
3030 			ring->mr_classify_type = MAC_NO_CLASSIFIER;
3031 		}
3032 	}
3033 	mac_stop_group(group);
3034 }
3035 
3036 
3037 static mac_ring_t *
3038 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index,
3039     mac_capab_rings_t *cap_rings)
3040 {
3041 	mac_ring_t *ring;
3042 	mac_ring_info_t ring_info;
3043 
3044 	ring = mac_ring_alloc(mip, cap_rings);
3045 
3046 	/* Prepare basic information of ring */
3047 	ring->mr_index = index;
3048 	ring->mr_type = group->mrg_type;
3049 	ring->mr_gh = (mac_group_handle_t)group;
3050 
3051 	/* Insert the new ring to the list. */
3052 	ring->mr_next = group->mrg_rings;
3053 	group->mrg_rings = ring;
3054 
3055 	/* Zero to reuse the info data structure */
3056 	bzero(&ring_info, sizeof (ring_info));
3057 
3058 	/* Query ring information from driver */
3059 	cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index,
3060 	    index, &ring_info, (mac_ring_handle_t)ring);
3061 
3062 	ring->mr_info = ring_info;
3063 
3064 	/* Update ring's status */
3065 	ring->mr_state = MR_FREE;
3066 	ring->mr_flag = 0;
3067 
3068 	/* Update the ring count of the group */
3069 	group->mrg_cur_count++;
3070 	return (ring);
3071 }
3072 
3073 /*
3074  * Rings are chained together for easy regrouping.
3075  */
3076 static void
3077 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size,
3078     mac_capab_rings_t *cap_rings)
3079 {
3080 	int index;
3081 
3082 	/*
3083 	 * Initialize all ring members of this group. Size of zero will not
3084 	 * enter the loop, so it's safe for initializing an empty group.
3085 	 */
3086 	for (index = size - 1; index >= 0; index--)
3087 		(void) mac_init_ring(mip, group, index, cap_rings);
3088 }
3089 
3090 int
3091 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype)
3092 {
3093 	mac_capab_rings_t *cap_rings;
3094 	mac_group_t *group, *groups;
3095 	mac_group_info_t group_info;
3096 	uint_t group_free = 0;
3097 	uint_t ring_left;
3098 	mac_ring_t *ring;
3099 	int g, err = 0;
3100 
3101 	switch (rtype) {
3102 	case MAC_RING_TYPE_RX:
3103 		ASSERT(mip->mi_rx_groups == NULL);
3104 
3105 		cap_rings = &mip->mi_rx_rings_cap;
3106 		cap_rings->mr_type = MAC_RING_TYPE_RX;
3107 		break;
3108 	case MAC_RING_TYPE_TX:
3109 		ASSERT(mip->mi_tx_groups == NULL);
3110 
3111 		cap_rings = &mip->mi_tx_rings_cap;
3112 		cap_rings->mr_type = MAC_RING_TYPE_TX;
3113 		break;
3114 	default:
3115 		ASSERT(B_FALSE);
3116 	}
3117 
3118 	if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS,
3119 	    cap_rings))
3120 		return (0);
3121 
3122 	/*
3123 	 * Allocate a contiguous buffer for all groups.
3124 	 */
3125 	groups = kmem_zalloc(sizeof (mac_group_t) * (cap_rings->mr_gnum + 1),
3126 	    KM_SLEEP);
3127 
3128 	ring_left = cap_rings->mr_rnum;
3129 
3130 	/*
3131 	 * Get all ring groups if any, and get their ring members
3132 	 * if any.
3133 	 */
3134 	for (g = 0; g < cap_rings->mr_gnum; g++) {
3135 		group = groups + g;
3136 
3137 		/* Prepare basic information of the group */
3138 		group->mrg_index = g;
3139 		group->mrg_type = rtype;
3140 		group->mrg_state = MAC_GROUP_STATE_UNINIT;
3141 		group->mrg_mh = (mac_handle_t)mip;
3142 		group->mrg_next = group + 1;
3143 
3144 		/* Zero to reuse the info data structure */
3145 		bzero(&group_info, sizeof (group_info));
3146 
3147 		/* Query group information from driver */
3148 		cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info,
3149 		    (mac_group_handle_t)group);
3150 
3151 		switch (cap_rings->mr_group_type) {
3152 		case MAC_GROUP_TYPE_DYNAMIC:
3153 			if (cap_rings->mr_gaddring == NULL ||
3154 			    cap_rings->mr_gremring == NULL) {
3155 				DTRACE_PROBE3(
3156 				    mac__init__rings_no_addremring,
3157 				    char *, mip->mi_name,
3158 				    mac_group_add_ring_t,
3159 				    cap_rings->mr_gaddring,
3160 				    mac_group_add_ring_t,
3161 				    cap_rings->mr_gremring);
3162 				err = EINVAL;
3163 				goto bail;
3164 			}
3165 
3166 			switch (rtype) {
3167 			case MAC_RING_TYPE_RX:
3168 				/*
3169 				 * The first RX group must have non-zero
3170 				 * rings, and the following groups must
3171 				 * have zero rings.
3172 				 */
3173 				if (g == 0 && group_info.mgi_count == 0) {
3174 					DTRACE_PROBE1(
3175 					    mac__init__rings__rx__def__zero,
3176 					    char *, mip->mi_name);
3177 					err = EINVAL;
3178 					goto bail;
3179 				}
3180 				if (g > 0 && group_info.mgi_count != 0) {
3181 					DTRACE_PROBE3(
3182 					    mac__init__rings__rx__nonzero,
3183 					    char *, mip->mi_name,
3184 					    int, g, int, group_info.mgi_count);
3185 					err = EINVAL;
3186 					goto bail;
3187 				}
3188 				break;
3189 			case MAC_RING_TYPE_TX:
3190 				/*
3191 				 * All TX ring groups must have zero rings.
3192 				 */
3193 				if (group_info.mgi_count != 0) {
3194 					DTRACE_PROBE3(
3195 					    mac__init__rings__tx__nonzero,
3196 					    char *, mip->mi_name,
3197 					    int, g, int, group_info.mgi_count);
3198 					err = EINVAL;
3199 					goto bail;
3200 				}
3201 				break;
3202 			}
3203 			break;
3204 		case MAC_GROUP_TYPE_STATIC:
3205 			/*
3206 			 * Note that an empty group is allowed, e.g., an aggr
3207 			 * would start with an empty group.
3208 			 */
3209 			break;
3210 		default:
3211 			/* unknown group type */
3212 			DTRACE_PROBE2(mac__init__rings__unknown__type,
3213 			    char *, mip->mi_name,
3214 			    int, cap_rings->mr_group_type);
3215 			err = EINVAL;
3216 			goto bail;
3217 		}
3218 
3219 
3220 		/*
3221 		 * Driver must register group->mgi_addmac/remmac() for rx groups
3222 		 * to support multiple MAC addresses.
3223 		 */
3224 		if (rtype == MAC_RING_TYPE_RX) {
3225 			if ((group_info.mgi_addmac == NULL) ||
3226 			    (group_info.mgi_addmac == NULL))
3227 				goto bail;
3228 		}
3229 
3230 		/* Cache driver-supplied information */
3231 		group->mrg_info = group_info;
3232 
3233 		/* Update the group's status and group count. */
3234 		mac_set_rx_group_state(group, MAC_GROUP_STATE_REGISTERED);
3235 		group_free++;
3236 
3237 		group->mrg_rings = NULL;
3238 		group->mrg_cur_count = 0;
3239 		mac_init_group(mip, group, group_info.mgi_count, cap_rings);
3240 		ring_left -= group_info.mgi_count;
3241 
3242 		/* The current group size should be equal to default value */
3243 		ASSERT(group->mrg_cur_count == group_info.mgi_count);
3244 	}
3245 
3246 	/* Build up a dummy group for free resources as a pool */
3247 	group = groups + cap_rings->mr_gnum;
3248 
3249 	/* Prepare basic information of the group */
3250 	group->mrg_index = -1;
3251 	group->mrg_type = rtype;
3252 	group->mrg_state = MAC_GROUP_STATE_UNINIT;
3253 	group->mrg_mh = (mac_handle_t)mip;
3254 	group->mrg_next = NULL;
3255 
3256 	/*
3257 	 * If there are ungrouped rings, allocate a continuous buffer for
3258 	 * remaining resources.
3259 	 */
3260 	if (ring_left != 0) {
3261 		group->mrg_rings = NULL;
3262 		group->mrg_cur_count = 0;
3263 		mac_init_group(mip, group, ring_left, cap_rings);
3264 
3265 		/* The current group size should be equal to ring_left */
3266 		ASSERT(group->mrg_cur_count == ring_left);
3267 
3268 		ring_left = 0;
3269 
3270 		/* Update this group's status */
3271 		mac_set_rx_group_state(group, MAC_GROUP_STATE_REGISTERED);
3272 	} else
3273 		group->mrg_rings = NULL;
3274 
3275 	ASSERT(ring_left == 0);
3276 
3277 bail:
3278 	/* Cache other important information to finalize the initialization */
3279 	switch (rtype) {
3280 	case MAC_RING_TYPE_RX:
3281 		mip->mi_rx_group_type = cap_rings->mr_group_type;
3282 		mip->mi_rx_group_count = cap_rings->mr_gnum;
3283 		mip->mi_rx_groups = groups;
3284 		break;
3285 	case MAC_RING_TYPE_TX:
3286 		mip->mi_tx_group_type = cap_rings->mr_group_type;
3287 		mip->mi_tx_group_count = cap_rings->mr_gnum;
3288 		mip->mi_tx_group_free = group_free;
3289 		mip->mi_tx_groups = groups;
3290 
3291 		/*
3292 		 * Ring 0 is used as the default one and it could be assigned
3293 		 * to a client as well.
