1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 25 */ 26 27 /* 28 * MAC Services Module 29 * 30 * The GLDv3 framework locking - The MAC layer 31 * -------------------------------------------- 32 * 33 * The MAC layer is central to the GLD framework and can provide the locking 34 * framework needed for itself and for the use of MAC clients. MAC end points 35 * are fairly disjoint and don't share a lot of state. So a coarse grained 36 * multi-threading scheme is to single thread all create/modify/delete or set 37 * type of control operations on a per mac end point while allowing data threads 38 * concurrently. 39 * 40 * Control operations (set) that modify a mac end point are always serialized on 41 * a per mac end point basis, We have at most 1 such thread per mac end point 42 * at a time. 43 * 44 * All other operations that are not serialized are essentially multi-threaded. 45 * For example a control operation (get) like getting statistics which may not 46 * care about reading values atomically or data threads sending or receiving 47 * data. Mostly these type of operations don't modify the control state. Any 48 * state these operations care about are protected using traditional locks. 49 * 50 * The perimeter only serializes serial operations. It does not imply there 51 * aren't any other concurrent operations. However a serialized operation may 52 * sometimes need to make sure it is the only thread. In this case it needs 53 * to use reference counting mechanisms to cv_wait until any current data 54 * threads are done. 55 * 56 * The mac layer itself does not hold any locks across a call to another layer. 57 * The perimeter is however held across a down call to the driver to make the 58 * whole control operation atomic with respect to other control operations. 59 * Also the data path and get type control operations may proceed concurrently. 60 * These operations synchronize with the single serial operation on a given mac 61 * end point using regular locks. The perimeter ensures that conflicting 62 * operations like say a mac_multicast_add and a mac_multicast_remove on the 63 * same mac end point don't interfere with each other and also ensures that the 64 * changes in the mac layer and the call to the underlying driver to say add a 65 * multicast address are done atomically without interference from a thread 66 * trying to delete the same address. 67 * 68 * For example, consider 69 * mac_multicst_add() 70 * { 71 * mac_perimeter_enter(); serialize all control operations 72 * 73 * grab list lock protect against access by data threads 74 * add to list 75 * drop list lock 76 * 77 * call driver's mi_multicst 78 * 79 * mac_perimeter_exit(); 80 * } 81 * 82 * To lessen the number of serialization locks and simplify the lock hierarchy, 83 * we serialize all the control operations on a per mac end point by using a 84 * single serialization lock called the perimeter. We allow recursive entry into 85 * the perimeter to facilitate use of this mechanism by both the mac client and 86 * the MAC layer itself. 87 * 88 * MAC client means an entity that does an operation on a mac handle 89 * obtained from a mac_open/mac_client_open. Similarly MAC driver means 90 * an entity that does an operation on a mac handle obtained from a 91 * mac_register. An entity could be both client and driver but on different 92 * handles eg. aggr. and should only make the corresponding mac interface calls 93 * i.e. mac driver interface or mac client interface as appropriate for that 94 * mac handle. 95 * 96 * General rules. 97 * ------------- 98 * 99 * R1. The lock order of upcall threads is natually opposite to downcall 100 * threads. Hence upcalls must not hold any locks across layers for fear of 101 * recursive lock enter and lock order violation. This applies to all layers. 102 * 103 * R2. The perimeter is just another lock. Since it is held in the down 104 * direction, acquiring the perimeter in an upcall is prohibited as it would 105 * cause a deadlock. This applies to all layers. 106 * 107 * Note that upcalls that need to grab the mac perimeter (for example 108 * mac_notify upcalls) can still achieve that by posting the request to a 109 * thread, which can then grab all the required perimeters and locks in the 110 * right global order. Note that in the above example the mac layer iself 111 * won't grab the mac perimeter in the mac_notify upcall, instead the upcall 112 * to the client must do that. Please see the aggr code for an example. 113 * 114 * MAC client rules 115 * ---------------- 116 * 117 * R3. A MAC client may use the MAC provided perimeter facility to serialize 118 * control operations on a per mac end point. It does this by by acquring 119 * and holding the perimeter across a sequence of calls to the mac layer. 120 * This ensures atomicity across the entire block of mac calls. In this 121 * model the MAC client must not hold any client locks across the calls to 122 * the mac layer. This model is the preferred solution. 123 * 124 * R4. However if a MAC client has a lot of global state across all mac end 125 * points the per mac end point serialization may not be sufficient. In this 126 * case the client may choose to use global locks or use its own serialization. 127 * To avoid deadlocks, these client layer locks held across the mac calls 128 * in the control path must never be acquired by the data path for the reason 129 * mentioned below. 130 * 131 * (Assume that a control operation that holds a client lock blocks in the 132 * mac layer waiting for upcall reference counts to drop to zero. If an upcall 133 * data thread that holds this reference count, tries to acquire the same 134 * client lock subsequently it will deadlock). 135 * 136 * A MAC client may follow either the R3 model or the R4 model, but can't 137 * mix both. In the former, the hierarchy is Perim -> client locks, but in 138 * the latter it is client locks -> Perim. 139 * 140 * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able 141 * context since they may block while trying to acquire the perimeter. 142 * In addition some calls may block waiting for upcall refcnts to come down to 143 * zero. 144 * 145 * R6. MAC clients must make sure that they are single threaded and all threads 146 * from the top (in particular data threads) have finished before calling 147 * mac_client_close. The MAC framework does not track the number of client 148 * threads using the mac client handle. Also mac clients must make sure 149 * they have undone all the control operations before calling mac_client_close. 150 * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding 151 * mac_unicast_add/mac_multicast_add. 152 * 153 * MAC framework rules 154 * ------------------- 155 * 156 * R7. The mac layer itself must not hold any mac layer locks (except the mac 157 * perimeter) across a call to any other layer from the mac layer. The call to 158 * any other layer could be via mi_* entry points, classifier entry points into 159 * the driver or via upcall pointers into layers above. The mac perimeter may 160 * be acquired or held only in the down direction, for e.g. when calling into 161 * a mi_* driver enty point to provide atomicity of the operation. 162 * 163 * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across 164 * mac driver interfaces, the MAC layer must provide a cut out for control 165 * interfaces like upcall notifications and start them in a separate thread. 166 * 167 * R9. Note that locking order also implies a plumbing order. For example 168 * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt 169 * to plumb in any other order must be failed at mac_open time, otherwise it 170 * could lead to deadlocks due to inverse locking order. 171 * 172 * R10. MAC driver interfaces must not block since the driver could call them 173 * in interrupt context. 174 * 175 * R11. Walkers must preferably not hold any locks while calling walker 176 * callbacks. Instead these can operate on reference counts. In simple 177 * callbacks it may be ok to hold a lock and call the callbacks, but this is 178 * harder to maintain in the general case of arbitrary callbacks. 179 * 180 * R12. The MAC layer must protect upcall notification callbacks using reference 181 * counts rather than holding locks across the callbacks. 182 * 183 * R13. Given the variety of drivers, it is preferable if the MAC layer can make 184 * sure that any pointers (such as mac ring pointers) it passes to the driver 185 * remain valid until mac unregister time. Currently the mac layer achieves 186 * this by using generation numbers for rings and freeing the mac rings only 187 * at unregister time. The MAC layer must provide a layer of indirection and 188 * must not expose underlying driver rings or driver data structures/pointers 189 * directly to MAC clients. 190 * 191 * MAC driver rules 192 * ---------------- 193 * 194 * R14. It would be preferable if MAC drivers don't hold any locks across any 195 * mac call. However at a minimum they must not hold any locks across data 196 * upcalls. They must also make sure that all references to mac data structures 197 * are cleaned up and that it is single threaded at mac_unregister time. 198 * 199 * R15. MAC driver interfaces don't block and so the action may be done 200 * asynchronously in a separate thread as for example handling notifications. 201 * The driver must not assume that the action is complete when the call 202 * returns. 203 * 204 * R16. Drivers must maintain a generation number per Rx ring, and pass it 205 * back to mac_rx_ring(); They are expected to increment the generation 206 * number whenever the ring's stop routine is invoked. 207 * See comments in mac_rx_ring(); 208 * 209 * R17 Similarly mi_stop is another synchronization point and the driver must 210 * ensure that all upcalls are done and there won't be any future upcall 211 * before returning from mi_stop. 212 * 213 * R18. The driver may assume that all set/modify control operations via 214 * the mi_* entry points are single threaded on a per mac end point. 215 * 216 * Lock and Perimeter hierarchy scenarios 217 * --------------------------------------- 218 * 219 * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify] 220 * 221 * ft_lock -> fe_lock [mac_flow_lookup] 222 * 223 * mi_rw_lock -> fe_lock [mac_bcast_send] 224 * 225 * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw] 226 * 227 * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind] 228 * 229 * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename] 230 * 231 * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac 232 * client to driver. In the case of clients that explictly use the mac provided 233 * perimeter mechanism for its serialization, the hierarchy is 234 * Perimeter -> mac layer locks, since the client never holds any locks across 235 * the mac calls. In the case of clients that use its own locks the hierarchy 236 * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly 237 * calls mac_perim_enter/exit in this case. 238 * 239 * Subflow creation rules 240 * --------------------------- 241 * o In case of a user specified cpulist present on underlying link and flows, 242 * the flows cpulist must be a subset of the underlying link. 243 * o In case of a user specified fanout mode present on link and flow, the 244 * subflow fanout count has to be less than or equal to that of the 245 * underlying link. The cpu-bindings for the subflows will be a subset of 246 * the underlying link. 247 * o In case if no cpulist specified on both underlying link and flow, the 248 * underlying link relies on a MAC tunable to provide out of box fanout. 249 * The subflow will have no cpulist (the subflow will be unbound) 250 * o In case if no cpulist is specified on the underlying link, a subflow can 251 * carry either a user-specified cpulist or fanout count. The cpu-bindings 252 * for the subflow will not adhere to restriction that they need to be subset 253 * of the underlying link. 254 * o In case where the underlying link is carrying either a user specified 255 * cpulist or fanout mode and for a unspecified subflow, the subflow will be 256 * created unbound. 257 * o While creating unbound subflows, bandwidth mode changes attempt to 258 * figure a right fanout count. In such cases the fanout count will override 259 * the unbound cpu-binding behavior. 260 * o In addition to this, while cycling between flow and link properties, we 261 * impose a restriction that if a link property has a subflow with 262 * user-specified attributes, we will not allow changing the link property. 263 * The administrator needs to reset all the user specified properties for the 264 * subflows before attempting a link property change. 265 * Some of the above rules can be overridden by specifying additional command 266 * line options while creating or modifying link or subflow properties. 267 * 268 * Datapath 269 * -------- 270 * 271 * For information on the datapath, the world of soft rings, hardware rings, how 272 * it is structured, and the path of an mblk_t between a driver and a mac 273 * client, see mac_sched.c. 274 */ 275 276 #include <sys/types.h> 277 #include <sys/conf.h> 278 #include <sys/id_space.h> 279 #include <sys/esunddi.h> 280 #include <sys/stat.h> 281 #include <sys/mkdev.h> 282 #include <sys/stream.h> 283 #include <sys/strsun.h> 284 #include <sys/strsubr.h> 285 #include <sys/dlpi.h> 286 #include <sys/list.h> 287 #include <sys/modhash.h> 288 #include <sys/mac_provider.h> 289 #include <sys/mac_client_impl.h> 290 #include <sys/mac_soft_ring.h> 291 #include <sys/mac_stat.h> 292 #include <sys/mac_impl.h> 293 #include <sys/mac.h> 294 #include <sys/dls.h> 295 #include <sys/dld.h> 296 #include <sys/modctl.h> 297 #include <sys/fs/dv_node.h> 298 #include <sys/thread.h> 299 #include <sys/proc.h> 300 #include <sys/callb.h> 301 #include <sys/cpuvar.h> 302 #include <sys/atomic.h> 303 #include <sys/bitmap.h> 304 #include <sys/sdt.h> 305 #include <sys/mac_flow.h> 306 #include <sys/ddi_intr_impl.h> 307 #include <sys/disp.h> 308 #include <sys/sdt.h> 309 #include <sys/vnic.h> 310 #include <sys/vnic_impl.h> 311 #include <sys/vlan.h> 312 #include <inet/ip.h> 313 #include <inet/ip6.h> 314 #include <sys/exacct.h> 315 #include <sys/exacct_impl.h> 316 #include <inet/nd.h> 317 #include <sys/ethernet.h> 318 #include <sys/pool.h> 319 #include <sys/pool_pset.h> 320 #include <sys/cpupart.h> 321 #include <inet/wifi_ioctl.h> 322 #include <net/wpa.h> 323 324 #define IMPL_HASHSZ 67 /* prime */ 325 326 kmem_cache_t *i_mac_impl_cachep; 327 mod_hash_t *i_mac_impl_hash; 328 krwlock_t i_mac_impl_lock; 329 uint_t i_mac_impl_count; 330 static kmem_cache_t *mac_ring_cache; 331 static id_space_t *minor_ids; 332 static uint32_t minor_count; 333 static pool_event_cb_t mac_pool_event_reg; 334 335 /* 336 * Logging stuff. Perhaps mac_logging_interval could be broken into 337 * mac_flow_log_interval and mac_link_log_interval if we want to be 338 * able to schedule them differently. 339 */ 340 uint_t mac_logging_interval; 341 boolean_t mac_flow_log_enable; 342 boolean_t mac_link_log_enable; 343 timeout_id_t mac_logging_timer; 344 345 /* for debugging, see MAC_DBG_PRT() in mac_impl.h */ 346 int mac_dbg = 0; 347 348 #define MACTYPE_KMODDIR "mac" 349 #define MACTYPE_HASHSZ 67 350 static mod_hash_t *i_mactype_hash; 351 /* 352 * i_mactype_lock synchronizes threads that obtain references to mactype_t 353 * structures through i_mactype_getplugin(). 354 */ 355 static kmutex_t i_mactype_lock; 356 357 /* 358 * mac_tx_percpu_cnt 359 * 360 * Number of per cpu locks per mac_client_impl_t. Used by the transmit side 361 * in mac_tx to reduce lock contention. This is sized at boot time in mac_init. 362 * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2. 363 * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1. 364 */ 365 int mac_tx_percpu_cnt; 366 int mac_tx_percpu_cnt_max = 128; 367 368 /* 369 * Call back functions for the bridge module. These are guaranteed to be valid 370 * when holding a reference on a link or when holding mip->mi_bridge_lock and 371 * mi_bridge_link is non-NULL. 372 */ 373 mac_bridge_tx_t mac_bridge_tx_cb; 374 mac_bridge_rx_t mac_bridge_rx_cb; 375 mac_bridge_ref_t mac_bridge_ref_cb; 376 mac_bridge_ls_t mac_bridge_ls_cb; 377 378 static int i_mac_constructor(void *, void *, int); 379 static void i_mac_destructor(void *, void *); 380 static int i_mac_ring_ctor(void *, void *, int); 381 static void i_mac_ring_dtor(void *, void *); 382 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *); 383 void mac_tx_client_flush(mac_client_impl_t *); 384 void mac_tx_client_block(mac_client_impl_t *); 385 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t); 386 static int mac_start_group_and_rings(mac_group_t *); 387 static void mac_stop_group_and_rings(mac_group_t *); 388 static void mac_pool_event_cb(pool_event_t, int, void *); 389 390 typedef struct netinfo_s { 391 list_node_t ni_link; 392 void *ni_record; 393 int ni_size; 394 int ni_type; 395 } netinfo_t; 396 397 /* 398 * Module initialization functions. 399 */ 400 401 void 402 mac_init(void) 403 { 404 mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus : 405 boot_max_ncpus); 406 407 /* Upper bound is mac_tx_percpu_cnt_max */ 408 if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max) 409 mac_tx_percpu_cnt = mac_tx_percpu_cnt_max; 410 411 if (mac_tx_percpu_cnt < 1) { 412 /* Someone set max_tx_percpu_cnt_max to 0 or less */ 413 mac_tx_percpu_cnt = 1; 414 } 415 416 ASSERT(mac_tx_percpu_cnt >= 1); 417 mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1)); 418 /* 419 * Make it of the form 2**N - 1 in the range 420 * [0 .. mac_tx_percpu_cnt_max - 1] 421 */ 422 mac_tx_percpu_cnt--; 423 424 i_mac_impl_cachep = kmem_cache_create("mac_impl_cache", 425 sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor, 426 NULL, NULL, NULL, 0); 427 ASSERT(i_mac_impl_cachep != NULL); 428 429 mac_ring_cache = kmem_cache_create("mac_ring_cache", 430 sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL, 431 NULL, NULL, 0); 432 ASSERT(mac_ring_cache != NULL); 433 434 i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash", 435 IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor, 436 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 437 rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL); 438 439 mac_flow_init(); 440 mac_soft_ring_init(); 441 mac_bcast_init(); 442 mac_client_init(); 443 444 i_mac_impl_count = 0; 445 446 i_mactype_hash = mod_hash_create_extended("mactype_hash", 447 MACTYPE_HASHSZ, 448 mod_hash_null_keydtor, mod_hash_null_valdtor, 449 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 450 451 /* 452 * Allocate an id space to manage minor numbers. The range of the 453 * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1. This 454 * leaves half of the 32-bit minors available for driver private use. 455 */ 456 minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1, 457 MAC_PRIVATE_MINOR-1); 458 ASSERT(minor_ids != NULL); 459 minor_count = 0; 460 461 /* Let's default to 20 seconds */ 462 mac_logging_interval = 20; 463 mac_flow_log_enable = B_FALSE; 464 mac_link_log_enable = B_FALSE; 465 mac_logging_timer = 0; 466 467 /* Register to be notified of noteworthy pools events */ 468 mac_pool_event_reg.pec_func = mac_pool_event_cb; 469 mac_pool_event_reg.pec_arg = NULL; 470 pool_event_cb_register(&mac_pool_event_reg); 471 } 472 473 int 474 mac_fini(void) 475 { 476 477 if (i_mac_impl_count > 0 || minor_count > 0) 478 return (EBUSY); 479 480 pool_event_cb_unregister(&mac_pool_event_reg); 481 482 id_space_destroy(minor_ids); 483 mac_flow_fini(); 484 485 mod_hash_destroy_hash(i_mac_impl_hash); 486 rw_destroy(&i_mac_impl_lock); 487 488 mac_client_fini(); 489 kmem_cache_destroy(mac_ring_cache); 490 491 mod_hash_destroy_hash(i_mactype_hash); 492 mac_soft_ring_finish(); 493 494 495 return (0); 496 } 497 498 /* 499 * Initialize a GLDv3 driver's device ops. A driver that manages its own ops 500 * (e.g. softmac) may pass in a NULL ops argument. 501 */ 502 void 503 mac_init_ops(struct dev_ops *ops, const char *name) 504 { 505 major_t major = ddi_name_to_major((char *)name); 506 507 /* 508 * By returning on error below, we are not letting the driver continue 509 * in an undefined context. The mac_register() function will faill if 510 * DN_GLDV3_DRIVER isn't set. 511 */ 512 if (major == DDI_MAJOR_T_NONE) 513 return; 514 LOCK_DEV_OPS(&devnamesp[major].dn_lock); 515 devnamesp[major].dn_flags |= (DN_GLDV3_DRIVER | DN_NETWORK_DRIVER); 516 UNLOCK_DEV_OPS(&devnamesp[major].dn_lock); 517 if (ops != NULL) 518 dld_init_ops(ops, name); 519 } 520 521 void 522 mac_fini_ops(struct dev_ops *ops) 523 { 524 dld_fini_ops(ops); 525 } 526 527 /*ARGSUSED*/ 528 static int 529 i_mac_constructor(void *buf, void *arg, int kmflag) 530 { 531 mac_impl_t *mip = buf; 532 533 bzero(buf, sizeof (mac_impl_t)); 534 535 mip->mi_linkstate = LINK_STATE_UNKNOWN; 536 537 rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL); 538 mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL); 539 mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL); 540 mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL); 541 542 mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock; 543 cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 544 mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock; 545 cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 546 547 mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL); 548 549 return (0); 550 } 551 552 /*ARGSUSED*/ 553 static void 554 i_mac_destructor(void *buf, void *arg) 555 { 556 mac_impl_t *mip = buf; 557 mac_cb_info_t *mcbi; 558 559 ASSERT(mip->mi_ref == 0); 560 ASSERT(mip->mi_active == 0); 561 ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN); 562 ASSERT(mip->mi_devpromisc == 0); 563 ASSERT(mip->mi_ksp == NULL); 564 ASSERT(mip->mi_kstat_count == 0); 565 ASSERT(mip->mi_nclients == 0); 566 ASSERT(mip->mi_nactiveclients == 0); 567 ASSERT(mip->mi_single_active_client == NULL); 568 ASSERT(mip->mi_state_flags == 0); 569 ASSERT(mip->mi_factory_addr == NULL); 570 ASSERT(mip->mi_factory_addr_num == 0); 571 ASSERT(mip->mi_default_tx_ring == NULL); 572 573 mcbi = &mip->mi_notify_cb_info; 574 ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0); 575 ASSERT(mip->mi_notify_bits == 0); 576 ASSERT(mip->mi_notify_thread == NULL); 577 ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock); 578 mcbi->mcbi_lockp = NULL; 579 580 mcbi = &mip->mi_promisc_cb_info; 581 ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL); 582 ASSERT(mip->mi_promisc_list == NULL); 583 ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock); 584 mcbi->mcbi_lockp = NULL; 585 586 ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL); 587 ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0); 588 589 rw_destroy(&mip->mi_rw_lock); 590 591 mutex_destroy(&mip->mi_promisc_lock); 592 cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv); 593 mutex_destroy(&mip->mi_notify_lock); 594 cv_destroy(&mip->mi_notify_cb_info.mcbi_cv); 595 mutex_destroy(&mip->mi_ring_lock); 596 597 ASSERT(mip->mi_bridge_link == NULL); 598 } 599 600 /* ARGSUSED */ 601 static int 602 i_mac_ring_ctor(void *buf, void *arg, int kmflag) 603 { 604 mac_ring_t *ring = (mac_ring_t *)buf; 605 606 bzero(ring, sizeof (mac_ring_t)); 607 cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL); 608 mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL); 609 ring->mr_state = MR_FREE; 610 return (0); 611 } 612 613 /* ARGSUSED */ 614 static void 615 i_mac_ring_dtor(void *buf, void *arg) 616 { 617 mac_ring_t *ring = (mac_ring_t *)buf; 618 619 cv_destroy(&ring->mr_cv); 620 mutex_destroy(&ring->mr_lock); 621 } 622 623 /* 624 * Common functions to do mac callback addition and deletion. Currently this is 625 * used by promisc callbacks and notify callbacks. List addition and deletion 626 * need to take care of list walkers. List walkers in general, can't hold list 627 * locks and make upcall callbacks due to potential lock order and recursive 628 * reentry issues. Instead list walkers increment the list walker count to mark 629 * the presence of a walker thread. Addition can be carefully done to ensure 630 * that the list walker always sees either the old list or the new list. 631 * However the deletion can't be done while the walker is active, instead the 632 * deleting thread simply marks the entry as logically deleted. The last walker 633 * physically deletes and frees up the logically deleted entries when the walk 634 * is complete. 635 */ 636 void 637 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 638 mac_cb_t *mcb_elem) 639 { 640 mac_cb_t *p; 641 mac_cb_t **pp; 642 643 /* Verify it is not already in the list */ 644 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 645 if (p == mcb_elem) 646 break; 647 } 648 VERIFY(p == NULL); 649 650 /* 651 * Add it to the head of the callback list. The membar ensures that 652 * the following list pointer manipulations reach global visibility 653 * in exactly the program order below. 654 */ 655 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 656 657 mcb_elem->mcb_nextp = *mcb_head; 658 membar_producer(); 659 *mcb_head = mcb_elem; 660 } 661 662 /* 663 * Mark the entry as logically deleted. If there aren't any walkers unlink 664 * from the list. In either case return the corresponding status. 665 */ 666 boolean_t 667 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 668 mac_cb_t *mcb_elem) 669 { 670 mac_cb_t *p; 671 mac_cb_t **pp; 672 673 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 674 /* 675 * Search the callback list for the entry to be removed 676 */ 677 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 678 if (p == mcb_elem) 679 break; 680 } 681 VERIFY(p != NULL); 682 683 /* 684 * If there are walkers just mark it as deleted and the last walker 685 * will remove from the list and free it. 686 */ 687 if (mcbi->mcbi_walker_cnt != 0) { 688 p->mcb_flags |= MCB_CONDEMNED; 689 mcbi->mcbi_del_cnt++; 690 return (B_FALSE); 691 } 692 693 ASSERT(mcbi->mcbi_del_cnt == 0); 694 *pp = p->mcb_nextp; 695 p->mcb_nextp = NULL; 696 return (B_TRUE); 697 } 698 699 /* 700 * Wait for all pending callback removals to be completed 701 */ 702 void 703 mac_callback_remove_wait(mac_cb_info_t *mcbi) 704 { 705 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 706 while (mcbi->mcbi_del_cnt != 0) { 707 DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi); 708 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 709 } 710 } 711 712 /* 713 * The last mac callback walker does the cleanup. Walk the list and unlik 714 * all the logically deleted entries and construct a temporary list of 715 * removed entries. Return the list of removed entries to the caller. 716 */ 717 mac_cb_t * 718 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head) 719 { 720 mac_cb_t *p; 721 mac_cb_t **pp; 722 mac_cb_t *rmlist = NULL; /* List of removed elements */ 723 int cnt = 0; 724 725 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 726 ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0); 727 728 pp = mcb_head; 729 while (*pp != NULL) { 730 if ((*pp)->mcb_flags & MCB_CONDEMNED) { 731 p = *pp; 732 *pp = p->mcb_nextp; 733 p->mcb_nextp = rmlist; 734 rmlist = p; 735 cnt++; 736 continue; 737 } 738 pp = &(*pp)->mcb_nextp; 739 } 740 741 ASSERT(mcbi->mcbi_del_cnt == cnt); 742 mcbi->mcbi_del_cnt = 0; 743 return (rmlist); 744 } 745 746 boolean_t 747 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 748 { 749 mac_cb_t *mcb; 750 751 /* Verify it is not already in the list */ 752 for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) { 753 if (mcb == mcb_elem) 754 return (B_TRUE); 755 } 756 757 return (B_FALSE); 758 } 759 760 boolean_t 761 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 762 { 763 boolean_t found; 764 765 mutex_enter(mcbi->mcbi_lockp); 766 found = mac_callback_lookup(mcb_headp, mcb_elem); 767 mutex_exit(mcbi->mcbi_lockp); 768 769 return (found); 770 } 771 772 /* Free the list of removed callbacks */ 773 void 774 mac_callback_free(mac_cb_t *rmlist) 775 { 776 mac_cb_t *mcb; 777 mac_cb_t *mcb_next; 778 779 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 780 mcb_next = mcb->mcb_nextp; 781 kmem_free(mcb->mcb_objp, mcb->mcb_objsize); 782 } 783 } 784 785 /* 786 * The promisc callbacks are in 2 lists, one off the 'mip' and another off the 787 * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there 788 * is only a single shared total walker count, and an entry can't be physically 789 * unlinked if a walker is active on either list. The last walker does this 790 * cleanup of logically deleted entries. 791 */ 792 void 793 i_mac_promisc_walker_cleanup(mac_impl_t *mip) 794 { 795 mac_cb_t *rmlist; 796 mac_cb_t *mcb; 797 mac_cb_t *mcb_next; 798 mac_promisc_impl_t *mpip; 799 800 /* 801 * Construct a temporary list of deleted callbacks by walking the 802 * the mi_promisc_list. Then for each entry in the temporary list, 803 * remove it from the mci_promisc_list and free the entry. 804 */ 805 rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info, 806 &mip->mi_promisc_list); 807 808 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 809 mcb_next = mcb->mcb_nextp; 810 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 811 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info, 812 &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link)); 813 mcb->mcb_flags = 0; 814 mcb->mcb_nextp = NULL; 815 kmem_cache_free(mac_promisc_impl_cache, mpip); 816 } 817 } 818 819 void 820 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type) 821 { 822 mac_cb_info_t *mcbi; 823 824 /* 825 * Signal the notify thread even after mi_ref has become zero and 826 * mi_disabled is set. The synchronization with the notify thread 827 * happens in mac_unregister and that implies the driver must make 828 * sure it is single-threaded (with respect to mac calls) and that 829 * all pending mac calls have returned before it calls mac_unregister 830 */ 831 rw_enter(&i_mac_impl_lock, RW_READER); 832 if (mip->mi_state_flags & MIS_DISABLED) 833 goto exit; 834 835 /* 836 * Guard against incorrect notifications. (Running a newer 837 * mac client against an older implementation?) 