3294 		 */
3295 		group = groups + cap_rings->mr_gnum;
3296 		ring = group->mrg_rings;
3297 		while ((ring->mr_index != 0) && (ring->mr_next != NULL))
3298 			ring = ring->mr_next;
3299 		ASSERT(ring->mr_index == 0);
3300 		mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
3301 		break;
3302 	default:
3303 		ASSERT(B_FALSE);
3304 	}
3305 
3306 	if (err != 0)
3307 		mac_free_rings(mip, rtype);
3308 
3309 	return (err);
3310 }
3311 
3312 /*
3313  * Called to free all ring groups with particular type. It's supposed all groups
3314  * have been released by clinet.
3315  */
3316 void
3317 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype)
3318 {
3319 	mac_group_t *group, *groups;
3320 	uint_t group_count;
3321 
3322 	switch (rtype) {
3323 	case MAC_RING_TYPE_RX:
3324 		if (mip->mi_rx_groups == NULL)
3325 			return;
3326 
3327 		groups = mip->mi_rx_groups;
3328 		group_count = mip->mi_rx_group_count;
3329 
3330 		mip->mi_rx_groups = NULL;
3331 		mip->mi_rx_group_count = 0;
3332 		break;
3333 	case MAC_RING_TYPE_TX:
3334 		ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free);
3335 
3336 		if (mip->mi_tx_groups == NULL)
3337 			return;
3338 
3339 		groups = mip->mi_tx_groups;
3340 		group_count = mip->mi_tx_group_count;
3341 
3342 		mip->mi_tx_groups = NULL;
3343 		mip->mi_tx_group_count = 0;
3344 		mip->mi_tx_group_free = 0;
3345 		mip->mi_default_tx_ring = NULL;
3346 		break;
3347 	default:
3348 		ASSERT(B_FALSE);
3349 	}
3350 
3351 	for (group = groups; group != NULL; group = group->mrg_next) {
3352 		mac_ring_t *ring;
3353 
3354 		if (group->mrg_cur_count == 0)
3355 			continue;
3356 
3357 		ASSERT(group->mrg_rings != NULL);
3358 
3359 		while ((ring = group->mrg_rings) != NULL) {
3360 			group->mrg_rings = ring->mr_next;
3361 			mac_ring_free(mip, ring);
3362 		}
3363 	}
3364 
3365 	/* Free all the cached rings */
3366 	mac_ring_freeall(mip);
3367 	/* Free the block of group data strutures */
3368 	kmem_free(groups, sizeof (mac_group_t) * (group_count + 1));
3369 }
3370 
3371 /*
3372  * Associate a MAC address with a receive group.
3373  *
3374  * The return value of this function should always be checked properly, because
3375  * any type of failure could cause unexpected results. A group can be added
3376  * or removed with a MAC address only after it has been reserved. Ideally,
3377  * a successful reservation always leads to calling mac_group_addmac() to
3378  * steer desired traffic. Failure of adding an unicast MAC address doesn't
3379  * always imply that the group is functioning abnormally.
3380  *
3381  * Currently this function is called everywhere, and it reflects assumptions
3382  * about MAC addresses in the implementation. CR 6735196.
3383  */
3384 int
3385 mac_group_addmac(mac_group_t *group, const uint8_t *addr)
3386 {
3387 	ASSERT(group->mrg_type == MAC_RING_TYPE_RX);
3388 	ASSERT(group->mrg_info.mgi_addmac != NULL);
3389 
3390 	return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr));
3391 }
3392 
3393 /*
3394  * Remove the association between MAC address and receive group.
3395  */
3396 int
3397 mac_group_remmac(mac_group_t *group, const uint8_t *addr)
3398 {
3399 	ASSERT(group->mrg_type == MAC_RING_TYPE_RX);
3400 	ASSERT(group->mrg_info.mgi_remmac != NULL);
3401 
3402 	return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr));
3403 }
3404 
3405 /*
3406  * Release a ring in use by marking it MR_FREE.
3407  * Any other client may reserve it for its use.
3408  */
3409 void
3410 mac_release_tx_ring(mac_ring_handle_t rh)
3411 {
3412 	mac_ring_t *ring = (mac_ring_t *)rh;
3413 	mac_group_t *group = (mac_group_t *)ring->mr_gh;
3414 	mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
3415 
3416 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3417 	ASSERT(ring->mr_state != MR_FREE);
3418 
3419 	/*
3420 	 * Default tx ring will be released by mac_stop().
3421 	 */
3422 	if (rh == mip->mi_default_tx_ring)
3423 		return;
3424 
3425 	mac_stop_ring(ring);
3426 
3427 	ring->mr_state = MR_FREE;
3428 	ring->mr_flag = 0;
3429 }
3430 
3431 /*
3432  * Send packets through a selected tx ring.
3433  */
3434 mblk_t *
3435 mac_ring_tx(mac_ring_handle_t rh, mblk_t *mp)
3436 {
3437 	mac_ring_t *ring = (mac_ring_t *)rh;
3438 	mac_ring_info_t *info = &ring->mr_info;
3439 
3440 	ASSERT(ring->mr_type == MAC_RING_TYPE_TX);
3441 	ASSERT(ring->mr_state >= MR_INUSE);
3442 	ASSERT(info->mri_tx != NULL);
3443 
3444 	return (info->mri_tx(info->mri_driver, mp));
3445 }
3446 
3447 /*
3448  * Find a ring from its index.
3449  */
3450 mac_ring_t *
3451 mac_find_ring(mac_group_t *group, int index)
3452 {
3453 	mac_ring_t *ring = group->mrg_rings;
3454 
3455 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next)
3456 		if (ring->mr_index == index)
3457 			break;
3458 
3459 	return (ring);
3460 }
3461 /*
3462  * Add a ring to an existing group.
3463  *
3464  * The ring must be either passed directly (for example if the ring
3465  * movement is initiated by the framework), or specified through a driver
3466  * index (for example when the ring is added by the driver.
3467  *
3468  * The caller needs to call mac_perim_enter() before calling this function.
3469  */
3470 int
3471 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index)
3472 {
3473 	mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
3474 	mac_capab_rings_t *cap_rings;
3475 	boolean_t driver_call = (ring == NULL);
3476 	mac_group_type_t group_type;
3477 	int ret = 0;
3478 
3479 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3480 
3481 	switch (group->mrg_type) {
3482 	case MAC_RING_TYPE_RX:
3483 		cap_rings = &mip->mi_rx_rings_cap;
3484 		group_type = mip->mi_rx_group_type;
3485 		break;
3486 	case MAC_RING_TYPE_TX:
3487 		cap_rings = &mip->mi_tx_rings_cap;
3488 		group_type = mip->mi_tx_group_type;
3489 		break;
3490 	default:
3491 		ASSERT(B_FALSE);
3492 	}
3493 
3494 	/*
3495 	 * There should be no ring with the same ring index in the target
3496 	 * group.
3497 	 */
3498 	ASSERT(mac_find_ring(group, driver_call ? index : ring->mr_index) ==
3499 	    NULL);
3500 
3501 	if (driver_call) {
3502 		/*
3503 		 * The function is called as a result of a request from
3504 		 * a driver to add a ring to an existing group, for example
3505 		 * from the aggregation driver. Allocate a new mac_ring_t
3506 		 * for that ring.
3507 		 */
3508 		ring = mac_init_ring(mip, group, index, cap_rings);
3509 		ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT);
3510 	} else {
3511 		/*
3512 		 * The function is called as a result of a MAC layer request
3513 		 * to add a ring to an existing group. In this case the
3514 		 * ring is being moved between groups, which requires
3515 		 * the underlying driver to support dynamic grouping,
3516 		 * and the mac_ring_t already exists.
3517 		 */
3518 		ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
3519 		ASSERT(cap_rings->mr_gaddring != NULL);
3520 		ASSERT(ring->mr_gh == NULL);
3521 	}
3522 
3523 	/*
3524 	 * At this point the ring should not be in use, and it should be
3525 	 * of the right for the target group.
3526 	 */
3527 	ASSERT(ring->mr_state < MR_INUSE);
3528 	ASSERT(ring->mr_srs == NULL);
3529 	ASSERT(ring->mr_type == group->mrg_type);
3530 
3531 	if (!driver_call) {
3532 		/*
3533 		 * Add the driver level hardware ring if the process was not
3534 		 * initiated by the driver, and the target group is not the
3535 		 * group.
3536 		 */
3537 		if (group->mrg_driver != NULL) {
3538 			cap_rings->mr_gaddring(group->mrg_driver,
3539 			    ring->mr_driver, ring->mr_type);
3540 		}
3541 
3542 		/*
3543 		 * Insert the ring ahead existing rings.
3544 		 */
3545 		ring->mr_next = group->mrg_rings;
3546 		group->mrg_rings = ring;
3547 		ring->mr_gh = (mac_group_handle_t)group;
3548 		group->mrg_cur_count++;
3549 	}
3550 
3551 	/*
3552 	 * If the group has not been actively used, we're done.
3553 	 */
3554 	if (group->mrg_index != -1 &&
3555 	    group->mrg_state < MAC_GROUP_STATE_RESERVED)
3556 		return (0);
3557 
3558 	/*
3559 	 * Set up SRS/SR according to the ring type.
3560 	 */
3561 	switch (ring->mr_type) {
3562 	case MAC_RING_TYPE_RX:
3563 		/*
3564 		 * Setup SRS on top of the new ring if the group is
3565 		 * reserved for someones exclusive use.
3566 		 */
3567 		if (group->mrg_state == MAC_GROUP_STATE_RESERVED) {
3568 			flow_entry_t *flent;
3569 			mac_client_impl_t *mcip;
3570 
3571 			mcip = MAC_RX_GROUP_ONLY_CLIENT(group);
3572 			ASSERT(mcip != NULL);
3573 			flent = mcip->mci_flent;
3574 			ASSERT(flent->fe_rx_srs_cnt > 0);
3575 			mac_srs_group_setup(mcip, flent, group, SRST_LINK);
3576 		}
3577 		break;
3578 	case MAC_RING_TYPE_TX:
3579 		/*
3580 		 * For TX this function is only invoked during the
3581 		 * initial creation of a group when a share is
3582 		 * associated with a MAC client. So the datapath is not
3583 		 * yet setup, and will be setup later after the
3584 		 * group has been reserved and populated.