838 */ 839 if (type >= MAC_NNOTE) 840 goto exit; 841 842 mcbi = &mip->mi_notify_cb_info; 843 mutex_enter(mcbi->mcbi_lockp); 844 mip->mi_notify_bits |= (1 << type); 845 cv_broadcast(&mcbi->mcbi_cv); 846 mutex_exit(mcbi->mcbi_lockp); 847 848 exit: 849 rw_exit(&i_mac_impl_lock); 850 } 851 852 /* 853 * Mac serialization primitives. Please see the block comment at the 854 * top of the file. 855 */ 856 void 857 i_mac_perim_enter(mac_impl_t *mip) 858 { 859 mac_client_impl_t *mcip; 860 861 if (mip->mi_state_flags & MIS_IS_VNIC) { 862 /* 863 * This is a VNIC. Return the lower mac since that is what 864 * we want to serialize on. 865 */ 866 mcip = mac_vnic_lower(mip); 867 mip = mcip->mci_mip; 868 } 869 870 mutex_enter(&mip->mi_perim_lock); 871 if (mip->mi_perim_owner == curthread) { 872 mip->mi_perim_ocnt++; 873 mutex_exit(&mip->mi_perim_lock); 874 return; 875 } 876 877 while (mip->mi_perim_owner != NULL) 878 cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock); 879 880 mip->mi_perim_owner = curthread; 881 ASSERT(mip->mi_perim_ocnt == 0); 882 mip->mi_perim_ocnt++; 883 #ifdef DEBUG 884 mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack, 885 MAC_PERIM_STACK_DEPTH); 886 #endif 887 mutex_exit(&mip->mi_perim_lock); 888 } 889 890 int 891 i_mac_perim_enter_nowait(mac_impl_t *mip) 892 { 893 /* 894 * The vnic is a special case, since the serialization is done based 895 * on the lower mac. If the lower mac is busy, it does not imply the 896 * vnic can't be unregistered. But in the case of other drivers, 897 * a busy perimeter or open mac handles implies that the mac is busy 898 * and can't be unregistered. 899 */ 900 if (mip->mi_state_flags & MIS_IS_VNIC) { 901 i_mac_perim_enter(mip); 902 return (0); 903 } 904 905 mutex_enter(&mip->mi_perim_lock); 906 if (mip->mi_perim_owner != NULL) { 907 mutex_exit(&mip->mi_perim_lock); 908 return (EBUSY); 909 } 910 ASSERT(mip->mi_perim_ocnt == 0); 911 mip->mi_perim_owner = curthread; 912 mip->mi_perim_ocnt++; 913 mutex_exit(&mip->mi_perim_lock); 914 915 return (0); 916 } 917 918 void 919 i_mac_perim_exit(mac_impl_t *mip) 920 { 921 mac_client_impl_t *mcip; 922 923 if (mip->mi_state_flags & MIS_IS_VNIC) { 924 /* 925 * This is a VNIC. Return the lower mac since that is what 926 * we want to serialize on. 927 */ 928 mcip = mac_vnic_lower(mip); 929 mip = mcip->mci_mip; 930 } 931 932 ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0); 933 934 mutex_enter(&mip->mi_perim_lock); 935 if (--mip->mi_perim_ocnt == 0) { 936 mip->mi_perim_owner = NULL; 937 cv_signal(&mip->mi_perim_cv); 938 } 939 mutex_exit(&mip->mi_perim_lock); 940 } 941 942 /* 943 * Returns whether the current thread holds the mac perimeter. Used in making 944 * assertions. 945 */ 946 boolean_t 947 mac_perim_held(mac_handle_t mh) 948 { 949 mac_impl_t *mip = (mac_impl_t *)mh; 950 mac_client_impl_t *mcip; 951 952 if (mip->mi_state_flags & MIS_IS_VNIC) { 953 /* 954 * This is a VNIC. Return the lower mac since that is what 955 * we want to serialize on. 956 */ 957 mcip = mac_vnic_lower(mip); 958 mip = mcip->mci_mip; 959 } 960 return (mip->mi_perim_owner == curthread); 961 } 962 963 /* 964 * mac client interfaces to enter the mac perimeter of a mac end point, given 965 * its mac handle, or macname or linkid. 966 */ 967 void 968 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp) 969 { 970 mac_impl_t *mip = (mac_impl_t *)mh; 971 972 i_mac_perim_enter(mip); 973 /* 974 * The mac_perim_handle_t returned encodes the 'mip' and whether a 975 * mac_open has been done internally while entering the perimeter. 976 * This information is used in mac_perim_exit 977 */ 978 MAC_ENCODE_MPH(*mphp, mip, 0); 979 } 980 981 int 982 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp) 983 { 984 int err; 985 mac_handle_t mh; 986 987 if ((err = mac_open(name, &mh)) != 0) 988 return (err); 989 990 mac_perim_enter_by_mh(mh, mphp); 991 MAC_ENCODE_MPH(*mphp, mh, 1); 992 return (0); 993 } 994 995 int 996 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp) 997 { 998 int err; 999 mac_handle_t mh; 1000 1001 if ((err = mac_open_by_linkid(linkid, &mh)) != 0) 1002 return (err); 1003 1004 mac_perim_enter_by_mh(mh, mphp); 1005 MAC_ENCODE_MPH(*mphp, mh, 1); 1006 return (0); 1007 } 1008 1009 void 1010 mac_perim_exit(mac_perim_handle_t mph) 1011 { 1012 mac_impl_t *mip; 1013 boolean_t need_close; 1014 1015 MAC_DECODE_MPH(mph, mip, need_close); 1016 i_mac_perim_exit(mip); 1017 if (need_close) 1018 mac_close((mac_handle_t)mip); 1019 } 1020 1021 int 1022 mac_hold(const char *macname, mac_impl_t **pmip) 1023 { 1024 mac_impl_t *mip; 1025 int err; 1026 1027 /* 1028 * Check the device name length to make sure it won't overflow our 1029 * buffer. 1030 */ 1031 if (strlen(macname) >= MAXNAMELEN) 1032 return (EINVAL); 1033 1034 /* 1035 * Look up its entry in the global hash table. 1036 */ 1037 rw_enter(&i_mac_impl_lock, RW_WRITER); 1038 err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname, 1039 (mod_hash_val_t *)&mip); 1040 1041 if (err != 0) { 1042 rw_exit(&i_mac_impl_lock); 1043 return (ENOENT); 1044 } 1045 1046 if (mip->mi_state_flags & MIS_DISABLED) { 1047 rw_exit(&i_mac_impl_lock); 1048 return (ENOENT); 1049 } 1050 1051 if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) { 1052 rw_exit(&i_mac_impl_lock); 1053 return (EBUSY); 1054 } 1055 1056 mip->mi_ref++; 1057 rw_exit(&i_mac_impl_lock); 1058 1059 *pmip = mip; 1060 return (0); 1061 } 1062 1063 void 1064 mac_rele(mac_impl_t *mip) 1065 { 1066 rw_enter(&i_mac_impl_lock, RW_WRITER); 1067 ASSERT(mip->mi_ref != 0); 1068 if (--mip->mi_ref == 0) { 1069 ASSERT(mip->mi_nactiveclients == 0 && 1070 !(mip->mi_state_flags & MIS_EXCLUSIVE)); 1071 } 1072 rw_exit(&i_mac_impl_lock); 1073 } 1074 1075 /* 1076 * Private GLDv3 function to start a MAC instance. 1077 */ 1078 int 1079 mac_start(mac_handle_t mh) 1080 { 1081 mac_impl_t *mip = (mac_impl_t *)mh; 1082 int err = 0; 1083 mac_group_t *defgrp; 1084 1085 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1086 ASSERT(mip->mi_start != NULL); 1087 1088 /* 1089 * Check whether the device is already started. 1090 */ 1091 if (mip->mi_active++ == 0) { 1092 mac_ring_t *ring = NULL; 1093 1094 /* 1095 * Start the device. 1096 */ 1097 err = mip->mi_start(mip->mi_driver); 1098 if (err != 0) { 1099 mip->mi_active--; 1100 return (err); 1101 } 1102 1103 /* 1104 * Start the default tx ring. 1105 */ 1106 if (mip->mi_default_tx_ring != NULL) { 1107 1108 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1109 if (ring->mr_state != MR_INUSE) { 1110 err = mac_start_ring(ring); 1111 if (err != 0) { 1112 mip->mi_active--; 1113 return (err); 1114 } 1115 } 1116 } 1117 1118 if ((defgrp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) { 1119 /* 1120 * Start the default ring, since it will be needed 1121 * to receive broadcast and multicast traffic for 1122 * both primary and non-primary MAC clients. 1123 */ 1124 ASSERT(defgrp->mrg_state == MAC_GROUP_STATE_REGISTERED); 1125 err = mac_start_group_and_rings(defgrp); 1126 if (err != 0) { 1127 mip->mi_active--; 1128 if ((ring != NULL) && 1129 (ring->mr_state == MR_INUSE)) 1130 mac_stop_ring(ring); 1131 return (err); 1132 } 1133 mac_set_group_state(defgrp, MAC_GROUP_STATE_SHARED); 1134 } 1135 } 1136 1137 return (err); 1138 } 1139 1140 /* 1141 * Private GLDv3 function to stop a MAC instance. 1142 */ 1143 void 1144 mac_stop(mac_handle_t mh) 1145 { 1146 mac_impl_t *mip = (mac_impl_t *)mh; 1147 mac_group_t *grp; 1148 1149 ASSERT(mip->mi_stop != NULL); 1150 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1151 1152 /* 1153 * Check whether the device is still needed. 1154 */ 1155 ASSERT(mip->mi_active != 0); 1156 if (--mip->mi_active == 0) { 1157 if ((grp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) { 1158 /* 1159 * There should be no more active clients since the 1160 * MAC is being stopped. Stop the default RX group 1161 * and transition it back to registered state. 1162 * 1163 * When clients are torn down, the groups 1164 * are release via mac_release_rx_group which 1165 * knows the the default group is always in 1166 * started mode since broadcast uses it. So 1167 * we can assert that their are no clients 1168 * (since mac_bcast_add doesn't register itself 1169 * as a client) and group is in SHARED state. 1170 */ 1171 ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED); 1172 ASSERT(MAC_GROUP_NO_CLIENT(grp) && 1173 mip->mi_nactiveclients == 0); 1174 mac_stop_group_and_rings(grp); 1175 mac_set_group_state(grp, MAC_GROUP_STATE_REGISTERED); 1176 } 1177 1178 if (mip->mi_default_tx_ring != NULL) { 1179 mac_ring_t *ring; 1180 1181 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1182 if (ring->mr_state == MR_INUSE) { 1183 mac_stop_ring(ring); 1184 ring->mr_flag = 0; 1185 } 1186 } 1187 1188 /* 1189 * Stop the device. 1190 */ 1191 mip->mi_stop(mip->mi_driver); 1192 } 1193 } 1194 1195 int 1196 i_mac_promisc_set(mac_impl_t *mip, boolean_t on) 1197 { 1198 int err = 0; 1199 1200 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1201 ASSERT(mip->mi_setpromisc != NULL); 1202 1203 if (on) { 1204 /* 1205 * Enable promiscuous mode on the device if not yet enabled. 1206 */ 1207 if (mip->mi_devpromisc++ == 0) { 1208 err = mip->mi_setpromisc(mip->mi_driver, B_TRUE); 1209 if (err != 0) { 1210 mip->mi_devpromisc--; 1211 return (err); 1212 } 1213 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1214 } 1215 } else { 1216 if (mip->mi_devpromisc == 0) 1217 return (EPROTO); 1218 1219 /* 1220 * Disable promiscuous mode on the device if this is the last 1221 * enabling. 1222 */ 1223 if (--mip->mi_devpromisc == 0) { 1224 err = mip->mi_setpromisc(mip->mi_driver, B_FALSE); 1225 if (err != 0) { 1226 mip->mi_devpromisc++; 1227 return (err); 1228 } 1229 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1230 } 1231 } 1232 1233 return (0); 1234 } 1235 1236 /* 1237 * The promiscuity state can change any time. If the caller needs to take 1238 * actions that are atomic with the promiscuity state, then the caller needs 1239 * to bracket the entire sequence with mac_perim_enter/exit 1240 */ 1241 boolean_t 1242 mac_promisc_get(mac_handle_t mh) 1243 { 1244 mac_impl_t *mip = (mac_impl_t *)mh; 1245 1246 /* 1247 * Return the current promiscuity. 1248 */ 1249 return (mip->mi_devpromisc != 0); 1250 } 1251 1252 /* 1253 * Invoked at MAC instance attach time to initialize the list 1254 * of factory MAC addresses supported by a MAC instance. This function 1255 * builds a local cache in the mac_impl_t for the MAC addresses 1256 * supported by the underlying hardware. The MAC clients themselves 1257 * use the mac_addr_factory*() functions to query and reserve 1258 * factory MAC addresses. 1259 */ 1260 void 1261 mac_addr_factory_init(mac_impl_t *mip) 1262 { 1263 mac_capab_multifactaddr_t capab; 1264 uint8_t *addr; 1265 int i; 1266 1267 /* 1268 * First round to see how many factory MAC addresses are available. 1269 */ 1270 bzero(&capab, sizeof (capab)); 1271 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR, 1272 &capab) || (capab.mcm_naddr == 0)) { 1273 /* 1274 * The MAC instance doesn't support multiple factory 1275 * MAC addresses, we're done here. 1276 */ 1277 return; 1278 } 1279 1280 /* 1281 * Allocate the space and get all the factory addresses. 1282 */ 1283 addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP); 1284 capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr); 1285 1286 mip->mi_factory_addr_num = capab.mcm_naddr; 1287 mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num * 1288 sizeof (mac_factory_addr_t), KM_SLEEP); 1289 1290 for (i = 0; i < capab.mcm_naddr; i++) { 1291 bcopy(addr + i * MAXMACADDRLEN, 1292 mip->mi_factory_addr[i].mfa_addr, 1293 mip->mi_type->mt_addr_length); 1294 mip->mi_factory_addr[i].mfa_in_use = B_FALSE; 1295 } 1296 1297 kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN); 1298 } 1299 1300 void 1301 mac_addr_factory_fini(mac_impl_t *mip) 1302 { 1303 if (mip->mi_factory_addr == NULL) { 1304 ASSERT(mip->mi_factory_addr_num == 0); 1305 return; 1306 } 1307 1308 kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num * 1309 sizeof (mac_factory_addr_t)); 1310 1311 mip->mi_factory_addr = NULL; 1312 mip->mi_factory_addr_num = 0; 1313 } 1314 1315 /* 1316 * Reserve a factory MAC address. If *slot is set to -1, the function 1317 * attempts to reserve any of the available factory MAC addresses and 1318 * returns the reserved slot id. If no slots are available, the function 1319 * returns ENOSPC. If *slot is not set to -1, the function reserves 1320 * the specified slot if it is available, or returns EBUSY is the slot 1321 * is already used. Returns ENOTSUP if the underlying MAC does not 1322 * support multiple factory addresses. If the slot number is not -1 but 1323 * is invalid, returns EINVAL. 1324 */ 1325 int 1326 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot) 1327 { 1328 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1329 mac_impl_t *mip = mcip->mci_mip; 1330 int i, ret = 0; 1331 1332 i_mac_perim_enter(mip); 1333 /* 1334 * Protect against concurrent readers that may need a self-consistent 1335 * view of the factory addresses 1336 */ 1337 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1338 1339 if (mip->mi_factory_addr_num == 0) { 1340 ret = ENOTSUP; 1341 goto bail; 1342 } 1343 1344 if (*slot != -1) { 1345 /* check the specified slot */ 1346 if (*slot < 1 || *slot > mip->mi_factory_addr_num) { 1347 ret = EINVAL; 1348 goto bail; 1349 } 1350 if (mip->mi_factory_addr[*slot-1].mfa_in_use) { 1351 ret = EBUSY; 1352 goto bail; 1353 } 1354 } else { 1355 /* pick the next available slot */ 1356 for (i = 0; i < mip->mi_factory_addr_num; i++) { 1357 if (!mip->mi_factory_addr[i].mfa_in_use) 1358 break; 1359 } 1360 1361 if (i == mip->mi_factory_addr_num) { 1362 ret = ENOSPC; 1363 goto bail; 1364 } 1365 *slot = i+1; 1366 } 1367 1368 mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE; 1369 mip->mi_factory_addr[*slot-1].mfa_client = mcip; 1370 1371 bail: 1372 rw_exit(&mip->mi_rw_lock); 1373 i_mac_perim_exit(mip); 1374 return (ret); 1375 } 1376 1377 /* 1378 * Release the specified factory MAC address slot. 1379 */ 1380 void 1381 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot) 1382 { 1383 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1384 mac_impl_t *mip = mcip->mci_mip; 1385 1386 i_mac_perim_enter(mip); 1387 /* 1388 * Protect against concurrent readers that may need a self-consistent 1389 * view of the factory addresses 1390 */ 1391 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1392 1393 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1394 ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use); 1395 1396 mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE; 1397 1398 rw_exit(&mip->mi_rw_lock); 1399 i_mac_perim_exit(mip); 1400 } 1401 1402 /* 1403 * Stores in mac_addr the value of the specified MAC address. Returns 1404 * 0 on success, or EINVAL if the slot number is not valid for the MAC. 1405 * The caller must provide a string of at least MAXNAMELEN bytes. 1406 */ 1407 void 1408 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr, 1409 uint_t *addr_len, char *client_name, boolean_t *in_use_arg) 1410 { 1411 mac_impl_t *mip = (mac_impl_t *)mh; 1412 boolean_t in_use; 1413 1414 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1415 1416 /* 1417 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter 1418 * and mi_rw_lock 1419 */ 1420 rw_enter(&mip->mi_rw_lock, RW_READER); 1421 bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN); 1422 *addr_len = mip->mi_type->mt_addr_length; 1423 in_use = mip->mi_factory_addr[slot-1].mfa_in_use; 1424 if (in_use && client_name != NULL) { 1425 bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name, 1426 client_name, MAXNAMELEN); 1427 } 1428 if (in_use_arg != NULL) 1429 *in_use_arg = in_use; 1430 rw_exit(&mip->mi_rw_lock); 1431 } 1432 1433 /* 1434 * Returns the number of factory MAC addresses (in addition to the 1435 * primary MAC address), 0 if the underlying MAC doesn't support 1436 * that feature. 1437 */ 1438 uint_t 1439 mac_addr_factory_num(mac_handle_t mh) 1440 { 1441 mac_impl_t *mip = (mac_impl_t *)mh; 1442 1443 return (mip->mi_factory_addr_num); 1444 } 1445 1446 1447 void 1448 mac_rx_group_unmark(mac_group_t *grp, uint_t flag) 1449 { 1450 mac_ring_t *ring; 1451 1452 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next) 1453 ring->mr_flag &= ~flag; 1454 } 1455 1456 /* 1457 * The following mac_hwrings_xxx() functions are private mac client functions 1458 * used by the aggr driver to access and control the underlying HW Rx group 1459 * and rings. In this case, the aggr driver has exclusive control of the 1460 * underlying HW Rx group/rings, it calls the following functions to 1461 * start/stop the HW Rx rings, disable/enable polling, add/remove mac' 1462 * addresses, or set up the Rx callback. 1463 */ 1464 /* ARGSUSED */ 1465 static void 1466 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs, 1467 mblk_t *mp_chain, boolean_t loopback) 1468 { 1469 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs; 1470 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 1471 mac_direct_rx_t proc; 1472 void *arg1; 1473 mac_resource_handle_t arg2; 1474 1475 proc = srs_rx->sr_func; 1476 arg1 = srs_rx->sr_arg1; 1477 arg2 = mac_srs->srs_mrh; 1478 1479 proc(arg1, arg2, mp_chain, NULL); 1480 } 1481 1482 /* 1483 * This function is called to get the list of HW rings that are reserved by 1484 * an exclusive mac client. 1485 * 1486 * Return value: the number of HW rings. 1487 */ 1488 int 1489 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh, 1490 mac_ring_handle_t *hwrh, mac_ring_type_t rtype) 1491 { 1492 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1493 flow_entry_t *flent = mcip->mci_flent; 1494 mac_group_t *grp; 1495 mac_ring_t *ring; 1496 int cnt = 0; 1497 1498 if (rtype == MAC_RING_TYPE_RX) { 1499 grp = flent->fe_rx_ring_group; 1500 } else if (rtype == MAC_RING_TYPE_TX) { 1501 grp = flent->fe_tx_ring_group; 1502 } else { 1503 ASSERT(B_FALSE); 1504 return (-1); 1505 } 1506 /* 1507 * The mac client did not reserve any RX group, return directly. 1508 * This is probably because the underlying MAC does not support 1509 * any groups. 1510 */ 1511 if (hwgh != NULL) 1512 *hwgh = NULL; 1513 if (grp == NULL) 1514 return (0); 1515 /* 1516 * This group must be reserved by this mac client. 1517 */ 1518 ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) && 1519 (mcip == MAC_GROUP_ONLY_CLIENT(grp))); 1520 1521 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) { 1522 ASSERT(cnt < MAX_RINGS_PER_GROUP); 1523 hwrh[cnt] = (mac_ring_handle_t)ring; 1524 } 1525 if (hwgh != NULL) 1526 *hwgh = (mac_group_handle_t)grp; 1527 1528 return (cnt); 1529 } 1530 1531 /* 1532 * This function is called to get info about Tx/Rx rings. 1533 * 1534 * Return value: returns uint_t which will have various bits set 1535 * that indicates different properties of the ring. 1536 */ 1537 uint_t 1538 mac_hwring_getinfo(mac_ring_handle_t rh) 1539 { 1540 mac_ring_t *ring = (mac_ring_t *)rh; 1541 mac_ring_info_t *info = &ring->mr_info; 1542 1543 return (info->mri_flags); 1544 } 1545 1546 /* 1547 * Export ddi interrupt handles from the HW ring to the pseudo ring and 1548 * setup the RX callback of the mac client which exclusively controls 1549 * HW ring. 1550 */ 1551 void 1552 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh, 1553 mac_ring_handle_t pseudo_rh) 1554 { 1555 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1556 mac_ring_t *pseudo_ring; 1557 mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs; 1558 1559 if (pseudo_rh != NULL) { 1560 pseudo_ring = (mac_ring_t *)pseudo_rh; 1561 /* Export the ddi handles to pseudo ring */ 1562 pseudo_ring->mr_info.mri_intr.mi_ddi_handle = 1563 hw_ring->mr_info.mri_intr.mi_ddi_handle; 1564 pseudo_ring->mr_info.mri_intr.mi_ddi_shared = 1565 hw_ring->mr_info.mri_intr.mi_ddi_shared; 1566 /* 1567 * Save a pointer to pseudo ring in the hw ring. If 1568 * interrupt handle changes, the hw ring will be 1569 * notified of the change (see mac_ring_intr_set()) 1570 * and the appropriate change has to be made to 1571 * the pseudo ring that has exported the ddi handle. 1572 */ 1573 hw_ring->mr_prh = pseudo_rh; 1574 } 1575 1576 if (hw_ring->mr_type == MAC_RING_TYPE_RX) { 1577 ASSERT(!(mac_srs->srs_type & SRST_TX)); 1578 mac_srs->srs_mrh = prh; 1579 mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process; 1580 } 1581 } 1582 1583 void 1584 mac_hwring_teardown(mac_ring_handle_t hwrh) 1585 { 1586 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1587 mac_soft_ring_set_t *mac_srs; 1588 1589 if (hw_ring == NULL) 1590 return; 1591 hw_ring->mr_prh = NULL; 1592 if (hw_ring->mr_type == MAC_RING_TYPE_RX) { 1593 mac_srs = hw_ring->mr_srs; 1594 ASSERT(!(mac_srs->srs_type & SRST_TX)); 1595 mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process; 1596 mac_srs->srs_mrh = NULL; 1597 } 1598 } 1599 1600 int 1601 mac_hwring_disable_intr(mac_ring_handle_t rh) 1602 { 1603 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1604 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1605 1606 return (intr->mi_disable(intr->mi_handle)); 1607 } 1608 1609 int 1610 mac_hwring_enable_intr(mac_ring_handle_t rh) 1611 { 1612 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1613 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1614 1615 return (intr->mi_enable(intr->mi_handle)); 1616 } 1617 1618 int 1619 mac_hwring_start(mac_ring_handle_t rh) 1620 { 1621 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1622 1623 MAC_RING_UNMARK(rr_ring, MR_QUIESCE); 1624 return (0); 1625 } 1626 1627 void 1628 mac_hwring_stop(mac_ring_handle_t rh) 1629 { 1630 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1631 1632 mac_rx_ring_quiesce(rr_ring, MR_QUIESCE); 1633 } 1634 1635 mblk_t * 1636 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup) 1637 { 1638 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1639 mac_ring_info_t *info = &rr_ring->mr_info; 1640 1641 return (info->mri_poll(info->mri_driver, bytes_to_pickup)); 1642 } 1643 1644 /* 1645 * Send packets through a selected tx ring. 1646 */ 1647 mblk_t * 1648 mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp) 1649 { 1650 mac_ring_t *ring = (mac_ring_t *)rh; 1651 mac_ring_info_t *info = &ring->mr_info; 1652 1653 ASSERT(ring->mr_type == MAC_RING_TYPE_TX && 1654 ring->mr_state >= MR_INUSE); 1655 return (info->mri_tx(info->mri_driver, mp)); 1656 } 1657 1658 /* 1659 * Query stats for a particular rx/tx ring 1660 */ 1661 int 1662 mac_hwring_getstat(mac_ring_handle_t rh, uint_t stat, uint64_t *val) 1663 { 1664 mac_ring_t *ring = (mac_ring_t *)rh; 1665 mac_ring_info_t *info = &ring->mr_info; 1666 1667 return (info->mri_stat(info->mri_driver, stat, val)); 1668 } 1669 1670 /* 1671 * Private function that is only used by aggr to send packets through 1672 * a port/Tx ring. Since aggr exposes a pseudo Tx ring even for ports 1673 * that does not expose Tx rings, aggr_ring_tx() entry point needs 1674 * access to mac_impl_t to send packets through m_tx() entry point. 1675 * It accomplishes this by calling mac_hwring_send_priv() function. 1676 */ 1677 mblk_t * 1678 mac_hwring_send_priv(mac_client_handle_t mch, mac_ring_handle_t rh, mblk_t *mp) 1679 { 1680 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1681 mac_impl_t *mip = mcip->mci_mip; 1682 1683 MAC_TX(mip, rh, mp, mcip); 1684 return (mp); 1685 } 1686 1687 int 1688 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr) 1689 { 1690 mac_group_t *group = (mac_group_t *)gh; 1691 1692 return (mac_group_addmac(group, addr)); 1693 } 1694 1695 int 1696 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr) 1697 { 1698 mac_group_t *group = (mac_group_t *)gh; 1699 1700 return (mac_group_remmac(group, addr)); 1701 } 1702 1703 /* 1704 * Set the RX group to be shared/reserved. Note that the group must be 1705 * started/stopped outside of this function. 1706 */ 1707 void 1708 mac_set_group_state(mac_group_t *grp, mac_group_state_t state) 1709 { 1710 /* 1711 * If there is no change in the group state, just return. 1712 */ 1713 if (grp->mrg_state == state) 1714 return; 1715 1716 switch (state) { 1717 case MAC_GROUP_STATE_RESERVED: 1718 /* 1719 * Successfully reserved the group. 1720 * 1721 * Given that there is an exclusive client controlling this 1722 * group, we enable the group level polling when available, 1723 * so that SRSs get to turn on/off individual rings they's 1724 * assigned to. 1725 */ 1726 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1727 1728 if (grp->mrg_type == MAC_RING_TYPE_RX && 1729 GROUP_INTR_DISABLE_FUNC(grp) != NULL) { 1730 GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1731 } 1732 break; 1733 1734 case MAC_GROUP_STATE_SHARED: 1735 /* 1736 * Set all rings of this group to software classified. 1737 * If the group has an overriding interrupt, then re-enable it. 1738 */ 1739 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1740 1741 if (grp->mrg_type == MAC_RING_TYPE_RX && 1742 GROUP_INTR_ENABLE_FUNC(grp) != NULL) { 1743 GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1744 } 1745 /* The ring is not available for reservations any more */ 1746 break; 1747 1748 case MAC_GROUP_STATE_REGISTERED: 1749 /* Also callable from mac_register, perim is not held */ 1750 break; 1751 1752 default: 1753 ASSERT(B_FALSE); 1754 break; 1755 } 1756 1757 grp->mrg_state = state; 1758 } 1759 1760 /* 1761 * Quiesce future hardware classified packets for the specified Rx ring 1762 */ 1763 static void 1764 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag) 1765 { 1766 ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER); 1767 ASSERT(ring_flag == MR_CONDEMNED || ring_flag == MR_QUIESCE); 1768 1769 mutex_enter(&rx_ring->mr_lock); 1770 rx_ring->mr_flag |= ring_flag; 1771 while (rx_ring->mr_refcnt != 0) 1772 cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock); 1773 mutex_exit(&rx_ring->mr_lock); 1774 } 1775 1776 /* 1777 * Please see mac_tx for details about the per cpu locking scheme 1778 */ 1779 static void 1780 mac_tx_lock_all(mac_client_impl_t *mcip) 1781 { 1782 int i; 1783 1784 for (i = 0; i <= mac_tx_percpu_cnt; i++) 1785 mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1786 } 1787 1788 static void 1789 mac_tx_unlock_all(mac_client_impl_t *mcip) 1790 { 1791 int i; 1792 1793 for (i = mac_tx_percpu_cnt; i >= 0; i--) 1794 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1795 } 1796 1797 static void 1798 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip) 1799 { 1800 int i; 1801 1802 for (i = mac_tx_percpu_cnt; i > 0; i--) 1803 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1804 } 1805 1806 static int 1807 mac_tx_sum_refcnt(mac_client_impl_t *mcip) 1808 { 1809 int i; 1810 int refcnt = 0; 1811 1812 for (i = 0; i <= mac_tx_percpu_cnt; i++) 1813 refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt; 1814 1815 return (refcnt); 1816 } 1817 1818 /* 1819 * Stop future Tx packets coming down from the client in preparation for 1820 * quiescing the Tx side. This is needed for dynamic reclaim and reassignment 1821 * of rings between clients 1822 */ 1823 void 1824 mac_tx_client_block(mac_client_impl_t *mcip) 1825 { 1826 mac_tx_lock_all(mcip); 1827 mcip->mci_tx_flag |= MCI_TX_QUIESCE; 1828 while (mac_tx_sum_refcnt(mcip) != 0) { 1829 mac_tx_unlock_allbutzero(mcip); 1830 cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock); 1831 mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock); 1832 mac_tx_lock_all(mcip); 1833 } 1834 mac_tx_unlock_all(mcip); 1835 } 1836 1837 void 1838 mac_tx_client_unblock(mac_client_impl_t *mcip) 1839 { 1840 mac_tx_lock_all(mcip); 1841 mcip->mci_tx_flag &= ~MCI_TX_QUIESCE; 1842 mac_tx_unlock_all(mcip); 1843 /* 1844 * We may fail to disable flow control for the last MAC_NOTE_TX 1845 * notification because the MAC client is quiesced. Send the 1846 * notification again. 1847 */ 1848 i_mac_notify(mcip->mci_mip, MAC_NOTE_TX); 1849 } 1850 1851 /* 1852 * Wait for an SRS to quiesce. The SRS worker will signal us when the 1853 * quiesce is done. 1854 */ 1855 static void 1856 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag) 1857 { 1858 mutex_enter(&srs->srs_lock); 1859 while (!(srs->srs_state & srs_flag)) 1860 cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock); 1861 mutex_exit(&srs->srs_lock); 1862 } 1863 1864 /* 1865 * Quiescing an Rx SRS is achieved by the following sequence. The protocol 1866 * works bottom up by cutting off packet flow from the bottommost point in the 1867 * mac, then the SRS, and then the soft rings. There are 2 use cases of this 1868 * mechanism. One is a temporary quiesce of the SRS, such as say while changing 1869 * the Rx callbacks. Another use case is Rx SRS teardown. In the former case 1870 * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used 1871 * for the SRS and MR flags. In the former case the threads pause waiting for 1872 * a restart, while in the latter case the threads exit. The Tx SRS teardown 1873 * is also mostly similar to the above. 1874 * 1875 * 1. Stop future hardware classified packets at the lowest level in the mac. 1876 * Remove any hardware classification rule (CONDEMNED case) and mark the 1877 * rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt 1878 * from increasing. Upcalls from the driver that come through hardware 1879 * classification will be dropped in mac_rx from now on. Then we wait for 1880 * the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are 1881 * sure there aren't any upcall threads from the driver through hardware 1882 * classification. In the case of SRS teardown we also remove the 1883 * classification rule in the driver. 1884 * 1885 * 2. Stop future software classified packets by marking the flow entry with 1886 * FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from 1887 * increasing. We also remove the flow entry from the table in the latter 1888 * case. Then wait for the fe_refcnt to reach an appropriate quiescent value 1889 * that indicates there aren't any active threads using that flow entry. 1890 * 1891 * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread, 1892 * SRS worker thread, and the soft ring threads are quiesced in sequence 1893 * with the SRS worker thread serving as a master controller. This 1894 * mechansim is explained in mac_srs_worker_quiesce(). 1895 * 1896 * The restart mechanism to reactivate the SRS and softrings is explained 1897 * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the 1898 * restart sequence. 1899 */ 1900 void 1901 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 1902 { 1903 flow_entry_t *flent = srs->srs_flent; 1904 uint_t mr_flag, srs_done_flag; 1905 1906 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 1907 ASSERT(!(srs->srs_type & SRST_TX)); 1908 1909 if (srs_quiesce_flag == SRS_CONDEMNED) { 1910 mr_flag = MR_CONDEMNED; 1911 srs_done_flag = SRS_CONDEMNED_DONE; 1912 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 1913 mac_srs_client_poll_disable(srs->srs_mcip, srs); 1914 } else { 1915 ASSERT(srs_quiesce_flag == SRS_QUIESCE); 1916 mr_flag = MR_QUIESCE; 1917 srs_done_flag = SRS_QUIESCE_DONE; 1918 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 1919 mac_srs_client_poll_quiesce(srs->srs_mcip, srs); 1920 } 1921 1922 if (srs->srs_ring != NULL) { 1923 mac_rx_ring_quiesce(srs->srs_ring, mr_flag); 1924 } else { 1925 /* 1926 * SRS is driven by software classification. In case 1927 * of CONDEMNED, the top level teardown functions will 1928 * deal with flow removal. 1929 */ 1930 if (srs_quiesce_flag != SRS_CONDEMNED) { 1931 FLOW_MARK(flent, FE_QUIESCE); 1932 mac_flow_wait(flent, FLOW_DRIVER_UPCALL); 1933 } 1934 } 1935 1936 /* 1937 * Signal the SRS to quiesce itself, and then cv_wait for the 1938 * SRS quiesce to complete. The SRS worker thread will wake us 1939 * up when the quiesce is complete 1940 */ 1941 mac_srs_signal(srs, srs_quiesce_flag); 1942 mac_srs_quiesce_wait(srs, srs_done_flag); 1943 } 1944 1945 /* 1946 * Remove an SRS. 1947 */ 1948 void 1949 mac_rx_srs_remove(mac_soft_ring_set_t *srs) 1950 { 1951 flow_entry_t *flent = srs->srs_flent; 1952 int i; 1953 1954 mac_rx_srs_quiesce(srs, SRS_CONDEMNED); 1955 /* 1956 * Locate and remove our entry in the fe_rx_srs[] array, and 1957 * adjust the fe_rx_srs array entries and array count by 1958 * moving the last entry into the vacated spot. 1959 */ 1960 mutex_enter(&flent->fe_lock); 1961 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1962 if (flent->fe_rx_srs[i] == srs) 1963 break; 1964 } 1965 1966 ASSERT(i != 0 && i < flent->fe_rx_srs_cnt); 1967 if (i != flent->fe_rx_srs_cnt - 1) { 1968 flent->fe_rx_srs[i] = 1969 flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1]; 1970 i = flent->fe_rx_srs_cnt - 1; 1971 } 1972 1973 flent->fe_rx_srs[i] = NULL; 1974 flent->fe_rx_srs_cnt--; 1975 mutex_exit(&flent->fe_lock); 1976 1977 mac_srs_free(srs); 1978 } 1979 1980 static void 1981 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag) 1982 { 1983 mutex_enter(&srs->srs_lock); 1984 srs->srs_state &= ~flag; 1985 mutex_exit(&srs->srs_lock); 1986 } 1987 1988 void 1989 mac_rx_srs_restart(mac_soft_ring_set_t *srs) 1990 { 1991 flow_entry_t *flent = srs->srs_flent; 1992 mac_ring_t *mr; 1993 1994 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 1995 ASSERT((srs->srs_type & SRST_TX) == 0); 1996 1997 /* 1998 * This handles a change in the number of SRSs between the quiesce and 1999 * and restart operation of a flow. 2000 */ 2001 if (!SRS_QUIESCED(srs)) 2002 return; 2003 2004 /* 2005 * Signal the SRS to restart itself. Wait for the restart to complete 2006 * Note that we only restart the SRS if it is not marked as 2007 * permanently quiesced. 2008 */ 2009 if (!SRS_QUIESCED_PERMANENT(srs)) { 2010 mac_srs_signal(srs, SRS_RESTART); 2011 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2012 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2013 2014 mac_srs_client_poll_restart(srs->srs_mcip, srs); 2015 } 2016 2017 /* Finally clear the flags to let the packets in */ 2018 mr = srs->srs_ring; 2019 if (mr != NULL) { 2020 MAC_RING_UNMARK(mr, MR_QUIESCE); 2021 /* In case the ring was stopped, safely restart it */ 2022 if (mr->mr_state != MR_INUSE) 2023 (void) mac_start_ring(mr); 2024 } else { 2025 FLOW_UNMARK(flent, FE_QUIESCE); 2026 } 2027 } 2028 2029 /* 2030 * Temporary quiesce of a flow and associated Rx SRS. 2031 * Please see block comment above mac_rx_classify_flow_rem. 2032 */ 2033 /* ARGSUSED */ 2034 int 2035 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg) 2036 { 2037 int i; 2038 2039 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2040 mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i], 2041 SRS_QUIESCE); 2042 } 2043 return (0); 2044 } 2045 2046 /* 2047 * Restart a flow and associated Rx SRS that has been quiesced temporarily 2048 * Please see block comment above mac_rx_classify_flow_rem 2049 */ 2050 /* ARGSUSED */ 2051 int 2052 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg) 2053 { 2054 int i; 2055 2056 for (i = 0; i < flent->fe_rx_srs_cnt; i++) 2057 mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]); 2058 2059 return (0); 2060 } 2061 2062 void 2063 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on) 2064 { 2065 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2066 flow_entry_t *flent = mcip->mci_flent; 2067 mac_impl_t *mip = mcip->mci_mip; 2068 mac_soft_ring_set_t *mac_srs; 2069 int i; 2070 2071 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2072 2073 if (flent == NULL) 2074 return; 2075 2076 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2077 mac_srs = flent->fe_rx_srs[i]; 2078 mutex_enter(&mac_srs->srs_lock); 2079 if (on) 2080 mac_srs->srs_state |= SRS_QUIESCE_PERM; 2081 else 2082 mac_srs->srs_state &= ~SRS_QUIESCE_PERM; 2083 mutex_exit(&mac_srs->srs_lock); 2084 } 2085 } 2086 2087 void 2088 mac_rx_client_quiesce(mac_client_handle_t mch) 2089 { 2090 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2091 mac_impl_t *mip = mcip->mci_mip; 2092 2093 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2094 2095 if (MCIP_DATAPATH_SETUP(mcip)) { 2096 (void) mac_rx_classify_flow_quiesce(mcip->mci_flent, 2097 NULL); 2098 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2099 mac_rx_classify_flow_quiesce, NULL); 2100 } 2101 } 2102 2103 void 2104 mac_rx_client_restart(mac_client_handle_t mch) 2105 { 2106 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2107 mac_impl_t *mip = mcip->mci_mip; 2108 2109 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2110 2111 if (MCIP_DATAPATH_SETUP(mcip)) { 2112 (void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL); 2113 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2114 mac_rx_classify_flow_restart, NULL); 2115 } 2116 } 2117 2118 /* 2119 * This function only quiesces the Tx SRS and softring worker threads. Callers 2120 * need to make sure that there aren't any mac client threads doing current or 2121 * future transmits in the mac before calling this function. 2122 */ 2123 void 2124 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 2125 { 2126 mac_client_impl_t *mcip = srs->srs_mcip; 2127 2128 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2129 2130 ASSERT(srs->srs_type & SRST_TX); 2131 ASSERT(srs_quiesce_flag == SRS_CONDEMNED || 2132 srs_quiesce_flag == SRS_QUIESCE); 2133 2134 /* 2135 * Signal the SRS to quiesce itself, and then cv_wait for the 2136 * SRS quiesce to complete. The SRS worker thread will wake us 2137 * up when the quiesce is complete 2138 */ 2139 mac_srs_signal(srs, srs_quiesce_flag); 2140 mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ? 2141 SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE); 2142 } 2143 2144 void 2145 mac_tx_srs_restart(mac_soft_ring_set_t *srs) 2146 { 2147 /* 2148 * Resizing the fanout could result in creation of new SRSs. 2149 * They may not necessarily be in the quiesced state in which 2150 * case it need be restarted 2151 */ 2152 if (!SRS_QUIESCED(srs)) 2153 return; 2154 2155 mac_srs_signal(srs, SRS_RESTART); 2156 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2157 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2158 } 2159 2160 /* 2161 * Temporary quiesce of a flow and associated Rx SRS. 2162 * Please see block comment above mac_rx_srs_quiesce 2163 */ 2164 /* ARGSUSED */ 2165 int 2166 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg) 2167 { 2168 /* 2169 * The fe_tx_srs is null for a subflow on an interface that is 2170 * not plumbed 2171 */ 2172 if (flent->fe_tx_srs != NULL) 2173 mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE); 2174 return (0); 2175 } 2176 2177 /* ARGSUSED */ 2178 int 2179 mac_tx_flow_restart(flow_entry_t *flent, void *arg) 2180 { 2181 /* 2182 * The fe_tx_srs is null for a subflow on an interface that is 2183 * not plumbed 2184 */ 2185 if (flent->fe_tx_srs != NULL) 2186 mac_tx_srs_restart(flent->fe_tx_srs); 2187 return (0); 2188 } 2189 2190 static void 2191 i_mac_tx_client_quiesce(mac_client_handle_t mch, uint_t srs_quiesce_flag) 2192 { 2193 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2194 2195 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2196 2197 mac_tx_client_block(mcip); 2198 if (MCIP_TX_SRS(mcip) != NULL) { 2199 mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag); 2200 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2201 mac_tx_flow_quiesce, NULL); 2202 } 2203 } 2204 2205 void 2206 mac_tx_client_quiesce(mac_client_handle_t mch) 2207 { 2208 i_mac_tx_client_quiesce(mch, SRS_QUIESCE); 2209 } 2210 2211 void 2212 mac_tx_client_condemn(mac_client_handle_t mch) 2213 { 2214 i_mac_tx_client_quiesce(mch, SRS_CONDEMNED); 2215 } 2216 2217 void 2218 mac_tx_client_restart(mac_client_handle_t mch) 2219 { 2220 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2221 2222 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2223 2224 mac_tx_client_unblock(mcip); 2225 if (MCIP_TX_SRS(mcip) != NULL) { 2226 mac_tx_srs_restart(MCIP_TX_SRS(mcip)); 2227 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2228 mac_tx_flow_restart, NULL); 2229 } 2230 } 2231 2232 void 2233 mac_tx_client_flush(mac_client_impl_t *mcip) 2234 { 2235 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2236 2237 mac_tx_client_quiesce((mac_client_handle_t)mcip); 2238 mac_tx_client_restart((mac_client_handle_t)mcip); 2239 } 2240 2241 void 2242 mac_client_quiesce(mac_client_impl_t *mcip) 2243 { 2244 mac_rx_client_quiesce((mac_client_handle_t)mcip); 2245 mac_tx_client_quiesce((mac_client_handle_t)mcip); 2246 } 2247 2248 void 2249 mac_client_restart(mac_client_impl_t *mcip) 2250 { 2251 mac_rx_client_restart((mac_client_handle_t)mcip); 2252 mac_tx_client_restart((mac_client_handle_t)mcip); 2253 } 2254 2255 /* 2256 * Allocate a minor number. 2257 */ 2258 minor_t 2259 mac_minor_hold(boolean_t sleep) 2260 { 2261 minor_t minor; 2262 2263 /* 2264 * Grab a value from the arena. 2265 */ 2266 atomic_inc_32(&minor_count); 2267 2268 if (sleep) 2269 minor = (uint_t)id_alloc(minor_ids); 2270 else 2271 minor = (uint_t)id_alloc_nosleep(minor_ids); 2272 2273 if (minor == 0) { 2274 atomic_dec_32(&minor_count); 2275 return (0); 2276 } 2277 2278 return (minor); 2279 } 2280 2281 /* 2282 * Release a previously allocated minor number. 2283 */ 2284 void 2285 mac_minor_rele(minor_t minor) 2286 { 2287 /* 2288 * Return the value to the arena. 2289 */ 2290 id_free(minor_ids, minor); 2291 atomic_dec_32(&minor_count); 2292 } 2293 2294 uint32_t 2295 mac_no_notification(mac_handle_t mh) 2296 { 2297 mac_impl_t *mip = (mac_impl_t *)mh; 2298 2299 return (((mip->mi_state_flags & MIS_LEGACY) != 0) ? 2300 mip->mi_capab_legacy.ml_unsup_note : 0); 2301 } 2302 2303 /* 2304 * Prevent any new opens of this mac in preparation for unregister 2305 */ 2306 int 2307 i_mac_disable(mac_impl_t *mip) 2308 { 2309 mac_client_impl_t *mcip; 2310 2311 rw_enter(&i_mac_impl_lock, RW_WRITER); 2312 if (mip->mi_state_flags & MIS_DISABLED) { 2313 /* Already disabled, return success */ 2314 rw_exit(&i_mac_impl_lock); 2315 return (0); 2316 } 2317 /* 2318 * See if there are any other references to this mac_t (e.g., VLAN's). 2319 * If so return failure. If all the other checks below pass, then 2320 * set mi_disabled atomically under the i_mac_impl_lock to prevent 2321 * any new VLAN's from being created or new mac client opens of this 2322 * mac end point. 2323 */ 2324 if (mip->mi_ref > 0) { 2325 rw_exit(&i_mac_impl_lock); 2326 return (EBUSY); 2327 } 2328 2329 /* 2330 * mac clients must delete all multicast groups they join before 2331 * closing. bcast groups are reference counted, the last client 2332 * to delete the group will wait till the group is physically 2333 * deleted. Since all clients have closed this mac end point 2334 * mi_bcast_ngrps must be zero at this point 2335 */ 2336 ASSERT(mip->mi_bcast_ngrps == 0); 2337 2338 /* 2339 * Don't let go of this if it has some flows. 2340 * All other code guarantees no flows are added to a disabled 2341 * mac, therefore it is sufficient to check for the flow table 2342 * only here. 2343 */ 2344 mcip = mac_primary_client_handle(mip); 2345 if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) { 2346 rw_exit(&i_mac_impl_lock); 2347 return (ENOTEMPTY); 2348 } 2349 2350 mip->mi_state_flags |= MIS_DISABLED; 2351 rw_exit(&i_mac_impl_lock); 2352 return (0); 2353 } 2354 2355 int 2356 mac_disable_nowait(mac_handle_t mh) 2357 { 2358 mac_impl_t *mip = (mac_impl_t *)mh; 2359 int err; 2360 2361 if ((err = i_mac_perim_enter_nowait(mip)) != 0) 2362 return (err); 2363 err = i_mac_disable(mip); 2364 i_mac_perim_exit(mip); 2365 return (err); 2366 } 2367 2368 int 2369 mac_disable(mac_handle_t mh) 2370 { 2371 mac_impl_t *mip = (mac_impl_t *)mh; 2372 int err; 2373 2374 i_mac_perim_enter(mip); 2375 err = i_mac_disable(mip); 2376 i_mac_perim_exit(mip); 2377 2378 /* 2379 * Clean up notification thread and wait for it to exit. 2380 */ 2381 if (err == 0) 2382 i_mac_notify_exit(mip); 2383 2384 return (err); 2385 } 2386 2387 /* 2388 * Called when the MAC instance has a non empty flow table, to de-multiplex 2389 * incoming packets to the right flow. 2390 * The MAC's rw lock is assumed held as a READER. 2391 */ 2392 /* ARGSUSED */ 2393 static mblk_t * 2394 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp) 2395 { 2396 flow_entry_t *flent = NULL; 2397 uint_t flags = FLOW_INBOUND; 2398 int err; 2399 2400 /* 2401 * If the mac is a port of an aggregation, pass FLOW_IGNORE_VLAN 2402 * to mac_flow_lookup() so that the VLAN packets can be successfully 2403 * passed to the non-VLAN aggregation flows. 2404 * 2405 * Note that there is possibly a race between this and 2406 * mac_unicast_remove/add() and VLAN packets could be incorrectly 2407 * classified to non-VLAN flows of non-aggregation mac clients. These 2408 * VLAN packets will be then filtered out by the mac module. 2409 */ 2410 if ((mip->mi_state_flags & MIS_EXCLUSIVE) != 0) 2411 flags |= FLOW_IGNORE_VLAN; 2412 2413 err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent); 2414 if (err != 0) { 2415 /* no registered receive function */ 2416 return (mp); 2417 } else { 2418 mac_client_impl_t *mcip; 2419 2420 /* 2421 * This flent might just be an additional one on the MAC client, 2422 * i.e. for classification purposes (different fdesc), however 2423 * the resources, SRS et. al., are in the mci_flent, so if 2424 * this isn't the mci_flent, we need to get it. 2425 */ 2426 if ((mcip = flent->fe_mcip) != NULL && 2427 mcip->mci_flent != flent) { 2428 FLOW_REFRELE(flent); 2429 flent = mcip->mci_flent; 2430 FLOW_TRY_REFHOLD(flent, err); 2431 if (err != 0) 2432 return (mp); 2433 } 2434 (flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp, 2435 B_FALSE); 2436 FLOW_REFRELE(flent); 2437 } 2438 return (NULL); 2439 } 2440 2441 mblk_t * 2442 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 2443 { 2444 mac_impl_t *mip = (mac_impl_t *)mh; 2445 mblk_t *bp, *bp1, **bpp, *list = NULL; 2446 2447 /* 2448 * We walk the chain and attempt to classify each packet. 2449 * The packets that couldn't be classified will be returned 2450 * back to the caller. 2451 */ 2452 bp = mp_chain; 2453 bpp = &list; 2454 while (bp != NULL) { 2455 bp1 = bp; 2456 bp = bp->b_next; 2457 bp1->b_next = NULL; 2458 2459 if (mac_rx_classify(mip, mrh, bp1) != NULL) { 2460 *bpp = bp1; 2461 bpp = &bp1->b_next; 2462 } 2463 } 2464 return (list); 2465 } 2466 2467 static int 2468 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg) 2469 { 2470 mac_ring_handle_t ring = arg; 2471 2472 if (flent->fe_tx_srs) 2473 mac_tx_srs_wakeup(flent->fe_tx_srs, ring); 2474 return (0); 2475 } 2476 2477 void 2478 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring) 2479 { 2480 mac_client_impl_t *cclient; 2481 mac_soft_ring_set_t *mac_srs; 2482 2483 /* 2484 * After grabbing the mi_rw_lock, the list of clients can't change. 2485 * If there are any clients mi_disabled must be B_FALSE and can't 2486 * get set since there are clients. If there aren't any clients we 2487 * don't do anything. In any case the mip has to be valid. The driver 2488 * must make sure that it goes single threaded (with respect to mac 2489 * calls) and wait for all pending mac calls to finish before calling 2490 * mac_unregister. 2491 */ 2492 rw_enter(&i_mac_impl_lock, RW_READER); 2493 if (mip->mi_state_flags & MIS_DISABLED) { 2494 rw_exit(&i_mac_impl_lock); 2495 return; 2496 } 2497 2498 /* 2499 * Get MAC tx srs from walking mac_client_handle list. 2500 */ 2501 rw_enter(&mip->mi_rw_lock, RW_READER); 2502 for (cclient = mip->mi_clients_list; cclient != NULL; 2503 cclient = cclient->mci_client_next) { 2504 if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) { 2505 mac_tx_srs_wakeup(mac_srs, ring); 2506 } else { 2507 /* 2508 * Aggr opens underlying ports in exclusive mode 2509 * and registers flow control callbacks using 2510 * mac_tx_client_notify(). When opened in 2511 * exclusive mode, Tx SRS won't be created 2512 * during mac_unicast_add(). 2513 */ 2514 if (cclient->mci_state_flags & MCIS_EXCLUSIVE) { 2515 mac_tx_invoke_callbacks(cclient, 2516 (mac_tx_cookie_t)ring); 2517 } 2518 } 2519 (void) mac_flow_walk(cclient->mci_subflow_tab, 2520 mac_tx_flow_srs_wakeup, ring); 2521 } 2522 rw_exit(&mip->mi_rw_lock); 2523 rw_exit(&i_mac_impl_lock); 2524 } 2525 2526 /* ARGSUSED */ 2527 void 2528 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg, 2529 boolean_t add) 2530 { 2531 mac_impl_t *mip = (mac_impl_t *)mh; 2532 2533 i_mac_perim_enter((mac_impl_t *)mh); 2534 /* 2535 * If no specific refresh function was given then default to the 2536 * driver's m_multicst entry point. 2537 */ 2538 if (refresh == NULL) { 2539 refresh = mip->mi_multicst; 2540 arg = mip->mi_driver; 2541 } 2542 2543 mac_bcast_refresh(mip, refresh, arg, add); 2544 i_mac_perim_exit((mac_impl_t *)mh); 2545 } 2546 2547 void 2548 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg) 2549 { 2550 mac_impl_t *mip = (mac_impl_t *)mh; 2551 2552 /* 2553 * If no specific refresh function was given then default to the 2554 * driver's m_promisc entry point. 2555 */ 2556 if (refresh == NULL) { 2557 refresh = mip->mi_setpromisc; 2558 arg = mip->mi_driver; 2559 } 2560 ASSERT(refresh != NULL); 2561 2562 /* 2563 * Call the refresh function with the current promiscuity. 2564 */ 2565 refresh(arg, (mip->mi_devpromisc != 0)); 2566 } 2567 2568 /* 2569 * The mac client requests that the mac not to change its margin size to 2570 * be less than the specified value. If "current" is B_TRUE, then the client 2571 * requests the mac not to change its margin size to be smaller than the 2572 * current size. Further, return the current margin size value in this case. 2573 * 2574 * We keep every requested size in an ordered list from largest to smallest. 2575 */ 2576 int 2577 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current) 2578 { 2579 mac_impl_t *mip = (mac_impl_t *)mh; 2580 mac_margin_req_t **pp, *p; 2581 int err = 0; 2582 2583 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2584 if (current) 2585 *marginp = mip->mi_margin; 2586 2587 /* 2588 * If the current margin value cannot satisfy the margin requested, 2589 * return ENOTSUP directly. 2590 */ 2591 if (*marginp > mip->mi_margin) { 2592 err = ENOTSUP; 2593 goto done; 2594 } 2595 2596 /* 2597 * Check whether the given margin is already in the list. If so, 2598 * bump the reference count. 2599 */ 2600 for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) { 2601 if (p->mmr_margin == *marginp) { 2602 /* 2603 * The margin requested is already in the list, 2604 * so just bump the reference count. 2605 */ 2606 p->mmr_ref++; 2607 goto done; 2608 } 2609 if (p->mmr_margin < *marginp) 2610 break; 2611 } 2612 2613 2614 p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP); 2615 p->mmr_margin = *marginp; 2616 p->mmr_ref++; 2617 p->mmr_nextp = *pp; 2618 *pp = p; 2619 2620 done: 2621 rw_exit(&(mip->mi_rw_lock)); 2622 return (err); 2623 } 2624 2625 /* 2626 * The mac client requests to cancel its previous mac_margin_add() request. 2627 * We remove the requested margin size from the list. 2628 */ 2629 int 2630 mac_margin_remove(mac_handle_t mh, uint32_t margin) 2631 { 2632 mac_impl_t *mip = (mac_impl_t *)mh; 2633 mac_margin_req_t **pp, *p; 2634 int err = 0; 2635 2636 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2637 /* 2638 * Find the entry in the list for the given margin. 2639 */ 2640 for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) { 2641 if (p->mmr_margin == margin) { 2642 if (--p->mmr_ref == 0) 2643 break; 2644 2645 /* 2646 * There is still a reference to this address so 2647 * there's nothing more to do. 2648 */ 2649 goto done; 2650 } 2651 } 2652 2653 /* 2654 * We did not find an entry for the given margin. 2655 */ 2656 if (p == NULL) { 2657 err = ENOENT; 2658 goto done; 2659 } 2660 2661 ASSERT(p->mmr_ref == 0); 2662 2663 /* 2664 * Remove it from the list. 2665 */ 2666 *pp = p->mmr_nextp; 2667 kmem_free(p, sizeof (mac_margin_req_t)); 2668 done: 2669 rw_exit(&(mip->mi_rw_lock)); 2670 return (err); 2671 } 2672 2673 boolean_t 2674 mac_margin_update(mac_handle_t mh, uint32_t margin) 2675 { 2676 mac_impl_t *mip = (mac_impl_t *)mh; 2677 uint32_t margin_needed = 0; 2678 2679 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2680 2681 if (mip->mi_mmrp != NULL) 2682 margin_needed = mip->mi_mmrp->mmr_margin; 2683 2684 if (margin_needed <= margin) 2685 mip->mi_margin = margin; 2686 2687 rw_exit(&(mip->mi_rw_lock)); 2688 2689 if (margin_needed <= margin) 2690 i_mac_notify(mip, MAC_NOTE_MARGIN); 2691 2692 return (margin_needed <= margin); 2693 } 2694 2695 /* 2696 * MAC clients use this interface to request that a MAC device not change its 2697 * MTU below the specified amount. At this time, that amount must be within the 2698 * range of the device's current minimum and the device's current maximum. eg. a 2699 * client cannot request a 3000 byte MTU when the device's MTU is currently 2700 * 2000. 2701 * 2702 * If "current" is set to B_TRUE, then the request is to simply to reserve the 2703 * current underlying mac's maximum for this mac client and return it in mtup. 2704 */ 2705 int 2706 mac_mtu_add(mac_handle_t mh, uint32_t *mtup, boolean_t current) 2707 { 2708 mac_impl_t *mip = (mac_impl_t *)mh; 2709 mac_mtu_req_t *prev, *cur; 2710 mac_propval_range_t mpr; 2711 int err; 2712 2713 i_mac_perim_enter(mip); 2714 rw_enter(&mip->mi_rw_lock, RW_WRITER); 2715 2716 if (current == B_TRUE) 2717 *mtup = mip->mi_sdu_max; 2718 mpr.mpr_count = 1; 2719 err = mac_prop_info(mh, MAC_PROP_MTU, "mtu", NULL, 0, &mpr, NULL); 2720 if (err != 0) { 2721 rw_exit(&mip->mi_rw_lock); 2722 i_mac_perim_exit(mip); 2723 return (err); 2724 } 2725 2726 if (*mtup > mip->mi_sdu_max || 2727 *mtup < mpr.mpr_range_uint32[0].mpur_min) { 2728 rw_exit(&mip->mi_rw_lock); 2729 i_mac_perim_exit(mip); 2730 return (ENOTSUP); 2731 } 2732 2733 prev = NULL; 2734 for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) { 2735 if (*mtup == cur->mtr_mtu) { 2736 cur->mtr_ref++; 2737 rw_exit(&mip->mi_rw_lock); 2738 i_mac_perim_exit(mip); 2739 return (0); 2740 } 2741 2742 if (*mtup > cur->mtr_mtu) 2743 break; 2744 2745 prev = cur; 2746 } 2747 2748 cur = kmem_alloc(sizeof (mac_mtu_req_t), KM_SLEEP); 2749 cur->mtr_mtu = *mtup; 2750 cur->mtr_ref = 1; 2751 if (prev != NULL) { 2752 cur->mtr_nextp = prev->mtr_nextp; 2753 prev->mtr_nextp = cur; 2754 } else { 2755 cur->mtr_nextp = mip->mi_mtrp; 2756 mip->mi_mtrp = cur; 2757 } 2758 2759 rw_exit(&mip->mi_rw_lock); 2760 i_mac_perim_exit(mip); 2761 return (0); 2762 } 2763 2764 int 2765 mac_mtu_remove(mac_handle_t mh, uint32_t mtu) 2766 { 2767 mac_impl_t *mip = (mac_impl_t *)mh; 2768 mac_mtu_req_t *cur, *prev; 2769 2770 i_mac_perim_enter(mip); 2771 rw_enter(&mip->mi_rw_lock, RW_WRITER); 2772 2773 prev = NULL; 2774 for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) { 2775 if (cur->mtr_mtu == mtu) { 2776 ASSERT(cur->mtr_ref > 0); 2777 cur->mtr_ref--; 2778 if (cur->mtr_ref == 0) { 2779 if (prev == NULL) { 2780 mip->mi_mtrp = cur->mtr_nextp; 2781 } else { 2782 prev->mtr_nextp = cur->mtr_nextp; 2783 } 2784 kmem_free(cur, sizeof (mac_mtu_req_t)); 2785 } 2786 rw_exit(&mip->mi_rw_lock); 2787 i_mac_perim_exit(mip); 2788 return (0); 2789 } 2790 2791 prev = cur; 2792 } 2793 2794 rw_exit(&mip->mi_rw_lock); 2795 i_mac_perim_exit(mip); 2796 return (ENOENT); 2797 } 2798 2799 /* 2800 * MAC Type Plugin functions. 2801 */ 2802 2803 mactype_t * 2804 mactype_getplugin(const char *pname) 2805 { 2806 mactype_t *mtype = NULL; 2807 boolean_t tried_modload = B_FALSE; 2808 2809 mutex_enter(&i_mactype_lock); 2810 2811 find_registered_mactype: 2812 if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname, 2813 (mod_hash_val_t *)&mtype) != 0) { 2814 if (!tried_modload) { 2815 /* 2816 * If the plugin has not yet been loaded, then 2817 * attempt to load it now. If modload() succeeds, 2818 * the plugin should have registered using 2819 * mactype_register(), in which case we can go back 2820 * and attempt to find it again. 2821 */ 2822 if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) { 2823 tried_modload = B_TRUE; 2824 goto find_registered_mactype; 2825 } 2826 } 2827 } else { 2828 /* 2829 * Note that there's no danger that the plugin we've loaded 2830 * could be unloaded between the modload() step and the 2831 * reference count bump here, as we're holding 2832 * i_mactype_lock, which mactype_unregister() also holds. 2833 */ 2834 atomic_inc_32(&mtype->mt_ref); 2835 } 2836 2837 mutex_exit(&i_mactype_lock); 2838 return (mtype); 2839 } 2840 2841 mactype_register_t * 2842 mactype_alloc(uint_t mactype_version) 2843 { 2844 mactype_register_t *mtrp; 2845 2846 /* 2847 * Make sure there isn't a version mismatch between the plugin and 2848 * the framework. In the future, if multiple versions are 2849 * supported, this check could become more sophisticated. 2850 */ 2851 if (mactype_version != MACTYPE_VERSION) 2852 return (NULL); 2853 2854 mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP); 2855 mtrp->mtr_version = mactype_version; 2856 return (mtrp); 2857 } 2858 2859 void 2860 mactype_free(mactype_register_t *mtrp) 2861 { 2862 kmem_free(mtrp, sizeof (mactype_register_t)); 2863 } 2864 2865 int 2866 mactype_register(mactype_register_t *mtrp) 2867 { 2868 mactype_t *mtp; 2869 mactype_ops_t *ops = mtrp->mtr_ops; 2870 2871 /* Do some sanity checking before we register this MAC type. */ 2872 if (mtrp->mtr_ident == NULL || ops == NULL) 2873 return (EINVAL); 2874 2875 /* 2876 * Verify that all mandatory callbacks are set in the ops 2877 * vector. 2878 */ 2879 if (ops->mtops_unicst_verify == NULL || 2880 ops->mtops_multicst_verify == NULL || 2881 ops->mtops_sap_verify == NULL || 2882 ops->mtops_header == NULL || 2883 ops->mtops_header_info == NULL) { 2884 return (EINVAL); 2885 } 2886 2887 mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP); 2888 mtp->mt_ident = mtrp->mtr_ident; 2889 mtp->mt_ops = *ops; 2890 mtp->mt_type = mtrp->mtr_mactype; 2891 mtp->mt_nativetype = mtrp->mtr_nativetype; 2892 mtp->mt_addr_length = mtrp->mtr_addrlen; 2893 if (mtrp->mtr_brdcst_addr != NULL) { 2894 mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP); 2895 bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr, 2896 mtrp->mtr_addrlen); 2897 } 2898 2899 mtp->mt_stats = mtrp->mtr_stats; 2900 mtp->mt_statcount = mtrp->mtr_statcount; 2901 2902 mtp->mt_mapping = mtrp->mtr_mapping; 2903 mtp->mt_mappingcount = mtrp->mtr_mappingcount; 2904 2905 if (mod_hash_insert(i_mactype_hash, 2906 (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) { 2907 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 2908 kmem_free(mtp, sizeof (*mtp)); 2909 return (EEXIST); 2910 } 2911 return (0); 2912 } 2913 2914 int 2915 mactype_unregister(const char *ident) 2916 { 2917 mactype_t *mtp; 2918 mod_hash_val_t val; 2919 int err; 2920 2921 /* 2922 * Let's not allow MAC drivers to use this plugin while we're 2923 * trying to unregister it. Holding i_mactype_lock also prevents a 2924 * plugin from unregistering while a MAC driver is attempting to 2925 * hold a reference to it in i_mactype_getplugin(). 2926 */ 2927 mutex_enter(&i_mactype_lock); 2928 2929 if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident, 2930 (mod_hash_val_t *)&mtp)) != 0) { 2931 /* A plugin is trying to unregister, but it never registered. */ 2932 err = ENXIO; 2933 goto done; 2934 } 2935 2936 if (mtp->mt_ref != 0) { 2937 err = EBUSY; 2938 goto done; 2939 } 2940 2941 err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val); 2942 ASSERT(err == 0); 2943 if (err != 0) { 2944 /* This should never happen, thus the ASSERT() above. */ 2945 err = EINVAL; 2946 goto done; 2947 } 2948 ASSERT(mtp == (mactype_t *)val); 2949 2950 if (mtp->mt_brdcst_addr != NULL) 2951 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 2952 kmem_free(mtp, sizeof (mactype_t)); 2953 done: 2954 mutex_exit(&i_mactype_lock); 2955 return (err); 2956 } 2957 2958 /* 2959 * Checks the size of the value size specified for a property as 2960 * part of a property operation. Returns B_TRUE if the size is 2961 * correct, B_FALSE otherwise. 