3585 		 */
3586 		break;
3587 	default:
3588 		ASSERT(B_FALSE);
3589 	}
3590 
3591 	/*
3592 	 * Start the ring if needed. Failure causes to undo the grouping action.
3593 	 */
3594 	if ((ret = mac_start_ring(ring)) != 0) {
3595 		if (ring->mr_type == MAC_RING_TYPE_RX) {
3596 			if (ring->mr_srs != NULL) {
3597 				mac_rx_srs_remove(ring->mr_srs);
3598 				ring->mr_srs = NULL;
3599 			}
3600 		}
3601 		if (!driver_call) {
3602 			cap_rings->mr_gremring(group->mrg_driver,
3603 			    ring->mr_driver, ring->mr_type);
3604 		}
3605 		group->mrg_cur_count--;
3606 		group->mrg_rings = ring->mr_next;
3607 
3608 		ring->mr_gh = NULL;
3609 
3610 		if (driver_call)
3611 			mac_ring_free(mip, ring);
3612 
3613 		return (ret);
3614 	}
3615 
3616 	/*
3617 	 * Update the ring's state.
3618 	 */
3619 	ring->mr_state = MR_INUSE;
3620 	MAC_RING_UNMARK(ring, MR_INCIPIENT);
3621 	return (0);
3622 }
3623 
3624 /*
3625  * Remove a ring from it's current group. MAC internal function for dynamic
3626  * grouping.
3627  *
3628  * The caller needs to call mac_perim_enter() before calling this function.
3629  */
3630 void
3631 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring,
3632     boolean_t driver_call)
3633 {
3634 	mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
3635 	mac_capab_rings_t *cap_rings = NULL;
3636 	mac_group_type_t group_type;
3637 
3638 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3639 
3640 	ASSERT(mac_find_ring(group, ring->mr_index) == ring);
3641 	ASSERT((mac_group_t *)ring->mr_gh == group);
3642 	ASSERT(ring->mr_type == group->mrg_type);
3643 
3644 	switch (ring->mr_type) {
3645 	case MAC_RING_TYPE_RX:
3646 		group_type = mip->mi_rx_group_type;
3647 		cap_rings = &mip->mi_rx_rings_cap;
3648 
3649 		if (group->mrg_state >= MAC_GROUP_STATE_RESERVED)
3650 			mac_stop_ring(ring);
3651 
3652 		/*
3653 		 * Only hardware classified packets hold a reference to the
3654 		 * ring all the way up the Rx path. mac_rx_srs_remove()
3655 		 * will take care of quiescing the Rx path and removing the
3656 		 * SRS. The software classified path neither holds a reference
3657 		 * nor any association with the ring in mac_rx.
3658 		 */
3659 		if (ring->mr_srs != NULL) {
3660 			mac_rx_srs_remove(ring->mr_srs);
3661 			ring->mr_srs = NULL;
3662 		}
3663 		ring->mr_state = MR_FREE;
3664 		ring->mr_flag = 0;
3665 
3666 		break;
3667 	case MAC_RING_TYPE_TX:
3668 		/*
3669 		 * For TX this function is only invoked in two
3670 		 * cases:
3671 		 *
3672 		 * 1) In the case of a failure during the
3673 		 * initial creation of a group when a share is
3674 		 * associated with a MAC client. So the SRS is not
3675 		 * yet setup, and will be setup later after the
3676 		 * group has been reserved and populated.
3677 		 *
3678 		 * 2) From mac_release_tx_group() when freeing
3679 		 * a TX SRS.
3680 		 *
3681 		 * In both cases the SRS and its soft rings are
3682 		 * already quiesced.
3683 		 */
3684 		ASSERT(!driver_call);
3685 		group_type = mip->mi_tx_group_type;
3686 		cap_rings = &mip->mi_tx_rings_cap;
3687 		break;
3688 	default:
3689 		ASSERT(B_FALSE);
3690 	}
3691 
3692 	/*
3693 	 * Remove the ring from the group.
3694 	 */
3695 	if (ring == group->mrg_rings)
3696 		group->mrg_rings = ring->mr_next;
3697 	else {
3698 		mac_ring_t *pre;
3699 
3700 		pre = group->mrg_rings;
3701 		while (pre->mr_next != ring)
3702 			pre = pre->mr_next;
3703 		pre->mr_next = ring->mr_next;
3704 	}
3705 	group->mrg_cur_count--;
3706 
3707 	if (!driver_call) {
3708 		ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
3709 		ASSERT(cap_rings->mr_gremring != NULL);
3710 
3711 		/*
3712 		 * Remove the driver level hardware ring.
3713 		 */
3714 		if (group->mrg_driver != NULL) {
3715 			cap_rings->mr_gremring(group->mrg_driver,
3716 			    ring->mr_driver, ring->mr_type);
3717 		}
3718 	}
3719 
3720 	ring->mr_gh = NULL;
3721 	if (driver_call) {
3722 		mac_ring_free(mip, ring);
3723 	} else {
3724 		ring->mr_state = MR_FREE;
3725 		ring->mr_flag = 0;
3726 	}
3727 }
3728 
3729 /*
3730  * Move a ring to the target group. If needed, remove the ring from the group
3731  * that it currently belongs to.
3732  *
3733  * The caller need to enter MAC's perimeter by calling mac_perim_enter().
3734  */
3735 static int
3736 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring)
3737 {
3738 	mac_group_t *s_group = (mac_group_t *)ring->mr_gh;
3739 	int rv;
3740 
3741 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3742 	ASSERT(d_group != NULL);
3743 	ASSERT(s_group->mrg_mh == d_group->mrg_mh);
3744 
3745 	if (s_group == d_group)
3746 		return (0);
3747 
3748 	/*
3749 	 * Remove it from current group first.
3750 	 */
3751 	if (s_group != NULL)
3752 		i_mac_group_rem_ring(s_group, ring, B_FALSE);
3753 
3754 	/*
3755 	 * Add it to the new group.
3756 	 */
3757 	rv = i_mac_group_add_ring(d_group, ring, 0);
3758 	if (rv != 0) {
3759 		/*
3760 		 * Failed to add ring back to source group. If
3761 		 * that fails, the ring is stuck in limbo, log message.
3762 		 */
3763 		if (i_mac_group_add_ring(s_group, ring, 0)) {
3764 			cmn_err(CE_WARN, "%s: failed to move ring %p\n",
3765 			    mip->mi_name, (void *)ring);
3766 		}
3767 	}
3768 
3769 	return (rv);
3770 }
3771 
3772 /*
3773  * Find a MAC address according to its value.
3774  */
3775 mac_address_t *
3776 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr)
3777 {
3778 	mac_address_t *map;
3779 
3780 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3781 
3782 	for (map = mip->mi_addresses; map != NULL; map = map->ma_next) {
3783 		if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0)
3784 			break;
3785 	}
3786 
3787 	return (map);
3788 }
3789 
3790 /*
3791  * Check whether the MAC address is shared by multiple clients.
3792  */
3793 boolean_t
3794 mac_check_macaddr_shared(mac_address_t *map)
3795 {
3796 	ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip));
3797 
3798 	return (map->ma_nusers > 1);
3799 }
3800 
3801 /*
3802  * Remove the specified MAC address from the MAC address list and free it.
3803  */
3804 static void
3805 mac_free_macaddr(mac_address_t *map)
3806 {
3807 	mac_impl_t *mip = map->ma_mip;
3808 
3809 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3810 	ASSERT(mip->mi_addresses != NULL);
3811 
3812 	map = mac_find_macaddr(mip, map->ma_addr);
3813 
3814 	ASSERT(map != NULL);
3815 	ASSERT(map->ma_nusers == 0);
3816 
3817 	if (map == mip->mi_addresses) {
3818 		mip->mi_addresses = map->ma_next;
3819 	} else {
3820 		mac_address_t *pre;
3821 
3822 		pre = mip->mi_addresses;
3823 		while (pre->ma_next != map)
3824 			pre = pre->ma_next;
3825 		pre->ma_next = map->ma_next;
3826 	}
3827 
3828 	kmem_free(map, sizeof (mac_address_t));
3829 }
3830 
3831 /*
3832  * Add a MAC address reference for a client. If the desired MAC address
3833  * exists, add a reference to it. Otherwise, add the new address by adding
3834  * it to a reserved group or setting promiscuous mode. Won't try different
3835  * group is the group is non-NULL, so the caller must explictly share
3836  * default group when needed.
3837  *
3838  * Note, the primary MAC address is initialized at registration time, so
3839  * to add it to default group only need to activate it if its reference
3840  * count is still zero. Also, some drivers may not have advertised RINGS
3841  * capability.
3842  */
3843 int
3844 mac_add_macaddr(mac_impl_t *mip, mac_group_t *group, uint8_t *mac_addr,
3845     boolean_t use_hw)
3846 {
3847 	mac_address_t *map;
3848 	int err = 0;
3849 	boolean_t allocated_map = B_FALSE;
3850 
3851 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3852 
3853 	map = mac_find_macaddr(mip, mac_addr);
3854 
3855 	/*
3856 	 * If the new MAC address has not been added. Allocate a new one
3857 	 * and set it up.