2962 */ 2963 boolean_t 2964 mac_prop_check_size(mac_prop_id_t id, uint_t valsize, boolean_t is_range) 2965 { 2966 uint_t minsize = 0; 2967 2968 if (is_range) 2969 return (valsize >= sizeof (mac_propval_range_t)); 2970 2971 switch (id) { 2972 case MAC_PROP_ZONE: 2973 minsize = sizeof (dld_ioc_zid_t); 2974 break; 2975 case MAC_PROP_AUTOPUSH: 2976 if (valsize != 0) 2977 minsize = sizeof (struct dlautopush); 2978 break; 2979 case MAC_PROP_TAGMODE: 2980 minsize = sizeof (link_tagmode_t); 2981 break; 2982 case MAC_PROP_RESOURCE: 2983 case MAC_PROP_RESOURCE_EFF: 2984 minsize = sizeof (mac_resource_props_t); 2985 break; 2986 case MAC_PROP_DUPLEX: 2987 minsize = sizeof (link_duplex_t); 2988 break; 2989 case MAC_PROP_SPEED: 2990 minsize = sizeof (uint64_t); 2991 break; 2992 case MAC_PROP_STATUS: 2993 minsize = sizeof (link_state_t); 2994 break; 2995 case MAC_PROP_AUTONEG: 2996 case MAC_PROP_EN_AUTONEG: 2997 minsize = sizeof (uint8_t); 2998 break; 2999 case MAC_PROP_MTU: 3000 case MAC_PROP_LLIMIT: 3001 case MAC_PROP_LDECAY: 3002 minsize = sizeof (uint32_t); 3003 break; 3004 case MAC_PROP_FLOWCTRL: 3005 minsize = sizeof (link_flowctrl_t); 3006 break; 3007 case MAC_PROP_ADV_10GFDX_CAP: 3008 case MAC_PROP_EN_10GFDX_CAP: 3009 case MAC_PROP_ADV_1000HDX_CAP: 3010 case MAC_PROP_EN_1000HDX_CAP: 3011 case MAC_PROP_ADV_100FDX_CAP: 3012 case MAC_PROP_EN_100FDX_CAP: 3013 case MAC_PROP_ADV_100HDX_CAP: 3014 case MAC_PROP_EN_100HDX_CAP: 3015 case MAC_PROP_ADV_10FDX_CAP: 3016 case MAC_PROP_EN_10FDX_CAP: 3017 case MAC_PROP_ADV_10HDX_CAP: 3018 case MAC_PROP_EN_10HDX_CAP: 3019 case MAC_PROP_ADV_100T4_CAP: 3020 case MAC_PROP_EN_100T4_CAP: 3021 minsize = sizeof (uint8_t); 3022 break; 3023 case MAC_PROP_PVID: 3024 minsize = sizeof (uint16_t); 3025 break; 3026 case MAC_PROP_IPTUN_HOPLIMIT: 3027 minsize = sizeof (uint32_t); 3028 break; 3029 case MAC_PROP_IPTUN_ENCAPLIMIT: 3030 minsize = sizeof (uint32_t); 3031 break; 3032 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3033 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3034 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3035 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3036 minsize = sizeof (uint_t); 3037 break; 3038 case MAC_PROP_WL_ESSID: 3039 minsize = sizeof (wl_linkstatus_t); 3040 break; 3041 case MAC_PROP_WL_BSSID: 3042 minsize = sizeof (wl_bssid_t); 3043 break; 3044 case MAC_PROP_WL_BSSTYPE: 3045 minsize = sizeof (wl_bss_type_t); 3046 break; 3047 case MAC_PROP_WL_LINKSTATUS: 3048 minsize = sizeof (wl_linkstatus_t); 3049 break; 3050 case MAC_PROP_WL_DESIRED_RATES: 3051 minsize = sizeof (wl_rates_t); 3052 break; 3053 case MAC_PROP_WL_SUPPORTED_RATES: 3054 minsize = sizeof (wl_rates_t); 3055 break; 3056 case MAC_PROP_WL_AUTH_MODE: 3057 minsize = sizeof (wl_authmode_t); 3058 break; 3059 case MAC_PROP_WL_ENCRYPTION: 3060 minsize = sizeof (wl_encryption_t); 3061 break; 3062 case MAC_PROP_WL_RSSI: 3063 minsize = sizeof (wl_rssi_t); 3064 break; 3065 case MAC_PROP_WL_PHY_CONFIG: 3066 minsize = sizeof (wl_phy_conf_t); 3067 break; 3068 case MAC_PROP_WL_CAPABILITY: 3069 minsize = sizeof (wl_capability_t); 3070 break; 3071 case MAC_PROP_WL_WPA: 3072 minsize = sizeof (wl_wpa_t); 3073 break; 3074 case MAC_PROP_WL_SCANRESULTS: 3075 minsize = sizeof (wl_wpa_ess_t); 3076 break; 3077 case MAC_PROP_WL_POWER_MODE: 3078 minsize = sizeof (wl_ps_mode_t); 3079 break; 3080 case MAC_PROP_WL_RADIO: 3081 minsize = sizeof (wl_radio_t); 3082 break; 3083 case MAC_PROP_WL_ESS_LIST: 3084 minsize = sizeof (wl_ess_list_t); 3085 break; 3086 case MAC_PROP_WL_KEY_TAB: 3087 minsize = sizeof (wl_wep_key_tab_t); 3088 break; 3089 case MAC_PROP_WL_CREATE_IBSS: 3090 minsize = sizeof (wl_create_ibss_t); 3091 break; 3092 case MAC_PROP_WL_SETOPTIE: 3093 minsize = sizeof (wl_wpa_ie_t); 3094 break; 3095 case MAC_PROP_WL_DELKEY: 3096 minsize = sizeof (wl_del_key_t); 3097 break; 3098 case MAC_PROP_WL_KEY: 3099 minsize = sizeof (wl_key_t); 3100 break; 3101 case MAC_PROP_WL_MLME: 3102 minsize = sizeof (wl_mlme_t); 3103 break; 3104 } 3105 3106 return (valsize >= minsize); 3107 } 3108 3109 /* 3110 * mac_set_prop() sets MAC or hardware driver properties: 3111 * 3112 * - MAC-managed properties such as resource properties include maxbw, 3113 * priority, and cpu binding list, as well as the default port VID 3114 * used by bridging. These properties are consumed by the MAC layer 3115 * itself and not passed down to the driver. For resource control 3116 * properties, this function invokes mac_set_resources() which will 3117 * cache the property value in mac_impl_t and may call 3118 * mac_client_set_resource() to update property value of the primary 3119 * mac client, if it exists. 3120 * 3121 * - Properties which act on the hardware and must be passed to the 3122 * driver, such as MTU, through the driver's mc_setprop() entry point. 3123 */ 3124 int 3125 mac_set_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val, 3126 uint_t valsize) 3127 { 3128 int err = ENOTSUP; 3129 mac_impl_t *mip = (mac_impl_t *)mh; 3130 3131 ASSERT(MAC_PERIM_HELD(mh)); 3132 3133 switch (id) { 3134 case MAC_PROP_RESOURCE: { 3135 mac_resource_props_t *mrp; 3136 3137 /* call mac_set_resources() for MAC properties */ 3138 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3139 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3140 bcopy(val, mrp, sizeof (*mrp)); 3141 err = mac_set_resources(mh, mrp); 3142 kmem_free(mrp, sizeof (*mrp)); 3143 break; 3144 } 3145 3146 case MAC_PROP_PVID: 3147 ASSERT(valsize >= sizeof (uint16_t)); 3148 if (mip->mi_state_flags & MIS_IS_VNIC) 3149 return (EINVAL); 3150 err = mac_set_pvid(mh, *(uint16_t *)val); 3151 break; 3152 3153 case MAC_PROP_MTU: { 3154 uint32_t mtu; 3155 3156 ASSERT(valsize >= sizeof (uint32_t)); 3157 bcopy(val, &mtu, sizeof (mtu)); 3158 err = mac_set_mtu(mh, mtu, NULL); 3159 break; 3160 } 3161 3162 case MAC_PROP_LLIMIT: 3163 case MAC_PROP_LDECAY: { 3164 uint32_t learnval; 3165 3166 if (valsize < sizeof (learnval) || 3167 (mip->mi_state_flags & MIS_IS_VNIC)) 3168 return (EINVAL); 3169 bcopy(val, &learnval, sizeof (learnval)); 3170 if (learnval == 0 && id == MAC_PROP_LDECAY) 3171 return (EINVAL); 3172 if (id == MAC_PROP_LLIMIT) 3173 mip->mi_llimit = learnval; 3174 else 3175 mip->mi_ldecay = learnval; 3176 err = 0; 3177 break; 3178 } 3179 3180 default: 3181 /* For other driver properties, call driver's callback */ 3182 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) { 3183 err = mip->mi_callbacks->mc_setprop(mip->mi_driver, 3184 name, id, valsize, val); 3185 } 3186 } 3187 return (err); 3188 } 3189 3190 /* 3191 * mac_get_prop() gets MAC or device driver properties. 3192 * 3193 * If the property is a driver property, mac_get_prop() calls driver's callback 3194 * entry point to get it. 3195 * If the property is a MAC property, mac_get_prop() invokes mac_get_resources() 3196 * which returns the cached value in mac_impl_t. 3197 */ 3198 int 3199 mac_get_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val, 3200 uint_t valsize) 3201 { 3202 int err = ENOTSUP; 3203 mac_impl_t *mip = (mac_impl_t *)mh; 3204 uint_t rings; 3205 uint_t vlinks; 3206 3207 bzero(val, valsize); 3208 3209 switch (id) { 3210 case MAC_PROP_RESOURCE: { 3211 mac_resource_props_t *mrp; 3212 3213 /* If mac property, read from cache */ 3214 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3215 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3216 mac_get_resources(mh, mrp); 3217 bcopy(mrp, val, sizeof (*mrp)); 3218 kmem_free(mrp, sizeof (*mrp)); 3219 return (0); 3220 } 3221 case MAC_PROP_RESOURCE_EFF: { 3222 mac_resource_props_t *mrp; 3223 3224 /* If mac effective property, read from client */ 3225 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3226 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3227 mac_get_effective_resources(mh, mrp); 3228 bcopy(mrp, val, sizeof (*mrp)); 3229 kmem_free(mrp, sizeof (*mrp)); 3230 return (0); 3231 } 3232 3233 case MAC_PROP_PVID: 3234 ASSERT(valsize >= sizeof (uint16_t)); 3235 if (mip->mi_state_flags & MIS_IS_VNIC) 3236 return (EINVAL); 3237 *(uint16_t *)val = mac_get_pvid(mh); 3238 return (0); 3239 3240 case MAC_PROP_LLIMIT: 3241 case MAC_PROP_LDECAY: 3242 ASSERT(valsize >= sizeof (uint32_t)); 3243 if (mip->mi_state_flags & MIS_IS_VNIC) 3244 return (EINVAL); 3245 if (id == MAC_PROP_LLIMIT) 3246 bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit)); 3247 else 3248 bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay)); 3249 return (0); 3250 3251 case MAC_PROP_MTU: { 3252 uint32_t sdu; 3253 3254 ASSERT(valsize >= sizeof (uint32_t)); 3255 mac_sdu_get2(mh, NULL, &sdu, NULL); 3256 bcopy(&sdu, val, sizeof (sdu)); 3257 3258 return (0); 3259 } 3260 case MAC_PROP_STATUS: { 3261 link_state_t link_state; 3262 3263 if (valsize < sizeof (link_state)) 3264 return (EINVAL); 3265 link_state = mac_link_get(mh); 3266 bcopy(&link_state, val, sizeof (link_state)); 3267 3268 return (0); 3269 } 3270 3271 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3272 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3273 ASSERT(valsize >= sizeof (uint_t)); 3274 rings = id == MAC_PROP_MAX_RX_RINGS_AVAIL ? 3275 mac_rxavail_get(mh) : mac_txavail_get(mh); 3276 bcopy(&rings, val, sizeof (uint_t)); 3277 return (0); 3278 3279 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3280 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3281 ASSERT(valsize >= sizeof (uint_t)); 3282 vlinks = id == MAC_PROP_MAX_RXHWCLNT_AVAIL ? 3283 mac_rxhwlnksavail_get(mh) : mac_txhwlnksavail_get(mh); 3284 bcopy(&vlinks, val, sizeof (uint_t)); 3285 return (0); 3286 3287 case MAC_PROP_RXRINGSRANGE: 3288 case MAC_PROP_TXRINGSRANGE: 3289 /* 3290 * The value for these properties are returned through 3291 * the MAC_PROP_RESOURCE property. 3292 */ 3293 return (0); 3294 3295 default: 3296 break; 3297 3298 } 3299 3300 /* If driver property, request from driver */ 3301 if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) { 3302 err = mip->mi_callbacks->mc_getprop(mip->mi_driver, name, id, 3303 valsize, val); 3304 } 3305 3306 return (err); 3307 } 3308 3309 /* 3310 * Helper function to initialize the range structure for use in 3311 * mac_get_prop. If the type can be other than uint32, we can 3312 * pass that as an arg. 3313 */ 3314 static void 3315 _mac_set_range(mac_propval_range_t *range, uint32_t min, uint32_t max) 3316 { 3317 range->mpr_count = 1; 3318 range->mpr_type = MAC_PROPVAL_UINT32; 3319 range->mpr_range_uint32[0].mpur_min = min; 3320 range->mpr_range_uint32[0].mpur_max = max; 3321 } 3322 3323 /* 3324 * Returns information about the specified property, such as default 3325 * values or permissions. 3326 */ 3327 int 3328 mac_prop_info(mac_handle_t mh, mac_prop_id_t id, char *name, 3329 void *default_val, uint_t default_size, mac_propval_range_t *range, 3330 uint_t *perm) 3331 { 3332 mac_prop_info_state_t state; 3333 mac_impl_t *mip = (mac_impl_t *)mh; 3334 uint_t max; 3335 3336 /* 3337 * A property is read/write by default unless the driver says 3338 * otherwise. 3339 */ 3340 if (perm != NULL) 3341 *perm = MAC_PROP_PERM_RW; 3342 3343 if (default_val != NULL) 3344 bzero(default_val, default_size); 3345 3346 /* 3347 * First, handle framework properties for which we don't need to 3348 * involve the driver. 3349 */ 3350 switch (id) { 3351 case MAC_PROP_RESOURCE: 3352 case MAC_PROP_PVID: 3353 case MAC_PROP_LLIMIT: 3354 case MAC_PROP_LDECAY: 3355 return (0); 3356 3357 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3358 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3359 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3360 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3361 if (perm != NULL) 3362 *perm = MAC_PROP_PERM_READ; 3363 return (0); 3364 3365 case MAC_PROP_RXRINGSRANGE: 3366 case MAC_PROP_TXRINGSRANGE: 3367 /* 3368 * Currently, we support range for RX and TX rings properties. 3369 * When we extend this support to maxbw, cpus and priority, 3370 * we should move this to mac_get_resources. 3371 * There is no default value for RX or TX rings. 3372 */ 3373 if ((mip->mi_state_flags & MIS_IS_VNIC) && 3374 mac_is_vnic_primary(mh)) { 3375 /* 3376 * We don't support setting rings for a VLAN 3377 * data link because it shares its ring with the 3378 * primary MAC client. 3379 */ 3380 if (perm != NULL) 3381 *perm = MAC_PROP_PERM_READ; 3382 if (range != NULL) 3383 range->mpr_count = 0; 3384 } else if (range != NULL) { 3385 if (mip->mi_state_flags & MIS_IS_VNIC) 3386 mh = mac_get_lower_mac_handle(mh); 3387 mip = (mac_impl_t *)mh; 3388 if ((id == MAC_PROP_RXRINGSRANGE && 3389 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) || 3390 (id == MAC_PROP_TXRINGSRANGE && 3391 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC)) { 3392 if (id == MAC_PROP_RXRINGSRANGE) { 3393 if ((mac_rxhwlnksavail_get(mh) + 3394 mac_rxhwlnksrsvd_get(mh)) <= 1) { 3395 /* 3396 * doesn't support groups or 3397 * rings 3398 */ 3399 range->mpr_count = 0; 3400 } else { 3401 /* 3402 * supports specifying groups, 3403 * but not rings 3404 */ 3405 _mac_set_range(range, 0, 0); 3406 } 3407 } else { 3408 if ((mac_txhwlnksavail_get(mh) + 3409 mac_txhwlnksrsvd_get(mh)) <= 1) { 3410 /* 3411 * doesn't support groups or 3412 * rings 3413 */ 3414 range->mpr_count = 0; 3415 } else { 3416 /* 3417 * supports specifying groups, 3418 * but not rings 3419 */ 3420 _mac_set_range(range, 0, 0); 3421 } 3422 } 3423 } else { 3424 max = id == MAC_PROP_RXRINGSRANGE ? 3425 mac_rxavail_get(mh) + mac_rxrsvd_get(mh) : 3426 mac_txavail_get(mh) + mac_txrsvd_get(mh); 3427 if (max <= 1) { 3428 /* 3429 * doesn't support groups or 3430 * rings 3431 */ 3432 range->mpr_count = 0; 3433 } else { 3434 /* 3435 * -1 because we have to leave out the 3436 * default ring. 3437 */ 3438 _mac_set_range(range, 1, max - 1); 3439 } 3440 } 3441 } 3442 return (0); 3443 3444 case MAC_PROP_STATUS: 3445 if (perm != NULL) 3446 *perm = MAC_PROP_PERM_READ; 3447 return (0); 3448 } 3449 3450 /* 3451 * Get the property info from the driver if it implements the 3452 * property info entry point. 3453 */ 3454 bzero(&state, sizeof (state)); 3455 3456 if (mip->mi_callbacks->mc_callbacks & MC_PROPINFO) { 3457 state.pr_default = default_val; 3458 state.pr_default_size = default_size; 3459 3460 /* 3461 * The caller specifies the maximum number of ranges 3462 * it can accomodate using mpr_count. We don't touch 3463 * this value until the driver returns from its 3464 * mc_propinfo() callback, and ensure we don't exceed 3465 * this number of range as the driver defines 3466 * supported range from its mc_propinfo(). 3467 * 3468 * pr_range_cur_count keeps track of how many ranges 3469 * were defined by the driver from its mc_propinfo() 3470 * entry point. 3471 * 3472 * On exit, the user-specified range mpr_count returns 3473 * the number of ranges specified by the driver on 3474 * success, or the number of ranges it wanted to 3475 * define if that number of ranges could not be 3476 * accomodated by the specified range structure. In 3477 * the latter case, the caller will be able to 3478 * allocate a larger range structure, and query the 3479 * property again. 3480 */ 3481 state.pr_range_cur_count = 0; 3482 state.pr_range = range; 3483 3484 mip->mi_callbacks->mc_propinfo(mip->mi_driver, name, id, 3485 (mac_prop_info_handle_t)&state); 3486 3487 if (state.pr_flags & MAC_PROP_INFO_RANGE) 3488 range->mpr_count = state.pr_range_cur_count; 3489 3490 /* 3491 * The operation could fail if the buffer supplied by 3492 * the user was too small for the range or default 3493 * value of the property. 3494 */ 3495 if (state.pr_errno != 0) 3496 return (state.pr_errno); 3497 3498 if (perm != NULL && state.pr_flags & MAC_PROP_INFO_PERM) 3499 *perm = state.pr_perm; 3500 } 3501 3502 /* 3503 * The MAC layer may want to provide default values or allowed 3504 * ranges for properties if the driver does not provide a 3505 * property info entry point, or that entry point exists, but 3506 * it did not provide a default value or allowed ranges for 3507 * that property. 3508 */ 3509 switch (id) { 3510 case MAC_PROP_MTU: { 3511 uint32_t sdu; 3512 3513 mac_sdu_get2(mh, NULL, &sdu, NULL); 3514 3515 if (range != NULL && !(state.pr_flags & 3516 MAC_PROP_INFO_RANGE)) { 3517 /* MTU range */ 3518 _mac_set_range(range, sdu, sdu); 3519 } 3520 3521 if (default_val != NULL && !(state.pr_flags & 3522 MAC_PROP_INFO_DEFAULT)) { 3523 if (mip->mi_info.mi_media == DL_ETHER) 3524 sdu = ETHERMTU; 3525 /* default MTU value */ 3526 bcopy(&sdu, default_val, sizeof (sdu)); 3527 } 3528 } 3529 } 3530 3531 return (0); 3532 } 3533 3534 int 3535 mac_fastpath_disable(mac_handle_t mh) 3536 { 3537 mac_impl_t *mip = (mac_impl_t *)mh; 3538 3539 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 3540 return (0); 3541 3542 return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver)); 3543 } 3544 3545 void 3546 mac_fastpath_enable(mac_handle_t mh) 3547 { 3548 mac_impl_t *mip = (mac_impl_t *)mh; 3549 3550 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 3551 return; 3552 3553 mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver); 3554 } 3555 3556 void 3557 mac_register_priv_prop(mac_impl_t *mip, char **priv_props) 3558 { 3559 uint_t nprops, i; 3560 3561 if (priv_props == NULL) 3562 return; 3563 3564 nprops = 0; 3565 while (priv_props[nprops] != NULL) 3566 nprops++; 3567 if (nprops == 0) 3568 return; 3569 3570 3571 mip->mi_priv_prop = kmem_zalloc(nprops * sizeof (char *), KM_SLEEP); 3572 3573 for (i = 0; i < nprops; i++) { 3574 mip->mi_priv_prop[i] = kmem_zalloc(MAXLINKPROPNAME, KM_SLEEP); 3575 (void) strlcpy(mip->mi_priv_prop[i], priv_props[i], 3576 MAXLINKPROPNAME); 3577 } 3578 3579 mip->mi_priv_prop_count = nprops; 3580 } 3581 3582 void 3583 mac_unregister_priv_prop(mac_impl_t *mip) 3584 { 3585 uint_t i; 3586 3587 if (mip->mi_priv_prop_count == 0) { 3588 ASSERT(mip->mi_priv_prop == NULL); 3589 return; 3590 } 3591 3592 for (i = 0; i < mip->mi_priv_prop_count; i++) 3593 kmem_free(mip->mi_priv_prop[i], MAXLINKPROPNAME); 3594 kmem_free(mip->mi_priv_prop, mip->mi_priv_prop_count * 3595 sizeof (char *)); 3596 3597 mip->mi_priv_prop = NULL; 3598 mip->mi_priv_prop_count = 0; 3599 } 3600 3601 /* 3602 * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure 3603 * (by invoking mac_rx()) even after processing mac_stop_ring(). In such 3604 * cases if MAC free's the ring structure after mac_stop_ring(), any 3605 * illegal access to the ring structure coming from the driver will panic 3606 * the system. In order to protect the system from such inadverent access, 3607 * we maintain a cache of rings in the mac_impl_t after they get free'd up. 3608 * When packets are received on free'd up rings, MAC (through the generation 3609 * count mechanism) will drop such packets. 3610 */ 3611 static mac_ring_t * 3612 mac_ring_alloc(mac_impl_t *mip) 3613 { 3614 mac_ring_t *ring; 3615 3616 mutex_enter(&mip->mi_ring_lock); 3617 if (mip->mi_ring_freelist != NULL) { 3618 ring = mip->mi_ring_freelist; 3619 mip->mi_ring_freelist = ring->mr_next; 3620 bzero(ring, sizeof (mac_ring_t)); 3621 mutex_exit(&mip->mi_ring_lock); 3622 } else { 3623 mutex_exit(&mip->mi_ring_lock); 3624 ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP); 3625 } 3626 ASSERT((ring != NULL) && (ring->mr_state == MR_FREE)); 3627 return (ring); 3628 } 3629 3630 static void 3631 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring) 3632 { 3633 ASSERT(ring->mr_state == MR_FREE); 3634 3635 mutex_enter(&mip->mi_ring_lock); 3636 ring->mr_state = MR_FREE; 3637 ring->mr_flag = 0; 3638 ring->mr_next = mip->mi_ring_freelist; 3639 ring->mr_mip = NULL; 3640 mip->mi_ring_freelist = ring; 3641 mac_ring_stat_delete(ring); 3642 mutex_exit(&mip->mi_ring_lock); 3643 } 3644 3645 static void 3646 mac_ring_freeall(mac_impl_t *mip) 3647 { 3648 mac_ring_t *ring_next; 3649 mutex_enter(&mip->mi_ring_lock); 3650 mac_ring_t *ring = mip->mi_ring_freelist; 3651 while (ring != NULL) { 3652 ring_next = ring->mr_next; 3653 kmem_cache_free(mac_ring_cache, ring); 3654 ring = ring_next; 3655 } 3656 mip->mi_ring_freelist = NULL; 3657 mutex_exit(&mip->mi_ring_lock); 3658 } 3659 3660 int 3661 mac_start_ring(mac_ring_t *ring) 3662 { 3663 int rv = 0; 3664 3665 ASSERT(ring->mr_state == MR_FREE); 3666 3667 if (ring->mr_start != NULL) { 3668 rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num); 3669 if (rv != 0) 3670 return (rv); 3671 } 3672 3673 ring->mr_state = MR_INUSE; 3674 return (rv); 3675 } 3676 3677 void 3678 mac_stop_ring(mac_ring_t *ring) 3679 { 3680 ASSERT(ring->mr_state == MR_INUSE); 3681 3682 if (ring->mr_stop != NULL) 3683 ring->mr_stop(ring->mr_driver); 3684 3685 ring->mr_state = MR_FREE; 3686 3687 /* 3688 * Increment the ring generation number for this ring. 3689 */ 3690 ring->mr_gen_num++; 3691 } 3692 3693 int 3694 mac_start_group(mac_group_t *group) 3695 { 3696 int rv = 0; 3697 3698 if (group->mrg_start != NULL) 3699 rv = group->mrg_start(group->mrg_driver); 3700 3701 return (rv); 3702 } 3703 3704 void 3705 mac_stop_group(mac_group_t *group) 3706 { 3707 if (group->mrg_stop != NULL) 3708 group->mrg_stop(group->mrg_driver); 3709 } 3710 3711 /* 3712 * Called from mac_start() on the default Rx group. Broadcast and multicast 3713 * packets are received only on the default group. Hence the default group 3714 * needs to be up even if the primary client is not up, for the other groups 3715 * to be functional. We do this by calling this function at mac_start time 3716 * itself. However the broadcast packets that are received can't make their 3717 * way beyond mac_rx until a mac client creates a broadcast flow. 3718 */ 3719 static int 3720 mac_start_group_and_rings(mac_group_t *group) 3721 { 3722 mac_ring_t *ring; 3723 int rv = 0; 3724 3725 ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED); 3726 if ((rv = mac_start_group(group)) != 0) 3727 return (rv); 3728 3729 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 3730 ASSERT(ring->mr_state == MR_FREE); 3731 if ((rv = mac_start_ring(ring)) != 0) 3732 goto error; 3733 ring->mr_classify_type = MAC_SW_CLASSIFIER; 3734 } 3735 return (0); 3736 3737 error: 3738 mac_stop_group_and_rings(group); 3739 return (rv); 3740 } 3741 3742 /* Called from mac_stop on the default Rx group */ 3743 static void 3744 mac_stop_group_and_rings(mac_group_t *group) 3745 { 3746 mac_ring_t *ring; 3747 3748 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 3749 if (ring->mr_state != MR_FREE) { 3750 mac_stop_ring(ring); 3751 ring->mr_flag = 0; 3752 ring->mr_classify_type = MAC_NO_CLASSIFIER; 3753 } 3754 } 3755 mac_stop_group(group); 3756 } 3757 3758 3759 static mac_ring_t * 3760 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index, 3761 mac_capab_rings_t *cap_rings) 3762 { 3763 mac_ring_t *ring, *rnext; 3764 mac_ring_info_t ring_info; 3765 ddi_intr_handle_t ddi_handle; 3766 3767 ring = mac_ring_alloc(mip); 3768 3769 /* Prepare basic information of ring */ 3770 3771 /* 3772 * Ring index is numbered to be unique across a particular device. 3773 * Ring index computation makes following assumptions: 3774 * - For drivers with static grouping (e.g. ixgbe, bge), 3775 * ring index exchanged with the driver (e.g. during mr_rget) 3776 * is unique only across the group the ring belongs to. 3777 * - Drivers with dynamic grouping (e.g. nxge), start 3778 * with single group (mrg_index = 0). 3779 */ 3780 ring->mr_index = group->mrg_index * group->mrg_info.mgi_count + index; 3781 ring->mr_type = group->mrg_type; 3782 ring->mr_gh = (mac_group_handle_t)group; 3783 3784 /* Insert the new ring to the list. */ 3785 ring->mr_next = group->mrg_rings; 3786 group->mrg_rings = ring; 3787 3788 /* Zero to reuse the info data structure */ 3789 bzero(&ring_info, sizeof (ring_info)); 3790 3791 /* Query ring information from driver */ 3792 cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index, 3793 index, &ring_info, (mac_ring_handle_t)ring); 3794 3795 ring->mr_info = ring_info; 3796 3797 /* 3798 * The interrupt handle could be shared among multiple rings. 3799 * Thus if there is a bunch of rings that are sharing an 3800 * interrupt, then only one ring among the bunch will be made 3801 * available for interrupt re-targeting; the rest will have 3802 * ddi_shared flag set to TRUE and would not be available for 3803 * be interrupt re-targeting. 3804 */ 3805 if ((ddi_handle = ring_info.mri_intr.mi_ddi_handle) != NULL) { 3806 rnext = ring->mr_next; 3807 while (rnext != NULL) { 3808 if (rnext->mr_info.mri_intr.mi_ddi_handle == 3809 ddi_handle) { 3810 /* 3811 * If default ring (mr_index == 0) is part 3812 * of a group of rings sharing an 3813 * interrupt, then set ddi_shared flag for 3814 * the default ring and give another ring 3815 * the chance to be re-targeted. 3816 */ 3817 if (rnext->mr_index == 0 && 3818 !rnext->mr_info.mri_intr.mi_ddi_shared) { 3819 rnext->mr_info.mri_intr.mi_ddi_shared = 3820 B_TRUE; 3821 } else { 3822 ring->mr_info.mri_intr.mi_ddi_shared = 3823 B_TRUE; 3824 } 3825 break; 3826 } 3827 rnext = rnext->mr_next; 3828 } 3829 /* 3830 * If rnext is NULL, then no matching ddi_handle was found. 3831 * Rx rings get registered first. So if this is a Tx ring, 3832 * then go through all the Rx rings and see if there is a 3833 * matching ddi handle. 3834 */ 3835 if (rnext == NULL && ring->mr_type == MAC_RING_TYPE_TX) { 3836 mac_compare_ddi_handle(mip->mi_rx_groups, 3837 mip->mi_rx_group_count, ring); 3838 } 3839 } 3840 3841 /* Update ring's status */ 3842 ring->mr_state = MR_FREE; 3843 ring->mr_flag = 0; 3844 3845 /* Update the ring count of the group */ 3846 group->mrg_cur_count++; 3847 3848 /* Create per ring kstats */ 3849 if (ring->mr_stat != NULL) { 3850 ring->mr_mip = mip; 3851 mac_ring_stat_create(ring); 3852 } 3853 3854 return (ring); 3855 } 3856 3857 /* 3858 * Rings are chained together for easy regrouping. 3859 */ 3860 static void 3861 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size, 3862 mac_capab_rings_t *cap_rings) 3863 { 3864 int index; 3865 3866 /* 3867 * Initialize all ring members of this group. Size of zero will not 3868 * enter the loop, so it's safe for initializing an empty group. 3869 */ 3870 for (index = size - 1; index >= 0; index--) 3871 (void) mac_init_ring(mip, group, index, cap_rings); 3872 } 3873 3874 int 3875 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype) 3876 { 3877 mac_capab_rings_t *cap_rings; 3878 mac_group_t *group; 3879 mac_group_t *groups; 3880 mac_group_info_t group_info; 3881 uint_t group_free = 0; 3882 uint_t ring_left; 3883 mac_ring_t *ring; 3884 int g; 3885 int err = 0; 3886 uint_t grpcnt; 3887 boolean_t pseudo_txgrp = B_FALSE; 3888 3889 switch (rtype) { 3890 case MAC_RING_TYPE_RX: 3891 ASSERT(mip->mi_rx_groups == NULL); 3892 3893 cap_rings = &mip->mi_rx_rings_cap; 3894 cap_rings->mr_type = MAC_RING_TYPE_RX; 3895 break; 3896 case MAC_RING_TYPE_TX: 3897 ASSERT(mip->mi_tx_groups == NULL); 3898 3899 cap_rings = &mip->mi_tx_rings_cap; 3900 cap_rings->mr_type = MAC_RING_TYPE_TX; 3901 break; 3902 default: 3903 ASSERT(B_FALSE); 3904 } 3905 3906 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, cap_rings)) 3907 return (0); 3908 grpcnt = cap_rings->mr_gnum; 3909 3910 /* 3911 * If we have multiple TX rings, but only one TX group, we can 3912 * create pseudo TX groups (one per TX ring) in the MAC layer, 3913 * except for an aggr. For an aggr currently we maintain only 3914 * one group with all the rings (for all its ports), going 3915 * forwards we might change this. 3916 */ 3917 if (rtype == MAC_RING_TYPE_TX && 3918 cap_rings->mr_gnum == 0 && cap_rings->mr_rnum > 0 && 3919 (mip->mi_state_flags & MIS_IS_AGGR) == 0) { 3920 /* 3921 * The -1 here is because we create a default TX group 3922 * with all the rings in it. 3923 */ 3924 grpcnt = cap_rings->mr_rnum - 1; 3925 pseudo_txgrp = B_TRUE; 3926 } 3927 3928 /* 3929 * Allocate a contiguous buffer for all groups. 3930 */ 3931 groups = kmem_zalloc(sizeof (mac_group_t) * (grpcnt+ 1), KM_SLEEP); 3932 3933 ring_left = cap_rings->mr_rnum; 3934 3935 /* 3936 * Get all ring groups if any, and get their ring members 3937 * if any. 3938 */ 3939 for (g = 0; g < grpcnt; g++) { 3940 group = groups + g; 3941 3942 /* Prepare basic information of the group */ 3943 group->mrg_index = g; 3944 group->mrg_type = rtype; 3945 group->mrg_state = MAC_GROUP_STATE_UNINIT; 3946 group->mrg_mh = (mac_handle_t)mip; 3947 group->mrg_next = group + 1; 3948 3949 /* Zero to reuse the info data structure */ 3950 bzero(&group_info, sizeof (group_info)); 3951 3952 if (pseudo_txgrp) { 3953 /* 3954 * This is a pseudo group that we created, apart 3955 * from setting the state there is nothing to be 3956 * done. 3957 */ 3958 group->mrg_state = MAC_GROUP_STATE_REGISTERED; 3959 group_free++; 3960 continue; 3961 } 3962 /* Query group information from driver */ 3963 cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info, 3964 (mac_group_handle_t)group); 3965 3966 switch (cap_rings->mr_group_type) { 3967 case MAC_GROUP_TYPE_DYNAMIC: 3968 if (cap_rings->mr_gaddring == NULL || 3969 cap_rings->mr_gremring == NULL) { 3970 DTRACE_PROBE3( 3971 mac__init__rings_no_addremring, 3972 char *, mip->mi_name, 3973 mac_group_add_ring_t, 3974 cap_rings->mr_gaddring, 3975 mac_group_add_ring_t, 3976 cap_rings->mr_gremring); 3977 err = EINVAL; 3978 goto bail; 3979 } 3980 3981 switch (rtype) { 3982 case MAC_RING_TYPE_RX: 3983 /* 3984 * The first RX group must have non-zero 3985 * rings, and the following groups must 3986 * have zero rings. 3987 */ 3988 if (g == 0 && group_info.mgi_count == 0) { 3989 DTRACE_PROBE1( 3990 mac__init__rings__rx__def__zero, 3991 char *, mip->mi_name); 3992 err = EINVAL; 3993 goto bail; 3994 } 3995 if (g > 0 && group_info.mgi_count != 0) { 3996 DTRACE_PROBE3( 3997 mac__init__rings__rx__nonzero, 3998 char *, mip->mi_name, 3999 int, g, int, group_info.mgi_count); 4000 err = EINVAL; 4001 goto bail; 4002 } 4003 break; 4004 case MAC_RING_TYPE_TX: 4005 /* 4006 * All TX ring groups must have zero rings. 4007 */ 4008 if (group_info.mgi_count != 0) { 4009 DTRACE_PROBE3( 4010 mac__init__rings__tx__nonzero, 4011 char *, mip->mi_name, 4012 int, g, int, group_info.mgi_count); 4013 err = EINVAL; 4014 goto bail; 4015 } 4016 break; 4017 } 4018 break; 4019 case MAC_GROUP_TYPE_STATIC: 4020 /* 4021 * Note that an empty group is allowed, e.g., an aggr 4022 * would start with an empty group. 