3858 	 */
3859 	if (map == NULL) {
3860 		map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
3861 		map->ma_len = mip->mi_type->mt_addr_length;
3862 		bcopy(mac_addr, map->ma_addr, map->ma_len);
3863 		map->ma_nusers = 0;
3864 		map->ma_group = group;
3865 		map->ma_mip = mip;
3866 
3867 		/* add the new MAC address to the head of the address list */
3868 		map->ma_next = mip->mi_addresses;
3869 		mip->mi_addresses = map;
3870 
3871 		allocated_map = B_TRUE;
3872 	}
3873 
3874 	ASSERT(map->ma_group == group);
3875 
3876 	/*
3877 	 * If the MAC address is already in use, simply account for the
3878 	 * new client.
3879 	 */
3880 	if (map->ma_nusers++ > 0)
3881 		return (0);
3882 
3883 	/*
3884 	 * Activate this MAC address by adding it to the reserved group.
3885 	 */
3886 	if (group != NULL) {
3887 		err = mac_group_addmac(group, (const uint8_t *)mac_addr);
3888 		if (err == 0) {
3889 			map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
3890 			return (0);
3891 		}
3892 	}
3893 
3894 	/*
3895 	 * The MAC address addition failed. If the client requires a
3896 	 * hardware classified MAC address, fail the operation.
3897 	 */
3898 	if (use_hw) {
3899 		err = ENOSPC;
3900 		goto bail;
3901 	}
3902 
3903 	/*
3904 	 * Try promiscuous mode.
3905 	 *
3906 	 * For drivers that don't advertise RINGS capability, do
3907 	 * nothing for the primary address.
3908 	 */
3909 	if ((group == NULL) &&
3910 	    (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) {
3911 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
3912 		return (0);
3913 	}
3914 
3915 	/*
3916 	 * Enable promiscuous mode in order to receive traffic
3917 	 * to the new MAC address.
3918 	 */
3919 	if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) {
3920 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC;
3921 		return (0);
3922 	}
3923 
3924 	/*
3925 	 * Free the MAC address that could not be added. Don't free
3926 	 * a pre-existing address, it could have been the entry
3927 	 * for the primary MAC address which was pre-allocated by
3928 	 * mac_init_macaddr(), and which must remain on the list.
3929 	 */
3930 bail:
3931 	map->ma_nusers--;
3932 	if (allocated_map)
3933 		mac_free_macaddr(map);
3934 	return (err);
3935 }
3936 
3937 /*
3938  * Remove a reference to a MAC address. This may cause to remove the MAC
3939  * address from an associated group or to turn off promiscuous mode.
3940  * The caller needs to handle the failure properly.
3941  */
3942 int
3943 mac_remove_macaddr(mac_address_t *map)
3944 {
3945 	mac_impl_t *mip = map->ma_mip;
3946 	int err = 0;
3947 
3948 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3949 
3950 	ASSERT(map == mac_find_macaddr(mip, map->ma_addr));
3951 
3952 	/*
3953 	 * If it's not the last client using this MAC address, only update
3954 	 * the MAC clients count.
3955 	 */
3956 	if (--map->ma_nusers > 0)
3957 		return (0);
3958 
3959 	/*
3960 	 * The MAC address is no longer used by any MAC client, so remove
3961 	 * it from its associated group, or turn off promiscuous mode
3962 	 * if it was enabled for the MAC address.
3963 	 */
3964 	switch (map->ma_type) {
3965 	case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
3966 		/*
3967 		 * Don't free the preset primary address for drivers that
3968 		 * don't advertise RINGS capability.
3969 		 */
3970 		if (map->ma_group == NULL)
3971 			return (0);
3972 
3973 		err = mac_group_remmac(map->ma_group, map->ma_addr);
3974 		break;
3975 	case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
3976 		err = i_mac_promisc_set(mip, B_FALSE);
3977 		break;
3978 	default:
3979 		ASSERT(B_FALSE);
3980 	}
3981 
3982 	if (err != 0)
3983 		return (err);
3984 
3985 	/*
3986 	 * We created MAC address for the primary one at registration, so we
3987 	 * won't free it here. mac_fini_macaddr() will take care of it.
3988 	 */
3989 	if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0)
3990 		mac_free_macaddr(map);
3991 
3992 	return (0);
3993 }
3994 
3995 /*
3996  * Update an existing MAC address. The caller need to make sure that the new
3997  * value has not been used.
3998  */
3999 int
4000 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr)
4001 {
4002 	mac_impl_t *mip = map->ma_mip;
4003 	int err = 0;
4004 
4005 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4006 	ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
4007 
4008 	switch (map->ma_type) {
4009 	case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
4010 		/*
4011 		 * Update the primary address for drivers that are not
4012 		 * RINGS capable.
4013 		 */
4014 		if (map->ma_group == NULL) {
4015 			err = mip->mi_unicst(mip->mi_driver, (const uint8_t *)
4016 			    mac_addr);
4017 			if (err != 0)
4018 				return (err);
4019 			break;
4020 		}
4021 
4022 		/*
4023 		 * If this MAC address is not currently in use,
4024 		 * simply break out and update the value.
4025 		 */
4026 		if (map->ma_nusers == 0)
4027 			break;
4028 
4029 		/*
4030 		 * Need to replace the MAC address associated with a group.
4031 		 */
4032 		err = mac_group_remmac(map->ma_group, map->ma_addr);
4033 		if (err != 0)
4034 			return (err);
4035 
4036 		err = mac_group_addmac(map->ma_group, mac_addr);
4037 
4038 		/*
4039 		 * Failure hints hardware error. The MAC layer needs to
4040 		 * have error notification facility to handle this.
4041 		 * Now, simply try to restore the value.
4042 		 */
4043 		if (err != 0)
4044 			(void) mac_group_addmac(map->ma_group, map->ma_addr);
4045 
4046 		break;
4047 	case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
4048 		/*
4049 		 * Need to do nothing more if in promiscuous mode.
4050 		 */
4051 		break;
4052 	default:
4053 		ASSERT(B_FALSE);
4054 	}
4055 
4056 	/*
4057 	 * Successfully replaced the MAC address.
4058 	 */
4059 	if (err == 0)
4060 		bcopy(mac_addr, map->ma_addr, map->ma_len);
4061 
4062 	return (err);
4063 }
4064 
4065 /*
4066  * Freshen the MAC address with new value. Its caller must have updated the
4067  * hardware MAC address before calling this function.
4068  * This funcitons is supposed to be used to handle the MAC address change
4069  * notification from underlying drivers.
4070  */
4071 void
4072 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr)
4073 {
4074 	mac_impl_t *mip = map->ma_mip;
4075 
4076 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4077 	ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
4078 
4079 	/*
4080 	 * Freshen the MAC address with new value.
4081 	 */
4082 	bcopy(mac_addr, map->ma_addr, map->ma_len);
4083 	bcopy(mac_addr, mip->mi_addr, map->ma_len);
4084 
4085 	/*
4086 	 * Update all MAC clients that share this MAC address.
4087 	 */
4088 	mac_unicast_update_clients(mip, map);
4089 }
4090 
4091 /*
4092  * Set up the primary MAC address.
4093  */
4094 void
4095 mac_init_macaddr(mac_impl_t *mip)
4096 {
4097 	mac_address_t *map;
4098 
4099 	/*
4100 	 * The reference count is initialized to zero, until it's really
4101 	 * activated.
4102 	 */
4103 	map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
4104 	map->ma_len = mip->mi_type->mt_addr_length;
4105 	bcopy(mip->mi_addr, map->ma_addr, map->ma_len);
4106 
4107 	/*
4108 	 * If driver advertises RINGS capability, it shouldn't have initialized
4109 	 * its primary MAC address. For other drivers, including VNIC, the
4110 	 * primary address must work after registration.
4111 	 */
4112 	if (mip->mi_rx_groups == NULL)
4113 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
4114 
4115 	/*
4116 	 * The primary MAC address is reserved for default group according
4117 	 * to current design.
4118 	 */
4119 	map->ma_group = mip->mi_rx_groups;
4120 	map->ma_mip = mip;
4121 
4122 	mip->mi_addresses = map;
4123 }
4124 
4125 /*
4126  * Clean up the primary MAC address. Note, only one primary MAC address
4127  * is allowed. All other MAC addresses must have been freed appropriately.
4128  */
4129 void
4130 mac_fini_macaddr(mac_impl_t *mip)
4131 {
4132 	mac_address_t *map = mip->mi_addresses;
4133 
4134 	if (map == NULL)
4135 		return;
4136 
4137 	/*
4138 	 * If mi_addresses is initialized, there should be exactly one
4139 	 * entry left on the list with no users.
4140 	 */
4141 	ASSERT(map->ma_nusers == 0);
4142 	ASSERT(map->ma_next == NULL);
4143 
4144 	kmem_free(map, sizeof (mac_address_t));
4145 	mip->mi_addresses = NULL;
4146 }
4147 
4148 /*
4149  * Logging related functions.
4150  */
4151 
4152 /* Write the Flow description to the log file */
4153 int
4154 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip)
4155 {
4156 	flow_desc_t		*fdesc;
4157 	mac_resource_props_t	*mrp;
4158 	net_desc_t		ndesc;
4159 
4160 	bzero(&ndesc, sizeof (net_desc_t));
4161 
4162 	/*
4163 	 * Grab the fe_lock to see a self-consistent fe_flow_desc.
4164 	 * Updates to the fe_flow_desc are done under the fe_lock
4165 	 */
4166 	mutex_enter(&flent->fe_lock);
4167 	fdesc = &flent->fe_flow_desc;
4168 	mrp = &flent->fe_resource_props;
4169 
4170 	ndesc.nd_name = flent->fe_flow_name;
4171 	ndesc.nd_devname = mcip->mci_name;
4172 	bcopy(fdesc->fd_src_mac, ndesc.nd_ehost, ETHERADDRL);
4173 	bcopy(fdesc->fd_dst_mac, ndesc.nd_edest, ETHERADDRL);
4174 	ndesc.nd_sap = htonl(fdesc->fd_sap);
4175 	ndesc.nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION;
4176 	ndesc.nd_bw_limit = mrp->mrp_maxbw;
4177 	if (ndesc.nd_isv4) {
4178 		ndesc.nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]);
4179 		ndesc.nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]);
4180 	} else {
4181 		bcopy(&fdesc->fd_local_addr, ndesc.nd_saddr, IPV6_ADDR_LEN);
4182 		bcopy(&fdesc->fd_remote_addr, ndesc.nd_daddr, IPV6_ADDR_LEN);
4183 	}
4184 	ndesc.nd_sport = htons(fdesc->fd_local_port);
4185 	ndesc.nd_dport = htons(fdesc->fd_remote_port);
4186 	ndesc.nd_protocol = (uint8_t)fdesc->fd_protocol;
4187 	mutex_exit(&flent->fe_lock);
4188 
4189 	return (exacct_commit_netinfo((void *)&ndesc, EX_NET_FLDESC_REC));
4190 }
4191 
4192 /* Write the Flow statistics to the log file */
4193 int
4194 mac_write_flow_stats(flow_entry_t *flent)
4195 {
4196 	flow_stats_t	*fl_stats;
4197 	net_stat_t	nstat;
4198 
4199 	fl_stats = &flent->fe_flowstats;
4200 	nstat.ns_name = flent->fe_flow_name;
4201 	nstat.ns_ibytes = fl_stats->fs_rbytes;
4202 	nstat.ns_obytes = fl_stats->fs_obytes;
4203 	nstat.ns_ipackets = fl_stats->fs_ipackets;
4204 	nstat.ns_opackets = fl_stats->fs_opackets;
4205 	nstat.ns_ierrors = fl_stats->fs_ierrors;
4206 	nstat.ns_oerrors = fl_stats->fs_oerrors;
4207 
4208 	return (exacct_commit_netinfo((void *)&nstat, EX_NET_FLSTAT_REC));
4209 }
4210 
4211 /* Write the Link Description to the log file */
4212 int
4213 mac_write_link_desc(mac_client_impl_t *mcip)
4214 {
4215 	net_desc_t		ndesc;
4216 	flow_entry_t		*flent = mcip->mci_flent;
4217 
4218 	bzero(&ndesc, sizeof (net_desc_t));
4219 
4220 	ndesc.nd_name = mcip->mci_name;
4221 	ndesc.nd_devname = mcip->mci_name;
4222 	ndesc.nd_isv4 = B_TRUE;
4223 	/*
4224 	 * Grab the fe_lock to see a self-consistent fe_flow_desc.
4225 	 * Updates to the fe_flow_desc are done under the fe_lock
4226 	 * after removing the flent from the flow table.
4227 	 */
4228 	mutex_enter(&flent->fe_lock);
4229 	bcopy(flent->fe_flow_desc.fd_src_mac, ndesc.nd_ehost, ETHERADDRL);
4230 	mutex_exit(&flent->fe_lock);
4231 
4232 	return (exacct_commit_netinfo((void *)&ndesc, EX_NET_LNDESC_REC));
4233 }
4234 
4235 /* Write the Link statistics to the log file */
4236 int
4237 mac_write_link_stats(mac_client_impl_t *mcip)
4238 {
4239 	net_stat_t	nstat;
4240 
4241 	nstat.ns_name = mcip->mci_name;
4242 	nstat.ns_ibytes = mcip->mci_stat_ibytes;
4243 	nstat.ns_obytes = mcip->mci_stat_obytes;
4244 	nstat.ns_ipackets = mcip->mci_stat_ipackets;
4245 	nstat.ns_opackets = mcip->mci_stat_opackets;
4246 	nstat.ns_ierrors = mcip->mci_stat_ierrors;
4247 	nstat.ns_oerrors = mcip->mci_stat_oerrors;
4248 
4249 	return (exacct_commit_netinfo((void *)&nstat, EX_NET_LNSTAT_REC));
4250 }
4251 
4252 /*
4253  * For a given flow, if the descrition has not been logged before, do it now.
4254  * If it is a VNIC, then we have collected information about it from the MAC
4255  * table, so skip it.
4256  */
4257 /*ARGSUSED*/
4258 static int
4259 mac_log_flowinfo(flow_entry_t *flent, void *args)
4260 {
4261 	mac_client_impl_t	*mcip = flent->fe_mcip;
4262 
4263 	if (mcip == NULL)
4264 		return (0);
4265 
4266 	/*
4267 	 * If the name starts with "vnic", and fe_user_generated is true (to
4268 	 * exclude the mcast and active flow entries created implicitly for
4269 	 * a vnic, it is a VNIC flow.  i.e. vnic1 is a vnic flow,
4270 	 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active.
4271 	 */
4272 	if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 &&
4273 	    (flent->fe_type & FLOW_USER) != 0) {
4274 		return (0);
4275 	}
4276 
4277 	if (!flent->fe_desc_logged) {
4278 		/*
4279 		 * We don't return error because we want to continu the
4280 		 * walk in case this is the last walk which means we
4281 		 * need to reset fe_desc_logged in all the flows.
4282 		 */
4283 		if (mac_write_flow_desc(flent, mcip) != 0)
4284 			return (0);
4285 		flent->fe_desc_logged = B_TRUE;
4286 	}
4287 
4288 	/*
4289 	 * Regardless of the error, we want to proceed in case we have to
4290 	 * reset fe_desc_logged.
4291 	 */
4292 	(void) mac_write_flow_stats(flent);
4293 
4294 	if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED))
4295 		flent->fe_desc_logged = B_FALSE;
4296 
4297 	return (0);
4298 }
4299 
4300 typedef struct i_mac_log_state_s {
4301 	boolean_t	mi_last;
4302 	int		mi_fenable;
4303 	int		mi_lenable;
4304 } i_mac_log_state_t;
4305 
4306 /*
4307  * Walk the mac_impl_ts and log the description for each mac client of this mac,
4308  * if it hasn't already been done. Additionally, log statistics for the link as
4309  * well. Walk the flow table and log information for each flow as well.
4310  * If it is the last walk (mci_last), then we turn off mci_desc_logged (and
4311  * also fe_desc_logged, if flow logging is on) since we want to log the
4312  * description if and when logging is restarted.
4313  */
4314 /*ARGSUSED*/
4315 static uint_t
4316 i_mac_log_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
4317 {
4318 	mac_impl_t		*mip = (mac_impl_t *)val;
4319 	i_mac_log_state_t	*lstate = (i_mac_log_state_t *)arg;
4320 	int			ret;
4321 	mac_client_impl_t	*mcip;
4322 
4323 	/*
4324 	 * Only walk the client list for NIC and etherstub
4325 	 */
4326 	if ((mip->mi_state_flags & MIS_DISABLED) ||
4327 	    ((mip->mi_state_flags & MIS_IS_VNIC) &&
4328 	    (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL)))
4329 		return (MH_WALK_CONTINUE);
4330 
4331 	for (mcip = mip->mi_clients_list; mcip != NULL;
4332 	    mcip = mcip->mci_client_next) {
4333 		if (!MCIP_DATAPATH_SETUP(mcip))
4334 			continue;
4335 		if (lstate->mi_lenable) {
4336 			if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) {
4337 				ret = mac_write_link_desc(mcip);
4338 				if (ret != 0) {
4339 				/*
4340 				 * We can't terminate it if this is the last
4341 				 * walk, else there might be some links with
4342 				 * mi_desc_logged set to true, which means
4343 				 * their description won't be logged the next
4344 				 * time logging is started (similarly for the
4345 				 * flows within such links). We can continue
4346 				 * without walking the flow table (i.e. to
4347 				 * set fe_desc_logged to false) because we
4348 				 * won't have written any flow stuff for this
4349 				 * link as we haven't logged the link itself.
4350 				 */
4351 					if (lstate->mi_last)
4352 						return (MH_WALK_CONTINUE);
4353 					else
4354 						return (MH_WALK_TERMINATE);
4355 				}
4356 				mcip->mci_state_flags |= MCIS_DESC_LOGGED;
4357 			}
4358 		}
4359 
4360 		if (mac_write_link_stats(mcip) != 0 && !lstate->mi_last)
4361 			return (MH_WALK_TERMINATE);
4362 
4363 		if (lstate->mi_last)
4364 			mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
4365 
4366 		if (lstate->mi_fenable) {
4367 			if (mcip->mci_subflow_tab != NULL) {
4368 				(void) mac_flow_walk(mcip->mci_subflow_tab,
4369 				    mac_log_flowinfo, mip);
4370 			}
4371 		}
4372 	}
4373 	return (MH_WALK_CONTINUE);
4374 }
4375 
4376 /*
4377  * The timer thread that runs every mac_logging_interval seconds and logs
4378  * link and/or flow information.
4379  */
4380 /* ARGSUSED */
4381 void
4382 mac_log_linkinfo(void *arg)
4383 {
4384 	i_mac_log_state_t	lstate;
4385 
4386 	rw_enter(&i_mac_impl_lock, RW_READER);
4387 	if (!mac_flow_log_enable && !mac_link_log_enable) {
4388 		rw_exit(&i_mac_impl_lock);
4389 		return;
4390 	}
4391 	lstate.mi_fenable = mac_flow_log_enable;
4392 	lstate.mi_lenable = mac_link_log_enable;
4393 	lstate.mi_last = B_FALSE;
4394 	rw_exit(&i_mac_impl_lock);
4395 
4396 	mod_hash_walk(i_mac_impl_hash, i_mac_log_walker, &lstate);
4397 
4398 	rw_enter(&i_mac_impl_lock, RW_WRITER);
4399 	if (mac_flow_log_enable || mac_link_log_enable) {
4400 		mac_logging_timer = timeout(mac_log_linkinfo, NULL,
4401 		    SEC_TO_TICK(mac_logging_interval));
4402 	}
4403 	rw_exit(&i_mac_impl_lock);
4404 }
4405 
4406 typedef struct i_mac_fastpath_state_s {
4407 	boolean_t	mf_disable;
4408 	int		mf_err;
4409 } i_mac_fastpath_state_t;
4410 
4411 /*ARGSUSED*/
4412 static uint_t
4413 i_mac_fastpath_disable_walker(mod_hash_key_t key, mod_hash_val_t *val,
4414     void *arg)
4415 {
4416 	i_mac_fastpath_state_t	*state = arg;
4417 	mac_handle_t		mh = (mac_handle_t)val;
4418 
4419 	if (state->mf_disable)
4420 		state->mf_err = mac_fastpath_disable(mh);
4421 	else
4422 		mac_fastpath_enable(mh);
4423 
4424 	return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE);
4425 }
4426 
4427 /*
4428  * Start the logging timer.