4023 */ 4024 break; 4025 default: 4026 /* unknown group type */ 4027 DTRACE_PROBE2(mac__init__rings__unknown__type, 4028 char *, mip->mi_name, 4029 int, cap_rings->mr_group_type); 4030 err = EINVAL; 4031 goto bail; 4032 } 4033 4034 4035 /* 4036 * Driver must register group->mgi_addmac/remmac() for rx groups 4037 * to support multiple MAC addresses. 4038 */ 4039 if (rtype == MAC_RING_TYPE_RX && 4040 ((group_info.mgi_addmac == NULL) || 4041 (group_info.mgi_remmac == NULL))) { 4042 err = EINVAL; 4043 goto bail; 4044 } 4045 4046 /* Cache driver-supplied information */ 4047 group->mrg_info = group_info; 4048 4049 /* Update the group's status and group count. */ 4050 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED); 4051 group_free++; 4052 4053 group->mrg_rings = NULL; 4054 group->mrg_cur_count = 0; 4055 mac_init_group(mip, group, group_info.mgi_count, cap_rings); 4056 ring_left -= group_info.mgi_count; 4057 4058 /* The current group size should be equal to default value */ 4059 ASSERT(group->mrg_cur_count == group_info.mgi_count); 4060 } 4061 4062 /* Build up a dummy group for free resources as a pool */ 4063 group = groups + grpcnt; 4064 4065 /* Prepare basic information of the group */ 4066 group->mrg_index = -1; 4067 group->mrg_type = rtype; 4068 group->mrg_state = MAC_GROUP_STATE_UNINIT; 4069 group->mrg_mh = (mac_handle_t)mip; 4070 group->mrg_next = NULL; 4071 4072 /* 4073 * If there are ungrouped rings, allocate a continuous buffer for 4074 * remaining resources. 4075 */ 4076 if (ring_left != 0) { 4077 group->mrg_rings = NULL; 4078 group->mrg_cur_count = 0; 4079 mac_init_group(mip, group, ring_left, cap_rings); 4080 4081 /* The current group size should be equal to ring_left */ 4082 ASSERT(group->mrg_cur_count == ring_left); 4083 4084 ring_left = 0; 4085 4086 /* Update this group's status */ 4087 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED); 4088 } else 4089 group->mrg_rings = NULL; 4090 4091 ASSERT(ring_left == 0); 4092 4093 bail: 4094 4095 /* Cache other important information to finalize the initialization */ 4096 switch (rtype) { 4097 case MAC_RING_TYPE_RX: 4098 mip->mi_rx_group_type = cap_rings->mr_group_type; 4099 mip->mi_rx_group_count = cap_rings->mr_gnum; 4100 mip->mi_rx_groups = groups; 4101 mip->mi_rx_donor_grp = groups; 4102 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 4103 /* 4104 * The default ring is reserved since it is 4105 * used for sending the broadcast etc. packets. 4106 */ 4107 mip->mi_rxrings_avail = 4108 mip->mi_rx_groups->mrg_cur_count - 1; 4109 mip->mi_rxrings_rsvd = 1; 4110 } 4111 /* 4112 * The default group cannot be reserved. It is used by 4113 * all the clients that do not have an exclusive group. 4114 */ 4115 mip->mi_rxhwclnt_avail = mip->mi_rx_group_count - 1; 4116 mip->mi_rxhwclnt_used = 1; 4117 break; 4118 case MAC_RING_TYPE_TX: 4119 mip->mi_tx_group_type = pseudo_txgrp ? MAC_GROUP_TYPE_DYNAMIC : 4120 cap_rings->mr_group_type; 4121 mip->mi_tx_group_count = grpcnt; 4122 mip->mi_tx_group_free = group_free; 4123 mip->mi_tx_groups = groups; 4124 4125 group = groups + grpcnt; 4126 ring = group->mrg_rings; 4127 /* 4128 * The ring can be NULL in the case of aggr. Aggr will 4129 * have an empty Tx group which will get populated 4130 * later when pseudo Tx rings are added after 4131 * mac_register() is done. 4132 */ 4133 if (ring == NULL) { 4134 ASSERT(mip->mi_state_flags & MIS_IS_AGGR); 4135 /* 4136 * pass the group to aggr so it can add Tx 4137 * rings to the group later. 4138 */ 4139 cap_rings->mr_gget(mip->mi_driver, rtype, 0, NULL, 4140 (mac_group_handle_t)group); 4141 /* 4142 * Even though there are no rings at this time 4143 * (rings will come later), set the group 4144 * state to registered. 4145 */ 4146 group->mrg_state = MAC_GROUP_STATE_REGISTERED; 4147 } else { 4148 /* 4149 * Ring 0 is used as the default one and it could be 4150 * assigned to a client as well. 4151 */ 4152 while ((ring->mr_index != 0) && (ring->mr_next != NULL)) 4153 ring = ring->mr_next; 4154 ASSERT(ring->mr_index == 0); 4155 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 4156 } 4157 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) 4158 mip->mi_txrings_avail = group->mrg_cur_count - 1; 4159 /* 4160 * The default ring cannot be reserved. 4161 */ 4162 mip->mi_txrings_rsvd = 1; 4163 /* 4164 * The default group cannot be reserved. It will be shared 4165 * by clients that do not have an exclusive group. 4166 */ 4167 mip->mi_txhwclnt_avail = mip->mi_tx_group_count; 4168 mip->mi_txhwclnt_used = 1; 4169 break; 4170 default: 4171 ASSERT(B_FALSE); 4172 } 4173 4174 if (err != 0) 4175 mac_free_rings(mip, rtype); 4176 4177 return (err); 4178 } 4179 4180 /* 4181 * The ddi interrupt handle could be shared amoung rings. If so, compare 4182 * the new ring's ddi handle with the existing ones and set ddi_shared 4183 * flag. 4184 */ 4185 void 4186 mac_compare_ddi_handle(mac_group_t *groups, uint_t grpcnt, mac_ring_t *cring) 4187 { 4188 mac_group_t *group; 4189 mac_ring_t *ring; 4190 ddi_intr_handle_t ddi_handle; 4191 int g; 4192 4193 ddi_handle = cring->mr_info.mri_intr.mi_ddi_handle; 4194 for (g = 0; g < grpcnt; g++) { 4195 group = groups + g; 4196 for (ring = group->mrg_rings; ring != NULL; 4197 ring = ring->mr_next) { 4198 if (ring == cring) 4199 continue; 4200 if (ring->mr_info.mri_intr.mi_ddi_handle == 4201 ddi_handle) { 4202 if (cring->mr_type == MAC_RING_TYPE_RX && 4203 ring->mr_index == 0 && 4204 !ring->mr_info.mri_intr.mi_ddi_shared) { 4205 ring->mr_info.mri_intr.mi_ddi_shared = 4206 B_TRUE; 4207 } else { 4208 cring->mr_info.mri_intr.mi_ddi_shared = 4209 B_TRUE; 4210 } 4211 return; 4212 } 4213 } 4214 } 4215 } 4216 4217 /* 4218 * Called to free all groups of particular type (RX or TX). It's assumed that 4219 * no clients are using these groups. 4220 */ 4221 void 4222 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype) 4223 { 4224 mac_group_t *group, *groups; 4225 uint_t group_count; 4226 4227 switch (rtype) { 4228 case MAC_RING_TYPE_RX: 4229 if (mip->mi_rx_groups == NULL) 4230 return; 4231 4232 groups = mip->mi_rx_groups; 4233 group_count = mip->mi_rx_group_count; 4234 4235 mip->mi_rx_groups = NULL; 4236 mip->mi_rx_donor_grp = NULL; 4237 mip->mi_rx_group_count = 0; 4238 break; 4239 case MAC_RING_TYPE_TX: 4240 ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free); 4241 4242 if (mip->mi_tx_groups == NULL) 4243 return; 4244 4245 groups = mip->mi_tx_groups; 4246 group_count = mip->mi_tx_group_count; 4247 4248 mip->mi_tx_groups = NULL; 4249 mip->mi_tx_group_count = 0; 4250 mip->mi_tx_group_free = 0; 4251 mip->mi_default_tx_ring = NULL; 4252 break; 4253 default: 4254 ASSERT(B_FALSE); 4255 } 4256 4257 for (group = groups; group != NULL; group = group->mrg_next) { 4258 mac_ring_t *ring; 4259 4260 if (group->mrg_cur_count == 0) 4261 continue; 4262 4263 ASSERT(group->mrg_rings != NULL); 4264 4265 while ((ring = group->mrg_rings) != NULL) { 4266 group->mrg_rings = ring->mr_next; 4267 mac_ring_free(mip, ring); 4268 } 4269 } 4270 4271 /* Free all the cached rings */ 4272 mac_ring_freeall(mip); 4273 /* Free the block of group data strutures */ 4274 kmem_free(groups, sizeof (mac_group_t) * (group_count + 1)); 4275 } 4276 4277 /* 4278 * Associate a MAC address with a receive group. 4279 * 4280 * The return value of this function should always be checked properly, because 4281 * any type of failure could cause unexpected results. A group can be added 4282 * or removed with a MAC address only after it has been reserved. Ideally, 4283 * a successful reservation always leads to calling mac_group_addmac() to 4284 * steer desired traffic. Failure of adding an unicast MAC address doesn't 4285 * always imply that the group is functioning abnormally. 4286 * 4287 * Currently this function is called everywhere, and it reflects assumptions 4288 * about MAC addresses in the implementation. CR 6735196. 4289 */ 4290 int 4291 mac_group_addmac(mac_group_t *group, const uint8_t *addr) 4292 { 4293 ASSERT(group->mrg_type == MAC_RING_TYPE_RX); 4294 ASSERT(group->mrg_info.mgi_addmac != NULL); 4295 4296 return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr)); 4297 } 4298 4299 /* 4300 * Remove the association between MAC address and receive group. 4301 */ 4302 int 4303 mac_group_remmac(mac_group_t *group, const uint8_t *addr) 4304 { 4305 ASSERT(group->mrg_type == MAC_RING_TYPE_RX); 4306 ASSERT(group->mrg_info.mgi_remmac != NULL); 4307 4308 return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr)); 4309 } 4310 4311 /* 4312 * This is the entry point for packets transmitted through the bridging code. 4313 * If no bridge is in place, MAC_RING_TX transmits using tx ring. The 'rh' 4314 * pointer may be NULL to select the default ring. 4315 */ 4316 mblk_t * 4317 mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp) 4318 { 4319 mac_handle_t mh; 4320 4321 /* 4322 * Once we take a reference on the bridge link, the bridge 4323 * module itself can't unload, so the callback pointers are 4324 * stable. 4325 */ 4326 mutex_enter(&mip->mi_bridge_lock); 4327 if ((mh = mip->mi_bridge_link) != NULL) 4328 mac_bridge_ref_cb(mh, B_TRUE); 4329 mutex_exit(&mip->mi_bridge_lock); 4330 if (mh == NULL) { 4331 MAC_RING_TX(mip, rh, mp, mp); 4332 } else { 4333 mp = mac_bridge_tx_cb(mh, rh, mp); 4334 mac_bridge_ref_cb(mh, B_FALSE); 4335 } 4336 4337 return (mp); 4338 } 4339 4340 /* 4341 * Find a ring from its index. 4342 */ 4343 mac_ring_handle_t 4344 mac_find_ring(mac_group_handle_t gh, int index) 4345 { 4346 mac_group_t *group = (mac_group_t *)gh; 4347 mac_ring_t *ring = group->mrg_rings; 4348 4349 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) 4350 if (ring->mr_index == index) 4351 break; 4352 4353 return ((mac_ring_handle_t)ring); 4354 } 4355 /* 4356 * Add a ring to an existing group. 4357 * 4358 * The ring must be either passed directly (for example if the ring 4359 * movement is initiated by the framework), or specified through a driver 4360 * index (for example when the ring is added by the driver. 4361 * 4362 * The caller needs to call mac_perim_enter() before calling this function. 4363 */ 4364 int 4365 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index) 4366 { 4367 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 4368 mac_capab_rings_t *cap_rings; 4369 boolean_t driver_call = (ring == NULL); 4370 mac_group_type_t group_type; 4371 int ret = 0; 4372 flow_entry_t *flent; 4373 4374 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4375 4376 switch (group->mrg_type) { 4377 case MAC_RING_TYPE_RX: 4378 cap_rings = &mip->mi_rx_rings_cap; 4379 group_type = mip->mi_rx_group_type; 4380 break; 4381 case MAC_RING_TYPE_TX: 4382 cap_rings = &mip->mi_tx_rings_cap; 4383 group_type = mip->mi_tx_group_type; 4384 break; 4385 default: 4386 ASSERT(B_FALSE); 4387 } 4388 4389 /* 4390 * There should be no ring with the same ring index in the target 4391 * group. 4392 */ 4393 ASSERT(mac_find_ring((mac_group_handle_t)group, 4394 driver_call ? index : ring->mr_index) == NULL); 4395 4396 if (driver_call) { 4397 /* 4398 * The function is called as a result of a request from 4399 * a driver to add a ring to an existing group, for example 4400 * from the aggregation driver. Allocate a new mac_ring_t 4401 * for that ring. 4402 */ 4403 ring = mac_init_ring(mip, group, index, cap_rings); 4404 ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT); 4405 } else { 4406 /* 4407 * The function is called as a result of a MAC layer request 4408 * to add a ring to an existing group. In this case the 4409 * ring is being moved between groups, which requires 4410 * the underlying driver to support dynamic grouping, 4411 * and the mac_ring_t already exists. 4412 */ 4413 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 4414 ASSERT(group->mrg_driver == NULL || 4415 cap_rings->mr_gaddring != NULL); 4416 ASSERT(ring->mr_gh == NULL); 4417 } 4418 4419 /* 4420 * At this point the ring should not be in use, and it should be 4421 * of the right for the target group. 4422 */ 4423 ASSERT(ring->mr_state < MR_INUSE); 4424 ASSERT(ring->mr_srs == NULL); 4425 ASSERT(ring->mr_type == group->mrg_type); 4426 4427 if (!driver_call) { 4428 /* 4429 * Add the driver level hardware ring if the process was not 4430 * initiated by the driver, and the target group is not the 4431 * group. 4432 */ 4433 if (group->mrg_driver != NULL) { 4434 cap_rings->mr_gaddring(group->mrg_driver, 4435 ring->mr_driver, ring->mr_type); 4436 } 4437 4438 /* 4439 * Insert the ring ahead existing rings. 4440 */ 4441 ring->mr_next = group->mrg_rings; 4442 group->mrg_rings = ring; 4443 ring->mr_gh = (mac_group_handle_t)group; 4444 group->mrg_cur_count++; 4445 } 4446 4447 /* 4448 * If the group has not been actively used, we're done. 4449 */ 4450 if (group->mrg_index != -1 && 4451 group->mrg_state < MAC_GROUP_STATE_RESERVED) 4452 return (0); 4453 4454 /* 4455 * Start the ring if needed. Failure causes to undo the grouping action. 4456 */ 4457 if (ring->mr_state != MR_INUSE) { 4458 if ((ret = mac_start_ring(ring)) != 0) { 4459 if (!driver_call) { 4460 cap_rings->mr_gremring(group->mrg_driver, 4461 ring->mr_driver, ring->mr_type); 4462 } 4463 group->mrg_cur_count--; 4464 group->mrg_rings = ring->mr_next; 4465 4466 ring->mr_gh = NULL; 4467 4468 if (driver_call) 4469 mac_ring_free(mip, ring); 4470 4471 return (ret); 4472 } 4473 } 4474 4475 /* 4476 * Set up SRS/SR according to the ring type. 4477 */ 4478 switch (ring->mr_type) { 4479 case MAC_RING_TYPE_RX: 4480 /* 4481 * Setup SRS on top of the new ring if the group is 4482 * reserved for someones exclusive use. 4483 */ 4484 if (group->mrg_state == MAC_GROUP_STATE_RESERVED) { 4485 mac_client_impl_t *mcip; 4486 4487 mcip = MAC_GROUP_ONLY_CLIENT(group); 4488 /* 4489 * Even though this group is reserved we migth still 4490 * have multiple clients, i.e a VLAN shares the 4491 * group with the primary mac client. 4492 */ 4493 if (mcip != NULL) { 4494 flent = mcip->mci_flent; 4495 ASSERT(flent->fe_rx_srs_cnt > 0); 4496 mac_rx_srs_group_setup(mcip, flent, SRST_LINK); 4497 mac_fanout_setup(mcip, flent, 4498 MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, 4499 mcip, NULL, NULL); 4500 } else { 4501 ring->mr_classify_type = MAC_SW_CLASSIFIER; 4502 } 4503 } 4504 break; 4505 case MAC_RING_TYPE_TX: 4506 { 4507 mac_grp_client_t *mgcp = group->mrg_clients; 4508 mac_client_impl_t *mcip; 4509 mac_soft_ring_set_t *mac_srs; 4510 mac_srs_tx_t *tx; 4511 4512 if (MAC_GROUP_NO_CLIENT(group)) { 4513 if (ring->mr_state == MR_INUSE) 4514 mac_stop_ring(ring); 4515 ring->mr_flag = 0; 4516 break; 4517 } 4518 /* 4519 * If the rings are being moved to a group that has 4520 * clients using it, then add the new rings to the 4521 * clients SRS. 4522 */ 4523 while (mgcp != NULL) { 4524 boolean_t is_aggr; 4525 4526 mcip = mgcp->mgc_client; 4527 flent = mcip->mci_flent; 4528 is_aggr = (mcip->mci_state_flags & MCIS_IS_AGGR); 4529 mac_srs = MCIP_TX_SRS(mcip); 4530 tx = &mac_srs->srs_tx; 4531 mac_tx_client_quiesce((mac_client_handle_t)mcip); 4532 /* 4533 * If we are growing from 1 to multiple rings. 4534 */ 4535 if (tx->st_mode == SRS_TX_BW || 4536 tx->st_mode == SRS_TX_SERIALIZE || 4537 tx->st_mode == SRS_TX_DEFAULT) { 4538 mac_ring_t *tx_ring = tx->st_arg2; 4539 4540 tx->st_arg2 = NULL; 4541 mac_tx_srs_stat_recreate(mac_srs, B_TRUE); 4542 mac_tx_srs_add_ring(mac_srs, tx_ring); 4543 if (mac_srs->srs_type & SRST_BW_CONTROL) { 4544 tx->st_mode = is_aggr ? SRS_TX_BW_AGGR : 4545 SRS_TX_BW_FANOUT; 4546 } else { 4547 tx->st_mode = is_aggr ? SRS_TX_AGGR : 4548 SRS_TX_FANOUT; 4549 } 4550 tx->st_func = mac_tx_get_func(tx->st_mode); 4551 } 4552 mac_tx_srs_add_ring(mac_srs, ring); 4553 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 4554 mac_rx_deliver, mcip, NULL, NULL); 4555 mac_tx_client_restart((mac_client_handle_t)mcip); 4556 mgcp = mgcp->mgc_next; 4557 } 4558 break; 4559 } 4560 default: 4561 ASSERT(B_FALSE); 4562 } 4563 /* 4564 * For aggr, the default ring will be NULL to begin with. If it 4565 * is NULL, then pick the first ring that gets added as the 4566 * default ring. Any ring in an aggregation can be removed at 4567 * any time (by the user action of removing a link) and if the 4568 * current default ring gets removed, then a new one gets 4569 * picked (see i_mac_group_rem_ring()). 4570 */ 4571 if (mip->mi_state_flags & MIS_IS_AGGR && 4572 mip->mi_default_tx_ring == NULL && 4573 ring->mr_type == MAC_RING_TYPE_TX) { 4574 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 4575 } 4576 4577 MAC_RING_UNMARK(ring, MR_INCIPIENT); 4578 return (0); 4579 } 4580 4581 /* 4582 * Remove a ring from it's current group. MAC internal function for dynamic 4583 * grouping. 4584 * 4585 * The caller needs to call mac_perim_enter() before calling this function. 4586 */ 4587 void 4588 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring, 4589 boolean_t driver_call) 4590 { 4591 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 4592 mac_capab_rings_t *cap_rings = NULL; 4593 mac_group_type_t group_type; 4594 4595 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4596 4597 ASSERT(mac_find_ring((mac_group_handle_t)group, 4598 ring->mr_index) == (mac_ring_handle_t)ring); 4599 ASSERT((mac_group_t *)ring->mr_gh == group); 4600 ASSERT(ring->mr_type == group->mrg_type); 4601 4602 if (ring->mr_state == MR_INUSE) 4603 mac_stop_ring(ring); 4604 switch (ring->mr_type) { 4605 case MAC_RING_TYPE_RX: 4606 group_type = mip->mi_rx_group_type; 4607 cap_rings = &mip->mi_rx_rings_cap; 4608 4609 /* 4610 * Only hardware classified packets hold a reference to the 4611 * ring all the way up the Rx path. mac_rx_srs_remove() 4612 * will take care of quiescing the Rx path and removing the 4613 * SRS. The software classified path neither holds a reference 4614 * nor any association with the ring in mac_rx. 4615 */ 4616 if (ring->mr_srs != NULL) { 4617 mac_rx_srs_remove(ring->mr_srs); 4618 ring->mr_srs = NULL; 4619 } 4620 4621 break; 4622 case MAC_RING_TYPE_TX: 4623 { 4624 mac_grp_client_t *mgcp; 4625 mac_client_impl_t *mcip; 4626 mac_soft_ring_set_t *mac_srs; 4627 mac_srs_tx_t *tx; 4628 mac_ring_t *rem_ring; 4629 mac_group_t *defgrp; 4630 uint_t ring_info = 0; 4631 4632 /* 4633 * For TX this function is invoked in three 4634 * cases: 4635 * 4636 * 1) In the case of a failure during the 4637 * initial creation of a group when a share is 4638 * associated with a MAC client. So the SRS is not 4639 * yet setup, and will be setup later after the 4640 * group has been reserved and populated. 4641 * 4642 * 2) From mac_release_tx_group() when freeing 4643 * a TX SRS. 4644 * 4645 * 3) In the case of aggr, when a port gets removed, 4646 * the pseudo Tx rings that it exposed gets removed. 4647 * 4648 * In the first two cases the SRS and its soft 4649 * rings are already quiesced. 4650 */ 4651 if (driver_call) { 4652 mac_client_impl_t *mcip; 4653 mac_soft_ring_set_t *mac_srs; 4654 mac_soft_ring_t *sringp; 4655 mac_srs_tx_t *srs_tx; 4656 4657 if (mip->mi_state_flags & MIS_IS_AGGR && 4658 mip->mi_default_tx_ring == 4659 (mac_ring_handle_t)ring) { 4660 /* pick a new default Tx ring */ 4661 mip->mi_default_tx_ring = 4662 (group->mrg_rings != ring) ? 4663 (mac_ring_handle_t)group->mrg_rings : 4664 (mac_ring_handle_t)(ring->mr_next); 4665 } 4666 /* Presently only aggr case comes here */ 4667 if (group->mrg_state != MAC_GROUP_STATE_RESERVED) 4668 break; 4669 4670 mcip = MAC_GROUP_ONLY_CLIENT(group); 4671 ASSERT(mcip != NULL); 4672 ASSERT(mcip->mci_state_flags & MCIS_IS_AGGR); 4673 mac_srs = MCIP_TX_SRS(mcip); 4674 ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_AGGR || 4675 mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR); 4676 srs_tx = &mac_srs->srs_tx; 4677 /* 4678 * Wakeup any callers blocked on this 4679 * Tx ring due to flow control. 4680 */ 4681 sringp = srs_tx->st_soft_rings[ring->mr_index]; 4682 ASSERT(sringp != NULL); 4683 mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)sringp); 4684 mac_tx_client_quiesce((mac_client_handle_t)mcip); 4685 mac_tx_srs_del_ring(mac_srs, ring); 4686 mac_tx_client_restart((mac_client_handle_t)mcip); 4687 break; 4688 } 4689 ASSERT(ring != (mac_ring_t *)mip->mi_default_tx_ring); 4690 group_type = mip->mi_tx_group_type; 4691 cap_rings = &mip->mi_tx_rings_cap; 4692 /* 4693 * See if we need to take it out of the MAC clients using 4694 * this group 4695 */ 4696 if (MAC_GROUP_NO_CLIENT(group)) 4697 break; 4698 mgcp = group->mrg_clients; 4699 defgrp = MAC_DEFAULT_TX_GROUP(mip); 4700 while (mgcp != NULL) { 4701 mcip = mgcp->mgc_client; 4702 mac_srs = MCIP_TX_SRS(mcip); 4703 tx = &mac_srs->srs_tx; 4704 mac_tx_client_quiesce((mac_client_handle_t)mcip); 4705 /* 4706 * If we are here when removing rings from the 4707 * defgroup, mac_reserve_tx_ring would have 4708 * already deleted the ring from the MAC 4709 * clients in the group. 4710 */ 4711 if (group != defgrp) { 4712 mac_tx_invoke_callbacks(mcip, 4713 (mac_tx_cookie_t) 4714 mac_tx_srs_get_soft_ring(mac_srs, ring)); 4715 mac_tx_srs_del_ring(mac_srs, ring); 4716 } 4717 /* 4718 * Additionally, if we are left with only 4719 * one ring in the group after this, we need 4720 * to modify the mode etc. to. (We haven't 4721 * yet taken the ring out, so we check with 2). 4722 */ 4723 if (group->mrg_cur_count == 2) { 4724 if (ring->mr_next == NULL) 4725 rem_ring = group->mrg_rings; 4726 else 4727 rem_ring = ring->mr_next; 4728 mac_tx_invoke_callbacks(mcip, 4729 (mac_tx_cookie_t) 4730 mac_tx_srs_get_soft_ring(mac_srs, 4731 rem_ring)); 4732 mac_tx_srs_del_ring(mac_srs, rem_ring); 4733 if (rem_ring->mr_state != MR_INUSE) { 4734 (void) mac_start_ring(rem_ring); 4735 } 4736 tx->st_arg2 = (void *)rem_ring; 4737 mac_tx_srs_stat_recreate(mac_srs, B_FALSE); 4738 ring_info = mac_hwring_getinfo( 4739 (mac_ring_handle_t)rem_ring); 4740 /* 4741 * We are shrinking from multiple 4742 * to 1 ring. 4743 */ 4744 if (mac_srs->srs_type & SRST_BW_CONTROL) { 4745 tx->st_mode = SRS_TX_BW; 4746 } else if (mac_tx_serialize || 4747 (ring_info & MAC_RING_TX_SERIALIZE)) { 4748 tx->st_mode = SRS_TX_SERIALIZE; 4749 } else { 4750 tx->st_mode = SRS_TX_DEFAULT; 4751 } 4752 tx->st_func = mac_tx_get_func(tx->st_mode); 4753 } 4754 mac_tx_client_restart((mac_client_handle_t)mcip); 4755 mgcp = mgcp->mgc_next; 4756 } 4757 break; 4758 } 4759 default: 4760 ASSERT(B_FALSE); 4761 } 4762 4763 /* 4764 * Remove the ring from the group. 4765 */ 4766 if (ring == group->mrg_rings) 4767 group->mrg_rings = ring->mr_next; 4768 else { 4769 mac_ring_t *pre; 4770 4771 pre = group->mrg_rings; 4772 while (pre->mr_next != ring) 4773 pre = pre->mr_next; 4774 pre->mr_next = ring->mr_next; 4775 } 4776 group->mrg_cur_count--; 4777 4778 if (!driver_call) { 4779 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 4780 ASSERT(group->mrg_driver == NULL || 4781 cap_rings->mr_gremring != NULL); 4782 4783 /* 4784 * Remove the driver level hardware ring. 4785 */ 4786 if (group->mrg_driver != NULL) { 4787 cap_rings->mr_gremring(group->mrg_driver, 4788 ring->mr_driver, ring->mr_type); 4789 } 4790 } 4791 4792 ring->mr_gh = NULL; 4793 if (driver_call) 4794 mac_ring_free(mip, ring); 4795 else 4796 ring->mr_flag = 0; 4797 } 4798 4799 /* 4800 * Move a ring to the target group. If needed, remove the ring from the group 4801 * that it currently belongs to. 4802 * 4803 * The caller need to enter MAC's perimeter by calling mac_perim_enter(). 4804 */ 4805 static int 4806 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring) 4807 { 4808 mac_group_t *s_group = (mac_group_t *)ring->mr_gh; 4809 int rv; 4810 4811 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4812 ASSERT(d_group != NULL); 4813 ASSERT(s_group->mrg_mh == d_group->mrg_mh); 4814 4815 if (s_group == d_group) 4816 return (0); 4817 4818 /* 4819 * Remove it from current group first. 4820 */ 4821 if (s_group != NULL) 4822 i_mac_group_rem_ring(s_group, ring, B_FALSE); 4823 4824 /* 4825 * Add it to the new group. 4826 */ 4827 rv = i_mac_group_add_ring(d_group, ring, 0); 4828 if (rv != 0) { 4829 /* 4830 * Failed to add ring back to source group. If 4831 * that fails, the ring is stuck in limbo, log message. 4832 */ 4833 if (i_mac_group_add_ring(s_group, ring, 0)) { 4834 cmn_err(CE_WARN, "%s: failed to move ring %p\n", 4835 mip->mi_name, (void *)ring); 4836 } 4837 } 4838 4839 return (rv); 4840 } 4841 4842 /* 4843 * Find a MAC address according to its value. 4844 */ 4845 mac_address_t * 4846 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr) 4847 { 4848 mac_address_t *map; 4849 4850 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4851 4852 for (map = mip->mi_addresses; map != NULL; map = map->ma_next) { 4853 if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) 4854 break; 4855 } 4856 4857 return (map); 4858 } 4859 4860 /* 4861 * Check whether the MAC address is shared by multiple clients. 4862 */ 4863 boolean_t 4864 mac_check_macaddr_shared(mac_address_t *map) 4865 { 4866 ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip)); 4867 4868 return (map->ma_nusers > 1); 4869 } 4870 4871 /* 4872 * Remove the specified MAC address from the MAC address list and free it. 4873 */ 4874 static void 4875 mac_free_macaddr(mac_address_t *map) 4876 { 4877 mac_impl_t *mip = map->ma_mip; 4878 4879 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4880 ASSERT(mip->mi_addresses != NULL); 4881 4882 map = mac_find_macaddr(mip, map->ma_addr); 4883 4884 ASSERT(map != NULL); 4885 ASSERT(map->ma_nusers == 0); 4886 4887 if (map == mip->mi_addresses) { 4888 mip->mi_addresses = map->ma_next; 4889 } else { 4890 mac_address_t *pre; 4891 4892 pre = mip->mi_addresses; 4893 while (pre->ma_next != map) 4894 pre = pre->ma_next; 4895 pre->ma_next = map->ma_next; 4896 } 4897 4898 kmem_free(map, sizeof (mac_address_t)); 4899 } 4900 4901 /* 4902 * Add a MAC address reference for a client. If the desired MAC address 4903 * exists, add a reference to it. Otherwise, add the new address by adding 4904 * it to a reserved group or setting promiscuous mode. Won't try different 4905 * group is the group is non-NULL, so the caller must explictly share 4906 * default group when needed. 4907 * 4908 * Note, the primary MAC address is initialized at registration time, so 4909 * to add it to default group only need to activate it if its reference 4910 * count is still zero. Also, some drivers may not have advertised RINGS 4911 * capability. 4912 */ 4913 int 4914 mac_add_macaddr(mac_impl_t *mip, mac_group_t *group, uint8_t *mac_addr, 4915 boolean_t use_hw) 4916 { 4917 mac_address_t *map; 4918 int err = 0; 4919 boolean_t allocated_map = B_FALSE; 4920 4921 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4922 4923 map = mac_find_macaddr(mip, mac_addr); 4924 4925 /* 4926 * If the new MAC address has not been added. Allocate a new one 4927 * and set it up. 4928 */ 4929 if (map == NULL) { 4930 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 4931 map->ma_len = mip->mi_type->mt_addr_length; 4932 bcopy(mac_addr, map->ma_addr, map->ma_len); 4933 map->ma_nusers = 0; 4934 map->ma_group = group; 4935 map->ma_mip = mip; 4936 4937 /* add the new MAC address to the head of the address list */ 4938 map->ma_next = mip->mi_addresses; 4939 mip->mi_addresses = map; 4940 4941 allocated_map = B_TRUE; 4942 } 4943 4944 ASSERT(map->ma_group == NULL || map->ma_group == group); 4945 if (map->ma_group == NULL) 4946 map->ma_group = group; 4947 4948 /* 4949 * If the MAC address is already in use, simply account for the 4950 * new client. 4951 */ 4952 if (map->ma_nusers++ > 0) 4953 return (0); 4954 4955 /* 4956 * Activate this MAC address by adding it to the reserved group. 4957 */ 4958 if (group != NULL) { 4959 err = mac_group_addmac(group, (const uint8_t *)mac_addr); 4960 if (err == 0) { 4961 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 4962 return (0); 4963 } 4964 } 4965 4966 /* 4967 * The MAC address addition failed. If the client requires a 4968 * hardware classified MAC address, fail the operation. 4969 */ 4970 if (use_hw) { 4971 err = ENOSPC; 4972 goto bail; 4973 } 4974 4975 /* 4976 * Try promiscuous mode. 4977 * 4978 * For drivers that don't advertise RINGS capability, do 4979 * nothing for the primary address. 4980 */ 4981 if ((group == NULL) && 4982 (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) { 4983 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 4984 return (0); 4985 } 4986 4987 /* 4988 * Enable promiscuous mode in order to receive traffic 4989 * to the new MAC address. 4990 */ 4991 if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) { 4992 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC; 4993 return (0); 4994 } 4995 4996 /* 4997 * Free the MAC address that could not be added. Don't free 4998 * a pre-existing address, it could have been the entry 4999 * for the primary MAC address which was pre-allocated by 5000 * mac_init_macaddr(), and which must remain on the list. 5001 */ 5002 bail: 5003 map->ma_nusers--; 5004 if (allocated_map) 5005 mac_free_macaddr(map); 5006 return (err); 5007 } 5008 5009 /* 5010 * Remove a reference to a MAC address. This may cause to remove the MAC 5011 * address from an associated group or to turn off promiscuous mode. 5012 * The caller needs to handle the failure properly. 5013 */ 5014 int 5015 mac_remove_macaddr(mac_address_t *map) 5016 { 5017 mac_impl_t *mip = map->ma_mip; 5018 int err = 0; 5019 5020 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5021 5022 ASSERT(map == mac_find_macaddr(mip, map->ma_addr)); 5023 5024 /* 5025 * If it's not the last client using this MAC address, only update 5026 * the MAC clients count. 5027 */ 5028 if (--map->ma_nusers > 0) 5029 return (0); 5030 5031 /* 5032 * The MAC address is no longer used by any MAC client, so remove 5033 * it from its associated group, or turn off promiscuous mode 5034 * if it was enabled for the MAC address. 5035 */ 5036 switch (map->ma_type) { 5037 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 5038 /* 5039 * Don't free the preset primary address for drivers that 5040 * don't advertise RINGS capability. 5041 */ 5042 if (map->ma_group == NULL) 5043 return (0); 5044 5045 err = mac_group_remmac(map->ma_group, map->ma_addr); 5046 if (err == 0) 5047 map->ma_group = NULL; 5048 break; 5049 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 5050 err = i_mac_promisc_set(mip, B_FALSE); 5051 break; 5052 default: 5053 ASSERT(B_FALSE); 5054 } 5055 5056 if (err != 0) 5057 return (err); 5058 5059 /* 5060 * We created MAC address for the primary one at registration, so we 5061 * won't free it here. mac_fini_macaddr() will take care of it. 5062 */ 5063 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0) 5064 mac_free_macaddr(map); 5065 5066 return (0); 5067 } 5068 5069 /* 5070 * Update an existing MAC address. The caller need to make sure that the new 5071 * value has not been used. 5072 */ 5073 int 5074 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr) 5075 { 5076 mac_impl_t *mip = map->ma_mip; 5077 int err = 0; 5078 5079 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5080 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 5081 5082 switch (map->ma_type) { 5083 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 5084 /* 5085 * Update the primary address for drivers that are not 5086 * RINGS capable. 5087 */ 5088 if (mip->mi_rx_groups == NULL) { 5089 err = mip->mi_unicst(mip->mi_driver, (const uint8_t *) 5090 mac_addr); 5091 if (err != 0) 5092 return (err); 5093 break; 5094 } 5095 5096 /* 5097 * If this MAC address is not currently in use, 5098 * simply break out and update the value. 5099 */ 5100 if (map->ma_nusers == 0) 5101 break; 5102 5103 /* 5104 * Need to replace the MAC address associated with a group. 5105 */ 5106 err = mac_group_remmac(map->ma_group, map->ma_addr); 5107 if (err != 0) 5108 return (err); 5109 5110 err = mac_group_addmac(map->ma_group, mac_addr); 5111 5112 /* 5113 * Failure hints hardware error. The MAC layer needs to 5114 * have error notification facility to handle this. 5115 * Now, simply try to restore the value. 5116 */ 5117 if (err != 0) 5118 (void) mac_group_addmac(map->ma_group, map->ma_addr); 5119 5120 break; 5121 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 5122 /* 5123 * Need to do nothing more if in promiscuous mode. 5124 */ 5125 break; 5126 default: 5127 ASSERT(B_FALSE); 5128 } 5129 5130 /* 5131 * Successfully replaced the MAC address. 5132 */ 5133 if (err == 0) 5134 bcopy(mac_addr, map->ma_addr, map->ma_len); 5135 5136 return (err); 5137 } 5138 5139 /* 5140 * Freshen the MAC address with new value. Its caller must have updated the 5141 * hardware MAC address before calling this function. 5142 * This funcitons is supposed to be used to handle the MAC address change 5143 * notification from underlying drivers. 5144 */ 5145 void 5146 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr) 5147 { 5148 mac_impl_t *mip = map->ma_mip; 5149 5150 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5151 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 5152 5153 /* 5154 * Freshen the MAC address with new value. 5155 */ 5156 bcopy(mac_addr, map->ma_addr, map->ma_len); 5157 bcopy(mac_addr, mip->mi_addr, map->ma_len); 5158 5159 /* 5160 * Update all MAC clients that share this MAC address. 5161 */ 5162 mac_unicast_update_clients(mip, map); 5163 } 5164 5165 /* 5166 * Set up the primary MAC address. 5167 */ 5168 void 5169 mac_init_macaddr(mac_impl_t *mip) 5170 { 5171 mac_address_t *map; 5172 5173 /* 5174 * The reference count is initialized to zero, until it's really 5175 * activated. 5176 */ 5177 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 5178 map->ma_len = mip->mi_type->mt_addr_length; 5179 bcopy(mip->mi_addr, map->ma_addr, map->ma_len); 5180 5181 /* 5182 * If driver advertises RINGS capability, it shouldn't have initialized 5183 * its primary MAC address. For other drivers, including VNIC, the 5184 * primary address must work after registration. 5185 */ 5186 if (mip->mi_rx_groups == NULL) 5187 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5188 5189 map->ma_mip = mip; 5190 5191 mip->mi_addresses = map; 5192 } 5193 5194 /* 5195 * Clean up the primary MAC address. Note, only one primary MAC address 5196 * is allowed. All other MAC addresses must have been freed appropriately. 5197 */ 5198 void 5199 mac_fini_macaddr(mac_impl_t *mip) 5200 { 5201 mac_address_t *map = mip->mi_addresses; 5202 5203 if (map == NULL) 5204 return; 5205 5206 /* 5207 * If mi_addresses is initialized, there should be exactly one 5208 * entry left on the list with no users. 5209 */ 5210 ASSERT(map->ma_nusers == 0); 5211 ASSERT(map->ma_next == NULL); 5212 5213 kmem_free(map, sizeof (mac_address_t)); 5214 mip->mi_addresses = NULL; 5215 } 5216 5217 /* 5218 * Logging related functions. 5219 * 5220 * Note that Kernel statistics have been extended to maintain fine 5221 * granularity of statistics viz. hardware lane, software lane, fanout 5222 * stats etc. However, extended accounting continues to support only 5223 * aggregate statistics like before. 5224 */ 5225 5226 /* Write the flow description to a netinfo_t record */ 5227 static netinfo_t * 5228 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip) 5229 { 5230 netinfo_t *ninfo; 5231 net_desc_t *ndesc; 5232 flow_desc_t *fdesc; 5233 mac_resource_props_t *mrp; 5234 5235 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5236 if (ninfo == NULL) 5237 return (NULL); 5238 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP); 5239 if (ndesc == NULL) { 5240 kmem_free(ninfo, sizeof (netinfo_t)); 5241 return (NULL); 5242 } 5243 5244 /* 5245 * Grab the fe_lock to see a self-consistent fe_flow_desc. 5246 * Updates to the fe_flow_desc are done under the fe_lock 5247 */ 5248 mutex_enter(&flent->fe_lock); 5249 fdesc = &flent->fe_flow_desc; 5250 mrp = &flent->fe_resource_props; 5251 5252 ndesc->nd_name = flent->fe_flow_name; 5253 ndesc->nd_devname = mcip->mci_name; 5254 bcopy(fdesc->fd_src_mac, ndesc->nd_ehost, ETHERADDRL); 5255 bcopy(fdesc->fd_dst_mac, ndesc->nd_edest, ETHERADDRL); 5256 ndesc->nd_sap = htonl(fdesc->fd_sap); 5257 ndesc->nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION; 5258 ndesc->nd_bw_limit = mrp->mrp_maxbw; 5259 if (ndesc->nd_isv4) { 5260 ndesc->nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]); 5261 ndesc->nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]); 5262 } else { 5263 bcopy(&fdesc->fd_local_addr, ndesc->nd_saddr, IPV6_ADDR_LEN); 5264 bcopy(&fdesc->fd_remote_addr, ndesc->nd_daddr, IPV6_ADDR_LEN); 5265 } 5266 ndesc->nd_sport = htons(fdesc->fd_local_port); 5267 ndesc->nd_dport = htons(fdesc->fd_remote_port); 5268 ndesc->nd_protocol = (uint8_t)fdesc->fd_protocol; 5269 mutex_exit(&flent->fe_lock); 5270 5271 ninfo->ni_record = ndesc; 5272 ninfo->ni_size = sizeof (net_desc_t); 5273 ninfo->ni_type = EX_NET_FLDESC_REC; 5274 5275 return (ninfo); 5276 } 5277 5278 /* Write the flow statistics to a netinfo_t record */ 5279 static netinfo_t * 5280 mac_write_flow_stats(flow_entry_t *flent) 5281 { 5282 netinfo_t *ninfo; 5283 net_stat_t *nstat; 5284 mac_soft_ring_set_t *mac_srs; 5285 mac_rx_stats_t *mac_rx_stat; 5286 mac_tx_stats_t *mac_tx_stat; 5287 int i; 5288 5289 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5290 if (ninfo == NULL) 5291 return (NULL); 5292 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP); 5293 if (nstat == NULL) { 5294 kmem_free(ninfo, sizeof (netinfo_t)); 5295 return (NULL); 5296 } 5297 5298 nstat->ns_name = flent->fe_flow_name; 5299 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 5300 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 5301 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 5302 5303 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes + 5304 mac_rx_stat->mrs_pollbytes + mac_rx_stat->mrs_lclbytes; 5305 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt + 5306 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt; 5307 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors; 5308 } 5309 5310 mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs); 5311 if (mac_srs != NULL) { 5312 mac_tx_stat = &mac_srs->srs_tx.st_stat; 5313 5314 nstat->ns_obytes = mac_tx_stat->mts_obytes; 5315 nstat->ns_opackets = mac_tx_stat->mts_opackets; 5316 nstat->ns_oerrors = mac_tx_stat->mts_oerrors; 5317 } 5318 5319 ninfo->ni_record = nstat; 5320 ninfo->ni_size = sizeof (net_stat_t); 5321 ninfo->ni_type = EX_NET_FLSTAT_REC; 5322 5323 return (ninfo); 5324 } 5325 5326 /* Write the link description to a netinfo_t record */ 5327 static netinfo_t * 5328 mac_write_link_desc(mac_client_impl_t *mcip) 5329 { 5330 netinfo_t *ninfo; 5331 net_desc_t *ndesc; 5332 flow_entry_t *flent = mcip->mci_flent; 5333 5334 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5335 if (ninfo == NULL) 5336 return (NULL); 5337 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP); 5338 if (ndesc == NULL) { 5339 kmem_free(ninfo, sizeof (netinfo_t)); 5340 return (NULL); 5341 } 5342 5343 ndesc->nd_name = mcip->mci_name; 5344 ndesc->nd_devname = mcip->mci_name; 5345 ndesc->nd_isv4 = B_TRUE; 5346 /* 5347 * Grab the fe_lock to see a self-consistent fe_flow_desc. 5348 * Updates to the fe_flow_desc are done under the fe_lock 5349 * after removing the flent from the flow table. 5350 */ 5351 mutex_enter(&flent->fe_lock); 5352 bcopy(flent->fe_flow_desc.fd_src_mac, ndesc->nd_ehost, ETHERADDRL); 5353 mutex_exit(&flent->fe_lock); 5354 5355 ninfo->ni_record = ndesc; 5356 ninfo->ni_size = sizeof (net_desc_t); 5357 ninfo->ni_type = EX_NET_LNDESC_REC; 5358 5359 return (ninfo); 5360 } 5361 5362 /* Write the link statistics to a netinfo_t record */ 5363 static netinfo_t * 5364 mac_write_link_stats(mac_client_impl_t *mcip) 5365 { 5366 netinfo_t *ninfo; 5367 net_stat_t *nstat; 5368 flow_entry_t *flent; 5369 mac_soft_ring_set_t *mac_srs; 5370 mac_rx_stats_t *mac_rx_stat; 5371 mac_tx_stats_t *mac_tx_stat; 5372 int i; 5373 5374 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5375 if (ninfo == NULL) 5376 return (NULL); 5377 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP); 5378 if (nstat == NULL) { 5379 kmem_free(ninfo, sizeof (netinfo_t)); 5380 return (NULL); 5381 } 5382 5383 nstat->ns_name = mcip->mci_name; 5384 flent = mcip->mci_flent; 5385 if (flent != NULL) { 5386 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 5387 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 5388 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 5389 5390 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes + 5391 mac_rx_stat->mrs_pollbytes + 5392 mac_rx_stat->mrs_lclbytes; 5393 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt + 5394 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt; 5395 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors; 5396 } 5397 } 5398 5399 mac_srs = (mac_soft_ring_set_t *)(mcip->mci_flent->fe_tx_srs); 5400 if (mac_srs != NULL) { 5401 mac_tx_stat = &mac_srs->srs_tx.st_stat; 5402 5403 nstat->ns_obytes = mac_tx_stat->mts_obytes; 5404 nstat->ns_opackets = mac_tx_stat->mts_opackets; 5405 nstat->ns_oerrors = mac_tx_stat->mts_oerrors; 5406 } 5407 5408 ninfo->ni_record = nstat; 5409 ninfo->ni_size = sizeof (net_stat_t); 5410 ninfo->ni_type = EX_NET_LNSTAT_REC; 5411 5412 return (ninfo); 5413 } 5414 5415 typedef struct i_mac_log_state_s { 5416 boolean_t mi_last; 5417 int mi_fenable; 5418 int mi_lenable; 5419 list_t *mi_list; 5420 } i_mac_log_state_t; 5421 5422 /* 5423 * For a given flow, if the description has not been logged before, do it now. 5424 * If it is a VNIC, then we have collected information about it from the MAC 5425 * table, so skip it. 5426 * 5427 * Called through mac_flow_walk_nolock() 5428 * 5429 * Return 0 if successful. 5430 */ 5431 static int 5432 mac_log_flowinfo(flow_entry_t *flent, void *arg) 5433 { 5434 mac_client_impl_t *mcip = flent->fe_mcip; 5435 i_mac_log_state_t *lstate = arg; 5436 netinfo_t *ninfo; 5437 5438 if (mcip == NULL) 5439 return (0); 5440 5441 /* 5442 * If the name starts with "vnic", and fe_user_generated is true (to 5443 * exclude the mcast and active flow entries created implicitly for 5444 * a vnic, it is a VNIC flow. i.e. vnic1 is a vnic flow, 5445 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active. 5446 */ 5447 if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 && 5448 (flent->fe_type & FLOW_USER) != 0) { 5449 return (0); 5450 } 5451 5452 if (!flent->fe_desc_logged) { 5453 /* 5454 * We don't return error because we want to continue the 5455 * walk in case this is the last walk which means we 5456 * need to reset fe_desc_logged in all the flows. 5457 */ 5458 if ((ninfo = mac_write_flow_desc(flent, mcip)) == NULL) 5459 return (0); 5460 list_insert_tail(lstate->mi_list, ninfo); 5461 flent->fe_desc_logged = B_TRUE; 5462 } 5463 5464 /* 5465 * Regardless of the error, we want to proceed in case we have to 5466 * reset fe_desc_logged. 5467 */ 5468 ninfo = mac_write_flow_stats(flent); 5469 if (ninfo == NULL) 5470 return (-1); 5471 5472 list_insert_tail(lstate->mi_list, ninfo); 5473 5474 if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED)) 5475 flent->fe_desc_logged = B_FALSE; 5476 5477 return (0); 5478 } 5479 5480 /* 5481 * Log the description for each mac client of this mac_impl_t, if it 5482 * hasn't already been done. Additionally, log statistics for the link as 5483 * well. Walk the flow table and log information for each flow as well. 5484 * If it is the last walk (mci_last), then we turn off mci_desc_logged (and 5485 * also fe_desc_logged, if flow logging is on) since we want to log the 5486 * description if and when logging is restarted. 5487 * 5488 * Return 0 upon success or -1 upon failure 5489 */ 5490 static int 5491 i_mac_impl_log(mac_impl_t *mip, i_mac_log_state_t *lstate) 5492 { 5493 mac_client_impl_t *mcip; 5494 netinfo_t *ninfo; 5495 5496 i_mac_perim_enter(mip); 5497 /* 5498 * Only walk the client list for NIC and etherstub 5499 */ 5500 if ((mip->mi_state_flags & MIS_DISABLED) || 5501 ((mip->mi_state_flags & MIS_IS_VNIC) && 5502 (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) { 5503 i_mac_perim_exit(mip); 5504 return (0); 5505 } 5506 5507 for (mcip = mip->mi_clients_list; mcip != NULL; 5508 mcip = mcip->mci_client_next) { 5509 if (!MCIP_DATAPATH_SETUP(mcip)) 5510 continue; 5511 if (lstate->mi_lenable) { 5512 if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) { 5513 ninfo = mac_write_link_desc(mcip); 5514 if (ninfo == NULL) { 5515 /* 5516 * We can't terminate it if this is the last 5517 * walk, else there might be some links with 5518 * mi_desc_logged set to true, which means 5519 * their description won't be logged the next 5520 * time logging is started (similarly for the 5521 * flows within such links). We can continue 5522 * without walking the flow table (i.e. to 5523 * set fe_desc_logged to false) because we 5524 * won't have written any flow stuff for this 5525 * link as we haven't logged the link itself. 5526 */ 5527 i_mac_perim_exit(mip); 5528 if (lstate->mi_last) 5529 return (0); 5530 else 5531 return (-1); 5532 } 5533 mcip->mci_state_flags |= MCIS_DESC_LOGGED; 5534 list_insert_tail(lstate->mi_list, ninfo); 5535 } 5536 } 5537 5538 ninfo = mac_write_link_stats(mcip); 5539 if (ninfo == NULL && !lstate->mi_last) { 5540 i_mac_perim_exit(mip); 5541 return (-1); 5542 } 5543 list_insert_tail(lstate->mi_list, ninfo); 5544 5545 if (lstate->mi_last) 5546 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED; 5547 5548 if (lstate->mi_fenable) { 5549 if (mcip->mci_subflow_tab != NULL) { 5550 (void) mac_flow_walk_nolock( 5551 mcip->mci_subflow_tab, mac_log_flowinfo, 5552 lstate); 5553 } 5554 } 5555 } 5556 i_mac_perim_exit(mip); 5557 return (0); 5558 } 5559 5560 /* 5561 * modhash walker function to add a mac_impl_t to a list 5562 */ 5563 /*ARGSUSED*/ 5564 static uint_t 5565 i_mac_impl_list_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 5566 { 5567 list_t *list = (list_t *)arg; 5568 mac_impl_t *mip = (mac_impl_t *)val; 5569 5570 if ((mip->mi_state_flags & MIS_DISABLED) == 0) { 5571 list_insert_tail(list, mip); 5572 mip->mi_ref++; 5573 } 5574 5575 return (MH_WALK_CONTINUE); 5576 } 5577 5578 void 5579 i_mac_log_info(list_t *net_log_list, i_mac_log_state_t *lstate) 5580 { 5581 list_t mac_impl_list; 5582 mac_impl_t *mip; 5583 netinfo_t *ninfo; 5584 5585 /* Create list of mac_impls */ 5586 ASSERT(RW_LOCK_HELD(&i_mac_impl_lock)); 5587 list_create(&mac_impl_list, sizeof (mac_impl_t), offsetof(mac_impl_t, 5588 mi_node)); 5589 mod_hash_walk(i_mac_impl_hash, i_mac_impl_list_walker, &mac_impl_list); 5590 rw_exit(&i_mac_impl_lock); 5591 5592 /* Create log entries for each mac_impl */ 5593 for (mip = list_head(&mac_impl_list); mip != NULL; 5594 mip = list_next(&mac_impl_list, mip)) { 5595 if (i_mac_impl_log(mip, lstate) != 0) 5596 continue; 5597 } 5598 5599 /* Remove elements and destroy list of mac_impls */ 5600 rw_enter(&i_mac_impl_lock, RW_WRITER); 5601 while ((mip = list_remove_tail(&mac_impl_list)) != NULL) { 5602 mip->mi_ref--; 5603 } 5604 rw_exit(&i_mac_impl_lock); 5605 list_destroy(&mac_impl_list); 5606 5607 /* 5608 * Write log entries to files outside of locks, free associated 5609 * structures, and remove entries from the list. 5610 */ 5611 while ((ninfo = list_head(net_log_list)) != NULL) { 5612 (void) exacct_commit_netinfo(ninfo->ni_record, ninfo->ni_type); 5613 list_remove(net_log_list, ninfo); 5614 kmem_free(ninfo->ni_record, ninfo->ni_size); 5615 kmem_free(ninfo, sizeof (*ninfo)); 5616 } 5617 list_destroy(net_log_list); 5618 } 5619 5620 /* 5621 * The timer thread that runs every mac_logging_interval seconds and logs 5622 * link and/or flow information. 5623 */ 5624 /* ARGSUSED */ 5625 void 5626 mac_log_linkinfo(void *arg) 5627 { 5628 i_mac_log_state_t lstate; 5629 list_t net_log_list; 5630 5631 list_create(&net_log_list, sizeof (netinfo_t), 5632 offsetof(netinfo_t, ni_link)); 5633 5634 rw_enter(&i_mac_impl_lock, RW_READER); 5635 if (!mac_flow_log_enable && !mac_link_log_enable) { 5636 rw_exit(&i_mac_impl_lock); 5637 return; 5638 } 5639 lstate.mi_fenable = mac_flow_log_enable; 5640 lstate.mi_lenable = mac_link_log_enable; 5641 lstate.mi_last = B_FALSE; 5642 lstate.mi_list = &net_log_list; 5643 5644 /* Write log entries for each mac_impl in the list */ 5645 i_mac_log_info(&net_log_list, &lstate); 5646 5647 if (mac_flow_log_enable || mac_link_log_enable) { 5648 mac_logging_timer = timeout(mac_log_linkinfo, NULL, 5649 SEC_TO_TICK(mac_logging_interval)); 5650 } 5651 } 5652 5653 typedef struct i_mac_fastpath_state_s { 5654 boolean_t mf_disable; 5655 int mf_err; 5656 } i_mac_fastpath_state_t; 5657 5658 /* modhash walker function to enable or disable fastpath */ 5659 /*ARGSUSED*/ 5660 static uint_t 5661 i_mac_fastpath_walker(mod_hash_key_t key, mod_hash_val_t *val, 5662 void *arg) 5663 { 5664 i_mac_fastpath_state_t *state = arg; 5665 mac_handle_t mh = (mac_handle_t)val; 5666 5667 if (state->mf_disable) 5668 state->mf_err = mac_fastpath_disable(mh); 5669 else 5670 mac_fastpath_enable(mh); 5671 5672 return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE); 5673 } 5674 5675 /* 5676 * Start the logging timer. 5677 */ 5678 int 5679 mac_start_logusage(mac_logtype_t type, uint_t interval) 5680 { 5681 i_mac_fastpath_state_t dstate = {B_TRUE, 0}; 5682 i_mac_fastpath_state_t estate = {B_FALSE, 0}; 5683 int err; 5684 5685 rw_enter(&i_mac_impl_lock, RW_WRITER); 5686 switch (type) { 5687 case MAC_LOGTYPE_FLOW: 5688 if (mac_flow_log_enable) { 5689 rw_exit(&i_mac_impl_lock); 5690 return (0); 5691 } 5692 /* FALLTHRU */ 5693 case MAC_LOGTYPE_LINK: 5694 if (mac_link_log_enable) { 5695 rw_exit(&i_mac_impl_lock); 5696 return (0); 5697 } 5698 break; 5699 default: 5700 ASSERT(0); 5701 } 5702 5703 /* Disable fastpath */ 5704 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &dstate); 5705 if ((err = dstate.mf_err) != 0) { 5706 /* Reenable fastpath */ 5707 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate); 5708 rw_exit(&i_mac_impl_lock); 5709 return (err); 5710 } 5711 5712 switch (type) { 5713 case MAC_LOGTYPE_FLOW: 5714 mac_flow_log_enable = B_TRUE; 5715 /* FALLTHRU */ 5716 case MAC_LOGTYPE_LINK: 5717 mac_link_log_enable = B_TRUE; 5718 break; 5719 } 5720 5721 mac_logging_interval = interval; 5722 rw_exit(&i_mac_impl_lock); 5723 mac_log_linkinfo(NULL); 5724 return (0); 5725 } 5726 5727 /* 5728 * Stop the logging timer if both link and flow logging are turned off. 5729 */ 5730 void 5731 mac_stop_logusage(mac_logtype_t type) 5732 { 5733 i_mac_log_state_t lstate; 5734 i_mac_fastpath_state_t estate = {B_FALSE, 0}; 5735 list_t net_log_list; 5736 5737 list_create(&net_log_list, sizeof (netinfo_t), 5738 offsetof(netinfo_t, ni_link)); 5739 5740 rw_enter(&i_mac_impl_lock, RW_WRITER); 5741 5742 lstate.mi_fenable = mac_flow_log_enable; 5743 lstate.mi_lenable = mac_link_log_enable; 5744 lstate.mi_list = &net_log_list; 5745 5746 /* Last walk */ 5747 lstate.mi_last = B_TRUE; 5748 5749 switch (type) { 5750 case MAC_LOGTYPE_FLOW: 5751 if (lstate.mi_fenable) { 5752 ASSERT(mac_link_log_enable); 5753 mac_flow_log_enable = B_FALSE; 5754 mac_link_log_enable = B_FALSE; 5755 break; 5756 } 5757 /* FALLTHRU */ 5758 case MAC_LOGTYPE_LINK: 5759 if (!lstate.mi_lenable || mac_flow_log_enable) { 5760 rw_exit(&i_mac_impl_lock); 5761 return; 5762 } 5763 mac_link_log_enable = B_FALSE; 5764 break; 5765 default: 5766 ASSERT(0); 5767 } 5768 5769 /* Reenable fastpath */ 5770 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate); 5771 5772 (void) untimeout(mac_logging_timer); 5773 mac_logging_timer = 0; 5774 5775 /* Write log entries for each mac_impl in the list */ 5776 i_mac_log_info(&net_log_list, &lstate); 5777 } 5778 5779 /* 5780 * Walk the rx and tx SRS/SRs for a flow and update the priority value. 5781 */ 5782 void 5783 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent) 5784 { 5785 pri_t pri; 5786 int count; 5787 mac_soft_ring_set_t *mac_srs; 5788 5789 if (flent->fe_rx_srs_cnt <= 0) 5790 return; 5791 5792 if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type == 5793 SRST_FLOW) { 5794 pri = FLOW_PRIORITY(mcip->mci_min_pri, 5795 mcip->mci_max_pri, 5796 flent->fe_resource_props.mrp_priority); 5797 } else { 5798 pri = mcip->mci_max_pri; 5799 } 5800 5801 for (count = 0; count < flent->fe_rx_srs_cnt; count++) { 5802 mac_srs = flent->fe_rx_srs[count]; 5803 mac_update_srs_priority(mac_srs, pri); 5804 } 5805 /* 5806 * If we have a Tx SRS, we need to modify all the threads associated 5807 * with it. 5808 */ 5809 if (flent->fe_tx_srs != NULL) 5810 mac_update_srs_priority(flent->fe_tx_srs, pri); 5811 } 5812 5813 /* 5814 * RX and TX rings are reserved according to different semantics depending 5815 * on the requests from the MAC clients and type of rings: 5816 * 5817 * On the Tx side, by default we reserve individual rings, independently from 5818 * the groups. 5819 * 5820 * On the Rx side, the reservation is at the granularity of the group 5821 * of rings, and used for v12n level 1 only. It has a special case for the 5822 * primary client. 5823 * 5824 * If a share is allocated to a MAC client, we allocate a TX group and an 5825 * RX group to the client, and assign TX rings and RX rings to these 5826 * groups according to information gathered from the driver through 5827 * the share capability. 5828 * 5829 * The foreseable evolution of Rx rings will handle v12n level 2 and higher 5830 * to allocate individual rings out of a group and program the hw classifier 5831 * based on IP address or higher level criteria. 5832 */ 5833 5834 /* 5835 * mac_reserve_tx_ring() 5836 * Reserve a unused ring by marking it with MR_INUSE state. 5837 * As reserved, the ring is ready to function. 5838 * 5839 * Notes for Hybrid I/O: 5840 * 5841 * If a specific ring is needed, it is specified through the desired_ring 5842 * argument. Otherwise that argument is set to NULL. 5843 * If the desired ring was previous allocated to another client, this 5844 * function swaps it with a new ring from the group of unassigned rings. 5845 */ 5846 mac_ring_t * 5847 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring) 5848 { 5849 mac_group_t *group; 5850 mac_grp_client_t *mgcp; 5851 mac_client_impl_t *mcip; 5852 mac_soft_ring_set_t *srs; 5853 5854 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5855 5856 /* 5857 * Find an available ring and start it before changing its status. 5858 * The unassigned rings are at the end of the mi_tx_groups 5859 * array. 5860 */ 5861 group = MAC_DEFAULT_TX_GROUP(mip); 5862 5863 /* Can't take the default ring out of the default group */ 5864 ASSERT(desired_ring != (mac_ring_t *)mip->mi_default_tx_ring); 5865 5866 if (desired_ring->mr_state == MR_FREE) { 5867 ASSERT(MAC_GROUP_NO_CLIENT(group)); 5868 if (mac_start_ring(desired_ring) != 0) 5869 return (NULL); 5870 return (desired_ring); 5871 } 5872 /* 5873 * There are clients using this ring, so let's move the clients 5874 * away from using this ring. 5875 */ 5876 for (mgcp = group->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 5877 mcip = mgcp->mgc_client; 5878 mac_tx_client_quiesce((mac_client_handle_t)mcip); 5879 srs = MCIP_TX_SRS(mcip); 5880 ASSERT(mac_tx_srs_ring_present(srs, desired_ring)); 5881 mac_tx_invoke_callbacks(mcip, 5882 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(srs, 5883 desired_ring)); 5884 mac_tx_srs_del_ring(srs, desired_ring); 5885 mac_tx_client_restart((mac_client_handle_t)mcip); 5886 } 5887 return (desired_ring); 5888 } 5889 5890 /* 5891 * For a reserved group with multiple clients, return the primary client. 5892 */ 5893 static mac_client_impl_t * 5894 mac_get_grp_primary(mac_group_t *grp) 5895 { 5896 mac_grp_client_t *mgcp = grp->mrg_clients; 5897 mac_client_impl_t *mcip; 5898 5899 while (mgcp != NULL) { 5900 mcip = mgcp->mgc_client; 5901 if (mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) 5902 return (mcip); 5903 mgcp = mgcp->mgc_next; 5904 } 5905 return (NULL); 5906 } 5907 5908 /* 5909 * Hybrid I/O specifies the ring that should be given to a share. 5910 * If the ring is already used by clients, then we need to release 5911 * the ring back to the default group so that we can give it to 5912 * the share. This means the clients using this ring now get a 5913 * replacement ring. If there aren't any replacement rings, this 5914 * function returns a failure. 5915 */ 5916 static int 5917 mac_reclaim_ring_from_grp(mac_impl_t *mip, mac_ring_type_t ring_type, 5918 mac_ring_t *ring, mac_ring_t **rings, int nrings) 5919 { 5920 mac_group_t *group = (mac_group_t *)ring->mr_gh; 5921 mac_resource_props_t *mrp; 5922 mac_client_impl_t *mcip; 5923 mac_group_t *defgrp; 5924 mac_ring_t *tring; 5925 mac_group_t *tgrp; 5926 int i; 5927 int j; 5928 5929 mcip = MAC_GROUP_ONLY_CLIENT(group); 5930 if (mcip == NULL) 5931 mcip = mac_get_grp_primary(group); 5932 ASSERT(mcip != NULL); 5933 ASSERT(mcip->mci_share == NULL); 5934 5935 mrp = MCIP_RESOURCE_PROPS(mcip); 5936 if (ring_type == MAC_RING_TYPE_RX) { 5937 defgrp = mip->mi_rx_donor_grp; 5938 if ((mrp->mrp_mask & MRP_RX_RINGS) == 0) { 5939 /* Need to put this mac client in the default group */ 5940 if (mac_rx_switch_group(mcip, group, defgrp) != 0) 5941 return (ENOSPC); 5942 } else { 5943 /* 5944 * Switch this ring with some other ring from 5945 * the default group. 5946 */ 5947 for (tring = defgrp->mrg_rings; tring != NULL; 5948 tring = tring->mr_next) { 5949 if (tring->mr_index == 0) 5950 continue; 5951 for (j = 0; j < nrings; j++) { 5952 if (rings[j] == tring) 5953 break; 5954 } 5955 if (j >= nrings) 5956 break; 5957 } 5958 if (tring == NULL) 5959 return (ENOSPC); 5960 if (mac_group_mov_ring(mip, group, tring) != 0) 5961 return (ENOSPC); 5962 if (mac_group_mov_ring(mip, defgrp, ring) != 0) { 5963 (void) mac_group_mov_ring(mip, defgrp, tring); 5964 return (ENOSPC); 5965 } 5966 } 5967 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp); 5968 return (0); 5969 } 5970 5971 defgrp = MAC_DEFAULT_TX_GROUP(mip); 5972 if (ring == (mac_ring_t *)mip->mi_default_tx_ring) { 5973 /* 5974 * See if we can get a spare ring to replace the default 5975 * ring. 5976 */ 5977 if (defgrp->mrg_cur_count == 1) { 5978 /* 5979 * Need to get a ring from another client, see if 5980 * there are any clients that can be moved to 5981 * the default group, thereby freeing some rings. 5982 */ 5983 for (i = 0; i < mip->mi_tx_group_count; i++) { 5984 tgrp = &mip->mi_tx_groups[i]; 5985 if (tgrp->mrg_state == 5986 MAC_GROUP_STATE_REGISTERED) { 5987 continue; 5988 } 5989 mcip = MAC_GROUP_ONLY_CLIENT(tgrp); 5990 if (mcip == NULL) 5991 mcip = mac_get_grp_primary(tgrp); 5992 ASSERT(mcip != NULL); 5993 mrp = MCIP_RESOURCE_PROPS(mcip); 5994 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) { 5995 ASSERT(tgrp->mrg_cur_count == 1); 5996 /* 5997 * If this ring is part of the 5998 * rings asked by the share we cannot 5999 * use it as the default ring. 6000 */ 6001 for (j = 0; j < nrings; j++) { 6002 if (rings[j] == tgrp->mrg_rings) 6003 break; 6004 } 6005 if (j < nrings) 6006 continue; 6007 mac_tx_client_quiesce( 6008 (mac_client_handle_t)mcip); 6009 mac_tx_switch_group(mcip, tgrp, 6010 defgrp); 6011 mac_tx_client_restart( 6012 (mac_client_handle_t)mcip); 6013 break; 6014 } 6015 } 6016 /* 6017 * All the rings are reserved, can't give up the 6018 * default ring. 6019 */ 6020 if (defgrp->mrg_cur_count <= 1) 6021 return (ENOSPC); 6022 } 6023 /* 6024 * Swap the default ring with another. 6025 */ 6026 for (tring = defgrp->mrg_rings; tring != NULL; 6027 tring = tring->mr_next) { 6028 /* 6029 * If this ring is part of the rings asked by the 6030 * share we cannot use it as the default ring. 6031 */ 6032 for (j = 0; j < nrings; j++) { 6033 if (rings[j] == tring) 6034 break; 6035 } 6036 if (j >= nrings) 6037 break; 6038 } 6039 ASSERT(tring != NULL); 6040 mip->mi_default_tx_ring = (mac_ring_handle_t)tring; 6041 return (0); 6042 } 6043 /* 6044 * The Tx ring is with a group reserved by a MAC client. See if 6045 * we can swap it. 6046 */ 6047 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 6048 mcip = MAC_GROUP_ONLY_CLIENT(group); 6049 if (mcip == NULL) 6050 mcip = mac_get_grp_primary(group); 6051 ASSERT(mcip != NULL); 6052 mrp = MCIP_RESOURCE_PROPS(mcip); 6053 mac_tx_client_quiesce((mac_client_handle_t)mcip); 6054 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) { 6055 ASSERT(group->mrg_cur_count == 1); 6056 /* Put this mac client in the default group */ 6057 mac_tx_switch_group(mcip, group, defgrp); 6058 } else { 6059 /* 6060 * Switch this ring with some other ring from 6061 * the default group. 