4429  */
4430 int
4431 mac_start_logusage(mac_logtype_t type, uint_t interval)
4432 {
4433 	i_mac_fastpath_state_t state = {B_TRUE, 0};
4434 	int err;
4435 
4436 	rw_enter(&i_mac_impl_lock, RW_WRITER);
4437 	switch (type) {
4438 	case MAC_LOGTYPE_FLOW:
4439 		if (mac_flow_log_enable) {
4440 			rw_exit(&i_mac_impl_lock);
4441 			return (0);
4442 		}
4443 		/* FALLTHRU */
4444 	case MAC_LOGTYPE_LINK:
4445 		if (mac_link_log_enable) {
4446 			rw_exit(&i_mac_impl_lock);
4447 			return (0);
4448 		}
4449 		break;
4450 	default:
4451 		ASSERT(0);
4452 	}
4453 
4454 	/* Disable fastpath */
4455 	mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_disable_walker, &state);
4456 	if ((err = state.mf_err) != 0) {
4457 		/* Reenable fastpath  */
4458 		state.mf_disable = B_FALSE;
4459 		state.mf_err = 0;
4460 		mod_hash_walk(i_mac_impl_hash,
4461 		    i_mac_fastpath_disable_walker, &state);
4462 		rw_exit(&i_mac_impl_lock);
4463 		return (err);
4464 	}
4465 
4466 	switch (type) {
4467 	case MAC_LOGTYPE_FLOW:
4468 		mac_flow_log_enable = B_TRUE;
4469 		/* FALLTHRU */
4470 	case MAC_LOGTYPE_LINK:
4471 		mac_link_log_enable = B_TRUE;
4472 		break;
4473 	}
4474 
4475 	mac_logging_interval = interval;
4476 	rw_exit(&i_mac_impl_lock);
4477 	mac_log_linkinfo(NULL);
4478 	return (0);
4479 }
4480 
4481 /*
4482  * Stop the logging timer if both Link and Flow logging are turned off.
4483  */
4484 void
4485 mac_stop_logusage(mac_logtype_t type)
4486 {
4487 	i_mac_log_state_t	lstate;
4488 	i_mac_fastpath_state_t	state = {B_FALSE, 0};
4489 
4490 	rw_enter(&i_mac_impl_lock, RW_WRITER);
4491 	lstate.mi_fenable = mac_flow_log_enable;
4492 	lstate.mi_lenable = mac_link_log_enable;
4493 
4494 	/* Last walk */
4495 	lstate.mi_last = B_TRUE;
4496 
4497 	switch (type) {
4498 	case MAC_LOGTYPE_FLOW:
4499 		if (lstate.mi_fenable) {
4500 			ASSERT(mac_link_log_enable);
4501 			mac_flow_log_enable = B_FALSE;
4502 			mac_link_log_enable = B_FALSE;
4503 			break;
4504 		}
4505 		/* FALLTHRU */
4506 	case MAC_LOGTYPE_LINK:
4507 		if (!lstate.mi_lenable || mac_flow_log_enable) {
4508 			rw_exit(&i_mac_impl_lock);
4509 			return;
4510 		}
4511 		mac_link_log_enable = B_FALSE;
4512 		break;
4513 	default:
4514 		ASSERT(0);
4515 	}
4516 
4517 	/* Reenable fastpath */
4518 	mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_disable_walker, &state);
4519 
4520 	rw_exit(&i_mac_impl_lock);
4521 	(void) untimeout(mac_logging_timer);
4522 	mac_logging_timer = 0;
4523 
4524 	/* Last walk */
4525 	mod_hash_walk(i_mac_impl_hash, i_mac_log_walker, &lstate);
4526 }
4527 
4528 /*
4529  * Walk the rx and tx SRS/SRs for a flow and update the priority value.
4530  */
4531 void
4532 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent)
4533 {
4534 	pri_t			pri;
4535 	int			count;
4536 	mac_soft_ring_set_t	*mac_srs;
4537 
4538 	if (flent->fe_rx_srs_cnt <= 0)
4539 		return;
4540 
4541 	if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type ==
4542 	    SRST_FLOW) {
4543 		pri = FLOW_PRIORITY(mcip->mci_min_pri,
4544 		    mcip->mci_max_pri,
4545 		    flent->fe_resource_props.mrp_priority);
4546 	} else {
4547 		pri = mcip->mci_max_pri;
4548 	}
4549 
4550 	for (count = 0; count < flent->fe_rx_srs_cnt; count++) {
4551 		mac_srs = flent->fe_rx_srs[count];
4552 		mac_update_srs_priority(mac_srs, pri);
4553 	}
4554 	/*
4555 	 * If we have a Tx SRS, we need to modify all the threads associated
4556 	 * with it.
4557 	 */
4558 	if (flent->fe_tx_srs != NULL)
4559 		mac_update_srs_priority(flent->fe_tx_srs, pri);
4560 }
4561 
4562 /*
4563  * RX and TX rings are reserved according to different semantics depending
4564  * on the requests from the MAC clients and type of rings:
4565  *
4566  * On the Tx side, by default we reserve individual rings, independently from
4567  * the groups.
4568  *
4569  * On the Rx side, the reservation is at the granularity of the group
4570  * of rings, and used for v12n level 1 only. It has a special case for the
4571  * primary client.
4572  *
4573  * If a share is allocated to a MAC client, we allocate a TX group and an
4574  * RX group to the client, and assign TX rings and RX rings to these
4575  * groups according to information gathered from the driver through
4576  * the share capability.
4577  *
4578  * The foreseable evolution of Rx rings will handle v12n level 2 and higher
4579  * to allocate individual rings out of a group and program the hw classifier
4580  * based on IP address or higher level criteria.
4581  */
4582 
4583 /*
4584  * mac_reserve_tx_ring()
4585  * Reserve a unused ring by marking it with MR_INUSE state.
4586  * As reserved, the ring is ready to function.
4587  *
4588  * Notes for Hybrid I/O:
4589  *
4590  * If a specific ring is needed, it is specified through the desired_ring
4591  * argument. Otherwise that argument is set to NULL.
4592  * If the desired ring was previous allocated to another client, this
4593  * function swaps it with a new ring from the group of unassigned rings.
4594  */
4595 mac_ring_t *
4596 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring)
4597 {
4598 	mac_group_t *group;
4599 	mac_ring_t *ring;
4600 
4601 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4602 
4603 	if (mip->mi_tx_groups == NULL)
4604 		return (NULL);
4605 
4606 	/*
4607 	 * Find an available ring and start it before changing its status.
4608 	 * The unassigned rings are at the end of the mi_tx_groups
4609 	 * array.
4610 	 */
4611 	group = mip->mi_tx_groups + mip->mi_tx_group_count;
4612 
4613 	for (ring = group->mrg_rings; ring != NULL;
4614 	    ring = ring->mr_next) {
4615 		if (desired_ring == NULL) {
4616 			if (ring->mr_state == MR_FREE)
4617 				/* wanted any free ring and found one */
4618 				break;
4619 		} else {
4620 			mac_ring_t *sring;
4621 			mac_client_impl_t *client;
4622 			mac_soft_ring_set_t *srs;
4623 
4624 			if (ring != desired_ring)
4625 				/* wants a desired ring but this one ain't it */
4626 				continue;
4627 
4628 			if (ring->mr_state == MR_FREE)
4629 				break;
4630 
4631 			/*
4632 			 * Found the desired ring but it's already in use.
4633 			 * Swap it with a new ring.
4634 			 */
4635 
4636 			/* find the client which owns that ring */
4637 			for (client = mip->mi_clients_list; client != NULL;
4638 			    client = client->mci_client_next) {
4639 				srs = MCIP_TX_SRS(client);
4640 				if (srs != NULL && mac_tx_srs_ring_present(srs,
4641 				    desired_ring)) {
4642 					/* found our ring */
4643 					break;
4644 				}
4645 			}
4646 			if (client == NULL) {
4647 				/*
4648 				 * The TX ring is in use, but it's not
4649 				 * associated with any clients, so it
4650 				 * has to be the default ring. In that
4651 				 * case we can simply assign a new ring
4652 				 * as the default ring, and we're done.
4653 				 */
4654 				ASSERT(mip->mi_default_tx_ring ==
4655 				    (mac_ring_handle_t)desired_ring);
4656 
4657 				/*
4658 				 * Quiesce all clients on top of
4659 				 * the NIC to make sure there are no
4660 				 * pending threads still relying on
4661 				 * that default ring, for example
4662 				 * the multicast path.
4663 				 */
4664 				for (client = mip->mi_clients_list;
4665 				    client != NULL;
4666 				    client = client->mci_client_next) {
4667 					mac_tx_client_quiesce(client,
4668 					    SRS_QUIESCE);
4669 				}
4670 
4671 				mip->mi_default_tx_ring = (mac_ring_handle_t)
4672 				    mac_reserve_tx_ring(mip, NULL);
4673 
4674 				/* resume the clients */
4675 				for (client = mip->mi_clients_list;
4676 				    client != NULL;
4677 				    client = client->mci_client_next)
4678 					mac_tx_client_restart(client);
4679 
4680 				break;
4681 			}
4682 
4683 			/*
4684 			 * Note that we cannot simply invoke the group
4685 			 * add/rem routines since the client doesn't have a
4686 			 * TX group. So we need to instead add/remove
4687 			 * the rings from the SRS.