6062 */ 6063 for (tring = defgrp->mrg_rings; tring != NULL; 6064 tring = tring->mr_next) { 6065 if (tring == (mac_ring_t *)mip->mi_default_tx_ring) 6066 continue; 6067 /* 6068 * If this ring is part of the rings asked by the 6069 * share we cannot use it for swapping. 6070 */ 6071 for (j = 0; j < nrings; j++) { 6072 if (rings[j] == tring) 6073 break; 6074 } 6075 if (j >= nrings) 6076 break; 6077 } 6078 if (tring == NULL) { 6079 mac_tx_client_restart((mac_client_handle_t)mcip); 6080 return (ENOSPC); 6081 } 6082 if (mac_group_mov_ring(mip, group, tring) != 0) { 6083 mac_tx_client_restart((mac_client_handle_t)mcip); 6084 return (ENOSPC); 6085 } 6086 if (mac_group_mov_ring(mip, defgrp, ring) != 0) { 6087 (void) mac_group_mov_ring(mip, defgrp, tring); 6088 mac_tx_client_restart((mac_client_handle_t)mcip); 6089 return (ENOSPC); 6090 } 6091 } 6092 mac_tx_client_restart((mac_client_handle_t)mcip); 6093 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp); 6094 return (0); 6095 } 6096 6097 /* 6098 * Populate a zero-ring group with rings. If the share is non-NULL, 6099 * the rings are chosen according to that share. 6100 * Invoked after allocating a new RX or TX group through 6101 * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively. 6102 * Returns zero on success, an errno otherwise. 6103 */ 6104 int 6105 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type, 6106 mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share, 6107 uint32_t ringcnt) 6108 { 6109 mac_ring_t **rings, *ring; 6110 uint_t nrings; 6111 int rv = 0, i = 0, j; 6112 6113 ASSERT((ring_type == MAC_RING_TYPE_RX && 6114 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) || 6115 (ring_type == MAC_RING_TYPE_TX && 6116 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC)); 6117 6118 /* 6119 * First find the rings to allocate to the group. 6120 */ 6121 if (share != NULL) { 6122 /* get rings through ms_squery() */ 6123 mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings); 6124 ASSERT(nrings != 0); 6125 rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t), 6126 KM_SLEEP); 6127 mip->mi_share_capab.ms_squery(share, ring_type, 6128 (mac_ring_handle_t *)rings, &nrings); 6129 for (i = 0; i < nrings; i++) { 6130 /* 6131 * If we have given this ring to a non-default 6132 * group, we need to check if we can get this 6133 * ring. 6134 */ 6135 ring = rings[i]; 6136 if (ring->mr_gh != (mac_group_handle_t)src_group || 6137 ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6138 if (mac_reclaim_ring_from_grp(mip, ring_type, 6139 ring, rings, nrings) != 0) { 6140 rv = ENOSPC; 6141 goto bail; 6142 } 6143 } 6144 } 6145 } else { 6146 /* 6147 * Pick one ring from default group. 6148 * 6149 * for now pick the second ring which requires the first ring 6150 * at index 0 to stay in the default group, since it is the 6151 * ring which carries the multicast traffic. 6152 * We need a better way for a driver to indicate this, 6153 * for example a per-ring flag. 6154 */ 6155 rings = kmem_alloc(ringcnt * sizeof (mac_ring_handle_t), 6156 KM_SLEEP); 6157 for (ring = src_group->mrg_rings; ring != NULL; 6158 ring = ring->mr_next) { 6159 if (ring_type == MAC_RING_TYPE_RX && 6160 ring->mr_index == 0) { 6161 continue; 6162 } 6163 if (ring_type == MAC_RING_TYPE_TX && 6164 ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6165 continue; 6166 } 6167 rings[i++] = ring; 6168 if (i == ringcnt) 6169 break; 6170 } 6171 ASSERT(ring != NULL); 6172 nrings = i; 6173 /* Not enough rings as required */ 6174 if (nrings != ringcnt) { 6175 rv = ENOSPC; 6176 goto bail; 6177 } 6178 } 6179 6180 switch (ring_type) { 6181 case MAC_RING_TYPE_RX: 6182 if (src_group->mrg_cur_count - nrings < 1) { 6183 /* we ran out of rings */ 6184 rv = ENOSPC; 6185 goto bail; 6186 } 6187 6188 /* move receive rings to new group */ 6189 for (i = 0; i < nrings; i++) { 6190 rv = mac_group_mov_ring(mip, new_group, rings[i]); 6191 if (rv != 0) { 6192 /* move rings back on failure */ 6193 for (j = 0; j < i; j++) { 6194 (void) mac_group_mov_ring(mip, 6195 src_group, rings[j]); 6196 } 6197 goto bail; 6198 } 6199 } 6200 break; 6201 6202 case MAC_RING_TYPE_TX: { 6203 mac_ring_t *tmp_ring; 6204 6205 /* move the TX rings to the new group */ 6206 for (i = 0; i < nrings; i++) { 6207 /* get the desired ring */ 6208 tmp_ring = mac_reserve_tx_ring(mip, rings[i]); 6209 if (tmp_ring == NULL) { 6210 rv = ENOSPC; 6211 goto bail; 6212 } 6213 ASSERT(tmp_ring == rings[i]); 6214 rv = mac_group_mov_ring(mip, new_group, rings[i]); 6215 if (rv != 0) { 6216 /* cleanup on failure */ 6217 for (j = 0; j < i; j++) { 6218 (void) mac_group_mov_ring(mip, 6219 MAC_DEFAULT_TX_GROUP(mip), 6220 rings[j]); 6221 } 6222 goto bail; 6223 } 6224 } 6225 break; 6226 } 6227 } 6228 6229 /* add group to share */ 6230 if (share != NULL) 6231 mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver); 6232 6233 bail: 6234 /* free temporary array of rings */ 6235 kmem_free(rings, nrings * sizeof (mac_ring_handle_t)); 6236 6237 return (rv); 6238 } 6239 6240 void 6241 mac_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip) 6242 { 6243 mac_grp_client_t *mgcp; 6244 6245 for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 6246 if (mgcp->mgc_client == mcip) 6247 break; 6248 } 6249 6250 VERIFY(mgcp == NULL); 6251 6252 mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP); 6253 mgcp->mgc_client = mcip; 6254 mgcp->mgc_next = grp->mrg_clients; 6255 grp->mrg_clients = mgcp; 6256 6257 } 6258 6259 void 6260 mac_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip) 6261 { 6262 mac_grp_client_t *mgcp, **pprev; 6263 6264 for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL; 6265 pprev = &mgcp->mgc_next, mgcp = *pprev) { 6266 if (mgcp->mgc_client == mcip) 6267 break; 6268 } 6269 6270 ASSERT(mgcp != NULL); 6271 6272 *pprev = mgcp->mgc_next; 6273 kmem_free(mgcp, sizeof (mac_grp_client_t)); 6274 } 6275 6276 /* 6277 * mac_reserve_rx_group() 6278 * 6279 * Finds an available group and exclusively reserves it for a client. 6280 * The group is chosen to suit the flow's resource controls (bandwidth and 6281 * fanout requirements) and the address type. 6282 * If the requestor is the pimary MAC then return the group with the 6283 * largest number of rings, otherwise the default ring when available. 6284 */ 6285 mac_group_t * 6286 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, boolean_t move) 6287 { 6288 mac_share_handle_t share = mcip->mci_share; 6289 mac_impl_t *mip = mcip->mci_mip; 6290 mac_group_t *grp = NULL; 6291 int i; 6292 int err = 0; 6293 mac_address_t *map; 6294 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 6295 int nrings; 6296 int donor_grp_rcnt; 6297 boolean_t need_exclgrp = B_FALSE; 6298 int need_rings = 0; 6299 mac_group_t *candidate_grp = NULL; 6300 mac_client_impl_t *gclient; 6301 mac_resource_props_t *gmrp; 6302 mac_group_t *donorgrp = NULL; 6303 boolean_t rxhw = mrp->mrp_mask & MRP_RX_RINGS; 6304 boolean_t unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC; 6305 boolean_t isprimary; 6306 6307 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 6308 6309 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC; 6310 6311 /* 6312 * Check if a group already has this mac address (case of VLANs) 6313 * unless we are moving this MAC client from one group to another. 6314 */ 6315 if (!move && (map = mac_find_macaddr(mip, mac_addr)) != NULL) { 6316 if (map->ma_group != NULL) 6317 return (map->ma_group); 6318 } 6319 if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0) 6320 return (NULL); 6321 /* 6322 * If exclusive open, return NULL which will enable the 6323 * caller to use the default group. 6324 */ 6325 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) 6326 return (NULL); 6327 6328 /* For dynamic groups default unspecified to 1 */ 6329 if (rxhw && unspec && 6330 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6331 mrp->mrp_nrxrings = 1; 6332 } 6333 /* 6334 * For static grouping we allow only specifying rings=0 and 6335 * unspecified 6336 */ 6337 if (rxhw && mrp->mrp_nrxrings > 0 && 6338 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) { 6339 return (NULL); 6340 } 6341 if (rxhw) { 6342 /* 6343 * We have explicitly asked for a group (with nrxrings, 6344 * if unspec). 6345 */ 6346 if (unspec || mrp->mrp_nrxrings > 0) { 6347 need_exclgrp = B_TRUE; 6348 need_rings = mrp->mrp_nrxrings; 6349 } else if (mrp->mrp_nrxrings == 0) { 6350 /* 6351 * We have asked for a software group. 6352 */ 6353 return (NULL); 6354 } 6355 } else if (isprimary && mip->mi_nactiveclients == 1 && 6356 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6357 /* 6358 * If the primary is the only active client on this 6359 * mip and we have not asked for any rings, we give 6360 * it the default group so that the primary gets to 6361 * use all the rings. 6362 */ 6363 return (NULL); 6364 } 6365 6366 /* The group that can donate rings */ 6367 donorgrp = mip->mi_rx_donor_grp; 6368 6369 /* 6370 * The number of rings that the default group can donate. 6371 * We need to leave at least one ring. 6372 */ 6373 donor_grp_rcnt = donorgrp->mrg_cur_count - 1; 6374 6375 /* 6376 * Try to exclusively reserve a RX group. 6377 * 6378 * For flows requiring HW_DEFAULT_RING (unicast flow of the primary 6379 * client), try to reserve the a non-default RX group and give 6380 * it all the rings from the donor group, except the default ring 6381 * 6382 * For flows requiring HW_RING (unicast flow of other clients), try 6383 * to reserve non-default RX group with the specified number of 6384 * rings, if available. 6385 * 6386 * For flows that have not asked for software or hardware ring, 6387 * try to reserve a non-default group with 1 ring, if available. 6388 */ 6389 for (i = 1; i < mip->mi_rx_group_count; i++) { 6390 grp = &mip->mi_rx_groups[i]; 6391 6392 DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name, 6393 int, grp->mrg_index, mac_group_state_t, grp->mrg_state); 6394 6395 /* 6396 * Check if this group could be a candidate group for 6397 * eviction if we need a group for this MAC client, 6398 * but there aren't any. A candidate group is one 6399 * that didn't ask for an exclusive group, but got 6400 * one and it has enough rings (combined with what 6401 * the donor group can donate) for the new MAC 6402 * client 6403 */ 6404 if (grp->mrg_state >= MAC_GROUP_STATE_RESERVED) { 6405 /* 6406 * If the primary/donor group is not the default 6407 * group, don't bother looking for a candidate group. 6408 * If we don't have enough rings we will check 6409 * if the primary group can be vacated. 6410 */ 6411 if (candidate_grp == NULL && 6412 donorgrp == MAC_DEFAULT_RX_GROUP(mip)) { 6413 ASSERT(!MAC_GROUP_NO_CLIENT(grp)); 6414 gclient = MAC_GROUP_ONLY_CLIENT(grp); 6415 if (gclient == NULL) 6416 gclient = mac_get_grp_primary(grp); 6417 ASSERT(gclient != NULL); 6418 gmrp = MCIP_RESOURCE_PROPS(gclient); 6419 if (gclient->mci_share == NULL && 6420 (gmrp->mrp_mask & MRP_RX_RINGS) == 0 && 6421 (unspec || 6422 (grp->mrg_cur_count + donor_grp_rcnt >= 6423 need_rings))) { 6424 candidate_grp = grp; 6425 } 6426 } 6427 continue; 6428 } 6429 /* 6430 * This group could already be SHARED by other multicast 6431 * flows on this client. In that case, the group would 6432 * be shared and has already been started. 6433 */ 6434 ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT); 6435 6436 if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) && 6437 (mac_start_group(grp) != 0)) { 6438 continue; 6439 } 6440 6441 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) 6442 break; 6443 ASSERT(grp->mrg_cur_count == 0); 6444 6445 /* 6446 * Populate the group. Rings should be taken 6447 * from the donor group. 6448 */ 6449 nrings = rxhw ? need_rings : isprimary ? donor_grp_rcnt: 1; 6450 6451 /* 6452 * If the donor group can't donate, let's just walk and 6453 * see if someone can vacate a group, so that we have 6454 * enough rings for this, unless we already have 6455 * identified a candiate group.. 6456 */ 6457 if (nrings <= donor_grp_rcnt) { 6458 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 6459 donorgrp, grp, share, nrings); 6460 if (err == 0) { 6461 /* 6462 * For a share i_mac_group_allocate_rings gets 6463 * the rings from the driver, let's populate 6464 * the property for the client now. 6465 */ 6466 if (share != NULL) { 6467 mac_client_set_rings( 6468 (mac_client_handle_t)mcip, 6469 grp->mrg_cur_count, -1); 6470 } 6471 if (mac_is_primary_client(mcip) && !rxhw) 6472 mip->mi_rx_donor_grp = grp; 6473 break; 6474 } 6475 } 6476 6477 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 6478 mip->mi_name, int, grp->mrg_index, int, err); 6479 6480 /* 6481 * It's a dynamic group but the grouping operation 6482 * failed. 6483 */ 6484 mac_stop_group(grp); 6485 } 6486 /* We didn't find an exclusive group for this MAC client */ 6487 if (i >= mip->mi_rx_group_count) { 6488 6489 if (!need_exclgrp) 6490 return (NULL); 6491 6492 /* 6493 * If we found a candidate group then we switch the 6494 * MAC client from the candidate_group to the default 6495 * group and give the group to this MAC client. If 6496 * we didn't find a candidate_group, check if the 6497 * primary is in its own group and if it can make way 6498 * for this MAC client. 6499 */ 6500 if (candidate_grp == NULL && 6501 donorgrp != MAC_DEFAULT_RX_GROUP(mip) && 6502 donorgrp->mrg_cur_count >= need_rings) { 6503 candidate_grp = donorgrp; 6504 } 6505 if (candidate_grp != NULL) { 6506 boolean_t prim_grp = B_FALSE; 6507 6508 /* 6509 * Switch the MAC client from the candidate group 6510 * to the default group.. If this group was the 6511 * donor group, then after the switch we need 6512 * to update the donor group too. 6513 */ 6514 grp = candidate_grp; 6515 gclient = MAC_GROUP_ONLY_CLIENT(grp); 6516 if (gclient == NULL) 6517 gclient = mac_get_grp_primary(grp); 6518 if (grp == mip->mi_rx_donor_grp) 6519 prim_grp = B_TRUE; 6520 if (mac_rx_switch_group(gclient, grp, 6521 MAC_DEFAULT_RX_GROUP(mip)) != 0) { 6522 return (NULL); 6523 } 6524 if (prim_grp) { 6525 mip->mi_rx_donor_grp = 6526 MAC_DEFAULT_RX_GROUP(mip); 6527 donorgrp = MAC_DEFAULT_RX_GROUP(mip); 6528 } 6529 6530 6531 /* 6532 * Now give this group with the required rings 6533 * to this MAC client. 6534 */ 6535 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 6536 if (mac_start_group(grp) != 0) 6537 return (NULL); 6538 6539 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) 6540 return (grp); 6541 6542 donor_grp_rcnt = donorgrp->mrg_cur_count - 1; 6543 ASSERT(grp->mrg_cur_count == 0); 6544 ASSERT(donor_grp_rcnt >= need_rings); 6545 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 6546 donorgrp, grp, share, need_rings); 6547 if (err == 0) { 6548 /* 6549 * For a share i_mac_group_allocate_rings gets 6550 * the rings from the driver, let's populate 6551 * the property for the client now. 6552 */ 6553 if (share != NULL) { 6554 mac_client_set_rings( 6555 (mac_client_handle_t)mcip, 6556 grp->mrg_cur_count, -1); 6557 } 6558 DTRACE_PROBE2(rx__group__reserved, 6559 char *, mip->mi_name, int, grp->mrg_index); 6560 return (grp); 6561 } 6562 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 6563 mip->mi_name, int, grp->mrg_index, int, err); 6564 mac_stop_group(grp); 6565 } 6566 return (NULL); 6567 } 6568 ASSERT(grp != NULL); 6569 6570 DTRACE_PROBE2(rx__group__reserved, 6571 char *, mip->mi_name, int, grp->mrg_index); 6572 return (grp); 6573 } 6574 6575 /* 6576 * mac_rx_release_group() 6577 * 6578 * This is called when there are no clients left for the group. 6579 * The group is stopped and marked MAC_GROUP_STATE_REGISTERED, 6580 * and if it is a non default group, the shares are removed and 6581 * all rings are assigned back to default group. 6582 */ 6583 void 6584 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group) 6585 { 6586 mac_impl_t *mip = mcip->mci_mip; 6587 mac_ring_t *ring; 6588 6589 ASSERT(group != MAC_DEFAULT_RX_GROUP(mip)); 6590 6591 if (mip->mi_rx_donor_grp == group) 6592 mip->mi_rx_donor_grp = MAC_DEFAULT_RX_GROUP(mip); 6593 6594 /* 6595 * This is the case where there are no clients left. Any 6596 * SRS etc on this group have also be quiesced. 6597 */ 6598 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 6599 if (ring->mr_classify_type == MAC_HW_CLASSIFIER) { 6600 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 6601 /* 6602 * Remove the SRS associated with the HW ring. 6603 * As a result, polling will be disabled. 6604 */ 6605 ring->mr_srs = NULL; 6606 } 6607 ASSERT(group->mrg_state < MAC_GROUP_STATE_RESERVED || 6608 ring->mr_state == MR_INUSE); 6609 if (ring->mr_state == MR_INUSE) { 6610 mac_stop_ring(ring); 6611 ring->mr_flag = 0; 6612 } 6613 } 6614 6615 /* remove group from share */ 6616 if (mcip->mci_share != NULL) { 6617 mip->mi_share_capab.ms_sremove(mcip->mci_share, 6618 group->mrg_driver); 6619 } 6620 6621 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6622 mac_ring_t *ring; 6623 6624 /* 6625 * Rings were dynamically allocated to group. 6626 * Move rings back to default group. 6627 */ 6628 while ((ring = group->mrg_rings) != NULL) { 6629 (void) mac_group_mov_ring(mip, mip->mi_rx_donor_grp, 6630 ring); 6631 } 6632 } 6633 mac_stop_group(group); 6634 /* 6635 * Possible improvement: See if we can assign the group just released 6636 * to a another client of the mip 6637 */ 6638 } 6639 6640 /* 6641 * When we move the primary's mac address between groups, we need to also 6642 * take all the clients sharing the same mac address along with it (VLANs) 6643 * We remove the mac address for such clients from the group after quiescing 6644 * them. When we add the mac address we restart the client. Note that 6645 * the primary's mac address is removed from the group after all the 6646 * other clients sharing the address are removed. Similarly, the primary's 6647 * mac address is added before all the other client's mac address are 6648 * added. While grp is the group where the clients reside, tgrp is 6649 * the group where the addresses have to be added. 6650 */ 6651 static void 6652 mac_rx_move_macaddr_prim(mac_client_impl_t *mcip, mac_group_t *grp, 6653 mac_group_t *tgrp, uint8_t *maddr, boolean_t add) 6654 { 6655 mac_impl_t *mip = mcip->mci_mip; 6656 mac_grp_client_t *mgcp = grp->mrg_clients; 6657 mac_client_impl_t *gmcip; 6658 boolean_t prim; 6659 6660 prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0; 6661 6662 /* 6663 * If the clients are in a non-default group, we just have to 6664 * walk the group's client list. If it is in the default group 6665 * (which will be shared by other clients as well, we need to 6666 * check if the unicast address matches mcip's unicast. 6667 */ 6668 while (mgcp != NULL) { 6669 gmcip = mgcp->mgc_client; 6670 if (gmcip != mcip && 6671 (grp != MAC_DEFAULT_RX_GROUP(mip) || 6672 mcip->mci_unicast == gmcip->mci_unicast)) { 6673 if (!add) { 6674 mac_rx_client_quiesce( 6675 (mac_client_handle_t)gmcip); 6676 (void) mac_remove_macaddr(mcip->mci_unicast); 6677 } else { 6678 (void) mac_add_macaddr(mip, tgrp, maddr, prim); 6679 mac_rx_client_restart( 6680 (mac_client_handle_t)gmcip); 6681 } 6682 } 6683 mgcp = mgcp->mgc_next; 6684 } 6685 } 6686 6687 6688 /* 6689 * Move the MAC address from fgrp to tgrp. If this is the primary client, 6690 * we need to take any VLANs etc. together too. 6691 */ 6692 static int 6693 mac_rx_move_macaddr(mac_client_impl_t *mcip, mac_group_t *fgrp, 6694 mac_group_t *tgrp) 6695 { 6696 mac_impl_t *mip = mcip->mci_mip; 6697 uint8_t maddr[MAXMACADDRLEN]; 6698 int err = 0; 6699 boolean_t prim; 6700 boolean_t multiclnt = B_FALSE; 6701 6702 mac_rx_client_quiesce((mac_client_handle_t)mcip); 6703 ASSERT(mcip->mci_unicast != NULL); 6704 bcopy(mcip->mci_unicast->ma_addr, maddr, mcip->mci_unicast->ma_len); 6705 6706 prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0; 6707 if (mcip->mci_unicast->ma_nusers > 1) { 6708 mac_rx_move_macaddr_prim(mcip, fgrp, NULL, maddr, B_FALSE); 6709 multiclnt = B_TRUE; 6710 } 6711 ASSERT(mcip->mci_unicast->ma_nusers == 1); 6712 err = mac_remove_macaddr(mcip->mci_unicast); 6713 if (err != 0) { 6714 mac_rx_client_restart((mac_client_handle_t)mcip); 6715 if (multiclnt) { 6716 mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr, 6717 B_TRUE); 6718 } 6719 return (err); 6720 } 6721 /* 6722 * Program the H/W Classifier first, if this fails we need 6723 * not proceed with the other stuff. 6724 */ 6725 if ((err = mac_add_macaddr(mip, tgrp, maddr, prim)) != 0) { 6726 /* Revert back the H/W Classifier */ 6727 if ((err = mac_add_macaddr(mip, fgrp, maddr, prim)) != 0) { 6728 /* 6729 * This should not fail now since it worked earlier, 6730 * should we panic? 6731 */ 6732 cmn_err(CE_WARN, 6733 "mac_rx_switch_group: switching %p back" 6734 " to group %p failed!!", (void *)mcip, 6735 (void *)fgrp); 6736 } 6737 mac_rx_client_restart((mac_client_handle_t)mcip); 6738 if (multiclnt) { 6739 mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr, 6740 B_TRUE); 6741 } 6742 return (err); 6743 } 6744 mcip->mci_unicast = mac_find_macaddr(mip, maddr); 6745 mac_rx_client_restart((mac_client_handle_t)mcip); 6746 if (multiclnt) 6747 mac_rx_move_macaddr_prim(mcip, fgrp, tgrp, maddr, B_TRUE); 6748 return (err); 6749 } 6750 6751 /* 6752 * Switch the MAC client from one group to another. This means we need 6753 * to remove the MAC address from the group, remove the MAC client, 6754 * teardown the SRSs and revert the group state. Then, we add the client 6755 * to the destination group, set the SRSs, and add the MAC address to the 6756 * group. 6757 */ 6758 int 6759 mac_rx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp, 6760 mac_group_t *tgrp) 6761 { 6762 int err; 6763 mac_group_state_t next_state; 6764 mac_client_impl_t *group_only_mcip; 6765 mac_client_impl_t *gmcip; 6766 mac_impl_t *mip = mcip->mci_mip; 6767 mac_grp_client_t *mgcp; 6768 6769 ASSERT(fgrp == mcip->mci_flent->fe_rx_ring_group); 6770 6771 if ((err = mac_rx_move_macaddr(mcip, fgrp, tgrp)) != 0) 6772 return (err); 6773 6774 /* 6775 * The group might be reserved, but SRSs may not be set up, e.g. 6776 * primary and its vlans using a reserved group. 6777 */ 6778 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED && 6779 MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) { 6780 mac_rx_srs_group_teardown(mcip->mci_flent, B_TRUE); 6781 } 6782 if (fgrp != MAC_DEFAULT_RX_GROUP(mip)) { 6783 mgcp = fgrp->mrg_clients; 6784 while (mgcp != NULL) { 6785 gmcip = mgcp->mgc_client; 6786 mgcp = mgcp->mgc_next; 6787 mac_group_remove_client(fgrp, gmcip); 6788 mac_group_add_client(tgrp, gmcip); 6789 gmcip->mci_flent->fe_rx_ring_group = tgrp; 6790 } 6791 mac_release_rx_group(mcip, fgrp); 6792 ASSERT(MAC_GROUP_NO_CLIENT(fgrp)); 6793 mac_set_group_state(fgrp, MAC_GROUP_STATE_REGISTERED); 6794 } else { 6795 mac_group_remove_client(fgrp, mcip); 6796 mac_group_add_client(tgrp, mcip); 6797 mcip->mci_flent->fe_rx_ring_group = tgrp; 6798 /* 6799 * If there are other clients (VLANs) sharing this address 6800 * we should be here only for the primary. 6801 */ 6802 if (mcip->mci_unicast->ma_nusers > 1) { 6803 /* 6804 * We need to move all the clients that are using 6805 * this h/w address. 6806 */ 6807 mgcp = fgrp->mrg_clients; 6808 while (mgcp != NULL) { 6809 gmcip = mgcp->mgc_client; 6810 mgcp = mgcp->mgc_next; 6811 if (mcip->mci_unicast == gmcip->mci_unicast) { 6812 mac_group_remove_client(fgrp, gmcip); 6813 mac_group_add_client(tgrp, gmcip); 6814 gmcip->mci_flent->fe_rx_ring_group = 6815 tgrp; 6816 } 6817 } 6818 } 6819 /* 6820 * The default group will still take the multicast, 6821 * broadcast traffic etc., so it won't go to 6822 * MAC_GROUP_STATE_REGISTERED. 6823 */ 6824 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED) 6825 mac_rx_group_unmark(fgrp, MR_CONDEMNED); 6826 mac_set_group_state(fgrp, MAC_GROUP_STATE_SHARED); 6827 } 6828 next_state = mac_group_next_state(tgrp, &group_only_mcip, 6829 MAC_DEFAULT_RX_GROUP(mip), B_TRUE); 6830 mac_set_group_state(tgrp, next_state); 6831 /* 6832 * If the destination group is reserved, setup the SRSs etc. 6833 */ 6834 if (tgrp->mrg_state == MAC_GROUP_STATE_RESERVED) { 6835 mac_rx_srs_group_setup(mcip, mcip->mci_flent, SRST_LINK); 6836 mac_fanout_setup(mcip, mcip->mci_flent, 6837 MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, mcip, NULL, 6838 NULL); 6839 mac_rx_group_unmark(tgrp, MR_INCIPIENT); 6840 } else { 6841 mac_rx_switch_grp_to_sw(tgrp); 6842 } 6843 return (0); 6844 } 6845 6846 /* 6847 * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup() 6848 * when a share was allocated to the client. 6849 */ 6850 mac_group_t * 6851 mac_reserve_tx_group(mac_client_impl_t *mcip, boolean_t move) 6852 { 6853 mac_impl_t *mip = mcip->mci_mip; 6854 mac_group_t *grp = NULL; 6855 int rv; 6856 int i; 6857 int err; 6858 mac_group_t *defgrp; 6859 mac_share_handle_t share = mcip->mci_share; 6860 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 6861 int nrings; 6862 int defnrings; 6863 boolean_t need_exclgrp = B_FALSE; 6864 int need_rings = 0; 6865 mac_group_t *candidate_grp = NULL; 6866 mac_client_impl_t *gclient; 6867 mac_resource_props_t *gmrp; 6868 boolean_t txhw = mrp->mrp_mask & MRP_TX_RINGS; 6869 boolean_t unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC; 6870 boolean_t isprimary; 6871 6872 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC; 6873 /* 6874 * When we come here for a VLAN on the primary (dladm create-vlan), 6875 * we need to pair it along with the primary (to keep it consistent 6876 * with the RX side). So, we check if the primary is already assigned 6877 * to a group and return the group if so. The other way is also 6878 * true, i.e. the VLAN is already created and now we are plumbing 6879 * the primary. 6880 */ 6881 if (!move && isprimary) { 6882 for (gclient = mip->mi_clients_list; gclient != NULL; 6883 gclient = gclient->mci_client_next) { 6884 if (gclient->mci_flent->fe_type & FLOW_PRIMARY_MAC && 6885 gclient->mci_flent->fe_tx_ring_group != NULL) { 6886 return (gclient->mci_flent->fe_tx_ring_group); 6887 } 6888 } 6889 } 6890 6891 if (mip->mi_tx_groups == NULL || mip->mi_tx_group_count == 0) 6892 return (NULL); 6893 6894 /* For dynamic groups, default unspec to 1 */ 6895 if (txhw && unspec && 6896 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6897 mrp->mrp_ntxrings = 1; 6898 } 6899 /* 6900 * For static grouping we allow only specifying rings=0 and 6901 * unspecified 6902 */ 6903 if (txhw && mrp->mrp_ntxrings > 0 && 6904 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC) { 6905 return (NULL); 6906 } 6907 6908 if (txhw) { 6909 /* 6910 * We have explicitly asked for a group (with ntxrings, 6911 * if unspec). 6912 */ 6913 if (unspec || mrp->mrp_ntxrings > 0) { 6914 need_exclgrp = B_TRUE; 6915 need_rings = mrp->mrp_ntxrings; 6916 } else if (mrp->mrp_ntxrings == 0) { 6917 /* 6918 * We have asked for a software group. 6919 */ 6920 return (NULL); 6921 } 6922 } 6923 defgrp = MAC_DEFAULT_TX_GROUP(mip); 6924 /* 6925 * The number of rings that the default group can donate. 6926 * We need to leave at least one ring - the default ring - in 6927 * this group. 6928 */ 6929 defnrings = defgrp->mrg_cur_count - 1; 6930 6931 /* 6932 * Primary gets default group unless explicitly told not 6933 * to (i.e. rings > 0). 6934 */ 6935 if (isprimary && !need_exclgrp) 6936 return (NULL); 6937 6938 nrings = (mrp->mrp_mask & MRP_TX_RINGS) != 0 ? mrp->mrp_ntxrings : 1; 6939 for (i = 0; i < mip->mi_tx_group_count; i++) { 6940 grp = &mip->mi_tx_groups[i]; 6941 if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) || 6942 (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) { 6943 /* 6944 * Select a candidate for replacement if we don't 6945 * get an exclusive group. A candidate group is one 6946 * that didn't ask for an exclusive group, but got 6947 * one and it has enough rings (combined with what 6948 * the default group can donate) for the new MAC 6949 * client. 6950 */ 6951 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED && 6952 candidate_grp == NULL) { 6953 gclient = MAC_GROUP_ONLY_CLIENT(grp); 6954 if (gclient == NULL) 6955 gclient = mac_get_grp_primary(grp); 6956 gmrp = MCIP_RESOURCE_PROPS(gclient); 6957 if (gclient->mci_share == NULL && 6958 (gmrp->mrp_mask & MRP_TX_RINGS) == 0 && 6959 (unspec || 6960 (grp->mrg_cur_count + defnrings) >= 6961 need_rings)) { 6962 candidate_grp = grp; 6963 } 6964 } 6965 continue; 6966 } 6967 /* 6968 * If the default can't donate let's just walk and 6969 * see if someone can vacate a group, so that we have 6970 * enough rings for this. 6971 */ 6972 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC || 6973 nrings <= defnrings) { 6974 if (grp->mrg_state == MAC_GROUP_STATE_REGISTERED) { 6975 rv = mac_start_group(grp); 6976 ASSERT(rv == 0); 6977 } 6978 break; 6979 } 6980 } 6981 6982 /* The default group */ 6983 if (i >= mip->mi_tx_group_count) { 6984 /* 6985 * If we need an exclusive group and have identified a 6986 * candidate group we switch the MAC client from the 6987 * candidate group to the default group and give the 6988 * candidate group to this client. 6989 */ 6990 if (need_exclgrp && candidate_grp != NULL) { 6991 /* 6992 * Switch the MAC client from the candidate group 6993 * to the default group. 6994 */ 6995 grp = candidate_grp; 6996 gclient = MAC_GROUP_ONLY_CLIENT(grp); 6997 if (gclient == NULL) 6998 gclient = mac_get_grp_primary(grp); 6999 mac_tx_client_quiesce((mac_client_handle_t)gclient); 7000 mac_tx_switch_group(gclient, grp, defgrp); 7001 mac_tx_client_restart((mac_client_handle_t)gclient); 7002 7003 /* 7004 * Give the candidate group with the specified number 7005 * of rings to this MAC client. 7006 */ 7007 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 7008 rv = mac_start_group(grp); 7009 ASSERT(rv == 0); 7010 7011 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) 7012 return (grp); 7013 7014 ASSERT(grp->mrg_cur_count == 0); 7015 ASSERT(defgrp->mrg_cur_count > need_rings); 7016 7017 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, 7018 defgrp, grp, share, need_rings); 7019 if (err == 0) { 7020 /* 7021 * For a share i_mac_group_allocate_rings gets 7022 * the rings from the driver, let's populate 7023 * the property for the client now. 7024 */ 7025 if (share != NULL) { 7026 mac_client_set_rings( 7027 (mac_client_handle_t)mcip, -1, 7028 grp->mrg_cur_count); 7029 } 7030 mip->mi_tx_group_free--; 7031 return (grp); 7032 } 7033 DTRACE_PROBE3(tx__group__reserve__alloc__rings, char *, 7034 mip->mi_name, int, grp->mrg_index, int, err); 7035 mac_stop_group(grp); 7036 } 7037 return (NULL); 7038 } 7039 /* 7040 * We got an exclusive group, but it is not dynamic. 7041 */ 7042 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) { 7043 mip->mi_tx_group_free--; 7044 return (grp); 7045 } 7046 7047 rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, defgrp, grp, 7048 share, nrings); 7049 if (rv != 0) { 7050 DTRACE_PROBE3(tx__group__reserve__alloc__rings, 7051 char *, mip->mi_name, int, grp->mrg_index, int, rv); 7052 mac_stop_group(grp); 7053 return (NULL); 7054 } 7055 /* 7056 * For a share i_mac_group_allocate_rings gets the rings from the 7057 * driver, let's populate the property for the client now. 7058 */ 7059 if (share != NULL) { 7060 mac_client_set_rings((mac_client_handle_t)mcip, -1, 7061 grp->mrg_cur_count); 7062 } 7063 mip->mi_tx_group_free--; 7064 return (grp); 7065 } 7066 7067 void 7068 mac_release_tx_group(mac_client_impl_t *mcip, mac_group_t *grp) 7069 { 7070 mac_impl_t *mip = mcip->mci_mip; 7071 mac_share_handle_t share = mcip->mci_share; 7072 mac_ring_t *ring; 7073 mac_soft_ring_set_t *srs = MCIP_TX_SRS(mcip); 7074 mac_group_t *defgrp; 7075 7076 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7077 if (srs != NULL) { 7078 if (srs->srs_soft_ring_count > 0) { 7079 for (ring = grp->mrg_rings; ring != NULL; 7080 ring = ring->mr_next) { 7081 ASSERT(mac_tx_srs_ring_present(srs, ring)); 7082 mac_tx_invoke_callbacks(mcip, 7083 (mac_tx_cookie_t) 7084 mac_tx_srs_get_soft_ring(srs, ring)); 7085 mac_tx_srs_del_ring(srs, ring); 7086 } 7087 } else { 7088 ASSERT(srs->srs_tx.st_arg2 != NULL); 7089 srs->srs_tx.st_arg2 = NULL; 7090 mac_srs_stat_delete(srs); 7091 } 7092 } 7093 if (share != NULL) 7094 mip->mi_share_capab.ms_sremove(share, grp->mrg_driver); 7095 7096 /* move the ring back to the pool */ 7097 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 7098 while ((ring = grp->mrg_rings) != NULL) 7099 (void) mac_group_mov_ring(mip, defgrp, ring); 7100 } 7101 mac_stop_group(grp); 7102 mip->mi_tx_group_free++; 7103 } 7104 7105 /* 7106 * Disassociate a MAC client from a group, i.e go through the rings in the 7107 * group and delete all the soft rings tied to them. 7108 */ 7109 static void 7110 mac_tx_dismantle_soft_rings(mac_group_t *fgrp, flow_entry_t *flent) 7111 { 7112 mac_client_impl_t *mcip = flent->fe_mcip; 7113 mac_soft_ring_set_t *tx_srs; 7114 mac_srs_tx_t *tx; 7115 mac_ring_t *ring; 7116 7117 tx_srs = flent->fe_tx_srs; 7118 tx = &tx_srs->srs_tx; 7119 7120 /* Single ring case we haven't created any soft rings */ 7121 if (tx->st_mode == SRS_TX_BW || tx->st_mode == SRS_TX_SERIALIZE || 7122 tx->st_mode == SRS_TX_DEFAULT) { 7123 tx->st_arg2 = NULL; 7124 mac_srs_stat_delete(tx_srs); 7125 /* Fanout case, where we have to dismantle the soft rings */ 7126 } else { 7127 for (ring = fgrp->mrg_rings; ring != NULL; 7128 ring = ring->mr_next) { 7129 ASSERT(mac_tx_srs_ring_present(tx_srs, ring)); 7130 mac_tx_invoke_callbacks(mcip, 7131 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(tx_srs, 7132 ring)); 7133 mac_tx_srs_del_ring(tx_srs, ring); 7134 } 7135 ASSERT(tx->st_arg2 == NULL); 7136 } 7137 } 7138 7139 /* 7140 * Switch the MAC client from one group to another. This means we need 7141 * to remove the MAC client, teardown the SRSs and revert the group state. 7142 * Then, we add the client to the destination roup, set the SRSs etc. 7143 */ 7144 void 7145 mac_tx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp, 7146 mac_group_t *tgrp) 7147 { 7148 mac_client_impl_t *group_only_mcip; 7149 mac_impl_t *mip = mcip->mci_mip; 7150 flow_entry_t *flent = mcip->mci_flent; 7151 mac_group_t *defgrp; 7152 mac_grp_client_t *mgcp; 7153 mac_client_impl_t *gmcip; 7154 flow_entry_t *gflent; 7155 7156 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7157 ASSERT(fgrp == flent->fe_tx_ring_group); 7158 7159 if (fgrp == defgrp) { 7160 /* 7161 * If this is the primary we need to find any VLANs on 7162 * the primary and move them too. 7163 */ 7164 mac_group_remove_client(fgrp, mcip); 7165 mac_tx_dismantle_soft_rings(fgrp, flent); 7166 if (mcip->mci_unicast->ma_nusers > 1) { 7167 mgcp = fgrp->mrg_clients; 7168 while (mgcp != NULL) { 7169 gmcip = mgcp->mgc_client; 7170 mgcp = mgcp->mgc_next; 7171 if (mcip->mci_unicast != gmcip->mci_unicast) 7172 continue; 7173 mac_tx_client_quiesce( 7174 (mac_client_handle_t)gmcip); 7175 7176 gflent = gmcip->mci_flent; 7177 mac_group_remove_client(fgrp, gmcip); 7178 mac_tx_dismantle_soft_rings(fgrp, gflent); 7179 7180 mac_group_add_client(tgrp, gmcip); 7181 gflent->fe_tx_ring_group = tgrp; 7182 /* We could directly set this to SHARED */ 7183 tgrp->mrg_state = mac_group_next_state(tgrp, 7184 &group_only_mcip, defgrp, B_FALSE); 7185 7186 mac_tx_srs_group_setup(gmcip, gflent, 7187 SRST_LINK); 7188 mac_fanout_setup(gmcip, gflent, 7189 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver, 7190 gmcip, NULL, NULL); 7191 7192 mac_tx_client_restart( 7193 (mac_client_handle_t)gmcip); 7194 } 7195 } 7196 if (MAC_GROUP_NO_CLIENT(fgrp)) { 7197 mac_ring_t *ring; 7198 int cnt; 7199 int ringcnt; 7200 7201 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED; 7202 /* 7203 * Additionally, we also need to stop all 7204 * the rings in the default group, except 7205 * the default ring. The reason being 7206 * this group won't be released since it is 7207 * the default group, so the rings won't 7208 * be stopped otherwise. 7209 */ 7210 ringcnt = fgrp->mrg_cur_count; 7211 ring = fgrp->mrg_rings; 7212 for (cnt = 0; cnt < ringcnt; cnt++) { 7213 if (ring->mr_state == MR_INUSE && 7214 ring != 7215 (mac_ring_t *)mip->mi_default_tx_ring) { 7216 mac_stop_ring(ring); 7217 ring->mr_flag = 0; 7218 } 7219 ring = ring->mr_next; 7220 } 7221 } else if (MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) { 7222 fgrp->mrg_state = MAC_GROUP_STATE_RESERVED; 7223 } else { 7224 ASSERT(fgrp->mrg_state == MAC_GROUP_STATE_SHARED); 7225 } 7226 } else { 7227 /* 7228 * We could have VLANs sharing the non-default group with 7229 * the primary. 7230 */ 7231 mgcp = fgrp->mrg_clients; 7232 while (mgcp != NULL) { 7233 gmcip = mgcp->mgc_client; 7234 mgcp = mgcp->mgc_next; 7235 if (gmcip == mcip) 7236 continue; 7237 mac_tx_client_quiesce((mac_client_handle_t)gmcip); 7238 gflent = gmcip->mci_flent; 7239 7240 mac_group_remove_client(fgrp, gmcip); 7241 mac_tx_dismantle_soft_rings(fgrp, gflent); 7242 7243 mac_group_add_client(tgrp, gmcip); 7244 gflent->fe_tx_ring_group = tgrp; 7245 /* We could directly set this to SHARED */ 7246 tgrp->mrg_state = mac_group_next_state(tgrp, 7247 &group_only_mcip, defgrp, B_FALSE); 7248 mac_tx_srs_group_setup(gmcip, gflent, SRST_LINK); 7249 mac_fanout_setup(gmcip, gflent, 7250 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver, 7251 gmcip, NULL, NULL); 7252 7253 mac_tx_client_restart((mac_client_handle_t)gmcip); 7254 } 7255 mac_group_remove_client(fgrp, mcip); 7256 mac_release_tx_group(mcip, fgrp); 7257 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED; 7258 } 7259 7260 /* Add it to the tgroup */ 7261 mac_group_add_client(tgrp, mcip); 7262 flent->fe_tx_ring_group = tgrp; 7263 tgrp->mrg_state = mac_group_next_state(tgrp, &group_only_mcip, 7264 defgrp, B_FALSE); 7265 7266 mac_tx_srs_group_setup(mcip, flent, SRST_LINK); 7267 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 7268 mac_rx_deliver, mcip, NULL, NULL); 7269 } 7270 7271 /* 7272 * This is a 1-time control path activity initiated by the client (IP). 7273 * The mac perimeter protects against other simultaneous control activities, 7274 * for example an ioctl that attempts to change the degree of fanout and 7275 * increase or decrease the number of softrings associated with this Tx SRS. 7276 */ 7277 static mac_tx_notify_cb_t * 7278 mac_client_tx_notify_add(mac_client_impl_t *mcip, 7279 mac_tx_notify_t notify, void *arg) 7280 { 7281 mac_cb_info_t *mcbi; 7282 mac_tx_notify_cb_t *mtnfp; 7283 7284 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 7285 7286 mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP); 7287 mtnfp->mtnf_fn = notify; 7288 mtnfp->mtnf_arg = arg; 7289 mtnfp->mtnf_link.mcb_objp = mtnfp; 7290 mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t); 7291 mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T; 7292 7293 mcbi = &mcip->mci_tx_notify_cb_info; 7294 mutex_enter(mcbi->mcbi_lockp); 7295 mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link); 7296 mutex_exit(mcbi->mcbi_lockp); 7297 return (mtnfp); 7298 } 7299 7300 static void 7301 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp) 7302 { 7303 mac_cb_info_t *mcbi; 7304 mac_cb_t **cblist; 7305 7306 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 7307 7308 if (!mac_callback_find(&mcip->mci_tx_notify_cb_info, 7309 &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) { 7310 cmn_err(CE_WARN, 7311 "mac_client_tx_notify_remove: callback not " 7312 "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp); 7313 return; 7314 } 7315 7316 mcbi = &mcip->mci_tx_notify_cb_info; 7317 cblist = &mcip->mci_tx_notify_cb_list; 7318 mutex_enter(mcbi->mcbi_lockp); 7319 if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link)) 7320 kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t)); 7321 else 7322 mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info); 7323 mutex_exit(mcbi->mcbi_lockp); 7324 } 7325 7326 /* 7327 * mac_client_tx_notify(): 7328 * call to add and remove flow control callback routine. 7329 */ 7330 mac_tx_notify_handle_t 7331 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func, 7332 void *ptr) 7333 { 7334 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 7335 mac_tx_notify_cb_t *mtnfp = NULL; 7336 7337 i_mac_perim_enter(mcip->mci_mip); 7338 7339 if (callb_func != NULL) { 7340 /* Add a notify callback */ 7341 mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr); 7342 } else { 7343 mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr); 7344 } 7345 i_mac_perim_exit(mcip->mci_mip); 7346 7347 return ((mac_tx_notify_handle_t)mtnfp); 7348 } 7349 7350 void 7351 mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf, 7352 mac_bridge_ref_t reff, mac_bridge_ls_t lsf) 7353 { 7354 mac_bridge_tx_cb = txf; 7355 mac_bridge_rx_cb = rxf; 7356 mac_bridge_ref_cb = reff; 7357 mac_bridge_ls_cb = lsf; 7358 } 7359 7360 int 7361 mac_bridge_set(mac_handle_t mh, mac_handle_t link) 7362 { 7363 mac_impl_t *mip = (mac_impl_t *)mh; 7364 int retv; 7365 7366 mutex_enter(&mip->mi_bridge_lock); 7367 if (mip->mi_bridge_link == NULL) { 7368 mip->mi_bridge_link = link; 7369 retv = 0; 7370 } else { 7371 retv = EBUSY; 7372 } 7373 mutex_exit(&mip->mi_bridge_lock); 7374 if (retv == 0) { 7375 mac_poll_state_change(mh, B_FALSE); 7376 mac_capab_update(mh); 7377 } 7378 return (retv); 7379 } 7380 7381 /* 7382 * Disable bridging on the indicated link. 7383 */ 7384 void 7385 mac_bridge_clear(mac_handle_t mh, mac_handle_t link) 7386 { 7387 mac_impl_t *mip = (mac_impl_t *)mh; 7388 7389 mutex_enter(&mip->mi_bridge_lock); 7390 ASSERT(mip->mi_bridge_link == link); 7391 mip->mi_bridge_link = NULL; 7392 mutex_exit(&mip->mi_bridge_lock); 7393 mac_poll_state_change(mh, B_TRUE); 7394 mac_capab_update(mh); 7395 } 7396 7397 void 7398 mac_no_active(mac_handle_t mh) 7399 { 7400 mac_impl_t *mip = (mac_impl_t *)mh; 7401 7402 i_mac_perim_enter(mip); 7403 mip->mi_state_flags |= MIS_NO_ACTIVE; 7404 i_mac_perim_exit(mip); 7405 } 7406 7407 /* 7408 * Walk the primary VLAN clients whenever the primary's rings property 7409 * changes and update the mac_resource_props_t for the VLAN's client. 7410 * We need to do this since we don't support setting these properties 7411 * on the primary's VLAN clients, but the VLAN clients have to 7412 * follow the primary w.r.t the rings property; 7413 */ 7414 void 7415 mac_set_prim_vlan_rings(mac_impl_t *mip, mac_resource_props_t *mrp) 7416 { 7417 mac_client_impl_t *vmcip; 7418 mac_resource_props_t *vmrp; 7419 7420 for (vmcip = mip->mi_clients_list; vmcip != NULL; 7421 vmcip = vmcip->mci_client_next) { 7422 if (!(vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) || 7423 mac_client_vid((mac_client_handle_t)vmcip) == 7424 VLAN_ID_NONE) { 7425 continue; 7426 } 7427 vmrp = MCIP_RESOURCE_PROPS(vmcip); 7428 7429 vmrp->mrp_nrxrings = mrp->mrp_nrxrings; 7430 if (mrp->mrp_mask & MRP_RX_RINGS) 7431 vmrp->mrp_mask |= MRP_RX_RINGS; 7432 else if (vmrp->mrp_mask & MRP_RX_RINGS) 7433 vmrp->mrp_mask &= ~MRP_RX_RINGS; 7434 7435 vmrp->mrp_ntxrings = mrp->mrp_ntxrings; 7436 if (mrp->mrp_mask & MRP_TX_RINGS) 7437 vmrp->mrp_mask |= MRP_TX_RINGS; 7438 else if (vmrp->mrp_mask & MRP_TX_RINGS) 7439 vmrp->mrp_mask &= ~MRP_TX_RINGS; 7440 7441 if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) 7442 vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC; 7443 else 7444 vmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC; 7445 7446 if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) 7447 vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC; 7448 else 7449 vmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC; 7450 } 7451 } 7452 7453 /* 7454 * We are adding or removing ring(s) from a group. The source for taking 7455 * rings is the default group. The destination for giving rings back is 7456 * the default group. 7457 */ 7458 int 7459 mac_group_ring_modify(mac_client_impl_t *mcip, mac_group_t *group, 7460 mac_group_t *defgrp) 7461 { 7462 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 7463 uint_t modify; 7464 int count; 7465 mac_ring_t *ring; 7466 mac_ring_t *next; 7467 mac_impl_t *mip = mcip->mci_mip; 7468 mac_ring_t **rings; 7469 uint_t ringcnt; 7470 int i = 0; 7471 boolean_t rx_group = group->mrg_type == MAC_RING_TYPE_RX; 7472 int start; 7473 int end; 7474 mac_group_t *tgrp; 7475 int j; 7476 int rv = 0; 7477 7478 /* 7479 * If we are asked for just a group, we give 1 ring, else 7480 * the specified number of rings. 7481 */ 7482 if (rx_group) { 7483 ringcnt = (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) ? 1: 7484 mrp->mrp_nrxrings; 7485 } else { 7486 ringcnt = (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) ? 1: 7487 mrp->mrp_ntxrings; 7488 } 7489 7490 /* don't allow modifying rings for a share for now. */ 7491 ASSERT(mcip->mci_share == NULL); 7492 7493 if (ringcnt == group->mrg_cur_count) 7494 return (0); 7495 7496 if (group->mrg_cur_count > ringcnt) { 7497 modify = group->mrg_cur_count - ringcnt; 7498 if (rx_group) { 7499 if (mip->mi_rx_donor_grp == group) { 7500 ASSERT(mac_is_primary_client(mcip)); 7501 mip->mi_rx_donor_grp = defgrp; 7502 } else { 7503 defgrp = mip->mi_rx_donor_grp; 7504 } 7505 } 7506 ring = group->mrg_rings; 7507 rings = kmem_alloc(modify * sizeof (mac_ring_handle_t), 7508 KM_SLEEP); 7509 j = 0; 7510 for (count = 0; count < modify; count++) { 7511 next = ring->mr_next; 7512 rv = mac_group_mov_ring(mip, defgrp, ring); 7513 if (rv != 0) { 7514 /* cleanup on failure */ 7515 for (j = 0; j < count; j++) { 7516 (void) mac_group_mov_ring(mip, group, 7517 rings[j]); 7518 } 7519 break; 7520 } 7521 rings[j++] = ring; 7522 ring = next; 7523 } 7524 kmem_free(rings, modify * sizeof (mac_ring_handle_t)); 7525 return (rv); 7526 } 7527 if (ringcnt >= MAX_RINGS_PER_GROUP) 7528 return (EINVAL); 7529 7530 modify = ringcnt - group->mrg_cur_count; 7531 7532 if (rx_group) { 7533 if (group != mip->mi_rx_donor_grp) 7534 defgrp = mip->mi_rx_donor_grp; 7535 else 7536 /* 7537 * This is the donor group with all the remaining 7538 * rings. Default group now gets to be the donor 7539 */ 7540 mip->mi_rx_donor_grp = defgrp; 7541 start = 1; 7542 end = mip->mi_rx_group_count; 7543 } else { 7544 start = 0; 7545 end = mip->mi_tx_group_count - 1; 7546 } 7547 /* 7548 * If the default doesn't have any rings, lets see if we can 7549 * take rings given to an h/w client that doesn't need it. 7550 * For now, we just see if there is any one client that can donate 7551 * all the required rings. 7552 */ 7553 if (defgrp->mrg_cur_count < (modify + 1)) { 7554 for (i = start; i < end; i++) { 7555 if (rx_group) { 7556 tgrp = &mip->mi_rx_groups[i]; 7557 if (tgrp == group || tgrp->mrg_state < 7558 MAC_GROUP_STATE_RESERVED) { 7559 continue; 7560 } 7561 mcip = MAC_GROUP_ONLY_CLIENT(tgrp); 7562 if (mcip == NULL) 7563 mcip = mac_get_grp_primary(tgrp); 7564 ASSERT(mcip != NULL); 7565 mrp = MCIP_RESOURCE_PROPS(mcip); 7566 if ((mrp->mrp_mask & MRP_RX_RINGS) != 0) 7567 continue; 7568 if ((tgrp->mrg_cur_count + 7569 defgrp->mrg_cur_count) < (modify + 1)) { 7570 continue; 7571 } 7572 if (mac_rx_switch_group(mcip, tgrp, 7573 defgrp) != 0) { 7574 return (ENOSPC); 7575 } 7576 } else { 7577 tgrp = &mip->mi_tx_groups[i]; 7578 if (tgrp == group || tgrp->mrg_state < 7579 MAC_GROUP_STATE_RESERVED) { 7580 continue; 7581 } 7582 mcip = MAC_GROUP_ONLY_CLIENT(tgrp); 7583 if (mcip == NULL) 7584 mcip = mac_get_grp_primary(tgrp); 7585 mrp = MCIP_RESOURCE_PROPS(mcip); 7586 if ((mrp->mrp_mask & MRP_TX_RINGS) != 0) 7587 continue; 7588 if ((tgrp->mrg_cur_count + 7589 defgrp->mrg_cur_count) < (modify + 1)) { 7590 continue; 7591 } 7592 /* OK, we can switch this to s/w */ 7593 mac_tx_client_quiesce( 7594 (mac_client_handle_t)mcip); 7595 mac_tx_switch_group(mcip, tgrp, defgrp); 7596 mac_tx_client_restart( 7597 (mac_client_handle_t)mcip); 7598 } 7599 } 7600 if (defgrp->mrg_cur_count < (modify + 1)) 7601 return (ENOSPC); 7602 } 7603 if ((rv = i_mac_group_allocate_rings(mip, group->mrg_type, defgrp, 7604 group, mcip->mci_share, modify)) != 0) { 7605 return (rv); 7606 } 7607 return (0); 7608 } 7609 7610 /* 7611 * Given the poolname in mac_resource_props, find the cpupart 7612 * that is associated with this pool. The cpupart will be used 7613 * later for finding the cpus to be bound to the networking threads. 7614 * 7615 * use_default is set B_TRUE if pools are enabled and pool_default 7616 * is returned. This avoids a 2nd lookup to set the poolname 7617 * for pool-effective. 7618 * 7619 * returns: 7620 * 7621 * NULL - pools are disabled or if the 'cpus' property is set. 7622 * cpupart of pool_default - pools are enabled and the pool 7623 * is not available or poolname is blank 7624 * cpupart of named pool - pools are enabled and the pool 7625 * is available. 7626 */ 7627 cpupart_t * 7628 mac_pset_find(mac_resource_props_t *mrp, boolean_t *use_default) 7629 { 7630 pool_t *pool; 7631 cpupart_t *cpupart; 7632 7633 *use_default = B_FALSE; 7634 7635 /* CPUs property is set */ 7636 if (mrp->mrp_mask & MRP_CPUS) 7637 return (NULL); 7638 7639 ASSERT(pool_lock_held()); 7640 7641 /* Pools are disabled, no pset */ 7642 if (pool_state == POOL_DISABLED) 7643 return (NULL); 7644 7645 /* Pools property is set */ 7646 if (mrp->mrp_mask & MRP_POOL) { 7647 if ((pool = pool_lookup_pool_by_name(mrp->mrp_pool)) == NULL) { 7648 /* Pool not found */ 7649 DTRACE_PROBE1(mac_pset_find_no_pool, char *, 7650 mrp->mrp_pool); 7651 *use_default = B_TRUE; 7652 pool = pool_default; 7653 } 7654 /* Pools property is not set */ 7655 } else { 7656 *use_default = B_TRUE; 7657 pool = pool_default; 7658 } 7659 7660 /* Find the CPU pset that corresponds to the pool */ 7661 mutex_enter(&cpu_lock); 7662 if ((cpupart = cpupart_find(pool->pool_pset->pset_id)) == NULL) { 7663 DTRACE_PROBE1(mac_find_pset_no_pset, psetid_t, 7664 pool->pool_pset->pset_id); 7665 } 7666 mutex_exit(&cpu_lock); 7667 7668 return (cpupart); 7669 } 7670 7671 void 7672 mac_set_pool_effective(boolean_t use_default, cpupart_t *cpupart, 7673 mac_resource_props_t *mrp, mac_resource_props_t *emrp) 7674 { 7675 ASSERT(pool_lock_held()); 7676 7677 if (cpupart != NULL) { 7678 emrp->mrp_mask |= MRP_POOL; 7679 if (use_default) { 7680 (void) strcpy(emrp->mrp_pool, 7681 "pool_default"); 7682 } else { 7683 ASSERT(strlen(mrp->mrp_pool) != 0); 7684 (void) strcpy(emrp->mrp_pool, 7685 mrp->mrp_pool); 7686 } 7687 } else { 7688 emrp->mrp_mask &= ~MRP_POOL; 7689 bzero(emrp->mrp_pool, MAXPATHLEN); 7690 } 7691 } 7692 7693 struct mac_pool_arg { 7694 char mpa_poolname[MAXPATHLEN]; 7695 pool_event_t mpa_what; 7696 }; 7697 7698 /*ARGSUSED*/ 7699 static uint_t 7700 mac_pool_link_update(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 7701 { 7702 struct mac_pool_arg *mpa = arg; 7703 mac_impl_t *mip = (mac_impl_t *)val; 7704 mac_client_impl_t *mcip; 7705 mac_resource_props_t *mrp, *emrp; 7706 boolean_t pool_update = B_FALSE; 7707 boolean_t pool_clear = B_FALSE; 7708 boolean_t use_default = B_FALSE; 7709 cpupart_t *cpupart = NULL; 7710 7711 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 7712 i_mac_perim_enter(mip); 7713 for (mcip = mip->mi_clients_list; mcip != NULL; 7714 mcip = mcip->mci_client_next) { 7715 pool_update = B_FALSE; 7716 pool_clear = B_FALSE; 7717 use_default = B_FALSE; 7718 mac_client_get_resources((mac_client_handle_t)mcip, mrp); 7719 emrp = MCIP_EFFECTIVE_PROPS(mcip); 7720 7721 /* 7722 * When pools are enabled 7723 */ 7724 if ((mpa->mpa_what == POOL_E_ENABLE) && 7725 ((mrp->mrp_mask & MRP_CPUS) == 0)) { 7726 mrp->mrp_mask |= MRP_POOL; 7727 pool_update = B_TRUE; 7728 } 7729 7730 /* 7731 * When pools are disabled 7732 */ 7733 if ((mpa->mpa_what == POOL_E_DISABLE) && 7734 ((mrp->mrp_mask & MRP_CPUS) == 0)) { 7735 mrp->mrp_mask |= MRP_POOL; 7736 pool_clear = B_TRUE; 7737 } 7738 7739 /* 7740 * Look for links with the pool property set and the poolname 7741 * matching the one which is changing. 7742 */ 7743 if (strcmp(mrp->mrp_pool, mpa->mpa_poolname) == 0) { 7744 /* 7745 * The pool associated with the link has changed. 7746 */ 7747 if (mpa->mpa_what == POOL_E_CHANGE) { 7748 mrp->mrp_mask |= MRP_POOL; 7749 pool_update = B_TRUE; 7750 } 7751 } 7752 7753 /* 7754 * This link is associated with pool_default and 7755 * pool_default has changed. 7756 */ 7757 if ((mpa->mpa_what == POOL_E_CHANGE) && 7758 (strcmp(emrp->mrp_pool, "pool_default") == 0) && 7759 (strcmp(mpa->mpa_poolname, "pool_default") == 0)) { 7760 mrp->mrp_mask |= MRP_POOL; 7761 pool_update = B_TRUE; 7762 } 7763 7764 /* 7765 * Get new list of cpus for the pool, bind network 7766 * threads to new list of cpus and update resources. 7767 */ 7768 if (pool_update) { 7769 if (MCIP_DATAPATH_SETUP(mcip)) { 7770 pool_lock(); 7771 cpupart = mac_pset_find(mrp, &use_default); 7772 mac_fanout_setup(mcip, mcip->mci_flent, mrp, 7773 mac_rx_deliver, mcip, NULL, cpupart); 7774 mac_set_pool_effective(use_default, cpupart, 7775 mrp, emrp); 7776 pool_unlock(); 7777 } 7778 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), 7779 B_FALSE); 7780 } 7781 7782 /* 7783 * Clear the effective pool and bind network threads 7784 * to any available CPU. 7785 */ 7786 if (pool_clear) { 7787 if (MCIP_DATAPATH_SETUP(mcip)) { 7788 emrp->mrp_mask &= ~MRP_POOL; 7789 bzero(emrp->mrp_pool, MAXPATHLEN); 7790 mac_fanout_setup(mcip, mcip->mci_flent, mrp, 7791 mac_rx_deliver, mcip, NULL, NULL); 7792 } 7793 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), 7794 B_FALSE); 7795 } 7796 } 7797 i_mac_perim_exit(mip); 7798 kmem_free(mrp, sizeof (*mrp)); 7799 return (MH_WALK_CONTINUE); 7800 } 7801 7802 static void 7803 mac_pool_update(void *arg) 7804 { 7805 mod_hash_walk(i_mac_impl_hash, mac_pool_link_update, arg); 7806 kmem_free(arg, sizeof (struct mac_pool_arg)); 7807 } 7808 7809 /* 7810 * Callback function to be executed when a noteworthy pool event 7811 * takes place. 7812 */ 7813 /* ARGSUSED */ 7814 static void 7815 mac_pool_event_cb(pool_event_t what, poolid_t id, void *arg) 7816 { 7817 pool_t *pool; 7818 char *poolname = NULL; 7819 struct mac_pool_arg *mpa; 7820 7821 pool_lock(); 7822 mpa = kmem_zalloc(sizeof (struct mac_pool_arg), KM_SLEEP); 7823 7824 switch (what) { 7825 case POOL_E_ENABLE: 7826 case POOL_E_DISABLE: 7827 break; 7828 7829 case POOL_E_CHANGE: 7830 pool = pool_lookup_pool_by_id(id); 7831 if (pool == NULL) { 7832 kmem_free(mpa, sizeof (struct mac_pool_arg)); 7833 pool_unlock(); 7834 return; 7835 } 7836 pool_get_name(pool, &poolname); 7837 (void) strlcpy(mpa->mpa_poolname, poolname, 7838 sizeof (mpa->mpa_poolname)); 7839 break; 7840 7841 default: 7842 kmem_free(mpa, sizeof (struct mac_pool_arg)); 7843 pool_unlock(); 7844 return; 7845 } 7846 pool_unlock(); 7847 7848 mpa->mpa_what = what; 7849 7850 mac_pool_update(mpa); 7851 } 7852 7853 /* 7854 * Set effective rings property. This could be called from datapath_setup/ 7855 * datapath_teardown or set-linkprop. 7856 * If the group is reserved we just go ahead and set the effective rings. 7857 * Additionally, for TX this could mean the default group has lost/gained 7858 * some rings, so if the default group is reserved, we need to adjust the 7859 * effective rings for the default group clients. For RX, if we are working 7860 * with the non-default group, we just need * to reset the effective props 7861 * for the default group clients. 7862 */ 7863 void 7864 mac_set_rings_effective(mac_client_impl_t *mcip) 7865 { 7866 mac_impl_t *mip = mcip->mci_mip; 7867 mac_group_t *grp; 7868 mac_group_t *defgrp; 7869 flow_entry_t *flent = mcip->mci_flent; 7870 mac_resource_props_t *emrp = MCIP_EFFECTIVE_PROPS(mcip); 7871 mac_grp_client_t *mgcp; 7872 mac_client_impl_t *gmcip; 7873 7874 grp = flent->fe_rx_ring_group; 7875 if (grp != NULL) { 7876 defgrp = MAC_DEFAULT_RX_GROUP(mip); 7877 /* 7878 * If we have reserved a group, set the effective rings 7879 * to the ring count in the group. 7880 */ 7881 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) { 7882 emrp->mrp_mask |= MRP_RX_RINGS; 7883 emrp->mrp_nrxrings = grp->mrg_cur_count; 7884 } 7885 7886 /* 7887 * We go through the clients in the shared group and 7888 * reset the effective properties. It is possible this 7889 * might have already been done for some client (i.e. 7890 * if some client is being moved to a group that is 7891 * already shared). The case where the default group is 7892 * RESERVED is taken care of above (note in the RX side if 7893 * there is a non-default group, the default group is always 7894 * SHARED). 7895 */ 7896 if (grp != defgrp || grp->mrg_state == MAC_GROUP_STATE_SHARED) { 7897 if (grp->mrg_state == MAC_GROUP_STATE_SHARED) 7898 mgcp = grp->mrg_clients; 7899 else 7900 mgcp = defgrp->mrg_clients; 7901 while (mgcp != NULL) { 7902 gmcip = mgcp->mgc_client; 7903 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 7904 if (emrp->mrp_mask & MRP_RX_RINGS) { 7905 emrp->mrp_mask &= ~MRP_RX_RINGS; 7906 emrp->mrp_nrxrings = 0; 7907 } 7908 mgcp = mgcp->mgc_next; 7909 } 7910 } 7911 } 7912 7913 /* Now the TX side */ 7914 grp = flent->fe_tx_ring_group; 7915 if (grp != NULL) { 7916 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7917 7918 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) { 7919 emrp->mrp_mask |= MRP_TX_RINGS; 7920 emrp->mrp_ntxrings = grp->mrg_cur_count; 7921 } else if (grp->mrg_state == MAC_GROUP_STATE_SHARED) { 7922 mgcp = grp->mrg_clients; 7923 while (mgcp != NULL) { 7924 gmcip = mgcp->mgc_client; 7925 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 7926 if (emrp->mrp_mask & MRP_TX_RINGS) { 7927 emrp->mrp_mask &= ~MRP_TX_RINGS; 7928 emrp->mrp_ntxrings = 0; 7929 } 7930 mgcp = mgcp->mgc_next; 7931 } 7932 } 7933 7934 /* 7935 * If the group is not the default group and the default 7936 * group is reserved, the ring count in the default group 7937 * might have changed, update it. 7938 */ 7939 if (grp != defgrp && 7940 defgrp->mrg_state == MAC_GROUP_STATE_RESERVED) { 7941 gmcip = MAC_GROUP_ONLY_CLIENT(defgrp); 7942 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 7943 emrp->mrp_ntxrings = defgrp->mrg_cur_count; 7944 } 7945 } 7946 emrp = MCIP_EFFECTIVE_PROPS(mcip); 7947 } 7948 7949 /* 7950 * Check if the primary is in the default group. If so, see if we 7951 * can give it a an exclusive group now that another client is 7952 * being configured. We take the primary out of the default group 7953 * because the multicast/broadcast packets for the all the clients 7954 * will land in the default ring in the default group which means 7955 * any client in the default group, even if it is the only on in 7956 * the group, will lose exclusive access to the rings, hence 7957 * polling. 7958 */ 7959 mac_client_impl_t * 7960 mac_check_primary_relocation(mac_client_impl_t *mcip, boolean_t rxhw) 7961 { 7962 mac_impl_t *mip = mcip->mci_mip; 7963 mac_group_t *defgrp = MAC_DEFAULT_RX_GROUP(mip); 7964 flow_entry_t *flent = mcip->mci_flent; 7965 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 7966 uint8_t *mac_addr; 7967 mac_group_t *ngrp; 7968 7969 /* 7970 * Check if the primary is in the default group, if not 7971 * or if it is explicitly configured to be in the default 7972 * group OR set the RX rings property, return. 7973 */ 7974 if (flent->fe_rx_ring_group != defgrp || mrp->mrp_mask & MRP_RX_RINGS) 7975 return (NULL); 7976 7977 /* 7978 * If the new client needs an exclusive group and we 7979 * don't have another for the primary, return. 7980 */ 7981 if (rxhw && mip->mi_rxhwclnt_avail < 2) 7982 return (NULL); 7983 7984 mac_addr = flent->fe_flow_desc.fd_dst_mac; 7985 /* 7986 * We call this when we are setting up the datapath for 7987 * the first non-primary. 7988 */ 7989 ASSERT(mip->mi_nactiveclients == 2); 7990 /* 7991 * OK, now we have the primary that needs to be relocated. 7992 */ 7993 ngrp = mac_reserve_rx_group(mcip, mac_addr, B_TRUE); 7994 if (ngrp == NULL) 7995 return (NULL); 7996 if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) { 7997 mac_stop_group(ngrp); 7998 return (NULL); 7999 } 8000 return (mcip); 8001 } 8002