4688 			 */
4689 			ASSERT(client->mci_share == NULL);
4690 
4691 			/* first quiece the client */
4692 			mac_tx_client_quiesce(client, SRS_QUIESCE);
4693 
4694 			/* give a new ring to the client... */
4695 			sring = mac_reserve_tx_ring(mip, NULL);
4696 			if (sring != NULL) {
4697 				/*
4698 				 * There are no other available ring
4699 				 * on that MAC instance. The client
4700 				 * will fallback to the shared TX
4701 				 * ring.
4702 				 */
4703 				mac_tx_srs_add_ring(srs, sring);
4704 			}
4705 
4706 			/* ... in exchange for our desired ring */
4707 			mac_tx_srs_del_ring(srs, desired_ring);
4708 
4709 			/* restart the client */
4710 			mac_tx_client_restart(client);
4711 
4712 			if (mip->mi_default_tx_ring ==
4713 			    (mac_ring_handle_t)desired_ring) {
4714 				/*
4715 				 * The desired ring is the default ring,
4716 				 * and there are one or more clients
4717 				 * using that default ring directly.
4718 				 */
4719 				mip->mi_default_tx_ring =
4720 				    (mac_ring_handle_t)sring;
4721 				/*
4722 				 * Find clients using default ring and
4723 				 * swap it with the new default ring.
4724 				 */
4725 				for (client = mip->mi_clients_list;
4726 				    client != NULL;
4727 				    client = client->mci_client_next) {
4728 					srs = MCIP_TX_SRS(client);
4729 					if (srs != NULL &&
4730 					    mac_tx_srs_ring_present(srs,
4731 					    desired_ring)) {
4732 						/* first quiece the client */
4733 						mac_tx_client_quiesce(client,
4734 						    SRS_QUIESCE);
4735 
4736 						/*
4737 						 * Give it the new default
4738 						 * ring, and remove the old
4739 						 * one.
4740 						 */
4741 						if (sring != NULL) {
4742 							mac_tx_srs_add_ring(srs,
4743 							    sring);
4744 						}
4745 						mac_tx_srs_del_ring(srs,
4746 						    desired_ring);
4747 
4748 						/* restart the client */
4749 						mac_tx_client_restart(client);
4750 					}
4751 				}
4752 			}
4753 			break;
4754 		}
4755 	}
4756 
4757 	if (ring != NULL) {
4758 		if (mac_start_ring(ring) != 0)
4759 			return (NULL);
4760 		ring->mr_state = MR_INUSE;
4761 	}
4762 
4763 	return (ring);
4764 }
4765 
4766 /*
4767  * Minimum number of rings to leave in the default TX group when allocating
4768  * rings to new clients.
4769  */
4770 static uint_t mac_min_rx_default_rings = 1;
4771 
4772 /*
4773  * Populate a zero-ring group with rings. If the share is non-NULL,
4774  * the rings are chosen according to that share.
4775  * Invoked after allocating a new RX or TX group through
4776  * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively.
4777  * Returns zero on success, an errno otherwise.
4778  */
4779 int
4780 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type,
4781     mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share)
4782 {
4783 	mac_ring_t **rings, *tmp_ring[1], *ring;
4784 	uint_t nrings;
4785 	int rv, i, j;
4786 
4787 	ASSERT(mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC &&
4788 	    mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC);
4789 	ASSERT(new_group->mrg_cur_count == 0);
4790 
4791 	/*
4792 	 * First find the rings to allocate to the group.
4793 	 */
4794 	if (share != NULL) {
4795 		/* get rings through ms_squery() */
4796 		mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings);
4797 		ASSERT(nrings != 0);
4798 		rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t),
4799 		    KM_SLEEP);
4800 		mip->mi_share_capab.ms_squery(share, ring_type,
4801 		    (mac_ring_handle_t *)rings, &nrings);
4802 	} else {
4803 		/* this function is called for TX only with a share */
4804 		ASSERT(ring_type == MAC_RING_TYPE_RX);
4805 		/*
4806 		 * Pick one ring from default group.
4807 		 *
4808 		 * for now pick the second ring which requires the first ring
4809 		 * at index 0 to stay in the default group, since it is the
4810 		 * ring which carries the multicast traffic.
4811 		 * We need a better way for a driver to indicate this,
4812 		 * for example a per-ring flag.
4813 		 */
4814 		for (ring = src_group->mrg_rings; ring != NULL;
4815 		    ring = ring->mr_next) {
4816 			if (ring->mr_index != 0)
4817 				break;
4818 		}
4819 		ASSERT(ring != NULL);
4820 		nrings = 1;
4821 		tmp_ring[0] = ring;
4822 		rings = tmp_ring;
4823 	}
4824 
4825 	switch (ring_type) {
4826 	case MAC_RING_TYPE_RX:
4827 		if (src_group->mrg_cur_count - nrings <
4828 		    mac_min_rx_default_rings) {
4829 			/* we ran out of rings */
4830 			return (ENOSPC);
4831 		}
4832 
4833 		/* move receive rings to new group */
4834 		for (i = 0; i < nrings; i++) {
4835 			rv = mac_group_mov_ring(mip, new_group, rings[i]);
4836 			if (rv != 0) {
4837 				/* move rings back on failure */
4838 				for (j = 0; j < i; j++) {
4839 					(void) mac_group_mov_ring(mip,
4840 					    src_group, rings[j]);
4841 				}
4842 				return (rv);
4843 			}
4844 		}
4845 		break;
4846 
4847 	case MAC_RING_TYPE_TX: {
4848 		mac_ring_t *tmp_ring;
4849 
4850 		/* move the TX rings to the new group */
4851 		ASSERT(src_group == NULL);
4852 		for (i = 0; i < nrings; i++) {
4853 			/* get the desired ring */
4854 			tmp_ring = mac_reserve_tx_ring(mip, rings[i]);
4855 			ASSERT(tmp_ring == rings[i]);
4856 			rv = mac_group_mov_ring(mip, new_group, rings[i]);
4857 			if (rv != 0) {
4858 				/* cleanup on failure */
4859 				for (j = 0; j < i; j++) {
4860 					(void) mac_group_mov_ring(mip,
4861 					    mip->mi_tx_groups +
4862 					    mip->mi_tx_group_count, rings[j]);
4863 				}
4864 			}
4865 		}
4866 		break;
4867 	}
4868 	}
4869 
4870 	if (share != NULL) {
4871 		/* add group to share */
4872 		mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver);
4873 		/* free temporary array of rings */
4874 		kmem_free(rings, nrings * sizeof (mac_ring_handle_t));
4875 	}
4876 
4877 	return (0);
4878 }
4879 
4880 void
4881 mac_rx_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip)
4882 {
4883 	mac_grp_client_t *mgcp;
4884 
4885 	for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
4886 		if (mgcp->mgc_client == mcip)
4887 			break;
4888 	}
4889 
4890 	VERIFY(mgcp == NULL);
4891 
4892 	mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP);
4893 	mgcp->mgc_client = mcip;
4894 	mgcp->mgc_next = grp->mrg_clients;
4895 	grp->mrg_clients = mgcp;
4896 
4897 }
4898 
4899 void
4900 mac_rx_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip)
4901 {
4902 	mac_grp_client_t *mgcp, **pprev;
4903 
4904 	for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL;
4905 	    pprev = &mgcp->mgc_next, mgcp = *pprev) {
4906 		if (mgcp->mgc_client == mcip)
4907 			break;
4908 	}
4909 
4910 	ASSERT(mgcp != NULL);
4911 
4912 	*pprev = mgcp->mgc_next;
4913 	kmem_free(mgcp, sizeof (mac_grp_client_t));
4914 }
4915 
4916 /*
4917  * mac_reserve_rx_group()
4918  *
4919  * Finds an available group and exclusively reserves it for a client.
4920  * The group is chosen to suit the flow's resource controls (bandwidth and
4921  * fanout requirements) and the address type.
4922  * If the requestor is the pimary MAC then return the group with the
4923  * largest number of rings, otherwise the default ring when available.
4924  */
4925 mac_group_t *
4926 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr,
4927     mac_rx_group_reserve_type_t rtype)
4928 {
4929 	mac_share_handle_t	share = mcip->mci_share;
4930 	mac_impl_t		*mip = mcip->mci_mip;
4931 	mac_group_t		*grp = NULL;
4932 	int			i, start, loopcount;
4933 	int			err;
4934 	mac_address_t		*map;
4935 
4936 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4937 
4938 	/* Check if a group already has this mac address (case of VLANs) */
4939 	if ((map = mac_find_macaddr(mip, mac_addr)) != NULL)
4940 		return (map->ma_group);
4941 
4942 	if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0 ||
4943 	    rtype == MAC_RX_NO_RESERVE)
4944 		return (NULL);
4945 
4946 	/*
4947 	 * Try to exclusively reserve a RX group.
4948 	 *
4949 	 * For flows requires SW_RING it always goes to the default group
4950 	 * (Until we can explicitely call out default groups (CR 6695600),
4951 	 * we assume that the default group is always at position zero);
4952 	 *
4953 	 * For flows requires HW_DEFAULT_RING (unicast flow of the primary
4954 	 * client), try to reserve the default RX group only.
4955 	 *
4956 	 * For flows requires HW_RING (unicast flow of other clients), try
4957 	 * to reserve non-default RX group then the default group.
4958 	 */
4959 	switch (rtype) {
4960 	case MAC_RX_RESERVE_DEFAULT:
4961 		start = 0;
4962 		loopcount = 1;
4963 		break;
4964 	case MAC_RX_RESERVE_NONDEFAULT:
4965 		start = 1;
4966 		loopcount = mip->mi_rx_group_count;
4967 	}
4968 
4969 	for (i = start; i < start + loopcount; i++) {
4970 		grp = &mip->mi_rx_groups[i % mip->mi_rx_group_count];
4971 
4972 		DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name,
4973 		    int, grp->mrg_index, mac_group_state_t, grp->mrg_state);
4974 
4975 		/*
4976 		 * Check to see whether this mac client is the only client
4977 		 * on this RX group. If not, we cannot exclusively reserve
4978 		 * this RX group.
4979 		 */
4980 		if (!MAC_RX_GROUP_NO_CLIENT(grp) &&
4981 		    (MAC_RX_GROUP_ONLY_CLIENT(grp) != mcip)) {
4982 			continue;
4983 		}
4984 
4985 		/*
4986 		 * This group could already be SHARED by other multicast
4987 		 * flows on this client. In that case, the group would
4988 		 * be shared and has already been started.
4989 		 */
4990 		ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT);
4991 
4992 		if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) &&
4993 		    (mac_start_group(grp) != 0)) {
4994 			continue;
4995 		}
4996 
4997 		if ((i % mip->mi_rx_group_count) == 0 ||
4998 		    mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) {
4999 			break;
5000 		}
5001 
5002 		ASSERT(grp->mrg_cur_count == 0);
5003 
5004 		/*
5005 		 * Populate the group. Rings should be taken
5006 		 * from the default group at position 0 for now.
5007 		 */
5008 
5009 		err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
5010 		    &mip->mi_rx_groups[0], grp, share);
5011 		if (err == 0)
5012 			break;
5013 
5014 		DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
5015 		    mip->mi_name, int, grp->mrg_index, int, err);
5016 
5017 		/*
5018 		 * It's a dynamic group but the grouping operation failed.
5019 		 */
5020 		mac_stop_group(grp);
5021 	}
5022 
5023 	if (i == start + loopcount)
5024 		return (NULL);
5025 
5026 	ASSERT(grp != NULL);
5027 
5028 	DTRACE_PROBE2(rx__group__reserved,
5029 	    char *, mip->mi_name, int, grp->mrg_index);
5030 	return (grp);
5031 }
5032 
5033 /*
5034  * mac_rx_release_group()
5035  *
5036  * This is called when there are no clients left for the group.
5037  * The group is stopped and marked MAC_GROUP_STATE_REGISTERED,
5038  * and if it is a non default group, the shares are removed and
5039  * all rings are assigned back to default group.
5040  */
5041 void
5042 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group)
5043 {
5044 	mac_impl_t	*mip = mcip->mci_mip;
5045 	mac_ring_t	*ring;
5046 
5047 	ASSERT(group != &mip->mi_rx_groups[0]);
5048 
5049 	/*
5050 	 * This is the case where there are no clients left. Any
5051 	 * SRS etc on this group have also be quiesced.
5052 	 */
5053 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
5054 		if (ring->mr_classify_type == MAC_HW_CLASSIFIER) {
5055 			ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
5056 			/*
5057 			 * Remove the SRS associated with the HW ring.
5058 			 * As a result, polling will be disabled.
5059 			 */
5060 			ring->mr_srs = NULL;
5061 		}
5062 		ASSERT(ring->mr_state == MR_INUSE);
5063 		mac_stop_ring(ring);
5064 		ring->mr_state = MR_FREE;
5065 		ring->mr_flag = 0;
5066 	}
5067 
5068 	/* remove group from share */
5069 	if (mcip->mci_share != NULL) {
5070 		mip->mi_share_capab.ms_sremove(mcip->mci_share,
5071 		    group->mrg_driver);
5072 	}
5073 
5074 	if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
5075 		mac_ring_t *ring;
5076 
5077 		/*
5078 		 * Rings were dynamically allocated to group.
5079 		 * Move rings back to default group.
5080 		 */
5081 		while ((ring = group->mrg_rings) != NULL) {
5082 			(void) mac_group_mov_ring(mip,
5083 			    &mip->mi_rx_groups[0], ring);
5084 		}
5085 	}
5086 	mac_stop_group(group);
5087 	/*
5088 	 * Possible improvement: See if we can assign the group just released
5089 	 * to a another client of the mip
5090 	 */
5091 }
5092 
5093 /*
5094  * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup()
5095  * when a share was allocated to the client.
5096  */
5097 mac_group_t *
5098 mac_reserve_tx_group(mac_impl_t *mip, mac_share_handle_t share)
5099 {
5100 	mac_group_t *grp;
5101 	int rv, i;
5102 
5103 	/*
5104 	 * TX groups are currently allocated only to MAC clients
5105 	 * which are associated with a share. Since we have a fixed
5106 	 * number of share and groups, and we already successfully
5107 	 * allocated a share, find an available TX group.
5108 	 */
5109 	ASSERT(share != NULL);
5110 	ASSERT(mip->mi_tx_group_free > 0);
5111 
5112 	for (i = 0; i <  mip->mi_tx_group_count; i++) {
5113 		grp = &mip->mi_tx_groups[i];
5114 
5115 		if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) ||
5116 		    (grp->mrg_state == MAC_GROUP_STATE_UNINIT))
5117 			continue;
5118 
5119 		rv = mac_start_group(grp);
5120 		ASSERT(rv == 0);
5121 
5122 		grp->mrg_state = MAC_GROUP_STATE_RESERVED;
5123 		break;
5124 	}
5125 
5126 	ASSERT(grp != NULL);
5127 
5128 	/*
5129 	 * Populate the group. Rings should be taken from the group
5130 	 * of unassigned rings, which is past the array of TX
5131 	 * groups adversized by the driver.
5132 	 */
5133 	rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, NULL,
5134 	    grp, share);
5135 	if (rv != 0) {
5136 		DTRACE_PROBE3(tx__group__reserve__alloc__rings,
5137 		    char *, mip->mi_name, int, grp->mrg_index, int, rv);
5138 
5139 		mac_stop_group(grp);
5140 		grp->mrg_state = MAC_GROUP_STATE_UNINIT;
5141 
5142 		return (NULL);
5143 	}
5144 
5145 	mip->mi_tx_group_free--;
5146 
5147 	return (grp);
5148 }
5149 
5150 void
5151 mac_release_tx_group(mac_impl_t *mip, mac_group_t *grp)
5152 {
5153 	mac_client_impl_t *mcip = grp->mrg_tx_client;
5154 	mac_share_handle_t share = mcip->mci_share;
5155 	mac_ring_t *ring;
5156 
5157 	ASSERT(mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC);
5158 	ASSERT(share != NULL);
5159 	ASSERT(grp->mrg_state == MAC_GROUP_STATE_RESERVED);
5160 
5161 	mip->mi_share_capab.ms_sremove(share, grp->mrg_driver);
5162 	while ((ring = grp->mrg_rings) != NULL) {
5163 		/* move the ring back to the pool */
5164 		(void) mac_group_mov_ring(mip, mip->mi_tx_groups +
5165 		    mip->mi_tx_group_count, ring);
5166 	}
5167 	mac_stop_group(grp);
5168 	mac_set_rx_group_state(grp, MAC_GROUP_STATE_REGISTERED);
5169 	grp->mrg_tx_client = NULL;
5170 	mip->mi_tx_group_free++;
5171 }
5172 
5173 /*
5174  * This is a 1-time control path activity initiated by the client (IP).
5175  * The mac perimeter protects against other simultaneous control activities,
5176  * for example an ioctl that attempts to change the degree of fanout and
5177  * increase or decrease the number of softrings associated with this Tx SRS.
5178  */
5179 static mac_tx_notify_cb_t *
5180 mac_client_tx_notify_add(mac_client_impl_t *mcip,
5181     mac_tx_notify_t notify, void *arg)
5182 {
5183 	mac_cb_info_t *mcbi;
5184 	mac_tx_notify_cb_t *mtnfp;
5185 
5186 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
5187 
5188 	mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP);
5189 	mtnfp->mtnf_fn = notify;
5190 	mtnfp->mtnf_arg = arg;
5191 	mtnfp->mtnf_link.mcb_objp = mtnfp;
5192 	mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t);
5193 	mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T;
5194 
5195 	mcbi = &mcip->mci_tx_notify_cb_info;
5196 	mutex_enter(mcbi->mcbi_lockp);
5197 	mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link);
5198 	mutex_exit(mcbi->mcbi_lockp);
5199 	return (mtnfp);
5200 }
5201 
5202 static void
5203 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp)
5204 {
5205 	mac_cb_info_t	*mcbi;
5206 	mac_cb_t	**cblist;
5207 
5208 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
5209 
5210 	if (!mac_callback_find(&mcip->mci_tx_notify_cb_info,
5211 	    &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) {
5212 		cmn_err(CE_WARN,
5213 		    "mac_client_tx_notify_remove: callback not "
5214 		    "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp);
5215 		return;
5216 	}
5217 
5218 	mcbi = &mcip->mci_tx_notify_cb_info;
5219 	cblist = &mcip->mci_tx_notify_cb_list;
5220 	mutex_enter(mcbi->mcbi_lockp);
5221 	if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link))
5222 		kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t));
5223 	else
5224 		mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info);
5225 	mutex_exit(mcbi->mcbi_lockp);
5226 }
5227 
5228 /*
5229  * mac_client_tx_notify():
5230  * call to add and remove flow control callback routine.
5231  */
5232 mac_tx_notify_handle_t
5233 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func,
5234     void *ptr)
5235 {
5236 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
5237 	mac_tx_notify_cb_t	*mtnfp = NULL;
5238 
5239 	i_mac_perim_enter(mcip->mci_mip);
5240 
5241 	if (callb_func != NULL) {
5242 		/* Add a notify callback */
5243 		mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr);
5244 	} else {
5245 		mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr);
5246 	}
5247 	i_mac_perim_exit(mcip->mci_mip);
5248 
5249 	return ((mac_tx_notify_handle_t)mtnfp);
5250 }
5251